* i386-tdep.c (i386_16_byte_align_p): New.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
20a6ec49 99 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
100 return 0;
101
20a6ec49
MD
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
104}
105
5716833c
MK
106static int
107i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 108{
5716833c
MK
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
20a6ec49 111 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
112 return 0;
113
20a6ec49 114 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
115}
116
5716833c 117/* FP register? */
23a34459
AC
118
119int
20a6ec49 120i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 121{
20a6ec49
MD
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
125 return 0;
126
20a6ec49
MD
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
129}
130
131int
20a6ec49 132i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 133{
20a6ec49
MD
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
137 return 0;
138
20a6ec49
MD
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
141}
142
30b0e2d8 143/* Return the name of register REGNUM. */
fc633446 144
fa88f677 145const char *
d93859e2 146i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 147{
d93859e2 148 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 150
30b0e2d8
MK
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
70913449 153
c40e1eab 154 return NULL;
fc633446
MK
155}
156
c4fc7f1b 157/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
158 number used by GDB. */
159
8201327c 160static int
d3f73121 161i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 162{
20a6ec49
MD
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
c4fc7f1b
MK
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
85540d8c
MK
168 if (reg >= 0 && reg <= 7)
169 {
9872ad24
JB
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
85540d8c
MK
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
20a6ec49 181 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
20a6ec49 186 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
20a6ec49 191 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
192 }
193
194 /* This will hopefully provoke a warning. */
d3f73121 195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
196}
197
c4fc7f1b
MK
198/* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
85540d8c 200
8201327c 201static int
d3f73121 202i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 203{
20a6ec49
MD
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
c4fc7f1b
MK
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
acd5c798 213 /* General-purpose registers. */
85540d8c
MK
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
20a6ec49 219 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 220 }
c6f4c129 221 else if (reg >= 21 && reg <= 36)
85540d8c 222 {
c4fc7f1b 223 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 224 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
225 }
226
c6f4c129
JB
227 switch (reg)
228 {
20a6ec49
MD
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
85540d8c 240 /* This will hopefully provoke a warning. */
d3f73121 241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 242}
5716833c 243
fc338970 244\f
917317f4 245
fc338970
MK
246/* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
53904c9e
AC
248static const char att_flavor[] = "att";
249static const char intel_flavor[] = "intel";
250static const char *valid_flavors[] =
c5aa993b 251{
c906108c
SS
252 att_flavor,
253 intel_flavor,
254 NULL
255};
53904c9e 256static const char *disassembly_flavor = att_flavor;
acd5c798 257\f
c906108c 258
acd5c798
MK
259/* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
c906108c 264
acd5c798
MK
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
c906108c 267
acd5c798 268 This function is 64-bit safe. */
63c0089f
MK
269
270static const gdb_byte *
67d57894 271i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 272{
63c0089f
MK
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
acd5c798
MK
275 *len = sizeof (break_insn);
276 return break_insn;
c906108c 277}
237fc4c9
PA
278\f
279/* Displaced instruction handling. */
280
281
282static int
283i386_absolute_jmp_p (gdb_byte *insn)
284{
285 /* jmp far (absolute address in operand) */
286 if (insn[0] == 0xea)
287 return 1;
288
289 if (insn[0] == 0xff)
290 {
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
293 return 1;
294
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
297 return 1;
298 }
299
300 return 0;
301}
302
303static int
304i386_absolute_call_p (gdb_byte *insn)
305{
306 /* call far, absolute */
307 if (insn[0] == 0x9a)
308 return 1;
309
310 if (insn[0] == 0xff)
311 {
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
314 return 1;
315
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
318 return 1;
319 }
320
321 return 0;
322}
323
324static int
325i386_ret_p (gdb_byte *insn)
326{
327 switch (insn[0])
328 {
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
334 return 1;
335
336 default:
337 return 0;
338 }
339}
340
341static int
342i386_call_p (gdb_byte *insn)
343{
344 if (i386_absolute_call_p (insn))
345 return 1;
346
347 /* call near, relative */
348 if (insn[0] == 0xe8)
349 return 1;
350
351 return 0;
352}
353
354static int
355i386_breakpoint_p (gdb_byte *insn)
356{
357 return insn[0] == 0xcc; /* int 3 */
358}
359
360/* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
362static int
363i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
364{
365 if (insn[0] == 0xcd)
366 {
367 *lengthp = 2;
368 return 1;
369 }
370
371 return 0;
372}
373
374/* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
376void
377i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
381{
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
385 applying it. */
386 ULONGEST insn_offset = to - from;
387
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
391
392 if (debug_displaced)
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
397
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
401
402 /* Relocate the %eip, if necessary. */
403
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
412 {
413 ULONGEST orig_eip;
414 ULONGEST insn_len;
415
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
417
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
422
423 But most system calls don't, and we do need to relocate %eip.
424
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
431 system calls. */
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
434 {
435 if (debug_displaced)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
438 "not relocating\n");
439 }
440 else
441 {
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
443
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
446
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
452 {
453 fprintf_unfiltered (gdb_stdlog,
454 "displaced: stepped breakpoint\n");
455 eip--;
456 }
457
458 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
459
460 if (debug_displaced)
461 fprintf_unfiltered (gdb_stdlog,
462 "displaced: "
463 "relocated %%eip from 0x%s to 0x%s\n",
464 paddr_nz (orig_eip), paddr_nz (eip));
465 }
466 }
467
468 /* If the instruction was PUSHFL, then the TF bit will be set in the
469 pushed value, and should be cleared. We'll leave this for later,
470 since GDB already messes up the TF flag when stepping over a
471 pushfl. */
472
473 /* If the instruction was a call, the return address now atop the
474 stack is the address following the copied instruction. We need
475 to make it the address following the original instruction. */
476 if (i386_call_p (insn))
477 {
478 ULONGEST esp;
479 ULONGEST retaddr;
480 const ULONGEST retaddr_len = 4;
481
482 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
483 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
484 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
485 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
486
487 if (debug_displaced)
488 fprintf_unfiltered (gdb_stdlog,
489 "displaced: relocated return addr at 0x%s "
490 "to 0x%s\n",
491 paddr_nz (esp),
492 paddr_nz (retaddr));
493 }
494}
495
496
fc338970 497\f
acd5c798
MK
498#ifdef I386_REGNO_TO_SYMMETRY
499#error "The Sequent Symmetry is no longer supported."
500#endif
c906108c 501
acd5c798
MK
502/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
503 and %esp "belong" to the calling function. Therefore these
504 registers should be saved if they're going to be modified. */
c906108c 505
acd5c798
MK
506/* The maximum number of saved registers. This should include all
507 registers mentioned above, and %eip. */
a3386186 508#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
509
510struct i386_frame_cache
c906108c 511{
acd5c798
MK
512 /* Base address. */
513 CORE_ADDR base;
772562f8 514 LONGEST sp_offset;
acd5c798
MK
515 CORE_ADDR pc;
516
fd13a04a
AC
517 /* Saved registers. */
518 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 519 CORE_ADDR saved_sp;
92dd43fa 520 int stack_align;
acd5c798
MK
521 int pc_in_eax;
522
523 /* Stack space reserved for local variables. */
524 long locals;
525};
526
527/* Allocate and initialize a frame cache. */
528
529static struct i386_frame_cache *
fd13a04a 530i386_alloc_frame_cache (void)
acd5c798
MK
531{
532 struct i386_frame_cache *cache;
533 int i;
534
535 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
536
537 /* Base address. */
538 cache->base = 0;
539 cache->sp_offset = -4;
540 cache->pc = 0;
541
fd13a04a
AC
542 /* Saved registers. We initialize these to -1 since zero is a valid
543 offset (that's where %ebp is supposed to be stored). */
544 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
545 cache->saved_regs[i] = -1;
acd5c798 546 cache->saved_sp = 0;
92dd43fa 547 cache->stack_align = 0;
acd5c798
MK
548 cache->pc_in_eax = 0;
549
550 /* Frameless until proven otherwise. */
551 cache->locals = -1;
552
553 return cache;
554}
c906108c 555
acd5c798
MK
556/* If the instruction at PC is a jump, return the address of its
557 target. Otherwise, return PC. */
c906108c 558
acd5c798
MK
559static CORE_ADDR
560i386_follow_jump (CORE_ADDR pc)
561{
63c0089f 562 gdb_byte op;
acd5c798
MK
563 long delta = 0;
564 int data16 = 0;
c906108c 565
8defab1a 566 target_read_memory (pc, &op, 1);
acd5c798 567 if (op == 0x66)
c906108c 568 {
c906108c 569 data16 = 1;
acd5c798 570 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
571 }
572
acd5c798 573 switch (op)
c906108c
SS
574 {
575 case 0xe9:
fc338970 576 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
577 if (data16)
578 {
acd5c798 579 delta = read_memory_integer (pc + 2, 2);
c906108c 580
fc338970
MK
581 /* Include the size of the jmp instruction (including the
582 0x66 prefix). */
acd5c798 583 delta += 4;
c906108c
SS
584 }
585 else
586 {
acd5c798 587 delta = read_memory_integer (pc + 1, 4);
c906108c 588
acd5c798
MK
589 /* Include the size of the jmp instruction. */
590 delta += 5;
c906108c
SS
591 }
592 break;
593 case 0xeb:
fc338970 594 /* Relative jump, disp8 (ignore data16). */
acd5c798 595 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 596
acd5c798 597 delta += data16 + 2;
c906108c
SS
598 break;
599 }
c906108c 600
acd5c798
MK
601 return pc + delta;
602}
fc338970 603
acd5c798
MK
604/* Check whether PC points at a prologue for a function returning a
605 structure or union. If so, it updates CACHE and returns the
606 address of the first instruction after the code sequence that
607 removes the "hidden" argument from the stack or CURRENT_PC,
608 whichever is smaller. Otherwise, return PC. */
c906108c 609
acd5c798
MK
610static CORE_ADDR
611i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
612 struct i386_frame_cache *cache)
c906108c 613{
acd5c798
MK
614 /* Functions that return a structure or union start with:
615
616 popl %eax 0x58
617 xchgl %eax, (%esp) 0x87 0x04 0x24
618 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
619
620 (the System V compiler puts out the second `xchg' instruction,
621 and the assembler doesn't try to optimize it, so the 'sib' form
622 gets generated). This sequence is used to get the address of the
623 return buffer for a function that returns a structure. */
63c0089f
MK
624 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
625 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
626 gdb_byte buf[4];
627 gdb_byte op;
c906108c 628
acd5c798
MK
629 if (current_pc <= pc)
630 return pc;
631
8defab1a 632 target_read_memory (pc, &op, 1);
c906108c 633
acd5c798
MK
634 if (op != 0x58) /* popl %eax */
635 return pc;
c906108c 636
8defab1a 637 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
638 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
639 return pc;
c906108c 640
acd5c798 641 if (current_pc == pc)
c906108c 642 {
acd5c798
MK
643 cache->sp_offset += 4;
644 return current_pc;
c906108c
SS
645 }
646
acd5c798 647 if (current_pc == pc + 1)
c906108c 648 {
acd5c798
MK
649 cache->pc_in_eax = 1;
650 return current_pc;
651 }
652
653 if (buf[1] == proto1[1])
654 return pc + 4;
655 else
656 return pc + 5;
657}
658
659static CORE_ADDR
660i386_skip_probe (CORE_ADDR pc)
661{
662 /* A function may start with
fc338970 663
acd5c798
MK
664 pushl constant
665 call _probe
666 addl $4, %esp
fc338970 667
acd5c798
MK
668 followed by
669
670 pushl %ebp
fc338970 671
acd5c798 672 etc. */
63c0089f
MK
673 gdb_byte buf[8];
674 gdb_byte op;
fc338970 675
8defab1a 676 target_read_memory (pc, &op, 1);
acd5c798
MK
677
678 if (op == 0x68 || op == 0x6a)
679 {
680 int delta;
c906108c 681
acd5c798
MK
682 /* Skip past the `pushl' instruction; it has either a one-byte or a
683 four-byte operand, depending on the opcode. */
c906108c 684 if (op == 0x68)
acd5c798 685 delta = 5;
c906108c 686 else
acd5c798 687 delta = 2;
c906108c 688
acd5c798
MK
689 /* Read the following 8 bytes, which should be `call _probe' (6
690 bytes) followed by `addl $4,%esp' (2 bytes). */
691 read_memory (pc + delta, buf, sizeof (buf));
c906108c 692 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 693 pc += delta + sizeof (buf);
c906108c
SS
694 }
695
acd5c798
MK
696 return pc;
697}
698
92dd43fa
MK
699/* GCC 4.1 and later, can put code in the prologue to realign the
700 stack pointer. Check whether PC points to such code, and update
701 CACHE accordingly. Return the first instruction after the code
702 sequence or CURRENT_PC, whichever is smaller. If we don't
703 recognize the code, return PC. */
704
705static CORE_ADDR
706i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
707 struct i386_frame_cache *cache)
708{
92a56b20
JB
709 /* The register used by the compiler to perform the stack re-alignment
710 is, in order of preference, either %ecx, %edx, or %eax. GCC should
711 never use %ebx as it always treats it as callee-saved, whereas
712 the compiler can only use caller-saved registers. */
ade52156 713 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
714 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
715 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
716 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
717 };
ade52156
JB
718 static const gdb_byte insns_edx[10] = {
719 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
720 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
721 0xff, 0x72, 0xfc /* pushl -4(%edx) */
722 };
723 static const gdb_byte insns_eax[10] = {
724 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
725 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
726 0xff, 0x70, 0xfc /* pushl -4(%eax) */
727 };
92dd43fa
MK
728 gdb_byte buf[10];
729
730 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
731 || (memcmp (buf, insns_ecx, sizeof buf) != 0
732 && memcmp (buf, insns_edx, sizeof buf) != 0
733 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
734 return pc;
735
736 if (current_pc > pc + 4)
737 cache->stack_align = 1;
738
739 return min (pc + 10, current_pc);
740}
741
37bdc87e 742/* Maximum instruction length we need to handle. */
237fc4c9 743#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
744
745/* Instruction description. */
746struct i386_insn
747{
748 size_t len;
237fc4c9
PA
749 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
750 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
751};
752
753/* Search for the instruction at PC in the list SKIP_INSNS. Return
754 the first instruction description that matches. Otherwise, return
755 NULL. */
756
757static struct i386_insn *
758i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
759{
760 struct i386_insn *insn;
63c0089f 761 gdb_byte op;
37bdc87e 762
8defab1a 763 target_read_memory (pc, &op, 1);
37bdc87e
MK
764
765 for (insn = skip_insns; insn->len > 0; insn++)
766 {
767 if ((op & insn->mask[0]) == insn->insn[0])
768 {
237fc4c9 769 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 770 int insn_matched = 1;
37bdc87e
MK
771 size_t i;
772
773 gdb_assert (insn->len > 1);
237fc4c9 774 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 775
8defab1a 776 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
777 for (i = 1; i < insn->len; i++)
778 {
779 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 780 insn_matched = 0;
37bdc87e 781 }
613e8135
MK
782
783 if (insn_matched)
784 return insn;
37bdc87e
MK
785 }
786 }
787
788 return NULL;
789}
790
791/* Some special instructions that might be migrated by GCC into the
792 part of the prologue that sets up the new stack frame. Because the
793 stack frame hasn't been setup yet, no registers have been saved
794 yet, and only the scratch registers %eax, %ecx and %edx can be
795 touched. */
796
797struct i386_insn i386_frame_setup_skip_insns[] =
798{
799 /* Check for `movb imm8, r' and `movl imm32, r'.
800
801 ??? Should we handle 16-bit operand-sizes here? */
802
803 /* `movb imm8, %al' and `movb imm8, %ah' */
804 /* `movb imm8, %cl' and `movb imm8, %ch' */
805 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
806 /* `movb imm8, %dl' and `movb imm8, %dh' */
807 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
808 /* `movl imm32, %eax' and `movl imm32, %ecx' */
809 { 5, { 0xb8 }, { 0xfe } },
810 /* `movl imm32, %edx' */
811 { 5, { 0xba }, { 0xff } },
812
813 /* Check for `mov imm32, r32'. Note that there is an alternative
814 encoding for `mov m32, %eax'.
815
816 ??? Should we handle SIB adressing here?
817 ??? Should we handle 16-bit operand-sizes here? */
818
819 /* `movl m32, %eax' */
820 { 5, { 0xa1 }, { 0xff } },
821 /* `movl m32, %eax' and `mov; m32, %ecx' */
822 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
823 /* `movl m32, %edx' */
824 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
825
826 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
827 Because of the symmetry, there are actually two ways to encode
828 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
829 opcode bytes 0x31 and 0x33 for `xorl'. */
830
831 /* `subl %eax, %eax' */
832 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
833 /* `subl %ecx, %ecx' */
834 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
835 /* `subl %edx, %edx' */
836 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
837 /* `xorl %eax, %eax' */
838 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
839 /* `xorl %ecx, %ecx' */
840 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
841 /* `xorl %edx, %edx' */
842 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
843 { 0 }
844};
845
e11481da
PM
846
847/* Check whether PC points to a no-op instruction. */
848static CORE_ADDR
849i386_skip_noop (CORE_ADDR pc)
850{
851 gdb_byte op;
852 int check = 1;
853
8defab1a 854 target_read_memory (pc, &op, 1);
e11481da
PM
855
856 while (check)
857 {
858 check = 0;
859 /* Ignore `nop' instruction. */
860 if (op == 0x90)
861 {
862 pc += 1;
8defab1a 863 target_read_memory (pc, &op, 1);
e11481da
PM
864 check = 1;
865 }
866 /* Ignore no-op instruction `mov %edi, %edi'.
867 Microsoft system dlls often start with
868 a `mov %edi,%edi' instruction.
869 The 5 bytes before the function start are
870 filled with `nop' instructions.
871 This pattern can be used for hot-patching:
872 The `mov %edi, %edi' instruction can be replaced by a
873 near jump to the location of the 5 `nop' instructions
874 which can be replaced by a 32-bit jump to anywhere
875 in the 32-bit address space. */
876
877 else if (op == 0x8b)
878 {
8defab1a 879 target_read_memory (pc + 1, &op, 1);
e11481da
PM
880 if (op == 0xff)
881 {
882 pc += 2;
8defab1a 883 target_read_memory (pc, &op, 1);
e11481da
PM
884 check = 1;
885 }
886 }
887 }
888 return pc;
889}
890
acd5c798
MK
891/* Check whether PC points at a code that sets up a new stack frame.
892 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
893 instruction after the sequence that sets up the frame or LIMIT,
894 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
895
896static CORE_ADDR
37bdc87e 897i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
898 struct i386_frame_cache *cache)
899{
37bdc87e 900 struct i386_insn *insn;
63c0089f 901 gdb_byte op;
26604a34 902 int skip = 0;
acd5c798 903
37bdc87e
MK
904 if (limit <= pc)
905 return limit;
acd5c798 906
8defab1a 907 target_read_memory (pc, &op, 1);
acd5c798 908
c906108c 909 if (op == 0x55) /* pushl %ebp */
c5aa993b 910 {
acd5c798
MK
911 /* Take into account that we've executed the `pushl %ebp' that
912 starts this instruction sequence. */
fd13a04a 913 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 914 cache->sp_offset += 4;
37bdc87e 915 pc++;
acd5c798
MK
916
917 /* If that's all, return now. */
37bdc87e
MK
918 if (limit <= pc)
919 return limit;
26604a34 920
b4632131 921 /* Check for some special instructions that might be migrated by
37bdc87e
MK
922 GCC into the prologue and skip them. At this point in the
923 prologue, code should only touch the scratch registers %eax,
924 %ecx and %edx, so while the number of posibilities is sheer,
925 it is limited.
5daa5b4e 926
26604a34
MK
927 Make sure we only skip these instructions if we later see the
928 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 929 while (pc + skip < limit)
26604a34 930 {
37bdc87e
MK
931 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
932 if (insn == NULL)
933 break;
b4632131 934
37bdc87e 935 skip += insn->len;
26604a34
MK
936 }
937
37bdc87e
MK
938 /* If that's all, return now. */
939 if (limit <= pc + skip)
940 return limit;
941
8defab1a 942 target_read_memory (pc + skip, &op, 1);
37bdc87e 943
26604a34 944 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 945 switch (op)
c906108c
SS
946 {
947 case 0x8b:
37bdc87e
MK
948 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
949 return pc;
c906108c
SS
950 break;
951 case 0x89:
37bdc87e
MK
952 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
953 return pc;
c906108c
SS
954 break;
955 default:
37bdc87e 956 return pc;
c906108c 957 }
acd5c798 958
26604a34
MK
959 /* OK, we actually have a frame. We just don't know how large
960 it is yet. Set its size to zero. We'll adjust it if
961 necessary. We also now commit to skipping the special
962 instructions mentioned before. */
acd5c798 963 cache->locals = 0;
37bdc87e 964 pc += (skip + 2);
acd5c798
MK
965
966 /* If that's all, return now. */
37bdc87e
MK
967 if (limit <= pc)
968 return limit;
acd5c798 969
fc338970
MK
970 /* Check for stack adjustment
971
acd5c798 972 subl $XXX, %esp
fc338970 973
fd35795f 974 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 975 reg, so we don't have to worry about a data16 prefix. */
8defab1a 976 target_read_memory (pc, &op, 1);
c906108c
SS
977 if (op == 0x83)
978 {
fd35795f 979 /* `subl' with 8-bit immediate. */
37bdc87e 980 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 981 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 982 return pc;
acd5c798 983
37bdc87e
MK
984 /* `subl' with signed 8-bit immediate (though it wouldn't
985 make sense to be negative). */
986 cache->locals = read_memory_integer (pc + 2, 1);
987 return pc + 3;
c906108c
SS
988 }
989 else if (op == 0x81)
990 {
fd35795f 991 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 992 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 993 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 994 return pc;
acd5c798 995
fd35795f 996 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
997 cache->locals = read_memory_integer (pc + 2, 4);
998 return pc + 6;
c906108c
SS
999 }
1000 else
1001 {
acd5c798 1002 /* Some instruction other than `subl'. */
37bdc87e 1003 return pc;
c906108c
SS
1004 }
1005 }
37bdc87e 1006 else if (op == 0xc8) /* enter */
c906108c 1007 {
acd5c798
MK
1008 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1009 return pc + 4;
c906108c 1010 }
21d0e8a4 1011
acd5c798 1012 return pc;
21d0e8a4
MK
1013}
1014
acd5c798
MK
1015/* Check whether PC points at code that saves registers on the stack.
1016 If so, it updates CACHE and returns the address of the first
1017 instruction after the register saves or CURRENT_PC, whichever is
1018 smaller. Otherwise, return PC. */
6bff26de
MK
1019
1020static CORE_ADDR
acd5c798
MK
1021i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
6bff26de 1023{
99ab4326 1024 CORE_ADDR offset = 0;
63c0089f 1025 gdb_byte op;
99ab4326 1026 int i;
c0d1d883 1027
99ab4326
MK
1028 if (cache->locals > 0)
1029 offset -= cache->locals;
1030 for (i = 0; i < 8 && pc < current_pc; i++)
1031 {
8defab1a 1032 target_read_memory (pc, &op, 1);
99ab4326
MK
1033 if (op < 0x50 || op > 0x57)
1034 break;
0d17c81d 1035
99ab4326
MK
1036 offset -= 4;
1037 cache->saved_regs[op - 0x50] = offset;
1038 cache->sp_offset += 4;
1039 pc++;
6bff26de
MK
1040 }
1041
acd5c798 1042 return pc;
22797942
AC
1043}
1044
acd5c798
MK
1045/* Do a full analysis of the prologue at PC and update CACHE
1046 accordingly. Bail out early if CURRENT_PC is reached. Return the
1047 address where the analysis stopped.
ed84f6c1 1048
fc338970
MK
1049 We handle these cases:
1050
1051 The startup sequence can be at the start of the function, or the
1052 function can start with a branch to startup code at the end.
1053
1054 %ebp can be set up with either the 'enter' instruction, or "pushl
1055 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1056 once used in the System V compiler).
1057
1058 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1059 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1060 16-bit unsigned argument for space to allocate, and the 'addl'
1061 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1062
1063 Next, the registers used by this function are pushed. With the
1064 System V compiler they will always be in the order: %edi, %esi,
1065 %ebx (and sometimes a harmless bug causes it to also save but not
1066 restore %eax); however, the code below is willing to see the pushes
1067 in any order, and will handle up to 8 of them.
1068
1069 If the setup sequence is at the end of the function, then the next
1070 instruction will be a branch back to the start. */
c906108c 1071
acd5c798
MK
1072static CORE_ADDR
1073i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1074 struct i386_frame_cache *cache)
c906108c 1075{
e11481da 1076 pc = i386_skip_noop (pc);
acd5c798
MK
1077 pc = i386_follow_jump (pc);
1078 pc = i386_analyze_struct_return (pc, current_pc, cache);
1079 pc = i386_skip_probe (pc);
92dd43fa 1080 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
1081 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1082 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1083}
1084
fc338970 1085/* Return PC of first real instruction. */
c906108c 1086
3a1e71e3 1087static CORE_ADDR
6093d2eb 1088i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1089{
63c0089f 1090 static gdb_byte pic_pat[6] =
acd5c798
MK
1091 {
1092 0xe8, 0, 0, 0, 0, /* call 0x0 */
1093 0x5b, /* popl %ebx */
c5aa993b 1094 };
acd5c798
MK
1095 struct i386_frame_cache cache;
1096 CORE_ADDR pc;
63c0089f 1097 gdb_byte op;
acd5c798 1098 int i;
c5aa993b 1099
acd5c798
MK
1100 cache.locals = -1;
1101 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1102 if (cache.locals < 0)
1103 return start_pc;
c5aa993b 1104
acd5c798 1105 /* Found valid frame setup. */
c906108c 1106
fc338970
MK
1107 /* The native cc on SVR4 in -K PIC mode inserts the following code
1108 to get the address of the global offset table (GOT) into register
acd5c798
MK
1109 %ebx:
1110
fc338970
MK
1111 call 0x0
1112 popl %ebx
1113 movl %ebx,x(%ebp) (optional)
1114 addl y,%ebx
1115
c906108c
SS
1116 This code is with the rest of the prologue (at the end of the
1117 function), so we have to skip it to get to the first real
1118 instruction at the start of the function. */
c5aa993b 1119
c906108c
SS
1120 for (i = 0; i < 6; i++)
1121 {
8defab1a 1122 target_read_memory (pc + i, &op, 1);
c5aa993b 1123 if (pic_pat[i] != op)
c906108c
SS
1124 break;
1125 }
1126 if (i == 6)
1127 {
acd5c798
MK
1128 int delta = 6;
1129
8defab1a 1130 target_read_memory (pc + delta, &op, 1);
c906108c 1131
c5aa993b 1132 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1133 {
acd5c798
MK
1134 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1135
fc338970 1136 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1137 delta += 3;
fc338970 1138 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1139 delta += 6;
fc338970 1140 else /* Unexpected instruction. */
acd5c798
MK
1141 delta = 0;
1142
8defab1a 1143 target_read_memory (pc + delta, &op, 1);
c906108c 1144 }
acd5c798 1145
c5aa993b 1146 /* addl y,%ebx */
acd5c798 1147 if (delta > 0 && op == 0x81
d5d6fca5 1148 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 1149 {
acd5c798 1150 pc += delta + 6;
c906108c
SS
1151 }
1152 }
c5aa993b 1153
e63bbc88
MK
1154 /* If the function starts with a branch (to startup code at the end)
1155 the last instruction should bring us back to the first
1156 instruction of the real code. */
1157 if (i386_follow_jump (start_pc) != start_pc)
1158 pc = i386_follow_jump (pc);
1159
1160 return pc;
c906108c
SS
1161}
1162
4309257c
PM
1163/* Check that the code pointed to by PC corresponds to a call to
1164 __main, skip it if so. Return PC otherwise. */
1165
1166CORE_ADDR
1167i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1168{
1169 gdb_byte op;
1170
1171 target_read_memory (pc, &op, 1);
1172 if (op == 0xe8)
1173 {
1174 gdb_byte buf[4];
1175
1176 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1177 {
1178 /* Make sure address is computed correctly as a 32bit
1179 integer even if CORE_ADDR is 64 bit wide. */
1180 struct minimal_symbol *s;
1181 CORE_ADDR call_dest = pc + 5 + extract_signed_integer (buf, 4);
1182
1183 call_dest = call_dest & 0xffffffffU;
1184 s = lookup_minimal_symbol_by_pc (call_dest);
1185 if (s != NULL
1186 && SYMBOL_LINKAGE_NAME (s) != NULL
1187 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1188 pc += 5;
1189 }
1190 }
1191
1192 return pc;
1193}
1194
acd5c798 1195/* This function is 64-bit safe. */
93924b6b 1196
acd5c798
MK
1197static CORE_ADDR
1198i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1199{
63c0089f 1200 gdb_byte buf[8];
acd5c798 1201
875f8d0e 1202 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 1203 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 1204}
acd5c798 1205\f
93924b6b 1206
acd5c798 1207/* Normal frames. */
c5aa993b 1208
acd5c798 1209static struct i386_frame_cache *
10458914 1210i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1211{
acd5c798 1212 struct i386_frame_cache *cache;
63c0089f 1213 gdb_byte buf[4];
acd5c798
MK
1214 int i;
1215
1216 if (*this_cache)
1217 return *this_cache;
1218
fd13a04a 1219 cache = i386_alloc_frame_cache ();
acd5c798
MK
1220 *this_cache = cache;
1221
1222 /* In principle, for normal frames, %ebp holds the frame pointer,
1223 which holds the base address for the current stack frame.
1224 However, for functions that don't need it, the frame pointer is
1225 optional. For these "frameless" functions the frame pointer is
1226 actually the frame pointer of the calling frame. Signal
1227 trampolines are just a special case of a "frameless" function.
1228 They (usually) share their frame pointer with the frame that was
1229 in progress when the signal occurred. */
1230
10458914 1231 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
acd5c798
MK
1232 cache->base = extract_unsigned_integer (buf, 4);
1233 if (cache->base == 0)
1234 return cache;
1235
1236 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1237 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1238
10458914 1239 cache->pc = get_frame_func (this_frame);
acd5c798 1240 if (cache->pc != 0)
10458914 1241 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
acd5c798 1242
92dd43fa
MK
1243 if (cache->stack_align)
1244 {
1245 /* Saved stack pointer has been saved in %ecx. */
10458914 1246 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
92dd43fa
MK
1247 cache->saved_sp = extract_unsigned_integer(buf, 4);
1248 }
1249
acd5c798
MK
1250 if (cache->locals < 0)
1251 {
1252 /* We didn't find a valid frame, which means that CACHE->base
1253 currently holds the frame pointer for our calling frame. If
1254 we're at the start of a function, or somewhere half-way its
1255 prologue, the function's frame probably hasn't been fully
1256 setup yet. Try to reconstruct the base address for the stack
1257 frame by looking at the stack pointer. For truly "frameless"
1258 functions this might work too. */
1259
92dd43fa
MK
1260 if (cache->stack_align)
1261 {
1262 /* We're halfway aligning the stack. */
1263 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1264 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1265
1266 /* This will be added back below. */
1267 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1268 }
1269 else
1270 {
10458914 1271 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
92dd43fa
MK
1272 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1273 }
acd5c798
MK
1274 }
1275
1276 /* Now that we have the base address for the stack frame we can
1277 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1278 if (cache->saved_sp == 0)
1279 cache->saved_sp = cache->base + 8;
a7769679 1280
acd5c798
MK
1281 /* Adjust all the saved registers such that they contain addresses
1282 instead of offsets. */
1283 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1284 if (cache->saved_regs[i] != -1)
1285 cache->saved_regs[i] += cache->base;
acd5c798
MK
1286
1287 return cache;
a7769679
MK
1288}
1289
3a1e71e3 1290static void
10458914 1291i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1292 struct frame_id *this_id)
c906108c 1293{
10458914 1294 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1295
1296 /* This marks the outermost frame. */
1297 if (cache->base == 0)
1298 return;
1299
3e210248 1300 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1301 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1302}
1303
10458914
DJ
1304static struct value *
1305i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1306 int regnum)
acd5c798 1307{
10458914 1308 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1309
1310 gdb_assert (regnum >= 0);
1311
1312 /* The System V ABI says that:
1313
1314 "The flags register contains the system flags, such as the
1315 direction flag and the carry flag. The direction flag must be
1316 set to the forward (that is, zero) direction before entry and
1317 upon exit from a function. Other user flags have no specified
1318 role in the standard calling sequence and are not preserved."
1319
1320 To guarantee the "upon exit" part of that statement we fake a
1321 saved flags register that has its direction flag cleared.
1322
1323 Note that GCC doesn't seem to rely on the fact that the direction
1324 flag is cleared after a function return; it always explicitly
1325 clears the flag before operations where it matters.
1326
1327 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1328 right thing to do. The way we fake the flags register here makes
1329 it impossible to change it. */
1330
1331 if (regnum == I386_EFLAGS_REGNUM)
1332 {
10458914 1333 ULONGEST val;
c5aa993b 1334
10458914
DJ
1335 val = get_frame_register_unsigned (this_frame, regnum);
1336 val &= ~(1 << 10);
1337 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1338 }
1211c4e4 1339
acd5c798 1340 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1341 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1342
1343 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1344 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1345
fd13a04a 1346 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1347 return frame_unwind_got_memory (this_frame, regnum,
1348 cache->saved_regs[regnum]);
fd13a04a 1349
10458914 1350 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1351}
1352
1353static const struct frame_unwind i386_frame_unwind =
1354{
1355 NORMAL_FRAME,
1356 i386_frame_this_id,
10458914
DJ
1357 i386_frame_prev_register,
1358 NULL,
1359 default_frame_sniffer
acd5c798 1360};
acd5c798
MK
1361\f
1362
1363/* Signal trampolines. */
1364
1365static struct i386_frame_cache *
10458914 1366i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798
MK
1367{
1368 struct i386_frame_cache *cache;
10458914 1369 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1370 CORE_ADDR addr;
63c0089f 1371 gdb_byte buf[4];
acd5c798
MK
1372
1373 if (*this_cache)
1374 return *this_cache;
1375
fd13a04a 1376 cache = i386_alloc_frame_cache ();
acd5c798 1377
10458914 1378 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798
MK
1379 cache->base = extract_unsigned_integer (buf, 4) - 4;
1380
10458914 1381 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1382 if (tdep->sc_reg_offset)
1383 {
1384 int i;
1385
1386 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1387
1388 for (i = 0; i < tdep->sc_num_regs; i++)
1389 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1390 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1391 }
1392 else
1393 {
fd13a04a
AC
1394 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1395 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1396 }
acd5c798
MK
1397
1398 *this_cache = cache;
1399 return cache;
1400}
1401
1402static void
10458914 1403i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1404 struct frame_id *this_id)
1405{
1406 struct i386_frame_cache *cache =
10458914 1407 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1408
3e210248 1409 /* See the end of i386_push_dummy_call. */
10458914 1410 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1411}
1412
10458914
DJ
1413static struct value *
1414i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1415 void **this_cache, int regnum)
acd5c798
MK
1416{
1417 /* Make sure we've initialized the cache. */
10458914 1418 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1419
10458914 1420 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1421}
c0d1d883 1422
10458914
DJ
1423static int
1424i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1425 struct frame_info *this_frame,
1426 void **this_prologue_cache)
acd5c798 1427{
10458914 1428 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1429
911bc6ee
MK
1430 /* We shouldn't even bother if we don't have a sigcontext_addr
1431 handler. */
1432 if (tdep->sigcontext_addr == NULL)
10458914 1433 return 0;
1c3545ae 1434
911bc6ee
MK
1435 if (tdep->sigtramp_p != NULL)
1436 {
10458914
DJ
1437 if (tdep->sigtramp_p (this_frame))
1438 return 1;
911bc6ee
MK
1439 }
1440
1441 if (tdep->sigtramp_start != 0)
1442 {
10458914 1443 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1444
1445 gdb_assert (tdep->sigtramp_end != 0);
1446 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1447 return 1;
911bc6ee 1448 }
acd5c798 1449
10458914 1450 return 0;
acd5c798 1451}
10458914
DJ
1452
1453static const struct frame_unwind i386_sigtramp_frame_unwind =
1454{
1455 SIGTRAMP_FRAME,
1456 i386_sigtramp_frame_this_id,
1457 i386_sigtramp_frame_prev_register,
1458 NULL,
1459 i386_sigtramp_frame_sniffer
1460};
acd5c798
MK
1461\f
1462
1463static CORE_ADDR
10458914 1464i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1465{
10458914 1466 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1467
1468 return cache->base;
1469}
1470
1471static const struct frame_base i386_frame_base =
1472{
1473 &i386_frame_unwind,
1474 i386_frame_base_address,
1475 i386_frame_base_address,
1476 i386_frame_base_address
1477};
1478
acd5c798 1479static struct frame_id
10458914 1480i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1481{
acd5c798
MK
1482 CORE_ADDR fp;
1483
10458914 1484 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1485
3e210248 1486 /* See the end of i386_push_dummy_call. */
10458914 1487 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1488}
fc338970 1489\f
c906108c 1490
fc338970
MK
1491/* Figure out where the longjmp will land. Slurp the args out of the
1492 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1493 structure from which we extract the address that we will land at.
28bcfd30 1494 This address is copied into PC. This routine returns non-zero on
436675d3 1495 success. */
c906108c 1496
8201327c 1497static int
60ade65d 1498i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1499{
436675d3 1500 gdb_byte buf[4];
c906108c 1501 CORE_ADDR sp, jb_addr;
20a6ec49
MD
1502 struct gdbarch *gdbarch = get_frame_arch (frame);
1503 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1504
8201327c
MK
1505 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1506 longjmp will land. */
1507 if (jb_pc_offset == -1)
c906108c
SS
1508 return 0;
1509
436675d3
PA
1510 get_frame_register (frame, I386_ESP_REGNUM, buf);
1511 sp = extract_unsigned_integer (buf, 4);
1512 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1513 return 0;
1514
436675d3
PA
1515 jb_addr = extract_unsigned_integer (buf, 4);
1516 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1517 return 0;
c906108c 1518
436675d3 1519 *pc = extract_unsigned_integer (buf, 4);
c906108c
SS
1520 return 1;
1521}
fc338970 1522\f
c906108c 1523
7ccc1c74
JM
1524/* Check whether TYPE must be 16-byte-aligned when passed as a
1525 function argument. 16-byte vectors, _Decimal128 and structures or
1526 unions containing such types must be 16-byte-aligned; other
1527 arguments are 4-byte-aligned. */
1528
1529static int
1530i386_16_byte_align_p (struct type *type)
1531{
1532 type = check_typedef (type);
1533 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
1534 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
1535 && TYPE_LENGTH (type) == 16)
1536 return 1;
1537 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1538 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
1539 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1540 || TYPE_CODE (type) == TYPE_CODE_UNION)
1541 {
1542 int i;
1543 for (i = 0; i < TYPE_NFIELDS (type); i++)
1544 {
1545 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
1546 return 1;
1547 }
1548 }
1549 return 0;
1550}
1551
3a1e71e3 1552static CORE_ADDR
7d9b040b 1553i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1554 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1555 struct value **args, CORE_ADDR sp, int struct_return,
1556 CORE_ADDR struct_addr)
22f8ba57 1557{
63c0089f 1558 gdb_byte buf[4];
acd5c798 1559 int i;
7ccc1c74
JM
1560 int write_pass;
1561 int args_space = 0;
acd5c798 1562
7ccc1c74
JM
1563 /* Determine the total space required for arguments and struct
1564 return address in a first pass (allowing for 16-byte-aligned
1565 arguments), then push arguments in a second pass. */
1566
1567 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 1568 {
7ccc1c74
JM
1569 int args_space_used = 0;
1570 int have_16_byte_aligned_arg = 0;
1571
1572 if (struct_return)
1573 {
1574 if (write_pass)
1575 {
1576 /* Push value address. */
1577 store_unsigned_integer (buf, 4, struct_addr);
1578 write_memory (sp, buf, 4);
1579 args_space_used += 4;
1580 }
1581 else
1582 args_space += 4;
1583 }
1584
1585 for (i = 0; i < nargs; i++)
1586 {
1587 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 1588
7ccc1c74
JM
1589 if (write_pass)
1590 {
1591 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1592 args_space_used = align_up (args_space_used, 16);
acd5c798 1593
7ccc1c74
JM
1594 write_memory (sp + args_space_used,
1595 value_contents_all (args[i]), len);
1596 /* The System V ABI says that:
acd5c798 1597
7ccc1c74
JM
1598 "An argument's size is increased, if necessary, to make it a
1599 multiple of [32-bit] words. This may require tail padding,
1600 depending on the size of the argument."
22f8ba57 1601
7ccc1c74
JM
1602 This makes sure the stack stays word-aligned. */
1603 args_space_used += align_up (len, 4);
1604 }
1605 else
1606 {
1607 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
1608 {
1609 args_space = align_up (args_space, 16);
1610 have_16_byte_aligned_arg = 1;
1611 }
1612 args_space += align_up (len, 4);
1613 }
1614 }
1615
1616 if (!write_pass)
1617 {
1618 if (have_16_byte_aligned_arg)
1619 args_space = align_up (args_space, 16);
1620 sp -= args_space;
1621 }
22f8ba57
MK
1622 }
1623
acd5c798
MK
1624 /* Store return address. */
1625 sp -= 4;
6a65450a 1626 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1627 write_memory (sp, buf, 4);
1628
1629 /* Finally, update the stack pointer... */
1630 store_unsigned_integer (buf, 4, sp);
1631 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1632
1633 /* ...and fake a frame pointer. */
1634 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1635
3e210248
AC
1636 /* MarkK wrote: This "+ 8" is all over the place:
1637 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1638 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1639 a given target have to agree (within a certain margin) on the
fd35795f 1640 definition of the stack address of a frame. Otherwise
3e210248
AC
1641 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1642 stack address *before* the function call as a frame's CFA. On
1643 the i386, when %ebp is used as a frame pointer, the offset
1644 between the contents %ebp and the CFA as defined by GCC. */
1645 return sp + 8;
22f8ba57
MK
1646}
1647
1a309862
MK
1648/* These registers are used for returning integers (and on some
1649 targets also for returning `struct' and `union' values when their
ef9dff19 1650 size and alignment match an integer type). */
acd5c798
MK
1651#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1652#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1653
c5e656c1
MK
1654/* Read, for architecture GDBARCH, a function return value of TYPE
1655 from REGCACHE, and copy that into VALBUF. */
1a309862 1656
3a1e71e3 1657static void
c5e656c1 1658i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1659 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1660{
c5e656c1 1661 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1662 int len = TYPE_LENGTH (type);
63c0089f 1663 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1664
1e8d0a7b 1665 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1666 {
5716833c 1667 if (tdep->st0_regnum < 0)
1a309862 1668 {
8a3fe4f8 1669 warning (_("Cannot find floating-point return value."));
1a309862 1670 memset (valbuf, 0, len);
ef9dff19 1671 return;
1a309862
MK
1672 }
1673
c6ba6f0d
MK
1674 /* Floating-point return values can be found in %st(0). Convert
1675 its contents to the desired type. This is probably not
1676 exactly how it would happen on the target itself, but it is
1677 the best we can do. */
acd5c798 1678 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1679 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1680 }
1681 else
c5aa993b 1682 {
875f8d0e
UW
1683 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1684 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1685
1686 if (len <= low_size)
00f8375e 1687 {
0818c12a 1688 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1689 memcpy (valbuf, buf, len);
1690 }
d4f3574e
SS
1691 else if (len <= (low_size + high_size))
1692 {
0818c12a 1693 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1694 memcpy (valbuf, buf, low_size);
0818c12a 1695 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1696 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1697 }
1698 else
8e65ff28 1699 internal_error (__FILE__, __LINE__,
e2e0b3e5 1700 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1701 }
1702}
1703
c5e656c1
MK
1704/* Write, for architecture GDBARCH, a function return value of TYPE
1705 from VALBUF into REGCACHE. */
ef9dff19 1706
3a1e71e3 1707static void
c5e656c1 1708i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1709 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1710{
c5e656c1 1711 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1712 int len = TYPE_LENGTH (type);
1713
1e8d0a7b 1714 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1715 {
3d7f4f49 1716 ULONGEST fstat;
63c0089f 1717 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1718
5716833c 1719 if (tdep->st0_regnum < 0)
ef9dff19 1720 {
8a3fe4f8 1721 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1722 return;
1723 }
1724
635b0cc1
MK
1725 /* Returning floating-point values is a bit tricky. Apart from
1726 storing the return value in %st(0), we have to simulate the
1727 state of the FPU at function return point. */
1728
c6ba6f0d
MK
1729 /* Convert the value found in VALBUF to the extended
1730 floating-point format used by the FPU. This is probably
1731 not exactly how it would happen on the target itself, but
1732 it is the best we can do. */
1733 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1734 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1735
635b0cc1
MK
1736 /* Set the top of the floating-point register stack to 7. The
1737 actual value doesn't really matter, but 7 is what a normal
1738 function return would end up with if the program started out
1739 with a freshly initialized FPU. */
20a6ec49 1740 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1741 fstat |= (7 << 11);
20a6ec49 1742 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1743
635b0cc1
MK
1744 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1745 the floating-point register stack to 7, the appropriate value
1746 for the tag word is 0x3fff. */
20a6ec49 1747 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1748 }
1749 else
1750 {
875f8d0e
UW
1751 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1752 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1753
1754 if (len <= low_size)
3d7f4f49 1755 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1756 else if (len <= (low_size + high_size))
1757 {
3d7f4f49
MK
1758 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1759 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1760 len - low_size, valbuf + low_size);
ef9dff19
MK
1761 }
1762 else
8e65ff28 1763 internal_error (__FILE__, __LINE__,
e2e0b3e5 1764 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1765 }
1766}
fc338970 1767\f
ef9dff19 1768
8201327c
MK
1769/* This is the variable that is set with "set struct-convention", and
1770 its legitimate values. */
1771static const char default_struct_convention[] = "default";
1772static const char pcc_struct_convention[] = "pcc";
1773static const char reg_struct_convention[] = "reg";
1774static const char *valid_conventions[] =
1775{
1776 default_struct_convention,
1777 pcc_struct_convention,
1778 reg_struct_convention,
1779 NULL
1780};
1781static const char *struct_convention = default_struct_convention;
1782
0e4377e1
JB
1783/* Return non-zero if TYPE, which is assumed to be a structure,
1784 a union type, or an array type, should be returned in registers
1785 for architecture GDBARCH. */
c5e656c1 1786
8201327c 1787static int
c5e656c1 1788i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1789{
c5e656c1
MK
1790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1791 enum type_code code = TYPE_CODE (type);
1792 int len = TYPE_LENGTH (type);
8201327c 1793
0e4377e1
JB
1794 gdb_assert (code == TYPE_CODE_STRUCT
1795 || code == TYPE_CODE_UNION
1796 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1797
1798 if (struct_convention == pcc_struct_convention
1799 || (struct_convention == default_struct_convention
1800 && tdep->struct_return == pcc_struct_return))
1801 return 0;
1802
9edde48e
MK
1803 /* Structures consisting of a single `float', `double' or 'long
1804 double' member are returned in %st(0). */
1805 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1806 {
1807 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1808 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1809 return (len == 4 || len == 8 || len == 12);
1810 }
1811
c5e656c1
MK
1812 return (len == 1 || len == 2 || len == 4 || len == 8);
1813}
1814
1815/* Determine, for architecture GDBARCH, how a return value of TYPE
1816 should be returned. If it is supposed to be returned in registers,
1817 and READBUF is non-zero, read the appropriate value from REGCACHE,
1818 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1819 from WRITEBUF into REGCACHE. */
1820
1821static enum return_value_convention
c055b101
CV
1822i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1823 struct type *type, struct regcache *regcache,
1824 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
1825{
1826 enum type_code code = TYPE_CODE (type);
1827
5daa78cc
TJB
1828 if (((code == TYPE_CODE_STRUCT
1829 || code == TYPE_CODE_UNION
1830 || code == TYPE_CODE_ARRAY)
1831 && !i386_reg_struct_return_p (gdbarch, type))
1832 /* 128-bit decimal float uses the struct return convention. */
1833 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1834 {
1835 /* The System V ABI says that:
1836
1837 "A function that returns a structure or union also sets %eax
1838 to the value of the original address of the caller's area
1839 before it returns. Thus when the caller receives control
1840 again, the address of the returned object resides in register
1841 %eax and can be used to access the object."
1842
1843 So the ABI guarantees that we can always find the return
1844 value just after the function has returned. */
1845
0e4377e1
JB
1846 /* Note that the ABI doesn't mention functions returning arrays,
1847 which is something possible in certain languages such as Ada.
1848 In this case, the value is returned as if it was wrapped in
1849 a record, so the convention applied to records also applies
1850 to arrays. */
1851
31db7b6c
MK
1852 if (readbuf)
1853 {
1854 ULONGEST addr;
1855
1856 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1857 read_memory (addr, readbuf, TYPE_LENGTH (type));
1858 }
1859
1860 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1861 }
c5e656c1
MK
1862
1863 /* This special case is for structures consisting of a single
9edde48e
MK
1864 `float', `double' or 'long double' member. These structures are
1865 returned in %st(0). For these structures, we call ourselves
1866 recursively, changing TYPE into the type of the first member of
1867 the structure. Since that should work for all structures that
1868 have only one member, we don't bother to check the member's type
1869 here. */
c5e656c1
MK
1870 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1871 {
1872 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
1873 return i386_return_value (gdbarch, func_type, type, regcache,
1874 readbuf, writebuf);
c5e656c1
MK
1875 }
1876
1877 if (readbuf)
1878 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1879 if (writebuf)
1880 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1881
c5e656c1 1882 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1883}
1884\f
1885
5ae96ec1
MK
1886/* Type for %eflags. */
1887struct type *i386_eflags_type;
1888
794ac428 1889/* Type for %mxcsr. */
878d9193 1890struct type *i386_mxcsr_type;
5ae96ec1
MK
1891
1892/* Construct types for ISA-specific registers. */
1893static void
1894i386_init_types (void)
1895{
1896 struct type *type;
1897
1898 type = init_flags_type ("builtin_type_i386_eflags", 4);
1899 append_flags_type_flag (type, 0, "CF");
1900 append_flags_type_flag (type, 1, NULL);
1901 append_flags_type_flag (type, 2, "PF");
1902 append_flags_type_flag (type, 4, "AF");
1903 append_flags_type_flag (type, 6, "ZF");
1904 append_flags_type_flag (type, 7, "SF");
1905 append_flags_type_flag (type, 8, "TF");
1906 append_flags_type_flag (type, 9, "IF");
1907 append_flags_type_flag (type, 10, "DF");
1908 append_flags_type_flag (type, 11, "OF");
1909 append_flags_type_flag (type, 14, "NT");
1910 append_flags_type_flag (type, 16, "RF");
1911 append_flags_type_flag (type, 17, "VM");
1912 append_flags_type_flag (type, 18, "AC");
1913 append_flags_type_flag (type, 19, "VIF");
1914 append_flags_type_flag (type, 20, "VIP");
1915 append_flags_type_flag (type, 21, "ID");
1916 i386_eflags_type = type;
21b4b2f2 1917
878d9193
MK
1918 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1919 append_flags_type_flag (type, 0, "IE");
1920 append_flags_type_flag (type, 1, "DE");
1921 append_flags_type_flag (type, 2, "ZE");
1922 append_flags_type_flag (type, 3, "OE");
1923 append_flags_type_flag (type, 4, "UE");
1924 append_flags_type_flag (type, 5, "PE");
1925 append_flags_type_flag (type, 6, "DAZ");
1926 append_flags_type_flag (type, 7, "IM");
1927 append_flags_type_flag (type, 8, "DM");
1928 append_flags_type_flag (type, 9, "ZM");
1929 append_flags_type_flag (type, 10, "OM");
1930 append_flags_type_flag (type, 11, "UM");
1931 append_flags_type_flag (type, 12, "PM");
1932 append_flags_type_flag (type, 15, "FZ");
1933 i386_mxcsr_type = type;
21b4b2f2
JB
1934}
1935
794ac428
UW
1936/* Construct vector type for MMX registers. */
1937struct type *
1938i386_mmx_type (struct gdbarch *gdbarch)
1939{
1940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1941
1942 if (!tdep->i386_mmx_type)
1943 {
1944 /* The type we're building is this: */
1945#if 0
1946 union __gdb_builtin_type_vec64i
1947 {
1948 int64_t uint64;
1949 int32_t v2_int32[2];
1950 int16_t v4_int16[4];
1951 int8_t v8_int8[8];
1952 };
1953#endif
1954
1955 struct type *t;
1956
1957 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1958 append_composite_type_field (t, "uint64", builtin_type_int64);
1959 append_composite_type_field (t, "v2_int32",
1960 init_vector_type (builtin_type_int32, 2));
1961 append_composite_type_field (t, "v4_int16",
1962 init_vector_type (builtin_type_int16, 4));
1963 append_composite_type_field (t, "v8_int8",
1964 init_vector_type (builtin_type_int8, 8));
1965
1966 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1967 TYPE_NAME (t) = "builtin_type_vec64i";
1968 tdep->i386_mmx_type = t;
1969 }
1970
1971 return tdep->i386_mmx_type;
1972}
1973
1974struct type *
1975i386_sse_type (struct gdbarch *gdbarch)
1976{
1977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1978
1979 if (!tdep->i386_sse_type)
1980 {
1981 /* The type we're building is this: */
1982#if 0
1983 union __gdb_builtin_type_vec128i
1984 {
1985 int128_t uint128;
1986 int64_t v2_int64[2];
1987 int32_t v4_int32[4];
1988 int16_t v8_int16[8];
1989 int8_t v16_int8[16];
1990 double v2_double[2];
1991 float v4_float[4];
1992 };
1993#endif
1994
1995 struct type *t;
1996
1997 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1998 append_composite_type_field (t, "v4_float",
1999 init_vector_type (builtin_type_float, 4));
2000 append_composite_type_field (t, "v2_double",
2001 init_vector_type (builtin_type_double, 2));
2002 append_composite_type_field (t, "v16_int8",
2003 init_vector_type (builtin_type_int8, 16));
2004 append_composite_type_field (t, "v8_int16",
2005 init_vector_type (builtin_type_int16, 8));
2006 append_composite_type_field (t, "v4_int32",
2007 init_vector_type (builtin_type_int32, 4));
2008 append_composite_type_field (t, "v2_int64",
2009 init_vector_type (builtin_type_int64, 2));
2010 append_composite_type_field (t, "uint128", builtin_type_int128);
2011
2012 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2013 TYPE_NAME (t) = "builtin_type_vec128i";
2014 tdep->i386_sse_type = t;
2015 }
2016
2017 return tdep->i386_sse_type;
2018}
2019
d7a0d72c
MK
2020/* Return the GDB type object for the "standard" data type of data in
2021 register REGNUM. Perhaps %esi and %edi should go here, but
2022 potentially they could be used for things other than address. */
2023
3a1e71e3 2024static struct type *
4e259f09 2025i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2026{
ab533587
MK
2027 if (regnum == I386_EIP_REGNUM)
2028 return builtin_type_void_func_ptr;
2029
5ae96ec1
MK
2030 if (regnum == I386_EFLAGS_REGNUM)
2031 return i386_eflags_type;
2032
ab533587
MK
2033 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
2034 return builtin_type_void_data_ptr;
d7a0d72c 2035
20a6ec49 2036 if (i386_fp_regnum_p (gdbarch, regnum))
c6ba6f0d 2037 return builtin_type_i387_ext;
d7a0d72c 2038
878d9193 2039 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 2040 return i386_mmx_type (gdbarch);
878d9193 2041
5716833c 2042 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 2043 return i386_sse_type (gdbarch);
d7a0d72c 2044
20a6ec49 2045 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
878d9193
MK
2046 return i386_mxcsr_type;
2047
d7a0d72c
MK
2048 return builtin_type_int;
2049}
2050
28fc6740 2051/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2052 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2053
2054static int
c86c27af 2055i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2056{
5716833c
MK
2057 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2058 int mmxreg, fpreg;
28fc6740
AC
2059 ULONGEST fstat;
2060 int tos;
c86c27af 2061
5716833c 2062 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2063 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2064 tos = (fstat >> 11) & 0x7;
5716833c
MK
2065 fpreg = (mmxreg + tos) % 8;
2066
20a6ec49 2067 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2068}
2069
2070static void
2071i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2072 int regnum, gdb_byte *buf)
28fc6740 2073{
5716833c 2074 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2075 {
63c0089f 2076 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2077 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2078
28fc6740 2079 /* Extract (always little endian). */
c86c27af 2080 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 2081 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
2082 }
2083 else
2084 regcache_raw_read (regcache, regnum, buf);
2085}
2086
2087static void
2088i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2089 int regnum, const gdb_byte *buf)
28fc6740 2090{
5716833c 2091 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2092 {
63c0089f 2093 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
2094 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2095
28fc6740
AC
2096 /* Read ... */
2097 regcache_raw_read (regcache, fpnum, mmx_buf);
2098 /* ... Modify ... (always little endian). */
f837910f 2099 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
2100 /* ... Write. */
2101 regcache_raw_write (regcache, fpnum, mmx_buf);
2102 }
2103 else
2104 regcache_raw_write (regcache, regnum, buf);
2105}
ff2e87ac
AC
2106\f
2107
ff2e87ac
AC
2108/* Return the register number of the register allocated by GCC after
2109 REGNUM, or -1 if there is no such register. */
2110
2111static int
2112i386_next_regnum (int regnum)
2113{
2114 /* GCC allocates the registers in the order:
2115
2116 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2117
2118 Since storing a variable in %esp doesn't make any sense we return
2119 -1 for %ebp and for %esp itself. */
2120 static int next_regnum[] =
2121 {
2122 I386_EDX_REGNUM, /* Slot for %eax. */
2123 I386_EBX_REGNUM, /* Slot for %ecx. */
2124 I386_ECX_REGNUM, /* Slot for %edx. */
2125 I386_ESI_REGNUM, /* Slot for %ebx. */
2126 -1, -1, /* Slots for %esp and %ebp. */
2127 I386_EDI_REGNUM, /* Slot for %esi. */
2128 I386_EBP_REGNUM /* Slot for %edi. */
2129 };
2130
de5b9bb9 2131 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2132 return next_regnum[regnum];
28fc6740 2133
ff2e87ac
AC
2134 return -1;
2135}
2136
2137/* Return nonzero if a value of type TYPE stored in register REGNUM
2138 needs any special handling. */
d7a0d72c 2139
3a1e71e3 2140static int
0abe36f5 2141i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2142{
de5b9bb9
MK
2143 int len = TYPE_LENGTH (type);
2144
ff2e87ac
AC
2145 /* Values may be spread across multiple registers. Most debugging
2146 formats aren't expressive enough to specify the locations, so
2147 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2148 have a length that is a multiple of the word size, since GCC
2149 doesn't seem to put any other types into registers. */
2150 if (len > 4 && len % 4 == 0)
2151 {
2152 int last_regnum = regnum;
2153
2154 while (len > 4)
2155 {
2156 last_regnum = i386_next_regnum (last_regnum);
2157 len -= 4;
2158 }
2159
2160 if (last_regnum != -1)
2161 return 1;
2162 }
ff2e87ac 2163
0abe36f5 2164 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2165}
2166
ff2e87ac
AC
2167/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2168 return its contents in TO. */
ac27f131 2169
3a1e71e3 2170static void
ff2e87ac 2171i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2172 struct type *type, gdb_byte *to)
ac27f131 2173{
20a6ec49 2174 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2175 int len = TYPE_LENGTH (type);
de5b9bb9 2176
ff2e87ac
AC
2177 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2178 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2179
20a6ec49 2180 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2181 {
d532c08f
MK
2182 i387_register_to_value (frame, regnum, type, to);
2183 return;
8d7f6b4a 2184 }
ff2e87ac 2185
fd35795f 2186 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2187
2188 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2189
de5b9bb9
MK
2190 while (len > 0)
2191 {
2192 gdb_assert (regnum != -1);
20a6ec49 2193 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2194
42835c2b 2195 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2196 regnum = i386_next_regnum (regnum);
2197 len -= 4;
42835c2b 2198 to += 4;
de5b9bb9 2199 }
ac27f131
MK
2200}
2201
ff2e87ac
AC
2202/* Write the contents FROM of a value of type TYPE into register
2203 REGNUM in frame FRAME. */
ac27f131 2204
3a1e71e3 2205static void
ff2e87ac 2206i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2207 struct type *type, const gdb_byte *from)
ac27f131 2208{
de5b9bb9 2209 int len = TYPE_LENGTH (type);
de5b9bb9 2210
20a6ec49 2211 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2212 {
d532c08f
MK
2213 i387_value_to_register (frame, regnum, type, from);
2214 return;
2215 }
3d261580 2216
fd35795f 2217 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2218
2219 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2220
de5b9bb9
MK
2221 while (len > 0)
2222 {
2223 gdb_assert (regnum != -1);
875f8d0e 2224 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2225
42835c2b 2226 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2227 regnum = i386_next_regnum (regnum);
2228 len -= 4;
42835c2b 2229 from += 4;
de5b9bb9 2230 }
ac27f131 2231}
ff2e87ac 2232\f
7fdafb5a
MK
2233/* Supply register REGNUM from the buffer specified by GREGS and LEN
2234 in the general-purpose register set REGSET to register cache
2235 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2236
20187ed5 2237void
473f17b0
MK
2238i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2239 int regnum, const void *gregs, size_t len)
2240{
9ea75c57 2241 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2242 const gdb_byte *regs = gregs;
473f17b0
MK
2243 int i;
2244
2245 gdb_assert (len == tdep->sizeof_gregset);
2246
2247 for (i = 0; i < tdep->gregset_num_regs; i++)
2248 {
2249 if ((regnum == i || regnum == -1)
2250 && tdep->gregset_reg_offset[i] != -1)
2251 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2252 }
2253}
2254
7fdafb5a
MK
2255/* Collect register REGNUM from the register cache REGCACHE and store
2256 it in the buffer specified by GREGS and LEN as described by the
2257 general-purpose register set REGSET. If REGNUM is -1, do this for
2258 all registers in REGSET. */
2259
2260void
2261i386_collect_gregset (const struct regset *regset,
2262 const struct regcache *regcache,
2263 int regnum, void *gregs, size_t len)
2264{
2265 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2266 gdb_byte *regs = gregs;
7fdafb5a
MK
2267 int i;
2268
2269 gdb_assert (len == tdep->sizeof_gregset);
2270
2271 for (i = 0; i < tdep->gregset_num_regs; i++)
2272 {
2273 if ((regnum == i || regnum == -1)
2274 && tdep->gregset_reg_offset[i] != -1)
2275 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2276 }
2277}
2278
2279/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2280 in the floating-point register set REGSET to register cache
2281 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2282
2283static void
2284i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2285 int regnum, const void *fpregs, size_t len)
2286{
9ea75c57 2287 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2288
66a72d25
MK
2289 if (len == I387_SIZEOF_FXSAVE)
2290 {
2291 i387_supply_fxsave (regcache, regnum, fpregs);
2292 return;
2293 }
2294
473f17b0
MK
2295 gdb_assert (len == tdep->sizeof_fpregset);
2296 i387_supply_fsave (regcache, regnum, fpregs);
2297}
8446b36a 2298
2f305df1
MK
2299/* Collect register REGNUM from the register cache REGCACHE and store
2300 it in the buffer specified by FPREGS and LEN as described by the
2301 floating-point register set REGSET. If REGNUM is -1, do this for
2302 all registers in REGSET. */
7fdafb5a
MK
2303
2304static void
2305i386_collect_fpregset (const struct regset *regset,
2306 const struct regcache *regcache,
2307 int regnum, void *fpregs, size_t len)
2308{
2309 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2310
2311 if (len == I387_SIZEOF_FXSAVE)
2312 {
2313 i387_collect_fxsave (regcache, regnum, fpregs);
2314 return;
2315 }
2316
2317 gdb_assert (len == tdep->sizeof_fpregset);
2318 i387_collect_fsave (regcache, regnum, fpregs);
2319}
2320
8446b36a
MK
2321/* Return the appropriate register set for the core section identified
2322 by SECT_NAME and SECT_SIZE. */
2323
2324const struct regset *
2325i386_regset_from_core_section (struct gdbarch *gdbarch,
2326 const char *sect_name, size_t sect_size)
2327{
2328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2329
2330 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2331 {
2332 if (tdep->gregset == NULL)
7fdafb5a
MK
2333 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2334 i386_collect_gregset);
8446b36a
MK
2335 return tdep->gregset;
2336 }
2337
66a72d25
MK
2338 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2339 || (strcmp (sect_name, ".reg-xfp") == 0
2340 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2341 {
2342 if (tdep->fpregset == NULL)
7fdafb5a
MK
2343 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2344 i386_collect_fpregset);
8446b36a
MK
2345 return tdep->fpregset;
2346 }
2347
2348 return NULL;
2349}
473f17b0 2350\f
fc338970 2351
fc338970 2352/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2353
2354CORE_ADDR
1cce71eb 2355i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2356{
fc338970 2357 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2358 {
c5aa993b 2359 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2360 struct minimal_symbol *indsym =
fc338970 2361 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2362 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2363
c5aa993b 2364 if (symname)
c906108c 2365 {
c5aa993b
JM
2366 if (strncmp (symname, "__imp_", 6) == 0
2367 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2368 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2369 }
2370 }
fc338970 2371 return 0; /* Not a trampoline. */
c906108c 2372}
fc338970
MK
2373\f
2374
10458914
DJ
2375/* Return whether the THIS_FRAME corresponds to a sigtramp
2376 routine. */
8201327c
MK
2377
2378static int
10458914 2379i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2380{
10458914 2381 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2382 char *name;
2383
2384 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2385 return (name && strcmp ("_sigtramp", name) == 0);
2386}
2387\f
2388
fc338970
MK
2389/* We have two flavours of disassembly. The machinery on this page
2390 deals with switching between those. */
c906108c
SS
2391
2392static int
a89aa300 2393i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2394{
5e3397bb
MK
2395 gdb_assert (disassembly_flavor == att_flavor
2396 || disassembly_flavor == intel_flavor);
2397
2398 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2399 constified, cast to prevent a compiler warning. */
2400 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2401
2402 return print_insn_i386 (pc, info);
7a292a7a 2403}
fc338970 2404\f
3ce1502b 2405
8201327c
MK
2406/* There are a few i386 architecture variants that differ only
2407 slightly from the generic i386 target. For now, we don't give them
2408 their own source file, but include them here. As a consequence,
2409 they'll always be included. */
3ce1502b 2410
8201327c 2411/* System V Release 4 (SVR4). */
3ce1502b 2412
10458914
DJ
2413/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2414 routine. */
911bc6ee 2415
8201327c 2416static int
10458914 2417i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2418{
10458914 2419 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2420 char *name;
2421
acd5c798
MK
2422 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2423 currently unknown. */
911bc6ee 2424 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2425 return (name && (strcmp ("_sigreturn", name) == 0
2426 || strcmp ("_sigacthandler", name) == 0
2427 || strcmp ("sigvechandler", name) == 0));
2428}
d2a7c97a 2429
10458914
DJ
2430/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2431 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2432
3a1e71e3 2433static CORE_ADDR
10458914 2434i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2435{
63c0089f 2436 gdb_byte buf[4];
acd5c798 2437 CORE_ADDR sp;
3ce1502b 2438
10458914 2439 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798 2440 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2441
acd5c798 2442 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2443}
2444\f
3ce1502b 2445
8201327c 2446/* Generic ELF. */
d2a7c97a 2447
8201327c
MK
2448void
2449i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2450{
c4fc7f1b
MK
2451 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2452 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2453}
3ce1502b 2454
8201327c 2455/* System V Release 4 (SVR4). */
3ce1502b 2456
8201327c
MK
2457void
2458i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2459{
2460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2461
8201327c
MK
2462 /* System V Release 4 uses ELF. */
2463 i386_elf_init_abi (info, gdbarch);
3ce1502b 2464
dfe01d39 2465 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2466 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2467
911bc6ee 2468 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2469 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2470 tdep->sc_pc_offset = 36 + 14 * 4;
2471 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2472
8201327c 2473 tdep->jb_pc_offset = 20;
3ce1502b
MK
2474}
2475
8201327c 2476/* DJGPP. */
3ce1502b 2477
3a1e71e3 2478static void
8201327c 2479i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2480{
8201327c 2481 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2482
911bc6ee
MK
2483 /* DJGPP doesn't have any special frames for signal handlers. */
2484 tdep->sigtramp_p = NULL;
3ce1502b 2485
8201327c 2486 tdep->jb_pc_offset = 36;
3ce1502b 2487}
8201327c 2488\f
2acceee2 2489
38c968cf
AC
2490/* i386 register groups. In addition to the normal groups, add "mmx"
2491 and "sse". */
2492
2493static struct reggroup *i386_sse_reggroup;
2494static struct reggroup *i386_mmx_reggroup;
2495
2496static void
2497i386_init_reggroups (void)
2498{
2499 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2500 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2501}
2502
2503static void
2504i386_add_reggroups (struct gdbarch *gdbarch)
2505{
2506 reggroup_add (gdbarch, i386_sse_reggroup);
2507 reggroup_add (gdbarch, i386_mmx_reggroup);
2508 reggroup_add (gdbarch, general_reggroup);
2509 reggroup_add (gdbarch, float_reggroup);
2510 reggroup_add (gdbarch, all_reggroup);
2511 reggroup_add (gdbarch, save_reggroup);
2512 reggroup_add (gdbarch, restore_reggroup);
2513 reggroup_add (gdbarch, vector_reggroup);
2514 reggroup_add (gdbarch, system_reggroup);
2515}
2516
2517int
2518i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2519 struct reggroup *group)
2520{
5716833c
MK
2521 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2522 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2523 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2524 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2525 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2526
38c968cf
AC
2527 if (group == i386_mmx_reggroup)
2528 return mmx_regnum_p;
2529 if (group == i386_sse_reggroup)
2530 return sse_regnum_p;
2531 if (group == vector_reggroup)
2532 return (mmx_regnum_p || sse_regnum_p);
2533 if (group == float_reggroup)
2534 return fp_regnum_p;
2535 if (group == general_reggroup)
2536 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2537
38c968cf
AC
2538 return default_register_reggroup_p (gdbarch, regnum, group);
2539}
38c968cf 2540\f
acd5c798 2541
f837910f
MK
2542/* Get the ARGIth function argument for the current function. */
2543
42c466d7 2544static CORE_ADDR
143985b7
AF
2545i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2546 struct type *type)
2547{
f837910f
MK
2548 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2549 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2550}
2551
2552\f
3a1e71e3 2553static struct gdbarch *
a62cc96e
AC
2554i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2555{
cd3c07fc 2556 struct gdbarch_tdep *tdep;
a62cc96e
AC
2557 struct gdbarch *gdbarch;
2558
4be87837
DJ
2559 /* If there is already a candidate, use it. */
2560 arches = gdbarch_list_lookup_by_info (arches, &info);
2561 if (arches != NULL)
2562 return arches->gdbarch;
a62cc96e
AC
2563
2564 /* Allocate space for the new architecture. */
794ac428 2565 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2566 gdbarch = gdbarch_alloc (&info, tdep);
2567
473f17b0
MK
2568 /* General-purpose registers. */
2569 tdep->gregset = NULL;
2570 tdep->gregset_reg_offset = NULL;
2571 tdep->gregset_num_regs = I386_NUM_GREGS;
2572 tdep->sizeof_gregset = 0;
2573
2574 /* Floating-point registers. */
2575 tdep->fpregset = NULL;
2576 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2577
5716833c 2578 /* The default settings include the FPU registers, the MMX registers
fd35795f 2579 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2580 by adjusting the members `st0_regnum', `mm0_regnum' and
2581 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2582 will show up in the output of "info all-registers". Ideally we
2583 should try to autodetect whether they are available, such that we
2584 can prevent "info all-registers" from displaying registers that
2585 aren't available.
2586
2587 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2588 [the SSE registers] always (even when they don't exist) or never
2589 showing them to the user (even when they do exist), I prefer the
2590 former over the latter. */
2591
2592 tdep->st0_regnum = I386_ST0_REGNUM;
2593
2594 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2595 calculating the register number for %mm0 until we know the number
5716833c
MK
2596 of raw registers. */
2597 tdep->mm0_regnum = 0;
2598
2599 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2600 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2601
8201327c
MK
2602 tdep->jb_pc_offset = -1;
2603 tdep->struct_return = pcc_struct_return;
8201327c
MK
2604 tdep->sigtramp_start = 0;
2605 tdep->sigtramp_end = 0;
911bc6ee 2606 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2607 tdep->sigcontext_addr = NULL;
a3386186 2608 tdep->sc_reg_offset = NULL;
8201327c 2609 tdep->sc_pc_offset = -1;
21d0e8a4 2610 tdep->sc_sp_offset = -1;
8201327c 2611
896fb97d
MK
2612 /* The format used for `long double' on almost all i386 targets is
2613 the i387 extended floating-point format. In fact, of all targets
2614 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2615 on having a `long double' that's not `long' at all. */
8da61cc4 2616 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2617
66da5fd8 2618 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2619 bits, a `long double' actually takes up 96, probably to enforce
2620 alignment. */
2621 set_gdbarch_long_double_bit (gdbarch, 96);
2622
49ed40de
KB
2623 /* The default ABI includes general-purpose registers,
2624 floating-point registers, and the SSE registers. */
2625 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2626 set_gdbarch_register_name (gdbarch, i386_register_name);
2627 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2628
acd5c798
MK
2629 /* Register numbers of various important registers. */
2630 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2631 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2632 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2633 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2634
c4fc7f1b
MK
2635 /* NOTE: kettenis/20040418: GCC does have two possible register
2636 numbering schemes on the i386: dbx and SVR4. These schemes
2637 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2638 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2639 dbx_register_map[] and svr4_dbx_register_map in
2640 gcc/config/i386.c. GCC also defines a third numbering scheme in
2641 gcc/config/i386.c, which it designates as the "default" register
2642 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2643 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2644 amd64-tdep.c.
2645
2646 Currently, each GCC i386 target always uses the same register
2647 numbering scheme across all its supported debugging formats
2648 i.e. SDB (COFF), stabs and DWARF 2. This is because
2649 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2650 DBX_REGISTER_NUMBER macro which is defined by each target's
2651 respective config header in a manner independent of the requested
2652 output debugging format.
2653
2654 This does not match the arrangement below, which presumes that
2655 the SDB and stabs numbering schemes differ from the DWARF and
2656 DWARF 2 ones. The reason for this arrangement is that it is
2657 likely to get the numbering scheme for the target's
2658 default/native debug format right. For targets where GCC is the
2659 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2660 targets where the native toolchain uses a different numbering
2661 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2662 the defaults below will have to be overridden, like
2663 i386_elf_init_abi() does. */
c4fc7f1b
MK
2664
2665 /* Use the dbx register numbering scheme for stabs and COFF. */
2666 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2667 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2668
ba2b1c56 2669 /* Use the SVR4 register numbering scheme for DWARF 2. */
c4fc7f1b 2670 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2671
055d23b8 2672 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2673 be in use on any of the supported i386 targets. */
2674
61113f8b
MK
2675 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2676
8201327c 2677 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2678
a62cc96e 2679 /* Call dummy code. */
acd5c798 2680 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2681
ff2e87ac
AC
2682 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2683 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2684 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2685
c5e656c1 2686 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2687
93924b6b
MK
2688 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2689
2690 /* Stack grows downward. */
2691 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2692
2693 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2694 set_gdbarch_decr_pc_after_break (gdbarch, 1);
237fc4c9 2695 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
42fdc8df 2696
42fdc8df 2697 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2698
28fc6740 2699 /* Wire in the MMX registers. */
0f751ff2 2700 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2701 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2702 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2703
5e3397bb
MK
2704 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2705
10458914 2706 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
acd5c798
MK
2707
2708 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2709
38c968cf
AC
2710 /* Add the i386 register groups. */
2711 i386_add_reggroups (gdbarch);
2712 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2713
143985b7
AF
2714 /* Helper for function argument information. */
2715 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2716
6405b0a6 2717 /* Hook in the DWARF CFI frame unwinder. */
10458914 2718 dwarf2_append_unwinders (gdbarch);
6405b0a6 2719
acd5c798 2720 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2721
3ce1502b 2722 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2723 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2724
10458914
DJ
2725 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2726 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 2727
8446b36a
MK
2728 /* If we have a register mapping, enable the generic core file
2729 support, unless it has already been enabled. */
2730 if (tdep->gregset_reg_offset
2731 && !gdbarch_regset_from_core_section_p (gdbarch))
2732 set_gdbarch_regset_from_core_section (gdbarch,
2733 i386_regset_from_core_section);
2734
5716833c
MK
2735 /* Unless support for MMX has been disabled, make %mm0 the first
2736 pseudo-register. */
2737 if (tdep->mm0_regnum == 0)
2738 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2739
a62cc96e
AC
2740 return gdbarch;
2741}
2742
8201327c
MK
2743static enum gdb_osabi
2744i386_coff_osabi_sniffer (bfd *abfd)
2745{
762c5349
MK
2746 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2747 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2748 return GDB_OSABI_GO32;
2749
2750 return GDB_OSABI_UNKNOWN;
2751}
8201327c
MK
2752\f
2753
28e9e0f0
MK
2754/* Provide a prototype to silence -Wmissing-prototypes. */
2755void _initialize_i386_tdep (void);
2756
c906108c 2757void
fba45db2 2758_initialize_i386_tdep (void)
c906108c 2759{
a62cc96e
AC
2760 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2761
fc338970 2762 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2763 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2764 &disassembly_flavor, _("\
2765Set the disassembly flavor."), _("\
2766Show the disassembly flavor."), _("\
2767The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2768 NULL,
2769 NULL, /* FIXME: i18n: */
2770 &setlist, &showlist);
8201327c
MK
2771
2772 /* Add the variable that controls the convention for returning
2773 structs. */
7ab04401
AC
2774 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2775 &struct_convention, _("\
2776Set the convention for returning small structs."), _("\
2777Show the convention for returning small structs."), _("\
2778Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2779is \"default\"."),
2780 NULL,
2781 NULL, /* FIXME: i18n: */
2782 &setlist, &showlist);
8201327c
MK
2783
2784 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2785 i386_coff_osabi_sniffer);
8201327c 2786
05816f70 2787 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2788 i386_svr4_init_abi);
05816f70 2789 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2790 i386_go32_init_abi);
38c968cf 2791
5ae96ec1 2792 /* Initialize the i386-specific register groups & types. */
38c968cf 2793 i386_init_reggroups ();
5ae96ec1 2794 i386_init_types();
c906108c 2795}
This page took 0.860003 seconds and 4 git commands to generate.