* m68hc11-opc.c: Update call operand to accept the page definition.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
c0d1d883 30#include "symfile.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbcmd.h"
33#include "command.h"
b4a20239 34#include "arch-utils.h"
4e052eda 35#include "regcache.h"
d16aafd8 36#include "doublest.h"
fd0407d6 37#include "value.h"
3d261580
MK
38#include "gdb_assert.h"
39
d2a7c97a
MK
40#include "i386-tdep.h"
41
fc633446
MK
42/* Names of the registers. The first 10 registers match the register
43 numbering scheme used by GCC for stabs and DWARF. */
44static char *i386_register_names[] =
45{
46 "eax", "ecx", "edx", "ebx",
47 "esp", "ebp", "esi", "edi",
48 "eip", "eflags", "cs", "ss",
49 "ds", "es", "fs", "gs",
50 "st0", "st1", "st2", "st3",
51 "st4", "st5", "st6", "st7",
52 "fctrl", "fstat", "ftag", "fiseg",
53 "fioff", "foseg", "fooff", "fop",
54 "xmm0", "xmm1", "xmm2", "xmm3",
55 "xmm4", "xmm5", "xmm6", "xmm7",
56 "mxcsr"
57};
58
28fc6740
AC
59/* MMX registers. */
60
61static char *i386_mmx_names[] =
62{
63 "mm0", "mm1", "mm2", "mm3",
64 "mm4", "mm5", "mm6", "mm7"
65};
66static const int mmx_num_regs = (sizeof (i386_mmx_names)
67 / sizeof (i386_mmx_names[0]));
68#define MM0_REGNUM (NUM_REGS)
69
70static int
71mmx_regnum_p (int reg)
72{
73 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
74}
75
fc633446
MK
76/* Return the name of register REG. */
77
fa88f677 78const char *
fc633446
MK
79i386_register_name (int reg)
80{
81 if (reg < 0)
82 return NULL;
28fc6740
AC
83 if (mmx_regnum_p (reg))
84 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
85 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
86 return NULL;
87
88 return i386_register_names[reg];
89}
90
85540d8c
MK
91/* Convert stabs register number REG to the appropriate register
92 number used by GDB. */
93
8201327c 94static int
85540d8c
MK
95i386_stab_reg_to_regnum (int reg)
96{
97 /* This implements what GCC calls the "default" register map. */
98 if (reg >= 0 && reg <= 7)
99 {
100 /* General registers. */
101 return reg;
102 }
103 else if (reg >= 12 && reg <= 19)
104 {
105 /* Floating-point registers. */
106 return reg - 12 + FP0_REGNUM;
107 }
108 else if (reg >= 21 && reg <= 28)
109 {
110 /* SSE registers. */
111 return reg - 21 + XMM0_REGNUM;
112 }
113 else if (reg >= 29 && reg <= 36)
114 {
115 /* MMX registers. */
116 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
117 as pseudo-registers? */
118 return reg - 29 + FP0_REGNUM;
119 }
120
121 /* This will hopefully provoke a warning. */
122 return NUM_REGS + NUM_PSEUDO_REGS;
123}
124
8201327c 125/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
126 number used by GDB. */
127
8201327c 128static int
85540d8c
MK
129i386_dwarf_reg_to_regnum (int reg)
130{
131 /* The DWARF register numbering includes %eip and %eflags, and
132 numbers the floating point registers differently. */
133 if (reg >= 0 && reg <= 9)
134 {
135 /* General registers. */
136 return reg;
137 }
138 else if (reg >= 11 && reg <= 18)
139 {
140 /* Floating-point registers. */
141 return reg - 11 + FP0_REGNUM;
142 }
143 else if (reg >= 21)
144 {
145 /* The SSE and MMX registers have identical numbers as in stabs. */
146 return i386_stab_reg_to_regnum (reg);
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151}
fc338970 152\f
917317f4 153
fc338970
MK
154/* This is the variable that is set with "set disassembly-flavor", and
155 its legitimate values. */
53904c9e
AC
156static const char att_flavor[] = "att";
157static const char intel_flavor[] = "intel";
158static const char *valid_flavors[] =
c5aa993b 159{
c906108c
SS
160 att_flavor,
161 intel_flavor,
162 NULL
163};
53904c9e 164static const char *disassembly_flavor = att_flavor;
c906108c 165
fc338970
MK
166/* Stdio style buffering was used to minimize calls to ptrace, but
167 this buffering did not take into account that the code section
168 being accessed may not be an even number of buffers long (even if
169 the buffer is only sizeof(int) long). In cases where the code
170 section size happened to be a non-integral number of buffers long,
171 attempting to read the last buffer would fail. Simply using
172 target_read_memory and ignoring errors, rather than read_memory, is
173 not the correct solution, since legitimate access errors would then
174 be totally ignored. To properly handle this situation and continue
175 to use buffering would require that this code be able to determine
176 the minimum code section size granularity (not the alignment of the
177 section itself, since the actual failing case that pointed out this
178 problem had a section alignment of 4 but was not a multiple of 4
179 bytes long), on a target by target basis, and then adjust it's
180 buffer size accordingly. This is messy, but potentially feasible.
181 It probably needs the bfd library's help and support. For now, the
182 buffer size is set to 1. (FIXME -fnf) */
183
184#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
185static CORE_ADDR codestream_next_addr;
186static CORE_ADDR codestream_addr;
187static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
188static int codestream_off;
189static int codestream_cnt;
190
191#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
192#define codestream_peek() \
193 (codestream_cnt == 0 ? \
194 codestream_fill(1) : codestream_buf[codestream_off])
195#define codestream_get() \
196 (codestream_cnt-- == 0 ? \
197 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 198
c5aa993b 199static unsigned char
fba45db2 200codestream_fill (int peek_flag)
c906108c
SS
201{
202 codestream_addr = codestream_next_addr;
203 codestream_next_addr += CODESTREAM_BUFSIZ;
204 codestream_off = 0;
205 codestream_cnt = CODESTREAM_BUFSIZ;
206 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 207
c906108c 208 if (peek_flag)
c5aa993b 209 return (codestream_peek ());
c906108c 210 else
c5aa993b 211 return (codestream_get ());
c906108c
SS
212}
213
214static void
fba45db2 215codestream_seek (CORE_ADDR place)
c906108c
SS
216{
217 codestream_next_addr = place / CODESTREAM_BUFSIZ;
218 codestream_next_addr *= CODESTREAM_BUFSIZ;
219 codestream_cnt = 0;
220 codestream_fill (1);
c5aa993b 221 while (codestream_tell () != place)
c906108c
SS
222 codestream_get ();
223}
224
225static void
fba45db2 226codestream_read (unsigned char *buf, int count)
c906108c
SS
227{
228 unsigned char *p;
229 int i;
230 p = buf;
231 for (i = 0; i < count; i++)
232 *p++ = codestream_get ();
233}
fc338970 234\f
c906108c 235
fc338970 236/* If the next instruction is a jump, move to its target. */
c906108c
SS
237
238static void
fba45db2 239i386_follow_jump (void)
c906108c
SS
240{
241 unsigned char buf[4];
242 long delta;
243
244 int data16;
245 CORE_ADDR pos;
246
247 pos = codestream_tell ();
248
249 data16 = 0;
250 if (codestream_peek () == 0x66)
251 {
252 codestream_get ();
253 data16 = 1;
254 }
255
256 switch (codestream_get ())
257 {
258 case 0xe9:
fc338970 259 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
260 if (data16)
261 {
262 codestream_read (buf, 2);
263 delta = extract_signed_integer (buf, 2);
264
fc338970
MK
265 /* Include the size of the jmp instruction (including the
266 0x66 prefix). */
c5aa993b 267 pos += delta + 4;
c906108c
SS
268 }
269 else
270 {
271 codestream_read (buf, 4);
272 delta = extract_signed_integer (buf, 4);
273
274 pos += delta + 5;
275 }
276 break;
277 case 0xeb:
fc338970 278 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
279 codestream_read (buf, 1);
280 /* Sign-extend it. */
281 delta = extract_signed_integer (buf, 1);
282
283 pos += delta + 2;
284 break;
285 }
286 codestream_seek (pos);
287}
288
fc338970
MK
289/* Find & return the amount a local space allocated, and advance the
290 codestream to the first register push (if any).
291
292 If the entry sequence doesn't make sense, return -1, and leave
293 codestream pointer at a random spot. */
c906108c
SS
294
295static long
fba45db2 296i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
297{
298 unsigned char op;
299
300 codestream_seek (pc);
301
302 i386_follow_jump ();
303
304 op = codestream_get ();
305
306 if (op == 0x58) /* popl %eax */
307 {
fc338970
MK
308 /* This function must start with
309
310 popl %eax 0x58
311 xchgl %eax, (%esp) 0x87 0x04 0x24
312 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
313
314 (the System V compiler puts out the second `xchg'
315 instruction, and the assembler doesn't try to optimize it, so
316 the 'sib' form gets generated). This sequence is used to get
317 the address of the return buffer for a function that returns
318 a structure. */
c906108c
SS
319 int pos;
320 unsigned char buf[4];
fc338970
MK
321 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
322 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
323
c906108c
SS
324 pos = codestream_tell ();
325 codestream_read (buf, 4);
326 if (memcmp (buf, proto1, 3) == 0)
327 pos += 3;
328 else if (memcmp (buf, proto2, 4) == 0)
329 pos += 4;
330
331 codestream_seek (pos);
fc338970 332 op = codestream_get (); /* Update next opcode. */
c906108c
SS
333 }
334
335 if (op == 0x68 || op == 0x6a)
336 {
fc338970
MK
337 /* This function may start with
338
339 pushl constant
340 call _probe
341 addl $4, %esp
342
343 followed by
344
345 pushl %ebp
346
347 etc. */
c906108c
SS
348 int pos;
349 unsigned char buf[8];
350
fc338970 351 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
352 or a four-byte operand, depending on the opcode. */
353 pos = codestream_tell ();
354 if (op == 0x68)
355 pos += 4;
356 else
357 pos += 1;
358 codestream_seek (pos);
359
fc338970
MK
360 /* Read the following 8 bytes, which should be "call _probe" (6
361 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
362 codestream_read (buf, sizeof (buf));
363 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
364 pos += sizeof (buf);
365 codestream_seek (pos);
fc338970 366 op = codestream_get (); /* Update next opcode. */
c906108c
SS
367 }
368
369 if (op == 0x55) /* pushl %ebp */
c5aa993b 370 {
fc338970 371 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
372 switch (codestream_get ())
373 {
374 case 0x8b:
375 if (codestream_get () != 0xec)
fc338970 376 return -1;
c906108c
SS
377 break;
378 case 0x89:
379 if (codestream_get () != 0xe5)
fc338970 380 return -1;
c906108c
SS
381 break;
382 default:
fc338970 383 return -1;
c906108c 384 }
fc338970
MK
385 /* Check for stack adjustment
386
387 subl $XXX, %esp
388
389 NOTE: You can't subtract a 16 bit immediate from a 32 bit
390 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
391 op = codestream_peek ();
392 if (op == 0x83)
393 {
fc338970 394 /* `subl' with 8 bit immediate. */
c906108c
SS
395 codestream_get ();
396 if (codestream_get () != 0xec)
fc338970 397 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
398 {
399 codestream_seek (codestream_tell () - 2);
400 return 0;
401 }
fc338970
MK
402 /* `subl' with signed byte immediate (though it wouldn't
403 make sense to be negative). */
c5aa993b 404 return (codestream_get ());
c906108c
SS
405 }
406 else if (op == 0x81)
407 {
408 char buf[4];
fc338970 409 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 410 codestream_get ();
c906108c 411 if (codestream_get () != 0xec)
fc338970 412 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
413 {
414 codestream_seek (codestream_tell () - 2);
415 return 0;
416 }
fc338970 417 /* It is `subl' with a 32 bit immediate. */
c5aa993b 418 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
419 return extract_signed_integer (buf, 4);
420 }
421 else
422 {
fc338970 423 return 0;
c906108c
SS
424 }
425 }
426 else if (op == 0xc8)
427 {
428 char buf[2];
fc338970 429 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 430 codestream_read ((unsigned char *) buf, 2);
fc338970 431 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
432 return extract_unsigned_integer (buf, 2);
433 }
434 return (-1);
435}
436
6bff26de
MK
437/* Signal trampolines don't have a meaningful frame. The frame
438 pointer value we use is actually the frame pointer of the calling
439 frame -- that is, the frame which was in progress when the signal
440 trampoline was entered. GDB mostly treats this frame pointer value
441 as a magic cookie. We detect the case of a signal trampoline by
442 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
443 PC_IN_SIGTRAMP.
444
445 When a signal trampoline is invoked from a frameless function, we
446 essentially have two frameless functions in a row. In this case,
447 we use the same magic cookie for three frames in a row. We detect
448 this case by seeing whether the next frame has
449 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
450 current frame is actually frameless. In this case, we need to get
451 the PC by looking at the SP register value stored in the signal
452 context.
453
454 This should work in most cases except in horrible situations where
455 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
456 has been set up. Incidentally, that's just what happens when we
457 call a function from GDB with a signal pending (there's a test in
458 the testsuite that makes this happen). Therefore we pretend that
459 we have a frameless function if we're stopped at the start of a
460 function. */
6bff26de
MK
461
462/* Return non-zero if we're dealing with a frameless signal, that is,
463 a signal trampoline invoked from a frameless function. */
464
465static int
466i386_frameless_signal_p (struct frame_info *frame)
467{
c0d1d883
MK
468 return (frame->next && frame->next->signal_handler_caller
469 && (frameless_look_for_prologue (frame)
470 || frame->pc == get_pc_function_start (frame->pc)));
6bff26de
MK
471}
472
c833a37e
MK
473/* Return the chain-pointer for FRAME. In the case of the i386, the
474 frame's nominal address is the address of a 4-byte word containing
475 the calling frame's address. */
476
8201327c 477static CORE_ADDR
c833a37e
MK
478i386_frame_chain (struct frame_info *frame)
479{
c0d1d883
MK
480 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
481 return frame->frame;
482
6bff26de
MK
483 if (frame->signal_handler_caller
484 || i386_frameless_signal_p (frame))
c833a37e
MK
485 return frame->frame;
486
487 if (! inside_entry_file (frame->pc))
488 return read_memory_unsigned_integer (frame->frame, 4);
489
490 return 0;
491}
492
539ffe0b
MK
493/* Determine whether the function invocation represented by FRAME does
494 not have a from on the stack associated with it. If it does not,
495 return non-zero, otherwise return zero. */
496
3a1e71e3 497static int
539ffe0b
MK
498i386_frameless_function_invocation (struct frame_info *frame)
499{
500 if (frame->signal_handler_caller)
501 return 0;
502
503 return frameless_look_for_prologue (frame);
504}
505
21d0e8a4
MK
506/* Assuming FRAME is for a sigtramp routine, return the saved program
507 counter. */
508
509static CORE_ADDR
510i386_sigtramp_saved_pc (struct frame_info *frame)
511{
512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
513 CORE_ADDR addr;
514
515 addr = tdep->sigcontext_addr (frame);
516 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
517}
518
6bff26de
MK
519/* Assuming FRAME is for a sigtramp routine, return the saved stack
520 pointer. */
521
522static CORE_ADDR
523i386_sigtramp_saved_sp (struct frame_info *frame)
524{
525 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
526 CORE_ADDR addr;
527
528 addr = tdep->sigcontext_addr (frame);
529 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
530}
531
0d17c81d
MK
532/* Return the saved program counter for FRAME. */
533
8201327c 534static CORE_ADDR
0d17c81d
MK
535i386_frame_saved_pc (struct frame_info *frame)
536{
c0d1d883
MK
537 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
538 return generic_read_register_dummy (frame->pc, frame->frame,
539 PC_REGNUM);
540
0d17c81d 541 if (frame->signal_handler_caller)
21d0e8a4 542 return i386_sigtramp_saved_pc (frame);
0d17c81d 543
6bff26de
MK
544 if (i386_frameless_signal_p (frame))
545 {
546 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
547 return read_memory_unsigned_integer (sp, 4);
548 }
549
8201327c 550 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
551}
552
ed84f6c1
MK
553/* Immediately after a function call, return the saved pc. */
554
8201327c 555static CORE_ADDR
ed84f6c1
MK
556i386_saved_pc_after_call (struct frame_info *frame)
557{
6bff26de
MK
558 if (frame->signal_handler_caller)
559 return i386_sigtramp_saved_pc (frame);
560
ed84f6c1
MK
561 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
562}
563
c906108c
SS
564/* Return number of args passed to a frame.
565 Can return -1, meaning no way to tell. */
566
3a1e71e3 567static int
fba45db2 568i386_frame_num_args (struct frame_info *fi)
c906108c
SS
569{
570#if 1
571 return -1;
572#else
573 /* This loses because not only might the compiler not be popping the
fc338970
MK
574 args right after the function call, it might be popping args from
575 both this call and a previous one, and we would say there are
576 more args than there really are. */
c906108c 577
c5aa993b
JM
578 int retpc;
579 unsigned char op;
c906108c
SS
580 struct frame_info *pfi;
581
fc338970 582 /* On the i386, the instruction following the call could be:
c906108c
SS
583 popl %ecx - one arg
584 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 585 anything else - zero args. */
c906108c
SS
586
587 int frameless;
588
392a587b 589 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 590 if (frameless)
fc338970
MK
591 /* In the absence of a frame pointer, GDB doesn't get correct
592 values for nameless arguments. Return -1, so it doesn't print
593 any nameless arguments. */
c906108c
SS
594 return -1;
595
c5aa993b 596 pfi = get_prev_frame (fi);
c906108c
SS
597 if (pfi == 0)
598 {
fc338970
MK
599 /* NOTE: This can happen if we are looking at the frame for
600 main, because FRAME_CHAIN_VALID won't let us go into start.
601 If we have debugging symbols, that's not really a big deal;
602 it just means it will only show as many arguments to main as
603 are declared. */
c906108c
SS
604 return -1;
605 }
606 else
607 {
c5aa993b
JM
608 retpc = pfi->pc;
609 op = read_memory_integer (retpc, 1);
fc338970 610 if (op == 0x59) /* pop %ecx */
c5aa993b 611 return 1;
c906108c
SS
612 else if (op == 0x83)
613 {
c5aa993b
JM
614 op = read_memory_integer (retpc + 1, 1);
615 if (op == 0xc4)
616 /* addl $<signed imm 8 bits>, %esp */
617 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
618 else
619 return 0;
620 }
fc338970
MK
621 else if (op == 0x81) /* `add' with 32 bit immediate. */
622 {
c5aa993b
JM
623 op = read_memory_integer (retpc + 1, 1);
624 if (op == 0xc4)
625 /* addl $<imm 32>, %esp */
626 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
627 else
628 return 0;
629 }
630 else
631 {
632 return 0;
633 }
634 }
635#endif
636}
637
fc338970
MK
638/* Parse the first few instructions the function to see what registers
639 were stored.
640
641 We handle these cases:
642
643 The startup sequence can be at the start of the function, or the
644 function can start with a branch to startup code at the end.
645
646 %ebp can be set up with either the 'enter' instruction, or "pushl
647 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
648 once used in the System V compiler).
649
650 Local space is allocated just below the saved %ebp by either the
651 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
652 bit unsigned argument for space to allocate, and the 'addl'
653 instruction could have either a signed byte, or 32 bit immediate.
654
655 Next, the registers used by this function are pushed. With the
656 System V compiler they will always be in the order: %edi, %esi,
657 %ebx (and sometimes a harmless bug causes it to also save but not
658 restore %eax); however, the code below is willing to see the pushes
659 in any order, and will handle up to 8 of them.
660
661 If the setup sequence is at the end of the function, then the next
662 instruction will be a branch back to the start. */
c906108c 663
3a1e71e3 664static void
fba45db2 665i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
666{
667 long locals = -1;
668 unsigned char op;
fc338970 669 CORE_ADDR addr;
c906108c
SS
670 CORE_ADDR pc;
671 int i;
c5aa993b 672
1211c4e4
AC
673 if (fip->saved_regs)
674 return;
675
676 frame_saved_regs_zalloc (fip);
c5aa993b 677
c906108c
SS
678 pc = get_pc_function_start (fip->pc);
679 if (pc != 0)
680 locals = i386_get_frame_setup (pc);
c5aa993b
JM
681
682 if (locals >= 0)
c906108c 683 {
fc338970 684 addr = fip->frame - 4 - locals;
c5aa993b 685 for (i = 0; i < 8; i++)
c906108c
SS
686 {
687 op = codestream_get ();
688 if (op < 0x50 || op > 0x57)
689 break;
690#ifdef I386_REGNO_TO_SYMMETRY
691 /* Dynix uses different internal numbering. Ick. */
fc338970 692 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 693#else
fc338970 694 fip->saved_regs[op - 0x50] = addr;
c906108c 695#endif
fc338970 696 addr -= 4;
c906108c
SS
697 }
698 }
c5aa993b 699
1211c4e4
AC
700 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
701 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
702}
703
fc338970 704/* Return PC of first real instruction. */
c906108c 705
3a1e71e3 706static CORE_ADDR
93924b6b 707i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
708{
709 unsigned char op;
710 int i;
c5aa993b 711 static unsigned char pic_pat[6] =
fc338970
MK
712 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
713 0x5b, /* popl %ebx */
c5aa993b 714 };
c906108c 715 CORE_ADDR pos;
c5aa993b 716
c906108c
SS
717 if (i386_get_frame_setup (pc) < 0)
718 return (pc);
c5aa993b 719
fc338970
MK
720 /* Found valid frame setup -- codestream now points to start of push
721 instructions for saving registers. */
c5aa993b 722
fc338970 723 /* Skip over register saves. */
c906108c
SS
724 for (i = 0; i < 8; i++)
725 {
726 op = codestream_peek ();
fc338970 727 /* Break if not `pushl' instrunction. */
c5aa993b 728 if (op < 0x50 || op > 0x57)
c906108c
SS
729 break;
730 codestream_get ();
731 }
732
fc338970
MK
733 /* The native cc on SVR4 in -K PIC mode inserts the following code
734 to get the address of the global offset table (GOT) into register
735 %ebx
736
737 call 0x0
738 popl %ebx
739 movl %ebx,x(%ebp) (optional)
740 addl y,%ebx
741
c906108c
SS
742 This code is with the rest of the prologue (at the end of the
743 function), so we have to skip it to get to the first real
744 instruction at the start of the function. */
c5aa993b 745
c906108c
SS
746 pos = codestream_tell ();
747 for (i = 0; i < 6; i++)
748 {
749 op = codestream_get ();
c5aa993b 750 if (pic_pat[i] != op)
c906108c
SS
751 break;
752 }
753 if (i == 6)
754 {
755 unsigned char buf[4];
756 long delta = 6;
757
758 op = codestream_get ();
c5aa993b 759 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
760 {
761 op = codestream_get ();
fc338970 762 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
763 {
764 delta += 3;
765 codestream_read (buf, 1);
766 }
fc338970 767 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
768 {
769 delta += 6;
770 codestream_read (buf, 4);
771 }
fc338970 772 else /* Unexpected instruction. */
c5aa993b
JM
773 delta = -1;
774 op = codestream_get ();
c906108c 775 }
c5aa993b
JM
776 /* addl y,%ebx */
777 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 778 {
c5aa993b 779 pos += delta + 6;
c906108c
SS
780 }
781 }
782 codestream_seek (pos);
c5aa993b 783
c906108c 784 i386_follow_jump ();
c5aa993b 785
c906108c
SS
786 return (codestream_tell ());
787}
788
93924b6b
MK
789/* Use the program counter to determine the contents and size of a
790 breakpoint instruction. Return a pointer to a string of bytes that
791 encode a breakpoint instruction, store the length of the string in
792 *LEN and optionally adjust *PC to point to the correct memory
793 location for inserting the breakpoint.
794
795 On the i386 we have a single breakpoint that fits in a single byte
796 and can be inserted anywhere. */
797
798static const unsigned char *
799i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800{
801 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
802
803 *len = sizeof (break_insn);
804 return break_insn;
805}
806
c0d1d883
MK
807/* Push the return address (pointing to the call dummy) onto the stack
808 and return the new value for the stack pointer. */
c5aa993b 809
c0d1d883
MK
810static CORE_ADDR
811i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 812{
c0d1d883 813 char buf[4];
a7769679 814
c0d1d883
MK
815 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
816 write_memory (sp - 4, buf, 4);
817 return sp - 4;
a7769679
MK
818}
819
3a1e71e3 820static void
c0d1d883 821i386_do_pop_frame (struct frame_info *frame)
c906108c 822{
c906108c
SS
823 CORE_ADDR fp;
824 int regnum;
00f8375e 825 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 826
c906108c 827 fp = FRAME_FP (frame);
1211c4e4
AC
828 i386_frame_init_saved_regs (frame);
829
c5aa993b 830 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 831 {
fc338970
MK
832 CORE_ADDR addr;
833 addr = frame->saved_regs[regnum];
834 if (addr)
c906108c 835 {
fc338970 836 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
837 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
838 REGISTER_RAW_SIZE (regnum));
839 }
840 }
841 write_register (FP_REGNUM, read_memory_integer (fp, 4));
842 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
843 write_register (SP_REGNUM, fp + 8);
844 flush_cached_frames ();
845}
c0d1d883
MK
846
847static void
848i386_pop_frame (void)
849{
850 generic_pop_current_frame (i386_do_pop_frame);
851}
fc338970 852\f
c906108c 853
fc338970
MK
854/* Figure out where the longjmp will land. Slurp the args out of the
855 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
856 structure from which we extract the address that we will land at.
857 This address is copied into PC. This routine returns true on
fc338970 858 success. */
c906108c 859
8201327c
MK
860static int
861i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 862{
8201327c 863 char buf[4];
c906108c 864 CORE_ADDR sp, jb_addr;
8201327c 865 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 866
8201327c
MK
867 /* If JB_PC_OFFSET is -1, we have no way to find out where the
868 longjmp will land. */
869 if (jb_pc_offset == -1)
c906108c
SS
870 return 0;
871
8201327c
MK
872 sp = read_register (SP_REGNUM);
873 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
874 return 0;
875
8201327c
MK
876 jb_addr = extract_address (buf, 4);
877 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
878 return 0;
c906108c 879
8201327c 880 *pc = extract_address (buf, 4);
c906108c
SS
881 return 1;
882}
fc338970 883\f
c906108c 884
3a1e71e3 885static CORE_ADDR
ea7c478f 886i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
887 int struct_return, CORE_ADDR struct_addr)
888{
889 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
890
891 if (struct_return)
892 {
893 char buf[4];
894
895 sp -= 4;
896 store_address (buf, 4, struct_addr);
897 write_memory (sp, buf, 4);
898 }
899
900 return sp;
901}
902
3a1e71e3 903static void
22f8ba57
MK
904i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
905{
906 /* Do nothing. Everything was already done by i386_push_arguments. */
907}
908
1a309862
MK
909/* These registers are used for returning integers (and on some
910 targets also for returning `struct' and `union' values when their
ef9dff19 911 size and alignment match an integer type). */
1a309862
MK
912#define LOW_RETURN_REGNUM 0 /* %eax */
913#define HIGH_RETURN_REGNUM 2 /* %edx */
914
915/* Extract from an array REGBUF containing the (raw) register state, a
916 function return value of TYPE, and copy that, in virtual format,
917 into VALBUF. */
918
3a1e71e3 919static void
00f8375e
MK
920i386_extract_return_value (struct type *type, struct regcache *regcache,
921 char *valbuf)
c906108c 922{
1a309862 923 int len = TYPE_LENGTH (type);
00f8375e 924 char buf[I386_MAX_REGISTER_SIZE];
1a309862 925
1e8d0a7b
MK
926 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
927 && TYPE_NFIELDS (type) == 1)
3df1b9b4 928 {
00f8375e 929 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
930 return;
931 }
1e8d0a7b
MK
932
933 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 934 {
356a6b3e 935 if (FP0_REGNUM == 0)
1a309862
MK
936 {
937 warning ("Cannot find floating-point return value.");
938 memset (valbuf, 0, len);
ef9dff19 939 return;
1a309862
MK
940 }
941
c6ba6f0d
MK
942 /* Floating-point return values can be found in %st(0). Convert
943 its contents to the desired type. This is probably not
944 exactly how it would happen on the target itself, but it is
945 the best we can do. */
0818c12a 946 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 947 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
948 }
949 else
c5aa993b 950 {
d4f3574e
SS
951 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
952 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
953
954 if (len <= low_size)
00f8375e 955 {
0818c12a 956 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
957 memcpy (valbuf, buf, len);
958 }
d4f3574e
SS
959 else if (len <= (low_size + high_size))
960 {
0818c12a 961 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 962 memcpy (valbuf, buf, low_size);
0818c12a 963 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 964 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
965 }
966 else
8e65ff28
AC
967 internal_error (__FILE__, __LINE__,
968 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
969 }
970}
971
ef9dff19
MK
972/* Write into the appropriate registers a function return value stored
973 in VALBUF of type TYPE, given in virtual format. */
974
3a1e71e3 975static void
ef9dff19
MK
976i386_store_return_value (struct type *type, char *valbuf)
977{
978 int len = TYPE_LENGTH (type);
979
1e8d0a7b
MK
980 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
981 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
982 {
983 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
984 return;
985 }
1e8d0a7b
MK
986
987 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 988 {
ccb945b8 989 unsigned int fstat;
c6ba6f0d 990 char buf[FPU_REG_RAW_SIZE];
ccb945b8 991
356a6b3e 992 if (FP0_REGNUM == 0)
ef9dff19
MK
993 {
994 warning ("Cannot set floating-point return value.");
995 return;
996 }
997
635b0cc1
MK
998 /* Returning floating-point values is a bit tricky. Apart from
999 storing the return value in %st(0), we have to simulate the
1000 state of the FPU at function return point. */
1001
c6ba6f0d
MK
1002 /* Convert the value found in VALBUF to the extended
1003 floating-point format used by the FPU. This is probably
1004 not exactly how it would happen on the target itself, but
1005 it is the best we can do. */
1006 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1007 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1008 FPU_REG_RAW_SIZE);
ccb945b8 1009
635b0cc1
MK
1010 /* Set the top of the floating-point register stack to 7. The
1011 actual value doesn't really matter, but 7 is what a normal
1012 function return would end up with if the program started out
1013 with a freshly initialized FPU. */
ccb945b8
MK
1014 fstat = read_register (FSTAT_REGNUM);
1015 fstat |= (7 << 11);
1016 write_register (FSTAT_REGNUM, fstat);
1017
635b0cc1
MK
1018 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1019 the floating-point register stack to 7, the appropriate value
1020 for the tag word is 0x3fff. */
ccb945b8 1021 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1022 }
1023 else
1024 {
1025 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1026 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1027
1028 if (len <= low_size)
1029 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1030 else if (len <= (low_size + high_size))
1031 {
1032 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1033 valbuf, low_size);
1034 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1035 valbuf + low_size, len - low_size);
1036 }
1037 else
8e65ff28
AC
1038 internal_error (__FILE__, __LINE__,
1039 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1040 }
1041}
f7af9647
MK
1042
1043/* Extract from an array REGBUF containing the (raw) register state
1044 the address in which a function should return its structure value,
1045 as a CORE_ADDR. */
1046
3a1e71e3 1047static CORE_ADDR
00f8375e 1048i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1049{
a378f419
AC
1050 /* NOTE: cagney/2002-08-12: Replaced a call to
1051 regcache_raw_read_as_address() with a call to
1052 regcache_cooked_read_unsigned(). The old, ...as_address function
1053 was eventually calling extract_unsigned_integer (via
1054 extract_address) to unpack the registers value. The below is
1055 doing an unsigned extract so that it is functionally equivalent.
1056 The read needs to be cooked as, otherwise, it will never
1057 correctly return the value of a register in the [NUM_REGS
1058 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1059 ULONGEST val;
1060 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1061 return val;
f7af9647 1062}
fc338970 1063\f
ef9dff19 1064
8201327c
MK
1065/* This is the variable that is set with "set struct-convention", and
1066 its legitimate values. */
1067static const char default_struct_convention[] = "default";
1068static const char pcc_struct_convention[] = "pcc";
1069static const char reg_struct_convention[] = "reg";
1070static const char *valid_conventions[] =
1071{
1072 default_struct_convention,
1073 pcc_struct_convention,
1074 reg_struct_convention,
1075 NULL
1076};
1077static const char *struct_convention = default_struct_convention;
1078
1079static int
1080i386_use_struct_convention (int gcc_p, struct type *type)
1081{
1082 enum struct_return struct_return;
1083
1084 if (struct_convention == default_struct_convention)
1085 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1086 else if (struct_convention == pcc_struct_convention)
1087 struct_return = pcc_struct_return;
1088 else
1089 struct_return = reg_struct_return;
1090
1091 return generic_use_struct_convention (struct_return == reg_struct_return,
1092 type);
1093}
1094\f
1095
d7a0d72c
MK
1096/* Return the GDB type object for the "standard" data type of data in
1097 register REGNUM. Perhaps %esi and %edi should go here, but
1098 potentially they could be used for things other than address. */
1099
3a1e71e3 1100static struct type *
d7a0d72c
MK
1101i386_register_virtual_type (int regnum)
1102{
1103 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1104 return lookup_pointer_type (builtin_type_void);
1105
1106 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1107 return builtin_type_i387_ext;
d7a0d72c
MK
1108
1109 if (IS_SSE_REGNUM (regnum))
3139facc 1110 return builtin_type_vec128i;
d7a0d72c 1111
28fc6740
AC
1112 if (mmx_regnum_p (regnum))
1113 return builtin_type_vec64i;
1114
d7a0d72c
MK
1115 return builtin_type_int;
1116}
1117
28fc6740
AC
1118/* Map a cooked register onto a raw register or memory. For the i386,
1119 the MMX registers need to be mapped onto floating point registers. */
1120
1121static int
1122mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1123{
1124 int mmxi;
1125 ULONGEST fstat;
1126 int tos;
1127 int fpi;
1128 mmxi = regnum - MM0_REGNUM;
1129 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1130 tos = (fstat >> 11) & 0x7;
1131 fpi = (mmxi + tos) % 8;
1132 return (FP0_REGNUM + fpi);
1133}
1134
1135static void
1136i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1137 int regnum, void *buf)
1138{
1139 if (mmx_regnum_p (regnum))
1140 {
1141 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1142 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1143 regcache_raw_read (regcache, fpnum, mmx_buf);
1144 /* Extract (always little endian). */
1145 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1146 }
1147 else
1148 regcache_raw_read (regcache, regnum, buf);
1149}
1150
1151static void
1152i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1153 int regnum, const void *buf)
1154{
1155 if (mmx_regnum_p (regnum))
1156 {
1157 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1158 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1159 /* Read ... */
1160 regcache_raw_read (regcache, fpnum, mmx_buf);
1161 /* ... Modify ... (always little endian). */
1162 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1163 /* ... Write. */
1164 regcache_raw_write (regcache, fpnum, mmx_buf);
1165 }
1166 else
1167 regcache_raw_write (regcache, regnum, buf);
1168}
1169
d7a0d72c
MK
1170/* Return true iff register REGNUM's virtual format is different from
1171 its raw format. Note that this definition assumes that the host
1172 supports IEEE 32-bit floats, since it doesn't say that SSE
1173 registers need conversion. Even if we can't find a counterexample,
1174 this is still sloppy. */
1175
3a1e71e3 1176static int
d7a0d72c
MK
1177i386_register_convertible (int regnum)
1178{
1179 return IS_FP_REGNUM (regnum);
1180}
1181
ac27f131 1182/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1183 virtual format with type TYPE in buffer TO. */
ac27f131 1184
3a1e71e3 1185static void
ac27f131
MK
1186i386_register_convert_to_virtual (int regnum, struct type *type,
1187 char *from, char *to)
1188{
c6ba6f0d 1189 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1190
1191 /* We only support floating-point values. */
8d7f6b4a
MK
1192 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1193 {
1194 warning ("Cannot convert floating-point register value "
1195 "to non-floating-point type.");
1196 memset (to, 0, TYPE_LENGTH (type));
1197 return;
1198 }
3d261580 1199
c6ba6f0d
MK
1200 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1201 the extended floating-point format used by the FPU. */
1202 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1203}
1204
1205/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1206 raw format for register REGNUM in buffer TO. */
ac27f131 1207
3a1e71e3 1208static void
ac27f131
MK
1209i386_register_convert_to_raw (struct type *type, int regnum,
1210 char *from, char *to)
1211{
c6ba6f0d
MK
1212 gdb_assert (IS_FP_REGNUM (regnum));
1213
1214 /* We only support floating-point values. */
1215 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1216 {
1217 warning ("Cannot convert non-floating-point type "
1218 "to floating-point register value.");
1219 memset (to, 0, TYPE_LENGTH (type));
1220 return;
1221 }
3d261580 1222
c6ba6f0d
MK
1223 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1224 to the extended floating-point format used by the FPU. */
1225 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1226}
ac27f131 1227\f
fc338970 1228
c906108c 1229#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1230/* SunPRO encodes the static variables. This is not related to C++
1231 mangling, it is done for C too. */
c906108c
SS
1232
1233char *
fba45db2 1234sunpro_static_transform_name (char *name)
c906108c
SS
1235{
1236 char *p;
1237 if (IS_STATIC_TRANSFORM_NAME (name))
1238 {
fc338970
MK
1239 /* For file-local statics there will be a period, a bunch of
1240 junk (the contents of which match a string given in the
c5aa993b
JM
1241 N_OPT), a period and the name. For function-local statics
1242 there will be a bunch of junk (which seems to change the
1243 second character from 'A' to 'B'), a period, the name of the
1244 function, and the name. So just skip everything before the
1245 last period. */
c906108c
SS
1246 p = strrchr (name, '.');
1247 if (p != NULL)
1248 name = p + 1;
1249 }
1250 return name;
1251}
1252#endif /* STATIC_TRANSFORM_NAME */
fc338970 1253\f
c906108c 1254
fc338970 1255/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1256
1257CORE_ADDR
fba45db2 1258skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1259{
fc338970 1260 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1261 {
c5aa993b 1262 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1263 struct minimal_symbol *indsym =
fc338970 1264 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1265 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1266
c5aa993b 1267 if (symname)
c906108c 1268 {
c5aa993b
JM
1269 if (strncmp (symname, "__imp_", 6) == 0
1270 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1271 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1272 }
1273 }
fc338970 1274 return 0; /* Not a trampoline. */
c906108c 1275}
fc338970
MK
1276\f
1277
8201327c
MK
1278/* Return non-zero if PC and NAME show that we are in a signal
1279 trampoline. */
1280
1281static int
1282i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1283{
1284 return (name && strcmp ("_sigtramp", name) == 0);
1285}
1286\f
1287
fc338970
MK
1288/* We have two flavours of disassembly. The machinery on this page
1289 deals with switching between those. */
c906108c
SS
1290
1291static int
fba45db2 1292gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1293{
1294 if (disassembly_flavor == att_flavor)
1295 return print_insn_i386_att (memaddr, info);
1296 else if (disassembly_flavor == intel_flavor)
1297 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1298 /* Never reached -- disassembly_flavour is always either att_flavor
1299 or intel_flavor. */
e1e9e218 1300 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1301}
fc338970 1302\f
3ce1502b 1303
8201327c
MK
1304/* There are a few i386 architecture variants that differ only
1305 slightly from the generic i386 target. For now, we don't give them
1306 their own source file, but include them here. As a consequence,
1307 they'll always be included. */
3ce1502b 1308
8201327c 1309/* System V Release 4 (SVR4). */
3ce1502b 1310
8201327c
MK
1311static int
1312i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1313{
8201327c
MK
1314 return (name && (strcmp ("_sigreturn", name) == 0
1315 || strcmp ("_sigacthandler", name) == 0
1316 || strcmp ("sigvechandler", name) == 0));
1317}
d2a7c97a 1318
21d0e8a4
MK
1319/* Get address of the pushed ucontext (sigcontext) on the stack for
1320 all three variants of SVR4 sigtramps. */
3ce1502b 1321
3a1e71e3 1322static CORE_ADDR
21d0e8a4 1323i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1324{
21d0e8a4 1325 int sigcontext_offset = -1;
8201327c
MK
1326 char *name = NULL;
1327
1328 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1329 if (name)
d2a7c97a 1330 {
8201327c 1331 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1332 sigcontext_offset = 132;
8201327c 1333 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1334 sigcontext_offset = 80;
8201327c 1335 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1336 sigcontext_offset = 120;
8201327c 1337 }
3ce1502b 1338
21d0e8a4
MK
1339 gdb_assert (sigcontext_offset != -1);
1340
8201327c 1341 if (frame->next)
21d0e8a4
MK
1342 return frame->next->frame + sigcontext_offset;
1343 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1344}
1345\f
3ce1502b 1346
8201327c 1347/* DJGPP. */
d2a7c97a 1348
8201327c
MK
1349static int
1350i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1351{
1352 /* DJGPP doesn't have any special frames for signal handlers. */
1353 return 0;
1354}
1355\f
d2a7c97a 1356
8201327c 1357/* Generic ELF. */
d2a7c97a 1358
8201327c
MK
1359void
1360i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1361{
1362 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1363 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1364}
3ce1502b 1365
8201327c 1366/* System V Release 4 (SVR4). */
3ce1502b 1367
8201327c
MK
1368void
1369i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1370{
1371 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1372
8201327c
MK
1373 /* System V Release 4 uses ELF. */
1374 i386_elf_init_abi (info, gdbarch);
3ce1502b 1375
8201327c
MK
1376 /* FIXME: kettenis/20020511: Why do we override this function here? */
1377 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
3ce1502b 1378
8201327c 1379 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1380 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1381 tdep->sc_pc_offset = 14 * 4;
1382 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1383
8201327c 1384 tdep->jb_pc_offset = 20;
3ce1502b
MK
1385}
1386
8201327c 1387/* DJGPP. */
3ce1502b 1388
3a1e71e3 1389static void
8201327c 1390i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1391{
8201327c 1392 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1393
8201327c 1394 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1395
8201327c 1396 tdep->jb_pc_offset = 36;
3ce1502b
MK
1397}
1398
8201327c 1399/* NetWare. */
3ce1502b 1400
3a1e71e3 1401static void
8201327c 1402i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1403{
8201327c 1404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1405
8201327c
MK
1406 /* FIXME: kettenis/20020511: Why do we override this function here? */
1407 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1408
1409 tdep->jb_pc_offset = 24;
d2a7c97a 1410}
8201327c 1411\f
2acceee2 1412
3a1e71e3 1413static struct gdbarch *
a62cc96e
AC
1414i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1415{
cd3c07fc 1416 struct gdbarch_tdep *tdep;
a62cc96e 1417 struct gdbarch *gdbarch;
8201327c 1418 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1419
8201327c 1420 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1421 if (info.abfd != NULL)
8201327c 1422 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1423
3ce1502b 1424 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1425 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1426 arches != NULL;
1427 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1428 {
8201327c 1429 /* Make sure the OS ABI selection matches. */
65d6d66a 1430 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1431 if (tdep && tdep->osabi == osabi)
65d6d66a 1432 return arches->gdbarch;
d2a7c97a 1433 }
a62cc96e
AC
1434
1435 /* Allocate space for the new architecture. */
1436 tdep = XMALLOC (struct gdbarch_tdep);
1437 gdbarch = gdbarch_alloc (&info, tdep);
1438
8201327c
MK
1439 tdep->osabi = osabi;
1440
1441 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1442 FIXME: kettenis/20020614: They do include the FPU registers for
1443 now, which probably is not quite right. */
8201327c 1444 tdep->num_xmm_regs = 0;
d2a7c97a 1445
8201327c
MK
1446 tdep->jb_pc_offset = -1;
1447 tdep->struct_return = pcc_struct_return;
8201327c
MK
1448 tdep->sigtramp_start = 0;
1449 tdep->sigtramp_end = 0;
21d0e8a4 1450 tdep->sigcontext_addr = NULL;
8201327c 1451 tdep->sc_pc_offset = -1;
21d0e8a4 1452 tdep->sc_sp_offset = -1;
8201327c 1453
896fb97d
MK
1454 /* The format used for `long double' on almost all i386 targets is
1455 the i387 extended floating-point format. In fact, of all targets
1456 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1457 on having a `long double' that's not `long' at all. */
1458 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1459
896fb97d
MK
1460 /* Although the i386 extended floating-point has only 80 significant
1461 bits, a `long double' actually takes up 96, probably to enforce
1462 alignment. */
1463 set_gdbarch_long_double_bit (gdbarch, 96);
1464
356a6b3e
MK
1465 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1466 tm-symmetry.h currently override this. Sigh. */
1467 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1468
356a6b3e
MK
1469 set_gdbarch_sp_regnum (gdbarch, 4);
1470 set_gdbarch_fp_regnum (gdbarch, 5);
1471 set_gdbarch_pc_regnum (gdbarch, 8);
1472 set_gdbarch_ps_regnum (gdbarch, 9);
1473 set_gdbarch_fp0_regnum (gdbarch, 16);
1474
1475 /* Use the "default" register numbering scheme for stabs and COFF. */
1476 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1477 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1478
1479 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1480 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1481 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1482
1483 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1484 be in use on any of the supported i386 targets. */
1485
1486 set_gdbarch_register_name (gdbarch, i386_register_name);
1487 set_gdbarch_register_size (gdbarch, 4);
1488 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1489 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1490 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1491 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1492
8201327c 1493 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1494
c0d1d883 1495 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
a62cc96e
AC
1496
1497 /* Call dummy code. */
c0d1d883
MK
1498 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1499 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1500 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1501 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1502 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1503 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1504 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1505 set_gdbarch_call_dummy_words (gdbarch, NULL);
1506 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1507 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1508 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1509
b6197528
MK
1510 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1511 set_gdbarch_register_convert_to_virtual (gdbarch,
1512 i386_register_convert_to_virtual);
1513 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1514
a62cc96e
AC
1515 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1516 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1517
c0d1d883 1518 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
a62cc96e 1519
8758dec1
MK
1520 /* "An argument's size is increased, if necessary, to make it a
1521 multiple of [32-bit] words. This may require tail padding,
1522 depending on the size of the argument" -- from the x86 ABI. */
1523 set_gdbarch_parm_boundary (gdbarch, 32);
1524
00f8375e 1525 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1526 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1527 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1528 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1529 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1530 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1531 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1532 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1533 i386_extract_struct_value_address);
8201327c
MK
1534 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1535
42fdc8df 1536 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1537 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1538
1539 /* Stack grows downward. */
1540 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1541
1542 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1543 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1544 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1545
8201327c
MK
1546 /* The following redefines make backtracing through sigtramp work.
1547 They manufacture a fake sigtramp frame and obtain the saved pc in
1548 sigtramp from the sigcontext structure which is pushed by the
1549 kernel on the user stack, along with a pointer to it. */
1550
42fdc8df
MK
1551 set_gdbarch_frame_args_skip (gdbarch, 8);
1552 set_gdbarch_frameless_function_invocation (gdbarch,
1553 i386_frameless_function_invocation);
8201327c 1554 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
c0d1d883 1555 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
8201327c 1556 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1557 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1558 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1559 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1560 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1561 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1562
28fc6740
AC
1563 /* Wire in the MMX registers. */
1564 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1565 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1566 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1567
3ce1502b 1568 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1569 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1570
a62cc96e
AC
1571 return gdbarch;
1572}
1573
8201327c
MK
1574static enum gdb_osabi
1575i386_coff_osabi_sniffer (bfd *abfd)
1576{
762c5349
MK
1577 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1578 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1579 return GDB_OSABI_GO32;
1580
1581 return GDB_OSABI_UNKNOWN;
1582}
1583
1584static enum gdb_osabi
1585i386_nlm_osabi_sniffer (bfd *abfd)
1586{
1587 return GDB_OSABI_NETWARE;
1588}
1589\f
1590
28e9e0f0
MK
1591/* Provide a prototype to silence -Wmissing-prototypes. */
1592void _initialize_i386_tdep (void);
1593
c906108c 1594void
fba45db2 1595_initialize_i386_tdep (void)
c906108c 1596{
a62cc96e
AC
1597 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1598
c906108c
SS
1599 tm_print_insn = gdb_print_insn_i386;
1600 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1601
fc338970 1602 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1603 {
1604 struct cmd_list_element *new_cmd;
7a292a7a 1605
917317f4
JM
1606 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1607 valid_flavors,
1ed2a135 1608 &disassembly_flavor,
fc338970
MK
1609 "\
1610Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1611and the default value is \"att\".",
917317f4 1612 &setlist);
917317f4
JM
1613 add_show_from_set (new_cmd, &showlist);
1614 }
8201327c
MK
1615
1616 /* Add the variable that controls the convention for returning
1617 structs. */
1618 {
1619 struct cmd_list_element *new_cmd;
1620
1621 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1622 valid_conventions,
1623 &struct_convention, "\
1624Set the convention for returning small structs, valid values \
1625are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1626 &setlist);
1627 add_show_from_set (new_cmd, &showlist);
1628 }
1629
1630 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1631 i386_coff_osabi_sniffer);
1632 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1633 i386_nlm_osabi_sniffer);
1634
1635 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1636 i386_svr4_init_abi);
1637 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1638 i386_go32_init_abi);
1639 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1640 i386_nw_init_abi);
c906108c 1641}
This page took 0.303374 seconds and 4 git commands to generate.