Add macro handling extensions and line substitution support.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c
SS
1/* Intel 386 target-dependent stuff.
2 Copyright (C) 1988, 1989, 1991, 1994, 1995, 1996, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "frame.h"
25#include "inferior.h"
26#include "gdbcore.h"
27#include "target.h"
28#include "floatformat.h"
29#include "symtab.h"
30#include "gdbcmd.h"
31#include "command.h"
32
33static long i386_get_frame_setup PARAMS ((CORE_ADDR));
34
35static void i386_follow_jump PARAMS ((void));
36
37static void codestream_read PARAMS ((unsigned char *, int));
38
39static void codestream_seek PARAMS ((CORE_ADDR));
40
41static unsigned char codestream_fill PARAMS ((int));
42
43CORE_ADDR skip_trampoline_code PARAMS ((CORE_ADDR, char *));
44
45static int gdb_print_insn_i386 (bfd_vma, disassemble_info *);
46
47void _initialize_i386_tdep PARAMS ((void));
48
917317f4
JM
49/* i386_register_byte[i] is the offset into the register file of the
50 start of register number i. We initialize this from
51 i386_register_raw_size. */
52int i386_register_byte[MAX_NUM_REGS];
53
ceb4951f
JB
54/* i386_register_raw_size[i] is the number of bytes of storage in
55 GDB's register array occupied by register i. */
917317f4
JM
56int i386_register_raw_size[MAX_NUM_REGS] = {
57 4, 4, 4, 4,
58 4, 4, 4, 4,
59 4, 4, 4, 4,
60 4, 4, 4, 4,
61 10, 10, 10, 10,
62 10, 10, 10, 10,
63 4, 4, 4, 4,
64 4, 4, 4, 4,
65 16, 16, 16, 16,
66 16, 16, 16, 16,
67 4
68};
69
70/* i386_register_virtual_size[i] is the size in bytes of the virtual
71 type of register i. */
72int i386_register_virtual_size[MAX_NUM_REGS];
73
74
c906108c 75/* This is the variable the is set with "set disassembly-flavor",
c5aa993b 76 and its legitimate values. */
c906108c
SS
77static char att_flavor[] = "att";
78static char intel_flavor[] = "intel";
c5aa993b
JM
79static char *valid_flavors[] =
80{
c906108c
SS
81 att_flavor,
82 intel_flavor,
83 NULL
84};
85static char *disassembly_flavor = att_flavor;
86
d4f3574e
SS
87static void i386_print_register PARAMS ((char *, int, int));
88
7a292a7a
SS
89/* This is used to keep the bfd arch_info in sync with the disassembly flavor. */
90static void set_disassembly_flavor_sfunc PARAMS ((char *, int, struct cmd_list_element *));
d4f3574e 91static void set_disassembly_flavor PARAMS ((void));
7a292a7a 92
c906108c
SS
93/* Stdio style buffering was used to minimize calls to ptrace, but this
94 buffering did not take into account that the code section being accessed
95 may not be an even number of buffers long (even if the buffer is only
96 sizeof(int) long). In cases where the code section size happened to
97 be a non-integral number of buffers long, attempting to read the last
98 buffer would fail. Simply using target_read_memory and ignoring errors,
99 rather than read_memory, is not the correct solution, since legitimate
100 access errors would then be totally ignored. To properly handle this
101 situation and continue to use buffering would require that this code
102 be able to determine the minimum code section size granularity (not the
103 alignment of the section itself, since the actual failing case that
104 pointed out this problem had a section alignment of 4 but was not a
105 multiple of 4 bytes long), on a target by target basis, and then
106 adjust it's buffer size accordingly. This is messy, but potentially
107 feasible. It probably needs the bfd library's help and support. For
108 now, the buffer size is set to 1. (FIXME -fnf) */
109
110#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
111static CORE_ADDR codestream_next_addr;
112static CORE_ADDR codestream_addr;
113static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
114static int codestream_off;
115static int codestream_cnt;
116
117#define codestream_tell() (codestream_addr + codestream_off)
118#define codestream_peek() (codestream_cnt == 0 ? \
119 codestream_fill(1): codestream_buf[codestream_off])
120#define codestream_get() (codestream_cnt-- == 0 ? \
121 codestream_fill(0) : codestream_buf[codestream_off++])
122
c5aa993b 123static unsigned char
c906108c 124codestream_fill (peek_flag)
c5aa993b 125 int peek_flag;
c906108c
SS
126{
127 codestream_addr = codestream_next_addr;
128 codestream_next_addr += CODESTREAM_BUFSIZ;
129 codestream_off = 0;
130 codestream_cnt = CODESTREAM_BUFSIZ;
131 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 132
c906108c 133 if (peek_flag)
c5aa993b 134 return (codestream_peek ());
c906108c 135 else
c5aa993b 136 return (codestream_get ());
c906108c
SS
137}
138
139static void
140codestream_seek (place)
c5aa993b 141 CORE_ADDR place;
c906108c
SS
142{
143 codestream_next_addr = place / CODESTREAM_BUFSIZ;
144 codestream_next_addr *= CODESTREAM_BUFSIZ;
145 codestream_cnt = 0;
146 codestream_fill (1);
c5aa993b 147 while (codestream_tell () != place)
c906108c
SS
148 codestream_get ();
149}
150
151static void
152codestream_read (buf, count)
153 unsigned char *buf;
154 int count;
155{
156 unsigned char *p;
157 int i;
158 p = buf;
159 for (i = 0; i < count; i++)
160 *p++ = codestream_get ();
161}
162
163/* next instruction is a jump, move to target */
164
165static void
166i386_follow_jump ()
167{
168 unsigned char buf[4];
169 long delta;
170
171 int data16;
172 CORE_ADDR pos;
173
174 pos = codestream_tell ();
175
176 data16 = 0;
177 if (codestream_peek () == 0x66)
178 {
179 codestream_get ();
180 data16 = 1;
181 }
182
183 switch (codestream_get ())
184 {
185 case 0xe9:
186 /* relative jump: if data16 == 0, disp32, else disp16 */
187 if (data16)
188 {
189 codestream_read (buf, 2);
190 delta = extract_signed_integer (buf, 2);
191
192 /* include size of jmp inst (including the 0x66 prefix). */
c5aa993b 193 pos += delta + 4;
c906108c
SS
194 }
195 else
196 {
197 codestream_read (buf, 4);
198 delta = extract_signed_integer (buf, 4);
199
200 pos += delta + 5;
201 }
202 break;
203 case 0xeb:
204 /* relative jump, disp8 (ignore data16) */
205 codestream_read (buf, 1);
206 /* Sign-extend it. */
207 delta = extract_signed_integer (buf, 1);
208
209 pos += delta + 2;
210 break;
211 }
212 codestream_seek (pos);
213}
214
215/*
216 * find & return amound a local space allocated, and advance codestream to
217 * first register push (if any)
218 *
219 * if entry sequence doesn't make sense, return -1, and leave
220 * codestream pointer random
221 */
222
223static long
224i386_get_frame_setup (pc)
225 CORE_ADDR pc;
226{
227 unsigned char op;
228
229 codestream_seek (pc);
230
231 i386_follow_jump ();
232
233 op = codestream_get ();
234
235 if (op == 0x58) /* popl %eax */
236 {
237 /*
238 * this function must start with
239 *
c5aa993b 240 * popl %eax 0x58
c906108c
SS
241 * xchgl %eax, (%esp) 0x87 0x04 0x24
242 * or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
243 *
244 * (the system 5 compiler puts out the second xchg
245 * inst, and the assembler doesn't try to optimize it,
246 * so the 'sib' form gets generated)
247 *
248 * this sequence is used to get the address of the return
249 * buffer for a function that returns a structure
250 */
251 int pos;
252 unsigned char buf[4];
c5aa993b
JM
253 static unsigned char proto1[3] =
254 {0x87, 0x04, 0x24};
255 static unsigned char proto2[4] =
256 {0x87, 0x44, 0x24, 0x00};
c906108c
SS
257 pos = codestream_tell ();
258 codestream_read (buf, 4);
259 if (memcmp (buf, proto1, 3) == 0)
260 pos += 3;
261 else if (memcmp (buf, proto2, 4) == 0)
262 pos += 4;
263
264 codestream_seek (pos);
c5aa993b 265 op = codestream_get (); /* update next opcode */
c906108c
SS
266 }
267
268 if (op == 0x68 || op == 0x6a)
269 {
270 /*
271 * this function may start with
272 *
273 * pushl constant
274 * call _probe
275 * addl $4, %esp
276 * followed by
277 * pushl %ebp
278 * etc.
279 */
280 int pos;
281 unsigned char buf[8];
282
283 /* Skip past the pushl instruction; it has either a one-byte
284 or a four-byte operand, depending on the opcode. */
285 pos = codestream_tell ();
286 if (op == 0x68)
287 pos += 4;
288 else
289 pos += 1;
290 codestream_seek (pos);
291
292 /* Read the following 8 bytes, which should be "call _probe" (6 bytes)
293 followed by "addl $4,%esp" (2 bytes). */
294 codestream_read (buf, sizeof (buf));
295 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
296 pos += sizeof (buf);
297 codestream_seek (pos);
c5aa993b 298 op = codestream_get (); /* update next opcode */
c906108c
SS
299 }
300
301 if (op == 0x55) /* pushl %ebp */
c5aa993b 302 {
c906108c
SS
303 /* check for movl %esp, %ebp - can be written two ways */
304 switch (codestream_get ())
305 {
306 case 0x8b:
307 if (codestream_get () != 0xec)
308 return (-1);
309 break;
310 case 0x89:
311 if (codestream_get () != 0xe5)
312 return (-1);
313 break;
314 default:
315 return (-1);
316 }
317 /* check for stack adjustment
c5aa993b 318
c906108c
SS
319 * subl $XXX, %esp
320 *
321 * note: you can't subtract a 16 bit immediate
322 * from a 32 bit reg, so we don't have to worry
323 * about a data16 prefix
324 */
325 op = codestream_peek ();
326 if (op == 0x83)
327 {
328 /* subl with 8 bit immed */
329 codestream_get ();
330 if (codestream_get () != 0xec)
331 /* Some instruction starting with 0x83 other than subl. */
332 {
333 codestream_seek (codestream_tell () - 2);
334 return 0;
335 }
336 /* subl with signed byte immediate
337 * (though it wouldn't make sense to be negative)
338 */
c5aa993b 339 return (codestream_get ());
c906108c
SS
340 }
341 else if (op == 0x81)
342 {
343 char buf[4];
344 /* Maybe it is subl with 32 bit immedediate. */
c5aa993b 345 codestream_get ();
c906108c
SS
346 if (codestream_get () != 0xec)
347 /* Some instruction starting with 0x81 other than subl. */
348 {
349 codestream_seek (codestream_tell () - 2);
350 return 0;
351 }
352 /* It is subl with 32 bit immediate. */
c5aa993b 353 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
354 return extract_signed_integer (buf, 4);
355 }
356 else
357 {
358 return (0);
359 }
360 }
361 else if (op == 0xc8)
362 {
363 char buf[2];
364 /* enter instruction: arg is 16 bit unsigned immed */
c5aa993b
JM
365 codestream_read ((unsigned char *) buf, 2);
366 codestream_get (); /* flush final byte of enter instruction */
c906108c
SS
367 return extract_unsigned_integer (buf, 2);
368 }
369 return (-1);
370}
371
372/* Return number of args passed to a frame.
373 Can return -1, meaning no way to tell. */
374
375int
376i386_frame_num_args (fi)
377 struct frame_info *fi;
378{
379#if 1
380 return -1;
381#else
382 /* This loses because not only might the compiler not be popping the
383 args right after the function call, it might be popping args from both
384 this call and a previous one, and we would say there are more args
385 than there really are. */
386
c5aa993b
JM
387 int retpc;
388 unsigned char op;
c906108c
SS
389 struct frame_info *pfi;
390
391 /* on the 386, the instruction following the call could be:
392 popl %ecx - one arg
393 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
394 anything else - zero args */
395
396 int frameless;
397
392a587b 398 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c
SS
399 if (frameless)
400 /* In the absence of a frame pointer, GDB doesn't get correct values
401 for nameless arguments. Return -1, so it doesn't print any
402 nameless arguments. */
403 return -1;
404
c5aa993b 405 pfi = get_prev_frame (fi);
c906108c
SS
406 if (pfi == 0)
407 {
408 /* Note: this can happen if we are looking at the frame for
c5aa993b
JM
409 main, because FRAME_CHAIN_VALID won't let us go into
410 start. If we have debugging symbols, that's not really
411 a big deal; it just means it will only show as many arguments
412 to main as are declared. */
c906108c
SS
413 return -1;
414 }
415 else
416 {
c5aa993b
JM
417 retpc = pfi->pc;
418 op = read_memory_integer (retpc, 1);
419 if (op == 0x59)
420 /* pop %ecx */
421 return 1;
c906108c
SS
422 else if (op == 0x83)
423 {
c5aa993b
JM
424 op = read_memory_integer (retpc + 1, 1);
425 if (op == 0xc4)
426 /* addl $<signed imm 8 bits>, %esp */
427 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
428 else
429 return 0;
430 }
431 else if (op == 0x81)
c5aa993b
JM
432 { /* add with 32 bit immediate */
433 op = read_memory_integer (retpc + 1, 1);
434 if (op == 0xc4)
435 /* addl $<imm 32>, %esp */
436 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
437 else
438 return 0;
439 }
440 else
441 {
442 return 0;
443 }
444 }
445#endif
446}
447
448/*
449 * parse the first few instructions of the function to see
450 * what registers were stored.
451 *
452 * We handle these cases:
453 *
454 * The startup sequence can be at the start of the function,
455 * or the function can start with a branch to startup code at the end.
456 *
457 * %ebp can be set up with either the 'enter' instruction, or
458 * 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
459 * but was once used in the sys5 compiler)
460 *
461 * Local space is allocated just below the saved %ebp by either the
462 * 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
463 * a 16 bit unsigned argument for space to allocate, and the
464 * 'addl' instruction could have either a signed byte, or
465 * 32 bit immediate.
466 *
467 * Next, the registers used by this function are pushed. In
468 * the sys5 compiler they will always be in the order: %edi, %esi, %ebx
469 * (and sometimes a harmless bug causes it to also save but not restore %eax);
470 * however, the code below is willing to see the pushes in any order,
471 * and will handle up to 8 of them.
472 *
473 * If the setup sequence is at the end of the function, then the
474 * next instruction will be a branch back to the start.
475 */
476
477void
1211c4e4 478i386_frame_init_saved_regs (fip)
c906108c 479 struct frame_info *fip;
c906108c
SS
480{
481 long locals = -1;
482 unsigned char op;
483 CORE_ADDR dummy_bottom;
484 CORE_ADDR adr;
485 CORE_ADDR pc;
486 int i;
c5aa993b 487
1211c4e4
AC
488 if (fip->saved_regs)
489 return;
490
491 frame_saved_regs_zalloc (fip);
c5aa993b 492
c906108c
SS
493 /* if frame is the end of a dummy, compute where the
494 * beginning would be
495 */
496 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 497
c906108c 498 /* check if the PC is in the stack, in a dummy frame */
c5aa993b 499 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c
SS
500 {
501 /* all regs were saved by push_call_dummy () */
502 adr = fip->frame;
c5aa993b 503 for (i = 0; i < NUM_REGS; i++)
c906108c
SS
504 {
505 adr -= REGISTER_RAW_SIZE (i);
1211c4e4 506 fip->saved_regs[i] = adr;
c906108c
SS
507 }
508 return;
509 }
c5aa993b 510
c906108c
SS
511 pc = get_pc_function_start (fip->pc);
512 if (pc != 0)
513 locals = i386_get_frame_setup (pc);
c5aa993b
JM
514
515 if (locals >= 0)
c906108c
SS
516 {
517 adr = fip->frame - 4 - locals;
c5aa993b 518 for (i = 0; i < 8; i++)
c906108c
SS
519 {
520 op = codestream_get ();
521 if (op < 0x50 || op > 0x57)
522 break;
523#ifdef I386_REGNO_TO_SYMMETRY
524 /* Dynix uses different internal numbering. Ick. */
1211c4e4 525 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = adr;
c906108c 526#else
1211c4e4 527 fip->saved_regs[op - 0x50] = adr;
c906108c
SS
528#endif
529 adr -= 4;
530 }
531 }
c5aa993b 532
1211c4e4
AC
533 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
534 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
535}
536
537/* return pc of first real instruction */
538
539int
540i386_skip_prologue (pc)
541 int pc;
542{
543 unsigned char op;
544 int i;
c5aa993b
JM
545 static unsigned char pic_pat[6] =
546 {0xe8, 0, 0, 0, 0, /* call 0x0 */
547 0x5b, /* popl %ebx */
548 };
c906108c 549 CORE_ADDR pos;
c5aa993b 550
c906108c
SS
551 if (i386_get_frame_setup (pc) < 0)
552 return (pc);
c5aa993b 553
c906108c
SS
554 /* found valid frame setup - codestream now points to
555 * start of push instructions for saving registers
556 */
c5aa993b 557
c906108c
SS
558 /* skip over register saves */
559 for (i = 0; i < 8; i++)
560 {
561 op = codestream_peek ();
562 /* break if not pushl inst */
c5aa993b 563 if (op < 0x50 || op > 0x57)
c906108c
SS
564 break;
565 codestream_get ();
566 }
567
568 /* The native cc on SVR4 in -K PIC mode inserts the following code to get
569 the address of the global offset table (GOT) into register %ebx.
c5aa993b
JM
570 call 0x0
571 popl %ebx
572 movl %ebx,x(%ebp) (optional)
573 addl y,%ebx
c906108c
SS
574 This code is with the rest of the prologue (at the end of the
575 function), so we have to skip it to get to the first real
576 instruction at the start of the function. */
c5aa993b 577
c906108c
SS
578 pos = codestream_tell ();
579 for (i = 0; i < 6; i++)
580 {
581 op = codestream_get ();
c5aa993b 582 if (pic_pat[i] != op)
c906108c
SS
583 break;
584 }
585 if (i == 6)
586 {
587 unsigned char buf[4];
588 long delta = 6;
589
590 op = codestream_get ();
c5aa993b 591 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
592 {
593 op = codestream_get ();
c5aa993b 594 if (op == 0x5d) /* one byte offset from %ebp */
c906108c
SS
595 {
596 delta += 3;
597 codestream_read (buf, 1);
598 }
c5aa993b 599 else if (op == 0x9d) /* four byte offset from %ebp */
c906108c
SS
600 {
601 delta += 6;
602 codestream_read (buf, 4);
603 }
c5aa993b
JM
604 else /* unexpected instruction */
605 delta = -1;
606 op = codestream_get ();
c906108c 607 }
c5aa993b
JM
608 /* addl y,%ebx */
609 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 610 {
c5aa993b 611 pos += delta + 6;
c906108c
SS
612 }
613 }
614 codestream_seek (pos);
c5aa993b 615
c906108c 616 i386_follow_jump ();
c5aa993b 617
c906108c
SS
618 return (codestream_tell ());
619}
620
621void
622i386_push_dummy_frame ()
623{
624 CORE_ADDR sp = read_register (SP_REGNUM);
625 int regnum;
626 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 627
c906108c
SS
628 sp = push_word (sp, read_register (PC_REGNUM));
629 sp = push_word (sp, read_register (FP_REGNUM));
630 write_register (FP_REGNUM, sp);
631 for (regnum = 0; regnum < NUM_REGS; regnum++)
632 {
633 read_register_gen (regnum, regbuf);
634 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
635 }
636 write_register (SP_REGNUM, sp);
637}
638
639void
640i386_pop_frame ()
641{
642 struct frame_info *frame = get_current_frame ();
643 CORE_ADDR fp;
644 int regnum;
c906108c 645 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 646
c906108c 647 fp = FRAME_FP (frame);
1211c4e4
AC
648 i386_frame_init_saved_regs (frame);
649
c5aa993b 650 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c
SS
651 {
652 CORE_ADDR adr;
1211c4e4 653 adr = frame->saved_regs[regnum];
c906108c
SS
654 if (adr)
655 {
656 read_memory (adr, regbuf, REGISTER_RAW_SIZE (regnum));
657 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
658 REGISTER_RAW_SIZE (regnum));
659 }
660 }
661 write_register (FP_REGNUM, read_memory_integer (fp, 4));
662 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
663 write_register (SP_REGNUM, fp + 8);
664 flush_cached_frames ();
665}
666
667#ifdef GET_LONGJMP_TARGET
668
669/* Figure out where the longjmp will land. Slurp the args out of the stack.
670 We expect the first arg to be a pointer to the jmp_buf structure from which
671 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
672 This routine returns true on success. */
673
674int
c5aa993b 675get_longjmp_target (pc)
c906108c
SS
676 CORE_ADDR *pc;
677{
678 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
679 CORE_ADDR sp, jb_addr;
680
681 sp = read_register (SP_REGNUM);
682
c5aa993b 683 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack */
c906108c
SS
684 buf,
685 TARGET_PTR_BIT / TARGET_CHAR_BIT))
686 return 0;
687
688 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
689
690 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
691 TARGET_PTR_BIT / TARGET_CHAR_BIT))
692 return 0;
693
694 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
695
696 return 1;
697}
698
699#endif /* GET_LONGJMP_TARGET */
700
1a309862
MK
701/* These registers are used for returning integers (and on some
702 targets also for returning `struct' and `union' values when their
703 size and alignment match an integer type. */
704#define LOW_RETURN_REGNUM 0 /* %eax */
705#define HIGH_RETURN_REGNUM 2 /* %edx */
706
707/* Extract from an array REGBUF containing the (raw) register state, a
708 function return value of TYPE, and copy that, in virtual format,
709 into VALBUF. */
710
c906108c 711void
1a309862 712i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 713{
1a309862
MK
714 int len = TYPE_LENGTH (type);
715
c5aa993b 716 if (TYPE_CODE_FLT == TYPE_CODE (type))
c906108c 717 {
1a309862
MK
718 if (NUM_FREGS == 0)
719 {
720 warning ("Cannot find floating-point return value.");
721 memset (valbuf, 0, len);
722 }
723
724 /* Floating-point return values can be found in %st(0). */
725 if (len == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT
726 && TARGET_LONG_DOUBLE_FORMAT == &floatformat_i387_ext)
727 {
728 /* Copy straight over, but take care of the padding. */
729 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)],
730 FPU_REG_RAW_SIZE);
731 memset (valbuf + FPU_REG_RAW_SIZE, 0, len - FPU_REG_RAW_SIZE);
732 }
733 else
734 {
735 /* Convert the extended floating-point number found in
736 %st(0) to the desired type. This is probably not exactly
737 how it would happen on the target itself, but it is the
738 best we can do. */
739 DOUBLEST val;
740 floatformat_to_doublest (&floatformat_i387_ext,
741 &regbuf[REGISTER_BYTE (FP0_REGNUM)], &val);
742 store_floating (valbuf, TYPE_LENGTH (type), val);
743 }
c906108c
SS
744 }
745 else
c5aa993b 746 {
d4f3574e
SS
747 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
748 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
749
750 if (len <= low_size)
1a309862 751 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
752 else if (len <= (low_size + high_size))
753 {
754 memcpy (valbuf,
1a309862 755 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 756 memcpy (valbuf + low_size,
1a309862 757 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
758 }
759 else
1a309862 760 internal_error ("Cannot extract return value of %d bytes long.", len);
c906108c
SS
761 }
762}
763
764#ifdef I386V4_SIGTRAMP_SAVED_PC
765/* Get saved user PC for sigtramp from the pushed ucontext on the stack
766 for all three variants of SVR4 sigtramps. */
767
768CORE_ADDR
769i386v4_sigtramp_saved_pc (frame)
770 struct frame_info *frame;
771{
772 CORE_ADDR saved_pc_offset = 4;
773 char *name = NULL;
774
775 find_pc_partial_function (frame->pc, &name, NULL, NULL);
776 if (name)
777 {
778 if (STREQ (name, "_sigreturn"))
779 saved_pc_offset = 132 + 14 * 4;
780 else if (STREQ (name, "_sigacthandler"))
781 saved_pc_offset = 80 + 14 * 4;
782 else if (STREQ (name, "sigvechandler"))
783 saved_pc_offset = 120 + 14 * 4;
784 }
785
786 if (frame->next)
787 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
788 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
789}
790#endif /* I386V4_SIGTRAMP_SAVED_PC */
791
a0b3c4fd 792
c906108c
SS
793#ifdef STATIC_TRANSFORM_NAME
794/* SunPRO encodes the static variables. This is not related to C++ mangling,
795 it is done for C too. */
796
797char *
798sunpro_static_transform_name (name)
799 char *name;
800{
801 char *p;
802 if (IS_STATIC_TRANSFORM_NAME (name))
803 {
804 /* For file-local statics there will be a period, a bunch
c5aa993b
JM
805 of junk (the contents of which match a string given in the
806 N_OPT), a period and the name. For function-local statics
807 there will be a bunch of junk (which seems to change the
808 second character from 'A' to 'B'), a period, the name of the
809 function, and the name. So just skip everything before the
810 last period. */
c906108c
SS
811 p = strrchr (name, '.');
812 if (p != NULL)
813 name = p + 1;
814 }
815 return name;
816}
817#endif /* STATIC_TRANSFORM_NAME */
818
819
820
821/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
822
823CORE_ADDR
824skip_trampoline_code (pc, name)
825 CORE_ADDR pc;
826 char *name;
827{
c5aa993b 828 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 829 {
c5aa993b 830 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 831 struct minimal_symbol *indsym =
c5aa993b
JM
832 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
833 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 834
c5aa993b 835 if (symname)
c906108c 836 {
c5aa993b
JM
837 if (strncmp (symname, "__imp_", 6) == 0
838 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
839 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
840 }
841 }
842 return 0; /* not a trampoline */
843}
844
845static int
846gdb_print_insn_i386 (memaddr, info)
847 bfd_vma memaddr;
c5aa993b 848 disassemble_info *info;
c906108c
SS
849{
850 if (disassembly_flavor == att_flavor)
851 return print_insn_i386_att (memaddr, info);
852 else if (disassembly_flavor == intel_flavor)
853 return print_insn_i386_intel (memaddr, info);
7a292a7a
SS
854 /* Never reached - disassembly_flavour is always either att_flavor
855 or intel_flavor */
856 abort ();
857}
858
859/* If the disassembly mode is intel, we have to also switch the
860 bfd mach_type. This function is run in the set disassembly_flavor
861 command, and does that. */
862
863static void
864set_disassembly_flavor_sfunc (args, from_tty, c)
865 char *args;
866 int from_tty;
867 struct cmd_list_element *c;
868{
869 set_disassembly_flavor ();
7a292a7a
SS
870}
871
872static void
873set_disassembly_flavor ()
874{
875 if (disassembly_flavor == att_flavor)
876 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386);
877 else if (disassembly_flavor == intel_flavor)
878 set_architecture_from_arch_mach (bfd_arch_i386, bfd_mach_i386_i386_intel_syntax);
c906108c
SS
879}
880
2acceee2 881
c906108c
SS
882void
883_initialize_i386_tdep ()
884{
917317f4
JM
885 /* Initialize the table saying where each register starts in the
886 register file. */
887 {
888 int i, offset;
889
890 offset = 0;
891 for (i = 0; i < MAX_NUM_REGS; i++)
892 {
893 i386_register_byte[i] = offset;
894 offset += i386_register_raw_size[i];
895 }
896 }
897
898 /* Initialize the table of virtual register sizes. */
899 {
900 int i;
901
902 for (i = 0; i < MAX_NUM_REGS; i++)
903 i386_register_virtual_size[i] = TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (i));
904 }
c5aa993b 905
c906108c
SS
906 tm_print_insn = gdb_print_insn_i386;
907 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
908
909 /* Add the variable that controls the disassembly flavor */
917317f4
JM
910 {
911 struct cmd_list_element *new_cmd;
7a292a7a 912
917317f4
JM
913 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
914 valid_flavors,
915 (char *) &disassembly_flavor,
916 "Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 917and the default value is \"att\".",
917317f4
JM
918 &setlist);
919 new_cmd->function.sfunc = set_disassembly_flavor_sfunc;
920 add_show_from_set (new_cmd, &showlist);
921 }
c5aa993b 922
7a292a7a
SS
923 /* Finally, initialize the disassembly flavor to the default given
924 in the disassembly_flavor variable */
c906108c 925
7a292a7a 926 set_disassembly_flavor ();
c906108c 927}
This page took 0.085353 seconds and 4 git commands to generate.