* value.c (value_primitive_field): Fetch lazy register values.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
20a6ec49 99 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
100 return 0;
101
20a6ec49
MD
102 return (I387_XMM0_REGNUM (tdep) <= regnum
103 && regnum < I387_MXCSR_REGNUM (tdep));
23a34459
AC
104}
105
5716833c
MK
106static int
107i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 108{
5716833c
MK
109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
110
20a6ec49 111 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
112 return 0;
113
20a6ec49 114 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
115}
116
5716833c 117/* FP register? */
23a34459
AC
118
119int
20a6ec49 120i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 121{
20a6ec49
MD
122 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
123
124 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
125 return 0;
126
20a6ec49
MD
127 return (I387_ST0_REGNUM (tdep) <= regnum
128 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
129}
130
131int
20a6ec49 132i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 133{
20a6ec49
MD
134 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
135
136 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
137 return 0;
138
20a6ec49
MD
139 return (I387_FCTRL_REGNUM (tdep) <= regnum
140 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
141}
142
30b0e2d8 143/* Return the name of register REGNUM. */
fc633446 144
fa88f677 145const char *
d93859e2 146i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 147{
d93859e2 148 if (i386_mmx_regnum_p (gdbarch, regnum))
20a6ec49 149 return i386_mmx_names[regnum - I387_MM0_REGNUM (gdbarch_tdep (gdbarch))];
fc633446 150
30b0e2d8
MK
151 if (regnum >= 0 && regnum < i386_num_register_names)
152 return i386_register_names[regnum];
70913449 153
c40e1eab 154 return NULL;
fc633446
MK
155}
156
c4fc7f1b 157/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
158 number used by GDB. */
159
8201327c 160static int
d3f73121 161i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 162{
20a6ec49
MD
163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
164
c4fc7f1b
MK
165 /* This implements what GCC calls the "default" register map
166 (dbx_register_map[]). */
167
85540d8c
MK
168 if (reg >= 0 && reg <= 7)
169 {
9872ad24
JB
170 /* General-purpose registers. The debug info calls %ebp
171 register 4, and %esp register 5. */
172 if (reg == 4)
173 return 5;
174 else if (reg == 5)
175 return 4;
176 else return reg;
85540d8c
MK
177 }
178 else if (reg >= 12 && reg <= 19)
179 {
180 /* Floating-point registers. */
20a6ec49 181 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
182 }
183 else if (reg >= 21 && reg <= 28)
184 {
185 /* SSE registers. */
20a6ec49 186 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
187 }
188 else if (reg >= 29 && reg <= 36)
189 {
190 /* MMX registers. */
20a6ec49 191 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
192 }
193
194 /* This will hopefully provoke a warning. */
d3f73121 195 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
196}
197
c4fc7f1b
MK
198/* Convert SVR4 register number REG to the appropriate register number
199 used by GDB. */
85540d8c 200
8201327c 201static int
d3f73121 202i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 203{
20a6ec49
MD
204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
205
c4fc7f1b
MK
206 /* This implements the GCC register map that tries to be compatible
207 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
208
209 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
210 numbers the floating point registers differently. */
211 if (reg >= 0 && reg <= 9)
212 {
acd5c798 213 /* General-purpose registers. */
85540d8c
MK
214 return reg;
215 }
216 else if (reg >= 11 && reg <= 18)
217 {
218 /* Floating-point registers. */
20a6ec49 219 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 220 }
c6f4c129 221 else if (reg >= 21 && reg <= 36)
85540d8c 222 {
c4fc7f1b 223 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 224 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
225 }
226
c6f4c129
JB
227 switch (reg)
228 {
20a6ec49
MD
229 case 37: return I387_FCTRL_REGNUM (tdep);
230 case 38: return I387_FSTAT_REGNUM (tdep);
231 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
232 case 40: return I386_ES_REGNUM;
233 case 41: return I386_CS_REGNUM;
234 case 42: return I386_SS_REGNUM;
235 case 43: return I386_DS_REGNUM;
236 case 44: return I386_FS_REGNUM;
237 case 45: return I386_GS_REGNUM;
238 }
239
85540d8c 240 /* This will hopefully provoke a warning. */
d3f73121 241 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 242}
5716833c 243
fc338970 244\f
917317f4 245
fc338970
MK
246/* This is the variable that is set with "set disassembly-flavor", and
247 its legitimate values. */
53904c9e
AC
248static const char att_flavor[] = "att";
249static const char intel_flavor[] = "intel";
250static const char *valid_flavors[] =
c5aa993b 251{
c906108c
SS
252 att_flavor,
253 intel_flavor,
254 NULL
255};
53904c9e 256static const char *disassembly_flavor = att_flavor;
acd5c798 257\f
c906108c 258
acd5c798
MK
259/* Use the program counter to determine the contents and size of a
260 breakpoint instruction. Return a pointer to a string of bytes that
261 encode a breakpoint instruction, store the length of the string in
262 *LEN and optionally adjust *PC to point to the correct memory
263 location for inserting the breakpoint.
c906108c 264
acd5c798
MK
265 On the i386 we have a single breakpoint that fits in a single byte
266 and can be inserted anywhere.
c906108c 267
acd5c798 268 This function is 64-bit safe. */
63c0089f
MK
269
270static const gdb_byte *
67d57894 271i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 272{
63c0089f
MK
273 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
274
acd5c798
MK
275 *len = sizeof (break_insn);
276 return break_insn;
c906108c 277}
237fc4c9
PA
278\f
279/* Displaced instruction handling. */
280
281
282static int
283i386_absolute_jmp_p (gdb_byte *insn)
284{
285 /* jmp far (absolute address in operand) */
286 if (insn[0] == 0xea)
287 return 1;
288
289 if (insn[0] == 0xff)
290 {
291 /* jump near, absolute indirect (/4) */
292 if ((insn[1] & 0x38) == 0x20)
293 return 1;
294
295 /* jump far, absolute indirect (/5) */
296 if ((insn[1] & 0x38) == 0x28)
297 return 1;
298 }
299
300 return 0;
301}
302
303static int
304i386_absolute_call_p (gdb_byte *insn)
305{
306 /* call far, absolute */
307 if (insn[0] == 0x9a)
308 return 1;
309
310 if (insn[0] == 0xff)
311 {
312 /* Call near, absolute indirect (/2) */
313 if ((insn[1] & 0x38) == 0x10)
314 return 1;
315
316 /* Call far, absolute indirect (/3) */
317 if ((insn[1] & 0x38) == 0x18)
318 return 1;
319 }
320
321 return 0;
322}
323
324static int
325i386_ret_p (gdb_byte *insn)
326{
327 switch (insn[0])
328 {
329 case 0xc2: /* ret near, pop N bytes */
330 case 0xc3: /* ret near */
331 case 0xca: /* ret far, pop N bytes */
332 case 0xcb: /* ret far */
333 case 0xcf: /* iret */
334 return 1;
335
336 default:
337 return 0;
338 }
339}
340
341static int
342i386_call_p (gdb_byte *insn)
343{
344 if (i386_absolute_call_p (insn))
345 return 1;
346
347 /* call near, relative */
348 if (insn[0] == 0xe8)
349 return 1;
350
351 return 0;
352}
353
354static int
355i386_breakpoint_p (gdb_byte *insn)
356{
357 return insn[0] == 0xcc; /* int 3 */
358}
359
360/* Return non-zero if INSN is a system call, and set *LENGTHP to its
361 length in bytes. Otherwise, return zero. */
362static int
363i386_syscall_p (gdb_byte *insn, ULONGEST *lengthp)
364{
365 if (insn[0] == 0xcd)
366 {
367 *lengthp = 2;
368 return 1;
369 }
370
371 return 0;
372}
373
374/* Fix up the state of registers and memory after having single-stepped
375 a displaced instruction. */
376void
377i386_displaced_step_fixup (struct gdbarch *gdbarch,
378 struct displaced_step_closure *closure,
379 CORE_ADDR from, CORE_ADDR to,
380 struct regcache *regs)
381{
382 /* The offset we applied to the instruction's address.
383 This could well be negative (when viewed as a signed 32-bit
384 value), but ULONGEST won't reflect that, so take care when
385 applying it. */
386 ULONGEST insn_offset = to - from;
387
388 /* Since we use simple_displaced_step_copy_insn, our closure is a
389 copy of the instruction. */
390 gdb_byte *insn = (gdb_byte *) closure;
391
392 if (debug_displaced)
393 fprintf_unfiltered (gdb_stdlog,
394 "displaced: fixup (0x%s, 0x%s), "
395 "insn = 0x%02x 0x%02x ...\n",
396 paddr_nz (from), paddr_nz (to), insn[0], insn[1]);
397
398 /* The list of issues to contend with here is taken from
399 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
400 Yay for Free Software! */
401
402 /* Relocate the %eip, if necessary. */
403
404 /* Except in the case of absolute or indirect jump or call
405 instructions, or a return instruction, the new eip is relative to
406 the displaced instruction; make it relative. Well, signal
407 handler returns don't need relocation either, but we use the
408 value of %eip to recognize those; see below. */
409 if (! i386_absolute_jmp_p (insn)
410 && ! i386_absolute_call_p (insn)
411 && ! i386_ret_p (insn))
412 {
413 ULONGEST orig_eip;
414 ULONGEST insn_len;
415
416 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
417
418 /* A signal trampoline system call changes the %eip, resuming
419 execution of the main program after the signal handler has
420 returned. That makes them like 'return' instructions; we
421 shouldn't relocate %eip.
422
423 But most system calls don't, and we do need to relocate %eip.
424
425 Our heuristic for distinguishing these cases: if stepping
426 over the system call instruction left control directly after
427 the instruction, the we relocate --- control almost certainly
428 doesn't belong in the displaced copy. Otherwise, we assume
429 the instruction has put control where it belongs, and leave
430 it unrelocated. Goodness help us if there are PC-relative
431 system calls. */
432 if (i386_syscall_p (insn, &insn_len)
433 && orig_eip != to + insn_len)
434 {
435 if (debug_displaced)
436 fprintf_unfiltered (gdb_stdlog,
437 "displaced: syscall changed %%eip; "
438 "not relocating\n");
439 }
440 else
441 {
442 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
443
444 /* If we have stepped over a breakpoint, set the %eip to
445 point at the breakpoint instruction itself.
446
447 (gdbarch_decr_pc_after_break was never something the core
448 of GDB should have been concerned with; arch-specific
449 code should be making PC values consistent before
450 presenting them to GDB.) */
451 if (i386_breakpoint_p (insn))
452 {
453 fprintf_unfiltered (gdb_stdlog,
454 "displaced: stepped breakpoint\n");
455 eip--;
456 }
457
458 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
459
460 if (debug_displaced)
461 fprintf_unfiltered (gdb_stdlog,
462 "displaced: "
463 "relocated %%eip from 0x%s to 0x%s\n",
464 paddr_nz (orig_eip), paddr_nz (eip));
465 }
466 }
467
468 /* If the instruction was PUSHFL, then the TF bit will be set in the
469 pushed value, and should be cleared. We'll leave this for later,
470 since GDB already messes up the TF flag when stepping over a
471 pushfl. */
472
473 /* If the instruction was a call, the return address now atop the
474 stack is the address following the copied instruction. We need
475 to make it the address following the original instruction. */
476 if (i386_call_p (insn))
477 {
478 ULONGEST esp;
479 ULONGEST retaddr;
480 const ULONGEST retaddr_len = 4;
481
482 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
483 retaddr = read_memory_unsigned_integer (esp, retaddr_len);
484 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
485 write_memory_unsigned_integer (esp, retaddr_len, retaddr);
486
487 if (debug_displaced)
488 fprintf_unfiltered (gdb_stdlog,
489 "displaced: relocated return addr at 0x%s "
490 "to 0x%s\n",
491 paddr_nz (esp),
492 paddr_nz (retaddr));
493 }
494}
495
496
fc338970 497\f
acd5c798
MK
498#ifdef I386_REGNO_TO_SYMMETRY
499#error "The Sequent Symmetry is no longer supported."
500#endif
c906108c 501
acd5c798
MK
502/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
503 and %esp "belong" to the calling function. Therefore these
504 registers should be saved if they're going to be modified. */
c906108c 505
acd5c798
MK
506/* The maximum number of saved registers. This should include all
507 registers mentioned above, and %eip. */
a3386186 508#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
509
510struct i386_frame_cache
c906108c 511{
acd5c798
MK
512 /* Base address. */
513 CORE_ADDR base;
772562f8 514 LONGEST sp_offset;
acd5c798
MK
515 CORE_ADDR pc;
516
fd13a04a
AC
517 /* Saved registers. */
518 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 519 CORE_ADDR saved_sp;
92dd43fa 520 int stack_align;
acd5c798
MK
521 int pc_in_eax;
522
523 /* Stack space reserved for local variables. */
524 long locals;
525};
526
527/* Allocate and initialize a frame cache. */
528
529static struct i386_frame_cache *
fd13a04a 530i386_alloc_frame_cache (void)
acd5c798
MK
531{
532 struct i386_frame_cache *cache;
533 int i;
534
535 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
536
537 /* Base address. */
538 cache->base = 0;
539 cache->sp_offset = -4;
540 cache->pc = 0;
541
fd13a04a
AC
542 /* Saved registers. We initialize these to -1 since zero is a valid
543 offset (that's where %ebp is supposed to be stored). */
544 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
545 cache->saved_regs[i] = -1;
acd5c798 546 cache->saved_sp = 0;
92dd43fa 547 cache->stack_align = 0;
acd5c798
MK
548 cache->pc_in_eax = 0;
549
550 /* Frameless until proven otherwise. */
551 cache->locals = -1;
552
553 return cache;
554}
c906108c 555
acd5c798
MK
556/* If the instruction at PC is a jump, return the address of its
557 target. Otherwise, return PC. */
c906108c 558
acd5c798
MK
559static CORE_ADDR
560i386_follow_jump (CORE_ADDR pc)
561{
63c0089f 562 gdb_byte op;
acd5c798
MK
563 long delta = 0;
564 int data16 = 0;
c906108c 565
8defab1a 566 target_read_memory (pc, &op, 1);
acd5c798 567 if (op == 0x66)
c906108c 568 {
c906108c 569 data16 = 1;
acd5c798 570 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
571 }
572
acd5c798 573 switch (op)
c906108c
SS
574 {
575 case 0xe9:
fc338970 576 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
577 if (data16)
578 {
acd5c798 579 delta = read_memory_integer (pc + 2, 2);
c906108c 580
fc338970
MK
581 /* Include the size of the jmp instruction (including the
582 0x66 prefix). */
acd5c798 583 delta += 4;
c906108c
SS
584 }
585 else
586 {
acd5c798 587 delta = read_memory_integer (pc + 1, 4);
c906108c 588
acd5c798
MK
589 /* Include the size of the jmp instruction. */
590 delta += 5;
c906108c
SS
591 }
592 break;
593 case 0xeb:
fc338970 594 /* Relative jump, disp8 (ignore data16). */
acd5c798 595 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 596
acd5c798 597 delta += data16 + 2;
c906108c
SS
598 break;
599 }
c906108c 600
acd5c798
MK
601 return pc + delta;
602}
fc338970 603
acd5c798
MK
604/* Check whether PC points at a prologue for a function returning a
605 structure or union. If so, it updates CACHE and returns the
606 address of the first instruction after the code sequence that
607 removes the "hidden" argument from the stack or CURRENT_PC,
608 whichever is smaller. Otherwise, return PC. */
c906108c 609
acd5c798
MK
610static CORE_ADDR
611i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
612 struct i386_frame_cache *cache)
c906108c 613{
acd5c798
MK
614 /* Functions that return a structure or union start with:
615
616 popl %eax 0x58
617 xchgl %eax, (%esp) 0x87 0x04 0x24
618 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
619
620 (the System V compiler puts out the second `xchg' instruction,
621 and the assembler doesn't try to optimize it, so the 'sib' form
622 gets generated). This sequence is used to get the address of the
623 return buffer for a function that returns a structure. */
63c0089f
MK
624 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
625 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
626 gdb_byte buf[4];
627 gdb_byte op;
c906108c 628
acd5c798
MK
629 if (current_pc <= pc)
630 return pc;
631
8defab1a 632 target_read_memory (pc, &op, 1);
c906108c 633
acd5c798
MK
634 if (op != 0x58) /* popl %eax */
635 return pc;
c906108c 636
8defab1a 637 target_read_memory (pc + 1, buf, 4);
acd5c798
MK
638 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
639 return pc;
c906108c 640
acd5c798 641 if (current_pc == pc)
c906108c 642 {
acd5c798
MK
643 cache->sp_offset += 4;
644 return current_pc;
c906108c
SS
645 }
646
acd5c798 647 if (current_pc == pc + 1)
c906108c 648 {
acd5c798
MK
649 cache->pc_in_eax = 1;
650 return current_pc;
651 }
652
653 if (buf[1] == proto1[1])
654 return pc + 4;
655 else
656 return pc + 5;
657}
658
659static CORE_ADDR
660i386_skip_probe (CORE_ADDR pc)
661{
662 /* A function may start with
fc338970 663
acd5c798
MK
664 pushl constant
665 call _probe
666 addl $4, %esp
fc338970 667
acd5c798
MK
668 followed by
669
670 pushl %ebp
fc338970 671
acd5c798 672 etc. */
63c0089f
MK
673 gdb_byte buf[8];
674 gdb_byte op;
fc338970 675
8defab1a 676 target_read_memory (pc, &op, 1);
acd5c798
MK
677
678 if (op == 0x68 || op == 0x6a)
679 {
680 int delta;
c906108c 681
acd5c798
MK
682 /* Skip past the `pushl' instruction; it has either a one-byte or a
683 four-byte operand, depending on the opcode. */
c906108c 684 if (op == 0x68)
acd5c798 685 delta = 5;
c906108c 686 else
acd5c798 687 delta = 2;
c906108c 688
acd5c798
MK
689 /* Read the following 8 bytes, which should be `call _probe' (6
690 bytes) followed by `addl $4,%esp' (2 bytes). */
691 read_memory (pc + delta, buf, sizeof (buf));
c906108c 692 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 693 pc += delta + sizeof (buf);
c906108c
SS
694 }
695
acd5c798
MK
696 return pc;
697}
698
92dd43fa
MK
699/* GCC 4.1 and later, can put code in the prologue to realign the
700 stack pointer. Check whether PC points to such code, and update
701 CACHE accordingly. Return the first instruction after the code
702 sequence or CURRENT_PC, whichever is smaller. If we don't
703 recognize the code, return PC. */
704
705static CORE_ADDR
706i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
707 struct i386_frame_cache *cache)
708{
92a56b20
JB
709 /* The register used by the compiler to perform the stack re-alignment
710 is, in order of preference, either %ecx, %edx, or %eax. GCC should
711 never use %ebx as it always treats it as callee-saved, whereas
712 the compiler can only use caller-saved registers. */
ade52156 713 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
714 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
715 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
716 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
717 };
ade52156
JB
718 static const gdb_byte insns_edx[10] = {
719 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
720 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
721 0xff, 0x72, 0xfc /* pushl -4(%edx) */
722 };
723 static const gdb_byte insns_eax[10] = {
724 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
725 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
726 0xff, 0x70, 0xfc /* pushl -4(%eax) */
727 };
92dd43fa
MK
728 gdb_byte buf[10];
729
730 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
731 || (memcmp (buf, insns_ecx, sizeof buf) != 0
732 && memcmp (buf, insns_edx, sizeof buf) != 0
733 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
734 return pc;
735
736 if (current_pc > pc + 4)
737 cache->stack_align = 1;
738
739 return min (pc + 10, current_pc);
740}
741
37bdc87e 742/* Maximum instruction length we need to handle. */
237fc4c9 743#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
744
745/* Instruction description. */
746struct i386_insn
747{
748 size_t len;
237fc4c9
PA
749 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
750 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
751};
752
753/* Search for the instruction at PC in the list SKIP_INSNS. Return
754 the first instruction description that matches. Otherwise, return
755 NULL. */
756
757static struct i386_insn *
758i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
759{
760 struct i386_insn *insn;
63c0089f 761 gdb_byte op;
37bdc87e 762
8defab1a 763 target_read_memory (pc, &op, 1);
37bdc87e
MK
764
765 for (insn = skip_insns; insn->len > 0; insn++)
766 {
767 if ((op & insn->mask[0]) == insn->insn[0])
768 {
237fc4c9 769 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 770 int insn_matched = 1;
37bdc87e
MK
771 size_t i;
772
773 gdb_assert (insn->len > 1);
237fc4c9 774 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 775
8defab1a 776 target_read_memory (pc + 1, buf, insn->len - 1);
37bdc87e
MK
777 for (i = 1; i < insn->len; i++)
778 {
779 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 780 insn_matched = 0;
37bdc87e 781 }
613e8135
MK
782
783 if (insn_matched)
784 return insn;
37bdc87e
MK
785 }
786 }
787
788 return NULL;
789}
790
791/* Some special instructions that might be migrated by GCC into the
792 part of the prologue that sets up the new stack frame. Because the
793 stack frame hasn't been setup yet, no registers have been saved
794 yet, and only the scratch registers %eax, %ecx and %edx can be
795 touched. */
796
797struct i386_insn i386_frame_setup_skip_insns[] =
798{
799 /* Check for `movb imm8, r' and `movl imm32, r'.
800
801 ??? Should we handle 16-bit operand-sizes here? */
802
803 /* `movb imm8, %al' and `movb imm8, %ah' */
804 /* `movb imm8, %cl' and `movb imm8, %ch' */
805 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
806 /* `movb imm8, %dl' and `movb imm8, %dh' */
807 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
808 /* `movl imm32, %eax' and `movl imm32, %ecx' */
809 { 5, { 0xb8 }, { 0xfe } },
810 /* `movl imm32, %edx' */
811 { 5, { 0xba }, { 0xff } },
812
813 /* Check for `mov imm32, r32'. Note that there is an alternative
814 encoding for `mov m32, %eax'.
815
816 ??? Should we handle SIB adressing here?
817 ??? Should we handle 16-bit operand-sizes here? */
818
819 /* `movl m32, %eax' */
820 { 5, { 0xa1 }, { 0xff } },
821 /* `movl m32, %eax' and `mov; m32, %ecx' */
822 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
823 /* `movl m32, %edx' */
824 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
825
826 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
827 Because of the symmetry, there are actually two ways to encode
828 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
829 opcode bytes 0x31 and 0x33 for `xorl'. */
830
831 /* `subl %eax, %eax' */
832 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
833 /* `subl %ecx, %ecx' */
834 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
835 /* `subl %edx, %edx' */
836 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
837 /* `xorl %eax, %eax' */
838 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
839 /* `xorl %ecx, %ecx' */
840 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
841 /* `xorl %edx, %edx' */
842 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
843 { 0 }
844};
845
e11481da
PM
846
847/* Check whether PC points to a no-op instruction. */
848static CORE_ADDR
849i386_skip_noop (CORE_ADDR pc)
850{
851 gdb_byte op;
852 int check = 1;
853
8defab1a 854 target_read_memory (pc, &op, 1);
e11481da
PM
855
856 while (check)
857 {
858 check = 0;
859 /* Ignore `nop' instruction. */
860 if (op == 0x90)
861 {
862 pc += 1;
8defab1a 863 target_read_memory (pc, &op, 1);
e11481da
PM
864 check = 1;
865 }
866 /* Ignore no-op instruction `mov %edi, %edi'.
867 Microsoft system dlls often start with
868 a `mov %edi,%edi' instruction.
869 The 5 bytes before the function start are
870 filled with `nop' instructions.
871 This pattern can be used for hot-patching:
872 The `mov %edi, %edi' instruction can be replaced by a
873 near jump to the location of the 5 `nop' instructions
874 which can be replaced by a 32-bit jump to anywhere
875 in the 32-bit address space. */
876
877 else if (op == 0x8b)
878 {
8defab1a 879 target_read_memory (pc + 1, &op, 1);
e11481da
PM
880 if (op == 0xff)
881 {
882 pc += 2;
8defab1a 883 target_read_memory (pc, &op, 1);
e11481da
PM
884 check = 1;
885 }
886 }
887 }
888 return pc;
889}
890
acd5c798
MK
891/* Check whether PC points at a code that sets up a new stack frame.
892 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
893 instruction after the sequence that sets up the frame or LIMIT,
894 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
895
896static CORE_ADDR
37bdc87e 897i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
898 struct i386_frame_cache *cache)
899{
37bdc87e 900 struct i386_insn *insn;
63c0089f 901 gdb_byte op;
26604a34 902 int skip = 0;
acd5c798 903
37bdc87e
MK
904 if (limit <= pc)
905 return limit;
acd5c798 906
8defab1a 907 target_read_memory (pc, &op, 1);
acd5c798 908
c906108c 909 if (op == 0x55) /* pushl %ebp */
c5aa993b 910 {
acd5c798
MK
911 /* Take into account that we've executed the `pushl %ebp' that
912 starts this instruction sequence. */
fd13a04a 913 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 914 cache->sp_offset += 4;
37bdc87e 915 pc++;
acd5c798
MK
916
917 /* If that's all, return now. */
37bdc87e
MK
918 if (limit <= pc)
919 return limit;
26604a34 920
b4632131 921 /* Check for some special instructions that might be migrated by
37bdc87e
MK
922 GCC into the prologue and skip them. At this point in the
923 prologue, code should only touch the scratch registers %eax,
924 %ecx and %edx, so while the number of posibilities is sheer,
925 it is limited.
5daa5b4e 926
26604a34
MK
927 Make sure we only skip these instructions if we later see the
928 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 929 while (pc + skip < limit)
26604a34 930 {
37bdc87e
MK
931 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
932 if (insn == NULL)
933 break;
b4632131 934
37bdc87e 935 skip += insn->len;
26604a34
MK
936 }
937
37bdc87e
MK
938 /* If that's all, return now. */
939 if (limit <= pc + skip)
940 return limit;
941
8defab1a 942 target_read_memory (pc + skip, &op, 1);
37bdc87e 943
26604a34 944 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 945 switch (op)
c906108c
SS
946 {
947 case 0x8b:
37bdc87e
MK
948 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
949 return pc;
c906108c
SS
950 break;
951 case 0x89:
37bdc87e
MK
952 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
953 return pc;
c906108c
SS
954 break;
955 default:
37bdc87e 956 return pc;
c906108c 957 }
acd5c798 958
26604a34
MK
959 /* OK, we actually have a frame. We just don't know how large
960 it is yet. Set its size to zero. We'll adjust it if
961 necessary. We also now commit to skipping the special
962 instructions mentioned before. */
acd5c798 963 cache->locals = 0;
37bdc87e 964 pc += (skip + 2);
acd5c798
MK
965
966 /* If that's all, return now. */
37bdc87e
MK
967 if (limit <= pc)
968 return limit;
acd5c798 969
fc338970
MK
970 /* Check for stack adjustment
971
acd5c798 972 subl $XXX, %esp
fc338970 973
fd35795f 974 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 975 reg, so we don't have to worry about a data16 prefix. */
8defab1a 976 target_read_memory (pc, &op, 1);
c906108c
SS
977 if (op == 0x83)
978 {
fd35795f 979 /* `subl' with 8-bit immediate. */
37bdc87e 980 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 981 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 982 return pc;
acd5c798 983
37bdc87e
MK
984 /* `subl' with signed 8-bit immediate (though it wouldn't
985 make sense to be negative). */
986 cache->locals = read_memory_integer (pc + 2, 1);
987 return pc + 3;
c906108c
SS
988 }
989 else if (op == 0x81)
990 {
fd35795f 991 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 992 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 993 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 994 return pc;
acd5c798 995
fd35795f 996 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
997 cache->locals = read_memory_integer (pc + 2, 4);
998 return pc + 6;
c906108c
SS
999 }
1000 else
1001 {
acd5c798 1002 /* Some instruction other than `subl'. */
37bdc87e 1003 return pc;
c906108c
SS
1004 }
1005 }
37bdc87e 1006 else if (op == 0xc8) /* enter */
c906108c 1007 {
acd5c798
MK
1008 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
1009 return pc + 4;
c906108c 1010 }
21d0e8a4 1011
acd5c798 1012 return pc;
21d0e8a4
MK
1013}
1014
acd5c798
MK
1015/* Check whether PC points at code that saves registers on the stack.
1016 If so, it updates CACHE and returns the address of the first
1017 instruction after the register saves or CURRENT_PC, whichever is
1018 smaller. Otherwise, return PC. */
6bff26de
MK
1019
1020static CORE_ADDR
acd5c798
MK
1021i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1022 struct i386_frame_cache *cache)
6bff26de 1023{
99ab4326 1024 CORE_ADDR offset = 0;
63c0089f 1025 gdb_byte op;
99ab4326 1026 int i;
c0d1d883 1027
99ab4326
MK
1028 if (cache->locals > 0)
1029 offset -= cache->locals;
1030 for (i = 0; i < 8 && pc < current_pc; i++)
1031 {
8defab1a 1032 target_read_memory (pc, &op, 1);
99ab4326
MK
1033 if (op < 0x50 || op > 0x57)
1034 break;
0d17c81d 1035
99ab4326
MK
1036 offset -= 4;
1037 cache->saved_regs[op - 0x50] = offset;
1038 cache->sp_offset += 4;
1039 pc++;
6bff26de
MK
1040 }
1041
acd5c798 1042 return pc;
22797942
AC
1043}
1044
acd5c798
MK
1045/* Do a full analysis of the prologue at PC and update CACHE
1046 accordingly. Bail out early if CURRENT_PC is reached. Return the
1047 address where the analysis stopped.
ed84f6c1 1048
fc338970
MK
1049 We handle these cases:
1050
1051 The startup sequence can be at the start of the function, or the
1052 function can start with a branch to startup code at the end.
1053
1054 %ebp can be set up with either the 'enter' instruction, or "pushl
1055 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1056 once used in the System V compiler).
1057
1058 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1059 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1060 16-bit unsigned argument for space to allocate, and the 'addl'
1061 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1062
1063 Next, the registers used by this function are pushed. With the
1064 System V compiler they will always be in the order: %edi, %esi,
1065 %ebx (and sometimes a harmless bug causes it to also save but not
1066 restore %eax); however, the code below is willing to see the pushes
1067 in any order, and will handle up to 8 of them.
1068
1069 If the setup sequence is at the end of the function, then the next
1070 instruction will be a branch back to the start. */
c906108c 1071
acd5c798
MK
1072static CORE_ADDR
1073i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
1074 struct i386_frame_cache *cache)
c906108c 1075{
e11481da 1076 pc = i386_skip_noop (pc);
acd5c798
MK
1077 pc = i386_follow_jump (pc);
1078 pc = i386_analyze_struct_return (pc, current_pc, cache);
1079 pc = i386_skip_probe (pc);
92dd43fa 1080 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
1081 pc = i386_analyze_frame_setup (pc, current_pc, cache);
1082 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1083}
1084
fc338970 1085/* Return PC of first real instruction. */
c906108c 1086
3a1e71e3 1087static CORE_ADDR
6093d2eb 1088i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1089{
63c0089f 1090 static gdb_byte pic_pat[6] =
acd5c798
MK
1091 {
1092 0xe8, 0, 0, 0, 0, /* call 0x0 */
1093 0x5b, /* popl %ebx */
c5aa993b 1094 };
acd5c798
MK
1095 struct i386_frame_cache cache;
1096 CORE_ADDR pc;
63c0089f 1097 gdb_byte op;
acd5c798 1098 int i;
c5aa993b 1099
acd5c798
MK
1100 cache.locals = -1;
1101 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
1102 if (cache.locals < 0)
1103 return start_pc;
c5aa993b 1104
acd5c798 1105 /* Found valid frame setup. */
c906108c 1106
fc338970
MK
1107 /* The native cc on SVR4 in -K PIC mode inserts the following code
1108 to get the address of the global offset table (GOT) into register
acd5c798
MK
1109 %ebx:
1110
fc338970
MK
1111 call 0x0
1112 popl %ebx
1113 movl %ebx,x(%ebp) (optional)
1114 addl y,%ebx
1115
c906108c
SS
1116 This code is with the rest of the prologue (at the end of the
1117 function), so we have to skip it to get to the first real
1118 instruction at the start of the function. */
c5aa993b 1119
c906108c
SS
1120 for (i = 0; i < 6; i++)
1121 {
8defab1a 1122 target_read_memory (pc + i, &op, 1);
c5aa993b 1123 if (pic_pat[i] != op)
c906108c
SS
1124 break;
1125 }
1126 if (i == 6)
1127 {
acd5c798
MK
1128 int delta = 6;
1129
8defab1a 1130 target_read_memory (pc + delta, &op, 1);
c906108c 1131
c5aa993b 1132 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1133 {
acd5c798
MK
1134 op = read_memory_unsigned_integer (pc + delta + 1, 1);
1135
fc338970 1136 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1137 delta += 3;
fc338970 1138 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1139 delta += 6;
fc338970 1140 else /* Unexpected instruction. */
acd5c798
MK
1141 delta = 0;
1142
8defab1a 1143 target_read_memory (pc + delta, &op, 1);
c906108c 1144 }
acd5c798 1145
c5aa993b 1146 /* addl y,%ebx */
acd5c798 1147 if (delta > 0 && op == 0x81
d5d6fca5 1148 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 1149 {
acd5c798 1150 pc += delta + 6;
c906108c
SS
1151 }
1152 }
c5aa993b 1153
e63bbc88
MK
1154 /* If the function starts with a branch (to startup code at the end)
1155 the last instruction should bring us back to the first
1156 instruction of the real code. */
1157 if (i386_follow_jump (start_pc) != start_pc)
1158 pc = i386_follow_jump (pc);
1159
1160 return pc;
c906108c
SS
1161}
1162
acd5c798 1163/* This function is 64-bit safe. */
93924b6b 1164
acd5c798
MK
1165static CORE_ADDR
1166i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1167{
63c0089f 1168 gdb_byte buf[8];
acd5c798 1169
875f8d0e 1170 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 1171 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 1172}
acd5c798 1173\f
93924b6b 1174
acd5c798 1175/* Normal frames. */
c5aa993b 1176
acd5c798 1177static struct i386_frame_cache *
10458914 1178i386_frame_cache (struct frame_info *this_frame, void **this_cache)
a7769679 1179{
acd5c798 1180 struct i386_frame_cache *cache;
63c0089f 1181 gdb_byte buf[4];
acd5c798
MK
1182 int i;
1183
1184 if (*this_cache)
1185 return *this_cache;
1186
fd13a04a 1187 cache = i386_alloc_frame_cache ();
acd5c798
MK
1188 *this_cache = cache;
1189
1190 /* In principle, for normal frames, %ebp holds the frame pointer,
1191 which holds the base address for the current stack frame.
1192 However, for functions that don't need it, the frame pointer is
1193 optional. For these "frameless" functions the frame pointer is
1194 actually the frame pointer of the calling frame. Signal
1195 trampolines are just a special case of a "frameless" function.
1196 They (usually) share their frame pointer with the frame that was
1197 in progress when the signal occurred. */
1198
10458914 1199 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
acd5c798
MK
1200 cache->base = extract_unsigned_integer (buf, 4);
1201 if (cache->base == 0)
1202 return cache;
1203
1204 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1205 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1206
10458914 1207 cache->pc = get_frame_func (this_frame);
acd5c798 1208 if (cache->pc != 0)
10458914 1209 i386_analyze_prologue (cache->pc, get_frame_pc (this_frame), cache);
acd5c798 1210
92dd43fa
MK
1211 if (cache->stack_align)
1212 {
1213 /* Saved stack pointer has been saved in %ecx. */
10458914 1214 get_frame_register (this_frame, I386_ECX_REGNUM, buf);
92dd43fa
MK
1215 cache->saved_sp = extract_unsigned_integer(buf, 4);
1216 }
1217
acd5c798
MK
1218 if (cache->locals < 0)
1219 {
1220 /* We didn't find a valid frame, which means that CACHE->base
1221 currently holds the frame pointer for our calling frame. If
1222 we're at the start of a function, or somewhere half-way its
1223 prologue, the function's frame probably hasn't been fully
1224 setup yet. Try to reconstruct the base address for the stack
1225 frame by looking at the stack pointer. For truly "frameless"
1226 functions this might work too. */
1227
92dd43fa
MK
1228 if (cache->stack_align)
1229 {
1230 /* We're halfway aligning the stack. */
1231 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1232 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1233
1234 /* This will be added back below. */
1235 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1236 }
1237 else
1238 {
10458914 1239 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
92dd43fa
MK
1240 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1241 }
acd5c798
MK
1242 }
1243
1244 /* Now that we have the base address for the stack frame we can
1245 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1246 if (cache->saved_sp == 0)
1247 cache->saved_sp = cache->base + 8;
a7769679 1248
acd5c798
MK
1249 /* Adjust all the saved registers such that they contain addresses
1250 instead of offsets. */
1251 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1252 if (cache->saved_regs[i] != -1)
1253 cache->saved_regs[i] += cache->base;
acd5c798
MK
1254
1255 return cache;
a7769679
MK
1256}
1257
3a1e71e3 1258static void
10458914 1259i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1260 struct frame_id *this_id)
c906108c 1261{
10458914 1262 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1263
1264 /* This marks the outermost frame. */
1265 if (cache->base == 0)
1266 return;
1267
3e210248 1268 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1269 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1270}
1271
10458914
DJ
1272static struct value *
1273i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1274 int regnum)
acd5c798 1275{
10458914 1276 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1277
1278 gdb_assert (regnum >= 0);
1279
1280 /* The System V ABI says that:
1281
1282 "The flags register contains the system flags, such as the
1283 direction flag and the carry flag. The direction flag must be
1284 set to the forward (that is, zero) direction before entry and
1285 upon exit from a function. Other user flags have no specified
1286 role in the standard calling sequence and are not preserved."
1287
1288 To guarantee the "upon exit" part of that statement we fake a
1289 saved flags register that has its direction flag cleared.
1290
1291 Note that GCC doesn't seem to rely on the fact that the direction
1292 flag is cleared after a function return; it always explicitly
1293 clears the flag before operations where it matters.
1294
1295 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1296 right thing to do. The way we fake the flags register here makes
1297 it impossible to change it. */
1298
1299 if (regnum == I386_EFLAGS_REGNUM)
1300 {
10458914 1301 ULONGEST val;
c5aa993b 1302
10458914
DJ
1303 val = get_frame_register_unsigned (this_frame, regnum);
1304 val &= ~(1 << 10);
1305 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1306 }
1211c4e4 1307
acd5c798 1308 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1309 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798
MK
1310
1311 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
10458914 1312 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
acd5c798 1313
fd13a04a 1314 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1315 return frame_unwind_got_memory (this_frame, regnum,
1316 cache->saved_regs[regnum]);
fd13a04a 1317
10458914 1318 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1319}
1320
1321static const struct frame_unwind i386_frame_unwind =
1322{
1323 NORMAL_FRAME,
1324 i386_frame_this_id,
10458914
DJ
1325 i386_frame_prev_register,
1326 NULL,
1327 default_frame_sniffer
acd5c798 1328};
acd5c798
MK
1329\f
1330
1331/* Signal trampolines. */
1332
1333static struct i386_frame_cache *
10458914 1334i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798
MK
1335{
1336 struct i386_frame_cache *cache;
10458914 1337 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1338 CORE_ADDR addr;
63c0089f 1339 gdb_byte buf[4];
acd5c798
MK
1340
1341 if (*this_cache)
1342 return *this_cache;
1343
fd13a04a 1344 cache = i386_alloc_frame_cache ();
acd5c798 1345
10458914 1346 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798
MK
1347 cache->base = extract_unsigned_integer (buf, 4) - 4;
1348
10458914 1349 addr = tdep->sigcontext_addr (this_frame);
a3386186
MK
1350 if (tdep->sc_reg_offset)
1351 {
1352 int i;
1353
1354 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1355
1356 for (i = 0; i < tdep->sc_num_regs; i++)
1357 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1358 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1359 }
1360 else
1361 {
fd13a04a
AC
1362 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1363 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1364 }
acd5c798
MK
1365
1366 *this_cache = cache;
1367 return cache;
1368}
1369
1370static void
10458914 1371i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
1372 struct frame_id *this_id)
1373{
1374 struct i386_frame_cache *cache =
10458914 1375 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1376
3e210248 1377 /* See the end of i386_push_dummy_call. */
10458914 1378 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
1379}
1380
10458914
DJ
1381static struct value *
1382i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
1383 void **this_cache, int regnum)
acd5c798
MK
1384{
1385 /* Make sure we've initialized the cache. */
10458914 1386 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 1387
10458914 1388 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 1389}
c0d1d883 1390
10458914
DJ
1391static int
1392i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
1393 struct frame_info *this_frame,
1394 void **this_prologue_cache)
acd5c798 1395{
10458914 1396 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 1397
911bc6ee
MK
1398 /* We shouldn't even bother if we don't have a sigcontext_addr
1399 handler. */
1400 if (tdep->sigcontext_addr == NULL)
10458914 1401 return 0;
1c3545ae 1402
911bc6ee
MK
1403 if (tdep->sigtramp_p != NULL)
1404 {
10458914
DJ
1405 if (tdep->sigtramp_p (this_frame))
1406 return 1;
911bc6ee
MK
1407 }
1408
1409 if (tdep->sigtramp_start != 0)
1410 {
10458914 1411 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
1412
1413 gdb_assert (tdep->sigtramp_end != 0);
1414 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 1415 return 1;
911bc6ee 1416 }
acd5c798 1417
10458914 1418 return 0;
acd5c798 1419}
10458914
DJ
1420
1421static const struct frame_unwind i386_sigtramp_frame_unwind =
1422{
1423 SIGTRAMP_FRAME,
1424 i386_sigtramp_frame_this_id,
1425 i386_sigtramp_frame_prev_register,
1426 NULL,
1427 i386_sigtramp_frame_sniffer
1428};
acd5c798
MK
1429\f
1430
1431static CORE_ADDR
10458914 1432i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 1433{
10458914 1434 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1435
1436 return cache->base;
1437}
1438
1439static const struct frame_base i386_frame_base =
1440{
1441 &i386_frame_unwind,
1442 i386_frame_base_address,
1443 i386_frame_base_address,
1444 i386_frame_base_address
1445};
1446
acd5c798 1447static struct frame_id
10458914 1448i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 1449{
acd5c798
MK
1450 CORE_ADDR fp;
1451
10458914 1452 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 1453
3e210248 1454 /* See the end of i386_push_dummy_call. */
10458914 1455 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 1456}
fc338970 1457\f
c906108c 1458
fc338970
MK
1459/* Figure out where the longjmp will land. Slurp the args out of the
1460 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1461 structure from which we extract the address that we will land at.
28bcfd30 1462 This address is copied into PC. This routine returns non-zero on
436675d3 1463 success. */
c906108c 1464
8201327c 1465static int
60ade65d 1466i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1467{
436675d3 1468 gdb_byte buf[4];
c906108c 1469 CORE_ADDR sp, jb_addr;
20a6ec49
MD
1470 struct gdbarch *gdbarch = get_frame_arch (frame);
1471 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 1472
8201327c
MK
1473 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1474 longjmp will land. */
1475 if (jb_pc_offset == -1)
c906108c
SS
1476 return 0;
1477
436675d3
PA
1478 get_frame_register (frame, I386_ESP_REGNUM, buf);
1479 sp = extract_unsigned_integer (buf, 4);
1480 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
1481 return 0;
1482
436675d3
PA
1483 jb_addr = extract_unsigned_integer (buf, 4);
1484 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 1485 return 0;
c906108c 1486
436675d3 1487 *pc = extract_unsigned_integer (buf, 4);
c906108c
SS
1488 return 1;
1489}
fc338970 1490\f
c906108c 1491
3a1e71e3 1492static CORE_ADDR
7d9b040b 1493i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1494 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1495 struct value **args, CORE_ADDR sp, int struct_return,
1496 CORE_ADDR struct_addr)
22f8ba57 1497{
63c0089f 1498 gdb_byte buf[4];
acd5c798
MK
1499 int i;
1500
1501 /* Push arguments in reverse order. */
1502 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1503 {
4754a64e 1504 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1505
1506 /* The System V ABI says that:
1507
1508 "An argument's size is increased, if necessary, to make it a
1509 multiple of [32-bit] words. This may require tail padding,
1510 depending on the size of the argument."
1511
cf913f37 1512 This makes sure the stack stays word-aligned. */
acd5c798 1513 sp -= (len + 3) & ~3;
46615f07 1514 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1515 }
22f8ba57 1516
acd5c798
MK
1517 /* Push value address. */
1518 if (struct_return)
1519 {
22f8ba57 1520 sp -= 4;
fbd9dcd3 1521 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1522 write_memory (sp, buf, 4);
1523 }
1524
acd5c798
MK
1525 /* Store return address. */
1526 sp -= 4;
6a65450a 1527 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1528 write_memory (sp, buf, 4);
1529
1530 /* Finally, update the stack pointer... */
1531 store_unsigned_integer (buf, 4, sp);
1532 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1533
1534 /* ...and fake a frame pointer. */
1535 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1536
3e210248
AC
1537 /* MarkK wrote: This "+ 8" is all over the place:
1538 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 1539 i386_dummy_id). It's there, since all frame unwinders for
3e210248 1540 a given target have to agree (within a certain margin) on the
fd35795f 1541 definition of the stack address of a frame. Otherwise
3e210248
AC
1542 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1543 stack address *before* the function call as a frame's CFA. On
1544 the i386, when %ebp is used as a frame pointer, the offset
1545 between the contents %ebp and the CFA as defined by GCC. */
1546 return sp + 8;
22f8ba57
MK
1547}
1548
1a309862
MK
1549/* These registers are used for returning integers (and on some
1550 targets also for returning `struct' and `union' values when their
ef9dff19 1551 size and alignment match an integer type). */
acd5c798
MK
1552#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1553#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1554
c5e656c1
MK
1555/* Read, for architecture GDBARCH, a function return value of TYPE
1556 from REGCACHE, and copy that into VALBUF. */
1a309862 1557
3a1e71e3 1558static void
c5e656c1 1559i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1560 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1561{
c5e656c1 1562 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1563 int len = TYPE_LENGTH (type);
63c0089f 1564 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1565
1e8d0a7b 1566 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1567 {
5716833c 1568 if (tdep->st0_regnum < 0)
1a309862 1569 {
8a3fe4f8 1570 warning (_("Cannot find floating-point return value."));
1a309862 1571 memset (valbuf, 0, len);
ef9dff19 1572 return;
1a309862
MK
1573 }
1574
c6ba6f0d
MK
1575 /* Floating-point return values can be found in %st(0). Convert
1576 its contents to the desired type. This is probably not
1577 exactly how it would happen on the target itself, but it is
1578 the best we can do. */
acd5c798 1579 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1580 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1581 }
1582 else
c5aa993b 1583 {
875f8d0e
UW
1584 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1585 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1586
1587 if (len <= low_size)
00f8375e 1588 {
0818c12a 1589 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1590 memcpy (valbuf, buf, len);
1591 }
d4f3574e
SS
1592 else if (len <= (low_size + high_size))
1593 {
0818c12a 1594 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1595 memcpy (valbuf, buf, low_size);
0818c12a 1596 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1597 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1598 }
1599 else
8e65ff28 1600 internal_error (__FILE__, __LINE__,
e2e0b3e5 1601 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1602 }
1603}
1604
c5e656c1
MK
1605/* Write, for architecture GDBARCH, a function return value of TYPE
1606 from VALBUF into REGCACHE. */
ef9dff19 1607
3a1e71e3 1608static void
c5e656c1 1609i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1610 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1611{
c5e656c1 1612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1613 int len = TYPE_LENGTH (type);
1614
1e8d0a7b 1615 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1616 {
3d7f4f49 1617 ULONGEST fstat;
63c0089f 1618 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1619
5716833c 1620 if (tdep->st0_regnum < 0)
ef9dff19 1621 {
8a3fe4f8 1622 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1623 return;
1624 }
1625
635b0cc1
MK
1626 /* Returning floating-point values is a bit tricky. Apart from
1627 storing the return value in %st(0), we have to simulate the
1628 state of the FPU at function return point. */
1629
c6ba6f0d
MK
1630 /* Convert the value found in VALBUF to the extended
1631 floating-point format used by the FPU. This is probably
1632 not exactly how it would happen on the target itself, but
1633 it is the best we can do. */
1634 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1635 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1636
635b0cc1
MK
1637 /* Set the top of the floating-point register stack to 7. The
1638 actual value doesn't really matter, but 7 is what a normal
1639 function return would end up with if the program started out
1640 with a freshly initialized FPU. */
20a6ec49 1641 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 1642 fstat |= (7 << 11);
20a6ec49 1643 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 1644
635b0cc1
MK
1645 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1646 the floating-point register stack to 7, the appropriate value
1647 for the tag word is 0x3fff. */
20a6ec49 1648 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
1649 }
1650 else
1651 {
875f8d0e
UW
1652 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1653 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1654
1655 if (len <= low_size)
3d7f4f49 1656 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1657 else if (len <= (low_size + high_size))
1658 {
3d7f4f49
MK
1659 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1660 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1661 len - low_size, valbuf + low_size);
ef9dff19
MK
1662 }
1663 else
8e65ff28 1664 internal_error (__FILE__, __LINE__,
e2e0b3e5 1665 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
1666 }
1667}
fc338970 1668\f
ef9dff19 1669
8201327c
MK
1670/* This is the variable that is set with "set struct-convention", and
1671 its legitimate values. */
1672static const char default_struct_convention[] = "default";
1673static const char pcc_struct_convention[] = "pcc";
1674static const char reg_struct_convention[] = "reg";
1675static const char *valid_conventions[] =
1676{
1677 default_struct_convention,
1678 pcc_struct_convention,
1679 reg_struct_convention,
1680 NULL
1681};
1682static const char *struct_convention = default_struct_convention;
1683
0e4377e1
JB
1684/* Return non-zero if TYPE, which is assumed to be a structure,
1685 a union type, or an array type, should be returned in registers
1686 for architecture GDBARCH. */
c5e656c1 1687
8201327c 1688static int
c5e656c1 1689i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1690{
c5e656c1
MK
1691 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1692 enum type_code code = TYPE_CODE (type);
1693 int len = TYPE_LENGTH (type);
8201327c 1694
0e4377e1
JB
1695 gdb_assert (code == TYPE_CODE_STRUCT
1696 || code == TYPE_CODE_UNION
1697 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1698
1699 if (struct_convention == pcc_struct_convention
1700 || (struct_convention == default_struct_convention
1701 && tdep->struct_return == pcc_struct_return))
1702 return 0;
1703
9edde48e
MK
1704 /* Structures consisting of a single `float', `double' or 'long
1705 double' member are returned in %st(0). */
1706 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1707 {
1708 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1709 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1710 return (len == 4 || len == 8 || len == 12);
1711 }
1712
c5e656c1
MK
1713 return (len == 1 || len == 2 || len == 4 || len == 8);
1714}
1715
1716/* Determine, for architecture GDBARCH, how a return value of TYPE
1717 should be returned. If it is supposed to be returned in registers,
1718 and READBUF is non-zero, read the appropriate value from REGCACHE,
1719 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1720 from WRITEBUF into REGCACHE. */
1721
1722static enum return_value_convention
c055b101
CV
1723i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
1724 struct type *type, struct regcache *regcache,
1725 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
1726{
1727 enum type_code code = TYPE_CODE (type);
1728
5daa78cc
TJB
1729 if (((code == TYPE_CODE_STRUCT
1730 || code == TYPE_CODE_UNION
1731 || code == TYPE_CODE_ARRAY)
1732 && !i386_reg_struct_return_p (gdbarch, type))
1733 /* 128-bit decimal float uses the struct return convention. */
1734 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1735 {
1736 /* The System V ABI says that:
1737
1738 "A function that returns a structure or union also sets %eax
1739 to the value of the original address of the caller's area
1740 before it returns. Thus when the caller receives control
1741 again, the address of the returned object resides in register
1742 %eax and can be used to access the object."
1743
1744 So the ABI guarantees that we can always find the return
1745 value just after the function has returned. */
1746
0e4377e1
JB
1747 /* Note that the ABI doesn't mention functions returning arrays,
1748 which is something possible in certain languages such as Ada.
1749 In this case, the value is returned as if it was wrapped in
1750 a record, so the convention applied to records also applies
1751 to arrays. */
1752
31db7b6c
MK
1753 if (readbuf)
1754 {
1755 ULONGEST addr;
1756
1757 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1758 read_memory (addr, readbuf, TYPE_LENGTH (type));
1759 }
1760
1761 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1762 }
c5e656c1
MK
1763
1764 /* This special case is for structures consisting of a single
9edde48e
MK
1765 `float', `double' or 'long double' member. These structures are
1766 returned in %st(0). For these structures, we call ourselves
1767 recursively, changing TYPE into the type of the first member of
1768 the structure. Since that should work for all structures that
1769 have only one member, we don't bother to check the member's type
1770 here. */
c5e656c1
MK
1771 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1772 {
1773 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
1774 return i386_return_value (gdbarch, func_type, type, regcache,
1775 readbuf, writebuf);
c5e656c1
MK
1776 }
1777
1778 if (readbuf)
1779 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1780 if (writebuf)
1781 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1782
c5e656c1 1783 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1784}
1785\f
1786
5ae96ec1
MK
1787/* Type for %eflags. */
1788struct type *i386_eflags_type;
1789
794ac428 1790/* Type for %mxcsr. */
878d9193 1791struct type *i386_mxcsr_type;
5ae96ec1
MK
1792
1793/* Construct types for ISA-specific registers. */
1794static void
1795i386_init_types (void)
1796{
1797 struct type *type;
1798
1799 type = init_flags_type ("builtin_type_i386_eflags", 4);
1800 append_flags_type_flag (type, 0, "CF");
1801 append_flags_type_flag (type, 1, NULL);
1802 append_flags_type_flag (type, 2, "PF");
1803 append_flags_type_flag (type, 4, "AF");
1804 append_flags_type_flag (type, 6, "ZF");
1805 append_flags_type_flag (type, 7, "SF");
1806 append_flags_type_flag (type, 8, "TF");
1807 append_flags_type_flag (type, 9, "IF");
1808 append_flags_type_flag (type, 10, "DF");
1809 append_flags_type_flag (type, 11, "OF");
1810 append_flags_type_flag (type, 14, "NT");
1811 append_flags_type_flag (type, 16, "RF");
1812 append_flags_type_flag (type, 17, "VM");
1813 append_flags_type_flag (type, 18, "AC");
1814 append_flags_type_flag (type, 19, "VIF");
1815 append_flags_type_flag (type, 20, "VIP");
1816 append_flags_type_flag (type, 21, "ID");
1817 i386_eflags_type = type;
21b4b2f2 1818
878d9193
MK
1819 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1820 append_flags_type_flag (type, 0, "IE");
1821 append_flags_type_flag (type, 1, "DE");
1822 append_flags_type_flag (type, 2, "ZE");
1823 append_flags_type_flag (type, 3, "OE");
1824 append_flags_type_flag (type, 4, "UE");
1825 append_flags_type_flag (type, 5, "PE");
1826 append_flags_type_flag (type, 6, "DAZ");
1827 append_flags_type_flag (type, 7, "IM");
1828 append_flags_type_flag (type, 8, "DM");
1829 append_flags_type_flag (type, 9, "ZM");
1830 append_flags_type_flag (type, 10, "OM");
1831 append_flags_type_flag (type, 11, "UM");
1832 append_flags_type_flag (type, 12, "PM");
1833 append_flags_type_flag (type, 15, "FZ");
1834 i386_mxcsr_type = type;
21b4b2f2
JB
1835}
1836
794ac428
UW
1837/* Construct vector type for MMX registers. */
1838struct type *
1839i386_mmx_type (struct gdbarch *gdbarch)
1840{
1841 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1842
1843 if (!tdep->i386_mmx_type)
1844 {
1845 /* The type we're building is this: */
1846#if 0
1847 union __gdb_builtin_type_vec64i
1848 {
1849 int64_t uint64;
1850 int32_t v2_int32[2];
1851 int16_t v4_int16[4];
1852 int8_t v8_int8[8];
1853 };
1854#endif
1855
1856 struct type *t;
1857
1858 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1859 append_composite_type_field (t, "uint64", builtin_type_int64);
1860 append_composite_type_field (t, "v2_int32",
1861 init_vector_type (builtin_type_int32, 2));
1862 append_composite_type_field (t, "v4_int16",
1863 init_vector_type (builtin_type_int16, 4));
1864 append_composite_type_field (t, "v8_int8",
1865 init_vector_type (builtin_type_int8, 8));
1866
1867 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1868 TYPE_NAME (t) = "builtin_type_vec64i";
1869 tdep->i386_mmx_type = t;
1870 }
1871
1872 return tdep->i386_mmx_type;
1873}
1874
1875struct type *
1876i386_sse_type (struct gdbarch *gdbarch)
1877{
1878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1879
1880 if (!tdep->i386_sse_type)
1881 {
1882 /* The type we're building is this: */
1883#if 0
1884 union __gdb_builtin_type_vec128i
1885 {
1886 int128_t uint128;
1887 int64_t v2_int64[2];
1888 int32_t v4_int32[4];
1889 int16_t v8_int16[8];
1890 int8_t v16_int8[16];
1891 double v2_double[2];
1892 float v4_float[4];
1893 };
1894#endif
1895
1896 struct type *t;
1897
1898 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1899 append_composite_type_field (t, "v4_float",
1900 init_vector_type (builtin_type_float, 4));
1901 append_composite_type_field (t, "v2_double",
1902 init_vector_type (builtin_type_double, 2));
1903 append_composite_type_field (t, "v16_int8",
1904 init_vector_type (builtin_type_int8, 16));
1905 append_composite_type_field (t, "v8_int16",
1906 init_vector_type (builtin_type_int16, 8));
1907 append_composite_type_field (t, "v4_int32",
1908 init_vector_type (builtin_type_int32, 4));
1909 append_composite_type_field (t, "v2_int64",
1910 init_vector_type (builtin_type_int64, 2));
1911 append_composite_type_field (t, "uint128", builtin_type_int128);
1912
1913 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1914 TYPE_NAME (t) = "builtin_type_vec128i";
1915 tdep->i386_sse_type = t;
1916 }
1917
1918 return tdep->i386_sse_type;
1919}
1920
d7a0d72c
MK
1921/* Return the GDB type object for the "standard" data type of data in
1922 register REGNUM. Perhaps %esi and %edi should go here, but
1923 potentially they could be used for things other than address. */
1924
3a1e71e3 1925static struct type *
4e259f09 1926i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1927{
ab533587
MK
1928 if (regnum == I386_EIP_REGNUM)
1929 return builtin_type_void_func_ptr;
1930
5ae96ec1
MK
1931 if (regnum == I386_EFLAGS_REGNUM)
1932 return i386_eflags_type;
1933
ab533587
MK
1934 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1935 return builtin_type_void_data_ptr;
d7a0d72c 1936
20a6ec49 1937 if (i386_fp_regnum_p (gdbarch, regnum))
c6ba6f0d 1938 return builtin_type_i387_ext;
d7a0d72c 1939
878d9193 1940 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1941 return i386_mmx_type (gdbarch);
878d9193 1942
5716833c 1943 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1944 return i386_sse_type (gdbarch);
d7a0d72c 1945
20a6ec49 1946 if (regnum == I387_MXCSR_REGNUM (gdbarch_tdep (gdbarch)))
878d9193
MK
1947 return i386_mxcsr_type;
1948
d7a0d72c
MK
1949 return builtin_type_int;
1950}
1951
28fc6740 1952/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1953 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1954
1955static int
c86c27af 1956i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1957{
5716833c
MK
1958 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1959 int mmxreg, fpreg;
28fc6740
AC
1960 ULONGEST fstat;
1961 int tos;
c86c27af 1962
5716833c 1963 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 1964 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 1965 tos = (fstat >> 11) & 0x7;
5716833c
MK
1966 fpreg = (mmxreg + tos) % 8;
1967
20a6ec49 1968 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
1969}
1970
1971static void
1972i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1973 int regnum, gdb_byte *buf)
28fc6740 1974{
5716833c 1975 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1976 {
63c0089f 1977 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1978 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1979
28fc6740 1980 /* Extract (always little endian). */
c86c27af 1981 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1982 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1983 }
1984 else
1985 regcache_raw_read (regcache, regnum, buf);
1986}
1987
1988static void
1989i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1990 int regnum, const gdb_byte *buf)
28fc6740 1991{
5716833c 1992 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1993 {
63c0089f 1994 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1995 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1996
28fc6740
AC
1997 /* Read ... */
1998 regcache_raw_read (regcache, fpnum, mmx_buf);
1999 /* ... Modify ... (always little endian). */
f837910f 2000 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
2001 /* ... Write. */
2002 regcache_raw_write (regcache, fpnum, mmx_buf);
2003 }
2004 else
2005 regcache_raw_write (regcache, regnum, buf);
2006}
ff2e87ac
AC
2007\f
2008
ff2e87ac
AC
2009/* Return the register number of the register allocated by GCC after
2010 REGNUM, or -1 if there is no such register. */
2011
2012static int
2013i386_next_regnum (int regnum)
2014{
2015 /* GCC allocates the registers in the order:
2016
2017 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2018
2019 Since storing a variable in %esp doesn't make any sense we return
2020 -1 for %ebp and for %esp itself. */
2021 static int next_regnum[] =
2022 {
2023 I386_EDX_REGNUM, /* Slot for %eax. */
2024 I386_EBX_REGNUM, /* Slot for %ecx. */
2025 I386_ECX_REGNUM, /* Slot for %edx. */
2026 I386_ESI_REGNUM, /* Slot for %ebx. */
2027 -1, -1, /* Slots for %esp and %ebp. */
2028 I386_EDI_REGNUM, /* Slot for %esi. */
2029 I386_EBP_REGNUM /* Slot for %edi. */
2030 };
2031
de5b9bb9 2032 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2033 return next_regnum[regnum];
28fc6740 2034
ff2e87ac
AC
2035 return -1;
2036}
2037
2038/* Return nonzero if a value of type TYPE stored in register REGNUM
2039 needs any special handling. */
d7a0d72c 2040
3a1e71e3 2041static int
0abe36f5 2042i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 2043{
de5b9bb9
MK
2044 int len = TYPE_LENGTH (type);
2045
ff2e87ac
AC
2046 /* Values may be spread across multiple registers. Most debugging
2047 formats aren't expressive enough to specify the locations, so
2048 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2049 have a length that is a multiple of the word size, since GCC
2050 doesn't seem to put any other types into registers. */
2051 if (len > 4 && len % 4 == 0)
2052 {
2053 int last_regnum = regnum;
2054
2055 while (len > 4)
2056 {
2057 last_regnum = i386_next_regnum (last_regnum);
2058 len -= 4;
2059 }
2060
2061 if (last_regnum != -1)
2062 return 1;
2063 }
ff2e87ac 2064
0abe36f5 2065 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2066}
2067
ff2e87ac
AC
2068/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2069 return its contents in TO. */
ac27f131 2070
3a1e71e3 2071static void
ff2e87ac 2072i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 2073 struct type *type, gdb_byte *to)
ac27f131 2074{
20a6ec49 2075 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2076 int len = TYPE_LENGTH (type);
de5b9bb9 2077
ff2e87ac
AC
2078 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
2079 available in FRAME (i.e. if it wasn't saved)? */
3d261580 2080
20a6ec49 2081 if (i386_fp_regnum_p (gdbarch, regnum))
8d7f6b4a 2082 {
d532c08f
MK
2083 i387_register_to_value (frame, regnum, type, to);
2084 return;
8d7f6b4a 2085 }
ff2e87ac 2086
fd35795f 2087 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2088
2089 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2090
de5b9bb9
MK
2091 while (len > 0)
2092 {
2093 gdb_assert (regnum != -1);
20a6ec49 2094 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2095
42835c2b 2096 get_frame_register (frame, regnum, to);
de5b9bb9
MK
2097 regnum = i386_next_regnum (regnum);
2098 len -= 4;
42835c2b 2099 to += 4;
de5b9bb9 2100 }
ac27f131
MK
2101}
2102
ff2e87ac
AC
2103/* Write the contents FROM of a value of type TYPE into register
2104 REGNUM in frame FRAME. */
ac27f131 2105
3a1e71e3 2106static void
ff2e87ac 2107i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2108 struct type *type, const gdb_byte *from)
ac27f131 2109{
de5b9bb9 2110 int len = TYPE_LENGTH (type);
de5b9bb9 2111
20a6ec49 2112 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2113 {
d532c08f
MK
2114 i387_value_to_register (frame, regnum, type, from);
2115 return;
2116 }
3d261580 2117
fd35795f 2118 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2119
2120 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2121
de5b9bb9
MK
2122 while (len > 0)
2123 {
2124 gdb_assert (regnum != -1);
875f8d0e 2125 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2126
42835c2b 2127 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2128 regnum = i386_next_regnum (regnum);
2129 len -= 4;
42835c2b 2130 from += 4;
de5b9bb9 2131 }
ac27f131 2132}
ff2e87ac 2133\f
7fdafb5a
MK
2134/* Supply register REGNUM from the buffer specified by GREGS and LEN
2135 in the general-purpose register set REGSET to register cache
2136 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2137
20187ed5 2138void
473f17b0
MK
2139i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2140 int regnum, const void *gregs, size_t len)
2141{
9ea75c57 2142 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2143 const gdb_byte *regs = gregs;
473f17b0
MK
2144 int i;
2145
2146 gdb_assert (len == tdep->sizeof_gregset);
2147
2148 for (i = 0; i < tdep->gregset_num_regs; i++)
2149 {
2150 if ((regnum == i || regnum == -1)
2151 && tdep->gregset_reg_offset[i] != -1)
2152 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2153 }
2154}
2155
7fdafb5a
MK
2156/* Collect register REGNUM from the register cache REGCACHE and store
2157 it in the buffer specified by GREGS and LEN as described by the
2158 general-purpose register set REGSET. If REGNUM is -1, do this for
2159 all registers in REGSET. */
2160
2161void
2162i386_collect_gregset (const struct regset *regset,
2163 const struct regcache *regcache,
2164 int regnum, void *gregs, size_t len)
2165{
2166 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2167 gdb_byte *regs = gregs;
7fdafb5a
MK
2168 int i;
2169
2170 gdb_assert (len == tdep->sizeof_gregset);
2171
2172 for (i = 0; i < tdep->gregset_num_regs; i++)
2173 {
2174 if ((regnum == i || regnum == -1)
2175 && tdep->gregset_reg_offset[i] != -1)
2176 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2177 }
2178}
2179
2180/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2181 in the floating-point register set REGSET to register cache
2182 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2183
2184static void
2185i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2186 int regnum, const void *fpregs, size_t len)
2187{
9ea75c57 2188 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2189
66a72d25
MK
2190 if (len == I387_SIZEOF_FXSAVE)
2191 {
2192 i387_supply_fxsave (regcache, regnum, fpregs);
2193 return;
2194 }
2195
473f17b0
MK
2196 gdb_assert (len == tdep->sizeof_fpregset);
2197 i387_supply_fsave (regcache, regnum, fpregs);
2198}
8446b36a 2199
2f305df1
MK
2200/* Collect register REGNUM from the register cache REGCACHE and store
2201 it in the buffer specified by FPREGS and LEN as described by the
2202 floating-point register set REGSET. If REGNUM is -1, do this for
2203 all registers in REGSET. */
7fdafb5a
MK
2204
2205static void
2206i386_collect_fpregset (const struct regset *regset,
2207 const struct regcache *regcache,
2208 int regnum, void *fpregs, size_t len)
2209{
2210 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2211
2212 if (len == I387_SIZEOF_FXSAVE)
2213 {
2214 i387_collect_fxsave (regcache, regnum, fpregs);
2215 return;
2216 }
2217
2218 gdb_assert (len == tdep->sizeof_fpregset);
2219 i387_collect_fsave (regcache, regnum, fpregs);
2220}
2221
8446b36a
MK
2222/* Return the appropriate register set for the core section identified
2223 by SECT_NAME and SECT_SIZE. */
2224
2225const struct regset *
2226i386_regset_from_core_section (struct gdbarch *gdbarch,
2227 const char *sect_name, size_t sect_size)
2228{
2229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2230
2231 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2232 {
2233 if (tdep->gregset == NULL)
7fdafb5a
MK
2234 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2235 i386_collect_gregset);
8446b36a
MK
2236 return tdep->gregset;
2237 }
2238
66a72d25
MK
2239 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2240 || (strcmp (sect_name, ".reg-xfp") == 0
2241 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2242 {
2243 if (tdep->fpregset == NULL)
7fdafb5a
MK
2244 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2245 i386_collect_fpregset);
8446b36a
MK
2246 return tdep->fpregset;
2247 }
2248
2249 return NULL;
2250}
473f17b0 2251\f
fc338970 2252
fc338970 2253/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2254
2255CORE_ADDR
1cce71eb 2256i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2257{
fc338970 2258 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2259 {
c5aa993b 2260 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2261 struct minimal_symbol *indsym =
fc338970 2262 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2263 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2264
c5aa993b 2265 if (symname)
c906108c 2266 {
c5aa993b
JM
2267 if (strncmp (symname, "__imp_", 6) == 0
2268 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2269 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2270 }
2271 }
fc338970 2272 return 0; /* Not a trampoline. */
c906108c 2273}
fc338970
MK
2274\f
2275
10458914
DJ
2276/* Return whether the THIS_FRAME corresponds to a sigtramp
2277 routine. */
8201327c
MK
2278
2279static int
10458914 2280i386_sigtramp_p (struct frame_info *this_frame)
8201327c 2281{
10458914 2282 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2283 char *name;
2284
2285 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2286 return (name && strcmp ("_sigtramp", name) == 0);
2287}
2288\f
2289
fc338970
MK
2290/* We have two flavours of disassembly. The machinery on this page
2291 deals with switching between those. */
c906108c
SS
2292
2293static int
a89aa300 2294i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2295{
5e3397bb
MK
2296 gdb_assert (disassembly_flavor == att_flavor
2297 || disassembly_flavor == intel_flavor);
2298
2299 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2300 constified, cast to prevent a compiler warning. */
2301 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
2302
2303 return print_insn_i386 (pc, info);
7a292a7a 2304}
fc338970 2305\f
3ce1502b 2306
8201327c
MK
2307/* There are a few i386 architecture variants that differ only
2308 slightly from the generic i386 target. For now, we don't give them
2309 their own source file, but include them here. As a consequence,
2310 they'll always be included. */
3ce1502b 2311
8201327c 2312/* System V Release 4 (SVR4). */
3ce1502b 2313
10458914
DJ
2314/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
2315 routine. */
911bc6ee 2316
8201327c 2317static int
10458914 2318i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 2319{
10458914 2320 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2321 char *name;
2322
acd5c798
MK
2323 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2324 currently unknown. */
911bc6ee 2325 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2326 return (name && (strcmp ("_sigreturn", name) == 0
2327 || strcmp ("_sigacthandler", name) == 0
2328 || strcmp ("sigvechandler", name) == 0));
2329}
d2a7c97a 2330
10458914
DJ
2331/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
2332 address of the associated sigcontext (ucontext) structure. */
3ce1502b 2333
3a1e71e3 2334static CORE_ADDR
10458914 2335i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 2336{
63c0089f 2337 gdb_byte buf[4];
acd5c798 2338 CORE_ADDR sp;
3ce1502b 2339
10458914 2340 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
acd5c798 2341 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2342
acd5c798 2343 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2344}
2345\f
3ce1502b 2346
8201327c 2347/* Generic ELF. */
d2a7c97a 2348
8201327c
MK
2349void
2350i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2351{
c4fc7f1b
MK
2352 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2353 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2354}
3ce1502b 2355
8201327c 2356/* System V Release 4 (SVR4). */
3ce1502b 2357
8201327c
MK
2358void
2359i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2360{
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2362
8201327c
MK
2363 /* System V Release 4 uses ELF. */
2364 i386_elf_init_abi (info, gdbarch);
3ce1502b 2365
dfe01d39 2366 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2367 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2368
911bc6ee 2369 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2370 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2371 tdep->sc_pc_offset = 36 + 14 * 4;
2372 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2373
8201327c 2374 tdep->jb_pc_offset = 20;
3ce1502b
MK
2375}
2376
8201327c 2377/* DJGPP. */
3ce1502b 2378
3a1e71e3 2379static void
8201327c 2380i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2381{
8201327c 2382 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2383
911bc6ee
MK
2384 /* DJGPP doesn't have any special frames for signal handlers. */
2385 tdep->sigtramp_p = NULL;
3ce1502b 2386
8201327c 2387 tdep->jb_pc_offset = 36;
3ce1502b 2388}
8201327c 2389\f
2acceee2 2390
38c968cf
AC
2391/* i386 register groups. In addition to the normal groups, add "mmx"
2392 and "sse". */
2393
2394static struct reggroup *i386_sse_reggroup;
2395static struct reggroup *i386_mmx_reggroup;
2396
2397static void
2398i386_init_reggroups (void)
2399{
2400 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2401 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2402}
2403
2404static void
2405i386_add_reggroups (struct gdbarch *gdbarch)
2406{
2407 reggroup_add (gdbarch, i386_sse_reggroup);
2408 reggroup_add (gdbarch, i386_mmx_reggroup);
2409 reggroup_add (gdbarch, general_reggroup);
2410 reggroup_add (gdbarch, float_reggroup);
2411 reggroup_add (gdbarch, all_reggroup);
2412 reggroup_add (gdbarch, save_reggroup);
2413 reggroup_add (gdbarch, restore_reggroup);
2414 reggroup_add (gdbarch, vector_reggroup);
2415 reggroup_add (gdbarch, system_reggroup);
2416}
2417
2418int
2419i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2420 struct reggroup *group)
2421{
5716833c
MK
2422 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2423 || i386_mxcsr_regnum_p (gdbarch, regnum));
20a6ec49
MD
2424 int fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
2425 || i386_fpc_regnum_p (gdbarch, regnum));
5716833c 2426 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2427
38c968cf
AC
2428 if (group == i386_mmx_reggroup)
2429 return mmx_regnum_p;
2430 if (group == i386_sse_reggroup)
2431 return sse_regnum_p;
2432 if (group == vector_reggroup)
2433 return (mmx_regnum_p || sse_regnum_p);
2434 if (group == float_reggroup)
2435 return fp_regnum_p;
2436 if (group == general_reggroup)
2437 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2438
38c968cf
AC
2439 return default_register_reggroup_p (gdbarch, regnum, group);
2440}
38c968cf 2441\f
acd5c798 2442
f837910f
MK
2443/* Get the ARGIth function argument for the current function. */
2444
42c466d7 2445static CORE_ADDR
143985b7
AF
2446i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2447 struct type *type)
2448{
f837910f
MK
2449 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2450 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2451}
2452
2453\f
3a1e71e3 2454static struct gdbarch *
a62cc96e
AC
2455i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2456{
cd3c07fc 2457 struct gdbarch_tdep *tdep;
a62cc96e
AC
2458 struct gdbarch *gdbarch;
2459
4be87837
DJ
2460 /* If there is already a candidate, use it. */
2461 arches = gdbarch_list_lookup_by_info (arches, &info);
2462 if (arches != NULL)
2463 return arches->gdbarch;
a62cc96e
AC
2464
2465 /* Allocate space for the new architecture. */
794ac428 2466 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2467 gdbarch = gdbarch_alloc (&info, tdep);
2468
473f17b0
MK
2469 /* General-purpose registers. */
2470 tdep->gregset = NULL;
2471 tdep->gregset_reg_offset = NULL;
2472 tdep->gregset_num_regs = I386_NUM_GREGS;
2473 tdep->sizeof_gregset = 0;
2474
2475 /* Floating-point registers. */
2476 tdep->fpregset = NULL;
2477 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2478
5716833c 2479 /* The default settings include the FPU registers, the MMX registers
fd35795f 2480 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2481 by adjusting the members `st0_regnum', `mm0_regnum' and
2482 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2483 will show up in the output of "info all-registers". Ideally we
2484 should try to autodetect whether they are available, such that we
2485 can prevent "info all-registers" from displaying registers that
2486 aren't available.
2487
2488 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2489 [the SSE registers] always (even when they don't exist) or never
2490 showing them to the user (even when they do exist), I prefer the
2491 former over the latter. */
2492
2493 tdep->st0_regnum = I386_ST0_REGNUM;
2494
2495 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2496 calculating the register number for %mm0 until we know the number
5716833c
MK
2497 of raw registers. */
2498 tdep->mm0_regnum = 0;
2499
2500 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2501 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2502
8201327c
MK
2503 tdep->jb_pc_offset = -1;
2504 tdep->struct_return = pcc_struct_return;
8201327c
MK
2505 tdep->sigtramp_start = 0;
2506 tdep->sigtramp_end = 0;
911bc6ee 2507 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2508 tdep->sigcontext_addr = NULL;
a3386186 2509 tdep->sc_reg_offset = NULL;
8201327c 2510 tdep->sc_pc_offset = -1;
21d0e8a4 2511 tdep->sc_sp_offset = -1;
8201327c 2512
896fb97d
MK
2513 /* The format used for `long double' on almost all i386 targets is
2514 the i387 extended floating-point format. In fact, of all targets
2515 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2516 on having a `long double' that's not `long' at all. */
8da61cc4 2517 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2518
66da5fd8 2519 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2520 bits, a `long double' actually takes up 96, probably to enforce
2521 alignment. */
2522 set_gdbarch_long_double_bit (gdbarch, 96);
2523
49ed40de
KB
2524 /* The default ABI includes general-purpose registers,
2525 floating-point registers, and the SSE registers. */
2526 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2527 set_gdbarch_register_name (gdbarch, i386_register_name);
2528 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2529
acd5c798
MK
2530 /* Register numbers of various important registers. */
2531 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2532 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2533 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2534 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2535
c4fc7f1b
MK
2536 /* NOTE: kettenis/20040418: GCC does have two possible register
2537 numbering schemes on the i386: dbx and SVR4. These schemes
2538 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2539 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2540 dbx_register_map[] and svr4_dbx_register_map in
2541 gcc/config/i386.c. GCC also defines a third numbering scheme in
2542 gcc/config/i386.c, which it designates as the "default" register
2543 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2544 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2545 amd64-tdep.c.
2546
2547 Currently, each GCC i386 target always uses the same register
2548 numbering scheme across all its supported debugging formats
2549 i.e. SDB (COFF), stabs and DWARF 2. This is because
2550 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2551 DBX_REGISTER_NUMBER macro which is defined by each target's
2552 respective config header in a manner independent of the requested
2553 output debugging format.
2554
2555 This does not match the arrangement below, which presumes that
2556 the SDB and stabs numbering schemes differ from the DWARF and
2557 DWARF 2 ones. The reason for this arrangement is that it is
2558 likely to get the numbering scheme for the target's
2559 default/native debug format right. For targets where GCC is the
2560 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2561 targets where the native toolchain uses a different numbering
2562 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2563 the defaults below will have to be overridden, like
2564 i386_elf_init_abi() does. */
c4fc7f1b
MK
2565
2566 /* Use the dbx register numbering scheme for stabs and COFF. */
2567 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2568 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2569
ba2b1c56 2570 /* Use the SVR4 register numbering scheme for DWARF 2. */
c4fc7f1b 2571 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2572
055d23b8 2573 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2574 be in use on any of the supported i386 targets. */
2575
61113f8b
MK
2576 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2577
8201327c 2578 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2579
a62cc96e 2580 /* Call dummy code. */
acd5c798 2581 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2582
ff2e87ac
AC
2583 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2584 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2585 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2586
c5e656c1 2587 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2588
93924b6b
MK
2589 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2590
2591 /* Stack grows downward. */
2592 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2593
2594 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2595 set_gdbarch_decr_pc_after_break (gdbarch, 1);
237fc4c9 2596 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
42fdc8df 2597
42fdc8df 2598 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2599
28fc6740 2600 /* Wire in the MMX registers. */
0f751ff2 2601 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2602 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2603 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2604
5e3397bb
MK
2605 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2606
10458914 2607 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
acd5c798
MK
2608
2609 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2610
38c968cf
AC
2611 /* Add the i386 register groups. */
2612 i386_add_reggroups (gdbarch);
2613 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2614
143985b7
AF
2615 /* Helper for function argument information. */
2616 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2617
6405b0a6 2618 /* Hook in the DWARF CFI frame unwinder. */
10458914 2619 dwarf2_append_unwinders (gdbarch);
6405b0a6 2620
acd5c798 2621 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2622
3ce1502b 2623 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2624 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2625
10458914
DJ
2626 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
2627 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 2628
8446b36a
MK
2629 /* If we have a register mapping, enable the generic core file
2630 support, unless it has already been enabled. */
2631 if (tdep->gregset_reg_offset
2632 && !gdbarch_regset_from_core_section_p (gdbarch))
2633 set_gdbarch_regset_from_core_section (gdbarch,
2634 i386_regset_from_core_section);
2635
5716833c
MK
2636 /* Unless support for MMX has been disabled, make %mm0 the first
2637 pseudo-register. */
2638 if (tdep->mm0_regnum == 0)
2639 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2640
a62cc96e
AC
2641 return gdbarch;
2642}
2643
8201327c
MK
2644static enum gdb_osabi
2645i386_coff_osabi_sniffer (bfd *abfd)
2646{
762c5349
MK
2647 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2648 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2649 return GDB_OSABI_GO32;
2650
2651 return GDB_OSABI_UNKNOWN;
2652}
8201327c
MK
2653\f
2654
28e9e0f0
MK
2655/* Provide a prototype to silence -Wmissing-prototypes. */
2656void _initialize_i386_tdep (void);
2657
c906108c 2658void
fba45db2 2659_initialize_i386_tdep (void)
c906108c 2660{
a62cc96e
AC
2661 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2662
fc338970 2663 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2664 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2665 &disassembly_flavor, _("\
2666Set the disassembly flavor."), _("\
2667Show the disassembly flavor."), _("\
2668The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2669 NULL,
2670 NULL, /* FIXME: i18n: */
2671 &setlist, &showlist);
8201327c
MK
2672
2673 /* Add the variable that controls the convention for returning
2674 structs. */
7ab04401
AC
2675 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2676 &struct_convention, _("\
2677Set the convention for returning small structs."), _("\
2678Show the convention for returning small structs."), _("\
2679Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2680is \"default\"."),
2681 NULL,
2682 NULL, /* FIXME: i18n: */
2683 &setlist, &showlist);
8201327c
MK
2684
2685 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2686 i386_coff_osabi_sniffer);
8201327c 2687
05816f70 2688 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2689 i386_svr4_init_abi);
05816f70 2690 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2691 i386_go32_init_abi);
38c968cf 2692
5ae96ec1 2693 /* Initialize the i386-specific register groups & types. */
38c968cf 2694 i386_init_reggroups ();
5ae96ec1 2695 i386_init_types();
c906108c 2696}
This page took 0.80663 seconds and 4 git commands to generate.