add a default method for gdbarch_skip_permanent_breakpoint
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
7ad10968
HZ
53#include <stdint.h>
54
90884b2b 55#include "features/i386/i386.c"
c131fcee 56#include "features/i386/i386-avx.c"
1dbcd68c 57#include "features/i386/i386-mpx.c"
01f9f808 58#include "features/i386/i386-avx512.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
70
c4fc7f1b 71/* Register names. */
c40e1eab 72
90884b2b 73static const char *i386_register_names[] =
fc633446
MK
74{
75 "eax", "ecx", "edx", "ebx",
76 "esp", "ebp", "esi", "edi",
77 "eip", "eflags", "cs", "ss",
78 "ds", "es", "fs", "gs",
79 "st0", "st1", "st2", "st3",
80 "st4", "st5", "st6", "st7",
81 "fctrl", "fstat", "ftag", "fiseg",
82 "fioff", "foseg", "fooff", "fop",
83 "xmm0", "xmm1", "xmm2", "xmm3",
84 "xmm4", "xmm5", "xmm6", "xmm7",
85 "mxcsr"
86};
87
01f9f808
MS
88static const char *i386_zmm_names[] =
89{
90 "zmm0", "zmm1", "zmm2", "zmm3",
91 "zmm4", "zmm5", "zmm6", "zmm7"
92};
93
94static const char *i386_zmmh_names[] =
95{
96 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
97 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
98};
99
100static const char *i386_k_names[] =
101{
102 "k0", "k1", "k2", "k3",
103 "k4", "k5", "k6", "k7"
104};
105
c131fcee
L
106static const char *i386_ymm_names[] =
107{
108 "ymm0", "ymm1", "ymm2", "ymm3",
109 "ymm4", "ymm5", "ymm6", "ymm7",
110};
111
112static const char *i386_ymmh_names[] =
113{
114 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
115 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
116};
117
1dbcd68c
WT
118static const char *i386_mpx_names[] =
119{
120 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
121};
122
123/* Register names for MPX pseudo-registers. */
124
125static const char *i386_bnd_names[] =
126{
127 "bnd0", "bnd1", "bnd2", "bnd3"
128};
129
c4fc7f1b 130/* Register names for MMX pseudo-registers. */
28fc6740 131
90884b2b 132static const char *i386_mmx_names[] =
28fc6740
AC
133{
134 "mm0", "mm1", "mm2", "mm3",
135 "mm4", "mm5", "mm6", "mm7"
136};
c40e1eab 137
1ba53b71
L
138/* Register names for byte pseudo-registers. */
139
140static const char *i386_byte_names[] =
141{
142 "al", "cl", "dl", "bl",
143 "ah", "ch", "dh", "bh"
144};
145
146/* Register names for word pseudo-registers. */
147
148static const char *i386_word_names[] =
149{
150 "ax", "cx", "dx", "bx",
9cad29ac 151 "", "bp", "si", "di"
1ba53b71
L
152};
153
01f9f808
MS
154/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
155 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
156 we have 16 upper ZMM regs that have to be handled differently. */
157
158const int num_lower_zmm_regs = 16;
159
1ba53b71 160/* MMX register? */
c40e1eab 161
28fc6740 162static int
5716833c 163i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 164{
1ba53b71
L
165 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
166 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
167
168 if (mm0_regnum < 0)
169 return 0;
170
1ba53b71
L
171 regnum -= mm0_regnum;
172 return regnum >= 0 && regnum < tdep->num_mmx_regs;
173}
174
175/* Byte register? */
176
177int
178i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
179{
180 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
181
182 regnum -= tdep->al_regnum;
183 return regnum >= 0 && regnum < tdep->num_byte_regs;
184}
185
186/* Word register? */
187
188int
189i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
190{
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 regnum -= tdep->ax_regnum;
194 return regnum >= 0 && regnum < tdep->num_word_regs;
195}
196
197/* Dword register? */
198
199int
200i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
201{
202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
203 int eax_regnum = tdep->eax_regnum;
204
205 if (eax_regnum < 0)
206 return 0;
207
208 regnum -= eax_regnum;
209 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
210}
211
01f9f808
MS
212/* AVX512 register? */
213
214int
215i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
216{
217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
218 int zmm0h_regnum = tdep->zmm0h_regnum;
219
220 if (zmm0h_regnum < 0)
221 return 0;
222
223 regnum -= zmm0h_regnum;
224 return regnum >= 0 && regnum < tdep->num_zmm_regs;
225}
226
227int
228i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
229{
230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
231 int zmm0_regnum = tdep->zmm0_regnum;
232
233 if (zmm0_regnum < 0)
234 return 0;
235
236 regnum -= zmm0_regnum;
237 return regnum >= 0 && regnum < tdep->num_zmm_regs;
238}
239
240int
241i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
242{
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244 int k0_regnum = tdep->k0_regnum;
245
246 if (k0_regnum < 0)
247 return 0;
248
249 regnum -= k0_regnum;
250 return regnum >= 0 && regnum < I387_NUM_K_REGS;
251}
252
9191d390 253static int
c131fcee
L
254i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
255{
256 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
257 int ymm0h_regnum = tdep->ymm0h_regnum;
258
259 if (ymm0h_regnum < 0)
260 return 0;
261
262 regnum -= ymm0h_regnum;
263 return regnum >= 0 && regnum < tdep->num_ymm_regs;
264}
265
266/* AVX register? */
267
268int
269i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
270{
271 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
272 int ymm0_regnum = tdep->ymm0_regnum;
273
274 if (ymm0_regnum < 0)
275 return 0;
276
277 regnum -= ymm0_regnum;
278 return regnum >= 0 && regnum < tdep->num_ymm_regs;
279}
280
01f9f808
MS
281static int
282i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
283{
284 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
285 int ymm16h_regnum = tdep->ymm16h_regnum;
286
287 if (ymm16h_regnum < 0)
288 return 0;
289
290 regnum -= ymm16h_regnum;
291 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
292}
293
294int
295i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
296{
297 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
298 int ymm16_regnum = tdep->ymm16_regnum;
299
300 if (ymm16_regnum < 0)
301 return 0;
302
303 regnum -= ymm16_regnum;
304 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
305}
306
1dbcd68c
WT
307/* BND register? */
308
309int
310i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
311{
312 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
313 int bnd0_regnum = tdep->bnd0_regnum;
314
315 if (bnd0_regnum < 0)
316 return 0;
317
318 regnum -= bnd0_regnum;
319 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
320}
321
5716833c 322/* SSE register? */
23a34459 323
c131fcee
L
324int
325i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 326{
5716833c 327 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 328 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 329
c131fcee 330 if (num_xmm_regs == 0)
5716833c
MK
331 return 0;
332
c131fcee
L
333 regnum -= I387_XMM0_REGNUM (tdep);
334 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
335}
336
01f9f808
MS
337/* XMM_512 register? */
338
339int
340i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
341{
342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
343 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
344
345 if (num_xmm_avx512_regs == 0)
346 return 0;
347
348 regnum -= I387_XMM16_REGNUM (tdep);
349 return regnum >= 0 && regnum < num_xmm_avx512_regs;
350}
351
5716833c
MK
352static int
353i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 354{
5716833c
MK
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
20a6ec49 357 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
358 return 0;
359
20a6ec49 360 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
361}
362
5716833c 363/* FP register? */
23a34459
AC
364
365int
20a6ec49 366i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 367{
20a6ec49
MD
368 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
369
370 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
371 return 0;
372
20a6ec49
MD
373 return (I387_ST0_REGNUM (tdep) <= regnum
374 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
375}
376
377int
20a6ec49 378i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 379{
20a6ec49
MD
380 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
381
382 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
383 return 0;
384
20a6ec49
MD
385 return (I387_FCTRL_REGNUM (tdep) <= regnum
386 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
387}
388
1dbcd68c
WT
389/* BNDr (raw) register? */
390
391static int
392i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
393{
394 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
395
396 if (I387_BND0R_REGNUM (tdep) < 0)
397 return 0;
398
399 regnum -= tdep->bnd0r_regnum;
400 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
401}
402
403/* BND control register? */
404
405static int
406i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
407{
408 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
409
410 if (I387_BNDCFGU_REGNUM (tdep) < 0)
411 return 0;
412
413 regnum -= I387_BNDCFGU_REGNUM (tdep);
414 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
415}
416
c131fcee
L
417/* Return the name of register REGNUM, or the empty string if it is
418 an anonymous register. */
419
420static const char *
421i386_register_name (struct gdbarch *gdbarch, int regnum)
422{
423 /* Hide the upper YMM registers. */
424 if (i386_ymmh_regnum_p (gdbarch, regnum))
425 return "";
426
01f9f808
MS
427 /* Hide the upper YMM16-31 registers. */
428 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
429 return "";
430
431 /* Hide the upper ZMM registers. */
432 if (i386_zmmh_regnum_p (gdbarch, regnum))
433 return "";
434
c131fcee
L
435 return tdesc_register_name (gdbarch, regnum);
436}
437
30b0e2d8 438/* Return the name of register REGNUM. */
fc633446 439
1ba53b71 440const char *
90884b2b 441i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 442{
1ba53b71 443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
444 if (i386_bnd_regnum_p (gdbarch, regnum))
445 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
446 if (i386_mmx_regnum_p (gdbarch, regnum))
447 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
448 else if (i386_ymm_regnum_p (gdbarch, regnum))
449 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
450 else if (i386_zmm_regnum_p (gdbarch, regnum))
451 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
452 else if (i386_byte_regnum_p (gdbarch, regnum))
453 return i386_byte_names[regnum - tdep->al_regnum];
454 else if (i386_word_regnum_p (gdbarch, regnum))
455 return i386_word_names[regnum - tdep->ax_regnum];
456
457 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
458}
459
c4fc7f1b 460/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
461 number used by GDB. */
462
8201327c 463static int
d3f73121 464i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 465{
20a6ec49
MD
466 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
467
c4fc7f1b
MK
468 /* This implements what GCC calls the "default" register map
469 (dbx_register_map[]). */
470
85540d8c
MK
471 if (reg >= 0 && reg <= 7)
472 {
9872ad24
JB
473 /* General-purpose registers. The debug info calls %ebp
474 register 4, and %esp register 5. */
475 if (reg == 4)
476 return 5;
477 else if (reg == 5)
478 return 4;
479 else return reg;
85540d8c
MK
480 }
481 else if (reg >= 12 && reg <= 19)
482 {
483 /* Floating-point registers. */
20a6ec49 484 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
485 }
486 else if (reg >= 21 && reg <= 28)
487 {
488 /* SSE registers. */
c131fcee
L
489 int ymm0_regnum = tdep->ymm0_regnum;
490
491 if (ymm0_regnum >= 0
492 && i386_xmm_regnum_p (gdbarch, reg))
493 return reg - 21 + ymm0_regnum;
494 else
495 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
496 }
497 else if (reg >= 29 && reg <= 36)
498 {
499 /* MMX registers. */
20a6ec49 500 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
501 }
502
503 /* This will hopefully provoke a warning. */
d3f73121 504 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
505}
506
c4fc7f1b
MK
507/* Convert SVR4 register number REG to the appropriate register number
508 used by GDB. */
85540d8c 509
8201327c 510static int
d3f73121 511i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 512{
20a6ec49
MD
513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
514
c4fc7f1b
MK
515 /* This implements the GCC register map that tries to be compatible
516 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
517
518 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
519 numbers the floating point registers differently. */
520 if (reg >= 0 && reg <= 9)
521 {
acd5c798 522 /* General-purpose registers. */
85540d8c
MK
523 return reg;
524 }
525 else if (reg >= 11 && reg <= 18)
526 {
527 /* Floating-point registers. */
20a6ec49 528 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 529 }
c6f4c129 530 else if (reg >= 21 && reg <= 36)
85540d8c 531 {
c4fc7f1b 532 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 533 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
534 }
535
c6f4c129
JB
536 switch (reg)
537 {
20a6ec49
MD
538 case 37: return I387_FCTRL_REGNUM (tdep);
539 case 38: return I387_FSTAT_REGNUM (tdep);
540 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
541 case 40: return I386_ES_REGNUM;
542 case 41: return I386_CS_REGNUM;
543 case 42: return I386_SS_REGNUM;
544 case 43: return I386_DS_REGNUM;
545 case 44: return I386_FS_REGNUM;
546 case 45: return I386_GS_REGNUM;
547 }
548
85540d8c 549 /* This will hopefully provoke a warning. */
d3f73121 550 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 551}
5716833c 552
fc338970 553\f
917317f4 554
fc338970
MK
555/* This is the variable that is set with "set disassembly-flavor", and
556 its legitimate values. */
53904c9e
AC
557static const char att_flavor[] = "att";
558static const char intel_flavor[] = "intel";
40478521 559static const char *const valid_flavors[] =
c5aa993b 560{
c906108c
SS
561 att_flavor,
562 intel_flavor,
563 NULL
564};
53904c9e 565static const char *disassembly_flavor = att_flavor;
acd5c798 566\f
c906108c 567
acd5c798
MK
568/* Use the program counter to determine the contents and size of a
569 breakpoint instruction. Return a pointer to a string of bytes that
570 encode a breakpoint instruction, store the length of the string in
571 *LEN and optionally adjust *PC to point to the correct memory
572 location for inserting the breakpoint.
c906108c 573
acd5c798
MK
574 On the i386 we have a single breakpoint that fits in a single byte
575 and can be inserted anywhere.
c906108c 576
acd5c798 577 This function is 64-bit safe. */
63c0089f
MK
578
579static const gdb_byte *
67d57894 580i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 581{
63c0089f
MK
582 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
583
acd5c798
MK
584 *len = sizeof (break_insn);
585 return break_insn;
c906108c 586}
237fc4c9
PA
587\f
588/* Displaced instruction handling. */
589
1903f0e6
DE
590/* Skip the legacy instruction prefixes in INSN.
591 Not all prefixes are valid for any particular insn
592 but we needn't care, the insn will fault if it's invalid.
593 The result is a pointer to the first opcode byte,
594 or NULL if we run off the end of the buffer. */
595
596static gdb_byte *
597i386_skip_prefixes (gdb_byte *insn, size_t max_len)
598{
599 gdb_byte *end = insn + max_len;
600
601 while (insn < end)
602 {
603 switch (*insn)
604 {
605 case DATA_PREFIX_OPCODE:
606 case ADDR_PREFIX_OPCODE:
607 case CS_PREFIX_OPCODE:
608 case DS_PREFIX_OPCODE:
609 case ES_PREFIX_OPCODE:
610 case FS_PREFIX_OPCODE:
611 case GS_PREFIX_OPCODE:
612 case SS_PREFIX_OPCODE:
613 case LOCK_PREFIX_OPCODE:
614 case REPE_PREFIX_OPCODE:
615 case REPNE_PREFIX_OPCODE:
616 ++insn;
617 continue;
618 default:
619 return insn;
620 }
621 }
622
623 return NULL;
624}
237fc4c9
PA
625
626static int
1903f0e6 627i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 628{
1777feb0 629 /* jmp far (absolute address in operand). */
237fc4c9
PA
630 if (insn[0] == 0xea)
631 return 1;
632
633 if (insn[0] == 0xff)
634 {
1777feb0 635 /* jump near, absolute indirect (/4). */
237fc4c9
PA
636 if ((insn[1] & 0x38) == 0x20)
637 return 1;
638
1777feb0 639 /* jump far, absolute indirect (/5). */
237fc4c9
PA
640 if ((insn[1] & 0x38) == 0x28)
641 return 1;
642 }
643
644 return 0;
645}
646
c2170eef
MM
647/* Return non-zero if INSN is a jump, zero otherwise. */
648
649static int
650i386_jmp_p (const gdb_byte *insn)
651{
652 /* jump short, relative. */
653 if (insn[0] == 0xeb)
654 return 1;
655
656 /* jump near, relative. */
657 if (insn[0] == 0xe9)
658 return 1;
659
660 return i386_absolute_jmp_p (insn);
661}
662
237fc4c9 663static int
1903f0e6 664i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 665{
1777feb0 666 /* call far, absolute. */
237fc4c9
PA
667 if (insn[0] == 0x9a)
668 return 1;
669
670 if (insn[0] == 0xff)
671 {
1777feb0 672 /* Call near, absolute indirect (/2). */
237fc4c9
PA
673 if ((insn[1] & 0x38) == 0x10)
674 return 1;
675
1777feb0 676 /* Call far, absolute indirect (/3). */
237fc4c9
PA
677 if ((insn[1] & 0x38) == 0x18)
678 return 1;
679 }
680
681 return 0;
682}
683
684static int
1903f0e6 685i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
686{
687 switch (insn[0])
688 {
1777feb0 689 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 690 case 0xc3: /* ret near */
1777feb0 691 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
692 case 0xcb: /* ret far */
693 case 0xcf: /* iret */
694 return 1;
695
696 default:
697 return 0;
698 }
699}
700
701static int
1903f0e6 702i386_call_p (const gdb_byte *insn)
237fc4c9
PA
703{
704 if (i386_absolute_call_p (insn))
705 return 1;
706
1777feb0 707 /* call near, relative. */
237fc4c9
PA
708 if (insn[0] == 0xe8)
709 return 1;
710
711 return 0;
712}
713
237fc4c9
PA
714/* Return non-zero if INSN is a system call, and set *LENGTHP to its
715 length in bytes. Otherwise, return zero. */
1903f0e6 716
237fc4c9 717static int
b55078be 718i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 719{
9a7f938f
JK
720 /* Is it 'int $0x80'? */
721 if ((insn[0] == 0xcd && insn[1] == 0x80)
722 /* Or is it 'sysenter'? */
723 || (insn[0] == 0x0f && insn[1] == 0x34)
724 /* Or is it 'syscall'? */
725 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
726 {
727 *lengthp = 2;
728 return 1;
729 }
730
731 return 0;
732}
733
c2170eef
MM
734/* The gdbarch insn_is_call method. */
735
736static int
737i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
738{
739 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
740
741 read_code (addr, buf, I386_MAX_INSN_LEN);
742 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
743
744 return i386_call_p (insn);
745}
746
747/* The gdbarch insn_is_ret method. */
748
749static int
750i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
751{
752 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
753
754 read_code (addr, buf, I386_MAX_INSN_LEN);
755 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
756
757 return i386_ret_p (insn);
758}
759
760/* The gdbarch insn_is_jump method. */
761
762static int
763i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
764{
765 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
766
767 read_code (addr, buf, I386_MAX_INSN_LEN);
768 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
769
770 return i386_jmp_p (insn);
771}
772
b55078be
DE
773/* Some kernels may run one past a syscall insn, so we have to cope.
774 Otherwise this is just simple_displaced_step_copy_insn. */
775
776struct displaced_step_closure *
777i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
778 CORE_ADDR from, CORE_ADDR to,
779 struct regcache *regs)
780{
781 size_t len = gdbarch_max_insn_length (gdbarch);
782 gdb_byte *buf = xmalloc (len);
783
784 read_memory (from, buf, len);
785
786 /* GDB may get control back after the insn after the syscall.
787 Presumably this is a kernel bug.
788 If this is a syscall, make sure there's a nop afterwards. */
789 {
790 int syscall_length;
791 gdb_byte *insn;
792
793 insn = i386_skip_prefixes (buf, len);
794 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
795 insn[syscall_length] = NOP_OPCODE;
796 }
797
798 write_memory (to, buf, len);
799
800 if (debug_displaced)
801 {
802 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
803 paddress (gdbarch, from), paddress (gdbarch, to));
804 displaced_step_dump_bytes (gdb_stdlog, buf, len);
805 }
806
807 return (struct displaced_step_closure *) buf;
808}
809
237fc4c9
PA
810/* Fix up the state of registers and memory after having single-stepped
811 a displaced instruction. */
1903f0e6 812
237fc4c9
PA
813void
814i386_displaced_step_fixup (struct gdbarch *gdbarch,
815 struct displaced_step_closure *closure,
816 CORE_ADDR from, CORE_ADDR to,
817 struct regcache *regs)
818{
e17a4113
UW
819 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
820
237fc4c9
PA
821 /* The offset we applied to the instruction's address.
822 This could well be negative (when viewed as a signed 32-bit
823 value), but ULONGEST won't reflect that, so take care when
824 applying it. */
825 ULONGEST insn_offset = to - from;
826
827 /* Since we use simple_displaced_step_copy_insn, our closure is a
828 copy of the instruction. */
829 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
830 /* The start of the insn, needed in case we see some prefixes. */
831 gdb_byte *insn_start = insn;
237fc4c9
PA
832
833 if (debug_displaced)
834 fprintf_unfiltered (gdb_stdlog,
5af949e3 835 "displaced: fixup (%s, %s), "
237fc4c9 836 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
837 paddress (gdbarch, from), paddress (gdbarch, to),
838 insn[0], insn[1]);
237fc4c9
PA
839
840 /* The list of issues to contend with here is taken from
841 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
842 Yay for Free Software! */
843
844 /* Relocate the %eip, if necessary. */
845
1903f0e6
DE
846 /* The instruction recognizers we use assume any leading prefixes
847 have been skipped. */
848 {
849 /* This is the size of the buffer in closure. */
850 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
851 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
852 /* If there are too many prefixes, just ignore the insn.
853 It will fault when run. */
854 if (opcode != NULL)
855 insn = opcode;
856 }
857
237fc4c9
PA
858 /* Except in the case of absolute or indirect jump or call
859 instructions, or a return instruction, the new eip is relative to
860 the displaced instruction; make it relative. Well, signal
861 handler returns don't need relocation either, but we use the
862 value of %eip to recognize those; see below. */
863 if (! i386_absolute_jmp_p (insn)
864 && ! i386_absolute_call_p (insn)
865 && ! i386_ret_p (insn))
866 {
867 ULONGEST orig_eip;
b55078be 868 int insn_len;
237fc4c9
PA
869
870 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
871
872 /* A signal trampoline system call changes the %eip, resuming
873 execution of the main program after the signal handler has
874 returned. That makes them like 'return' instructions; we
875 shouldn't relocate %eip.
876
877 But most system calls don't, and we do need to relocate %eip.
878
879 Our heuristic for distinguishing these cases: if stepping
880 over the system call instruction left control directly after
881 the instruction, the we relocate --- control almost certainly
882 doesn't belong in the displaced copy. Otherwise, we assume
883 the instruction has put control where it belongs, and leave
884 it unrelocated. Goodness help us if there are PC-relative
885 system calls. */
886 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
887 && orig_eip != to + (insn - insn_start) + insn_len
888 /* GDB can get control back after the insn after the syscall.
889 Presumably this is a kernel bug.
890 i386_displaced_step_copy_insn ensures its a nop,
891 we add one to the length for it. */
892 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
893 {
894 if (debug_displaced)
895 fprintf_unfiltered (gdb_stdlog,
896 "displaced: syscall changed %%eip; "
897 "not relocating\n");
898 }
899 else
900 {
901 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
902
1903f0e6
DE
903 /* If we just stepped over a breakpoint insn, we don't backup
904 the pc on purpose; this is to match behaviour without
905 stepping. */
237fc4c9
PA
906
907 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
908
909 if (debug_displaced)
910 fprintf_unfiltered (gdb_stdlog,
911 "displaced: "
5af949e3
UW
912 "relocated %%eip from %s to %s\n",
913 paddress (gdbarch, orig_eip),
914 paddress (gdbarch, eip));
237fc4c9
PA
915 }
916 }
917
918 /* If the instruction was PUSHFL, then the TF bit will be set in the
919 pushed value, and should be cleared. We'll leave this for later,
920 since GDB already messes up the TF flag when stepping over a
921 pushfl. */
922
923 /* If the instruction was a call, the return address now atop the
924 stack is the address following the copied instruction. We need
925 to make it the address following the original instruction. */
926 if (i386_call_p (insn))
927 {
928 ULONGEST esp;
929 ULONGEST retaddr;
930 const ULONGEST retaddr_len = 4;
931
932 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 933 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 934 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 935 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
936
937 if (debug_displaced)
938 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
939 "displaced: relocated return addr at %s to %s\n",
940 paddress (gdbarch, esp),
941 paddress (gdbarch, retaddr));
237fc4c9
PA
942 }
943}
dde08ee1
PA
944
945static void
946append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
947{
948 target_write_memory (*to, buf, len);
949 *to += len;
950}
951
952static void
953i386_relocate_instruction (struct gdbarch *gdbarch,
954 CORE_ADDR *to, CORE_ADDR oldloc)
955{
956 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
957 gdb_byte buf[I386_MAX_INSN_LEN];
958 int offset = 0, rel32, newrel;
959 int insn_length;
960 gdb_byte *insn = buf;
961
962 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
963
964 insn_length = gdb_buffered_insn_length (gdbarch, insn,
965 I386_MAX_INSN_LEN, oldloc);
966
967 /* Get past the prefixes. */
968 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
969
970 /* Adjust calls with 32-bit relative addresses as push/jump, with
971 the address pushed being the location where the original call in
972 the user program would return to. */
973 if (insn[0] == 0xe8)
974 {
975 gdb_byte push_buf[16];
976 unsigned int ret_addr;
977
978 /* Where "ret" in the original code will return to. */
979 ret_addr = oldloc + insn_length;
1777feb0 980 push_buf[0] = 0x68; /* pushq $... */
144db827 981 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
982 /* Push the push. */
983 append_insns (to, 5, push_buf);
984
985 /* Convert the relative call to a relative jump. */
986 insn[0] = 0xe9;
987
988 /* Adjust the destination offset. */
989 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
990 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
991 store_signed_integer (insn + 1, 4, byte_order, newrel);
992
993 if (debug_displaced)
994 fprintf_unfiltered (gdb_stdlog,
995 "Adjusted insn rel32=%s at %s to"
996 " rel32=%s at %s\n",
997 hex_string (rel32), paddress (gdbarch, oldloc),
998 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
999
1000 /* Write the adjusted jump into its displaced location. */
1001 append_insns (to, 5, insn);
1002 return;
1003 }
1004
1005 /* Adjust jumps with 32-bit relative addresses. Calls are already
1006 handled above. */
1007 if (insn[0] == 0xe9)
1008 offset = 1;
1009 /* Adjust conditional jumps. */
1010 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1011 offset = 2;
1012
1013 if (offset)
1014 {
1015 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1016 newrel = (oldloc - *to) + rel32;
f4a1794a 1017 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1018 if (debug_displaced)
1019 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1020 "Adjusted insn rel32=%s at %s to"
1021 " rel32=%s at %s\n",
dde08ee1
PA
1022 hex_string (rel32), paddress (gdbarch, oldloc),
1023 hex_string (newrel), paddress (gdbarch, *to));
1024 }
1025
1026 /* Write the adjusted instructions into their displaced
1027 location. */
1028 append_insns (to, insn_length, buf);
1029}
1030
fc338970 1031\f
acd5c798
MK
1032#ifdef I386_REGNO_TO_SYMMETRY
1033#error "The Sequent Symmetry is no longer supported."
1034#endif
c906108c 1035
acd5c798
MK
1036/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1037 and %esp "belong" to the calling function. Therefore these
1038 registers should be saved if they're going to be modified. */
c906108c 1039
acd5c798
MK
1040/* The maximum number of saved registers. This should include all
1041 registers mentioned above, and %eip. */
a3386186 1042#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1043
1044struct i386_frame_cache
c906108c 1045{
acd5c798
MK
1046 /* Base address. */
1047 CORE_ADDR base;
8fbca658 1048 int base_p;
772562f8 1049 LONGEST sp_offset;
acd5c798
MK
1050 CORE_ADDR pc;
1051
fd13a04a
AC
1052 /* Saved registers. */
1053 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1054 CORE_ADDR saved_sp;
e0c62198 1055 int saved_sp_reg;
acd5c798
MK
1056 int pc_in_eax;
1057
1058 /* Stack space reserved for local variables. */
1059 long locals;
1060};
1061
1062/* Allocate and initialize a frame cache. */
1063
1064static struct i386_frame_cache *
fd13a04a 1065i386_alloc_frame_cache (void)
acd5c798
MK
1066{
1067 struct i386_frame_cache *cache;
1068 int i;
1069
1070 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1071
1072 /* Base address. */
8fbca658 1073 cache->base_p = 0;
acd5c798
MK
1074 cache->base = 0;
1075 cache->sp_offset = -4;
1076 cache->pc = 0;
1077
fd13a04a
AC
1078 /* Saved registers. We initialize these to -1 since zero is a valid
1079 offset (that's where %ebp is supposed to be stored). */
1080 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1081 cache->saved_regs[i] = -1;
acd5c798 1082 cache->saved_sp = 0;
e0c62198 1083 cache->saved_sp_reg = -1;
acd5c798
MK
1084 cache->pc_in_eax = 0;
1085
1086 /* Frameless until proven otherwise. */
1087 cache->locals = -1;
1088
1089 return cache;
1090}
c906108c 1091
acd5c798
MK
1092/* If the instruction at PC is a jump, return the address of its
1093 target. Otherwise, return PC. */
c906108c 1094
acd5c798 1095static CORE_ADDR
e17a4113 1096i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1097{
e17a4113 1098 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1099 gdb_byte op;
acd5c798
MK
1100 long delta = 0;
1101 int data16 = 0;
c906108c 1102
0865b04a 1103 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1104 return pc;
1105
acd5c798 1106 if (op == 0x66)
c906108c 1107 {
c906108c 1108 data16 = 1;
0865b04a
YQ
1109
1110 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1111 }
1112
acd5c798 1113 switch (op)
c906108c
SS
1114 {
1115 case 0xe9:
fc338970 1116 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1117 if (data16)
1118 {
e17a4113 1119 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1120
fc338970
MK
1121 /* Include the size of the jmp instruction (including the
1122 0x66 prefix). */
acd5c798 1123 delta += 4;
c906108c
SS
1124 }
1125 else
1126 {
e17a4113 1127 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1128
acd5c798
MK
1129 /* Include the size of the jmp instruction. */
1130 delta += 5;
c906108c
SS
1131 }
1132 break;
1133 case 0xeb:
fc338970 1134 /* Relative jump, disp8 (ignore data16). */
e17a4113 1135 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1136
acd5c798 1137 delta += data16 + 2;
c906108c
SS
1138 break;
1139 }
c906108c 1140
acd5c798
MK
1141 return pc + delta;
1142}
fc338970 1143
acd5c798
MK
1144/* Check whether PC points at a prologue for a function returning a
1145 structure or union. If so, it updates CACHE and returns the
1146 address of the first instruction after the code sequence that
1147 removes the "hidden" argument from the stack or CURRENT_PC,
1148 whichever is smaller. Otherwise, return PC. */
c906108c 1149
acd5c798
MK
1150static CORE_ADDR
1151i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1152 struct i386_frame_cache *cache)
c906108c 1153{
acd5c798
MK
1154 /* Functions that return a structure or union start with:
1155
1156 popl %eax 0x58
1157 xchgl %eax, (%esp) 0x87 0x04 0x24
1158 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1159
1160 (the System V compiler puts out the second `xchg' instruction,
1161 and the assembler doesn't try to optimize it, so the 'sib' form
1162 gets generated). This sequence is used to get the address of the
1163 return buffer for a function that returns a structure. */
63c0089f
MK
1164 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1165 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1166 gdb_byte buf[4];
1167 gdb_byte op;
c906108c 1168
acd5c798
MK
1169 if (current_pc <= pc)
1170 return pc;
1171
0865b04a 1172 if (target_read_code (pc, &op, 1))
3dcabaa8 1173 return pc;
c906108c 1174
acd5c798
MK
1175 if (op != 0x58) /* popl %eax */
1176 return pc;
c906108c 1177
0865b04a 1178 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1179 return pc;
1180
acd5c798
MK
1181 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1182 return pc;
c906108c 1183
acd5c798 1184 if (current_pc == pc)
c906108c 1185 {
acd5c798
MK
1186 cache->sp_offset += 4;
1187 return current_pc;
c906108c
SS
1188 }
1189
acd5c798 1190 if (current_pc == pc + 1)
c906108c 1191 {
acd5c798
MK
1192 cache->pc_in_eax = 1;
1193 return current_pc;
1194 }
1195
1196 if (buf[1] == proto1[1])
1197 return pc + 4;
1198 else
1199 return pc + 5;
1200}
1201
1202static CORE_ADDR
1203i386_skip_probe (CORE_ADDR pc)
1204{
1205 /* A function may start with
fc338970 1206
acd5c798
MK
1207 pushl constant
1208 call _probe
1209 addl $4, %esp
fc338970 1210
acd5c798
MK
1211 followed by
1212
1213 pushl %ebp
fc338970 1214
acd5c798 1215 etc. */
63c0089f
MK
1216 gdb_byte buf[8];
1217 gdb_byte op;
fc338970 1218
0865b04a 1219 if (target_read_code (pc, &op, 1))
3dcabaa8 1220 return pc;
acd5c798
MK
1221
1222 if (op == 0x68 || op == 0x6a)
1223 {
1224 int delta;
c906108c 1225
acd5c798
MK
1226 /* Skip past the `pushl' instruction; it has either a one-byte or a
1227 four-byte operand, depending on the opcode. */
c906108c 1228 if (op == 0x68)
acd5c798 1229 delta = 5;
c906108c 1230 else
acd5c798 1231 delta = 2;
c906108c 1232
acd5c798
MK
1233 /* Read the following 8 bytes, which should be `call _probe' (6
1234 bytes) followed by `addl $4,%esp' (2 bytes). */
1235 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1236 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1237 pc += delta + sizeof (buf);
c906108c
SS
1238 }
1239
acd5c798
MK
1240 return pc;
1241}
1242
92dd43fa
MK
1243/* GCC 4.1 and later, can put code in the prologue to realign the
1244 stack pointer. Check whether PC points to such code, and update
1245 CACHE accordingly. Return the first instruction after the code
1246 sequence or CURRENT_PC, whichever is smaller. If we don't
1247 recognize the code, return PC. */
1248
1249static CORE_ADDR
1250i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1251 struct i386_frame_cache *cache)
1252{
e0c62198
L
1253 /* There are 2 code sequences to re-align stack before the frame
1254 gets set up:
1255
1256 1. Use a caller-saved saved register:
1257
1258 leal 4(%esp), %reg
1259 andl $-XXX, %esp
1260 pushl -4(%reg)
1261
1262 2. Use a callee-saved saved register:
1263
1264 pushl %reg
1265 leal 8(%esp), %reg
1266 andl $-XXX, %esp
1267 pushl -4(%reg)
1268
1269 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1270
1271 0x83 0xe4 0xf0 andl $-16, %esp
1272 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1273 */
1274
1275 gdb_byte buf[14];
1276 int reg;
1277 int offset, offset_and;
1278 static int regnums[8] = {
1279 I386_EAX_REGNUM, /* %eax */
1280 I386_ECX_REGNUM, /* %ecx */
1281 I386_EDX_REGNUM, /* %edx */
1282 I386_EBX_REGNUM, /* %ebx */
1283 I386_ESP_REGNUM, /* %esp */
1284 I386_EBP_REGNUM, /* %ebp */
1285 I386_ESI_REGNUM, /* %esi */
1286 I386_EDI_REGNUM /* %edi */
92dd43fa 1287 };
92dd43fa 1288
0865b04a 1289 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1290 return pc;
1291
1292 /* Check caller-saved saved register. The first instruction has
1293 to be "leal 4(%esp), %reg". */
1294 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1295 {
1296 /* MOD must be binary 10 and R/M must be binary 100. */
1297 if ((buf[1] & 0xc7) != 0x44)
1298 return pc;
1299
1300 /* REG has register number. */
1301 reg = (buf[1] >> 3) & 7;
1302 offset = 4;
1303 }
1304 else
1305 {
1306 /* Check callee-saved saved register. The first instruction
1307 has to be "pushl %reg". */
1308 if ((buf[0] & 0xf8) != 0x50)
1309 return pc;
1310
1311 /* Get register. */
1312 reg = buf[0] & 0x7;
1313
1314 /* The next instruction has to be "leal 8(%esp), %reg". */
1315 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1316 return pc;
1317
1318 /* MOD must be binary 10 and R/M must be binary 100. */
1319 if ((buf[2] & 0xc7) != 0x44)
1320 return pc;
1321
1322 /* REG has register number. Registers in pushl and leal have to
1323 be the same. */
1324 if (reg != ((buf[2] >> 3) & 7))
1325 return pc;
1326
1327 offset = 5;
1328 }
1329
1330 /* Rigister can't be %esp nor %ebp. */
1331 if (reg == 4 || reg == 5)
1332 return pc;
1333
1334 /* The next instruction has to be "andl $-XXX, %esp". */
1335 if (buf[offset + 1] != 0xe4
1336 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1337 return pc;
1338
1339 offset_and = offset;
1340 offset += buf[offset] == 0x81 ? 6 : 3;
1341
1342 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1343 0xfc. REG must be binary 110 and MOD must be binary 01. */
1344 if (buf[offset] != 0xff
1345 || buf[offset + 2] != 0xfc
1346 || (buf[offset + 1] & 0xf8) != 0x70)
1347 return pc;
1348
1349 /* R/M has register. Registers in leal and pushl have to be the
1350 same. */
1351 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1352 return pc;
1353
e0c62198
L
1354 if (current_pc > pc + offset_and)
1355 cache->saved_sp_reg = regnums[reg];
92dd43fa 1356
e0c62198 1357 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1358}
1359
37bdc87e 1360/* Maximum instruction length we need to handle. */
237fc4c9 1361#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1362
1363/* Instruction description. */
1364struct i386_insn
1365{
1366 size_t len;
237fc4c9
PA
1367 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1368 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1369};
1370
a3fcb948 1371/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1372
a3fcb948
JG
1373static int
1374i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1375{
63c0089f 1376 gdb_byte op;
37bdc87e 1377
0865b04a 1378 if (target_read_code (pc, &op, 1))
a3fcb948 1379 return 0;
37bdc87e 1380
a3fcb948 1381 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1382 {
a3fcb948
JG
1383 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1384 int insn_matched = 1;
1385 size_t i;
37bdc87e 1386
a3fcb948
JG
1387 gdb_assert (pattern.len > 1);
1388 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1389
0865b04a 1390 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1391 return 0;
613e8135 1392
a3fcb948
JG
1393 for (i = 1; i < pattern.len; i++)
1394 {
1395 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1396 insn_matched = 0;
37bdc87e 1397 }
a3fcb948
JG
1398 return insn_matched;
1399 }
1400 return 0;
1401}
1402
1403/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1404 the first instruction description that matches. Otherwise, return
1405 NULL. */
1406
1407static struct i386_insn *
1408i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1409{
1410 struct i386_insn *pattern;
1411
1412 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1413 {
1414 if (i386_match_pattern (pc, *pattern))
1415 return pattern;
37bdc87e
MK
1416 }
1417
1418 return NULL;
1419}
1420
a3fcb948
JG
1421/* Return whether PC points inside a sequence of instructions that
1422 matches INSN_PATTERNS. */
1423
1424static int
1425i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1426{
1427 CORE_ADDR current_pc;
1428 int ix, i;
a3fcb948
JG
1429 struct i386_insn *insn;
1430
1431 insn = i386_match_insn (pc, insn_patterns);
1432 if (insn == NULL)
1433 return 0;
1434
8bbdd3f4 1435 current_pc = pc;
a3fcb948
JG
1436 ix = insn - insn_patterns;
1437 for (i = ix - 1; i >= 0; i--)
1438 {
8bbdd3f4
MK
1439 current_pc -= insn_patterns[i].len;
1440
a3fcb948
JG
1441 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1442 return 0;
a3fcb948
JG
1443 }
1444
1445 current_pc = pc + insn->len;
1446 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1447 {
1448 if (!i386_match_pattern (current_pc, *insn))
1449 return 0;
1450
1451 current_pc += insn->len;
1452 }
1453
1454 return 1;
1455}
1456
37bdc87e
MK
1457/* Some special instructions that might be migrated by GCC into the
1458 part of the prologue that sets up the new stack frame. Because the
1459 stack frame hasn't been setup yet, no registers have been saved
1460 yet, and only the scratch registers %eax, %ecx and %edx can be
1461 touched. */
1462
1463struct i386_insn i386_frame_setup_skip_insns[] =
1464{
1777feb0 1465 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1466
1467 ??? Should we handle 16-bit operand-sizes here? */
1468
1469 /* `movb imm8, %al' and `movb imm8, %ah' */
1470 /* `movb imm8, %cl' and `movb imm8, %ch' */
1471 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1472 /* `movb imm8, %dl' and `movb imm8, %dh' */
1473 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1474 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1475 { 5, { 0xb8 }, { 0xfe } },
1476 /* `movl imm32, %edx' */
1477 { 5, { 0xba }, { 0xff } },
1478
1479 /* Check for `mov imm32, r32'. Note that there is an alternative
1480 encoding for `mov m32, %eax'.
1481
1482 ??? Should we handle SIB adressing here?
1483 ??? Should we handle 16-bit operand-sizes here? */
1484
1485 /* `movl m32, %eax' */
1486 { 5, { 0xa1 }, { 0xff } },
1487 /* `movl m32, %eax' and `mov; m32, %ecx' */
1488 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1489 /* `movl m32, %edx' */
1490 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1491
1492 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1493 Because of the symmetry, there are actually two ways to encode
1494 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1495 opcode bytes 0x31 and 0x33 for `xorl'. */
1496
1497 /* `subl %eax, %eax' */
1498 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1499 /* `subl %ecx, %ecx' */
1500 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1501 /* `subl %edx, %edx' */
1502 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1503 /* `xorl %eax, %eax' */
1504 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1505 /* `xorl %ecx, %ecx' */
1506 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1507 /* `xorl %edx, %edx' */
1508 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1509 { 0 }
1510};
1511
e11481da
PM
1512
1513/* Check whether PC points to a no-op instruction. */
1514static CORE_ADDR
1515i386_skip_noop (CORE_ADDR pc)
1516{
1517 gdb_byte op;
1518 int check = 1;
1519
0865b04a 1520 if (target_read_code (pc, &op, 1))
3dcabaa8 1521 return pc;
e11481da
PM
1522
1523 while (check)
1524 {
1525 check = 0;
1526 /* Ignore `nop' instruction. */
1527 if (op == 0x90)
1528 {
1529 pc += 1;
0865b04a 1530 if (target_read_code (pc, &op, 1))
3dcabaa8 1531 return pc;
e11481da
PM
1532 check = 1;
1533 }
1534 /* Ignore no-op instruction `mov %edi, %edi'.
1535 Microsoft system dlls often start with
1536 a `mov %edi,%edi' instruction.
1537 The 5 bytes before the function start are
1538 filled with `nop' instructions.
1539 This pattern can be used for hot-patching:
1540 The `mov %edi, %edi' instruction can be replaced by a
1541 near jump to the location of the 5 `nop' instructions
1542 which can be replaced by a 32-bit jump to anywhere
1543 in the 32-bit address space. */
1544
1545 else if (op == 0x8b)
1546 {
0865b04a 1547 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1548 return pc;
1549
e11481da
PM
1550 if (op == 0xff)
1551 {
1552 pc += 2;
0865b04a 1553 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1554 return pc;
1555
e11481da
PM
1556 check = 1;
1557 }
1558 }
1559 }
1560 return pc;
1561}
1562
acd5c798
MK
1563/* Check whether PC points at a code that sets up a new stack frame.
1564 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1565 instruction after the sequence that sets up the frame or LIMIT,
1566 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1567
1568static CORE_ADDR
e17a4113
UW
1569i386_analyze_frame_setup (struct gdbarch *gdbarch,
1570 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1571 struct i386_frame_cache *cache)
1572{
e17a4113 1573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1574 struct i386_insn *insn;
63c0089f 1575 gdb_byte op;
26604a34 1576 int skip = 0;
acd5c798 1577
37bdc87e
MK
1578 if (limit <= pc)
1579 return limit;
acd5c798 1580
0865b04a 1581 if (target_read_code (pc, &op, 1))
3dcabaa8 1582 return pc;
acd5c798 1583
c906108c 1584 if (op == 0x55) /* pushl %ebp */
c5aa993b 1585 {
acd5c798
MK
1586 /* Take into account that we've executed the `pushl %ebp' that
1587 starts this instruction sequence. */
fd13a04a 1588 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1589 cache->sp_offset += 4;
37bdc87e 1590 pc++;
acd5c798
MK
1591
1592 /* If that's all, return now. */
37bdc87e
MK
1593 if (limit <= pc)
1594 return limit;
26604a34 1595
b4632131 1596 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1597 GCC into the prologue and skip them. At this point in the
1598 prologue, code should only touch the scratch registers %eax,
1599 %ecx and %edx, so while the number of posibilities is sheer,
1600 it is limited.
5daa5b4e 1601
26604a34
MK
1602 Make sure we only skip these instructions if we later see the
1603 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1604 while (pc + skip < limit)
26604a34 1605 {
37bdc87e
MK
1606 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1607 if (insn == NULL)
1608 break;
b4632131 1609
37bdc87e 1610 skip += insn->len;
26604a34
MK
1611 }
1612
37bdc87e
MK
1613 /* If that's all, return now. */
1614 if (limit <= pc + skip)
1615 return limit;
1616
0865b04a 1617 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1618 return pc + skip;
37bdc87e 1619
30f8135b
YQ
1620 /* The i386 prologue looks like
1621
1622 push %ebp
1623 mov %esp,%ebp
1624 sub $0x10,%esp
1625
1626 and a different prologue can be generated for atom.
1627
1628 push %ebp
1629 lea (%esp),%ebp
1630 lea -0x10(%esp),%esp
1631
1632 We handle both of them here. */
1633
acd5c798 1634 switch (op)
c906108c 1635 {
30f8135b 1636 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1637 case 0x8b:
0865b04a 1638 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1639 != 0xec)
37bdc87e 1640 return pc;
30f8135b 1641 pc += (skip + 2);
c906108c
SS
1642 break;
1643 case 0x89:
0865b04a 1644 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1645 != 0xe5)
37bdc87e 1646 return pc;
30f8135b
YQ
1647 pc += (skip + 2);
1648 break;
1649 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1650 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1651 != 0x242c)
1652 return pc;
1653 pc += (skip + 3);
c906108c
SS
1654 break;
1655 default:
37bdc87e 1656 return pc;
c906108c 1657 }
acd5c798 1658
26604a34
MK
1659 /* OK, we actually have a frame. We just don't know how large
1660 it is yet. Set its size to zero. We'll adjust it if
1661 necessary. We also now commit to skipping the special
1662 instructions mentioned before. */
acd5c798
MK
1663 cache->locals = 0;
1664
1665 /* If that's all, return now. */
37bdc87e
MK
1666 if (limit <= pc)
1667 return limit;
acd5c798 1668
fc338970
MK
1669 /* Check for stack adjustment
1670
acd5c798 1671 subl $XXX, %esp
30f8135b
YQ
1672 or
1673 lea -XXX(%esp),%esp
fc338970 1674
fd35795f 1675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1676 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1677 if (target_read_code (pc, &op, 1))
3dcabaa8 1678 return pc;
c906108c
SS
1679 if (op == 0x83)
1680 {
fd35795f 1681 /* `subl' with 8-bit immediate. */
0865b04a 1682 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1683 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1684 return pc;
acd5c798 1685
37bdc87e
MK
1686 /* `subl' with signed 8-bit immediate (though it wouldn't
1687 make sense to be negative). */
0865b04a 1688 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1689 return pc + 3;
c906108c
SS
1690 }
1691 else if (op == 0x81)
1692 {
fd35795f 1693 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1694 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1695 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1696 return pc;
acd5c798 1697
fd35795f 1698 /* It is `subl' with a 32-bit immediate. */
0865b04a 1699 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1700 return pc + 6;
c906108c 1701 }
30f8135b
YQ
1702 else if (op == 0x8d)
1703 {
1704 /* The ModR/M byte is 0x64. */
0865b04a 1705 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1706 return pc;
1707 /* 'lea' with 8-bit displacement. */
0865b04a 1708 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1709 return pc + 4;
1710 }
c906108c
SS
1711 else
1712 {
30f8135b 1713 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1714 return pc;
c906108c
SS
1715 }
1716 }
37bdc87e 1717 else if (op == 0xc8) /* enter */
c906108c 1718 {
0865b04a 1719 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1720 return pc + 4;
c906108c 1721 }
21d0e8a4 1722
acd5c798 1723 return pc;
21d0e8a4
MK
1724}
1725
acd5c798
MK
1726/* Check whether PC points at code that saves registers on the stack.
1727 If so, it updates CACHE and returns the address of the first
1728 instruction after the register saves or CURRENT_PC, whichever is
1729 smaller. Otherwise, return PC. */
6bff26de
MK
1730
1731static CORE_ADDR
acd5c798
MK
1732i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1733 struct i386_frame_cache *cache)
6bff26de 1734{
99ab4326 1735 CORE_ADDR offset = 0;
63c0089f 1736 gdb_byte op;
99ab4326 1737 int i;
c0d1d883 1738
99ab4326
MK
1739 if (cache->locals > 0)
1740 offset -= cache->locals;
1741 for (i = 0; i < 8 && pc < current_pc; i++)
1742 {
0865b04a 1743 if (target_read_code (pc, &op, 1))
3dcabaa8 1744 return pc;
99ab4326
MK
1745 if (op < 0x50 || op > 0x57)
1746 break;
0d17c81d 1747
99ab4326
MK
1748 offset -= 4;
1749 cache->saved_regs[op - 0x50] = offset;
1750 cache->sp_offset += 4;
1751 pc++;
6bff26de
MK
1752 }
1753
acd5c798 1754 return pc;
22797942
AC
1755}
1756
acd5c798
MK
1757/* Do a full analysis of the prologue at PC and update CACHE
1758 accordingly. Bail out early if CURRENT_PC is reached. Return the
1759 address where the analysis stopped.
ed84f6c1 1760
fc338970
MK
1761 We handle these cases:
1762
1763 The startup sequence can be at the start of the function, or the
1764 function can start with a branch to startup code at the end.
1765
1766 %ebp can be set up with either the 'enter' instruction, or "pushl
1767 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1768 once used in the System V compiler).
1769
1770 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1771 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1772 16-bit unsigned argument for space to allocate, and the 'addl'
1773 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1774
1775 Next, the registers used by this function are pushed. With the
1776 System V compiler they will always be in the order: %edi, %esi,
1777 %ebx (and sometimes a harmless bug causes it to also save but not
1778 restore %eax); however, the code below is willing to see the pushes
1779 in any order, and will handle up to 8 of them.
1780
1781 If the setup sequence is at the end of the function, then the next
1782 instruction will be a branch back to the start. */
c906108c 1783
acd5c798 1784static CORE_ADDR
e17a4113
UW
1785i386_analyze_prologue (struct gdbarch *gdbarch,
1786 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1787 struct i386_frame_cache *cache)
c906108c 1788{
e11481da 1789 pc = i386_skip_noop (pc);
e17a4113 1790 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1791 pc = i386_analyze_struct_return (pc, current_pc, cache);
1792 pc = i386_skip_probe (pc);
92dd43fa 1793 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1794 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1795 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1796}
1797
fc338970 1798/* Return PC of first real instruction. */
c906108c 1799
3a1e71e3 1800static CORE_ADDR
6093d2eb 1801i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1802{
e17a4113
UW
1803 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1804
63c0089f 1805 static gdb_byte pic_pat[6] =
acd5c798
MK
1806 {
1807 0xe8, 0, 0, 0, 0, /* call 0x0 */
1808 0x5b, /* popl %ebx */
c5aa993b 1809 };
acd5c798
MK
1810 struct i386_frame_cache cache;
1811 CORE_ADDR pc;
63c0089f 1812 gdb_byte op;
acd5c798 1813 int i;
56bf0743 1814 CORE_ADDR func_addr;
4e879fc2 1815
56bf0743
KB
1816 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1817 {
1818 CORE_ADDR post_prologue_pc
1819 = skip_prologue_using_sal (gdbarch, func_addr);
1820 struct symtab *s = find_pc_symtab (func_addr);
1821
1822 /* Clang always emits a line note before the prologue and another
1823 one after. We trust clang to emit usable line notes. */
1824 if (post_prologue_pc
1825 && (s != NULL
1826 && s->producer != NULL
1827 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1828 return max (start_pc, post_prologue_pc);
1829 }
1830
e0f33b1f 1831 cache.locals = -1;
e17a4113 1832 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1833 if (cache.locals < 0)
1834 return start_pc;
c5aa993b 1835
acd5c798 1836 /* Found valid frame setup. */
c906108c 1837
fc338970
MK
1838 /* The native cc on SVR4 in -K PIC mode inserts the following code
1839 to get the address of the global offset table (GOT) into register
acd5c798
MK
1840 %ebx:
1841
fc338970
MK
1842 call 0x0
1843 popl %ebx
1844 movl %ebx,x(%ebp) (optional)
1845 addl y,%ebx
1846
c906108c
SS
1847 This code is with the rest of the prologue (at the end of the
1848 function), so we have to skip it to get to the first real
1849 instruction at the start of the function. */
c5aa993b 1850
c906108c
SS
1851 for (i = 0; i < 6; i++)
1852 {
0865b04a 1853 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1854 return pc;
1855
c5aa993b 1856 if (pic_pat[i] != op)
c906108c
SS
1857 break;
1858 }
1859 if (i == 6)
1860 {
acd5c798
MK
1861 int delta = 6;
1862
0865b04a 1863 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1864 return pc;
c906108c 1865
c5aa993b 1866 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1867 {
0865b04a 1868 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1869
fc338970 1870 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1871 delta += 3;
fc338970 1872 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1873 delta += 6;
fc338970 1874 else /* Unexpected instruction. */
acd5c798
MK
1875 delta = 0;
1876
0865b04a 1877 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1878 return pc;
c906108c 1879 }
acd5c798 1880
c5aa993b 1881 /* addl y,%ebx */
acd5c798 1882 if (delta > 0 && op == 0x81
0865b04a 1883 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1884 == 0xc3)
c906108c 1885 {
acd5c798 1886 pc += delta + 6;
c906108c
SS
1887 }
1888 }
c5aa993b 1889
e63bbc88
MK
1890 /* If the function starts with a branch (to startup code at the end)
1891 the last instruction should bring us back to the first
1892 instruction of the real code. */
e17a4113
UW
1893 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1894 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1895
1896 return pc;
c906108c
SS
1897}
1898
4309257c
PM
1899/* Check that the code pointed to by PC corresponds to a call to
1900 __main, skip it if so. Return PC otherwise. */
1901
1902CORE_ADDR
1903i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1904{
e17a4113 1905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1906 gdb_byte op;
1907
0865b04a 1908 if (target_read_code (pc, &op, 1))
3dcabaa8 1909 return pc;
4309257c
PM
1910 if (op == 0xe8)
1911 {
1912 gdb_byte buf[4];
1913
0865b04a 1914 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1915 {
1916 /* Make sure address is computed correctly as a 32bit
1917 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1918 struct bound_minimal_symbol s;
e17a4113 1919 CORE_ADDR call_dest;
4309257c 1920
e17a4113 1921 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1922 call_dest = call_dest & 0xffffffffU;
1923 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1924 if (s.minsym != NULL
efd66ac6
TT
1925 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1926 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1927 pc += 5;
1928 }
1929 }
1930
1931 return pc;
1932}
1933
acd5c798 1934/* This function is 64-bit safe. */
93924b6b 1935
acd5c798
MK
1936static CORE_ADDR
1937i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1938{
63c0089f 1939 gdb_byte buf[8];
acd5c798 1940
875f8d0e 1941 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1942 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1943}
acd5c798 1944\f
93924b6b 1945
acd5c798 1946/* Normal frames. */
c5aa993b 1947
8fbca658
PA
1948static void
1949i386_frame_cache_1 (struct frame_info *this_frame,
1950 struct i386_frame_cache *cache)
a7769679 1951{
e17a4113
UW
1952 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1953 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1954 gdb_byte buf[4];
acd5c798
MK
1955 int i;
1956
8fbca658 1957 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1958
1959 /* In principle, for normal frames, %ebp holds the frame pointer,
1960 which holds the base address for the current stack frame.
1961 However, for functions that don't need it, the frame pointer is
1962 optional. For these "frameless" functions the frame pointer is
1963 actually the frame pointer of the calling frame. Signal
1964 trampolines are just a special case of a "frameless" function.
1965 They (usually) share their frame pointer with the frame that was
1966 in progress when the signal occurred. */
1967
10458914 1968 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1969 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1970 if (cache->base == 0)
620fa63a
PA
1971 {
1972 cache->base_p = 1;
1973 return;
1974 }
acd5c798
MK
1975
1976 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1977 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1978
acd5c798 1979 if (cache->pc != 0)
e17a4113
UW
1980 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1981 cache);
acd5c798
MK
1982
1983 if (cache->locals < 0)
1984 {
1985 /* We didn't find a valid frame, which means that CACHE->base
1986 currently holds the frame pointer for our calling frame. If
1987 we're at the start of a function, or somewhere half-way its
1988 prologue, the function's frame probably hasn't been fully
1989 setup yet. Try to reconstruct the base address for the stack
1990 frame by looking at the stack pointer. For truly "frameless"
1991 functions this might work too. */
1992
e0c62198 1993 if (cache->saved_sp_reg != -1)
92dd43fa 1994 {
8fbca658
PA
1995 /* Saved stack pointer has been saved. */
1996 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1997 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1998
92dd43fa
MK
1999 /* We're halfway aligning the stack. */
2000 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2001 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2002
2003 /* This will be added back below. */
2004 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2005 }
7618e12b 2006 else if (cache->pc != 0
0865b04a 2007 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2008 {
7618e12b
DJ
2009 /* We're in a known function, but did not find a frame
2010 setup. Assume that the function does not use %ebp.
2011 Alternatively, we may have jumped to an invalid
2012 address; in that case there is definitely no new
2013 frame in %ebp. */
10458914 2014 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2015 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2016 + cache->sp_offset;
92dd43fa 2017 }
7618e12b
DJ
2018 else
2019 /* We're in an unknown function. We could not find the start
2020 of the function to analyze the prologue; our best option is
2021 to assume a typical frame layout with the caller's %ebp
2022 saved. */
2023 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2024 }
2025
8fbca658
PA
2026 if (cache->saved_sp_reg != -1)
2027 {
2028 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2029 register may be unavailable). */
2030 if (cache->saved_sp == 0
ca9d61b9
JB
2031 && deprecated_frame_register_read (this_frame,
2032 cache->saved_sp_reg, buf))
8fbca658
PA
2033 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2034 }
acd5c798
MK
2035 /* Now that we have the base address for the stack frame we can
2036 calculate the value of %esp in the calling frame. */
8fbca658 2037 else if (cache->saved_sp == 0)
92dd43fa 2038 cache->saved_sp = cache->base + 8;
a7769679 2039
acd5c798
MK
2040 /* Adjust all the saved registers such that they contain addresses
2041 instead of offsets. */
2042 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2043 if (cache->saved_regs[i] != -1)
2044 cache->saved_regs[i] += cache->base;
acd5c798 2045
8fbca658
PA
2046 cache->base_p = 1;
2047}
2048
2049static struct i386_frame_cache *
2050i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2051{
2052 volatile struct gdb_exception ex;
2053 struct i386_frame_cache *cache;
2054
2055 if (*this_cache)
2056 return *this_cache;
2057
2058 cache = i386_alloc_frame_cache ();
2059 *this_cache = cache;
2060
2061 TRY_CATCH (ex, RETURN_MASK_ERROR)
2062 {
2063 i386_frame_cache_1 (this_frame, cache);
2064 }
2065 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2066 throw_exception (ex);
2067
acd5c798 2068 return cache;
a7769679
MK
2069}
2070
3a1e71e3 2071static void
10458914 2072i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2073 struct frame_id *this_id)
c906108c 2074{
10458914 2075 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2076
5ce0145d
PA
2077 if (!cache->base_p)
2078 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2079 else if (cache->base == 0)
2080 {
2081 /* This marks the outermost frame. */
2082 }
2083 else
2084 {
2085 /* See the end of i386_push_dummy_call. */
2086 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2087 }
acd5c798
MK
2088}
2089
8fbca658
PA
2090static enum unwind_stop_reason
2091i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2092 void **this_cache)
2093{
2094 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2095
2096 if (!cache->base_p)
2097 return UNWIND_UNAVAILABLE;
2098
2099 /* This marks the outermost frame. */
2100 if (cache->base == 0)
2101 return UNWIND_OUTERMOST;
2102
2103 return UNWIND_NO_REASON;
2104}
2105
10458914
DJ
2106static struct value *
2107i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2108 int regnum)
acd5c798 2109{
10458914 2110 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2111
2112 gdb_assert (regnum >= 0);
2113
2114 /* The System V ABI says that:
2115
2116 "The flags register contains the system flags, such as the
2117 direction flag and the carry flag. The direction flag must be
2118 set to the forward (that is, zero) direction before entry and
2119 upon exit from a function. Other user flags have no specified
2120 role in the standard calling sequence and are not preserved."
2121
2122 To guarantee the "upon exit" part of that statement we fake a
2123 saved flags register that has its direction flag cleared.
2124
2125 Note that GCC doesn't seem to rely on the fact that the direction
2126 flag is cleared after a function return; it always explicitly
2127 clears the flag before operations where it matters.
2128
2129 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2130 right thing to do. The way we fake the flags register here makes
2131 it impossible to change it. */
2132
2133 if (regnum == I386_EFLAGS_REGNUM)
2134 {
10458914 2135 ULONGEST val;
c5aa993b 2136
10458914
DJ
2137 val = get_frame_register_unsigned (this_frame, regnum);
2138 val &= ~(1 << 10);
2139 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2140 }
1211c4e4 2141
acd5c798 2142 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2143 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2144
fcf250e2
UW
2145 if (regnum == I386_ESP_REGNUM
2146 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2147 {
2148 /* If the SP has been saved, but we don't know where, then this
2149 means that SAVED_SP_REG register was found unavailable back
2150 when we built the cache. */
fcf250e2 2151 if (cache->saved_sp == 0)
8fbca658
PA
2152 return frame_unwind_got_register (this_frame, regnum,
2153 cache->saved_sp_reg);
2154 else
2155 return frame_unwind_got_constant (this_frame, regnum,
2156 cache->saved_sp);
2157 }
acd5c798 2158
fd13a04a 2159 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2160 return frame_unwind_got_memory (this_frame, regnum,
2161 cache->saved_regs[regnum]);
fd13a04a 2162
10458914 2163 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2164}
2165
2166static const struct frame_unwind i386_frame_unwind =
2167{
2168 NORMAL_FRAME,
8fbca658 2169 i386_frame_unwind_stop_reason,
acd5c798 2170 i386_frame_this_id,
10458914
DJ
2171 i386_frame_prev_register,
2172 NULL,
2173 default_frame_sniffer
acd5c798 2174};
06da04c6
MS
2175
2176/* Normal frames, but in a function epilogue. */
2177
2178/* The epilogue is defined here as the 'ret' instruction, which will
2179 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2180 the function's stack frame. */
2181
2182static int
2183i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2184{
2185 gdb_byte insn;
e0d00bc7
JK
2186 struct symtab *symtab;
2187
2188 symtab = find_pc_symtab (pc);
2189 if (symtab && symtab->epilogue_unwind_valid)
2190 return 0;
06da04c6
MS
2191
2192 if (target_read_memory (pc, &insn, 1))
2193 return 0; /* Can't read memory at pc. */
2194
2195 if (insn != 0xc3) /* 'ret' instruction. */
2196 return 0;
2197
2198 return 1;
2199}
2200
2201static int
2202i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2203 struct frame_info *this_frame,
2204 void **this_prologue_cache)
2205{
2206 if (frame_relative_level (this_frame) == 0)
2207 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2208 get_frame_pc (this_frame));
2209 else
2210 return 0;
2211}
2212
2213static struct i386_frame_cache *
2214i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2215{
8fbca658 2216 volatile struct gdb_exception ex;
06da04c6 2217 struct i386_frame_cache *cache;
0d6c2135 2218 CORE_ADDR sp;
06da04c6
MS
2219
2220 if (*this_cache)
2221 return *this_cache;
2222
2223 cache = i386_alloc_frame_cache ();
2224 *this_cache = cache;
2225
8fbca658
PA
2226 TRY_CATCH (ex, RETURN_MASK_ERROR)
2227 {
0d6c2135 2228 cache->pc = get_frame_func (this_frame);
06da04c6 2229
0d6c2135
MK
2230 /* At this point the stack looks as if we just entered the
2231 function, with the return address at the top of the
2232 stack. */
2233 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2234 cache->base = sp + cache->sp_offset;
8fbca658 2235 cache->saved_sp = cache->base + 8;
8fbca658 2236 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2237
8fbca658
PA
2238 cache->base_p = 1;
2239 }
2240 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2241 throw_exception (ex);
06da04c6
MS
2242
2243 return cache;
2244}
2245
8fbca658
PA
2246static enum unwind_stop_reason
2247i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2248 void **this_cache)
2249{
0d6c2135
MK
2250 struct i386_frame_cache *cache =
2251 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2252
2253 if (!cache->base_p)
2254 return UNWIND_UNAVAILABLE;
2255
2256 return UNWIND_NO_REASON;
2257}
2258
06da04c6
MS
2259static void
2260i386_epilogue_frame_this_id (struct frame_info *this_frame,
2261 void **this_cache,
2262 struct frame_id *this_id)
2263{
0d6c2135
MK
2264 struct i386_frame_cache *cache =
2265 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2266
8fbca658 2267 if (!cache->base_p)
5ce0145d
PA
2268 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2269 else
2270 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2271}
2272
0d6c2135
MK
2273static struct value *
2274i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2275 void **this_cache, int regnum)
2276{
2277 /* Make sure we've initialized the cache. */
2278 i386_epilogue_frame_cache (this_frame, this_cache);
2279
2280 return i386_frame_prev_register (this_frame, this_cache, regnum);
2281}
2282
06da04c6
MS
2283static const struct frame_unwind i386_epilogue_frame_unwind =
2284{
2285 NORMAL_FRAME,
8fbca658 2286 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2287 i386_epilogue_frame_this_id,
0d6c2135 2288 i386_epilogue_frame_prev_register,
06da04c6
MS
2289 NULL,
2290 i386_epilogue_frame_sniffer
2291};
acd5c798
MK
2292\f
2293
a3fcb948
JG
2294/* Stack-based trampolines. */
2295
2296/* These trampolines are used on cross x86 targets, when taking the
2297 address of a nested function. When executing these trampolines,
2298 no stack frame is set up, so we are in a similar situation as in
2299 epilogues and i386_epilogue_frame_this_id can be re-used. */
2300
2301/* Static chain passed in register. */
2302
2303struct i386_insn i386_tramp_chain_in_reg_insns[] =
2304{
2305 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2306 { 5, { 0xb8 }, { 0xfe } },
2307
2308 /* `jmp imm32' */
2309 { 5, { 0xe9 }, { 0xff } },
2310
2311 {0}
2312};
2313
2314/* Static chain passed on stack (when regparm=3). */
2315
2316struct i386_insn i386_tramp_chain_on_stack_insns[] =
2317{
2318 /* `push imm32' */
2319 { 5, { 0x68 }, { 0xff } },
2320
2321 /* `jmp imm32' */
2322 { 5, { 0xe9 }, { 0xff } },
2323
2324 {0}
2325};
2326
2327/* Return whether PC points inside a stack trampoline. */
2328
2329static int
6df81a63 2330i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2331{
2332 gdb_byte insn;
2c02bd72 2333 const char *name;
a3fcb948
JG
2334
2335 /* A stack trampoline is detected if no name is associated
2336 to the current pc and if it points inside a trampoline
2337 sequence. */
2338
2339 find_pc_partial_function (pc, &name, NULL, NULL);
2340 if (name)
2341 return 0;
2342
2343 if (target_read_memory (pc, &insn, 1))
2344 return 0;
2345
2346 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2347 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2348 return 0;
2349
2350 return 1;
2351}
2352
2353static int
2354i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2355 struct frame_info *this_frame,
2356 void **this_cache)
a3fcb948
JG
2357{
2358 if (frame_relative_level (this_frame) == 0)
6df81a63 2359 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2360 else
2361 return 0;
2362}
2363
2364static const struct frame_unwind i386_stack_tramp_frame_unwind =
2365{
2366 NORMAL_FRAME,
2367 i386_epilogue_frame_unwind_stop_reason,
2368 i386_epilogue_frame_this_id,
0d6c2135 2369 i386_epilogue_frame_prev_register,
a3fcb948
JG
2370 NULL,
2371 i386_stack_tramp_frame_sniffer
2372};
2373\f
6710bf39
SS
2374/* Generate a bytecode expression to get the value of the saved PC. */
2375
2376static void
2377i386_gen_return_address (struct gdbarch *gdbarch,
2378 struct agent_expr *ax, struct axs_value *value,
2379 CORE_ADDR scope)
2380{
2381 /* The following sequence assumes the traditional use of the base
2382 register. */
2383 ax_reg (ax, I386_EBP_REGNUM);
2384 ax_const_l (ax, 4);
2385 ax_simple (ax, aop_add);
2386 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2387 value->kind = axs_lvalue_memory;
2388}
2389\f
a3fcb948 2390
acd5c798
MK
2391/* Signal trampolines. */
2392
2393static struct i386_frame_cache *
10458914 2394i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2395{
e17a4113
UW
2396 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2398 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2399 volatile struct gdb_exception ex;
acd5c798 2400 struct i386_frame_cache *cache;
acd5c798 2401 CORE_ADDR addr;
63c0089f 2402 gdb_byte buf[4];
acd5c798
MK
2403
2404 if (*this_cache)
2405 return *this_cache;
2406
fd13a04a 2407 cache = i386_alloc_frame_cache ();
acd5c798 2408
8fbca658 2409 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2410 {
8fbca658
PA
2411 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2412 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2413
8fbca658
PA
2414 addr = tdep->sigcontext_addr (this_frame);
2415 if (tdep->sc_reg_offset)
2416 {
2417 int i;
a3386186 2418
8fbca658
PA
2419 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2420
2421 for (i = 0; i < tdep->sc_num_regs; i++)
2422 if (tdep->sc_reg_offset[i] != -1)
2423 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2424 }
2425 else
2426 {
2427 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2428 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2429 }
2430
2431 cache->base_p = 1;
a3386186 2432 }
8fbca658
PA
2433 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2434 throw_exception (ex);
acd5c798
MK
2435
2436 *this_cache = cache;
2437 return cache;
2438}
2439
8fbca658
PA
2440static enum unwind_stop_reason
2441i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2442 void **this_cache)
2443{
2444 struct i386_frame_cache *cache =
2445 i386_sigtramp_frame_cache (this_frame, this_cache);
2446
2447 if (!cache->base_p)
2448 return UNWIND_UNAVAILABLE;
2449
2450 return UNWIND_NO_REASON;
2451}
2452
acd5c798 2453static void
10458914 2454i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2455 struct frame_id *this_id)
2456{
2457 struct i386_frame_cache *cache =
10458914 2458 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2459
8fbca658 2460 if (!cache->base_p)
5ce0145d
PA
2461 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2462 else
2463 {
2464 /* See the end of i386_push_dummy_call. */
2465 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2466 }
acd5c798
MK
2467}
2468
10458914
DJ
2469static struct value *
2470i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2471 void **this_cache, int regnum)
acd5c798
MK
2472{
2473 /* Make sure we've initialized the cache. */
10458914 2474 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2475
10458914 2476 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2477}
c0d1d883 2478
10458914
DJ
2479static int
2480i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2481 struct frame_info *this_frame,
2482 void **this_prologue_cache)
acd5c798 2483{
10458914 2484 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2485
911bc6ee
MK
2486 /* We shouldn't even bother if we don't have a sigcontext_addr
2487 handler. */
2488 if (tdep->sigcontext_addr == NULL)
10458914 2489 return 0;
1c3545ae 2490
911bc6ee
MK
2491 if (tdep->sigtramp_p != NULL)
2492 {
10458914
DJ
2493 if (tdep->sigtramp_p (this_frame))
2494 return 1;
911bc6ee
MK
2495 }
2496
2497 if (tdep->sigtramp_start != 0)
2498 {
10458914 2499 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2500
2501 gdb_assert (tdep->sigtramp_end != 0);
2502 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2503 return 1;
911bc6ee 2504 }
acd5c798 2505
10458914 2506 return 0;
acd5c798 2507}
10458914
DJ
2508
2509static const struct frame_unwind i386_sigtramp_frame_unwind =
2510{
2511 SIGTRAMP_FRAME,
8fbca658 2512 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2513 i386_sigtramp_frame_this_id,
2514 i386_sigtramp_frame_prev_register,
2515 NULL,
2516 i386_sigtramp_frame_sniffer
2517};
acd5c798
MK
2518\f
2519
2520static CORE_ADDR
10458914 2521i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2522{
10458914 2523 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2524
2525 return cache->base;
2526}
2527
2528static const struct frame_base i386_frame_base =
2529{
2530 &i386_frame_unwind,
2531 i386_frame_base_address,
2532 i386_frame_base_address,
2533 i386_frame_base_address
2534};
2535
acd5c798 2536static struct frame_id
10458914 2537i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2538{
acd5c798
MK
2539 CORE_ADDR fp;
2540
10458914 2541 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2542
3e210248 2543 /* See the end of i386_push_dummy_call. */
10458914 2544 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2545}
e04e5beb
JM
2546
2547/* _Decimal128 function return values need 16-byte alignment on the
2548 stack. */
2549
2550static CORE_ADDR
2551i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2552{
2553 return sp & -(CORE_ADDR)16;
2554}
fc338970 2555\f
c906108c 2556
fc338970
MK
2557/* Figure out where the longjmp will land. Slurp the args out of the
2558 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2559 structure from which we extract the address that we will land at.
28bcfd30 2560 This address is copied into PC. This routine returns non-zero on
436675d3 2561 success. */
c906108c 2562
8201327c 2563static int
60ade65d 2564i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2565{
436675d3 2566 gdb_byte buf[4];
c906108c 2567 CORE_ADDR sp, jb_addr;
20a6ec49 2568 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2569 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2570 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2571
8201327c
MK
2572 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2573 longjmp will land. */
2574 if (jb_pc_offset == -1)
c906108c
SS
2575 return 0;
2576
436675d3 2577 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2578 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2579 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2580 return 0;
2581
e17a4113 2582 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2583 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2584 return 0;
c906108c 2585
e17a4113 2586 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2587 return 1;
2588}
fc338970 2589\f
c906108c 2590
7ccc1c74
JM
2591/* Check whether TYPE must be 16-byte-aligned when passed as a
2592 function argument. 16-byte vectors, _Decimal128 and structures or
2593 unions containing such types must be 16-byte-aligned; other
2594 arguments are 4-byte-aligned. */
2595
2596static int
2597i386_16_byte_align_p (struct type *type)
2598{
2599 type = check_typedef (type);
2600 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2601 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2602 && TYPE_LENGTH (type) == 16)
2603 return 1;
2604 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2605 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2606 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2607 || TYPE_CODE (type) == TYPE_CODE_UNION)
2608 {
2609 int i;
2610 for (i = 0; i < TYPE_NFIELDS (type); i++)
2611 {
2612 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2613 return 1;
2614 }
2615 }
2616 return 0;
2617}
2618
a9b8d892
JK
2619/* Implementation for set_gdbarch_push_dummy_code. */
2620
2621static CORE_ADDR
2622i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2623 struct value **args, int nargs, struct type *value_type,
2624 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2625 struct regcache *regcache)
2626{
2627 /* Use 0xcc breakpoint - 1 byte. */
2628 *bp_addr = sp - 1;
2629 *real_pc = funaddr;
2630
2631 /* Keep the stack aligned. */
2632 return sp - 16;
2633}
2634
3a1e71e3 2635static CORE_ADDR
7d9b040b 2636i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2637 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2638 struct value **args, CORE_ADDR sp, int struct_return,
2639 CORE_ADDR struct_addr)
22f8ba57 2640{
e17a4113 2641 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2642 gdb_byte buf[4];
acd5c798 2643 int i;
7ccc1c74
JM
2644 int write_pass;
2645 int args_space = 0;
acd5c798 2646
7ccc1c74
JM
2647 /* Determine the total space required for arguments and struct
2648 return address in a first pass (allowing for 16-byte-aligned
2649 arguments), then push arguments in a second pass. */
2650
2651 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2652 {
7ccc1c74 2653 int args_space_used = 0;
7ccc1c74
JM
2654
2655 if (struct_return)
2656 {
2657 if (write_pass)
2658 {
2659 /* Push value address. */
e17a4113 2660 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2661 write_memory (sp, buf, 4);
2662 args_space_used += 4;
2663 }
2664 else
2665 args_space += 4;
2666 }
2667
2668 for (i = 0; i < nargs; i++)
2669 {
2670 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2671
7ccc1c74
JM
2672 if (write_pass)
2673 {
2674 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2675 args_space_used = align_up (args_space_used, 16);
acd5c798 2676
7ccc1c74
JM
2677 write_memory (sp + args_space_used,
2678 value_contents_all (args[i]), len);
2679 /* The System V ABI says that:
acd5c798 2680
7ccc1c74
JM
2681 "An argument's size is increased, if necessary, to make it a
2682 multiple of [32-bit] words. This may require tail padding,
2683 depending on the size of the argument."
22f8ba57 2684
7ccc1c74
JM
2685 This makes sure the stack stays word-aligned. */
2686 args_space_used += align_up (len, 4);
2687 }
2688 else
2689 {
2690 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2691 args_space = align_up (args_space, 16);
7ccc1c74
JM
2692 args_space += align_up (len, 4);
2693 }
2694 }
2695
2696 if (!write_pass)
2697 {
7ccc1c74 2698 sp -= args_space;
284c5a60
MK
2699
2700 /* The original System V ABI only requires word alignment,
2701 but modern incarnations need 16-byte alignment in order
2702 to support SSE. Since wasting a few bytes here isn't
2703 harmful we unconditionally enforce 16-byte alignment. */
2704 sp &= ~0xf;
7ccc1c74 2705 }
22f8ba57
MK
2706 }
2707
acd5c798
MK
2708 /* Store return address. */
2709 sp -= 4;
e17a4113 2710 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2711 write_memory (sp, buf, 4);
2712
2713 /* Finally, update the stack pointer... */
e17a4113 2714 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2715 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2716
2717 /* ...and fake a frame pointer. */
2718 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2719
3e210248
AC
2720 /* MarkK wrote: This "+ 8" is all over the place:
2721 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2722 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2723 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2724 definition of the stack address of a frame. Otherwise frame id
2725 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2726 stack address *before* the function call as a frame's CFA. On
2727 the i386, when %ebp is used as a frame pointer, the offset
2728 between the contents %ebp and the CFA as defined by GCC. */
2729 return sp + 8;
22f8ba57
MK
2730}
2731
1a309862
MK
2732/* These registers are used for returning integers (and on some
2733 targets also for returning `struct' and `union' values when their
ef9dff19 2734 size and alignment match an integer type). */
acd5c798
MK
2735#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2736#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2737
c5e656c1
MK
2738/* Read, for architecture GDBARCH, a function return value of TYPE
2739 from REGCACHE, and copy that into VALBUF. */
1a309862 2740
3a1e71e3 2741static void
c5e656c1 2742i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2743 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2744{
c5e656c1 2745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2746 int len = TYPE_LENGTH (type);
63c0089f 2747 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2748
1e8d0a7b 2749 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2750 {
5716833c 2751 if (tdep->st0_regnum < 0)
1a309862 2752 {
8a3fe4f8 2753 warning (_("Cannot find floating-point return value."));
1a309862 2754 memset (valbuf, 0, len);
ef9dff19 2755 return;
1a309862
MK
2756 }
2757
c6ba6f0d
MK
2758 /* Floating-point return values can be found in %st(0). Convert
2759 its contents to the desired type. This is probably not
2760 exactly how it would happen on the target itself, but it is
2761 the best we can do. */
acd5c798 2762 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2763 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2764 }
2765 else
c5aa993b 2766 {
875f8d0e
UW
2767 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2768 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2769
2770 if (len <= low_size)
00f8375e 2771 {
0818c12a 2772 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2773 memcpy (valbuf, buf, len);
2774 }
d4f3574e
SS
2775 else if (len <= (low_size + high_size))
2776 {
0818c12a 2777 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2778 memcpy (valbuf, buf, low_size);
0818c12a 2779 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2780 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2781 }
2782 else
8e65ff28 2783 internal_error (__FILE__, __LINE__,
1777feb0
MS
2784 _("Cannot extract return value of %d bytes long."),
2785 len);
c906108c
SS
2786 }
2787}
2788
c5e656c1
MK
2789/* Write, for architecture GDBARCH, a function return value of TYPE
2790 from VALBUF into REGCACHE. */
ef9dff19 2791
3a1e71e3 2792static void
c5e656c1 2793i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2794 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2795{
c5e656c1 2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2797 int len = TYPE_LENGTH (type);
2798
1e8d0a7b 2799 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2800 {
3d7f4f49 2801 ULONGEST fstat;
63c0089f 2802 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2803
5716833c 2804 if (tdep->st0_regnum < 0)
ef9dff19 2805 {
8a3fe4f8 2806 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2807 return;
2808 }
2809
635b0cc1
MK
2810 /* Returning floating-point values is a bit tricky. Apart from
2811 storing the return value in %st(0), we have to simulate the
2812 state of the FPU at function return point. */
2813
c6ba6f0d
MK
2814 /* Convert the value found in VALBUF to the extended
2815 floating-point format used by the FPU. This is probably
2816 not exactly how it would happen on the target itself, but
2817 it is the best we can do. */
27067745 2818 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2819 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2820
635b0cc1
MK
2821 /* Set the top of the floating-point register stack to 7. The
2822 actual value doesn't really matter, but 7 is what a normal
2823 function return would end up with if the program started out
2824 with a freshly initialized FPU. */
20a6ec49 2825 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2826 fstat |= (7 << 11);
20a6ec49 2827 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2828
635b0cc1
MK
2829 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2830 the floating-point register stack to 7, the appropriate value
2831 for the tag word is 0x3fff. */
20a6ec49 2832 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2833 }
2834 else
2835 {
875f8d0e
UW
2836 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2837 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2838
2839 if (len <= low_size)
3d7f4f49 2840 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2841 else if (len <= (low_size + high_size))
2842 {
3d7f4f49
MK
2843 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2844 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2845 len - low_size, valbuf + low_size);
ef9dff19
MK
2846 }
2847 else
8e65ff28 2848 internal_error (__FILE__, __LINE__,
e2e0b3e5 2849 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2850 }
2851}
fc338970 2852\f
ef9dff19 2853
8201327c
MK
2854/* This is the variable that is set with "set struct-convention", and
2855 its legitimate values. */
2856static const char default_struct_convention[] = "default";
2857static const char pcc_struct_convention[] = "pcc";
2858static const char reg_struct_convention[] = "reg";
40478521 2859static const char *const valid_conventions[] =
8201327c
MK
2860{
2861 default_struct_convention,
2862 pcc_struct_convention,
2863 reg_struct_convention,
2864 NULL
2865};
2866static const char *struct_convention = default_struct_convention;
2867
0e4377e1
JB
2868/* Return non-zero if TYPE, which is assumed to be a structure,
2869 a union type, or an array type, should be returned in registers
2870 for architecture GDBARCH. */
c5e656c1 2871
8201327c 2872static int
c5e656c1 2873i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2874{
c5e656c1
MK
2875 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2876 enum type_code code = TYPE_CODE (type);
2877 int len = TYPE_LENGTH (type);
8201327c 2878
0e4377e1
JB
2879 gdb_assert (code == TYPE_CODE_STRUCT
2880 || code == TYPE_CODE_UNION
2881 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2882
2883 if (struct_convention == pcc_struct_convention
2884 || (struct_convention == default_struct_convention
2885 && tdep->struct_return == pcc_struct_return))
2886 return 0;
2887
9edde48e
MK
2888 /* Structures consisting of a single `float', `double' or 'long
2889 double' member are returned in %st(0). */
2890 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2891 {
2892 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2893 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2894 return (len == 4 || len == 8 || len == 12);
2895 }
2896
c5e656c1
MK
2897 return (len == 1 || len == 2 || len == 4 || len == 8);
2898}
2899
2900/* Determine, for architecture GDBARCH, how a return value of TYPE
2901 should be returned. If it is supposed to be returned in registers,
2902 and READBUF is non-zero, read the appropriate value from REGCACHE,
2903 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2904 from WRITEBUF into REGCACHE. */
2905
2906static enum return_value_convention
6a3a010b 2907i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2908 struct type *type, struct regcache *regcache,
2909 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2910{
2911 enum type_code code = TYPE_CODE (type);
2912
5daa78cc
TJB
2913 if (((code == TYPE_CODE_STRUCT
2914 || code == TYPE_CODE_UNION
2915 || code == TYPE_CODE_ARRAY)
2916 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2917 /* Complex double and long double uses the struct return covention. */
2918 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2920 /* 128-bit decimal float uses the struct return convention. */
2921 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2922 {
2923 /* The System V ABI says that:
2924
2925 "A function that returns a structure or union also sets %eax
2926 to the value of the original address of the caller's area
2927 before it returns. Thus when the caller receives control
2928 again, the address of the returned object resides in register
2929 %eax and can be used to access the object."
2930
2931 So the ABI guarantees that we can always find the return
2932 value just after the function has returned. */
2933
0e4377e1
JB
2934 /* Note that the ABI doesn't mention functions returning arrays,
2935 which is something possible in certain languages such as Ada.
2936 In this case, the value is returned as if it was wrapped in
2937 a record, so the convention applied to records also applies
2938 to arrays. */
2939
31db7b6c
MK
2940 if (readbuf)
2941 {
2942 ULONGEST addr;
2943
2944 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2945 read_memory (addr, readbuf, TYPE_LENGTH (type));
2946 }
2947
2948 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2949 }
c5e656c1
MK
2950
2951 /* This special case is for structures consisting of a single
9edde48e
MK
2952 `float', `double' or 'long double' member. These structures are
2953 returned in %st(0). For these structures, we call ourselves
2954 recursively, changing TYPE into the type of the first member of
2955 the structure. Since that should work for all structures that
2956 have only one member, we don't bother to check the member's type
2957 here. */
c5e656c1
MK
2958 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2959 {
2960 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2961 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2962 readbuf, writebuf);
c5e656c1
MK
2963 }
2964
2965 if (readbuf)
2966 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2967 if (writebuf)
2968 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2969
c5e656c1 2970 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2971}
2972\f
2973
27067745
UW
2974struct type *
2975i387_ext_type (struct gdbarch *gdbarch)
2976{
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978
2979 if (!tdep->i387_ext_type)
90884b2b
L
2980 {
2981 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2982 gdb_assert (tdep->i387_ext_type != NULL);
2983 }
27067745
UW
2984
2985 return tdep->i387_ext_type;
2986}
2987
1dbcd68c
WT
2988/* Construct type for pseudo BND registers. We can't use
2989 tdesc_find_type since a complement of one value has to be used
2990 to describe the upper bound. */
2991
2992static struct type *
2993i386_bnd_type (struct gdbarch *gdbarch)
2994{
2995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2996
2997
2998 if (!tdep->i386_bnd_type)
2999 {
3000 struct type *t, *bound_t;
3001 const struct builtin_type *bt = builtin_type (gdbarch);
3002
3003 /* The type we're building is described bellow: */
3004#if 0
3005 struct __bound128
3006 {
3007 void *lbound;
3008 void *ubound; /* One complement of raw ubound field. */
3009 };
3010#endif
3011
3012 t = arch_composite_type (gdbarch,
3013 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3014
3015 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3016 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3017
3018 TYPE_NAME (t) = "builtin_type_bound128";
3019 tdep->i386_bnd_type = t;
3020 }
3021
3022 return tdep->i386_bnd_type;
3023}
3024
01f9f808
MS
3025/* Construct vector type for pseudo ZMM registers. We can't use
3026 tdesc_find_type since ZMM isn't described in target description. */
3027
3028static struct type *
3029i386_zmm_type (struct gdbarch *gdbarch)
3030{
3031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3032
3033 if (!tdep->i386_zmm_type)
3034 {
3035 const struct builtin_type *bt = builtin_type (gdbarch);
3036
3037 /* The type we're building is this: */
3038#if 0
3039 union __gdb_builtin_type_vec512i
3040 {
3041 int128_t uint128[4];
3042 int64_t v4_int64[8];
3043 int32_t v8_int32[16];
3044 int16_t v16_int16[32];
3045 int8_t v32_int8[64];
3046 double v4_double[8];
3047 float v8_float[16];
3048 };
3049#endif
3050
3051 struct type *t;
3052
3053 t = arch_composite_type (gdbarch,
3054 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3055 append_composite_type_field (t, "v16_float",
3056 init_vector_type (bt->builtin_float, 16));
3057 append_composite_type_field (t, "v8_double",
3058 init_vector_type (bt->builtin_double, 8));
3059 append_composite_type_field (t, "v64_int8",
3060 init_vector_type (bt->builtin_int8, 64));
3061 append_composite_type_field (t, "v32_int16",
3062 init_vector_type (bt->builtin_int16, 32));
3063 append_composite_type_field (t, "v16_int32",
3064 init_vector_type (bt->builtin_int32, 16));
3065 append_composite_type_field (t, "v8_int64",
3066 init_vector_type (bt->builtin_int64, 8));
3067 append_composite_type_field (t, "v4_int128",
3068 init_vector_type (bt->builtin_int128, 4));
3069
3070 TYPE_VECTOR (t) = 1;
3071 TYPE_NAME (t) = "builtin_type_vec512i";
3072 tdep->i386_zmm_type = t;
3073 }
3074
3075 return tdep->i386_zmm_type;
3076}
3077
c131fcee
L
3078/* Construct vector type for pseudo YMM registers. We can't use
3079 tdesc_find_type since YMM isn't described in target description. */
3080
3081static struct type *
3082i386_ymm_type (struct gdbarch *gdbarch)
3083{
3084 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3085
3086 if (!tdep->i386_ymm_type)
3087 {
3088 const struct builtin_type *bt = builtin_type (gdbarch);
3089
3090 /* The type we're building is this: */
3091#if 0
3092 union __gdb_builtin_type_vec256i
3093 {
3094 int128_t uint128[2];
3095 int64_t v2_int64[4];
3096 int32_t v4_int32[8];
3097 int16_t v8_int16[16];
3098 int8_t v16_int8[32];
3099 double v2_double[4];
3100 float v4_float[8];
3101 };
3102#endif
3103
3104 struct type *t;
3105
3106 t = arch_composite_type (gdbarch,
3107 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3108 append_composite_type_field (t, "v8_float",
3109 init_vector_type (bt->builtin_float, 8));
3110 append_composite_type_field (t, "v4_double",
3111 init_vector_type (bt->builtin_double, 4));
3112 append_composite_type_field (t, "v32_int8",
3113 init_vector_type (bt->builtin_int8, 32));
3114 append_composite_type_field (t, "v16_int16",
3115 init_vector_type (bt->builtin_int16, 16));
3116 append_composite_type_field (t, "v8_int32",
3117 init_vector_type (bt->builtin_int32, 8));
3118 append_composite_type_field (t, "v4_int64",
3119 init_vector_type (bt->builtin_int64, 4));
3120 append_composite_type_field (t, "v2_int128",
3121 init_vector_type (bt->builtin_int128, 2));
3122
3123 TYPE_VECTOR (t) = 1;
0c5acf93 3124 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3125 tdep->i386_ymm_type = t;
3126 }
3127
3128 return tdep->i386_ymm_type;
3129}
3130
794ac428 3131/* Construct vector type for MMX registers. */
90884b2b 3132static struct type *
794ac428
UW
3133i386_mmx_type (struct gdbarch *gdbarch)
3134{
3135 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3136
3137 if (!tdep->i386_mmx_type)
3138 {
df4df182
UW
3139 const struct builtin_type *bt = builtin_type (gdbarch);
3140
794ac428
UW
3141 /* The type we're building is this: */
3142#if 0
3143 union __gdb_builtin_type_vec64i
3144 {
3145 int64_t uint64;
3146 int32_t v2_int32[2];
3147 int16_t v4_int16[4];
3148 int8_t v8_int8[8];
3149 };
3150#endif
3151
3152 struct type *t;
3153
e9bb382b
UW
3154 t = arch_composite_type (gdbarch,
3155 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3156
3157 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3158 append_composite_type_field (t, "v2_int32",
df4df182 3159 init_vector_type (bt->builtin_int32, 2));
794ac428 3160 append_composite_type_field (t, "v4_int16",
df4df182 3161 init_vector_type (bt->builtin_int16, 4));
794ac428 3162 append_composite_type_field (t, "v8_int8",
df4df182 3163 init_vector_type (bt->builtin_int8, 8));
794ac428 3164
876cecd0 3165 TYPE_VECTOR (t) = 1;
794ac428
UW
3166 TYPE_NAME (t) = "builtin_type_vec64i";
3167 tdep->i386_mmx_type = t;
3168 }
3169
3170 return tdep->i386_mmx_type;
3171}
3172
d7a0d72c 3173/* Return the GDB type object for the "standard" data type of data in
1777feb0 3174 register REGNUM. */
d7a0d72c 3175
fff4548b 3176struct type *
90884b2b 3177i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3178{
1dbcd68c
WT
3179 if (i386_bnd_regnum_p (gdbarch, regnum))
3180 return i386_bnd_type (gdbarch);
1ba53b71
L
3181 if (i386_mmx_regnum_p (gdbarch, regnum))
3182 return i386_mmx_type (gdbarch);
c131fcee
L
3183 else if (i386_ymm_regnum_p (gdbarch, regnum))
3184 return i386_ymm_type (gdbarch);
01f9f808
MS
3185 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3186 return i386_ymm_type (gdbarch);
3187 else if (i386_zmm_regnum_p (gdbarch, regnum))
3188 return i386_zmm_type (gdbarch);
1ba53b71
L
3189 else
3190 {
3191 const struct builtin_type *bt = builtin_type (gdbarch);
3192 if (i386_byte_regnum_p (gdbarch, regnum))
3193 return bt->builtin_int8;
3194 else if (i386_word_regnum_p (gdbarch, regnum))
3195 return bt->builtin_int16;
3196 else if (i386_dword_regnum_p (gdbarch, regnum))
3197 return bt->builtin_int32;
01f9f808
MS
3198 else if (i386_k_regnum_p (gdbarch, regnum))
3199 return bt->builtin_int64;
1ba53b71
L
3200 }
3201
3202 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3203}
3204
28fc6740 3205/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3206 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3207
3208static int
c86c27af 3209i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3210{
5716833c
MK
3211 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3212 int mmxreg, fpreg;
28fc6740
AC
3213 ULONGEST fstat;
3214 int tos;
c86c27af 3215
5716833c 3216 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3217 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3218 tos = (fstat >> 11) & 0x7;
5716833c
MK
3219 fpreg = (mmxreg + tos) % 8;
3220
20a6ec49 3221 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3222}
3223
3543a589
TT
3224/* A helper function for us by i386_pseudo_register_read_value and
3225 amd64_pseudo_register_read_value. It does all the work but reads
3226 the data into an already-allocated value. */
3227
3228void
3229i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3230 struct regcache *regcache,
3231 int regnum,
3232 struct value *result_value)
28fc6740 3233{
1ba53b71 3234 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3235 enum register_status status;
3543a589 3236 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3237
5716833c 3238 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3239 {
c86c27af
MK
3240 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3241
28fc6740 3242 /* Extract (always little endian). */
05d1431c
PA
3243 status = regcache_raw_read (regcache, fpnum, raw_buf);
3244 if (status != REG_VALID)
3543a589
TT
3245 mark_value_bytes_unavailable (result_value, 0,
3246 TYPE_LENGTH (value_type (result_value)));
3247 else
3248 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3249 }
3250 else
1ba53b71
L
3251 {
3252 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3253 if (i386_bnd_regnum_p (gdbarch, regnum))
3254 {
3255 regnum -= tdep->bnd0_regnum;
1ba53b71 3256
1dbcd68c
WT
3257 /* Extract (always little endian). Read lower 128bits. */
3258 status = regcache_raw_read (regcache,
3259 I387_BND0R_REGNUM (tdep) + regnum,
3260 raw_buf);
3261 if (status != REG_VALID)
3262 mark_value_bytes_unavailable (result_value, 0, 16);
3263 else
3264 {
3265 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3266 LONGEST upper, lower;
3267 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3268
3269 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3270 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3271 upper = ~upper;
3272
3273 memcpy (buf, &lower, size);
3274 memcpy (buf + size, &upper, size);
3275 }
3276 }
01f9f808
MS
3277 else if (i386_k_regnum_p (gdbarch, regnum))
3278 {
3279 regnum -= tdep->k0_regnum;
3280
3281 /* Extract (always little endian). */
3282 status = regcache_raw_read (regcache,
3283 tdep->k0_regnum + regnum,
3284 raw_buf);
3285 if (status != REG_VALID)
3286 mark_value_bytes_unavailable (result_value, 0, 8);
3287 else
3288 memcpy (buf, raw_buf, 8);
3289 }
3290 else if (i386_zmm_regnum_p (gdbarch, regnum))
3291 {
3292 regnum -= tdep->zmm0_regnum;
3293
3294 if (regnum < num_lower_zmm_regs)
3295 {
3296 /* Extract (always little endian). Read lower 128bits. */
3297 status = regcache_raw_read (regcache,
3298 I387_XMM0_REGNUM (tdep) + regnum,
3299 raw_buf);
3300 if (status != REG_VALID)
3301 mark_value_bytes_unavailable (result_value, 0, 16);
3302 else
3303 memcpy (buf, raw_buf, 16);
3304
3305 /* Extract (always little endian). Read upper 128bits. */
3306 status = regcache_raw_read (regcache,
3307 tdep->ymm0h_regnum + regnum,
3308 raw_buf);
3309 if (status != REG_VALID)
3310 mark_value_bytes_unavailable (result_value, 16, 16);
3311 else
3312 memcpy (buf + 16, raw_buf, 16);
3313 }
3314 else
3315 {
3316 /* Extract (always little endian). Read lower 128bits. */
3317 status = regcache_raw_read (regcache,
3318 I387_XMM16_REGNUM (tdep) + regnum
3319 - num_lower_zmm_regs,
3320 raw_buf);
3321 if (status != REG_VALID)
3322 mark_value_bytes_unavailable (result_value, 0, 16);
3323 else
3324 memcpy (buf, raw_buf, 16);
3325
3326 /* Extract (always little endian). Read upper 128bits. */
3327 status = regcache_raw_read (regcache,
3328 I387_YMM16H_REGNUM (tdep) + regnum
3329 - num_lower_zmm_regs,
3330 raw_buf);
3331 if (status != REG_VALID)
3332 mark_value_bytes_unavailable (result_value, 16, 16);
3333 else
3334 memcpy (buf + 16, raw_buf, 16);
3335 }
3336
3337 /* Read upper 256bits. */
3338 status = regcache_raw_read (regcache,
3339 tdep->zmm0h_regnum + regnum,
3340 raw_buf);
3341 if (status != REG_VALID)
3342 mark_value_bytes_unavailable (result_value, 32, 32);
3343 else
3344 memcpy (buf + 32, raw_buf, 32);
3345 }
1dbcd68c 3346 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3347 {
3348 regnum -= tdep->ymm0_regnum;
3349
1777feb0 3350 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3351 status = regcache_raw_read (regcache,
3352 I387_XMM0_REGNUM (tdep) + regnum,
3353 raw_buf);
3354 if (status != REG_VALID)
3543a589
TT
3355 mark_value_bytes_unavailable (result_value, 0, 16);
3356 else
3357 memcpy (buf, raw_buf, 16);
c131fcee 3358 /* Read upper 128bits. */
05d1431c
PA
3359 status = regcache_raw_read (regcache,
3360 tdep->ymm0h_regnum + regnum,
3361 raw_buf);
3362 if (status != REG_VALID)
3543a589
TT
3363 mark_value_bytes_unavailable (result_value, 16, 32);
3364 else
3365 memcpy (buf + 16, raw_buf, 16);
c131fcee 3366 }
01f9f808
MS
3367 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3368 {
3369 regnum -= tdep->ymm16_regnum;
3370 /* Extract (always little endian). Read lower 128bits. */
3371 status = regcache_raw_read (regcache,
3372 I387_XMM16_REGNUM (tdep) + regnum,
3373 raw_buf);
3374 if (status != REG_VALID)
3375 mark_value_bytes_unavailable (result_value, 0, 16);
3376 else
3377 memcpy (buf, raw_buf, 16);
3378 /* Read upper 128bits. */
3379 status = regcache_raw_read (regcache,
3380 tdep->ymm16h_regnum + regnum,
3381 raw_buf);
3382 if (status != REG_VALID)
3383 mark_value_bytes_unavailable (result_value, 16, 16);
3384 else
3385 memcpy (buf + 16, raw_buf, 16);
3386 }
c131fcee 3387 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3388 {
3389 int gpnum = regnum - tdep->ax_regnum;
3390
3391 /* Extract (always little endian). */
05d1431c
PA
3392 status = regcache_raw_read (regcache, gpnum, raw_buf);
3393 if (status != REG_VALID)
3543a589
TT
3394 mark_value_bytes_unavailable (result_value, 0,
3395 TYPE_LENGTH (value_type (result_value)));
3396 else
3397 memcpy (buf, raw_buf, 2);
1ba53b71
L
3398 }
3399 else if (i386_byte_regnum_p (gdbarch, regnum))
3400 {
3401 /* Check byte pseudo registers last since this function will
3402 be called from amd64_pseudo_register_read, which handles
3403 byte pseudo registers differently. */
3404 int gpnum = regnum - tdep->al_regnum;
3405
3406 /* Extract (always little endian). We read both lower and
3407 upper registers. */
05d1431c
PA
3408 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3409 if (status != REG_VALID)
3543a589
TT
3410 mark_value_bytes_unavailable (result_value, 0,
3411 TYPE_LENGTH (value_type (result_value)));
3412 else if (gpnum >= 4)
1ba53b71
L
3413 memcpy (buf, raw_buf + 1, 1);
3414 else
3415 memcpy (buf, raw_buf, 1);
3416 }
3417 else
3418 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3419 }
3543a589
TT
3420}
3421
3422static struct value *
3423i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3424 struct regcache *regcache,
3425 int regnum)
3426{
3427 struct value *result;
3428
3429 result = allocate_value (register_type (gdbarch, regnum));
3430 VALUE_LVAL (result) = lval_register;
3431 VALUE_REGNUM (result) = regnum;
3432
3433 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3434
3543a589 3435 return result;
28fc6740
AC
3436}
3437
1ba53b71 3438void
28fc6740 3439i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3440 int regnum, const gdb_byte *buf)
28fc6740 3441{
1ba53b71
L
3442 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3443
5716833c 3444 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3445 {
c86c27af
MK
3446 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3447
28fc6740 3448 /* Read ... */
1ba53b71 3449 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3450 /* ... Modify ... (always little endian). */
1ba53b71 3451 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3452 /* ... Write. */
1ba53b71 3453 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3454 }
3455 else
1ba53b71
L
3456 {
3457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3458
1dbcd68c
WT
3459 if (i386_bnd_regnum_p (gdbarch, regnum))
3460 {
3461 ULONGEST upper, lower;
3462 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3463 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3464
3465 /* New values from input value. */
3466 regnum -= tdep->bnd0_regnum;
3467 lower = extract_unsigned_integer (buf, size, byte_order);
3468 upper = extract_unsigned_integer (buf + size, size, byte_order);
3469
3470 /* Fetching register buffer. */
3471 regcache_raw_read (regcache,
3472 I387_BND0R_REGNUM (tdep) + regnum,
3473 raw_buf);
3474
3475 upper = ~upper;
3476
3477 /* Set register bits. */
3478 memcpy (raw_buf, &lower, 8);
3479 memcpy (raw_buf + 8, &upper, 8);
3480
3481
3482 regcache_raw_write (regcache,
3483 I387_BND0R_REGNUM (tdep) + regnum,
3484 raw_buf);
3485 }
01f9f808
MS
3486 else if (i386_k_regnum_p (gdbarch, regnum))
3487 {
3488 regnum -= tdep->k0_regnum;
3489
3490 regcache_raw_write (regcache,
3491 tdep->k0_regnum + regnum,
3492 buf);
3493 }
3494 else if (i386_zmm_regnum_p (gdbarch, regnum))
3495 {
3496 regnum -= tdep->zmm0_regnum;
3497
3498 if (regnum < num_lower_zmm_regs)
3499 {
3500 /* Write lower 128bits. */
3501 regcache_raw_write (regcache,
3502 I387_XMM0_REGNUM (tdep) + regnum,
3503 buf);
3504 /* Write upper 128bits. */
3505 regcache_raw_write (regcache,
3506 I387_YMM0_REGNUM (tdep) + regnum,
3507 buf + 16);
3508 }
3509 else
3510 {
3511 /* Write lower 128bits. */
3512 regcache_raw_write (regcache,
3513 I387_XMM16_REGNUM (tdep) + regnum
3514 - num_lower_zmm_regs,
3515 buf);
3516 /* Write upper 128bits. */
3517 regcache_raw_write (regcache,
3518 I387_YMM16H_REGNUM (tdep) + regnum
3519 - num_lower_zmm_regs,
3520 buf + 16);
3521 }
3522 /* Write upper 256bits. */
3523 regcache_raw_write (regcache,
3524 tdep->zmm0h_regnum + regnum,
3525 buf + 32);
3526 }
1dbcd68c 3527 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3528 {
3529 regnum -= tdep->ymm0_regnum;
3530
3531 /* ... Write lower 128bits. */
3532 regcache_raw_write (regcache,
3533 I387_XMM0_REGNUM (tdep) + regnum,
3534 buf);
3535 /* ... Write upper 128bits. */
3536 regcache_raw_write (regcache,
3537 tdep->ymm0h_regnum + regnum,
3538 buf + 16);
3539 }
01f9f808
MS
3540 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3541 {
3542 regnum -= tdep->ymm16_regnum;
3543
3544 /* ... Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM16_REGNUM (tdep) + regnum,
3547 buf);
3548 /* ... Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 tdep->ymm16h_regnum + regnum,
3551 buf + 16);
3552 }
c131fcee 3553 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3554 {
3555 int gpnum = regnum - tdep->ax_regnum;
3556
3557 /* Read ... */
3558 regcache_raw_read (regcache, gpnum, raw_buf);
3559 /* ... Modify ... (always little endian). */
3560 memcpy (raw_buf, buf, 2);
3561 /* ... Write. */
3562 regcache_raw_write (regcache, gpnum, raw_buf);
3563 }
3564 else if (i386_byte_regnum_p (gdbarch, regnum))
3565 {
3566 /* Check byte pseudo registers last since this function will
3567 be called from amd64_pseudo_register_read, which handles
3568 byte pseudo registers differently. */
3569 int gpnum = regnum - tdep->al_regnum;
3570
3571 /* Read ... We read both lower and upper registers. */
3572 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3573 /* ... Modify ... (always little endian). */
3574 if (gpnum >= 4)
3575 memcpy (raw_buf + 1, buf, 1);
3576 else
3577 memcpy (raw_buf, buf, 1);
3578 /* ... Write. */
3579 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3580 }
3581 else
3582 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3583 }
28fc6740 3584}
ff2e87ac
AC
3585\f
3586
ff2e87ac
AC
3587/* Return the register number of the register allocated by GCC after
3588 REGNUM, or -1 if there is no such register. */
3589
3590static int
3591i386_next_regnum (int regnum)
3592{
3593 /* GCC allocates the registers in the order:
3594
3595 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3596
3597 Since storing a variable in %esp doesn't make any sense we return
3598 -1 for %ebp and for %esp itself. */
3599 static int next_regnum[] =
3600 {
3601 I386_EDX_REGNUM, /* Slot for %eax. */
3602 I386_EBX_REGNUM, /* Slot for %ecx. */
3603 I386_ECX_REGNUM, /* Slot for %edx. */
3604 I386_ESI_REGNUM, /* Slot for %ebx. */
3605 -1, -1, /* Slots for %esp and %ebp. */
3606 I386_EDI_REGNUM, /* Slot for %esi. */
3607 I386_EBP_REGNUM /* Slot for %edi. */
3608 };
3609
de5b9bb9 3610 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3611 return next_regnum[regnum];
28fc6740 3612
ff2e87ac
AC
3613 return -1;
3614}
3615
3616/* Return nonzero if a value of type TYPE stored in register REGNUM
3617 needs any special handling. */
d7a0d72c 3618
3a1e71e3 3619static int
1777feb0
MS
3620i386_convert_register_p (struct gdbarch *gdbarch,
3621 int regnum, struct type *type)
d7a0d72c 3622{
de5b9bb9
MK
3623 int len = TYPE_LENGTH (type);
3624
ff2e87ac
AC
3625 /* Values may be spread across multiple registers. Most debugging
3626 formats aren't expressive enough to specify the locations, so
3627 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3628 have a length that is a multiple of the word size, since GCC
3629 doesn't seem to put any other types into registers. */
3630 if (len > 4 && len % 4 == 0)
3631 {
3632 int last_regnum = regnum;
3633
3634 while (len > 4)
3635 {
3636 last_regnum = i386_next_regnum (last_regnum);
3637 len -= 4;
3638 }
3639
3640 if (last_regnum != -1)
3641 return 1;
3642 }
ff2e87ac 3643
0abe36f5 3644 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3645}
3646
ff2e87ac
AC
3647/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3648 return its contents in TO. */
ac27f131 3649
8dccd430 3650static int
ff2e87ac 3651i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3652 struct type *type, gdb_byte *to,
3653 int *optimizedp, int *unavailablep)
ac27f131 3654{
20a6ec49 3655 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3656 int len = TYPE_LENGTH (type);
de5b9bb9 3657
20a6ec49 3658 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3659 return i387_register_to_value (frame, regnum, type, to,
3660 optimizedp, unavailablep);
ff2e87ac 3661
fd35795f 3662 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3663
3664 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3665
de5b9bb9
MK
3666 while (len > 0)
3667 {
3668 gdb_assert (regnum != -1);
20a6ec49 3669 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3670
8dccd430
PA
3671 if (!get_frame_register_bytes (frame, regnum, 0,
3672 register_size (gdbarch, regnum),
3673 to, optimizedp, unavailablep))
3674 return 0;
3675
de5b9bb9
MK
3676 regnum = i386_next_regnum (regnum);
3677 len -= 4;
42835c2b 3678 to += 4;
de5b9bb9 3679 }
8dccd430
PA
3680
3681 *optimizedp = *unavailablep = 0;
3682 return 1;
ac27f131
MK
3683}
3684
ff2e87ac
AC
3685/* Write the contents FROM of a value of type TYPE into register
3686 REGNUM in frame FRAME. */
ac27f131 3687
3a1e71e3 3688static void
ff2e87ac 3689i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3690 struct type *type, const gdb_byte *from)
ac27f131 3691{
de5b9bb9 3692 int len = TYPE_LENGTH (type);
de5b9bb9 3693
20a6ec49 3694 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3695 {
d532c08f
MK
3696 i387_value_to_register (frame, regnum, type, from);
3697 return;
3698 }
3d261580 3699
fd35795f 3700 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3701
3702 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3703
de5b9bb9
MK
3704 while (len > 0)
3705 {
3706 gdb_assert (regnum != -1);
875f8d0e 3707 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3708
42835c2b 3709 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3710 regnum = i386_next_regnum (regnum);
3711 len -= 4;
42835c2b 3712 from += 4;
de5b9bb9 3713 }
ac27f131 3714}
ff2e87ac 3715\f
7fdafb5a
MK
3716/* Supply register REGNUM from the buffer specified by GREGS and LEN
3717 in the general-purpose register set REGSET to register cache
3718 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3719
20187ed5 3720void
473f17b0
MK
3721i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3722 int regnum, const void *gregs, size_t len)
3723{
09424cff
AA
3724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3725 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3726 const gdb_byte *regs = gregs;
473f17b0
MK
3727 int i;
3728
3729 gdb_assert (len == tdep->sizeof_gregset);
3730
3731 for (i = 0; i < tdep->gregset_num_regs; i++)
3732 {
3733 if ((regnum == i || regnum == -1)
3734 && tdep->gregset_reg_offset[i] != -1)
3735 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3736 }
3737}
3738
7fdafb5a
MK
3739/* Collect register REGNUM from the register cache REGCACHE and store
3740 it in the buffer specified by GREGS and LEN as described by the
3741 general-purpose register set REGSET. If REGNUM is -1, do this for
3742 all registers in REGSET. */
3743
ecc37a5a 3744static void
7fdafb5a
MK
3745i386_collect_gregset (const struct regset *regset,
3746 const struct regcache *regcache,
3747 int regnum, void *gregs, size_t len)
3748{
09424cff
AA
3749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3750 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3751 gdb_byte *regs = gregs;
7fdafb5a
MK
3752 int i;
3753
3754 gdb_assert (len == tdep->sizeof_gregset);
3755
3756 for (i = 0; i < tdep->gregset_num_regs; i++)
3757 {
3758 if ((regnum == i || regnum == -1)
3759 && tdep->gregset_reg_offset[i] != -1)
3760 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3761 }
3762}
3763
3764/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3765 in the floating-point register set REGSET to register cache
3766 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3767
3768static void
3769i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3770 int regnum, const void *fpregs, size_t len)
3771{
09424cff
AA
3772 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3773 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3774
66a72d25
MK
3775 if (len == I387_SIZEOF_FXSAVE)
3776 {
3777 i387_supply_fxsave (regcache, regnum, fpregs);
3778 return;
3779 }
3780
473f17b0
MK
3781 gdb_assert (len == tdep->sizeof_fpregset);
3782 i387_supply_fsave (regcache, regnum, fpregs);
3783}
8446b36a 3784
2f305df1
MK
3785/* Collect register REGNUM from the register cache REGCACHE and store
3786 it in the buffer specified by FPREGS and LEN as described by the
3787 floating-point register set REGSET. If REGNUM is -1, do this for
3788 all registers in REGSET. */
7fdafb5a
MK
3789
3790static void
3791i386_collect_fpregset (const struct regset *regset,
3792 const struct regcache *regcache,
3793 int regnum, void *fpregs, size_t len)
3794{
09424cff
AA
3795 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3796 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3797
3798 if (len == I387_SIZEOF_FXSAVE)
3799 {
3800 i387_collect_fxsave (regcache, regnum, fpregs);
3801 return;
3802 }
3803
3804 gdb_assert (len == tdep->sizeof_fpregset);
3805 i387_collect_fsave (regcache, regnum, fpregs);
3806}
3807
ecc37a5a
AA
3808/* Register set definitions. */
3809
3810const struct regset i386_gregset =
3811 {
3812 NULL, i386_supply_gregset, i386_collect_gregset
3813 };
3814
8f0435f7 3815const struct regset i386_fpregset =
ecc37a5a
AA
3816 {
3817 NULL, i386_supply_fpregset, i386_collect_fpregset
3818 };
3819
490496c3 3820/* Default iterator over core file register note sections. */
8446b36a 3821
490496c3
AA
3822void
3823i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3824 iterate_over_regset_sections_cb *cb,
3825 void *cb_data,
3826 const struct regcache *regcache)
8446b36a
MK
3827{
3828 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3829
490496c3
AA
3830 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3831 if (tdep->sizeof_fpregset)
3832 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3833}
473f17b0 3834\f
fc338970 3835
fc338970 3836/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3837
3838CORE_ADDR
e17a4113
UW
3839i386_pe_skip_trampoline_code (struct frame_info *frame,
3840 CORE_ADDR pc, char *name)
c906108c 3841{
e17a4113
UW
3842 struct gdbarch *gdbarch = get_frame_arch (frame);
3843 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3844
3845 /* jmp *(dest) */
3846 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3847 {
e17a4113
UW
3848 unsigned long indirect =
3849 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3850 struct minimal_symbol *indsym =
7cbd4a93 3851 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3852 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3853
c5aa993b 3854 if (symname)
c906108c 3855 {
c5aa993b
JM
3856 if (strncmp (symname, "__imp_", 6) == 0
3857 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3858 return name ? 1 :
3859 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3860 }
3861 }
fc338970 3862 return 0; /* Not a trampoline. */
c906108c 3863}
fc338970
MK
3864\f
3865
10458914
DJ
3866/* Return whether the THIS_FRAME corresponds to a sigtramp
3867 routine. */
8201327c 3868
4bd207ef 3869int
10458914 3870i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3871{
10458914 3872 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3873 const char *name;
911bc6ee
MK
3874
3875 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3876 return (name && strcmp ("_sigtramp", name) == 0);
3877}
3878\f
3879
fc338970
MK
3880/* We have two flavours of disassembly. The machinery on this page
3881 deals with switching between those. */
c906108c
SS
3882
3883static int
a89aa300 3884i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3885{
5e3397bb
MK
3886 gdb_assert (disassembly_flavor == att_flavor
3887 || disassembly_flavor == intel_flavor);
3888
3889 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3890 constified, cast to prevent a compiler warning. */
3891 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3892
3893 return print_insn_i386 (pc, info);
7a292a7a 3894}
fc338970 3895\f
3ce1502b 3896
8201327c
MK
3897/* There are a few i386 architecture variants that differ only
3898 slightly from the generic i386 target. For now, we don't give them
3899 their own source file, but include them here. As a consequence,
3900 they'll always be included. */
3ce1502b 3901
8201327c 3902/* System V Release 4 (SVR4). */
3ce1502b 3903
10458914
DJ
3904/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3905 routine. */
911bc6ee 3906
8201327c 3907static int
10458914 3908i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3909{
10458914 3910 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3911 const char *name;
911bc6ee 3912
05b4bd79 3913 /* The origin of these symbols is currently unknown. */
911bc6ee 3914 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3915 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3916 || strcmp ("sigvechandler", name) == 0));
3917}
d2a7c97a 3918
10458914
DJ
3919/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3920 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3921
3a1e71e3 3922static CORE_ADDR
10458914 3923i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3924{
e17a4113
UW
3925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3926 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3927 gdb_byte buf[4];
acd5c798 3928 CORE_ADDR sp;
3ce1502b 3929
10458914 3930 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3931 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3932
e17a4113 3933 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3934}
55aa24fb
SDJ
3935
3936\f
3937
3938/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3939 gdbarch.h. */
3940
3941int
3942i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3943{
3944 return (*s == '$' /* Literal number. */
3945 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3946 || (*s == '(' && s[1] == '%') /* Register indirection. */
3947 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3948}
3949
5acfdbae
SDJ
3950/* Helper function for i386_stap_parse_special_token.
3951
3952 This function parses operands of the form `-8+3+1(%rbp)', which
3953 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3954
3955 Return 1 if the operand was parsed successfully, zero
3956 otherwise. */
3957
3958static int
3959i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3960 struct stap_parse_info *p)
3961{
3962 const char *s = p->arg;
3963
3964 if (isdigit (*s) || *s == '-' || *s == '+')
3965 {
3966 int got_minus[3];
3967 int i;
3968 long displacements[3];
3969 const char *start;
3970 char *regname;
3971 int len;
3972 struct stoken str;
3973 char *endp;
3974
3975 got_minus[0] = 0;
3976 if (*s == '+')
3977 ++s;
3978 else if (*s == '-')
3979 {
3980 ++s;
3981 got_minus[0] = 1;
3982 }
3983
d7b30f67
SDJ
3984 if (!isdigit ((unsigned char) *s))
3985 return 0;
3986
5acfdbae
SDJ
3987 displacements[0] = strtol (s, &endp, 10);
3988 s = endp;
3989
3990 if (*s != '+' && *s != '-')
3991 {
3992 /* We are not dealing with a triplet. */
3993 return 0;
3994 }
3995
3996 got_minus[1] = 0;
3997 if (*s == '+')
3998 ++s;
3999 else
4000 {
4001 ++s;
4002 got_minus[1] = 1;
4003 }
4004
d7b30f67
SDJ
4005 if (!isdigit ((unsigned char) *s))
4006 return 0;
4007
5acfdbae
SDJ
4008 displacements[1] = strtol (s, &endp, 10);
4009 s = endp;
4010
4011 if (*s != '+' && *s != '-')
4012 {
4013 /* We are not dealing with a triplet. */
4014 return 0;
4015 }
4016
4017 got_minus[2] = 0;
4018 if (*s == '+')
4019 ++s;
4020 else
4021 {
4022 ++s;
4023 got_minus[2] = 1;
4024 }
4025
d7b30f67
SDJ
4026 if (!isdigit ((unsigned char) *s))
4027 return 0;
4028
5acfdbae
SDJ
4029 displacements[2] = strtol (s, &endp, 10);
4030 s = endp;
4031
4032 if (*s != '(' || s[1] != '%')
4033 return 0;
4034
4035 s += 2;
4036 start = s;
4037
4038 while (isalnum (*s))
4039 ++s;
4040
4041 if (*s++ != ')')
4042 return 0;
4043
d7b30f67 4044 len = s - start - 1;
5acfdbae
SDJ
4045 regname = alloca (len + 1);
4046
4047 strncpy (regname, start, len);
4048 regname[len] = '\0';
4049
4050 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4051 error (_("Invalid register name `%s' on expression `%s'."),
4052 regname, p->saved_arg);
4053
4054 for (i = 0; i < 3; i++)
4055 {
410a0ff2
SDJ
4056 write_exp_elt_opcode (&p->pstate, OP_LONG);
4057 write_exp_elt_type
4058 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4059 write_exp_elt_longcst (&p->pstate, displacements[i]);
4060 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4061 if (got_minus[i])
410a0ff2 4062 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4063 }
4064
410a0ff2 4065 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4066 str.ptr = regname;
4067 str.length = len;
410a0ff2
SDJ
4068 write_exp_string (&p->pstate, str);
4069 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4070
410a0ff2
SDJ
4071 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4072 write_exp_elt_type (&p->pstate,
4073 builtin_type (gdbarch)->builtin_data_ptr);
4074 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4075
410a0ff2
SDJ
4076 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4077 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4078 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4079
410a0ff2
SDJ
4080 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4081 write_exp_elt_type (&p->pstate,
4082 lookup_pointer_type (p->arg_type));
4083 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4084
410a0ff2 4085 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4086
4087 p->arg = s;
4088
4089 return 1;
4090 }
4091
4092 return 0;
4093}
4094
4095/* Helper function for i386_stap_parse_special_token.
4096
4097 This function parses operands of the form `register base +
4098 (register index * size) + offset', as represented in
4099 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4100
4101 Return 1 if the operand was parsed successfully, zero
4102 otherwise. */
4103
4104static int
4105i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4106 struct stap_parse_info *p)
4107{
4108 const char *s = p->arg;
4109
4110 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4111 {
4112 int offset_minus = 0;
4113 long offset = 0;
4114 int size_minus = 0;
4115 long size = 0;
4116 const char *start;
4117 char *base;
4118 int len_base;
4119 char *index;
4120 int len_index;
4121 struct stoken base_token, index_token;
4122
4123 if (*s == '+')
4124 ++s;
4125 else if (*s == '-')
4126 {
4127 ++s;
4128 offset_minus = 1;
4129 }
4130
4131 if (offset_minus && !isdigit (*s))
4132 return 0;
4133
4134 if (isdigit (*s))
4135 {
4136 char *endp;
4137
4138 offset = strtol (s, &endp, 10);
4139 s = endp;
4140 }
4141
4142 if (*s != '(' || s[1] != '%')
4143 return 0;
4144
4145 s += 2;
4146 start = s;
4147
4148 while (isalnum (*s))
4149 ++s;
4150
4151 if (*s != ',' || s[1] != '%')
4152 return 0;
4153
4154 len_base = s - start;
4155 base = alloca (len_base + 1);
4156 strncpy (base, start, len_base);
4157 base[len_base] = '\0';
4158
4159 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4160 error (_("Invalid register name `%s' on expression `%s'."),
4161 base, p->saved_arg);
4162
4163 s += 2;
4164 start = s;
4165
4166 while (isalnum (*s))
4167 ++s;
4168
4169 len_index = s - start;
4170 index = alloca (len_index + 1);
4171 strncpy (index, start, len_index);
4172 index[len_index] = '\0';
4173
4174 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4175 error (_("Invalid register name `%s' on expression `%s'."),
4176 index, p->saved_arg);
4177
4178 if (*s != ',' && *s != ')')
4179 return 0;
4180
4181 if (*s == ',')
4182 {
4183 char *endp;
4184
4185 ++s;
4186 if (*s == '+')
4187 ++s;
4188 else if (*s == '-')
4189 {
4190 ++s;
4191 size_minus = 1;
4192 }
4193
4194 size = strtol (s, &endp, 10);
4195 s = endp;
4196
4197 if (*s != ')')
4198 return 0;
4199 }
4200
4201 ++s;
4202
4203 if (offset)
4204 {
410a0ff2
SDJ
4205 write_exp_elt_opcode (&p->pstate, OP_LONG);
4206 write_exp_elt_type (&p->pstate,
4207 builtin_type (gdbarch)->builtin_long);
4208 write_exp_elt_longcst (&p->pstate, offset);
4209 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4210 if (offset_minus)
410a0ff2 4211 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4212 }
4213
410a0ff2 4214 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4215 base_token.ptr = base;
4216 base_token.length = len_base;
410a0ff2
SDJ
4217 write_exp_string (&p->pstate, base_token);
4218 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4219
4220 if (offset)
410a0ff2 4221 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4222
410a0ff2 4223 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4224 index_token.ptr = index;
4225 index_token.length = len_index;
410a0ff2
SDJ
4226 write_exp_string (&p->pstate, index_token);
4227 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4228
4229 if (size)
4230 {
410a0ff2
SDJ
4231 write_exp_elt_opcode (&p->pstate, OP_LONG);
4232 write_exp_elt_type (&p->pstate,
4233 builtin_type (gdbarch)->builtin_long);
4234 write_exp_elt_longcst (&p->pstate, size);
4235 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4236 if (size_minus)
410a0ff2
SDJ
4237 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4238 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4239 }
4240
410a0ff2 4241 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4242
410a0ff2
SDJ
4243 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4244 write_exp_elt_type (&p->pstate,
4245 lookup_pointer_type (p->arg_type));
4246 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4247
410a0ff2 4248 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4249
4250 p->arg = s;
4251
4252 return 1;
4253 }
4254
4255 return 0;
4256}
4257
55aa24fb
SDJ
4258/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4259 gdbarch.h. */
4260
4261int
4262i386_stap_parse_special_token (struct gdbarch *gdbarch,
4263 struct stap_parse_info *p)
4264{
55aa24fb
SDJ
4265 /* In order to parse special tokens, we use a state-machine that go
4266 through every known token and try to get a match. */
4267 enum
4268 {
4269 TRIPLET,
4270 THREE_ARG_DISPLACEMENT,
4271 DONE
4272 } current_state;
4273
4274 current_state = TRIPLET;
4275
4276 /* The special tokens to be parsed here are:
4277
4278 - `register base + (register index * size) + offset', as represented
4279 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4280
4281 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4282 `*(-8 + 3 - 1 + (void *) $eax)'. */
4283
4284 while (current_state != DONE)
4285 {
55aa24fb
SDJ
4286 switch (current_state)
4287 {
4288 case TRIPLET:
5acfdbae
SDJ
4289 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4290 return 1;
4291 break;
4292
55aa24fb 4293 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4294 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4295 return 1;
4296 break;
55aa24fb
SDJ
4297 }
4298
4299 /* Advancing to the next state. */
4300 ++current_state;
4301 }
4302
4303 return 0;
4304}
4305
8201327c 4306\f
3ce1502b 4307
8201327c 4308/* Generic ELF. */
d2a7c97a 4309
8201327c
MK
4310void
4311i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4312{
05c0465e
SDJ
4313 static const char *const stap_integer_prefixes[] = { "$", NULL };
4314 static const char *const stap_register_prefixes[] = { "%", NULL };
4315 static const char *const stap_register_indirection_prefixes[] = { "(",
4316 NULL };
4317 static const char *const stap_register_indirection_suffixes[] = { ")",
4318 NULL };
4319
c4fc7f1b
MK
4320 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4321 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4322
4323 /* Registering SystemTap handlers. */
05c0465e
SDJ
4324 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4325 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4326 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4327 stap_register_indirection_prefixes);
4328 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4329 stap_register_indirection_suffixes);
55aa24fb
SDJ
4330 set_gdbarch_stap_is_single_operand (gdbarch,
4331 i386_stap_is_single_operand);
4332 set_gdbarch_stap_parse_special_token (gdbarch,
4333 i386_stap_parse_special_token);
8201327c 4334}
3ce1502b 4335
8201327c 4336/* System V Release 4 (SVR4). */
3ce1502b 4337
8201327c
MK
4338void
4339i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4340{
4341 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4342
8201327c
MK
4343 /* System V Release 4 uses ELF. */
4344 i386_elf_init_abi (info, gdbarch);
3ce1502b 4345
dfe01d39 4346 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4347 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4348
911bc6ee 4349 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4350 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4351 tdep->sc_pc_offset = 36 + 14 * 4;
4352 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4353
8201327c 4354 tdep->jb_pc_offset = 20;
3ce1502b
MK
4355}
4356
8201327c 4357/* DJGPP. */
3ce1502b 4358
3a1e71e3 4359static void
8201327c 4360i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4361{
8201327c 4362 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4363
911bc6ee
MK
4364 /* DJGPP doesn't have any special frames for signal handlers. */
4365 tdep->sigtramp_p = NULL;
3ce1502b 4366
8201327c 4367 tdep->jb_pc_offset = 36;
15430fc0
EZ
4368
4369 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4370 if (! tdesc_has_registers (info.target_desc))
4371 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4372
4373 /* Native compiler is GCC, which uses the SVR4 register numbering
4374 even in COFF and STABS. See the comment in i386_gdbarch_init,
4375 before the calls to set_gdbarch_stab_reg_to_regnum and
4376 set_gdbarch_sdb_reg_to_regnum. */
4377 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4378 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4379
4380 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4381}
8201327c 4382\f
2acceee2 4383
38c968cf
AC
4384/* i386 register groups. In addition to the normal groups, add "mmx"
4385 and "sse". */
4386
4387static struct reggroup *i386_sse_reggroup;
4388static struct reggroup *i386_mmx_reggroup;
4389
4390static void
4391i386_init_reggroups (void)
4392{
4393 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4394 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4395}
4396
4397static void
4398i386_add_reggroups (struct gdbarch *gdbarch)
4399{
4400 reggroup_add (gdbarch, i386_sse_reggroup);
4401 reggroup_add (gdbarch, i386_mmx_reggroup);
4402 reggroup_add (gdbarch, general_reggroup);
4403 reggroup_add (gdbarch, float_reggroup);
4404 reggroup_add (gdbarch, all_reggroup);
4405 reggroup_add (gdbarch, save_reggroup);
4406 reggroup_add (gdbarch, restore_reggroup);
4407 reggroup_add (gdbarch, vector_reggroup);
4408 reggroup_add (gdbarch, system_reggroup);
4409}
4410
4411int
4412i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4413 struct reggroup *group)
4414{
c131fcee
L
4415 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4416 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4417 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4418 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4419 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4420 avx512_p, avx_p, sse_p;
acd5c798 4421
1ba53b71
L
4422 /* Don't include pseudo registers, except for MMX, in any register
4423 groups. */
c131fcee 4424 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4425 return 0;
4426
c131fcee 4427 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4428 return 0;
4429
c131fcee 4430 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4431 return 0;
4432
4433 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4434 if (group == i386_mmx_reggroup)
4435 return mmx_regnum_p;
1ba53b71 4436
c131fcee 4437 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4438 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4439 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4440 if (group == i386_sse_reggroup)
01f9f808 4441 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4442
4443 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4444 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4445 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4446
df7e5265
GB
4447 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4448 == X86_XSTATE_AVX512_MASK);
4449 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4450 == X86_XSTATE_AVX_MASK) && !avx512_p;
4451 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX512_MASK)
4452 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4453
38c968cf 4454 if (group == vector_reggroup)
c131fcee 4455 return (mmx_regnum_p
01f9f808
MS
4456 || (zmm_regnum_p && avx512_p)
4457 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4458 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4459 || mxcsr_regnum_p);
1ba53b71
L
4460
4461 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4462 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4463 if (group == float_reggroup)
4464 return fp_regnum_p;
1ba53b71 4465
c131fcee
L
4466 /* For "info reg all", don't include upper YMM registers nor XMM
4467 registers when AVX is supported. */
4468 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4469 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4470 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4471 if (group == all_reggroup
01f9f808
MS
4472 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4473 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4474 || ymmh_regnum_p
4475 || ymmh_avx512_regnum_p
4476 || zmmh_regnum_p))
c131fcee
L
4477 return 0;
4478
1dbcd68c
WT
4479 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4480 if (group == all_reggroup
df7e5265 4481 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4482 return bnd_regnum_p;
4483
4484 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4485 if (group == all_reggroup
df7e5265 4486 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4487 return 0;
4488
4489 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4490 if (group == all_reggroup
df7e5265 4491 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4492 return mpx_ctrl_regnum_p;
4493
38c968cf 4494 if (group == general_reggroup)
1ba53b71
L
4495 return (!fp_regnum_p
4496 && !mmx_regnum_p
c131fcee
L
4497 && !mxcsr_regnum_p
4498 && !xmm_regnum_p
01f9f808 4499 && !xmm_avx512_regnum_p
c131fcee 4500 && !ymm_regnum_p
1dbcd68c 4501 && !ymmh_regnum_p
01f9f808
MS
4502 && !ymm_avx512_regnum_p
4503 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4504 && !bndr_regnum_p
4505 && !bnd_regnum_p
01f9f808
MS
4506 && !mpx_ctrl_regnum_p
4507 && !zmm_regnum_p
4508 && !zmmh_regnum_p);
acd5c798 4509
38c968cf
AC
4510 return default_register_reggroup_p (gdbarch, regnum, group);
4511}
38c968cf 4512\f
acd5c798 4513
f837910f
MK
4514/* Get the ARGIth function argument for the current function. */
4515
42c466d7 4516static CORE_ADDR
143985b7
AF
4517i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4518 struct type *type)
4519{
e17a4113
UW
4520 struct gdbarch *gdbarch = get_frame_arch (frame);
4521 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4522 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4523 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4524}
4525
7ad10968
HZ
4526#define PREFIX_REPZ 0x01
4527#define PREFIX_REPNZ 0x02
4528#define PREFIX_LOCK 0x04
4529#define PREFIX_DATA 0x08
4530#define PREFIX_ADDR 0x10
473f17b0 4531
7ad10968
HZ
4532/* operand size */
4533enum
4534{
4535 OT_BYTE = 0,
4536 OT_WORD,
4537 OT_LONG,
cf648174 4538 OT_QUAD,
a3c4230a 4539 OT_DQUAD,
7ad10968 4540};
473f17b0 4541
7ad10968
HZ
4542/* i386 arith/logic operations */
4543enum
4544{
4545 OP_ADDL,
4546 OP_ORL,
4547 OP_ADCL,
4548 OP_SBBL,
4549 OP_ANDL,
4550 OP_SUBL,
4551 OP_XORL,
4552 OP_CMPL,
4553};
5716833c 4554
7ad10968
HZ
4555struct i386_record_s
4556{
cf648174 4557 struct gdbarch *gdbarch;
7ad10968 4558 struct regcache *regcache;
df61f520 4559 CORE_ADDR orig_addr;
7ad10968
HZ
4560 CORE_ADDR addr;
4561 int aflag;
4562 int dflag;
4563 int override;
4564 uint8_t modrm;
4565 uint8_t mod, reg, rm;
4566 int ot;
cf648174
HZ
4567 uint8_t rex_x;
4568 uint8_t rex_b;
4569 int rip_offset;
4570 int popl_esp_hack;
4571 const int *regmap;
7ad10968 4572};
5716833c 4573
99c1624c
PA
4574/* Parse the "modrm" part of the memory address irp->addr points at.
4575 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4576
7ad10968
HZ
4577static int
4578i386_record_modrm (struct i386_record_s *irp)
4579{
cf648174 4580 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4581
4ffa4fc7
PA
4582 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4583 return -1;
4584
7ad10968
HZ
4585 irp->addr++;
4586 irp->mod = (irp->modrm >> 6) & 3;
4587 irp->reg = (irp->modrm >> 3) & 7;
4588 irp->rm = irp->modrm & 7;
5716833c 4589
7ad10968
HZ
4590 return 0;
4591}
d2a7c97a 4592
99c1624c
PA
4593/* Extract the memory address that the current instruction writes to,
4594 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4595
7ad10968 4596static int
cf648174 4597i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4598{
cf648174 4599 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4601 gdb_byte buf[4];
4602 ULONGEST offset64;
21d0e8a4 4603
7ad10968 4604 *addr = 0;
1e87984a 4605 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4606 {
1e87984a 4607 /* 32/64 bits */
7ad10968
HZ
4608 int havesib = 0;
4609 uint8_t scale = 0;
648d0c8b 4610 uint8_t byte;
7ad10968
HZ
4611 uint8_t index = 0;
4612 uint8_t base = irp->rm;
896fb97d 4613
7ad10968
HZ
4614 if (base == 4)
4615 {
4616 havesib = 1;
4ffa4fc7
PA
4617 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4618 return -1;
7ad10968 4619 irp->addr++;
648d0c8b
MS
4620 scale = (byte >> 6) & 3;
4621 index = ((byte >> 3) & 7) | irp->rex_x;
4622 base = (byte & 7);
7ad10968 4623 }
cf648174 4624 base |= irp->rex_b;
21d0e8a4 4625
7ad10968
HZ
4626 switch (irp->mod)
4627 {
4628 case 0:
4629 if ((base & 7) == 5)
4630 {
4631 base = 0xff;
4ffa4fc7
PA
4632 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4633 return -1;
7ad10968 4634 irp->addr += 4;
60a1502a 4635 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4636 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4637 *addr += irp->addr + irp->rip_offset;
7ad10968 4638 }
7ad10968
HZ
4639 break;
4640 case 1:
4ffa4fc7
PA
4641 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4642 return -1;
7ad10968 4643 irp->addr++;
60a1502a 4644 *addr = (int8_t) buf[0];
7ad10968
HZ
4645 break;
4646 case 2:
4ffa4fc7
PA
4647 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4648 return -1;
60a1502a 4649 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4650 irp->addr += 4;
4651 break;
4652 }
356a6b3e 4653
60a1502a 4654 offset64 = 0;
7ad10968 4655 if (base != 0xff)
cf648174
HZ
4656 {
4657 if (base == 4 && irp->popl_esp_hack)
4658 *addr += irp->popl_esp_hack;
4659 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4660 &offset64);
7ad10968 4661 }
cf648174
HZ
4662 if (irp->aflag == 2)
4663 {
60a1502a 4664 *addr += offset64;
cf648174
HZ
4665 }
4666 else
60a1502a 4667 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4668
7ad10968
HZ
4669 if (havesib && (index != 4 || scale != 0))
4670 {
cf648174 4671 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4672 &offset64);
cf648174 4673 if (irp->aflag == 2)
60a1502a 4674 *addr += offset64 << scale;
cf648174 4675 else
60a1502a 4676 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4677 }
e85596e0
L
4678
4679 if (!irp->aflag)
4680 {
4681 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4682 address from 32-bit to 64-bit. */
4683 *addr = (uint32_t) *addr;
4684 }
7ad10968
HZ
4685 }
4686 else
4687 {
4688 /* 16 bits */
4689 switch (irp->mod)
4690 {
4691 case 0:
4692 if (irp->rm == 6)
4693 {
4ffa4fc7
PA
4694 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4695 return -1;
7ad10968 4696 irp->addr += 2;
60a1502a 4697 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4698 irp->rm = 0;
4699 goto no_rm;
4700 }
7ad10968
HZ
4701 break;
4702 case 1:
4ffa4fc7
PA
4703 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4704 return -1;
7ad10968 4705 irp->addr++;
60a1502a 4706 *addr = (int8_t) buf[0];
7ad10968
HZ
4707 break;
4708 case 2:
4ffa4fc7
PA
4709 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4710 return -1;
7ad10968 4711 irp->addr += 2;
60a1502a 4712 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4713 break;
4714 }
c4fc7f1b 4715
7ad10968
HZ
4716 switch (irp->rm)
4717 {
4718 case 0:
cf648174
HZ
4719 regcache_raw_read_unsigned (irp->regcache,
4720 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4721 &offset64);
4722 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4723 regcache_raw_read_unsigned (irp->regcache,
4724 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4725 &offset64);
4726 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4727 break;
4728 case 1:
cf648174
HZ
4729 regcache_raw_read_unsigned (irp->regcache,
4730 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4731 &offset64);
4732 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4733 regcache_raw_read_unsigned (irp->regcache,
4734 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4735 &offset64);
4736 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4737 break;
4738 case 2:
cf648174
HZ
4739 regcache_raw_read_unsigned (irp->regcache,
4740 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4741 &offset64);
4742 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4743 regcache_raw_read_unsigned (irp->regcache,
4744 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4745 &offset64);
4746 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4747 break;
4748 case 3:
cf648174
HZ
4749 regcache_raw_read_unsigned (irp->regcache,
4750 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4751 &offset64);
4752 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4753 regcache_raw_read_unsigned (irp->regcache,
4754 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4755 &offset64);
4756 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4757 break;
4758 case 4:
cf648174
HZ
4759 regcache_raw_read_unsigned (irp->regcache,
4760 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4761 &offset64);
4762 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4763 break;
4764 case 5:
cf648174
HZ
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4769 break;
4770 case 6:
cf648174
HZ
4771 regcache_raw_read_unsigned (irp->regcache,
4772 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4773 &offset64);
4774 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4775 break;
4776 case 7:
cf648174
HZ
4777 regcache_raw_read_unsigned (irp->regcache,
4778 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4779 &offset64);
4780 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4781 break;
4782 }
4783 *addr &= 0xffff;
4784 }
c4fc7f1b 4785
01fe1b41 4786 no_rm:
7ad10968
HZ
4787 return 0;
4788}
c4fc7f1b 4789
99c1624c
PA
4790/* Record the address and contents of the memory that will be changed
4791 by the current instruction. Return -1 if something goes wrong, 0
4792 otherwise. */
356a6b3e 4793
7ad10968
HZ
4794static int
4795i386_record_lea_modrm (struct i386_record_s *irp)
4796{
cf648174
HZ
4797 struct gdbarch *gdbarch = irp->gdbarch;
4798 uint64_t addr;
356a6b3e 4799
d7877f7e 4800 if (irp->override >= 0)
7ad10968 4801 {
25ea693b 4802 if (record_full_memory_query)
bb08c432
HZ
4803 {
4804 int q;
4805
4806 target_terminal_ours ();
4807 q = yquery (_("\
4808Process record ignores the memory change of instruction at address %s\n\
4809because it can't get the value of the segment register.\n\
4810Do you want to stop the program?"),
4811 paddress (gdbarch, irp->orig_addr));
4812 target_terminal_inferior ();
4813 if (q)
4814 return -1;
4815 }
4816
7ad10968
HZ
4817 return 0;
4818 }
61113f8b 4819
7ad10968
HZ
4820 if (i386_record_lea_modrm_addr (irp, &addr))
4821 return -1;
96297dab 4822
25ea693b 4823 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4824 return -1;
a62cc96e 4825
7ad10968
HZ
4826 return 0;
4827}
b6197528 4828
99c1624c
PA
4829/* Record the effects of a push operation. Return -1 if something
4830 goes wrong, 0 otherwise. */
cf648174
HZ
4831
4832static int
4833i386_record_push (struct i386_record_s *irp, int size)
4834{
648d0c8b 4835 ULONGEST addr;
cf648174 4836
25ea693b
MM
4837 if (record_full_arch_list_add_reg (irp->regcache,
4838 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4839 return -1;
4840 regcache_raw_read_unsigned (irp->regcache,
4841 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4842 &addr);
25ea693b 4843 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4844 return -1;
4845
4846 return 0;
4847}
4848
0289bdd7
MS
4849
4850/* Defines contents to record. */
4851#define I386_SAVE_FPU_REGS 0xfffd
4852#define I386_SAVE_FPU_ENV 0xfffe
4853#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4854
99c1624c
PA
4855/* Record the values of the floating point registers which will be
4856 changed by the current instruction. Returns -1 if something is
4857 wrong, 0 otherwise. */
0289bdd7
MS
4858
4859static int i386_record_floats (struct gdbarch *gdbarch,
4860 struct i386_record_s *ir,
4861 uint32_t iregnum)
4862{
4863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4864 int i;
4865
4866 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4867 happen. Currently we store st0-st7 registers, but we need not store all
4868 registers all the time, in future we use ftag register and record only
4869 those who are not marked as an empty. */
4870
4871 if (I386_SAVE_FPU_REGS == iregnum)
4872 {
4873 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4874 {
25ea693b 4875 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4876 return -1;
4877 }
4878 }
4879 else if (I386_SAVE_FPU_ENV == iregnum)
4880 {
4881 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4882 {
25ea693b 4883 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4884 return -1;
4885 }
4886 }
4887 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4888 {
4889 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4890 {
25ea693b 4891 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4892 return -1;
4893 }
4894 }
4895 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4896 (iregnum <= I387_FOP_REGNUM (tdep)))
4897 {
25ea693b 4898 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4899 return -1;
4900 }
4901 else
4902 {
4903 /* Parameter error. */
4904 return -1;
4905 }
4906 if(I386_SAVE_FPU_ENV != iregnum)
4907 {
4908 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4909 {
25ea693b 4910 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4911 return -1;
4912 }
4913 }
4914 return 0;
4915}
4916
99c1624c
PA
4917/* Parse the current instruction, and record the values of the
4918 registers and memory that will be changed by the current
4919 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4920
25ea693b
MM
4921#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4922 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4923
a6b808b4 4924int
7ad10968 4925i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4926 CORE_ADDR input_addr)
7ad10968 4927{
60a1502a 4928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4929 int prefixes = 0;
580879fc 4930 int regnum = 0;
425b824a 4931 uint32_t opcode;
f4644a3f 4932 uint8_t opcode8;
648d0c8b 4933 ULONGEST addr;
60a1502a 4934 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4935 struct i386_record_s ir;
0289bdd7 4936 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4937 uint8_t rex_w = -1;
4938 uint8_t rex_r = 0;
7ad10968 4939
8408d274 4940 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4941 ir.regcache = regcache;
648d0c8b
MS
4942 ir.addr = input_addr;
4943 ir.orig_addr = input_addr;
7ad10968
HZ
4944 ir.aflag = 1;
4945 ir.dflag = 1;
cf648174
HZ
4946 ir.override = -1;
4947 ir.popl_esp_hack = 0;
a3c4230a 4948 ir.regmap = tdep->record_regmap;
cf648174 4949 ir.gdbarch = gdbarch;
7ad10968
HZ
4950
4951 if (record_debug > 1)
4952 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4953 "addr = %s\n",
4954 paddress (gdbarch, ir.addr));
7ad10968
HZ
4955
4956 /* prefixes */
4957 while (1)
4958 {
4ffa4fc7
PA
4959 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
4960 return -1;
7ad10968 4961 ir.addr++;
425b824a 4962 switch (opcode8) /* Instruction prefixes */
7ad10968 4963 {
01fe1b41 4964 case REPE_PREFIX_OPCODE:
7ad10968
HZ
4965 prefixes |= PREFIX_REPZ;
4966 break;
01fe1b41 4967 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
4968 prefixes |= PREFIX_REPNZ;
4969 break;
01fe1b41 4970 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
4971 prefixes |= PREFIX_LOCK;
4972 break;
01fe1b41 4973 case CS_PREFIX_OPCODE:
cf648174 4974 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 4975 break;
01fe1b41 4976 case SS_PREFIX_OPCODE:
cf648174 4977 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 4978 break;
01fe1b41 4979 case DS_PREFIX_OPCODE:
cf648174 4980 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 4981 break;
01fe1b41 4982 case ES_PREFIX_OPCODE:
cf648174 4983 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 4984 break;
01fe1b41 4985 case FS_PREFIX_OPCODE:
cf648174 4986 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 4987 break;
01fe1b41 4988 case GS_PREFIX_OPCODE:
cf648174 4989 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 4990 break;
01fe1b41 4991 case DATA_PREFIX_OPCODE:
7ad10968
HZ
4992 prefixes |= PREFIX_DATA;
4993 break;
01fe1b41 4994 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
4995 prefixes |= PREFIX_ADDR;
4996 break;
d691bec7
MS
4997 case 0x40: /* i386 inc %eax */
4998 case 0x41: /* i386 inc %ecx */
4999 case 0x42: /* i386 inc %edx */
5000 case 0x43: /* i386 inc %ebx */
5001 case 0x44: /* i386 inc %esp */
5002 case 0x45: /* i386 inc %ebp */
5003 case 0x46: /* i386 inc %esi */
5004 case 0x47: /* i386 inc %edi */
5005 case 0x48: /* i386 dec %eax */
5006 case 0x49: /* i386 dec %ecx */
5007 case 0x4a: /* i386 dec %edx */
5008 case 0x4b: /* i386 dec %ebx */
5009 case 0x4c: /* i386 dec %esp */
5010 case 0x4d: /* i386 dec %ebp */
5011 case 0x4e: /* i386 dec %esi */
5012 case 0x4f: /* i386 dec %edi */
5013 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5014 {
5015 /* REX */
425b824a
MS
5016 rex_w = (opcode8 >> 3) & 1;
5017 rex_r = (opcode8 & 0x4) << 1;
5018 ir.rex_x = (opcode8 & 0x2) << 2;
5019 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5020 }
d691bec7
MS
5021 else /* 32 bit target */
5022 goto out_prefixes;
cf648174 5023 break;
7ad10968
HZ
5024 default:
5025 goto out_prefixes;
5026 break;
5027 }
5028 }
01fe1b41 5029 out_prefixes:
cf648174
HZ
5030 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5031 {
5032 ir.dflag = 2;
5033 }
5034 else
5035 {
5036 if (prefixes & PREFIX_DATA)
5037 ir.dflag ^= 1;
5038 }
7ad10968
HZ
5039 if (prefixes & PREFIX_ADDR)
5040 ir.aflag ^= 1;
cf648174
HZ
5041 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5042 ir.aflag = 2;
7ad10968 5043
1777feb0 5044 /* Now check op code. */
425b824a 5045 opcode = (uint32_t) opcode8;
01fe1b41 5046 reswitch:
7ad10968
HZ
5047 switch (opcode)
5048 {
5049 case 0x0f:
4ffa4fc7
PA
5050 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5051 return -1;
7ad10968 5052 ir.addr++;
a3c4230a 5053 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5054 goto reswitch;
5055 break;
93924b6b 5056
a38bba38 5057 case 0x00: /* arith & logic */
7ad10968
HZ
5058 case 0x01:
5059 case 0x02:
5060 case 0x03:
5061 case 0x04:
5062 case 0x05:
5063 case 0x08:
5064 case 0x09:
5065 case 0x0a:
5066 case 0x0b:
5067 case 0x0c:
5068 case 0x0d:
5069 case 0x10:
5070 case 0x11:
5071 case 0x12:
5072 case 0x13:
5073 case 0x14:
5074 case 0x15:
5075 case 0x18:
5076 case 0x19:
5077 case 0x1a:
5078 case 0x1b:
5079 case 0x1c:
5080 case 0x1d:
5081 case 0x20:
5082 case 0x21:
5083 case 0x22:
5084 case 0x23:
5085 case 0x24:
5086 case 0x25:
5087 case 0x28:
5088 case 0x29:
5089 case 0x2a:
5090 case 0x2b:
5091 case 0x2c:
5092 case 0x2d:
5093 case 0x30:
5094 case 0x31:
5095 case 0x32:
5096 case 0x33:
5097 case 0x34:
5098 case 0x35:
5099 case 0x38:
5100 case 0x39:
5101 case 0x3a:
5102 case 0x3b:
5103 case 0x3c:
5104 case 0x3d:
5105 if (((opcode >> 3) & 7) != OP_CMPL)
5106 {
5107 if ((opcode & 1) == 0)
5108 ir.ot = OT_BYTE;
5109 else
5110 ir.ot = ir.dflag + OT_WORD;
93924b6b 5111
7ad10968
HZ
5112 switch ((opcode >> 1) & 3)
5113 {
a38bba38 5114 case 0: /* OP Ev, Gv */
7ad10968
HZ
5115 if (i386_record_modrm (&ir))
5116 return -1;
5117 if (ir.mod != 3)
5118 {
5119 if (i386_record_lea_modrm (&ir))
5120 return -1;
5121 }
5122 else
5123 {
cf648174
HZ
5124 ir.rm |= ir.rex_b;
5125 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5126 ir.rm &= 0x3;
25ea693b 5127 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5128 }
5129 break;
a38bba38 5130 case 1: /* OP Gv, Ev */
7ad10968
HZ
5131 if (i386_record_modrm (&ir))
5132 return -1;
cf648174
HZ
5133 ir.reg |= rex_r;
5134 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5135 ir.reg &= 0x3;
25ea693b 5136 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5137 break;
a38bba38 5138 case 2: /* OP A, Iv */
25ea693b 5139 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5140 break;
5141 }
5142 }
25ea693b 5143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5144 break;
42fdc8df 5145
a38bba38 5146 case 0x80: /* GRP1 */
7ad10968
HZ
5147 case 0x81:
5148 case 0x82:
5149 case 0x83:
5150 if (i386_record_modrm (&ir))
5151 return -1;
8201327c 5152
7ad10968
HZ
5153 if (ir.reg != OP_CMPL)
5154 {
5155 if ((opcode & 1) == 0)
5156 ir.ot = OT_BYTE;
5157 else
5158 ir.ot = ir.dflag + OT_WORD;
28fc6740 5159
7ad10968
HZ
5160 if (ir.mod != 3)
5161 {
cf648174
HZ
5162 if (opcode == 0x83)
5163 ir.rip_offset = 1;
5164 else
5165 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5166 if (i386_record_lea_modrm (&ir))
5167 return -1;
5168 }
5169 else
25ea693b 5170 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5171 }
25ea693b 5172 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5173 break;
5e3397bb 5174
a38bba38 5175 case 0x40: /* inc */
7ad10968
HZ
5176 case 0x41:
5177 case 0x42:
5178 case 0x43:
5179 case 0x44:
5180 case 0x45:
5181 case 0x46:
5182 case 0x47:
a38bba38
MS
5183
5184 case 0x48: /* dec */
7ad10968
HZ
5185 case 0x49:
5186 case 0x4a:
5187 case 0x4b:
5188 case 0x4c:
5189 case 0x4d:
5190 case 0x4e:
5191 case 0x4f:
a38bba38 5192
25ea693b
MM
5193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5195 break;
acd5c798 5196
a38bba38 5197 case 0xf6: /* GRP3 */
7ad10968
HZ
5198 case 0xf7:
5199 if ((opcode & 1) == 0)
5200 ir.ot = OT_BYTE;
5201 else
5202 ir.ot = ir.dflag + OT_WORD;
5203 if (i386_record_modrm (&ir))
5204 return -1;
acd5c798 5205
cf648174
HZ
5206 if (ir.mod != 3 && ir.reg == 0)
5207 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5208
7ad10968
HZ
5209 switch (ir.reg)
5210 {
a38bba38 5211 case 0: /* test */
25ea693b 5212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5213 break;
a38bba38
MS
5214 case 2: /* not */
5215 case 3: /* neg */
7ad10968
HZ
5216 if (ir.mod != 3)
5217 {
5218 if (i386_record_lea_modrm (&ir))
5219 return -1;
5220 }
5221 else
5222 {
cf648174
HZ
5223 ir.rm |= ir.rex_b;
5224 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5225 ir.rm &= 0x3;
25ea693b 5226 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5227 }
a38bba38 5228 if (ir.reg == 3) /* neg */
25ea693b 5229 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5230 break;
a38bba38
MS
5231 case 4: /* mul */
5232 case 5: /* imul */
5233 case 6: /* div */
5234 case 7: /* idiv */
25ea693b 5235 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5236 if (ir.ot != OT_BYTE)
25ea693b
MM
5237 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5239 break;
5240 default:
5241 ir.addr -= 2;
5242 opcode = opcode << 8 | ir.modrm;
5243 goto no_support;
5244 break;
5245 }
5246 break;
5247
a38bba38
MS
5248 case 0xfe: /* GRP4 */
5249 case 0xff: /* GRP5 */
7ad10968
HZ
5250 if (i386_record_modrm (&ir))
5251 return -1;
5252 if (ir.reg >= 2 && opcode == 0xfe)
5253 {
5254 ir.addr -= 2;
5255 opcode = opcode << 8 | ir.modrm;
5256 goto no_support;
5257 }
7ad10968
HZ
5258 switch (ir.reg)
5259 {
a38bba38
MS
5260 case 0: /* inc */
5261 case 1: /* dec */
cf648174
HZ
5262 if ((opcode & 1) == 0)
5263 ir.ot = OT_BYTE;
5264 else
5265 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5266 if (ir.mod != 3)
5267 {
5268 if (i386_record_lea_modrm (&ir))
5269 return -1;
5270 }
5271 else
5272 {
cf648174
HZ
5273 ir.rm |= ir.rex_b;
5274 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5275 ir.rm &= 0x3;
25ea693b 5276 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5277 }
25ea693b 5278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5279 break;
a38bba38 5280 case 2: /* call */
cf648174
HZ
5281 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5282 ir.dflag = 2;
5283 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5284 return -1;
25ea693b 5285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5286 break;
a38bba38 5287 case 3: /* lcall */
25ea693b 5288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5289 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5290 return -1;
25ea693b 5291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5292 break;
a38bba38
MS
5293 case 4: /* jmp */
5294 case 5: /* ljmp */
25ea693b 5295 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5296 break;
a38bba38 5297 case 6: /* push */
cf648174
HZ
5298 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5299 ir.dflag = 2;
5300 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5301 return -1;
7ad10968
HZ
5302 break;
5303 default:
5304 ir.addr -= 2;
5305 opcode = opcode << 8 | ir.modrm;
5306 goto no_support;
5307 break;
5308 }
5309 break;
5310
a38bba38 5311 case 0x84: /* test */
7ad10968
HZ
5312 case 0x85:
5313 case 0xa8:
5314 case 0xa9:
25ea693b 5315 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5316 break;
5317
a38bba38 5318 case 0x98: /* CWDE/CBW */
25ea693b 5319 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5320 break;
5321
a38bba38 5322 case 0x99: /* CDQ/CWD */
25ea693b
MM
5323 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5325 break;
5326
a38bba38 5327 case 0x0faf: /* imul */
7ad10968
HZ
5328 case 0x69:
5329 case 0x6b:
5330 ir.ot = ir.dflag + OT_WORD;
5331 if (i386_record_modrm (&ir))
5332 return -1;
cf648174
HZ
5333 if (opcode == 0x69)
5334 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5335 else if (opcode == 0x6b)
5336 ir.rip_offset = 1;
5337 ir.reg |= rex_r;
5338 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5339 ir.reg &= 0x3;
25ea693b
MM
5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5342 break;
5343
a38bba38 5344 case 0x0fc0: /* xadd */
7ad10968
HZ
5345 case 0x0fc1:
5346 if ((opcode & 1) == 0)
5347 ir.ot = OT_BYTE;
5348 else
5349 ir.ot = ir.dflag + OT_WORD;
5350 if (i386_record_modrm (&ir))
5351 return -1;
cf648174 5352 ir.reg |= rex_r;
7ad10968
HZ
5353 if (ir.mod == 3)
5354 {
cf648174 5355 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5356 ir.reg &= 0x3;
25ea693b 5357 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5358 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5359 ir.rm &= 0x3;
25ea693b 5360 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5361 }
5362 else
5363 {
5364 if (i386_record_lea_modrm (&ir))
5365 return -1;
cf648174 5366 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5367 ir.reg &= 0x3;
25ea693b 5368 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5369 }
25ea693b 5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5371 break;
5372
a38bba38 5373 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5374 case 0x0fb1:
5375 if ((opcode & 1) == 0)
5376 ir.ot = OT_BYTE;
5377 else
5378 ir.ot = ir.dflag + OT_WORD;
5379 if (i386_record_modrm (&ir))
5380 return -1;
5381 if (ir.mod == 3)
5382 {
cf648174 5383 ir.reg |= rex_r;
25ea693b 5384 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5385 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5386 ir.reg &= 0x3;
25ea693b 5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5388 }
5389 else
5390 {
25ea693b 5391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5392 if (i386_record_lea_modrm (&ir))
5393 return -1;
5394 }
25ea693b 5395 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5396 break;
5397
a38bba38 5398 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5399 if (i386_record_modrm (&ir))
5400 return -1;
5401 if (ir.mod == 3)
5402 {
5403 ir.addr -= 2;
5404 opcode = opcode << 8 | ir.modrm;
5405 goto no_support;
5406 }
25ea693b
MM
5407 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5409 if (i386_record_lea_modrm (&ir))
5410 return -1;
25ea693b 5411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5412 break;
5413
a38bba38 5414 case 0x50: /* push */
7ad10968
HZ
5415 case 0x51:
5416 case 0x52:
5417 case 0x53:
5418 case 0x54:
5419 case 0x55:
5420 case 0x56:
5421 case 0x57:
5422 case 0x68:
5423 case 0x6a:
cf648174
HZ
5424 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5425 ir.dflag = 2;
5426 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5427 return -1;
5428 break;
5429
a38bba38
MS
5430 case 0x06: /* push es */
5431 case 0x0e: /* push cs */
5432 case 0x16: /* push ss */
5433 case 0x1e: /* push ds */
cf648174
HZ
5434 if (ir.regmap[X86_RECORD_R8_REGNUM])
5435 {
5436 ir.addr -= 1;
5437 goto no_support;
5438 }
5439 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5440 return -1;
5441 break;
5442
a38bba38
MS
5443 case 0x0fa0: /* push fs */
5444 case 0x0fa8: /* push gs */
cf648174
HZ
5445 if (ir.regmap[X86_RECORD_R8_REGNUM])
5446 {
5447 ir.addr -= 2;
5448 goto no_support;
5449 }
5450 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5451 return -1;
cf648174
HZ
5452 break;
5453
a38bba38 5454 case 0x60: /* pusha */
cf648174
HZ
5455 if (ir.regmap[X86_RECORD_R8_REGNUM])
5456 {
5457 ir.addr -= 1;
5458 goto no_support;
5459 }
5460 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5461 return -1;
5462 break;
5463
a38bba38 5464 case 0x58: /* pop */
7ad10968
HZ
5465 case 0x59:
5466 case 0x5a:
5467 case 0x5b:
5468 case 0x5c:
5469 case 0x5d:
5470 case 0x5e:
5471 case 0x5f:
25ea693b
MM
5472 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5474 break;
5475
a38bba38 5476 case 0x61: /* popa */
cf648174
HZ
5477 if (ir.regmap[X86_RECORD_R8_REGNUM])
5478 {
5479 ir.addr -= 1;
5480 goto no_support;
7ad10968 5481 }
425b824a
MS
5482 for (regnum = X86_RECORD_REAX_REGNUM;
5483 regnum <= X86_RECORD_REDI_REGNUM;
5484 regnum++)
25ea693b 5485 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5486 break;
5487
a38bba38 5488 case 0x8f: /* pop */
cf648174
HZ
5489 if (ir.regmap[X86_RECORD_R8_REGNUM])
5490 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5491 else
5492 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5493 if (i386_record_modrm (&ir))
5494 return -1;
5495 if (ir.mod == 3)
25ea693b 5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5497 else
5498 {
cf648174 5499 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5500 if (i386_record_lea_modrm (&ir))
5501 return -1;
5502 }
25ea693b 5503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5504 break;
5505
a38bba38 5506 case 0xc8: /* enter */
25ea693b 5507 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5508 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5509 ir.dflag = 2;
5510 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5511 return -1;
5512 break;
5513
a38bba38 5514 case 0xc9: /* leave */
25ea693b
MM
5515 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5517 break;
5518
a38bba38 5519 case 0x07: /* pop es */
cf648174
HZ
5520 if (ir.regmap[X86_RECORD_R8_REGNUM])
5521 {
5522 ir.addr -= 1;
5523 goto no_support;
5524 }
25ea693b
MM
5525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5527 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5528 break;
5529
a38bba38 5530 case 0x17: /* pop ss */
cf648174
HZ
5531 if (ir.regmap[X86_RECORD_R8_REGNUM])
5532 {
5533 ir.addr -= 1;
5534 goto no_support;
5535 }
25ea693b
MM
5536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5539 break;
5540
a38bba38 5541 case 0x1f: /* pop ds */
cf648174
HZ
5542 if (ir.regmap[X86_RECORD_R8_REGNUM])
5543 {
5544 ir.addr -= 1;
5545 goto no_support;
5546 }
25ea693b
MM
5547 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5548 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5550 break;
5551
a38bba38 5552 case 0x0fa1: /* pop fs */
25ea693b
MM
5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5554 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5555 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5556 break;
5557
a38bba38 5558 case 0x0fa9: /* pop gs */
25ea693b
MM
5559 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5560 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5562 break;
5563
a38bba38 5564 case 0x88: /* mov */
7ad10968
HZ
5565 case 0x89:
5566 case 0xc6:
5567 case 0xc7:
5568 if ((opcode & 1) == 0)
5569 ir.ot = OT_BYTE;
5570 else
5571 ir.ot = ir.dflag + OT_WORD;
5572
5573 if (i386_record_modrm (&ir))
5574 return -1;
5575
5576 if (ir.mod != 3)
5577 {
cf648174
HZ
5578 if (opcode == 0xc6 || opcode == 0xc7)
5579 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5580 if (i386_record_lea_modrm (&ir))
5581 return -1;
5582 }
5583 else
5584 {
cf648174
HZ
5585 if (opcode == 0xc6 || opcode == 0xc7)
5586 ir.rm |= ir.rex_b;
5587 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5588 ir.rm &= 0x3;
25ea693b 5589 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5590 }
7ad10968 5591 break;
cf648174 5592
a38bba38 5593 case 0x8a: /* mov */
7ad10968
HZ
5594 case 0x8b:
5595 if ((opcode & 1) == 0)
5596 ir.ot = OT_BYTE;
5597 else
5598 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5599 if (i386_record_modrm (&ir))
5600 return -1;
cf648174
HZ
5601 ir.reg |= rex_r;
5602 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5603 ir.reg &= 0x3;
25ea693b 5604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5605 break;
7ad10968 5606
a38bba38 5607 case 0x8c: /* mov seg */
cf648174 5608 if (i386_record_modrm (&ir))
7ad10968 5609 return -1;
cf648174
HZ
5610 if (ir.reg > 5)
5611 {
5612 ir.addr -= 2;
5613 opcode = opcode << 8 | ir.modrm;
5614 goto no_support;
5615 }
5616
5617 if (ir.mod == 3)
25ea693b 5618 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5619 else
5620 {
5621 ir.ot = OT_WORD;
5622 if (i386_record_lea_modrm (&ir))
5623 return -1;
5624 }
7ad10968
HZ
5625 break;
5626
a38bba38 5627 case 0x8e: /* mov seg */
7ad10968
HZ
5628 if (i386_record_modrm (&ir))
5629 return -1;
7ad10968
HZ
5630 switch (ir.reg)
5631 {
5632 case 0:
425b824a 5633 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5634 break;
5635 case 2:
425b824a 5636 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5637 break;
5638 case 3:
425b824a 5639 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5640 break;
5641 case 4:
425b824a 5642 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5643 break;
5644 case 5:
425b824a 5645 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5646 break;
5647 default:
5648 ir.addr -= 2;
5649 opcode = opcode << 8 | ir.modrm;
5650 goto no_support;
5651 break;
5652 }
25ea693b
MM
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5655 break;
5656
a38bba38
MS
5657 case 0x0fb6: /* movzbS */
5658 case 0x0fb7: /* movzwS */
5659 case 0x0fbe: /* movsbS */
5660 case 0x0fbf: /* movswS */
7ad10968
HZ
5661 if (i386_record_modrm (&ir))
5662 return -1;
25ea693b 5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5664 break;
5665
a38bba38 5666 case 0x8d: /* lea */
7ad10968
HZ
5667 if (i386_record_modrm (&ir))
5668 return -1;
5669 if (ir.mod == 3)
5670 {
5671 ir.addr -= 2;
5672 opcode = opcode << 8 | ir.modrm;
5673 goto no_support;
5674 }
7ad10968 5675 ir.ot = ir.dflag;
cf648174
HZ
5676 ir.reg |= rex_r;
5677 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5678 ir.reg &= 0x3;
25ea693b 5679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5680 break;
5681
a38bba38 5682 case 0xa0: /* mov EAX */
7ad10968 5683 case 0xa1:
a38bba38
MS
5684
5685 case 0xd7: /* xlat */
25ea693b 5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5687 break;
5688
a38bba38 5689 case 0xa2: /* mov EAX */
7ad10968 5690 case 0xa3:
d7877f7e 5691 if (ir.override >= 0)
cf648174 5692 {
25ea693b 5693 if (record_full_memory_query)
bb08c432
HZ
5694 {
5695 int q;
5696
5697 target_terminal_ours ();
5698 q = yquery (_("\
5699Process record ignores the memory change of instruction at address %s\n\
5700because it can't get the value of the segment register.\n\
5701Do you want to stop the program?"),
5702 paddress (gdbarch, ir.orig_addr));
5703 target_terminal_inferior ();
5704 if (q)
5705 return -1;
5706 }
cf648174
HZ
5707 }
5708 else
5709 {
5710 if ((opcode & 1) == 0)
5711 ir.ot = OT_BYTE;
5712 else
5713 ir.ot = ir.dflag + OT_WORD;
5714 if (ir.aflag == 2)
5715 {
4ffa4fc7
PA
5716 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5717 return -1;
cf648174 5718 ir.addr += 8;
60a1502a 5719 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5720 }
5721 else if (ir.aflag)
5722 {
4ffa4fc7
PA
5723 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5724 return -1;
cf648174 5725 ir.addr += 4;
60a1502a 5726 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5727 }
5728 else
5729 {
4ffa4fc7
PA
5730 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5731 return -1;
cf648174 5732 ir.addr += 2;
60a1502a 5733 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5734 }
25ea693b 5735 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5736 return -1;
5737 }
7ad10968
HZ
5738 break;
5739
a38bba38 5740 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5741 case 0xb1:
5742 case 0xb2:
5743 case 0xb3:
5744 case 0xb4:
5745 case 0xb5:
5746 case 0xb6:
5747 case 0xb7:
25ea693b
MM
5748 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5749 ? ((opcode & 0x7) | ir.rex_b)
5750 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5751 break;
5752
a38bba38 5753 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5754 case 0xb9:
5755 case 0xba:
5756 case 0xbb:
5757 case 0xbc:
5758 case 0xbd:
5759 case 0xbe:
5760 case 0xbf:
25ea693b 5761 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5762 break;
5763
a38bba38 5764 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5765 case 0x92:
5766 case 0x93:
5767 case 0x94:
5768 case 0x95:
5769 case 0x96:
5770 case 0x97:
25ea693b
MM
5771 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5772 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5773 break;
5774
a38bba38 5775 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5776 case 0x87:
5777 if ((opcode & 1) == 0)
5778 ir.ot = OT_BYTE;
5779 else
5780 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5781 if (i386_record_modrm (&ir))
5782 return -1;
7ad10968
HZ
5783 if (ir.mod == 3)
5784 {
86839d38 5785 ir.rm |= ir.rex_b;
cf648174
HZ
5786 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5787 ir.rm &= 0x3;
25ea693b 5788 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5789 }
5790 else
5791 {
5792 if (i386_record_lea_modrm (&ir))
5793 return -1;
5794 }
cf648174
HZ
5795 ir.reg |= rex_r;
5796 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5797 ir.reg &= 0x3;
25ea693b 5798 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5799 break;
5800
a38bba38
MS
5801 case 0xc4: /* les Gv */
5802 case 0xc5: /* lds Gv */
cf648174
HZ
5803 if (ir.regmap[X86_RECORD_R8_REGNUM])
5804 {
5805 ir.addr -= 1;
5806 goto no_support;
5807 }
d3f323f3 5808 /* FALLTHROUGH */
a38bba38
MS
5809 case 0x0fb2: /* lss Gv */
5810 case 0x0fb4: /* lfs Gv */
5811 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5812 if (i386_record_modrm (&ir))
5813 return -1;
5814 if (ir.mod == 3)
5815 {
5816 if (opcode > 0xff)
5817 ir.addr -= 3;
5818 else
5819 ir.addr -= 2;
5820 opcode = opcode << 8 | ir.modrm;
5821 goto no_support;
5822 }
7ad10968
HZ
5823 switch (opcode)
5824 {
a38bba38 5825 case 0xc4: /* les Gv */
425b824a 5826 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5827 break;
a38bba38 5828 case 0xc5: /* lds Gv */
425b824a 5829 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5830 break;
a38bba38 5831 case 0x0fb2: /* lss Gv */
425b824a 5832 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5833 break;
a38bba38 5834 case 0x0fb4: /* lfs Gv */
425b824a 5835 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5836 break;
a38bba38 5837 case 0x0fb5: /* lgs Gv */
425b824a 5838 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5839 break;
5840 }
25ea693b
MM
5841 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5842 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5843 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5844 break;
5845
a38bba38 5846 case 0xc0: /* shifts */
7ad10968
HZ
5847 case 0xc1:
5848 case 0xd0:
5849 case 0xd1:
5850 case 0xd2:
5851 case 0xd3:
5852 if ((opcode & 1) == 0)
5853 ir.ot = OT_BYTE;
5854 else
5855 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5856 if (i386_record_modrm (&ir))
5857 return -1;
7ad10968
HZ
5858 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5859 {
5860 if (i386_record_lea_modrm (&ir))
5861 return -1;
5862 }
5863 else
5864 {
cf648174
HZ
5865 ir.rm |= ir.rex_b;
5866 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5867 ir.rm &= 0x3;
25ea693b 5868 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5869 }
25ea693b 5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5871 break;
5872
5873 case 0x0fa4:
5874 case 0x0fa5:
5875 case 0x0fac:
5876 case 0x0fad:
5877 if (i386_record_modrm (&ir))
5878 return -1;
5879 if (ir.mod == 3)
5880 {
25ea693b 5881 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5882 return -1;
5883 }
5884 else
5885 {
5886 if (i386_record_lea_modrm (&ir))
5887 return -1;
5888 }
5889 break;
5890
a38bba38 5891 case 0xd8: /* Floats. */
7ad10968
HZ
5892 case 0xd9:
5893 case 0xda:
5894 case 0xdb:
5895 case 0xdc:
5896 case 0xdd:
5897 case 0xde:
5898 case 0xdf:
5899 if (i386_record_modrm (&ir))
5900 return -1;
5901 ir.reg |= ((opcode & 7) << 3);
5902 if (ir.mod != 3)
5903 {
1777feb0 5904 /* Memory. */
955db0c0 5905 uint64_t addr64;
7ad10968 5906
955db0c0 5907 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5908 return -1;
5909 switch (ir.reg)
5910 {
7ad10968 5911 case 0x02:
0289bdd7
MS
5912 case 0x12:
5913 case 0x22:
5914 case 0x32:
5915 /* For fcom, ficom nothing to do. */
5916 break;
7ad10968 5917 case 0x03:
0289bdd7
MS
5918 case 0x13:
5919 case 0x23:
5920 case 0x33:
5921 /* For fcomp, ficomp pop FPU stack, store all. */
5922 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5923 return -1;
5924 break;
5925 case 0x00:
5926 case 0x01:
7ad10968
HZ
5927 case 0x04:
5928 case 0x05:
5929 case 0x06:
5930 case 0x07:
5931 case 0x10:
5932 case 0x11:
7ad10968
HZ
5933 case 0x14:
5934 case 0x15:
5935 case 0x16:
5936 case 0x17:
5937 case 0x20:
5938 case 0x21:
7ad10968
HZ
5939 case 0x24:
5940 case 0x25:
5941 case 0x26:
5942 case 0x27:
5943 case 0x30:
5944 case 0x31:
7ad10968
HZ
5945 case 0x34:
5946 case 0x35:
5947 case 0x36:
5948 case 0x37:
0289bdd7
MS
5949 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5950 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5951 of code, always affects st(0) register. */
5952 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5953 return -1;
7ad10968
HZ
5954 break;
5955 case 0x08:
5956 case 0x0a:
5957 case 0x0b:
5958 case 0x18:
5959 case 0x19:
5960 case 0x1a:
5961 case 0x1b:
0289bdd7 5962 case 0x1d:
7ad10968
HZ
5963 case 0x28:
5964 case 0x29:
5965 case 0x2a:
5966 case 0x2b:
5967 case 0x38:
5968 case 0x39:
5969 case 0x3a:
5970 case 0x3b:
0289bdd7
MS
5971 case 0x3c:
5972 case 0x3d:
7ad10968
HZ
5973 switch (ir.reg & 7)
5974 {
5975 case 0:
0289bdd7
MS
5976 /* Handling fld, fild. */
5977 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5978 return -1;
7ad10968
HZ
5979 break;
5980 case 1:
5981 switch (ir.reg >> 4)
5982 {
5983 case 0:
25ea693b 5984 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
5985 return -1;
5986 break;
5987 case 2:
25ea693b 5988 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
5989 return -1;
5990 break;
5991 case 3:
0289bdd7 5992 break;
7ad10968 5993 default:
25ea693b 5994 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
5995 return -1;
5996 break;
5997 }
5998 break;
5999 default:
6000 switch (ir.reg >> 4)
6001 {
6002 case 0:
25ea693b 6003 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6004 return -1;
6005 if (3 == (ir.reg & 7))
6006 {
6007 /* For fstp m32fp. */
6008 if (i386_record_floats (gdbarch, &ir,
6009 I386_SAVE_FPU_REGS))
6010 return -1;
6011 }
6012 break;
7ad10968 6013 case 1:
25ea693b 6014 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6015 return -1;
0289bdd7
MS
6016 if ((3 == (ir.reg & 7))
6017 || (5 == (ir.reg & 7))
6018 || (7 == (ir.reg & 7)))
6019 {
6020 /* For fstp insn. */
6021 if (i386_record_floats (gdbarch, &ir,
6022 I386_SAVE_FPU_REGS))
6023 return -1;
6024 }
7ad10968
HZ
6025 break;
6026 case 2:
25ea693b 6027 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6028 return -1;
0289bdd7
MS
6029 if (3 == (ir.reg & 7))
6030 {
6031 /* For fstp m64fp. */
6032 if (i386_record_floats (gdbarch, &ir,
6033 I386_SAVE_FPU_REGS))
6034 return -1;
6035 }
7ad10968
HZ
6036 break;
6037 case 3:
0289bdd7
MS
6038 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6039 {
6040 /* For fistp, fbld, fild, fbstp. */
6041 if (i386_record_floats (gdbarch, &ir,
6042 I386_SAVE_FPU_REGS))
6043 return -1;
6044 }
6045 /* Fall through */
7ad10968 6046 default:
25ea693b 6047 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6048 return -1;
6049 break;
6050 }
6051 break;
6052 }
6053 break;
6054 case 0x0c:
0289bdd7
MS
6055 /* Insn fldenv. */
6056 if (i386_record_floats (gdbarch, &ir,
6057 I386_SAVE_FPU_ENV_REG_STACK))
6058 return -1;
6059 break;
7ad10968 6060 case 0x0d:
0289bdd7
MS
6061 /* Insn fldcw. */
6062 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6063 return -1;
6064 break;
7ad10968 6065 case 0x2c:
0289bdd7
MS
6066 /* Insn frstor. */
6067 if (i386_record_floats (gdbarch, &ir,
6068 I386_SAVE_FPU_ENV_REG_STACK))
6069 return -1;
7ad10968
HZ
6070 break;
6071 case 0x0e:
6072 if (ir.dflag)
6073 {
25ea693b 6074 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6075 return -1;
6076 }
6077 else
6078 {
25ea693b 6079 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6080 return -1;
6081 }
6082 break;
6083 case 0x0f:
6084 case 0x2f:
25ea693b 6085 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6086 return -1;
0289bdd7
MS
6087 /* Insn fstp, fbstp. */
6088 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6089 return -1;
7ad10968
HZ
6090 break;
6091 case 0x1f:
6092 case 0x3e:
25ea693b 6093 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6094 return -1;
6095 break;
6096 case 0x2e:
6097 if (ir.dflag)
6098 {
25ea693b 6099 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6100 return -1;
955db0c0 6101 addr64 += 28;
7ad10968
HZ
6102 }
6103 else
6104 {
25ea693b 6105 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6106 return -1;
955db0c0 6107 addr64 += 14;
7ad10968 6108 }
25ea693b 6109 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6110 return -1;
0289bdd7
MS
6111 /* Insn fsave. */
6112 if (i386_record_floats (gdbarch, &ir,
6113 I386_SAVE_FPU_ENV_REG_STACK))
6114 return -1;
7ad10968
HZ
6115 break;
6116 case 0x3f:
25ea693b 6117 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6118 return -1;
0289bdd7
MS
6119 /* Insn fistp. */
6120 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6121 return -1;
7ad10968
HZ
6122 break;
6123 default:
6124 ir.addr -= 2;
6125 opcode = opcode << 8 | ir.modrm;
6126 goto no_support;
6127 break;
6128 }
6129 }
0289bdd7
MS
6130 /* Opcode is an extension of modR/M byte. */
6131 else
6132 {
6133 switch (opcode)
6134 {
6135 case 0xd8:
6136 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6137 return -1;
6138 break;
6139 case 0xd9:
6140 if (0x0c == (ir.modrm >> 4))
6141 {
6142 if ((ir.modrm & 0x0f) <= 7)
6143 {
6144 if (i386_record_floats (gdbarch, &ir,
6145 I386_SAVE_FPU_REGS))
6146 return -1;
6147 }
6148 else
6149 {
6150 if (i386_record_floats (gdbarch, &ir,
6151 I387_ST0_REGNUM (tdep)))
6152 return -1;
6153 /* If only st(0) is changing, then we have already
6154 recorded. */
6155 if ((ir.modrm & 0x0f) - 0x08)
6156 {
6157 if (i386_record_floats (gdbarch, &ir,
6158 I387_ST0_REGNUM (tdep) +
6159 ((ir.modrm & 0x0f) - 0x08)))
6160 return -1;
6161 }
6162 }
6163 }
6164 else
6165 {
6166 switch (ir.modrm)
6167 {
6168 case 0xe0:
6169 case 0xe1:
6170 case 0xf0:
6171 case 0xf5:
6172 case 0xf8:
6173 case 0xfa:
6174 case 0xfc:
6175 case 0xfe:
6176 case 0xff:
6177 if (i386_record_floats (gdbarch, &ir,
6178 I387_ST0_REGNUM (tdep)))
6179 return -1;
6180 break;
6181 case 0xf1:
6182 case 0xf2:
6183 case 0xf3:
6184 case 0xf4:
6185 case 0xf6:
6186 case 0xf7:
6187 case 0xe8:
6188 case 0xe9:
6189 case 0xea:
6190 case 0xeb:
6191 case 0xec:
6192 case 0xed:
6193 case 0xee:
6194 case 0xf9:
6195 case 0xfb:
6196 if (i386_record_floats (gdbarch, &ir,
6197 I386_SAVE_FPU_REGS))
6198 return -1;
6199 break;
6200 case 0xfd:
6201 if (i386_record_floats (gdbarch, &ir,
6202 I387_ST0_REGNUM (tdep)))
6203 return -1;
6204 if (i386_record_floats (gdbarch, &ir,
6205 I387_ST0_REGNUM (tdep) + 1))
6206 return -1;
6207 break;
6208 }
6209 }
6210 break;
6211 case 0xda:
6212 if (0xe9 == ir.modrm)
6213 {
6214 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6215 return -1;
6216 }
6217 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6218 {
6219 if (i386_record_floats (gdbarch, &ir,
6220 I387_ST0_REGNUM (tdep)))
6221 return -1;
6222 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6223 {
6224 if (i386_record_floats (gdbarch, &ir,
6225 I387_ST0_REGNUM (tdep) +
6226 (ir.modrm & 0x0f)))
6227 return -1;
6228 }
6229 else if ((ir.modrm & 0x0f) - 0x08)
6230 {
6231 if (i386_record_floats (gdbarch, &ir,
6232 I387_ST0_REGNUM (tdep) +
6233 ((ir.modrm & 0x0f) - 0x08)))
6234 return -1;
6235 }
6236 }
6237 break;
6238 case 0xdb:
6239 if (0xe3 == ir.modrm)
6240 {
6241 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6242 return -1;
6243 }
6244 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6245 {
6246 if (i386_record_floats (gdbarch, &ir,
6247 I387_ST0_REGNUM (tdep)))
6248 return -1;
6249 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6250 {
6251 if (i386_record_floats (gdbarch, &ir,
6252 I387_ST0_REGNUM (tdep) +
6253 (ir.modrm & 0x0f)))
6254 return -1;
6255 }
6256 else if ((ir.modrm & 0x0f) - 0x08)
6257 {
6258 if (i386_record_floats (gdbarch, &ir,
6259 I387_ST0_REGNUM (tdep) +
6260 ((ir.modrm & 0x0f) - 0x08)))
6261 return -1;
6262 }
6263 }
6264 break;
6265 case 0xdc:
6266 if ((0x0c == ir.modrm >> 4)
6267 || (0x0d == ir.modrm >> 4)
6268 || (0x0f == ir.modrm >> 4))
6269 {
6270 if ((ir.modrm & 0x0f) <= 7)
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep) +
6274 (ir.modrm & 0x0f)))
6275 return -1;
6276 }
6277 else
6278 {
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6282 return -1;
6283 }
6284 }
6285 break;
6286 case 0xdd:
6287 if (0x0c == ir.modrm >> 4)
6288 {
6289 if (i386_record_floats (gdbarch, &ir,
6290 I387_FTAG_REGNUM (tdep)))
6291 return -1;
6292 }
6293 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6294 {
6295 if ((ir.modrm & 0x0f) <= 7)
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep) +
6299 (ir.modrm & 0x0f)))
6300 return -1;
6301 }
6302 else
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I386_SAVE_FPU_REGS))
6306 return -1;
6307 }
6308 }
6309 break;
6310 case 0xde:
6311 if ((0x0c == ir.modrm >> 4)
6312 || (0x0e == ir.modrm >> 4)
6313 || (0x0f == ir.modrm >> 4)
6314 || (0xd9 == ir.modrm))
6315 {
6316 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6317 return -1;
6318 }
6319 break;
6320 case 0xdf:
6321 if (0xe0 == ir.modrm)
6322 {
25ea693b
MM
6323 if (record_full_arch_list_add_reg (ir.regcache,
6324 I386_EAX_REGNUM))
0289bdd7
MS
6325 return -1;
6326 }
6327 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6328 {
6329 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6330 return -1;
6331 }
6332 break;
6333 }
6334 }
7ad10968 6335 break;
7ad10968 6336 /* string ops */
a38bba38 6337 case 0xa4: /* movsS */
7ad10968 6338 case 0xa5:
a38bba38 6339 case 0xaa: /* stosS */
7ad10968 6340 case 0xab:
a38bba38 6341 case 0x6c: /* insS */
7ad10968 6342 case 0x6d:
cf648174 6343 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6344 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6345 &addr);
6346 if (addr)
cf648174 6347 {
77d7dc92
HZ
6348 ULONGEST es, ds;
6349
6350 if ((opcode & 1) == 0)
6351 ir.ot = OT_BYTE;
6352 else
6353 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6354 regcache_raw_read_unsigned (ir.regcache,
6355 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6356 &addr);
77d7dc92 6357
d7877f7e
HZ
6358 regcache_raw_read_unsigned (ir.regcache,
6359 ir.regmap[X86_RECORD_ES_REGNUM],
6360 &es);
6361 regcache_raw_read_unsigned (ir.regcache,
6362 ir.regmap[X86_RECORD_DS_REGNUM],
6363 &ds);
6364 if (ir.aflag && (es != ds))
77d7dc92
HZ
6365 {
6366 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6367 if (record_full_memory_query)
bb08c432
HZ
6368 {
6369 int q;
6370
6371 target_terminal_ours ();
6372 q = yquery (_("\
6373Process record ignores the memory change of instruction at address %s\n\
6374because it can't get the value of the segment register.\n\
6375Do you want to stop the program?"),
6376 paddress (gdbarch, ir.orig_addr));
6377 target_terminal_inferior ();
6378 if (q)
6379 return -1;
6380 }
df61f520
HZ
6381 }
6382 else
6383 {
25ea693b 6384 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6385 return -1;
77d7dc92
HZ
6386 }
6387
6388 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6389 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6390 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6391 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6392 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6394 }
cf648174 6395 break;
7ad10968 6396
a38bba38 6397 case 0xa6: /* cmpsS */
cf648174 6398 case 0xa7:
25ea693b
MM
6399 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6401 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6402 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6404 break;
6405
a38bba38 6406 case 0xac: /* lodsS */
7ad10968 6407 case 0xad:
25ea693b
MM
6408 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6409 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6410 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6411 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6412 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6413 break;
6414
a38bba38 6415 case 0xae: /* scasS */
7ad10968 6416 case 0xaf:
25ea693b 6417 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6418 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6419 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6421 break;
6422
a38bba38 6423 case 0x6e: /* outsS */
cf648174 6424 case 0x6f:
25ea693b 6425 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6426 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6427 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6429 break;
6430
a38bba38 6431 case 0xe4: /* port I/O */
7ad10968
HZ
6432 case 0xe5:
6433 case 0xec:
6434 case 0xed:
25ea693b
MM
6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6436 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6437 break;
6438
6439 case 0xe6:
6440 case 0xe7:
6441 case 0xee:
6442 case 0xef:
6443 break;
6444
6445 /* control */
a38bba38
MS
6446 case 0xc2: /* ret im */
6447 case 0xc3: /* ret */
25ea693b
MM
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6450 break;
6451
a38bba38
MS
6452 case 0xca: /* lret im */
6453 case 0xcb: /* lret */
6454 case 0xcf: /* iret */
25ea693b
MM
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6456 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6458 break;
6459
a38bba38 6460 case 0xe8: /* call im */
cf648174
HZ
6461 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6462 ir.dflag = 2;
6463 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6464 return -1;
7ad10968
HZ
6465 break;
6466
a38bba38 6467 case 0x9a: /* lcall im */
cf648174
HZ
6468 if (ir.regmap[X86_RECORD_R8_REGNUM])
6469 {
6470 ir.addr -= 1;
6471 goto no_support;
6472 }
25ea693b 6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6474 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6475 return -1;
7ad10968
HZ
6476 break;
6477
a38bba38
MS
6478 case 0xe9: /* jmp im */
6479 case 0xea: /* ljmp im */
6480 case 0xeb: /* jmp Jb */
6481 case 0x70: /* jcc Jb */
7ad10968
HZ
6482 case 0x71:
6483 case 0x72:
6484 case 0x73:
6485 case 0x74:
6486 case 0x75:
6487 case 0x76:
6488 case 0x77:
6489 case 0x78:
6490 case 0x79:
6491 case 0x7a:
6492 case 0x7b:
6493 case 0x7c:
6494 case 0x7d:
6495 case 0x7e:
6496 case 0x7f:
a38bba38 6497 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6498 case 0x0f81:
6499 case 0x0f82:
6500 case 0x0f83:
6501 case 0x0f84:
6502 case 0x0f85:
6503 case 0x0f86:
6504 case 0x0f87:
6505 case 0x0f88:
6506 case 0x0f89:
6507 case 0x0f8a:
6508 case 0x0f8b:
6509 case 0x0f8c:
6510 case 0x0f8d:
6511 case 0x0f8e:
6512 case 0x0f8f:
6513 break;
6514
a38bba38 6515 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6516 case 0x0f91:
6517 case 0x0f92:
6518 case 0x0f93:
6519 case 0x0f94:
6520 case 0x0f95:
6521 case 0x0f96:
6522 case 0x0f97:
6523 case 0x0f98:
6524 case 0x0f99:
6525 case 0x0f9a:
6526 case 0x0f9b:
6527 case 0x0f9c:
6528 case 0x0f9d:
6529 case 0x0f9e:
6530 case 0x0f9f:
25ea693b 6531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6532 ir.ot = OT_BYTE;
6533 if (i386_record_modrm (&ir))
6534 return -1;
6535 if (ir.mod == 3)
25ea693b
MM
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6537 : (ir.rm & 0x3));
7ad10968
HZ
6538 else
6539 {
6540 if (i386_record_lea_modrm (&ir))
6541 return -1;
6542 }
6543 break;
6544
a38bba38 6545 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6546 case 0x0f41:
6547 case 0x0f42:
6548 case 0x0f43:
6549 case 0x0f44:
6550 case 0x0f45:
6551 case 0x0f46:
6552 case 0x0f47:
6553 case 0x0f48:
6554 case 0x0f49:
6555 case 0x0f4a:
6556 case 0x0f4b:
6557 case 0x0f4c:
6558 case 0x0f4d:
6559 case 0x0f4e:
6560 case 0x0f4f:
6561 if (i386_record_modrm (&ir))
6562 return -1;
cf648174 6563 ir.reg |= rex_r;
7ad10968
HZ
6564 if (ir.dflag == OT_BYTE)
6565 ir.reg &= 0x3;
25ea693b 6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6567 break;
6568
6569 /* flags */
a38bba38 6570 case 0x9c: /* pushf */
25ea693b 6571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6572 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6573 ir.dflag = 2;
6574 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6575 return -1;
7ad10968
HZ
6576 break;
6577
a38bba38 6578 case 0x9d: /* popf */
25ea693b
MM
6579 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6580 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6581 break;
6582
a38bba38 6583 case 0x9e: /* sahf */
cf648174
HZ
6584 if (ir.regmap[X86_RECORD_R8_REGNUM])
6585 {
6586 ir.addr -= 1;
6587 goto no_support;
6588 }
d3f323f3 6589 /* FALLTHROUGH */
a38bba38
MS
6590 case 0xf5: /* cmc */
6591 case 0xf8: /* clc */
6592 case 0xf9: /* stc */
6593 case 0xfc: /* cld */
6594 case 0xfd: /* std */
25ea693b 6595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6596 break;
6597
a38bba38 6598 case 0x9f: /* lahf */
cf648174
HZ
6599 if (ir.regmap[X86_RECORD_R8_REGNUM])
6600 {
6601 ir.addr -= 1;
6602 goto no_support;
6603 }
25ea693b
MM
6604 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6606 break;
6607
6608 /* bit operations */
a38bba38 6609 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6610 ir.ot = ir.dflag + OT_WORD;
6611 if (i386_record_modrm (&ir))
6612 return -1;
6613 if (ir.reg < 4)
6614 {
cf648174 6615 ir.addr -= 2;
7ad10968
HZ
6616 opcode = opcode << 8 | ir.modrm;
6617 goto no_support;
6618 }
cf648174 6619 if (ir.reg != 4)
7ad10968 6620 {
cf648174 6621 if (ir.mod == 3)
25ea693b 6622 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6623 else
6624 {
cf648174 6625 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6626 return -1;
6627 }
6628 }
25ea693b 6629 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6630 break;
6631
a38bba38 6632 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6633 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6634 break;
6635
a38bba38
MS
6636 case 0x0fab: /* bts */
6637 case 0x0fb3: /* btr */
6638 case 0x0fbb: /* btc */
cf648174
HZ
6639 ir.ot = ir.dflag + OT_WORD;
6640 if (i386_record_modrm (&ir))
6641 return -1;
6642 if (ir.mod == 3)
25ea693b 6643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6644 else
6645 {
955db0c0
MS
6646 uint64_t addr64;
6647 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6648 return -1;
6649 regcache_raw_read_unsigned (ir.regcache,
6650 ir.regmap[ir.reg | rex_r],
648d0c8b 6651 &addr);
cf648174
HZ
6652 switch (ir.dflag)
6653 {
6654 case 0:
648d0c8b 6655 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6656 break;
6657 case 1:
648d0c8b 6658 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6659 break;
6660 case 2:
648d0c8b 6661 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6662 break;
6663 }
25ea693b 6664 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6665 return -1;
6666 if (i386_record_lea_modrm (&ir))
6667 return -1;
6668 }
25ea693b 6669 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6670 break;
6671
a38bba38
MS
6672 case 0x0fbc: /* bsf */
6673 case 0x0fbd: /* bsr */
25ea693b
MM
6674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6676 break;
6677
6678 /* bcd */
a38bba38
MS
6679 case 0x27: /* daa */
6680 case 0x2f: /* das */
6681 case 0x37: /* aaa */
6682 case 0x3f: /* aas */
6683 case 0xd4: /* aam */
6684 case 0xd5: /* aad */
cf648174
HZ
6685 if (ir.regmap[X86_RECORD_R8_REGNUM])
6686 {
6687 ir.addr -= 1;
6688 goto no_support;
6689 }
25ea693b
MM
6690 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6691 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6692 break;
6693
6694 /* misc */
a38bba38 6695 case 0x90: /* nop */
7ad10968
HZ
6696 if (prefixes & PREFIX_LOCK)
6697 {
6698 ir.addr -= 1;
6699 goto no_support;
6700 }
6701 break;
6702
a38bba38 6703 case 0x9b: /* fwait */
4ffa4fc7
PA
6704 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6705 return -1;
425b824a 6706 opcode = (uint32_t) opcode8;
0289bdd7
MS
6707 ir.addr++;
6708 goto reswitch;
7ad10968
HZ
6709 break;
6710
7ad10968 6711 /* XXX */
a38bba38 6712 case 0xcc: /* int3 */
a3c4230a 6713 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6714 "int3.\n"));
6715 ir.addr -= 1;
6716 goto no_support;
6717 break;
6718
7ad10968 6719 /* XXX */
a38bba38 6720 case 0xcd: /* int */
7ad10968
HZ
6721 {
6722 int ret;
425b824a 6723 uint8_t interrupt;
4ffa4fc7
PA
6724 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6725 return -1;
7ad10968 6726 ir.addr++;
425b824a 6727 if (interrupt != 0x80
a3c4230a 6728 || tdep->i386_intx80_record == NULL)
7ad10968 6729 {
a3c4230a 6730 printf_unfiltered (_("Process record does not support "
7ad10968 6731 "instruction int 0x%02x.\n"),
425b824a 6732 interrupt);
7ad10968
HZ
6733 ir.addr -= 2;
6734 goto no_support;
6735 }
a3c4230a 6736 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6737 if (ret)
6738 return ret;
6739 }
6740 break;
6741
7ad10968 6742 /* XXX */
a38bba38 6743 case 0xce: /* into */
a3c4230a 6744 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6745 "instruction into.\n"));
6746 ir.addr -= 1;
6747 goto no_support;
6748 break;
6749
a38bba38
MS
6750 case 0xfa: /* cli */
6751 case 0xfb: /* sti */
7ad10968
HZ
6752 break;
6753
a38bba38 6754 case 0x62: /* bound */
a3c4230a 6755 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6756 "instruction bound.\n"));
6757 ir.addr -= 1;
6758 goto no_support;
6759 break;
6760
a38bba38 6761 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6762 case 0x0fc9:
6763 case 0x0fca:
6764 case 0x0fcb:
6765 case 0x0fcc:
6766 case 0x0fcd:
6767 case 0x0fce:
6768 case 0x0fcf:
25ea693b 6769 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6770 break;
6771
a38bba38 6772 case 0xd6: /* salc */
cf648174
HZ
6773 if (ir.regmap[X86_RECORD_R8_REGNUM])
6774 {
6775 ir.addr -= 1;
6776 goto no_support;
6777 }
25ea693b
MM
6778 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6779 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6780 break;
6781
a38bba38
MS
6782 case 0xe0: /* loopnz */
6783 case 0xe1: /* loopz */
6784 case 0xe2: /* loop */
6785 case 0xe3: /* jecxz */
25ea693b
MM
6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6787 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6788 break;
6789
a38bba38 6790 case 0x0f30: /* wrmsr */
a3c4230a 6791 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6792 "instruction wrmsr.\n"));
6793 ir.addr -= 2;
6794 goto no_support;
6795 break;
6796
a38bba38 6797 case 0x0f32: /* rdmsr */
a3c4230a 6798 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6799 "instruction rdmsr.\n"));
6800 ir.addr -= 2;
6801 goto no_support;
6802 break;
6803
a38bba38 6804 case 0x0f31: /* rdtsc */
25ea693b
MM
6805 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6807 break;
6808
a38bba38 6809 case 0x0f34: /* sysenter */
7ad10968
HZ
6810 {
6811 int ret;
cf648174
HZ
6812 if (ir.regmap[X86_RECORD_R8_REGNUM])
6813 {
6814 ir.addr -= 2;
6815 goto no_support;
6816 }
a3c4230a 6817 if (tdep->i386_sysenter_record == NULL)
7ad10968 6818 {
a3c4230a 6819 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6820 "instruction sysenter.\n"));
6821 ir.addr -= 2;
6822 goto no_support;
6823 }
a3c4230a 6824 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6825 if (ret)
6826 return ret;
6827 }
6828 break;
6829
a38bba38 6830 case 0x0f35: /* sysexit */
a3c4230a 6831 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6832 "instruction sysexit.\n"));
6833 ir.addr -= 2;
6834 goto no_support;
6835 break;
6836
a38bba38 6837 case 0x0f05: /* syscall */
cf648174
HZ
6838 {
6839 int ret;
a3c4230a 6840 if (tdep->i386_syscall_record == NULL)
cf648174 6841 {
a3c4230a 6842 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6843 "instruction syscall.\n"));
6844 ir.addr -= 2;
6845 goto no_support;
6846 }
a3c4230a 6847 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6848 if (ret)
6849 return ret;
6850 }
6851 break;
6852
a38bba38 6853 case 0x0f07: /* sysret */
a3c4230a 6854 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6855 "instruction sysret.\n"));
6856 ir.addr -= 2;
6857 goto no_support;
6858 break;
6859
a38bba38 6860 case 0x0fa2: /* cpuid */
25ea693b
MM
6861 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6862 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6863 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6864 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6865 break;
6866
a38bba38 6867 case 0xf4: /* hlt */
a3c4230a 6868 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6869 "instruction hlt.\n"));
6870 ir.addr -= 1;
6871 goto no_support;
6872 break;
6873
6874 case 0x0f00:
6875 if (i386_record_modrm (&ir))
6876 return -1;
6877 switch (ir.reg)
6878 {
a38bba38
MS
6879 case 0: /* sldt */
6880 case 1: /* str */
7ad10968 6881 if (ir.mod == 3)
25ea693b 6882 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6883 else
6884 {
6885 ir.ot = OT_WORD;
6886 if (i386_record_lea_modrm (&ir))
6887 return -1;
6888 }
6889 break;
a38bba38
MS
6890 case 2: /* lldt */
6891 case 3: /* ltr */
7ad10968 6892 break;
a38bba38
MS
6893 case 4: /* verr */
6894 case 5: /* verw */
25ea693b 6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6896 break;
6897 default:
6898 ir.addr -= 3;
6899 opcode = opcode << 8 | ir.modrm;
6900 goto no_support;
6901 break;
6902 }
6903 break;
6904
6905 case 0x0f01:
6906 if (i386_record_modrm (&ir))
6907 return -1;
6908 switch (ir.reg)
6909 {
a38bba38 6910 case 0: /* sgdt */
7ad10968 6911 {
955db0c0 6912 uint64_t addr64;
7ad10968
HZ
6913
6914 if (ir.mod == 3)
6915 {
6916 ir.addr -= 3;
6917 opcode = opcode << 8 | ir.modrm;
6918 goto no_support;
6919 }
d7877f7e 6920 if (ir.override >= 0)
7ad10968 6921 {
25ea693b 6922 if (record_full_memory_query)
bb08c432
HZ
6923 {
6924 int q;
6925
6926 target_terminal_ours ();
6927 q = yquery (_("\
6928Process record ignores the memory change of instruction at address %s\n\
6929because it can't get the value of the segment register.\n\
6930Do you want to stop the program?"),
6931 paddress (gdbarch, ir.orig_addr));
6932 target_terminal_inferior ();
6933 if (q)
6934 return -1;
6935 }
7ad10968
HZ
6936 }
6937 else
6938 {
955db0c0 6939 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6940 return -1;
25ea693b 6941 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6942 return -1;
955db0c0 6943 addr64 += 2;
cf648174
HZ
6944 if (ir.regmap[X86_RECORD_R8_REGNUM])
6945 {
25ea693b 6946 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6947 return -1;
6948 }
6949 else
6950 {
25ea693b 6951 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6952 return -1;
6953 }
7ad10968
HZ
6954 }
6955 }
6956 break;
6957 case 1:
6958 if (ir.mod == 3)
6959 {
6960 switch (ir.rm)
6961 {
a38bba38 6962 case 0: /* monitor */
7ad10968 6963 break;
a38bba38 6964 case 1: /* mwait */
25ea693b 6965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6966 break;
6967 default:
6968 ir.addr -= 3;
6969 opcode = opcode << 8 | ir.modrm;
6970 goto no_support;
6971 break;
6972 }
6973 }
6974 else
6975 {
6976 /* sidt */
d7877f7e 6977 if (ir.override >= 0)
7ad10968 6978 {
25ea693b 6979 if (record_full_memory_query)
bb08c432
HZ
6980 {
6981 int q;
6982
6983 target_terminal_ours ();
6984 q = yquery (_("\
6985Process record ignores the memory change of instruction at address %s\n\
6986because it can't get the value of the segment register.\n\
6987Do you want to stop the program?"),
6988 paddress (gdbarch, ir.orig_addr));
6989 target_terminal_inferior ();
6990 if (q)
6991 return -1;
6992 }
7ad10968
HZ
6993 }
6994 else
6995 {
955db0c0 6996 uint64_t addr64;
7ad10968 6997
955db0c0 6998 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6999 return -1;
25ea693b 7000 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7001 return -1;
955db0c0 7002 addr64 += 2;
cf648174
HZ
7003 if (ir.regmap[X86_RECORD_R8_REGNUM])
7004 {
25ea693b 7005 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7006 return -1;
7007 }
7008 else
7009 {
25ea693b 7010 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7011 return -1;
7012 }
7ad10968
HZ
7013 }
7014 }
7015 break;
a38bba38 7016 case 2: /* lgdt */
3800e645
MS
7017 if (ir.mod == 3)
7018 {
7019 /* xgetbv */
7020 if (ir.rm == 0)
7021 {
25ea693b
MM
7022 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7023 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7024 break;
7025 }
7026 /* xsetbv */
7027 else if (ir.rm == 1)
7028 break;
7029 }
a38bba38 7030 case 3: /* lidt */
7ad10968
HZ
7031 if (ir.mod == 3)
7032 {
7033 ir.addr -= 3;
7034 opcode = opcode << 8 | ir.modrm;
7035 goto no_support;
7036 }
7037 break;
a38bba38 7038 case 4: /* smsw */
7ad10968
HZ
7039 if (ir.mod == 3)
7040 {
25ea693b 7041 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7042 return -1;
7043 }
7044 else
7045 {
7046 ir.ot = OT_WORD;
7047 if (i386_record_lea_modrm (&ir))
7048 return -1;
7049 }
25ea693b 7050 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7051 break;
a38bba38 7052 case 6: /* lmsw */
25ea693b 7053 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7054 break;
a38bba38 7055 case 7: /* invlpg */
cf648174
HZ
7056 if (ir.mod == 3)
7057 {
7058 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7059 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7060 else
7061 {
7062 ir.addr -= 3;
7063 opcode = opcode << 8 | ir.modrm;
7064 goto no_support;
7065 }
7066 }
7067 else
25ea693b 7068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7069 break;
7070 default:
7071 ir.addr -= 3;
7072 opcode = opcode << 8 | ir.modrm;
7073 goto no_support;
7ad10968
HZ
7074 break;
7075 }
7076 break;
7077
a38bba38
MS
7078 case 0x0f08: /* invd */
7079 case 0x0f09: /* wbinvd */
7ad10968
HZ
7080 break;
7081
a38bba38 7082 case 0x63: /* arpl */
7ad10968
HZ
7083 if (i386_record_modrm (&ir))
7084 return -1;
cf648174
HZ
7085 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7086 {
25ea693b
MM
7087 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7088 ? (ir.reg | rex_r) : ir.rm);
cf648174 7089 }
7ad10968 7090 else
cf648174
HZ
7091 {
7092 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7093 if (i386_record_lea_modrm (&ir))
7094 return -1;
7095 }
7096 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7097 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7098 break;
7099
a38bba38
MS
7100 case 0x0f02: /* lar */
7101 case 0x0f03: /* lsl */
7ad10968
HZ
7102 if (i386_record_modrm (&ir))
7103 return -1;
25ea693b
MM
7104 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7106 break;
7107
7108 case 0x0f18:
cf648174
HZ
7109 if (i386_record_modrm (&ir))
7110 return -1;
7111 if (ir.mod == 3 && ir.reg == 3)
7112 {
7113 ir.addr -= 3;
7114 opcode = opcode << 8 | ir.modrm;
7115 goto no_support;
7116 }
7ad10968
HZ
7117 break;
7118
7ad10968
HZ
7119 case 0x0f19:
7120 case 0x0f1a:
7121 case 0x0f1b:
7122 case 0x0f1c:
7123 case 0x0f1d:
7124 case 0x0f1e:
7125 case 0x0f1f:
a38bba38 7126 /* nop (multi byte) */
7ad10968
HZ
7127 break;
7128
a38bba38
MS
7129 case 0x0f20: /* mov reg, crN */
7130 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7131 if (i386_record_modrm (&ir))
7132 return -1;
7133 if ((ir.modrm & 0xc0) != 0xc0)
7134 {
cf648174 7135 ir.addr -= 3;
7ad10968
HZ
7136 opcode = opcode << 8 | ir.modrm;
7137 goto no_support;
7138 }
7139 switch (ir.reg)
7140 {
7141 case 0:
7142 case 2:
7143 case 3:
7144 case 4:
7145 case 8:
7146 if (opcode & 2)
25ea693b 7147 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7148 else
25ea693b 7149 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7150 break;
7151 default:
cf648174 7152 ir.addr -= 3;
7ad10968
HZ
7153 opcode = opcode << 8 | ir.modrm;
7154 goto no_support;
7155 break;
7156 }
7157 break;
7158
a38bba38
MS
7159 case 0x0f21: /* mov reg, drN */
7160 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7161 if (i386_record_modrm (&ir))
7162 return -1;
7163 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7164 || ir.reg == 5 || ir.reg >= 8)
7165 {
cf648174 7166 ir.addr -= 3;
7ad10968
HZ
7167 opcode = opcode << 8 | ir.modrm;
7168 goto no_support;
7169 }
7170 if (opcode & 2)
25ea693b 7171 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7172 else
25ea693b 7173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7174 break;
7175
a38bba38 7176 case 0x0f06: /* clts */
25ea693b 7177 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7178 break;
7179
a3c4230a
HZ
7180 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7181
7182 case 0x0f0d: /* 3DNow! prefetch */
7183 break;
7184
7185 case 0x0f0e: /* 3DNow! femms */
7186 case 0x0f77: /* emms */
7187 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7188 goto no_support;
25ea693b 7189 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7190 break;
7191
7192 case 0x0f0f: /* 3DNow! data */
7193 if (i386_record_modrm (&ir))
7194 return -1;
4ffa4fc7
PA
7195 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7196 return -1;
a3c4230a
HZ
7197 ir.addr++;
7198 switch (opcode8)
7199 {
7200 case 0x0c: /* 3DNow! pi2fw */
7201 case 0x0d: /* 3DNow! pi2fd */
7202 case 0x1c: /* 3DNow! pf2iw */
7203 case 0x1d: /* 3DNow! pf2id */
7204 case 0x8a: /* 3DNow! pfnacc */
7205 case 0x8e: /* 3DNow! pfpnacc */
7206 case 0x90: /* 3DNow! pfcmpge */
7207 case 0x94: /* 3DNow! pfmin */
7208 case 0x96: /* 3DNow! pfrcp */
7209 case 0x97: /* 3DNow! pfrsqrt */
7210 case 0x9a: /* 3DNow! pfsub */
7211 case 0x9e: /* 3DNow! pfadd */
7212 case 0xa0: /* 3DNow! pfcmpgt */
7213 case 0xa4: /* 3DNow! pfmax */
7214 case 0xa6: /* 3DNow! pfrcpit1 */
7215 case 0xa7: /* 3DNow! pfrsqit1 */
7216 case 0xaa: /* 3DNow! pfsubr */
7217 case 0xae: /* 3DNow! pfacc */
7218 case 0xb0: /* 3DNow! pfcmpeq */
7219 case 0xb4: /* 3DNow! pfmul */
7220 case 0xb6: /* 3DNow! pfrcpit2 */
7221 case 0xb7: /* 3DNow! pmulhrw */
7222 case 0xbb: /* 3DNow! pswapd */
7223 case 0xbf: /* 3DNow! pavgusb */
7224 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7225 goto no_support_3dnow_data;
25ea693b 7226 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7227 break;
7228
7229 default:
7230no_support_3dnow_data:
7231 opcode = (opcode << 8) | opcode8;
7232 goto no_support;
7233 break;
7234 }
7235 break;
7236
7237 case 0x0faa: /* rsm */
25ea693b
MM
7238 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7242 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7243 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7245 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7246 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7247 break;
7248
7249 case 0x0fae:
7250 if (i386_record_modrm (&ir))
7251 return -1;
7252 switch(ir.reg)
7253 {
7254 case 0: /* fxsave */
7255 {
7256 uint64_t tmpu64;
7257
25ea693b 7258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7259 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7260 return -1;
25ea693b 7261 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7262 return -1;
7263 }
7264 break;
7265
7266 case 1: /* fxrstor */
7267 {
7268 int i;
7269
25ea693b 7270 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7271
7272 for (i = I387_MM0_REGNUM (tdep);
7273 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7274 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7275
7276 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7277 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7278 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7279
7280 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7281 record_full_arch_list_add_reg (ir.regcache,
7282 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7283
7284 for (i = I387_ST0_REGNUM (tdep);
7285 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7286 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7287
7288 for (i = I387_FCTRL_REGNUM (tdep);
7289 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7290 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7291 }
7292 break;
7293
7294 case 2: /* ldmxcsr */
7295 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7296 goto no_support;
25ea693b 7297 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7298 break;
7299
7300 case 3: /* stmxcsr */
7301 ir.ot = OT_LONG;
7302 if (i386_record_lea_modrm (&ir))
7303 return -1;
7304 break;
7305
7306 case 5: /* lfence */
7307 case 6: /* mfence */
7308 case 7: /* sfence clflush */
7309 break;
7310
7311 default:
7312 opcode = (opcode << 8) | ir.modrm;
7313 goto no_support;
7314 break;
7315 }
7316 break;
7317
7318 case 0x0fc3: /* movnti */
7319 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7320 if (i386_record_modrm (&ir))
7321 return -1;
7322 if (ir.mod == 3)
7323 goto no_support;
7324 ir.reg |= rex_r;
7325 if (i386_record_lea_modrm (&ir))
7326 return -1;
7327 break;
7328
7329 /* Add prefix to opcode. */
7330 case 0x0f10:
7331 case 0x0f11:
7332 case 0x0f12:
7333 case 0x0f13:
7334 case 0x0f14:
7335 case 0x0f15:
7336 case 0x0f16:
7337 case 0x0f17:
7338 case 0x0f28:
7339 case 0x0f29:
7340 case 0x0f2a:
7341 case 0x0f2b:
7342 case 0x0f2c:
7343 case 0x0f2d:
7344 case 0x0f2e:
7345 case 0x0f2f:
7346 case 0x0f38:
7347 case 0x0f39:
7348 case 0x0f3a:
7349 case 0x0f50:
7350 case 0x0f51:
7351 case 0x0f52:
7352 case 0x0f53:
7353 case 0x0f54:
7354 case 0x0f55:
7355 case 0x0f56:
7356 case 0x0f57:
7357 case 0x0f58:
7358 case 0x0f59:
7359 case 0x0f5a:
7360 case 0x0f5b:
7361 case 0x0f5c:
7362 case 0x0f5d:
7363 case 0x0f5e:
7364 case 0x0f5f:
7365 case 0x0f60:
7366 case 0x0f61:
7367 case 0x0f62:
7368 case 0x0f63:
7369 case 0x0f64:
7370 case 0x0f65:
7371 case 0x0f66:
7372 case 0x0f67:
7373 case 0x0f68:
7374 case 0x0f69:
7375 case 0x0f6a:
7376 case 0x0f6b:
7377 case 0x0f6c:
7378 case 0x0f6d:
7379 case 0x0f6e:
7380 case 0x0f6f:
7381 case 0x0f70:
7382 case 0x0f71:
7383 case 0x0f72:
7384 case 0x0f73:
7385 case 0x0f74:
7386 case 0x0f75:
7387 case 0x0f76:
7388 case 0x0f7c:
7389 case 0x0f7d:
7390 case 0x0f7e:
7391 case 0x0f7f:
7392 case 0x0fb8:
7393 case 0x0fc2:
7394 case 0x0fc4:
7395 case 0x0fc5:
7396 case 0x0fc6:
7397 case 0x0fd0:
7398 case 0x0fd1:
7399 case 0x0fd2:
7400 case 0x0fd3:
7401 case 0x0fd4:
7402 case 0x0fd5:
7403 case 0x0fd6:
7404 case 0x0fd7:
7405 case 0x0fd8:
7406 case 0x0fd9:
7407 case 0x0fda:
7408 case 0x0fdb:
7409 case 0x0fdc:
7410 case 0x0fdd:
7411 case 0x0fde:
7412 case 0x0fdf:
7413 case 0x0fe0:
7414 case 0x0fe1:
7415 case 0x0fe2:
7416 case 0x0fe3:
7417 case 0x0fe4:
7418 case 0x0fe5:
7419 case 0x0fe6:
7420 case 0x0fe7:
7421 case 0x0fe8:
7422 case 0x0fe9:
7423 case 0x0fea:
7424 case 0x0feb:
7425 case 0x0fec:
7426 case 0x0fed:
7427 case 0x0fee:
7428 case 0x0fef:
7429 case 0x0ff0:
7430 case 0x0ff1:
7431 case 0x0ff2:
7432 case 0x0ff3:
7433 case 0x0ff4:
7434 case 0x0ff5:
7435 case 0x0ff6:
7436 case 0x0ff7:
7437 case 0x0ff8:
7438 case 0x0ff9:
7439 case 0x0ffa:
7440 case 0x0ffb:
7441 case 0x0ffc:
7442 case 0x0ffd:
7443 case 0x0ffe:
f9fda3f5
L
7444 /* Mask out PREFIX_ADDR. */
7445 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7446 {
7447 case PREFIX_REPNZ:
7448 opcode |= 0xf20000;
7449 break;
7450 case PREFIX_DATA:
7451 opcode |= 0x660000;
7452 break;
7453 case PREFIX_REPZ:
7454 opcode |= 0xf30000;
7455 break;
7456 }
7457reswitch_prefix_add:
7458 switch (opcode)
7459 {
7460 case 0x0f38:
7461 case 0x660f38:
7462 case 0xf20f38:
7463 case 0x0f3a:
7464 case 0x660f3a:
4ffa4fc7
PA
7465 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7466 return -1;
a3c4230a
HZ
7467 ir.addr++;
7468 opcode = (uint32_t) opcode8 | opcode << 8;
7469 goto reswitch_prefix_add;
7470 break;
7471
7472 case 0x0f10: /* movups */
7473 case 0x660f10: /* movupd */
7474 case 0xf30f10: /* movss */
7475 case 0xf20f10: /* movsd */
7476 case 0x0f12: /* movlps */
7477 case 0x660f12: /* movlpd */
7478 case 0xf30f12: /* movsldup */
7479 case 0xf20f12: /* movddup */
7480 case 0x0f14: /* unpcklps */
7481 case 0x660f14: /* unpcklpd */
7482 case 0x0f15: /* unpckhps */
7483 case 0x660f15: /* unpckhpd */
7484 case 0x0f16: /* movhps */
7485 case 0x660f16: /* movhpd */
7486 case 0xf30f16: /* movshdup */
7487 case 0x0f28: /* movaps */
7488 case 0x660f28: /* movapd */
7489 case 0x0f2a: /* cvtpi2ps */
7490 case 0x660f2a: /* cvtpi2pd */
7491 case 0xf30f2a: /* cvtsi2ss */
7492 case 0xf20f2a: /* cvtsi2sd */
7493 case 0x0f2c: /* cvttps2pi */
7494 case 0x660f2c: /* cvttpd2pi */
7495 case 0x0f2d: /* cvtps2pi */
7496 case 0x660f2d: /* cvtpd2pi */
7497 case 0x660f3800: /* pshufb */
7498 case 0x660f3801: /* phaddw */
7499 case 0x660f3802: /* phaddd */
7500 case 0x660f3803: /* phaddsw */
7501 case 0x660f3804: /* pmaddubsw */
7502 case 0x660f3805: /* phsubw */
7503 case 0x660f3806: /* phsubd */
4f7d61a8 7504 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7505 case 0x660f3808: /* psignb */
7506 case 0x660f3809: /* psignw */
7507 case 0x660f380a: /* psignd */
7508 case 0x660f380b: /* pmulhrsw */
7509 case 0x660f3810: /* pblendvb */
7510 case 0x660f3814: /* blendvps */
7511 case 0x660f3815: /* blendvpd */
7512 case 0x660f381c: /* pabsb */
7513 case 0x660f381d: /* pabsw */
7514 case 0x660f381e: /* pabsd */
7515 case 0x660f3820: /* pmovsxbw */
7516 case 0x660f3821: /* pmovsxbd */
7517 case 0x660f3822: /* pmovsxbq */
7518 case 0x660f3823: /* pmovsxwd */
7519 case 0x660f3824: /* pmovsxwq */
7520 case 0x660f3825: /* pmovsxdq */
7521 case 0x660f3828: /* pmuldq */
7522 case 0x660f3829: /* pcmpeqq */
7523 case 0x660f382a: /* movntdqa */
7524 case 0x660f3a08: /* roundps */
7525 case 0x660f3a09: /* roundpd */
7526 case 0x660f3a0a: /* roundss */
7527 case 0x660f3a0b: /* roundsd */
7528 case 0x660f3a0c: /* blendps */
7529 case 0x660f3a0d: /* blendpd */
7530 case 0x660f3a0e: /* pblendw */
7531 case 0x660f3a0f: /* palignr */
7532 case 0x660f3a20: /* pinsrb */
7533 case 0x660f3a21: /* insertps */
7534 case 0x660f3a22: /* pinsrd pinsrq */
7535 case 0x660f3a40: /* dpps */
7536 case 0x660f3a41: /* dppd */
7537 case 0x660f3a42: /* mpsadbw */
7538 case 0x660f3a60: /* pcmpestrm */
7539 case 0x660f3a61: /* pcmpestri */
7540 case 0x660f3a62: /* pcmpistrm */
7541 case 0x660f3a63: /* pcmpistri */
7542 case 0x0f51: /* sqrtps */
7543 case 0x660f51: /* sqrtpd */
7544 case 0xf20f51: /* sqrtsd */
7545 case 0xf30f51: /* sqrtss */
7546 case 0x0f52: /* rsqrtps */
7547 case 0xf30f52: /* rsqrtss */
7548 case 0x0f53: /* rcpps */
7549 case 0xf30f53: /* rcpss */
7550 case 0x0f54: /* andps */
7551 case 0x660f54: /* andpd */
7552 case 0x0f55: /* andnps */
7553 case 0x660f55: /* andnpd */
7554 case 0x0f56: /* orps */
7555 case 0x660f56: /* orpd */
7556 case 0x0f57: /* xorps */
7557 case 0x660f57: /* xorpd */
7558 case 0x0f58: /* addps */
7559 case 0x660f58: /* addpd */
7560 case 0xf20f58: /* addsd */
7561 case 0xf30f58: /* addss */
7562 case 0x0f59: /* mulps */
7563 case 0x660f59: /* mulpd */
7564 case 0xf20f59: /* mulsd */
7565 case 0xf30f59: /* mulss */
7566 case 0x0f5a: /* cvtps2pd */
7567 case 0x660f5a: /* cvtpd2ps */
7568 case 0xf20f5a: /* cvtsd2ss */
7569 case 0xf30f5a: /* cvtss2sd */
7570 case 0x0f5b: /* cvtdq2ps */
7571 case 0x660f5b: /* cvtps2dq */
7572 case 0xf30f5b: /* cvttps2dq */
7573 case 0x0f5c: /* subps */
7574 case 0x660f5c: /* subpd */
7575 case 0xf20f5c: /* subsd */
7576 case 0xf30f5c: /* subss */
7577 case 0x0f5d: /* minps */
7578 case 0x660f5d: /* minpd */
7579 case 0xf20f5d: /* minsd */
7580 case 0xf30f5d: /* minss */
7581 case 0x0f5e: /* divps */
7582 case 0x660f5e: /* divpd */
7583 case 0xf20f5e: /* divsd */
7584 case 0xf30f5e: /* divss */
7585 case 0x0f5f: /* maxps */
7586 case 0x660f5f: /* maxpd */
7587 case 0xf20f5f: /* maxsd */
7588 case 0xf30f5f: /* maxss */
7589 case 0x660f60: /* punpcklbw */
7590 case 0x660f61: /* punpcklwd */
7591 case 0x660f62: /* punpckldq */
7592 case 0x660f63: /* packsswb */
7593 case 0x660f64: /* pcmpgtb */
7594 case 0x660f65: /* pcmpgtw */
56d2815c 7595 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7596 case 0x660f67: /* packuswb */
7597 case 0x660f68: /* punpckhbw */
7598 case 0x660f69: /* punpckhwd */
7599 case 0x660f6a: /* punpckhdq */
7600 case 0x660f6b: /* packssdw */
7601 case 0x660f6c: /* punpcklqdq */
7602 case 0x660f6d: /* punpckhqdq */
7603 case 0x660f6e: /* movd */
7604 case 0x660f6f: /* movdqa */
7605 case 0xf30f6f: /* movdqu */
7606 case 0x660f70: /* pshufd */
7607 case 0xf20f70: /* pshuflw */
7608 case 0xf30f70: /* pshufhw */
7609 case 0x660f74: /* pcmpeqb */
7610 case 0x660f75: /* pcmpeqw */
56d2815c 7611 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7612 case 0x660f7c: /* haddpd */
7613 case 0xf20f7c: /* haddps */
7614 case 0x660f7d: /* hsubpd */
7615 case 0xf20f7d: /* hsubps */
7616 case 0xf30f7e: /* movq */
7617 case 0x0fc2: /* cmpps */
7618 case 0x660fc2: /* cmppd */
7619 case 0xf20fc2: /* cmpsd */
7620 case 0xf30fc2: /* cmpss */
7621 case 0x660fc4: /* pinsrw */
7622 case 0x0fc6: /* shufps */
7623 case 0x660fc6: /* shufpd */
7624 case 0x660fd0: /* addsubpd */
7625 case 0xf20fd0: /* addsubps */
7626 case 0x660fd1: /* psrlw */
7627 case 0x660fd2: /* psrld */
7628 case 0x660fd3: /* psrlq */
7629 case 0x660fd4: /* paddq */
7630 case 0x660fd5: /* pmullw */
7631 case 0xf30fd6: /* movq2dq */
7632 case 0x660fd8: /* psubusb */
7633 case 0x660fd9: /* psubusw */
7634 case 0x660fda: /* pminub */
7635 case 0x660fdb: /* pand */
7636 case 0x660fdc: /* paddusb */
7637 case 0x660fdd: /* paddusw */
7638 case 0x660fde: /* pmaxub */
7639 case 0x660fdf: /* pandn */
7640 case 0x660fe0: /* pavgb */
7641 case 0x660fe1: /* psraw */
7642 case 0x660fe2: /* psrad */
7643 case 0x660fe3: /* pavgw */
7644 case 0x660fe4: /* pmulhuw */
7645 case 0x660fe5: /* pmulhw */
7646 case 0x660fe6: /* cvttpd2dq */
7647 case 0xf20fe6: /* cvtpd2dq */
7648 case 0xf30fe6: /* cvtdq2pd */
7649 case 0x660fe8: /* psubsb */
7650 case 0x660fe9: /* psubsw */
7651 case 0x660fea: /* pminsw */
7652 case 0x660feb: /* por */
7653 case 0x660fec: /* paddsb */
7654 case 0x660fed: /* paddsw */
7655 case 0x660fee: /* pmaxsw */
7656 case 0x660fef: /* pxor */
4f7d61a8 7657 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7658 case 0x660ff1: /* psllw */
7659 case 0x660ff2: /* pslld */
7660 case 0x660ff3: /* psllq */
7661 case 0x660ff4: /* pmuludq */
7662 case 0x660ff5: /* pmaddwd */
7663 case 0x660ff6: /* psadbw */
7664 case 0x660ff8: /* psubb */
7665 case 0x660ff9: /* psubw */
56d2815c 7666 case 0x660ffa: /* psubd */
a3c4230a
HZ
7667 case 0x660ffb: /* psubq */
7668 case 0x660ffc: /* paddb */
7669 case 0x660ffd: /* paddw */
56d2815c 7670 case 0x660ffe: /* paddd */
a3c4230a
HZ
7671 if (i386_record_modrm (&ir))
7672 return -1;
7673 ir.reg |= rex_r;
c131fcee 7674 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7675 goto no_support;
25ea693b
MM
7676 record_full_arch_list_add_reg (ir.regcache,
7677 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7678 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7680 break;
7681
7682 case 0x0f11: /* movups */
7683 case 0x660f11: /* movupd */
7684 case 0xf30f11: /* movss */
7685 case 0xf20f11: /* movsd */
7686 case 0x0f13: /* movlps */
7687 case 0x660f13: /* movlpd */
7688 case 0x0f17: /* movhps */
7689 case 0x660f17: /* movhpd */
7690 case 0x0f29: /* movaps */
7691 case 0x660f29: /* movapd */
7692 case 0x660f3a14: /* pextrb */
7693 case 0x660f3a15: /* pextrw */
7694 case 0x660f3a16: /* pextrd pextrq */
7695 case 0x660f3a17: /* extractps */
7696 case 0x660f7f: /* movdqa */
7697 case 0xf30f7f: /* movdqu */
7698 if (i386_record_modrm (&ir))
7699 return -1;
7700 if (ir.mod == 3)
7701 {
7702 if (opcode == 0x0f13 || opcode == 0x660f13
7703 || opcode == 0x0f17 || opcode == 0x660f17)
7704 goto no_support;
7705 ir.rm |= ir.rex_b;
1777feb0
MS
7706 if (!i386_xmm_regnum_p (gdbarch,
7707 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7708 goto no_support;
25ea693b
MM
7709 record_full_arch_list_add_reg (ir.regcache,
7710 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7711 }
7712 else
7713 {
7714 switch (opcode)
7715 {
7716 case 0x660f3a14:
7717 ir.ot = OT_BYTE;
7718 break;
7719 case 0x660f3a15:
7720 ir.ot = OT_WORD;
7721 break;
7722 case 0x660f3a16:
7723 ir.ot = OT_LONG;
7724 break;
7725 case 0x660f3a17:
7726 ir.ot = OT_QUAD;
7727 break;
7728 default:
7729 ir.ot = OT_DQUAD;
7730 break;
7731 }
7732 if (i386_record_lea_modrm (&ir))
7733 return -1;
7734 }
7735 break;
7736
7737 case 0x0f2b: /* movntps */
7738 case 0x660f2b: /* movntpd */
7739 case 0x0fe7: /* movntq */
7740 case 0x660fe7: /* movntdq */
7741 if (ir.mod == 3)
7742 goto no_support;
7743 if (opcode == 0x0fe7)
7744 ir.ot = OT_QUAD;
7745 else
7746 ir.ot = OT_DQUAD;
7747 if (i386_record_lea_modrm (&ir))
7748 return -1;
7749 break;
7750
7751 case 0xf30f2c: /* cvttss2si */
7752 case 0xf20f2c: /* cvttsd2si */
7753 case 0xf30f2d: /* cvtss2si */
7754 case 0xf20f2d: /* cvtsd2si */
7755 case 0xf20f38f0: /* crc32 */
7756 case 0xf20f38f1: /* crc32 */
7757 case 0x0f50: /* movmskps */
7758 case 0x660f50: /* movmskpd */
7759 case 0x0fc5: /* pextrw */
7760 case 0x660fc5: /* pextrw */
7761 case 0x0fd7: /* pmovmskb */
7762 case 0x660fd7: /* pmovmskb */
25ea693b 7763 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7764 break;
7765
7766 case 0x0f3800: /* pshufb */
7767 case 0x0f3801: /* phaddw */
7768 case 0x0f3802: /* phaddd */
7769 case 0x0f3803: /* phaddsw */
7770 case 0x0f3804: /* pmaddubsw */
7771 case 0x0f3805: /* phsubw */
7772 case 0x0f3806: /* phsubd */
4f7d61a8 7773 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7774 case 0x0f3808: /* psignb */
7775 case 0x0f3809: /* psignw */
7776 case 0x0f380a: /* psignd */
7777 case 0x0f380b: /* pmulhrsw */
7778 case 0x0f381c: /* pabsb */
7779 case 0x0f381d: /* pabsw */
7780 case 0x0f381e: /* pabsd */
7781 case 0x0f382b: /* packusdw */
7782 case 0x0f3830: /* pmovzxbw */
7783 case 0x0f3831: /* pmovzxbd */
7784 case 0x0f3832: /* pmovzxbq */
7785 case 0x0f3833: /* pmovzxwd */
7786 case 0x0f3834: /* pmovzxwq */
7787 case 0x0f3835: /* pmovzxdq */
7788 case 0x0f3837: /* pcmpgtq */
7789 case 0x0f3838: /* pminsb */
7790 case 0x0f3839: /* pminsd */
7791 case 0x0f383a: /* pminuw */
7792 case 0x0f383b: /* pminud */
7793 case 0x0f383c: /* pmaxsb */
7794 case 0x0f383d: /* pmaxsd */
7795 case 0x0f383e: /* pmaxuw */
7796 case 0x0f383f: /* pmaxud */
7797 case 0x0f3840: /* pmulld */
7798 case 0x0f3841: /* phminposuw */
7799 case 0x0f3a0f: /* palignr */
7800 case 0x0f60: /* punpcklbw */
7801 case 0x0f61: /* punpcklwd */
7802 case 0x0f62: /* punpckldq */
7803 case 0x0f63: /* packsswb */
7804 case 0x0f64: /* pcmpgtb */
7805 case 0x0f65: /* pcmpgtw */
56d2815c 7806 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7807 case 0x0f67: /* packuswb */
7808 case 0x0f68: /* punpckhbw */
7809 case 0x0f69: /* punpckhwd */
7810 case 0x0f6a: /* punpckhdq */
7811 case 0x0f6b: /* packssdw */
7812 case 0x0f6e: /* movd */
7813 case 0x0f6f: /* movq */
7814 case 0x0f70: /* pshufw */
7815 case 0x0f74: /* pcmpeqb */
7816 case 0x0f75: /* pcmpeqw */
56d2815c 7817 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7818 case 0x0fc4: /* pinsrw */
7819 case 0x0fd1: /* psrlw */
7820 case 0x0fd2: /* psrld */
7821 case 0x0fd3: /* psrlq */
7822 case 0x0fd4: /* paddq */
7823 case 0x0fd5: /* pmullw */
7824 case 0xf20fd6: /* movdq2q */
7825 case 0x0fd8: /* psubusb */
7826 case 0x0fd9: /* psubusw */
7827 case 0x0fda: /* pminub */
7828 case 0x0fdb: /* pand */
7829 case 0x0fdc: /* paddusb */
7830 case 0x0fdd: /* paddusw */
7831 case 0x0fde: /* pmaxub */
7832 case 0x0fdf: /* pandn */
7833 case 0x0fe0: /* pavgb */
7834 case 0x0fe1: /* psraw */
7835 case 0x0fe2: /* psrad */
7836 case 0x0fe3: /* pavgw */
7837 case 0x0fe4: /* pmulhuw */
7838 case 0x0fe5: /* pmulhw */
7839 case 0x0fe8: /* psubsb */
7840 case 0x0fe9: /* psubsw */
7841 case 0x0fea: /* pminsw */
7842 case 0x0feb: /* por */
7843 case 0x0fec: /* paddsb */
7844 case 0x0fed: /* paddsw */
7845 case 0x0fee: /* pmaxsw */
7846 case 0x0fef: /* pxor */
7847 case 0x0ff1: /* psllw */
7848 case 0x0ff2: /* pslld */
7849 case 0x0ff3: /* psllq */
7850 case 0x0ff4: /* pmuludq */
7851 case 0x0ff5: /* pmaddwd */
7852 case 0x0ff6: /* psadbw */
7853 case 0x0ff8: /* psubb */
7854 case 0x0ff9: /* psubw */
56d2815c 7855 case 0x0ffa: /* psubd */
a3c4230a
HZ
7856 case 0x0ffb: /* psubq */
7857 case 0x0ffc: /* paddb */
7858 case 0x0ffd: /* paddw */
56d2815c 7859 case 0x0ffe: /* paddd */
a3c4230a
HZ
7860 if (i386_record_modrm (&ir))
7861 return -1;
7862 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7863 goto no_support;
25ea693b
MM
7864 record_full_arch_list_add_reg (ir.regcache,
7865 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7866 break;
7867
7868 case 0x0f71: /* psllw */
7869 case 0x0f72: /* pslld */
7870 case 0x0f73: /* psllq */
7871 if (i386_record_modrm (&ir))
7872 return -1;
7873 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7874 goto no_support;
25ea693b
MM
7875 record_full_arch_list_add_reg (ir.regcache,
7876 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7877 break;
7878
7879 case 0x660f71: /* psllw */
7880 case 0x660f72: /* pslld */
7881 case 0x660f73: /* psllq */
7882 if (i386_record_modrm (&ir))
7883 return -1;
7884 ir.rm |= ir.rex_b;
c131fcee 7885 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7886 goto no_support;
25ea693b
MM
7887 record_full_arch_list_add_reg (ir.regcache,
7888 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7889 break;
7890
7891 case 0x0f7e: /* movd */
7892 case 0x660f7e: /* movd */
7893 if (i386_record_modrm (&ir))
7894 return -1;
7895 if (ir.mod == 3)
25ea693b 7896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7897 else
7898 {
7899 if (ir.dflag == 2)
7900 ir.ot = OT_QUAD;
7901 else
7902 ir.ot = OT_LONG;
7903 if (i386_record_lea_modrm (&ir))
7904 return -1;
7905 }
7906 break;
7907
7908 case 0x0f7f: /* movq */
7909 if (i386_record_modrm (&ir))
7910 return -1;
7911 if (ir.mod == 3)
7912 {
7913 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7914 goto no_support;
25ea693b
MM
7915 record_full_arch_list_add_reg (ir.regcache,
7916 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7917 }
7918 else
7919 {
7920 ir.ot = OT_QUAD;
7921 if (i386_record_lea_modrm (&ir))
7922 return -1;
7923 }
7924 break;
7925
7926 case 0xf30fb8: /* popcnt */
7927 if (i386_record_modrm (&ir))
7928 return -1;
25ea693b
MM
7929 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7930 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7931 break;
7932
7933 case 0x660fd6: /* movq */
7934 if (i386_record_modrm (&ir))
7935 return -1;
7936 if (ir.mod == 3)
7937 {
7938 ir.rm |= ir.rex_b;
1777feb0
MS
7939 if (!i386_xmm_regnum_p (gdbarch,
7940 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7941 goto no_support;
25ea693b
MM
7942 record_full_arch_list_add_reg (ir.regcache,
7943 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7944 }
7945 else
7946 {
7947 ir.ot = OT_QUAD;
7948 if (i386_record_lea_modrm (&ir))
7949 return -1;
7950 }
7951 break;
7952
7953 case 0x660f3817: /* ptest */
7954 case 0x0f2e: /* ucomiss */
7955 case 0x660f2e: /* ucomisd */
7956 case 0x0f2f: /* comiss */
7957 case 0x660f2f: /* comisd */
25ea693b 7958 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7959 break;
7960
7961 case 0x0ff7: /* maskmovq */
7962 regcache_raw_read_unsigned (ir.regcache,
7963 ir.regmap[X86_RECORD_REDI_REGNUM],
7964 &addr);
25ea693b 7965 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
7966 return -1;
7967 break;
7968
7969 case 0x660ff7: /* maskmovdqu */
7970 regcache_raw_read_unsigned (ir.regcache,
7971 ir.regmap[X86_RECORD_REDI_REGNUM],
7972 &addr);
25ea693b 7973 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
7974 return -1;
7975 break;
7976
7977 default:
7978 goto no_support;
7979 break;
7980 }
7981 break;
7ad10968
HZ
7982
7983 default:
7ad10968
HZ
7984 goto no_support;
7985 break;
7986 }
7987
cf648174 7988 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
7989 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7990 if (record_full_arch_list_add_end ())
7ad10968
HZ
7991 return -1;
7992
7993 return 0;
7994
01fe1b41 7995 no_support:
a3c4230a
HZ
7996 printf_unfiltered (_("Process record does not support instruction 0x%02x "
7997 "at address %s.\n"),
7998 (unsigned int) (opcode),
7999 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8000 return -1;
8001}
8002
cf648174
HZ
8003static const int i386_record_regmap[] =
8004{
8005 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8006 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8007 0, 0, 0, 0, 0, 0, 0, 0,
8008 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8009 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8010};
8011
7a697b8d 8012/* Check that the given address appears suitable for a fast
405f8e94 8013 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8014 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8015 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8016 middle of the tracepoint jump. On x86, it may be possible to use
8017 4-byte jumps with a 2-byte offset to a trampoline located in the
8018 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8019 of instruction to replace, and 0 if not, plus an explanatory
8020 string. */
8021
8022static int
8023i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8024 CORE_ADDR addr, int *isize, char **msg)
8025{
8026 int len, jumplen;
8027 static struct ui_file *gdb_null = NULL;
8028
405f8e94
SS
8029 /* Ask the target for the minimum instruction length supported. */
8030 jumplen = target_get_min_fast_tracepoint_insn_len ();
8031
8032 if (jumplen < 0)
8033 {
8034 /* If the target does not support the get_min_fast_tracepoint_insn_len
8035 operation, assume that fast tracepoints will always be implemented
8036 using 4-byte relative jumps on both x86 and x86-64. */
8037 jumplen = 5;
8038 }
8039 else if (jumplen == 0)
8040 {
8041 /* If the target does support get_min_fast_tracepoint_insn_len but
8042 returns zero, then the IPA has not loaded yet. In this case,
8043 we optimistically assume that truncated 2-byte relative jumps
8044 will be available on x86, and compensate later if this assumption
8045 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8046 jumps will always be used. */
8047 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8048 }
7a697b8d
SS
8049
8050 /* Dummy file descriptor for the disassembler. */
8051 if (!gdb_null)
8052 gdb_null = ui_file_new ();
8053
8054 /* Check for fit. */
8055 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8056 if (isize)
8057 *isize = len;
8058
7a697b8d
SS
8059 if (len < jumplen)
8060 {
8061 /* Return a bit of target-specific detail to add to the caller's
8062 generic failure message. */
8063 if (msg)
1777feb0
MS
8064 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8065 "need at least %d bytes for the jump"),
7a697b8d
SS
8066 len, jumplen);
8067 return 0;
8068 }
405f8e94
SS
8069 else
8070 {
8071 if (msg)
8072 *msg = NULL;
8073 return 1;
8074 }
7a697b8d
SS
8075}
8076
90884b2b
L
8077static int
8078i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8079 struct tdesc_arch_data *tdesc_data)
8080{
8081 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8082 const struct tdesc_feature *feature_core;
01f9f808
MS
8083
8084 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8085 *feature_avx512;
90884b2b
L
8086 int i, num_regs, valid_p;
8087
8088 if (! tdesc_has_registers (tdesc))
8089 return 0;
8090
8091 /* Get core registers. */
8092 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8093 if (feature_core == NULL)
8094 return 0;
90884b2b
L
8095
8096 /* Get SSE registers. */
c131fcee 8097 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8098
c131fcee
L
8099 /* Try AVX registers. */
8100 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8101
1dbcd68c
WT
8102 /* Try MPX registers. */
8103 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8104
01f9f808
MS
8105 /* Try AVX512 registers. */
8106 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8107
90884b2b
L
8108 valid_p = 1;
8109
c131fcee 8110 /* The XCR0 bits. */
01f9f808
MS
8111 if (feature_avx512)
8112 {
8113 /* AVX512 register description requires AVX register description. */
8114 if (!feature_avx)
8115 return 0;
8116
df7e5265 8117 tdep->xcr0 = X86_XSTATE_MPX_AVX512_MASK;
01f9f808
MS
8118
8119 /* It may have been set by OSABI initialization function. */
8120 if (tdep->k0_regnum < 0)
8121 {
8122 tdep->k_register_names = i386_k_names;
8123 tdep->k0_regnum = I386_K0_REGNUM;
8124 }
8125
8126 for (i = 0; i < I387_NUM_K_REGS; i++)
8127 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8128 tdep->k0_regnum + i,
8129 i386_k_names[i]);
8130
8131 if (tdep->num_zmm_regs == 0)
8132 {
8133 tdep->zmmh_register_names = i386_zmmh_names;
8134 tdep->num_zmm_regs = 8;
8135 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8136 }
8137
8138 for (i = 0; i < tdep->num_zmm_regs; i++)
8139 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8140 tdep->zmm0h_regnum + i,
8141 tdep->zmmh_register_names[i]);
8142
8143 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8144 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8145 tdep->xmm16_regnum + i,
8146 tdep->xmm_avx512_register_names[i]);
8147
8148 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8149 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8150 tdep->ymm16h_regnum + i,
8151 tdep->ymm16h_register_names[i]);
8152 }
c131fcee
L
8153 if (feature_avx)
8154 {
3a13a53b
L
8155 /* AVX register description requires SSE register description. */
8156 if (!feature_sse)
8157 return 0;
8158
01f9f808 8159 if (!feature_avx512)
df7e5265 8160 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8161
8162 /* It may have been set by OSABI initialization function. */
8163 if (tdep->num_ymm_regs == 0)
8164 {
8165 tdep->ymmh_register_names = i386_ymmh_names;
8166 tdep->num_ymm_regs = 8;
8167 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8168 }
8169
8170 for (i = 0; i < tdep->num_ymm_regs; i++)
8171 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8172 tdep->ymm0h_regnum + i,
8173 tdep->ymmh_register_names[i]);
8174 }
3a13a53b 8175 else if (feature_sse)
df7e5265 8176 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8177 else
8178 {
df7e5265 8179 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8180 tdep->num_xmm_regs = 0;
8181 }
c131fcee 8182
90884b2b
L
8183 num_regs = tdep->num_core_regs;
8184 for (i = 0; i < num_regs; i++)
8185 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8186 tdep->register_names[i]);
8187
3a13a53b
L
8188 if (feature_sse)
8189 {
8190 /* Need to include %mxcsr, so add one. */
8191 num_regs += tdep->num_xmm_regs + 1;
8192 for (; i < num_regs; i++)
8193 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8194 tdep->register_names[i]);
8195 }
90884b2b 8196
1dbcd68c
WT
8197 if (feature_mpx)
8198 {
df7e5265 8199 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8200
8201 if (tdep->bnd0r_regnum < 0)
8202 {
8203 tdep->mpx_register_names = i386_mpx_names;
8204 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8205 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8206 }
8207
8208 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8209 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8210 I387_BND0R_REGNUM (tdep) + i,
8211 tdep->mpx_register_names[i]);
8212 }
8213
90884b2b
L
8214 return valid_p;
8215}
8216
7ad10968
HZ
8217\f
8218static struct gdbarch *
8219i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8220{
8221 struct gdbarch_tdep *tdep;
8222 struct gdbarch *gdbarch;
90884b2b
L
8223 struct tdesc_arch_data *tdesc_data;
8224 const struct target_desc *tdesc;
1ba53b71 8225 int mm0_regnum;
c131fcee 8226 int ymm0_regnum;
1dbcd68c
WT
8227 int bnd0_regnum;
8228 int num_bnd_cooked;
01f9f808
MS
8229 int k0_regnum;
8230 int zmm0_regnum;
7ad10968
HZ
8231
8232 /* If there is already a candidate, use it. */
8233 arches = gdbarch_list_lookup_by_info (arches, &info);
8234 if (arches != NULL)
8235 return arches->gdbarch;
8236
8237 /* Allocate space for the new architecture. */
fc270c35 8238 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8239 gdbarch = gdbarch_alloc (&info, tdep);
8240
8241 /* General-purpose registers. */
7ad10968
HZ
8242 tdep->gregset_reg_offset = NULL;
8243 tdep->gregset_num_regs = I386_NUM_GREGS;
8244 tdep->sizeof_gregset = 0;
8245
8246 /* Floating-point registers. */
7ad10968 8247 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8248 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8249
8250 /* The default settings include the FPU registers, the MMX registers
8251 and the SSE registers. This can be overridden for a specific ABI
8252 by adjusting the members `st0_regnum', `mm0_regnum' and
8253 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8254 will show up in the output of "info all-registers". */
7ad10968
HZ
8255
8256 tdep->st0_regnum = I386_ST0_REGNUM;
8257
7ad10968
HZ
8258 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8259 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8260
8261 tdep->jb_pc_offset = -1;
8262 tdep->struct_return = pcc_struct_return;
8263 tdep->sigtramp_start = 0;
8264 tdep->sigtramp_end = 0;
8265 tdep->sigtramp_p = i386_sigtramp_p;
8266 tdep->sigcontext_addr = NULL;
8267 tdep->sc_reg_offset = NULL;
8268 tdep->sc_pc_offset = -1;
8269 tdep->sc_sp_offset = -1;
8270
c131fcee
L
8271 tdep->xsave_xcr0_offset = -1;
8272
cf648174
HZ
8273 tdep->record_regmap = i386_record_regmap;
8274
205c306f
DM
8275 set_gdbarch_long_long_align_bit (gdbarch, 32);
8276
7ad10968
HZ
8277 /* The format used for `long double' on almost all i386 targets is
8278 the i387 extended floating-point format. In fact, of all targets
8279 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8280 on having a `long double' that's not `long' at all. */
8281 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8282
8283 /* Although the i387 extended floating-point has only 80 significant
8284 bits, a `long double' actually takes up 96, probably to enforce
8285 alignment. */
8286 set_gdbarch_long_double_bit (gdbarch, 96);
8287
7ad10968
HZ
8288 /* Register numbers of various important registers. */
8289 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8290 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8291 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8292 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8293
8294 /* NOTE: kettenis/20040418: GCC does have two possible register
8295 numbering schemes on the i386: dbx and SVR4. These schemes
8296 differ in how they number %ebp, %esp, %eflags, and the
8297 floating-point registers, and are implemented by the arrays
8298 dbx_register_map[] and svr4_dbx_register_map in
8299 gcc/config/i386.c. GCC also defines a third numbering scheme in
8300 gcc/config/i386.c, which it designates as the "default" register
8301 map used in 64bit mode. This last register numbering scheme is
8302 implemented in dbx64_register_map, and is used for AMD64; see
8303 amd64-tdep.c.
8304
8305 Currently, each GCC i386 target always uses the same register
8306 numbering scheme across all its supported debugging formats
8307 i.e. SDB (COFF), stabs and DWARF 2. This is because
8308 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8309 DBX_REGISTER_NUMBER macro which is defined by each target's
8310 respective config header in a manner independent of the requested
8311 output debugging format.
8312
8313 This does not match the arrangement below, which presumes that
8314 the SDB and stabs numbering schemes differ from the DWARF and
8315 DWARF 2 ones. The reason for this arrangement is that it is
8316 likely to get the numbering scheme for the target's
8317 default/native debug format right. For targets where GCC is the
8318 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8319 targets where the native toolchain uses a different numbering
8320 scheme for a particular debug format (stabs-in-ELF on Solaris)
8321 the defaults below will have to be overridden, like
8322 i386_elf_init_abi() does. */
8323
8324 /* Use the dbx register numbering scheme for stabs and COFF. */
8325 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8326 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8327
8328 /* Use the SVR4 register numbering scheme for DWARF 2. */
8329 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8330
8331 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8332 be in use on any of the supported i386 targets. */
8333
8334 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8335
8336 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8337
8338 /* Call dummy code. */
a9b8d892
JK
8339 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8340 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8341 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8342 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8343
8344 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8345 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8346 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8347
8348 set_gdbarch_return_value (gdbarch, i386_return_value);
8349
8350 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8351
8352 /* Stack grows downward. */
8353 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8354
8355 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8356 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8357 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8358
8359 set_gdbarch_frame_args_skip (gdbarch, 8);
8360
7ad10968
HZ
8361 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8362
8363 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8364
8365 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8366
8367 /* Add the i386 register groups. */
8368 i386_add_reggroups (gdbarch);
90884b2b 8369 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8370
143985b7
AF
8371 /* Helper for function argument information. */
8372 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8373
06da04c6 8374 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8375 appended to the list first, so that it supercedes the DWARF
8376 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8377 currently fails). */
8378 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8379
8380 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8381 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8382 CFI info will be used if it is available. */
10458914 8383 dwarf2_append_unwinders (gdbarch);
6405b0a6 8384
acd5c798 8385 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8386
1ba53b71 8387 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8388 set_gdbarch_pseudo_register_read_value (gdbarch,
8389 i386_pseudo_register_read_value);
90884b2b
L
8390 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8391
8392 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8393 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8394
c131fcee
L
8395 /* Override the normal target description method to make the AVX
8396 upper halves anonymous. */
8397 set_gdbarch_register_name (gdbarch, i386_register_name);
8398
8399 /* Even though the default ABI only includes general-purpose registers,
8400 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8401 gap for the upper AVX, MPX and AVX512 registers. */
8402 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b
L
8403
8404 /* Get the x86 target description from INFO. */
8405 tdesc = info.target_desc;
8406 if (! tdesc_has_registers (tdesc))
8407 tdesc = tdesc_i386;
8408 tdep->tdesc = tdesc;
8409
8410 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8411 tdep->register_names = i386_register_names;
8412
c131fcee
L
8413 /* No upper YMM registers. */
8414 tdep->ymmh_register_names = NULL;
8415 tdep->ymm0h_regnum = -1;
8416
01f9f808
MS
8417 /* No upper ZMM registers. */
8418 tdep->zmmh_register_names = NULL;
8419 tdep->zmm0h_regnum = -1;
8420
8421 /* No high XMM registers. */
8422 tdep->xmm_avx512_register_names = NULL;
8423 tdep->xmm16_regnum = -1;
8424
8425 /* No upper YMM16-31 registers. */
8426 tdep->ymm16h_register_names = NULL;
8427 tdep->ymm16h_regnum = -1;
8428
1ba53b71
L
8429 tdep->num_byte_regs = 8;
8430 tdep->num_word_regs = 8;
8431 tdep->num_dword_regs = 0;
8432 tdep->num_mmx_regs = 8;
c131fcee 8433 tdep->num_ymm_regs = 0;
1ba53b71 8434
1dbcd68c
WT
8435 /* No MPX registers. */
8436 tdep->bnd0r_regnum = -1;
8437 tdep->bndcfgu_regnum = -1;
8438
01f9f808
MS
8439 /* No AVX512 registers. */
8440 tdep->k0_regnum = -1;
8441 tdep->num_zmm_regs = 0;
8442 tdep->num_ymm_avx512_regs = 0;
8443 tdep->num_xmm_avx512_regs = 0;
8444
90884b2b
L
8445 tdesc_data = tdesc_data_alloc ();
8446
dde08ee1
PA
8447 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8448
6710bf39
SS
8449 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8450
c2170eef
MM
8451 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8452 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8453 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8454
3ce1502b 8455 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8456 info.tdep_info = (void *) tdesc_data;
4be87837 8457 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8458
c131fcee
L
8459 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8460 {
8461 tdesc_data_cleanup (tdesc_data);
8462 xfree (tdep);
8463 gdbarch_free (gdbarch);
8464 return NULL;
8465 }
8466
1dbcd68c
WT
8467 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8468
1ba53b71
L
8469 /* Wire in pseudo registers. Number of pseudo registers may be
8470 changed. */
8471 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8472 + tdep->num_word_regs
8473 + tdep->num_dword_regs
c131fcee 8474 + tdep->num_mmx_regs
1dbcd68c 8475 + tdep->num_ymm_regs
01f9f808
MS
8476 + num_bnd_cooked
8477 + tdep->num_ymm_avx512_regs
8478 + tdep->num_zmm_regs));
1ba53b71 8479
90884b2b
L
8480 /* Target description may be changed. */
8481 tdesc = tdep->tdesc;
8482
90884b2b
L
8483 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8484
8485 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8486 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8487
1ba53b71
L
8488 /* Make %al the first pseudo-register. */
8489 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8490 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8491
c131fcee 8492 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8493 if (tdep->num_dword_regs)
8494 {
1c6272a6 8495 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8496 tdep->eax_regnum = ymm0_regnum;
8497 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8498 }
8499 else
8500 tdep->eax_regnum = -1;
8501
c131fcee
L
8502 mm0_regnum = ymm0_regnum;
8503 if (tdep->num_ymm_regs)
8504 {
1c6272a6 8505 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8506 tdep->ymm0_regnum = ymm0_regnum;
8507 mm0_regnum += tdep->num_ymm_regs;
8508 }
8509 else
8510 tdep->ymm0_regnum = -1;
8511
01f9f808
MS
8512 if (tdep->num_ymm_avx512_regs)
8513 {
8514 /* Support YMM16-31 pseudo registers if available. */
8515 tdep->ymm16_regnum = mm0_regnum;
8516 mm0_regnum += tdep->num_ymm_avx512_regs;
8517 }
8518 else
8519 tdep->ymm16_regnum = -1;
8520
8521 if (tdep->num_zmm_regs)
8522 {
8523 /* Support ZMM pseudo-register if it is available. */
8524 tdep->zmm0_regnum = mm0_regnum;
8525 mm0_regnum += tdep->num_zmm_regs;
8526 }
8527 else
8528 tdep->zmm0_regnum = -1;
8529
1dbcd68c 8530 bnd0_regnum = mm0_regnum;
1ba53b71
L
8531 if (tdep->num_mmx_regs != 0)
8532 {
1c6272a6 8533 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8534 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8535 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8536 }
8537 else
8538 tdep->mm0_regnum = -1;
8539
1dbcd68c
WT
8540 if (tdep->bnd0r_regnum > 0)
8541 tdep->bnd0_regnum = bnd0_regnum;
8542 else
8543 tdep-> bnd0_regnum = -1;
8544
06da04c6 8545 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8546 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8547 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8548 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8549
8446b36a
MK
8550 /* If we have a register mapping, enable the generic core file
8551 support, unless it has already been enabled. */
8552 if (tdep->gregset_reg_offset
8f0435f7 8553 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8554 set_gdbarch_iterate_over_regset_sections
8555 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8556
7a697b8d
SS
8557 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8558 i386_fast_tracepoint_valid_at);
8559
a62cc96e
AC
8560 return gdbarch;
8561}
8562
8201327c
MK
8563static enum gdb_osabi
8564i386_coff_osabi_sniffer (bfd *abfd)
8565{
762c5349
MK
8566 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8567 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8568 return GDB_OSABI_GO32;
8569
8570 return GDB_OSABI_UNKNOWN;
8571}
8201327c
MK
8572\f
8573
28e9e0f0
MK
8574/* Provide a prototype to silence -Wmissing-prototypes. */
8575void _initialize_i386_tdep (void);
8576
c906108c 8577void
fba45db2 8578_initialize_i386_tdep (void)
c906108c 8579{
a62cc96e
AC
8580 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8581
fc338970 8582 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8583 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8584 &disassembly_flavor, _("\
8585Set the disassembly flavor."), _("\
8586Show the disassembly flavor."), _("\
8587The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8588 NULL,
8589 NULL, /* FIXME: i18n: */
8590 &setlist, &showlist);
8201327c
MK
8591
8592 /* Add the variable that controls the convention for returning
8593 structs. */
7ab04401
AC
8594 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8595 &struct_convention, _("\
8596Set the convention for returning small structs."), _("\
8597Show the convention for returning small structs."), _("\
8598Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8599is \"default\"."),
8600 NULL,
8601 NULL, /* FIXME: i18n: */
8602 &setlist, &showlist);
8201327c
MK
8603
8604 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8605 i386_coff_osabi_sniffer);
8201327c 8606
05816f70 8607 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8608 i386_svr4_init_abi);
05816f70 8609 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8610 i386_go32_init_abi);
38c968cf 8611
209bd28e 8612 /* Initialize the i386-specific register groups. */
38c968cf 8613 i386_init_reggroups ();
90884b2b
L
8614
8615 /* Initialize the standard target descriptions. */
8616 initialize_tdesc_i386 ();
3a13a53b 8617 initialize_tdesc_i386_mmx ();
c131fcee 8618 initialize_tdesc_i386_avx ();
1dbcd68c 8619 initialize_tdesc_i386_mpx ();
01f9f808 8620 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8621
8622 /* Tell remote stub that we support XML target description. */
8623 register_remote_support_xml ("i386");
c906108c 8624}
This page took 1.721008 seconds and 4 git commands to generate.