2006-02-14 Paolo Bonzini <bonzini@gnu.org>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
5ae96ec1
MK
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c 227 }
c6f4c129 228 else if (reg >= 21 && reg <= 36)
85540d8c 229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
c6f4c129
JB
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
85540d8c
MK
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
acd5c798 281i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
310 CORE_ADDR saved_sp;
311 int pc_in_eax;
312
313 /* Stack space reserved for local variables. */
314 long locals;
315};
316
317/* Allocate and initialize a frame cache. */
318
319static struct i386_frame_cache *
fd13a04a 320i386_alloc_frame_cache (void)
acd5c798
MK
321{
322 struct i386_frame_cache *cache;
323 int i;
324
325 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
326
327 /* Base address. */
328 cache->base = 0;
329 cache->sp_offset = -4;
330 cache->pc = 0;
331
fd13a04a
AC
332 /* Saved registers. We initialize these to -1 since zero is a valid
333 offset (that's where %ebp is supposed to be stored). */
334 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
335 cache->saved_regs[i] = -1;
acd5c798
MK
336 cache->saved_sp = 0;
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343}
c906108c 344
acd5c798
MK
345/* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
c906108c 347
acd5c798
MK
348static CORE_ADDR
349i386_follow_jump (CORE_ADDR pc)
350{
63c0089f 351 gdb_byte op;
acd5c798
MK
352 long delta = 0;
353 int data16 = 0;
c906108c 354
acd5c798
MK
355 op = read_memory_unsigned_integer (pc, 1);
356 if (op == 0x66)
c906108c 357 {
c906108c 358 data16 = 1;
acd5c798 359 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
360 }
361
acd5c798 362 switch (op)
c906108c
SS
363 {
364 case 0xe9:
fc338970 365 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
366 if (data16)
367 {
acd5c798 368 delta = read_memory_integer (pc + 2, 2);
c906108c 369
fc338970
MK
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
acd5c798 372 delta += 4;
c906108c
SS
373 }
374 else
375 {
acd5c798 376 delta = read_memory_integer (pc + 1, 4);
c906108c 377
acd5c798
MK
378 /* Include the size of the jmp instruction. */
379 delta += 5;
c906108c
SS
380 }
381 break;
382 case 0xeb:
fc338970 383 /* Relative jump, disp8 (ignore data16). */
acd5c798 384 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 385
acd5c798 386 delta += data16 + 2;
c906108c
SS
387 break;
388 }
c906108c 389
acd5c798
MK
390 return pc + delta;
391}
fc338970 392
acd5c798
MK
393/* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
c906108c 398
acd5c798
MK
399static CORE_ADDR
400i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
c906108c 402{
acd5c798
MK
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
63c0089f
MK
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
c906108c 417
acd5c798
MK
418 if (current_pc <= pc)
419 return pc;
420
421 op = read_memory_unsigned_integer (pc, 1);
c906108c 422
acd5c798
MK
423 if (op != 0x58) /* popl %eax */
424 return pc;
c906108c 425
acd5c798
MK
426 read_memory (pc + 1, buf, 4);
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
c906108c 429
acd5c798 430 if (current_pc == pc)
c906108c 431 {
acd5c798
MK
432 cache->sp_offset += 4;
433 return current_pc;
c906108c
SS
434 }
435
acd5c798 436 if (current_pc == pc + 1)
c906108c 437 {
acd5c798
MK
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446}
447
448static CORE_ADDR
449i386_skip_probe (CORE_ADDR pc)
450{
451 /* A function may start with
fc338970 452
acd5c798
MK
453 pushl constant
454 call _probe
455 addl $4, %esp
fc338970 456
acd5c798
MK
457 followed by
458
459 pushl %ebp
fc338970 460
acd5c798 461 etc. */
63c0089f
MK
462 gdb_byte buf[8];
463 gdb_byte op;
fc338970 464
acd5c798
MK
465 op = read_memory_unsigned_integer (pc, 1);
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
c906108c 470
acd5c798
MK
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
c906108c 473 if (op == 0x68)
acd5c798 474 delta = 5;
c906108c 475 else
acd5c798 476 delta = 2;
c906108c 477
acd5c798
MK
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
c906108c 481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 482 pc += delta + sizeof (buf);
c906108c
SS
483 }
484
acd5c798
MK
485 return pc;
486}
487
37bdc87e
MK
488/* Maximum instruction length we need to handle. */
489#define I386_MAX_INSN_LEN 6
490
491/* Instruction description. */
492struct i386_insn
493{
494 size_t len;
63c0089f
MK
495 gdb_byte insn[I386_MAX_INSN_LEN];
496 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
497};
498
499/* Search for the instruction at PC in the list SKIP_INSNS. Return
500 the first instruction description that matches. Otherwise, return
501 NULL. */
502
503static struct i386_insn *
504i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
505{
506 struct i386_insn *insn;
63c0089f 507 gdb_byte op;
37bdc87e
MK
508
509 op = read_memory_unsigned_integer (pc, 1);
510
511 for (insn = skip_insns; insn->len > 0; insn++)
512 {
513 if ((op & insn->mask[0]) == insn->insn[0])
514 {
613e8135
MK
515 gdb_byte buf[I386_MAX_INSN_LEN - 1];
516 int insn_matched = 1;
37bdc87e
MK
517 size_t i;
518
519 gdb_assert (insn->len > 1);
520 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
521
522 read_memory (pc + 1, buf, insn->len - 1);
523 for (i = 1; i < insn->len; i++)
524 {
525 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 526 insn_matched = 0;
37bdc87e 527 }
613e8135
MK
528
529 if (insn_matched)
530 return insn;
37bdc87e
MK
531 }
532 }
533
534 return NULL;
535}
536
537/* Some special instructions that might be migrated by GCC into the
538 part of the prologue that sets up the new stack frame. Because the
539 stack frame hasn't been setup yet, no registers have been saved
540 yet, and only the scratch registers %eax, %ecx and %edx can be
541 touched. */
542
543struct i386_insn i386_frame_setup_skip_insns[] =
544{
545 /* Check for `movb imm8, r' and `movl imm32, r'.
546
547 ??? Should we handle 16-bit operand-sizes here? */
548
549 /* `movb imm8, %al' and `movb imm8, %ah' */
550 /* `movb imm8, %cl' and `movb imm8, %ch' */
551 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
552 /* `movb imm8, %dl' and `movb imm8, %dh' */
553 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
554 /* `movl imm32, %eax' and `movl imm32, %ecx' */
555 { 5, { 0xb8 }, { 0xfe } },
556 /* `movl imm32, %edx' */
557 { 5, { 0xba }, { 0xff } },
558
559 /* Check for `mov imm32, r32'. Note that there is an alternative
560 encoding for `mov m32, %eax'.
561
562 ??? Should we handle SIB adressing here?
563 ??? Should we handle 16-bit operand-sizes here? */
564
565 /* `movl m32, %eax' */
566 { 5, { 0xa1 }, { 0xff } },
567 /* `movl m32, %eax' and `mov; m32, %ecx' */
568 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
569 /* `movl m32, %edx' */
570 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
571
572 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
573 Because of the symmetry, there are actually two ways to encode
574 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
575 opcode bytes 0x31 and 0x33 for `xorl'. */
576
577 /* `subl %eax, %eax' */
578 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
579 /* `subl %ecx, %ecx' */
580 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
581 /* `subl %edx, %edx' */
582 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
583 /* `xorl %eax, %eax' */
584 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
585 /* `xorl %ecx, %ecx' */
586 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
587 /* `xorl %edx, %edx' */
588 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
589 { 0 }
590};
591
acd5c798
MK
592/* Check whether PC points at a code that sets up a new stack frame.
593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
594 instruction after the sequence that sets up the frame or LIMIT,
595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
596
597static CORE_ADDR
37bdc87e 598i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
599 struct i386_frame_cache *cache)
600{
37bdc87e 601 struct i386_insn *insn;
63c0089f 602 gdb_byte op;
26604a34 603 int skip = 0;
acd5c798 604
37bdc87e
MK
605 if (limit <= pc)
606 return limit;
acd5c798
MK
607
608 op = read_memory_unsigned_integer (pc, 1);
609
c906108c 610 if (op == 0x55) /* pushl %ebp */
c5aa993b 611 {
acd5c798
MK
612 /* Take into account that we've executed the `pushl %ebp' that
613 starts this instruction sequence. */
fd13a04a 614 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 615 cache->sp_offset += 4;
37bdc87e 616 pc++;
acd5c798
MK
617
618 /* If that's all, return now. */
37bdc87e
MK
619 if (limit <= pc)
620 return limit;
26604a34 621
b4632131 622 /* Check for some special instructions that might be migrated by
37bdc87e
MK
623 GCC into the prologue and skip them. At this point in the
624 prologue, code should only touch the scratch registers %eax,
625 %ecx and %edx, so while the number of posibilities is sheer,
626 it is limited.
5daa5b4e 627
26604a34
MK
628 Make sure we only skip these instructions if we later see the
629 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 630 while (pc + skip < limit)
26604a34 631 {
37bdc87e
MK
632 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
633 if (insn == NULL)
634 break;
b4632131 635
37bdc87e 636 skip += insn->len;
26604a34
MK
637 }
638
37bdc87e
MK
639 /* If that's all, return now. */
640 if (limit <= pc + skip)
641 return limit;
642
643 op = read_memory_unsigned_integer (pc + skip, 1);
644
26604a34 645 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 646 switch (op)
c906108c
SS
647 {
648 case 0x8b:
37bdc87e
MK
649 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
650 return pc;
c906108c
SS
651 break;
652 case 0x89:
37bdc87e
MK
653 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
654 return pc;
c906108c
SS
655 break;
656 default:
37bdc87e 657 return pc;
c906108c 658 }
acd5c798 659
26604a34
MK
660 /* OK, we actually have a frame. We just don't know how large
661 it is yet. Set its size to zero. We'll adjust it if
662 necessary. We also now commit to skipping the special
663 instructions mentioned before. */
acd5c798 664 cache->locals = 0;
37bdc87e 665 pc += (skip + 2);
acd5c798
MK
666
667 /* If that's all, return now. */
37bdc87e
MK
668 if (limit <= pc)
669 return limit;
acd5c798 670
fc338970
MK
671 /* Check for stack adjustment
672
acd5c798 673 subl $XXX, %esp
fc338970 674
fd35795f 675 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 676 reg, so we don't have to worry about a data16 prefix. */
37bdc87e 677 op = read_memory_unsigned_integer (pc, 1);
c906108c
SS
678 if (op == 0x83)
679 {
fd35795f 680 /* `subl' with 8-bit immediate. */
37bdc87e 681 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 682 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 683 return pc;
acd5c798 684
37bdc87e
MK
685 /* `subl' with signed 8-bit immediate (though it wouldn't
686 make sense to be negative). */
687 cache->locals = read_memory_integer (pc + 2, 1);
688 return pc + 3;
c906108c
SS
689 }
690 else if (op == 0x81)
691 {
fd35795f 692 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 693 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 694 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 695 return pc;
acd5c798 696
fd35795f 697 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
698 cache->locals = read_memory_integer (pc + 2, 4);
699 return pc + 6;
c906108c
SS
700 }
701 else
702 {
acd5c798 703 /* Some instruction other than `subl'. */
37bdc87e 704 return pc;
c906108c
SS
705 }
706 }
37bdc87e 707 else if (op == 0xc8) /* enter */
c906108c 708 {
acd5c798
MK
709 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
710 return pc + 4;
c906108c 711 }
21d0e8a4 712
acd5c798 713 return pc;
21d0e8a4
MK
714}
715
acd5c798
MK
716/* Check whether PC points at code that saves registers on the stack.
717 If so, it updates CACHE and returns the address of the first
718 instruction after the register saves or CURRENT_PC, whichever is
719 smaller. Otherwise, return PC. */
6bff26de
MK
720
721static CORE_ADDR
acd5c798
MK
722i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
723 struct i386_frame_cache *cache)
6bff26de 724{
99ab4326 725 CORE_ADDR offset = 0;
63c0089f 726 gdb_byte op;
99ab4326 727 int i;
c0d1d883 728
99ab4326
MK
729 if (cache->locals > 0)
730 offset -= cache->locals;
731 for (i = 0; i < 8 && pc < current_pc; i++)
732 {
733 op = read_memory_unsigned_integer (pc, 1);
734 if (op < 0x50 || op > 0x57)
735 break;
0d17c81d 736
99ab4326
MK
737 offset -= 4;
738 cache->saved_regs[op - 0x50] = offset;
739 cache->sp_offset += 4;
740 pc++;
6bff26de
MK
741 }
742
acd5c798 743 return pc;
22797942
AC
744}
745
acd5c798
MK
746/* Do a full analysis of the prologue at PC and update CACHE
747 accordingly. Bail out early if CURRENT_PC is reached. Return the
748 address where the analysis stopped.
ed84f6c1 749
fc338970
MK
750 We handle these cases:
751
752 The startup sequence can be at the start of the function, or the
753 function can start with a branch to startup code at the end.
754
755 %ebp can be set up with either the 'enter' instruction, or "pushl
756 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
757 once used in the System V compiler).
758
759 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
760 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
761 16-bit unsigned argument for space to allocate, and the 'addl'
762 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
763
764 Next, the registers used by this function are pushed. With the
765 System V compiler they will always be in the order: %edi, %esi,
766 %ebx (and sometimes a harmless bug causes it to also save but not
767 restore %eax); however, the code below is willing to see the pushes
768 in any order, and will handle up to 8 of them.
769
770 If the setup sequence is at the end of the function, then the next
771 instruction will be a branch back to the start. */
c906108c 772
acd5c798
MK
773static CORE_ADDR
774i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
775 struct i386_frame_cache *cache)
c906108c 776{
acd5c798
MK
777 pc = i386_follow_jump (pc);
778 pc = i386_analyze_struct_return (pc, current_pc, cache);
779 pc = i386_skip_probe (pc);
780 pc = i386_analyze_frame_setup (pc, current_pc, cache);
781 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
782}
783
fc338970 784/* Return PC of first real instruction. */
c906108c 785
3a1e71e3 786static CORE_ADDR
acd5c798 787i386_skip_prologue (CORE_ADDR start_pc)
c906108c 788{
63c0089f 789 static gdb_byte pic_pat[6] =
acd5c798
MK
790 {
791 0xe8, 0, 0, 0, 0, /* call 0x0 */
792 0x5b, /* popl %ebx */
c5aa993b 793 };
acd5c798
MK
794 struct i386_frame_cache cache;
795 CORE_ADDR pc;
63c0089f 796 gdb_byte op;
acd5c798 797 int i;
c5aa993b 798
acd5c798
MK
799 cache.locals = -1;
800 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
801 if (cache.locals < 0)
802 return start_pc;
c5aa993b 803
acd5c798 804 /* Found valid frame setup. */
c906108c 805
fc338970
MK
806 /* The native cc on SVR4 in -K PIC mode inserts the following code
807 to get the address of the global offset table (GOT) into register
acd5c798
MK
808 %ebx:
809
fc338970
MK
810 call 0x0
811 popl %ebx
812 movl %ebx,x(%ebp) (optional)
813 addl y,%ebx
814
c906108c
SS
815 This code is with the rest of the prologue (at the end of the
816 function), so we have to skip it to get to the first real
817 instruction at the start of the function. */
c5aa993b 818
c906108c
SS
819 for (i = 0; i < 6; i++)
820 {
acd5c798 821 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 822 if (pic_pat[i] != op)
c906108c
SS
823 break;
824 }
825 if (i == 6)
826 {
acd5c798
MK
827 int delta = 6;
828
829 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 830
c5aa993b 831 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 832 {
acd5c798
MK
833 op = read_memory_unsigned_integer (pc + delta + 1, 1);
834
fc338970 835 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 836 delta += 3;
fc338970 837 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 838 delta += 6;
fc338970 839 else /* Unexpected instruction. */
acd5c798
MK
840 delta = 0;
841
842 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 843 }
acd5c798 844
c5aa993b 845 /* addl y,%ebx */
acd5c798
MK
846 if (delta > 0 && op == 0x81
847 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 848 {
acd5c798 849 pc += delta + 6;
c906108c
SS
850 }
851 }
c5aa993b 852
e63bbc88
MK
853 /* If the function starts with a branch (to startup code at the end)
854 the last instruction should bring us back to the first
855 instruction of the real code. */
856 if (i386_follow_jump (start_pc) != start_pc)
857 pc = i386_follow_jump (pc);
858
859 return pc;
c906108c
SS
860}
861
acd5c798 862/* This function is 64-bit safe. */
93924b6b 863
acd5c798
MK
864static CORE_ADDR
865i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 866{
63c0089f 867 gdb_byte buf[8];
acd5c798
MK
868
869 frame_unwind_register (next_frame, PC_REGNUM, buf);
870 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 871}
acd5c798 872\f
93924b6b 873
acd5c798 874/* Normal frames. */
c5aa993b 875
acd5c798
MK
876static struct i386_frame_cache *
877i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 878{
acd5c798 879 struct i386_frame_cache *cache;
63c0089f 880 gdb_byte buf[4];
acd5c798
MK
881 int i;
882
883 if (*this_cache)
884 return *this_cache;
885
fd13a04a 886 cache = i386_alloc_frame_cache ();
acd5c798
MK
887 *this_cache = cache;
888
889 /* In principle, for normal frames, %ebp holds the frame pointer,
890 which holds the base address for the current stack frame.
891 However, for functions that don't need it, the frame pointer is
892 optional. For these "frameless" functions the frame pointer is
893 actually the frame pointer of the calling frame. Signal
894 trampolines are just a special case of a "frameless" function.
895 They (usually) share their frame pointer with the frame that was
896 in progress when the signal occurred. */
897
898 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
899 cache->base = extract_unsigned_integer (buf, 4);
900 if (cache->base == 0)
901 return cache;
902
903 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 904 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
905
906 cache->pc = frame_func_unwind (next_frame);
907 if (cache->pc != 0)
908 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
909
910 if (cache->locals < 0)
911 {
912 /* We didn't find a valid frame, which means that CACHE->base
913 currently holds the frame pointer for our calling frame. If
914 we're at the start of a function, or somewhere half-way its
915 prologue, the function's frame probably hasn't been fully
916 setup yet. Try to reconstruct the base address for the stack
917 frame by looking at the stack pointer. For truly "frameless"
918 functions this might work too. */
919
920 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
921 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
922 }
923
924 /* Now that we have the base address for the stack frame we can
925 calculate the value of %esp in the calling frame. */
926 cache->saved_sp = cache->base + 8;
a7769679 927
acd5c798
MK
928 /* Adjust all the saved registers such that they contain addresses
929 instead of offsets. */
930 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
931 if (cache->saved_regs[i] != -1)
932 cache->saved_regs[i] += cache->base;
acd5c798
MK
933
934 return cache;
a7769679
MK
935}
936
3a1e71e3 937static void
acd5c798
MK
938i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
939 struct frame_id *this_id)
c906108c 940{
acd5c798
MK
941 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
942
943 /* This marks the outermost frame. */
944 if (cache->base == 0)
945 return;
946
3e210248 947 /* See the end of i386_push_dummy_call. */
acd5c798
MK
948 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
949}
950
951static void
952i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
953 int regnum, int *optimizedp,
954 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 955 int *realnump, gdb_byte *valuep)
acd5c798
MK
956{
957 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
958
959 gdb_assert (regnum >= 0);
960
961 /* The System V ABI says that:
962
963 "The flags register contains the system flags, such as the
964 direction flag and the carry flag. The direction flag must be
965 set to the forward (that is, zero) direction before entry and
966 upon exit from a function. Other user flags have no specified
967 role in the standard calling sequence and are not preserved."
968
969 To guarantee the "upon exit" part of that statement we fake a
970 saved flags register that has its direction flag cleared.
971
972 Note that GCC doesn't seem to rely on the fact that the direction
973 flag is cleared after a function return; it always explicitly
974 clears the flag before operations where it matters.
975
976 FIXME: kettenis/20030316: I'm not quite sure whether this is the
977 right thing to do. The way we fake the flags register here makes
978 it impossible to change it. */
979
980 if (regnum == I386_EFLAGS_REGNUM)
981 {
982 *optimizedp = 0;
983 *lvalp = not_lval;
984 *addrp = 0;
985 *realnump = -1;
986 if (valuep)
987 {
988 ULONGEST val;
c5aa993b 989
acd5c798 990 /* Clear the direction flag. */
f837910f
MK
991 val = frame_unwind_register_unsigned (next_frame,
992 I386_EFLAGS_REGNUM);
acd5c798
MK
993 val &= ~(1 << 10);
994 store_unsigned_integer (valuep, 4, val);
995 }
996
997 return;
998 }
1211c4e4 999
acd5c798 1000 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1001 {
00b25ff3
AC
1002 *optimizedp = 0;
1003 *lvalp = lval_register;
1004 *addrp = 0;
1005 *realnump = I386_EAX_REGNUM;
1006 if (valuep)
1007 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1008 return;
1009 }
1010
1011 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1012 {
1013 *optimizedp = 0;
1014 *lvalp = not_lval;
1015 *addrp = 0;
1016 *realnump = -1;
1017 if (valuep)
c906108c 1018 {
acd5c798
MK
1019 /* Store the value. */
1020 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1021 }
acd5c798 1022 return;
c906108c 1023 }
acd5c798 1024
fd13a04a
AC
1025 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1026 {
1027 *optimizedp = 0;
1028 *lvalp = lval_memory;
1029 *addrp = cache->saved_regs[regnum];
1030 *realnump = -1;
1031 if (valuep)
1032 {
1033 /* Read the value in from memory. */
1034 read_memory (*addrp, valuep,
1035 register_size (current_gdbarch, regnum));
1036 }
1037 return;
1038 }
1039
00b25ff3
AC
1040 *optimizedp = 0;
1041 *lvalp = lval_register;
1042 *addrp = 0;
1043 *realnump = regnum;
1044 if (valuep)
1045 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1046}
1047
1048static const struct frame_unwind i386_frame_unwind =
1049{
1050 NORMAL_FRAME,
1051 i386_frame_this_id,
1052 i386_frame_prev_register
1053};
1054
1055static const struct frame_unwind *
336d1bba 1056i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1057{
1058 return &i386_frame_unwind;
1059}
1060\f
1061
1062/* Signal trampolines. */
1063
1064static struct i386_frame_cache *
1065i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1066{
1067 struct i386_frame_cache *cache;
1068 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1069 CORE_ADDR addr;
63c0089f 1070 gdb_byte buf[4];
acd5c798
MK
1071
1072 if (*this_cache)
1073 return *this_cache;
1074
fd13a04a 1075 cache = i386_alloc_frame_cache ();
acd5c798
MK
1076
1077 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1078 cache->base = extract_unsigned_integer (buf, 4) - 4;
1079
1080 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1081 if (tdep->sc_reg_offset)
1082 {
1083 int i;
1084
1085 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1086
1087 for (i = 0; i < tdep->sc_num_regs; i++)
1088 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1089 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1090 }
1091 else
1092 {
fd13a04a
AC
1093 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1094 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1095 }
acd5c798
MK
1096
1097 *this_cache = cache;
1098 return cache;
1099}
1100
1101static void
1102i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1103 struct frame_id *this_id)
1104{
1105 struct i386_frame_cache *cache =
1106 i386_sigtramp_frame_cache (next_frame, this_cache);
1107
3e210248 1108 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1109 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1110}
1111
1112static void
1113i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1114 void **this_cache,
1115 int regnum, int *optimizedp,
1116 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1117 int *realnump, gdb_byte *valuep)
acd5c798
MK
1118{
1119 /* Make sure we've initialized the cache. */
1120 i386_sigtramp_frame_cache (next_frame, this_cache);
1121
1122 i386_frame_prev_register (next_frame, this_cache, regnum,
1123 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1124}
c0d1d883 1125
acd5c798
MK
1126static const struct frame_unwind i386_sigtramp_frame_unwind =
1127{
1128 SIGTRAMP_FRAME,
1129 i386_sigtramp_frame_this_id,
1130 i386_sigtramp_frame_prev_register
1131};
1132
1133static const struct frame_unwind *
336d1bba 1134i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1135{
911bc6ee 1136 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1137
911bc6ee
MK
1138 /* We shouldn't even bother if we don't have a sigcontext_addr
1139 handler. */
1140 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1141 return NULL;
1142
911bc6ee
MK
1143 if (tdep->sigtramp_p != NULL)
1144 {
1145 if (tdep->sigtramp_p (next_frame))
1146 return &i386_sigtramp_frame_unwind;
1147 }
1148
1149 if (tdep->sigtramp_start != 0)
1150 {
1151 CORE_ADDR pc = frame_pc_unwind (next_frame);
1152
1153 gdb_assert (tdep->sigtramp_end != 0);
1154 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1155 return &i386_sigtramp_frame_unwind;
1156 }
acd5c798
MK
1157
1158 return NULL;
1159}
1160\f
1161
1162static CORE_ADDR
1163i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1164{
1165 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1166
1167 return cache->base;
1168}
1169
1170static const struct frame_base i386_frame_base =
1171{
1172 &i386_frame_unwind,
1173 i386_frame_base_address,
1174 i386_frame_base_address,
1175 i386_frame_base_address
1176};
1177
acd5c798
MK
1178static struct frame_id
1179i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1180{
63c0089f 1181 gdb_byte buf[4];
acd5c798
MK
1182 CORE_ADDR fp;
1183
1184 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1185 fp = extract_unsigned_integer (buf, 4);
1186
3e210248 1187 /* See the end of i386_push_dummy_call. */
acd5c798 1188 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1189}
fc338970 1190\f
c906108c 1191
fc338970
MK
1192/* Figure out where the longjmp will land. Slurp the args out of the
1193 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1194 structure from which we extract the address that we will land at.
28bcfd30 1195 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1196 success.
1197
1198 This function is 64-bit safe. */
c906108c 1199
8201327c
MK
1200static int
1201i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1202{
63c0089f 1203 gdb_byte buf[8];
c906108c 1204 CORE_ADDR sp, jb_addr;
8201327c 1205 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1206 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1207
8201327c
MK
1208 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1209 longjmp will land. */
1210 if (jb_pc_offset == -1)
c906108c
SS
1211 return 0;
1212
f837910f
MK
1213 /* Don't use I386_ESP_REGNUM here, since this function is also used
1214 for AMD64. */
1215 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1216 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1217 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1218 return 0;
1219
f837910f 1220 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1221 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1222 return 0;
c906108c 1223
f9d3c2a8 1224 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1225 return 1;
1226}
fc338970 1227\f
c906108c 1228
3a1e71e3 1229static CORE_ADDR
7d9b040b 1230i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1231 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1232 struct value **args, CORE_ADDR sp, int struct_return,
1233 CORE_ADDR struct_addr)
22f8ba57 1234{
63c0089f 1235 gdb_byte buf[4];
acd5c798
MK
1236 int i;
1237
1238 /* Push arguments in reverse order. */
1239 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1240 {
4754a64e 1241 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1242
1243 /* The System V ABI says that:
1244
1245 "An argument's size is increased, if necessary, to make it a
1246 multiple of [32-bit] words. This may require tail padding,
1247 depending on the size of the argument."
1248
1249 This makes sure the stack says word-aligned. */
1250 sp -= (len + 3) & ~3;
46615f07 1251 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1252 }
22f8ba57 1253
acd5c798
MK
1254 /* Push value address. */
1255 if (struct_return)
1256 {
22f8ba57 1257 sp -= 4;
fbd9dcd3 1258 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1259 write_memory (sp, buf, 4);
1260 }
1261
acd5c798
MK
1262 /* Store return address. */
1263 sp -= 4;
6a65450a 1264 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1265 write_memory (sp, buf, 4);
1266
1267 /* Finally, update the stack pointer... */
1268 store_unsigned_integer (buf, 4, sp);
1269 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1270
1271 /* ...and fake a frame pointer. */
1272 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1273
3e210248
AC
1274 /* MarkK wrote: This "+ 8" is all over the place:
1275 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1276 i386_unwind_dummy_id). It's there, since all frame unwinders for
1277 a given target have to agree (within a certain margin) on the
fd35795f 1278 definition of the stack address of a frame. Otherwise
3e210248
AC
1279 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1280 stack address *before* the function call as a frame's CFA. On
1281 the i386, when %ebp is used as a frame pointer, the offset
1282 between the contents %ebp and the CFA as defined by GCC. */
1283 return sp + 8;
22f8ba57
MK
1284}
1285
1a309862
MK
1286/* These registers are used for returning integers (and on some
1287 targets also for returning `struct' and `union' values when their
ef9dff19 1288 size and alignment match an integer type). */
acd5c798
MK
1289#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1290#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1291
c5e656c1
MK
1292/* Read, for architecture GDBARCH, a function return value of TYPE
1293 from REGCACHE, and copy that into VALBUF. */
1a309862 1294
3a1e71e3 1295static void
c5e656c1 1296i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1297 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1298{
c5e656c1 1299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1300 int len = TYPE_LENGTH (type);
63c0089f 1301 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1302
1e8d0a7b 1303 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1304 {
5716833c 1305 if (tdep->st0_regnum < 0)
1a309862 1306 {
8a3fe4f8 1307 warning (_("Cannot find floating-point return value."));
1a309862 1308 memset (valbuf, 0, len);
ef9dff19 1309 return;
1a309862
MK
1310 }
1311
c6ba6f0d
MK
1312 /* Floating-point return values can be found in %st(0). Convert
1313 its contents to the desired type. This is probably not
1314 exactly how it would happen on the target itself, but it is
1315 the best we can do. */
acd5c798 1316 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1317 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1318 }
1319 else
c5aa993b 1320 {
f837910f
MK
1321 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1322 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1323
1324 if (len <= low_size)
00f8375e 1325 {
0818c12a 1326 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1327 memcpy (valbuf, buf, len);
1328 }
d4f3574e
SS
1329 else if (len <= (low_size + high_size))
1330 {
0818c12a 1331 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1332 memcpy (valbuf, buf, low_size);
0818c12a 1333 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1334 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1335 }
1336 else
8e65ff28 1337 internal_error (__FILE__, __LINE__,
e2e0b3e5 1338 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1339 }
1340}
1341
c5e656c1
MK
1342/* Write, for architecture GDBARCH, a function return value of TYPE
1343 from VALBUF into REGCACHE. */
ef9dff19 1344
3a1e71e3 1345static void
c5e656c1 1346i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1347 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1348{
c5e656c1 1349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1350 int len = TYPE_LENGTH (type);
1351
5716833c
MK
1352 /* Define I387_ST0_REGNUM such that we use the proper definitions
1353 for the architecture. */
1354#define I387_ST0_REGNUM I386_ST0_REGNUM
1355
1e8d0a7b 1356 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1357 {
3d7f4f49 1358 ULONGEST fstat;
63c0089f 1359 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1360
5716833c 1361 if (tdep->st0_regnum < 0)
ef9dff19 1362 {
8a3fe4f8 1363 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1364 return;
1365 }
1366
635b0cc1
MK
1367 /* Returning floating-point values is a bit tricky. Apart from
1368 storing the return value in %st(0), we have to simulate the
1369 state of the FPU at function return point. */
1370
c6ba6f0d
MK
1371 /* Convert the value found in VALBUF to the extended
1372 floating-point format used by the FPU. This is probably
1373 not exactly how it would happen on the target itself, but
1374 it is the best we can do. */
1375 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1376 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1377
635b0cc1
MK
1378 /* Set the top of the floating-point register stack to 7. The
1379 actual value doesn't really matter, but 7 is what a normal
1380 function return would end up with if the program started out
1381 with a freshly initialized FPU. */
5716833c 1382 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1383 fstat |= (7 << 11);
5716833c 1384 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1385
635b0cc1
MK
1386 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1387 the floating-point register stack to 7, the appropriate value
1388 for the tag word is 0x3fff. */
5716833c 1389 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1390 }
1391 else
1392 {
f837910f
MK
1393 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1394 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1395
1396 if (len <= low_size)
3d7f4f49 1397 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1398 else if (len <= (low_size + high_size))
1399 {
3d7f4f49
MK
1400 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1401 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1402 len - low_size, valbuf + low_size);
ef9dff19
MK
1403 }
1404 else
8e65ff28 1405 internal_error (__FILE__, __LINE__,
e2e0b3e5 1406 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1407 }
5716833c
MK
1408
1409#undef I387_ST0_REGNUM
ef9dff19 1410}
fc338970 1411\f
ef9dff19 1412
8201327c
MK
1413/* This is the variable that is set with "set struct-convention", and
1414 its legitimate values. */
1415static const char default_struct_convention[] = "default";
1416static const char pcc_struct_convention[] = "pcc";
1417static const char reg_struct_convention[] = "reg";
1418static const char *valid_conventions[] =
1419{
1420 default_struct_convention,
1421 pcc_struct_convention,
1422 reg_struct_convention,
1423 NULL
1424};
1425static const char *struct_convention = default_struct_convention;
1426
0e4377e1
JB
1427/* Return non-zero if TYPE, which is assumed to be a structure,
1428 a union type, or an array type, should be returned in registers
1429 for architecture GDBARCH. */
c5e656c1 1430
8201327c 1431static int
c5e656c1 1432i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1433{
c5e656c1
MK
1434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1435 enum type_code code = TYPE_CODE (type);
1436 int len = TYPE_LENGTH (type);
8201327c 1437
0e4377e1
JB
1438 gdb_assert (code == TYPE_CODE_STRUCT
1439 || code == TYPE_CODE_UNION
1440 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1441
1442 if (struct_convention == pcc_struct_convention
1443 || (struct_convention == default_struct_convention
1444 && tdep->struct_return == pcc_struct_return))
1445 return 0;
1446
9edde48e
MK
1447 /* Structures consisting of a single `float', `double' or 'long
1448 double' member are returned in %st(0). */
1449 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1450 {
1451 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1452 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1453 return (len == 4 || len == 8 || len == 12);
1454 }
1455
c5e656c1
MK
1456 return (len == 1 || len == 2 || len == 4 || len == 8);
1457}
1458
1459/* Determine, for architecture GDBARCH, how a return value of TYPE
1460 should be returned. If it is supposed to be returned in registers,
1461 and READBUF is non-zero, read the appropriate value from REGCACHE,
1462 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1463 from WRITEBUF into REGCACHE. */
1464
1465static enum return_value_convention
1466i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1467 struct regcache *regcache, gdb_byte *readbuf,
1468 const gdb_byte *writebuf)
c5e656c1
MK
1469{
1470 enum type_code code = TYPE_CODE (type);
1471
0e4377e1
JB
1472 if ((code == TYPE_CODE_STRUCT
1473 || code == TYPE_CODE_UNION
1474 || code == TYPE_CODE_ARRAY)
c5e656c1 1475 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1476 {
1477 /* The System V ABI says that:
1478
1479 "A function that returns a structure or union also sets %eax
1480 to the value of the original address of the caller's area
1481 before it returns. Thus when the caller receives control
1482 again, the address of the returned object resides in register
1483 %eax and can be used to access the object."
1484
1485 So the ABI guarantees that we can always find the return
1486 value just after the function has returned. */
1487
0e4377e1
JB
1488 /* Note that the ABI doesn't mention functions returning arrays,
1489 which is something possible in certain languages such as Ada.
1490 In this case, the value is returned as if it was wrapped in
1491 a record, so the convention applied to records also applies
1492 to arrays. */
1493
31db7b6c
MK
1494 if (readbuf)
1495 {
1496 ULONGEST addr;
1497
1498 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1499 read_memory (addr, readbuf, TYPE_LENGTH (type));
1500 }
1501
1502 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1503 }
c5e656c1
MK
1504
1505 /* This special case is for structures consisting of a single
9edde48e
MK
1506 `float', `double' or 'long double' member. These structures are
1507 returned in %st(0). For these structures, we call ourselves
1508 recursively, changing TYPE into the type of the first member of
1509 the structure. Since that should work for all structures that
1510 have only one member, we don't bother to check the member's type
1511 here. */
c5e656c1
MK
1512 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1513 {
1514 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1515 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1516 }
1517
1518 if (readbuf)
1519 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1520 if (writebuf)
1521 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1522
c5e656c1 1523 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1524}
1525\f
1526
5ae96ec1
MK
1527/* Type for %eflags. */
1528struct type *i386_eflags_type;
1529
21b4b2f2 1530/* Types for the MMX and SSE registers. */
5ae96ec1
MK
1531struct type *i386_mmx_type;
1532struct type *i386_sse_type;
878d9193 1533struct type *i386_mxcsr_type;
5ae96ec1
MK
1534
1535/* Construct types for ISA-specific registers. */
1536static void
1537i386_init_types (void)
1538{
1539 struct type *type;
1540
1541 type = init_flags_type ("builtin_type_i386_eflags", 4);
1542 append_flags_type_flag (type, 0, "CF");
1543 append_flags_type_flag (type, 1, NULL);
1544 append_flags_type_flag (type, 2, "PF");
1545 append_flags_type_flag (type, 4, "AF");
1546 append_flags_type_flag (type, 6, "ZF");
1547 append_flags_type_flag (type, 7, "SF");
1548 append_flags_type_flag (type, 8, "TF");
1549 append_flags_type_flag (type, 9, "IF");
1550 append_flags_type_flag (type, 10, "DF");
1551 append_flags_type_flag (type, 11, "OF");
1552 append_flags_type_flag (type, 14, "NT");
1553 append_flags_type_flag (type, 16, "RF");
1554 append_flags_type_flag (type, 17, "VM");
1555 append_flags_type_flag (type, 18, "AC");
1556 append_flags_type_flag (type, 19, "VIF");
1557 append_flags_type_flag (type, 20, "VIP");
1558 append_flags_type_flag (type, 21, "ID");
1559 i386_eflags_type = type;
21b4b2f2 1560
21b4b2f2
JB
1561 /* The type we're building is this: */
1562#if 0
5ae96ec1 1563 union __gdb_builtin_type_vec64i
21b4b2f2
JB
1564 {
1565 int64_t uint64;
1566 int32_t v2_int32[2];
1567 int16_t v4_int16[4];
1568 int8_t v8_int8[8];
1569 };
1570#endif
1571
5ae96ec1
MK
1572 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1573 append_composite_type_field (type, "uint64", builtin_type_int64);
1574 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1575 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1576 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1577 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1578 TYPE_NAME (type) = "builtin_type_vec64i";
1579 i386_mmx_type = type;
21b4b2f2 1580
5ae96ec1
MK
1581 /* The type we're building is this: */
1582#if 0
1583 union __gdb_builtin_type_vec128i
1584 {
1585 int128_t uint128;
1586 int64_t v2_int64[2];
1587 int32_t v4_int32[4];
1588 int16_t v8_int16[8];
1589 int8_t v16_int8[16];
1590 double v2_double[2];
1591 float v4_float[4];
1592 };
1593#endif
21b4b2f2 1594
5ae96ec1
MK
1595 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1596 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1597 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1598 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1599 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1600 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1601 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1602 append_composite_type_field (type, "uint128", builtin_type_int128);
1603 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1604 TYPE_NAME (type) = "builtin_type_vec128i";
1605 i386_sse_type = type;
878d9193
MK
1606
1607 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1608 append_flags_type_flag (type, 0, "IE");
1609 append_flags_type_flag (type, 1, "DE");
1610 append_flags_type_flag (type, 2, "ZE");
1611 append_flags_type_flag (type, 3, "OE");
1612 append_flags_type_flag (type, 4, "UE");
1613 append_flags_type_flag (type, 5, "PE");
1614 append_flags_type_flag (type, 6, "DAZ");
1615 append_flags_type_flag (type, 7, "IM");
1616 append_flags_type_flag (type, 8, "DM");
1617 append_flags_type_flag (type, 9, "ZM");
1618 append_flags_type_flag (type, 10, "OM");
1619 append_flags_type_flag (type, 11, "UM");
1620 append_flags_type_flag (type, 12, "PM");
1621 append_flags_type_flag (type, 15, "FZ");
1622 i386_mxcsr_type = type;
21b4b2f2
JB
1623}
1624
d7a0d72c
MK
1625/* Return the GDB type object for the "standard" data type of data in
1626 register REGNUM. Perhaps %esi and %edi should go here, but
1627 potentially they could be used for things other than address. */
1628
3a1e71e3 1629static struct type *
4e259f09 1630i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1631{
ab533587
MK
1632 if (regnum == I386_EIP_REGNUM)
1633 return builtin_type_void_func_ptr;
1634
5ae96ec1
MK
1635 if (regnum == I386_EFLAGS_REGNUM)
1636 return i386_eflags_type;
1637
ab533587
MK
1638 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1639 return builtin_type_void_data_ptr;
d7a0d72c 1640
23a34459 1641 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1642 return builtin_type_i387_ext;
d7a0d72c 1643
878d9193
MK
1644 if (i386_mmx_regnum_p (gdbarch, regnum))
1645 return i386_mmx_type;
1646
5716833c 1647 if (i386_sse_regnum_p (gdbarch, regnum))
5ae96ec1 1648 return i386_sse_type;
d7a0d72c 1649
878d9193
MK
1650#define I387_ST0_REGNUM I386_ST0_REGNUM
1651#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1652
1653 if (regnum == I387_MXCSR_REGNUM)
1654 return i386_mxcsr_type;
1655
1656#undef I387_ST0_REGNUM
1657#undef I387_NUM_XMM_REGS
28fc6740 1658
d7a0d72c
MK
1659 return builtin_type_int;
1660}
1661
28fc6740 1662/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1663 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1664
1665static int
c86c27af 1666i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1667{
5716833c
MK
1668 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1669 int mmxreg, fpreg;
28fc6740
AC
1670 ULONGEST fstat;
1671 int tos;
c86c27af 1672
5716833c
MK
1673 /* Define I387_ST0_REGNUM such that we use the proper definitions
1674 for REGCACHE's architecture. */
1675#define I387_ST0_REGNUM tdep->st0_regnum
1676
1677 mmxreg = regnum - tdep->mm0_regnum;
1678 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1679 tos = (fstat >> 11) & 0x7;
5716833c
MK
1680 fpreg = (mmxreg + tos) % 8;
1681
1682 return (I387_ST0_REGNUM + fpreg);
c86c27af 1683
5716833c 1684#undef I387_ST0_REGNUM
28fc6740
AC
1685}
1686
1687static void
1688i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1689 int regnum, gdb_byte *buf)
28fc6740 1690{
5716833c 1691 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1692 {
63c0089f 1693 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1694 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1695
28fc6740 1696 /* Extract (always little endian). */
c86c27af 1697 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1698 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1699 }
1700 else
1701 regcache_raw_read (regcache, regnum, buf);
1702}
1703
1704static void
1705i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1706 int regnum, const gdb_byte *buf)
28fc6740 1707{
5716833c 1708 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1709 {
63c0089f 1710 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1711 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1712
28fc6740
AC
1713 /* Read ... */
1714 regcache_raw_read (regcache, fpnum, mmx_buf);
1715 /* ... Modify ... (always little endian). */
f837910f 1716 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1717 /* ... Write. */
1718 regcache_raw_write (regcache, fpnum, mmx_buf);
1719 }
1720 else
1721 regcache_raw_write (regcache, regnum, buf);
1722}
ff2e87ac
AC
1723\f
1724
ff2e87ac
AC
1725/* Return the register number of the register allocated by GCC after
1726 REGNUM, or -1 if there is no such register. */
1727
1728static int
1729i386_next_regnum (int regnum)
1730{
1731 /* GCC allocates the registers in the order:
1732
1733 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1734
1735 Since storing a variable in %esp doesn't make any sense we return
1736 -1 for %ebp and for %esp itself. */
1737 static int next_regnum[] =
1738 {
1739 I386_EDX_REGNUM, /* Slot for %eax. */
1740 I386_EBX_REGNUM, /* Slot for %ecx. */
1741 I386_ECX_REGNUM, /* Slot for %edx. */
1742 I386_ESI_REGNUM, /* Slot for %ebx. */
1743 -1, -1, /* Slots for %esp and %ebp. */
1744 I386_EDI_REGNUM, /* Slot for %esi. */
1745 I386_EBP_REGNUM /* Slot for %edi. */
1746 };
1747
de5b9bb9 1748 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1749 return next_regnum[regnum];
28fc6740 1750
ff2e87ac
AC
1751 return -1;
1752}
1753
1754/* Return nonzero if a value of type TYPE stored in register REGNUM
1755 needs any special handling. */
d7a0d72c 1756
3a1e71e3 1757static int
ff2e87ac 1758i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1759{
de5b9bb9
MK
1760 int len = TYPE_LENGTH (type);
1761
ff2e87ac
AC
1762 /* Values may be spread across multiple registers. Most debugging
1763 formats aren't expressive enough to specify the locations, so
1764 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1765 have a length that is a multiple of the word size, since GCC
1766 doesn't seem to put any other types into registers. */
1767 if (len > 4 && len % 4 == 0)
1768 {
1769 int last_regnum = regnum;
1770
1771 while (len > 4)
1772 {
1773 last_regnum = i386_next_regnum (last_regnum);
1774 len -= 4;
1775 }
1776
1777 if (last_regnum != -1)
1778 return 1;
1779 }
ff2e87ac 1780
23a34459 1781 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1782}
1783
ff2e87ac
AC
1784/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1785 return its contents in TO. */
ac27f131 1786
3a1e71e3 1787static void
ff2e87ac 1788i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1789 struct type *type, gdb_byte *to)
ac27f131 1790{
de5b9bb9 1791 int len = TYPE_LENGTH (type);
de5b9bb9 1792
ff2e87ac
AC
1793 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1794 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1795
ff2e87ac 1796 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1797 {
d532c08f
MK
1798 i387_register_to_value (frame, regnum, type, to);
1799 return;
8d7f6b4a 1800 }
ff2e87ac 1801
fd35795f 1802 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1803
1804 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1805
de5b9bb9
MK
1806 while (len > 0)
1807 {
1808 gdb_assert (regnum != -1);
1809 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1810
42835c2b 1811 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1812 regnum = i386_next_regnum (regnum);
1813 len -= 4;
42835c2b 1814 to += 4;
de5b9bb9 1815 }
ac27f131
MK
1816}
1817
ff2e87ac
AC
1818/* Write the contents FROM of a value of type TYPE into register
1819 REGNUM in frame FRAME. */
ac27f131 1820
3a1e71e3 1821static void
ff2e87ac 1822i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1823 struct type *type, const gdb_byte *from)
ac27f131 1824{
de5b9bb9 1825 int len = TYPE_LENGTH (type);
de5b9bb9 1826
ff2e87ac 1827 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1828 {
d532c08f
MK
1829 i387_value_to_register (frame, regnum, type, from);
1830 return;
1831 }
3d261580 1832
fd35795f 1833 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1834
1835 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1836
de5b9bb9
MK
1837 while (len > 0)
1838 {
1839 gdb_assert (regnum != -1);
1840 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1841
42835c2b 1842 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1843 regnum = i386_next_regnum (regnum);
1844 len -= 4;
42835c2b 1845 from += 4;
de5b9bb9 1846 }
ac27f131 1847}
ff2e87ac 1848\f
7fdafb5a
MK
1849/* Supply register REGNUM from the buffer specified by GREGS and LEN
1850 in the general-purpose register set REGSET to register cache
1851 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1852
20187ed5 1853void
473f17b0
MK
1854i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1855 int regnum, const void *gregs, size_t len)
1856{
9ea75c57 1857 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1858 const gdb_byte *regs = gregs;
473f17b0
MK
1859 int i;
1860
1861 gdb_assert (len == tdep->sizeof_gregset);
1862
1863 for (i = 0; i < tdep->gregset_num_regs; i++)
1864 {
1865 if ((regnum == i || regnum == -1)
1866 && tdep->gregset_reg_offset[i] != -1)
1867 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1868 }
1869}
1870
7fdafb5a
MK
1871/* Collect register REGNUM from the register cache REGCACHE and store
1872 it in the buffer specified by GREGS and LEN as described by the
1873 general-purpose register set REGSET. If REGNUM is -1, do this for
1874 all registers in REGSET. */
1875
1876void
1877i386_collect_gregset (const struct regset *regset,
1878 const struct regcache *regcache,
1879 int regnum, void *gregs, size_t len)
1880{
1881 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1882 gdb_byte *regs = gregs;
7fdafb5a
MK
1883 int i;
1884
1885 gdb_assert (len == tdep->sizeof_gregset);
1886
1887 for (i = 0; i < tdep->gregset_num_regs; i++)
1888 {
1889 if ((regnum == i || regnum == -1)
1890 && tdep->gregset_reg_offset[i] != -1)
1891 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1892 }
1893}
1894
1895/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1896 in the floating-point register set REGSET to register cache
1897 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1898
1899static void
1900i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1901 int regnum, const void *fpregs, size_t len)
1902{
9ea75c57 1903 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1904
66a72d25
MK
1905 if (len == I387_SIZEOF_FXSAVE)
1906 {
1907 i387_supply_fxsave (regcache, regnum, fpregs);
1908 return;
1909 }
1910
473f17b0
MK
1911 gdb_assert (len == tdep->sizeof_fpregset);
1912 i387_supply_fsave (regcache, regnum, fpregs);
1913}
8446b36a 1914
2f305df1
MK
1915/* Collect register REGNUM from the register cache REGCACHE and store
1916 it in the buffer specified by FPREGS and LEN as described by the
1917 floating-point register set REGSET. If REGNUM is -1, do this for
1918 all registers in REGSET. */
7fdafb5a
MK
1919
1920static void
1921i386_collect_fpregset (const struct regset *regset,
1922 const struct regcache *regcache,
1923 int regnum, void *fpregs, size_t len)
1924{
1925 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1926
1927 if (len == I387_SIZEOF_FXSAVE)
1928 {
1929 i387_collect_fxsave (regcache, regnum, fpregs);
1930 return;
1931 }
1932
1933 gdb_assert (len == tdep->sizeof_fpregset);
1934 i387_collect_fsave (regcache, regnum, fpregs);
1935}
1936
8446b36a
MK
1937/* Return the appropriate register set for the core section identified
1938 by SECT_NAME and SECT_SIZE. */
1939
1940const struct regset *
1941i386_regset_from_core_section (struct gdbarch *gdbarch,
1942 const char *sect_name, size_t sect_size)
1943{
1944 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1945
1946 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1947 {
1948 if (tdep->gregset == NULL)
7fdafb5a
MK
1949 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
1950 i386_collect_gregset);
8446b36a
MK
1951 return tdep->gregset;
1952 }
1953
66a72d25
MK
1954 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1955 || (strcmp (sect_name, ".reg-xfp") == 0
1956 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1957 {
1958 if (tdep->fpregset == NULL)
7fdafb5a
MK
1959 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
1960 i386_collect_fpregset);
8446b36a
MK
1961 return tdep->fpregset;
1962 }
1963
1964 return NULL;
1965}
473f17b0 1966\f
fc338970 1967
c906108c 1968#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1969/* SunPRO encodes the static variables. This is not related to C++
1970 mangling, it is done for C too. */
c906108c
SS
1971
1972char *
fba45db2 1973sunpro_static_transform_name (char *name)
c906108c
SS
1974{
1975 char *p;
1976 if (IS_STATIC_TRANSFORM_NAME (name))
1977 {
fc338970
MK
1978 /* For file-local statics there will be a period, a bunch of
1979 junk (the contents of which match a string given in the
c5aa993b
JM
1980 N_OPT), a period and the name. For function-local statics
1981 there will be a bunch of junk (which seems to change the
1982 second character from 'A' to 'B'), a period, the name of the
1983 function, and the name. So just skip everything before the
1984 last period. */
c906108c
SS
1985 p = strrchr (name, '.');
1986 if (p != NULL)
1987 name = p + 1;
1988 }
1989 return name;
1990}
1991#endif /* STATIC_TRANSFORM_NAME */
fc338970 1992\f
c906108c 1993
fc338970 1994/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1995
1996CORE_ADDR
1cce71eb 1997i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1998{
fc338970 1999 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2000 {
c5aa993b 2001 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2002 struct minimal_symbol *indsym =
fc338970 2003 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2004 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2005
c5aa993b 2006 if (symname)
c906108c 2007 {
c5aa993b
JM
2008 if (strncmp (symname, "__imp_", 6) == 0
2009 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2010 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2011 }
2012 }
fc338970 2013 return 0; /* Not a trampoline. */
c906108c 2014}
fc338970
MK
2015\f
2016
377d9ebd 2017/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2018 sigtramp routine. */
8201327c
MK
2019
2020static int
911bc6ee 2021i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2022{
911bc6ee
MK
2023 CORE_ADDR pc = frame_pc_unwind (next_frame);
2024 char *name;
2025
2026 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2027 return (name && strcmp ("_sigtramp", name) == 0);
2028}
2029\f
2030
fc338970
MK
2031/* We have two flavours of disassembly. The machinery on this page
2032 deals with switching between those. */
c906108c
SS
2033
2034static int
a89aa300 2035i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2036{
5e3397bb
MK
2037 gdb_assert (disassembly_flavor == att_flavor
2038 || disassembly_flavor == intel_flavor);
2039
2040 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2041 constified, cast to prevent a compiler warning. */
2042 info->disassembler_options = (char *) disassembly_flavor;
2043 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2044
2045 return print_insn_i386 (pc, info);
7a292a7a 2046}
fc338970 2047\f
3ce1502b 2048
8201327c
MK
2049/* There are a few i386 architecture variants that differ only
2050 slightly from the generic i386 target. For now, we don't give them
2051 their own source file, but include them here. As a consequence,
2052 they'll always be included. */
3ce1502b 2053
8201327c 2054/* System V Release 4 (SVR4). */
3ce1502b 2055
377d9ebd 2056/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2057 sigtramp routine. */
2058
8201327c 2059static int
911bc6ee 2060i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2061{
911bc6ee
MK
2062 CORE_ADDR pc = frame_pc_unwind (next_frame);
2063 char *name;
2064
acd5c798
MK
2065 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2066 currently unknown. */
911bc6ee 2067 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2068 return (name && (strcmp ("_sigreturn", name) == 0
2069 || strcmp ("_sigacthandler", name) == 0
2070 || strcmp ("sigvechandler", name) == 0));
2071}
d2a7c97a 2072
acd5c798
MK
2073/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2074 routine, return the address of the associated sigcontext (ucontext)
2075 structure. */
3ce1502b 2076
3a1e71e3 2077static CORE_ADDR
acd5c798 2078i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2079{
63c0089f 2080 gdb_byte buf[4];
acd5c798 2081 CORE_ADDR sp;
3ce1502b 2082
acd5c798
MK
2083 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2084 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2085
acd5c798 2086 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2087}
2088\f
3ce1502b 2089
8201327c 2090/* Generic ELF. */
d2a7c97a 2091
8201327c
MK
2092void
2093i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2094{
c4fc7f1b
MK
2095 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2096 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2097}
3ce1502b 2098
8201327c 2099/* System V Release 4 (SVR4). */
3ce1502b 2100
8201327c
MK
2101void
2102i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2103{
2104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2105
8201327c
MK
2106 /* System V Release 4 uses ELF. */
2107 i386_elf_init_abi (info, gdbarch);
3ce1502b 2108
dfe01d39 2109 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2110 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2111
911bc6ee 2112 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2113 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2114 tdep->sc_pc_offset = 36 + 14 * 4;
2115 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2116
8201327c 2117 tdep->jb_pc_offset = 20;
3ce1502b
MK
2118}
2119
8201327c 2120/* DJGPP. */
3ce1502b 2121
3a1e71e3 2122static void
8201327c 2123i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2124{
8201327c 2125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2126
911bc6ee
MK
2127 /* DJGPP doesn't have any special frames for signal handlers. */
2128 tdep->sigtramp_p = NULL;
3ce1502b 2129
8201327c 2130 tdep->jb_pc_offset = 36;
3ce1502b
MK
2131}
2132
8201327c 2133/* NetWare. */
3ce1502b 2134
3a1e71e3 2135static void
8201327c 2136i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2137{
8201327c 2138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2139
8201327c 2140 tdep->jb_pc_offset = 24;
d2a7c97a 2141}
8201327c 2142\f
2acceee2 2143
38c968cf
AC
2144/* i386 register groups. In addition to the normal groups, add "mmx"
2145 and "sse". */
2146
2147static struct reggroup *i386_sse_reggroup;
2148static struct reggroup *i386_mmx_reggroup;
2149
2150static void
2151i386_init_reggroups (void)
2152{
2153 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2154 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2155}
2156
2157static void
2158i386_add_reggroups (struct gdbarch *gdbarch)
2159{
2160 reggroup_add (gdbarch, i386_sse_reggroup);
2161 reggroup_add (gdbarch, i386_mmx_reggroup);
2162 reggroup_add (gdbarch, general_reggroup);
2163 reggroup_add (gdbarch, float_reggroup);
2164 reggroup_add (gdbarch, all_reggroup);
2165 reggroup_add (gdbarch, save_reggroup);
2166 reggroup_add (gdbarch, restore_reggroup);
2167 reggroup_add (gdbarch, vector_reggroup);
2168 reggroup_add (gdbarch, system_reggroup);
2169}
2170
2171int
2172i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2173 struct reggroup *group)
2174{
5716833c
MK
2175 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2176 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2177 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2178 || i386_fpc_regnum_p (regnum));
5716833c 2179 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2180
38c968cf
AC
2181 if (group == i386_mmx_reggroup)
2182 return mmx_regnum_p;
2183 if (group == i386_sse_reggroup)
2184 return sse_regnum_p;
2185 if (group == vector_reggroup)
2186 return (mmx_regnum_p || sse_regnum_p);
2187 if (group == float_reggroup)
2188 return fp_regnum_p;
2189 if (group == general_reggroup)
2190 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2191
38c968cf
AC
2192 return default_register_reggroup_p (gdbarch, regnum, group);
2193}
38c968cf 2194\f
acd5c798 2195
f837910f
MK
2196/* Get the ARGIth function argument for the current function. */
2197
42c466d7 2198static CORE_ADDR
143985b7
AF
2199i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2200 struct type *type)
2201{
f837910f
MK
2202 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2203 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2204}
2205
2206\f
3a1e71e3 2207static struct gdbarch *
a62cc96e
AC
2208i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2209{
cd3c07fc 2210 struct gdbarch_tdep *tdep;
a62cc96e
AC
2211 struct gdbarch *gdbarch;
2212
4be87837
DJ
2213 /* If there is already a candidate, use it. */
2214 arches = gdbarch_list_lookup_by_info (arches, &info);
2215 if (arches != NULL)
2216 return arches->gdbarch;
a62cc96e
AC
2217
2218 /* Allocate space for the new architecture. */
2219 tdep = XMALLOC (struct gdbarch_tdep);
2220 gdbarch = gdbarch_alloc (&info, tdep);
2221
473f17b0
MK
2222 /* General-purpose registers. */
2223 tdep->gregset = NULL;
2224 tdep->gregset_reg_offset = NULL;
2225 tdep->gregset_num_regs = I386_NUM_GREGS;
2226 tdep->sizeof_gregset = 0;
2227
2228 /* Floating-point registers. */
2229 tdep->fpregset = NULL;
2230 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2231
5716833c 2232 /* The default settings include the FPU registers, the MMX registers
fd35795f 2233 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2234 by adjusting the members `st0_regnum', `mm0_regnum' and
2235 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2236 will show up in the output of "info all-registers". Ideally we
2237 should try to autodetect whether they are available, such that we
2238 can prevent "info all-registers" from displaying registers that
2239 aren't available.
2240
2241 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2242 [the SSE registers] always (even when they don't exist) or never
2243 showing them to the user (even when they do exist), I prefer the
2244 former over the latter. */
2245
2246 tdep->st0_regnum = I386_ST0_REGNUM;
2247
2248 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2249 calculating the register number for %mm0 until we know the number
5716833c
MK
2250 of raw registers. */
2251 tdep->mm0_regnum = 0;
2252
2253 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2254 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2255
8201327c
MK
2256 tdep->jb_pc_offset = -1;
2257 tdep->struct_return = pcc_struct_return;
8201327c
MK
2258 tdep->sigtramp_start = 0;
2259 tdep->sigtramp_end = 0;
911bc6ee 2260 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2261 tdep->sigcontext_addr = NULL;
a3386186 2262 tdep->sc_reg_offset = NULL;
8201327c 2263 tdep->sc_pc_offset = -1;
21d0e8a4 2264 tdep->sc_sp_offset = -1;
8201327c 2265
896fb97d
MK
2266 /* The format used for `long double' on almost all i386 targets is
2267 the i387 extended floating-point format. In fact, of all targets
2268 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2269 on having a `long double' that's not `long' at all. */
2270 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2271
66da5fd8 2272 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2273 bits, a `long double' actually takes up 96, probably to enforce
2274 alignment. */
2275 set_gdbarch_long_double_bit (gdbarch, 96);
2276
49ed40de
KB
2277 /* The default ABI includes general-purpose registers,
2278 floating-point registers, and the SSE registers. */
2279 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2280 set_gdbarch_register_name (gdbarch, i386_register_name);
2281 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2282
acd5c798
MK
2283 /* Register numbers of various important registers. */
2284 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2285 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2286 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2287 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2288
c4fc7f1b
MK
2289 /* NOTE: kettenis/20040418: GCC does have two possible register
2290 numbering schemes on the i386: dbx and SVR4. These schemes
2291 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2292 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2293 dbx_register_map[] and svr4_dbx_register_map in
2294 gcc/config/i386.c. GCC also defines a third numbering scheme in
2295 gcc/config/i386.c, which it designates as the "default" register
2296 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2297 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2298 amd64-tdep.c.
2299
2300 Currently, each GCC i386 target always uses the same register
2301 numbering scheme across all its supported debugging formats
2302 i.e. SDB (COFF), stabs and DWARF 2. This is because
2303 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2304 DBX_REGISTER_NUMBER macro which is defined by each target's
2305 respective config header in a manner independent of the requested
2306 output debugging format.
2307
2308 This does not match the arrangement below, which presumes that
2309 the SDB and stabs numbering schemes differ from the DWARF and
2310 DWARF 2 ones. The reason for this arrangement is that it is
2311 likely to get the numbering scheme for the target's
2312 default/native debug format right. For targets where GCC is the
2313 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2314 targets where the native toolchain uses a different numbering
2315 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2316 the defaults below will have to be overridden, like
2317 i386_elf_init_abi() does. */
c4fc7f1b
MK
2318
2319 /* Use the dbx register numbering scheme for stabs and COFF. */
2320 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2321 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2322
2323 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2324 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2325 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2326
2327 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2328 be in use on any of the supported i386 targets. */
2329
61113f8b
MK
2330 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2331
8201327c 2332 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2333
a62cc96e 2334 /* Call dummy code. */
acd5c798 2335 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2336
ff2e87ac
AC
2337 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2338 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2339 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2340
c5e656c1 2341 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2342
93924b6b
MK
2343 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2344
2345 /* Stack grows downward. */
2346 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2347
2348 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2349 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2350
42fdc8df 2351 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2352
28fc6740 2353 /* Wire in the MMX registers. */
0f751ff2 2354 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2355 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2356 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2357
5e3397bb
MK
2358 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2359
acd5c798 2360 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2361
2362 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2363
38c968cf
AC
2364 /* Add the i386 register groups. */
2365 i386_add_reggroups (gdbarch);
2366 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2367
143985b7
AF
2368 /* Helper for function argument information. */
2369 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2370
6405b0a6 2371 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2372 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2373
acd5c798 2374 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2375
3ce1502b 2376 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2377 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2378
336d1bba
AC
2379 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2380 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2381
8446b36a
MK
2382 /* If we have a register mapping, enable the generic core file
2383 support, unless it has already been enabled. */
2384 if (tdep->gregset_reg_offset
2385 && !gdbarch_regset_from_core_section_p (gdbarch))
2386 set_gdbarch_regset_from_core_section (gdbarch,
2387 i386_regset_from_core_section);
2388
5716833c
MK
2389 /* Unless support for MMX has been disabled, make %mm0 the first
2390 pseudo-register. */
2391 if (tdep->mm0_regnum == 0)
2392 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2393
a62cc96e
AC
2394 return gdbarch;
2395}
2396
8201327c
MK
2397static enum gdb_osabi
2398i386_coff_osabi_sniffer (bfd *abfd)
2399{
762c5349
MK
2400 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2401 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2402 return GDB_OSABI_GO32;
2403
2404 return GDB_OSABI_UNKNOWN;
2405}
2406
2407static enum gdb_osabi
2408i386_nlm_osabi_sniffer (bfd *abfd)
2409{
2410 return GDB_OSABI_NETWARE;
2411}
2412\f
2413
28e9e0f0
MK
2414/* Provide a prototype to silence -Wmissing-prototypes. */
2415void _initialize_i386_tdep (void);
2416
c906108c 2417void
fba45db2 2418_initialize_i386_tdep (void)
c906108c 2419{
a62cc96e
AC
2420 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2421
fc338970 2422 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2423 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2424 &disassembly_flavor, _("\
2425Set the disassembly flavor."), _("\
2426Show the disassembly flavor."), _("\
2427The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2428 NULL,
2429 NULL, /* FIXME: i18n: */
2430 &setlist, &showlist);
8201327c
MK
2431
2432 /* Add the variable that controls the convention for returning
2433 structs. */
7ab04401
AC
2434 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2435 &struct_convention, _("\
2436Set the convention for returning small structs."), _("\
2437Show the convention for returning small structs."), _("\
2438Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2439is \"default\"."),
2440 NULL,
2441 NULL, /* FIXME: i18n: */
2442 &setlist, &showlist);
8201327c
MK
2443
2444 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2445 i386_coff_osabi_sniffer);
2446 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2447 i386_nlm_osabi_sniffer);
2448
05816f70 2449 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2450 i386_svr4_init_abi);
05816f70 2451 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2452 i386_go32_init_abi);
05816f70 2453 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2454 i386_nw_init_abi);
38c968cf 2455
5ae96ec1 2456 /* Initialize the i386-specific register groups & types. */
38c968cf 2457 i386_init_reggroups ();
5ae96ec1 2458 i386_init_types();
c906108c 2459}
This page took 0.763653 seconds and 4 git commands to generate.