Let i386_target_description return tdesc_i386_mmx
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
61baf725 3 Copyright (C) 1988-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
d2a7c97a 47#include "i386-tdep.h"
61113f8b 48#include "i387-tdep.h"
df7e5265 49#include "x86-xstate.h"
d2a7c97a 50
7ad10968 51#include "record.h"
d02ed0bb 52#include "record-full.h"
90884b2b 53#include "features/i386/i386.c"
c131fcee 54#include "features/i386/i386-avx.c"
1dbcd68c 55#include "features/i386/i386-mpx.c"
2b863f51 56#include "features/i386/i386-avx-mpx.c"
a1fa17ee 57#include "features/i386/i386-avx-avx512.c"
51547df6 58#include "features/i386/i386-avx-mpx-avx512-pku.c"
3a13a53b 59#include "features/i386/i386-mmx.c"
90884b2b 60
6710bf39
SS
61#include "ax.h"
62#include "ax-gdb.h"
63
55aa24fb
SDJ
64#include "stap-probe.h"
65#include "user-regs.h"
66#include "cli/cli-utils.h"
67#include "expression.h"
68#include "parser-defs.h"
69#include <ctype.h>
325fac50 70#include <algorithm>
55aa24fb 71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
01f9f808
MS
89static const char *i386_zmm_names[] =
90{
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93};
94
95static const char *i386_zmmh_names[] =
96{
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99};
100
101static const char *i386_k_names[] =
102{
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105};
106
c131fcee
L
107static const char *i386_ymm_names[] =
108{
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111};
112
113static const char *i386_ymmh_names[] =
114{
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117};
118
1dbcd68c
WT
119static const char *i386_mpx_names[] =
120{
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122};
123
51547df6
MS
124static const char* i386_pkeys_names[] =
125{
126 "pkru"
127};
128
1dbcd68c
WT
129/* Register names for MPX pseudo-registers. */
130
131static const char *i386_bnd_names[] =
132{
133 "bnd0", "bnd1", "bnd2", "bnd3"
134};
135
c4fc7f1b 136/* Register names for MMX pseudo-registers. */
28fc6740 137
90884b2b 138static const char *i386_mmx_names[] =
28fc6740
AC
139{
140 "mm0", "mm1", "mm2", "mm3",
141 "mm4", "mm5", "mm6", "mm7"
142};
c40e1eab 143
1ba53b71
L
144/* Register names for byte pseudo-registers. */
145
146static const char *i386_byte_names[] =
147{
148 "al", "cl", "dl", "bl",
149 "ah", "ch", "dh", "bh"
150};
151
152/* Register names for word pseudo-registers. */
153
154static const char *i386_word_names[] =
155{
156 "ax", "cx", "dx", "bx",
9cad29ac 157 "", "bp", "si", "di"
1ba53b71
L
158};
159
01f9f808
MS
160/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
161 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
162 we have 16 upper ZMM regs that have to be handled differently. */
163
164const int num_lower_zmm_regs = 16;
165
1ba53b71 166/* MMX register? */
c40e1eab 167
28fc6740 168static int
5716833c 169i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 170{
1ba53b71
L
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
173
174 if (mm0_regnum < 0)
175 return 0;
176
1ba53b71
L
177 regnum -= mm0_regnum;
178 return regnum >= 0 && regnum < tdep->num_mmx_regs;
179}
180
181/* Byte register? */
182
183int
184i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187
188 regnum -= tdep->al_regnum;
189 return regnum >= 0 && regnum < tdep->num_byte_regs;
190}
191
192/* Word register? */
193
194int
195i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
196{
197 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
198
199 regnum -= tdep->ax_regnum;
200 return regnum >= 0 && regnum < tdep->num_word_regs;
201}
202
203/* Dword register? */
204
205int
206i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
207{
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209 int eax_regnum = tdep->eax_regnum;
210
211 if (eax_regnum < 0)
212 return 0;
213
214 regnum -= eax_regnum;
215 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
216}
217
01f9f808
MS
218/* AVX512 register? */
219
220int
221i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
222{
223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
224 int zmm0h_regnum = tdep->zmm0h_regnum;
225
226 if (zmm0h_regnum < 0)
227 return 0;
228
229 regnum -= zmm0h_regnum;
230 return regnum >= 0 && regnum < tdep->num_zmm_regs;
231}
232
233int
234i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
235{
236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
237 int zmm0_regnum = tdep->zmm0_regnum;
238
239 if (zmm0_regnum < 0)
240 return 0;
241
242 regnum -= zmm0_regnum;
243 return regnum >= 0 && regnum < tdep->num_zmm_regs;
244}
245
246int
247i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
248{
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int k0_regnum = tdep->k0_regnum;
251
252 if (k0_regnum < 0)
253 return 0;
254
255 regnum -= k0_regnum;
256 return regnum >= 0 && regnum < I387_NUM_K_REGS;
257}
258
9191d390 259static int
c131fcee
L
260i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
261{
262 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
263 int ymm0h_regnum = tdep->ymm0h_regnum;
264
265 if (ymm0h_regnum < 0)
266 return 0;
267
268 regnum -= ymm0h_regnum;
269 return regnum >= 0 && regnum < tdep->num_ymm_regs;
270}
271
272/* AVX register? */
273
274int
275i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
276{
277 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
278 int ymm0_regnum = tdep->ymm0_regnum;
279
280 if (ymm0_regnum < 0)
281 return 0;
282
283 regnum -= ymm0_regnum;
284 return regnum >= 0 && regnum < tdep->num_ymm_regs;
285}
286
01f9f808
MS
287static int
288i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
289{
290 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
291 int ymm16h_regnum = tdep->ymm16h_regnum;
292
293 if (ymm16h_regnum < 0)
294 return 0;
295
296 regnum -= ymm16h_regnum;
297 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
298}
299
300int
301i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
302{
303 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
304 int ymm16_regnum = tdep->ymm16_regnum;
305
306 if (ymm16_regnum < 0)
307 return 0;
308
309 regnum -= ymm16_regnum;
310 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
311}
312
1dbcd68c
WT
313/* BND register? */
314
315int
316i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
317{
318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
319 int bnd0_regnum = tdep->bnd0_regnum;
320
321 if (bnd0_regnum < 0)
322 return 0;
323
324 regnum -= bnd0_regnum;
325 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
326}
327
5716833c 328/* SSE register? */
23a34459 329
c131fcee
L
330int
331i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 332{
5716833c 333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 334 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 335
c131fcee 336 if (num_xmm_regs == 0)
5716833c
MK
337 return 0;
338
c131fcee
L
339 regnum -= I387_XMM0_REGNUM (tdep);
340 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
341}
342
01f9f808
MS
343/* XMM_512 register? */
344
345int
346i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
347{
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
350
351 if (num_xmm_avx512_regs == 0)
352 return 0;
353
354 regnum -= I387_XMM16_REGNUM (tdep);
355 return regnum >= 0 && regnum < num_xmm_avx512_regs;
356}
357
5716833c
MK
358static int
359i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 360{
5716833c
MK
361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
362
20a6ec49 363 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
364 return 0;
365
20a6ec49 366 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
367}
368
5716833c 369/* FP register? */
23a34459
AC
370
371int
20a6ec49 372i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 373{
20a6ec49
MD
374 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
375
376 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
377 return 0;
378
20a6ec49
MD
379 return (I387_ST0_REGNUM (tdep) <= regnum
380 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
381}
382
383int
20a6ec49 384i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 385{
20a6ec49
MD
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387
388 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
389 return 0;
390
20a6ec49
MD
391 return (I387_FCTRL_REGNUM (tdep) <= regnum
392 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
393}
394
1dbcd68c
WT
395/* BNDr (raw) register? */
396
397static int
398i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
399{
400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
401
402 if (I387_BND0R_REGNUM (tdep) < 0)
403 return 0;
404
405 regnum -= tdep->bnd0r_regnum;
406 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
407}
408
409/* BND control register? */
410
411static int
412i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
413{
414 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
415
416 if (I387_BNDCFGU_REGNUM (tdep) < 0)
417 return 0;
418
419 regnum -= I387_BNDCFGU_REGNUM (tdep);
420 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
421}
422
51547df6
MS
423/* PKRU register? */
424
425bool
426i386_pkru_regnum_p (struct gdbarch *gdbarch, int regnum)
427{
428 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
429 int pkru_regnum = tdep->pkru_regnum;
430
431 if (pkru_regnum < 0)
432 return false;
433
434 regnum -= pkru_regnum;
435 return regnum >= 0 && regnum < I387_NUM_PKEYS_REGS;
436}
437
c131fcee
L
438/* Return the name of register REGNUM, or the empty string if it is
439 an anonymous register. */
440
441static const char *
442i386_register_name (struct gdbarch *gdbarch, int regnum)
443{
444 /* Hide the upper YMM registers. */
445 if (i386_ymmh_regnum_p (gdbarch, regnum))
446 return "";
447
01f9f808
MS
448 /* Hide the upper YMM16-31 registers. */
449 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
450 return "";
451
452 /* Hide the upper ZMM registers. */
453 if (i386_zmmh_regnum_p (gdbarch, regnum))
454 return "";
455
c131fcee
L
456 return tdesc_register_name (gdbarch, regnum);
457}
458
30b0e2d8 459/* Return the name of register REGNUM. */
fc633446 460
1ba53b71 461const char *
90884b2b 462i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 463{
1ba53b71 464 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
465 if (i386_bnd_regnum_p (gdbarch, regnum))
466 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
467 if (i386_mmx_regnum_p (gdbarch, regnum))
468 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
469 else if (i386_ymm_regnum_p (gdbarch, regnum))
470 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
471 else if (i386_zmm_regnum_p (gdbarch, regnum))
472 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
473 else if (i386_byte_regnum_p (gdbarch, regnum))
474 return i386_byte_names[regnum - tdep->al_regnum];
475 else if (i386_word_regnum_p (gdbarch, regnum))
476 return i386_word_names[regnum - tdep->ax_regnum];
477
478 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
479}
480
c4fc7f1b 481/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
482 number used by GDB. */
483
8201327c 484static int
d3f73121 485i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 486{
20a6ec49
MD
487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
488
c4fc7f1b
MK
489 /* This implements what GCC calls the "default" register map
490 (dbx_register_map[]). */
491
85540d8c
MK
492 if (reg >= 0 && reg <= 7)
493 {
9872ad24
JB
494 /* General-purpose registers. The debug info calls %ebp
495 register 4, and %esp register 5. */
496 if (reg == 4)
497 return 5;
498 else if (reg == 5)
499 return 4;
500 else return reg;
85540d8c
MK
501 }
502 else if (reg >= 12 && reg <= 19)
503 {
504 /* Floating-point registers. */
20a6ec49 505 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
506 }
507 else if (reg >= 21 && reg <= 28)
508 {
509 /* SSE registers. */
c131fcee
L
510 int ymm0_regnum = tdep->ymm0_regnum;
511
512 if (ymm0_regnum >= 0
513 && i386_xmm_regnum_p (gdbarch, reg))
514 return reg - 21 + ymm0_regnum;
515 else
516 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
517 }
518 else if (reg >= 29 && reg <= 36)
519 {
520 /* MMX registers. */
20a6ec49 521 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
522 }
523
524 /* This will hopefully provoke a warning. */
d3f73121 525 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
526}
527
0fde2c53 528/* Convert SVR4 DWARF register number REG to the appropriate register number
c4fc7f1b 529 used by GDB. */
85540d8c 530
8201327c 531static int
0fde2c53 532i386_svr4_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 533{
20a6ec49
MD
534 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
535
c4fc7f1b
MK
536 /* This implements the GCC register map that tries to be compatible
537 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
538
539 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
540 numbers the floating point registers differently. */
541 if (reg >= 0 && reg <= 9)
542 {
acd5c798 543 /* General-purpose registers. */
85540d8c
MK
544 return reg;
545 }
546 else if (reg >= 11 && reg <= 18)
547 {
548 /* Floating-point registers. */
20a6ec49 549 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 550 }
c6f4c129 551 else if (reg >= 21 && reg <= 36)
85540d8c 552 {
c4fc7f1b 553 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 554 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
555 }
556
c6f4c129
JB
557 switch (reg)
558 {
20a6ec49
MD
559 case 37: return I387_FCTRL_REGNUM (tdep);
560 case 38: return I387_FSTAT_REGNUM (tdep);
561 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
562 case 40: return I386_ES_REGNUM;
563 case 41: return I386_CS_REGNUM;
564 case 42: return I386_SS_REGNUM;
565 case 43: return I386_DS_REGNUM;
566 case 44: return I386_FS_REGNUM;
567 case 45: return I386_GS_REGNUM;
568 }
569
0fde2c53
DE
570 return -1;
571}
572
573/* Wrapper on i386_svr4_dwarf_reg_to_regnum to return
574 num_regs + num_pseudo_regs for other debug formats. */
575
8f10c932 576int
0fde2c53
DE
577i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
578{
579 int regnum = i386_svr4_dwarf_reg_to_regnum (gdbarch, reg);
580
581 if (regnum == -1)
582 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
583 return regnum;
85540d8c 584}
5716833c 585
fc338970 586\f
917317f4 587
fc338970
MK
588/* This is the variable that is set with "set disassembly-flavor", and
589 its legitimate values. */
53904c9e
AC
590static const char att_flavor[] = "att";
591static const char intel_flavor[] = "intel";
40478521 592static const char *const valid_flavors[] =
c5aa993b 593{
c906108c
SS
594 att_flavor,
595 intel_flavor,
596 NULL
597};
53904c9e 598static const char *disassembly_flavor = att_flavor;
acd5c798 599\f
c906108c 600
acd5c798
MK
601/* Use the program counter to determine the contents and size of a
602 breakpoint instruction. Return a pointer to a string of bytes that
603 encode a breakpoint instruction, store the length of the string in
604 *LEN and optionally adjust *PC to point to the correct memory
605 location for inserting the breakpoint.
c906108c 606
acd5c798
MK
607 On the i386 we have a single breakpoint that fits in a single byte
608 and can be inserted anywhere.
c906108c 609
acd5c798 610 This function is 64-bit safe. */
63c0089f 611
04180708
YQ
612constexpr gdb_byte i386_break_insn[] = { 0xcc }; /* int 3 */
613
614typedef BP_MANIPULATION (i386_break_insn) i386_breakpoint;
63c0089f 615
237fc4c9
PA
616\f
617/* Displaced instruction handling. */
618
1903f0e6
DE
619/* Skip the legacy instruction prefixes in INSN.
620 Not all prefixes are valid for any particular insn
621 but we needn't care, the insn will fault if it's invalid.
622 The result is a pointer to the first opcode byte,
623 or NULL if we run off the end of the buffer. */
624
625static gdb_byte *
626i386_skip_prefixes (gdb_byte *insn, size_t max_len)
627{
628 gdb_byte *end = insn + max_len;
629
630 while (insn < end)
631 {
632 switch (*insn)
633 {
634 case DATA_PREFIX_OPCODE:
635 case ADDR_PREFIX_OPCODE:
636 case CS_PREFIX_OPCODE:
637 case DS_PREFIX_OPCODE:
638 case ES_PREFIX_OPCODE:
639 case FS_PREFIX_OPCODE:
640 case GS_PREFIX_OPCODE:
641 case SS_PREFIX_OPCODE:
642 case LOCK_PREFIX_OPCODE:
643 case REPE_PREFIX_OPCODE:
644 case REPNE_PREFIX_OPCODE:
645 ++insn;
646 continue;
647 default:
648 return insn;
649 }
650 }
651
652 return NULL;
653}
237fc4c9
PA
654
655static int
1903f0e6 656i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 657{
1777feb0 658 /* jmp far (absolute address in operand). */
237fc4c9
PA
659 if (insn[0] == 0xea)
660 return 1;
661
662 if (insn[0] == 0xff)
663 {
1777feb0 664 /* jump near, absolute indirect (/4). */
237fc4c9
PA
665 if ((insn[1] & 0x38) == 0x20)
666 return 1;
667
1777feb0 668 /* jump far, absolute indirect (/5). */
237fc4c9
PA
669 if ((insn[1] & 0x38) == 0x28)
670 return 1;
671 }
672
673 return 0;
674}
675
c2170eef
MM
676/* Return non-zero if INSN is a jump, zero otherwise. */
677
678static int
679i386_jmp_p (const gdb_byte *insn)
680{
681 /* jump short, relative. */
682 if (insn[0] == 0xeb)
683 return 1;
684
685 /* jump near, relative. */
686 if (insn[0] == 0xe9)
687 return 1;
688
689 return i386_absolute_jmp_p (insn);
690}
691
237fc4c9 692static int
1903f0e6 693i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 694{
1777feb0 695 /* call far, absolute. */
237fc4c9
PA
696 if (insn[0] == 0x9a)
697 return 1;
698
699 if (insn[0] == 0xff)
700 {
1777feb0 701 /* Call near, absolute indirect (/2). */
237fc4c9
PA
702 if ((insn[1] & 0x38) == 0x10)
703 return 1;
704
1777feb0 705 /* Call far, absolute indirect (/3). */
237fc4c9
PA
706 if ((insn[1] & 0x38) == 0x18)
707 return 1;
708 }
709
710 return 0;
711}
712
713static int
1903f0e6 714i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
715{
716 switch (insn[0])
717 {
1777feb0 718 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 719 case 0xc3: /* ret near */
1777feb0 720 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
721 case 0xcb: /* ret far */
722 case 0xcf: /* iret */
723 return 1;
724
725 default:
726 return 0;
727 }
728}
729
730static int
1903f0e6 731i386_call_p (const gdb_byte *insn)
237fc4c9
PA
732{
733 if (i386_absolute_call_p (insn))
734 return 1;
735
1777feb0 736 /* call near, relative. */
237fc4c9
PA
737 if (insn[0] == 0xe8)
738 return 1;
739
740 return 0;
741}
742
237fc4c9
PA
743/* Return non-zero if INSN is a system call, and set *LENGTHP to its
744 length in bytes. Otherwise, return zero. */
1903f0e6 745
237fc4c9 746static int
b55078be 747i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 748{
9a7f938f
JK
749 /* Is it 'int $0x80'? */
750 if ((insn[0] == 0xcd && insn[1] == 0x80)
751 /* Or is it 'sysenter'? */
752 || (insn[0] == 0x0f && insn[1] == 0x34)
753 /* Or is it 'syscall'? */
754 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
755 {
756 *lengthp = 2;
757 return 1;
758 }
759
760 return 0;
761}
762
c2170eef
MM
763/* The gdbarch insn_is_call method. */
764
765static int
766i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
767{
768 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
769
770 read_code (addr, buf, I386_MAX_INSN_LEN);
771 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
772
773 return i386_call_p (insn);
774}
775
776/* The gdbarch insn_is_ret method. */
777
778static int
779i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
780{
781 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
782
783 read_code (addr, buf, I386_MAX_INSN_LEN);
784 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
785
786 return i386_ret_p (insn);
787}
788
789/* The gdbarch insn_is_jump method. */
790
791static int
792i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
793{
794 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
795
796 read_code (addr, buf, I386_MAX_INSN_LEN);
797 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
798
799 return i386_jmp_p (insn);
800}
801
b55078be
DE
802/* Some kernels may run one past a syscall insn, so we have to cope.
803 Otherwise this is just simple_displaced_step_copy_insn. */
804
805struct displaced_step_closure *
806i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
807 CORE_ADDR from, CORE_ADDR to,
808 struct regcache *regs)
809{
810 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 811 gdb_byte *buf = (gdb_byte *) xmalloc (len);
b55078be
DE
812
813 read_memory (from, buf, len);
814
815 /* GDB may get control back after the insn after the syscall.
816 Presumably this is a kernel bug.
817 If this is a syscall, make sure there's a nop afterwards. */
818 {
819 int syscall_length;
820 gdb_byte *insn;
821
822 insn = i386_skip_prefixes (buf, len);
823 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
824 insn[syscall_length] = NOP_OPCODE;
825 }
826
827 write_memory (to, buf, len);
828
829 if (debug_displaced)
830 {
831 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
832 paddress (gdbarch, from), paddress (gdbarch, to));
833 displaced_step_dump_bytes (gdb_stdlog, buf, len);
834 }
835
836 return (struct displaced_step_closure *) buf;
837}
838
237fc4c9
PA
839/* Fix up the state of registers and memory after having single-stepped
840 a displaced instruction. */
1903f0e6 841
237fc4c9
PA
842void
843i386_displaced_step_fixup (struct gdbarch *gdbarch,
844 struct displaced_step_closure *closure,
845 CORE_ADDR from, CORE_ADDR to,
846 struct regcache *regs)
847{
e17a4113
UW
848 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
849
237fc4c9
PA
850 /* The offset we applied to the instruction's address.
851 This could well be negative (when viewed as a signed 32-bit
852 value), but ULONGEST won't reflect that, so take care when
853 applying it. */
854 ULONGEST insn_offset = to - from;
855
856 /* Since we use simple_displaced_step_copy_insn, our closure is a
857 copy of the instruction. */
858 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
859 /* The start of the insn, needed in case we see some prefixes. */
860 gdb_byte *insn_start = insn;
237fc4c9
PA
861
862 if (debug_displaced)
863 fprintf_unfiltered (gdb_stdlog,
5af949e3 864 "displaced: fixup (%s, %s), "
237fc4c9 865 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
866 paddress (gdbarch, from), paddress (gdbarch, to),
867 insn[0], insn[1]);
237fc4c9
PA
868
869 /* The list of issues to contend with here is taken from
870 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
871 Yay for Free Software! */
872
873 /* Relocate the %eip, if necessary. */
874
1903f0e6
DE
875 /* The instruction recognizers we use assume any leading prefixes
876 have been skipped. */
877 {
878 /* This is the size of the buffer in closure. */
879 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
880 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
881 /* If there are too many prefixes, just ignore the insn.
882 It will fault when run. */
883 if (opcode != NULL)
884 insn = opcode;
885 }
886
237fc4c9
PA
887 /* Except in the case of absolute or indirect jump or call
888 instructions, or a return instruction, the new eip is relative to
889 the displaced instruction; make it relative. Well, signal
890 handler returns don't need relocation either, but we use the
891 value of %eip to recognize those; see below. */
892 if (! i386_absolute_jmp_p (insn)
893 && ! i386_absolute_call_p (insn)
894 && ! i386_ret_p (insn))
895 {
896 ULONGEST orig_eip;
b55078be 897 int insn_len;
237fc4c9
PA
898
899 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
900
901 /* A signal trampoline system call changes the %eip, resuming
902 execution of the main program after the signal handler has
903 returned. That makes them like 'return' instructions; we
904 shouldn't relocate %eip.
905
906 But most system calls don't, and we do need to relocate %eip.
907
908 Our heuristic for distinguishing these cases: if stepping
909 over the system call instruction left control directly after
910 the instruction, the we relocate --- control almost certainly
911 doesn't belong in the displaced copy. Otherwise, we assume
912 the instruction has put control where it belongs, and leave
913 it unrelocated. Goodness help us if there are PC-relative
914 system calls. */
915 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
916 && orig_eip != to + (insn - insn_start) + insn_len
917 /* GDB can get control back after the insn after the syscall.
918 Presumably this is a kernel bug.
919 i386_displaced_step_copy_insn ensures its a nop,
920 we add one to the length for it. */
921 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
922 {
923 if (debug_displaced)
924 fprintf_unfiltered (gdb_stdlog,
925 "displaced: syscall changed %%eip; "
926 "not relocating\n");
927 }
928 else
929 {
930 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
931
1903f0e6
DE
932 /* If we just stepped over a breakpoint insn, we don't backup
933 the pc on purpose; this is to match behaviour without
934 stepping. */
237fc4c9
PA
935
936 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
940 "displaced: "
5af949e3
UW
941 "relocated %%eip from %s to %s\n",
942 paddress (gdbarch, orig_eip),
943 paddress (gdbarch, eip));
237fc4c9
PA
944 }
945 }
946
947 /* If the instruction was PUSHFL, then the TF bit will be set in the
948 pushed value, and should be cleared. We'll leave this for later,
949 since GDB already messes up the TF flag when stepping over a
950 pushfl. */
951
952 /* If the instruction was a call, the return address now atop the
953 stack is the address following the copied instruction. We need
954 to make it the address following the original instruction. */
955 if (i386_call_p (insn))
956 {
957 ULONGEST esp;
958 ULONGEST retaddr;
959 const ULONGEST retaddr_len = 4;
960
961 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 962 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 963 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 964 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
965
966 if (debug_displaced)
967 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
968 "displaced: relocated return addr at %s to %s\n",
969 paddress (gdbarch, esp),
970 paddress (gdbarch, retaddr));
237fc4c9
PA
971 }
972}
dde08ee1
PA
973
974static void
975append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
976{
977 target_write_memory (*to, buf, len);
978 *to += len;
979}
980
981static void
982i386_relocate_instruction (struct gdbarch *gdbarch,
983 CORE_ADDR *to, CORE_ADDR oldloc)
984{
985 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
986 gdb_byte buf[I386_MAX_INSN_LEN];
987 int offset = 0, rel32, newrel;
988 int insn_length;
989 gdb_byte *insn = buf;
990
991 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
992
993 insn_length = gdb_buffered_insn_length (gdbarch, insn,
994 I386_MAX_INSN_LEN, oldloc);
995
996 /* Get past the prefixes. */
997 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
998
999 /* Adjust calls with 32-bit relative addresses as push/jump, with
1000 the address pushed being the location where the original call in
1001 the user program would return to. */
1002 if (insn[0] == 0xe8)
1003 {
1004 gdb_byte push_buf[16];
1005 unsigned int ret_addr;
1006
1007 /* Where "ret" in the original code will return to. */
1008 ret_addr = oldloc + insn_length;
1777feb0 1009 push_buf[0] = 0x68; /* pushq $... */
144db827 1010 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
1011 /* Push the push. */
1012 append_insns (to, 5, push_buf);
1013
1014 /* Convert the relative call to a relative jump. */
1015 insn[0] = 0xe9;
1016
1017 /* Adjust the destination offset. */
1018 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1019 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
1020 store_signed_integer (insn + 1, 4, byte_order, newrel);
1021
1022 if (debug_displaced)
1023 fprintf_unfiltered (gdb_stdlog,
1024 "Adjusted insn rel32=%s at %s to"
1025 " rel32=%s at %s\n",
1026 hex_string (rel32), paddress (gdbarch, oldloc),
1027 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1028
1029 /* Write the adjusted jump into its displaced location. */
1030 append_insns (to, 5, insn);
1031 return;
1032 }
1033
1034 /* Adjust jumps with 32-bit relative addresses. Calls are already
1035 handled above. */
1036 if (insn[0] == 0xe9)
1037 offset = 1;
1038 /* Adjust conditional jumps. */
1039 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1040 offset = 2;
1041
1042 if (offset)
1043 {
1044 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1045 newrel = (oldloc - *to) + rel32;
f4a1794a 1046 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1047 if (debug_displaced)
1048 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1049 "Adjusted insn rel32=%s at %s to"
1050 " rel32=%s at %s\n",
dde08ee1
PA
1051 hex_string (rel32), paddress (gdbarch, oldloc),
1052 hex_string (newrel), paddress (gdbarch, *to));
1053 }
1054
1055 /* Write the adjusted instructions into their displaced
1056 location. */
1057 append_insns (to, insn_length, buf);
1058}
1059
fc338970 1060\f
acd5c798
MK
1061#ifdef I386_REGNO_TO_SYMMETRY
1062#error "The Sequent Symmetry is no longer supported."
1063#endif
c906108c 1064
acd5c798
MK
1065/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1066 and %esp "belong" to the calling function. Therefore these
1067 registers should be saved if they're going to be modified. */
c906108c 1068
acd5c798
MK
1069/* The maximum number of saved registers. This should include all
1070 registers mentioned above, and %eip. */
a3386186 1071#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1072
1073struct i386_frame_cache
c906108c 1074{
acd5c798
MK
1075 /* Base address. */
1076 CORE_ADDR base;
8fbca658 1077 int base_p;
772562f8 1078 LONGEST sp_offset;
acd5c798
MK
1079 CORE_ADDR pc;
1080
fd13a04a
AC
1081 /* Saved registers. */
1082 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1083 CORE_ADDR saved_sp;
e0c62198 1084 int saved_sp_reg;
acd5c798
MK
1085 int pc_in_eax;
1086
1087 /* Stack space reserved for local variables. */
1088 long locals;
1089};
1090
1091/* Allocate and initialize a frame cache. */
1092
1093static struct i386_frame_cache *
fd13a04a 1094i386_alloc_frame_cache (void)
acd5c798
MK
1095{
1096 struct i386_frame_cache *cache;
1097 int i;
1098
1099 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1100
1101 /* Base address. */
8fbca658 1102 cache->base_p = 0;
acd5c798
MK
1103 cache->base = 0;
1104 cache->sp_offset = -4;
1105 cache->pc = 0;
1106
fd13a04a
AC
1107 /* Saved registers. We initialize these to -1 since zero is a valid
1108 offset (that's where %ebp is supposed to be stored). */
1109 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1110 cache->saved_regs[i] = -1;
acd5c798 1111 cache->saved_sp = 0;
e0c62198 1112 cache->saved_sp_reg = -1;
acd5c798
MK
1113 cache->pc_in_eax = 0;
1114
1115 /* Frameless until proven otherwise. */
1116 cache->locals = -1;
1117
1118 return cache;
1119}
c906108c 1120
acd5c798
MK
1121/* If the instruction at PC is a jump, return the address of its
1122 target. Otherwise, return PC. */
c906108c 1123
acd5c798 1124static CORE_ADDR
e17a4113 1125i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1126{
e17a4113 1127 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1128 gdb_byte op;
acd5c798
MK
1129 long delta = 0;
1130 int data16 = 0;
c906108c 1131
0865b04a 1132 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1133 return pc;
1134
acd5c798 1135 if (op == 0x66)
c906108c 1136 {
c906108c 1137 data16 = 1;
0865b04a
YQ
1138
1139 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1140 }
1141
acd5c798 1142 switch (op)
c906108c
SS
1143 {
1144 case 0xe9:
fc338970 1145 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1146 if (data16)
1147 {
e17a4113 1148 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1149
fc338970
MK
1150 /* Include the size of the jmp instruction (including the
1151 0x66 prefix). */
acd5c798 1152 delta += 4;
c906108c
SS
1153 }
1154 else
1155 {
e17a4113 1156 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1157
acd5c798
MK
1158 /* Include the size of the jmp instruction. */
1159 delta += 5;
c906108c
SS
1160 }
1161 break;
1162 case 0xeb:
fc338970 1163 /* Relative jump, disp8 (ignore data16). */
e17a4113 1164 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1165
acd5c798 1166 delta += data16 + 2;
c906108c
SS
1167 break;
1168 }
c906108c 1169
acd5c798
MK
1170 return pc + delta;
1171}
fc338970 1172
acd5c798
MK
1173/* Check whether PC points at a prologue for a function returning a
1174 structure or union. If so, it updates CACHE and returns the
1175 address of the first instruction after the code sequence that
1176 removes the "hidden" argument from the stack or CURRENT_PC,
1177 whichever is smaller. Otherwise, return PC. */
c906108c 1178
acd5c798
MK
1179static CORE_ADDR
1180i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1181 struct i386_frame_cache *cache)
c906108c 1182{
acd5c798
MK
1183 /* Functions that return a structure or union start with:
1184
1185 popl %eax 0x58
1186 xchgl %eax, (%esp) 0x87 0x04 0x24
1187 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1188
1189 (the System V compiler puts out the second `xchg' instruction,
1190 and the assembler doesn't try to optimize it, so the 'sib' form
1191 gets generated). This sequence is used to get the address of the
1192 return buffer for a function that returns a structure. */
63c0089f
MK
1193 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1194 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1195 gdb_byte buf[4];
1196 gdb_byte op;
c906108c 1197
acd5c798
MK
1198 if (current_pc <= pc)
1199 return pc;
1200
0865b04a 1201 if (target_read_code (pc, &op, 1))
3dcabaa8 1202 return pc;
c906108c 1203
acd5c798
MK
1204 if (op != 0x58) /* popl %eax */
1205 return pc;
c906108c 1206
0865b04a 1207 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1208 return pc;
1209
acd5c798
MK
1210 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1211 return pc;
c906108c 1212
acd5c798 1213 if (current_pc == pc)
c906108c 1214 {
acd5c798
MK
1215 cache->sp_offset += 4;
1216 return current_pc;
c906108c
SS
1217 }
1218
acd5c798 1219 if (current_pc == pc + 1)
c906108c 1220 {
acd5c798
MK
1221 cache->pc_in_eax = 1;
1222 return current_pc;
1223 }
1224
1225 if (buf[1] == proto1[1])
1226 return pc + 4;
1227 else
1228 return pc + 5;
1229}
1230
1231static CORE_ADDR
1232i386_skip_probe (CORE_ADDR pc)
1233{
1234 /* A function may start with
fc338970 1235
acd5c798
MK
1236 pushl constant
1237 call _probe
1238 addl $4, %esp
fc338970 1239
acd5c798
MK
1240 followed by
1241
1242 pushl %ebp
fc338970 1243
acd5c798 1244 etc. */
63c0089f
MK
1245 gdb_byte buf[8];
1246 gdb_byte op;
fc338970 1247
0865b04a 1248 if (target_read_code (pc, &op, 1))
3dcabaa8 1249 return pc;
acd5c798
MK
1250
1251 if (op == 0x68 || op == 0x6a)
1252 {
1253 int delta;
c906108c 1254
acd5c798
MK
1255 /* Skip past the `pushl' instruction; it has either a one-byte or a
1256 four-byte operand, depending on the opcode. */
c906108c 1257 if (op == 0x68)
acd5c798 1258 delta = 5;
c906108c 1259 else
acd5c798 1260 delta = 2;
c906108c 1261
acd5c798
MK
1262 /* Read the following 8 bytes, which should be `call _probe' (6
1263 bytes) followed by `addl $4,%esp' (2 bytes). */
1264 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1265 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1266 pc += delta + sizeof (buf);
c906108c
SS
1267 }
1268
acd5c798
MK
1269 return pc;
1270}
1271
92dd43fa
MK
1272/* GCC 4.1 and later, can put code in the prologue to realign the
1273 stack pointer. Check whether PC points to such code, and update
1274 CACHE accordingly. Return the first instruction after the code
1275 sequence or CURRENT_PC, whichever is smaller. If we don't
1276 recognize the code, return PC. */
1277
1278static CORE_ADDR
1279i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1280 struct i386_frame_cache *cache)
1281{
e0c62198
L
1282 /* There are 2 code sequences to re-align stack before the frame
1283 gets set up:
1284
1285 1. Use a caller-saved saved register:
1286
1287 leal 4(%esp), %reg
1288 andl $-XXX, %esp
1289 pushl -4(%reg)
1290
1291 2. Use a callee-saved saved register:
1292
1293 pushl %reg
1294 leal 8(%esp), %reg
1295 andl $-XXX, %esp
1296 pushl -4(%reg)
1297
1298 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1299
1300 0x83 0xe4 0xf0 andl $-16, %esp
1301 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1302 */
1303
1304 gdb_byte buf[14];
1305 int reg;
1306 int offset, offset_and;
1307 static int regnums[8] = {
1308 I386_EAX_REGNUM, /* %eax */
1309 I386_ECX_REGNUM, /* %ecx */
1310 I386_EDX_REGNUM, /* %edx */
1311 I386_EBX_REGNUM, /* %ebx */
1312 I386_ESP_REGNUM, /* %esp */
1313 I386_EBP_REGNUM, /* %ebp */
1314 I386_ESI_REGNUM, /* %esi */
1315 I386_EDI_REGNUM /* %edi */
92dd43fa 1316 };
92dd43fa 1317
0865b04a 1318 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1319 return pc;
1320
1321 /* Check caller-saved saved register. The first instruction has
1322 to be "leal 4(%esp), %reg". */
1323 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1324 {
1325 /* MOD must be binary 10 and R/M must be binary 100. */
1326 if ((buf[1] & 0xc7) != 0x44)
1327 return pc;
1328
1329 /* REG has register number. */
1330 reg = (buf[1] >> 3) & 7;
1331 offset = 4;
1332 }
1333 else
1334 {
1335 /* Check callee-saved saved register. The first instruction
1336 has to be "pushl %reg". */
1337 if ((buf[0] & 0xf8) != 0x50)
1338 return pc;
1339
1340 /* Get register. */
1341 reg = buf[0] & 0x7;
1342
1343 /* The next instruction has to be "leal 8(%esp), %reg". */
1344 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1345 return pc;
1346
1347 /* MOD must be binary 10 and R/M must be binary 100. */
1348 if ((buf[2] & 0xc7) != 0x44)
1349 return pc;
1350
1351 /* REG has register number. Registers in pushl and leal have to
1352 be the same. */
1353 if (reg != ((buf[2] >> 3) & 7))
1354 return pc;
1355
1356 offset = 5;
1357 }
1358
1359 /* Rigister can't be %esp nor %ebp. */
1360 if (reg == 4 || reg == 5)
1361 return pc;
1362
1363 /* The next instruction has to be "andl $-XXX, %esp". */
1364 if (buf[offset + 1] != 0xe4
1365 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1366 return pc;
1367
1368 offset_and = offset;
1369 offset += buf[offset] == 0x81 ? 6 : 3;
1370
1371 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1372 0xfc. REG must be binary 110 and MOD must be binary 01. */
1373 if (buf[offset] != 0xff
1374 || buf[offset + 2] != 0xfc
1375 || (buf[offset + 1] & 0xf8) != 0x70)
1376 return pc;
1377
1378 /* R/M has register. Registers in leal and pushl have to be the
1379 same. */
1380 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1381 return pc;
1382
e0c62198
L
1383 if (current_pc > pc + offset_and)
1384 cache->saved_sp_reg = regnums[reg];
92dd43fa 1385
325fac50 1386 return std::min (pc + offset + 3, current_pc);
92dd43fa
MK
1387}
1388
37bdc87e 1389/* Maximum instruction length we need to handle. */
237fc4c9 1390#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1391
1392/* Instruction description. */
1393struct i386_insn
1394{
1395 size_t len;
237fc4c9
PA
1396 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1397 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1398};
1399
a3fcb948 1400/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1401
a3fcb948
JG
1402static int
1403i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1404{
63c0089f 1405 gdb_byte op;
37bdc87e 1406
0865b04a 1407 if (target_read_code (pc, &op, 1))
a3fcb948 1408 return 0;
37bdc87e 1409
a3fcb948 1410 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1411 {
a3fcb948
JG
1412 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1413 int insn_matched = 1;
1414 size_t i;
37bdc87e 1415
a3fcb948
JG
1416 gdb_assert (pattern.len > 1);
1417 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1418
0865b04a 1419 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1420 return 0;
613e8135 1421
a3fcb948
JG
1422 for (i = 1; i < pattern.len; i++)
1423 {
1424 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1425 insn_matched = 0;
37bdc87e 1426 }
a3fcb948
JG
1427 return insn_matched;
1428 }
1429 return 0;
1430}
1431
1432/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1433 the first instruction description that matches. Otherwise, return
1434 NULL. */
1435
1436static struct i386_insn *
1437i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1438{
1439 struct i386_insn *pattern;
1440
1441 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1442 {
1443 if (i386_match_pattern (pc, *pattern))
1444 return pattern;
37bdc87e
MK
1445 }
1446
1447 return NULL;
1448}
1449
a3fcb948
JG
1450/* Return whether PC points inside a sequence of instructions that
1451 matches INSN_PATTERNS. */
1452
1453static int
1454i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1455{
1456 CORE_ADDR current_pc;
1457 int ix, i;
a3fcb948
JG
1458 struct i386_insn *insn;
1459
1460 insn = i386_match_insn (pc, insn_patterns);
1461 if (insn == NULL)
1462 return 0;
1463
8bbdd3f4 1464 current_pc = pc;
a3fcb948
JG
1465 ix = insn - insn_patterns;
1466 for (i = ix - 1; i >= 0; i--)
1467 {
8bbdd3f4
MK
1468 current_pc -= insn_patterns[i].len;
1469
a3fcb948
JG
1470 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1471 return 0;
a3fcb948
JG
1472 }
1473
1474 current_pc = pc + insn->len;
1475 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1476 {
1477 if (!i386_match_pattern (current_pc, *insn))
1478 return 0;
1479
1480 current_pc += insn->len;
1481 }
1482
1483 return 1;
1484}
1485
37bdc87e
MK
1486/* Some special instructions that might be migrated by GCC into the
1487 part of the prologue that sets up the new stack frame. Because the
1488 stack frame hasn't been setup yet, no registers have been saved
1489 yet, and only the scratch registers %eax, %ecx and %edx can be
1490 touched. */
1491
1492struct i386_insn i386_frame_setup_skip_insns[] =
1493{
1777feb0 1494 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1495
1496 ??? Should we handle 16-bit operand-sizes here? */
1497
1498 /* `movb imm8, %al' and `movb imm8, %ah' */
1499 /* `movb imm8, %cl' and `movb imm8, %ch' */
1500 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1501 /* `movb imm8, %dl' and `movb imm8, %dh' */
1502 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1503 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1504 { 5, { 0xb8 }, { 0xfe } },
1505 /* `movl imm32, %edx' */
1506 { 5, { 0xba }, { 0xff } },
1507
1508 /* Check for `mov imm32, r32'. Note that there is an alternative
1509 encoding for `mov m32, %eax'.
1510
1511 ??? Should we handle SIB adressing here?
1512 ??? Should we handle 16-bit operand-sizes here? */
1513
1514 /* `movl m32, %eax' */
1515 { 5, { 0xa1 }, { 0xff } },
1516 /* `movl m32, %eax' and `mov; m32, %ecx' */
1517 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1518 /* `movl m32, %edx' */
1519 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1520
1521 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1522 Because of the symmetry, there are actually two ways to encode
1523 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1524 opcode bytes 0x31 and 0x33 for `xorl'. */
1525
1526 /* `subl %eax, %eax' */
1527 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1528 /* `subl %ecx, %ecx' */
1529 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1530 /* `subl %edx, %edx' */
1531 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1532 /* `xorl %eax, %eax' */
1533 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1534 /* `xorl %ecx, %ecx' */
1535 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1536 /* `xorl %edx, %edx' */
1537 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1538 { 0 }
1539};
1540
e11481da
PM
1541
1542/* Check whether PC points to a no-op instruction. */
1543static CORE_ADDR
1544i386_skip_noop (CORE_ADDR pc)
1545{
1546 gdb_byte op;
1547 int check = 1;
1548
0865b04a 1549 if (target_read_code (pc, &op, 1))
3dcabaa8 1550 return pc;
e11481da
PM
1551
1552 while (check)
1553 {
1554 check = 0;
1555 /* Ignore `nop' instruction. */
1556 if (op == 0x90)
1557 {
1558 pc += 1;
0865b04a 1559 if (target_read_code (pc, &op, 1))
3dcabaa8 1560 return pc;
e11481da
PM
1561 check = 1;
1562 }
1563 /* Ignore no-op instruction `mov %edi, %edi'.
1564 Microsoft system dlls often start with
1565 a `mov %edi,%edi' instruction.
1566 The 5 bytes before the function start are
1567 filled with `nop' instructions.
1568 This pattern can be used for hot-patching:
1569 The `mov %edi, %edi' instruction can be replaced by a
1570 near jump to the location of the 5 `nop' instructions
1571 which can be replaced by a 32-bit jump to anywhere
1572 in the 32-bit address space. */
1573
1574 else if (op == 0x8b)
1575 {
0865b04a 1576 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1577 return pc;
1578
e11481da
PM
1579 if (op == 0xff)
1580 {
1581 pc += 2;
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1583 return pc;
1584
e11481da
PM
1585 check = 1;
1586 }
1587 }
1588 }
1589 return pc;
1590}
1591
acd5c798
MK
1592/* Check whether PC points at a code that sets up a new stack frame.
1593 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1594 instruction after the sequence that sets up the frame or LIMIT,
1595 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1596
1597static CORE_ADDR
e17a4113
UW
1598i386_analyze_frame_setup (struct gdbarch *gdbarch,
1599 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1600 struct i386_frame_cache *cache)
1601{
e17a4113 1602 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1603 struct i386_insn *insn;
63c0089f 1604 gdb_byte op;
26604a34 1605 int skip = 0;
acd5c798 1606
37bdc87e
MK
1607 if (limit <= pc)
1608 return limit;
acd5c798 1609
0865b04a 1610 if (target_read_code (pc, &op, 1))
3dcabaa8 1611 return pc;
acd5c798 1612
c906108c 1613 if (op == 0x55) /* pushl %ebp */
c5aa993b 1614 {
acd5c798
MK
1615 /* Take into account that we've executed the `pushl %ebp' that
1616 starts this instruction sequence. */
fd13a04a 1617 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1618 cache->sp_offset += 4;
37bdc87e 1619 pc++;
acd5c798
MK
1620
1621 /* If that's all, return now. */
37bdc87e
MK
1622 if (limit <= pc)
1623 return limit;
26604a34 1624
b4632131 1625 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1626 GCC into the prologue and skip them. At this point in the
1627 prologue, code should only touch the scratch registers %eax,
1628 %ecx and %edx, so while the number of posibilities is sheer,
1629 it is limited.
5daa5b4e 1630
26604a34
MK
1631 Make sure we only skip these instructions if we later see the
1632 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1633 while (pc + skip < limit)
26604a34 1634 {
37bdc87e
MK
1635 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1636 if (insn == NULL)
1637 break;
b4632131 1638
37bdc87e 1639 skip += insn->len;
26604a34
MK
1640 }
1641
37bdc87e
MK
1642 /* If that's all, return now. */
1643 if (limit <= pc + skip)
1644 return limit;
1645
0865b04a 1646 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1647 return pc + skip;
37bdc87e 1648
30f8135b
YQ
1649 /* The i386 prologue looks like
1650
1651 push %ebp
1652 mov %esp,%ebp
1653 sub $0x10,%esp
1654
1655 and a different prologue can be generated for atom.
1656
1657 push %ebp
1658 lea (%esp),%ebp
1659 lea -0x10(%esp),%esp
1660
1661 We handle both of them here. */
1662
acd5c798 1663 switch (op)
c906108c 1664 {
30f8135b 1665 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1666 case 0x8b:
0865b04a 1667 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1668 != 0xec)
37bdc87e 1669 return pc;
30f8135b 1670 pc += (skip + 2);
c906108c
SS
1671 break;
1672 case 0x89:
0865b04a 1673 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1674 != 0xe5)
37bdc87e 1675 return pc;
30f8135b
YQ
1676 pc += (skip + 2);
1677 break;
1678 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1679 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1680 != 0x242c)
1681 return pc;
1682 pc += (skip + 3);
c906108c
SS
1683 break;
1684 default:
37bdc87e 1685 return pc;
c906108c 1686 }
acd5c798 1687
26604a34
MK
1688 /* OK, we actually have a frame. We just don't know how large
1689 it is yet. Set its size to zero. We'll adjust it if
1690 necessary. We also now commit to skipping the special
1691 instructions mentioned before. */
acd5c798
MK
1692 cache->locals = 0;
1693
1694 /* If that's all, return now. */
37bdc87e
MK
1695 if (limit <= pc)
1696 return limit;
acd5c798 1697
fc338970
MK
1698 /* Check for stack adjustment
1699
acd5c798 1700 subl $XXX, %esp
30f8135b
YQ
1701 or
1702 lea -XXX(%esp),%esp
fc338970 1703
fd35795f 1704 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1705 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1706 if (target_read_code (pc, &op, 1))
3dcabaa8 1707 return pc;
c906108c
SS
1708 if (op == 0x83)
1709 {
fd35795f 1710 /* `subl' with 8-bit immediate. */
0865b04a 1711 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1712 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1713 return pc;
acd5c798 1714
37bdc87e
MK
1715 /* `subl' with signed 8-bit immediate (though it wouldn't
1716 make sense to be negative). */
0865b04a 1717 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1718 return pc + 3;
c906108c
SS
1719 }
1720 else if (op == 0x81)
1721 {
fd35795f 1722 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1723 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1724 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1725 return pc;
acd5c798 1726
fd35795f 1727 /* It is `subl' with a 32-bit immediate. */
0865b04a 1728 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1729 return pc + 6;
c906108c 1730 }
30f8135b
YQ
1731 else if (op == 0x8d)
1732 {
1733 /* The ModR/M byte is 0x64. */
0865b04a 1734 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1735 return pc;
1736 /* 'lea' with 8-bit displacement. */
0865b04a 1737 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1738 return pc + 4;
1739 }
c906108c
SS
1740 else
1741 {
30f8135b 1742 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1743 return pc;
c906108c
SS
1744 }
1745 }
37bdc87e 1746 else if (op == 0xc8) /* enter */
c906108c 1747 {
0865b04a 1748 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1749 return pc + 4;
c906108c 1750 }
21d0e8a4 1751
acd5c798 1752 return pc;
21d0e8a4
MK
1753}
1754
acd5c798
MK
1755/* Check whether PC points at code that saves registers on the stack.
1756 If so, it updates CACHE and returns the address of the first
1757 instruction after the register saves or CURRENT_PC, whichever is
1758 smaller. Otherwise, return PC. */
6bff26de
MK
1759
1760static CORE_ADDR
acd5c798
MK
1761i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1762 struct i386_frame_cache *cache)
6bff26de 1763{
99ab4326 1764 CORE_ADDR offset = 0;
63c0089f 1765 gdb_byte op;
99ab4326 1766 int i;
c0d1d883 1767
99ab4326
MK
1768 if (cache->locals > 0)
1769 offset -= cache->locals;
1770 for (i = 0; i < 8 && pc < current_pc; i++)
1771 {
0865b04a 1772 if (target_read_code (pc, &op, 1))
3dcabaa8 1773 return pc;
99ab4326
MK
1774 if (op < 0x50 || op > 0x57)
1775 break;
0d17c81d 1776
99ab4326
MK
1777 offset -= 4;
1778 cache->saved_regs[op - 0x50] = offset;
1779 cache->sp_offset += 4;
1780 pc++;
6bff26de
MK
1781 }
1782
acd5c798 1783 return pc;
22797942
AC
1784}
1785
acd5c798
MK
1786/* Do a full analysis of the prologue at PC and update CACHE
1787 accordingly. Bail out early if CURRENT_PC is reached. Return the
1788 address where the analysis stopped.
ed84f6c1 1789
fc338970
MK
1790 We handle these cases:
1791
1792 The startup sequence can be at the start of the function, or the
1793 function can start with a branch to startup code at the end.
1794
1795 %ebp can be set up with either the 'enter' instruction, or "pushl
1796 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1797 once used in the System V compiler).
1798
1799 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1800 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1801 16-bit unsigned argument for space to allocate, and the 'addl'
1802 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1803
1804 Next, the registers used by this function are pushed. With the
1805 System V compiler they will always be in the order: %edi, %esi,
1806 %ebx (and sometimes a harmless bug causes it to also save but not
1807 restore %eax); however, the code below is willing to see the pushes
1808 in any order, and will handle up to 8 of them.
1809
1810 If the setup sequence is at the end of the function, then the next
1811 instruction will be a branch back to the start. */
c906108c 1812
acd5c798 1813static CORE_ADDR
e17a4113
UW
1814i386_analyze_prologue (struct gdbarch *gdbarch,
1815 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1816 struct i386_frame_cache *cache)
c906108c 1817{
e11481da 1818 pc = i386_skip_noop (pc);
e17a4113 1819 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1820 pc = i386_analyze_struct_return (pc, current_pc, cache);
1821 pc = i386_skip_probe (pc);
92dd43fa 1822 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1823 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1824 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1825}
1826
fc338970 1827/* Return PC of first real instruction. */
c906108c 1828
3a1e71e3 1829static CORE_ADDR
6093d2eb 1830i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1831{
e17a4113
UW
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833
63c0089f 1834 static gdb_byte pic_pat[6] =
acd5c798
MK
1835 {
1836 0xe8, 0, 0, 0, 0, /* call 0x0 */
1837 0x5b, /* popl %ebx */
c5aa993b 1838 };
acd5c798
MK
1839 struct i386_frame_cache cache;
1840 CORE_ADDR pc;
63c0089f 1841 gdb_byte op;
acd5c798 1842 int i;
56bf0743 1843 CORE_ADDR func_addr;
4e879fc2 1844
56bf0743
KB
1845 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1846 {
1847 CORE_ADDR post_prologue_pc
1848 = skip_prologue_using_sal (gdbarch, func_addr);
43f3e411 1849 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
56bf0743
KB
1850
1851 /* Clang always emits a line note before the prologue and another
1852 one after. We trust clang to emit usable line notes. */
1853 if (post_prologue_pc
43f3e411
DE
1854 && (cust != NULL
1855 && COMPUNIT_PRODUCER (cust) != NULL
61012eef 1856 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
325fac50 1857 return std::max (start_pc, post_prologue_pc);
56bf0743
KB
1858 }
1859
e0f33b1f 1860 cache.locals = -1;
e17a4113 1861 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1862 if (cache.locals < 0)
1863 return start_pc;
c5aa993b 1864
acd5c798 1865 /* Found valid frame setup. */
c906108c 1866
fc338970
MK
1867 /* The native cc on SVR4 in -K PIC mode inserts the following code
1868 to get the address of the global offset table (GOT) into register
acd5c798
MK
1869 %ebx:
1870
fc338970
MK
1871 call 0x0
1872 popl %ebx
1873 movl %ebx,x(%ebp) (optional)
1874 addl y,%ebx
1875
c906108c
SS
1876 This code is with the rest of the prologue (at the end of the
1877 function), so we have to skip it to get to the first real
1878 instruction at the start of the function. */
c5aa993b 1879
c906108c
SS
1880 for (i = 0; i < 6; i++)
1881 {
0865b04a 1882 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1883 return pc;
1884
c5aa993b 1885 if (pic_pat[i] != op)
c906108c
SS
1886 break;
1887 }
1888 if (i == 6)
1889 {
acd5c798
MK
1890 int delta = 6;
1891
0865b04a 1892 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1893 return pc;
c906108c 1894
c5aa993b 1895 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1896 {
0865b04a 1897 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1898
fc338970 1899 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1900 delta += 3;
fc338970 1901 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1902 delta += 6;
fc338970 1903 else /* Unexpected instruction. */
acd5c798
MK
1904 delta = 0;
1905
0865b04a 1906 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1907 return pc;
c906108c 1908 }
acd5c798 1909
c5aa993b 1910 /* addl y,%ebx */
acd5c798 1911 if (delta > 0 && op == 0x81
0865b04a 1912 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1913 == 0xc3)
c906108c 1914 {
acd5c798 1915 pc += delta + 6;
c906108c
SS
1916 }
1917 }
c5aa993b 1918
e63bbc88
MK
1919 /* If the function starts with a branch (to startup code at the end)
1920 the last instruction should bring us back to the first
1921 instruction of the real code. */
e17a4113
UW
1922 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1923 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1924
1925 return pc;
c906108c
SS
1926}
1927
4309257c
PM
1928/* Check that the code pointed to by PC corresponds to a call to
1929 __main, skip it if so. Return PC otherwise. */
1930
1931CORE_ADDR
1932i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1933{
e17a4113 1934 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1935 gdb_byte op;
1936
0865b04a 1937 if (target_read_code (pc, &op, 1))
3dcabaa8 1938 return pc;
4309257c
PM
1939 if (op == 0xe8)
1940 {
1941 gdb_byte buf[4];
1942
0865b04a 1943 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1944 {
1945 /* Make sure address is computed correctly as a 32bit
1946 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1947 struct bound_minimal_symbol s;
e17a4113 1948 CORE_ADDR call_dest;
4309257c 1949
e17a4113 1950 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1951 call_dest = call_dest & 0xffffffffU;
1952 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1953 if (s.minsym != NULL
efd66ac6
TT
1954 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1955 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1956 pc += 5;
1957 }
1958 }
1959
1960 return pc;
1961}
1962
acd5c798 1963/* This function is 64-bit safe. */
93924b6b 1964
acd5c798
MK
1965static CORE_ADDR
1966i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1967{
63c0089f 1968 gdb_byte buf[8];
acd5c798 1969
875f8d0e 1970 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1971 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1972}
acd5c798 1973\f
93924b6b 1974
acd5c798 1975/* Normal frames. */
c5aa993b 1976
8fbca658
PA
1977static void
1978i386_frame_cache_1 (struct frame_info *this_frame,
1979 struct i386_frame_cache *cache)
a7769679 1980{
e17a4113
UW
1981 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1982 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1983 gdb_byte buf[4];
acd5c798
MK
1984 int i;
1985
8fbca658 1986 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1987
1988 /* In principle, for normal frames, %ebp holds the frame pointer,
1989 which holds the base address for the current stack frame.
1990 However, for functions that don't need it, the frame pointer is
1991 optional. For these "frameless" functions the frame pointer is
1992 actually the frame pointer of the calling frame. Signal
1993 trampolines are just a special case of a "frameless" function.
1994 They (usually) share their frame pointer with the frame that was
1995 in progress when the signal occurred. */
1996
10458914 1997 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1998 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1999 if (cache->base == 0)
620fa63a
PA
2000 {
2001 cache->base_p = 1;
2002 return;
2003 }
acd5c798
MK
2004
2005 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 2006 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 2007
acd5c798 2008 if (cache->pc != 0)
e17a4113
UW
2009 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2010 cache);
acd5c798
MK
2011
2012 if (cache->locals < 0)
2013 {
2014 /* We didn't find a valid frame, which means that CACHE->base
2015 currently holds the frame pointer for our calling frame. If
2016 we're at the start of a function, or somewhere half-way its
2017 prologue, the function's frame probably hasn't been fully
2018 setup yet. Try to reconstruct the base address for the stack
2019 frame by looking at the stack pointer. For truly "frameless"
2020 functions this might work too. */
2021
e0c62198 2022 if (cache->saved_sp_reg != -1)
92dd43fa 2023 {
8fbca658
PA
2024 /* Saved stack pointer has been saved. */
2025 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2026 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2027
92dd43fa
MK
2028 /* We're halfway aligning the stack. */
2029 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2030 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2031
2032 /* This will be added back below. */
2033 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2034 }
7618e12b 2035 else if (cache->pc != 0
0865b04a 2036 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2037 {
7618e12b
DJ
2038 /* We're in a known function, but did not find a frame
2039 setup. Assume that the function does not use %ebp.
2040 Alternatively, we may have jumped to an invalid
2041 address; in that case there is definitely no new
2042 frame in %ebp. */
10458914 2043 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2044 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2045 + cache->sp_offset;
92dd43fa 2046 }
7618e12b
DJ
2047 else
2048 /* We're in an unknown function. We could not find the start
2049 of the function to analyze the prologue; our best option is
2050 to assume a typical frame layout with the caller's %ebp
2051 saved. */
2052 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2053 }
2054
8fbca658
PA
2055 if (cache->saved_sp_reg != -1)
2056 {
2057 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2058 register may be unavailable). */
2059 if (cache->saved_sp == 0
ca9d61b9
JB
2060 && deprecated_frame_register_read (this_frame,
2061 cache->saved_sp_reg, buf))
8fbca658
PA
2062 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2063 }
acd5c798
MK
2064 /* Now that we have the base address for the stack frame we can
2065 calculate the value of %esp in the calling frame. */
8fbca658 2066 else if (cache->saved_sp == 0)
92dd43fa 2067 cache->saved_sp = cache->base + 8;
a7769679 2068
acd5c798
MK
2069 /* Adjust all the saved registers such that they contain addresses
2070 instead of offsets. */
2071 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2072 if (cache->saved_regs[i] != -1)
2073 cache->saved_regs[i] += cache->base;
acd5c798 2074
8fbca658
PA
2075 cache->base_p = 1;
2076}
2077
2078static struct i386_frame_cache *
2079i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2080{
8fbca658
PA
2081 struct i386_frame_cache *cache;
2082
2083 if (*this_cache)
9a3c8263 2084 return (struct i386_frame_cache *) *this_cache;
8fbca658
PA
2085
2086 cache = i386_alloc_frame_cache ();
2087 *this_cache = cache;
2088
492d29ea 2089 TRY
8fbca658
PA
2090 {
2091 i386_frame_cache_1 (this_frame, cache);
2092 }
492d29ea 2093 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2094 {
2095 if (ex.error != NOT_AVAILABLE_ERROR)
2096 throw_exception (ex);
2097 }
492d29ea 2098 END_CATCH
8fbca658 2099
acd5c798 2100 return cache;
a7769679
MK
2101}
2102
3a1e71e3 2103static void
10458914 2104i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2105 struct frame_id *this_id)
c906108c 2106{
10458914 2107 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2108
5ce0145d
PA
2109 if (!cache->base_p)
2110 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2111 else if (cache->base == 0)
2112 {
2113 /* This marks the outermost frame. */
2114 }
2115 else
2116 {
2117 /* See the end of i386_push_dummy_call. */
2118 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2119 }
acd5c798
MK
2120}
2121
8fbca658
PA
2122static enum unwind_stop_reason
2123i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2124 void **this_cache)
2125{
2126 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2127
2128 if (!cache->base_p)
2129 return UNWIND_UNAVAILABLE;
2130
2131 /* This marks the outermost frame. */
2132 if (cache->base == 0)
2133 return UNWIND_OUTERMOST;
2134
2135 return UNWIND_NO_REASON;
2136}
2137
10458914
DJ
2138static struct value *
2139i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2140 int regnum)
acd5c798 2141{
10458914 2142 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2143
2144 gdb_assert (regnum >= 0);
2145
2146 /* The System V ABI says that:
2147
2148 "The flags register contains the system flags, such as the
2149 direction flag and the carry flag. The direction flag must be
2150 set to the forward (that is, zero) direction before entry and
2151 upon exit from a function. Other user flags have no specified
2152 role in the standard calling sequence and are not preserved."
2153
2154 To guarantee the "upon exit" part of that statement we fake a
2155 saved flags register that has its direction flag cleared.
2156
2157 Note that GCC doesn't seem to rely on the fact that the direction
2158 flag is cleared after a function return; it always explicitly
2159 clears the flag before operations where it matters.
2160
2161 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2162 right thing to do. The way we fake the flags register here makes
2163 it impossible to change it. */
2164
2165 if (regnum == I386_EFLAGS_REGNUM)
2166 {
10458914 2167 ULONGEST val;
c5aa993b 2168
10458914
DJ
2169 val = get_frame_register_unsigned (this_frame, regnum);
2170 val &= ~(1 << 10);
2171 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2172 }
1211c4e4 2173
acd5c798 2174 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2175 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2176
fcf250e2
UW
2177 if (regnum == I386_ESP_REGNUM
2178 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2179 {
2180 /* If the SP has been saved, but we don't know where, then this
2181 means that SAVED_SP_REG register was found unavailable back
2182 when we built the cache. */
fcf250e2 2183 if (cache->saved_sp == 0)
8fbca658
PA
2184 return frame_unwind_got_register (this_frame, regnum,
2185 cache->saved_sp_reg);
2186 else
2187 return frame_unwind_got_constant (this_frame, regnum,
2188 cache->saved_sp);
2189 }
acd5c798 2190
fd13a04a 2191 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2192 return frame_unwind_got_memory (this_frame, regnum,
2193 cache->saved_regs[regnum]);
fd13a04a 2194
10458914 2195 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2196}
2197
2198static const struct frame_unwind i386_frame_unwind =
2199{
2200 NORMAL_FRAME,
8fbca658 2201 i386_frame_unwind_stop_reason,
acd5c798 2202 i386_frame_this_id,
10458914
DJ
2203 i386_frame_prev_register,
2204 NULL,
2205 default_frame_sniffer
acd5c798 2206};
06da04c6
MS
2207
2208/* Normal frames, but in a function epilogue. */
2209
c9cf6e20
MG
2210/* Implement the stack_frame_destroyed_p gdbarch method.
2211
2212 The epilogue is defined here as the 'ret' instruction, which will
06da04c6
MS
2213 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2214 the function's stack frame. */
2215
2216static int
c9cf6e20 2217i386_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
06da04c6
MS
2218{
2219 gdb_byte insn;
43f3e411 2220 struct compunit_symtab *cust;
e0d00bc7 2221
43f3e411
DE
2222 cust = find_pc_compunit_symtab (pc);
2223 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
e0d00bc7 2224 return 0;
06da04c6
MS
2225
2226 if (target_read_memory (pc, &insn, 1))
2227 return 0; /* Can't read memory at pc. */
2228
2229 if (insn != 0xc3) /* 'ret' instruction. */
2230 return 0;
2231
2232 return 1;
2233}
2234
2235static int
2236i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2237 struct frame_info *this_frame,
2238 void **this_prologue_cache)
2239{
2240 if (frame_relative_level (this_frame) == 0)
c9cf6e20
MG
2241 return i386_stack_frame_destroyed_p (get_frame_arch (this_frame),
2242 get_frame_pc (this_frame));
06da04c6
MS
2243 else
2244 return 0;
2245}
2246
2247static struct i386_frame_cache *
2248i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2249{
06da04c6 2250 struct i386_frame_cache *cache;
0d6c2135 2251 CORE_ADDR sp;
06da04c6
MS
2252
2253 if (*this_cache)
9a3c8263 2254 return (struct i386_frame_cache *) *this_cache;
06da04c6
MS
2255
2256 cache = i386_alloc_frame_cache ();
2257 *this_cache = cache;
2258
492d29ea 2259 TRY
8fbca658 2260 {
0d6c2135 2261 cache->pc = get_frame_func (this_frame);
06da04c6 2262
0d6c2135
MK
2263 /* At this point the stack looks as if we just entered the
2264 function, with the return address at the top of the
2265 stack. */
2266 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2267 cache->base = sp + cache->sp_offset;
8fbca658 2268 cache->saved_sp = cache->base + 8;
8fbca658 2269 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2270
8fbca658
PA
2271 cache->base_p = 1;
2272 }
492d29ea 2273 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2274 {
2275 if (ex.error != NOT_AVAILABLE_ERROR)
2276 throw_exception (ex);
2277 }
492d29ea 2278 END_CATCH
06da04c6
MS
2279
2280 return cache;
2281}
2282
8fbca658
PA
2283static enum unwind_stop_reason
2284i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2285 void **this_cache)
2286{
0d6c2135
MK
2287 struct i386_frame_cache *cache =
2288 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2289
2290 if (!cache->base_p)
2291 return UNWIND_UNAVAILABLE;
2292
2293 return UNWIND_NO_REASON;
2294}
2295
06da04c6
MS
2296static void
2297i386_epilogue_frame_this_id (struct frame_info *this_frame,
2298 void **this_cache,
2299 struct frame_id *this_id)
2300{
0d6c2135
MK
2301 struct i386_frame_cache *cache =
2302 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2303
8fbca658 2304 if (!cache->base_p)
5ce0145d
PA
2305 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2306 else
2307 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2308}
2309
0d6c2135
MK
2310static struct value *
2311i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2312 void **this_cache, int regnum)
2313{
2314 /* Make sure we've initialized the cache. */
2315 i386_epilogue_frame_cache (this_frame, this_cache);
2316
2317 return i386_frame_prev_register (this_frame, this_cache, regnum);
2318}
2319
06da04c6
MS
2320static const struct frame_unwind i386_epilogue_frame_unwind =
2321{
2322 NORMAL_FRAME,
8fbca658 2323 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2324 i386_epilogue_frame_this_id,
0d6c2135 2325 i386_epilogue_frame_prev_register,
06da04c6
MS
2326 NULL,
2327 i386_epilogue_frame_sniffer
2328};
acd5c798
MK
2329\f
2330
a3fcb948
JG
2331/* Stack-based trampolines. */
2332
2333/* These trampolines are used on cross x86 targets, when taking the
2334 address of a nested function. When executing these trampolines,
2335 no stack frame is set up, so we are in a similar situation as in
2336 epilogues and i386_epilogue_frame_this_id can be re-used. */
2337
2338/* Static chain passed in register. */
2339
2340struct i386_insn i386_tramp_chain_in_reg_insns[] =
2341{
2342 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2343 { 5, { 0xb8 }, { 0xfe } },
2344
2345 /* `jmp imm32' */
2346 { 5, { 0xe9 }, { 0xff } },
2347
2348 {0}
2349};
2350
2351/* Static chain passed on stack (when regparm=3). */
2352
2353struct i386_insn i386_tramp_chain_on_stack_insns[] =
2354{
2355 /* `push imm32' */
2356 { 5, { 0x68 }, { 0xff } },
2357
2358 /* `jmp imm32' */
2359 { 5, { 0xe9 }, { 0xff } },
2360
2361 {0}
2362};
2363
2364/* Return whether PC points inside a stack trampoline. */
2365
2366static int
6df81a63 2367i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2368{
2369 gdb_byte insn;
2c02bd72 2370 const char *name;
a3fcb948
JG
2371
2372 /* A stack trampoline is detected if no name is associated
2373 to the current pc and if it points inside a trampoline
2374 sequence. */
2375
2376 find_pc_partial_function (pc, &name, NULL, NULL);
2377 if (name)
2378 return 0;
2379
2380 if (target_read_memory (pc, &insn, 1))
2381 return 0;
2382
2383 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2384 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2385 return 0;
2386
2387 return 1;
2388}
2389
2390static int
2391i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2392 struct frame_info *this_frame,
2393 void **this_cache)
a3fcb948
JG
2394{
2395 if (frame_relative_level (this_frame) == 0)
6df81a63 2396 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2397 else
2398 return 0;
2399}
2400
2401static const struct frame_unwind i386_stack_tramp_frame_unwind =
2402{
2403 NORMAL_FRAME,
2404 i386_epilogue_frame_unwind_stop_reason,
2405 i386_epilogue_frame_this_id,
0d6c2135 2406 i386_epilogue_frame_prev_register,
a3fcb948
JG
2407 NULL,
2408 i386_stack_tramp_frame_sniffer
2409};
2410\f
6710bf39
SS
2411/* Generate a bytecode expression to get the value of the saved PC. */
2412
2413static void
2414i386_gen_return_address (struct gdbarch *gdbarch,
2415 struct agent_expr *ax, struct axs_value *value,
2416 CORE_ADDR scope)
2417{
2418 /* The following sequence assumes the traditional use of the base
2419 register. */
2420 ax_reg (ax, I386_EBP_REGNUM);
2421 ax_const_l (ax, 4);
2422 ax_simple (ax, aop_add);
2423 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2424 value->kind = axs_lvalue_memory;
2425}
2426\f
a3fcb948 2427
acd5c798
MK
2428/* Signal trampolines. */
2429
2430static struct i386_frame_cache *
10458914 2431i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2432{
e17a4113
UW
2433 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2434 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2435 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
acd5c798 2436 struct i386_frame_cache *cache;
acd5c798 2437 CORE_ADDR addr;
63c0089f 2438 gdb_byte buf[4];
acd5c798
MK
2439
2440 if (*this_cache)
9a3c8263 2441 return (struct i386_frame_cache *) *this_cache;
acd5c798 2442
fd13a04a 2443 cache = i386_alloc_frame_cache ();
acd5c798 2444
492d29ea 2445 TRY
a3386186 2446 {
8fbca658
PA
2447 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2448 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2449
8fbca658
PA
2450 addr = tdep->sigcontext_addr (this_frame);
2451 if (tdep->sc_reg_offset)
2452 {
2453 int i;
a3386186 2454
8fbca658
PA
2455 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2456
2457 for (i = 0; i < tdep->sc_num_regs; i++)
2458 if (tdep->sc_reg_offset[i] != -1)
2459 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2460 }
2461 else
2462 {
2463 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2464 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2465 }
2466
2467 cache->base_p = 1;
a3386186 2468 }
492d29ea 2469 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
2470 {
2471 if (ex.error != NOT_AVAILABLE_ERROR)
2472 throw_exception (ex);
2473 }
492d29ea 2474 END_CATCH
acd5c798
MK
2475
2476 *this_cache = cache;
2477 return cache;
2478}
2479
8fbca658
PA
2480static enum unwind_stop_reason
2481i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2482 void **this_cache)
2483{
2484 struct i386_frame_cache *cache =
2485 i386_sigtramp_frame_cache (this_frame, this_cache);
2486
2487 if (!cache->base_p)
2488 return UNWIND_UNAVAILABLE;
2489
2490 return UNWIND_NO_REASON;
2491}
2492
acd5c798 2493static void
10458914 2494i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2495 struct frame_id *this_id)
2496{
2497 struct i386_frame_cache *cache =
10458914 2498 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2499
8fbca658 2500 if (!cache->base_p)
5ce0145d
PA
2501 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2502 else
2503 {
2504 /* See the end of i386_push_dummy_call. */
2505 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2506 }
acd5c798
MK
2507}
2508
10458914
DJ
2509static struct value *
2510i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2511 void **this_cache, int regnum)
acd5c798
MK
2512{
2513 /* Make sure we've initialized the cache. */
10458914 2514 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2515
10458914 2516 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2517}
c0d1d883 2518
10458914
DJ
2519static int
2520i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2521 struct frame_info *this_frame,
2522 void **this_prologue_cache)
acd5c798 2523{
10458914 2524 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2525
911bc6ee
MK
2526 /* We shouldn't even bother if we don't have a sigcontext_addr
2527 handler. */
2528 if (tdep->sigcontext_addr == NULL)
10458914 2529 return 0;
1c3545ae 2530
911bc6ee
MK
2531 if (tdep->sigtramp_p != NULL)
2532 {
10458914
DJ
2533 if (tdep->sigtramp_p (this_frame))
2534 return 1;
911bc6ee
MK
2535 }
2536
2537 if (tdep->sigtramp_start != 0)
2538 {
10458914 2539 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2540
2541 gdb_assert (tdep->sigtramp_end != 0);
2542 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2543 return 1;
911bc6ee 2544 }
acd5c798 2545
10458914 2546 return 0;
acd5c798 2547}
10458914
DJ
2548
2549static const struct frame_unwind i386_sigtramp_frame_unwind =
2550{
2551 SIGTRAMP_FRAME,
8fbca658 2552 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2553 i386_sigtramp_frame_this_id,
2554 i386_sigtramp_frame_prev_register,
2555 NULL,
2556 i386_sigtramp_frame_sniffer
2557};
acd5c798
MK
2558\f
2559
2560static CORE_ADDR
10458914 2561i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2562{
10458914 2563 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2564
2565 return cache->base;
2566}
2567
2568static const struct frame_base i386_frame_base =
2569{
2570 &i386_frame_unwind,
2571 i386_frame_base_address,
2572 i386_frame_base_address,
2573 i386_frame_base_address
2574};
2575
acd5c798 2576static struct frame_id
10458914 2577i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2578{
acd5c798
MK
2579 CORE_ADDR fp;
2580
10458914 2581 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2582
3e210248 2583 /* See the end of i386_push_dummy_call. */
10458914 2584 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2585}
e04e5beb
JM
2586
2587/* _Decimal128 function return values need 16-byte alignment on the
2588 stack. */
2589
2590static CORE_ADDR
2591i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2592{
2593 return sp & -(CORE_ADDR)16;
2594}
fc338970 2595\f
c906108c 2596
fc338970
MK
2597/* Figure out where the longjmp will land. Slurp the args out of the
2598 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2599 structure from which we extract the address that we will land at.
28bcfd30 2600 This address is copied into PC. This routine returns non-zero on
436675d3 2601 success. */
c906108c 2602
8201327c 2603static int
60ade65d 2604i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2605{
436675d3 2606 gdb_byte buf[4];
c906108c 2607 CORE_ADDR sp, jb_addr;
20a6ec49 2608 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2609 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2610 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2611
8201327c
MK
2612 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2613 longjmp will land. */
2614 if (jb_pc_offset == -1)
c906108c
SS
2615 return 0;
2616
436675d3 2617 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2618 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2619 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2620 return 0;
2621
e17a4113 2622 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2623 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2624 return 0;
c906108c 2625
e17a4113 2626 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2627 return 1;
2628}
fc338970 2629\f
c906108c 2630
7ccc1c74
JM
2631/* Check whether TYPE must be 16-byte-aligned when passed as a
2632 function argument. 16-byte vectors, _Decimal128 and structures or
2633 unions containing such types must be 16-byte-aligned; other
2634 arguments are 4-byte-aligned. */
2635
2636static int
2637i386_16_byte_align_p (struct type *type)
2638{
2639 type = check_typedef (type);
2640 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2641 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2642 && TYPE_LENGTH (type) == 16)
2643 return 1;
2644 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2645 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2646 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2647 || TYPE_CODE (type) == TYPE_CODE_UNION)
2648 {
2649 int i;
2650 for (i = 0; i < TYPE_NFIELDS (type); i++)
2651 {
2652 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2653 return 1;
2654 }
2655 }
2656 return 0;
2657}
2658
a9b8d892
JK
2659/* Implementation for set_gdbarch_push_dummy_code. */
2660
2661static CORE_ADDR
2662i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2663 struct value **args, int nargs, struct type *value_type,
2664 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2665 struct regcache *regcache)
2666{
2667 /* Use 0xcc breakpoint - 1 byte. */
2668 *bp_addr = sp - 1;
2669 *real_pc = funaddr;
2670
2671 /* Keep the stack aligned. */
2672 return sp - 16;
2673}
2674
3a1e71e3 2675static CORE_ADDR
7d9b040b 2676i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2677 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2678 struct value **args, CORE_ADDR sp, int struct_return,
2679 CORE_ADDR struct_addr)
22f8ba57 2680{
e17a4113 2681 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2682 gdb_byte buf[4];
acd5c798 2683 int i;
7ccc1c74
JM
2684 int write_pass;
2685 int args_space = 0;
acd5c798 2686
4a612d6f
WT
2687 /* BND registers can be in arbitrary values at the moment of the
2688 inferior call. This can cause boundary violations that are not
2689 due to a real bug or even desired by the user. The best to be done
2690 is set the BND registers to allow access to the whole memory, INIT
2691 state, before pushing the inferior call. */
2692 i387_reset_bnd_regs (gdbarch, regcache);
2693
7ccc1c74
JM
2694 /* Determine the total space required for arguments and struct
2695 return address in a first pass (allowing for 16-byte-aligned
2696 arguments), then push arguments in a second pass. */
2697
2698 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2699 {
7ccc1c74 2700 int args_space_used = 0;
7ccc1c74
JM
2701
2702 if (struct_return)
2703 {
2704 if (write_pass)
2705 {
2706 /* Push value address. */
e17a4113 2707 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2708 write_memory (sp, buf, 4);
2709 args_space_used += 4;
2710 }
2711 else
2712 args_space += 4;
2713 }
2714
2715 for (i = 0; i < nargs; i++)
2716 {
2717 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2718
7ccc1c74
JM
2719 if (write_pass)
2720 {
2721 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2722 args_space_used = align_up (args_space_used, 16);
acd5c798 2723
7ccc1c74
JM
2724 write_memory (sp + args_space_used,
2725 value_contents_all (args[i]), len);
2726 /* The System V ABI says that:
acd5c798 2727
7ccc1c74
JM
2728 "An argument's size is increased, if necessary, to make it a
2729 multiple of [32-bit] words. This may require tail padding,
2730 depending on the size of the argument."
22f8ba57 2731
7ccc1c74
JM
2732 This makes sure the stack stays word-aligned. */
2733 args_space_used += align_up (len, 4);
2734 }
2735 else
2736 {
2737 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2738 args_space = align_up (args_space, 16);
7ccc1c74
JM
2739 args_space += align_up (len, 4);
2740 }
2741 }
2742
2743 if (!write_pass)
2744 {
7ccc1c74 2745 sp -= args_space;
284c5a60
MK
2746
2747 /* The original System V ABI only requires word alignment,
2748 but modern incarnations need 16-byte alignment in order
2749 to support SSE. Since wasting a few bytes here isn't
2750 harmful we unconditionally enforce 16-byte alignment. */
2751 sp &= ~0xf;
7ccc1c74 2752 }
22f8ba57
MK
2753 }
2754
acd5c798
MK
2755 /* Store return address. */
2756 sp -= 4;
e17a4113 2757 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2758 write_memory (sp, buf, 4);
2759
2760 /* Finally, update the stack pointer... */
e17a4113 2761 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2762 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2763
2764 /* ...and fake a frame pointer. */
2765 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2766
3e210248
AC
2767 /* MarkK wrote: This "+ 8" is all over the place:
2768 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2769 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2770 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2771 definition of the stack address of a frame. Otherwise frame id
2772 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2773 stack address *before* the function call as a frame's CFA. On
2774 the i386, when %ebp is used as a frame pointer, the offset
2775 between the contents %ebp and the CFA as defined by GCC. */
2776 return sp + 8;
22f8ba57
MK
2777}
2778
1a309862
MK
2779/* These registers are used for returning integers (and on some
2780 targets also for returning `struct' and `union' values when their
ef9dff19 2781 size and alignment match an integer type). */
acd5c798
MK
2782#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2783#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2784
c5e656c1
MK
2785/* Read, for architecture GDBARCH, a function return value of TYPE
2786 from REGCACHE, and copy that into VALBUF. */
1a309862 2787
3a1e71e3 2788static void
c5e656c1 2789i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2790 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2791{
c5e656c1 2792 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2793 int len = TYPE_LENGTH (type);
63c0089f 2794 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2795
1e8d0a7b 2796 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2797 {
5716833c 2798 if (tdep->st0_regnum < 0)
1a309862 2799 {
8a3fe4f8 2800 warning (_("Cannot find floating-point return value."));
1a309862 2801 memset (valbuf, 0, len);
ef9dff19 2802 return;
1a309862
MK
2803 }
2804
c6ba6f0d
MK
2805 /* Floating-point return values can be found in %st(0). Convert
2806 its contents to the desired type. This is probably not
2807 exactly how it would happen on the target itself, but it is
2808 the best we can do. */
acd5c798 2809 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2810 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2811 }
2812 else
c5aa993b 2813 {
875f8d0e
UW
2814 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2815 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2816
2817 if (len <= low_size)
00f8375e 2818 {
0818c12a 2819 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2820 memcpy (valbuf, buf, len);
2821 }
d4f3574e
SS
2822 else if (len <= (low_size + high_size))
2823 {
0818c12a 2824 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2825 memcpy (valbuf, buf, low_size);
0818c12a 2826 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2827 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2828 }
2829 else
8e65ff28 2830 internal_error (__FILE__, __LINE__,
1777feb0
MS
2831 _("Cannot extract return value of %d bytes long."),
2832 len);
c906108c
SS
2833 }
2834}
2835
c5e656c1
MK
2836/* Write, for architecture GDBARCH, a function return value of TYPE
2837 from VALBUF into REGCACHE. */
ef9dff19 2838
3a1e71e3 2839static void
c5e656c1 2840i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2841 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2842{
c5e656c1 2843 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2844 int len = TYPE_LENGTH (type);
2845
1e8d0a7b 2846 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2847 {
3d7f4f49 2848 ULONGEST fstat;
63c0089f 2849 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2850
5716833c 2851 if (tdep->st0_regnum < 0)
ef9dff19 2852 {
8a3fe4f8 2853 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2854 return;
2855 }
2856
635b0cc1
MK
2857 /* Returning floating-point values is a bit tricky. Apart from
2858 storing the return value in %st(0), we have to simulate the
2859 state of the FPU at function return point. */
2860
c6ba6f0d
MK
2861 /* Convert the value found in VALBUF to the extended
2862 floating-point format used by the FPU. This is probably
2863 not exactly how it would happen on the target itself, but
2864 it is the best we can do. */
27067745 2865 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2866 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2867
635b0cc1
MK
2868 /* Set the top of the floating-point register stack to 7. The
2869 actual value doesn't really matter, but 7 is what a normal
2870 function return would end up with if the program started out
2871 with a freshly initialized FPU. */
20a6ec49 2872 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2873 fstat |= (7 << 11);
20a6ec49 2874 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2875
635b0cc1
MK
2876 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2877 the floating-point register stack to 7, the appropriate value
2878 for the tag word is 0x3fff. */
20a6ec49 2879 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2880 }
2881 else
2882 {
875f8d0e
UW
2883 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2884 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2885
2886 if (len <= low_size)
3d7f4f49 2887 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2888 else if (len <= (low_size + high_size))
2889 {
3d7f4f49
MK
2890 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2891 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2892 len - low_size, valbuf + low_size);
ef9dff19
MK
2893 }
2894 else
8e65ff28 2895 internal_error (__FILE__, __LINE__,
e2e0b3e5 2896 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2897 }
2898}
fc338970 2899\f
ef9dff19 2900
8201327c
MK
2901/* This is the variable that is set with "set struct-convention", and
2902 its legitimate values. */
2903static const char default_struct_convention[] = "default";
2904static const char pcc_struct_convention[] = "pcc";
2905static const char reg_struct_convention[] = "reg";
40478521 2906static const char *const valid_conventions[] =
8201327c
MK
2907{
2908 default_struct_convention,
2909 pcc_struct_convention,
2910 reg_struct_convention,
2911 NULL
2912};
2913static const char *struct_convention = default_struct_convention;
2914
0e4377e1
JB
2915/* Return non-zero if TYPE, which is assumed to be a structure,
2916 a union type, or an array type, should be returned in registers
2917 for architecture GDBARCH. */
c5e656c1 2918
8201327c 2919static int
c5e656c1 2920i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2921{
c5e656c1
MK
2922 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
8201327c 2925
0e4377e1
JB
2926 gdb_assert (code == TYPE_CODE_STRUCT
2927 || code == TYPE_CODE_UNION
2928 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2929
2930 if (struct_convention == pcc_struct_convention
2931 || (struct_convention == default_struct_convention
2932 && tdep->struct_return == pcc_struct_return))
2933 return 0;
2934
9edde48e
MK
2935 /* Structures consisting of a single `float', `double' or 'long
2936 double' member are returned in %st(0). */
2937 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2938 {
2939 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2940 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2941 return (len == 4 || len == 8 || len == 12);
2942 }
2943
c5e656c1
MK
2944 return (len == 1 || len == 2 || len == 4 || len == 8);
2945}
2946
2947/* Determine, for architecture GDBARCH, how a return value of TYPE
2948 should be returned. If it is supposed to be returned in registers,
2949 and READBUF is non-zero, read the appropriate value from REGCACHE,
2950 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2951 from WRITEBUF into REGCACHE. */
2952
2953static enum return_value_convention
6a3a010b 2954i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2955 struct type *type, struct regcache *regcache,
2956 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2957{
2958 enum type_code code = TYPE_CODE (type);
2959
5daa78cc
TJB
2960 if (((code == TYPE_CODE_STRUCT
2961 || code == TYPE_CODE_UNION
2962 || code == TYPE_CODE_ARRAY)
2963 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2964 /* Complex double and long double uses the struct return covention. */
2965 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2966 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2967 /* 128-bit decimal float uses the struct return convention. */
2968 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2969 {
2970 /* The System V ABI says that:
2971
2972 "A function that returns a structure or union also sets %eax
2973 to the value of the original address of the caller's area
2974 before it returns. Thus when the caller receives control
2975 again, the address of the returned object resides in register
2976 %eax and can be used to access the object."
2977
2978 So the ABI guarantees that we can always find the return
2979 value just after the function has returned. */
2980
0e4377e1
JB
2981 /* Note that the ABI doesn't mention functions returning arrays,
2982 which is something possible in certain languages such as Ada.
2983 In this case, the value is returned as if it was wrapped in
2984 a record, so the convention applied to records also applies
2985 to arrays. */
2986
31db7b6c
MK
2987 if (readbuf)
2988 {
2989 ULONGEST addr;
2990
2991 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2992 read_memory (addr, readbuf, TYPE_LENGTH (type));
2993 }
2994
2995 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2996 }
c5e656c1
MK
2997
2998 /* This special case is for structures consisting of a single
9edde48e
MK
2999 `float', `double' or 'long double' member. These structures are
3000 returned in %st(0). For these structures, we call ourselves
3001 recursively, changing TYPE into the type of the first member of
3002 the structure. Since that should work for all structures that
3003 have only one member, we don't bother to check the member's type
3004 here. */
c5e656c1
MK
3005 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
3006 {
3007 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 3008 return i386_return_value (gdbarch, function, type, regcache,
c055b101 3009 readbuf, writebuf);
c5e656c1
MK
3010 }
3011
3012 if (readbuf)
3013 i386_extract_return_value (gdbarch, type, regcache, readbuf);
3014 if (writebuf)
3015 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 3016
c5e656c1 3017 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
3018}
3019\f
3020
27067745
UW
3021struct type *
3022i387_ext_type (struct gdbarch *gdbarch)
3023{
3024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3025
3026 if (!tdep->i387_ext_type)
90884b2b
L
3027 {
3028 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
3029 gdb_assert (tdep->i387_ext_type != NULL);
3030 }
27067745
UW
3031
3032 return tdep->i387_ext_type;
3033}
3034
1dbcd68c
WT
3035/* Construct type for pseudo BND registers. We can't use
3036 tdesc_find_type since a complement of one value has to be used
3037 to describe the upper bound. */
3038
3039static struct type *
3040i386_bnd_type (struct gdbarch *gdbarch)
3041{
3042 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3043
3044
3045 if (!tdep->i386_bnd_type)
3046 {
870f88f7 3047 struct type *t;
1dbcd68c
WT
3048 const struct builtin_type *bt = builtin_type (gdbarch);
3049
3050 /* The type we're building is described bellow: */
3051#if 0
3052 struct __bound128
3053 {
3054 void *lbound;
3055 void *ubound; /* One complement of raw ubound field. */
3056 };
3057#endif
3058
3059 t = arch_composite_type (gdbarch,
3060 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3061
3062 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3063 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3064
3065 TYPE_NAME (t) = "builtin_type_bound128";
3066 tdep->i386_bnd_type = t;
3067 }
3068
3069 return tdep->i386_bnd_type;
3070}
3071
01f9f808
MS
3072/* Construct vector type for pseudo ZMM registers. We can't use
3073 tdesc_find_type since ZMM isn't described in target description. */
3074
3075static struct type *
3076i386_zmm_type (struct gdbarch *gdbarch)
3077{
3078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3079
3080 if (!tdep->i386_zmm_type)
3081 {
3082 const struct builtin_type *bt = builtin_type (gdbarch);
3083
3084 /* The type we're building is this: */
3085#if 0
3086 union __gdb_builtin_type_vec512i
3087 {
3088 int128_t uint128[4];
3089 int64_t v4_int64[8];
3090 int32_t v8_int32[16];
3091 int16_t v16_int16[32];
3092 int8_t v32_int8[64];
3093 double v4_double[8];
3094 float v8_float[16];
3095 };
3096#endif
3097
3098 struct type *t;
3099
3100 t = arch_composite_type (gdbarch,
3101 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3102 append_composite_type_field (t, "v16_float",
3103 init_vector_type (bt->builtin_float, 16));
3104 append_composite_type_field (t, "v8_double",
3105 init_vector_type (bt->builtin_double, 8));
3106 append_composite_type_field (t, "v64_int8",
3107 init_vector_type (bt->builtin_int8, 64));
3108 append_composite_type_field (t, "v32_int16",
3109 init_vector_type (bt->builtin_int16, 32));
3110 append_composite_type_field (t, "v16_int32",
3111 init_vector_type (bt->builtin_int32, 16));
3112 append_composite_type_field (t, "v8_int64",
3113 init_vector_type (bt->builtin_int64, 8));
3114 append_composite_type_field (t, "v4_int128",
3115 init_vector_type (bt->builtin_int128, 4));
3116
3117 TYPE_VECTOR (t) = 1;
3118 TYPE_NAME (t) = "builtin_type_vec512i";
3119 tdep->i386_zmm_type = t;
3120 }
3121
3122 return tdep->i386_zmm_type;
3123}
3124
c131fcee
L
3125/* Construct vector type for pseudo YMM registers. We can't use
3126 tdesc_find_type since YMM isn't described in target description. */
3127
3128static struct type *
3129i386_ymm_type (struct gdbarch *gdbarch)
3130{
3131 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3132
3133 if (!tdep->i386_ymm_type)
3134 {
3135 const struct builtin_type *bt = builtin_type (gdbarch);
3136
3137 /* The type we're building is this: */
3138#if 0
3139 union __gdb_builtin_type_vec256i
3140 {
3141 int128_t uint128[2];
3142 int64_t v2_int64[4];
3143 int32_t v4_int32[8];
3144 int16_t v8_int16[16];
3145 int8_t v16_int8[32];
3146 double v2_double[4];
3147 float v4_float[8];
3148 };
3149#endif
3150
3151 struct type *t;
3152
3153 t = arch_composite_type (gdbarch,
3154 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3155 append_composite_type_field (t, "v8_float",
3156 init_vector_type (bt->builtin_float, 8));
3157 append_composite_type_field (t, "v4_double",
3158 init_vector_type (bt->builtin_double, 4));
3159 append_composite_type_field (t, "v32_int8",
3160 init_vector_type (bt->builtin_int8, 32));
3161 append_composite_type_field (t, "v16_int16",
3162 init_vector_type (bt->builtin_int16, 16));
3163 append_composite_type_field (t, "v8_int32",
3164 init_vector_type (bt->builtin_int32, 8));
3165 append_composite_type_field (t, "v4_int64",
3166 init_vector_type (bt->builtin_int64, 4));
3167 append_composite_type_field (t, "v2_int128",
3168 init_vector_type (bt->builtin_int128, 2));
3169
3170 TYPE_VECTOR (t) = 1;
0c5acf93 3171 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3172 tdep->i386_ymm_type = t;
3173 }
3174
3175 return tdep->i386_ymm_type;
3176}
3177
794ac428 3178/* Construct vector type for MMX registers. */
90884b2b 3179static struct type *
794ac428
UW
3180i386_mmx_type (struct gdbarch *gdbarch)
3181{
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3183
3184 if (!tdep->i386_mmx_type)
3185 {
df4df182
UW
3186 const struct builtin_type *bt = builtin_type (gdbarch);
3187
794ac428
UW
3188 /* The type we're building is this: */
3189#if 0
3190 union __gdb_builtin_type_vec64i
3191 {
3192 int64_t uint64;
3193 int32_t v2_int32[2];
3194 int16_t v4_int16[4];
3195 int8_t v8_int8[8];
3196 };
3197#endif
3198
3199 struct type *t;
3200
e9bb382b
UW
3201 t = arch_composite_type (gdbarch,
3202 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3203
3204 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3205 append_composite_type_field (t, "v2_int32",
df4df182 3206 init_vector_type (bt->builtin_int32, 2));
794ac428 3207 append_composite_type_field (t, "v4_int16",
df4df182 3208 init_vector_type (bt->builtin_int16, 4));
794ac428 3209 append_composite_type_field (t, "v8_int8",
df4df182 3210 init_vector_type (bt->builtin_int8, 8));
794ac428 3211
876cecd0 3212 TYPE_VECTOR (t) = 1;
794ac428
UW
3213 TYPE_NAME (t) = "builtin_type_vec64i";
3214 tdep->i386_mmx_type = t;
3215 }
3216
3217 return tdep->i386_mmx_type;
3218}
3219
d7a0d72c 3220/* Return the GDB type object for the "standard" data type of data in
1777feb0 3221 register REGNUM. */
d7a0d72c 3222
fff4548b 3223struct type *
90884b2b 3224i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3225{
1dbcd68c
WT
3226 if (i386_bnd_regnum_p (gdbarch, regnum))
3227 return i386_bnd_type (gdbarch);
1ba53b71
L
3228 if (i386_mmx_regnum_p (gdbarch, regnum))
3229 return i386_mmx_type (gdbarch);
c131fcee
L
3230 else if (i386_ymm_regnum_p (gdbarch, regnum))
3231 return i386_ymm_type (gdbarch);
01f9f808
MS
3232 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3233 return i386_ymm_type (gdbarch);
3234 else if (i386_zmm_regnum_p (gdbarch, regnum))
3235 return i386_zmm_type (gdbarch);
1ba53b71
L
3236 else
3237 {
3238 const struct builtin_type *bt = builtin_type (gdbarch);
3239 if (i386_byte_regnum_p (gdbarch, regnum))
3240 return bt->builtin_int8;
3241 else if (i386_word_regnum_p (gdbarch, regnum))
3242 return bt->builtin_int16;
3243 else if (i386_dword_regnum_p (gdbarch, regnum))
3244 return bt->builtin_int32;
01f9f808
MS
3245 else if (i386_k_regnum_p (gdbarch, regnum))
3246 return bt->builtin_int64;
1ba53b71
L
3247 }
3248
3249 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3250}
3251
28fc6740 3252/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3253 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3254
3255static int
c86c27af 3256i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3257{
5716833c
MK
3258 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3259 int mmxreg, fpreg;
28fc6740
AC
3260 ULONGEST fstat;
3261 int tos;
c86c27af 3262
5716833c 3263 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3264 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3265 tos = (fstat >> 11) & 0x7;
5716833c
MK
3266 fpreg = (mmxreg + tos) % 8;
3267
20a6ec49 3268 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3269}
3270
3543a589
TT
3271/* A helper function for us by i386_pseudo_register_read_value and
3272 amd64_pseudo_register_read_value. It does all the work but reads
3273 the data into an already-allocated value. */
3274
3275void
3276i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3277 struct regcache *regcache,
3278 int regnum,
3279 struct value *result_value)
28fc6740 3280{
975c21ab 3281 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
05d1431c 3282 enum register_status status;
3543a589 3283 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3284
5716833c 3285 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3286 {
c86c27af
MK
3287 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3288
28fc6740 3289 /* Extract (always little endian). */
05d1431c
PA
3290 status = regcache_raw_read (regcache, fpnum, raw_buf);
3291 if (status != REG_VALID)
3543a589
TT
3292 mark_value_bytes_unavailable (result_value, 0,
3293 TYPE_LENGTH (value_type (result_value)));
3294 else
3295 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3296 }
3297 else
1ba53b71
L
3298 {
3299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3300 if (i386_bnd_regnum_p (gdbarch, regnum))
3301 {
3302 regnum -= tdep->bnd0_regnum;
1ba53b71 3303
1dbcd68c
WT
3304 /* Extract (always little endian). Read lower 128bits. */
3305 status = regcache_raw_read (regcache,
3306 I387_BND0R_REGNUM (tdep) + regnum,
3307 raw_buf);
3308 if (status != REG_VALID)
3309 mark_value_bytes_unavailable (result_value, 0, 16);
3310 else
3311 {
3312 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3313 LONGEST upper, lower;
3314 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3315
3316 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3317 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3318 upper = ~upper;
3319
3320 memcpy (buf, &lower, size);
3321 memcpy (buf + size, &upper, size);
3322 }
3323 }
01f9f808
MS
3324 else if (i386_k_regnum_p (gdbarch, regnum))
3325 {
3326 regnum -= tdep->k0_regnum;
3327
3328 /* Extract (always little endian). */
3329 status = regcache_raw_read (regcache,
3330 tdep->k0_regnum + regnum,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 0, 8);
3334 else
3335 memcpy (buf, raw_buf, 8);
3336 }
3337 else if (i386_zmm_regnum_p (gdbarch, regnum))
3338 {
3339 regnum -= tdep->zmm0_regnum;
3340
3341 if (regnum < num_lower_zmm_regs)
3342 {
3343 /* Extract (always little endian). Read lower 128bits. */
3344 status = regcache_raw_read (regcache,
3345 I387_XMM0_REGNUM (tdep) + regnum,
3346 raw_buf);
3347 if (status != REG_VALID)
3348 mark_value_bytes_unavailable (result_value, 0, 16);
3349 else
3350 memcpy (buf, raw_buf, 16);
3351
3352 /* Extract (always little endian). Read upper 128bits. */
3353 status = regcache_raw_read (regcache,
3354 tdep->ymm0h_regnum + regnum,
3355 raw_buf);
3356 if (status != REG_VALID)
3357 mark_value_bytes_unavailable (result_value, 16, 16);
3358 else
3359 memcpy (buf + 16, raw_buf, 16);
3360 }
3361 else
3362 {
3363 /* Extract (always little endian). Read lower 128bits. */
3364 status = regcache_raw_read (regcache,
3365 I387_XMM16_REGNUM (tdep) + regnum
3366 - num_lower_zmm_regs,
3367 raw_buf);
3368 if (status != REG_VALID)
3369 mark_value_bytes_unavailable (result_value, 0, 16);
3370 else
3371 memcpy (buf, raw_buf, 16);
3372
3373 /* Extract (always little endian). Read upper 128bits. */
3374 status = regcache_raw_read (regcache,
3375 I387_YMM16H_REGNUM (tdep) + regnum
3376 - num_lower_zmm_regs,
3377 raw_buf);
3378 if (status != REG_VALID)
3379 mark_value_bytes_unavailable (result_value, 16, 16);
3380 else
3381 memcpy (buf + 16, raw_buf, 16);
3382 }
3383
3384 /* Read upper 256bits. */
3385 status = regcache_raw_read (regcache,
3386 tdep->zmm0h_regnum + regnum,
3387 raw_buf);
3388 if (status != REG_VALID)
3389 mark_value_bytes_unavailable (result_value, 32, 32);
3390 else
3391 memcpy (buf + 32, raw_buf, 32);
3392 }
1dbcd68c 3393 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3394 {
3395 regnum -= tdep->ymm0_regnum;
3396
1777feb0 3397 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3398 status = regcache_raw_read (regcache,
3399 I387_XMM0_REGNUM (tdep) + regnum,
3400 raw_buf);
3401 if (status != REG_VALID)
3543a589
TT
3402 mark_value_bytes_unavailable (result_value, 0, 16);
3403 else
3404 memcpy (buf, raw_buf, 16);
c131fcee 3405 /* Read upper 128bits. */
05d1431c
PA
3406 status = regcache_raw_read (regcache,
3407 tdep->ymm0h_regnum + regnum,
3408 raw_buf);
3409 if (status != REG_VALID)
3543a589
TT
3410 mark_value_bytes_unavailable (result_value, 16, 32);
3411 else
3412 memcpy (buf + 16, raw_buf, 16);
c131fcee 3413 }
01f9f808
MS
3414 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3415 {
3416 regnum -= tdep->ymm16_regnum;
3417 /* Extract (always little endian). Read lower 128bits. */
3418 status = regcache_raw_read (regcache,
3419 I387_XMM16_REGNUM (tdep) + regnum,
3420 raw_buf);
3421 if (status != REG_VALID)
3422 mark_value_bytes_unavailable (result_value, 0, 16);
3423 else
3424 memcpy (buf, raw_buf, 16);
3425 /* Read upper 128bits. */
3426 status = regcache_raw_read (regcache,
3427 tdep->ymm16h_regnum + regnum,
3428 raw_buf);
3429 if (status != REG_VALID)
3430 mark_value_bytes_unavailable (result_value, 16, 16);
3431 else
3432 memcpy (buf + 16, raw_buf, 16);
3433 }
c131fcee 3434 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3435 {
3436 int gpnum = regnum - tdep->ax_regnum;
3437
3438 /* Extract (always little endian). */
05d1431c
PA
3439 status = regcache_raw_read (regcache, gpnum, raw_buf);
3440 if (status != REG_VALID)
3543a589
TT
3441 mark_value_bytes_unavailable (result_value, 0,
3442 TYPE_LENGTH (value_type (result_value)));
3443 else
3444 memcpy (buf, raw_buf, 2);
1ba53b71
L
3445 }
3446 else if (i386_byte_regnum_p (gdbarch, regnum))
3447 {
1ba53b71
L
3448 int gpnum = regnum - tdep->al_regnum;
3449
3450 /* Extract (always little endian). We read both lower and
3451 upper registers. */
05d1431c
PA
3452 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3453 if (status != REG_VALID)
3543a589
TT
3454 mark_value_bytes_unavailable (result_value, 0,
3455 TYPE_LENGTH (value_type (result_value)));
3456 else if (gpnum >= 4)
1ba53b71
L
3457 memcpy (buf, raw_buf + 1, 1);
3458 else
3459 memcpy (buf, raw_buf, 1);
3460 }
3461 else
3462 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3463 }
3543a589
TT
3464}
3465
3466static struct value *
3467i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3468 struct regcache *regcache,
3469 int regnum)
3470{
3471 struct value *result;
3472
3473 result = allocate_value (register_type (gdbarch, regnum));
3474 VALUE_LVAL (result) = lval_register;
3475 VALUE_REGNUM (result) = regnum;
3476
3477 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3478
3543a589 3479 return result;
28fc6740
AC
3480}
3481
1ba53b71 3482void
28fc6740 3483i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3484 int regnum, const gdb_byte *buf)
28fc6740 3485{
975c21ab 3486 gdb_byte raw_buf[I386_MAX_REGISTER_SIZE];
1ba53b71 3487
5716833c 3488 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3489 {
c86c27af
MK
3490 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3491
28fc6740 3492 /* Read ... */
1ba53b71 3493 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3494 /* ... Modify ... (always little endian). */
1ba53b71 3495 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3496 /* ... Write. */
1ba53b71 3497 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3498 }
3499 else
1ba53b71
L
3500 {
3501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3502
1dbcd68c
WT
3503 if (i386_bnd_regnum_p (gdbarch, regnum))
3504 {
3505 ULONGEST upper, lower;
3506 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3507 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3508
3509 /* New values from input value. */
3510 regnum -= tdep->bnd0_regnum;
3511 lower = extract_unsigned_integer (buf, size, byte_order);
3512 upper = extract_unsigned_integer (buf + size, size, byte_order);
3513
3514 /* Fetching register buffer. */
3515 regcache_raw_read (regcache,
3516 I387_BND0R_REGNUM (tdep) + regnum,
3517 raw_buf);
3518
3519 upper = ~upper;
3520
3521 /* Set register bits. */
3522 memcpy (raw_buf, &lower, 8);
3523 memcpy (raw_buf + 8, &upper, 8);
3524
3525
3526 regcache_raw_write (regcache,
3527 I387_BND0R_REGNUM (tdep) + regnum,
3528 raw_buf);
3529 }
01f9f808
MS
3530 else if (i386_k_regnum_p (gdbarch, regnum))
3531 {
3532 regnum -= tdep->k0_regnum;
3533
3534 regcache_raw_write (regcache,
3535 tdep->k0_regnum + regnum,
3536 buf);
3537 }
3538 else if (i386_zmm_regnum_p (gdbarch, regnum))
3539 {
3540 regnum -= tdep->zmm0_regnum;
3541
3542 if (regnum < num_lower_zmm_regs)
3543 {
3544 /* Write lower 128bits. */
3545 regcache_raw_write (regcache,
3546 I387_XMM0_REGNUM (tdep) + regnum,
3547 buf);
3548 /* Write upper 128bits. */
3549 regcache_raw_write (regcache,
3550 I387_YMM0_REGNUM (tdep) + regnum,
3551 buf + 16);
3552 }
3553 else
3554 {
3555 /* Write lower 128bits. */
3556 regcache_raw_write (regcache,
3557 I387_XMM16_REGNUM (tdep) + regnum
3558 - num_lower_zmm_regs,
3559 buf);
3560 /* Write upper 128bits. */
3561 regcache_raw_write (regcache,
3562 I387_YMM16H_REGNUM (tdep) + regnum
3563 - num_lower_zmm_regs,
3564 buf + 16);
3565 }
3566 /* Write upper 256bits. */
3567 regcache_raw_write (regcache,
3568 tdep->zmm0h_regnum + regnum,
3569 buf + 32);
3570 }
1dbcd68c 3571 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3572 {
3573 regnum -= tdep->ymm0_regnum;
3574
3575 /* ... Write lower 128bits. */
3576 regcache_raw_write (regcache,
3577 I387_XMM0_REGNUM (tdep) + regnum,
3578 buf);
3579 /* ... Write upper 128bits. */
3580 regcache_raw_write (regcache,
3581 tdep->ymm0h_regnum + regnum,
3582 buf + 16);
3583 }
01f9f808
MS
3584 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3585 {
3586 regnum -= tdep->ymm16_regnum;
3587
3588 /* ... Write lower 128bits. */
3589 regcache_raw_write (regcache,
3590 I387_XMM16_REGNUM (tdep) + regnum,
3591 buf);
3592 /* ... Write upper 128bits. */
3593 regcache_raw_write (regcache,
3594 tdep->ymm16h_regnum + regnum,
3595 buf + 16);
3596 }
c131fcee 3597 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3598 {
3599 int gpnum = regnum - tdep->ax_regnum;
3600
3601 /* Read ... */
3602 regcache_raw_read (regcache, gpnum, raw_buf);
3603 /* ... Modify ... (always little endian). */
3604 memcpy (raw_buf, buf, 2);
3605 /* ... Write. */
3606 regcache_raw_write (regcache, gpnum, raw_buf);
3607 }
3608 else if (i386_byte_regnum_p (gdbarch, regnum))
3609 {
1ba53b71
L
3610 int gpnum = regnum - tdep->al_regnum;
3611
3612 /* Read ... We read both lower and upper registers. */
3613 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3614 /* ... Modify ... (always little endian). */
3615 if (gpnum >= 4)
3616 memcpy (raw_buf + 1, buf, 1);
3617 else
3618 memcpy (raw_buf, buf, 1);
3619 /* ... Write. */
3620 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3621 }
3622 else
3623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3624 }
28fc6740 3625}
62e5fd57
MK
3626
3627/* Implement the 'ax_pseudo_register_collect' gdbarch method. */
3628
3629int
3630i386_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3631 struct agent_expr *ax, int regnum)
3632{
3633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3634
3635 if (i386_mmx_regnum_p (gdbarch, regnum))
3636 {
3637 /* MMX to FPU register mapping depends on current TOS. Let's just
3638 not care and collect everything... */
3639 int i;
3640
3641 ax_reg_mask (ax, I387_FSTAT_REGNUM (tdep));
3642 for (i = 0; i < 8; i++)
3643 ax_reg_mask (ax, I387_ST0_REGNUM (tdep) + i);
3644 return 0;
3645 }
3646 else if (i386_bnd_regnum_p (gdbarch, regnum))
3647 {
3648 regnum -= tdep->bnd0_regnum;
3649 ax_reg_mask (ax, I387_BND0R_REGNUM (tdep) + regnum);
3650 return 0;
3651 }
3652 else if (i386_k_regnum_p (gdbarch, regnum))
3653 {
3654 regnum -= tdep->k0_regnum;
3655 ax_reg_mask (ax, tdep->k0_regnum + regnum);
3656 return 0;
3657 }
3658 else if (i386_zmm_regnum_p (gdbarch, regnum))
3659 {
3660 regnum -= tdep->zmm0_regnum;
3661 if (regnum < num_lower_zmm_regs)
3662 {
3663 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3664 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3665 }
3666 else
3667 {
3668 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum
3669 - num_lower_zmm_regs);
3670 ax_reg_mask (ax, I387_YMM16H_REGNUM (tdep) + regnum
3671 - num_lower_zmm_regs);
3672 }
3673 ax_reg_mask (ax, tdep->zmm0h_regnum + regnum);
3674 return 0;
3675 }
3676 else if (i386_ymm_regnum_p (gdbarch, regnum))
3677 {
3678 regnum -= tdep->ymm0_regnum;
3679 ax_reg_mask (ax, I387_XMM0_REGNUM (tdep) + regnum);
3680 ax_reg_mask (ax, tdep->ymm0h_regnum + regnum);
3681 return 0;
3682 }
3683 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3684 {
3685 regnum -= tdep->ymm16_regnum;
3686 ax_reg_mask (ax, I387_XMM16_REGNUM (tdep) + regnum);
3687 ax_reg_mask (ax, tdep->ymm16h_regnum + regnum);
3688 return 0;
3689 }
3690 else if (i386_word_regnum_p (gdbarch, regnum))
3691 {
3692 int gpnum = regnum - tdep->ax_regnum;
3693
3694 ax_reg_mask (ax, gpnum);
3695 return 0;
3696 }
3697 else if (i386_byte_regnum_p (gdbarch, regnum))
3698 {
3699 int gpnum = regnum - tdep->al_regnum;
3700
3701 ax_reg_mask (ax, gpnum % 4);
3702 return 0;
3703 }
3704 else
3705 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3706 return 1;
3707}
ff2e87ac
AC
3708\f
3709
ff2e87ac
AC
3710/* Return the register number of the register allocated by GCC after
3711 REGNUM, or -1 if there is no such register. */
3712
3713static int
3714i386_next_regnum (int regnum)
3715{
3716 /* GCC allocates the registers in the order:
3717
3718 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3719
3720 Since storing a variable in %esp doesn't make any sense we return
3721 -1 for %ebp and for %esp itself. */
3722 static int next_regnum[] =
3723 {
3724 I386_EDX_REGNUM, /* Slot for %eax. */
3725 I386_EBX_REGNUM, /* Slot for %ecx. */
3726 I386_ECX_REGNUM, /* Slot for %edx. */
3727 I386_ESI_REGNUM, /* Slot for %ebx. */
3728 -1, -1, /* Slots for %esp and %ebp. */
3729 I386_EDI_REGNUM, /* Slot for %esi. */
3730 I386_EBP_REGNUM /* Slot for %edi. */
3731 };
3732
de5b9bb9 3733 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3734 return next_regnum[regnum];
28fc6740 3735
ff2e87ac
AC
3736 return -1;
3737}
3738
3739/* Return nonzero if a value of type TYPE stored in register REGNUM
3740 needs any special handling. */
d7a0d72c 3741
3a1e71e3 3742static int
1777feb0
MS
3743i386_convert_register_p (struct gdbarch *gdbarch,
3744 int regnum, struct type *type)
d7a0d72c 3745{
de5b9bb9
MK
3746 int len = TYPE_LENGTH (type);
3747
ff2e87ac
AC
3748 /* Values may be spread across multiple registers. Most debugging
3749 formats aren't expressive enough to specify the locations, so
3750 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3751 have a length that is a multiple of the word size, since GCC
3752 doesn't seem to put any other types into registers. */
3753 if (len > 4 && len % 4 == 0)
3754 {
3755 int last_regnum = regnum;
3756
3757 while (len > 4)
3758 {
3759 last_regnum = i386_next_regnum (last_regnum);
3760 len -= 4;
3761 }
3762
3763 if (last_regnum != -1)
3764 return 1;
3765 }
ff2e87ac 3766
0abe36f5 3767 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3768}
3769
ff2e87ac
AC
3770/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3771 return its contents in TO. */
ac27f131 3772
8dccd430 3773static int
ff2e87ac 3774i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3775 struct type *type, gdb_byte *to,
3776 int *optimizedp, int *unavailablep)
ac27f131 3777{
20a6ec49 3778 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3779 int len = TYPE_LENGTH (type);
de5b9bb9 3780
20a6ec49 3781 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3782 return i387_register_to_value (frame, regnum, type, to,
3783 optimizedp, unavailablep);
ff2e87ac 3784
fd35795f 3785 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3786
3787 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3788
de5b9bb9
MK
3789 while (len > 0)
3790 {
3791 gdb_assert (regnum != -1);
20a6ec49 3792 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3793
8dccd430
PA
3794 if (!get_frame_register_bytes (frame, regnum, 0,
3795 register_size (gdbarch, regnum),
3796 to, optimizedp, unavailablep))
3797 return 0;
3798
de5b9bb9
MK
3799 regnum = i386_next_regnum (regnum);
3800 len -= 4;
42835c2b 3801 to += 4;
de5b9bb9 3802 }
8dccd430
PA
3803
3804 *optimizedp = *unavailablep = 0;
3805 return 1;
ac27f131
MK
3806}
3807
ff2e87ac
AC
3808/* Write the contents FROM of a value of type TYPE into register
3809 REGNUM in frame FRAME. */
ac27f131 3810
3a1e71e3 3811static void
ff2e87ac 3812i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3813 struct type *type, const gdb_byte *from)
ac27f131 3814{
de5b9bb9 3815 int len = TYPE_LENGTH (type);
de5b9bb9 3816
20a6ec49 3817 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3818 {
d532c08f
MK
3819 i387_value_to_register (frame, regnum, type, from);
3820 return;
3821 }
3d261580 3822
fd35795f 3823 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3824
3825 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3826
de5b9bb9
MK
3827 while (len > 0)
3828 {
3829 gdb_assert (regnum != -1);
875f8d0e 3830 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3831
42835c2b 3832 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3833 regnum = i386_next_regnum (regnum);
3834 len -= 4;
42835c2b 3835 from += 4;
de5b9bb9 3836 }
ac27f131 3837}
ff2e87ac 3838\f
7fdafb5a
MK
3839/* Supply register REGNUM from the buffer specified by GREGS and LEN
3840 in the general-purpose register set REGSET to register cache
3841 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3842
20187ed5 3843void
473f17b0
MK
3844i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3845 int regnum, const void *gregs, size_t len)
3846{
09424cff
AA
3847 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3848 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3849 const gdb_byte *regs = (const gdb_byte *) gregs;
473f17b0
MK
3850 int i;
3851
1528345d 3852 gdb_assert (len >= tdep->sizeof_gregset);
473f17b0
MK
3853
3854 for (i = 0; i < tdep->gregset_num_regs; i++)
3855 {
3856 if ((regnum == i || regnum == -1)
3857 && tdep->gregset_reg_offset[i] != -1)
3858 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3859 }
3860}
3861
7fdafb5a
MK
3862/* Collect register REGNUM from the register cache REGCACHE and store
3863 it in the buffer specified by GREGS and LEN as described by the
3864 general-purpose register set REGSET. If REGNUM is -1, do this for
3865 all registers in REGSET. */
3866
ecc37a5a 3867static void
7fdafb5a
MK
3868i386_collect_gregset (const struct regset *regset,
3869 const struct regcache *regcache,
3870 int regnum, void *gregs, size_t len)
3871{
09424cff
AA
3872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3873 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9a3c8263 3874 gdb_byte *regs = (gdb_byte *) gregs;
7fdafb5a
MK
3875 int i;
3876
1528345d 3877 gdb_assert (len >= tdep->sizeof_gregset);
7fdafb5a
MK
3878
3879 for (i = 0; i < tdep->gregset_num_regs; i++)
3880 {
3881 if ((regnum == i || regnum == -1)
3882 && tdep->gregset_reg_offset[i] != -1)
3883 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3884 }
3885}
3886
3887/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3888 in the floating-point register set REGSET to register cache
3889 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3890
3891static void
3892i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3893 int regnum, const void *fpregs, size_t len)
3894{
09424cff
AA
3895 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3896 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3897
66a72d25
MK
3898 if (len == I387_SIZEOF_FXSAVE)
3899 {
3900 i387_supply_fxsave (regcache, regnum, fpregs);
3901 return;
3902 }
3903
1528345d 3904 gdb_assert (len >= tdep->sizeof_fpregset);
473f17b0
MK
3905 i387_supply_fsave (regcache, regnum, fpregs);
3906}
8446b36a 3907
2f305df1
MK
3908/* Collect register REGNUM from the register cache REGCACHE and store
3909 it in the buffer specified by FPREGS and LEN as described by the
3910 floating-point register set REGSET. If REGNUM is -1, do this for
3911 all registers in REGSET. */
7fdafb5a
MK
3912
3913static void
3914i386_collect_fpregset (const struct regset *regset,
3915 const struct regcache *regcache,
3916 int regnum, void *fpregs, size_t len)
3917{
09424cff
AA
3918 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3919 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3920
3921 if (len == I387_SIZEOF_FXSAVE)
3922 {
3923 i387_collect_fxsave (regcache, regnum, fpregs);
3924 return;
3925 }
3926
1528345d 3927 gdb_assert (len >= tdep->sizeof_fpregset);
7fdafb5a
MK
3928 i387_collect_fsave (regcache, regnum, fpregs);
3929}
3930
ecc37a5a
AA
3931/* Register set definitions. */
3932
3933const struct regset i386_gregset =
3934 {
3935 NULL, i386_supply_gregset, i386_collect_gregset
3936 };
3937
8f0435f7 3938const struct regset i386_fpregset =
ecc37a5a
AA
3939 {
3940 NULL, i386_supply_fpregset, i386_collect_fpregset
3941 };
3942
490496c3 3943/* Default iterator over core file register note sections. */
8446b36a 3944
490496c3
AA
3945void
3946i386_iterate_over_regset_sections (struct gdbarch *gdbarch,
3947 iterate_over_regset_sections_cb *cb,
3948 void *cb_data,
3949 const struct regcache *regcache)
8446b36a
MK
3950{
3951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3952
490496c3
AA
3953 cb (".reg", tdep->sizeof_gregset, &i386_gregset, NULL, cb_data);
3954 if (tdep->sizeof_fpregset)
3955 cb (".reg2", tdep->sizeof_fpregset, tdep->fpregset, NULL, cb_data);
8446b36a 3956}
473f17b0 3957\f
fc338970 3958
fc338970 3959/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3960
3961CORE_ADDR
e17a4113
UW
3962i386_pe_skip_trampoline_code (struct frame_info *frame,
3963 CORE_ADDR pc, char *name)
c906108c 3964{
e17a4113
UW
3965 struct gdbarch *gdbarch = get_frame_arch (frame);
3966 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3967
3968 /* jmp *(dest) */
3969 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3970 {
e17a4113
UW
3971 unsigned long indirect =
3972 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3973 struct minimal_symbol *indsym =
7cbd4a93 3974 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3975 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3976
c5aa993b 3977 if (symname)
c906108c 3978 {
61012eef
GB
3979 if (startswith (symname, "__imp_")
3980 || startswith (symname, "_imp_"))
e17a4113
UW
3981 return name ? 1 :
3982 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3983 }
3984 }
fc338970 3985 return 0; /* Not a trampoline. */
c906108c 3986}
fc338970
MK
3987\f
3988
10458914
DJ
3989/* Return whether the THIS_FRAME corresponds to a sigtramp
3990 routine. */
8201327c 3991
4bd207ef 3992int
10458914 3993i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3994{
10458914 3995 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3996 const char *name;
911bc6ee
MK
3997
3998 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3999 return (name && strcmp ("_sigtramp", name) == 0);
4000}
4001\f
4002
fc338970
MK
4003/* We have two flavours of disassembly. The machinery on this page
4004 deals with switching between those. */
c906108c
SS
4005
4006static int
a89aa300 4007i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 4008{
5e3397bb
MK
4009 gdb_assert (disassembly_flavor == att_flavor
4010 || disassembly_flavor == intel_flavor);
4011
f995bbe8 4012 info->disassembler_options = disassembly_flavor;
5e3397bb 4013
6394c606 4014 return default_print_insn (pc, info);
7a292a7a 4015}
fc338970 4016\f
3ce1502b 4017
8201327c
MK
4018/* There are a few i386 architecture variants that differ only
4019 slightly from the generic i386 target. For now, we don't give them
4020 their own source file, but include them here. As a consequence,
4021 they'll always be included. */
3ce1502b 4022
8201327c 4023/* System V Release 4 (SVR4). */
3ce1502b 4024
10458914
DJ
4025/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
4026 routine. */
911bc6ee 4027
8201327c 4028static int
10458914 4029i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 4030{
10458914 4031 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 4032 const char *name;
911bc6ee 4033
05b4bd79 4034 /* The origin of these symbols is currently unknown. */
911bc6ee 4035 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 4036 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
4037 || strcmp ("sigvechandler", name) == 0));
4038}
d2a7c97a 4039
10458914
DJ
4040/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
4041 address of the associated sigcontext (ucontext) structure. */
3ce1502b 4042
3a1e71e3 4043static CORE_ADDR
10458914 4044i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 4045{
e17a4113
UW
4046 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4047 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 4048 gdb_byte buf[4];
acd5c798 4049 CORE_ADDR sp;
3ce1502b 4050
10458914 4051 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 4052 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 4053
e17a4113 4054 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 4055}
55aa24fb
SDJ
4056
4057\f
4058
4059/* Implementation of `gdbarch_stap_is_single_operand', as defined in
4060 gdbarch.h. */
4061
4062int
4063i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
4064{
4065 return (*s == '$' /* Literal number. */
4066 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
4067 || (*s == '(' && s[1] == '%') /* Register indirection. */
4068 || (*s == '%' && isalpha (s[1]))); /* Register access. */
4069}
4070
5acfdbae
SDJ
4071/* Helper function for i386_stap_parse_special_token.
4072
4073 This function parses operands of the form `-8+3+1(%rbp)', which
4074 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
4075
4076 Return 1 if the operand was parsed successfully, zero
4077 otherwise. */
4078
4079static int
4080i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
4081 struct stap_parse_info *p)
4082{
4083 const char *s = p->arg;
4084
4085 if (isdigit (*s) || *s == '-' || *s == '+')
4086 {
4087 int got_minus[3];
4088 int i;
4089 long displacements[3];
4090 const char *start;
4091 char *regname;
4092 int len;
4093 struct stoken str;
4094 char *endp;
4095
4096 got_minus[0] = 0;
4097 if (*s == '+')
4098 ++s;
4099 else if (*s == '-')
4100 {
4101 ++s;
4102 got_minus[0] = 1;
4103 }
4104
d7b30f67
SDJ
4105 if (!isdigit ((unsigned char) *s))
4106 return 0;
4107
5acfdbae
SDJ
4108 displacements[0] = strtol (s, &endp, 10);
4109 s = endp;
4110
4111 if (*s != '+' && *s != '-')
4112 {
4113 /* We are not dealing with a triplet. */
4114 return 0;
4115 }
4116
4117 got_minus[1] = 0;
4118 if (*s == '+')
4119 ++s;
4120 else
4121 {
4122 ++s;
4123 got_minus[1] = 1;
4124 }
4125
d7b30f67
SDJ
4126 if (!isdigit ((unsigned char) *s))
4127 return 0;
4128
5acfdbae
SDJ
4129 displacements[1] = strtol (s, &endp, 10);
4130 s = endp;
4131
4132 if (*s != '+' && *s != '-')
4133 {
4134 /* We are not dealing with a triplet. */
4135 return 0;
4136 }
4137
4138 got_minus[2] = 0;
4139 if (*s == '+')
4140 ++s;
4141 else
4142 {
4143 ++s;
4144 got_minus[2] = 1;
4145 }
4146
d7b30f67
SDJ
4147 if (!isdigit ((unsigned char) *s))
4148 return 0;
4149
5acfdbae
SDJ
4150 displacements[2] = strtol (s, &endp, 10);
4151 s = endp;
4152
4153 if (*s != '(' || s[1] != '%')
4154 return 0;
4155
4156 s += 2;
4157 start = s;
4158
4159 while (isalnum (*s))
4160 ++s;
4161
4162 if (*s++ != ')')
4163 return 0;
4164
d7b30f67 4165 len = s - start - 1;
224c3ddb 4166 regname = (char *) alloca (len + 1);
5acfdbae
SDJ
4167
4168 strncpy (regname, start, len);
4169 regname[len] = '\0';
4170
4171 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4172 error (_("Invalid register name `%s' on expression `%s'."),
4173 regname, p->saved_arg);
4174
4175 for (i = 0; i < 3; i++)
4176 {
410a0ff2
SDJ
4177 write_exp_elt_opcode (&p->pstate, OP_LONG);
4178 write_exp_elt_type
4179 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4180 write_exp_elt_longcst (&p->pstate, displacements[i]);
4181 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4182 if (got_minus[i])
410a0ff2 4183 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4184 }
4185
410a0ff2 4186 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4187 str.ptr = regname;
4188 str.length = len;
410a0ff2
SDJ
4189 write_exp_string (&p->pstate, str);
4190 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4191
410a0ff2
SDJ
4192 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4193 write_exp_elt_type (&p->pstate,
4194 builtin_type (gdbarch)->builtin_data_ptr);
4195 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4196
410a0ff2
SDJ
4197 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4198 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4199 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4200
410a0ff2
SDJ
4201 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4202 write_exp_elt_type (&p->pstate,
4203 lookup_pointer_type (p->arg_type));
4204 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4205
410a0ff2 4206 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4207
4208 p->arg = s;
4209
4210 return 1;
4211 }
4212
4213 return 0;
4214}
4215
4216/* Helper function for i386_stap_parse_special_token.
4217
4218 This function parses operands of the form `register base +
4219 (register index * size) + offset', as represented in
4220 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4221
4222 Return 1 if the operand was parsed successfully, zero
4223 otherwise. */
4224
4225static int
4226i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4227 struct stap_parse_info *p)
4228{
4229 const char *s = p->arg;
4230
4231 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4232 {
4233 int offset_minus = 0;
4234 long offset = 0;
4235 int size_minus = 0;
4236 long size = 0;
4237 const char *start;
4238 char *base;
4239 int len_base;
4240 char *index;
4241 int len_index;
4242 struct stoken base_token, index_token;
4243
4244 if (*s == '+')
4245 ++s;
4246 else if (*s == '-')
4247 {
4248 ++s;
4249 offset_minus = 1;
4250 }
4251
4252 if (offset_minus && !isdigit (*s))
4253 return 0;
4254
4255 if (isdigit (*s))
4256 {
4257 char *endp;
4258
4259 offset = strtol (s, &endp, 10);
4260 s = endp;
4261 }
4262
4263 if (*s != '(' || s[1] != '%')
4264 return 0;
4265
4266 s += 2;
4267 start = s;
4268
4269 while (isalnum (*s))
4270 ++s;
4271
4272 if (*s != ',' || s[1] != '%')
4273 return 0;
4274
4275 len_base = s - start;
224c3ddb 4276 base = (char *) alloca (len_base + 1);
5acfdbae
SDJ
4277 strncpy (base, start, len_base);
4278 base[len_base] = '\0';
4279
4280 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4281 error (_("Invalid register name `%s' on expression `%s'."),
4282 base, p->saved_arg);
4283
4284 s += 2;
4285 start = s;
4286
4287 while (isalnum (*s))
4288 ++s;
4289
4290 len_index = s - start;
224c3ddb 4291 index = (char *) alloca (len_index + 1);
5acfdbae
SDJ
4292 strncpy (index, start, len_index);
4293 index[len_index] = '\0';
4294
4295 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4296 error (_("Invalid register name `%s' on expression `%s'."),
4297 index, p->saved_arg);
4298
4299 if (*s != ',' && *s != ')')
4300 return 0;
4301
4302 if (*s == ',')
4303 {
4304 char *endp;
4305
4306 ++s;
4307 if (*s == '+')
4308 ++s;
4309 else if (*s == '-')
4310 {
4311 ++s;
4312 size_minus = 1;
4313 }
4314
4315 size = strtol (s, &endp, 10);
4316 s = endp;
4317
4318 if (*s != ')')
4319 return 0;
4320 }
4321
4322 ++s;
4323
4324 if (offset)
4325 {
410a0ff2
SDJ
4326 write_exp_elt_opcode (&p->pstate, OP_LONG);
4327 write_exp_elt_type (&p->pstate,
4328 builtin_type (gdbarch)->builtin_long);
4329 write_exp_elt_longcst (&p->pstate, offset);
4330 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4331 if (offset_minus)
410a0ff2 4332 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4333 }
4334
410a0ff2 4335 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4336 base_token.ptr = base;
4337 base_token.length = len_base;
410a0ff2
SDJ
4338 write_exp_string (&p->pstate, base_token);
4339 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4340
4341 if (offset)
410a0ff2 4342 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4343
410a0ff2 4344 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4345 index_token.ptr = index;
4346 index_token.length = len_index;
410a0ff2
SDJ
4347 write_exp_string (&p->pstate, index_token);
4348 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4349
4350 if (size)
4351 {
410a0ff2
SDJ
4352 write_exp_elt_opcode (&p->pstate, OP_LONG);
4353 write_exp_elt_type (&p->pstate,
4354 builtin_type (gdbarch)->builtin_long);
4355 write_exp_elt_longcst (&p->pstate, size);
4356 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4357 if (size_minus)
410a0ff2
SDJ
4358 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4359 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4360 }
4361
410a0ff2 4362 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4363
410a0ff2
SDJ
4364 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4365 write_exp_elt_type (&p->pstate,
4366 lookup_pointer_type (p->arg_type));
4367 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4368
410a0ff2 4369 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4370
4371 p->arg = s;
4372
4373 return 1;
4374 }
4375
4376 return 0;
4377}
4378
55aa24fb
SDJ
4379/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4380 gdbarch.h. */
4381
4382int
4383i386_stap_parse_special_token (struct gdbarch *gdbarch,
4384 struct stap_parse_info *p)
4385{
55aa24fb
SDJ
4386 /* In order to parse special tokens, we use a state-machine that go
4387 through every known token and try to get a match. */
4388 enum
4389 {
4390 TRIPLET,
4391 THREE_ARG_DISPLACEMENT,
4392 DONE
570dc176
TT
4393 };
4394 int current_state;
55aa24fb
SDJ
4395
4396 current_state = TRIPLET;
4397
4398 /* The special tokens to be parsed here are:
4399
4400 - `register base + (register index * size) + offset', as represented
4401 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4402
4403 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4404 `*(-8 + 3 - 1 + (void *) $eax)'. */
4405
4406 while (current_state != DONE)
4407 {
55aa24fb
SDJ
4408 switch (current_state)
4409 {
4410 case TRIPLET:
5acfdbae
SDJ
4411 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4412 return 1;
4413 break;
4414
55aa24fb 4415 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4416 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4417 return 1;
4418 break;
55aa24fb
SDJ
4419 }
4420
4421 /* Advancing to the next state. */
4422 ++current_state;
4423 }
4424
4425 return 0;
4426}
4427
8201327c 4428\f
3ce1502b 4429
ac04f72b
TT
4430/* gdbarch gnu_triplet_regexp method. Both arches are acceptable as GDB always
4431 also supplies -m64 or -m32 by gdbarch_gcc_target_options. */
4432
4433static const char *
4434i386_gnu_triplet_regexp (struct gdbarch *gdbarch)
4435{
4436 return "(x86_64|i.86)";
4437}
4438
4439\f
4440
8201327c 4441/* Generic ELF. */
d2a7c97a 4442
8201327c
MK
4443void
4444i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4445{
05c0465e
SDJ
4446 static const char *const stap_integer_prefixes[] = { "$", NULL };
4447 static const char *const stap_register_prefixes[] = { "%", NULL };
4448 static const char *const stap_register_indirection_prefixes[] = { "(",
4449 NULL };
4450 static const char *const stap_register_indirection_suffixes[] = { ")",
4451 NULL };
4452
c4fc7f1b
MK
4453 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4454 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4455
4456 /* Registering SystemTap handlers. */
05c0465e
SDJ
4457 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4458 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4459 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4460 stap_register_indirection_prefixes);
4461 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4462 stap_register_indirection_suffixes);
55aa24fb
SDJ
4463 set_gdbarch_stap_is_single_operand (gdbarch,
4464 i386_stap_is_single_operand);
4465 set_gdbarch_stap_parse_special_token (gdbarch,
4466 i386_stap_parse_special_token);
8201327c 4467}
3ce1502b 4468
8201327c 4469/* System V Release 4 (SVR4). */
3ce1502b 4470
8201327c
MK
4471void
4472i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4473{
4474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4475
8201327c
MK
4476 /* System V Release 4 uses ELF. */
4477 i386_elf_init_abi (info, gdbarch);
3ce1502b 4478
dfe01d39 4479 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4480 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4481
911bc6ee 4482 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4483 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4484 tdep->sc_pc_offset = 36 + 14 * 4;
4485 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4486
8201327c 4487 tdep->jb_pc_offset = 20;
3ce1502b
MK
4488}
4489
8201327c 4490\f
2acceee2 4491
38c968cf
AC
4492/* i386 register groups. In addition to the normal groups, add "mmx"
4493 and "sse". */
4494
4495static struct reggroup *i386_sse_reggroup;
4496static struct reggroup *i386_mmx_reggroup;
4497
4498static void
4499i386_init_reggroups (void)
4500{
4501 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4502 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4503}
4504
4505static void
4506i386_add_reggroups (struct gdbarch *gdbarch)
4507{
4508 reggroup_add (gdbarch, i386_sse_reggroup);
4509 reggroup_add (gdbarch, i386_mmx_reggroup);
4510 reggroup_add (gdbarch, general_reggroup);
4511 reggroup_add (gdbarch, float_reggroup);
4512 reggroup_add (gdbarch, all_reggroup);
4513 reggroup_add (gdbarch, save_reggroup);
4514 reggroup_add (gdbarch, restore_reggroup);
4515 reggroup_add (gdbarch, vector_reggroup);
4516 reggroup_add (gdbarch, system_reggroup);
4517}
4518
4519int
4520i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4521 struct reggroup *group)
4522{
c131fcee
L
4523 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4524 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4525 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4526 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4527 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
51547df6 4528 avx512_p, avx_p, sse_p, pkru_regnum_p;
acd5c798 4529
1ba53b71
L
4530 /* Don't include pseudo registers, except for MMX, in any register
4531 groups. */
c131fcee 4532 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4533 return 0;
4534
c131fcee 4535 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4536 return 0;
4537
c131fcee 4538 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4539 return 0;
4540
4541 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4542 if (group == i386_mmx_reggroup)
4543 return mmx_regnum_p;
1ba53b71 4544
51547df6 4545 pkru_regnum_p = i386_pkru_regnum_p(gdbarch, regnum);
c131fcee 4546 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4547 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4548 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4549 if (group == i386_sse_reggroup)
01f9f808 4550 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4551
4552 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4553 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4554 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4555
22049425
MS
4556 avx512_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
4557 == X86_XSTATE_AVX_AVX512_MASK);
4558 avx_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4559 == X86_XSTATE_AVX_MASK) && !avx512_p;
22049425 4560 sse_p = ((tdep->xcr0 & X86_XSTATE_AVX_AVX512_MASK)
df7e5265 4561 == X86_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
01f9f808 4562
38c968cf 4563 if (group == vector_reggroup)
c131fcee 4564 return (mmx_regnum_p
01f9f808
MS
4565 || (zmm_regnum_p && avx512_p)
4566 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4567 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4568 || mxcsr_regnum_p);
1ba53b71
L
4569
4570 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4571 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4572 if (group == float_reggroup)
4573 return fp_regnum_p;
1ba53b71 4574
c131fcee
L
4575 /* For "info reg all", don't include upper YMM registers nor XMM
4576 registers when AVX is supported. */
4577 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4578 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4579 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4580 if (group == all_reggroup
01f9f808
MS
4581 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4582 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4583 || ymmh_regnum_p
4584 || ymmh_avx512_regnum_p
4585 || zmmh_regnum_p))
c131fcee
L
4586 return 0;
4587
1dbcd68c
WT
4588 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4589 if (group == all_reggroup
df7e5265 4590 && ((bnd_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4591 return bnd_regnum_p;
4592
4593 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4594 if (group == all_reggroup
df7e5265 4595 && ((bndr_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4596 return 0;
4597
4598 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4599 if (group == all_reggroup
df7e5265 4600 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & X86_XSTATE_MPX_MASK))))
1dbcd68c
WT
4601 return mpx_ctrl_regnum_p;
4602
38c968cf 4603 if (group == general_reggroup)
1ba53b71
L
4604 return (!fp_regnum_p
4605 && !mmx_regnum_p
c131fcee
L
4606 && !mxcsr_regnum_p
4607 && !xmm_regnum_p
01f9f808 4608 && !xmm_avx512_regnum_p
c131fcee 4609 && !ymm_regnum_p
1dbcd68c 4610 && !ymmh_regnum_p
01f9f808
MS
4611 && !ymm_avx512_regnum_p
4612 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4613 && !bndr_regnum_p
4614 && !bnd_regnum_p
01f9f808
MS
4615 && !mpx_ctrl_regnum_p
4616 && !zmm_regnum_p
51547df6
MS
4617 && !zmmh_regnum_p
4618 && !pkru_regnum_p);
acd5c798 4619
38c968cf
AC
4620 return default_register_reggroup_p (gdbarch, regnum, group);
4621}
38c968cf 4622\f
acd5c798 4623
f837910f
MK
4624/* Get the ARGIth function argument for the current function. */
4625
42c466d7 4626static CORE_ADDR
143985b7
AF
4627i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4628 struct type *type)
4629{
e17a4113
UW
4630 struct gdbarch *gdbarch = get_frame_arch (frame);
4631 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4632 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4633 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4634}
4635
7ad10968
HZ
4636#define PREFIX_REPZ 0x01
4637#define PREFIX_REPNZ 0x02
4638#define PREFIX_LOCK 0x04
4639#define PREFIX_DATA 0x08
4640#define PREFIX_ADDR 0x10
473f17b0 4641
7ad10968
HZ
4642/* operand size */
4643enum
4644{
4645 OT_BYTE = 0,
4646 OT_WORD,
4647 OT_LONG,
cf648174 4648 OT_QUAD,
a3c4230a 4649 OT_DQUAD,
7ad10968 4650};
473f17b0 4651
7ad10968
HZ
4652/* i386 arith/logic operations */
4653enum
4654{
4655 OP_ADDL,
4656 OP_ORL,
4657 OP_ADCL,
4658 OP_SBBL,
4659 OP_ANDL,
4660 OP_SUBL,
4661 OP_XORL,
4662 OP_CMPL,
4663};
5716833c 4664
7ad10968
HZ
4665struct i386_record_s
4666{
cf648174 4667 struct gdbarch *gdbarch;
7ad10968 4668 struct regcache *regcache;
df61f520 4669 CORE_ADDR orig_addr;
7ad10968
HZ
4670 CORE_ADDR addr;
4671 int aflag;
4672 int dflag;
4673 int override;
4674 uint8_t modrm;
4675 uint8_t mod, reg, rm;
4676 int ot;
cf648174
HZ
4677 uint8_t rex_x;
4678 uint8_t rex_b;
4679 int rip_offset;
4680 int popl_esp_hack;
4681 const int *regmap;
7ad10968 4682};
5716833c 4683
99c1624c
PA
4684/* Parse the "modrm" part of the memory address irp->addr points at.
4685 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4686
7ad10968
HZ
4687static int
4688i386_record_modrm (struct i386_record_s *irp)
4689{
cf648174 4690 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4691
4ffa4fc7
PA
4692 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4693 return -1;
4694
7ad10968
HZ
4695 irp->addr++;
4696 irp->mod = (irp->modrm >> 6) & 3;
4697 irp->reg = (irp->modrm >> 3) & 7;
4698 irp->rm = irp->modrm & 7;
5716833c 4699
7ad10968
HZ
4700 return 0;
4701}
d2a7c97a 4702
99c1624c
PA
4703/* Extract the memory address that the current instruction writes to,
4704 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4705
7ad10968 4706static int
cf648174 4707i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4708{
cf648174 4709 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4710 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4711 gdb_byte buf[4];
4712 ULONGEST offset64;
21d0e8a4 4713
7ad10968 4714 *addr = 0;
1e87984a 4715 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4716 {
1e87984a 4717 /* 32/64 bits */
7ad10968
HZ
4718 int havesib = 0;
4719 uint8_t scale = 0;
648d0c8b 4720 uint8_t byte;
7ad10968
HZ
4721 uint8_t index = 0;
4722 uint8_t base = irp->rm;
896fb97d 4723
7ad10968
HZ
4724 if (base == 4)
4725 {
4726 havesib = 1;
4ffa4fc7
PA
4727 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4728 return -1;
7ad10968 4729 irp->addr++;
648d0c8b
MS
4730 scale = (byte >> 6) & 3;
4731 index = ((byte >> 3) & 7) | irp->rex_x;
4732 base = (byte & 7);
7ad10968 4733 }
cf648174 4734 base |= irp->rex_b;
21d0e8a4 4735
7ad10968
HZ
4736 switch (irp->mod)
4737 {
4738 case 0:
4739 if ((base & 7) == 5)
4740 {
4741 base = 0xff;
4ffa4fc7
PA
4742 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4743 return -1;
7ad10968 4744 irp->addr += 4;
60a1502a 4745 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4746 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4747 *addr += irp->addr + irp->rip_offset;
7ad10968 4748 }
7ad10968
HZ
4749 break;
4750 case 1:
4ffa4fc7
PA
4751 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4752 return -1;
7ad10968 4753 irp->addr++;
60a1502a 4754 *addr = (int8_t) buf[0];
7ad10968
HZ
4755 break;
4756 case 2:
4ffa4fc7
PA
4757 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4758 return -1;
60a1502a 4759 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4760 irp->addr += 4;
4761 break;
4762 }
356a6b3e 4763
60a1502a 4764 offset64 = 0;
7ad10968 4765 if (base != 0xff)
cf648174
HZ
4766 {
4767 if (base == 4 && irp->popl_esp_hack)
4768 *addr += irp->popl_esp_hack;
4769 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4770 &offset64);
7ad10968 4771 }
cf648174
HZ
4772 if (irp->aflag == 2)
4773 {
60a1502a 4774 *addr += offset64;
cf648174
HZ
4775 }
4776 else
60a1502a 4777 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4778
7ad10968
HZ
4779 if (havesib && (index != 4 || scale != 0))
4780 {
cf648174 4781 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4782 &offset64);
cf648174 4783 if (irp->aflag == 2)
60a1502a 4784 *addr += offset64 << scale;
cf648174 4785 else
60a1502a 4786 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4787 }
e85596e0
L
4788
4789 if (!irp->aflag)
4790 {
4791 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4792 address from 32-bit to 64-bit. */
4793 *addr = (uint32_t) *addr;
4794 }
7ad10968
HZ
4795 }
4796 else
4797 {
4798 /* 16 bits */
4799 switch (irp->mod)
4800 {
4801 case 0:
4802 if (irp->rm == 6)
4803 {
4ffa4fc7
PA
4804 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4805 return -1;
7ad10968 4806 irp->addr += 2;
60a1502a 4807 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4808 irp->rm = 0;
4809 goto no_rm;
4810 }
7ad10968
HZ
4811 break;
4812 case 1:
4ffa4fc7
PA
4813 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4814 return -1;
7ad10968 4815 irp->addr++;
60a1502a 4816 *addr = (int8_t) buf[0];
7ad10968
HZ
4817 break;
4818 case 2:
4ffa4fc7
PA
4819 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4820 return -1;
7ad10968 4821 irp->addr += 2;
60a1502a 4822 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4823 break;
4824 }
c4fc7f1b 4825
7ad10968
HZ
4826 switch (irp->rm)
4827 {
4828 case 0:
cf648174
HZ
4829 regcache_raw_read_unsigned (irp->regcache,
4830 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4831 &offset64);
4832 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4833 regcache_raw_read_unsigned (irp->regcache,
4834 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4835 &offset64);
4836 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4837 break;
4838 case 1:
cf648174
HZ
4839 regcache_raw_read_unsigned (irp->regcache,
4840 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4841 &offset64);
4842 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4843 regcache_raw_read_unsigned (irp->regcache,
4844 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4845 &offset64);
4846 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4847 break;
4848 case 2:
cf648174
HZ
4849 regcache_raw_read_unsigned (irp->regcache,
4850 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4851 &offset64);
4852 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4853 regcache_raw_read_unsigned (irp->regcache,
4854 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4855 &offset64);
4856 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4857 break;
4858 case 3:
cf648174
HZ
4859 regcache_raw_read_unsigned (irp->regcache,
4860 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4861 &offset64);
4862 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4863 regcache_raw_read_unsigned (irp->regcache,
4864 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4865 &offset64);
4866 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4867 break;
4868 case 4:
cf648174
HZ
4869 regcache_raw_read_unsigned (irp->regcache,
4870 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4871 &offset64);
4872 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4873 break;
4874 case 5:
cf648174
HZ
4875 regcache_raw_read_unsigned (irp->regcache,
4876 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4877 &offset64);
4878 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4879 break;
4880 case 6:
cf648174
HZ
4881 regcache_raw_read_unsigned (irp->regcache,
4882 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4883 &offset64);
4884 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4885 break;
4886 case 7:
cf648174
HZ
4887 regcache_raw_read_unsigned (irp->regcache,
4888 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4889 &offset64);
4890 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4891 break;
4892 }
4893 *addr &= 0xffff;
4894 }
c4fc7f1b 4895
01fe1b41 4896 no_rm:
7ad10968
HZ
4897 return 0;
4898}
c4fc7f1b 4899
99c1624c
PA
4900/* Record the address and contents of the memory that will be changed
4901 by the current instruction. Return -1 if something goes wrong, 0
4902 otherwise. */
356a6b3e 4903
7ad10968
HZ
4904static int
4905i386_record_lea_modrm (struct i386_record_s *irp)
4906{
cf648174
HZ
4907 struct gdbarch *gdbarch = irp->gdbarch;
4908 uint64_t addr;
356a6b3e 4909
d7877f7e 4910 if (irp->override >= 0)
7ad10968 4911 {
25ea693b 4912 if (record_full_memory_query)
bb08c432 4913 {
651ce16a 4914 if (yquery (_("\
bb08c432
HZ
4915Process record ignores the memory change of instruction at address %s\n\
4916because it can't get the value of the segment register.\n\
4917Do you want to stop the program?"),
651ce16a
PA
4918 paddress (gdbarch, irp->orig_addr)))
4919 return -1;
bb08c432
HZ
4920 }
4921
7ad10968
HZ
4922 return 0;
4923 }
61113f8b 4924
7ad10968
HZ
4925 if (i386_record_lea_modrm_addr (irp, &addr))
4926 return -1;
96297dab 4927
25ea693b 4928 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4929 return -1;
a62cc96e 4930
7ad10968
HZ
4931 return 0;
4932}
b6197528 4933
99c1624c
PA
4934/* Record the effects of a push operation. Return -1 if something
4935 goes wrong, 0 otherwise. */
cf648174
HZ
4936
4937static int
4938i386_record_push (struct i386_record_s *irp, int size)
4939{
648d0c8b 4940 ULONGEST addr;
cf648174 4941
25ea693b
MM
4942 if (record_full_arch_list_add_reg (irp->regcache,
4943 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4944 return -1;
4945 regcache_raw_read_unsigned (irp->regcache,
4946 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4947 &addr);
25ea693b 4948 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4949 return -1;
4950
4951 return 0;
4952}
4953
0289bdd7
MS
4954
4955/* Defines contents to record. */
4956#define I386_SAVE_FPU_REGS 0xfffd
4957#define I386_SAVE_FPU_ENV 0xfffe
4958#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4959
99c1624c
PA
4960/* Record the values of the floating point registers which will be
4961 changed by the current instruction. Returns -1 if something is
4962 wrong, 0 otherwise. */
0289bdd7
MS
4963
4964static int i386_record_floats (struct gdbarch *gdbarch,
4965 struct i386_record_s *ir,
4966 uint32_t iregnum)
4967{
4968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4969 int i;
4970
4971 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4972 happen. Currently we store st0-st7 registers, but we need not store all
4973 registers all the time, in future we use ftag register and record only
4974 those who are not marked as an empty. */
4975
4976 if (I386_SAVE_FPU_REGS == iregnum)
4977 {
4978 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4979 {
25ea693b 4980 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4981 return -1;
4982 }
4983 }
4984 else if (I386_SAVE_FPU_ENV == iregnum)
4985 {
4986 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4987 {
25ea693b 4988 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4989 return -1;
4990 }
4991 }
4992 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4993 {
4994 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4995 {
25ea693b 4996 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4997 return -1;
4998 }
4999 }
5000 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
5001 (iregnum <= I387_FOP_REGNUM (tdep)))
5002 {
25ea693b 5003 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
5004 return -1;
5005 }
5006 else
5007 {
5008 /* Parameter error. */
5009 return -1;
5010 }
5011 if(I386_SAVE_FPU_ENV != iregnum)
5012 {
5013 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
5014 {
25ea693b 5015 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
5016 return -1;
5017 }
5018 }
5019 return 0;
5020}
5021
99c1624c
PA
5022/* Parse the current instruction, and record the values of the
5023 registers and memory that will be changed by the current
5024 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 5025
25ea693b
MM
5026#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
5027 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 5028
a6b808b4 5029int
7ad10968 5030i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 5031 CORE_ADDR input_addr)
7ad10968 5032{
60a1502a 5033 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 5034 int prefixes = 0;
580879fc 5035 int regnum = 0;
425b824a 5036 uint32_t opcode;
f4644a3f 5037 uint8_t opcode8;
648d0c8b 5038 ULONGEST addr;
975c21ab 5039 gdb_byte buf[I386_MAX_REGISTER_SIZE];
7ad10968 5040 struct i386_record_s ir;
0289bdd7 5041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
5042 uint8_t rex_w = -1;
5043 uint8_t rex_r = 0;
7ad10968 5044
8408d274 5045 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 5046 ir.regcache = regcache;
648d0c8b
MS
5047 ir.addr = input_addr;
5048 ir.orig_addr = input_addr;
7ad10968
HZ
5049 ir.aflag = 1;
5050 ir.dflag = 1;
cf648174
HZ
5051 ir.override = -1;
5052 ir.popl_esp_hack = 0;
a3c4230a 5053 ir.regmap = tdep->record_regmap;
cf648174 5054 ir.gdbarch = gdbarch;
7ad10968
HZ
5055
5056 if (record_debug > 1)
5057 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
5058 "addr = %s\n",
5059 paddress (gdbarch, ir.addr));
7ad10968
HZ
5060
5061 /* prefixes */
5062 while (1)
5063 {
4ffa4fc7
PA
5064 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5065 return -1;
7ad10968 5066 ir.addr++;
425b824a 5067 switch (opcode8) /* Instruction prefixes */
7ad10968 5068 {
01fe1b41 5069 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5070 prefixes |= PREFIX_REPZ;
5071 break;
01fe1b41 5072 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5073 prefixes |= PREFIX_REPNZ;
5074 break;
01fe1b41 5075 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5076 prefixes |= PREFIX_LOCK;
5077 break;
01fe1b41 5078 case CS_PREFIX_OPCODE:
cf648174 5079 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5080 break;
01fe1b41 5081 case SS_PREFIX_OPCODE:
cf648174 5082 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5083 break;
01fe1b41 5084 case DS_PREFIX_OPCODE:
cf648174 5085 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5086 break;
01fe1b41 5087 case ES_PREFIX_OPCODE:
cf648174 5088 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5089 break;
01fe1b41 5090 case FS_PREFIX_OPCODE:
cf648174 5091 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5092 break;
01fe1b41 5093 case GS_PREFIX_OPCODE:
cf648174 5094 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5095 break;
01fe1b41 5096 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5097 prefixes |= PREFIX_DATA;
5098 break;
01fe1b41 5099 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5100 prefixes |= PREFIX_ADDR;
5101 break;
d691bec7
MS
5102 case 0x40: /* i386 inc %eax */
5103 case 0x41: /* i386 inc %ecx */
5104 case 0x42: /* i386 inc %edx */
5105 case 0x43: /* i386 inc %ebx */
5106 case 0x44: /* i386 inc %esp */
5107 case 0x45: /* i386 inc %ebp */
5108 case 0x46: /* i386 inc %esi */
5109 case 0x47: /* i386 inc %edi */
5110 case 0x48: /* i386 dec %eax */
5111 case 0x49: /* i386 dec %ecx */
5112 case 0x4a: /* i386 dec %edx */
5113 case 0x4b: /* i386 dec %ebx */
5114 case 0x4c: /* i386 dec %esp */
5115 case 0x4d: /* i386 dec %ebp */
5116 case 0x4e: /* i386 dec %esi */
5117 case 0x4f: /* i386 dec %edi */
5118 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5119 {
5120 /* REX */
425b824a
MS
5121 rex_w = (opcode8 >> 3) & 1;
5122 rex_r = (opcode8 & 0x4) << 1;
5123 ir.rex_x = (opcode8 & 0x2) << 2;
5124 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5125 }
d691bec7
MS
5126 else /* 32 bit target */
5127 goto out_prefixes;
cf648174 5128 break;
7ad10968
HZ
5129 default:
5130 goto out_prefixes;
5131 break;
5132 }
5133 }
01fe1b41 5134 out_prefixes:
cf648174
HZ
5135 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5136 {
5137 ir.dflag = 2;
5138 }
5139 else
5140 {
5141 if (prefixes & PREFIX_DATA)
5142 ir.dflag ^= 1;
5143 }
7ad10968
HZ
5144 if (prefixes & PREFIX_ADDR)
5145 ir.aflag ^= 1;
cf648174
HZ
5146 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5147 ir.aflag = 2;
7ad10968 5148
1777feb0 5149 /* Now check op code. */
425b824a 5150 opcode = (uint32_t) opcode8;
01fe1b41 5151 reswitch:
7ad10968
HZ
5152 switch (opcode)
5153 {
5154 case 0x0f:
4ffa4fc7
PA
5155 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5156 return -1;
7ad10968 5157 ir.addr++;
a3c4230a 5158 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5159 goto reswitch;
5160 break;
93924b6b 5161
a38bba38 5162 case 0x00: /* arith & logic */
7ad10968
HZ
5163 case 0x01:
5164 case 0x02:
5165 case 0x03:
5166 case 0x04:
5167 case 0x05:
5168 case 0x08:
5169 case 0x09:
5170 case 0x0a:
5171 case 0x0b:
5172 case 0x0c:
5173 case 0x0d:
5174 case 0x10:
5175 case 0x11:
5176 case 0x12:
5177 case 0x13:
5178 case 0x14:
5179 case 0x15:
5180 case 0x18:
5181 case 0x19:
5182 case 0x1a:
5183 case 0x1b:
5184 case 0x1c:
5185 case 0x1d:
5186 case 0x20:
5187 case 0x21:
5188 case 0x22:
5189 case 0x23:
5190 case 0x24:
5191 case 0x25:
5192 case 0x28:
5193 case 0x29:
5194 case 0x2a:
5195 case 0x2b:
5196 case 0x2c:
5197 case 0x2d:
5198 case 0x30:
5199 case 0x31:
5200 case 0x32:
5201 case 0x33:
5202 case 0x34:
5203 case 0x35:
5204 case 0x38:
5205 case 0x39:
5206 case 0x3a:
5207 case 0x3b:
5208 case 0x3c:
5209 case 0x3d:
5210 if (((opcode >> 3) & 7) != OP_CMPL)
5211 {
5212 if ((opcode & 1) == 0)
5213 ir.ot = OT_BYTE;
5214 else
5215 ir.ot = ir.dflag + OT_WORD;
93924b6b 5216
7ad10968
HZ
5217 switch ((opcode >> 1) & 3)
5218 {
a38bba38 5219 case 0: /* OP Ev, Gv */
7ad10968
HZ
5220 if (i386_record_modrm (&ir))
5221 return -1;
5222 if (ir.mod != 3)
5223 {
5224 if (i386_record_lea_modrm (&ir))
5225 return -1;
5226 }
5227 else
5228 {
cf648174
HZ
5229 ir.rm |= ir.rex_b;
5230 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5231 ir.rm &= 0x3;
25ea693b 5232 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5233 }
5234 break;
a38bba38 5235 case 1: /* OP Gv, Ev */
7ad10968
HZ
5236 if (i386_record_modrm (&ir))
5237 return -1;
cf648174
HZ
5238 ir.reg |= rex_r;
5239 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5240 ir.reg &= 0x3;
25ea693b 5241 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5242 break;
a38bba38 5243 case 2: /* OP A, Iv */
25ea693b 5244 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5245 break;
5246 }
5247 }
25ea693b 5248 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5249 break;
42fdc8df 5250
a38bba38 5251 case 0x80: /* GRP1 */
7ad10968
HZ
5252 case 0x81:
5253 case 0x82:
5254 case 0x83:
5255 if (i386_record_modrm (&ir))
5256 return -1;
8201327c 5257
7ad10968
HZ
5258 if (ir.reg != OP_CMPL)
5259 {
5260 if ((opcode & 1) == 0)
5261 ir.ot = OT_BYTE;
5262 else
5263 ir.ot = ir.dflag + OT_WORD;
28fc6740 5264
7ad10968
HZ
5265 if (ir.mod != 3)
5266 {
cf648174
HZ
5267 if (opcode == 0x83)
5268 ir.rip_offset = 1;
5269 else
5270 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5271 if (i386_record_lea_modrm (&ir))
5272 return -1;
5273 }
5274 else
25ea693b 5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5276 }
25ea693b 5277 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5278 break;
5e3397bb 5279
a38bba38 5280 case 0x40: /* inc */
7ad10968
HZ
5281 case 0x41:
5282 case 0x42:
5283 case 0x43:
5284 case 0x44:
5285 case 0x45:
5286 case 0x46:
5287 case 0x47:
a38bba38
MS
5288
5289 case 0x48: /* dec */
7ad10968
HZ
5290 case 0x49:
5291 case 0x4a:
5292 case 0x4b:
5293 case 0x4c:
5294 case 0x4d:
5295 case 0x4e:
5296 case 0x4f:
a38bba38 5297
25ea693b
MM
5298 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5299 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5300 break;
acd5c798 5301
a38bba38 5302 case 0xf6: /* GRP3 */
7ad10968
HZ
5303 case 0xf7:
5304 if ((opcode & 1) == 0)
5305 ir.ot = OT_BYTE;
5306 else
5307 ir.ot = ir.dflag + OT_WORD;
5308 if (i386_record_modrm (&ir))
5309 return -1;
acd5c798 5310
cf648174
HZ
5311 if (ir.mod != 3 && ir.reg == 0)
5312 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5313
7ad10968
HZ
5314 switch (ir.reg)
5315 {
a38bba38 5316 case 0: /* test */
25ea693b 5317 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5318 break;
a38bba38
MS
5319 case 2: /* not */
5320 case 3: /* neg */
7ad10968
HZ
5321 if (ir.mod != 3)
5322 {
5323 if (i386_record_lea_modrm (&ir))
5324 return -1;
5325 }
5326 else
5327 {
cf648174
HZ
5328 ir.rm |= ir.rex_b;
5329 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5330 ir.rm &= 0x3;
25ea693b 5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5332 }
a38bba38 5333 if (ir.reg == 3) /* neg */
25ea693b 5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5335 break;
a38bba38
MS
5336 case 4: /* mul */
5337 case 5: /* imul */
5338 case 6: /* div */
5339 case 7: /* idiv */
25ea693b 5340 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5341 if (ir.ot != OT_BYTE)
25ea693b
MM
5342 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5343 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5344 break;
5345 default:
5346 ir.addr -= 2;
5347 opcode = opcode << 8 | ir.modrm;
5348 goto no_support;
5349 break;
5350 }
5351 break;
5352
a38bba38
MS
5353 case 0xfe: /* GRP4 */
5354 case 0xff: /* GRP5 */
7ad10968
HZ
5355 if (i386_record_modrm (&ir))
5356 return -1;
5357 if (ir.reg >= 2 && opcode == 0xfe)
5358 {
5359 ir.addr -= 2;
5360 opcode = opcode << 8 | ir.modrm;
5361 goto no_support;
5362 }
7ad10968
HZ
5363 switch (ir.reg)
5364 {
a38bba38
MS
5365 case 0: /* inc */
5366 case 1: /* dec */
cf648174
HZ
5367 if ((opcode & 1) == 0)
5368 ir.ot = OT_BYTE;
5369 else
5370 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5371 if (ir.mod != 3)
5372 {
5373 if (i386_record_lea_modrm (&ir))
5374 return -1;
5375 }
5376 else
5377 {
cf648174
HZ
5378 ir.rm |= ir.rex_b;
5379 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5380 ir.rm &= 0x3;
25ea693b 5381 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5382 }
25ea693b 5383 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5384 break;
a38bba38 5385 case 2: /* call */
cf648174
HZ
5386 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5387 ir.dflag = 2;
5388 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5389 return -1;
25ea693b 5390 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5391 break;
a38bba38 5392 case 3: /* lcall */
25ea693b 5393 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5394 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5395 return -1;
25ea693b 5396 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5397 break;
a38bba38
MS
5398 case 4: /* jmp */
5399 case 5: /* ljmp */
25ea693b 5400 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5401 break;
a38bba38 5402 case 6: /* push */
cf648174
HZ
5403 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5404 ir.dflag = 2;
5405 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5406 return -1;
7ad10968
HZ
5407 break;
5408 default:
5409 ir.addr -= 2;
5410 opcode = opcode << 8 | ir.modrm;
5411 goto no_support;
5412 break;
5413 }
5414 break;
5415
a38bba38 5416 case 0x84: /* test */
7ad10968
HZ
5417 case 0x85:
5418 case 0xa8:
5419 case 0xa9:
25ea693b 5420 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5421 break;
5422
a38bba38 5423 case 0x98: /* CWDE/CBW */
25ea693b 5424 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5425 break;
5426
a38bba38 5427 case 0x99: /* CDQ/CWD */
25ea693b
MM
5428 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5429 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5430 break;
5431
a38bba38 5432 case 0x0faf: /* imul */
7ad10968
HZ
5433 case 0x69:
5434 case 0x6b:
5435 ir.ot = ir.dflag + OT_WORD;
5436 if (i386_record_modrm (&ir))
5437 return -1;
cf648174
HZ
5438 if (opcode == 0x69)
5439 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5440 else if (opcode == 0x6b)
5441 ir.rip_offset = 1;
5442 ir.reg |= rex_r;
5443 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5444 ir.reg &= 0x3;
25ea693b
MM
5445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5447 break;
5448
a38bba38 5449 case 0x0fc0: /* xadd */
7ad10968
HZ
5450 case 0x0fc1:
5451 if ((opcode & 1) == 0)
5452 ir.ot = OT_BYTE;
5453 else
5454 ir.ot = ir.dflag + OT_WORD;
5455 if (i386_record_modrm (&ir))
5456 return -1;
cf648174 5457 ir.reg |= rex_r;
7ad10968
HZ
5458 if (ir.mod == 3)
5459 {
cf648174 5460 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5461 ir.reg &= 0x3;
25ea693b 5462 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5463 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5464 ir.rm &= 0x3;
25ea693b 5465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5466 }
5467 else
5468 {
5469 if (i386_record_lea_modrm (&ir))
5470 return -1;
cf648174 5471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5472 ir.reg &= 0x3;
25ea693b 5473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5474 }
25ea693b 5475 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5476 break;
5477
a38bba38 5478 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5479 case 0x0fb1:
5480 if ((opcode & 1) == 0)
5481 ir.ot = OT_BYTE;
5482 else
5483 ir.ot = ir.dflag + OT_WORD;
5484 if (i386_record_modrm (&ir))
5485 return -1;
5486 if (ir.mod == 3)
5487 {
cf648174 5488 ir.reg |= rex_r;
25ea693b 5489 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5490 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5491 ir.reg &= 0x3;
25ea693b 5492 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5493 }
5494 else
5495 {
25ea693b 5496 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5497 if (i386_record_lea_modrm (&ir))
5498 return -1;
5499 }
25ea693b 5500 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5501 break;
5502
20b477a7 5503 case 0x0fc7: /* cmpxchg8b / rdrand / rdseed */
7ad10968
HZ
5504 if (i386_record_modrm (&ir))
5505 return -1;
5506 if (ir.mod == 3)
5507 {
20b477a7
LM
5508 /* rdrand and rdseed use the 3 bits of the REG field of ModR/M as
5509 an extended opcode. rdrand has bits 110 (/6) and rdseed
5510 has bits 111 (/7). */
5511 if (ir.reg == 6 || ir.reg == 7)
5512 {
5513 /* The storage register is described by the 3 R/M bits, but the
5514 REX.B prefix may be used to give access to registers
5515 R8~R15. In this case ir.rex_b + R/M will give us the register
5516 in the range R8~R15.
5517
5518 REX.W may also be used to access 64-bit registers, but we
5519 already record entire registers and not just partial bits
5520 of them. */
5521 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b + ir.rm);
5522 /* These instructions also set conditional bits. */
5523 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5524 break;
5525 }
5526 else
5527 {
5528 /* We don't handle this particular instruction yet. */
5529 ir.addr -= 2;
5530 opcode = opcode << 8 | ir.modrm;
5531 goto no_support;
5532 }
7ad10968 5533 }
25ea693b
MM
5534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5535 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5536 if (i386_record_lea_modrm (&ir))
5537 return -1;
25ea693b 5538 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5539 break;
5540
a38bba38 5541 case 0x50: /* push */
7ad10968
HZ
5542 case 0x51:
5543 case 0x52:
5544 case 0x53:
5545 case 0x54:
5546 case 0x55:
5547 case 0x56:
5548 case 0x57:
5549 case 0x68:
5550 case 0x6a:
cf648174
HZ
5551 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5552 ir.dflag = 2;
5553 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5554 return -1;
5555 break;
5556
a38bba38
MS
5557 case 0x06: /* push es */
5558 case 0x0e: /* push cs */
5559 case 0x16: /* push ss */
5560 case 0x1e: /* push ds */
cf648174
HZ
5561 if (ir.regmap[X86_RECORD_R8_REGNUM])
5562 {
5563 ir.addr -= 1;
5564 goto no_support;
5565 }
5566 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5567 return -1;
5568 break;
5569
a38bba38
MS
5570 case 0x0fa0: /* push fs */
5571 case 0x0fa8: /* push gs */
cf648174
HZ
5572 if (ir.regmap[X86_RECORD_R8_REGNUM])
5573 {
5574 ir.addr -= 2;
5575 goto no_support;
5576 }
5577 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5578 return -1;
cf648174
HZ
5579 break;
5580
a38bba38 5581 case 0x60: /* pusha */
cf648174
HZ
5582 if (ir.regmap[X86_RECORD_R8_REGNUM])
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5588 return -1;
5589 break;
5590
a38bba38 5591 case 0x58: /* pop */
7ad10968
HZ
5592 case 0x59:
5593 case 0x5a:
5594 case 0x5b:
5595 case 0x5c:
5596 case 0x5d:
5597 case 0x5e:
5598 case 0x5f:
25ea693b
MM
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5601 break;
5602
a38bba38 5603 case 0x61: /* popa */
cf648174
HZ
5604 if (ir.regmap[X86_RECORD_R8_REGNUM])
5605 {
5606 ir.addr -= 1;
5607 goto no_support;
7ad10968 5608 }
425b824a
MS
5609 for (regnum = X86_RECORD_REAX_REGNUM;
5610 regnum <= X86_RECORD_REDI_REGNUM;
5611 regnum++)
25ea693b 5612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5613 break;
5614
a38bba38 5615 case 0x8f: /* pop */
cf648174
HZ
5616 if (ir.regmap[X86_RECORD_R8_REGNUM])
5617 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5618 else
5619 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5620 if (i386_record_modrm (&ir))
5621 return -1;
5622 if (ir.mod == 3)
25ea693b 5623 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5624 else
5625 {
cf648174 5626 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5627 if (i386_record_lea_modrm (&ir))
5628 return -1;
5629 }
25ea693b 5630 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5631 break;
5632
a38bba38 5633 case 0xc8: /* enter */
25ea693b 5634 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5635 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5636 ir.dflag = 2;
5637 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5638 return -1;
5639 break;
5640
a38bba38 5641 case 0xc9: /* leave */
25ea693b
MM
5642 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5643 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5644 break;
5645
a38bba38 5646 case 0x07: /* pop es */
cf648174
HZ
5647 if (ir.regmap[X86_RECORD_R8_REGNUM])
5648 {
5649 ir.addr -= 1;
5650 goto no_support;
5651 }
25ea693b
MM
5652 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5654 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5655 break;
5656
a38bba38 5657 case 0x17: /* pop ss */
cf648174
HZ
5658 if (ir.regmap[X86_RECORD_R8_REGNUM])
5659 {
5660 ir.addr -= 1;
5661 goto no_support;
5662 }
25ea693b
MM
5663 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5665 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5666 break;
5667
a38bba38 5668 case 0x1f: /* pop ds */
cf648174
HZ
5669 if (ir.regmap[X86_RECORD_R8_REGNUM])
5670 {
5671 ir.addr -= 1;
5672 goto no_support;
5673 }
25ea693b
MM
5674 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5676 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5677 break;
5678
a38bba38 5679 case 0x0fa1: /* pop fs */
25ea693b
MM
5680 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5681 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5682 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5683 break;
5684
a38bba38 5685 case 0x0fa9: /* pop gs */
25ea693b
MM
5686 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5687 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5689 break;
5690
a38bba38 5691 case 0x88: /* mov */
7ad10968
HZ
5692 case 0x89:
5693 case 0xc6:
5694 case 0xc7:
5695 if ((opcode & 1) == 0)
5696 ir.ot = OT_BYTE;
5697 else
5698 ir.ot = ir.dflag + OT_WORD;
5699
5700 if (i386_record_modrm (&ir))
5701 return -1;
5702
5703 if (ir.mod != 3)
5704 {
cf648174
HZ
5705 if (opcode == 0xc6 || opcode == 0xc7)
5706 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5707 if (i386_record_lea_modrm (&ir))
5708 return -1;
5709 }
5710 else
5711 {
cf648174
HZ
5712 if (opcode == 0xc6 || opcode == 0xc7)
5713 ir.rm |= ir.rex_b;
5714 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5715 ir.rm &= 0x3;
25ea693b 5716 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5717 }
7ad10968 5718 break;
cf648174 5719
a38bba38 5720 case 0x8a: /* mov */
7ad10968
HZ
5721 case 0x8b:
5722 if ((opcode & 1) == 0)
5723 ir.ot = OT_BYTE;
5724 else
5725 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5726 if (i386_record_modrm (&ir))
5727 return -1;
cf648174
HZ
5728 ir.reg |= rex_r;
5729 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5730 ir.reg &= 0x3;
25ea693b 5731 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5732 break;
7ad10968 5733
a38bba38 5734 case 0x8c: /* mov seg */
cf648174 5735 if (i386_record_modrm (&ir))
7ad10968 5736 return -1;
cf648174
HZ
5737 if (ir.reg > 5)
5738 {
5739 ir.addr -= 2;
5740 opcode = opcode << 8 | ir.modrm;
5741 goto no_support;
5742 }
5743
5744 if (ir.mod == 3)
25ea693b 5745 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5746 else
5747 {
5748 ir.ot = OT_WORD;
5749 if (i386_record_lea_modrm (&ir))
5750 return -1;
5751 }
7ad10968
HZ
5752 break;
5753
a38bba38 5754 case 0x8e: /* mov seg */
7ad10968
HZ
5755 if (i386_record_modrm (&ir))
5756 return -1;
7ad10968
HZ
5757 switch (ir.reg)
5758 {
5759 case 0:
425b824a 5760 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5761 break;
5762 case 2:
425b824a 5763 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5764 break;
5765 case 3:
425b824a 5766 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5767 break;
5768 case 4:
425b824a 5769 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5770 break;
5771 case 5:
425b824a 5772 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5773 break;
5774 default:
5775 ir.addr -= 2;
5776 opcode = opcode << 8 | ir.modrm;
5777 goto no_support;
5778 break;
5779 }
25ea693b
MM
5780 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5781 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5782 break;
5783
a38bba38
MS
5784 case 0x0fb6: /* movzbS */
5785 case 0x0fb7: /* movzwS */
5786 case 0x0fbe: /* movsbS */
5787 case 0x0fbf: /* movswS */
7ad10968
HZ
5788 if (i386_record_modrm (&ir))
5789 return -1;
25ea693b 5790 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5791 break;
5792
a38bba38 5793 case 0x8d: /* lea */
7ad10968
HZ
5794 if (i386_record_modrm (&ir))
5795 return -1;
5796 if (ir.mod == 3)
5797 {
5798 ir.addr -= 2;
5799 opcode = opcode << 8 | ir.modrm;
5800 goto no_support;
5801 }
7ad10968 5802 ir.ot = ir.dflag;
cf648174
HZ
5803 ir.reg |= rex_r;
5804 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5805 ir.reg &= 0x3;
25ea693b 5806 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5807 break;
5808
a38bba38 5809 case 0xa0: /* mov EAX */
7ad10968 5810 case 0xa1:
a38bba38
MS
5811
5812 case 0xd7: /* xlat */
25ea693b 5813 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5814 break;
5815
a38bba38 5816 case 0xa2: /* mov EAX */
7ad10968 5817 case 0xa3:
d7877f7e 5818 if (ir.override >= 0)
cf648174 5819 {
25ea693b 5820 if (record_full_memory_query)
bb08c432 5821 {
651ce16a 5822 if (yquery (_("\
bb08c432
HZ
5823Process record ignores the memory change of instruction at address %s\n\
5824because it can't get the value of the segment register.\n\
5825Do you want to stop the program?"),
651ce16a 5826 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
5827 return -1;
5828 }
cf648174
HZ
5829 }
5830 else
5831 {
5832 if ((opcode & 1) == 0)
5833 ir.ot = OT_BYTE;
5834 else
5835 ir.ot = ir.dflag + OT_WORD;
5836 if (ir.aflag == 2)
5837 {
4ffa4fc7
PA
5838 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5839 return -1;
cf648174 5840 ir.addr += 8;
60a1502a 5841 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5842 }
5843 else if (ir.aflag)
5844 {
4ffa4fc7
PA
5845 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5846 return -1;
cf648174 5847 ir.addr += 4;
60a1502a 5848 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5849 }
5850 else
5851 {
4ffa4fc7
PA
5852 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5853 return -1;
cf648174 5854 ir.addr += 2;
60a1502a 5855 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5856 }
25ea693b 5857 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5858 return -1;
5859 }
7ad10968
HZ
5860 break;
5861
a38bba38 5862 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5863 case 0xb1:
5864 case 0xb2:
5865 case 0xb3:
5866 case 0xb4:
5867 case 0xb5:
5868 case 0xb6:
5869 case 0xb7:
25ea693b
MM
5870 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5871 ? ((opcode & 0x7) | ir.rex_b)
5872 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5873 break;
5874
a38bba38 5875 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5876 case 0xb9:
5877 case 0xba:
5878 case 0xbb:
5879 case 0xbc:
5880 case 0xbd:
5881 case 0xbe:
5882 case 0xbf:
25ea693b 5883 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5884 break;
5885
a38bba38 5886 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5887 case 0x92:
5888 case 0x93:
5889 case 0x94:
5890 case 0x95:
5891 case 0x96:
5892 case 0x97:
25ea693b
MM
5893 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5894 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5895 break;
5896
a38bba38 5897 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5898 case 0x87:
5899 if ((opcode & 1) == 0)
5900 ir.ot = OT_BYTE;
5901 else
5902 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5903 if (i386_record_modrm (&ir))
5904 return -1;
7ad10968
HZ
5905 if (ir.mod == 3)
5906 {
86839d38 5907 ir.rm |= ir.rex_b;
cf648174
HZ
5908 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5909 ir.rm &= 0x3;
25ea693b 5910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5911 }
5912 else
5913 {
5914 if (i386_record_lea_modrm (&ir))
5915 return -1;
5916 }
cf648174
HZ
5917 ir.reg |= rex_r;
5918 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5919 ir.reg &= 0x3;
25ea693b 5920 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5921 break;
5922
a38bba38
MS
5923 case 0xc4: /* les Gv */
5924 case 0xc5: /* lds Gv */
cf648174
HZ
5925 if (ir.regmap[X86_RECORD_R8_REGNUM])
5926 {
5927 ir.addr -= 1;
5928 goto no_support;
5929 }
d3f323f3 5930 /* FALLTHROUGH */
a38bba38
MS
5931 case 0x0fb2: /* lss Gv */
5932 case 0x0fb4: /* lfs Gv */
5933 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5934 if (i386_record_modrm (&ir))
5935 return -1;
5936 if (ir.mod == 3)
5937 {
5938 if (opcode > 0xff)
5939 ir.addr -= 3;
5940 else
5941 ir.addr -= 2;
5942 opcode = opcode << 8 | ir.modrm;
5943 goto no_support;
5944 }
7ad10968
HZ
5945 switch (opcode)
5946 {
a38bba38 5947 case 0xc4: /* les Gv */
425b824a 5948 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5949 break;
a38bba38 5950 case 0xc5: /* lds Gv */
425b824a 5951 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5952 break;
a38bba38 5953 case 0x0fb2: /* lss Gv */
425b824a 5954 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5955 break;
a38bba38 5956 case 0x0fb4: /* lfs Gv */
425b824a 5957 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5958 break;
a38bba38 5959 case 0x0fb5: /* lgs Gv */
425b824a 5960 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5961 break;
5962 }
25ea693b
MM
5963 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5964 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5965 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5966 break;
5967
a38bba38 5968 case 0xc0: /* shifts */
7ad10968
HZ
5969 case 0xc1:
5970 case 0xd0:
5971 case 0xd1:
5972 case 0xd2:
5973 case 0xd3:
5974 if ((opcode & 1) == 0)
5975 ir.ot = OT_BYTE;
5976 else
5977 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5978 if (i386_record_modrm (&ir))
5979 return -1;
7ad10968
HZ
5980 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5981 {
5982 if (i386_record_lea_modrm (&ir))
5983 return -1;
5984 }
5985 else
5986 {
cf648174
HZ
5987 ir.rm |= ir.rex_b;
5988 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5989 ir.rm &= 0x3;
25ea693b 5990 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5991 }
25ea693b 5992 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5993 break;
5994
5995 case 0x0fa4:
5996 case 0x0fa5:
5997 case 0x0fac:
5998 case 0x0fad:
5999 if (i386_record_modrm (&ir))
6000 return -1;
6001 if (ir.mod == 3)
6002 {
25ea693b 6003 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
6004 return -1;
6005 }
6006 else
6007 {
6008 if (i386_record_lea_modrm (&ir))
6009 return -1;
6010 }
6011 break;
6012
a38bba38 6013 case 0xd8: /* Floats. */
7ad10968
HZ
6014 case 0xd9:
6015 case 0xda:
6016 case 0xdb:
6017 case 0xdc:
6018 case 0xdd:
6019 case 0xde:
6020 case 0xdf:
6021 if (i386_record_modrm (&ir))
6022 return -1;
6023 ir.reg |= ((opcode & 7) << 3);
6024 if (ir.mod != 3)
6025 {
1777feb0 6026 /* Memory. */
955db0c0 6027 uint64_t addr64;
7ad10968 6028
955db0c0 6029 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
6030 return -1;
6031 switch (ir.reg)
6032 {
7ad10968 6033 case 0x02:
0289bdd7
MS
6034 case 0x12:
6035 case 0x22:
6036 case 0x32:
6037 /* For fcom, ficom nothing to do. */
6038 break;
7ad10968 6039 case 0x03:
0289bdd7
MS
6040 case 0x13:
6041 case 0x23:
6042 case 0x33:
6043 /* For fcomp, ficomp pop FPU stack, store all. */
6044 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6045 return -1;
6046 break;
6047 case 0x00:
6048 case 0x01:
7ad10968
HZ
6049 case 0x04:
6050 case 0x05:
6051 case 0x06:
6052 case 0x07:
6053 case 0x10:
6054 case 0x11:
7ad10968
HZ
6055 case 0x14:
6056 case 0x15:
6057 case 0x16:
6058 case 0x17:
6059 case 0x20:
6060 case 0x21:
7ad10968
HZ
6061 case 0x24:
6062 case 0x25:
6063 case 0x26:
6064 case 0x27:
6065 case 0x30:
6066 case 0x31:
7ad10968
HZ
6067 case 0x34:
6068 case 0x35:
6069 case 0x36:
6070 case 0x37:
0289bdd7
MS
6071 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
6072 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
6073 of code, always affects st(0) register. */
6074 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6075 return -1;
7ad10968
HZ
6076 break;
6077 case 0x08:
6078 case 0x0a:
6079 case 0x0b:
6080 case 0x18:
6081 case 0x19:
6082 case 0x1a:
6083 case 0x1b:
0289bdd7 6084 case 0x1d:
7ad10968
HZ
6085 case 0x28:
6086 case 0x29:
6087 case 0x2a:
6088 case 0x2b:
6089 case 0x38:
6090 case 0x39:
6091 case 0x3a:
6092 case 0x3b:
0289bdd7
MS
6093 case 0x3c:
6094 case 0x3d:
7ad10968
HZ
6095 switch (ir.reg & 7)
6096 {
6097 case 0:
0289bdd7
MS
6098 /* Handling fld, fild. */
6099 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6100 return -1;
7ad10968
HZ
6101 break;
6102 case 1:
6103 switch (ir.reg >> 4)
6104 {
6105 case 0:
25ea693b 6106 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6107 return -1;
6108 break;
6109 case 2:
25ea693b 6110 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6111 return -1;
6112 break;
6113 case 3:
0289bdd7 6114 break;
7ad10968 6115 default:
25ea693b 6116 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6117 return -1;
6118 break;
6119 }
6120 break;
6121 default:
6122 switch (ir.reg >> 4)
6123 {
6124 case 0:
25ea693b 6125 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6126 return -1;
6127 if (3 == (ir.reg & 7))
6128 {
6129 /* For fstp m32fp. */
6130 if (i386_record_floats (gdbarch, &ir,
6131 I386_SAVE_FPU_REGS))
6132 return -1;
6133 }
6134 break;
7ad10968 6135 case 1:
25ea693b 6136 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6137 return -1;
0289bdd7
MS
6138 if ((3 == (ir.reg & 7))
6139 || (5 == (ir.reg & 7))
6140 || (7 == (ir.reg & 7)))
6141 {
6142 /* For fstp insn. */
6143 if (i386_record_floats (gdbarch, &ir,
6144 I386_SAVE_FPU_REGS))
6145 return -1;
6146 }
7ad10968
HZ
6147 break;
6148 case 2:
25ea693b 6149 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6150 return -1;
0289bdd7
MS
6151 if (3 == (ir.reg & 7))
6152 {
6153 /* For fstp m64fp. */
6154 if (i386_record_floats (gdbarch, &ir,
6155 I386_SAVE_FPU_REGS))
6156 return -1;
6157 }
7ad10968
HZ
6158 break;
6159 case 3:
0289bdd7
MS
6160 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6161 {
6162 /* For fistp, fbld, fild, fbstp. */
6163 if (i386_record_floats (gdbarch, &ir,
6164 I386_SAVE_FPU_REGS))
6165 return -1;
6166 }
6167 /* Fall through */
7ad10968 6168 default:
25ea693b 6169 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6170 return -1;
6171 break;
6172 }
6173 break;
6174 }
6175 break;
6176 case 0x0c:
0289bdd7
MS
6177 /* Insn fldenv. */
6178 if (i386_record_floats (gdbarch, &ir,
6179 I386_SAVE_FPU_ENV_REG_STACK))
6180 return -1;
6181 break;
7ad10968 6182 case 0x0d:
0289bdd7
MS
6183 /* Insn fldcw. */
6184 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6185 return -1;
6186 break;
7ad10968 6187 case 0x2c:
0289bdd7
MS
6188 /* Insn frstor. */
6189 if (i386_record_floats (gdbarch, &ir,
6190 I386_SAVE_FPU_ENV_REG_STACK))
6191 return -1;
7ad10968
HZ
6192 break;
6193 case 0x0e:
6194 if (ir.dflag)
6195 {
25ea693b 6196 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6197 return -1;
6198 }
6199 else
6200 {
25ea693b 6201 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6202 return -1;
6203 }
6204 break;
6205 case 0x0f:
6206 case 0x2f:
25ea693b 6207 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6208 return -1;
0289bdd7
MS
6209 /* Insn fstp, fbstp. */
6210 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6211 return -1;
7ad10968
HZ
6212 break;
6213 case 0x1f:
6214 case 0x3e:
25ea693b 6215 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6216 return -1;
6217 break;
6218 case 0x2e:
6219 if (ir.dflag)
6220 {
25ea693b 6221 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6222 return -1;
955db0c0 6223 addr64 += 28;
7ad10968
HZ
6224 }
6225 else
6226 {
25ea693b 6227 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6228 return -1;
955db0c0 6229 addr64 += 14;
7ad10968 6230 }
25ea693b 6231 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6232 return -1;
0289bdd7
MS
6233 /* Insn fsave. */
6234 if (i386_record_floats (gdbarch, &ir,
6235 I386_SAVE_FPU_ENV_REG_STACK))
6236 return -1;
7ad10968
HZ
6237 break;
6238 case 0x3f:
25ea693b 6239 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6240 return -1;
0289bdd7
MS
6241 /* Insn fistp. */
6242 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6243 return -1;
7ad10968
HZ
6244 break;
6245 default:
6246 ir.addr -= 2;
6247 opcode = opcode << 8 | ir.modrm;
6248 goto no_support;
6249 break;
6250 }
6251 }
0289bdd7
MS
6252 /* Opcode is an extension of modR/M byte. */
6253 else
6254 {
6255 switch (opcode)
6256 {
6257 case 0xd8:
6258 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6259 return -1;
6260 break;
6261 case 0xd9:
6262 if (0x0c == (ir.modrm >> 4))
6263 {
6264 if ((ir.modrm & 0x0f) <= 7)
6265 {
6266 if (i386_record_floats (gdbarch, &ir,
6267 I386_SAVE_FPU_REGS))
6268 return -1;
6269 }
6270 else
6271 {
6272 if (i386_record_floats (gdbarch, &ir,
6273 I387_ST0_REGNUM (tdep)))
6274 return -1;
6275 /* If only st(0) is changing, then we have already
6276 recorded. */
6277 if ((ir.modrm & 0x0f) - 0x08)
6278 {
6279 if (i386_record_floats (gdbarch, &ir,
6280 I387_ST0_REGNUM (tdep) +
6281 ((ir.modrm & 0x0f) - 0x08)))
6282 return -1;
6283 }
6284 }
6285 }
6286 else
6287 {
6288 switch (ir.modrm)
6289 {
6290 case 0xe0:
6291 case 0xe1:
6292 case 0xf0:
6293 case 0xf5:
6294 case 0xf8:
6295 case 0xfa:
6296 case 0xfc:
6297 case 0xfe:
6298 case 0xff:
6299 if (i386_record_floats (gdbarch, &ir,
6300 I387_ST0_REGNUM (tdep)))
6301 return -1;
6302 break;
6303 case 0xf1:
6304 case 0xf2:
6305 case 0xf3:
6306 case 0xf4:
6307 case 0xf6:
6308 case 0xf7:
6309 case 0xe8:
6310 case 0xe9:
6311 case 0xea:
6312 case 0xeb:
6313 case 0xec:
6314 case 0xed:
6315 case 0xee:
6316 case 0xf9:
6317 case 0xfb:
6318 if (i386_record_floats (gdbarch, &ir,
6319 I386_SAVE_FPU_REGS))
6320 return -1;
6321 break;
6322 case 0xfd:
6323 if (i386_record_floats (gdbarch, &ir,
6324 I387_ST0_REGNUM (tdep)))
6325 return -1;
6326 if (i386_record_floats (gdbarch, &ir,
6327 I387_ST0_REGNUM (tdep) + 1))
6328 return -1;
6329 break;
6330 }
6331 }
6332 break;
6333 case 0xda:
6334 if (0xe9 == ir.modrm)
6335 {
6336 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6337 return -1;
6338 }
6339 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6340 {
6341 if (i386_record_floats (gdbarch, &ir,
6342 I387_ST0_REGNUM (tdep)))
6343 return -1;
6344 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6345 {
6346 if (i386_record_floats (gdbarch, &ir,
6347 I387_ST0_REGNUM (tdep) +
6348 (ir.modrm & 0x0f)))
6349 return -1;
6350 }
6351 else if ((ir.modrm & 0x0f) - 0x08)
6352 {
6353 if (i386_record_floats (gdbarch, &ir,
6354 I387_ST0_REGNUM (tdep) +
6355 ((ir.modrm & 0x0f) - 0x08)))
6356 return -1;
6357 }
6358 }
6359 break;
6360 case 0xdb:
6361 if (0xe3 == ir.modrm)
6362 {
6363 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6364 return -1;
6365 }
6366 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6367 {
6368 if (i386_record_floats (gdbarch, &ir,
6369 I387_ST0_REGNUM (tdep)))
6370 return -1;
6371 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6372 {
6373 if (i386_record_floats (gdbarch, &ir,
6374 I387_ST0_REGNUM (tdep) +
6375 (ir.modrm & 0x0f)))
6376 return -1;
6377 }
6378 else if ((ir.modrm & 0x0f) - 0x08)
6379 {
6380 if (i386_record_floats (gdbarch, &ir,
6381 I387_ST0_REGNUM (tdep) +
6382 ((ir.modrm & 0x0f) - 0x08)))
6383 return -1;
6384 }
6385 }
6386 break;
6387 case 0xdc:
6388 if ((0x0c == ir.modrm >> 4)
6389 || (0x0d == ir.modrm >> 4)
6390 || (0x0f == ir.modrm >> 4))
6391 {
6392 if ((ir.modrm & 0x0f) <= 7)
6393 {
6394 if (i386_record_floats (gdbarch, &ir,
6395 I387_ST0_REGNUM (tdep) +
6396 (ir.modrm & 0x0f)))
6397 return -1;
6398 }
6399 else
6400 {
6401 if (i386_record_floats (gdbarch, &ir,
6402 I387_ST0_REGNUM (tdep) +
6403 ((ir.modrm & 0x0f) - 0x08)))
6404 return -1;
6405 }
6406 }
6407 break;
6408 case 0xdd:
6409 if (0x0c == ir.modrm >> 4)
6410 {
6411 if (i386_record_floats (gdbarch, &ir,
6412 I387_FTAG_REGNUM (tdep)))
6413 return -1;
6414 }
6415 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6416 {
6417 if ((ir.modrm & 0x0f) <= 7)
6418 {
6419 if (i386_record_floats (gdbarch, &ir,
6420 I387_ST0_REGNUM (tdep) +
6421 (ir.modrm & 0x0f)))
6422 return -1;
6423 }
6424 else
6425 {
6426 if (i386_record_floats (gdbarch, &ir,
6427 I386_SAVE_FPU_REGS))
6428 return -1;
6429 }
6430 }
6431 break;
6432 case 0xde:
6433 if ((0x0c == ir.modrm >> 4)
6434 || (0x0e == ir.modrm >> 4)
6435 || (0x0f == ir.modrm >> 4)
6436 || (0xd9 == ir.modrm))
6437 {
6438 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6439 return -1;
6440 }
6441 break;
6442 case 0xdf:
6443 if (0xe0 == ir.modrm)
6444 {
25ea693b
MM
6445 if (record_full_arch_list_add_reg (ir.regcache,
6446 I386_EAX_REGNUM))
0289bdd7
MS
6447 return -1;
6448 }
6449 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6450 {
6451 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6452 return -1;
6453 }
6454 break;
6455 }
6456 }
7ad10968 6457 break;
7ad10968 6458 /* string ops */
a38bba38 6459 case 0xa4: /* movsS */
7ad10968 6460 case 0xa5:
a38bba38 6461 case 0xaa: /* stosS */
7ad10968 6462 case 0xab:
a38bba38 6463 case 0x6c: /* insS */
7ad10968 6464 case 0x6d:
cf648174 6465 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6466 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6467 &addr);
6468 if (addr)
cf648174 6469 {
77d7dc92
HZ
6470 ULONGEST es, ds;
6471
6472 if ((opcode & 1) == 0)
6473 ir.ot = OT_BYTE;
6474 else
6475 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6476 regcache_raw_read_unsigned (ir.regcache,
6477 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6478 &addr);
77d7dc92 6479
d7877f7e
HZ
6480 regcache_raw_read_unsigned (ir.regcache,
6481 ir.regmap[X86_RECORD_ES_REGNUM],
6482 &es);
6483 regcache_raw_read_unsigned (ir.regcache,
6484 ir.regmap[X86_RECORD_DS_REGNUM],
6485 &ds);
6486 if (ir.aflag && (es != ds))
77d7dc92
HZ
6487 {
6488 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6489 if (record_full_memory_query)
bb08c432 6490 {
651ce16a 6491 if (yquery (_("\
bb08c432
HZ
6492Process record ignores the memory change of instruction at address %s\n\
6493because it can't get the value of the segment register.\n\
6494Do you want to stop the program?"),
651ce16a 6495 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
6496 return -1;
6497 }
df61f520
HZ
6498 }
6499 else
6500 {
25ea693b 6501 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6502 return -1;
77d7dc92
HZ
6503 }
6504
6505 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6506 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6507 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6508 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6509 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6510 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6511 }
cf648174 6512 break;
7ad10968 6513
a38bba38 6514 case 0xa6: /* cmpsS */
cf648174 6515 case 0xa7:
25ea693b
MM
6516 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6517 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6518 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6520 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6521 break;
6522
a38bba38 6523 case 0xac: /* lodsS */
7ad10968 6524 case 0xad:
25ea693b
MM
6525 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6526 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6527 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6528 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6529 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6530 break;
6531
a38bba38 6532 case 0xae: /* scasS */
7ad10968 6533 case 0xaf:
25ea693b 6534 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6535 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6536 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6537 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6538 break;
6539
a38bba38 6540 case 0x6e: /* outsS */
cf648174 6541 case 0x6f:
25ea693b 6542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6543 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6544 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6545 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6546 break;
6547
a38bba38 6548 case 0xe4: /* port I/O */
7ad10968
HZ
6549 case 0xe5:
6550 case 0xec:
6551 case 0xed:
25ea693b
MM
6552 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6554 break;
6555
6556 case 0xe6:
6557 case 0xe7:
6558 case 0xee:
6559 case 0xef:
6560 break;
6561
6562 /* control */
a38bba38
MS
6563 case 0xc2: /* ret im */
6564 case 0xc3: /* ret */
25ea693b
MM
6565 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6566 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6567 break;
6568
a38bba38
MS
6569 case 0xca: /* lret im */
6570 case 0xcb: /* lret */
6571 case 0xcf: /* iret */
25ea693b
MM
6572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6574 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6575 break;
6576
a38bba38 6577 case 0xe8: /* call im */
cf648174
HZ
6578 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6579 ir.dflag = 2;
6580 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6581 return -1;
7ad10968
HZ
6582 break;
6583
a38bba38 6584 case 0x9a: /* lcall im */
cf648174
HZ
6585 if (ir.regmap[X86_RECORD_R8_REGNUM])
6586 {
6587 ir.addr -= 1;
6588 goto no_support;
6589 }
25ea693b 6590 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6591 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6592 return -1;
7ad10968
HZ
6593 break;
6594
a38bba38
MS
6595 case 0xe9: /* jmp im */
6596 case 0xea: /* ljmp im */
6597 case 0xeb: /* jmp Jb */
6598 case 0x70: /* jcc Jb */
7ad10968
HZ
6599 case 0x71:
6600 case 0x72:
6601 case 0x73:
6602 case 0x74:
6603 case 0x75:
6604 case 0x76:
6605 case 0x77:
6606 case 0x78:
6607 case 0x79:
6608 case 0x7a:
6609 case 0x7b:
6610 case 0x7c:
6611 case 0x7d:
6612 case 0x7e:
6613 case 0x7f:
a38bba38 6614 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6615 case 0x0f81:
6616 case 0x0f82:
6617 case 0x0f83:
6618 case 0x0f84:
6619 case 0x0f85:
6620 case 0x0f86:
6621 case 0x0f87:
6622 case 0x0f88:
6623 case 0x0f89:
6624 case 0x0f8a:
6625 case 0x0f8b:
6626 case 0x0f8c:
6627 case 0x0f8d:
6628 case 0x0f8e:
6629 case 0x0f8f:
6630 break;
6631
a38bba38 6632 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6633 case 0x0f91:
6634 case 0x0f92:
6635 case 0x0f93:
6636 case 0x0f94:
6637 case 0x0f95:
6638 case 0x0f96:
6639 case 0x0f97:
6640 case 0x0f98:
6641 case 0x0f99:
6642 case 0x0f9a:
6643 case 0x0f9b:
6644 case 0x0f9c:
6645 case 0x0f9d:
6646 case 0x0f9e:
6647 case 0x0f9f:
25ea693b 6648 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6649 ir.ot = OT_BYTE;
6650 if (i386_record_modrm (&ir))
6651 return -1;
6652 if (ir.mod == 3)
25ea693b
MM
6653 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6654 : (ir.rm & 0x3));
7ad10968
HZ
6655 else
6656 {
6657 if (i386_record_lea_modrm (&ir))
6658 return -1;
6659 }
6660 break;
6661
a38bba38 6662 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6663 case 0x0f41:
6664 case 0x0f42:
6665 case 0x0f43:
6666 case 0x0f44:
6667 case 0x0f45:
6668 case 0x0f46:
6669 case 0x0f47:
6670 case 0x0f48:
6671 case 0x0f49:
6672 case 0x0f4a:
6673 case 0x0f4b:
6674 case 0x0f4c:
6675 case 0x0f4d:
6676 case 0x0f4e:
6677 case 0x0f4f:
6678 if (i386_record_modrm (&ir))
6679 return -1;
cf648174 6680 ir.reg |= rex_r;
7ad10968
HZ
6681 if (ir.dflag == OT_BYTE)
6682 ir.reg &= 0x3;
25ea693b 6683 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6684 break;
6685
6686 /* flags */
a38bba38 6687 case 0x9c: /* pushf */
25ea693b 6688 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6689 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6690 ir.dflag = 2;
6691 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6692 return -1;
7ad10968
HZ
6693 break;
6694
a38bba38 6695 case 0x9d: /* popf */
25ea693b
MM
6696 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6697 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6698 break;
6699
a38bba38 6700 case 0x9e: /* sahf */
cf648174
HZ
6701 if (ir.regmap[X86_RECORD_R8_REGNUM])
6702 {
6703 ir.addr -= 1;
6704 goto no_support;
6705 }
d3f323f3 6706 /* FALLTHROUGH */
a38bba38
MS
6707 case 0xf5: /* cmc */
6708 case 0xf8: /* clc */
6709 case 0xf9: /* stc */
6710 case 0xfc: /* cld */
6711 case 0xfd: /* std */
25ea693b 6712 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6713 break;
6714
a38bba38 6715 case 0x9f: /* lahf */
cf648174
HZ
6716 if (ir.regmap[X86_RECORD_R8_REGNUM])
6717 {
6718 ir.addr -= 1;
6719 goto no_support;
6720 }
25ea693b
MM
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6722 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6723 break;
6724
6725 /* bit operations */
a38bba38 6726 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6727 ir.ot = ir.dflag + OT_WORD;
6728 if (i386_record_modrm (&ir))
6729 return -1;
6730 if (ir.reg < 4)
6731 {
cf648174 6732 ir.addr -= 2;
7ad10968
HZ
6733 opcode = opcode << 8 | ir.modrm;
6734 goto no_support;
6735 }
cf648174 6736 if (ir.reg != 4)
7ad10968 6737 {
cf648174 6738 if (ir.mod == 3)
25ea693b 6739 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6740 else
6741 {
cf648174 6742 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6743 return -1;
6744 }
6745 }
25ea693b 6746 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6747 break;
6748
a38bba38 6749 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6750 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6751 break;
6752
a38bba38
MS
6753 case 0x0fab: /* bts */
6754 case 0x0fb3: /* btr */
6755 case 0x0fbb: /* btc */
cf648174
HZ
6756 ir.ot = ir.dflag + OT_WORD;
6757 if (i386_record_modrm (&ir))
6758 return -1;
6759 if (ir.mod == 3)
25ea693b 6760 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6761 else
6762 {
955db0c0
MS
6763 uint64_t addr64;
6764 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6765 return -1;
6766 regcache_raw_read_unsigned (ir.regcache,
6767 ir.regmap[ir.reg | rex_r],
648d0c8b 6768 &addr);
cf648174
HZ
6769 switch (ir.dflag)
6770 {
6771 case 0:
648d0c8b 6772 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6773 break;
6774 case 1:
648d0c8b 6775 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6776 break;
6777 case 2:
648d0c8b 6778 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6779 break;
6780 }
25ea693b 6781 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6782 return -1;
6783 if (i386_record_lea_modrm (&ir))
6784 return -1;
6785 }
25ea693b 6786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6787 break;
6788
a38bba38
MS
6789 case 0x0fbc: /* bsf */
6790 case 0x0fbd: /* bsr */
25ea693b
MM
6791 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6792 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6793 break;
6794
6795 /* bcd */
a38bba38
MS
6796 case 0x27: /* daa */
6797 case 0x2f: /* das */
6798 case 0x37: /* aaa */
6799 case 0x3f: /* aas */
6800 case 0xd4: /* aam */
6801 case 0xd5: /* aad */
cf648174
HZ
6802 if (ir.regmap[X86_RECORD_R8_REGNUM])
6803 {
6804 ir.addr -= 1;
6805 goto no_support;
6806 }
25ea693b
MM
6807 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6808 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6809 break;
6810
6811 /* misc */
a38bba38 6812 case 0x90: /* nop */
7ad10968
HZ
6813 if (prefixes & PREFIX_LOCK)
6814 {
6815 ir.addr -= 1;
6816 goto no_support;
6817 }
6818 break;
6819
a38bba38 6820 case 0x9b: /* fwait */
4ffa4fc7
PA
6821 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6822 return -1;
425b824a 6823 opcode = (uint32_t) opcode8;
0289bdd7
MS
6824 ir.addr++;
6825 goto reswitch;
7ad10968
HZ
6826 break;
6827
7ad10968 6828 /* XXX */
a38bba38 6829 case 0xcc: /* int3 */
a3c4230a 6830 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6831 "int3.\n"));
6832 ir.addr -= 1;
6833 goto no_support;
6834 break;
6835
7ad10968 6836 /* XXX */
a38bba38 6837 case 0xcd: /* int */
7ad10968
HZ
6838 {
6839 int ret;
425b824a 6840 uint8_t interrupt;
4ffa4fc7
PA
6841 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6842 return -1;
7ad10968 6843 ir.addr++;
425b824a 6844 if (interrupt != 0x80
a3c4230a 6845 || tdep->i386_intx80_record == NULL)
7ad10968 6846 {
a3c4230a 6847 printf_unfiltered (_("Process record does not support "
7ad10968 6848 "instruction int 0x%02x.\n"),
425b824a 6849 interrupt);
7ad10968
HZ
6850 ir.addr -= 2;
6851 goto no_support;
6852 }
a3c4230a 6853 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6854 if (ret)
6855 return ret;
6856 }
6857 break;
6858
7ad10968 6859 /* XXX */
a38bba38 6860 case 0xce: /* into */
a3c4230a 6861 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6862 "instruction into.\n"));
6863 ir.addr -= 1;
6864 goto no_support;
6865 break;
6866
a38bba38
MS
6867 case 0xfa: /* cli */
6868 case 0xfb: /* sti */
7ad10968
HZ
6869 break;
6870
a38bba38 6871 case 0x62: /* bound */
a3c4230a 6872 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6873 "instruction bound.\n"));
6874 ir.addr -= 1;
6875 goto no_support;
6876 break;
6877
a38bba38 6878 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6879 case 0x0fc9:
6880 case 0x0fca:
6881 case 0x0fcb:
6882 case 0x0fcc:
6883 case 0x0fcd:
6884 case 0x0fce:
6885 case 0x0fcf:
25ea693b 6886 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6887 break;
6888
a38bba38 6889 case 0xd6: /* salc */
cf648174
HZ
6890 if (ir.regmap[X86_RECORD_R8_REGNUM])
6891 {
6892 ir.addr -= 1;
6893 goto no_support;
6894 }
25ea693b
MM
6895 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6896 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6897 break;
6898
a38bba38
MS
6899 case 0xe0: /* loopnz */
6900 case 0xe1: /* loopz */
6901 case 0xe2: /* loop */
6902 case 0xe3: /* jecxz */
25ea693b
MM
6903 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6904 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6905 break;
6906
a38bba38 6907 case 0x0f30: /* wrmsr */
a3c4230a 6908 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6909 "instruction wrmsr.\n"));
6910 ir.addr -= 2;
6911 goto no_support;
6912 break;
6913
a38bba38 6914 case 0x0f32: /* rdmsr */
a3c4230a 6915 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6916 "instruction rdmsr.\n"));
6917 ir.addr -= 2;
6918 goto no_support;
6919 break;
6920
a38bba38 6921 case 0x0f31: /* rdtsc */
25ea693b
MM
6922 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6923 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6924 break;
6925
a38bba38 6926 case 0x0f34: /* sysenter */
7ad10968
HZ
6927 {
6928 int ret;
cf648174
HZ
6929 if (ir.regmap[X86_RECORD_R8_REGNUM])
6930 {
6931 ir.addr -= 2;
6932 goto no_support;
6933 }
a3c4230a 6934 if (tdep->i386_sysenter_record == NULL)
7ad10968 6935 {
a3c4230a 6936 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6937 "instruction sysenter.\n"));
6938 ir.addr -= 2;
6939 goto no_support;
6940 }
a3c4230a 6941 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6942 if (ret)
6943 return ret;
6944 }
6945 break;
6946
a38bba38 6947 case 0x0f35: /* sysexit */
a3c4230a 6948 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6949 "instruction sysexit.\n"));
6950 ir.addr -= 2;
6951 goto no_support;
6952 break;
6953
a38bba38 6954 case 0x0f05: /* syscall */
cf648174
HZ
6955 {
6956 int ret;
a3c4230a 6957 if (tdep->i386_syscall_record == NULL)
cf648174 6958 {
a3c4230a 6959 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6960 "instruction syscall.\n"));
6961 ir.addr -= 2;
6962 goto no_support;
6963 }
a3c4230a 6964 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6965 if (ret)
6966 return ret;
6967 }
6968 break;
6969
a38bba38 6970 case 0x0f07: /* sysret */
a3c4230a 6971 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6972 "instruction sysret.\n"));
6973 ir.addr -= 2;
6974 goto no_support;
6975 break;
6976
a38bba38 6977 case 0x0fa2: /* cpuid */
25ea693b
MM
6978 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6979 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6980 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6981 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6982 break;
6983
a38bba38 6984 case 0xf4: /* hlt */
a3c4230a 6985 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6986 "instruction hlt.\n"));
6987 ir.addr -= 1;
6988 goto no_support;
6989 break;
6990
6991 case 0x0f00:
6992 if (i386_record_modrm (&ir))
6993 return -1;
6994 switch (ir.reg)
6995 {
a38bba38
MS
6996 case 0: /* sldt */
6997 case 1: /* str */
7ad10968 6998 if (ir.mod == 3)
25ea693b 6999 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7000 else
7001 {
7002 ir.ot = OT_WORD;
7003 if (i386_record_lea_modrm (&ir))
7004 return -1;
7005 }
7006 break;
a38bba38
MS
7007 case 2: /* lldt */
7008 case 3: /* ltr */
7ad10968 7009 break;
a38bba38
MS
7010 case 4: /* verr */
7011 case 5: /* verw */
25ea693b 7012 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7013 break;
7014 default:
7015 ir.addr -= 3;
7016 opcode = opcode << 8 | ir.modrm;
7017 goto no_support;
7018 break;
7019 }
7020 break;
7021
7022 case 0x0f01:
7023 if (i386_record_modrm (&ir))
7024 return -1;
7025 switch (ir.reg)
7026 {
a38bba38 7027 case 0: /* sgdt */
7ad10968 7028 {
955db0c0 7029 uint64_t addr64;
7ad10968
HZ
7030
7031 if (ir.mod == 3)
7032 {
7033 ir.addr -= 3;
7034 opcode = opcode << 8 | ir.modrm;
7035 goto no_support;
7036 }
d7877f7e 7037 if (ir.override >= 0)
7ad10968 7038 {
25ea693b 7039 if (record_full_memory_query)
bb08c432 7040 {
651ce16a 7041 if (yquery (_("\
bb08c432
HZ
7042Process record ignores the memory change of instruction at address %s\n\
7043because it can't get the value of the segment register.\n\
7044Do you want to stop the program?"),
651ce16a
PA
7045 paddress (gdbarch, ir.orig_addr)))
7046 return -1;
bb08c432 7047 }
7ad10968
HZ
7048 }
7049 else
7050 {
955db0c0 7051 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7052 return -1;
25ea693b 7053 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7054 return -1;
955db0c0 7055 addr64 += 2;
cf648174
HZ
7056 if (ir.regmap[X86_RECORD_R8_REGNUM])
7057 {
25ea693b 7058 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7059 return -1;
7060 }
7061 else
7062 {
25ea693b 7063 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7064 return -1;
7065 }
7ad10968
HZ
7066 }
7067 }
7068 break;
7069 case 1:
7070 if (ir.mod == 3)
7071 {
7072 switch (ir.rm)
7073 {
a38bba38 7074 case 0: /* monitor */
7ad10968 7075 break;
a38bba38 7076 case 1: /* mwait */
25ea693b 7077 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7078 break;
7079 default:
7080 ir.addr -= 3;
7081 opcode = opcode << 8 | ir.modrm;
7082 goto no_support;
7083 break;
7084 }
7085 }
7086 else
7087 {
7088 /* sidt */
d7877f7e 7089 if (ir.override >= 0)
7ad10968 7090 {
25ea693b 7091 if (record_full_memory_query)
bb08c432 7092 {
651ce16a 7093 if (yquery (_("\
bb08c432
HZ
7094Process record ignores the memory change of instruction at address %s\n\
7095because it can't get the value of the segment register.\n\
7096Do you want to stop the program?"),
651ce16a 7097 paddress (gdbarch, ir.orig_addr)))
bb08c432
HZ
7098 return -1;
7099 }
7ad10968
HZ
7100 }
7101 else
7102 {
955db0c0 7103 uint64_t addr64;
7ad10968 7104
955db0c0 7105 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7106 return -1;
25ea693b 7107 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7108 return -1;
955db0c0 7109 addr64 += 2;
cf648174
HZ
7110 if (ir.regmap[X86_RECORD_R8_REGNUM])
7111 {
25ea693b 7112 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7113 return -1;
7114 }
7115 else
7116 {
25ea693b 7117 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7118 return -1;
7119 }
7ad10968
HZ
7120 }
7121 }
7122 break;
a38bba38 7123 case 2: /* lgdt */
3800e645
MS
7124 if (ir.mod == 3)
7125 {
7126 /* xgetbv */
7127 if (ir.rm == 0)
7128 {
25ea693b
MM
7129 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7130 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7131 break;
7132 }
7133 /* xsetbv */
7134 else if (ir.rm == 1)
7135 break;
7136 }
a38bba38 7137 case 3: /* lidt */
7ad10968
HZ
7138 if (ir.mod == 3)
7139 {
7140 ir.addr -= 3;
7141 opcode = opcode << 8 | ir.modrm;
7142 goto no_support;
7143 }
7144 break;
a38bba38 7145 case 4: /* smsw */
7ad10968
HZ
7146 if (ir.mod == 3)
7147 {
25ea693b 7148 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7149 return -1;
7150 }
7151 else
7152 {
7153 ir.ot = OT_WORD;
7154 if (i386_record_lea_modrm (&ir))
7155 return -1;
7156 }
25ea693b 7157 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7158 break;
a38bba38 7159 case 6: /* lmsw */
25ea693b 7160 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7161 break;
a38bba38 7162 case 7: /* invlpg */
cf648174
HZ
7163 if (ir.mod == 3)
7164 {
7165 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7166 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7167 else
7168 {
7169 ir.addr -= 3;
7170 opcode = opcode << 8 | ir.modrm;
7171 goto no_support;
7172 }
7173 }
7174 else
25ea693b 7175 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7176 break;
7177 default:
7178 ir.addr -= 3;
7179 opcode = opcode << 8 | ir.modrm;
7180 goto no_support;
7ad10968
HZ
7181 break;
7182 }
7183 break;
7184
a38bba38
MS
7185 case 0x0f08: /* invd */
7186 case 0x0f09: /* wbinvd */
7ad10968
HZ
7187 break;
7188
a38bba38 7189 case 0x63: /* arpl */
7ad10968
HZ
7190 if (i386_record_modrm (&ir))
7191 return -1;
cf648174
HZ
7192 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7193 {
25ea693b
MM
7194 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7195 ? (ir.reg | rex_r) : ir.rm);
cf648174 7196 }
7ad10968 7197 else
cf648174
HZ
7198 {
7199 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7200 if (i386_record_lea_modrm (&ir))
7201 return -1;
7202 }
7203 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7204 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7205 break;
7206
a38bba38
MS
7207 case 0x0f02: /* lar */
7208 case 0x0f03: /* lsl */
7ad10968
HZ
7209 if (i386_record_modrm (&ir))
7210 return -1;
25ea693b
MM
7211 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7212 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7213 break;
7214
7215 case 0x0f18:
cf648174
HZ
7216 if (i386_record_modrm (&ir))
7217 return -1;
7218 if (ir.mod == 3 && ir.reg == 3)
7219 {
7220 ir.addr -= 3;
7221 opcode = opcode << 8 | ir.modrm;
7222 goto no_support;
7223 }
7ad10968
HZ
7224 break;
7225
7ad10968
HZ
7226 case 0x0f19:
7227 case 0x0f1a:
7228 case 0x0f1b:
7229 case 0x0f1c:
7230 case 0x0f1d:
7231 case 0x0f1e:
7232 case 0x0f1f:
a38bba38 7233 /* nop (multi byte) */
7ad10968
HZ
7234 break;
7235
a38bba38
MS
7236 case 0x0f20: /* mov reg, crN */
7237 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7238 if (i386_record_modrm (&ir))
7239 return -1;
7240 if ((ir.modrm & 0xc0) != 0xc0)
7241 {
cf648174 7242 ir.addr -= 3;
7ad10968
HZ
7243 opcode = opcode << 8 | ir.modrm;
7244 goto no_support;
7245 }
7246 switch (ir.reg)
7247 {
7248 case 0:
7249 case 2:
7250 case 3:
7251 case 4:
7252 case 8:
7253 if (opcode & 2)
25ea693b 7254 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7255 else
25ea693b 7256 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7257 break;
7258 default:
cf648174 7259 ir.addr -= 3;
7ad10968
HZ
7260 opcode = opcode << 8 | ir.modrm;
7261 goto no_support;
7262 break;
7263 }
7264 break;
7265
a38bba38
MS
7266 case 0x0f21: /* mov reg, drN */
7267 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7268 if (i386_record_modrm (&ir))
7269 return -1;
7270 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7271 || ir.reg == 5 || ir.reg >= 8)
7272 {
cf648174 7273 ir.addr -= 3;
7ad10968
HZ
7274 opcode = opcode << 8 | ir.modrm;
7275 goto no_support;
7276 }
7277 if (opcode & 2)
25ea693b 7278 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7279 else
25ea693b 7280 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7281 break;
7282
a38bba38 7283 case 0x0f06: /* clts */
25ea693b 7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7285 break;
7286
a3c4230a
HZ
7287 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7288
7289 case 0x0f0d: /* 3DNow! prefetch */
7290 break;
7291
7292 case 0x0f0e: /* 3DNow! femms */
7293 case 0x0f77: /* emms */
7294 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7295 goto no_support;
25ea693b 7296 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7297 break;
7298
7299 case 0x0f0f: /* 3DNow! data */
7300 if (i386_record_modrm (&ir))
7301 return -1;
4ffa4fc7
PA
7302 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7303 return -1;
a3c4230a
HZ
7304 ir.addr++;
7305 switch (opcode8)
7306 {
7307 case 0x0c: /* 3DNow! pi2fw */
7308 case 0x0d: /* 3DNow! pi2fd */
7309 case 0x1c: /* 3DNow! pf2iw */
7310 case 0x1d: /* 3DNow! pf2id */
7311 case 0x8a: /* 3DNow! pfnacc */
7312 case 0x8e: /* 3DNow! pfpnacc */
7313 case 0x90: /* 3DNow! pfcmpge */
7314 case 0x94: /* 3DNow! pfmin */
7315 case 0x96: /* 3DNow! pfrcp */
7316 case 0x97: /* 3DNow! pfrsqrt */
7317 case 0x9a: /* 3DNow! pfsub */
7318 case 0x9e: /* 3DNow! pfadd */
7319 case 0xa0: /* 3DNow! pfcmpgt */
7320 case 0xa4: /* 3DNow! pfmax */
7321 case 0xa6: /* 3DNow! pfrcpit1 */
7322 case 0xa7: /* 3DNow! pfrsqit1 */
7323 case 0xaa: /* 3DNow! pfsubr */
7324 case 0xae: /* 3DNow! pfacc */
7325 case 0xb0: /* 3DNow! pfcmpeq */
7326 case 0xb4: /* 3DNow! pfmul */
7327 case 0xb6: /* 3DNow! pfrcpit2 */
7328 case 0xb7: /* 3DNow! pmulhrw */
7329 case 0xbb: /* 3DNow! pswapd */
7330 case 0xbf: /* 3DNow! pavgusb */
7331 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7332 goto no_support_3dnow_data;
25ea693b 7333 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7334 break;
7335
7336 default:
7337no_support_3dnow_data:
7338 opcode = (opcode << 8) | opcode8;
7339 goto no_support;
7340 break;
7341 }
7342 break;
7343
7344 case 0x0faa: /* rsm */
25ea693b
MM
7345 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7346 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7347 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7348 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7349 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7350 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7351 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7352 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7353 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7354 break;
7355
7356 case 0x0fae:
7357 if (i386_record_modrm (&ir))
7358 return -1;
7359 switch(ir.reg)
7360 {
7361 case 0: /* fxsave */
7362 {
7363 uint64_t tmpu64;
7364
25ea693b 7365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7366 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7367 return -1;
25ea693b 7368 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7369 return -1;
7370 }
7371 break;
7372
7373 case 1: /* fxrstor */
7374 {
7375 int i;
7376
25ea693b 7377 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7378
7379 for (i = I387_MM0_REGNUM (tdep);
7380 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7381 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7382
7383 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7384 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7385 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7386
7387 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7388 record_full_arch_list_add_reg (ir.regcache,
7389 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7390
7391 for (i = I387_ST0_REGNUM (tdep);
7392 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7393 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7394
7395 for (i = I387_FCTRL_REGNUM (tdep);
7396 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7397 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7398 }
7399 break;
7400
7401 case 2: /* ldmxcsr */
7402 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7403 goto no_support;
25ea693b 7404 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7405 break;
7406
7407 case 3: /* stmxcsr */
7408 ir.ot = OT_LONG;
7409 if (i386_record_lea_modrm (&ir))
7410 return -1;
7411 break;
7412
7413 case 5: /* lfence */
7414 case 6: /* mfence */
7415 case 7: /* sfence clflush */
7416 break;
7417
7418 default:
7419 opcode = (opcode << 8) | ir.modrm;
7420 goto no_support;
7421 break;
7422 }
7423 break;
7424
7425 case 0x0fc3: /* movnti */
7426 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7427 if (i386_record_modrm (&ir))
7428 return -1;
7429 if (ir.mod == 3)
7430 goto no_support;
7431 ir.reg |= rex_r;
7432 if (i386_record_lea_modrm (&ir))
7433 return -1;
7434 break;
7435
7436 /* Add prefix to opcode. */
7437 case 0x0f10:
7438 case 0x0f11:
7439 case 0x0f12:
7440 case 0x0f13:
7441 case 0x0f14:
7442 case 0x0f15:
7443 case 0x0f16:
7444 case 0x0f17:
7445 case 0x0f28:
7446 case 0x0f29:
7447 case 0x0f2a:
7448 case 0x0f2b:
7449 case 0x0f2c:
7450 case 0x0f2d:
7451 case 0x0f2e:
7452 case 0x0f2f:
7453 case 0x0f38:
7454 case 0x0f39:
7455 case 0x0f3a:
7456 case 0x0f50:
7457 case 0x0f51:
7458 case 0x0f52:
7459 case 0x0f53:
7460 case 0x0f54:
7461 case 0x0f55:
7462 case 0x0f56:
7463 case 0x0f57:
7464 case 0x0f58:
7465 case 0x0f59:
7466 case 0x0f5a:
7467 case 0x0f5b:
7468 case 0x0f5c:
7469 case 0x0f5d:
7470 case 0x0f5e:
7471 case 0x0f5f:
7472 case 0x0f60:
7473 case 0x0f61:
7474 case 0x0f62:
7475 case 0x0f63:
7476 case 0x0f64:
7477 case 0x0f65:
7478 case 0x0f66:
7479 case 0x0f67:
7480 case 0x0f68:
7481 case 0x0f69:
7482 case 0x0f6a:
7483 case 0x0f6b:
7484 case 0x0f6c:
7485 case 0x0f6d:
7486 case 0x0f6e:
7487 case 0x0f6f:
7488 case 0x0f70:
7489 case 0x0f71:
7490 case 0x0f72:
7491 case 0x0f73:
7492 case 0x0f74:
7493 case 0x0f75:
7494 case 0x0f76:
7495 case 0x0f7c:
7496 case 0x0f7d:
7497 case 0x0f7e:
7498 case 0x0f7f:
7499 case 0x0fb8:
7500 case 0x0fc2:
7501 case 0x0fc4:
7502 case 0x0fc5:
7503 case 0x0fc6:
7504 case 0x0fd0:
7505 case 0x0fd1:
7506 case 0x0fd2:
7507 case 0x0fd3:
7508 case 0x0fd4:
7509 case 0x0fd5:
7510 case 0x0fd6:
7511 case 0x0fd7:
7512 case 0x0fd8:
7513 case 0x0fd9:
7514 case 0x0fda:
7515 case 0x0fdb:
7516 case 0x0fdc:
7517 case 0x0fdd:
7518 case 0x0fde:
7519 case 0x0fdf:
7520 case 0x0fe0:
7521 case 0x0fe1:
7522 case 0x0fe2:
7523 case 0x0fe3:
7524 case 0x0fe4:
7525 case 0x0fe5:
7526 case 0x0fe6:
7527 case 0x0fe7:
7528 case 0x0fe8:
7529 case 0x0fe9:
7530 case 0x0fea:
7531 case 0x0feb:
7532 case 0x0fec:
7533 case 0x0fed:
7534 case 0x0fee:
7535 case 0x0fef:
7536 case 0x0ff0:
7537 case 0x0ff1:
7538 case 0x0ff2:
7539 case 0x0ff3:
7540 case 0x0ff4:
7541 case 0x0ff5:
7542 case 0x0ff6:
7543 case 0x0ff7:
7544 case 0x0ff8:
7545 case 0x0ff9:
7546 case 0x0ffa:
7547 case 0x0ffb:
7548 case 0x0ffc:
7549 case 0x0ffd:
7550 case 0x0ffe:
f9fda3f5
L
7551 /* Mask out PREFIX_ADDR. */
7552 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7553 {
7554 case PREFIX_REPNZ:
7555 opcode |= 0xf20000;
7556 break;
7557 case PREFIX_DATA:
7558 opcode |= 0x660000;
7559 break;
7560 case PREFIX_REPZ:
7561 opcode |= 0xf30000;
7562 break;
7563 }
7564reswitch_prefix_add:
7565 switch (opcode)
7566 {
7567 case 0x0f38:
7568 case 0x660f38:
7569 case 0xf20f38:
7570 case 0x0f3a:
7571 case 0x660f3a:
4ffa4fc7
PA
7572 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7573 return -1;
a3c4230a
HZ
7574 ir.addr++;
7575 opcode = (uint32_t) opcode8 | opcode << 8;
7576 goto reswitch_prefix_add;
7577 break;
7578
7579 case 0x0f10: /* movups */
7580 case 0x660f10: /* movupd */
7581 case 0xf30f10: /* movss */
7582 case 0xf20f10: /* movsd */
7583 case 0x0f12: /* movlps */
7584 case 0x660f12: /* movlpd */
7585 case 0xf30f12: /* movsldup */
7586 case 0xf20f12: /* movddup */
7587 case 0x0f14: /* unpcklps */
7588 case 0x660f14: /* unpcklpd */
7589 case 0x0f15: /* unpckhps */
7590 case 0x660f15: /* unpckhpd */
7591 case 0x0f16: /* movhps */
7592 case 0x660f16: /* movhpd */
7593 case 0xf30f16: /* movshdup */
7594 case 0x0f28: /* movaps */
7595 case 0x660f28: /* movapd */
7596 case 0x0f2a: /* cvtpi2ps */
7597 case 0x660f2a: /* cvtpi2pd */
7598 case 0xf30f2a: /* cvtsi2ss */
7599 case 0xf20f2a: /* cvtsi2sd */
7600 case 0x0f2c: /* cvttps2pi */
7601 case 0x660f2c: /* cvttpd2pi */
7602 case 0x0f2d: /* cvtps2pi */
7603 case 0x660f2d: /* cvtpd2pi */
7604 case 0x660f3800: /* pshufb */
7605 case 0x660f3801: /* phaddw */
7606 case 0x660f3802: /* phaddd */
7607 case 0x660f3803: /* phaddsw */
7608 case 0x660f3804: /* pmaddubsw */
7609 case 0x660f3805: /* phsubw */
7610 case 0x660f3806: /* phsubd */
4f7d61a8 7611 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7612 case 0x660f3808: /* psignb */
7613 case 0x660f3809: /* psignw */
7614 case 0x660f380a: /* psignd */
7615 case 0x660f380b: /* pmulhrsw */
7616 case 0x660f3810: /* pblendvb */
7617 case 0x660f3814: /* blendvps */
7618 case 0x660f3815: /* blendvpd */
7619 case 0x660f381c: /* pabsb */
7620 case 0x660f381d: /* pabsw */
7621 case 0x660f381e: /* pabsd */
7622 case 0x660f3820: /* pmovsxbw */
7623 case 0x660f3821: /* pmovsxbd */
7624 case 0x660f3822: /* pmovsxbq */
7625 case 0x660f3823: /* pmovsxwd */
7626 case 0x660f3824: /* pmovsxwq */
7627 case 0x660f3825: /* pmovsxdq */
7628 case 0x660f3828: /* pmuldq */
7629 case 0x660f3829: /* pcmpeqq */
7630 case 0x660f382a: /* movntdqa */
7631 case 0x660f3a08: /* roundps */
7632 case 0x660f3a09: /* roundpd */
7633 case 0x660f3a0a: /* roundss */
7634 case 0x660f3a0b: /* roundsd */
7635 case 0x660f3a0c: /* blendps */
7636 case 0x660f3a0d: /* blendpd */
7637 case 0x660f3a0e: /* pblendw */
7638 case 0x660f3a0f: /* palignr */
7639 case 0x660f3a20: /* pinsrb */
7640 case 0x660f3a21: /* insertps */
7641 case 0x660f3a22: /* pinsrd pinsrq */
7642 case 0x660f3a40: /* dpps */
7643 case 0x660f3a41: /* dppd */
7644 case 0x660f3a42: /* mpsadbw */
7645 case 0x660f3a60: /* pcmpestrm */
7646 case 0x660f3a61: /* pcmpestri */
7647 case 0x660f3a62: /* pcmpistrm */
7648 case 0x660f3a63: /* pcmpistri */
7649 case 0x0f51: /* sqrtps */
7650 case 0x660f51: /* sqrtpd */
7651 case 0xf20f51: /* sqrtsd */
7652 case 0xf30f51: /* sqrtss */
7653 case 0x0f52: /* rsqrtps */
7654 case 0xf30f52: /* rsqrtss */
7655 case 0x0f53: /* rcpps */
7656 case 0xf30f53: /* rcpss */
7657 case 0x0f54: /* andps */
7658 case 0x660f54: /* andpd */
7659 case 0x0f55: /* andnps */
7660 case 0x660f55: /* andnpd */
7661 case 0x0f56: /* orps */
7662 case 0x660f56: /* orpd */
7663 case 0x0f57: /* xorps */
7664 case 0x660f57: /* xorpd */
7665 case 0x0f58: /* addps */
7666 case 0x660f58: /* addpd */
7667 case 0xf20f58: /* addsd */
7668 case 0xf30f58: /* addss */
7669 case 0x0f59: /* mulps */
7670 case 0x660f59: /* mulpd */
7671 case 0xf20f59: /* mulsd */
7672 case 0xf30f59: /* mulss */
7673 case 0x0f5a: /* cvtps2pd */
7674 case 0x660f5a: /* cvtpd2ps */
7675 case 0xf20f5a: /* cvtsd2ss */
7676 case 0xf30f5a: /* cvtss2sd */
7677 case 0x0f5b: /* cvtdq2ps */
7678 case 0x660f5b: /* cvtps2dq */
7679 case 0xf30f5b: /* cvttps2dq */
7680 case 0x0f5c: /* subps */
7681 case 0x660f5c: /* subpd */
7682 case 0xf20f5c: /* subsd */
7683 case 0xf30f5c: /* subss */
7684 case 0x0f5d: /* minps */
7685 case 0x660f5d: /* minpd */
7686 case 0xf20f5d: /* minsd */
7687 case 0xf30f5d: /* minss */
7688 case 0x0f5e: /* divps */
7689 case 0x660f5e: /* divpd */
7690 case 0xf20f5e: /* divsd */
7691 case 0xf30f5e: /* divss */
7692 case 0x0f5f: /* maxps */
7693 case 0x660f5f: /* maxpd */
7694 case 0xf20f5f: /* maxsd */
7695 case 0xf30f5f: /* maxss */
7696 case 0x660f60: /* punpcklbw */
7697 case 0x660f61: /* punpcklwd */
7698 case 0x660f62: /* punpckldq */
7699 case 0x660f63: /* packsswb */
7700 case 0x660f64: /* pcmpgtb */
7701 case 0x660f65: /* pcmpgtw */
56d2815c 7702 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7703 case 0x660f67: /* packuswb */
7704 case 0x660f68: /* punpckhbw */
7705 case 0x660f69: /* punpckhwd */
7706 case 0x660f6a: /* punpckhdq */
7707 case 0x660f6b: /* packssdw */
7708 case 0x660f6c: /* punpcklqdq */
7709 case 0x660f6d: /* punpckhqdq */
7710 case 0x660f6e: /* movd */
7711 case 0x660f6f: /* movdqa */
7712 case 0xf30f6f: /* movdqu */
7713 case 0x660f70: /* pshufd */
7714 case 0xf20f70: /* pshuflw */
7715 case 0xf30f70: /* pshufhw */
7716 case 0x660f74: /* pcmpeqb */
7717 case 0x660f75: /* pcmpeqw */
56d2815c 7718 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7719 case 0x660f7c: /* haddpd */
7720 case 0xf20f7c: /* haddps */
7721 case 0x660f7d: /* hsubpd */
7722 case 0xf20f7d: /* hsubps */
7723 case 0xf30f7e: /* movq */
7724 case 0x0fc2: /* cmpps */
7725 case 0x660fc2: /* cmppd */
7726 case 0xf20fc2: /* cmpsd */
7727 case 0xf30fc2: /* cmpss */
7728 case 0x660fc4: /* pinsrw */
7729 case 0x0fc6: /* shufps */
7730 case 0x660fc6: /* shufpd */
7731 case 0x660fd0: /* addsubpd */
7732 case 0xf20fd0: /* addsubps */
7733 case 0x660fd1: /* psrlw */
7734 case 0x660fd2: /* psrld */
7735 case 0x660fd3: /* psrlq */
7736 case 0x660fd4: /* paddq */
7737 case 0x660fd5: /* pmullw */
7738 case 0xf30fd6: /* movq2dq */
7739 case 0x660fd8: /* psubusb */
7740 case 0x660fd9: /* psubusw */
7741 case 0x660fda: /* pminub */
7742 case 0x660fdb: /* pand */
7743 case 0x660fdc: /* paddusb */
7744 case 0x660fdd: /* paddusw */
7745 case 0x660fde: /* pmaxub */
7746 case 0x660fdf: /* pandn */
7747 case 0x660fe0: /* pavgb */
7748 case 0x660fe1: /* psraw */
7749 case 0x660fe2: /* psrad */
7750 case 0x660fe3: /* pavgw */
7751 case 0x660fe4: /* pmulhuw */
7752 case 0x660fe5: /* pmulhw */
7753 case 0x660fe6: /* cvttpd2dq */
7754 case 0xf20fe6: /* cvtpd2dq */
7755 case 0xf30fe6: /* cvtdq2pd */
7756 case 0x660fe8: /* psubsb */
7757 case 0x660fe9: /* psubsw */
7758 case 0x660fea: /* pminsw */
7759 case 0x660feb: /* por */
7760 case 0x660fec: /* paddsb */
7761 case 0x660fed: /* paddsw */
7762 case 0x660fee: /* pmaxsw */
7763 case 0x660fef: /* pxor */
4f7d61a8 7764 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7765 case 0x660ff1: /* psllw */
7766 case 0x660ff2: /* pslld */
7767 case 0x660ff3: /* psllq */
7768 case 0x660ff4: /* pmuludq */
7769 case 0x660ff5: /* pmaddwd */
7770 case 0x660ff6: /* psadbw */
7771 case 0x660ff8: /* psubb */
7772 case 0x660ff9: /* psubw */
56d2815c 7773 case 0x660ffa: /* psubd */
a3c4230a
HZ
7774 case 0x660ffb: /* psubq */
7775 case 0x660ffc: /* paddb */
7776 case 0x660ffd: /* paddw */
56d2815c 7777 case 0x660ffe: /* paddd */
a3c4230a
HZ
7778 if (i386_record_modrm (&ir))
7779 return -1;
7780 ir.reg |= rex_r;
c131fcee 7781 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7782 goto no_support;
25ea693b
MM
7783 record_full_arch_list_add_reg (ir.regcache,
7784 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7785 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7786 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7787 break;
7788
7789 case 0x0f11: /* movups */
7790 case 0x660f11: /* movupd */
7791 case 0xf30f11: /* movss */
7792 case 0xf20f11: /* movsd */
7793 case 0x0f13: /* movlps */
7794 case 0x660f13: /* movlpd */
7795 case 0x0f17: /* movhps */
7796 case 0x660f17: /* movhpd */
7797 case 0x0f29: /* movaps */
7798 case 0x660f29: /* movapd */
7799 case 0x660f3a14: /* pextrb */
7800 case 0x660f3a15: /* pextrw */
7801 case 0x660f3a16: /* pextrd pextrq */
7802 case 0x660f3a17: /* extractps */
7803 case 0x660f7f: /* movdqa */
7804 case 0xf30f7f: /* movdqu */
7805 if (i386_record_modrm (&ir))
7806 return -1;
7807 if (ir.mod == 3)
7808 {
7809 if (opcode == 0x0f13 || opcode == 0x660f13
7810 || opcode == 0x0f17 || opcode == 0x660f17)
7811 goto no_support;
7812 ir.rm |= ir.rex_b;
1777feb0
MS
7813 if (!i386_xmm_regnum_p (gdbarch,
7814 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7815 goto no_support;
25ea693b
MM
7816 record_full_arch_list_add_reg (ir.regcache,
7817 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7818 }
7819 else
7820 {
7821 switch (opcode)
7822 {
7823 case 0x660f3a14:
7824 ir.ot = OT_BYTE;
7825 break;
7826 case 0x660f3a15:
7827 ir.ot = OT_WORD;
7828 break;
7829 case 0x660f3a16:
7830 ir.ot = OT_LONG;
7831 break;
7832 case 0x660f3a17:
7833 ir.ot = OT_QUAD;
7834 break;
7835 default:
7836 ir.ot = OT_DQUAD;
7837 break;
7838 }
7839 if (i386_record_lea_modrm (&ir))
7840 return -1;
7841 }
7842 break;
7843
7844 case 0x0f2b: /* movntps */
7845 case 0x660f2b: /* movntpd */
7846 case 0x0fe7: /* movntq */
7847 case 0x660fe7: /* movntdq */
7848 if (ir.mod == 3)
7849 goto no_support;
7850 if (opcode == 0x0fe7)
7851 ir.ot = OT_QUAD;
7852 else
7853 ir.ot = OT_DQUAD;
7854 if (i386_record_lea_modrm (&ir))
7855 return -1;
7856 break;
7857
7858 case 0xf30f2c: /* cvttss2si */
7859 case 0xf20f2c: /* cvttsd2si */
7860 case 0xf30f2d: /* cvtss2si */
7861 case 0xf20f2d: /* cvtsd2si */
7862 case 0xf20f38f0: /* crc32 */
7863 case 0xf20f38f1: /* crc32 */
7864 case 0x0f50: /* movmskps */
7865 case 0x660f50: /* movmskpd */
7866 case 0x0fc5: /* pextrw */
7867 case 0x660fc5: /* pextrw */
7868 case 0x0fd7: /* pmovmskb */
7869 case 0x660fd7: /* pmovmskb */
25ea693b 7870 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7871 break;
7872
7873 case 0x0f3800: /* pshufb */
7874 case 0x0f3801: /* phaddw */
7875 case 0x0f3802: /* phaddd */
7876 case 0x0f3803: /* phaddsw */
7877 case 0x0f3804: /* pmaddubsw */
7878 case 0x0f3805: /* phsubw */
7879 case 0x0f3806: /* phsubd */
4f7d61a8 7880 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7881 case 0x0f3808: /* psignb */
7882 case 0x0f3809: /* psignw */
7883 case 0x0f380a: /* psignd */
7884 case 0x0f380b: /* pmulhrsw */
7885 case 0x0f381c: /* pabsb */
7886 case 0x0f381d: /* pabsw */
7887 case 0x0f381e: /* pabsd */
7888 case 0x0f382b: /* packusdw */
7889 case 0x0f3830: /* pmovzxbw */
7890 case 0x0f3831: /* pmovzxbd */
7891 case 0x0f3832: /* pmovzxbq */
7892 case 0x0f3833: /* pmovzxwd */
7893 case 0x0f3834: /* pmovzxwq */
7894 case 0x0f3835: /* pmovzxdq */
7895 case 0x0f3837: /* pcmpgtq */
7896 case 0x0f3838: /* pminsb */
7897 case 0x0f3839: /* pminsd */
7898 case 0x0f383a: /* pminuw */
7899 case 0x0f383b: /* pminud */
7900 case 0x0f383c: /* pmaxsb */
7901 case 0x0f383d: /* pmaxsd */
7902 case 0x0f383e: /* pmaxuw */
7903 case 0x0f383f: /* pmaxud */
7904 case 0x0f3840: /* pmulld */
7905 case 0x0f3841: /* phminposuw */
7906 case 0x0f3a0f: /* palignr */
7907 case 0x0f60: /* punpcklbw */
7908 case 0x0f61: /* punpcklwd */
7909 case 0x0f62: /* punpckldq */
7910 case 0x0f63: /* packsswb */
7911 case 0x0f64: /* pcmpgtb */
7912 case 0x0f65: /* pcmpgtw */
56d2815c 7913 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7914 case 0x0f67: /* packuswb */
7915 case 0x0f68: /* punpckhbw */
7916 case 0x0f69: /* punpckhwd */
7917 case 0x0f6a: /* punpckhdq */
7918 case 0x0f6b: /* packssdw */
7919 case 0x0f6e: /* movd */
7920 case 0x0f6f: /* movq */
7921 case 0x0f70: /* pshufw */
7922 case 0x0f74: /* pcmpeqb */
7923 case 0x0f75: /* pcmpeqw */
56d2815c 7924 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7925 case 0x0fc4: /* pinsrw */
7926 case 0x0fd1: /* psrlw */
7927 case 0x0fd2: /* psrld */
7928 case 0x0fd3: /* psrlq */
7929 case 0x0fd4: /* paddq */
7930 case 0x0fd5: /* pmullw */
7931 case 0xf20fd6: /* movdq2q */
7932 case 0x0fd8: /* psubusb */
7933 case 0x0fd9: /* psubusw */
7934 case 0x0fda: /* pminub */
7935 case 0x0fdb: /* pand */
7936 case 0x0fdc: /* paddusb */
7937 case 0x0fdd: /* paddusw */
7938 case 0x0fde: /* pmaxub */
7939 case 0x0fdf: /* pandn */
7940 case 0x0fe0: /* pavgb */
7941 case 0x0fe1: /* psraw */
7942 case 0x0fe2: /* psrad */
7943 case 0x0fe3: /* pavgw */
7944 case 0x0fe4: /* pmulhuw */
7945 case 0x0fe5: /* pmulhw */
7946 case 0x0fe8: /* psubsb */
7947 case 0x0fe9: /* psubsw */
7948 case 0x0fea: /* pminsw */
7949 case 0x0feb: /* por */
7950 case 0x0fec: /* paddsb */
7951 case 0x0fed: /* paddsw */
7952 case 0x0fee: /* pmaxsw */
7953 case 0x0fef: /* pxor */
7954 case 0x0ff1: /* psllw */
7955 case 0x0ff2: /* pslld */
7956 case 0x0ff3: /* psllq */
7957 case 0x0ff4: /* pmuludq */
7958 case 0x0ff5: /* pmaddwd */
7959 case 0x0ff6: /* psadbw */
7960 case 0x0ff8: /* psubb */
7961 case 0x0ff9: /* psubw */
56d2815c 7962 case 0x0ffa: /* psubd */
a3c4230a
HZ
7963 case 0x0ffb: /* psubq */
7964 case 0x0ffc: /* paddb */
7965 case 0x0ffd: /* paddw */
56d2815c 7966 case 0x0ffe: /* paddd */
a3c4230a
HZ
7967 if (i386_record_modrm (&ir))
7968 return -1;
7969 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7970 goto no_support;
25ea693b
MM
7971 record_full_arch_list_add_reg (ir.regcache,
7972 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7973 break;
7974
7975 case 0x0f71: /* psllw */
7976 case 0x0f72: /* pslld */
7977 case 0x0f73: /* psllq */
7978 if (i386_record_modrm (&ir))
7979 return -1;
7980 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7981 goto no_support;
25ea693b
MM
7982 record_full_arch_list_add_reg (ir.regcache,
7983 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7984 break;
7985
7986 case 0x660f71: /* psllw */
7987 case 0x660f72: /* pslld */
7988 case 0x660f73: /* psllq */
7989 if (i386_record_modrm (&ir))
7990 return -1;
7991 ir.rm |= ir.rex_b;
c131fcee 7992 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7993 goto no_support;
25ea693b
MM
7994 record_full_arch_list_add_reg (ir.regcache,
7995 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7996 break;
7997
7998 case 0x0f7e: /* movd */
7999 case 0x660f7e: /* movd */
8000 if (i386_record_modrm (&ir))
8001 return -1;
8002 if (ir.mod == 3)
25ea693b 8003 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
8004 else
8005 {
8006 if (ir.dflag == 2)
8007 ir.ot = OT_QUAD;
8008 else
8009 ir.ot = OT_LONG;
8010 if (i386_record_lea_modrm (&ir))
8011 return -1;
8012 }
8013 break;
8014
8015 case 0x0f7f: /* movq */
8016 if (i386_record_modrm (&ir))
8017 return -1;
8018 if (ir.mod == 3)
8019 {
8020 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
8021 goto no_support;
25ea693b
MM
8022 record_full_arch_list_add_reg (ir.regcache,
8023 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8024 }
8025 else
8026 {
8027 ir.ot = OT_QUAD;
8028 if (i386_record_lea_modrm (&ir))
8029 return -1;
8030 }
8031 break;
8032
8033 case 0xf30fb8: /* popcnt */
8034 if (i386_record_modrm (&ir))
8035 return -1;
25ea693b
MM
8036 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
8037 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8038 break;
8039
8040 case 0x660fd6: /* movq */
8041 if (i386_record_modrm (&ir))
8042 return -1;
8043 if (ir.mod == 3)
8044 {
8045 ir.rm |= ir.rex_b;
1777feb0
MS
8046 if (!i386_xmm_regnum_p (gdbarch,
8047 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 8048 goto no_support;
25ea693b
MM
8049 record_full_arch_list_add_reg (ir.regcache,
8050 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
8051 }
8052 else
8053 {
8054 ir.ot = OT_QUAD;
8055 if (i386_record_lea_modrm (&ir))
8056 return -1;
8057 }
8058 break;
8059
8060 case 0x660f3817: /* ptest */
8061 case 0x0f2e: /* ucomiss */
8062 case 0x660f2e: /* ucomisd */
8063 case 0x0f2f: /* comiss */
8064 case 0x660f2f: /* comisd */
25ea693b 8065 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8066 break;
8067
8068 case 0x0ff7: /* maskmovq */
8069 regcache_raw_read_unsigned (ir.regcache,
8070 ir.regmap[X86_RECORD_REDI_REGNUM],
8071 &addr);
25ea693b 8072 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8073 return -1;
8074 break;
8075
8076 case 0x660ff7: /* maskmovdqu */
8077 regcache_raw_read_unsigned (ir.regcache,
8078 ir.regmap[X86_RECORD_REDI_REGNUM],
8079 &addr);
25ea693b 8080 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8081 return -1;
8082 break;
8083
8084 default:
8085 goto no_support;
8086 break;
8087 }
8088 break;
7ad10968
HZ
8089
8090 default:
7ad10968
HZ
8091 goto no_support;
8092 break;
8093 }
8094
cf648174 8095 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8097 if (record_full_arch_list_add_end ())
7ad10968
HZ
8098 return -1;
8099
8100 return 0;
8101
01fe1b41 8102 no_support:
a3c4230a
HZ
8103 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8104 "at address %s.\n"),
8105 (unsigned int) (opcode),
8106 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8107 return -1;
8108}
8109
cf648174
HZ
8110static const int i386_record_regmap[] =
8111{
8112 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8113 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8114 0, 0, 0, 0, 0, 0, 0, 0,
8115 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8116 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8117};
8118
7a697b8d 8119/* Check that the given address appears suitable for a fast
405f8e94 8120 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8121 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8122 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8123 middle of the tracepoint jump. On x86, it may be possible to use
8124 4-byte jumps with a 2-byte offset to a trampoline located in the
8125 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8126 of instruction to replace, and 0 if not, plus an explanatory
8127 string. */
8128
8129static int
6b940e6a
PL
8130i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch, CORE_ADDR addr,
8131 char **msg)
7a697b8d
SS
8132{
8133 int len, jumplen;
7a697b8d 8134
405f8e94
SS
8135 /* Ask the target for the minimum instruction length supported. */
8136 jumplen = target_get_min_fast_tracepoint_insn_len ();
8137
8138 if (jumplen < 0)
8139 {
8140 /* If the target does not support the get_min_fast_tracepoint_insn_len
8141 operation, assume that fast tracepoints will always be implemented
8142 using 4-byte relative jumps on both x86 and x86-64. */
8143 jumplen = 5;
8144 }
8145 else if (jumplen == 0)
8146 {
8147 /* If the target does support get_min_fast_tracepoint_insn_len but
8148 returns zero, then the IPA has not loaded yet. In this case,
8149 we optimistically assume that truncated 2-byte relative jumps
8150 will be available on x86, and compensate later if this assumption
8151 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8152 jumps will always be used. */
8153 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8154 }
7a697b8d 8155
7a697b8d 8156 /* Check for fit. */
be85ce7d 8157 len = gdb_insn_length (gdbarch, addr);
405f8e94 8158
7a697b8d
SS
8159 if (len < jumplen)
8160 {
8161 /* Return a bit of target-specific detail to add to the caller's
8162 generic failure message. */
8163 if (msg)
1777feb0
MS
8164 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8165 "need at least %d bytes for the jump"),
7a697b8d
SS
8166 len, jumplen);
8167 return 0;
8168 }
405f8e94
SS
8169 else
8170 {
8171 if (msg)
8172 *msg = NULL;
8173 return 1;
8174 }
7a697b8d
SS
8175}
8176
00d5215e
UW
8177/* Return a floating-point format for a floating-point variable of
8178 length LEN in bits. If non-NULL, NAME is the name of its type.
8179 If no suitable type is found, return NULL. */
8180
8181const struct floatformat **
8182i386_floatformat_for_type (struct gdbarch *gdbarch,
8183 const char *name, int len)
8184{
8185 if (len == 128 && name)
8186 if (strcmp (name, "__float128") == 0
8187 || strcmp (name, "_Float128") == 0
8188 || strcmp (name, "complex _Float128") == 0)
8189 return floatformats_ia64_quad;
8190
8191 return default_floatformat_for_type (gdbarch, name, len);
8192}
8193
90884b2b
L
8194static int
8195i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8196 struct tdesc_arch_data *tdesc_data)
8197{
8198 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8199 const struct tdesc_feature *feature_core;
01f9f808
MS
8200
8201 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
51547df6 8202 *feature_avx512, *feature_pkeys;
90884b2b
L
8203 int i, num_regs, valid_p;
8204
8205 if (! tdesc_has_registers (tdesc))
8206 return 0;
8207
8208 /* Get core registers. */
8209 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8210 if (feature_core == NULL)
8211 return 0;
90884b2b
L
8212
8213 /* Get SSE registers. */
c131fcee 8214 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8215
c131fcee
L
8216 /* Try AVX registers. */
8217 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8218
1dbcd68c
WT
8219 /* Try MPX registers. */
8220 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8221
01f9f808
MS
8222 /* Try AVX512 registers. */
8223 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8224
51547df6
MS
8225 /* Try PKEYS */
8226 feature_pkeys = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys");
8227
90884b2b
L
8228 valid_p = 1;
8229
c131fcee 8230 /* The XCR0 bits. */
01f9f808
MS
8231 if (feature_avx512)
8232 {
8233 /* AVX512 register description requires AVX register description. */
8234 if (!feature_avx)
8235 return 0;
8236
a1fa17ee 8237 tdep->xcr0 = X86_XSTATE_AVX_AVX512_MASK;
01f9f808
MS
8238
8239 /* It may have been set by OSABI initialization function. */
8240 if (tdep->k0_regnum < 0)
8241 {
8242 tdep->k_register_names = i386_k_names;
8243 tdep->k0_regnum = I386_K0_REGNUM;
8244 }
8245
8246 for (i = 0; i < I387_NUM_K_REGS; i++)
8247 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8248 tdep->k0_regnum + i,
8249 i386_k_names[i]);
8250
8251 if (tdep->num_zmm_regs == 0)
8252 {
8253 tdep->zmmh_register_names = i386_zmmh_names;
8254 tdep->num_zmm_regs = 8;
8255 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8256 }
8257
8258 for (i = 0; i < tdep->num_zmm_regs; i++)
8259 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8260 tdep->zmm0h_regnum + i,
8261 tdep->zmmh_register_names[i]);
8262
8263 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8264 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8265 tdep->xmm16_regnum + i,
8266 tdep->xmm_avx512_register_names[i]);
8267
8268 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8269 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8270 tdep->ymm16h_regnum + i,
8271 tdep->ymm16h_register_names[i]);
8272 }
c131fcee
L
8273 if (feature_avx)
8274 {
3a13a53b
L
8275 /* AVX register description requires SSE register description. */
8276 if (!feature_sse)
8277 return 0;
8278
01f9f808 8279 if (!feature_avx512)
df7e5265 8280 tdep->xcr0 = X86_XSTATE_AVX_MASK;
c131fcee
L
8281
8282 /* It may have been set by OSABI initialization function. */
8283 if (tdep->num_ymm_regs == 0)
8284 {
8285 tdep->ymmh_register_names = i386_ymmh_names;
8286 tdep->num_ymm_regs = 8;
8287 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8288 }
8289
8290 for (i = 0; i < tdep->num_ymm_regs; i++)
8291 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8292 tdep->ymm0h_regnum + i,
8293 tdep->ymmh_register_names[i]);
8294 }
3a13a53b 8295 else if (feature_sse)
df7e5265 8296 tdep->xcr0 = X86_XSTATE_SSE_MASK;
3a13a53b
L
8297 else
8298 {
df7e5265 8299 tdep->xcr0 = X86_XSTATE_X87_MASK;
3a13a53b
L
8300 tdep->num_xmm_regs = 0;
8301 }
c131fcee 8302
90884b2b
L
8303 num_regs = tdep->num_core_regs;
8304 for (i = 0; i < num_regs; i++)
8305 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8306 tdep->register_names[i]);
8307
3a13a53b
L
8308 if (feature_sse)
8309 {
8310 /* Need to include %mxcsr, so add one. */
8311 num_regs += tdep->num_xmm_regs + 1;
8312 for (; i < num_regs; i++)
8313 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8314 tdep->register_names[i]);
8315 }
90884b2b 8316
1dbcd68c
WT
8317 if (feature_mpx)
8318 {
df7e5265 8319 tdep->xcr0 |= X86_XSTATE_MPX_MASK;
1dbcd68c
WT
8320
8321 if (tdep->bnd0r_regnum < 0)
8322 {
8323 tdep->mpx_register_names = i386_mpx_names;
8324 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8325 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8326 }
8327
8328 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8329 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8330 I387_BND0R_REGNUM (tdep) + i,
8331 tdep->mpx_register_names[i]);
8332 }
8333
51547df6
MS
8334 if (feature_pkeys)
8335 {
8336 tdep->xcr0 |= X86_XSTATE_PKRU;
8337 if (tdep->pkru_regnum < 0)
8338 {
8339 tdep->pkeys_register_names = i386_pkeys_names;
8340 tdep->pkru_regnum = I386_PKRU_REGNUM;
8341 tdep->num_pkeys_regs = 1;
8342 }
8343
8344 for (i = 0; i < I387_NUM_PKEYS_REGS; i++)
8345 valid_p &= tdesc_numbered_register (feature_pkeys, tdesc_data,
8346 I387_PKRU_REGNUM (tdep) + i,
8347 tdep->pkeys_register_names[i]);
8348 }
8349
90884b2b
L
8350 return valid_p;
8351}
8352
7ad10968 8353\f
ad9eb1fd
DE
8354/* Note: This is called for both i386 and amd64. */
8355
7ad10968
HZ
8356static struct gdbarch *
8357i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8358{
8359 struct gdbarch_tdep *tdep;
8360 struct gdbarch *gdbarch;
90884b2b
L
8361 struct tdesc_arch_data *tdesc_data;
8362 const struct target_desc *tdesc;
1ba53b71 8363 int mm0_regnum;
c131fcee 8364 int ymm0_regnum;
1dbcd68c
WT
8365 int bnd0_regnum;
8366 int num_bnd_cooked;
7ad10968
HZ
8367
8368 /* If there is already a candidate, use it. */
8369 arches = gdbarch_list_lookup_by_info (arches, &info);
8370 if (arches != NULL)
8371 return arches->gdbarch;
8372
ad9eb1fd 8373 /* Allocate space for the new architecture. Assume i386 for now. */
fc270c35 8374 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8375 gdbarch = gdbarch_alloc (&info, tdep);
8376
8377 /* General-purpose registers. */
7ad10968
HZ
8378 tdep->gregset_reg_offset = NULL;
8379 tdep->gregset_num_regs = I386_NUM_GREGS;
8380 tdep->sizeof_gregset = 0;
8381
8382 /* Floating-point registers. */
7ad10968 8383 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8f0435f7 8384 tdep->fpregset = &i386_fpregset;
7ad10968
HZ
8385
8386 /* The default settings include the FPU registers, the MMX registers
8387 and the SSE registers. This can be overridden for a specific ABI
8388 by adjusting the members `st0_regnum', `mm0_regnum' and
8389 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8390 will show up in the output of "info all-registers". */
7ad10968
HZ
8391
8392 tdep->st0_regnum = I386_ST0_REGNUM;
8393
7ad10968
HZ
8394 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8395 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8396
8397 tdep->jb_pc_offset = -1;
8398 tdep->struct_return = pcc_struct_return;
8399 tdep->sigtramp_start = 0;
8400 tdep->sigtramp_end = 0;
8401 tdep->sigtramp_p = i386_sigtramp_p;
8402 tdep->sigcontext_addr = NULL;
8403 tdep->sc_reg_offset = NULL;
8404 tdep->sc_pc_offset = -1;
8405 tdep->sc_sp_offset = -1;
8406
c131fcee
L
8407 tdep->xsave_xcr0_offset = -1;
8408
cf648174
HZ
8409 tdep->record_regmap = i386_record_regmap;
8410
205c306f
DM
8411 set_gdbarch_long_long_align_bit (gdbarch, 32);
8412
7ad10968
HZ
8413 /* The format used for `long double' on almost all i386 targets is
8414 the i387 extended floating-point format. In fact, of all targets
8415 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8416 on having a `long double' that's not `long' at all. */
8417 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8418
8419 /* Although the i387 extended floating-point has only 80 significant
8420 bits, a `long double' actually takes up 96, probably to enforce
8421 alignment. */
8422 set_gdbarch_long_double_bit (gdbarch, 96);
8423
00d5215e
UW
8424 /* Support for floating-point data type variants. */
8425 set_gdbarch_floatformat_for_type (gdbarch, i386_floatformat_for_type);
8426
7ad10968
HZ
8427 /* Register numbers of various important registers. */
8428 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8429 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8430 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8431 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8432
8433 /* NOTE: kettenis/20040418: GCC does have two possible register
8434 numbering schemes on the i386: dbx and SVR4. These schemes
8435 differ in how they number %ebp, %esp, %eflags, and the
8436 floating-point registers, and are implemented by the arrays
8437 dbx_register_map[] and svr4_dbx_register_map in
8438 gcc/config/i386.c. GCC also defines a third numbering scheme in
8439 gcc/config/i386.c, which it designates as the "default" register
8440 map used in 64bit mode. This last register numbering scheme is
8441 implemented in dbx64_register_map, and is used for AMD64; see
8442 amd64-tdep.c.
8443
8444 Currently, each GCC i386 target always uses the same register
8445 numbering scheme across all its supported debugging formats
8446 i.e. SDB (COFF), stabs and DWARF 2. This is because
8447 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8448 DBX_REGISTER_NUMBER macro which is defined by each target's
8449 respective config header in a manner independent of the requested
8450 output debugging format.
8451
8452 This does not match the arrangement below, which presumes that
8453 the SDB and stabs numbering schemes differ from the DWARF and
8454 DWARF 2 ones. The reason for this arrangement is that it is
8455 likely to get the numbering scheme for the target's
8456 default/native debug format right. For targets where GCC is the
8457 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8458 targets where the native toolchain uses a different numbering
8459 scheme for a particular debug format (stabs-in-ELF on Solaris)
8460 the defaults below will have to be overridden, like
8461 i386_elf_init_abi() does. */
8462
8463 /* Use the dbx register numbering scheme for stabs and COFF. */
8464 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8465 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8466
8467 /* Use the SVR4 register numbering scheme for DWARF 2. */
0fde2c53 8468 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_dwarf_reg_to_regnum);
7ad10968
HZ
8469
8470 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8471 be in use on any of the supported i386 targets. */
8472
8473 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8474
8475 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8476
8477 /* Call dummy code. */
a9b8d892
JK
8478 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8479 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8480 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8481 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8482
8483 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8484 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8485 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8486
8487 set_gdbarch_return_value (gdbarch, i386_return_value);
8488
8489 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8490
8491 /* Stack grows downward. */
8492 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8493
04180708
YQ
8494 set_gdbarch_breakpoint_kind_from_pc (gdbarch, i386_breakpoint::kind_from_pc);
8495 set_gdbarch_sw_breakpoint_from_kind (gdbarch, i386_breakpoint::bp_from_kind);
8496
7ad10968
HZ
8497 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8498 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8499
8500 set_gdbarch_frame_args_skip (gdbarch, 8);
8501
7ad10968
HZ
8502 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8503
8504 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8505
8506 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8507
8508 /* Add the i386 register groups. */
8509 i386_add_reggroups (gdbarch);
90884b2b 8510 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8511
143985b7
AF
8512 /* Helper for function argument information. */
8513 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8514
06da04c6 8515 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8516 appended to the list first, so that it supercedes the DWARF
8517 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8518 currently fails). */
8519 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8520
8521 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8522 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8523 CFI info will be used if it is available. */
10458914 8524 dwarf2_append_unwinders (gdbarch);
6405b0a6 8525
acd5c798 8526 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8527
1ba53b71 8528 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8529 set_gdbarch_pseudo_register_read_value (gdbarch,
8530 i386_pseudo_register_read_value);
90884b2b 8531 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
62e5fd57
MK
8532 set_gdbarch_ax_pseudo_register_collect (gdbarch,
8533 i386_ax_pseudo_register_collect);
90884b2b
L
8534
8535 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8536 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8537
c131fcee
L
8538 /* Override the normal target description method to make the AVX
8539 upper halves anonymous. */
8540 set_gdbarch_register_name (gdbarch, i386_register_name);
8541
8542 /* Even though the default ABI only includes general-purpose registers,
8543 floating-point registers and the SSE registers, we have to leave a
01f9f808 8544 gap for the upper AVX, MPX and AVX512 registers. */
51547df6 8545 set_gdbarch_num_regs (gdbarch, I386_PKEYS_NUM_REGS);
90884b2b 8546
ac04f72b
TT
8547 set_gdbarch_gnu_triplet_regexp (gdbarch, i386_gnu_triplet_regexp);
8548
90884b2b
L
8549 /* Get the x86 target description from INFO. */
8550 tdesc = info.target_desc;
8551 if (! tdesc_has_registers (tdesc))
ca1fa5ee 8552 tdesc = i386_target_description (X86_XSTATE_SSE_MASK);
90884b2b
L
8553 tdep->tdesc = tdesc;
8554
8555 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8556 tdep->register_names = i386_register_names;
8557
c131fcee
L
8558 /* No upper YMM registers. */
8559 tdep->ymmh_register_names = NULL;
8560 tdep->ymm0h_regnum = -1;
8561
01f9f808
MS
8562 /* No upper ZMM registers. */
8563 tdep->zmmh_register_names = NULL;
8564 tdep->zmm0h_regnum = -1;
8565
8566 /* No high XMM registers. */
8567 tdep->xmm_avx512_register_names = NULL;
8568 tdep->xmm16_regnum = -1;
8569
8570 /* No upper YMM16-31 registers. */
8571 tdep->ymm16h_register_names = NULL;
8572 tdep->ymm16h_regnum = -1;
8573
1ba53b71
L
8574 tdep->num_byte_regs = 8;
8575 tdep->num_word_regs = 8;
8576 tdep->num_dword_regs = 0;
8577 tdep->num_mmx_regs = 8;
c131fcee 8578 tdep->num_ymm_regs = 0;
1ba53b71 8579
1dbcd68c
WT
8580 /* No MPX registers. */
8581 tdep->bnd0r_regnum = -1;
8582 tdep->bndcfgu_regnum = -1;
8583
01f9f808
MS
8584 /* No AVX512 registers. */
8585 tdep->k0_regnum = -1;
8586 tdep->num_zmm_regs = 0;
8587 tdep->num_ymm_avx512_regs = 0;
8588 tdep->num_xmm_avx512_regs = 0;
8589
51547df6
MS
8590 /* No PKEYS registers */
8591 tdep->pkru_regnum = -1;
8592 tdep->num_pkeys_regs = 0;
8593
90884b2b
L
8594 tdesc_data = tdesc_data_alloc ();
8595
dde08ee1
PA
8596 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8597
6710bf39
SS
8598 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8599
c2170eef
MM
8600 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8601 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8602 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8603
ad9eb1fd
DE
8604 /* Hook in ABI-specific overrides, if they have been registered.
8605 Note: If INFO specifies a 64 bit arch, this is where we turn
8606 a 32-bit i386 into a 64-bit amd64. */
0dba2a6c 8607 info.tdesc_data = tdesc_data;
4be87837 8608 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8609
c131fcee
L
8610 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8611 {
8612 tdesc_data_cleanup (tdesc_data);
8613 xfree (tdep);
8614 gdbarch_free (gdbarch);
8615 return NULL;
8616 }
8617
1dbcd68c
WT
8618 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8619
1ba53b71
L
8620 /* Wire in pseudo registers. Number of pseudo registers may be
8621 changed. */
8622 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8623 + tdep->num_word_regs
8624 + tdep->num_dword_regs
c131fcee 8625 + tdep->num_mmx_regs
1dbcd68c 8626 + tdep->num_ymm_regs
01f9f808
MS
8627 + num_bnd_cooked
8628 + tdep->num_ymm_avx512_regs
8629 + tdep->num_zmm_regs));
1ba53b71 8630
90884b2b
L
8631 /* Target description may be changed. */
8632 tdesc = tdep->tdesc;
8633
90884b2b
L
8634 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8635
8636 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8637 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8638
1ba53b71
L
8639 /* Make %al the first pseudo-register. */
8640 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8641 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8642
c131fcee 8643 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8644 if (tdep->num_dword_regs)
8645 {
1c6272a6 8646 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8647 tdep->eax_regnum = ymm0_regnum;
8648 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8649 }
8650 else
8651 tdep->eax_regnum = -1;
8652
c131fcee
L
8653 mm0_regnum = ymm0_regnum;
8654 if (tdep->num_ymm_regs)
8655 {
1c6272a6 8656 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8657 tdep->ymm0_regnum = ymm0_regnum;
8658 mm0_regnum += tdep->num_ymm_regs;
8659 }
8660 else
8661 tdep->ymm0_regnum = -1;
8662
01f9f808
MS
8663 if (tdep->num_ymm_avx512_regs)
8664 {
8665 /* Support YMM16-31 pseudo registers if available. */
8666 tdep->ymm16_regnum = mm0_regnum;
8667 mm0_regnum += tdep->num_ymm_avx512_regs;
8668 }
8669 else
8670 tdep->ymm16_regnum = -1;
8671
8672 if (tdep->num_zmm_regs)
8673 {
8674 /* Support ZMM pseudo-register if it is available. */
8675 tdep->zmm0_regnum = mm0_regnum;
8676 mm0_regnum += tdep->num_zmm_regs;
8677 }
8678 else
8679 tdep->zmm0_regnum = -1;
8680
1dbcd68c 8681 bnd0_regnum = mm0_regnum;
1ba53b71
L
8682 if (tdep->num_mmx_regs != 0)
8683 {
1c6272a6 8684 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8685 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8686 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8687 }
8688 else
8689 tdep->mm0_regnum = -1;
8690
1dbcd68c
WT
8691 if (tdep->bnd0r_regnum > 0)
8692 tdep->bnd0_regnum = bnd0_regnum;
8693 else
8694 tdep-> bnd0_regnum = -1;
8695
06da04c6 8696 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8697 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8698 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8699 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8700
8446b36a
MK
8701 /* If we have a register mapping, enable the generic core file
8702 support, unless it has already been enabled. */
8703 if (tdep->gregset_reg_offset
8f0435f7 8704 && !gdbarch_iterate_over_regset_sections_p (gdbarch))
490496c3
AA
8705 set_gdbarch_iterate_over_regset_sections
8706 (gdbarch, i386_iterate_over_regset_sections);
8446b36a 8707
7a697b8d
SS
8708 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8709 i386_fast_tracepoint_valid_at);
8710
a62cc96e
AC
8711 return gdbarch;
8712}
8713
8201327c
MK
8714\f
8715
97de3545
JB
8716/* Return the target description for a specified XSAVE feature mask. */
8717
8718const struct target_desc *
8719i386_target_description (uint64_t xcr0)
8720{
8721 switch (xcr0 & X86_XSTATE_ALL_MASK)
8722 {
51547df6
MS
8723 case X86_XSTATE_AVX_MPX_AVX512_PKU_MASK:
8724 return tdesc_i386_avx_mpx_avx512_pku;
a1fa17ee
MS
8725 case X86_XSTATE_AVX_AVX512_MASK:
8726 return tdesc_i386_avx_avx512;
2b863f51
WT
8727 case X86_XSTATE_AVX_MPX_MASK:
8728 return tdesc_i386_avx_mpx;
97de3545
JB
8729 case X86_XSTATE_MPX_MASK:
8730 return tdesc_i386_mpx;
8731 case X86_XSTATE_AVX_MASK:
8732 return tdesc_i386_avx;
badc0020
YQ
8733 case X86_XSTATE_SSE_MASK:
8734 return tdesc_i386;
8735 case X86_XSTATE_X87_MASK:
8736 return tdesc_i386_mmx;
97de3545
JB
8737 default:
8738 return tdesc_i386;
8739 }
8740}
8741
29c1c244
WT
8742#define MPX_BASE_MASK (~(ULONGEST) 0xfff)
8743
8744/* Find the bound directory base address. */
8745
8746static unsigned long
8747i386_mpx_bd_base (void)
8748{
8749 struct regcache *rcache;
8750 struct gdbarch_tdep *tdep;
8751 ULONGEST ret;
8752 enum register_status regstatus;
29c1c244
WT
8753
8754 rcache = get_current_regcache ();
8755 tdep = gdbarch_tdep (get_regcache_arch (rcache));
8756
8757 regstatus = regcache_raw_read_unsigned (rcache, tdep->bndcfgu_regnum, &ret);
8758
8759 if (regstatus != REG_VALID)
8760 error (_("BNDCFGU register invalid, read status %d."), regstatus);
8761
8762 return ret & MPX_BASE_MASK;
8763}
8764
012b3a21 8765int
29c1c244
WT
8766i386_mpx_enabled (void)
8767{
8768 const struct gdbarch_tdep *tdep = gdbarch_tdep (get_current_arch ());
8769 const struct target_desc *tdesc = tdep->tdesc;
8770
8771 return (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL);
8772}
8773
8774#define MPX_BD_MASK 0xfffffff00000ULL /* select bits [47:20] */
8775#define MPX_BT_MASK 0x0000000ffff8 /* select bits [19:3] */
8776#define MPX_BD_MASK_32 0xfffff000 /* select bits [31:12] */
8777#define MPX_BT_MASK_32 0x00000ffc /* select bits [11:2] */
8778
8779/* Find the bound table entry given the pointer location and the base
8780 address of the table. */
8781
8782static CORE_ADDR
8783i386_mpx_get_bt_entry (CORE_ADDR ptr, CORE_ADDR bd_base)
8784{
8785 CORE_ADDR offset1;
8786 CORE_ADDR offset2;
8787 CORE_ADDR mpx_bd_mask, bd_ptr_r_shift, bd_ptr_l_shift;
8788 CORE_ADDR bt_mask, bt_select_r_shift, bt_select_l_shift;
8789 CORE_ADDR bd_entry_addr;
8790 CORE_ADDR bt_addr;
8791 CORE_ADDR bd_entry;
8792 struct gdbarch *gdbarch = get_current_arch ();
8793 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8794
8795
8796 if (gdbarch_ptr_bit (gdbarch) == 64)
8797 {
966f0aef 8798 mpx_bd_mask = (CORE_ADDR) MPX_BD_MASK;
29c1c244
WT
8799 bd_ptr_r_shift = 20;
8800 bd_ptr_l_shift = 3;
8801 bt_select_r_shift = 3;
8802 bt_select_l_shift = 5;
966f0aef
WT
8803 bt_mask = (CORE_ADDR) MPX_BT_MASK;
8804
8805 if ( sizeof (CORE_ADDR) == 4)
e00b3c9b
WT
8806 error (_("bound table examination not supported\
8807 for 64-bit process with 32-bit GDB"));
29c1c244
WT
8808 }
8809 else
8810 {
8811 mpx_bd_mask = MPX_BD_MASK_32;
8812 bd_ptr_r_shift = 12;
8813 bd_ptr_l_shift = 2;
8814 bt_select_r_shift = 2;
8815 bt_select_l_shift = 4;
8816 bt_mask = MPX_BT_MASK_32;
8817 }
8818
8819 offset1 = ((ptr & mpx_bd_mask) >> bd_ptr_r_shift) << bd_ptr_l_shift;
8820 bd_entry_addr = bd_base + offset1;
8821 bd_entry = read_memory_typed_address (bd_entry_addr, data_ptr_type);
8822
8823 if ((bd_entry & 0x1) == 0)
8824 error (_("Invalid bounds directory entry at %s."),
8825 paddress (get_current_arch (), bd_entry_addr));
8826
8827 /* Clearing status bit. */
8828 bd_entry--;
8829 bt_addr = bd_entry & ~bt_select_r_shift;
8830 offset2 = ((ptr & bt_mask) >> bt_select_r_shift) << bt_select_l_shift;
8831
8832 return bt_addr + offset2;
8833}
8834
8835/* Print routine for the mpx bounds. */
8836
8837static void
8838i386_mpx_print_bounds (const CORE_ADDR bt_entry[4])
8839{
8840 struct ui_out *uiout = current_uiout;
34f8ac9f 8841 LONGEST size;
29c1c244
WT
8842 struct gdbarch *gdbarch = get_current_arch ();
8843 CORE_ADDR onecompl = ~((CORE_ADDR) 0);
8844 int bounds_in_map = ((~bt_entry[1] == 0 && bt_entry[0] == onecompl) ? 1 : 0);
8845
8846 if (bounds_in_map == 1)
8847 {
112e8700
SM
8848 uiout->text ("Null bounds on map:");
8849 uiout->text (" pointer value = ");
8850 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
8851 uiout->text (".");
8852 uiout->text ("\n");
29c1c244
WT
8853 }
8854 else
8855 {
112e8700
SM
8856 uiout->text ("{lbound = ");
8857 uiout->field_core_addr ("lower-bound", gdbarch, bt_entry[0]);
8858 uiout->text (", ubound = ");
29c1c244
WT
8859
8860 /* The upper bound is stored in 1's complement. */
112e8700
SM
8861 uiout->field_core_addr ("upper-bound", gdbarch, ~bt_entry[1]);
8862 uiout->text ("}: pointer value = ");
8863 uiout->field_core_addr ("pointer-value", gdbarch, bt_entry[2]);
29c1c244
WT
8864
8865 if (gdbarch_ptr_bit (gdbarch) == 64)
8866 size = ( (~(int64_t) bt_entry[1]) - (int64_t) bt_entry[0]);
8867 else
8868 size = ( ~((int32_t) bt_entry[1]) - (int32_t) bt_entry[0]);
8869
8870 /* In case the bounds are 0x0 and 0xffff... the difference will be -1.
8871 -1 represents in this sense full memory access, and there is no need
8872 one to the size. */
8873
8874 size = (size > -1 ? size + 1 : size);
112e8700
SM
8875 uiout->text (", size = ");
8876 uiout->field_fmt ("size", "%s", plongest (size));
29c1c244 8877
112e8700
SM
8878 uiout->text (", metadata = ");
8879 uiout->field_core_addr ("metadata", gdbarch, bt_entry[3]);
8880 uiout->text ("\n");
29c1c244
WT
8881 }
8882}
8883
8884/* Implement the command "show mpx bound". */
8885
8886static void
8887i386_mpx_info_bounds (char *args, int from_tty)
8888{
8889 CORE_ADDR bd_base = 0;
8890 CORE_ADDR addr;
8891 CORE_ADDR bt_entry_addr = 0;
8892 CORE_ADDR bt_entry[4];
8893 int i;
8894 struct gdbarch *gdbarch = get_current_arch ();
8895 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8896
ae71e7b5
MR
8897 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8898 || !i386_mpx_enabled ())
118ca224 8899 {
bc504a31 8900 printf_unfiltered (_("Intel Memory Protection Extensions not "
118ca224
PP
8901 "supported on this target.\n"));
8902 return;
8903 }
29c1c244
WT
8904
8905 if (args == NULL)
118ca224
PP
8906 {
8907 printf_unfiltered (_("Address of pointer variable expected.\n"));
8908 return;
8909 }
29c1c244
WT
8910
8911 addr = parse_and_eval_address (args);
8912
8913 bd_base = i386_mpx_bd_base ();
8914 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8915
8916 memset (bt_entry, 0, sizeof (bt_entry));
8917
8918 for (i = 0; i < 4; i++)
8919 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8920 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8921 data_ptr_type);
8922
8923 i386_mpx_print_bounds (bt_entry);
8924}
8925
8926/* Implement the command "set mpx bound". */
8927
8928static void
8929i386_mpx_set_bounds (char *args, int from_tty)
8930{
8931 CORE_ADDR bd_base = 0;
8932 CORE_ADDR addr, lower, upper;
8933 CORE_ADDR bt_entry_addr = 0;
8934 CORE_ADDR bt_entry[2];
8935 const char *input = args;
8936 int i;
8937 struct gdbarch *gdbarch = get_current_arch ();
8938 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8939 struct type *data_ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
8940
ae71e7b5
MR
8941 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_i386
8942 || !i386_mpx_enabled ())
bc504a31 8943 error (_("Intel Memory Protection Extensions not supported\
29c1c244
WT
8944 on this target."));
8945
8946 if (args == NULL)
8947 error (_("Pointer value expected."));
8948
8949 addr = value_as_address (parse_to_comma_and_eval (&input));
8950
8951 if (input[0] == ',')
8952 ++input;
8953 if (input[0] == '\0')
8954 error (_("wrong number of arguments: missing lower and upper bound."));
8955 lower = value_as_address (parse_to_comma_and_eval (&input));
8956
8957 if (input[0] == ',')
8958 ++input;
8959 if (input[0] == '\0')
8960 error (_("Wrong number of arguments; Missing upper bound."));
8961 upper = value_as_address (parse_to_comma_and_eval (&input));
8962
8963 bd_base = i386_mpx_bd_base ();
8964 bt_entry_addr = i386_mpx_get_bt_entry (addr, bd_base);
8965 for (i = 0; i < 2; i++)
8966 bt_entry[i] = read_memory_typed_address (bt_entry_addr
132874d7 8967 + i * TYPE_LENGTH (data_ptr_type),
29c1c244
WT
8968 data_ptr_type);
8969 bt_entry[0] = (uint64_t) lower;
8970 bt_entry[1] = ~(uint64_t) upper;
8971
8972 for (i = 0; i < 2; i++)
132874d7
AB
8973 write_memory_unsigned_integer (bt_entry_addr
8974 + i * TYPE_LENGTH (data_ptr_type),
8975 TYPE_LENGTH (data_ptr_type), byte_order,
29c1c244
WT
8976 bt_entry[i]);
8977}
8978
8979static struct cmd_list_element *mpx_set_cmdlist, *mpx_show_cmdlist;
8980
8981/* Helper function for the CLI commands. */
8982
8983static void
8984set_mpx_cmd (char *args, int from_tty)
8985{
118ca224 8986 help_list (mpx_set_cmdlist, "set mpx ", all_commands, gdb_stdout);
29c1c244
WT
8987}
8988
8989/* Helper function for the CLI commands. */
8990
8991static void
8992show_mpx_cmd (char *args, int from_tty)
8993{
8994 cmd_show_list (mpx_show_cmdlist, from_tty, "");
8995}
8996
28e9e0f0
MK
8997/* Provide a prototype to silence -Wmissing-prototypes. */
8998void _initialize_i386_tdep (void);
8999
c906108c 9000void
fba45db2 9001_initialize_i386_tdep (void)
c906108c 9002{
a62cc96e
AC
9003 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
9004
fc338970 9005 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
9006 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
9007 &disassembly_flavor, _("\
9008Set the disassembly flavor."), _("\
9009Show the disassembly flavor."), _("\
9010The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
9011 NULL,
9012 NULL, /* FIXME: i18n: */
9013 &setlist, &showlist);
8201327c
MK
9014
9015 /* Add the variable that controls the convention for returning
9016 structs. */
7ab04401
AC
9017 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
9018 &struct_convention, _("\
9019Set the convention for returning small structs."), _("\
9020Show the convention for returning small structs."), _("\
9021Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
9022is \"default\"."),
9023 NULL,
9024 NULL, /* FIXME: i18n: */
9025 &setlist, &showlist);
8201327c 9026
29c1c244
WT
9027 /* Add "mpx" prefix for the set commands. */
9028
9029 add_prefix_cmd ("mpx", class_support, set_mpx_cmd, _("\
bc504a31 9030Set Intel Memory Protection Extensions specific variables."),
118ca224 9031 &mpx_set_cmdlist, "set mpx ",
29c1c244
WT
9032 0 /* allow-unknown */, &setlist);
9033
9034 /* Add "mpx" prefix for the show commands. */
9035
9036 add_prefix_cmd ("mpx", class_support, show_mpx_cmd, _("\
bc504a31 9037Show Intel Memory Protection Extensions specific variables."),
29c1c244
WT
9038 &mpx_show_cmdlist, "show mpx ",
9039 0 /* allow-unknown */, &showlist);
9040
9041 /* Add "bound" command for the show mpx commands list. */
9042
9043 add_cmd ("bound", no_class, i386_mpx_info_bounds,
9044 "Show the memory bounds for a given array/pointer storage\
9045 in the bound table.",
9046 &mpx_show_cmdlist);
9047
9048 /* Add "bound" command for the set mpx commands list. */
9049
9050 add_cmd ("bound", no_class, i386_mpx_set_bounds,
9051 "Set the memory bounds for a given array/pointer storage\
9052 in the bound table.",
9053 &mpx_set_cmdlist);
9054
05816f70 9055 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 9056 i386_svr4_init_abi);
38c968cf 9057
209bd28e 9058 /* Initialize the i386-specific register groups. */
38c968cf 9059 i386_init_reggroups ();
90884b2b
L
9060
9061 /* Initialize the standard target descriptions. */
9062 initialize_tdesc_i386 ();
3a13a53b 9063 initialize_tdesc_i386_mmx ();
c131fcee 9064 initialize_tdesc_i386_avx ();
1dbcd68c 9065 initialize_tdesc_i386_mpx ();
2b863f51 9066 initialize_tdesc_i386_avx_mpx ();
a1fa17ee 9067 initialize_tdesc_i386_avx_avx512 ();
51547df6 9068 initialize_tdesc_i386_avx_mpx_avx512_pku ();
c8d5aac9
L
9069
9070 /* Tell remote stub that we support XML target description. */
9071 register_remote_support_xml ("i386");
c906108c 9072}
This page took 3.153445 seconds and 4 git commands to generate.