* maint.c (_initialize_maint_cmds): Add missing in
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
b6ba6518
KB
2 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
30#include "symtab.h"
31#include "gdbcmd.h"
32#include "command.h"
b4a20239 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
a62cc96e 37#include "i386-tdep.h"
3d261580
MK
38#include "gdb_assert.h"
39
a62cc96e
AC
40#undef XMALLOC
41#define XMALLOC(TYPE) ((TYPE*) xmalloc (sizeof (TYPE)))
42
fc633446
MK
43/* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45static char *i386_register_names[] =
46{
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58};
59
1a11ba71 60/* i386_register_offset[i] is the offset into the register file of the
917317f4 61 start of register number i. We initialize this from
1a11ba71
MK
62 i386_register_size. */
63static int i386_register_offset[MAX_NUM_REGS];
917317f4 64
1a11ba71
MK
65/* i386_register_size[i] is the number of bytes of storage in GDB's
66 register array occupied by register i. */
67static int i386_register_size[MAX_NUM_REGS] = {
917317f4
JM
68 4, 4, 4, 4,
69 4, 4, 4, 4,
70 4, 4, 4, 4,
71 4, 4, 4, 4,
72 10, 10, 10, 10,
73 10, 10, 10, 10,
74 4, 4, 4, 4,
75 4, 4, 4, 4,
76 16, 16, 16, 16,
77 16, 16, 16, 16,
78 4
79};
80
fc633446
MK
81/* Return the name of register REG. */
82
83char *
84i386_register_name (int reg)
85{
86 if (reg < 0)
87 return NULL;
88 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
89 return NULL;
90
91 return i386_register_names[reg];
92}
93
1a11ba71
MK
94/* Return the offset into the register array of the start of register
95 number REG. */
96int
97i386_register_byte (int reg)
98{
99 return i386_register_offset[reg];
100}
101
102/* Return the number of bytes of storage in GDB's register array
103 occupied by register REG. */
104
105int
106i386_register_raw_size (int reg)
107{
108 return i386_register_size[reg];
109}
110
111/* Return the size in bytes of the virtual type of register REG. */
112
113int
114i386_register_virtual_size (int reg)
115{
116 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (reg));
117}
118
85540d8c
MK
119/* Convert stabs register number REG to the appropriate register
120 number used by GDB. */
121
122int
123i386_stab_reg_to_regnum (int reg)
124{
125 /* This implements what GCC calls the "default" register map. */
126 if (reg >= 0 && reg <= 7)
127 {
128 /* General registers. */
129 return reg;
130 }
131 else if (reg >= 12 && reg <= 19)
132 {
133 /* Floating-point registers. */
134 return reg - 12 + FP0_REGNUM;
135 }
136 else if (reg >= 21 && reg <= 28)
137 {
138 /* SSE registers. */
139 return reg - 21 + XMM0_REGNUM;
140 }
141 else if (reg >= 29 && reg <= 36)
142 {
143 /* MMX registers. */
144 /* FIXME: kettenis/2001-07-28: Should we have the MMX registers
145 as pseudo-registers? */
146 return reg - 29 + FP0_REGNUM;
147 }
148
149 /* This will hopefully provoke a warning. */
150 return NUM_REGS + NUM_PSEUDO_REGS;
151}
152
153/* Convert Dwarf register number REG to the appropriate register
154 number used by GDB. */
155
156int
157i386_dwarf_reg_to_regnum (int reg)
158{
159 /* The DWARF register numbering includes %eip and %eflags, and
160 numbers the floating point registers differently. */
161 if (reg >= 0 && reg <= 9)
162 {
163 /* General registers. */
164 return reg;
165 }
166 else if (reg >= 11 && reg <= 18)
167 {
168 /* Floating-point registers. */
169 return reg - 11 + FP0_REGNUM;
170 }
171 else if (reg >= 21)
172 {
173 /* The SSE and MMX registers have identical numbers as in stabs. */
174 return i386_stab_reg_to_regnum (reg);
175 }
176
177 /* This will hopefully provoke a warning. */
178 return NUM_REGS + NUM_PSEUDO_REGS;
179}
fc338970 180\f
917317f4 181
fc338970
MK
182/* This is the variable that is set with "set disassembly-flavor", and
183 its legitimate values. */
53904c9e
AC
184static const char att_flavor[] = "att";
185static const char intel_flavor[] = "intel";
186static const char *valid_flavors[] =
c5aa993b 187{
c906108c
SS
188 att_flavor,
189 intel_flavor,
190 NULL
191};
53904c9e 192static const char *disassembly_flavor = att_flavor;
c906108c 193
fc338970
MK
194/* Stdio style buffering was used to minimize calls to ptrace, but
195 this buffering did not take into account that the code section
196 being accessed may not be an even number of buffers long (even if
197 the buffer is only sizeof(int) long). In cases where the code
198 section size happened to be a non-integral number of buffers long,
199 attempting to read the last buffer would fail. Simply using
200 target_read_memory and ignoring errors, rather than read_memory, is
201 not the correct solution, since legitimate access errors would then
202 be totally ignored. To properly handle this situation and continue
203 to use buffering would require that this code be able to determine
204 the minimum code section size granularity (not the alignment of the
205 section itself, since the actual failing case that pointed out this
206 problem had a section alignment of 4 but was not a multiple of 4
207 bytes long), on a target by target basis, and then adjust it's
208 buffer size accordingly. This is messy, but potentially feasible.
209 It probably needs the bfd library's help and support. For now, the
210 buffer size is set to 1. (FIXME -fnf) */
211
212#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
213static CORE_ADDR codestream_next_addr;
214static CORE_ADDR codestream_addr;
215static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
216static int codestream_off;
217static int codestream_cnt;
218
219#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
220#define codestream_peek() \
221 (codestream_cnt == 0 ? \
222 codestream_fill(1) : codestream_buf[codestream_off])
223#define codestream_get() \
224 (codestream_cnt-- == 0 ? \
225 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 226
c5aa993b 227static unsigned char
fba45db2 228codestream_fill (int peek_flag)
c906108c
SS
229{
230 codestream_addr = codestream_next_addr;
231 codestream_next_addr += CODESTREAM_BUFSIZ;
232 codestream_off = 0;
233 codestream_cnt = CODESTREAM_BUFSIZ;
234 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 235
c906108c 236 if (peek_flag)
c5aa993b 237 return (codestream_peek ());
c906108c 238 else
c5aa993b 239 return (codestream_get ());
c906108c
SS
240}
241
242static void
fba45db2 243codestream_seek (CORE_ADDR place)
c906108c
SS
244{
245 codestream_next_addr = place / CODESTREAM_BUFSIZ;
246 codestream_next_addr *= CODESTREAM_BUFSIZ;
247 codestream_cnt = 0;
248 codestream_fill (1);
c5aa993b 249 while (codestream_tell () != place)
c906108c
SS
250 codestream_get ();
251}
252
253static void
fba45db2 254codestream_read (unsigned char *buf, int count)
c906108c
SS
255{
256 unsigned char *p;
257 int i;
258 p = buf;
259 for (i = 0; i < count; i++)
260 *p++ = codestream_get ();
261}
fc338970 262\f
c906108c 263
fc338970 264/* If the next instruction is a jump, move to its target. */
c906108c
SS
265
266static void
fba45db2 267i386_follow_jump (void)
c906108c
SS
268{
269 unsigned char buf[4];
270 long delta;
271
272 int data16;
273 CORE_ADDR pos;
274
275 pos = codestream_tell ();
276
277 data16 = 0;
278 if (codestream_peek () == 0x66)
279 {
280 codestream_get ();
281 data16 = 1;
282 }
283
284 switch (codestream_get ())
285 {
286 case 0xe9:
fc338970 287 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
288 if (data16)
289 {
290 codestream_read (buf, 2);
291 delta = extract_signed_integer (buf, 2);
292
fc338970
MK
293 /* Include the size of the jmp instruction (including the
294 0x66 prefix). */
c5aa993b 295 pos += delta + 4;
c906108c
SS
296 }
297 else
298 {
299 codestream_read (buf, 4);
300 delta = extract_signed_integer (buf, 4);
301
302 pos += delta + 5;
303 }
304 break;
305 case 0xeb:
fc338970 306 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
307 codestream_read (buf, 1);
308 /* Sign-extend it. */
309 delta = extract_signed_integer (buf, 1);
310
311 pos += delta + 2;
312 break;
313 }
314 codestream_seek (pos);
315}
316
fc338970
MK
317/* Find & return the amount a local space allocated, and advance the
318 codestream to the first register push (if any).
319
320 If the entry sequence doesn't make sense, return -1, and leave
321 codestream pointer at a random spot. */
c906108c
SS
322
323static long
fba45db2 324i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
325{
326 unsigned char op;
327
328 codestream_seek (pc);
329
330 i386_follow_jump ();
331
332 op = codestream_get ();
333
334 if (op == 0x58) /* popl %eax */
335 {
fc338970
MK
336 /* This function must start with
337
338 popl %eax 0x58
339 xchgl %eax, (%esp) 0x87 0x04 0x24
340 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
341
342 (the System V compiler puts out the second `xchg'
343 instruction, and the assembler doesn't try to optimize it, so
344 the 'sib' form gets generated). This sequence is used to get
345 the address of the return buffer for a function that returns
346 a structure. */
c906108c
SS
347 int pos;
348 unsigned char buf[4];
fc338970
MK
349 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
350 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
351
c906108c
SS
352 pos = codestream_tell ();
353 codestream_read (buf, 4);
354 if (memcmp (buf, proto1, 3) == 0)
355 pos += 3;
356 else if (memcmp (buf, proto2, 4) == 0)
357 pos += 4;
358
359 codestream_seek (pos);
fc338970 360 op = codestream_get (); /* Update next opcode. */
c906108c
SS
361 }
362
363 if (op == 0x68 || op == 0x6a)
364 {
fc338970
MK
365 /* This function may start with
366
367 pushl constant
368 call _probe
369 addl $4, %esp
370
371 followed by
372
373 pushl %ebp
374
375 etc. */
c906108c
SS
376 int pos;
377 unsigned char buf[8];
378
fc338970 379 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
380 or a four-byte operand, depending on the opcode. */
381 pos = codestream_tell ();
382 if (op == 0x68)
383 pos += 4;
384 else
385 pos += 1;
386 codestream_seek (pos);
387
fc338970
MK
388 /* Read the following 8 bytes, which should be "call _probe" (6
389 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
390 codestream_read (buf, sizeof (buf));
391 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
392 pos += sizeof (buf);
393 codestream_seek (pos);
fc338970 394 op = codestream_get (); /* Update next opcode. */
c906108c
SS
395 }
396
397 if (op == 0x55) /* pushl %ebp */
c5aa993b 398 {
fc338970 399 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
400 switch (codestream_get ())
401 {
402 case 0x8b:
403 if (codestream_get () != 0xec)
fc338970 404 return -1;
c906108c
SS
405 break;
406 case 0x89:
407 if (codestream_get () != 0xe5)
fc338970 408 return -1;
c906108c
SS
409 break;
410 default:
fc338970 411 return -1;
c906108c 412 }
fc338970
MK
413 /* Check for stack adjustment
414
415 subl $XXX, %esp
416
417 NOTE: You can't subtract a 16 bit immediate from a 32 bit
418 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
419 op = codestream_peek ();
420 if (op == 0x83)
421 {
fc338970 422 /* `subl' with 8 bit immediate. */
c906108c
SS
423 codestream_get ();
424 if (codestream_get () != 0xec)
fc338970 425 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
426 {
427 codestream_seek (codestream_tell () - 2);
428 return 0;
429 }
fc338970
MK
430 /* `subl' with signed byte immediate (though it wouldn't
431 make sense to be negative). */
c5aa993b 432 return (codestream_get ());
c906108c
SS
433 }
434 else if (op == 0x81)
435 {
436 char buf[4];
fc338970 437 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 438 codestream_get ();
c906108c 439 if (codestream_get () != 0xec)
fc338970 440 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
441 {
442 codestream_seek (codestream_tell () - 2);
443 return 0;
444 }
fc338970 445 /* It is `subl' with a 32 bit immediate. */
c5aa993b 446 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
447 return extract_signed_integer (buf, 4);
448 }
449 else
450 {
fc338970 451 return 0;
c906108c
SS
452 }
453 }
454 else if (op == 0xc8)
455 {
456 char buf[2];
fc338970 457 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 458 codestream_read ((unsigned char *) buf, 2);
fc338970 459 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
460 return extract_unsigned_integer (buf, 2);
461 }
462 return (-1);
463}
464
c833a37e
MK
465/* Return the chain-pointer for FRAME. In the case of the i386, the
466 frame's nominal address is the address of a 4-byte word containing
467 the calling frame's address. */
468
469CORE_ADDR
470i386_frame_chain (struct frame_info *frame)
471{
472 if (frame->signal_handler_caller)
473 return frame->frame;
474
475 if (! inside_entry_file (frame->pc))
476 return read_memory_unsigned_integer (frame->frame, 4);
477
478 return 0;
479}
480
539ffe0b
MK
481/* Determine whether the function invocation represented by FRAME does
482 not have a from on the stack associated with it. If it does not,
483 return non-zero, otherwise return zero. */
484
485int
486i386_frameless_function_invocation (struct frame_info *frame)
487{
488 if (frame->signal_handler_caller)
489 return 0;
490
491 return frameless_look_for_prologue (frame);
492}
493
0d17c81d
MK
494/* Return the saved program counter for FRAME. */
495
496CORE_ADDR
497i386_frame_saved_pc (struct frame_info *frame)
498{
499 /* FIXME: kettenis/2001-05-09: Conditionalizing the next bit of code
500 on SIGCONTEXT_PC_OFFSET and I386V4_SIGTRAMP_SAVED_PC should be
501 considered a temporary hack. I plan to come up with something
502 better when we go multi-arch. */
503#if defined (SIGCONTEXT_PC_OFFSET) || defined (I386V4_SIGTRAMP_SAVED_PC)
504 if (frame->signal_handler_caller)
505 return sigtramp_saved_pc (frame);
506#endif
507
508 return read_memory_unsigned_integer (frame->frame + 4, 4);
509}
510
22797942
AC
511CORE_ADDR
512i386go32_frame_saved_pc (struct frame_info *frame)
513{
514 return read_memory_integer (frame->frame + 4, 4);
515}
516
ed84f6c1
MK
517/* Immediately after a function call, return the saved pc. */
518
519CORE_ADDR
520i386_saved_pc_after_call (struct frame_info *frame)
521{
522 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
523}
524
c906108c
SS
525/* Return number of args passed to a frame.
526 Can return -1, meaning no way to tell. */
527
528int
fba45db2 529i386_frame_num_args (struct frame_info *fi)
c906108c
SS
530{
531#if 1
532 return -1;
533#else
534 /* This loses because not only might the compiler not be popping the
fc338970
MK
535 args right after the function call, it might be popping args from
536 both this call and a previous one, and we would say there are
537 more args than there really are. */
c906108c 538
c5aa993b
JM
539 int retpc;
540 unsigned char op;
c906108c
SS
541 struct frame_info *pfi;
542
fc338970 543 /* On the i386, the instruction following the call could be:
c906108c
SS
544 popl %ecx - one arg
545 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 546 anything else - zero args. */
c906108c
SS
547
548 int frameless;
549
392a587b 550 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 551 if (frameless)
fc338970
MK
552 /* In the absence of a frame pointer, GDB doesn't get correct
553 values for nameless arguments. Return -1, so it doesn't print
554 any nameless arguments. */
c906108c
SS
555 return -1;
556
c5aa993b 557 pfi = get_prev_frame (fi);
c906108c
SS
558 if (pfi == 0)
559 {
fc338970
MK
560 /* NOTE: This can happen if we are looking at the frame for
561 main, because FRAME_CHAIN_VALID won't let us go into start.
562 If we have debugging symbols, that's not really a big deal;
563 it just means it will only show as many arguments to main as
564 are declared. */
c906108c
SS
565 return -1;
566 }
567 else
568 {
c5aa993b
JM
569 retpc = pfi->pc;
570 op = read_memory_integer (retpc, 1);
fc338970 571 if (op == 0x59) /* pop %ecx */
c5aa993b 572 return 1;
c906108c
SS
573 else if (op == 0x83)
574 {
c5aa993b
JM
575 op = read_memory_integer (retpc + 1, 1);
576 if (op == 0xc4)
577 /* addl $<signed imm 8 bits>, %esp */
578 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
579 else
580 return 0;
581 }
fc338970
MK
582 else if (op == 0x81) /* `add' with 32 bit immediate. */
583 {
c5aa993b
JM
584 op = read_memory_integer (retpc + 1, 1);
585 if (op == 0xc4)
586 /* addl $<imm 32>, %esp */
587 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
588 else
589 return 0;
590 }
591 else
592 {
593 return 0;
594 }
595 }
596#endif
597}
598
fc338970
MK
599/* Parse the first few instructions the function to see what registers
600 were stored.
601
602 We handle these cases:
603
604 The startup sequence can be at the start of the function, or the
605 function can start with a branch to startup code at the end.
606
607 %ebp can be set up with either the 'enter' instruction, or "pushl
608 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
609 once used in the System V compiler).
610
611 Local space is allocated just below the saved %ebp by either the
612 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
613 bit unsigned argument for space to allocate, and the 'addl'
614 instruction could have either a signed byte, or 32 bit immediate.
615
616 Next, the registers used by this function are pushed. With the
617 System V compiler they will always be in the order: %edi, %esi,
618 %ebx (and sometimes a harmless bug causes it to also save but not
619 restore %eax); however, the code below is willing to see the pushes
620 in any order, and will handle up to 8 of them.
621
622 If the setup sequence is at the end of the function, then the next
623 instruction will be a branch back to the start. */
c906108c
SS
624
625void
fba45db2 626i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
627{
628 long locals = -1;
629 unsigned char op;
630 CORE_ADDR dummy_bottom;
fc338970 631 CORE_ADDR addr;
c906108c
SS
632 CORE_ADDR pc;
633 int i;
c5aa993b 634
1211c4e4
AC
635 if (fip->saved_regs)
636 return;
637
638 frame_saved_regs_zalloc (fip);
c5aa993b 639
fc338970
MK
640 /* If the frame is the end of a dummy, compute where the beginning
641 would be. */
c906108c 642 dummy_bottom = fip->frame - 4 - REGISTER_BYTES - CALL_DUMMY_LENGTH;
c5aa993b 643
fc338970 644 /* Check if the PC points in the stack, in a dummy frame. */
c5aa993b 645 if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
c906108c 646 {
fc338970
MK
647 /* All registers were saved by push_call_dummy. */
648 addr = fip->frame;
c5aa993b 649 for (i = 0; i < NUM_REGS; i++)
c906108c 650 {
fc338970
MK
651 addr -= REGISTER_RAW_SIZE (i);
652 fip->saved_regs[i] = addr;
c906108c
SS
653 }
654 return;
655 }
c5aa993b 656
c906108c
SS
657 pc = get_pc_function_start (fip->pc);
658 if (pc != 0)
659 locals = i386_get_frame_setup (pc);
c5aa993b
JM
660
661 if (locals >= 0)
c906108c 662 {
fc338970 663 addr = fip->frame - 4 - locals;
c5aa993b 664 for (i = 0; i < 8; i++)
c906108c
SS
665 {
666 op = codestream_get ();
667 if (op < 0x50 || op > 0x57)
668 break;
669#ifdef I386_REGNO_TO_SYMMETRY
670 /* Dynix uses different internal numbering. Ick. */
fc338970 671 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 672#else
fc338970 673 fip->saved_regs[op - 0x50] = addr;
c906108c 674#endif
fc338970 675 addr -= 4;
c906108c
SS
676 }
677 }
c5aa993b 678
1211c4e4
AC
679 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
680 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
681}
682
fc338970 683/* Return PC of first real instruction. */
c906108c
SS
684
685int
fba45db2 686i386_skip_prologue (int pc)
c906108c
SS
687{
688 unsigned char op;
689 int i;
c5aa993b 690 static unsigned char pic_pat[6] =
fc338970
MK
691 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
c5aa993b 693 };
c906108c 694 CORE_ADDR pos;
c5aa993b 695
c906108c
SS
696 if (i386_get_frame_setup (pc) < 0)
697 return (pc);
c5aa993b 698
fc338970
MK
699 /* Found valid frame setup -- codestream now points to start of push
700 instructions for saving registers. */
c5aa993b 701
fc338970 702 /* Skip over register saves. */
c906108c
SS
703 for (i = 0; i < 8; i++)
704 {
705 op = codestream_peek ();
fc338970 706 /* Break if not `pushl' instrunction. */
c5aa993b 707 if (op < 0x50 || op > 0x57)
c906108c
SS
708 break;
709 codestream_get ();
710 }
711
fc338970
MK
712 /* The native cc on SVR4 in -K PIC mode inserts the following code
713 to get the address of the global offset table (GOT) into register
714 %ebx
715
716 call 0x0
717 popl %ebx
718 movl %ebx,x(%ebp) (optional)
719 addl y,%ebx
720
c906108c
SS
721 This code is with the rest of the prologue (at the end of the
722 function), so we have to skip it to get to the first real
723 instruction at the start of the function. */
c5aa993b 724
c906108c
SS
725 pos = codestream_tell ();
726 for (i = 0; i < 6; i++)
727 {
728 op = codestream_get ();
c5aa993b 729 if (pic_pat[i] != op)
c906108c
SS
730 break;
731 }
732 if (i == 6)
733 {
734 unsigned char buf[4];
735 long delta = 6;
736
737 op = codestream_get ();
c5aa993b 738 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
739 {
740 op = codestream_get ();
fc338970 741 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
742 {
743 delta += 3;
744 codestream_read (buf, 1);
745 }
fc338970 746 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
747 {
748 delta += 6;
749 codestream_read (buf, 4);
750 }
fc338970 751 else /* Unexpected instruction. */
c5aa993b
JM
752 delta = -1;
753 op = codestream_get ();
c906108c 754 }
c5aa993b
JM
755 /* addl y,%ebx */
756 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 757 {
c5aa993b 758 pos += delta + 6;
c906108c
SS
759 }
760 }
761 codestream_seek (pos);
c5aa993b 762
c906108c 763 i386_follow_jump ();
c5aa993b 764
c906108c
SS
765 return (codestream_tell ());
766}
767
768void
fba45db2 769i386_push_dummy_frame (void)
c906108c
SS
770{
771 CORE_ADDR sp = read_register (SP_REGNUM);
ec80a8ea 772 CORE_ADDR fp;
c906108c
SS
773 int regnum;
774 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 775
c906108c
SS
776 sp = push_word (sp, read_register (PC_REGNUM));
777 sp = push_word (sp, read_register (FP_REGNUM));
ec80a8ea 778 fp = sp;
c906108c
SS
779 for (regnum = 0; regnum < NUM_REGS; regnum++)
780 {
781 read_register_gen (regnum, regbuf);
782 sp = push_bytes (sp, regbuf, REGISTER_RAW_SIZE (regnum));
783 }
784 write_register (SP_REGNUM, sp);
ec80a8ea 785 write_register (FP_REGNUM, fp);
c906108c
SS
786}
787
a7769679
MK
788/* Insert the (relative) function address into the call sequence
789 stored at DYMMY. */
790
791void
792i386_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
ea7c478f 793 struct value **args, struct type *type, int gcc_p)
a7769679
MK
794{
795 int from, to, delta, loc;
796
797 loc = (int)(read_register (SP_REGNUM) - CALL_DUMMY_LENGTH);
798 from = loc + 5;
799 to = (int)(fun);
800 delta = to - from;
801
802 *((char *)(dummy) + 1) = (delta & 0xff);
803 *((char *)(dummy) + 2) = ((delta >> 8) & 0xff);
804 *((char *)(dummy) + 3) = ((delta >> 16) & 0xff);
805 *((char *)(dummy) + 4) = ((delta >> 24) & 0xff);
806}
807
c906108c 808void
fba45db2 809i386_pop_frame (void)
c906108c
SS
810{
811 struct frame_info *frame = get_current_frame ();
812 CORE_ADDR fp;
813 int regnum;
c906108c 814 char regbuf[MAX_REGISTER_RAW_SIZE];
c5aa993b 815
c906108c 816 fp = FRAME_FP (frame);
1211c4e4
AC
817 i386_frame_init_saved_regs (frame);
818
c5aa993b 819 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 820 {
fc338970
MK
821 CORE_ADDR addr;
822 addr = frame->saved_regs[regnum];
823 if (addr)
c906108c 824 {
fc338970 825 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
826 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
827 REGISTER_RAW_SIZE (regnum));
828 }
829 }
830 write_register (FP_REGNUM, read_memory_integer (fp, 4));
831 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
832 write_register (SP_REGNUM, fp + 8);
833 flush_cached_frames ();
834}
fc338970 835\f
c906108c
SS
836
837#ifdef GET_LONGJMP_TARGET
838
fc338970
MK
839/* Figure out where the longjmp will land. Slurp the args out of the
840 stack. We expect the first arg to be a pointer to the jmp_buf
841 structure from which we extract the pc (JB_PC) that we will land
842 at. The pc is copied into PC. This routine returns true on
843 success. */
c906108c
SS
844
845int
fba45db2 846get_longjmp_target (CORE_ADDR *pc)
c906108c
SS
847{
848 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
849 CORE_ADDR sp, jb_addr;
850
851 sp = read_register (SP_REGNUM);
852
fc338970 853 if (target_read_memory (sp + SP_ARG0, /* Offset of first arg on stack. */
c906108c
SS
854 buf,
855 TARGET_PTR_BIT / TARGET_CHAR_BIT))
856 return 0;
857
858 jb_addr = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
859
860 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
861 TARGET_PTR_BIT / TARGET_CHAR_BIT))
862 return 0;
863
864 *pc = extract_address (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
865
866 return 1;
867}
868
869#endif /* GET_LONGJMP_TARGET */
fc338970 870\f
c906108c 871
22f8ba57 872CORE_ADDR
ea7c478f 873i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
874 int struct_return, CORE_ADDR struct_addr)
875{
876 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
877
878 if (struct_return)
879 {
880 char buf[4];
881
882 sp -= 4;
883 store_address (buf, 4, struct_addr);
884 write_memory (sp, buf, 4);
885 }
886
887 return sp;
888}
889
890void
891i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
892{
893 /* Do nothing. Everything was already done by i386_push_arguments. */
894}
895
1a309862
MK
896/* These registers are used for returning integers (and on some
897 targets also for returning `struct' and `union' values when their
ef9dff19 898 size and alignment match an integer type). */
1a309862
MK
899#define LOW_RETURN_REGNUM 0 /* %eax */
900#define HIGH_RETURN_REGNUM 2 /* %edx */
901
902/* Extract from an array REGBUF containing the (raw) register state, a
903 function return value of TYPE, and copy that, in virtual format,
904 into VALBUF. */
905
c906108c 906void
1a309862 907i386_extract_return_value (struct type *type, char *regbuf, char *valbuf)
c906108c 908{
1a309862
MK
909 int len = TYPE_LENGTH (type);
910
1e8d0a7b
MK
911 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
912 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
913 {
914 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regbuf, valbuf);
915 return;
916 }
1e8d0a7b
MK
917
918 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 919 {
1a309862
MK
920 if (NUM_FREGS == 0)
921 {
922 warning ("Cannot find floating-point return value.");
923 memset (valbuf, 0, len);
ef9dff19 924 return;
1a309862
MK
925 }
926
c6ba6f0d
MK
927 /* Floating-point return values can be found in %st(0). Convert
928 its contents to the desired type. This is probably not
929 exactly how it would happen on the target itself, but it is
930 the best we can do. */
931 convert_typed_floating (&regbuf[REGISTER_BYTE (FP0_REGNUM)],
932 builtin_type_i387_ext, valbuf, type);
c906108c
SS
933 }
934 else
c5aa993b 935 {
d4f3574e
SS
936 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
937 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
938
939 if (len <= low_size)
1a309862 940 memcpy (valbuf, &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], len);
d4f3574e
SS
941 else if (len <= (low_size + high_size))
942 {
943 memcpy (valbuf,
1a309862 944 &regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)], low_size);
d4f3574e 945 memcpy (valbuf + low_size,
1a309862 946 &regbuf[REGISTER_BYTE (HIGH_RETURN_REGNUM)], len - low_size);
d4f3574e
SS
947 }
948 else
8e65ff28
AC
949 internal_error (__FILE__, __LINE__,
950 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
951 }
952}
953
ef9dff19
MK
954/* Write into the appropriate registers a function return value stored
955 in VALBUF of type TYPE, given in virtual format. */
956
957void
958i386_store_return_value (struct type *type, char *valbuf)
959{
960 int len = TYPE_LENGTH (type);
961
1e8d0a7b
MK
962 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
963 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
964 {
965 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
966 return;
967 }
1e8d0a7b
MK
968
969 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 970 {
ccb945b8 971 unsigned int fstat;
c6ba6f0d 972 char buf[FPU_REG_RAW_SIZE];
ccb945b8 973
ef9dff19
MK
974 if (NUM_FREGS == 0)
975 {
976 warning ("Cannot set floating-point return value.");
977 return;
978 }
979
635b0cc1
MK
980 /* Returning floating-point values is a bit tricky. Apart from
981 storing the return value in %st(0), we have to simulate the
982 state of the FPU at function return point. */
983
c6ba6f0d
MK
984 /* Convert the value found in VALBUF to the extended
985 floating-point format used by the FPU. This is probably
986 not exactly how it would happen on the target itself, but
987 it is the best we can do. */
988 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
989 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
990 FPU_REG_RAW_SIZE);
ccb945b8 991
635b0cc1
MK
992 /* Set the top of the floating-point register stack to 7. The
993 actual value doesn't really matter, but 7 is what a normal
994 function return would end up with if the program started out
995 with a freshly initialized FPU. */
ccb945b8
MK
996 fstat = read_register (FSTAT_REGNUM);
997 fstat |= (7 << 11);
998 write_register (FSTAT_REGNUM, fstat);
999
635b0cc1
MK
1000 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1001 the floating-point register stack to 7, the appropriate value
1002 for the tag word is 0x3fff. */
ccb945b8 1003 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1004 }
1005 else
1006 {
1007 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1008 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1009
1010 if (len <= low_size)
1011 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1012 else if (len <= (low_size + high_size))
1013 {
1014 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1015 valbuf, low_size);
1016 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1017 valbuf + low_size, len - low_size);
1018 }
1019 else
8e65ff28
AC
1020 internal_error (__FILE__, __LINE__,
1021 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1022 }
1023}
f7af9647
MK
1024
1025/* Extract from an array REGBUF containing the (raw) register state
1026 the address in which a function should return its structure value,
1027 as a CORE_ADDR. */
1028
1029CORE_ADDR
1030i386_extract_struct_value_address (char *regbuf)
1031{
1032 return extract_address (&regbuf[REGISTER_BYTE (LOW_RETURN_REGNUM)],
1033 REGISTER_RAW_SIZE (LOW_RETURN_REGNUM));
1034}
fc338970 1035\f
ef9dff19 1036
d7a0d72c
MK
1037/* Return the GDB type object for the "standard" data type of data in
1038 register REGNUM. Perhaps %esi and %edi should go here, but
1039 potentially they could be used for things other than address. */
1040
1041struct type *
1042i386_register_virtual_type (int regnum)
1043{
1044 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1045 return lookup_pointer_type (builtin_type_void);
1046
1047 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1048 return builtin_type_i387_ext;
d7a0d72c
MK
1049
1050 if (IS_SSE_REGNUM (regnum))
1051 return builtin_type_v4sf;
1052
1053 return builtin_type_int;
1054}
1055
1056/* Return true iff register REGNUM's virtual format is different from
1057 its raw format. Note that this definition assumes that the host
1058 supports IEEE 32-bit floats, since it doesn't say that SSE
1059 registers need conversion. Even if we can't find a counterexample,
1060 this is still sloppy. */
1061
1062int
1063i386_register_convertible (int regnum)
1064{
1065 return IS_FP_REGNUM (regnum);
1066}
1067
ac27f131 1068/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1069 virtual format with type TYPE in buffer TO. */
ac27f131
MK
1070
1071void
1072i386_register_convert_to_virtual (int regnum, struct type *type,
1073 char *from, char *to)
1074{
c6ba6f0d 1075 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1076
1077 /* We only support floating-point values. */
8d7f6b4a
MK
1078 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1079 {
1080 warning ("Cannot convert floating-point register value "
1081 "to non-floating-point type.");
1082 memset (to, 0, TYPE_LENGTH (type));
1083 return;
1084 }
3d261580 1085
c6ba6f0d
MK
1086 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1087 the extended floating-point format used by the FPU. */
1088 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1089}
1090
1091/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1092 raw format for register REGNUM in buffer TO. */
ac27f131
MK
1093
1094void
1095i386_register_convert_to_raw (struct type *type, int regnum,
1096 char *from, char *to)
1097{
c6ba6f0d
MK
1098 gdb_assert (IS_FP_REGNUM (regnum));
1099
1100 /* We only support floating-point values. */
1101 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1102 {
1103 warning ("Cannot convert non-floating-point type "
1104 "to floating-point register value.");
1105 memset (to, 0, TYPE_LENGTH (type));
1106 return;
1107 }
3d261580 1108
c6ba6f0d
MK
1109 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1110 to the extended floating-point format used by the FPU. */
1111 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1112}
ac27f131 1113\f
fc338970 1114
c906108c 1115#ifdef I386V4_SIGTRAMP_SAVED_PC
fc338970
MK
1116/* Get saved user PC for sigtramp from the pushed ucontext on the
1117 stack for all three variants of SVR4 sigtramps. */
c906108c
SS
1118
1119CORE_ADDR
fba45db2 1120i386v4_sigtramp_saved_pc (struct frame_info *frame)
c906108c
SS
1121{
1122 CORE_ADDR saved_pc_offset = 4;
1123 char *name = NULL;
1124
1125 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1126 if (name)
1127 {
1128 if (STREQ (name, "_sigreturn"))
1129 saved_pc_offset = 132 + 14 * 4;
1130 else if (STREQ (name, "_sigacthandler"))
1131 saved_pc_offset = 80 + 14 * 4;
1132 else if (STREQ (name, "sigvechandler"))
1133 saved_pc_offset = 120 + 14 * 4;
1134 }
1135
1136 if (frame->next)
1137 return read_memory_integer (frame->next->frame + saved_pc_offset, 4);
1138 return read_memory_integer (read_register (SP_REGNUM) + saved_pc_offset, 4);
1139}
1140#endif /* I386V4_SIGTRAMP_SAVED_PC */
fc338970 1141\f
a0b3c4fd 1142
c906108c 1143#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1144/* SunPRO encodes the static variables. This is not related to C++
1145 mangling, it is done for C too. */
c906108c
SS
1146
1147char *
fba45db2 1148sunpro_static_transform_name (char *name)
c906108c
SS
1149{
1150 char *p;
1151 if (IS_STATIC_TRANSFORM_NAME (name))
1152 {
fc338970
MK
1153 /* For file-local statics there will be a period, a bunch of
1154 junk (the contents of which match a string given in the
c5aa993b
JM
1155 N_OPT), a period and the name. For function-local statics
1156 there will be a bunch of junk (which seems to change the
1157 second character from 'A' to 'B'), a period, the name of the
1158 function, and the name. So just skip everything before the
1159 last period. */
c906108c
SS
1160 p = strrchr (name, '.');
1161 if (p != NULL)
1162 name = p + 1;
1163 }
1164 return name;
1165}
1166#endif /* STATIC_TRANSFORM_NAME */
fc338970 1167\f
c906108c 1168
fc338970 1169/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1170
1171CORE_ADDR
fba45db2 1172skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1173{
fc338970 1174 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1175 {
c5aa993b 1176 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1177 struct minimal_symbol *indsym =
fc338970 1178 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1179 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1180
c5aa993b 1181 if (symname)
c906108c 1182 {
c5aa993b
JM
1183 if (strncmp (symname, "__imp_", 6) == 0
1184 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1185 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1186 }
1187 }
fc338970 1188 return 0; /* Not a trampoline. */
c906108c 1189}
fc338970
MK
1190\f
1191
1192/* We have two flavours of disassembly. The machinery on this page
1193 deals with switching between those. */
c906108c
SS
1194
1195static int
fba45db2 1196gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1197{
1198 if (disassembly_flavor == att_flavor)
1199 return print_insn_i386_att (memaddr, info);
1200 else if (disassembly_flavor == intel_flavor)
1201 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1202 /* Never reached -- disassembly_flavour is always either att_flavor
1203 or intel_flavor. */
e1e9e218 1204 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a
SS
1205}
1206
fc338970 1207\f
2acceee2 1208
a62cc96e
AC
1209struct gdbarch *
1210i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1211{
cd3c07fc 1212 struct gdbarch_tdep *tdep;
a62cc96e
AC
1213 struct gdbarch *gdbarch;
1214
1215 /* For the moment there is only one i386 architecture. */
1216 if (arches != NULL)
1217 return arches->gdbarch;
1218
1219 /* Allocate space for the new architecture. */
1220 tdep = XMALLOC (struct gdbarch_tdep);
1221 gdbarch = gdbarch_alloc (&info, tdep);
1222
96297dab
MK
1223 /* FIXME: kettenis/2001-11-24: Although not all IA-32 processors
1224 have the SSE registers, it's easier to set the default to 8. */
1225 tdep->num_xmm_regs = 8;
1226
a62cc96e
AC
1227 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1228
1229 /* Call dummy code. */
1230 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
1231 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 5);
1232 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1233 set_gdbarch_call_dummy_p (gdbarch, 1);
1234 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1235
1236 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1237 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1238
1239 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_on_stack);
1240
1241 /* NOTE: tm-i386nw.h and tm-i386v4.h override this. */
1242 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
1243
bd1ef5d2
AC
1244 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-linux.h,
1245 tm-ptx.h, tm-symmetry.h currently override this. Sigh. */
1246 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SSE_REGS);
1247
a62cc96e
AC
1248 return gdbarch;
1249}
1250
28e9e0f0
MK
1251/* Provide a prototype to silence -Wmissing-prototypes. */
1252void _initialize_i386_tdep (void);
1253
c906108c 1254void
fba45db2 1255_initialize_i386_tdep (void)
c906108c 1256{
a62cc96e
AC
1257 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1258
917317f4
JM
1259 /* Initialize the table saying where each register starts in the
1260 register file. */
1261 {
1262 int i, offset;
1263
1264 offset = 0;
1265 for (i = 0; i < MAX_NUM_REGS; i++)
1266 {
1a11ba71
MK
1267 i386_register_offset[i] = offset;
1268 offset += i386_register_size[i];
917317f4
JM
1269 }
1270 }
1271
c906108c
SS
1272 tm_print_insn = gdb_print_insn_i386;
1273 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1274
fc338970 1275 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1276 {
1277 struct cmd_list_element *new_cmd;
7a292a7a 1278
917317f4
JM
1279 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1280 valid_flavors,
1ed2a135 1281 &disassembly_flavor,
fc338970
MK
1282 "\
1283Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1284and the default value is \"att\".",
917317f4 1285 &setlist);
917317f4
JM
1286 add_show_from_set (new_cmd, &showlist);
1287 }
c906108c 1288}
This page took 0.28109 seconds and 4 git commands to generate.