* config/tc-mips.c (md_show_usage): Clean up -mno-shared
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
197e01b6 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
5ae96ec1
MK
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
30b0e2d8 154/* Return the name of register REGNUM. */
fc633446 155
fa88f677 156const char *
30b0e2d8 157i386_register_name (int regnum)
fc633446 158{
30b0e2d8
MK
159 if (i386_mmx_regnum_p (current_gdbarch, regnum))
160 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 161
30b0e2d8
MK
162 if (regnum >= 0 && regnum < i386_num_register_names)
163 return i386_register_names[regnum];
70913449 164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c 227 }
c6f4c129 228 else if (reg >= 21 && reg <= 36)
85540d8c 229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
c6f4c129
JB
234 switch (reg)
235 {
236 case 37: return I387_FCTRL_REGNUM;
237 case 38: return I387_FSTAT_REGNUM;
238 case 39: return I387_MXCSR_REGNUM;
239 case 40: return I386_ES_REGNUM;
240 case 41: return I386_CS_REGNUM;
241 case 42: return I386_SS_REGNUM;
242 case 43: return I386_DS_REGNUM;
243 case 44: return I386_FS_REGNUM;
244 case 45: return I386_GS_REGNUM;
245 }
246
85540d8c
MK
247 /* This will hopefully provoke a warning. */
248 return NUM_REGS + NUM_PSEUDO_REGS;
249}
5716833c
MK
250
251#undef I387_ST0_REGNUM
252#undef I387_MM0_REGNUM
253#undef I387_NUM_XMM_REGS
fc338970 254\f
917317f4 255
fc338970
MK
256/* This is the variable that is set with "set disassembly-flavor", and
257 its legitimate values. */
53904c9e
AC
258static const char att_flavor[] = "att";
259static const char intel_flavor[] = "intel";
260static const char *valid_flavors[] =
c5aa993b 261{
c906108c
SS
262 att_flavor,
263 intel_flavor,
264 NULL
265};
53904c9e 266static const char *disassembly_flavor = att_flavor;
acd5c798 267\f
c906108c 268
acd5c798
MK
269/* Use the program counter to determine the contents and size of a
270 breakpoint instruction. Return a pointer to a string of bytes that
271 encode a breakpoint instruction, store the length of the string in
272 *LEN and optionally adjust *PC to point to the correct memory
273 location for inserting the breakpoint.
c906108c 274
acd5c798
MK
275 On the i386 we have a single breakpoint that fits in a single byte
276 and can be inserted anywhere.
c906108c 277
acd5c798 278 This function is 64-bit safe. */
63c0089f
MK
279
280static const gdb_byte *
acd5c798 281i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 282{
63c0089f
MK
283 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
284
acd5c798
MK
285 *len = sizeof (break_insn);
286 return break_insn;
c906108c 287}
fc338970 288\f
acd5c798
MK
289#ifdef I386_REGNO_TO_SYMMETRY
290#error "The Sequent Symmetry is no longer supported."
291#endif
c906108c 292
acd5c798
MK
293/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
294 and %esp "belong" to the calling function. Therefore these
295 registers should be saved if they're going to be modified. */
c906108c 296
acd5c798
MK
297/* The maximum number of saved registers. This should include all
298 registers mentioned above, and %eip. */
a3386186 299#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
300
301struct i386_frame_cache
c906108c 302{
acd5c798
MK
303 /* Base address. */
304 CORE_ADDR base;
772562f8 305 LONGEST sp_offset;
acd5c798
MK
306 CORE_ADDR pc;
307
fd13a04a
AC
308 /* Saved registers. */
309 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 310 CORE_ADDR saved_sp;
92dd43fa 311 int stack_align;
acd5c798
MK
312 int pc_in_eax;
313
314 /* Stack space reserved for local variables. */
315 long locals;
316};
317
318/* Allocate and initialize a frame cache. */
319
320static struct i386_frame_cache *
fd13a04a 321i386_alloc_frame_cache (void)
acd5c798
MK
322{
323 struct i386_frame_cache *cache;
324 int i;
325
326 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
327
328 /* Base address. */
329 cache->base = 0;
330 cache->sp_offset = -4;
331 cache->pc = 0;
332
fd13a04a
AC
333 /* Saved registers. We initialize these to -1 since zero is a valid
334 offset (that's where %ebp is supposed to be stored). */
335 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
336 cache->saved_regs[i] = -1;
acd5c798 337 cache->saved_sp = 0;
92dd43fa 338 cache->stack_align = 0;
acd5c798
MK
339 cache->pc_in_eax = 0;
340
341 /* Frameless until proven otherwise. */
342 cache->locals = -1;
343
344 return cache;
345}
c906108c 346
acd5c798
MK
347/* If the instruction at PC is a jump, return the address of its
348 target. Otherwise, return PC. */
c906108c 349
acd5c798
MK
350static CORE_ADDR
351i386_follow_jump (CORE_ADDR pc)
352{
63c0089f 353 gdb_byte op;
acd5c798
MK
354 long delta = 0;
355 int data16 = 0;
c906108c 356
24a2a654 357 read_memory_nobpt (pc, &op, 1);
acd5c798 358 if (op == 0x66)
c906108c 359 {
c906108c 360 data16 = 1;
acd5c798 361 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
362 }
363
acd5c798 364 switch (op)
c906108c
SS
365 {
366 case 0xe9:
fc338970 367 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
368 if (data16)
369 {
acd5c798 370 delta = read_memory_integer (pc + 2, 2);
c906108c 371
fc338970
MK
372 /* Include the size of the jmp instruction (including the
373 0x66 prefix). */
acd5c798 374 delta += 4;
c906108c
SS
375 }
376 else
377 {
acd5c798 378 delta = read_memory_integer (pc + 1, 4);
c906108c 379
acd5c798
MK
380 /* Include the size of the jmp instruction. */
381 delta += 5;
c906108c
SS
382 }
383 break;
384 case 0xeb:
fc338970 385 /* Relative jump, disp8 (ignore data16). */
acd5c798 386 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 387
acd5c798 388 delta += data16 + 2;
c906108c
SS
389 break;
390 }
c906108c 391
acd5c798
MK
392 return pc + delta;
393}
fc338970 394
acd5c798
MK
395/* Check whether PC points at a prologue for a function returning a
396 structure or union. If so, it updates CACHE and returns the
397 address of the first instruction after the code sequence that
398 removes the "hidden" argument from the stack or CURRENT_PC,
399 whichever is smaller. Otherwise, return PC. */
c906108c 400
acd5c798
MK
401static CORE_ADDR
402i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
403 struct i386_frame_cache *cache)
c906108c 404{
acd5c798
MK
405 /* Functions that return a structure or union start with:
406
407 popl %eax 0x58
408 xchgl %eax, (%esp) 0x87 0x04 0x24
409 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
410
411 (the System V compiler puts out the second `xchg' instruction,
412 and the assembler doesn't try to optimize it, so the 'sib' form
413 gets generated). This sequence is used to get the address of the
414 return buffer for a function that returns a structure. */
63c0089f
MK
415 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
416 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
417 gdb_byte buf[4];
418 gdb_byte op;
c906108c 419
acd5c798
MK
420 if (current_pc <= pc)
421 return pc;
422
24a2a654 423 read_memory_nobpt (pc, &op, 1);
c906108c 424
acd5c798
MK
425 if (op != 0x58) /* popl %eax */
426 return pc;
c906108c 427
24a2a654 428 read_memory_nobpt (pc + 1, buf, 4);
acd5c798
MK
429 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
430 return pc;
c906108c 431
acd5c798 432 if (current_pc == pc)
c906108c 433 {
acd5c798
MK
434 cache->sp_offset += 4;
435 return current_pc;
c906108c
SS
436 }
437
acd5c798 438 if (current_pc == pc + 1)
c906108c 439 {
acd5c798
MK
440 cache->pc_in_eax = 1;
441 return current_pc;
442 }
443
444 if (buf[1] == proto1[1])
445 return pc + 4;
446 else
447 return pc + 5;
448}
449
450static CORE_ADDR
451i386_skip_probe (CORE_ADDR pc)
452{
453 /* A function may start with
fc338970 454
acd5c798
MK
455 pushl constant
456 call _probe
457 addl $4, %esp
fc338970 458
acd5c798
MK
459 followed by
460
461 pushl %ebp
fc338970 462
acd5c798 463 etc. */
63c0089f
MK
464 gdb_byte buf[8];
465 gdb_byte op;
fc338970 466
24a2a654 467 read_memory_nobpt (pc, &op, 1);
acd5c798
MK
468
469 if (op == 0x68 || op == 0x6a)
470 {
471 int delta;
c906108c 472
acd5c798
MK
473 /* Skip past the `pushl' instruction; it has either a one-byte or a
474 four-byte operand, depending on the opcode. */
c906108c 475 if (op == 0x68)
acd5c798 476 delta = 5;
c906108c 477 else
acd5c798 478 delta = 2;
c906108c 479
acd5c798
MK
480 /* Read the following 8 bytes, which should be `call _probe' (6
481 bytes) followed by `addl $4,%esp' (2 bytes). */
482 read_memory (pc + delta, buf, sizeof (buf));
c906108c 483 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 484 pc += delta + sizeof (buf);
c906108c
SS
485 }
486
acd5c798
MK
487 return pc;
488}
489
92dd43fa
MK
490/* GCC 4.1 and later, can put code in the prologue to realign the
491 stack pointer. Check whether PC points to such code, and update
492 CACHE accordingly. Return the first instruction after the code
493 sequence or CURRENT_PC, whichever is smaller. If we don't
494 recognize the code, return PC. */
495
496static CORE_ADDR
497i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
498 struct i386_frame_cache *cache)
499{
ade52156 500 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
501 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
502 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
503 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
504 };
ade52156
JB
505 static const gdb_byte insns_edx[10] = {
506 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
507 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
508 0xff, 0x72, 0xfc /* pushl -4(%edx) */
509 };
510 static const gdb_byte insns_eax[10] = {
511 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
512 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
513 0xff, 0x70, 0xfc /* pushl -4(%eax) */
514 };
92dd43fa
MK
515 gdb_byte buf[10];
516
517 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
518 || (memcmp (buf, insns_ecx, sizeof buf) != 0
519 && memcmp (buf, insns_edx, sizeof buf) != 0
520 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
521 return pc;
522
523 if (current_pc > pc + 4)
524 cache->stack_align = 1;
525
526 return min (pc + 10, current_pc);
527}
528
37bdc87e
MK
529/* Maximum instruction length we need to handle. */
530#define I386_MAX_INSN_LEN 6
531
532/* Instruction description. */
533struct i386_insn
534{
535 size_t len;
63c0089f
MK
536 gdb_byte insn[I386_MAX_INSN_LEN];
537 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
538};
539
540/* Search for the instruction at PC in the list SKIP_INSNS. Return
541 the first instruction description that matches. Otherwise, return
542 NULL. */
543
544static struct i386_insn *
545i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
546{
547 struct i386_insn *insn;
63c0089f 548 gdb_byte op;
37bdc87e 549
24a2a654 550 read_memory_nobpt (pc, &op, 1);
37bdc87e
MK
551
552 for (insn = skip_insns; insn->len > 0; insn++)
553 {
554 if ((op & insn->mask[0]) == insn->insn[0])
555 {
613e8135
MK
556 gdb_byte buf[I386_MAX_INSN_LEN - 1];
557 int insn_matched = 1;
37bdc87e
MK
558 size_t i;
559
560 gdb_assert (insn->len > 1);
561 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
562
24a2a654 563 read_memory_nobpt (pc + 1, buf, insn->len - 1);
37bdc87e
MK
564 for (i = 1; i < insn->len; i++)
565 {
566 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 567 insn_matched = 0;
37bdc87e 568 }
613e8135
MK
569
570 if (insn_matched)
571 return insn;
37bdc87e
MK
572 }
573 }
574
575 return NULL;
576}
577
578/* Some special instructions that might be migrated by GCC into the
579 part of the prologue that sets up the new stack frame. Because the
580 stack frame hasn't been setup yet, no registers have been saved
581 yet, and only the scratch registers %eax, %ecx and %edx can be
582 touched. */
583
584struct i386_insn i386_frame_setup_skip_insns[] =
585{
586 /* Check for `movb imm8, r' and `movl imm32, r'.
587
588 ??? Should we handle 16-bit operand-sizes here? */
589
590 /* `movb imm8, %al' and `movb imm8, %ah' */
591 /* `movb imm8, %cl' and `movb imm8, %ch' */
592 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
593 /* `movb imm8, %dl' and `movb imm8, %dh' */
594 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
595 /* `movl imm32, %eax' and `movl imm32, %ecx' */
596 { 5, { 0xb8 }, { 0xfe } },
597 /* `movl imm32, %edx' */
598 { 5, { 0xba }, { 0xff } },
599
600 /* Check for `mov imm32, r32'. Note that there is an alternative
601 encoding for `mov m32, %eax'.
602
603 ??? Should we handle SIB adressing here?
604 ??? Should we handle 16-bit operand-sizes here? */
605
606 /* `movl m32, %eax' */
607 { 5, { 0xa1 }, { 0xff } },
608 /* `movl m32, %eax' and `mov; m32, %ecx' */
609 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
610 /* `movl m32, %edx' */
611 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
612
613 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
614 Because of the symmetry, there are actually two ways to encode
615 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
616 opcode bytes 0x31 and 0x33 for `xorl'. */
617
618 /* `subl %eax, %eax' */
619 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
620 /* `subl %ecx, %ecx' */
621 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
622 /* `subl %edx, %edx' */
623 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
624 /* `xorl %eax, %eax' */
625 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
626 /* `xorl %ecx, %ecx' */
627 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
628 /* `xorl %edx, %edx' */
629 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
630 { 0 }
631};
632
acd5c798
MK
633/* Check whether PC points at a code that sets up a new stack frame.
634 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
635 instruction after the sequence that sets up the frame or LIMIT,
636 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
637
638static CORE_ADDR
37bdc87e 639i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
640 struct i386_frame_cache *cache)
641{
37bdc87e 642 struct i386_insn *insn;
63c0089f 643 gdb_byte op;
26604a34 644 int skip = 0;
acd5c798 645
37bdc87e
MK
646 if (limit <= pc)
647 return limit;
acd5c798 648
24a2a654 649 read_memory_nobpt (pc, &op, 1);
acd5c798 650
c906108c 651 if (op == 0x55) /* pushl %ebp */
c5aa993b 652 {
acd5c798
MK
653 /* Take into account that we've executed the `pushl %ebp' that
654 starts this instruction sequence. */
fd13a04a 655 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 656 cache->sp_offset += 4;
37bdc87e 657 pc++;
acd5c798
MK
658
659 /* If that's all, return now. */
37bdc87e
MK
660 if (limit <= pc)
661 return limit;
26604a34 662
b4632131 663 /* Check for some special instructions that might be migrated by
37bdc87e
MK
664 GCC into the prologue and skip them. At this point in the
665 prologue, code should only touch the scratch registers %eax,
666 %ecx and %edx, so while the number of posibilities is sheer,
667 it is limited.
5daa5b4e 668
26604a34
MK
669 Make sure we only skip these instructions if we later see the
670 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 671 while (pc + skip < limit)
26604a34 672 {
37bdc87e
MK
673 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
674 if (insn == NULL)
675 break;
b4632131 676
37bdc87e 677 skip += insn->len;
26604a34
MK
678 }
679
37bdc87e
MK
680 /* If that's all, return now. */
681 if (limit <= pc + skip)
682 return limit;
683
24a2a654 684 read_memory_nobpt (pc + skip, &op, 1);
37bdc87e 685
26604a34 686 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 687 switch (op)
c906108c
SS
688 {
689 case 0x8b:
37bdc87e
MK
690 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
691 return pc;
c906108c
SS
692 break;
693 case 0x89:
37bdc87e
MK
694 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
695 return pc;
c906108c
SS
696 break;
697 default:
37bdc87e 698 return pc;
c906108c 699 }
acd5c798 700
26604a34
MK
701 /* OK, we actually have a frame. We just don't know how large
702 it is yet. Set its size to zero. We'll adjust it if
703 necessary. We also now commit to skipping the special
704 instructions mentioned before. */
acd5c798 705 cache->locals = 0;
37bdc87e 706 pc += (skip + 2);
acd5c798
MK
707
708 /* If that's all, return now. */
37bdc87e
MK
709 if (limit <= pc)
710 return limit;
acd5c798 711
fc338970
MK
712 /* Check for stack adjustment
713
acd5c798 714 subl $XXX, %esp
fc338970 715
fd35795f 716 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 717 reg, so we don't have to worry about a data16 prefix. */
24a2a654 718 read_memory_nobpt (pc, &op, 1);
c906108c
SS
719 if (op == 0x83)
720 {
fd35795f 721 /* `subl' with 8-bit immediate. */
37bdc87e 722 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 723 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 724 return pc;
acd5c798 725
37bdc87e
MK
726 /* `subl' with signed 8-bit immediate (though it wouldn't
727 make sense to be negative). */
728 cache->locals = read_memory_integer (pc + 2, 1);
729 return pc + 3;
c906108c
SS
730 }
731 else if (op == 0x81)
732 {
fd35795f 733 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 734 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 735 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 736 return pc;
acd5c798 737
fd35795f 738 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
739 cache->locals = read_memory_integer (pc + 2, 4);
740 return pc + 6;
c906108c
SS
741 }
742 else
743 {
acd5c798 744 /* Some instruction other than `subl'. */
37bdc87e 745 return pc;
c906108c
SS
746 }
747 }
37bdc87e 748 else if (op == 0xc8) /* enter */
c906108c 749 {
acd5c798
MK
750 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
751 return pc + 4;
c906108c 752 }
21d0e8a4 753
acd5c798 754 return pc;
21d0e8a4
MK
755}
756
acd5c798
MK
757/* Check whether PC points at code that saves registers on the stack.
758 If so, it updates CACHE and returns the address of the first
759 instruction after the register saves or CURRENT_PC, whichever is
760 smaller. Otherwise, return PC. */
6bff26de
MK
761
762static CORE_ADDR
acd5c798
MK
763i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
764 struct i386_frame_cache *cache)
6bff26de 765{
99ab4326 766 CORE_ADDR offset = 0;
63c0089f 767 gdb_byte op;
99ab4326 768 int i;
c0d1d883 769
99ab4326
MK
770 if (cache->locals > 0)
771 offset -= cache->locals;
772 for (i = 0; i < 8 && pc < current_pc; i++)
773 {
24a2a654 774 read_memory_nobpt (pc, &op, 1);
99ab4326
MK
775 if (op < 0x50 || op > 0x57)
776 break;
0d17c81d 777
99ab4326
MK
778 offset -= 4;
779 cache->saved_regs[op - 0x50] = offset;
780 cache->sp_offset += 4;
781 pc++;
6bff26de
MK
782 }
783
acd5c798 784 return pc;
22797942
AC
785}
786
acd5c798
MK
787/* Do a full analysis of the prologue at PC and update CACHE
788 accordingly. Bail out early if CURRENT_PC is reached. Return the
789 address where the analysis stopped.
ed84f6c1 790
fc338970
MK
791 We handle these cases:
792
793 The startup sequence can be at the start of the function, or the
794 function can start with a branch to startup code at the end.
795
796 %ebp can be set up with either the 'enter' instruction, or "pushl
797 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
798 once used in the System V compiler).
799
800 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
801 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
802 16-bit unsigned argument for space to allocate, and the 'addl'
803 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
804
805 Next, the registers used by this function are pushed. With the
806 System V compiler they will always be in the order: %edi, %esi,
807 %ebx (and sometimes a harmless bug causes it to also save but not
808 restore %eax); however, the code below is willing to see the pushes
809 in any order, and will handle up to 8 of them.
810
811 If the setup sequence is at the end of the function, then the next
812 instruction will be a branch back to the start. */
c906108c 813
acd5c798
MK
814static CORE_ADDR
815i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
816 struct i386_frame_cache *cache)
c906108c 817{
acd5c798
MK
818 pc = i386_follow_jump (pc);
819 pc = i386_analyze_struct_return (pc, current_pc, cache);
820 pc = i386_skip_probe (pc);
92dd43fa 821 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
822 pc = i386_analyze_frame_setup (pc, current_pc, cache);
823 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
824}
825
fc338970 826/* Return PC of first real instruction. */
c906108c 827
3a1e71e3 828static CORE_ADDR
acd5c798 829i386_skip_prologue (CORE_ADDR start_pc)
c906108c 830{
63c0089f 831 static gdb_byte pic_pat[6] =
acd5c798
MK
832 {
833 0xe8, 0, 0, 0, 0, /* call 0x0 */
834 0x5b, /* popl %ebx */
c5aa993b 835 };
acd5c798
MK
836 struct i386_frame_cache cache;
837 CORE_ADDR pc;
63c0089f 838 gdb_byte op;
acd5c798 839 int i;
c5aa993b 840
acd5c798
MK
841 cache.locals = -1;
842 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
843 if (cache.locals < 0)
844 return start_pc;
c5aa993b 845
acd5c798 846 /* Found valid frame setup. */
c906108c 847
fc338970
MK
848 /* The native cc on SVR4 in -K PIC mode inserts the following code
849 to get the address of the global offset table (GOT) into register
acd5c798
MK
850 %ebx:
851
fc338970
MK
852 call 0x0
853 popl %ebx
854 movl %ebx,x(%ebp) (optional)
855 addl y,%ebx
856
c906108c
SS
857 This code is with the rest of the prologue (at the end of the
858 function), so we have to skip it to get to the first real
859 instruction at the start of the function. */
c5aa993b 860
c906108c
SS
861 for (i = 0; i < 6; i++)
862 {
24a2a654 863 read_memory_nobpt (pc + i, &op, 1);
c5aa993b 864 if (pic_pat[i] != op)
c906108c
SS
865 break;
866 }
867 if (i == 6)
868 {
acd5c798
MK
869 int delta = 6;
870
24a2a654 871 read_memory_nobpt (pc + delta, &op, 1);
c906108c 872
c5aa993b 873 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 874 {
acd5c798
MK
875 op = read_memory_unsigned_integer (pc + delta + 1, 1);
876
fc338970 877 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 878 delta += 3;
fc338970 879 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 880 delta += 6;
fc338970 881 else /* Unexpected instruction. */
acd5c798
MK
882 delta = 0;
883
24a2a654 884 read_memory_nobpt (pc + delta, &op, 1);
c906108c 885 }
acd5c798 886
c5aa993b 887 /* addl y,%ebx */
acd5c798
MK
888 if (delta > 0 && op == 0x81
889 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 890 {
acd5c798 891 pc += delta + 6;
c906108c
SS
892 }
893 }
c5aa993b 894
e63bbc88
MK
895 /* If the function starts with a branch (to startup code at the end)
896 the last instruction should bring us back to the first
897 instruction of the real code. */
898 if (i386_follow_jump (start_pc) != start_pc)
899 pc = i386_follow_jump (pc);
900
901 return pc;
c906108c
SS
902}
903
acd5c798 904/* This function is 64-bit safe. */
93924b6b 905
acd5c798
MK
906static CORE_ADDR
907i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 908{
63c0089f 909 gdb_byte buf[8];
acd5c798
MK
910
911 frame_unwind_register (next_frame, PC_REGNUM, buf);
912 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 913}
acd5c798 914\f
93924b6b 915
acd5c798 916/* Normal frames. */
c5aa993b 917
acd5c798
MK
918static struct i386_frame_cache *
919i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 920{
acd5c798 921 struct i386_frame_cache *cache;
63c0089f 922 gdb_byte buf[4];
acd5c798
MK
923 int i;
924
925 if (*this_cache)
926 return *this_cache;
927
fd13a04a 928 cache = i386_alloc_frame_cache ();
acd5c798
MK
929 *this_cache = cache;
930
931 /* In principle, for normal frames, %ebp holds the frame pointer,
932 which holds the base address for the current stack frame.
933 However, for functions that don't need it, the frame pointer is
934 optional. For these "frameless" functions the frame pointer is
935 actually the frame pointer of the calling frame. Signal
936 trampolines are just a special case of a "frameless" function.
937 They (usually) share their frame pointer with the frame that was
938 in progress when the signal occurred. */
939
940 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
941 cache->base = extract_unsigned_integer (buf, 4);
942 if (cache->base == 0)
943 return cache;
944
945 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 946 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
947
948 cache->pc = frame_func_unwind (next_frame);
949 if (cache->pc != 0)
950 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
951
92dd43fa
MK
952 if (cache->stack_align)
953 {
954 /* Saved stack pointer has been saved in %ecx. */
955 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
956 cache->saved_sp = extract_unsigned_integer(buf, 4);
957 }
958
acd5c798
MK
959 if (cache->locals < 0)
960 {
961 /* We didn't find a valid frame, which means that CACHE->base
962 currently holds the frame pointer for our calling frame. If
963 we're at the start of a function, or somewhere half-way its
964 prologue, the function's frame probably hasn't been fully
965 setup yet. Try to reconstruct the base address for the stack
966 frame by looking at the stack pointer. For truly "frameless"
967 functions this might work too. */
968
92dd43fa
MK
969 if (cache->stack_align)
970 {
971 /* We're halfway aligning the stack. */
972 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
973 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
974
975 /* This will be added back below. */
976 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
977 }
978 else
979 {
980 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
981 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
982 }
acd5c798
MK
983 }
984
985 /* Now that we have the base address for the stack frame we can
986 calculate the value of %esp in the calling frame. */
92dd43fa
MK
987 if (cache->saved_sp == 0)
988 cache->saved_sp = cache->base + 8;
a7769679 989
acd5c798
MK
990 /* Adjust all the saved registers such that they contain addresses
991 instead of offsets. */
992 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
993 if (cache->saved_regs[i] != -1)
994 cache->saved_regs[i] += cache->base;
acd5c798
MK
995
996 return cache;
a7769679
MK
997}
998
3a1e71e3 999static void
acd5c798
MK
1000i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1001 struct frame_id *this_id)
c906108c 1002{
acd5c798
MK
1003 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1004
1005 /* This marks the outermost frame. */
1006 if (cache->base == 0)
1007 return;
1008
3e210248 1009 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1010 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1011}
1012
1013static void
1014i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1015 int regnum, int *optimizedp,
1016 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1017 int *realnump, gdb_byte *valuep)
acd5c798
MK
1018{
1019 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1020
1021 gdb_assert (regnum >= 0);
1022
1023 /* The System V ABI says that:
1024
1025 "The flags register contains the system flags, such as the
1026 direction flag and the carry flag. The direction flag must be
1027 set to the forward (that is, zero) direction before entry and
1028 upon exit from a function. Other user flags have no specified
1029 role in the standard calling sequence and are not preserved."
1030
1031 To guarantee the "upon exit" part of that statement we fake a
1032 saved flags register that has its direction flag cleared.
1033
1034 Note that GCC doesn't seem to rely on the fact that the direction
1035 flag is cleared after a function return; it always explicitly
1036 clears the flag before operations where it matters.
1037
1038 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1039 right thing to do. The way we fake the flags register here makes
1040 it impossible to change it. */
1041
1042 if (regnum == I386_EFLAGS_REGNUM)
1043 {
1044 *optimizedp = 0;
1045 *lvalp = not_lval;
1046 *addrp = 0;
1047 *realnump = -1;
1048 if (valuep)
1049 {
1050 ULONGEST val;
c5aa993b 1051
acd5c798 1052 /* Clear the direction flag. */
f837910f
MK
1053 val = frame_unwind_register_unsigned (next_frame,
1054 I386_EFLAGS_REGNUM);
acd5c798
MK
1055 val &= ~(1 << 10);
1056 store_unsigned_integer (valuep, 4, val);
1057 }
1058
1059 return;
1060 }
1211c4e4 1061
acd5c798 1062 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1063 {
00b25ff3
AC
1064 *optimizedp = 0;
1065 *lvalp = lval_register;
1066 *addrp = 0;
1067 *realnump = I386_EAX_REGNUM;
1068 if (valuep)
1069 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1070 return;
1071 }
1072
1073 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1074 {
1075 *optimizedp = 0;
1076 *lvalp = not_lval;
1077 *addrp = 0;
1078 *realnump = -1;
1079 if (valuep)
c906108c 1080 {
acd5c798
MK
1081 /* Store the value. */
1082 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1083 }
acd5c798 1084 return;
c906108c 1085 }
acd5c798 1086
fd13a04a
AC
1087 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1088 {
1089 *optimizedp = 0;
1090 *lvalp = lval_memory;
1091 *addrp = cache->saved_regs[regnum];
1092 *realnump = -1;
1093 if (valuep)
1094 {
1095 /* Read the value in from memory. */
1096 read_memory (*addrp, valuep,
1097 register_size (current_gdbarch, regnum));
1098 }
1099 return;
1100 }
1101
00b25ff3
AC
1102 *optimizedp = 0;
1103 *lvalp = lval_register;
1104 *addrp = 0;
1105 *realnump = regnum;
1106 if (valuep)
1107 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1108}
1109
1110static const struct frame_unwind i386_frame_unwind =
1111{
1112 NORMAL_FRAME,
1113 i386_frame_this_id,
1114 i386_frame_prev_register
1115};
1116
1117static const struct frame_unwind *
336d1bba 1118i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1119{
1120 return &i386_frame_unwind;
1121}
1122\f
1123
1124/* Signal trampolines. */
1125
1126static struct i386_frame_cache *
1127i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1128{
1129 struct i386_frame_cache *cache;
1130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1131 CORE_ADDR addr;
63c0089f 1132 gdb_byte buf[4];
acd5c798
MK
1133
1134 if (*this_cache)
1135 return *this_cache;
1136
fd13a04a 1137 cache = i386_alloc_frame_cache ();
acd5c798
MK
1138
1139 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1140 cache->base = extract_unsigned_integer (buf, 4) - 4;
1141
1142 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1143 if (tdep->sc_reg_offset)
1144 {
1145 int i;
1146
1147 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1148
1149 for (i = 0; i < tdep->sc_num_regs; i++)
1150 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1151 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1152 }
1153 else
1154 {
fd13a04a
AC
1155 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1156 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1157 }
acd5c798
MK
1158
1159 *this_cache = cache;
1160 return cache;
1161}
1162
1163static void
1164i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1165 struct frame_id *this_id)
1166{
1167 struct i386_frame_cache *cache =
1168 i386_sigtramp_frame_cache (next_frame, this_cache);
1169
3e210248 1170 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1171 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1172}
1173
1174static void
1175i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1176 void **this_cache,
1177 int regnum, int *optimizedp,
1178 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1179 int *realnump, gdb_byte *valuep)
acd5c798
MK
1180{
1181 /* Make sure we've initialized the cache. */
1182 i386_sigtramp_frame_cache (next_frame, this_cache);
1183
1184 i386_frame_prev_register (next_frame, this_cache, regnum,
1185 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1186}
c0d1d883 1187
acd5c798
MK
1188static const struct frame_unwind i386_sigtramp_frame_unwind =
1189{
1190 SIGTRAMP_FRAME,
1191 i386_sigtramp_frame_this_id,
1192 i386_sigtramp_frame_prev_register
1193};
1194
1195static const struct frame_unwind *
336d1bba 1196i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1197{
911bc6ee 1198 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1199
911bc6ee
MK
1200 /* We shouldn't even bother if we don't have a sigcontext_addr
1201 handler. */
1202 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1203 return NULL;
1204
911bc6ee
MK
1205 if (tdep->sigtramp_p != NULL)
1206 {
1207 if (tdep->sigtramp_p (next_frame))
1208 return &i386_sigtramp_frame_unwind;
1209 }
1210
1211 if (tdep->sigtramp_start != 0)
1212 {
1213 CORE_ADDR pc = frame_pc_unwind (next_frame);
1214
1215 gdb_assert (tdep->sigtramp_end != 0);
1216 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1217 return &i386_sigtramp_frame_unwind;
1218 }
acd5c798
MK
1219
1220 return NULL;
1221}
1222\f
1223
1224static CORE_ADDR
1225i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1226{
1227 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1228
1229 return cache->base;
1230}
1231
1232static const struct frame_base i386_frame_base =
1233{
1234 &i386_frame_unwind,
1235 i386_frame_base_address,
1236 i386_frame_base_address,
1237 i386_frame_base_address
1238};
1239
acd5c798
MK
1240static struct frame_id
1241i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1242{
63c0089f 1243 gdb_byte buf[4];
acd5c798
MK
1244 CORE_ADDR fp;
1245
1246 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1247 fp = extract_unsigned_integer (buf, 4);
1248
3e210248 1249 /* See the end of i386_push_dummy_call. */
acd5c798 1250 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1251}
fc338970 1252\f
c906108c 1253
fc338970
MK
1254/* Figure out where the longjmp will land. Slurp the args out of the
1255 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1256 structure from which we extract the address that we will land at.
28bcfd30 1257 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1258 success.
1259
1260 This function is 64-bit safe. */
c906108c 1261
8201327c
MK
1262static int
1263i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1264{
63c0089f 1265 gdb_byte buf[8];
c906108c 1266 CORE_ADDR sp, jb_addr;
8201327c 1267 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1268 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1269
8201327c
MK
1270 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1271 longjmp will land. */
1272 if (jb_pc_offset == -1)
c906108c
SS
1273 return 0;
1274
f837910f
MK
1275 /* Don't use I386_ESP_REGNUM here, since this function is also used
1276 for AMD64. */
1277 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1278 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1279 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1280 return 0;
1281
f837910f 1282 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1283 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1284 return 0;
c906108c 1285
f9d3c2a8 1286 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1287 return 1;
1288}
fc338970 1289\f
c906108c 1290
3a1e71e3 1291static CORE_ADDR
7d9b040b 1292i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1293 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1294 struct value **args, CORE_ADDR sp, int struct_return,
1295 CORE_ADDR struct_addr)
22f8ba57 1296{
63c0089f 1297 gdb_byte buf[4];
acd5c798
MK
1298 int i;
1299
1300 /* Push arguments in reverse order. */
1301 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1302 {
4754a64e 1303 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1304
1305 /* The System V ABI says that:
1306
1307 "An argument's size is increased, if necessary, to make it a
1308 multiple of [32-bit] words. This may require tail padding,
1309 depending on the size of the argument."
1310
cf913f37 1311 This makes sure the stack stays word-aligned. */
acd5c798 1312 sp -= (len + 3) & ~3;
46615f07 1313 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1314 }
22f8ba57 1315
acd5c798
MK
1316 /* Push value address. */
1317 if (struct_return)
1318 {
22f8ba57 1319 sp -= 4;
fbd9dcd3 1320 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1321 write_memory (sp, buf, 4);
1322 }
1323
acd5c798
MK
1324 /* Store return address. */
1325 sp -= 4;
6a65450a 1326 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1327 write_memory (sp, buf, 4);
1328
1329 /* Finally, update the stack pointer... */
1330 store_unsigned_integer (buf, 4, sp);
1331 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1332
1333 /* ...and fake a frame pointer. */
1334 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1335
3e210248
AC
1336 /* MarkK wrote: This "+ 8" is all over the place:
1337 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1338 i386_unwind_dummy_id). It's there, since all frame unwinders for
1339 a given target have to agree (within a certain margin) on the
fd35795f 1340 definition of the stack address of a frame. Otherwise
3e210248
AC
1341 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1342 stack address *before* the function call as a frame's CFA. On
1343 the i386, when %ebp is used as a frame pointer, the offset
1344 between the contents %ebp and the CFA as defined by GCC. */
1345 return sp + 8;
22f8ba57
MK
1346}
1347
1a309862
MK
1348/* These registers are used for returning integers (and on some
1349 targets also for returning `struct' and `union' values when their
ef9dff19 1350 size and alignment match an integer type). */
acd5c798
MK
1351#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1352#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1353
c5e656c1
MK
1354/* Read, for architecture GDBARCH, a function return value of TYPE
1355 from REGCACHE, and copy that into VALBUF. */
1a309862 1356
3a1e71e3 1357static void
c5e656c1 1358i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1359 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1360{
c5e656c1 1361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1362 int len = TYPE_LENGTH (type);
63c0089f 1363 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1364
1e8d0a7b 1365 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1366 {
5716833c 1367 if (tdep->st0_regnum < 0)
1a309862 1368 {
8a3fe4f8 1369 warning (_("Cannot find floating-point return value."));
1a309862 1370 memset (valbuf, 0, len);
ef9dff19 1371 return;
1a309862
MK
1372 }
1373
c6ba6f0d
MK
1374 /* Floating-point return values can be found in %st(0). Convert
1375 its contents to the desired type. This is probably not
1376 exactly how it would happen on the target itself, but it is
1377 the best we can do. */
acd5c798 1378 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1379 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1380 }
1381 else
c5aa993b 1382 {
f837910f
MK
1383 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1384 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1385
1386 if (len <= low_size)
00f8375e 1387 {
0818c12a 1388 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1389 memcpy (valbuf, buf, len);
1390 }
d4f3574e
SS
1391 else if (len <= (low_size + high_size))
1392 {
0818c12a 1393 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1394 memcpy (valbuf, buf, low_size);
0818c12a 1395 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1396 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1397 }
1398 else
8e65ff28 1399 internal_error (__FILE__, __LINE__,
e2e0b3e5 1400 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1401 }
1402}
1403
c5e656c1
MK
1404/* Write, for architecture GDBARCH, a function return value of TYPE
1405 from VALBUF into REGCACHE. */
ef9dff19 1406
3a1e71e3 1407static void
c5e656c1 1408i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1409 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1410{
c5e656c1 1411 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1412 int len = TYPE_LENGTH (type);
1413
5716833c
MK
1414 /* Define I387_ST0_REGNUM such that we use the proper definitions
1415 for the architecture. */
1416#define I387_ST0_REGNUM I386_ST0_REGNUM
1417
1e8d0a7b 1418 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1419 {
3d7f4f49 1420 ULONGEST fstat;
63c0089f 1421 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1422
5716833c 1423 if (tdep->st0_regnum < 0)
ef9dff19 1424 {
8a3fe4f8 1425 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1426 return;
1427 }
1428
635b0cc1
MK
1429 /* Returning floating-point values is a bit tricky. Apart from
1430 storing the return value in %st(0), we have to simulate the
1431 state of the FPU at function return point. */
1432
c6ba6f0d
MK
1433 /* Convert the value found in VALBUF to the extended
1434 floating-point format used by the FPU. This is probably
1435 not exactly how it would happen on the target itself, but
1436 it is the best we can do. */
1437 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1438 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1439
635b0cc1
MK
1440 /* Set the top of the floating-point register stack to 7. The
1441 actual value doesn't really matter, but 7 is what a normal
1442 function return would end up with if the program started out
1443 with a freshly initialized FPU. */
5716833c 1444 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1445 fstat |= (7 << 11);
5716833c 1446 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1447
635b0cc1
MK
1448 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1449 the floating-point register stack to 7, the appropriate value
1450 for the tag word is 0x3fff. */
5716833c 1451 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1452 }
1453 else
1454 {
f837910f
MK
1455 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1456 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1457
1458 if (len <= low_size)
3d7f4f49 1459 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1460 else if (len <= (low_size + high_size))
1461 {
3d7f4f49
MK
1462 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1463 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1464 len - low_size, valbuf + low_size);
ef9dff19
MK
1465 }
1466 else
8e65ff28 1467 internal_error (__FILE__, __LINE__,
e2e0b3e5 1468 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1469 }
5716833c
MK
1470
1471#undef I387_ST0_REGNUM
ef9dff19 1472}
fc338970 1473\f
ef9dff19 1474
8201327c
MK
1475/* This is the variable that is set with "set struct-convention", and
1476 its legitimate values. */
1477static const char default_struct_convention[] = "default";
1478static const char pcc_struct_convention[] = "pcc";
1479static const char reg_struct_convention[] = "reg";
1480static const char *valid_conventions[] =
1481{
1482 default_struct_convention,
1483 pcc_struct_convention,
1484 reg_struct_convention,
1485 NULL
1486};
1487static const char *struct_convention = default_struct_convention;
1488
0e4377e1
JB
1489/* Return non-zero if TYPE, which is assumed to be a structure,
1490 a union type, or an array type, should be returned in registers
1491 for architecture GDBARCH. */
c5e656c1 1492
8201327c 1493static int
c5e656c1 1494i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1495{
c5e656c1
MK
1496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1497 enum type_code code = TYPE_CODE (type);
1498 int len = TYPE_LENGTH (type);
8201327c 1499
0e4377e1
JB
1500 gdb_assert (code == TYPE_CODE_STRUCT
1501 || code == TYPE_CODE_UNION
1502 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1503
1504 if (struct_convention == pcc_struct_convention
1505 || (struct_convention == default_struct_convention
1506 && tdep->struct_return == pcc_struct_return))
1507 return 0;
1508
9edde48e
MK
1509 /* Structures consisting of a single `float', `double' or 'long
1510 double' member are returned in %st(0). */
1511 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1512 {
1513 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1514 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1515 return (len == 4 || len == 8 || len == 12);
1516 }
1517
c5e656c1
MK
1518 return (len == 1 || len == 2 || len == 4 || len == 8);
1519}
1520
1521/* Determine, for architecture GDBARCH, how a return value of TYPE
1522 should be returned. If it is supposed to be returned in registers,
1523 and READBUF is non-zero, read the appropriate value from REGCACHE,
1524 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1525 from WRITEBUF into REGCACHE. */
1526
1527static enum return_value_convention
1528i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1529 struct regcache *regcache, gdb_byte *readbuf,
1530 const gdb_byte *writebuf)
c5e656c1
MK
1531{
1532 enum type_code code = TYPE_CODE (type);
1533
0e4377e1
JB
1534 if ((code == TYPE_CODE_STRUCT
1535 || code == TYPE_CODE_UNION
1536 || code == TYPE_CODE_ARRAY)
c5e656c1 1537 && !i386_reg_struct_return_p (gdbarch, type))
31db7b6c
MK
1538 {
1539 /* The System V ABI says that:
1540
1541 "A function that returns a structure or union also sets %eax
1542 to the value of the original address of the caller's area
1543 before it returns. Thus when the caller receives control
1544 again, the address of the returned object resides in register
1545 %eax and can be used to access the object."
1546
1547 So the ABI guarantees that we can always find the return
1548 value just after the function has returned. */
1549
0e4377e1
JB
1550 /* Note that the ABI doesn't mention functions returning arrays,
1551 which is something possible in certain languages such as Ada.
1552 In this case, the value is returned as if it was wrapped in
1553 a record, so the convention applied to records also applies
1554 to arrays. */
1555
31db7b6c
MK
1556 if (readbuf)
1557 {
1558 ULONGEST addr;
1559
1560 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1561 read_memory (addr, readbuf, TYPE_LENGTH (type));
1562 }
1563
1564 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1565 }
c5e656c1
MK
1566
1567 /* This special case is for structures consisting of a single
9edde48e
MK
1568 `float', `double' or 'long double' member. These structures are
1569 returned in %st(0). For these structures, we call ourselves
1570 recursively, changing TYPE into the type of the first member of
1571 the structure. Since that should work for all structures that
1572 have only one member, we don't bother to check the member's type
1573 here. */
c5e656c1
MK
1574 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1575 {
1576 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1577 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1578 }
1579
1580 if (readbuf)
1581 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1582 if (writebuf)
1583 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1584
c5e656c1 1585 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1586}
1587\f
1588
5ae96ec1
MK
1589/* Type for %eflags. */
1590struct type *i386_eflags_type;
1591
21b4b2f2 1592/* Types for the MMX and SSE registers. */
5ae96ec1
MK
1593struct type *i386_mmx_type;
1594struct type *i386_sse_type;
878d9193 1595struct type *i386_mxcsr_type;
5ae96ec1
MK
1596
1597/* Construct types for ISA-specific registers. */
1598static void
1599i386_init_types (void)
1600{
1601 struct type *type;
1602
1603 type = init_flags_type ("builtin_type_i386_eflags", 4);
1604 append_flags_type_flag (type, 0, "CF");
1605 append_flags_type_flag (type, 1, NULL);
1606 append_flags_type_flag (type, 2, "PF");
1607 append_flags_type_flag (type, 4, "AF");
1608 append_flags_type_flag (type, 6, "ZF");
1609 append_flags_type_flag (type, 7, "SF");
1610 append_flags_type_flag (type, 8, "TF");
1611 append_flags_type_flag (type, 9, "IF");
1612 append_flags_type_flag (type, 10, "DF");
1613 append_flags_type_flag (type, 11, "OF");
1614 append_flags_type_flag (type, 14, "NT");
1615 append_flags_type_flag (type, 16, "RF");
1616 append_flags_type_flag (type, 17, "VM");
1617 append_flags_type_flag (type, 18, "AC");
1618 append_flags_type_flag (type, 19, "VIF");
1619 append_flags_type_flag (type, 20, "VIP");
1620 append_flags_type_flag (type, 21, "ID");
1621 i386_eflags_type = type;
21b4b2f2 1622
21b4b2f2
JB
1623 /* The type we're building is this: */
1624#if 0
5ae96ec1 1625 union __gdb_builtin_type_vec64i
21b4b2f2
JB
1626 {
1627 int64_t uint64;
1628 int32_t v2_int32[2];
1629 int16_t v4_int16[4];
1630 int8_t v8_int8[8];
1631 };
1632#endif
1633
5ae96ec1
MK
1634 type = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1635 append_composite_type_field (type, "uint64", builtin_type_int64);
1636 append_composite_type_field (type, "v2_int32", builtin_type_v2_int32);
1637 append_composite_type_field (type, "v4_int16", builtin_type_v4_int16);
1638 append_composite_type_field (type, "v8_int8", builtin_type_v8_int8);
1639 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1640 TYPE_NAME (type) = "builtin_type_vec64i";
1641 i386_mmx_type = type;
21b4b2f2 1642
5ae96ec1
MK
1643 /* The type we're building is this: */
1644#if 0
1645 union __gdb_builtin_type_vec128i
1646 {
1647 int128_t uint128;
1648 int64_t v2_int64[2];
1649 int32_t v4_int32[4];
1650 int16_t v8_int16[8];
1651 int8_t v16_int8[16];
1652 double v2_double[2];
1653 float v4_float[4];
1654 };
1655#endif
21b4b2f2 1656
5ae96ec1
MK
1657 type = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1658 append_composite_type_field (type, "v4_float", builtin_type_v4_float);
1659 append_composite_type_field (type, "v2_double", builtin_type_v2_double);
1660 append_composite_type_field (type, "v16_int8", builtin_type_v16_int8);
1661 append_composite_type_field (type, "v8_int16", builtin_type_v8_int16);
1662 append_composite_type_field (type, "v4_int32", builtin_type_v4_int32);
1663 append_composite_type_field (type, "v2_int64", builtin_type_v2_int64);
1664 append_composite_type_field (type, "uint128", builtin_type_int128);
1665 TYPE_FLAGS (type) |= TYPE_FLAG_VECTOR;
1666 TYPE_NAME (type) = "builtin_type_vec128i";
1667 i386_sse_type = type;
878d9193
MK
1668
1669 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1670 append_flags_type_flag (type, 0, "IE");
1671 append_flags_type_flag (type, 1, "DE");
1672 append_flags_type_flag (type, 2, "ZE");
1673 append_flags_type_flag (type, 3, "OE");
1674 append_flags_type_flag (type, 4, "UE");
1675 append_flags_type_flag (type, 5, "PE");
1676 append_flags_type_flag (type, 6, "DAZ");
1677 append_flags_type_flag (type, 7, "IM");
1678 append_flags_type_flag (type, 8, "DM");
1679 append_flags_type_flag (type, 9, "ZM");
1680 append_flags_type_flag (type, 10, "OM");
1681 append_flags_type_flag (type, 11, "UM");
1682 append_flags_type_flag (type, 12, "PM");
1683 append_flags_type_flag (type, 15, "FZ");
1684 i386_mxcsr_type = type;
21b4b2f2
JB
1685}
1686
d7a0d72c
MK
1687/* Return the GDB type object for the "standard" data type of data in
1688 register REGNUM. Perhaps %esi and %edi should go here, but
1689 potentially they could be used for things other than address. */
1690
3a1e71e3 1691static struct type *
4e259f09 1692i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1693{
ab533587
MK
1694 if (regnum == I386_EIP_REGNUM)
1695 return builtin_type_void_func_ptr;
1696
5ae96ec1
MK
1697 if (regnum == I386_EFLAGS_REGNUM)
1698 return i386_eflags_type;
1699
ab533587
MK
1700 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1701 return builtin_type_void_data_ptr;
d7a0d72c 1702
23a34459 1703 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1704 return builtin_type_i387_ext;
d7a0d72c 1705
878d9193
MK
1706 if (i386_mmx_regnum_p (gdbarch, regnum))
1707 return i386_mmx_type;
1708
5716833c 1709 if (i386_sse_regnum_p (gdbarch, regnum))
5ae96ec1 1710 return i386_sse_type;
d7a0d72c 1711
878d9193
MK
1712#define I387_ST0_REGNUM I386_ST0_REGNUM
1713#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
1714
1715 if (regnum == I387_MXCSR_REGNUM)
1716 return i386_mxcsr_type;
1717
1718#undef I387_ST0_REGNUM
1719#undef I387_NUM_XMM_REGS
28fc6740 1720
d7a0d72c
MK
1721 return builtin_type_int;
1722}
1723
28fc6740 1724/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1725 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1726
1727static int
c86c27af 1728i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1729{
5716833c
MK
1730 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1731 int mmxreg, fpreg;
28fc6740
AC
1732 ULONGEST fstat;
1733 int tos;
c86c27af 1734
5716833c
MK
1735 /* Define I387_ST0_REGNUM such that we use the proper definitions
1736 for REGCACHE's architecture. */
1737#define I387_ST0_REGNUM tdep->st0_regnum
1738
1739 mmxreg = regnum - tdep->mm0_regnum;
1740 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1741 tos = (fstat >> 11) & 0x7;
5716833c
MK
1742 fpreg = (mmxreg + tos) % 8;
1743
1744 return (I387_ST0_REGNUM + fpreg);
c86c27af 1745
5716833c 1746#undef I387_ST0_REGNUM
28fc6740
AC
1747}
1748
1749static void
1750i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1751 int regnum, gdb_byte *buf)
28fc6740 1752{
5716833c 1753 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1754 {
63c0089f 1755 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1756 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1757
28fc6740 1758 /* Extract (always little endian). */
c86c27af 1759 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1760 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1761 }
1762 else
1763 regcache_raw_read (regcache, regnum, buf);
1764}
1765
1766static void
1767i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1768 int regnum, const gdb_byte *buf)
28fc6740 1769{
5716833c 1770 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1771 {
63c0089f 1772 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1773 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1774
28fc6740
AC
1775 /* Read ... */
1776 regcache_raw_read (regcache, fpnum, mmx_buf);
1777 /* ... Modify ... (always little endian). */
f837910f 1778 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1779 /* ... Write. */
1780 regcache_raw_write (regcache, fpnum, mmx_buf);
1781 }
1782 else
1783 regcache_raw_write (regcache, regnum, buf);
1784}
ff2e87ac
AC
1785\f
1786
ff2e87ac
AC
1787/* Return the register number of the register allocated by GCC after
1788 REGNUM, or -1 if there is no such register. */
1789
1790static int
1791i386_next_regnum (int regnum)
1792{
1793 /* GCC allocates the registers in the order:
1794
1795 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1796
1797 Since storing a variable in %esp doesn't make any sense we return
1798 -1 for %ebp and for %esp itself. */
1799 static int next_regnum[] =
1800 {
1801 I386_EDX_REGNUM, /* Slot for %eax. */
1802 I386_EBX_REGNUM, /* Slot for %ecx. */
1803 I386_ECX_REGNUM, /* Slot for %edx. */
1804 I386_ESI_REGNUM, /* Slot for %ebx. */
1805 -1, -1, /* Slots for %esp and %ebp. */
1806 I386_EDI_REGNUM, /* Slot for %esi. */
1807 I386_EBP_REGNUM /* Slot for %edi. */
1808 };
1809
de5b9bb9 1810 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1811 return next_regnum[regnum];
28fc6740 1812
ff2e87ac
AC
1813 return -1;
1814}
1815
1816/* Return nonzero if a value of type TYPE stored in register REGNUM
1817 needs any special handling. */
d7a0d72c 1818
3a1e71e3 1819static int
ff2e87ac 1820i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1821{
de5b9bb9
MK
1822 int len = TYPE_LENGTH (type);
1823
ff2e87ac
AC
1824 /* Values may be spread across multiple registers. Most debugging
1825 formats aren't expressive enough to specify the locations, so
1826 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1827 have a length that is a multiple of the word size, since GCC
1828 doesn't seem to put any other types into registers. */
1829 if (len > 4 && len % 4 == 0)
1830 {
1831 int last_regnum = regnum;
1832
1833 while (len > 4)
1834 {
1835 last_regnum = i386_next_regnum (last_regnum);
1836 len -= 4;
1837 }
1838
1839 if (last_regnum != -1)
1840 return 1;
1841 }
ff2e87ac 1842
23a34459 1843 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1844}
1845
ff2e87ac
AC
1846/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1847 return its contents in TO. */
ac27f131 1848
3a1e71e3 1849static void
ff2e87ac 1850i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1851 struct type *type, gdb_byte *to)
ac27f131 1852{
de5b9bb9 1853 int len = TYPE_LENGTH (type);
de5b9bb9 1854
ff2e87ac
AC
1855 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1856 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1857
ff2e87ac 1858 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1859 {
d532c08f
MK
1860 i387_register_to_value (frame, regnum, type, to);
1861 return;
8d7f6b4a 1862 }
ff2e87ac 1863
fd35795f 1864 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1865
1866 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1867
de5b9bb9
MK
1868 while (len > 0)
1869 {
1870 gdb_assert (regnum != -1);
1871 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1872
42835c2b 1873 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1874 regnum = i386_next_regnum (regnum);
1875 len -= 4;
42835c2b 1876 to += 4;
de5b9bb9 1877 }
ac27f131
MK
1878}
1879
ff2e87ac
AC
1880/* Write the contents FROM of a value of type TYPE into register
1881 REGNUM in frame FRAME. */
ac27f131 1882
3a1e71e3 1883static void
ff2e87ac 1884i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1885 struct type *type, const gdb_byte *from)
ac27f131 1886{
de5b9bb9 1887 int len = TYPE_LENGTH (type);
de5b9bb9 1888
ff2e87ac 1889 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1890 {
d532c08f
MK
1891 i387_value_to_register (frame, regnum, type, from);
1892 return;
1893 }
3d261580 1894
fd35795f 1895 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1896
1897 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1898
de5b9bb9
MK
1899 while (len > 0)
1900 {
1901 gdb_assert (regnum != -1);
1902 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1903
42835c2b 1904 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1905 regnum = i386_next_regnum (regnum);
1906 len -= 4;
42835c2b 1907 from += 4;
de5b9bb9 1908 }
ac27f131 1909}
ff2e87ac 1910\f
7fdafb5a
MK
1911/* Supply register REGNUM from the buffer specified by GREGS and LEN
1912 in the general-purpose register set REGSET to register cache
1913 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 1914
20187ed5 1915void
473f17b0
MK
1916i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1917 int regnum, const void *gregs, size_t len)
1918{
9ea75c57 1919 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1920 const gdb_byte *regs = gregs;
473f17b0
MK
1921 int i;
1922
1923 gdb_assert (len == tdep->sizeof_gregset);
1924
1925 for (i = 0; i < tdep->gregset_num_regs; i++)
1926 {
1927 if ((regnum == i || regnum == -1)
1928 && tdep->gregset_reg_offset[i] != -1)
1929 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1930 }
1931}
1932
7fdafb5a
MK
1933/* Collect register REGNUM from the register cache REGCACHE and store
1934 it in the buffer specified by GREGS and LEN as described by the
1935 general-purpose register set REGSET. If REGNUM is -1, do this for
1936 all registers in REGSET. */
1937
1938void
1939i386_collect_gregset (const struct regset *regset,
1940 const struct regcache *regcache,
1941 int regnum, void *gregs, size_t len)
1942{
1943 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 1944 gdb_byte *regs = gregs;
7fdafb5a
MK
1945 int i;
1946
1947 gdb_assert (len == tdep->sizeof_gregset);
1948
1949 for (i = 0; i < tdep->gregset_num_regs; i++)
1950 {
1951 if ((regnum == i || regnum == -1)
1952 && tdep->gregset_reg_offset[i] != -1)
1953 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
1954 }
1955}
1956
1957/* Supply register REGNUM from the buffer specified by FPREGS and LEN
1958 in the floating-point register set REGSET to register cache
1959 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
1960
1961static void
1962i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1963 int regnum, const void *fpregs, size_t len)
1964{
9ea75c57 1965 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 1966
66a72d25
MK
1967 if (len == I387_SIZEOF_FXSAVE)
1968 {
1969 i387_supply_fxsave (regcache, regnum, fpregs);
1970 return;
1971 }
1972
473f17b0
MK
1973 gdb_assert (len == tdep->sizeof_fpregset);
1974 i387_supply_fsave (regcache, regnum, fpregs);
1975}
8446b36a 1976
2f305df1
MK
1977/* Collect register REGNUM from the register cache REGCACHE and store
1978 it in the buffer specified by FPREGS and LEN as described by the
1979 floating-point register set REGSET. If REGNUM is -1, do this for
1980 all registers in REGSET. */
7fdafb5a
MK
1981
1982static void
1983i386_collect_fpregset (const struct regset *regset,
1984 const struct regcache *regcache,
1985 int regnum, void *fpregs, size_t len)
1986{
1987 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
1988
1989 if (len == I387_SIZEOF_FXSAVE)
1990 {
1991 i387_collect_fxsave (regcache, regnum, fpregs);
1992 return;
1993 }
1994
1995 gdb_assert (len == tdep->sizeof_fpregset);
1996 i387_collect_fsave (regcache, regnum, fpregs);
1997}
1998
8446b36a
MK
1999/* Return the appropriate register set for the core section identified
2000 by SECT_NAME and SECT_SIZE. */
2001
2002const struct regset *
2003i386_regset_from_core_section (struct gdbarch *gdbarch,
2004 const char *sect_name, size_t sect_size)
2005{
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007
2008 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2009 {
2010 if (tdep->gregset == NULL)
7fdafb5a
MK
2011 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2012 i386_collect_gregset);
8446b36a
MK
2013 return tdep->gregset;
2014 }
2015
66a72d25
MK
2016 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2017 || (strcmp (sect_name, ".reg-xfp") == 0
2018 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2019 {
2020 if (tdep->fpregset == NULL)
7fdafb5a
MK
2021 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2022 i386_collect_fpregset);
8446b36a
MK
2023 return tdep->fpregset;
2024 }
2025
2026 return NULL;
2027}
473f17b0 2028\f
fc338970 2029
c906108c 2030#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
2031/* SunPRO encodes the static variables. This is not related to C++
2032 mangling, it is done for C too. */
c906108c
SS
2033
2034char *
fba45db2 2035sunpro_static_transform_name (char *name)
c906108c
SS
2036{
2037 char *p;
2038 if (IS_STATIC_TRANSFORM_NAME (name))
2039 {
fc338970
MK
2040 /* For file-local statics there will be a period, a bunch of
2041 junk (the contents of which match a string given in the
c5aa993b
JM
2042 N_OPT), a period and the name. For function-local statics
2043 there will be a bunch of junk (which seems to change the
2044 second character from 'A' to 'B'), a period, the name of the
2045 function, and the name. So just skip everything before the
2046 last period. */
c906108c
SS
2047 p = strrchr (name, '.');
2048 if (p != NULL)
2049 name = p + 1;
2050 }
2051 return name;
2052}
2053#endif /* STATIC_TRANSFORM_NAME */
fc338970 2054\f
c906108c 2055
fc338970 2056/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2057
2058CORE_ADDR
1cce71eb 2059i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2060{
fc338970 2061 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2062 {
c5aa993b 2063 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2064 struct minimal_symbol *indsym =
fc338970 2065 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2066 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2067
c5aa993b 2068 if (symname)
c906108c 2069 {
c5aa993b
JM
2070 if (strncmp (symname, "__imp_", 6) == 0
2071 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2072 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2073 }
2074 }
fc338970 2075 return 0; /* Not a trampoline. */
c906108c 2076}
fc338970
MK
2077\f
2078
377d9ebd 2079/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2080 sigtramp routine. */
8201327c
MK
2081
2082static int
911bc6ee 2083i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2084{
911bc6ee
MK
2085 CORE_ADDR pc = frame_pc_unwind (next_frame);
2086 char *name;
2087
2088 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2089 return (name && strcmp ("_sigtramp", name) == 0);
2090}
2091\f
2092
fc338970
MK
2093/* We have two flavours of disassembly. The machinery on this page
2094 deals with switching between those. */
c906108c
SS
2095
2096static int
a89aa300 2097i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2098{
5e3397bb
MK
2099 gdb_assert (disassembly_flavor == att_flavor
2100 || disassembly_flavor == intel_flavor);
2101
2102 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2103 constified, cast to prevent a compiler warning. */
2104 info->disassembler_options = (char *) disassembly_flavor;
2105 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2106
2107 return print_insn_i386 (pc, info);
7a292a7a 2108}
fc338970 2109\f
3ce1502b 2110
8201327c
MK
2111/* There are a few i386 architecture variants that differ only
2112 slightly from the generic i386 target. For now, we don't give them
2113 their own source file, but include them here. As a consequence,
2114 they'll always be included. */
3ce1502b 2115
8201327c 2116/* System V Release 4 (SVR4). */
3ce1502b 2117
377d9ebd 2118/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2119 sigtramp routine. */
2120
8201327c 2121static int
911bc6ee 2122i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2123{
911bc6ee
MK
2124 CORE_ADDR pc = frame_pc_unwind (next_frame);
2125 char *name;
2126
acd5c798
MK
2127 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2128 currently unknown. */
911bc6ee 2129 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2130 return (name && (strcmp ("_sigreturn", name) == 0
2131 || strcmp ("_sigacthandler", name) == 0
2132 || strcmp ("sigvechandler", name) == 0));
2133}
d2a7c97a 2134
acd5c798
MK
2135/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2136 routine, return the address of the associated sigcontext (ucontext)
2137 structure. */
3ce1502b 2138
3a1e71e3 2139static CORE_ADDR
acd5c798 2140i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2141{
63c0089f 2142 gdb_byte buf[4];
acd5c798 2143 CORE_ADDR sp;
3ce1502b 2144
acd5c798
MK
2145 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2146 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2147
acd5c798 2148 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2149}
2150\f
3ce1502b 2151
8201327c 2152/* Generic ELF. */
d2a7c97a 2153
8201327c
MK
2154void
2155i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2156{
c4fc7f1b
MK
2157 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2158 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2159}
3ce1502b 2160
8201327c 2161/* System V Release 4 (SVR4). */
3ce1502b 2162
8201327c
MK
2163void
2164i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2165{
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2167
8201327c
MK
2168 /* System V Release 4 uses ELF. */
2169 i386_elf_init_abi (info, gdbarch);
3ce1502b 2170
dfe01d39 2171 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2172 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2173
911bc6ee 2174 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2175 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2176 tdep->sc_pc_offset = 36 + 14 * 4;
2177 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2178
8201327c 2179 tdep->jb_pc_offset = 20;
3ce1502b
MK
2180}
2181
8201327c 2182/* DJGPP. */
3ce1502b 2183
3a1e71e3 2184static void
8201327c 2185i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2186{
8201327c 2187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2188
911bc6ee
MK
2189 /* DJGPP doesn't have any special frames for signal handlers. */
2190 tdep->sigtramp_p = NULL;
3ce1502b 2191
8201327c 2192 tdep->jb_pc_offset = 36;
3ce1502b
MK
2193}
2194
8201327c 2195/* NetWare. */
3ce1502b 2196
3a1e71e3 2197static void
8201327c 2198i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2199{
8201327c 2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2201
8201327c 2202 tdep->jb_pc_offset = 24;
d2a7c97a 2203}
8201327c 2204\f
2acceee2 2205
38c968cf
AC
2206/* i386 register groups. In addition to the normal groups, add "mmx"
2207 and "sse". */
2208
2209static struct reggroup *i386_sse_reggroup;
2210static struct reggroup *i386_mmx_reggroup;
2211
2212static void
2213i386_init_reggroups (void)
2214{
2215 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2216 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2217}
2218
2219static void
2220i386_add_reggroups (struct gdbarch *gdbarch)
2221{
2222 reggroup_add (gdbarch, i386_sse_reggroup);
2223 reggroup_add (gdbarch, i386_mmx_reggroup);
2224 reggroup_add (gdbarch, general_reggroup);
2225 reggroup_add (gdbarch, float_reggroup);
2226 reggroup_add (gdbarch, all_reggroup);
2227 reggroup_add (gdbarch, save_reggroup);
2228 reggroup_add (gdbarch, restore_reggroup);
2229 reggroup_add (gdbarch, vector_reggroup);
2230 reggroup_add (gdbarch, system_reggroup);
2231}
2232
2233int
2234i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2235 struct reggroup *group)
2236{
5716833c
MK
2237 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2238 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2239 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2240 || i386_fpc_regnum_p (regnum));
5716833c 2241 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2242
38c968cf
AC
2243 if (group == i386_mmx_reggroup)
2244 return mmx_regnum_p;
2245 if (group == i386_sse_reggroup)
2246 return sse_regnum_p;
2247 if (group == vector_reggroup)
2248 return (mmx_regnum_p || sse_regnum_p);
2249 if (group == float_reggroup)
2250 return fp_regnum_p;
2251 if (group == general_reggroup)
2252 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2253
38c968cf
AC
2254 return default_register_reggroup_p (gdbarch, regnum, group);
2255}
38c968cf 2256\f
acd5c798 2257
f837910f
MK
2258/* Get the ARGIth function argument for the current function. */
2259
42c466d7 2260static CORE_ADDR
143985b7
AF
2261i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2262 struct type *type)
2263{
f837910f
MK
2264 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2265 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2266}
2267
2268\f
3a1e71e3 2269static struct gdbarch *
a62cc96e
AC
2270i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2271{
cd3c07fc 2272 struct gdbarch_tdep *tdep;
a62cc96e
AC
2273 struct gdbarch *gdbarch;
2274
4be87837
DJ
2275 /* If there is already a candidate, use it. */
2276 arches = gdbarch_list_lookup_by_info (arches, &info);
2277 if (arches != NULL)
2278 return arches->gdbarch;
a62cc96e
AC
2279
2280 /* Allocate space for the new architecture. */
2281 tdep = XMALLOC (struct gdbarch_tdep);
2282 gdbarch = gdbarch_alloc (&info, tdep);
2283
473f17b0
MK
2284 /* General-purpose registers. */
2285 tdep->gregset = NULL;
2286 tdep->gregset_reg_offset = NULL;
2287 tdep->gregset_num_regs = I386_NUM_GREGS;
2288 tdep->sizeof_gregset = 0;
2289
2290 /* Floating-point registers. */
2291 tdep->fpregset = NULL;
2292 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2293
5716833c 2294 /* The default settings include the FPU registers, the MMX registers
fd35795f 2295 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2296 by adjusting the members `st0_regnum', `mm0_regnum' and
2297 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2298 will show up in the output of "info all-registers". Ideally we
2299 should try to autodetect whether they are available, such that we
2300 can prevent "info all-registers" from displaying registers that
2301 aren't available.
2302
2303 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2304 [the SSE registers] always (even when they don't exist) or never
2305 showing them to the user (even when they do exist), I prefer the
2306 former over the latter. */
2307
2308 tdep->st0_regnum = I386_ST0_REGNUM;
2309
2310 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2311 calculating the register number for %mm0 until we know the number
5716833c
MK
2312 of raw registers. */
2313 tdep->mm0_regnum = 0;
2314
2315 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2316 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2317
8201327c
MK
2318 tdep->jb_pc_offset = -1;
2319 tdep->struct_return = pcc_struct_return;
8201327c
MK
2320 tdep->sigtramp_start = 0;
2321 tdep->sigtramp_end = 0;
911bc6ee 2322 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2323 tdep->sigcontext_addr = NULL;
a3386186 2324 tdep->sc_reg_offset = NULL;
8201327c 2325 tdep->sc_pc_offset = -1;
21d0e8a4 2326 tdep->sc_sp_offset = -1;
8201327c 2327
896fb97d
MK
2328 /* The format used for `long double' on almost all i386 targets is
2329 the i387 extended floating-point format. In fact, of all targets
2330 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2331 on having a `long double' that's not `long' at all. */
2332 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 2333
66da5fd8 2334 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2335 bits, a `long double' actually takes up 96, probably to enforce
2336 alignment. */
2337 set_gdbarch_long_double_bit (gdbarch, 96);
2338
49ed40de
KB
2339 /* The default ABI includes general-purpose registers,
2340 floating-point registers, and the SSE registers. */
2341 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2342 set_gdbarch_register_name (gdbarch, i386_register_name);
2343 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2344
acd5c798
MK
2345 /* Register numbers of various important registers. */
2346 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2347 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2348 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2349 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2350
c4fc7f1b
MK
2351 /* NOTE: kettenis/20040418: GCC does have two possible register
2352 numbering schemes on the i386: dbx and SVR4. These schemes
2353 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2354 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2355 dbx_register_map[] and svr4_dbx_register_map in
2356 gcc/config/i386.c. GCC also defines a third numbering scheme in
2357 gcc/config/i386.c, which it designates as the "default" register
2358 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2359 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2360 amd64-tdep.c.
2361
2362 Currently, each GCC i386 target always uses the same register
2363 numbering scheme across all its supported debugging formats
2364 i.e. SDB (COFF), stabs and DWARF 2. This is because
2365 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2366 DBX_REGISTER_NUMBER macro which is defined by each target's
2367 respective config header in a manner independent of the requested
2368 output debugging format.
2369
2370 This does not match the arrangement below, which presumes that
2371 the SDB and stabs numbering schemes differ from the DWARF and
2372 DWARF 2 ones. The reason for this arrangement is that it is
2373 likely to get the numbering scheme for the target's
2374 default/native debug format right. For targets where GCC is the
2375 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2376 targets where the native toolchain uses a different numbering
2377 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2378 the defaults below will have to be overridden, like
2379 i386_elf_init_abi() does. */
c4fc7f1b
MK
2380
2381 /* Use the dbx register numbering scheme for stabs and COFF. */
2382 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2383 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2384
2385 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2386 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2387 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2388
2389 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2390 be in use on any of the supported i386 targets. */
2391
61113f8b
MK
2392 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2393
8201327c 2394 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2395
a62cc96e 2396 /* Call dummy code. */
acd5c798 2397 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2398
ff2e87ac
AC
2399 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2400 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2401 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2402
c5e656c1 2403 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2404
93924b6b
MK
2405 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2406
2407 /* Stack grows downward. */
2408 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2409
2410 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2411 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2412
42fdc8df 2413 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2414
28fc6740 2415 /* Wire in the MMX registers. */
0f751ff2 2416 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2417 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2418 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2419
5e3397bb
MK
2420 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2421
acd5c798 2422 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2423
2424 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2425
38c968cf
AC
2426 /* Add the i386 register groups. */
2427 i386_add_reggroups (gdbarch);
2428 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2429
143985b7
AF
2430 /* Helper for function argument information. */
2431 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2432
6405b0a6 2433 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2434 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2435
acd5c798 2436 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2437
3ce1502b 2438 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2439 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2440
336d1bba
AC
2441 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2442 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2443
8446b36a
MK
2444 /* If we have a register mapping, enable the generic core file
2445 support, unless it has already been enabled. */
2446 if (tdep->gregset_reg_offset
2447 && !gdbarch_regset_from_core_section_p (gdbarch))
2448 set_gdbarch_regset_from_core_section (gdbarch,
2449 i386_regset_from_core_section);
2450
5716833c
MK
2451 /* Unless support for MMX has been disabled, make %mm0 the first
2452 pseudo-register. */
2453 if (tdep->mm0_regnum == 0)
2454 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2455
a62cc96e
AC
2456 return gdbarch;
2457}
2458
8201327c
MK
2459static enum gdb_osabi
2460i386_coff_osabi_sniffer (bfd *abfd)
2461{
762c5349
MK
2462 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2463 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2464 return GDB_OSABI_GO32;
2465
2466 return GDB_OSABI_UNKNOWN;
2467}
2468
2469static enum gdb_osabi
2470i386_nlm_osabi_sniffer (bfd *abfd)
2471{
2472 return GDB_OSABI_NETWARE;
2473}
2474\f
2475
28e9e0f0
MK
2476/* Provide a prototype to silence -Wmissing-prototypes. */
2477void _initialize_i386_tdep (void);
2478
c906108c 2479void
fba45db2 2480_initialize_i386_tdep (void)
c906108c 2481{
a62cc96e
AC
2482 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2483
fc338970 2484 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2485 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2486 &disassembly_flavor, _("\
2487Set the disassembly flavor."), _("\
2488Show the disassembly flavor."), _("\
2489The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2490 NULL,
2491 NULL, /* FIXME: i18n: */
2492 &setlist, &showlist);
8201327c
MK
2493
2494 /* Add the variable that controls the convention for returning
2495 structs. */
7ab04401
AC
2496 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2497 &struct_convention, _("\
2498Set the convention for returning small structs."), _("\
2499Show the convention for returning small structs."), _("\
2500Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2501is \"default\"."),
2502 NULL,
2503 NULL, /* FIXME: i18n: */
2504 &setlist, &showlist);
8201327c
MK
2505
2506 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2507 i386_coff_osabi_sniffer);
2508 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2509 i386_nlm_osabi_sniffer);
2510
05816f70 2511 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2512 i386_svr4_init_abi);
05816f70 2513 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2514 i386_go32_init_abi);
05816f70 2515 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2516 i386_nw_init_abi);
38c968cf 2517
5ae96ec1 2518 /* Initialize the i386-specific register groups & types. */
38c968cf 2519 i386_init_reggroups ();
5ae96ec1 2520 i386_init_types();
c906108c 2521}
This page took 0.677502 seconds and 4 git commands to generate.