* NEWS: Mention that the i[3456]-*mach3*, i[3456]-*-mach* and
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "frame.h"
26#include "inferior.h"
27#include "gdbcore.h"
28#include "target.h"
29#include "floatformat.h"
c0d1d883 30#include "symfile.h"
c906108c
SS
31#include "symtab.h"
32#include "gdbcmd.h"
33#include "command.h"
b4a20239 34#include "arch-utils.h"
4e052eda 35#include "regcache.h"
d16aafd8 36#include "doublest.h"
fd0407d6 37#include "value.h"
3d261580
MK
38#include "gdb_assert.h"
39
d2a7c97a 40#include "i386-tdep.h"
61113f8b 41#include "i387-tdep.h"
d2a7c97a 42
fc633446
MK
43/* Names of the registers. The first 10 registers match the register
44 numbering scheme used by GCC for stabs and DWARF. */
45static char *i386_register_names[] =
46{
47 "eax", "ecx", "edx", "ebx",
48 "esp", "ebp", "esi", "edi",
49 "eip", "eflags", "cs", "ss",
50 "ds", "es", "fs", "gs",
51 "st0", "st1", "st2", "st3",
52 "st4", "st5", "st6", "st7",
53 "fctrl", "fstat", "ftag", "fiseg",
54 "fioff", "foseg", "fooff", "fop",
55 "xmm0", "xmm1", "xmm2", "xmm3",
56 "xmm4", "xmm5", "xmm6", "xmm7",
57 "mxcsr"
58};
59
28fc6740
AC
60/* MMX registers. */
61
62static char *i386_mmx_names[] =
63{
64 "mm0", "mm1", "mm2", "mm3",
65 "mm4", "mm5", "mm6", "mm7"
66};
67static const int mmx_num_regs = (sizeof (i386_mmx_names)
68 / sizeof (i386_mmx_names[0]));
69#define MM0_REGNUM (NUM_REGS)
70
71static int
72mmx_regnum_p (int reg)
73{
74 return (reg >= MM0_REGNUM && reg < MM0_REGNUM + mmx_num_regs);
75}
76
fc633446
MK
77/* Return the name of register REG. */
78
fa88f677 79const char *
fc633446
MK
80i386_register_name (int reg)
81{
82 if (reg < 0)
83 return NULL;
28fc6740
AC
84 if (mmx_regnum_p (reg))
85 return i386_mmx_names[reg - MM0_REGNUM];
fc633446
MK
86 if (reg >= sizeof (i386_register_names) / sizeof (*i386_register_names))
87 return NULL;
88
89 return i386_register_names[reg];
90}
91
85540d8c
MK
92/* Convert stabs register number REG to the appropriate register
93 number used by GDB. */
94
8201327c 95static int
85540d8c
MK
96i386_stab_reg_to_regnum (int reg)
97{
98 /* This implements what GCC calls the "default" register map. */
99 if (reg >= 0 && reg <= 7)
100 {
101 /* General registers. */
102 return reg;
103 }
104 else if (reg >= 12 && reg <= 19)
105 {
106 /* Floating-point registers. */
107 return reg - 12 + FP0_REGNUM;
108 }
109 else if (reg >= 21 && reg <= 28)
110 {
111 /* SSE registers. */
112 return reg - 21 + XMM0_REGNUM;
113 }
114 else if (reg >= 29 && reg <= 36)
115 {
116 /* MMX registers. */
7d12f766 117 return reg - 29 + MM0_REGNUM;
85540d8c
MK
118 }
119
120 /* This will hopefully provoke a warning. */
121 return NUM_REGS + NUM_PSEUDO_REGS;
122}
123
8201327c 124/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
125 number used by GDB. */
126
8201327c 127static int
85540d8c
MK
128i386_dwarf_reg_to_regnum (int reg)
129{
130 /* The DWARF register numbering includes %eip and %eflags, and
131 numbers the floating point registers differently. */
132 if (reg >= 0 && reg <= 9)
133 {
134 /* General registers. */
135 return reg;
136 }
137 else if (reg >= 11 && reg <= 18)
138 {
139 /* Floating-point registers. */
140 return reg - 11 + FP0_REGNUM;
141 }
142 else if (reg >= 21)
143 {
144 /* The SSE and MMX registers have identical numbers as in stabs. */
145 return i386_stab_reg_to_regnum (reg);
146 }
147
148 /* This will hopefully provoke a warning. */
149 return NUM_REGS + NUM_PSEUDO_REGS;
150}
fc338970 151\f
917317f4 152
fc338970
MK
153/* This is the variable that is set with "set disassembly-flavor", and
154 its legitimate values. */
53904c9e
AC
155static const char att_flavor[] = "att";
156static const char intel_flavor[] = "intel";
157static const char *valid_flavors[] =
c5aa993b 158{
c906108c
SS
159 att_flavor,
160 intel_flavor,
161 NULL
162};
53904c9e 163static const char *disassembly_flavor = att_flavor;
c906108c 164
fc338970
MK
165/* Stdio style buffering was used to minimize calls to ptrace, but
166 this buffering did not take into account that the code section
167 being accessed may not be an even number of buffers long (even if
168 the buffer is only sizeof(int) long). In cases where the code
169 section size happened to be a non-integral number of buffers long,
170 attempting to read the last buffer would fail. Simply using
171 target_read_memory and ignoring errors, rather than read_memory, is
172 not the correct solution, since legitimate access errors would then
173 be totally ignored. To properly handle this situation and continue
174 to use buffering would require that this code be able to determine
175 the minimum code section size granularity (not the alignment of the
176 section itself, since the actual failing case that pointed out this
177 problem had a section alignment of 4 but was not a multiple of 4
178 bytes long), on a target by target basis, and then adjust it's
179 buffer size accordingly. This is messy, but potentially feasible.
180 It probably needs the bfd library's help and support. For now, the
181 buffer size is set to 1. (FIXME -fnf) */
182
183#define CODESTREAM_BUFSIZ 1 /* Was sizeof(int), see note above. */
c906108c
SS
184static CORE_ADDR codestream_next_addr;
185static CORE_ADDR codestream_addr;
186static unsigned char codestream_buf[CODESTREAM_BUFSIZ];
187static int codestream_off;
188static int codestream_cnt;
189
190#define codestream_tell() (codestream_addr + codestream_off)
fc338970
MK
191#define codestream_peek() \
192 (codestream_cnt == 0 ? \
193 codestream_fill(1) : codestream_buf[codestream_off])
194#define codestream_get() \
195 (codestream_cnt-- == 0 ? \
196 codestream_fill(0) : codestream_buf[codestream_off++])
c906108c 197
c5aa993b 198static unsigned char
fba45db2 199codestream_fill (int peek_flag)
c906108c
SS
200{
201 codestream_addr = codestream_next_addr;
202 codestream_next_addr += CODESTREAM_BUFSIZ;
203 codestream_off = 0;
204 codestream_cnt = CODESTREAM_BUFSIZ;
205 read_memory (codestream_addr, (char *) codestream_buf, CODESTREAM_BUFSIZ);
c5aa993b 206
c906108c 207 if (peek_flag)
c5aa993b 208 return (codestream_peek ());
c906108c 209 else
c5aa993b 210 return (codestream_get ());
c906108c
SS
211}
212
213static void
fba45db2 214codestream_seek (CORE_ADDR place)
c906108c
SS
215{
216 codestream_next_addr = place / CODESTREAM_BUFSIZ;
217 codestream_next_addr *= CODESTREAM_BUFSIZ;
218 codestream_cnt = 0;
219 codestream_fill (1);
c5aa993b 220 while (codestream_tell () != place)
c906108c
SS
221 codestream_get ();
222}
223
224static void
fba45db2 225codestream_read (unsigned char *buf, int count)
c906108c
SS
226{
227 unsigned char *p;
228 int i;
229 p = buf;
230 for (i = 0; i < count; i++)
231 *p++ = codestream_get ();
232}
fc338970 233\f
c906108c 234
fc338970 235/* If the next instruction is a jump, move to its target. */
c906108c
SS
236
237static void
fba45db2 238i386_follow_jump (void)
c906108c
SS
239{
240 unsigned char buf[4];
241 long delta;
242
243 int data16;
244 CORE_ADDR pos;
245
246 pos = codestream_tell ();
247
248 data16 = 0;
249 if (codestream_peek () == 0x66)
250 {
251 codestream_get ();
252 data16 = 1;
253 }
254
255 switch (codestream_get ())
256 {
257 case 0xe9:
fc338970 258 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
259 if (data16)
260 {
261 codestream_read (buf, 2);
262 delta = extract_signed_integer (buf, 2);
263
fc338970
MK
264 /* Include the size of the jmp instruction (including the
265 0x66 prefix). */
c5aa993b 266 pos += delta + 4;
c906108c
SS
267 }
268 else
269 {
270 codestream_read (buf, 4);
271 delta = extract_signed_integer (buf, 4);
272
273 pos += delta + 5;
274 }
275 break;
276 case 0xeb:
fc338970 277 /* Relative jump, disp8 (ignore data16). */
c906108c
SS
278 codestream_read (buf, 1);
279 /* Sign-extend it. */
280 delta = extract_signed_integer (buf, 1);
281
282 pos += delta + 2;
283 break;
284 }
285 codestream_seek (pos);
286}
287
fc338970
MK
288/* Find & return the amount a local space allocated, and advance the
289 codestream to the first register push (if any).
290
291 If the entry sequence doesn't make sense, return -1, and leave
292 codestream pointer at a random spot. */
c906108c
SS
293
294static long
fba45db2 295i386_get_frame_setup (CORE_ADDR pc)
c906108c
SS
296{
297 unsigned char op;
298
299 codestream_seek (pc);
300
301 i386_follow_jump ();
302
303 op = codestream_get ();
304
305 if (op == 0x58) /* popl %eax */
306 {
fc338970
MK
307 /* This function must start with
308
309 popl %eax 0x58
310 xchgl %eax, (%esp) 0x87 0x04 0x24
311 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
312
313 (the System V compiler puts out the second `xchg'
314 instruction, and the assembler doesn't try to optimize it, so
315 the 'sib' form gets generated). This sequence is used to get
316 the address of the return buffer for a function that returns
317 a structure. */
c906108c
SS
318 int pos;
319 unsigned char buf[4];
fc338970
MK
320 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
321 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
322
c906108c
SS
323 pos = codestream_tell ();
324 codestream_read (buf, 4);
325 if (memcmp (buf, proto1, 3) == 0)
326 pos += 3;
327 else if (memcmp (buf, proto2, 4) == 0)
328 pos += 4;
329
330 codestream_seek (pos);
fc338970 331 op = codestream_get (); /* Update next opcode. */
c906108c
SS
332 }
333
334 if (op == 0x68 || op == 0x6a)
335 {
fc338970
MK
336 /* This function may start with
337
338 pushl constant
339 call _probe
340 addl $4, %esp
341
342 followed by
343
344 pushl %ebp
345
346 etc. */
c906108c
SS
347 int pos;
348 unsigned char buf[8];
349
fc338970 350 /* Skip past the `pushl' instruction; it has either a one-byte
c906108c
SS
351 or a four-byte operand, depending on the opcode. */
352 pos = codestream_tell ();
353 if (op == 0x68)
354 pos += 4;
355 else
356 pos += 1;
357 codestream_seek (pos);
358
fc338970
MK
359 /* Read the following 8 bytes, which should be "call _probe" (6
360 bytes) followed by "addl $4,%esp" (2 bytes). */
c906108c
SS
361 codestream_read (buf, sizeof (buf));
362 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
363 pos += sizeof (buf);
364 codestream_seek (pos);
fc338970 365 op = codestream_get (); /* Update next opcode. */
c906108c
SS
366 }
367
368 if (op == 0x55) /* pushl %ebp */
c5aa993b 369 {
fc338970 370 /* Check for "movl %esp, %ebp" -- can be written in two ways. */
c906108c
SS
371 switch (codestream_get ())
372 {
373 case 0x8b:
374 if (codestream_get () != 0xec)
fc338970 375 return -1;
c906108c
SS
376 break;
377 case 0x89:
378 if (codestream_get () != 0xe5)
fc338970 379 return -1;
c906108c
SS
380 break;
381 default:
fc338970 382 return -1;
c906108c 383 }
fc338970
MK
384 /* Check for stack adjustment
385
386 subl $XXX, %esp
387
388 NOTE: You can't subtract a 16 bit immediate from a 32 bit
389 reg, so we don't have to worry about a data16 prefix. */
c906108c
SS
390 op = codestream_peek ();
391 if (op == 0x83)
392 {
fc338970 393 /* `subl' with 8 bit immediate. */
c906108c
SS
394 codestream_get ();
395 if (codestream_get () != 0xec)
fc338970 396 /* Some instruction starting with 0x83 other than `subl'. */
c906108c
SS
397 {
398 codestream_seek (codestream_tell () - 2);
399 return 0;
400 }
fc338970
MK
401 /* `subl' with signed byte immediate (though it wouldn't
402 make sense to be negative). */
c5aa993b 403 return (codestream_get ());
c906108c
SS
404 }
405 else if (op == 0x81)
406 {
407 char buf[4];
fc338970 408 /* Maybe it is `subl' with a 32 bit immedediate. */
c5aa993b 409 codestream_get ();
c906108c 410 if (codestream_get () != 0xec)
fc338970 411 /* Some instruction starting with 0x81 other than `subl'. */
c906108c
SS
412 {
413 codestream_seek (codestream_tell () - 2);
414 return 0;
415 }
fc338970 416 /* It is `subl' with a 32 bit immediate. */
c5aa993b 417 codestream_read ((unsigned char *) buf, 4);
c906108c
SS
418 return extract_signed_integer (buf, 4);
419 }
420 else
421 {
fc338970 422 return 0;
c906108c
SS
423 }
424 }
425 else if (op == 0xc8)
426 {
427 char buf[2];
fc338970 428 /* `enter' with 16 bit unsigned immediate. */
c5aa993b 429 codestream_read ((unsigned char *) buf, 2);
fc338970 430 codestream_get (); /* Flush final byte of enter instruction. */
c906108c
SS
431 return extract_unsigned_integer (buf, 2);
432 }
433 return (-1);
434}
435
6bff26de
MK
436/* Signal trampolines don't have a meaningful frame. The frame
437 pointer value we use is actually the frame pointer of the calling
438 frame -- that is, the frame which was in progress when the signal
439 trampoline was entered. GDB mostly treats this frame pointer value
440 as a magic cookie. We detect the case of a signal trampoline by
441 looking at the SIGNAL_HANDLER_CALLER field, which is set based on
442 PC_IN_SIGTRAMP.
443
444 When a signal trampoline is invoked from a frameless function, we
445 essentially have two frameless functions in a row. In this case,
446 we use the same magic cookie for three frames in a row. We detect
447 this case by seeing whether the next frame has
448 SIGNAL_HANDLER_CALLER set, and, if it does, checking whether the
449 current frame is actually frameless. In this case, we need to get
450 the PC by looking at the SP register value stored in the signal
451 context.
452
453 This should work in most cases except in horrible situations where
454 a signal occurs just as we enter a function but before the frame
c0d1d883
MK
455 has been set up. Incidentally, that's just what happens when we
456 call a function from GDB with a signal pending (there's a test in
457 the testsuite that makes this happen). Therefore we pretend that
458 we have a frameless function if we're stopped at the start of a
459 function. */
6bff26de
MK
460
461/* Return non-zero if we're dealing with a frameless signal, that is,
462 a signal trampoline invoked from a frameless function. */
463
464static int
465i386_frameless_signal_p (struct frame_info *frame)
466{
c0d1d883
MK
467 return (frame->next && frame->next->signal_handler_caller
468 && (frameless_look_for_prologue (frame)
469 || frame->pc == get_pc_function_start (frame->pc)));
6bff26de
MK
470}
471
c833a37e
MK
472/* Return the chain-pointer for FRAME. In the case of the i386, the
473 frame's nominal address is the address of a 4-byte word containing
474 the calling frame's address. */
475
8201327c 476static CORE_ADDR
c833a37e
MK
477i386_frame_chain (struct frame_info *frame)
478{
c0d1d883
MK
479 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
480 return frame->frame;
481
6bff26de
MK
482 if (frame->signal_handler_caller
483 || i386_frameless_signal_p (frame))
c833a37e
MK
484 return frame->frame;
485
486 if (! inside_entry_file (frame->pc))
487 return read_memory_unsigned_integer (frame->frame, 4);
488
489 return 0;
490}
491
539ffe0b
MK
492/* Determine whether the function invocation represented by FRAME does
493 not have a from on the stack associated with it. If it does not,
494 return non-zero, otherwise return zero. */
495
3a1e71e3 496static int
539ffe0b
MK
497i386_frameless_function_invocation (struct frame_info *frame)
498{
499 if (frame->signal_handler_caller)
500 return 0;
501
502 return frameless_look_for_prologue (frame);
503}
504
21d0e8a4
MK
505/* Assuming FRAME is for a sigtramp routine, return the saved program
506 counter. */
507
508static CORE_ADDR
509i386_sigtramp_saved_pc (struct frame_info *frame)
510{
511 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
512 CORE_ADDR addr;
513
514 addr = tdep->sigcontext_addr (frame);
515 return read_memory_unsigned_integer (addr + tdep->sc_pc_offset, 4);
516}
517
6bff26de
MK
518/* Assuming FRAME is for a sigtramp routine, return the saved stack
519 pointer. */
520
521static CORE_ADDR
522i386_sigtramp_saved_sp (struct frame_info *frame)
523{
524 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
525 CORE_ADDR addr;
526
527 addr = tdep->sigcontext_addr (frame);
528 return read_memory_unsigned_integer (addr + tdep->sc_sp_offset, 4);
529}
530
0d17c81d
MK
531/* Return the saved program counter for FRAME. */
532
8201327c 533static CORE_ADDR
0d17c81d
MK
534i386_frame_saved_pc (struct frame_info *frame)
535{
c0d1d883
MK
536 if (PC_IN_CALL_DUMMY (frame->pc, 0, 0))
537 return generic_read_register_dummy (frame->pc, frame->frame,
538 PC_REGNUM);
539
0d17c81d 540 if (frame->signal_handler_caller)
21d0e8a4 541 return i386_sigtramp_saved_pc (frame);
0d17c81d 542
6bff26de
MK
543 if (i386_frameless_signal_p (frame))
544 {
545 CORE_ADDR sp = i386_sigtramp_saved_sp (frame->next);
546 return read_memory_unsigned_integer (sp, 4);
547 }
548
8201327c 549 return read_memory_unsigned_integer (frame->frame + 4, 4);
22797942
AC
550}
551
ed84f6c1
MK
552/* Immediately after a function call, return the saved pc. */
553
8201327c 554static CORE_ADDR
ed84f6c1
MK
555i386_saved_pc_after_call (struct frame_info *frame)
556{
6bff26de
MK
557 if (frame->signal_handler_caller)
558 return i386_sigtramp_saved_pc (frame);
559
ed84f6c1
MK
560 return read_memory_unsigned_integer (read_register (SP_REGNUM), 4);
561}
562
c906108c
SS
563/* Return number of args passed to a frame.
564 Can return -1, meaning no way to tell. */
565
3a1e71e3 566static int
fba45db2 567i386_frame_num_args (struct frame_info *fi)
c906108c
SS
568{
569#if 1
570 return -1;
571#else
572 /* This loses because not only might the compiler not be popping the
fc338970
MK
573 args right after the function call, it might be popping args from
574 both this call and a previous one, and we would say there are
575 more args than there really are. */
c906108c 576
c5aa993b
JM
577 int retpc;
578 unsigned char op;
c906108c
SS
579 struct frame_info *pfi;
580
fc338970 581 /* On the i386, the instruction following the call could be:
c906108c
SS
582 popl %ecx - one arg
583 addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
fc338970 584 anything else - zero args. */
c906108c
SS
585
586 int frameless;
587
392a587b 588 frameless = FRAMELESS_FUNCTION_INVOCATION (fi);
c906108c 589 if (frameless)
fc338970
MK
590 /* In the absence of a frame pointer, GDB doesn't get correct
591 values for nameless arguments. Return -1, so it doesn't print
592 any nameless arguments. */
c906108c
SS
593 return -1;
594
c5aa993b 595 pfi = get_prev_frame (fi);
c906108c
SS
596 if (pfi == 0)
597 {
fc338970
MK
598 /* NOTE: This can happen if we are looking at the frame for
599 main, because FRAME_CHAIN_VALID won't let us go into start.
600 If we have debugging symbols, that's not really a big deal;
601 it just means it will only show as many arguments to main as
602 are declared. */
c906108c
SS
603 return -1;
604 }
605 else
606 {
c5aa993b
JM
607 retpc = pfi->pc;
608 op = read_memory_integer (retpc, 1);
fc338970 609 if (op == 0x59) /* pop %ecx */
c5aa993b 610 return 1;
c906108c
SS
611 else if (op == 0x83)
612 {
c5aa993b
JM
613 op = read_memory_integer (retpc + 1, 1);
614 if (op == 0xc4)
615 /* addl $<signed imm 8 bits>, %esp */
616 return (read_memory_integer (retpc + 2, 1) & 0xff) / 4;
c906108c
SS
617 else
618 return 0;
619 }
fc338970
MK
620 else if (op == 0x81) /* `add' with 32 bit immediate. */
621 {
c5aa993b
JM
622 op = read_memory_integer (retpc + 1, 1);
623 if (op == 0xc4)
624 /* addl $<imm 32>, %esp */
625 return read_memory_integer (retpc + 2, 4) / 4;
c906108c
SS
626 else
627 return 0;
628 }
629 else
630 {
631 return 0;
632 }
633 }
634#endif
635}
636
fc338970
MK
637/* Parse the first few instructions the function to see what registers
638 were stored.
639
640 We handle these cases:
641
642 The startup sequence can be at the start of the function, or the
643 function can start with a branch to startup code at the end.
644
645 %ebp can be set up with either the 'enter' instruction, or "pushl
646 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
647 once used in the System V compiler).
648
649 Local space is allocated just below the saved %ebp by either the
650 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
651 bit unsigned argument for space to allocate, and the 'addl'
652 instruction could have either a signed byte, or 32 bit immediate.
653
654 Next, the registers used by this function are pushed. With the
655 System V compiler they will always be in the order: %edi, %esi,
656 %ebx (and sometimes a harmless bug causes it to also save but not
657 restore %eax); however, the code below is willing to see the pushes
658 in any order, and will handle up to 8 of them.
659
660 If the setup sequence is at the end of the function, then the next
661 instruction will be a branch back to the start. */
c906108c 662
3a1e71e3 663static void
fba45db2 664i386_frame_init_saved_regs (struct frame_info *fip)
c906108c
SS
665{
666 long locals = -1;
667 unsigned char op;
fc338970 668 CORE_ADDR addr;
c906108c
SS
669 CORE_ADDR pc;
670 int i;
c5aa993b 671
1211c4e4
AC
672 if (fip->saved_regs)
673 return;
674
675 frame_saved_regs_zalloc (fip);
c5aa993b 676
c906108c
SS
677 pc = get_pc_function_start (fip->pc);
678 if (pc != 0)
679 locals = i386_get_frame_setup (pc);
c5aa993b
JM
680
681 if (locals >= 0)
c906108c 682 {
fc338970 683 addr = fip->frame - 4 - locals;
c5aa993b 684 for (i = 0; i < 8; i++)
c906108c
SS
685 {
686 op = codestream_get ();
687 if (op < 0x50 || op > 0x57)
688 break;
689#ifdef I386_REGNO_TO_SYMMETRY
690 /* Dynix uses different internal numbering. Ick. */
fc338970 691 fip->saved_regs[I386_REGNO_TO_SYMMETRY (op - 0x50)] = addr;
c906108c 692#else
fc338970 693 fip->saved_regs[op - 0x50] = addr;
c906108c 694#endif
fc338970 695 addr -= 4;
c906108c
SS
696 }
697 }
c5aa993b 698
1211c4e4
AC
699 fip->saved_regs[PC_REGNUM] = fip->frame + 4;
700 fip->saved_regs[FP_REGNUM] = fip->frame;
c906108c
SS
701}
702
fc338970 703/* Return PC of first real instruction. */
c906108c 704
3a1e71e3 705static CORE_ADDR
93924b6b 706i386_skip_prologue (CORE_ADDR pc)
c906108c
SS
707{
708 unsigned char op;
709 int i;
c5aa993b 710 static unsigned char pic_pat[6] =
fc338970
MK
711 { 0xe8, 0, 0, 0, 0, /* call 0x0 */
712 0x5b, /* popl %ebx */
c5aa993b 713 };
c906108c 714 CORE_ADDR pos;
c5aa993b 715
c906108c
SS
716 if (i386_get_frame_setup (pc) < 0)
717 return (pc);
c5aa993b 718
fc338970
MK
719 /* Found valid frame setup -- codestream now points to start of push
720 instructions for saving registers. */
c5aa993b 721
fc338970 722 /* Skip over register saves. */
c906108c
SS
723 for (i = 0; i < 8; i++)
724 {
725 op = codestream_peek ();
fc338970 726 /* Break if not `pushl' instrunction. */
c5aa993b 727 if (op < 0x50 || op > 0x57)
c906108c
SS
728 break;
729 codestream_get ();
730 }
731
fc338970
MK
732 /* The native cc on SVR4 in -K PIC mode inserts the following code
733 to get the address of the global offset table (GOT) into register
734 %ebx
735
736 call 0x0
737 popl %ebx
738 movl %ebx,x(%ebp) (optional)
739 addl y,%ebx
740
c906108c
SS
741 This code is with the rest of the prologue (at the end of the
742 function), so we have to skip it to get to the first real
743 instruction at the start of the function. */
c5aa993b 744
c906108c
SS
745 pos = codestream_tell ();
746 for (i = 0; i < 6; i++)
747 {
748 op = codestream_get ();
c5aa993b 749 if (pic_pat[i] != op)
c906108c
SS
750 break;
751 }
752 if (i == 6)
753 {
754 unsigned char buf[4];
755 long delta = 6;
756
757 op = codestream_get ();
c5aa993b 758 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c
SS
759 {
760 op = codestream_get ();
fc338970 761 if (op == 0x5d) /* One byte offset from %ebp. */
c906108c
SS
762 {
763 delta += 3;
764 codestream_read (buf, 1);
765 }
fc338970 766 else if (op == 0x9d) /* Four byte offset from %ebp. */
c906108c
SS
767 {
768 delta += 6;
769 codestream_read (buf, 4);
770 }
fc338970 771 else /* Unexpected instruction. */
c5aa993b
JM
772 delta = -1;
773 op = codestream_get ();
c906108c 774 }
c5aa993b
JM
775 /* addl y,%ebx */
776 if (delta > 0 && op == 0x81 && codestream_get () == 0xc3)
c906108c 777 {
c5aa993b 778 pos += delta + 6;
c906108c
SS
779 }
780 }
781 codestream_seek (pos);
c5aa993b 782
c906108c 783 i386_follow_jump ();
c5aa993b 784
c906108c
SS
785 return (codestream_tell ());
786}
787
93924b6b
MK
788/* Use the program counter to determine the contents and size of a
789 breakpoint instruction. Return a pointer to a string of bytes that
790 encode a breakpoint instruction, store the length of the string in
791 *LEN and optionally adjust *PC to point to the correct memory
792 location for inserting the breakpoint.
793
794 On the i386 we have a single breakpoint that fits in a single byte
795 and can be inserted anywhere. */
796
797static const unsigned char *
798i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
799{
800 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
801
802 *len = sizeof (break_insn);
803 return break_insn;
804}
805
c0d1d883
MK
806/* Push the return address (pointing to the call dummy) onto the stack
807 and return the new value for the stack pointer. */
c5aa993b 808
c0d1d883
MK
809static CORE_ADDR
810i386_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
a7769679 811{
c0d1d883 812 char buf[4];
a7769679 813
c0d1d883
MK
814 store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
815 write_memory (sp - 4, buf, 4);
816 return sp - 4;
a7769679
MK
817}
818
3a1e71e3 819static void
c0d1d883 820i386_do_pop_frame (struct frame_info *frame)
c906108c 821{
c906108c
SS
822 CORE_ADDR fp;
823 int regnum;
00f8375e 824 char regbuf[I386_MAX_REGISTER_SIZE];
c5aa993b 825
c906108c 826 fp = FRAME_FP (frame);
1211c4e4
AC
827 i386_frame_init_saved_regs (frame);
828
c5aa993b 829 for (regnum = 0; regnum < NUM_REGS; regnum++)
c906108c 830 {
fc338970
MK
831 CORE_ADDR addr;
832 addr = frame->saved_regs[regnum];
833 if (addr)
c906108c 834 {
fc338970 835 read_memory (addr, regbuf, REGISTER_RAW_SIZE (regnum));
c906108c
SS
836 write_register_bytes (REGISTER_BYTE (regnum), regbuf,
837 REGISTER_RAW_SIZE (regnum));
838 }
839 }
840 write_register (FP_REGNUM, read_memory_integer (fp, 4));
841 write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
842 write_register (SP_REGNUM, fp + 8);
843 flush_cached_frames ();
844}
c0d1d883
MK
845
846static void
847i386_pop_frame (void)
848{
849 generic_pop_current_frame (i386_do_pop_frame);
850}
fc338970 851\f
c906108c 852
fc338970
MK
853/* Figure out where the longjmp will land. Slurp the args out of the
854 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c
MK
855 structure from which we extract the address that we will land at.
856 This address is copied into PC. This routine returns true on
fc338970 857 success. */
c906108c 858
8201327c
MK
859static int
860i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 861{
8201327c 862 char buf[4];
c906108c 863 CORE_ADDR sp, jb_addr;
8201327c 864 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
c906108c 865
8201327c
MK
866 /* If JB_PC_OFFSET is -1, we have no way to find out where the
867 longjmp will land. */
868 if (jb_pc_offset == -1)
c906108c
SS
869 return 0;
870
8201327c
MK
871 sp = read_register (SP_REGNUM);
872 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
873 return 0;
874
8201327c
MK
875 jb_addr = extract_address (buf, 4);
876 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
877 return 0;
c906108c 878
8201327c 879 *pc = extract_address (buf, 4);
c906108c
SS
880 return 1;
881}
fc338970 882\f
c906108c 883
3a1e71e3 884static CORE_ADDR
ea7c478f 885i386_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
22f8ba57
MK
886 int struct_return, CORE_ADDR struct_addr)
887{
888 sp = default_push_arguments (nargs, args, sp, struct_return, struct_addr);
889
890 if (struct_return)
891 {
892 char buf[4];
893
894 sp -= 4;
895 store_address (buf, 4, struct_addr);
896 write_memory (sp, buf, 4);
897 }
898
899 return sp;
900}
901
3a1e71e3 902static void
22f8ba57
MK
903i386_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
904{
905 /* Do nothing. Everything was already done by i386_push_arguments. */
906}
907
1a309862
MK
908/* These registers are used for returning integers (and on some
909 targets also for returning `struct' and `union' values when their
ef9dff19 910 size and alignment match an integer type). */
1a309862
MK
911#define LOW_RETURN_REGNUM 0 /* %eax */
912#define HIGH_RETURN_REGNUM 2 /* %edx */
913
914/* Extract from an array REGBUF containing the (raw) register state, a
915 function return value of TYPE, and copy that, in virtual format,
916 into VALBUF. */
917
3a1e71e3 918static void
00f8375e
MK
919i386_extract_return_value (struct type *type, struct regcache *regcache,
920 char *valbuf)
c906108c 921{
1a309862 922 int len = TYPE_LENGTH (type);
00f8375e 923 char buf[I386_MAX_REGISTER_SIZE];
1a309862 924
1e8d0a7b
MK
925 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
926 && TYPE_NFIELDS (type) == 1)
3df1b9b4 927 {
00f8375e 928 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
929 return;
930 }
1e8d0a7b
MK
931
932 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 933 {
356a6b3e 934 if (FP0_REGNUM == 0)
1a309862
MK
935 {
936 warning ("Cannot find floating-point return value.");
937 memset (valbuf, 0, len);
ef9dff19 938 return;
1a309862
MK
939 }
940
c6ba6f0d
MK
941 /* Floating-point return values can be found in %st(0). Convert
942 its contents to the desired type. This is probably not
943 exactly how it would happen on the target itself, but it is
944 the best we can do. */
0818c12a 945 regcache_raw_read (regcache, FP0_REGNUM, buf);
00f8375e 946 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
947 }
948 else
c5aa993b 949 {
d4f3574e
SS
950 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
951 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
952
953 if (len <= low_size)
00f8375e 954 {
0818c12a 955 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
956 memcpy (valbuf, buf, len);
957 }
d4f3574e
SS
958 else if (len <= (low_size + high_size))
959 {
0818c12a 960 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 961 memcpy (valbuf, buf, low_size);
0818c12a 962 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 963 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
964 }
965 else
8e65ff28
AC
966 internal_error (__FILE__, __LINE__,
967 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
968 }
969}
970
ef9dff19
MK
971/* Write into the appropriate registers a function return value stored
972 in VALBUF of type TYPE, given in virtual format. */
973
3a1e71e3 974static void
ef9dff19
MK
975i386_store_return_value (struct type *type, char *valbuf)
976{
977 int len = TYPE_LENGTH (type);
978
1e8d0a7b
MK
979 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
980 && TYPE_NFIELDS (type) == 1)
3df1b9b4
MK
981 {
982 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), valbuf);
983 return;
984 }
1e8d0a7b
MK
985
986 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 987 {
ccb945b8 988 unsigned int fstat;
c6ba6f0d 989 char buf[FPU_REG_RAW_SIZE];
ccb945b8 990
356a6b3e 991 if (FP0_REGNUM == 0)
ef9dff19
MK
992 {
993 warning ("Cannot set floating-point return value.");
994 return;
995 }
996
635b0cc1
MK
997 /* Returning floating-point values is a bit tricky. Apart from
998 storing the return value in %st(0), we have to simulate the
999 state of the FPU at function return point. */
1000
c6ba6f0d
MK
1001 /* Convert the value found in VALBUF to the extended
1002 floating-point format used by the FPU. This is probably
1003 not exactly how it would happen on the target itself, but
1004 it is the best we can do. */
1005 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
1006 write_register_bytes (REGISTER_BYTE (FP0_REGNUM), buf,
1007 FPU_REG_RAW_SIZE);
ccb945b8 1008
635b0cc1
MK
1009 /* Set the top of the floating-point register stack to 7. The
1010 actual value doesn't really matter, but 7 is what a normal
1011 function return would end up with if the program started out
1012 with a freshly initialized FPU. */
ccb945b8
MK
1013 fstat = read_register (FSTAT_REGNUM);
1014 fstat |= (7 << 11);
1015 write_register (FSTAT_REGNUM, fstat);
1016
635b0cc1
MK
1017 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1018 the floating-point register stack to 7, the appropriate value
1019 for the tag word is 0x3fff. */
ccb945b8 1020 write_register (FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1021 }
1022 else
1023 {
1024 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1025 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1026
1027 if (len <= low_size)
1028 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM), valbuf, len);
1029 else if (len <= (low_size + high_size))
1030 {
1031 write_register_bytes (REGISTER_BYTE (LOW_RETURN_REGNUM),
1032 valbuf, low_size);
1033 write_register_bytes (REGISTER_BYTE (HIGH_RETURN_REGNUM),
1034 valbuf + low_size, len - low_size);
1035 }
1036 else
8e65ff28
AC
1037 internal_error (__FILE__, __LINE__,
1038 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1039 }
1040}
f7af9647
MK
1041
1042/* Extract from an array REGBUF containing the (raw) register state
1043 the address in which a function should return its structure value,
1044 as a CORE_ADDR. */
1045
3a1e71e3 1046static CORE_ADDR
00f8375e 1047i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1048{
a378f419
AC
1049 /* NOTE: cagney/2002-08-12: Replaced a call to
1050 regcache_raw_read_as_address() with a call to
1051 regcache_cooked_read_unsigned(). The old, ...as_address function
1052 was eventually calling extract_unsigned_integer (via
1053 extract_address) to unpack the registers value. The below is
1054 doing an unsigned extract so that it is functionally equivalent.
1055 The read needs to be cooked as, otherwise, it will never
1056 correctly return the value of a register in the [NUM_REGS
1057 .. NUM_REGS+NUM_PSEUDO_REGS) range. */
1058 ULONGEST val;
1059 regcache_cooked_read_unsigned (regcache, LOW_RETURN_REGNUM, &val);
1060 return val;
f7af9647 1061}
fc338970 1062\f
ef9dff19 1063
8201327c
MK
1064/* This is the variable that is set with "set struct-convention", and
1065 its legitimate values. */
1066static const char default_struct_convention[] = "default";
1067static const char pcc_struct_convention[] = "pcc";
1068static const char reg_struct_convention[] = "reg";
1069static const char *valid_conventions[] =
1070{
1071 default_struct_convention,
1072 pcc_struct_convention,
1073 reg_struct_convention,
1074 NULL
1075};
1076static const char *struct_convention = default_struct_convention;
1077
1078static int
1079i386_use_struct_convention (int gcc_p, struct type *type)
1080{
1081 enum struct_return struct_return;
1082
1083 if (struct_convention == default_struct_convention)
1084 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1085 else if (struct_convention == pcc_struct_convention)
1086 struct_return = pcc_struct_return;
1087 else
1088 struct_return = reg_struct_return;
1089
1090 return generic_use_struct_convention (struct_return == reg_struct_return,
1091 type);
1092}
1093\f
1094
d7a0d72c
MK
1095/* Return the GDB type object for the "standard" data type of data in
1096 register REGNUM. Perhaps %esi and %edi should go here, but
1097 potentially they could be used for things other than address. */
1098
3a1e71e3 1099static struct type *
d7a0d72c
MK
1100i386_register_virtual_type (int regnum)
1101{
1102 if (regnum == PC_REGNUM || regnum == FP_REGNUM || regnum == SP_REGNUM)
1103 return lookup_pointer_type (builtin_type_void);
1104
1105 if (IS_FP_REGNUM (regnum))
c6ba6f0d 1106 return builtin_type_i387_ext;
d7a0d72c
MK
1107
1108 if (IS_SSE_REGNUM (regnum))
3139facc 1109 return builtin_type_vec128i;
d7a0d72c 1110
28fc6740
AC
1111 if (mmx_regnum_p (regnum))
1112 return builtin_type_vec64i;
1113
d7a0d72c
MK
1114 return builtin_type_int;
1115}
1116
28fc6740
AC
1117/* Map a cooked register onto a raw register or memory. For the i386,
1118 the MMX registers need to be mapped onto floating point registers. */
1119
1120static int
1121mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
1122{
1123 int mmxi;
1124 ULONGEST fstat;
1125 int tos;
1126 int fpi;
1127 mmxi = regnum - MM0_REGNUM;
1128 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1129 tos = (fstat >> 11) & 0x7;
1130 fpi = (mmxi + tos) % 8;
1131 return (FP0_REGNUM + fpi);
1132}
1133
1134static void
1135i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1136 int regnum, void *buf)
1137{
1138 if (mmx_regnum_p (regnum))
1139 {
1140 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1141 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1142 regcache_raw_read (regcache, fpnum, mmx_buf);
1143 /* Extract (always little endian). */
1144 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1145 }
1146 else
1147 regcache_raw_read (regcache, regnum, buf);
1148}
1149
1150static void
1151i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1152 int regnum, const void *buf)
1153{
1154 if (mmx_regnum_p (regnum))
1155 {
1156 char *mmx_buf = alloca (MAX_REGISTER_RAW_SIZE);
1157 int fpnum = mmx_regnum_to_fp_regnum (regcache, regnum);
1158 /* Read ... */
1159 regcache_raw_read (regcache, fpnum, mmx_buf);
1160 /* ... Modify ... (always little endian). */
1161 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1162 /* ... Write. */
1163 regcache_raw_write (regcache, fpnum, mmx_buf);
1164 }
1165 else
1166 regcache_raw_write (regcache, regnum, buf);
1167}
1168
d7a0d72c
MK
1169/* Return true iff register REGNUM's virtual format is different from
1170 its raw format. Note that this definition assumes that the host
1171 supports IEEE 32-bit floats, since it doesn't say that SSE
1172 registers need conversion. Even if we can't find a counterexample,
1173 this is still sloppy. */
1174
3a1e71e3 1175static int
d7a0d72c
MK
1176i386_register_convertible (int regnum)
1177{
1178 return IS_FP_REGNUM (regnum);
1179}
1180
ac27f131 1181/* Convert data from raw format for register REGNUM in buffer FROM to
3d261580 1182 virtual format with type TYPE in buffer TO. */
ac27f131 1183
3a1e71e3 1184static void
ac27f131
MK
1185i386_register_convert_to_virtual (int regnum, struct type *type,
1186 char *from, char *to)
1187{
c6ba6f0d 1188 gdb_assert (IS_FP_REGNUM (regnum));
3d261580
MK
1189
1190 /* We only support floating-point values. */
8d7f6b4a
MK
1191 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1192 {
1193 warning ("Cannot convert floating-point register value "
1194 "to non-floating-point type.");
1195 memset (to, 0, TYPE_LENGTH (type));
1196 return;
1197 }
3d261580 1198
c6ba6f0d
MK
1199 /* Convert to TYPE. This should be a no-op if TYPE is equivalent to
1200 the extended floating-point format used by the FPU. */
1201 convert_typed_floating (from, builtin_type_i387_ext, to, type);
ac27f131
MK
1202}
1203
1204/* Convert data from virtual format with type TYPE in buffer FROM to
3d261580 1205 raw format for register REGNUM in buffer TO. */
ac27f131 1206
3a1e71e3 1207static void
ac27f131
MK
1208i386_register_convert_to_raw (struct type *type, int regnum,
1209 char *from, char *to)
1210{
c6ba6f0d
MK
1211 gdb_assert (IS_FP_REGNUM (regnum));
1212
1213 /* We only support floating-point values. */
1214 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1215 {
1216 warning ("Cannot convert non-floating-point type "
1217 "to floating-point register value.");
1218 memset (to, 0, TYPE_LENGTH (type));
1219 return;
1220 }
3d261580 1221
c6ba6f0d
MK
1222 /* Convert from TYPE. This should be a no-op if TYPE is equivalent
1223 to the extended floating-point format used by the FPU. */
1224 convert_typed_floating (from, type, to, builtin_type_i387_ext);
ac27f131 1225}
ac27f131 1226\f
fc338970 1227
c906108c 1228#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1229/* SunPRO encodes the static variables. This is not related to C++
1230 mangling, it is done for C too. */
c906108c
SS
1231
1232char *
fba45db2 1233sunpro_static_transform_name (char *name)
c906108c
SS
1234{
1235 char *p;
1236 if (IS_STATIC_TRANSFORM_NAME (name))
1237 {
fc338970
MK
1238 /* For file-local statics there will be a period, a bunch of
1239 junk (the contents of which match a string given in the
c5aa993b
JM
1240 N_OPT), a period and the name. For function-local statics
1241 there will be a bunch of junk (which seems to change the
1242 second character from 'A' to 'B'), a period, the name of the
1243 function, and the name. So just skip everything before the
1244 last period. */
c906108c
SS
1245 p = strrchr (name, '.');
1246 if (p != NULL)
1247 name = p + 1;
1248 }
1249 return name;
1250}
1251#endif /* STATIC_TRANSFORM_NAME */
fc338970 1252\f
c906108c 1253
fc338970 1254/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1255
1256CORE_ADDR
1cce71eb 1257i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1258{
fc338970 1259 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1260 {
c5aa993b 1261 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1262 struct minimal_symbol *indsym =
fc338970 1263 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
c5aa993b 1264 char *symname = indsym ? SYMBOL_NAME (indsym) : 0;
c906108c 1265
c5aa993b 1266 if (symname)
c906108c 1267 {
c5aa993b
JM
1268 if (strncmp (symname, "__imp_", 6) == 0
1269 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1270 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1271 }
1272 }
fc338970 1273 return 0; /* Not a trampoline. */
c906108c 1274}
fc338970
MK
1275\f
1276
8201327c
MK
1277/* Return non-zero if PC and NAME show that we are in a signal
1278 trampoline. */
1279
1280static int
1281i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1282{
1283 return (name && strcmp ("_sigtramp", name) == 0);
1284}
1285\f
1286
fc338970
MK
1287/* We have two flavours of disassembly. The machinery on this page
1288 deals with switching between those. */
c906108c
SS
1289
1290static int
fba45db2 1291gdb_print_insn_i386 (bfd_vma memaddr, disassemble_info *info)
c906108c
SS
1292{
1293 if (disassembly_flavor == att_flavor)
1294 return print_insn_i386_att (memaddr, info);
1295 else if (disassembly_flavor == intel_flavor)
1296 return print_insn_i386_intel (memaddr, info);
fc338970
MK
1297 /* Never reached -- disassembly_flavour is always either att_flavor
1298 or intel_flavor. */
e1e9e218 1299 internal_error (__FILE__, __LINE__, "failed internal consistency check");
7a292a7a 1300}
fc338970 1301\f
3ce1502b 1302
8201327c
MK
1303/* There are a few i386 architecture variants that differ only
1304 slightly from the generic i386 target. For now, we don't give them
1305 their own source file, but include them here. As a consequence,
1306 they'll always be included. */
3ce1502b 1307
8201327c 1308/* System V Release 4 (SVR4). */
3ce1502b 1309
8201327c
MK
1310static int
1311i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1312{
8201327c
MK
1313 return (name && (strcmp ("_sigreturn", name) == 0
1314 || strcmp ("_sigacthandler", name) == 0
1315 || strcmp ("sigvechandler", name) == 0));
1316}
d2a7c97a 1317
21d0e8a4
MK
1318/* Get address of the pushed ucontext (sigcontext) on the stack for
1319 all three variants of SVR4 sigtramps. */
3ce1502b 1320
3a1e71e3 1321static CORE_ADDR
21d0e8a4 1322i386_svr4_sigcontext_addr (struct frame_info *frame)
8201327c 1323{
21d0e8a4 1324 int sigcontext_offset = -1;
8201327c
MK
1325 char *name = NULL;
1326
1327 find_pc_partial_function (frame->pc, &name, NULL, NULL);
1328 if (name)
d2a7c97a 1329 {
8201327c 1330 if (strcmp (name, "_sigreturn") == 0)
21d0e8a4 1331 sigcontext_offset = 132;
8201327c 1332 else if (strcmp (name, "_sigacthandler") == 0)
21d0e8a4 1333 sigcontext_offset = 80;
8201327c 1334 else if (strcmp (name, "sigvechandler") == 0)
21d0e8a4 1335 sigcontext_offset = 120;
8201327c 1336 }
3ce1502b 1337
21d0e8a4
MK
1338 gdb_assert (sigcontext_offset != -1);
1339
8201327c 1340 if (frame->next)
21d0e8a4
MK
1341 return frame->next->frame + sigcontext_offset;
1342 return read_register (SP_REGNUM) + sigcontext_offset;
8201327c
MK
1343}
1344\f
3ce1502b 1345
8201327c 1346/* DJGPP. */
d2a7c97a 1347
8201327c
MK
1348static int
1349i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1350{
1351 /* DJGPP doesn't have any special frames for signal handlers. */
1352 return 0;
1353}
1354\f
d2a7c97a 1355
8201327c 1356/* Generic ELF. */
d2a7c97a 1357
8201327c
MK
1358void
1359i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1360{
1361 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1362 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1363}
3ce1502b 1364
8201327c 1365/* System V Release 4 (SVR4). */
3ce1502b 1366
8201327c
MK
1367void
1368i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1369{
1370 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1371
8201327c
MK
1372 /* System V Release 4 uses ELF. */
1373 i386_elf_init_abi (info, gdbarch);
3ce1502b 1374
8201327c 1375 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1376 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
3ce1502b 1377
8201327c 1378 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4
MK
1379 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
1380 tdep->sc_pc_offset = 14 * 4;
1381 tdep->sc_sp_offset = 7 * 4;
3ce1502b 1382
8201327c 1383 tdep->jb_pc_offset = 20;
3ce1502b
MK
1384}
1385
8201327c 1386/* DJGPP. */
3ce1502b 1387
3a1e71e3 1388static void
8201327c 1389i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1390{
8201327c 1391 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1392
8201327c 1393 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1394
8201327c 1395 tdep->jb_pc_offset = 36;
3ce1502b
MK
1396}
1397
8201327c 1398/* NetWare. */
3ce1502b 1399
3a1e71e3 1400static void
8201327c 1401i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1402{
8201327c 1403 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1404
8201327c 1405 /* FIXME: kettenis/20020511: Why do we override this function here? */
b4671f85 1406 set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid);
8201327c
MK
1407
1408 tdep->jb_pc_offset = 24;
d2a7c97a 1409}
8201327c 1410\f
2acceee2 1411
3a1e71e3 1412static struct gdbarch *
a62cc96e
AC
1413i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1414{
cd3c07fc 1415 struct gdbarch_tdep *tdep;
a62cc96e 1416 struct gdbarch *gdbarch;
8201327c 1417 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
a62cc96e 1418
8201327c 1419 /* Try to determine the OS ABI of the object we're loading. */
3ce1502b 1420 if (info.abfd != NULL)
8201327c 1421 osabi = gdbarch_lookup_osabi (info.abfd);
d2a7c97a 1422
3ce1502b 1423 /* Find a candidate among extant architectures. */
d2a7c97a
MK
1424 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1425 arches != NULL;
1426 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1427 {
8201327c 1428 /* Make sure the OS ABI selection matches. */
65d6d66a 1429 tdep = gdbarch_tdep (arches->gdbarch);
8201327c 1430 if (tdep && tdep->osabi == osabi)
65d6d66a 1431 return arches->gdbarch;
d2a7c97a 1432 }
a62cc96e
AC
1433
1434 /* Allocate space for the new architecture. */
1435 tdep = XMALLOC (struct gdbarch_tdep);
1436 gdbarch = gdbarch_alloc (&info, tdep);
1437
8201327c
MK
1438 tdep->osabi = osabi;
1439
1440 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1441 FIXME: kettenis/20020614: They do include the FPU registers for
1442 now, which probably is not quite right. */
8201327c 1443 tdep->num_xmm_regs = 0;
d2a7c97a 1444
8201327c
MK
1445 tdep->jb_pc_offset = -1;
1446 tdep->struct_return = pcc_struct_return;
8201327c
MK
1447 tdep->sigtramp_start = 0;
1448 tdep->sigtramp_end = 0;
21d0e8a4 1449 tdep->sigcontext_addr = NULL;
8201327c 1450 tdep->sc_pc_offset = -1;
21d0e8a4 1451 tdep->sc_sp_offset = -1;
8201327c 1452
896fb97d
MK
1453 /* The format used for `long double' on almost all i386 targets is
1454 the i387 extended floating-point format. In fact, of all targets
1455 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1456 on having a `long double' that's not `long' at all. */
1457 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1458
896fb97d
MK
1459 /* Although the i386 extended floating-point has only 80 significant
1460 bits, a `long double' actually takes up 96, probably to enforce
1461 alignment. */
1462 set_gdbarch_long_double_bit (gdbarch, 96);
1463
356a6b3e
MK
1464 /* NOTE: tm-i386aix.h, tm-i386bsd.h, tm-i386os9k.h, tm-ptx.h,
1465 tm-symmetry.h currently override this. Sigh. */
1466 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
21d0e8a4 1467
356a6b3e
MK
1468 set_gdbarch_sp_regnum (gdbarch, 4);
1469 set_gdbarch_fp_regnum (gdbarch, 5);
1470 set_gdbarch_pc_regnum (gdbarch, 8);
1471 set_gdbarch_ps_regnum (gdbarch, 9);
1472 set_gdbarch_fp0_regnum (gdbarch, 16);
1473
1474 /* Use the "default" register numbering scheme for stabs and COFF. */
1475 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1476 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1477
1478 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1479 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1480 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1481
1482 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1483 be in use on any of the supported i386 targets. */
1484
1485 set_gdbarch_register_name (gdbarch, i386_register_name);
1486 set_gdbarch_register_size (gdbarch, 4);
1487 set_gdbarch_register_bytes (gdbarch, I386_SIZEOF_GREGS + I386_SIZEOF_FREGS);
00f8375e
MK
1488 set_gdbarch_max_register_raw_size (gdbarch, I386_MAX_REGISTER_SIZE);
1489 set_gdbarch_max_register_virtual_size (gdbarch, I386_MAX_REGISTER_SIZE);
b6197528 1490 set_gdbarch_register_virtual_type (gdbarch, i386_register_virtual_type);
356a6b3e 1491
61113f8b
MK
1492 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1493
8201327c 1494 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1495
c0d1d883 1496 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
a62cc96e
AC
1497
1498 /* Call dummy code. */
c0d1d883
MK
1499 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1500 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
8758dec1 1501 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
c0d1d883 1502 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
a62cc96e 1503 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
c0d1d883 1504 set_gdbarch_call_dummy_length (gdbarch, 0);
a62cc96e 1505 set_gdbarch_call_dummy_p (gdbarch, 1);
c0d1d883
MK
1506 set_gdbarch_call_dummy_words (gdbarch, NULL);
1507 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
a62cc96e 1508 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
c0d1d883 1509 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
a62cc96e 1510
b6197528
MK
1511 set_gdbarch_register_convertible (gdbarch, i386_register_convertible);
1512 set_gdbarch_register_convert_to_virtual (gdbarch,
1513 i386_register_convert_to_virtual);
1514 set_gdbarch_register_convert_to_raw (gdbarch, i386_register_convert_to_raw);
1515
7b4c2dce 1516 set_gdbarch_get_saved_register (gdbarch, generic_unwind_get_saved_register);
a62cc96e
AC
1517 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
1518
c0d1d883 1519 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
a62cc96e 1520
8758dec1
MK
1521 /* "An argument's size is increased, if necessary, to make it a
1522 multiple of [32-bit] words. This may require tail padding,
1523 depending on the size of the argument" -- from the x86 ABI. */
1524 set_gdbarch_parm_boundary (gdbarch, 32);
1525
00f8375e 1526 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
fc08ec52 1527 set_gdbarch_push_arguments (gdbarch, i386_push_arguments);
c0d1d883
MK
1528 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1529 set_gdbarch_push_return_address (gdbarch, i386_push_return_address);
fc08ec52
MK
1530 set_gdbarch_pop_frame (gdbarch, i386_pop_frame);
1531 set_gdbarch_store_struct_return (gdbarch, i386_store_struct_return);
1532 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1533 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1534 i386_extract_struct_value_address);
8201327c
MK
1535 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1536
42fdc8df 1537 set_gdbarch_frame_init_saved_regs (gdbarch, i386_frame_init_saved_regs);
93924b6b
MK
1538 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1539
1540 /* Stack grows downward. */
1541 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1542
1543 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1544 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1545 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1546
8201327c
MK
1547 /* The following redefines make backtracing through sigtramp work.
1548 They manufacture a fake sigtramp frame and obtain the saved pc in
1549 sigtramp from the sigcontext structure which is pushed by the
1550 kernel on the user stack, along with a pointer to it. */
1551
42fdc8df
MK
1552 set_gdbarch_frame_args_skip (gdbarch, 8);
1553 set_gdbarch_frameless_function_invocation (gdbarch,
1554 i386_frameless_function_invocation);
8201327c 1555 set_gdbarch_frame_chain (gdbarch, i386_frame_chain);
c0d1d883 1556 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
8201327c 1557 set_gdbarch_frame_saved_pc (gdbarch, i386_frame_saved_pc);
42fdc8df
MK
1558 set_gdbarch_frame_args_address (gdbarch, default_frame_address);
1559 set_gdbarch_frame_locals_address (gdbarch, default_frame_address);
8201327c 1560 set_gdbarch_saved_pc_after_call (gdbarch, i386_saved_pc_after_call);
42fdc8df 1561 set_gdbarch_frame_num_args (gdbarch, i386_frame_num_args);
8201327c
MK
1562 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1563
28fc6740
AC
1564 /* Wire in the MMX registers. */
1565 set_gdbarch_num_pseudo_regs (gdbarch, mmx_num_regs);
1566 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1567 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1568
3ce1502b 1569 /* Hook in ABI-specific overrides, if they have been registered. */
8201327c 1570 gdbarch_init_osabi (info, gdbarch, osabi);
3ce1502b 1571
a62cc96e
AC
1572 return gdbarch;
1573}
1574
8201327c
MK
1575static enum gdb_osabi
1576i386_coff_osabi_sniffer (bfd *abfd)
1577{
762c5349
MK
1578 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1579 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1580 return GDB_OSABI_GO32;
1581
1582 return GDB_OSABI_UNKNOWN;
1583}
1584
1585static enum gdb_osabi
1586i386_nlm_osabi_sniffer (bfd *abfd)
1587{
1588 return GDB_OSABI_NETWARE;
1589}
1590\f
1591
28e9e0f0
MK
1592/* Provide a prototype to silence -Wmissing-prototypes. */
1593void _initialize_i386_tdep (void);
1594
c906108c 1595void
fba45db2 1596_initialize_i386_tdep (void)
c906108c 1597{
a62cc96e
AC
1598 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1599
c906108c
SS
1600 tm_print_insn = gdb_print_insn_i386;
1601 tm_print_insn_info.mach = bfd_lookup_arch (bfd_arch_i386, 0)->mach;
1602
fc338970 1603 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1604 {
1605 struct cmd_list_element *new_cmd;
7a292a7a 1606
917317f4
JM
1607 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1608 valid_flavors,
1ed2a135 1609 &disassembly_flavor,
fc338970
MK
1610 "\
1611Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1612and the default value is \"att\".",
917317f4 1613 &setlist);
917317f4
JM
1614 add_show_from_set (new_cmd, &showlist);
1615 }
8201327c
MK
1616
1617 /* Add the variable that controls the convention for returning
1618 structs. */
1619 {
1620 struct cmd_list_element *new_cmd;
1621
1622 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
1623 valid_conventions,
1624 &struct_convention, "\
1625Set the convention for returning small structs, valid values \
1626are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1627 &setlist);
1628 add_show_from_set (new_cmd, &showlist);
1629 }
1630
1631 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1632 i386_coff_osabi_sniffer);
1633 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1634 i386_nlm_osabi_sniffer);
1635
1636 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_SVR4,
1637 i386_svr4_init_abi);
1638 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_GO32,
1639 i386_go32_init_abi);
1640 gdbarch_register_osabi (bfd_arch_i386, GDB_OSABI_NETWARE,
1641 i386_nw_init_abi);
c906108c 1642}
This page took 0.292763 seconds and 4 git commands to generate.