*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5ae96ec1 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
acd5c798
MK
23#include "arch-utils.h"
24#include "command.h"
25#include "dummy-frame.h"
6405b0a6 26#include "dwarf2-frame.h"
acd5c798 27#include "doublest.h"
c906108c 28#include "frame.h"
acd5c798
MK
29#include "frame-base.h"
30#include "frame-unwind.h"
c906108c 31#include "inferior.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
acd5c798 45
3d261580 46#include "gdb_assert.h"
acd5c798 47#include "gdb_string.h"
3d261580 48
d2a7c97a 49#include "i386-tdep.h"
61113f8b 50#include "i387-tdep.h"
d2a7c97a 51
c4fc7f1b 52/* Register names. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
1cb97e17 69static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 70
c4fc7f1b 71/* Register names for MMX pseudo-registers. */
28fc6740
AC
72
73static char *i386_mmx_names[] =
74{
75 "mm0", "mm1", "mm2", "mm3",
76 "mm4", "mm5", "mm6", "mm7"
77};
c40e1eab 78
1cb97e17 79static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 80
28fc6740 81static int
5716833c 82i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 83{
5716833c
MK
84 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
85
86 if (mm0_regnum < 0)
87 return 0;
88
89 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
90}
91
5716833c 92/* SSE register? */
23a34459 93
5716833c
MK
94static int
95i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 96{
5716833c
MK
97 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
98
99#define I387_ST0_REGNUM tdep->st0_regnum
100#define I387_NUM_XMM_REGS tdep->num_xmm_regs
101
102 if (I387_NUM_XMM_REGS == 0)
103 return 0;
104
105 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
106
107#undef I387_ST0_REGNUM
108#undef I387_NUM_XMM_REGS
23a34459
AC
109}
110
5716833c
MK
111static int
112i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 113{
5716833c
MK
114 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
115
116#define I387_ST0_REGNUM tdep->st0_regnum
117#define I387_NUM_XMM_REGS tdep->num_xmm_regs
118
119 if (I387_NUM_XMM_REGS == 0)
120 return 0;
121
122 return (regnum == I387_MXCSR_REGNUM);
123
124#undef I387_ST0_REGNUM
125#undef I387_NUM_XMM_REGS
23a34459
AC
126}
127
5716833c
MK
128#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
129#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
130#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
131
132/* FP register? */
23a34459
AC
133
134int
5716833c 135i386_fp_regnum_p (int regnum)
23a34459 136{
5716833c
MK
137 if (I387_ST0_REGNUM < 0)
138 return 0;
139
140 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
141}
142
143int
5716833c 144i386_fpc_regnum_p (int regnum)
23a34459 145{
5716833c
MK
146 if (I387_ST0_REGNUM < 0)
147 return 0;
148
149 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
150}
151
30b0e2d8 152/* Return the name of register REGNUM. */
fc633446 153
fa88f677 154const char *
d93859e2 155i386_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 156{
d93859e2 157 if (i386_mmx_regnum_p (gdbarch, regnum))
30b0e2d8 158 return i386_mmx_names[regnum - I387_MM0_REGNUM];
fc633446 159
30b0e2d8
MK
160 if (regnum >= 0 && regnum < i386_num_register_names)
161 return i386_register_names[regnum];
70913449 162
c40e1eab 163 return NULL;
fc633446
MK
164}
165
c4fc7f1b 166/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
167 number used by GDB. */
168
8201327c 169static int
d3f73121 170i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 171{
c4fc7f1b
MK
172 /* This implements what GCC calls the "default" register map
173 (dbx_register_map[]). */
174
85540d8c
MK
175 if (reg >= 0 && reg <= 7)
176 {
9872ad24
JB
177 /* General-purpose registers. The debug info calls %ebp
178 register 4, and %esp register 5. */
179 if (reg == 4)
180 return 5;
181 else if (reg == 5)
182 return 4;
183 else return reg;
85540d8c
MK
184 }
185 else if (reg >= 12 && reg <= 19)
186 {
187 /* Floating-point registers. */
5716833c 188 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
189 }
190 else if (reg >= 21 && reg <= 28)
191 {
192 /* SSE registers. */
5716833c 193 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
194 }
195 else if (reg >= 29 && reg <= 36)
196 {
197 /* MMX registers. */
5716833c 198 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
199 }
200
201 /* This will hopefully provoke a warning. */
d3f73121 202 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
203}
204
c4fc7f1b
MK
205/* Convert SVR4 register number REG to the appropriate register number
206 used by GDB. */
85540d8c 207
8201327c 208static int
d3f73121 209i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 210{
c4fc7f1b
MK
211 /* This implements the GCC register map that tries to be compatible
212 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
213
214 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
215 numbers the floating point registers differently. */
216 if (reg >= 0 && reg <= 9)
217 {
acd5c798 218 /* General-purpose registers. */
85540d8c
MK
219 return reg;
220 }
221 else if (reg >= 11 && reg <= 18)
222 {
223 /* Floating-point registers. */
5716833c 224 return reg - 11 + I387_ST0_REGNUM;
85540d8c 225 }
c6f4c129 226 else if (reg >= 21 && reg <= 36)
85540d8c 227 {
c4fc7f1b 228 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 229 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
230 }
231
c6f4c129
JB
232 switch (reg)
233 {
234 case 37: return I387_FCTRL_REGNUM;
235 case 38: return I387_FSTAT_REGNUM;
236 case 39: return I387_MXCSR_REGNUM;
237 case 40: return I386_ES_REGNUM;
238 case 41: return I386_CS_REGNUM;
239 case 42: return I386_SS_REGNUM;
240 case 43: return I386_DS_REGNUM;
241 case 44: return I386_FS_REGNUM;
242 case 45: return I386_GS_REGNUM;
243 }
244
85540d8c 245 /* This will hopefully provoke a warning. */
d3f73121 246 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 247}
5716833c
MK
248
249#undef I387_ST0_REGNUM
250#undef I387_MM0_REGNUM
251#undef I387_NUM_XMM_REGS
fc338970 252\f
917317f4 253
fc338970
MK
254/* This is the variable that is set with "set disassembly-flavor", and
255 its legitimate values. */
53904c9e
AC
256static const char att_flavor[] = "att";
257static const char intel_flavor[] = "intel";
258static const char *valid_flavors[] =
c5aa993b 259{
c906108c
SS
260 att_flavor,
261 intel_flavor,
262 NULL
263};
53904c9e 264static const char *disassembly_flavor = att_flavor;
acd5c798 265\f
c906108c 266
acd5c798
MK
267/* Use the program counter to determine the contents and size of a
268 breakpoint instruction. Return a pointer to a string of bytes that
269 encode a breakpoint instruction, store the length of the string in
270 *LEN and optionally adjust *PC to point to the correct memory
271 location for inserting the breakpoint.
c906108c 272
acd5c798
MK
273 On the i386 we have a single breakpoint that fits in a single byte
274 and can be inserted anywhere.
c906108c 275
acd5c798 276 This function is 64-bit safe. */
63c0089f
MK
277
278static const gdb_byte *
67d57894 279i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 280{
63c0089f
MK
281 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
282
acd5c798
MK
283 *len = sizeof (break_insn);
284 return break_insn;
c906108c 285}
fc338970 286\f
acd5c798
MK
287#ifdef I386_REGNO_TO_SYMMETRY
288#error "The Sequent Symmetry is no longer supported."
289#endif
c906108c 290
acd5c798
MK
291/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
292 and %esp "belong" to the calling function. Therefore these
293 registers should be saved if they're going to be modified. */
c906108c 294
acd5c798
MK
295/* The maximum number of saved registers. This should include all
296 registers mentioned above, and %eip. */
a3386186 297#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
298
299struct i386_frame_cache
c906108c 300{
acd5c798
MK
301 /* Base address. */
302 CORE_ADDR base;
772562f8 303 LONGEST sp_offset;
acd5c798
MK
304 CORE_ADDR pc;
305
fd13a04a
AC
306 /* Saved registers. */
307 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 308 CORE_ADDR saved_sp;
92dd43fa 309 int stack_align;
acd5c798
MK
310 int pc_in_eax;
311
312 /* Stack space reserved for local variables. */
313 long locals;
314};
315
316/* Allocate and initialize a frame cache. */
317
318static struct i386_frame_cache *
fd13a04a 319i386_alloc_frame_cache (void)
acd5c798
MK
320{
321 struct i386_frame_cache *cache;
322 int i;
323
324 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
325
326 /* Base address. */
327 cache->base = 0;
328 cache->sp_offset = -4;
329 cache->pc = 0;
330
fd13a04a
AC
331 /* Saved registers. We initialize these to -1 since zero is a valid
332 offset (that's where %ebp is supposed to be stored). */
333 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
334 cache->saved_regs[i] = -1;
acd5c798 335 cache->saved_sp = 0;
92dd43fa 336 cache->stack_align = 0;
acd5c798
MK
337 cache->pc_in_eax = 0;
338
339 /* Frameless until proven otherwise. */
340 cache->locals = -1;
341
342 return cache;
343}
c906108c 344
acd5c798
MK
345/* If the instruction at PC is a jump, return the address of its
346 target. Otherwise, return PC. */
c906108c 347
acd5c798
MK
348static CORE_ADDR
349i386_follow_jump (CORE_ADDR pc)
350{
63c0089f 351 gdb_byte op;
acd5c798
MK
352 long delta = 0;
353 int data16 = 0;
c906108c 354
24a2a654 355 read_memory_nobpt (pc, &op, 1);
acd5c798 356 if (op == 0x66)
c906108c 357 {
c906108c 358 data16 = 1;
acd5c798 359 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
360 }
361
acd5c798 362 switch (op)
c906108c
SS
363 {
364 case 0xe9:
fc338970 365 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
366 if (data16)
367 {
acd5c798 368 delta = read_memory_integer (pc + 2, 2);
c906108c 369
fc338970
MK
370 /* Include the size of the jmp instruction (including the
371 0x66 prefix). */
acd5c798 372 delta += 4;
c906108c
SS
373 }
374 else
375 {
acd5c798 376 delta = read_memory_integer (pc + 1, 4);
c906108c 377
acd5c798
MK
378 /* Include the size of the jmp instruction. */
379 delta += 5;
c906108c
SS
380 }
381 break;
382 case 0xeb:
fc338970 383 /* Relative jump, disp8 (ignore data16). */
acd5c798 384 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 385
acd5c798 386 delta += data16 + 2;
c906108c
SS
387 break;
388 }
c906108c 389
acd5c798
MK
390 return pc + delta;
391}
fc338970 392
acd5c798
MK
393/* Check whether PC points at a prologue for a function returning a
394 structure or union. If so, it updates CACHE and returns the
395 address of the first instruction after the code sequence that
396 removes the "hidden" argument from the stack or CURRENT_PC,
397 whichever is smaller. Otherwise, return PC. */
c906108c 398
acd5c798
MK
399static CORE_ADDR
400i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
401 struct i386_frame_cache *cache)
c906108c 402{
acd5c798
MK
403 /* Functions that return a structure or union start with:
404
405 popl %eax 0x58
406 xchgl %eax, (%esp) 0x87 0x04 0x24
407 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
408
409 (the System V compiler puts out the second `xchg' instruction,
410 and the assembler doesn't try to optimize it, so the 'sib' form
411 gets generated). This sequence is used to get the address of the
412 return buffer for a function that returns a structure. */
63c0089f
MK
413 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
414 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
415 gdb_byte buf[4];
416 gdb_byte op;
c906108c 417
acd5c798
MK
418 if (current_pc <= pc)
419 return pc;
420
24a2a654 421 read_memory_nobpt (pc, &op, 1);
c906108c 422
acd5c798
MK
423 if (op != 0x58) /* popl %eax */
424 return pc;
c906108c 425
24a2a654 426 read_memory_nobpt (pc + 1, buf, 4);
acd5c798
MK
427 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
428 return pc;
c906108c 429
acd5c798 430 if (current_pc == pc)
c906108c 431 {
acd5c798
MK
432 cache->sp_offset += 4;
433 return current_pc;
c906108c
SS
434 }
435
acd5c798 436 if (current_pc == pc + 1)
c906108c 437 {
acd5c798
MK
438 cache->pc_in_eax = 1;
439 return current_pc;
440 }
441
442 if (buf[1] == proto1[1])
443 return pc + 4;
444 else
445 return pc + 5;
446}
447
448static CORE_ADDR
449i386_skip_probe (CORE_ADDR pc)
450{
451 /* A function may start with
fc338970 452
acd5c798
MK
453 pushl constant
454 call _probe
455 addl $4, %esp
fc338970 456
acd5c798
MK
457 followed by
458
459 pushl %ebp
fc338970 460
acd5c798 461 etc. */
63c0089f
MK
462 gdb_byte buf[8];
463 gdb_byte op;
fc338970 464
24a2a654 465 read_memory_nobpt (pc, &op, 1);
acd5c798
MK
466
467 if (op == 0x68 || op == 0x6a)
468 {
469 int delta;
c906108c 470
acd5c798
MK
471 /* Skip past the `pushl' instruction; it has either a one-byte or a
472 four-byte operand, depending on the opcode. */
c906108c 473 if (op == 0x68)
acd5c798 474 delta = 5;
c906108c 475 else
acd5c798 476 delta = 2;
c906108c 477
acd5c798
MK
478 /* Read the following 8 bytes, which should be `call _probe' (6
479 bytes) followed by `addl $4,%esp' (2 bytes). */
480 read_memory (pc + delta, buf, sizeof (buf));
c906108c 481 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 482 pc += delta + sizeof (buf);
c906108c
SS
483 }
484
acd5c798
MK
485 return pc;
486}
487
92dd43fa
MK
488/* GCC 4.1 and later, can put code in the prologue to realign the
489 stack pointer. Check whether PC points to such code, and update
490 CACHE accordingly. Return the first instruction after the code
491 sequence or CURRENT_PC, whichever is smaller. If we don't
492 recognize the code, return PC. */
493
494static CORE_ADDR
495i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
496 struct i386_frame_cache *cache)
497{
92a56b20
JB
498 /* The register used by the compiler to perform the stack re-alignment
499 is, in order of preference, either %ecx, %edx, or %eax. GCC should
500 never use %ebx as it always treats it as callee-saved, whereas
501 the compiler can only use caller-saved registers. */
ade52156 502 static const gdb_byte insns_ecx[10] = {
92dd43fa
MK
503 0x8d, 0x4c, 0x24, 0x04, /* leal 4(%esp), %ecx */
504 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
505 0xff, 0x71, 0xfc /* pushl -4(%ecx) */
506 };
ade52156
JB
507 static const gdb_byte insns_edx[10] = {
508 0x8d, 0x54, 0x24, 0x04, /* leal 4(%esp), %edx */
509 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
510 0xff, 0x72, 0xfc /* pushl -4(%edx) */
511 };
512 static const gdb_byte insns_eax[10] = {
513 0x8d, 0x44, 0x24, 0x04, /* leal 4(%esp), %eax */
514 0x83, 0xe4, 0xf0, /* andl $-16, %esp */
515 0xff, 0x70, 0xfc /* pushl -4(%eax) */
516 };
92dd43fa
MK
517 gdb_byte buf[10];
518
519 if (target_read_memory (pc, buf, sizeof buf)
ade52156
JB
520 || (memcmp (buf, insns_ecx, sizeof buf) != 0
521 && memcmp (buf, insns_edx, sizeof buf) != 0
522 && memcmp (buf, insns_eax, sizeof buf) != 0))
92dd43fa
MK
523 return pc;
524
525 if (current_pc > pc + 4)
526 cache->stack_align = 1;
527
528 return min (pc + 10, current_pc);
529}
530
37bdc87e
MK
531/* Maximum instruction length we need to handle. */
532#define I386_MAX_INSN_LEN 6
533
534/* Instruction description. */
535struct i386_insn
536{
537 size_t len;
63c0089f
MK
538 gdb_byte insn[I386_MAX_INSN_LEN];
539 gdb_byte mask[I386_MAX_INSN_LEN];
37bdc87e
MK
540};
541
542/* Search for the instruction at PC in the list SKIP_INSNS. Return
543 the first instruction description that matches. Otherwise, return
544 NULL. */
545
546static struct i386_insn *
547i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
548{
549 struct i386_insn *insn;
63c0089f 550 gdb_byte op;
37bdc87e 551
24a2a654 552 read_memory_nobpt (pc, &op, 1);
37bdc87e
MK
553
554 for (insn = skip_insns; insn->len > 0; insn++)
555 {
556 if ((op & insn->mask[0]) == insn->insn[0])
557 {
613e8135
MK
558 gdb_byte buf[I386_MAX_INSN_LEN - 1];
559 int insn_matched = 1;
37bdc87e
MK
560 size_t i;
561
562 gdb_assert (insn->len > 1);
563 gdb_assert (insn->len <= I386_MAX_INSN_LEN);
564
24a2a654 565 read_memory_nobpt (pc + 1, buf, insn->len - 1);
37bdc87e
MK
566 for (i = 1; i < insn->len; i++)
567 {
568 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 569 insn_matched = 0;
37bdc87e 570 }
613e8135
MK
571
572 if (insn_matched)
573 return insn;
37bdc87e
MK
574 }
575 }
576
577 return NULL;
578}
579
580/* Some special instructions that might be migrated by GCC into the
581 part of the prologue that sets up the new stack frame. Because the
582 stack frame hasn't been setup yet, no registers have been saved
583 yet, and only the scratch registers %eax, %ecx and %edx can be
584 touched. */
585
586struct i386_insn i386_frame_setup_skip_insns[] =
587{
588 /* Check for `movb imm8, r' and `movl imm32, r'.
589
590 ??? Should we handle 16-bit operand-sizes here? */
591
592 /* `movb imm8, %al' and `movb imm8, %ah' */
593 /* `movb imm8, %cl' and `movb imm8, %ch' */
594 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
595 /* `movb imm8, %dl' and `movb imm8, %dh' */
596 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
597 /* `movl imm32, %eax' and `movl imm32, %ecx' */
598 { 5, { 0xb8 }, { 0xfe } },
599 /* `movl imm32, %edx' */
600 { 5, { 0xba }, { 0xff } },
601
602 /* Check for `mov imm32, r32'. Note that there is an alternative
603 encoding for `mov m32, %eax'.
604
605 ??? Should we handle SIB adressing here?
606 ??? Should we handle 16-bit operand-sizes here? */
607
608 /* `movl m32, %eax' */
609 { 5, { 0xa1 }, { 0xff } },
610 /* `movl m32, %eax' and `mov; m32, %ecx' */
611 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
612 /* `movl m32, %edx' */
613 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
614
615 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
616 Because of the symmetry, there are actually two ways to encode
617 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
618 opcode bytes 0x31 and 0x33 for `xorl'. */
619
620 /* `subl %eax, %eax' */
621 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
622 /* `subl %ecx, %ecx' */
623 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
624 /* `subl %edx, %edx' */
625 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
626 /* `xorl %eax, %eax' */
627 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
628 /* `xorl %ecx, %ecx' */
629 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
630 /* `xorl %edx, %edx' */
631 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
632 { 0 }
633};
634
e11481da
PM
635
636/* Check whether PC points to a no-op instruction. */
637static CORE_ADDR
638i386_skip_noop (CORE_ADDR pc)
639{
640 gdb_byte op;
641 int check = 1;
642
643 read_memory_nobpt (pc, &op, 1);
644
645 while (check)
646 {
647 check = 0;
648 /* Ignore `nop' instruction. */
649 if (op == 0x90)
650 {
651 pc += 1;
652 read_memory_nobpt (pc, &op, 1);
653 check = 1;
654 }
655 /* Ignore no-op instruction `mov %edi, %edi'.
656 Microsoft system dlls often start with
657 a `mov %edi,%edi' instruction.
658 The 5 bytes before the function start are
659 filled with `nop' instructions.
660 This pattern can be used for hot-patching:
661 The `mov %edi, %edi' instruction can be replaced by a
662 near jump to the location of the 5 `nop' instructions
663 which can be replaced by a 32-bit jump to anywhere
664 in the 32-bit address space. */
665
666 else if (op == 0x8b)
667 {
668 read_memory_nobpt (pc + 1, &op, 1);
669 if (op == 0xff)
670 {
671 pc += 2;
672 read_memory_nobpt (pc, &op, 1);
673 check = 1;
674 }
675 }
676 }
677 return pc;
678}
679
acd5c798
MK
680/* Check whether PC points at a code that sets up a new stack frame.
681 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
682 instruction after the sequence that sets up the frame or LIMIT,
683 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
684
685static CORE_ADDR
37bdc87e 686i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
687 struct i386_frame_cache *cache)
688{
37bdc87e 689 struct i386_insn *insn;
63c0089f 690 gdb_byte op;
26604a34 691 int skip = 0;
acd5c798 692
37bdc87e
MK
693 if (limit <= pc)
694 return limit;
acd5c798 695
24a2a654 696 read_memory_nobpt (pc, &op, 1);
acd5c798 697
c906108c 698 if (op == 0x55) /* pushl %ebp */
c5aa993b 699 {
acd5c798
MK
700 /* Take into account that we've executed the `pushl %ebp' that
701 starts this instruction sequence. */
fd13a04a 702 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 703 cache->sp_offset += 4;
37bdc87e 704 pc++;
acd5c798
MK
705
706 /* If that's all, return now. */
37bdc87e
MK
707 if (limit <= pc)
708 return limit;
26604a34 709
b4632131 710 /* Check for some special instructions that might be migrated by
37bdc87e
MK
711 GCC into the prologue and skip them. At this point in the
712 prologue, code should only touch the scratch registers %eax,
713 %ecx and %edx, so while the number of posibilities is sheer,
714 it is limited.
5daa5b4e 715
26604a34
MK
716 Make sure we only skip these instructions if we later see the
717 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 718 while (pc + skip < limit)
26604a34 719 {
37bdc87e
MK
720 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
721 if (insn == NULL)
722 break;
b4632131 723
37bdc87e 724 skip += insn->len;
26604a34
MK
725 }
726
37bdc87e
MK
727 /* If that's all, return now. */
728 if (limit <= pc + skip)
729 return limit;
730
24a2a654 731 read_memory_nobpt (pc + skip, &op, 1);
37bdc87e 732
26604a34 733 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 734 switch (op)
c906108c
SS
735 {
736 case 0x8b:
37bdc87e
MK
737 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xec)
738 return pc;
c906108c
SS
739 break;
740 case 0x89:
37bdc87e
MK
741 if (read_memory_unsigned_integer (pc + skip + 1, 1) != 0xe5)
742 return pc;
c906108c
SS
743 break;
744 default:
37bdc87e 745 return pc;
c906108c 746 }
acd5c798 747
26604a34
MK
748 /* OK, we actually have a frame. We just don't know how large
749 it is yet. Set its size to zero. We'll adjust it if
750 necessary. We also now commit to skipping the special
751 instructions mentioned before. */
acd5c798 752 cache->locals = 0;
37bdc87e 753 pc += (skip + 2);
acd5c798
MK
754
755 /* If that's all, return now. */
37bdc87e
MK
756 if (limit <= pc)
757 return limit;
acd5c798 758
fc338970
MK
759 /* Check for stack adjustment
760
acd5c798 761 subl $XXX, %esp
fc338970 762
fd35795f 763 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 764 reg, so we don't have to worry about a data16 prefix. */
24a2a654 765 read_memory_nobpt (pc, &op, 1);
c906108c
SS
766 if (op == 0x83)
767 {
fd35795f 768 /* `subl' with 8-bit immediate. */
37bdc87e 769 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 770 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 771 return pc;
acd5c798 772
37bdc87e
MK
773 /* `subl' with signed 8-bit immediate (though it wouldn't
774 make sense to be negative). */
775 cache->locals = read_memory_integer (pc + 2, 1);
776 return pc + 3;
c906108c
SS
777 }
778 else if (op == 0x81)
779 {
fd35795f 780 /* Maybe it is `subl' with a 32-bit immediate. */
37bdc87e 781 if (read_memory_unsigned_integer (pc + 1, 1) != 0xec)
fc338970 782 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 783 return pc;
acd5c798 784
fd35795f 785 /* It is `subl' with a 32-bit immediate. */
37bdc87e
MK
786 cache->locals = read_memory_integer (pc + 2, 4);
787 return pc + 6;
c906108c
SS
788 }
789 else
790 {
acd5c798 791 /* Some instruction other than `subl'. */
37bdc87e 792 return pc;
c906108c
SS
793 }
794 }
37bdc87e 795 else if (op == 0xc8) /* enter */
c906108c 796 {
acd5c798
MK
797 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
798 return pc + 4;
c906108c 799 }
21d0e8a4 800
acd5c798 801 return pc;
21d0e8a4
MK
802}
803
acd5c798
MK
804/* Check whether PC points at code that saves registers on the stack.
805 If so, it updates CACHE and returns the address of the first
806 instruction after the register saves or CURRENT_PC, whichever is
807 smaller. Otherwise, return PC. */
6bff26de
MK
808
809static CORE_ADDR
acd5c798
MK
810i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
811 struct i386_frame_cache *cache)
6bff26de 812{
99ab4326 813 CORE_ADDR offset = 0;
63c0089f 814 gdb_byte op;
99ab4326 815 int i;
c0d1d883 816
99ab4326
MK
817 if (cache->locals > 0)
818 offset -= cache->locals;
819 for (i = 0; i < 8 && pc < current_pc; i++)
820 {
24a2a654 821 read_memory_nobpt (pc, &op, 1);
99ab4326
MK
822 if (op < 0x50 || op > 0x57)
823 break;
0d17c81d 824
99ab4326
MK
825 offset -= 4;
826 cache->saved_regs[op - 0x50] = offset;
827 cache->sp_offset += 4;
828 pc++;
6bff26de
MK
829 }
830
acd5c798 831 return pc;
22797942
AC
832}
833
acd5c798
MK
834/* Do a full analysis of the prologue at PC and update CACHE
835 accordingly. Bail out early if CURRENT_PC is reached. Return the
836 address where the analysis stopped.
ed84f6c1 837
fc338970
MK
838 We handle these cases:
839
840 The startup sequence can be at the start of the function, or the
841 function can start with a branch to startup code at the end.
842
843 %ebp can be set up with either the 'enter' instruction, or "pushl
844 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
845 once used in the System V compiler).
846
847 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
848 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
849 16-bit unsigned argument for space to allocate, and the 'addl'
850 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
851
852 Next, the registers used by this function are pushed. With the
853 System V compiler they will always be in the order: %edi, %esi,
854 %ebx (and sometimes a harmless bug causes it to also save but not
855 restore %eax); however, the code below is willing to see the pushes
856 in any order, and will handle up to 8 of them.
857
858 If the setup sequence is at the end of the function, then the next
859 instruction will be a branch back to the start. */
c906108c 860
acd5c798
MK
861static CORE_ADDR
862i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
863 struct i386_frame_cache *cache)
c906108c 864{
e11481da 865 pc = i386_skip_noop (pc);
acd5c798
MK
866 pc = i386_follow_jump (pc);
867 pc = i386_analyze_struct_return (pc, current_pc, cache);
868 pc = i386_skip_probe (pc);
92dd43fa 869 pc = i386_analyze_stack_align (pc, current_pc, cache);
acd5c798
MK
870 pc = i386_analyze_frame_setup (pc, current_pc, cache);
871 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
872}
873
fc338970 874/* Return PC of first real instruction. */
c906108c 875
3a1e71e3 876static CORE_ADDR
6093d2eb 877i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 878{
63c0089f 879 static gdb_byte pic_pat[6] =
acd5c798
MK
880 {
881 0xe8, 0, 0, 0, 0, /* call 0x0 */
882 0x5b, /* popl %ebx */
c5aa993b 883 };
acd5c798
MK
884 struct i386_frame_cache cache;
885 CORE_ADDR pc;
63c0089f 886 gdb_byte op;
acd5c798 887 int i;
c5aa993b 888
acd5c798
MK
889 cache.locals = -1;
890 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
891 if (cache.locals < 0)
892 return start_pc;
c5aa993b 893
acd5c798 894 /* Found valid frame setup. */
c906108c 895
fc338970
MK
896 /* The native cc on SVR4 in -K PIC mode inserts the following code
897 to get the address of the global offset table (GOT) into register
acd5c798
MK
898 %ebx:
899
fc338970
MK
900 call 0x0
901 popl %ebx
902 movl %ebx,x(%ebp) (optional)
903 addl y,%ebx
904
c906108c
SS
905 This code is with the rest of the prologue (at the end of the
906 function), so we have to skip it to get to the first real
907 instruction at the start of the function. */
c5aa993b 908
c906108c
SS
909 for (i = 0; i < 6; i++)
910 {
24a2a654 911 read_memory_nobpt (pc + i, &op, 1);
c5aa993b 912 if (pic_pat[i] != op)
c906108c
SS
913 break;
914 }
915 if (i == 6)
916 {
acd5c798
MK
917 int delta = 6;
918
24a2a654 919 read_memory_nobpt (pc + delta, &op, 1);
c906108c 920
c5aa993b 921 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 922 {
acd5c798
MK
923 op = read_memory_unsigned_integer (pc + delta + 1, 1);
924
fc338970 925 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 926 delta += 3;
fc338970 927 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 928 delta += 6;
fc338970 929 else /* Unexpected instruction. */
acd5c798
MK
930 delta = 0;
931
24a2a654 932 read_memory_nobpt (pc + delta, &op, 1);
c906108c 933 }
acd5c798 934
c5aa993b 935 /* addl y,%ebx */
acd5c798 936 if (delta > 0 && op == 0x81
d5d6fca5 937 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3)
c906108c 938 {
acd5c798 939 pc += delta + 6;
c906108c
SS
940 }
941 }
c5aa993b 942
e63bbc88
MK
943 /* If the function starts with a branch (to startup code at the end)
944 the last instruction should bring us back to the first
945 instruction of the real code. */
946 if (i386_follow_jump (start_pc) != start_pc)
947 pc = i386_follow_jump (pc);
948
949 return pc;
c906108c
SS
950}
951
acd5c798 952/* This function is 64-bit safe. */
93924b6b 953
acd5c798
MK
954static CORE_ADDR
955i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 956{
63c0089f 957 gdb_byte buf[8];
acd5c798 958
875f8d0e 959 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
acd5c798 960 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 961}
acd5c798 962\f
93924b6b 963
acd5c798 964/* Normal frames. */
c5aa993b 965
acd5c798
MK
966static struct i386_frame_cache *
967i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 968{
acd5c798 969 struct i386_frame_cache *cache;
63c0089f 970 gdb_byte buf[4];
acd5c798
MK
971 int i;
972
973 if (*this_cache)
974 return *this_cache;
975
fd13a04a 976 cache = i386_alloc_frame_cache ();
acd5c798
MK
977 *this_cache = cache;
978
979 /* In principle, for normal frames, %ebp holds the frame pointer,
980 which holds the base address for the current stack frame.
981 However, for functions that don't need it, the frame pointer is
982 optional. For these "frameless" functions the frame pointer is
983 actually the frame pointer of the calling frame. Signal
984 trampolines are just a special case of a "frameless" function.
985 They (usually) share their frame pointer with the frame that was
986 in progress when the signal occurred. */
987
988 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
989 cache->base = extract_unsigned_integer (buf, 4);
990 if (cache->base == 0)
991 return cache;
992
993 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 994 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 995
93d42b30 996 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
acd5c798
MK
997 if (cache->pc != 0)
998 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
999
92dd43fa
MK
1000 if (cache->stack_align)
1001 {
1002 /* Saved stack pointer has been saved in %ecx. */
1003 frame_unwind_register (next_frame, I386_ECX_REGNUM, buf);
1004 cache->saved_sp = extract_unsigned_integer(buf, 4);
1005 }
1006
acd5c798
MK
1007 if (cache->locals < 0)
1008 {
1009 /* We didn't find a valid frame, which means that CACHE->base
1010 currently holds the frame pointer for our calling frame. If
1011 we're at the start of a function, or somewhere half-way its
1012 prologue, the function's frame probably hasn't been fully
1013 setup yet. Try to reconstruct the base address for the stack
1014 frame by looking at the stack pointer. For truly "frameless"
1015 functions this might work too. */
1016
92dd43fa
MK
1017 if (cache->stack_align)
1018 {
1019 /* We're halfway aligning the stack. */
1020 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1021 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1022
1023 /* This will be added back below. */
1024 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1025 }
1026 else
1027 {
1028 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1029 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
1030 }
acd5c798
MK
1031 }
1032
1033 /* Now that we have the base address for the stack frame we can
1034 calculate the value of %esp in the calling frame. */
92dd43fa
MK
1035 if (cache->saved_sp == 0)
1036 cache->saved_sp = cache->base + 8;
a7769679 1037
acd5c798
MK
1038 /* Adjust all the saved registers such that they contain addresses
1039 instead of offsets. */
1040 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1041 if (cache->saved_regs[i] != -1)
1042 cache->saved_regs[i] += cache->base;
acd5c798
MK
1043
1044 return cache;
a7769679
MK
1045}
1046
3a1e71e3 1047static void
acd5c798
MK
1048i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
1049 struct frame_id *this_id)
c906108c 1050{
acd5c798
MK
1051 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1052
1053 /* This marks the outermost frame. */
1054 if (cache->base == 0)
1055 return;
1056
3e210248 1057 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1058 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1059}
1060
1061static void
1062i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1063 int regnum, int *optimizedp,
1064 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1065 int *realnump, gdb_byte *valuep)
acd5c798
MK
1066{
1067 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1068
1069 gdb_assert (regnum >= 0);
1070
1071 /* The System V ABI says that:
1072
1073 "The flags register contains the system flags, such as the
1074 direction flag and the carry flag. The direction flag must be
1075 set to the forward (that is, zero) direction before entry and
1076 upon exit from a function. Other user flags have no specified
1077 role in the standard calling sequence and are not preserved."
1078
1079 To guarantee the "upon exit" part of that statement we fake a
1080 saved flags register that has its direction flag cleared.
1081
1082 Note that GCC doesn't seem to rely on the fact that the direction
1083 flag is cleared after a function return; it always explicitly
1084 clears the flag before operations where it matters.
1085
1086 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1087 right thing to do. The way we fake the flags register here makes
1088 it impossible to change it. */
1089
1090 if (regnum == I386_EFLAGS_REGNUM)
1091 {
1092 *optimizedp = 0;
1093 *lvalp = not_lval;
1094 *addrp = 0;
1095 *realnump = -1;
1096 if (valuep)
1097 {
1098 ULONGEST val;
c5aa993b 1099
acd5c798 1100 /* Clear the direction flag. */
f837910f
MK
1101 val = frame_unwind_register_unsigned (next_frame,
1102 I386_EFLAGS_REGNUM);
acd5c798
MK
1103 val &= ~(1 << 10);
1104 store_unsigned_integer (valuep, 4, val);
1105 }
1106
1107 return;
1108 }
1211c4e4 1109
acd5c798 1110 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 1111 {
00b25ff3
AC
1112 *optimizedp = 0;
1113 *lvalp = lval_register;
1114 *addrp = 0;
1115 *realnump = I386_EAX_REGNUM;
1116 if (valuep)
1117 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1118 return;
1119 }
1120
1121 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
1122 {
1123 *optimizedp = 0;
1124 *lvalp = not_lval;
1125 *addrp = 0;
1126 *realnump = -1;
1127 if (valuep)
c906108c 1128 {
acd5c798
MK
1129 /* Store the value. */
1130 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 1131 }
acd5c798 1132 return;
c906108c 1133 }
acd5c798 1134
fd13a04a
AC
1135 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1136 {
1137 *optimizedp = 0;
1138 *lvalp = lval_memory;
1139 *addrp = cache->saved_regs[regnum];
1140 *realnump = -1;
1141 if (valuep)
1142 {
1143 /* Read the value in from memory. */
1144 read_memory (*addrp, valuep,
875f8d0e 1145 register_size (get_frame_arch (next_frame), regnum));
fd13a04a
AC
1146 }
1147 return;
1148 }
1149
00b25ff3
AC
1150 *optimizedp = 0;
1151 *lvalp = lval_register;
1152 *addrp = 0;
1153 *realnump = regnum;
1154 if (valuep)
1155 frame_unwind_register (next_frame, (*realnump), valuep);
acd5c798
MK
1156}
1157
1158static const struct frame_unwind i386_frame_unwind =
1159{
1160 NORMAL_FRAME,
1161 i386_frame_this_id,
1162 i386_frame_prev_register
1163};
1164
1165static const struct frame_unwind *
336d1bba 1166i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
1167{
1168 return &i386_frame_unwind;
1169}
1170\f
1171
1172/* Signal trampolines. */
1173
1174static struct i386_frame_cache *
1175i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1176{
1177 struct i386_frame_cache *cache;
875f8d0e 1178 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1179 CORE_ADDR addr;
63c0089f 1180 gdb_byte buf[4];
acd5c798
MK
1181
1182 if (*this_cache)
1183 return *this_cache;
1184
fd13a04a 1185 cache = i386_alloc_frame_cache ();
acd5c798
MK
1186
1187 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1188 cache->base = extract_unsigned_integer (buf, 4) - 4;
1189
1190 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
1191 if (tdep->sc_reg_offset)
1192 {
1193 int i;
1194
1195 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1196
1197 for (i = 0; i < tdep->sc_num_regs; i++)
1198 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 1199 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
1200 }
1201 else
1202 {
fd13a04a
AC
1203 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1204 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 1205 }
acd5c798
MK
1206
1207 *this_cache = cache;
1208 return cache;
1209}
1210
1211static void
1212i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
1213 struct frame_id *this_id)
1214{
1215 struct i386_frame_cache *cache =
1216 i386_sigtramp_frame_cache (next_frame, this_cache);
1217
3e210248 1218 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1219 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
1220}
1221
1222static void
1223i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1224 void **this_cache,
1225 int regnum, int *optimizedp,
1226 enum lval_type *lvalp, CORE_ADDR *addrp,
c6826062 1227 int *realnump, gdb_byte *valuep)
acd5c798
MK
1228{
1229 /* Make sure we've initialized the cache. */
1230 i386_sigtramp_frame_cache (next_frame, this_cache);
1231
1232 i386_frame_prev_register (next_frame, this_cache, regnum,
1233 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1234}
c0d1d883 1235
acd5c798
MK
1236static const struct frame_unwind i386_sigtramp_frame_unwind =
1237{
1238 SIGTRAMP_FRAME,
1239 i386_sigtramp_frame_this_id,
1240 i386_sigtramp_frame_prev_register
1241};
1242
1243static const struct frame_unwind *
336d1bba 1244i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1245{
911bc6ee 1246 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1247
911bc6ee
MK
1248 /* We shouldn't even bother if we don't have a sigcontext_addr
1249 handler. */
1250 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1251 return NULL;
1252
911bc6ee
MK
1253 if (tdep->sigtramp_p != NULL)
1254 {
1255 if (tdep->sigtramp_p (next_frame))
1256 return &i386_sigtramp_frame_unwind;
1257 }
1258
1259 if (tdep->sigtramp_start != 0)
1260 {
1261 CORE_ADDR pc = frame_pc_unwind (next_frame);
1262
1263 gdb_assert (tdep->sigtramp_end != 0);
1264 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1265 return &i386_sigtramp_frame_unwind;
1266 }
acd5c798
MK
1267
1268 return NULL;
1269}
1270\f
1271
1272static CORE_ADDR
1273i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1274{
1275 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1276
1277 return cache->base;
1278}
1279
1280static const struct frame_base i386_frame_base =
1281{
1282 &i386_frame_unwind,
1283 i386_frame_base_address,
1284 i386_frame_base_address,
1285 i386_frame_base_address
1286};
1287
acd5c798
MK
1288static struct frame_id
1289i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1290{
63c0089f 1291 gdb_byte buf[4];
acd5c798
MK
1292 CORE_ADDR fp;
1293
1294 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1295 fp = extract_unsigned_integer (buf, 4);
1296
3e210248 1297 /* See the end of i386_push_dummy_call. */
acd5c798 1298 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1299}
fc338970 1300\f
c906108c 1301
fc338970
MK
1302/* Figure out where the longjmp will land. Slurp the args out of the
1303 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1304 structure from which we extract the address that we will land at.
28bcfd30 1305 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1306 success.
1307
1308 This function is 64-bit safe. */
c906108c 1309
8201327c 1310static int
60ade65d 1311i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 1312{
63c0089f 1313 gdb_byte buf[8];
c906108c 1314 CORE_ADDR sp, jb_addr;
60ade65d 1315 int jb_pc_offset = gdbarch_tdep (get_frame_arch (frame))->jb_pc_offset;
f9d3c2a8 1316 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1317
8201327c
MK
1318 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1319 longjmp will land. */
1320 if (jb_pc_offset == -1)
c906108c
SS
1321 return 0;
1322
f837910f
MK
1323 /* Don't use I386_ESP_REGNUM here, since this function is also used
1324 for AMD64. */
875f8d0e 1325 get_frame_register (frame, gdbarch_sp_regnum (get_frame_arch (frame)), buf);
f837910f 1326 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1327 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1328 return 0;
1329
f837910f 1330 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1331 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1332 return 0;
c906108c 1333
f9d3c2a8 1334 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1335 return 1;
1336}
fc338970 1337\f
c906108c 1338
3a1e71e3 1339static CORE_ADDR
7d9b040b 1340i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
1341 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1342 struct value **args, CORE_ADDR sp, int struct_return,
1343 CORE_ADDR struct_addr)
22f8ba57 1344{
63c0089f 1345 gdb_byte buf[4];
acd5c798
MK
1346 int i;
1347
1348 /* Push arguments in reverse order. */
1349 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1350 {
4754a64e 1351 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798
MK
1352
1353 /* The System V ABI says that:
1354
1355 "An argument's size is increased, if necessary, to make it a
1356 multiple of [32-bit] words. This may require tail padding,
1357 depending on the size of the argument."
1358
cf913f37 1359 This makes sure the stack stays word-aligned. */
acd5c798 1360 sp -= (len + 3) & ~3;
46615f07 1361 write_memory (sp, value_contents_all (args[i]), len);
acd5c798 1362 }
22f8ba57 1363
acd5c798
MK
1364 /* Push value address. */
1365 if (struct_return)
1366 {
22f8ba57 1367 sp -= 4;
fbd9dcd3 1368 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1369 write_memory (sp, buf, 4);
1370 }
1371
acd5c798
MK
1372 /* Store return address. */
1373 sp -= 4;
6a65450a 1374 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1375 write_memory (sp, buf, 4);
1376
1377 /* Finally, update the stack pointer... */
1378 store_unsigned_integer (buf, 4, sp);
1379 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1380
1381 /* ...and fake a frame pointer. */
1382 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1383
3e210248
AC
1384 /* MarkK wrote: This "+ 8" is all over the place:
1385 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1386 i386_unwind_dummy_id). It's there, since all frame unwinders for
1387 a given target have to agree (within a certain margin) on the
fd35795f 1388 definition of the stack address of a frame. Otherwise
3e210248
AC
1389 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1390 stack address *before* the function call as a frame's CFA. On
1391 the i386, when %ebp is used as a frame pointer, the offset
1392 between the contents %ebp and the CFA as defined by GCC. */
1393 return sp + 8;
22f8ba57
MK
1394}
1395
1a309862
MK
1396/* These registers are used for returning integers (and on some
1397 targets also for returning `struct' and `union' values when their
ef9dff19 1398 size and alignment match an integer type). */
acd5c798
MK
1399#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1400#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1401
c5e656c1
MK
1402/* Read, for architecture GDBARCH, a function return value of TYPE
1403 from REGCACHE, and copy that into VALBUF. */
1a309862 1404
3a1e71e3 1405static void
c5e656c1 1406i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1407 struct regcache *regcache, gdb_byte *valbuf)
c906108c 1408{
c5e656c1 1409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1410 int len = TYPE_LENGTH (type);
63c0089f 1411 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 1412
1e8d0a7b 1413 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1414 {
5716833c 1415 if (tdep->st0_regnum < 0)
1a309862 1416 {
8a3fe4f8 1417 warning (_("Cannot find floating-point return value."));
1a309862 1418 memset (valbuf, 0, len);
ef9dff19 1419 return;
1a309862
MK
1420 }
1421
c6ba6f0d
MK
1422 /* Floating-point return values can be found in %st(0). Convert
1423 its contents to the desired type. This is probably not
1424 exactly how it would happen on the target itself, but it is
1425 the best we can do. */
acd5c798 1426 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1427 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1428 }
1429 else
c5aa993b 1430 {
875f8d0e
UW
1431 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1432 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1433
1434 if (len <= low_size)
00f8375e 1435 {
0818c12a 1436 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1437 memcpy (valbuf, buf, len);
1438 }
d4f3574e
SS
1439 else if (len <= (low_size + high_size))
1440 {
0818c12a 1441 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1442 memcpy (valbuf, buf, low_size);
0818c12a 1443 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 1444 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1445 }
1446 else
8e65ff28 1447 internal_error (__FILE__, __LINE__,
e2e0b3e5 1448 _("Cannot extract return value of %d bytes long."), len);
c906108c
SS
1449 }
1450}
1451
c5e656c1
MK
1452/* Write, for architecture GDBARCH, a function return value of TYPE
1453 from VALBUF into REGCACHE. */
ef9dff19 1454
3a1e71e3 1455static void
c5e656c1 1456i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 1457 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 1458{
c5e656c1 1459 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1460 int len = TYPE_LENGTH (type);
1461
5716833c
MK
1462 /* Define I387_ST0_REGNUM such that we use the proper definitions
1463 for the architecture. */
1464#define I387_ST0_REGNUM I386_ST0_REGNUM
1465
1e8d0a7b 1466 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1467 {
3d7f4f49 1468 ULONGEST fstat;
63c0089f 1469 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1470
5716833c 1471 if (tdep->st0_regnum < 0)
ef9dff19 1472 {
8a3fe4f8 1473 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
1474 return;
1475 }
1476
635b0cc1
MK
1477 /* Returning floating-point values is a bit tricky. Apart from
1478 storing the return value in %st(0), we have to simulate the
1479 state of the FPU at function return point. */
1480
c6ba6f0d
MK
1481 /* Convert the value found in VALBUF to the extended
1482 floating-point format used by the FPU. This is probably
1483 not exactly how it would happen on the target itself, but
1484 it is the best we can do. */
1485 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1486 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1487
635b0cc1
MK
1488 /* Set the top of the floating-point register stack to 7. The
1489 actual value doesn't really matter, but 7 is what a normal
1490 function return would end up with if the program started out
1491 with a freshly initialized FPU. */
5716833c 1492 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1493 fstat |= (7 << 11);
5716833c 1494 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1495
635b0cc1
MK
1496 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1497 the floating-point register stack to 7, the appropriate value
1498 for the tag word is 0x3fff. */
5716833c 1499 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1500 }
1501 else
1502 {
875f8d0e
UW
1503 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
1504 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1505
1506 if (len <= low_size)
3d7f4f49 1507 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1508 else if (len <= (low_size + high_size))
1509 {
3d7f4f49
MK
1510 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1511 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 1512 len - low_size, valbuf + low_size);
ef9dff19
MK
1513 }
1514 else
8e65ff28 1515 internal_error (__FILE__, __LINE__,
e2e0b3e5 1516 _("Cannot store return value of %d bytes long."), len);
ef9dff19 1517 }
5716833c
MK
1518
1519#undef I387_ST0_REGNUM
ef9dff19 1520}
fc338970 1521\f
ef9dff19 1522
8201327c
MK
1523/* This is the variable that is set with "set struct-convention", and
1524 its legitimate values. */
1525static const char default_struct_convention[] = "default";
1526static const char pcc_struct_convention[] = "pcc";
1527static const char reg_struct_convention[] = "reg";
1528static const char *valid_conventions[] =
1529{
1530 default_struct_convention,
1531 pcc_struct_convention,
1532 reg_struct_convention,
1533 NULL
1534};
1535static const char *struct_convention = default_struct_convention;
1536
0e4377e1
JB
1537/* Return non-zero if TYPE, which is assumed to be a structure,
1538 a union type, or an array type, should be returned in registers
1539 for architecture GDBARCH. */
c5e656c1 1540
8201327c 1541static int
c5e656c1 1542i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1543{
c5e656c1
MK
1544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1545 enum type_code code = TYPE_CODE (type);
1546 int len = TYPE_LENGTH (type);
8201327c 1547
0e4377e1
JB
1548 gdb_assert (code == TYPE_CODE_STRUCT
1549 || code == TYPE_CODE_UNION
1550 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
1551
1552 if (struct_convention == pcc_struct_convention
1553 || (struct_convention == default_struct_convention
1554 && tdep->struct_return == pcc_struct_return))
1555 return 0;
1556
9edde48e
MK
1557 /* Structures consisting of a single `float', `double' or 'long
1558 double' member are returned in %st(0). */
1559 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1560 {
1561 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1562 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1563 return (len == 4 || len == 8 || len == 12);
1564 }
1565
c5e656c1
MK
1566 return (len == 1 || len == 2 || len == 4 || len == 8);
1567}
1568
1569/* Determine, for architecture GDBARCH, how a return value of TYPE
1570 should be returned. If it is supposed to be returned in registers,
1571 and READBUF is non-zero, read the appropriate value from REGCACHE,
1572 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1573 from WRITEBUF into REGCACHE. */
1574
1575static enum return_value_convention
1576i386_return_value (struct gdbarch *gdbarch, struct type *type,
42835c2b
MK
1577 struct regcache *regcache, gdb_byte *readbuf,
1578 const gdb_byte *writebuf)
c5e656c1
MK
1579{
1580 enum type_code code = TYPE_CODE (type);
1581
5daa78cc
TJB
1582 if (((code == TYPE_CODE_STRUCT
1583 || code == TYPE_CODE_UNION
1584 || code == TYPE_CODE_ARRAY)
1585 && !i386_reg_struct_return_p (gdbarch, type))
1586 /* 128-bit decimal float uses the struct return convention. */
1587 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
1588 {
1589 /* The System V ABI says that:
1590
1591 "A function that returns a structure or union also sets %eax
1592 to the value of the original address of the caller's area
1593 before it returns. Thus when the caller receives control
1594 again, the address of the returned object resides in register
1595 %eax and can be used to access the object."
1596
1597 So the ABI guarantees that we can always find the return
1598 value just after the function has returned. */
1599
0e4377e1
JB
1600 /* Note that the ABI doesn't mention functions returning arrays,
1601 which is something possible in certain languages such as Ada.
1602 In this case, the value is returned as if it was wrapped in
1603 a record, so the convention applied to records also applies
1604 to arrays. */
1605
31db7b6c
MK
1606 if (readbuf)
1607 {
1608 ULONGEST addr;
1609
1610 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
1611 read_memory (addr, readbuf, TYPE_LENGTH (type));
1612 }
1613
1614 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
1615 }
c5e656c1
MK
1616
1617 /* This special case is for structures consisting of a single
9edde48e
MK
1618 `float', `double' or 'long double' member. These structures are
1619 returned in %st(0). For these structures, we call ourselves
1620 recursively, changing TYPE into the type of the first member of
1621 the structure. Since that should work for all structures that
1622 have only one member, we don't bother to check the member's type
1623 here. */
c5e656c1
MK
1624 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1625 {
1626 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1627 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1628 }
1629
1630 if (readbuf)
1631 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1632 if (writebuf)
1633 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1634
c5e656c1 1635 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1636}
1637\f
1638
5ae96ec1
MK
1639/* Type for %eflags. */
1640struct type *i386_eflags_type;
1641
794ac428 1642/* Type for %mxcsr. */
878d9193 1643struct type *i386_mxcsr_type;
5ae96ec1
MK
1644
1645/* Construct types for ISA-specific registers. */
1646static void
1647i386_init_types (void)
1648{
1649 struct type *type;
1650
1651 type = init_flags_type ("builtin_type_i386_eflags", 4);
1652 append_flags_type_flag (type, 0, "CF");
1653 append_flags_type_flag (type, 1, NULL);
1654 append_flags_type_flag (type, 2, "PF");
1655 append_flags_type_flag (type, 4, "AF");
1656 append_flags_type_flag (type, 6, "ZF");
1657 append_flags_type_flag (type, 7, "SF");
1658 append_flags_type_flag (type, 8, "TF");
1659 append_flags_type_flag (type, 9, "IF");
1660 append_flags_type_flag (type, 10, "DF");
1661 append_flags_type_flag (type, 11, "OF");
1662 append_flags_type_flag (type, 14, "NT");
1663 append_flags_type_flag (type, 16, "RF");
1664 append_flags_type_flag (type, 17, "VM");
1665 append_flags_type_flag (type, 18, "AC");
1666 append_flags_type_flag (type, 19, "VIF");
1667 append_flags_type_flag (type, 20, "VIP");
1668 append_flags_type_flag (type, 21, "ID");
1669 i386_eflags_type = type;
21b4b2f2 1670
878d9193
MK
1671 type = init_flags_type ("builtin_type_i386_mxcsr", 4);
1672 append_flags_type_flag (type, 0, "IE");
1673 append_flags_type_flag (type, 1, "DE");
1674 append_flags_type_flag (type, 2, "ZE");
1675 append_flags_type_flag (type, 3, "OE");
1676 append_flags_type_flag (type, 4, "UE");
1677 append_flags_type_flag (type, 5, "PE");
1678 append_flags_type_flag (type, 6, "DAZ");
1679 append_flags_type_flag (type, 7, "IM");
1680 append_flags_type_flag (type, 8, "DM");
1681 append_flags_type_flag (type, 9, "ZM");
1682 append_flags_type_flag (type, 10, "OM");
1683 append_flags_type_flag (type, 11, "UM");
1684 append_flags_type_flag (type, 12, "PM");
1685 append_flags_type_flag (type, 15, "FZ");
1686 i386_mxcsr_type = type;
21b4b2f2
JB
1687}
1688
794ac428
UW
1689/* Construct vector type for MMX registers. */
1690struct type *
1691i386_mmx_type (struct gdbarch *gdbarch)
1692{
1693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1694
1695 if (!tdep->i386_mmx_type)
1696 {
1697 /* The type we're building is this: */
1698#if 0
1699 union __gdb_builtin_type_vec64i
1700 {
1701 int64_t uint64;
1702 int32_t v2_int32[2];
1703 int16_t v4_int16[4];
1704 int8_t v8_int8[8];
1705 };
1706#endif
1707
1708 struct type *t;
1709
1710 t = init_composite_type ("__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
1711 append_composite_type_field (t, "uint64", builtin_type_int64);
1712 append_composite_type_field (t, "v2_int32",
1713 init_vector_type (builtin_type_int32, 2));
1714 append_composite_type_field (t, "v4_int16",
1715 init_vector_type (builtin_type_int16, 4));
1716 append_composite_type_field (t, "v8_int8",
1717 init_vector_type (builtin_type_int8, 8));
1718
1719 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1720 TYPE_NAME (t) = "builtin_type_vec64i";
1721 tdep->i386_mmx_type = t;
1722 }
1723
1724 return tdep->i386_mmx_type;
1725}
1726
1727struct type *
1728i386_sse_type (struct gdbarch *gdbarch)
1729{
1730 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1731
1732 if (!tdep->i386_sse_type)
1733 {
1734 /* The type we're building is this: */
1735#if 0
1736 union __gdb_builtin_type_vec128i
1737 {
1738 int128_t uint128;
1739 int64_t v2_int64[2];
1740 int32_t v4_int32[4];
1741 int16_t v8_int16[8];
1742 int8_t v16_int8[16];
1743 double v2_double[2];
1744 float v4_float[4];
1745 };
1746#endif
1747
1748 struct type *t;
1749
1750 t = init_composite_type ("__gdb_builtin_type_vec128i", TYPE_CODE_UNION);
1751 append_composite_type_field (t, "v4_float",
1752 init_vector_type (builtin_type_float, 4));
1753 append_composite_type_field (t, "v2_double",
1754 init_vector_type (builtin_type_double, 2));
1755 append_composite_type_field (t, "v16_int8",
1756 init_vector_type (builtin_type_int8, 16));
1757 append_composite_type_field (t, "v8_int16",
1758 init_vector_type (builtin_type_int16, 8));
1759 append_composite_type_field (t, "v4_int32",
1760 init_vector_type (builtin_type_int32, 4));
1761 append_composite_type_field (t, "v2_int64",
1762 init_vector_type (builtin_type_int64, 2));
1763 append_composite_type_field (t, "uint128", builtin_type_int128);
1764
1765 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
1766 TYPE_NAME (t) = "builtin_type_vec128i";
1767 tdep->i386_sse_type = t;
1768 }
1769
1770 return tdep->i386_sse_type;
1771}
1772
d7a0d72c
MK
1773/* Return the GDB type object for the "standard" data type of data in
1774 register REGNUM. Perhaps %esi and %edi should go here, but
1775 potentially they could be used for things other than address. */
1776
3a1e71e3 1777static struct type *
4e259f09 1778i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1779{
ab533587
MK
1780 if (regnum == I386_EIP_REGNUM)
1781 return builtin_type_void_func_ptr;
1782
5ae96ec1
MK
1783 if (regnum == I386_EFLAGS_REGNUM)
1784 return i386_eflags_type;
1785
ab533587
MK
1786 if (regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
1787 return builtin_type_void_data_ptr;
d7a0d72c 1788
23a34459 1789 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1790 return builtin_type_i387_ext;
d7a0d72c 1791
878d9193 1792 if (i386_mmx_regnum_p (gdbarch, regnum))
794ac428 1793 return i386_mmx_type (gdbarch);
878d9193 1794
5716833c 1795 if (i386_sse_regnum_p (gdbarch, regnum))
794ac428 1796 return i386_sse_type (gdbarch);
d7a0d72c 1797
878d9193 1798#define I387_ST0_REGNUM I386_ST0_REGNUM
d93859e2 1799#define I387_NUM_XMM_REGS (gdbarch_tdep (gdbarch)->num_xmm_regs)
878d9193
MK
1800
1801 if (regnum == I387_MXCSR_REGNUM)
1802 return i386_mxcsr_type;
1803
1804#undef I387_ST0_REGNUM
1805#undef I387_NUM_XMM_REGS
28fc6740 1806
d7a0d72c
MK
1807 return builtin_type_int;
1808}
1809
28fc6740 1810/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1811 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1812
1813static int
c86c27af 1814i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1815{
5716833c
MK
1816 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1817 int mmxreg, fpreg;
28fc6740
AC
1818 ULONGEST fstat;
1819 int tos;
c86c27af 1820
5716833c
MK
1821 /* Define I387_ST0_REGNUM such that we use the proper definitions
1822 for REGCACHE's architecture. */
1823#define I387_ST0_REGNUM tdep->st0_regnum
1824
1825 mmxreg = regnum - tdep->mm0_regnum;
1826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1827 tos = (fstat >> 11) & 0x7;
5716833c
MK
1828 fpreg = (mmxreg + tos) % 8;
1829
1830 return (I387_ST0_REGNUM + fpreg);
c86c27af 1831
5716833c 1832#undef I387_ST0_REGNUM
28fc6740
AC
1833}
1834
1835static void
1836i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1837 int regnum, gdb_byte *buf)
28fc6740 1838{
5716833c 1839 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1840 {
63c0089f 1841 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1842 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1843
28fc6740 1844 /* Extract (always little endian). */
c86c27af 1845 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1846 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1847 }
1848 else
1849 regcache_raw_read (regcache, regnum, buf);
1850}
1851
1852static void
1853i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 1854 int regnum, const gdb_byte *buf)
28fc6740 1855{
5716833c 1856 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1857 {
63c0089f 1858 gdb_byte mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1859 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1860
28fc6740
AC
1861 /* Read ... */
1862 regcache_raw_read (regcache, fpnum, mmx_buf);
1863 /* ... Modify ... (always little endian). */
f837910f 1864 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1865 /* ... Write. */
1866 regcache_raw_write (regcache, fpnum, mmx_buf);
1867 }
1868 else
1869 regcache_raw_write (regcache, regnum, buf);
1870}
ff2e87ac
AC
1871\f
1872
ff2e87ac
AC
1873/* Return the register number of the register allocated by GCC after
1874 REGNUM, or -1 if there is no such register. */
1875
1876static int
1877i386_next_regnum (int regnum)
1878{
1879 /* GCC allocates the registers in the order:
1880
1881 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1882
1883 Since storing a variable in %esp doesn't make any sense we return
1884 -1 for %ebp and for %esp itself. */
1885 static int next_regnum[] =
1886 {
1887 I386_EDX_REGNUM, /* Slot for %eax. */
1888 I386_EBX_REGNUM, /* Slot for %ecx. */
1889 I386_ECX_REGNUM, /* Slot for %edx. */
1890 I386_ESI_REGNUM, /* Slot for %ebx. */
1891 -1, -1, /* Slots for %esp and %ebp. */
1892 I386_EDI_REGNUM, /* Slot for %esi. */
1893 I386_EBP_REGNUM /* Slot for %edi. */
1894 };
1895
de5b9bb9 1896 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1897 return next_regnum[regnum];
28fc6740 1898
ff2e87ac
AC
1899 return -1;
1900}
1901
1902/* Return nonzero if a value of type TYPE stored in register REGNUM
1903 needs any special handling. */
d7a0d72c 1904
3a1e71e3 1905static int
0abe36f5 1906i386_convert_register_p (struct gdbarch *gdbarch, int regnum, struct type *type)
d7a0d72c 1907{
de5b9bb9
MK
1908 int len = TYPE_LENGTH (type);
1909
ff2e87ac
AC
1910 /* Values may be spread across multiple registers. Most debugging
1911 formats aren't expressive enough to specify the locations, so
1912 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1913 have a length that is a multiple of the word size, since GCC
1914 doesn't seem to put any other types into registers. */
1915 if (len > 4 && len % 4 == 0)
1916 {
1917 int last_regnum = regnum;
1918
1919 while (len > 4)
1920 {
1921 last_regnum = i386_next_regnum (last_regnum);
1922 len -= 4;
1923 }
1924
1925 if (last_regnum != -1)
1926 return 1;
1927 }
ff2e87ac 1928
0abe36f5 1929 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
1930}
1931
ff2e87ac
AC
1932/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1933 return its contents in TO. */
ac27f131 1934
3a1e71e3 1935static void
ff2e87ac 1936i386_register_to_value (struct frame_info *frame, int regnum,
42835c2b 1937 struct type *type, gdb_byte *to)
ac27f131 1938{
de5b9bb9 1939 int len = TYPE_LENGTH (type);
de5b9bb9 1940
ff2e87ac
AC
1941 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1942 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1943
ff2e87ac 1944 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1945 {
d532c08f
MK
1946 i387_register_to_value (frame, regnum, type, to);
1947 return;
8d7f6b4a 1948 }
ff2e87ac 1949
fd35795f 1950 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1951
1952 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1953
de5b9bb9
MK
1954 while (len > 0)
1955 {
1956 gdb_assert (regnum != -1);
875f8d0e 1957 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1958
42835c2b 1959 get_frame_register (frame, regnum, to);
de5b9bb9
MK
1960 regnum = i386_next_regnum (regnum);
1961 len -= 4;
42835c2b 1962 to += 4;
de5b9bb9 1963 }
ac27f131
MK
1964}
1965
ff2e87ac
AC
1966/* Write the contents FROM of a value of type TYPE into register
1967 REGNUM in frame FRAME. */
ac27f131 1968
3a1e71e3 1969static void
ff2e87ac 1970i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 1971 struct type *type, const gdb_byte *from)
ac27f131 1972{
de5b9bb9 1973 int len = TYPE_LENGTH (type);
de5b9bb9 1974
ff2e87ac 1975 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1976 {
d532c08f
MK
1977 i387_value_to_register (frame, regnum, type, from);
1978 return;
1979 }
3d261580 1980
fd35795f 1981 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1982
1983 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1984
de5b9bb9
MK
1985 while (len > 0)
1986 {
1987 gdb_assert (regnum != -1);
875f8d0e 1988 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 1989
42835c2b 1990 put_frame_register (frame, regnum, from);
de5b9bb9
MK
1991 regnum = i386_next_regnum (regnum);
1992 len -= 4;
42835c2b 1993 from += 4;
de5b9bb9 1994 }
ac27f131 1995}
ff2e87ac 1996\f
7fdafb5a
MK
1997/* Supply register REGNUM from the buffer specified by GREGS and LEN
1998 in the general-purpose register set REGSET to register cache
1999 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2000
20187ed5 2001void
473f17b0
MK
2002i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2003 int regnum, const void *gregs, size_t len)
2004{
9ea75c57 2005 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2006 const gdb_byte *regs = gregs;
473f17b0
MK
2007 int i;
2008
2009 gdb_assert (len == tdep->sizeof_gregset);
2010
2011 for (i = 0; i < tdep->gregset_num_regs; i++)
2012 {
2013 if ((regnum == i || regnum == -1)
2014 && tdep->gregset_reg_offset[i] != -1)
2015 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2016 }
2017}
2018
7fdafb5a
MK
2019/* Collect register REGNUM from the register cache REGCACHE and store
2020 it in the buffer specified by GREGS and LEN as described by the
2021 general-purpose register set REGSET. If REGNUM is -1, do this for
2022 all registers in REGSET. */
2023
2024void
2025i386_collect_gregset (const struct regset *regset,
2026 const struct regcache *regcache,
2027 int regnum, void *gregs, size_t len)
2028{
2029 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2030 gdb_byte *regs = gregs;
7fdafb5a
MK
2031 int i;
2032
2033 gdb_assert (len == tdep->sizeof_gregset);
2034
2035 for (i = 0; i < tdep->gregset_num_regs; i++)
2036 {
2037 if ((regnum == i || regnum == -1)
2038 && tdep->gregset_reg_offset[i] != -1)
2039 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2040 }
2041}
2042
2043/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2044 in the floating-point register set REGSET to register cache
2045 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2046
2047static void
2048i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2049 int regnum, const void *fpregs, size_t len)
2050{
9ea75c57 2051 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2052
66a72d25
MK
2053 if (len == I387_SIZEOF_FXSAVE)
2054 {
2055 i387_supply_fxsave (regcache, regnum, fpregs);
2056 return;
2057 }
2058
473f17b0
MK
2059 gdb_assert (len == tdep->sizeof_fpregset);
2060 i387_supply_fsave (regcache, regnum, fpregs);
2061}
8446b36a 2062
2f305df1
MK
2063/* Collect register REGNUM from the register cache REGCACHE and store
2064 it in the buffer specified by FPREGS and LEN as described by the
2065 floating-point register set REGSET. If REGNUM is -1, do this for
2066 all registers in REGSET. */
7fdafb5a
MK
2067
2068static void
2069i386_collect_fpregset (const struct regset *regset,
2070 const struct regcache *regcache,
2071 int regnum, void *fpregs, size_t len)
2072{
2073 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2074
2075 if (len == I387_SIZEOF_FXSAVE)
2076 {
2077 i387_collect_fxsave (regcache, regnum, fpregs);
2078 return;
2079 }
2080
2081 gdb_assert (len == tdep->sizeof_fpregset);
2082 i387_collect_fsave (regcache, regnum, fpregs);
2083}
2084
8446b36a
MK
2085/* Return the appropriate register set for the core section identified
2086 by SECT_NAME and SECT_SIZE. */
2087
2088const struct regset *
2089i386_regset_from_core_section (struct gdbarch *gdbarch,
2090 const char *sect_name, size_t sect_size)
2091{
2092 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2093
2094 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
2095 {
2096 if (tdep->gregset == NULL)
7fdafb5a
MK
2097 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
2098 i386_collect_gregset);
8446b36a
MK
2099 return tdep->gregset;
2100 }
2101
66a72d25
MK
2102 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2103 || (strcmp (sect_name, ".reg-xfp") == 0
2104 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
2105 {
2106 if (tdep->fpregset == NULL)
7fdafb5a
MK
2107 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
2108 i386_collect_fpregset);
8446b36a
MK
2109 return tdep->fpregset;
2110 }
2111
2112 return NULL;
2113}
473f17b0 2114\f
fc338970 2115
fc338970 2116/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
2117
2118CORE_ADDR
1cce71eb 2119i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 2120{
fc338970 2121 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 2122 {
c5aa993b 2123 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 2124 struct minimal_symbol *indsym =
fc338970 2125 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 2126 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 2127
c5aa993b 2128 if (symname)
c906108c 2129 {
c5aa993b
JM
2130 if (strncmp (symname, "__imp_", 6) == 0
2131 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
2132 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
2133 }
2134 }
fc338970 2135 return 0; /* Not a trampoline. */
c906108c 2136}
fc338970
MK
2137\f
2138
377d9ebd 2139/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 2140 sigtramp routine. */
8201327c
MK
2141
2142static int
911bc6ee 2143i386_sigtramp_p (struct frame_info *next_frame)
8201327c 2144{
911bc6ee
MK
2145 CORE_ADDR pc = frame_pc_unwind (next_frame);
2146 char *name;
2147
2148 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2149 return (name && strcmp ("_sigtramp", name) == 0);
2150}
2151\f
2152
fc338970
MK
2153/* We have two flavours of disassembly. The machinery on this page
2154 deals with switching between those. */
c906108c
SS
2155
2156static int
a89aa300 2157i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 2158{
5e3397bb
MK
2159 gdb_assert (disassembly_flavor == att_flavor
2160 || disassembly_flavor == intel_flavor);
2161
2162 /* FIXME: kettenis/20020915: Until disassembler_options is properly
2163 constified, cast to prevent a compiler warning. */
2164 info->disassembler_options = (char *) disassembly_flavor;
2165 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
2166
2167 return print_insn_i386 (pc, info);
7a292a7a 2168}
fc338970 2169\f
3ce1502b 2170
8201327c
MK
2171/* There are a few i386 architecture variants that differ only
2172 slightly from the generic i386 target. For now, we don't give them
2173 their own source file, but include them here. As a consequence,
2174 they'll always be included. */
3ce1502b 2175
8201327c 2176/* System V Release 4 (SVR4). */
3ce1502b 2177
377d9ebd 2178/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
2179 sigtramp routine. */
2180
8201327c 2181static int
911bc6ee 2182i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 2183{
911bc6ee
MK
2184 CORE_ADDR pc = frame_pc_unwind (next_frame);
2185 char *name;
2186
acd5c798
MK
2187 /* UnixWare uses _sigacthandler. The origin of the other symbols is
2188 currently unknown. */
911bc6ee 2189 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
2190 return (name && (strcmp ("_sigreturn", name) == 0
2191 || strcmp ("_sigacthandler", name) == 0
2192 || strcmp ("sigvechandler", name) == 0));
2193}
d2a7c97a 2194
acd5c798
MK
2195/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
2196 routine, return the address of the associated sigcontext (ucontext)
2197 structure. */
3ce1502b 2198
3a1e71e3 2199static CORE_ADDR
acd5c798 2200i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 2201{
63c0089f 2202 gdb_byte buf[4];
acd5c798 2203 CORE_ADDR sp;
3ce1502b 2204
acd5c798
MK
2205 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
2206 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 2207
acd5c798 2208 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
2209}
2210\f
3ce1502b 2211
8201327c 2212/* Generic ELF. */
d2a7c97a 2213
8201327c
MK
2214void
2215i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2216{
c4fc7f1b
MK
2217 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
2218 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 2219}
3ce1502b 2220
8201327c 2221/* System V Release 4 (SVR4). */
3ce1502b 2222
8201327c
MK
2223void
2224i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2225{
2226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2227
8201327c
MK
2228 /* System V Release 4 uses ELF. */
2229 i386_elf_init_abi (info, gdbarch);
3ce1502b 2230
dfe01d39 2231 /* System V Release 4 has shared libraries. */
dfe01d39
MK
2232 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2233
911bc6ee 2234 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 2235 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
2236 tdep->sc_pc_offset = 36 + 14 * 4;
2237 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 2238
8201327c 2239 tdep->jb_pc_offset = 20;
3ce1502b
MK
2240}
2241
8201327c 2242/* DJGPP. */
3ce1502b 2243
3a1e71e3 2244static void
8201327c 2245i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 2246{
8201327c 2247 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 2248
911bc6ee
MK
2249 /* DJGPP doesn't have any special frames for signal handlers. */
2250 tdep->sigtramp_p = NULL;
3ce1502b 2251
8201327c 2252 tdep->jb_pc_offset = 36;
3ce1502b 2253}
8201327c 2254\f
2acceee2 2255
38c968cf
AC
2256/* i386 register groups. In addition to the normal groups, add "mmx"
2257 and "sse". */
2258
2259static struct reggroup *i386_sse_reggroup;
2260static struct reggroup *i386_mmx_reggroup;
2261
2262static void
2263i386_init_reggroups (void)
2264{
2265 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
2266 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
2267}
2268
2269static void
2270i386_add_reggroups (struct gdbarch *gdbarch)
2271{
2272 reggroup_add (gdbarch, i386_sse_reggroup);
2273 reggroup_add (gdbarch, i386_mmx_reggroup);
2274 reggroup_add (gdbarch, general_reggroup);
2275 reggroup_add (gdbarch, float_reggroup);
2276 reggroup_add (gdbarch, all_reggroup);
2277 reggroup_add (gdbarch, save_reggroup);
2278 reggroup_add (gdbarch, restore_reggroup);
2279 reggroup_add (gdbarch, vector_reggroup);
2280 reggroup_add (gdbarch, system_reggroup);
2281}
2282
2283int
2284i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2285 struct reggroup *group)
2286{
5716833c
MK
2287 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
2288 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
2289 int fp_regnum_p = (i386_fp_regnum_p (regnum)
2290 || i386_fpc_regnum_p (regnum));
5716833c 2291 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 2292
38c968cf
AC
2293 if (group == i386_mmx_reggroup)
2294 return mmx_regnum_p;
2295 if (group == i386_sse_reggroup)
2296 return sse_regnum_p;
2297 if (group == vector_reggroup)
2298 return (mmx_regnum_p || sse_regnum_p);
2299 if (group == float_reggroup)
2300 return fp_regnum_p;
2301 if (group == general_reggroup)
2302 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 2303
38c968cf
AC
2304 return default_register_reggroup_p (gdbarch, regnum, group);
2305}
38c968cf 2306\f
acd5c798 2307
f837910f
MK
2308/* Get the ARGIth function argument for the current function. */
2309
42c466d7 2310static CORE_ADDR
143985b7
AF
2311i386_fetch_pointer_argument (struct frame_info *frame, int argi,
2312 struct type *type)
2313{
f837910f
MK
2314 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
2315 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
2316}
2317
2318\f
3a1e71e3 2319static struct gdbarch *
a62cc96e
AC
2320i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2321{
cd3c07fc 2322 struct gdbarch_tdep *tdep;
a62cc96e
AC
2323 struct gdbarch *gdbarch;
2324
4be87837
DJ
2325 /* If there is already a candidate, use it. */
2326 arches = gdbarch_list_lookup_by_info (arches, &info);
2327 if (arches != NULL)
2328 return arches->gdbarch;
a62cc96e
AC
2329
2330 /* Allocate space for the new architecture. */
794ac428 2331 tdep = XCALLOC (1, struct gdbarch_tdep);
a62cc96e
AC
2332 gdbarch = gdbarch_alloc (&info, tdep);
2333
473f17b0
MK
2334 /* General-purpose registers. */
2335 tdep->gregset = NULL;
2336 tdep->gregset_reg_offset = NULL;
2337 tdep->gregset_num_regs = I386_NUM_GREGS;
2338 tdep->sizeof_gregset = 0;
2339
2340 /* Floating-point registers. */
2341 tdep->fpregset = NULL;
2342 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
2343
5716833c 2344 /* The default settings include the FPU registers, the MMX registers
fd35795f 2345 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
2346 by adjusting the members `st0_regnum', `mm0_regnum' and
2347 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
2348 will show up in the output of "info all-registers". Ideally we
2349 should try to autodetect whether they are available, such that we
2350 can prevent "info all-registers" from displaying registers that
2351 aren't available.
2352
2353 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
2354 [the SSE registers] always (even when they don't exist) or never
2355 showing them to the user (even when they do exist), I prefer the
2356 former over the latter. */
2357
2358 tdep->st0_regnum = I386_ST0_REGNUM;
2359
2360 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 2361 calculating the register number for %mm0 until we know the number
5716833c
MK
2362 of raw registers. */
2363 tdep->mm0_regnum = 0;
2364
2365 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 2366 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 2367
8201327c
MK
2368 tdep->jb_pc_offset = -1;
2369 tdep->struct_return = pcc_struct_return;
8201327c
MK
2370 tdep->sigtramp_start = 0;
2371 tdep->sigtramp_end = 0;
911bc6ee 2372 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 2373 tdep->sigcontext_addr = NULL;
a3386186 2374 tdep->sc_reg_offset = NULL;
8201327c 2375 tdep->sc_pc_offset = -1;
21d0e8a4 2376 tdep->sc_sp_offset = -1;
8201327c 2377
896fb97d
MK
2378 /* The format used for `long double' on almost all i386 targets is
2379 the i387 extended floating-point format. In fact, of all targets
2380 in the GCC 2.95 tree, only OSF/1 does it different, and insists
2381 on having a `long double' that's not `long' at all. */
8da61cc4 2382 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
21d0e8a4 2383
66da5fd8 2384 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
2385 bits, a `long double' actually takes up 96, probably to enforce
2386 alignment. */
2387 set_gdbarch_long_double_bit (gdbarch, 96);
2388
49ed40de
KB
2389 /* The default ABI includes general-purpose registers,
2390 floating-point registers, and the SSE registers. */
2391 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
2392 set_gdbarch_register_name (gdbarch, i386_register_name);
2393 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 2394
acd5c798
MK
2395 /* Register numbers of various important registers. */
2396 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
2397 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
2398 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
2399 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 2400
c4fc7f1b
MK
2401 /* NOTE: kettenis/20040418: GCC does have two possible register
2402 numbering schemes on the i386: dbx and SVR4. These schemes
2403 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 2404 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
2405 dbx_register_map[] and svr4_dbx_register_map in
2406 gcc/config/i386.c. GCC also defines a third numbering scheme in
2407 gcc/config/i386.c, which it designates as the "default" register
2408 map used in 64bit mode. This last register numbering scheme is
d4dc1a91 2409 implemented in dbx64_register_map, and is used for AMD64; see
c4fc7f1b
MK
2410 amd64-tdep.c.
2411
2412 Currently, each GCC i386 target always uses the same register
2413 numbering scheme across all its supported debugging formats
2414 i.e. SDB (COFF), stabs and DWARF 2. This is because
2415 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2416 DBX_REGISTER_NUMBER macro which is defined by each target's
2417 respective config header in a manner independent of the requested
2418 output debugging format.
2419
2420 This does not match the arrangement below, which presumes that
2421 the SDB and stabs numbering schemes differ from the DWARF and
2422 DWARF 2 ones. The reason for this arrangement is that it is
2423 likely to get the numbering scheme for the target's
2424 default/native debug format right. For targets where GCC is the
2425 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2426 targets where the native toolchain uses a different numbering
2427 scheme for a particular debug format (stabs-in-ELF on Solaris)
d4dc1a91
BF
2428 the defaults below will have to be overridden, like
2429 i386_elf_init_abi() does. */
c4fc7f1b
MK
2430
2431 /* Use the dbx register numbering scheme for stabs and COFF. */
2432 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2433 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2434
2435 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2436 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2437 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e 2438
055d23b8 2439 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
356a6b3e
MK
2440 be in use on any of the supported i386 targets. */
2441
61113f8b
MK
2442 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2443
8201327c 2444 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2445
a62cc96e 2446 /* Call dummy code. */
acd5c798 2447 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2448
ff2e87ac
AC
2449 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2450 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2451 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2452
c5e656c1 2453 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2454
93924b6b
MK
2455 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2456
2457 /* Stack grows downward. */
2458 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2459
2460 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2461 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2462
42fdc8df 2463 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2464
28fc6740 2465 /* Wire in the MMX registers. */
0f751ff2 2466 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2467 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2468 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2469
5e3397bb
MK
2470 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2471
acd5c798 2472 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2473
2474 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2475
38c968cf
AC
2476 /* Add the i386 register groups. */
2477 i386_add_reggroups (gdbarch);
2478 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2479
143985b7
AF
2480 /* Helper for function argument information. */
2481 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2482
6405b0a6 2483 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2484 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2485
acd5c798 2486 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2487
3ce1502b 2488 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2489 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2490
336d1bba
AC
2491 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2492 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2493
8446b36a
MK
2494 /* If we have a register mapping, enable the generic core file
2495 support, unless it has already been enabled. */
2496 if (tdep->gregset_reg_offset
2497 && !gdbarch_regset_from_core_section_p (gdbarch))
2498 set_gdbarch_regset_from_core_section (gdbarch,
2499 i386_regset_from_core_section);
2500
5716833c
MK
2501 /* Unless support for MMX has been disabled, make %mm0 the first
2502 pseudo-register. */
2503 if (tdep->mm0_regnum == 0)
2504 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2505
a62cc96e
AC
2506 return gdbarch;
2507}
2508
8201327c
MK
2509static enum gdb_osabi
2510i386_coff_osabi_sniffer (bfd *abfd)
2511{
762c5349
MK
2512 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2513 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2514 return GDB_OSABI_GO32;
2515
2516 return GDB_OSABI_UNKNOWN;
2517}
8201327c
MK
2518\f
2519
28e9e0f0
MK
2520/* Provide a prototype to silence -Wmissing-prototypes. */
2521void _initialize_i386_tdep (void);
2522
c906108c 2523void
fba45db2 2524_initialize_i386_tdep (void)
c906108c 2525{
a62cc96e
AC
2526 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2527
fc338970 2528 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
2529 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
2530 &disassembly_flavor, _("\
2531Set the disassembly flavor."), _("\
2532Show the disassembly flavor."), _("\
2533The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
2534 NULL,
2535 NULL, /* FIXME: i18n: */
2536 &setlist, &showlist);
8201327c
MK
2537
2538 /* Add the variable that controls the convention for returning
2539 structs. */
7ab04401
AC
2540 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
2541 &struct_convention, _("\
2542Set the convention for returning small structs."), _("\
2543Show the convention for returning small structs."), _("\
2544Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
2545is \"default\"."),
2546 NULL,
2547 NULL, /* FIXME: i18n: */
2548 &setlist, &showlist);
8201327c
MK
2549
2550 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2551 i386_coff_osabi_sniffer);
8201327c 2552
05816f70 2553 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2554 i386_svr4_init_abi);
05816f70 2555 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2556 i386_go32_init_abi);
38c968cf 2557
5ae96ec1 2558 /* Initialize the i386-specific register groups & types. */
38c968cf 2559 i386_init_reggroups ();
5ae96ec1 2560 i386_init_types();
c906108c 2561}
This page took 1.238954 seconds and 4 git commands to generate.