Use XCNEW rather than xcalloc (1, ...) in linux-x86-low.c
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
ecd75fc8 3 Copyright (C) 1988-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
1903f0e6 21#include "opcode/i386.h"
acd5c798
MK
22#include "arch-utils.h"
23#include "command.h"
24#include "dummy-frame.h"
6405b0a6 25#include "dwarf2-frame.h"
acd5c798 26#include "doublest.h"
c906108c 27#include "frame.h"
acd5c798
MK
28#include "frame-base.h"
29#include "frame-unwind.h"
c906108c 30#include "inferior.h"
45741a9c 31#include "infrun.h"
acd5c798 32#include "gdbcmd.h"
c906108c 33#include "gdbcore.h"
e6bb342a 34#include "gdbtypes.h"
dfe01d39 35#include "objfiles.h"
acd5c798
MK
36#include "osabi.h"
37#include "regcache.h"
38#include "reggroups.h"
473f17b0 39#include "regset.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
a89aa300 44#include "dis-asm.h"
7a697b8d 45#include "disasm.h"
c8d5aac9 46#include "remote.h"
8fbca658 47#include "exceptions.h"
d2a7c97a 48#include "i386-tdep.h"
61113f8b 49#include "i387-tdep.h"
c131fcee 50#include "i386-xstate.h"
d2a7c97a 51
7ad10968 52#include "record.h"
d02ed0bb 53#include "record-full.h"
7ad10968
HZ
54#include <stdint.h>
55
90884b2b 56#include "features/i386/i386.c"
c131fcee 57#include "features/i386/i386-avx.c"
1dbcd68c 58#include "features/i386/i386-mpx.c"
01f9f808 59#include "features/i386/i386-avx512.c"
3a13a53b 60#include "features/i386/i386-mmx.c"
90884b2b 61
6710bf39
SS
62#include "ax.h"
63#include "ax-gdb.h"
64
55aa24fb
SDJ
65#include "stap-probe.h"
66#include "user-regs.h"
67#include "cli/cli-utils.h"
68#include "expression.h"
69#include "parser-defs.h"
70#include <ctype.h>
71
c4fc7f1b 72/* Register names. */
c40e1eab 73
90884b2b 74static const char *i386_register_names[] =
fc633446
MK
75{
76 "eax", "ecx", "edx", "ebx",
77 "esp", "ebp", "esi", "edi",
78 "eip", "eflags", "cs", "ss",
79 "ds", "es", "fs", "gs",
80 "st0", "st1", "st2", "st3",
81 "st4", "st5", "st6", "st7",
82 "fctrl", "fstat", "ftag", "fiseg",
83 "fioff", "foseg", "fooff", "fop",
84 "xmm0", "xmm1", "xmm2", "xmm3",
85 "xmm4", "xmm5", "xmm6", "xmm7",
86 "mxcsr"
87};
88
01f9f808
MS
89static const char *i386_zmm_names[] =
90{
91 "zmm0", "zmm1", "zmm2", "zmm3",
92 "zmm4", "zmm5", "zmm6", "zmm7"
93};
94
95static const char *i386_zmmh_names[] =
96{
97 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
98 "zmm4h", "zmm5h", "zmm6h", "zmm7h"
99};
100
101static const char *i386_k_names[] =
102{
103 "k0", "k1", "k2", "k3",
104 "k4", "k5", "k6", "k7"
105};
106
c131fcee
L
107static const char *i386_ymm_names[] =
108{
109 "ymm0", "ymm1", "ymm2", "ymm3",
110 "ymm4", "ymm5", "ymm6", "ymm7",
111};
112
113static const char *i386_ymmh_names[] =
114{
115 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
116 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
117};
118
1dbcd68c
WT
119static const char *i386_mpx_names[] =
120{
121 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
122};
123
124/* Register names for MPX pseudo-registers. */
125
126static const char *i386_bnd_names[] =
127{
128 "bnd0", "bnd1", "bnd2", "bnd3"
129};
130
c4fc7f1b 131/* Register names for MMX pseudo-registers. */
28fc6740 132
90884b2b 133static const char *i386_mmx_names[] =
28fc6740
AC
134{
135 "mm0", "mm1", "mm2", "mm3",
136 "mm4", "mm5", "mm6", "mm7"
137};
c40e1eab 138
1ba53b71
L
139/* Register names for byte pseudo-registers. */
140
141static const char *i386_byte_names[] =
142{
143 "al", "cl", "dl", "bl",
144 "ah", "ch", "dh", "bh"
145};
146
147/* Register names for word pseudo-registers. */
148
149static const char *i386_word_names[] =
150{
151 "ax", "cx", "dx", "bx",
9cad29ac 152 "", "bp", "si", "di"
1ba53b71
L
153};
154
01f9f808
MS
155/* Constant used for reading/writing pseudo registers. In 64-bit mode, we have
156 16 lower ZMM regs that extend corresponding xmm/ymm registers. In addition,
157 we have 16 upper ZMM regs that have to be handled differently. */
158
159const int num_lower_zmm_regs = 16;
160
1ba53b71 161/* MMX register? */
c40e1eab 162
28fc6740 163static int
5716833c 164i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 165{
1ba53b71
L
166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
167 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
168
169 if (mm0_regnum < 0)
170 return 0;
171
1ba53b71
L
172 regnum -= mm0_regnum;
173 return regnum >= 0 && regnum < tdep->num_mmx_regs;
174}
175
176/* Byte register? */
177
178int
179i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
180{
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 regnum -= tdep->al_regnum;
184 return regnum >= 0 && regnum < tdep->num_byte_regs;
185}
186
187/* Word register? */
188
189int
190i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
191{
192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
193
194 regnum -= tdep->ax_regnum;
195 return regnum >= 0 && regnum < tdep->num_word_regs;
196}
197
198/* Dword register? */
199
200int
201i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
202{
203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
204 int eax_regnum = tdep->eax_regnum;
205
206 if (eax_regnum < 0)
207 return 0;
208
209 regnum -= eax_regnum;
210 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
211}
212
01f9f808
MS
213/* AVX512 register? */
214
215int
216i386_zmmh_regnum_p (struct gdbarch *gdbarch, int regnum)
217{
218 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
219 int zmm0h_regnum = tdep->zmm0h_regnum;
220
221 if (zmm0h_regnum < 0)
222 return 0;
223
224 regnum -= zmm0h_regnum;
225 return regnum >= 0 && regnum < tdep->num_zmm_regs;
226}
227
228int
229i386_zmm_regnum_p (struct gdbarch *gdbarch, int regnum)
230{
231 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
232 int zmm0_regnum = tdep->zmm0_regnum;
233
234 if (zmm0_regnum < 0)
235 return 0;
236
237 regnum -= zmm0_regnum;
238 return regnum >= 0 && regnum < tdep->num_zmm_regs;
239}
240
241int
242i386_k_regnum_p (struct gdbarch *gdbarch, int regnum)
243{
244 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
245 int k0_regnum = tdep->k0_regnum;
246
247 if (k0_regnum < 0)
248 return 0;
249
250 regnum -= k0_regnum;
251 return regnum >= 0 && regnum < I387_NUM_K_REGS;
252}
253
9191d390 254static int
c131fcee
L
255i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
256{
257 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
258 int ymm0h_regnum = tdep->ymm0h_regnum;
259
260 if (ymm0h_regnum < 0)
261 return 0;
262
263 regnum -= ymm0h_regnum;
264 return regnum >= 0 && regnum < tdep->num_ymm_regs;
265}
266
267/* AVX register? */
268
269int
270i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
271{
272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
273 int ymm0_regnum = tdep->ymm0_regnum;
274
275 if (ymm0_regnum < 0)
276 return 0;
277
278 regnum -= ymm0_regnum;
279 return regnum >= 0 && regnum < tdep->num_ymm_regs;
280}
281
01f9f808
MS
282static int
283i386_ymmh_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
284{
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286 int ymm16h_regnum = tdep->ymm16h_regnum;
287
288 if (ymm16h_regnum < 0)
289 return 0;
290
291 regnum -= ymm16h_regnum;
292 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
293}
294
295int
296i386_ymm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
297{
298 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
299 int ymm16_regnum = tdep->ymm16_regnum;
300
301 if (ymm16_regnum < 0)
302 return 0;
303
304 regnum -= ymm16_regnum;
305 return regnum >= 0 && regnum < tdep->num_ymm_avx512_regs;
306}
307
1dbcd68c
WT
308/* BND register? */
309
310int
311i386_bnd_regnum_p (struct gdbarch *gdbarch, int regnum)
312{
313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
314 int bnd0_regnum = tdep->bnd0_regnum;
315
316 if (bnd0_regnum < 0)
317 return 0;
318
319 regnum -= bnd0_regnum;
320 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
321}
322
5716833c 323/* SSE register? */
23a34459 324
c131fcee
L
325int
326i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 327{
5716833c 328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 329 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 330
c131fcee 331 if (num_xmm_regs == 0)
5716833c
MK
332 return 0;
333
c131fcee
L
334 regnum -= I387_XMM0_REGNUM (tdep);
335 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
336}
337
01f9f808
MS
338/* XMM_512 register? */
339
340int
341i386_xmm_avx512_regnum_p (struct gdbarch *gdbarch, int regnum)
342{
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 int num_xmm_avx512_regs = I387_NUM_XMM_AVX512_REGS (tdep);
345
346 if (num_xmm_avx512_regs == 0)
347 return 0;
348
349 regnum -= I387_XMM16_REGNUM (tdep);
350 return regnum >= 0 && regnum < num_xmm_avx512_regs;
351}
352
5716833c
MK
353static int
354i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 355{
5716833c
MK
356 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
357
20a6ec49 358 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
359 return 0;
360
20a6ec49 361 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
362}
363
5716833c 364/* FP register? */
23a34459
AC
365
366int
20a6ec49 367i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 368{
20a6ec49
MD
369 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
370
371 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
372 return 0;
373
20a6ec49
MD
374 return (I387_ST0_REGNUM (tdep) <= regnum
375 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
376}
377
378int
20a6ec49 379i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 380{
20a6ec49
MD
381 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
382
383 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
384 return 0;
385
20a6ec49
MD
386 return (I387_FCTRL_REGNUM (tdep) <= regnum
387 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
388}
389
1dbcd68c
WT
390/* BNDr (raw) register? */
391
392static int
393i386_bndr_regnum_p (struct gdbarch *gdbarch, int regnum)
394{
395 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
396
397 if (I387_BND0R_REGNUM (tdep) < 0)
398 return 0;
399
400 regnum -= tdep->bnd0r_regnum;
401 return regnum >= 0 && regnum < I387_NUM_BND_REGS;
402}
403
404/* BND control register? */
405
406static int
407i386_mpx_ctrl_regnum_p (struct gdbarch *gdbarch, int regnum)
408{
409 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
410
411 if (I387_BNDCFGU_REGNUM (tdep) < 0)
412 return 0;
413
414 regnum -= I387_BNDCFGU_REGNUM (tdep);
415 return regnum >= 0 && regnum < I387_NUM_MPX_CTRL_REGS;
416}
417
c131fcee
L
418/* Return the name of register REGNUM, or the empty string if it is
419 an anonymous register. */
420
421static const char *
422i386_register_name (struct gdbarch *gdbarch, int regnum)
423{
424 /* Hide the upper YMM registers. */
425 if (i386_ymmh_regnum_p (gdbarch, regnum))
426 return "";
427
01f9f808
MS
428 /* Hide the upper YMM16-31 registers. */
429 if (i386_ymmh_avx512_regnum_p (gdbarch, regnum))
430 return "";
431
432 /* Hide the upper ZMM registers. */
433 if (i386_zmmh_regnum_p (gdbarch, regnum))
434 return "";
435
c131fcee
L
436 return tdesc_register_name (gdbarch, regnum);
437}
438
30b0e2d8 439/* Return the name of register REGNUM. */
fc633446 440
1ba53b71 441const char *
90884b2b 442i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 443{
1ba53b71 444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
445 if (i386_bnd_regnum_p (gdbarch, regnum))
446 return i386_bnd_names[regnum - tdep->bnd0_regnum];
1ba53b71
L
447 if (i386_mmx_regnum_p (gdbarch, regnum))
448 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
449 else if (i386_ymm_regnum_p (gdbarch, regnum))
450 return i386_ymm_names[regnum - tdep->ymm0_regnum];
01f9f808
MS
451 else if (i386_zmm_regnum_p (gdbarch, regnum))
452 return i386_zmm_names[regnum - tdep->zmm0_regnum];
1ba53b71
L
453 else if (i386_byte_regnum_p (gdbarch, regnum))
454 return i386_byte_names[regnum - tdep->al_regnum];
455 else if (i386_word_regnum_p (gdbarch, regnum))
456 return i386_word_names[regnum - tdep->ax_regnum];
457
458 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
459}
460
c4fc7f1b 461/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
462 number used by GDB. */
463
8201327c 464static int
d3f73121 465i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 466{
20a6ec49
MD
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
c4fc7f1b
MK
469 /* This implements what GCC calls the "default" register map
470 (dbx_register_map[]). */
471
85540d8c
MK
472 if (reg >= 0 && reg <= 7)
473 {
9872ad24
JB
474 /* General-purpose registers. The debug info calls %ebp
475 register 4, and %esp register 5. */
476 if (reg == 4)
477 return 5;
478 else if (reg == 5)
479 return 4;
480 else return reg;
85540d8c
MK
481 }
482 else if (reg >= 12 && reg <= 19)
483 {
484 /* Floating-point registers. */
20a6ec49 485 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
486 }
487 else if (reg >= 21 && reg <= 28)
488 {
489 /* SSE registers. */
c131fcee
L
490 int ymm0_regnum = tdep->ymm0_regnum;
491
492 if (ymm0_regnum >= 0
493 && i386_xmm_regnum_p (gdbarch, reg))
494 return reg - 21 + ymm0_regnum;
495 else
496 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
497 }
498 else if (reg >= 29 && reg <= 36)
499 {
500 /* MMX registers. */
20a6ec49 501 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
502 }
503
504 /* This will hopefully provoke a warning. */
d3f73121 505 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
506}
507
c4fc7f1b
MK
508/* Convert SVR4 register number REG to the appropriate register number
509 used by GDB. */
85540d8c 510
8201327c 511static int
d3f73121 512i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 513{
20a6ec49
MD
514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
515
c4fc7f1b
MK
516 /* This implements the GCC register map that tries to be compatible
517 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
518
519 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
520 numbers the floating point registers differently. */
521 if (reg >= 0 && reg <= 9)
522 {
acd5c798 523 /* General-purpose registers. */
85540d8c
MK
524 return reg;
525 }
526 else if (reg >= 11 && reg <= 18)
527 {
528 /* Floating-point registers. */
20a6ec49 529 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 530 }
c6f4c129 531 else if (reg >= 21 && reg <= 36)
85540d8c 532 {
c4fc7f1b 533 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 534 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
535 }
536
c6f4c129
JB
537 switch (reg)
538 {
20a6ec49
MD
539 case 37: return I387_FCTRL_REGNUM (tdep);
540 case 38: return I387_FSTAT_REGNUM (tdep);
541 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
542 case 40: return I386_ES_REGNUM;
543 case 41: return I386_CS_REGNUM;
544 case 42: return I386_SS_REGNUM;
545 case 43: return I386_DS_REGNUM;
546 case 44: return I386_FS_REGNUM;
547 case 45: return I386_GS_REGNUM;
548 }
549
85540d8c 550 /* This will hopefully provoke a warning. */
d3f73121 551 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 552}
5716833c 553
fc338970 554\f
917317f4 555
fc338970
MK
556/* This is the variable that is set with "set disassembly-flavor", and
557 its legitimate values. */
53904c9e
AC
558static const char att_flavor[] = "att";
559static const char intel_flavor[] = "intel";
40478521 560static const char *const valid_flavors[] =
c5aa993b 561{
c906108c
SS
562 att_flavor,
563 intel_flavor,
564 NULL
565};
53904c9e 566static const char *disassembly_flavor = att_flavor;
acd5c798 567\f
c906108c 568
acd5c798
MK
569/* Use the program counter to determine the contents and size of a
570 breakpoint instruction. Return a pointer to a string of bytes that
571 encode a breakpoint instruction, store the length of the string in
572 *LEN and optionally adjust *PC to point to the correct memory
573 location for inserting the breakpoint.
c906108c 574
acd5c798
MK
575 On the i386 we have a single breakpoint that fits in a single byte
576 and can be inserted anywhere.
c906108c 577
acd5c798 578 This function is 64-bit safe. */
63c0089f
MK
579
580static const gdb_byte *
67d57894 581i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 582{
63c0089f
MK
583 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
584
acd5c798
MK
585 *len = sizeof (break_insn);
586 return break_insn;
c906108c 587}
237fc4c9
PA
588\f
589/* Displaced instruction handling. */
590
1903f0e6
DE
591/* Skip the legacy instruction prefixes in INSN.
592 Not all prefixes are valid for any particular insn
593 but we needn't care, the insn will fault if it's invalid.
594 The result is a pointer to the first opcode byte,
595 or NULL if we run off the end of the buffer. */
596
597static gdb_byte *
598i386_skip_prefixes (gdb_byte *insn, size_t max_len)
599{
600 gdb_byte *end = insn + max_len;
601
602 while (insn < end)
603 {
604 switch (*insn)
605 {
606 case DATA_PREFIX_OPCODE:
607 case ADDR_PREFIX_OPCODE:
608 case CS_PREFIX_OPCODE:
609 case DS_PREFIX_OPCODE:
610 case ES_PREFIX_OPCODE:
611 case FS_PREFIX_OPCODE:
612 case GS_PREFIX_OPCODE:
613 case SS_PREFIX_OPCODE:
614 case LOCK_PREFIX_OPCODE:
615 case REPE_PREFIX_OPCODE:
616 case REPNE_PREFIX_OPCODE:
617 ++insn;
618 continue;
619 default:
620 return insn;
621 }
622 }
623
624 return NULL;
625}
237fc4c9
PA
626
627static int
1903f0e6 628i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 629{
1777feb0 630 /* jmp far (absolute address in operand). */
237fc4c9
PA
631 if (insn[0] == 0xea)
632 return 1;
633
634 if (insn[0] == 0xff)
635 {
1777feb0 636 /* jump near, absolute indirect (/4). */
237fc4c9
PA
637 if ((insn[1] & 0x38) == 0x20)
638 return 1;
639
1777feb0 640 /* jump far, absolute indirect (/5). */
237fc4c9
PA
641 if ((insn[1] & 0x38) == 0x28)
642 return 1;
643 }
644
645 return 0;
646}
647
c2170eef
MM
648/* Return non-zero if INSN is a jump, zero otherwise. */
649
650static int
651i386_jmp_p (const gdb_byte *insn)
652{
653 /* jump short, relative. */
654 if (insn[0] == 0xeb)
655 return 1;
656
657 /* jump near, relative. */
658 if (insn[0] == 0xe9)
659 return 1;
660
661 return i386_absolute_jmp_p (insn);
662}
663
237fc4c9 664static int
1903f0e6 665i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 666{
1777feb0 667 /* call far, absolute. */
237fc4c9
PA
668 if (insn[0] == 0x9a)
669 return 1;
670
671 if (insn[0] == 0xff)
672 {
1777feb0 673 /* Call near, absolute indirect (/2). */
237fc4c9
PA
674 if ((insn[1] & 0x38) == 0x10)
675 return 1;
676
1777feb0 677 /* Call far, absolute indirect (/3). */
237fc4c9
PA
678 if ((insn[1] & 0x38) == 0x18)
679 return 1;
680 }
681
682 return 0;
683}
684
685static int
1903f0e6 686i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
687{
688 switch (insn[0])
689 {
1777feb0 690 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 691 case 0xc3: /* ret near */
1777feb0 692 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
693 case 0xcb: /* ret far */
694 case 0xcf: /* iret */
695 return 1;
696
697 default:
698 return 0;
699 }
700}
701
702static int
1903f0e6 703i386_call_p (const gdb_byte *insn)
237fc4c9
PA
704{
705 if (i386_absolute_call_p (insn))
706 return 1;
707
1777feb0 708 /* call near, relative. */
237fc4c9
PA
709 if (insn[0] == 0xe8)
710 return 1;
711
712 return 0;
713}
714
237fc4c9
PA
715/* Return non-zero if INSN is a system call, and set *LENGTHP to its
716 length in bytes. Otherwise, return zero. */
1903f0e6 717
237fc4c9 718static int
b55078be 719i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9 720{
9a7f938f
JK
721 /* Is it 'int $0x80'? */
722 if ((insn[0] == 0xcd && insn[1] == 0x80)
723 /* Or is it 'sysenter'? */
724 || (insn[0] == 0x0f && insn[1] == 0x34)
725 /* Or is it 'syscall'? */
726 || (insn[0] == 0x0f && insn[1] == 0x05))
237fc4c9
PA
727 {
728 *lengthp = 2;
729 return 1;
730 }
731
732 return 0;
733}
734
c2170eef
MM
735/* The gdbarch insn_is_call method. */
736
737static int
738i386_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
739{
740 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
741
742 read_code (addr, buf, I386_MAX_INSN_LEN);
743 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
744
745 return i386_call_p (insn);
746}
747
748/* The gdbarch insn_is_ret method. */
749
750static int
751i386_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
752{
753 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
754
755 read_code (addr, buf, I386_MAX_INSN_LEN);
756 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
757
758 return i386_ret_p (insn);
759}
760
761/* The gdbarch insn_is_jump method. */
762
763static int
764i386_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
765{
766 gdb_byte buf[I386_MAX_INSN_LEN], *insn;
767
768 read_code (addr, buf, I386_MAX_INSN_LEN);
769 insn = i386_skip_prefixes (buf, I386_MAX_INSN_LEN);
770
771 return i386_jmp_p (insn);
772}
773
b55078be
DE
774/* Some kernels may run one past a syscall insn, so we have to cope.
775 Otherwise this is just simple_displaced_step_copy_insn. */
776
777struct displaced_step_closure *
778i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
779 CORE_ADDR from, CORE_ADDR to,
780 struct regcache *regs)
781{
782 size_t len = gdbarch_max_insn_length (gdbarch);
783 gdb_byte *buf = xmalloc (len);
784
785 read_memory (from, buf, len);
786
787 /* GDB may get control back after the insn after the syscall.
788 Presumably this is a kernel bug.
789 If this is a syscall, make sure there's a nop afterwards. */
790 {
791 int syscall_length;
792 gdb_byte *insn;
793
794 insn = i386_skip_prefixes (buf, len);
795 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
796 insn[syscall_length] = NOP_OPCODE;
797 }
798
799 write_memory (to, buf, len);
800
801 if (debug_displaced)
802 {
803 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
804 paddress (gdbarch, from), paddress (gdbarch, to));
805 displaced_step_dump_bytes (gdb_stdlog, buf, len);
806 }
807
808 return (struct displaced_step_closure *) buf;
809}
810
237fc4c9
PA
811/* Fix up the state of registers and memory after having single-stepped
812 a displaced instruction. */
1903f0e6 813
237fc4c9
PA
814void
815i386_displaced_step_fixup (struct gdbarch *gdbarch,
816 struct displaced_step_closure *closure,
817 CORE_ADDR from, CORE_ADDR to,
818 struct regcache *regs)
819{
e17a4113
UW
820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
821
237fc4c9
PA
822 /* The offset we applied to the instruction's address.
823 This could well be negative (when viewed as a signed 32-bit
824 value), but ULONGEST won't reflect that, so take care when
825 applying it. */
826 ULONGEST insn_offset = to - from;
827
828 /* Since we use simple_displaced_step_copy_insn, our closure is a
829 copy of the instruction. */
830 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
831 /* The start of the insn, needed in case we see some prefixes. */
832 gdb_byte *insn_start = insn;
237fc4c9
PA
833
834 if (debug_displaced)
835 fprintf_unfiltered (gdb_stdlog,
5af949e3 836 "displaced: fixup (%s, %s), "
237fc4c9 837 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
838 paddress (gdbarch, from), paddress (gdbarch, to),
839 insn[0], insn[1]);
237fc4c9
PA
840
841 /* The list of issues to contend with here is taken from
842 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
843 Yay for Free Software! */
844
845 /* Relocate the %eip, if necessary. */
846
1903f0e6
DE
847 /* The instruction recognizers we use assume any leading prefixes
848 have been skipped. */
849 {
850 /* This is the size of the buffer in closure. */
851 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
852 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
853 /* If there are too many prefixes, just ignore the insn.
854 It will fault when run. */
855 if (opcode != NULL)
856 insn = opcode;
857 }
858
237fc4c9
PA
859 /* Except in the case of absolute or indirect jump or call
860 instructions, or a return instruction, the new eip is relative to
861 the displaced instruction; make it relative. Well, signal
862 handler returns don't need relocation either, but we use the
863 value of %eip to recognize those; see below. */
864 if (! i386_absolute_jmp_p (insn)
865 && ! i386_absolute_call_p (insn)
866 && ! i386_ret_p (insn))
867 {
868 ULONGEST orig_eip;
b55078be 869 int insn_len;
237fc4c9
PA
870
871 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
872
873 /* A signal trampoline system call changes the %eip, resuming
874 execution of the main program after the signal handler has
875 returned. That makes them like 'return' instructions; we
876 shouldn't relocate %eip.
877
878 But most system calls don't, and we do need to relocate %eip.
879
880 Our heuristic for distinguishing these cases: if stepping
881 over the system call instruction left control directly after
882 the instruction, the we relocate --- control almost certainly
883 doesn't belong in the displaced copy. Otherwise, we assume
884 the instruction has put control where it belongs, and leave
885 it unrelocated. Goodness help us if there are PC-relative
886 system calls. */
887 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
888 && orig_eip != to + (insn - insn_start) + insn_len
889 /* GDB can get control back after the insn after the syscall.
890 Presumably this is a kernel bug.
891 i386_displaced_step_copy_insn ensures its a nop,
892 we add one to the length for it. */
893 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
894 {
895 if (debug_displaced)
896 fprintf_unfiltered (gdb_stdlog,
897 "displaced: syscall changed %%eip; "
898 "not relocating\n");
899 }
900 else
901 {
902 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
903
1903f0e6
DE
904 /* If we just stepped over a breakpoint insn, we don't backup
905 the pc on purpose; this is to match behaviour without
906 stepping. */
237fc4c9
PA
907
908 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
909
910 if (debug_displaced)
911 fprintf_unfiltered (gdb_stdlog,
912 "displaced: "
5af949e3
UW
913 "relocated %%eip from %s to %s\n",
914 paddress (gdbarch, orig_eip),
915 paddress (gdbarch, eip));
237fc4c9
PA
916 }
917 }
918
919 /* If the instruction was PUSHFL, then the TF bit will be set in the
920 pushed value, and should be cleared. We'll leave this for later,
921 since GDB already messes up the TF flag when stepping over a
922 pushfl. */
923
924 /* If the instruction was a call, the return address now atop the
925 stack is the address following the copied instruction. We need
926 to make it the address following the original instruction. */
927 if (i386_call_p (insn))
928 {
929 ULONGEST esp;
930 ULONGEST retaddr;
931 const ULONGEST retaddr_len = 4;
932
933 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 934 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 935 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 936 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
937
938 if (debug_displaced)
939 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
940 "displaced: relocated return addr at %s to %s\n",
941 paddress (gdbarch, esp),
942 paddress (gdbarch, retaddr));
237fc4c9
PA
943 }
944}
dde08ee1
PA
945
946static void
947append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
948{
949 target_write_memory (*to, buf, len);
950 *to += len;
951}
952
953static void
954i386_relocate_instruction (struct gdbarch *gdbarch,
955 CORE_ADDR *to, CORE_ADDR oldloc)
956{
957 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
958 gdb_byte buf[I386_MAX_INSN_LEN];
959 int offset = 0, rel32, newrel;
960 int insn_length;
961 gdb_byte *insn = buf;
962
963 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
964
965 insn_length = gdb_buffered_insn_length (gdbarch, insn,
966 I386_MAX_INSN_LEN, oldloc);
967
968 /* Get past the prefixes. */
969 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
970
971 /* Adjust calls with 32-bit relative addresses as push/jump, with
972 the address pushed being the location where the original call in
973 the user program would return to. */
974 if (insn[0] == 0xe8)
975 {
976 gdb_byte push_buf[16];
977 unsigned int ret_addr;
978
979 /* Where "ret" in the original code will return to. */
980 ret_addr = oldloc + insn_length;
1777feb0 981 push_buf[0] = 0x68; /* pushq $... */
144db827 982 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
dde08ee1
PA
983 /* Push the push. */
984 append_insns (to, 5, push_buf);
985
986 /* Convert the relative call to a relative jump. */
987 insn[0] = 0xe9;
988
989 /* Adjust the destination offset. */
990 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
991 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
992 store_signed_integer (insn + 1, 4, byte_order, newrel);
993
994 if (debug_displaced)
995 fprintf_unfiltered (gdb_stdlog,
996 "Adjusted insn rel32=%s at %s to"
997 " rel32=%s at %s\n",
998 hex_string (rel32), paddress (gdbarch, oldloc),
999 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
1000
1001 /* Write the adjusted jump into its displaced location. */
1002 append_insns (to, 5, insn);
1003 return;
1004 }
1005
1006 /* Adjust jumps with 32-bit relative addresses. Calls are already
1007 handled above. */
1008 if (insn[0] == 0xe9)
1009 offset = 1;
1010 /* Adjust conditional jumps. */
1011 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1012 offset = 2;
1013
1014 if (offset)
1015 {
1016 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1017 newrel = (oldloc - *to) + rel32;
f4a1794a 1018 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
1019 if (debug_displaced)
1020 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
1021 "Adjusted insn rel32=%s at %s to"
1022 " rel32=%s at %s\n",
dde08ee1
PA
1023 hex_string (rel32), paddress (gdbarch, oldloc),
1024 hex_string (newrel), paddress (gdbarch, *to));
1025 }
1026
1027 /* Write the adjusted instructions into their displaced
1028 location. */
1029 append_insns (to, insn_length, buf);
1030}
1031
fc338970 1032\f
acd5c798
MK
1033#ifdef I386_REGNO_TO_SYMMETRY
1034#error "The Sequent Symmetry is no longer supported."
1035#endif
c906108c 1036
acd5c798
MK
1037/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
1038 and %esp "belong" to the calling function. Therefore these
1039 registers should be saved if they're going to be modified. */
c906108c 1040
acd5c798
MK
1041/* The maximum number of saved registers. This should include all
1042 registers mentioned above, and %eip. */
a3386186 1043#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
1044
1045struct i386_frame_cache
c906108c 1046{
acd5c798
MK
1047 /* Base address. */
1048 CORE_ADDR base;
8fbca658 1049 int base_p;
772562f8 1050 LONGEST sp_offset;
acd5c798
MK
1051 CORE_ADDR pc;
1052
fd13a04a
AC
1053 /* Saved registers. */
1054 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 1055 CORE_ADDR saved_sp;
e0c62198 1056 int saved_sp_reg;
acd5c798
MK
1057 int pc_in_eax;
1058
1059 /* Stack space reserved for local variables. */
1060 long locals;
1061};
1062
1063/* Allocate and initialize a frame cache. */
1064
1065static struct i386_frame_cache *
fd13a04a 1066i386_alloc_frame_cache (void)
acd5c798
MK
1067{
1068 struct i386_frame_cache *cache;
1069 int i;
1070
1071 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
1072
1073 /* Base address. */
8fbca658 1074 cache->base_p = 0;
acd5c798
MK
1075 cache->base = 0;
1076 cache->sp_offset = -4;
1077 cache->pc = 0;
1078
fd13a04a
AC
1079 /* Saved registers. We initialize these to -1 since zero is a valid
1080 offset (that's where %ebp is supposed to be stored). */
1081 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
1082 cache->saved_regs[i] = -1;
acd5c798 1083 cache->saved_sp = 0;
e0c62198 1084 cache->saved_sp_reg = -1;
acd5c798
MK
1085 cache->pc_in_eax = 0;
1086
1087 /* Frameless until proven otherwise. */
1088 cache->locals = -1;
1089
1090 return cache;
1091}
c906108c 1092
acd5c798
MK
1093/* If the instruction at PC is a jump, return the address of its
1094 target. Otherwise, return PC. */
c906108c 1095
acd5c798 1096static CORE_ADDR
e17a4113 1097i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 1098{
e17a4113 1099 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1100 gdb_byte op;
acd5c798
MK
1101 long delta = 0;
1102 int data16 = 0;
c906108c 1103
0865b04a 1104 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1105 return pc;
1106
acd5c798 1107 if (op == 0x66)
c906108c 1108 {
c906108c 1109 data16 = 1;
0865b04a
YQ
1110
1111 op = read_code_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
1112 }
1113
acd5c798 1114 switch (op)
c906108c
SS
1115 {
1116 case 0xe9:
fc338970 1117 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
1118 if (data16)
1119 {
e17a4113 1120 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 1121
fc338970
MK
1122 /* Include the size of the jmp instruction (including the
1123 0x66 prefix). */
acd5c798 1124 delta += 4;
c906108c
SS
1125 }
1126 else
1127 {
e17a4113 1128 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 1129
acd5c798
MK
1130 /* Include the size of the jmp instruction. */
1131 delta += 5;
c906108c
SS
1132 }
1133 break;
1134 case 0xeb:
fc338970 1135 /* Relative jump, disp8 (ignore data16). */
e17a4113 1136 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 1137
acd5c798 1138 delta += data16 + 2;
c906108c
SS
1139 break;
1140 }
c906108c 1141
acd5c798
MK
1142 return pc + delta;
1143}
fc338970 1144
acd5c798
MK
1145/* Check whether PC points at a prologue for a function returning a
1146 structure or union. If so, it updates CACHE and returns the
1147 address of the first instruction after the code sequence that
1148 removes the "hidden" argument from the stack or CURRENT_PC,
1149 whichever is smaller. Otherwise, return PC. */
c906108c 1150
acd5c798
MK
1151static CORE_ADDR
1152i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
1153 struct i386_frame_cache *cache)
c906108c 1154{
acd5c798
MK
1155 /* Functions that return a structure or union start with:
1156
1157 popl %eax 0x58
1158 xchgl %eax, (%esp) 0x87 0x04 0x24
1159 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
1160
1161 (the System V compiler puts out the second `xchg' instruction,
1162 and the assembler doesn't try to optimize it, so the 'sib' form
1163 gets generated). This sequence is used to get the address of the
1164 return buffer for a function that returns a structure. */
63c0089f
MK
1165 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
1166 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
1167 gdb_byte buf[4];
1168 gdb_byte op;
c906108c 1169
acd5c798
MK
1170 if (current_pc <= pc)
1171 return pc;
1172
0865b04a 1173 if (target_read_code (pc, &op, 1))
3dcabaa8 1174 return pc;
c906108c 1175
acd5c798
MK
1176 if (op != 0x58) /* popl %eax */
1177 return pc;
c906108c 1178
0865b04a 1179 if (target_read_code (pc + 1, buf, 4))
3dcabaa8
MS
1180 return pc;
1181
acd5c798
MK
1182 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
1183 return pc;
c906108c 1184
acd5c798 1185 if (current_pc == pc)
c906108c 1186 {
acd5c798
MK
1187 cache->sp_offset += 4;
1188 return current_pc;
c906108c
SS
1189 }
1190
acd5c798 1191 if (current_pc == pc + 1)
c906108c 1192 {
acd5c798
MK
1193 cache->pc_in_eax = 1;
1194 return current_pc;
1195 }
1196
1197 if (buf[1] == proto1[1])
1198 return pc + 4;
1199 else
1200 return pc + 5;
1201}
1202
1203static CORE_ADDR
1204i386_skip_probe (CORE_ADDR pc)
1205{
1206 /* A function may start with
fc338970 1207
acd5c798
MK
1208 pushl constant
1209 call _probe
1210 addl $4, %esp
fc338970 1211
acd5c798
MK
1212 followed by
1213
1214 pushl %ebp
fc338970 1215
acd5c798 1216 etc. */
63c0089f
MK
1217 gdb_byte buf[8];
1218 gdb_byte op;
fc338970 1219
0865b04a 1220 if (target_read_code (pc, &op, 1))
3dcabaa8 1221 return pc;
acd5c798
MK
1222
1223 if (op == 0x68 || op == 0x6a)
1224 {
1225 int delta;
c906108c 1226
acd5c798
MK
1227 /* Skip past the `pushl' instruction; it has either a one-byte or a
1228 four-byte operand, depending on the opcode. */
c906108c 1229 if (op == 0x68)
acd5c798 1230 delta = 5;
c906108c 1231 else
acd5c798 1232 delta = 2;
c906108c 1233
acd5c798
MK
1234 /* Read the following 8 bytes, which should be `call _probe' (6
1235 bytes) followed by `addl $4,%esp' (2 bytes). */
1236 read_memory (pc + delta, buf, sizeof (buf));
c906108c 1237 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 1238 pc += delta + sizeof (buf);
c906108c
SS
1239 }
1240
acd5c798
MK
1241 return pc;
1242}
1243
92dd43fa
MK
1244/* GCC 4.1 and later, can put code in the prologue to realign the
1245 stack pointer. Check whether PC points to such code, and update
1246 CACHE accordingly. Return the first instruction after the code
1247 sequence or CURRENT_PC, whichever is smaller. If we don't
1248 recognize the code, return PC. */
1249
1250static CORE_ADDR
1251i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1252 struct i386_frame_cache *cache)
1253{
e0c62198
L
1254 /* There are 2 code sequences to re-align stack before the frame
1255 gets set up:
1256
1257 1. Use a caller-saved saved register:
1258
1259 leal 4(%esp), %reg
1260 andl $-XXX, %esp
1261 pushl -4(%reg)
1262
1263 2. Use a callee-saved saved register:
1264
1265 pushl %reg
1266 leal 8(%esp), %reg
1267 andl $-XXX, %esp
1268 pushl -4(%reg)
1269
1270 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1271
1272 0x83 0xe4 0xf0 andl $-16, %esp
1273 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1274 */
1275
1276 gdb_byte buf[14];
1277 int reg;
1278 int offset, offset_and;
1279 static int regnums[8] = {
1280 I386_EAX_REGNUM, /* %eax */
1281 I386_ECX_REGNUM, /* %ecx */
1282 I386_EDX_REGNUM, /* %edx */
1283 I386_EBX_REGNUM, /* %ebx */
1284 I386_ESP_REGNUM, /* %esp */
1285 I386_EBP_REGNUM, /* %ebp */
1286 I386_ESI_REGNUM, /* %esi */
1287 I386_EDI_REGNUM /* %edi */
92dd43fa 1288 };
92dd43fa 1289
0865b04a 1290 if (target_read_code (pc, buf, sizeof buf))
e0c62198
L
1291 return pc;
1292
1293 /* Check caller-saved saved register. The first instruction has
1294 to be "leal 4(%esp), %reg". */
1295 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1296 {
1297 /* MOD must be binary 10 and R/M must be binary 100. */
1298 if ((buf[1] & 0xc7) != 0x44)
1299 return pc;
1300
1301 /* REG has register number. */
1302 reg = (buf[1] >> 3) & 7;
1303 offset = 4;
1304 }
1305 else
1306 {
1307 /* Check callee-saved saved register. The first instruction
1308 has to be "pushl %reg". */
1309 if ((buf[0] & 0xf8) != 0x50)
1310 return pc;
1311
1312 /* Get register. */
1313 reg = buf[0] & 0x7;
1314
1315 /* The next instruction has to be "leal 8(%esp), %reg". */
1316 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1317 return pc;
1318
1319 /* MOD must be binary 10 and R/M must be binary 100. */
1320 if ((buf[2] & 0xc7) != 0x44)
1321 return pc;
1322
1323 /* REG has register number. Registers in pushl and leal have to
1324 be the same. */
1325 if (reg != ((buf[2] >> 3) & 7))
1326 return pc;
1327
1328 offset = 5;
1329 }
1330
1331 /* Rigister can't be %esp nor %ebp. */
1332 if (reg == 4 || reg == 5)
1333 return pc;
1334
1335 /* The next instruction has to be "andl $-XXX, %esp". */
1336 if (buf[offset + 1] != 0xe4
1337 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1338 return pc;
1339
1340 offset_and = offset;
1341 offset += buf[offset] == 0x81 ? 6 : 3;
1342
1343 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1344 0xfc. REG must be binary 110 and MOD must be binary 01. */
1345 if (buf[offset] != 0xff
1346 || buf[offset + 2] != 0xfc
1347 || (buf[offset + 1] & 0xf8) != 0x70)
1348 return pc;
1349
1350 /* R/M has register. Registers in leal and pushl have to be the
1351 same. */
1352 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1353 return pc;
1354
e0c62198
L
1355 if (current_pc > pc + offset_and)
1356 cache->saved_sp_reg = regnums[reg];
92dd43fa 1357
e0c62198 1358 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1359}
1360
37bdc87e 1361/* Maximum instruction length we need to handle. */
237fc4c9 1362#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1363
1364/* Instruction description. */
1365struct i386_insn
1366{
1367 size_t len;
237fc4c9
PA
1368 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1369 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1370};
1371
a3fcb948 1372/* Return whether instruction at PC matches PATTERN. */
37bdc87e 1373
a3fcb948
JG
1374static int
1375i386_match_pattern (CORE_ADDR pc, struct i386_insn pattern)
37bdc87e 1376{
63c0089f 1377 gdb_byte op;
37bdc87e 1378
0865b04a 1379 if (target_read_code (pc, &op, 1))
a3fcb948 1380 return 0;
37bdc87e 1381
a3fcb948 1382 if ((op & pattern.mask[0]) == pattern.insn[0])
37bdc87e 1383 {
a3fcb948
JG
1384 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
1385 int insn_matched = 1;
1386 size_t i;
37bdc87e 1387
a3fcb948
JG
1388 gdb_assert (pattern.len > 1);
1389 gdb_assert (pattern.len <= I386_MAX_MATCHED_INSN_LEN);
3dcabaa8 1390
0865b04a 1391 if (target_read_code (pc + 1, buf, pattern.len - 1))
a3fcb948 1392 return 0;
613e8135 1393
a3fcb948
JG
1394 for (i = 1; i < pattern.len; i++)
1395 {
1396 if ((buf[i - 1] & pattern.mask[i]) != pattern.insn[i])
1397 insn_matched = 0;
37bdc87e 1398 }
a3fcb948
JG
1399 return insn_matched;
1400 }
1401 return 0;
1402}
1403
1404/* Search for the instruction at PC in the list INSN_PATTERNS. Return
1405 the first instruction description that matches. Otherwise, return
1406 NULL. */
1407
1408static struct i386_insn *
1409i386_match_insn (CORE_ADDR pc, struct i386_insn *insn_patterns)
1410{
1411 struct i386_insn *pattern;
1412
1413 for (pattern = insn_patterns; pattern->len > 0; pattern++)
1414 {
1415 if (i386_match_pattern (pc, *pattern))
1416 return pattern;
37bdc87e
MK
1417 }
1418
1419 return NULL;
1420}
1421
a3fcb948
JG
1422/* Return whether PC points inside a sequence of instructions that
1423 matches INSN_PATTERNS. */
1424
1425static int
1426i386_match_insn_block (CORE_ADDR pc, struct i386_insn *insn_patterns)
1427{
1428 CORE_ADDR current_pc;
1429 int ix, i;
a3fcb948
JG
1430 struct i386_insn *insn;
1431
1432 insn = i386_match_insn (pc, insn_patterns);
1433 if (insn == NULL)
1434 return 0;
1435
8bbdd3f4 1436 current_pc = pc;
a3fcb948
JG
1437 ix = insn - insn_patterns;
1438 for (i = ix - 1; i >= 0; i--)
1439 {
8bbdd3f4
MK
1440 current_pc -= insn_patterns[i].len;
1441
a3fcb948
JG
1442 if (!i386_match_pattern (current_pc, insn_patterns[i]))
1443 return 0;
a3fcb948
JG
1444 }
1445
1446 current_pc = pc + insn->len;
1447 for (insn = insn_patterns + ix + 1; insn->len > 0; insn++)
1448 {
1449 if (!i386_match_pattern (current_pc, *insn))
1450 return 0;
1451
1452 current_pc += insn->len;
1453 }
1454
1455 return 1;
1456}
1457
37bdc87e
MK
1458/* Some special instructions that might be migrated by GCC into the
1459 part of the prologue that sets up the new stack frame. Because the
1460 stack frame hasn't been setup yet, no registers have been saved
1461 yet, and only the scratch registers %eax, %ecx and %edx can be
1462 touched. */
1463
1464struct i386_insn i386_frame_setup_skip_insns[] =
1465{
1777feb0 1466 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1467
1468 ??? Should we handle 16-bit operand-sizes here? */
1469
1470 /* `movb imm8, %al' and `movb imm8, %ah' */
1471 /* `movb imm8, %cl' and `movb imm8, %ch' */
1472 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1473 /* `movb imm8, %dl' and `movb imm8, %dh' */
1474 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1475 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1476 { 5, { 0xb8 }, { 0xfe } },
1477 /* `movl imm32, %edx' */
1478 { 5, { 0xba }, { 0xff } },
1479
1480 /* Check for `mov imm32, r32'. Note that there is an alternative
1481 encoding for `mov m32, %eax'.
1482
1483 ??? Should we handle SIB adressing here?
1484 ??? Should we handle 16-bit operand-sizes here? */
1485
1486 /* `movl m32, %eax' */
1487 { 5, { 0xa1 }, { 0xff } },
1488 /* `movl m32, %eax' and `mov; m32, %ecx' */
1489 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1490 /* `movl m32, %edx' */
1491 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1492
1493 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1494 Because of the symmetry, there are actually two ways to encode
1495 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1496 opcode bytes 0x31 and 0x33 for `xorl'. */
1497
1498 /* `subl %eax, %eax' */
1499 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1500 /* `subl %ecx, %ecx' */
1501 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1502 /* `subl %edx, %edx' */
1503 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1504 /* `xorl %eax, %eax' */
1505 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1506 /* `xorl %ecx, %ecx' */
1507 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1508 /* `xorl %edx, %edx' */
1509 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1510 { 0 }
1511};
1512
e11481da
PM
1513
1514/* Check whether PC points to a no-op instruction. */
1515static CORE_ADDR
1516i386_skip_noop (CORE_ADDR pc)
1517{
1518 gdb_byte op;
1519 int check = 1;
1520
0865b04a 1521 if (target_read_code (pc, &op, 1))
3dcabaa8 1522 return pc;
e11481da
PM
1523
1524 while (check)
1525 {
1526 check = 0;
1527 /* Ignore `nop' instruction. */
1528 if (op == 0x90)
1529 {
1530 pc += 1;
0865b04a 1531 if (target_read_code (pc, &op, 1))
3dcabaa8 1532 return pc;
e11481da
PM
1533 check = 1;
1534 }
1535 /* Ignore no-op instruction `mov %edi, %edi'.
1536 Microsoft system dlls often start with
1537 a `mov %edi,%edi' instruction.
1538 The 5 bytes before the function start are
1539 filled with `nop' instructions.
1540 This pattern can be used for hot-patching:
1541 The `mov %edi, %edi' instruction can be replaced by a
1542 near jump to the location of the 5 `nop' instructions
1543 which can be replaced by a 32-bit jump to anywhere
1544 in the 32-bit address space. */
1545
1546 else if (op == 0x8b)
1547 {
0865b04a 1548 if (target_read_code (pc + 1, &op, 1))
3dcabaa8
MS
1549 return pc;
1550
e11481da
PM
1551 if (op == 0xff)
1552 {
1553 pc += 2;
0865b04a 1554 if (target_read_code (pc, &op, 1))
3dcabaa8
MS
1555 return pc;
1556
e11481da
PM
1557 check = 1;
1558 }
1559 }
1560 }
1561 return pc;
1562}
1563
acd5c798
MK
1564/* Check whether PC points at a code that sets up a new stack frame.
1565 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1566 instruction after the sequence that sets up the frame or LIMIT,
1567 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1568
1569static CORE_ADDR
e17a4113
UW
1570i386_analyze_frame_setup (struct gdbarch *gdbarch,
1571 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1572 struct i386_frame_cache *cache)
1573{
e17a4113 1574 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1575 struct i386_insn *insn;
63c0089f 1576 gdb_byte op;
26604a34 1577 int skip = 0;
acd5c798 1578
37bdc87e
MK
1579 if (limit <= pc)
1580 return limit;
acd5c798 1581
0865b04a 1582 if (target_read_code (pc, &op, 1))
3dcabaa8 1583 return pc;
acd5c798 1584
c906108c 1585 if (op == 0x55) /* pushl %ebp */
c5aa993b 1586 {
acd5c798
MK
1587 /* Take into account that we've executed the `pushl %ebp' that
1588 starts this instruction sequence. */
fd13a04a 1589 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1590 cache->sp_offset += 4;
37bdc87e 1591 pc++;
acd5c798
MK
1592
1593 /* If that's all, return now. */
37bdc87e
MK
1594 if (limit <= pc)
1595 return limit;
26604a34 1596
b4632131 1597 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1598 GCC into the prologue and skip them. At this point in the
1599 prologue, code should only touch the scratch registers %eax,
1600 %ecx and %edx, so while the number of posibilities is sheer,
1601 it is limited.
5daa5b4e 1602
26604a34
MK
1603 Make sure we only skip these instructions if we later see the
1604 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1605 while (pc + skip < limit)
26604a34 1606 {
37bdc87e
MK
1607 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1608 if (insn == NULL)
1609 break;
b4632131 1610
37bdc87e 1611 skip += insn->len;
26604a34
MK
1612 }
1613
37bdc87e
MK
1614 /* If that's all, return now. */
1615 if (limit <= pc + skip)
1616 return limit;
1617
0865b04a 1618 if (target_read_code (pc + skip, &op, 1))
3dcabaa8 1619 return pc + skip;
37bdc87e 1620
30f8135b
YQ
1621 /* The i386 prologue looks like
1622
1623 push %ebp
1624 mov %esp,%ebp
1625 sub $0x10,%esp
1626
1627 and a different prologue can be generated for atom.
1628
1629 push %ebp
1630 lea (%esp),%ebp
1631 lea -0x10(%esp),%esp
1632
1633 We handle both of them here. */
1634
acd5c798 1635 switch (op)
c906108c 1636 {
30f8135b 1637 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
c906108c 1638 case 0x8b:
0865b04a 1639 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1640 != 0xec)
37bdc87e 1641 return pc;
30f8135b 1642 pc += (skip + 2);
c906108c
SS
1643 break;
1644 case 0x89:
0865b04a 1645 if (read_code_unsigned_integer (pc + skip + 1, 1, byte_order)
e17a4113 1646 != 0xe5)
37bdc87e 1647 return pc;
30f8135b
YQ
1648 pc += (skip + 2);
1649 break;
1650 case 0x8d: /* Check for 'lea (%ebp), %ebp'. */
0865b04a 1651 if (read_code_unsigned_integer (pc + skip + 1, 2, byte_order)
30f8135b
YQ
1652 != 0x242c)
1653 return pc;
1654 pc += (skip + 3);
c906108c
SS
1655 break;
1656 default:
37bdc87e 1657 return pc;
c906108c 1658 }
acd5c798 1659
26604a34
MK
1660 /* OK, we actually have a frame. We just don't know how large
1661 it is yet. Set its size to zero. We'll adjust it if
1662 necessary. We also now commit to skipping the special
1663 instructions mentioned before. */
acd5c798
MK
1664 cache->locals = 0;
1665
1666 /* If that's all, return now. */
37bdc87e
MK
1667 if (limit <= pc)
1668 return limit;
acd5c798 1669
fc338970
MK
1670 /* Check for stack adjustment
1671
acd5c798 1672 subl $XXX, %esp
30f8135b
YQ
1673 or
1674 lea -XXX(%esp),%esp
fc338970 1675
fd35795f 1676 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1677 reg, so we don't have to worry about a data16 prefix. */
0865b04a 1678 if (target_read_code (pc, &op, 1))
3dcabaa8 1679 return pc;
c906108c
SS
1680 if (op == 0x83)
1681 {
fd35795f 1682 /* `subl' with 8-bit immediate. */
0865b04a 1683 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1684 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1685 return pc;
acd5c798 1686
37bdc87e
MK
1687 /* `subl' with signed 8-bit immediate (though it wouldn't
1688 make sense to be negative). */
0865b04a 1689 cache->locals = read_code_integer (pc + 2, 1, byte_order);
37bdc87e 1690 return pc + 3;
c906108c
SS
1691 }
1692 else if (op == 0x81)
1693 {
fd35795f 1694 /* Maybe it is `subl' with a 32-bit immediate. */
0865b04a 1695 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1696 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1697 return pc;
acd5c798 1698
fd35795f 1699 /* It is `subl' with a 32-bit immediate. */
0865b04a 1700 cache->locals = read_code_integer (pc + 2, 4, byte_order);
37bdc87e 1701 return pc + 6;
c906108c 1702 }
30f8135b
YQ
1703 else if (op == 0x8d)
1704 {
1705 /* The ModR/M byte is 0x64. */
0865b04a 1706 if (read_code_unsigned_integer (pc + 1, 1, byte_order) != 0x64)
30f8135b
YQ
1707 return pc;
1708 /* 'lea' with 8-bit displacement. */
0865b04a 1709 cache->locals = -1 * read_code_integer (pc + 3, 1, byte_order);
30f8135b
YQ
1710 return pc + 4;
1711 }
c906108c
SS
1712 else
1713 {
30f8135b 1714 /* Some instruction other than `subl' nor 'lea'. */
37bdc87e 1715 return pc;
c906108c
SS
1716 }
1717 }
37bdc87e 1718 else if (op == 0xc8) /* enter */
c906108c 1719 {
0865b04a 1720 cache->locals = read_code_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1721 return pc + 4;
c906108c 1722 }
21d0e8a4 1723
acd5c798 1724 return pc;
21d0e8a4
MK
1725}
1726
acd5c798
MK
1727/* Check whether PC points at code that saves registers on the stack.
1728 If so, it updates CACHE and returns the address of the first
1729 instruction after the register saves or CURRENT_PC, whichever is
1730 smaller. Otherwise, return PC. */
6bff26de
MK
1731
1732static CORE_ADDR
acd5c798
MK
1733i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1734 struct i386_frame_cache *cache)
6bff26de 1735{
99ab4326 1736 CORE_ADDR offset = 0;
63c0089f 1737 gdb_byte op;
99ab4326 1738 int i;
c0d1d883 1739
99ab4326
MK
1740 if (cache->locals > 0)
1741 offset -= cache->locals;
1742 for (i = 0; i < 8 && pc < current_pc; i++)
1743 {
0865b04a 1744 if (target_read_code (pc, &op, 1))
3dcabaa8 1745 return pc;
99ab4326
MK
1746 if (op < 0x50 || op > 0x57)
1747 break;
0d17c81d 1748
99ab4326
MK
1749 offset -= 4;
1750 cache->saved_regs[op - 0x50] = offset;
1751 cache->sp_offset += 4;
1752 pc++;
6bff26de
MK
1753 }
1754
acd5c798 1755 return pc;
22797942
AC
1756}
1757
acd5c798
MK
1758/* Do a full analysis of the prologue at PC and update CACHE
1759 accordingly. Bail out early if CURRENT_PC is reached. Return the
1760 address where the analysis stopped.
ed84f6c1 1761
fc338970
MK
1762 We handle these cases:
1763
1764 The startup sequence can be at the start of the function, or the
1765 function can start with a branch to startup code at the end.
1766
1767 %ebp can be set up with either the 'enter' instruction, or "pushl
1768 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1769 once used in the System V compiler).
1770
1771 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1772 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1773 16-bit unsigned argument for space to allocate, and the 'addl'
1774 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1775
1776 Next, the registers used by this function are pushed. With the
1777 System V compiler they will always be in the order: %edi, %esi,
1778 %ebx (and sometimes a harmless bug causes it to also save but not
1779 restore %eax); however, the code below is willing to see the pushes
1780 in any order, and will handle up to 8 of them.
1781
1782 If the setup sequence is at the end of the function, then the next
1783 instruction will be a branch back to the start. */
c906108c 1784
acd5c798 1785static CORE_ADDR
e17a4113
UW
1786i386_analyze_prologue (struct gdbarch *gdbarch,
1787 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1788 struct i386_frame_cache *cache)
c906108c 1789{
e11481da 1790 pc = i386_skip_noop (pc);
e17a4113 1791 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1792 pc = i386_analyze_struct_return (pc, current_pc, cache);
1793 pc = i386_skip_probe (pc);
92dd43fa 1794 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1795 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1796 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1797}
1798
fc338970 1799/* Return PC of first real instruction. */
c906108c 1800
3a1e71e3 1801static CORE_ADDR
6093d2eb 1802i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1803{
e17a4113
UW
1804 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1805
63c0089f 1806 static gdb_byte pic_pat[6] =
acd5c798
MK
1807 {
1808 0xe8, 0, 0, 0, 0, /* call 0x0 */
1809 0x5b, /* popl %ebx */
c5aa993b 1810 };
acd5c798
MK
1811 struct i386_frame_cache cache;
1812 CORE_ADDR pc;
63c0089f 1813 gdb_byte op;
acd5c798 1814 int i;
56bf0743 1815 CORE_ADDR func_addr;
4e879fc2 1816
56bf0743
KB
1817 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1818 {
1819 CORE_ADDR post_prologue_pc
1820 = skip_prologue_using_sal (gdbarch, func_addr);
1821 struct symtab *s = find_pc_symtab (func_addr);
1822
1823 /* Clang always emits a line note before the prologue and another
1824 one after. We trust clang to emit usable line notes. */
1825 if (post_prologue_pc
1826 && (s != NULL
1827 && s->producer != NULL
1828 && strncmp (s->producer, "clang ", sizeof ("clang ") - 1) == 0))
1829 return max (start_pc, post_prologue_pc);
1830 }
1831
e0f33b1f 1832 cache.locals = -1;
e17a4113 1833 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1834 if (cache.locals < 0)
1835 return start_pc;
c5aa993b 1836
acd5c798 1837 /* Found valid frame setup. */
c906108c 1838
fc338970
MK
1839 /* The native cc on SVR4 in -K PIC mode inserts the following code
1840 to get the address of the global offset table (GOT) into register
acd5c798
MK
1841 %ebx:
1842
fc338970
MK
1843 call 0x0
1844 popl %ebx
1845 movl %ebx,x(%ebp) (optional)
1846 addl y,%ebx
1847
c906108c
SS
1848 This code is with the rest of the prologue (at the end of the
1849 function), so we have to skip it to get to the first real
1850 instruction at the start of the function. */
c5aa993b 1851
c906108c
SS
1852 for (i = 0; i < 6; i++)
1853 {
0865b04a 1854 if (target_read_code (pc + i, &op, 1))
3dcabaa8
MS
1855 return pc;
1856
c5aa993b 1857 if (pic_pat[i] != op)
c906108c
SS
1858 break;
1859 }
1860 if (i == 6)
1861 {
acd5c798
MK
1862 int delta = 6;
1863
0865b04a 1864 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1865 return pc;
c906108c 1866
c5aa993b 1867 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1868 {
0865b04a 1869 op = read_code_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1870
fc338970 1871 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1872 delta += 3;
fc338970 1873 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1874 delta += 6;
fc338970 1875 else /* Unexpected instruction. */
acd5c798
MK
1876 delta = 0;
1877
0865b04a 1878 if (target_read_code (pc + delta, &op, 1))
3dcabaa8 1879 return pc;
c906108c 1880 }
acd5c798 1881
c5aa993b 1882 /* addl y,%ebx */
acd5c798 1883 if (delta > 0 && op == 0x81
0865b04a 1884 && read_code_unsigned_integer (pc + delta + 1, 1, byte_order)
e17a4113 1885 == 0xc3)
c906108c 1886 {
acd5c798 1887 pc += delta + 6;
c906108c
SS
1888 }
1889 }
c5aa993b 1890
e63bbc88
MK
1891 /* If the function starts with a branch (to startup code at the end)
1892 the last instruction should bring us back to the first
1893 instruction of the real code. */
e17a4113
UW
1894 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1895 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1896
1897 return pc;
c906108c
SS
1898}
1899
4309257c
PM
1900/* Check that the code pointed to by PC corresponds to a call to
1901 __main, skip it if so. Return PC otherwise. */
1902
1903CORE_ADDR
1904i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1905{
e17a4113 1906 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1907 gdb_byte op;
1908
0865b04a 1909 if (target_read_code (pc, &op, 1))
3dcabaa8 1910 return pc;
4309257c
PM
1911 if (op == 0xe8)
1912 {
1913 gdb_byte buf[4];
1914
0865b04a 1915 if (target_read_code (pc + 1, buf, sizeof buf) == 0)
4309257c
PM
1916 {
1917 /* Make sure address is computed correctly as a 32bit
1918 integer even if CORE_ADDR is 64 bit wide. */
7cbd4a93 1919 struct bound_minimal_symbol s;
e17a4113 1920 CORE_ADDR call_dest;
4309257c 1921
e17a4113 1922 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1923 call_dest = call_dest & 0xffffffffU;
1924 s = lookup_minimal_symbol_by_pc (call_dest);
7cbd4a93 1925 if (s.minsym != NULL
efd66ac6
TT
1926 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
1927 && strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__main") == 0)
4309257c
PM
1928 pc += 5;
1929 }
1930 }
1931
1932 return pc;
1933}
1934
acd5c798 1935/* This function is 64-bit safe. */
93924b6b 1936
acd5c798
MK
1937static CORE_ADDR
1938i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1939{
63c0089f 1940 gdb_byte buf[8];
acd5c798 1941
875f8d0e 1942 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1943 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1944}
acd5c798 1945\f
93924b6b 1946
acd5c798 1947/* Normal frames. */
c5aa993b 1948
8fbca658
PA
1949static void
1950i386_frame_cache_1 (struct frame_info *this_frame,
1951 struct i386_frame_cache *cache)
a7769679 1952{
e17a4113
UW
1953 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1954 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1955 gdb_byte buf[4];
acd5c798
MK
1956 int i;
1957
8fbca658 1958 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1959
1960 /* In principle, for normal frames, %ebp holds the frame pointer,
1961 which holds the base address for the current stack frame.
1962 However, for functions that don't need it, the frame pointer is
1963 optional. For these "frameless" functions the frame pointer is
1964 actually the frame pointer of the calling frame. Signal
1965 trampolines are just a special case of a "frameless" function.
1966 They (usually) share their frame pointer with the frame that was
1967 in progress when the signal occurred. */
1968
10458914 1969 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1970 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1971 if (cache->base == 0)
620fa63a
PA
1972 {
1973 cache->base_p = 1;
1974 return;
1975 }
acd5c798
MK
1976
1977 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1978 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1979
acd5c798 1980 if (cache->pc != 0)
e17a4113
UW
1981 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1982 cache);
acd5c798
MK
1983
1984 if (cache->locals < 0)
1985 {
1986 /* We didn't find a valid frame, which means that CACHE->base
1987 currently holds the frame pointer for our calling frame. If
1988 we're at the start of a function, or somewhere half-way its
1989 prologue, the function's frame probably hasn't been fully
1990 setup yet. Try to reconstruct the base address for the stack
1991 frame by looking at the stack pointer. For truly "frameless"
1992 functions this might work too. */
1993
e0c62198 1994 if (cache->saved_sp_reg != -1)
92dd43fa 1995 {
8fbca658
PA
1996 /* Saved stack pointer has been saved. */
1997 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1998 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1999
92dd43fa
MK
2000 /* We're halfway aligning the stack. */
2001 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
2002 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
2003
2004 /* This will be added back below. */
2005 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
2006 }
7618e12b 2007 else if (cache->pc != 0
0865b04a 2008 || target_read_code (get_frame_pc (this_frame), buf, 1))
92dd43fa 2009 {
7618e12b
DJ
2010 /* We're in a known function, but did not find a frame
2011 setup. Assume that the function does not use %ebp.
2012 Alternatively, we may have jumped to an invalid
2013 address; in that case there is definitely no new
2014 frame in %ebp. */
10458914 2015 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
2016 cache->base = extract_unsigned_integer (buf, 4, byte_order)
2017 + cache->sp_offset;
92dd43fa 2018 }
7618e12b
DJ
2019 else
2020 /* We're in an unknown function. We could not find the start
2021 of the function to analyze the prologue; our best option is
2022 to assume a typical frame layout with the caller's %ebp
2023 saved. */
2024 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
2025 }
2026
8fbca658
PA
2027 if (cache->saved_sp_reg != -1)
2028 {
2029 /* Saved stack pointer has been saved (but the SAVED_SP_REG
2030 register may be unavailable). */
2031 if (cache->saved_sp == 0
ca9d61b9
JB
2032 && deprecated_frame_register_read (this_frame,
2033 cache->saved_sp_reg, buf))
8fbca658
PA
2034 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
2035 }
acd5c798
MK
2036 /* Now that we have the base address for the stack frame we can
2037 calculate the value of %esp in the calling frame. */
8fbca658 2038 else if (cache->saved_sp == 0)
92dd43fa 2039 cache->saved_sp = cache->base + 8;
a7769679 2040
acd5c798
MK
2041 /* Adjust all the saved registers such that they contain addresses
2042 instead of offsets. */
2043 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
2044 if (cache->saved_regs[i] != -1)
2045 cache->saved_regs[i] += cache->base;
acd5c798 2046
8fbca658
PA
2047 cache->base_p = 1;
2048}
2049
2050static struct i386_frame_cache *
2051i386_frame_cache (struct frame_info *this_frame, void **this_cache)
2052{
2053 volatile struct gdb_exception ex;
2054 struct i386_frame_cache *cache;
2055
2056 if (*this_cache)
2057 return *this_cache;
2058
2059 cache = i386_alloc_frame_cache ();
2060 *this_cache = cache;
2061
2062 TRY_CATCH (ex, RETURN_MASK_ERROR)
2063 {
2064 i386_frame_cache_1 (this_frame, cache);
2065 }
2066 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2067 throw_exception (ex);
2068
acd5c798 2069 return cache;
a7769679
MK
2070}
2071
3a1e71e3 2072static void
10458914 2073i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 2074 struct frame_id *this_id)
c906108c 2075{
10458914 2076 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798 2077
5ce0145d
PA
2078 if (!cache->base_p)
2079 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2080 else if (cache->base == 0)
2081 {
2082 /* This marks the outermost frame. */
2083 }
2084 else
2085 {
2086 /* See the end of i386_push_dummy_call. */
2087 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2088 }
acd5c798
MK
2089}
2090
8fbca658
PA
2091static enum unwind_stop_reason
2092i386_frame_unwind_stop_reason (struct frame_info *this_frame,
2093 void **this_cache)
2094{
2095 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
2096
2097 if (!cache->base_p)
2098 return UNWIND_UNAVAILABLE;
2099
2100 /* This marks the outermost frame. */
2101 if (cache->base == 0)
2102 return UNWIND_OUTERMOST;
2103
2104 return UNWIND_NO_REASON;
2105}
2106
10458914
DJ
2107static struct value *
2108i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2109 int regnum)
acd5c798 2110{
10458914 2111 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2112
2113 gdb_assert (regnum >= 0);
2114
2115 /* The System V ABI says that:
2116
2117 "The flags register contains the system flags, such as the
2118 direction flag and the carry flag. The direction flag must be
2119 set to the forward (that is, zero) direction before entry and
2120 upon exit from a function. Other user flags have no specified
2121 role in the standard calling sequence and are not preserved."
2122
2123 To guarantee the "upon exit" part of that statement we fake a
2124 saved flags register that has its direction flag cleared.
2125
2126 Note that GCC doesn't seem to rely on the fact that the direction
2127 flag is cleared after a function return; it always explicitly
2128 clears the flag before operations where it matters.
2129
2130 FIXME: kettenis/20030316: I'm not quite sure whether this is the
2131 right thing to do. The way we fake the flags register here makes
2132 it impossible to change it. */
2133
2134 if (regnum == I386_EFLAGS_REGNUM)
2135 {
10458914 2136 ULONGEST val;
c5aa993b 2137
10458914
DJ
2138 val = get_frame_register_unsigned (this_frame, regnum);
2139 val &= ~(1 << 10);
2140 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 2141 }
1211c4e4 2142
acd5c798 2143 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 2144 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 2145
fcf250e2
UW
2146 if (regnum == I386_ESP_REGNUM
2147 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
2148 {
2149 /* If the SP has been saved, but we don't know where, then this
2150 means that SAVED_SP_REG register was found unavailable back
2151 when we built the cache. */
fcf250e2 2152 if (cache->saved_sp == 0)
8fbca658
PA
2153 return frame_unwind_got_register (this_frame, regnum,
2154 cache->saved_sp_reg);
2155 else
2156 return frame_unwind_got_constant (this_frame, regnum,
2157 cache->saved_sp);
2158 }
acd5c798 2159
fd13a04a 2160 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
2161 return frame_unwind_got_memory (this_frame, regnum,
2162 cache->saved_regs[regnum]);
fd13a04a 2163
10458914 2164 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
2165}
2166
2167static const struct frame_unwind i386_frame_unwind =
2168{
2169 NORMAL_FRAME,
8fbca658 2170 i386_frame_unwind_stop_reason,
acd5c798 2171 i386_frame_this_id,
10458914
DJ
2172 i386_frame_prev_register,
2173 NULL,
2174 default_frame_sniffer
acd5c798 2175};
06da04c6
MS
2176
2177/* Normal frames, but in a function epilogue. */
2178
2179/* The epilogue is defined here as the 'ret' instruction, which will
2180 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2181 the function's stack frame. */
2182
2183static int
2184i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2185{
2186 gdb_byte insn;
e0d00bc7
JK
2187 struct symtab *symtab;
2188
2189 symtab = find_pc_symtab (pc);
2190 if (symtab && symtab->epilogue_unwind_valid)
2191 return 0;
06da04c6
MS
2192
2193 if (target_read_memory (pc, &insn, 1))
2194 return 0; /* Can't read memory at pc. */
2195
2196 if (insn != 0xc3) /* 'ret' instruction. */
2197 return 0;
2198
2199 return 1;
2200}
2201
2202static int
2203i386_epilogue_frame_sniffer (const struct frame_unwind *self,
2204 struct frame_info *this_frame,
2205 void **this_prologue_cache)
2206{
2207 if (frame_relative_level (this_frame) == 0)
2208 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
2209 get_frame_pc (this_frame));
2210 else
2211 return 0;
2212}
2213
2214static struct i386_frame_cache *
2215i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2216{
8fbca658 2217 volatile struct gdb_exception ex;
06da04c6 2218 struct i386_frame_cache *cache;
0d6c2135 2219 CORE_ADDR sp;
06da04c6
MS
2220
2221 if (*this_cache)
2222 return *this_cache;
2223
2224 cache = i386_alloc_frame_cache ();
2225 *this_cache = cache;
2226
8fbca658
PA
2227 TRY_CATCH (ex, RETURN_MASK_ERROR)
2228 {
0d6c2135 2229 cache->pc = get_frame_func (this_frame);
06da04c6 2230
0d6c2135
MK
2231 /* At this point the stack looks as if we just entered the
2232 function, with the return address at the top of the
2233 stack. */
2234 sp = get_frame_register_unsigned (this_frame, I386_ESP_REGNUM);
2235 cache->base = sp + cache->sp_offset;
8fbca658 2236 cache->saved_sp = cache->base + 8;
8fbca658 2237 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 2238
8fbca658
PA
2239 cache->base_p = 1;
2240 }
2241 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2242 throw_exception (ex);
06da04c6
MS
2243
2244 return cache;
2245}
2246
8fbca658
PA
2247static enum unwind_stop_reason
2248i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2249 void **this_cache)
2250{
0d6c2135
MK
2251 struct i386_frame_cache *cache =
2252 i386_epilogue_frame_cache (this_frame, this_cache);
8fbca658
PA
2253
2254 if (!cache->base_p)
2255 return UNWIND_UNAVAILABLE;
2256
2257 return UNWIND_NO_REASON;
2258}
2259
06da04c6
MS
2260static void
2261i386_epilogue_frame_this_id (struct frame_info *this_frame,
2262 void **this_cache,
2263 struct frame_id *this_id)
2264{
0d6c2135
MK
2265 struct i386_frame_cache *cache =
2266 i386_epilogue_frame_cache (this_frame, this_cache);
06da04c6 2267
8fbca658 2268 if (!cache->base_p)
5ce0145d
PA
2269 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2270 else
2271 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
06da04c6
MS
2272}
2273
0d6c2135
MK
2274static struct value *
2275i386_epilogue_frame_prev_register (struct frame_info *this_frame,
2276 void **this_cache, int regnum)
2277{
2278 /* Make sure we've initialized the cache. */
2279 i386_epilogue_frame_cache (this_frame, this_cache);
2280
2281 return i386_frame_prev_register (this_frame, this_cache, regnum);
2282}
2283
06da04c6
MS
2284static const struct frame_unwind i386_epilogue_frame_unwind =
2285{
2286 NORMAL_FRAME,
8fbca658 2287 i386_epilogue_frame_unwind_stop_reason,
06da04c6 2288 i386_epilogue_frame_this_id,
0d6c2135 2289 i386_epilogue_frame_prev_register,
06da04c6
MS
2290 NULL,
2291 i386_epilogue_frame_sniffer
2292};
acd5c798
MK
2293\f
2294
a3fcb948
JG
2295/* Stack-based trampolines. */
2296
2297/* These trampolines are used on cross x86 targets, when taking the
2298 address of a nested function. When executing these trampolines,
2299 no stack frame is set up, so we are in a similar situation as in
2300 epilogues and i386_epilogue_frame_this_id can be re-used. */
2301
2302/* Static chain passed in register. */
2303
2304struct i386_insn i386_tramp_chain_in_reg_insns[] =
2305{
2306 /* `movl imm32, %eax' and `movl imm32, %ecx' */
2307 { 5, { 0xb8 }, { 0xfe } },
2308
2309 /* `jmp imm32' */
2310 { 5, { 0xe9 }, { 0xff } },
2311
2312 {0}
2313};
2314
2315/* Static chain passed on stack (when regparm=3). */
2316
2317struct i386_insn i386_tramp_chain_on_stack_insns[] =
2318{
2319 /* `push imm32' */
2320 { 5, { 0x68 }, { 0xff } },
2321
2322 /* `jmp imm32' */
2323 { 5, { 0xe9 }, { 0xff } },
2324
2325 {0}
2326};
2327
2328/* Return whether PC points inside a stack trampoline. */
2329
2330static int
6df81a63 2331i386_in_stack_tramp_p (CORE_ADDR pc)
a3fcb948
JG
2332{
2333 gdb_byte insn;
2c02bd72 2334 const char *name;
a3fcb948
JG
2335
2336 /* A stack trampoline is detected if no name is associated
2337 to the current pc and if it points inside a trampoline
2338 sequence. */
2339
2340 find_pc_partial_function (pc, &name, NULL, NULL);
2341 if (name)
2342 return 0;
2343
2344 if (target_read_memory (pc, &insn, 1))
2345 return 0;
2346
2347 if (!i386_match_insn_block (pc, i386_tramp_chain_in_reg_insns)
2348 && !i386_match_insn_block (pc, i386_tramp_chain_on_stack_insns))
2349 return 0;
2350
2351 return 1;
2352}
2353
2354static int
2355i386_stack_tramp_frame_sniffer (const struct frame_unwind *self,
0d6c2135
MK
2356 struct frame_info *this_frame,
2357 void **this_cache)
a3fcb948
JG
2358{
2359 if (frame_relative_level (this_frame) == 0)
6df81a63 2360 return i386_in_stack_tramp_p (get_frame_pc (this_frame));
a3fcb948
JG
2361 else
2362 return 0;
2363}
2364
2365static const struct frame_unwind i386_stack_tramp_frame_unwind =
2366{
2367 NORMAL_FRAME,
2368 i386_epilogue_frame_unwind_stop_reason,
2369 i386_epilogue_frame_this_id,
0d6c2135 2370 i386_epilogue_frame_prev_register,
a3fcb948
JG
2371 NULL,
2372 i386_stack_tramp_frame_sniffer
2373};
2374\f
6710bf39
SS
2375/* Generate a bytecode expression to get the value of the saved PC. */
2376
2377static void
2378i386_gen_return_address (struct gdbarch *gdbarch,
2379 struct agent_expr *ax, struct axs_value *value,
2380 CORE_ADDR scope)
2381{
2382 /* The following sequence assumes the traditional use of the base
2383 register. */
2384 ax_reg (ax, I386_EBP_REGNUM);
2385 ax_const_l (ax, 4);
2386 ax_simple (ax, aop_add);
2387 value->type = register_type (gdbarch, I386_EIP_REGNUM);
2388 value->kind = axs_lvalue_memory;
2389}
2390\f
a3fcb948 2391
acd5c798
MK
2392/* Signal trampolines. */
2393
2394static struct i386_frame_cache *
10458914 2395i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 2396{
e17a4113
UW
2397 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 2400 volatile struct gdb_exception ex;
acd5c798 2401 struct i386_frame_cache *cache;
acd5c798 2402 CORE_ADDR addr;
63c0089f 2403 gdb_byte buf[4];
acd5c798
MK
2404
2405 if (*this_cache)
2406 return *this_cache;
2407
fd13a04a 2408 cache = i386_alloc_frame_cache ();
acd5c798 2409
8fbca658 2410 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 2411 {
8fbca658
PA
2412 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
2413 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 2414
8fbca658
PA
2415 addr = tdep->sigcontext_addr (this_frame);
2416 if (tdep->sc_reg_offset)
2417 {
2418 int i;
a3386186 2419
8fbca658
PA
2420 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
2421
2422 for (i = 0; i < tdep->sc_num_regs; i++)
2423 if (tdep->sc_reg_offset[i] != -1)
2424 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2425 }
2426 else
2427 {
2428 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
2429 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
2430 }
2431
2432 cache->base_p = 1;
a3386186 2433 }
8fbca658
PA
2434 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2435 throw_exception (ex);
acd5c798
MK
2436
2437 *this_cache = cache;
2438 return cache;
2439}
2440
8fbca658
PA
2441static enum unwind_stop_reason
2442i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2443 void **this_cache)
2444{
2445 struct i386_frame_cache *cache =
2446 i386_sigtramp_frame_cache (this_frame, this_cache);
2447
2448 if (!cache->base_p)
2449 return UNWIND_UNAVAILABLE;
2450
2451 return UNWIND_NO_REASON;
2452}
2453
acd5c798 2454static void
10458914 2455i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2456 struct frame_id *this_id)
2457{
2458 struct i386_frame_cache *cache =
10458914 2459 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2460
8fbca658 2461 if (!cache->base_p)
5ce0145d
PA
2462 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2463 else
2464 {
2465 /* See the end of i386_push_dummy_call. */
2466 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
2467 }
acd5c798
MK
2468}
2469
10458914
DJ
2470static struct value *
2471i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2472 void **this_cache, int regnum)
acd5c798
MK
2473{
2474 /* Make sure we've initialized the cache. */
10458914 2475 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2476
10458914 2477 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2478}
c0d1d883 2479
10458914
DJ
2480static int
2481i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2482 struct frame_info *this_frame,
2483 void **this_prologue_cache)
acd5c798 2484{
10458914 2485 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2486
911bc6ee
MK
2487 /* We shouldn't even bother if we don't have a sigcontext_addr
2488 handler. */
2489 if (tdep->sigcontext_addr == NULL)
10458914 2490 return 0;
1c3545ae 2491
911bc6ee
MK
2492 if (tdep->sigtramp_p != NULL)
2493 {
10458914
DJ
2494 if (tdep->sigtramp_p (this_frame))
2495 return 1;
911bc6ee
MK
2496 }
2497
2498 if (tdep->sigtramp_start != 0)
2499 {
10458914 2500 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2501
2502 gdb_assert (tdep->sigtramp_end != 0);
2503 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2504 return 1;
911bc6ee 2505 }
acd5c798 2506
10458914 2507 return 0;
acd5c798 2508}
10458914
DJ
2509
2510static const struct frame_unwind i386_sigtramp_frame_unwind =
2511{
2512 SIGTRAMP_FRAME,
8fbca658 2513 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2514 i386_sigtramp_frame_this_id,
2515 i386_sigtramp_frame_prev_register,
2516 NULL,
2517 i386_sigtramp_frame_sniffer
2518};
acd5c798
MK
2519\f
2520
2521static CORE_ADDR
10458914 2522i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2523{
10458914 2524 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2525
2526 return cache->base;
2527}
2528
2529static const struct frame_base i386_frame_base =
2530{
2531 &i386_frame_unwind,
2532 i386_frame_base_address,
2533 i386_frame_base_address,
2534 i386_frame_base_address
2535};
2536
acd5c798 2537static struct frame_id
10458914 2538i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2539{
acd5c798
MK
2540 CORE_ADDR fp;
2541
10458914 2542 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2543
3e210248 2544 /* See the end of i386_push_dummy_call. */
10458914 2545 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2546}
e04e5beb
JM
2547
2548/* _Decimal128 function return values need 16-byte alignment on the
2549 stack. */
2550
2551static CORE_ADDR
2552i386_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2553{
2554 return sp & -(CORE_ADDR)16;
2555}
fc338970 2556\f
c906108c 2557
fc338970
MK
2558/* Figure out where the longjmp will land. Slurp the args out of the
2559 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2560 structure from which we extract the address that we will land at.
28bcfd30 2561 This address is copied into PC. This routine returns non-zero on
436675d3 2562 success. */
c906108c 2563
8201327c 2564static int
60ade65d 2565i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2566{
436675d3 2567 gdb_byte buf[4];
c906108c 2568 CORE_ADDR sp, jb_addr;
20a6ec49 2569 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2571 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2572
8201327c
MK
2573 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2574 longjmp will land. */
2575 if (jb_pc_offset == -1)
c906108c
SS
2576 return 0;
2577
436675d3 2578 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2579 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2580 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2581 return 0;
2582
e17a4113 2583 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2584 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2585 return 0;
c906108c 2586
e17a4113 2587 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2588 return 1;
2589}
fc338970 2590\f
c906108c 2591
7ccc1c74
JM
2592/* Check whether TYPE must be 16-byte-aligned when passed as a
2593 function argument. 16-byte vectors, _Decimal128 and structures or
2594 unions containing such types must be 16-byte-aligned; other
2595 arguments are 4-byte-aligned. */
2596
2597static int
2598i386_16_byte_align_p (struct type *type)
2599{
2600 type = check_typedef (type);
2601 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2602 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2603 && TYPE_LENGTH (type) == 16)
2604 return 1;
2605 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2606 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2607 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2608 || TYPE_CODE (type) == TYPE_CODE_UNION)
2609 {
2610 int i;
2611 for (i = 0; i < TYPE_NFIELDS (type); i++)
2612 {
2613 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2614 return 1;
2615 }
2616 }
2617 return 0;
2618}
2619
a9b8d892
JK
2620/* Implementation for set_gdbarch_push_dummy_code. */
2621
2622static CORE_ADDR
2623i386_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
2624 struct value **args, int nargs, struct type *value_type,
2625 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
2626 struct regcache *regcache)
2627{
2628 /* Use 0xcc breakpoint - 1 byte. */
2629 *bp_addr = sp - 1;
2630 *real_pc = funaddr;
2631
2632 /* Keep the stack aligned. */
2633 return sp - 16;
2634}
2635
3a1e71e3 2636static CORE_ADDR
7d9b040b 2637i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2638 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2639 struct value **args, CORE_ADDR sp, int struct_return,
2640 CORE_ADDR struct_addr)
22f8ba57 2641{
e17a4113 2642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2643 gdb_byte buf[4];
acd5c798 2644 int i;
7ccc1c74
JM
2645 int write_pass;
2646 int args_space = 0;
acd5c798 2647
7ccc1c74
JM
2648 /* Determine the total space required for arguments and struct
2649 return address in a first pass (allowing for 16-byte-aligned
2650 arguments), then push arguments in a second pass. */
2651
2652 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2653 {
7ccc1c74 2654 int args_space_used = 0;
7ccc1c74
JM
2655
2656 if (struct_return)
2657 {
2658 if (write_pass)
2659 {
2660 /* Push value address. */
e17a4113 2661 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2662 write_memory (sp, buf, 4);
2663 args_space_used += 4;
2664 }
2665 else
2666 args_space += 4;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2672
7ccc1c74
JM
2673 if (write_pass)
2674 {
2675 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2676 args_space_used = align_up (args_space_used, 16);
acd5c798 2677
7ccc1c74
JM
2678 write_memory (sp + args_space_used,
2679 value_contents_all (args[i]), len);
2680 /* The System V ABI says that:
acd5c798 2681
7ccc1c74
JM
2682 "An argument's size is increased, if necessary, to make it a
2683 multiple of [32-bit] words. This may require tail padding,
2684 depending on the size of the argument."
22f8ba57 2685
7ccc1c74
JM
2686 This makes sure the stack stays word-aligned. */
2687 args_space_used += align_up (len, 4);
2688 }
2689 else
2690 {
2691 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
284c5a60 2692 args_space = align_up (args_space, 16);
7ccc1c74
JM
2693 args_space += align_up (len, 4);
2694 }
2695 }
2696
2697 if (!write_pass)
2698 {
7ccc1c74 2699 sp -= args_space;
284c5a60
MK
2700
2701 /* The original System V ABI only requires word alignment,
2702 but modern incarnations need 16-byte alignment in order
2703 to support SSE. Since wasting a few bytes here isn't
2704 harmful we unconditionally enforce 16-byte alignment. */
2705 sp &= ~0xf;
7ccc1c74 2706 }
22f8ba57
MK
2707 }
2708
acd5c798
MK
2709 /* Store return address. */
2710 sp -= 4;
e17a4113 2711 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2712 write_memory (sp, buf, 4);
2713
2714 /* Finally, update the stack pointer... */
e17a4113 2715 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2716 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2717
2718 /* ...and fake a frame pointer. */
2719 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2720
3e210248
AC
2721 /* MarkK wrote: This "+ 8" is all over the place:
2722 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2723 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2724 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2725 definition of the stack address of a frame. Otherwise frame id
2726 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2727 stack address *before* the function call as a frame's CFA. On
2728 the i386, when %ebp is used as a frame pointer, the offset
2729 between the contents %ebp and the CFA as defined by GCC. */
2730 return sp + 8;
22f8ba57
MK
2731}
2732
1a309862
MK
2733/* These registers are used for returning integers (and on some
2734 targets also for returning `struct' and `union' values when their
ef9dff19 2735 size and alignment match an integer type). */
acd5c798
MK
2736#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2737#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2738
c5e656c1
MK
2739/* Read, for architecture GDBARCH, a function return value of TYPE
2740 from REGCACHE, and copy that into VALBUF. */
1a309862 2741
3a1e71e3 2742static void
c5e656c1 2743i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2744 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2745{
c5e656c1 2746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2747 int len = TYPE_LENGTH (type);
63c0089f 2748 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2749
1e8d0a7b 2750 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2751 {
5716833c 2752 if (tdep->st0_regnum < 0)
1a309862 2753 {
8a3fe4f8 2754 warning (_("Cannot find floating-point return value."));
1a309862 2755 memset (valbuf, 0, len);
ef9dff19 2756 return;
1a309862
MK
2757 }
2758
c6ba6f0d
MK
2759 /* Floating-point return values can be found in %st(0). Convert
2760 its contents to the desired type. This is probably not
2761 exactly how it would happen on the target itself, but it is
2762 the best we can do. */
acd5c798 2763 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2764 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2765 }
2766 else
c5aa993b 2767 {
875f8d0e
UW
2768 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2769 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2770
2771 if (len <= low_size)
00f8375e 2772 {
0818c12a 2773 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2774 memcpy (valbuf, buf, len);
2775 }
d4f3574e
SS
2776 else if (len <= (low_size + high_size))
2777 {
0818c12a 2778 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2779 memcpy (valbuf, buf, low_size);
0818c12a 2780 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2781 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2782 }
2783 else
8e65ff28 2784 internal_error (__FILE__, __LINE__,
1777feb0
MS
2785 _("Cannot extract return value of %d bytes long."),
2786 len);
c906108c
SS
2787 }
2788}
2789
c5e656c1
MK
2790/* Write, for architecture GDBARCH, a function return value of TYPE
2791 from VALBUF into REGCACHE. */
ef9dff19 2792
3a1e71e3 2793static void
c5e656c1 2794i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2795 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2796{
c5e656c1 2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2798 int len = TYPE_LENGTH (type);
2799
1e8d0a7b 2800 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2801 {
3d7f4f49 2802 ULONGEST fstat;
63c0089f 2803 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2804
5716833c 2805 if (tdep->st0_regnum < 0)
ef9dff19 2806 {
8a3fe4f8 2807 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2808 return;
2809 }
2810
635b0cc1
MK
2811 /* Returning floating-point values is a bit tricky. Apart from
2812 storing the return value in %st(0), we have to simulate the
2813 state of the FPU at function return point. */
2814
c6ba6f0d
MK
2815 /* Convert the value found in VALBUF to the extended
2816 floating-point format used by the FPU. This is probably
2817 not exactly how it would happen on the target itself, but
2818 it is the best we can do. */
27067745 2819 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2820 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2821
635b0cc1
MK
2822 /* Set the top of the floating-point register stack to 7. The
2823 actual value doesn't really matter, but 7 is what a normal
2824 function return would end up with if the program started out
2825 with a freshly initialized FPU. */
20a6ec49 2826 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2827 fstat |= (7 << 11);
20a6ec49 2828 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2829
635b0cc1
MK
2830 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2831 the floating-point register stack to 7, the appropriate value
2832 for the tag word is 0x3fff. */
20a6ec49 2833 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2834 }
2835 else
2836 {
875f8d0e
UW
2837 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2838 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2839
2840 if (len <= low_size)
3d7f4f49 2841 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2842 else if (len <= (low_size + high_size))
2843 {
3d7f4f49
MK
2844 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2845 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2846 len - low_size, valbuf + low_size);
ef9dff19
MK
2847 }
2848 else
8e65ff28 2849 internal_error (__FILE__, __LINE__,
e2e0b3e5 2850 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2851 }
2852}
fc338970 2853\f
ef9dff19 2854
8201327c
MK
2855/* This is the variable that is set with "set struct-convention", and
2856 its legitimate values. */
2857static const char default_struct_convention[] = "default";
2858static const char pcc_struct_convention[] = "pcc";
2859static const char reg_struct_convention[] = "reg";
40478521 2860static const char *const valid_conventions[] =
8201327c
MK
2861{
2862 default_struct_convention,
2863 pcc_struct_convention,
2864 reg_struct_convention,
2865 NULL
2866};
2867static const char *struct_convention = default_struct_convention;
2868
0e4377e1
JB
2869/* Return non-zero if TYPE, which is assumed to be a structure,
2870 a union type, or an array type, should be returned in registers
2871 for architecture GDBARCH. */
c5e656c1 2872
8201327c 2873static int
c5e656c1 2874i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2875{
c5e656c1
MK
2876 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2877 enum type_code code = TYPE_CODE (type);
2878 int len = TYPE_LENGTH (type);
8201327c 2879
0e4377e1
JB
2880 gdb_assert (code == TYPE_CODE_STRUCT
2881 || code == TYPE_CODE_UNION
2882 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2883
2884 if (struct_convention == pcc_struct_convention
2885 || (struct_convention == default_struct_convention
2886 && tdep->struct_return == pcc_struct_return))
2887 return 0;
2888
9edde48e
MK
2889 /* Structures consisting of a single `float', `double' or 'long
2890 double' member are returned in %st(0). */
2891 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2892 {
2893 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2894 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2895 return (len == 4 || len == 8 || len == 12);
2896 }
2897
c5e656c1
MK
2898 return (len == 1 || len == 2 || len == 4 || len == 8);
2899}
2900
2901/* Determine, for architecture GDBARCH, how a return value of TYPE
2902 should be returned. If it is supposed to be returned in registers,
2903 and READBUF is non-zero, read the appropriate value from REGCACHE,
2904 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2905 from WRITEBUF into REGCACHE. */
2906
2907static enum return_value_convention
6a3a010b 2908i386_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101
CV
2909 struct type *type, struct regcache *regcache,
2910 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2911{
2912 enum type_code code = TYPE_CODE (type);
2913
5daa78cc
TJB
2914 if (((code == TYPE_CODE_STRUCT
2915 || code == TYPE_CODE_UNION
2916 || code == TYPE_CODE_ARRAY)
2917 && !i386_reg_struct_return_p (gdbarch, type))
2445fd7b
MK
2918 /* Complex double and long double uses the struct return covention. */
2919 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 16)
2920 || (code == TYPE_CODE_COMPLEX && TYPE_LENGTH (type) == 24)
5daa78cc
TJB
2921 /* 128-bit decimal float uses the struct return convention. */
2922 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2923 {
2924 /* The System V ABI says that:
2925
2926 "A function that returns a structure or union also sets %eax
2927 to the value of the original address of the caller's area
2928 before it returns. Thus when the caller receives control
2929 again, the address of the returned object resides in register
2930 %eax and can be used to access the object."
2931
2932 So the ABI guarantees that we can always find the return
2933 value just after the function has returned. */
2934
0e4377e1
JB
2935 /* Note that the ABI doesn't mention functions returning arrays,
2936 which is something possible in certain languages such as Ada.
2937 In this case, the value is returned as if it was wrapped in
2938 a record, so the convention applied to records also applies
2939 to arrays. */
2940
31db7b6c
MK
2941 if (readbuf)
2942 {
2943 ULONGEST addr;
2944
2945 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2946 read_memory (addr, readbuf, TYPE_LENGTH (type));
2947 }
2948
2949 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2950 }
c5e656c1
MK
2951
2952 /* This special case is for structures consisting of a single
9edde48e
MK
2953 `float', `double' or 'long double' member. These structures are
2954 returned in %st(0). For these structures, we call ourselves
2955 recursively, changing TYPE into the type of the first member of
2956 the structure. Since that should work for all structures that
2957 have only one member, we don't bother to check the member's type
2958 here. */
c5e656c1
MK
2959 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2960 {
2961 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
6a3a010b 2962 return i386_return_value (gdbarch, function, type, regcache,
c055b101 2963 readbuf, writebuf);
c5e656c1
MK
2964 }
2965
2966 if (readbuf)
2967 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2968 if (writebuf)
2969 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2970
c5e656c1 2971 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2972}
2973\f
2974
27067745
UW
2975struct type *
2976i387_ext_type (struct gdbarch *gdbarch)
2977{
2978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2979
2980 if (!tdep->i387_ext_type)
90884b2b
L
2981 {
2982 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2983 gdb_assert (tdep->i387_ext_type != NULL);
2984 }
27067745
UW
2985
2986 return tdep->i387_ext_type;
2987}
2988
1dbcd68c
WT
2989/* Construct type for pseudo BND registers. We can't use
2990 tdesc_find_type since a complement of one value has to be used
2991 to describe the upper bound. */
2992
2993static struct type *
2994i386_bnd_type (struct gdbarch *gdbarch)
2995{
2996 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2997
2998
2999 if (!tdep->i386_bnd_type)
3000 {
3001 struct type *t, *bound_t;
3002 const struct builtin_type *bt = builtin_type (gdbarch);
3003
3004 /* The type we're building is described bellow: */
3005#if 0
3006 struct __bound128
3007 {
3008 void *lbound;
3009 void *ubound; /* One complement of raw ubound field. */
3010 };
3011#endif
3012
3013 t = arch_composite_type (gdbarch,
3014 "__gdb_builtin_type_bound128", TYPE_CODE_STRUCT);
3015
3016 append_composite_type_field (t, "lbound", bt->builtin_data_ptr);
3017 append_composite_type_field (t, "ubound", bt->builtin_data_ptr);
3018
3019 TYPE_NAME (t) = "builtin_type_bound128";
3020 tdep->i386_bnd_type = t;
3021 }
3022
3023 return tdep->i386_bnd_type;
3024}
3025
01f9f808
MS
3026/* Construct vector type for pseudo ZMM registers. We can't use
3027 tdesc_find_type since ZMM isn't described in target description. */
3028
3029static struct type *
3030i386_zmm_type (struct gdbarch *gdbarch)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (!tdep->i386_zmm_type)
3035 {
3036 const struct builtin_type *bt = builtin_type (gdbarch);
3037
3038 /* The type we're building is this: */
3039#if 0
3040 union __gdb_builtin_type_vec512i
3041 {
3042 int128_t uint128[4];
3043 int64_t v4_int64[8];
3044 int32_t v8_int32[16];
3045 int16_t v16_int16[32];
3046 int8_t v32_int8[64];
3047 double v4_double[8];
3048 float v8_float[16];
3049 };
3050#endif
3051
3052 struct type *t;
3053
3054 t = arch_composite_type (gdbarch,
3055 "__gdb_builtin_type_vec512i", TYPE_CODE_UNION);
3056 append_composite_type_field (t, "v16_float",
3057 init_vector_type (bt->builtin_float, 16));
3058 append_composite_type_field (t, "v8_double",
3059 init_vector_type (bt->builtin_double, 8));
3060 append_composite_type_field (t, "v64_int8",
3061 init_vector_type (bt->builtin_int8, 64));
3062 append_composite_type_field (t, "v32_int16",
3063 init_vector_type (bt->builtin_int16, 32));
3064 append_composite_type_field (t, "v16_int32",
3065 init_vector_type (bt->builtin_int32, 16));
3066 append_composite_type_field (t, "v8_int64",
3067 init_vector_type (bt->builtin_int64, 8));
3068 append_composite_type_field (t, "v4_int128",
3069 init_vector_type (bt->builtin_int128, 4));
3070
3071 TYPE_VECTOR (t) = 1;
3072 TYPE_NAME (t) = "builtin_type_vec512i";
3073 tdep->i386_zmm_type = t;
3074 }
3075
3076 return tdep->i386_zmm_type;
3077}
3078
c131fcee
L
3079/* Construct vector type for pseudo YMM registers. We can't use
3080 tdesc_find_type since YMM isn't described in target description. */
3081
3082static struct type *
3083i386_ymm_type (struct gdbarch *gdbarch)
3084{
3085 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3086
3087 if (!tdep->i386_ymm_type)
3088 {
3089 const struct builtin_type *bt = builtin_type (gdbarch);
3090
3091 /* The type we're building is this: */
3092#if 0
3093 union __gdb_builtin_type_vec256i
3094 {
3095 int128_t uint128[2];
3096 int64_t v2_int64[4];
3097 int32_t v4_int32[8];
3098 int16_t v8_int16[16];
3099 int8_t v16_int8[32];
3100 double v2_double[4];
3101 float v4_float[8];
3102 };
3103#endif
3104
3105 struct type *t;
3106
3107 t = arch_composite_type (gdbarch,
3108 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
3109 append_composite_type_field (t, "v8_float",
3110 init_vector_type (bt->builtin_float, 8));
3111 append_composite_type_field (t, "v4_double",
3112 init_vector_type (bt->builtin_double, 4));
3113 append_composite_type_field (t, "v32_int8",
3114 init_vector_type (bt->builtin_int8, 32));
3115 append_composite_type_field (t, "v16_int16",
3116 init_vector_type (bt->builtin_int16, 16));
3117 append_composite_type_field (t, "v8_int32",
3118 init_vector_type (bt->builtin_int32, 8));
3119 append_composite_type_field (t, "v4_int64",
3120 init_vector_type (bt->builtin_int64, 4));
3121 append_composite_type_field (t, "v2_int128",
3122 init_vector_type (bt->builtin_int128, 2));
3123
3124 TYPE_VECTOR (t) = 1;
0c5acf93 3125 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
3126 tdep->i386_ymm_type = t;
3127 }
3128
3129 return tdep->i386_ymm_type;
3130}
3131
794ac428 3132/* Construct vector type for MMX registers. */
90884b2b 3133static struct type *
794ac428
UW
3134i386_mmx_type (struct gdbarch *gdbarch)
3135{
3136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3137
3138 if (!tdep->i386_mmx_type)
3139 {
df4df182
UW
3140 const struct builtin_type *bt = builtin_type (gdbarch);
3141
794ac428
UW
3142 /* The type we're building is this: */
3143#if 0
3144 union __gdb_builtin_type_vec64i
3145 {
3146 int64_t uint64;
3147 int32_t v2_int32[2];
3148 int16_t v4_int16[4];
3149 int8_t v8_int8[8];
3150 };
3151#endif
3152
3153 struct type *t;
3154
e9bb382b
UW
3155 t = arch_composite_type (gdbarch,
3156 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
3157
3158 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 3159 append_composite_type_field (t, "v2_int32",
df4df182 3160 init_vector_type (bt->builtin_int32, 2));
794ac428 3161 append_composite_type_field (t, "v4_int16",
df4df182 3162 init_vector_type (bt->builtin_int16, 4));
794ac428 3163 append_composite_type_field (t, "v8_int8",
df4df182 3164 init_vector_type (bt->builtin_int8, 8));
794ac428 3165
876cecd0 3166 TYPE_VECTOR (t) = 1;
794ac428
UW
3167 TYPE_NAME (t) = "builtin_type_vec64i";
3168 tdep->i386_mmx_type = t;
3169 }
3170
3171 return tdep->i386_mmx_type;
3172}
3173
d7a0d72c 3174/* Return the GDB type object for the "standard" data type of data in
1777feb0 3175 register REGNUM. */
d7a0d72c 3176
fff4548b 3177struct type *
90884b2b 3178i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 3179{
1dbcd68c
WT
3180 if (i386_bnd_regnum_p (gdbarch, regnum))
3181 return i386_bnd_type (gdbarch);
1ba53b71
L
3182 if (i386_mmx_regnum_p (gdbarch, regnum))
3183 return i386_mmx_type (gdbarch);
c131fcee
L
3184 else if (i386_ymm_regnum_p (gdbarch, regnum))
3185 return i386_ymm_type (gdbarch);
01f9f808
MS
3186 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3187 return i386_ymm_type (gdbarch);
3188 else if (i386_zmm_regnum_p (gdbarch, regnum))
3189 return i386_zmm_type (gdbarch);
1ba53b71
L
3190 else
3191 {
3192 const struct builtin_type *bt = builtin_type (gdbarch);
3193 if (i386_byte_regnum_p (gdbarch, regnum))
3194 return bt->builtin_int8;
3195 else if (i386_word_regnum_p (gdbarch, regnum))
3196 return bt->builtin_int16;
3197 else if (i386_dword_regnum_p (gdbarch, regnum))
3198 return bt->builtin_int32;
01f9f808
MS
3199 else if (i386_k_regnum_p (gdbarch, regnum))
3200 return bt->builtin_int64;
1ba53b71
L
3201 }
3202
3203 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
3204}
3205
28fc6740 3206/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 3207 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
3208
3209static int
c86c27af 3210i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 3211{
5716833c
MK
3212 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
3213 int mmxreg, fpreg;
28fc6740
AC
3214 ULONGEST fstat;
3215 int tos;
c86c27af 3216
5716833c 3217 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 3218 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 3219 tos = (fstat >> 11) & 0x7;
5716833c
MK
3220 fpreg = (mmxreg + tos) % 8;
3221
20a6ec49 3222 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
3223}
3224
3543a589
TT
3225/* A helper function for us by i386_pseudo_register_read_value and
3226 amd64_pseudo_register_read_value. It does all the work but reads
3227 the data into an already-allocated value. */
3228
3229void
3230i386_pseudo_register_read_into_value (struct gdbarch *gdbarch,
3231 struct regcache *regcache,
3232 int regnum,
3233 struct value *result_value)
28fc6740 3234{
1ba53b71 3235 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 3236 enum register_status status;
3543a589 3237 gdb_byte *buf = value_contents_raw (result_value);
1ba53b71 3238
5716833c 3239 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3240 {
c86c27af
MK
3241 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3242
28fc6740 3243 /* Extract (always little endian). */
05d1431c
PA
3244 status = regcache_raw_read (regcache, fpnum, raw_buf);
3245 if (status != REG_VALID)
3543a589
TT
3246 mark_value_bytes_unavailable (result_value, 0,
3247 TYPE_LENGTH (value_type (result_value)));
3248 else
3249 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
3250 }
3251 else
1ba53b71
L
3252 {
3253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1dbcd68c
WT
3254 if (i386_bnd_regnum_p (gdbarch, regnum))
3255 {
3256 regnum -= tdep->bnd0_regnum;
1ba53b71 3257
1dbcd68c
WT
3258 /* Extract (always little endian). Read lower 128bits. */
3259 status = regcache_raw_read (regcache,
3260 I387_BND0R_REGNUM (tdep) + regnum,
3261 raw_buf);
3262 if (status != REG_VALID)
3263 mark_value_bytes_unavailable (result_value, 0, 16);
3264 else
3265 {
3266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3267 LONGEST upper, lower;
3268 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3269
3270 lower = extract_unsigned_integer (raw_buf, 8, byte_order);
3271 upper = extract_unsigned_integer (raw_buf + 8, 8, byte_order);
3272 upper = ~upper;
3273
3274 memcpy (buf, &lower, size);
3275 memcpy (buf + size, &upper, size);
3276 }
3277 }
01f9f808
MS
3278 else if (i386_k_regnum_p (gdbarch, regnum))
3279 {
3280 regnum -= tdep->k0_regnum;
3281
3282 /* Extract (always little endian). */
3283 status = regcache_raw_read (regcache,
3284 tdep->k0_regnum + regnum,
3285 raw_buf);
3286 if (status != REG_VALID)
3287 mark_value_bytes_unavailable (result_value, 0, 8);
3288 else
3289 memcpy (buf, raw_buf, 8);
3290 }
3291 else if (i386_zmm_regnum_p (gdbarch, regnum))
3292 {
3293 regnum -= tdep->zmm0_regnum;
3294
3295 if (regnum < num_lower_zmm_regs)
3296 {
3297 /* Extract (always little endian). Read lower 128bits. */
3298 status = regcache_raw_read (regcache,
3299 I387_XMM0_REGNUM (tdep) + regnum,
3300 raw_buf);
3301 if (status != REG_VALID)
3302 mark_value_bytes_unavailable (result_value, 0, 16);
3303 else
3304 memcpy (buf, raw_buf, 16);
3305
3306 /* Extract (always little endian). Read upper 128bits. */
3307 status = regcache_raw_read (regcache,
3308 tdep->ymm0h_regnum + regnum,
3309 raw_buf);
3310 if (status != REG_VALID)
3311 mark_value_bytes_unavailable (result_value, 16, 16);
3312 else
3313 memcpy (buf + 16, raw_buf, 16);
3314 }
3315 else
3316 {
3317 /* Extract (always little endian). Read lower 128bits. */
3318 status = regcache_raw_read (regcache,
3319 I387_XMM16_REGNUM (tdep) + regnum
3320 - num_lower_zmm_regs,
3321 raw_buf);
3322 if (status != REG_VALID)
3323 mark_value_bytes_unavailable (result_value, 0, 16);
3324 else
3325 memcpy (buf, raw_buf, 16);
3326
3327 /* Extract (always little endian). Read upper 128bits. */
3328 status = regcache_raw_read (regcache,
3329 I387_YMM16H_REGNUM (tdep) + regnum
3330 - num_lower_zmm_regs,
3331 raw_buf);
3332 if (status != REG_VALID)
3333 mark_value_bytes_unavailable (result_value, 16, 16);
3334 else
3335 memcpy (buf + 16, raw_buf, 16);
3336 }
3337
3338 /* Read upper 256bits. */
3339 status = regcache_raw_read (regcache,
3340 tdep->zmm0h_regnum + regnum,
3341 raw_buf);
3342 if (status != REG_VALID)
3343 mark_value_bytes_unavailable (result_value, 32, 32);
3344 else
3345 memcpy (buf + 32, raw_buf, 32);
3346 }
1dbcd68c 3347 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3348 {
3349 regnum -= tdep->ymm0_regnum;
3350
1777feb0 3351 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
3352 status = regcache_raw_read (regcache,
3353 I387_XMM0_REGNUM (tdep) + regnum,
3354 raw_buf);
3355 if (status != REG_VALID)
3543a589
TT
3356 mark_value_bytes_unavailable (result_value, 0, 16);
3357 else
3358 memcpy (buf, raw_buf, 16);
c131fcee 3359 /* Read upper 128bits. */
05d1431c
PA
3360 status = regcache_raw_read (regcache,
3361 tdep->ymm0h_regnum + regnum,
3362 raw_buf);
3363 if (status != REG_VALID)
3543a589
TT
3364 mark_value_bytes_unavailable (result_value, 16, 32);
3365 else
3366 memcpy (buf + 16, raw_buf, 16);
c131fcee 3367 }
01f9f808
MS
3368 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3369 {
3370 regnum -= tdep->ymm16_regnum;
3371 /* Extract (always little endian). Read lower 128bits. */
3372 status = regcache_raw_read (regcache,
3373 I387_XMM16_REGNUM (tdep) + regnum,
3374 raw_buf);
3375 if (status != REG_VALID)
3376 mark_value_bytes_unavailable (result_value, 0, 16);
3377 else
3378 memcpy (buf, raw_buf, 16);
3379 /* Read upper 128bits. */
3380 status = regcache_raw_read (regcache,
3381 tdep->ymm16h_regnum + regnum,
3382 raw_buf);
3383 if (status != REG_VALID)
3384 mark_value_bytes_unavailable (result_value, 16, 16);
3385 else
3386 memcpy (buf + 16, raw_buf, 16);
3387 }
c131fcee 3388 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3389 {
3390 int gpnum = regnum - tdep->ax_regnum;
3391
3392 /* Extract (always little endian). */
05d1431c
PA
3393 status = regcache_raw_read (regcache, gpnum, raw_buf);
3394 if (status != REG_VALID)
3543a589
TT
3395 mark_value_bytes_unavailable (result_value, 0,
3396 TYPE_LENGTH (value_type (result_value)));
3397 else
3398 memcpy (buf, raw_buf, 2);
1ba53b71
L
3399 }
3400 else if (i386_byte_regnum_p (gdbarch, regnum))
3401 {
3402 /* Check byte pseudo registers last since this function will
3403 be called from amd64_pseudo_register_read, which handles
3404 byte pseudo registers differently. */
3405 int gpnum = regnum - tdep->al_regnum;
3406
3407 /* Extract (always little endian). We read both lower and
3408 upper registers. */
05d1431c
PA
3409 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
3410 if (status != REG_VALID)
3543a589
TT
3411 mark_value_bytes_unavailable (result_value, 0,
3412 TYPE_LENGTH (value_type (result_value)));
3413 else if (gpnum >= 4)
1ba53b71
L
3414 memcpy (buf, raw_buf + 1, 1);
3415 else
3416 memcpy (buf, raw_buf, 1);
3417 }
3418 else
3419 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3420 }
3543a589
TT
3421}
3422
3423static struct value *
3424i386_pseudo_register_read_value (struct gdbarch *gdbarch,
3425 struct regcache *regcache,
3426 int regnum)
3427{
3428 struct value *result;
3429
3430 result = allocate_value (register_type (gdbarch, regnum));
3431 VALUE_LVAL (result) = lval_register;
3432 VALUE_REGNUM (result) = regnum;
3433
3434 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum, result);
05d1431c 3435
3543a589 3436 return result;
28fc6740
AC
3437}
3438
1ba53b71 3439void
28fc6740 3440i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 3441 int regnum, const gdb_byte *buf)
28fc6740 3442{
1ba53b71
L
3443 gdb_byte raw_buf[MAX_REGISTER_SIZE];
3444
5716833c 3445 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 3446 {
c86c27af
MK
3447 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
3448
28fc6740 3449 /* Read ... */
1ba53b71 3450 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 3451 /* ... Modify ... (always little endian). */
1ba53b71 3452 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 3453 /* ... Write. */
1ba53b71 3454 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
3455 }
3456 else
1ba53b71
L
3457 {
3458 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3459
1dbcd68c
WT
3460 if (i386_bnd_regnum_p (gdbarch, regnum))
3461 {
3462 ULONGEST upper, lower;
3463 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
3464 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3465
3466 /* New values from input value. */
3467 regnum -= tdep->bnd0_regnum;
3468 lower = extract_unsigned_integer (buf, size, byte_order);
3469 upper = extract_unsigned_integer (buf + size, size, byte_order);
3470
3471 /* Fetching register buffer. */
3472 regcache_raw_read (regcache,
3473 I387_BND0R_REGNUM (tdep) + regnum,
3474 raw_buf);
3475
3476 upper = ~upper;
3477
3478 /* Set register bits. */
3479 memcpy (raw_buf, &lower, 8);
3480 memcpy (raw_buf + 8, &upper, 8);
3481
3482
3483 regcache_raw_write (regcache,
3484 I387_BND0R_REGNUM (tdep) + regnum,
3485 raw_buf);
3486 }
01f9f808
MS
3487 else if (i386_k_regnum_p (gdbarch, regnum))
3488 {
3489 regnum -= tdep->k0_regnum;
3490
3491 regcache_raw_write (regcache,
3492 tdep->k0_regnum + regnum,
3493 buf);
3494 }
3495 else if (i386_zmm_regnum_p (gdbarch, regnum))
3496 {
3497 regnum -= tdep->zmm0_regnum;
3498
3499 if (regnum < num_lower_zmm_regs)
3500 {
3501 /* Write lower 128bits. */
3502 regcache_raw_write (regcache,
3503 I387_XMM0_REGNUM (tdep) + regnum,
3504 buf);
3505 /* Write upper 128bits. */
3506 regcache_raw_write (regcache,
3507 I387_YMM0_REGNUM (tdep) + regnum,
3508 buf + 16);
3509 }
3510 else
3511 {
3512 /* Write lower 128bits. */
3513 regcache_raw_write (regcache,
3514 I387_XMM16_REGNUM (tdep) + regnum
3515 - num_lower_zmm_regs,
3516 buf);
3517 /* Write upper 128bits. */
3518 regcache_raw_write (regcache,
3519 I387_YMM16H_REGNUM (tdep) + regnum
3520 - num_lower_zmm_regs,
3521 buf + 16);
3522 }
3523 /* Write upper 256bits. */
3524 regcache_raw_write (regcache,
3525 tdep->zmm0h_regnum + regnum,
3526 buf + 32);
3527 }
1dbcd68c 3528 else if (i386_ymm_regnum_p (gdbarch, regnum))
c131fcee
L
3529 {
3530 regnum -= tdep->ymm0_regnum;
3531
3532 /* ... Write lower 128bits. */
3533 regcache_raw_write (regcache,
3534 I387_XMM0_REGNUM (tdep) + regnum,
3535 buf);
3536 /* ... Write upper 128bits. */
3537 regcache_raw_write (regcache,
3538 tdep->ymm0h_regnum + regnum,
3539 buf + 16);
3540 }
01f9f808
MS
3541 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
3542 {
3543 regnum -= tdep->ymm16_regnum;
3544
3545 /* ... Write lower 128bits. */
3546 regcache_raw_write (regcache,
3547 I387_XMM16_REGNUM (tdep) + regnum,
3548 buf);
3549 /* ... Write upper 128bits. */
3550 regcache_raw_write (regcache,
3551 tdep->ymm16h_regnum + regnum,
3552 buf + 16);
3553 }
c131fcee 3554 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3555 {
3556 int gpnum = regnum - tdep->ax_regnum;
3557
3558 /* Read ... */
3559 regcache_raw_read (regcache, gpnum, raw_buf);
3560 /* ... Modify ... (always little endian). */
3561 memcpy (raw_buf, buf, 2);
3562 /* ... Write. */
3563 regcache_raw_write (regcache, gpnum, raw_buf);
3564 }
3565 else if (i386_byte_regnum_p (gdbarch, regnum))
3566 {
3567 /* Check byte pseudo registers last since this function will
3568 be called from amd64_pseudo_register_read, which handles
3569 byte pseudo registers differently. */
3570 int gpnum = regnum - tdep->al_regnum;
3571
3572 /* Read ... We read both lower and upper registers. */
3573 regcache_raw_read (regcache, gpnum % 4, raw_buf);
3574 /* ... Modify ... (always little endian). */
3575 if (gpnum >= 4)
3576 memcpy (raw_buf + 1, buf, 1);
3577 else
3578 memcpy (raw_buf, buf, 1);
3579 /* ... Write. */
3580 regcache_raw_write (regcache, gpnum % 4, raw_buf);
3581 }
3582 else
3583 internal_error (__FILE__, __LINE__, _("invalid regnum"));
3584 }
28fc6740 3585}
ff2e87ac
AC
3586\f
3587
ff2e87ac
AC
3588/* Return the register number of the register allocated by GCC after
3589 REGNUM, or -1 if there is no such register. */
3590
3591static int
3592i386_next_regnum (int regnum)
3593{
3594 /* GCC allocates the registers in the order:
3595
3596 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
3597
3598 Since storing a variable in %esp doesn't make any sense we return
3599 -1 for %ebp and for %esp itself. */
3600 static int next_regnum[] =
3601 {
3602 I386_EDX_REGNUM, /* Slot for %eax. */
3603 I386_EBX_REGNUM, /* Slot for %ecx. */
3604 I386_ECX_REGNUM, /* Slot for %edx. */
3605 I386_ESI_REGNUM, /* Slot for %ebx. */
3606 -1, -1, /* Slots for %esp and %ebp. */
3607 I386_EDI_REGNUM, /* Slot for %esi. */
3608 I386_EBP_REGNUM /* Slot for %edi. */
3609 };
3610
de5b9bb9 3611 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 3612 return next_regnum[regnum];
28fc6740 3613
ff2e87ac
AC
3614 return -1;
3615}
3616
3617/* Return nonzero if a value of type TYPE stored in register REGNUM
3618 needs any special handling. */
d7a0d72c 3619
3a1e71e3 3620static int
1777feb0
MS
3621i386_convert_register_p (struct gdbarch *gdbarch,
3622 int regnum, struct type *type)
d7a0d72c 3623{
de5b9bb9
MK
3624 int len = TYPE_LENGTH (type);
3625
ff2e87ac
AC
3626 /* Values may be spread across multiple registers. Most debugging
3627 formats aren't expressive enough to specify the locations, so
3628 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
3629 have a length that is a multiple of the word size, since GCC
3630 doesn't seem to put any other types into registers. */
3631 if (len > 4 && len % 4 == 0)
3632 {
3633 int last_regnum = regnum;
3634
3635 while (len > 4)
3636 {
3637 last_regnum = i386_next_regnum (last_regnum);
3638 len -= 4;
3639 }
3640
3641 if (last_regnum != -1)
3642 return 1;
3643 }
ff2e87ac 3644
0abe36f5 3645 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
3646}
3647
ff2e87ac
AC
3648/* Read a value of type TYPE from register REGNUM in frame FRAME, and
3649 return its contents in TO. */
ac27f131 3650
8dccd430 3651static int
ff2e87ac 3652i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
3653 struct type *type, gdb_byte *to,
3654 int *optimizedp, int *unavailablep)
ac27f131 3655{
20a6ec49 3656 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 3657 int len = TYPE_LENGTH (type);
de5b9bb9 3658
20a6ec49 3659 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
3660 return i387_register_to_value (frame, regnum, type, to,
3661 optimizedp, unavailablep);
ff2e87ac 3662
fd35795f 3663 /* Read a value spread across multiple registers. */
de5b9bb9
MK
3664
3665 gdb_assert (len > 4 && len % 4 == 0);
3d261580 3666
de5b9bb9
MK
3667 while (len > 0)
3668 {
3669 gdb_assert (regnum != -1);
20a6ec49 3670 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 3671
8dccd430
PA
3672 if (!get_frame_register_bytes (frame, regnum, 0,
3673 register_size (gdbarch, regnum),
3674 to, optimizedp, unavailablep))
3675 return 0;
3676
de5b9bb9
MK
3677 regnum = i386_next_regnum (regnum);
3678 len -= 4;
42835c2b 3679 to += 4;
de5b9bb9 3680 }
8dccd430
PA
3681
3682 *optimizedp = *unavailablep = 0;
3683 return 1;
ac27f131
MK
3684}
3685
ff2e87ac
AC
3686/* Write the contents FROM of a value of type TYPE into register
3687 REGNUM in frame FRAME. */
ac27f131 3688
3a1e71e3 3689static void
ff2e87ac 3690i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 3691 struct type *type, const gdb_byte *from)
ac27f131 3692{
de5b9bb9 3693 int len = TYPE_LENGTH (type);
de5b9bb9 3694
20a6ec49 3695 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 3696 {
d532c08f
MK
3697 i387_value_to_register (frame, regnum, type, from);
3698 return;
3699 }
3d261580 3700
fd35795f 3701 /* Write a value spread across multiple registers. */
de5b9bb9
MK
3702
3703 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 3704
de5b9bb9
MK
3705 while (len > 0)
3706 {
3707 gdb_assert (regnum != -1);
875f8d0e 3708 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 3709
42835c2b 3710 put_frame_register (frame, regnum, from);
de5b9bb9
MK
3711 regnum = i386_next_regnum (regnum);
3712 len -= 4;
42835c2b 3713 from += 4;
de5b9bb9 3714 }
ac27f131 3715}
ff2e87ac 3716\f
7fdafb5a
MK
3717/* Supply register REGNUM from the buffer specified by GREGS and LEN
3718 in the general-purpose register set REGSET to register cache
3719 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 3720
20187ed5 3721void
473f17b0
MK
3722i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
3723 int regnum, const void *gregs, size_t len)
3724{
09424cff
AA
3725 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3726 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3727 const gdb_byte *regs = gregs;
473f17b0
MK
3728 int i;
3729
3730 gdb_assert (len == tdep->sizeof_gregset);
3731
3732 for (i = 0; i < tdep->gregset_num_regs; i++)
3733 {
3734 if ((regnum == i || regnum == -1)
3735 && tdep->gregset_reg_offset[i] != -1)
3736 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
3737 }
3738}
3739
7fdafb5a
MK
3740/* Collect register REGNUM from the register cache REGCACHE and store
3741 it in the buffer specified by GREGS and LEN as described by the
3742 general-purpose register set REGSET. If REGNUM is -1, do this for
3743 all registers in REGSET. */
3744
ecc37a5a 3745static void
7fdafb5a
MK
3746i386_collect_gregset (const struct regset *regset,
3747 const struct regcache *regcache,
3748 int regnum, void *gregs, size_t len)
3749{
09424cff
AA
3750 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3751 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
156cdbee 3752 gdb_byte *regs = gregs;
7fdafb5a
MK
3753 int i;
3754
3755 gdb_assert (len == tdep->sizeof_gregset);
3756
3757 for (i = 0; i < tdep->gregset_num_regs; i++)
3758 {
3759 if ((regnum == i || regnum == -1)
3760 && tdep->gregset_reg_offset[i] != -1)
3761 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
3762 }
3763}
3764
3765/* Supply register REGNUM from the buffer specified by FPREGS and LEN
3766 in the floating-point register set REGSET to register cache
3767 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
3768
3769static void
3770i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3771 int regnum, const void *fpregs, size_t len)
3772{
09424cff
AA
3773 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3774 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
473f17b0 3775
66a72d25
MK
3776 if (len == I387_SIZEOF_FXSAVE)
3777 {
3778 i387_supply_fxsave (regcache, regnum, fpregs);
3779 return;
3780 }
3781
473f17b0
MK
3782 gdb_assert (len == tdep->sizeof_fpregset);
3783 i387_supply_fsave (regcache, regnum, fpregs);
3784}
8446b36a 3785
2f305df1
MK
3786/* Collect register REGNUM from the register cache REGCACHE and store
3787 it in the buffer specified by FPREGS and LEN as described by the
3788 floating-point register set REGSET. If REGNUM is -1, do this for
3789 all registers in REGSET. */
7fdafb5a
MK
3790
3791static void
3792i386_collect_fpregset (const struct regset *regset,
3793 const struct regcache *regcache,
3794 int regnum, void *fpregs, size_t len)
3795{
09424cff
AA
3796 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3797 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7fdafb5a
MK
3798
3799 if (len == I387_SIZEOF_FXSAVE)
3800 {
3801 i387_collect_fxsave (regcache, regnum, fpregs);
3802 return;
3803 }
3804
3805 gdb_assert (len == tdep->sizeof_fpregset);
3806 i387_collect_fsave (regcache, regnum, fpregs);
3807}
3808
c131fcee
L
3809/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3810
3811static void
3812i386_supply_xstateregset (const struct regset *regset,
3813 struct regcache *regcache, int regnum,
3814 const void *xstateregs, size_t len)
3815{
c131fcee
L
3816 i387_supply_xsave (regcache, regnum, xstateregs);
3817}
3818
3819/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3820
3821static void
3822i386_collect_xstateregset (const struct regset *regset,
3823 const struct regcache *regcache,
3824 int regnum, void *xstateregs, size_t len)
3825{
c131fcee
L
3826 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3827}
3828
ecc37a5a
AA
3829/* Register set definitions. */
3830
3831const struct regset i386_gregset =
3832 {
3833 NULL, i386_supply_gregset, i386_collect_gregset
3834 };
3835
3836static const struct regset i386_fpregset =
3837 {
3838 NULL, i386_supply_fpregset, i386_collect_fpregset
3839 };
3840
3841static const struct regset i386_xstateregset =
3842 {
3843 NULL, i386_supply_xstateregset, i386_collect_xstateregset
3844 };
3845
8446b36a
MK
3846/* Return the appropriate register set for the core section identified
3847 by SECT_NAME and SECT_SIZE. */
3848
3849const struct regset *
3850i386_regset_from_core_section (struct gdbarch *gdbarch,
3851 const char *sect_name, size_t sect_size)
3852{
3853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3854
3855 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
ecc37a5a 3856 return &i386_gregset;
8446b36a 3857
66a72d25
MK
3858 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3859 || (strcmp (sect_name, ".reg-xfp") == 0
3860 && sect_size == I387_SIZEOF_FXSAVE))
ecc37a5a 3861 return &i386_fpregset;
8446b36a 3862
c131fcee 3863 if (strcmp (sect_name, ".reg-xstate") == 0)
ecc37a5a 3864 return &i386_xstateregset;
c131fcee 3865
8446b36a
MK
3866 return NULL;
3867}
473f17b0 3868\f
fc338970 3869
fc338970 3870/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3871
3872CORE_ADDR
e17a4113
UW
3873i386_pe_skip_trampoline_code (struct frame_info *frame,
3874 CORE_ADDR pc, char *name)
c906108c 3875{
e17a4113
UW
3876 struct gdbarch *gdbarch = get_frame_arch (frame);
3877 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3878
3879 /* jmp *(dest) */
3880 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3881 {
e17a4113
UW
3882 unsigned long indirect =
3883 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3884 struct minimal_symbol *indsym =
7cbd4a93 3885 indirect ? lookup_minimal_symbol_by_pc (indirect).minsym : 0;
efd66ac6 3886 const char *symname = indsym ? MSYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3887
c5aa993b 3888 if (symname)
c906108c 3889 {
c5aa993b
JM
3890 if (strncmp (symname, "__imp_", 6) == 0
3891 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3892 return name ? 1 :
3893 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3894 }
3895 }
fc338970 3896 return 0; /* Not a trampoline. */
c906108c 3897}
fc338970
MK
3898\f
3899
10458914
DJ
3900/* Return whether the THIS_FRAME corresponds to a sigtramp
3901 routine. */
8201327c 3902
4bd207ef 3903int
10458914 3904i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3905{
10458914 3906 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3907 const char *name;
911bc6ee
MK
3908
3909 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3910 return (name && strcmp ("_sigtramp", name) == 0);
3911}
3912\f
3913
fc338970
MK
3914/* We have two flavours of disassembly. The machinery on this page
3915 deals with switching between those. */
c906108c
SS
3916
3917static int
a89aa300 3918i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3919{
5e3397bb
MK
3920 gdb_assert (disassembly_flavor == att_flavor
3921 || disassembly_flavor == intel_flavor);
3922
3923 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3924 constified, cast to prevent a compiler warning. */
3925 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3926
3927 return print_insn_i386 (pc, info);
7a292a7a 3928}
fc338970 3929\f
3ce1502b 3930
8201327c
MK
3931/* There are a few i386 architecture variants that differ only
3932 slightly from the generic i386 target. For now, we don't give them
3933 their own source file, but include them here. As a consequence,
3934 they'll always be included. */
3ce1502b 3935
8201327c 3936/* System V Release 4 (SVR4). */
3ce1502b 3937
10458914
DJ
3938/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3939 routine. */
911bc6ee 3940
8201327c 3941static int
10458914 3942i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3943{
10458914 3944 CORE_ADDR pc = get_frame_pc (this_frame);
2c02bd72 3945 const char *name;
911bc6ee 3946
05b4bd79 3947 /* The origin of these symbols is currently unknown. */
911bc6ee 3948 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c 3949 return (name && (strcmp ("_sigreturn", name) == 0
8201327c
MK
3950 || strcmp ("sigvechandler", name) == 0));
3951}
d2a7c97a 3952
10458914
DJ
3953/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3954 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3955
3a1e71e3 3956static CORE_ADDR
10458914 3957i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3958{
e17a4113
UW
3959 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3960 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3961 gdb_byte buf[4];
acd5c798 3962 CORE_ADDR sp;
3ce1502b 3963
10458914 3964 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3965 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3966
e17a4113 3967 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c 3968}
55aa24fb
SDJ
3969
3970\f
3971
3972/* Implementation of `gdbarch_stap_is_single_operand', as defined in
3973 gdbarch.h. */
3974
3975int
3976i386_stap_is_single_operand (struct gdbarch *gdbarch, const char *s)
3977{
3978 return (*s == '$' /* Literal number. */
3979 || (isdigit (*s) && s[1] == '(' && s[2] == '%') /* Displacement. */
3980 || (*s == '(' && s[1] == '%') /* Register indirection. */
3981 || (*s == '%' && isalpha (s[1]))); /* Register access. */
3982}
3983
5acfdbae
SDJ
3984/* Helper function for i386_stap_parse_special_token.
3985
3986 This function parses operands of the form `-8+3+1(%rbp)', which
3987 must be interpreted as `*(-8 + 3 - 1 + (void *) $eax)'.
3988
3989 Return 1 if the operand was parsed successfully, zero
3990 otherwise. */
3991
3992static int
3993i386_stap_parse_special_token_triplet (struct gdbarch *gdbarch,
3994 struct stap_parse_info *p)
3995{
3996 const char *s = p->arg;
3997
3998 if (isdigit (*s) || *s == '-' || *s == '+')
3999 {
4000 int got_minus[3];
4001 int i;
4002 long displacements[3];
4003 const char *start;
4004 char *regname;
4005 int len;
4006 struct stoken str;
4007 char *endp;
4008
4009 got_minus[0] = 0;
4010 if (*s == '+')
4011 ++s;
4012 else if (*s == '-')
4013 {
4014 ++s;
4015 got_minus[0] = 1;
4016 }
4017
d7b30f67
SDJ
4018 if (!isdigit ((unsigned char) *s))
4019 return 0;
4020
5acfdbae
SDJ
4021 displacements[0] = strtol (s, &endp, 10);
4022 s = endp;
4023
4024 if (*s != '+' && *s != '-')
4025 {
4026 /* We are not dealing with a triplet. */
4027 return 0;
4028 }
4029
4030 got_minus[1] = 0;
4031 if (*s == '+')
4032 ++s;
4033 else
4034 {
4035 ++s;
4036 got_minus[1] = 1;
4037 }
4038
d7b30f67
SDJ
4039 if (!isdigit ((unsigned char) *s))
4040 return 0;
4041
5acfdbae
SDJ
4042 displacements[1] = strtol (s, &endp, 10);
4043 s = endp;
4044
4045 if (*s != '+' && *s != '-')
4046 {
4047 /* We are not dealing with a triplet. */
4048 return 0;
4049 }
4050
4051 got_minus[2] = 0;
4052 if (*s == '+')
4053 ++s;
4054 else
4055 {
4056 ++s;
4057 got_minus[2] = 1;
4058 }
4059
d7b30f67
SDJ
4060 if (!isdigit ((unsigned char) *s))
4061 return 0;
4062
5acfdbae
SDJ
4063 displacements[2] = strtol (s, &endp, 10);
4064 s = endp;
4065
4066 if (*s != '(' || s[1] != '%')
4067 return 0;
4068
4069 s += 2;
4070 start = s;
4071
4072 while (isalnum (*s))
4073 ++s;
4074
4075 if (*s++ != ')')
4076 return 0;
4077
d7b30f67 4078 len = s - start - 1;
5acfdbae
SDJ
4079 regname = alloca (len + 1);
4080
4081 strncpy (regname, start, len);
4082 regname[len] = '\0';
4083
4084 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
4085 error (_("Invalid register name `%s' on expression `%s'."),
4086 regname, p->saved_arg);
4087
4088 for (i = 0; i < 3; i++)
4089 {
410a0ff2
SDJ
4090 write_exp_elt_opcode (&p->pstate, OP_LONG);
4091 write_exp_elt_type
4092 (&p->pstate, builtin_type (gdbarch)->builtin_long);
4093 write_exp_elt_longcst (&p->pstate, displacements[i]);
4094 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4095 if (got_minus[i])
410a0ff2 4096 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4097 }
4098
410a0ff2 4099 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4100 str.ptr = regname;
4101 str.length = len;
410a0ff2
SDJ
4102 write_exp_string (&p->pstate, str);
4103 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae 4104
410a0ff2
SDJ
4105 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4106 write_exp_elt_type (&p->pstate,
4107 builtin_type (gdbarch)->builtin_data_ptr);
4108 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4109
410a0ff2
SDJ
4110 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4111 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
4112 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4113
410a0ff2
SDJ
4114 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4115 write_exp_elt_type (&p->pstate,
4116 lookup_pointer_type (p->arg_type));
4117 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4118
410a0ff2 4119 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4120
4121 p->arg = s;
4122
4123 return 1;
4124 }
4125
4126 return 0;
4127}
4128
4129/* Helper function for i386_stap_parse_special_token.
4130
4131 This function parses operands of the form `register base +
4132 (register index * size) + offset', as represented in
4133 `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4134
4135 Return 1 if the operand was parsed successfully, zero
4136 otherwise. */
4137
4138static int
4139i386_stap_parse_special_token_three_arg_disp (struct gdbarch *gdbarch,
4140 struct stap_parse_info *p)
4141{
4142 const char *s = p->arg;
4143
4144 if (isdigit (*s) || *s == '(' || *s == '-' || *s == '+')
4145 {
4146 int offset_minus = 0;
4147 long offset = 0;
4148 int size_minus = 0;
4149 long size = 0;
4150 const char *start;
4151 char *base;
4152 int len_base;
4153 char *index;
4154 int len_index;
4155 struct stoken base_token, index_token;
4156
4157 if (*s == '+')
4158 ++s;
4159 else if (*s == '-')
4160 {
4161 ++s;
4162 offset_minus = 1;
4163 }
4164
4165 if (offset_minus && !isdigit (*s))
4166 return 0;
4167
4168 if (isdigit (*s))
4169 {
4170 char *endp;
4171
4172 offset = strtol (s, &endp, 10);
4173 s = endp;
4174 }
4175
4176 if (*s != '(' || s[1] != '%')
4177 return 0;
4178
4179 s += 2;
4180 start = s;
4181
4182 while (isalnum (*s))
4183 ++s;
4184
4185 if (*s != ',' || s[1] != '%')
4186 return 0;
4187
4188 len_base = s - start;
4189 base = alloca (len_base + 1);
4190 strncpy (base, start, len_base);
4191 base[len_base] = '\0';
4192
4193 if (user_reg_map_name_to_regnum (gdbarch, base, len_base) == -1)
4194 error (_("Invalid register name `%s' on expression `%s'."),
4195 base, p->saved_arg);
4196
4197 s += 2;
4198 start = s;
4199
4200 while (isalnum (*s))
4201 ++s;
4202
4203 len_index = s - start;
4204 index = alloca (len_index + 1);
4205 strncpy (index, start, len_index);
4206 index[len_index] = '\0';
4207
4208 if (user_reg_map_name_to_regnum (gdbarch, index, len_index) == -1)
4209 error (_("Invalid register name `%s' on expression `%s'."),
4210 index, p->saved_arg);
4211
4212 if (*s != ',' && *s != ')')
4213 return 0;
4214
4215 if (*s == ',')
4216 {
4217 char *endp;
4218
4219 ++s;
4220 if (*s == '+')
4221 ++s;
4222 else if (*s == '-')
4223 {
4224 ++s;
4225 size_minus = 1;
4226 }
4227
4228 size = strtol (s, &endp, 10);
4229 s = endp;
4230
4231 if (*s != ')')
4232 return 0;
4233 }
4234
4235 ++s;
4236
4237 if (offset)
4238 {
410a0ff2
SDJ
4239 write_exp_elt_opcode (&p->pstate, OP_LONG);
4240 write_exp_elt_type (&p->pstate,
4241 builtin_type (gdbarch)->builtin_long);
4242 write_exp_elt_longcst (&p->pstate, offset);
4243 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4244 if (offset_minus)
410a0ff2 4245 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
5acfdbae
SDJ
4246 }
4247
410a0ff2 4248 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4249 base_token.ptr = base;
4250 base_token.length = len_base;
410a0ff2
SDJ
4251 write_exp_string (&p->pstate, base_token);
4252 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4253
4254 if (offset)
410a0ff2 4255 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4256
410a0ff2 4257 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4258 index_token.ptr = index;
4259 index_token.length = len_index;
410a0ff2
SDJ
4260 write_exp_string (&p->pstate, index_token);
4261 write_exp_elt_opcode (&p->pstate, OP_REGISTER);
5acfdbae
SDJ
4262
4263 if (size)
4264 {
410a0ff2
SDJ
4265 write_exp_elt_opcode (&p->pstate, OP_LONG);
4266 write_exp_elt_type (&p->pstate,
4267 builtin_type (gdbarch)->builtin_long);
4268 write_exp_elt_longcst (&p->pstate, size);
4269 write_exp_elt_opcode (&p->pstate, OP_LONG);
5acfdbae 4270 if (size_minus)
410a0ff2
SDJ
4271 write_exp_elt_opcode (&p->pstate, UNOP_NEG);
4272 write_exp_elt_opcode (&p->pstate, BINOP_MUL);
5acfdbae
SDJ
4273 }
4274
410a0ff2 4275 write_exp_elt_opcode (&p->pstate, BINOP_ADD);
5acfdbae 4276
410a0ff2
SDJ
4277 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
4278 write_exp_elt_type (&p->pstate,
4279 lookup_pointer_type (p->arg_type));
4280 write_exp_elt_opcode (&p->pstate, UNOP_CAST);
5acfdbae 4281
410a0ff2 4282 write_exp_elt_opcode (&p->pstate, UNOP_IND);
5acfdbae
SDJ
4283
4284 p->arg = s;
4285
4286 return 1;
4287 }
4288
4289 return 0;
4290}
4291
55aa24fb
SDJ
4292/* Implementation of `gdbarch_stap_parse_special_token', as defined in
4293 gdbarch.h. */
4294
4295int
4296i386_stap_parse_special_token (struct gdbarch *gdbarch,
4297 struct stap_parse_info *p)
4298{
55aa24fb
SDJ
4299 /* In order to parse special tokens, we use a state-machine that go
4300 through every known token and try to get a match. */
4301 enum
4302 {
4303 TRIPLET,
4304 THREE_ARG_DISPLACEMENT,
4305 DONE
4306 } current_state;
4307
4308 current_state = TRIPLET;
4309
4310 /* The special tokens to be parsed here are:
4311
4312 - `register base + (register index * size) + offset', as represented
4313 in `(%rcx,%rax,8)', or `[OFFSET](BASE_REG,INDEX_REG[,SIZE])'.
4314
4315 - Operands of the form `-8+3+1(%rbp)', which must be interpreted as
4316 `*(-8 + 3 - 1 + (void *) $eax)'. */
4317
4318 while (current_state != DONE)
4319 {
55aa24fb
SDJ
4320 switch (current_state)
4321 {
4322 case TRIPLET:
5acfdbae
SDJ
4323 if (i386_stap_parse_special_token_triplet (gdbarch, p))
4324 return 1;
4325 break;
4326
55aa24fb 4327 case THREE_ARG_DISPLACEMENT:
5acfdbae
SDJ
4328 if (i386_stap_parse_special_token_three_arg_disp (gdbarch, p))
4329 return 1;
4330 break;
55aa24fb
SDJ
4331 }
4332
4333 /* Advancing to the next state. */
4334 ++current_state;
4335 }
4336
4337 return 0;
4338}
4339
8201327c 4340\f
3ce1502b 4341
8201327c 4342/* Generic ELF. */
d2a7c97a 4343
8201327c
MK
4344void
4345i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4346{
05c0465e
SDJ
4347 static const char *const stap_integer_prefixes[] = { "$", NULL };
4348 static const char *const stap_register_prefixes[] = { "%", NULL };
4349 static const char *const stap_register_indirection_prefixes[] = { "(",
4350 NULL };
4351 static const char *const stap_register_indirection_suffixes[] = { ")",
4352 NULL };
4353
c4fc7f1b
MK
4354 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
4355 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
55aa24fb
SDJ
4356
4357 /* Registering SystemTap handlers. */
05c0465e
SDJ
4358 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
4359 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
4360 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
4361 stap_register_indirection_prefixes);
4362 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
4363 stap_register_indirection_suffixes);
55aa24fb
SDJ
4364 set_gdbarch_stap_is_single_operand (gdbarch,
4365 i386_stap_is_single_operand);
4366 set_gdbarch_stap_parse_special_token (gdbarch,
4367 i386_stap_parse_special_token);
8201327c 4368}
3ce1502b 4369
8201327c 4370/* System V Release 4 (SVR4). */
3ce1502b 4371
8201327c
MK
4372void
4373i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
4374{
4375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4376
8201327c
MK
4377 /* System V Release 4 uses ELF. */
4378 i386_elf_init_abi (info, gdbarch);
3ce1502b 4379
dfe01d39 4380 /* System V Release 4 has shared libraries. */
dfe01d39
MK
4381 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
4382
911bc6ee 4383 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 4384 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
4385 tdep->sc_pc_offset = 36 + 14 * 4;
4386 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 4387
8201327c 4388 tdep->jb_pc_offset = 20;
3ce1502b
MK
4389}
4390
8201327c 4391/* DJGPP. */
3ce1502b 4392
3a1e71e3 4393static void
8201327c 4394i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 4395{
8201327c 4396 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 4397
911bc6ee
MK
4398 /* DJGPP doesn't have any special frames for signal handlers. */
4399 tdep->sigtramp_p = NULL;
3ce1502b 4400
8201327c 4401 tdep->jb_pc_offset = 36;
15430fc0
EZ
4402
4403 /* DJGPP does not support the SSE registers. */
3a13a53b
L
4404 if (! tdesc_has_registers (info.target_desc))
4405 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
4406
4407 /* Native compiler is GCC, which uses the SVR4 register numbering
4408 even in COFF and STABS. See the comment in i386_gdbarch_init,
4409 before the calls to set_gdbarch_stab_reg_to_regnum and
4410 set_gdbarch_sdb_reg_to_regnum. */
4411 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
4412 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
4413
4414 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 4415}
8201327c 4416\f
2acceee2 4417
38c968cf
AC
4418/* i386 register groups. In addition to the normal groups, add "mmx"
4419 and "sse". */
4420
4421static struct reggroup *i386_sse_reggroup;
4422static struct reggroup *i386_mmx_reggroup;
4423
4424static void
4425i386_init_reggroups (void)
4426{
4427 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
4428 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
4429}
4430
4431static void
4432i386_add_reggroups (struct gdbarch *gdbarch)
4433{
4434 reggroup_add (gdbarch, i386_sse_reggroup);
4435 reggroup_add (gdbarch, i386_mmx_reggroup);
4436 reggroup_add (gdbarch, general_reggroup);
4437 reggroup_add (gdbarch, float_reggroup);
4438 reggroup_add (gdbarch, all_reggroup);
4439 reggroup_add (gdbarch, save_reggroup);
4440 reggroup_add (gdbarch, restore_reggroup);
4441 reggroup_add (gdbarch, vector_reggroup);
4442 reggroup_add (gdbarch, system_reggroup);
4443}
4444
4445int
4446i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
4447 struct reggroup *group)
4448{
c131fcee
L
4449 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
01f9f808
MS
4451 ymm_regnum_p, ymmh_regnum_p, ymm_avx512_regnum_p, ymmh_avx512_regnum_p,
4452 bndr_regnum_p, bnd_regnum_p, k_regnum_p, zmm_regnum_p, zmmh_regnum_p,
4453 zmm_avx512_regnum_p, mpx_ctrl_regnum_p, xmm_avx512_regnum_p,
4454 avx512_p, avx_p, sse_p;
acd5c798 4455
1ba53b71
L
4456 /* Don't include pseudo registers, except for MMX, in any register
4457 groups. */
c131fcee 4458 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
4459 return 0;
4460
c131fcee 4461 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
4462 return 0;
4463
c131fcee 4464 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
4465 return 0;
4466
4467 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
4468 if (group == i386_mmx_reggroup)
4469 return mmx_regnum_p;
1ba53b71 4470
c131fcee 4471 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
01f9f808 4472 xmm_avx512_regnum_p = i386_xmm_avx512_regnum_p (gdbarch, regnum);
c131fcee 4473 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 4474 if (group == i386_sse_reggroup)
01f9f808 4475 return xmm_regnum_p || xmm_avx512_regnum_p || mxcsr_regnum_p;
c131fcee
L
4476
4477 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
01f9f808
MS
4478 ymm_avx512_regnum_p = i386_ymm_avx512_regnum_p (gdbarch, regnum);
4479 zmm_regnum_p = i386_zmm_regnum_p (gdbarch, regnum);
4480
4481 avx512_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4482 == I386_XSTATE_AVX512_MASK);
4483 avx_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4484 == I386_XSTATE_AVX_MASK) && !avx512_p;
4485 sse_p = ((tdep->xcr0 & I386_XSTATE_AVX512_MASK)
4486 == I386_XSTATE_SSE_MASK) && !avx512_p && ! avx_p;
4487
38c968cf 4488 if (group == vector_reggroup)
c131fcee 4489 return (mmx_regnum_p
01f9f808
MS
4490 || (zmm_regnum_p && avx512_p)
4491 || ((ymm_regnum_p || ymm_avx512_regnum_p) && avx_p)
4492 || ((xmm_regnum_p || xmm_avx512_regnum_p) && sse_p)
4493 || mxcsr_regnum_p);
1ba53b71
L
4494
4495 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
4496 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
4497 if (group == float_reggroup)
4498 return fp_regnum_p;
1ba53b71 4499
c131fcee
L
4500 /* For "info reg all", don't include upper YMM registers nor XMM
4501 registers when AVX is supported. */
4502 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
01f9f808
MS
4503 ymmh_avx512_regnum_p = i386_ymmh_avx512_regnum_p (gdbarch, regnum);
4504 zmmh_regnum_p = i386_zmmh_regnum_p (gdbarch, regnum);
c131fcee 4505 if (group == all_reggroup
01f9f808
MS
4506 && (((xmm_regnum_p || xmm_avx512_regnum_p) && !sse_p)
4507 || ((ymm_regnum_p || ymm_avx512_regnum_p) && !avx_p)
4508 || ymmh_regnum_p
4509 || ymmh_avx512_regnum_p
4510 || zmmh_regnum_p))
c131fcee
L
4511 return 0;
4512
1dbcd68c
WT
4513 bnd_regnum_p = i386_bnd_regnum_p (gdbarch, regnum);
4514 if (group == all_reggroup
4515 && ((bnd_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4516 return bnd_regnum_p;
4517
4518 bndr_regnum_p = i386_bndr_regnum_p (gdbarch, regnum);
4519 if (group == all_reggroup
4520 && ((bndr_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4521 return 0;
4522
4523 mpx_ctrl_regnum_p = i386_mpx_ctrl_regnum_p (gdbarch, regnum);
4524 if (group == all_reggroup
4525 && ((mpx_ctrl_regnum_p && (tdep->xcr0 & I386_XSTATE_MPX_MASK))))
4526 return mpx_ctrl_regnum_p;
4527
38c968cf 4528 if (group == general_reggroup)
1ba53b71
L
4529 return (!fp_regnum_p
4530 && !mmx_regnum_p
c131fcee
L
4531 && !mxcsr_regnum_p
4532 && !xmm_regnum_p
01f9f808 4533 && !xmm_avx512_regnum_p
c131fcee 4534 && !ymm_regnum_p
1dbcd68c 4535 && !ymmh_regnum_p
01f9f808
MS
4536 && !ymm_avx512_regnum_p
4537 && !ymmh_avx512_regnum_p
1dbcd68c
WT
4538 && !bndr_regnum_p
4539 && !bnd_regnum_p
01f9f808
MS
4540 && !mpx_ctrl_regnum_p
4541 && !zmm_regnum_p
4542 && !zmmh_regnum_p);
acd5c798 4543
38c968cf
AC
4544 return default_register_reggroup_p (gdbarch, regnum, group);
4545}
38c968cf 4546\f
acd5c798 4547
f837910f
MK
4548/* Get the ARGIth function argument for the current function. */
4549
42c466d7 4550static CORE_ADDR
143985b7
AF
4551i386_fetch_pointer_argument (struct frame_info *frame, int argi,
4552 struct type *type)
4553{
e17a4113
UW
4554 struct gdbarch *gdbarch = get_frame_arch (frame);
4555 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f4644a3f 4556 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 4557 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
4558}
4559
514f746b
AR
4560static void
4561i386_skip_permanent_breakpoint (struct regcache *regcache)
4562{
4563 CORE_ADDR current_pc = regcache_read_pc (regcache);
4564
4565 /* On i386, breakpoint is exactly 1 byte long, so we just
4566 adjust the PC in the regcache. */
4567 current_pc += 1;
4568 regcache_write_pc (regcache, current_pc);
4569}
4570
4571
7ad10968
HZ
4572#define PREFIX_REPZ 0x01
4573#define PREFIX_REPNZ 0x02
4574#define PREFIX_LOCK 0x04
4575#define PREFIX_DATA 0x08
4576#define PREFIX_ADDR 0x10
473f17b0 4577
7ad10968
HZ
4578/* operand size */
4579enum
4580{
4581 OT_BYTE = 0,
4582 OT_WORD,
4583 OT_LONG,
cf648174 4584 OT_QUAD,
a3c4230a 4585 OT_DQUAD,
7ad10968 4586};
473f17b0 4587
7ad10968
HZ
4588/* i386 arith/logic operations */
4589enum
4590{
4591 OP_ADDL,
4592 OP_ORL,
4593 OP_ADCL,
4594 OP_SBBL,
4595 OP_ANDL,
4596 OP_SUBL,
4597 OP_XORL,
4598 OP_CMPL,
4599};
5716833c 4600
7ad10968
HZ
4601struct i386_record_s
4602{
cf648174 4603 struct gdbarch *gdbarch;
7ad10968 4604 struct regcache *regcache;
df61f520 4605 CORE_ADDR orig_addr;
7ad10968
HZ
4606 CORE_ADDR addr;
4607 int aflag;
4608 int dflag;
4609 int override;
4610 uint8_t modrm;
4611 uint8_t mod, reg, rm;
4612 int ot;
cf648174
HZ
4613 uint8_t rex_x;
4614 uint8_t rex_b;
4615 int rip_offset;
4616 int popl_esp_hack;
4617 const int *regmap;
7ad10968 4618};
5716833c 4619
99c1624c
PA
4620/* Parse the "modrm" part of the memory address irp->addr points at.
4621 Returns -1 if something goes wrong, 0 otherwise. */
5716833c 4622
7ad10968
HZ
4623static int
4624i386_record_modrm (struct i386_record_s *irp)
4625{
cf648174 4626 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 4627
4ffa4fc7
PA
4628 if (record_read_memory (gdbarch, irp->addr, &irp->modrm, 1))
4629 return -1;
4630
7ad10968
HZ
4631 irp->addr++;
4632 irp->mod = (irp->modrm >> 6) & 3;
4633 irp->reg = (irp->modrm >> 3) & 7;
4634 irp->rm = irp->modrm & 7;
5716833c 4635
7ad10968
HZ
4636 return 0;
4637}
d2a7c97a 4638
99c1624c
PA
4639/* Extract the memory address that the current instruction writes to,
4640 and return it in *ADDR. Return -1 if something goes wrong. */
8201327c 4641
7ad10968 4642static int
cf648174 4643i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 4644{
cf648174 4645 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
4646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4647 gdb_byte buf[4];
4648 ULONGEST offset64;
21d0e8a4 4649
7ad10968 4650 *addr = 0;
1e87984a 4651 if (irp->aflag || irp->regmap[X86_RECORD_R8_REGNUM])
7ad10968 4652 {
1e87984a 4653 /* 32/64 bits */
7ad10968
HZ
4654 int havesib = 0;
4655 uint8_t scale = 0;
648d0c8b 4656 uint8_t byte;
7ad10968
HZ
4657 uint8_t index = 0;
4658 uint8_t base = irp->rm;
896fb97d 4659
7ad10968
HZ
4660 if (base == 4)
4661 {
4662 havesib = 1;
4ffa4fc7
PA
4663 if (record_read_memory (gdbarch, irp->addr, &byte, 1))
4664 return -1;
7ad10968 4665 irp->addr++;
648d0c8b
MS
4666 scale = (byte >> 6) & 3;
4667 index = ((byte >> 3) & 7) | irp->rex_x;
4668 base = (byte & 7);
7ad10968 4669 }
cf648174 4670 base |= irp->rex_b;
21d0e8a4 4671
7ad10968
HZ
4672 switch (irp->mod)
4673 {
4674 case 0:
4675 if ((base & 7) == 5)
4676 {
4677 base = 0xff;
4ffa4fc7
PA
4678 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4679 return -1;
7ad10968 4680 irp->addr += 4;
60a1502a 4681 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
4682 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
4683 *addr += irp->addr + irp->rip_offset;
7ad10968 4684 }
7ad10968
HZ
4685 break;
4686 case 1:
4ffa4fc7
PA
4687 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4688 return -1;
7ad10968 4689 irp->addr++;
60a1502a 4690 *addr = (int8_t) buf[0];
7ad10968
HZ
4691 break;
4692 case 2:
4ffa4fc7
PA
4693 if (record_read_memory (gdbarch, irp->addr, buf, 4))
4694 return -1;
60a1502a 4695 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
4696 irp->addr += 4;
4697 break;
4698 }
356a6b3e 4699
60a1502a 4700 offset64 = 0;
7ad10968 4701 if (base != 0xff)
cf648174
HZ
4702 {
4703 if (base == 4 && irp->popl_esp_hack)
4704 *addr += irp->popl_esp_hack;
4705 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 4706 &offset64);
7ad10968 4707 }
cf648174
HZ
4708 if (irp->aflag == 2)
4709 {
60a1502a 4710 *addr += offset64;
cf648174
HZ
4711 }
4712 else
60a1502a 4713 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 4714
7ad10968
HZ
4715 if (havesib && (index != 4 || scale != 0))
4716 {
cf648174 4717 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 4718 &offset64);
cf648174 4719 if (irp->aflag == 2)
60a1502a 4720 *addr += offset64 << scale;
cf648174 4721 else
60a1502a 4722 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968 4723 }
e85596e0
L
4724
4725 if (!irp->aflag)
4726 {
4727 /* Since we are in 64-bit mode with ADDR32 prefix, zero-extend
4728 address from 32-bit to 64-bit. */
4729 *addr = (uint32_t) *addr;
4730 }
7ad10968
HZ
4731 }
4732 else
4733 {
4734 /* 16 bits */
4735 switch (irp->mod)
4736 {
4737 case 0:
4738 if (irp->rm == 6)
4739 {
4ffa4fc7
PA
4740 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4741 return -1;
7ad10968 4742 irp->addr += 2;
60a1502a 4743 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4744 irp->rm = 0;
4745 goto no_rm;
4746 }
7ad10968
HZ
4747 break;
4748 case 1:
4ffa4fc7
PA
4749 if (record_read_memory (gdbarch, irp->addr, buf, 1))
4750 return -1;
7ad10968 4751 irp->addr++;
60a1502a 4752 *addr = (int8_t) buf[0];
7ad10968
HZ
4753 break;
4754 case 2:
4ffa4fc7
PA
4755 if (record_read_memory (gdbarch, irp->addr, buf, 2))
4756 return -1;
7ad10968 4757 irp->addr += 2;
60a1502a 4758 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
4759 break;
4760 }
c4fc7f1b 4761
7ad10968
HZ
4762 switch (irp->rm)
4763 {
4764 case 0:
cf648174
HZ
4765 regcache_raw_read_unsigned (irp->regcache,
4766 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4767 &offset64);
4768 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4769 regcache_raw_read_unsigned (irp->regcache,
4770 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4771 &offset64);
4772 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4773 break;
4774 case 1:
cf648174
HZ
4775 regcache_raw_read_unsigned (irp->regcache,
4776 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4777 &offset64);
4778 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4779 regcache_raw_read_unsigned (irp->regcache,
4780 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4781 &offset64);
4782 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4783 break;
4784 case 2:
cf648174
HZ
4785 regcache_raw_read_unsigned (irp->regcache,
4786 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4787 &offset64);
4788 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4789 regcache_raw_read_unsigned (irp->regcache,
4790 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4791 &offset64);
4792 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4793 break;
4794 case 3:
cf648174
HZ
4795 regcache_raw_read_unsigned (irp->regcache,
4796 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4797 &offset64);
4798 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
4799 regcache_raw_read_unsigned (irp->regcache,
4800 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4801 &offset64);
4802 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4803 break;
4804 case 4:
cf648174
HZ
4805 regcache_raw_read_unsigned (irp->regcache,
4806 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
4807 &offset64);
4808 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4809 break;
4810 case 5:
cf648174
HZ
4811 regcache_raw_read_unsigned (irp->regcache,
4812 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
4813 &offset64);
4814 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4815 break;
4816 case 6:
cf648174
HZ
4817 regcache_raw_read_unsigned (irp->regcache,
4818 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
4819 &offset64);
4820 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4821 break;
4822 case 7:
cf648174
HZ
4823 regcache_raw_read_unsigned (irp->regcache,
4824 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
4825 &offset64);
4826 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
4827 break;
4828 }
4829 *addr &= 0xffff;
4830 }
c4fc7f1b 4831
01fe1b41 4832 no_rm:
7ad10968
HZ
4833 return 0;
4834}
c4fc7f1b 4835
99c1624c
PA
4836/* Record the address and contents of the memory that will be changed
4837 by the current instruction. Return -1 if something goes wrong, 0
4838 otherwise. */
356a6b3e 4839
7ad10968
HZ
4840static int
4841i386_record_lea_modrm (struct i386_record_s *irp)
4842{
cf648174
HZ
4843 struct gdbarch *gdbarch = irp->gdbarch;
4844 uint64_t addr;
356a6b3e 4845
d7877f7e 4846 if (irp->override >= 0)
7ad10968 4847 {
25ea693b 4848 if (record_full_memory_query)
bb08c432
HZ
4849 {
4850 int q;
4851
4852 target_terminal_ours ();
4853 q = yquery (_("\
4854Process record ignores the memory change of instruction at address %s\n\
4855because it can't get the value of the segment register.\n\
4856Do you want to stop the program?"),
4857 paddress (gdbarch, irp->orig_addr));
4858 target_terminal_inferior ();
4859 if (q)
4860 return -1;
4861 }
4862
7ad10968
HZ
4863 return 0;
4864 }
61113f8b 4865
7ad10968
HZ
4866 if (i386_record_lea_modrm_addr (irp, &addr))
4867 return -1;
96297dab 4868
25ea693b 4869 if (record_full_arch_list_add_mem (addr, 1 << irp->ot))
7ad10968 4870 return -1;
a62cc96e 4871
7ad10968
HZ
4872 return 0;
4873}
b6197528 4874
99c1624c
PA
4875/* Record the effects of a push operation. Return -1 if something
4876 goes wrong, 0 otherwise. */
cf648174
HZ
4877
4878static int
4879i386_record_push (struct i386_record_s *irp, int size)
4880{
648d0c8b 4881 ULONGEST addr;
cf648174 4882
25ea693b
MM
4883 if (record_full_arch_list_add_reg (irp->regcache,
4884 irp->regmap[X86_RECORD_RESP_REGNUM]))
cf648174
HZ
4885 return -1;
4886 regcache_raw_read_unsigned (irp->regcache,
4887 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b 4888 &addr);
25ea693b 4889 if (record_full_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
4890 return -1;
4891
4892 return 0;
4893}
4894
0289bdd7
MS
4895
4896/* Defines contents to record. */
4897#define I386_SAVE_FPU_REGS 0xfffd
4898#define I386_SAVE_FPU_ENV 0xfffe
4899#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
4900
99c1624c
PA
4901/* Record the values of the floating point registers which will be
4902 changed by the current instruction. Returns -1 if something is
4903 wrong, 0 otherwise. */
0289bdd7
MS
4904
4905static int i386_record_floats (struct gdbarch *gdbarch,
4906 struct i386_record_s *ir,
4907 uint32_t iregnum)
4908{
4909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4910 int i;
4911
4912 /* Oza: Because of floating point insn push/pop of fpu stack is going to
4913 happen. Currently we store st0-st7 registers, but we need not store all
4914 registers all the time, in future we use ftag register and record only
4915 those who are not marked as an empty. */
4916
4917 if (I386_SAVE_FPU_REGS == iregnum)
4918 {
4919 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
4920 {
25ea693b 4921 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4922 return -1;
4923 }
4924 }
4925 else if (I386_SAVE_FPU_ENV == iregnum)
4926 {
4927 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4928 {
25ea693b 4929 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4930 return -1;
4931 }
4932 }
4933 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
4934 {
4935 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4936 {
25ea693b 4937 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4938 return -1;
4939 }
4940 }
4941 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
4942 (iregnum <= I387_FOP_REGNUM (tdep)))
4943 {
25ea693b 4944 if (record_full_arch_list_add_reg (ir->regcache,iregnum))
0289bdd7
MS
4945 return -1;
4946 }
4947 else
4948 {
4949 /* Parameter error. */
4950 return -1;
4951 }
4952 if(I386_SAVE_FPU_ENV != iregnum)
4953 {
4954 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
4955 {
25ea693b 4956 if (record_full_arch_list_add_reg (ir->regcache, i))
0289bdd7
MS
4957 return -1;
4958 }
4959 }
4960 return 0;
4961}
4962
99c1624c
PA
4963/* Parse the current instruction, and record the values of the
4964 registers and memory that will be changed by the current
4965 instruction. Returns -1 if something goes wrong, 0 otherwise. */
8201327c 4966
25ea693b
MM
4967#define I386_RECORD_FULL_ARCH_LIST_ADD_REG(regnum) \
4968 record_full_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
cf648174 4969
a6b808b4 4970int
7ad10968 4971i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 4972 CORE_ADDR input_addr)
7ad10968 4973{
60a1502a 4974 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 4975 int prefixes = 0;
580879fc 4976 int regnum = 0;
425b824a 4977 uint32_t opcode;
f4644a3f 4978 uint8_t opcode8;
648d0c8b 4979 ULONGEST addr;
60a1502a 4980 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 4981 struct i386_record_s ir;
0289bdd7 4982 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
4983 uint8_t rex_w = -1;
4984 uint8_t rex_r = 0;
7ad10968 4985
8408d274 4986 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 4987 ir.regcache = regcache;
648d0c8b
MS
4988 ir.addr = input_addr;
4989 ir.orig_addr = input_addr;
7ad10968
HZ
4990 ir.aflag = 1;
4991 ir.dflag = 1;
cf648174
HZ
4992 ir.override = -1;
4993 ir.popl_esp_hack = 0;
a3c4230a 4994 ir.regmap = tdep->record_regmap;
cf648174 4995 ir.gdbarch = gdbarch;
7ad10968
HZ
4996
4997 if (record_debug > 1)
4998 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
4999 "addr = %s\n",
5000 paddress (gdbarch, ir.addr));
7ad10968
HZ
5001
5002 /* prefixes */
5003 while (1)
5004 {
4ffa4fc7
PA
5005 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5006 return -1;
7ad10968 5007 ir.addr++;
425b824a 5008 switch (opcode8) /* Instruction prefixes */
7ad10968 5009 {
01fe1b41 5010 case REPE_PREFIX_OPCODE:
7ad10968
HZ
5011 prefixes |= PREFIX_REPZ;
5012 break;
01fe1b41 5013 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
5014 prefixes |= PREFIX_REPNZ;
5015 break;
01fe1b41 5016 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
5017 prefixes |= PREFIX_LOCK;
5018 break;
01fe1b41 5019 case CS_PREFIX_OPCODE:
cf648174 5020 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 5021 break;
01fe1b41 5022 case SS_PREFIX_OPCODE:
cf648174 5023 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 5024 break;
01fe1b41 5025 case DS_PREFIX_OPCODE:
cf648174 5026 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 5027 break;
01fe1b41 5028 case ES_PREFIX_OPCODE:
cf648174 5029 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 5030 break;
01fe1b41 5031 case FS_PREFIX_OPCODE:
cf648174 5032 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 5033 break;
01fe1b41 5034 case GS_PREFIX_OPCODE:
cf648174 5035 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 5036 break;
01fe1b41 5037 case DATA_PREFIX_OPCODE:
7ad10968
HZ
5038 prefixes |= PREFIX_DATA;
5039 break;
01fe1b41 5040 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
5041 prefixes |= PREFIX_ADDR;
5042 break;
d691bec7
MS
5043 case 0x40: /* i386 inc %eax */
5044 case 0x41: /* i386 inc %ecx */
5045 case 0x42: /* i386 inc %edx */
5046 case 0x43: /* i386 inc %ebx */
5047 case 0x44: /* i386 inc %esp */
5048 case 0x45: /* i386 inc %ebp */
5049 case 0x46: /* i386 inc %esi */
5050 case 0x47: /* i386 inc %edi */
5051 case 0x48: /* i386 dec %eax */
5052 case 0x49: /* i386 dec %ecx */
5053 case 0x4a: /* i386 dec %edx */
5054 case 0x4b: /* i386 dec %ebx */
5055 case 0x4c: /* i386 dec %esp */
5056 case 0x4d: /* i386 dec %ebp */
5057 case 0x4e: /* i386 dec %esi */
5058 case 0x4f: /* i386 dec %edi */
5059 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
5060 {
5061 /* REX */
425b824a
MS
5062 rex_w = (opcode8 >> 3) & 1;
5063 rex_r = (opcode8 & 0x4) << 1;
5064 ir.rex_x = (opcode8 & 0x2) << 2;
5065 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 5066 }
d691bec7
MS
5067 else /* 32 bit target */
5068 goto out_prefixes;
cf648174 5069 break;
7ad10968
HZ
5070 default:
5071 goto out_prefixes;
5072 break;
5073 }
5074 }
01fe1b41 5075 out_prefixes:
cf648174
HZ
5076 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
5077 {
5078 ir.dflag = 2;
5079 }
5080 else
5081 {
5082 if (prefixes & PREFIX_DATA)
5083 ir.dflag ^= 1;
5084 }
7ad10968
HZ
5085 if (prefixes & PREFIX_ADDR)
5086 ir.aflag ^= 1;
cf648174
HZ
5087 else if (ir.regmap[X86_RECORD_R8_REGNUM])
5088 ir.aflag = 2;
7ad10968 5089
1777feb0 5090 /* Now check op code. */
425b824a 5091 opcode = (uint32_t) opcode8;
01fe1b41 5092 reswitch:
7ad10968
HZ
5093 switch (opcode)
5094 {
5095 case 0x0f:
4ffa4fc7
PA
5096 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
5097 return -1;
7ad10968 5098 ir.addr++;
a3c4230a 5099 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
5100 goto reswitch;
5101 break;
93924b6b 5102
a38bba38 5103 case 0x00: /* arith & logic */
7ad10968
HZ
5104 case 0x01:
5105 case 0x02:
5106 case 0x03:
5107 case 0x04:
5108 case 0x05:
5109 case 0x08:
5110 case 0x09:
5111 case 0x0a:
5112 case 0x0b:
5113 case 0x0c:
5114 case 0x0d:
5115 case 0x10:
5116 case 0x11:
5117 case 0x12:
5118 case 0x13:
5119 case 0x14:
5120 case 0x15:
5121 case 0x18:
5122 case 0x19:
5123 case 0x1a:
5124 case 0x1b:
5125 case 0x1c:
5126 case 0x1d:
5127 case 0x20:
5128 case 0x21:
5129 case 0x22:
5130 case 0x23:
5131 case 0x24:
5132 case 0x25:
5133 case 0x28:
5134 case 0x29:
5135 case 0x2a:
5136 case 0x2b:
5137 case 0x2c:
5138 case 0x2d:
5139 case 0x30:
5140 case 0x31:
5141 case 0x32:
5142 case 0x33:
5143 case 0x34:
5144 case 0x35:
5145 case 0x38:
5146 case 0x39:
5147 case 0x3a:
5148 case 0x3b:
5149 case 0x3c:
5150 case 0x3d:
5151 if (((opcode >> 3) & 7) != OP_CMPL)
5152 {
5153 if ((opcode & 1) == 0)
5154 ir.ot = OT_BYTE;
5155 else
5156 ir.ot = ir.dflag + OT_WORD;
93924b6b 5157
7ad10968
HZ
5158 switch ((opcode >> 1) & 3)
5159 {
a38bba38 5160 case 0: /* OP Ev, Gv */
7ad10968
HZ
5161 if (i386_record_modrm (&ir))
5162 return -1;
5163 if (ir.mod != 3)
5164 {
5165 if (i386_record_lea_modrm (&ir))
5166 return -1;
5167 }
5168 else
5169 {
cf648174
HZ
5170 ir.rm |= ir.rex_b;
5171 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5172 ir.rm &= 0x3;
25ea693b 5173 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5174 }
5175 break;
a38bba38 5176 case 1: /* OP Gv, Ev */
7ad10968
HZ
5177 if (i386_record_modrm (&ir))
5178 return -1;
cf648174
HZ
5179 ir.reg |= rex_r;
5180 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5181 ir.reg &= 0x3;
25ea693b 5182 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5183 break;
a38bba38 5184 case 2: /* OP A, Iv */
25ea693b 5185 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5186 break;
5187 }
5188 }
25ea693b 5189 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5190 break;
42fdc8df 5191
a38bba38 5192 case 0x80: /* GRP1 */
7ad10968
HZ
5193 case 0x81:
5194 case 0x82:
5195 case 0x83:
5196 if (i386_record_modrm (&ir))
5197 return -1;
8201327c 5198
7ad10968
HZ
5199 if (ir.reg != OP_CMPL)
5200 {
5201 if ((opcode & 1) == 0)
5202 ir.ot = OT_BYTE;
5203 else
5204 ir.ot = ir.dflag + OT_WORD;
28fc6740 5205
7ad10968
HZ
5206 if (ir.mod != 3)
5207 {
cf648174
HZ
5208 if (opcode == 0x83)
5209 ir.rip_offset = 1;
5210 else
5211 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5212 if (i386_record_lea_modrm (&ir))
5213 return -1;
5214 }
5215 else
25ea693b 5216 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 5217 }
25ea693b 5218 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5219 break;
5e3397bb 5220
a38bba38 5221 case 0x40: /* inc */
7ad10968
HZ
5222 case 0x41:
5223 case 0x42:
5224 case 0x43:
5225 case 0x44:
5226 case 0x45:
5227 case 0x46:
5228 case 0x47:
a38bba38
MS
5229
5230 case 0x48: /* dec */
7ad10968
HZ
5231 case 0x49:
5232 case 0x4a:
5233 case 0x4b:
5234 case 0x4c:
5235 case 0x4d:
5236 case 0x4e:
5237 case 0x4f:
a38bba38 5238
25ea693b
MM
5239 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 7);
5240 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5241 break;
acd5c798 5242
a38bba38 5243 case 0xf6: /* GRP3 */
7ad10968
HZ
5244 case 0xf7:
5245 if ((opcode & 1) == 0)
5246 ir.ot = OT_BYTE;
5247 else
5248 ir.ot = ir.dflag + OT_WORD;
5249 if (i386_record_modrm (&ir))
5250 return -1;
acd5c798 5251
cf648174
HZ
5252 if (ir.mod != 3 && ir.reg == 0)
5253 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5254
7ad10968
HZ
5255 switch (ir.reg)
5256 {
a38bba38 5257 case 0: /* test */
25ea693b 5258 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5259 break;
a38bba38
MS
5260 case 2: /* not */
5261 case 3: /* neg */
7ad10968
HZ
5262 if (ir.mod != 3)
5263 {
5264 if (i386_record_lea_modrm (&ir))
5265 return -1;
5266 }
5267 else
5268 {
cf648174
HZ
5269 ir.rm |= ir.rex_b;
5270 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5271 ir.rm &= 0x3;
25ea693b 5272 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5273 }
a38bba38 5274 if (ir.reg == 3) /* neg */
25ea693b 5275 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5276 break;
a38bba38
MS
5277 case 4: /* mul */
5278 case 5: /* imul */
5279 case 6: /* div */
5280 case 7: /* idiv */
25ea693b 5281 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 5282 if (ir.ot != OT_BYTE)
25ea693b
MM
5283 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5285 break;
5286 default:
5287 ir.addr -= 2;
5288 opcode = opcode << 8 | ir.modrm;
5289 goto no_support;
5290 break;
5291 }
5292 break;
5293
a38bba38
MS
5294 case 0xfe: /* GRP4 */
5295 case 0xff: /* GRP5 */
7ad10968
HZ
5296 if (i386_record_modrm (&ir))
5297 return -1;
5298 if (ir.reg >= 2 && opcode == 0xfe)
5299 {
5300 ir.addr -= 2;
5301 opcode = opcode << 8 | ir.modrm;
5302 goto no_support;
5303 }
7ad10968
HZ
5304 switch (ir.reg)
5305 {
a38bba38
MS
5306 case 0: /* inc */
5307 case 1: /* dec */
cf648174
HZ
5308 if ((opcode & 1) == 0)
5309 ir.ot = OT_BYTE;
5310 else
5311 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5312 if (ir.mod != 3)
5313 {
5314 if (i386_record_lea_modrm (&ir))
5315 return -1;
5316 }
5317 else
5318 {
cf648174
HZ
5319 ir.rm |= ir.rex_b;
5320 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5321 ir.rm &= 0x3;
25ea693b 5322 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5323 }
25ea693b 5324 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5325 break;
a38bba38 5326 case 2: /* call */
cf648174
HZ
5327 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5328 ir.dflag = 2;
5329 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5330 return -1;
25ea693b 5331 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5332 break;
a38bba38 5333 case 3: /* lcall */
25ea693b 5334 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174 5335 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5336 return -1;
25ea693b 5337 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5338 break;
a38bba38
MS
5339 case 4: /* jmp */
5340 case 5: /* ljmp */
25ea693b 5341 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 5342 break;
a38bba38 5343 case 6: /* push */
cf648174
HZ
5344 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5345 ir.dflag = 2;
5346 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5347 return -1;
7ad10968
HZ
5348 break;
5349 default:
5350 ir.addr -= 2;
5351 opcode = opcode << 8 | ir.modrm;
5352 goto no_support;
5353 break;
5354 }
5355 break;
5356
a38bba38 5357 case 0x84: /* test */
7ad10968
HZ
5358 case 0x85:
5359 case 0xa8:
5360 case 0xa9:
25ea693b 5361 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5362 break;
5363
a38bba38 5364 case 0x98: /* CWDE/CBW */
25ea693b 5365 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5366 break;
5367
a38bba38 5368 case 0x99: /* CDQ/CWD */
25ea693b
MM
5369 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5370 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5371 break;
5372
a38bba38 5373 case 0x0faf: /* imul */
7ad10968
HZ
5374 case 0x69:
5375 case 0x6b:
5376 ir.ot = ir.dflag + OT_WORD;
5377 if (i386_record_modrm (&ir))
5378 return -1;
cf648174
HZ
5379 if (opcode == 0x69)
5380 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
5381 else if (opcode == 0x6b)
5382 ir.rip_offset = 1;
5383 ir.reg |= rex_r;
5384 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5385 ir.reg &= 0x3;
25ea693b
MM
5386 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
5387 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5388 break;
5389
a38bba38 5390 case 0x0fc0: /* xadd */
7ad10968
HZ
5391 case 0x0fc1:
5392 if ((opcode & 1) == 0)
5393 ir.ot = OT_BYTE;
5394 else
5395 ir.ot = ir.dflag + OT_WORD;
5396 if (i386_record_modrm (&ir))
5397 return -1;
cf648174 5398 ir.reg |= rex_r;
7ad10968
HZ
5399 if (ir.mod == 3)
5400 {
cf648174 5401 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5402 ir.reg &= 0x3;
25ea693b 5403 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5404 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5405 ir.rm &= 0x3;
25ea693b 5406 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5407 }
5408 else
5409 {
5410 if (i386_record_lea_modrm (&ir))
5411 return -1;
cf648174 5412 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5413 ir.reg &= 0x3;
25ea693b 5414 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 5415 }
25ea693b 5416 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5417 break;
5418
a38bba38 5419 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
5420 case 0x0fb1:
5421 if ((opcode & 1) == 0)
5422 ir.ot = OT_BYTE;
5423 else
5424 ir.ot = ir.dflag + OT_WORD;
5425 if (i386_record_modrm (&ir))
5426 return -1;
5427 if (ir.mod == 3)
5428 {
cf648174 5429 ir.reg |= rex_r;
25ea693b 5430 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
cf648174 5431 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5432 ir.reg &= 0x3;
25ea693b 5433 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5434 }
5435 else
5436 {
25ea693b 5437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5438 if (i386_record_lea_modrm (&ir))
5439 return -1;
5440 }
25ea693b 5441 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5442 break;
5443
a38bba38 5444 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
5445 if (i386_record_modrm (&ir))
5446 return -1;
5447 if (ir.mod == 3)
5448 {
5449 ir.addr -= 2;
5450 opcode = opcode << 8 | ir.modrm;
5451 goto no_support;
5452 }
25ea693b
MM
5453 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5455 if (i386_record_lea_modrm (&ir))
5456 return -1;
25ea693b 5457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5458 break;
5459
a38bba38 5460 case 0x50: /* push */
7ad10968
HZ
5461 case 0x51:
5462 case 0x52:
5463 case 0x53:
5464 case 0x54:
5465 case 0x55:
5466 case 0x56:
5467 case 0x57:
5468 case 0x68:
5469 case 0x6a:
cf648174
HZ
5470 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5471 ir.dflag = 2;
5472 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5473 return -1;
5474 break;
5475
a38bba38
MS
5476 case 0x06: /* push es */
5477 case 0x0e: /* push cs */
5478 case 0x16: /* push ss */
5479 case 0x1e: /* push ds */
cf648174
HZ
5480 if (ir.regmap[X86_RECORD_R8_REGNUM])
5481 {
5482 ir.addr -= 1;
5483 goto no_support;
5484 }
5485 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5486 return -1;
5487 break;
5488
a38bba38
MS
5489 case 0x0fa0: /* push fs */
5490 case 0x0fa8: /* push gs */
cf648174
HZ
5491 if (ir.regmap[X86_RECORD_R8_REGNUM])
5492 {
5493 ir.addr -= 2;
5494 goto no_support;
5495 }
5496 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 5497 return -1;
cf648174
HZ
5498 break;
5499
a38bba38 5500 case 0x60: /* pusha */
cf648174
HZ
5501 if (ir.regmap[X86_RECORD_R8_REGNUM])
5502 {
5503 ir.addr -= 1;
5504 goto no_support;
5505 }
5506 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
5507 return -1;
5508 break;
5509
a38bba38 5510 case 0x58: /* pop */
7ad10968
HZ
5511 case 0x59:
5512 case 0x5a:
5513 case 0x5b:
5514 case 0x5c:
5515 case 0x5d:
5516 case 0x5e:
5517 case 0x5f:
25ea693b
MM
5518 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5519 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5520 break;
5521
a38bba38 5522 case 0x61: /* popa */
cf648174
HZ
5523 if (ir.regmap[X86_RECORD_R8_REGNUM])
5524 {
5525 ir.addr -= 1;
5526 goto no_support;
7ad10968 5527 }
425b824a
MS
5528 for (regnum = X86_RECORD_REAX_REGNUM;
5529 regnum <= X86_RECORD_REDI_REGNUM;
5530 regnum++)
25ea693b 5531 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
5532 break;
5533
a38bba38 5534 case 0x8f: /* pop */
cf648174
HZ
5535 if (ir.regmap[X86_RECORD_R8_REGNUM])
5536 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
5537 else
5538 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5539 if (i386_record_modrm (&ir))
5540 return -1;
5541 if (ir.mod == 3)
25ea693b 5542 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5543 else
5544 {
cf648174 5545 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
5546 if (i386_record_lea_modrm (&ir))
5547 return -1;
5548 }
25ea693b 5549 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
5550 break;
5551
a38bba38 5552 case 0xc8: /* enter */
25ea693b 5553 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
cf648174
HZ
5554 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5555 ir.dflag = 2;
5556 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
5557 return -1;
5558 break;
5559
a38bba38 5560 case 0xc9: /* leave */
25ea693b
MM
5561 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5562 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
5563 break;
5564
a38bba38 5565 case 0x07: /* pop es */
cf648174
HZ
5566 if (ir.regmap[X86_RECORD_R8_REGNUM])
5567 {
5568 ir.addr -= 1;
5569 goto no_support;
5570 }
25ea693b
MM
5571 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5572 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
5573 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5574 break;
5575
a38bba38 5576 case 0x17: /* pop ss */
cf648174
HZ
5577 if (ir.regmap[X86_RECORD_R8_REGNUM])
5578 {
5579 ir.addr -= 1;
5580 goto no_support;
5581 }
25ea693b
MM
5582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5583 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
5584 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5585 break;
5586
a38bba38 5587 case 0x1f: /* pop ds */
cf648174
HZ
5588 if (ir.regmap[X86_RECORD_R8_REGNUM])
5589 {
5590 ir.addr -= 1;
5591 goto no_support;
5592 }
25ea693b
MM
5593 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5594 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
5595 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5596 break;
5597
a38bba38 5598 case 0x0fa1: /* pop fs */
25ea693b
MM
5599 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5600 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
5601 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5602 break;
5603
a38bba38 5604 case 0x0fa9: /* pop gs */
25ea693b
MM
5605 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5606 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5607 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5608 break;
5609
a38bba38 5610 case 0x88: /* mov */
7ad10968
HZ
5611 case 0x89:
5612 case 0xc6:
5613 case 0xc7:
5614 if ((opcode & 1) == 0)
5615 ir.ot = OT_BYTE;
5616 else
5617 ir.ot = ir.dflag + OT_WORD;
5618
5619 if (i386_record_modrm (&ir))
5620 return -1;
5621
5622 if (ir.mod != 3)
5623 {
cf648174
HZ
5624 if (opcode == 0xc6 || opcode == 0xc7)
5625 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
5626 if (i386_record_lea_modrm (&ir))
5627 return -1;
5628 }
5629 else
5630 {
cf648174
HZ
5631 if (opcode == 0xc6 || opcode == 0xc7)
5632 ir.rm |= ir.rex_b;
5633 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5634 ir.rm &= 0x3;
25ea693b 5635 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5636 }
7ad10968 5637 break;
cf648174 5638
a38bba38 5639 case 0x8a: /* mov */
7ad10968
HZ
5640 case 0x8b:
5641 if ((opcode & 1) == 0)
5642 ir.ot = OT_BYTE;
5643 else
5644 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5645 if (i386_record_modrm (&ir))
5646 return -1;
cf648174
HZ
5647 ir.reg |= rex_r;
5648 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5649 ir.reg &= 0x3;
25ea693b 5650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
cf648174 5651 break;
7ad10968 5652
a38bba38 5653 case 0x8c: /* mov seg */
cf648174 5654 if (i386_record_modrm (&ir))
7ad10968 5655 return -1;
cf648174
HZ
5656 if (ir.reg > 5)
5657 {
5658 ir.addr -= 2;
5659 opcode = opcode << 8 | ir.modrm;
5660 goto no_support;
5661 }
5662
5663 if (ir.mod == 3)
25ea693b 5664 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
cf648174
HZ
5665 else
5666 {
5667 ir.ot = OT_WORD;
5668 if (i386_record_lea_modrm (&ir))
5669 return -1;
5670 }
7ad10968
HZ
5671 break;
5672
a38bba38 5673 case 0x8e: /* mov seg */
7ad10968
HZ
5674 if (i386_record_modrm (&ir))
5675 return -1;
7ad10968
HZ
5676 switch (ir.reg)
5677 {
5678 case 0:
425b824a 5679 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
5680 break;
5681 case 2:
425b824a 5682 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
5683 break;
5684 case 3:
425b824a 5685 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
5686 break;
5687 case 4:
425b824a 5688 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
5689 break;
5690 case 5:
425b824a 5691 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5692 break;
5693 default:
5694 ir.addr -= 2;
5695 opcode = opcode << 8 | ir.modrm;
5696 goto no_support;
5697 break;
5698 }
25ea693b
MM
5699 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5700 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5701 break;
5702
a38bba38
MS
5703 case 0x0fb6: /* movzbS */
5704 case 0x0fb7: /* movzwS */
5705 case 0x0fbe: /* movsbS */
5706 case 0x0fbf: /* movswS */
7ad10968
HZ
5707 if (i386_record_modrm (&ir))
5708 return -1;
25ea693b 5709 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
5710 break;
5711
a38bba38 5712 case 0x8d: /* lea */
7ad10968
HZ
5713 if (i386_record_modrm (&ir))
5714 return -1;
5715 if (ir.mod == 3)
5716 {
5717 ir.addr -= 2;
5718 opcode = opcode << 8 | ir.modrm;
5719 goto no_support;
5720 }
7ad10968 5721 ir.ot = ir.dflag;
cf648174
HZ
5722 ir.reg |= rex_r;
5723 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5724 ir.reg &= 0x3;
25ea693b 5725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5726 break;
5727
a38bba38 5728 case 0xa0: /* mov EAX */
7ad10968 5729 case 0xa1:
a38bba38
MS
5730
5731 case 0xd7: /* xlat */
25ea693b 5732 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5733 break;
5734
a38bba38 5735 case 0xa2: /* mov EAX */
7ad10968 5736 case 0xa3:
d7877f7e 5737 if (ir.override >= 0)
cf648174 5738 {
25ea693b 5739 if (record_full_memory_query)
bb08c432
HZ
5740 {
5741 int q;
5742
5743 target_terminal_ours ();
5744 q = yquery (_("\
5745Process record ignores the memory change of instruction at address %s\n\
5746because it can't get the value of the segment register.\n\
5747Do you want to stop the program?"),
5748 paddress (gdbarch, ir.orig_addr));
5749 target_terminal_inferior ();
5750 if (q)
5751 return -1;
5752 }
cf648174
HZ
5753 }
5754 else
5755 {
5756 if ((opcode & 1) == 0)
5757 ir.ot = OT_BYTE;
5758 else
5759 ir.ot = ir.dflag + OT_WORD;
5760 if (ir.aflag == 2)
5761 {
4ffa4fc7
PA
5762 if (record_read_memory (gdbarch, ir.addr, buf, 8))
5763 return -1;
cf648174 5764 ir.addr += 8;
60a1502a 5765 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
5766 }
5767 else if (ir.aflag)
5768 {
4ffa4fc7
PA
5769 if (record_read_memory (gdbarch, ir.addr, buf, 4))
5770 return -1;
cf648174 5771 ir.addr += 4;
60a1502a 5772 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
5773 }
5774 else
5775 {
4ffa4fc7
PA
5776 if (record_read_memory (gdbarch, ir.addr, buf, 2))
5777 return -1;
cf648174 5778 ir.addr += 2;
60a1502a 5779 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 5780 }
25ea693b 5781 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
5782 return -1;
5783 }
7ad10968
HZ
5784 break;
5785
a38bba38 5786 case 0xb0: /* mov R, Ib */
7ad10968
HZ
5787 case 0xb1:
5788 case 0xb2:
5789 case 0xb3:
5790 case 0xb4:
5791 case 0xb5:
5792 case 0xb6:
5793 case 0xb7:
25ea693b
MM
5794 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
5795 ? ((opcode & 0x7) | ir.rex_b)
5796 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
5797 break;
5798
a38bba38 5799 case 0xb8: /* mov R, Iv */
7ad10968
HZ
5800 case 0xb9:
5801 case 0xba:
5802 case 0xbb:
5803 case 0xbc:
5804 case 0xbd:
5805 case 0xbe:
5806 case 0xbf:
25ea693b 5807 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
5808 break;
5809
a38bba38 5810 case 0x91: /* xchg R, EAX */
7ad10968
HZ
5811 case 0x92:
5812 case 0x93:
5813 case 0x94:
5814 case 0x95:
5815 case 0x96:
5816 case 0x97:
25ea693b
MM
5817 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5818 I386_RECORD_FULL_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
5819 break;
5820
a38bba38 5821 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
5822 case 0x87:
5823 if ((opcode & 1) == 0)
5824 ir.ot = OT_BYTE;
5825 else
5826 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5827 if (i386_record_modrm (&ir))
5828 return -1;
7ad10968
HZ
5829 if (ir.mod == 3)
5830 {
86839d38 5831 ir.rm |= ir.rex_b;
cf648174
HZ
5832 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
5833 ir.rm &= 0x3;
25ea693b 5834 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
5835 }
5836 else
5837 {
5838 if (i386_record_lea_modrm (&ir))
5839 return -1;
5840 }
cf648174
HZ
5841 ir.reg |= rex_r;
5842 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5843 ir.reg &= 0x3;
25ea693b 5844 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5845 break;
5846
a38bba38
MS
5847 case 0xc4: /* les Gv */
5848 case 0xc5: /* lds Gv */
cf648174
HZ
5849 if (ir.regmap[X86_RECORD_R8_REGNUM])
5850 {
5851 ir.addr -= 1;
5852 goto no_support;
5853 }
d3f323f3 5854 /* FALLTHROUGH */
a38bba38
MS
5855 case 0x0fb2: /* lss Gv */
5856 case 0x0fb4: /* lfs Gv */
5857 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
5858 if (i386_record_modrm (&ir))
5859 return -1;
5860 if (ir.mod == 3)
5861 {
5862 if (opcode > 0xff)
5863 ir.addr -= 3;
5864 else
5865 ir.addr -= 2;
5866 opcode = opcode << 8 | ir.modrm;
5867 goto no_support;
5868 }
7ad10968
HZ
5869 switch (opcode)
5870 {
a38bba38 5871 case 0xc4: /* les Gv */
425b824a 5872 regnum = X86_RECORD_ES_REGNUM;
7ad10968 5873 break;
a38bba38 5874 case 0xc5: /* lds Gv */
425b824a 5875 regnum = X86_RECORD_DS_REGNUM;
7ad10968 5876 break;
a38bba38 5877 case 0x0fb2: /* lss Gv */
425b824a 5878 regnum = X86_RECORD_SS_REGNUM;
7ad10968 5879 break;
a38bba38 5880 case 0x0fb4: /* lfs Gv */
425b824a 5881 regnum = X86_RECORD_FS_REGNUM;
7ad10968 5882 break;
a38bba38 5883 case 0x0fb5: /* lgs Gv */
425b824a 5884 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
5885 break;
5886 }
25ea693b
MM
5887 I386_RECORD_FULL_ARCH_LIST_ADD_REG (regnum);
5888 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5889 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5890 break;
5891
a38bba38 5892 case 0xc0: /* shifts */
7ad10968
HZ
5893 case 0xc1:
5894 case 0xd0:
5895 case 0xd1:
5896 case 0xd2:
5897 case 0xd3:
5898 if ((opcode & 1) == 0)
5899 ir.ot = OT_BYTE;
5900 else
5901 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
5902 if (i386_record_modrm (&ir))
5903 return -1;
7ad10968
HZ
5904 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
5905 {
5906 if (i386_record_lea_modrm (&ir))
5907 return -1;
5908 }
5909 else
5910 {
cf648174
HZ
5911 ir.rm |= ir.rex_b;
5912 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 5913 ir.rm &= 0x3;
25ea693b 5914 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 5915 }
25ea693b 5916 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5917 break;
5918
5919 case 0x0fa4:
5920 case 0x0fa5:
5921 case 0x0fac:
5922 case 0x0fad:
5923 if (i386_record_modrm (&ir))
5924 return -1;
5925 if (ir.mod == 3)
5926 {
25ea693b 5927 if (record_full_arch_list_add_reg (ir.regcache, ir.rm))
7ad10968
HZ
5928 return -1;
5929 }
5930 else
5931 {
5932 if (i386_record_lea_modrm (&ir))
5933 return -1;
5934 }
5935 break;
5936
a38bba38 5937 case 0xd8: /* Floats. */
7ad10968
HZ
5938 case 0xd9:
5939 case 0xda:
5940 case 0xdb:
5941 case 0xdc:
5942 case 0xdd:
5943 case 0xde:
5944 case 0xdf:
5945 if (i386_record_modrm (&ir))
5946 return -1;
5947 ir.reg |= ((opcode & 7) << 3);
5948 if (ir.mod != 3)
5949 {
1777feb0 5950 /* Memory. */
955db0c0 5951 uint64_t addr64;
7ad10968 5952
955db0c0 5953 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
5954 return -1;
5955 switch (ir.reg)
5956 {
7ad10968 5957 case 0x02:
0289bdd7
MS
5958 case 0x12:
5959 case 0x22:
5960 case 0x32:
5961 /* For fcom, ficom nothing to do. */
5962 break;
7ad10968 5963 case 0x03:
0289bdd7
MS
5964 case 0x13:
5965 case 0x23:
5966 case 0x33:
5967 /* For fcomp, ficomp pop FPU stack, store all. */
5968 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5969 return -1;
5970 break;
5971 case 0x00:
5972 case 0x01:
7ad10968
HZ
5973 case 0x04:
5974 case 0x05:
5975 case 0x06:
5976 case 0x07:
5977 case 0x10:
5978 case 0x11:
7ad10968
HZ
5979 case 0x14:
5980 case 0x15:
5981 case 0x16:
5982 case 0x17:
5983 case 0x20:
5984 case 0x21:
7ad10968
HZ
5985 case 0x24:
5986 case 0x25:
5987 case 0x26:
5988 case 0x27:
5989 case 0x30:
5990 case 0x31:
7ad10968
HZ
5991 case 0x34:
5992 case 0x35:
5993 case 0x36:
5994 case 0x37:
0289bdd7
MS
5995 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
5996 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
5997 of code, always affects st(0) register. */
5998 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5999 return -1;
7ad10968
HZ
6000 break;
6001 case 0x08:
6002 case 0x0a:
6003 case 0x0b:
6004 case 0x18:
6005 case 0x19:
6006 case 0x1a:
6007 case 0x1b:
0289bdd7 6008 case 0x1d:
7ad10968
HZ
6009 case 0x28:
6010 case 0x29:
6011 case 0x2a:
6012 case 0x2b:
6013 case 0x38:
6014 case 0x39:
6015 case 0x3a:
6016 case 0x3b:
0289bdd7
MS
6017 case 0x3c:
6018 case 0x3d:
7ad10968
HZ
6019 switch (ir.reg & 7)
6020 {
6021 case 0:
0289bdd7
MS
6022 /* Handling fld, fild. */
6023 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6024 return -1;
7ad10968
HZ
6025 break;
6026 case 1:
6027 switch (ir.reg >> 4)
6028 {
6029 case 0:
25ea693b 6030 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968
HZ
6031 return -1;
6032 break;
6033 case 2:
25ea693b 6034 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968
HZ
6035 return -1;
6036 break;
6037 case 3:
0289bdd7 6038 break;
7ad10968 6039 default:
25ea693b 6040 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6041 return -1;
6042 break;
6043 }
6044 break;
6045 default:
6046 switch (ir.reg >> 4)
6047 {
6048 case 0:
25ea693b 6049 if (record_full_arch_list_add_mem (addr64, 4))
0289bdd7
MS
6050 return -1;
6051 if (3 == (ir.reg & 7))
6052 {
6053 /* For fstp m32fp. */
6054 if (i386_record_floats (gdbarch, &ir,
6055 I386_SAVE_FPU_REGS))
6056 return -1;
6057 }
6058 break;
7ad10968 6059 case 1:
25ea693b 6060 if (record_full_arch_list_add_mem (addr64, 4))
7ad10968 6061 return -1;
0289bdd7
MS
6062 if ((3 == (ir.reg & 7))
6063 || (5 == (ir.reg & 7))
6064 || (7 == (ir.reg & 7)))
6065 {
6066 /* For fstp insn. */
6067 if (i386_record_floats (gdbarch, &ir,
6068 I386_SAVE_FPU_REGS))
6069 return -1;
6070 }
7ad10968
HZ
6071 break;
6072 case 2:
25ea693b 6073 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6074 return -1;
0289bdd7
MS
6075 if (3 == (ir.reg & 7))
6076 {
6077 /* For fstp m64fp. */
6078 if (i386_record_floats (gdbarch, &ir,
6079 I386_SAVE_FPU_REGS))
6080 return -1;
6081 }
7ad10968
HZ
6082 break;
6083 case 3:
0289bdd7
MS
6084 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
6085 {
6086 /* For fistp, fbld, fild, fbstp. */
6087 if (i386_record_floats (gdbarch, &ir,
6088 I386_SAVE_FPU_REGS))
6089 return -1;
6090 }
6091 /* Fall through */
7ad10968 6092 default:
25ea693b 6093 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968
HZ
6094 return -1;
6095 break;
6096 }
6097 break;
6098 }
6099 break;
6100 case 0x0c:
0289bdd7
MS
6101 /* Insn fldenv. */
6102 if (i386_record_floats (gdbarch, &ir,
6103 I386_SAVE_FPU_ENV_REG_STACK))
6104 return -1;
6105 break;
7ad10968 6106 case 0x0d:
0289bdd7
MS
6107 /* Insn fldcw. */
6108 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
6109 return -1;
6110 break;
7ad10968 6111 case 0x2c:
0289bdd7
MS
6112 /* Insn frstor. */
6113 if (i386_record_floats (gdbarch, &ir,
6114 I386_SAVE_FPU_ENV_REG_STACK))
6115 return -1;
7ad10968
HZ
6116 break;
6117 case 0x0e:
6118 if (ir.dflag)
6119 {
25ea693b 6120 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968
HZ
6121 return -1;
6122 }
6123 else
6124 {
25ea693b 6125 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968
HZ
6126 return -1;
6127 }
6128 break;
6129 case 0x0f:
6130 case 0x2f:
25ea693b 6131 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6132 return -1;
0289bdd7
MS
6133 /* Insn fstp, fbstp. */
6134 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6135 return -1;
7ad10968
HZ
6136 break;
6137 case 0x1f:
6138 case 0x3e:
25ea693b 6139 if (record_full_arch_list_add_mem (addr64, 10))
7ad10968
HZ
6140 return -1;
6141 break;
6142 case 0x2e:
6143 if (ir.dflag)
6144 {
25ea693b 6145 if (record_full_arch_list_add_mem (addr64, 28))
7ad10968 6146 return -1;
955db0c0 6147 addr64 += 28;
7ad10968
HZ
6148 }
6149 else
6150 {
25ea693b 6151 if (record_full_arch_list_add_mem (addr64, 14))
7ad10968 6152 return -1;
955db0c0 6153 addr64 += 14;
7ad10968 6154 }
25ea693b 6155 if (record_full_arch_list_add_mem (addr64, 80))
7ad10968 6156 return -1;
0289bdd7
MS
6157 /* Insn fsave. */
6158 if (i386_record_floats (gdbarch, &ir,
6159 I386_SAVE_FPU_ENV_REG_STACK))
6160 return -1;
7ad10968
HZ
6161 break;
6162 case 0x3f:
25ea693b 6163 if (record_full_arch_list_add_mem (addr64, 8))
7ad10968 6164 return -1;
0289bdd7
MS
6165 /* Insn fistp. */
6166 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6167 return -1;
7ad10968
HZ
6168 break;
6169 default:
6170 ir.addr -= 2;
6171 opcode = opcode << 8 | ir.modrm;
6172 goto no_support;
6173 break;
6174 }
6175 }
0289bdd7
MS
6176 /* Opcode is an extension of modR/M byte. */
6177 else
6178 {
6179 switch (opcode)
6180 {
6181 case 0xd8:
6182 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
6183 return -1;
6184 break;
6185 case 0xd9:
6186 if (0x0c == (ir.modrm >> 4))
6187 {
6188 if ((ir.modrm & 0x0f) <= 7)
6189 {
6190 if (i386_record_floats (gdbarch, &ir,
6191 I386_SAVE_FPU_REGS))
6192 return -1;
6193 }
6194 else
6195 {
6196 if (i386_record_floats (gdbarch, &ir,
6197 I387_ST0_REGNUM (tdep)))
6198 return -1;
6199 /* If only st(0) is changing, then we have already
6200 recorded. */
6201 if ((ir.modrm & 0x0f) - 0x08)
6202 {
6203 if (i386_record_floats (gdbarch, &ir,
6204 I387_ST0_REGNUM (tdep) +
6205 ((ir.modrm & 0x0f) - 0x08)))
6206 return -1;
6207 }
6208 }
6209 }
6210 else
6211 {
6212 switch (ir.modrm)
6213 {
6214 case 0xe0:
6215 case 0xe1:
6216 case 0xf0:
6217 case 0xf5:
6218 case 0xf8:
6219 case 0xfa:
6220 case 0xfc:
6221 case 0xfe:
6222 case 0xff:
6223 if (i386_record_floats (gdbarch, &ir,
6224 I387_ST0_REGNUM (tdep)))
6225 return -1;
6226 break;
6227 case 0xf1:
6228 case 0xf2:
6229 case 0xf3:
6230 case 0xf4:
6231 case 0xf6:
6232 case 0xf7:
6233 case 0xe8:
6234 case 0xe9:
6235 case 0xea:
6236 case 0xeb:
6237 case 0xec:
6238 case 0xed:
6239 case 0xee:
6240 case 0xf9:
6241 case 0xfb:
6242 if (i386_record_floats (gdbarch, &ir,
6243 I386_SAVE_FPU_REGS))
6244 return -1;
6245 break;
6246 case 0xfd:
6247 if (i386_record_floats (gdbarch, &ir,
6248 I387_ST0_REGNUM (tdep)))
6249 return -1;
6250 if (i386_record_floats (gdbarch, &ir,
6251 I387_ST0_REGNUM (tdep) + 1))
6252 return -1;
6253 break;
6254 }
6255 }
6256 break;
6257 case 0xda:
6258 if (0xe9 == ir.modrm)
6259 {
6260 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6261 return -1;
6262 }
6263 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6264 {
6265 if (i386_record_floats (gdbarch, &ir,
6266 I387_ST0_REGNUM (tdep)))
6267 return -1;
6268 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6269 {
6270 if (i386_record_floats (gdbarch, &ir,
6271 I387_ST0_REGNUM (tdep) +
6272 (ir.modrm & 0x0f)))
6273 return -1;
6274 }
6275 else if ((ir.modrm & 0x0f) - 0x08)
6276 {
6277 if (i386_record_floats (gdbarch, &ir,
6278 I387_ST0_REGNUM (tdep) +
6279 ((ir.modrm & 0x0f) - 0x08)))
6280 return -1;
6281 }
6282 }
6283 break;
6284 case 0xdb:
6285 if (0xe3 == ir.modrm)
6286 {
6287 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
6288 return -1;
6289 }
6290 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
6291 {
6292 if (i386_record_floats (gdbarch, &ir,
6293 I387_ST0_REGNUM (tdep)))
6294 return -1;
6295 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
6296 {
6297 if (i386_record_floats (gdbarch, &ir,
6298 I387_ST0_REGNUM (tdep) +
6299 (ir.modrm & 0x0f)))
6300 return -1;
6301 }
6302 else if ((ir.modrm & 0x0f) - 0x08)
6303 {
6304 if (i386_record_floats (gdbarch, &ir,
6305 I387_ST0_REGNUM (tdep) +
6306 ((ir.modrm & 0x0f) - 0x08)))
6307 return -1;
6308 }
6309 }
6310 break;
6311 case 0xdc:
6312 if ((0x0c == ir.modrm >> 4)
6313 || (0x0d == ir.modrm >> 4)
6314 || (0x0f == ir.modrm >> 4))
6315 {
6316 if ((ir.modrm & 0x0f) <= 7)
6317 {
6318 if (i386_record_floats (gdbarch, &ir,
6319 I387_ST0_REGNUM (tdep) +
6320 (ir.modrm & 0x0f)))
6321 return -1;
6322 }
6323 else
6324 {
6325 if (i386_record_floats (gdbarch, &ir,
6326 I387_ST0_REGNUM (tdep) +
6327 ((ir.modrm & 0x0f) - 0x08)))
6328 return -1;
6329 }
6330 }
6331 break;
6332 case 0xdd:
6333 if (0x0c == ir.modrm >> 4)
6334 {
6335 if (i386_record_floats (gdbarch, &ir,
6336 I387_FTAG_REGNUM (tdep)))
6337 return -1;
6338 }
6339 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6340 {
6341 if ((ir.modrm & 0x0f) <= 7)
6342 {
6343 if (i386_record_floats (gdbarch, &ir,
6344 I387_ST0_REGNUM (tdep) +
6345 (ir.modrm & 0x0f)))
6346 return -1;
6347 }
6348 else
6349 {
6350 if (i386_record_floats (gdbarch, &ir,
6351 I386_SAVE_FPU_REGS))
6352 return -1;
6353 }
6354 }
6355 break;
6356 case 0xde:
6357 if ((0x0c == ir.modrm >> 4)
6358 || (0x0e == ir.modrm >> 4)
6359 || (0x0f == ir.modrm >> 4)
6360 || (0xd9 == ir.modrm))
6361 {
6362 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6363 return -1;
6364 }
6365 break;
6366 case 0xdf:
6367 if (0xe0 == ir.modrm)
6368 {
25ea693b
MM
6369 if (record_full_arch_list_add_reg (ir.regcache,
6370 I386_EAX_REGNUM))
0289bdd7
MS
6371 return -1;
6372 }
6373 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
6374 {
6375 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
6376 return -1;
6377 }
6378 break;
6379 }
6380 }
7ad10968 6381 break;
7ad10968 6382 /* string ops */
a38bba38 6383 case 0xa4: /* movsS */
7ad10968 6384 case 0xa5:
a38bba38 6385 case 0xaa: /* stosS */
7ad10968 6386 case 0xab:
a38bba38 6387 case 0x6c: /* insS */
7ad10968 6388 case 0x6d:
cf648174 6389 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 6390 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
6391 &addr);
6392 if (addr)
cf648174 6393 {
77d7dc92
HZ
6394 ULONGEST es, ds;
6395
6396 if ((opcode & 1) == 0)
6397 ir.ot = OT_BYTE;
6398 else
6399 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
6400 regcache_raw_read_unsigned (ir.regcache,
6401 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 6402 &addr);
77d7dc92 6403
d7877f7e
HZ
6404 regcache_raw_read_unsigned (ir.regcache,
6405 ir.regmap[X86_RECORD_ES_REGNUM],
6406 &es);
6407 regcache_raw_read_unsigned (ir.regcache,
6408 ir.regmap[X86_RECORD_DS_REGNUM],
6409 &ds);
6410 if (ir.aflag && (es != ds))
77d7dc92
HZ
6411 {
6412 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
25ea693b 6413 if (record_full_memory_query)
bb08c432
HZ
6414 {
6415 int q;
6416
6417 target_terminal_ours ();
6418 q = yquery (_("\
6419Process record ignores the memory change of instruction at address %s\n\
6420because it can't get the value of the segment register.\n\
6421Do you want to stop the program?"),
6422 paddress (gdbarch, ir.orig_addr));
6423 target_terminal_inferior ();
6424 if (q)
6425 return -1;
6426 }
df61f520
HZ
6427 }
6428 else
6429 {
25ea693b 6430 if (record_full_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 6431 return -1;
77d7dc92
HZ
6432 }
6433
6434 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b 6435 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92 6436 if (opcode == 0xa4 || opcode == 0xa5)
25ea693b
MM
6437 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6438 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6439 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
77d7dc92 6440 }
cf648174 6441 break;
7ad10968 6442
a38bba38 6443 case 0xa6: /* cmpsS */
cf648174 6444 case 0xa7:
25ea693b
MM
6445 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6446 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
cf648174 6447 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6448 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6449 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6450 break;
6451
a38bba38 6452 case 0xac: /* lodsS */
7ad10968 6453 case 0xad:
25ea693b
MM
6454 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6455 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6456 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6457 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6458 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6459 break;
6460
a38bba38 6461 case 0xae: /* scasS */
7ad10968 6462 case 0xaf:
25ea693b 6463 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 6464 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6465 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6466 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6467 break;
6468
a38bba38 6469 case 0x6e: /* outsS */
cf648174 6470 case 0x6f:
25ea693b 6471 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 6472 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
25ea693b
MM
6473 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6474 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6475 break;
6476
a38bba38 6477 case 0xe4: /* port I/O */
7ad10968
HZ
6478 case 0xe5:
6479 case 0xec:
6480 case 0xed:
25ea693b
MM
6481 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6482 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6483 break;
6484
6485 case 0xe6:
6486 case 0xe7:
6487 case 0xee:
6488 case 0xef:
6489 break;
6490
6491 /* control */
a38bba38
MS
6492 case 0xc2: /* ret im */
6493 case 0xc3: /* ret */
25ea693b
MM
6494 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6495 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6496 break;
6497
a38bba38
MS
6498 case 0xca: /* lret im */
6499 case 0xcb: /* lret */
6500 case 0xcf: /* iret */
25ea693b
MM
6501 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
6502 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6503 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6504 break;
6505
a38bba38 6506 case 0xe8: /* call im */
cf648174
HZ
6507 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6508 ir.dflag = 2;
6509 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6510 return -1;
7ad10968
HZ
6511 break;
6512
a38bba38 6513 case 0x9a: /* lcall im */
cf648174
HZ
6514 if (ir.regmap[X86_RECORD_R8_REGNUM])
6515 {
6516 ir.addr -= 1;
6517 goto no_support;
6518 }
25ea693b 6519 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
cf648174
HZ
6520 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6521 return -1;
7ad10968
HZ
6522 break;
6523
a38bba38
MS
6524 case 0xe9: /* jmp im */
6525 case 0xea: /* ljmp im */
6526 case 0xeb: /* jmp Jb */
6527 case 0x70: /* jcc Jb */
7ad10968
HZ
6528 case 0x71:
6529 case 0x72:
6530 case 0x73:
6531 case 0x74:
6532 case 0x75:
6533 case 0x76:
6534 case 0x77:
6535 case 0x78:
6536 case 0x79:
6537 case 0x7a:
6538 case 0x7b:
6539 case 0x7c:
6540 case 0x7d:
6541 case 0x7e:
6542 case 0x7f:
a38bba38 6543 case 0x0f80: /* jcc Jv */
7ad10968
HZ
6544 case 0x0f81:
6545 case 0x0f82:
6546 case 0x0f83:
6547 case 0x0f84:
6548 case 0x0f85:
6549 case 0x0f86:
6550 case 0x0f87:
6551 case 0x0f88:
6552 case 0x0f89:
6553 case 0x0f8a:
6554 case 0x0f8b:
6555 case 0x0f8c:
6556 case 0x0f8d:
6557 case 0x0f8e:
6558 case 0x0f8f:
6559 break;
6560
a38bba38 6561 case 0x0f90: /* setcc Gv */
7ad10968
HZ
6562 case 0x0f91:
6563 case 0x0f92:
6564 case 0x0f93:
6565 case 0x0f94:
6566 case 0x0f95:
6567 case 0x0f96:
6568 case 0x0f97:
6569 case 0x0f98:
6570 case 0x0f99:
6571 case 0x0f9a:
6572 case 0x0f9b:
6573 case 0x0f9c:
6574 case 0x0f9d:
6575 case 0x0f9e:
6576 case 0x0f9f:
25ea693b 6577 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6578 ir.ot = OT_BYTE;
6579 if (i386_record_modrm (&ir))
6580 return -1;
6581 if (ir.mod == 3)
25ea693b
MM
6582 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
6583 : (ir.rm & 0x3));
7ad10968
HZ
6584 else
6585 {
6586 if (i386_record_lea_modrm (&ir))
6587 return -1;
6588 }
6589 break;
6590
a38bba38 6591 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
6592 case 0x0f41:
6593 case 0x0f42:
6594 case 0x0f43:
6595 case 0x0f44:
6596 case 0x0f45:
6597 case 0x0f46:
6598 case 0x0f47:
6599 case 0x0f48:
6600 case 0x0f49:
6601 case 0x0f4a:
6602 case 0x0f4b:
6603 case 0x0f4c:
6604 case 0x0f4d:
6605 case 0x0f4e:
6606 case 0x0f4f:
6607 if (i386_record_modrm (&ir))
6608 return -1;
cf648174 6609 ir.reg |= rex_r;
7ad10968
HZ
6610 if (ir.dflag == OT_BYTE)
6611 ir.reg &= 0x3;
25ea693b 6612 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
6613 break;
6614
6615 /* flags */
a38bba38 6616 case 0x9c: /* pushf */
25ea693b 6617 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6618 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
6619 ir.dflag = 2;
6620 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
6621 return -1;
7ad10968
HZ
6622 break;
6623
a38bba38 6624 case 0x9d: /* popf */
25ea693b
MM
6625 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6626 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6627 break;
6628
a38bba38 6629 case 0x9e: /* sahf */
cf648174
HZ
6630 if (ir.regmap[X86_RECORD_R8_REGNUM])
6631 {
6632 ir.addr -= 1;
6633 goto no_support;
6634 }
d3f323f3 6635 /* FALLTHROUGH */
a38bba38
MS
6636 case 0xf5: /* cmc */
6637 case 0xf8: /* clc */
6638 case 0xf9: /* stc */
6639 case 0xfc: /* cld */
6640 case 0xfd: /* std */
25ea693b 6641 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6642 break;
6643
a38bba38 6644 case 0x9f: /* lahf */
cf648174
HZ
6645 if (ir.regmap[X86_RECORD_R8_REGNUM])
6646 {
6647 ir.addr -= 1;
6648 goto no_support;
6649 }
25ea693b
MM
6650 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6651 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
6652 break;
6653
6654 /* bit operations */
a38bba38 6655 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
6656 ir.ot = ir.dflag + OT_WORD;
6657 if (i386_record_modrm (&ir))
6658 return -1;
6659 if (ir.reg < 4)
6660 {
cf648174 6661 ir.addr -= 2;
7ad10968
HZ
6662 opcode = opcode << 8 | ir.modrm;
6663 goto no_support;
6664 }
cf648174 6665 if (ir.reg != 4)
7ad10968 6666 {
cf648174 6667 if (ir.mod == 3)
25ea693b 6668 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6669 else
6670 {
cf648174 6671 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
6672 return -1;
6673 }
6674 }
25ea693b 6675 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6676 break;
6677
a38bba38 6678 case 0x0fa3: /* bt Gv, Ev */
25ea693b 6679 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
6680 break;
6681
a38bba38
MS
6682 case 0x0fab: /* bts */
6683 case 0x0fb3: /* btr */
6684 case 0x0fbb: /* btc */
cf648174
HZ
6685 ir.ot = ir.dflag + OT_WORD;
6686 if (i386_record_modrm (&ir))
6687 return -1;
6688 if (ir.mod == 3)
25ea693b 6689 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
cf648174
HZ
6690 else
6691 {
955db0c0
MS
6692 uint64_t addr64;
6693 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
6694 return -1;
6695 regcache_raw_read_unsigned (ir.regcache,
6696 ir.regmap[ir.reg | rex_r],
648d0c8b 6697 &addr);
cf648174
HZ
6698 switch (ir.dflag)
6699 {
6700 case 0:
648d0c8b 6701 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
6702 break;
6703 case 1:
648d0c8b 6704 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
6705 break;
6706 case 2:
648d0c8b 6707 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
6708 break;
6709 }
25ea693b 6710 if (record_full_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
6711 return -1;
6712 if (i386_record_lea_modrm (&ir))
6713 return -1;
6714 }
25ea693b 6715 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6716 break;
6717
a38bba38
MS
6718 case 0x0fbc: /* bsf */
6719 case 0x0fbd: /* bsr */
25ea693b
MM
6720 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6721 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6722 break;
6723
6724 /* bcd */
a38bba38
MS
6725 case 0x27: /* daa */
6726 case 0x2f: /* das */
6727 case 0x37: /* aaa */
6728 case 0x3f: /* aas */
6729 case 0xd4: /* aam */
6730 case 0xd5: /* aad */
cf648174
HZ
6731 if (ir.regmap[X86_RECORD_R8_REGNUM])
6732 {
6733 ir.addr -= 1;
6734 goto no_support;
6735 }
25ea693b
MM
6736 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6737 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6738 break;
6739
6740 /* misc */
a38bba38 6741 case 0x90: /* nop */
7ad10968
HZ
6742 if (prefixes & PREFIX_LOCK)
6743 {
6744 ir.addr -= 1;
6745 goto no_support;
6746 }
6747 break;
6748
a38bba38 6749 case 0x9b: /* fwait */
4ffa4fc7
PA
6750 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
6751 return -1;
425b824a 6752 opcode = (uint32_t) opcode8;
0289bdd7
MS
6753 ir.addr++;
6754 goto reswitch;
7ad10968
HZ
6755 break;
6756
7ad10968 6757 /* XXX */
a38bba38 6758 case 0xcc: /* int3 */
a3c4230a 6759 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
6760 "int3.\n"));
6761 ir.addr -= 1;
6762 goto no_support;
6763 break;
6764
7ad10968 6765 /* XXX */
a38bba38 6766 case 0xcd: /* int */
7ad10968
HZ
6767 {
6768 int ret;
425b824a 6769 uint8_t interrupt;
4ffa4fc7
PA
6770 if (record_read_memory (gdbarch, ir.addr, &interrupt, 1))
6771 return -1;
7ad10968 6772 ir.addr++;
425b824a 6773 if (interrupt != 0x80
a3c4230a 6774 || tdep->i386_intx80_record == NULL)
7ad10968 6775 {
a3c4230a 6776 printf_unfiltered (_("Process record does not support "
7ad10968 6777 "instruction int 0x%02x.\n"),
425b824a 6778 interrupt);
7ad10968
HZ
6779 ir.addr -= 2;
6780 goto no_support;
6781 }
a3c4230a 6782 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
6783 if (ret)
6784 return ret;
6785 }
6786 break;
6787
7ad10968 6788 /* XXX */
a38bba38 6789 case 0xce: /* into */
a3c4230a 6790 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6791 "instruction into.\n"));
6792 ir.addr -= 1;
6793 goto no_support;
6794 break;
6795
a38bba38
MS
6796 case 0xfa: /* cli */
6797 case 0xfb: /* sti */
7ad10968
HZ
6798 break;
6799
a38bba38 6800 case 0x62: /* bound */
a3c4230a 6801 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6802 "instruction bound.\n"));
6803 ir.addr -= 1;
6804 goto no_support;
6805 break;
6806
a38bba38 6807 case 0x0fc8: /* bswap reg */
7ad10968
HZ
6808 case 0x0fc9:
6809 case 0x0fca:
6810 case 0x0fcb:
6811 case 0x0fcc:
6812 case 0x0fcd:
6813 case 0x0fce:
6814 case 0x0fcf:
25ea693b 6815 I386_RECORD_FULL_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
6816 break;
6817
a38bba38 6818 case 0xd6: /* salc */
cf648174
HZ
6819 if (ir.regmap[X86_RECORD_R8_REGNUM])
6820 {
6821 ir.addr -= 1;
6822 goto no_support;
6823 }
25ea693b
MM
6824 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6825 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6826 break;
6827
a38bba38
MS
6828 case 0xe0: /* loopnz */
6829 case 0xe1: /* loopz */
6830 case 0xe2: /* loop */
6831 case 0xe3: /* jecxz */
25ea693b
MM
6832 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6833 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6834 break;
6835
a38bba38 6836 case 0x0f30: /* wrmsr */
a3c4230a 6837 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6838 "instruction wrmsr.\n"));
6839 ir.addr -= 2;
6840 goto no_support;
6841 break;
6842
a38bba38 6843 case 0x0f32: /* rdmsr */
a3c4230a 6844 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6845 "instruction rdmsr.\n"));
6846 ir.addr -= 2;
6847 goto no_support;
6848 break;
6849
a38bba38 6850 case 0x0f31: /* rdtsc */
25ea693b
MM
6851 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6852 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
6853 break;
6854
a38bba38 6855 case 0x0f34: /* sysenter */
7ad10968
HZ
6856 {
6857 int ret;
cf648174
HZ
6858 if (ir.regmap[X86_RECORD_R8_REGNUM])
6859 {
6860 ir.addr -= 2;
6861 goto no_support;
6862 }
a3c4230a 6863 if (tdep->i386_sysenter_record == NULL)
7ad10968 6864 {
a3c4230a 6865 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6866 "instruction sysenter.\n"));
6867 ir.addr -= 2;
6868 goto no_support;
6869 }
a3c4230a 6870 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
6871 if (ret)
6872 return ret;
6873 }
6874 break;
6875
a38bba38 6876 case 0x0f35: /* sysexit */
a3c4230a 6877 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6878 "instruction sysexit.\n"));
6879 ir.addr -= 2;
6880 goto no_support;
6881 break;
6882
a38bba38 6883 case 0x0f05: /* syscall */
cf648174
HZ
6884 {
6885 int ret;
a3c4230a 6886 if (tdep->i386_syscall_record == NULL)
cf648174 6887 {
a3c4230a 6888 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6889 "instruction syscall.\n"));
6890 ir.addr -= 2;
6891 goto no_support;
6892 }
a3c4230a 6893 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
6894 if (ret)
6895 return ret;
6896 }
6897 break;
6898
a38bba38 6899 case 0x0f07: /* sysret */
a3c4230a 6900 printf_unfiltered (_("Process record does not support "
cf648174
HZ
6901 "instruction sysret.\n"));
6902 ir.addr -= 2;
6903 goto no_support;
6904 break;
6905
a38bba38 6906 case 0x0fa2: /* cpuid */
25ea693b
MM
6907 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6908 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6909 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6910 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
6911 break;
6912
a38bba38 6913 case 0xf4: /* hlt */
a3c4230a 6914 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
6915 "instruction hlt.\n"));
6916 ir.addr -= 1;
6917 goto no_support;
6918 break;
6919
6920 case 0x0f00:
6921 if (i386_record_modrm (&ir))
6922 return -1;
6923 switch (ir.reg)
6924 {
a38bba38
MS
6925 case 0: /* sldt */
6926 case 1: /* str */
7ad10968 6927 if (ir.mod == 3)
25ea693b 6928 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6929 else
6930 {
6931 ir.ot = OT_WORD;
6932 if (i386_record_lea_modrm (&ir))
6933 return -1;
6934 }
6935 break;
a38bba38
MS
6936 case 2: /* lldt */
6937 case 3: /* ltr */
7ad10968 6938 break;
a38bba38
MS
6939 case 4: /* verr */
6940 case 5: /* verw */
25ea693b 6941 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6942 break;
6943 default:
6944 ir.addr -= 3;
6945 opcode = opcode << 8 | ir.modrm;
6946 goto no_support;
6947 break;
6948 }
6949 break;
6950
6951 case 0x0f01:
6952 if (i386_record_modrm (&ir))
6953 return -1;
6954 switch (ir.reg)
6955 {
a38bba38 6956 case 0: /* sgdt */
7ad10968 6957 {
955db0c0 6958 uint64_t addr64;
7ad10968
HZ
6959
6960 if (ir.mod == 3)
6961 {
6962 ir.addr -= 3;
6963 opcode = opcode << 8 | ir.modrm;
6964 goto no_support;
6965 }
d7877f7e 6966 if (ir.override >= 0)
7ad10968 6967 {
25ea693b 6968 if (record_full_memory_query)
bb08c432
HZ
6969 {
6970 int q;
6971
6972 target_terminal_ours ();
6973 q = yquery (_("\
6974Process record ignores the memory change of instruction at address %s\n\
6975because it can't get the value of the segment register.\n\
6976Do you want to stop the program?"),
6977 paddress (gdbarch, ir.orig_addr));
6978 target_terminal_inferior ();
6979 if (q)
6980 return -1;
6981 }
7ad10968
HZ
6982 }
6983 else
6984 {
955db0c0 6985 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 6986 return -1;
25ea693b 6987 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 6988 return -1;
955db0c0 6989 addr64 += 2;
cf648174
HZ
6990 if (ir.regmap[X86_RECORD_R8_REGNUM])
6991 {
25ea693b 6992 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
6993 return -1;
6994 }
6995 else
6996 {
25ea693b 6997 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
6998 return -1;
6999 }
7ad10968
HZ
7000 }
7001 }
7002 break;
7003 case 1:
7004 if (ir.mod == 3)
7005 {
7006 switch (ir.rm)
7007 {
a38bba38 7008 case 0: /* monitor */
7ad10968 7009 break;
a38bba38 7010 case 1: /* mwait */
25ea693b 7011 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7012 break;
7013 default:
7014 ir.addr -= 3;
7015 opcode = opcode << 8 | ir.modrm;
7016 goto no_support;
7017 break;
7018 }
7019 }
7020 else
7021 {
7022 /* sidt */
d7877f7e 7023 if (ir.override >= 0)
7ad10968 7024 {
25ea693b 7025 if (record_full_memory_query)
bb08c432
HZ
7026 {
7027 int q;
7028
7029 target_terminal_ours ();
7030 q = yquery (_("\
7031Process record ignores the memory change of instruction at address %s\n\
7032because it can't get the value of the segment register.\n\
7033Do you want to stop the program?"),
7034 paddress (gdbarch, ir.orig_addr));
7035 target_terminal_inferior ();
7036 if (q)
7037 return -1;
7038 }
7ad10968
HZ
7039 }
7040 else
7041 {
955db0c0 7042 uint64_t addr64;
7ad10968 7043
955db0c0 7044 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 7045 return -1;
25ea693b 7046 if (record_full_arch_list_add_mem (addr64, 2))
7ad10968 7047 return -1;
955db0c0 7048 addr64 += 2;
cf648174
HZ
7049 if (ir.regmap[X86_RECORD_R8_REGNUM])
7050 {
25ea693b 7051 if (record_full_arch_list_add_mem (addr64, 8))
cf648174
HZ
7052 return -1;
7053 }
7054 else
7055 {
25ea693b 7056 if (record_full_arch_list_add_mem (addr64, 4))
cf648174
HZ
7057 return -1;
7058 }
7ad10968
HZ
7059 }
7060 }
7061 break;
a38bba38 7062 case 2: /* lgdt */
3800e645
MS
7063 if (ir.mod == 3)
7064 {
7065 /* xgetbv */
7066 if (ir.rm == 0)
7067 {
25ea693b
MM
7068 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7069 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
3800e645
MS
7070 break;
7071 }
7072 /* xsetbv */
7073 else if (ir.rm == 1)
7074 break;
7075 }
a38bba38 7076 case 3: /* lidt */
7ad10968
HZ
7077 if (ir.mod == 3)
7078 {
7079 ir.addr -= 3;
7080 opcode = opcode << 8 | ir.modrm;
7081 goto no_support;
7082 }
7083 break;
a38bba38 7084 case 4: /* smsw */
7ad10968
HZ
7085 if (ir.mod == 3)
7086 {
25ea693b 7087 if (record_full_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
7088 return -1;
7089 }
7090 else
7091 {
7092 ir.ot = OT_WORD;
7093 if (i386_record_lea_modrm (&ir))
7094 return -1;
7095 }
25ea693b 7096 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7097 break;
a38bba38 7098 case 6: /* lmsw */
25ea693b 7099 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174 7100 break;
a38bba38 7101 case 7: /* invlpg */
cf648174
HZ
7102 if (ir.mod == 3)
7103 {
7104 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7105 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
cf648174
HZ
7106 else
7107 {
7108 ir.addr -= 3;
7109 opcode = opcode << 8 | ir.modrm;
7110 goto no_support;
7111 }
7112 }
7113 else
25ea693b 7114 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
cf648174
HZ
7115 break;
7116 default:
7117 ir.addr -= 3;
7118 opcode = opcode << 8 | ir.modrm;
7119 goto no_support;
7ad10968
HZ
7120 break;
7121 }
7122 break;
7123
a38bba38
MS
7124 case 0x0f08: /* invd */
7125 case 0x0f09: /* wbinvd */
7ad10968
HZ
7126 break;
7127
a38bba38 7128 case 0x63: /* arpl */
7ad10968
HZ
7129 if (i386_record_modrm (&ir))
7130 return -1;
cf648174
HZ
7131 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
7132 {
25ea693b
MM
7133 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
7134 ? (ir.reg | rex_r) : ir.rm);
cf648174 7135 }
7ad10968 7136 else
cf648174
HZ
7137 {
7138 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
7139 if (i386_record_lea_modrm (&ir))
7140 return -1;
7141 }
7142 if (!ir.regmap[X86_RECORD_R8_REGNUM])
25ea693b 7143 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7144 break;
7145
a38bba38
MS
7146 case 0x0f02: /* lar */
7147 case 0x0f03: /* lsl */
7ad10968
HZ
7148 if (i386_record_modrm (&ir))
7149 return -1;
25ea693b
MM
7150 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7151 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7152 break;
7153
7154 case 0x0f18:
cf648174
HZ
7155 if (i386_record_modrm (&ir))
7156 return -1;
7157 if (ir.mod == 3 && ir.reg == 3)
7158 {
7159 ir.addr -= 3;
7160 opcode = opcode << 8 | ir.modrm;
7161 goto no_support;
7162 }
7ad10968
HZ
7163 break;
7164
7ad10968
HZ
7165 case 0x0f19:
7166 case 0x0f1a:
7167 case 0x0f1b:
7168 case 0x0f1c:
7169 case 0x0f1d:
7170 case 0x0f1e:
7171 case 0x0f1f:
a38bba38 7172 /* nop (multi byte) */
7ad10968
HZ
7173 break;
7174
a38bba38
MS
7175 case 0x0f20: /* mov reg, crN */
7176 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
7177 if (i386_record_modrm (&ir))
7178 return -1;
7179 if ((ir.modrm & 0xc0) != 0xc0)
7180 {
cf648174 7181 ir.addr -= 3;
7ad10968
HZ
7182 opcode = opcode << 8 | ir.modrm;
7183 goto no_support;
7184 }
7185 switch (ir.reg)
7186 {
7187 case 0:
7188 case 2:
7189 case 3:
7190 case 4:
7191 case 8:
7192 if (opcode & 2)
25ea693b 7193 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7194 else
25ea693b 7195 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7196 break;
7197 default:
cf648174 7198 ir.addr -= 3;
7ad10968
HZ
7199 opcode = opcode << 8 | ir.modrm;
7200 goto no_support;
7201 break;
7202 }
7203 break;
7204
a38bba38
MS
7205 case 0x0f21: /* mov reg, drN */
7206 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
7207 if (i386_record_modrm (&ir))
7208 return -1;
7209 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
7210 || ir.reg == 5 || ir.reg >= 8)
7211 {
cf648174 7212 ir.addr -= 3;
7ad10968
HZ
7213 opcode = opcode << 8 | ir.modrm;
7214 goto no_support;
7215 }
7216 if (opcode & 2)
25ea693b 7217 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 7218 else
25ea693b 7219 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
7220 break;
7221
a38bba38 7222 case 0x0f06: /* clts */
25ea693b 7223 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
7224 break;
7225
a3c4230a
HZ
7226 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
7227
7228 case 0x0f0d: /* 3DNow! prefetch */
7229 break;
7230
7231 case 0x0f0e: /* 3DNow! femms */
7232 case 0x0f77: /* emms */
7233 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
7234 goto no_support;
25ea693b 7235 record_full_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
a3c4230a
HZ
7236 break;
7237
7238 case 0x0f0f: /* 3DNow! data */
7239 if (i386_record_modrm (&ir))
7240 return -1;
4ffa4fc7
PA
7241 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7242 return -1;
a3c4230a
HZ
7243 ir.addr++;
7244 switch (opcode8)
7245 {
7246 case 0x0c: /* 3DNow! pi2fw */
7247 case 0x0d: /* 3DNow! pi2fd */
7248 case 0x1c: /* 3DNow! pf2iw */
7249 case 0x1d: /* 3DNow! pf2id */
7250 case 0x8a: /* 3DNow! pfnacc */
7251 case 0x8e: /* 3DNow! pfpnacc */
7252 case 0x90: /* 3DNow! pfcmpge */
7253 case 0x94: /* 3DNow! pfmin */
7254 case 0x96: /* 3DNow! pfrcp */
7255 case 0x97: /* 3DNow! pfrsqrt */
7256 case 0x9a: /* 3DNow! pfsub */
7257 case 0x9e: /* 3DNow! pfadd */
7258 case 0xa0: /* 3DNow! pfcmpgt */
7259 case 0xa4: /* 3DNow! pfmax */
7260 case 0xa6: /* 3DNow! pfrcpit1 */
7261 case 0xa7: /* 3DNow! pfrsqit1 */
7262 case 0xaa: /* 3DNow! pfsubr */
7263 case 0xae: /* 3DNow! pfacc */
7264 case 0xb0: /* 3DNow! pfcmpeq */
7265 case 0xb4: /* 3DNow! pfmul */
7266 case 0xb6: /* 3DNow! pfrcpit2 */
7267 case 0xb7: /* 3DNow! pmulhrw */
7268 case 0xbb: /* 3DNow! pswapd */
7269 case 0xbf: /* 3DNow! pavgusb */
7270 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7271 goto no_support_3dnow_data;
25ea693b 7272 record_full_arch_list_add_reg (ir.regcache, ir.reg);
a3c4230a
HZ
7273 break;
7274
7275 default:
7276no_support_3dnow_data:
7277 opcode = (opcode << 8) | opcode8;
7278 goto no_support;
7279 break;
7280 }
7281 break;
7282
7283 case 0x0faa: /* rsm */
25ea693b
MM
7284 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7285 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7286 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
7287 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7288 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7289 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7290 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7291 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7292 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
a3c4230a
HZ
7293 break;
7294
7295 case 0x0fae:
7296 if (i386_record_modrm (&ir))
7297 return -1;
7298 switch(ir.reg)
7299 {
7300 case 0: /* fxsave */
7301 {
7302 uint64_t tmpu64;
7303
25ea693b 7304 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7305 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
7306 return -1;
25ea693b 7307 if (record_full_arch_list_add_mem (tmpu64, 512))
a3c4230a
HZ
7308 return -1;
7309 }
7310 break;
7311
7312 case 1: /* fxrstor */
7313 {
7314 int i;
7315
25ea693b 7316 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7317
7318 for (i = I387_MM0_REGNUM (tdep);
7319 i386_mmx_regnum_p (gdbarch, i); i++)
25ea693b 7320 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7321
7322 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 7323 i386_xmm_regnum_p (gdbarch, i); i++)
25ea693b 7324 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7325
7326 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
25ea693b
MM
7327 record_full_arch_list_add_reg (ir.regcache,
7328 I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7329
7330 for (i = I387_ST0_REGNUM (tdep);
7331 i386_fp_regnum_p (gdbarch, i); i++)
25ea693b 7332 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7333
7334 for (i = I387_FCTRL_REGNUM (tdep);
7335 i386_fpc_regnum_p (gdbarch, i); i++)
25ea693b 7336 record_full_arch_list_add_reg (ir.regcache, i);
a3c4230a
HZ
7337 }
7338 break;
7339
7340 case 2: /* ldmxcsr */
7341 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
7342 goto no_support;
25ea693b 7343 record_full_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
a3c4230a
HZ
7344 break;
7345
7346 case 3: /* stmxcsr */
7347 ir.ot = OT_LONG;
7348 if (i386_record_lea_modrm (&ir))
7349 return -1;
7350 break;
7351
7352 case 5: /* lfence */
7353 case 6: /* mfence */
7354 case 7: /* sfence clflush */
7355 break;
7356
7357 default:
7358 opcode = (opcode << 8) | ir.modrm;
7359 goto no_support;
7360 break;
7361 }
7362 break;
7363
7364 case 0x0fc3: /* movnti */
7365 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
7366 if (i386_record_modrm (&ir))
7367 return -1;
7368 if (ir.mod == 3)
7369 goto no_support;
7370 ir.reg |= rex_r;
7371 if (i386_record_lea_modrm (&ir))
7372 return -1;
7373 break;
7374
7375 /* Add prefix to opcode. */
7376 case 0x0f10:
7377 case 0x0f11:
7378 case 0x0f12:
7379 case 0x0f13:
7380 case 0x0f14:
7381 case 0x0f15:
7382 case 0x0f16:
7383 case 0x0f17:
7384 case 0x0f28:
7385 case 0x0f29:
7386 case 0x0f2a:
7387 case 0x0f2b:
7388 case 0x0f2c:
7389 case 0x0f2d:
7390 case 0x0f2e:
7391 case 0x0f2f:
7392 case 0x0f38:
7393 case 0x0f39:
7394 case 0x0f3a:
7395 case 0x0f50:
7396 case 0x0f51:
7397 case 0x0f52:
7398 case 0x0f53:
7399 case 0x0f54:
7400 case 0x0f55:
7401 case 0x0f56:
7402 case 0x0f57:
7403 case 0x0f58:
7404 case 0x0f59:
7405 case 0x0f5a:
7406 case 0x0f5b:
7407 case 0x0f5c:
7408 case 0x0f5d:
7409 case 0x0f5e:
7410 case 0x0f5f:
7411 case 0x0f60:
7412 case 0x0f61:
7413 case 0x0f62:
7414 case 0x0f63:
7415 case 0x0f64:
7416 case 0x0f65:
7417 case 0x0f66:
7418 case 0x0f67:
7419 case 0x0f68:
7420 case 0x0f69:
7421 case 0x0f6a:
7422 case 0x0f6b:
7423 case 0x0f6c:
7424 case 0x0f6d:
7425 case 0x0f6e:
7426 case 0x0f6f:
7427 case 0x0f70:
7428 case 0x0f71:
7429 case 0x0f72:
7430 case 0x0f73:
7431 case 0x0f74:
7432 case 0x0f75:
7433 case 0x0f76:
7434 case 0x0f7c:
7435 case 0x0f7d:
7436 case 0x0f7e:
7437 case 0x0f7f:
7438 case 0x0fb8:
7439 case 0x0fc2:
7440 case 0x0fc4:
7441 case 0x0fc5:
7442 case 0x0fc6:
7443 case 0x0fd0:
7444 case 0x0fd1:
7445 case 0x0fd2:
7446 case 0x0fd3:
7447 case 0x0fd4:
7448 case 0x0fd5:
7449 case 0x0fd6:
7450 case 0x0fd7:
7451 case 0x0fd8:
7452 case 0x0fd9:
7453 case 0x0fda:
7454 case 0x0fdb:
7455 case 0x0fdc:
7456 case 0x0fdd:
7457 case 0x0fde:
7458 case 0x0fdf:
7459 case 0x0fe0:
7460 case 0x0fe1:
7461 case 0x0fe2:
7462 case 0x0fe3:
7463 case 0x0fe4:
7464 case 0x0fe5:
7465 case 0x0fe6:
7466 case 0x0fe7:
7467 case 0x0fe8:
7468 case 0x0fe9:
7469 case 0x0fea:
7470 case 0x0feb:
7471 case 0x0fec:
7472 case 0x0fed:
7473 case 0x0fee:
7474 case 0x0fef:
7475 case 0x0ff0:
7476 case 0x0ff1:
7477 case 0x0ff2:
7478 case 0x0ff3:
7479 case 0x0ff4:
7480 case 0x0ff5:
7481 case 0x0ff6:
7482 case 0x0ff7:
7483 case 0x0ff8:
7484 case 0x0ff9:
7485 case 0x0ffa:
7486 case 0x0ffb:
7487 case 0x0ffc:
7488 case 0x0ffd:
7489 case 0x0ffe:
f9fda3f5
L
7490 /* Mask out PREFIX_ADDR. */
7491 switch ((prefixes & ~PREFIX_ADDR))
a3c4230a
HZ
7492 {
7493 case PREFIX_REPNZ:
7494 opcode |= 0xf20000;
7495 break;
7496 case PREFIX_DATA:
7497 opcode |= 0x660000;
7498 break;
7499 case PREFIX_REPZ:
7500 opcode |= 0xf30000;
7501 break;
7502 }
7503reswitch_prefix_add:
7504 switch (opcode)
7505 {
7506 case 0x0f38:
7507 case 0x660f38:
7508 case 0xf20f38:
7509 case 0x0f3a:
7510 case 0x660f3a:
4ffa4fc7
PA
7511 if (record_read_memory (gdbarch, ir.addr, &opcode8, 1))
7512 return -1;
a3c4230a
HZ
7513 ir.addr++;
7514 opcode = (uint32_t) opcode8 | opcode << 8;
7515 goto reswitch_prefix_add;
7516 break;
7517
7518 case 0x0f10: /* movups */
7519 case 0x660f10: /* movupd */
7520 case 0xf30f10: /* movss */
7521 case 0xf20f10: /* movsd */
7522 case 0x0f12: /* movlps */
7523 case 0x660f12: /* movlpd */
7524 case 0xf30f12: /* movsldup */
7525 case 0xf20f12: /* movddup */
7526 case 0x0f14: /* unpcklps */
7527 case 0x660f14: /* unpcklpd */
7528 case 0x0f15: /* unpckhps */
7529 case 0x660f15: /* unpckhpd */
7530 case 0x0f16: /* movhps */
7531 case 0x660f16: /* movhpd */
7532 case 0xf30f16: /* movshdup */
7533 case 0x0f28: /* movaps */
7534 case 0x660f28: /* movapd */
7535 case 0x0f2a: /* cvtpi2ps */
7536 case 0x660f2a: /* cvtpi2pd */
7537 case 0xf30f2a: /* cvtsi2ss */
7538 case 0xf20f2a: /* cvtsi2sd */
7539 case 0x0f2c: /* cvttps2pi */
7540 case 0x660f2c: /* cvttpd2pi */
7541 case 0x0f2d: /* cvtps2pi */
7542 case 0x660f2d: /* cvtpd2pi */
7543 case 0x660f3800: /* pshufb */
7544 case 0x660f3801: /* phaddw */
7545 case 0x660f3802: /* phaddd */
7546 case 0x660f3803: /* phaddsw */
7547 case 0x660f3804: /* pmaddubsw */
7548 case 0x660f3805: /* phsubw */
7549 case 0x660f3806: /* phsubd */
4f7d61a8 7550 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
7551 case 0x660f3808: /* psignb */
7552 case 0x660f3809: /* psignw */
7553 case 0x660f380a: /* psignd */
7554 case 0x660f380b: /* pmulhrsw */
7555 case 0x660f3810: /* pblendvb */
7556 case 0x660f3814: /* blendvps */
7557 case 0x660f3815: /* blendvpd */
7558 case 0x660f381c: /* pabsb */
7559 case 0x660f381d: /* pabsw */
7560 case 0x660f381e: /* pabsd */
7561 case 0x660f3820: /* pmovsxbw */
7562 case 0x660f3821: /* pmovsxbd */
7563 case 0x660f3822: /* pmovsxbq */
7564 case 0x660f3823: /* pmovsxwd */
7565 case 0x660f3824: /* pmovsxwq */
7566 case 0x660f3825: /* pmovsxdq */
7567 case 0x660f3828: /* pmuldq */
7568 case 0x660f3829: /* pcmpeqq */
7569 case 0x660f382a: /* movntdqa */
7570 case 0x660f3a08: /* roundps */
7571 case 0x660f3a09: /* roundpd */
7572 case 0x660f3a0a: /* roundss */
7573 case 0x660f3a0b: /* roundsd */
7574 case 0x660f3a0c: /* blendps */
7575 case 0x660f3a0d: /* blendpd */
7576 case 0x660f3a0e: /* pblendw */
7577 case 0x660f3a0f: /* palignr */
7578 case 0x660f3a20: /* pinsrb */
7579 case 0x660f3a21: /* insertps */
7580 case 0x660f3a22: /* pinsrd pinsrq */
7581 case 0x660f3a40: /* dpps */
7582 case 0x660f3a41: /* dppd */
7583 case 0x660f3a42: /* mpsadbw */
7584 case 0x660f3a60: /* pcmpestrm */
7585 case 0x660f3a61: /* pcmpestri */
7586 case 0x660f3a62: /* pcmpistrm */
7587 case 0x660f3a63: /* pcmpistri */
7588 case 0x0f51: /* sqrtps */
7589 case 0x660f51: /* sqrtpd */
7590 case 0xf20f51: /* sqrtsd */
7591 case 0xf30f51: /* sqrtss */
7592 case 0x0f52: /* rsqrtps */
7593 case 0xf30f52: /* rsqrtss */
7594 case 0x0f53: /* rcpps */
7595 case 0xf30f53: /* rcpss */
7596 case 0x0f54: /* andps */
7597 case 0x660f54: /* andpd */
7598 case 0x0f55: /* andnps */
7599 case 0x660f55: /* andnpd */
7600 case 0x0f56: /* orps */
7601 case 0x660f56: /* orpd */
7602 case 0x0f57: /* xorps */
7603 case 0x660f57: /* xorpd */
7604 case 0x0f58: /* addps */
7605 case 0x660f58: /* addpd */
7606 case 0xf20f58: /* addsd */
7607 case 0xf30f58: /* addss */
7608 case 0x0f59: /* mulps */
7609 case 0x660f59: /* mulpd */
7610 case 0xf20f59: /* mulsd */
7611 case 0xf30f59: /* mulss */
7612 case 0x0f5a: /* cvtps2pd */
7613 case 0x660f5a: /* cvtpd2ps */
7614 case 0xf20f5a: /* cvtsd2ss */
7615 case 0xf30f5a: /* cvtss2sd */
7616 case 0x0f5b: /* cvtdq2ps */
7617 case 0x660f5b: /* cvtps2dq */
7618 case 0xf30f5b: /* cvttps2dq */
7619 case 0x0f5c: /* subps */
7620 case 0x660f5c: /* subpd */
7621 case 0xf20f5c: /* subsd */
7622 case 0xf30f5c: /* subss */
7623 case 0x0f5d: /* minps */
7624 case 0x660f5d: /* minpd */
7625 case 0xf20f5d: /* minsd */
7626 case 0xf30f5d: /* minss */
7627 case 0x0f5e: /* divps */
7628 case 0x660f5e: /* divpd */
7629 case 0xf20f5e: /* divsd */
7630 case 0xf30f5e: /* divss */
7631 case 0x0f5f: /* maxps */
7632 case 0x660f5f: /* maxpd */
7633 case 0xf20f5f: /* maxsd */
7634 case 0xf30f5f: /* maxss */
7635 case 0x660f60: /* punpcklbw */
7636 case 0x660f61: /* punpcklwd */
7637 case 0x660f62: /* punpckldq */
7638 case 0x660f63: /* packsswb */
7639 case 0x660f64: /* pcmpgtb */
7640 case 0x660f65: /* pcmpgtw */
56d2815c 7641 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
7642 case 0x660f67: /* packuswb */
7643 case 0x660f68: /* punpckhbw */
7644 case 0x660f69: /* punpckhwd */
7645 case 0x660f6a: /* punpckhdq */
7646 case 0x660f6b: /* packssdw */
7647 case 0x660f6c: /* punpcklqdq */
7648 case 0x660f6d: /* punpckhqdq */
7649 case 0x660f6e: /* movd */
7650 case 0x660f6f: /* movdqa */
7651 case 0xf30f6f: /* movdqu */
7652 case 0x660f70: /* pshufd */
7653 case 0xf20f70: /* pshuflw */
7654 case 0xf30f70: /* pshufhw */
7655 case 0x660f74: /* pcmpeqb */
7656 case 0x660f75: /* pcmpeqw */
56d2815c 7657 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
7658 case 0x660f7c: /* haddpd */
7659 case 0xf20f7c: /* haddps */
7660 case 0x660f7d: /* hsubpd */
7661 case 0xf20f7d: /* hsubps */
7662 case 0xf30f7e: /* movq */
7663 case 0x0fc2: /* cmpps */
7664 case 0x660fc2: /* cmppd */
7665 case 0xf20fc2: /* cmpsd */
7666 case 0xf30fc2: /* cmpss */
7667 case 0x660fc4: /* pinsrw */
7668 case 0x0fc6: /* shufps */
7669 case 0x660fc6: /* shufpd */
7670 case 0x660fd0: /* addsubpd */
7671 case 0xf20fd0: /* addsubps */
7672 case 0x660fd1: /* psrlw */
7673 case 0x660fd2: /* psrld */
7674 case 0x660fd3: /* psrlq */
7675 case 0x660fd4: /* paddq */
7676 case 0x660fd5: /* pmullw */
7677 case 0xf30fd6: /* movq2dq */
7678 case 0x660fd8: /* psubusb */
7679 case 0x660fd9: /* psubusw */
7680 case 0x660fda: /* pminub */
7681 case 0x660fdb: /* pand */
7682 case 0x660fdc: /* paddusb */
7683 case 0x660fdd: /* paddusw */
7684 case 0x660fde: /* pmaxub */
7685 case 0x660fdf: /* pandn */
7686 case 0x660fe0: /* pavgb */
7687 case 0x660fe1: /* psraw */
7688 case 0x660fe2: /* psrad */
7689 case 0x660fe3: /* pavgw */
7690 case 0x660fe4: /* pmulhuw */
7691 case 0x660fe5: /* pmulhw */
7692 case 0x660fe6: /* cvttpd2dq */
7693 case 0xf20fe6: /* cvtpd2dq */
7694 case 0xf30fe6: /* cvtdq2pd */
7695 case 0x660fe8: /* psubsb */
7696 case 0x660fe9: /* psubsw */
7697 case 0x660fea: /* pminsw */
7698 case 0x660feb: /* por */
7699 case 0x660fec: /* paddsb */
7700 case 0x660fed: /* paddsw */
7701 case 0x660fee: /* pmaxsw */
7702 case 0x660fef: /* pxor */
4f7d61a8 7703 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
7704 case 0x660ff1: /* psllw */
7705 case 0x660ff2: /* pslld */
7706 case 0x660ff3: /* psllq */
7707 case 0x660ff4: /* pmuludq */
7708 case 0x660ff5: /* pmaddwd */
7709 case 0x660ff6: /* psadbw */
7710 case 0x660ff8: /* psubb */
7711 case 0x660ff9: /* psubw */
56d2815c 7712 case 0x660ffa: /* psubd */
a3c4230a
HZ
7713 case 0x660ffb: /* psubq */
7714 case 0x660ffc: /* paddb */
7715 case 0x660ffd: /* paddw */
56d2815c 7716 case 0x660ffe: /* paddd */
a3c4230a
HZ
7717 if (i386_record_modrm (&ir))
7718 return -1;
7719 ir.reg |= rex_r;
c131fcee 7720 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a 7721 goto no_support;
25ea693b
MM
7722 record_full_arch_list_add_reg (ir.regcache,
7723 I387_XMM0_REGNUM (tdep) + ir.reg);
a3c4230a 7724 if ((opcode & 0xfffffffc) == 0x660f3a60)
25ea693b 7725 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7726 break;
7727
7728 case 0x0f11: /* movups */
7729 case 0x660f11: /* movupd */
7730 case 0xf30f11: /* movss */
7731 case 0xf20f11: /* movsd */
7732 case 0x0f13: /* movlps */
7733 case 0x660f13: /* movlpd */
7734 case 0x0f17: /* movhps */
7735 case 0x660f17: /* movhpd */
7736 case 0x0f29: /* movaps */
7737 case 0x660f29: /* movapd */
7738 case 0x660f3a14: /* pextrb */
7739 case 0x660f3a15: /* pextrw */
7740 case 0x660f3a16: /* pextrd pextrq */
7741 case 0x660f3a17: /* extractps */
7742 case 0x660f7f: /* movdqa */
7743 case 0xf30f7f: /* movdqu */
7744 if (i386_record_modrm (&ir))
7745 return -1;
7746 if (ir.mod == 3)
7747 {
7748 if (opcode == 0x0f13 || opcode == 0x660f13
7749 || opcode == 0x0f17 || opcode == 0x660f17)
7750 goto no_support;
7751 ir.rm |= ir.rex_b;
1777feb0
MS
7752 if (!i386_xmm_regnum_p (gdbarch,
7753 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7754 goto no_support;
25ea693b
MM
7755 record_full_arch_list_add_reg (ir.regcache,
7756 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7757 }
7758 else
7759 {
7760 switch (opcode)
7761 {
7762 case 0x660f3a14:
7763 ir.ot = OT_BYTE;
7764 break;
7765 case 0x660f3a15:
7766 ir.ot = OT_WORD;
7767 break;
7768 case 0x660f3a16:
7769 ir.ot = OT_LONG;
7770 break;
7771 case 0x660f3a17:
7772 ir.ot = OT_QUAD;
7773 break;
7774 default:
7775 ir.ot = OT_DQUAD;
7776 break;
7777 }
7778 if (i386_record_lea_modrm (&ir))
7779 return -1;
7780 }
7781 break;
7782
7783 case 0x0f2b: /* movntps */
7784 case 0x660f2b: /* movntpd */
7785 case 0x0fe7: /* movntq */
7786 case 0x660fe7: /* movntdq */
7787 if (ir.mod == 3)
7788 goto no_support;
7789 if (opcode == 0x0fe7)
7790 ir.ot = OT_QUAD;
7791 else
7792 ir.ot = OT_DQUAD;
7793 if (i386_record_lea_modrm (&ir))
7794 return -1;
7795 break;
7796
7797 case 0xf30f2c: /* cvttss2si */
7798 case 0xf20f2c: /* cvttsd2si */
7799 case 0xf30f2d: /* cvtss2si */
7800 case 0xf20f2d: /* cvtsd2si */
7801 case 0xf20f38f0: /* crc32 */
7802 case 0xf20f38f1: /* crc32 */
7803 case 0x0f50: /* movmskps */
7804 case 0x660f50: /* movmskpd */
7805 case 0x0fc5: /* pextrw */
7806 case 0x660fc5: /* pextrw */
7807 case 0x0fd7: /* pmovmskb */
7808 case 0x660fd7: /* pmovmskb */
25ea693b 7809 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg | rex_r);
a3c4230a
HZ
7810 break;
7811
7812 case 0x0f3800: /* pshufb */
7813 case 0x0f3801: /* phaddw */
7814 case 0x0f3802: /* phaddd */
7815 case 0x0f3803: /* phaddsw */
7816 case 0x0f3804: /* pmaddubsw */
7817 case 0x0f3805: /* phsubw */
7818 case 0x0f3806: /* phsubd */
4f7d61a8 7819 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
7820 case 0x0f3808: /* psignb */
7821 case 0x0f3809: /* psignw */
7822 case 0x0f380a: /* psignd */
7823 case 0x0f380b: /* pmulhrsw */
7824 case 0x0f381c: /* pabsb */
7825 case 0x0f381d: /* pabsw */
7826 case 0x0f381e: /* pabsd */
7827 case 0x0f382b: /* packusdw */
7828 case 0x0f3830: /* pmovzxbw */
7829 case 0x0f3831: /* pmovzxbd */
7830 case 0x0f3832: /* pmovzxbq */
7831 case 0x0f3833: /* pmovzxwd */
7832 case 0x0f3834: /* pmovzxwq */
7833 case 0x0f3835: /* pmovzxdq */
7834 case 0x0f3837: /* pcmpgtq */
7835 case 0x0f3838: /* pminsb */
7836 case 0x0f3839: /* pminsd */
7837 case 0x0f383a: /* pminuw */
7838 case 0x0f383b: /* pminud */
7839 case 0x0f383c: /* pmaxsb */
7840 case 0x0f383d: /* pmaxsd */
7841 case 0x0f383e: /* pmaxuw */
7842 case 0x0f383f: /* pmaxud */
7843 case 0x0f3840: /* pmulld */
7844 case 0x0f3841: /* phminposuw */
7845 case 0x0f3a0f: /* palignr */
7846 case 0x0f60: /* punpcklbw */
7847 case 0x0f61: /* punpcklwd */
7848 case 0x0f62: /* punpckldq */
7849 case 0x0f63: /* packsswb */
7850 case 0x0f64: /* pcmpgtb */
7851 case 0x0f65: /* pcmpgtw */
56d2815c 7852 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
7853 case 0x0f67: /* packuswb */
7854 case 0x0f68: /* punpckhbw */
7855 case 0x0f69: /* punpckhwd */
7856 case 0x0f6a: /* punpckhdq */
7857 case 0x0f6b: /* packssdw */
7858 case 0x0f6e: /* movd */
7859 case 0x0f6f: /* movq */
7860 case 0x0f70: /* pshufw */
7861 case 0x0f74: /* pcmpeqb */
7862 case 0x0f75: /* pcmpeqw */
56d2815c 7863 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
7864 case 0x0fc4: /* pinsrw */
7865 case 0x0fd1: /* psrlw */
7866 case 0x0fd2: /* psrld */
7867 case 0x0fd3: /* psrlq */
7868 case 0x0fd4: /* paddq */
7869 case 0x0fd5: /* pmullw */
7870 case 0xf20fd6: /* movdq2q */
7871 case 0x0fd8: /* psubusb */
7872 case 0x0fd9: /* psubusw */
7873 case 0x0fda: /* pminub */
7874 case 0x0fdb: /* pand */
7875 case 0x0fdc: /* paddusb */
7876 case 0x0fdd: /* paddusw */
7877 case 0x0fde: /* pmaxub */
7878 case 0x0fdf: /* pandn */
7879 case 0x0fe0: /* pavgb */
7880 case 0x0fe1: /* psraw */
7881 case 0x0fe2: /* psrad */
7882 case 0x0fe3: /* pavgw */
7883 case 0x0fe4: /* pmulhuw */
7884 case 0x0fe5: /* pmulhw */
7885 case 0x0fe8: /* psubsb */
7886 case 0x0fe9: /* psubsw */
7887 case 0x0fea: /* pminsw */
7888 case 0x0feb: /* por */
7889 case 0x0fec: /* paddsb */
7890 case 0x0fed: /* paddsw */
7891 case 0x0fee: /* pmaxsw */
7892 case 0x0fef: /* pxor */
7893 case 0x0ff1: /* psllw */
7894 case 0x0ff2: /* pslld */
7895 case 0x0ff3: /* psllq */
7896 case 0x0ff4: /* pmuludq */
7897 case 0x0ff5: /* pmaddwd */
7898 case 0x0ff6: /* psadbw */
7899 case 0x0ff8: /* psubb */
7900 case 0x0ff9: /* psubw */
56d2815c 7901 case 0x0ffa: /* psubd */
a3c4230a
HZ
7902 case 0x0ffb: /* psubq */
7903 case 0x0ffc: /* paddb */
7904 case 0x0ffd: /* paddw */
56d2815c 7905 case 0x0ffe: /* paddd */
a3c4230a
HZ
7906 if (i386_record_modrm (&ir))
7907 return -1;
7908 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
7909 goto no_support;
25ea693b
MM
7910 record_full_arch_list_add_reg (ir.regcache,
7911 I387_MM0_REGNUM (tdep) + ir.reg);
a3c4230a
HZ
7912 break;
7913
7914 case 0x0f71: /* psllw */
7915 case 0x0f72: /* pslld */
7916 case 0x0f73: /* psllq */
7917 if (i386_record_modrm (&ir))
7918 return -1;
7919 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7920 goto no_support;
25ea693b
MM
7921 record_full_arch_list_add_reg (ir.regcache,
7922 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7923 break;
7924
7925 case 0x660f71: /* psllw */
7926 case 0x660f72: /* pslld */
7927 case 0x660f73: /* psllq */
7928 if (i386_record_modrm (&ir))
7929 return -1;
7930 ir.rm |= ir.rex_b;
c131fcee 7931 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7932 goto no_support;
25ea693b
MM
7933 record_full_arch_list_add_reg (ir.regcache,
7934 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7935 break;
7936
7937 case 0x0f7e: /* movd */
7938 case 0x660f7e: /* movd */
7939 if (i386_record_modrm (&ir))
7940 return -1;
7941 if (ir.mod == 3)
25ea693b 7942 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
a3c4230a
HZ
7943 else
7944 {
7945 if (ir.dflag == 2)
7946 ir.ot = OT_QUAD;
7947 else
7948 ir.ot = OT_LONG;
7949 if (i386_record_lea_modrm (&ir))
7950 return -1;
7951 }
7952 break;
7953
7954 case 0x0f7f: /* movq */
7955 if (i386_record_modrm (&ir))
7956 return -1;
7957 if (ir.mod == 3)
7958 {
7959 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
7960 goto no_support;
25ea693b
MM
7961 record_full_arch_list_add_reg (ir.regcache,
7962 I387_MM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7963 }
7964 else
7965 {
7966 ir.ot = OT_QUAD;
7967 if (i386_record_lea_modrm (&ir))
7968 return -1;
7969 }
7970 break;
7971
7972 case 0xf30fb8: /* popcnt */
7973 if (i386_record_modrm (&ir))
7974 return -1;
25ea693b
MM
7975 I386_RECORD_FULL_ARCH_LIST_ADD_REG (ir.reg);
7976 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
7977 break;
7978
7979 case 0x660fd6: /* movq */
7980 if (i386_record_modrm (&ir))
7981 return -1;
7982 if (ir.mod == 3)
7983 {
7984 ir.rm |= ir.rex_b;
1777feb0
MS
7985 if (!i386_xmm_regnum_p (gdbarch,
7986 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a 7987 goto no_support;
25ea693b
MM
7988 record_full_arch_list_add_reg (ir.regcache,
7989 I387_XMM0_REGNUM (tdep) + ir.rm);
a3c4230a
HZ
7990 }
7991 else
7992 {
7993 ir.ot = OT_QUAD;
7994 if (i386_record_lea_modrm (&ir))
7995 return -1;
7996 }
7997 break;
7998
7999 case 0x660f3817: /* ptest */
8000 case 0x0f2e: /* ucomiss */
8001 case 0x660f2e: /* ucomisd */
8002 case 0x0f2f: /* comiss */
8003 case 0x660f2f: /* comisd */
25ea693b 8004 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
a3c4230a
HZ
8005 break;
8006
8007 case 0x0ff7: /* maskmovq */
8008 regcache_raw_read_unsigned (ir.regcache,
8009 ir.regmap[X86_RECORD_REDI_REGNUM],
8010 &addr);
25ea693b 8011 if (record_full_arch_list_add_mem (addr, 64))
a3c4230a
HZ
8012 return -1;
8013 break;
8014
8015 case 0x660ff7: /* maskmovdqu */
8016 regcache_raw_read_unsigned (ir.regcache,
8017 ir.regmap[X86_RECORD_REDI_REGNUM],
8018 &addr);
25ea693b 8019 if (record_full_arch_list_add_mem (addr, 128))
a3c4230a
HZ
8020 return -1;
8021 break;
8022
8023 default:
8024 goto no_support;
8025 break;
8026 }
8027 break;
7ad10968
HZ
8028
8029 default:
7ad10968
HZ
8030 goto no_support;
8031 break;
8032 }
8033
cf648174 8034 /* In the future, maybe still need to deal with need_dasm. */
25ea693b
MM
8035 I386_RECORD_FULL_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
8036 if (record_full_arch_list_add_end ())
7ad10968
HZ
8037 return -1;
8038
8039 return 0;
8040
01fe1b41 8041 no_support:
a3c4230a
HZ
8042 printf_unfiltered (_("Process record does not support instruction 0x%02x "
8043 "at address %s.\n"),
8044 (unsigned int) (opcode),
8045 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
8046 return -1;
8047}
8048
cf648174
HZ
8049static const int i386_record_regmap[] =
8050{
8051 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
8052 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
8053 0, 0, 0, 0, 0, 0, 0, 0,
8054 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
8055 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
8056};
8057
7a697b8d 8058/* Check that the given address appears suitable for a fast
405f8e94 8059 tracepoint, which on x86-64 means that we need an instruction of at
7a697b8d
SS
8060 least 5 bytes, so that we can overwrite it with a 4-byte-offset
8061 jump and not have to worry about program jumps to an address in the
405f8e94
SS
8062 middle of the tracepoint jump. On x86, it may be possible to use
8063 4-byte jumps with a 2-byte offset to a trampoline located in the
8064 bottom 64 KiB of memory. Returns 1 if OK, and writes a size
7a697b8d
SS
8065 of instruction to replace, and 0 if not, plus an explanatory
8066 string. */
8067
8068static int
8069i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
8070 CORE_ADDR addr, int *isize, char **msg)
8071{
8072 int len, jumplen;
8073 static struct ui_file *gdb_null = NULL;
8074
405f8e94
SS
8075 /* Ask the target for the minimum instruction length supported. */
8076 jumplen = target_get_min_fast_tracepoint_insn_len ();
8077
8078 if (jumplen < 0)
8079 {
8080 /* If the target does not support the get_min_fast_tracepoint_insn_len
8081 operation, assume that fast tracepoints will always be implemented
8082 using 4-byte relative jumps on both x86 and x86-64. */
8083 jumplen = 5;
8084 }
8085 else if (jumplen == 0)
8086 {
8087 /* If the target does support get_min_fast_tracepoint_insn_len but
8088 returns zero, then the IPA has not loaded yet. In this case,
8089 we optimistically assume that truncated 2-byte relative jumps
8090 will be available on x86, and compensate later if this assumption
8091 turns out to be incorrect. On x86-64 architectures, 4-byte relative
8092 jumps will always be used. */
8093 jumplen = (register_size (gdbarch, 0) == 8) ? 5 : 4;
8094 }
7a697b8d
SS
8095
8096 /* Dummy file descriptor for the disassembler. */
8097 if (!gdb_null)
8098 gdb_null = ui_file_new ();
8099
8100 /* Check for fit. */
8101 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
405f8e94
SS
8102 if (isize)
8103 *isize = len;
8104
7a697b8d
SS
8105 if (len < jumplen)
8106 {
8107 /* Return a bit of target-specific detail to add to the caller's
8108 generic failure message. */
8109 if (msg)
1777feb0
MS
8110 *msg = xstrprintf (_("; instruction is only %d bytes long, "
8111 "need at least %d bytes for the jump"),
7a697b8d
SS
8112 len, jumplen);
8113 return 0;
8114 }
405f8e94
SS
8115 else
8116 {
8117 if (msg)
8118 *msg = NULL;
8119 return 1;
8120 }
7a697b8d
SS
8121}
8122
90884b2b
L
8123static int
8124i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
8125 struct tdesc_arch_data *tdesc_data)
8126{
8127 const struct target_desc *tdesc = tdep->tdesc;
c131fcee 8128 const struct tdesc_feature *feature_core;
01f9f808
MS
8129
8130 const struct tdesc_feature *feature_sse, *feature_avx, *feature_mpx,
8131 *feature_avx512;
90884b2b
L
8132 int i, num_regs, valid_p;
8133
8134 if (! tdesc_has_registers (tdesc))
8135 return 0;
8136
8137 /* Get core registers. */
8138 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
8139 if (feature_core == NULL)
8140 return 0;
90884b2b
L
8141
8142 /* Get SSE registers. */
c131fcee 8143 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 8144
c131fcee
L
8145 /* Try AVX registers. */
8146 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
8147
1dbcd68c
WT
8148 /* Try MPX registers. */
8149 feature_mpx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx");
8150
01f9f808
MS
8151 /* Try AVX512 registers. */
8152 feature_avx512 = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512");
8153
90884b2b
L
8154 valid_p = 1;
8155
c131fcee 8156 /* The XCR0 bits. */
01f9f808
MS
8157 if (feature_avx512)
8158 {
8159 /* AVX512 register description requires AVX register description. */
8160 if (!feature_avx)
8161 return 0;
8162
8163 tdep->xcr0 = I386_XSTATE_MPX_AVX512_MASK;
8164
8165 /* It may have been set by OSABI initialization function. */
8166 if (tdep->k0_regnum < 0)
8167 {
8168 tdep->k_register_names = i386_k_names;
8169 tdep->k0_regnum = I386_K0_REGNUM;
8170 }
8171
8172 for (i = 0; i < I387_NUM_K_REGS; i++)
8173 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8174 tdep->k0_regnum + i,
8175 i386_k_names[i]);
8176
8177 if (tdep->num_zmm_regs == 0)
8178 {
8179 tdep->zmmh_register_names = i386_zmmh_names;
8180 tdep->num_zmm_regs = 8;
8181 tdep->zmm0h_regnum = I386_ZMM0H_REGNUM;
8182 }
8183
8184 for (i = 0; i < tdep->num_zmm_regs; i++)
8185 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8186 tdep->zmm0h_regnum + i,
8187 tdep->zmmh_register_names[i]);
8188
8189 for (i = 0; i < tdep->num_xmm_avx512_regs; i++)
8190 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8191 tdep->xmm16_regnum + i,
8192 tdep->xmm_avx512_register_names[i]);
8193
8194 for (i = 0; i < tdep->num_ymm_avx512_regs; i++)
8195 valid_p &= tdesc_numbered_register (feature_avx512, tdesc_data,
8196 tdep->ymm16h_regnum + i,
8197 tdep->ymm16h_register_names[i]);
8198 }
c131fcee
L
8199 if (feature_avx)
8200 {
3a13a53b
L
8201 /* AVX register description requires SSE register description. */
8202 if (!feature_sse)
8203 return 0;
8204
01f9f808
MS
8205 if (!feature_avx512)
8206 tdep->xcr0 = I386_XSTATE_AVX_MASK;
c131fcee
L
8207
8208 /* It may have been set by OSABI initialization function. */
8209 if (tdep->num_ymm_regs == 0)
8210 {
8211 tdep->ymmh_register_names = i386_ymmh_names;
8212 tdep->num_ymm_regs = 8;
8213 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
8214 }
8215
8216 for (i = 0; i < tdep->num_ymm_regs; i++)
8217 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
8218 tdep->ymm0h_regnum + i,
8219 tdep->ymmh_register_names[i]);
8220 }
3a13a53b 8221 else if (feature_sse)
c131fcee 8222 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
8223 else
8224 {
8225 tdep->xcr0 = I386_XSTATE_X87_MASK;
8226 tdep->num_xmm_regs = 0;
8227 }
c131fcee 8228
90884b2b
L
8229 num_regs = tdep->num_core_regs;
8230 for (i = 0; i < num_regs; i++)
8231 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
8232 tdep->register_names[i]);
8233
3a13a53b
L
8234 if (feature_sse)
8235 {
8236 /* Need to include %mxcsr, so add one. */
8237 num_regs += tdep->num_xmm_regs + 1;
8238 for (; i < num_regs; i++)
8239 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
8240 tdep->register_names[i]);
8241 }
90884b2b 8242
1dbcd68c
WT
8243 if (feature_mpx)
8244 {
01f9f808 8245 tdep->xcr0 |= I386_XSTATE_MPX_MASK;
1dbcd68c
WT
8246
8247 if (tdep->bnd0r_regnum < 0)
8248 {
8249 tdep->mpx_register_names = i386_mpx_names;
8250 tdep->bnd0r_regnum = I386_BND0R_REGNUM;
8251 tdep->bndcfgu_regnum = I386_BNDCFGU_REGNUM;
8252 }
8253
8254 for (i = 0; i < I387_NUM_MPX_REGS; i++)
8255 valid_p &= tdesc_numbered_register (feature_mpx, tdesc_data,
8256 I387_BND0R_REGNUM (tdep) + i,
8257 tdep->mpx_register_names[i]);
8258 }
8259
90884b2b
L
8260 return valid_p;
8261}
8262
7ad10968
HZ
8263\f
8264static struct gdbarch *
8265i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
8266{
8267 struct gdbarch_tdep *tdep;
8268 struct gdbarch *gdbarch;
90884b2b
L
8269 struct tdesc_arch_data *tdesc_data;
8270 const struct target_desc *tdesc;
1ba53b71 8271 int mm0_regnum;
c131fcee 8272 int ymm0_regnum;
1dbcd68c
WT
8273 int bnd0_regnum;
8274 int num_bnd_cooked;
01f9f808
MS
8275 int k0_regnum;
8276 int zmm0_regnum;
7ad10968
HZ
8277
8278 /* If there is already a candidate, use it. */
8279 arches = gdbarch_list_lookup_by_info (arches, &info);
8280 if (arches != NULL)
8281 return arches->gdbarch;
8282
8283 /* Allocate space for the new architecture. */
fc270c35 8284 tdep = XCNEW (struct gdbarch_tdep);
7ad10968
HZ
8285 gdbarch = gdbarch_alloc (&info, tdep);
8286
8287 /* General-purpose registers. */
7ad10968
HZ
8288 tdep->gregset_reg_offset = NULL;
8289 tdep->gregset_num_regs = I386_NUM_GREGS;
8290 tdep->sizeof_gregset = 0;
8291
8292 /* Floating-point registers. */
7ad10968
HZ
8293 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
8294
8295 /* The default settings include the FPU registers, the MMX registers
8296 and the SSE registers. This can be overridden for a specific ABI
8297 by adjusting the members `st0_regnum', `mm0_regnum' and
8298 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 8299 will show up in the output of "info all-registers". */
7ad10968
HZ
8300
8301 tdep->st0_regnum = I386_ST0_REGNUM;
8302
7ad10968
HZ
8303 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
8304 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
8305
8306 tdep->jb_pc_offset = -1;
8307 tdep->struct_return = pcc_struct_return;
8308 tdep->sigtramp_start = 0;
8309 tdep->sigtramp_end = 0;
8310 tdep->sigtramp_p = i386_sigtramp_p;
8311 tdep->sigcontext_addr = NULL;
8312 tdep->sc_reg_offset = NULL;
8313 tdep->sc_pc_offset = -1;
8314 tdep->sc_sp_offset = -1;
8315
c131fcee
L
8316 tdep->xsave_xcr0_offset = -1;
8317
cf648174
HZ
8318 tdep->record_regmap = i386_record_regmap;
8319
205c306f
DM
8320 set_gdbarch_long_long_align_bit (gdbarch, 32);
8321
7ad10968
HZ
8322 /* The format used for `long double' on almost all i386 targets is
8323 the i387 extended floating-point format. In fact, of all targets
8324 in the GCC 2.95 tree, only OSF/1 does it different, and insists
8325 on having a `long double' that's not `long' at all. */
8326 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
8327
8328 /* Although the i387 extended floating-point has only 80 significant
8329 bits, a `long double' actually takes up 96, probably to enforce
8330 alignment. */
8331 set_gdbarch_long_double_bit (gdbarch, 96);
8332
7ad10968
HZ
8333 /* Register numbers of various important registers. */
8334 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
8335 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
8336 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
8337 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
8338
8339 /* NOTE: kettenis/20040418: GCC does have two possible register
8340 numbering schemes on the i386: dbx and SVR4. These schemes
8341 differ in how they number %ebp, %esp, %eflags, and the
8342 floating-point registers, and are implemented by the arrays
8343 dbx_register_map[] and svr4_dbx_register_map in
8344 gcc/config/i386.c. GCC also defines a third numbering scheme in
8345 gcc/config/i386.c, which it designates as the "default" register
8346 map used in 64bit mode. This last register numbering scheme is
8347 implemented in dbx64_register_map, and is used for AMD64; see
8348 amd64-tdep.c.
8349
8350 Currently, each GCC i386 target always uses the same register
8351 numbering scheme across all its supported debugging formats
8352 i.e. SDB (COFF), stabs and DWARF 2. This is because
8353 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
8354 DBX_REGISTER_NUMBER macro which is defined by each target's
8355 respective config header in a manner independent of the requested
8356 output debugging format.
8357
8358 This does not match the arrangement below, which presumes that
8359 the SDB and stabs numbering schemes differ from the DWARF and
8360 DWARF 2 ones. The reason for this arrangement is that it is
8361 likely to get the numbering scheme for the target's
8362 default/native debug format right. For targets where GCC is the
8363 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
8364 targets where the native toolchain uses a different numbering
8365 scheme for a particular debug format (stabs-in-ELF on Solaris)
8366 the defaults below will have to be overridden, like
8367 i386_elf_init_abi() does. */
8368
8369 /* Use the dbx register numbering scheme for stabs and COFF. */
8370 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8371 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
8372
8373 /* Use the SVR4 register numbering scheme for DWARF 2. */
8374 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8375
8376 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
8377 be in use on any of the supported i386 targets. */
8378
8379 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
8380
8381 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
8382
8383 /* Call dummy code. */
a9b8d892
JK
8384 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
8385 set_gdbarch_push_dummy_code (gdbarch, i386_push_dummy_code);
7ad10968 8386 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
e04e5beb 8387 set_gdbarch_frame_align (gdbarch, i386_frame_align);
7ad10968
HZ
8388
8389 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
8390 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
8391 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
8392
8393 set_gdbarch_return_value (gdbarch, i386_return_value);
8394
8395 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
8396
8397 /* Stack grows downward. */
8398 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
8399
8400 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
8401 set_gdbarch_decr_pc_after_break (gdbarch, 1);
8402 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
8403
8404 set_gdbarch_frame_args_skip (gdbarch, 8);
8405
7ad10968
HZ
8406 set_gdbarch_print_insn (gdbarch, i386_print_insn);
8407
8408 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
8409
8410 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
8411
8412 /* Add the i386 register groups. */
8413 i386_add_reggroups (gdbarch);
90884b2b 8414 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 8415
143985b7
AF
8416 /* Helper for function argument information. */
8417 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
8418
06da04c6 8419 /* Hook the function epilogue frame unwinder. This unwinder is
0d6c2135
MK
8420 appended to the list first, so that it supercedes the DWARF
8421 unwinder in function epilogues (where the DWARF unwinder
06da04c6
MS
8422 currently fails). */
8423 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
8424
8425 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
0d6c2135 8426 to the list before the prologue-based unwinders, so that DWARF
06da04c6 8427 CFI info will be used if it is available. */
10458914 8428 dwarf2_append_unwinders (gdbarch);
6405b0a6 8429
acd5c798 8430 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 8431
1ba53b71 8432 /* Pseudo registers may be changed by amd64_init_abi. */
3543a589
TT
8433 set_gdbarch_pseudo_register_read_value (gdbarch,
8434 i386_pseudo_register_read_value);
90884b2b
L
8435 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
8436
8437 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
8438 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
8439
c131fcee
L
8440 /* Override the normal target description method to make the AVX
8441 upper halves anonymous. */
8442 set_gdbarch_register_name (gdbarch, i386_register_name);
8443
8444 /* Even though the default ABI only includes general-purpose registers,
8445 floating-point registers and the SSE registers, we have to leave a
01f9f808
MS
8446 gap for the upper AVX, MPX and AVX512 registers. */
8447 set_gdbarch_num_regs (gdbarch, I386_AVX512_NUM_REGS);
90884b2b
L
8448
8449 /* Get the x86 target description from INFO. */
8450 tdesc = info.target_desc;
8451 if (! tdesc_has_registers (tdesc))
8452 tdesc = tdesc_i386;
8453 tdep->tdesc = tdesc;
8454
8455 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
8456 tdep->register_names = i386_register_names;
8457
c131fcee
L
8458 /* No upper YMM registers. */
8459 tdep->ymmh_register_names = NULL;
8460 tdep->ymm0h_regnum = -1;
8461
01f9f808
MS
8462 /* No upper ZMM registers. */
8463 tdep->zmmh_register_names = NULL;
8464 tdep->zmm0h_regnum = -1;
8465
8466 /* No high XMM registers. */
8467 tdep->xmm_avx512_register_names = NULL;
8468 tdep->xmm16_regnum = -1;
8469
8470 /* No upper YMM16-31 registers. */
8471 tdep->ymm16h_register_names = NULL;
8472 tdep->ymm16h_regnum = -1;
8473
1ba53b71
L
8474 tdep->num_byte_regs = 8;
8475 tdep->num_word_regs = 8;
8476 tdep->num_dword_regs = 0;
8477 tdep->num_mmx_regs = 8;
c131fcee 8478 tdep->num_ymm_regs = 0;
1ba53b71 8479
1dbcd68c
WT
8480 /* No MPX registers. */
8481 tdep->bnd0r_regnum = -1;
8482 tdep->bndcfgu_regnum = -1;
8483
01f9f808
MS
8484 /* No AVX512 registers. */
8485 tdep->k0_regnum = -1;
8486 tdep->num_zmm_regs = 0;
8487 tdep->num_ymm_avx512_regs = 0;
8488 tdep->num_xmm_avx512_regs = 0;
8489
90884b2b
L
8490 tdesc_data = tdesc_data_alloc ();
8491
dde08ee1
PA
8492 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
8493
6710bf39
SS
8494 set_gdbarch_gen_return_address (gdbarch, i386_gen_return_address);
8495
c2170eef
MM
8496 set_gdbarch_insn_is_call (gdbarch, i386_insn_is_call);
8497 set_gdbarch_insn_is_ret (gdbarch, i386_insn_is_ret);
8498 set_gdbarch_insn_is_jump (gdbarch, i386_insn_is_jump);
8499
3ce1502b 8500 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 8501 info.tdep_info = (void *) tdesc_data;
4be87837 8502 gdbarch_init_osabi (info, gdbarch);
3ce1502b 8503
c131fcee
L
8504 if (!i386_validate_tdesc_p (tdep, tdesc_data))
8505 {
8506 tdesc_data_cleanup (tdesc_data);
8507 xfree (tdep);
8508 gdbarch_free (gdbarch);
8509 return NULL;
8510 }
8511
1dbcd68c
WT
8512 num_bnd_cooked = (tdep->bnd0r_regnum > 0 ? I387_NUM_BND_REGS : 0);
8513
1ba53b71
L
8514 /* Wire in pseudo registers. Number of pseudo registers may be
8515 changed. */
8516 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
8517 + tdep->num_word_regs
8518 + tdep->num_dword_regs
c131fcee 8519 + tdep->num_mmx_regs
1dbcd68c 8520 + tdep->num_ymm_regs
01f9f808
MS
8521 + num_bnd_cooked
8522 + tdep->num_ymm_avx512_regs
8523 + tdep->num_zmm_regs));
1ba53b71 8524
90884b2b
L
8525 /* Target description may be changed. */
8526 tdesc = tdep->tdesc;
8527
90884b2b
L
8528 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
8529
8530 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
8531 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
8532
1ba53b71
L
8533 /* Make %al the first pseudo-register. */
8534 tdep->al_regnum = gdbarch_num_regs (gdbarch);
8535 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
8536
c131fcee 8537 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
8538 if (tdep->num_dword_regs)
8539 {
1c6272a6 8540 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
8541 tdep->eax_regnum = ymm0_regnum;
8542 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
8543 }
8544 else
8545 tdep->eax_regnum = -1;
8546
c131fcee
L
8547 mm0_regnum = ymm0_regnum;
8548 if (tdep->num_ymm_regs)
8549 {
1c6272a6 8550 /* Support YMM pseudo-register if it is available. */
c131fcee
L
8551 tdep->ymm0_regnum = ymm0_regnum;
8552 mm0_regnum += tdep->num_ymm_regs;
8553 }
8554 else
8555 tdep->ymm0_regnum = -1;
8556
01f9f808
MS
8557 if (tdep->num_ymm_avx512_regs)
8558 {
8559 /* Support YMM16-31 pseudo registers if available. */
8560 tdep->ymm16_regnum = mm0_regnum;
8561 mm0_regnum += tdep->num_ymm_avx512_regs;
8562 }
8563 else
8564 tdep->ymm16_regnum = -1;
8565
8566 if (tdep->num_zmm_regs)
8567 {
8568 /* Support ZMM pseudo-register if it is available. */
8569 tdep->zmm0_regnum = mm0_regnum;
8570 mm0_regnum += tdep->num_zmm_regs;
8571 }
8572 else
8573 tdep->zmm0_regnum = -1;
8574
1dbcd68c 8575 bnd0_regnum = mm0_regnum;
1ba53b71
L
8576 if (tdep->num_mmx_regs != 0)
8577 {
1c6272a6 8578 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71 8579 tdep->mm0_regnum = mm0_regnum;
1dbcd68c 8580 bnd0_regnum += tdep->num_mmx_regs;
1ba53b71
L
8581 }
8582 else
8583 tdep->mm0_regnum = -1;
8584
1dbcd68c
WT
8585 if (tdep->bnd0r_regnum > 0)
8586 tdep->bnd0_regnum = bnd0_regnum;
8587 else
8588 tdep-> bnd0_regnum = -1;
8589
06da04c6 8590 /* Hook in the legacy prologue-based unwinders last (fallback). */
a3fcb948 8591 frame_unwind_append_unwinder (gdbarch, &i386_stack_tramp_frame_unwind);
10458914
DJ
8592 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
8593 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 8594
8446b36a
MK
8595 /* If we have a register mapping, enable the generic core file
8596 support, unless it has already been enabled. */
8597 if (tdep->gregset_reg_offset
8598 && !gdbarch_regset_from_core_section_p (gdbarch))
8599 set_gdbarch_regset_from_core_section (gdbarch,
8600 i386_regset_from_core_section);
8601
514f746b
AR
8602 set_gdbarch_skip_permanent_breakpoint (gdbarch,
8603 i386_skip_permanent_breakpoint);
8604
7a697b8d
SS
8605 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
8606 i386_fast_tracepoint_valid_at);
8607
a62cc96e
AC
8608 return gdbarch;
8609}
8610
8201327c
MK
8611static enum gdb_osabi
8612i386_coff_osabi_sniffer (bfd *abfd)
8613{
762c5349
MK
8614 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
8615 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
8616 return GDB_OSABI_GO32;
8617
8618 return GDB_OSABI_UNKNOWN;
8619}
8201327c
MK
8620\f
8621
28e9e0f0
MK
8622/* Provide a prototype to silence -Wmissing-prototypes. */
8623void _initialize_i386_tdep (void);
8624
c906108c 8625void
fba45db2 8626_initialize_i386_tdep (void)
c906108c 8627{
a62cc96e
AC
8628 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
8629
fc338970 8630 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
8631 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
8632 &disassembly_flavor, _("\
8633Set the disassembly flavor."), _("\
8634Show the disassembly flavor."), _("\
8635The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
8636 NULL,
8637 NULL, /* FIXME: i18n: */
8638 &setlist, &showlist);
8201327c
MK
8639
8640 /* Add the variable that controls the convention for returning
8641 structs. */
7ab04401
AC
8642 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
8643 &struct_convention, _("\
8644Set the convention for returning small structs."), _("\
8645Show the convention for returning small structs."), _("\
8646Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
8647is \"default\"."),
8648 NULL,
8649 NULL, /* FIXME: i18n: */
8650 &setlist, &showlist);
8201327c
MK
8651
8652 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
8653 i386_coff_osabi_sniffer);
8201327c 8654
05816f70 8655 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 8656 i386_svr4_init_abi);
05816f70 8657 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 8658 i386_go32_init_abi);
38c968cf 8659
209bd28e 8660 /* Initialize the i386-specific register groups. */
38c968cf 8661 i386_init_reggroups ();
90884b2b
L
8662
8663 /* Initialize the standard target descriptions. */
8664 initialize_tdesc_i386 ();
3a13a53b 8665 initialize_tdesc_i386_mmx ();
c131fcee 8666 initialize_tdesc_i386_avx ();
1dbcd68c 8667 initialize_tdesc_i386_mpx ();
01f9f808 8668 initialize_tdesc_i386_avx512 ();
c8d5aac9
L
8669
8670 /* Tell remote stub that we support XML target description. */
8671 register_remote_support_xml ("i386");
c906108c 8672}
This page took 1.729318 seconds and 4 git commands to generate.