2003-08-10 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4be87837 4 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798
MK
28#include "doublest.h"
29#include "floatformat.h"
c906108c 30#include "frame.h"
acd5c798
MK
31#include "frame-base.h"
32#include "frame-unwind.h"
c906108c 33#include "inferior.h"
acd5c798 34#include "gdbcmd.h"
c906108c 35#include "gdbcore.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
c0d1d883 40#include "symfile.h"
c906108c 41#include "symtab.h"
acd5c798 42#include "target.h"
fd0407d6 43#include "value.h"
acd5c798 44
3d261580 45#include "gdb_assert.h"
acd5c798 46#include "gdb_string.h"
3d261580 47
d2a7c97a 48#include "i386-tdep.h"
61113f8b 49#include "i387-tdep.h"
d2a7c97a 50
fc633446
MK
51/* Names of the registers. The first 10 registers match the register
52 numbering scheme used by GCC for stabs and DWARF. */
c40e1eab 53
fc633446
MK
54static char *i386_register_names[] =
55{
56 "eax", "ecx", "edx", "ebx",
57 "esp", "ebp", "esi", "edi",
58 "eip", "eflags", "cs", "ss",
59 "ds", "es", "fs", "gs",
60 "st0", "st1", "st2", "st3",
61 "st4", "st5", "st6", "st7",
62 "fctrl", "fstat", "ftag", "fiseg",
63 "fioff", "foseg", "fooff", "fop",
64 "xmm0", "xmm1", "xmm2", "xmm3",
65 "xmm4", "xmm5", "xmm6", "xmm7",
66 "mxcsr"
67};
68
c40e1eab
MK
69static const int i386_num_register_names =
70 (sizeof (i386_register_names) / sizeof (*i386_register_names));
71
28fc6740
AC
72/* MMX registers. */
73
74static char *i386_mmx_names[] =
75{
76 "mm0", "mm1", "mm2", "mm3",
77 "mm4", "mm5", "mm6", "mm7"
78};
c40e1eab
MK
79
80static const int i386_num_mmx_regs =
81 (sizeof (i386_mmx_names) / sizeof (i386_mmx_names[0]));
82
83#define MM0_REGNUM NUM_REGS
28fc6740
AC
84
85static int
c40e1eab 86i386_mmx_regnum_p (int regnum)
28fc6740 87{
c40e1eab
MK
88 return (regnum >= MM0_REGNUM
89 && regnum < MM0_REGNUM + i386_num_mmx_regs);
28fc6740
AC
90}
91
23a34459
AC
92/* FP register? */
93
94int
95i386_fp_regnum_p (int regnum)
96{
97 return (regnum < NUM_REGS
c40e1eab 98 && (FP0_REGNUM && FP0_REGNUM <= regnum && regnum < FPC_REGNUM));
23a34459
AC
99}
100
101int
102i386_fpc_regnum_p (int regnum)
103{
104 return (regnum < NUM_REGS
c40e1eab 105 && (FPC_REGNUM <= regnum && regnum < XMM0_REGNUM));
23a34459
AC
106}
107
108/* SSE register? */
109
110int
111i386_sse_regnum_p (int regnum)
112{
113 return (regnum < NUM_REGS
c40e1eab 114 && (XMM0_REGNUM <= regnum && regnum < MXCSR_REGNUM));
23a34459
AC
115}
116
117int
118i386_mxcsr_regnum_p (int regnum)
119{
120 return (regnum < NUM_REGS
c40e1eab 121 && regnum == MXCSR_REGNUM);
23a34459
AC
122}
123
fc633446
MK
124/* Return the name of register REG. */
125
fa88f677 126const char *
fc633446
MK
127i386_register_name (int reg)
128{
23a34459 129 if (i386_mmx_regnum_p (reg))
28fc6740 130 return i386_mmx_names[reg - MM0_REGNUM];
fc633446 131
70913449
MK
132 if (reg >= 0 && reg < i386_num_register_names)
133 return i386_register_names[reg];
134
c40e1eab 135 return NULL;
fc633446
MK
136}
137
85540d8c
MK
138/* Convert stabs register number REG to the appropriate register
139 number used by GDB. */
140
8201327c 141static int
85540d8c
MK
142i386_stab_reg_to_regnum (int reg)
143{
144 /* This implements what GCC calls the "default" register map. */
145 if (reg >= 0 && reg <= 7)
146 {
acd5c798 147 /* General-purpose registers. */
85540d8c
MK
148 return reg;
149 }
150 else if (reg >= 12 && reg <= 19)
151 {
152 /* Floating-point registers. */
153 return reg - 12 + FP0_REGNUM;
154 }
155 else if (reg >= 21 && reg <= 28)
156 {
157 /* SSE registers. */
158 return reg - 21 + XMM0_REGNUM;
159 }
160 else if (reg >= 29 && reg <= 36)
161 {
162 /* MMX registers. */
7d12f766 163 return reg - 29 + MM0_REGNUM;
85540d8c
MK
164 }
165
166 /* This will hopefully provoke a warning. */
167 return NUM_REGS + NUM_PSEUDO_REGS;
168}
169
8201327c 170/* Convert DWARF register number REG to the appropriate register
85540d8c
MK
171 number used by GDB. */
172
8201327c 173static int
85540d8c
MK
174i386_dwarf_reg_to_regnum (int reg)
175{
176 /* The DWARF register numbering includes %eip and %eflags, and
177 numbers the floating point registers differently. */
178 if (reg >= 0 && reg <= 9)
179 {
acd5c798 180 /* General-purpose registers. */
85540d8c
MK
181 return reg;
182 }
183 else if (reg >= 11 && reg <= 18)
184 {
185 /* Floating-point registers. */
186 return reg - 11 + FP0_REGNUM;
187 }
188 else if (reg >= 21)
189 {
190 /* The SSE and MMX registers have identical numbers as in stabs. */
191 return i386_stab_reg_to_regnum (reg);
192 }
193
194 /* This will hopefully provoke a warning. */
195 return NUM_REGS + NUM_PSEUDO_REGS;
196}
fc338970 197\f
917317f4 198
fc338970
MK
199/* This is the variable that is set with "set disassembly-flavor", and
200 its legitimate values. */
53904c9e
AC
201static const char att_flavor[] = "att";
202static const char intel_flavor[] = "intel";
203static const char *valid_flavors[] =
c5aa993b 204{
c906108c
SS
205 att_flavor,
206 intel_flavor,
207 NULL
208};
53904c9e 209static const char *disassembly_flavor = att_flavor;
acd5c798 210\f
c906108c 211
acd5c798
MK
212/* Use the program counter to determine the contents and size of a
213 breakpoint instruction. Return a pointer to a string of bytes that
214 encode a breakpoint instruction, store the length of the string in
215 *LEN and optionally adjust *PC to point to the correct memory
216 location for inserting the breakpoint.
c906108c 217
acd5c798
MK
218 On the i386 we have a single breakpoint that fits in a single byte
219 and can be inserted anywhere.
c906108c 220
acd5c798
MK
221 This function is 64-bit safe. */
222
223static const unsigned char *
224i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 225{
acd5c798
MK
226 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
227
228 *len = sizeof (break_insn);
229 return break_insn;
c906108c 230}
fc338970 231\f
acd5c798
MK
232#ifdef I386_REGNO_TO_SYMMETRY
233#error "The Sequent Symmetry is no longer supported."
234#endif
c906108c 235
acd5c798
MK
236/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
237 and %esp "belong" to the calling function. Therefore these
238 registers should be saved if they're going to be modified. */
c906108c 239
acd5c798
MK
240/* The maximum number of saved registers. This should include all
241 registers mentioned above, and %eip. */
a3386186 242#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
243
244struct i386_frame_cache
c906108c 245{
acd5c798
MK
246 /* Base address. */
247 CORE_ADDR base;
248 CORE_ADDR sp_offset;
249 CORE_ADDR pc;
250
fd13a04a
AC
251 /* Saved registers. */
252 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
253 CORE_ADDR saved_sp;
254 int pc_in_eax;
255
256 /* Stack space reserved for local variables. */
257 long locals;
258};
259
260/* Allocate and initialize a frame cache. */
261
262static struct i386_frame_cache *
fd13a04a 263i386_alloc_frame_cache (void)
acd5c798
MK
264{
265 struct i386_frame_cache *cache;
266 int i;
267
268 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
269
270 /* Base address. */
271 cache->base = 0;
272 cache->sp_offset = -4;
273 cache->pc = 0;
274
fd13a04a
AC
275 /* Saved registers. We initialize these to -1 since zero is a valid
276 offset (that's where %ebp is supposed to be stored). */
277 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
278 cache->saved_regs[i] = -1;
acd5c798
MK
279 cache->saved_sp = 0;
280 cache->pc_in_eax = 0;
281
282 /* Frameless until proven otherwise. */
283 cache->locals = -1;
284
285 return cache;
286}
c906108c 287
acd5c798
MK
288/* If the instruction at PC is a jump, return the address of its
289 target. Otherwise, return PC. */
c906108c 290
acd5c798
MK
291static CORE_ADDR
292i386_follow_jump (CORE_ADDR pc)
293{
294 unsigned char op;
295 long delta = 0;
296 int data16 = 0;
c906108c 297
acd5c798
MK
298 op = read_memory_unsigned_integer (pc, 1);
299 if (op == 0x66)
c906108c 300 {
c906108c 301 data16 = 1;
acd5c798 302 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
303 }
304
acd5c798 305 switch (op)
c906108c
SS
306 {
307 case 0xe9:
fc338970 308 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
309 if (data16)
310 {
acd5c798 311 delta = read_memory_integer (pc + 2, 2);
c906108c 312
fc338970
MK
313 /* Include the size of the jmp instruction (including the
314 0x66 prefix). */
acd5c798 315 delta += 4;
c906108c
SS
316 }
317 else
318 {
acd5c798 319 delta = read_memory_integer (pc + 1, 4);
c906108c 320
acd5c798
MK
321 /* Include the size of the jmp instruction. */
322 delta += 5;
c906108c
SS
323 }
324 break;
325 case 0xeb:
fc338970 326 /* Relative jump, disp8 (ignore data16). */
acd5c798 327 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 328
acd5c798 329 delta += data16 + 2;
c906108c
SS
330 break;
331 }
c906108c 332
acd5c798
MK
333 return pc + delta;
334}
fc338970 335
acd5c798
MK
336/* Check whether PC points at a prologue for a function returning a
337 structure or union. If so, it updates CACHE and returns the
338 address of the first instruction after the code sequence that
339 removes the "hidden" argument from the stack or CURRENT_PC,
340 whichever is smaller. Otherwise, return PC. */
c906108c 341
acd5c798
MK
342static CORE_ADDR
343i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
344 struct i386_frame_cache *cache)
c906108c 345{
acd5c798
MK
346 /* Functions that return a structure or union start with:
347
348 popl %eax 0x58
349 xchgl %eax, (%esp) 0x87 0x04 0x24
350 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
351
352 (the System V compiler puts out the second `xchg' instruction,
353 and the assembler doesn't try to optimize it, so the 'sib' form
354 gets generated). This sequence is used to get the address of the
355 return buffer for a function that returns a structure. */
356 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
357 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
358 unsigned char buf[4];
c906108c
SS
359 unsigned char op;
360
acd5c798
MK
361 if (current_pc <= pc)
362 return pc;
363
364 op = read_memory_unsigned_integer (pc, 1);
c906108c 365
acd5c798
MK
366 if (op != 0x58) /* popl %eax */
367 return pc;
c906108c 368
acd5c798
MK
369 read_memory (pc + 1, buf, 4);
370 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
371 return pc;
c906108c 372
acd5c798 373 if (current_pc == pc)
c906108c 374 {
acd5c798
MK
375 cache->sp_offset += 4;
376 return current_pc;
c906108c
SS
377 }
378
acd5c798 379 if (current_pc == pc + 1)
c906108c 380 {
acd5c798
MK
381 cache->pc_in_eax = 1;
382 return current_pc;
383 }
384
385 if (buf[1] == proto1[1])
386 return pc + 4;
387 else
388 return pc + 5;
389}
390
391static CORE_ADDR
392i386_skip_probe (CORE_ADDR pc)
393{
394 /* A function may start with
fc338970 395
acd5c798
MK
396 pushl constant
397 call _probe
398 addl $4, %esp
fc338970 399
acd5c798
MK
400 followed by
401
402 pushl %ebp
fc338970 403
acd5c798
MK
404 etc. */
405 unsigned char buf[8];
406 unsigned char op;
fc338970 407
acd5c798
MK
408 op = read_memory_unsigned_integer (pc, 1);
409
410 if (op == 0x68 || op == 0x6a)
411 {
412 int delta;
c906108c 413
acd5c798
MK
414 /* Skip past the `pushl' instruction; it has either a one-byte or a
415 four-byte operand, depending on the opcode. */
c906108c 416 if (op == 0x68)
acd5c798 417 delta = 5;
c906108c 418 else
acd5c798 419 delta = 2;
c906108c 420
acd5c798
MK
421 /* Read the following 8 bytes, which should be `call _probe' (6
422 bytes) followed by `addl $4,%esp' (2 bytes). */
423 read_memory (pc + delta, buf, sizeof (buf));
c906108c 424 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 425 pc += delta + sizeof (buf);
c906108c
SS
426 }
427
acd5c798
MK
428 return pc;
429}
430
431/* Check whether PC points at a code that sets up a new stack frame.
432 If so, it updates CACHE and returns the address of the first
433 instruction after the sequence that sets removes the "hidden"
434 argument from the stack or CURRENT_PC, whichever is smaller.
435 Otherwise, return PC. */
436
437static CORE_ADDR
438i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
439 struct i386_frame_cache *cache)
440{
441 unsigned char op;
26604a34 442 int skip = 0;
acd5c798
MK
443
444 if (current_pc <= pc)
445 return current_pc;
446
447 op = read_memory_unsigned_integer (pc, 1);
448
c906108c 449 if (op == 0x55) /* pushl %ebp */
c5aa993b 450 {
acd5c798
MK
451 /* Take into account that we've executed the `pushl %ebp' that
452 starts this instruction sequence. */
fd13a04a 453 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
454 cache->sp_offset += 4;
455
456 /* If that's all, return now. */
457 if (current_pc <= pc + 1)
458 return current_pc;
459
acd5c798 460 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
461
462 /* Check for some special instructions that might be migrated
463 by GCC into the prologue. We check for
464
465 xorl %ebx, %ebx
466 xorl %ecx, %ecx
467 xorl %edx, %edx
468
469 and the equivalent
470
471 subl %ebx, %ebx
472 subl %ecx, %ecx
473 subl %edx, %edx
474
475 Make sure we only skip these instructions if we later see the
476 `movl %esp, %ebp' that actually sets up the frame. */
477 while (op == 0x29 || op == 0x31)
478 {
479 op = read_memory_unsigned_integer (pc + skip + 2, 1);
480 switch (op)
481 {
482 case 0xdb: /* %ebx */
483 case 0xc9: /* %ecx */
484 case 0xd2: /* %edx */
485 skip += 2;
486 break;
487 default:
488 return pc + 1;
489 }
490
491 op = read_memory_unsigned_integer (pc + skip + 1, 1);
492 }
493
494 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 495 switch (op)
c906108c
SS
496 {
497 case 0x8b:
26604a34 498 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 499 return pc + 1;
c906108c
SS
500 break;
501 case 0x89:
26604a34 502 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 503 return pc + 1;
c906108c
SS
504 break;
505 default:
acd5c798 506 return pc + 1;
c906108c 507 }
acd5c798 508
26604a34
MK
509 /* OK, we actually have a frame. We just don't know how large
510 it is yet. Set its size to zero. We'll adjust it if
511 necessary. We also now commit to skipping the special
512 instructions mentioned before. */
acd5c798 513 cache->locals = 0;
26604a34 514 pc += skip;
acd5c798
MK
515
516 /* If that's all, return now. */
517 if (current_pc <= pc + 3)
518 return current_pc;
519
fc338970
MK
520 /* Check for stack adjustment
521
acd5c798 522 subl $XXX, %esp
fc338970
MK
523
524 NOTE: You can't subtract a 16 bit immediate from a 32 bit
525 reg, so we don't have to worry about a data16 prefix. */
acd5c798 526 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
527 if (op == 0x83)
528 {
fc338970 529 /* `subl' with 8 bit immediate. */
acd5c798 530 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 531 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
532 return pc + 3;
533
534 /* `subl' with signed byte immediate (though it wouldn't make
535 sense to be negative). */
536 cache->locals = read_memory_integer (pc + 5, 1);
537 return pc + 6;
c906108c
SS
538 }
539 else if (op == 0x81)
540 {
fc338970 541 /* Maybe it is `subl' with a 32 bit immedediate. */
acd5c798 542 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 543 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
544 return pc + 3;
545
fc338970 546 /* It is `subl' with a 32 bit immediate. */
acd5c798
MK
547 cache->locals = read_memory_integer (pc + 5, 4);
548 return pc + 9;
c906108c
SS
549 }
550 else
551 {
acd5c798
MK
552 /* Some instruction other than `subl'. */
553 return pc + 3;
c906108c
SS
554 }
555 }
acd5c798 556 else if (op == 0xc8) /* enter $XXX */
c906108c 557 {
acd5c798
MK
558 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
559 return pc + 4;
c906108c 560 }
21d0e8a4 561
acd5c798 562 return pc;
21d0e8a4
MK
563}
564
acd5c798
MK
565/* Check whether PC points at code that saves registers on the stack.
566 If so, it updates CACHE and returns the address of the first
567 instruction after the register saves or CURRENT_PC, whichever is
568 smaller. Otherwise, return PC. */
6bff26de
MK
569
570static CORE_ADDR
acd5c798
MK
571i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
572 struct i386_frame_cache *cache)
6bff26de 573{
acd5c798 574 if (cache->locals >= 0)
267bf4bb 575 {
acd5c798
MK
576 CORE_ADDR offset;
577 unsigned char op;
578 int i;
c0d1d883 579
acd5c798
MK
580 offset = - 4 - cache->locals;
581 for (i = 0; i < 8 && pc < current_pc; i++)
582 {
583 op = read_memory_unsigned_integer (pc, 1);
584 if (op < 0x50 || op > 0x57)
585 break;
0d17c81d 586
fd13a04a 587 cache->saved_regs[op - 0x50] = offset;
acd5c798
MK
588 offset -= 4;
589 pc++;
590 }
6bff26de
MK
591 }
592
acd5c798 593 return pc;
22797942
AC
594}
595
acd5c798
MK
596/* Do a full analysis of the prologue at PC and update CACHE
597 accordingly. Bail out early if CURRENT_PC is reached. Return the
598 address where the analysis stopped.
ed84f6c1 599
fc338970
MK
600 We handle these cases:
601
602 The startup sequence can be at the start of the function, or the
603 function can start with a branch to startup code at the end.
604
605 %ebp can be set up with either the 'enter' instruction, or "pushl
606 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
607 once used in the System V compiler).
608
609 Local space is allocated just below the saved %ebp by either the
610 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a 16
611 bit unsigned argument for space to allocate, and the 'addl'
612 instruction could have either a signed byte, or 32 bit immediate.
613
614 Next, the registers used by this function are pushed. With the
615 System V compiler they will always be in the order: %edi, %esi,
616 %ebx (and sometimes a harmless bug causes it to also save but not
617 restore %eax); however, the code below is willing to see the pushes
618 in any order, and will handle up to 8 of them.
619
620 If the setup sequence is at the end of the function, then the next
621 instruction will be a branch back to the start. */
c906108c 622
acd5c798
MK
623static CORE_ADDR
624i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
625 struct i386_frame_cache *cache)
c906108c 626{
acd5c798
MK
627 pc = i386_follow_jump (pc);
628 pc = i386_analyze_struct_return (pc, current_pc, cache);
629 pc = i386_skip_probe (pc);
630 pc = i386_analyze_frame_setup (pc, current_pc, cache);
631 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
632}
633
fc338970 634/* Return PC of first real instruction. */
c906108c 635
3a1e71e3 636static CORE_ADDR
acd5c798 637i386_skip_prologue (CORE_ADDR start_pc)
c906108c 638{
c5aa993b 639 static unsigned char pic_pat[6] =
acd5c798
MK
640 {
641 0xe8, 0, 0, 0, 0, /* call 0x0 */
642 0x5b, /* popl %ebx */
c5aa993b 643 };
acd5c798
MK
644 struct i386_frame_cache cache;
645 CORE_ADDR pc;
646 unsigned char op;
647 int i;
c5aa993b 648
acd5c798
MK
649 cache.locals = -1;
650 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
651 if (cache.locals < 0)
652 return start_pc;
c5aa993b 653
acd5c798 654 /* Found valid frame setup. */
c906108c 655
fc338970
MK
656 /* The native cc on SVR4 in -K PIC mode inserts the following code
657 to get the address of the global offset table (GOT) into register
acd5c798
MK
658 %ebx:
659
fc338970
MK
660 call 0x0
661 popl %ebx
662 movl %ebx,x(%ebp) (optional)
663 addl y,%ebx
664
c906108c
SS
665 This code is with the rest of the prologue (at the end of the
666 function), so we have to skip it to get to the first real
667 instruction at the start of the function. */
c5aa993b 668
c906108c
SS
669 for (i = 0; i < 6; i++)
670 {
acd5c798 671 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 672 if (pic_pat[i] != op)
c906108c
SS
673 break;
674 }
675 if (i == 6)
676 {
acd5c798
MK
677 int delta = 6;
678
679 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 680
c5aa993b 681 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 682 {
acd5c798
MK
683 op = read_memory_unsigned_integer (pc + delta + 1, 1);
684
fc338970 685 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 686 delta += 3;
fc338970 687 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 688 delta += 6;
fc338970 689 else /* Unexpected instruction. */
acd5c798
MK
690 delta = 0;
691
692 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 693 }
acd5c798 694
c5aa993b 695 /* addl y,%ebx */
acd5c798
MK
696 if (delta > 0 && op == 0x81
697 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 698 {
acd5c798 699 pc += delta + 6;
c906108c
SS
700 }
701 }
c5aa993b 702
acd5c798 703 return i386_follow_jump (pc);
c906108c
SS
704}
705
acd5c798 706/* This function is 64-bit safe. */
93924b6b 707
acd5c798
MK
708static CORE_ADDR
709i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 710{
acd5c798
MK
711 char buf[8];
712
713 frame_unwind_register (next_frame, PC_REGNUM, buf);
714 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 715}
acd5c798 716\f
93924b6b 717
acd5c798 718/* Normal frames. */
c5aa993b 719
acd5c798
MK
720static struct i386_frame_cache *
721i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 722{
acd5c798 723 struct i386_frame_cache *cache;
c0d1d883 724 char buf[4];
acd5c798
MK
725 int i;
726
727 if (*this_cache)
728 return *this_cache;
729
fd13a04a 730 cache = i386_alloc_frame_cache ();
acd5c798
MK
731 *this_cache = cache;
732
733 /* In principle, for normal frames, %ebp holds the frame pointer,
734 which holds the base address for the current stack frame.
735 However, for functions that don't need it, the frame pointer is
736 optional. For these "frameless" functions the frame pointer is
737 actually the frame pointer of the calling frame. Signal
738 trampolines are just a special case of a "frameless" function.
739 They (usually) share their frame pointer with the frame that was
740 in progress when the signal occurred. */
741
742 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
743 cache->base = extract_unsigned_integer (buf, 4);
744 if (cache->base == 0)
745 return cache;
746
747 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 748 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
749
750 cache->pc = frame_func_unwind (next_frame);
751 if (cache->pc != 0)
752 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
753
754 if (cache->locals < 0)
755 {
756 /* We didn't find a valid frame, which means that CACHE->base
757 currently holds the frame pointer for our calling frame. If
758 we're at the start of a function, or somewhere half-way its
759 prologue, the function's frame probably hasn't been fully
760 setup yet. Try to reconstruct the base address for the stack
761 frame by looking at the stack pointer. For truly "frameless"
762 functions this might work too. */
763
764 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
765 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
766 }
767
768 /* Now that we have the base address for the stack frame we can
769 calculate the value of %esp in the calling frame. */
770 cache->saved_sp = cache->base + 8;
a7769679 771
acd5c798
MK
772 /* Adjust all the saved registers such that they contain addresses
773 instead of offsets. */
774 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
775 if (cache->saved_regs[i] != -1)
776 cache->saved_regs[i] += cache->base;
acd5c798
MK
777
778 return cache;
a7769679
MK
779}
780
3a1e71e3 781static void
acd5c798
MK
782i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
783 struct frame_id *this_id)
c906108c 784{
acd5c798
MK
785 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
786
787 /* This marks the outermost frame. */
788 if (cache->base == 0)
789 return;
790
3e210248 791 /* See the end of i386_push_dummy_call. */
acd5c798
MK
792 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
793}
794
795static void
796i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
797 int regnum, int *optimizedp,
798 enum lval_type *lvalp, CORE_ADDR *addrp,
799 int *realnump, void *valuep)
800{
801 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
802
803 gdb_assert (regnum >= 0);
804
805 /* The System V ABI says that:
806
807 "The flags register contains the system flags, such as the
808 direction flag and the carry flag. The direction flag must be
809 set to the forward (that is, zero) direction before entry and
810 upon exit from a function. Other user flags have no specified
811 role in the standard calling sequence and are not preserved."
812
813 To guarantee the "upon exit" part of that statement we fake a
814 saved flags register that has its direction flag cleared.
815
816 Note that GCC doesn't seem to rely on the fact that the direction
817 flag is cleared after a function return; it always explicitly
818 clears the flag before operations where it matters.
819
820 FIXME: kettenis/20030316: I'm not quite sure whether this is the
821 right thing to do. The way we fake the flags register here makes
822 it impossible to change it. */
823
824 if (regnum == I386_EFLAGS_REGNUM)
825 {
826 *optimizedp = 0;
827 *lvalp = not_lval;
828 *addrp = 0;
829 *realnump = -1;
830 if (valuep)
831 {
832 ULONGEST val;
c5aa993b 833
acd5c798
MK
834 /* Clear the direction flag. */
835 frame_unwind_unsigned_register (next_frame, PS_REGNUM, &val);
836 val &= ~(1 << 10);
837 store_unsigned_integer (valuep, 4, val);
838 }
839
840 return;
841 }
1211c4e4 842
acd5c798 843 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 844 {
acd5c798
MK
845 frame_register_unwind (next_frame, I386_EAX_REGNUM,
846 optimizedp, lvalp, addrp, realnump, valuep);
847 return;
848 }
849
850 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
851 {
852 *optimizedp = 0;
853 *lvalp = not_lval;
854 *addrp = 0;
855 *realnump = -1;
856 if (valuep)
c906108c 857 {
acd5c798
MK
858 /* Store the value. */
859 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 860 }
acd5c798 861 return;
c906108c 862 }
acd5c798 863
fd13a04a
AC
864 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
865 {
866 *optimizedp = 0;
867 *lvalp = lval_memory;
868 *addrp = cache->saved_regs[regnum];
869 *realnump = -1;
870 if (valuep)
871 {
872 /* Read the value in from memory. */
873 read_memory (*addrp, valuep,
874 register_size (current_gdbarch, regnum));
875 }
876 return;
877 }
878
879 frame_register_unwind (next_frame, regnum,
880 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
881}
882
883static const struct frame_unwind i386_frame_unwind =
884{
885 NORMAL_FRAME,
886 i386_frame_this_id,
887 i386_frame_prev_register
888};
889
890static const struct frame_unwind *
336d1bba 891i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
892{
893 return &i386_frame_unwind;
894}
895\f
896
897/* Signal trampolines. */
898
899static struct i386_frame_cache *
900i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
901{
902 struct i386_frame_cache *cache;
903 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
904 CORE_ADDR addr;
905 char buf[4];
906
907 if (*this_cache)
908 return *this_cache;
909
fd13a04a 910 cache = i386_alloc_frame_cache ();
acd5c798
MK
911
912 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
913 cache->base = extract_unsigned_integer (buf, 4) - 4;
914
915 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
916 if (tdep->sc_reg_offset)
917 {
918 int i;
919
920 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
921
922 for (i = 0; i < tdep->sc_num_regs; i++)
923 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 924 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
925 }
926 else
927 {
fd13a04a
AC
928 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
929 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 930 }
acd5c798
MK
931
932 *this_cache = cache;
933 return cache;
934}
935
936static void
937i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
938 struct frame_id *this_id)
939{
940 struct i386_frame_cache *cache =
941 i386_sigtramp_frame_cache (next_frame, this_cache);
942
3e210248 943 /* See the end of i386_push_dummy_call. */
acd5c798
MK
944 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
945}
946
947static void
948i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
949 void **this_cache,
950 int regnum, int *optimizedp,
951 enum lval_type *lvalp, CORE_ADDR *addrp,
952 int *realnump, void *valuep)
953{
954 /* Make sure we've initialized the cache. */
955 i386_sigtramp_frame_cache (next_frame, this_cache);
956
957 i386_frame_prev_register (next_frame, this_cache, regnum,
958 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 959}
c0d1d883 960
acd5c798
MK
961static const struct frame_unwind i386_sigtramp_frame_unwind =
962{
963 SIGTRAMP_FRAME,
964 i386_sigtramp_frame_this_id,
965 i386_sigtramp_frame_prev_register
966};
967
968static const struct frame_unwind *
336d1bba 969i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 970{
336d1bba 971 CORE_ADDR pc = frame_pc_unwind (next_frame);
acd5c798
MK
972 char *name;
973
1c3545ae
MK
974 /* We shouldn't even bother to try if the OSABI didn't register
975 a sigcontext_addr handler. */
976 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
977 return NULL;
978
acd5c798
MK
979 find_pc_partial_function (pc, &name, NULL, NULL);
980 if (PC_IN_SIGTRAMP (pc, name))
981 return &i386_sigtramp_frame_unwind;
982
983 return NULL;
984}
985\f
986
987static CORE_ADDR
988i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
989{
990 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
991
992 return cache->base;
993}
994
995static const struct frame_base i386_frame_base =
996{
997 &i386_frame_unwind,
998 i386_frame_base_address,
999 i386_frame_base_address,
1000 i386_frame_base_address
1001};
1002
acd5c798
MK
1003static struct frame_id
1004i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1005{
1006 char buf[4];
1007 CORE_ADDR fp;
1008
1009 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1010 fp = extract_unsigned_integer (buf, 4);
1011
3e210248 1012 /* See the end of i386_push_dummy_call. */
acd5c798 1013 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1014}
fc338970 1015\f
c906108c 1016
fc338970
MK
1017/* Figure out where the longjmp will land. Slurp the args out of the
1018 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1019 structure from which we extract the address that we will land at.
28bcfd30 1020 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1021 success.
1022
1023 This function is 64-bit safe. */
c906108c 1024
8201327c
MK
1025static int
1026i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1027{
28bcfd30 1028 char buf[8];
c906108c 1029 CORE_ADDR sp, jb_addr;
8201327c 1030 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1031 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1032
8201327c
MK
1033 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1034 longjmp will land. */
1035 if (jb_pc_offset == -1)
c906108c
SS
1036 return 0;
1037
8201327c 1038 sp = read_register (SP_REGNUM);
28bcfd30 1039 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1040 return 0;
1041
f9d3c2a8 1042 jb_addr = extract_typed_address (buf, builtin_type_void_func_ptr);
28bcfd30 1043 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1044 return 0;
c906108c 1045
f9d3c2a8 1046 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1047 return 1;
1048}
fc338970 1049\f
c906108c 1050
3a1e71e3 1051static CORE_ADDR
6a65450a
AC
1052i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1053 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1054 struct value **args, CORE_ADDR sp, int struct_return,
1055 CORE_ADDR struct_addr)
22f8ba57 1056{
acd5c798
MK
1057 char buf[4];
1058 int i;
1059
1060 /* Push arguments in reverse order. */
1061 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1062 {
acd5c798
MK
1063 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1064
1065 /* The System V ABI says that:
1066
1067 "An argument's size is increased, if necessary, to make it a
1068 multiple of [32-bit] words. This may require tail padding,
1069 depending on the size of the argument."
1070
1071 This makes sure the stack says word-aligned. */
1072 sp -= (len + 3) & ~3;
1073 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1074 }
22f8ba57 1075
acd5c798
MK
1076 /* Push value address. */
1077 if (struct_return)
1078 {
22f8ba57 1079 sp -= 4;
fbd9dcd3 1080 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1081 write_memory (sp, buf, 4);
1082 }
1083
acd5c798
MK
1084 /* Store return address. */
1085 sp -= 4;
6a65450a 1086 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1087 write_memory (sp, buf, 4);
1088
1089 /* Finally, update the stack pointer... */
1090 store_unsigned_integer (buf, 4, sp);
1091 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1092
1093 /* ...and fake a frame pointer. */
1094 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1095
3e210248
AC
1096 /* MarkK wrote: This "+ 8" is all over the place:
1097 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1098 i386_unwind_dummy_id). It's there, since all frame unwinders for
1099 a given target have to agree (within a certain margin) on the
1100 defenition of the stack address of a frame. Otherwise
1101 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1102 stack address *before* the function call as a frame's CFA. On
1103 the i386, when %ebp is used as a frame pointer, the offset
1104 between the contents %ebp and the CFA as defined by GCC. */
1105 return sp + 8;
22f8ba57
MK
1106}
1107
1a309862
MK
1108/* These registers are used for returning integers (and on some
1109 targets also for returning `struct' and `union' values when their
ef9dff19 1110 size and alignment match an integer type). */
acd5c798
MK
1111#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1112#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862
MK
1113
1114/* Extract from an array REGBUF containing the (raw) register state, a
1115 function return value of TYPE, and copy that, in virtual format,
1116 into VALBUF. */
1117
3a1e71e3 1118static void
00f8375e 1119i386_extract_return_value (struct type *type, struct regcache *regcache,
ebba8386 1120 void *dst)
c906108c 1121{
ebba8386 1122 bfd_byte *valbuf = dst;
1a309862 1123 int len = TYPE_LENGTH (type);
00f8375e 1124 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1125
1e8d0a7b
MK
1126 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1127 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1128 {
00f8375e 1129 i386_extract_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1130 return;
1131 }
1e8d0a7b
MK
1132
1133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1134 {
94ea66b3 1135 if (FP0_REGNUM < 0)
1a309862
MK
1136 {
1137 warning ("Cannot find floating-point return value.");
1138 memset (valbuf, 0, len);
ef9dff19 1139 return;
1a309862
MK
1140 }
1141
c6ba6f0d
MK
1142 /* Floating-point return values can be found in %st(0). Convert
1143 its contents to the desired type. This is probably not
1144 exactly how it would happen on the target itself, but it is
1145 the best we can do. */
acd5c798 1146 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1147 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1148 }
1149 else
c5aa993b 1150 {
d4f3574e
SS
1151 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1152 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1153
1154 if (len <= low_size)
00f8375e 1155 {
0818c12a 1156 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1157 memcpy (valbuf, buf, len);
1158 }
d4f3574e
SS
1159 else if (len <= (low_size + high_size))
1160 {
0818c12a 1161 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1162 memcpy (valbuf, buf, low_size);
0818c12a 1163 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
00f8375e 1164 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1165 }
1166 else
8e65ff28
AC
1167 internal_error (__FILE__, __LINE__,
1168 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1169 }
1170}
1171
ef9dff19
MK
1172/* Write into the appropriate registers a function return value stored
1173 in VALBUF of type TYPE, given in virtual format. */
1174
3a1e71e3 1175static void
3d7f4f49
MK
1176i386_store_return_value (struct type *type, struct regcache *regcache,
1177 const void *valbuf)
ef9dff19
MK
1178{
1179 int len = TYPE_LENGTH (type);
1180
1e8d0a7b
MK
1181 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1182 && TYPE_NFIELDS (type) == 1)
3df1b9b4 1183 {
3d7f4f49 1184 i386_store_return_value (TYPE_FIELD_TYPE (type, 0), regcache, valbuf);
3df1b9b4
MK
1185 return;
1186 }
1e8d0a7b
MK
1187
1188 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1189 {
3d7f4f49 1190 ULONGEST fstat;
c6ba6f0d 1191 char buf[FPU_REG_RAW_SIZE];
ccb945b8 1192
94ea66b3 1193 if (FP0_REGNUM < 0)
ef9dff19
MK
1194 {
1195 warning ("Cannot set floating-point return value.");
1196 return;
1197 }
1198
635b0cc1
MK
1199 /* Returning floating-point values is a bit tricky. Apart from
1200 storing the return value in %st(0), we have to simulate the
1201 state of the FPU at function return point. */
1202
c6ba6f0d
MK
1203 /* Convert the value found in VALBUF to the extended
1204 floating-point format used by the FPU. This is probably
1205 not exactly how it would happen on the target itself, but
1206 it is the best we can do. */
1207 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1208 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1209
635b0cc1
MK
1210 /* Set the top of the floating-point register stack to 7. The
1211 actual value doesn't really matter, but 7 is what a normal
1212 function return would end up with if the program started out
1213 with a freshly initialized FPU. */
3d7f4f49 1214 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
ccb945b8 1215 fstat |= (7 << 11);
3d7f4f49 1216 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
ccb945b8 1217
635b0cc1
MK
1218 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1219 the floating-point register stack to 7, the appropriate value
1220 for the tag word is 0x3fff. */
3d7f4f49 1221 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1222 }
1223 else
1224 {
1225 int low_size = REGISTER_RAW_SIZE (LOW_RETURN_REGNUM);
1226 int high_size = REGISTER_RAW_SIZE (HIGH_RETURN_REGNUM);
1227
1228 if (len <= low_size)
3d7f4f49 1229 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1230 else if (len <= (low_size + high_size))
1231 {
3d7f4f49
MK
1232 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1233 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1234 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1235 }
1236 else
8e65ff28
AC
1237 internal_error (__FILE__, __LINE__,
1238 "Cannot store return value of %d bytes long.", len);
ef9dff19
MK
1239 }
1240}
f7af9647 1241
751f1375
MK
1242/* Extract from REGCACHE, which contains the (raw) register state, the
1243 address in which a function should return its structure value, as a
1244 CORE_ADDR. */
f7af9647 1245
3a1e71e3 1246static CORE_ADDR
00f8375e 1247i386_extract_struct_value_address (struct regcache *regcache)
f7af9647 1248{
acd5c798 1249 char buf[4];
751f1375 1250
acd5c798
MK
1251 regcache_cooked_read (regcache, I386_EAX_REGNUM, buf);
1252 return extract_unsigned_integer (buf, 4);
f7af9647 1253}
fc338970 1254\f
ef9dff19 1255
8201327c
MK
1256/* This is the variable that is set with "set struct-convention", and
1257 its legitimate values. */
1258static const char default_struct_convention[] = "default";
1259static const char pcc_struct_convention[] = "pcc";
1260static const char reg_struct_convention[] = "reg";
1261static const char *valid_conventions[] =
1262{
1263 default_struct_convention,
1264 pcc_struct_convention,
1265 reg_struct_convention,
1266 NULL
1267};
1268static const char *struct_convention = default_struct_convention;
1269
1270static int
1271i386_use_struct_convention (int gcc_p, struct type *type)
1272{
1273 enum struct_return struct_return;
1274
1275 if (struct_convention == default_struct_convention)
1276 struct_return = gdbarch_tdep (current_gdbarch)->struct_return;
1277 else if (struct_convention == pcc_struct_convention)
1278 struct_return = pcc_struct_return;
1279 else
1280 struct_return = reg_struct_return;
1281
1282 return generic_use_struct_convention (struct_return == reg_struct_return,
1283 type);
1284}
1285\f
1286
d7a0d72c
MK
1287/* Return the GDB type object for the "standard" data type of data in
1288 register REGNUM. Perhaps %esi and %edi should go here, but
1289 potentially they could be used for things other than address. */
1290
3a1e71e3 1291static struct type *
4e259f09 1292i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1293{
acd5c798
MK
1294 if (regnum == I386_EIP_REGNUM
1295 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1296 return lookup_pointer_type (builtin_type_void);
1297
23a34459 1298 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1299 return builtin_type_i387_ext;
d7a0d72c 1300
23a34459 1301 if (i386_sse_regnum_p (regnum))
3139facc 1302 return builtin_type_vec128i;
d7a0d72c 1303
23a34459 1304 if (i386_mmx_regnum_p (regnum))
28fc6740
AC
1305 return builtin_type_vec64i;
1306
d7a0d72c
MK
1307 return builtin_type_int;
1308}
1309
28fc6740 1310/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1311 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1312
1313static int
c86c27af 1314i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740
AC
1315{
1316 int mmxi;
1317 ULONGEST fstat;
1318 int tos;
1319 int fpi;
c86c27af 1320
28fc6740
AC
1321 mmxi = regnum - MM0_REGNUM;
1322 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
1323 tos = (fstat >> 11) & 0x7;
1324 fpi = (mmxi + tos) % 8;
c86c27af 1325
28fc6740
AC
1326 return (FP0_REGNUM + fpi);
1327}
1328
1329static void
1330i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1331 int regnum, void *buf)
1332{
23a34459 1333 if (i386_mmx_regnum_p (regnum))
28fc6740 1334 {
d9d9c31f 1335 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1336 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1337
28fc6740 1338 /* Extract (always little endian). */
c86c27af 1339 regcache_raw_read (regcache, fpnum, mmx_buf);
28fc6740
AC
1340 memcpy (buf, mmx_buf, REGISTER_RAW_SIZE (regnum));
1341 }
1342 else
1343 regcache_raw_read (regcache, regnum, buf);
1344}
1345
1346static void
1347i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1348 int regnum, const void *buf)
1349{
23a34459 1350 if (i386_mmx_regnum_p (regnum))
28fc6740 1351 {
d9d9c31f 1352 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1353 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1354
28fc6740
AC
1355 /* Read ... */
1356 regcache_raw_read (regcache, fpnum, mmx_buf);
1357 /* ... Modify ... (always little endian). */
1358 memcpy (mmx_buf, buf, REGISTER_RAW_SIZE (regnum));
1359 /* ... Write. */
1360 regcache_raw_write (regcache, fpnum, mmx_buf);
1361 }
1362 else
1363 regcache_raw_write (regcache, regnum, buf);
1364}
ff2e87ac
AC
1365\f
1366
1367/* These registers don't have pervasive standard uses. Move them to
1368 i386-tdep.h if necessary. */
1369
1370#define I386_EBX_REGNUM 3 /* %ebx */
1371#define I386_ECX_REGNUM 1 /* %ecx */
1372#define I386_ESI_REGNUM 6 /* %esi */
1373#define I386_EDI_REGNUM 7 /* %edi */
1374
1375/* Return the register number of the register allocated by GCC after
1376 REGNUM, or -1 if there is no such register. */
1377
1378static int
1379i386_next_regnum (int regnum)
1380{
1381 /* GCC allocates the registers in the order:
1382
1383 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1384
1385 Since storing a variable in %esp doesn't make any sense we return
1386 -1 for %ebp and for %esp itself. */
1387 static int next_regnum[] =
1388 {
1389 I386_EDX_REGNUM, /* Slot for %eax. */
1390 I386_EBX_REGNUM, /* Slot for %ecx. */
1391 I386_ECX_REGNUM, /* Slot for %edx. */
1392 I386_ESI_REGNUM, /* Slot for %ebx. */
1393 -1, -1, /* Slots for %esp and %ebp. */
1394 I386_EDI_REGNUM, /* Slot for %esi. */
1395 I386_EBP_REGNUM /* Slot for %edi. */
1396 };
1397
de5b9bb9 1398 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1399 return next_regnum[regnum];
28fc6740 1400
ff2e87ac
AC
1401 return -1;
1402}
1403
1404/* Return nonzero if a value of type TYPE stored in register REGNUM
1405 needs any special handling. */
d7a0d72c 1406
3a1e71e3 1407static int
ff2e87ac 1408i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1409{
de5b9bb9
MK
1410 int len = TYPE_LENGTH (type);
1411
ff2e87ac
AC
1412 /* Values may be spread across multiple registers. Most debugging
1413 formats aren't expressive enough to specify the locations, so
1414 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1415 have a length that is a multiple of the word size, since GCC
1416 doesn't seem to put any other types into registers. */
1417 if (len > 4 && len % 4 == 0)
1418 {
1419 int last_regnum = regnum;
1420
1421 while (len > 4)
1422 {
1423 last_regnum = i386_next_regnum (last_regnum);
1424 len -= 4;
1425 }
1426
1427 if (last_regnum != -1)
1428 return 1;
1429 }
ff2e87ac 1430
23a34459 1431 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1432}
1433
ff2e87ac
AC
1434/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1435 return its contents in TO. */
ac27f131 1436
3a1e71e3 1437static void
ff2e87ac
AC
1438i386_register_to_value (struct frame_info *frame, int regnum,
1439 struct type *type, void *to)
ac27f131 1440{
de5b9bb9
MK
1441 int len = TYPE_LENGTH (type);
1442 char *buf = to;
1443
ff2e87ac
AC
1444 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1445 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1446
ff2e87ac 1447 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1448 {
d532c08f
MK
1449 i387_register_to_value (frame, regnum, type, to);
1450 return;
8d7f6b4a 1451 }
ff2e87ac 1452
de5b9bb9
MK
1453 /* Read a value spread accross multiple registers. */
1454
1455 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1456
de5b9bb9
MK
1457 while (len > 0)
1458 {
1459 gdb_assert (regnum != -1);
1460 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1461
de5b9bb9
MK
1462 frame_read_register (frame, regnum, buf);
1463 regnum = i386_next_regnum (regnum);
1464 len -= 4;
1465 buf += 4;
1466 }
ac27f131
MK
1467}
1468
ff2e87ac
AC
1469/* Write the contents FROM of a value of type TYPE into register
1470 REGNUM in frame FRAME. */
ac27f131 1471
3a1e71e3 1472static void
ff2e87ac
AC
1473i386_value_to_register (struct frame_info *frame, int regnum,
1474 struct type *type, const void *from)
ac27f131 1475{
de5b9bb9
MK
1476 int len = TYPE_LENGTH (type);
1477 const char *buf = from;
1478
ff2e87ac 1479 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1480 {
d532c08f
MK
1481 i387_value_to_register (frame, regnum, type, from);
1482 return;
1483 }
3d261580 1484
de5b9bb9
MK
1485 /* Write a value spread accross multiple registers. */
1486
1487 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1488
de5b9bb9
MK
1489 while (len > 0)
1490 {
1491 gdb_assert (regnum != -1);
1492 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1493
de5b9bb9
MK
1494 put_frame_register (frame, regnum, buf);
1495 regnum = i386_next_regnum (regnum);
1496 len -= 4;
1497 buf += 4;
1498 }
ac27f131 1499}
ff2e87ac
AC
1500\f
1501
fc338970 1502
c906108c 1503#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1504/* SunPRO encodes the static variables. This is not related to C++
1505 mangling, it is done for C too. */
c906108c
SS
1506
1507char *
fba45db2 1508sunpro_static_transform_name (char *name)
c906108c
SS
1509{
1510 char *p;
1511 if (IS_STATIC_TRANSFORM_NAME (name))
1512 {
fc338970
MK
1513 /* For file-local statics there will be a period, a bunch of
1514 junk (the contents of which match a string given in the
c5aa993b
JM
1515 N_OPT), a period and the name. For function-local statics
1516 there will be a bunch of junk (which seems to change the
1517 second character from 'A' to 'B'), a period, the name of the
1518 function, and the name. So just skip everything before the
1519 last period. */
c906108c
SS
1520 p = strrchr (name, '.');
1521 if (p != NULL)
1522 name = p + 1;
1523 }
1524 return name;
1525}
1526#endif /* STATIC_TRANSFORM_NAME */
fc338970 1527\f
c906108c 1528
fc338970 1529/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1530
1531CORE_ADDR
1cce71eb 1532i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1533{
fc338970 1534 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1535 {
c5aa993b 1536 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1537 struct minimal_symbol *indsym =
fc338970 1538 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1539 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1540
c5aa993b 1541 if (symname)
c906108c 1542 {
c5aa993b
JM
1543 if (strncmp (symname, "__imp_", 6) == 0
1544 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1545 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1546 }
1547 }
fc338970 1548 return 0; /* Not a trampoline. */
c906108c 1549}
fc338970
MK
1550\f
1551
8201327c
MK
1552/* Return non-zero if PC and NAME show that we are in a signal
1553 trampoline. */
1554
1555static int
1556i386_pc_in_sigtramp (CORE_ADDR pc, char *name)
1557{
1558 return (name && strcmp ("_sigtramp", name) == 0);
1559}
1560\f
1561
fc338970
MK
1562/* We have two flavours of disassembly. The machinery on this page
1563 deals with switching between those. */
c906108c
SS
1564
1565static int
5e3397bb 1566i386_print_insn (bfd_vma pc, disassemble_info *info)
c906108c 1567{
5e3397bb
MK
1568 gdb_assert (disassembly_flavor == att_flavor
1569 || disassembly_flavor == intel_flavor);
1570
1571 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1572 constified, cast to prevent a compiler warning. */
1573 info->disassembler_options = (char *) disassembly_flavor;
1574 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1575
1576 return print_insn_i386 (pc, info);
7a292a7a 1577}
fc338970 1578\f
3ce1502b 1579
8201327c
MK
1580/* There are a few i386 architecture variants that differ only
1581 slightly from the generic i386 target. For now, we don't give them
1582 their own source file, but include them here. As a consequence,
1583 they'll always be included. */
3ce1502b 1584
8201327c 1585/* System V Release 4 (SVR4). */
3ce1502b 1586
8201327c
MK
1587static int
1588i386_svr4_pc_in_sigtramp (CORE_ADDR pc, char *name)
d2a7c97a 1589{
acd5c798
MK
1590 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1591 currently unknown. */
8201327c
MK
1592 return (name && (strcmp ("_sigreturn", name) == 0
1593 || strcmp ("_sigacthandler", name) == 0
1594 || strcmp ("sigvechandler", name) == 0));
1595}
d2a7c97a 1596
acd5c798
MK
1597/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1598 routine, return the address of the associated sigcontext (ucontext)
1599 structure. */
3ce1502b 1600
3a1e71e3 1601static CORE_ADDR
acd5c798 1602i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1603{
acd5c798
MK
1604 char buf[4];
1605 CORE_ADDR sp;
3ce1502b 1606
acd5c798
MK
1607 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1608 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1609
acd5c798 1610 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1611}
1612\f
3ce1502b 1613
8201327c 1614/* DJGPP. */
d2a7c97a 1615
8201327c
MK
1616static int
1617i386_go32_pc_in_sigtramp (CORE_ADDR pc, char *name)
1618{
1619 /* DJGPP doesn't have any special frames for signal handlers. */
1620 return 0;
1621}
1622\f
d2a7c97a 1623
8201327c 1624/* Generic ELF. */
d2a7c97a 1625
8201327c
MK
1626void
1627i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1628{
1629 /* We typically use stabs-in-ELF with the DWARF register numbering. */
1630 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1631}
3ce1502b 1632
8201327c 1633/* System V Release 4 (SVR4). */
3ce1502b 1634
8201327c
MK
1635void
1636i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1637{
1638 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1639
8201327c
MK
1640 /* System V Release 4 uses ELF. */
1641 i386_elf_init_abi (info, gdbarch);
3ce1502b 1642
dfe01d39
MK
1643 /* System V Release 4 has shared libraries. */
1644 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1645 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1646
8201327c 1647 set_gdbarch_pc_in_sigtramp (gdbarch, i386_svr4_pc_in_sigtramp);
21d0e8a4 1648 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1649 tdep->sc_pc_offset = 36 + 14 * 4;
1650 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1651
8201327c 1652 tdep->jb_pc_offset = 20;
3ce1502b
MK
1653}
1654
8201327c 1655/* DJGPP. */
3ce1502b 1656
3a1e71e3 1657static void
8201327c 1658i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1659{
8201327c 1660 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1661
8201327c 1662 set_gdbarch_pc_in_sigtramp (gdbarch, i386_go32_pc_in_sigtramp);
3ce1502b 1663
8201327c 1664 tdep->jb_pc_offset = 36;
3ce1502b
MK
1665}
1666
8201327c 1667/* NetWare. */
3ce1502b 1668
3a1e71e3 1669static void
8201327c 1670i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1671{
8201327c 1672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1673
8201327c 1674 tdep->jb_pc_offset = 24;
d2a7c97a 1675}
8201327c 1676\f
2acceee2 1677
38c968cf
AC
1678/* i386 register groups. In addition to the normal groups, add "mmx"
1679 and "sse". */
1680
1681static struct reggroup *i386_sse_reggroup;
1682static struct reggroup *i386_mmx_reggroup;
1683
1684static void
1685i386_init_reggroups (void)
1686{
1687 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1688 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1689}
1690
1691static void
1692i386_add_reggroups (struct gdbarch *gdbarch)
1693{
1694 reggroup_add (gdbarch, i386_sse_reggroup);
1695 reggroup_add (gdbarch, i386_mmx_reggroup);
1696 reggroup_add (gdbarch, general_reggroup);
1697 reggroup_add (gdbarch, float_reggroup);
1698 reggroup_add (gdbarch, all_reggroup);
1699 reggroup_add (gdbarch, save_reggroup);
1700 reggroup_add (gdbarch, restore_reggroup);
1701 reggroup_add (gdbarch, vector_reggroup);
1702 reggroup_add (gdbarch, system_reggroup);
1703}
1704
1705int
1706i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1707 struct reggroup *group)
1708{
1709 int sse_regnum_p = (i386_sse_regnum_p (regnum)
1710 || i386_mxcsr_regnum_p (regnum));
1711 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1712 || i386_fpc_regnum_p (regnum));
1713 int mmx_regnum_p = (i386_mmx_regnum_p (regnum));
acd5c798 1714
38c968cf
AC
1715 if (group == i386_mmx_reggroup)
1716 return mmx_regnum_p;
1717 if (group == i386_sse_reggroup)
1718 return sse_regnum_p;
1719 if (group == vector_reggroup)
1720 return (mmx_regnum_p || sse_regnum_p);
1721 if (group == float_reggroup)
1722 return fp_regnum_p;
1723 if (group == general_reggroup)
1724 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1725
38c968cf
AC
1726 return default_register_reggroup_p (gdbarch, regnum, group);
1727}
38c968cf 1728\f
acd5c798 1729
143985b7 1730/* Get the ith function argument for the current function. */
42c466d7 1731static CORE_ADDR
143985b7
AF
1732i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1733 struct type *type)
1734{
1735 CORE_ADDR stack;
1736 frame_read_register (frame, SP_REGNUM, &stack);
1737 return read_memory_unsigned_integer (stack + (4 * (argi + 1)), 4);
1738}
1739
1740\f
3a1e71e3 1741static struct gdbarch *
a62cc96e
AC
1742i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1743{
cd3c07fc 1744 struct gdbarch_tdep *tdep;
a62cc96e
AC
1745 struct gdbarch *gdbarch;
1746
4be87837
DJ
1747 /* If there is already a candidate, use it. */
1748 arches = gdbarch_list_lookup_by_info (arches, &info);
1749 if (arches != NULL)
1750 return arches->gdbarch;
a62cc96e
AC
1751
1752 /* Allocate space for the new architecture. */
1753 tdep = XMALLOC (struct gdbarch_tdep);
1754 gdbarch = gdbarch_alloc (&info, tdep);
1755
8201327c 1756 /* The i386 default settings don't include the SSE registers.
356a6b3e
MK
1757 FIXME: kettenis/20020614: They do include the FPU registers for
1758 now, which probably is not quite right. */
8201327c 1759 tdep->num_xmm_regs = 0;
d2a7c97a 1760
8201327c
MK
1761 tdep->jb_pc_offset = -1;
1762 tdep->struct_return = pcc_struct_return;
8201327c
MK
1763 tdep->sigtramp_start = 0;
1764 tdep->sigtramp_end = 0;
21d0e8a4 1765 tdep->sigcontext_addr = NULL;
a3386186 1766 tdep->sc_reg_offset = NULL;
8201327c 1767 tdep->sc_pc_offset = -1;
21d0e8a4 1768 tdep->sc_sp_offset = -1;
8201327c 1769
896fb97d
MK
1770 /* The format used for `long double' on almost all i386 targets is
1771 the i387 extended floating-point format. In fact, of all targets
1772 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1773 on having a `long double' that's not `long' at all. */
1774 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1775
66da5fd8 1776 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1777 bits, a `long double' actually takes up 96, probably to enforce
1778 alignment. */
1779 set_gdbarch_long_double_bit (gdbarch, 96);
1780
acd5c798
MK
1781 /* The default ABI includes general-purpose registers and
1782 floating-point registers. */
356a6b3e 1783 set_gdbarch_num_regs (gdbarch, I386_NUM_GREGS + I386_NUM_FREGS);
acd5c798
MK
1784 set_gdbarch_register_name (gdbarch, i386_register_name);
1785 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1786
acd5c798
MK
1787 /* Register numbers of various important registers. */
1788 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1789 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1790 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1791 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e
MK
1792
1793 /* Use the "default" register numbering scheme for stabs and COFF. */
1794 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1795 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_stab_reg_to_regnum);
1796
1797 /* Use the DWARF register numbering scheme for DWARF and DWARF 2. */
1798 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1799 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dwarf_reg_to_regnum);
1800
1801 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
1802 be in use on any of the supported i386 targets. */
1803
61113f8b
MK
1804 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
1805
8201327c 1806 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 1807
a62cc96e 1808 /* Call dummy code. */
acd5c798 1809 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 1810
ff2e87ac
AC
1811 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
1812 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
1813 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 1814
00f8375e 1815 set_gdbarch_extract_return_value (gdbarch, i386_extract_return_value);
3d7f4f49 1816 set_gdbarch_store_return_value (gdbarch, i386_store_return_value);
00f8375e 1817 set_gdbarch_extract_struct_value_address (gdbarch,
fc08ec52 1818 i386_extract_struct_value_address);
8201327c
MK
1819 set_gdbarch_use_struct_convention (gdbarch, i386_use_struct_convention);
1820
93924b6b
MK
1821 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
1822
1823 /* Stack grows downward. */
1824 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1825
1826 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
1827 set_gdbarch_decr_pc_after_break (gdbarch, 1);
1828 set_gdbarch_function_start_offset (gdbarch, 0);
42fdc8df 1829
42fdc8df 1830 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c
MK
1831 set_gdbarch_pc_in_sigtramp (gdbarch, i386_pc_in_sigtramp);
1832
28fc6740 1833 /* Wire in the MMX registers. */
0f751ff2 1834 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
1835 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
1836 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
1837
5e3397bb
MK
1838 set_gdbarch_print_insn (gdbarch, i386_print_insn);
1839
acd5c798 1840 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
1841
1842 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
1843
38c968cf
AC
1844 /* Add the i386 register groups. */
1845 i386_add_reggroups (gdbarch);
1846 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
1847
143985b7
AF
1848 /* Helper for function argument information. */
1849 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
1850
6405b0a6 1851 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 1852 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 1853
acd5c798 1854 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 1855
3ce1502b 1856 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 1857 gdbarch_init_osabi (info, gdbarch);
3ce1502b 1858
336d1bba
AC
1859 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
1860 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 1861
a62cc96e
AC
1862 return gdbarch;
1863}
1864
8201327c
MK
1865static enum gdb_osabi
1866i386_coff_osabi_sniffer (bfd *abfd)
1867{
762c5349
MK
1868 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
1869 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
1870 return GDB_OSABI_GO32;
1871
1872 return GDB_OSABI_UNKNOWN;
1873}
1874
1875static enum gdb_osabi
1876i386_nlm_osabi_sniffer (bfd *abfd)
1877{
1878 return GDB_OSABI_NETWARE;
1879}
1880\f
1881
28e9e0f0
MK
1882/* Provide a prototype to silence -Wmissing-prototypes. */
1883void _initialize_i386_tdep (void);
1884
c906108c 1885void
fba45db2 1886_initialize_i386_tdep (void)
c906108c 1887{
a62cc96e
AC
1888 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
1889
fc338970 1890 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
1891 {
1892 struct cmd_list_element *new_cmd;
7a292a7a 1893
917317f4
JM
1894 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
1895 valid_flavors,
1ed2a135 1896 &disassembly_flavor,
fc338970
MK
1897 "\
1898Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 1899and the default value is \"att\".",
917317f4 1900 &setlist);
917317f4
JM
1901 add_show_from_set (new_cmd, &showlist);
1902 }
8201327c
MK
1903
1904 /* Add the variable that controls the convention for returning
1905 structs. */
1906 {
1907 struct cmd_list_element *new_cmd;
1908
1909 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 1910 valid_conventions,
8201327c
MK
1911 &struct_convention, "\
1912Set the convention for returning small structs, valid values \
1913are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
1914 &setlist);
1915 add_show_from_set (new_cmd, &showlist);
1916 }
1917
1918 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
1919 i386_coff_osabi_sniffer);
1920 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
1921 i386_nlm_osabi_sniffer);
1922
05816f70 1923 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 1924 i386_svr4_init_abi);
05816f70 1925 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 1926 i386_go32_init_abi);
05816f70 1927 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 1928 i386_nw_init_abi);
38c968cf
AC
1929
1930 /* Initialize the i386 specific register groups. */
1931 i386_init_reggroups ();
c906108c 1932}
This page took 0.50824 seconds and 4 git commands to generate.