* macroexp.c (expand): Avoid uninitialized variable
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
7b6bb8da 5 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
c8d5aac9 47#include "remote.h"
8fbca658 48#include "exceptions.h"
3d261580 49#include "gdb_assert.h"
acd5c798 50#include "gdb_string.h"
3d261580 51
d2a7c97a 52#include "i386-tdep.h"
61113f8b 53#include "i387-tdep.h"
c131fcee 54#include "i386-xstate.h"
d2a7c97a 55
7ad10968
HZ
56#include "record.h"
57#include <stdint.h>
58
90884b2b 59#include "features/i386/i386.c"
c131fcee 60#include "features/i386/i386-avx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
c4fc7f1b 63/* Register names. */
c40e1eab 64
90884b2b 65static const char *i386_register_names[] =
fc633446
MK
66{
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78};
79
c131fcee
L
80static const char *i386_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84};
85
86static const char *i386_ymmh_names[] =
87{
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90};
91
c4fc7f1b 92/* Register names for MMX pseudo-registers. */
28fc6740 93
90884b2b 94static const char *i386_mmx_names[] =
28fc6740
AC
95{
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98};
c40e1eab 99
1ba53b71
L
100/* Register names for byte pseudo-registers. */
101
102static const char *i386_byte_names[] =
103{
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106};
107
108/* Register names for word pseudo-registers. */
109
110static const char *i386_word_names[] =
111{
112 "ax", "cx", "dx", "bx",
9cad29ac 113 "", "bp", "si", "di"
1ba53b71
L
114};
115
116/* MMX register? */
c40e1eab 117
28fc6740 118static int
5716833c 119i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 120{
1ba53b71
L
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
123
124 if (mm0_regnum < 0)
125 return 0;
126
1ba53b71
L
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129}
130
131/* Byte register? */
132
133int
134i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140}
141
142/* Word register? */
143
144int
145i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151}
152
153/* Dword register? */
154
155int
156i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
166}
167
9191d390 168static int
c131fcee
L
169i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170{
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179}
180
181/* AVX register? */
182
183int
184i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194}
195
5716833c 196/* SSE register? */
23a34459 197
c131fcee
L
198int
199i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 200{
5716833c 201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 203
c131fcee 204 if (num_xmm_regs == 0)
5716833c
MK
205 return 0;
206
c131fcee
L
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
209}
210
5716833c
MK
211static int
212i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 213{
5716833c
MK
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
20a6ec49 216 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
217 return 0;
218
20a6ec49 219 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
220}
221
5716833c 222/* FP register? */
23a34459
AC
223
224int
20a6ec49 225i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 226{
20a6ec49
MD
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
230 return 0;
231
20a6ec49
MD
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
234}
235
236int
20a6ec49 237i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 238{
20a6ec49
MD
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
242 return 0;
243
20a6ec49
MD
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
246}
247
c131fcee
L
248/* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251static const char *
252i386_register_name (struct gdbarch *gdbarch, int regnum)
253{
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259}
260
30b0e2d8 261/* Return the name of register REGNUM. */
fc633446 262
1ba53b71 263const char *
90884b2b 264i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 265{
1ba53b71
L
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
277}
278
c4fc7f1b 279/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
280 number used by GDB. */
281
8201327c 282static int
d3f73121 283i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 284{
20a6ec49
MD
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
c4fc7f1b
MK
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
85540d8c
MK
290 if (reg >= 0 && reg <= 7)
291 {
9872ad24
JB
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
85540d8c
MK
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
20a6ec49 303 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
c131fcee
L
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
20a6ec49 319 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
320 }
321
322 /* This will hopefully provoke a warning. */
d3f73121 323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
324}
325
c4fc7f1b
MK
326/* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
85540d8c 328
8201327c 329static int
d3f73121 330i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 331{
20a6ec49
MD
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
c4fc7f1b
MK
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
acd5c798 341 /* General-purpose registers. */
85540d8c
MK
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
20a6ec49 347 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 348 }
c6f4c129 349 else if (reg >= 21 && reg <= 36)
85540d8c 350 {
c4fc7f1b 351 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 352 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
353 }
354
c6f4c129
JB
355 switch (reg)
356 {
20a6ec49
MD
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
85540d8c 368 /* This will hopefully provoke a warning. */
d3f73121 369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 370}
5716833c 371
fc338970 372\f
917317f4 373
fc338970
MK
374/* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
53904c9e
AC
376static const char att_flavor[] = "att";
377static const char intel_flavor[] = "intel";
378static const char *valid_flavors[] =
c5aa993b 379{
c906108c
SS
380 att_flavor,
381 intel_flavor,
382 NULL
383};
53904c9e 384static const char *disassembly_flavor = att_flavor;
acd5c798 385\f
c906108c 386
acd5c798
MK
387/* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
c906108c 392
acd5c798
MK
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
c906108c 395
acd5c798 396 This function is 64-bit safe. */
63c0089f
MK
397
398static const gdb_byte *
67d57894 399i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 400{
63c0089f
MK
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
acd5c798
MK
403 *len = sizeof (break_insn);
404 return break_insn;
c906108c 405}
237fc4c9
PA
406\f
407/* Displaced instruction handling. */
408
1903f0e6
DE
409/* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415static gdb_byte *
416i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417{
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443}
237fc4c9
PA
444
445static int
1903f0e6 446i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 447{
1777feb0 448 /* jmp far (absolute address in operand). */
237fc4c9
PA
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
1777feb0 454 /* jump near, absolute indirect (/4). */
237fc4c9
PA
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
1777feb0 458 /* jump far, absolute indirect (/5). */
237fc4c9
PA
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464}
465
466static int
1903f0e6 467i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 468{
1777feb0 469 /* call far, absolute. */
237fc4c9
PA
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
1777feb0 475 /* Call near, absolute indirect (/2). */
237fc4c9
PA
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
1777feb0 479 /* Call far, absolute indirect (/3). */
237fc4c9
PA
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485}
486
487static int
1903f0e6 488i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
489{
490 switch (insn[0])
491 {
1777feb0 492 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 493 case 0xc3: /* ret near */
1777feb0 494 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502}
503
504static int
1903f0e6 505i386_call_p (const gdb_byte *insn)
237fc4c9
PA
506{
507 if (i386_absolute_call_p (insn))
508 return 1;
509
1777feb0 510 /* call near, relative. */
237fc4c9
PA
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515}
516
237fc4c9
PA
517/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
1903f0e6 519
237fc4c9 520static int
b55078be 521i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9
PA
522{
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530}
531
b55078be
DE
532/* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535struct displaced_step_closure *
536i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539{
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567}
568
237fc4c9
PA
569/* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
1903f0e6 571
237fc4c9
PA
572void
573i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577{
e17a4113
UW
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
237fc4c9
PA
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
237fc4c9
PA
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
5af949e3 594 "displaced: fixup (%s, %s), "
237fc4c9 595 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
237fc4c9
PA
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
1903f0e6
DE
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
237fc4c9
PA
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
b55078be 627 int insn_len;
237fc4c9
PA
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
1903f0e6
DE
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
237fc4c9
PA
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
5af949e3
UW
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
237fc4c9
PA
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
237fc4c9
PA
701 }
702}
dde08ee1
PA
703
704static void
705append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706{
707 target_write_memory (*to, buf, len);
708 *to += len;
709}
710
711static void
712i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714{
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
1777feb0 739 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
f4a1794a 776 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
dde08ee1
PA
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788}
789
fc338970 790\f
acd5c798
MK
791#ifdef I386_REGNO_TO_SYMMETRY
792#error "The Sequent Symmetry is no longer supported."
793#endif
c906108c 794
acd5c798
MK
795/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
c906108c 798
acd5c798
MK
799/* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
a3386186 801#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
802
803struct i386_frame_cache
c906108c 804{
acd5c798
MK
805 /* Base address. */
806 CORE_ADDR base;
8fbca658 807 int base_p;
772562f8 808 LONGEST sp_offset;
acd5c798
MK
809 CORE_ADDR pc;
810
fd13a04a
AC
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 813 CORE_ADDR saved_sp;
e0c62198 814 int saved_sp_reg;
acd5c798
MK
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819};
820
821/* Allocate and initialize a frame cache. */
822
823static struct i386_frame_cache *
fd13a04a 824i386_alloc_frame_cache (void)
acd5c798
MK
825{
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
8fbca658 832 cache->base_p = 0;
acd5c798
MK
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
fd13a04a
AC
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
acd5c798 841 cache->saved_sp = 0;
e0c62198 842 cache->saved_sp_reg = -1;
acd5c798
MK
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849}
c906108c 850
acd5c798
MK
851/* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
c906108c 853
acd5c798 854static CORE_ADDR
e17a4113 855i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 856{
e17a4113 857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 858 gdb_byte op;
acd5c798
MK
859 long delta = 0;
860 int data16 = 0;
c906108c 861
3dcabaa8
MS
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
acd5c798 865 if (op == 0x66)
c906108c 866 {
c906108c 867 data16 = 1;
e17a4113 868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
869 }
870
acd5c798 871 switch (op)
c906108c
SS
872 {
873 case 0xe9:
fc338970 874 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
875 if (data16)
876 {
e17a4113 877 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 878
fc338970
MK
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
acd5c798 881 delta += 4;
c906108c
SS
882 }
883 else
884 {
e17a4113 885 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 886
acd5c798
MK
887 /* Include the size of the jmp instruction. */
888 delta += 5;
c906108c
SS
889 }
890 break;
891 case 0xeb:
fc338970 892 /* Relative jump, disp8 (ignore data16). */
e17a4113 893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 894
acd5c798 895 delta += data16 + 2;
c906108c
SS
896 break;
897 }
c906108c 898
acd5c798
MK
899 return pc + delta;
900}
fc338970 901
acd5c798
MK
902/* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
c906108c 907
acd5c798
MK
908static CORE_ADDR
909i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
c906108c 911{
acd5c798
MK
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
63c0089f
MK
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
c906108c 926
acd5c798
MK
927 if (current_pc <= pc)
928 return pc;
929
3dcabaa8
MS
930 if (target_read_memory (pc, &op, 1))
931 return pc;
c906108c 932
acd5c798
MK
933 if (op != 0x58) /* popl %eax */
934 return pc;
c906108c 935
3dcabaa8
MS
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
acd5c798
MK
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
c906108c 941
acd5c798 942 if (current_pc == pc)
c906108c 943 {
acd5c798
MK
944 cache->sp_offset += 4;
945 return current_pc;
c906108c
SS
946 }
947
acd5c798 948 if (current_pc == pc + 1)
c906108c 949 {
acd5c798
MK
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958}
959
960static CORE_ADDR
961i386_skip_probe (CORE_ADDR pc)
962{
963 /* A function may start with
fc338970 964
acd5c798
MK
965 pushl constant
966 call _probe
967 addl $4, %esp
fc338970 968
acd5c798
MK
969 followed by
970
971 pushl %ebp
fc338970 972
acd5c798 973 etc. */
63c0089f
MK
974 gdb_byte buf[8];
975 gdb_byte op;
fc338970 976
3dcabaa8
MS
977 if (target_read_memory (pc, &op, 1))
978 return pc;
acd5c798
MK
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
c906108c 983
acd5c798
MK
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
c906108c 986 if (op == 0x68)
acd5c798 987 delta = 5;
c906108c 988 else
acd5c798 989 delta = 2;
c906108c 990
acd5c798
MK
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
c906108c 994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 995 pc += delta + sizeof (buf);
c906108c
SS
996 }
997
acd5c798
MK
998 return pc;
999}
1000
92dd43fa
MK
1001/* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007static CORE_ADDR
1008i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010{
e0c62198
L
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
92dd43fa 1045 };
92dd43fa 1046
e0c62198
L
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1110 return pc;
1111
e0c62198
L
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
92dd43fa 1114
e0c62198 1115 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1116}
1117
37bdc87e 1118/* Maximum instruction length we need to handle. */
237fc4c9 1119#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1120
1121/* Instruction description. */
1122struct i386_insn
1123{
1124 size_t len;
237fc4c9
PA
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1127};
1128
1129/* Search for the instruction at PC in the list SKIP_INSNS. Return
1130 the first instruction description that matches. Otherwise, return
1131 NULL. */
1132
1133static struct i386_insn *
1134i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1135{
1136 struct i386_insn *insn;
63c0089f 1137 gdb_byte op;
37bdc87e 1138
3dcabaa8
MS
1139 if (target_read_memory (pc, &op, 1))
1140 return NULL;
37bdc87e
MK
1141
1142 for (insn = skip_insns; insn->len > 0; insn++)
1143 {
1144 if ((op & insn->mask[0]) == insn->insn[0])
1145 {
237fc4c9 1146 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 1147 int insn_matched = 1;
37bdc87e
MK
1148 size_t i;
1149
1150 gdb_assert (insn->len > 1);
237fc4c9 1151 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 1152
3dcabaa8
MS
1153 if (target_read_memory (pc + 1, buf, insn->len - 1))
1154 return NULL;
1155
37bdc87e
MK
1156 for (i = 1; i < insn->len; i++)
1157 {
1158 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 1159 insn_matched = 0;
37bdc87e 1160 }
613e8135
MK
1161
1162 if (insn_matched)
1163 return insn;
37bdc87e
MK
1164 }
1165 }
1166
1167 return NULL;
1168}
1169
1170/* Some special instructions that might be migrated by GCC into the
1171 part of the prologue that sets up the new stack frame. Because the
1172 stack frame hasn't been setup yet, no registers have been saved
1173 yet, and only the scratch registers %eax, %ecx and %edx can be
1174 touched. */
1175
1176struct i386_insn i386_frame_setup_skip_insns[] =
1177{
1777feb0 1178 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1179
1180 ??? Should we handle 16-bit operand-sizes here? */
1181
1182 /* `movb imm8, %al' and `movb imm8, %ah' */
1183 /* `movb imm8, %cl' and `movb imm8, %ch' */
1184 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1185 /* `movb imm8, %dl' and `movb imm8, %dh' */
1186 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1187 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1188 { 5, { 0xb8 }, { 0xfe } },
1189 /* `movl imm32, %edx' */
1190 { 5, { 0xba }, { 0xff } },
1191
1192 /* Check for `mov imm32, r32'. Note that there is an alternative
1193 encoding for `mov m32, %eax'.
1194
1195 ??? Should we handle SIB adressing here?
1196 ??? Should we handle 16-bit operand-sizes here? */
1197
1198 /* `movl m32, %eax' */
1199 { 5, { 0xa1 }, { 0xff } },
1200 /* `movl m32, %eax' and `mov; m32, %ecx' */
1201 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1202 /* `movl m32, %edx' */
1203 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1204
1205 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1206 Because of the symmetry, there are actually two ways to encode
1207 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1208 opcode bytes 0x31 and 0x33 for `xorl'. */
1209
1210 /* `subl %eax, %eax' */
1211 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1212 /* `subl %ecx, %ecx' */
1213 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1214 /* `subl %edx, %edx' */
1215 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1216 /* `xorl %eax, %eax' */
1217 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1218 /* `xorl %ecx, %ecx' */
1219 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1220 /* `xorl %edx, %edx' */
1221 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1222 { 0 }
1223};
1224
e11481da
PM
1225
1226/* Check whether PC points to a no-op instruction. */
1227static CORE_ADDR
1228i386_skip_noop (CORE_ADDR pc)
1229{
1230 gdb_byte op;
1231 int check = 1;
1232
3dcabaa8
MS
1233 if (target_read_memory (pc, &op, 1))
1234 return pc;
e11481da
PM
1235
1236 while (check)
1237 {
1238 check = 0;
1239 /* Ignore `nop' instruction. */
1240 if (op == 0x90)
1241 {
1242 pc += 1;
3dcabaa8
MS
1243 if (target_read_memory (pc, &op, 1))
1244 return pc;
e11481da
PM
1245 check = 1;
1246 }
1247 /* Ignore no-op instruction `mov %edi, %edi'.
1248 Microsoft system dlls often start with
1249 a `mov %edi,%edi' instruction.
1250 The 5 bytes before the function start are
1251 filled with `nop' instructions.
1252 This pattern can be used for hot-patching:
1253 The `mov %edi, %edi' instruction can be replaced by a
1254 near jump to the location of the 5 `nop' instructions
1255 which can be replaced by a 32-bit jump to anywhere
1256 in the 32-bit address space. */
1257
1258 else if (op == 0x8b)
1259 {
3dcabaa8
MS
1260 if (target_read_memory (pc + 1, &op, 1))
1261 return pc;
1262
e11481da
PM
1263 if (op == 0xff)
1264 {
1265 pc += 2;
3dcabaa8
MS
1266 if (target_read_memory (pc, &op, 1))
1267 return pc;
1268
e11481da
PM
1269 check = 1;
1270 }
1271 }
1272 }
1273 return pc;
1274}
1275
acd5c798
MK
1276/* Check whether PC points at a code that sets up a new stack frame.
1277 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1278 instruction after the sequence that sets up the frame or LIMIT,
1279 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1280
1281static CORE_ADDR
e17a4113
UW
1282i386_analyze_frame_setup (struct gdbarch *gdbarch,
1283 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1284 struct i386_frame_cache *cache)
1285{
e17a4113 1286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1287 struct i386_insn *insn;
63c0089f 1288 gdb_byte op;
26604a34 1289 int skip = 0;
acd5c798 1290
37bdc87e
MK
1291 if (limit <= pc)
1292 return limit;
acd5c798 1293
3dcabaa8
MS
1294 if (target_read_memory (pc, &op, 1))
1295 return pc;
acd5c798 1296
c906108c 1297 if (op == 0x55) /* pushl %ebp */
c5aa993b 1298 {
acd5c798
MK
1299 /* Take into account that we've executed the `pushl %ebp' that
1300 starts this instruction sequence. */
fd13a04a 1301 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1302 cache->sp_offset += 4;
37bdc87e 1303 pc++;
acd5c798
MK
1304
1305 /* If that's all, return now. */
37bdc87e
MK
1306 if (limit <= pc)
1307 return limit;
26604a34 1308
b4632131 1309 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1310 GCC into the prologue and skip them. At this point in the
1311 prologue, code should only touch the scratch registers %eax,
1312 %ecx and %edx, so while the number of posibilities is sheer,
1313 it is limited.
5daa5b4e 1314
26604a34
MK
1315 Make sure we only skip these instructions if we later see the
1316 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1317 while (pc + skip < limit)
26604a34 1318 {
37bdc87e
MK
1319 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1320 if (insn == NULL)
1321 break;
b4632131 1322
37bdc87e 1323 skip += insn->len;
26604a34
MK
1324 }
1325
37bdc87e
MK
1326 /* If that's all, return now. */
1327 if (limit <= pc + skip)
1328 return limit;
1329
3dcabaa8
MS
1330 if (target_read_memory (pc + skip, &op, 1))
1331 return pc + skip;
37bdc87e 1332
26604a34 1333 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1334 switch (op)
c906108c
SS
1335 {
1336 case 0x8b:
e17a4113
UW
1337 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1338 != 0xec)
37bdc87e 1339 return pc;
c906108c
SS
1340 break;
1341 case 0x89:
e17a4113
UW
1342 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1343 != 0xe5)
37bdc87e 1344 return pc;
c906108c
SS
1345 break;
1346 default:
37bdc87e 1347 return pc;
c906108c 1348 }
acd5c798 1349
26604a34
MK
1350 /* OK, we actually have a frame. We just don't know how large
1351 it is yet. Set its size to zero. We'll adjust it if
1352 necessary. We also now commit to skipping the special
1353 instructions mentioned before. */
acd5c798 1354 cache->locals = 0;
37bdc87e 1355 pc += (skip + 2);
acd5c798
MK
1356
1357 /* If that's all, return now. */
37bdc87e
MK
1358 if (limit <= pc)
1359 return limit;
acd5c798 1360
fc338970
MK
1361 /* Check for stack adjustment
1362
acd5c798 1363 subl $XXX, %esp
fc338970 1364
fd35795f 1365 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1366 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1367 if (target_read_memory (pc, &op, 1))
1368 return pc;
c906108c
SS
1369 if (op == 0x83)
1370 {
fd35795f 1371 /* `subl' with 8-bit immediate. */
e17a4113 1372 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1373 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1374 return pc;
acd5c798 1375
37bdc87e
MK
1376 /* `subl' with signed 8-bit immediate (though it wouldn't
1377 make sense to be negative). */
e17a4113 1378 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1379 return pc + 3;
c906108c
SS
1380 }
1381 else if (op == 0x81)
1382 {
fd35795f 1383 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1384 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1385 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1386 return pc;
acd5c798 1387
fd35795f 1388 /* It is `subl' with a 32-bit immediate. */
e17a4113 1389 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1390 return pc + 6;
c906108c
SS
1391 }
1392 else
1393 {
acd5c798 1394 /* Some instruction other than `subl'. */
37bdc87e 1395 return pc;
c906108c
SS
1396 }
1397 }
37bdc87e 1398 else if (op == 0xc8) /* enter */
c906108c 1399 {
e17a4113 1400 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1401 return pc + 4;
c906108c 1402 }
21d0e8a4 1403
acd5c798 1404 return pc;
21d0e8a4
MK
1405}
1406
acd5c798
MK
1407/* Check whether PC points at code that saves registers on the stack.
1408 If so, it updates CACHE and returns the address of the first
1409 instruction after the register saves or CURRENT_PC, whichever is
1410 smaller. Otherwise, return PC. */
6bff26de
MK
1411
1412static CORE_ADDR
acd5c798
MK
1413i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1414 struct i386_frame_cache *cache)
6bff26de 1415{
99ab4326 1416 CORE_ADDR offset = 0;
63c0089f 1417 gdb_byte op;
99ab4326 1418 int i;
c0d1d883 1419
99ab4326
MK
1420 if (cache->locals > 0)
1421 offset -= cache->locals;
1422 for (i = 0; i < 8 && pc < current_pc; i++)
1423 {
3dcabaa8
MS
1424 if (target_read_memory (pc, &op, 1))
1425 return pc;
99ab4326
MK
1426 if (op < 0x50 || op > 0x57)
1427 break;
0d17c81d 1428
99ab4326
MK
1429 offset -= 4;
1430 cache->saved_regs[op - 0x50] = offset;
1431 cache->sp_offset += 4;
1432 pc++;
6bff26de
MK
1433 }
1434
acd5c798 1435 return pc;
22797942
AC
1436}
1437
acd5c798
MK
1438/* Do a full analysis of the prologue at PC and update CACHE
1439 accordingly. Bail out early if CURRENT_PC is reached. Return the
1440 address where the analysis stopped.
ed84f6c1 1441
fc338970
MK
1442 We handle these cases:
1443
1444 The startup sequence can be at the start of the function, or the
1445 function can start with a branch to startup code at the end.
1446
1447 %ebp can be set up with either the 'enter' instruction, or "pushl
1448 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1449 once used in the System V compiler).
1450
1451 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1452 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1453 16-bit unsigned argument for space to allocate, and the 'addl'
1454 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1455
1456 Next, the registers used by this function are pushed. With the
1457 System V compiler they will always be in the order: %edi, %esi,
1458 %ebx (and sometimes a harmless bug causes it to also save but not
1459 restore %eax); however, the code below is willing to see the pushes
1460 in any order, and will handle up to 8 of them.
1461
1462 If the setup sequence is at the end of the function, then the next
1463 instruction will be a branch back to the start. */
c906108c 1464
acd5c798 1465static CORE_ADDR
e17a4113
UW
1466i386_analyze_prologue (struct gdbarch *gdbarch,
1467 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1468 struct i386_frame_cache *cache)
c906108c 1469{
e11481da 1470 pc = i386_skip_noop (pc);
e17a4113 1471 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1472 pc = i386_analyze_struct_return (pc, current_pc, cache);
1473 pc = i386_skip_probe (pc);
92dd43fa 1474 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1475 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1476 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1477}
1478
fc338970 1479/* Return PC of first real instruction. */
c906108c 1480
3a1e71e3 1481static CORE_ADDR
6093d2eb 1482i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1483{
e17a4113
UW
1484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1485
63c0089f 1486 static gdb_byte pic_pat[6] =
acd5c798
MK
1487 {
1488 0xe8, 0, 0, 0, 0, /* call 0x0 */
1489 0x5b, /* popl %ebx */
c5aa993b 1490 };
acd5c798
MK
1491 struct i386_frame_cache cache;
1492 CORE_ADDR pc;
63c0089f 1493 gdb_byte op;
acd5c798 1494 int i;
c5aa993b 1495
acd5c798 1496 cache.locals = -1;
e17a4113 1497 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1498 if (cache.locals < 0)
1499 return start_pc;
c5aa993b 1500
acd5c798 1501 /* Found valid frame setup. */
c906108c 1502
fc338970
MK
1503 /* The native cc on SVR4 in -K PIC mode inserts the following code
1504 to get the address of the global offset table (GOT) into register
acd5c798
MK
1505 %ebx:
1506
fc338970
MK
1507 call 0x0
1508 popl %ebx
1509 movl %ebx,x(%ebp) (optional)
1510 addl y,%ebx
1511
c906108c
SS
1512 This code is with the rest of the prologue (at the end of the
1513 function), so we have to skip it to get to the first real
1514 instruction at the start of the function. */
c5aa993b 1515
c906108c
SS
1516 for (i = 0; i < 6; i++)
1517 {
3dcabaa8
MS
1518 if (target_read_memory (pc + i, &op, 1))
1519 return pc;
1520
c5aa993b 1521 if (pic_pat[i] != op)
c906108c
SS
1522 break;
1523 }
1524 if (i == 6)
1525 {
acd5c798
MK
1526 int delta = 6;
1527
3dcabaa8
MS
1528 if (target_read_memory (pc + delta, &op, 1))
1529 return pc;
c906108c 1530
c5aa993b 1531 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1532 {
e17a4113 1533 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1534
fc338970 1535 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1536 delta += 3;
fc338970 1537 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1538 delta += 6;
fc338970 1539 else /* Unexpected instruction. */
acd5c798
MK
1540 delta = 0;
1541
3dcabaa8
MS
1542 if (target_read_memory (pc + delta, &op, 1))
1543 return pc;
c906108c 1544 }
acd5c798 1545
c5aa993b 1546 /* addl y,%ebx */
acd5c798 1547 if (delta > 0 && op == 0x81
e17a4113
UW
1548 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1549 == 0xc3)
c906108c 1550 {
acd5c798 1551 pc += delta + 6;
c906108c
SS
1552 }
1553 }
c5aa993b 1554
e63bbc88
MK
1555 /* If the function starts with a branch (to startup code at the end)
1556 the last instruction should bring us back to the first
1557 instruction of the real code. */
e17a4113
UW
1558 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1559 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1560
1561 return pc;
c906108c
SS
1562}
1563
4309257c
PM
1564/* Check that the code pointed to by PC corresponds to a call to
1565 __main, skip it if so. Return PC otherwise. */
1566
1567CORE_ADDR
1568i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1569{
e17a4113 1570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1571 gdb_byte op;
1572
3dcabaa8
MS
1573 if (target_read_memory (pc, &op, 1))
1574 return pc;
4309257c
PM
1575 if (op == 0xe8)
1576 {
1577 gdb_byte buf[4];
1578
1579 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1580 {
1581 /* Make sure address is computed correctly as a 32bit
1582 integer even if CORE_ADDR is 64 bit wide. */
1583 struct minimal_symbol *s;
e17a4113 1584 CORE_ADDR call_dest;
4309257c 1585
e17a4113 1586 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1587 call_dest = call_dest & 0xffffffffU;
1588 s = lookup_minimal_symbol_by_pc (call_dest);
1589 if (s != NULL
1590 && SYMBOL_LINKAGE_NAME (s) != NULL
1591 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1592 pc += 5;
1593 }
1594 }
1595
1596 return pc;
1597}
1598
acd5c798 1599/* This function is 64-bit safe. */
93924b6b 1600
acd5c798
MK
1601static CORE_ADDR
1602i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1603{
63c0089f 1604 gdb_byte buf[8];
acd5c798 1605
875f8d0e 1606 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1607 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1608}
acd5c798 1609\f
93924b6b 1610
acd5c798 1611/* Normal frames. */
c5aa993b 1612
8fbca658
PA
1613static void
1614i386_frame_cache_1 (struct frame_info *this_frame,
1615 struct i386_frame_cache *cache)
a7769679 1616{
e17a4113
UW
1617 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1619 gdb_byte buf[4];
acd5c798
MK
1620 int i;
1621
8fbca658 1622 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1623
1624 /* In principle, for normal frames, %ebp holds the frame pointer,
1625 which holds the base address for the current stack frame.
1626 However, for functions that don't need it, the frame pointer is
1627 optional. For these "frameless" functions the frame pointer is
1628 actually the frame pointer of the calling frame. Signal
1629 trampolines are just a special case of a "frameless" function.
1630 They (usually) share their frame pointer with the frame that was
1631 in progress when the signal occurred. */
1632
10458914 1633 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1634 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1635 if (cache->base == 0)
8fbca658 1636 return;
acd5c798
MK
1637
1638 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1639 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1640
acd5c798 1641 if (cache->pc != 0)
e17a4113
UW
1642 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1643 cache);
acd5c798
MK
1644
1645 if (cache->locals < 0)
1646 {
1647 /* We didn't find a valid frame, which means that CACHE->base
1648 currently holds the frame pointer for our calling frame. If
1649 we're at the start of a function, or somewhere half-way its
1650 prologue, the function's frame probably hasn't been fully
1651 setup yet. Try to reconstruct the base address for the stack
1652 frame by looking at the stack pointer. For truly "frameless"
1653 functions this might work too. */
1654
e0c62198 1655 if (cache->saved_sp_reg != -1)
92dd43fa 1656 {
8fbca658
PA
1657 /* Saved stack pointer has been saved. */
1658 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1659 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1660
92dd43fa
MK
1661 /* We're halfway aligning the stack. */
1662 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1663 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1664
1665 /* This will be added back below. */
1666 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1667 }
7618e12b
DJ
1668 else if (cache->pc != 0
1669 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1670 {
7618e12b
DJ
1671 /* We're in a known function, but did not find a frame
1672 setup. Assume that the function does not use %ebp.
1673 Alternatively, we may have jumped to an invalid
1674 address; in that case there is definitely no new
1675 frame in %ebp. */
10458914 1676 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1677 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1678 + cache->sp_offset;
92dd43fa 1679 }
7618e12b
DJ
1680 else
1681 /* We're in an unknown function. We could not find the start
1682 of the function to analyze the prologue; our best option is
1683 to assume a typical frame layout with the caller's %ebp
1684 saved. */
1685 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1686 }
1687
8fbca658
PA
1688 if (cache->saved_sp_reg != -1)
1689 {
1690 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1691 register may be unavailable). */
1692 if (cache->saved_sp == 0
1693 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1694 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1695 }
acd5c798
MK
1696 /* Now that we have the base address for the stack frame we can
1697 calculate the value of %esp in the calling frame. */
8fbca658 1698 else if (cache->saved_sp == 0)
92dd43fa 1699 cache->saved_sp = cache->base + 8;
a7769679 1700
acd5c798
MK
1701 /* Adjust all the saved registers such that they contain addresses
1702 instead of offsets. */
1703 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1704 if (cache->saved_regs[i] != -1)
1705 cache->saved_regs[i] += cache->base;
acd5c798 1706
8fbca658
PA
1707 cache->base_p = 1;
1708}
1709
1710static struct i386_frame_cache *
1711i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1712{
1713 volatile struct gdb_exception ex;
1714 struct i386_frame_cache *cache;
1715
1716 if (*this_cache)
1717 return *this_cache;
1718
1719 cache = i386_alloc_frame_cache ();
1720 *this_cache = cache;
1721
1722 TRY_CATCH (ex, RETURN_MASK_ERROR)
1723 {
1724 i386_frame_cache_1 (this_frame, cache);
1725 }
1726 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1727 throw_exception (ex);
1728
acd5c798 1729 return cache;
a7769679
MK
1730}
1731
3a1e71e3 1732static void
10458914 1733i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1734 struct frame_id *this_id)
c906108c 1735{
10458914 1736 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1737
1738 /* This marks the outermost frame. */
1739 if (cache->base == 0)
1740 return;
1741
3e210248 1742 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1743 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1744}
1745
8fbca658
PA
1746static enum unwind_stop_reason
1747i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1748 void **this_cache)
1749{
1750 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1751
1752 if (!cache->base_p)
1753 return UNWIND_UNAVAILABLE;
1754
1755 /* This marks the outermost frame. */
1756 if (cache->base == 0)
1757 return UNWIND_OUTERMOST;
1758
1759 return UNWIND_NO_REASON;
1760}
1761
10458914
DJ
1762static struct value *
1763i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1764 int regnum)
acd5c798 1765{
10458914 1766 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1767
1768 gdb_assert (regnum >= 0);
1769
1770 /* The System V ABI says that:
1771
1772 "The flags register contains the system flags, such as the
1773 direction flag and the carry flag. The direction flag must be
1774 set to the forward (that is, zero) direction before entry and
1775 upon exit from a function. Other user flags have no specified
1776 role in the standard calling sequence and are not preserved."
1777
1778 To guarantee the "upon exit" part of that statement we fake a
1779 saved flags register that has its direction flag cleared.
1780
1781 Note that GCC doesn't seem to rely on the fact that the direction
1782 flag is cleared after a function return; it always explicitly
1783 clears the flag before operations where it matters.
1784
1785 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1786 right thing to do. The way we fake the flags register here makes
1787 it impossible to change it. */
1788
1789 if (regnum == I386_EFLAGS_REGNUM)
1790 {
10458914 1791 ULONGEST val;
c5aa993b 1792
10458914
DJ
1793 val = get_frame_register_unsigned (this_frame, regnum);
1794 val &= ~(1 << 10);
1795 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1796 }
1211c4e4 1797
acd5c798 1798 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1799 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1800
8fbca658
PA
1801 if (regnum == I386_ESP_REGNUM)
1802 {
1803 /* If the SP has been saved, but we don't know where, then this
1804 means that SAVED_SP_REG register was found unavailable back
1805 when we built the cache. */
1806 if (cache->saved_sp == 0 && cache->saved_sp_reg != -1)
1807 return frame_unwind_got_register (this_frame, regnum,
1808 cache->saved_sp_reg);
1809 else
1810 return frame_unwind_got_constant (this_frame, regnum,
1811 cache->saved_sp);
1812 }
acd5c798 1813
fd13a04a 1814 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1815 return frame_unwind_got_memory (this_frame, regnum,
1816 cache->saved_regs[regnum]);
fd13a04a 1817
10458914 1818 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1819}
1820
1821static const struct frame_unwind i386_frame_unwind =
1822{
1823 NORMAL_FRAME,
8fbca658 1824 i386_frame_unwind_stop_reason,
acd5c798 1825 i386_frame_this_id,
10458914
DJ
1826 i386_frame_prev_register,
1827 NULL,
1828 default_frame_sniffer
acd5c798 1829};
06da04c6
MS
1830
1831/* Normal frames, but in a function epilogue. */
1832
1833/* The epilogue is defined here as the 'ret' instruction, which will
1834 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1835 the function's stack frame. */
1836
1837static int
1838i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1839{
1840 gdb_byte insn;
1841
1842 if (target_read_memory (pc, &insn, 1))
1843 return 0; /* Can't read memory at pc. */
1844
1845 if (insn != 0xc3) /* 'ret' instruction. */
1846 return 0;
1847
1848 return 1;
1849}
1850
1851static int
1852i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1853 struct frame_info *this_frame,
1854 void **this_prologue_cache)
1855{
1856 if (frame_relative_level (this_frame) == 0)
1857 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1858 get_frame_pc (this_frame));
1859 else
1860 return 0;
1861}
1862
1863static struct i386_frame_cache *
1864i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1865{
1866 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 1868 volatile struct gdb_exception ex;
06da04c6
MS
1869 struct i386_frame_cache *cache;
1870 gdb_byte buf[4];
1871
1872 if (*this_cache)
1873 return *this_cache;
1874
1875 cache = i386_alloc_frame_cache ();
1876 *this_cache = cache;
1877
8fbca658
PA
1878 TRY_CATCH (ex, RETURN_MASK_ERROR)
1879 {
1880 /* Cache base will be %esp plus cache->sp_offset (-4). */
1881 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1882 cache->base = extract_unsigned_integer (buf, 4,
1883 byte_order) + cache->sp_offset;
1884
1885 /* Cache pc will be the frame func. */
1886 cache->pc = get_frame_pc (this_frame);
06da04c6 1887
8fbca658
PA
1888 /* The saved %esp will be at cache->base plus 8. */
1889 cache->saved_sp = cache->base + 8;
06da04c6 1890
8fbca658
PA
1891 /* The saved %eip will be at cache->base plus 4. */
1892 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1893
8fbca658
PA
1894 cache->base_p = 1;
1895 }
1896 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1897 throw_exception (ex);
06da04c6
MS
1898
1899 return cache;
1900}
1901
8fbca658
PA
1902static enum unwind_stop_reason
1903i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1904 void **this_cache)
1905{
1906 struct i386_frame_cache *cache
1907 = i386_epilogue_frame_cache (this_frame, this_cache);
1908
1909 if (!cache->base_p)
1910 return UNWIND_UNAVAILABLE;
1911
1912 return UNWIND_NO_REASON;
1913}
1914
06da04c6
MS
1915static void
1916i386_epilogue_frame_this_id (struct frame_info *this_frame,
1917 void **this_cache,
1918 struct frame_id *this_id)
1919{
1920 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1921 this_cache);
1922
8fbca658
PA
1923 if (!cache->base_p)
1924 return;
1925
06da04c6
MS
1926 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1927}
1928
1929static const struct frame_unwind i386_epilogue_frame_unwind =
1930{
1931 NORMAL_FRAME,
8fbca658 1932 i386_epilogue_frame_unwind_stop_reason,
06da04c6
MS
1933 i386_epilogue_frame_this_id,
1934 i386_frame_prev_register,
1935 NULL,
1936 i386_epilogue_frame_sniffer
1937};
acd5c798
MK
1938\f
1939
1940/* Signal trampolines. */
1941
1942static struct i386_frame_cache *
10458914 1943i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1944{
e17a4113
UW
1945 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1946 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1947 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 1948 volatile struct gdb_exception ex;
acd5c798 1949 struct i386_frame_cache *cache;
acd5c798 1950 CORE_ADDR addr;
63c0089f 1951 gdb_byte buf[4];
acd5c798
MK
1952
1953 if (*this_cache)
1954 return *this_cache;
1955
fd13a04a 1956 cache = i386_alloc_frame_cache ();
acd5c798 1957
8fbca658 1958 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 1959 {
8fbca658
PA
1960 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1961 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 1962
8fbca658
PA
1963 addr = tdep->sigcontext_addr (this_frame);
1964 if (tdep->sc_reg_offset)
1965 {
1966 int i;
a3386186 1967
8fbca658
PA
1968 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1969
1970 for (i = 0; i < tdep->sc_num_regs; i++)
1971 if (tdep->sc_reg_offset[i] != -1)
1972 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1973 }
1974 else
1975 {
1976 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1977 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1978 }
1979
1980 cache->base_p = 1;
a3386186 1981 }
8fbca658
PA
1982 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1983 throw_exception (ex);
acd5c798
MK
1984
1985 *this_cache = cache;
1986 return cache;
1987}
1988
8fbca658
PA
1989static enum unwind_stop_reason
1990i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
1991 void **this_cache)
1992{
1993 struct i386_frame_cache *cache =
1994 i386_sigtramp_frame_cache (this_frame, this_cache);
1995
1996 if (!cache->base_p)
1997 return UNWIND_UNAVAILABLE;
1998
1999 return UNWIND_NO_REASON;
2000}
2001
acd5c798 2002static void
10458914 2003i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2004 struct frame_id *this_id)
2005{
2006 struct i386_frame_cache *cache =
10458914 2007 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2008
8fbca658
PA
2009 if (!cache->base_p)
2010 return;
2011
3e210248 2012 /* See the end of i386_push_dummy_call. */
10458914 2013 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2014}
2015
10458914
DJ
2016static struct value *
2017i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2018 void **this_cache, int regnum)
acd5c798
MK
2019{
2020 /* Make sure we've initialized the cache. */
10458914 2021 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2022
10458914 2023 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2024}
c0d1d883 2025
10458914
DJ
2026static int
2027i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2028 struct frame_info *this_frame,
2029 void **this_prologue_cache)
acd5c798 2030{
10458914 2031 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2032
911bc6ee
MK
2033 /* We shouldn't even bother if we don't have a sigcontext_addr
2034 handler. */
2035 if (tdep->sigcontext_addr == NULL)
10458914 2036 return 0;
1c3545ae 2037
911bc6ee
MK
2038 if (tdep->sigtramp_p != NULL)
2039 {
10458914
DJ
2040 if (tdep->sigtramp_p (this_frame))
2041 return 1;
911bc6ee
MK
2042 }
2043
2044 if (tdep->sigtramp_start != 0)
2045 {
10458914 2046 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2047
2048 gdb_assert (tdep->sigtramp_end != 0);
2049 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2050 return 1;
911bc6ee 2051 }
acd5c798 2052
10458914 2053 return 0;
acd5c798 2054}
10458914
DJ
2055
2056static const struct frame_unwind i386_sigtramp_frame_unwind =
2057{
2058 SIGTRAMP_FRAME,
8fbca658 2059 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2060 i386_sigtramp_frame_this_id,
2061 i386_sigtramp_frame_prev_register,
2062 NULL,
2063 i386_sigtramp_frame_sniffer
2064};
acd5c798
MK
2065\f
2066
2067static CORE_ADDR
10458914 2068i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2069{
10458914 2070 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2071
2072 return cache->base;
2073}
2074
2075static const struct frame_base i386_frame_base =
2076{
2077 &i386_frame_unwind,
2078 i386_frame_base_address,
2079 i386_frame_base_address,
2080 i386_frame_base_address
2081};
2082
acd5c798 2083static struct frame_id
10458914 2084i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2085{
acd5c798
MK
2086 CORE_ADDR fp;
2087
10458914 2088 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2089
3e210248 2090 /* See the end of i386_push_dummy_call. */
10458914 2091 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2092}
fc338970 2093\f
c906108c 2094
fc338970
MK
2095/* Figure out where the longjmp will land. Slurp the args out of the
2096 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2097 structure from which we extract the address that we will land at.
28bcfd30 2098 This address is copied into PC. This routine returns non-zero on
436675d3 2099 success. */
c906108c 2100
8201327c 2101static int
60ade65d 2102i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2103{
436675d3 2104 gdb_byte buf[4];
c906108c 2105 CORE_ADDR sp, jb_addr;
20a6ec49 2106 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2107 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2108 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2109
8201327c
MK
2110 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2111 longjmp will land. */
2112 if (jb_pc_offset == -1)
c906108c
SS
2113 return 0;
2114
436675d3 2115 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2116 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2117 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2118 return 0;
2119
e17a4113 2120 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2121 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2122 return 0;
c906108c 2123
e17a4113 2124 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2125 return 1;
2126}
fc338970 2127\f
c906108c 2128
7ccc1c74
JM
2129/* Check whether TYPE must be 16-byte-aligned when passed as a
2130 function argument. 16-byte vectors, _Decimal128 and structures or
2131 unions containing such types must be 16-byte-aligned; other
2132 arguments are 4-byte-aligned. */
2133
2134static int
2135i386_16_byte_align_p (struct type *type)
2136{
2137 type = check_typedef (type);
2138 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2139 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2140 && TYPE_LENGTH (type) == 16)
2141 return 1;
2142 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2143 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2144 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2145 || TYPE_CODE (type) == TYPE_CODE_UNION)
2146 {
2147 int i;
2148 for (i = 0; i < TYPE_NFIELDS (type); i++)
2149 {
2150 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2151 return 1;
2152 }
2153 }
2154 return 0;
2155}
2156
3a1e71e3 2157static CORE_ADDR
7d9b040b 2158i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2159 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2160 struct value **args, CORE_ADDR sp, int struct_return,
2161 CORE_ADDR struct_addr)
22f8ba57 2162{
e17a4113 2163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2164 gdb_byte buf[4];
acd5c798 2165 int i;
7ccc1c74
JM
2166 int write_pass;
2167 int args_space = 0;
acd5c798 2168
7ccc1c74
JM
2169 /* Determine the total space required for arguments and struct
2170 return address in a first pass (allowing for 16-byte-aligned
2171 arguments), then push arguments in a second pass. */
2172
2173 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2174 {
7ccc1c74
JM
2175 int args_space_used = 0;
2176 int have_16_byte_aligned_arg = 0;
2177
2178 if (struct_return)
2179 {
2180 if (write_pass)
2181 {
2182 /* Push value address. */
e17a4113 2183 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2184 write_memory (sp, buf, 4);
2185 args_space_used += 4;
2186 }
2187 else
2188 args_space += 4;
2189 }
2190
2191 for (i = 0; i < nargs; i++)
2192 {
2193 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2194
7ccc1c74
JM
2195 if (write_pass)
2196 {
2197 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2198 args_space_used = align_up (args_space_used, 16);
acd5c798 2199
7ccc1c74
JM
2200 write_memory (sp + args_space_used,
2201 value_contents_all (args[i]), len);
2202 /* The System V ABI says that:
acd5c798 2203
7ccc1c74
JM
2204 "An argument's size is increased, if necessary, to make it a
2205 multiple of [32-bit] words. This may require tail padding,
2206 depending on the size of the argument."
22f8ba57 2207
7ccc1c74
JM
2208 This makes sure the stack stays word-aligned. */
2209 args_space_used += align_up (len, 4);
2210 }
2211 else
2212 {
2213 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2214 {
2215 args_space = align_up (args_space, 16);
2216 have_16_byte_aligned_arg = 1;
2217 }
2218 args_space += align_up (len, 4);
2219 }
2220 }
2221
2222 if (!write_pass)
2223 {
2224 if (have_16_byte_aligned_arg)
2225 args_space = align_up (args_space, 16);
2226 sp -= args_space;
2227 }
22f8ba57
MK
2228 }
2229
acd5c798
MK
2230 /* Store return address. */
2231 sp -= 4;
e17a4113 2232 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2233 write_memory (sp, buf, 4);
2234
2235 /* Finally, update the stack pointer... */
e17a4113 2236 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2237 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2238
2239 /* ...and fake a frame pointer. */
2240 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2241
3e210248
AC
2242 /* MarkK wrote: This "+ 8" is all over the place:
2243 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2244 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2245 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2246 definition of the stack address of a frame. Otherwise frame id
2247 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2248 stack address *before* the function call as a frame's CFA. On
2249 the i386, when %ebp is used as a frame pointer, the offset
2250 between the contents %ebp and the CFA as defined by GCC. */
2251 return sp + 8;
22f8ba57
MK
2252}
2253
1a309862
MK
2254/* These registers are used for returning integers (and on some
2255 targets also for returning `struct' and `union' values when their
ef9dff19 2256 size and alignment match an integer type). */
acd5c798
MK
2257#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2258#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2259
c5e656c1
MK
2260/* Read, for architecture GDBARCH, a function return value of TYPE
2261 from REGCACHE, and copy that into VALBUF. */
1a309862 2262
3a1e71e3 2263static void
c5e656c1 2264i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2265 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2266{
c5e656c1 2267 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2268 int len = TYPE_LENGTH (type);
63c0089f 2269 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2270
1e8d0a7b 2271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2272 {
5716833c 2273 if (tdep->st0_regnum < 0)
1a309862 2274 {
8a3fe4f8 2275 warning (_("Cannot find floating-point return value."));
1a309862 2276 memset (valbuf, 0, len);
ef9dff19 2277 return;
1a309862
MK
2278 }
2279
c6ba6f0d
MK
2280 /* Floating-point return values can be found in %st(0). Convert
2281 its contents to the desired type. This is probably not
2282 exactly how it would happen on the target itself, but it is
2283 the best we can do. */
acd5c798 2284 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2285 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2286 }
2287 else
c5aa993b 2288 {
875f8d0e
UW
2289 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2290 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2291
2292 if (len <= low_size)
00f8375e 2293 {
0818c12a 2294 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2295 memcpy (valbuf, buf, len);
2296 }
d4f3574e
SS
2297 else if (len <= (low_size + high_size))
2298 {
0818c12a 2299 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2300 memcpy (valbuf, buf, low_size);
0818c12a 2301 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2302 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2303 }
2304 else
8e65ff28 2305 internal_error (__FILE__, __LINE__,
1777feb0
MS
2306 _("Cannot extract return value of %d bytes long."),
2307 len);
c906108c
SS
2308 }
2309}
2310
c5e656c1
MK
2311/* Write, for architecture GDBARCH, a function return value of TYPE
2312 from VALBUF into REGCACHE. */
ef9dff19 2313
3a1e71e3 2314static void
c5e656c1 2315i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2316 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2317{
c5e656c1 2318 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2319 int len = TYPE_LENGTH (type);
2320
1e8d0a7b 2321 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2322 {
3d7f4f49 2323 ULONGEST fstat;
63c0089f 2324 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2325
5716833c 2326 if (tdep->st0_regnum < 0)
ef9dff19 2327 {
8a3fe4f8 2328 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2329 return;
2330 }
2331
635b0cc1
MK
2332 /* Returning floating-point values is a bit tricky. Apart from
2333 storing the return value in %st(0), we have to simulate the
2334 state of the FPU at function return point. */
2335
c6ba6f0d
MK
2336 /* Convert the value found in VALBUF to the extended
2337 floating-point format used by the FPU. This is probably
2338 not exactly how it would happen on the target itself, but
2339 it is the best we can do. */
27067745 2340 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2341 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2342
635b0cc1
MK
2343 /* Set the top of the floating-point register stack to 7. The
2344 actual value doesn't really matter, but 7 is what a normal
2345 function return would end up with if the program started out
2346 with a freshly initialized FPU. */
20a6ec49 2347 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2348 fstat |= (7 << 11);
20a6ec49 2349 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2350
635b0cc1
MK
2351 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2352 the floating-point register stack to 7, the appropriate value
2353 for the tag word is 0x3fff. */
20a6ec49 2354 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2355 }
2356 else
2357 {
875f8d0e
UW
2358 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2359 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2360
2361 if (len <= low_size)
3d7f4f49 2362 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2363 else if (len <= (low_size + high_size))
2364 {
3d7f4f49
MK
2365 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2366 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2367 len - low_size, valbuf + low_size);
ef9dff19
MK
2368 }
2369 else
8e65ff28 2370 internal_error (__FILE__, __LINE__,
e2e0b3e5 2371 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2372 }
2373}
fc338970 2374\f
ef9dff19 2375
8201327c
MK
2376/* This is the variable that is set with "set struct-convention", and
2377 its legitimate values. */
2378static const char default_struct_convention[] = "default";
2379static const char pcc_struct_convention[] = "pcc";
2380static const char reg_struct_convention[] = "reg";
2381static const char *valid_conventions[] =
2382{
2383 default_struct_convention,
2384 pcc_struct_convention,
2385 reg_struct_convention,
2386 NULL
2387};
2388static const char *struct_convention = default_struct_convention;
2389
0e4377e1
JB
2390/* Return non-zero if TYPE, which is assumed to be a structure,
2391 a union type, or an array type, should be returned in registers
2392 for architecture GDBARCH. */
c5e656c1 2393
8201327c 2394static int
c5e656c1 2395i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2396{
c5e656c1
MK
2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2398 enum type_code code = TYPE_CODE (type);
2399 int len = TYPE_LENGTH (type);
8201327c 2400
0e4377e1
JB
2401 gdb_assert (code == TYPE_CODE_STRUCT
2402 || code == TYPE_CODE_UNION
2403 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2404
2405 if (struct_convention == pcc_struct_convention
2406 || (struct_convention == default_struct_convention
2407 && tdep->struct_return == pcc_struct_return))
2408 return 0;
2409
9edde48e
MK
2410 /* Structures consisting of a single `float', `double' or 'long
2411 double' member are returned in %st(0). */
2412 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2413 {
2414 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2415 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2416 return (len == 4 || len == 8 || len == 12);
2417 }
2418
c5e656c1
MK
2419 return (len == 1 || len == 2 || len == 4 || len == 8);
2420}
2421
2422/* Determine, for architecture GDBARCH, how a return value of TYPE
2423 should be returned. If it is supposed to be returned in registers,
2424 and READBUF is non-zero, read the appropriate value from REGCACHE,
2425 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2426 from WRITEBUF into REGCACHE. */
2427
2428static enum return_value_convention
c055b101
CV
2429i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2430 struct type *type, struct regcache *regcache,
2431 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2432{
2433 enum type_code code = TYPE_CODE (type);
2434
5daa78cc
TJB
2435 if (((code == TYPE_CODE_STRUCT
2436 || code == TYPE_CODE_UNION
2437 || code == TYPE_CODE_ARRAY)
2438 && !i386_reg_struct_return_p (gdbarch, type))
2439 /* 128-bit decimal float uses the struct return convention. */
2440 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2441 {
2442 /* The System V ABI says that:
2443
2444 "A function that returns a structure or union also sets %eax
2445 to the value of the original address of the caller's area
2446 before it returns. Thus when the caller receives control
2447 again, the address of the returned object resides in register
2448 %eax and can be used to access the object."
2449
2450 So the ABI guarantees that we can always find the return
2451 value just after the function has returned. */
2452
0e4377e1
JB
2453 /* Note that the ABI doesn't mention functions returning arrays,
2454 which is something possible in certain languages such as Ada.
2455 In this case, the value is returned as if it was wrapped in
2456 a record, so the convention applied to records also applies
2457 to arrays. */
2458
31db7b6c
MK
2459 if (readbuf)
2460 {
2461 ULONGEST addr;
2462
2463 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2464 read_memory (addr, readbuf, TYPE_LENGTH (type));
2465 }
2466
2467 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2468 }
c5e656c1
MK
2469
2470 /* This special case is for structures consisting of a single
9edde48e
MK
2471 `float', `double' or 'long double' member. These structures are
2472 returned in %st(0). For these structures, we call ourselves
2473 recursively, changing TYPE into the type of the first member of
2474 the structure. Since that should work for all structures that
2475 have only one member, we don't bother to check the member's type
2476 here. */
c5e656c1
MK
2477 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2478 {
2479 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2480 return i386_return_value (gdbarch, func_type, type, regcache,
2481 readbuf, writebuf);
c5e656c1
MK
2482 }
2483
2484 if (readbuf)
2485 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2486 if (writebuf)
2487 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2488
c5e656c1 2489 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2490}
2491\f
2492
27067745
UW
2493struct type *
2494i387_ext_type (struct gdbarch *gdbarch)
2495{
2496 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2497
2498 if (!tdep->i387_ext_type)
90884b2b
L
2499 {
2500 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2501 gdb_assert (tdep->i387_ext_type != NULL);
2502 }
27067745
UW
2503
2504 return tdep->i387_ext_type;
2505}
2506
c131fcee
L
2507/* Construct vector type for pseudo YMM registers. We can't use
2508 tdesc_find_type since YMM isn't described in target description. */
2509
2510static struct type *
2511i386_ymm_type (struct gdbarch *gdbarch)
2512{
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (!tdep->i386_ymm_type)
2516 {
2517 const struct builtin_type *bt = builtin_type (gdbarch);
2518
2519 /* The type we're building is this: */
2520#if 0
2521 union __gdb_builtin_type_vec256i
2522 {
2523 int128_t uint128[2];
2524 int64_t v2_int64[4];
2525 int32_t v4_int32[8];
2526 int16_t v8_int16[16];
2527 int8_t v16_int8[32];
2528 double v2_double[4];
2529 float v4_float[8];
2530 };
2531#endif
2532
2533 struct type *t;
2534
2535 t = arch_composite_type (gdbarch,
2536 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2537 append_composite_type_field (t, "v8_float",
2538 init_vector_type (bt->builtin_float, 8));
2539 append_composite_type_field (t, "v4_double",
2540 init_vector_type (bt->builtin_double, 4));
2541 append_composite_type_field (t, "v32_int8",
2542 init_vector_type (bt->builtin_int8, 32));
2543 append_composite_type_field (t, "v16_int16",
2544 init_vector_type (bt->builtin_int16, 16));
2545 append_composite_type_field (t, "v8_int32",
2546 init_vector_type (bt->builtin_int32, 8));
2547 append_composite_type_field (t, "v4_int64",
2548 init_vector_type (bt->builtin_int64, 4));
2549 append_composite_type_field (t, "v2_int128",
2550 init_vector_type (bt->builtin_int128, 2));
2551
2552 TYPE_VECTOR (t) = 1;
0c5acf93 2553 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2554 tdep->i386_ymm_type = t;
2555 }
2556
2557 return tdep->i386_ymm_type;
2558}
2559
794ac428 2560/* Construct vector type for MMX registers. */
90884b2b 2561static struct type *
794ac428
UW
2562i386_mmx_type (struct gdbarch *gdbarch)
2563{
2564 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2565
2566 if (!tdep->i386_mmx_type)
2567 {
df4df182
UW
2568 const struct builtin_type *bt = builtin_type (gdbarch);
2569
794ac428
UW
2570 /* The type we're building is this: */
2571#if 0
2572 union __gdb_builtin_type_vec64i
2573 {
2574 int64_t uint64;
2575 int32_t v2_int32[2];
2576 int16_t v4_int16[4];
2577 int8_t v8_int8[8];
2578 };
2579#endif
2580
2581 struct type *t;
2582
e9bb382b
UW
2583 t = arch_composite_type (gdbarch,
2584 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2585
2586 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2587 append_composite_type_field (t, "v2_int32",
df4df182 2588 init_vector_type (bt->builtin_int32, 2));
794ac428 2589 append_composite_type_field (t, "v4_int16",
df4df182 2590 init_vector_type (bt->builtin_int16, 4));
794ac428 2591 append_composite_type_field (t, "v8_int8",
df4df182 2592 init_vector_type (bt->builtin_int8, 8));
794ac428 2593
876cecd0 2594 TYPE_VECTOR (t) = 1;
794ac428
UW
2595 TYPE_NAME (t) = "builtin_type_vec64i";
2596 tdep->i386_mmx_type = t;
2597 }
2598
2599 return tdep->i386_mmx_type;
2600}
2601
d7a0d72c 2602/* Return the GDB type object for the "standard" data type of data in
1777feb0 2603 register REGNUM. */
d7a0d72c 2604
3a1e71e3 2605static struct type *
90884b2b 2606i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2607{
1ba53b71
L
2608 if (i386_mmx_regnum_p (gdbarch, regnum))
2609 return i386_mmx_type (gdbarch);
c131fcee
L
2610 else if (i386_ymm_regnum_p (gdbarch, regnum))
2611 return i386_ymm_type (gdbarch);
1ba53b71
L
2612 else
2613 {
2614 const struct builtin_type *bt = builtin_type (gdbarch);
2615 if (i386_byte_regnum_p (gdbarch, regnum))
2616 return bt->builtin_int8;
2617 else if (i386_word_regnum_p (gdbarch, regnum))
2618 return bt->builtin_int16;
2619 else if (i386_dword_regnum_p (gdbarch, regnum))
2620 return bt->builtin_int32;
2621 }
2622
2623 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2624}
2625
28fc6740 2626/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2627 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2628
2629static int
c86c27af 2630i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2631{
5716833c
MK
2632 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2633 int mmxreg, fpreg;
28fc6740
AC
2634 ULONGEST fstat;
2635 int tos;
c86c27af 2636
5716833c 2637 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2638 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2639 tos = (fstat >> 11) & 0x7;
5716833c
MK
2640 fpreg = (mmxreg + tos) % 8;
2641
20a6ec49 2642 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2643}
2644
05d1431c 2645enum register_status
28fc6740 2646i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2647 int regnum, gdb_byte *buf)
28fc6740 2648{
1ba53b71 2649 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2650 enum register_status status;
1ba53b71 2651
5716833c 2652 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2653 {
c86c27af
MK
2654 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2655
28fc6740 2656 /* Extract (always little endian). */
05d1431c
PA
2657 status = regcache_raw_read (regcache, fpnum, raw_buf);
2658 if (status != REG_VALID)
2659 return status;
1ba53b71 2660 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2661 }
2662 else
1ba53b71
L
2663 {
2664 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2665
c131fcee
L
2666 if (i386_ymm_regnum_p (gdbarch, regnum))
2667 {
2668 regnum -= tdep->ymm0_regnum;
2669
1777feb0 2670 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2671 status = regcache_raw_read (regcache,
2672 I387_XMM0_REGNUM (tdep) + regnum,
2673 raw_buf);
2674 if (status != REG_VALID)
2675 return status;
c131fcee
L
2676 memcpy (buf, raw_buf, 16);
2677 /* Read upper 128bits. */
05d1431c
PA
2678 status = regcache_raw_read (regcache,
2679 tdep->ymm0h_regnum + regnum,
2680 raw_buf);
2681 if (status != REG_VALID)
2682 return status;
c131fcee
L
2683 memcpy (buf + 16, raw_buf, 16);
2684 }
2685 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2686 {
2687 int gpnum = regnum - tdep->ax_regnum;
2688
2689 /* Extract (always little endian). */
05d1431c
PA
2690 status = regcache_raw_read (regcache, gpnum, raw_buf);
2691 if (status != REG_VALID)
2692 return status;
1ba53b71
L
2693 memcpy (buf, raw_buf, 2);
2694 }
2695 else if (i386_byte_regnum_p (gdbarch, regnum))
2696 {
2697 /* Check byte pseudo registers last since this function will
2698 be called from amd64_pseudo_register_read, which handles
2699 byte pseudo registers differently. */
2700 int gpnum = regnum - tdep->al_regnum;
2701
2702 /* Extract (always little endian). We read both lower and
2703 upper registers. */
05d1431c
PA
2704 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2705 if (status != REG_VALID)
2706 return status;
1ba53b71
L
2707 if (gpnum >= 4)
2708 memcpy (buf, raw_buf + 1, 1);
2709 else
2710 memcpy (buf, raw_buf, 1);
2711 }
2712 else
2713 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2714 }
05d1431c
PA
2715
2716 return REG_VALID;
28fc6740
AC
2717}
2718
1ba53b71 2719void
28fc6740 2720i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2721 int regnum, const gdb_byte *buf)
28fc6740 2722{
1ba53b71
L
2723 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2724
5716833c 2725 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2726 {
c86c27af
MK
2727 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2728
28fc6740 2729 /* Read ... */
1ba53b71 2730 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2731 /* ... Modify ... (always little endian). */
1ba53b71 2732 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2733 /* ... Write. */
1ba53b71 2734 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2735 }
2736 else
1ba53b71
L
2737 {
2738 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2739
c131fcee
L
2740 if (i386_ymm_regnum_p (gdbarch, regnum))
2741 {
2742 regnum -= tdep->ymm0_regnum;
2743
2744 /* ... Write lower 128bits. */
2745 regcache_raw_write (regcache,
2746 I387_XMM0_REGNUM (tdep) + regnum,
2747 buf);
2748 /* ... Write upper 128bits. */
2749 regcache_raw_write (regcache,
2750 tdep->ymm0h_regnum + regnum,
2751 buf + 16);
2752 }
2753 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2754 {
2755 int gpnum = regnum - tdep->ax_regnum;
2756
2757 /* Read ... */
2758 regcache_raw_read (regcache, gpnum, raw_buf);
2759 /* ... Modify ... (always little endian). */
2760 memcpy (raw_buf, buf, 2);
2761 /* ... Write. */
2762 regcache_raw_write (regcache, gpnum, raw_buf);
2763 }
2764 else if (i386_byte_regnum_p (gdbarch, regnum))
2765 {
2766 /* Check byte pseudo registers last since this function will
2767 be called from amd64_pseudo_register_read, which handles
2768 byte pseudo registers differently. */
2769 int gpnum = regnum - tdep->al_regnum;
2770
2771 /* Read ... We read both lower and upper registers. */
2772 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2773 /* ... Modify ... (always little endian). */
2774 if (gpnum >= 4)
2775 memcpy (raw_buf + 1, buf, 1);
2776 else
2777 memcpy (raw_buf, buf, 1);
2778 /* ... Write. */
2779 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2780 }
2781 else
2782 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2783 }
28fc6740 2784}
ff2e87ac
AC
2785\f
2786
ff2e87ac
AC
2787/* Return the register number of the register allocated by GCC after
2788 REGNUM, or -1 if there is no such register. */
2789
2790static int
2791i386_next_regnum (int regnum)
2792{
2793 /* GCC allocates the registers in the order:
2794
2795 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2796
2797 Since storing a variable in %esp doesn't make any sense we return
2798 -1 for %ebp and for %esp itself. */
2799 static int next_regnum[] =
2800 {
2801 I386_EDX_REGNUM, /* Slot for %eax. */
2802 I386_EBX_REGNUM, /* Slot for %ecx. */
2803 I386_ECX_REGNUM, /* Slot for %edx. */
2804 I386_ESI_REGNUM, /* Slot for %ebx. */
2805 -1, -1, /* Slots for %esp and %ebp. */
2806 I386_EDI_REGNUM, /* Slot for %esi. */
2807 I386_EBP_REGNUM /* Slot for %edi. */
2808 };
2809
de5b9bb9 2810 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2811 return next_regnum[regnum];
28fc6740 2812
ff2e87ac
AC
2813 return -1;
2814}
2815
2816/* Return nonzero if a value of type TYPE stored in register REGNUM
2817 needs any special handling. */
d7a0d72c 2818
3a1e71e3 2819static int
1777feb0
MS
2820i386_convert_register_p (struct gdbarch *gdbarch,
2821 int regnum, struct type *type)
d7a0d72c 2822{
de5b9bb9
MK
2823 int len = TYPE_LENGTH (type);
2824
ff2e87ac
AC
2825 /* Values may be spread across multiple registers. Most debugging
2826 formats aren't expressive enough to specify the locations, so
2827 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2828 have a length that is a multiple of the word size, since GCC
2829 doesn't seem to put any other types into registers. */
2830 if (len > 4 && len % 4 == 0)
2831 {
2832 int last_regnum = regnum;
2833
2834 while (len > 4)
2835 {
2836 last_regnum = i386_next_regnum (last_regnum);
2837 len -= 4;
2838 }
2839
2840 if (last_regnum != -1)
2841 return 1;
2842 }
ff2e87ac 2843
0abe36f5 2844 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2845}
2846
ff2e87ac
AC
2847/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2848 return its contents in TO. */
ac27f131 2849
8dccd430 2850static int
ff2e87ac 2851i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
2852 struct type *type, gdb_byte *to,
2853 int *optimizedp, int *unavailablep)
ac27f131 2854{
20a6ec49 2855 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2856 int len = TYPE_LENGTH (type);
de5b9bb9 2857
20a6ec49 2858 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
2859 return i387_register_to_value (frame, regnum, type, to,
2860 optimizedp, unavailablep);
ff2e87ac 2861
fd35795f 2862 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2863
2864 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2865
de5b9bb9
MK
2866 while (len > 0)
2867 {
2868 gdb_assert (regnum != -1);
20a6ec49 2869 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2870
8dccd430
PA
2871 if (!get_frame_register_bytes (frame, regnum, 0,
2872 register_size (gdbarch, regnum),
2873 to, optimizedp, unavailablep))
2874 return 0;
2875
de5b9bb9
MK
2876 regnum = i386_next_regnum (regnum);
2877 len -= 4;
42835c2b 2878 to += 4;
de5b9bb9 2879 }
8dccd430
PA
2880
2881 *optimizedp = *unavailablep = 0;
2882 return 1;
ac27f131
MK
2883}
2884
ff2e87ac
AC
2885/* Write the contents FROM of a value of type TYPE into register
2886 REGNUM in frame FRAME. */
ac27f131 2887
3a1e71e3 2888static void
ff2e87ac 2889i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2890 struct type *type, const gdb_byte *from)
ac27f131 2891{
de5b9bb9 2892 int len = TYPE_LENGTH (type);
de5b9bb9 2893
20a6ec49 2894 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2895 {
d532c08f
MK
2896 i387_value_to_register (frame, regnum, type, from);
2897 return;
2898 }
3d261580 2899
fd35795f 2900 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2901
2902 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2903
de5b9bb9
MK
2904 while (len > 0)
2905 {
2906 gdb_assert (regnum != -1);
875f8d0e 2907 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2908
42835c2b 2909 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2910 regnum = i386_next_regnum (regnum);
2911 len -= 4;
42835c2b 2912 from += 4;
de5b9bb9 2913 }
ac27f131 2914}
ff2e87ac 2915\f
7fdafb5a
MK
2916/* Supply register REGNUM from the buffer specified by GREGS and LEN
2917 in the general-purpose register set REGSET to register cache
2918 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2919
20187ed5 2920void
473f17b0
MK
2921i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2922 int regnum, const void *gregs, size_t len)
2923{
9ea75c57 2924 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2925 const gdb_byte *regs = gregs;
473f17b0
MK
2926 int i;
2927
2928 gdb_assert (len == tdep->sizeof_gregset);
2929
2930 for (i = 0; i < tdep->gregset_num_regs; i++)
2931 {
2932 if ((regnum == i || regnum == -1)
2933 && tdep->gregset_reg_offset[i] != -1)
2934 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2935 }
2936}
2937
7fdafb5a
MK
2938/* Collect register REGNUM from the register cache REGCACHE and store
2939 it in the buffer specified by GREGS and LEN as described by the
2940 general-purpose register set REGSET. If REGNUM is -1, do this for
2941 all registers in REGSET. */
2942
2943void
2944i386_collect_gregset (const struct regset *regset,
2945 const struct regcache *regcache,
2946 int regnum, void *gregs, size_t len)
2947{
2948 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2949 gdb_byte *regs = gregs;
7fdafb5a
MK
2950 int i;
2951
2952 gdb_assert (len == tdep->sizeof_gregset);
2953
2954 for (i = 0; i < tdep->gregset_num_regs; i++)
2955 {
2956 if ((regnum == i || regnum == -1)
2957 && tdep->gregset_reg_offset[i] != -1)
2958 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2959 }
2960}
2961
2962/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2963 in the floating-point register set REGSET to register cache
2964 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2965
2966static void
2967i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2968 int regnum, const void *fpregs, size_t len)
2969{
9ea75c57 2970 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2971
66a72d25
MK
2972 if (len == I387_SIZEOF_FXSAVE)
2973 {
2974 i387_supply_fxsave (regcache, regnum, fpregs);
2975 return;
2976 }
2977
473f17b0
MK
2978 gdb_assert (len == tdep->sizeof_fpregset);
2979 i387_supply_fsave (regcache, regnum, fpregs);
2980}
8446b36a 2981
2f305df1
MK
2982/* Collect register REGNUM from the register cache REGCACHE and store
2983 it in the buffer specified by FPREGS and LEN as described by the
2984 floating-point register set REGSET. If REGNUM is -1, do this for
2985 all registers in REGSET. */
7fdafb5a
MK
2986
2987static void
2988i386_collect_fpregset (const struct regset *regset,
2989 const struct regcache *regcache,
2990 int regnum, void *fpregs, size_t len)
2991{
2992 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2993
2994 if (len == I387_SIZEOF_FXSAVE)
2995 {
2996 i387_collect_fxsave (regcache, regnum, fpregs);
2997 return;
2998 }
2999
3000 gdb_assert (len == tdep->sizeof_fpregset);
3001 i387_collect_fsave (regcache, regnum, fpregs);
3002}
3003
c131fcee
L
3004/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3005
3006static void
3007i386_supply_xstateregset (const struct regset *regset,
3008 struct regcache *regcache, int regnum,
3009 const void *xstateregs, size_t len)
3010{
c131fcee
L
3011 i387_supply_xsave (regcache, regnum, xstateregs);
3012}
3013
3014/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3015
3016static void
3017i386_collect_xstateregset (const struct regset *regset,
3018 const struct regcache *regcache,
3019 int regnum, void *xstateregs, size_t len)
3020{
c131fcee
L
3021 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3022}
3023
8446b36a
MK
3024/* Return the appropriate register set for the core section identified
3025 by SECT_NAME and SECT_SIZE. */
3026
3027const struct regset *
3028i386_regset_from_core_section (struct gdbarch *gdbarch,
3029 const char *sect_name, size_t sect_size)
3030{
3031 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3032
3033 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3034 {
3035 if (tdep->gregset == NULL)
7fdafb5a
MK
3036 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3037 i386_collect_gregset);
8446b36a
MK
3038 return tdep->gregset;
3039 }
3040
66a72d25
MK
3041 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3042 || (strcmp (sect_name, ".reg-xfp") == 0
3043 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3044 {
3045 if (tdep->fpregset == NULL)
7fdafb5a
MK
3046 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3047 i386_collect_fpregset);
8446b36a
MK
3048 return tdep->fpregset;
3049 }
3050
c131fcee
L
3051 if (strcmp (sect_name, ".reg-xstate") == 0)
3052 {
3053 if (tdep->xstateregset == NULL)
3054 tdep->xstateregset = regset_alloc (gdbarch,
3055 i386_supply_xstateregset,
3056 i386_collect_xstateregset);
3057
3058 return tdep->xstateregset;
3059 }
3060
8446b36a
MK
3061 return NULL;
3062}
473f17b0 3063\f
fc338970 3064
fc338970 3065/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3066
3067CORE_ADDR
e17a4113
UW
3068i386_pe_skip_trampoline_code (struct frame_info *frame,
3069 CORE_ADDR pc, char *name)
c906108c 3070{
e17a4113
UW
3071 struct gdbarch *gdbarch = get_frame_arch (frame);
3072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3073
3074 /* jmp *(dest) */
3075 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3076 {
e17a4113
UW
3077 unsigned long indirect =
3078 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3079 struct minimal_symbol *indsym =
fc338970 3080 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 3081 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3082
c5aa993b 3083 if (symname)
c906108c 3084 {
c5aa993b
JM
3085 if (strncmp (symname, "__imp_", 6) == 0
3086 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3087 return name ? 1 :
3088 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3089 }
3090 }
fc338970 3091 return 0; /* Not a trampoline. */
c906108c 3092}
fc338970
MK
3093\f
3094
10458914
DJ
3095/* Return whether the THIS_FRAME corresponds to a sigtramp
3096 routine. */
8201327c 3097
4bd207ef 3098int
10458914 3099i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3100{
10458914 3101 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3102 char *name;
3103
3104 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3105 return (name && strcmp ("_sigtramp", name) == 0);
3106}
3107\f
3108
fc338970
MK
3109/* We have two flavours of disassembly. The machinery on this page
3110 deals with switching between those. */
c906108c
SS
3111
3112static int
a89aa300 3113i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3114{
5e3397bb
MK
3115 gdb_assert (disassembly_flavor == att_flavor
3116 || disassembly_flavor == intel_flavor);
3117
3118 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3119 constified, cast to prevent a compiler warning. */
3120 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3121
3122 return print_insn_i386 (pc, info);
7a292a7a 3123}
fc338970 3124\f
3ce1502b 3125
8201327c
MK
3126/* There are a few i386 architecture variants that differ only
3127 slightly from the generic i386 target. For now, we don't give them
3128 their own source file, but include them here. As a consequence,
3129 they'll always be included. */
3ce1502b 3130
8201327c 3131/* System V Release 4 (SVR4). */
3ce1502b 3132
10458914
DJ
3133/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3134 routine. */
911bc6ee 3135
8201327c 3136static int
10458914 3137i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3138{
10458914 3139 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3140 char *name;
3141
acd5c798
MK
3142 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3143 currently unknown. */
911bc6ee 3144 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3145 return (name && (strcmp ("_sigreturn", name) == 0
3146 || strcmp ("_sigacthandler", name) == 0
3147 || strcmp ("sigvechandler", name) == 0));
3148}
d2a7c97a 3149
10458914
DJ
3150/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3151 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3152
3a1e71e3 3153static CORE_ADDR
10458914 3154i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3155{
e17a4113
UW
3156 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3157 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3158 gdb_byte buf[4];
acd5c798 3159 CORE_ADDR sp;
3ce1502b 3160
10458914 3161 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3162 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3163
e17a4113 3164 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
3165}
3166\f
3ce1502b 3167
8201327c 3168/* Generic ELF. */
d2a7c97a 3169
8201327c
MK
3170void
3171i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3172{
c4fc7f1b
MK
3173 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3174 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 3175}
3ce1502b 3176
8201327c 3177/* System V Release 4 (SVR4). */
3ce1502b 3178
8201327c
MK
3179void
3180i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3181{
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3183
8201327c
MK
3184 /* System V Release 4 uses ELF. */
3185 i386_elf_init_abi (info, gdbarch);
3ce1502b 3186
dfe01d39 3187 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3188 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3189
911bc6ee 3190 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3191 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3192 tdep->sc_pc_offset = 36 + 14 * 4;
3193 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3194
8201327c 3195 tdep->jb_pc_offset = 20;
3ce1502b
MK
3196}
3197
8201327c 3198/* DJGPP. */
3ce1502b 3199
3a1e71e3 3200static void
8201327c 3201i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3202{
8201327c 3203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3204
911bc6ee
MK
3205 /* DJGPP doesn't have any special frames for signal handlers. */
3206 tdep->sigtramp_p = NULL;
3ce1502b 3207
8201327c 3208 tdep->jb_pc_offset = 36;
15430fc0
EZ
3209
3210 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3211 if (! tdesc_has_registers (info.target_desc))
3212 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3213
3214 /* Native compiler is GCC, which uses the SVR4 register numbering
3215 even in COFF and STABS. See the comment in i386_gdbarch_init,
3216 before the calls to set_gdbarch_stab_reg_to_regnum and
3217 set_gdbarch_sdb_reg_to_regnum. */
3218 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3219 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3220
3221 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3222}
8201327c 3223\f
2acceee2 3224
38c968cf
AC
3225/* i386 register groups. In addition to the normal groups, add "mmx"
3226 and "sse". */
3227
3228static struct reggroup *i386_sse_reggroup;
3229static struct reggroup *i386_mmx_reggroup;
3230
3231static void
3232i386_init_reggroups (void)
3233{
3234 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3235 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3236}
3237
3238static void
3239i386_add_reggroups (struct gdbarch *gdbarch)
3240{
3241 reggroup_add (gdbarch, i386_sse_reggroup);
3242 reggroup_add (gdbarch, i386_mmx_reggroup);
3243 reggroup_add (gdbarch, general_reggroup);
3244 reggroup_add (gdbarch, float_reggroup);
3245 reggroup_add (gdbarch, all_reggroup);
3246 reggroup_add (gdbarch, save_reggroup);
3247 reggroup_add (gdbarch, restore_reggroup);
3248 reggroup_add (gdbarch, vector_reggroup);
3249 reggroup_add (gdbarch, system_reggroup);
3250}
3251
3252int
3253i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3254 struct reggroup *group)
3255{
c131fcee
L
3256 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3257 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3258 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3259
1ba53b71
L
3260 /* Don't include pseudo registers, except for MMX, in any register
3261 groups. */
c131fcee 3262 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3263 return 0;
3264
c131fcee 3265 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3266 return 0;
3267
c131fcee 3268 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3269 return 0;
3270
3271 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3272 if (group == i386_mmx_reggroup)
3273 return mmx_regnum_p;
1ba53b71 3274
c131fcee
L
3275 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3276 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3277 if (group == i386_sse_reggroup)
c131fcee
L
3278 return xmm_regnum_p || mxcsr_regnum_p;
3279
3280 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3281 if (group == vector_reggroup)
c131fcee
L
3282 return (mmx_regnum_p
3283 || ymm_regnum_p
3284 || mxcsr_regnum_p
3285 || (xmm_regnum_p
3286 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3287 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3288
3289 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3290 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3291 if (group == float_reggroup)
3292 return fp_regnum_p;
1ba53b71 3293
c131fcee
L
3294 /* For "info reg all", don't include upper YMM registers nor XMM
3295 registers when AVX is supported. */
3296 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3297 if (group == all_reggroup
3298 && ((xmm_regnum_p
3299 && (tdep->xcr0 & I386_XSTATE_AVX))
3300 || ymmh_regnum_p))
3301 return 0;
3302
38c968cf 3303 if (group == general_reggroup)
1ba53b71
L
3304 return (!fp_regnum_p
3305 && !mmx_regnum_p
c131fcee
L
3306 && !mxcsr_regnum_p
3307 && !xmm_regnum_p
3308 && !ymm_regnum_p
3309 && !ymmh_regnum_p);
acd5c798 3310
38c968cf
AC
3311 return default_register_reggroup_p (gdbarch, regnum, group);
3312}
38c968cf 3313\f
acd5c798 3314
f837910f
MK
3315/* Get the ARGIth function argument for the current function. */
3316
42c466d7 3317static CORE_ADDR
143985b7
AF
3318i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3319 struct type *type)
3320{
e17a4113
UW
3321 struct gdbarch *gdbarch = get_frame_arch (frame);
3322 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3323 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3324 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3325}
3326
514f746b
AR
3327static void
3328i386_skip_permanent_breakpoint (struct regcache *regcache)
3329{
3330 CORE_ADDR current_pc = regcache_read_pc (regcache);
3331
3332 /* On i386, breakpoint is exactly 1 byte long, so we just
3333 adjust the PC in the regcache. */
3334 current_pc += 1;
3335 regcache_write_pc (regcache, current_pc);
3336}
3337
3338
7ad10968
HZ
3339#define PREFIX_REPZ 0x01
3340#define PREFIX_REPNZ 0x02
3341#define PREFIX_LOCK 0x04
3342#define PREFIX_DATA 0x08
3343#define PREFIX_ADDR 0x10
473f17b0 3344
7ad10968
HZ
3345/* operand size */
3346enum
3347{
3348 OT_BYTE = 0,
3349 OT_WORD,
3350 OT_LONG,
cf648174 3351 OT_QUAD,
a3c4230a 3352 OT_DQUAD,
7ad10968 3353};
473f17b0 3354
7ad10968
HZ
3355/* i386 arith/logic operations */
3356enum
3357{
3358 OP_ADDL,
3359 OP_ORL,
3360 OP_ADCL,
3361 OP_SBBL,
3362 OP_ANDL,
3363 OP_SUBL,
3364 OP_XORL,
3365 OP_CMPL,
3366};
5716833c 3367
7ad10968
HZ
3368struct i386_record_s
3369{
cf648174 3370 struct gdbarch *gdbarch;
7ad10968 3371 struct regcache *regcache;
df61f520 3372 CORE_ADDR orig_addr;
7ad10968
HZ
3373 CORE_ADDR addr;
3374 int aflag;
3375 int dflag;
3376 int override;
3377 uint8_t modrm;
3378 uint8_t mod, reg, rm;
3379 int ot;
cf648174
HZ
3380 uint8_t rex_x;
3381 uint8_t rex_b;
3382 int rip_offset;
3383 int popl_esp_hack;
3384 const int *regmap;
7ad10968 3385};
5716833c 3386
7ad10968 3387/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3388 Return -1 if something wrong. */
5716833c 3389
7ad10968
HZ
3390static int
3391i386_record_modrm (struct i386_record_s *irp)
3392{
cf648174 3393 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3394
7ad10968
HZ
3395 if (target_read_memory (irp->addr, &irp->modrm, 1))
3396 {
3397 if (record_debug)
3398 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3399 "addr %s len = 1.\n"),
3400 paddress (gdbarch, irp->addr));
7ad10968
HZ
3401 return -1;
3402 }
3403 irp->addr++;
3404 irp->mod = (irp->modrm >> 6) & 3;
3405 irp->reg = (irp->modrm >> 3) & 7;
3406 irp->rm = irp->modrm & 7;
5716833c 3407
7ad10968
HZ
3408 return 0;
3409}
d2a7c97a 3410
7ad10968
HZ
3411/* Get the memory address that current instruction write to and set it to
3412 the argument "addr".
1777feb0 3413 Return -1 if something wrong. */
8201327c 3414
7ad10968 3415static int
cf648174 3416i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3417{
cf648174 3418 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3419 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3420 gdb_byte buf[4];
3421 ULONGEST offset64;
21d0e8a4 3422
7ad10968
HZ
3423 *addr = 0;
3424 if (irp->aflag)
3425 {
3426 /* 32 bits */
3427 int havesib = 0;
3428 uint8_t scale = 0;
648d0c8b 3429 uint8_t byte;
7ad10968
HZ
3430 uint8_t index = 0;
3431 uint8_t base = irp->rm;
896fb97d 3432
7ad10968
HZ
3433 if (base == 4)
3434 {
3435 havesib = 1;
648d0c8b 3436 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3437 {
3438 if (record_debug)
3439 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3440 "at addr %s len = 1.\n"),
3441 paddress (gdbarch, irp->addr));
7ad10968
HZ
3442 return -1;
3443 }
3444 irp->addr++;
648d0c8b
MS
3445 scale = (byte >> 6) & 3;
3446 index = ((byte >> 3) & 7) | irp->rex_x;
3447 base = (byte & 7);
7ad10968 3448 }
cf648174 3449 base |= irp->rex_b;
21d0e8a4 3450
7ad10968
HZ
3451 switch (irp->mod)
3452 {
3453 case 0:
3454 if ((base & 7) == 5)
3455 {
3456 base = 0xff;
60a1502a 3457 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3458 {
3459 if (record_debug)
3460 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3461 "memory at addr %s len = 4.\n"),
3462 paddress (gdbarch, irp->addr));
7ad10968
HZ
3463 return -1;
3464 }
3465 irp->addr += 4;
60a1502a 3466 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3467 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3468 *addr += irp->addr + irp->rip_offset;
7ad10968 3469 }
7ad10968
HZ
3470 break;
3471 case 1:
60a1502a 3472 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3473 {
3474 if (record_debug)
3475 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3476 "at addr %s len = 1.\n"),
3477 paddress (gdbarch, irp->addr));
7ad10968
HZ
3478 return -1;
3479 }
3480 irp->addr++;
60a1502a 3481 *addr = (int8_t) buf[0];
7ad10968
HZ
3482 break;
3483 case 2:
60a1502a 3484 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3485 {
3486 if (record_debug)
3487 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3488 "at addr %s len = 4.\n"),
3489 paddress (gdbarch, irp->addr));
7ad10968
HZ
3490 return -1;
3491 }
60a1502a 3492 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
3493 irp->addr += 4;
3494 break;
3495 }
356a6b3e 3496
60a1502a 3497 offset64 = 0;
7ad10968 3498 if (base != 0xff)
cf648174
HZ
3499 {
3500 if (base == 4 && irp->popl_esp_hack)
3501 *addr += irp->popl_esp_hack;
3502 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 3503 &offset64);
7ad10968 3504 }
cf648174
HZ
3505 if (irp->aflag == 2)
3506 {
60a1502a 3507 *addr += offset64;
cf648174
HZ
3508 }
3509 else
60a1502a 3510 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 3511
7ad10968
HZ
3512 if (havesib && (index != 4 || scale != 0))
3513 {
cf648174 3514 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 3515 &offset64);
cf648174 3516 if (irp->aflag == 2)
60a1502a 3517 *addr += offset64 << scale;
cf648174 3518 else
60a1502a 3519 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
3520 }
3521 }
3522 else
3523 {
3524 /* 16 bits */
3525 switch (irp->mod)
3526 {
3527 case 0:
3528 if (irp->rm == 6)
3529 {
60a1502a 3530 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3531 {
3532 if (record_debug)
3533 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3534 "memory at addr %s len = 2.\n"),
3535 paddress (gdbarch, irp->addr));
7ad10968
HZ
3536 return -1;
3537 }
3538 irp->addr += 2;
60a1502a 3539 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3540 irp->rm = 0;
3541 goto no_rm;
3542 }
7ad10968
HZ
3543 break;
3544 case 1:
60a1502a 3545 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3546 {
3547 if (record_debug)
3548 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3549 "at addr %s len = 1.\n"),
3550 paddress (gdbarch, irp->addr));
7ad10968
HZ
3551 return -1;
3552 }
3553 irp->addr++;
60a1502a 3554 *addr = (int8_t) buf[0];
7ad10968
HZ
3555 break;
3556 case 2:
60a1502a 3557 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3558 {
3559 if (record_debug)
3560 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3561 "at addr %s len = 2.\n"),
3562 paddress (gdbarch, irp->addr));
7ad10968
HZ
3563 return -1;
3564 }
3565 irp->addr += 2;
60a1502a 3566 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3567 break;
3568 }
c4fc7f1b 3569
7ad10968
HZ
3570 switch (irp->rm)
3571 {
3572 case 0:
cf648174
HZ
3573 regcache_raw_read_unsigned (irp->regcache,
3574 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3575 &offset64);
3576 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3577 regcache_raw_read_unsigned (irp->regcache,
3578 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3579 &offset64);
3580 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3581 break;
3582 case 1:
cf648174
HZ
3583 regcache_raw_read_unsigned (irp->regcache,
3584 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3585 &offset64);
3586 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3587 regcache_raw_read_unsigned (irp->regcache,
3588 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3589 &offset64);
3590 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3591 break;
3592 case 2:
cf648174
HZ
3593 regcache_raw_read_unsigned (irp->regcache,
3594 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3595 &offset64);
3596 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3597 regcache_raw_read_unsigned (irp->regcache,
3598 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3599 &offset64);
3600 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3601 break;
3602 case 3:
cf648174
HZ
3603 regcache_raw_read_unsigned (irp->regcache,
3604 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3605 &offset64);
3606 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3607 regcache_raw_read_unsigned (irp->regcache,
3608 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3609 &offset64);
3610 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3611 break;
3612 case 4:
cf648174
HZ
3613 regcache_raw_read_unsigned (irp->regcache,
3614 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3615 &offset64);
3616 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3617 break;
3618 case 5:
cf648174
HZ
3619 regcache_raw_read_unsigned (irp->regcache,
3620 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3621 &offset64);
3622 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3623 break;
3624 case 6:
cf648174
HZ
3625 regcache_raw_read_unsigned (irp->regcache,
3626 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3627 &offset64);
3628 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3629 break;
3630 case 7:
cf648174
HZ
3631 regcache_raw_read_unsigned (irp->regcache,
3632 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3633 &offset64);
3634 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3635 break;
3636 }
3637 *addr &= 0xffff;
3638 }
c4fc7f1b 3639
01fe1b41 3640 no_rm:
7ad10968
HZ
3641 return 0;
3642}
c4fc7f1b 3643
7ad10968
HZ
3644/* Record the value of the memory that willbe changed in current instruction
3645 to "record_arch_list".
1777feb0 3646 Return -1 if something wrong. */
356a6b3e 3647
7ad10968
HZ
3648static int
3649i386_record_lea_modrm (struct i386_record_s *irp)
3650{
cf648174
HZ
3651 struct gdbarch *gdbarch = irp->gdbarch;
3652 uint64_t addr;
356a6b3e 3653
d7877f7e 3654 if (irp->override >= 0)
7ad10968 3655 {
bb08c432
HZ
3656 if (record_memory_query)
3657 {
3658 int q;
3659
3660 target_terminal_ours ();
3661 q = yquery (_("\
3662Process record ignores the memory change of instruction at address %s\n\
3663because it can't get the value of the segment register.\n\
3664Do you want to stop the program?"),
3665 paddress (gdbarch, irp->orig_addr));
3666 target_terminal_inferior ();
3667 if (q)
3668 return -1;
3669 }
3670
7ad10968
HZ
3671 return 0;
3672 }
61113f8b 3673
7ad10968
HZ
3674 if (i386_record_lea_modrm_addr (irp, &addr))
3675 return -1;
96297dab 3676
7ad10968
HZ
3677 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3678 return -1;
a62cc96e 3679
7ad10968
HZ
3680 return 0;
3681}
b6197528 3682
cf648174 3683/* Record the push operation to "record_arch_list".
1777feb0 3684 Return -1 if something wrong. */
cf648174
HZ
3685
3686static int
3687i386_record_push (struct i386_record_s *irp, int size)
3688{
648d0c8b 3689 ULONGEST addr;
cf648174
HZ
3690
3691 if (record_arch_list_add_reg (irp->regcache,
3692 irp->regmap[X86_RECORD_RESP_REGNUM]))
3693 return -1;
3694 regcache_raw_read_unsigned (irp->regcache,
3695 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3696 &addr);
3697 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3698 return -1;
3699
3700 return 0;
3701}
3702
0289bdd7
MS
3703
3704/* Defines contents to record. */
3705#define I386_SAVE_FPU_REGS 0xfffd
3706#define I386_SAVE_FPU_ENV 0xfffe
3707#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3708
1777feb0
MS
3709/* Record the value of floating point registers which will be changed
3710 by the current instruction to "record_arch_list". Return -1 if
3711 something is wrong. */
0289bdd7
MS
3712
3713static int i386_record_floats (struct gdbarch *gdbarch,
3714 struct i386_record_s *ir,
3715 uint32_t iregnum)
3716{
3717 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3718 int i;
3719
3720 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3721 happen. Currently we store st0-st7 registers, but we need not store all
3722 registers all the time, in future we use ftag register and record only
3723 those who are not marked as an empty. */
3724
3725 if (I386_SAVE_FPU_REGS == iregnum)
3726 {
3727 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3728 {
3729 if (record_arch_list_add_reg (ir->regcache, i))
3730 return -1;
3731 }
3732 }
3733 else if (I386_SAVE_FPU_ENV == iregnum)
3734 {
3735 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3736 {
3737 if (record_arch_list_add_reg (ir->regcache, i))
3738 return -1;
3739 }
3740 }
3741 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3742 {
3743 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3744 {
3745 if (record_arch_list_add_reg (ir->regcache, i))
3746 return -1;
3747 }
3748 }
3749 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3750 (iregnum <= I387_FOP_REGNUM (tdep)))
3751 {
3752 if (record_arch_list_add_reg (ir->regcache,iregnum))
3753 return -1;
3754 }
3755 else
3756 {
3757 /* Parameter error. */
3758 return -1;
3759 }
3760 if(I386_SAVE_FPU_ENV != iregnum)
3761 {
3762 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3763 {
3764 if (record_arch_list_add_reg (ir->regcache, i))
3765 return -1;
3766 }
3767 }
3768 return 0;
3769}
3770
7ad10968
HZ
3771/* Parse the current instruction and record the values of the registers and
3772 memory that will be changed in current instruction to "record_arch_list".
1777feb0 3773 Return -1 if something wrong. */
8201327c 3774
cf648174
HZ
3775#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3776 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3777
a6b808b4 3778int
7ad10968 3779i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3780 CORE_ADDR input_addr)
7ad10968 3781{
60a1502a 3782 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 3783 int prefixes = 0;
580879fc 3784 int regnum = 0;
425b824a
MS
3785 uint32_t opcode;
3786 uint8_t opcode8;
648d0c8b 3787 ULONGEST addr;
60a1502a 3788 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 3789 struct i386_record_s ir;
0289bdd7 3790 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3791 int rex = 0;
3792 uint8_t rex_w = -1;
3793 uint8_t rex_r = 0;
7ad10968 3794
8408d274 3795 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3796 ir.regcache = regcache;
648d0c8b
MS
3797 ir.addr = input_addr;
3798 ir.orig_addr = input_addr;
7ad10968
HZ
3799 ir.aflag = 1;
3800 ir.dflag = 1;
cf648174
HZ
3801 ir.override = -1;
3802 ir.popl_esp_hack = 0;
a3c4230a 3803 ir.regmap = tdep->record_regmap;
cf648174 3804 ir.gdbarch = gdbarch;
7ad10968
HZ
3805
3806 if (record_debug > 1)
3807 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3808 "addr = %s\n",
3809 paddress (gdbarch, ir.addr));
7ad10968
HZ
3810
3811 /* prefixes */
3812 while (1)
3813 {
425b824a 3814 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3815 {
3816 if (record_debug)
3817 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3818 "addr %s len = 1.\n"),
3819 paddress (gdbarch, ir.addr));
7ad10968
HZ
3820 return -1;
3821 }
3822 ir.addr++;
425b824a 3823 switch (opcode8) /* Instruction prefixes */
7ad10968 3824 {
01fe1b41 3825 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3826 prefixes |= PREFIX_REPZ;
3827 break;
01fe1b41 3828 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3829 prefixes |= PREFIX_REPNZ;
3830 break;
01fe1b41 3831 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3832 prefixes |= PREFIX_LOCK;
3833 break;
01fe1b41 3834 case CS_PREFIX_OPCODE:
cf648174 3835 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3836 break;
01fe1b41 3837 case SS_PREFIX_OPCODE:
cf648174 3838 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3839 break;
01fe1b41 3840 case DS_PREFIX_OPCODE:
cf648174 3841 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3842 break;
01fe1b41 3843 case ES_PREFIX_OPCODE:
cf648174 3844 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3845 break;
01fe1b41 3846 case FS_PREFIX_OPCODE:
cf648174 3847 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3848 break;
01fe1b41 3849 case GS_PREFIX_OPCODE:
cf648174 3850 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3851 break;
01fe1b41 3852 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3853 prefixes |= PREFIX_DATA;
3854 break;
01fe1b41 3855 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3856 prefixes |= PREFIX_ADDR;
3857 break;
d691bec7
MS
3858 case 0x40: /* i386 inc %eax */
3859 case 0x41: /* i386 inc %ecx */
3860 case 0x42: /* i386 inc %edx */
3861 case 0x43: /* i386 inc %ebx */
3862 case 0x44: /* i386 inc %esp */
3863 case 0x45: /* i386 inc %ebp */
3864 case 0x46: /* i386 inc %esi */
3865 case 0x47: /* i386 inc %edi */
3866 case 0x48: /* i386 dec %eax */
3867 case 0x49: /* i386 dec %ecx */
3868 case 0x4a: /* i386 dec %edx */
3869 case 0x4b: /* i386 dec %ebx */
3870 case 0x4c: /* i386 dec %esp */
3871 case 0x4d: /* i386 dec %ebp */
3872 case 0x4e: /* i386 dec %esi */
3873 case 0x4f: /* i386 dec %edi */
3874 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3875 {
3876 /* REX */
3877 rex = 1;
425b824a
MS
3878 rex_w = (opcode8 >> 3) & 1;
3879 rex_r = (opcode8 & 0x4) << 1;
3880 ir.rex_x = (opcode8 & 0x2) << 2;
3881 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3882 }
d691bec7
MS
3883 else /* 32 bit target */
3884 goto out_prefixes;
cf648174 3885 break;
7ad10968
HZ
3886 default:
3887 goto out_prefixes;
3888 break;
3889 }
3890 }
01fe1b41 3891 out_prefixes:
cf648174
HZ
3892 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3893 {
3894 ir.dflag = 2;
3895 }
3896 else
3897 {
3898 if (prefixes & PREFIX_DATA)
3899 ir.dflag ^= 1;
3900 }
7ad10968
HZ
3901 if (prefixes & PREFIX_ADDR)
3902 ir.aflag ^= 1;
cf648174
HZ
3903 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3904 ir.aflag = 2;
7ad10968 3905
1777feb0 3906 /* Now check op code. */
425b824a 3907 opcode = (uint32_t) opcode8;
01fe1b41 3908 reswitch:
7ad10968
HZ
3909 switch (opcode)
3910 {
3911 case 0x0f:
425b824a 3912 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3913 {
3914 if (record_debug)
3915 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3916 "addr %s len = 1.\n"),
3917 paddress (gdbarch, ir.addr));
7ad10968
HZ
3918 return -1;
3919 }
3920 ir.addr++;
a3c4230a 3921 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
3922 goto reswitch;
3923 break;
93924b6b 3924
a38bba38 3925 case 0x00: /* arith & logic */
7ad10968
HZ
3926 case 0x01:
3927 case 0x02:
3928 case 0x03:
3929 case 0x04:
3930 case 0x05:
3931 case 0x08:
3932 case 0x09:
3933 case 0x0a:
3934 case 0x0b:
3935 case 0x0c:
3936 case 0x0d:
3937 case 0x10:
3938 case 0x11:
3939 case 0x12:
3940 case 0x13:
3941 case 0x14:
3942 case 0x15:
3943 case 0x18:
3944 case 0x19:
3945 case 0x1a:
3946 case 0x1b:
3947 case 0x1c:
3948 case 0x1d:
3949 case 0x20:
3950 case 0x21:
3951 case 0x22:
3952 case 0x23:
3953 case 0x24:
3954 case 0x25:
3955 case 0x28:
3956 case 0x29:
3957 case 0x2a:
3958 case 0x2b:
3959 case 0x2c:
3960 case 0x2d:
3961 case 0x30:
3962 case 0x31:
3963 case 0x32:
3964 case 0x33:
3965 case 0x34:
3966 case 0x35:
3967 case 0x38:
3968 case 0x39:
3969 case 0x3a:
3970 case 0x3b:
3971 case 0x3c:
3972 case 0x3d:
3973 if (((opcode >> 3) & 7) != OP_CMPL)
3974 {
3975 if ((opcode & 1) == 0)
3976 ir.ot = OT_BYTE;
3977 else
3978 ir.ot = ir.dflag + OT_WORD;
93924b6b 3979
7ad10968
HZ
3980 switch ((opcode >> 1) & 3)
3981 {
a38bba38 3982 case 0: /* OP Ev, Gv */
7ad10968
HZ
3983 if (i386_record_modrm (&ir))
3984 return -1;
3985 if (ir.mod != 3)
3986 {
3987 if (i386_record_lea_modrm (&ir))
3988 return -1;
3989 }
3990 else
3991 {
cf648174
HZ
3992 ir.rm |= ir.rex_b;
3993 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3994 ir.rm &= 0x3;
cf648174 3995 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3996 }
3997 break;
a38bba38 3998 case 1: /* OP Gv, Ev */
7ad10968
HZ
3999 if (i386_record_modrm (&ir))
4000 return -1;
cf648174
HZ
4001 ir.reg |= rex_r;
4002 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4003 ir.reg &= 0x3;
cf648174 4004 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4005 break;
a38bba38 4006 case 2: /* OP A, Iv */
cf648174 4007 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4008 break;
4009 }
4010 }
cf648174 4011 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4012 break;
42fdc8df 4013
a38bba38 4014 case 0x80: /* GRP1 */
7ad10968
HZ
4015 case 0x81:
4016 case 0x82:
4017 case 0x83:
4018 if (i386_record_modrm (&ir))
4019 return -1;
8201327c 4020
7ad10968
HZ
4021 if (ir.reg != OP_CMPL)
4022 {
4023 if ((opcode & 1) == 0)
4024 ir.ot = OT_BYTE;
4025 else
4026 ir.ot = ir.dflag + OT_WORD;
28fc6740 4027
7ad10968
HZ
4028 if (ir.mod != 3)
4029 {
cf648174
HZ
4030 if (opcode == 0x83)
4031 ir.rip_offset = 1;
4032 else
4033 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4034 if (i386_record_lea_modrm (&ir))
4035 return -1;
4036 }
4037 else
cf648174 4038 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4039 }
cf648174 4040 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4041 break;
5e3397bb 4042
a38bba38 4043 case 0x40: /* inc */
7ad10968
HZ
4044 case 0x41:
4045 case 0x42:
4046 case 0x43:
4047 case 0x44:
4048 case 0x45:
4049 case 0x46:
4050 case 0x47:
a38bba38
MS
4051
4052 case 0x48: /* dec */
7ad10968
HZ
4053 case 0x49:
4054 case 0x4a:
4055 case 0x4b:
4056 case 0x4c:
4057 case 0x4d:
4058 case 0x4e:
4059 case 0x4f:
a38bba38 4060
cf648174
HZ
4061 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4062 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4063 break;
acd5c798 4064
a38bba38 4065 case 0xf6: /* GRP3 */
7ad10968
HZ
4066 case 0xf7:
4067 if ((opcode & 1) == 0)
4068 ir.ot = OT_BYTE;
4069 else
4070 ir.ot = ir.dflag + OT_WORD;
4071 if (i386_record_modrm (&ir))
4072 return -1;
acd5c798 4073
cf648174
HZ
4074 if (ir.mod != 3 && ir.reg == 0)
4075 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4076
7ad10968
HZ
4077 switch (ir.reg)
4078 {
a38bba38 4079 case 0: /* test */
cf648174 4080 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4081 break;
a38bba38
MS
4082 case 2: /* not */
4083 case 3: /* neg */
7ad10968
HZ
4084 if (ir.mod != 3)
4085 {
4086 if (i386_record_lea_modrm (&ir))
4087 return -1;
4088 }
4089 else
4090 {
cf648174
HZ
4091 ir.rm |= ir.rex_b;
4092 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4093 ir.rm &= 0x3;
cf648174 4094 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4095 }
a38bba38 4096 if (ir.reg == 3) /* neg */
cf648174 4097 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4098 break;
a38bba38
MS
4099 case 4: /* mul */
4100 case 5: /* imul */
4101 case 6: /* div */
4102 case 7: /* idiv */
cf648174 4103 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4104 if (ir.ot != OT_BYTE)
cf648174
HZ
4105 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4106 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4107 break;
4108 default:
4109 ir.addr -= 2;
4110 opcode = opcode << 8 | ir.modrm;
4111 goto no_support;
4112 break;
4113 }
4114 break;
4115
a38bba38
MS
4116 case 0xfe: /* GRP4 */
4117 case 0xff: /* GRP5 */
7ad10968
HZ
4118 if (i386_record_modrm (&ir))
4119 return -1;
4120 if (ir.reg >= 2 && opcode == 0xfe)
4121 {
4122 ir.addr -= 2;
4123 opcode = opcode << 8 | ir.modrm;
4124 goto no_support;
4125 }
7ad10968
HZ
4126 switch (ir.reg)
4127 {
a38bba38
MS
4128 case 0: /* inc */
4129 case 1: /* dec */
cf648174
HZ
4130 if ((opcode & 1) == 0)
4131 ir.ot = OT_BYTE;
4132 else
4133 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4134 if (ir.mod != 3)
4135 {
4136 if (i386_record_lea_modrm (&ir))
4137 return -1;
4138 }
4139 else
4140 {
cf648174
HZ
4141 ir.rm |= ir.rex_b;
4142 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4143 ir.rm &= 0x3;
cf648174 4144 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4145 }
cf648174 4146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4147 break;
a38bba38 4148 case 2: /* call */
cf648174
HZ
4149 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4150 ir.dflag = 2;
4151 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4152 return -1;
cf648174 4153 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4154 break;
a38bba38 4155 case 3: /* lcall */
cf648174
HZ
4156 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4157 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4158 return -1;
cf648174 4159 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4160 break;
a38bba38
MS
4161 case 4: /* jmp */
4162 case 5: /* ljmp */
cf648174
HZ
4163 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4164 break;
a38bba38 4165 case 6: /* push */
cf648174
HZ
4166 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4167 ir.dflag = 2;
4168 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4169 return -1;
7ad10968
HZ
4170 break;
4171 default:
4172 ir.addr -= 2;
4173 opcode = opcode << 8 | ir.modrm;
4174 goto no_support;
4175 break;
4176 }
4177 break;
4178
a38bba38 4179 case 0x84: /* test */
7ad10968
HZ
4180 case 0x85:
4181 case 0xa8:
4182 case 0xa9:
cf648174 4183 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4184 break;
4185
a38bba38 4186 case 0x98: /* CWDE/CBW */
cf648174 4187 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4188 break;
4189
a38bba38 4190 case 0x99: /* CDQ/CWD */
cf648174
HZ
4191 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4193 break;
4194
a38bba38 4195 case 0x0faf: /* imul */
7ad10968
HZ
4196 case 0x69:
4197 case 0x6b:
4198 ir.ot = ir.dflag + OT_WORD;
4199 if (i386_record_modrm (&ir))
4200 return -1;
cf648174
HZ
4201 if (opcode == 0x69)
4202 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4203 else if (opcode == 0x6b)
4204 ir.rip_offset = 1;
4205 ir.reg |= rex_r;
4206 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4207 ir.reg &= 0x3;
cf648174
HZ
4208 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4209 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4210 break;
4211
a38bba38 4212 case 0x0fc0: /* xadd */
7ad10968
HZ
4213 case 0x0fc1:
4214 if ((opcode & 1) == 0)
4215 ir.ot = OT_BYTE;
4216 else
4217 ir.ot = ir.dflag + OT_WORD;
4218 if (i386_record_modrm (&ir))
4219 return -1;
cf648174 4220 ir.reg |= rex_r;
7ad10968
HZ
4221 if (ir.mod == 3)
4222 {
cf648174 4223 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4224 ir.reg &= 0x3;
cf648174
HZ
4225 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4226 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4227 ir.rm &= 0x3;
cf648174 4228 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4229 }
4230 else
4231 {
4232 if (i386_record_lea_modrm (&ir))
4233 return -1;
cf648174 4234 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4235 ir.reg &= 0x3;
cf648174 4236 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4237 }
cf648174 4238 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4239 break;
4240
a38bba38 4241 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4242 case 0x0fb1:
4243 if ((opcode & 1) == 0)
4244 ir.ot = OT_BYTE;
4245 else
4246 ir.ot = ir.dflag + OT_WORD;
4247 if (i386_record_modrm (&ir))
4248 return -1;
4249 if (ir.mod == 3)
4250 {
cf648174
HZ
4251 ir.reg |= rex_r;
4252 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4253 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4254 ir.reg &= 0x3;
cf648174 4255 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4256 }
4257 else
4258 {
cf648174 4259 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4260 if (i386_record_lea_modrm (&ir))
4261 return -1;
4262 }
cf648174 4263 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4264 break;
4265
a38bba38 4266 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4267 if (i386_record_modrm (&ir))
4268 return -1;
4269 if (ir.mod == 3)
4270 {
4271 ir.addr -= 2;
4272 opcode = opcode << 8 | ir.modrm;
4273 goto no_support;
4274 }
cf648174
HZ
4275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4277 if (i386_record_lea_modrm (&ir))
4278 return -1;
cf648174 4279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4280 break;
4281
a38bba38 4282 case 0x50: /* push */
7ad10968
HZ
4283 case 0x51:
4284 case 0x52:
4285 case 0x53:
4286 case 0x54:
4287 case 0x55:
4288 case 0x56:
4289 case 0x57:
4290 case 0x68:
4291 case 0x6a:
cf648174
HZ
4292 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4293 ir.dflag = 2;
4294 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4295 return -1;
4296 break;
4297
a38bba38
MS
4298 case 0x06: /* push es */
4299 case 0x0e: /* push cs */
4300 case 0x16: /* push ss */
4301 case 0x1e: /* push ds */
cf648174
HZ
4302 if (ir.regmap[X86_RECORD_R8_REGNUM])
4303 {
4304 ir.addr -= 1;
4305 goto no_support;
4306 }
4307 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4308 return -1;
4309 break;
4310
a38bba38
MS
4311 case 0x0fa0: /* push fs */
4312 case 0x0fa8: /* push gs */
cf648174
HZ
4313 if (ir.regmap[X86_RECORD_R8_REGNUM])
4314 {
4315 ir.addr -= 2;
4316 goto no_support;
4317 }
4318 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4319 return -1;
cf648174
HZ
4320 break;
4321
a38bba38 4322 case 0x60: /* pusha */
cf648174
HZ
4323 if (ir.regmap[X86_RECORD_R8_REGNUM])
4324 {
4325 ir.addr -= 1;
4326 goto no_support;
4327 }
4328 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4329 return -1;
4330 break;
4331
a38bba38 4332 case 0x58: /* pop */
7ad10968
HZ
4333 case 0x59:
4334 case 0x5a:
4335 case 0x5b:
4336 case 0x5c:
4337 case 0x5d:
4338 case 0x5e:
4339 case 0x5f:
cf648174
HZ
4340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4341 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4342 break;
4343
a38bba38 4344 case 0x61: /* popa */
cf648174
HZ
4345 if (ir.regmap[X86_RECORD_R8_REGNUM])
4346 {
4347 ir.addr -= 1;
4348 goto no_support;
7ad10968 4349 }
425b824a
MS
4350 for (regnum = X86_RECORD_REAX_REGNUM;
4351 regnum <= X86_RECORD_REDI_REGNUM;
4352 regnum++)
4353 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4354 break;
4355
a38bba38 4356 case 0x8f: /* pop */
cf648174
HZ
4357 if (ir.regmap[X86_RECORD_R8_REGNUM])
4358 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4359 else
4360 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4361 if (i386_record_modrm (&ir))
4362 return -1;
4363 if (ir.mod == 3)
cf648174 4364 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4365 else
4366 {
cf648174 4367 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4368 if (i386_record_lea_modrm (&ir))
4369 return -1;
4370 }
cf648174 4371 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4372 break;
4373
a38bba38 4374 case 0xc8: /* enter */
cf648174
HZ
4375 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4376 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4377 ir.dflag = 2;
4378 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4379 return -1;
4380 break;
4381
a38bba38 4382 case 0xc9: /* leave */
cf648174
HZ
4383 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4384 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4385 break;
4386
a38bba38 4387 case 0x07: /* pop es */
cf648174
HZ
4388 if (ir.regmap[X86_RECORD_R8_REGNUM])
4389 {
4390 ir.addr -= 1;
4391 goto no_support;
4392 }
4393 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4395 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4396 break;
4397
a38bba38 4398 case 0x17: /* pop ss */
cf648174
HZ
4399 if (ir.regmap[X86_RECORD_R8_REGNUM])
4400 {
4401 ir.addr -= 1;
4402 goto no_support;
4403 }
4404 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4405 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4407 break;
4408
a38bba38 4409 case 0x1f: /* pop ds */
cf648174
HZ
4410 if (ir.regmap[X86_RECORD_R8_REGNUM])
4411 {
4412 ir.addr -= 1;
4413 goto no_support;
4414 }
4415 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4418 break;
4419
a38bba38 4420 case 0x0fa1: /* pop fs */
cf648174
HZ
4421 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4422 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4424 break;
4425
a38bba38 4426 case 0x0fa9: /* pop gs */
cf648174
HZ
4427 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4430 break;
4431
a38bba38 4432 case 0x88: /* mov */
7ad10968
HZ
4433 case 0x89:
4434 case 0xc6:
4435 case 0xc7:
4436 if ((opcode & 1) == 0)
4437 ir.ot = OT_BYTE;
4438 else
4439 ir.ot = ir.dflag + OT_WORD;
4440
4441 if (i386_record_modrm (&ir))
4442 return -1;
4443
4444 if (ir.mod != 3)
4445 {
cf648174
HZ
4446 if (opcode == 0xc6 || opcode == 0xc7)
4447 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4448 if (i386_record_lea_modrm (&ir))
4449 return -1;
4450 }
4451 else
4452 {
cf648174
HZ
4453 if (opcode == 0xc6 || opcode == 0xc7)
4454 ir.rm |= ir.rex_b;
4455 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4456 ir.rm &= 0x3;
cf648174 4457 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4458 }
7ad10968 4459 break;
cf648174 4460
a38bba38 4461 case 0x8a: /* mov */
7ad10968
HZ
4462 case 0x8b:
4463 if ((opcode & 1) == 0)
4464 ir.ot = OT_BYTE;
4465 else
4466 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4467 if (i386_record_modrm (&ir))
4468 return -1;
cf648174
HZ
4469 ir.reg |= rex_r;
4470 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4471 ir.reg &= 0x3;
cf648174
HZ
4472 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4473 break;
7ad10968 4474
a38bba38 4475 case 0x8c: /* mov seg */
cf648174 4476 if (i386_record_modrm (&ir))
7ad10968 4477 return -1;
cf648174
HZ
4478 if (ir.reg > 5)
4479 {
4480 ir.addr -= 2;
4481 opcode = opcode << 8 | ir.modrm;
4482 goto no_support;
4483 }
4484
4485 if (ir.mod == 3)
4486 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4487 else
4488 {
4489 ir.ot = OT_WORD;
4490 if (i386_record_lea_modrm (&ir))
4491 return -1;
4492 }
7ad10968
HZ
4493 break;
4494
a38bba38 4495 case 0x8e: /* mov seg */
7ad10968
HZ
4496 if (i386_record_modrm (&ir))
4497 return -1;
7ad10968
HZ
4498 switch (ir.reg)
4499 {
4500 case 0:
425b824a 4501 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4502 break;
4503 case 2:
425b824a 4504 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4505 break;
4506 case 3:
425b824a 4507 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4508 break;
4509 case 4:
425b824a 4510 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4511 break;
4512 case 5:
425b824a 4513 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4514 break;
4515 default:
4516 ir.addr -= 2;
4517 opcode = opcode << 8 | ir.modrm;
4518 goto no_support;
4519 break;
4520 }
425b824a 4521 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4522 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4523 break;
4524
a38bba38
MS
4525 case 0x0fb6: /* movzbS */
4526 case 0x0fb7: /* movzwS */
4527 case 0x0fbe: /* movsbS */
4528 case 0x0fbf: /* movswS */
7ad10968
HZ
4529 if (i386_record_modrm (&ir))
4530 return -1;
cf648174 4531 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4532 break;
4533
a38bba38 4534 case 0x8d: /* lea */
7ad10968
HZ
4535 if (i386_record_modrm (&ir))
4536 return -1;
4537 if (ir.mod == 3)
4538 {
4539 ir.addr -= 2;
4540 opcode = opcode << 8 | ir.modrm;
4541 goto no_support;
4542 }
7ad10968 4543 ir.ot = ir.dflag;
cf648174
HZ
4544 ir.reg |= rex_r;
4545 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4546 ir.reg &= 0x3;
cf648174 4547 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4548 break;
4549
a38bba38 4550 case 0xa0: /* mov EAX */
7ad10968 4551 case 0xa1:
a38bba38
MS
4552
4553 case 0xd7: /* xlat */
cf648174 4554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4555 break;
4556
a38bba38 4557 case 0xa2: /* mov EAX */
7ad10968 4558 case 0xa3:
d7877f7e 4559 if (ir.override >= 0)
cf648174 4560 {
bb08c432
HZ
4561 if (record_memory_query)
4562 {
4563 int q;
4564
4565 target_terminal_ours ();
4566 q = yquery (_("\
4567Process record ignores the memory change of instruction at address %s\n\
4568because it can't get the value of the segment register.\n\
4569Do you want to stop the program?"),
4570 paddress (gdbarch, ir.orig_addr));
4571 target_terminal_inferior ();
4572 if (q)
4573 return -1;
4574 }
cf648174
HZ
4575 }
4576 else
4577 {
4578 if ((opcode & 1) == 0)
4579 ir.ot = OT_BYTE;
4580 else
4581 ir.ot = ir.dflag + OT_WORD;
4582 if (ir.aflag == 2)
4583 {
60a1502a 4584 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
4585 {
4586 if (record_debug)
4587 printf_unfiltered (_("Process record: error reading "
4588 "memory at addr 0x%s len = 8.\n"),
4589 paddress (gdbarch, ir.addr));
4590 return -1;
4591 }
4592 ir.addr += 8;
60a1502a 4593 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
4594 }
4595 else if (ir.aflag)
4596 {
60a1502a 4597 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
4598 {
4599 if (record_debug)
4600 printf_unfiltered (_("Process record: error reading "
4601 "memory at addr 0x%s len = 4.\n"),
4602 paddress (gdbarch, ir.addr));
4603 return -1;
4604 }
4605 ir.addr += 4;
60a1502a 4606 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
4607 }
4608 else
4609 {
60a1502a 4610 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
4611 {
4612 if (record_debug)
4613 printf_unfiltered (_("Process record: error reading "
4614 "memory at addr 0x%s len = 2.\n"),
4615 paddress (gdbarch, ir.addr));
4616 return -1;
4617 }
4618 ir.addr += 2;
60a1502a 4619 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 4620 }
648d0c8b 4621 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4622 return -1;
4623 }
7ad10968
HZ
4624 break;
4625
a38bba38 4626 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4627 case 0xb1:
4628 case 0xb2:
4629 case 0xb3:
4630 case 0xb4:
4631 case 0xb5:
4632 case 0xb6:
4633 case 0xb7:
cf648174
HZ
4634 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4635 ? ((opcode & 0x7) | ir.rex_b)
4636 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4637 break;
4638
a38bba38 4639 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4640 case 0xb9:
4641 case 0xba:
4642 case 0xbb:
4643 case 0xbc:
4644 case 0xbd:
4645 case 0xbe:
4646 case 0xbf:
cf648174 4647 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4648 break;
4649
a38bba38 4650 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4651 case 0x92:
4652 case 0x93:
4653 case 0x94:
4654 case 0x95:
4655 case 0x96:
4656 case 0x97:
cf648174
HZ
4657 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4658 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4659 break;
4660
a38bba38 4661 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4662 case 0x87:
4663 if ((opcode & 1) == 0)
4664 ir.ot = OT_BYTE;
4665 else
4666 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4667 if (i386_record_modrm (&ir))
4668 return -1;
7ad10968
HZ
4669 if (ir.mod == 3)
4670 {
86839d38 4671 ir.rm |= ir.rex_b;
cf648174
HZ
4672 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4673 ir.rm &= 0x3;
4674 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4675 }
4676 else
4677 {
4678 if (i386_record_lea_modrm (&ir))
4679 return -1;
4680 }
cf648174
HZ
4681 ir.reg |= rex_r;
4682 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4683 ir.reg &= 0x3;
cf648174 4684 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4685 break;
4686
a38bba38
MS
4687 case 0xc4: /* les Gv */
4688 case 0xc5: /* lds Gv */
cf648174
HZ
4689 if (ir.regmap[X86_RECORD_R8_REGNUM])
4690 {
4691 ir.addr -= 1;
4692 goto no_support;
4693 }
d3f323f3 4694 /* FALLTHROUGH */
a38bba38
MS
4695 case 0x0fb2: /* lss Gv */
4696 case 0x0fb4: /* lfs Gv */
4697 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4698 if (i386_record_modrm (&ir))
4699 return -1;
4700 if (ir.mod == 3)
4701 {
4702 if (opcode > 0xff)
4703 ir.addr -= 3;
4704 else
4705 ir.addr -= 2;
4706 opcode = opcode << 8 | ir.modrm;
4707 goto no_support;
4708 }
7ad10968
HZ
4709 switch (opcode)
4710 {
a38bba38 4711 case 0xc4: /* les Gv */
425b824a 4712 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4713 break;
a38bba38 4714 case 0xc5: /* lds Gv */
425b824a 4715 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4716 break;
a38bba38 4717 case 0x0fb2: /* lss Gv */
425b824a 4718 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4719 break;
a38bba38 4720 case 0x0fb4: /* lfs Gv */
425b824a 4721 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4722 break;
a38bba38 4723 case 0x0fb5: /* lgs Gv */
425b824a 4724 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4725 break;
4726 }
425b824a 4727 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4728 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4729 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4730 break;
4731
a38bba38 4732 case 0xc0: /* shifts */
7ad10968
HZ
4733 case 0xc1:
4734 case 0xd0:
4735 case 0xd1:
4736 case 0xd2:
4737 case 0xd3:
4738 if ((opcode & 1) == 0)
4739 ir.ot = OT_BYTE;
4740 else
4741 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4742 if (i386_record_modrm (&ir))
4743 return -1;
7ad10968
HZ
4744 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4745 {
4746 if (i386_record_lea_modrm (&ir))
4747 return -1;
4748 }
4749 else
4750 {
cf648174
HZ
4751 ir.rm |= ir.rex_b;
4752 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4753 ir.rm &= 0x3;
cf648174 4754 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4755 }
cf648174 4756 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4757 break;
4758
4759 case 0x0fa4:
4760 case 0x0fa5:
4761 case 0x0fac:
4762 case 0x0fad:
4763 if (i386_record_modrm (&ir))
4764 return -1;
4765 if (ir.mod == 3)
4766 {
4767 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4768 return -1;
4769 }
4770 else
4771 {
4772 if (i386_record_lea_modrm (&ir))
4773 return -1;
4774 }
4775 break;
4776
a38bba38 4777 case 0xd8: /* Floats. */
7ad10968
HZ
4778 case 0xd9:
4779 case 0xda:
4780 case 0xdb:
4781 case 0xdc:
4782 case 0xdd:
4783 case 0xde:
4784 case 0xdf:
4785 if (i386_record_modrm (&ir))
4786 return -1;
4787 ir.reg |= ((opcode & 7) << 3);
4788 if (ir.mod != 3)
4789 {
1777feb0 4790 /* Memory. */
955db0c0 4791 uint64_t addr64;
7ad10968 4792
955db0c0 4793 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4794 return -1;
4795 switch (ir.reg)
4796 {
7ad10968 4797 case 0x02:
0289bdd7
MS
4798 case 0x12:
4799 case 0x22:
4800 case 0x32:
4801 /* For fcom, ficom nothing to do. */
4802 break;
7ad10968 4803 case 0x03:
0289bdd7
MS
4804 case 0x13:
4805 case 0x23:
4806 case 0x33:
4807 /* For fcomp, ficomp pop FPU stack, store all. */
4808 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4809 return -1;
4810 break;
4811 case 0x00:
4812 case 0x01:
7ad10968
HZ
4813 case 0x04:
4814 case 0x05:
4815 case 0x06:
4816 case 0x07:
4817 case 0x10:
4818 case 0x11:
7ad10968
HZ
4819 case 0x14:
4820 case 0x15:
4821 case 0x16:
4822 case 0x17:
4823 case 0x20:
4824 case 0x21:
7ad10968
HZ
4825 case 0x24:
4826 case 0x25:
4827 case 0x26:
4828 case 0x27:
4829 case 0x30:
4830 case 0x31:
7ad10968
HZ
4831 case 0x34:
4832 case 0x35:
4833 case 0x36:
4834 case 0x37:
0289bdd7
MS
4835 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4836 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4837 of code, always affects st(0) register. */
4838 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4839 return -1;
7ad10968
HZ
4840 break;
4841 case 0x08:
4842 case 0x0a:
4843 case 0x0b:
4844 case 0x18:
4845 case 0x19:
4846 case 0x1a:
4847 case 0x1b:
0289bdd7 4848 case 0x1d:
7ad10968
HZ
4849 case 0x28:
4850 case 0x29:
4851 case 0x2a:
4852 case 0x2b:
4853 case 0x38:
4854 case 0x39:
4855 case 0x3a:
4856 case 0x3b:
0289bdd7
MS
4857 case 0x3c:
4858 case 0x3d:
7ad10968
HZ
4859 switch (ir.reg & 7)
4860 {
4861 case 0:
0289bdd7
MS
4862 /* Handling fld, fild. */
4863 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4864 return -1;
7ad10968
HZ
4865 break;
4866 case 1:
4867 switch (ir.reg >> 4)
4868 {
4869 case 0:
955db0c0 4870 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4871 return -1;
4872 break;
4873 case 2:
955db0c0 4874 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4875 return -1;
4876 break;
4877 case 3:
0289bdd7 4878 break;
7ad10968 4879 default:
955db0c0 4880 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4881 return -1;
4882 break;
4883 }
4884 break;
4885 default:
4886 switch (ir.reg >> 4)
4887 {
4888 case 0:
955db0c0 4889 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4890 return -1;
4891 if (3 == (ir.reg & 7))
4892 {
4893 /* For fstp m32fp. */
4894 if (i386_record_floats (gdbarch, &ir,
4895 I386_SAVE_FPU_REGS))
4896 return -1;
4897 }
4898 break;
7ad10968 4899 case 1:
955db0c0 4900 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4901 return -1;
0289bdd7
MS
4902 if ((3 == (ir.reg & 7))
4903 || (5 == (ir.reg & 7))
4904 || (7 == (ir.reg & 7)))
4905 {
4906 /* For fstp insn. */
4907 if (i386_record_floats (gdbarch, &ir,
4908 I386_SAVE_FPU_REGS))
4909 return -1;
4910 }
7ad10968
HZ
4911 break;
4912 case 2:
955db0c0 4913 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4914 return -1;
0289bdd7
MS
4915 if (3 == (ir.reg & 7))
4916 {
4917 /* For fstp m64fp. */
4918 if (i386_record_floats (gdbarch, &ir,
4919 I386_SAVE_FPU_REGS))
4920 return -1;
4921 }
7ad10968
HZ
4922 break;
4923 case 3:
0289bdd7
MS
4924 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4925 {
4926 /* For fistp, fbld, fild, fbstp. */
4927 if (i386_record_floats (gdbarch, &ir,
4928 I386_SAVE_FPU_REGS))
4929 return -1;
4930 }
4931 /* Fall through */
7ad10968 4932 default:
955db0c0 4933 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4934 return -1;
4935 break;
4936 }
4937 break;
4938 }
4939 break;
4940 case 0x0c:
0289bdd7
MS
4941 /* Insn fldenv. */
4942 if (i386_record_floats (gdbarch, &ir,
4943 I386_SAVE_FPU_ENV_REG_STACK))
4944 return -1;
4945 break;
7ad10968 4946 case 0x0d:
0289bdd7
MS
4947 /* Insn fldcw. */
4948 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4949 return -1;
4950 break;
7ad10968 4951 case 0x2c:
0289bdd7
MS
4952 /* Insn frstor. */
4953 if (i386_record_floats (gdbarch, &ir,
4954 I386_SAVE_FPU_ENV_REG_STACK))
4955 return -1;
7ad10968
HZ
4956 break;
4957 case 0x0e:
4958 if (ir.dflag)
4959 {
955db0c0 4960 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4961 return -1;
4962 }
4963 else
4964 {
955db0c0 4965 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4966 return -1;
4967 }
4968 break;
4969 case 0x0f:
4970 case 0x2f:
955db0c0 4971 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4972 return -1;
0289bdd7
MS
4973 /* Insn fstp, fbstp. */
4974 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4975 return -1;
7ad10968
HZ
4976 break;
4977 case 0x1f:
4978 case 0x3e:
955db0c0 4979 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4980 return -1;
4981 break;
4982 case 0x2e:
4983 if (ir.dflag)
4984 {
955db0c0 4985 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4986 return -1;
955db0c0 4987 addr64 += 28;
7ad10968
HZ
4988 }
4989 else
4990 {
955db0c0 4991 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4992 return -1;
955db0c0 4993 addr64 += 14;
7ad10968 4994 }
955db0c0 4995 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4996 return -1;
0289bdd7
MS
4997 /* Insn fsave. */
4998 if (i386_record_floats (gdbarch, &ir,
4999 I386_SAVE_FPU_ENV_REG_STACK))
5000 return -1;
7ad10968
HZ
5001 break;
5002 case 0x3f:
955db0c0 5003 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5004 return -1;
0289bdd7
MS
5005 /* Insn fistp. */
5006 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5007 return -1;
7ad10968
HZ
5008 break;
5009 default:
5010 ir.addr -= 2;
5011 opcode = opcode << 8 | ir.modrm;
5012 goto no_support;
5013 break;
5014 }
5015 }
0289bdd7
MS
5016 /* Opcode is an extension of modR/M byte. */
5017 else
5018 {
5019 switch (opcode)
5020 {
5021 case 0xd8:
5022 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5023 return -1;
5024 break;
5025 case 0xd9:
5026 if (0x0c == (ir.modrm >> 4))
5027 {
5028 if ((ir.modrm & 0x0f) <= 7)
5029 {
5030 if (i386_record_floats (gdbarch, &ir,
5031 I386_SAVE_FPU_REGS))
5032 return -1;
5033 }
5034 else
5035 {
5036 if (i386_record_floats (gdbarch, &ir,
5037 I387_ST0_REGNUM (tdep)))
5038 return -1;
5039 /* If only st(0) is changing, then we have already
5040 recorded. */
5041 if ((ir.modrm & 0x0f) - 0x08)
5042 {
5043 if (i386_record_floats (gdbarch, &ir,
5044 I387_ST0_REGNUM (tdep) +
5045 ((ir.modrm & 0x0f) - 0x08)))
5046 return -1;
5047 }
5048 }
5049 }
5050 else
5051 {
5052 switch (ir.modrm)
5053 {
5054 case 0xe0:
5055 case 0xe1:
5056 case 0xf0:
5057 case 0xf5:
5058 case 0xf8:
5059 case 0xfa:
5060 case 0xfc:
5061 case 0xfe:
5062 case 0xff:
5063 if (i386_record_floats (gdbarch, &ir,
5064 I387_ST0_REGNUM (tdep)))
5065 return -1;
5066 break;
5067 case 0xf1:
5068 case 0xf2:
5069 case 0xf3:
5070 case 0xf4:
5071 case 0xf6:
5072 case 0xf7:
5073 case 0xe8:
5074 case 0xe9:
5075 case 0xea:
5076 case 0xeb:
5077 case 0xec:
5078 case 0xed:
5079 case 0xee:
5080 case 0xf9:
5081 case 0xfb:
5082 if (i386_record_floats (gdbarch, &ir,
5083 I386_SAVE_FPU_REGS))
5084 return -1;
5085 break;
5086 case 0xfd:
5087 if (i386_record_floats (gdbarch, &ir,
5088 I387_ST0_REGNUM (tdep)))
5089 return -1;
5090 if (i386_record_floats (gdbarch, &ir,
5091 I387_ST0_REGNUM (tdep) + 1))
5092 return -1;
5093 break;
5094 }
5095 }
5096 break;
5097 case 0xda:
5098 if (0xe9 == ir.modrm)
5099 {
5100 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5101 return -1;
5102 }
5103 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5104 {
5105 if (i386_record_floats (gdbarch, &ir,
5106 I387_ST0_REGNUM (tdep)))
5107 return -1;
5108 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5109 {
5110 if (i386_record_floats (gdbarch, &ir,
5111 I387_ST0_REGNUM (tdep) +
5112 (ir.modrm & 0x0f)))
5113 return -1;
5114 }
5115 else if ((ir.modrm & 0x0f) - 0x08)
5116 {
5117 if (i386_record_floats (gdbarch, &ir,
5118 I387_ST0_REGNUM (tdep) +
5119 ((ir.modrm & 0x0f) - 0x08)))
5120 return -1;
5121 }
5122 }
5123 break;
5124 case 0xdb:
5125 if (0xe3 == ir.modrm)
5126 {
5127 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5128 return -1;
5129 }
5130 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5131 {
5132 if (i386_record_floats (gdbarch, &ir,
5133 I387_ST0_REGNUM (tdep)))
5134 return -1;
5135 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5136 {
5137 if (i386_record_floats (gdbarch, &ir,
5138 I387_ST0_REGNUM (tdep) +
5139 (ir.modrm & 0x0f)))
5140 return -1;
5141 }
5142 else if ((ir.modrm & 0x0f) - 0x08)
5143 {
5144 if (i386_record_floats (gdbarch, &ir,
5145 I387_ST0_REGNUM (tdep) +
5146 ((ir.modrm & 0x0f) - 0x08)))
5147 return -1;
5148 }
5149 }
5150 break;
5151 case 0xdc:
5152 if ((0x0c == ir.modrm >> 4)
5153 || (0x0d == ir.modrm >> 4)
5154 || (0x0f == ir.modrm >> 4))
5155 {
5156 if ((ir.modrm & 0x0f) <= 7)
5157 {
5158 if (i386_record_floats (gdbarch, &ir,
5159 I387_ST0_REGNUM (tdep) +
5160 (ir.modrm & 0x0f)))
5161 return -1;
5162 }
5163 else
5164 {
5165 if (i386_record_floats (gdbarch, &ir,
5166 I387_ST0_REGNUM (tdep) +
5167 ((ir.modrm & 0x0f) - 0x08)))
5168 return -1;
5169 }
5170 }
5171 break;
5172 case 0xdd:
5173 if (0x0c == ir.modrm >> 4)
5174 {
5175 if (i386_record_floats (gdbarch, &ir,
5176 I387_FTAG_REGNUM (tdep)))
5177 return -1;
5178 }
5179 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5180 {
5181 if ((ir.modrm & 0x0f) <= 7)
5182 {
5183 if (i386_record_floats (gdbarch, &ir,
5184 I387_ST0_REGNUM (tdep) +
5185 (ir.modrm & 0x0f)))
5186 return -1;
5187 }
5188 else
5189 {
5190 if (i386_record_floats (gdbarch, &ir,
5191 I386_SAVE_FPU_REGS))
5192 return -1;
5193 }
5194 }
5195 break;
5196 case 0xde:
5197 if ((0x0c == ir.modrm >> 4)
5198 || (0x0e == ir.modrm >> 4)
5199 || (0x0f == ir.modrm >> 4)
5200 || (0xd9 == ir.modrm))
5201 {
5202 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5203 return -1;
5204 }
5205 break;
5206 case 0xdf:
5207 if (0xe0 == ir.modrm)
5208 {
5209 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5210 return -1;
5211 }
5212 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5213 {
5214 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5215 return -1;
5216 }
5217 break;
5218 }
5219 }
7ad10968 5220 break;
7ad10968 5221 /* string ops */
a38bba38 5222 case 0xa4: /* movsS */
7ad10968 5223 case 0xa5:
a38bba38 5224 case 0xaa: /* stosS */
7ad10968 5225 case 0xab:
a38bba38 5226 case 0x6c: /* insS */
7ad10968 5227 case 0x6d:
cf648174 5228 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5229 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5230 &addr);
5231 if (addr)
cf648174 5232 {
77d7dc92
HZ
5233 ULONGEST es, ds;
5234
5235 if ((opcode & 1) == 0)
5236 ir.ot = OT_BYTE;
5237 else
5238 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5239 regcache_raw_read_unsigned (ir.regcache,
5240 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5241 &addr);
77d7dc92 5242
d7877f7e
HZ
5243 regcache_raw_read_unsigned (ir.regcache,
5244 ir.regmap[X86_RECORD_ES_REGNUM],
5245 &es);
5246 regcache_raw_read_unsigned (ir.regcache,
5247 ir.regmap[X86_RECORD_DS_REGNUM],
5248 &ds);
5249 if (ir.aflag && (es != ds))
77d7dc92
HZ
5250 {
5251 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5252 if (record_memory_query)
5253 {
5254 int q;
5255
5256 target_terminal_ours ();
5257 q = yquery (_("\
5258Process record ignores the memory change of instruction at address %s\n\
5259because it can't get the value of the segment register.\n\
5260Do you want to stop the program?"),
5261 paddress (gdbarch, ir.orig_addr));
5262 target_terminal_inferior ();
5263 if (q)
5264 return -1;
5265 }
df61f520
HZ
5266 }
5267 else
5268 {
648d0c8b 5269 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5270 return -1;
77d7dc92
HZ
5271 }
5272
5273 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5274 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5275 if (opcode == 0xa4 || opcode == 0xa5)
5276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5279 }
cf648174 5280 break;
7ad10968 5281
a38bba38 5282 case 0xa6: /* cmpsS */
cf648174
HZ
5283 case 0xa7:
5284 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5286 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5287 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5288 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5289 break;
5290
a38bba38 5291 case 0xac: /* lodsS */
7ad10968 5292 case 0xad:
cf648174
HZ
5293 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5295 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5296 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5298 break;
5299
a38bba38 5300 case 0xae: /* scasS */
7ad10968 5301 case 0xaf:
cf648174 5302 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5303 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5304 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5306 break;
5307
a38bba38 5308 case 0x6e: /* outsS */
cf648174
HZ
5309 case 0x6f:
5310 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5311 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5312 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5314 break;
5315
a38bba38 5316 case 0xe4: /* port I/O */
7ad10968
HZ
5317 case 0xe5:
5318 case 0xec:
5319 case 0xed:
cf648174
HZ
5320 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5322 break;
5323
5324 case 0xe6:
5325 case 0xe7:
5326 case 0xee:
5327 case 0xef:
5328 break;
5329
5330 /* control */
a38bba38
MS
5331 case 0xc2: /* ret im */
5332 case 0xc3: /* ret */
cf648174
HZ
5333 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5335 break;
5336
a38bba38
MS
5337 case 0xca: /* lret im */
5338 case 0xcb: /* lret */
5339 case 0xcf: /* iret */
cf648174
HZ
5340 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5342 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5343 break;
5344
a38bba38 5345 case 0xe8: /* call im */
cf648174
HZ
5346 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5347 ir.dflag = 2;
5348 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5349 return -1;
7ad10968
HZ
5350 break;
5351
a38bba38 5352 case 0x9a: /* lcall im */
cf648174
HZ
5353 if (ir.regmap[X86_RECORD_R8_REGNUM])
5354 {
5355 ir.addr -= 1;
5356 goto no_support;
5357 }
5358 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5359 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5360 return -1;
7ad10968
HZ
5361 break;
5362
a38bba38
MS
5363 case 0xe9: /* jmp im */
5364 case 0xea: /* ljmp im */
5365 case 0xeb: /* jmp Jb */
5366 case 0x70: /* jcc Jb */
7ad10968
HZ
5367 case 0x71:
5368 case 0x72:
5369 case 0x73:
5370 case 0x74:
5371 case 0x75:
5372 case 0x76:
5373 case 0x77:
5374 case 0x78:
5375 case 0x79:
5376 case 0x7a:
5377 case 0x7b:
5378 case 0x7c:
5379 case 0x7d:
5380 case 0x7e:
5381 case 0x7f:
a38bba38 5382 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5383 case 0x0f81:
5384 case 0x0f82:
5385 case 0x0f83:
5386 case 0x0f84:
5387 case 0x0f85:
5388 case 0x0f86:
5389 case 0x0f87:
5390 case 0x0f88:
5391 case 0x0f89:
5392 case 0x0f8a:
5393 case 0x0f8b:
5394 case 0x0f8c:
5395 case 0x0f8d:
5396 case 0x0f8e:
5397 case 0x0f8f:
5398 break;
5399
a38bba38 5400 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5401 case 0x0f91:
5402 case 0x0f92:
5403 case 0x0f93:
5404 case 0x0f94:
5405 case 0x0f95:
5406 case 0x0f96:
5407 case 0x0f97:
5408 case 0x0f98:
5409 case 0x0f99:
5410 case 0x0f9a:
5411 case 0x0f9b:
5412 case 0x0f9c:
5413 case 0x0f9d:
5414 case 0x0f9e:
5415 case 0x0f9f:
cf648174 5416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5417 ir.ot = OT_BYTE;
5418 if (i386_record_modrm (&ir))
5419 return -1;
5420 if (ir.mod == 3)
cf648174
HZ
5421 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5422 : (ir.rm & 0x3));
7ad10968
HZ
5423 else
5424 {
5425 if (i386_record_lea_modrm (&ir))
5426 return -1;
5427 }
5428 break;
5429
a38bba38 5430 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5431 case 0x0f41:
5432 case 0x0f42:
5433 case 0x0f43:
5434 case 0x0f44:
5435 case 0x0f45:
5436 case 0x0f46:
5437 case 0x0f47:
5438 case 0x0f48:
5439 case 0x0f49:
5440 case 0x0f4a:
5441 case 0x0f4b:
5442 case 0x0f4c:
5443 case 0x0f4d:
5444 case 0x0f4e:
5445 case 0x0f4f:
5446 if (i386_record_modrm (&ir))
5447 return -1;
cf648174 5448 ir.reg |= rex_r;
7ad10968
HZ
5449 if (ir.dflag == OT_BYTE)
5450 ir.reg &= 0x3;
cf648174 5451 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5452 break;
5453
5454 /* flags */
a38bba38 5455 case 0x9c: /* pushf */
cf648174
HZ
5456 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5457 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5458 ir.dflag = 2;
5459 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5460 return -1;
7ad10968
HZ
5461 break;
5462
a38bba38 5463 case 0x9d: /* popf */
cf648174
HZ
5464 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5466 break;
5467
a38bba38 5468 case 0x9e: /* sahf */
cf648174
HZ
5469 if (ir.regmap[X86_RECORD_R8_REGNUM])
5470 {
5471 ir.addr -= 1;
5472 goto no_support;
5473 }
d3f323f3 5474 /* FALLTHROUGH */
a38bba38
MS
5475 case 0xf5: /* cmc */
5476 case 0xf8: /* clc */
5477 case 0xf9: /* stc */
5478 case 0xfc: /* cld */
5479 case 0xfd: /* std */
cf648174 5480 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5481 break;
5482
a38bba38 5483 case 0x9f: /* lahf */
cf648174
HZ
5484 if (ir.regmap[X86_RECORD_R8_REGNUM])
5485 {
5486 ir.addr -= 1;
5487 goto no_support;
5488 }
5489 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5490 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5491 break;
5492
5493 /* bit operations */
a38bba38 5494 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5495 ir.ot = ir.dflag + OT_WORD;
5496 if (i386_record_modrm (&ir))
5497 return -1;
5498 if (ir.reg < 4)
5499 {
cf648174 5500 ir.addr -= 2;
7ad10968
HZ
5501 opcode = opcode << 8 | ir.modrm;
5502 goto no_support;
5503 }
cf648174 5504 if (ir.reg != 4)
7ad10968 5505 {
cf648174
HZ
5506 if (ir.mod == 3)
5507 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5508 else
5509 {
cf648174 5510 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5511 return -1;
5512 }
5513 }
cf648174 5514 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5515 break;
5516
a38bba38 5517 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5518 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5519 break;
5520
a38bba38
MS
5521 case 0x0fab: /* bts */
5522 case 0x0fb3: /* btr */
5523 case 0x0fbb: /* btc */
cf648174
HZ
5524 ir.ot = ir.dflag + OT_WORD;
5525 if (i386_record_modrm (&ir))
5526 return -1;
5527 if (ir.mod == 3)
5528 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5529 else
5530 {
955db0c0
MS
5531 uint64_t addr64;
5532 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5533 return -1;
5534 regcache_raw_read_unsigned (ir.regcache,
5535 ir.regmap[ir.reg | rex_r],
648d0c8b 5536 &addr);
cf648174
HZ
5537 switch (ir.dflag)
5538 {
5539 case 0:
648d0c8b 5540 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5541 break;
5542 case 1:
648d0c8b 5543 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5544 break;
5545 case 2:
648d0c8b 5546 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5547 break;
5548 }
955db0c0 5549 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5550 return -1;
5551 if (i386_record_lea_modrm (&ir))
5552 return -1;
5553 }
5554 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5555 break;
5556
a38bba38
MS
5557 case 0x0fbc: /* bsf */
5558 case 0x0fbd: /* bsr */
cf648174
HZ
5559 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5560 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5561 break;
5562
5563 /* bcd */
a38bba38
MS
5564 case 0x27: /* daa */
5565 case 0x2f: /* das */
5566 case 0x37: /* aaa */
5567 case 0x3f: /* aas */
5568 case 0xd4: /* aam */
5569 case 0xd5: /* aad */
cf648174
HZ
5570 if (ir.regmap[X86_RECORD_R8_REGNUM])
5571 {
5572 ir.addr -= 1;
5573 goto no_support;
5574 }
5575 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5576 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5577 break;
5578
5579 /* misc */
a38bba38 5580 case 0x90: /* nop */
7ad10968
HZ
5581 if (prefixes & PREFIX_LOCK)
5582 {
5583 ir.addr -= 1;
5584 goto no_support;
5585 }
5586 break;
5587
a38bba38 5588 case 0x9b: /* fwait */
425b824a 5589 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5590 {
5591 if (record_debug)
5592 printf_unfiltered (_("Process record: error reading memory at "
5593 "addr 0x%s len = 1.\n"),
5594 paddress (gdbarch, ir.addr));
5595 return -1;
5596 }
425b824a 5597 opcode = (uint32_t) opcode8;
0289bdd7
MS
5598 ir.addr++;
5599 goto reswitch;
7ad10968
HZ
5600 break;
5601
7ad10968 5602 /* XXX */
a38bba38 5603 case 0xcc: /* int3 */
a3c4230a 5604 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
5605 "int3.\n"));
5606 ir.addr -= 1;
5607 goto no_support;
5608 break;
5609
7ad10968 5610 /* XXX */
a38bba38 5611 case 0xcd: /* int */
7ad10968
HZ
5612 {
5613 int ret;
425b824a
MS
5614 uint8_t interrupt;
5615 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5616 {
5617 if (record_debug)
5618 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5619 "at addr %s len = 1.\n"),
5620 paddress (gdbarch, ir.addr));
7ad10968
HZ
5621 return -1;
5622 }
5623 ir.addr++;
425b824a 5624 if (interrupt != 0x80
a3c4230a 5625 || tdep->i386_intx80_record == NULL)
7ad10968 5626 {
a3c4230a 5627 printf_unfiltered (_("Process record does not support "
7ad10968 5628 "instruction int 0x%02x.\n"),
425b824a 5629 interrupt);
7ad10968
HZ
5630 ir.addr -= 2;
5631 goto no_support;
5632 }
a3c4230a 5633 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
5634 if (ret)
5635 return ret;
5636 }
5637 break;
5638
7ad10968 5639 /* XXX */
a38bba38 5640 case 0xce: /* into */
a3c4230a 5641 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5642 "instruction into.\n"));
5643 ir.addr -= 1;
5644 goto no_support;
5645 break;
5646
a38bba38
MS
5647 case 0xfa: /* cli */
5648 case 0xfb: /* sti */
7ad10968
HZ
5649 break;
5650
a38bba38 5651 case 0x62: /* bound */
a3c4230a 5652 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5653 "instruction bound.\n"));
5654 ir.addr -= 1;
5655 goto no_support;
5656 break;
5657
a38bba38 5658 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5659 case 0x0fc9:
5660 case 0x0fca:
5661 case 0x0fcb:
5662 case 0x0fcc:
5663 case 0x0fcd:
5664 case 0x0fce:
5665 case 0x0fcf:
cf648174 5666 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5667 break;
5668
a38bba38 5669 case 0xd6: /* salc */
cf648174
HZ
5670 if (ir.regmap[X86_RECORD_R8_REGNUM])
5671 {
5672 ir.addr -= 1;
5673 goto no_support;
5674 }
5675 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5677 break;
5678
a38bba38
MS
5679 case 0xe0: /* loopnz */
5680 case 0xe1: /* loopz */
5681 case 0xe2: /* loop */
5682 case 0xe3: /* jecxz */
cf648174
HZ
5683 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5685 break;
5686
a38bba38 5687 case 0x0f30: /* wrmsr */
a3c4230a 5688 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5689 "instruction wrmsr.\n"));
5690 ir.addr -= 2;
5691 goto no_support;
5692 break;
5693
a38bba38 5694 case 0x0f32: /* rdmsr */
a3c4230a 5695 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5696 "instruction rdmsr.\n"));
5697 ir.addr -= 2;
5698 goto no_support;
5699 break;
5700
a38bba38 5701 case 0x0f31: /* rdtsc */
f8c4f480
HZ
5702 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5703 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5704 break;
5705
a38bba38 5706 case 0x0f34: /* sysenter */
7ad10968
HZ
5707 {
5708 int ret;
cf648174
HZ
5709 if (ir.regmap[X86_RECORD_R8_REGNUM])
5710 {
5711 ir.addr -= 2;
5712 goto no_support;
5713 }
a3c4230a 5714 if (tdep->i386_sysenter_record == NULL)
7ad10968 5715 {
a3c4230a 5716 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5717 "instruction sysenter.\n"));
5718 ir.addr -= 2;
5719 goto no_support;
5720 }
a3c4230a 5721 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
5722 if (ret)
5723 return ret;
5724 }
5725 break;
5726
a38bba38 5727 case 0x0f35: /* sysexit */
a3c4230a 5728 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5729 "instruction sysexit.\n"));
5730 ir.addr -= 2;
5731 goto no_support;
5732 break;
5733
a38bba38 5734 case 0x0f05: /* syscall */
cf648174
HZ
5735 {
5736 int ret;
a3c4230a 5737 if (tdep->i386_syscall_record == NULL)
cf648174 5738 {
a3c4230a 5739 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5740 "instruction syscall.\n"));
5741 ir.addr -= 2;
5742 goto no_support;
5743 }
a3c4230a 5744 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
5745 if (ret)
5746 return ret;
5747 }
5748 break;
5749
a38bba38 5750 case 0x0f07: /* sysret */
a3c4230a 5751 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5752 "instruction sysret.\n"));
5753 ir.addr -= 2;
5754 goto no_support;
5755 break;
5756
a38bba38 5757 case 0x0fa2: /* cpuid */
cf648174
HZ
5758 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5760 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5762 break;
5763
a38bba38 5764 case 0xf4: /* hlt */
a3c4230a 5765 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5766 "instruction hlt.\n"));
5767 ir.addr -= 1;
5768 goto no_support;
5769 break;
5770
5771 case 0x0f00:
5772 if (i386_record_modrm (&ir))
5773 return -1;
5774 switch (ir.reg)
5775 {
a38bba38
MS
5776 case 0: /* sldt */
5777 case 1: /* str */
7ad10968 5778 if (ir.mod == 3)
cf648174 5779 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5780 else
5781 {
5782 ir.ot = OT_WORD;
5783 if (i386_record_lea_modrm (&ir))
5784 return -1;
5785 }
5786 break;
a38bba38
MS
5787 case 2: /* lldt */
5788 case 3: /* ltr */
7ad10968 5789 break;
a38bba38
MS
5790 case 4: /* verr */
5791 case 5: /* verw */
cf648174 5792 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5793 break;
5794 default:
5795 ir.addr -= 3;
5796 opcode = opcode << 8 | ir.modrm;
5797 goto no_support;
5798 break;
5799 }
5800 break;
5801
5802 case 0x0f01:
5803 if (i386_record_modrm (&ir))
5804 return -1;
5805 switch (ir.reg)
5806 {
a38bba38 5807 case 0: /* sgdt */
7ad10968 5808 {
955db0c0 5809 uint64_t addr64;
7ad10968
HZ
5810
5811 if (ir.mod == 3)
5812 {
5813 ir.addr -= 3;
5814 opcode = opcode << 8 | ir.modrm;
5815 goto no_support;
5816 }
d7877f7e 5817 if (ir.override >= 0)
7ad10968 5818 {
bb08c432
HZ
5819 if (record_memory_query)
5820 {
5821 int q;
5822
5823 target_terminal_ours ();
5824 q = yquery (_("\
5825Process record ignores the memory change of instruction at address %s\n\
5826because it can't get the value of the segment register.\n\
5827Do you want to stop the program?"),
5828 paddress (gdbarch, ir.orig_addr));
5829 target_terminal_inferior ();
5830 if (q)
5831 return -1;
5832 }
7ad10968
HZ
5833 }
5834 else
5835 {
955db0c0 5836 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5837 return -1;
955db0c0 5838 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5839 return -1;
955db0c0 5840 addr64 += 2;
cf648174
HZ
5841 if (ir.regmap[X86_RECORD_R8_REGNUM])
5842 {
955db0c0 5843 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5844 return -1;
5845 }
5846 else
5847 {
955db0c0 5848 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5849 return -1;
5850 }
7ad10968
HZ
5851 }
5852 }
5853 break;
5854 case 1:
5855 if (ir.mod == 3)
5856 {
5857 switch (ir.rm)
5858 {
a38bba38 5859 case 0: /* monitor */
7ad10968 5860 break;
a38bba38 5861 case 1: /* mwait */
cf648174 5862 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5863 break;
5864 default:
5865 ir.addr -= 3;
5866 opcode = opcode << 8 | ir.modrm;
5867 goto no_support;
5868 break;
5869 }
5870 }
5871 else
5872 {
5873 /* sidt */
d7877f7e 5874 if (ir.override >= 0)
7ad10968 5875 {
bb08c432
HZ
5876 if (record_memory_query)
5877 {
5878 int q;
5879
5880 target_terminal_ours ();
5881 q = yquery (_("\
5882Process record ignores the memory change of instruction at address %s\n\
5883because it can't get the value of the segment register.\n\
5884Do you want to stop the program?"),
5885 paddress (gdbarch, ir.orig_addr));
5886 target_terminal_inferior ();
5887 if (q)
5888 return -1;
5889 }
7ad10968
HZ
5890 }
5891 else
5892 {
955db0c0 5893 uint64_t addr64;
7ad10968 5894
955db0c0 5895 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5896 return -1;
955db0c0 5897 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5898 return -1;
955db0c0 5899 addr64 += 2;
cf648174
HZ
5900 if (ir.regmap[X86_RECORD_R8_REGNUM])
5901 {
955db0c0 5902 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5903 return -1;
5904 }
5905 else
5906 {
955db0c0 5907 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5908 return -1;
5909 }
7ad10968
HZ
5910 }
5911 }
5912 break;
a38bba38 5913 case 2: /* lgdt */
3800e645
MS
5914 if (ir.mod == 3)
5915 {
5916 /* xgetbv */
5917 if (ir.rm == 0)
5918 {
5919 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5921 break;
5922 }
5923 /* xsetbv */
5924 else if (ir.rm == 1)
5925 break;
5926 }
a38bba38 5927 case 3: /* lidt */
7ad10968
HZ
5928 if (ir.mod == 3)
5929 {
5930 ir.addr -= 3;
5931 opcode = opcode << 8 | ir.modrm;
5932 goto no_support;
5933 }
5934 break;
a38bba38 5935 case 4: /* smsw */
7ad10968
HZ
5936 if (ir.mod == 3)
5937 {
cf648174 5938 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5939 return -1;
5940 }
5941 else
5942 {
5943 ir.ot = OT_WORD;
5944 if (i386_record_lea_modrm (&ir))
5945 return -1;
5946 }
cf648174 5947 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5948 break;
a38bba38 5949 case 6: /* lmsw */
cf648174
HZ
5950 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5951 break;
a38bba38 5952 case 7: /* invlpg */
cf648174
HZ
5953 if (ir.mod == 3)
5954 {
5955 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5956 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5957 else
5958 {
5959 ir.addr -= 3;
5960 opcode = opcode << 8 | ir.modrm;
5961 goto no_support;
5962 }
5963 }
5964 else
5965 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5966 break;
5967 default:
5968 ir.addr -= 3;
5969 opcode = opcode << 8 | ir.modrm;
5970 goto no_support;
7ad10968
HZ
5971 break;
5972 }
5973 break;
5974
a38bba38
MS
5975 case 0x0f08: /* invd */
5976 case 0x0f09: /* wbinvd */
7ad10968
HZ
5977 break;
5978
a38bba38 5979 case 0x63: /* arpl */
7ad10968
HZ
5980 if (i386_record_modrm (&ir))
5981 return -1;
cf648174
HZ
5982 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5983 {
5984 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5985 ? (ir.reg | rex_r) : ir.rm);
5986 }
7ad10968 5987 else
cf648174
HZ
5988 {
5989 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5990 if (i386_record_lea_modrm (&ir))
5991 return -1;
5992 }
5993 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5994 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5995 break;
5996
a38bba38
MS
5997 case 0x0f02: /* lar */
5998 case 0x0f03: /* lsl */
7ad10968
HZ
5999 if (i386_record_modrm (&ir))
6000 return -1;
cf648174
HZ
6001 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6002 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6003 break;
6004
6005 case 0x0f18:
cf648174
HZ
6006 if (i386_record_modrm (&ir))
6007 return -1;
6008 if (ir.mod == 3 && ir.reg == 3)
6009 {
6010 ir.addr -= 3;
6011 opcode = opcode << 8 | ir.modrm;
6012 goto no_support;
6013 }
7ad10968
HZ
6014 break;
6015
7ad10968
HZ
6016 case 0x0f19:
6017 case 0x0f1a:
6018 case 0x0f1b:
6019 case 0x0f1c:
6020 case 0x0f1d:
6021 case 0x0f1e:
6022 case 0x0f1f:
a38bba38 6023 /* nop (multi byte) */
7ad10968
HZ
6024 break;
6025
a38bba38
MS
6026 case 0x0f20: /* mov reg, crN */
6027 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6028 if (i386_record_modrm (&ir))
6029 return -1;
6030 if ((ir.modrm & 0xc0) != 0xc0)
6031 {
cf648174 6032 ir.addr -= 3;
7ad10968
HZ
6033 opcode = opcode << 8 | ir.modrm;
6034 goto no_support;
6035 }
6036 switch (ir.reg)
6037 {
6038 case 0:
6039 case 2:
6040 case 3:
6041 case 4:
6042 case 8:
6043 if (opcode & 2)
cf648174 6044 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6045 else
cf648174 6046 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6047 break;
6048 default:
cf648174 6049 ir.addr -= 3;
7ad10968
HZ
6050 opcode = opcode << 8 | ir.modrm;
6051 goto no_support;
6052 break;
6053 }
6054 break;
6055
a38bba38
MS
6056 case 0x0f21: /* mov reg, drN */
6057 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6058 if (i386_record_modrm (&ir))
6059 return -1;
6060 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6061 || ir.reg == 5 || ir.reg >= 8)
6062 {
cf648174 6063 ir.addr -= 3;
7ad10968
HZ
6064 opcode = opcode << 8 | ir.modrm;
6065 goto no_support;
6066 }
6067 if (opcode & 2)
cf648174 6068 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6069 else
cf648174 6070 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6071 break;
6072
a38bba38 6073 case 0x0f06: /* clts */
cf648174 6074 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6075 break;
6076
a3c4230a
HZ
6077 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6078
6079 case 0x0f0d: /* 3DNow! prefetch */
6080 break;
6081
6082 case 0x0f0e: /* 3DNow! femms */
6083 case 0x0f77: /* emms */
6084 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6085 goto no_support;
6086 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6087 break;
6088
6089 case 0x0f0f: /* 3DNow! data */
6090 if (i386_record_modrm (&ir))
6091 return -1;
6092 if (target_read_memory (ir.addr, &opcode8, 1))
6093 {
6094 printf_unfiltered (_("Process record: error reading memory at "
6095 "addr %s len = 1.\n"),
6096 paddress (gdbarch, ir.addr));
6097 return -1;
6098 }
6099 ir.addr++;
6100 switch (opcode8)
6101 {
6102 case 0x0c: /* 3DNow! pi2fw */
6103 case 0x0d: /* 3DNow! pi2fd */
6104 case 0x1c: /* 3DNow! pf2iw */
6105 case 0x1d: /* 3DNow! pf2id */
6106 case 0x8a: /* 3DNow! pfnacc */
6107 case 0x8e: /* 3DNow! pfpnacc */
6108 case 0x90: /* 3DNow! pfcmpge */
6109 case 0x94: /* 3DNow! pfmin */
6110 case 0x96: /* 3DNow! pfrcp */
6111 case 0x97: /* 3DNow! pfrsqrt */
6112 case 0x9a: /* 3DNow! pfsub */
6113 case 0x9e: /* 3DNow! pfadd */
6114 case 0xa0: /* 3DNow! pfcmpgt */
6115 case 0xa4: /* 3DNow! pfmax */
6116 case 0xa6: /* 3DNow! pfrcpit1 */
6117 case 0xa7: /* 3DNow! pfrsqit1 */
6118 case 0xaa: /* 3DNow! pfsubr */
6119 case 0xae: /* 3DNow! pfacc */
6120 case 0xb0: /* 3DNow! pfcmpeq */
6121 case 0xb4: /* 3DNow! pfmul */
6122 case 0xb6: /* 3DNow! pfrcpit2 */
6123 case 0xb7: /* 3DNow! pmulhrw */
6124 case 0xbb: /* 3DNow! pswapd */
6125 case 0xbf: /* 3DNow! pavgusb */
6126 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6127 goto no_support_3dnow_data;
6128 record_arch_list_add_reg (ir.regcache, ir.reg);
6129 break;
6130
6131 default:
6132no_support_3dnow_data:
6133 opcode = (opcode << 8) | opcode8;
6134 goto no_support;
6135 break;
6136 }
6137 break;
6138
6139 case 0x0faa: /* rsm */
6140 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6141 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6148 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6149 break;
6150
6151 case 0x0fae:
6152 if (i386_record_modrm (&ir))
6153 return -1;
6154 switch(ir.reg)
6155 {
6156 case 0: /* fxsave */
6157 {
6158 uint64_t tmpu64;
6159
6160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6161 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6162 return -1;
6163 if (record_arch_list_add_mem (tmpu64, 512))
6164 return -1;
6165 }
6166 break;
6167
6168 case 1: /* fxrstor */
6169 {
6170 int i;
6171
6172 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6173
6174 for (i = I387_MM0_REGNUM (tdep);
6175 i386_mmx_regnum_p (gdbarch, i); i++)
6176 record_arch_list_add_reg (ir.regcache, i);
6177
6178 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6179 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6180 record_arch_list_add_reg (ir.regcache, i);
6181
6182 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6183 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6184
6185 for (i = I387_ST0_REGNUM (tdep);
6186 i386_fp_regnum_p (gdbarch, i); i++)
6187 record_arch_list_add_reg (ir.regcache, i);
6188
6189 for (i = I387_FCTRL_REGNUM (tdep);
6190 i386_fpc_regnum_p (gdbarch, i); i++)
6191 record_arch_list_add_reg (ir.regcache, i);
6192 }
6193 break;
6194
6195 case 2: /* ldmxcsr */
6196 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6197 goto no_support;
6198 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6199 break;
6200
6201 case 3: /* stmxcsr */
6202 ir.ot = OT_LONG;
6203 if (i386_record_lea_modrm (&ir))
6204 return -1;
6205 break;
6206
6207 case 5: /* lfence */
6208 case 6: /* mfence */
6209 case 7: /* sfence clflush */
6210 break;
6211
6212 default:
6213 opcode = (opcode << 8) | ir.modrm;
6214 goto no_support;
6215 break;
6216 }
6217 break;
6218
6219 case 0x0fc3: /* movnti */
6220 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6221 if (i386_record_modrm (&ir))
6222 return -1;
6223 if (ir.mod == 3)
6224 goto no_support;
6225 ir.reg |= rex_r;
6226 if (i386_record_lea_modrm (&ir))
6227 return -1;
6228 break;
6229
6230 /* Add prefix to opcode. */
6231 case 0x0f10:
6232 case 0x0f11:
6233 case 0x0f12:
6234 case 0x0f13:
6235 case 0x0f14:
6236 case 0x0f15:
6237 case 0x0f16:
6238 case 0x0f17:
6239 case 0x0f28:
6240 case 0x0f29:
6241 case 0x0f2a:
6242 case 0x0f2b:
6243 case 0x0f2c:
6244 case 0x0f2d:
6245 case 0x0f2e:
6246 case 0x0f2f:
6247 case 0x0f38:
6248 case 0x0f39:
6249 case 0x0f3a:
6250 case 0x0f50:
6251 case 0x0f51:
6252 case 0x0f52:
6253 case 0x0f53:
6254 case 0x0f54:
6255 case 0x0f55:
6256 case 0x0f56:
6257 case 0x0f57:
6258 case 0x0f58:
6259 case 0x0f59:
6260 case 0x0f5a:
6261 case 0x0f5b:
6262 case 0x0f5c:
6263 case 0x0f5d:
6264 case 0x0f5e:
6265 case 0x0f5f:
6266 case 0x0f60:
6267 case 0x0f61:
6268 case 0x0f62:
6269 case 0x0f63:
6270 case 0x0f64:
6271 case 0x0f65:
6272 case 0x0f66:
6273 case 0x0f67:
6274 case 0x0f68:
6275 case 0x0f69:
6276 case 0x0f6a:
6277 case 0x0f6b:
6278 case 0x0f6c:
6279 case 0x0f6d:
6280 case 0x0f6e:
6281 case 0x0f6f:
6282 case 0x0f70:
6283 case 0x0f71:
6284 case 0x0f72:
6285 case 0x0f73:
6286 case 0x0f74:
6287 case 0x0f75:
6288 case 0x0f76:
6289 case 0x0f7c:
6290 case 0x0f7d:
6291 case 0x0f7e:
6292 case 0x0f7f:
6293 case 0x0fb8:
6294 case 0x0fc2:
6295 case 0x0fc4:
6296 case 0x0fc5:
6297 case 0x0fc6:
6298 case 0x0fd0:
6299 case 0x0fd1:
6300 case 0x0fd2:
6301 case 0x0fd3:
6302 case 0x0fd4:
6303 case 0x0fd5:
6304 case 0x0fd6:
6305 case 0x0fd7:
6306 case 0x0fd8:
6307 case 0x0fd9:
6308 case 0x0fda:
6309 case 0x0fdb:
6310 case 0x0fdc:
6311 case 0x0fdd:
6312 case 0x0fde:
6313 case 0x0fdf:
6314 case 0x0fe0:
6315 case 0x0fe1:
6316 case 0x0fe2:
6317 case 0x0fe3:
6318 case 0x0fe4:
6319 case 0x0fe5:
6320 case 0x0fe6:
6321 case 0x0fe7:
6322 case 0x0fe8:
6323 case 0x0fe9:
6324 case 0x0fea:
6325 case 0x0feb:
6326 case 0x0fec:
6327 case 0x0fed:
6328 case 0x0fee:
6329 case 0x0fef:
6330 case 0x0ff0:
6331 case 0x0ff1:
6332 case 0x0ff2:
6333 case 0x0ff3:
6334 case 0x0ff4:
6335 case 0x0ff5:
6336 case 0x0ff6:
6337 case 0x0ff7:
6338 case 0x0ff8:
6339 case 0x0ff9:
6340 case 0x0ffa:
6341 case 0x0ffb:
6342 case 0x0ffc:
6343 case 0x0ffd:
6344 case 0x0ffe:
6345 switch (prefixes)
6346 {
6347 case PREFIX_REPNZ:
6348 opcode |= 0xf20000;
6349 break;
6350 case PREFIX_DATA:
6351 opcode |= 0x660000;
6352 break;
6353 case PREFIX_REPZ:
6354 opcode |= 0xf30000;
6355 break;
6356 }
6357reswitch_prefix_add:
6358 switch (opcode)
6359 {
6360 case 0x0f38:
6361 case 0x660f38:
6362 case 0xf20f38:
6363 case 0x0f3a:
6364 case 0x660f3a:
6365 if (target_read_memory (ir.addr, &opcode8, 1))
6366 {
6367 printf_unfiltered (_("Process record: error reading memory at "
6368 "addr %s len = 1.\n"),
6369 paddress (gdbarch, ir.addr));
6370 return -1;
6371 }
6372 ir.addr++;
6373 opcode = (uint32_t) opcode8 | opcode << 8;
6374 goto reswitch_prefix_add;
6375 break;
6376
6377 case 0x0f10: /* movups */
6378 case 0x660f10: /* movupd */
6379 case 0xf30f10: /* movss */
6380 case 0xf20f10: /* movsd */
6381 case 0x0f12: /* movlps */
6382 case 0x660f12: /* movlpd */
6383 case 0xf30f12: /* movsldup */
6384 case 0xf20f12: /* movddup */
6385 case 0x0f14: /* unpcklps */
6386 case 0x660f14: /* unpcklpd */
6387 case 0x0f15: /* unpckhps */
6388 case 0x660f15: /* unpckhpd */
6389 case 0x0f16: /* movhps */
6390 case 0x660f16: /* movhpd */
6391 case 0xf30f16: /* movshdup */
6392 case 0x0f28: /* movaps */
6393 case 0x660f28: /* movapd */
6394 case 0x0f2a: /* cvtpi2ps */
6395 case 0x660f2a: /* cvtpi2pd */
6396 case 0xf30f2a: /* cvtsi2ss */
6397 case 0xf20f2a: /* cvtsi2sd */
6398 case 0x0f2c: /* cvttps2pi */
6399 case 0x660f2c: /* cvttpd2pi */
6400 case 0x0f2d: /* cvtps2pi */
6401 case 0x660f2d: /* cvtpd2pi */
6402 case 0x660f3800: /* pshufb */
6403 case 0x660f3801: /* phaddw */
6404 case 0x660f3802: /* phaddd */
6405 case 0x660f3803: /* phaddsw */
6406 case 0x660f3804: /* pmaddubsw */
6407 case 0x660f3805: /* phsubw */
6408 case 0x660f3806: /* phsubd */
4f7d61a8 6409 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6410 case 0x660f3808: /* psignb */
6411 case 0x660f3809: /* psignw */
6412 case 0x660f380a: /* psignd */
6413 case 0x660f380b: /* pmulhrsw */
6414 case 0x660f3810: /* pblendvb */
6415 case 0x660f3814: /* blendvps */
6416 case 0x660f3815: /* blendvpd */
6417 case 0x660f381c: /* pabsb */
6418 case 0x660f381d: /* pabsw */
6419 case 0x660f381e: /* pabsd */
6420 case 0x660f3820: /* pmovsxbw */
6421 case 0x660f3821: /* pmovsxbd */
6422 case 0x660f3822: /* pmovsxbq */
6423 case 0x660f3823: /* pmovsxwd */
6424 case 0x660f3824: /* pmovsxwq */
6425 case 0x660f3825: /* pmovsxdq */
6426 case 0x660f3828: /* pmuldq */
6427 case 0x660f3829: /* pcmpeqq */
6428 case 0x660f382a: /* movntdqa */
6429 case 0x660f3a08: /* roundps */
6430 case 0x660f3a09: /* roundpd */
6431 case 0x660f3a0a: /* roundss */
6432 case 0x660f3a0b: /* roundsd */
6433 case 0x660f3a0c: /* blendps */
6434 case 0x660f3a0d: /* blendpd */
6435 case 0x660f3a0e: /* pblendw */
6436 case 0x660f3a0f: /* palignr */
6437 case 0x660f3a20: /* pinsrb */
6438 case 0x660f3a21: /* insertps */
6439 case 0x660f3a22: /* pinsrd pinsrq */
6440 case 0x660f3a40: /* dpps */
6441 case 0x660f3a41: /* dppd */
6442 case 0x660f3a42: /* mpsadbw */
6443 case 0x660f3a60: /* pcmpestrm */
6444 case 0x660f3a61: /* pcmpestri */
6445 case 0x660f3a62: /* pcmpistrm */
6446 case 0x660f3a63: /* pcmpistri */
6447 case 0x0f51: /* sqrtps */
6448 case 0x660f51: /* sqrtpd */
6449 case 0xf20f51: /* sqrtsd */
6450 case 0xf30f51: /* sqrtss */
6451 case 0x0f52: /* rsqrtps */
6452 case 0xf30f52: /* rsqrtss */
6453 case 0x0f53: /* rcpps */
6454 case 0xf30f53: /* rcpss */
6455 case 0x0f54: /* andps */
6456 case 0x660f54: /* andpd */
6457 case 0x0f55: /* andnps */
6458 case 0x660f55: /* andnpd */
6459 case 0x0f56: /* orps */
6460 case 0x660f56: /* orpd */
6461 case 0x0f57: /* xorps */
6462 case 0x660f57: /* xorpd */
6463 case 0x0f58: /* addps */
6464 case 0x660f58: /* addpd */
6465 case 0xf20f58: /* addsd */
6466 case 0xf30f58: /* addss */
6467 case 0x0f59: /* mulps */
6468 case 0x660f59: /* mulpd */
6469 case 0xf20f59: /* mulsd */
6470 case 0xf30f59: /* mulss */
6471 case 0x0f5a: /* cvtps2pd */
6472 case 0x660f5a: /* cvtpd2ps */
6473 case 0xf20f5a: /* cvtsd2ss */
6474 case 0xf30f5a: /* cvtss2sd */
6475 case 0x0f5b: /* cvtdq2ps */
6476 case 0x660f5b: /* cvtps2dq */
6477 case 0xf30f5b: /* cvttps2dq */
6478 case 0x0f5c: /* subps */
6479 case 0x660f5c: /* subpd */
6480 case 0xf20f5c: /* subsd */
6481 case 0xf30f5c: /* subss */
6482 case 0x0f5d: /* minps */
6483 case 0x660f5d: /* minpd */
6484 case 0xf20f5d: /* minsd */
6485 case 0xf30f5d: /* minss */
6486 case 0x0f5e: /* divps */
6487 case 0x660f5e: /* divpd */
6488 case 0xf20f5e: /* divsd */
6489 case 0xf30f5e: /* divss */
6490 case 0x0f5f: /* maxps */
6491 case 0x660f5f: /* maxpd */
6492 case 0xf20f5f: /* maxsd */
6493 case 0xf30f5f: /* maxss */
6494 case 0x660f60: /* punpcklbw */
6495 case 0x660f61: /* punpcklwd */
6496 case 0x660f62: /* punpckldq */
6497 case 0x660f63: /* packsswb */
6498 case 0x660f64: /* pcmpgtb */
6499 case 0x660f65: /* pcmpgtw */
56d2815c 6500 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6501 case 0x660f67: /* packuswb */
6502 case 0x660f68: /* punpckhbw */
6503 case 0x660f69: /* punpckhwd */
6504 case 0x660f6a: /* punpckhdq */
6505 case 0x660f6b: /* packssdw */
6506 case 0x660f6c: /* punpcklqdq */
6507 case 0x660f6d: /* punpckhqdq */
6508 case 0x660f6e: /* movd */
6509 case 0x660f6f: /* movdqa */
6510 case 0xf30f6f: /* movdqu */
6511 case 0x660f70: /* pshufd */
6512 case 0xf20f70: /* pshuflw */
6513 case 0xf30f70: /* pshufhw */
6514 case 0x660f74: /* pcmpeqb */
6515 case 0x660f75: /* pcmpeqw */
56d2815c 6516 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6517 case 0x660f7c: /* haddpd */
6518 case 0xf20f7c: /* haddps */
6519 case 0x660f7d: /* hsubpd */
6520 case 0xf20f7d: /* hsubps */
6521 case 0xf30f7e: /* movq */
6522 case 0x0fc2: /* cmpps */
6523 case 0x660fc2: /* cmppd */
6524 case 0xf20fc2: /* cmpsd */
6525 case 0xf30fc2: /* cmpss */
6526 case 0x660fc4: /* pinsrw */
6527 case 0x0fc6: /* shufps */
6528 case 0x660fc6: /* shufpd */
6529 case 0x660fd0: /* addsubpd */
6530 case 0xf20fd0: /* addsubps */
6531 case 0x660fd1: /* psrlw */
6532 case 0x660fd2: /* psrld */
6533 case 0x660fd3: /* psrlq */
6534 case 0x660fd4: /* paddq */
6535 case 0x660fd5: /* pmullw */
6536 case 0xf30fd6: /* movq2dq */
6537 case 0x660fd8: /* psubusb */
6538 case 0x660fd9: /* psubusw */
6539 case 0x660fda: /* pminub */
6540 case 0x660fdb: /* pand */
6541 case 0x660fdc: /* paddusb */
6542 case 0x660fdd: /* paddusw */
6543 case 0x660fde: /* pmaxub */
6544 case 0x660fdf: /* pandn */
6545 case 0x660fe0: /* pavgb */
6546 case 0x660fe1: /* psraw */
6547 case 0x660fe2: /* psrad */
6548 case 0x660fe3: /* pavgw */
6549 case 0x660fe4: /* pmulhuw */
6550 case 0x660fe5: /* pmulhw */
6551 case 0x660fe6: /* cvttpd2dq */
6552 case 0xf20fe6: /* cvtpd2dq */
6553 case 0xf30fe6: /* cvtdq2pd */
6554 case 0x660fe8: /* psubsb */
6555 case 0x660fe9: /* psubsw */
6556 case 0x660fea: /* pminsw */
6557 case 0x660feb: /* por */
6558 case 0x660fec: /* paddsb */
6559 case 0x660fed: /* paddsw */
6560 case 0x660fee: /* pmaxsw */
6561 case 0x660fef: /* pxor */
4f7d61a8 6562 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
6563 case 0x660ff1: /* psllw */
6564 case 0x660ff2: /* pslld */
6565 case 0x660ff3: /* psllq */
6566 case 0x660ff4: /* pmuludq */
6567 case 0x660ff5: /* pmaddwd */
6568 case 0x660ff6: /* psadbw */
6569 case 0x660ff8: /* psubb */
6570 case 0x660ff9: /* psubw */
56d2815c 6571 case 0x660ffa: /* psubd */
a3c4230a
HZ
6572 case 0x660ffb: /* psubq */
6573 case 0x660ffc: /* paddb */
6574 case 0x660ffd: /* paddw */
56d2815c 6575 case 0x660ffe: /* paddd */
a3c4230a
HZ
6576 if (i386_record_modrm (&ir))
6577 return -1;
6578 ir.reg |= rex_r;
c131fcee 6579 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
6580 goto no_support;
6581 record_arch_list_add_reg (ir.regcache,
6582 I387_XMM0_REGNUM (tdep) + ir.reg);
6583 if ((opcode & 0xfffffffc) == 0x660f3a60)
6584 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6585 break;
6586
6587 case 0x0f11: /* movups */
6588 case 0x660f11: /* movupd */
6589 case 0xf30f11: /* movss */
6590 case 0xf20f11: /* movsd */
6591 case 0x0f13: /* movlps */
6592 case 0x660f13: /* movlpd */
6593 case 0x0f17: /* movhps */
6594 case 0x660f17: /* movhpd */
6595 case 0x0f29: /* movaps */
6596 case 0x660f29: /* movapd */
6597 case 0x660f3a14: /* pextrb */
6598 case 0x660f3a15: /* pextrw */
6599 case 0x660f3a16: /* pextrd pextrq */
6600 case 0x660f3a17: /* extractps */
6601 case 0x660f7f: /* movdqa */
6602 case 0xf30f7f: /* movdqu */
6603 if (i386_record_modrm (&ir))
6604 return -1;
6605 if (ir.mod == 3)
6606 {
6607 if (opcode == 0x0f13 || opcode == 0x660f13
6608 || opcode == 0x0f17 || opcode == 0x660f17)
6609 goto no_support;
6610 ir.rm |= ir.rex_b;
1777feb0
MS
6611 if (!i386_xmm_regnum_p (gdbarch,
6612 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6613 goto no_support;
6614 record_arch_list_add_reg (ir.regcache,
6615 I387_XMM0_REGNUM (tdep) + ir.rm);
6616 }
6617 else
6618 {
6619 switch (opcode)
6620 {
6621 case 0x660f3a14:
6622 ir.ot = OT_BYTE;
6623 break;
6624 case 0x660f3a15:
6625 ir.ot = OT_WORD;
6626 break;
6627 case 0x660f3a16:
6628 ir.ot = OT_LONG;
6629 break;
6630 case 0x660f3a17:
6631 ir.ot = OT_QUAD;
6632 break;
6633 default:
6634 ir.ot = OT_DQUAD;
6635 break;
6636 }
6637 if (i386_record_lea_modrm (&ir))
6638 return -1;
6639 }
6640 break;
6641
6642 case 0x0f2b: /* movntps */
6643 case 0x660f2b: /* movntpd */
6644 case 0x0fe7: /* movntq */
6645 case 0x660fe7: /* movntdq */
6646 if (ir.mod == 3)
6647 goto no_support;
6648 if (opcode == 0x0fe7)
6649 ir.ot = OT_QUAD;
6650 else
6651 ir.ot = OT_DQUAD;
6652 if (i386_record_lea_modrm (&ir))
6653 return -1;
6654 break;
6655
6656 case 0xf30f2c: /* cvttss2si */
6657 case 0xf20f2c: /* cvttsd2si */
6658 case 0xf30f2d: /* cvtss2si */
6659 case 0xf20f2d: /* cvtsd2si */
6660 case 0xf20f38f0: /* crc32 */
6661 case 0xf20f38f1: /* crc32 */
6662 case 0x0f50: /* movmskps */
6663 case 0x660f50: /* movmskpd */
6664 case 0x0fc5: /* pextrw */
6665 case 0x660fc5: /* pextrw */
6666 case 0x0fd7: /* pmovmskb */
6667 case 0x660fd7: /* pmovmskb */
6668 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6669 break;
6670
6671 case 0x0f3800: /* pshufb */
6672 case 0x0f3801: /* phaddw */
6673 case 0x0f3802: /* phaddd */
6674 case 0x0f3803: /* phaddsw */
6675 case 0x0f3804: /* pmaddubsw */
6676 case 0x0f3805: /* phsubw */
6677 case 0x0f3806: /* phsubd */
4f7d61a8 6678 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
6679 case 0x0f3808: /* psignb */
6680 case 0x0f3809: /* psignw */
6681 case 0x0f380a: /* psignd */
6682 case 0x0f380b: /* pmulhrsw */
6683 case 0x0f381c: /* pabsb */
6684 case 0x0f381d: /* pabsw */
6685 case 0x0f381e: /* pabsd */
6686 case 0x0f382b: /* packusdw */
6687 case 0x0f3830: /* pmovzxbw */
6688 case 0x0f3831: /* pmovzxbd */
6689 case 0x0f3832: /* pmovzxbq */
6690 case 0x0f3833: /* pmovzxwd */
6691 case 0x0f3834: /* pmovzxwq */
6692 case 0x0f3835: /* pmovzxdq */
6693 case 0x0f3837: /* pcmpgtq */
6694 case 0x0f3838: /* pminsb */
6695 case 0x0f3839: /* pminsd */
6696 case 0x0f383a: /* pminuw */
6697 case 0x0f383b: /* pminud */
6698 case 0x0f383c: /* pmaxsb */
6699 case 0x0f383d: /* pmaxsd */
6700 case 0x0f383e: /* pmaxuw */
6701 case 0x0f383f: /* pmaxud */
6702 case 0x0f3840: /* pmulld */
6703 case 0x0f3841: /* phminposuw */
6704 case 0x0f3a0f: /* palignr */
6705 case 0x0f60: /* punpcklbw */
6706 case 0x0f61: /* punpcklwd */
6707 case 0x0f62: /* punpckldq */
6708 case 0x0f63: /* packsswb */
6709 case 0x0f64: /* pcmpgtb */
6710 case 0x0f65: /* pcmpgtw */
56d2815c 6711 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
6712 case 0x0f67: /* packuswb */
6713 case 0x0f68: /* punpckhbw */
6714 case 0x0f69: /* punpckhwd */
6715 case 0x0f6a: /* punpckhdq */
6716 case 0x0f6b: /* packssdw */
6717 case 0x0f6e: /* movd */
6718 case 0x0f6f: /* movq */
6719 case 0x0f70: /* pshufw */
6720 case 0x0f74: /* pcmpeqb */
6721 case 0x0f75: /* pcmpeqw */
56d2815c 6722 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
6723 case 0x0fc4: /* pinsrw */
6724 case 0x0fd1: /* psrlw */
6725 case 0x0fd2: /* psrld */
6726 case 0x0fd3: /* psrlq */
6727 case 0x0fd4: /* paddq */
6728 case 0x0fd5: /* pmullw */
6729 case 0xf20fd6: /* movdq2q */
6730 case 0x0fd8: /* psubusb */
6731 case 0x0fd9: /* psubusw */
6732 case 0x0fda: /* pminub */
6733 case 0x0fdb: /* pand */
6734 case 0x0fdc: /* paddusb */
6735 case 0x0fdd: /* paddusw */
6736 case 0x0fde: /* pmaxub */
6737 case 0x0fdf: /* pandn */
6738 case 0x0fe0: /* pavgb */
6739 case 0x0fe1: /* psraw */
6740 case 0x0fe2: /* psrad */
6741 case 0x0fe3: /* pavgw */
6742 case 0x0fe4: /* pmulhuw */
6743 case 0x0fe5: /* pmulhw */
6744 case 0x0fe8: /* psubsb */
6745 case 0x0fe9: /* psubsw */
6746 case 0x0fea: /* pminsw */
6747 case 0x0feb: /* por */
6748 case 0x0fec: /* paddsb */
6749 case 0x0fed: /* paddsw */
6750 case 0x0fee: /* pmaxsw */
6751 case 0x0fef: /* pxor */
6752 case 0x0ff1: /* psllw */
6753 case 0x0ff2: /* pslld */
6754 case 0x0ff3: /* psllq */
6755 case 0x0ff4: /* pmuludq */
6756 case 0x0ff5: /* pmaddwd */
6757 case 0x0ff6: /* psadbw */
6758 case 0x0ff8: /* psubb */
6759 case 0x0ff9: /* psubw */
56d2815c 6760 case 0x0ffa: /* psubd */
a3c4230a
HZ
6761 case 0x0ffb: /* psubq */
6762 case 0x0ffc: /* paddb */
6763 case 0x0ffd: /* paddw */
56d2815c 6764 case 0x0ffe: /* paddd */
a3c4230a
HZ
6765 if (i386_record_modrm (&ir))
6766 return -1;
6767 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6768 goto no_support;
6769 record_arch_list_add_reg (ir.regcache,
6770 I387_MM0_REGNUM (tdep) + ir.reg);
6771 break;
6772
6773 case 0x0f71: /* psllw */
6774 case 0x0f72: /* pslld */
6775 case 0x0f73: /* psllq */
6776 if (i386_record_modrm (&ir))
6777 return -1;
6778 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6779 goto no_support;
6780 record_arch_list_add_reg (ir.regcache,
6781 I387_MM0_REGNUM (tdep) + ir.rm);
6782 break;
6783
6784 case 0x660f71: /* psllw */
6785 case 0x660f72: /* pslld */
6786 case 0x660f73: /* psllq */
6787 if (i386_record_modrm (&ir))
6788 return -1;
6789 ir.rm |= ir.rex_b;
c131fcee 6790 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6791 goto no_support;
6792 record_arch_list_add_reg (ir.regcache,
6793 I387_XMM0_REGNUM (tdep) + ir.rm);
6794 break;
6795
6796 case 0x0f7e: /* movd */
6797 case 0x660f7e: /* movd */
6798 if (i386_record_modrm (&ir))
6799 return -1;
6800 if (ir.mod == 3)
6801 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6802 else
6803 {
6804 if (ir.dflag == 2)
6805 ir.ot = OT_QUAD;
6806 else
6807 ir.ot = OT_LONG;
6808 if (i386_record_lea_modrm (&ir))
6809 return -1;
6810 }
6811 break;
6812
6813 case 0x0f7f: /* movq */
6814 if (i386_record_modrm (&ir))
6815 return -1;
6816 if (ir.mod == 3)
6817 {
6818 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6819 goto no_support;
6820 record_arch_list_add_reg (ir.regcache,
6821 I387_MM0_REGNUM (tdep) + ir.rm);
6822 }
6823 else
6824 {
6825 ir.ot = OT_QUAD;
6826 if (i386_record_lea_modrm (&ir))
6827 return -1;
6828 }
6829 break;
6830
6831 case 0xf30fb8: /* popcnt */
6832 if (i386_record_modrm (&ir))
6833 return -1;
6834 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6835 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6836 break;
6837
6838 case 0x660fd6: /* movq */
6839 if (i386_record_modrm (&ir))
6840 return -1;
6841 if (ir.mod == 3)
6842 {
6843 ir.rm |= ir.rex_b;
1777feb0
MS
6844 if (!i386_xmm_regnum_p (gdbarch,
6845 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6846 goto no_support;
6847 record_arch_list_add_reg (ir.regcache,
6848 I387_XMM0_REGNUM (tdep) + ir.rm);
6849 }
6850 else
6851 {
6852 ir.ot = OT_QUAD;
6853 if (i386_record_lea_modrm (&ir))
6854 return -1;
6855 }
6856 break;
6857
6858 case 0x660f3817: /* ptest */
6859 case 0x0f2e: /* ucomiss */
6860 case 0x660f2e: /* ucomisd */
6861 case 0x0f2f: /* comiss */
6862 case 0x660f2f: /* comisd */
6863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6864 break;
6865
6866 case 0x0ff7: /* maskmovq */
6867 regcache_raw_read_unsigned (ir.regcache,
6868 ir.regmap[X86_RECORD_REDI_REGNUM],
6869 &addr);
6870 if (record_arch_list_add_mem (addr, 64))
6871 return -1;
6872 break;
6873
6874 case 0x660ff7: /* maskmovdqu */
6875 regcache_raw_read_unsigned (ir.regcache,
6876 ir.regmap[X86_RECORD_REDI_REGNUM],
6877 &addr);
6878 if (record_arch_list_add_mem (addr, 128))
6879 return -1;
6880 break;
6881
6882 default:
6883 goto no_support;
6884 break;
6885 }
6886 break;
7ad10968
HZ
6887
6888 default:
7ad10968
HZ
6889 goto no_support;
6890 break;
6891 }
6892
cf648174
HZ
6893 /* In the future, maybe still need to deal with need_dasm. */
6894 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
6895 if (record_arch_list_add_end ())
6896 return -1;
6897
6898 return 0;
6899
01fe1b41 6900 no_support:
a3c4230a
HZ
6901 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6902 "at address %s.\n"),
6903 (unsigned int) (opcode),
6904 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
6905 return -1;
6906}
6907
cf648174
HZ
6908static const int i386_record_regmap[] =
6909{
6910 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6911 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6912 0, 0, 0, 0, 0, 0, 0, 0,
6913 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6914 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6915};
6916
7a697b8d
SS
6917/* Check that the given address appears suitable for a fast
6918 tracepoint, which on x86 means that we need an instruction of at
6919 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6920 jump and not have to worry about program jumps to an address in the
6921 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6922 of instruction to replace, and 0 if not, plus an explanatory
6923 string. */
6924
6925static int
6926i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6927 CORE_ADDR addr, int *isize, char **msg)
6928{
6929 int len, jumplen;
6930 static struct ui_file *gdb_null = NULL;
6931
6932 /* This is based on the target agent using a 4-byte relative jump.
6933 Alternate future possibilities include 8-byte offset for x86-84,
6934 or 3-byte jumps if the program has trampoline space close by. */
6935 jumplen = 5;
6936
6937 /* Dummy file descriptor for the disassembler. */
6938 if (!gdb_null)
6939 gdb_null = ui_file_new ();
6940
6941 /* Check for fit. */
6942 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6943 if (len < jumplen)
6944 {
6945 /* Return a bit of target-specific detail to add to the caller's
6946 generic failure message. */
6947 if (msg)
1777feb0
MS
6948 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6949 "need at least %d bytes for the jump"),
7a697b8d
SS
6950 len, jumplen);
6951 return 0;
6952 }
6953
6954 if (isize)
6955 *isize = len;
6956 if (msg)
6957 *msg = NULL;
6958 return 1;
6959}
6960
90884b2b
L
6961static int
6962i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6963 struct tdesc_arch_data *tdesc_data)
6964{
6965 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
6966 const struct tdesc_feature *feature_core;
6967 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
6968 int i, num_regs, valid_p;
6969
6970 if (! tdesc_has_registers (tdesc))
6971 return 0;
6972
6973 /* Get core registers. */
6974 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
6975 if (feature_core == NULL)
6976 return 0;
90884b2b
L
6977
6978 /* Get SSE registers. */
c131fcee 6979 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 6980
c131fcee
L
6981 /* Try AVX registers. */
6982 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6983
90884b2b
L
6984 valid_p = 1;
6985
c131fcee
L
6986 /* The XCR0 bits. */
6987 if (feature_avx)
6988 {
3a13a53b
L
6989 /* AVX register description requires SSE register description. */
6990 if (!feature_sse)
6991 return 0;
6992
c131fcee
L
6993 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6994
6995 /* It may have been set by OSABI initialization function. */
6996 if (tdep->num_ymm_regs == 0)
6997 {
6998 tdep->ymmh_register_names = i386_ymmh_names;
6999 tdep->num_ymm_regs = 8;
7000 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7001 }
7002
7003 for (i = 0; i < tdep->num_ymm_regs; i++)
7004 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7005 tdep->ymm0h_regnum + i,
7006 tdep->ymmh_register_names[i]);
7007 }
3a13a53b 7008 else if (feature_sse)
c131fcee 7009 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7010 else
7011 {
7012 tdep->xcr0 = I386_XSTATE_X87_MASK;
7013 tdep->num_xmm_regs = 0;
7014 }
c131fcee 7015
90884b2b
L
7016 num_regs = tdep->num_core_regs;
7017 for (i = 0; i < num_regs; i++)
7018 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7019 tdep->register_names[i]);
7020
3a13a53b
L
7021 if (feature_sse)
7022 {
7023 /* Need to include %mxcsr, so add one. */
7024 num_regs += tdep->num_xmm_regs + 1;
7025 for (; i < num_regs; i++)
7026 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7027 tdep->register_names[i]);
7028 }
90884b2b
L
7029
7030 return valid_p;
7031}
7032
7ad10968
HZ
7033\f
7034static struct gdbarch *
7035i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7036{
7037 struct gdbarch_tdep *tdep;
7038 struct gdbarch *gdbarch;
90884b2b
L
7039 struct tdesc_arch_data *tdesc_data;
7040 const struct target_desc *tdesc;
1ba53b71 7041 int mm0_regnum;
c131fcee 7042 int ymm0_regnum;
7ad10968
HZ
7043
7044 /* If there is already a candidate, use it. */
7045 arches = gdbarch_list_lookup_by_info (arches, &info);
7046 if (arches != NULL)
7047 return arches->gdbarch;
7048
7049 /* Allocate space for the new architecture. */
7050 tdep = XCALLOC (1, struct gdbarch_tdep);
7051 gdbarch = gdbarch_alloc (&info, tdep);
7052
7053 /* General-purpose registers. */
7054 tdep->gregset = NULL;
7055 tdep->gregset_reg_offset = NULL;
7056 tdep->gregset_num_regs = I386_NUM_GREGS;
7057 tdep->sizeof_gregset = 0;
7058
7059 /* Floating-point registers. */
7060 tdep->fpregset = NULL;
7061 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7062
c131fcee
L
7063 tdep->xstateregset = NULL;
7064
7ad10968
HZ
7065 /* The default settings include the FPU registers, the MMX registers
7066 and the SSE registers. This can be overridden for a specific ABI
7067 by adjusting the members `st0_regnum', `mm0_regnum' and
7068 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7069 will show up in the output of "info all-registers". */
7ad10968
HZ
7070
7071 tdep->st0_regnum = I386_ST0_REGNUM;
7072
7ad10968
HZ
7073 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7074 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7075
7076 tdep->jb_pc_offset = -1;
7077 tdep->struct_return = pcc_struct_return;
7078 tdep->sigtramp_start = 0;
7079 tdep->sigtramp_end = 0;
7080 tdep->sigtramp_p = i386_sigtramp_p;
7081 tdep->sigcontext_addr = NULL;
7082 tdep->sc_reg_offset = NULL;
7083 tdep->sc_pc_offset = -1;
7084 tdep->sc_sp_offset = -1;
7085
c131fcee
L
7086 tdep->xsave_xcr0_offset = -1;
7087
cf648174
HZ
7088 tdep->record_regmap = i386_record_regmap;
7089
7ad10968
HZ
7090 /* The format used for `long double' on almost all i386 targets is
7091 the i387 extended floating-point format. In fact, of all targets
7092 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7093 on having a `long double' that's not `long' at all. */
7094 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7095
7096 /* Although the i387 extended floating-point has only 80 significant
7097 bits, a `long double' actually takes up 96, probably to enforce
7098 alignment. */
7099 set_gdbarch_long_double_bit (gdbarch, 96);
7100
7ad10968
HZ
7101 /* Register numbers of various important registers. */
7102 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7103 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7104 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7105 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7106
7107 /* NOTE: kettenis/20040418: GCC does have two possible register
7108 numbering schemes on the i386: dbx and SVR4. These schemes
7109 differ in how they number %ebp, %esp, %eflags, and the
7110 floating-point registers, and are implemented by the arrays
7111 dbx_register_map[] and svr4_dbx_register_map in
7112 gcc/config/i386.c. GCC also defines a third numbering scheme in
7113 gcc/config/i386.c, which it designates as the "default" register
7114 map used in 64bit mode. This last register numbering scheme is
7115 implemented in dbx64_register_map, and is used for AMD64; see
7116 amd64-tdep.c.
7117
7118 Currently, each GCC i386 target always uses the same register
7119 numbering scheme across all its supported debugging formats
7120 i.e. SDB (COFF), stabs and DWARF 2. This is because
7121 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7122 DBX_REGISTER_NUMBER macro which is defined by each target's
7123 respective config header in a manner independent of the requested
7124 output debugging format.
7125
7126 This does not match the arrangement below, which presumes that
7127 the SDB and stabs numbering schemes differ from the DWARF and
7128 DWARF 2 ones. The reason for this arrangement is that it is
7129 likely to get the numbering scheme for the target's
7130 default/native debug format right. For targets where GCC is the
7131 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7132 targets where the native toolchain uses a different numbering
7133 scheme for a particular debug format (stabs-in-ELF on Solaris)
7134 the defaults below will have to be overridden, like
7135 i386_elf_init_abi() does. */
7136
7137 /* Use the dbx register numbering scheme for stabs and COFF. */
7138 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7139 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7140
7141 /* Use the SVR4 register numbering scheme for DWARF 2. */
7142 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7143
7144 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7145 be in use on any of the supported i386 targets. */
7146
7147 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7148
7149 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7150
7151 /* Call dummy code. */
7152 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7153
7154 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7155 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7156 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7157
7158 set_gdbarch_return_value (gdbarch, i386_return_value);
7159
7160 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7161
7162 /* Stack grows downward. */
7163 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7164
7165 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7166 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7167 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7168
7169 set_gdbarch_frame_args_skip (gdbarch, 8);
7170
7ad10968
HZ
7171 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7172
7173 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7174
7175 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7176
7177 /* Add the i386 register groups. */
7178 i386_add_reggroups (gdbarch);
90884b2b 7179 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7180
143985b7
AF
7181 /* Helper for function argument information. */
7182 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7183
06da04c6
MS
7184 /* Hook the function epilogue frame unwinder. This unwinder is
7185 appended to the list first, so that it supercedes the Dwarf
7186 unwinder in function epilogues (where the Dwarf unwinder
7187 currently fails). */
7188 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7189
7190 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7191 to the list before the prologue-based unwinders, so that Dwarf
7192 CFI info will be used if it is available. */
10458914 7193 dwarf2_append_unwinders (gdbarch);
6405b0a6 7194
acd5c798 7195 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7196
1ba53b71 7197 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
7198 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7199 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7200
7201 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7202 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7203
c131fcee
L
7204 /* Override the normal target description method to make the AVX
7205 upper halves anonymous. */
7206 set_gdbarch_register_name (gdbarch, i386_register_name);
7207
7208 /* Even though the default ABI only includes general-purpose registers,
7209 floating-point registers and the SSE registers, we have to leave a
7210 gap for the upper AVX registers. */
7211 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7212
7213 /* Get the x86 target description from INFO. */
7214 tdesc = info.target_desc;
7215 if (! tdesc_has_registers (tdesc))
7216 tdesc = tdesc_i386;
7217 tdep->tdesc = tdesc;
7218
7219 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7220 tdep->register_names = i386_register_names;
7221
c131fcee
L
7222 /* No upper YMM registers. */
7223 tdep->ymmh_register_names = NULL;
7224 tdep->ymm0h_regnum = -1;
7225
1ba53b71
L
7226 tdep->num_byte_regs = 8;
7227 tdep->num_word_regs = 8;
7228 tdep->num_dword_regs = 0;
7229 tdep->num_mmx_regs = 8;
c131fcee 7230 tdep->num_ymm_regs = 0;
1ba53b71 7231
90884b2b
L
7232 tdesc_data = tdesc_data_alloc ();
7233
dde08ee1
PA
7234 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7235
3ce1502b 7236 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7237 info.tdep_info = (void *) tdesc_data;
4be87837 7238 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7239
c131fcee
L
7240 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7241 {
7242 tdesc_data_cleanup (tdesc_data);
7243 xfree (tdep);
7244 gdbarch_free (gdbarch);
7245 return NULL;
7246 }
7247
1ba53b71
L
7248 /* Wire in pseudo registers. Number of pseudo registers may be
7249 changed. */
7250 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7251 + tdep->num_word_regs
7252 + tdep->num_dword_regs
c131fcee
L
7253 + tdep->num_mmx_regs
7254 + tdep->num_ymm_regs));
1ba53b71 7255
90884b2b
L
7256 /* Target description may be changed. */
7257 tdesc = tdep->tdesc;
7258
90884b2b
L
7259 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7260
7261 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7262 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7263
1ba53b71
L
7264 /* Make %al the first pseudo-register. */
7265 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7266 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7267
c131fcee 7268 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7269 if (tdep->num_dword_regs)
7270 {
1c6272a6 7271 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7272 tdep->eax_regnum = ymm0_regnum;
7273 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7274 }
7275 else
7276 tdep->eax_regnum = -1;
7277
c131fcee
L
7278 mm0_regnum = ymm0_regnum;
7279 if (tdep->num_ymm_regs)
7280 {
1c6272a6 7281 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7282 tdep->ymm0_regnum = ymm0_regnum;
7283 mm0_regnum += tdep->num_ymm_regs;
7284 }
7285 else
7286 tdep->ymm0_regnum = -1;
7287
1ba53b71
L
7288 if (tdep->num_mmx_regs != 0)
7289 {
1c6272a6 7290 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7291 tdep->mm0_regnum = mm0_regnum;
7292 }
7293 else
7294 tdep->mm0_regnum = -1;
7295
06da04c6 7296 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
7297 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7298 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7299
8446b36a
MK
7300 /* If we have a register mapping, enable the generic core file
7301 support, unless it has already been enabled. */
7302 if (tdep->gregset_reg_offset
7303 && !gdbarch_regset_from_core_section_p (gdbarch))
7304 set_gdbarch_regset_from_core_section (gdbarch,
7305 i386_regset_from_core_section);
7306
514f746b
AR
7307 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7308 i386_skip_permanent_breakpoint);
7309
7a697b8d
SS
7310 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7311 i386_fast_tracepoint_valid_at);
7312
a62cc96e
AC
7313 return gdbarch;
7314}
7315
8201327c
MK
7316static enum gdb_osabi
7317i386_coff_osabi_sniffer (bfd *abfd)
7318{
762c5349
MK
7319 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7320 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7321 return GDB_OSABI_GO32;
7322
7323 return GDB_OSABI_UNKNOWN;
7324}
8201327c
MK
7325\f
7326
28e9e0f0
MK
7327/* Provide a prototype to silence -Wmissing-prototypes. */
7328void _initialize_i386_tdep (void);
7329
c906108c 7330void
fba45db2 7331_initialize_i386_tdep (void)
c906108c 7332{
a62cc96e
AC
7333 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7334
fc338970 7335 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7336 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7337 &disassembly_flavor, _("\
7338Set the disassembly flavor."), _("\
7339Show the disassembly flavor."), _("\
7340The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7341 NULL,
7342 NULL, /* FIXME: i18n: */
7343 &setlist, &showlist);
8201327c
MK
7344
7345 /* Add the variable that controls the convention for returning
7346 structs. */
7ab04401
AC
7347 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7348 &struct_convention, _("\
7349Set the convention for returning small structs."), _("\
7350Show the convention for returning small structs."), _("\
7351Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7352is \"default\"."),
7353 NULL,
7354 NULL, /* FIXME: i18n: */
7355 &setlist, &showlist);
8201327c
MK
7356
7357 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7358 i386_coff_osabi_sniffer);
8201327c 7359
05816f70 7360 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7361 i386_svr4_init_abi);
05816f70 7362 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7363 i386_go32_init_abi);
38c968cf 7364
209bd28e 7365 /* Initialize the i386-specific register groups. */
38c968cf 7366 i386_init_reggroups ();
90884b2b
L
7367
7368 /* Initialize the standard target descriptions. */
7369 initialize_tdesc_i386 ();
3a13a53b 7370 initialize_tdesc_i386_mmx ();
c131fcee 7371 initialize_tdesc_i386_avx ();
c8d5aac9
L
7372
7373 /* Tell remote stub that we support XML target description. */
7374 register_remote_support_xml ("i386");
c906108c 7375}
This page took 1.322608 seconds and 4 git commands to generate.