* i386-tdep.c (i386_frame_prev_register): Unwind SP from memory
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f 2
6aba47ca 3 Copyright (C) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4c38e0a4 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
7b6bb8da 5 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
1903f0e6 23#include "opcode/i386.h"
acd5c798
MK
24#include "arch-utils.h"
25#include "command.h"
26#include "dummy-frame.h"
6405b0a6 27#include "dwarf2-frame.h"
acd5c798 28#include "doublest.h"
c906108c 29#include "frame.h"
acd5c798
MK
30#include "frame-base.h"
31#include "frame-unwind.h"
c906108c 32#include "inferior.h"
acd5c798 33#include "gdbcmd.h"
c906108c 34#include "gdbcore.h"
e6bb342a 35#include "gdbtypes.h"
dfe01d39 36#include "objfiles.h"
acd5c798
MK
37#include "osabi.h"
38#include "regcache.h"
39#include "reggroups.h"
473f17b0 40#include "regset.h"
c0d1d883 41#include "symfile.h"
c906108c 42#include "symtab.h"
acd5c798 43#include "target.h"
fd0407d6 44#include "value.h"
a89aa300 45#include "dis-asm.h"
7a697b8d 46#include "disasm.h"
c8d5aac9 47#include "remote.h"
8fbca658 48#include "exceptions.h"
3d261580 49#include "gdb_assert.h"
acd5c798 50#include "gdb_string.h"
3d261580 51
d2a7c97a 52#include "i386-tdep.h"
61113f8b 53#include "i387-tdep.h"
c131fcee 54#include "i386-xstate.h"
d2a7c97a 55
7ad10968
HZ
56#include "record.h"
57#include <stdint.h>
58
90884b2b 59#include "features/i386/i386.c"
c131fcee 60#include "features/i386/i386-avx.c"
3a13a53b 61#include "features/i386/i386-mmx.c"
90884b2b 62
c4fc7f1b 63/* Register names. */
c40e1eab 64
90884b2b 65static const char *i386_register_names[] =
fc633446
MK
66{
67 "eax", "ecx", "edx", "ebx",
68 "esp", "ebp", "esi", "edi",
69 "eip", "eflags", "cs", "ss",
70 "ds", "es", "fs", "gs",
71 "st0", "st1", "st2", "st3",
72 "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg",
74 "fioff", "foseg", "fooff", "fop",
75 "xmm0", "xmm1", "xmm2", "xmm3",
76 "xmm4", "xmm5", "xmm6", "xmm7",
77 "mxcsr"
78};
79
c131fcee
L
80static const char *i386_ymm_names[] =
81{
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84};
85
86static const char *i386_ymmh_names[] =
87{
88 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
89 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
90};
91
c4fc7f1b 92/* Register names for MMX pseudo-registers. */
28fc6740 93
90884b2b 94static const char *i386_mmx_names[] =
28fc6740
AC
95{
96 "mm0", "mm1", "mm2", "mm3",
97 "mm4", "mm5", "mm6", "mm7"
98};
c40e1eab 99
1ba53b71
L
100/* Register names for byte pseudo-registers. */
101
102static const char *i386_byte_names[] =
103{
104 "al", "cl", "dl", "bl",
105 "ah", "ch", "dh", "bh"
106};
107
108/* Register names for word pseudo-registers. */
109
110static const char *i386_word_names[] =
111{
112 "ax", "cx", "dx", "bx",
9cad29ac 113 "", "bp", "si", "di"
1ba53b71
L
114};
115
116/* MMX register? */
c40e1eab 117
28fc6740 118static int
5716833c 119i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 120{
1ba53b71
L
121 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
122 int mm0_regnum = tdep->mm0_regnum;
5716833c
MK
123
124 if (mm0_regnum < 0)
125 return 0;
126
1ba53b71
L
127 regnum -= mm0_regnum;
128 return regnum >= 0 && regnum < tdep->num_mmx_regs;
129}
130
131/* Byte register? */
132
133int
134i386_byte_regnum_p (struct gdbarch *gdbarch, int regnum)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
137
138 regnum -= tdep->al_regnum;
139 return regnum >= 0 && regnum < tdep->num_byte_regs;
140}
141
142/* Word register? */
143
144int
145i386_word_regnum_p (struct gdbarch *gdbarch, int regnum)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 regnum -= tdep->ax_regnum;
150 return regnum >= 0 && regnum < tdep->num_word_regs;
151}
152
153/* Dword register? */
154
155int
156i386_dword_regnum_p (struct gdbarch *gdbarch, int regnum)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 int eax_regnum = tdep->eax_regnum;
160
161 if (eax_regnum < 0)
162 return 0;
163
164 regnum -= eax_regnum;
165 return regnum >= 0 && regnum < tdep->num_dword_regs;
28fc6740
AC
166}
167
9191d390 168static int
c131fcee
L
169i386_ymmh_regnum_p (struct gdbarch *gdbarch, int regnum)
170{
171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
172 int ymm0h_regnum = tdep->ymm0h_regnum;
173
174 if (ymm0h_regnum < 0)
175 return 0;
176
177 regnum -= ymm0h_regnum;
178 return regnum >= 0 && regnum < tdep->num_ymm_regs;
179}
180
181/* AVX register? */
182
183int
184i386_ymm_regnum_p (struct gdbarch *gdbarch, int regnum)
185{
186 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
187 int ymm0_regnum = tdep->ymm0_regnum;
188
189 if (ymm0_regnum < 0)
190 return 0;
191
192 regnum -= ymm0_regnum;
193 return regnum >= 0 && regnum < tdep->num_ymm_regs;
194}
195
5716833c 196/* SSE register? */
23a34459 197
c131fcee
L
198int
199i386_xmm_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 200{
5716833c 201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c131fcee 202 int num_xmm_regs = I387_NUM_XMM_REGS (tdep);
5716833c 203
c131fcee 204 if (num_xmm_regs == 0)
5716833c
MK
205 return 0;
206
c131fcee
L
207 regnum -= I387_XMM0_REGNUM (tdep);
208 return regnum >= 0 && regnum < num_xmm_regs;
23a34459
AC
209}
210
5716833c
MK
211static int
212i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 213{
5716833c
MK
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
20a6ec49 216 if (I387_NUM_XMM_REGS (tdep) == 0)
5716833c
MK
217 return 0;
218
20a6ec49 219 return (regnum == I387_MXCSR_REGNUM (tdep));
23a34459
AC
220}
221
5716833c 222/* FP register? */
23a34459
AC
223
224int
20a6ec49 225i386_fp_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 226{
20a6ec49
MD
227 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
228
229 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
230 return 0;
231
20a6ec49
MD
232 return (I387_ST0_REGNUM (tdep) <= regnum
233 && regnum < I387_FCTRL_REGNUM (tdep));
23a34459
AC
234}
235
236int
20a6ec49 237i386_fpc_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 238{
20a6ec49
MD
239 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
240
241 if (I387_ST0_REGNUM (tdep) < 0)
5716833c
MK
242 return 0;
243
20a6ec49
MD
244 return (I387_FCTRL_REGNUM (tdep) <= regnum
245 && regnum < I387_XMM0_REGNUM (tdep));
23a34459
AC
246}
247
c131fcee
L
248/* Return the name of register REGNUM, or the empty string if it is
249 an anonymous register. */
250
251static const char *
252i386_register_name (struct gdbarch *gdbarch, int regnum)
253{
254 /* Hide the upper YMM registers. */
255 if (i386_ymmh_regnum_p (gdbarch, regnum))
256 return "";
257
258 return tdesc_register_name (gdbarch, regnum);
259}
260
30b0e2d8 261/* Return the name of register REGNUM. */
fc633446 262
1ba53b71 263const char *
90884b2b 264i386_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
fc633446 265{
1ba53b71
L
266 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
267 if (i386_mmx_regnum_p (gdbarch, regnum))
268 return i386_mmx_names[regnum - I387_MM0_REGNUM (tdep)];
c131fcee
L
269 else if (i386_ymm_regnum_p (gdbarch, regnum))
270 return i386_ymm_names[regnum - tdep->ymm0_regnum];
1ba53b71
L
271 else if (i386_byte_regnum_p (gdbarch, regnum))
272 return i386_byte_names[regnum - tdep->al_regnum];
273 else if (i386_word_regnum_p (gdbarch, regnum))
274 return i386_word_names[regnum - tdep->ax_regnum];
275
276 internal_error (__FILE__, __LINE__, _("invalid regnum"));
fc633446
MK
277}
278
c4fc7f1b 279/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
280 number used by GDB. */
281
8201327c 282static int
d3f73121 283i386_dbx_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 284{
20a6ec49
MD
285 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
286
c4fc7f1b
MK
287 /* This implements what GCC calls the "default" register map
288 (dbx_register_map[]). */
289
85540d8c
MK
290 if (reg >= 0 && reg <= 7)
291 {
9872ad24
JB
292 /* General-purpose registers. The debug info calls %ebp
293 register 4, and %esp register 5. */
294 if (reg == 4)
295 return 5;
296 else if (reg == 5)
297 return 4;
298 else return reg;
85540d8c
MK
299 }
300 else if (reg >= 12 && reg <= 19)
301 {
302 /* Floating-point registers. */
20a6ec49 303 return reg - 12 + I387_ST0_REGNUM (tdep);
85540d8c
MK
304 }
305 else if (reg >= 21 && reg <= 28)
306 {
307 /* SSE registers. */
c131fcee
L
308 int ymm0_regnum = tdep->ymm0_regnum;
309
310 if (ymm0_regnum >= 0
311 && i386_xmm_regnum_p (gdbarch, reg))
312 return reg - 21 + ymm0_regnum;
313 else
314 return reg - 21 + I387_XMM0_REGNUM (tdep);
85540d8c
MK
315 }
316 else if (reg >= 29 && reg <= 36)
317 {
318 /* MMX registers. */
20a6ec49 319 return reg - 29 + I387_MM0_REGNUM (tdep);
85540d8c
MK
320 }
321
322 /* This will hopefully provoke a warning. */
d3f73121 323 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c
MK
324}
325
c4fc7f1b
MK
326/* Convert SVR4 register number REG to the appropriate register number
327 used by GDB. */
85540d8c 328
8201327c 329static int
d3f73121 330i386_svr4_reg_to_regnum (struct gdbarch *gdbarch, int reg)
85540d8c 331{
20a6ec49
MD
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333
c4fc7f1b
MK
334 /* This implements the GCC register map that tries to be compatible
335 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
336
337 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
338 numbers the floating point registers differently. */
339 if (reg >= 0 && reg <= 9)
340 {
acd5c798 341 /* General-purpose registers. */
85540d8c
MK
342 return reg;
343 }
344 else if (reg >= 11 && reg <= 18)
345 {
346 /* Floating-point registers. */
20a6ec49 347 return reg - 11 + I387_ST0_REGNUM (tdep);
85540d8c 348 }
c6f4c129 349 else if (reg >= 21 && reg <= 36)
85540d8c 350 {
c4fc7f1b 351 /* The SSE and MMX registers have the same numbers as with dbx. */
d3f73121 352 return i386_dbx_reg_to_regnum (gdbarch, reg);
85540d8c
MK
353 }
354
c6f4c129
JB
355 switch (reg)
356 {
20a6ec49
MD
357 case 37: return I387_FCTRL_REGNUM (tdep);
358 case 38: return I387_FSTAT_REGNUM (tdep);
359 case 39: return I387_MXCSR_REGNUM (tdep);
c6f4c129
JB
360 case 40: return I386_ES_REGNUM;
361 case 41: return I386_CS_REGNUM;
362 case 42: return I386_SS_REGNUM;
363 case 43: return I386_DS_REGNUM;
364 case 44: return I386_FS_REGNUM;
365 case 45: return I386_GS_REGNUM;
366 }
367
85540d8c 368 /* This will hopefully provoke a warning. */
d3f73121 369 return gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
85540d8c 370}
5716833c 371
fc338970 372\f
917317f4 373
fc338970
MK
374/* This is the variable that is set with "set disassembly-flavor", and
375 its legitimate values. */
53904c9e
AC
376static const char att_flavor[] = "att";
377static const char intel_flavor[] = "intel";
378static const char *valid_flavors[] =
c5aa993b 379{
c906108c
SS
380 att_flavor,
381 intel_flavor,
382 NULL
383};
53904c9e 384static const char *disassembly_flavor = att_flavor;
acd5c798 385\f
c906108c 386
acd5c798
MK
387/* Use the program counter to determine the contents and size of a
388 breakpoint instruction. Return a pointer to a string of bytes that
389 encode a breakpoint instruction, store the length of the string in
390 *LEN and optionally adjust *PC to point to the correct memory
391 location for inserting the breakpoint.
c906108c 392
acd5c798
MK
393 On the i386 we have a single breakpoint that fits in a single byte
394 and can be inserted anywhere.
c906108c 395
acd5c798 396 This function is 64-bit safe. */
63c0089f
MK
397
398static const gdb_byte *
67d57894 399i386_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
c906108c 400{
63c0089f
MK
401 static gdb_byte break_insn[] = { 0xcc }; /* int 3 */
402
acd5c798
MK
403 *len = sizeof (break_insn);
404 return break_insn;
c906108c 405}
237fc4c9
PA
406\f
407/* Displaced instruction handling. */
408
1903f0e6
DE
409/* Skip the legacy instruction prefixes in INSN.
410 Not all prefixes are valid for any particular insn
411 but we needn't care, the insn will fault if it's invalid.
412 The result is a pointer to the first opcode byte,
413 or NULL if we run off the end of the buffer. */
414
415static gdb_byte *
416i386_skip_prefixes (gdb_byte *insn, size_t max_len)
417{
418 gdb_byte *end = insn + max_len;
419
420 while (insn < end)
421 {
422 switch (*insn)
423 {
424 case DATA_PREFIX_OPCODE:
425 case ADDR_PREFIX_OPCODE:
426 case CS_PREFIX_OPCODE:
427 case DS_PREFIX_OPCODE:
428 case ES_PREFIX_OPCODE:
429 case FS_PREFIX_OPCODE:
430 case GS_PREFIX_OPCODE:
431 case SS_PREFIX_OPCODE:
432 case LOCK_PREFIX_OPCODE:
433 case REPE_PREFIX_OPCODE:
434 case REPNE_PREFIX_OPCODE:
435 ++insn;
436 continue;
437 default:
438 return insn;
439 }
440 }
441
442 return NULL;
443}
237fc4c9
PA
444
445static int
1903f0e6 446i386_absolute_jmp_p (const gdb_byte *insn)
237fc4c9 447{
1777feb0 448 /* jmp far (absolute address in operand). */
237fc4c9
PA
449 if (insn[0] == 0xea)
450 return 1;
451
452 if (insn[0] == 0xff)
453 {
1777feb0 454 /* jump near, absolute indirect (/4). */
237fc4c9
PA
455 if ((insn[1] & 0x38) == 0x20)
456 return 1;
457
1777feb0 458 /* jump far, absolute indirect (/5). */
237fc4c9
PA
459 if ((insn[1] & 0x38) == 0x28)
460 return 1;
461 }
462
463 return 0;
464}
465
466static int
1903f0e6 467i386_absolute_call_p (const gdb_byte *insn)
237fc4c9 468{
1777feb0 469 /* call far, absolute. */
237fc4c9
PA
470 if (insn[0] == 0x9a)
471 return 1;
472
473 if (insn[0] == 0xff)
474 {
1777feb0 475 /* Call near, absolute indirect (/2). */
237fc4c9
PA
476 if ((insn[1] & 0x38) == 0x10)
477 return 1;
478
1777feb0 479 /* Call far, absolute indirect (/3). */
237fc4c9
PA
480 if ((insn[1] & 0x38) == 0x18)
481 return 1;
482 }
483
484 return 0;
485}
486
487static int
1903f0e6 488i386_ret_p (const gdb_byte *insn)
237fc4c9
PA
489{
490 switch (insn[0])
491 {
1777feb0 492 case 0xc2: /* ret near, pop N bytes. */
237fc4c9 493 case 0xc3: /* ret near */
1777feb0 494 case 0xca: /* ret far, pop N bytes. */
237fc4c9
PA
495 case 0xcb: /* ret far */
496 case 0xcf: /* iret */
497 return 1;
498
499 default:
500 return 0;
501 }
502}
503
504static int
1903f0e6 505i386_call_p (const gdb_byte *insn)
237fc4c9
PA
506{
507 if (i386_absolute_call_p (insn))
508 return 1;
509
1777feb0 510 /* call near, relative. */
237fc4c9
PA
511 if (insn[0] == 0xe8)
512 return 1;
513
514 return 0;
515}
516
237fc4c9
PA
517/* Return non-zero if INSN is a system call, and set *LENGTHP to its
518 length in bytes. Otherwise, return zero. */
1903f0e6 519
237fc4c9 520static int
b55078be 521i386_syscall_p (const gdb_byte *insn, int *lengthp)
237fc4c9
PA
522{
523 if (insn[0] == 0xcd)
524 {
525 *lengthp = 2;
526 return 1;
527 }
528
529 return 0;
530}
531
b55078be
DE
532/* Some kernels may run one past a syscall insn, so we have to cope.
533 Otherwise this is just simple_displaced_step_copy_insn. */
534
535struct displaced_step_closure *
536i386_displaced_step_copy_insn (struct gdbarch *gdbarch,
537 CORE_ADDR from, CORE_ADDR to,
538 struct regcache *regs)
539{
540 size_t len = gdbarch_max_insn_length (gdbarch);
541 gdb_byte *buf = xmalloc (len);
542
543 read_memory (from, buf, len);
544
545 /* GDB may get control back after the insn after the syscall.
546 Presumably this is a kernel bug.
547 If this is a syscall, make sure there's a nop afterwards. */
548 {
549 int syscall_length;
550 gdb_byte *insn;
551
552 insn = i386_skip_prefixes (buf, len);
553 if (insn != NULL && i386_syscall_p (insn, &syscall_length))
554 insn[syscall_length] = NOP_OPCODE;
555 }
556
557 write_memory (to, buf, len);
558
559 if (debug_displaced)
560 {
561 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
562 paddress (gdbarch, from), paddress (gdbarch, to));
563 displaced_step_dump_bytes (gdb_stdlog, buf, len);
564 }
565
566 return (struct displaced_step_closure *) buf;
567}
568
237fc4c9
PA
569/* Fix up the state of registers and memory after having single-stepped
570 a displaced instruction. */
1903f0e6 571
237fc4c9
PA
572void
573i386_displaced_step_fixup (struct gdbarch *gdbarch,
574 struct displaced_step_closure *closure,
575 CORE_ADDR from, CORE_ADDR to,
576 struct regcache *regs)
577{
e17a4113
UW
578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
579
237fc4c9
PA
580 /* The offset we applied to the instruction's address.
581 This could well be negative (when viewed as a signed 32-bit
582 value), but ULONGEST won't reflect that, so take care when
583 applying it. */
584 ULONGEST insn_offset = to - from;
585
586 /* Since we use simple_displaced_step_copy_insn, our closure is a
587 copy of the instruction. */
588 gdb_byte *insn = (gdb_byte *) closure;
1903f0e6
DE
589 /* The start of the insn, needed in case we see some prefixes. */
590 gdb_byte *insn_start = insn;
237fc4c9
PA
591
592 if (debug_displaced)
593 fprintf_unfiltered (gdb_stdlog,
5af949e3 594 "displaced: fixup (%s, %s), "
237fc4c9 595 "insn = 0x%02x 0x%02x ...\n",
5af949e3
UW
596 paddress (gdbarch, from), paddress (gdbarch, to),
597 insn[0], insn[1]);
237fc4c9
PA
598
599 /* The list of issues to contend with here is taken from
600 resume_execution in arch/i386/kernel/kprobes.c, Linux 2.6.20.
601 Yay for Free Software! */
602
603 /* Relocate the %eip, if necessary. */
604
1903f0e6
DE
605 /* The instruction recognizers we use assume any leading prefixes
606 have been skipped. */
607 {
608 /* This is the size of the buffer in closure. */
609 size_t max_insn_len = gdbarch_max_insn_length (gdbarch);
610 gdb_byte *opcode = i386_skip_prefixes (insn, max_insn_len);
611 /* If there are too many prefixes, just ignore the insn.
612 It will fault when run. */
613 if (opcode != NULL)
614 insn = opcode;
615 }
616
237fc4c9
PA
617 /* Except in the case of absolute or indirect jump or call
618 instructions, or a return instruction, the new eip is relative to
619 the displaced instruction; make it relative. Well, signal
620 handler returns don't need relocation either, but we use the
621 value of %eip to recognize those; see below. */
622 if (! i386_absolute_jmp_p (insn)
623 && ! i386_absolute_call_p (insn)
624 && ! i386_ret_p (insn))
625 {
626 ULONGEST orig_eip;
b55078be 627 int insn_len;
237fc4c9
PA
628
629 regcache_cooked_read_unsigned (regs, I386_EIP_REGNUM, &orig_eip);
630
631 /* A signal trampoline system call changes the %eip, resuming
632 execution of the main program after the signal handler has
633 returned. That makes them like 'return' instructions; we
634 shouldn't relocate %eip.
635
636 But most system calls don't, and we do need to relocate %eip.
637
638 Our heuristic for distinguishing these cases: if stepping
639 over the system call instruction left control directly after
640 the instruction, the we relocate --- control almost certainly
641 doesn't belong in the displaced copy. Otherwise, we assume
642 the instruction has put control where it belongs, and leave
643 it unrelocated. Goodness help us if there are PC-relative
644 system calls. */
645 if (i386_syscall_p (insn, &insn_len)
b55078be
DE
646 && orig_eip != to + (insn - insn_start) + insn_len
647 /* GDB can get control back after the insn after the syscall.
648 Presumably this is a kernel bug.
649 i386_displaced_step_copy_insn ensures its a nop,
650 we add one to the length for it. */
651 && orig_eip != to + (insn - insn_start) + insn_len + 1)
237fc4c9
PA
652 {
653 if (debug_displaced)
654 fprintf_unfiltered (gdb_stdlog,
655 "displaced: syscall changed %%eip; "
656 "not relocating\n");
657 }
658 else
659 {
660 ULONGEST eip = (orig_eip - insn_offset) & 0xffffffffUL;
661
1903f0e6
DE
662 /* If we just stepped over a breakpoint insn, we don't backup
663 the pc on purpose; this is to match behaviour without
664 stepping. */
237fc4c9
PA
665
666 regcache_cooked_write_unsigned (regs, I386_EIP_REGNUM, eip);
667
668 if (debug_displaced)
669 fprintf_unfiltered (gdb_stdlog,
670 "displaced: "
5af949e3
UW
671 "relocated %%eip from %s to %s\n",
672 paddress (gdbarch, orig_eip),
673 paddress (gdbarch, eip));
237fc4c9
PA
674 }
675 }
676
677 /* If the instruction was PUSHFL, then the TF bit will be set in the
678 pushed value, and should be cleared. We'll leave this for later,
679 since GDB already messes up the TF flag when stepping over a
680 pushfl. */
681
682 /* If the instruction was a call, the return address now atop the
683 stack is the address following the copied instruction. We need
684 to make it the address following the original instruction. */
685 if (i386_call_p (insn))
686 {
687 ULONGEST esp;
688 ULONGEST retaddr;
689 const ULONGEST retaddr_len = 4;
690
691 regcache_cooked_read_unsigned (regs, I386_ESP_REGNUM, &esp);
b75f0b83 692 retaddr = read_memory_unsigned_integer (esp, retaddr_len, byte_order);
237fc4c9 693 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
e17a4113 694 write_memory_unsigned_integer (esp, retaddr_len, byte_order, retaddr);
237fc4c9
PA
695
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
698 "displaced: relocated return addr at %s to %s\n",
699 paddress (gdbarch, esp),
700 paddress (gdbarch, retaddr));
237fc4c9
PA
701 }
702}
dde08ee1
PA
703
704static void
705append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
706{
707 target_write_memory (*to, buf, len);
708 *to += len;
709}
710
711static void
712i386_relocate_instruction (struct gdbarch *gdbarch,
713 CORE_ADDR *to, CORE_ADDR oldloc)
714{
715 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
716 gdb_byte buf[I386_MAX_INSN_LEN];
717 int offset = 0, rel32, newrel;
718 int insn_length;
719 gdb_byte *insn = buf;
720
721 read_memory (oldloc, buf, I386_MAX_INSN_LEN);
722
723 insn_length = gdb_buffered_insn_length (gdbarch, insn,
724 I386_MAX_INSN_LEN, oldloc);
725
726 /* Get past the prefixes. */
727 insn = i386_skip_prefixes (insn, I386_MAX_INSN_LEN);
728
729 /* Adjust calls with 32-bit relative addresses as push/jump, with
730 the address pushed being the location where the original call in
731 the user program would return to. */
732 if (insn[0] == 0xe8)
733 {
734 gdb_byte push_buf[16];
735 unsigned int ret_addr;
736
737 /* Where "ret" in the original code will return to. */
738 ret_addr = oldloc + insn_length;
1777feb0 739 push_buf[0] = 0x68; /* pushq $... */
dde08ee1
PA
740 memcpy (&push_buf[1], &ret_addr, 4);
741 /* Push the push. */
742 append_insns (to, 5, push_buf);
743
744 /* Convert the relative call to a relative jump. */
745 insn[0] = 0xe9;
746
747 /* Adjust the destination offset. */
748 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
749 newrel = (oldloc - *to) + rel32;
f4a1794a
KY
750 store_signed_integer (insn + 1, 4, byte_order, newrel);
751
752 if (debug_displaced)
753 fprintf_unfiltered (gdb_stdlog,
754 "Adjusted insn rel32=%s at %s to"
755 " rel32=%s at %s\n",
756 hex_string (rel32), paddress (gdbarch, oldloc),
757 hex_string (newrel), paddress (gdbarch, *to));
dde08ee1
PA
758
759 /* Write the adjusted jump into its displaced location. */
760 append_insns (to, 5, insn);
761 return;
762 }
763
764 /* Adjust jumps with 32-bit relative addresses. Calls are already
765 handled above. */
766 if (insn[0] == 0xe9)
767 offset = 1;
768 /* Adjust conditional jumps. */
769 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
770 offset = 2;
771
772 if (offset)
773 {
774 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
775 newrel = (oldloc - *to) + rel32;
f4a1794a 776 store_signed_integer (insn + offset, 4, byte_order, newrel);
dde08ee1
PA
777 if (debug_displaced)
778 fprintf_unfiltered (gdb_stdlog,
f4a1794a
KY
779 "Adjusted insn rel32=%s at %s to"
780 " rel32=%s at %s\n",
dde08ee1
PA
781 hex_string (rel32), paddress (gdbarch, oldloc),
782 hex_string (newrel), paddress (gdbarch, *to));
783 }
784
785 /* Write the adjusted instructions into their displaced
786 location. */
787 append_insns (to, insn_length, buf);
788}
789
fc338970 790\f
acd5c798
MK
791#ifdef I386_REGNO_TO_SYMMETRY
792#error "The Sequent Symmetry is no longer supported."
793#endif
c906108c 794
acd5c798
MK
795/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
796 and %esp "belong" to the calling function. Therefore these
797 registers should be saved if they're going to be modified. */
c906108c 798
acd5c798
MK
799/* The maximum number of saved registers. This should include all
800 registers mentioned above, and %eip. */
a3386186 801#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
802
803struct i386_frame_cache
c906108c 804{
acd5c798
MK
805 /* Base address. */
806 CORE_ADDR base;
8fbca658 807 int base_p;
772562f8 808 LONGEST sp_offset;
acd5c798
MK
809 CORE_ADDR pc;
810
fd13a04a
AC
811 /* Saved registers. */
812 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798 813 CORE_ADDR saved_sp;
e0c62198 814 int saved_sp_reg;
acd5c798
MK
815 int pc_in_eax;
816
817 /* Stack space reserved for local variables. */
818 long locals;
819};
820
821/* Allocate and initialize a frame cache. */
822
823static struct i386_frame_cache *
fd13a04a 824i386_alloc_frame_cache (void)
acd5c798
MK
825{
826 struct i386_frame_cache *cache;
827 int i;
828
829 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
830
831 /* Base address. */
8fbca658 832 cache->base_p = 0;
acd5c798
MK
833 cache->base = 0;
834 cache->sp_offset = -4;
835 cache->pc = 0;
836
fd13a04a
AC
837 /* Saved registers. We initialize these to -1 since zero is a valid
838 offset (that's where %ebp is supposed to be stored). */
839 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
840 cache->saved_regs[i] = -1;
acd5c798 841 cache->saved_sp = 0;
e0c62198 842 cache->saved_sp_reg = -1;
acd5c798
MK
843 cache->pc_in_eax = 0;
844
845 /* Frameless until proven otherwise. */
846 cache->locals = -1;
847
848 return cache;
849}
c906108c 850
acd5c798
MK
851/* If the instruction at PC is a jump, return the address of its
852 target. Otherwise, return PC. */
c906108c 853
acd5c798 854static CORE_ADDR
e17a4113 855i386_follow_jump (struct gdbarch *gdbarch, CORE_ADDR pc)
acd5c798 856{
e17a4113 857 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 858 gdb_byte op;
acd5c798
MK
859 long delta = 0;
860 int data16 = 0;
c906108c 861
3dcabaa8
MS
862 if (target_read_memory (pc, &op, 1))
863 return pc;
864
acd5c798 865 if (op == 0x66)
c906108c 866 {
c906108c 867 data16 = 1;
e17a4113 868 op = read_memory_unsigned_integer (pc + 1, 1, byte_order);
c906108c
SS
869 }
870
acd5c798 871 switch (op)
c906108c
SS
872 {
873 case 0xe9:
fc338970 874 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
875 if (data16)
876 {
e17a4113 877 delta = read_memory_integer (pc + 2, 2, byte_order);
c906108c 878
fc338970
MK
879 /* Include the size of the jmp instruction (including the
880 0x66 prefix). */
acd5c798 881 delta += 4;
c906108c
SS
882 }
883 else
884 {
e17a4113 885 delta = read_memory_integer (pc + 1, 4, byte_order);
c906108c 886
acd5c798
MK
887 /* Include the size of the jmp instruction. */
888 delta += 5;
c906108c
SS
889 }
890 break;
891 case 0xeb:
fc338970 892 /* Relative jump, disp8 (ignore data16). */
e17a4113 893 delta = read_memory_integer (pc + data16 + 1, 1, byte_order);
c906108c 894
acd5c798 895 delta += data16 + 2;
c906108c
SS
896 break;
897 }
c906108c 898
acd5c798
MK
899 return pc + delta;
900}
fc338970 901
acd5c798
MK
902/* Check whether PC points at a prologue for a function returning a
903 structure or union. If so, it updates CACHE and returns the
904 address of the first instruction after the code sequence that
905 removes the "hidden" argument from the stack or CURRENT_PC,
906 whichever is smaller. Otherwise, return PC. */
c906108c 907
acd5c798
MK
908static CORE_ADDR
909i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
910 struct i386_frame_cache *cache)
c906108c 911{
acd5c798
MK
912 /* Functions that return a structure or union start with:
913
914 popl %eax 0x58
915 xchgl %eax, (%esp) 0x87 0x04 0x24
916 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
917
918 (the System V compiler puts out the second `xchg' instruction,
919 and the assembler doesn't try to optimize it, so the 'sib' form
920 gets generated). This sequence is used to get the address of the
921 return buffer for a function that returns a structure. */
63c0089f
MK
922 static gdb_byte proto1[3] = { 0x87, 0x04, 0x24 };
923 static gdb_byte proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
924 gdb_byte buf[4];
925 gdb_byte op;
c906108c 926
acd5c798
MK
927 if (current_pc <= pc)
928 return pc;
929
3dcabaa8
MS
930 if (target_read_memory (pc, &op, 1))
931 return pc;
c906108c 932
acd5c798
MK
933 if (op != 0x58) /* popl %eax */
934 return pc;
c906108c 935
3dcabaa8
MS
936 if (target_read_memory (pc + 1, buf, 4))
937 return pc;
938
acd5c798
MK
939 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
940 return pc;
c906108c 941
acd5c798 942 if (current_pc == pc)
c906108c 943 {
acd5c798
MK
944 cache->sp_offset += 4;
945 return current_pc;
c906108c
SS
946 }
947
acd5c798 948 if (current_pc == pc + 1)
c906108c 949 {
acd5c798
MK
950 cache->pc_in_eax = 1;
951 return current_pc;
952 }
953
954 if (buf[1] == proto1[1])
955 return pc + 4;
956 else
957 return pc + 5;
958}
959
960static CORE_ADDR
961i386_skip_probe (CORE_ADDR pc)
962{
963 /* A function may start with
fc338970 964
acd5c798
MK
965 pushl constant
966 call _probe
967 addl $4, %esp
fc338970 968
acd5c798
MK
969 followed by
970
971 pushl %ebp
fc338970 972
acd5c798 973 etc. */
63c0089f
MK
974 gdb_byte buf[8];
975 gdb_byte op;
fc338970 976
3dcabaa8
MS
977 if (target_read_memory (pc, &op, 1))
978 return pc;
acd5c798
MK
979
980 if (op == 0x68 || op == 0x6a)
981 {
982 int delta;
c906108c 983
acd5c798
MK
984 /* Skip past the `pushl' instruction; it has either a one-byte or a
985 four-byte operand, depending on the opcode. */
c906108c 986 if (op == 0x68)
acd5c798 987 delta = 5;
c906108c 988 else
acd5c798 989 delta = 2;
c906108c 990
acd5c798
MK
991 /* Read the following 8 bytes, which should be `call _probe' (6
992 bytes) followed by `addl $4,%esp' (2 bytes). */
993 read_memory (pc + delta, buf, sizeof (buf));
c906108c 994 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 995 pc += delta + sizeof (buf);
c906108c
SS
996 }
997
acd5c798
MK
998 return pc;
999}
1000
92dd43fa
MK
1001/* GCC 4.1 and later, can put code in the prologue to realign the
1002 stack pointer. Check whether PC points to such code, and update
1003 CACHE accordingly. Return the first instruction after the code
1004 sequence or CURRENT_PC, whichever is smaller. If we don't
1005 recognize the code, return PC. */
1006
1007static CORE_ADDR
1008i386_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1009 struct i386_frame_cache *cache)
1010{
e0c62198
L
1011 /* There are 2 code sequences to re-align stack before the frame
1012 gets set up:
1013
1014 1. Use a caller-saved saved register:
1015
1016 leal 4(%esp), %reg
1017 andl $-XXX, %esp
1018 pushl -4(%reg)
1019
1020 2. Use a callee-saved saved register:
1021
1022 pushl %reg
1023 leal 8(%esp), %reg
1024 andl $-XXX, %esp
1025 pushl -4(%reg)
1026
1027 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
1028
1029 0x83 0xe4 0xf0 andl $-16, %esp
1030 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
1031 */
1032
1033 gdb_byte buf[14];
1034 int reg;
1035 int offset, offset_and;
1036 static int regnums[8] = {
1037 I386_EAX_REGNUM, /* %eax */
1038 I386_ECX_REGNUM, /* %ecx */
1039 I386_EDX_REGNUM, /* %edx */
1040 I386_EBX_REGNUM, /* %ebx */
1041 I386_ESP_REGNUM, /* %esp */
1042 I386_EBP_REGNUM, /* %ebp */
1043 I386_ESI_REGNUM, /* %esi */
1044 I386_EDI_REGNUM /* %edi */
92dd43fa 1045 };
92dd43fa 1046
e0c62198
L
1047 if (target_read_memory (pc, buf, sizeof buf))
1048 return pc;
1049
1050 /* Check caller-saved saved register. The first instruction has
1051 to be "leal 4(%esp), %reg". */
1052 if (buf[0] == 0x8d && buf[2] == 0x24 && buf[3] == 0x4)
1053 {
1054 /* MOD must be binary 10 and R/M must be binary 100. */
1055 if ((buf[1] & 0xc7) != 0x44)
1056 return pc;
1057
1058 /* REG has register number. */
1059 reg = (buf[1] >> 3) & 7;
1060 offset = 4;
1061 }
1062 else
1063 {
1064 /* Check callee-saved saved register. The first instruction
1065 has to be "pushl %reg". */
1066 if ((buf[0] & 0xf8) != 0x50)
1067 return pc;
1068
1069 /* Get register. */
1070 reg = buf[0] & 0x7;
1071
1072 /* The next instruction has to be "leal 8(%esp), %reg". */
1073 if (buf[1] != 0x8d || buf[3] != 0x24 || buf[4] != 0x8)
1074 return pc;
1075
1076 /* MOD must be binary 10 and R/M must be binary 100. */
1077 if ((buf[2] & 0xc7) != 0x44)
1078 return pc;
1079
1080 /* REG has register number. Registers in pushl and leal have to
1081 be the same. */
1082 if (reg != ((buf[2] >> 3) & 7))
1083 return pc;
1084
1085 offset = 5;
1086 }
1087
1088 /* Rigister can't be %esp nor %ebp. */
1089 if (reg == 4 || reg == 5)
1090 return pc;
1091
1092 /* The next instruction has to be "andl $-XXX, %esp". */
1093 if (buf[offset + 1] != 0xe4
1094 || (buf[offset] != 0x81 && buf[offset] != 0x83))
1095 return pc;
1096
1097 offset_and = offset;
1098 offset += buf[offset] == 0x81 ? 6 : 3;
1099
1100 /* The next instruction has to be "pushl -4(%reg)". 8bit -4 is
1101 0xfc. REG must be binary 110 and MOD must be binary 01. */
1102 if (buf[offset] != 0xff
1103 || buf[offset + 2] != 0xfc
1104 || (buf[offset + 1] & 0xf8) != 0x70)
1105 return pc;
1106
1107 /* R/M has register. Registers in leal and pushl have to be the
1108 same. */
1109 if (reg != (buf[offset + 1] & 7))
92dd43fa
MK
1110 return pc;
1111
e0c62198
L
1112 if (current_pc > pc + offset_and)
1113 cache->saved_sp_reg = regnums[reg];
92dd43fa 1114
e0c62198 1115 return min (pc + offset + 3, current_pc);
92dd43fa
MK
1116}
1117
37bdc87e 1118/* Maximum instruction length we need to handle. */
237fc4c9 1119#define I386_MAX_MATCHED_INSN_LEN 6
37bdc87e
MK
1120
1121/* Instruction description. */
1122struct i386_insn
1123{
1124 size_t len;
237fc4c9
PA
1125 gdb_byte insn[I386_MAX_MATCHED_INSN_LEN];
1126 gdb_byte mask[I386_MAX_MATCHED_INSN_LEN];
37bdc87e
MK
1127};
1128
1129/* Search for the instruction at PC in the list SKIP_INSNS. Return
1130 the first instruction description that matches. Otherwise, return
1131 NULL. */
1132
1133static struct i386_insn *
1134i386_match_insn (CORE_ADDR pc, struct i386_insn *skip_insns)
1135{
1136 struct i386_insn *insn;
63c0089f 1137 gdb_byte op;
37bdc87e 1138
3dcabaa8
MS
1139 if (target_read_memory (pc, &op, 1))
1140 return NULL;
37bdc87e
MK
1141
1142 for (insn = skip_insns; insn->len > 0; insn++)
1143 {
1144 if ((op & insn->mask[0]) == insn->insn[0])
1145 {
237fc4c9 1146 gdb_byte buf[I386_MAX_MATCHED_INSN_LEN - 1];
613e8135 1147 int insn_matched = 1;
37bdc87e
MK
1148 size_t i;
1149
1150 gdb_assert (insn->len > 1);
237fc4c9 1151 gdb_assert (insn->len <= I386_MAX_MATCHED_INSN_LEN);
37bdc87e 1152
3dcabaa8
MS
1153 if (target_read_memory (pc + 1, buf, insn->len - 1))
1154 return NULL;
1155
37bdc87e
MK
1156 for (i = 1; i < insn->len; i++)
1157 {
1158 if ((buf[i - 1] & insn->mask[i]) != insn->insn[i])
613e8135 1159 insn_matched = 0;
37bdc87e 1160 }
613e8135
MK
1161
1162 if (insn_matched)
1163 return insn;
37bdc87e
MK
1164 }
1165 }
1166
1167 return NULL;
1168}
1169
1170/* Some special instructions that might be migrated by GCC into the
1171 part of the prologue that sets up the new stack frame. Because the
1172 stack frame hasn't been setup yet, no registers have been saved
1173 yet, and only the scratch registers %eax, %ecx and %edx can be
1174 touched. */
1175
1176struct i386_insn i386_frame_setup_skip_insns[] =
1177{
1777feb0 1178 /* Check for `movb imm8, r' and `movl imm32, r'.
37bdc87e
MK
1179
1180 ??? Should we handle 16-bit operand-sizes here? */
1181
1182 /* `movb imm8, %al' and `movb imm8, %ah' */
1183 /* `movb imm8, %cl' and `movb imm8, %ch' */
1184 { 2, { 0xb0, 0x00 }, { 0xfa, 0x00 } },
1185 /* `movb imm8, %dl' and `movb imm8, %dh' */
1186 { 2, { 0xb2, 0x00 }, { 0xfb, 0x00 } },
1187 /* `movl imm32, %eax' and `movl imm32, %ecx' */
1188 { 5, { 0xb8 }, { 0xfe } },
1189 /* `movl imm32, %edx' */
1190 { 5, { 0xba }, { 0xff } },
1191
1192 /* Check for `mov imm32, r32'. Note that there is an alternative
1193 encoding for `mov m32, %eax'.
1194
1195 ??? Should we handle SIB adressing here?
1196 ??? Should we handle 16-bit operand-sizes here? */
1197
1198 /* `movl m32, %eax' */
1199 { 5, { 0xa1 }, { 0xff } },
1200 /* `movl m32, %eax' and `mov; m32, %ecx' */
1201 { 6, { 0x89, 0x05 }, {0xff, 0xf7 } },
1202 /* `movl m32, %edx' */
1203 { 6, { 0x89, 0x15 }, {0xff, 0xff } },
1204
1205 /* Check for `xorl r32, r32' and the equivalent `subl r32, r32'.
1206 Because of the symmetry, there are actually two ways to encode
1207 these instructions; opcode bytes 0x29 and 0x2b for `subl' and
1208 opcode bytes 0x31 and 0x33 for `xorl'. */
1209
1210 /* `subl %eax, %eax' */
1211 { 2, { 0x29, 0xc0 }, { 0xfd, 0xff } },
1212 /* `subl %ecx, %ecx' */
1213 { 2, { 0x29, 0xc9 }, { 0xfd, 0xff } },
1214 /* `subl %edx, %edx' */
1215 { 2, { 0x29, 0xd2 }, { 0xfd, 0xff } },
1216 /* `xorl %eax, %eax' */
1217 { 2, { 0x31, 0xc0 }, { 0xfd, 0xff } },
1218 /* `xorl %ecx, %ecx' */
1219 { 2, { 0x31, 0xc9 }, { 0xfd, 0xff } },
1220 /* `xorl %edx, %edx' */
1221 { 2, { 0x31, 0xd2 }, { 0xfd, 0xff } },
1222 { 0 }
1223};
1224
e11481da
PM
1225
1226/* Check whether PC points to a no-op instruction. */
1227static CORE_ADDR
1228i386_skip_noop (CORE_ADDR pc)
1229{
1230 gdb_byte op;
1231 int check = 1;
1232
3dcabaa8
MS
1233 if (target_read_memory (pc, &op, 1))
1234 return pc;
e11481da
PM
1235
1236 while (check)
1237 {
1238 check = 0;
1239 /* Ignore `nop' instruction. */
1240 if (op == 0x90)
1241 {
1242 pc += 1;
3dcabaa8
MS
1243 if (target_read_memory (pc, &op, 1))
1244 return pc;
e11481da
PM
1245 check = 1;
1246 }
1247 /* Ignore no-op instruction `mov %edi, %edi'.
1248 Microsoft system dlls often start with
1249 a `mov %edi,%edi' instruction.
1250 The 5 bytes before the function start are
1251 filled with `nop' instructions.
1252 This pattern can be used for hot-patching:
1253 The `mov %edi, %edi' instruction can be replaced by a
1254 near jump to the location of the 5 `nop' instructions
1255 which can be replaced by a 32-bit jump to anywhere
1256 in the 32-bit address space. */
1257
1258 else if (op == 0x8b)
1259 {
3dcabaa8
MS
1260 if (target_read_memory (pc + 1, &op, 1))
1261 return pc;
1262
e11481da
PM
1263 if (op == 0xff)
1264 {
1265 pc += 2;
3dcabaa8
MS
1266 if (target_read_memory (pc, &op, 1))
1267 return pc;
1268
e11481da
PM
1269 check = 1;
1270 }
1271 }
1272 }
1273 return pc;
1274}
1275
acd5c798
MK
1276/* Check whether PC points at a code that sets up a new stack frame.
1277 If so, it updates CACHE and returns the address of the first
37bdc87e
MK
1278 instruction after the sequence that sets up the frame or LIMIT,
1279 whichever is smaller. If we don't recognize the code, return PC. */
acd5c798
MK
1280
1281static CORE_ADDR
e17a4113
UW
1282i386_analyze_frame_setup (struct gdbarch *gdbarch,
1283 CORE_ADDR pc, CORE_ADDR limit,
acd5c798
MK
1284 struct i386_frame_cache *cache)
1285{
e17a4113 1286 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
37bdc87e 1287 struct i386_insn *insn;
63c0089f 1288 gdb_byte op;
26604a34 1289 int skip = 0;
acd5c798 1290
37bdc87e
MK
1291 if (limit <= pc)
1292 return limit;
acd5c798 1293
3dcabaa8
MS
1294 if (target_read_memory (pc, &op, 1))
1295 return pc;
acd5c798 1296
c906108c 1297 if (op == 0x55) /* pushl %ebp */
c5aa993b 1298 {
acd5c798
MK
1299 /* Take into account that we've executed the `pushl %ebp' that
1300 starts this instruction sequence. */
fd13a04a 1301 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798 1302 cache->sp_offset += 4;
37bdc87e 1303 pc++;
acd5c798
MK
1304
1305 /* If that's all, return now. */
37bdc87e
MK
1306 if (limit <= pc)
1307 return limit;
26604a34 1308
b4632131 1309 /* Check for some special instructions that might be migrated by
37bdc87e
MK
1310 GCC into the prologue and skip them. At this point in the
1311 prologue, code should only touch the scratch registers %eax,
1312 %ecx and %edx, so while the number of posibilities is sheer,
1313 it is limited.
5daa5b4e 1314
26604a34
MK
1315 Make sure we only skip these instructions if we later see the
1316 `movl %esp, %ebp' that actually sets up the frame. */
37bdc87e 1317 while (pc + skip < limit)
26604a34 1318 {
37bdc87e
MK
1319 insn = i386_match_insn (pc + skip, i386_frame_setup_skip_insns);
1320 if (insn == NULL)
1321 break;
b4632131 1322
37bdc87e 1323 skip += insn->len;
26604a34
MK
1324 }
1325
37bdc87e
MK
1326 /* If that's all, return now. */
1327 if (limit <= pc + skip)
1328 return limit;
1329
3dcabaa8
MS
1330 if (target_read_memory (pc + skip, &op, 1))
1331 return pc + skip;
37bdc87e 1332
26604a34 1333 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 1334 switch (op)
c906108c
SS
1335 {
1336 case 0x8b:
e17a4113
UW
1337 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1338 != 0xec)
37bdc87e 1339 return pc;
c906108c
SS
1340 break;
1341 case 0x89:
e17a4113
UW
1342 if (read_memory_unsigned_integer (pc + skip + 1, 1, byte_order)
1343 != 0xe5)
37bdc87e 1344 return pc;
c906108c
SS
1345 break;
1346 default:
37bdc87e 1347 return pc;
c906108c 1348 }
acd5c798 1349
26604a34
MK
1350 /* OK, we actually have a frame. We just don't know how large
1351 it is yet. Set its size to zero. We'll adjust it if
1352 necessary. We also now commit to skipping the special
1353 instructions mentioned before. */
acd5c798 1354 cache->locals = 0;
37bdc87e 1355 pc += (skip + 2);
acd5c798
MK
1356
1357 /* If that's all, return now. */
37bdc87e
MK
1358 if (limit <= pc)
1359 return limit;
acd5c798 1360
fc338970
MK
1361 /* Check for stack adjustment
1362
acd5c798 1363 subl $XXX, %esp
fc338970 1364
fd35795f 1365 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 1366 reg, so we don't have to worry about a data16 prefix. */
3dcabaa8
MS
1367 if (target_read_memory (pc, &op, 1))
1368 return pc;
c906108c
SS
1369 if (op == 0x83)
1370 {
fd35795f 1371 /* `subl' with 8-bit immediate. */
e17a4113 1372 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1373 /* Some instruction starting with 0x83 other than `subl'. */
37bdc87e 1374 return pc;
acd5c798 1375
37bdc87e
MK
1376 /* `subl' with signed 8-bit immediate (though it wouldn't
1377 make sense to be negative). */
e17a4113 1378 cache->locals = read_memory_integer (pc + 2, 1, byte_order);
37bdc87e 1379 return pc + 3;
c906108c
SS
1380 }
1381 else if (op == 0x81)
1382 {
fd35795f 1383 /* Maybe it is `subl' with a 32-bit immediate. */
e17a4113 1384 if (read_memory_unsigned_integer (pc + 1, 1, byte_order) != 0xec)
fc338970 1385 /* Some instruction starting with 0x81 other than `subl'. */
37bdc87e 1386 return pc;
acd5c798 1387
fd35795f 1388 /* It is `subl' with a 32-bit immediate. */
e17a4113 1389 cache->locals = read_memory_integer (pc + 2, 4, byte_order);
37bdc87e 1390 return pc + 6;
c906108c
SS
1391 }
1392 else
1393 {
acd5c798 1394 /* Some instruction other than `subl'. */
37bdc87e 1395 return pc;
c906108c
SS
1396 }
1397 }
37bdc87e 1398 else if (op == 0xc8) /* enter */
c906108c 1399 {
e17a4113 1400 cache->locals = read_memory_unsigned_integer (pc + 1, 2, byte_order);
acd5c798 1401 return pc + 4;
c906108c 1402 }
21d0e8a4 1403
acd5c798 1404 return pc;
21d0e8a4
MK
1405}
1406
acd5c798
MK
1407/* Check whether PC points at code that saves registers on the stack.
1408 If so, it updates CACHE and returns the address of the first
1409 instruction after the register saves or CURRENT_PC, whichever is
1410 smaller. Otherwise, return PC. */
6bff26de
MK
1411
1412static CORE_ADDR
acd5c798
MK
1413i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
1414 struct i386_frame_cache *cache)
6bff26de 1415{
99ab4326 1416 CORE_ADDR offset = 0;
63c0089f 1417 gdb_byte op;
99ab4326 1418 int i;
c0d1d883 1419
99ab4326
MK
1420 if (cache->locals > 0)
1421 offset -= cache->locals;
1422 for (i = 0; i < 8 && pc < current_pc; i++)
1423 {
3dcabaa8
MS
1424 if (target_read_memory (pc, &op, 1))
1425 return pc;
99ab4326
MK
1426 if (op < 0x50 || op > 0x57)
1427 break;
0d17c81d 1428
99ab4326
MK
1429 offset -= 4;
1430 cache->saved_regs[op - 0x50] = offset;
1431 cache->sp_offset += 4;
1432 pc++;
6bff26de
MK
1433 }
1434
acd5c798 1435 return pc;
22797942
AC
1436}
1437
acd5c798
MK
1438/* Do a full analysis of the prologue at PC and update CACHE
1439 accordingly. Bail out early if CURRENT_PC is reached. Return the
1440 address where the analysis stopped.
ed84f6c1 1441
fc338970
MK
1442 We handle these cases:
1443
1444 The startup sequence can be at the start of the function, or the
1445 function can start with a branch to startup code at the end.
1446
1447 %ebp can be set up with either the 'enter' instruction, or "pushl
1448 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
1449 once used in the System V compiler).
1450
1451 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
1452 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
1453 16-bit unsigned argument for space to allocate, and the 'addl'
1454 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
1455
1456 Next, the registers used by this function are pushed. With the
1457 System V compiler they will always be in the order: %edi, %esi,
1458 %ebx (and sometimes a harmless bug causes it to also save but not
1459 restore %eax); however, the code below is willing to see the pushes
1460 in any order, and will handle up to 8 of them.
1461
1462 If the setup sequence is at the end of the function, then the next
1463 instruction will be a branch back to the start. */
c906108c 1464
acd5c798 1465static CORE_ADDR
e17a4113
UW
1466i386_analyze_prologue (struct gdbarch *gdbarch,
1467 CORE_ADDR pc, CORE_ADDR current_pc,
acd5c798 1468 struct i386_frame_cache *cache)
c906108c 1469{
e11481da 1470 pc = i386_skip_noop (pc);
e17a4113 1471 pc = i386_follow_jump (gdbarch, pc);
acd5c798
MK
1472 pc = i386_analyze_struct_return (pc, current_pc, cache);
1473 pc = i386_skip_probe (pc);
92dd43fa 1474 pc = i386_analyze_stack_align (pc, current_pc, cache);
e17a4113 1475 pc = i386_analyze_frame_setup (gdbarch, pc, current_pc, cache);
acd5c798 1476 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
1477}
1478
fc338970 1479/* Return PC of first real instruction. */
c906108c 1480
3a1e71e3 1481static CORE_ADDR
6093d2eb 1482i386_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
c906108c 1483{
e17a4113
UW
1484 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1485
63c0089f 1486 static gdb_byte pic_pat[6] =
acd5c798
MK
1487 {
1488 0xe8, 0, 0, 0, 0, /* call 0x0 */
1489 0x5b, /* popl %ebx */
c5aa993b 1490 };
acd5c798
MK
1491 struct i386_frame_cache cache;
1492 CORE_ADDR pc;
63c0089f 1493 gdb_byte op;
acd5c798 1494 int i;
c5aa993b 1495
acd5c798 1496 cache.locals = -1;
e17a4113 1497 pc = i386_analyze_prologue (gdbarch, start_pc, 0xffffffff, &cache);
acd5c798
MK
1498 if (cache.locals < 0)
1499 return start_pc;
c5aa993b 1500
acd5c798 1501 /* Found valid frame setup. */
c906108c 1502
fc338970
MK
1503 /* The native cc on SVR4 in -K PIC mode inserts the following code
1504 to get the address of the global offset table (GOT) into register
acd5c798
MK
1505 %ebx:
1506
fc338970
MK
1507 call 0x0
1508 popl %ebx
1509 movl %ebx,x(%ebp) (optional)
1510 addl y,%ebx
1511
c906108c
SS
1512 This code is with the rest of the prologue (at the end of the
1513 function), so we have to skip it to get to the first real
1514 instruction at the start of the function. */
c5aa993b 1515
c906108c
SS
1516 for (i = 0; i < 6; i++)
1517 {
3dcabaa8
MS
1518 if (target_read_memory (pc + i, &op, 1))
1519 return pc;
1520
c5aa993b 1521 if (pic_pat[i] != op)
c906108c
SS
1522 break;
1523 }
1524 if (i == 6)
1525 {
acd5c798
MK
1526 int delta = 6;
1527
3dcabaa8
MS
1528 if (target_read_memory (pc + delta, &op, 1))
1529 return pc;
c906108c 1530
c5aa993b 1531 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 1532 {
e17a4113 1533 op = read_memory_unsigned_integer (pc + delta + 1, 1, byte_order);
acd5c798 1534
fc338970 1535 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 1536 delta += 3;
fc338970 1537 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 1538 delta += 6;
fc338970 1539 else /* Unexpected instruction. */
acd5c798
MK
1540 delta = 0;
1541
3dcabaa8
MS
1542 if (target_read_memory (pc + delta, &op, 1))
1543 return pc;
c906108c 1544 }
acd5c798 1545
c5aa993b 1546 /* addl y,%ebx */
acd5c798 1547 if (delta > 0 && op == 0x81
e17a4113
UW
1548 && read_memory_unsigned_integer (pc + delta + 1, 1, byte_order)
1549 == 0xc3)
c906108c 1550 {
acd5c798 1551 pc += delta + 6;
c906108c
SS
1552 }
1553 }
c5aa993b 1554
e63bbc88
MK
1555 /* If the function starts with a branch (to startup code at the end)
1556 the last instruction should bring us back to the first
1557 instruction of the real code. */
e17a4113
UW
1558 if (i386_follow_jump (gdbarch, start_pc) != start_pc)
1559 pc = i386_follow_jump (gdbarch, pc);
e63bbc88
MK
1560
1561 return pc;
c906108c
SS
1562}
1563
4309257c
PM
1564/* Check that the code pointed to by PC corresponds to a call to
1565 __main, skip it if so. Return PC otherwise. */
1566
1567CORE_ADDR
1568i386_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1569{
e17a4113 1570 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4309257c
PM
1571 gdb_byte op;
1572
3dcabaa8
MS
1573 if (target_read_memory (pc, &op, 1))
1574 return pc;
4309257c
PM
1575 if (op == 0xe8)
1576 {
1577 gdb_byte buf[4];
1578
1579 if (target_read_memory (pc + 1, buf, sizeof buf) == 0)
1580 {
1581 /* Make sure address is computed correctly as a 32bit
1582 integer even if CORE_ADDR is 64 bit wide. */
1583 struct minimal_symbol *s;
e17a4113 1584 CORE_ADDR call_dest;
4309257c 1585
e17a4113 1586 call_dest = pc + 5 + extract_signed_integer (buf, 4, byte_order);
4309257c
PM
1587 call_dest = call_dest & 0xffffffffU;
1588 s = lookup_minimal_symbol_by_pc (call_dest);
1589 if (s != NULL
1590 && SYMBOL_LINKAGE_NAME (s) != NULL
1591 && strcmp (SYMBOL_LINKAGE_NAME (s), "__main") == 0)
1592 pc += 5;
1593 }
1594 }
1595
1596 return pc;
1597}
1598
acd5c798 1599/* This function is 64-bit safe. */
93924b6b 1600
acd5c798
MK
1601static CORE_ADDR
1602i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 1603{
63c0089f 1604 gdb_byte buf[8];
acd5c798 1605
875f8d0e 1606 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
0dfff4cb 1607 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
93924b6b 1608}
acd5c798 1609\f
93924b6b 1610
acd5c798 1611/* Normal frames. */
c5aa993b 1612
8fbca658
PA
1613static void
1614i386_frame_cache_1 (struct frame_info *this_frame,
1615 struct i386_frame_cache *cache)
a7769679 1616{
e17a4113
UW
1617 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1618 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 1619 gdb_byte buf[4];
acd5c798
MK
1620 int i;
1621
8fbca658 1622 cache->pc = get_frame_func (this_frame);
acd5c798
MK
1623
1624 /* In principle, for normal frames, %ebp holds the frame pointer,
1625 which holds the base address for the current stack frame.
1626 However, for functions that don't need it, the frame pointer is
1627 optional. For these "frameless" functions the frame pointer is
1628 actually the frame pointer of the calling frame. Signal
1629 trampolines are just a special case of a "frameless" function.
1630 They (usually) share their frame pointer with the frame that was
1631 in progress when the signal occurred. */
1632
10458914 1633 get_frame_register (this_frame, I386_EBP_REGNUM, buf);
e17a4113 1634 cache->base = extract_unsigned_integer (buf, 4, byte_order);
acd5c798 1635 if (cache->base == 0)
8fbca658 1636 return;
acd5c798
MK
1637
1638 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 1639 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798 1640
acd5c798 1641 if (cache->pc != 0)
e17a4113
UW
1642 i386_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
1643 cache);
acd5c798
MK
1644
1645 if (cache->locals < 0)
1646 {
1647 /* We didn't find a valid frame, which means that CACHE->base
1648 currently holds the frame pointer for our calling frame. If
1649 we're at the start of a function, or somewhere half-way its
1650 prologue, the function's frame probably hasn't been fully
1651 setup yet. Try to reconstruct the base address for the stack
1652 frame by looking at the stack pointer. For truly "frameless"
1653 functions this might work too. */
1654
e0c62198 1655 if (cache->saved_sp_reg != -1)
92dd43fa 1656 {
8fbca658
PA
1657 /* Saved stack pointer has been saved. */
1658 get_frame_register (this_frame, cache->saved_sp_reg, buf);
1659 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1660
92dd43fa
MK
1661 /* We're halfway aligning the stack. */
1662 cache->base = ((cache->saved_sp - 4) & 0xfffffff0) - 4;
1663 cache->saved_regs[I386_EIP_REGNUM] = cache->saved_sp - 4;
1664
1665 /* This will be added back below. */
1666 cache->saved_regs[I386_EIP_REGNUM] -= cache->base;
1667 }
7618e12b
DJ
1668 else if (cache->pc != 0
1669 || target_read_memory (get_frame_pc (this_frame), buf, 1))
92dd43fa 1670 {
7618e12b
DJ
1671 /* We're in a known function, but did not find a frame
1672 setup. Assume that the function does not use %ebp.
1673 Alternatively, we may have jumped to an invalid
1674 address; in that case there is definitely no new
1675 frame in %ebp. */
10458914 1676 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113
UW
1677 cache->base = extract_unsigned_integer (buf, 4, byte_order)
1678 + cache->sp_offset;
92dd43fa 1679 }
7618e12b
DJ
1680 else
1681 /* We're in an unknown function. We could not find the start
1682 of the function to analyze the prologue; our best option is
1683 to assume a typical frame layout with the caller's %ebp
1684 saved. */
1685 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
1686 }
1687
8fbca658
PA
1688 if (cache->saved_sp_reg != -1)
1689 {
1690 /* Saved stack pointer has been saved (but the SAVED_SP_REG
1691 register may be unavailable). */
1692 if (cache->saved_sp == 0
1693 && frame_register_read (this_frame, cache->saved_sp_reg, buf))
1694 cache->saved_sp = extract_unsigned_integer (buf, 4, byte_order);
1695 }
acd5c798
MK
1696 /* Now that we have the base address for the stack frame we can
1697 calculate the value of %esp in the calling frame. */
8fbca658 1698 else if (cache->saved_sp == 0)
92dd43fa 1699 cache->saved_sp = cache->base + 8;
a7769679 1700
acd5c798
MK
1701 /* Adjust all the saved registers such that they contain addresses
1702 instead of offsets. */
1703 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
1704 if (cache->saved_regs[i] != -1)
1705 cache->saved_regs[i] += cache->base;
acd5c798 1706
8fbca658
PA
1707 cache->base_p = 1;
1708}
1709
1710static struct i386_frame_cache *
1711i386_frame_cache (struct frame_info *this_frame, void **this_cache)
1712{
1713 volatile struct gdb_exception ex;
1714 struct i386_frame_cache *cache;
1715
1716 if (*this_cache)
1717 return *this_cache;
1718
1719 cache = i386_alloc_frame_cache ();
1720 *this_cache = cache;
1721
1722 TRY_CATCH (ex, RETURN_MASK_ERROR)
1723 {
1724 i386_frame_cache_1 (this_frame, cache);
1725 }
1726 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1727 throw_exception (ex);
1728
acd5c798 1729 return cache;
a7769679
MK
1730}
1731
3a1e71e3 1732static void
10458914 1733i386_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798 1734 struct frame_id *this_id)
c906108c 1735{
10458914 1736 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1737
1738 /* This marks the outermost frame. */
1739 if (cache->base == 0)
1740 return;
1741
3e210248 1742 /* See the end of i386_push_dummy_call. */
acd5c798
MK
1743 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1744}
1745
8fbca658
PA
1746static enum unwind_stop_reason
1747i386_frame_unwind_stop_reason (struct frame_info *this_frame,
1748 void **this_cache)
1749{
1750 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
1751
1752 if (!cache->base_p)
1753 return UNWIND_UNAVAILABLE;
1754
1755 /* This marks the outermost frame. */
1756 if (cache->base == 0)
1757 return UNWIND_OUTERMOST;
1758
1759 return UNWIND_NO_REASON;
1760}
1761
10458914
DJ
1762static struct value *
1763i386_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1764 int regnum)
acd5c798 1765{
10458914 1766 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
1767
1768 gdb_assert (regnum >= 0);
1769
1770 /* The System V ABI says that:
1771
1772 "The flags register contains the system flags, such as the
1773 direction flag and the carry flag. The direction flag must be
1774 set to the forward (that is, zero) direction before entry and
1775 upon exit from a function. Other user flags have no specified
1776 role in the standard calling sequence and are not preserved."
1777
1778 To guarantee the "upon exit" part of that statement we fake a
1779 saved flags register that has its direction flag cleared.
1780
1781 Note that GCC doesn't seem to rely on the fact that the direction
1782 flag is cleared after a function return; it always explicitly
1783 clears the flag before operations where it matters.
1784
1785 FIXME: kettenis/20030316: I'm not quite sure whether this is the
1786 right thing to do. The way we fake the flags register here makes
1787 it impossible to change it. */
1788
1789 if (regnum == I386_EFLAGS_REGNUM)
1790 {
10458914 1791 ULONGEST val;
c5aa993b 1792
10458914
DJ
1793 val = get_frame_register_unsigned (this_frame, regnum);
1794 val &= ~(1 << 10);
1795 return frame_unwind_got_constant (this_frame, regnum, val);
acd5c798 1796 }
1211c4e4 1797
acd5c798 1798 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
10458914 1799 return frame_unwind_got_register (this_frame, regnum, I386_EAX_REGNUM);
acd5c798 1800
fcf250e2
UW
1801 if (regnum == I386_ESP_REGNUM
1802 && (cache->saved_sp != 0 || cache->saved_sp_reg != -1))
8fbca658
PA
1803 {
1804 /* If the SP has been saved, but we don't know where, then this
1805 means that SAVED_SP_REG register was found unavailable back
1806 when we built the cache. */
fcf250e2 1807 if (cache->saved_sp == 0)
8fbca658
PA
1808 return frame_unwind_got_register (this_frame, regnum,
1809 cache->saved_sp_reg);
1810 else
1811 return frame_unwind_got_constant (this_frame, regnum,
1812 cache->saved_sp);
1813 }
acd5c798 1814
fd13a04a 1815 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
10458914
DJ
1816 return frame_unwind_got_memory (this_frame, regnum,
1817 cache->saved_regs[regnum]);
fd13a04a 1818
10458914 1819 return frame_unwind_got_register (this_frame, regnum, regnum);
acd5c798
MK
1820}
1821
1822static const struct frame_unwind i386_frame_unwind =
1823{
1824 NORMAL_FRAME,
8fbca658 1825 i386_frame_unwind_stop_reason,
acd5c798 1826 i386_frame_this_id,
10458914
DJ
1827 i386_frame_prev_register,
1828 NULL,
1829 default_frame_sniffer
acd5c798 1830};
06da04c6
MS
1831
1832/* Normal frames, but in a function epilogue. */
1833
1834/* The epilogue is defined here as the 'ret' instruction, which will
1835 follow any instruction such as 'leave' or 'pop %ebp' that destroys
1836 the function's stack frame. */
1837
1838static int
1839i386_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1840{
1841 gdb_byte insn;
1842
1843 if (target_read_memory (pc, &insn, 1))
1844 return 0; /* Can't read memory at pc. */
1845
1846 if (insn != 0xc3) /* 'ret' instruction. */
1847 return 0;
1848
1849 return 1;
1850}
1851
1852static int
1853i386_epilogue_frame_sniffer (const struct frame_unwind *self,
1854 struct frame_info *this_frame,
1855 void **this_prologue_cache)
1856{
1857 if (frame_relative_level (this_frame) == 0)
1858 return i386_in_function_epilogue_p (get_frame_arch (this_frame),
1859 get_frame_pc (this_frame));
1860 else
1861 return 0;
1862}
1863
1864static struct i386_frame_cache *
1865i386_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
1866{
1867 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1868 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 1869 volatile struct gdb_exception ex;
06da04c6
MS
1870 struct i386_frame_cache *cache;
1871 gdb_byte buf[4];
1872
1873 if (*this_cache)
1874 return *this_cache;
1875
1876 cache = i386_alloc_frame_cache ();
1877 *this_cache = cache;
1878
8fbca658
PA
1879 TRY_CATCH (ex, RETURN_MASK_ERROR)
1880 {
1881 /* Cache base will be %esp plus cache->sp_offset (-4). */
1882 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1883 cache->base = extract_unsigned_integer (buf, 4,
1884 byte_order) + cache->sp_offset;
1885
1886 /* Cache pc will be the frame func. */
1887 cache->pc = get_frame_pc (this_frame);
06da04c6 1888
8fbca658
PA
1889 /* The saved %esp will be at cache->base plus 8. */
1890 cache->saved_sp = cache->base + 8;
06da04c6 1891
8fbca658
PA
1892 /* The saved %eip will be at cache->base plus 4. */
1893 cache->saved_regs[I386_EIP_REGNUM] = cache->base + 4;
06da04c6 1894
8fbca658
PA
1895 cache->base_p = 1;
1896 }
1897 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1898 throw_exception (ex);
06da04c6
MS
1899
1900 return cache;
1901}
1902
8fbca658
PA
1903static enum unwind_stop_reason
1904i386_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
1905 void **this_cache)
1906{
1907 struct i386_frame_cache *cache
1908 = i386_epilogue_frame_cache (this_frame, this_cache);
1909
1910 if (!cache->base_p)
1911 return UNWIND_UNAVAILABLE;
1912
1913 return UNWIND_NO_REASON;
1914}
1915
06da04c6
MS
1916static void
1917i386_epilogue_frame_this_id (struct frame_info *this_frame,
1918 void **this_cache,
1919 struct frame_id *this_id)
1920{
1921 struct i386_frame_cache *cache = i386_epilogue_frame_cache (this_frame,
1922 this_cache);
1923
8fbca658
PA
1924 if (!cache->base_p)
1925 return;
1926
06da04c6
MS
1927 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
1928}
1929
1930static const struct frame_unwind i386_epilogue_frame_unwind =
1931{
1932 NORMAL_FRAME,
8fbca658 1933 i386_epilogue_frame_unwind_stop_reason,
06da04c6
MS
1934 i386_epilogue_frame_this_id,
1935 i386_frame_prev_register,
1936 NULL,
1937 i386_epilogue_frame_sniffer
1938};
acd5c798
MK
1939\f
1940
1941/* Signal trampolines. */
1942
1943static struct i386_frame_cache *
10458914 1944i386_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
acd5c798 1945{
e17a4113
UW
1946 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1947 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1948 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8fbca658 1949 volatile struct gdb_exception ex;
acd5c798 1950 struct i386_frame_cache *cache;
acd5c798 1951 CORE_ADDR addr;
63c0089f 1952 gdb_byte buf[4];
acd5c798
MK
1953
1954 if (*this_cache)
1955 return *this_cache;
1956
fd13a04a 1957 cache = i386_alloc_frame_cache ();
acd5c798 1958
8fbca658 1959 TRY_CATCH (ex, RETURN_MASK_ERROR)
a3386186 1960 {
8fbca658
PA
1961 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
1962 cache->base = extract_unsigned_integer (buf, 4, byte_order) - 4;
a3386186 1963
8fbca658
PA
1964 addr = tdep->sigcontext_addr (this_frame);
1965 if (tdep->sc_reg_offset)
1966 {
1967 int i;
a3386186 1968
8fbca658
PA
1969 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
1970
1971 for (i = 0; i < tdep->sc_num_regs; i++)
1972 if (tdep->sc_reg_offset[i] != -1)
1973 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1974 }
1975 else
1976 {
1977 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
1978 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
1979 }
1980
1981 cache->base_p = 1;
a3386186 1982 }
8fbca658
PA
1983 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
1984 throw_exception (ex);
acd5c798
MK
1985
1986 *this_cache = cache;
1987 return cache;
1988}
1989
8fbca658
PA
1990static enum unwind_stop_reason
1991i386_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
1992 void **this_cache)
1993{
1994 struct i386_frame_cache *cache =
1995 i386_sigtramp_frame_cache (this_frame, this_cache);
1996
1997 if (!cache->base_p)
1998 return UNWIND_UNAVAILABLE;
1999
2000 return UNWIND_NO_REASON;
2001}
2002
acd5c798 2003static void
10458914 2004i386_sigtramp_frame_this_id (struct frame_info *this_frame, void **this_cache,
acd5c798
MK
2005 struct frame_id *this_id)
2006{
2007 struct i386_frame_cache *cache =
10458914 2008 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2009
8fbca658
PA
2010 if (!cache->base_p)
2011 return;
2012
3e210248 2013 /* See the end of i386_push_dummy_call. */
10458914 2014 (*this_id) = frame_id_build (cache->base + 8, get_frame_pc (this_frame));
acd5c798
MK
2015}
2016
10458914
DJ
2017static struct value *
2018i386_sigtramp_frame_prev_register (struct frame_info *this_frame,
2019 void **this_cache, int regnum)
acd5c798
MK
2020{
2021 /* Make sure we've initialized the cache. */
10458914 2022 i386_sigtramp_frame_cache (this_frame, this_cache);
acd5c798 2023
10458914 2024 return i386_frame_prev_register (this_frame, this_cache, regnum);
c906108c 2025}
c0d1d883 2026
10458914
DJ
2027static int
2028i386_sigtramp_frame_sniffer (const struct frame_unwind *self,
2029 struct frame_info *this_frame,
2030 void **this_prologue_cache)
acd5c798 2031{
10458914 2032 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
acd5c798 2033
911bc6ee
MK
2034 /* We shouldn't even bother if we don't have a sigcontext_addr
2035 handler. */
2036 if (tdep->sigcontext_addr == NULL)
10458914 2037 return 0;
1c3545ae 2038
911bc6ee
MK
2039 if (tdep->sigtramp_p != NULL)
2040 {
10458914
DJ
2041 if (tdep->sigtramp_p (this_frame))
2042 return 1;
911bc6ee
MK
2043 }
2044
2045 if (tdep->sigtramp_start != 0)
2046 {
10458914 2047 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
2048
2049 gdb_assert (tdep->sigtramp_end != 0);
2050 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
10458914 2051 return 1;
911bc6ee 2052 }
acd5c798 2053
10458914 2054 return 0;
acd5c798 2055}
10458914
DJ
2056
2057static const struct frame_unwind i386_sigtramp_frame_unwind =
2058{
2059 SIGTRAMP_FRAME,
8fbca658 2060 i386_sigtramp_frame_unwind_stop_reason,
10458914
DJ
2061 i386_sigtramp_frame_this_id,
2062 i386_sigtramp_frame_prev_register,
2063 NULL,
2064 i386_sigtramp_frame_sniffer
2065};
acd5c798
MK
2066\f
2067
2068static CORE_ADDR
10458914 2069i386_frame_base_address (struct frame_info *this_frame, void **this_cache)
acd5c798 2070{
10458914 2071 struct i386_frame_cache *cache = i386_frame_cache (this_frame, this_cache);
acd5c798
MK
2072
2073 return cache->base;
2074}
2075
2076static const struct frame_base i386_frame_base =
2077{
2078 &i386_frame_unwind,
2079 i386_frame_base_address,
2080 i386_frame_base_address,
2081 i386_frame_base_address
2082};
2083
acd5c798 2084static struct frame_id
10458914 2085i386_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
acd5c798 2086{
acd5c798
MK
2087 CORE_ADDR fp;
2088
10458914 2089 fp = get_frame_register_unsigned (this_frame, I386_EBP_REGNUM);
acd5c798 2090
3e210248 2091 /* See the end of i386_push_dummy_call. */
10458914 2092 return frame_id_build (fp + 8, get_frame_pc (this_frame));
c0d1d883 2093}
fc338970 2094\f
c906108c 2095
fc338970
MK
2096/* Figure out where the longjmp will land. Slurp the args out of the
2097 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 2098 structure from which we extract the address that we will land at.
28bcfd30 2099 This address is copied into PC. This routine returns non-zero on
436675d3 2100 success. */
c906108c 2101
8201327c 2102static int
60ade65d 2103i386_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
c906108c 2104{
436675d3 2105 gdb_byte buf[4];
c906108c 2106 CORE_ADDR sp, jb_addr;
20a6ec49 2107 struct gdbarch *gdbarch = get_frame_arch (frame);
e17a4113 2108 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
20a6ec49 2109 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
c906108c 2110
8201327c
MK
2111 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2112 longjmp will land. */
2113 if (jb_pc_offset == -1)
c906108c
SS
2114 return 0;
2115
436675d3 2116 get_frame_register (frame, I386_ESP_REGNUM, buf);
e17a4113 2117 sp = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2118 if (target_read_memory (sp + 4, buf, 4))
c906108c
SS
2119 return 0;
2120
e17a4113 2121 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
436675d3 2122 if (target_read_memory (jb_addr + jb_pc_offset, buf, 4))
8201327c 2123 return 0;
c906108c 2124
e17a4113 2125 *pc = extract_unsigned_integer (buf, 4, byte_order);
c906108c
SS
2126 return 1;
2127}
fc338970 2128\f
c906108c 2129
7ccc1c74
JM
2130/* Check whether TYPE must be 16-byte-aligned when passed as a
2131 function argument. 16-byte vectors, _Decimal128 and structures or
2132 unions containing such types must be 16-byte-aligned; other
2133 arguments are 4-byte-aligned. */
2134
2135static int
2136i386_16_byte_align_p (struct type *type)
2137{
2138 type = check_typedef (type);
2139 if ((TYPE_CODE (type) == TYPE_CODE_DECFLOAT
2140 || (TYPE_CODE (type) == TYPE_CODE_ARRAY && TYPE_VECTOR (type)))
2141 && TYPE_LENGTH (type) == 16)
2142 return 1;
2143 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2144 return i386_16_byte_align_p (TYPE_TARGET_TYPE (type));
2145 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2146 || TYPE_CODE (type) == TYPE_CODE_UNION)
2147 {
2148 int i;
2149 for (i = 0; i < TYPE_NFIELDS (type); i++)
2150 {
2151 if (i386_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
2152 return 1;
2153 }
2154 }
2155 return 0;
2156}
2157
3a1e71e3 2158static CORE_ADDR
7d9b040b 2159i386_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
6a65450a
AC
2160 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
2161 struct value **args, CORE_ADDR sp, int struct_return,
2162 CORE_ADDR struct_addr)
22f8ba57 2163{
e17a4113 2164 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 2165 gdb_byte buf[4];
acd5c798 2166 int i;
7ccc1c74
JM
2167 int write_pass;
2168 int args_space = 0;
acd5c798 2169
7ccc1c74
JM
2170 /* Determine the total space required for arguments and struct
2171 return address in a first pass (allowing for 16-byte-aligned
2172 arguments), then push arguments in a second pass. */
2173
2174 for (write_pass = 0; write_pass < 2; write_pass++)
22f8ba57 2175 {
7ccc1c74
JM
2176 int args_space_used = 0;
2177 int have_16_byte_aligned_arg = 0;
2178
2179 if (struct_return)
2180 {
2181 if (write_pass)
2182 {
2183 /* Push value address. */
e17a4113 2184 store_unsigned_integer (buf, 4, byte_order, struct_addr);
7ccc1c74
JM
2185 write_memory (sp, buf, 4);
2186 args_space_used += 4;
2187 }
2188 else
2189 args_space += 4;
2190 }
2191
2192 for (i = 0; i < nargs; i++)
2193 {
2194 int len = TYPE_LENGTH (value_enclosing_type (args[i]));
acd5c798 2195
7ccc1c74
JM
2196 if (write_pass)
2197 {
2198 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2199 args_space_used = align_up (args_space_used, 16);
acd5c798 2200
7ccc1c74
JM
2201 write_memory (sp + args_space_used,
2202 value_contents_all (args[i]), len);
2203 /* The System V ABI says that:
acd5c798 2204
7ccc1c74
JM
2205 "An argument's size is increased, if necessary, to make it a
2206 multiple of [32-bit] words. This may require tail padding,
2207 depending on the size of the argument."
22f8ba57 2208
7ccc1c74
JM
2209 This makes sure the stack stays word-aligned. */
2210 args_space_used += align_up (len, 4);
2211 }
2212 else
2213 {
2214 if (i386_16_byte_align_p (value_enclosing_type (args[i])))
2215 {
2216 args_space = align_up (args_space, 16);
2217 have_16_byte_aligned_arg = 1;
2218 }
2219 args_space += align_up (len, 4);
2220 }
2221 }
2222
2223 if (!write_pass)
2224 {
2225 if (have_16_byte_aligned_arg)
2226 args_space = align_up (args_space, 16);
2227 sp -= args_space;
2228 }
22f8ba57
MK
2229 }
2230
acd5c798
MK
2231 /* Store return address. */
2232 sp -= 4;
e17a4113 2233 store_unsigned_integer (buf, 4, byte_order, bp_addr);
acd5c798
MK
2234 write_memory (sp, buf, 4);
2235
2236 /* Finally, update the stack pointer... */
e17a4113 2237 store_unsigned_integer (buf, 4, byte_order, sp);
acd5c798
MK
2238 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
2239
2240 /* ...and fake a frame pointer. */
2241 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
2242
3e210248
AC
2243 /* MarkK wrote: This "+ 8" is all over the place:
2244 (i386_frame_this_id, i386_sigtramp_frame_this_id,
10458914 2245 i386_dummy_id). It's there, since all frame unwinders for
3e210248 2246 a given target have to agree (within a certain margin) on the
a45ae3ed
UW
2247 definition of the stack address of a frame. Otherwise frame id
2248 comparison might not work correctly. Since DWARF2/GCC uses the
3e210248
AC
2249 stack address *before* the function call as a frame's CFA. On
2250 the i386, when %ebp is used as a frame pointer, the offset
2251 between the contents %ebp and the CFA as defined by GCC. */
2252 return sp + 8;
22f8ba57
MK
2253}
2254
1a309862
MK
2255/* These registers are used for returning integers (and on some
2256 targets also for returning `struct' and `union' values when their
ef9dff19 2257 size and alignment match an integer type). */
acd5c798
MK
2258#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
2259#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 2260
c5e656c1
MK
2261/* Read, for architecture GDBARCH, a function return value of TYPE
2262 from REGCACHE, and copy that into VALBUF. */
1a309862 2263
3a1e71e3 2264static void
c5e656c1 2265i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2266 struct regcache *regcache, gdb_byte *valbuf)
c906108c 2267{
c5e656c1 2268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 2269 int len = TYPE_LENGTH (type);
63c0089f 2270 gdb_byte buf[I386_MAX_REGISTER_SIZE];
1a309862 2271
1e8d0a7b 2272 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 2273 {
5716833c 2274 if (tdep->st0_regnum < 0)
1a309862 2275 {
8a3fe4f8 2276 warning (_("Cannot find floating-point return value."));
1a309862 2277 memset (valbuf, 0, len);
ef9dff19 2278 return;
1a309862
MK
2279 }
2280
c6ba6f0d
MK
2281 /* Floating-point return values can be found in %st(0). Convert
2282 its contents to the desired type. This is probably not
2283 exactly how it would happen on the target itself, but it is
2284 the best we can do. */
acd5c798 2285 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
27067745 2286 convert_typed_floating (buf, i387_ext_type (gdbarch), valbuf, type);
c906108c
SS
2287 }
2288 else
c5aa993b 2289 {
875f8d0e
UW
2290 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2291 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
2292
2293 if (len <= low_size)
00f8375e 2294 {
0818c12a 2295 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
2296 memcpy (valbuf, buf, len);
2297 }
d4f3574e
SS
2298 else if (len <= (low_size + high_size))
2299 {
0818c12a 2300 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 2301 memcpy (valbuf, buf, low_size);
0818c12a 2302 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
63c0089f 2303 memcpy (valbuf + low_size, buf, len - low_size);
d4f3574e
SS
2304 }
2305 else
8e65ff28 2306 internal_error (__FILE__, __LINE__,
1777feb0
MS
2307 _("Cannot extract return value of %d bytes long."),
2308 len);
c906108c
SS
2309 }
2310}
2311
c5e656c1
MK
2312/* Write, for architecture GDBARCH, a function return value of TYPE
2313 from VALBUF into REGCACHE. */
ef9dff19 2314
3a1e71e3 2315static void
c5e656c1 2316i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
63c0089f 2317 struct regcache *regcache, const gdb_byte *valbuf)
ef9dff19 2318{
c5e656c1 2319 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
2320 int len = TYPE_LENGTH (type);
2321
1e8d0a7b 2322 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 2323 {
3d7f4f49 2324 ULONGEST fstat;
63c0089f 2325 gdb_byte buf[I386_MAX_REGISTER_SIZE];
ccb945b8 2326
5716833c 2327 if (tdep->st0_regnum < 0)
ef9dff19 2328 {
8a3fe4f8 2329 warning (_("Cannot set floating-point return value."));
ef9dff19
MK
2330 return;
2331 }
2332
635b0cc1
MK
2333 /* Returning floating-point values is a bit tricky. Apart from
2334 storing the return value in %st(0), we have to simulate the
2335 state of the FPU at function return point. */
2336
c6ba6f0d
MK
2337 /* Convert the value found in VALBUF to the extended
2338 floating-point format used by the FPU. This is probably
2339 not exactly how it would happen on the target itself, but
2340 it is the best we can do. */
27067745 2341 convert_typed_floating (valbuf, type, buf, i387_ext_type (gdbarch));
acd5c798 2342 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 2343
635b0cc1
MK
2344 /* Set the top of the floating-point register stack to 7. The
2345 actual value doesn't really matter, but 7 is what a normal
2346 function return would end up with if the program started out
2347 with a freshly initialized FPU. */
20a6ec49 2348 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
ccb945b8 2349 fstat |= (7 << 11);
20a6ec49 2350 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
ccb945b8 2351
635b0cc1
MK
2352 /* Mark %st(1) through %st(7) as empty. Since we set the top of
2353 the floating-point register stack to 7, the appropriate value
2354 for the tag word is 0x3fff. */
20a6ec49 2355 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
ef9dff19
MK
2356 }
2357 else
2358 {
875f8d0e
UW
2359 int low_size = register_size (gdbarch, LOW_RETURN_REGNUM);
2360 int high_size = register_size (gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
2361
2362 if (len <= low_size)
3d7f4f49 2363 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
2364 else if (len <= (low_size + high_size))
2365 {
3d7f4f49
MK
2366 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
2367 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
63c0089f 2368 len - low_size, valbuf + low_size);
ef9dff19
MK
2369 }
2370 else
8e65ff28 2371 internal_error (__FILE__, __LINE__,
e2e0b3e5 2372 _("Cannot store return value of %d bytes long."), len);
ef9dff19
MK
2373 }
2374}
fc338970 2375\f
ef9dff19 2376
8201327c
MK
2377/* This is the variable that is set with "set struct-convention", and
2378 its legitimate values. */
2379static const char default_struct_convention[] = "default";
2380static const char pcc_struct_convention[] = "pcc";
2381static const char reg_struct_convention[] = "reg";
2382static const char *valid_conventions[] =
2383{
2384 default_struct_convention,
2385 pcc_struct_convention,
2386 reg_struct_convention,
2387 NULL
2388};
2389static const char *struct_convention = default_struct_convention;
2390
0e4377e1
JB
2391/* Return non-zero if TYPE, which is assumed to be a structure,
2392 a union type, or an array type, should be returned in registers
2393 for architecture GDBARCH. */
c5e656c1 2394
8201327c 2395static int
c5e656c1 2396i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 2397{
c5e656c1
MK
2398 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2399 enum type_code code = TYPE_CODE (type);
2400 int len = TYPE_LENGTH (type);
8201327c 2401
0e4377e1
JB
2402 gdb_assert (code == TYPE_CODE_STRUCT
2403 || code == TYPE_CODE_UNION
2404 || code == TYPE_CODE_ARRAY);
c5e656c1
MK
2405
2406 if (struct_convention == pcc_struct_convention
2407 || (struct_convention == default_struct_convention
2408 && tdep->struct_return == pcc_struct_return))
2409 return 0;
2410
9edde48e
MK
2411 /* Structures consisting of a single `float', `double' or 'long
2412 double' member are returned in %st(0). */
2413 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2414 {
2415 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
2416 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2417 return (len == 4 || len == 8 || len == 12);
2418 }
2419
c5e656c1
MK
2420 return (len == 1 || len == 2 || len == 4 || len == 8);
2421}
2422
2423/* Determine, for architecture GDBARCH, how a return value of TYPE
2424 should be returned. If it is supposed to be returned in registers,
2425 and READBUF is non-zero, read the appropriate value from REGCACHE,
2426 and copy it into READBUF. If WRITEBUF is non-zero, write the value
2427 from WRITEBUF into REGCACHE. */
2428
2429static enum return_value_convention
c055b101
CV
2430i386_return_value (struct gdbarch *gdbarch, struct type *func_type,
2431 struct type *type, struct regcache *regcache,
2432 gdb_byte *readbuf, const gdb_byte *writebuf)
c5e656c1
MK
2433{
2434 enum type_code code = TYPE_CODE (type);
2435
5daa78cc
TJB
2436 if (((code == TYPE_CODE_STRUCT
2437 || code == TYPE_CODE_UNION
2438 || code == TYPE_CODE_ARRAY)
2439 && !i386_reg_struct_return_p (gdbarch, type))
2440 /* 128-bit decimal float uses the struct return convention. */
2441 || (code == TYPE_CODE_DECFLOAT && TYPE_LENGTH (type) == 16))
31db7b6c
MK
2442 {
2443 /* The System V ABI says that:
2444
2445 "A function that returns a structure or union also sets %eax
2446 to the value of the original address of the caller's area
2447 before it returns. Thus when the caller receives control
2448 again, the address of the returned object resides in register
2449 %eax and can be used to access the object."
2450
2451 So the ABI guarantees that we can always find the return
2452 value just after the function has returned. */
2453
0e4377e1
JB
2454 /* Note that the ABI doesn't mention functions returning arrays,
2455 which is something possible in certain languages such as Ada.
2456 In this case, the value is returned as if it was wrapped in
2457 a record, so the convention applied to records also applies
2458 to arrays. */
2459
31db7b6c
MK
2460 if (readbuf)
2461 {
2462 ULONGEST addr;
2463
2464 regcache_raw_read_unsigned (regcache, I386_EAX_REGNUM, &addr);
2465 read_memory (addr, readbuf, TYPE_LENGTH (type));
2466 }
2467
2468 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
2469 }
c5e656c1
MK
2470
2471 /* This special case is for structures consisting of a single
9edde48e
MK
2472 `float', `double' or 'long double' member. These structures are
2473 returned in %st(0). For these structures, we call ourselves
2474 recursively, changing TYPE into the type of the first member of
2475 the structure. Since that should work for all structures that
2476 have only one member, we don't bother to check the member's type
2477 here. */
c5e656c1
MK
2478 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2479 {
2480 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
c055b101
CV
2481 return i386_return_value (gdbarch, func_type, type, regcache,
2482 readbuf, writebuf);
c5e656c1
MK
2483 }
2484
2485 if (readbuf)
2486 i386_extract_return_value (gdbarch, type, regcache, readbuf);
2487 if (writebuf)
2488 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 2489
c5e656c1 2490 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
2491}
2492\f
2493
27067745
UW
2494struct type *
2495i387_ext_type (struct gdbarch *gdbarch)
2496{
2497 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2498
2499 if (!tdep->i387_ext_type)
90884b2b
L
2500 {
2501 tdep->i387_ext_type = tdesc_find_type (gdbarch, "i387_ext");
2502 gdb_assert (tdep->i387_ext_type != NULL);
2503 }
27067745
UW
2504
2505 return tdep->i387_ext_type;
2506}
2507
c131fcee
L
2508/* Construct vector type for pseudo YMM registers. We can't use
2509 tdesc_find_type since YMM isn't described in target description. */
2510
2511static struct type *
2512i386_ymm_type (struct gdbarch *gdbarch)
2513{
2514 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2515
2516 if (!tdep->i386_ymm_type)
2517 {
2518 const struct builtin_type *bt = builtin_type (gdbarch);
2519
2520 /* The type we're building is this: */
2521#if 0
2522 union __gdb_builtin_type_vec256i
2523 {
2524 int128_t uint128[2];
2525 int64_t v2_int64[4];
2526 int32_t v4_int32[8];
2527 int16_t v8_int16[16];
2528 int8_t v16_int8[32];
2529 double v2_double[4];
2530 float v4_float[8];
2531 };
2532#endif
2533
2534 struct type *t;
2535
2536 t = arch_composite_type (gdbarch,
2537 "__gdb_builtin_type_vec256i", TYPE_CODE_UNION);
2538 append_composite_type_field (t, "v8_float",
2539 init_vector_type (bt->builtin_float, 8));
2540 append_composite_type_field (t, "v4_double",
2541 init_vector_type (bt->builtin_double, 4));
2542 append_composite_type_field (t, "v32_int8",
2543 init_vector_type (bt->builtin_int8, 32));
2544 append_composite_type_field (t, "v16_int16",
2545 init_vector_type (bt->builtin_int16, 16));
2546 append_composite_type_field (t, "v8_int32",
2547 init_vector_type (bt->builtin_int32, 8));
2548 append_composite_type_field (t, "v4_int64",
2549 init_vector_type (bt->builtin_int64, 4));
2550 append_composite_type_field (t, "v2_int128",
2551 init_vector_type (bt->builtin_int128, 2));
2552
2553 TYPE_VECTOR (t) = 1;
0c5acf93 2554 TYPE_NAME (t) = "builtin_type_vec256i";
c131fcee
L
2555 tdep->i386_ymm_type = t;
2556 }
2557
2558 return tdep->i386_ymm_type;
2559}
2560
794ac428 2561/* Construct vector type for MMX registers. */
90884b2b 2562static struct type *
794ac428
UW
2563i386_mmx_type (struct gdbarch *gdbarch)
2564{
2565 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2566
2567 if (!tdep->i386_mmx_type)
2568 {
df4df182
UW
2569 const struct builtin_type *bt = builtin_type (gdbarch);
2570
794ac428
UW
2571 /* The type we're building is this: */
2572#if 0
2573 union __gdb_builtin_type_vec64i
2574 {
2575 int64_t uint64;
2576 int32_t v2_int32[2];
2577 int16_t v4_int16[4];
2578 int8_t v8_int8[8];
2579 };
2580#endif
2581
2582 struct type *t;
2583
e9bb382b
UW
2584 t = arch_composite_type (gdbarch,
2585 "__gdb_builtin_type_vec64i", TYPE_CODE_UNION);
df4df182
UW
2586
2587 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2588 append_composite_type_field (t, "v2_int32",
df4df182 2589 init_vector_type (bt->builtin_int32, 2));
794ac428 2590 append_composite_type_field (t, "v4_int16",
df4df182 2591 init_vector_type (bt->builtin_int16, 4));
794ac428 2592 append_composite_type_field (t, "v8_int8",
df4df182 2593 init_vector_type (bt->builtin_int8, 8));
794ac428 2594
876cecd0 2595 TYPE_VECTOR (t) = 1;
794ac428
UW
2596 TYPE_NAME (t) = "builtin_type_vec64i";
2597 tdep->i386_mmx_type = t;
2598 }
2599
2600 return tdep->i386_mmx_type;
2601}
2602
d7a0d72c 2603/* Return the GDB type object for the "standard" data type of data in
1777feb0 2604 register REGNUM. */
d7a0d72c 2605
3a1e71e3 2606static struct type *
90884b2b 2607i386_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 2608{
1ba53b71
L
2609 if (i386_mmx_regnum_p (gdbarch, regnum))
2610 return i386_mmx_type (gdbarch);
c131fcee
L
2611 else if (i386_ymm_regnum_p (gdbarch, regnum))
2612 return i386_ymm_type (gdbarch);
1ba53b71
L
2613 else
2614 {
2615 const struct builtin_type *bt = builtin_type (gdbarch);
2616 if (i386_byte_regnum_p (gdbarch, regnum))
2617 return bt->builtin_int8;
2618 else if (i386_word_regnum_p (gdbarch, regnum))
2619 return bt->builtin_int16;
2620 else if (i386_dword_regnum_p (gdbarch, regnum))
2621 return bt->builtin_int32;
2622 }
2623
2624 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d7a0d72c
MK
2625}
2626
28fc6740 2627/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 2628 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
2629
2630static int
c86c27af 2631i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 2632{
5716833c
MK
2633 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
2634 int mmxreg, fpreg;
28fc6740
AC
2635 ULONGEST fstat;
2636 int tos;
c86c27af 2637
5716833c 2638 mmxreg = regnum - tdep->mm0_regnum;
20a6ec49 2639 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
28fc6740 2640 tos = (fstat >> 11) & 0x7;
5716833c
MK
2641 fpreg = (mmxreg + tos) % 8;
2642
20a6ec49 2643 return (I387_ST0_REGNUM (tdep) + fpreg);
28fc6740
AC
2644}
2645
05d1431c 2646enum register_status
28fc6740 2647i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2648 int regnum, gdb_byte *buf)
28fc6740 2649{
1ba53b71 2650 gdb_byte raw_buf[MAX_REGISTER_SIZE];
05d1431c 2651 enum register_status status;
1ba53b71 2652
5716833c 2653 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2654 {
c86c27af
MK
2655 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2656
28fc6740 2657 /* Extract (always little endian). */
05d1431c
PA
2658 status = regcache_raw_read (regcache, fpnum, raw_buf);
2659 if (status != REG_VALID)
2660 return status;
1ba53b71 2661 memcpy (buf, raw_buf, register_size (gdbarch, regnum));
28fc6740
AC
2662 }
2663 else
1ba53b71
L
2664 {
2665 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2666
c131fcee
L
2667 if (i386_ymm_regnum_p (gdbarch, regnum))
2668 {
2669 regnum -= tdep->ymm0_regnum;
2670
1777feb0 2671 /* Extract (always little endian). Read lower 128bits. */
05d1431c
PA
2672 status = regcache_raw_read (regcache,
2673 I387_XMM0_REGNUM (tdep) + regnum,
2674 raw_buf);
2675 if (status != REG_VALID)
2676 return status;
c131fcee
L
2677 memcpy (buf, raw_buf, 16);
2678 /* Read upper 128bits. */
05d1431c
PA
2679 status = regcache_raw_read (regcache,
2680 tdep->ymm0h_regnum + regnum,
2681 raw_buf);
2682 if (status != REG_VALID)
2683 return status;
c131fcee
L
2684 memcpy (buf + 16, raw_buf, 16);
2685 }
2686 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2687 {
2688 int gpnum = regnum - tdep->ax_regnum;
2689
2690 /* Extract (always little endian). */
05d1431c
PA
2691 status = regcache_raw_read (regcache, gpnum, raw_buf);
2692 if (status != REG_VALID)
2693 return status;
1ba53b71
L
2694 memcpy (buf, raw_buf, 2);
2695 }
2696 else if (i386_byte_regnum_p (gdbarch, regnum))
2697 {
2698 /* Check byte pseudo registers last since this function will
2699 be called from amd64_pseudo_register_read, which handles
2700 byte pseudo registers differently. */
2701 int gpnum = regnum - tdep->al_regnum;
2702
2703 /* Extract (always little endian). We read both lower and
2704 upper registers. */
05d1431c
PA
2705 status = regcache_raw_read (regcache, gpnum % 4, raw_buf);
2706 if (status != REG_VALID)
2707 return status;
1ba53b71
L
2708 if (gpnum >= 4)
2709 memcpy (buf, raw_buf + 1, 1);
2710 else
2711 memcpy (buf, raw_buf, 1);
2712 }
2713 else
2714 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2715 }
05d1431c
PA
2716
2717 return REG_VALID;
28fc6740
AC
2718}
2719
1ba53b71 2720void
28fc6740 2721i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
42835c2b 2722 int regnum, const gdb_byte *buf)
28fc6740 2723{
1ba53b71
L
2724 gdb_byte raw_buf[MAX_REGISTER_SIZE];
2725
5716833c 2726 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 2727 {
c86c27af
MK
2728 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
2729
28fc6740 2730 /* Read ... */
1ba53b71 2731 regcache_raw_read (regcache, fpnum, raw_buf);
28fc6740 2732 /* ... Modify ... (always little endian). */
1ba53b71 2733 memcpy (raw_buf, buf, register_size (gdbarch, regnum));
28fc6740 2734 /* ... Write. */
1ba53b71 2735 regcache_raw_write (regcache, fpnum, raw_buf);
28fc6740
AC
2736 }
2737 else
1ba53b71
L
2738 {
2739 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2740
c131fcee
L
2741 if (i386_ymm_regnum_p (gdbarch, regnum))
2742 {
2743 regnum -= tdep->ymm0_regnum;
2744
2745 /* ... Write lower 128bits. */
2746 regcache_raw_write (regcache,
2747 I387_XMM0_REGNUM (tdep) + regnum,
2748 buf);
2749 /* ... Write upper 128bits. */
2750 regcache_raw_write (regcache,
2751 tdep->ymm0h_regnum + regnum,
2752 buf + 16);
2753 }
2754 else if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
2755 {
2756 int gpnum = regnum - tdep->ax_regnum;
2757
2758 /* Read ... */
2759 regcache_raw_read (regcache, gpnum, raw_buf);
2760 /* ... Modify ... (always little endian). */
2761 memcpy (raw_buf, buf, 2);
2762 /* ... Write. */
2763 regcache_raw_write (regcache, gpnum, raw_buf);
2764 }
2765 else if (i386_byte_regnum_p (gdbarch, regnum))
2766 {
2767 /* Check byte pseudo registers last since this function will
2768 be called from amd64_pseudo_register_read, which handles
2769 byte pseudo registers differently. */
2770 int gpnum = regnum - tdep->al_regnum;
2771
2772 /* Read ... We read both lower and upper registers. */
2773 regcache_raw_read (regcache, gpnum % 4, raw_buf);
2774 /* ... Modify ... (always little endian). */
2775 if (gpnum >= 4)
2776 memcpy (raw_buf + 1, buf, 1);
2777 else
2778 memcpy (raw_buf, buf, 1);
2779 /* ... Write. */
2780 regcache_raw_write (regcache, gpnum % 4, raw_buf);
2781 }
2782 else
2783 internal_error (__FILE__, __LINE__, _("invalid regnum"));
2784 }
28fc6740 2785}
ff2e87ac
AC
2786\f
2787
ff2e87ac
AC
2788/* Return the register number of the register allocated by GCC after
2789 REGNUM, or -1 if there is no such register. */
2790
2791static int
2792i386_next_regnum (int regnum)
2793{
2794 /* GCC allocates the registers in the order:
2795
2796 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
2797
2798 Since storing a variable in %esp doesn't make any sense we return
2799 -1 for %ebp and for %esp itself. */
2800 static int next_regnum[] =
2801 {
2802 I386_EDX_REGNUM, /* Slot for %eax. */
2803 I386_EBX_REGNUM, /* Slot for %ecx. */
2804 I386_ECX_REGNUM, /* Slot for %edx. */
2805 I386_ESI_REGNUM, /* Slot for %ebx. */
2806 -1, -1, /* Slots for %esp and %ebp. */
2807 I386_EDI_REGNUM, /* Slot for %esi. */
2808 I386_EBP_REGNUM /* Slot for %edi. */
2809 };
2810
de5b9bb9 2811 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 2812 return next_regnum[regnum];
28fc6740 2813
ff2e87ac
AC
2814 return -1;
2815}
2816
2817/* Return nonzero if a value of type TYPE stored in register REGNUM
2818 needs any special handling. */
d7a0d72c 2819
3a1e71e3 2820static int
1777feb0
MS
2821i386_convert_register_p (struct gdbarch *gdbarch,
2822 int regnum, struct type *type)
d7a0d72c 2823{
de5b9bb9
MK
2824 int len = TYPE_LENGTH (type);
2825
ff2e87ac
AC
2826 /* Values may be spread across multiple registers. Most debugging
2827 formats aren't expressive enough to specify the locations, so
2828 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
2829 have a length that is a multiple of the word size, since GCC
2830 doesn't seem to put any other types into registers. */
2831 if (len > 4 && len % 4 == 0)
2832 {
2833 int last_regnum = regnum;
2834
2835 while (len > 4)
2836 {
2837 last_regnum = i386_next_regnum (last_regnum);
2838 len -= 4;
2839 }
2840
2841 if (last_regnum != -1)
2842 return 1;
2843 }
ff2e87ac 2844
0abe36f5 2845 return i387_convert_register_p (gdbarch, regnum, type);
d7a0d72c
MK
2846}
2847
ff2e87ac
AC
2848/* Read a value of type TYPE from register REGNUM in frame FRAME, and
2849 return its contents in TO. */
ac27f131 2850
8dccd430 2851static int
ff2e87ac 2852i386_register_to_value (struct frame_info *frame, int regnum,
8dccd430
PA
2853 struct type *type, gdb_byte *to,
2854 int *optimizedp, int *unavailablep)
ac27f131 2855{
20a6ec49 2856 struct gdbarch *gdbarch = get_frame_arch (frame);
de5b9bb9 2857 int len = TYPE_LENGTH (type);
de5b9bb9 2858
20a6ec49 2859 if (i386_fp_regnum_p (gdbarch, regnum))
8dccd430
PA
2860 return i387_register_to_value (frame, regnum, type, to,
2861 optimizedp, unavailablep);
ff2e87ac 2862
fd35795f 2863 /* Read a value spread across multiple registers. */
de5b9bb9
MK
2864
2865 gdb_assert (len > 4 && len % 4 == 0);
3d261580 2866
de5b9bb9
MK
2867 while (len > 0)
2868 {
2869 gdb_assert (regnum != -1);
20a6ec49 2870 gdb_assert (register_size (gdbarch, regnum) == 4);
d532c08f 2871
8dccd430
PA
2872 if (!get_frame_register_bytes (frame, regnum, 0,
2873 register_size (gdbarch, regnum),
2874 to, optimizedp, unavailablep))
2875 return 0;
2876
de5b9bb9
MK
2877 regnum = i386_next_regnum (regnum);
2878 len -= 4;
42835c2b 2879 to += 4;
de5b9bb9 2880 }
8dccd430
PA
2881
2882 *optimizedp = *unavailablep = 0;
2883 return 1;
ac27f131
MK
2884}
2885
ff2e87ac
AC
2886/* Write the contents FROM of a value of type TYPE into register
2887 REGNUM in frame FRAME. */
ac27f131 2888
3a1e71e3 2889static void
ff2e87ac 2890i386_value_to_register (struct frame_info *frame, int regnum,
42835c2b 2891 struct type *type, const gdb_byte *from)
ac27f131 2892{
de5b9bb9 2893 int len = TYPE_LENGTH (type);
de5b9bb9 2894
20a6ec49 2895 if (i386_fp_regnum_p (get_frame_arch (frame), regnum))
c6ba6f0d 2896 {
d532c08f
MK
2897 i387_value_to_register (frame, regnum, type, from);
2898 return;
2899 }
3d261580 2900
fd35795f 2901 /* Write a value spread across multiple registers. */
de5b9bb9
MK
2902
2903 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 2904
de5b9bb9
MK
2905 while (len > 0)
2906 {
2907 gdb_assert (regnum != -1);
875f8d0e 2908 gdb_assert (register_size (get_frame_arch (frame), regnum) == 4);
d532c08f 2909
42835c2b 2910 put_frame_register (frame, regnum, from);
de5b9bb9
MK
2911 regnum = i386_next_regnum (regnum);
2912 len -= 4;
42835c2b 2913 from += 4;
de5b9bb9 2914 }
ac27f131 2915}
ff2e87ac 2916\f
7fdafb5a
MK
2917/* Supply register REGNUM from the buffer specified by GREGS and LEN
2918 in the general-purpose register set REGSET to register cache
2919 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
ff2e87ac 2920
20187ed5 2921void
473f17b0
MK
2922i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
2923 int regnum, const void *gregs, size_t len)
2924{
9ea75c57 2925 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2926 const gdb_byte *regs = gregs;
473f17b0
MK
2927 int i;
2928
2929 gdb_assert (len == tdep->sizeof_gregset);
2930
2931 for (i = 0; i < tdep->gregset_num_regs; i++)
2932 {
2933 if ((regnum == i || regnum == -1)
2934 && tdep->gregset_reg_offset[i] != -1)
2935 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
2936 }
2937}
2938
7fdafb5a
MK
2939/* Collect register REGNUM from the register cache REGCACHE and store
2940 it in the buffer specified by GREGS and LEN as described by the
2941 general-purpose register set REGSET. If REGNUM is -1, do this for
2942 all registers in REGSET. */
2943
2944void
2945i386_collect_gregset (const struct regset *regset,
2946 const struct regcache *regcache,
2947 int regnum, void *gregs, size_t len)
2948{
2949 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
156cdbee 2950 gdb_byte *regs = gregs;
7fdafb5a
MK
2951 int i;
2952
2953 gdb_assert (len == tdep->sizeof_gregset);
2954
2955 for (i = 0; i < tdep->gregset_num_regs; i++)
2956 {
2957 if ((regnum == i || regnum == -1)
2958 && tdep->gregset_reg_offset[i] != -1)
2959 regcache_raw_collect (regcache, i, regs + tdep->gregset_reg_offset[i]);
2960 }
2961}
2962
2963/* Supply register REGNUM from the buffer specified by FPREGS and LEN
2964 in the floating-point register set REGSET to register cache
2965 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
473f17b0
MK
2966
2967static void
2968i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2969 int regnum, const void *fpregs, size_t len)
2970{
9ea75c57 2971 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
473f17b0 2972
66a72d25
MK
2973 if (len == I387_SIZEOF_FXSAVE)
2974 {
2975 i387_supply_fxsave (regcache, regnum, fpregs);
2976 return;
2977 }
2978
473f17b0
MK
2979 gdb_assert (len == tdep->sizeof_fpregset);
2980 i387_supply_fsave (regcache, regnum, fpregs);
2981}
8446b36a 2982
2f305df1
MK
2983/* Collect register REGNUM from the register cache REGCACHE and store
2984 it in the buffer specified by FPREGS and LEN as described by the
2985 floating-point register set REGSET. If REGNUM is -1, do this for
2986 all registers in REGSET. */
7fdafb5a
MK
2987
2988static void
2989i386_collect_fpregset (const struct regset *regset,
2990 const struct regcache *regcache,
2991 int regnum, void *fpregs, size_t len)
2992{
2993 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2994
2995 if (len == I387_SIZEOF_FXSAVE)
2996 {
2997 i387_collect_fxsave (regcache, regnum, fpregs);
2998 return;
2999 }
3000
3001 gdb_assert (len == tdep->sizeof_fpregset);
3002 i387_collect_fsave (regcache, regnum, fpregs);
3003}
3004
c131fcee
L
3005/* Similar to i386_supply_fpregset, but use XSAVE extended state. */
3006
3007static void
3008i386_supply_xstateregset (const struct regset *regset,
3009 struct regcache *regcache, int regnum,
3010 const void *xstateregs, size_t len)
3011{
c131fcee
L
3012 i387_supply_xsave (regcache, regnum, xstateregs);
3013}
3014
3015/* Similar to i386_collect_fpregset , but use XSAVE extended state. */
3016
3017static void
3018i386_collect_xstateregset (const struct regset *regset,
3019 const struct regcache *regcache,
3020 int regnum, void *xstateregs, size_t len)
3021{
c131fcee
L
3022 i387_collect_xsave (regcache, regnum, xstateregs, 1);
3023}
3024
8446b36a
MK
3025/* Return the appropriate register set for the core section identified
3026 by SECT_NAME and SECT_SIZE. */
3027
3028const struct regset *
3029i386_regset_from_core_section (struct gdbarch *gdbarch,
3030 const char *sect_name, size_t sect_size)
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
3035 {
3036 if (tdep->gregset == NULL)
7fdafb5a
MK
3037 tdep->gregset = regset_alloc (gdbarch, i386_supply_gregset,
3038 i386_collect_gregset);
8446b36a
MK
3039 return tdep->gregset;
3040 }
3041
66a72d25
MK
3042 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
3043 || (strcmp (sect_name, ".reg-xfp") == 0
3044 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
3045 {
3046 if (tdep->fpregset == NULL)
7fdafb5a
MK
3047 tdep->fpregset = regset_alloc (gdbarch, i386_supply_fpregset,
3048 i386_collect_fpregset);
8446b36a
MK
3049 return tdep->fpregset;
3050 }
3051
c131fcee
L
3052 if (strcmp (sect_name, ".reg-xstate") == 0)
3053 {
3054 if (tdep->xstateregset == NULL)
3055 tdep->xstateregset = regset_alloc (gdbarch,
3056 i386_supply_xstateregset,
3057 i386_collect_xstateregset);
3058
3059 return tdep->xstateregset;
3060 }
3061
8446b36a
MK
3062 return NULL;
3063}
473f17b0 3064\f
fc338970 3065
fc338970 3066/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
3067
3068CORE_ADDR
e17a4113
UW
3069i386_pe_skip_trampoline_code (struct frame_info *frame,
3070 CORE_ADDR pc, char *name)
c906108c 3071{
e17a4113
UW
3072 struct gdbarch *gdbarch = get_frame_arch (frame);
3073 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3074
3075 /* jmp *(dest) */
3076 if (pc && read_memory_unsigned_integer (pc, 2, byte_order) == 0x25ff)
c906108c 3077 {
e17a4113
UW
3078 unsigned long indirect =
3079 read_memory_unsigned_integer (pc + 2, 4, byte_order);
c906108c 3080 struct minimal_symbol *indsym =
fc338970 3081 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 3082 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 3083
c5aa993b 3084 if (symname)
c906108c 3085 {
c5aa993b
JM
3086 if (strncmp (symname, "__imp_", 6) == 0
3087 || strncmp (symname, "_imp_", 5) == 0)
e17a4113
UW
3088 return name ? 1 :
3089 read_memory_unsigned_integer (indirect, 4, byte_order);
c906108c
SS
3090 }
3091 }
fc338970 3092 return 0; /* Not a trampoline. */
c906108c 3093}
fc338970
MK
3094\f
3095
10458914
DJ
3096/* Return whether the THIS_FRAME corresponds to a sigtramp
3097 routine. */
8201327c 3098
4bd207ef 3099int
10458914 3100i386_sigtramp_p (struct frame_info *this_frame)
8201327c 3101{
10458914 3102 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3103 char *name;
3104
3105 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3106 return (name && strcmp ("_sigtramp", name) == 0);
3107}
3108\f
3109
fc338970
MK
3110/* We have two flavours of disassembly. The machinery on this page
3111 deals with switching between those. */
c906108c
SS
3112
3113static int
a89aa300 3114i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 3115{
5e3397bb
MK
3116 gdb_assert (disassembly_flavor == att_flavor
3117 || disassembly_flavor == intel_flavor);
3118
3119 /* FIXME: kettenis/20020915: Until disassembler_options is properly
3120 constified, cast to prevent a compiler warning. */
3121 info->disassembler_options = (char *) disassembly_flavor;
5e3397bb
MK
3122
3123 return print_insn_i386 (pc, info);
7a292a7a 3124}
fc338970 3125\f
3ce1502b 3126
8201327c
MK
3127/* There are a few i386 architecture variants that differ only
3128 slightly from the generic i386 target. For now, we don't give them
3129 their own source file, but include them here. As a consequence,
3130 they'll always be included. */
3ce1502b 3131
8201327c 3132/* System V Release 4 (SVR4). */
3ce1502b 3133
10458914
DJ
3134/* Return whether THIS_FRAME corresponds to a SVR4 sigtramp
3135 routine. */
911bc6ee 3136
8201327c 3137static int
10458914 3138i386_svr4_sigtramp_p (struct frame_info *this_frame)
d2a7c97a 3139{
10458914 3140 CORE_ADDR pc = get_frame_pc (this_frame);
911bc6ee
MK
3141 char *name;
3142
acd5c798
MK
3143 /* UnixWare uses _sigacthandler. The origin of the other symbols is
3144 currently unknown. */
911bc6ee 3145 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
3146 return (name && (strcmp ("_sigreturn", name) == 0
3147 || strcmp ("_sigacthandler", name) == 0
3148 || strcmp ("sigvechandler", name) == 0));
3149}
d2a7c97a 3150
10458914
DJ
3151/* Assuming THIS_FRAME is for a SVR4 sigtramp routine, return the
3152 address of the associated sigcontext (ucontext) structure. */
3ce1502b 3153
3a1e71e3 3154static CORE_ADDR
10458914 3155i386_svr4_sigcontext_addr (struct frame_info *this_frame)
8201327c 3156{
e17a4113
UW
3157 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3158 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
63c0089f 3159 gdb_byte buf[4];
acd5c798 3160 CORE_ADDR sp;
3ce1502b 3161
10458914 3162 get_frame_register (this_frame, I386_ESP_REGNUM, buf);
e17a4113 3163 sp = extract_unsigned_integer (buf, 4, byte_order);
21d0e8a4 3164
e17a4113 3165 return read_memory_unsigned_integer (sp + 8, 4, byte_order);
8201327c
MK
3166}
3167\f
3ce1502b 3168
8201327c 3169/* Generic ELF. */
d2a7c97a 3170
8201327c
MK
3171void
3172i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3173{
c4fc7f1b
MK
3174 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
3175 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 3176}
3ce1502b 3177
8201327c 3178/* System V Release 4 (SVR4). */
3ce1502b 3179
8201327c
MK
3180void
3181i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3182{
3183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3184
8201327c
MK
3185 /* System V Release 4 uses ELF. */
3186 i386_elf_init_abi (info, gdbarch);
3ce1502b 3187
dfe01d39 3188 /* System V Release 4 has shared libraries. */
dfe01d39
MK
3189 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
3190
911bc6ee 3191 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 3192 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
3193 tdep->sc_pc_offset = 36 + 14 * 4;
3194 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 3195
8201327c 3196 tdep->jb_pc_offset = 20;
3ce1502b
MK
3197}
3198
8201327c 3199/* DJGPP. */
3ce1502b 3200
3a1e71e3 3201static void
8201327c 3202i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 3203{
8201327c 3204 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 3205
911bc6ee
MK
3206 /* DJGPP doesn't have any special frames for signal handlers. */
3207 tdep->sigtramp_p = NULL;
3ce1502b 3208
8201327c 3209 tdep->jb_pc_offset = 36;
15430fc0
EZ
3210
3211 /* DJGPP does not support the SSE registers. */
3a13a53b
L
3212 if (! tdesc_has_registers (info.target_desc))
3213 tdep->tdesc = tdesc_i386_mmx;
3d22076f
EZ
3214
3215 /* Native compiler is GCC, which uses the SVR4 register numbering
3216 even in COFF and STABS. See the comment in i386_gdbarch_init,
3217 before the calls to set_gdbarch_stab_reg_to_regnum and
3218 set_gdbarch_sdb_reg_to_regnum. */
3219 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
3220 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
ab38a727
PA
3221
3222 set_gdbarch_has_dos_based_file_system (gdbarch, 1);
3ce1502b 3223}
8201327c 3224\f
2acceee2 3225
38c968cf
AC
3226/* i386 register groups. In addition to the normal groups, add "mmx"
3227 and "sse". */
3228
3229static struct reggroup *i386_sse_reggroup;
3230static struct reggroup *i386_mmx_reggroup;
3231
3232static void
3233i386_init_reggroups (void)
3234{
3235 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
3236 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
3237}
3238
3239static void
3240i386_add_reggroups (struct gdbarch *gdbarch)
3241{
3242 reggroup_add (gdbarch, i386_sse_reggroup);
3243 reggroup_add (gdbarch, i386_mmx_reggroup);
3244 reggroup_add (gdbarch, general_reggroup);
3245 reggroup_add (gdbarch, float_reggroup);
3246 reggroup_add (gdbarch, all_reggroup);
3247 reggroup_add (gdbarch, save_reggroup);
3248 reggroup_add (gdbarch, restore_reggroup);
3249 reggroup_add (gdbarch, vector_reggroup);
3250 reggroup_add (gdbarch, system_reggroup);
3251}
3252
3253int
3254i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
3255 struct reggroup *group)
3256{
c131fcee
L
3257 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3258 int fp_regnum_p, mmx_regnum_p, xmm_regnum_p, mxcsr_regnum_p,
3259 ymm_regnum_p, ymmh_regnum_p;
acd5c798 3260
1ba53b71
L
3261 /* Don't include pseudo registers, except for MMX, in any register
3262 groups. */
c131fcee 3263 if (i386_byte_regnum_p (gdbarch, regnum))
1ba53b71
L
3264 return 0;
3265
c131fcee 3266 if (i386_word_regnum_p (gdbarch, regnum))
1ba53b71
L
3267 return 0;
3268
c131fcee 3269 if (i386_dword_regnum_p (gdbarch, regnum))
1ba53b71
L
3270 return 0;
3271
3272 mmx_regnum_p = i386_mmx_regnum_p (gdbarch, regnum);
38c968cf
AC
3273 if (group == i386_mmx_reggroup)
3274 return mmx_regnum_p;
1ba53b71 3275
c131fcee
L
3276 xmm_regnum_p = i386_xmm_regnum_p (gdbarch, regnum);
3277 mxcsr_regnum_p = i386_mxcsr_regnum_p (gdbarch, regnum);
38c968cf 3278 if (group == i386_sse_reggroup)
c131fcee
L
3279 return xmm_regnum_p || mxcsr_regnum_p;
3280
3281 ymm_regnum_p = i386_ymm_regnum_p (gdbarch, regnum);
38c968cf 3282 if (group == vector_reggroup)
c131fcee
L
3283 return (mmx_regnum_p
3284 || ymm_regnum_p
3285 || mxcsr_regnum_p
3286 || (xmm_regnum_p
3287 && ((tdep->xcr0 & I386_XSTATE_AVX_MASK)
3288 == I386_XSTATE_SSE_MASK)));
1ba53b71
L
3289
3290 fp_regnum_p = (i386_fp_regnum_p (gdbarch, regnum)
3291 || i386_fpc_regnum_p (gdbarch, regnum));
38c968cf
AC
3292 if (group == float_reggroup)
3293 return fp_regnum_p;
1ba53b71 3294
c131fcee
L
3295 /* For "info reg all", don't include upper YMM registers nor XMM
3296 registers when AVX is supported. */
3297 ymmh_regnum_p = i386_ymmh_regnum_p (gdbarch, regnum);
3298 if (group == all_reggroup
3299 && ((xmm_regnum_p
3300 && (tdep->xcr0 & I386_XSTATE_AVX))
3301 || ymmh_regnum_p))
3302 return 0;
3303
38c968cf 3304 if (group == general_reggroup)
1ba53b71
L
3305 return (!fp_regnum_p
3306 && !mmx_regnum_p
c131fcee
L
3307 && !mxcsr_regnum_p
3308 && !xmm_regnum_p
3309 && !ymm_regnum_p
3310 && !ymmh_regnum_p);
acd5c798 3311
38c968cf
AC
3312 return default_register_reggroup_p (gdbarch, regnum, group);
3313}
38c968cf 3314\f
acd5c798 3315
f837910f
MK
3316/* Get the ARGIth function argument for the current function. */
3317
42c466d7 3318static CORE_ADDR
143985b7
AF
3319i386_fetch_pointer_argument (struct frame_info *frame, int argi,
3320 struct type *type)
3321{
e17a4113
UW
3322 struct gdbarch *gdbarch = get_frame_arch (frame);
3323 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
f837910f 3324 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
e17a4113 3325 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4, byte_order);
143985b7
AF
3326}
3327
514f746b
AR
3328static void
3329i386_skip_permanent_breakpoint (struct regcache *regcache)
3330{
3331 CORE_ADDR current_pc = regcache_read_pc (regcache);
3332
3333 /* On i386, breakpoint is exactly 1 byte long, so we just
3334 adjust the PC in the regcache. */
3335 current_pc += 1;
3336 regcache_write_pc (regcache, current_pc);
3337}
3338
3339
7ad10968
HZ
3340#define PREFIX_REPZ 0x01
3341#define PREFIX_REPNZ 0x02
3342#define PREFIX_LOCK 0x04
3343#define PREFIX_DATA 0x08
3344#define PREFIX_ADDR 0x10
473f17b0 3345
7ad10968
HZ
3346/* operand size */
3347enum
3348{
3349 OT_BYTE = 0,
3350 OT_WORD,
3351 OT_LONG,
cf648174 3352 OT_QUAD,
a3c4230a 3353 OT_DQUAD,
7ad10968 3354};
473f17b0 3355
7ad10968
HZ
3356/* i386 arith/logic operations */
3357enum
3358{
3359 OP_ADDL,
3360 OP_ORL,
3361 OP_ADCL,
3362 OP_SBBL,
3363 OP_ANDL,
3364 OP_SUBL,
3365 OP_XORL,
3366 OP_CMPL,
3367};
5716833c 3368
7ad10968
HZ
3369struct i386_record_s
3370{
cf648174 3371 struct gdbarch *gdbarch;
7ad10968 3372 struct regcache *regcache;
df61f520 3373 CORE_ADDR orig_addr;
7ad10968
HZ
3374 CORE_ADDR addr;
3375 int aflag;
3376 int dflag;
3377 int override;
3378 uint8_t modrm;
3379 uint8_t mod, reg, rm;
3380 int ot;
cf648174
HZ
3381 uint8_t rex_x;
3382 uint8_t rex_b;
3383 int rip_offset;
3384 int popl_esp_hack;
3385 const int *regmap;
7ad10968 3386};
5716833c 3387
7ad10968 3388/* Parse "modrm" part in current memory address that irp->addr point to
1777feb0 3389 Return -1 if something wrong. */
5716833c 3390
7ad10968
HZ
3391static int
3392i386_record_modrm (struct i386_record_s *irp)
3393{
cf648174 3394 struct gdbarch *gdbarch = irp->gdbarch;
5af949e3 3395
7ad10968
HZ
3396 if (target_read_memory (irp->addr, &irp->modrm, 1))
3397 {
3398 if (record_debug)
3399 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3400 "addr %s len = 1.\n"),
3401 paddress (gdbarch, irp->addr));
7ad10968
HZ
3402 return -1;
3403 }
3404 irp->addr++;
3405 irp->mod = (irp->modrm >> 6) & 3;
3406 irp->reg = (irp->modrm >> 3) & 7;
3407 irp->rm = irp->modrm & 7;
5716833c 3408
7ad10968
HZ
3409 return 0;
3410}
d2a7c97a 3411
7ad10968
HZ
3412/* Get the memory address that current instruction write to and set it to
3413 the argument "addr".
1777feb0 3414 Return -1 if something wrong. */
8201327c 3415
7ad10968 3416static int
cf648174 3417i386_record_lea_modrm_addr (struct i386_record_s *irp, uint64_t *addr)
7ad10968 3418{
cf648174 3419 struct gdbarch *gdbarch = irp->gdbarch;
60a1502a
MS
3420 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3421 gdb_byte buf[4];
3422 ULONGEST offset64;
21d0e8a4 3423
7ad10968
HZ
3424 *addr = 0;
3425 if (irp->aflag)
3426 {
3427 /* 32 bits */
3428 int havesib = 0;
3429 uint8_t scale = 0;
648d0c8b 3430 uint8_t byte;
7ad10968
HZ
3431 uint8_t index = 0;
3432 uint8_t base = irp->rm;
896fb97d 3433
7ad10968
HZ
3434 if (base == 4)
3435 {
3436 havesib = 1;
648d0c8b 3437 if (target_read_memory (irp->addr, &byte, 1))
7ad10968
HZ
3438 {
3439 if (record_debug)
3440 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3441 "at addr %s len = 1.\n"),
3442 paddress (gdbarch, irp->addr));
7ad10968
HZ
3443 return -1;
3444 }
3445 irp->addr++;
648d0c8b
MS
3446 scale = (byte >> 6) & 3;
3447 index = ((byte >> 3) & 7) | irp->rex_x;
3448 base = (byte & 7);
7ad10968 3449 }
cf648174 3450 base |= irp->rex_b;
21d0e8a4 3451
7ad10968
HZ
3452 switch (irp->mod)
3453 {
3454 case 0:
3455 if ((base & 7) == 5)
3456 {
3457 base = 0xff;
60a1502a 3458 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3459 {
3460 if (record_debug)
3461 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3462 "memory at addr %s len = 4.\n"),
3463 paddress (gdbarch, irp->addr));
7ad10968
HZ
3464 return -1;
3465 }
3466 irp->addr += 4;
60a1502a 3467 *addr = extract_signed_integer (buf, 4, byte_order);
cf648174
HZ
3468 if (irp->regmap[X86_RECORD_R8_REGNUM] && !havesib)
3469 *addr += irp->addr + irp->rip_offset;
7ad10968 3470 }
7ad10968
HZ
3471 break;
3472 case 1:
60a1502a 3473 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3474 {
3475 if (record_debug)
3476 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3477 "at addr %s len = 1.\n"),
3478 paddress (gdbarch, irp->addr));
7ad10968
HZ
3479 return -1;
3480 }
3481 irp->addr++;
60a1502a 3482 *addr = (int8_t) buf[0];
7ad10968
HZ
3483 break;
3484 case 2:
60a1502a 3485 if (target_read_memory (irp->addr, buf, 4))
7ad10968
HZ
3486 {
3487 if (record_debug)
3488 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3489 "at addr %s len = 4.\n"),
3490 paddress (gdbarch, irp->addr));
7ad10968
HZ
3491 return -1;
3492 }
60a1502a 3493 *addr = extract_signed_integer (buf, 4, byte_order);
7ad10968
HZ
3494 irp->addr += 4;
3495 break;
3496 }
356a6b3e 3497
60a1502a 3498 offset64 = 0;
7ad10968 3499 if (base != 0xff)
cf648174
HZ
3500 {
3501 if (base == 4 && irp->popl_esp_hack)
3502 *addr += irp->popl_esp_hack;
3503 regcache_raw_read_unsigned (irp->regcache, irp->regmap[base],
60a1502a 3504 &offset64);
7ad10968 3505 }
cf648174
HZ
3506 if (irp->aflag == 2)
3507 {
60a1502a 3508 *addr += offset64;
cf648174
HZ
3509 }
3510 else
60a1502a 3511 *addr = (uint32_t) (offset64 + *addr);
c4fc7f1b 3512
7ad10968
HZ
3513 if (havesib && (index != 4 || scale != 0))
3514 {
cf648174 3515 regcache_raw_read_unsigned (irp->regcache, irp->regmap[index],
60a1502a 3516 &offset64);
cf648174 3517 if (irp->aflag == 2)
60a1502a 3518 *addr += offset64 << scale;
cf648174 3519 else
60a1502a 3520 *addr = (uint32_t) (*addr + (offset64 << scale));
7ad10968
HZ
3521 }
3522 }
3523 else
3524 {
3525 /* 16 bits */
3526 switch (irp->mod)
3527 {
3528 case 0:
3529 if (irp->rm == 6)
3530 {
60a1502a 3531 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3532 {
3533 if (record_debug)
3534 printf_unfiltered (_("Process record: error reading "
5af949e3
UW
3535 "memory at addr %s len = 2.\n"),
3536 paddress (gdbarch, irp->addr));
7ad10968
HZ
3537 return -1;
3538 }
3539 irp->addr += 2;
60a1502a 3540 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3541 irp->rm = 0;
3542 goto no_rm;
3543 }
7ad10968
HZ
3544 break;
3545 case 1:
60a1502a 3546 if (target_read_memory (irp->addr, buf, 1))
7ad10968
HZ
3547 {
3548 if (record_debug)
3549 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3550 "at addr %s len = 1.\n"),
3551 paddress (gdbarch, irp->addr));
7ad10968
HZ
3552 return -1;
3553 }
3554 irp->addr++;
60a1502a 3555 *addr = (int8_t) buf[0];
7ad10968
HZ
3556 break;
3557 case 2:
60a1502a 3558 if (target_read_memory (irp->addr, buf, 2))
7ad10968
HZ
3559 {
3560 if (record_debug)
3561 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
3562 "at addr %s len = 2.\n"),
3563 paddress (gdbarch, irp->addr));
7ad10968
HZ
3564 return -1;
3565 }
3566 irp->addr += 2;
60a1502a 3567 *addr = extract_signed_integer (buf, 2, byte_order);
7ad10968
HZ
3568 break;
3569 }
c4fc7f1b 3570
7ad10968
HZ
3571 switch (irp->rm)
3572 {
3573 case 0:
cf648174
HZ
3574 regcache_raw_read_unsigned (irp->regcache,
3575 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3576 &offset64);
3577 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3578 regcache_raw_read_unsigned (irp->regcache,
3579 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3580 &offset64);
3581 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3582 break;
3583 case 1:
cf648174
HZ
3584 regcache_raw_read_unsigned (irp->regcache,
3585 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3586 &offset64);
3587 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3588 regcache_raw_read_unsigned (irp->regcache,
3589 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3590 &offset64);
3591 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3592 break;
3593 case 2:
cf648174
HZ
3594 regcache_raw_read_unsigned (irp->regcache,
3595 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3596 &offset64);
3597 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3598 regcache_raw_read_unsigned (irp->regcache,
3599 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3600 &offset64);
3601 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3602 break;
3603 case 3:
cf648174
HZ
3604 regcache_raw_read_unsigned (irp->regcache,
3605 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3606 &offset64);
3607 *addr = (uint32_t) (*addr + offset64);
cf648174
HZ
3608 regcache_raw_read_unsigned (irp->regcache,
3609 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3610 &offset64);
3611 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3612 break;
3613 case 4:
cf648174
HZ
3614 regcache_raw_read_unsigned (irp->regcache,
3615 irp->regmap[X86_RECORD_RESI_REGNUM],
60a1502a
MS
3616 &offset64);
3617 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3618 break;
3619 case 5:
cf648174
HZ
3620 regcache_raw_read_unsigned (irp->regcache,
3621 irp->regmap[X86_RECORD_REDI_REGNUM],
60a1502a
MS
3622 &offset64);
3623 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3624 break;
3625 case 6:
cf648174
HZ
3626 regcache_raw_read_unsigned (irp->regcache,
3627 irp->regmap[X86_RECORD_REBP_REGNUM],
60a1502a
MS
3628 &offset64);
3629 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3630 break;
3631 case 7:
cf648174
HZ
3632 regcache_raw_read_unsigned (irp->regcache,
3633 irp->regmap[X86_RECORD_REBX_REGNUM],
60a1502a
MS
3634 &offset64);
3635 *addr = (uint32_t) (*addr + offset64);
7ad10968
HZ
3636 break;
3637 }
3638 *addr &= 0xffff;
3639 }
c4fc7f1b 3640
01fe1b41 3641 no_rm:
7ad10968
HZ
3642 return 0;
3643}
c4fc7f1b 3644
7ad10968
HZ
3645/* Record the value of the memory that willbe changed in current instruction
3646 to "record_arch_list".
1777feb0 3647 Return -1 if something wrong. */
356a6b3e 3648
7ad10968
HZ
3649static int
3650i386_record_lea_modrm (struct i386_record_s *irp)
3651{
cf648174
HZ
3652 struct gdbarch *gdbarch = irp->gdbarch;
3653 uint64_t addr;
356a6b3e 3654
d7877f7e 3655 if (irp->override >= 0)
7ad10968 3656 {
bb08c432
HZ
3657 if (record_memory_query)
3658 {
3659 int q;
3660
3661 target_terminal_ours ();
3662 q = yquery (_("\
3663Process record ignores the memory change of instruction at address %s\n\
3664because it can't get the value of the segment register.\n\
3665Do you want to stop the program?"),
3666 paddress (gdbarch, irp->orig_addr));
3667 target_terminal_inferior ();
3668 if (q)
3669 return -1;
3670 }
3671
7ad10968
HZ
3672 return 0;
3673 }
61113f8b 3674
7ad10968
HZ
3675 if (i386_record_lea_modrm_addr (irp, &addr))
3676 return -1;
96297dab 3677
7ad10968
HZ
3678 if (record_arch_list_add_mem (addr, 1 << irp->ot))
3679 return -1;
a62cc96e 3680
7ad10968
HZ
3681 return 0;
3682}
b6197528 3683
cf648174 3684/* Record the push operation to "record_arch_list".
1777feb0 3685 Return -1 if something wrong. */
cf648174
HZ
3686
3687static int
3688i386_record_push (struct i386_record_s *irp, int size)
3689{
648d0c8b 3690 ULONGEST addr;
cf648174
HZ
3691
3692 if (record_arch_list_add_reg (irp->regcache,
3693 irp->regmap[X86_RECORD_RESP_REGNUM]))
3694 return -1;
3695 regcache_raw_read_unsigned (irp->regcache,
3696 irp->regmap[X86_RECORD_RESP_REGNUM],
648d0c8b
MS
3697 &addr);
3698 if (record_arch_list_add_mem ((CORE_ADDR) addr - size, size))
cf648174
HZ
3699 return -1;
3700
3701 return 0;
3702}
3703
0289bdd7
MS
3704
3705/* Defines contents to record. */
3706#define I386_SAVE_FPU_REGS 0xfffd
3707#define I386_SAVE_FPU_ENV 0xfffe
3708#define I386_SAVE_FPU_ENV_REG_STACK 0xffff
3709
1777feb0
MS
3710/* Record the value of floating point registers which will be changed
3711 by the current instruction to "record_arch_list". Return -1 if
3712 something is wrong. */
0289bdd7
MS
3713
3714static int i386_record_floats (struct gdbarch *gdbarch,
3715 struct i386_record_s *ir,
3716 uint32_t iregnum)
3717{
3718 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3719 int i;
3720
3721 /* Oza: Because of floating point insn push/pop of fpu stack is going to
3722 happen. Currently we store st0-st7 registers, but we need not store all
3723 registers all the time, in future we use ftag register and record only
3724 those who are not marked as an empty. */
3725
3726 if (I386_SAVE_FPU_REGS == iregnum)
3727 {
3728 for (i = I387_ST0_REGNUM (tdep); i <= I387_ST0_REGNUM (tdep) + 7; i++)
3729 {
3730 if (record_arch_list_add_reg (ir->regcache, i))
3731 return -1;
3732 }
3733 }
3734 else if (I386_SAVE_FPU_ENV == iregnum)
3735 {
3736 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3737 {
3738 if (record_arch_list_add_reg (ir->regcache, i))
3739 return -1;
3740 }
3741 }
3742 else if (I386_SAVE_FPU_ENV_REG_STACK == iregnum)
3743 {
3744 for (i = I387_ST0_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3745 {
3746 if (record_arch_list_add_reg (ir->regcache, i))
3747 return -1;
3748 }
3749 }
3750 else if ((iregnum >= I387_ST0_REGNUM (tdep)) &&
3751 (iregnum <= I387_FOP_REGNUM (tdep)))
3752 {
3753 if (record_arch_list_add_reg (ir->regcache,iregnum))
3754 return -1;
3755 }
3756 else
3757 {
3758 /* Parameter error. */
3759 return -1;
3760 }
3761 if(I386_SAVE_FPU_ENV != iregnum)
3762 {
3763 for (i = I387_FCTRL_REGNUM (tdep); i <= I387_FOP_REGNUM (tdep); i++)
3764 {
3765 if (record_arch_list_add_reg (ir->regcache, i))
3766 return -1;
3767 }
3768 }
3769 return 0;
3770}
3771
7ad10968
HZ
3772/* Parse the current instruction and record the values of the registers and
3773 memory that will be changed in current instruction to "record_arch_list".
1777feb0 3774 Return -1 if something wrong. */
8201327c 3775
cf648174
HZ
3776#define I386_RECORD_ARCH_LIST_ADD_REG(regnum) \
3777 record_arch_list_add_reg (ir.regcache, ir.regmap[(regnum)])
3778
a6b808b4 3779int
7ad10968 3780i386_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
648d0c8b 3781 CORE_ADDR input_addr)
7ad10968 3782{
60a1502a 3783 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7ad10968 3784 int prefixes = 0;
580879fc 3785 int regnum = 0;
425b824a
MS
3786 uint32_t opcode;
3787 uint8_t opcode8;
648d0c8b 3788 ULONGEST addr;
60a1502a 3789 gdb_byte buf[MAX_REGISTER_SIZE];
7ad10968 3790 struct i386_record_s ir;
0289bdd7 3791 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
cf648174
HZ
3792 int rex = 0;
3793 uint8_t rex_w = -1;
3794 uint8_t rex_r = 0;
7ad10968 3795
8408d274 3796 memset (&ir, 0, sizeof (struct i386_record_s));
7ad10968 3797 ir.regcache = regcache;
648d0c8b
MS
3798 ir.addr = input_addr;
3799 ir.orig_addr = input_addr;
7ad10968
HZ
3800 ir.aflag = 1;
3801 ir.dflag = 1;
cf648174
HZ
3802 ir.override = -1;
3803 ir.popl_esp_hack = 0;
a3c4230a 3804 ir.regmap = tdep->record_regmap;
cf648174 3805 ir.gdbarch = gdbarch;
7ad10968
HZ
3806
3807 if (record_debug > 1)
3808 fprintf_unfiltered (gdb_stdlog, "Process record: i386_process_record "
5af949e3
UW
3809 "addr = %s\n",
3810 paddress (gdbarch, ir.addr));
7ad10968
HZ
3811
3812 /* prefixes */
3813 while (1)
3814 {
425b824a 3815 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3816 {
3817 if (record_debug)
3818 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3819 "addr %s len = 1.\n"),
3820 paddress (gdbarch, ir.addr));
7ad10968
HZ
3821 return -1;
3822 }
3823 ir.addr++;
425b824a 3824 switch (opcode8) /* Instruction prefixes */
7ad10968 3825 {
01fe1b41 3826 case REPE_PREFIX_OPCODE:
7ad10968
HZ
3827 prefixes |= PREFIX_REPZ;
3828 break;
01fe1b41 3829 case REPNE_PREFIX_OPCODE:
7ad10968
HZ
3830 prefixes |= PREFIX_REPNZ;
3831 break;
01fe1b41 3832 case LOCK_PREFIX_OPCODE:
7ad10968
HZ
3833 prefixes |= PREFIX_LOCK;
3834 break;
01fe1b41 3835 case CS_PREFIX_OPCODE:
cf648174 3836 ir.override = X86_RECORD_CS_REGNUM;
7ad10968 3837 break;
01fe1b41 3838 case SS_PREFIX_OPCODE:
cf648174 3839 ir.override = X86_RECORD_SS_REGNUM;
7ad10968 3840 break;
01fe1b41 3841 case DS_PREFIX_OPCODE:
cf648174 3842 ir.override = X86_RECORD_DS_REGNUM;
7ad10968 3843 break;
01fe1b41 3844 case ES_PREFIX_OPCODE:
cf648174 3845 ir.override = X86_RECORD_ES_REGNUM;
7ad10968 3846 break;
01fe1b41 3847 case FS_PREFIX_OPCODE:
cf648174 3848 ir.override = X86_RECORD_FS_REGNUM;
7ad10968 3849 break;
01fe1b41 3850 case GS_PREFIX_OPCODE:
cf648174 3851 ir.override = X86_RECORD_GS_REGNUM;
7ad10968 3852 break;
01fe1b41 3853 case DATA_PREFIX_OPCODE:
7ad10968
HZ
3854 prefixes |= PREFIX_DATA;
3855 break;
01fe1b41 3856 case ADDR_PREFIX_OPCODE:
7ad10968
HZ
3857 prefixes |= PREFIX_ADDR;
3858 break;
d691bec7
MS
3859 case 0x40: /* i386 inc %eax */
3860 case 0x41: /* i386 inc %ecx */
3861 case 0x42: /* i386 inc %edx */
3862 case 0x43: /* i386 inc %ebx */
3863 case 0x44: /* i386 inc %esp */
3864 case 0x45: /* i386 inc %ebp */
3865 case 0x46: /* i386 inc %esi */
3866 case 0x47: /* i386 inc %edi */
3867 case 0x48: /* i386 dec %eax */
3868 case 0x49: /* i386 dec %ecx */
3869 case 0x4a: /* i386 dec %edx */
3870 case 0x4b: /* i386 dec %ebx */
3871 case 0x4c: /* i386 dec %esp */
3872 case 0x4d: /* i386 dec %ebp */
3873 case 0x4e: /* i386 dec %esi */
3874 case 0x4f: /* i386 dec %edi */
3875 if (ir.regmap[X86_RECORD_R8_REGNUM]) /* 64 bit target */
cf648174
HZ
3876 {
3877 /* REX */
3878 rex = 1;
425b824a
MS
3879 rex_w = (opcode8 >> 3) & 1;
3880 rex_r = (opcode8 & 0x4) << 1;
3881 ir.rex_x = (opcode8 & 0x2) << 2;
3882 ir.rex_b = (opcode8 & 0x1) << 3;
cf648174 3883 }
d691bec7
MS
3884 else /* 32 bit target */
3885 goto out_prefixes;
cf648174 3886 break;
7ad10968
HZ
3887 default:
3888 goto out_prefixes;
3889 break;
3890 }
3891 }
01fe1b41 3892 out_prefixes:
cf648174
HZ
3893 if (ir.regmap[X86_RECORD_R8_REGNUM] && rex_w == 1)
3894 {
3895 ir.dflag = 2;
3896 }
3897 else
3898 {
3899 if (prefixes & PREFIX_DATA)
3900 ir.dflag ^= 1;
3901 }
7ad10968
HZ
3902 if (prefixes & PREFIX_ADDR)
3903 ir.aflag ^= 1;
cf648174
HZ
3904 else if (ir.regmap[X86_RECORD_R8_REGNUM])
3905 ir.aflag = 2;
7ad10968 3906
1777feb0 3907 /* Now check op code. */
425b824a 3908 opcode = (uint32_t) opcode8;
01fe1b41 3909 reswitch:
7ad10968
HZ
3910 switch (opcode)
3911 {
3912 case 0x0f:
425b824a 3913 if (target_read_memory (ir.addr, &opcode8, 1))
7ad10968
HZ
3914 {
3915 if (record_debug)
3916 printf_unfiltered (_("Process record: error reading memory at "
5af949e3
UW
3917 "addr %s len = 1.\n"),
3918 paddress (gdbarch, ir.addr));
7ad10968
HZ
3919 return -1;
3920 }
3921 ir.addr++;
a3c4230a 3922 opcode = (uint32_t) opcode8 | 0x0f00;
7ad10968
HZ
3923 goto reswitch;
3924 break;
93924b6b 3925
a38bba38 3926 case 0x00: /* arith & logic */
7ad10968
HZ
3927 case 0x01:
3928 case 0x02:
3929 case 0x03:
3930 case 0x04:
3931 case 0x05:
3932 case 0x08:
3933 case 0x09:
3934 case 0x0a:
3935 case 0x0b:
3936 case 0x0c:
3937 case 0x0d:
3938 case 0x10:
3939 case 0x11:
3940 case 0x12:
3941 case 0x13:
3942 case 0x14:
3943 case 0x15:
3944 case 0x18:
3945 case 0x19:
3946 case 0x1a:
3947 case 0x1b:
3948 case 0x1c:
3949 case 0x1d:
3950 case 0x20:
3951 case 0x21:
3952 case 0x22:
3953 case 0x23:
3954 case 0x24:
3955 case 0x25:
3956 case 0x28:
3957 case 0x29:
3958 case 0x2a:
3959 case 0x2b:
3960 case 0x2c:
3961 case 0x2d:
3962 case 0x30:
3963 case 0x31:
3964 case 0x32:
3965 case 0x33:
3966 case 0x34:
3967 case 0x35:
3968 case 0x38:
3969 case 0x39:
3970 case 0x3a:
3971 case 0x3b:
3972 case 0x3c:
3973 case 0x3d:
3974 if (((opcode >> 3) & 7) != OP_CMPL)
3975 {
3976 if ((opcode & 1) == 0)
3977 ir.ot = OT_BYTE;
3978 else
3979 ir.ot = ir.dflag + OT_WORD;
93924b6b 3980
7ad10968
HZ
3981 switch ((opcode >> 1) & 3)
3982 {
a38bba38 3983 case 0: /* OP Ev, Gv */
7ad10968
HZ
3984 if (i386_record_modrm (&ir))
3985 return -1;
3986 if (ir.mod != 3)
3987 {
3988 if (i386_record_lea_modrm (&ir))
3989 return -1;
3990 }
3991 else
3992 {
cf648174
HZ
3993 ir.rm |= ir.rex_b;
3994 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 3995 ir.rm &= 0x3;
cf648174 3996 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
3997 }
3998 break;
a38bba38 3999 case 1: /* OP Gv, Ev */
7ad10968
HZ
4000 if (i386_record_modrm (&ir))
4001 return -1;
cf648174
HZ
4002 ir.reg |= rex_r;
4003 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4004 ir.reg &= 0x3;
cf648174 4005 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4006 break;
a38bba38 4007 case 2: /* OP A, Iv */
cf648174 4008 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4009 break;
4010 }
4011 }
cf648174 4012 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4013 break;
42fdc8df 4014
a38bba38 4015 case 0x80: /* GRP1 */
7ad10968
HZ
4016 case 0x81:
4017 case 0x82:
4018 case 0x83:
4019 if (i386_record_modrm (&ir))
4020 return -1;
8201327c 4021
7ad10968
HZ
4022 if (ir.reg != OP_CMPL)
4023 {
4024 if ((opcode & 1) == 0)
4025 ir.ot = OT_BYTE;
4026 else
4027 ir.ot = ir.dflag + OT_WORD;
28fc6740 4028
7ad10968
HZ
4029 if (ir.mod != 3)
4030 {
cf648174
HZ
4031 if (opcode == 0x83)
4032 ir.rip_offset = 1;
4033 else
4034 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4035 if (i386_record_lea_modrm (&ir))
4036 return -1;
4037 }
4038 else
cf648174 4039 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968 4040 }
cf648174 4041 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4042 break;
5e3397bb 4043
a38bba38 4044 case 0x40: /* inc */
7ad10968
HZ
4045 case 0x41:
4046 case 0x42:
4047 case 0x43:
4048 case 0x44:
4049 case 0x45:
4050 case 0x46:
4051 case 0x47:
a38bba38
MS
4052
4053 case 0x48: /* dec */
7ad10968
HZ
4054 case 0x49:
4055 case 0x4a:
4056 case 0x4b:
4057 case 0x4c:
4058 case 0x4d:
4059 case 0x4e:
4060 case 0x4f:
a38bba38 4061
cf648174
HZ
4062 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 7);
4063 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4064 break;
acd5c798 4065
a38bba38 4066 case 0xf6: /* GRP3 */
7ad10968
HZ
4067 case 0xf7:
4068 if ((opcode & 1) == 0)
4069 ir.ot = OT_BYTE;
4070 else
4071 ir.ot = ir.dflag + OT_WORD;
4072 if (i386_record_modrm (&ir))
4073 return -1;
acd5c798 4074
cf648174
HZ
4075 if (ir.mod != 3 && ir.reg == 0)
4076 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4077
7ad10968
HZ
4078 switch (ir.reg)
4079 {
a38bba38 4080 case 0: /* test */
cf648174 4081 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4082 break;
a38bba38
MS
4083 case 2: /* not */
4084 case 3: /* neg */
7ad10968
HZ
4085 if (ir.mod != 3)
4086 {
4087 if (i386_record_lea_modrm (&ir))
4088 return -1;
4089 }
4090 else
4091 {
cf648174
HZ
4092 ir.rm |= ir.rex_b;
4093 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4094 ir.rm &= 0x3;
cf648174 4095 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4096 }
a38bba38 4097 if (ir.reg == 3) /* neg */
cf648174 4098 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4099 break;
a38bba38
MS
4100 case 4: /* mul */
4101 case 5: /* imul */
4102 case 6: /* div */
4103 case 7: /* idiv */
cf648174 4104 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968 4105 if (ir.ot != OT_BYTE)
cf648174
HZ
4106 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
4107 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4108 break;
4109 default:
4110 ir.addr -= 2;
4111 opcode = opcode << 8 | ir.modrm;
4112 goto no_support;
4113 break;
4114 }
4115 break;
4116
a38bba38
MS
4117 case 0xfe: /* GRP4 */
4118 case 0xff: /* GRP5 */
7ad10968
HZ
4119 if (i386_record_modrm (&ir))
4120 return -1;
4121 if (ir.reg >= 2 && opcode == 0xfe)
4122 {
4123 ir.addr -= 2;
4124 opcode = opcode << 8 | ir.modrm;
4125 goto no_support;
4126 }
7ad10968
HZ
4127 switch (ir.reg)
4128 {
a38bba38
MS
4129 case 0: /* inc */
4130 case 1: /* dec */
cf648174
HZ
4131 if ((opcode & 1) == 0)
4132 ir.ot = OT_BYTE;
4133 else
4134 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4135 if (ir.mod != 3)
4136 {
4137 if (i386_record_lea_modrm (&ir))
4138 return -1;
4139 }
4140 else
4141 {
cf648174
HZ
4142 ir.rm |= ir.rex_b;
4143 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4144 ir.rm &= 0x3;
cf648174 4145 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4146 }
cf648174 4147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4148 break;
a38bba38 4149 case 2: /* call */
cf648174
HZ
4150 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4151 ir.dflag = 2;
4152 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4153 return -1;
cf648174 4154 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4155 break;
a38bba38 4156 case 3: /* lcall */
cf648174
HZ
4157 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
4158 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4159 return -1;
cf648174 4160 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 4161 break;
a38bba38
MS
4162 case 4: /* jmp */
4163 case 5: /* ljmp */
cf648174
HZ
4164 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
4165 break;
a38bba38 4166 case 6: /* push */
cf648174
HZ
4167 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4168 ir.dflag = 2;
4169 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4170 return -1;
7ad10968
HZ
4171 break;
4172 default:
4173 ir.addr -= 2;
4174 opcode = opcode << 8 | ir.modrm;
4175 goto no_support;
4176 break;
4177 }
4178 break;
4179
a38bba38 4180 case 0x84: /* test */
7ad10968
HZ
4181 case 0x85:
4182 case 0xa8:
4183 case 0xa9:
cf648174 4184 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4185 break;
4186
a38bba38 4187 case 0x98: /* CWDE/CBW */
cf648174 4188 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4189 break;
4190
a38bba38 4191 case 0x99: /* CDQ/CWD */
cf648174
HZ
4192 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4193 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4194 break;
4195
a38bba38 4196 case 0x0faf: /* imul */
7ad10968
HZ
4197 case 0x69:
4198 case 0x6b:
4199 ir.ot = ir.dflag + OT_WORD;
4200 if (i386_record_modrm (&ir))
4201 return -1;
cf648174
HZ
4202 if (opcode == 0x69)
4203 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
4204 else if (opcode == 0x6b)
4205 ir.rip_offset = 1;
4206 ir.reg |= rex_r;
4207 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4208 ir.reg &= 0x3;
cf648174
HZ
4209 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4210 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4211 break;
4212
a38bba38 4213 case 0x0fc0: /* xadd */
7ad10968
HZ
4214 case 0x0fc1:
4215 if ((opcode & 1) == 0)
4216 ir.ot = OT_BYTE;
4217 else
4218 ir.ot = ir.dflag + OT_WORD;
4219 if (i386_record_modrm (&ir))
4220 return -1;
cf648174 4221 ir.reg |= rex_r;
7ad10968
HZ
4222 if (ir.mod == 3)
4223 {
cf648174 4224 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4225 ir.reg &= 0x3;
cf648174
HZ
4226 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4227 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4228 ir.rm &= 0x3;
cf648174 4229 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4230 }
4231 else
4232 {
4233 if (i386_record_lea_modrm (&ir))
4234 return -1;
cf648174 4235 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4236 ir.reg &= 0x3;
cf648174 4237 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968 4238 }
cf648174 4239 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4240 break;
4241
a38bba38 4242 case 0x0fb0: /* cmpxchg */
7ad10968
HZ
4243 case 0x0fb1:
4244 if ((opcode & 1) == 0)
4245 ir.ot = OT_BYTE;
4246 else
4247 ir.ot = ir.dflag + OT_WORD;
4248 if (i386_record_modrm (&ir))
4249 return -1;
4250 if (ir.mod == 3)
4251 {
cf648174
HZ
4252 ir.reg |= rex_r;
4253 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4254 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4255 ir.reg &= 0x3;
cf648174 4256 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4257 }
4258 else
4259 {
cf648174 4260 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4261 if (i386_record_lea_modrm (&ir))
4262 return -1;
4263 }
cf648174 4264 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4265 break;
4266
a38bba38 4267 case 0x0fc7: /* cmpxchg8b */
7ad10968
HZ
4268 if (i386_record_modrm (&ir))
4269 return -1;
4270 if (ir.mod == 3)
4271 {
4272 ir.addr -= 2;
4273 opcode = opcode << 8 | ir.modrm;
4274 goto no_support;
4275 }
cf648174
HZ
4276 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
4278 if (i386_record_lea_modrm (&ir))
4279 return -1;
cf648174 4280 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4281 break;
4282
a38bba38 4283 case 0x50: /* push */
7ad10968
HZ
4284 case 0x51:
4285 case 0x52:
4286 case 0x53:
4287 case 0x54:
4288 case 0x55:
4289 case 0x56:
4290 case 0x57:
4291 case 0x68:
4292 case 0x6a:
cf648174
HZ
4293 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4294 ir.dflag = 2;
4295 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4296 return -1;
4297 break;
4298
a38bba38
MS
4299 case 0x06: /* push es */
4300 case 0x0e: /* push cs */
4301 case 0x16: /* push ss */
4302 case 0x1e: /* push ds */
cf648174
HZ
4303 if (ir.regmap[X86_RECORD_R8_REGNUM])
4304 {
4305 ir.addr -= 1;
4306 goto no_support;
4307 }
4308 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
4309 return -1;
4310 break;
4311
a38bba38
MS
4312 case 0x0fa0: /* push fs */
4313 case 0x0fa8: /* push gs */
cf648174
HZ
4314 if (ir.regmap[X86_RECORD_R8_REGNUM])
4315 {
4316 ir.addr -= 2;
4317 goto no_support;
4318 }
4319 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968 4320 return -1;
cf648174
HZ
4321 break;
4322
a38bba38 4323 case 0x60: /* pusha */
cf648174
HZ
4324 if (ir.regmap[X86_RECORD_R8_REGNUM])
4325 {
4326 ir.addr -= 1;
4327 goto no_support;
4328 }
4329 if (i386_record_push (&ir, 1 << (ir.dflag + 4)))
7ad10968
HZ
4330 return -1;
4331 break;
4332
a38bba38 4333 case 0x58: /* pop */
7ad10968
HZ
4334 case 0x59:
4335 case 0x5a:
4336 case 0x5b:
4337 case 0x5c:
4338 case 0x5d:
4339 case 0x5e:
4340 case 0x5f:
cf648174
HZ
4341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4342 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4343 break;
4344
a38bba38 4345 case 0x61: /* popa */
cf648174
HZ
4346 if (ir.regmap[X86_RECORD_R8_REGNUM])
4347 {
4348 ir.addr -= 1;
4349 goto no_support;
7ad10968 4350 }
425b824a
MS
4351 for (regnum = X86_RECORD_REAX_REGNUM;
4352 regnum <= X86_RECORD_REDI_REGNUM;
4353 regnum++)
4354 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
7ad10968
HZ
4355 break;
4356
a38bba38 4357 case 0x8f: /* pop */
cf648174
HZ
4358 if (ir.regmap[X86_RECORD_R8_REGNUM])
4359 ir.ot = ir.dflag ? OT_QUAD : OT_WORD;
4360 else
4361 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4362 if (i386_record_modrm (&ir))
4363 return -1;
4364 if (ir.mod == 3)
cf648174 4365 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
4366 else
4367 {
cf648174 4368 ir.popl_esp_hack = 1 << ir.ot;
7ad10968
HZ
4369 if (i386_record_lea_modrm (&ir))
4370 return -1;
4371 }
cf648174 4372 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
7ad10968
HZ
4373 break;
4374
a38bba38 4375 case 0xc8: /* enter */
cf648174
HZ
4376 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
4377 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
4378 ir.dflag = 2;
4379 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
7ad10968
HZ
4380 return -1;
4381 break;
4382
a38bba38 4383 case 0xc9: /* leave */
cf648174
HZ
4384 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4385 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
7ad10968
HZ
4386 break;
4387
a38bba38 4388 case 0x07: /* pop es */
cf648174
HZ
4389 if (ir.regmap[X86_RECORD_R8_REGNUM])
4390 {
4391 ir.addr -= 1;
4392 goto no_support;
4393 }
4394 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4395 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_ES_REGNUM);
4396 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4397 break;
4398
a38bba38 4399 case 0x17: /* pop ss */
cf648174
HZ
4400 if (ir.regmap[X86_RECORD_R8_REGNUM])
4401 {
4402 ir.addr -= 1;
4403 goto no_support;
4404 }
4405 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4406 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_SS_REGNUM);
4407 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4408 break;
4409
a38bba38 4410 case 0x1f: /* pop ds */
cf648174
HZ
4411 if (ir.regmap[X86_RECORD_R8_REGNUM])
4412 {
4413 ir.addr -= 1;
4414 goto no_support;
4415 }
4416 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_DS_REGNUM);
4418 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4419 break;
4420
a38bba38 4421 case 0x0fa1: /* pop fs */
cf648174
HZ
4422 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4423 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_FS_REGNUM);
4424 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4425 break;
4426
a38bba38 4427 case 0x0fa9: /* pop gs */
cf648174
HZ
4428 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
4429 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
4430 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4431 break;
4432
a38bba38 4433 case 0x88: /* mov */
7ad10968
HZ
4434 case 0x89:
4435 case 0xc6:
4436 case 0xc7:
4437 if ((opcode & 1) == 0)
4438 ir.ot = OT_BYTE;
4439 else
4440 ir.ot = ir.dflag + OT_WORD;
4441
4442 if (i386_record_modrm (&ir))
4443 return -1;
4444
4445 if (ir.mod != 3)
4446 {
cf648174
HZ
4447 if (opcode == 0xc6 || opcode == 0xc7)
4448 ir.rip_offset = (ir.ot > OT_LONG) ? 4 : (1 << ir.ot);
7ad10968
HZ
4449 if (i386_record_lea_modrm (&ir))
4450 return -1;
4451 }
4452 else
4453 {
cf648174
HZ
4454 if (opcode == 0xc6 || opcode == 0xc7)
4455 ir.rm |= ir.rex_b;
4456 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4457 ir.rm &= 0x3;
cf648174 4458 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4459 }
7ad10968 4460 break;
cf648174 4461
a38bba38 4462 case 0x8a: /* mov */
7ad10968
HZ
4463 case 0x8b:
4464 if ((opcode & 1) == 0)
4465 ir.ot = OT_BYTE;
4466 else
4467 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4468 if (i386_record_modrm (&ir))
4469 return -1;
cf648174
HZ
4470 ir.reg |= rex_r;
4471 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4472 ir.reg &= 0x3;
cf648174
HZ
4473 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
4474 break;
7ad10968 4475
a38bba38 4476 case 0x8c: /* mov seg */
cf648174 4477 if (i386_record_modrm (&ir))
7ad10968 4478 return -1;
cf648174
HZ
4479 if (ir.reg > 5)
4480 {
4481 ir.addr -= 2;
4482 opcode = opcode << 8 | ir.modrm;
4483 goto no_support;
4484 }
4485
4486 if (ir.mod == 3)
4487 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
4488 else
4489 {
4490 ir.ot = OT_WORD;
4491 if (i386_record_lea_modrm (&ir))
4492 return -1;
4493 }
7ad10968
HZ
4494 break;
4495
a38bba38 4496 case 0x8e: /* mov seg */
7ad10968
HZ
4497 if (i386_record_modrm (&ir))
4498 return -1;
7ad10968
HZ
4499 switch (ir.reg)
4500 {
4501 case 0:
425b824a 4502 regnum = X86_RECORD_ES_REGNUM;
7ad10968
HZ
4503 break;
4504 case 2:
425b824a 4505 regnum = X86_RECORD_SS_REGNUM;
7ad10968
HZ
4506 break;
4507 case 3:
425b824a 4508 regnum = X86_RECORD_DS_REGNUM;
7ad10968
HZ
4509 break;
4510 case 4:
425b824a 4511 regnum = X86_RECORD_FS_REGNUM;
7ad10968
HZ
4512 break;
4513 case 5:
425b824a 4514 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4515 break;
4516 default:
4517 ir.addr -= 2;
4518 opcode = opcode << 8 | ir.modrm;
4519 goto no_support;
4520 break;
4521 }
425b824a 4522 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174 4523 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4524 break;
4525
a38bba38
MS
4526 case 0x0fb6: /* movzbS */
4527 case 0x0fb7: /* movzwS */
4528 case 0x0fbe: /* movsbS */
4529 case 0x0fbf: /* movswS */
7ad10968
HZ
4530 if (i386_record_modrm (&ir))
4531 return -1;
cf648174 4532 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
7ad10968
HZ
4533 break;
4534
a38bba38 4535 case 0x8d: /* lea */
7ad10968
HZ
4536 if (i386_record_modrm (&ir))
4537 return -1;
4538 if (ir.mod == 3)
4539 {
4540 ir.addr -= 2;
4541 opcode = opcode << 8 | ir.modrm;
4542 goto no_support;
4543 }
7ad10968 4544 ir.ot = ir.dflag;
cf648174
HZ
4545 ir.reg |= rex_r;
4546 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4547 ir.reg &= 0x3;
cf648174 4548 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4549 break;
4550
a38bba38 4551 case 0xa0: /* mov EAX */
7ad10968 4552 case 0xa1:
a38bba38
MS
4553
4554 case 0xd7: /* xlat */
cf648174 4555 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
4556 break;
4557
a38bba38 4558 case 0xa2: /* mov EAX */
7ad10968 4559 case 0xa3:
d7877f7e 4560 if (ir.override >= 0)
cf648174 4561 {
bb08c432
HZ
4562 if (record_memory_query)
4563 {
4564 int q;
4565
4566 target_terminal_ours ();
4567 q = yquery (_("\
4568Process record ignores the memory change of instruction at address %s\n\
4569because it can't get the value of the segment register.\n\
4570Do you want to stop the program?"),
4571 paddress (gdbarch, ir.orig_addr));
4572 target_terminal_inferior ();
4573 if (q)
4574 return -1;
4575 }
cf648174
HZ
4576 }
4577 else
4578 {
4579 if ((opcode & 1) == 0)
4580 ir.ot = OT_BYTE;
4581 else
4582 ir.ot = ir.dflag + OT_WORD;
4583 if (ir.aflag == 2)
4584 {
60a1502a 4585 if (target_read_memory (ir.addr, buf, 8))
cf648174
HZ
4586 {
4587 if (record_debug)
4588 printf_unfiltered (_("Process record: error reading "
4589 "memory at addr 0x%s len = 8.\n"),
4590 paddress (gdbarch, ir.addr));
4591 return -1;
4592 }
4593 ir.addr += 8;
60a1502a 4594 addr = extract_unsigned_integer (buf, 8, byte_order);
cf648174
HZ
4595 }
4596 else if (ir.aflag)
4597 {
60a1502a 4598 if (target_read_memory (ir.addr, buf, 4))
cf648174
HZ
4599 {
4600 if (record_debug)
4601 printf_unfiltered (_("Process record: error reading "
4602 "memory at addr 0x%s len = 4.\n"),
4603 paddress (gdbarch, ir.addr));
4604 return -1;
4605 }
4606 ir.addr += 4;
60a1502a 4607 addr = extract_unsigned_integer (buf, 4, byte_order);
cf648174
HZ
4608 }
4609 else
4610 {
60a1502a 4611 if (target_read_memory (ir.addr, buf, 2))
cf648174
HZ
4612 {
4613 if (record_debug)
4614 printf_unfiltered (_("Process record: error reading "
4615 "memory at addr 0x%s len = 2.\n"),
4616 paddress (gdbarch, ir.addr));
4617 return -1;
4618 }
4619 ir.addr += 2;
60a1502a 4620 addr = extract_unsigned_integer (buf, 2, byte_order);
cf648174 4621 }
648d0c8b 4622 if (record_arch_list_add_mem (addr, 1 << ir.ot))
cf648174
HZ
4623 return -1;
4624 }
7ad10968
HZ
4625 break;
4626
a38bba38 4627 case 0xb0: /* mov R, Ib */
7ad10968
HZ
4628 case 0xb1:
4629 case 0xb2:
4630 case 0xb3:
4631 case 0xb4:
4632 case 0xb5:
4633 case 0xb6:
4634 case 0xb7:
cf648174
HZ
4635 I386_RECORD_ARCH_LIST_ADD_REG ((ir.regmap[X86_RECORD_R8_REGNUM])
4636 ? ((opcode & 0x7) | ir.rex_b)
4637 : ((opcode & 0x7) & 0x3));
7ad10968
HZ
4638 break;
4639
a38bba38 4640 case 0xb8: /* mov R, Iv */
7ad10968
HZ
4641 case 0xb9:
4642 case 0xba:
4643 case 0xbb:
4644 case 0xbc:
4645 case 0xbd:
4646 case 0xbe:
4647 case 0xbf:
cf648174 4648 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 0x7) | ir.rex_b);
7ad10968
HZ
4649 break;
4650
a38bba38 4651 case 0x91: /* xchg R, EAX */
7ad10968
HZ
4652 case 0x92:
4653 case 0x93:
4654 case 0x94:
4655 case 0x95:
4656 case 0x96:
4657 case 0x97:
cf648174
HZ
4658 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
4659 I386_RECORD_ARCH_LIST_ADD_REG (opcode & 0x7);
7ad10968
HZ
4660 break;
4661
a38bba38 4662 case 0x86: /* xchg Ev, Gv */
7ad10968
HZ
4663 case 0x87:
4664 if ((opcode & 1) == 0)
4665 ir.ot = OT_BYTE;
4666 else
4667 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4668 if (i386_record_modrm (&ir))
4669 return -1;
7ad10968
HZ
4670 if (ir.mod == 3)
4671 {
86839d38 4672 ir.rm |= ir.rex_b;
cf648174
HZ
4673 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
4674 ir.rm &= 0x3;
4675 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968
HZ
4676 }
4677 else
4678 {
4679 if (i386_record_lea_modrm (&ir))
4680 return -1;
4681 }
cf648174
HZ
4682 ir.reg |= rex_r;
4683 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4684 ir.reg &= 0x3;
cf648174 4685 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
4686 break;
4687
a38bba38
MS
4688 case 0xc4: /* les Gv */
4689 case 0xc5: /* lds Gv */
cf648174
HZ
4690 if (ir.regmap[X86_RECORD_R8_REGNUM])
4691 {
4692 ir.addr -= 1;
4693 goto no_support;
4694 }
d3f323f3 4695 /* FALLTHROUGH */
a38bba38
MS
4696 case 0x0fb2: /* lss Gv */
4697 case 0x0fb4: /* lfs Gv */
4698 case 0x0fb5: /* lgs Gv */
7ad10968
HZ
4699 if (i386_record_modrm (&ir))
4700 return -1;
4701 if (ir.mod == 3)
4702 {
4703 if (opcode > 0xff)
4704 ir.addr -= 3;
4705 else
4706 ir.addr -= 2;
4707 opcode = opcode << 8 | ir.modrm;
4708 goto no_support;
4709 }
7ad10968
HZ
4710 switch (opcode)
4711 {
a38bba38 4712 case 0xc4: /* les Gv */
425b824a 4713 regnum = X86_RECORD_ES_REGNUM;
7ad10968 4714 break;
a38bba38 4715 case 0xc5: /* lds Gv */
425b824a 4716 regnum = X86_RECORD_DS_REGNUM;
7ad10968 4717 break;
a38bba38 4718 case 0x0fb2: /* lss Gv */
425b824a 4719 regnum = X86_RECORD_SS_REGNUM;
7ad10968 4720 break;
a38bba38 4721 case 0x0fb4: /* lfs Gv */
425b824a 4722 regnum = X86_RECORD_FS_REGNUM;
7ad10968 4723 break;
a38bba38 4724 case 0x0fb5: /* lgs Gv */
425b824a 4725 regnum = X86_RECORD_GS_REGNUM;
7ad10968
HZ
4726 break;
4727 }
425b824a 4728 I386_RECORD_ARCH_LIST_ADD_REG (regnum);
cf648174
HZ
4729 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
4730 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4731 break;
4732
a38bba38 4733 case 0xc0: /* shifts */
7ad10968
HZ
4734 case 0xc1:
4735 case 0xd0:
4736 case 0xd1:
4737 case 0xd2:
4738 case 0xd3:
4739 if ((opcode & 1) == 0)
4740 ir.ot = OT_BYTE;
4741 else
4742 ir.ot = ir.dflag + OT_WORD;
7ad10968
HZ
4743 if (i386_record_modrm (&ir))
4744 return -1;
7ad10968
HZ
4745 if (ir.mod != 3 && (opcode == 0xd2 || opcode == 0xd3))
4746 {
4747 if (i386_record_lea_modrm (&ir))
4748 return -1;
4749 }
4750 else
4751 {
cf648174
HZ
4752 ir.rm |= ir.rex_b;
4753 if (ir.ot == OT_BYTE && !ir.regmap[X86_RECORD_R8_REGNUM])
7ad10968 4754 ir.rm &= 0x3;
cf648174 4755 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm);
7ad10968 4756 }
cf648174 4757 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
4758 break;
4759
4760 case 0x0fa4:
4761 case 0x0fa5:
4762 case 0x0fac:
4763 case 0x0fad:
4764 if (i386_record_modrm (&ir))
4765 return -1;
4766 if (ir.mod == 3)
4767 {
4768 if (record_arch_list_add_reg (ir.regcache, ir.rm))
4769 return -1;
4770 }
4771 else
4772 {
4773 if (i386_record_lea_modrm (&ir))
4774 return -1;
4775 }
4776 break;
4777
a38bba38 4778 case 0xd8: /* Floats. */
7ad10968
HZ
4779 case 0xd9:
4780 case 0xda:
4781 case 0xdb:
4782 case 0xdc:
4783 case 0xdd:
4784 case 0xde:
4785 case 0xdf:
4786 if (i386_record_modrm (&ir))
4787 return -1;
4788 ir.reg |= ((opcode & 7) << 3);
4789 if (ir.mod != 3)
4790 {
1777feb0 4791 /* Memory. */
955db0c0 4792 uint64_t addr64;
7ad10968 4793
955db0c0 4794 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968
HZ
4795 return -1;
4796 switch (ir.reg)
4797 {
7ad10968 4798 case 0x02:
0289bdd7
MS
4799 case 0x12:
4800 case 0x22:
4801 case 0x32:
4802 /* For fcom, ficom nothing to do. */
4803 break;
7ad10968 4804 case 0x03:
0289bdd7
MS
4805 case 0x13:
4806 case 0x23:
4807 case 0x33:
4808 /* For fcomp, ficomp pop FPU stack, store all. */
4809 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4810 return -1;
4811 break;
4812 case 0x00:
4813 case 0x01:
7ad10968
HZ
4814 case 0x04:
4815 case 0x05:
4816 case 0x06:
4817 case 0x07:
4818 case 0x10:
4819 case 0x11:
7ad10968
HZ
4820 case 0x14:
4821 case 0x15:
4822 case 0x16:
4823 case 0x17:
4824 case 0x20:
4825 case 0x21:
7ad10968
HZ
4826 case 0x24:
4827 case 0x25:
4828 case 0x26:
4829 case 0x27:
4830 case 0x30:
4831 case 0x31:
7ad10968
HZ
4832 case 0x34:
4833 case 0x35:
4834 case 0x36:
4835 case 0x37:
0289bdd7
MS
4836 /* For fadd, fmul, fsub, fsubr, fdiv, fdivr, fiadd, fimul,
4837 fisub, fisubr, fidiv, fidivr, modR/M.reg is an extension
4838 of code, always affects st(0) register. */
4839 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
4840 return -1;
7ad10968
HZ
4841 break;
4842 case 0x08:
4843 case 0x0a:
4844 case 0x0b:
4845 case 0x18:
4846 case 0x19:
4847 case 0x1a:
4848 case 0x1b:
0289bdd7 4849 case 0x1d:
7ad10968
HZ
4850 case 0x28:
4851 case 0x29:
4852 case 0x2a:
4853 case 0x2b:
4854 case 0x38:
4855 case 0x39:
4856 case 0x3a:
4857 case 0x3b:
0289bdd7
MS
4858 case 0x3c:
4859 case 0x3d:
7ad10968
HZ
4860 switch (ir.reg & 7)
4861 {
4862 case 0:
0289bdd7
MS
4863 /* Handling fld, fild. */
4864 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4865 return -1;
7ad10968
HZ
4866 break;
4867 case 1:
4868 switch (ir.reg >> 4)
4869 {
4870 case 0:
955db0c0 4871 if (record_arch_list_add_mem (addr64, 4))
7ad10968
HZ
4872 return -1;
4873 break;
4874 case 2:
955db0c0 4875 if (record_arch_list_add_mem (addr64, 8))
7ad10968
HZ
4876 return -1;
4877 break;
4878 case 3:
0289bdd7 4879 break;
7ad10968 4880 default:
955db0c0 4881 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4882 return -1;
4883 break;
4884 }
4885 break;
4886 default:
4887 switch (ir.reg >> 4)
4888 {
4889 case 0:
955db0c0 4890 if (record_arch_list_add_mem (addr64, 4))
0289bdd7
MS
4891 return -1;
4892 if (3 == (ir.reg & 7))
4893 {
4894 /* For fstp m32fp. */
4895 if (i386_record_floats (gdbarch, &ir,
4896 I386_SAVE_FPU_REGS))
4897 return -1;
4898 }
4899 break;
7ad10968 4900 case 1:
955db0c0 4901 if (record_arch_list_add_mem (addr64, 4))
7ad10968 4902 return -1;
0289bdd7
MS
4903 if ((3 == (ir.reg & 7))
4904 || (5 == (ir.reg & 7))
4905 || (7 == (ir.reg & 7)))
4906 {
4907 /* For fstp insn. */
4908 if (i386_record_floats (gdbarch, &ir,
4909 I386_SAVE_FPU_REGS))
4910 return -1;
4911 }
7ad10968
HZ
4912 break;
4913 case 2:
955db0c0 4914 if (record_arch_list_add_mem (addr64, 8))
7ad10968 4915 return -1;
0289bdd7
MS
4916 if (3 == (ir.reg & 7))
4917 {
4918 /* For fstp m64fp. */
4919 if (i386_record_floats (gdbarch, &ir,
4920 I386_SAVE_FPU_REGS))
4921 return -1;
4922 }
7ad10968
HZ
4923 break;
4924 case 3:
0289bdd7
MS
4925 if ((3 <= (ir.reg & 7)) && (6 <= (ir.reg & 7)))
4926 {
4927 /* For fistp, fbld, fild, fbstp. */
4928 if (i386_record_floats (gdbarch, &ir,
4929 I386_SAVE_FPU_REGS))
4930 return -1;
4931 }
4932 /* Fall through */
7ad10968 4933 default:
955db0c0 4934 if (record_arch_list_add_mem (addr64, 2))
7ad10968
HZ
4935 return -1;
4936 break;
4937 }
4938 break;
4939 }
4940 break;
4941 case 0x0c:
0289bdd7
MS
4942 /* Insn fldenv. */
4943 if (i386_record_floats (gdbarch, &ir,
4944 I386_SAVE_FPU_ENV_REG_STACK))
4945 return -1;
4946 break;
7ad10968 4947 case 0x0d:
0289bdd7
MS
4948 /* Insn fldcw. */
4949 if (i386_record_floats (gdbarch, &ir, I387_FCTRL_REGNUM (tdep)))
4950 return -1;
4951 break;
7ad10968 4952 case 0x2c:
0289bdd7
MS
4953 /* Insn frstor. */
4954 if (i386_record_floats (gdbarch, &ir,
4955 I386_SAVE_FPU_ENV_REG_STACK))
4956 return -1;
7ad10968
HZ
4957 break;
4958 case 0x0e:
4959 if (ir.dflag)
4960 {
955db0c0 4961 if (record_arch_list_add_mem (addr64, 28))
7ad10968
HZ
4962 return -1;
4963 }
4964 else
4965 {
955db0c0 4966 if (record_arch_list_add_mem (addr64, 14))
7ad10968
HZ
4967 return -1;
4968 }
4969 break;
4970 case 0x0f:
4971 case 0x2f:
955db0c0 4972 if (record_arch_list_add_mem (addr64, 2))
7ad10968 4973 return -1;
0289bdd7
MS
4974 /* Insn fstp, fbstp. */
4975 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
4976 return -1;
7ad10968
HZ
4977 break;
4978 case 0x1f:
4979 case 0x3e:
955db0c0 4980 if (record_arch_list_add_mem (addr64, 10))
7ad10968
HZ
4981 return -1;
4982 break;
4983 case 0x2e:
4984 if (ir.dflag)
4985 {
955db0c0 4986 if (record_arch_list_add_mem (addr64, 28))
7ad10968 4987 return -1;
955db0c0 4988 addr64 += 28;
7ad10968
HZ
4989 }
4990 else
4991 {
955db0c0 4992 if (record_arch_list_add_mem (addr64, 14))
7ad10968 4993 return -1;
955db0c0 4994 addr64 += 14;
7ad10968 4995 }
955db0c0 4996 if (record_arch_list_add_mem (addr64, 80))
7ad10968 4997 return -1;
0289bdd7
MS
4998 /* Insn fsave. */
4999 if (i386_record_floats (gdbarch, &ir,
5000 I386_SAVE_FPU_ENV_REG_STACK))
5001 return -1;
7ad10968
HZ
5002 break;
5003 case 0x3f:
955db0c0 5004 if (record_arch_list_add_mem (addr64, 8))
7ad10968 5005 return -1;
0289bdd7
MS
5006 /* Insn fistp. */
5007 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5008 return -1;
7ad10968
HZ
5009 break;
5010 default:
5011 ir.addr -= 2;
5012 opcode = opcode << 8 | ir.modrm;
5013 goto no_support;
5014 break;
5015 }
5016 }
0289bdd7
MS
5017 /* Opcode is an extension of modR/M byte. */
5018 else
5019 {
5020 switch (opcode)
5021 {
5022 case 0xd8:
5023 if (i386_record_floats (gdbarch, &ir, I387_ST0_REGNUM (tdep)))
5024 return -1;
5025 break;
5026 case 0xd9:
5027 if (0x0c == (ir.modrm >> 4))
5028 {
5029 if ((ir.modrm & 0x0f) <= 7)
5030 {
5031 if (i386_record_floats (gdbarch, &ir,
5032 I386_SAVE_FPU_REGS))
5033 return -1;
5034 }
5035 else
5036 {
5037 if (i386_record_floats (gdbarch, &ir,
5038 I387_ST0_REGNUM (tdep)))
5039 return -1;
5040 /* If only st(0) is changing, then we have already
5041 recorded. */
5042 if ((ir.modrm & 0x0f) - 0x08)
5043 {
5044 if (i386_record_floats (gdbarch, &ir,
5045 I387_ST0_REGNUM (tdep) +
5046 ((ir.modrm & 0x0f) - 0x08)))
5047 return -1;
5048 }
5049 }
5050 }
5051 else
5052 {
5053 switch (ir.modrm)
5054 {
5055 case 0xe0:
5056 case 0xe1:
5057 case 0xf0:
5058 case 0xf5:
5059 case 0xf8:
5060 case 0xfa:
5061 case 0xfc:
5062 case 0xfe:
5063 case 0xff:
5064 if (i386_record_floats (gdbarch, &ir,
5065 I387_ST0_REGNUM (tdep)))
5066 return -1;
5067 break;
5068 case 0xf1:
5069 case 0xf2:
5070 case 0xf3:
5071 case 0xf4:
5072 case 0xf6:
5073 case 0xf7:
5074 case 0xe8:
5075 case 0xe9:
5076 case 0xea:
5077 case 0xeb:
5078 case 0xec:
5079 case 0xed:
5080 case 0xee:
5081 case 0xf9:
5082 case 0xfb:
5083 if (i386_record_floats (gdbarch, &ir,
5084 I386_SAVE_FPU_REGS))
5085 return -1;
5086 break;
5087 case 0xfd:
5088 if (i386_record_floats (gdbarch, &ir,
5089 I387_ST0_REGNUM (tdep)))
5090 return -1;
5091 if (i386_record_floats (gdbarch, &ir,
5092 I387_ST0_REGNUM (tdep) + 1))
5093 return -1;
5094 break;
5095 }
5096 }
5097 break;
5098 case 0xda:
5099 if (0xe9 == ir.modrm)
5100 {
5101 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5102 return -1;
5103 }
5104 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5105 {
5106 if (i386_record_floats (gdbarch, &ir,
5107 I387_ST0_REGNUM (tdep)))
5108 return -1;
5109 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5110 {
5111 if (i386_record_floats (gdbarch, &ir,
5112 I387_ST0_REGNUM (tdep) +
5113 (ir.modrm & 0x0f)))
5114 return -1;
5115 }
5116 else if ((ir.modrm & 0x0f) - 0x08)
5117 {
5118 if (i386_record_floats (gdbarch, &ir,
5119 I387_ST0_REGNUM (tdep) +
5120 ((ir.modrm & 0x0f) - 0x08)))
5121 return -1;
5122 }
5123 }
5124 break;
5125 case 0xdb:
5126 if (0xe3 == ir.modrm)
5127 {
5128 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_ENV))
5129 return -1;
5130 }
5131 else if ((0x0c == ir.modrm >> 4) || (0x0d == ir.modrm >> 4))
5132 {
5133 if (i386_record_floats (gdbarch, &ir,
5134 I387_ST0_REGNUM (tdep)))
5135 return -1;
5136 if (((ir.modrm & 0x0f) > 0) && ((ir.modrm & 0x0f) <= 7))
5137 {
5138 if (i386_record_floats (gdbarch, &ir,
5139 I387_ST0_REGNUM (tdep) +
5140 (ir.modrm & 0x0f)))
5141 return -1;
5142 }
5143 else if ((ir.modrm & 0x0f) - 0x08)
5144 {
5145 if (i386_record_floats (gdbarch, &ir,
5146 I387_ST0_REGNUM (tdep) +
5147 ((ir.modrm & 0x0f) - 0x08)))
5148 return -1;
5149 }
5150 }
5151 break;
5152 case 0xdc:
5153 if ((0x0c == ir.modrm >> 4)
5154 || (0x0d == ir.modrm >> 4)
5155 || (0x0f == ir.modrm >> 4))
5156 {
5157 if ((ir.modrm & 0x0f) <= 7)
5158 {
5159 if (i386_record_floats (gdbarch, &ir,
5160 I387_ST0_REGNUM (tdep) +
5161 (ir.modrm & 0x0f)))
5162 return -1;
5163 }
5164 else
5165 {
5166 if (i386_record_floats (gdbarch, &ir,
5167 I387_ST0_REGNUM (tdep) +
5168 ((ir.modrm & 0x0f) - 0x08)))
5169 return -1;
5170 }
5171 }
5172 break;
5173 case 0xdd:
5174 if (0x0c == ir.modrm >> 4)
5175 {
5176 if (i386_record_floats (gdbarch, &ir,
5177 I387_FTAG_REGNUM (tdep)))
5178 return -1;
5179 }
5180 else if ((0x0d == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5181 {
5182 if ((ir.modrm & 0x0f) <= 7)
5183 {
5184 if (i386_record_floats (gdbarch, &ir,
5185 I387_ST0_REGNUM (tdep) +
5186 (ir.modrm & 0x0f)))
5187 return -1;
5188 }
5189 else
5190 {
5191 if (i386_record_floats (gdbarch, &ir,
5192 I386_SAVE_FPU_REGS))
5193 return -1;
5194 }
5195 }
5196 break;
5197 case 0xde:
5198 if ((0x0c == ir.modrm >> 4)
5199 || (0x0e == ir.modrm >> 4)
5200 || (0x0f == ir.modrm >> 4)
5201 || (0xd9 == ir.modrm))
5202 {
5203 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5204 return -1;
5205 }
5206 break;
5207 case 0xdf:
5208 if (0xe0 == ir.modrm)
5209 {
5210 if (record_arch_list_add_reg (ir.regcache, I386_EAX_REGNUM))
5211 return -1;
5212 }
5213 else if ((0x0f == ir.modrm >> 4) || (0x0e == ir.modrm >> 4))
5214 {
5215 if (i386_record_floats (gdbarch, &ir, I386_SAVE_FPU_REGS))
5216 return -1;
5217 }
5218 break;
5219 }
5220 }
7ad10968 5221 break;
7ad10968 5222 /* string ops */
a38bba38 5223 case 0xa4: /* movsS */
7ad10968 5224 case 0xa5:
a38bba38 5225 case 0xaa: /* stosS */
7ad10968 5226 case 0xab:
a38bba38 5227 case 0x6c: /* insS */
7ad10968 5228 case 0x6d:
cf648174 5229 regcache_raw_read_unsigned (ir.regcache,
77d7dc92 5230 ir.regmap[X86_RECORD_RECX_REGNUM],
648d0c8b
MS
5231 &addr);
5232 if (addr)
cf648174 5233 {
77d7dc92
HZ
5234 ULONGEST es, ds;
5235
5236 if ((opcode & 1) == 0)
5237 ir.ot = OT_BYTE;
5238 else
5239 ir.ot = ir.dflag + OT_WORD;
cf648174
HZ
5240 regcache_raw_read_unsigned (ir.regcache,
5241 ir.regmap[X86_RECORD_REDI_REGNUM],
648d0c8b 5242 &addr);
77d7dc92 5243
d7877f7e
HZ
5244 regcache_raw_read_unsigned (ir.regcache,
5245 ir.regmap[X86_RECORD_ES_REGNUM],
5246 &es);
5247 regcache_raw_read_unsigned (ir.regcache,
5248 ir.regmap[X86_RECORD_DS_REGNUM],
5249 &ds);
5250 if (ir.aflag && (es != ds))
77d7dc92
HZ
5251 {
5252 /* addr += ((uint32_t) read_register (I386_ES_REGNUM)) << 4; */
bb08c432
HZ
5253 if (record_memory_query)
5254 {
5255 int q;
5256
5257 target_terminal_ours ();
5258 q = yquery (_("\
5259Process record ignores the memory change of instruction at address %s\n\
5260because it can't get the value of the segment register.\n\
5261Do you want to stop the program?"),
5262 paddress (gdbarch, ir.orig_addr));
5263 target_terminal_inferior ();
5264 if (q)
5265 return -1;
5266 }
df61f520
HZ
5267 }
5268 else
5269 {
648d0c8b 5270 if (record_arch_list_add_mem (addr, 1 << ir.ot))
df61f520 5271 return -1;
77d7dc92
HZ
5272 }
5273
5274 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5275 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
77d7dc92
HZ
5276 if (opcode == 0xa4 || opcode == 0xa5)
5277 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5278 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5279 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5280 }
cf648174 5281 break;
7ad10968 5282
a38bba38 5283 case 0xa6: /* cmpsS */
cf648174
HZ
5284 case 0xa7:
5285 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
5286 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
5287 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
5288 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5289 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5290 break;
5291
a38bba38 5292 case 0xac: /* lodsS */
7ad10968 5293 case 0xad:
cf648174
HZ
5294 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5295 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5296 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5297 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5298 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5299 break;
5300
a38bba38 5301 case 0xae: /* scasS */
7ad10968 5302 case 0xaf:
cf648174 5303 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
7ad10968 5304 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5305 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5306 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5307 break;
5308
a38bba38 5309 case 0x6e: /* outsS */
cf648174
HZ
5310 case 0x6f:
5311 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
7ad10968 5312 if (prefixes & (PREFIX_REPZ | PREFIX_REPNZ))
cf648174
HZ
5313 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5314 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5315 break;
5316
a38bba38 5317 case 0xe4: /* port I/O */
7ad10968
HZ
5318 case 0xe5:
5319 case 0xec:
5320 case 0xed:
cf648174
HZ
5321 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5322 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5323 break;
5324
5325 case 0xe6:
5326 case 0xe7:
5327 case 0xee:
5328 case 0xef:
5329 break;
5330
5331 /* control */
a38bba38
MS
5332 case 0xc2: /* ret im */
5333 case 0xc3: /* ret */
cf648174
HZ
5334 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5335 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5336 break;
5337
a38bba38
MS
5338 case 0xca: /* lret im */
5339 case 0xcb: /* lret */
5340 case 0xcf: /* iret */
cf648174
HZ
5341 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5342 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5343 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5344 break;
5345
a38bba38 5346 case 0xe8: /* call im */
cf648174
HZ
5347 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5348 ir.dflag = 2;
5349 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5350 return -1;
7ad10968
HZ
5351 break;
5352
a38bba38 5353 case 0x9a: /* lcall im */
cf648174
HZ
5354 if (ir.regmap[X86_RECORD_R8_REGNUM])
5355 {
5356 ir.addr -= 1;
5357 goto no_support;
5358 }
5359 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_CS_REGNUM);
5360 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5361 return -1;
7ad10968
HZ
5362 break;
5363
a38bba38
MS
5364 case 0xe9: /* jmp im */
5365 case 0xea: /* ljmp im */
5366 case 0xeb: /* jmp Jb */
5367 case 0x70: /* jcc Jb */
7ad10968
HZ
5368 case 0x71:
5369 case 0x72:
5370 case 0x73:
5371 case 0x74:
5372 case 0x75:
5373 case 0x76:
5374 case 0x77:
5375 case 0x78:
5376 case 0x79:
5377 case 0x7a:
5378 case 0x7b:
5379 case 0x7c:
5380 case 0x7d:
5381 case 0x7e:
5382 case 0x7f:
a38bba38 5383 case 0x0f80: /* jcc Jv */
7ad10968
HZ
5384 case 0x0f81:
5385 case 0x0f82:
5386 case 0x0f83:
5387 case 0x0f84:
5388 case 0x0f85:
5389 case 0x0f86:
5390 case 0x0f87:
5391 case 0x0f88:
5392 case 0x0f89:
5393 case 0x0f8a:
5394 case 0x0f8b:
5395 case 0x0f8c:
5396 case 0x0f8d:
5397 case 0x0f8e:
5398 case 0x0f8f:
5399 break;
5400
a38bba38 5401 case 0x0f90: /* setcc Gv */
7ad10968
HZ
5402 case 0x0f91:
5403 case 0x0f92:
5404 case 0x0f93:
5405 case 0x0f94:
5406 case 0x0f95:
5407 case 0x0f96:
5408 case 0x0f97:
5409 case 0x0f98:
5410 case 0x0f99:
5411 case 0x0f9a:
5412 case 0x0f9b:
5413 case 0x0f9c:
5414 case 0x0f9d:
5415 case 0x0f9e:
5416 case 0x0f9f:
cf648174 5417 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5418 ir.ot = OT_BYTE;
5419 if (i386_record_modrm (&ir))
5420 return -1;
5421 if (ir.mod == 3)
cf648174
HZ
5422 I386_RECORD_ARCH_LIST_ADD_REG (ir.rex_b ? (ir.rm | ir.rex_b)
5423 : (ir.rm & 0x3));
7ad10968
HZ
5424 else
5425 {
5426 if (i386_record_lea_modrm (&ir))
5427 return -1;
5428 }
5429 break;
5430
a38bba38 5431 case 0x0f40: /* cmov Gv, Ev */
7ad10968
HZ
5432 case 0x0f41:
5433 case 0x0f42:
5434 case 0x0f43:
5435 case 0x0f44:
5436 case 0x0f45:
5437 case 0x0f46:
5438 case 0x0f47:
5439 case 0x0f48:
5440 case 0x0f49:
5441 case 0x0f4a:
5442 case 0x0f4b:
5443 case 0x0f4c:
5444 case 0x0f4d:
5445 case 0x0f4e:
5446 case 0x0f4f:
5447 if (i386_record_modrm (&ir))
5448 return -1;
cf648174 5449 ir.reg |= rex_r;
7ad10968
HZ
5450 if (ir.dflag == OT_BYTE)
5451 ir.reg &= 0x3;
cf648174 5452 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
7ad10968
HZ
5453 break;
5454
5455 /* flags */
a38bba38 5456 case 0x9c: /* pushf */
cf648174
HZ
5457 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5458 if (ir.regmap[X86_RECORD_R8_REGNUM] && ir.dflag)
5459 ir.dflag = 2;
5460 if (i386_record_push (&ir, 1 << (ir.dflag + 1)))
5461 return -1;
7ad10968
HZ
5462 break;
5463
a38bba38 5464 case 0x9d: /* popf */
cf648174
HZ
5465 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
5466 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5467 break;
5468
a38bba38 5469 case 0x9e: /* sahf */
cf648174
HZ
5470 if (ir.regmap[X86_RECORD_R8_REGNUM])
5471 {
5472 ir.addr -= 1;
5473 goto no_support;
5474 }
d3f323f3 5475 /* FALLTHROUGH */
a38bba38
MS
5476 case 0xf5: /* cmc */
5477 case 0xf8: /* clc */
5478 case 0xf9: /* stc */
5479 case 0xfc: /* cld */
5480 case 0xfd: /* std */
cf648174 5481 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5482 break;
5483
a38bba38 5484 case 0x9f: /* lahf */
cf648174
HZ
5485 if (ir.regmap[X86_RECORD_R8_REGNUM])
5486 {
5487 ir.addr -= 1;
5488 goto no_support;
5489 }
5490 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5491 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
7ad10968
HZ
5492 break;
5493
5494 /* bit operations */
a38bba38 5495 case 0x0fba: /* bt/bts/btr/btc Gv, im */
7ad10968
HZ
5496 ir.ot = ir.dflag + OT_WORD;
5497 if (i386_record_modrm (&ir))
5498 return -1;
5499 if (ir.reg < 4)
5500 {
cf648174 5501 ir.addr -= 2;
7ad10968
HZ
5502 opcode = opcode << 8 | ir.modrm;
5503 goto no_support;
5504 }
cf648174 5505 if (ir.reg != 4)
7ad10968 5506 {
cf648174
HZ
5507 if (ir.mod == 3)
5508 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5509 else
5510 {
cf648174 5511 if (i386_record_lea_modrm (&ir))
7ad10968
HZ
5512 return -1;
5513 }
5514 }
cf648174 5515 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5516 break;
5517
a38bba38 5518 case 0x0fa3: /* bt Gv, Ev */
cf648174
HZ
5519 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5520 break;
5521
a38bba38
MS
5522 case 0x0fab: /* bts */
5523 case 0x0fb3: /* btr */
5524 case 0x0fbb: /* btc */
cf648174
HZ
5525 ir.ot = ir.dflag + OT_WORD;
5526 if (i386_record_modrm (&ir))
5527 return -1;
5528 if (ir.mod == 3)
5529 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
5530 else
5531 {
955db0c0
MS
5532 uint64_t addr64;
5533 if (i386_record_lea_modrm_addr (&ir, &addr64))
cf648174
HZ
5534 return -1;
5535 regcache_raw_read_unsigned (ir.regcache,
5536 ir.regmap[ir.reg | rex_r],
648d0c8b 5537 &addr);
cf648174
HZ
5538 switch (ir.dflag)
5539 {
5540 case 0:
648d0c8b 5541 addr64 += ((int16_t) addr >> 4) << 4;
cf648174
HZ
5542 break;
5543 case 1:
648d0c8b 5544 addr64 += ((int32_t) addr >> 5) << 5;
cf648174
HZ
5545 break;
5546 case 2:
648d0c8b 5547 addr64 += ((int64_t) addr >> 6) << 6;
cf648174
HZ
5548 break;
5549 }
955db0c0 5550 if (record_arch_list_add_mem (addr64, 1 << ir.ot))
cf648174
HZ
5551 return -1;
5552 if (i386_record_lea_modrm (&ir))
5553 return -1;
5554 }
5555 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5556 break;
5557
a38bba38
MS
5558 case 0x0fbc: /* bsf */
5559 case 0x0fbd: /* bsr */
cf648174
HZ
5560 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
5561 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5562 break;
5563
5564 /* bcd */
a38bba38
MS
5565 case 0x27: /* daa */
5566 case 0x2f: /* das */
5567 case 0x37: /* aaa */
5568 case 0x3f: /* aas */
5569 case 0xd4: /* aam */
5570 case 0xd5: /* aad */
cf648174
HZ
5571 if (ir.regmap[X86_RECORD_R8_REGNUM])
5572 {
5573 ir.addr -= 1;
5574 goto no_support;
5575 }
5576 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5577 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5578 break;
5579
5580 /* misc */
a38bba38 5581 case 0x90: /* nop */
7ad10968
HZ
5582 if (prefixes & PREFIX_LOCK)
5583 {
5584 ir.addr -= 1;
5585 goto no_support;
5586 }
5587 break;
5588
a38bba38 5589 case 0x9b: /* fwait */
425b824a 5590 if (target_read_memory (ir.addr, &opcode8, 1))
0289bdd7
MS
5591 {
5592 if (record_debug)
5593 printf_unfiltered (_("Process record: error reading memory at "
5594 "addr 0x%s len = 1.\n"),
5595 paddress (gdbarch, ir.addr));
5596 return -1;
5597 }
425b824a 5598 opcode = (uint32_t) opcode8;
0289bdd7
MS
5599 ir.addr++;
5600 goto reswitch;
7ad10968
HZ
5601 break;
5602
7ad10968 5603 /* XXX */
a38bba38 5604 case 0xcc: /* int3 */
a3c4230a 5605 printf_unfiltered (_("Process record does not support instruction "
7ad10968
HZ
5606 "int3.\n"));
5607 ir.addr -= 1;
5608 goto no_support;
5609 break;
5610
7ad10968 5611 /* XXX */
a38bba38 5612 case 0xcd: /* int */
7ad10968
HZ
5613 {
5614 int ret;
425b824a
MS
5615 uint8_t interrupt;
5616 if (target_read_memory (ir.addr, &interrupt, 1))
7ad10968
HZ
5617 {
5618 if (record_debug)
5619 printf_unfiltered (_("Process record: error reading memory "
5af949e3
UW
5620 "at addr %s len = 1.\n"),
5621 paddress (gdbarch, ir.addr));
7ad10968
HZ
5622 return -1;
5623 }
5624 ir.addr++;
425b824a 5625 if (interrupt != 0x80
a3c4230a 5626 || tdep->i386_intx80_record == NULL)
7ad10968 5627 {
a3c4230a 5628 printf_unfiltered (_("Process record does not support "
7ad10968 5629 "instruction int 0x%02x.\n"),
425b824a 5630 interrupt);
7ad10968
HZ
5631 ir.addr -= 2;
5632 goto no_support;
5633 }
a3c4230a 5634 ret = tdep->i386_intx80_record (ir.regcache);
7ad10968
HZ
5635 if (ret)
5636 return ret;
5637 }
5638 break;
5639
7ad10968 5640 /* XXX */
a38bba38 5641 case 0xce: /* into */
a3c4230a 5642 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5643 "instruction into.\n"));
5644 ir.addr -= 1;
5645 goto no_support;
5646 break;
5647
a38bba38
MS
5648 case 0xfa: /* cli */
5649 case 0xfb: /* sti */
7ad10968
HZ
5650 break;
5651
a38bba38 5652 case 0x62: /* bound */
a3c4230a 5653 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5654 "instruction bound.\n"));
5655 ir.addr -= 1;
5656 goto no_support;
5657 break;
5658
a38bba38 5659 case 0x0fc8: /* bswap reg */
7ad10968
HZ
5660 case 0x0fc9:
5661 case 0x0fca:
5662 case 0x0fcb:
5663 case 0x0fcc:
5664 case 0x0fcd:
5665 case 0x0fce:
5666 case 0x0fcf:
cf648174 5667 I386_RECORD_ARCH_LIST_ADD_REG ((opcode & 7) | ir.rex_b);
7ad10968
HZ
5668 break;
5669
a38bba38 5670 case 0xd6: /* salc */
cf648174
HZ
5671 if (ir.regmap[X86_RECORD_R8_REGNUM])
5672 {
5673 ir.addr -= 1;
5674 goto no_support;
5675 }
5676 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5677 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5678 break;
5679
a38bba38
MS
5680 case 0xe0: /* loopnz */
5681 case 0xe1: /* loopz */
5682 case 0xe2: /* loop */
5683 case 0xe3: /* jecxz */
cf648174
HZ
5684 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5685 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5686 break;
5687
a38bba38 5688 case 0x0f30: /* wrmsr */
a3c4230a 5689 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5690 "instruction wrmsr.\n"));
5691 ir.addr -= 2;
5692 goto no_support;
5693 break;
5694
a38bba38 5695 case 0x0f32: /* rdmsr */
a3c4230a 5696 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5697 "instruction rdmsr.\n"));
5698 ir.addr -= 2;
5699 goto no_support;
5700 break;
5701
a38bba38 5702 case 0x0f31: /* rdtsc */
f8c4f480
HZ
5703 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5704 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
7ad10968
HZ
5705 break;
5706
a38bba38 5707 case 0x0f34: /* sysenter */
7ad10968
HZ
5708 {
5709 int ret;
cf648174
HZ
5710 if (ir.regmap[X86_RECORD_R8_REGNUM])
5711 {
5712 ir.addr -= 2;
5713 goto no_support;
5714 }
a3c4230a 5715 if (tdep->i386_sysenter_record == NULL)
7ad10968 5716 {
a3c4230a 5717 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5718 "instruction sysenter.\n"));
5719 ir.addr -= 2;
5720 goto no_support;
5721 }
a3c4230a 5722 ret = tdep->i386_sysenter_record (ir.regcache);
7ad10968
HZ
5723 if (ret)
5724 return ret;
5725 }
5726 break;
5727
a38bba38 5728 case 0x0f35: /* sysexit */
a3c4230a 5729 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5730 "instruction sysexit.\n"));
5731 ir.addr -= 2;
5732 goto no_support;
5733 break;
5734
a38bba38 5735 case 0x0f05: /* syscall */
cf648174
HZ
5736 {
5737 int ret;
a3c4230a 5738 if (tdep->i386_syscall_record == NULL)
cf648174 5739 {
a3c4230a 5740 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5741 "instruction syscall.\n"));
5742 ir.addr -= 2;
5743 goto no_support;
5744 }
a3c4230a 5745 ret = tdep->i386_syscall_record (ir.regcache);
cf648174
HZ
5746 if (ret)
5747 return ret;
5748 }
5749 break;
5750
a38bba38 5751 case 0x0f07: /* sysret */
a3c4230a 5752 printf_unfiltered (_("Process record does not support "
cf648174
HZ
5753 "instruction sysret.\n"));
5754 ir.addr -= 2;
5755 goto no_support;
5756 break;
5757
a38bba38 5758 case 0x0fa2: /* cpuid */
cf648174
HZ
5759 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5760 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
5761 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5762 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
7ad10968
HZ
5763 break;
5764
a38bba38 5765 case 0xf4: /* hlt */
a3c4230a 5766 printf_unfiltered (_("Process record does not support "
7ad10968
HZ
5767 "instruction hlt.\n"));
5768 ir.addr -= 1;
5769 goto no_support;
5770 break;
5771
5772 case 0x0f00:
5773 if (i386_record_modrm (&ir))
5774 return -1;
5775 switch (ir.reg)
5776 {
a38bba38
MS
5777 case 0: /* sldt */
5778 case 1: /* str */
7ad10968 5779 if (ir.mod == 3)
cf648174 5780 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
5781 else
5782 {
5783 ir.ot = OT_WORD;
5784 if (i386_record_lea_modrm (&ir))
5785 return -1;
5786 }
5787 break;
a38bba38
MS
5788 case 2: /* lldt */
5789 case 3: /* ltr */
7ad10968 5790 break;
a38bba38
MS
5791 case 4: /* verr */
5792 case 5: /* verw */
cf648174 5793 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5794 break;
5795 default:
5796 ir.addr -= 3;
5797 opcode = opcode << 8 | ir.modrm;
5798 goto no_support;
5799 break;
5800 }
5801 break;
5802
5803 case 0x0f01:
5804 if (i386_record_modrm (&ir))
5805 return -1;
5806 switch (ir.reg)
5807 {
a38bba38 5808 case 0: /* sgdt */
7ad10968 5809 {
955db0c0 5810 uint64_t addr64;
7ad10968
HZ
5811
5812 if (ir.mod == 3)
5813 {
5814 ir.addr -= 3;
5815 opcode = opcode << 8 | ir.modrm;
5816 goto no_support;
5817 }
d7877f7e 5818 if (ir.override >= 0)
7ad10968 5819 {
bb08c432
HZ
5820 if (record_memory_query)
5821 {
5822 int q;
5823
5824 target_terminal_ours ();
5825 q = yquery (_("\
5826Process record ignores the memory change of instruction at address %s\n\
5827because it can't get the value of the segment register.\n\
5828Do you want to stop the program?"),
5829 paddress (gdbarch, ir.orig_addr));
5830 target_terminal_inferior ();
5831 if (q)
5832 return -1;
5833 }
7ad10968
HZ
5834 }
5835 else
5836 {
955db0c0 5837 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5838 return -1;
955db0c0 5839 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5840 return -1;
955db0c0 5841 addr64 += 2;
cf648174
HZ
5842 if (ir.regmap[X86_RECORD_R8_REGNUM])
5843 {
955db0c0 5844 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5845 return -1;
5846 }
5847 else
5848 {
955db0c0 5849 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5850 return -1;
5851 }
7ad10968
HZ
5852 }
5853 }
5854 break;
5855 case 1:
5856 if (ir.mod == 3)
5857 {
5858 switch (ir.rm)
5859 {
a38bba38 5860 case 0: /* monitor */
7ad10968 5861 break;
a38bba38 5862 case 1: /* mwait */
cf648174 5863 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5864 break;
5865 default:
5866 ir.addr -= 3;
5867 opcode = opcode << 8 | ir.modrm;
5868 goto no_support;
5869 break;
5870 }
5871 }
5872 else
5873 {
5874 /* sidt */
d7877f7e 5875 if (ir.override >= 0)
7ad10968 5876 {
bb08c432
HZ
5877 if (record_memory_query)
5878 {
5879 int q;
5880
5881 target_terminal_ours ();
5882 q = yquery (_("\
5883Process record ignores the memory change of instruction at address %s\n\
5884because it can't get the value of the segment register.\n\
5885Do you want to stop the program?"),
5886 paddress (gdbarch, ir.orig_addr));
5887 target_terminal_inferior ();
5888 if (q)
5889 return -1;
5890 }
7ad10968
HZ
5891 }
5892 else
5893 {
955db0c0 5894 uint64_t addr64;
7ad10968 5895
955db0c0 5896 if (i386_record_lea_modrm_addr (&ir, &addr64))
7ad10968 5897 return -1;
955db0c0 5898 if (record_arch_list_add_mem (addr64, 2))
7ad10968 5899 return -1;
955db0c0 5900 addr64 += 2;
cf648174
HZ
5901 if (ir.regmap[X86_RECORD_R8_REGNUM])
5902 {
955db0c0 5903 if (record_arch_list_add_mem (addr64, 8))
cf648174
HZ
5904 return -1;
5905 }
5906 else
5907 {
955db0c0 5908 if (record_arch_list_add_mem (addr64, 4))
cf648174
HZ
5909 return -1;
5910 }
7ad10968
HZ
5911 }
5912 }
5913 break;
a38bba38 5914 case 2: /* lgdt */
3800e645
MS
5915 if (ir.mod == 3)
5916 {
5917 /* xgetbv */
5918 if (ir.rm == 0)
5919 {
5920 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
5921 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
5922 break;
5923 }
5924 /* xsetbv */
5925 else if (ir.rm == 1)
5926 break;
5927 }
a38bba38 5928 case 3: /* lidt */
7ad10968
HZ
5929 if (ir.mod == 3)
5930 {
5931 ir.addr -= 3;
5932 opcode = opcode << 8 | ir.modrm;
5933 goto no_support;
5934 }
5935 break;
a38bba38 5936 case 4: /* smsw */
7ad10968
HZ
5937 if (ir.mod == 3)
5938 {
cf648174 5939 if (record_arch_list_add_reg (ir.regcache, ir.rm | ir.rex_b))
7ad10968
HZ
5940 return -1;
5941 }
5942 else
5943 {
5944 ir.ot = OT_WORD;
5945 if (i386_record_lea_modrm (&ir))
5946 return -1;
5947 }
cf648174 5948 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 5949 break;
a38bba38 5950 case 6: /* lmsw */
cf648174
HZ
5951 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5952 break;
a38bba38 5953 case 7: /* invlpg */
cf648174
HZ
5954 if (ir.mod == 3)
5955 {
5956 if (ir.rm == 0 && ir.regmap[X86_RECORD_R8_REGNUM])
5957 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_GS_REGNUM);
5958 else
5959 {
5960 ir.addr -= 3;
5961 opcode = opcode << 8 | ir.modrm;
5962 goto no_support;
5963 }
5964 }
5965 else
5966 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
5967 break;
5968 default:
5969 ir.addr -= 3;
5970 opcode = opcode << 8 | ir.modrm;
5971 goto no_support;
7ad10968
HZ
5972 break;
5973 }
5974 break;
5975
a38bba38
MS
5976 case 0x0f08: /* invd */
5977 case 0x0f09: /* wbinvd */
7ad10968
HZ
5978 break;
5979
a38bba38 5980 case 0x63: /* arpl */
7ad10968
HZ
5981 if (i386_record_modrm (&ir))
5982 return -1;
cf648174
HZ
5983 if (ir.mod == 3 || ir.regmap[X86_RECORD_R8_REGNUM])
5984 {
5985 I386_RECORD_ARCH_LIST_ADD_REG (ir.regmap[X86_RECORD_R8_REGNUM]
5986 ? (ir.reg | rex_r) : ir.rm);
5987 }
7ad10968 5988 else
cf648174
HZ
5989 {
5990 ir.ot = ir.dflag ? OT_LONG : OT_WORD;
5991 if (i386_record_lea_modrm (&ir))
5992 return -1;
5993 }
5994 if (!ir.regmap[X86_RECORD_R8_REGNUM])
5995 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
5996 break;
5997
a38bba38
MS
5998 case 0x0f02: /* lar */
5999 case 0x0f03: /* lsl */
7ad10968
HZ
6000 if (i386_record_modrm (&ir))
6001 return -1;
cf648174
HZ
6002 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6003 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6004 break;
6005
6006 case 0x0f18:
cf648174
HZ
6007 if (i386_record_modrm (&ir))
6008 return -1;
6009 if (ir.mod == 3 && ir.reg == 3)
6010 {
6011 ir.addr -= 3;
6012 opcode = opcode << 8 | ir.modrm;
6013 goto no_support;
6014 }
7ad10968
HZ
6015 break;
6016
7ad10968
HZ
6017 case 0x0f19:
6018 case 0x0f1a:
6019 case 0x0f1b:
6020 case 0x0f1c:
6021 case 0x0f1d:
6022 case 0x0f1e:
6023 case 0x0f1f:
a38bba38 6024 /* nop (multi byte) */
7ad10968
HZ
6025 break;
6026
a38bba38
MS
6027 case 0x0f20: /* mov reg, crN */
6028 case 0x0f22: /* mov crN, reg */
7ad10968
HZ
6029 if (i386_record_modrm (&ir))
6030 return -1;
6031 if ((ir.modrm & 0xc0) != 0xc0)
6032 {
cf648174 6033 ir.addr -= 3;
7ad10968
HZ
6034 opcode = opcode << 8 | ir.modrm;
6035 goto no_support;
6036 }
6037 switch (ir.reg)
6038 {
6039 case 0:
6040 case 2:
6041 case 3:
6042 case 4:
6043 case 8:
6044 if (opcode & 2)
cf648174 6045 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6046 else
cf648174 6047 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6048 break;
6049 default:
cf648174 6050 ir.addr -= 3;
7ad10968
HZ
6051 opcode = opcode << 8 | ir.modrm;
6052 goto no_support;
6053 break;
6054 }
6055 break;
6056
a38bba38
MS
6057 case 0x0f21: /* mov reg, drN */
6058 case 0x0f23: /* mov drN, reg */
7ad10968
HZ
6059 if (i386_record_modrm (&ir))
6060 return -1;
6061 if ((ir.modrm & 0xc0) != 0xc0 || ir.reg == 4
6062 || ir.reg == 5 || ir.reg >= 8)
6063 {
cf648174 6064 ir.addr -= 3;
7ad10968
HZ
6065 opcode = opcode << 8 | ir.modrm;
6066 goto no_support;
6067 }
6068 if (opcode & 2)
cf648174 6069 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968 6070 else
cf648174 6071 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
7ad10968
HZ
6072 break;
6073
a38bba38 6074 case 0x0f06: /* clts */
cf648174 6075 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
7ad10968
HZ
6076 break;
6077
a3c4230a
HZ
6078 /* MMX 3DNow! SSE SSE2 SSE3 SSSE3 SSE4 */
6079
6080 case 0x0f0d: /* 3DNow! prefetch */
6081 break;
6082
6083 case 0x0f0e: /* 3DNow! femms */
6084 case 0x0f77: /* emms */
6085 if (i386_fpc_regnum_p (gdbarch, I387_FTAG_REGNUM(tdep)))
6086 goto no_support;
6087 record_arch_list_add_reg (ir.regcache, I387_FTAG_REGNUM(tdep));
6088 break;
6089
6090 case 0x0f0f: /* 3DNow! data */
6091 if (i386_record_modrm (&ir))
6092 return -1;
6093 if (target_read_memory (ir.addr, &opcode8, 1))
6094 {
6095 printf_unfiltered (_("Process record: error reading memory at "
6096 "addr %s len = 1.\n"),
6097 paddress (gdbarch, ir.addr));
6098 return -1;
6099 }
6100 ir.addr++;
6101 switch (opcode8)
6102 {
6103 case 0x0c: /* 3DNow! pi2fw */
6104 case 0x0d: /* 3DNow! pi2fd */
6105 case 0x1c: /* 3DNow! pf2iw */
6106 case 0x1d: /* 3DNow! pf2id */
6107 case 0x8a: /* 3DNow! pfnacc */
6108 case 0x8e: /* 3DNow! pfpnacc */
6109 case 0x90: /* 3DNow! pfcmpge */
6110 case 0x94: /* 3DNow! pfmin */
6111 case 0x96: /* 3DNow! pfrcp */
6112 case 0x97: /* 3DNow! pfrsqrt */
6113 case 0x9a: /* 3DNow! pfsub */
6114 case 0x9e: /* 3DNow! pfadd */
6115 case 0xa0: /* 3DNow! pfcmpgt */
6116 case 0xa4: /* 3DNow! pfmax */
6117 case 0xa6: /* 3DNow! pfrcpit1 */
6118 case 0xa7: /* 3DNow! pfrsqit1 */
6119 case 0xaa: /* 3DNow! pfsubr */
6120 case 0xae: /* 3DNow! pfacc */
6121 case 0xb0: /* 3DNow! pfcmpeq */
6122 case 0xb4: /* 3DNow! pfmul */
6123 case 0xb6: /* 3DNow! pfrcpit2 */
6124 case 0xb7: /* 3DNow! pmulhrw */
6125 case 0xbb: /* 3DNow! pswapd */
6126 case 0xbf: /* 3DNow! pavgusb */
6127 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6128 goto no_support_3dnow_data;
6129 record_arch_list_add_reg (ir.regcache, ir.reg);
6130 break;
6131
6132 default:
6133no_support_3dnow_data:
6134 opcode = (opcode << 8) | opcode8;
6135 goto no_support;
6136 break;
6137 }
6138 break;
6139
6140 case 0x0faa: /* rsm */
6141 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6142 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REAX_REGNUM);
6143 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RECX_REGNUM);
6144 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDX_REGNUM);
6145 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBX_REGNUM);
6146 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESP_REGNUM);
6147 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REBP_REGNUM);
6148 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_RESI_REGNUM);
6149 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REDI_REGNUM);
6150 break;
6151
6152 case 0x0fae:
6153 if (i386_record_modrm (&ir))
6154 return -1;
6155 switch(ir.reg)
6156 {
6157 case 0: /* fxsave */
6158 {
6159 uint64_t tmpu64;
6160
6161 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6162 if (i386_record_lea_modrm_addr (&ir, &tmpu64))
6163 return -1;
6164 if (record_arch_list_add_mem (tmpu64, 512))
6165 return -1;
6166 }
6167 break;
6168
6169 case 1: /* fxrstor */
6170 {
6171 int i;
6172
6173 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6174
6175 for (i = I387_MM0_REGNUM (tdep);
6176 i386_mmx_regnum_p (gdbarch, i); i++)
6177 record_arch_list_add_reg (ir.regcache, i);
6178
6179 for (i = I387_XMM0_REGNUM (tdep);
c131fcee 6180 i386_xmm_regnum_p (gdbarch, i); i++)
a3c4230a
HZ
6181 record_arch_list_add_reg (ir.regcache, i);
6182
6183 if (i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6184 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6185
6186 for (i = I387_ST0_REGNUM (tdep);
6187 i386_fp_regnum_p (gdbarch, i); i++)
6188 record_arch_list_add_reg (ir.regcache, i);
6189
6190 for (i = I387_FCTRL_REGNUM (tdep);
6191 i386_fpc_regnum_p (gdbarch, i); i++)
6192 record_arch_list_add_reg (ir.regcache, i);
6193 }
6194 break;
6195
6196 case 2: /* ldmxcsr */
6197 if (!i386_mxcsr_regnum_p (gdbarch, I387_MXCSR_REGNUM(tdep)))
6198 goto no_support;
6199 record_arch_list_add_reg (ir.regcache, I387_MXCSR_REGNUM(tdep));
6200 break;
6201
6202 case 3: /* stmxcsr */
6203 ir.ot = OT_LONG;
6204 if (i386_record_lea_modrm (&ir))
6205 return -1;
6206 break;
6207
6208 case 5: /* lfence */
6209 case 6: /* mfence */
6210 case 7: /* sfence clflush */
6211 break;
6212
6213 default:
6214 opcode = (opcode << 8) | ir.modrm;
6215 goto no_support;
6216 break;
6217 }
6218 break;
6219
6220 case 0x0fc3: /* movnti */
6221 ir.ot = (ir.dflag == 2) ? OT_QUAD : OT_LONG;
6222 if (i386_record_modrm (&ir))
6223 return -1;
6224 if (ir.mod == 3)
6225 goto no_support;
6226 ir.reg |= rex_r;
6227 if (i386_record_lea_modrm (&ir))
6228 return -1;
6229 break;
6230
6231 /* Add prefix to opcode. */
6232 case 0x0f10:
6233 case 0x0f11:
6234 case 0x0f12:
6235 case 0x0f13:
6236 case 0x0f14:
6237 case 0x0f15:
6238 case 0x0f16:
6239 case 0x0f17:
6240 case 0x0f28:
6241 case 0x0f29:
6242 case 0x0f2a:
6243 case 0x0f2b:
6244 case 0x0f2c:
6245 case 0x0f2d:
6246 case 0x0f2e:
6247 case 0x0f2f:
6248 case 0x0f38:
6249 case 0x0f39:
6250 case 0x0f3a:
6251 case 0x0f50:
6252 case 0x0f51:
6253 case 0x0f52:
6254 case 0x0f53:
6255 case 0x0f54:
6256 case 0x0f55:
6257 case 0x0f56:
6258 case 0x0f57:
6259 case 0x0f58:
6260 case 0x0f59:
6261 case 0x0f5a:
6262 case 0x0f5b:
6263 case 0x0f5c:
6264 case 0x0f5d:
6265 case 0x0f5e:
6266 case 0x0f5f:
6267 case 0x0f60:
6268 case 0x0f61:
6269 case 0x0f62:
6270 case 0x0f63:
6271 case 0x0f64:
6272 case 0x0f65:
6273 case 0x0f66:
6274 case 0x0f67:
6275 case 0x0f68:
6276 case 0x0f69:
6277 case 0x0f6a:
6278 case 0x0f6b:
6279 case 0x0f6c:
6280 case 0x0f6d:
6281 case 0x0f6e:
6282 case 0x0f6f:
6283 case 0x0f70:
6284 case 0x0f71:
6285 case 0x0f72:
6286 case 0x0f73:
6287 case 0x0f74:
6288 case 0x0f75:
6289 case 0x0f76:
6290 case 0x0f7c:
6291 case 0x0f7d:
6292 case 0x0f7e:
6293 case 0x0f7f:
6294 case 0x0fb8:
6295 case 0x0fc2:
6296 case 0x0fc4:
6297 case 0x0fc5:
6298 case 0x0fc6:
6299 case 0x0fd0:
6300 case 0x0fd1:
6301 case 0x0fd2:
6302 case 0x0fd3:
6303 case 0x0fd4:
6304 case 0x0fd5:
6305 case 0x0fd6:
6306 case 0x0fd7:
6307 case 0x0fd8:
6308 case 0x0fd9:
6309 case 0x0fda:
6310 case 0x0fdb:
6311 case 0x0fdc:
6312 case 0x0fdd:
6313 case 0x0fde:
6314 case 0x0fdf:
6315 case 0x0fe0:
6316 case 0x0fe1:
6317 case 0x0fe2:
6318 case 0x0fe3:
6319 case 0x0fe4:
6320 case 0x0fe5:
6321 case 0x0fe6:
6322 case 0x0fe7:
6323 case 0x0fe8:
6324 case 0x0fe9:
6325 case 0x0fea:
6326 case 0x0feb:
6327 case 0x0fec:
6328 case 0x0fed:
6329 case 0x0fee:
6330 case 0x0fef:
6331 case 0x0ff0:
6332 case 0x0ff1:
6333 case 0x0ff2:
6334 case 0x0ff3:
6335 case 0x0ff4:
6336 case 0x0ff5:
6337 case 0x0ff6:
6338 case 0x0ff7:
6339 case 0x0ff8:
6340 case 0x0ff9:
6341 case 0x0ffa:
6342 case 0x0ffb:
6343 case 0x0ffc:
6344 case 0x0ffd:
6345 case 0x0ffe:
6346 switch (prefixes)
6347 {
6348 case PREFIX_REPNZ:
6349 opcode |= 0xf20000;
6350 break;
6351 case PREFIX_DATA:
6352 opcode |= 0x660000;
6353 break;
6354 case PREFIX_REPZ:
6355 opcode |= 0xf30000;
6356 break;
6357 }
6358reswitch_prefix_add:
6359 switch (opcode)
6360 {
6361 case 0x0f38:
6362 case 0x660f38:
6363 case 0xf20f38:
6364 case 0x0f3a:
6365 case 0x660f3a:
6366 if (target_read_memory (ir.addr, &opcode8, 1))
6367 {
6368 printf_unfiltered (_("Process record: error reading memory at "
6369 "addr %s len = 1.\n"),
6370 paddress (gdbarch, ir.addr));
6371 return -1;
6372 }
6373 ir.addr++;
6374 opcode = (uint32_t) opcode8 | opcode << 8;
6375 goto reswitch_prefix_add;
6376 break;
6377
6378 case 0x0f10: /* movups */
6379 case 0x660f10: /* movupd */
6380 case 0xf30f10: /* movss */
6381 case 0xf20f10: /* movsd */
6382 case 0x0f12: /* movlps */
6383 case 0x660f12: /* movlpd */
6384 case 0xf30f12: /* movsldup */
6385 case 0xf20f12: /* movddup */
6386 case 0x0f14: /* unpcklps */
6387 case 0x660f14: /* unpcklpd */
6388 case 0x0f15: /* unpckhps */
6389 case 0x660f15: /* unpckhpd */
6390 case 0x0f16: /* movhps */
6391 case 0x660f16: /* movhpd */
6392 case 0xf30f16: /* movshdup */
6393 case 0x0f28: /* movaps */
6394 case 0x660f28: /* movapd */
6395 case 0x0f2a: /* cvtpi2ps */
6396 case 0x660f2a: /* cvtpi2pd */
6397 case 0xf30f2a: /* cvtsi2ss */
6398 case 0xf20f2a: /* cvtsi2sd */
6399 case 0x0f2c: /* cvttps2pi */
6400 case 0x660f2c: /* cvttpd2pi */
6401 case 0x0f2d: /* cvtps2pi */
6402 case 0x660f2d: /* cvtpd2pi */
6403 case 0x660f3800: /* pshufb */
6404 case 0x660f3801: /* phaddw */
6405 case 0x660f3802: /* phaddd */
6406 case 0x660f3803: /* phaddsw */
6407 case 0x660f3804: /* pmaddubsw */
6408 case 0x660f3805: /* phsubw */
6409 case 0x660f3806: /* phsubd */
4f7d61a8 6410 case 0x660f3807: /* phsubsw */
a3c4230a
HZ
6411 case 0x660f3808: /* psignb */
6412 case 0x660f3809: /* psignw */
6413 case 0x660f380a: /* psignd */
6414 case 0x660f380b: /* pmulhrsw */
6415 case 0x660f3810: /* pblendvb */
6416 case 0x660f3814: /* blendvps */
6417 case 0x660f3815: /* blendvpd */
6418 case 0x660f381c: /* pabsb */
6419 case 0x660f381d: /* pabsw */
6420 case 0x660f381e: /* pabsd */
6421 case 0x660f3820: /* pmovsxbw */
6422 case 0x660f3821: /* pmovsxbd */
6423 case 0x660f3822: /* pmovsxbq */
6424 case 0x660f3823: /* pmovsxwd */
6425 case 0x660f3824: /* pmovsxwq */
6426 case 0x660f3825: /* pmovsxdq */
6427 case 0x660f3828: /* pmuldq */
6428 case 0x660f3829: /* pcmpeqq */
6429 case 0x660f382a: /* movntdqa */
6430 case 0x660f3a08: /* roundps */
6431 case 0x660f3a09: /* roundpd */
6432 case 0x660f3a0a: /* roundss */
6433 case 0x660f3a0b: /* roundsd */
6434 case 0x660f3a0c: /* blendps */
6435 case 0x660f3a0d: /* blendpd */
6436 case 0x660f3a0e: /* pblendw */
6437 case 0x660f3a0f: /* palignr */
6438 case 0x660f3a20: /* pinsrb */
6439 case 0x660f3a21: /* insertps */
6440 case 0x660f3a22: /* pinsrd pinsrq */
6441 case 0x660f3a40: /* dpps */
6442 case 0x660f3a41: /* dppd */
6443 case 0x660f3a42: /* mpsadbw */
6444 case 0x660f3a60: /* pcmpestrm */
6445 case 0x660f3a61: /* pcmpestri */
6446 case 0x660f3a62: /* pcmpistrm */
6447 case 0x660f3a63: /* pcmpistri */
6448 case 0x0f51: /* sqrtps */
6449 case 0x660f51: /* sqrtpd */
6450 case 0xf20f51: /* sqrtsd */
6451 case 0xf30f51: /* sqrtss */
6452 case 0x0f52: /* rsqrtps */
6453 case 0xf30f52: /* rsqrtss */
6454 case 0x0f53: /* rcpps */
6455 case 0xf30f53: /* rcpss */
6456 case 0x0f54: /* andps */
6457 case 0x660f54: /* andpd */
6458 case 0x0f55: /* andnps */
6459 case 0x660f55: /* andnpd */
6460 case 0x0f56: /* orps */
6461 case 0x660f56: /* orpd */
6462 case 0x0f57: /* xorps */
6463 case 0x660f57: /* xorpd */
6464 case 0x0f58: /* addps */
6465 case 0x660f58: /* addpd */
6466 case 0xf20f58: /* addsd */
6467 case 0xf30f58: /* addss */
6468 case 0x0f59: /* mulps */
6469 case 0x660f59: /* mulpd */
6470 case 0xf20f59: /* mulsd */
6471 case 0xf30f59: /* mulss */
6472 case 0x0f5a: /* cvtps2pd */
6473 case 0x660f5a: /* cvtpd2ps */
6474 case 0xf20f5a: /* cvtsd2ss */
6475 case 0xf30f5a: /* cvtss2sd */
6476 case 0x0f5b: /* cvtdq2ps */
6477 case 0x660f5b: /* cvtps2dq */
6478 case 0xf30f5b: /* cvttps2dq */
6479 case 0x0f5c: /* subps */
6480 case 0x660f5c: /* subpd */
6481 case 0xf20f5c: /* subsd */
6482 case 0xf30f5c: /* subss */
6483 case 0x0f5d: /* minps */
6484 case 0x660f5d: /* minpd */
6485 case 0xf20f5d: /* minsd */
6486 case 0xf30f5d: /* minss */
6487 case 0x0f5e: /* divps */
6488 case 0x660f5e: /* divpd */
6489 case 0xf20f5e: /* divsd */
6490 case 0xf30f5e: /* divss */
6491 case 0x0f5f: /* maxps */
6492 case 0x660f5f: /* maxpd */
6493 case 0xf20f5f: /* maxsd */
6494 case 0xf30f5f: /* maxss */
6495 case 0x660f60: /* punpcklbw */
6496 case 0x660f61: /* punpcklwd */
6497 case 0x660f62: /* punpckldq */
6498 case 0x660f63: /* packsswb */
6499 case 0x660f64: /* pcmpgtb */
6500 case 0x660f65: /* pcmpgtw */
56d2815c 6501 case 0x660f66: /* pcmpgtd */
a3c4230a
HZ
6502 case 0x660f67: /* packuswb */
6503 case 0x660f68: /* punpckhbw */
6504 case 0x660f69: /* punpckhwd */
6505 case 0x660f6a: /* punpckhdq */
6506 case 0x660f6b: /* packssdw */
6507 case 0x660f6c: /* punpcklqdq */
6508 case 0x660f6d: /* punpckhqdq */
6509 case 0x660f6e: /* movd */
6510 case 0x660f6f: /* movdqa */
6511 case 0xf30f6f: /* movdqu */
6512 case 0x660f70: /* pshufd */
6513 case 0xf20f70: /* pshuflw */
6514 case 0xf30f70: /* pshufhw */
6515 case 0x660f74: /* pcmpeqb */
6516 case 0x660f75: /* pcmpeqw */
56d2815c 6517 case 0x660f76: /* pcmpeqd */
a3c4230a
HZ
6518 case 0x660f7c: /* haddpd */
6519 case 0xf20f7c: /* haddps */
6520 case 0x660f7d: /* hsubpd */
6521 case 0xf20f7d: /* hsubps */
6522 case 0xf30f7e: /* movq */
6523 case 0x0fc2: /* cmpps */
6524 case 0x660fc2: /* cmppd */
6525 case 0xf20fc2: /* cmpsd */
6526 case 0xf30fc2: /* cmpss */
6527 case 0x660fc4: /* pinsrw */
6528 case 0x0fc6: /* shufps */
6529 case 0x660fc6: /* shufpd */
6530 case 0x660fd0: /* addsubpd */
6531 case 0xf20fd0: /* addsubps */
6532 case 0x660fd1: /* psrlw */
6533 case 0x660fd2: /* psrld */
6534 case 0x660fd3: /* psrlq */
6535 case 0x660fd4: /* paddq */
6536 case 0x660fd5: /* pmullw */
6537 case 0xf30fd6: /* movq2dq */
6538 case 0x660fd8: /* psubusb */
6539 case 0x660fd9: /* psubusw */
6540 case 0x660fda: /* pminub */
6541 case 0x660fdb: /* pand */
6542 case 0x660fdc: /* paddusb */
6543 case 0x660fdd: /* paddusw */
6544 case 0x660fde: /* pmaxub */
6545 case 0x660fdf: /* pandn */
6546 case 0x660fe0: /* pavgb */
6547 case 0x660fe1: /* psraw */
6548 case 0x660fe2: /* psrad */
6549 case 0x660fe3: /* pavgw */
6550 case 0x660fe4: /* pmulhuw */
6551 case 0x660fe5: /* pmulhw */
6552 case 0x660fe6: /* cvttpd2dq */
6553 case 0xf20fe6: /* cvtpd2dq */
6554 case 0xf30fe6: /* cvtdq2pd */
6555 case 0x660fe8: /* psubsb */
6556 case 0x660fe9: /* psubsw */
6557 case 0x660fea: /* pminsw */
6558 case 0x660feb: /* por */
6559 case 0x660fec: /* paddsb */
6560 case 0x660fed: /* paddsw */
6561 case 0x660fee: /* pmaxsw */
6562 case 0x660fef: /* pxor */
4f7d61a8 6563 case 0xf20ff0: /* lddqu */
a3c4230a
HZ
6564 case 0x660ff1: /* psllw */
6565 case 0x660ff2: /* pslld */
6566 case 0x660ff3: /* psllq */
6567 case 0x660ff4: /* pmuludq */
6568 case 0x660ff5: /* pmaddwd */
6569 case 0x660ff6: /* psadbw */
6570 case 0x660ff8: /* psubb */
6571 case 0x660ff9: /* psubw */
56d2815c 6572 case 0x660ffa: /* psubd */
a3c4230a
HZ
6573 case 0x660ffb: /* psubq */
6574 case 0x660ffc: /* paddb */
6575 case 0x660ffd: /* paddw */
56d2815c 6576 case 0x660ffe: /* paddd */
a3c4230a
HZ
6577 if (i386_record_modrm (&ir))
6578 return -1;
6579 ir.reg |= rex_r;
c131fcee 6580 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.reg))
a3c4230a
HZ
6581 goto no_support;
6582 record_arch_list_add_reg (ir.regcache,
6583 I387_XMM0_REGNUM (tdep) + ir.reg);
6584 if ((opcode & 0xfffffffc) == 0x660f3a60)
6585 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6586 break;
6587
6588 case 0x0f11: /* movups */
6589 case 0x660f11: /* movupd */
6590 case 0xf30f11: /* movss */
6591 case 0xf20f11: /* movsd */
6592 case 0x0f13: /* movlps */
6593 case 0x660f13: /* movlpd */
6594 case 0x0f17: /* movhps */
6595 case 0x660f17: /* movhpd */
6596 case 0x0f29: /* movaps */
6597 case 0x660f29: /* movapd */
6598 case 0x660f3a14: /* pextrb */
6599 case 0x660f3a15: /* pextrw */
6600 case 0x660f3a16: /* pextrd pextrq */
6601 case 0x660f3a17: /* extractps */
6602 case 0x660f7f: /* movdqa */
6603 case 0xf30f7f: /* movdqu */
6604 if (i386_record_modrm (&ir))
6605 return -1;
6606 if (ir.mod == 3)
6607 {
6608 if (opcode == 0x0f13 || opcode == 0x660f13
6609 || opcode == 0x0f17 || opcode == 0x660f17)
6610 goto no_support;
6611 ir.rm |= ir.rex_b;
1777feb0
MS
6612 if (!i386_xmm_regnum_p (gdbarch,
6613 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6614 goto no_support;
6615 record_arch_list_add_reg (ir.regcache,
6616 I387_XMM0_REGNUM (tdep) + ir.rm);
6617 }
6618 else
6619 {
6620 switch (opcode)
6621 {
6622 case 0x660f3a14:
6623 ir.ot = OT_BYTE;
6624 break;
6625 case 0x660f3a15:
6626 ir.ot = OT_WORD;
6627 break;
6628 case 0x660f3a16:
6629 ir.ot = OT_LONG;
6630 break;
6631 case 0x660f3a17:
6632 ir.ot = OT_QUAD;
6633 break;
6634 default:
6635 ir.ot = OT_DQUAD;
6636 break;
6637 }
6638 if (i386_record_lea_modrm (&ir))
6639 return -1;
6640 }
6641 break;
6642
6643 case 0x0f2b: /* movntps */
6644 case 0x660f2b: /* movntpd */
6645 case 0x0fe7: /* movntq */
6646 case 0x660fe7: /* movntdq */
6647 if (ir.mod == 3)
6648 goto no_support;
6649 if (opcode == 0x0fe7)
6650 ir.ot = OT_QUAD;
6651 else
6652 ir.ot = OT_DQUAD;
6653 if (i386_record_lea_modrm (&ir))
6654 return -1;
6655 break;
6656
6657 case 0xf30f2c: /* cvttss2si */
6658 case 0xf20f2c: /* cvttsd2si */
6659 case 0xf30f2d: /* cvtss2si */
6660 case 0xf20f2d: /* cvtsd2si */
6661 case 0xf20f38f0: /* crc32 */
6662 case 0xf20f38f1: /* crc32 */
6663 case 0x0f50: /* movmskps */
6664 case 0x660f50: /* movmskpd */
6665 case 0x0fc5: /* pextrw */
6666 case 0x660fc5: /* pextrw */
6667 case 0x0fd7: /* pmovmskb */
6668 case 0x660fd7: /* pmovmskb */
6669 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg | rex_r);
6670 break;
6671
6672 case 0x0f3800: /* pshufb */
6673 case 0x0f3801: /* phaddw */
6674 case 0x0f3802: /* phaddd */
6675 case 0x0f3803: /* phaddsw */
6676 case 0x0f3804: /* pmaddubsw */
6677 case 0x0f3805: /* phsubw */
6678 case 0x0f3806: /* phsubd */
4f7d61a8 6679 case 0x0f3807: /* phsubsw */
a3c4230a
HZ
6680 case 0x0f3808: /* psignb */
6681 case 0x0f3809: /* psignw */
6682 case 0x0f380a: /* psignd */
6683 case 0x0f380b: /* pmulhrsw */
6684 case 0x0f381c: /* pabsb */
6685 case 0x0f381d: /* pabsw */
6686 case 0x0f381e: /* pabsd */
6687 case 0x0f382b: /* packusdw */
6688 case 0x0f3830: /* pmovzxbw */
6689 case 0x0f3831: /* pmovzxbd */
6690 case 0x0f3832: /* pmovzxbq */
6691 case 0x0f3833: /* pmovzxwd */
6692 case 0x0f3834: /* pmovzxwq */
6693 case 0x0f3835: /* pmovzxdq */
6694 case 0x0f3837: /* pcmpgtq */
6695 case 0x0f3838: /* pminsb */
6696 case 0x0f3839: /* pminsd */
6697 case 0x0f383a: /* pminuw */
6698 case 0x0f383b: /* pminud */
6699 case 0x0f383c: /* pmaxsb */
6700 case 0x0f383d: /* pmaxsd */
6701 case 0x0f383e: /* pmaxuw */
6702 case 0x0f383f: /* pmaxud */
6703 case 0x0f3840: /* pmulld */
6704 case 0x0f3841: /* phminposuw */
6705 case 0x0f3a0f: /* palignr */
6706 case 0x0f60: /* punpcklbw */
6707 case 0x0f61: /* punpcklwd */
6708 case 0x0f62: /* punpckldq */
6709 case 0x0f63: /* packsswb */
6710 case 0x0f64: /* pcmpgtb */
6711 case 0x0f65: /* pcmpgtw */
56d2815c 6712 case 0x0f66: /* pcmpgtd */
a3c4230a
HZ
6713 case 0x0f67: /* packuswb */
6714 case 0x0f68: /* punpckhbw */
6715 case 0x0f69: /* punpckhwd */
6716 case 0x0f6a: /* punpckhdq */
6717 case 0x0f6b: /* packssdw */
6718 case 0x0f6e: /* movd */
6719 case 0x0f6f: /* movq */
6720 case 0x0f70: /* pshufw */
6721 case 0x0f74: /* pcmpeqb */
6722 case 0x0f75: /* pcmpeqw */
56d2815c 6723 case 0x0f76: /* pcmpeqd */
a3c4230a
HZ
6724 case 0x0fc4: /* pinsrw */
6725 case 0x0fd1: /* psrlw */
6726 case 0x0fd2: /* psrld */
6727 case 0x0fd3: /* psrlq */
6728 case 0x0fd4: /* paddq */
6729 case 0x0fd5: /* pmullw */
6730 case 0xf20fd6: /* movdq2q */
6731 case 0x0fd8: /* psubusb */
6732 case 0x0fd9: /* psubusw */
6733 case 0x0fda: /* pminub */
6734 case 0x0fdb: /* pand */
6735 case 0x0fdc: /* paddusb */
6736 case 0x0fdd: /* paddusw */
6737 case 0x0fde: /* pmaxub */
6738 case 0x0fdf: /* pandn */
6739 case 0x0fe0: /* pavgb */
6740 case 0x0fe1: /* psraw */
6741 case 0x0fe2: /* psrad */
6742 case 0x0fe3: /* pavgw */
6743 case 0x0fe4: /* pmulhuw */
6744 case 0x0fe5: /* pmulhw */
6745 case 0x0fe8: /* psubsb */
6746 case 0x0fe9: /* psubsw */
6747 case 0x0fea: /* pminsw */
6748 case 0x0feb: /* por */
6749 case 0x0fec: /* paddsb */
6750 case 0x0fed: /* paddsw */
6751 case 0x0fee: /* pmaxsw */
6752 case 0x0fef: /* pxor */
6753 case 0x0ff1: /* psllw */
6754 case 0x0ff2: /* pslld */
6755 case 0x0ff3: /* psllq */
6756 case 0x0ff4: /* pmuludq */
6757 case 0x0ff5: /* pmaddwd */
6758 case 0x0ff6: /* psadbw */
6759 case 0x0ff8: /* psubb */
6760 case 0x0ff9: /* psubw */
56d2815c 6761 case 0x0ffa: /* psubd */
a3c4230a
HZ
6762 case 0x0ffb: /* psubq */
6763 case 0x0ffc: /* paddb */
6764 case 0x0ffd: /* paddw */
56d2815c 6765 case 0x0ffe: /* paddd */
a3c4230a
HZ
6766 if (i386_record_modrm (&ir))
6767 return -1;
6768 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.reg))
6769 goto no_support;
6770 record_arch_list_add_reg (ir.regcache,
6771 I387_MM0_REGNUM (tdep) + ir.reg);
6772 break;
6773
6774 case 0x0f71: /* psllw */
6775 case 0x0f72: /* pslld */
6776 case 0x0f73: /* psllq */
6777 if (i386_record_modrm (&ir))
6778 return -1;
6779 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6780 goto no_support;
6781 record_arch_list_add_reg (ir.regcache,
6782 I387_MM0_REGNUM (tdep) + ir.rm);
6783 break;
6784
6785 case 0x660f71: /* psllw */
6786 case 0x660f72: /* pslld */
6787 case 0x660f73: /* psllq */
6788 if (i386_record_modrm (&ir))
6789 return -1;
6790 ir.rm |= ir.rex_b;
c131fcee 6791 if (!i386_xmm_regnum_p (gdbarch, I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6792 goto no_support;
6793 record_arch_list_add_reg (ir.regcache,
6794 I387_XMM0_REGNUM (tdep) + ir.rm);
6795 break;
6796
6797 case 0x0f7e: /* movd */
6798 case 0x660f7e: /* movd */
6799 if (i386_record_modrm (&ir))
6800 return -1;
6801 if (ir.mod == 3)
6802 I386_RECORD_ARCH_LIST_ADD_REG (ir.rm | ir.rex_b);
6803 else
6804 {
6805 if (ir.dflag == 2)
6806 ir.ot = OT_QUAD;
6807 else
6808 ir.ot = OT_LONG;
6809 if (i386_record_lea_modrm (&ir))
6810 return -1;
6811 }
6812 break;
6813
6814 case 0x0f7f: /* movq */
6815 if (i386_record_modrm (&ir))
6816 return -1;
6817 if (ir.mod == 3)
6818 {
6819 if (!i386_mmx_regnum_p (gdbarch, I387_MM0_REGNUM (tdep) + ir.rm))
6820 goto no_support;
6821 record_arch_list_add_reg (ir.regcache,
6822 I387_MM0_REGNUM (tdep) + ir.rm);
6823 }
6824 else
6825 {
6826 ir.ot = OT_QUAD;
6827 if (i386_record_lea_modrm (&ir))
6828 return -1;
6829 }
6830 break;
6831
6832 case 0xf30fb8: /* popcnt */
6833 if (i386_record_modrm (&ir))
6834 return -1;
6835 I386_RECORD_ARCH_LIST_ADD_REG (ir.reg);
6836 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6837 break;
6838
6839 case 0x660fd6: /* movq */
6840 if (i386_record_modrm (&ir))
6841 return -1;
6842 if (ir.mod == 3)
6843 {
6844 ir.rm |= ir.rex_b;
1777feb0
MS
6845 if (!i386_xmm_regnum_p (gdbarch,
6846 I387_XMM0_REGNUM (tdep) + ir.rm))
a3c4230a
HZ
6847 goto no_support;
6848 record_arch_list_add_reg (ir.regcache,
6849 I387_XMM0_REGNUM (tdep) + ir.rm);
6850 }
6851 else
6852 {
6853 ir.ot = OT_QUAD;
6854 if (i386_record_lea_modrm (&ir))
6855 return -1;
6856 }
6857 break;
6858
6859 case 0x660f3817: /* ptest */
6860 case 0x0f2e: /* ucomiss */
6861 case 0x660f2e: /* ucomisd */
6862 case 0x0f2f: /* comiss */
6863 case 0x660f2f: /* comisd */
6864 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_EFLAGS_REGNUM);
6865 break;
6866
6867 case 0x0ff7: /* maskmovq */
6868 regcache_raw_read_unsigned (ir.regcache,
6869 ir.regmap[X86_RECORD_REDI_REGNUM],
6870 &addr);
6871 if (record_arch_list_add_mem (addr, 64))
6872 return -1;
6873 break;
6874
6875 case 0x660ff7: /* maskmovdqu */
6876 regcache_raw_read_unsigned (ir.regcache,
6877 ir.regmap[X86_RECORD_REDI_REGNUM],
6878 &addr);
6879 if (record_arch_list_add_mem (addr, 128))
6880 return -1;
6881 break;
6882
6883 default:
6884 goto no_support;
6885 break;
6886 }
6887 break;
7ad10968
HZ
6888
6889 default:
7ad10968
HZ
6890 goto no_support;
6891 break;
6892 }
6893
cf648174
HZ
6894 /* In the future, maybe still need to deal with need_dasm. */
6895 I386_RECORD_ARCH_LIST_ADD_REG (X86_RECORD_REIP_REGNUM);
7ad10968
HZ
6896 if (record_arch_list_add_end ())
6897 return -1;
6898
6899 return 0;
6900
01fe1b41 6901 no_support:
a3c4230a
HZ
6902 printf_unfiltered (_("Process record does not support instruction 0x%02x "
6903 "at address %s.\n"),
6904 (unsigned int) (opcode),
6905 paddress (gdbarch, ir.orig_addr));
7ad10968
HZ
6906 return -1;
6907}
6908
cf648174
HZ
6909static const int i386_record_regmap[] =
6910{
6911 I386_EAX_REGNUM, I386_ECX_REGNUM, I386_EDX_REGNUM, I386_EBX_REGNUM,
6912 I386_ESP_REGNUM, I386_EBP_REGNUM, I386_ESI_REGNUM, I386_EDI_REGNUM,
6913 0, 0, 0, 0, 0, 0, 0, 0,
6914 I386_EIP_REGNUM, I386_EFLAGS_REGNUM, I386_CS_REGNUM, I386_SS_REGNUM,
6915 I386_DS_REGNUM, I386_ES_REGNUM, I386_FS_REGNUM, I386_GS_REGNUM
6916};
6917
7a697b8d
SS
6918/* Check that the given address appears suitable for a fast
6919 tracepoint, which on x86 means that we need an instruction of at
6920 least 5 bytes, so that we can overwrite it with a 4-byte-offset
6921 jump and not have to worry about program jumps to an address in the
6922 middle of the tracepoint jump. Returns 1 if OK, and writes a size
6923 of instruction to replace, and 0 if not, plus an explanatory
6924 string. */
6925
6926static int
6927i386_fast_tracepoint_valid_at (struct gdbarch *gdbarch,
6928 CORE_ADDR addr, int *isize, char **msg)
6929{
6930 int len, jumplen;
6931 static struct ui_file *gdb_null = NULL;
6932
6933 /* This is based on the target agent using a 4-byte relative jump.
6934 Alternate future possibilities include 8-byte offset for x86-84,
6935 or 3-byte jumps if the program has trampoline space close by. */
6936 jumplen = 5;
6937
6938 /* Dummy file descriptor for the disassembler. */
6939 if (!gdb_null)
6940 gdb_null = ui_file_new ();
6941
6942 /* Check for fit. */
6943 len = gdb_print_insn (gdbarch, addr, gdb_null, NULL);
6944 if (len < jumplen)
6945 {
6946 /* Return a bit of target-specific detail to add to the caller's
6947 generic failure message. */
6948 if (msg)
1777feb0
MS
6949 *msg = xstrprintf (_("; instruction is only %d bytes long, "
6950 "need at least %d bytes for the jump"),
7a697b8d
SS
6951 len, jumplen);
6952 return 0;
6953 }
6954
6955 if (isize)
6956 *isize = len;
6957 if (msg)
6958 *msg = NULL;
6959 return 1;
6960}
6961
90884b2b
L
6962static int
6963i386_validate_tdesc_p (struct gdbarch_tdep *tdep,
6964 struct tdesc_arch_data *tdesc_data)
6965{
6966 const struct target_desc *tdesc = tdep->tdesc;
c131fcee
L
6967 const struct tdesc_feature *feature_core;
6968 const struct tdesc_feature *feature_sse, *feature_avx;
90884b2b
L
6969 int i, num_regs, valid_p;
6970
6971 if (! tdesc_has_registers (tdesc))
6972 return 0;
6973
6974 /* Get core registers. */
6975 feature_core = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.core");
3a13a53b
L
6976 if (feature_core == NULL)
6977 return 0;
90884b2b
L
6978
6979 /* Get SSE registers. */
c131fcee 6980 feature_sse = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.sse");
90884b2b 6981
c131fcee
L
6982 /* Try AVX registers. */
6983 feature_avx = tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx");
6984
90884b2b
L
6985 valid_p = 1;
6986
c131fcee
L
6987 /* The XCR0 bits. */
6988 if (feature_avx)
6989 {
3a13a53b
L
6990 /* AVX register description requires SSE register description. */
6991 if (!feature_sse)
6992 return 0;
6993
c131fcee
L
6994 tdep->xcr0 = I386_XSTATE_AVX_MASK;
6995
6996 /* It may have been set by OSABI initialization function. */
6997 if (tdep->num_ymm_regs == 0)
6998 {
6999 tdep->ymmh_register_names = i386_ymmh_names;
7000 tdep->num_ymm_regs = 8;
7001 tdep->ymm0h_regnum = I386_YMM0H_REGNUM;
7002 }
7003
7004 for (i = 0; i < tdep->num_ymm_regs; i++)
7005 valid_p &= tdesc_numbered_register (feature_avx, tdesc_data,
7006 tdep->ymm0h_regnum + i,
7007 tdep->ymmh_register_names[i]);
7008 }
3a13a53b 7009 else if (feature_sse)
c131fcee 7010 tdep->xcr0 = I386_XSTATE_SSE_MASK;
3a13a53b
L
7011 else
7012 {
7013 tdep->xcr0 = I386_XSTATE_X87_MASK;
7014 tdep->num_xmm_regs = 0;
7015 }
c131fcee 7016
90884b2b
L
7017 num_regs = tdep->num_core_regs;
7018 for (i = 0; i < num_regs; i++)
7019 valid_p &= tdesc_numbered_register (feature_core, tdesc_data, i,
7020 tdep->register_names[i]);
7021
3a13a53b
L
7022 if (feature_sse)
7023 {
7024 /* Need to include %mxcsr, so add one. */
7025 num_regs += tdep->num_xmm_regs + 1;
7026 for (; i < num_regs; i++)
7027 valid_p &= tdesc_numbered_register (feature_sse, tdesc_data, i,
7028 tdep->register_names[i]);
7029 }
90884b2b
L
7030
7031 return valid_p;
7032}
7033
7ad10968
HZ
7034\f
7035static struct gdbarch *
7036i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
7037{
7038 struct gdbarch_tdep *tdep;
7039 struct gdbarch *gdbarch;
90884b2b
L
7040 struct tdesc_arch_data *tdesc_data;
7041 const struct target_desc *tdesc;
1ba53b71 7042 int mm0_regnum;
c131fcee 7043 int ymm0_regnum;
7ad10968
HZ
7044
7045 /* If there is already a candidate, use it. */
7046 arches = gdbarch_list_lookup_by_info (arches, &info);
7047 if (arches != NULL)
7048 return arches->gdbarch;
7049
7050 /* Allocate space for the new architecture. */
7051 tdep = XCALLOC (1, struct gdbarch_tdep);
7052 gdbarch = gdbarch_alloc (&info, tdep);
7053
7054 /* General-purpose registers. */
7055 tdep->gregset = NULL;
7056 tdep->gregset_reg_offset = NULL;
7057 tdep->gregset_num_regs = I386_NUM_GREGS;
7058 tdep->sizeof_gregset = 0;
7059
7060 /* Floating-point registers. */
7061 tdep->fpregset = NULL;
7062 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
7063
c131fcee
L
7064 tdep->xstateregset = NULL;
7065
7ad10968
HZ
7066 /* The default settings include the FPU registers, the MMX registers
7067 and the SSE registers. This can be overridden for a specific ABI
7068 by adjusting the members `st0_regnum', `mm0_regnum' and
7069 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
3a13a53b 7070 will show up in the output of "info all-registers". */
7ad10968
HZ
7071
7072 tdep->st0_regnum = I386_ST0_REGNUM;
7073
7ad10968
HZ
7074 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
7075 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
7076
7077 tdep->jb_pc_offset = -1;
7078 tdep->struct_return = pcc_struct_return;
7079 tdep->sigtramp_start = 0;
7080 tdep->sigtramp_end = 0;
7081 tdep->sigtramp_p = i386_sigtramp_p;
7082 tdep->sigcontext_addr = NULL;
7083 tdep->sc_reg_offset = NULL;
7084 tdep->sc_pc_offset = -1;
7085 tdep->sc_sp_offset = -1;
7086
c131fcee
L
7087 tdep->xsave_xcr0_offset = -1;
7088
cf648174
HZ
7089 tdep->record_regmap = i386_record_regmap;
7090
7ad10968
HZ
7091 /* The format used for `long double' on almost all i386 targets is
7092 the i387 extended floating-point format. In fact, of all targets
7093 in the GCC 2.95 tree, only OSF/1 does it different, and insists
7094 on having a `long double' that's not `long' at all. */
7095 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
7096
7097 /* Although the i387 extended floating-point has only 80 significant
7098 bits, a `long double' actually takes up 96, probably to enforce
7099 alignment. */
7100 set_gdbarch_long_double_bit (gdbarch, 96);
7101
7ad10968
HZ
7102 /* Register numbers of various important registers. */
7103 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
7104 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
7105 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
7106 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
7107
7108 /* NOTE: kettenis/20040418: GCC does have two possible register
7109 numbering schemes on the i386: dbx and SVR4. These schemes
7110 differ in how they number %ebp, %esp, %eflags, and the
7111 floating-point registers, and are implemented by the arrays
7112 dbx_register_map[] and svr4_dbx_register_map in
7113 gcc/config/i386.c. GCC also defines a third numbering scheme in
7114 gcc/config/i386.c, which it designates as the "default" register
7115 map used in 64bit mode. This last register numbering scheme is
7116 implemented in dbx64_register_map, and is used for AMD64; see
7117 amd64-tdep.c.
7118
7119 Currently, each GCC i386 target always uses the same register
7120 numbering scheme across all its supported debugging formats
7121 i.e. SDB (COFF), stabs and DWARF 2. This is because
7122 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
7123 DBX_REGISTER_NUMBER macro which is defined by each target's
7124 respective config header in a manner independent of the requested
7125 output debugging format.
7126
7127 This does not match the arrangement below, which presumes that
7128 the SDB and stabs numbering schemes differ from the DWARF and
7129 DWARF 2 ones. The reason for this arrangement is that it is
7130 likely to get the numbering scheme for the target's
7131 default/native debug format right. For targets where GCC is the
7132 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
7133 targets where the native toolchain uses a different numbering
7134 scheme for a particular debug format (stabs-in-ELF on Solaris)
7135 the defaults below will have to be overridden, like
7136 i386_elf_init_abi() does. */
7137
7138 /* Use the dbx register numbering scheme for stabs and COFF. */
7139 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7140 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
7141
7142 /* Use the SVR4 register numbering scheme for DWARF 2. */
7143 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
7144
7145 /* We don't set gdbarch_stab_reg_to_regnum, since ECOFF doesn't seem to
7146 be in use on any of the supported i386 targets. */
7147
7148 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
7149
7150 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
7151
7152 /* Call dummy code. */
7153 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
7154
7155 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
7156 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
7157 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
7158
7159 set_gdbarch_return_value (gdbarch, i386_return_value);
7160
7161 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
7162
7163 /* Stack grows downward. */
7164 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7165
7166 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
7167 set_gdbarch_decr_pc_after_break (gdbarch, 1);
7168 set_gdbarch_max_insn_length (gdbarch, I386_MAX_INSN_LEN);
7169
7170 set_gdbarch_frame_args_skip (gdbarch, 8);
7171
7ad10968
HZ
7172 set_gdbarch_print_insn (gdbarch, i386_print_insn);
7173
7174 set_gdbarch_dummy_id (gdbarch, i386_dummy_id);
7175
7176 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
7177
7178 /* Add the i386 register groups. */
7179 i386_add_reggroups (gdbarch);
90884b2b 7180 tdep->register_reggroup_p = i386_register_reggroup_p;
38c968cf 7181
143985b7
AF
7182 /* Helper for function argument information. */
7183 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
7184
06da04c6
MS
7185 /* Hook the function epilogue frame unwinder. This unwinder is
7186 appended to the list first, so that it supercedes the Dwarf
7187 unwinder in function epilogues (where the Dwarf unwinder
7188 currently fails). */
7189 frame_unwind_append_unwinder (gdbarch, &i386_epilogue_frame_unwind);
7190
7191 /* Hook in the DWARF CFI frame unwinder. This unwinder is appended
7192 to the list before the prologue-based unwinders, so that Dwarf
7193 CFI info will be used if it is available. */
10458914 7194 dwarf2_append_unwinders (gdbarch);
6405b0a6 7195
acd5c798 7196 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 7197
1ba53b71 7198 /* Pseudo registers may be changed by amd64_init_abi. */
90884b2b
L
7199 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
7200 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
7201
7202 set_tdesc_pseudo_register_type (gdbarch, i386_pseudo_register_type);
7203 set_tdesc_pseudo_register_name (gdbarch, i386_pseudo_register_name);
7204
c131fcee
L
7205 /* Override the normal target description method to make the AVX
7206 upper halves anonymous. */
7207 set_gdbarch_register_name (gdbarch, i386_register_name);
7208
7209 /* Even though the default ABI only includes general-purpose registers,
7210 floating-point registers and the SSE registers, we have to leave a
7211 gap for the upper AVX registers. */
7212 set_gdbarch_num_regs (gdbarch, I386_AVX_NUM_REGS);
90884b2b
L
7213
7214 /* Get the x86 target description from INFO. */
7215 tdesc = info.target_desc;
7216 if (! tdesc_has_registers (tdesc))
7217 tdesc = tdesc_i386;
7218 tdep->tdesc = tdesc;
7219
7220 tdep->num_core_regs = I386_NUM_GREGS + I387_NUM_REGS;
7221 tdep->register_names = i386_register_names;
7222
c131fcee
L
7223 /* No upper YMM registers. */
7224 tdep->ymmh_register_names = NULL;
7225 tdep->ymm0h_regnum = -1;
7226
1ba53b71
L
7227 tdep->num_byte_regs = 8;
7228 tdep->num_word_regs = 8;
7229 tdep->num_dword_regs = 0;
7230 tdep->num_mmx_regs = 8;
c131fcee 7231 tdep->num_ymm_regs = 0;
1ba53b71 7232
90884b2b
L
7233 tdesc_data = tdesc_data_alloc ();
7234
dde08ee1
PA
7235 set_gdbarch_relocate_instruction (gdbarch, i386_relocate_instruction);
7236
3ce1502b 7237 /* Hook in ABI-specific overrides, if they have been registered. */
90884b2b 7238 info.tdep_info = (void *) tdesc_data;
4be87837 7239 gdbarch_init_osabi (info, gdbarch);
3ce1502b 7240
c131fcee
L
7241 if (!i386_validate_tdesc_p (tdep, tdesc_data))
7242 {
7243 tdesc_data_cleanup (tdesc_data);
7244 xfree (tdep);
7245 gdbarch_free (gdbarch);
7246 return NULL;
7247 }
7248
1ba53b71
L
7249 /* Wire in pseudo registers. Number of pseudo registers may be
7250 changed. */
7251 set_gdbarch_num_pseudo_regs (gdbarch, (tdep->num_byte_regs
7252 + tdep->num_word_regs
7253 + tdep->num_dword_regs
c131fcee
L
7254 + tdep->num_mmx_regs
7255 + tdep->num_ymm_regs));
1ba53b71 7256
90884b2b
L
7257 /* Target description may be changed. */
7258 tdesc = tdep->tdesc;
7259
90884b2b
L
7260 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7261
7262 /* Override gdbarch_register_reggroup_p set in tdesc_use_registers. */
7263 set_gdbarch_register_reggroup_p (gdbarch, tdep->register_reggroup_p);
7264
1ba53b71
L
7265 /* Make %al the first pseudo-register. */
7266 tdep->al_regnum = gdbarch_num_regs (gdbarch);
7267 tdep->ax_regnum = tdep->al_regnum + tdep->num_byte_regs;
7268
c131fcee 7269 ymm0_regnum = tdep->ax_regnum + tdep->num_word_regs;
1ba53b71
L
7270 if (tdep->num_dword_regs)
7271 {
1c6272a6 7272 /* Support dword pseudo-register if it hasn't been disabled. */
c131fcee
L
7273 tdep->eax_regnum = ymm0_regnum;
7274 ymm0_regnum += tdep->num_dword_regs;
1ba53b71
L
7275 }
7276 else
7277 tdep->eax_regnum = -1;
7278
c131fcee
L
7279 mm0_regnum = ymm0_regnum;
7280 if (tdep->num_ymm_regs)
7281 {
1c6272a6 7282 /* Support YMM pseudo-register if it is available. */
c131fcee
L
7283 tdep->ymm0_regnum = ymm0_regnum;
7284 mm0_regnum += tdep->num_ymm_regs;
7285 }
7286 else
7287 tdep->ymm0_regnum = -1;
7288
1ba53b71
L
7289 if (tdep->num_mmx_regs != 0)
7290 {
1c6272a6 7291 /* Support MMX pseudo-register if MMX hasn't been disabled. */
1ba53b71
L
7292 tdep->mm0_regnum = mm0_regnum;
7293 }
7294 else
7295 tdep->mm0_regnum = -1;
7296
06da04c6 7297 /* Hook in the legacy prologue-based unwinders last (fallback). */
10458914
DJ
7298 frame_unwind_append_unwinder (gdbarch, &i386_sigtramp_frame_unwind);
7299 frame_unwind_append_unwinder (gdbarch, &i386_frame_unwind);
acd5c798 7300
8446b36a
MK
7301 /* If we have a register mapping, enable the generic core file
7302 support, unless it has already been enabled. */
7303 if (tdep->gregset_reg_offset
7304 && !gdbarch_regset_from_core_section_p (gdbarch))
7305 set_gdbarch_regset_from_core_section (gdbarch,
7306 i386_regset_from_core_section);
7307
514f746b
AR
7308 set_gdbarch_skip_permanent_breakpoint (gdbarch,
7309 i386_skip_permanent_breakpoint);
7310
7a697b8d
SS
7311 set_gdbarch_fast_tracepoint_valid_at (gdbarch,
7312 i386_fast_tracepoint_valid_at);
7313
a62cc96e
AC
7314 return gdbarch;
7315}
7316
8201327c
MK
7317static enum gdb_osabi
7318i386_coff_osabi_sniffer (bfd *abfd)
7319{
762c5349
MK
7320 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
7321 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
7322 return GDB_OSABI_GO32;
7323
7324 return GDB_OSABI_UNKNOWN;
7325}
8201327c
MK
7326\f
7327
28e9e0f0
MK
7328/* Provide a prototype to silence -Wmissing-prototypes. */
7329void _initialize_i386_tdep (void);
7330
c906108c 7331void
fba45db2 7332_initialize_i386_tdep (void)
c906108c 7333{
a62cc96e
AC
7334 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
7335
fc338970 7336 /* Add the variable that controls the disassembly flavor. */
7ab04401
AC
7337 add_setshow_enum_cmd ("disassembly-flavor", no_class, valid_flavors,
7338 &disassembly_flavor, _("\
7339Set the disassembly flavor."), _("\
7340Show the disassembly flavor."), _("\
7341The valid values are \"att\" and \"intel\", and the default value is \"att\"."),
7342 NULL,
7343 NULL, /* FIXME: i18n: */
7344 &setlist, &showlist);
8201327c
MK
7345
7346 /* Add the variable that controls the convention for returning
7347 structs. */
7ab04401
AC
7348 add_setshow_enum_cmd ("struct-convention", no_class, valid_conventions,
7349 &struct_convention, _("\
7350Set the convention for returning small structs."), _("\
7351Show the convention for returning small structs."), _("\
7352Valid values are \"default\", \"pcc\" and \"reg\", and the default value\n\
7353is \"default\"."),
7354 NULL,
7355 NULL, /* FIXME: i18n: */
7356 &setlist, &showlist);
8201327c
MK
7357
7358 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
7359 i386_coff_osabi_sniffer);
8201327c 7360
05816f70 7361 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 7362 i386_svr4_init_abi);
05816f70 7363 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 7364 i386_go32_init_abi);
38c968cf 7365
209bd28e 7366 /* Initialize the i386-specific register groups. */
38c968cf 7367 i386_init_reggroups ();
90884b2b
L
7368
7369 /* Initialize the standard target descriptions. */
7370 initialize_tdesc_i386 ();
3a13a53b 7371 initialize_tdesc_i386_mmx ();
c131fcee 7372 initialize_tdesc_i386_avx ();
c8d5aac9
L
7373
7374 /* Tell remote stub that we support XML target description. */
7375 register_remote_support_xml ("i386");
c906108c 7376}
This page took 1.572473 seconds and 4 git commands to generate.