* i386-tdep.c: Fix spelling mistakes.
[deliverable/binutils-gdb.git] / gdb / i386-tdep.c
CommitLineData
c906108c 1/* Intel 386 target-dependent stuff.
349c5d5f
AC
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
931aecf5
AC
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
acd5c798
MK
25#include "arch-utils.h"
26#include "command.h"
27#include "dummy-frame.h"
6405b0a6 28#include "dwarf2-frame.h"
acd5c798
MK
29#include "doublest.h"
30#include "floatformat.h"
c906108c 31#include "frame.h"
acd5c798
MK
32#include "frame-base.h"
33#include "frame-unwind.h"
c906108c 34#include "inferior.h"
acd5c798 35#include "gdbcmd.h"
c906108c 36#include "gdbcore.h"
dfe01d39 37#include "objfiles.h"
acd5c798
MK
38#include "osabi.h"
39#include "regcache.h"
40#include "reggroups.h"
473f17b0 41#include "regset.h"
c0d1d883 42#include "symfile.h"
c906108c 43#include "symtab.h"
acd5c798 44#include "target.h"
fd0407d6 45#include "value.h"
a89aa300 46#include "dis-asm.h"
acd5c798 47
3d261580 48#include "gdb_assert.h"
acd5c798 49#include "gdb_string.h"
3d261580 50
d2a7c97a 51#include "i386-tdep.h"
61113f8b 52#include "i387-tdep.h"
d2a7c97a 53
c4fc7f1b 54/* Register names. */
c40e1eab 55
fc633446
MK
56static char *i386_register_names[] =
57{
58 "eax", "ecx", "edx", "ebx",
59 "esp", "ebp", "esi", "edi",
60 "eip", "eflags", "cs", "ss",
61 "ds", "es", "fs", "gs",
62 "st0", "st1", "st2", "st3",
63 "st4", "st5", "st6", "st7",
64 "fctrl", "fstat", "ftag", "fiseg",
65 "fioff", "foseg", "fooff", "fop",
66 "xmm0", "xmm1", "xmm2", "xmm3",
67 "xmm4", "xmm5", "xmm6", "xmm7",
68 "mxcsr"
69};
70
1cb97e17 71static const int i386_num_register_names = ARRAY_SIZE (i386_register_names);
c40e1eab 72
c4fc7f1b 73/* Register names for MMX pseudo-registers. */
28fc6740
AC
74
75static char *i386_mmx_names[] =
76{
77 "mm0", "mm1", "mm2", "mm3",
78 "mm4", "mm5", "mm6", "mm7"
79};
c40e1eab 80
1cb97e17 81static const int i386_num_mmx_regs = ARRAY_SIZE (i386_mmx_names);
c40e1eab 82
28fc6740 83static int
5716833c 84i386_mmx_regnum_p (struct gdbarch *gdbarch, int regnum)
28fc6740 85{
5716833c
MK
86 int mm0_regnum = gdbarch_tdep (gdbarch)->mm0_regnum;
87
88 if (mm0_regnum < 0)
89 return 0;
90
91 return (regnum >= mm0_regnum && regnum < mm0_regnum + i386_num_mmx_regs);
28fc6740
AC
92}
93
5716833c 94/* SSE register? */
23a34459 95
5716833c
MK
96static int
97i386_sse_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 98{
5716833c
MK
99 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
100
101#define I387_ST0_REGNUM tdep->st0_regnum
102#define I387_NUM_XMM_REGS tdep->num_xmm_regs
103
104 if (I387_NUM_XMM_REGS == 0)
105 return 0;
106
107 return (I387_XMM0_REGNUM <= regnum && regnum < I387_MXCSR_REGNUM);
108
109#undef I387_ST0_REGNUM
110#undef I387_NUM_XMM_REGS
23a34459
AC
111}
112
5716833c
MK
113static int
114i386_mxcsr_regnum_p (struct gdbarch *gdbarch, int regnum)
23a34459 115{
5716833c
MK
116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
117
118#define I387_ST0_REGNUM tdep->st0_regnum
119#define I387_NUM_XMM_REGS tdep->num_xmm_regs
120
121 if (I387_NUM_XMM_REGS == 0)
122 return 0;
123
124 return (regnum == I387_MXCSR_REGNUM);
125
126#undef I387_ST0_REGNUM
127#undef I387_NUM_XMM_REGS
23a34459
AC
128}
129
5716833c
MK
130#define I387_ST0_REGNUM (gdbarch_tdep (current_gdbarch)->st0_regnum)
131#define I387_MM0_REGNUM (gdbarch_tdep (current_gdbarch)->mm0_regnum)
132#define I387_NUM_XMM_REGS (gdbarch_tdep (current_gdbarch)->num_xmm_regs)
133
134/* FP register? */
23a34459
AC
135
136int
5716833c 137i386_fp_regnum_p (int regnum)
23a34459 138{
5716833c
MK
139 if (I387_ST0_REGNUM < 0)
140 return 0;
141
142 return (I387_ST0_REGNUM <= regnum && regnum < I387_FCTRL_REGNUM);
23a34459
AC
143}
144
145int
5716833c 146i386_fpc_regnum_p (int regnum)
23a34459 147{
5716833c
MK
148 if (I387_ST0_REGNUM < 0)
149 return 0;
150
151 return (I387_FCTRL_REGNUM <= regnum && regnum < I387_XMM0_REGNUM);
23a34459
AC
152}
153
fc633446
MK
154/* Return the name of register REG. */
155
fa88f677 156const char *
fc633446
MK
157i386_register_name (int reg)
158{
5716833c
MK
159 if (i386_mmx_regnum_p (current_gdbarch, reg))
160 return i386_mmx_names[reg - I387_MM0_REGNUM];
fc633446 161
70913449
MK
162 if (reg >= 0 && reg < i386_num_register_names)
163 return i386_register_names[reg];
164
c40e1eab 165 return NULL;
fc633446
MK
166}
167
c4fc7f1b 168/* Convert a dbx register number REG to the appropriate register
85540d8c
MK
169 number used by GDB. */
170
8201327c 171static int
c4fc7f1b 172i386_dbx_reg_to_regnum (int reg)
85540d8c 173{
c4fc7f1b
MK
174 /* This implements what GCC calls the "default" register map
175 (dbx_register_map[]). */
176
85540d8c
MK
177 if (reg >= 0 && reg <= 7)
178 {
9872ad24
JB
179 /* General-purpose registers. The debug info calls %ebp
180 register 4, and %esp register 5. */
181 if (reg == 4)
182 return 5;
183 else if (reg == 5)
184 return 4;
185 else return reg;
85540d8c
MK
186 }
187 else if (reg >= 12 && reg <= 19)
188 {
189 /* Floating-point registers. */
5716833c 190 return reg - 12 + I387_ST0_REGNUM;
85540d8c
MK
191 }
192 else if (reg >= 21 && reg <= 28)
193 {
194 /* SSE registers. */
5716833c 195 return reg - 21 + I387_XMM0_REGNUM;
85540d8c
MK
196 }
197 else if (reg >= 29 && reg <= 36)
198 {
199 /* MMX registers. */
5716833c 200 return reg - 29 + I387_MM0_REGNUM;
85540d8c
MK
201 }
202
203 /* This will hopefully provoke a warning. */
204 return NUM_REGS + NUM_PSEUDO_REGS;
205}
206
c4fc7f1b
MK
207/* Convert SVR4 register number REG to the appropriate register number
208 used by GDB. */
85540d8c 209
8201327c 210static int
c4fc7f1b 211i386_svr4_reg_to_regnum (int reg)
85540d8c 212{
c4fc7f1b
MK
213 /* This implements the GCC register map that tries to be compatible
214 with the SVR4 C compiler for DWARF (svr4_dbx_register_map[]). */
215
216 /* The SVR4 register numbering includes %eip and %eflags, and
85540d8c
MK
217 numbers the floating point registers differently. */
218 if (reg >= 0 && reg <= 9)
219 {
acd5c798 220 /* General-purpose registers. */
85540d8c
MK
221 return reg;
222 }
223 else if (reg >= 11 && reg <= 18)
224 {
225 /* Floating-point registers. */
5716833c 226 return reg - 11 + I387_ST0_REGNUM;
85540d8c
MK
227 }
228 else if (reg >= 21)
229 {
c4fc7f1b
MK
230 /* The SSE and MMX registers have the same numbers as with dbx. */
231 return i386_dbx_reg_to_regnum (reg);
85540d8c
MK
232 }
233
234 /* This will hopefully provoke a warning. */
235 return NUM_REGS + NUM_PSEUDO_REGS;
236}
5716833c
MK
237
238#undef I387_ST0_REGNUM
239#undef I387_MM0_REGNUM
240#undef I387_NUM_XMM_REGS
fc338970 241\f
917317f4 242
fc338970
MK
243/* This is the variable that is set with "set disassembly-flavor", and
244 its legitimate values. */
53904c9e
AC
245static const char att_flavor[] = "att";
246static const char intel_flavor[] = "intel";
247static const char *valid_flavors[] =
c5aa993b 248{
c906108c
SS
249 att_flavor,
250 intel_flavor,
251 NULL
252};
53904c9e 253static const char *disassembly_flavor = att_flavor;
acd5c798 254\f
c906108c 255
acd5c798
MK
256/* Use the program counter to determine the contents and size of a
257 breakpoint instruction. Return a pointer to a string of bytes that
258 encode a breakpoint instruction, store the length of the string in
259 *LEN and optionally adjust *PC to point to the correct memory
260 location for inserting the breakpoint.
c906108c 261
acd5c798
MK
262 On the i386 we have a single breakpoint that fits in a single byte
263 and can be inserted anywhere.
c906108c 264
acd5c798
MK
265 This function is 64-bit safe. */
266
267static const unsigned char *
268i386_breakpoint_from_pc (CORE_ADDR *pc, int *len)
c906108c 269{
acd5c798
MK
270 static unsigned char break_insn[] = { 0xcc }; /* int 3 */
271
272 *len = sizeof (break_insn);
273 return break_insn;
c906108c 274}
fc338970 275\f
acd5c798
MK
276#ifdef I386_REGNO_TO_SYMMETRY
277#error "The Sequent Symmetry is no longer supported."
278#endif
c906108c 279
acd5c798
MK
280/* According to the System V ABI, the registers %ebp, %ebx, %edi, %esi
281 and %esp "belong" to the calling function. Therefore these
282 registers should be saved if they're going to be modified. */
c906108c 283
acd5c798
MK
284/* The maximum number of saved registers. This should include all
285 registers mentioned above, and %eip. */
a3386186 286#define I386_NUM_SAVED_REGS I386_NUM_GREGS
acd5c798
MK
287
288struct i386_frame_cache
c906108c 289{
acd5c798
MK
290 /* Base address. */
291 CORE_ADDR base;
292 CORE_ADDR sp_offset;
293 CORE_ADDR pc;
294
fd13a04a
AC
295 /* Saved registers. */
296 CORE_ADDR saved_regs[I386_NUM_SAVED_REGS];
acd5c798
MK
297 CORE_ADDR saved_sp;
298 int pc_in_eax;
299
300 /* Stack space reserved for local variables. */
301 long locals;
302};
303
304/* Allocate and initialize a frame cache. */
305
306static struct i386_frame_cache *
fd13a04a 307i386_alloc_frame_cache (void)
acd5c798
MK
308{
309 struct i386_frame_cache *cache;
310 int i;
311
312 cache = FRAME_OBSTACK_ZALLOC (struct i386_frame_cache);
313
314 /* Base address. */
315 cache->base = 0;
316 cache->sp_offset = -4;
317 cache->pc = 0;
318
fd13a04a
AC
319 /* Saved registers. We initialize these to -1 since zero is a valid
320 offset (that's where %ebp is supposed to be stored). */
321 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
322 cache->saved_regs[i] = -1;
acd5c798
MK
323 cache->saved_sp = 0;
324 cache->pc_in_eax = 0;
325
326 /* Frameless until proven otherwise. */
327 cache->locals = -1;
328
329 return cache;
330}
c906108c 331
acd5c798
MK
332/* If the instruction at PC is a jump, return the address of its
333 target. Otherwise, return PC. */
c906108c 334
acd5c798
MK
335static CORE_ADDR
336i386_follow_jump (CORE_ADDR pc)
337{
338 unsigned char op;
339 long delta = 0;
340 int data16 = 0;
c906108c 341
acd5c798
MK
342 op = read_memory_unsigned_integer (pc, 1);
343 if (op == 0x66)
c906108c 344 {
c906108c 345 data16 = 1;
acd5c798 346 op = read_memory_unsigned_integer (pc + 1, 1);
c906108c
SS
347 }
348
acd5c798 349 switch (op)
c906108c
SS
350 {
351 case 0xe9:
fc338970 352 /* Relative jump: if data16 == 0, disp32, else disp16. */
c906108c
SS
353 if (data16)
354 {
acd5c798 355 delta = read_memory_integer (pc + 2, 2);
c906108c 356
fc338970
MK
357 /* Include the size of the jmp instruction (including the
358 0x66 prefix). */
acd5c798 359 delta += 4;
c906108c
SS
360 }
361 else
362 {
acd5c798 363 delta = read_memory_integer (pc + 1, 4);
c906108c 364
acd5c798
MK
365 /* Include the size of the jmp instruction. */
366 delta += 5;
c906108c
SS
367 }
368 break;
369 case 0xeb:
fc338970 370 /* Relative jump, disp8 (ignore data16). */
acd5c798 371 delta = read_memory_integer (pc + data16 + 1, 1);
c906108c 372
acd5c798 373 delta += data16 + 2;
c906108c
SS
374 break;
375 }
c906108c 376
acd5c798
MK
377 return pc + delta;
378}
fc338970 379
acd5c798
MK
380/* Check whether PC points at a prologue for a function returning a
381 structure or union. If so, it updates CACHE and returns the
382 address of the first instruction after the code sequence that
383 removes the "hidden" argument from the stack or CURRENT_PC,
384 whichever is smaller. Otherwise, return PC. */
c906108c 385
acd5c798
MK
386static CORE_ADDR
387i386_analyze_struct_return (CORE_ADDR pc, CORE_ADDR current_pc,
388 struct i386_frame_cache *cache)
c906108c 389{
acd5c798
MK
390 /* Functions that return a structure or union start with:
391
392 popl %eax 0x58
393 xchgl %eax, (%esp) 0x87 0x04 0x24
394 or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
395
396 (the System V compiler puts out the second `xchg' instruction,
397 and the assembler doesn't try to optimize it, so the 'sib' form
398 gets generated). This sequence is used to get the address of the
399 return buffer for a function that returns a structure. */
400 static unsigned char proto1[3] = { 0x87, 0x04, 0x24 };
401 static unsigned char proto2[4] = { 0x87, 0x44, 0x24, 0x00 };
402 unsigned char buf[4];
c906108c
SS
403 unsigned char op;
404
acd5c798
MK
405 if (current_pc <= pc)
406 return pc;
407
408 op = read_memory_unsigned_integer (pc, 1);
c906108c 409
acd5c798
MK
410 if (op != 0x58) /* popl %eax */
411 return pc;
c906108c 412
acd5c798
MK
413 read_memory (pc + 1, buf, 4);
414 if (memcmp (buf, proto1, 3) != 0 && memcmp (buf, proto2, 4) != 0)
415 return pc;
c906108c 416
acd5c798 417 if (current_pc == pc)
c906108c 418 {
acd5c798
MK
419 cache->sp_offset += 4;
420 return current_pc;
c906108c
SS
421 }
422
acd5c798 423 if (current_pc == pc + 1)
c906108c 424 {
acd5c798
MK
425 cache->pc_in_eax = 1;
426 return current_pc;
427 }
428
429 if (buf[1] == proto1[1])
430 return pc + 4;
431 else
432 return pc + 5;
433}
434
435static CORE_ADDR
436i386_skip_probe (CORE_ADDR pc)
437{
438 /* A function may start with
fc338970 439
acd5c798
MK
440 pushl constant
441 call _probe
442 addl $4, %esp
fc338970 443
acd5c798
MK
444 followed by
445
446 pushl %ebp
fc338970 447
acd5c798
MK
448 etc. */
449 unsigned char buf[8];
450 unsigned char op;
fc338970 451
acd5c798
MK
452 op = read_memory_unsigned_integer (pc, 1);
453
454 if (op == 0x68 || op == 0x6a)
455 {
456 int delta;
c906108c 457
acd5c798
MK
458 /* Skip past the `pushl' instruction; it has either a one-byte or a
459 four-byte operand, depending on the opcode. */
c906108c 460 if (op == 0x68)
acd5c798 461 delta = 5;
c906108c 462 else
acd5c798 463 delta = 2;
c906108c 464
acd5c798
MK
465 /* Read the following 8 bytes, which should be `call _probe' (6
466 bytes) followed by `addl $4,%esp' (2 bytes). */
467 read_memory (pc + delta, buf, sizeof (buf));
c906108c 468 if (buf[0] == 0xe8 && buf[6] == 0xc4 && buf[7] == 0x4)
acd5c798 469 pc += delta + sizeof (buf);
c906108c
SS
470 }
471
acd5c798
MK
472 return pc;
473}
474
475/* Check whether PC points at a code that sets up a new stack frame.
476 If so, it updates CACHE and returns the address of the first
477 instruction after the sequence that sets removes the "hidden"
478 argument from the stack or CURRENT_PC, whichever is smaller.
479 Otherwise, return PC. */
480
481static CORE_ADDR
482i386_analyze_frame_setup (CORE_ADDR pc, CORE_ADDR current_pc,
483 struct i386_frame_cache *cache)
484{
485 unsigned char op;
26604a34 486 int skip = 0;
acd5c798
MK
487
488 if (current_pc <= pc)
489 return current_pc;
490
491 op = read_memory_unsigned_integer (pc, 1);
492
c906108c 493 if (op == 0x55) /* pushl %ebp */
c5aa993b 494 {
acd5c798
MK
495 /* Take into account that we've executed the `pushl %ebp' that
496 starts this instruction sequence. */
fd13a04a 497 cache->saved_regs[I386_EBP_REGNUM] = 0;
acd5c798
MK
498 cache->sp_offset += 4;
499
500 /* If that's all, return now. */
501 if (current_pc <= pc + 1)
502 return current_pc;
503
acd5c798 504 op = read_memory_unsigned_integer (pc + 1, 1);
26604a34
MK
505
506 /* Check for some special instructions that might be migrated
507 by GCC into the prologue. We check for
508
509 xorl %ebx, %ebx
510 xorl %ecx, %ecx
511 xorl %edx, %edx
7270b6ed 512 xorl %eax, %eax
26604a34
MK
513
514 and the equivalent
515
516 subl %ebx, %ebx
517 subl %ecx, %ecx
518 subl %edx, %edx
7270b6ed 519 subl %eax, %eax
26604a34 520
5daa5b4e
MK
521 Because of the symmetry, there are actually two ways to
522 encode these instructions; with opcode bytes 0x29 and 0x2b
523 for `subl' and opcode bytes 0x31 and 0x33 for `xorl'.
524
26604a34
MK
525 Make sure we only skip these instructions if we later see the
526 `movl %esp, %ebp' that actually sets up the frame. */
5daa5b4e 527 while (op == 0x29 || op == 0x2b || op == 0x31 || op == 0x33)
26604a34
MK
528 {
529 op = read_memory_unsigned_integer (pc + skip + 2, 1);
530 switch (op)
531 {
532 case 0xdb: /* %ebx */
533 case 0xc9: /* %ecx */
534 case 0xd2: /* %edx */
7270b6ed 535 case 0xc0: /* %eax */
26604a34
MK
536 skip += 2;
537 break;
538 default:
539 return pc + 1;
540 }
541
542 op = read_memory_unsigned_integer (pc + skip + 1, 1);
543 }
544
545 /* Check for `movl %esp, %ebp' -- can be written in two ways. */
acd5c798 546 switch (op)
c906108c
SS
547 {
548 case 0x8b:
26604a34 549 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xec)
acd5c798 550 return pc + 1;
c906108c
SS
551 break;
552 case 0x89:
26604a34 553 if (read_memory_unsigned_integer (pc + skip + 2, 1) != 0xe5)
acd5c798 554 return pc + 1;
c906108c
SS
555 break;
556 default:
acd5c798 557 return pc + 1;
c906108c 558 }
acd5c798 559
26604a34
MK
560 /* OK, we actually have a frame. We just don't know how large
561 it is yet. Set its size to zero. We'll adjust it if
562 necessary. We also now commit to skipping the special
563 instructions mentioned before. */
acd5c798 564 cache->locals = 0;
26604a34 565 pc += skip;
acd5c798
MK
566
567 /* If that's all, return now. */
568 if (current_pc <= pc + 3)
569 return current_pc;
570
fc338970
MK
571 /* Check for stack adjustment
572
acd5c798 573 subl $XXX, %esp
fc338970 574
fd35795f 575 NOTE: You can't subtract a 16-bit immediate from a 32-bit
fc338970 576 reg, so we don't have to worry about a data16 prefix. */
acd5c798 577 op = read_memory_unsigned_integer (pc + 3, 1);
c906108c
SS
578 if (op == 0x83)
579 {
fd35795f 580 /* `subl' with 8-bit immediate. */
acd5c798 581 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 582 /* Some instruction starting with 0x83 other than `subl'. */
acd5c798
MK
583 return pc + 3;
584
585 /* `subl' with signed byte immediate (though it wouldn't make
586 sense to be negative). */
587 cache->locals = read_memory_integer (pc + 5, 1);
588 return pc + 6;
c906108c
SS
589 }
590 else if (op == 0x81)
591 {
fd35795f 592 /* Maybe it is `subl' with a 32-bit immediate. */
acd5c798 593 if (read_memory_unsigned_integer (pc + 4, 1) != 0xec)
fc338970 594 /* Some instruction starting with 0x81 other than `subl'. */
acd5c798
MK
595 return pc + 3;
596
fd35795f 597 /* It is `subl' with a 32-bit immediate. */
acd5c798
MK
598 cache->locals = read_memory_integer (pc + 5, 4);
599 return pc + 9;
c906108c
SS
600 }
601 else
602 {
acd5c798
MK
603 /* Some instruction other than `subl'. */
604 return pc + 3;
c906108c
SS
605 }
606 }
acd5c798 607 else if (op == 0xc8) /* enter $XXX */
c906108c 608 {
acd5c798
MK
609 cache->locals = read_memory_unsigned_integer (pc + 1, 2);
610 return pc + 4;
c906108c 611 }
21d0e8a4 612
acd5c798 613 return pc;
21d0e8a4
MK
614}
615
acd5c798
MK
616/* Check whether PC points at code that saves registers on the stack.
617 If so, it updates CACHE and returns the address of the first
618 instruction after the register saves or CURRENT_PC, whichever is
619 smaller. Otherwise, return PC. */
6bff26de
MK
620
621static CORE_ADDR
acd5c798
MK
622i386_analyze_register_saves (CORE_ADDR pc, CORE_ADDR current_pc,
623 struct i386_frame_cache *cache)
6bff26de 624{
99ab4326
MK
625 CORE_ADDR offset = 0;
626 unsigned char op;
627 int i;
c0d1d883 628
99ab4326
MK
629 if (cache->locals > 0)
630 offset -= cache->locals;
631 for (i = 0; i < 8 && pc < current_pc; i++)
632 {
633 op = read_memory_unsigned_integer (pc, 1);
634 if (op < 0x50 || op > 0x57)
635 break;
0d17c81d 636
99ab4326
MK
637 offset -= 4;
638 cache->saved_regs[op - 0x50] = offset;
639 cache->sp_offset += 4;
640 pc++;
6bff26de
MK
641 }
642
acd5c798 643 return pc;
22797942
AC
644}
645
acd5c798
MK
646/* Do a full analysis of the prologue at PC and update CACHE
647 accordingly. Bail out early if CURRENT_PC is reached. Return the
648 address where the analysis stopped.
ed84f6c1 649
fc338970
MK
650 We handle these cases:
651
652 The startup sequence can be at the start of the function, or the
653 function can start with a branch to startup code at the end.
654
655 %ebp can be set up with either the 'enter' instruction, or "pushl
656 %ebp, movl %esp, %ebp" (`enter' is too slow to be useful, but was
657 once used in the System V compiler).
658
659 Local space is allocated just below the saved %ebp by either the
fd35795f
MK
660 'enter' instruction, or by "subl $<size>, %esp". 'enter' has a
661 16-bit unsigned argument for space to allocate, and the 'addl'
662 instruction could have either a signed byte, or 32-bit immediate.
fc338970
MK
663
664 Next, the registers used by this function are pushed. With the
665 System V compiler they will always be in the order: %edi, %esi,
666 %ebx (and sometimes a harmless bug causes it to also save but not
667 restore %eax); however, the code below is willing to see the pushes
668 in any order, and will handle up to 8 of them.
669
670 If the setup sequence is at the end of the function, then the next
671 instruction will be a branch back to the start. */
c906108c 672
acd5c798
MK
673static CORE_ADDR
674i386_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
675 struct i386_frame_cache *cache)
c906108c 676{
acd5c798
MK
677 pc = i386_follow_jump (pc);
678 pc = i386_analyze_struct_return (pc, current_pc, cache);
679 pc = i386_skip_probe (pc);
680 pc = i386_analyze_frame_setup (pc, current_pc, cache);
681 return i386_analyze_register_saves (pc, current_pc, cache);
c906108c
SS
682}
683
fc338970 684/* Return PC of first real instruction. */
c906108c 685
3a1e71e3 686static CORE_ADDR
acd5c798 687i386_skip_prologue (CORE_ADDR start_pc)
c906108c 688{
c5aa993b 689 static unsigned char pic_pat[6] =
acd5c798
MK
690 {
691 0xe8, 0, 0, 0, 0, /* call 0x0 */
692 0x5b, /* popl %ebx */
c5aa993b 693 };
acd5c798
MK
694 struct i386_frame_cache cache;
695 CORE_ADDR pc;
696 unsigned char op;
697 int i;
c5aa993b 698
acd5c798
MK
699 cache.locals = -1;
700 pc = i386_analyze_prologue (start_pc, 0xffffffff, &cache);
701 if (cache.locals < 0)
702 return start_pc;
c5aa993b 703
acd5c798 704 /* Found valid frame setup. */
c906108c 705
fc338970
MK
706 /* The native cc on SVR4 in -K PIC mode inserts the following code
707 to get the address of the global offset table (GOT) into register
acd5c798
MK
708 %ebx:
709
fc338970
MK
710 call 0x0
711 popl %ebx
712 movl %ebx,x(%ebp) (optional)
713 addl y,%ebx
714
c906108c
SS
715 This code is with the rest of the prologue (at the end of the
716 function), so we have to skip it to get to the first real
717 instruction at the start of the function. */
c5aa993b 718
c906108c
SS
719 for (i = 0; i < 6; i++)
720 {
acd5c798 721 op = read_memory_unsigned_integer (pc + i, 1);
c5aa993b 722 if (pic_pat[i] != op)
c906108c
SS
723 break;
724 }
725 if (i == 6)
726 {
acd5c798
MK
727 int delta = 6;
728
729 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 730
c5aa993b 731 if (op == 0x89) /* movl %ebx, x(%ebp) */
c906108c 732 {
acd5c798
MK
733 op = read_memory_unsigned_integer (pc + delta + 1, 1);
734
fc338970 735 if (op == 0x5d) /* One byte offset from %ebp. */
acd5c798 736 delta += 3;
fc338970 737 else if (op == 0x9d) /* Four byte offset from %ebp. */
acd5c798 738 delta += 6;
fc338970 739 else /* Unexpected instruction. */
acd5c798
MK
740 delta = 0;
741
742 op = read_memory_unsigned_integer (pc + delta, 1);
c906108c 743 }
acd5c798 744
c5aa993b 745 /* addl y,%ebx */
acd5c798
MK
746 if (delta > 0 && op == 0x81
747 && read_memory_unsigned_integer (pc + delta + 1, 1) == 0xc3);
c906108c 748 {
acd5c798 749 pc += delta + 6;
c906108c
SS
750 }
751 }
c5aa993b 752
acd5c798 753 return i386_follow_jump (pc);
c906108c
SS
754}
755
acd5c798 756/* This function is 64-bit safe. */
93924b6b 757
acd5c798
MK
758static CORE_ADDR
759i386_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
93924b6b 760{
acd5c798
MK
761 char buf[8];
762
763 frame_unwind_register (next_frame, PC_REGNUM, buf);
764 return extract_typed_address (buf, builtin_type_void_func_ptr);
93924b6b 765}
acd5c798 766\f
93924b6b 767
acd5c798 768/* Normal frames. */
c5aa993b 769
acd5c798
MK
770static struct i386_frame_cache *
771i386_frame_cache (struct frame_info *next_frame, void **this_cache)
a7769679 772{
acd5c798 773 struct i386_frame_cache *cache;
c0d1d883 774 char buf[4];
acd5c798
MK
775 int i;
776
777 if (*this_cache)
778 return *this_cache;
779
fd13a04a 780 cache = i386_alloc_frame_cache ();
acd5c798
MK
781 *this_cache = cache;
782
783 /* In principle, for normal frames, %ebp holds the frame pointer,
784 which holds the base address for the current stack frame.
785 However, for functions that don't need it, the frame pointer is
786 optional. For these "frameless" functions the frame pointer is
787 actually the frame pointer of the calling frame. Signal
788 trampolines are just a special case of a "frameless" function.
789 They (usually) share their frame pointer with the frame that was
790 in progress when the signal occurred. */
791
792 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
793 cache->base = extract_unsigned_integer (buf, 4);
794 if (cache->base == 0)
795 return cache;
796
797 /* For normal frames, %eip is stored at 4(%ebp). */
fd13a04a 798 cache->saved_regs[I386_EIP_REGNUM] = 4;
acd5c798
MK
799
800 cache->pc = frame_func_unwind (next_frame);
801 if (cache->pc != 0)
802 i386_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
803
804 if (cache->locals < 0)
805 {
806 /* We didn't find a valid frame, which means that CACHE->base
807 currently holds the frame pointer for our calling frame. If
808 we're at the start of a function, or somewhere half-way its
809 prologue, the function's frame probably hasn't been fully
810 setup yet. Try to reconstruct the base address for the stack
811 frame by looking at the stack pointer. For truly "frameless"
812 functions this might work too. */
813
814 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
815 cache->base = extract_unsigned_integer (buf, 4) + cache->sp_offset;
816 }
817
818 /* Now that we have the base address for the stack frame we can
819 calculate the value of %esp in the calling frame. */
820 cache->saved_sp = cache->base + 8;
a7769679 821
acd5c798
MK
822 /* Adjust all the saved registers such that they contain addresses
823 instead of offsets. */
824 for (i = 0; i < I386_NUM_SAVED_REGS; i++)
fd13a04a
AC
825 if (cache->saved_regs[i] != -1)
826 cache->saved_regs[i] += cache->base;
acd5c798
MK
827
828 return cache;
a7769679
MK
829}
830
3a1e71e3 831static void
acd5c798
MK
832i386_frame_this_id (struct frame_info *next_frame, void **this_cache,
833 struct frame_id *this_id)
c906108c 834{
acd5c798
MK
835 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
836
837 /* This marks the outermost frame. */
838 if (cache->base == 0)
839 return;
840
3e210248 841 /* See the end of i386_push_dummy_call. */
acd5c798
MK
842 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
843}
844
845static void
846i386_frame_prev_register (struct frame_info *next_frame, void **this_cache,
847 int regnum, int *optimizedp,
848 enum lval_type *lvalp, CORE_ADDR *addrp,
849 int *realnump, void *valuep)
850{
851 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
852
853 gdb_assert (regnum >= 0);
854
855 /* The System V ABI says that:
856
857 "The flags register contains the system flags, such as the
858 direction flag and the carry flag. The direction flag must be
859 set to the forward (that is, zero) direction before entry and
860 upon exit from a function. Other user flags have no specified
861 role in the standard calling sequence and are not preserved."
862
863 To guarantee the "upon exit" part of that statement we fake a
864 saved flags register that has its direction flag cleared.
865
866 Note that GCC doesn't seem to rely on the fact that the direction
867 flag is cleared after a function return; it always explicitly
868 clears the flag before operations where it matters.
869
870 FIXME: kettenis/20030316: I'm not quite sure whether this is the
871 right thing to do. The way we fake the flags register here makes
872 it impossible to change it. */
873
874 if (regnum == I386_EFLAGS_REGNUM)
875 {
876 *optimizedp = 0;
877 *lvalp = not_lval;
878 *addrp = 0;
879 *realnump = -1;
880 if (valuep)
881 {
882 ULONGEST val;
c5aa993b 883
acd5c798 884 /* Clear the direction flag. */
f837910f
MK
885 val = frame_unwind_register_unsigned (next_frame,
886 I386_EFLAGS_REGNUM);
acd5c798
MK
887 val &= ~(1 << 10);
888 store_unsigned_integer (valuep, 4, val);
889 }
890
891 return;
892 }
1211c4e4 893
acd5c798 894 if (regnum == I386_EIP_REGNUM && cache->pc_in_eax)
c906108c 895 {
acd5c798
MK
896 frame_register_unwind (next_frame, I386_EAX_REGNUM,
897 optimizedp, lvalp, addrp, realnump, valuep);
898 return;
899 }
900
901 if (regnum == I386_ESP_REGNUM && cache->saved_sp)
902 {
903 *optimizedp = 0;
904 *lvalp = not_lval;
905 *addrp = 0;
906 *realnump = -1;
907 if (valuep)
c906108c 908 {
acd5c798
MK
909 /* Store the value. */
910 store_unsigned_integer (valuep, 4, cache->saved_sp);
c906108c 911 }
acd5c798 912 return;
c906108c 913 }
acd5c798 914
fd13a04a
AC
915 if (regnum < I386_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
916 {
917 *optimizedp = 0;
918 *lvalp = lval_memory;
919 *addrp = cache->saved_regs[regnum];
920 *realnump = -1;
921 if (valuep)
922 {
923 /* Read the value in from memory. */
924 read_memory (*addrp, valuep,
925 register_size (current_gdbarch, regnum));
926 }
927 return;
928 }
929
930 frame_register_unwind (next_frame, regnum,
931 optimizedp, lvalp, addrp, realnump, valuep);
acd5c798
MK
932}
933
934static const struct frame_unwind i386_frame_unwind =
935{
936 NORMAL_FRAME,
937 i386_frame_this_id,
938 i386_frame_prev_register
939};
940
941static const struct frame_unwind *
336d1bba 942i386_frame_sniffer (struct frame_info *next_frame)
acd5c798
MK
943{
944 return &i386_frame_unwind;
945}
946\f
947
948/* Signal trampolines. */
949
950static struct i386_frame_cache *
951i386_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
952{
953 struct i386_frame_cache *cache;
954 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
955 CORE_ADDR addr;
956 char buf[4];
957
958 if (*this_cache)
959 return *this_cache;
960
fd13a04a 961 cache = i386_alloc_frame_cache ();
acd5c798
MK
962
963 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
964 cache->base = extract_unsigned_integer (buf, 4) - 4;
965
966 addr = tdep->sigcontext_addr (next_frame);
a3386186
MK
967 if (tdep->sc_reg_offset)
968 {
969 int i;
970
971 gdb_assert (tdep->sc_num_regs <= I386_NUM_SAVED_REGS);
972
973 for (i = 0; i < tdep->sc_num_regs; i++)
974 if (tdep->sc_reg_offset[i] != -1)
fd13a04a 975 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
a3386186
MK
976 }
977 else
978 {
fd13a04a
AC
979 cache->saved_regs[I386_EIP_REGNUM] = addr + tdep->sc_pc_offset;
980 cache->saved_regs[I386_ESP_REGNUM] = addr + tdep->sc_sp_offset;
a3386186 981 }
acd5c798
MK
982
983 *this_cache = cache;
984 return cache;
985}
986
987static void
988i386_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache,
989 struct frame_id *this_id)
990{
991 struct i386_frame_cache *cache =
992 i386_sigtramp_frame_cache (next_frame, this_cache);
993
3e210248 994 /* See the end of i386_push_dummy_call. */
acd5c798
MK
995 (*this_id) = frame_id_build (cache->base + 8, frame_pc_unwind (next_frame));
996}
997
998static void
999i386_sigtramp_frame_prev_register (struct frame_info *next_frame,
1000 void **this_cache,
1001 int regnum, int *optimizedp,
1002 enum lval_type *lvalp, CORE_ADDR *addrp,
1003 int *realnump, void *valuep)
1004{
1005 /* Make sure we've initialized the cache. */
1006 i386_sigtramp_frame_cache (next_frame, this_cache);
1007
1008 i386_frame_prev_register (next_frame, this_cache, regnum,
1009 optimizedp, lvalp, addrp, realnump, valuep);
c906108c 1010}
c0d1d883 1011
acd5c798
MK
1012static const struct frame_unwind i386_sigtramp_frame_unwind =
1013{
1014 SIGTRAMP_FRAME,
1015 i386_sigtramp_frame_this_id,
1016 i386_sigtramp_frame_prev_register
1017};
1018
1019static const struct frame_unwind *
336d1bba 1020i386_sigtramp_frame_sniffer (struct frame_info *next_frame)
acd5c798 1021{
911bc6ee 1022 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame));
acd5c798 1023
911bc6ee
MK
1024 /* We shouldn't even bother if we don't have a sigcontext_addr
1025 handler. */
1026 if (tdep->sigcontext_addr == NULL)
1c3545ae
MK
1027 return NULL;
1028
911bc6ee
MK
1029 if (tdep->sigtramp_p != NULL)
1030 {
1031 if (tdep->sigtramp_p (next_frame))
1032 return &i386_sigtramp_frame_unwind;
1033 }
1034
1035 if (tdep->sigtramp_start != 0)
1036 {
1037 CORE_ADDR pc = frame_pc_unwind (next_frame);
1038
1039 gdb_assert (tdep->sigtramp_end != 0);
1040 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
1041 return &i386_sigtramp_frame_unwind;
1042 }
acd5c798
MK
1043
1044 return NULL;
1045}
1046\f
1047
1048static CORE_ADDR
1049i386_frame_base_address (struct frame_info *next_frame, void **this_cache)
1050{
1051 struct i386_frame_cache *cache = i386_frame_cache (next_frame, this_cache);
1052
1053 return cache->base;
1054}
1055
1056static const struct frame_base i386_frame_base =
1057{
1058 &i386_frame_unwind,
1059 i386_frame_base_address,
1060 i386_frame_base_address,
1061 i386_frame_base_address
1062};
1063
acd5c798
MK
1064static struct frame_id
1065i386_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1066{
1067 char buf[4];
1068 CORE_ADDR fp;
1069
1070 frame_unwind_register (next_frame, I386_EBP_REGNUM, buf);
1071 fp = extract_unsigned_integer (buf, 4);
1072
3e210248 1073 /* See the end of i386_push_dummy_call. */
acd5c798 1074 return frame_id_build (fp + 8, frame_pc_unwind (next_frame));
c0d1d883 1075}
fc338970 1076\f
c906108c 1077
fc338970
MK
1078/* Figure out where the longjmp will land. Slurp the args out of the
1079 stack. We expect the first arg to be a pointer to the jmp_buf
8201327c 1080 structure from which we extract the address that we will land at.
28bcfd30 1081 This address is copied into PC. This routine returns non-zero on
acd5c798
MK
1082 success.
1083
1084 This function is 64-bit safe. */
c906108c 1085
8201327c
MK
1086static int
1087i386_get_longjmp_target (CORE_ADDR *pc)
c906108c 1088{
28bcfd30 1089 char buf[8];
c906108c 1090 CORE_ADDR sp, jb_addr;
8201327c 1091 int jb_pc_offset = gdbarch_tdep (current_gdbarch)->jb_pc_offset;
f9d3c2a8 1092 int len = TYPE_LENGTH (builtin_type_void_func_ptr);
c906108c 1093
8201327c
MK
1094 /* If JB_PC_OFFSET is -1, we have no way to find out where the
1095 longjmp will land. */
1096 if (jb_pc_offset == -1)
c906108c
SS
1097 return 0;
1098
f837910f
MK
1099 /* Don't use I386_ESP_REGNUM here, since this function is also used
1100 for AMD64. */
1101 regcache_cooked_read (current_regcache, SP_REGNUM, buf);
1102 sp = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1103 if (target_read_memory (sp + len, buf, len))
c906108c
SS
1104 return 0;
1105
f837910f 1106 jb_addr = extract_typed_address (buf, builtin_type_void_data_ptr);
28bcfd30 1107 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
8201327c 1108 return 0;
c906108c 1109
f9d3c2a8 1110 *pc = extract_typed_address (buf, builtin_type_void_func_ptr);
c906108c
SS
1111 return 1;
1112}
fc338970 1113\f
c906108c 1114
3a1e71e3 1115static CORE_ADDR
6a65450a
AC
1116i386_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1117 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1118 struct value **args, CORE_ADDR sp, int struct_return,
1119 CORE_ADDR struct_addr)
22f8ba57 1120{
acd5c798
MK
1121 char buf[4];
1122 int i;
1123
1124 /* Push arguments in reverse order. */
1125 for (i = nargs - 1; i >= 0; i--)
22f8ba57 1126 {
acd5c798
MK
1127 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (args[i]));
1128
1129 /* The System V ABI says that:
1130
1131 "An argument's size is increased, if necessary, to make it a
1132 multiple of [32-bit] words. This may require tail padding,
1133 depending on the size of the argument."
1134
1135 This makes sure the stack says word-aligned. */
1136 sp -= (len + 3) & ~3;
1137 write_memory (sp, VALUE_CONTENTS_ALL (args[i]), len);
1138 }
22f8ba57 1139
acd5c798
MK
1140 /* Push value address. */
1141 if (struct_return)
1142 {
22f8ba57 1143 sp -= 4;
fbd9dcd3 1144 store_unsigned_integer (buf, 4, struct_addr);
22f8ba57
MK
1145 write_memory (sp, buf, 4);
1146 }
1147
acd5c798
MK
1148 /* Store return address. */
1149 sp -= 4;
6a65450a 1150 store_unsigned_integer (buf, 4, bp_addr);
acd5c798
MK
1151 write_memory (sp, buf, 4);
1152
1153 /* Finally, update the stack pointer... */
1154 store_unsigned_integer (buf, 4, sp);
1155 regcache_cooked_write (regcache, I386_ESP_REGNUM, buf);
1156
1157 /* ...and fake a frame pointer. */
1158 regcache_cooked_write (regcache, I386_EBP_REGNUM, buf);
1159
3e210248
AC
1160 /* MarkK wrote: This "+ 8" is all over the place:
1161 (i386_frame_this_id, i386_sigtramp_frame_this_id,
1162 i386_unwind_dummy_id). It's there, since all frame unwinders for
1163 a given target have to agree (within a certain margin) on the
fd35795f 1164 definition of the stack address of a frame. Otherwise
3e210248
AC
1165 frame_id_inner() won't work correctly. Since DWARF2/GCC uses the
1166 stack address *before* the function call as a frame's CFA. On
1167 the i386, when %ebp is used as a frame pointer, the offset
1168 between the contents %ebp and the CFA as defined by GCC. */
1169 return sp + 8;
22f8ba57
MK
1170}
1171
1a309862
MK
1172/* These registers are used for returning integers (and on some
1173 targets also for returning `struct' and `union' values when their
ef9dff19 1174 size and alignment match an integer type). */
acd5c798
MK
1175#define LOW_RETURN_REGNUM I386_EAX_REGNUM /* %eax */
1176#define HIGH_RETURN_REGNUM I386_EDX_REGNUM /* %edx */
1a309862 1177
c5e656c1
MK
1178/* Read, for architecture GDBARCH, a function return value of TYPE
1179 from REGCACHE, and copy that into VALBUF. */
1a309862 1180
3a1e71e3 1181static void
c5e656c1
MK
1182i386_extract_return_value (struct gdbarch *gdbarch, struct type *type,
1183 struct regcache *regcache, void *valbuf)
c906108c 1184{
c5e656c1 1185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1a309862 1186 int len = TYPE_LENGTH (type);
00f8375e 1187 char buf[I386_MAX_REGISTER_SIZE];
1a309862 1188
1e8d0a7b 1189 if (TYPE_CODE (type) == TYPE_CODE_FLT)
c906108c 1190 {
5716833c 1191 if (tdep->st0_regnum < 0)
1a309862
MK
1192 {
1193 warning ("Cannot find floating-point return value.");
1194 memset (valbuf, 0, len);
ef9dff19 1195 return;
1a309862
MK
1196 }
1197
c6ba6f0d
MK
1198 /* Floating-point return values can be found in %st(0). Convert
1199 its contents to the desired type. This is probably not
1200 exactly how it would happen on the target itself, but it is
1201 the best we can do. */
acd5c798 1202 regcache_raw_read (regcache, I386_ST0_REGNUM, buf);
00f8375e 1203 convert_typed_floating (buf, builtin_type_i387_ext, valbuf, type);
c906108c
SS
1204 }
1205 else
c5aa993b 1206 {
f837910f
MK
1207 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1208 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
d4f3574e
SS
1209
1210 if (len <= low_size)
00f8375e 1211 {
0818c12a 1212 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e
MK
1213 memcpy (valbuf, buf, len);
1214 }
d4f3574e
SS
1215 else if (len <= (low_size + high_size))
1216 {
0818c12a 1217 regcache_raw_read (regcache, LOW_RETURN_REGNUM, buf);
00f8375e 1218 memcpy (valbuf, buf, low_size);
0818c12a 1219 regcache_raw_read (regcache, HIGH_RETURN_REGNUM, buf);
c8048956 1220 memcpy ((char *) valbuf + low_size, buf, len - low_size);
d4f3574e
SS
1221 }
1222 else
8e65ff28
AC
1223 internal_error (__FILE__, __LINE__,
1224 "Cannot extract return value of %d bytes long.", len);
c906108c
SS
1225 }
1226}
1227
c5e656c1
MK
1228/* Write, for architecture GDBARCH, a function return value of TYPE
1229 from VALBUF into REGCACHE. */
ef9dff19 1230
3a1e71e3 1231static void
c5e656c1
MK
1232i386_store_return_value (struct gdbarch *gdbarch, struct type *type,
1233 struct regcache *regcache, const void *valbuf)
ef9dff19 1234{
c5e656c1 1235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
ef9dff19
MK
1236 int len = TYPE_LENGTH (type);
1237
5716833c
MK
1238 /* Define I387_ST0_REGNUM such that we use the proper definitions
1239 for the architecture. */
1240#define I387_ST0_REGNUM I386_ST0_REGNUM
1241
1e8d0a7b 1242 if (TYPE_CODE (type) == TYPE_CODE_FLT)
ef9dff19 1243 {
3d7f4f49 1244 ULONGEST fstat;
5716833c 1245 char buf[I386_MAX_REGISTER_SIZE];
ccb945b8 1246
5716833c 1247 if (tdep->st0_regnum < 0)
ef9dff19
MK
1248 {
1249 warning ("Cannot set floating-point return value.");
1250 return;
1251 }
1252
635b0cc1
MK
1253 /* Returning floating-point values is a bit tricky. Apart from
1254 storing the return value in %st(0), we have to simulate the
1255 state of the FPU at function return point. */
1256
c6ba6f0d
MK
1257 /* Convert the value found in VALBUF to the extended
1258 floating-point format used by the FPU. This is probably
1259 not exactly how it would happen on the target itself, but
1260 it is the best we can do. */
1261 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
acd5c798 1262 regcache_raw_write (regcache, I386_ST0_REGNUM, buf);
ccb945b8 1263
635b0cc1
MK
1264 /* Set the top of the floating-point register stack to 7. The
1265 actual value doesn't really matter, but 7 is what a normal
1266 function return would end up with if the program started out
1267 with a freshly initialized FPU. */
5716833c 1268 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
ccb945b8 1269 fstat |= (7 << 11);
5716833c 1270 regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM, fstat);
ccb945b8 1271
635b0cc1
MK
1272 /* Mark %st(1) through %st(7) as empty. Since we set the top of
1273 the floating-point register stack to 7, the appropriate value
1274 for the tag word is 0x3fff. */
5716833c 1275 regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM, 0x3fff);
ef9dff19
MK
1276 }
1277 else
1278 {
f837910f
MK
1279 int low_size = register_size (current_gdbarch, LOW_RETURN_REGNUM);
1280 int high_size = register_size (current_gdbarch, HIGH_RETURN_REGNUM);
ef9dff19
MK
1281
1282 if (len <= low_size)
3d7f4f49 1283 regcache_raw_write_part (regcache, LOW_RETURN_REGNUM, 0, len, valbuf);
ef9dff19
MK
1284 else if (len <= (low_size + high_size))
1285 {
3d7f4f49
MK
1286 regcache_raw_write (regcache, LOW_RETURN_REGNUM, valbuf);
1287 regcache_raw_write_part (regcache, HIGH_RETURN_REGNUM, 0,
1288 len - low_size, (char *) valbuf + low_size);
ef9dff19
MK
1289 }
1290 else
8e65ff28
AC
1291 internal_error (__FILE__, __LINE__,
1292 "Cannot store return value of %d bytes long.", len);
ef9dff19 1293 }
5716833c
MK
1294
1295#undef I387_ST0_REGNUM
ef9dff19 1296}
fc338970 1297\f
ef9dff19 1298
8201327c
MK
1299/* This is the variable that is set with "set struct-convention", and
1300 its legitimate values. */
1301static const char default_struct_convention[] = "default";
1302static const char pcc_struct_convention[] = "pcc";
1303static const char reg_struct_convention[] = "reg";
1304static const char *valid_conventions[] =
1305{
1306 default_struct_convention,
1307 pcc_struct_convention,
1308 reg_struct_convention,
1309 NULL
1310};
1311static const char *struct_convention = default_struct_convention;
1312
c5e656c1
MK
1313/* Return non-zero if TYPE, which is assumed to be a structure or
1314 union type, should be returned in registers for architecture
1315 GDBARCH. */
1316
8201327c 1317static int
c5e656c1 1318i386_reg_struct_return_p (struct gdbarch *gdbarch, struct type *type)
8201327c 1319{
c5e656c1
MK
1320 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1321 enum type_code code = TYPE_CODE (type);
1322 int len = TYPE_LENGTH (type);
8201327c 1323
c5e656c1
MK
1324 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
1325
1326 if (struct_convention == pcc_struct_convention
1327 || (struct_convention == default_struct_convention
1328 && tdep->struct_return == pcc_struct_return))
1329 return 0;
1330
1331 return (len == 1 || len == 2 || len == 4 || len == 8);
1332}
1333
1334/* Determine, for architecture GDBARCH, how a return value of TYPE
1335 should be returned. If it is supposed to be returned in registers,
1336 and READBUF is non-zero, read the appropriate value from REGCACHE,
1337 and copy it into READBUF. If WRITEBUF is non-zero, write the value
1338 from WRITEBUF into REGCACHE. */
1339
1340static enum return_value_convention
1341i386_return_value (struct gdbarch *gdbarch, struct type *type,
1342 struct regcache *regcache, void *readbuf,
1343 const void *writebuf)
1344{
1345 enum type_code code = TYPE_CODE (type);
1346
1347 if ((code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1348 && !i386_reg_struct_return_p (gdbarch, type))
1349 return RETURN_VALUE_STRUCT_CONVENTION;
1350
1351 /* This special case is for structures consisting of a single
1352 `float' or `double' member. These structures are returned in
1353 %st(0). For these structures, we call ourselves recursively,
1354 changing TYPE into the type of the first member of the structure.
1355 Since that should work for all structures that have only one
1356 member, we don't bother to check the member's type here. */
1357 if (code == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
1358 {
1359 type = check_typedef (TYPE_FIELD_TYPE (type, 0));
1360 return i386_return_value (gdbarch, type, regcache, readbuf, writebuf);
1361 }
1362
1363 if (readbuf)
1364 i386_extract_return_value (gdbarch, type, regcache, readbuf);
1365 if (writebuf)
1366 i386_store_return_value (gdbarch, type, regcache, writebuf);
8201327c 1367
c5e656c1 1368 return RETURN_VALUE_REGISTER_CONVENTION;
8201327c
MK
1369}
1370\f
1371
d7a0d72c
MK
1372/* Return the GDB type object for the "standard" data type of data in
1373 register REGNUM. Perhaps %esi and %edi should go here, but
1374 potentially they could be used for things other than address. */
1375
3a1e71e3 1376static struct type *
4e259f09 1377i386_register_type (struct gdbarch *gdbarch, int regnum)
d7a0d72c 1378{
acd5c798
MK
1379 if (regnum == I386_EIP_REGNUM
1380 || regnum == I386_EBP_REGNUM || regnum == I386_ESP_REGNUM)
d7a0d72c
MK
1381 return lookup_pointer_type (builtin_type_void);
1382
23a34459 1383 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1384 return builtin_type_i387_ext;
d7a0d72c 1385
5716833c 1386 if (i386_sse_regnum_p (gdbarch, regnum))
3139facc 1387 return builtin_type_vec128i;
d7a0d72c 1388
5716833c 1389 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740
AC
1390 return builtin_type_vec64i;
1391
d7a0d72c
MK
1392 return builtin_type_int;
1393}
1394
28fc6740 1395/* Map a cooked register onto a raw register or memory. For the i386,
acd5c798 1396 the MMX registers need to be mapped onto floating point registers. */
28fc6740
AC
1397
1398static int
c86c27af 1399i386_mmx_regnum_to_fp_regnum (struct regcache *regcache, int regnum)
28fc6740 1400{
5716833c
MK
1401 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1402 int mmxreg, fpreg;
28fc6740
AC
1403 ULONGEST fstat;
1404 int tos;
c86c27af 1405
5716833c
MK
1406 /* Define I387_ST0_REGNUM such that we use the proper definitions
1407 for REGCACHE's architecture. */
1408#define I387_ST0_REGNUM tdep->st0_regnum
1409
1410 mmxreg = regnum - tdep->mm0_regnum;
1411 regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM, &fstat);
28fc6740 1412 tos = (fstat >> 11) & 0x7;
5716833c
MK
1413 fpreg = (mmxreg + tos) % 8;
1414
1415 return (I387_ST0_REGNUM + fpreg);
c86c27af 1416
5716833c 1417#undef I387_ST0_REGNUM
28fc6740
AC
1418}
1419
1420static void
1421i386_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1422 int regnum, void *buf)
1423{
5716833c 1424 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1425 {
d9d9c31f 1426 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1427 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1428
28fc6740 1429 /* Extract (always little endian). */
c86c27af 1430 regcache_raw_read (regcache, fpnum, mmx_buf);
f837910f 1431 memcpy (buf, mmx_buf, register_size (gdbarch, regnum));
28fc6740
AC
1432 }
1433 else
1434 regcache_raw_read (regcache, regnum, buf);
1435}
1436
1437static void
1438i386_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1439 int regnum, const void *buf)
1440{
5716833c 1441 if (i386_mmx_regnum_p (gdbarch, regnum))
28fc6740 1442 {
d9d9c31f 1443 char mmx_buf[MAX_REGISTER_SIZE];
c86c27af
MK
1444 int fpnum = i386_mmx_regnum_to_fp_regnum (regcache, regnum);
1445
28fc6740
AC
1446 /* Read ... */
1447 regcache_raw_read (regcache, fpnum, mmx_buf);
1448 /* ... Modify ... (always little endian). */
f837910f 1449 memcpy (mmx_buf, buf, register_size (gdbarch, regnum));
28fc6740
AC
1450 /* ... Write. */
1451 regcache_raw_write (regcache, fpnum, mmx_buf);
1452 }
1453 else
1454 regcache_raw_write (regcache, regnum, buf);
1455}
ff2e87ac
AC
1456\f
1457
ff2e87ac
AC
1458/* Return the register number of the register allocated by GCC after
1459 REGNUM, or -1 if there is no such register. */
1460
1461static int
1462i386_next_regnum (int regnum)
1463{
1464 /* GCC allocates the registers in the order:
1465
1466 %eax, %edx, %ecx, %ebx, %esi, %edi, %ebp, %esp, ...
1467
1468 Since storing a variable in %esp doesn't make any sense we return
1469 -1 for %ebp and for %esp itself. */
1470 static int next_regnum[] =
1471 {
1472 I386_EDX_REGNUM, /* Slot for %eax. */
1473 I386_EBX_REGNUM, /* Slot for %ecx. */
1474 I386_ECX_REGNUM, /* Slot for %edx. */
1475 I386_ESI_REGNUM, /* Slot for %ebx. */
1476 -1, -1, /* Slots for %esp and %ebp. */
1477 I386_EDI_REGNUM, /* Slot for %esi. */
1478 I386_EBP_REGNUM /* Slot for %edi. */
1479 };
1480
de5b9bb9 1481 if (regnum >= 0 && regnum < sizeof (next_regnum) / sizeof (next_regnum[0]))
ff2e87ac 1482 return next_regnum[regnum];
28fc6740 1483
ff2e87ac
AC
1484 return -1;
1485}
1486
1487/* Return nonzero if a value of type TYPE stored in register REGNUM
1488 needs any special handling. */
d7a0d72c 1489
3a1e71e3 1490static int
ff2e87ac 1491i386_convert_register_p (int regnum, struct type *type)
d7a0d72c 1492{
de5b9bb9
MK
1493 int len = TYPE_LENGTH (type);
1494
ff2e87ac
AC
1495 /* Values may be spread across multiple registers. Most debugging
1496 formats aren't expressive enough to specify the locations, so
1497 some heuristics is involved. Right now we only handle types that
de5b9bb9
MK
1498 have a length that is a multiple of the word size, since GCC
1499 doesn't seem to put any other types into registers. */
1500 if (len > 4 && len % 4 == 0)
1501 {
1502 int last_regnum = regnum;
1503
1504 while (len > 4)
1505 {
1506 last_regnum = i386_next_regnum (last_regnum);
1507 len -= 4;
1508 }
1509
1510 if (last_regnum != -1)
1511 return 1;
1512 }
ff2e87ac 1513
23a34459 1514 return i386_fp_regnum_p (regnum);
d7a0d72c
MK
1515}
1516
ff2e87ac
AC
1517/* Read a value of type TYPE from register REGNUM in frame FRAME, and
1518 return its contents in TO. */
ac27f131 1519
3a1e71e3 1520static void
ff2e87ac
AC
1521i386_register_to_value (struct frame_info *frame, int regnum,
1522 struct type *type, void *to)
ac27f131 1523{
de5b9bb9
MK
1524 int len = TYPE_LENGTH (type);
1525 char *buf = to;
1526
ff2e87ac
AC
1527 /* FIXME: kettenis/20030609: What should we do if REGNUM isn't
1528 available in FRAME (i.e. if it wasn't saved)? */
3d261580 1529
ff2e87ac 1530 if (i386_fp_regnum_p (regnum))
8d7f6b4a 1531 {
d532c08f
MK
1532 i387_register_to_value (frame, regnum, type, to);
1533 return;
8d7f6b4a 1534 }
ff2e87ac 1535
fd35795f 1536 /* Read a value spread across multiple registers. */
de5b9bb9
MK
1537
1538 gdb_assert (len > 4 && len % 4 == 0);
3d261580 1539
de5b9bb9
MK
1540 while (len > 0)
1541 {
1542 gdb_assert (regnum != -1);
1543 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1544
f837910f 1545 get_frame_register (frame, regnum, buf);
de5b9bb9
MK
1546 regnum = i386_next_regnum (regnum);
1547 len -= 4;
1548 buf += 4;
1549 }
ac27f131
MK
1550}
1551
ff2e87ac
AC
1552/* Write the contents FROM of a value of type TYPE into register
1553 REGNUM in frame FRAME. */
ac27f131 1554
3a1e71e3 1555static void
ff2e87ac
AC
1556i386_value_to_register (struct frame_info *frame, int regnum,
1557 struct type *type, const void *from)
ac27f131 1558{
de5b9bb9
MK
1559 int len = TYPE_LENGTH (type);
1560 const char *buf = from;
1561
ff2e87ac 1562 if (i386_fp_regnum_p (regnum))
c6ba6f0d 1563 {
d532c08f
MK
1564 i387_value_to_register (frame, regnum, type, from);
1565 return;
1566 }
3d261580 1567
fd35795f 1568 /* Write a value spread across multiple registers. */
de5b9bb9
MK
1569
1570 gdb_assert (len > 4 && len % 4 == 0);
ff2e87ac 1571
de5b9bb9
MK
1572 while (len > 0)
1573 {
1574 gdb_assert (regnum != -1);
1575 gdb_assert (register_size (current_gdbarch, regnum) == 4);
d532c08f 1576
de5b9bb9
MK
1577 put_frame_register (frame, regnum, buf);
1578 regnum = i386_next_regnum (regnum);
1579 len -= 4;
1580 buf += 4;
1581 }
ac27f131 1582}
ff2e87ac 1583\f
473f17b0
MK
1584/* Supply register REGNUM from the general-purpose register set REGSET
1585 to register cache REGCACHE. If REGNUM is -1, do this for all
1586 registers in REGSET. */
ff2e87ac 1587
20187ed5 1588void
473f17b0
MK
1589i386_supply_gregset (const struct regset *regset, struct regcache *regcache,
1590 int regnum, const void *gregs, size_t len)
1591{
1592 const struct gdbarch_tdep *tdep = regset->descr;
1593 const char *regs = gregs;
1594 int i;
1595
1596 gdb_assert (len == tdep->sizeof_gregset);
1597
1598 for (i = 0; i < tdep->gregset_num_regs; i++)
1599 {
1600 if ((regnum == i || regnum == -1)
1601 && tdep->gregset_reg_offset[i] != -1)
1602 regcache_raw_supply (regcache, i, regs + tdep->gregset_reg_offset[i]);
1603 }
1604}
1605
1606/* Supply register REGNUM from the floating-point register set REGSET
1607 to register cache REGCACHE. If REGNUM is -1, do this for all
1608 registers in REGSET. */
1609
1610static void
1611i386_supply_fpregset (const struct regset *regset, struct regcache *regcache,
1612 int regnum, const void *fpregs, size_t len)
1613{
1614 const struct gdbarch_tdep *tdep = regset->descr;
1615
66a72d25
MK
1616 if (len == I387_SIZEOF_FXSAVE)
1617 {
1618 i387_supply_fxsave (regcache, regnum, fpregs);
1619 return;
1620 }
1621
473f17b0
MK
1622 gdb_assert (len == tdep->sizeof_fpregset);
1623 i387_supply_fsave (regcache, regnum, fpregs);
1624}
8446b36a
MK
1625
1626/* Return the appropriate register set for the core section identified
1627 by SECT_NAME and SECT_SIZE. */
1628
1629const struct regset *
1630i386_regset_from_core_section (struct gdbarch *gdbarch,
1631 const char *sect_name, size_t sect_size)
1632{
1633 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1634
1635 if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset)
1636 {
1637 if (tdep->gregset == NULL)
1638 {
1639 tdep->gregset = XMALLOC (struct regset);
1640 tdep->gregset->descr = tdep;
1641 tdep->gregset->supply_regset = i386_supply_gregset;
1642 }
1643 return tdep->gregset;
1644 }
1645
66a72d25
MK
1646 if ((strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
1647 || (strcmp (sect_name, ".reg-xfp") == 0
1648 && sect_size == I387_SIZEOF_FXSAVE))
8446b36a
MK
1649 {
1650 if (tdep->fpregset == NULL)
1651 {
1652 tdep->fpregset = XMALLOC (struct regset);
1653 tdep->fpregset->descr = tdep;
1654 tdep->fpregset->supply_regset = i386_supply_fpregset;
1655 }
1656 return tdep->fpregset;
1657 }
1658
1659 return NULL;
1660}
473f17b0 1661\f
fc338970 1662
c906108c 1663#ifdef STATIC_TRANSFORM_NAME
fc338970
MK
1664/* SunPRO encodes the static variables. This is not related to C++
1665 mangling, it is done for C too. */
c906108c
SS
1666
1667char *
fba45db2 1668sunpro_static_transform_name (char *name)
c906108c
SS
1669{
1670 char *p;
1671 if (IS_STATIC_TRANSFORM_NAME (name))
1672 {
fc338970
MK
1673 /* For file-local statics there will be a period, a bunch of
1674 junk (the contents of which match a string given in the
c5aa993b
JM
1675 N_OPT), a period and the name. For function-local statics
1676 there will be a bunch of junk (which seems to change the
1677 second character from 'A' to 'B'), a period, the name of the
1678 function, and the name. So just skip everything before the
1679 last period. */
c906108c
SS
1680 p = strrchr (name, '.');
1681 if (p != NULL)
1682 name = p + 1;
1683 }
1684 return name;
1685}
1686#endif /* STATIC_TRANSFORM_NAME */
fc338970 1687\f
c906108c 1688
fc338970 1689/* Stuff for WIN32 PE style DLL's but is pretty generic really. */
c906108c
SS
1690
1691CORE_ADDR
1cce71eb 1692i386_pe_skip_trampoline_code (CORE_ADDR pc, char *name)
c906108c 1693{
fc338970 1694 if (pc && read_memory_unsigned_integer (pc, 2) == 0x25ff) /* jmp *(dest) */
c906108c 1695 {
c5aa993b 1696 unsigned long indirect = read_memory_unsigned_integer (pc + 2, 4);
c906108c 1697 struct minimal_symbol *indsym =
fc338970 1698 indirect ? lookup_minimal_symbol_by_pc (indirect) : 0;
645dd519 1699 char *symname = indsym ? SYMBOL_LINKAGE_NAME (indsym) : 0;
c906108c 1700
c5aa993b 1701 if (symname)
c906108c 1702 {
c5aa993b
JM
1703 if (strncmp (symname, "__imp_", 6) == 0
1704 || strncmp (symname, "_imp_", 5) == 0)
c906108c
SS
1705 return name ? 1 : read_memory_unsigned_integer (indirect, 4);
1706 }
1707 }
fc338970 1708 return 0; /* Not a trampoline. */
c906108c 1709}
fc338970
MK
1710\f
1711
377d9ebd 1712/* Return whether the frame preceding NEXT_FRAME corresponds to a
911bc6ee 1713 sigtramp routine. */
8201327c
MK
1714
1715static int
911bc6ee 1716i386_sigtramp_p (struct frame_info *next_frame)
8201327c 1717{
911bc6ee
MK
1718 CORE_ADDR pc = frame_pc_unwind (next_frame);
1719 char *name;
1720
1721 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1722 return (name && strcmp ("_sigtramp", name) == 0);
1723}
1724\f
1725
fc338970
MK
1726/* We have two flavours of disassembly. The machinery on this page
1727 deals with switching between those. */
c906108c
SS
1728
1729static int
a89aa300 1730i386_print_insn (bfd_vma pc, struct disassemble_info *info)
c906108c 1731{
5e3397bb
MK
1732 gdb_assert (disassembly_flavor == att_flavor
1733 || disassembly_flavor == intel_flavor);
1734
1735 /* FIXME: kettenis/20020915: Until disassembler_options is properly
1736 constified, cast to prevent a compiler warning. */
1737 info->disassembler_options = (char *) disassembly_flavor;
1738 info->mach = gdbarch_bfd_arch_info (current_gdbarch)->mach;
1739
1740 return print_insn_i386 (pc, info);
7a292a7a 1741}
fc338970 1742\f
3ce1502b 1743
8201327c
MK
1744/* There are a few i386 architecture variants that differ only
1745 slightly from the generic i386 target. For now, we don't give them
1746 their own source file, but include them here. As a consequence,
1747 they'll always be included. */
3ce1502b 1748
8201327c 1749/* System V Release 4 (SVR4). */
3ce1502b 1750
377d9ebd 1751/* Return whether the frame preceding NEXT_FRAME corresponds to a SVR4
911bc6ee
MK
1752 sigtramp routine. */
1753
8201327c 1754static int
911bc6ee 1755i386_svr4_sigtramp_p (struct frame_info *next_frame)
d2a7c97a 1756{
911bc6ee
MK
1757 CORE_ADDR pc = frame_pc_unwind (next_frame);
1758 char *name;
1759
acd5c798
MK
1760 /* UnixWare uses _sigacthandler. The origin of the other symbols is
1761 currently unknown. */
911bc6ee 1762 find_pc_partial_function (pc, &name, NULL, NULL);
8201327c
MK
1763 return (name && (strcmp ("_sigreturn", name) == 0
1764 || strcmp ("_sigacthandler", name) == 0
1765 || strcmp ("sigvechandler", name) == 0));
1766}
d2a7c97a 1767
acd5c798
MK
1768/* Assuming NEXT_FRAME is for a frame following a SVR4 sigtramp
1769 routine, return the address of the associated sigcontext (ucontext)
1770 structure. */
3ce1502b 1771
3a1e71e3 1772static CORE_ADDR
acd5c798 1773i386_svr4_sigcontext_addr (struct frame_info *next_frame)
8201327c 1774{
acd5c798
MK
1775 char buf[4];
1776 CORE_ADDR sp;
3ce1502b 1777
acd5c798
MK
1778 frame_unwind_register (next_frame, I386_ESP_REGNUM, buf);
1779 sp = extract_unsigned_integer (buf, 4);
21d0e8a4 1780
acd5c798 1781 return read_memory_unsigned_integer (sp + 8, 4);
8201327c
MK
1782}
1783\f
3ce1502b 1784
3d049254
MK
1785/* Generic COFF. */
1786
1787void
1788i386_coff_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1789{
c4fc7f1b
MK
1790 /* We typically use DWARF-in-COFF with the dbx register numbering. */
1791 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
1792 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
3d049254
MK
1793}
1794
8201327c 1795/* Generic ELF. */
d2a7c97a 1796
8201327c
MK
1797void
1798i386_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1799{
c4fc7f1b
MK
1800 /* We typically use stabs-in-ELF with the SVR4 register numbering. */
1801 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
8201327c 1802}
3ce1502b 1803
8201327c 1804/* System V Release 4 (SVR4). */
3ce1502b 1805
8201327c
MK
1806void
1807i386_svr4_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1808{
1809 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1810
8201327c
MK
1811 /* System V Release 4 uses ELF. */
1812 i386_elf_init_abi (info, gdbarch);
3ce1502b 1813
dfe01d39
MK
1814 /* System V Release 4 has shared libraries. */
1815 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1816 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1817
911bc6ee 1818 tdep->sigtramp_p = i386_svr4_sigtramp_p;
21d0e8a4 1819 tdep->sigcontext_addr = i386_svr4_sigcontext_addr;
acd5c798
MK
1820 tdep->sc_pc_offset = 36 + 14 * 4;
1821 tdep->sc_sp_offset = 36 + 17 * 4;
3ce1502b 1822
8201327c 1823 tdep->jb_pc_offset = 20;
3ce1502b
MK
1824}
1825
8201327c 1826/* DJGPP. */
3ce1502b 1827
3a1e71e3 1828static void
8201327c 1829i386_go32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1830{
8201327c 1831 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1832
911bc6ee
MK
1833 /* DJGPP doesn't have any special frames for signal handlers. */
1834 tdep->sigtramp_p = NULL;
3ce1502b 1835
8201327c 1836 tdep->jb_pc_offset = 36;
3ce1502b
MK
1837}
1838
8201327c 1839/* NetWare. */
3ce1502b 1840
3a1e71e3 1841static void
8201327c 1842i386_nw_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
3ce1502b 1843{
8201327c 1844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3ce1502b 1845
8201327c 1846 tdep->jb_pc_offset = 24;
d2a7c97a 1847}
8201327c 1848\f
2acceee2 1849
38c968cf
AC
1850/* i386 register groups. In addition to the normal groups, add "mmx"
1851 and "sse". */
1852
1853static struct reggroup *i386_sse_reggroup;
1854static struct reggroup *i386_mmx_reggroup;
1855
1856static void
1857i386_init_reggroups (void)
1858{
1859 i386_sse_reggroup = reggroup_new ("sse", USER_REGGROUP);
1860 i386_mmx_reggroup = reggroup_new ("mmx", USER_REGGROUP);
1861}
1862
1863static void
1864i386_add_reggroups (struct gdbarch *gdbarch)
1865{
1866 reggroup_add (gdbarch, i386_sse_reggroup);
1867 reggroup_add (gdbarch, i386_mmx_reggroup);
1868 reggroup_add (gdbarch, general_reggroup);
1869 reggroup_add (gdbarch, float_reggroup);
1870 reggroup_add (gdbarch, all_reggroup);
1871 reggroup_add (gdbarch, save_reggroup);
1872 reggroup_add (gdbarch, restore_reggroup);
1873 reggroup_add (gdbarch, vector_reggroup);
1874 reggroup_add (gdbarch, system_reggroup);
1875}
1876
1877int
1878i386_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1879 struct reggroup *group)
1880{
5716833c
MK
1881 int sse_regnum_p = (i386_sse_regnum_p (gdbarch, regnum)
1882 || i386_mxcsr_regnum_p (gdbarch, regnum));
38c968cf
AC
1883 int fp_regnum_p = (i386_fp_regnum_p (regnum)
1884 || i386_fpc_regnum_p (regnum));
5716833c 1885 int mmx_regnum_p = (i386_mmx_regnum_p (gdbarch, regnum));
acd5c798 1886
38c968cf
AC
1887 if (group == i386_mmx_reggroup)
1888 return mmx_regnum_p;
1889 if (group == i386_sse_reggroup)
1890 return sse_regnum_p;
1891 if (group == vector_reggroup)
1892 return (mmx_regnum_p || sse_regnum_p);
1893 if (group == float_reggroup)
1894 return fp_regnum_p;
1895 if (group == general_reggroup)
1896 return (!fp_regnum_p && !mmx_regnum_p && !sse_regnum_p);
acd5c798 1897
38c968cf
AC
1898 return default_register_reggroup_p (gdbarch, regnum, group);
1899}
38c968cf 1900\f
acd5c798 1901
f837910f
MK
1902/* Get the ARGIth function argument for the current function. */
1903
42c466d7 1904static CORE_ADDR
143985b7
AF
1905i386_fetch_pointer_argument (struct frame_info *frame, int argi,
1906 struct type *type)
1907{
f837910f
MK
1908 CORE_ADDR sp = get_frame_register_unsigned (frame, I386_ESP_REGNUM);
1909 return read_memory_unsigned_integer (sp + (4 * (argi + 1)), 4);
143985b7
AF
1910}
1911
1912\f
3a1e71e3 1913static struct gdbarch *
a62cc96e
AC
1914i386_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1915{
cd3c07fc 1916 struct gdbarch_tdep *tdep;
a62cc96e
AC
1917 struct gdbarch *gdbarch;
1918
4be87837
DJ
1919 /* If there is already a candidate, use it. */
1920 arches = gdbarch_list_lookup_by_info (arches, &info);
1921 if (arches != NULL)
1922 return arches->gdbarch;
a62cc96e
AC
1923
1924 /* Allocate space for the new architecture. */
1925 tdep = XMALLOC (struct gdbarch_tdep);
1926 gdbarch = gdbarch_alloc (&info, tdep);
1927
473f17b0
MK
1928 /* General-purpose registers. */
1929 tdep->gregset = NULL;
1930 tdep->gregset_reg_offset = NULL;
1931 tdep->gregset_num_regs = I386_NUM_GREGS;
1932 tdep->sizeof_gregset = 0;
1933
1934 /* Floating-point registers. */
1935 tdep->fpregset = NULL;
1936 tdep->sizeof_fpregset = I387_SIZEOF_FSAVE;
1937
5716833c 1938 /* The default settings include the FPU registers, the MMX registers
fd35795f 1939 and the SSE registers. This can be overridden for a specific ABI
5716833c
MK
1940 by adjusting the members `st0_regnum', `mm0_regnum' and
1941 `num_xmm_regs' of `struct gdbarch_tdep', otherwise the registers
1942 will show up in the output of "info all-registers". Ideally we
1943 should try to autodetect whether they are available, such that we
1944 can prevent "info all-registers" from displaying registers that
1945 aren't available.
1946
1947 NOTE: kevinb/2003-07-13: ... if it's a choice between printing
1948 [the SSE registers] always (even when they don't exist) or never
1949 showing them to the user (even when they do exist), I prefer the
1950 former over the latter. */
1951
1952 tdep->st0_regnum = I386_ST0_REGNUM;
1953
1954 /* The MMX registers are implemented as pseudo-registers. Put off
fd35795f 1955 calculating the register number for %mm0 until we know the number
5716833c
MK
1956 of raw registers. */
1957 tdep->mm0_regnum = 0;
1958
1959 /* I386_NUM_XREGS includes %mxcsr, so substract one. */
49ed40de 1960 tdep->num_xmm_regs = I386_NUM_XREGS - 1;
d2a7c97a 1961
8201327c
MK
1962 tdep->jb_pc_offset = -1;
1963 tdep->struct_return = pcc_struct_return;
8201327c
MK
1964 tdep->sigtramp_start = 0;
1965 tdep->sigtramp_end = 0;
911bc6ee 1966 tdep->sigtramp_p = i386_sigtramp_p;
21d0e8a4 1967 tdep->sigcontext_addr = NULL;
a3386186 1968 tdep->sc_reg_offset = NULL;
8201327c 1969 tdep->sc_pc_offset = -1;
21d0e8a4 1970 tdep->sc_sp_offset = -1;
8201327c 1971
896fb97d
MK
1972 /* The format used for `long double' on almost all i386 targets is
1973 the i387 extended floating-point format. In fact, of all targets
1974 in the GCC 2.95 tree, only OSF/1 does it different, and insists
1975 on having a `long double' that's not `long' at all. */
1976 set_gdbarch_long_double_format (gdbarch, &floatformat_i387_ext);
21d0e8a4 1977
66da5fd8 1978 /* Although the i387 extended floating-point has only 80 significant
896fb97d
MK
1979 bits, a `long double' actually takes up 96, probably to enforce
1980 alignment. */
1981 set_gdbarch_long_double_bit (gdbarch, 96);
1982
49ed40de
KB
1983 /* The default ABI includes general-purpose registers,
1984 floating-point registers, and the SSE registers. */
1985 set_gdbarch_num_regs (gdbarch, I386_SSE_NUM_REGS);
acd5c798
MK
1986 set_gdbarch_register_name (gdbarch, i386_register_name);
1987 set_gdbarch_register_type (gdbarch, i386_register_type);
21d0e8a4 1988
acd5c798
MK
1989 /* Register numbers of various important registers. */
1990 set_gdbarch_sp_regnum (gdbarch, I386_ESP_REGNUM); /* %esp */
1991 set_gdbarch_pc_regnum (gdbarch, I386_EIP_REGNUM); /* %eip */
1992 set_gdbarch_ps_regnum (gdbarch, I386_EFLAGS_REGNUM); /* %eflags */
1993 set_gdbarch_fp0_regnum (gdbarch, I386_ST0_REGNUM); /* %st(0) */
356a6b3e 1994
c4fc7f1b
MK
1995 /* NOTE: kettenis/20040418: GCC does have two possible register
1996 numbering schemes on the i386: dbx and SVR4. These schemes
1997 differ in how they number %ebp, %esp, %eflags, and the
fd35795f 1998 floating-point registers, and are implemented by the arrays
c4fc7f1b
MK
1999 dbx_register_map[] and svr4_dbx_register_map in
2000 gcc/config/i386.c. GCC also defines a third numbering scheme in
2001 gcc/config/i386.c, which it designates as the "default" register
2002 map used in 64bit mode. This last register numbering scheme is
2003 implemented in dbx64_register_map, and us used for AMD64; see
2004 amd64-tdep.c.
2005
2006 Currently, each GCC i386 target always uses the same register
2007 numbering scheme across all its supported debugging formats
2008 i.e. SDB (COFF), stabs and DWARF 2. This is because
2009 gcc/sdbout.c, gcc/dbxout.c and gcc/dwarf2out.c all use the
2010 DBX_REGISTER_NUMBER macro which is defined by each target's
2011 respective config header in a manner independent of the requested
2012 output debugging format.
2013
2014 This does not match the arrangement below, which presumes that
2015 the SDB and stabs numbering schemes differ from the DWARF and
2016 DWARF 2 ones. The reason for this arrangement is that it is
2017 likely to get the numbering scheme for the target's
2018 default/native debug format right. For targets where GCC is the
2019 native compiler (FreeBSD, NetBSD, OpenBSD, GNU/Linux) or for
2020 targets where the native toolchain uses a different numbering
2021 scheme for a particular debug format (stabs-in-ELF on Solaris)
2022 the defaults below will have to be overridden, like the functions
2023 i386_coff_init_abi() and i386_elf_init_abi() do. */
2024
2025 /* Use the dbx register numbering scheme for stabs and COFF. */
2026 set_gdbarch_stab_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2027 set_gdbarch_sdb_reg_to_regnum (gdbarch, i386_dbx_reg_to_regnum);
2028
2029 /* Use the SVR4 register numbering scheme for DWARF and DWARF 2. */
2030 set_gdbarch_dwarf_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
2031 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, i386_svr4_reg_to_regnum);
356a6b3e
MK
2032
2033 /* We don't define ECOFF_REG_TO_REGNUM, since ECOFF doesn't seem to
2034 be in use on any of the supported i386 targets. */
2035
61113f8b
MK
2036 set_gdbarch_print_float_info (gdbarch, i387_print_float_info);
2037
8201327c 2038 set_gdbarch_get_longjmp_target (gdbarch, i386_get_longjmp_target);
96297dab 2039
a62cc96e 2040 /* Call dummy code. */
acd5c798 2041 set_gdbarch_push_dummy_call (gdbarch, i386_push_dummy_call);
a62cc96e 2042
ff2e87ac
AC
2043 set_gdbarch_convert_register_p (gdbarch, i386_convert_register_p);
2044 set_gdbarch_register_to_value (gdbarch, i386_register_to_value);
2045 set_gdbarch_value_to_register (gdbarch, i386_value_to_register);
b6197528 2046
c5e656c1 2047 set_gdbarch_return_value (gdbarch, i386_return_value);
8201327c 2048
93924b6b
MK
2049 set_gdbarch_skip_prologue (gdbarch, i386_skip_prologue);
2050
2051 /* Stack grows downward. */
2052 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2053
2054 set_gdbarch_breakpoint_from_pc (gdbarch, i386_breakpoint_from_pc);
2055 set_gdbarch_decr_pc_after_break (gdbarch, 1);
42fdc8df 2056
42fdc8df 2057 set_gdbarch_frame_args_skip (gdbarch, 8);
8201327c 2058
28fc6740 2059 /* Wire in the MMX registers. */
0f751ff2 2060 set_gdbarch_num_pseudo_regs (gdbarch, i386_num_mmx_regs);
28fc6740
AC
2061 set_gdbarch_pseudo_register_read (gdbarch, i386_pseudo_register_read);
2062 set_gdbarch_pseudo_register_write (gdbarch, i386_pseudo_register_write);
2063
5e3397bb
MK
2064 set_gdbarch_print_insn (gdbarch, i386_print_insn);
2065
acd5c798 2066 set_gdbarch_unwind_dummy_id (gdbarch, i386_unwind_dummy_id);
acd5c798
MK
2067
2068 set_gdbarch_unwind_pc (gdbarch, i386_unwind_pc);
2069
38c968cf
AC
2070 /* Add the i386 register groups. */
2071 i386_add_reggroups (gdbarch);
2072 set_gdbarch_register_reggroup_p (gdbarch, i386_register_reggroup_p);
2073
143985b7
AF
2074 /* Helper for function argument information. */
2075 set_gdbarch_fetch_pointer_argument (gdbarch, i386_fetch_pointer_argument);
2076
6405b0a6 2077 /* Hook in the DWARF CFI frame unwinder. */
336d1bba 2078 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
6405b0a6 2079
acd5c798 2080 frame_base_set_default (gdbarch, &i386_frame_base);
6c0e89ed 2081
3ce1502b 2082 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2083 gdbarch_init_osabi (info, gdbarch);
3ce1502b 2084
336d1bba
AC
2085 frame_unwind_append_sniffer (gdbarch, i386_sigtramp_frame_sniffer);
2086 frame_unwind_append_sniffer (gdbarch, i386_frame_sniffer);
acd5c798 2087
8446b36a
MK
2088 /* If we have a register mapping, enable the generic core file
2089 support, unless it has already been enabled. */
2090 if (tdep->gregset_reg_offset
2091 && !gdbarch_regset_from_core_section_p (gdbarch))
2092 set_gdbarch_regset_from_core_section (gdbarch,
2093 i386_regset_from_core_section);
2094
5716833c
MK
2095 /* Unless support for MMX has been disabled, make %mm0 the first
2096 pseudo-register. */
2097 if (tdep->mm0_regnum == 0)
2098 tdep->mm0_regnum = gdbarch_num_regs (gdbarch);
2099
a62cc96e
AC
2100 return gdbarch;
2101}
2102
8201327c
MK
2103static enum gdb_osabi
2104i386_coff_osabi_sniffer (bfd *abfd)
2105{
762c5349
MK
2106 if (strcmp (bfd_get_target (abfd), "coff-go32-exe") == 0
2107 || strcmp (bfd_get_target (abfd), "coff-go32") == 0)
8201327c
MK
2108 return GDB_OSABI_GO32;
2109
2110 return GDB_OSABI_UNKNOWN;
2111}
2112
2113static enum gdb_osabi
2114i386_nlm_osabi_sniffer (bfd *abfd)
2115{
2116 return GDB_OSABI_NETWARE;
2117}
2118\f
2119
28e9e0f0
MK
2120/* Provide a prototype to silence -Wmissing-prototypes. */
2121void _initialize_i386_tdep (void);
2122
c906108c 2123void
fba45db2 2124_initialize_i386_tdep (void)
c906108c 2125{
a62cc96e
AC
2126 register_gdbarch_init (bfd_arch_i386, i386_gdbarch_init);
2127
fc338970 2128 /* Add the variable that controls the disassembly flavor. */
917317f4
JM
2129 {
2130 struct cmd_list_element *new_cmd;
7a292a7a 2131
917317f4
JM
2132 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
2133 valid_flavors,
1ed2a135 2134 &disassembly_flavor,
fc338970
MK
2135 "\
2136Set the disassembly flavor, the valid values are \"att\" and \"intel\", \
c906108c 2137and the default value is \"att\".",
917317f4 2138 &setlist);
917317f4
JM
2139 add_show_from_set (new_cmd, &showlist);
2140 }
8201327c
MK
2141
2142 /* Add the variable that controls the convention for returning
2143 structs. */
2144 {
2145 struct cmd_list_element *new_cmd;
2146
2147 new_cmd = add_set_enum_cmd ("struct-convention", no_class,
5e3397bb 2148 valid_conventions,
8201327c
MK
2149 &struct_convention, "\
2150Set the convention for returning small structs, valid values \
2151are \"default\", \"pcc\" and \"reg\", and the default value is \"default\".",
2152 &setlist);
2153 add_show_from_set (new_cmd, &showlist);
2154 }
2155
2156 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_coff_flavour,
2157 i386_coff_osabi_sniffer);
2158 gdbarch_register_osabi_sniffer (bfd_arch_i386, bfd_target_nlm_flavour,
2159 i386_nlm_osabi_sniffer);
2160
05816f70 2161 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_SVR4,
8201327c 2162 i386_svr4_init_abi);
05816f70 2163 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_GO32,
8201327c 2164 i386_go32_init_abi);
05816f70 2165 gdbarch_register_osabi (bfd_arch_i386, 0, GDB_OSABI_NETWARE,
8201327c 2166 i386_nw_init_abi);
38c968cf
AC
2167
2168 /* Initialize the i386 specific register groups. */
2169 i386_init_reggroups ();
c906108c 2170}
This page took 0.592906 seconds and 4 git commands to generate.