Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Intel 387 floating point stuff. |
38edeab8 | 2 | |
b811d2c2 | 3 | Copyright (C) 1988-2020 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "frame.h" | |
786a90bb | 22 | #include "gdbcore.h" |
c906108c SS |
23 | #include "inferior.h" |
24 | #include "language.h" | |
4e052eda | 25 | #include "regcache.h" |
f69fdf9b | 26 | #include "target-float.h" |
786a90bb MK |
27 | #include "value.h" |
28 | ||
9a82579f | 29 | #include "i386-tdep.h" |
42c466d7 | 30 | #include "i387-tdep.h" |
268a13a5 | 31 | #include "gdbsupport/x86-xstate.h" |
c906108c | 32 | |
de57eccd | 33 | /* Print the floating point number specified by RAW. */ |
786a90bb | 34 | |
de57eccd | 35 | static void |
27067745 UW |
36 | print_i387_value (struct gdbarch *gdbarch, |
37 | const gdb_byte *raw, struct ui_file *file) | |
de57eccd | 38 | { |
de57eccd JM |
39 | /* We try to print 19 digits. The last digit may or may not contain |
40 | garbage, but we'd better print one too many. We need enough room | |
41 | to print the value, 1 position for the sign, 1 for the decimal | |
42 | point, 19 for the digits and 6 for the exponent adds up to 27. */ | |
f69fdf9b UW |
43 | const struct type *type = i387_ext_type (gdbarch); |
44 | std::string str = target_float_to_string (raw, type, " %-+27.19g"); | |
8ba0dd51 | 45 | fprintf_filtered (file, "%s", str.c_str ()); |
de57eccd JM |
46 | } |
47 | ||
48 | /* Print the classification for the register contents RAW. */ | |
786a90bb | 49 | |
de57eccd | 50 | static void |
27067745 UW |
51 | print_i387_ext (struct gdbarch *gdbarch, |
52 | const gdb_byte *raw, struct ui_file *file) | |
de57eccd JM |
53 | { |
54 | int sign; | |
55 | int integer; | |
56 | unsigned int exponent; | |
57 | unsigned long fraction[2]; | |
58 | ||
59 | sign = raw[9] & 0x80; | |
60 | integer = raw[7] & 0x80; | |
61 | exponent = (((raw[9] & 0x7f) << 8) | raw[8]); | |
62 | fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); | |
63 | fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | |
64 | | (raw[5] << 8) | raw[4]); | |
65 | ||
66 | if (exponent == 0x7fff && integer) | |
67 | { | |
68 | if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000) | |
69 | /* Infinity. */ | |
61113f8b | 70 | fprintf_filtered (file, " %cInf", (sign ? '-' : '+')); |
de57eccd JM |
71 | else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000) |
72 | /* Real Indefinite (QNaN). */ | |
61113f8b | 73 | fputs_unfiltered (" Real Indefinite (QNaN)", file); |
de57eccd JM |
74 | else if (fraction[1] & 0x40000000) |
75 | /* QNaN. */ | |
61113f8b | 76 | fputs_filtered (" QNaN", file); |
de57eccd JM |
77 | else |
78 | /* SNaN. */ | |
61113f8b | 79 | fputs_filtered (" SNaN", file); |
de57eccd JM |
80 | } |
81 | else if (exponent < 0x7fff && exponent > 0x0000 && integer) | |
82 | /* Normal. */ | |
27067745 | 83 | print_i387_value (gdbarch, raw, file); |
de57eccd JM |
84 | else if (exponent == 0x0000) |
85 | { | |
86 | /* Denormal or zero. */ | |
27067745 | 87 | print_i387_value (gdbarch, raw, file); |
de57eccd JM |
88 | |
89 | if (integer) | |
90 | /* Pseudo-denormal. */ | |
61113f8b | 91 | fputs_filtered (" Pseudo-denormal", file); |
de57eccd JM |
92 | else if (fraction[0] || fraction[1]) |
93 | /* Denormal. */ | |
61113f8b | 94 | fputs_filtered (" Denormal", file); |
de57eccd JM |
95 | } |
96 | else | |
97 | /* Unsupported. */ | |
61113f8b | 98 | fputs_filtered (" Unsupported", file); |
de57eccd JM |
99 | } |
100 | ||
ad5f7d6e PA |
101 | /* Print the status word STATUS. If STATUS_P is false, then STATUS |
102 | was unavailable. */ | |
786a90bb | 103 | |
de57eccd | 104 | static void |
ad5f7d6e PA |
105 | print_i387_status_word (int status_p, |
106 | unsigned int status, struct ui_file *file) | |
de57eccd | 107 | { |
ad5f7d6e PA |
108 | fprintf_filtered (file, "Status Word: "); |
109 | if (!status_p) | |
110 | { | |
111 | fprintf_filtered (file, "%s\n", _("<unavailable>")); | |
112 | return; | |
113 | } | |
114 | ||
115 | fprintf_filtered (file, "%s", hex_string_custom (status, 4)); | |
61113f8b MK |
116 | fputs_filtered (" ", file); |
117 | fprintf_filtered (file, " %s", (status & 0x0001) ? "IE" : " "); | |
118 | fprintf_filtered (file, " %s", (status & 0x0002) ? "DE" : " "); | |
119 | fprintf_filtered (file, " %s", (status & 0x0004) ? "ZE" : " "); | |
120 | fprintf_filtered (file, " %s", (status & 0x0008) ? "OE" : " "); | |
121 | fprintf_filtered (file, " %s", (status & 0x0010) ? "UE" : " "); | |
122 | fprintf_filtered (file, " %s", (status & 0x0020) ? "PE" : " "); | |
123 | fputs_filtered (" ", file); | |
124 | fprintf_filtered (file, " %s", (status & 0x0080) ? "ES" : " "); | |
125 | fputs_filtered (" ", file); | |
126 | fprintf_filtered (file, " %s", (status & 0x0040) ? "SF" : " "); | |
127 | fputs_filtered (" ", file); | |
128 | fprintf_filtered (file, " %s", (status & 0x0100) ? "C0" : " "); | |
129 | fprintf_filtered (file, " %s", (status & 0x0200) ? "C1" : " "); | |
130 | fprintf_filtered (file, " %s", (status & 0x0400) ? "C2" : " "); | |
131 | fprintf_filtered (file, " %s", (status & 0x4000) ? "C3" : " "); | |
132 | ||
133 | fputs_filtered ("\n", file); | |
134 | ||
135 | fprintf_filtered (file, | |
136 | " TOP: %d\n", ((status >> 11) & 7)); | |
de57eccd JM |
137 | } |
138 | ||
ad5f7d6e PA |
139 | /* Print the control word CONTROL. If CONTROL_P is false, then |
140 | CONTROL was unavailable. */ | |
786a90bb | 141 | |
de57eccd | 142 | static void |
ad5f7d6e PA |
143 | print_i387_control_word (int control_p, |
144 | unsigned int control, struct ui_file *file) | |
de57eccd | 145 | { |
ad5f7d6e PA |
146 | fprintf_filtered (file, "Control Word: "); |
147 | if (!control_p) | |
148 | { | |
149 | fprintf_filtered (file, "%s\n", _("<unavailable>")); | |
150 | return; | |
151 | } | |
152 | ||
153 | fprintf_filtered (file, "%s", hex_string_custom (control, 4)); | |
61113f8b MK |
154 | fputs_filtered (" ", file); |
155 | fprintf_filtered (file, " %s", (control & 0x0001) ? "IM" : " "); | |
156 | fprintf_filtered (file, " %s", (control & 0x0002) ? "DM" : " "); | |
157 | fprintf_filtered (file, " %s", (control & 0x0004) ? "ZM" : " "); | |
158 | fprintf_filtered (file, " %s", (control & 0x0008) ? "OM" : " "); | |
159 | fprintf_filtered (file, " %s", (control & 0x0010) ? "UM" : " "); | |
160 | fprintf_filtered (file, " %s", (control & 0x0020) ? "PM" : " "); | |
de57eccd | 161 | |
61113f8b | 162 | fputs_filtered ("\n", file); |
de57eccd | 163 | |
61113f8b | 164 | fputs_filtered (" PC: ", file); |
de57eccd JM |
165 | switch ((control >> 8) & 3) |
166 | { | |
167 | case 0: | |
61113f8b | 168 | fputs_filtered ("Single Precision (24-bits)\n", file); |
de57eccd JM |
169 | break; |
170 | case 1: | |
61113f8b | 171 | fputs_filtered ("Reserved\n", file); |
de57eccd JM |
172 | break; |
173 | case 2: | |
61113f8b | 174 | fputs_filtered ("Double Precision (53-bits)\n", file); |
de57eccd JM |
175 | break; |
176 | case 3: | |
61113f8b | 177 | fputs_filtered ("Extended Precision (64-bits)\n", file); |
de57eccd JM |
178 | break; |
179 | } | |
180 | ||
61113f8b | 181 | fputs_filtered (" RC: ", file); |
de57eccd JM |
182 | switch ((control >> 10) & 3) |
183 | { | |
184 | case 0: | |
61113f8b | 185 | fputs_filtered ("Round to nearest\n", file); |
de57eccd JM |
186 | break; |
187 | case 1: | |
61113f8b | 188 | fputs_filtered ("Round down\n", file); |
de57eccd JM |
189 | break; |
190 | case 2: | |
61113f8b | 191 | fputs_filtered ("Round up\n", file); |
de57eccd JM |
192 | break; |
193 | case 3: | |
61113f8b | 194 | fputs_filtered ("Round toward zero\n", file); |
de57eccd JM |
195 | break; |
196 | } | |
197 | } | |
198 | ||
9b949a49 | 199 | /* Print out the i387 floating point state. Note that we ignore FRAME |
7d8d2918 MK |
200 | in the code below. That's OK since floating-point registers are |
201 | never saved on the stack. */ | |
202 | ||
de57eccd | 203 | void |
61113f8b | 204 | i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file, |
8e186fd6 | 205 | struct frame_info *frame, const char *args) |
de57eccd | 206 | { |
5716833c | 207 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame)); |
1d70089a | 208 | ULONGEST fctrl; |
ad5f7d6e | 209 | int fctrl_p; |
1d70089a | 210 | ULONGEST fstat; |
ad5f7d6e | 211 | int fstat_p; |
1d70089a | 212 | ULONGEST ftag; |
ad5f7d6e | 213 | int ftag_p; |
1d70089a | 214 | ULONGEST fiseg; |
ad5f7d6e | 215 | int fiseg_p; |
1d70089a | 216 | ULONGEST fioff; |
ad5f7d6e | 217 | int fioff_p; |
1d70089a | 218 | ULONGEST foseg; |
ad5f7d6e | 219 | int foseg_p; |
1d70089a | 220 | ULONGEST fooff; |
ad5f7d6e | 221 | int fooff_p; |
1d70089a | 222 | ULONGEST fop; |
ad5f7d6e | 223 | int fop_p; |
de57eccd JM |
224 | int fpreg; |
225 | int top; | |
226 | ||
5716833c MK |
227 | gdb_assert (gdbarch == get_frame_arch (frame)); |
228 | ||
ad5f7d6e PA |
229 | fctrl_p = read_frame_register_unsigned (frame, |
230 | I387_FCTRL_REGNUM (tdep), &fctrl); | |
231 | fstat_p = read_frame_register_unsigned (frame, | |
232 | I387_FSTAT_REGNUM (tdep), &fstat); | |
233 | ftag_p = read_frame_register_unsigned (frame, | |
234 | I387_FTAG_REGNUM (tdep), &ftag); | |
235 | fiseg_p = read_frame_register_unsigned (frame, | |
236 | I387_FISEG_REGNUM (tdep), &fiseg); | |
237 | fioff_p = read_frame_register_unsigned (frame, | |
238 | I387_FIOFF_REGNUM (tdep), &fioff); | |
239 | foseg_p = read_frame_register_unsigned (frame, | |
240 | I387_FOSEG_REGNUM (tdep), &foseg); | |
241 | fooff_p = read_frame_register_unsigned (frame, | |
242 | I387_FOOFF_REGNUM (tdep), &fooff); | |
243 | fop_p = read_frame_register_unsigned (frame, | |
244 | I387_FOP_REGNUM (tdep), &fop); | |
245 | ||
246 | if (fstat_p) | |
de57eccd | 247 | { |
ad5f7d6e | 248 | top = ((fstat >> 11) & 7); |
de57eccd | 249 | |
ad5f7d6e | 250 | for (fpreg = 7; fpreg >= 0; fpreg--) |
de57eccd | 251 | { |
ad5f7d6e PA |
252 | struct value *regval; |
253 | int regnum; | |
254 | int i; | |
255 | int tag = -1; | |
256 | ||
257 | fprintf_filtered (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg); | |
258 | ||
259 | if (ftag_p) | |
260 | { | |
261 | tag = (ftag >> (fpreg * 2)) & 3; | |
262 | ||
263 | switch (tag) | |
264 | { | |
265 | case 0: | |
266 | fputs_filtered ("Valid ", file); | |
267 | break; | |
268 | case 1: | |
269 | fputs_filtered ("Zero ", file); | |
270 | break; | |
271 | case 2: | |
272 | fputs_filtered ("Special ", file); | |
273 | break; | |
274 | case 3: | |
275 | fputs_filtered ("Empty ", file); | |
276 | break; | |
277 | } | |
278 | } | |
279 | else | |
280 | fputs_filtered ("Unknown ", file); | |
281 | ||
282 | regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep); | |
283 | regval = get_frame_register_value (frame, regnum); | |
284 | ||
285 | if (value_entirely_available (regval)) | |
286 | { | |
433730c9 | 287 | const gdb_byte *raw = value_contents (regval); |
ad5f7d6e PA |
288 | |
289 | fputs_filtered ("0x", file); | |
290 | for (i = 9; i >= 0; i--) | |
291 | fprintf_filtered (file, "%02x", raw[i]); | |
292 | ||
293 | if (tag != -1 && tag != 3) | |
294 | print_i387_ext (gdbarch, raw, file); | |
295 | } | |
296 | else | |
297 | fprintf_filtered (file, "%s", _("<unavailable>")); | |
298 | ||
299 | fputs_filtered ("\n", file); | |
de57eccd | 300 | } |
de57eccd JM |
301 | } |
302 | ||
f16a25ae | 303 | fputs_filtered ("\n", file); |
ad5f7d6e PA |
304 | print_i387_status_word (fstat_p, fstat, file); |
305 | print_i387_control_word (fctrl_p, fctrl, file); | |
61113f8b | 306 | fprintf_filtered (file, "Tag Word: %s\n", |
ad5f7d6e | 307 | ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>")); |
61113f8b | 308 | fprintf_filtered (file, "Instruction Pointer: %s:", |
ad5f7d6e PA |
309 | fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>")); |
310 | fprintf_filtered (file, "%s\n", | |
311 | fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>")); | |
61113f8b | 312 | fprintf_filtered (file, "Operand Pointer: %s:", |
ad5f7d6e PA |
313 | foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>")); |
314 | fprintf_filtered (file, "%s\n", | |
315 | fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>")); | |
61113f8b | 316 | fprintf_filtered (file, "Opcode: %s\n", |
ad5f7d6e PA |
317 | fop_p |
318 | ? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4)) | |
319 | : _("<unavailable>")); | |
de57eccd | 320 | } |
d532c08f MK |
321 | \f |
322 | ||
83acabca DJ |
323 | /* Return nonzero if a value of type TYPE stored in register REGNUM |
324 | needs any special handling. */ | |
325 | ||
326 | int | |
1777feb0 MS |
327 | i387_convert_register_p (struct gdbarch *gdbarch, int regnum, |
328 | struct type *type) | |
83acabca | 329 | { |
20a6ec49 | 330 | if (i386_fp_regnum_p (gdbarch, regnum)) |
83acabca DJ |
331 | { |
332 | /* Floating point registers must be converted unless we are | |
8c8f9122 YQ |
333 | accessing them in their hardware type or TYPE is not float. */ |
334 | if (type == i387_ext_type (gdbarch) | |
335 | || TYPE_CODE (type) != TYPE_CODE_FLT) | |
83acabca DJ |
336 | return 0; |
337 | else | |
338 | return 1; | |
339 | } | |
340 | ||
341 | return 0; | |
342 | } | |
343 | ||
d532c08f MK |
344 | /* Read a value of type TYPE from register REGNUM in frame FRAME, and |
345 | return its contents in TO. */ | |
346 | ||
8dccd430 | 347 | int |
d532c08f | 348 | i387_register_to_value (struct frame_info *frame, int regnum, |
8dccd430 PA |
349 | struct type *type, gdb_byte *to, |
350 | int *optimizedp, int *unavailablep) | |
d532c08f | 351 | { |
27067745 | 352 | struct gdbarch *gdbarch = get_frame_arch (frame); |
b4ad899f | 353 | gdb_byte from[I386_MAX_REGISTER_SIZE]; |
d532c08f | 354 | |
27067745 | 355 | gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); |
d532c08f MK |
356 | |
357 | /* We only support floating-point values. */ | |
358 | if (TYPE_CODE (type) != TYPE_CODE_FLT) | |
359 | { | |
8a3fe4f8 AC |
360 | warning (_("Cannot convert floating-point register value " |
361 | "to non-floating-point type.")); | |
8dccd430 PA |
362 | *optimizedp = *unavailablep = 0; |
363 | return 0; | |
d532c08f MK |
364 | } |
365 | ||
83acabca | 366 | /* Convert to TYPE. */ |
d8e07dda YQ |
367 | if (!get_frame_register_bytes (frame, regnum, 0, |
368 | register_size (gdbarch, regnum), | |
8dccd430 PA |
369 | from, optimizedp, unavailablep)) |
370 | return 0; | |
371 | ||
3b2ca824 | 372 | target_float_convert (from, i387_ext_type (gdbarch), to, type); |
8dccd430 PA |
373 | *optimizedp = *unavailablep = 0; |
374 | return 1; | |
d532c08f MK |
375 | } |
376 | ||
377 | /* Write the contents FROM of a value of type TYPE into register | |
378 | REGNUM in frame FRAME. */ | |
379 | ||
380 | void | |
381 | i387_value_to_register (struct frame_info *frame, int regnum, | |
42835c2b | 382 | struct type *type, const gdb_byte *from) |
d532c08f | 383 | { |
27067745 | 384 | struct gdbarch *gdbarch = get_frame_arch (frame); |
b4ad899f | 385 | gdb_byte to[I386_MAX_REGISTER_SIZE]; |
d532c08f | 386 | |
27067745 | 387 | gdb_assert (i386_fp_regnum_p (gdbarch, regnum)); |
d532c08f MK |
388 | |
389 | /* We only support floating-point values. */ | |
390 | if (TYPE_CODE (type) != TYPE_CODE_FLT) | |
391 | { | |
8a3fe4f8 AC |
392 | warning (_("Cannot convert non-floating-point type " |
393 | "to floating-point register value.")); | |
d532c08f MK |
394 | return; |
395 | } | |
396 | ||
83acabca | 397 | /* Convert from TYPE. */ |
3b2ca824 | 398 | target_float_convert (from, type, to, i387_ext_type (gdbarch)); |
d532c08f MK |
399 | put_frame_register (frame, regnum, to); |
400 | } | |
401 | \f | |
e750d25e | 402 | |
786a90bb | 403 | /* Handle FSAVE and FXSAVE formats. */ |
e750d25e JT |
404 | |
405 | /* At fsave_offset[REGNUM] you'll find the offset to the location in | |
406 | the data structure used by the "fsave" instruction where GDB | |
407 | register REGNUM is stored. */ | |
408 | ||
409 | static int fsave_offset[] = | |
410 | { | |
5716833c MK |
411 | 28 + 0 * 10, /* %st(0) ... */ |
412 | 28 + 1 * 10, | |
413 | 28 + 2 * 10, | |
414 | 28 + 3 * 10, | |
415 | 28 + 4 * 10, | |
416 | 28 + 5 * 10, | |
417 | 28 + 6 * 10, | |
418 | 28 + 7 * 10, /* ... %st(7). */ | |
419 | 0, /* `fctrl' (16 bits). */ | |
420 | 4, /* `fstat' (16 bits). */ | |
421 | 8, /* `ftag' (16 bits). */ | |
422 | 16, /* `fiseg' (16 bits). */ | |
423 | 12, /* `fioff'. */ | |
424 | 24, /* `foseg' (16 bits). */ | |
425 | 20, /* `fooff'. */ | |
426 | 18 /* `fop' (bottom 11 bits). */ | |
e750d25e JT |
427 | }; |
428 | ||
20a6ec49 MD |
429 | #define FSAVE_ADDR(tdep, fsave, regnum) \ |
430 | (fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)]) | |
e750d25e JT |
431 | \f |
432 | ||
41d041d6 MK |
433 | /* Fill register REGNUM in REGCACHE with the appropriate value from |
434 | *FSAVE. This function masks off any of the reserved bits in | |
435 | *FSAVE. */ | |
e750d25e JT |
436 | |
437 | void | |
41d041d6 | 438 | i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave) |
e750d25e | 439 | { |
ac7936df | 440 | struct gdbarch *gdbarch = regcache->arch (); |
e17a4113 UW |
441 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
442 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
9a3c8263 | 443 | const gdb_byte *regs = (const gdb_byte *) fsave; |
e750d25e JT |
444 | int i; |
445 | ||
5716833c MK |
446 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
447 | ||
20a6ec49 | 448 | for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
ed504bdf MK |
449 | if (regnum == -1 || regnum == i) |
450 | { | |
451 | if (fsave == NULL) | |
452 | { | |
73e1c03f | 453 | regcache->raw_supply (i, NULL); |
5716833c | 454 | continue; |
ed504bdf MK |
455 | } |
456 | ||
457 | /* Most of the FPU control registers occupy only 16 bits in the | |
458 | fsave area. Give those a special treatment. */ | |
20a6ec49 MD |
459 | if (i >= I387_FCTRL_REGNUM (tdep) |
460 | && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) | |
ed504bdf | 461 | { |
b4ad899f | 462 | gdb_byte val[4]; |
ed504bdf | 463 | |
20a6ec49 | 464 | memcpy (val, FSAVE_ADDR (tdep, regs, i), 2); |
ed504bdf | 465 | val[2] = val[3] = 0; |
20a6ec49 | 466 | if (i == I387_FOP_REGNUM (tdep)) |
ed504bdf | 467 | val[1] &= ((1 << 3) - 1); |
73e1c03f | 468 | regcache->raw_supply (i, val); |
ed504bdf MK |
469 | } |
470 | else | |
73e1c03f | 471 | regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i)); |
ed504bdf | 472 | } |
b87bc0d8 MK |
473 | |
474 | /* Provide dummy values for the SSE registers. */ | |
20a6ec49 | 475 | for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
b87bc0d8 | 476 | if (regnum == -1 || regnum == i) |
73e1c03f | 477 | regcache->raw_supply (i, NULL); |
20a6ec49 | 478 | if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep)) |
b87bc0d8 | 479 | { |
b4ad899f | 480 | gdb_byte buf[4]; |
b87bc0d8 | 481 | |
8ee22052 | 482 | store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); |
73e1c03f | 483 | regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); |
b87bc0d8 | 484 | } |
e750d25e JT |
485 | } |
486 | ||
487 | /* Fill register REGNUM (if it is a floating-point register) in *FSAVE | |
63b6c53f MK |
488 | with the value from REGCACHE. If REGNUM is -1, do this for all |
489 | registers. This function doesn't touch any of the reserved bits in | |
490 | *FSAVE. */ | |
e750d25e JT |
491 | |
492 | void | |
63b6c53f | 493 | i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave) |
e750d25e | 494 | { |
ac7936df | 495 | struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
9a3c8263 | 496 | gdb_byte *regs = (gdb_byte *) fsave; |
e750d25e JT |
497 | int i; |
498 | ||
5716833c MK |
499 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
500 | ||
20a6ec49 | 501 | for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) |
e750d25e JT |
502 | if (regnum == -1 || regnum == i) |
503 | { | |
504 | /* Most of the FPU control registers occupy only 16 bits in | |
505 | the fsave area. Give those a special treatment. */ | |
20a6ec49 MD |
506 | if (i >= I387_FCTRL_REGNUM (tdep) |
507 | && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) | |
e750d25e | 508 | { |
b4ad899f | 509 | gdb_byte buf[4]; |
e750d25e | 510 | |
34a79281 | 511 | regcache->raw_collect (i, buf); |
e750d25e | 512 | |
20a6ec49 | 513 | if (i == I387_FOP_REGNUM (tdep)) |
e750d25e JT |
514 | { |
515 | /* The opcode occupies only 11 bits. Make sure we | |
516 | don't touch the other bits. */ | |
517 | buf[1] &= ((1 << 3) - 1); | |
20a6ec49 | 518 | buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); |
e750d25e | 519 | } |
20a6ec49 | 520 | memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2); |
e750d25e JT |
521 | } |
522 | else | |
34a79281 | 523 | regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i)); |
e750d25e JT |
524 | } |
525 | } | |
526 | \f | |
527 | ||
528 | /* At fxsave_offset[REGNUM] you'll find the offset to the location in | |
529 | the data structure used by the "fxsave" instruction where GDB | |
530 | register REGNUM is stored. */ | |
531 | ||
532 | static int fxsave_offset[] = | |
533 | { | |
5716833c | 534 | 32, /* %st(0) through ... */ |
e750d25e JT |
535 | 48, |
536 | 64, | |
537 | 80, | |
538 | 96, | |
539 | 112, | |
540 | 128, | |
5716833c MK |
541 | 144, /* ... %st(7) (80 bits each). */ |
542 | 0, /* `fctrl' (16 bits). */ | |
543 | 2, /* `fstat' (16 bits). */ | |
544 | 4, /* `ftag' (16 bits). */ | |
545 | 12, /* `fiseg' (16 bits). */ | |
546 | 8, /* `fioff'. */ | |
547 | 20, /* `foseg' (16 bits). */ | |
548 | 16, /* `fooff'. */ | |
549 | 6, /* `fop' (bottom 11 bits). */ | |
550 | 160 + 0 * 16, /* %xmm0 through ... */ | |
04c8243f MK |
551 | 160 + 1 * 16, |
552 | 160 + 2 * 16, | |
553 | 160 + 3 * 16, | |
554 | 160 + 4 * 16, | |
555 | 160 + 5 * 16, | |
556 | 160 + 6 * 16, | |
557 | 160 + 7 * 16, | |
558 | 160 + 8 * 16, | |
559 | 160 + 9 * 16, | |
560 | 160 + 10 * 16, | |
561 | 160 + 11 * 16, | |
562 | 160 + 12 * 16, | |
563 | 160 + 13 * 16, | |
564 | 160 + 14 * 16, | |
5716833c | 565 | 160 + 15 * 16, /* ... %xmm15 (128 bits each). */ |
e750d25e JT |
566 | }; |
567 | ||
20a6ec49 MD |
568 | #define FXSAVE_ADDR(tdep, fxsave, regnum) \ |
569 | (fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)]) | |
5716833c MK |
570 | |
571 | /* We made an unfortunate choice in putting %mxcsr after the SSE | |
572 | registers %xmm0-%xmm7 instead of before, since it makes supporting | |
573 | the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we | |
574 | don't include the offset for %mxcsr here above. */ | |
575 | ||
576 | #define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24) | |
e750d25e | 577 | |
b4ad899f | 578 | static int i387_tag (const gdb_byte *raw); |
e750d25e JT |
579 | \f |
580 | ||
41d041d6 | 581 | /* Fill register REGNUM in REGCACHE with the appropriate |
ed504bdf MK |
582 | floating-point or SSE register value from *FXSAVE. This function |
583 | masks off any of the reserved bits in *FXSAVE. */ | |
e750d25e JT |
584 | |
585 | void | |
41d041d6 | 586 | i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave) |
e750d25e | 587 | { |
ac7936df | 588 | struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
9a3c8263 | 589 | const gdb_byte *regs = (const gdb_byte *) fxsave; |
5716833c MK |
590 | int i; |
591 | ||
592 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); | |
593 | gdb_assert (tdep->num_xmm_regs > 0); | |
dff95cc7 | 594 | |
20a6ec49 | 595 | for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
ed504bdf MK |
596 | if (regnum == -1 || regnum == i) |
597 | { | |
5716833c | 598 | if (regs == NULL) |
ed504bdf | 599 | { |
73e1c03f | 600 | regcache->raw_supply (i, NULL); |
ed504bdf MK |
601 | continue; |
602 | } | |
932bb524 | 603 | |
ed504bdf MK |
604 | /* Most of the FPU control registers occupy only 16 bits in |
605 | the fxsave area. Give those a special treatment. */ | |
20a6ec49 MD |
606 | if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) |
607 | && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) | |
ed504bdf | 608 | { |
b4ad899f | 609 | gdb_byte val[4]; |
ed504bdf | 610 | |
20a6ec49 | 611 | memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); |
ed504bdf | 612 | val[2] = val[3] = 0; |
20a6ec49 | 613 | if (i == I387_FOP_REGNUM (tdep)) |
ed504bdf | 614 | val[1] &= ((1 << 3) - 1); |
20a6ec49 | 615 | else if (i== I387_FTAG_REGNUM (tdep)) |
ed504bdf MK |
616 | { |
617 | /* The fxsave area contains a simplified version of | |
618 | the tag word. We have to look at the actual 80-bit | |
619 | FP data to recreate the traditional i387 tag word. */ | |
620 | ||
621 | unsigned long ftag = 0; | |
622 | int fpreg; | |
623 | int top; | |
624 | ||
20a6ec49 MD |
625 | top = ((FXSAVE_ADDR (tdep, regs, |
626 | I387_FSTAT_REGNUM (tdep)))[1] >> 3); | |
5716833c | 627 | top &= 0x7; |
ed504bdf MK |
628 | |
629 | for (fpreg = 7; fpreg >= 0; fpreg--) | |
630 | { | |
631 | int tag; | |
632 | ||
633 | if (val[0] & (1 << fpreg)) | |
634 | { | |
6d5e094a MS |
635 | int thisreg = (fpreg + 8 - top) % 8 |
636 | + I387_ST0_REGNUM (tdep); | |
637 | tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); | |
ed504bdf MK |
638 | } |
639 | else | |
640 | tag = 3; /* Empty */ | |
641 | ||
642 | ftag |= tag << (2 * fpreg); | |
643 | } | |
644 | val[0] = ftag & 0xff; | |
645 | val[1] = (ftag >> 8) & 0xff; | |
646 | } | |
73e1c03f | 647 | regcache->raw_supply (i, val); |
ed504bdf MK |
648 | } |
649 | else | |
73e1c03f | 650 | regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
ed504bdf | 651 | } |
5716833c | 652 | |
20a6ec49 | 653 | if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) |
5716833c MK |
654 | { |
655 | if (regs == NULL) | |
73e1c03f | 656 | regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL); |
5716833c | 657 | else |
73e1c03f | 658 | regcache->raw_supply (I387_MXCSR_REGNUM (tdep), |
5716833c MK |
659 | FXSAVE_MXCSR_ADDR (regs)); |
660 | } | |
e750d25e JT |
661 | } |
662 | ||
663 | /* Fill register REGNUM (if it is a floating-point or SSE register) in | |
80571bff MK |
664 | *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for |
665 | all registers. This function doesn't touch any of the reserved | |
666 | bits in *FXSAVE. */ | |
e750d25e JT |
667 | |
668 | void | |
80571bff | 669 | i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave) |
e750d25e | 670 | { |
ac7936df | 671 | struct gdbarch_tdep *tdep = gdbarch_tdep (regcache->arch ()); |
9a3c8263 | 672 | gdb_byte *regs = (gdb_byte *) fxsave; |
5716833c MK |
673 | int i; |
674 | ||
675 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); | |
676 | gdb_assert (tdep->num_xmm_regs > 0); | |
dff95cc7 | 677 | |
20a6ec49 | 678 | for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++) |
e750d25e JT |
679 | if (regnum == -1 || regnum == i) |
680 | { | |
681 | /* Most of the FPU control registers occupy only 16 bits in | |
682 | the fxsave area. Give those a special treatment. */ | |
20a6ec49 MD |
683 | if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep) |
684 | && i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep)) | |
e750d25e | 685 | { |
b4ad899f | 686 | gdb_byte buf[4]; |
e750d25e | 687 | |
34a79281 | 688 | regcache->raw_collect (i, buf); |
e750d25e | 689 | |
31aeac78 L |
690 | if (i == I387_FOP_REGNUM (tdep)) |
691 | { | |
692 | /* The opcode occupies only 11 bits. Make sure we | |
693 | don't touch the other bits. */ | |
694 | buf[1] &= ((1 << 3) - 1); | |
695 | buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); | |
696 | } | |
697 | else if (i == I387_FTAG_REGNUM (tdep)) | |
698 | { | |
699 | /* Converting back is much easier. */ | |
700 | ||
701 | unsigned short ftag; | |
702 | int fpreg; | |
703 | ||
704 | ftag = (buf[1] << 8) | buf[0]; | |
705 | buf[0] = 0; | |
706 | buf[1] = 0; | |
707 | ||
708 | for (fpreg = 7; fpreg >= 0; fpreg--) | |
709 | { | |
710 | int tag = (ftag >> (fpreg * 2)) & 3; | |
711 | ||
712 | if (tag != 3) | |
713 | buf[0] |= (1 << fpreg); | |
714 | } | |
715 | } | |
716 | memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2); | |
717 | } | |
718 | else | |
34a79281 | 719 | regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i)); |
31aeac78 L |
720 | } |
721 | ||
722 | if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) | |
34a79281 | 723 | regcache->raw_collect (I387_MXCSR_REGNUM (tdep), |
31aeac78 L |
724 | FXSAVE_MXCSR_ADDR (regs)); |
725 | } | |
726 | ||
727 | /* `xstate_bv' is at byte offset 512. */ | |
728 | #define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512) | |
729 | ||
730 | /* At xsave_avxh_offset[REGNUM] you'll find the offset to the location in | |
731 | the upper 128bit of AVX register data structure used by the "xsave" | |
732 | instruction where GDB register REGNUM is stored. */ | |
733 | ||
734 | static int xsave_avxh_offset[] = | |
735 | { | |
736 | 576 + 0 * 16, /* Upper 128bit of %ymm0 through ... */ | |
737 | 576 + 1 * 16, | |
738 | 576 + 2 * 16, | |
739 | 576 + 3 * 16, | |
740 | 576 + 4 * 16, | |
741 | 576 + 5 * 16, | |
742 | 576 + 6 * 16, | |
743 | 576 + 7 * 16, | |
744 | 576 + 8 * 16, | |
745 | 576 + 9 * 16, | |
746 | 576 + 10 * 16, | |
747 | 576 + 11 * 16, | |
748 | 576 + 12 * 16, | |
749 | 576 + 13 * 16, | |
750 | 576 + 14 * 16, | |
751 | 576 + 15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */ | |
752 | }; | |
753 | ||
01f9f808 MS |
754 | #define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \ |
755 | (xsave + xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)]) | |
756 | ||
757 | /* At xsave_ymm_avx512_offset[REGNUM] you'll find the offset to the location in | |
758 | the upper 128bit of ZMM register data structure used by the "xsave" | |
759 | instruction where GDB register REGNUM is stored. */ | |
760 | ||
761 | static int xsave_ymm_avx512_offset[] = | |
762 | { | |
763 | /* HI16_ZMM_area + 16 bytes + regnum* 64 bytes. */ | |
764 | 1664 + 16 + 0 * 64, /* %ymm16 through... */ | |
765 | 1664 + 16 + 1 * 64, | |
766 | 1664 + 16 + 2 * 64, | |
767 | 1664 + 16 + 3 * 64, | |
768 | 1664 + 16 + 4 * 64, | |
769 | 1664 + 16 + 5 * 64, | |
770 | 1664 + 16 + 6 * 64, | |
771 | 1664 + 16 + 7 * 64, | |
772 | 1664 + 16 + 8 * 64, | |
773 | 1664 + 16 + 9 * 64, | |
774 | 1664 + 16 + 10 * 64, | |
775 | 1664 + 16 + 11 * 64, | |
776 | 1664 + 16 + 12 * 64, | |
777 | 1664 + 16 + 13 * 64, | |
778 | 1664 + 16 + 14 * 64, | |
779 | 1664 + 16 + 15 * 64 /* ... %ymm31 (128 bits each). */ | |
780 | }; | |
781 | ||
782 | #define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \ | |
783 | (xsave + xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)]) | |
784 | ||
785 | static int xsave_xmm_avx512_offset[] = | |
1dbcd68c | 786 | { |
01f9f808 MS |
787 | 1664 + 0 * 64, /* %ymm16 through... */ |
788 | 1664 + 1 * 64, | |
789 | 1664 + 2 * 64, | |
790 | 1664 + 3 * 64, | |
791 | 1664 + 4 * 64, | |
792 | 1664 + 5 * 64, | |
793 | 1664 + 6 * 64, | |
794 | 1664 + 7 * 64, | |
795 | 1664 + 8 * 64, | |
796 | 1664 + 9 * 64, | |
797 | 1664 + 10 * 64, | |
798 | 1664 + 11 * 64, | |
799 | 1664 + 12 * 64, | |
800 | 1664 + 13 * 64, | |
801 | 1664 + 14 * 64, | |
802 | 1664 + 15 * 64 /* ... %ymm31 (128 bits each). */ | |
803 | }; | |
804 | ||
805 | #define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \ | |
806 | (xsave + xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)]) | |
807 | ||
808 | static int xsave_mpx_offset[] = { | |
1dbcd68c WT |
809 | 960 + 0 * 16, /* bnd0r...bnd3r registers. */ |
810 | 960 + 1 * 16, | |
811 | 960 + 2 * 16, | |
812 | 960 + 3 * 16, | |
813 | 1024 + 0 * 8, /* bndcfg ... bndstatus. */ | |
814 | 1024 + 1 * 8, | |
815 | }; | |
816 | ||
1dbcd68c WT |
817 | #define XSAVE_MPX_ADDR(tdep, xsave, regnum) \ |
818 | (xsave + xsave_mpx_offset[regnum - I387_BND0R_REGNUM (tdep)]) | |
819 | ||
01f9f808 MS |
820 | /* At xsave_avx512__h_offset[REGNUM] you find the offset to the location |
821 | of the AVX512 opmask register data structure used by the "xsave" | |
822 | instruction where GDB register REGNUM is stored. */ | |
823 | ||
824 | static int xsave_avx512_k_offset[] = | |
825 | { | |
826 | 1088 + 0 * 8, /* %k0 through... */ | |
827 | 1088 + 1 * 8, | |
828 | 1088 + 2 * 8, | |
829 | 1088 + 3 * 8, | |
830 | 1088 + 4 * 8, | |
831 | 1088 + 5 * 8, | |
832 | 1088 + 6 * 8, | |
833 | 1088 + 7 * 8 /* %k7 (64 bits each). */ | |
834 | }; | |
835 | ||
836 | #define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \ | |
837 | (xsave + xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)]) | |
838 | ||
839 | /* At xsave_avx512_zmm_h_offset[REGNUM] you find the offset to the location in | |
840 | the upper 256bit of AVX512 ZMMH register data structure used by the "xsave" | |
841 | instruction where GDB register REGNUM is stored. */ | |
842 | ||
843 | static int xsave_avx512_zmm_h_offset[] = | |
844 | { | |
845 | 1152 + 0 * 32, | |
846 | 1152 + 1 * 32, /* Upper 256bit of %zmmh0 through... */ | |
847 | 1152 + 2 * 32, | |
848 | 1152 + 3 * 32, | |
849 | 1152 + 4 * 32, | |
850 | 1152 + 5 * 32, | |
851 | 1152 + 6 * 32, | |
852 | 1152 + 7 * 32, | |
853 | 1152 + 8 * 32, | |
854 | 1152 + 9 * 32, | |
855 | 1152 + 10 * 32, | |
856 | 1152 + 11 * 32, | |
857 | 1152 + 12 * 32, | |
858 | 1152 + 13 * 32, | |
859 | 1152 + 14 * 32, | |
860 | 1152 + 15 * 32, /* Upper 256bit of... %zmmh15 (256 bits each). */ | |
861 | 1664 + 32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */ | |
862 | 1664 + 32 + 1 * 64, | |
863 | 1664 + 32 + 2 * 64, | |
864 | 1664 + 32 + 3 * 64, | |
865 | 1664 + 32 + 4 * 64, | |
866 | 1664 + 32 + 5 * 64, | |
867 | 1664 + 32 + 6 * 64, | |
868 | 1664 + 32 + 7 * 64, | |
869 | 1664 + 32 + 8 * 64, | |
870 | 1664 + 32 + 9 * 64, | |
871 | 1664 + 32 + 10 * 64, | |
872 | 1664 + 32 + 11 * 64, | |
873 | 1664 + 32 + 12 * 64, | |
874 | 1664 + 32 + 13 * 64, | |
875 | 1664 + 32 + 14 * 64, | |
876 | 1664 + 32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */ | |
877 | }; | |
878 | ||
879 | #define XSAVE_AVX512_ZMM_H_ADDR(tdep, xsave, regnum) \ | |
880 | (xsave + xsave_avx512_zmm_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)]) | |
881 | ||
51547df6 MS |
882 | /* At xsave_pkeys_offset[REGNUM] you find the offset to the location |
883 | of the PKRU register data structure used by the "xsave" | |
884 | instruction where GDB register REGNUM is stored. */ | |
885 | ||
886 | static int xsave_pkeys_offset[] = | |
887 | { | |
888 | 2688 + 0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by | |
889 | instructions and applications). */ | |
890 | }; | |
891 | ||
892 | #define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \ | |
893 | (xsave + xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)]) | |
894 | ||
8ee22052 AB |
895 | |
896 | /* Extract from XSAVE a bitset of the features that are available on the | |
897 | target, but which have not yet been enabled. */ | |
898 | ||
899 | ULONGEST | |
900 | i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave) | |
901 | { | |
902 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
903 | const gdb_byte *regs = (const gdb_byte *) xsave; | |
904 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
905 | ||
906 | /* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */ | |
907 | ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), | |
908 | 8, byte_order); | |
909 | ||
910 | /* Clear part in vector registers if its bit in xstat_bv is zero. */ | |
911 | ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0; | |
912 | ||
913 | return clear_bv; | |
914 | } | |
915 | ||
31aeac78 L |
916 | /* Similar to i387_supply_fxsave, but use XSAVE extended state. */ |
917 | ||
918 | void | |
919 | i387_supply_xsave (struct regcache *regcache, int regnum, | |
920 | const void *xsave) | |
921 | { | |
ac7936df | 922 | struct gdbarch *gdbarch = regcache->arch (); |
8ee22052 | 923 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
01f9f808 | 924 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9a3c8263 | 925 | const gdb_byte *regs = (const gdb_byte *) xsave; |
31aeac78 | 926 | int i; |
b5420128 JB |
927 | /* In 64-bit mode the split between "low" and "high" ZMM registers is at |
928 | ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all. | |
929 | Precalculate the number to be used for the split point, with the all | |
930 | registers in the "low" portion outside of 64-bit mode. */ | |
931 | unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) | |
932 | + std::min (tdep->num_zmm_regs, 16); | |
ff6527bb | 933 | ULONGEST clear_bv; |
975c21ab | 934 | static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 }; |
31aeac78 L |
935 | enum |
936 | { | |
937 | none = 0x0, | |
938 | x87 = 0x1, | |
939 | sse = 0x2, | |
940 | avxh = 0x4, | |
1dbcd68c | 941 | mpx = 0x8, |
01f9f808 MS |
942 | avx512_k = 0x10, |
943 | avx512_zmm_h = 0x20, | |
944 | avx512_ymmh_avx512 = 0x40, | |
945 | avx512_xmm_avx512 = 0x80, | |
51547df6 | 946 | pkeys = 0x100, |
01f9f808 | 947 | all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h |
51547df6 | 948 | | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys |
31aeac78 L |
949 | } regclass; |
950 | ||
275418ae | 951 | gdb_assert (regs != NULL); |
31aeac78 L |
952 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); |
953 | gdb_assert (tdep->num_xmm_regs > 0); | |
954 | ||
955 | if (regnum == -1) | |
956 | regclass = all; | |
51547df6 MS |
957 | else if (regnum >= I387_PKRU_REGNUM (tdep) |
958 | && regnum < I387_PKEYSEND_REGNUM (tdep)) | |
959 | regclass = pkeys; | |
01f9f808 MS |
960 | else if (regnum >= I387_ZMM0H_REGNUM (tdep) |
961 | && regnum < I387_ZMMENDH_REGNUM (tdep)) | |
962 | regclass = avx512_zmm_h; | |
963 | else if (regnum >= I387_K0_REGNUM (tdep) | |
964 | && regnum < I387_KEND_REGNUM (tdep)) | |
965 | regclass = avx512_k; | |
966 | else if (regnum >= I387_YMM16H_REGNUM (tdep) | |
967 | && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) | |
968 | regclass = avx512_ymmh_avx512; | |
969 | else if (regnum >= I387_XMM16_REGNUM (tdep) | |
970 | && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) | |
971 | regclass = avx512_xmm_avx512; | |
31aeac78 L |
972 | else if (regnum >= I387_YMM0H_REGNUM (tdep) |
973 | && regnum < I387_YMMENDH_REGNUM (tdep)) | |
974 | regclass = avxh; | |
1dbcd68c WT |
975 | else if (regnum >= I387_BND0R_REGNUM (tdep) |
976 | && regnum < I387_MPXEND_REGNUM (tdep)) | |
977 | regclass = mpx; | |
01f9f808 | 978 | else if (regnum >= I387_XMM0_REGNUM (tdep) |
31aeac78 L |
979 | && regnum < I387_MXCSR_REGNUM (tdep)) |
980 | regclass = sse; | |
981 | else if (regnum >= I387_ST0_REGNUM (tdep) | |
982 | && regnum < I387_FCTRL_REGNUM (tdep)) | |
983 | regclass = x87; | |
984 | else | |
985 | regclass = none; | |
986 | ||
8ee22052 | 987 | clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave); |
31aeac78 | 988 | |
b4d36fb8 PA |
989 | /* With the delayed xsave mechanism, in between the program |
990 | starting, and the program accessing the vector registers for the | |
991 | first time, the register's values are invalid. The kernel | |
992 | initializes register states to zero when they are set the first | |
993 | time in a program. This means that from the user-space programs' | |
994 | perspective, it's the same as if the registers have always been | |
995 | zero from the start of the program. Therefore, the debugger | |
275418ae | 996 | should provide the same illusion to the user. */ |
b4d36fb8 | 997 | |
31aeac78 L |
998 | switch (regclass) |
999 | { | |
1000 | case none: | |
1001 | break; | |
1002 | ||
51547df6 MS |
1003 | case pkeys: |
1004 | if ((clear_bv & X86_XSTATE_PKRU)) | |
73e1c03f | 1005 | regcache->raw_supply (regnum, zero); |
51547df6 | 1006 | else |
73e1c03f | 1007 | regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum)); |
51547df6 MS |
1008 | return; |
1009 | ||
01f9f808 | 1010 | case avx512_zmm_h: |
b5420128 JB |
1011 | if ((clear_bv & (regnum < zmm_endlo_regnum ? X86_XSTATE_ZMM_H |
1012 | : X86_XSTATE_ZMM))) | |
73e1c03f | 1013 | regcache->raw_supply (regnum, zero); |
01f9f808 | 1014 | else |
73e1c03f SM |
1015 | regcache->raw_supply (regnum, |
1016 | XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum)); | |
01f9f808 MS |
1017 | return; |
1018 | ||
1019 | case avx512_k: | |
df7e5265 | 1020 | if ((clear_bv & X86_XSTATE_K)) |
73e1c03f | 1021 | regcache->raw_supply (regnum, zero); |
01f9f808 | 1022 | else |
73e1c03f | 1023 | regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum)); |
01f9f808 MS |
1024 | return; |
1025 | ||
1026 | case avx512_ymmh_avx512: | |
df7e5265 | 1027 | if ((clear_bv & X86_XSTATE_ZMM)) |
73e1c03f | 1028 | regcache->raw_supply (regnum, zero); |
01f9f808 | 1029 | else |
73e1c03f SM |
1030 | regcache->raw_supply (regnum, |
1031 | XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum)); | |
01f9f808 MS |
1032 | return; |
1033 | ||
1034 | case avx512_xmm_avx512: | |
df7e5265 | 1035 | if ((clear_bv & X86_XSTATE_ZMM)) |
73e1c03f | 1036 | regcache->raw_supply (regnum, zero); |
01f9f808 | 1037 | else |
73e1c03f SM |
1038 | regcache->raw_supply (regnum, |
1039 | XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum)); | |
01f9f808 MS |
1040 | return; |
1041 | ||
31aeac78 | 1042 | case avxh: |
df7e5265 | 1043 | if ((clear_bv & X86_XSTATE_AVX)) |
73e1c03f | 1044 | regcache->raw_supply (regnum, zero); |
31aeac78 | 1045 | else |
73e1c03f | 1046 | regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum)); |
31aeac78 L |
1047 | return; |
1048 | ||
1dbcd68c | 1049 | case mpx: |
df7e5265 | 1050 | if ((clear_bv & X86_XSTATE_BNDREGS)) |
73e1c03f | 1051 | regcache->raw_supply (regnum, zero); |
1dbcd68c | 1052 | else |
73e1c03f | 1053 | regcache->raw_supply (regnum, XSAVE_MPX_ADDR (tdep, regs, regnum)); |
1dbcd68c WT |
1054 | return; |
1055 | ||
31aeac78 | 1056 | case sse: |
df7e5265 | 1057 | if ((clear_bv & X86_XSTATE_SSE)) |
73e1c03f | 1058 | regcache->raw_supply (regnum, zero); |
31aeac78 | 1059 | else |
73e1c03f | 1060 | regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); |
31aeac78 L |
1061 | return; |
1062 | ||
1063 | case x87: | |
df7e5265 | 1064 | if ((clear_bv & X86_XSTATE_X87)) |
73e1c03f | 1065 | regcache->raw_supply (regnum, zero); |
31aeac78 | 1066 | else |
73e1c03f | 1067 | regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum)); |
31aeac78 L |
1068 | return; |
1069 | ||
1070 | case all: | |
51547df6 MS |
1071 | /* Handle PKEYS registers. */ |
1072 | if ((tdep->xcr0 & X86_XSTATE_PKRU)) | |
1073 | { | |
1074 | if ((clear_bv & X86_XSTATE_PKRU)) | |
1075 | { | |
1076 | for (i = I387_PKRU_REGNUM (tdep); | |
1077 | i < I387_PKEYSEND_REGNUM (tdep); | |
1078 | i++) | |
73e1c03f | 1079 | regcache->raw_supply (i, zero); |
51547df6 MS |
1080 | } |
1081 | else | |
1082 | { | |
1083 | for (i = I387_PKRU_REGNUM (tdep); | |
1084 | i < I387_PKEYSEND_REGNUM (tdep); | |
1085 | i++) | |
73e1c03f | 1086 | regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i)); |
51547df6 MS |
1087 | } |
1088 | } | |
1089 | ||
b5420128 JB |
1090 | /* Handle the upper halves of the low 8/16 ZMM registers. */ |
1091 | if ((tdep->xcr0 & X86_XSTATE_ZMM_H)) | |
01f9f808 | 1092 | { |
b5420128 | 1093 | if ((clear_bv & X86_XSTATE_ZMM_H)) |
01f9f808 | 1094 | { |
b5420128 | 1095 | for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) |
73e1c03f | 1096 | regcache->raw_supply (i, zero); |
01f9f808 MS |
1097 | } |
1098 | else | |
1099 | { | |
b5420128 | 1100 | for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) |
73e1c03f SM |
1101 | regcache->raw_supply (i, |
1102 | XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); | |
01f9f808 MS |
1103 | } |
1104 | } | |
1105 | ||
1106 | /* Handle AVX512 OpMask registers. */ | |
df7e5265 | 1107 | if ((tdep->xcr0 & X86_XSTATE_K)) |
01f9f808 | 1108 | { |
df7e5265 | 1109 | if ((clear_bv & X86_XSTATE_K)) |
01f9f808 MS |
1110 | { |
1111 | for (i = I387_K0_REGNUM (tdep); | |
1112 | i < I387_KEND_REGNUM (tdep); | |
1113 | i++) | |
73e1c03f | 1114 | regcache->raw_supply (i, zero); |
01f9f808 MS |
1115 | } |
1116 | else | |
1117 | { | |
1118 | for (i = I387_K0_REGNUM (tdep); | |
1119 | i < I387_KEND_REGNUM (tdep); | |
1120 | i++) | |
73e1c03f | 1121 | regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i)); |
01f9f808 MS |
1122 | } |
1123 | } | |
1124 | ||
b5420128 | 1125 | /* Handle the upper 16 ZMM/YMM/XMM registers (if any). */ |
df7e5265 | 1126 | if ((tdep->xcr0 & X86_XSTATE_ZMM)) |
01f9f808 | 1127 | { |
df7e5265 | 1128 | if ((clear_bv & X86_XSTATE_ZMM)) |
01f9f808 | 1129 | { |
b5420128 JB |
1130 | for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
1131 | regcache->raw_supply (i, zero); | |
01f9f808 MS |
1132 | for (i = I387_YMM16H_REGNUM (tdep); |
1133 | i < I387_YMMH_AVX512_END_REGNUM (tdep); | |
1134 | i++) | |
73e1c03f | 1135 | regcache->raw_supply (i, zero); |
01f9f808 MS |
1136 | for (i = I387_XMM16_REGNUM (tdep); |
1137 | i < I387_XMM_AVX512_END_REGNUM (tdep); | |
1138 | i++) | |
73e1c03f | 1139 | regcache->raw_supply (i, zero); |
01f9f808 MS |
1140 | } |
1141 | else | |
1142 | { | |
b5420128 JB |
1143 | for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
1144 | regcache->raw_supply (i, | |
1145 | XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i)); | |
01f9f808 MS |
1146 | for (i = I387_YMM16H_REGNUM (tdep); |
1147 | i < I387_YMMH_AVX512_END_REGNUM (tdep); | |
1148 | i++) | |
73e1c03f | 1149 | regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i)); |
01f9f808 MS |
1150 | for (i = I387_XMM16_REGNUM (tdep); |
1151 | i < I387_XMM_AVX512_END_REGNUM (tdep); | |
1152 | i++) | |
73e1c03f | 1153 | regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i)); |
01f9f808 MS |
1154 | } |
1155 | } | |
86d31898 | 1156 | /* Handle the upper YMM registers. */ |
df7e5265 | 1157 | if ((tdep->xcr0 & X86_XSTATE_AVX)) |
31aeac78 | 1158 | { |
df7e5265 | 1159 | if ((clear_bv & X86_XSTATE_AVX)) |
b4d36fb8 PA |
1160 | { |
1161 | for (i = I387_YMM0H_REGNUM (tdep); | |
1162 | i < I387_YMMENDH_REGNUM (tdep); | |
1163 | i++) | |
73e1c03f | 1164 | regcache->raw_supply (i, zero); |
b4d36fb8 | 1165 | } |
31aeac78 | 1166 | else |
31aeac78 | 1167 | { |
b4d36fb8 PA |
1168 | for (i = I387_YMM0H_REGNUM (tdep); |
1169 | i < I387_YMMENDH_REGNUM (tdep); | |
1170 | i++) | |
73e1c03f | 1171 | regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i)); |
31aeac78 L |
1172 | } |
1173 | } | |
1174 | ||
1dbcd68c | 1175 | /* Handle the MPX registers. */ |
df7e5265 | 1176 | if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) |
1dbcd68c | 1177 | { |
df7e5265 | 1178 | if (clear_bv & X86_XSTATE_BNDREGS) |
1dbcd68c WT |
1179 | { |
1180 | for (i = I387_BND0R_REGNUM (tdep); | |
1181 | i < I387_BNDCFGU_REGNUM (tdep); i++) | |
73e1c03f | 1182 | regcache->raw_supply (i, zero); |
1dbcd68c WT |
1183 | } |
1184 | else | |
1185 | { | |
1186 | for (i = I387_BND0R_REGNUM (tdep); | |
1187 | i < I387_BNDCFGU_REGNUM (tdep); i++) | |
73e1c03f | 1188 | regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); |
1dbcd68c WT |
1189 | } |
1190 | } | |
1191 | ||
1192 | /* Handle the MPX registers. */ | |
df7e5265 | 1193 | if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) |
1dbcd68c | 1194 | { |
df7e5265 | 1195 | if (clear_bv & X86_XSTATE_BNDCFG) |
1dbcd68c WT |
1196 | { |
1197 | for (i = I387_BNDCFGU_REGNUM (tdep); | |
1198 | i < I387_MPXEND_REGNUM (tdep); i++) | |
73e1c03f | 1199 | regcache->raw_supply (i, zero); |
1dbcd68c WT |
1200 | } |
1201 | else | |
1202 | { | |
1203 | for (i = I387_BNDCFGU_REGNUM (tdep); | |
1204 | i < I387_MPXEND_REGNUM (tdep); i++) | |
73e1c03f | 1205 | regcache->raw_supply (i, XSAVE_MPX_ADDR (tdep, regs, i)); |
1dbcd68c WT |
1206 | } |
1207 | } | |
1208 | ||
31aeac78 | 1209 | /* Handle the XMM registers. */ |
df7e5265 | 1210 | if ((tdep->xcr0 & X86_XSTATE_SSE)) |
31aeac78 | 1211 | { |
df7e5265 | 1212 | if ((clear_bv & X86_XSTATE_SSE)) |
b4d36fb8 PA |
1213 | { |
1214 | for (i = I387_XMM0_REGNUM (tdep); | |
1215 | i < I387_MXCSR_REGNUM (tdep); | |
1216 | i++) | |
73e1c03f | 1217 | regcache->raw_supply (i, zero); |
b4d36fb8 | 1218 | } |
31aeac78 | 1219 | else |
31aeac78 | 1220 | { |
b4d36fb8 PA |
1221 | for (i = I387_XMM0_REGNUM (tdep); |
1222 | i < I387_MXCSR_REGNUM (tdep); i++) | |
73e1c03f | 1223 | regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
31aeac78 L |
1224 | } |
1225 | } | |
1226 | ||
1227 | /* Handle the x87 registers. */ | |
df7e5265 | 1228 | if ((tdep->xcr0 & X86_XSTATE_X87)) |
31aeac78 | 1229 | { |
df7e5265 | 1230 | if ((clear_bv & X86_XSTATE_X87)) |
b4d36fb8 PA |
1231 | { |
1232 | for (i = I387_ST0_REGNUM (tdep); | |
1233 | i < I387_FCTRL_REGNUM (tdep); | |
1234 | i++) | |
73e1c03f | 1235 | regcache->raw_supply (i, zero); |
b4d36fb8 | 1236 | } |
31aeac78 | 1237 | else |
31aeac78 | 1238 | { |
b4d36fb8 PA |
1239 | for (i = I387_ST0_REGNUM (tdep); |
1240 | i < I387_FCTRL_REGNUM (tdep); | |
1241 | i++) | |
73e1c03f | 1242 | regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
31aeac78 L |
1243 | } |
1244 | } | |
1245 | break; | |
1246 | } | |
1247 | ||
1248 | /* Only handle x87 control registers. */ | |
1249 | for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) | |
1250 | if (regnum == -1 || regnum == i) | |
1251 | { | |
8ee22052 AB |
1252 | if (clear_bv & X86_XSTATE_X87) |
1253 | { | |
1254 | if (i == I387_FCTRL_REGNUM (tdep)) | |
1255 | { | |
1256 | gdb_byte buf[4]; | |
1257 | ||
1258 | store_unsigned_integer (buf, 4, byte_order, | |
1259 | I387_FCTRL_INIT_VAL); | |
73e1c03f | 1260 | regcache->raw_supply (i, buf); |
8ee22052 AB |
1261 | } |
1262 | else if (i == I387_FTAG_REGNUM (tdep)) | |
1263 | { | |
1264 | gdb_byte buf[4]; | |
1265 | ||
1266 | store_unsigned_integer (buf, 4, byte_order, 0xffff); | |
73e1c03f | 1267 | regcache->raw_supply (i, buf); |
8ee22052 AB |
1268 | } |
1269 | else | |
73e1c03f | 1270 | regcache->raw_supply (i, zero); |
8ee22052 | 1271 | } |
31aeac78 L |
1272 | /* Most of the FPU control registers occupy only 16 bits in |
1273 | the xsave extended state. Give those a special treatment. */ | |
8ee22052 AB |
1274 | else if (i != I387_FIOFF_REGNUM (tdep) |
1275 | && i != I387_FOOFF_REGNUM (tdep)) | |
31aeac78 L |
1276 | { |
1277 | gdb_byte val[4]; | |
1278 | ||
1279 | memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2); | |
1280 | val[2] = val[3] = 0; | |
1281 | if (i == I387_FOP_REGNUM (tdep)) | |
1282 | val[1] &= ((1 << 3) - 1); | |
8ee22052 | 1283 | else if (i == I387_FTAG_REGNUM (tdep)) |
31aeac78 L |
1284 | { |
1285 | /* The fxsave area contains a simplified version of | |
1286 | the tag word. We have to look at the actual 80-bit | |
1287 | FP data to recreate the traditional i387 tag word. */ | |
1288 | ||
1289 | unsigned long ftag = 0; | |
1290 | int fpreg; | |
1291 | int top; | |
1292 | ||
1293 | top = ((FXSAVE_ADDR (tdep, regs, | |
1294 | I387_FSTAT_REGNUM (tdep)))[1] >> 3); | |
1295 | top &= 0x7; | |
1296 | ||
1297 | for (fpreg = 7; fpreg >= 0; fpreg--) | |
1298 | { | |
1299 | int tag; | |
1300 | ||
1301 | if (val[0] & (1 << fpreg)) | |
1302 | { | |
e5b3d7d6 | 1303 | int thisreg = (fpreg + 8 - top) % 8 |
31aeac78 | 1304 | + I387_ST0_REGNUM (tdep); |
e5b3d7d6 | 1305 | tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg)); |
31aeac78 L |
1306 | } |
1307 | else | |
1308 | tag = 3; /* Empty */ | |
1309 | ||
1310 | ftag |= tag << (2 * fpreg); | |
1311 | } | |
1312 | val[0] = ftag & 0xff; | |
1313 | val[1] = (ftag >> 8) & 0xff; | |
1314 | } | |
73e1c03f | 1315 | regcache->raw_supply (i, val); |
31aeac78 | 1316 | } |
8ee22052 | 1317 | else |
73e1c03f | 1318 | regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i)); |
31aeac78 L |
1319 | } |
1320 | ||
1321 | if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1) | |
8ee22052 AB |
1322 | { |
1323 | /* The MXCSR register is placed into the xsave buffer if either the | |
1324 | AVX or SSE features are enabled. */ | |
1325 | if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) | |
1326 | == (X86_XSTATE_AVX | X86_XSTATE_SSE)) | |
1327 | { | |
1328 | gdb_byte buf[4]; | |
1329 | ||
1330 | store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL); | |
73e1c03f | 1331 | regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf); |
8ee22052 AB |
1332 | } |
1333 | else | |
73e1c03f SM |
1334 | regcache->raw_supply (I387_MXCSR_REGNUM (tdep), |
1335 | FXSAVE_MXCSR_ADDR (regs)); | |
8ee22052 | 1336 | } |
31aeac78 L |
1337 | } |
1338 | ||
1339 | /* Similar to i387_collect_fxsave, but use XSAVE extended state. */ | |
1340 | ||
1341 | void | |
1342 | i387_collect_xsave (const struct regcache *regcache, int regnum, | |
1343 | void *xsave, int gcore) | |
1344 | { | |
ac7936df | 1345 | struct gdbarch *gdbarch = regcache->arch (); |
8ee22052 | 1346 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
01f9f808 | 1347 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
8ee22052 AB |
1348 | gdb_byte *p, *regs = (gdb_byte *) xsave; |
1349 | gdb_byte raw[I386_MAX_REGISTER_SIZE]; | |
1350 | ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0; | |
35f1fea3 | 1351 | unsigned int i; |
b5420128 JB |
1352 | /* See the comment in i387_supply_xsave(). */ |
1353 | unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep) | |
1354 | + std::min (tdep->num_zmm_regs, 16); | |
31aeac78 L |
1355 | enum |
1356 | { | |
8ee22052 AB |
1357 | x87_ctrl_or_mxcsr = 0x1, |
1358 | x87 = 0x2, | |
1359 | sse = 0x4, | |
1360 | avxh = 0x8, | |
1361 | mpx = 0x10, | |
1362 | avx512_k = 0x20, | |
1363 | avx512_zmm_h = 0x40, | |
1364 | avx512_ymmh_avx512 = 0x80, | |
1365 | avx512_xmm_avx512 = 0x100, | |
1366 | pkeys = 0x200, | |
01f9f808 | 1367 | all = x87 | sse | avxh | mpx | avx512_k | avx512_zmm_h |
51547df6 | 1368 | | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys |
31aeac78 L |
1369 | } regclass; |
1370 | ||
1371 | gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM); | |
1372 | gdb_assert (tdep->num_xmm_regs > 0); | |
1373 | ||
1374 | if (regnum == -1) | |
1375 | regclass = all; | |
51547df6 MS |
1376 | else if (regnum >= I387_PKRU_REGNUM (tdep) |
1377 | && regnum < I387_PKEYSEND_REGNUM (tdep)) | |
1378 | regclass = pkeys; | |
01f9f808 MS |
1379 | else if (regnum >= I387_ZMM0H_REGNUM (tdep) |
1380 | && regnum < I387_ZMMENDH_REGNUM (tdep)) | |
1381 | regclass = avx512_zmm_h; | |
1382 | else if (regnum >= I387_K0_REGNUM (tdep) | |
1383 | && regnum < I387_KEND_REGNUM (tdep)) | |
1384 | regclass = avx512_k; | |
1385 | else if (regnum >= I387_YMM16H_REGNUM (tdep) | |
1386 | && regnum < I387_YMMH_AVX512_END_REGNUM (tdep)) | |
1387 | regclass = avx512_ymmh_avx512; | |
1388 | else if (regnum >= I387_XMM16_REGNUM (tdep) | |
1389 | && regnum < I387_XMM_AVX512_END_REGNUM (tdep)) | |
1390 | regclass = avx512_xmm_avx512; | |
31aeac78 L |
1391 | else if (regnum >= I387_YMM0H_REGNUM (tdep) |
1392 | && regnum < I387_YMMENDH_REGNUM (tdep)) | |
1393 | regclass = avxh; | |
1dbcd68c WT |
1394 | else if (regnum >= I387_BND0R_REGNUM (tdep) |
1395 | && regnum < I387_MPXEND_REGNUM (tdep)) | |
1396 | regclass = mpx; | |
1397 | else if (regnum >= I387_XMM0_REGNUM (tdep) | |
31aeac78 L |
1398 | && regnum < I387_MXCSR_REGNUM (tdep)) |
1399 | regclass = sse; | |
1400 | else if (regnum >= I387_ST0_REGNUM (tdep) | |
1401 | && regnum < I387_FCTRL_REGNUM (tdep)) | |
1402 | regclass = x87; | |
8ee22052 AB |
1403 | else if ((regnum >= I387_FCTRL_REGNUM (tdep) |
1404 | && regnum < I387_XMM0_REGNUM (tdep)) | |
1405 | || regnum == I387_MXCSR_REGNUM (tdep)) | |
1406 | regclass = x87_ctrl_or_mxcsr; | |
31aeac78 | 1407 | else |
8ee22052 | 1408 | internal_error (__FILE__, __LINE__, _("invalid i387 regnum %d"), regnum); |
31aeac78 L |
1409 | |
1410 | if (gcore) | |
1411 | { | |
1412 | /* Clear XSAVE extended state. */ | |
df7e5265 | 1413 | memset (regs, 0, X86_XSTATE_SIZE (tdep->xcr0)); |
31aeac78 L |
1414 | |
1415 | /* Update XCR0 and `xstate_bv' with XCR0 for gcore. */ | |
1416 | if (tdep->xsave_xcr0_offset != -1) | |
1417 | memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8); | |
1418 | memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8); | |
1419 | } | |
1420 | ||
8ee22052 AB |
1421 | /* The supported bits in `xstat_bv' are 8 bytes. */ |
1422 | initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), | |
1423 | 8, byte_order); | |
1424 | clear_bv = (~(initial_xstate_bv)) & tdep->xcr0; | |
1425 | ||
1426 | /* The XSAVE buffer was filled lazily by the kernel. Only those | |
1427 | features that are enabled were written into the buffer, disabled | |
1428 | features left the buffer uninitialised. In order to identify if any | |
1429 | registers have changed we will be comparing the register cache | |
1430 | version to the version in the XSAVE buffer, it is important then that | |
1431 | at this point we initialise to the default values any features in | |
1432 | XSAVE that are not yet initialised. | |
1433 | ||
1434 | This could be made more efficient, we know which features (from | |
1435 | REGNUM) we will be potentially updating, and could limit ourselves to | |
1436 | only clearing that feature. However, the extra complexity does not | |
1437 | seem justified at this point. */ | |
1438 | if (clear_bv) | |
31aeac78 | 1439 | { |
8ee22052 AB |
1440 | if ((clear_bv & X86_XSTATE_PKRU)) |
1441 | for (i = I387_PKRU_REGNUM (tdep); | |
1442 | i < I387_PKEYSEND_REGNUM (tdep); i++) | |
1443 | memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4); | |
31aeac78 | 1444 | |
8ee22052 AB |
1445 | if ((clear_bv & X86_XSTATE_BNDREGS)) |
1446 | for (i = I387_BND0R_REGNUM (tdep); | |
1447 | i < I387_BNDCFGU_REGNUM (tdep); i++) | |
1448 | memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 16); | |
51547df6 | 1449 | |
8ee22052 AB |
1450 | if ((clear_bv & X86_XSTATE_BNDCFG)) |
1451 | for (i = I387_BNDCFGU_REGNUM (tdep); | |
1452 | i < I387_MPXEND_REGNUM (tdep); i++) | |
1453 | memset (XSAVE_MPX_ADDR (tdep, regs, i), 0, 8); | |
1dbcd68c | 1454 | |
b5420128 JB |
1455 | if ((clear_bv & X86_XSTATE_ZMM_H)) |
1456 | for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++) | |
8ee22052 | 1457 | memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); |
1dbcd68c | 1458 | |
8ee22052 AB |
1459 | if ((clear_bv & X86_XSTATE_K)) |
1460 | for (i = I387_K0_REGNUM (tdep); | |
1461 | i < I387_KEND_REGNUM (tdep); i++) | |
1462 | memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8); | |
01f9f808 | 1463 | |
8ee22052 AB |
1464 | if ((clear_bv & X86_XSTATE_ZMM)) |
1465 | { | |
b5420128 JB |
1466 | for (i = zmm_endlo_regnum; i < I387_ZMMENDH_REGNUM (tdep); i++) |
1467 | memset (XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i), 0, 32); | |
8ee22052 AB |
1468 | for (i = I387_YMM16H_REGNUM (tdep); |
1469 | i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) | |
1470 | memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16); | |
1471 | for (i = I387_XMM16_REGNUM (tdep); | |
1472 | i < I387_XMM_AVX512_END_REGNUM (tdep); i++) | |
1473 | memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16); | |
1474 | } | |
01f9f808 | 1475 | |
8ee22052 AB |
1476 | if ((clear_bv & X86_XSTATE_AVX)) |
1477 | for (i = I387_YMM0H_REGNUM (tdep); | |
1478 | i < I387_YMMENDH_REGNUM (tdep); i++) | |
1479 | memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16); | |
01f9f808 | 1480 | |
8ee22052 AB |
1481 | if ((clear_bv & X86_XSTATE_SSE)) |
1482 | for (i = I387_XMM0_REGNUM (tdep); | |
1483 | i < I387_MXCSR_REGNUM (tdep); i++) | |
1484 | memset (FXSAVE_ADDR (tdep, regs, i), 0, 16); | |
1485 | ||
1486 | /* The mxcsr register is written into the xsave buffer if either AVX | |
1487 | or SSE is enabled, so only clear it if both of those features | |
1488 | require clearing. */ | |
1489 | if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) | |
1490 | == (X86_XSTATE_AVX | X86_XSTATE_SSE)) | |
cf4912ae | 1491 | store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order, |
8ee22052 | 1492 | I387_MXCSR_INIT_VAL); |
31aeac78 | 1493 | |
8ee22052 AB |
1494 | if ((clear_bv & X86_XSTATE_X87)) |
1495 | { | |
1496 | for (i = I387_ST0_REGNUM (tdep); | |
1497 | i < I387_FCTRL_REGNUM (tdep); i++) | |
1498 | memset (FXSAVE_ADDR (tdep, regs, i), 0, 10); | |
31aeac78 | 1499 | |
8ee22052 AB |
1500 | for (i = I387_FCTRL_REGNUM (tdep); |
1501 | i < I387_XMM0_REGNUM (tdep); i++) | |
1502 | { | |
1503 | if (i == I387_FCTRL_REGNUM (tdep)) | |
1504 | store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2, | |
1505 | byte_order, I387_FCTRL_INIT_VAL); | |
1506 | else | |
1507 | memset (FXSAVE_ADDR (tdep, regs, i), 0, | |
1508 | regcache_register_size (regcache, i)); | |
1509 | } | |
31aeac78 | 1510 | } |
8ee22052 | 1511 | } |
31aeac78 | 1512 | |
8ee22052 AB |
1513 | if (regclass == all) |
1514 | { | |
1515 | /* Check if any PKEYS registers are changed. */ | |
1516 | if ((tdep->xcr0 & X86_XSTATE_PKRU)) | |
1517 | for (i = I387_PKRU_REGNUM (tdep); | |
1518 | i < I387_PKEYSEND_REGNUM (tdep); i++) | |
1519 | { | |
34a79281 | 1520 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1521 | p = XSAVE_PKEYS_ADDR (tdep, regs, i); |
1522 | if (memcmp (raw, p, 4) != 0) | |
51547df6 | 1523 | { |
8ee22052 AB |
1524 | xstate_bv |= X86_XSTATE_PKRU; |
1525 | memcpy (p, raw, 4); | |
51547df6 | 1526 | } |
8ee22052 | 1527 | } |
51547df6 | 1528 | |
8ee22052 AB |
1529 | /* Check if any ZMMH registers are changed. */ |
1530 | if ((tdep->xcr0 & (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM))) | |
1531 | for (i = I387_ZMM0H_REGNUM (tdep); | |
1532 | i < I387_ZMMENDH_REGNUM (tdep); i++) | |
1533 | { | |
34a79281 | 1534 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1535 | p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, i); |
1536 | if (memcmp (raw, p, 32) != 0) | |
01f9f808 | 1537 | { |
8ee22052 AB |
1538 | xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); |
1539 | memcpy (p, raw, 32); | |
01f9f808 | 1540 | } |
8ee22052 | 1541 | } |
01f9f808 | 1542 | |
8ee22052 AB |
1543 | /* Check if any K registers are changed. */ |
1544 | if ((tdep->xcr0 & X86_XSTATE_K)) | |
1545 | for (i = I387_K0_REGNUM (tdep); | |
1546 | i < I387_KEND_REGNUM (tdep); i++) | |
1547 | { | |
34a79281 | 1548 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1549 | p = XSAVE_AVX512_K_ADDR (tdep, regs, i); |
1550 | if (memcmp (raw, p, 8) != 0) | |
01f9f808 | 1551 | { |
8ee22052 AB |
1552 | xstate_bv |= X86_XSTATE_K; |
1553 | memcpy (p, raw, 8); | |
01f9f808 | 1554 | } |
8ee22052 | 1555 | } |
01f9f808 | 1556 | |
8ee22052 AB |
1557 | /* Check if any XMM or upper YMM registers are changed. */ |
1558 | if ((tdep->xcr0 & X86_XSTATE_ZMM)) | |
1559 | { | |
1560 | for (i = I387_YMM16H_REGNUM (tdep); | |
1561 | i < I387_YMMH_AVX512_END_REGNUM (tdep); i++) | |
01f9f808 | 1562 | { |
34a79281 | 1563 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1564 | p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i); |
1565 | if (memcmp (raw, p, 16) != 0) | |
01f9f808 | 1566 | { |
8ee22052 AB |
1567 | xstate_bv |= X86_XSTATE_ZMM; |
1568 | memcpy (p, raw, 16); | |
01f9f808 | 1569 | } |
8ee22052 AB |
1570 | } |
1571 | for (i = I387_XMM16_REGNUM (tdep); | |
1572 | i < I387_XMM_AVX512_END_REGNUM (tdep); i++) | |
1573 | { | |
34a79281 | 1574 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1575 | p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i); |
1576 | if (memcmp (raw, p, 16) != 0) | |
01f9f808 | 1577 | { |
8ee22052 AB |
1578 | xstate_bv |= X86_XSTATE_ZMM; |
1579 | memcpy (p, raw, 16); | |
01f9f808 MS |
1580 | } |
1581 | } | |
8ee22052 | 1582 | } |
01f9f808 | 1583 | |
8ee22052 AB |
1584 | /* Check if any upper MPX registers are changed. */ |
1585 | if ((tdep->xcr0 & X86_XSTATE_BNDREGS)) | |
1586 | for (i = I387_BND0R_REGNUM (tdep); | |
1587 | i < I387_BNDCFGU_REGNUM (tdep); i++) | |
1588 | { | |
34a79281 | 1589 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1590 | p = XSAVE_MPX_ADDR (tdep, regs, i); |
1591 | if (memcmp (raw, p, 16)) | |
31aeac78 | 1592 | { |
8ee22052 AB |
1593 | xstate_bv |= X86_XSTATE_BNDREGS; |
1594 | memcpy (p, raw, 16); | |
31aeac78 | 1595 | } |
8ee22052 AB |
1596 | } |
1597 | ||
1598 | /* Check if any upper MPX registers are changed. */ | |
1599 | if ((tdep->xcr0 & X86_XSTATE_BNDCFG)) | |
1600 | for (i = I387_BNDCFGU_REGNUM (tdep); | |
1601 | i < I387_MPXEND_REGNUM (tdep); i++) | |
1602 | { | |
34a79281 | 1603 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1604 | p = XSAVE_MPX_ADDR (tdep, regs, i); |
1605 | if (memcmp (raw, p, 8)) | |
1dbcd68c | 1606 | { |
8ee22052 AB |
1607 | xstate_bv |= X86_XSTATE_BNDCFG; |
1608 | memcpy (p, raw, 8); | |
1dbcd68c | 1609 | } |
8ee22052 | 1610 | } |
1dbcd68c | 1611 | |
8ee22052 AB |
1612 | /* Check if any upper YMM registers are changed. */ |
1613 | if ((tdep->xcr0 & X86_XSTATE_AVX)) | |
1614 | for (i = I387_YMM0H_REGNUM (tdep); | |
1615 | i < I387_YMMENDH_REGNUM (tdep); i++) | |
1616 | { | |
34a79281 | 1617 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1618 | p = XSAVE_AVXH_ADDR (tdep, regs, i); |
1619 | if (memcmp (raw, p, 16)) | |
1dbcd68c | 1620 | { |
8ee22052 AB |
1621 | xstate_bv |= X86_XSTATE_AVX; |
1622 | memcpy (p, raw, 16); | |
1dbcd68c | 1623 | } |
8ee22052 | 1624 | } |
31aeac78 | 1625 | |
8ee22052 AB |
1626 | /* Check if any SSE registers are changed. */ |
1627 | if ((tdep->xcr0 & X86_XSTATE_SSE)) | |
1628 | for (i = I387_XMM0_REGNUM (tdep); | |
1629 | i < I387_MXCSR_REGNUM (tdep); i++) | |
1630 | { | |
34a79281 | 1631 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1632 | p = FXSAVE_ADDR (tdep, regs, i); |
1633 | if (memcmp (raw, p, 16)) | |
31aeac78 | 1634 | { |
8ee22052 AB |
1635 | xstate_bv |= X86_XSTATE_SSE; |
1636 | memcpy (p, raw, 16); | |
31aeac78 | 1637 | } |
8ee22052 | 1638 | } |
31aeac78 | 1639 | |
8ee22052 AB |
1640 | if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE)) |
1641 | { | |
1642 | i = I387_MXCSR_REGNUM (tdep); | |
34a79281 | 1643 | regcache->raw_collect (i, raw); |
cf4912ae | 1644 | p = FXSAVE_MXCSR_ADDR (regs); |
8ee22052 AB |
1645 | if (memcmp (raw, p, 4)) |
1646 | { | |
1647 | /* Now, we need to mark one of either SSE of AVX as enabled. | |
1648 | We could pick either. What we do is check to see if one | |
1649 | of the features is already enabled, if it is then we leave | |
1650 | it at that, otherwise we pick SSE. */ | |
1651 | if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0) | |
1652 | xstate_bv |= X86_XSTATE_SSE; | |
1653 | memcpy (p, raw, 4); | |
1654 | } | |
1655 | } | |
1656 | ||
1657 | /* Check if any X87 registers are changed. Only the non-control | |
1658 | registers are handled here, the control registers are all handled | |
1659 | later on in this function. */ | |
1660 | if ((tdep->xcr0 & X86_XSTATE_X87)) | |
1661 | for (i = I387_ST0_REGNUM (tdep); | |
1662 | i < I387_FCTRL_REGNUM (tdep); i++) | |
1663 | { | |
34a79281 | 1664 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1665 | p = FXSAVE_ADDR (tdep, regs, i); |
1666 | if (memcmp (raw, p, 10)) | |
31aeac78 | 1667 | { |
8ee22052 AB |
1668 | xstate_bv |= X86_XSTATE_X87; |
1669 | memcpy (p, raw, 10); | |
31aeac78 | 1670 | } |
8ee22052 AB |
1671 | } |
1672 | } | |
1673 | else | |
1674 | { | |
1675 | /* Check if REGNUM is changed. */ | |
34a79281 | 1676 | regcache->raw_collect (regnum, raw); |
31aeac78 | 1677 | |
8ee22052 AB |
1678 | switch (regclass) |
1679 | { | |
1680 | default: | |
1681 | internal_error (__FILE__, __LINE__, | |
1682 | _("invalid i387 regclass")); | |
1683 | ||
1684 | case pkeys: | |
1685 | /* This is a PKEYS register. */ | |
1686 | p = XSAVE_PKEYS_ADDR (tdep, regs, regnum); | |
1687 | if (memcmp (raw, p, 4) != 0) | |
31aeac78 | 1688 | { |
8ee22052 AB |
1689 | xstate_bv |= X86_XSTATE_PKRU; |
1690 | memcpy (p, raw, 4); | |
1691 | } | |
1692 | break; | |
01f9f808 | 1693 | |
8ee22052 AB |
1694 | case avx512_zmm_h: |
1695 | /* This is a ZMM register. */ | |
1696 | p = XSAVE_AVX512_ZMM_H_ADDR (tdep, regs, regnum); | |
1697 | if (memcmp (raw, p, 32) != 0) | |
1698 | { | |
1699 | xstate_bv |= (X86_XSTATE_ZMM_H | X86_XSTATE_ZMM); | |
1700 | memcpy (p, raw, 32); | |
1701 | } | |
1702 | break; | |
1703 | case avx512_k: | |
1704 | /* This is a AVX512 mask register. */ | |
1705 | p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum); | |
1706 | if (memcmp (raw, p, 8) != 0) | |
1707 | { | |
1708 | xstate_bv |= X86_XSTATE_K; | |
1709 | memcpy (p, raw, 8); | |
1710 | } | |
1711 | break; | |
01f9f808 | 1712 | |
8ee22052 AB |
1713 | case avx512_ymmh_avx512: |
1714 | /* This is an upper YMM16-31 register. */ | |
1715 | p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum); | |
1716 | if (memcmp (raw, p, 16) != 0) | |
1717 | { | |
1718 | xstate_bv |= X86_XSTATE_ZMM; | |
1719 | memcpy (p, raw, 16); | |
1720 | } | |
1721 | break; | |
01f9f808 | 1722 | |
8ee22052 AB |
1723 | case avx512_xmm_avx512: |
1724 | /* This is an upper XMM16-31 register. */ | |
1725 | p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum); | |
1726 | if (memcmp (raw, p, 16) != 0) | |
1727 | { | |
1728 | xstate_bv |= X86_XSTATE_ZMM; | |
1729 | memcpy (p, raw, 16); | |
1730 | } | |
1731 | break; | |
31aeac78 | 1732 | |
8ee22052 AB |
1733 | case avxh: |
1734 | /* This is an upper YMM register. */ | |
1735 | p = XSAVE_AVXH_ADDR (tdep, regs, regnum); | |
1736 | if (memcmp (raw, p, 16)) | |
1737 | { | |
1738 | xstate_bv |= X86_XSTATE_AVX; | |
1739 | memcpy (p, raw, 16); | |
1740 | } | |
1741 | break; | |
1dbcd68c | 1742 | |
8ee22052 AB |
1743 | case mpx: |
1744 | if (regnum < I387_BNDCFGU_REGNUM (tdep)) | |
1745 | { | |
34a79281 | 1746 | regcache->raw_collect (regnum, raw); |
8ee22052 | 1747 | p = XSAVE_MPX_ADDR (tdep, regs, regnum); |
40936b0d L |
1748 | if (memcmp (raw, p, 16)) |
1749 | { | |
8ee22052 | 1750 | xstate_bv |= X86_XSTATE_BNDREGS; |
40936b0d L |
1751 | memcpy (p, raw, 16); |
1752 | } | |
8ee22052 AB |
1753 | } |
1754 | else | |
1755 | { | |
1756 | p = XSAVE_MPX_ADDR (tdep, regs, regnum); | |
1757 | xstate_bv |= X86_XSTATE_BNDCFG; | |
1758 | memcpy (p, raw, 8); | |
1759 | } | |
1760 | break; | |
31aeac78 | 1761 | |
8ee22052 AB |
1762 | case sse: |
1763 | /* This is an SSE register. */ | |
1764 | p = FXSAVE_ADDR (tdep, regs, regnum); | |
1765 | if (memcmp (raw, p, 16)) | |
1766 | { | |
1767 | xstate_bv |= X86_XSTATE_SSE; | |
1768 | memcpy (p, raw, 16); | |
31aeac78 | 1769 | } |
8ee22052 | 1770 | break; |
40936b0d | 1771 | |
8ee22052 AB |
1772 | case x87: |
1773 | /* This is an x87 register. */ | |
1774 | p = FXSAVE_ADDR (tdep, regs, regnum); | |
1775 | if (memcmp (raw, p, 10)) | |
1776 | { | |
1777 | xstate_bv |= X86_XSTATE_X87; | |
1778 | memcpy (p, raw, 10); | |
1779 | } | |
1780 | break; | |
40936b0d | 1781 | |
8ee22052 AB |
1782 | case x87_ctrl_or_mxcsr: |
1783 | /* We only handle MXCSR here. All other x87 control registers | |
1784 | are handled separately below. */ | |
1785 | if (regnum == I387_MXCSR_REGNUM (tdep)) | |
31aeac78 | 1786 | { |
8ee22052 AB |
1787 | p = FXSAVE_MXCSR_ADDR (regs); |
1788 | if (memcmp (raw, p, 2)) | |
1789 | { | |
1790 | /* We're only setting MXCSR, so check the initial state | |
1791 | to see if either of AVX or SSE are already enabled. | |
1792 | If they are then we'll attribute this changed MXCSR to | |
1793 | that feature. If neither feature is enabled, then | |
1794 | we'll attribute this change to the SSE feature. */ | |
1795 | xstate_bv |= (initial_xstate_bv | |
1796 | & (X86_XSTATE_AVX | X86_XSTATE_SSE)); | |
1797 | if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0) | |
1798 | xstate_bv |= X86_XSTATE_SSE; | |
1799 | memcpy (p, raw, 2); | |
1800 | } | |
31aeac78 | 1801 | } |
40936b0d | 1802 | } |
31aeac78 L |
1803 | } |
1804 | ||
1805 | /* Only handle x87 control registers. */ | |
1806 | for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++) | |
1807 | if (regnum == -1 || regnum == i) | |
1808 | { | |
1809 | /* Most of the FPU control registers occupy only 16 bits in | |
1810 | the xsave extended state. Give those a special treatment. */ | |
1811 | if (i != I387_FIOFF_REGNUM (tdep) | |
1812 | && i != I387_FOOFF_REGNUM (tdep)) | |
1813 | { | |
1814 | gdb_byte buf[4]; | |
1815 | ||
34a79281 | 1816 | regcache->raw_collect (i, buf); |
31aeac78 | 1817 | |
20a6ec49 | 1818 | if (i == I387_FOP_REGNUM (tdep)) |
e750d25e JT |
1819 | { |
1820 | /* The opcode occupies only 11 bits. Make sure we | |
40936b0d | 1821 | don't touch the other bits. */ |
e750d25e | 1822 | buf[1] &= ((1 << 3) - 1); |
20a6ec49 | 1823 | buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1)); |
e750d25e | 1824 | } |
20a6ec49 | 1825 | else if (i == I387_FTAG_REGNUM (tdep)) |
e750d25e JT |
1826 | { |
1827 | /* Converting back is much easier. */ | |
1828 | ||
1829 | unsigned short ftag; | |
1830 | int fpreg; | |
1831 | ||
1832 | ftag = (buf[1] << 8) | buf[0]; | |
1833 | buf[0] = 0; | |
1834 | buf[1] = 0; | |
1835 | ||
1836 | for (fpreg = 7; fpreg >= 0; fpreg--) | |
1837 | { | |
1838 | int tag = (ftag >> (fpreg * 2)) & 3; | |
1839 | ||
1840 | if (tag != 3) | |
1841 | buf[0] |= (1 << fpreg); | |
1842 | } | |
1843 | } | |
8ee22052 AB |
1844 | p = FXSAVE_ADDR (tdep, regs, i); |
1845 | if (memcmp (p, buf, 2)) | |
1846 | { | |
1847 | xstate_bv |= X86_XSTATE_X87; | |
1848 | memcpy (p, buf, 2); | |
1849 | } | |
e750d25e JT |
1850 | } |
1851 | else | |
8ee22052 AB |
1852 | { |
1853 | int regsize; | |
1854 | ||
34a79281 | 1855 | regcache->raw_collect (i, raw); |
8ee22052 AB |
1856 | regsize = regcache_register_size (regcache, i); |
1857 | p = FXSAVE_ADDR (tdep, regs, i); | |
1858 | if (memcmp (raw, p, regsize)) | |
1859 | { | |
1860 | xstate_bv |= X86_XSTATE_X87; | |
1861 | memcpy (p, raw, regsize); | |
1862 | } | |
1863 | } | |
e750d25e | 1864 | } |
5716833c | 1865 | |
8ee22052 AB |
1866 | /* Update the corresponding bits in `xstate_bv' if any |
1867 | registers are changed. */ | |
1868 | if (xstate_bv) | |
1869 | { | |
1870 | /* The supported bits in `xstat_bv' are 8 bytes. */ | |
1871 | initial_xstate_bv |= xstate_bv; | |
1872 | store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs), | |
1873 | 8, byte_order, | |
1874 | initial_xstate_bv); | |
1875 | } | |
e750d25e JT |
1876 | } |
1877 | ||
1878 | /* Recreate the FTW (tag word) valid bits from the 80-bit FP data in | |
1879 | *RAW. */ | |
1880 | ||
1881 | static int | |
b4ad899f | 1882 | i387_tag (const gdb_byte *raw) |
e750d25e JT |
1883 | { |
1884 | int integer; | |
1885 | unsigned int exponent; | |
1886 | unsigned long fraction[2]; | |
1887 | ||
1888 | integer = raw[7] & 0x80; | |
1889 | exponent = (((raw[9] & 0x7f) << 8) | raw[8]); | |
1890 | fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]); | |
1891 | fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16) | |
1892 | | (raw[5] << 8) | raw[4]); | |
1893 | ||
1894 | if (exponent == 0x7fff) | |
1895 | { | |
1896 | /* Special. */ | |
1897 | return (2); | |
1898 | } | |
1899 | else if (exponent == 0x0000) | |
1900 | { | |
1901 | if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer) | |
1902 | { | |
1903 | /* Zero. */ | |
1904 | return (1); | |
1905 | } | |
1906 | else | |
1907 | { | |
1908 | /* Special. */ | |
1909 | return (2); | |
1910 | } | |
1911 | } | |
1912 | else | |
1913 | { | |
1914 | if (integer) | |
1915 | { | |
1916 | /* Valid. */ | |
1917 | return (0); | |
1918 | } | |
1919 | else | |
1920 | { | |
1921 | /* Special. */ | |
1922 | return (2); | |
1923 | } | |
1924 | } | |
1925 | } | |
efb1c01c MK |
1926 | |
1927 | /* Prepare the FPU stack in REGCACHE for a function return. */ | |
1928 | ||
1929 | void | |
1930 | i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache) | |
1931 | { | |
1932 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1933 | ULONGEST fstat; | |
1934 | ||
efb1c01c MK |
1935 | /* Set the top of the floating-point register stack to 7. The |
1936 | actual value doesn't really matter, but 7 is what a normal | |
1937 | function return would end up with if the program started out with | |
1938 | a freshly initialized FPU. */ | |
20a6ec49 | 1939 | regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat); |
efb1c01c | 1940 | fstat |= (7 << 11); |
20a6ec49 | 1941 | regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat); |
efb1c01c MK |
1942 | |
1943 | /* Mark %st(1) through %st(7) as empty. Since we set the top of the | |
1944 | floating-point register stack to 7, the appropriate value for the | |
1945 | tag word is 0x3fff. */ | |
20a6ec49 | 1946 | regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff); |
efb1c01c | 1947 | |
efb1c01c | 1948 | } |
4a612d6f WT |
1949 | |
1950 | /* See i387-tdep.h. */ | |
1951 | ||
1952 | void | |
1953 | i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache) | |
1954 | { | |
1955 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1956 | ||
1957 | if (I387_BND0R_REGNUM (tdep) > 0) | |
1958 | { | |
1959 | gdb_byte bnd_buf[16]; | |
1960 | ||
1961 | memset (bnd_buf, 0, 16); | |
1962 | for (int i = 0; i < I387_NUM_BND_REGS; i++) | |
10eaee5f | 1963 | regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf); |
4a612d6f WT |
1964 | } |
1965 | } |