Copy comments from gdbarch.sh to gdbarch.h. Fix a number of K&R params.
[deliverable/binutils-gdb.git] / gdb / i960-tdep.c
CommitLineData
c906108c
SS
1/* Target-machine dependent code for the Intel 960
2 Copyright 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by Intel Corporation.
4 examine_prologue and other parts contributed by Wind River Systems.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "symtab.h"
25#include "value.h"
26#include "frame.h"
27#include "floatformat.h"
28#include "target.h"
29#include "gdbcore.h"
2acceee2 30#include "inferior.h"
c906108c 31
a14ed312
KB
32static CORE_ADDR next_insn (CORE_ADDR memaddr,
33 unsigned int *pword1, unsigned int *pword2);
c906108c
SS
34
35/* Does the specified function use the "struct returning" convention
36 or the "value returning" convention? The "value returning" convention
37 almost invariably returns the entire value in registers. The
38 "struct returning" convention often returns the entire value in
39 memory, and passes a pointer (out of or into the function) saying
40 where the value (is or should go).
41
42 Since this sometimes depends on whether it was compiled with GCC,
43 this is also an argument. This is used in call_function to build a
44 stack, and in value_being_returned to print return values.
45
46 On i960, a structure is returned in registers g0-g3, if it will fit.
47 If it's more than 16 bytes long, g13 pointed to it on entry. */
48
49int
fba45db2 50i960_use_struct_convention (int gcc_p, struct type *type)
c906108c
SS
51{
52 return (TYPE_LENGTH (type) > 16);
53}
54
55/* gdb960 is always running on a non-960 host. Check its characteristics.
56 This routine must be called as part of gdb initialization. */
57
58static void
fba45db2 59check_host (void)
c906108c 60{
c5aa993b 61 int i;
c906108c 62
c5aa993b
JM
63 static struct typestruct
64 {
65 int hostsize; /* Size of type on host */
66 int i960size; /* Size of type on i960 */
67 char *typename; /* Name of type, for error msg */
68 }
69 types[] =
70 {
71 {
72 sizeof (short), 2, "short"
73 }
74 ,
75 {
76 sizeof (int), 4, "int"
77 }
78 ,
79 {
80 sizeof (long), 4, "long"
81 }
82 ,
83 {
84 sizeof (float), 4, "float"
85 }
86 ,
87 {
88 sizeof (double), 8, "double"
89 }
90 ,
91 {
92 sizeof (char *), 4, "pointer"
93 }
94 ,
95 };
96#define TYPELEN (sizeof(types) / sizeof(struct typestruct))
c906108c 97
c5aa993b
JM
98 /* Make sure that host type sizes are same as i960
99 */
100 for (i = 0; i < TYPELEN; i++)
101 {
102 if (types[i].hostsize != types[i].i960size)
103 {
104 printf_unfiltered ("sizeof(%s) != %d: PROCEED AT YOUR OWN RISK!\n",
105 types[i].typename, types[i].i960size);
c906108c 106 }
c5aa993b
JM
107
108 }
c906108c
SS
109}
110\f
111/* Examine an i960 function prologue, recording the addresses at which
112 registers are saved explicitly by the prologue code, and returning
113 the address of the first instruction after the prologue (but not
114 after the instruction at address LIMIT, as explained below).
115
116 LIMIT places an upper bound on addresses of the instructions to be
117 examined. If the prologue code scan reaches LIMIT, the scan is
118 aborted and LIMIT is returned. This is used, when examining the
119 prologue for the current frame, to keep examine_prologue () from
120 claiming that a given register has been saved when in fact the
121 instruction that saves it has not yet been executed. LIMIT is used
122 at other times to stop the scan when we hit code after the true
123 function prologue (e.g. for the first source line) which might
124 otherwise be mistaken for function prologue.
125
126 The format of the function prologue matched by this routine is
127 derived from examination of the source to gcc960 1.21, particularly
128 the routine i960_function_prologue (). A "regular expression" for
129 the function prologue is given below:
130
131 (lda LRn, g14
c5aa993b
JM
132 mov g14, g[0-7]
133 (mov 0, g14) | (lda 0, g14))?
c906108c
SS
134
135 (mov[qtl]? g[0-15], r[4-15])*
136 ((addo [1-31], sp, sp) | (lda n(sp), sp))?
137 (st[qtl]? g[0-15], n(fp))*
138
139 (cmpobne 0, g14, LFn
c5aa993b
JM
140 mov sp, g14
141 lda 0x30(sp), sp
142 LFn: stq g0, (g14)
143 stq g4, 0x10(g14)
144 stq g8, 0x20(g14))?
c906108c
SS
145
146 (st g14, n(fp))?
147 (mov g13,r[4-15])?
c5aa993b 148 */
c906108c
SS
149
150/* Macros for extracting fields from i960 instructions. */
151
152#define BITMASK(pos, width) (((0x1 << (width)) - 1) << (pos))
153#define EXTRACT_FIELD(val, pos, width) ((val) >> (pos) & BITMASK (0, width))
154
155#define REG_SRC1(insn) EXTRACT_FIELD (insn, 0, 5)
156#define REG_SRC2(insn) EXTRACT_FIELD (insn, 14, 5)
157#define REG_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
158#define MEM_SRCDST(insn) EXTRACT_FIELD (insn, 19, 5)
159#define MEMA_OFFSET(insn) EXTRACT_FIELD (insn, 0, 12)
160
161/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
162 is not the address of a valid instruction, the address of the next
163 instruction beyond ADDR otherwise. *PWORD1 receives the first word
164 of the instruction, and (for two-word instructions), *PWORD2 receives
165 the second. */
166
167#define NEXT_PROLOGUE_INSN(addr, lim, pword1, pword2) \
168 (((addr) < (lim)) ? next_insn (addr, pword1, pword2) : 0)
169
170static CORE_ADDR
fba45db2
KB
171examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
172 CORE_ADDR frame_addr, struct frame_saved_regs *fsr)
c906108c
SS
173{
174 register CORE_ADDR next_ip;
175 register int src, dst;
176 register unsigned int *pcode;
177 unsigned int insn1, insn2;
178 int size;
179 int within_leaf_prologue;
180 CORE_ADDR save_addr;
c5aa993b
JM
181 static unsigned int varargs_prologue_code[] =
182 {
183 0x3507a00c, /* cmpobne 0x0, g14, LFn */
184 0x5cf01601, /* mov sp, g14 */
185 0x8c086030, /* lda 0x30(sp), sp */
186 0xb2879000, /* LFn: stq g0, (g14) */
187 0xb2a7a010, /* stq g4, 0x10(g14) */
188 0xb2c7a020 /* stq g8, 0x20(g14) */
189 };
c906108c
SS
190
191 /* Accept a leaf procedure prologue code fragment if present.
192 Note that ip might point to either the leaf or non-leaf
193 entry point; we look for the non-leaf entry point first: */
194
195 within_leaf_prologue = 0;
196 if ((next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2))
c5aa993b
JM
197 && ((insn1 & 0xfffff000) == 0x8cf00000 /* lda LRx, g14 (MEMA) */
198 || (insn1 & 0xfffffc60) == 0x8cf03000)) /* lda LRx, g14 (MEMB) */
c906108c
SS
199 {
200 within_leaf_prologue = 1;
201 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2);
202 }
203
204 /* Now look for the prologue code at a leaf entry point: */
205
206 if (next_ip
c5aa993b 207 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
c906108c
SS
208 && REG_SRCDST (insn1) <= G0_REGNUM + 7)
209 {
210 within_leaf_prologue = 1;
211 if ((next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn1, &insn2))
c5aa993b
JM
212 && (insn1 == 0x8cf00000 /* lda 0, g14 */
213 || insn1 == 0x5cf01e00)) /* mov 0, g14 */
c906108c
SS
214 {
215 ip = next_ip;
216 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
217 within_leaf_prologue = 0;
218 }
219 }
220
221 /* If something that looks like the beginning of a leaf prologue
222 has been seen, but the remainder of the prologue is missing, bail.
223 We don't know what we've got. */
224
225 if (within_leaf_prologue)
226 return (ip);
c5aa993b 227
c906108c
SS
228 /* Accept zero or more instances of "mov[qtl]? gx, ry", where y >= 4.
229 This may cause us to mistake the moving of a register
230 parameter to a local register for the saving of a callee-saved
231 register, but that can't be helped, since with the
232 "-fcall-saved" flag, any register can be made callee-saved. */
233
234 while (next_ip
235 && (insn1 & 0xfc802fb0) == 0x5c000610
236 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
237 {
238 src = REG_SRC1 (insn1);
239 size = EXTRACT_FIELD (insn1, 24, 2) + 1;
240 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
241 while (size--)
242 {
243 fsr->regs[src++] = save_addr;
244 save_addr += 4;
245 }
246 ip = next_ip;
247 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
248 }
249
250 /* Accept an optional "addo n, sp, sp" or "lda n(sp), sp". */
251
252 if (next_ip &&
253 ((insn1 & 0xffffffe0) == 0x59084800 /* addo n, sp, sp */
254 || (insn1 & 0xfffff000) == 0x8c086000 /* lda n(sp), sp (MEMA) */
255 || (insn1 & 0xfffffc60) == 0x8c087400)) /* lda n(sp), sp (MEMB) */
256 {
257 ip = next_ip;
258 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
259 }
260
261 /* Accept zero or more instances of "st[qtl]? gx, n(fp)".
262 This may cause us to mistake the copying of a register
263 parameter to the frame for the saving of a callee-saved
264 register, but that can't be helped, since with the
265 "-fcall-saved" flag, any register can be made callee-saved.
266 We can, however, refuse to accept a save of register g14,
267 since that is matched explicitly below. */
268
269 while (next_ip &&
c5aa993b
JM
270 ((insn1 & 0xf787f000) == 0x9287e000 /* stl? gx, n(fp) (MEMA) */
271 || (insn1 & 0xf787fc60) == 0x9287f400 /* stl? gx, n(fp) (MEMB) */
272 || (insn1 & 0xef87f000) == 0xa287e000 /* st[tq] gx, n(fp) (MEMA) */
273 || (insn1 & 0xef87fc60) == 0xa287f400) /* st[tq] gx, n(fp) (MEMB) */
c906108c
SS
274 && ((src = MEM_SRCDST (insn1)) != G14_REGNUM))
275 {
276 save_addr = frame_addr + ((insn1 & BITMASK (12, 1))
277 ? insn2 : MEMA_OFFSET (insn1));
278 size = (insn1 & BITMASK (29, 1)) ? ((insn1 & BITMASK (28, 1)) ? 4 : 3)
c5aa993b 279 : ((insn1 & BITMASK (27, 1)) ? 2 : 1);
c906108c
SS
280 while (size--)
281 {
282 fsr->regs[src++] = save_addr;
283 save_addr += 4;
284 }
285 ip = next_ip;
286 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
287 }
288
289 /* Accept the varargs prologue code if present. */
290
291 size = sizeof (varargs_prologue_code) / sizeof (int);
292 pcode = varargs_prologue_code;
293 while (size-- && next_ip && *pcode++ == insn1)
294 {
295 ip = next_ip;
296 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
297 }
298
299 /* Accept an optional "st g14, n(fp)". */
300
301 if (next_ip &&
c5aa993b
JM
302 ((insn1 & 0xfffff000) == 0x92f7e000 /* st g14, n(fp) (MEMA) */
303 || (insn1 & 0xfffffc60) == 0x92f7f400)) /* st g14, n(fp) (MEMB) */
c906108c
SS
304 {
305 fsr->regs[G14_REGNUM] = frame_addr + ((insn1 & BITMASK (12, 1))
c5aa993b 306 ? insn2 : MEMA_OFFSET (insn1));
c906108c
SS
307 ip = next_ip;
308 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
309 }
310
311 /* Accept zero or one instance of "mov g13, ry", where y >= 4.
312 This is saving the address where a struct should be returned. */
313
314 if (next_ip
315 && (insn1 & 0xff802fbf) == 0x5c00061d
316 && (dst = REG_SRCDST (insn1)) >= (R0_REGNUM + 4))
317 {
318 save_addr = frame_addr + ((dst - R0_REGNUM) * 4);
c5aa993b 319 fsr->regs[G0_REGNUM + 13] = save_addr;
c906108c 320 ip = next_ip;
c5aa993b 321#if 0 /* We'll need this once there is a subsequent instruction examined. */
c906108c
SS
322 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn1, &insn2);
323#endif
324 }
325
326 return (ip);
327}
328
329/* Given an ip value corresponding to the start of a function,
330 return the ip of the first instruction after the function
331 prologue. */
332
333CORE_ADDR
b83266a0 334i960_skip_prologue (ip)
c5aa993b 335CORE_ADDR (ip);
c906108c
SS
336{
337 struct frame_saved_regs saved_regs_dummy;
338 struct symtab_and_line sal;
339 CORE_ADDR limit;
340
341 sal = find_pc_line (ip, 0);
342 limit = (sal.end) ? sal.end : 0xffffffff;
343
344 return (examine_prologue (ip, limit, (CORE_ADDR) 0, &saved_regs_dummy));
345}
346
347/* Put here the code to store, into a struct frame_saved_regs,
348 the addresses of the saved registers of frame described by FRAME_INFO.
349 This includes special registers such as pc and fp saved in special
350 ways in the stack frame. sp is even more special:
351 the address we return for it IS the sp for the next frame.
352
353 We cache the result of doing this in the frame_obstack, since it is
354 fairly expensive. */
355
356void
fba45db2 357frame_find_saved_regs (struct frame_info *fi, struct frame_saved_regs *fsr)
c906108c
SS
358{
359 register CORE_ADDR next_addr;
360 register CORE_ADDR *saved_regs;
361 register int regnum;
362 register struct frame_saved_regs *cache_fsr;
363 CORE_ADDR ip;
364 struct symtab_and_line sal;
365 CORE_ADDR limit;
366
367 if (!fi->fsr)
368 {
369 cache_fsr = (struct frame_saved_regs *)
370 frame_obstack_alloc (sizeof (struct frame_saved_regs));
371 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
372 fi->fsr = cache_fsr;
373
374 /* Find the start and end of the function prologue. If the PC
c5aa993b
JM
375 is in the function prologue, we only consider the part that
376 has executed already. */
377
c906108c
SS
378 ip = get_pc_function_start (fi->pc);
379 sal = find_pc_line (ip, 0);
c5aa993b 380 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
c906108c
SS
381
382 examine_prologue (ip, limit, fi->frame, cache_fsr);
383
384 /* Record the addresses at which the local registers are saved.
c5aa993b
JM
385 Strictly speaking, we should only do this for non-leaf procedures,
386 but no one will ever look at these values if it is a leaf procedure,
387 since local registers are always caller-saved. */
c906108c
SS
388
389 next_addr = (CORE_ADDR) fi->frame;
390 saved_regs = cache_fsr->regs;
391 for (regnum = R0_REGNUM; regnum <= R15_REGNUM; regnum++)
392 {
393 *saved_regs++ = next_addr;
394 next_addr += 4;
395 }
396
397 cache_fsr->regs[FP_REGNUM] = cache_fsr->regs[PFP_REGNUM];
398 }
399
400 *fsr = *fi->fsr;
401
402 /* Fetch the value of the sp from memory every time, since it
403 is conceivable that it has changed since the cache was flushed.
404 This unfortunately undoes much of the savings from caching the
405 saved register values. I suggest adding an argument to
406 get_frame_saved_regs () specifying the register number we're
407 interested in (or -1 for all registers). This would be passed
408 through to FRAME_FIND_SAVED_REGS (), permitting more efficient
409 computation of saved register addresses (e.g., on the i960,
410 we don't have to examine the prologue to find local registers).
c5aa993b 411 -- markf@wrs.com
c906108c
SS
412 FIXME, we don't need to refetch this, since the cache is cleared
413 every time the child process is restarted. If GDB itself
414 modifies SP, it has to clear the cache by hand (does it?). -gnu */
415
416 fsr->regs[SP_REGNUM] = read_memory_integer (fsr->regs[SP_REGNUM], 4);
417}
418
419/* Return the address of the argument block for the frame
420 described by FI. Returns 0 if the address is unknown. */
421
422CORE_ADDR
fba45db2 423frame_args_address (struct frame_info *fi, int must_be_correct)
c906108c
SS
424{
425 struct frame_saved_regs fsr;
426 CORE_ADDR ap;
427
428 /* If g14 was saved in the frame by the function prologue code, return
429 the saved value. If the frame is current and we are being sloppy,
430 return the value of g14. Otherwise, return zero. */
431
432 get_frame_saved_regs (fi, &fsr);
433 if (fsr.regs[G14_REGNUM])
c5aa993b 434 ap = read_memory_integer (fsr.regs[G14_REGNUM], 4);
c906108c
SS
435 else
436 {
437 if (must_be_correct)
c5aa993b 438 return 0; /* Don't cache this result */
c906108c
SS
439 if (get_next_frame (fi))
440 ap = 0;
441 else
442 ap = read_register (G14_REGNUM);
443 if (ap == 0)
444 ap = fi->frame;
445 }
446 fi->arg_pointer = ap; /* Cache it for next time */
447 return ap;
448}
449
450/* Return the address of the return struct for the frame
451 described by FI. Returns 0 if the address is unknown. */
452
453CORE_ADDR
fba45db2 454frame_struct_result_address (struct frame_info *fi)
c906108c
SS
455{
456 struct frame_saved_regs fsr;
457 CORE_ADDR ap;
458
459 /* If the frame is non-current, check to see if g14 was saved in the
460 frame by the function prologue code; return the saved value if so,
461 zero otherwise. If the frame is current, return the value of g14.
462
463 FIXME, shouldn't this use the saved value as long as we are past
464 the function prologue, and only use the current value if we have
465 no saved value and are at TOS? -- gnu@cygnus.com */
466
467 if (get_next_frame (fi))
468 {
469 get_frame_saved_regs (fi, &fsr);
470 if (fsr.regs[G13_REGNUM])
c5aa993b 471 ap = read_memory_integer (fsr.regs[G13_REGNUM], 4);
c906108c
SS
472 else
473 ap = 0;
474 }
475 else
476 ap = read_register (G13_REGNUM);
477
478 return ap;
479}
480
481/* Return address to which the currently executing leafproc will return,
482 or 0 if ip is not in a leafproc (or if we can't tell if it is).
c5aa993b 483
c906108c
SS
484 Do this by finding the starting address of the routine in which ip lies.
485 If the instruction there is "mov g14, gx" (where x is in [0,7]), this
486 is a leafproc and the return address is in register gx. Well, this is
487 true unless the return address points at a RET instruction in the current
488 procedure, which indicates that we have a 'dual entry' routine that
489 has been entered through the CALL entry point. */
490
491CORE_ADDR
492leafproc_return (ip)
c5aa993b 493 CORE_ADDR ip; /* ip from currently executing function */
c906108c
SS
494{
495 register struct minimal_symbol *msymbol;
496 char *p;
497 int dst;
498 unsigned int insn1, insn2;
499 CORE_ADDR return_addr;
500
501 if ((msymbol = lookup_minimal_symbol_by_pc (ip)) != NULL)
502 {
c5aa993b 503 if ((p = strchr (SYMBOL_NAME (msymbol), '.')) && STREQ (p, ".lf"))
c906108c
SS
504 {
505 if (next_insn (SYMBOL_VALUE_ADDRESS (msymbol), &insn1, &insn2)
c5aa993b 506 && (insn1 & 0xff87ffff) == 0x5c80161e /* mov g14, gx */
c906108c
SS
507 && (dst = REG_SRCDST (insn1)) <= G0_REGNUM + 7)
508 {
509 /* Get the return address. If the "mov g14, gx"
c5aa993b
JM
510 instruction hasn't been executed yet, read
511 the return address from g14; otherwise, read it
512 from the register into which g14 was moved. */
c906108c
SS
513
514 return_addr =
c5aa993b
JM
515 read_register ((ip == SYMBOL_VALUE_ADDRESS (msymbol))
516 ? G14_REGNUM : dst);
c906108c
SS
517
518 /* We know we are in a leaf procedure, but we don't know
c5aa993b
JM
519 whether the caller actually did a "bal" to the ".lf"
520 entry point, or a normal "call" to the non-leaf entry
521 point one instruction before. In the latter case, the
522 return address will be the address of a "ret"
523 instruction within the procedure itself. We test for
524 this below. */
c906108c
SS
525
526 if (!next_insn (return_addr, &insn1, &insn2)
c5aa993b
JM
527 || (insn1 & 0xff000000) != 0xa000000 /* ret */
528 || lookup_minimal_symbol_by_pc (return_addr) != msymbol)
c906108c
SS
529 return (return_addr);
530 }
531 }
532 }
c5aa993b 533
c906108c
SS
534 return (0);
535}
536
537/* Immediately after a function call, return the saved pc.
538 Can't go through the frames for this because on some machines
539 the new frame is not set up until the new function executes
540 some instructions.
541 On the i960, the frame *is* set up immediately after the call,
542 unless the function is a leaf procedure. */
543
544CORE_ADDR
fba45db2 545saved_pc_after_call (struct frame_info *frame)
c906108c
SS
546{
547 CORE_ADDR saved_pc;
548
549 saved_pc = leafproc_return (get_frame_pc (frame));
550 if (!saved_pc)
551 saved_pc = FRAME_SAVED_PC (frame);
552
553 return saved_pc;
554}
555
556/* Discard from the stack the innermost frame,
557 restoring all saved registers. */
558
559void
d4f3574e 560i960_pop_frame (void)
c906108c
SS
561{
562 register struct frame_info *current_fi, *prev_fi;
563 register int i;
564 CORE_ADDR save_addr;
565 CORE_ADDR leaf_return_addr;
566 struct frame_saved_regs fsr;
567 char local_regs_buf[16 * 4];
568
569 current_fi = get_current_frame ();
570
571 /* First, undo what the hardware does when we return.
572 If this is a non-leaf procedure, restore local registers from
573 the save area in the calling frame. Otherwise, load the return
574 address obtained from leafproc_return () into the rip. */
575
576 leaf_return_addr = leafproc_return (current_fi->pc);
577 if (!leaf_return_addr)
578 {
579 /* Non-leaf procedure. Restore local registers, incl IP. */
580 prev_fi = get_prev_frame (current_fi);
581 read_memory (prev_fi->frame, local_regs_buf, sizeof (local_regs_buf));
c5aa993b
JM
582 write_register_bytes (REGISTER_BYTE (R0_REGNUM), local_regs_buf,
583 sizeof (local_regs_buf));
c906108c
SS
584
585 /* Restore frame pointer. */
586 write_register (FP_REGNUM, prev_fi->frame);
587 }
588 else
589 {
590 /* Leaf procedure. Just restore the return address into the IP. */
591 write_register (RIP_REGNUM, leaf_return_addr);
592 }
593
594 /* Now restore any global regs that the current function had saved. */
595 get_frame_saved_regs (current_fi, &fsr);
596 for (i = G0_REGNUM; i < G14_REGNUM; i++)
597 {
7a292a7a
SS
598 save_addr = fsr.regs[i];
599 if (save_addr != 0)
c906108c
SS
600 write_register (i, read_memory_integer (save_addr, 4));
601 }
602
603 /* Flush the frame cache, create a frame for the new innermost frame,
604 and make it the current frame. */
605
606 flush_cached_frames ();
607}
608
609/* Given a 960 stop code (fault or trace), return the signal which
610 corresponds. */
611
612enum target_signal
fba45db2 613i960_fault_to_signal (int fault)
c906108c
SS
614{
615 switch (fault)
616 {
c5aa993b
JM
617 case 0:
618 return TARGET_SIGNAL_BUS; /* parallel fault */
619 case 1:
620 return TARGET_SIGNAL_UNKNOWN;
621 case 2:
622 return TARGET_SIGNAL_ILL; /* operation fault */
623 case 3:
624 return TARGET_SIGNAL_FPE; /* arithmetic fault */
625 case 4:
626 return TARGET_SIGNAL_FPE; /* floating point fault */
c906108c
SS
627
628 /* constraint fault. This appears not to distinguish between
c5aa993b
JM
629 a range constraint fault (which should be SIGFPE) and a privileged
630 fault (which should be SIGILL). */
631 case 5:
632 return TARGET_SIGNAL_ILL;
c906108c 633
c5aa993b
JM
634 case 6:
635 return TARGET_SIGNAL_SEGV; /* virtual memory fault */
c906108c
SS
636
637 /* protection fault. This is for an out-of-range argument to
c5aa993b
JM
638 "calls". I guess it also could be SIGILL. */
639 case 7:
640 return TARGET_SIGNAL_SEGV;
641
642 case 8:
643 return TARGET_SIGNAL_BUS; /* machine fault */
644 case 9:
645 return TARGET_SIGNAL_BUS; /* structural fault */
646 case 0xa:
647 return TARGET_SIGNAL_ILL; /* type fault */
648 case 0xb:
649 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
650 case 0xc:
651 return TARGET_SIGNAL_BUS; /* process fault */
652 case 0xd:
653 return TARGET_SIGNAL_SEGV; /* descriptor fault */
654 case 0xe:
655 return TARGET_SIGNAL_BUS; /* event fault */
656 case 0xf:
657 return TARGET_SIGNAL_UNKNOWN; /* reserved fault */
658 case 0x10:
659 return TARGET_SIGNAL_TRAP; /* single-step trace */
660 case 0x11:
661 return TARGET_SIGNAL_TRAP; /* branch trace */
662 case 0x12:
663 return TARGET_SIGNAL_TRAP; /* call trace */
664 case 0x13:
665 return TARGET_SIGNAL_TRAP; /* return trace */
666 case 0x14:
667 return TARGET_SIGNAL_TRAP; /* pre-return trace */
668 case 0x15:
669 return TARGET_SIGNAL_TRAP; /* supervisor call trace */
670 case 0x16:
671 return TARGET_SIGNAL_TRAP; /* breakpoint trace */
672 default:
673 return TARGET_SIGNAL_UNKNOWN;
c906108c
SS
674 }
675}
676
677/****************************************/
c5aa993b 678/* MEM format */
c906108c
SS
679/****************************************/
680
c5aa993b
JM
681struct tabent
682{
683 char *name;
684 char numops;
c906108c
SS
685};
686
c5aa993b
JM
687static int /* returns instruction length: 4 or 8 */
688mem (memaddr, word1, word2, noprint)
689 unsigned long memaddr;
690 unsigned long word1, word2;
691 int noprint; /* If TRUE, return instruction length, but
c906108c
SS
692 don't output any text. */
693{
c5aa993b
JM
694 int i, j;
695 int len;
696 int mode;
697 int offset;
698 const char *reg1, *reg2, *reg3;
699
700 /* This lookup table is too sparse to make it worth typing in, but not
701 * so large as to make a sparse array necessary. We allocate the
702 * table at runtime, initialize all entries to empty, and copy the
703 * real ones in from an initialization table.
704 *
705 * NOTE: In this table, the meaning of 'numops' is:
706 * 1: single operand
707 * 2: 2 operands, load instruction
708 * -2: 2 operands, store instruction
709 */
710 static struct tabent *mem_tab = NULL;
c906108c
SS
711/* Opcodes of 0x8X, 9X, aX, bX, and cX must be in the table. */
712#define MEM_MIN 0x80
713#define MEM_MAX 0xcf
714#define MEM_SIZ ((MEM_MAX-MEM_MIN+1) * sizeof(struct tabent))
715
c5aa993b
JM
716 static struct
717 {
718 int opcode;
719 char *name;
720 char numops;
721 }
722 mem_init[] =
723 {
724 0x80, "ldob", 2,
725 0x82, "stob", -2,
726 0x84, "bx", 1,
727 0x85, "balx", 2,
728 0x86, "callx", 1,
729 0x88, "ldos", 2,
730 0x8a, "stos", -2,
731 0x8c, "lda", 2,
732 0x90, "ld", 2,
733 0x92, "st", -2,
734 0x98, "ldl", 2,
735 0x9a, "stl", -2,
736 0xa0, "ldt", 2,
737 0xa2, "stt", -2,
738 0xb0, "ldq", 2,
739 0xb2, "stq", -2,
740 0xc0, "ldib", 2,
741 0xc2, "stib", -2,
742 0xc8, "ldis", 2,
743 0xca, "stis", -2,
744 0, NULL, 0
745 };
746
747 if (mem_tab == NULL)
748 {
749 mem_tab = (struct tabent *) xmalloc (MEM_SIZ);
750 memset (mem_tab, '\0', MEM_SIZ);
751 for (i = 0; mem_init[i].opcode != 0; i++)
752 {
753 j = mem_init[i].opcode - MEM_MIN;
754 mem_tab[j].name = mem_init[i].name;
755 mem_tab[j].numops = mem_init[i].numops;
c906108c 756 }
c5aa993b 757 }
c906108c 758
c5aa993b
JM
759 i = ((word1 >> 24) & 0xff) - MEM_MIN;
760 mode = (word1 >> 10) & 0xf;
c906108c 761
c5aa993b
JM
762 if ((mem_tab[i].name != NULL) /* Valid instruction */
763 && ((mode == 5) || (mode >= 12)))
764 { /* With 32-bit displacement */
765 len = 8;
766 }
767 else
768 {
769 len = 4;
770 }
c906108c 771
c5aa993b
JM
772 if (noprint)
773 {
774 return len;
775 }
776 abort ();
c906108c
SS
777}
778
779/* Read the i960 instruction at 'memaddr' and return the address of
780 the next instruction after that, or 0 if 'memaddr' is not the
781 address of a valid instruction. The first word of the instruction
782 is stored at 'pword1', and the second word, if any, is stored at
783 'pword2'. */
784
785static CORE_ADDR
fba45db2 786next_insn (CORE_ADDR memaddr, unsigned int *pword1, unsigned int *pword2)
c906108c
SS
787{
788 int len;
789 char buf[8];
790
791 /* Read the two (potential) words of the instruction at once,
792 to eliminate the overhead of two calls to read_memory ().
793 FIXME: Loses if the first one is readable but the second is not
794 (e.g. last word of the segment). */
795
796 read_memory (memaddr, buf, 8);
797 *pword1 = extract_unsigned_integer (buf, 4);
798 *pword2 = extract_unsigned_integer (buf + 4, 4);
799
c5aa993b 800 /* Divide instruction set into classes based on high 4 bits of opcode */
c906108c
SS
801
802 switch ((*pword1 >> 28) & 0xf)
803 {
804 case 0x0:
c5aa993b 805 case 0x1: /* ctrl */
c906108c
SS
806
807 case 0x2:
c5aa993b 808 case 0x3: /* cobr */
c906108c
SS
809
810 case 0x5:
811 case 0x6:
c5aa993b 812 case 0x7: /* reg */
c906108c
SS
813 len = 4;
814 break;
815
816 case 0x8:
817 case 0x9:
818 case 0xa:
819 case 0xb:
820 case 0xc:
821 len = mem (memaddr, *pword1, *pword2, 1);
822 break;
823
c5aa993b 824 default: /* invalid instruction */
c906108c
SS
825 len = 0;
826 break;
827 }
828
829 if (len)
830 return memaddr + len;
831 else
832 return 0;
833}
834
835/* 'start_frame' is a variable in the MON960 runtime startup routine
836 that contains the frame pointer of the 'start' routine (the routine
837 that calls 'main'). By reading its contents out of remote memory,
838 we can tell where the frame chain ends: backtraces should halt before
839 they display this frame. */
840
841int
fba45db2 842mon960_frame_chain_valid (CORE_ADDR chain, struct frame_info *curframe)
c906108c 843{
c5aa993b
JM
844 struct symbol *sym;
845 struct minimal_symbol *msymbol;
846
847 /* crtmon960.o is an assembler module that is assumed to be linked
848 * first in an i80960 executable. It contains the true entry point;
849 * it performs startup up initialization and then calls 'main'.
850 *
851 * 'sf' is the name of a variable in crtmon960.o that is set
852 * during startup to the address of the first frame.
853 *
854 * 'a' is the address of that variable in 80960 memory.
855 */
856 static char sf[] = "start_frame";
857 CORE_ADDR a;
858
859
860 chain &= ~0x3f; /* Zero low 6 bits because previous frame pointers
861 contain return status info in them. */
862 if (chain == 0)
863 {
864 return 0;
865 }
c906108c 866
c5aa993b
JM
867 sym = lookup_symbol (sf, 0, VAR_NAMESPACE, (int *) NULL,
868 (struct symtab **) NULL);
869 if (sym != 0)
870 {
871 a = SYMBOL_VALUE (sym);
872 }
873 else
874 {
875 msymbol = lookup_minimal_symbol (sf, NULL, NULL);
876 if (msymbol == NULL)
877 return 0;
878 a = SYMBOL_VALUE_ADDRESS (msymbol);
879 }
c906108c 880
c5aa993b 881 return (chain != read_memory_integer (a, 4));
c906108c
SS
882}
883
2acceee2 884
c906108c 885void
fba45db2 886_initialize_i960_tdep (void)
c906108c
SS
887{
888 check_host ();
889
890 tm_print_insn = print_insn_i960;
891}
This page took 0.110478 seconds and 4 git commands to generate.