2012-07-05 Hui Zhu <hui_zhu@mentor.com>
[deliverable/binutils-gdb.git] / gdb / ia64-linux-nat.c
CommitLineData
ca557f44
AC
1/* Functions specific to running gdb native on IA-64 running
2 GNU/Linux.
3
0b302171 4 Copyright (C) 1999-2012 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d
KB
20
21#include "defs.h"
e162d11b 22#include "gdb_string.h"
16461d7d
KB
23#include "inferior.h"
24#include "target.h"
25#include "gdbcore.h"
4e052eda 26#include "regcache.h"
949df321 27#include "ia64-tdep.h"
10d6c8cd 28#include "linux-nat.h"
16461d7d
KB
29
30#include <signal.h>
31#include <sys/ptrace.h>
2555fe1a 32#include "gdb_wait.h"
16461d7d
KB
33#ifdef HAVE_SYS_REG_H
34#include <sys/reg.h>
35#endif
287a334e 36#include <sys/syscall.h>
16461d7d
KB
37#include <sys/user.h>
38
39#include <asm/ptrace_offsets.h>
40#include <sys/procfs.h>
41
1777feb0 42/* Prototypes for supply_gregset etc. */
c60c0f5f
MS
43#include "gregset.h"
44
16461d7d
KB
45/* These must match the order of the register names.
46
47 Some sort of lookup table is needed because the offsets associated
48 with the registers are all over the board. */
49
50static int u_offsets[] =
51 {
52 /* general registers */
1777feb0 53 -1, /* gr0 not available; i.e, it's always zero. */
16461d7d
KB
54 PT_R1,
55 PT_R2,
56 PT_R3,
57 PT_R4,
58 PT_R5,
59 PT_R6,
60 PT_R7,
61 PT_R8,
62 PT_R9,
63 PT_R10,
64 PT_R11,
65 PT_R12,
66 PT_R13,
67 PT_R14,
68 PT_R15,
69 PT_R16,
70 PT_R17,
71 PT_R18,
72 PT_R19,
73 PT_R20,
74 PT_R21,
75 PT_R22,
76 PT_R23,
77 PT_R24,
78 PT_R25,
79 PT_R26,
80 PT_R27,
81 PT_R28,
82 PT_R29,
83 PT_R30,
84 PT_R31,
1777feb0 85 /* gr32 through gr127 not directly available via the ptrace interface. */
16461d7d
KB
86 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
87 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
88 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
89 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
90 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
91 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
92 /* Floating point registers */
1777feb0 93 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
16461d7d
KB
94 PT_F2,
95 PT_F3,
96 PT_F4,
97 PT_F5,
98 PT_F6,
99 PT_F7,
100 PT_F8,
101 PT_F9,
102 PT_F10,
103 PT_F11,
104 PT_F12,
105 PT_F13,
106 PT_F14,
107 PT_F15,
108 PT_F16,
109 PT_F17,
110 PT_F18,
111 PT_F19,
112 PT_F20,
113 PT_F21,
114 PT_F22,
115 PT_F23,
116 PT_F24,
117 PT_F25,
118 PT_F26,
119 PT_F27,
120 PT_F28,
121 PT_F29,
122 PT_F30,
123 PT_F31,
124 PT_F32,
125 PT_F33,
126 PT_F34,
127 PT_F35,
128 PT_F36,
129 PT_F37,
130 PT_F38,
131 PT_F39,
132 PT_F40,
133 PT_F41,
134 PT_F42,
135 PT_F43,
136 PT_F44,
137 PT_F45,
138 PT_F46,
139 PT_F47,
140 PT_F48,
141 PT_F49,
142 PT_F50,
143 PT_F51,
144 PT_F52,
145 PT_F53,
146 PT_F54,
147 PT_F55,
148 PT_F56,
149 PT_F57,
150 PT_F58,
151 PT_F59,
152 PT_F60,
153 PT_F61,
154 PT_F62,
155 PT_F63,
156 PT_F64,
157 PT_F65,
158 PT_F66,
159 PT_F67,
160 PT_F68,
161 PT_F69,
162 PT_F70,
163 PT_F71,
164 PT_F72,
165 PT_F73,
166 PT_F74,
167 PT_F75,
168 PT_F76,
169 PT_F77,
170 PT_F78,
171 PT_F79,
172 PT_F80,
173 PT_F81,
174 PT_F82,
175 PT_F83,
176 PT_F84,
177 PT_F85,
178 PT_F86,
179 PT_F87,
180 PT_F88,
181 PT_F89,
182 PT_F90,
183 PT_F91,
184 PT_F92,
185 PT_F93,
186 PT_F94,
187 PT_F95,
188 PT_F96,
189 PT_F97,
190 PT_F98,
191 PT_F99,
192 PT_F100,
193 PT_F101,
194 PT_F102,
195 PT_F103,
196 PT_F104,
197 PT_F105,
198 PT_F106,
199 PT_F107,
200 PT_F108,
201 PT_F109,
202 PT_F110,
203 PT_F111,
204 PT_F112,
205 PT_F113,
206 PT_F114,
207 PT_F115,
208 PT_F116,
209 PT_F117,
210 PT_F118,
211 PT_F119,
212 PT_F120,
213 PT_F121,
214 PT_F122,
215 PT_F123,
216 PT_F124,
217 PT_F125,
218 PT_F126,
219 PT_F127,
1777feb0 220 /* Predicate registers - we don't fetch these individually. */
16461d7d
KB
221 -1, -1, -1, -1, -1, -1, -1, -1,
222 -1, -1, -1, -1, -1, -1, -1, -1,
223 -1, -1, -1, -1, -1, -1, -1, -1,
224 -1, -1, -1, -1, -1, -1, -1, -1,
225 -1, -1, -1, -1, -1, -1, -1, -1,
226 -1, -1, -1, -1, -1, -1, -1, -1,
227 -1, -1, -1, -1, -1, -1, -1, -1,
228 -1, -1, -1, -1, -1, -1, -1, -1,
229 /* branch registers */
230 PT_B0,
231 PT_B1,
232 PT_B2,
233 PT_B3,
234 PT_B4,
235 PT_B5,
236 PT_B6,
237 PT_B7,
1777feb0 238 /* Virtual frame pointer and virtual return address pointer. */
16461d7d
KB
239 -1, -1,
240 /* other registers */
241 PT_PR,
242 PT_CR_IIP, /* ip */
243 PT_CR_IPSR, /* psr */
9ac12c35 244 PT_CFM, /* cfm */
1777feb0 245 /* kernel registers not visible via ptrace interface (?) */
16461d7d
KB
246 -1, -1, -1, -1, -1, -1, -1, -1,
247 /* hole */
248 -1, -1, -1, -1, -1, -1, -1, -1,
249 PT_AR_RSC,
250 PT_AR_BSP,
251 PT_AR_BSPSTORE,
252 PT_AR_RNAT,
253 -1,
1777feb0 254 -1, /* Not available: FCR, IA32 floating control register. */
16461d7d
KB
255 -1, -1,
256 -1, /* Not available: EFLAG */
257 -1, /* Not available: CSD */
258 -1, /* Not available: SSD */
259 -1, /* Not available: CFLG */
260 -1, /* Not available: FSR */
261 -1, /* Not available: FIR */
262 -1, /* Not available: FDR */
263 -1,
264 PT_AR_CCV,
265 -1, -1, -1,
266 PT_AR_UNAT,
267 -1, -1, -1,
268 PT_AR_FPSR,
269 -1, -1, -1,
270 -1, /* Not available: ITC */
271 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1, -1,
273 PT_AR_PFS,
274 PT_AR_LC,
4a6510ba 275 PT_AR_EC,
16461d7d
KB
276 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
277 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
278 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
279 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
280 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
281 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
282 -1,
283 /* nat bits - not fetched directly; instead we obtain these bits from
1777feb0 284 either rnat or unat or from memory. */
16461d7d
KB
285 -1, -1, -1, -1, -1, -1, -1, -1,
286 -1, -1, -1, -1, -1, -1, -1, -1,
287 -1, -1, -1, -1, -1, -1, -1, -1,
288 -1, -1, -1, -1, -1, -1, -1, -1,
289 -1, -1, -1, -1, -1, -1, -1, -1,
290 -1, -1, -1, -1, -1, -1, -1, -1,
291 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
293 -1, -1, -1, -1, -1, -1, -1, -1,
294 -1, -1, -1, -1, -1, -1, -1, -1,
295 -1, -1, -1, -1, -1, -1, -1, -1,
296 -1, -1, -1, -1, -1, -1, -1, -1,
297 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, -1, -1, -1, -1, -1, -1, -1,
299 -1, -1, -1, -1, -1, -1, -1, -1,
300 -1, -1, -1, -1, -1, -1, -1, -1,
301 };
302
74174d2e 303static CORE_ADDR
2685572f 304ia64_register_addr (struct gdbarch *gdbarch, int regno)
16461d7d
KB
305{
306 CORE_ADDR addr;
307
2685572f 308 if (regno < 0 || regno >= gdbarch_num_regs (gdbarch))
8a3fe4f8 309 error (_("Invalid register number %d."), regno);
16461d7d
KB
310
311 if (u_offsets[regno] == -1)
312 addr = 0;
313 else
314 addr = (CORE_ADDR) u_offsets[regno];
315
316 return addr;
317}
318
74174d2e 319static int
2685572f 320ia64_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
16461d7d 321{
f57d151a 322 return regno < 0
2685572f 323 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 324 || u_offsets[regno] == -1;
16461d7d
KB
325}
326
74174d2e 327static int
2685572f 328ia64_cannot_store_register (struct gdbarch *gdbarch, int regno)
16461d7d
KB
329{
330 /* Rationale behind not permitting stores to bspstore...
331
332 The IA-64 architecture provides bspstore and bsp which refer
333 memory locations in the RSE's backing store. bspstore is the
334 next location which will be written when the RSE needs to write
335 to memory. bsp is the address at which r32 in the current frame
336 would be found if it were written to the backing store.
337
338 The IA-64 architecture provides read-only access to bsp and
339 read/write access to bspstore (but only when the RSE is in
340 the enforced lazy mode). It should be noted that stores
341 to bspstore also affect the value of bsp. Changing bspstore
342 does not affect the number of dirty entries between bspstore
343 and bsp, so changing bspstore by N words will also cause bsp
344 to be changed by (roughly) N as well. (It could be N-1 or N+1
345 depending upon where the NaT collection bits fall.)
346
92362027 347 OTOH, the Linux kernel provides read/write access to bsp (and
16461d7d
KB
348 currently read/write access to bspstore as well). But it
349 is definitely the case that if you change one, the other
350 will change at the same time. It is more useful to gdb to
351 be able to change bsp. So in order to prevent strange and
352 undesirable things from happening when a dummy stack frame
353 is popped (after calling an inferior function), we allow
354 bspstore to be read, but not written. (Note that popping
355 a (generic) dummy stack frame causes all registers that
356 were previously read from the inferior process to be written
357 back.) */
358
f57d151a 359 return regno < 0
2685572f 360 || regno >= gdbarch_num_regs (gdbarch)
f57d151a 361 || u_offsets[regno] == -1
16461d7d
KB
362 || regno == IA64_BSPSTORE_REGNUM;
363}
364
365void
7f7fe91e 366supply_gregset (struct regcache *regcache, const gregset_t *gregsetp)
16461d7d
KB
367{
368 int regi;
7f7fe91e 369 const greg_t *regp = (const greg_t *) gregsetp;
16461d7d
KB
370
371 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
372 {
7f7fe91e 373 regcache_raw_supply (regcache, regi, regp + (regi - IA64_GR0_REGNUM));
16461d7d
KB
374 }
375
376 /* FIXME: NAT collection bits are at index 32; gotta deal with these
1777feb0 377 somehow... */
16461d7d 378
7f7fe91e 379 regcache_raw_supply (regcache, IA64_PR_REGNUM, regp + 33);
16461d7d
KB
380
381 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
382 {
7f7fe91e
UW
383 regcache_raw_supply (regcache, regi,
384 regp + 34 + (regi - IA64_BR0_REGNUM));
16461d7d
KB
385 }
386
7f7fe91e
UW
387 regcache_raw_supply (regcache, IA64_IP_REGNUM, regp + 42);
388 regcache_raw_supply (regcache, IA64_CFM_REGNUM, regp + 43);
389 regcache_raw_supply (regcache, IA64_PSR_REGNUM, regp + 44);
390 regcache_raw_supply (regcache, IA64_RSC_REGNUM, regp + 45);
391 regcache_raw_supply (regcache, IA64_BSP_REGNUM, regp + 46);
392 regcache_raw_supply (regcache, IA64_BSPSTORE_REGNUM, regp + 47);
393 regcache_raw_supply (regcache, IA64_RNAT_REGNUM, regp + 48);
394 regcache_raw_supply (regcache, IA64_CCV_REGNUM, regp + 49);
395 regcache_raw_supply (regcache, IA64_UNAT_REGNUM, regp + 50);
396 regcache_raw_supply (regcache, IA64_FPSR_REGNUM, regp + 51);
397 regcache_raw_supply (regcache, IA64_PFS_REGNUM, regp + 52);
398 regcache_raw_supply (regcache, IA64_LC_REGNUM, regp + 53);
399 regcache_raw_supply (regcache, IA64_EC_REGNUM, regp + 54);
16461d7d
KB
400}
401
402void
7f7fe91e 403fill_gregset (const struct regcache *regcache, gregset_t *gregsetp, int regno)
16461d7d 404{
76d689a6
KB
405 int regi;
406 greg_t *regp = (greg_t *) gregsetp;
407
408#define COPY_REG(_idx_,_regi_) \
409 if ((regno == -1) || regno == _regi_) \
7f7fe91e 410 regcache_raw_collect (regcache, _regi_, regp + _idx_)
76d689a6
KB
411
412 for (regi = IA64_GR0_REGNUM; regi <= IA64_GR31_REGNUM; regi++)
413 {
414 COPY_REG (regi - IA64_GR0_REGNUM, regi);
415 }
416
1777feb0 417 /* FIXME: NAT collection bits at index 32? */
76d689a6
KB
418
419 COPY_REG (33, IA64_PR_REGNUM);
420
421 for (regi = IA64_BR0_REGNUM; regi <= IA64_BR7_REGNUM; regi++)
422 {
423 COPY_REG (34 + (regi - IA64_BR0_REGNUM), regi);
424 }
425
426 COPY_REG (42, IA64_IP_REGNUM);
427 COPY_REG (43, IA64_CFM_REGNUM);
428 COPY_REG (44, IA64_PSR_REGNUM);
429 COPY_REG (45, IA64_RSC_REGNUM);
430 COPY_REG (46, IA64_BSP_REGNUM);
431 COPY_REG (47, IA64_BSPSTORE_REGNUM);
432 COPY_REG (48, IA64_RNAT_REGNUM);
433 COPY_REG (49, IA64_CCV_REGNUM);
434 COPY_REG (50, IA64_UNAT_REGNUM);
435 COPY_REG (51, IA64_FPSR_REGNUM);
436 COPY_REG (52, IA64_PFS_REGNUM);
437 COPY_REG (53, IA64_LC_REGNUM);
438 COPY_REG (54, IA64_EC_REGNUM);
439}
440
441/* Given a pointer to a floating point register set in /proc format
442 (fpregset_t *), unpack the register contents and supply them as gdb's
1777feb0 443 idea of the current floating point register values. */
76d689a6
KB
444
445void
7f7fe91e 446supply_fpregset (struct regcache *regcache, const fpregset_t *fpregsetp)
76d689a6 447{
52f0bd74 448 int regi;
7f7fe91e 449 const char *from;
ca9b8b9c
PA
450 const gdb_byte f_zero[16] = { 0 };
451 const gdb_byte f_one[16] =
452 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
76d689a6 453
ca9b8b9c
PA
454 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
455 did the same. So ignore whatever might be recorded in fpregset_t
456 for fr0/fr1 and always supply their expected values. */
457
458 /* fr0 is always read as zero. */
459 regcache_raw_supply (regcache, IA64_FR0_REGNUM, f_zero);
460 /* fr1 is always read as one (1.0). */
461 regcache_raw_supply (regcache, IA64_FR1_REGNUM, f_one);
462
463 for (regi = IA64_FR2_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
76d689a6 464 {
7f7fe91e
UW
465 from = (const char *) &((*fpregsetp)[regi - IA64_FR0_REGNUM]);
466 regcache_raw_supply (regcache, regi, from);
76d689a6
KB
467 }
468}
469
470/* Given a pointer to a floating point register set in /proc format
471 (fpregset_t *), update the register specified by REGNO from gdb's idea
472 of the current floating point register set. If REGNO is -1, update
1777feb0 473 them all. */
76d689a6
KB
474
475void
7f7fe91e
UW
476fill_fpregset (const struct regcache *regcache,
477 fpregset_t *fpregsetp, int regno)
76d689a6
KB
478{
479 int regi;
76d689a6
KB
480
481 for (regi = IA64_FR0_REGNUM; regi <= IA64_FR127_REGNUM; regi++)
482 {
483 if ((regno == -1) || (regno == regi))
7f7fe91e 484 regcache_raw_collect (regcache, regi,
e0e25c6c 485 &((*fpregsetp)[regi - IA64_FR0_REGNUM]));
76d689a6 486 }
16461d7d 487}
acf7b9e1
KB
488
489#define IA64_PSR_DB (1UL << 24)
490#define IA64_PSR_DD (1UL << 39)
491
492static void
9f0bdab8 493enable_watchpoints_in_psr (ptid_t ptid)
acf7b9e1 494{
9f0bdab8 495 struct regcache *regcache = get_thread_regcache (ptid);
7b86a1b8 496 ULONGEST psr;
acf7b9e1 497
7b86a1b8 498 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1
KB
499 if (!(psr & IA64_PSR_DB))
500 {
501 psr |= IA64_PSR_DB; /* Set the db bit - this enables hardware
1777feb0 502 watchpoints and breakpoints. */
7b86a1b8 503 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1
KB
504 }
505}
506
9f0bdab8 507static long debug_registers[8];
acf7b9e1
KB
508
509static void
39f77062 510store_debug_register (ptid_t ptid, int idx, long val)
acf7b9e1
KB
511{
512 int tid;
513
39f77062 514 tid = TIDGET (ptid);
acf7b9e1 515 if (tid == 0)
39f77062 516 tid = PIDGET (ptid);
acf7b9e1 517
c5fa4245 518 (void) ptrace (PT_WRITE_U, tid, (PTRACE_TYPE_ARG3) (PT_DBR + 8 * idx), val);
acf7b9e1
KB
519}
520
acf7b9e1 521static void
1777feb0
MS
522store_debug_register_pair (ptid_t ptid, int idx, long *dbr_addr,
523 long *dbr_mask)
acf7b9e1
KB
524{
525 if (dbr_addr)
39f77062 526 store_debug_register (ptid, 2 * idx, *dbr_addr);
acf7b9e1 527 if (dbr_mask)
39f77062 528 store_debug_register (ptid, 2 * idx + 1, *dbr_mask);
acf7b9e1
KB
529}
530
531static int
532is_power_of_2 (int val)
533{
534 int i, onecount;
535
536 onecount = 0;
537 for (i = 0; i < 8 * sizeof (val); i++)
538 if (val & (1 << i))
539 onecount++;
540
541 return onecount <= 1;
542}
543
74174d2e 544static int
0cf6dd15
TJB
545ia64_linux_insert_watchpoint (CORE_ADDR addr, int len, int rw,
546 struct expression *cond)
acf7b9e1 547{
9f0bdab8 548 struct lwp_info *lp;
acf7b9e1
KB
549 int idx;
550 long dbr_addr, dbr_mask;
551 int max_watchpoints = 4;
552
553 if (len <= 0 || !is_power_of_2 (len))
554 return -1;
555
556 for (idx = 0; idx < max_watchpoints; idx++)
557 {
9f0bdab8 558 dbr_mask = debug_registers[idx * 2 + 1];
acf7b9e1
KB
559 if ((dbr_mask & (0x3UL << 62)) == 0)
560 {
1777feb0 561 /* Exit loop if both r and w bits clear. */
acf7b9e1
KB
562 break;
563 }
564 }
565
566 if (idx == max_watchpoints)
567 return -1;
568
569 dbr_addr = (long) addr;
570 dbr_mask = (~(len - 1) & 0x00ffffffffffffffL); /* construct mask to match */
571 dbr_mask |= 0x0800000000000000L; /* Only match privilege level 3 */
572 switch (rw)
573 {
574 case hw_write:
575 dbr_mask |= (1L << 62); /* Set w bit */
576 break;
577 case hw_read:
578 dbr_mask |= (1L << 63); /* Set r bit */
579 break;
580 case hw_access:
581 dbr_mask |= (3L << 62); /* Set both r and w bits */
582 break;
583 default:
584 return -1;
585 }
586
9f0bdab8
DJ
587 debug_registers[2 * idx] = dbr_addr;
588 debug_registers[2 * idx + 1] = dbr_mask;
4c38200f 589 ALL_LWPS (lp)
9f0bdab8 590 {
4c38200f
PA
591 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
592 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8 593 }
acf7b9e1
KB
594
595 return 0;
596}
597
74174d2e 598static int
0cf6dd15
TJB
599ia64_linux_remove_watchpoint (CORE_ADDR addr, int len, int type,
600 struct expression *cond)
acf7b9e1
KB
601{
602 int idx;
603 long dbr_addr, dbr_mask;
604 int max_watchpoints = 4;
605
606 if (len <= 0 || !is_power_of_2 (len))
607 return -1;
608
609 for (idx = 0; idx < max_watchpoints; idx++)
610 {
9f0bdab8
DJ
611 dbr_addr = debug_registers[2 * idx];
612 dbr_mask = debug_registers[2 * idx + 1];
acf7b9e1
KB
613 if ((dbr_mask & (0x3UL << 62)) && addr == (CORE_ADDR) dbr_addr)
614 {
9f0bdab8 615 struct lwp_info *lp;
9f0bdab8
DJ
616
617 debug_registers[2 * idx] = 0;
618 debug_registers[2 * idx + 1] = 0;
acf7b9e1
KB
619 dbr_addr = 0;
620 dbr_mask = 0;
9f0bdab8 621
4c38200f
PA
622 ALL_LWPS (lp)
623 store_debug_register_pair (lp->ptid, idx, &dbr_addr, &dbr_mask);
9f0bdab8 624
acf7b9e1
KB
625 return 0;
626 }
627 }
628 return -1;
629}
630
9f0bdab8 631static void
7b50312a 632ia64_linux_new_thread (struct lwp_info *lp)
9f0bdab8
DJ
633{
634 int i, any;
635
636 any = 0;
637 for (i = 0; i < 8; i++)
638 {
639 if (debug_registers[i] != 0)
640 any = 1;
7b50312a 641 store_debug_register (lp->ptid, i, debug_registers[i]);
9f0bdab8
DJ
642 }
643
644 if (any)
7b50312a 645 enable_watchpoints_in_psr (lp->ptid);
9f0bdab8
DJ
646}
647
74174d2e
UW
648static int
649ia64_linux_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
acf7b9e1
KB
650{
651 CORE_ADDR psr;
a5362b9a 652 siginfo_t *siginfo_p;
594f7785 653 struct regcache *regcache = get_current_regcache ();
acf7b9e1 654
9f0bdab8 655 siginfo_p = linux_nat_get_siginfo (inferior_ptid);
acf7b9e1 656
9f0bdab8
DJ
657 if (siginfo_p->si_signo != SIGTRAP
658 || (siginfo_p->si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
acf7b9e1
KB
659 return 0;
660
7b86a1b8 661 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr);
acf7b9e1 662 psr |= IA64_PSR_DD; /* Set the dd bit - this will disable the watchpoint
1777feb0 663 for the next instruction. */
7b86a1b8 664 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr);
acf7b9e1 665
9f0bdab8 666 *addr_p = (CORE_ADDR)siginfo_p->si_addr;
4aa7a7f5
JJ
667 return 1;
668}
669
74174d2e 670static int
4aa7a7f5
JJ
671ia64_linux_stopped_by_watchpoint (void)
672{
673 CORE_ADDR addr;
74174d2e
UW
674 return ia64_linux_stopped_data_address (&current_target, &addr);
675}
676
677static int
678ia64_linux_can_use_hw_breakpoint (int type, int cnt, int othertype)
679{
680 return 1;
681}
682
683
684/* Fetch register REGNUM from the inferior. */
685
686static void
56be3814 687ia64_linux_fetch_register (struct regcache *regcache, int regnum)
74174d2e 688{
088568da 689 struct gdbarch *gdbarch = get_regcache_arch (regcache);
74174d2e
UW
690 CORE_ADDR addr;
691 size_t size;
692 PTRACE_TYPE_RET *buf;
693 int pid, i;
694
5a75128f
JB
695 /* r0 cannot be fetched but is always zero. */
696 if (regnum == IA64_GR0_REGNUM)
697 {
698 const gdb_byte zero[8] = { 0 };
699
700 gdb_assert (sizeof (zero) == register_size (gdbarch, regnum));
701 regcache_raw_supply (regcache, regnum, zero);
702 return;
703 }
704
ca9b8b9c
PA
705 /* fr0 cannot be fetched but is always zero. */
706 if (regnum == IA64_FR0_REGNUM)
707 {
708 const gdb_byte f_zero[16] = { 0 };
709
710 gdb_assert (sizeof (f_zero) == register_size (gdbarch, regnum));
711 regcache_raw_supply (regcache, regnum, f_zero);
712 return;
713 }
714
715 /* fr1 cannot be fetched but is always one (1.0). */
716 if (regnum == IA64_FR1_REGNUM)
717 {
718 const gdb_byte f_one[16] =
719 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
720
721 gdb_assert (sizeof (f_one) == register_size (gdbarch, regnum));
722 regcache_raw_supply (regcache, regnum, f_one);
723 return;
724 }
725
2685572f 726 if (ia64_cannot_fetch_register (gdbarch, regnum))
74174d2e 727 {
56be3814 728 regcache_raw_supply (regcache, regnum, NULL);
74174d2e
UW
729 return;
730 }
731
732 /* Cater for systems like GNU/Linux, that implement threads as
733 separate processes. */
734 pid = ptid_get_lwp (inferior_ptid);
735 if (pid == 0)
736 pid = ptid_get_pid (inferior_ptid);
737
738 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 739 addr = ia64_register_addr (gdbarch, regnum);
088568da 740 size = register_size (gdbarch, regnum);
74174d2e
UW
741
742 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
743 buf = alloca (size);
744
745 /* Read the register contents from the inferior a chunk at a time. */
746 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
747 {
748 errno = 0;
749 buf[i] = ptrace (PT_READ_U, pid, (PTRACE_TYPE_ARG3)addr, 0);
750 if (errno != 0)
751 error (_("Couldn't read register %s (#%d): %s."),
088568da 752 gdbarch_register_name (gdbarch, regnum),
c9f4d572 753 regnum, safe_strerror (errno));
74174d2e
UW
754
755 addr += sizeof (PTRACE_TYPE_RET);
756 }
56be3814 757 regcache_raw_supply (regcache, regnum, buf);
74174d2e
UW
758}
759
760/* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
761 for all registers. */
762
763static void
28439f5e
PA
764ia64_linux_fetch_registers (struct target_ops *ops,
765 struct regcache *regcache, int regnum)
74174d2e
UW
766{
767 if (regnum == -1)
088568da
UW
768 for (regnum = 0;
769 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
770 regnum++)
56be3814 771 ia64_linux_fetch_register (regcache, regnum);
74174d2e 772 else
56be3814 773 ia64_linux_fetch_register (regcache, regnum);
74174d2e
UW
774}
775
776/* Store register REGNUM into the inferior. */
777
778static void
56be3814 779ia64_linux_store_register (const struct regcache *regcache, int regnum)
74174d2e 780{
088568da 781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
74174d2e
UW
782 CORE_ADDR addr;
783 size_t size;
784 PTRACE_TYPE_RET *buf;
785 int pid, i;
786
2685572f 787 if (ia64_cannot_store_register (gdbarch, regnum))
74174d2e
UW
788 return;
789
790 /* Cater for systems like GNU/Linux, that implement threads as
791 separate processes. */
792 pid = ptid_get_lwp (inferior_ptid);
793 if (pid == 0)
794 pid = ptid_get_pid (inferior_ptid);
795
796 /* This isn't really an address, but ptrace thinks of it as one. */
2685572f 797 addr = ia64_register_addr (gdbarch, regnum);
088568da 798 size = register_size (gdbarch, regnum);
74174d2e
UW
799
800 gdb_assert ((size % sizeof (PTRACE_TYPE_RET)) == 0);
801 buf = alloca (size);
802
803 /* Write the register contents into the inferior a chunk at a time. */
56be3814 804 regcache_raw_collect (regcache, regnum, buf);
74174d2e
UW
805 for (i = 0; i < size / sizeof (PTRACE_TYPE_RET); i++)
806 {
807 errno = 0;
808 ptrace (PT_WRITE_U, pid, (PTRACE_TYPE_ARG3)addr, buf[i]);
809 if (errno != 0)
810 error (_("Couldn't write register %s (#%d): %s."),
088568da 811 gdbarch_register_name (gdbarch, regnum),
c9f4d572 812 regnum, safe_strerror (errno));
74174d2e
UW
813
814 addr += sizeof (PTRACE_TYPE_RET);
815 }
acf7b9e1 816}
287a334e 817
74174d2e
UW
818/* Store register REGNUM back into the inferior. If REGNUM is -1, do
819 this for all registers. */
820
821static void
28439f5e
PA
822ia64_linux_store_registers (struct target_ops *ops,
823 struct regcache *regcache, int regnum)
74174d2e
UW
824{
825 if (regnum == -1)
088568da
UW
826 for (regnum = 0;
827 regnum < gdbarch_num_regs (get_regcache_arch (regcache));
828 regnum++)
56be3814 829 ia64_linux_store_register (regcache, regnum);
74174d2e 830 else
56be3814 831 ia64_linux_store_register (regcache, regnum);
74174d2e
UW
832}
833
834
10d6c8cd 835static LONGEST (*super_xfer_partial) (struct target_ops *, enum target_object,
1777feb0
MS
836 const char *, gdb_byte *,
837 const gdb_byte *, ULONGEST, LONGEST);
10d6c8cd
DJ
838
839static LONGEST
840ia64_linux_xfer_partial (struct target_ops *ops,
841 enum target_object object,
842 const char *annex,
843 gdb_byte *readbuf, const gdb_byte *writebuf,
844 ULONGEST offset, LONGEST len)
845{
846 if (object == TARGET_OBJECT_UNWIND_TABLE && writebuf == NULL && offset == 0)
847 return syscall (__NR_getunwind, readbuf, len);
848
849 return super_xfer_partial (ops, object, annex, readbuf, writebuf,
850 offset, len);
851}
852
26ab7092
JK
853/* For break.b instruction ia64 CPU forgets the immediate value and generates
854 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
855 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
856 difference for the signals here. */
857
858static int
859ia64_linux_status_is_event (int status)
860{
861 return WIFSTOPPED (status) && (WSTOPSIG (status) == SIGTRAP
862 || WSTOPSIG (status) == SIGILL);
863}
864
10d6c8cd
DJ
865void _initialize_ia64_linux_nat (void);
866
867void
868_initialize_ia64_linux_nat (void)
287a334e 869{
dde7c0a9 870 struct target_ops *t;
10d6c8cd
DJ
871
872 /* Fill in the generic GNU/Linux methods. */
873 t = linux_target ();
874
74174d2e
UW
875 /* Override the default fetch/store register routines. */
876 t->to_fetch_registers = ia64_linux_fetch_registers;
877 t->to_store_registers = ia64_linux_store_registers;
878
10d6c8cd
DJ
879 /* Override the default to_xfer_partial. */
880 super_xfer_partial = t->to_xfer_partial;
881 t->to_xfer_partial = ia64_linux_xfer_partial;
882
74174d2e
UW
883 /* Override watchpoint routines. */
884
885 /* The IA-64 architecture can step over a watch point (without triggering
886 it again) if the "dd" (data debug fault disable) bit in the processor
887 status word is set.
888
889 This PSR bit is set in ia64_linux_stopped_by_watchpoint when the
890 code there has determined that a hardware watchpoint has indeed
891 been hit. The CPU will then be able to execute one instruction
1777feb0 892 without triggering a watchpoint. */
74174d2e
UW
893
894 t->to_have_steppable_watchpoint = 1;
895 t->to_can_use_hw_breakpoint = ia64_linux_can_use_hw_breakpoint;
896 t->to_stopped_by_watchpoint = ia64_linux_stopped_by_watchpoint;
897 t->to_stopped_data_address = ia64_linux_stopped_data_address;
898 t->to_insert_watchpoint = ia64_linux_insert_watchpoint;
899 t->to_remove_watchpoint = ia64_linux_remove_watchpoint;
900
10d6c8cd 901 /* Register the target. */
f973ed9c 902 linux_nat_add_target (t);
9f0bdab8 903 linux_nat_set_new_thread (t, ia64_linux_new_thread);
26ab7092 904 linux_nat_set_status_is_event (t, ia64_linux_status_is_event);
287a334e 905}
This page took 0.967793 seconds and 4 git commands to generate.