Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
8e65ff28 | 2 | Copyright 1999, 2000, 2001 |
16461d7d KB |
3 | Free Software Foundation, Inc. |
4 | ||
5 | This file is part of GDB. | |
6 | ||
7 | This program is free software; you can redistribute it and/or modify | |
8 | it under the terms of the GNU General Public License as published by | |
9 | the Free Software Foundation; either version 2 of the License, or | |
10 | (at your option) any later version. | |
11 | ||
12 | This program is distributed in the hope that it will be useful, | |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
16 | ||
17 | You should have received a copy of the GNU General Public License | |
18 | along with this program; if not, write to the Free Software | |
19 | Foundation, Inc., 59 Temple Place - Suite 330, | |
20 | Boston, MA 02111-1307, USA. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "inferior.h" | |
24 | #include "symfile.h" /* for entry_point_address */ | |
25 | #include "gdbcore.h" | |
8064c6ae | 26 | #include "arch-utils.h" |
16461d7d | 27 | #include "floatformat.h" |
4e052eda | 28 | #include "regcache.h" |
16461d7d KB |
29 | |
30 | #include "objfiles.h" | |
31 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 32 | #include "elf-bfd.h" |
16461d7d | 33 | |
698cb3f0 KB |
34 | /* Hook for determining the global pointer when calling functions in |
35 | the inferior under AIX. The initialization code in ia64-aix-nat.c | |
36 | sets this hook to the address of a function which will find the | |
37 | global pointer for a given address. | |
38 | ||
39 | The generic code which uses the dynamic section in the inferior for | |
40 | finding the global pointer is not of much use on AIX since the | |
41 | values obtained from the inferior have not been relocated. */ | |
42 | ||
43 | CORE_ADDR (*native_find_global_pointer) (CORE_ADDR) = 0; | |
44 | ||
45 | /* An enumeration of the different IA-64 instruction types. */ | |
46 | ||
16461d7d KB |
47 | typedef enum instruction_type |
48 | { | |
49 | A, /* Integer ALU ; I-unit or M-unit */ | |
50 | I, /* Non-ALU integer; I-unit */ | |
51 | M, /* Memory ; M-unit */ | |
52 | F, /* Floating-point ; F-unit */ | |
53 | B, /* Branch ; B-unit */ | |
54 | L, /* Extended (L+X) ; I-unit */ | |
55 | X, /* Extended (L+X) ; I-unit */ | |
56 | undefined /* undefined or reserved */ | |
57 | } instruction_type; | |
58 | ||
59 | /* We represent IA-64 PC addresses as the value of the instruction | |
60 | pointer or'd with some bit combination in the low nibble which | |
61 | represents the slot number in the bundle addressed by the | |
62 | instruction pointer. The problem is that the Linux kernel | |
63 | multiplies its slot numbers (for exceptions) by one while the | |
64 | disassembler multiplies its slot numbers by 6. In addition, I've | |
65 | heard it said that the simulator uses 1 as the multiplier. | |
66 | ||
67 | I've fixed the disassembler so that the bytes_per_line field will | |
68 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
69 | is set to six (which is how it was set up initially). -- objdump | |
70 | displays pretty disassembly dumps with this value. For our purposes, | |
71 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
72 | never want to also display the raw bytes the way objdump does. */ | |
73 | ||
74 | #define SLOT_MULTIPLIER 1 | |
75 | ||
76 | /* Length in bytes of an instruction bundle */ | |
77 | ||
78 | #define BUNDLE_LEN 16 | |
79 | ||
d7fa2ae2 | 80 | /* FIXME: These extern declarations should go in ia64-tdep.h. */ |
244bc108 | 81 | extern CORE_ADDR ia64_linux_sigcontext_register_address (CORE_ADDR, int); |
d7fa2ae2 | 82 | extern CORE_ADDR ia64_aix_sigcontext_register_address (CORE_ADDR, int); |
244bc108 | 83 | |
16461d7d KB |
84 | static gdbarch_init_ftype ia64_gdbarch_init; |
85 | ||
86 | static gdbarch_register_name_ftype ia64_register_name; | |
87 | static gdbarch_register_raw_size_ftype ia64_register_raw_size; | |
88 | static gdbarch_register_virtual_size_ftype ia64_register_virtual_size; | |
89 | static gdbarch_register_virtual_type_ftype ia64_register_virtual_type; | |
90 | static gdbarch_register_byte_ftype ia64_register_byte; | |
91 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; | |
92 | static gdbarch_frame_chain_ftype ia64_frame_chain; | |
93 | static gdbarch_frame_saved_pc_ftype ia64_frame_saved_pc; | |
94 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; | |
95 | static gdbarch_frame_init_saved_regs_ftype ia64_frame_init_saved_regs; | |
96 | static gdbarch_get_saved_register_ftype ia64_get_saved_register; | |
97 | static gdbarch_extract_return_value_ftype ia64_extract_return_value; | |
98 | static gdbarch_extract_struct_value_address_ftype ia64_extract_struct_value_address; | |
99 | static gdbarch_use_struct_convention_ftype ia64_use_struct_convention; | |
100 | static gdbarch_frameless_function_invocation_ftype ia64_frameless_function_invocation; | |
101 | static gdbarch_init_extra_frame_info_ftype ia64_init_extra_frame_info; | |
102 | static gdbarch_store_return_value_ftype ia64_store_return_value; | |
103 | static gdbarch_store_struct_return_ftype ia64_store_struct_return; | |
104 | static gdbarch_push_arguments_ftype ia64_push_arguments; | |
105 | static gdbarch_push_return_address_ftype ia64_push_return_address; | |
106 | static gdbarch_pop_frame_ftype ia64_pop_frame; | |
107 | static gdbarch_saved_pc_after_call_ftype ia64_saved_pc_after_call; | |
16461d7d | 108 | static void ia64_pop_frame_regular (struct frame_info *frame); |
64a5b29c | 109 | static struct type *is_float_or_hfa_type (struct type *t); |
16461d7d KB |
110 | |
111 | static int ia64_num_regs = 590; | |
112 | ||
113 | static int pc_regnum = IA64_IP_REGNUM; | |
114 | static int sp_regnum = IA64_GR12_REGNUM; | |
115 | static int fp_regnum = IA64_VFP_REGNUM; | |
116 | static int lr_regnum = IA64_VRAP_REGNUM; | |
117 | ||
118 | static LONGEST ia64_call_dummy_words[] = {0}; | |
119 | ||
120 | /* Array of register names; There should be ia64_num_regs strings in | |
121 | the initializer. */ | |
122 | ||
123 | static char *ia64_register_names[] = | |
124 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
125 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
126 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
127 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
128 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
129 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
130 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
131 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
132 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
133 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
134 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
135 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
136 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
137 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
138 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
139 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
140 | ||
141 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
142 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
143 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
144 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
145 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
146 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
147 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
148 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
149 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
150 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
151 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
152 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
153 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
154 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
155 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
156 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
157 | ||
158 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
159 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
160 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
161 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
162 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
163 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
164 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
165 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
166 | ||
167 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
168 | ||
169 | "vfp", "vrap", | |
170 | ||
171 | "pr", "ip", "psr", "cfm", | |
172 | ||
173 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
174 | "", "", "", "", "", "", "", "", | |
175 | "rsc", "bsp", "bspstore", "rnat", | |
176 | "", "fcr", "", "", | |
177 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
178 | "ccv", "", "", "", "unat", "", "", "", | |
179 | "fpsr", "", "", "", "itc", | |
180 | "", "", "", "", "", "", "", "", "", "", | |
181 | "", "", "", "", "", "", "", "", "", | |
182 | "pfs", "lc", "ec", | |
183 | "", "", "", "", "", "", "", "", "", "", | |
184 | "", "", "", "", "", "", "", "", "", "", | |
185 | "", "", "", "", "", "", "", "", "", "", | |
186 | "", "", "", "", "", "", "", "", "", "", | |
187 | "", "", "", "", "", "", "", "", "", "", | |
188 | "", "", "", "", "", "", "", "", "", "", | |
189 | "", | |
190 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
191 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
192 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
193 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
194 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
195 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
196 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
197 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
198 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
199 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
200 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
201 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
202 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
203 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
204 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
205 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
206 | }; | |
207 | ||
208 | struct frame_extra_info | |
244bc108 KB |
209 | { |
210 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
211 | CORE_ADDR cfm; /* cfm value for current frame */ | |
212 | int sof; /* Size of frame (decoded from cfm value) */ | |
213 | int sol; /* Size of locals (decoded from cfm value) */ | |
214 | CORE_ADDR after_prologue; | |
215 | /* Address of first instruction after the last | |
16461d7d KB |
216 | prologue instruction; Note that there may |
217 | be instructions from the function's body | |
218 | intermingled with the prologue. */ | |
244bc108 KB |
219 | int mem_stack_frame_size; |
220 | /* Size of the memory stack frame (may be zero), | |
16461d7d | 221 | or -1 if it has not been determined yet. */ |
244bc108 KB |
222 | int fp_reg; /* Register number (if any) used a frame pointer |
223 | for this frame. 0 if no register is being used | |
16461d7d | 224 | as the frame pointer. */ |
244bc108 KB |
225 | }; |
226 | ||
227 | struct gdbarch_tdep | |
228 | { | |
229 | int os_ident; /* From the ELF header, one of the ELFOSABI_ | |
ef58a6ac | 230 | constants: ELFOSABI_LINUX, ELFOSABI_AIX, |
244bc108 KB |
231 | etc. */ |
232 | CORE_ADDR (*sigcontext_register_address) (CORE_ADDR, int); | |
233 | /* OS specific function which, given a frame address | |
234 | and register number, returns the offset to the | |
235 | given register from the start of the frame. */ | |
698cb3f0 | 236 | CORE_ADDR (*find_global_pointer) (CORE_ADDR); |
244bc108 KB |
237 | }; |
238 | ||
698cb3f0 KB |
239 | #define SIGCONTEXT_REGISTER_ADDRESS \ |
240 | (gdbarch_tdep (current_gdbarch)->sigcontext_register_address) | |
241 | #define FIND_GLOBAL_POINTER \ | |
242 | (gdbarch_tdep (current_gdbarch)->find_global_pointer) | |
16461d7d KB |
243 | |
244 | static char * | |
245 | ia64_register_name (int reg) | |
246 | { | |
247 | return ia64_register_names[reg]; | |
248 | } | |
249 | ||
250 | int | |
251 | ia64_register_raw_size (int reg) | |
252 | { | |
253 | return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8; | |
254 | } | |
255 | ||
256 | int | |
257 | ia64_register_virtual_size (int reg) | |
258 | { | |
259 | return (IA64_FR0_REGNUM <= reg && reg <= IA64_FR127_REGNUM) ? 16 : 8; | |
260 | } | |
261 | ||
262 | /* Return true iff register N's virtual format is different from | |
263 | its raw format. */ | |
264 | int | |
265 | ia64_register_convertible (int nr) | |
266 | { | |
267 | return (IA64_FR0_REGNUM <= nr && nr <= IA64_FR127_REGNUM); | |
268 | } | |
269 | ||
270 | const struct floatformat floatformat_ia64_ext = | |
271 | { | |
272 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
273 | floatformat_intbit_yes | |
274 | }; | |
275 | ||
276 | void | |
277 | ia64_register_convert_to_virtual (int regnum, struct type *type, | |
278 | char *from, char *to) | |
279 | { | |
280 | if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM) | |
281 | { | |
282 | DOUBLEST val; | |
283 | floatformat_to_doublest (&floatformat_ia64_ext, from, &val); | |
284 | store_floating(to, TYPE_LENGTH(type), val); | |
285 | } | |
286 | else | |
287 | error("ia64_register_convert_to_virtual called with non floating point register number"); | |
288 | } | |
289 | ||
290 | void | |
291 | ia64_register_convert_to_raw (struct type *type, int regnum, | |
292 | char *from, char *to) | |
293 | { | |
294 | if (regnum >= IA64_FR0_REGNUM && regnum <= IA64_FR127_REGNUM) | |
295 | { | |
296 | DOUBLEST val = extract_floating (from, TYPE_LENGTH(type)); | |
297 | floatformat_from_doublest (&floatformat_ia64_ext, &val, to); | |
298 | } | |
299 | else | |
300 | error("ia64_register_convert_to_raw called with non floating point register number"); | |
301 | } | |
302 | ||
303 | struct type * | |
304 | ia64_register_virtual_type (int reg) | |
305 | { | |
306 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) | |
307 | return builtin_type_long_double; | |
308 | else | |
309 | return builtin_type_long; | |
310 | } | |
311 | ||
312 | int | |
313 | ia64_register_byte (int reg) | |
314 | { | |
315 | return (8 * reg) + | |
316 | (reg <= IA64_FR0_REGNUM ? 0 : 8 * ((reg > IA64_FR127_REGNUM) ? 128 : reg - IA64_FR0_REGNUM)); | |
317 | } | |
318 | ||
244bc108 KB |
319 | /* Read the given register from a sigcontext structure in the |
320 | specified frame. */ | |
321 | ||
322 | static CORE_ADDR | |
323 | read_sigcontext_register (struct frame_info *frame, int regnum) | |
324 | { | |
325 | CORE_ADDR regaddr; | |
326 | ||
327 | if (frame == NULL) | |
8e65ff28 AC |
328 | internal_error (__FILE__, __LINE__, |
329 | "read_sigcontext_register: NULL frame"); | |
244bc108 | 330 | if (!frame->signal_handler_caller) |
8e65ff28 AC |
331 | internal_error (__FILE__, __LINE__, |
332 | "read_sigcontext_register: frame not a signal_handler_caller"); | |
244bc108 | 333 | if (SIGCONTEXT_REGISTER_ADDRESS == 0) |
8e65ff28 AC |
334 | internal_error (__FILE__, __LINE__, |
335 | "read_sigcontext_register: SIGCONTEXT_REGISTER_ADDRESS is 0"); | |
244bc108 KB |
336 | |
337 | regaddr = SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regnum); | |
338 | if (regaddr) | |
339 | return read_memory_integer (regaddr, REGISTER_RAW_SIZE (regnum)); | |
340 | else | |
8e65ff28 AC |
341 | internal_error (__FILE__, __LINE__, |
342 | "read_sigcontext_register: Register %d not in struct sigcontext", regnum); | |
244bc108 KB |
343 | } |
344 | ||
16461d7d KB |
345 | /* Extract ``len'' bits from an instruction bundle starting at |
346 | bit ``from''. */ | |
347 | ||
244bc108 | 348 | static long long |
16461d7d KB |
349 | extract_bit_field (char *bundle, int from, int len) |
350 | { | |
351 | long long result = 0LL; | |
352 | int to = from + len; | |
353 | int from_byte = from / 8; | |
354 | int to_byte = to / 8; | |
355 | unsigned char *b = (unsigned char *) bundle; | |
356 | unsigned char c; | |
357 | int lshift; | |
358 | int i; | |
359 | ||
360 | c = b[from_byte]; | |
361 | if (from_byte == to_byte) | |
362 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
363 | result = c >> (from % 8); | |
364 | lshift = 8 - (from % 8); | |
365 | ||
366 | for (i = from_byte+1; i < to_byte; i++) | |
367 | { | |
368 | result |= ((long long) b[i]) << lshift; | |
369 | lshift += 8; | |
370 | } | |
371 | ||
372 | if (from_byte < to_byte && (to % 8 != 0)) | |
373 | { | |
374 | c = b[to_byte]; | |
375 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
376 | result |= ((long long) c) << lshift; | |
377 | } | |
378 | ||
379 | return result; | |
380 | } | |
381 | ||
382 | /* Replace the specified bits in an instruction bundle */ | |
383 | ||
244bc108 | 384 | static void |
16461d7d KB |
385 | replace_bit_field (char *bundle, long long val, int from, int len) |
386 | { | |
387 | int to = from + len; | |
388 | int from_byte = from / 8; | |
389 | int to_byte = to / 8; | |
390 | unsigned char *b = (unsigned char *) bundle; | |
391 | unsigned char c; | |
392 | ||
393 | if (from_byte == to_byte) | |
394 | { | |
395 | unsigned char left, right; | |
396 | c = b[from_byte]; | |
397 | left = (c >> (to % 8)) << (to % 8); | |
398 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
399 | c = (unsigned char) (val & 0xff); | |
400 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
401 | c |= right | left; | |
402 | b[from_byte] = c; | |
403 | } | |
404 | else | |
405 | { | |
406 | int i; | |
407 | c = b[from_byte]; | |
408 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
409 | c = c | (val << (from % 8)); | |
410 | b[from_byte] = c; | |
411 | val >>= 8 - from % 8; | |
412 | ||
413 | for (i = from_byte+1; i < to_byte; i++) | |
414 | { | |
415 | c = val & 0xff; | |
416 | val >>= 8; | |
417 | b[i] = c; | |
418 | } | |
419 | ||
420 | if (to % 8 != 0) | |
421 | { | |
422 | unsigned char cv = (unsigned char) val; | |
423 | c = b[to_byte]; | |
424 | c = c >> (to % 8) << (to % 8); | |
425 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
426 | b[to_byte] = c; | |
427 | } | |
428 | } | |
429 | } | |
430 | ||
431 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
432 | and instruction bundle */ | |
433 | ||
244bc108 | 434 | static long long |
2fc3ac7e | 435 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
436 | { |
437 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
438 | } | |
439 | ||
440 | /* Store an instruction in an instruction bundle */ | |
441 | ||
244bc108 | 442 | static void |
2fc3ac7e | 443 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
444 | { |
445 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
446 | } | |
447 | ||
64a5b29c | 448 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
449 | { |
450 | { M, I, I }, /* 00 */ | |
451 | { M, I, I }, /* 01 */ | |
452 | { M, I, I }, /* 02 */ | |
453 | { M, I, I }, /* 03 */ | |
454 | { M, L, X }, /* 04 */ | |
455 | { M, L, X }, /* 05 */ | |
456 | { undefined, undefined, undefined }, /* 06 */ | |
457 | { undefined, undefined, undefined }, /* 07 */ | |
458 | { M, M, I }, /* 08 */ | |
459 | { M, M, I }, /* 09 */ | |
460 | { M, M, I }, /* 0A */ | |
461 | { M, M, I }, /* 0B */ | |
462 | { M, F, I }, /* 0C */ | |
463 | { M, F, I }, /* 0D */ | |
464 | { M, M, F }, /* 0E */ | |
465 | { M, M, F }, /* 0F */ | |
466 | { M, I, B }, /* 10 */ | |
467 | { M, I, B }, /* 11 */ | |
468 | { M, B, B }, /* 12 */ | |
469 | { M, B, B }, /* 13 */ | |
470 | { undefined, undefined, undefined }, /* 14 */ | |
471 | { undefined, undefined, undefined }, /* 15 */ | |
472 | { B, B, B }, /* 16 */ | |
473 | { B, B, B }, /* 17 */ | |
474 | { M, M, B }, /* 18 */ | |
475 | { M, M, B }, /* 19 */ | |
476 | { undefined, undefined, undefined }, /* 1A */ | |
477 | { undefined, undefined, undefined }, /* 1B */ | |
478 | { M, F, B }, /* 1C */ | |
479 | { M, F, B }, /* 1D */ | |
480 | { undefined, undefined, undefined }, /* 1E */ | |
481 | { undefined, undefined, undefined }, /* 1F */ | |
482 | }; | |
483 | ||
484 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
485 | address of the next instruction to fetch. */ | |
486 | ||
487 | static CORE_ADDR | |
488 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
489 | { | |
490 | char bundle[BUNDLE_LEN]; | |
491 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
492 | long long template; | |
493 | int val; | |
494 | ||
c26e1c2b KB |
495 | /* Warn about slot numbers greater than 2. We used to generate |
496 | an error here on the assumption that the user entered an invalid | |
497 | address. But, sometimes GDB itself requests an invalid address. | |
498 | This can (easily) happen when execution stops in a function for | |
499 | which there are no symbols. The prologue scanner will attempt to | |
500 | find the beginning of the function - if the nearest symbol | |
501 | happens to not be aligned on a bundle boundary (16 bytes), the | |
502 | resulting starting address will cause GDB to think that the slot | |
503 | number is too large. | |
504 | ||
505 | So we warn about it and set the slot number to zero. It is | |
506 | not necessarily a fatal condition, particularly if debugging | |
507 | at the assembly language level. */ | |
16461d7d | 508 | if (slotnum > 2) |
c26e1c2b KB |
509 | { |
510 | warning ("Can't fetch instructions for slot numbers greater than 2.\n" | |
511 | "Using slot 0 instead"); | |
512 | slotnum = 0; | |
513 | } | |
16461d7d KB |
514 | |
515 | addr &= ~0x0f; | |
516 | ||
517 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
518 | ||
519 | if (val != 0) | |
520 | return 0; | |
521 | ||
522 | *instr = slotN_contents (bundle, slotnum); | |
523 | template = extract_bit_field (bundle, 0, 5); | |
524 | *it = template_encoding_table[(int)template][slotnum]; | |
525 | ||
64a5b29c | 526 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
527 | addr += 16; |
528 | else | |
529 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
530 | ||
531 | return addr; | |
532 | } | |
533 | ||
534 | /* There are 5 different break instructions (break.i, break.b, | |
535 | break.m, break.f, and break.x), but they all have the same | |
536 | encoding. (The five bit template in the low five bits of the | |
537 | instruction bundle distinguishes one from another.) | |
538 | ||
539 | The runtime architecture manual specifies that break instructions | |
540 | used for debugging purposes must have the upper two bits of the 21 | |
541 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
542 | instruction encodes the most significant bit of its 21 bit | |
543 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
544 | is at bit 25 which leads to the pattern below. | |
545 | ||
546 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
547 | it turns out that 0x80000 was used as the syscall break in the early | |
548 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
549 | instead. But that didn't work either (I later found out that this | |
550 | pattern was used by the simulator that I was using.) So I ended up | |
551 | using the pattern seen below. */ | |
552 | ||
553 | #if 0 | |
554 | #define BREAKPOINT 0x00002000040LL | |
555 | #endif | |
556 | #define BREAKPOINT 0x00003333300LL | |
557 | ||
558 | static int | |
559 | ia64_memory_insert_breakpoint (CORE_ADDR addr, char *contents_cache) | |
560 | { | |
561 | char bundle[BUNDLE_LEN]; | |
562 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
563 | long long instr; | |
564 | int val; | |
565 | ||
566 | if (slotnum > 2) | |
567 | error("Can't insert breakpoint for slot numbers greater than 2."); | |
568 | ||
569 | addr &= ~0x0f; | |
570 | ||
571 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
572 | instr = slotN_contents (bundle, slotnum); | |
573 | memcpy(contents_cache, &instr, sizeof(instr)); | |
574 | replace_slotN_contents (bundle, BREAKPOINT, slotnum); | |
575 | if (val == 0) | |
576 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
577 | ||
578 | return val; | |
579 | } | |
580 | ||
581 | static int | |
582 | ia64_memory_remove_breakpoint (CORE_ADDR addr, char *contents_cache) | |
583 | { | |
584 | char bundle[BUNDLE_LEN]; | |
585 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
586 | long long instr; | |
587 | int val; | |
588 | ||
589 | addr &= ~0x0f; | |
590 | ||
591 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
592 | memcpy (&instr, contents_cache, sizeof instr); | |
593 | replace_slotN_contents (bundle, instr, slotnum); | |
594 | if (val == 0) | |
595 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
596 | ||
597 | return val; | |
598 | } | |
599 | ||
600 | /* We don't really want to use this, but remote.c needs to call it in order | |
601 | to figure out if Z-packets are supported or not. Oh, well. */ | |
602 | unsigned char * | |
fba45db2 | 603 | ia64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
604 | { |
605 | static unsigned char breakpoint[] = | |
606 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
607 | *lenptr = sizeof (breakpoint); | |
608 | #if 0 | |
609 | *pcptr &= ~0x0f; | |
610 | #endif | |
611 | return breakpoint; | |
612 | } | |
613 | ||
614 | CORE_ADDR | |
615 | ia64_read_pc (int pid) | |
616 | { | |
617 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid); | |
618 | CORE_ADDR pc_value = read_register_pid (IA64_IP_REGNUM, pid); | |
619 | int slot_num = (psr_value >> 41) & 3; | |
620 | ||
621 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
622 | } | |
623 | ||
624 | void | |
625 | ia64_write_pc (CORE_ADDR new_pc, int pid) | |
626 | { | |
627 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
628 | CORE_ADDR psr_value = read_register_pid (IA64_PSR_REGNUM, pid); | |
629 | psr_value &= ~(3LL << 41); | |
630 | psr_value |= (CORE_ADDR)(slot_num & 0x3) << 41; | |
631 | ||
632 | new_pc &= ~0xfLL; | |
633 | ||
634 | write_register_pid (IA64_PSR_REGNUM, psr_value, pid); | |
635 | write_register_pid (IA64_IP_REGNUM, new_pc, pid); | |
636 | } | |
637 | ||
638 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
639 | ||
640 | /* Returns the address of the slot that's NSLOTS slots away from | |
641 | the address ADDR. NSLOTS may be positive or negative. */ | |
642 | static CORE_ADDR | |
643 | rse_address_add(CORE_ADDR addr, int nslots) | |
644 | { | |
645 | CORE_ADDR new_addr; | |
646 | int mandatory_nat_slots = nslots / 63; | |
647 | int direction = nslots < 0 ? -1 : 1; | |
648 | ||
649 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
650 | ||
651 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
652 | new_addr += 8 * direction; | |
653 | ||
654 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
655 | new_addr += 8 * direction; | |
656 | ||
657 | return new_addr; | |
658 | } | |
659 | ||
660 | /* The IA-64 frame chain is a bit odd. We won't always have a frame | |
661 | pointer, so we use the SP value as the FP for the purpose of | |
662 | creating a frame. There is sometimes a register (not fixed) which | |
663 | is used as a frame pointer. When this register exists, it is not | |
664 | especially hard to determine which one is being used. It isn't | |
665 | even really hard to compute the frame chain, but it can be | |
666 | computationally expensive. So, instead of making life difficult | |
667 | (and slow), we pick a more convenient representation of the frame | |
668 | chain, knowing that we'll have to make some small adjustments | |
669 | in other places. (E.g, note that read_fp() and write_fp() are | |
670 | actually read_sp() and write_sp() below in ia64_gdbarch_init() | |
671 | below.) | |
672 | ||
673 | Okay, so what is the frame chain exactly? It'll be the SP value | |
674 | at the time that the function in question was entered. | |
675 | ||
676 | Note that this *should* actually the frame pointer for the current | |
677 | function! But as I note above, if we were to attempt to find the | |
678 | address of the beginning of the previous frame, we'd waste a lot | |
679 | of cycles for no good reason. So instead, we simply choose to | |
680 | represent the frame chain as the end of the previous frame instead | |
681 | of the beginning. */ | |
682 | ||
683 | CORE_ADDR | |
684 | ia64_frame_chain (struct frame_info *frame) | |
685 | { | |
244bc108 KB |
686 | if (frame->signal_handler_caller) |
687 | return read_sigcontext_register (frame, sp_regnum); | |
688 | else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
689 | return frame->frame; | |
16461d7d | 690 | else |
244bc108 KB |
691 | { |
692 | FRAME_INIT_SAVED_REGS (frame); | |
693 | if (frame->saved_regs[IA64_VFP_REGNUM]) | |
694 | return read_memory_integer (frame->saved_regs[IA64_VFP_REGNUM], 8); | |
695 | else | |
696 | return frame->frame + frame->extra_info->mem_stack_frame_size; | |
697 | } | |
16461d7d KB |
698 | } |
699 | ||
700 | CORE_ADDR | |
701 | ia64_frame_saved_pc (struct frame_info *frame) | |
702 | { | |
244bc108 KB |
703 | if (frame->signal_handler_caller) |
704 | return read_sigcontext_register (frame, pc_regnum); | |
705 | else if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame)) | |
706 | return generic_read_register_dummy (frame->pc, frame->frame, pc_regnum); | |
707 | else | |
708 | { | |
709 | FRAME_INIT_SAVED_REGS (frame); | |
16461d7d | 710 | |
244bc108 KB |
711 | if (frame->saved_regs[IA64_VRAP_REGNUM]) |
712 | return read_memory_integer (frame->saved_regs[IA64_VRAP_REGNUM], 8); | |
713 | else if (frame->next && frame->next->signal_handler_caller) | |
714 | return read_sigcontext_register (frame->next, IA64_BR0_REGNUM); | |
715 | else /* either frameless, or not far enough along in the prologue... */ | |
716 | return ia64_saved_pc_after_call (frame); | |
717 | } | |
16461d7d KB |
718 | } |
719 | ||
720 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ | |
721 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
722 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
723 | #define imm9(_instr_) \ | |
724 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
725 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
726 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
727 | ||
728 | static CORE_ADDR | |
729 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *frame) | |
730 | { | |
731 | CORE_ADDR next_pc; | |
732 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
733 | instruction_type it; |
734 | long long instr; | |
735 | int do_fsr_stuff = 0; | |
736 | ||
737 | int cfm_reg = 0; | |
738 | int ret_reg = 0; | |
739 | int fp_reg = 0; | |
740 | int unat_save_reg = 0; | |
741 | int pr_save_reg = 0; | |
742 | int mem_stack_frame_size = 0; | |
743 | int spill_reg = 0; | |
744 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
745 | char instores[8]; |
746 | char infpstores[8]; | |
747 | ||
748 | memset (instores, 0, sizeof instores); | |
749 | memset (infpstores, 0, sizeof infpstores); | |
16461d7d KB |
750 | |
751 | if (frame && !frame->saved_regs) | |
752 | { | |
753 | frame_saved_regs_zalloc (frame); | |
754 | do_fsr_stuff = 1; | |
755 | } | |
756 | ||
757 | if (frame | |
758 | && !do_fsr_stuff | |
759 | && frame->extra_info->after_prologue != 0 | |
760 | && frame->extra_info->after_prologue <= lim_pc) | |
761 | return frame->extra_info->after_prologue; | |
762 | ||
763 | /* Must start with an alloc instruction */ | |
764 | next_pc = fetch_instruction (pc, &it, &instr); | |
765 | if (pc < lim_pc && next_pc | |
766 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
767 | { | |
768 | /* alloc */ | |
769 | int sor = (int) ((instr & 0x00078000000LL) >> 27); | |
770 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
771 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
772 | /* Okay, so sor, sol, and sof aren't used right now; but perhaps | |
773 | we could compare against the size given to us via the cfm as | |
774 | either a sanity check or possibly to see if the frame has been | |
775 | changed by a later alloc instruction... */ | |
776 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
777 | cfm_reg = rN; | |
778 | last_prologue_pc = next_pc; | |
779 | pc = next_pc; | |
780 | } | |
781 | else | |
782 | pc = lim_pc; /* We're done early */ | |
783 | ||
784 | /* Loop, looking for prologue instructions, keeping track of | |
785 | where preserved registers were spilled. */ | |
786 | while (pc < lim_pc) | |
787 | { | |
788 | next_pc = fetch_instruction (pc, &it, &instr); | |
789 | if (next_pc == 0) | |
790 | break; | |
791 | ||
0927a22b KB |
792 | if (it == B || ((instr & 0x3fLL) != 0LL)) |
793 | { | |
794 | /* Exit loop upon hitting a branch instruction or a predicated | |
795 | instruction. */ | |
796 | break; | |
797 | } | |
798 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
799 | { |
800 | /* Move from BR */ | |
801 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
802 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
803 | int qp = (int) (instr & 0x0000000003f); | |
804 | ||
805 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
806 | { | |
807 | ret_reg = rN; | |
808 | last_prologue_pc = next_pc; | |
809 | } | |
810 | } | |
811 | else if ((it == I || it == M) | |
812 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
813 | { | |
814 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
815 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
816 | | ((instr & 0x001f8000000LL) >> 20) | |
817 | | ((instr & 0x000000fe000LL) >> 13)); | |
818 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
819 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
820 | int qp = (int) (instr & 0x0000000003fLL); | |
821 | ||
822 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
823 | { | |
824 | /* mov rN, r12 */ | |
825 | fp_reg = rN; | |
826 | last_prologue_pc = next_pc; | |
827 | } | |
828 | else if (qp == 0 && rN == 12 && rM == 12) | |
829 | { | |
830 | /* adds r12, -mem_stack_frame_size, r12 */ | |
831 | mem_stack_frame_size -= imm; | |
832 | last_prologue_pc = next_pc; | |
833 | } | |
834 | else if (qp == 0 && rN == 2 | |
835 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
836 | { | |
837 | /* adds r2, spilloffset, rFramePointer | |
838 | or | |
839 | adds r2, spilloffset, r12 | |
840 | ||
841 | Get ready for stf.spill or st8.spill instructions. | |
842 | The address to start spilling at is loaded into r2. | |
843 | FIXME: Why r2? That's what gcc currently uses; it | |
844 | could well be different for other compilers. */ | |
845 | ||
846 | /* Hmm... whether or not this will work will depend on | |
847 | where the pc is. If it's still early in the prologue | |
848 | this'll be wrong. FIXME */ | |
849 | spill_addr = (frame ? frame->frame : 0) | |
850 | + (rM == 12 ? 0 : mem_stack_frame_size) | |
851 | + imm; | |
852 | spill_reg = rN; | |
853 | last_prologue_pc = next_pc; | |
854 | } | |
855 | } | |
856 | else if (it == M | |
857 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
858 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
859 | { | |
860 | /* stf.spill [rN] = fM, imm9 | |
861 | or | |
862 | stf.spill [rN] = fM */ | |
863 | ||
864 | int imm = imm9(instr); | |
865 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
866 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
867 | int qp = (int) (instr & 0x0000000003fLL); | |
868 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
869 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
870 | { | |
871 | if (do_fsr_stuff) | |
872 | frame->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; | |
873 | ||
874 | if ((instr & 0x1efc0000000) == 0x0eec0000000) | |
875 | spill_addr += imm; | |
876 | else | |
877 | spill_addr = 0; /* last one; must be done */ | |
878 | last_prologue_pc = next_pc; | |
879 | } | |
880 | } | |
881 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
882 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
883 | { | |
884 | /* mov.m rN = arM | |
885 | or | |
886 | mov.i rN = arM */ | |
887 | ||
888 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
889 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
890 | int qp = (int) (instr & 0x0000000003fLL); | |
891 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
892 | { | |
893 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
894 | r3 (or whatever) and watch for a store of this register... */ | |
895 | unat_save_reg = rN; | |
896 | last_prologue_pc = next_pc; | |
897 | } | |
898 | } | |
899 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
900 | { | |
901 | /* mov rN = pr */ | |
902 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
903 | int qp = (int) (instr & 0x0000000003fLL); | |
904 | if (qp == 0 && isScratch (rN)) | |
905 | { | |
906 | pr_save_reg = rN; | |
907 | last_prologue_pc = next_pc; | |
908 | } | |
909 | } | |
910 | else if (it == M | |
911 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
912 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
913 | { | |
914 | /* st8 [rN] = rM | |
915 | or | |
916 | st8 [rN] = rM, imm9 */ | |
917 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
918 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
919 | int qp = (int) (instr & 0x0000000003fLL); | |
920 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
921 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
922 | { | |
923 | /* We've found a spill of either the UNAT register or the PR | |
924 | register. (Well, not exactly; what we've actually found is | |
925 | a spill of the register that UNAT or PR was moved to). | |
926 | Record that fact and move on... */ | |
927 | if (rM == unat_save_reg) | |
928 | { | |
929 | /* Track UNAT register */ | |
930 | if (do_fsr_stuff) | |
931 | frame->saved_regs[IA64_UNAT_REGNUM] = spill_addr; | |
932 | unat_save_reg = 0; | |
933 | } | |
934 | else | |
935 | { | |
936 | /* Track PR register */ | |
937 | if (do_fsr_stuff) | |
938 | frame->saved_regs[IA64_PR_REGNUM] = spill_addr; | |
939 | pr_save_reg = 0; | |
940 | } | |
941 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
942 | /* st8 [rN] = rM, imm9 */ | |
943 | spill_addr += imm9(instr); | |
944 | else | |
945 | spill_addr = 0; /* must be done spilling */ | |
946 | last_prologue_pc = next_pc; | |
947 | } | |
0927a22b KB |
948 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
949 | { | |
950 | /* Allow up to one store of each input register. */ | |
951 | instores[rM-32] = 1; | |
952 | last_prologue_pc = next_pc; | |
953 | } | |
954 | } | |
955 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
956 | { | |
957 | /* One of | |
958 | st1 [rN] = rM | |
959 | st2 [rN] = rM | |
960 | st4 [rN] = rM | |
961 | st8 [rN] = rM | |
962 | Note that the st8 case is handled in the clause above. | |
963 | ||
964 | Advance over stores of input registers. One store per input | |
965 | register is permitted. */ | |
966 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
967 | int qp = (int) (instr & 0x0000000003fLL); | |
968 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) | |
969 | { | |
970 | instores[rM-32] = 1; | |
971 | last_prologue_pc = next_pc; | |
972 | } | |
973 | } | |
974 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
975 | { | |
976 | /* Either | |
977 | stfs [rN] = fM | |
978 | or | |
979 | stfd [rN] = fM | |
980 | ||
981 | Advance over stores of floating point input registers. Again | |
982 | one store per register is permitted */ | |
983 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
984 | int qp = (int) (instr & 0x0000000003fLL); | |
985 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
986 | { | |
987 | infpstores[fM-8] = 1; | |
988 | last_prologue_pc = next_pc; | |
989 | } | |
16461d7d KB |
990 | } |
991 | else if (it == M | |
992 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
993 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
994 | { | |
995 | /* st8.spill [rN] = rM | |
996 | or | |
997 | st8.spill [rN] = rM, imm9 */ | |
998 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
999 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1000 | int qp = (int) (instr & 0x0000000003fLL); | |
1001 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1002 | { | |
1003 | /* We've found a spill of one of the preserved general purpose | |
1004 | regs. Record the spill address and advance the spill | |
1005 | register if appropriate. */ | |
1006 | if (do_fsr_stuff) | |
1007 | frame->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; | |
1008 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) | |
1009 | /* st8.spill [rN] = rM, imm9 */ | |
1010 | spill_addr += imm9(instr); | |
1011 | else | |
1012 | spill_addr = 0; /* Done spilling */ | |
1013 | last_prologue_pc = next_pc; | |
1014 | } | |
1015 | } | |
16461d7d KB |
1016 | |
1017 | pc = next_pc; | |
1018 | } | |
1019 | ||
1020 | if (do_fsr_stuff) { | |
1021 | int i; | |
1022 | CORE_ADDR addr; | |
3a854e23 KB |
1023 | int sor, rrb_gr; |
1024 | ||
1025 | /* Extract the size of the rotating portion of the stack | |
1026 | frame and the register rename base from the current | |
1027 | frame marker. */ | |
1028 | sor = ((frame->extra_info->cfm >> 14) & 0xf) * 8; | |
1029 | rrb_gr = (frame->extra_info->cfm >> 18) & 0x7f; | |
16461d7d KB |
1030 | |
1031 | for (i = 0, addr = frame->extra_info->bsp; | |
1032 | i < frame->extra_info->sof; | |
1033 | i++, addr += 8) | |
1034 | { | |
1035 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1036 | { | |
1037 | addr += 8; | |
1038 | } | |
3a854e23 KB |
1039 | if (i < sor) |
1040 | frame->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1041 | = addr; | |
1042 | else | |
1043 | frame->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
16461d7d KB |
1044 | |
1045 | if (i+32 == cfm_reg) | |
1046 | frame->saved_regs[IA64_CFM_REGNUM] = addr; | |
1047 | if (i+32 == ret_reg) | |
1048 | frame->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1049 | if (i+32 == fp_reg) | |
1050 | frame->saved_regs[IA64_VFP_REGNUM] = addr; | |
1051 | } | |
1052 | } | |
1053 | ||
1054 | if (frame && frame->extra_info) { | |
1055 | frame->extra_info->after_prologue = last_prologue_pc; | |
1056 | frame->extra_info->mem_stack_frame_size = mem_stack_frame_size; | |
1057 | frame->extra_info->fp_reg = fp_reg; | |
1058 | } | |
1059 | ||
1060 | return last_prologue_pc; | |
1061 | } | |
1062 | ||
1063 | CORE_ADDR | |
1064 | ia64_skip_prologue (CORE_ADDR pc) | |
1065 | { | |
1066 | return examine_prologue (pc, pc+1024, 0); | |
1067 | } | |
1068 | ||
1069 | void | |
1070 | ia64_frame_init_saved_regs (struct frame_info *frame) | |
1071 | { | |
16461d7d KB |
1072 | if (frame->saved_regs) |
1073 | return; | |
1074 | ||
244bc108 KB |
1075 | if (frame->signal_handler_caller && SIGCONTEXT_REGISTER_ADDRESS) |
1076 | { | |
1077 | int regno; | |
16461d7d | 1078 | |
244bc108 | 1079 | frame_saved_regs_zalloc (frame); |
16461d7d | 1080 | |
244bc108 KB |
1081 | frame->saved_regs[IA64_VRAP_REGNUM] = |
1082 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_IP_REGNUM); | |
1083 | frame->saved_regs[IA64_CFM_REGNUM] = | |
1084 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CFM_REGNUM); | |
1085 | frame->saved_regs[IA64_PSR_REGNUM] = | |
1086 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PSR_REGNUM); | |
1087 | #if 0 | |
1088 | frame->saved_regs[IA64_BSP_REGNUM] = | |
1089 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_BSP_REGNUM); | |
1090 | #endif | |
1091 | frame->saved_regs[IA64_RNAT_REGNUM] = | |
1092 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_RNAT_REGNUM); | |
1093 | frame->saved_regs[IA64_CCV_REGNUM] = | |
1094 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_CCV_REGNUM); | |
1095 | frame->saved_regs[IA64_UNAT_REGNUM] = | |
1096 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_UNAT_REGNUM); | |
1097 | frame->saved_regs[IA64_FPSR_REGNUM] = | |
1098 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_FPSR_REGNUM); | |
1099 | frame->saved_regs[IA64_PFS_REGNUM] = | |
1100 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_PFS_REGNUM); | |
1101 | frame->saved_regs[IA64_LC_REGNUM] = | |
1102 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, IA64_LC_REGNUM); | |
1103 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) | |
1104 | if (regno != sp_regnum) | |
1105 | frame->saved_regs[regno] = | |
1106 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
1107 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) | |
1108 | frame->saved_regs[regno] = | |
1109 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
1110 | for (regno = IA64_FR2_REGNUM; regno <= IA64_BR7_REGNUM; regno++) | |
1111 | frame->saved_regs[regno] = | |
1112 | SIGCONTEXT_REGISTER_ADDRESS (frame->frame, regno); | |
16461d7d KB |
1113 | } |
1114 | else | |
1115 | { | |
244bc108 | 1116 | CORE_ADDR func_start; |
16461d7d | 1117 | |
244bc108 KB |
1118 | func_start = get_pc_function_start (frame->pc); |
1119 | examine_prologue (func_start, frame->pc, frame); | |
1120 | } | |
16461d7d KB |
1121 | } |
1122 | ||
1123 | void | |
1124 | ia64_get_saved_register (char *raw_buffer, | |
1125 | int *optimized, | |
1126 | CORE_ADDR *addrp, | |
1127 | struct frame_info *frame, | |
1128 | int regnum, | |
1129 | enum lval_type *lval) | |
1130 | { | |
244bc108 | 1131 | int is_dummy_frame; |
16461d7d KB |
1132 | |
1133 | if (!target_has_registers) | |
1134 | error ("No registers."); | |
1135 | ||
1136 | if (optimized != NULL) | |
1137 | *optimized = 0; | |
244bc108 KB |
1138 | |
1139 | if (addrp != NULL) | |
1140 | *addrp = 0; | |
1141 | ||
1142 | if (lval != NULL) | |
1143 | *lval = not_lval; | |
1144 | ||
1145 | is_dummy_frame = PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame); | |
1146 | ||
1147 | if (regnum == SP_REGNUM && frame->next) | |
16461d7d KB |
1148 | { |
1149 | /* Handle SP values for all frames but the topmost. */ | |
16461d7d KB |
1150 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), frame->frame); |
1151 | } | |
1152 | else if (regnum == IA64_BSP_REGNUM) | |
1153 | { | |
16461d7d KB |
1154 | store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), |
1155 | frame->extra_info->bsp); | |
1156 | } | |
1157 | else if (regnum == IA64_VFP_REGNUM) | |
1158 | { | |
1159 | /* If the function in question uses an automatic register (r32-r127) | |
1160 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1161 | above. If the function lacks one of these frame pointers, we can | |
1162 | still provide a value since we know the size of the frame */ | |
1163 | CORE_ADDR vfp = frame->frame + frame->extra_info->mem_stack_frame_size; | |
16461d7d KB |
1164 | store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_VFP_REGNUM), vfp); |
1165 | } | |
1166 | else if (IA64_PR0_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM) | |
1167 | { | |
2fc3ac7e | 1168 | char *pr_raw_buffer = alloca (MAX_REGISTER_RAW_SIZE); |
16461d7d KB |
1169 | int pr_optim; |
1170 | enum lval_type pr_lval; | |
1171 | CORE_ADDR pr_addr; | |
1172 | int prN_val; | |
1173 | ia64_get_saved_register (pr_raw_buffer, &pr_optim, &pr_addr, | |
1174 | frame, IA64_PR_REGNUM, &pr_lval); | |
3a854e23 KB |
1175 | if (IA64_PR16_REGNUM <= regnum && regnum <= IA64_PR63_REGNUM) |
1176 | { | |
1177 | /* Fetch predicate register rename base from current frame | |
1178 | marker for this frame. */ | |
1179 | int rrb_pr = (frame->extra_info->cfm >> 32) & 0x3f; | |
1180 | ||
1181 | /* Adjust the register number to account for register rotation. */ | |
1182 | regnum = IA64_PR16_REGNUM | |
1183 | + ((regnum - IA64_PR16_REGNUM) + rrb_pr) % 48; | |
1184 | } | |
16461d7d KB |
1185 | prN_val = extract_bit_field ((unsigned char *) pr_raw_buffer, |
1186 | regnum - IA64_PR0_REGNUM, 1); | |
1187 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), prN_val); | |
16461d7d KB |
1188 | } |
1189 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1190 | { | |
2fc3ac7e | 1191 | char *unat_raw_buffer = alloca (MAX_REGISTER_RAW_SIZE); |
16461d7d KB |
1192 | int unat_optim; |
1193 | enum lval_type unat_lval; | |
1194 | CORE_ADDR unat_addr; | |
1195 | int unatN_val; | |
1196 | ia64_get_saved_register (unat_raw_buffer, &unat_optim, &unat_addr, | |
1197 | frame, IA64_UNAT_REGNUM, &unat_lval); | |
1198 | unatN_val = extract_bit_field ((unsigned char *) unat_raw_buffer, | |
1199 | regnum - IA64_NAT0_REGNUM, 1); | |
1200 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), | |
1201 | unatN_val); | |
16461d7d KB |
1202 | } |
1203 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1204 | { | |
1205 | int natval = 0; | |
1206 | /* Find address of general register corresponding to nat bit we're | |
1207 | interested in. */ | |
244bc108 KB |
1208 | CORE_ADDR gr_addr = 0; |
1209 | ||
1210 | if (!is_dummy_frame) | |
1211 | { | |
1212 | FRAME_INIT_SAVED_REGS (frame); | |
1213 | gr_addr = frame->saved_regs[ regnum - IA64_NAT0_REGNUM | |
1214 | + IA64_GR0_REGNUM]; | |
1215 | } | |
16461d7d KB |
1216 | if (gr_addr) |
1217 | { | |
1218 | /* Compute address of nat collection bits */ | |
1219 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
1220 | CORE_ADDR bsp = read_register (IA64_BSP_REGNUM); | |
1221 | CORE_ADDR nat_collection; | |
1222 | int nat_bit; | |
1223 | /* If our nat collection address is bigger than bsp, we have to get | |
1224 | the nat collection from rnat. Otherwise, we fetch the nat | |
1225 | collection from the computed address. */ | |
1226 | if (nat_addr >= bsp) | |
1227 | nat_collection = read_register (IA64_RNAT_REGNUM); | |
1228 | else | |
1229 | nat_collection = read_memory_integer (nat_addr, 8); | |
1230 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1231 | natval = (nat_collection >> nat_bit) & 1; | |
1232 | } | |
1233 | store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), natval); | |
244bc108 KB |
1234 | } |
1235 | else if (regnum == IA64_IP_REGNUM) | |
1236 | { | |
1237 | CORE_ADDR pc; | |
1238 | if (frame->next) | |
1239 | { | |
1240 | /* FIXME: Set *addrp, *lval when possible. */ | |
1241 | pc = ia64_frame_saved_pc (frame->next); | |
1242 | } | |
1243 | else | |
1244 | { | |
1245 | pc = read_pc (); | |
1246 | } | |
1247 | store_address (raw_buffer, REGISTER_RAW_SIZE (IA64_IP_REGNUM), pc); | |
1248 | } | |
1249 | else if (IA64_GR32_REGNUM <= regnum && regnum <= IA64_GR127_REGNUM) | |
1250 | { | |
1251 | CORE_ADDR addr = 0; | |
1252 | if (!is_dummy_frame) | |
1253 | { | |
1254 | FRAME_INIT_SAVED_REGS (frame); | |
1255 | addr = frame->saved_regs[regnum]; | |
1256 | } | |
1257 | ||
1258 | if (addr != 0) | |
1259 | { | |
1260 | if (lval != NULL) | |
1261 | *lval = lval_memory; | |
1262 | if (addrp != NULL) | |
1263 | *addrp = addr; | |
1264 | read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum)); | |
1265 | } | |
1266 | else | |
1267 | { | |
1268 | /* r32 - r127 must be fetchable via memory. If they aren't, | |
1269 | then the register is unavailable */ | |
1270 | memset (raw_buffer, 0, REGISTER_RAW_SIZE (regnum)); | |
1271 | } | |
16461d7d KB |
1272 | } |
1273 | else | |
1274 | { | |
3a854e23 KB |
1275 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1276 | { | |
1277 | /* Fetch floating point register rename base from current | |
1278 | frame marker for this frame. */ | |
1279 | int rrb_fr = (frame->extra_info->cfm >> 25) & 0x7f; | |
1280 | ||
1281 | /* Adjust the floating point register number to account for | |
1282 | register rotation. */ | |
1283 | regnum = IA64_FR32_REGNUM | |
1284 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1285 | } | |
1286 | ||
244bc108 KB |
1287 | generic_get_saved_register (raw_buffer, optimized, addrp, frame, |
1288 | regnum, lval); | |
16461d7d | 1289 | } |
16461d7d KB |
1290 | } |
1291 | ||
1292 | /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of | |
1293 | EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc | |
1294 | and TYPE is the type (which is known to be struct, union or array). */ | |
1295 | int | |
1296 | ia64_use_struct_convention (int gcc_p, struct type *type) | |
1297 | { | |
64a5b29c KB |
1298 | struct type *float_elt_type; |
1299 | ||
1300 | /* HFAs are structures (or arrays) consisting entirely of floating | |
1301 | point values of the same length. Up to 8 of these are returned | |
1302 | in registers. Don't use the struct convention when this is the | |
1303 | case. */ | |
1304 | float_elt_type = is_float_or_hfa_type (type); | |
1305 | if (float_elt_type != NULL | |
1306 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
1307 | return 0; | |
1308 | ||
1309 | /* Other structs of length 32 or less are returned in r8-r11. | |
1310 | Don't use the struct convention for those either. */ | |
16461d7d KB |
1311 | return TYPE_LENGTH (type) > 32; |
1312 | } | |
1313 | ||
1314 | void | |
1315 | ia64_extract_return_value (struct type *type, char *regbuf, char *valbuf) | |
1316 | { | |
64a5b29c KB |
1317 | struct type *float_elt_type; |
1318 | ||
1319 | float_elt_type = is_float_or_hfa_type (type); | |
1320 | if (float_elt_type != NULL) | |
1321 | { | |
1322 | int offset = 0; | |
1323 | int regnum = IA64_FR8_REGNUM; | |
1324 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
1325 | ||
1326 | while (n-- > 0) | |
1327 | { | |
1328 | ia64_register_convert_to_virtual (regnum, float_elt_type, | |
1329 | ®buf[REGISTER_BYTE (regnum)], valbuf + offset); | |
1330 | offset += TYPE_LENGTH (float_elt_type); | |
1331 | regnum++; | |
1332 | } | |
1333 | } | |
16461d7d | 1334 | else |
64a5b29c KB |
1335 | memcpy (valbuf, ®buf[REGISTER_BYTE (IA64_GR8_REGNUM)], |
1336 | TYPE_LENGTH (type)); | |
16461d7d KB |
1337 | } |
1338 | ||
1339 | /* FIXME: Turn this into a stack of some sort. Unfortunately, something | |
1340 | like this is necessary though since the IA-64 calling conventions specify | |
1341 | that r8 is not preserved. */ | |
1342 | static CORE_ADDR struct_return_address; | |
1343 | ||
1344 | CORE_ADDR | |
1345 | ia64_extract_struct_value_address (char *regbuf) | |
1346 | { | |
1347 | /* FIXME: See above. */ | |
1348 | return struct_return_address; | |
1349 | } | |
1350 | ||
1351 | void | |
1352 | ia64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp) | |
1353 | { | |
1354 | /* FIXME: See above. */ | |
1355 | /* Note that most of the work was done in ia64_push_arguments() */ | |
1356 | struct_return_address = addr; | |
1357 | } | |
1358 | ||
1359 | int | |
1360 | ia64_frameless_function_invocation (struct frame_info *frame) | |
1361 | { | |
fbad0893 KB |
1362 | FRAME_INIT_SAVED_REGS (frame); |
1363 | return (frame->extra_info->mem_stack_frame_size == 0); | |
16461d7d KB |
1364 | } |
1365 | ||
1366 | CORE_ADDR | |
1367 | ia64_saved_pc_after_call (struct frame_info *frame) | |
1368 | { | |
1369 | return read_register (IA64_BR0_REGNUM); | |
1370 | } | |
1371 | ||
1372 | CORE_ADDR | |
1373 | ia64_frame_args_address (struct frame_info *frame) | |
1374 | { | |
1375 | /* frame->frame points at the SP for this frame; But we want the start | |
1376 | of the frame, not the end. Calling frame chain will get his for us. */ | |
1377 | return ia64_frame_chain (frame); | |
1378 | } | |
1379 | ||
1380 | CORE_ADDR | |
1381 | ia64_frame_locals_address (struct frame_info *frame) | |
1382 | { | |
1383 | /* frame->frame points at the SP for this frame; But we want the start | |
1384 | of the frame, not the end. Calling frame chain will get his for us. */ | |
1385 | return ia64_frame_chain (frame); | |
1386 | } | |
1387 | ||
1388 | void | |
1389 | ia64_init_extra_frame_info (int fromleaf, struct frame_info *frame) | |
1390 | { | |
1391 | CORE_ADDR bsp, cfm; | |
244bc108 KB |
1392 | int next_frame_is_call_dummy = ((frame->next != NULL) |
1393 | && PC_IN_CALL_DUMMY (frame->next->pc, frame->next->frame, | |
1394 | frame->next->frame)); | |
16461d7d KB |
1395 | |
1396 | frame->extra_info = (struct frame_extra_info *) | |
1397 | frame_obstack_alloc (sizeof (struct frame_extra_info)); | |
1398 | ||
1399 | if (frame->next == 0) | |
1400 | { | |
1401 | bsp = read_register (IA64_BSP_REGNUM); | |
1402 | cfm = read_register (IA64_CFM_REGNUM); | |
1403 | ||
1404 | } | |
244bc108 KB |
1405 | else if (frame->next->signal_handler_caller) |
1406 | { | |
1407 | bsp = read_sigcontext_register (frame->next, IA64_BSP_REGNUM); | |
1408 | cfm = read_sigcontext_register (frame->next, IA64_CFM_REGNUM); | |
1409 | } | |
1410 | else if (next_frame_is_call_dummy) | |
1411 | { | |
1412 | bsp = generic_read_register_dummy (frame->next->pc, frame->next->frame, | |
1413 | IA64_BSP_REGNUM); | |
1414 | cfm = generic_read_register_dummy (frame->next->pc, frame->next->frame, | |
1415 | IA64_CFM_REGNUM); | |
1416 | } | |
16461d7d KB |
1417 | else |
1418 | { | |
1419 | struct frame_info *frn = frame->next; | |
16461d7d KB |
1420 | |
1421 | FRAME_INIT_SAVED_REGS (frn); | |
1422 | ||
1423 | if (frn->saved_regs[IA64_CFM_REGNUM] != 0) | |
1424 | cfm = read_memory_integer (frn->saved_regs[IA64_CFM_REGNUM], 8); | |
244bc108 KB |
1425 | else if (frn->next && frn->next->signal_handler_caller) |
1426 | cfm = read_sigcontext_register (frn->next, IA64_PFS_REGNUM); | |
1427 | else if (frn->next | |
1428 | && PC_IN_CALL_DUMMY (frn->next->pc, frn->next->frame, | |
1429 | frn->next->frame)) | |
1430 | cfm = generic_read_register_dummy (frn->next->pc, frn->next->frame, | |
1431 | IA64_PFS_REGNUM); | |
16461d7d | 1432 | else |
76d689a6 | 1433 | cfm = read_register (IA64_PFS_REGNUM); |
16461d7d KB |
1434 | |
1435 | bsp = frn->extra_info->bsp; | |
1436 | } | |
1437 | frame->extra_info->cfm = cfm; | |
1438 | frame->extra_info->sof = cfm & 0x7f; | |
1439 | frame->extra_info->sol = (cfm >> 7) & 0x7f; | |
244bc108 KB |
1440 | if (frame->next == 0 |
1441 | || frame->next->signal_handler_caller | |
1442 | || next_frame_is_call_dummy) | |
16461d7d KB |
1443 | frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sof); |
1444 | else | |
1445 | frame->extra_info->bsp = rse_address_add (bsp, -frame->extra_info->sol); | |
1446 | ||
1447 | frame->extra_info->after_prologue = 0; | |
1448 | frame->extra_info->mem_stack_frame_size = -1; /* Not yet determined */ | |
1449 | frame->extra_info->fp_reg = 0; | |
1450 | } | |
1451 | ||
64a5b29c KB |
1452 | static int |
1453 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
1454 | { | |
1455 | switch (TYPE_CODE (t)) | |
1456 | { | |
1457 | case TYPE_CODE_FLT: | |
1458 | if (*etp) | |
1459 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
1460 | else | |
1461 | { | |
1462 | *etp = t; | |
1463 | return 1; | |
1464 | } | |
1465 | break; | |
1466 | case TYPE_CODE_ARRAY: | |
1467 | return is_float_or_hfa_type_recurse (TYPE_TARGET_TYPE (t), etp); | |
1468 | break; | |
1469 | case TYPE_CODE_STRUCT: | |
1470 | { | |
1471 | int i; | |
1472 | ||
1473 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
1474 | if (!is_float_or_hfa_type_recurse (TYPE_FIELD_TYPE (t, i), etp)) | |
1475 | return 0; | |
1476 | return 1; | |
1477 | } | |
1478 | break; | |
1479 | default: | |
1480 | return 0; | |
1481 | break; | |
1482 | } | |
1483 | } | |
1484 | ||
1485 | /* Determine if the given type is one of the floating point types or | |
1486 | and HFA (which is a struct, array, or combination thereof whose | |
1487 | bottom-most elements are all of the same floating point type.) */ | |
1488 | ||
1489 | static struct type * | |
1490 | is_float_or_hfa_type (struct type *t) | |
1491 | { | |
1492 | struct type *et = 0; | |
1493 | ||
1494 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
1495 | } | |
1496 | ||
1497 | ||
1498 | /* Attempt to find (and return) the global pointer for the given | |
1499 | function. | |
1500 | ||
1501 | This is a rather nasty bit of code searchs for the .dynamic section | |
1502 | in the objfile corresponding to the pc of the function we're trying | |
1503 | to call. Once it finds the addresses at which the .dynamic section | |
1504 | lives in the child process, it scans the Elf64_Dyn entries for a | |
1505 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
1506 | d_un.d_ptr value is the global pointer. */ | |
1507 | ||
1508 | static CORE_ADDR | |
698cb3f0 | 1509 | generic_elf_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 1510 | { |
76d689a6 | 1511 | struct obj_section *faddr_sect; |
64a5b29c | 1512 | |
76d689a6 KB |
1513 | faddr_sect = find_pc_section (faddr); |
1514 | if (faddr_sect != NULL) | |
64a5b29c KB |
1515 | { |
1516 | struct obj_section *osect; | |
1517 | ||
76d689a6 | 1518 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
1519 | { |
1520 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
1521 | break; | |
1522 | } | |
1523 | ||
76d689a6 | 1524 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
1525 | { |
1526 | CORE_ADDR addr; | |
1527 | ||
1528 | addr = osect->addr; | |
1529 | while (addr < osect->endaddr) | |
1530 | { | |
1531 | int status; | |
1532 | LONGEST tag; | |
1533 | char buf[8]; | |
1534 | ||
1535 | status = target_read_memory (addr, buf, sizeof (buf)); | |
1536 | if (status != 0) | |
1537 | break; | |
1538 | tag = extract_signed_integer (buf, sizeof (buf)); | |
1539 | ||
1540 | if (tag == DT_PLTGOT) | |
1541 | { | |
1542 | CORE_ADDR global_pointer; | |
1543 | ||
1544 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
1545 | if (status != 0) | |
1546 | break; | |
1547 | global_pointer = extract_address (buf, sizeof (buf)); | |
1548 | ||
1549 | /* The payoff... */ | |
1550 | return global_pointer; | |
1551 | } | |
1552 | ||
1553 | if (tag == DT_NULL) | |
1554 | break; | |
1555 | ||
1556 | addr += 16; | |
1557 | } | |
1558 | } | |
1559 | } | |
1560 | return 0; | |
1561 | } | |
1562 | ||
1563 | /* Given a function's address, attempt to find (and return) the | |
1564 | corresponding (canonical) function descriptor. Return 0 if | |
1565 | not found. */ | |
1566 | static CORE_ADDR | |
1567 | find_extant_func_descr (CORE_ADDR faddr) | |
1568 | { | |
76d689a6 | 1569 | struct obj_section *faddr_sect; |
64a5b29c KB |
1570 | |
1571 | /* Return early if faddr is already a function descriptor */ | |
76d689a6 KB |
1572 | faddr_sect = find_pc_section (faddr); |
1573 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
1574 | return faddr; |
1575 | ||
76d689a6 | 1576 | if (faddr_sect != NULL) |
64a5b29c | 1577 | { |
76d689a6 KB |
1578 | struct obj_section *osect; |
1579 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
1580 | { |
1581 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
1582 | break; | |
1583 | } | |
1584 | ||
76d689a6 | 1585 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
1586 | { |
1587 | CORE_ADDR addr; | |
1588 | ||
1589 | addr = osect->addr; | |
1590 | while (addr < osect->endaddr) | |
1591 | { | |
1592 | int status; | |
1593 | LONGEST faddr2; | |
1594 | char buf[8]; | |
1595 | ||
1596 | status = target_read_memory (addr, buf, sizeof (buf)); | |
1597 | if (status != 0) | |
1598 | break; | |
1599 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
1600 | ||
1601 | if (faddr == faddr2) | |
1602 | return addr; | |
1603 | ||
1604 | addr += 16; | |
1605 | } | |
1606 | } | |
1607 | } | |
1608 | return 0; | |
1609 | } | |
1610 | ||
1611 | /* Attempt to find a function descriptor corresponding to the | |
1612 | given address. If none is found, construct one on the | |
1613 | stack using the address at fdaptr */ | |
1614 | ||
1615 | static CORE_ADDR | |
1616 | find_func_descr (CORE_ADDR faddr, CORE_ADDR *fdaptr) | |
1617 | { | |
1618 | CORE_ADDR fdesc; | |
1619 | ||
1620 | fdesc = find_extant_func_descr (faddr); | |
1621 | ||
1622 | if (fdesc == 0) | |
1623 | { | |
1624 | CORE_ADDR global_pointer; | |
1625 | char buf[16]; | |
1626 | ||
1627 | fdesc = *fdaptr; | |
1628 | *fdaptr += 16; | |
1629 | ||
698cb3f0 | 1630 | global_pointer = FIND_GLOBAL_POINTER (faddr); |
64a5b29c KB |
1631 | |
1632 | if (global_pointer == 0) | |
1633 | global_pointer = read_register (IA64_GR1_REGNUM); | |
1634 | ||
1635 | store_address (buf, 8, faddr); | |
1636 | store_address (buf + 8, 8, global_pointer); | |
1637 | ||
1638 | write_memory (fdesc, buf, 16); | |
1639 | } | |
1640 | ||
1641 | return fdesc; | |
1642 | } | |
16461d7d KB |
1643 | |
1644 | CORE_ADDR | |
1645 | ia64_push_arguments (int nargs, value_ptr *args, CORE_ADDR sp, | |
1646 | int struct_return, CORE_ADDR struct_addr) | |
1647 | { | |
1648 | int argno; | |
1649 | value_ptr arg; | |
1650 | struct type *type; | |
1651 | int len, argoffset; | |
64a5b29c | 1652 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 1653 | int floatreg; |
64a5b29c | 1654 | CORE_ADDR bsp, cfm, pfs, new_bsp, funcdescaddr; |
16461d7d KB |
1655 | |
1656 | nslots = 0; | |
64a5b29c | 1657 | nfuncargs = 0; |
16461d7d KB |
1658 | /* Count the number of slots needed for the arguments */ |
1659 | for (argno = 0; argno < nargs; argno++) | |
1660 | { | |
1661 | arg = args[argno]; | |
1662 | type = check_typedef (VALUE_TYPE (arg)); | |
1663 | len = TYPE_LENGTH (type); | |
1664 | ||
1665 | /* FIXME: This is crude and it is wrong (IMO), but it matches | |
1666 | what gcc does, I think. */ | |
1667 | if (len > 8 && (nslots & 1)) | |
1668 | nslots++; | |
1669 | ||
64a5b29c KB |
1670 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
1671 | nfuncargs++; | |
1672 | ||
16461d7d KB |
1673 | nslots += (len + 7) / 8; |
1674 | } | |
1675 | ||
64a5b29c | 1676 | /* Divvy up the slots between the RSE and the memory stack */ |
16461d7d KB |
1677 | rseslots = (nslots > 8) ? 8 : nslots; |
1678 | memslots = nslots - rseslots; | |
1679 | ||
64a5b29c | 1680 | /* Allocate a new RSE frame */ |
16461d7d KB |
1681 | cfm = read_register (IA64_CFM_REGNUM); |
1682 | ||
1683 | bsp = read_register (IA64_BSP_REGNUM); | |
1684 | bsp = rse_address_add (bsp, cfm & 0x7f); | |
1685 | new_bsp = rse_address_add (bsp, rseslots); | |
1686 | write_register (IA64_BSP_REGNUM, new_bsp); | |
1687 | ||
1688 | pfs = read_register (IA64_PFS_REGNUM); | |
1689 | pfs &= 0xc000000000000000LL; | |
1690 | pfs |= (cfm & 0xffffffffffffLL); | |
1691 | write_register (IA64_PFS_REGNUM, pfs); | |
1692 | ||
1693 | cfm &= 0xc000000000000000LL; | |
1694 | cfm |= rseslots; | |
1695 | write_register (IA64_CFM_REGNUM, cfm); | |
1696 | ||
64a5b29c KB |
1697 | /* We will attempt to find function descriptors in the .opd segment, |
1698 | but if we can't we'll construct them ourselves. That being the | |
1699 | case, we'll need to reserve space on the stack for them. */ | |
1700 | funcdescaddr = sp - nfuncargs * 16; | |
1701 | funcdescaddr &= ~0xfLL; | |
1702 | ||
1703 | /* Adjust the stack pointer to it's new value. The calling conventions | |
1704 | require us to have 16 bytes of scratch, plus whatever space is | |
1705 | necessary for the memory slots and our function descriptors */ | |
1706 | sp = sp - 16 - (memslots + nfuncargs) * 8; | |
16461d7d KB |
1707 | sp &= ~0xfLL; /* Maintain 16 byte alignment */ |
1708 | ||
64a5b29c KB |
1709 | /* Place the arguments where they belong. The arguments will be |
1710 | either placed in the RSE backing store or on the memory stack. | |
1711 | In addition, floating point arguments or HFAs are placed in | |
1712 | floating point registers. */ | |
16461d7d KB |
1713 | slotnum = 0; |
1714 | floatreg = IA64_FR8_REGNUM; | |
1715 | for (argno = 0; argno < nargs; argno++) | |
1716 | { | |
64a5b29c KB |
1717 | struct type *float_elt_type; |
1718 | ||
16461d7d KB |
1719 | arg = args[argno]; |
1720 | type = check_typedef (VALUE_TYPE (arg)); | |
1721 | len = TYPE_LENGTH (type); | |
64a5b29c KB |
1722 | |
1723 | /* Special handling for function parameters */ | |
1724 | if (len == 8 | |
1725 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
1726 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
1727 | { | |
1728 | char val_buf[8]; | |
1729 | ||
1730 | store_address (val_buf, 8, | |
1731 | find_func_descr (extract_address (VALUE_CONTENTS (arg), 8), | |
1732 | &funcdescaddr)); | |
1733 | if (slotnum < rseslots) | |
1734 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
1735 | else | |
1736 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
1737 | slotnum++; | |
1738 | continue; | |
1739 | } | |
1740 | ||
1741 | /* Normal slots */ | |
16461d7d KB |
1742 | if (len > 8 && (slotnum & 1)) |
1743 | slotnum++; | |
1744 | argoffset = 0; | |
1745 | while (len > 0) | |
1746 | { | |
1747 | char val_buf[8]; | |
1748 | ||
1749 | memset (val_buf, 0, 8); | |
1750 | memcpy (val_buf, VALUE_CONTENTS (arg) + argoffset, (len > 8) ? 8 : len); | |
1751 | ||
1752 | if (slotnum < rseslots) | |
1753 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
1754 | else | |
1755 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
1756 | ||
1757 | argoffset += 8; | |
1758 | len -= 8; | |
1759 | slotnum++; | |
1760 | } | |
64a5b29c KB |
1761 | |
1762 | /* Handle floating point types (including HFAs) */ | |
1763 | float_elt_type = is_float_or_hfa_type (type); | |
1764 | if (float_elt_type != NULL) | |
1765 | { | |
1766 | argoffset = 0; | |
1767 | len = TYPE_LENGTH (type); | |
1768 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
1769 | { | |
1770 | ia64_register_convert_to_raw ( | |
1771 | float_elt_type, | |
1772 | floatreg, | |
1773 | VALUE_CONTENTS (arg) + argoffset, | |
1774 | ®isters[REGISTER_BYTE (floatreg)]); | |
1775 | floatreg++; | |
1776 | argoffset += TYPE_LENGTH (float_elt_type); | |
1777 | len -= TYPE_LENGTH (float_elt_type); | |
1778 | } | |
16461d7d KB |
1779 | } |
1780 | } | |
1781 | ||
64a5b29c | 1782 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
1783 | if (struct_return) |
1784 | { | |
1785 | store_address (®isters[REGISTER_BYTE (IA64_GR8_REGNUM)], | |
1786 | REGISTER_RAW_SIZE (IA64_GR8_REGNUM), | |
1787 | struct_addr); | |
1788 | } | |
1789 | ||
64a5b29c | 1790 | /* Sync gdb's idea of what the registers are with the target. */ |
16461d7d KB |
1791 | target_store_registers (-1); |
1792 | ||
1793 | /* FIXME: This doesn't belong here! Instead, SAVE_DUMMY_FRAME_TOS needs | |
1794 | to be defined to call generic_save_dummy_frame_tos(). But at the | |
1795 | time of this writing, SAVE_DUMMY_FRAME_TOS wasn't gdbarch'd, so | |
1796 | I chose to put this call here instead of using the old mechanisms. | |
1797 | Once SAVE_DUMMY_FRAME_TOS is gdbarch'd, all we need to do is add the | |
1798 | line | |
1799 | ||
1800 | set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos); | |
1801 | ||
1802 | to ia64_gdbarch_init() and remove the line below. */ | |
1803 | generic_save_dummy_frame_tos (sp); | |
1804 | ||
1805 | return sp; | |
1806 | } | |
1807 | ||
1808 | CORE_ADDR | |
1809 | ia64_push_return_address (CORE_ADDR pc, CORE_ADDR sp) | |
1810 | { | |
698cb3f0 | 1811 | CORE_ADDR global_pointer = FIND_GLOBAL_POINTER (pc); |
16461d7d | 1812 | |
64a5b29c KB |
1813 | if (global_pointer != 0) |
1814 | write_register (IA64_GR1_REGNUM, global_pointer); | |
16461d7d KB |
1815 | |
1816 | write_register (IA64_BR0_REGNUM, CALL_DUMMY_ADDRESS ()); | |
1817 | return sp; | |
1818 | } | |
1819 | ||
1820 | void | |
1821 | ia64_store_return_value (struct type *type, char *valbuf) | |
1822 | { | |
1823 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
1824 | { | |
1825 | ia64_register_convert_to_raw (type, IA64_FR8_REGNUM, valbuf, | |
1826 | ®isters[REGISTER_BYTE (IA64_FR8_REGNUM)]); | |
1827 | target_store_registers (IA64_FR8_REGNUM); | |
1828 | } | |
1829 | else | |
1830 | write_register_bytes (REGISTER_BYTE (IA64_GR8_REGNUM), | |
1831 | valbuf, TYPE_LENGTH (type)); | |
1832 | } | |
1833 | ||
1834 | void | |
1835 | ia64_pop_frame (void) | |
1836 | { | |
1837 | generic_pop_current_frame (ia64_pop_frame_regular); | |
1838 | } | |
1839 | ||
1840 | static void | |
1841 | ia64_pop_frame_regular (struct frame_info *frame) | |
1842 | { | |
1843 | int regno; | |
1844 | CORE_ADDR bsp, cfm, pfs; | |
1845 | ||
1846 | FRAME_INIT_SAVED_REGS (frame); | |
1847 | ||
1848 | for (regno = 0; regno < ia64_num_regs; regno++) | |
1849 | { | |
1850 | if (frame->saved_regs[regno] | |
1851 | && (!(IA64_GR32_REGNUM <= regno && regno <= IA64_GR127_REGNUM)) | |
1852 | && regno != pc_regnum | |
1853 | && regno != sp_regnum | |
1854 | && regno != IA64_PFS_REGNUM | |
1855 | && regno != IA64_CFM_REGNUM | |
1856 | && regno != IA64_BSP_REGNUM | |
1857 | && regno != IA64_BSPSTORE_REGNUM) | |
1858 | { | |
1859 | write_register (regno, | |
1860 | read_memory_integer (frame->saved_regs[regno], | |
1861 | REGISTER_RAW_SIZE (regno))); | |
1862 | } | |
1863 | } | |
1864 | ||
1865 | write_register (sp_regnum, FRAME_CHAIN (frame)); | |
1866 | write_pc (FRAME_SAVED_PC (frame)); | |
1867 | ||
1868 | cfm = read_register (IA64_CFM_REGNUM); | |
1869 | ||
1870 | if (frame->saved_regs[IA64_PFS_REGNUM]) | |
1871 | { | |
1872 | pfs = read_memory_integer (frame->saved_regs[IA64_PFS_REGNUM], | |
1873 | REGISTER_RAW_SIZE (IA64_PFS_REGNUM)); | |
1874 | } | |
1875 | else | |
1876 | pfs = read_register (IA64_PFS_REGNUM); | |
1877 | ||
1878 | /* Compute the new bsp by *adding* the difference between the | |
1879 | size of the frame and the size of the locals (both wrt the | |
1880 | frame that we're going back to). This seems kind of strange, | |
1881 | especially since it seems like we ought to be subtracting the | |
1882 | size of the locals... and we should; but the linux kernel | |
1883 | wants bsp to be set at the end of all used registers. It's | |
1884 | likely that this code will need to be revised to accomodate | |
1885 | other operating systems. */ | |
1886 | bsp = rse_address_add (frame->extra_info->bsp, | |
1887 | (pfs & 0x7f) - ((pfs >> 7) & 0x7f)); | |
1888 | write_register (IA64_BSP_REGNUM, bsp); | |
1889 | ||
1890 | /* FIXME: What becomes of the epilog count in the PFS? */ | |
1891 | cfm = (cfm & ~0xffffffffffffLL) | (pfs & 0xffffffffffffLL); | |
1892 | write_register (IA64_CFM_REGNUM, cfm); | |
1893 | ||
1894 | flush_cached_frames (); | |
1895 | } | |
1896 | ||
1897 | static void | |
1898 | ia64_remote_translate_xfer_address (CORE_ADDR memaddr, int nr_bytes, | |
1899 | CORE_ADDR *targ_addr, int *targ_len) | |
1900 | { | |
1901 | *targ_addr = memaddr; | |
1902 | *targ_len = nr_bytes; | |
1903 | } | |
1904 | ||
244bc108 KB |
1905 | static void |
1906 | process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj) | |
1907 | { | |
1908 | int *os_ident_ptr = obj; | |
1909 | const char *name; | |
1910 | unsigned int sectsize; | |
1911 | ||
1912 | name = bfd_get_section_name (abfd, sect); | |
1913 | sectsize = bfd_section_size (abfd, sect); | |
1914 | if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0) | |
1915 | { | |
1916 | unsigned int name_length, data_length, note_type; | |
1917 | char *note = alloca (sectsize); | |
1918 | ||
1919 | bfd_get_section_contents (abfd, sect, note, | |
1920 | (file_ptr) 0, (bfd_size_type) sectsize); | |
1921 | ||
1922 | name_length = bfd_h_get_32 (abfd, note); | |
1923 | data_length = bfd_h_get_32 (abfd, note + 4); | |
1924 | note_type = bfd_h_get_32 (abfd, note + 8); | |
1925 | ||
1926 | if (name_length == 4 && data_length == 16 && note_type == 1 | |
1927 | && strcmp (note + 12, "GNU") == 0) | |
1928 | { | |
1929 | int os_number = bfd_h_get_32 (abfd, note + 16); | |
1930 | ||
1931 | /* The case numbers are from abi-tags in glibc */ | |
1932 | switch (os_number) | |
1933 | { | |
1934 | case 0 : | |
1935 | *os_ident_ptr = ELFOSABI_LINUX; | |
1936 | break; | |
244bc108 KB |
1937 | case 1 : |
1938 | *os_ident_ptr = ELFOSABI_HURD; | |
1939 | break; | |
1940 | case 2 : | |
1941 | *os_ident_ptr = ELFOSABI_SOLARIS; | |
1942 | break; | |
244bc108 | 1943 | default : |
8e65ff28 AC |
1944 | internal_error (__FILE__, __LINE__, |
1945 | "process_note_abi_sections: unknown OS number %d", os_number); | |
244bc108 KB |
1946 | break; |
1947 | } | |
1948 | } | |
1949 | } | |
1950 | } | |
1951 | ||
16461d7d KB |
1952 | static struct gdbarch * |
1953 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
1954 | { | |
1955 | struct gdbarch *gdbarch; | |
244bc108 KB |
1956 | struct gdbarch_tdep *tdep; |
1957 | int os_ident; | |
1958 | ||
1959 | if (info.abfd != NULL | |
1960 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
1961 | { | |
1962 | os_ident = elf_elfheader (info.abfd)->e_ident[EI_OSABI]; | |
1963 | ||
1964 | /* If os_ident is 0, it is not necessarily the case that we're on a | |
02240683 | 1965 | SYSV system. (ELFOSABI_NONE is defined to be 0.) GNU/Linux uses |
244bc108 KB |
1966 | a note section to record OS/ABI info, but leaves e_ident[EI_OSABI] |
1967 | zero. So we have to check for note sections too. */ | |
1968 | if (os_ident == 0) | |
1969 | { | |
1970 | bfd_map_over_sections (info.abfd, | |
1971 | process_note_abi_tag_sections, | |
1972 | &os_ident); | |
1973 | } | |
1974 | } | |
1975 | else | |
1976 | os_ident = -1; | |
16461d7d | 1977 | |
244bc108 KB |
1978 | for (arches = gdbarch_list_lookup_by_info (arches, &info); |
1979 | arches != NULL; | |
1980 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
1981 | { | |
1982 | if (gdbarch_tdep (current_gdbarch)->os_ident != os_ident) | |
1983 | continue; | |
1984 | return arches->gdbarch; | |
1985 | } | |
16461d7d | 1986 | |
244bc108 KB |
1987 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
1988 | gdbarch = gdbarch_alloc (&info, tdep); | |
1989 | tdep->os_ident = os_ident; | |
1990 | ||
d7fa2ae2 KB |
1991 | |
1992 | /* Set the method of obtaining the sigcontext addresses at which | |
1993 | registers are saved. The method of checking to see if | |
1994 | native_find_global_pointer is nonzero to indicate that we're | |
1995 | on AIX is kind of hokey, but I can't think of a better way | |
1996 | to do it. */ | |
244bc108 KB |
1997 | if (os_ident == ELFOSABI_LINUX) |
1998 | tdep->sigcontext_register_address = ia64_linux_sigcontext_register_address; | |
d7fa2ae2 KB |
1999 | else if (native_find_global_pointer != 0) |
2000 | tdep->sigcontext_register_address = ia64_aix_sigcontext_register_address; | |
244bc108 KB |
2001 | else |
2002 | tdep->sigcontext_register_address = 0; | |
16461d7d | 2003 | |
698cb3f0 KB |
2004 | /* We know that Linux won't have to resort to the native_find_global_pointer |
2005 | hackery. But that's the only one we know about so far, so if | |
2006 | native_find_global_pointer is set to something non-zero, then use | |
2007 | it. Otherwise fall back to using generic_elf_find_global_pointer. | |
2008 | This arrangement should (in theory) allow us to cross debug Linux | |
2009 | binaries from an AIX machine. */ | |
2010 | if (os_ident == ELFOSABI_LINUX) | |
2011 | tdep->find_global_pointer = generic_elf_find_global_pointer; | |
2012 | else if (native_find_global_pointer != 0) | |
2013 | tdep->find_global_pointer = native_find_global_pointer; | |
2014 | else | |
2015 | tdep->find_global_pointer = generic_elf_find_global_pointer; | |
2016 | ||
16461d7d KB |
2017 | set_gdbarch_short_bit (gdbarch, 16); |
2018 | set_gdbarch_int_bit (gdbarch, 32); | |
2019 | set_gdbarch_long_bit (gdbarch, 64); | |
2020 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2021 | set_gdbarch_float_bit (gdbarch, 32); | |
2022 | set_gdbarch_double_bit (gdbarch, 64); | |
2023 | set_gdbarch_long_double_bit (gdbarch, 64); | |
2024 | set_gdbarch_ptr_bit (gdbarch, 64); | |
2025 | ||
2026 | set_gdbarch_num_regs (gdbarch, ia64_num_regs); | |
2027 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); | |
2028 | set_gdbarch_fp_regnum (gdbarch, fp_regnum); | |
2029 | set_gdbarch_pc_regnum (gdbarch, pc_regnum); | |
698cb3f0 | 2030 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
2031 | |
2032 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
2033 | set_gdbarch_register_size (gdbarch, 8); | |
2034 | set_gdbarch_register_bytes (gdbarch, ia64_num_regs * 8 + 128*8); | |
2035 | set_gdbarch_register_byte (gdbarch, ia64_register_byte); | |
2036 | set_gdbarch_register_raw_size (gdbarch, ia64_register_raw_size); | |
2037 | set_gdbarch_max_register_raw_size (gdbarch, 16); | |
2038 | set_gdbarch_register_virtual_size (gdbarch, ia64_register_virtual_size); | |
2039 | set_gdbarch_max_register_virtual_size (gdbarch, 16); | |
2040 | set_gdbarch_register_virtual_type (gdbarch, ia64_register_virtual_type); | |
2041 | ||
2042 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); | |
2043 | ||
2044 | set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown); | |
2045 | set_gdbarch_frameless_function_invocation (gdbarch, ia64_frameless_function_invocation); | |
2046 | ||
2047 | set_gdbarch_saved_pc_after_call (gdbarch, ia64_saved_pc_after_call); | |
2048 | ||
2049 | set_gdbarch_frame_chain (gdbarch, ia64_frame_chain); | |
244bc108 | 2050 | set_gdbarch_frame_chain_valid (gdbarch, generic_func_frame_chain_valid); |
16461d7d KB |
2051 | set_gdbarch_frame_saved_pc (gdbarch, ia64_frame_saved_pc); |
2052 | ||
2053 | set_gdbarch_frame_init_saved_regs (gdbarch, ia64_frame_init_saved_regs); | |
2054 | set_gdbarch_get_saved_register (gdbarch, ia64_get_saved_register); | |
2055 | ||
2056 | set_gdbarch_register_convertible (gdbarch, ia64_register_convertible); | |
2057 | set_gdbarch_register_convert_to_virtual (gdbarch, ia64_register_convert_to_virtual); | |
2058 | set_gdbarch_register_convert_to_raw (gdbarch, ia64_register_convert_to_raw); | |
2059 | ||
2060 | set_gdbarch_use_struct_convention (gdbarch, ia64_use_struct_convention); | |
2061 | set_gdbarch_extract_return_value (gdbarch, ia64_extract_return_value); | |
2062 | ||
2063 | set_gdbarch_store_struct_return (gdbarch, ia64_store_struct_return); | |
2064 | set_gdbarch_store_return_value (gdbarch, ia64_store_return_value); | |
2065 | set_gdbarch_extract_struct_value_address (gdbarch, ia64_extract_struct_value_address); | |
2066 | ||
2067 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
2068 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
2069 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
2070 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
2071 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); | |
2072 | ||
2073 | /* Settings for calling functions in the inferior. */ | |
2074 | set_gdbarch_use_generic_dummy_frames (gdbarch, 1); | |
2075 | set_gdbarch_call_dummy_length (gdbarch, 0); | |
2076 | set_gdbarch_push_arguments (gdbarch, ia64_push_arguments); | |
2077 | set_gdbarch_push_return_address (gdbarch, ia64_push_return_address); | |
2078 | set_gdbarch_pop_frame (gdbarch, ia64_pop_frame); | |
2079 | ||
2080 | set_gdbarch_call_dummy_p (gdbarch, 1); | |
2081 | set_gdbarch_call_dummy_words (gdbarch, ia64_call_dummy_words); | |
2082 | set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (ia64_call_dummy_words)); | |
2083 | set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); | |
2084 | set_gdbarch_init_extra_frame_info (gdbarch, ia64_init_extra_frame_info); | |
2085 | set_gdbarch_frame_args_address (gdbarch, ia64_frame_args_address); | |
2086 | set_gdbarch_frame_locals_address (gdbarch, ia64_frame_locals_address); | |
2087 | ||
2088 | /* We won't necessarily have a frame pointer and even if we do, | |
2089 | it winds up being extraordinarly messy when attempting to find | |
2090 | the frame chain. So for the purposes of creating frames (which | |
2091 | is all read_fp() is used for), simply use the stack pointer value | |
2092 | instead. */ | |
2093 | set_gdbarch_read_fp (gdbarch, generic_target_read_sp); | |
2094 | set_gdbarch_write_fp (gdbarch, generic_target_write_sp); | |
2095 | ||
2096 | /* Settings that should be unnecessary. */ | |
2097 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
2098 | ||
2099 | set_gdbarch_read_sp (gdbarch, generic_target_read_sp); | |
2100 | set_gdbarch_write_sp (gdbarch, generic_target_write_sp); | |
2101 | ||
2102 | set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT); | |
2103 | set_gdbarch_call_dummy_address (gdbarch, entry_point_address); | |
2104 | set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0); | |
2105 | set_gdbarch_call_dummy_start_offset (gdbarch, 0); | |
2106 | set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy); | |
2107 | set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0); | |
2108 | set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame); | |
2109 | set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy); | |
2110 | ||
2111 | set_gdbarch_decr_pc_after_break (gdbarch, 0); | |
2112 | set_gdbarch_function_start_offset (gdbarch, 0); | |
2113 | ||
2114 | set_gdbarch_remote_translate_xfer_address ( | |
2115 | gdbarch, ia64_remote_translate_xfer_address); | |
2116 | ||
2117 | return gdbarch; | |
2118 | } | |
2119 | ||
2120 | void | |
2121 | _initialize_ia64_tdep (void) | |
2122 | { | |
2123 | register_gdbarch_init (bfd_arch_ia64, ia64_gdbarch_init); | |
2124 | ||
2125 | tm_print_insn = print_insn_ia64; | |
2126 | tm_print_insn_info.bytes_per_line = SLOT_MULTIPLIER; | |
2127 | } |