Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
0fb0cc75 JB |
3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4 | 2009 Free Software Foundation, Inc. | |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
16461d7d KB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
16461d7d KB |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
16461d7d | 23 | #include "gdbcore.h" |
8064c6ae | 24 | #include "arch-utils.h" |
16461d7d | 25 | #include "floatformat.h" |
e6bb342a | 26 | #include "gdbtypes.h" |
4e052eda | 27 | #include "regcache.h" |
004d836a JJ |
28 | #include "reggroups.h" |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
d16aafd8 | 32 | #include "doublest.h" |
fd0407d6 | 33 | #include "value.h" |
bd1ce8ba | 34 | #include "gdb_assert.h" |
16461d7d KB |
35 | #include "objfiles.h" |
36 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 37 | #include "elf-bfd.h" |
a89aa300 | 38 | #include "dis-asm.h" |
7d9b040b | 39 | #include "infcall.h" |
b33e8514 | 40 | #include "osabi.h" |
9fc9f5e2 | 41 | #include "ia64-tdep.h" |
0d5de010 | 42 | #include "cp-abi.h" |
16461d7d | 43 | |
968d1cb4 | 44 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 45 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
46 | #include "libunwind-frame.h" |
47 | #include "libunwind-ia64.h" | |
c5a27d9c JJ |
48 | |
49 | /* Note: KERNEL_START is supposed to be an address which is not going | |
50 | to ever contain any valid unwind info. For ia64 linux, the choice | |
51 | of 0xc000000000000000 is fairly safe since that's uncached space. | |
52 | ||
53 | We use KERNEL_START as follows: after obtaining the kernel's | |
54 | unwind table via getunwind(), we project its unwind data into | |
55 | address-range KERNEL_START-(KERNEL_START+ktab_size) and then | |
56 | when ia64_access_mem() sees a memory access to this | |
57 | address-range, we redirect it to ktab instead. | |
58 | ||
59 | None of this hackery is needed with a modern kernel/libcs | |
60 | which uses the kernel virtual DSO to provide access to the | |
61 | kernel's unwind info. In that case, ktab_size remains 0 and | |
62 | hence the value of KERNEL_START doesn't matter. */ | |
63 | ||
64 | #define KERNEL_START 0xc000000000000000ULL | |
65 | ||
66 | static size_t ktab_size = 0; | |
67 | struct ia64_table_entry | |
68 | { | |
69 | uint64_t start_offset; | |
70 | uint64_t end_offset; | |
71 | uint64_t info_offset; | |
72 | }; | |
73 | ||
74 | static struct ia64_table_entry *ktab = NULL; | |
75 | ||
968d1cb4 JJ |
76 | #endif |
77 | ||
698cb3f0 KB |
78 | /* An enumeration of the different IA-64 instruction types. */ |
79 | ||
16461d7d KB |
80 | typedef enum instruction_type |
81 | { | |
82 | A, /* Integer ALU ; I-unit or M-unit */ | |
83 | I, /* Non-ALU integer; I-unit */ | |
84 | M, /* Memory ; M-unit */ | |
85 | F, /* Floating-point ; F-unit */ | |
86 | B, /* Branch ; B-unit */ | |
87 | L, /* Extended (L+X) ; I-unit */ | |
88 | X, /* Extended (L+X) ; I-unit */ | |
89 | undefined /* undefined or reserved */ | |
90 | } instruction_type; | |
91 | ||
92 | /* We represent IA-64 PC addresses as the value of the instruction | |
93 | pointer or'd with some bit combination in the low nibble which | |
94 | represents the slot number in the bundle addressed by the | |
95 | instruction pointer. The problem is that the Linux kernel | |
96 | multiplies its slot numbers (for exceptions) by one while the | |
97 | disassembler multiplies its slot numbers by 6. In addition, I've | |
98 | heard it said that the simulator uses 1 as the multiplier. | |
99 | ||
100 | I've fixed the disassembler so that the bytes_per_line field will | |
101 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
102 | is set to six (which is how it was set up initially). -- objdump | |
103 | displays pretty disassembly dumps with this value. For our purposes, | |
104 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
105 | never want to also display the raw bytes the way objdump does. */ | |
106 | ||
107 | #define SLOT_MULTIPLIER 1 | |
108 | ||
109 | /* Length in bytes of an instruction bundle */ | |
110 | ||
111 | #define BUNDLE_LEN 16 | |
112 | ||
939c61fa JK |
113 | /* See the saved memory layout comment for ia64_memory_insert_breakpoint. */ |
114 | ||
115 | #if BREAKPOINT_MAX < BUNDLE_LEN - 2 | |
116 | # error "BREAKPOINT_MAX < BUNDLE_LEN - 2" | |
117 | #endif | |
118 | ||
16461d7d KB |
119 | static gdbarch_init_ftype ia64_gdbarch_init; |
120 | ||
121 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 122 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 123 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 124 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
64a5b29c | 125 | static struct type *is_float_or_hfa_type (struct type *t); |
b33e8514 | 126 | static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr); |
16461d7d | 127 | |
004d836a JJ |
128 | static struct type *builtin_type_ia64_ext; |
129 | ||
130 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 131 | |
16461d7d KB |
132 | static int sp_regnum = IA64_GR12_REGNUM; |
133 | static int fp_regnum = IA64_VFP_REGNUM; | |
134 | static int lr_regnum = IA64_VRAP_REGNUM; | |
135 | ||
004d836a | 136 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 137 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
138 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
139 | V127_REGNUM = V32_REGNUM + 95, | |
140 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
141 | |
142 | /* Array of register names; There should be ia64_num_regs strings in | |
143 | the initializer. */ | |
144 | ||
145 | static char *ia64_register_names[] = | |
146 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
147 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
148 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
149 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
150 | "", "", "", "", "", "", "", "", |
151 | "", "", "", "", "", "", "", "", | |
152 | "", "", "", "", "", "", "", "", | |
153 | "", "", "", "", "", "", "", "", | |
154 | "", "", "", "", "", "", "", "", | |
155 | "", "", "", "", "", "", "", "", | |
156 | "", "", "", "", "", "", "", "", | |
157 | "", "", "", "", "", "", "", "", | |
158 | "", "", "", "", "", "", "", "", | |
159 | "", "", "", "", "", "", "", "", | |
160 | "", "", "", "", "", "", "", "", | |
161 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
162 | |
163 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
164 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
165 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
166 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
167 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
168 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
169 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
170 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
171 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
172 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
173 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
174 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
175 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
176 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
177 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
178 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
179 | ||
004d836a JJ |
180 | "", "", "", "", "", "", "", "", |
181 | "", "", "", "", "", "", "", "", | |
182 | "", "", "", "", "", "", "", "", | |
183 | "", "", "", "", "", "", "", "", | |
184 | "", "", "", "", "", "", "", "", | |
185 | "", "", "", "", "", "", "", "", | |
186 | "", "", "", "", "", "", "", "", | |
187 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
188 | |
189 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
190 | ||
191 | "vfp", "vrap", | |
192 | ||
193 | "pr", "ip", "psr", "cfm", | |
194 | ||
195 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
196 | "", "", "", "", "", "", "", "", | |
197 | "rsc", "bsp", "bspstore", "rnat", | |
198 | "", "fcr", "", "", | |
199 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
200 | "ccv", "", "", "", "unat", "", "", "", | |
201 | "fpsr", "", "", "", "itc", | |
202 | "", "", "", "", "", "", "", "", "", "", | |
203 | "", "", "", "", "", "", "", "", "", | |
204 | "pfs", "lc", "ec", | |
205 | "", "", "", "", "", "", "", "", "", "", | |
206 | "", "", "", "", "", "", "", "", "", "", | |
207 | "", "", "", "", "", "", "", "", "", "", | |
208 | "", "", "", "", "", "", "", "", "", "", | |
209 | "", "", "", "", "", "", "", "", "", "", | |
210 | "", "", "", "", "", "", "", "", "", "", | |
211 | "", | |
212 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
213 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
214 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
215 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
216 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
217 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
218 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
219 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
220 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
221 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
222 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
223 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
224 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
225 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
226 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
227 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
228 | |
229 | "bof", | |
230 | ||
231 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
232 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
233 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
234 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
235 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
236 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
237 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
238 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
239 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
240 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
241 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
242 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
243 | ||
244 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
245 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
246 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
247 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
248 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
249 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
250 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
251 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
252 | }; |
253 | ||
004d836a JJ |
254 | struct ia64_frame_cache |
255 | { | |
256 | CORE_ADDR base; /* frame pointer base for frame */ | |
257 | CORE_ADDR pc; /* function start pc for frame */ | |
258 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
259 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
260 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 261 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
262 | int frameless; |
263 | int sof; /* Size of frame (decoded from cfm value) */ | |
264 | int sol; /* Size of locals (decoded from cfm value) */ | |
265 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
266 | CORE_ADDR after_prologue; | |
267 | /* Address of first instruction after the last | |
268 | prologue instruction; Note that there may | |
269 | be instructions from the function's body | |
270 | intermingled with the prologue. */ | |
271 | int mem_stack_frame_size; | |
272 | /* Size of the memory stack frame (may be zero), | |
273 | or -1 if it has not been determined yet. */ | |
274 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 275 | for this frame. 0 if no register is being used |
16461d7d | 276 | as the frame pointer. */ |
004d836a JJ |
277 | |
278 | /* Saved registers. */ | |
279 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
280 | ||
281 | }; | |
244bc108 | 282 | |
63807e1d | 283 | static int |
004d836a JJ |
284 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
285 | struct reggroup *group) | |
16461d7d | 286 | { |
004d836a JJ |
287 | int vector_p; |
288 | int float_p; | |
289 | int raw_p; | |
290 | if (group == all_reggroup) | |
291 | return 1; | |
292 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
293 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
294 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
295 | if (group == float_reggroup) | |
296 | return float_p; | |
297 | if (group == vector_reggroup) | |
298 | return vector_p; | |
299 | if (group == general_reggroup) | |
300 | return (!vector_p && !float_p); | |
301 | if (group == save_reggroup || group == restore_reggroup) | |
302 | return raw_p; | |
303 | return 0; | |
16461d7d KB |
304 | } |
305 | ||
004d836a | 306 | static const char * |
d93859e2 | 307 | ia64_register_name (struct gdbarch *gdbarch, int reg) |
16461d7d | 308 | { |
004d836a | 309 | return ia64_register_names[reg]; |
16461d7d KB |
310 | } |
311 | ||
004d836a JJ |
312 | struct type * |
313 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 314 | { |
004d836a JJ |
315 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
316 | return builtin_type_ia64_ext; | |
317 | else | |
0dfff4cb | 318 | return builtin_type (arch)->builtin_long; |
16461d7d KB |
319 | } |
320 | ||
a78f21af | 321 | static int |
d3f73121 | 322 | ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
16461d7d | 323 | { |
004d836a JJ |
324 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
325 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
326 | return reg; | |
16461d7d KB |
327 | } |
328 | ||
4afcc598 | 329 | static int |
2fda21a6 | 330 | floatformat_valid (const struct floatformat *fmt, const void *from) |
4afcc598 JJ |
331 | { |
332 | return 1; | |
333 | } | |
334 | ||
16461d7d KB |
335 | const struct floatformat floatformat_ia64_ext = |
336 | { | |
337 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
b14d30e1 | 338 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL |
16461d7d KB |
339 | }; |
340 | ||
8da61cc4 DJ |
341 | const struct floatformat *floatformats_ia64_ext[2] = |
342 | { | |
343 | &floatformat_ia64_ext, | |
344 | &floatformat_ia64_ext | |
345 | }; | |
346 | ||
16461d7d KB |
347 | |
348 | /* Extract ``len'' bits from an instruction bundle starting at | |
349 | bit ``from''. */ | |
350 | ||
244bc108 | 351 | static long long |
15c1e57f | 352 | extract_bit_field (const char *bundle, int from, int len) |
16461d7d KB |
353 | { |
354 | long long result = 0LL; | |
355 | int to = from + len; | |
356 | int from_byte = from / 8; | |
357 | int to_byte = to / 8; | |
358 | unsigned char *b = (unsigned char *) bundle; | |
359 | unsigned char c; | |
360 | int lshift; | |
361 | int i; | |
362 | ||
363 | c = b[from_byte]; | |
364 | if (from_byte == to_byte) | |
365 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
366 | result = c >> (from % 8); | |
367 | lshift = 8 - (from % 8); | |
368 | ||
369 | for (i = from_byte+1; i < to_byte; i++) | |
370 | { | |
371 | result |= ((long long) b[i]) << lshift; | |
372 | lshift += 8; | |
373 | } | |
374 | ||
375 | if (from_byte < to_byte && (to % 8 != 0)) | |
376 | { | |
377 | c = b[to_byte]; | |
378 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
379 | result |= ((long long) c) << lshift; | |
380 | } | |
381 | ||
382 | return result; | |
383 | } | |
384 | ||
385 | /* Replace the specified bits in an instruction bundle */ | |
386 | ||
244bc108 | 387 | static void |
16461d7d KB |
388 | replace_bit_field (char *bundle, long long val, int from, int len) |
389 | { | |
390 | int to = from + len; | |
391 | int from_byte = from / 8; | |
392 | int to_byte = to / 8; | |
393 | unsigned char *b = (unsigned char *) bundle; | |
394 | unsigned char c; | |
395 | ||
396 | if (from_byte == to_byte) | |
397 | { | |
398 | unsigned char left, right; | |
399 | c = b[from_byte]; | |
400 | left = (c >> (to % 8)) << (to % 8); | |
401 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
402 | c = (unsigned char) (val & 0xff); | |
403 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
404 | c |= right | left; | |
405 | b[from_byte] = c; | |
406 | } | |
407 | else | |
408 | { | |
409 | int i; | |
410 | c = b[from_byte]; | |
411 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
412 | c = c | (val << (from % 8)); | |
413 | b[from_byte] = c; | |
414 | val >>= 8 - from % 8; | |
415 | ||
416 | for (i = from_byte+1; i < to_byte; i++) | |
417 | { | |
418 | c = val & 0xff; | |
419 | val >>= 8; | |
420 | b[i] = c; | |
421 | } | |
422 | ||
423 | if (to % 8 != 0) | |
424 | { | |
425 | unsigned char cv = (unsigned char) val; | |
426 | c = b[to_byte]; | |
427 | c = c >> (to % 8) << (to % 8); | |
428 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
429 | b[to_byte] = c; | |
430 | } | |
431 | } | |
432 | } | |
433 | ||
434 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
435 | and instruction bundle */ | |
436 | ||
244bc108 | 437 | static long long |
2fc3ac7e | 438 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
439 | { |
440 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
441 | } | |
442 | ||
443 | /* Store an instruction in an instruction bundle */ | |
444 | ||
244bc108 | 445 | static void |
2fc3ac7e | 446 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
447 | { |
448 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
449 | } | |
450 | ||
939c61fa | 451 | static const enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
452 | { |
453 | { M, I, I }, /* 00 */ | |
454 | { M, I, I }, /* 01 */ | |
455 | { M, I, I }, /* 02 */ | |
456 | { M, I, I }, /* 03 */ | |
457 | { M, L, X }, /* 04 */ | |
458 | { M, L, X }, /* 05 */ | |
459 | { undefined, undefined, undefined }, /* 06 */ | |
460 | { undefined, undefined, undefined }, /* 07 */ | |
461 | { M, M, I }, /* 08 */ | |
462 | { M, M, I }, /* 09 */ | |
463 | { M, M, I }, /* 0A */ | |
464 | { M, M, I }, /* 0B */ | |
465 | { M, F, I }, /* 0C */ | |
466 | { M, F, I }, /* 0D */ | |
467 | { M, M, F }, /* 0E */ | |
468 | { M, M, F }, /* 0F */ | |
469 | { M, I, B }, /* 10 */ | |
470 | { M, I, B }, /* 11 */ | |
471 | { M, B, B }, /* 12 */ | |
472 | { M, B, B }, /* 13 */ | |
473 | { undefined, undefined, undefined }, /* 14 */ | |
474 | { undefined, undefined, undefined }, /* 15 */ | |
475 | { B, B, B }, /* 16 */ | |
476 | { B, B, B }, /* 17 */ | |
477 | { M, M, B }, /* 18 */ | |
478 | { M, M, B }, /* 19 */ | |
479 | { undefined, undefined, undefined }, /* 1A */ | |
480 | { undefined, undefined, undefined }, /* 1B */ | |
481 | { M, F, B }, /* 1C */ | |
482 | { M, F, B }, /* 1D */ | |
483 | { undefined, undefined, undefined }, /* 1E */ | |
484 | { undefined, undefined, undefined }, /* 1F */ | |
485 | }; | |
486 | ||
487 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
488 | address of the next instruction to fetch. */ | |
489 | ||
490 | static CORE_ADDR | |
491 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
492 | { | |
493 | char bundle[BUNDLE_LEN]; | |
494 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
495 | long long template; | |
496 | int val; | |
497 | ||
c26e1c2b KB |
498 | /* Warn about slot numbers greater than 2. We used to generate |
499 | an error here on the assumption that the user entered an invalid | |
500 | address. But, sometimes GDB itself requests an invalid address. | |
501 | This can (easily) happen when execution stops in a function for | |
502 | which there are no symbols. The prologue scanner will attempt to | |
503 | find the beginning of the function - if the nearest symbol | |
504 | happens to not be aligned on a bundle boundary (16 bytes), the | |
505 | resulting starting address will cause GDB to think that the slot | |
506 | number is too large. | |
507 | ||
508 | So we warn about it and set the slot number to zero. It is | |
509 | not necessarily a fatal condition, particularly if debugging | |
510 | at the assembly language level. */ | |
16461d7d | 511 | if (slotnum > 2) |
c26e1c2b | 512 | { |
8a3fe4f8 AC |
513 | warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
514 | "Using slot 0 instead")); | |
c26e1c2b KB |
515 | slotnum = 0; |
516 | } | |
16461d7d KB |
517 | |
518 | addr &= ~0x0f; | |
519 | ||
520 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
521 | ||
522 | if (val != 0) | |
523 | return 0; | |
524 | ||
525 | *instr = slotN_contents (bundle, slotnum); | |
526 | template = extract_bit_field (bundle, 0, 5); | |
527 | *it = template_encoding_table[(int)template][slotnum]; | |
528 | ||
64a5b29c | 529 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
530 | addr += 16; |
531 | else | |
532 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
533 | ||
534 | return addr; | |
535 | } | |
536 | ||
537 | /* There are 5 different break instructions (break.i, break.b, | |
538 | break.m, break.f, and break.x), but they all have the same | |
539 | encoding. (The five bit template in the low five bits of the | |
540 | instruction bundle distinguishes one from another.) | |
541 | ||
542 | The runtime architecture manual specifies that break instructions | |
543 | used for debugging purposes must have the upper two bits of the 21 | |
544 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
545 | instruction encodes the most significant bit of its 21 bit | |
546 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
547 | is at bit 25 which leads to the pattern below. | |
548 | ||
549 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
550 | it turns out that 0x80000 was used as the syscall break in the early | |
551 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
552 | instead. But that didn't work either (I later found out that this | |
553 | pattern was used by the simulator that I was using.) So I ended up | |
939c61fa JK |
554 | using the pattern seen below. |
555 | ||
556 | SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN) | |
557 | while we need bit-based addressing as the instructions length is 41 bits and | |
558 | we must not modify/corrupt the adjacent slots in the same bundle. | |
559 | Fortunately we may store larger memory incl. the adjacent bits with the | |
560 | original memory content (not the possibly already stored breakpoints there). | |
561 | We need to be careful in ia64_memory_remove_breakpoint to always restore | |
562 | only the specific bits of this instruction ignoring any adjacent stored | |
563 | bits. | |
564 | ||
565 | We use the original addressing with the low nibble in the range <0..2> which | |
566 | gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows | |
567 | as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN | |
568 | bytes just without these two possibly skipped bytes to not to exceed to the | |
569 | next bundle. | |
570 | ||
571 | If we would like to store the whole bundle to SHADOW_CONTENTS we would have | |
572 | to store already the base address (`address & ~0x0f') into PLACED_ADDRESS. | |
573 | In such case there is no other place where to store | |
574 | SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know | |
575 | SLOTNUM in ia64_memory_remove_breakpoint. | |
576 | ||
577 | ia64 16-byte bundle layout: | |
578 | | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits | | |
579 | ||
580 | The current addressing used by the code below: | |
581 | original PC placed_address placed_size required covered | |
582 | == bp_tgt->shadow_len reqd \subset covered | |
583 | 0xABCDE0 0xABCDE0 0xE <0x0...0x5> <0x0..0xD> | |
584 | 0xABCDE1 0xABCDE1 0xE <0x5...0xA> <0x1..0xE> | |
585 | 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF> | |
586 | ||
587 | `objdump -d' and some other tools show a bit unjustified offsets: | |
588 | original PC byte where starts the instruction objdump offset | |
589 | 0xABCDE0 0xABCDE0 0xABCDE0 | |
590 | 0xABCDE1 0xABCDE5 0xABCDE6 | |
591 | 0xABCDE2 0xABCDEA 0xABCDEC | |
592 | */ | |
16461d7d | 593 | |
aaab4dba | 594 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
595 | |
596 | static int | |
ae4b2284 MD |
597 | ia64_memory_insert_breakpoint (struct gdbarch *gdbarch, |
598 | struct bp_target_info *bp_tgt) | |
16461d7d | 599 | { |
8181d85f | 600 | CORE_ADDR addr = bp_tgt->placed_address; |
939c61fa | 601 | gdb_byte bundle[BUNDLE_LEN]; |
16461d7d | 602 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; |
939c61fa | 603 | long long instr_breakpoint; |
16461d7d | 604 | int val; |
126fa72d | 605 | int template; |
939c61fa | 606 | struct cleanup *cleanup; |
16461d7d KB |
607 | |
608 | if (slotnum > 2) | |
8a3fe4f8 | 609 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
16461d7d KB |
610 | |
611 | addr &= ~0x0f; | |
612 | ||
939c61fa JK |
613 | /* Disable the automatic memory restoration from breakpoints while |
614 | we read our instruction bundle. Otherwise, the general restoration | |
615 | mechanism kicks in and we would possibly remove parts of the adjacent | |
616 | placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real | |
617 | breakpoint instruction bits region. */ | |
618 | cleanup = make_show_memory_breakpoints_cleanup (1); | |
16461d7d | 619 | val = target_read_memory (addr, bundle, BUNDLE_LEN); |
126fa72d | 620 | |
939c61fa JK |
621 | /* Check for L type instruction in slot 1, if present then bump up the slot |
622 | number to the slot 2. */ | |
126fa72d | 623 | template = extract_bit_field (bundle, 0, 5); |
939c61fa JK |
624 | if (slotnum == 1 && template_encoding_table[template][slotnum] == L) |
625 | slotnum = 2; | |
626 | ||
627 | /* Slot number 2 may skip at most 2 bytes at the beginning. */ | |
628 | bp_tgt->placed_size = bp_tgt->shadow_len = BUNDLE_LEN - 2; | |
629 | ||
630 | /* Store the whole bundle, except for the initial skipped bytes by the slot | |
631 | number interpreted as bytes offset in PLACED_ADDRESS. */ | |
632 | memcpy (bp_tgt->shadow_contents, bundle + slotnum, bp_tgt->shadow_len); | |
633 | ||
634 | /* Breakpoints already present in the code will get deteacted and not get | |
635 | reinserted by bp_loc_is_permanent. Multiple breakpoints at the same | |
636 | location cannot induce the internal error as they are optimized into | |
637 | a single instance by update_global_location_list. */ | |
638 | instr_breakpoint = slotN_contents (bundle, slotnum); | |
639 | if (instr_breakpoint == IA64_BREAKPOINT) | |
640 | internal_error (__FILE__, __LINE__, | |
641 | _("Address %s already contains a breakpoint."), | |
642 | paddr_nz (bp_tgt->placed_address)); | |
aaab4dba | 643 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
939c61fa | 644 | |
16461d7d | 645 | if (val == 0) |
939c61fa JK |
646 | val = target_write_memory (addr + slotnum, bundle + slotnum, |
647 | bp_tgt->shadow_len); | |
16461d7d | 648 | |
939c61fa | 649 | do_cleanups (cleanup); |
16461d7d KB |
650 | return val; |
651 | } | |
652 | ||
653 | static int | |
ae4b2284 MD |
654 | ia64_memory_remove_breakpoint (struct gdbarch *gdbarch, |
655 | struct bp_target_info *bp_tgt) | |
16461d7d | 656 | { |
8181d85f | 657 | CORE_ADDR addr = bp_tgt->placed_address; |
939c61fa | 658 | gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN]; |
16461d7d | 659 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; |
939c61fa | 660 | long long instr_breakpoint, instr_saved; |
16461d7d | 661 | int val; |
126fa72d | 662 | int template; |
1de34ab7 | 663 | struct cleanup *cleanup; |
16461d7d KB |
664 | |
665 | addr &= ~0x0f; | |
666 | ||
1de34ab7 JB |
667 | /* Disable the automatic memory restoration from breakpoints while |
668 | we read our instruction bundle. Otherwise, the general restoration | |
939c61fa JK |
669 | mechanism kicks in and we would possibly remove parts of the adjacent |
670 | placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real | |
671 | breakpoint instruction bits region. */ | |
1de34ab7 | 672 | cleanup = make_show_memory_breakpoints_cleanup (1); |
939c61fa | 673 | val = target_read_memory (addr, bundle_mem, BUNDLE_LEN); |
126fa72d | 674 | |
939c61fa JK |
675 | /* Check for L type instruction in slot 1, if present then bump up the slot |
676 | number to the slot 2. */ | |
677 | template = extract_bit_field (bundle_mem, 0, 5); | |
678 | if (slotnum == 1 && template_encoding_table[template][slotnum] == L) | |
679 | slotnum = 2; | |
680 | ||
681 | gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - 2); | |
682 | gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len); | |
683 | ||
684 | instr_breakpoint = slotN_contents (bundle_mem, slotnum); | |
685 | if (instr_breakpoint != IA64_BREAKPOINT) | |
126fa72d | 686 | { |
939c61fa JK |
687 | warning (_("Cannot remove breakpoint at address %s, " |
688 | "no break instruction at such address."), | |
689 | paddr_nz (bp_tgt->placed_address)); | |
690 | return -1; | |
126fa72d PS |
691 | } |
692 | ||
939c61fa JK |
693 | /* Extract the original saved instruction from SLOTNUM normalizing its |
694 | bit-shift for INSTR_SAVED. */ | |
695 | memcpy (bundle_saved, bundle_mem, BUNDLE_LEN); | |
696 | memcpy (bundle_saved + slotnum, bp_tgt->shadow_contents, bp_tgt->shadow_len); | |
697 | instr_saved = slotN_contents (bundle_saved, slotnum); | |
698 | ||
699 | /* In BUNDLE_MEM be careful to modify only the bits belonging to SLOTNUM and | |
700 | never any other possibly also stored in SHADOW_CONTENTS. */ | |
701 | replace_slotN_contents (bundle_mem, instr_saved, slotnum); | |
16461d7d | 702 | if (val == 0) |
939c61fa | 703 | val = target_write_memory (addr, bundle_mem, BUNDLE_LEN); |
16461d7d | 704 | |
1de34ab7 | 705 | do_cleanups (cleanup); |
16461d7d KB |
706 | return val; |
707 | } | |
708 | ||
939c61fa JK |
709 | /* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64 |
710 | instruction slots ranges are bit-granular (41 bits) we have to provide an | |
711 | extended range as described for ia64_memory_insert_breakpoint. We also take | |
712 | care of preserving the `break' instruction 21-bit (or 62-bit) parameter to | |
713 | make a match for permanent breakpoints. */ | |
714 | ||
715 | static const gdb_byte * | |
67d57894 | 716 | ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) |
16461d7d | 717 | { |
939c61fa JK |
718 | CORE_ADDR addr = *pcptr; |
719 | static gdb_byte bundle[BUNDLE_LEN]; | |
720 | int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER; | |
721 | long long instr_fetched; | |
722 | int val; | |
723 | int template; | |
724 | struct cleanup *cleanup; | |
725 | ||
726 | if (slotnum > 2) | |
727 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); | |
728 | ||
729 | addr &= ~0x0f; | |
730 | ||
731 | /* Enable the automatic memory restoration from breakpoints while | |
732 | we read our instruction bundle to match bp_loc_is_permanent. */ | |
733 | cleanup = make_show_memory_breakpoints_cleanup (0); | |
734 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
735 | do_cleanups (cleanup); | |
736 | ||
737 | /* The memory might be unreachable. This can happen, for instance, | |
738 | when the user inserts a breakpoint at an invalid address. */ | |
739 | if (val != 0) | |
740 | return NULL; | |
741 | ||
742 | /* Check for L type instruction in slot 1, if present then bump up the slot | |
743 | number to the slot 2. */ | |
744 | template = extract_bit_field (bundle, 0, 5); | |
745 | if (slotnum == 1 && template_encoding_table[template][slotnum] == L) | |
746 | slotnum = 2; | |
747 | ||
748 | /* A break instruction has its all its opcode bits cleared except for | |
749 | the parameter value. For L+X slot pair we are at the X slot (slot 2) so | |
750 | we should not touch the L slot - the upper 41 bits of the parameter. */ | |
751 | instr_fetched = slotN_contents (bundle, slotnum); | |
116e0965 | 752 | instr_fetched &= 0x1003ffffc0LL; |
939c61fa JK |
753 | replace_slotN_contents (bundle, instr_fetched, slotnum); |
754 | ||
755 | *lenptr = BUNDLE_LEN - 2; | |
756 | ||
757 | /* SLOTNUM is possibly already locally modified - use caller's *PCPTR. */ | |
758 | return bundle + (*pcptr & 0x0f); | |
16461d7d KB |
759 | } |
760 | ||
a78f21af | 761 | static CORE_ADDR |
61a1198a | 762 | ia64_read_pc (struct regcache *regcache) |
16461d7d | 763 | { |
61a1198a UW |
764 | ULONGEST psr_value, pc_value; |
765 | int slot_num; | |
766 | ||
767 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
768 | regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value); | |
769 | slot_num = (psr_value >> 41) & 3; | |
16461d7d KB |
770 | |
771 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
772 | } | |
773 | ||
54a5c8d8 | 774 | void |
61a1198a | 775 | ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc) |
16461d7d KB |
776 | { |
777 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
61a1198a UW |
778 | ULONGEST psr_value; |
779 | ||
780 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
16461d7d | 781 | psr_value &= ~(3LL << 41); |
61a1198a | 782 | psr_value |= (ULONGEST)(slot_num & 0x3) << 41; |
16461d7d KB |
783 | |
784 | new_pc &= ~0xfLL; | |
785 | ||
61a1198a UW |
786 | regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value); |
787 | regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc); | |
16461d7d KB |
788 | } |
789 | ||
790 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
791 | ||
792 | /* Returns the address of the slot that's NSLOTS slots away from | |
793 | the address ADDR. NSLOTS may be positive or negative. */ | |
794 | static CORE_ADDR | |
795 | rse_address_add(CORE_ADDR addr, int nslots) | |
796 | { | |
797 | CORE_ADDR new_addr; | |
798 | int mandatory_nat_slots = nslots / 63; | |
799 | int direction = nslots < 0 ? -1 : 1; | |
800 | ||
801 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
802 | ||
803 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
804 | new_addr += 8 * direction; | |
805 | ||
806 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
807 | new_addr += 8 * direction; | |
808 | ||
809 | return new_addr; | |
810 | } | |
811 | ||
004d836a JJ |
812 | static void |
813 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 814 | int regnum, gdb_byte *buf) |
16461d7d | 815 | { |
004d836a | 816 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 817 | { |
88d82102 | 818 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c JJ |
819 | /* First try and use the libunwind special reg accessor, otherwise fallback to |
820 | standard logic. */ | |
821 | if (!libunwind_is_initialized () | |
45ecac4b | 822 | || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0) |
88d82102 | 823 | #endif |
004d836a | 824 | { |
c5a27d9c JJ |
825 | /* The fallback position is to assume that r32-r127 are found sequentially |
826 | in memory starting at $bof. This isn't always true, but without libunwind, | |
827 | this is the best we can do. */ | |
828 | ULONGEST cfm; | |
829 | ULONGEST bsp; | |
830 | CORE_ADDR reg; | |
831 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
832 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
833 | ||
834 | /* The bsp points at the end of the register frame so we | |
835 | subtract the size of frame from it to get start of register frame. */ | |
836 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
837 | ||
838 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
839 | { | |
840 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
841 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
088568da | 842 | store_unsigned_integer (buf, register_size (gdbarch, regnum), reg); |
c5a27d9c JJ |
843 | } |
844 | else | |
088568da | 845 | store_unsigned_integer (buf, register_size (gdbarch, regnum), 0); |
004d836a | 846 | } |
004d836a JJ |
847 | } |
848 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
849 | { | |
850 | ULONGEST unatN_val; | |
851 | ULONGEST unat; | |
852 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
853 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
088568da | 854 | store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val); |
004d836a JJ |
855 | } |
856 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
857 | { | |
858 | ULONGEST natN_val = 0; | |
859 | ULONGEST bsp; | |
860 | ULONGEST cfm; | |
861 | CORE_ADDR gr_addr = 0; | |
862 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
863 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
864 | ||
865 | /* The bsp points at the end of the register frame so we | |
866 | subtract the size of frame from it to get start of register frame. */ | |
867 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
868 | ||
869 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
870 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
871 | ||
872 | if (gr_addr != 0) | |
873 | { | |
874 | /* Compute address of nat collection bits. */ | |
875 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
876 | CORE_ADDR nat_collection; | |
877 | int nat_bit; | |
878 | /* If our nat collection address is bigger than bsp, we have to get | |
879 | the nat collection from rnat. Otherwise, we fetch the nat | |
880 | collection from the computed address. */ | |
881 | if (nat_addr >= bsp) | |
882 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
883 | else | |
884 | nat_collection = read_memory_integer (nat_addr, 8); | |
885 | nat_bit = (gr_addr >> 3) & 0x3f; | |
886 | natN_val = (nat_collection >> nat_bit) & 1; | |
887 | } | |
888 | ||
088568da | 889 | store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val); |
244bc108 | 890 | } |
004d836a JJ |
891 | else if (regnum == VBOF_REGNUM) |
892 | { | |
893 | /* A virtual register frame start is provided for user convenience. | |
894 | It can be calculated as the bsp - sof (sizeof frame). */ | |
895 | ULONGEST bsp, vbsp; | |
896 | ULONGEST cfm; | |
897 | CORE_ADDR reg; | |
898 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
899 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
900 | ||
901 | /* The bsp points at the end of the register frame so we | |
902 | subtract the size of frame from it to get beginning of frame. */ | |
903 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
088568da | 904 | store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp); |
004d836a JJ |
905 | } |
906 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
907 | { | |
908 | ULONGEST pr; | |
909 | ULONGEST cfm; | |
910 | ULONGEST prN_val; | |
911 | CORE_ADDR reg; | |
912 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
913 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
914 | ||
915 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
916 | { | |
917 | /* Fetch predicate register rename base from current frame | |
918 | marker for this frame. */ | |
919 | int rrb_pr = (cfm >> 32) & 0x3f; | |
920 | ||
921 | /* Adjust the register number to account for register rotation. */ | |
922 | regnum = VP16_REGNUM | |
923 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
924 | } | |
925 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
088568da | 926 | store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val); |
004d836a JJ |
927 | } |
928 | else | |
088568da | 929 | memset (buf, 0, register_size (gdbarch, regnum)); |
16461d7d KB |
930 | } |
931 | ||
004d836a JJ |
932 | static void |
933 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 934 | int regnum, const gdb_byte *buf) |
16461d7d | 935 | { |
004d836a | 936 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 937 | { |
004d836a JJ |
938 | ULONGEST bsp; |
939 | ULONGEST cfm; | |
940 | CORE_ADDR reg; | |
941 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
942 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
943 | ||
944 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
945 | ||
946 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
947 | { | |
948 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
949 | write_memory (reg_addr, (void *)buf, 8); | |
950 | } | |
951 | } | |
952 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
953 | { | |
954 | ULONGEST unatN_val, unat, unatN_mask; | |
955 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
088568da | 956 | unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
957 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
958 | if (unatN_val == 0) | |
959 | unat &= ~unatN_mask; | |
960 | else if (unatN_val == 1) | |
961 | unat |= unatN_mask; | |
962 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
963 | } | |
964 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
965 | { | |
966 | ULONGEST natN_val; | |
967 | ULONGEST bsp; | |
968 | ULONGEST cfm; | |
969 | CORE_ADDR gr_addr = 0; | |
970 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
971 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
972 | ||
973 | /* The bsp points at the end of the register frame so we | |
974 | subtract the size of frame from it to get start of register frame. */ | |
975 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
976 | ||
977 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
978 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
979 | ||
088568da | 980 | natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
981 | |
982 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
983 | { | |
984 | /* Compute address of nat collection bits. */ | |
985 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
986 | CORE_ADDR nat_collection; | |
987 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
988 | ULONGEST natN_mask = (1LL << natN_bit); | |
989 | /* If our nat collection address is bigger than bsp, we have to get | |
990 | the nat collection from rnat. Otherwise, we fetch the nat | |
991 | collection from the computed address. */ | |
992 | if (nat_addr >= bsp) | |
993 | { | |
994 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
995 | if (natN_val) | |
996 | nat_collection |= natN_mask; | |
997 | else | |
998 | nat_collection &= ~natN_mask; | |
999 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
1000 | } | |
1001 | else | |
1002 | { | |
1003 | char nat_buf[8]; | |
1004 | nat_collection = read_memory_integer (nat_addr, 8); | |
1005 | if (natN_val) | |
1006 | nat_collection |= natN_mask; | |
1007 | else | |
1008 | nat_collection &= ~natN_mask; | |
088568da | 1009 | store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection); |
004d836a JJ |
1010 | write_memory (nat_addr, nat_buf, 8); |
1011 | } | |
1012 | } | |
1013 | } | |
1014 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
1015 | { | |
1016 | ULONGEST pr; | |
1017 | ULONGEST cfm; | |
1018 | ULONGEST prN_val; | |
1019 | ULONGEST prN_mask; | |
1020 | ||
1021 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
1022 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
1023 | ||
1024 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
1025 | { | |
1026 | /* Fetch predicate register rename base from current frame | |
1027 | marker for this frame. */ | |
1028 | int rrb_pr = (cfm >> 32) & 0x3f; | |
1029 | ||
1030 | /* Adjust the register number to account for register rotation. */ | |
1031 | regnum = VP16_REGNUM | |
1032 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
1033 | } | |
088568da | 1034 | prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
1035 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
1036 | if (prN_val == 0) | |
1037 | pr &= ~prN_mask; | |
1038 | else if (prN_val == 1) | |
1039 | pr |= prN_mask; | |
1040 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 1041 | } |
16461d7d KB |
1042 | } |
1043 | ||
004d836a JJ |
1044 | /* The ia64 needs to convert between various ieee floating-point formats |
1045 | and the special ia64 floating point register format. */ | |
1046 | ||
1047 | static int | |
0abe36f5 | 1048 | ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type) |
004d836a | 1049 | { |
83acabca DJ |
1050 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM |
1051 | && type != builtin_type_ia64_ext); | |
004d836a JJ |
1052 | } |
1053 | ||
1054 | static void | |
1055 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
88d82102 | 1056 | struct type *valtype, gdb_byte *out) |
004d836a JJ |
1057 | { |
1058 | char in[MAX_REGISTER_SIZE]; | |
1059 | frame_register_read (frame, regnum, in); | |
1060 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
1061 | } | |
1062 | ||
1063 | static void | |
1064 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
88d82102 | 1065 | struct type *valtype, const gdb_byte *in) |
004d836a JJ |
1066 | { |
1067 | char out[MAX_REGISTER_SIZE]; | |
1068 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
1069 | put_frame_register (frame, regnum, out); | |
1070 | } | |
1071 | ||
1072 | ||
58ab00f9 KB |
1073 | /* Limit the number of skipped non-prologue instructions since examining |
1074 | of the prologue is expensive. */ | |
5ea2bd7f | 1075 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
1076 | |
1077 | /* Given PC representing the starting address of a function, and | |
1078 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
1079 | for a prologue, attempt to further refine this limit by using | |
1080 | the line data in the symbol table. If successful, a better guess | |
1081 | on where the prologue ends is returned, otherwise the previous | |
1082 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
1083 | which will be set to indicate whether the returned limit may be | |
1084 | used with no further scanning in the event that the function is | |
1085 | frameless. */ | |
1086 | ||
634aa483 AC |
1087 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
1088 | superseded by skip_prologue_using_sal. */ | |
1089 | ||
58ab00f9 KB |
1090 | static CORE_ADDR |
1091 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
1092 | { | |
1093 | struct symtab_and_line prologue_sal; | |
1094 | CORE_ADDR start_pc = pc; | |
39312971 JB |
1095 | CORE_ADDR end_pc; |
1096 | ||
1097 | /* The prologue can not possibly go past the function end itself, | |
1098 | so we can already adjust LIM_PC accordingly. */ | |
1099 | if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc) | |
1100 | lim_pc = end_pc; | |
58ab00f9 KB |
1101 | |
1102 | /* Start off not trusting the limit. */ | |
1103 | *trust_limit = 0; | |
1104 | ||
1105 | prologue_sal = find_pc_line (pc, 0); | |
1106 | if (prologue_sal.line != 0) | |
1107 | { | |
1108 | int i; | |
1109 | CORE_ADDR addr = prologue_sal.end; | |
1110 | ||
1111 | /* Handle the case in which compiler's optimizer/scheduler | |
1112 | has moved instructions into the prologue. We scan ahead | |
1113 | in the function looking for address ranges whose corresponding | |
1114 | line number is less than or equal to the first one that we | |
1115 | found for the function. (It can be less than when the | |
1116 | scheduler puts a body instruction before the first prologue | |
1117 | instruction.) */ | |
1118 | for (i = 2 * max_skip_non_prologue_insns; | |
1119 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
1120 | i--) | |
1121 | { | |
1122 | struct symtab_and_line sal; | |
1123 | ||
1124 | sal = find_pc_line (addr, 0); | |
1125 | if (sal.line == 0) | |
1126 | break; | |
1127 | if (sal.line <= prologue_sal.line | |
1128 | && sal.symtab == prologue_sal.symtab) | |
1129 | { | |
1130 | prologue_sal = sal; | |
1131 | } | |
1132 | addr = sal.end; | |
1133 | } | |
1134 | ||
1135 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
1136 | { | |
1137 | lim_pc = prologue_sal.end; | |
1138 | if (start_pc == get_pc_function_start (lim_pc)) | |
1139 | *trust_limit = 1; | |
1140 | } | |
1141 | } | |
1142 | return lim_pc; | |
1143 | } | |
1144 | ||
16461d7d KB |
1145 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
1146 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
1147 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
1148 | #define imm9(_instr_) \ | |
1149 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
1150 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
1151 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
1152 | ||
004d836a JJ |
1153 | /* Allocate and initialize a frame cache. */ |
1154 | ||
1155 | static struct ia64_frame_cache * | |
1156 | ia64_alloc_frame_cache (void) | |
1157 | { | |
1158 | struct ia64_frame_cache *cache; | |
1159 | int i; | |
1160 | ||
1161 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
1162 | ||
1163 | /* Base address. */ | |
1164 | cache->base = 0; | |
1165 | cache->pc = 0; | |
1166 | cache->cfm = 0; | |
4afcc598 | 1167 | cache->prev_cfm = 0; |
004d836a JJ |
1168 | cache->sof = 0; |
1169 | cache->sol = 0; | |
1170 | cache->sor = 0; | |
1171 | cache->bsp = 0; | |
1172 | cache->fp_reg = 0; | |
1173 | cache->frameless = 1; | |
1174 | ||
1175 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1176 | cache->saved_regs[i] = 0; | |
1177 | ||
1178 | return cache; | |
1179 | } | |
1180 | ||
16461d7d | 1181 | static CORE_ADDR |
15c1e57f JB |
1182 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, |
1183 | struct frame_info *this_frame, | |
1184 | struct ia64_frame_cache *cache) | |
16461d7d KB |
1185 | { |
1186 | CORE_ADDR next_pc; | |
1187 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1188 | instruction_type it; |
1189 | long long instr; | |
16461d7d KB |
1190 | int cfm_reg = 0; |
1191 | int ret_reg = 0; | |
1192 | int fp_reg = 0; | |
1193 | int unat_save_reg = 0; | |
1194 | int pr_save_reg = 0; | |
1195 | int mem_stack_frame_size = 0; | |
1196 | int spill_reg = 0; | |
1197 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1198 | char instores[8]; |
1199 | char infpstores[8]; | |
5ea2bd7f | 1200 | char reg_contents[256]; |
58ab00f9 | 1201 | int trust_limit; |
004d836a JJ |
1202 | int frameless = 1; |
1203 | int i; | |
1204 | CORE_ADDR addr; | |
1205 | char buf[8]; | |
1206 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1207 | |
1208 | memset (instores, 0, sizeof instores); | |
1209 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1210 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1211 | |
004d836a JJ |
1212 | if (cache->after_prologue != 0 |
1213 | && cache->after_prologue <= lim_pc) | |
1214 | return cache->after_prologue; | |
16461d7d | 1215 | |
58ab00f9 | 1216 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1217 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1218 | |
1219 | /* We want to check if we have a recognizable function start before we | |
1220 | look ahead for a prologue. */ | |
16461d7d KB |
1221 | if (pc < lim_pc && next_pc |
1222 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1223 | { | |
5ea2bd7f | 1224 | /* alloc - start of a regular function. */ |
16461d7d KB |
1225 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1226 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1227 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1228 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1229 | |
1230 | /* Verify that the current cfm matches what we think is the | |
1231 | function start. If we have somehow jumped within a function, | |
1232 | we do not want to interpret the prologue and calculate the | |
1233 | addresses of various registers such as the return address. | |
1234 | We will instead treat the frame as frameless. */ | |
15c1e57f | 1235 | if (!this_frame || |
004d836a JJ |
1236 | (sof == (cache->cfm & 0x7f) && |
1237 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1238 | frameless = 0; | |
1239 | ||
16461d7d KB |
1240 | cfm_reg = rN; |
1241 | last_prologue_pc = next_pc; | |
1242 | pc = next_pc; | |
1243 | } | |
1244 | else | |
58ab00f9 | 1245 | { |
5ea2bd7f JJ |
1246 | /* Look for a leaf routine. */ |
1247 | if (pc < lim_pc && next_pc | |
1248 | && (it == I || it == M) | |
1249 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1250 | { | |
1251 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1252 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1253 | | ((instr & 0x001f8000000LL) >> 20) | |
1254 | | ((instr & 0x000000fe000LL) >> 13)); | |
1255 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1256 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1257 | int qp = (int) (instr & 0x0000000003fLL); | |
1258 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1259 | { | |
1260 | /* mov r2, r12 - beginning of leaf routine */ | |
1261 | fp_reg = rN; | |
5ea2bd7f JJ |
1262 | last_prologue_pc = next_pc; |
1263 | } | |
1264 | } | |
1265 | ||
1266 | /* If we don't recognize a regular function or leaf routine, we are | |
1267 | done. */ | |
1268 | if (!fp_reg) | |
1269 | { | |
1270 | pc = lim_pc; | |
1271 | if (trust_limit) | |
1272 | last_prologue_pc = lim_pc; | |
1273 | } | |
58ab00f9 | 1274 | } |
16461d7d KB |
1275 | |
1276 | /* Loop, looking for prologue instructions, keeping track of | |
1277 | where preserved registers were spilled. */ | |
1278 | while (pc < lim_pc) | |
1279 | { | |
1280 | next_pc = fetch_instruction (pc, &it, &instr); | |
1281 | if (next_pc == 0) | |
1282 | break; | |
1283 | ||
594706e6 | 1284 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1285 | { |
102d615a JJ |
1286 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1287 | if (trust_limit) | |
1288 | lim_pc = pc; | |
1289 | break; | |
1290 | } | |
1291 | else if (((instr & 0x3fLL) != 0LL) && | |
1292 | (frameless || ret_reg != 0)) | |
1293 | { | |
1294 | /* Exit loop upon hitting a predicated instruction if | |
1295 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1296 | if (trust_limit) |
1297 | lim_pc = pc; | |
0927a22b KB |
1298 | break; |
1299 | } | |
1300 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1301 | { |
1302 | /* Move from BR */ | |
1303 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1304 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1305 | int qp = (int) (instr & 0x0000000003f); | |
1306 | ||
1307 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1308 | { | |
1309 | ret_reg = rN; | |
1310 | last_prologue_pc = next_pc; | |
1311 | } | |
1312 | } | |
1313 | else if ((it == I || it == M) | |
1314 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1315 | { | |
1316 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1317 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1318 | | ((instr & 0x001f8000000LL) >> 20) | |
1319 | | ((instr & 0x000000fe000LL) >> 13)); | |
1320 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1321 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1322 | int qp = (int) (instr & 0x0000000003fLL); | |
1323 | ||
1324 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1325 | { | |
1326 | /* mov rN, r12 */ | |
1327 | fp_reg = rN; | |
1328 | last_prologue_pc = next_pc; | |
1329 | } | |
1330 | else if (qp == 0 && rN == 12 && rM == 12) | |
1331 | { | |
1332 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1333 | mem_stack_frame_size -= imm; | |
1334 | last_prologue_pc = next_pc; | |
1335 | } | |
1336 | else if (qp == 0 && rN == 2 | |
1337 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1338 | { | |
004d836a JJ |
1339 | char buf[MAX_REGISTER_SIZE]; |
1340 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1341 | /* adds r2, spilloffset, rFramePointer |
1342 | or | |
1343 | adds r2, spilloffset, r12 | |
1344 | ||
1345 | Get ready for stf.spill or st8.spill instructions. | |
1346 | The address to start spilling at is loaded into r2. | |
1347 | FIXME: Why r2? That's what gcc currently uses; it | |
1348 | could well be different for other compilers. */ | |
1349 | ||
1350 | /* Hmm... whether or not this will work will depend on | |
1351 | where the pc is. If it's still early in the prologue | |
1352 | this'll be wrong. FIXME */ | |
15c1e57f | 1353 | if (this_frame) |
004d836a | 1354 | { |
15c1e57f | 1355 | get_frame_register (this_frame, sp_regnum, buf); |
004d836a JJ |
1356 | saved_sp = extract_unsigned_integer (buf, 8); |
1357 | } | |
1358 | spill_addr = saved_sp | |
16461d7d KB |
1359 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1360 | + imm; | |
1361 | spill_reg = rN; | |
1362 | last_prologue_pc = next_pc; | |
1363 | } | |
b7d038ae | 1364 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] && |
5ea2bd7f JJ |
1365 | rN < 256 && imm == 0) |
1366 | { | |
1367 | /* mov rN, rM where rM is an input register */ | |
1368 | reg_contents[rN] = rM; | |
1369 | last_prologue_pc = next_pc; | |
1370 | } | |
1371 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1372 | rM == 2) | |
1373 | { | |
1374 | /* mov r12, r2 */ | |
1375 | last_prologue_pc = next_pc; | |
1376 | break; | |
1377 | } | |
16461d7d KB |
1378 | } |
1379 | else if (it == M | |
1380 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1381 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1382 | { | |
1383 | /* stf.spill [rN] = fM, imm9 | |
1384 | or | |
1385 | stf.spill [rN] = fM */ | |
1386 | ||
1387 | int imm = imm9(instr); | |
1388 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1389 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1390 | int qp = (int) (instr & 0x0000000003fLL); | |
1391 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1392 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1393 | { | |
004d836a | 1394 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1395 | |
594706e6 | 1396 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1397 | spill_addr += imm; |
1398 | else | |
1399 | spill_addr = 0; /* last one; must be done */ | |
1400 | last_prologue_pc = next_pc; | |
1401 | } | |
1402 | } | |
1403 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1404 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1405 | { | |
1406 | /* mov.m rN = arM | |
1407 | or | |
1408 | mov.i rN = arM */ | |
1409 | ||
1410 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1411 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1412 | int qp = (int) (instr & 0x0000000003fLL); | |
1413 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1414 | { | |
1415 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1416 | r3 (or whatever) and watch for a store of this register... */ | |
1417 | unat_save_reg = rN; | |
1418 | last_prologue_pc = next_pc; | |
1419 | } | |
1420 | } | |
1421 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1422 | { | |
1423 | /* mov rN = pr */ | |
1424 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1425 | int qp = (int) (instr & 0x0000000003fLL); | |
1426 | if (qp == 0 && isScratch (rN)) | |
1427 | { | |
1428 | pr_save_reg = rN; | |
1429 | last_prologue_pc = next_pc; | |
1430 | } | |
1431 | } | |
1432 | else if (it == M | |
1433 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1434 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1435 | { | |
1436 | /* st8 [rN] = rM | |
1437 | or | |
1438 | st8 [rN] = rM, imm9 */ | |
1439 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1440 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1441 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1442 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1443 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1444 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1445 | { | |
1446 | /* We've found a spill of either the UNAT register or the PR | |
1447 | register. (Well, not exactly; what we've actually found is | |
1448 | a spill of the register that UNAT or PR was moved to). | |
1449 | Record that fact and move on... */ | |
1450 | if (rM == unat_save_reg) | |
1451 | { | |
1452 | /* Track UNAT register */ | |
004d836a | 1453 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1454 | unat_save_reg = 0; |
1455 | } | |
1456 | else | |
1457 | { | |
1458 | /* Track PR register */ | |
004d836a | 1459 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1460 | pr_save_reg = 0; |
1461 | } | |
1462 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1463 | /* st8 [rN] = rM, imm9 */ | |
1464 | spill_addr += imm9(instr); | |
1465 | else | |
1466 | spill_addr = 0; /* must be done spilling */ | |
1467 | last_prologue_pc = next_pc; | |
1468 | } | |
0927a22b KB |
1469 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1470 | { | |
1471 | /* Allow up to one store of each input register. */ | |
1472 | instores[rM-32] = 1; | |
1473 | last_prologue_pc = next_pc; | |
1474 | } | |
5ea2bd7f JJ |
1475 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1476 | !instores[indirect-32]) | |
1477 | { | |
1478 | /* Allow an indirect store of an input register. */ | |
1479 | instores[indirect-32] = 1; | |
1480 | last_prologue_pc = next_pc; | |
1481 | } | |
0927a22b KB |
1482 | } |
1483 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1484 | { | |
1485 | /* One of | |
1486 | st1 [rN] = rM | |
1487 | st2 [rN] = rM | |
1488 | st4 [rN] = rM | |
1489 | st8 [rN] = rM | |
1490 | Note that the st8 case is handled in the clause above. | |
1491 | ||
1492 | Advance over stores of input registers. One store per input | |
1493 | register is permitted. */ | |
1494 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1495 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1496 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1497 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1498 | { | |
1499 | instores[rM-32] = 1; | |
1500 | last_prologue_pc = next_pc; | |
1501 | } | |
5ea2bd7f JJ |
1502 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1503 | !instores[indirect-32]) | |
1504 | { | |
1505 | /* Allow an indirect store of an input register. */ | |
1506 | instores[indirect-32] = 1; | |
1507 | last_prologue_pc = next_pc; | |
1508 | } | |
0927a22b KB |
1509 | } |
1510 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1511 | { | |
1512 | /* Either | |
1513 | stfs [rN] = fM | |
1514 | or | |
1515 | stfd [rN] = fM | |
1516 | ||
1517 | Advance over stores of floating point input registers. Again | |
1518 | one store per register is permitted */ | |
1519 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1520 | int qp = (int) (instr & 0x0000000003fLL); | |
1521 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1522 | { | |
1523 | infpstores[fM-8] = 1; | |
1524 | last_prologue_pc = next_pc; | |
1525 | } | |
16461d7d KB |
1526 | } |
1527 | else if (it == M | |
1528 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1529 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1530 | { | |
1531 | /* st8.spill [rN] = rM | |
1532 | or | |
1533 | st8.spill [rN] = rM, imm9 */ | |
1534 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1535 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1536 | int qp = (int) (instr & 0x0000000003fLL); | |
1537 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1538 | { | |
1539 | /* We've found a spill of one of the preserved general purpose | |
1540 | regs. Record the spill address and advance the spill | |
1541 | register if appropriate. */ | |
004d836a | 1542 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1543 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1544 | /* st8.spill [rN] = rM, imm9 */ | |
1545 | spill_addr += imm9(instr); | |
1546 | else | |
1547 | spill_addr = 0; /* Done spilling */ | |
1548 | last_prologue_pc = next_pc; | |
1549 | } | |
1550 | } | |
16461d7d KB |
1551 | |
1552 | pc = next_pc; | |
1553 | } | |
1554 | ||
15c1e57f JB |
1555 | /* If not frameless and we aren't called by skip_prologue, then we need |
1556 | to calculate registers for the previous frame which will be needed | |
1557 | later. */ | |
16461d7d | 1558 | |
15c1e57f | 1559 | if (!frameless && this_frame) |
da50a4b7 | 1560 | { |
004d836a JJ |
1561 | /* Extract the size of the rotating portion of the stack |
1562 | frame and the register rename base from the current | |
1563 | frame marker. */ | |
1564 | cfm = cache->cfm; | |
1565 | sor = cache->sor; | |
1566 | sof = cache->sof; | |
1567 | sol = cache->sol; | |
1568 | rrb_gr = (cfm >> 18) & 0x7f; | |
1569 | ||
1570 | /* Find the bof (beginning of frame). */ | |
1571 | bof = rse_address_add (cache->bsp, -sof); | |
1572 | ||
1573 | for (i = 0, addr = bof; | |
1574 | i < sof; | |
1575 | i++, addr += 8) | |
1576 | { | |
1577 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1578 | { | |
1579 | addr += 8; | |
1580 | } | |
1581 | if (i+32 == cfm_reg) | |
1582 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1583 | if (i+32 == ret_reg) | |
1584 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1585 | if (i+32 == fp_reg) | |
1586 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1587 | } | |
16461d7d | 1588 | |
004d836a JJ |
1589 | /* For the previous argument registers we require the previous bof. |
1590 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1591 | cfm = 0; |
004d836a JJ |
1592 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1593 | { | |
1594 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1595 | } |
1596 | else if (cfm_reg != 0) | |
1597 | { | |
15c1e57f | 1598 | get_frame_register (this_frame, cfm_reg, buf); |
4afcc598 JJ |
1599 | cfm = extract_unsigned_integer (buf, 8); |
1600 | } | |
1601 | cache->prev_cfm = cfm; | |
1602 | ||
1603 | if (cfm != 0) | |
1604 | { | |
004d836a JJ |
1605 | sor = ((cfm >> 14) & 0xf) * 8; |
1606 | sof = (cfm & 0x7f); | |
1607 | sol = (cfm >> 7) & 0x7f; | |
1608 | rrb_gr = (cfm >> 18) & 0x7f; | |
1609 | ||
15c1e57f JB |
1610 | /* The previous bof only requires subtraction of the sol (size of |
1611 | locals) due to the overlap between output and input of | |
1612 | subsequent frames. */ | |
004d836a JJ |
1613 | bof = rse_address_add (bof, -sol); |
1614 | ||
1615 | for (i = 0, addr = bof; | |
1616 | i < sof; | |
1617 | i++, addr += 8) | |
1618 | { | |
1619 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1620 | { | |
1621 | addr += 8; | |
1622 | } | |
1623 | if (i < sor) | |
1624 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1625 | = addr; | |
1626 | else | |
1627 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1628 | } | |
1629 | ||
1630 | } | |
1631 | } | |
1632 | ||
5ea2bd7f JJ |
1633 | /* Try and trust the lim_pc value whenever possible. */ |
1634 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1635 | last_prologue_pc = lim_pc; |
1636 | ||
1637 | cache->frameless = frameless; | |
1638 | cache->after_prologue = last_prologue_pc; | |
1639 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1640 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1641 | |
16461d7d KB |
1642 | return last_prologue_pc; |
1643 | } | |
1644 | ||
1645 | CORE_ADDR | |
6093d2eb | 1646 | ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
16461d7d | 1647 | { |
004d836a JJ |
1648 | struct ia64_frame_cache cache; |
1649 | cache.base = 0; | |
1650 | cache.after_prologue = 0; | |
1651 | cache.cfm = 0; | |
1652 | cache.bsp = 0; | |
1653 | ||
1654 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1655 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1656 | } |
1657 | ||
004d836a JJ |
1658 | |
1659 | /* Normal frames. */ | |
1660 | ||
1661 | static struct ia64_frame_cache * | |
15c1e57f | 1662 | ia64_frame_cache (struct frame_info *this_frame, void **this_cache) |
16461d7d | 1663 | { |
004d836a JJ |
1664 | struct ia64_frame_cache *cache; |
1665 | char buf[8]; | |
1666 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1667 | int i; | |
16461d7d | 1668 | |
004d836a JJ |
1669 | if (*this_cache) |
1670 | return *this_cache; | |
16461d7d | 1671 | |
004d836a JJ |
1672 | cache = ia64_alloc_frame_cache (); |
1673 | *this_cache = cache; | |
16461d7d | 1674 | |
15c1e57f | 1675 | get_frame_register (this_frame, sp_regnum, buf); |
004d836a | 1676 | cache->saved_sp = extract_unsigned_integer (buf, 8); |
16461d7d | 1677 | |
004d836a JJ |
1678 | /* We always want the bsp to point to the end of frame. |
1679 | This way, we can always get the beginning of frame (bof) | |
1680 | by subtracting frame size. */ | |
15c1e57f | 1681 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
004d836a JJ |
1682 | cache->bsp = extract_unsigned_integer (buf, 8); |
1683 | ||
15c1e57f | 1684 | get_frame_register (this_frame, IA64_PSR_REGNUM, buf); |
004d836a JJ |
1685 | psr = extract_unsigned_integer (buf, 8); |
1686 | ||
15c1e57f | 1687 | get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
004d836a JJ |
1688 | cfm = extract_unsigned_integer (buf, 8); |
1689 | ||
1690 | cache->sof = (cfm & 0x7f); | |
1691 | cache->sol = (cfm >> 7) & 0x7f; | |
1692 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1693 | ||
1694 | cache->cfm = cfm; | |
1695 | ||
15c1e57f | 1696 | cache->pc = get_frame_func (this_frame); |
004d836a JJ |
1697 | |
1698 | if (cache->pc != 0) | |
15c1e57f | 1699 | examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache); |
004d836a JJ |
1700 | |
1701 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1702 | ||
1703 | return cache; | |
16461d7d KB |
1704 | } |
1705 | ||
a78f21af | 1706 | static void |
15c1e57f | 1707 | ia64_frame_this_id (struct frame_info *this_frame, void **this_cache, |
004d836a | 1708 | struct frame_id *this_id) |
16461d7d | 1709 | { |
004d836a | 1710 | struct ia64_frame_cache *cache = |
15c1e57f | 1711 | ia64_frame_cache (this_frame, this_cache); |
16461d7d | 1712 | |
c5a27d9c | 1713 | /* If outermost frame, mark with null frame id. */ |
004d836a | 1714 | if (cache->base == 0) |
c5a27d9c JJ |
1715 | (*this_id) = null_frame_id; |
1716 | else | |
1717 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); | |
4afcc598 JJ |
1718 | if (gdbarch_debug >= 1) |
1719 | fprintf_unfiltered (gdb_stdlog, | |
dfc3cd0e | 1720 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n", |
78ced177 JJ |
1721 | paddr_nz (this_id->code_addr), |
1722 | paddr_nz (this_id->stack_addr), | |
dfc3cd0e PM |
1723 | paddr_nz (cache->bsp), |
1724 | host_address_to_string (this_frame)); | |
004d836a | 1725 | } |
244bc108 | 1726 | |
15c1e57f JB |
1727 | static struct value * |
1728 | ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache, | |
1729 | int regnum) | |
004d836a | 1730 | { |
15c1e57f JB |
1731 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
1732 | struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache); | |
004d836a JJ |
1733 | char buf[8]; |
1734 | ||
1735 | gdb_assert (regnum >= 0); | |
244bc108 | 1736 | |
004d836a | 1737 | if (!target_has_registers) |
8a3fe4f8 | 1738 | error (_("No registers.")); |
244bc108 | 1739 | |
088568da | 1740 | if (regnum == gdbarch_sp_regnum (gdbarch)) |
15c1e57f JB |
1741 | return frame_unwind_got_constant (this_frame, regnum, cache->base); |
1742 | ||
16461d7d KB |
1743 | else if (regnum == IA64_BSP_REGNUM) |
1744 | { | |
15c1e57f JB |
1745 | struct value *val; |
1746 | CORE_ADDR prev_cfm, bsp, prev_bsp; | |
1747 | ||
1748 | /* We want to calculate the previous bsp as the end of the previous | |
1749 | register stack frame. This corresponds to what the hardware bsp | |
1750 | register will be if we pop the frame back which is why we might | |
1751 | have been called. We know the beginning of the current frame is | |
1752 | cache->bsp - cache->sof. This value in the previous frame points | |
1753 | to the start of the output registers. We can calculate the end of | |
1754 | that frame by adding the size of output: | |
1755 | (sof (size of frame) - sol (size of locals)). */ | |
1756 | val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM); | |
1757 | prev_cfm = extract_unsigned_integer (value_contents_all (val), 8); | |
004d836a | 1758 | bsp = rse_address_add (cache->bsp, -(cache->sof)); |
15c1e57f JB |
1759 | prev_bsp = |
1760 | rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
004d836a | 1761 | |
15c1e57f | 1762 | return frame_unwind_got_constant (this_frame, regnum, prev_bsp); |
004d836a | 1763 | } |
15c1e57f | 1764 | |
004d836a JJ |
1765 | else if (regnum == IA64_CFM_REGNUM) |
1766 | { | |
4afcc598 JJ |
1767 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1768 | ||
1769 | if (addr != 0) | |
15c1e57f JB |
1770 | return frame_unwind_got_memory (this_frame, regnum, addr); |
1771 | ||
1772 | if (cache->prev_cfm) | |
1773 | return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm); | |
1774 | ||
1775 | if (cache->frameless) | |
1776 | return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM, | |
1777 | IA64_PFS_REGNUM); | |
1778 | return frame_unwind_got_register (this_frame, regnum, 0); | |
16461d7d | 1779 | } |
15c1e57f | 1780 | |
16461d7d KB |
1781 | else if (regnum == IA64_VFP_REGNUM) |
1782 | { | |
1783 | /* If the function in question uses an automatic register (r32-r127) | |
1784 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1785 | above. If the function lacks one of these frame pointers, we can | |
004d836a | 1786 | still provide a value since we know the size of the frame. */ |
15c1e57f | 1787 | return frame_unwind_got_constant (this_frame, regnum, cache->base); |
16461d7d | 1788 | } |
15c1e57f | 1789 | |
004d836a | 1790 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1791 | { |
15c1e57f JB |
1792 | struct value *pr_val; |
1793 | ULONGEST prN; | |
1794 | ||
1795 | pr_val = ia64_frame_prev_register (this_frame, this_cache, | |
1796 | IA64_PR_REGNUM); | |
004d836a | 1797 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) |
3a854e23 KB |
1798 | { |
1799 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1800 | marker for this frame. */ |
1801 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1802 | |
004d836a | 1803 | /* Adjust the register number to account for register rotation. */ |
15c1e57f | 1804 | regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
3a854e23 | 1805 | } |
15c1e57f JB |
1806 | prN = extract_bit_field (value_contents_all (pr_val), |
1807 | regnum - VP0_REGNUM, 1); | |
1808 | return frame_unwind_got_constant (this_frame, regnum, prN); | |
16461d7d | 1809 | } |
15c1e57f | 1810 | |
16461d7d KB |
1811 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) |
1812 | { | |
15c1e57f JB |
1813 | struct value *unat_val; |
1814 | ULONGEST unatN; | |
1815 | unat_val = ia64_frame_prev_register (this_frame, this_cache, | |
1816 | IA64_UNAT_REGNUM); | |
1817 | unatN = extract_bit_field (value_contents_all (unat_val), | |
1818 | regnum - IA64_NAT0_REGNUM, 1); | |
1819 | return frame_unwind_got_constant (this_frame, regnum, unatN); | |
16461d7d | 1820 | } |
15c1e57f | 1821 | |
16461d7d KB |
1822 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
1823 | { | |
1824 | int natval = 0; | |
1825 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1826 | interested in. */ |
1827 | CORE_ADDR gr_addr; | |
244bc108 | 1828 | |
15c1e57f JB |
1829 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM]; |
1830 | ||
004d836a | 1831 | if (gr_addr != 0) |
244bc108 | 1832 | { |
004d836a | 1833 | /* Compute address of nat collection bits. */ |
16461d7d | 1834 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1835 | CORE_ADDR bsp; |
16461d7d KB |
1836 | CORE_ADDR nat_collection; |
1837 | int nat_bit; | |
15c1e57f | 1838 | |
16461d7d KB |
1839 | /* If our nat collection address is bigger than bsp, we have to get |
1840 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a | 1841 | collection from the computed address. */ |
15c1e57f | 1842 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
004d836a | 1843 | bsp = extract_unsigned_integer (buf, 8); |
16461d7d | 1844 | if (nat_addr >= bsp) |
004d836a | 1845 | { |
15c1e57f | 1846 | get_frame_register (this_frame, IA64_RNAT_REGNUM, buf); |
004d836a JJ |
1847 | nat_collection = extract_unsigned_integer (buf, 8); |
1848 | } | |
16461d7d KB |
1849 | else |
1850 | nat_collection = read_memory_integer (nat_addr, 8); | |
1851 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1852 | natval = (nat_collection >> nat_bit) & 1; | |
1853 | } | |
004d836a | 1854 | |
15c1e57f | 1855 | return frame_unwind_got_constant (this_frame, regnum, natval); |
244bc108 | 1856 | } |
15c1e57f | 1857 | |
244bc108 KB |
1858 | else if (regnum == IA64_IP_REGNUM) |
1859 | { | |
004d836a | 1860 | CORE_ADDR pc = 0; |
4afcc598 | 1861 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1862 | |
4afcc598 | 1863 | if (addr != 0) |
15c1e57f JB |
1864 | { |
1865 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); | |
1866 | pc = extract_unsigned_integer (buf, 8); | |
1867 | } | |
4afcc598 | 1868 | else if (cache->frameless) |
004d836a | 1869 | { |
15c1e57f | 1870 | get_frame_register (this_frame, IA64_BR0_REGNUM, buf); |
4afcc598 | 1871 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1872 | } |
004d836a | 1873 | pc &= ~0xf; |
15c1e57f | 1874 | return frame_unwind_got_constant (this_frame, regnum, pc); |
244bc108 | 1875 | } |
15c1e57f | 1876 | |
004d836a | 1877 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1878 | { |
15c1e57f JB |
1879 | /* We don't know how to get the complete previous PSR, but we need it |
1880 | for the slot information when we unwind the pc (pc is formed of IP | |
1881 | register plus slot information from PSR). To get the previous | |
1882 | slot information, we mask it off the return address. */ | |
004d836a | 1883 | ULONGEST slot_num = 0; |
15c1e57f | 1884 | CORE_ADDR pc = 0; |
004d836a | 1885 | CORE_ADDR psr = 0; |
4afcc598 | 1886 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1887 | |
15c1e57f | 1888 | get_frame_register (this_frame, IA64_PSR_REGNUM, buf); |
004d836a JJ |
1889 | psr = extract_unsigned_integer (buf, 8); |
1890 | ||
4afcc598 | 1891 | if (addr != 0) |
244bc108 | 1892 | { |
088568da | 1893 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
004d836a | 1894 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1895 | } |
4afcc598 | 1896 | else if (cache->frameless) |
004d836a | 1897 | { |
15c1e57f | 1898 | get_frame_register (this_frame, IA64_BR0_REGNUM, buf); |
4afcc598 | 1899 | pc = extract_unsigned_integer (buf, 8); |
004d836a JJ |
1900 | } |
1901 | psr &= ~(3LL << 41); | |
1902 | slot_num = pc & 0x3LL; | |
1903 | psr |= (CORE_ADDR)slot_num << 41; | |
15c1e57f | 1904 | return frame_unwind_got_constant (this_frame, regnum, psr); |
004d836a | 1905 | } |
15c1e57f | 1906 | |
4afcc598 JJ |
1907 | else if (regnum == IA64_BR0_REGNUM) |
1908 | { | |
4afcc598 | 1909 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; |
15c1e57f | 1910 | |
4afcc598 | 1911 | if (addr != 0) |
15c1e57f JB |
1912 | return frame_unwind_got_memory (this_frame, regnum, addr); |
1913 | ||
1914 | return frame_unwind_got_constant (this_frame, regnum, 0); | |
4afcc598 | 1915 | } |
15c1e57f JB |
1916 | |
1917 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) | |
1918 | || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
004d836a JJ |
1919 | { |
1920 | CORE_ADDR addr = 0; | |
15c1e57f | 1921 | |
004d836a JJ |
1922 | if (regnum >= V32_REGNUM) |
1923 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1924 | addr = cache->saved_regs[regnum]; | |
244bc108 | 1925 | if (addr != 0) |
15c1e57f JB |
1926 | return frame_unwind_got_memory (this_frame, regnum, addr); |
1927 | ||
1928 | if (cache->frameless) | |
244bc108 | 1929 | { |
15c1e57f JB |
1930 | struct value *reg_val; |
1931 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1932 | ||
1933 | /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant | |
1934 | with the same code above? */ | |
004d836a JJ |
1935 | if (regnum >= V32_REGNUM) |
1936 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
15c1e57f JB |
1937 | reg_val = ia64_frame_prev_register (this_frame, this_cache, |
1938 | IA64_CFM_REGNUM); | |
1939 | prev_cfm = extract_unsigned_integer (value_contents_all (reg_val), | |
1940 | 8); | |
1941 | reg_val = ia64_frame_prev_register (this_frame, this_cache, | |
1942 | IA64_BSP_REGNUM); | |
1943 | prev_bsp = extract_unsigned_integer (value_contents_all (reg_val), | |
1944 | 8); | |
004d836a JJ |
1945 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); |
1946 | ||
1947 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
15c1e57f | 1948 | return frame_unwind_got_memory (this_frame, regnum, addr); |
244bc108 | 1949 | } |
15c1e57f JB |
1950 | |
1951 | return frame_unwind_got_constant (this_frame, regnum, 0); | |
16461d7d | 1952 | } |
15c1e57f JB |
1953 | |
1954 | else /* All other registers. */ | |
16461d7d | 1955 | { |
004d836a | 1956 | CORE_ADDR addr = 0; |
15c1e57f | 1957 | |
3a854e23 KB |
1958 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1959 | { | |
1960 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1961 | frame marker for this frame. */ |
1962 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1963 | |
1964 | /* Adjust the floating point register number to account for | |
004d836a | 1965 | register rotation. */ |
3a854e23 KB |
1966 | regnum = IA64_FR32_REGNUM |
1967 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1968 | } | |
1969 | ||
004d836a JJ |
1970 | /* If we have stored a memory address, access the register. */ |
1971 | addr = cache->saved_regs[regnum]; | |
1972 | if (addr != 0) | |
15c1e57f | 1973 | return frame_unwind_got_memory (this_frame, regnum, addr); |
004d836a JJ |
1974 | /* Otherwise, punt and get the current value of the register. */ |
1975 | else | |
15c1e57f | 1976 | return frame_unwind_got_register (this_frame, regnum, regnum); |
16461d7d | 1977 | } |
16461d7d | 1978 | } |
004d836a JJ |
1979 | |
1980 | static const struct frame_unwind ia64_frame_unwind = | |
1981 | { | |
1982 | NORMAL_FRAME, | |
1983 | &ia64_frame_this_id, | |
15c1e57f JB |
1984 | &ia64_frame_prev_register, |
1985 | NULL, | |
1986 | default_frame_sniffer | |
004d836a JJ |
1987 | }; |
1988 | ||
004d836a JJ |
1989 | /* Signal trampolines. */ |
1990 | ||
1991 | static void | |
15c1e57f | 1992 | ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame, |
2685572f | 1993 | struct ia64_frame_cache *cache) |
004d836a | 1994 | { |
15c1e57f | 1995 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
2685572f UW |
1996 | |
1997 | if (tdep->sigcontext_register_address) | |
004d836a JJ |
1998 | { |
1999 | int regno; | |
2000 | ||
2001 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
2685572f | 2002 | tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM); |
004d836a | 2003 | cache->saved_regs[IA64_CFM_REGNUM] = |
2685572f | 2004 | tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM); |
004d836a | 2005 | cache->saved_regs[IA64_PSR_REGNUM] = |
2685572f | 2006 | tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM); |
004d836a | 2007 | cache->saved_regs[IA64_BSP_REGNUM] = |
2685572f | 2008 | tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM); |
004d836a | 2009 | cache->saved_regs[IA64_RNAT_REGNUM] = |
2685572f | 2010 | tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM); |
004d836a | 2011 | cache->saved_regs[IA64_CCV_REGNUM] = |
2685572f | 2012 | tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM); |
004d836a | 2013 | cache->saved_regs[IA64_UNAT_REGNUM] = |
2685572f | 2014 | tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM); |
004d836a | 2015 | cache->saved_regs[IA64_FPSR_REGNUM] = |
2685572f | 2016 | tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM); |
004d836a | 2017 | cache->saved_regs[IA64_PFS_REGNUM] = |
2685572f | 2018 | tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM); |
004d836a | 2019 | cache->saved_regs[IA64_LC_REGNUM] = |
2685572f | 2020 | tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM); |
004d836a | 2021 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) |
4afcc598 | 2022 | cache->saved_regs[regno] = |
2685572f | 2023 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
2024 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
2025 | cache->saved_regs[regno] = | |
2685572f | 2026 | tdep->sigcontext_register_address (cache->base, regno); |
932644f0 | 2027 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a | 2028 | cache->saved_regs[regno] = |
2685572f | 2029 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
2030 | } |
2031 | } | |
2032 | ||
2033 | static struct ia64_frame_cache * | |
15c1e57f | 2034 | ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache) |
004d836a JJ |
2035 | { |
2036 | struct ia64_frame_cache *cache; | |
2037 | CORE_ADDR addr; | |
2038 | char buf[8]; | |
2039 | int i; | |
2040 | ||
2041 | if (*this_cache) | |
2042 | return *this_cache; | |
2043 | ||
2044 | cache = ia64_alloc_frame_cache (); | |
2045 | ||
15c1e57f | 2046 | get_frame_register (this_frame, sp_regnum, buf); |
4afcc598 JJ |
2047 | /* Note that frame size is hard-coded below. We cannot calculate it |
2048 | via prologue examination. */ | |
2049 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
2050 | ||
15c1e57f | 2051 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
4afcc598 JJ |
2052 | cache->bsp = extract_unsigned_integer (buf, 8); |
2053 | ||
15c1e57f | 2054 | get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
4afcc598 JJ |
2055 | cache->cfm = extract_unsigned_integer (buf, 8); |
2056 | cache->sof = cache->cfm & 0x7f; | |
004d836a | 2057 | |
15c1e57f | 2058 | ia64_sigtramp_frame_init_saved_regs (this_frame, cache); |
004d836a JJ |
2059 | |
2060 | *this_cache = cache; | |
2061 | return cache; | |
2062 | } | |
2063 | ||
2064 | static void | |
15c1e57f JB |
2065 | ia64_sigtramp_frame_this_id (struct frame_info *this_frame, |
2066 | void **this_cache, struct frame_id *this_id) | |
004d836a JJ |
2067 | { |
2068 | struct ia64_frame_cache *cache = | |
15c1e57f | 2069 | ia64_sigtramp_frame_cache (this_frame, this_cache); |
004d836a | 2070 | |
15c1e57f JB |
2071 | (*this_id) = frame_id_build_special (cache->base, |
2072 | get_frame_pc (this_frame), | |
2073 | cache->bsp); | |
4afcc598 JJ |
2074 | if (gdbarch_debug >= 1) |
2075 | fprintf_unfiltered (gdb_stdlog, | |
dfc3cd0e | 2076 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n", |
78ced177 JJ |
2077 | paddr_nz (this_id->code_addr), |
2078 | paddr_nz (this_id->stack_addr), | |
dfc3cd0e PM |
2079 | paddr_nz (cache->bsp), |
2080 | host_address_to_string (this_frame)); | |
004d836a JJ |
2081 | } |
2082 | ||
15c1e57f JB |
2083 | static struct value * |
2084 | ia64_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
2085 | void **this_cache, int regnum) | |
004d836a | 2086 | { |
4afcc598 JJ |
2087 | char buf[MAX_REGISTER_SIZE]; |
2088 | ||
15c1e57f | 2089 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
4afcc598 | 2090 | struct ia64_frame_cache *cache = |
15c1e57f | 2091 | ia64_sigtramp_frame_cache (this_frame, this_cache); |
4afcc598 JJ |
2092 | |
2093 | gdb_assert (regnum >= 0); | |
2094 | ||
2095 | if (!target_has_registers) | |
8a3fe4f8 | 2096 | error (_("No registers.")); |
4afcc598 | 2097 | |
4afcc598 JJ |
2098 | if (regnum == IA64_IP_REGNUM) |
2099 | { | |
2100 | CORE_ADDR pc = 0; | |
2101 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
2102 | ||
2103 | if (addr != 0) | |
2104 | { | |
088568da | 2105 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
4afcc598 JJ |
2106 | pc = extract_unsigned_integer (buf, 8); |
2107 | } | |
2108 | pc &= ~0xf; | |
15c1e57f | 2109 | return frame_unwind_got_constant (this_frame, regnum, pc); |
4afcc598 | 2110 | } |
15c1e57f JB |
2111 | |
2112 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) | |
2113 | || (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
4afcc598 JJ |
2114 | { |
2115 | CORE_ADDR addr = 0; | |
15c1e57f | 2116 | |
4afcc598 JJ |
2117 | if (regnum >= V32_REGNUM) |
2118 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2119 | addr = cache->saved_regs[regnum]; | |
2120 | if (addr != 0) | |
15c1e57f JB |
2121 | return frame_unwind_got_memory (this_frame, regnum, addr); |
2122 | ||
2123 | return frame_unwind_got_constant (this_frame, regnum, 0); | |
4afcc598 | 2124 | } |
15c1e57f JB |
2125 | |
2126 | else /* All other registers not listed above. */ | |
4afcc598 | 2127 | { |
4afcc598 | 2128 | CORE_ADDR addr = cache->saved_regs[regnum]; |
15c1e57f | 2129 | |
4afcc598 | 2130 | if (addr != 0) |
15c1e57f | 2131 | return frame_unwind_got_memory (this_frame, regnum, addr); |
004d836a | 2132 | |
15c1e57f JB |
2133 | return frame_unwind_got_constant (this_frame, regnum, 0); |
2134 | } | |
004d836a JJ |
2135 | } |
2136 | ||
15c1e57f JB |
2137 | static int |
2138 | ia64_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
2139 | struct frame_info *this_frame, | |
2140 | void **this_cache) | |
004d836a | 2141 | { |
15c1e57f | 2142 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame)); |
74174d2e UW |
2143 | if (tdep->pc_in_sigtramp) |
2144 | { | |
15c1e57f | 2145 | CORE_ADDR pc = get_frame_pc (this_frame); |
004d836a | 2146 | |
74174d2e | 2147 | if (tdep->pc_in_sigtramp (pc)) |
15c1e57f | 2148 | return 1; |
74174d2e | 2149 | } |
004d836a | 2150 | |
15c1e57f | 2151 | return 0; |
004d836a | 2152 | } |
15c1e57f JB |
2153 | |
2154 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2155 | { | |
2156 | SIGTRAMP_FRAME, | |
2157 | ia64_sigtramp_frame_this_id, | |
2158 | ia64_sigtramp_frame_prev_register, | |
2159 | NULL, | |
2160 | ia64_sigtramp_frame_sniffer | |
2161 | }; | |
2162 | ||
004d836a JJ |
2163 | \f |
2164 | ||
2165 | static CORE_ADDR | |
15c1e57f | 2166 | ia64_frame_base_address (struct frame_info *this_frame, void **this_cache) |
004d836a | 2167 | { |
15c1e57f | 2168 | struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache); |
004d836a JJ |
2169 | |
2170 | return cache->base; | |
2171 | } | |
2172 | ||
2173 | static const struct frame_base ia64_frame_base = | |
2174 | { | |
2175 | &ia64_frame_unwind, | |
2176 | ia64_frame_base_address, | |
2177 | ia64_frame_base_address, | |
2178 | ia64_frame_base_address | |
2179 | }; | |
16461d7d | 2180 | |
968d1cb4 JJ |
2181 | #ifdef HAVE_LIBUNWIND_IA64_H |
2182 | ||
2183 | struct ia64_unwind_table_entry | |
2184 | { | |
2185 | unw_word_t start_offset; | |
2186 | unw_word_t end_offset; | |
2187 | unw_word_t info_offset; | |
2188 | }; | |
2189 | ||
2190 | static __inline__ uint64_t | |
2191 | ia64_rse_slot_num (uint64_t addr) | |
2192 | { | |
2193 | return (addr >> 3) & 0x3f; | |
2194 | } | |
2195 | ||
2196 | /* Skip over a designated number of registers in the backing | |
2197 | store, remembering every 64th position is for NAT. */ | |
2198 | static __inline__ uint64_t | |
2199 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2200 | { | |
2201 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2202 | ||
2203 | if (num_regs < 0) | |
2204 | delta -= 0x3e; | |
2205 | return addr + ((num_regs + delta/0x3f) << 3); | |
2206 | } | |
2207 | ||
2208 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2209 | number to a libunwind register number. */ | |
2210 | static int | |
2211 | ia64_gdb2uw_regnum (int regnum) | |
2212 | { | |
2213 | if (regnum == sp_regnum) | |
2214 | return UNW_IA64_SP; | |
2215 | else if (regnum == IA64_BSP_REGNUM) | |
2216 | return UNW_IA64_BSP; | |
2217 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2218 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2219 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2220 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2221 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2222 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2223 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2224 | return -1; | |
2225 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2226 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2227 | else if (regnum == IA64_PR_REGNUM) | |
2228 | return UNW_IA64_PR; | |
2229 | else if (regnum == IA64_IP_REGNUM) | |
2230 | return UNW_REG_IP; | |
2231 | else if (regnum == IA64_CFM_REGNUM) | |
2232 | return UNW_IA64_CFM; | |
2233 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2234 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2235 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2236 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2237 | else | |
2238 | return -1; | |
2239 | } | |
2240 | ||
2241 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2242 | number to a ia64 gdb register number. */ | |
2243 | static int | |
2244 | ia64_uw2gdb_regnum (int uw_regnum) | |
2245 | { | |
2246 | if (uw_regnum == UNW_IA64_SP) | |
2247 | return sp_regnum; | |
2248 | else if (uw_regnum == UNW_IA64_BSP) | |
2249 | return IA64_BSP_REGNUM; | |
2250 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2251 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2252 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2253 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2254 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2255 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2256 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2257 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2258 | else if (uw_regnum == UNW_IA64_PR) | |
2259 | return IA64_PR_REGNUM; | |
2260 | else if (uw_regnum == UNW_REG_IP) | |
2261 | return IA64_IP_REGNUM; | |
2262 | else if (uw_regnum == UNW_IA64_CFM) | |
2263 | return IA64_CFM_REGNUM; | |
2264 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2265 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2266 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2267 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2268 | else | |
2269 | return -1; | |
2270 | } | |
2271 | ||
2272 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2273 | register or not. */ | |
2274 | static int | |
2275 | ia64_is_fpreg (int uw_regnum) | |
2276 | { | |
2277 | return unw_is_fpreg (uw_regnum); | |
2278 | } | |
2279 | ||
2280 | /* Libunwind callback accessor function for general registers. */ | |
2281 | static int | |
2282 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2283 | int write, void *arg) | |
2284 | { | |
2285 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2286 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
15c1e57f | 2287 | struct frame_info *this_frame = arg; |
968d1cb4 JJ |
2288 | long new_sof, old_sof; |
2289 | char buf[MAX_REGISTER_SIZE]; | |
2290 | ||
45ecac4b UW |
2291 | /* We never call any libunwind routines that need to write registers. */ |
2292 | gdb_assert (!write); | |
968d1cb4 | 2293 | |
45ecac4b | 2294 | switch (uw_regnum) |
968d1cb4 | 2295 | { |
45ecac4b UW |
2296 | case UNW_REG_IP: |
2297 | /* Libunwind expects to see the pc value which means the slot number | |
2298 | from the psr must be merged with the ip word address. */ | |
15c1e57f | 2299 | get_frame_register (this_frame, IA64_IP_REGNUM, buf); |
45ecac4b | 2300 | ip = extract_unsigned_integer (buf, 8); |
15c1e57f | 2301 | get_frame_register (this_frame, IA64_PSR_REGNUM, buf); |
45ecac4b UW |
2302 | psr = extract_unsigned_integer (buf, 8); |
2303 | *val = ip | ((psr >> 41) & 0x3); | |
2304 | break; | |
2305 | ||
2306 | case UNW_IA64_AR_BSP: | |
2307 | /* Libunwind expects to see the beginning of the current register | |
2308 | frame so we must account for the fact that ptrace() will return a value | |
2309 | for bsp that points *after* the current register frame. */ | |
15c1e57f | 2310 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
45ecac4b | 2311 | bsp = extract_unsigned_integer (buf, 8); |
15c1e57f | 2312 | get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
45ecac4b UW |
2313 | cfm = extract_unsigned_integer (buf, 8); |
2314 | sof = (cfm & 0x7f); | |
2315 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2316 | break; | |
968d1cb4 | 2317 | |
45ecac4b UW |
2318 | case UNW_IA64_AR_BSPSTORE: |
2319 | /* Libunwind wants bspstore to be after the current register frame. | |
2320 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
15c1e57f | 2321 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
45ecac4b UW |
2322 | *val = extract_unsigned_integer (buf, 8); |
2323 | break; | |
2324 | ||
2325 | default: | |
2326 | /* For all other registers, just unwind the value directly. */ | |
15c1e57f | 2327 | get_frame_register (this_frame, regnum, buf); |
45ecac4b UW |
2328 | *val = extract_unsigned_integer (buf, 8); |
2329 | break; | |
968d1cb4 | 2330 | } |
45ecac4b UW |
2331 | |
2332 | if (gdbarch_debug >= 1) | |
2333 | fprintf_unfiltered (gdb_stdlog, | |
2334 | " access_reg: from cache: %4s=0x%s\n", | |
2335 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2336 | ? ia64_register_names[regnum] : "r??"), | |
2337 | paddr_nz (*val)); | |
968d1cb4 JJ |
2338 | return 0; |
2339 | } | |
2340 | ||
2341 | /* Libunwind callback accessor function for floating-point registers. */ | |
2342 | static int | |
2343 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2344 | int write, void *arg) | |
2345 | { | |
2346 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
15c1e57f | 2347 | struct frame_info *this_frame = arg; |
968d1cb4 | 2348 | |
45ecac4b UW |
2349 | /* We never call any libunwind routines that need to write registers. */ |
2350 | gdb_assert (!write); | |
2351 | ||
15c1e57f | 2352 | get_frame_register (this_frame, regnum, (char *) val); |
45ecac4b | 2353 | |
968d1cb4 JJ |
2354 | return 0; |
2355 | } | |
2356 | ||
c5a27d9c JJ |
2357 | /* Libunwind callback accessor function for top-level rse registers. */ |
2358 | static int | |
2359 | ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2360 | int write, void *arg) | |
2361 | { | |
2362 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2363 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
45ecac4b | 2364 | struct regcache *regcache = arg; |
c5a27d9c | 2365 | long new_sof, old_sof; |
45ecac4b | 2366 | char buf[MAX_REGISTER_SIZE]; |
c5a27d9c | 2367 | |
45ecac4b UW |
2368 | /* We never call any libunwind routines that need to write registers. */ |
2369 | gdb_assert (!write); | |
c5a27d9c | 2370 | |
45ecac4b | 2371 | switch (uw_regnum) |
c5a27d9c | 2372 | { |
45ecac4b UW |
2373 | case UNW_REG_IP: |
2374 | /* Libunwind expects to see the pc value which means the slot number | |
2375 | from the psr must be merged with the ip word address. */ | |
2376 | regcache_cooked_read (regcache, IA64_IP_REGNUM, buf); | |
2377 | ip = extract_unsigned_integer (buf, 8); | |
2378 | regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf); | |
2379 | psr = extract_unsigned_integer (buf, 8); | |
2380 | *val = ip | ((psr >> 41) & 0x3); | |
2381 | break; | |
c5a27d9c | 2382 | |
45ecac4b UW |
2383 | case UNW_IA64_AR_BSP: |
2384 | /* Libunwind expects to see the beginning of the current register | |
2385 | frame so we must account for the fact that ptrace() will return a value | |
2386 | for bsp that points *after* the current register frame. */ | |
2387 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2388 | bsp = extract_unsigned_integer (buf, 8); | |
2389 | regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf); | |
2390 | cfm = extract_unsigned_integer (buf, 8); | |
2391 | sof = (cfm & 0x7f); | |
2392 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2393 | break; | |
c5a27d9c | 2394 | |
45ecac4b UW |
2395 | case UNW_IA64_AR_BSPSTORE: |
2396 | /* Libunwind wants bspstore to be after the current register frame. | |
2397 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2398 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2399 | *val = extract_unsigned_integer (buf, 8); | |
2400 | break; | |
c5a27d9c | 2401 | |
45ecac4b UW |
2402 | default: |
2403 | /* For all other registers, just unwind the value directly. */ | |
2404 | regcache_cooked_read (regcache, regnum, buf); | |
2405 | *val = extract_unsigned_integer (buf, 8); | |
2406 | break; | |
c5a27d9c JJ |
2407 | } |
2408 | ||
2409 | if (gdbarch_debug >= 1) | |
2410 | fprintf_unfiltered (gdb_stdlog, | |
2411 | " access_rse_reg: from cache: %4s=0x%s\n", | |
2412 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2413 | ? ia64_register_names[regnum] : "r??"), | |
2414 | paddr_nz (*val)); | |
2415 | ||
2416 | return 0; | |
2417 | } | |
2418 | ||
45ecac4b UW |
2419 | /* Libunwind callback accessor function for top-level fp registers. */ |
2420 | static int | |
2421 | ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, | |
2422 | unw_fpreg_t *val, int write, void *arg) | |
2423 | { | |
2424 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2425 | struct regcache *regcache = arg; | |
2426 | ||
2427 | /* We never call any libunwind routines that need to write registers. */ | |
2428 | gdb_assert (!write); | |
2429 | ||
2430 | regcache_cooked_read (regcache, regnum, (char *) val); | |
2431 | ||
2432 | return 0; | |
2433 | } | |
2434 | ||
968d1cb4 JJ |
2435 | /* Libunwind callback accessor function for accessing memory. */ |
2436 | static int | |
2437 | ia64_access_mem (unw_addr_space_t as, | |
2438 | unw_word_t addr, unw_word_t *val, | |
2439 | int write, void *arg) | |
2440 | { | |
c5a27d9c JJ |
2441 | if (addr - KERNEL_START < ktab_size) |
2442 | { | |
2443 | unw_word_t *laddr = (unw_word_t*) ((char *) ktab | |
2444 | + (addr - KERNEL_START)); | |
2445 | ||
2446 | if (write) | |
2447 | *laddr = *val; | |
2448 | else | |
2449 | *val = *laddr; | |
2450 | return 0; | |
2451 | } | |
2452 | ||
968d1cb4 JJ |
2453 | /* XXX do we need to normalize byte-order here? */ |
2454 | if (write) | |
2455 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2456 | else | |
2457 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2458 | } | |
2459 | ||
2460 | /* Call low-level function to access the kernel unwind table. */ | |
13547ab6 DJ |
2461 | static LONGEST |
2462 | getunwind_table (gdb_byte **buf_p) | |
968d1cb4 JJ |
2463 | { |
2464 | LONGEST x; | |
c5a27d9c | 2465 | |
10d6c8cd DJ |
2466 | /* FIXME drow/2005-09-10: This code used to call |
2467 | ia64_linux_xfer_unwind_table directly to fetch the unwind table | |
2468 | for the currently running ia64-linux kernel. That data should | |
2469 | come from the core file and be accessed via the auxv vector; if | |
2470 | we want to preserve fall back to the running kernel's table, then | |
2471 | we should find a way to override the corefile layer's | |
2472 | xfer_partial method. */ | |
968d1cb4 | 2473 | |
13547ab6 DJ |
2474 | x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE, |
2475 | NULL, buf_p); | |
2476 | ||
2477 | return x; | |
968d1cb4 | 2478 | } |
10d6c8cd | 2479 | |
968d1cb4 JJ |
2480 | /* Get the kernel unwind table. */ |
2481 | static int | |
2482 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2483 | { | |
c5a27d9c | 2484 | static struct ia64_table_entry *etab; |
968d1cb4 | 2485 | |
c5a27d9c | 2486 | if (!ktab) |
968d1cb4 | 2487 | { |
13547ab6 | 2488 | gdb_byte *ktab_buf; |
eeec829c | 2489 | LONGEST size; |
13547ab6 | 2490 | |
eeec829c DJ |
2491 | size = getunwind_table (&ktab_buf); |
2492 | if (size <= 0) | |
13547ab6 | 2493 | return -UNW_ENOINFO; |
eeec829c DJ |
2494 | |
2495 | ktab = (struct ia64_table_entry *) ktab_buf; | |
2496 | ktab_size = size; | |
13547ab6 | 2497 | |
968d1cb4 | 2498 | for (etab = ktab; etab->start_offset; ++etab) |
c5a27d9c | 2499 | etab->info_offset += KERNEL_START; |
968d1cb4 JJ |
2500 | } |
2501 | ||
2502 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2503 | return -UNW_ENOINFO; | |
2504 | ||
2505 | di->format = UNW_INFO_FORMAT_TABLE; | |
2506 | di->gp = 0; | |
2507 | di->start_ip = ktab[0].start_offset; | |
2508 | di->end_ip = etab[-1].end_offset; | |
2509 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2510 | di->u.ti.segbase = 0; | |
2511 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2512 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2513 | ||
2514 | if (gdbarch_debug >= 1) | |
2515 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2516 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2517 | (char *) di->u.ti.name_ptr, | |
2518 | paddr_nz (di->u.ti.segbase), | |
623d3eb1 | 2519 | pulongest (di->u.ti.table_len), |
78ced177 | 2520 | paddr_nz (di->gp)); |
968d1cb4 JJ |
2521 | return 0; |
2522 | } | |
2523 | ||
2524 | /* Find the unwind table entry for a specified address. */ | |
2525 | static int | |
2526 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2527 | unw_dyn_info_t *dip, void **buf) | |
2528 | { | |
2529 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2530 | Elf_Internal_Ehdr *ehdr; | |
2531 | unw_word_t segbase = 0; | |
2532 | CORE_ADDR load_base; | |
2533 | bfd *bfd; | |
2534 | int i; | |
2535 | ||
2536 | bfd = objfile->obfd; | |
2537 | ||
2538 | ehdr = elf_tdata (bfd)->elf_header; | |
2539 | phdr = elf_tdata (bfd)->phdr; | |
2540 | ||
2541 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2542 | ||
2543 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2544 | { | |
2545 | switch (phdr[i].p_type) | |
2546 | { | |
2547 | case PT_LOAD: | |
2548 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2549 | < phdr[i].p_memsz) | |
2550 | p_text = phdr + i; | |
2551 | break; | |
2552 | ||
2553 | case PT_IA_64_UNWIND: | |
2554 | p_unwind = phdr + i; | |
2555 | break; | |
2556 | ||
2557 | default: | |
2558 | break; | |
2559 | } | |
2560 | } | |
2561 | ||
c5a27d9c | 2562 | if (!p_text || !p_unwind) |
968d1cb4 JJ |
2563 | return -UNW_ENOINFO; |
2564 | ||
c5a27d9c JJ |
2565 | /* Verify that the segment that contains the IP also contains |
2566 | the static unwind table. If not, we may be in the Linux kernel's | |
2567 | DSO gate page in which case the unwind table is another segment. | |
2568 | Otherwise, we are dealing with runtime-generated code, for which we | |
2569 | have no info here. */ | |
968d1cb4 JJ |
2570 | segbase = p_text->p_vaddr + load_base; |
2571 | ||
c5a27d9c JJ |
2572 | if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
2573 | { | |
2574 | int ok = 0; | |
2575 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2576 | { | |
2577 | if (phdr[i].p_type == PT_LOAD | |
2578 | && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) | |
2579 | { | |
2580 | ok = 1; | |
2581 | /* Get the segbase from the section containing the | |
2582 | libunwind table. */ | |
2583 | segbase = phdr[i].p_vaddr + load_base; | |
2584 | } | |
2585 | } | |
2586 | if (!ok) | |
2587 | return -UNW_ENOINFO; | |
2588 | } | |
2589 | ||
2590 | dip->start_ip = p_text->p_vaddr + load_base; | |
968d1cb4 | 2591 | dip->end_ip = dip->start_ip + p_text->p_memsz; |
b33e8514 | 2592 | dip->gp = ia64_find_global_pointer (ip); |
503ff15d KB |
2593 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2594 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2595 | dip->u.rti.segbase = segbase; | |
2596 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2597 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2598 | |
2599 | return 0; | |
2600 | } | |
2601 | ||
2602 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2603 | static int | |
2604 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2605 | int need_unwind_info, void *arg) | |
2606 | { | |
2607 | struct obj_section *sec = find_pc_section (ip); | |
2608 | unw_dyn_info_t di; | |
2609 | int ret; | |
2610 | void *buf = NULL; | |
2611 | ||
2612 | if (!sec) | |
2613 | { | |
2614 | /* XXX This only works if the host and the target architecture are | |
2615 | both ia64 and if the have (more or less) the same kernel | |
2616 | version. */ | |
2617 | if (get_kernel_table (ip, &di) < 0) | |
2618 | return -UNW_ENOINFO; | |
503ff15d KB |
2619 | |
2620 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2621 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2622 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2623 | "length=%s,data=0x%s)\n", | |
2624 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2625 | paddr_nz (di.u.ti.segbase), | |
2626 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2627 | paddr_nz (di.gp), | |
623d3eb1 | 2628 | pulongest (di.u.ti.table_len), |
78ced177 | 2629 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); |
968d1cb4 JJ |
2630 | } |
2631 | else | |
2632 | { | |
2633 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2634 | if (ret < 0) | |
2635 | return ret; | |
968d1cb4 | 2636 | |
503ff15d | 2637 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2638 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2639 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2640 | "length=%s,data=0x%s)\n", | |
2641 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2642 | paddr_nz (di.u.rti.segbase), | |
2643 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2644 | paddr_nz (di.gp), | |
623d3eb1 | 2645 | pulongest (di.u.rti.table_len), |
78ced177 | 2646 | paddr_nz (di.u.rti.table_data)); |
503ff15d | 2647 | } |
968d1cb4 | 2648 | |
503ff15d KB |
2649 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2650 | arg); | |
968d1cb4 JJ |
2651 | |
2652 | /* We no longer need the dyn info storage so free it. */ | |
2653 | xfree (buf); | |
2654 | ||
2655 | return ret; | |
2656 | } | |
2657 | ||
2658 | /* Libunwind callback accessor function for cleanup. */ | |
2659 | static void | |
2660 | ia64_put_unwind_info (unw_addr_space_t as, | |
2661 | unw_proc_info_t *pip, void *arg) | |
2662 | { | |
2663 | /* Nothing required for now. */ | |
2664 | } | |
2665 | ||
2666 | /* Libunwind callback accessor function to get head of the dynamic | |
2667 | unwind-info registration list. */ | |
2668 | static int | |
2669 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2670 | unw_word_t *dilap, void *arg) | |
2671 | { | |
2672 | struct obj_section *text_sec; | |
2673 | struct objfile *objfile; | |
2674 | unw_word_t ip, addr; | |
2675 | unw_dyn_info_t di; | |
2676 | int ret; | |
2677 | ||
2678 | if (!libunwind_is_initialized ()) | |
2679 | return -UNW_ENOINFO; | |
2680 | ||
2681 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2682 | { | |
2683 | void *buf = NULL; | |
2684 | ||
2685 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
8b7a6d61 | 2686 | ip = obj_section_addr (text_sec); |
968d1cb4 JJ |
2687 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); |
2688 | if (ret >= 0) | |
2689 | { | |
503ff15d | 2690 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2691 | /* We no longer need the dyn info storage so free it. */ |
2692 | xfree (buf); | |
2693 | ||
2694 | if (addr) | |
2695 | { | |
2696 | if (gdbarch_debug >= 1) | |
2697 | fprintf_unfiltered (gdb_stdlog, | |
2698 | "dynamic unwind table in objfile %s " | |
78ced177 | 2699 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2700 | bfd_get_filename (objfile->obfd), |
78ced177 | 2701 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2702 | *dilap = addr; |
2703 | return 0; | |
2704 | } | |
2705 | } | |
2706 | } | |
2707 | return -UNW_ENOINFO; | |
2708 | } | |
2709 | ||
2710 | ||
2711 | /* Frame interface functions for libunwind. */ | |
2712 | ||
2713 | static void | |
15c1e57f | 2714 | ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache, |
7166c4a9 | 2715 | struct frame_id *this_id) |
968d1cb4 | 2716 | { |
15c1e57f | 2717 | struct frame_id id; |
968d1cb4 JJ |
2718 | char buf[8]; |
2719 | CORE_ADDR bsp; | |
c5a27d9c | 2720 | |
968d1cb4 | 2721 | |
15c1e57f | 2722 | libunwind_frame_this_id (this_frame, this_cache, &id); |
c5a27d9c JJ |
2723 | if (frame_id_eq (id, null_frame_id)) |
2724 | { | |
2725 | (*this_id) = null_frame_id; | |
2726 | return; | |
2727 | } | |
968d1cb4 | 2728 | |
c5a27d9c JJ |
2729 | /* We must add the bsp as the special address for frame comparison |
2730 | purposes. */ | |
15c1e57f | 2731 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
968d1cb4 JJ |
2732 | bsp = extract_unsigned_integer (buf, 8); |
2733 | ||
15c1e57f | 2734 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); |
968d1cb4 JJ |
2735 | |
2736 | if (gdbarch_debug >= 1) | |
2737 | fprintf_unfiltered (gdb_stdlog, | |
dfc3cd0e | 2738 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n", |
78ced177 | 2739 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), |
dfc3cd0e PM |
2740 | paddr_nz (bsp), |
2741 | host_address_to_string (this_frame)); | |
968d1cb4 JJ |
2742 | } |
2743 | ||
15c1e57f JB |
2744 | static struct value * |
2745 | ia64_libunwind_frame_prev_register (struct frame_info *this_frame, | |
2746 | void **this_cache, int regnum) | |
968d1cb4 JJ |
2747 | { |
2748 | int reg = regnum; | |
15c1e57f JB |
2749 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
2750 | struct value *val; | |
968d1cb4 JJ |
2751 | |
2752 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2753 | reg = IA64_PR_REGNUM; | |
2754 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2755 | reg = IA64_UNAT_REGNUM; | |
2756 | ||
2757 | /* Let libunwind do most of the work. */ | |
15c1e57f | 2758 | val = libunwind_frame_prev_register (this_frame, this_cache, reg); |
6672f2ae | 2759 | |
968d1cb4 JJ |
2760 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2761 | { | |
2762 | ULONGEST prN_val; | |
2763 | ||
2764 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2765 | { | |
2766 | int rrb_pr = 0; | |
2767 | ULONGEST cfm; | |
2768 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2769 | ||
2770 | /* Fetch predicate register rename base from current frame | |
2771 | marker for this frame. */ | |
15c1e57f | 2772 | get_frame_register (this_frame, IA64_CFM_REGNUM, buf); |
968d1cb4 JJ |
2773 | cfm = extract_unsigned_integer (buf, 8); |
2774 | rrb_pr = (cfm >> 32) & 0x3f; | |
2775 | ||
2776 | /* Adjust the register number to account for register rotation. */ | |
15c1e57f | 2777 | regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48; |
968d1cb4 | 2778 | } |
15c1e57f | 2779 | prN_val = extract_bit_field (value_contents_all (val), |
968d1cb4 | 2780 | regnum - VP0_REGNUM, 1); |
15c1e57f | 2781 | return frame_unwind_got_constant (this_frame, regnum, prN_val); |
968d1cb4 | 2782 | } |
15c1e57f | 2783 | |
968d1cb4 JJ |
2784 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) |
2785 | { | |
2786 | ULONGEST unatN_val; | |
2787 | ||
15c1e57f JB |
2788 | unatN_val = extract_bit_field (value_contents_all (val), |
2789 | regnum - IA64_NAT0_REGNUM, 1); | |
2790 | return frame_unwind_got_constant (this_frame, regnum, unatN_val); | |
968d1cb4 | 2791 | } |
15c1e57f | 2792 | |
968d1cb4 JJ |
2793 | else if (regnum == IA64_BSP_REGNUM) |
2794 | { | |
15c1e57f JB |
2795 | struct value *cfm_val; |
2796 | CORE_ADDR prev_bsp, prev_cfm; | |
2797 | ||
2798 | /* We want to calculate the previous bsp as the end of the previous | |
2799 | register stack frame. This corresponds to what the hardware bsp | |
2800 | register will be if we pop the frame back which is why we might | |
2801 | have been called. We know that libunwind will pass us back the | |
2802 | beginning of the current frame so we should just add sof to it. */ | |
2803 | prev_bsp = extract_unsigned_integer (value_contents_all (val), 8); | |
2804 | cfm_val = libunwind_frame_prev_register (this_frame, this_cache, | |
2805 | IA64_CFM_REGNUM); | |
2806 | prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val), 8); | |
968d1cb4 JJ |
2807 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); |
2808 | ||
15c1e57f | 2809 | return frame_unwind_got_constant (this_frame, regnum, prev_bsp); |
968d1cb4 | 2810 | } |
15c1e57f JB |
2811 | else |
2812 | return val; | |
2813 | } | |
968d1cb4 | 2814 | |
15c1e57f JB |
2815 | static int |
2816 | ia64_libunwind_frame_sniffer (const struct frame_unwind *self, | |
2817 | struct frame_info *this_frame, | |
2818 | void **this_cache) | |
2819 | { | |
2820 | if (libunwind_is_initialized () | |
2821 | && libunwind_frame_sniffer (self, this_frame, this_cache)) | |
2822 | return 1; | |
2823 | ||
2824 | return 0; | |
968d1cb4 JJ |
2825 | } |
2826 | ||
2827 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2828 | { | |
2829 | NORMAL_FRAME, | |
2830 | ia64_libunwind_frame_this_id, | |
272dfcfd AS |
2831 | ia64_libunwind_frame_prev_register, |
2832 | NULL, | |
15c1e57f | 2833 | ia64_libunwind_frame_sniffer, |
272dfcfd | 2834 | libunwind_frame_dealloc_cache |
968d1cb4 JJ |
2835 | }; |
2836 | ||
c5a27d9c | 2837 | static void |
15c1e57f JB |
2838 | ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame, |
2839 | void **this_cache, | |
c5a27d9c JJ |
2840 | struct frame_id *this_id) |
2841 | { | |
2842 | char buf[8]; | |
2843 | CORE_ADDR bsp; | |
2844 | struct frame_id id; | |
2845 | CORE_ADDR prev_ip; | |
2846 | ||
15c1e57f | 2847 | libunwind_frame_this_id (this_frame, this_cache, &id); |
c5a27d9c JJ |
2848 | if (frame_id_eq (id, null_frame_id)) |
2849 | { | |
2850 | (*this_id) = null_frame_id; | |
2851 | return; | |
2852 | } | |
2853 | ||
2854 | /* We must add the bsp as the special address for frame comparison | |
2855 | purposes. */ | |
15c1e57f | 2856 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
c5a27d9c JJ |
2857 | bsp = extract_unsigned_integer (buf, 8); |
2858 | ||
2859 | /* For a sigtramp frame, we don't make the check for previous ip being 0. */ | |
2860 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2861 | ||
2862 | if (gdbarch_debug >= 1) | |
2863 | fprintf_unfiltered (gdb_stdlog, | |
dfc3cd0e | 2864 | "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %s\n", |
c5a27d9c | 2865 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), |
dfc3cd0e PM |
2866 | paddr_nz (bsp), |
2867 | host_address_to_string (this_frame)); | |
c5a27d9c JJ |
2868 | } |
2869 | ||
15c1e57f JB |
2870 | static struct value * |
2871 | ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame, | |
2872 | void **this_cache, int regnum) | |
c5a27d9c | 2873 | { |
15c1e57f JB |
2874 | struct value *prev_ip_val; |
2875 | CORE_ADDR prev_ip; | |
c5a27d9c JJ |
2876 | |
2877 | /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT | |
2878 | method of getting previous registers. */ | |
15c1e57f JB |
2879 | prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache, |
2880 | IA64_IP_REGNUM); | |
2881 | prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val), 8); | |
c5a27d9c JJ |
2882 | |
2883 | if (prev_ip == 0) | |
2884 | { | |
2885 | void *tmp_cache = NULL; | |
15c1e57f JB |
2886 | return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache, |
2887 | regnum); | |
c5a27d9c JJ |
2888 | } |
2889 | else | |
15c1e57f | 2890 | return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum); |
c5a27d9c JJ |
2891 | } |
2892 | ||
15c1e57f JB |
2893 | static int |
2894 | ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self, | |
2895 | struct frame_info *this_frame, | |
2896 | void **this_cache) | |
c5a27d9c JJ |
2897 | { |
2898 | if (libunwind_is_initialized ()) | |
2899 | { | |
15c1e57f JB |
2900 | if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache)) |
2901 | return 1; | |
2902 | return 0; | |
c5a27d9c JJ |
2903 | } |
2904 | else | |
15c1e57f | 2905 | return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache); |
c5a27d9c JJ |
2906 | } |
2907 | ||
15c1e57f JB |
2908 | static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = |
2909 | { | |
2910 | SIGTRAMP_FRAME, | |
2911 | ia64_libunwind_sigtramp_frame_this_id, | |
2912 | ia64_libunwind_sigtramp_frame_prev_register, | |
2913 | NULL, | |
2914 | ia64_libunwind_sigtramp_frame_sniffer | |
2915 | }; | |
2916 | ||
968d1cb4 JJ |
2917 | /* Set of libunwind callback acccessor functions. */ |
2918 | static unw_accessors_t ia64_unw_accessors = | |
2919 | { | |
2920 | ia64_find_proc_info_x, | |
2921 | ia64_put_unwind_info, | |
2922 | ia64_get_dyn_info_list, | |
2923 | ia64_access_mem, | |
2924 | ia64_access_reg, | |
2925 | ia64_access_fpreg, | |
2926 | /* resume */ | |
2927 | /* get_proc_name */ | |
2928 | }; | |
2929 | ||
c5a27d9c JJ |
2930 | /* Set of special libunwind callback acccessor functions specific for accessing |
2931 | the rse registers. At the top of the stack, we want libunwind to figure out | |
2932 | how to read r32 - r127. Though usually they are found sequentially in memory | |
2933 | starting from $bof, this is not always true. */ | |
2934 | static unw_accessors_t ia64_unw_rse_accessors = | |
2935 | { | |
2936 | ia64_find_proc_info_x, | |
2937 | ia64_put_unwind_info, | |
2938 | ia64_get_dyn_info_list, | |
2939 | ia64_access_mem, | |
2940 | ia64_access_rse_reg, | |
45ecac4b | 2941 | ia64_access_rse_fpreg, |
c5a27d9c JJ |
2942 | /* resume */ |
2943 | /* get_proc_name */ | |
2944 | }; | |
2945 | ||
968d1cb4 JJ |
2946 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ |
2947 | static struct libunwind_descr ia64_libunwind_descr = | |
2948 | { | |
2949 | ia64_gdb2uw_regnum, | |
2950 | ia64_uw2gdb_regnum, | |
2951 | ia64_is_fpreg, | |
2952 | &ia64_unw_accessors, | |
c5a27d9c | 2953 | &ia64_unw_rse_accessors, |
968d1cb4 JJ |
2954 | }; |
2955 | ||
2956 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2957 | ||
4c8b6ae0 UW |
2958 | static int |
2959 | ia64_use_struct_convention (struct type *type) | |
16461d7d | 2960 | { |
64a5b29c KB |
2961 | struct type *float_elt_type; |
2962 | ||
4c8b6ae0 UW |
2963 | /* Don't use the struct convention for anything but structure, |
2964 | union, or array types. */ | |
2965 | if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2966 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
2967 | || TYPE_CODE (type) == TYPE_CODE_ARRAY)) | |
2968 | return 0; | |
2969 | ||
64a5b29c KB |
2970 | /* HFAs are structures (or arrays) consisting entirely of floating |
2971 | point values of the same length. Up to 8 of these are returned | |
2972 | in registers. Don't use the struct convention when this is the | |
004d836a | 2973 | case. */ |
64a5b29c KB |
2974 | float_elt_type = is_float_or_hfa_type (type); |
2975 | if (float_elt_type != NULL | |
2976 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2977 | return 0; | |
2978 | ||
2979 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 2980 | Don't use the struct convention for those either. */ |
16461d7d KB |
2981 | return TYPE_LENGTH (type) > 32; |
2982 | } | |
2983 | ||
4c8b6ae0 | 2984 | static void |
2d522557 AC |
2985 | ia64_extract_return_value (struct type *type, struct regcache *regcache, |
2986 | gdb_byte *valbuf) | |
16461d7d | 2987 | { |
64a5b29c KB |
2988 | struct type *float_elt_type; |
2989 | ||
2990 | float_elt_type = is_float_or_hfa_type (type); | |
2991 | if (float_elt_type != NULL) | |
2992 | { | |
004d836a | 2993 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
2994 | int offset = 0; |
2995 | int regnum = IA64_FR8_REGNUM; | |
2996 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
2997 | ||
2998 | while (n-- > 0) | |
2999 | { | |
004d836a JJ |
3000 | regcache_cooked_read (regcache, regnum, from); |
3001 | convert_typed_floating (from, builtin_type_ia64_ext, | |
3002 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
3003 | offset += TYPE_LENGTH (float_elt_type); |
3004 | regnum++; | |
3005 | } | |
3006 | } | |
16461d7d | 3007 | else |
004d836a JJ |
3008 | { |
3009 | ULONGEST val; | |
3010 | int offset = 0; | |
3011 | int regnum = IA64_GR8_REGNUM; | |
7b9ee6a8 DJ |
3012 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), |
3013 | IA64_GR8_REGNUM)); | |
004d836a JJ |
3014 | int n = TYPE_LENGTH (type) / reglen; |
3015 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 3016 | |
004d836a JJ |
3017 | while (n-- > 0) |
3018 | { | |
3019 | ULONGEST val; | |
3020 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3021 | memcpy ((char *)valbuf + offset, &val, reglen); | |
3022 | offset += reglen; | |
3023 | regnum++; | |
3024 | } | |
16461d7d | 3025 | |
004d836a JJ |
3026 | if (m) |
3027 | { | |
3028 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3029 | memcpy ((char *)valbuf + offset, &val, m); | |
3030 | } | |
3031 | } | |
16461d7d KB |
3032 | } |
3033 | ||
4c8b6ae0 UW |
3034 | static void |
3035 | ia64_store_return_value (struct type *type, struct regcache *regcache, | |
3036 | const gdb_byte *valbuf) | |
3037 | { | |
3038 | struct type *float_elt_type; | |
3039 | ||
3040 | float_elt_type = is_float_or_hfa_type (type); | |
3041 | if (float_elt_type != NULL) | |
3042 | { | |
3043 | char to[MAX_REGISTER_SIZE]; | |
3044 | int offset = 0; | |
3045 | int regnum = IA64_FR8_REGNUM; | |
3046 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
3047 | ||
3048 | while (n-- > 0) | |
3049 | { | |
3050 | convert_typed_floating ((char *)valbuf + offset, float_elt_type, | |
3051 | to, builtin_type_ia64_ext); | |
3052 | regcache_cooked_write (regcache, regnum, to); | |
3053 | offset += TYPE_LENGTH (float_elt_type); | |
3054 | regnum++; | |
3055 | } | |
3056 | } | |
3057 | else | |
3058 | { | |
3059 | ULONGEST val; | |
3060 | int offset = 0; | |
3061 | int regnum = IA64_GR8_REGNUM; | |
3062 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), | |
3063 | IA64_GR8_REGNUM)); | |
3064 | int n = TYPE_LENGTH (type) / reglen; | |
3065 | int m = TYPE_LENGTH (type) % reglen; | |
3066 | ||
3067 | while (n-- > 0) | |
3068 | { | |
3069 | ULONGEST val; | |
3070 | memcpy (&val, (char *)valbuf + offset, reglen); | |
3071 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3072 | offset += reglen; | |
3073 | regnum++; | |
3074 | } | |
3075 | ||
3076 | if (m) | |
3077 | { | |
3078 | memcpy (&val, (char *)valbuf + offset, m); | |
3079 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3080 | } | |
3081 | } | |
3082 | } | |
3083 | ||
3084 | static enum return_value_convention | |
c055b101 CV |
3085 | ia64_return_value (struct gdbarch *gdbarch, struct type *func_type, |
3086 | struct type *valtype, struct regcache *regcache, | |
3087 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
4c8b6ae0 UW |
3088 | { |
3089 | int struct_return = ia64_use_struct_convention (valtype); | |
3090 | ||
3091 | if (writebuf != NULL) | |
3092 | { | |
3093 | gdb_assert (!struct_return); | |
3094 | ia64_store_return_value (valtype, regcache, writebuf); | |
3095 | } | |
3096 | ||
3097 | if (readbuf != NULL) | |
3098 | { | |
3099 | gdb_assert (!struct_return); | |
3100 | ia64_extract_return_value (valtype, regcache, readbuf); | |
3101 | } | |
3102 | ||
3103 | if (struct_return) | |
3104 | return RETURN_VALUE_STRUCT_CONVENTION; | |
3105 | else | |
3106 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3107 | } | |
16461d7d | 3108 | |
64a5b29c KB |
3109 | static int |
3110 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
3111 | { | |
3112 | switch (TYPE_CODE (t)) | |
3113 | { | |
3114 | case TYPE_CODE_FLT: | |
3115 | if (*etp) | |
3116 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
3117 | else | |
3118 | { | |
3119 | *etp = t; | |
3120 | return 1; | |
3121 | } | |
3122 | break; | |
3123 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
3124 | return |
3125 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
3126 | etp); | |
64a5b29c KB |
3127 | break; |
3128 | case TYPE_CODE_STRUCT: | |
3129 | { | |
3130 | int i; | |
3131 | ||
3132 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
3133 | if (!is_float_or_hfa_type_recurse |
3134 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
3135 | return 0; |
3136 | return 1; | |
3137 | } | |
3138 | break; | |
3139 | default: | |
3140 | return 0; | |
3141 | break; | |
3142 | } | |
3143 | } | |
3144 | ||
3145 | /* Determine if the given type is one of the floating point types or | |
3146 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 3147 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
3148 | |
3149 | static struct type * | |
3150 | is_float_or_hfa_type (struct type *t) | |
3151 | { | |
3152 | struct type *et = 0; | |
3153 | ||
3154 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
3155 | } | |
3156 | ||
3157 | ||
98f96ba1 KB |
3158 | /* Return 1 if the alignment of T is such that the next even slot |
3159 | should be used. Return 0, if the next available slot should | |
3160 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 3161 | and Runtime manual). */ |
98f96ba1 KB |
3162 | |
3163 | static int | |
3164 | slot_alignment_is_next_even (struct type *t) | |
3165 | { | |
3166 | switch (TYPE_CODE (t)) | |
3167 | { | |
3168 | case TYPE_CODE_INT: | |
3169 | case TYPE_CODE_FLT: | |
3170 | if (TYPE_LENGTH (t) > 8) | |
3171 | return 1; | |
3172 | else | |
3173 | return 0; | |
3174 | case TYPE_CODE_ARRAY: | |
3175 | return | |
3176 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
3177 | case TYPE_CODE_STRUCT: | |
3178 | { | |
3179 | int i; | |
3180 | ||
3181 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3182 | if (slot_alignment_is_next_even | |
3183 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
3184 | return 1; | |
3185 | return 0; | |
3186 | } | |
3187 | default: | |
3188 | return 0; | |
3189 | } | |
3190 | } | |
3191 | ||
64a5b29c KB |
3192 | /* Attempt to find (and return) the global pointer for the given |
3193 | function. | |
3194 | ||
3195 | This is a rather nasty bit of code searchs for the .dynamic section | |
3196 | in the objfile corresponding to the pc of the function we're trying | |
3197 | to call. Once it finds the addresses at which the .dynamic section | |
3198 | lives in the child process, it scans the Elf64_Dyn entries for a | |
3199 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
3200 | d_un.d_ptr value is the global pointer. */ | |
3201 | ||
3202 | static CORE_ADDR | |
b33e8514 | 3203 | ia64_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 3204 | { |
76d689a6 | 3205 | struct obj_section *faddr_sect; |
64a5b29c | 3206 | |
76d689a6 KB |
3207 | faddr_sect = find_pc_section (faddr); |
3208 | if (faddr_sect != NULL) | |
64a5b29c KB |
3209 | { |
3210 | struct obj_section *osect; | |
3211 | ||
76d689a6 | 3212 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
3213 | { |
3214 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
3215 | break; | |
3216 | } | |
3217 | ||
76d689a6 | 3218 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c | 3219 | { |
aded6f54 | 3220 | CORE_ADDR addr, endaddr; |
64a5b29c | 3221 | |
aded6f54 PA |
3222 | addr = obj_section_addr (osect); |
3223 | endaddr = obj_section_endaddr (osect); | |
3224 | ||
3225 | while (addr < endaddr) | |
64a5b29c KB |
3226 | { |
3227 | int status; | |
3228 | LONGEST tag; | |
3229 | char buf[8]; | |
3230 | ||
3231 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3232 | if (status != 0) | |
3233 | break; | |
3234 | tag = extract_signed_integer (buf, sizeof (buf)); | |
3235 | ||
3236 | if (tag == DT_PLTGOT) | |
3237 | { | |
3238 | CORE_ADDR global_pointer; | |
3239 | ||
3240 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
3241 | if (status != 0) | |
3242 | break; | |
7c0b4a20 | 3243 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
3244 | |
3245 | /* The payoff... */ | |
3246 | return global_pointer; | |
3247 | } | |
3248 | ||
3249 | if (tag == DT_NULL) | |
3250 | break; | |
3251 | ||
3252 | addr += 16; | |
3253 | } | |
3254 | } | |
3255 | } | |
3256 | return 0; | |
3257 | } | |
3258 | ||
3259 | /* Given a function's address, attempt to find (and return) the | |
3260 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 3261 | not found. */ |
64a5b29c KB |
3262 | static CORE_ADDR |
3263 | find_extant_func_descr (CORE_ADDR faddr) | |
3264 | { | |
76d689a6 | 3265 | struct obj_section *faddr_sect; |
64a5b29c | 3266 | |
004d836a | 3267 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
3268 | faddr_sect = find_pc_section (faddr); |
3269 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
3270 | return faddr; |
3271 | ||
76d689a6 | 3272 | if (faddr_sect != NULL) |
64a5b29c | 3273 | { |
76d689a6 KB |
3274 | struct obj_section *osect; |
3275 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
3276 | { |
3277 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
3278 | break; | |
3279 | } | |
3280 | ||
76d689a6 | 3281 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c | 3282 | { |
aded6f54 PA |
3283 | CORE_ADDR addr, endaddr; |
3284 | ||
3285 | addr = obj_section_addr (osect); | |
3286 | endaddr = obj_section_endaddr (osect); | |
64a5b29c | 3287 | |
aded6f54 | 3288 | while (addr < endaddr) |
64a5b29c KB |
3289 | { |
3290 | int status; | |
3291 | LONGEST faddr2; | |
3292 | char buf[8]; | |
3293 | ||
3294 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3295 | if (status != 0) | |
3296 | break; | |
3297 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
3298 | ||
3299 | if (faddr == faddr2) | |
3300 | return addr; | |
3301 | ||
3302 | addr += 16; | |
3303 | } | |
3304 | } | |
3305 | } | |
3306 | return 0; | |
3307 | } | |
3308 | ||
3309 | /* Attempt to find a function descriptor corresponding to the | |
3310 | given address. If none is found, construct one on the | |
004d836a | 3311 | stack using the address at fdaptr. */ |
64a5b29c KB |
3312 | |
3313 | static CORE_ADDR | |
9c9acae0 | 3314 | find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr) |
64a5b29c KB |
3315 | { |
3316 | CORE_ADDR fdesc; | |
3317 | ||
3318 | fdesc = find_extant_func_descr (faddr); | |
3319 | ||
3320 | if (fdesc == 0) | |
3321 | { | |
9c9acae0 | 3322 | ULONGEST global_pointer; |
64a5b29c KB |
3323 | char buf[16]; |
3324 | ||
3325 | fdesc = *fdaptr; | |
3326 | *fdaptr += 16; | |
3327 | ||
b33e8514 | 3328 | global_pointer = ia64_find_global_pointer (faddr); |
64a5b29c KB |
3329 | |
3330 | if (global_pointer == 0) | |
9c9acae0 UW |
3331 | regcache_cooked_read_unsigned (regcache, |
3332 | IA64_GR1_REGNUM, &global_pointer); | |
64a5b29c | 3333 | |
fbd9dcd3 AC |
3334 | store_unsigned_integer (buf, 8, faddr); |
3335 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
3336 | |
3337 | write_memory (fdesc, buf, 16); | |
3338 | } | |
3339 | ||
3340 | return fdesc; | |
3341 | } | |
16461d7d | 3342 | |
af8b88dd JJ |
3343 | /* Use the following routine when printing out function pointers |
3344 | so the user can see the function address rather than just the | |
3345 | function descriptor. */ | |
3346 | static CORE_ADDR | |
e2d0e7eb AC |
3347 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3348 | struct target_ops *targ) | |
af8b88dd JJ |
3349 | { |
3350 | struct obj_section *s; | |
3351 | ||
3352 | s = find_pc_section (addr); | |
3353 | ||
3354 | /* check if ADDR points to a function descriptor. */ | |
3355 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3356 | return read_memory_unsigned_integer (addr, 8); | |
3357 | ||
fcac911a JB |
3358 | /* Normally, functions live inside a section that is executable. |
3359 | So, if ADDR points to a non-executable section, then treat it | |
3360 | as a function descriptor and return the target address iff | |
3361 | the target address itself points to a section that is executable. */ | |
b1e6fd19 | 3362 | if (s && (s->the_bfd_section->flags & SEC_CODE) == 0) |
fcac911a JB |
3363 | { |
3364 | CORE_ADDR pc = read_memory_unsigned_integer (addr, 8); | |
3365 | struct obj_section *pc_section = find_pc_section (pc); | |
3366 | ||
3367 | if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE)) | |
3368 | return pc; | |
3369 | } | |
b1e6fd19 | 3370 | |
0d5de010 DJ |
3371 | /* There are also descriptors embedded in vtables. */ |
3372 | if (s) | |
3373 | { | |
3374 | struct minimal_symbol *minsym; | |
3375 | ||
3376 | minsym = lookup_minimal_symbol_by_pc (addr); | |
3377 | ||
3378 | if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym))) | |
3379 | return read_memory_unsigned_integer (addr, 8); | |
3380 | } | |
3381 | ||
af8b88dd JJ |
3382 | return addr; |
3383 | } | |
3384 | ||
a78f21af | 3385 | static CORE_ADDR |
004d836a JJ |
3386 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3387 | { | |
3388 | return sp & ~0xfLL; | |
3389 | } | |
3390 | ||
3391 | static CORE_ADDR | |
7d9b040b | 3392 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3393 | struct regcache *regcache, CORE_ADDR bp_addr, |
3394 | int nargs, struct value **args, CORE_ADDR sp, | |
3395 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3396 | { |
3397 | int argno; | |
ea7c478f | 3398 | struct value *arg; |
16461d7d KB |
3399 | struct type *type; |
3400 | int len, argoffset; | |
64a5b29c | 3401 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3402 | int floatreg; |
9c9acae0 UW |
3403 | ULONGEST bsp, cfm, pfs, new_bsp; |
3404 | CORE_ADDR funcdescaddr, pc, global_pointer; | |
7d9b040b | 3405 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3406 | |
3407 | nslots = 0; | |
64a5b29c | 3408 | nfuncargs = 0; |
004d836a | 3409 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3410 | for (argno = 0; argno < nargs; argno++) |
3411 | { | |
3412 | arg = args[argno]; | |
4991999e | 3413 | type = check_typedef (value_type (arg)); |
16461d7d KB |
3414 | len = TYPE_LENGTH (type); |
3415 | ||
98f96ba1 | 3416 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3417 | nslots++; |
3418 | ||
64a5b29c KB |
3419 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3420 | nfuncargs++; | |
3421 | ||
16461d7d KB |
3422 | nslots += (len + 7) / 8; |
3423 | } | |
3424 | ||
004d836a | 3425 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3426 | rseslots = (nslots > 8) ? 8 : nslots; |
3427 | memslots = nslots - rseslots; | |
3428 | ||
004d836a | 3429 | /* Allocate a new RSE frame. */ |
9c9acae0 | 3430 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
16461d7d | 3431 | |
9c9acae0 | 3432 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
16461d7d | 3433 | new_bsp = rse_address_add (bsp, rseslots); |
9c9acae0 | 3434 | regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3435 | |
9c9acae0 | 3436 | regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs); |
16461d7d KB |
3437 | pfs &= 0xc000000000000000LL; |
3438 | pfs |= (cfm & 0xffffffffffffLL); | |
9c9acae0 | 3439 | regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3440 | |
3441 | cfm &= 0xc000000000000000LL; | |
3442 | cfm |= rseslots; | |
9c9acae0 | 3443 | regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm); |
16461d7d | 3444 | |
64a5b29c KB |
3445 | /* We will attempt to find function descriptors in the .opd segment, |
3446 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3447 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3448 | funcdescaddr = sp - nfuncargs * 16; |
3449 | funcdescaddr &= ~0xfLL; | |
3450 | ||
3451 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3452 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3453 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3454 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3455 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3456 | |
64a5b29c KB |
3457 | /* Place the arguments where they belong. The arguments will be |
3458 | either placed in the RSE backing store or on the memory stack. | |
3459 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3460 | floating point registers. */ |
16461d7d KB |
3461 | slotnum = 0; |
3462 | floatreg = IA64_FR8_REGNUM; | |
3463 | for (argno = 0; argno < nargs; argno++) | |
3464 | { | |
64a5b29c KB |
3465 | struct type *float_elt_type; |
3466 | ||
16461d7d | 3467 | arg = args[argno]; |
4991999e | 3468 | type = check_typedef (value_type (arg)); |
16461d7d | 3469 | len = TYPE_LENGTH (type); |
64a5b29c | 3470 | |
004d836a | 3471 | /* Special handling for function parameters. */ |
64a5b29c KB |
3472 | if (len == 8 |
3473 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3474 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3475 | { | |
3476 | char val_buf[8]; | |
9c9acae0 | 3477 | ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8); |
fbd9dcd3 | 3478 | store_unsigned_integer (val_buf, 8, |
9c9acae0 | 3479 | find_func_descr (regcache, faddr, |
fbd9dcd3 | 3480 | &funcdescaddr)); |
64a5b29c KB |
3481 | if (slotnum < rseslots) |
3482 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3483 | else | |
3484 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3485 | slotnum++; | |
3486 | continue; | |
3487 | } | |
3488 | ||
004d836a | 3489 | /* Normal slots. */ |
98f96ba1 KB |
3490 | |
3491 | /* Skip odd slot if necessary... */ | |
3492 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3493 | slotnum++; |
98f96ba1 | 3494 | |
16461d7d KB |
3495 | argoffset = 0; |
3496 | while (len > 0) | |
3497 | { | |
3498 | char val_buf[8]; | |
3499 | ||
3500 | memset (val_buf, 0, 8); | |
0fd88904 | 3501 | memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len); |
16461d7d KB |
3502 | |
3503 | if (slotnum < rseslots) | |
3504 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3505 | else | |
3506 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3507 | ||
3508 | argoffset += 8; | |
3509 | len -= 8; | |
3510 | slotnum++; | |
3511 | } | |
64a5b29c | 3512 | |
004d836a | 3513 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3514 | float_elt_type = is_float_or_hfa_type (type); |
3515 | if (float_elt_type != NULL) | |
3516 | { | |
3517 | argoffset = 0; | |
3518 | len = TYPE_LENGTH (type); | |
3519 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3520 | { | |
004d836a | 3521 | char to[MAX_REGISTER_SIZE]; |
0fd88904 | 3522 | convert_typed_floating (value_contents (arg) + argoffset, float_elt_type, |
004d836a JJ |
3523 | to, builtin_type_ia64_ext); |
3524 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3525 | floatreg++; |
3526 | argoffset += TYPE_LENGTH (float_elt_type); | |
3527 | len -= TYPE_LENGTH (float_elt_type); | |
3528 | } | |
16461d7d KB |
3529 | } |
3530 | } | |
3531 | ||
004d836a | 3532 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3533 | if (struct_return) |
3534 | { | |
004d836a | 3535 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3536 | } |
3537 | ||
b33e8514 | 3538 | global_pointer = ia64_find_global_pointer (func_addr); |
8dd5115e | 3539 | |
004d836a | 3540 | if (global_pointer != 0) |
9c9acae0 | 3541 | regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer); |
a59fe496 | 3542 | |
9c9acae0 | 3543 | regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3544 | |
9c9acae0 | 3545 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); |
16461d7d KB |
3546 | |
3547 | return sp; | |
3548 | } | |
3549 | ||
004d836a | 3550 | static struct frame_id |
15c1e57f | 3551 | ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) |
16461d7d | 3552 | { |
004d836a | 3553 | char buf[8]; |
4afcc598 | 3554 | CORE_ADDR sp, bsp; |
004d836a | 3555 | |
15c1e57f | 3556 | get_frame_register (this_frame, sp_regnum, buf); |
004d836a JJ |
3557 | sp = extract_unsigned_integer (buf, 8); |
3558 | ||
15c1e57f | 3559 | get_frame_register (this_frame, IA64_BSP_REGNUM, buf); |
4afcc598 JJ |
3560 | bsp = extract_unsigned_integer (buf, 8); |
3561 | ||
3562 | if (gdbarch_debug >= 1) | |
3563 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 3564 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
f92aeb88 | 3565 | paddr_nz (get_frame_pc (this_frame)), |
78ced177 | 3566 | paddr_nz (sp), paddr_nz (bsp)); |
4afcc598 | 3567 | |
15c1e57f | 3568 | return frame_id_build_special (sp, get_frame_pc (this_frame), bsp); |
16461d7d KB |
3569 | } |
3570 | ||
004d836a JJ |
3571 | static CORE_ADDR |
3572 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3573 | { |
004d836a JJ |
3574 | char buf[8]; |
3575 | CORE_ADDR ip, psr, pc; | |
3576 | ||
3577 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3578 | ip = extract_unsigned_integer (buf, 8); | |
3579 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3580 | psr = extract_unsigned_integer (buf, 8); | |
3581 | ||
3582 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3583 | return pc; | |
16461d7d KB |
3584 | } |
3585 | ||
6926787d AS |
3586 | static int |
3587 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3588 | { | |
3589 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3590 | return print_insn_ia64 (memaddr, info); | |
3591 | } | |
3592 | ||
16461d7d KB |
3593 | static struct gdbarch * |
3594 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3595 | { | |
3596 | struct gdbarch *gdbarch; | |
244bc108 | 3597 | struct gdbarch_tdep *tdep; |
244bc108 | 3598 | |
85bf2b91 JJ |
3599 | /* If there is already a candidate, use it. */ |
3600 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3601 | if (arches != NULL) | |
3602 | return arches->gdbarch; | |
16461d7d | 3603 | |
244bc108 KB |
3604 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3605 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3606 | |
b33e8514 | 3607 | tdep->sigcontext_register_address = 0; |
74174d2e | 3608 | tdep->pc_in_sigtramp = 0; |
698cb3f0 | 3609 | |
5439edaa AC |
3610 | /* According to the ia64 specs, instructions that store long double |
3611 | floats in memory use a long-double format different than that | |
3612 | used in the floating registers. The memory format matches the | |
3613 | x86 extended float format which is 80 bits. An OS may choose to | |
3614 | use this format (e.g. GNU/Linux) or choose to use a different | |
3615 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3616 | the setting of the format may be moved/overridden in an | |
3617 | OS-specific tdep file. */ | |
8da61cc4 | 3618 | set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
32edc941 | 3619 | |
16461d7d KB |
3620 | set_gdbarch_short_bit (gdbarch, 16); |
3621 | set_gdbarch_int_bit (gdbarch, 32); | |
3622 | set_gdbarch_long_bit (gdbarch, 64); | |
3623 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3624 | set_gdbarch_float_bit (gdbarch, 32); | |
3625 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3626 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3627 | set_gdbarch_ptr_bit (gdbarch, 64); |
3628 | ||
004d836a JJ |
3629 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3630 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3631 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3632 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3633 | |
3634 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a | 3635 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3636 | |
004d836a JJ |
3637 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3638 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3639 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3640 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3641 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3642 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3643 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3644 | |
004d836a | 3645 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3646 | |
4c8b6ae0 | 3647 | set_gdbarch_return_value (gdbarch, ia64_return_value); |
16461d7d KB |
3648 | |
3649 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3650 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3651 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3652 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
b33e8514 | 3653 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
16461d7d KB |
3654 | |
3655 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3656 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a | 3657 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
15c1e57f | 3658 | set_gdbarch_dummy_id (gdbarch, ia64_dummy_id); |
16461d7d | 3659 | |
004d836a | 3660 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
968d1cb4 | 3661 | #ifdef HAVE_LIBUNWIND_IA64_H |
15c1e57f JB |
3662 | frame_unwind_append_unwinder (gdbarch, |
3663 | &ia64_libunwind_sigtramp_frame_unwind); | |
3664 | frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind); | |
3665 | frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind); | |
968d1cb4 | 3666 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); |
c5a27d9c | 3667 | #else |
15c1e57f | 3668 | frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind); |
968d1cb4 | 3669 | #endif |
15c1e57f | 3670 | frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind); |
004d836a | 3671 | frame_base_set_default (gdbarch, &ia64_frame_base); |
16461d7d KB |
3672 | |
3673 | /* Settings that should be unnecessary. */ | |
3674 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3675 | ||
6926787d | 3676 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3677 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3678 | |
0d5de010 DJ |
3679 | /* The virtual table contains 16-byte descriptors, not pointers to |
3680 | descriptors. */ | |
3681 | set_gdbarch_vtable_function_descriptors (gdbarch, 1); | |
3682 | ||
b33e8514 AS |
3683 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3684 | gdbarch_init_osabi (info, gdbarch); | |
3685 | ||
16461d7d KB |
3686 | return gdbarch; |
3687 | } | |
3688 | ||
a78f21af AC |
3689 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3690 | ||
16461d7d KB |
3691 | void |
3692 | _initialize_ia64_tdep (void) | |
3693 | { | |
83acabca DJ |
3694 | /* Define the ia64 floating-point format to gdb. */ |
3695 | builtin_type_ia64_ext = | |
3696 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3697 | 0, "builtin_type_ia64_ext", NULL); | |
3698 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext; | |
3699 | ||
b33e8514 | 3700 | gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
16461d7d | 3701 | } |