Commit | Line | Data |
---|---|---|
16461d7d | 1 | /* Target-dependent code for the IA-64 for GDB, the GNU debugger. |
ca557f44 | 2 | |
9b254dd1 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
13547ab6 | 4 | Free Software Foundation, Inc. |
16461d7d KB |
5 | |
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
16461d7d KB |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
16461d7d KB |
20 | |
21 | #include "defs.h" | |
22 | #include "inferior.h" | |
16461d7d | 23 | #include "gdbcore.h" |
8064c6ae | 24 | #include "arch-utils.h" |
16461d7d | 25 | #include "floatformat.h" |
e6bb342a | 26 | #include "gdbtypes.h" |
4e052eda | 27 | #include "regcache.h" |
004d836a JJ |
28 | #include "reggroups.h" |
29 | #include "frame.h" | |
30 | #include "frame-base.h" | |
31 | #include "frame-unwind.h" | |
d16aafd8 | 32 | #include "doublest.h" |
fd0407d6 | 33 | #include "value.h" |
bd1ce8ba | 34 | #include "gdb_assert.h" |
16461d7d KB |
35 | #include "objfiles.h" |
36 | #include "elf/common.h" /* for DT_PLTGOT value */ | |
244bc108 | 37 | #include "elf-bfd.h" |
a89aa300 | 38 | #include "dis-asm.h" |
7d9b040b | 39 | #include "infcall.h" |
b33e8514 | 40 | #include "osabi.h" |
9fc9f5e2 | 41 | #include "ia64-tdep.h" |
0d5de010 | 42 | #include "cp-abi.h" |
16461d7d | 43 | |
968d1cb4 | 44 | #ifdef HAVE_LIBUNWIND_IA64_H |
8973ff21 | 45 | #include "elf/ia64.h" /* for PT_IA_64_UNWIND value */ |
968d1cb4 JJ |
46 | #include "libunwind-frame.h" |
47 | #include "libunwind-ia64.h" | |
c5a27d9c JJ |
48 | |
49 | /* Note: KERNEL_START is supposed to be an address which is not going | |
50 | to ever contain any valid unwind info. For ia64 linux, the choice | |
51 | of 0xc000000000000000 is fairly safe since that's uncached space. | |
52 | ||
53 | We use KERNEL_START as follows: after obtaining the kernel's | |
54 | unwind table via getunwind(), we project its unwind data into | |
55 | address-range KERNEL_START-(KERNEL_START+ktab_size) and then | |
56 | when ia64_access_mem() sees a memory access to this | |
57 | address-range, we redirect it to ktab instead. | |
58 | ||
59 | None of this hackery is needed with a modern kernel/libcs | |
60 | which uses the kernel virtual DSO to provide access to the | |
61 | kernel's unwind info. In that case, ktab_size remains 0 and | |
62 | hence the value of KERNEL_START doesn't matter. */ | |
63 | ||
64 | #define KERNEL_START 0xc000000000000000ULL | |
65 | ||
66 | static size_t ktab_size = 0; | |
67 | struct ia64_table_entry | |
68 | { | |
69 | uint64_t start_offset; | |
70 | uint64_t end_offset; | |
71 | uint64_t info_offset; | |
72 | }; | |
73 | ||
74 | static struct ia64_table_entry *ktab = NULL; | |
75 | ||
968d1cb4 JJ |
76 | #endif |
77 | ||
698cb3f0 KB |
78 | /* An enumeration of the different IA-64 instruction types. */ |
79 | ||
16461d7d KB |
80 | typedef enum instruction_type |
81 | { | |
82 | A, /* Integer ALU ; I-unit or M-unit */ | |
83 | I, /* Non-ALU integer; I-unit */ | |
84 | M, /* Memory ; M-unit */ | |
85 | F, /* Floating-point ; F-unit */ | |
86 | B, /* Branch ; B-unit */ | |
87 | L, /* Extended (L+X) ; I-unit */ | |
88 | X, /* Extended (L+X) ; I-unit */ | |
89 | undefined /* undefined or reserved */ | |
90 | } instruction_type; | |
91 | ||
92 | /* We represent IA-64 PC addresses as the value of the instruction | |
93 | pointer or'd with some bit combination in the low nibble which | |
94 | represents the slot number in the bundle addressed by the | |
95 | instruction pointer. The problem is that the Linux kernel | |
96 | multiplies its slot numbers (for exceptions) by one while the | |
97 | disassembler multiplies its slot numbers by 6. In addition, I've | |
98 | heard it said that the simulator uses 1 as the multiplier. | |
99 | ||
100 | I've fixed the disassembler so that the bytes_per_line field will | |
101 | be the slot multiplier. If bytes_per_line comes in as zero, it | |
102 | is set to six (which is how it was set up initially). -- objdump | |
103 | displays pretty disassembly dumps with this value. For our purposes, | |
104 | we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we | |
105 | never want to also display the raw bytes the way objdump does. */ | |
106 | ||
107 | #define SLOT_MULTIPLIER 1 | |
108 | ||
109 | /* Length in bytes of an instruction bundle */ | |
110 | ||
111 | #define BUNDLE_LEN 16 | |
112 | ||
16461d7d KB |
113 | static gdbarch_init_ftype ia64_gdbarch_init; |
114 | ||
115 | static gdbarch_register_name_ftype ia64_register_name; | |
004d836a | 116 | static gdbarch_register_type_ftype ia64_register_type; |
16461d7d | 117 | static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc; |
16461d7d | 118 | static gdbarch_skip_prologue_ftype ia64_skip_prologue; |
64a5b29c | 119 | static struct type *is_float_or_hfa_type (struct type *t); |
b33e8514 | 120 | static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr); |
16461d7d | 121 | |
004d836a JJ |
122 | static struct type *builtin_type_ia64_ext; |
123 | ||
124 | #define NUM_IA64_RAW_REGS 462 | |
16461d7d | 125 | |
16461d7d KB |
126 | static int sp_regnum = IA64_GR12_REGNUM; |
127 | static int fp_regnum = IA64_VFP_REGNUM; | |
128 | static int lr_regnum = IA64_VRAP_REGNUM; | |
129 | ||
004d836a | 130 | /* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because |
4afcc598 | 131 | they may not be accessible via the ptrace register get/set interfaces. */ |
004d836a JJ |
132 | enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM, |
133 | V127_REGNUM = V32_REGNUM + 95, | |
134 | VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM }; | |
16461d7d KB |
135 | |
136 | /* Array of register names; There should be ia64_num_regs strings in | |
137 | the initializer. */ | |
138 | ||
139 | static char *ia64_register_names[] = | |
140 | { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
141 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
142 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
143 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", | |
004d836a JJ |
144 | "", "", "", "", "", "", "", "", |
145 | "", "", "", "", "", "", "", "", | |
146 | "", "", "", "", "", "", "", "", | |
147 | "", "", "", "", "", "", "", "", | |
148 | "", "", "", "", "", "", "", "", | |
149 | "", "", "", "", "", "", "", "", | |
150 | "", "", "", "", "", "", "", "", | |
151 | "", "", "", "", "", "", "", "", | |
152 | "", "", "", "", "", "", "", "", | |
153 | "", "", "", "", "", "", "", "", | |
154 | "", "", "", "", "", "", "", "", | |
155 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
156 | |
157 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
158 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
159 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
160 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", | |
161 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39", | |
162 | "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47", | |
163 | "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55", | |
164 | "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63", | |
165 | "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71", | |
166 | "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79", | |
167 | "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87", | |
168 | "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95", | |
169 | "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103", | |
170 | "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111", | |
171 | "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119", | |
172 | "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127", | |
173 | ||
004d836a JJ |
174 | "", "", "", "", "", "", "", "", |
175 | "", "", "", "", "", "", "", "", | |
176 | "", "", "", "", "", "", "", "", | |
177 | "", "", "", "", "", "", "", "", | |
178 | "", "", "", "", "", "", "", "", | |
179 | "", "", "", "", "", "", "", "", | |
180 | "", "", "", "", "", "", "", "", | |
181 | "", "", "", "", "", "", "", "", | |
16461d7d KB |
182 | |
183 | "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7", | |
184 | ||
185 | "vfp", "vrap", | |
186 | ||
187 | "pr", "ip", "psr", "cfm", | |
188 | ||
189 | "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7", | |
190 | "", "", "", "", "", "", "", "", | |
191 | "rsc", "bsp", "bspstore", "rnat", | |
192 | "", "fcr", "", "", | |
193 | "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "", | |
194 | "ccv", "", "", "", "unat", "", "", "", | |
195 | "fpsr", "", "", "", "itc", | |
196 | "", "", "", "", "", "", "", "", "", "", | |
197 | "", "", "", "", "", "", "", "", "", | |
198 | "pfs", "lc", "ec", | |
199 | "", "", "", "", "", "", "", "", "", "", | |
200 | "", "", "", "", "", "", "", "", "", "", | |
201 | "", "", "", "", "", "", "", "", "", "", | |
202 | "", "", "", "", "", "", "", "", "", "", | |
203 | "", "", "", "", "", "", "", "", "", "", | |
204 | "", "", "", "", "", "", "", "", "", "", | |
205 | "", | |
206 | "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7", | |
207 | "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15", | |
208 | "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23", | |
209 | "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31", | |
210 | "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39", | |
211 | "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47", | |
212 | "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55", | |
213 | "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63", | |
214 | "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71", | |
215 | "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79", | |
216 | "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87", | |
217 | "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95", | |
218 | "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103", | |
219 | "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111", | |
220 | "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119", | |
221 | "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127", | |
004d836a JJ |
222 | |
223 | "bof", | |
224 | ||
225 | "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39", | |
226 | "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47", | |
227 | "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55", | |
228 | "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63", | |
229 | "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71", | |
230 | "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79", | |
231 | "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87", | |
232 | "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95", | |
233 | "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103", | |
234 | "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111", | |
235 | "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119", | |
236 | "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127", | |
237 | ||
238 | "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7", | |
239 | "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15", | |
240 | "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23", | |
241 | "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31", | |
242 | "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39", | |
243 | "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47", | |
244 | "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55", | |
245 | "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63", | |
16461d7d KB |
246 | }; |
247 | ||
004d836a JJ |
248 | struct ia64_frame_cache |
249 | { | |
250 | CORE_ADDR base; /* frame pointer base for frame */ | |
251 | CORE_ADDR pc; /* function start pc for frame */ | |
252 | CORE_ADDR saved_sp; /* stack pointer for frame */ | |
253 | CORE_ADDR bsp; /* points at r32 for the current frame */ | |
254 | CORE_ADDR cfm; /* cfm value for current frame */ | |
4afcc598 | 255 | CORE_ADDR prev_cfm; /* cfm value for previous frame */ |
004d836a JJ |
256 | int frameless; |
257 | int sof; /* Size of frame (decoded from cfm value) */ | |
258 | int sol; /* Size of locals (decoded from cfm value) */ | |
259 | int sor; /* Number of rotating registers. (decoded from cfm value) */ | |
260 | CORE_ADDR after_prologue; | |
261 | /* Address of first instruction after the last | |
262 | prologue instruction; Note that there may | |
263 | be instructions from the function's body | |
264 | intermingled with the prologue. */ | |
265 | int mem_stack_frame_size; | |
266 | /* Size of the memory stack frame (may be zero), | |
267 | or -1 if it has not been determined yet. */ | |
268 | int fp_reg; /* Register number (if any) used a frame pointer | |
244bc108 | 269 | for this frame. 0 if no register is being used |
16461d7d | 270 | as the frame pointer. */ |
004d836a JJ |
271 | |
272 | /* Saved registers. */ | |
273 | CORE_ADDR saved_regs[NUM_IA64_RAW_REGS]; | |
274 | ||
275 | }; | |
244bc108 | 276 | |
004d836a JJ |
277 | int |
278 | ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
279 | struct reggroup *group) | |
16461d7d | 280 | { |
004d836a JJ |
281 | int vector_p; |
282 | int float_p; | |
283 | int raw_p; | |
284 | if (group == all_reggroup) | |
285 | return 1; | |
286 | vector_p = TYPE_VECTOR (register_type (gdbarch, regnum)); | |
287 | float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT; | |
288 | raw_p = regnum < NUM_IA64_RAW_REGS; | |
289 | if (group == float_reggroup) | |
290 | return float_p; | |
291 | if (group == vector_reggroup) | |
292 | return vector_p; | |
293 | if (group == general_reggroup) | |
294 | return (!vector_p && !float_p); | |
295 | if (group == save_reggroup || group == restore_reggroup) | |
296 | return raw_p; | |
297 | return 0; | |
16461d7d KB |
298 | } |
299 | ||
004d836a | 300 | static const char * |
d93859e2 | 301 | ia64_register_name (struct gdbarch *gdbarch, int reg) |
16461d7d | 302 | { |
004d836a | 303 | return ia64_register_names[reg]; |
16461d7d KB |
304 | } |
305 | ||
004d836a JJ |
306 | struct type * |
307 | ia64_register_type (struct gdbarch *arch, int reg) | |
16461d7d | 308 | { |
004d836a JJ |
309 | if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM) |
310 | return builtin_type_ia64_ext; | |
311 | else | |
312 | return builtin_type_long; | |
16461d7d KB |
313 | } |
314 | ||
a78f21af | 315 | static int |
d3f73121 | 316 | ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) |
16461d7d | 317 | { |
004d836a JJ |
318 | if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM) |
319 | return V32_REGNUM + (reg - IA64_GR32_REGNUM); | |
320 | return reg; | |
16461d7d KB |
321 | } |
322 | ||
4afcc598 | 323 | static int |
2fda21a6 | 324 | floatformat_valid (const struct floatformat *fmt, const void *from) |
4afcc598 JJ |
325 | { |
326 | return 1; | |
327 | } | |
328 | ||
16461d7d KB |
329 | const struct floatformat floatformat_ia64_ext = |
330 | { | |
331 | floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64, | |
b14d30e1 | 332 | floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL |
16461d7d KB |
333 | }; |
334 | ||
8da61cc4 DJ |
335 | const struct floatformat *floatformats_ia64_ext[2] = |
336 | { | |
337 | &floatformat_ia64_ext, | |
338 | &floatformat_ia64_ext | |
339 | }; | |
340 | ||
16461d7d KB |
341 | |
342 | /* Extract ``len'' bits from an instruction bundle starting at | |
343 | bit ``from''. */ | |
344 | ||
244bc108 | 345 | static long long |
16461d7d KB |
346 | extract_bit_field (char *bundle, int from, int len) |
347 | { | |
348 | long long result = 0LL; | |
349 | int to = from + len; | |
350 | int from_byte = from / 8; | |
351 | int to_byte = to / 8; | |
352 | unsigned char *b = (unsigned char *) bundle; | |
353 | unsigned char c; | |
354 | int lshift; | |
355 | int i; | |
356 | ||
357 | c = b[from_byte]; | |
358 | if (from_byte == to_byte) | |
359 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
360 | result = c >> (from % 8); | |
361 | lshift = 8 - (from % 8); | |
362 | ||
363 | for (i = from_byte+1; i < to_byte; i++) | |
364 | { | |
365 | result |= ((long long) b[i]) << lshift; | |
366 | lshift += 8; | |
367 | } | |
368 | ||
369 | if (from_byte < to_byte && (to % 8 != 0)) | |
370 | { | |
371 | c = b[to_byte]; | |
372 | c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8); | |
373 | result |= ((long long) c) << lshift; | |
374 | } | |
375 | ||
376 | return result; | |
377 | } | |
378 | ||
379 | /* Replace the specified bits in an instruction bundle */ | |
380 | ||
244bc108 | 381 | static void |
16461d7d KB |
382 | replace_bit_field (char *bundle, long long val, int from, int len) |
383 | { | |
384 | int to = from + len; | |
385 | int from_byte = from / 8; | |
386 | int to_byte = to / 8; | |
387 | unsigned char *b = (unsigned char *) bundle; | |
388 | unsigned char c; | |
389 | ||
390 | if (from_byte == to_byte) | |
391 | { | |
392 | unsigned char left, right; | |
393 | c = b[from_byte]; | |
394 | left = (c >> (to % 8)) << (to % 8); | |
395 | right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
396 | c = (unsigned char) (val & 0xff); | |
397 | c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8); | |
398 | c |= right | left; | |
399 | b[from_byte] = c; | |
400 | } | |
401 | else | |
402 | { | |
403 | int i; | |
404 | c = b[from_byte]; | |
405 | c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8); | |
406 | c = c | (val << (from % 8)); | |
407 | b[from_byte] = c; | |
408 | val >>= 8 - from % 8; | |
409 | ||
410 | for (i = from_byte+1; i < to_byte; i++) | |
411 | { | |
412 | c = val & 0xff; | |
413 | val >>= 8; | |
414 | b[i] = c; | |
415 | } | |
416 | ||
417 | if (to % 8 != 0) | |
418 | { | |
419 | unsigned char cv = (unsigned char) val; | |
420 | c = b[to_byte]; | |
421 | c = c >> (to % 8) << (to % 8); | |
422 | c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8); | |
423 | b[to_byte] = c; | |
424 | } | |
425 | } | |
426 | } | |
427 | ||
428 | /* Return the contents of slot N (for N = 0, 1, or 2) in | |
429 | and instruction bundle */ | |
430 | ||
244bc108 | 431 | static long long |
2fc3ac7e | 432 | slotN_contents (char *bundle, int slotnum) |
16461d7d KB |
433 | { |
434 | return extract_bit_field (bundle, 5+41*slotnum, 41); | |
435 | } | |
436 | ||
437 | /* Store an instruction in an instruction bundle */ | |
438 | ||
244bc108 | 439 | static void |
2fc3ac7e | 440 | replace_slotN_contents (char *bundle, long long instr, int slotnum) |
16461d7d KB |
441 | { |
442 | replace_bit_field (bundle, instr, 5+41*slotnum, 41); | |
443 | } | |
444 | ||
64a5b29c | 445 | static enum instruction_type template_encoding_table[32][3] = |
16461d7d KB |
446 | { |
447 | { M, I, I }, /* 00 */ | |
448 | { M, I, I }, /* 01 */ | |
449 | { M, I, I }, /* 02 */ | |
450 | { M, I, I }, /* 03 */ | |
451 | { M, L, X }, /* 04 */ | |
452 | { M, L, X }, /* 05 */ | |
453 | { undefined, undefined, undefined }, /* 06 */ | |
454 | { undefined, undefined, undefined }, /* 07 */ | |
455 | { M, M, I }, /* 08 */ | |
456 | { M, M, I }, /* 09 */ | |
457 | { M, M, I }, /* 0A */ | |
458 | { M, M, I }, /* 0B */ | |
459 | { M, F, I }, /* 0C */ | |
460 | { M, F, I }, /* 0D */ | |
461 | { M, M, F }, /* 0E */ | |
462 | { M, M, F }, /* 0F */ | |
463 | { M, I, B }, /* 10 */ | |
464 | { M, I, B }, /* 11 */ | |
465 | { M, B, B }, /* 12 */ | |
466 | { M, B, B }, /* 13 */ | |
467 | { undefined, undefined, undefined }, /* 14 */ | |
468 | { undefined, undefined, undefined }, /* 15 */ | |
469 | { B, B, B }, /* 16 */ | |
470 | { B, B, B }, /* 17 */ | |
471 | { M, M, B }, /* 18 */ | |
472 | { M, M, B }, /* 19 */ | |
473 | { undefined, undefined, undefined }, /* 1A */ | |
474 | { undefined, undefined, undefined }, /* 1B */ | |
475 | { M, F, B }, /* 1C */ | |
476 | { M, F, B }, /* 1D */ | |
477 | { undefined, undefined, undefined }, /* 1E */ | |
478 | { undefined, undefined, undefined }, /* 1F */ | |
479 | }; | |
480 | ||
481 | /* Fetch and (partially) decode an instruction at ADDR and return the | |
482 | address of the next instruction to fetch. */ | |
483 | ||
484 | static CORE_ADDR | |
485 | fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr) | |
486 | { | |
487 | char bundle[BUNDLE_LEN]; | |
488 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
489 | long long template; | |
490 | int val; | |
491 | ||
c26e1c2b KB |
492 | /* Warn about slot numbers greater than 2. We used to generate |
493 | an error here on the assumption that the user entered an invalid | |
494 | address. But, sometimes GDB itself requests an invalid address. | |
495 | This can (easily) happen when execution stops in a function for | |
496 | which there are no symbols. The prologue scanner will attempt to | |
497 | find the beginning of the function - if the nearest symbol | |
498 | happens to not be aligned on a bundle boundary (16 bytes), the | |
499 | resulting starting address will cause GDB to think that the slot | |
500 | number is too large. | |
501 | ||
502 | So we warn about it and set the slot number to zero. It is | |
503 | not necessarily a fatal condition, particularly if debugging | |
504 | at the assembly language level. */ | |
16461d7d | 505 | if (slotnum > 2) |
c26e1c2b | 506 | { |
8a3fe4f8 AC |
507 | warning (_("Can't fetch instructions for slot numbers greater than 2.\n" |
508 | "Using slot 0 instead")); | |
c26e1c2b KB |
509 | slotnum = 0; |
510 | } | |
16461d7d KB |
511 | |
512 | addr &= ~0x0f; | |
513 | ||
514 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
515 | ||
516 | if (val != 0) | |
517 | return 0; | |
518 | ||
519 | *instr = slotN_contents (bundle, slotnum); | |
520 | template = extract_bit_field (bundle, 0, 5); | |
521 | *it = template_encoding_table[(int)template][slotnum]; | |
522 | ||
64a5b29c | 523 | if (slotnum == 2 || (slotnum == 1 && *it == L)) |
16461d7d KB |
524 | addr += 16; |
525 | else | |
526 | addr += (slotnum + 1) * SLOT_MULTIPLIER; | |
527 | ||
528 | return addr; | |
529 | } | |
530 | ||
531 | /* There are 5 different break instructions (break.i, break.b, | |
532 | break.m, break.f, and break.x), but they all have the same | |
533 | encoding. (The five bit template in the low five bits of the | |
534 | instruction bundle distinguishes one from another.) | |
535 | ||
536 | The runtime architecture manual specifies that break instructions | |
537 | used for debugging purposes must have the upper two bits of the 21 | |
538 | bit immediate set to a 0 and a 1 respectively. A breakpoint | |
539 | instruction encodes the most significant bit of its 21 bit | |
540 | immediate at bit 36 of the 41 bit instruction. The penultimate msb | |
541 | is at bit 25 which leads to the pattern below. | |
542 | ||
543 | Originally, I had this set up to do, e.g, a "break.i 0x80000" But | |
544 | it turns out that 0x80000 was used as the syscall break in the early | |
545 | simulators. So I changed the pattern slightly to do "break.i 0x080001" | |
546 | instead. But that didn't work either (I later found out that this | |
547 | pattern was used by the simulator that I was using.) So I ended up | |
548 | using the pattern seen below. */ | |
549 | ||
550 | #if 0 | |
aaab4dba | 551 | #define IA64_BREAKPOINT 0x00002000040LL |
16461d7d | 552 | #endif |
aaab4dba | 553 | #define IA64_BREAKPOINT 0x00003333300LL |
16461d7d KB |
554 | |
555 | static int | |
8181d85f | 556 | ia64_memory_insert_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 557 | { |
8181d85f | 558 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
559 | char bundle[BUNDLE_LEN]; |
560 | int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER; | |
561 | long long instr; | |
562 | int val; | |
126fa72d | 563 | int template; |
16461d7d KB |
564 | |
565 | if (slotnum > 2) | |
8a3fe4f8 | 566 | error (_("Can't insert breakpoint for slot numbers greater than 2.")); |
16461d7d KB |
567 | |
568 | addr &= ~0x0f; | |
569 | ||
570 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
571 | |
572 | /* Check for L type instruction in 2nd slot, if present then | |
573 | bump up the slot number to the 3rd slot */ | |
574 | template = extract_bit_field (bundle, 0, 5); | |
575 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
576 | { | |
577 | slotnum = 2; | |
578 | } | |
579 | ||
16461d7d | 580 | instr = slotN_contents (bundle, slotnum); |
8181d85f DJ |
581 | memcpy (bp_tgt->shadow_contents, &instr, sizeof (instr)); |
582 | bp_tgt->placed_size = bp_tgt->shadow_len = sizeof (instr); | |
aaab4dba | 583 | replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum); |
16461d7d KB |
584 | if (val == 0) |
585 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
586 | ||
587 | return val; | |
588 | } | |
589 | ||
590 | static int | |
8181d85f | 591 | ia64_memory_remove_breakpoint (struct bp_target_info *bp_tgt) |
16461d7d | 592 | { |
8181d85f | 593 | CORE_ADDR addr = bp_tgt->placed_address; |
16461d7d KB |
594 | char bundle[BUNDLE_LEN]; |
595 | int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER; | |
596 | long long instr; | |
597 | int val; | |
126fa72d | 598 | int template; |
16461d7d KB |
599 | |
600 | addr &= ~0x0f; | |
601 | ||
602 | val = target_read_memory (addr, bundle, BUNDLE_LEN); | |
126fa72d PS |
603 | |
604 | /* Check for L type instruction in 2nd slot, if present then | |
605 | bump up the slot number to the 3rd slot */ | |
606 | template = extract_bit_field (bundle, 0, 5); | |
607 | if (slotnum == 1 && template_encoding_table[template][1] == L) | |
608 | { | |
609 | slotnum = 2; | |
610 | } | |
611 | ||
8181d85f | 612 | memcpy (&instr, bp_tgt->shadow_contents, sizeof instr); |
16461d7d KB |
613 | replace_slotN_contents (bundle, instr, slotnum); |
614 | if (val == 0) | |
615 | target_write_memory (addr, bundle, BUNDLE_LEN); | |
616 | ||
617 | return val; | |
618 | } | |
619 | ||
620 | /* We don't really want to use this, but remote.c needs to call it in order | |
621 | to figure out if Z-packets are supported or not. Oh, well. */ | |
f4f9705a | 622 | const unsigned char * |
67d57894 | 623 | ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) |
16461d7d KB |
624 | { |
625 | static unsigned char breakpoint[] = | |
626 | { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; | |
627 | *lenptr = sizeof (breakpoint); | |
628 | #if 0 | |
629 | *pcptr &= ~0x0f; | |
630 | #endif | |
631 | return breakpoint; | |
632 | } | |
633 | ||
a78f21af | 634 | static CORE_ADDR |
61a1198a | 635 | ia64_read_pc (struct regcache *regcache) |
16461d7d | 636 | { |
61a1198a UW |
637 | ULONGEST psr_value, pc_value; |
638 | int slot_num; | |
639 | ||
640 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
641 | regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value); | |
642 | slot_num = (psr_value >> 41) & 3; | |
16461d7d KB |
643 | |
644 | return pc_value | (slot_num * SLOT_MULTIPLIER); | |
645 | } | |
646 | ||
54a5c8d8 | 647 | void |
61a1198a | 648 | ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc) |
16461d7d KB |
649 | { |
650 | int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER; | |
61a1198a UW |
651 | ULONGEST psr_value; |
652 | ||
653 | regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value); | |
16461d7d | 654 | psr_value &= ~(3LL << 41); |
61a1198a | 655 | psr_value |= (ULONGEST)(slot_num & 0x3) << 41; |
16461d7d KB |
656 | |
657 | new_pc &= ~0xfLL; | |
658 | ||
61a1198a UW |
659 | regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value); |
660 | regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc); | |
16461d7d KB |
661 | } |
662 | ||
663 | #define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f) | |
664 | ||
665 | /* Returns the address of the slot that's NSLOTS slots away from | |
666 | the address ADDR. NSLOTS may be positive or negative. */ | |
667 | static CORE_ADDR | |
668 | rse_address_add(CORE_ADDR addr, int nslots) | |
669 | { | |
670 | CORE_ADDR new_addr; | |
671 | int mandatory_nat_slots = nslots / 63; | |
672 | int direction = nslots < 0 ? -1 : 1; | |
673 | ||
674 | new_addr = addr + 8 * (nslots + mandatory_nat_slots); | |
675 | ||
676 | if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9)) | |
677 | new_addr += 8 * direction; | |
678 | ||
679 | if (IS_NaT_COLLECTION_ADDR(new_addr)) | |
680 | new_addr += 8 * direction; | |
681 | ||
682 | return new_addr; | |
683 | } | |
684 | ||
004d836a JJ |
685 | static void |
686 | ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 687 | int regnum, gdb_byte *buf) |
16461d7d | 688 | { |
004d836a | 689 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 690 | { |
88d82102 | 691 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c JJ |
692 | /* First try and use the libunwind special reg accessor, otherwise fallback to |
693 | standard logic. */ | |
694 | if (!libunwind_is_initialized () | |
45ecac4b | 695 | || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0) |
88d82102 | 696 | #endif |
004d836a | 697 | { |
c5a27d9c JJ |
698 | /* The fallback position is to assume that r32-r127 are found sequentially |
699 | in memory starting at $bof. This isn't always true, but without libunwind, | |
700 | this is the best we can do. */ | |
701 | ULONGEST cfm; | |
702 | ULONGEST bsp; | |
703 | CORE_ADDR reg; | |
704 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
705 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
706 | ||
707 | /* The bsp points at the end of the register frame so we | |
708 | subtract the size of frame from it to get start of register frame. */ | |
709 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
710 | ||
711 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
712 | { | |
713 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
714 | reg = read_memory_integer ((CORE_ADDR)reg_addr, 8); | |
088568da | 715 | store_unsigned_integer (buf, register_size (gdbarch, regnum), reg); |
c5a27d9c JJ |
716 | } |
717 | else | |
088568da | 718 | store_unsigned_integer (buf, register_size (gdbarch, regnum), 0); |
004d836a | 719 | } |
004d836a JJ |
720 | } |
721 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
722 | { | |
723 | ULONGEST unatN_val; | |
724 | ULONGEST unat; | |
725 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
726 | unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0; | |
088568da | 727 | store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val); |
004d836a JJ |
728 | } |
729 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
730 | { | |
731 | ULONGEST natN_val = 0; | |
732 | ULONGEST bsp; | |
733 | ULONGEST cfm; | |
734 | CORE_ADDR gr_addr = 0; | |
735 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
736 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
737 | ||
738 | /* The bsp points at the end of the register frame so we | |
739 | subtract the size of frame from it to get start of register frame. */ | |
740 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
741 | ||
742 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
743 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
744 | ||
745 | if (gr_addr != 0) | |
746 | { | |
747 | /* Compute address of nat collection bits. */ | |
748 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
749 | CORE_ADDR nat_collection; | |
750 | int nat_bit; | |
751 | /* If our nat collection address is bigger than bsp, we have to get | |
752 | the nat collection from rnat. Otherwise, we fetch the nat | |
753 | collection from the computed address. */ | |
754 | if (nat_addr >= bsp) | |
755 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
756 | else | |
757 | nat_collection = read_memory_integer (nat_addr, 8); | |
758 | nat_bit = (gr_addr >> 3) & 0x3f; | |
759 | natN_val = (nat_collection >> nat_bit) & 1; | |
760 | } | |
761 | ||
088568da | 762 | store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val); |
244bc108 | 763 | } |
004d836a JJ |
764 | else if (regnum == VBOF_REGNUM) |
765 | { | |
766 | /* A virtual register frame start is provided for user convenience. | |
767 | It can be calculated as the bsp - sof (sizeof frame). */ | |
768 | ULONGEST bsp, vbsp; | |
769 | ULONGEST cfm; | |
770 | CORE_ADDR reg; | |
771 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
772 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
773 | ||
774 | /* The bsp points at the end of the register frame so we | |
775 | subtract the size of frame from it to get beginning of frame. */ | |
776 | vbsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
088568da | 777 | store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp); |
004d836a JJ |
778 | } |
779 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
780 | { | |
781 | ULONGEST pr; | |
782 | ULONGEST cfm; | |
783 | ULONGEST prN_val; | |
784 | CORE_ADDR reg; | |
785 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
786 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
787 | ||
788 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
789 | { | |
790 | /* Fetch predicate register rename base from current frame | |
791 | marker for this frame. */ | |
792 | int rrb_pr = (cfm >> 32) & 0x3f; | |
793 | ||
794 | /* Adjust the register number to account for register rotation. */ | |
795 | regnum = VP16_REGNUM | |
796 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
797 | } | |
798 | prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0; | |
088568da | 799 | store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val); |
004d836a JJ |
800 | } |
801 | else | |
088568da | 802 | memset (buf, 0, register_size (gdbarch, regnum)); |
16461d7d KB |
803 | } |
804 | ||
004d836a JJ |
805 | static void |
806 | ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
88d82102 | 807 | int regnum, const gdb_byte *buf) |
16461d7d | 808 | { |
004d836a | 809 | if (regnum >= V32_REGNUM && regnum <= V127_REGNUM) |
244bc108 | 810 | { |
004d836a JJ |
811 | ULONGEST bsp; |
812 | ULONGEST cfm; | |
813 | CORE_ADDR reg; | |
814 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
815 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
816 | ||
817 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
818 | ||
819 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
820 | { | |
821 | ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
822 | write_memory (reg_addr, (void *)buf, 8); | |
823 | } | |
824 | } | |
825 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
826 | { | |
827 | ULONGEST unatN_val, unat, unatN_mask; | |
828 | regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat); | |
088568da | 829 | unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
830 | unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM)); |
831 | if (unatN_val == 0) | |
832 | unat &= ~unatN_mask; | |
833 | else if (unatN_val == 1) | |
834 | unat |= unatN_mask; | |
835 | regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat); | |
836 | } | |
837 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
838 | { | |
839 | ULONGEST natN_val; | |
840 | ULONGEST bsp; | |
841 | ULONGEST cfm; | |
842 | CORE_ADDR gr_addr = 0; | |
843 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); | |
844 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
845 | ||
846 | /* The bsp points at the end of the register frame so we | |
847 | subtract the size of frame from it to get start of register frame. */ | |
848 | bsp = rse_address_add (bsp, -(cfm & 0x7f)); | |
849 | ||
850 | if ((cfm & 0x7f) > regnum - V32_REGNUM) | |
851 | gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM)); | |
852 | ||
088568da | 853 | natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
854 | |
855 | if (gr_addr != 0 && (natN_val == 0 || natN_val == 1)) | |
856 | { | |
857 | /* Compute address of nat collection bits. */ | |
858 | CORE_ADDR nat_addr = gr_addr | 0x1f8; | |
859 | CORE_ADDR nat_collection; | |
860 | int natN_bit = (gr_addr >> 3) & 0x3f; | |
861 | ULONGEST natN_mask = (1LL << natN_bit); | |
862 | /* If our nat collection address is bigger than bsp, we have to get | |
863 | the nat collection from rnat. Otherwise, we fetch the nat | |
864 | collection from the computed address. */ | |
865 | if (nat_addr >= bsp) | |
866 | { | |
867 | regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection); | |
868 | if (natN_val) | |
869 | nat_collection |= natN_mask; | |
870 | else | |
871 | nat_collection &= ~natN_mask; | |
872 | regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection); | |
873 | } | |
874 | else | |
875 | { | |
876 | char nat_buf[8]; | |
877 | nat_collection = read_memory_integer (nat_addr, 8); | |
878 | if (natN_val) | |
879 | nat_collection |= natN_mask; | |
880 | else | |
881 | nat_collection &= ~natN_mask; | |
088568da | 882 | store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection); |
004d836a JJ |
883 | write_memory (nat_addr, nat_buf, 8); |
884 | } | |
885 | } | |
886 | } | |
887 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
888 | { | |
889 | ULONGEST pr; | |
890 | ULONGEST cfm; | |
891 | ULONGEST prN_val; | |
892 | ULONGEST prN_mask; | |
893 | ||
894 | regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr); | |
895 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); | |
896 | ||
897 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
898 | { | |
899 | /* Fetch predicate register rename base from current frame | |
900 | marker for this frame. */ | |
901 | int rrb_pr = (cfm >> 32) & 0x3f; | |
902 | ||
903 | /* Adjust the register number to account for register rotation. */ | |
904 | regnum = VP16_REGNUM | |
905 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
906 | } | |
088568da | 907 | prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum)); |
004d836a JJ |
908 | prN_mask = (1LL << (regnum - VP0_REGNUM)); |
909 | if (prN_val == 0) | |
910 | pr &= ~prN_mask; | |
911 | else if (prN_val == 1) | |
912 | pr |= prN_mask; | |
913 | regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr); | |
244bc108 | 914 | } |
16461d7d KB |
915 | } |
916 | ||
004d836a JJ |
917 | /* The ia64 needs to convert between various ieee floating-point formats |
918 | and the special ia64 floating point register format. */ | |
919 | ||
920 | static int | |
0abe36f5 | 921 | ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type) |
004d836a | 922 | { |
83acabca DJ |
923 | return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM |
924 | && type != builtin_type_ia64_ext); | |
004d836a JJ |
925 | } |
926 | ||
927 | static void | |
928 | ia64_register_to_value (struct frame_info *frame, int regnum, | |
88d82102 | 929 | struct type *valtype, gdb_byte *out) |
004d836a JJ |
930 | { |
931 | char in[MAX_REGISTER_SIZE]; | |
932 | frame_register_read (frame, regnum, in); | |
933 | convert_typed_floating (in, builtin_type_ia64_ext, out, valtype); | |
934 | } | |
935 | ||
936 | static void | |
937 | ia64_value_to_register (struct frame_info *frame, int regnum, | |
88d82102 | 938 | struct type *valtype, const gdb_byte *in) |
004d836a JJ |
939 | { |
940 | char out[MAX_REGISTER_SIZE]; | |
941 | convert_typed_floating (in, valtype, out, builtin_type_ia64_ext); | |
942 | put_frame_register (frame, regnum, out); | |
943 | } | |
944 | ||
945 | ||
58ab00f9 KB |
946 | /* Limit the number of skipped non-prologue instructions since examining |
947 | of the prologue is expensive. */ | |
5ea2bd7f | 948 | static int max_skip_non_prologue_insns = 40; |
58ab00f9 KB |
949 | |
950 | /* Given PC representing the starting address of a function, and | |
951 | LIM_PC which is the (sloppy) limit to which to scan when looking | |
952 | for a prologue, attempt to further refine this limit by using | |
953 | the line data in the symbol table. If successful, a better guess | |
954 | on where the prologue ends is returned, otherwise the previous | |
955 | value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag | |
956 | which will be set to indicate whether the returned limit may be | |
957 | used with no further scanning in the event that the function is | |
958 | frameless. */ | |
959 | ||
634aa483 AC |
960 | /* FIXME: cagney/2004-02-14: This function and logic have largely been |
961 | superseded by skip_prologue_using_sal. */ | |
962 | ||
58ab00f9 KB |
963 | static CORE_ADDR |
964 | refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit) | |
965 | { | |
966 | struct symtab_and_line prologue_sal; | |
967 | CORE_ADDR start_pc = pc; | |
39312971 JB |
968 | CORE_ADDR end_pc; |
969 | ||
970 | /* The prologue can not possibly go past the function end itself, | |
971 | so we can already adjust LIM_PC accordingly. */ | |
972 | if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc) | |
973 | lim_pc = end_pc; | |
58ab00f9 KB |
974 | |
975 | /* Start off not trusting the limit. */ | |
976 | *trust_limit = 0; | |
977 | ||
978 | prologue_sal = find_pc_line (pc, 0); | |
979 | if (prologue_sal.line != 0) | |
980 | { | |
981 | int i; | |
982 | CORE_ADDR addr = prologue_sal.end; | |
983 | ||
984 | /* Handle the case in which compiler's optimizer/scheduler | |
985 | has moved instructions into the prologue. We scan ahead | |
986 | in the function looking for address ranges whose corresponding | |
987 | line number is less than or equal to the first one that we | |
988 | found for the function. (It can be less than when the | |
989 | scheduler puts a body instruction before the first prologue | |
990 | instruction.) */ | |
991 | for (i = 2 * max_skip_non_prologue_insns; | |
992 | i > 0 && (lim_pc == 0 || addr < lim_pc); | |
993 | i--) | |
994 | { | |
995 | struct symtab_and_line sal; | |
996 | ||
997 | sal = find_pc_line (addr, 0); | |
998 | if (sal.line == 0) | |
999 | break; | |
1000 | if (sal.line <= prologue_sal.line | |
1001 | && sal.symtab == prologue_sal.symtab) | |
1002 | { | |
1003 | prologue_sal = sal; | |
1004 | } | |
1005 | addr = sal.end; | |
1006 | } | |
1007 | ||
1008 | if (lim_pc == 0 || prologue_sal.end < lim_pc) | |
1009 | { | |
1010 | lim_pc = prologue_sal.end; | |
1011 | if (start_pc == get_pc_function_start (lim_pc)) | |
1012 | *trust_limit = 1; | |
1013 | } | |
1014 | } | |
1015 | return lim_pc; | |
1016 | } | |
1017 | ||
16461d7d KB |
1018 | #define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \ |
1019 | || (8 <= (_regnum_) && (_regnum_) <= 11) \ | |
1020 | || (14 <= (_regnum_) && (_regnum_) <= 31)) | |
1021 | #define imm9(_instr_) \ | |
1022 | ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \ | |
1023 | | (((_instr_) & 0x00008000000LL) >> 20) \ | |
1024 | | (((_instr_) & 0x00000001fc0LL) >> 6)) | |
1025 | ||
004d836a JJ |
1026 | /* Allocate and initialize a frame cache. */ |
1027 | ||
1028 | static struct ia64_frame_cache * | |
1029 | ia64_alloc_frame_cache (void) | |
1030 | { | |
1031 | struct ia64_frame_cache *cache; | |
1032 | int i; | |
1033 | ||
1034 | cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache); | |
1035 | ||
1036 | /* Base address. */ | |
1037 | cache->base = 0; | |
1038 | cache->pc = 0; | |
1039 | cache->cfm = 0; | |
4afcc598 | 1040 | cache->prev_cfm = 0; |
004d836a JJ |
1041 | cache->sof = 0; |
1042 | cache->sol = 0; | |
1043 | cache->sor = 0; | |
1044 | cache->bsp = 0; | |
1045 | cache->fp_reg = 0; | |
1046 | cache->frameless = 1; | |
1047 | ||
1048 | for (i = 0; i < NUM_IA64_RAW_REGS; i++) | |
1049 | cache->saved_regs[i] = 0; | |
1050 | ||
1051 | return cache; | |
1052 | } | |
1053 | ||
16461d7d | 1054 | static CORE_ADDR |
004d836a | 1055 | examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct frame_info *next_frame, struct ia64_frame_cache *cache) |
16461d7d KB |
1056 | { |
1057 | CORE_ADDR next_pc; | |
1058 | CORE_ADDR last_prologue_pc = pc; | |
16461d7d KB |
1059 | instruction_type it; |
1060 | long long instr; | |
16461d7d KB |
1061 | int cfm_reg = 0; |
1062 | int ret_reg = 0; | |
1063 | int fp_reg = 0; | |
1064 | int unat_save_reg = 0; | |
1065 | int pr_save_reg = 0; | |
1066 | int mem_stack_frame_size = 0; | |
1067 | int spill_reg = 0; | |
1068 | CORE_ADDR spill_addr = 0; | |
0927a22b KB |
1069 | char instores[8]; |
1070 | char infpstores[8]; | |
5ea2bd7f | 1071 | char reg_contents[256]; |
58ab00f9 | 1072 | int trust_limit; |
004d836a JJ |
1073 | int frameless = 1; |
1074 | int i; | |
1075 | CORE_ADDR addr; | |
1076 | char buf[8]; | |
1077 | CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr; | |
0927a22b KB |
1078 | |
1079 | memset (instores, 0, sizeof instores); | |
1080 | memset (infpstores, 0, sizeof infpstores); | |
5ea2bd7f | 1081 | memset (reg_contents, 0, sizeof reg_contents); |
16461d7d | 1082 | |
004d836a JJ |
1083 | if (cache->after_prologue != 0 |
1084 | && cache->after_prologue <= lim_pc) | |
1085 | return cache->after_prologue; | |
16461d7d | 1086 | |
58ab00f9 | 1087 | lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit); |
16461d7d | 1088 | next_pc = fetch_instruction (pc, &it, &instr); |
5ea2bd7f JJ |
1089 | |
1090 | /* We want to check if we have a recognizable function start before we | |
1091 | look ahead for a prologue. */ | |
16461d7d KB |
1092 | if (pc < lim_pc && next_pc |
1093 | && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL)) | |
1094 | { | |
5ea2bd7f | 1095 | /* alloc - start of a regular function. */ |
16461d7d KB |
1096 | int sor = (int) ((instr & 0x00078000000LL) >> 27); |
1097 | int sol = (int) ((instr & 0x00007f00000LL) >> 20); | |
1098 | int sof = (int) ((instr & 0x000000fe000LL) >> 13); | |
16461d7d | 1099 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); |
004d836a JJ |
1100 | |
1101 | /* Verify that the current cfm matches what we think is the | |
1102 | function start. If we have somehow jumped within a function, | |
1103 | we do not want to interpret the prologue and calculate the | |
1104 | addresses of various registers such as the return address. | |
1105 | We will instead treat the frame as frameless. */ | |
1106 | if (!next_frame || | |
1107 | (sof == (cache->cfm & 0x7f) && | |
1108 | sol == ((cache->cfm >> 7) & 0x7f))) | |
1109 | frameless = 0; | |
1110 | ||
16461d7d KB |
1111 | cfm_reg = rN; |
1112 | last_prologue_pc = next_pc; | |
1113 | pc = next_pc; | |
1114 | } | |
1115 | else | |
58ab00f9 | 1116 | { |
5ea2bd7f JJ |
1117 | /* Look for a leaf routine. */ |
1118 | if (pc < lim_pc && next_pc | |
1119 | && (it == I || it == M) | |
1120 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1121 | { | |
1122 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1123 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1124 | | ((instr & 0x001f8000000LL) >> 20) | |
1125 | | ((instr & 0x000000fe000LL) >> 13)); | |
1126 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1127 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1128 | int qp = (int) (instr & 0x0000000003fLL); | |
1129 | if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0) | |
1130 | { | |
1131 | /* mov r2, r12 - beginning of leaf routine */ | |
1132 | fp_reg = rN; | |
5ea2bd7f JJ |
1133 | last_prologue_pc = next_pc; |
1134 | } | |
1135 | } | |
1136 | ||
1137 | /* If we don't recognize a regular function or leaf routine, we are | |
1138 | done. */ | |
1139 | if (!fp_reg) | |
1140 | { | |
1141 | pc = lim_pc; | |
1142 | if (trust_limit) | |
1143 | last_prologue_pc = lim_pc; | |
1144 | } | |
58ab00f9 | 1145 | } |
16461d7d KB |
1146 | |
1147 | /* Loop, looking for prologue instructions, keeping track of | |
1148 | where preserved registers were spilled. */ | |
1149 | while (pc < lim_pc) | |
1150 | { | |
1151 | next_pc = fetch_instruction (pc, &it, &instr); | |
1152 | if (next_pc == 0) | |
1153 | break; | |
1154 | ||
594706e6 | 1155 | if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL)) |
0927a22b | 1156 | { |
102d615a JJ |
1157 | /* Exit loop upon hitting a non-nop branch instruction. */ |
1158 | if (trust_limit) | |
1159 | lim_pc = pc; | |
1160 | break; | |
1161 | } | |
1162 | else if (((instr & 0x3fLL) != 0LL) && | |
1163 | (frameless || ret_reg != 0)) | |
1164 | { | |
1165 | /* Exit loop upon hitting a predicated instruction if | |
1166 | we already have the return register or if we are frameless. */ | |
5ea2bd7f JJ |
1167 | if (trust_limit) |
1168 | lim_pc = pc; | |
0927a22b KB |
1169 | break; |
1170 | } | |
1171 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL)) | |
16461d7d KB |
1172 | { |
1173 | /* Move from BR */ | |
1174 | int b2 = (int) ((instr & 0x0000000e000LL) >> 13); | |
1175 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1176 | int qp = (int) (instr & 0x0000000003f); | |
1177 | ||
1178 | if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0) | |
1179 | { | |
1180 | ret_reg = rN; | |
1181 | last_prologue_pc = next_pc; | |
1182 | } | |
1183 | } | |
1184 | else if ((it == I || it == M) | |
1185 | && ((instr & 0x1ee00000000LL) == 0x10800000000LL)) | |
1186 | { | |
1187 | /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */ | |
1188 | int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13) | |
1189 | | ((instr & 0x001f8000000LL) >> 20) | |
1190 | | ((instr & 0x000000fe000LL) >> 13)); | |
1191 | int rM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1192 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1193 | int qp = (int) (instr & 0x0000000003fLL); | |
1194 | ||
1195 | if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0) | |
1196 | { | |
1197 | /* mov rN, r12 */ | |
1198 | fp_reg = rN; | |
1199 | last_prologue_pc = next_pc; | |
1200 | } | |
1201 | else if (qp == 0 && rN == 12 && rM == 12) | |
1202 | { | |
1203 | /* adds r12, -mem_stack_frame_size, r12 */ | |
1204 | mem_stack_frame_size -= imm; | |
1205 | last_prologue_pc = next_pc; | |
1206 | } | |
1207 | else if (qp == 0 && rN == 2 | |
1208 | && ((rM == fp_reg && fp_reg != 0) || rM == 12)) | |
1209 | { | |
004d836a JJ |
1210 | char buf[MAX_REGISTER_SIZE]; |
1211 | CORE_ADDR saved_sp = 0; | |
16461d7d KB |
1212 | /* adds r2, spilloffset, rFramePointer |
1213 | or | |
1214 | adds r2, spilloffset, r12 | |
1215 | ||
1216 | Get ready for stf.spill or st8.spill instructions. | |
1217 | The address to start spilling at is loaded into r2. | |
1218 | FIXME: Why r2? That's what gcc currently uses; it | |
1219 | could well be different for other compilers. */ | |
1220 | ||
1221 | /* Hmm... whether or not this will work will depend on | |
1222 | where the pc is. If it's still early in the prologue | |
1223 | this'll be wrong. FIXME */ | |
004d836a JJ |
1224 | if (next_frame) |
1225 | { | |
1226 | frame_unwind_register (next_frame, sp_regnum, buf); | |
1227 | saved_sp = extract_unsigned_integer (buf, 8); | |
1228 | } | |
1229 | spill_addr = saved_sp | |
16461d7d KB |
1230 | + (rM == 12 ? 0 : mem_stack_frame_size) |
1231 | + imm; | |
1232 | spill_reg = rN; | |
1233 | last_prologue_pc = next_pc; | |
1234 | } | |
5ea2bd7f JJ |
1235 | else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM] && |
1236 | rN < 256 && imm == 0) | |
1237 | { | |
1238 | /* mov rN, rM where rM is an input register */ | |
1239 | reg_contents[rN] = rM; | |
1240 | last_prologue_pc = next_pc; | |
1241 | } | |
1242 | else if (frameless && qp == 0 && rN == fp_reg && imm == 0 && | |
1243 | rM == 2) | |
1244 | { | |
1245 | /* mov r12, r2 */ | |
1246 | last_prologue_pc = next_pc; | |
1247 | break; | |
1248 | } | |
16461d7d KB |
1249 | } |
1250 | else if (it == M | |
1251 | && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) | |
1252 | || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) )) | |
1253 | { | |
1254 | /* stf.spill [rN] = fM, imm9 | |
1255 | or | |
1256 | stf.spill [rN] = fM */ | |
1257 | ||
1258 | int imm = imm9(instr); | |
1259 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1260 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1261 | int qp = (int) (instr & 0x0000000003fLL); | |
1262 | if (qp == 0 && rN == spill_reg && spill_addr != 0 | |
1263 | && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31))) | |
1264 | { | |
004d836a | 1265 | cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr; |
16461d7d | 1266 | |
594706e6 | 1267 | if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL) |
16461d7d KB |
1268 | spill_addr += imm; |
1269 | else | |
1270 | spill_addr = 0; /* last one; must be done */ | |
1271 | last_prologue_pc = next_pc; | |
1272 | } | |
1273 | } | |
1274 | else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL)) | |
1275 | || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) ) | |
1276 | { | |
1277 | /* mov.m rN = arM | |
1278 | or | |
1279 | mov.i rN = arM */ | |
1280 | ||
1281 | int arM = (int) ((instr & 0x00007f00000LL) >> 20); | |
1282 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1283 | int qp = (int) (instr & 0x0000000003fLL); | |
1284 | if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */) | |
1285 | { | |
1286 | /* We have something like "mov.m r3 = ar.unat". Remember the | |
1287 | r3 (or whatever) and watch for a store of this register... */ | |
1288 | unat_save_reg = rN; | |
1289 | last_prologue_pc = next_pc; | |
1290 | } | |
1291 | } | |
1292 | else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL)) | |
1293 | { | |
1294 | /* mov rN = pr */ | |
1295 | int rN = (int) ((instr & 0x00000001fc0LL) >> 6); | |
1296 | int qp = (int) (instr & 0x0000000003fLL); | |
1297 | if (qp == 0 && isScratch (rN)) | |
1298 | { | |
1299 | pr_save_reg = rN; | |
1300 | last_prologue_pc = next_pc; | |
1301 | } | |
1302 | } | |
1303 | else if (it == M | |
1304 | && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL) | |
1305 | || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL))) | |
1306 | { | |
1307 | /* st8 [rN] = rM | |
1308 | or | |
1309 | st8 [rN] = rM, imm9 */ | |
1310 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1311 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1312 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1313 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
16461d7d KB |
1314 | if (qp == 0 && rN == spill_reg && spill_addr != 0 |
1315 | && (rM == unat_save_reg || rM == pr_save_reg)) | |
1316 | { | |
1317 | /* We've found a spill of either the UNAT register or the PR | |
1318 | register. (Well, not exactly; what we've actually found is | |
1319 | a spill of the register that UNAT or PR was moved to). | |
1320 | Record that fact and move on... */ | |
1321 | if (rM == unat_save_reg) | |
1322 | { | |
1323 | /* Track UNAT register */ | |
004d836a | 1324 | cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr; |
16461d7d KB |
1325 | unat_save_reg = 0; |
1326 | } | |
1327 | else | |
1328 | { | |
1329 | /* Track PR register */ | |
004d836a | 1330 | cache->saved_regs[IA64_PR_REGNUM] = spill_addr; |
16461d7d KB |
1331 | pr_save_reg = 0; |
1332 | } | |
1333 | if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL) | |
1334 | /* st8 [rN] = rM, imm9 */ | |
1335 | spill_addr += imm9(instr); | |
1336 | else | |
1337 | spill_addr = 0; /* must be done spilling */ | |
1338 | last_prologue_pc = next_pc; | |
1339 | } | |
0927a22b KB |
1340 | else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1341 | { | |
1342 | /* Allow up to one store of each input register. */ | |
1343 | instores[rM-32] = 1; | |
1344 | last_prologue_pc = next_pc; | |
1345 | } | |
5ea2bd7f JJ |
1346 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1347 | !instores[indirect-32]) | |
1348 | { | |
1349 | /* Allow an indirect store of an input register. */ | |
1350 | instores[indirect-32] = 1; | |
1351 | last_prologue_pc = next_pc; | |
1352 | } | |
0927a22b KB |
1353 | } |
1354 | else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL)) | |
1355 | { | |
1356 | /* One of | |
1357 | st1 [rN] = rM | |
1358 | st2 [rN] = rM | |
1359 | st4 [rN] = rM | |
1360 | st8 [rN] = rM | |
1361 | Note that the st8 case is handled in the clause above. | |
1362 | ||
1363 | Advance over stores of input registers. One store per input | |
1364 | register is permitted. */ | |
1365 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1366 | int qp = (int) (instr & 0x0000000003fLL); | |
5ea2bd7f | 1367 | int indirect = rM < 256 ? reg_contents[rM] : 0; |
0927a22b KB |
1368 | if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32]) |
1369 | { | |
1370 | instores[rM-32] = 1; | |
1371 | last_prologue_pc = next_pc; | |
1372 | } | |
5ea2bd7f JJ |
1373 | else if (qp == 0 && 32 <= indirect && indirect < 40 && |
1374 | !instores[indirect-32]) | |
1375 | { | |
1376 | /* Allow an indirect store of an input register. */ | |
1377 | instores[indirect-32] = 1; | |
1378 | last_prologue_pc = next_pc; | |
1379 | } | |
0927a22b KB |
1380 | } |
1381 | else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL)) | |
1382 | { | |
1383 | /* Either | |
1384 | stfs [rN] = fM | |
1385 | or | |
1386 | stfd [rN] = fM | |
1387 | ||
1388 | Advance over stores of floating point input registers. Again | |
1389 | one store per register is permitted */ | |
1390 | int fM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1391 | int qp = (int) (instr & 0x0000000003fLL); | |
1392 | if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8]) | |
1393 | { | |
1394 | infpstores[fM-8] = 1; | |
1395 | last_prologue_pc = next_pc; | |
1396 | } | |
16461d7d KB |
1397 | } |
1398 | else if (it == M | |
1399 | && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL) | |
1400 | || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL))) | |
1401 | { | |
1402 | /* st8.spill [rN] = rM | |
1403 | or | |
1404 | st8.spill [rN] = rM, imm9 */ | |
1405 | int rN = (int) ((instr & 0x00007f00000LL) >> 20); | |
1406 | int rM = (int) ((instr & 0x000000fe000LL) >> 13); | |
1407 | int qp = (int) (instr & 0x0000000003fLL); | |
1408 | if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7) | |
1409 | { | |
1410 | /* We've found a spill of one of the preserved general purpose | |
1411 | regs. Record the spill address and advance the spill | |
1412 | register if appropriate. */ | |
004d836a | 1413 | cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr; |
16461d7d KB |
1414 | if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL) |
1415 | /* st8.spill [rN] = rM, imm9 */ | |
1416 | spill_addr += imm9(instr); | |
1417 | else | |
1418 | spill_addr = 0; /* Done spilling */ | |
1419 | last_prologue_pc = next_pc; | |
1420 | } | |
1421 | } | |
16461d7d KB |
1422 | |
1423 | pc = next_pc; | |
1424 | } | |
1425 | ||
004d836a JJ |
1426 | /* If not frameless and we aren't called by skip_prologue, then we need to calculate |
1427 | registers for the previous frame which will be needed later. */ | |
16461d7d | 1428 | |
004d836a | 1429 | if (!frameless && next_frame) |
da50a4b7 | 1430 | { |
004d836a JJ |
1431 | /* Extract the size of the rotating portion of the stack |
1432 | frame and the register rename base from the current | |
1433 | frame marker. */ | |
1434 | cfm = cache->cfm; | |
1435 | sor = cache->sor; | |
1436 | sof = cache->sof; | |
1437 | sol = cache->sol; | |
1438 | rrb_gr = (cfm >> 18) & 0x7f; | |
1439 | ||
1440 | /* Find the bof (beginning of frame). */ | |
1441 | bof = rse_address_add (cache->bsp, -sof); | |
1442 | ||
1443 | for (i = 0, addr = bof; | |
1444 | i < sof; | |
1445 | i++, addr += 8) | |
1446 | { | |
1447 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1448 | { | |
1449 | addr += 8; | |
1450 | } | |
1451 | if (i+32 == cfm_reg) | |
1452 | cache->saved_regs[IA64_CFM_REGNUM] = addr; | |
1453 | if (i+32 == ret_reg) | |
1454 | cache->saved_regs[IA64_VRAP_REGNUM] = addr; | |
1455 | if (i+32 == fp_reg) | |
1456 | cache->saved_regs[IA64_VFP_REGNUM] = addr; | |
1457 | } | |
16461d7d | 1458 | |
004d836a JJ |
1459 | /* For the previous argument registers we require the previous bof. |
1460 | If we can't find the previous cfm, then we can do nothing. */ | |
4afcc598 | 1461 | cfm = 0; |
004d836a JJ |
1462 | if (cache->saved_regs[IA64_CFM_REGNUM] != 0) |
1463 | { | |
1464 | cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8); | |
4afcc598 JJ |
1465 | } |
1466 | else if (cfm_reg != 0) | |
1467 | { | |
1468 | frame_unwind_register (next_frame, cfm_reg, buf); | |
1469 | cfm = extract_unsigned_integer (buf, 8); | |
1470 | } | |
1471 | cache->prev_cfm = cfm; | |
1472 | ||
1473 | if (cfm != 0) | |
1474 | { | |
004d836a JJ |
1475 | sor = ((cfm >> 14) & 0xf) * 8; |
1476 | sof = (cfm & 0x7f); | |
1477 | sol = (cfm >> 7) & 0x7f; | |
1478 | rrb_gr = (cfm >> 18) & 0x7f; | |
1479 | ||
1480 | /* The previous bof only requires subtraction of the sol (size of locals) | |
1481 | due to the overlap between output and input of subsequent frames. */ | |
1482 | bof = rse_address_add (bof, -sol); | |
1483 | ||
1484 | for (i = 0, addr = bof; | |
1485 | i < sof; | |
1486 | i++, addr += 8) | |
1487 | { | |
1488 | if (IS_NaT_COLLECTION_ADDR (addr)) | |
1489 | { | |
1490 | addr += 8; | |
1491 | } | |
1492 | if (i < sor) | |
1493 | cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)] | |
1494 | = addr; | |
1495 | else | |
1496 | cache->saved_regs[IA64_GR32_REGNUM + i] = addr; | |
1497 | } | |
1498 | ||
1499 | } | |
1500 | } | |
1501 | ||
5ea2bd7f JJ |
1502 | /* Try and trust the lim_pc value whenever possible. */ |
1503 | if (trust_limit && lim_pc >= last_prologue_pc) | |
004d836a JJ |
1504 | last_prologue_pc = lim_pc; |
1505 | ||
1506 | cache->frameless = frameless; | |
1507 | cache->after_prologue = last_prologue_pc; | |
1508 | cache->mem_stack_frame_size = mem_stack_frame_size; | |
1509 | cache->fp_reg = fp_reg; | |
5ea2bd7f | 1510 | |
16461d7d KB |
1511 | return last_prologue_pc; |
1512 | } | |
1513 | ||
1514 | CORE_ADDR | |
6093d2eb | 1515 | ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
16461d7d | 1516 | { |
004d836a JJ |
1517 | struct ia64_frame_cache cache; |
1518 | cache.base = 0; | |
1519 | cache.after_prologue = 0; | |
1520 | cache.cfm = 0; | |
1521 | cache.bsp = 0; | |
1522 | ||
1523 | /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */ | |
1524 | return examine_prologue (pc, pc+1024, 0, &cache); | |
16461d7d KB |
1525 | } |
1526 | ||
004d836a JJ |
1527 | |
1528 | /* Normal frames. */ | |
1529 | ||
1530 | static struct ia64_frame_cache * | |
1531 | ia64_frame_cache (struct frame_info *next_frame, void **this_cache) | |
16461d7d | 1532 | { |
004d836a JJ |
1533 | struct ia64_frame_cache *cache; |
1534 | char buf[8]; | |
1535 | CORE_ADDR cfm, sof, sol, bsp, psr; | |
1536 | int i; | |
16461d7d | 1537 | |
004d836a JJ |
1538 | if (*this_cache) |
1539 | return *this_cache; | |
16461d7d | 1540 | |
004d836a JJ |
1541 | cache = ia64_alloc_frame_cache (); |
1542 | *this_cache = cache; | |
16461d7d | 1543 | |
004d836a JJ |
1544 | frame_unwind_register (next_frame, sp_regnum, buf); |
1545 | cache->saved_sp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1546 | |
004d836a JJ |
1547 | /* We always want the bsp to point to the end of frame. |
1548 | This way, we can always get the beginning of frame (bof) | |
1549 | by subtracting frame size. */ | |
1550 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1551 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1552 | ||
1553 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1554 | psr = extract_unsigned_integer (buf, 8); | |
1555 | ||
1556 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1557 | cfm = extract_unsigned_integer (buf, 8); | |
1558 | ||
1559 | cache->sof = (cfm & 0x7f); | |
1560 | cache->sol = (cfm >> 7) & 0x7f; | |
1561 | cache->sor = ((cfm >> 14) & 0xf) * 8; | |
1562 | ||
1563 | cache->cfm = cfm; | |
1564 | ||
93d42b30 | 1565 | cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME); |
004d836a JJ |
1566 | |
1567 | if (cache->pc != 0) | |
1568 | examine_prologue (cache->pc, frame_pc_unwind (next_frame), next_frame, cache); | |
1569 | ||
1570 | cache->base = cache->saved_sp + cache->mem_stack_frame_size; | |
1571 | ||
1572 | return cache; | |
16461d7d KB |
1573 | } |
1574 | ||
a78f21af | 1575 | static void |
004d836a JJ |
1576 | ia64_frame_this_id (struct frame_info *next_frame, void **this_cache, |
1577 | struct frame_id *this_id) | |
16461d7d | 1578 | { |
004d836a JJ |
1579 | struct ia64_frame_cache *cache = |
1580 | ia64_frame_cache (next_frame, this_cache); | |
16461d7d | 1581 | |
c5a27d9c | 1582 | /* If outermost frame, mark with null frame id. */ |
004d836a | 1583 | if (cache->base == 0) |
c5a27d9c JJ |
1584 | (*this_id) = null_frame_id; |
1585 | else | |
1586 | (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp); | |
4afcc598 JJ |
1587 | if (gdbarch_debug >= 1) |
1588 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1589 | "regular frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1590 | paddr_nz (this_id->code_addr), | |
1591 | paddr_nz (this_id->stack_addr), | |
1592 | paddr_nz (cache->bsp), next_frame); | |
004d836a | 1593 | } |
244bc108 | 1594 | |
004d836a JJ |
1595 | static void |
1596 | ia64_frame_prev_register (struct frame_info *next_frame, void **this_cache, | |
1597 | int regnum, int *optimizedp, | |
1598 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 1599 | int *realnump, gdb_byte *valuep) |
004d836a | 1600 | { |
088568da | 1601 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
004d836a JJ |
1602 | struct ia64_frame_cache *cache = |
1603 | ia64_frame_cache (next_frame, this_cache); | |
1604 | char dummy_valp[MAX_REGISTER_SIZE]; | |
1605 | char buf[8]; | |
1606 | ||
1607 | gdb_assert (regnum >= 0); | |
244bc108 | 1608 | |
004d836a | 1609 | if (!target_has_registers) |
8a3fe4f8 | 1610 | error (_("No registers.")); |
244bc108 | 1611 | |
004d836a JJ |
1612 | *optimizedp = 0; |
1613 | *addrp = 0; | |
1614 | *lvalp = not_lval; | |
1615 | *realnump = -1; | |
244bc108 | 1616 | |
004d836a JJ |
1617 | /* Rather than check each time if valuep is non-null, supply a dummy buffer |
1618 | when valuep is not supplied. */ | |
1619 | if (!valuep) | |
1620 | valuep = dummy_valp; | |
1621 | ||
088568da | 1622 | memset (valuep, 0, register_size (gdbarch, regnum)); |
004d836a | 1623 | |
088568da | 1624 | if (regnum == gdbarch_sp_regnum (gdbarch)) |
16461d7d KB |
1625 | { |
1626 | /* Handle SP values for all frames but the topmost. */ | |
088568da | 1627 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
004d836a | 1628 | cache->base); |
16461d7d KB |
1629 | } |
1630 | else if (regnum == IA64_BSP_REGNUM) | |
1631 | { | |
004d836a JJ |
1632 | char cfm_valuep[MAX_REGISTER_SIZE]; |
1633 | int cfm_optim; | |
1634 | int cfm_realnum; | |
1635 | enum lval_type cfm_lval; | |
1636 | CORE_ADDR cfm_addr; | |
1637 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
1638 | ||
1639 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
1640 | This corresponds to what the hardware bsp register will be if we pop the frame | |
1641 | back which is why we might have been called. We know the beginning of the current | |
aa2a9a3c | 1642 | frame is cache->bsp - cache->sof. This value in the previous frame points to |
004d836a JJ |
1643 | the start of the output registers. We can calculate the end of that frame by adding |
1644 | the size of output (sof (size of frame) - sol (size of locals)). */ | |
1645 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1646 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
1647 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
1648 | ||
1649 | bsp = rse_address_add (cache->bsp, -(cache->sof)); | |
1650 | prev_bsp = rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f)); | |
1651 | ||
088568da | 1652 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
004d836a JJ |
1653 | prev_bsp); |
1654 | } | |
1655 | else if (regnum == IA64_CFM_REGNUM) | |
1656 | { | |
4afcc598 JJ |
1657 | CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM]; |
1658 | ||
1659 | if (addr != 0) | |
004d836a | 1660 | { |
4afcc598 JJ |
1661 | *lvalp = lval_memory; |
1662 | *addrp = addr; | |
088568da | 1663 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
004d836a | 1664 | } |
4afcc598 | 1665 | else if (cache->prev_cfm) |
088568da | 1666 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), cache->prev_cfm); |
4afcc598 | 1667 | else if (cache->frameless) |
004d836a | 1668 | { |
4afcc598 JJ |
1669 | CORE_ADDR cfm = 0; |
1670 | frame_unwind_register (next_frame, IA64_PFS_REGNUM, valuep); | |
004d836a | 1671 | } |
16461d7d KB |
1672 | } |
1673 | else if (regnum == IA64_VFP_REGNUM) | |
1674 | { | |
1675 | /* If the function in question uses an automatic register (r32-r127) | |
1676 | for the frame pointer, it'll be found by ia64_find_saved_register() | |
1677 | above. If the function lacks one of these frame pointers, we can | |
004d836a JJ |
1678 | still provide a value since we know the size of the frame. */ |
1679 | CORE_ADDR vfp = cache->base; | |
088568da | 1680 | store_unsigned_integer (valuep, register_size (gdbarch, IA64_VFP_REGNUM), vfp); |
16461d7d | 1681 | } |
004d836a | 1682 | else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
16461d7d | 1683 | { |
004d836a | 1684 | char pr_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1685 | int pr_optim; |
004d836a | 1686 | int pr_realnum; |
16461d7d KB |
1687 | enum lval_type pr_lval; |
1688 | CORE_ADDR pr_addr; | |
004d836a JJ |
1689 | ULONGEST prN_val; |
1690 | ia64_frame_prev_register (next_frame, this_cache, IA64_PR_REGNUM, | |
1691 | &pr_optim, &pr_lval, &pr_addr, &pr_realnum, pr_valuep); | |
1692 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
3a854e23 KB |
1693 | { |
1694 | /* Fetch predicate register rename base from current frame | |
004d836a JJ |
1695 | marker for this frame. */ |
1696 | int rrb_pr = (cache->cfm >> 32) & 0x3f; | |
3a854e23 | 1697 | |
004d836a JJ |
1698 | /* Adjust the register number to account for register rotation. */ |
1699 | regnum = VP16_REGNUM | |
1700 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
3a854e23 | 1701 | } |
004d836a JJ |
1702 | prN_val = extract_bit_field ((unsigned char *) pr_valuep, |
1703 | regnum - VP0_REGNUM, 1); | |
088568da | 1704 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val); |
16461d7d KB |
1705 | } |
1706 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM) | |
1707 | { | |
004d836a | 1708 | char unat_valuep[MAX_REGISTER_SIZE]; |
16461d7d | 1709 | int unat_optim; |
004d836a | 1710 | int unat_realnum; |
16461d7d KB |
1711 | enum lval_type unat_lval; |
1712 | CORE_ADDR unat_addr; | |
004d836a JJ |
1713 | ULONGEST unatN_val; |
1714 | ia64_frame_prev_register (next_frame, this_cache, IA64_UNAT_REGNUM, | |
1715 | &unat_optim, &unat_lval, &unat_addr, &unat_realnum, unat_valuep); | |
1716 | unatN_val = extract_bit_field ((unsigned char *) unat_valuep, | |
16461d7d | 1717 | regnum - IA64_NAT0_REGNUM, 1); |
088568da | 1718 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
16461d7d | 1719 | unatN_val); |
16461d7d KB |
1720 | } |
1721 | else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
1722 | { | |
1723 | int natval = 0; | |
1724 | /* Find address of general register corresponding to nat bit we're | |
004d836a JJ |
1725 | interested in. */ |
1726 | CORE_ADDR gr_addr; | |
244bc108 | 1727 | |
004d836a JJ |
1728 | gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM |
1729 | + IA64_GR0_REGNUM]; | |
1730 | if (gr_addr != 0) | |
244bc108 | 1731 | { |
004d836a | 1732 | /* Compute address of nat collection bits. */ |
16461d7d | 1733 | CORE_ADDR nat_addr = gr_addr | 0x1f8; |
004d836a | 1734 | CORE_ADDR bsp; |
16461d7d KB |
1735 | CORE_ADDR nat_collection; |
1736 | int nat_bit; | |
1737 | /* If our nat collection address is bigger than bsp, we have to get | |
1738 | the nat collection from rnat. Otherwise, we fetch the nat | |
004d836a JJ |
1739 | collection from the computed address. */ |
1740 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1741 | bsp = extract_unsigned_integer (buf, 8); | |
16461d7d | 1742 | if (nat_addr >= bsp) |
004d836a JJ |
1743 | { |
1744 | frame_unwind_register (next_frame, IA64_RNAT_REGNUM, buf); | |
1745 | nat_collection = extract_unsigned_integer (buf, 8); | |
1746 | } | |
16461d7d KB |
1747 | else |
1748 | nat_collection = read_memory_integer (nat_addr, 8); | |
1749 | nat_bit = (gr_addr >> 3) & 0x3f; | |
1750 | natval = (nat_collection >> nat_bit) & 1; | |
1751 | } | |
004d836a | 1752 | |
088568da | 1753 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), natval); |
244bc108 KB |
1754 | } |
1755 | else if (regnum == IA64_IP_REGNUM) | |
1756 | { | |
004d836a | 1757 | CORE_ADDR pc = 0; |
4afcc598 | 1758 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a | 1759 | |
4afcc598 | 1760 | if (addr != 0) |
004d836a | 1761 | { |
4afcc598 JJ |
1762 | *lvalp = lval_memory; |
1763 | *addrp = addr; | |
088568da | 1764 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
004d836a JJ |
1765 | pc = extract_unsigned_integer (buf, 8); |
1766 | } | |
4afcc598 | 1767 | else if (cache->frameless) |
004d836a | 1768 | { |
4afcc598 JJ |
1769 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); |
1770 | pc = extract_unsigned_integer (buf, 8); | |
244bc108 | 1771 | } |
004d836a JJ |
1772 | pc &= ~0xf; |
1773 | store_unsigned_integer (valuep, 8, pc); | |
244bc108 | 1774 | } |
004d836a | 1775 | else if (regnum == IA64_PSR_REGNUM) |
244bc108 | 1776 | { |
4afcc598 JJ |
1777 | /* We don't know how to get the complete previous PSR, but we need it for |
1778 | the slot information when we unwind the pc (pc is formed of IP register | |
1779 | plus slot information from PSR). To get the previous slot information, | |
1780 | we mask it off the return address. */ | |
004d836a JJ |
1781 | ULONGEST slot_num = 0; |
1782 | CORE_ADDR pc= 0; | |
1783 | CORE_ADDR psr = 0; | |
4afcc598 | 1784 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; |
004d836a JJ |
1785 | |
1786 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
1787 | psr = extract_unsigned_integer (buf, 8); | |
1788 | ||
4afcc598 | 1789 | if (addr != 0) |
244bc108 | 1790 | { |
4afcc598 JJ |
1791 | *lvalp = lval_memory; |
1792 | *addrp = addr; | |
088568da | 1793 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
004d836a | 1794 | pc = extract_unsigned_integer (buf, 8); |
244bc108 | 1795 | } |
4afcc598 | 1796 | else if (cache->frameless) |
004d836a | 1797 | { |
4afcc598 JJ |
1798 | CORE_ADDR pc; |
1799 | frame_unwind_register (next_frame, IA64_BR0_REGNUM, buf); | |
1800 | pc = extract_unsigned_integer (buf, 8); | |
004d836a JJ |
1801 | } |
1802 | psr &= ~(3LL << 41); | |
1803 | slot_num = pc & 0x3LL; | |
1804 | psr |= (CORE_ADDR)slot_num << 41; | |
1805 | store_unsigned_integer (valuep, 8, psr); | |
1806 | } | |
4afcc598 JJ |
1807 | else if (regnum == IA64_BR0_REGNUM) |
1808 | { | |
1809 | CORE_ADDR br0 = 0; | |
1810 | CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM]; | |
1811 | if (addr != 0) | |
1812 | { | |
1813 | *lvalp = lval_memory; | |
1814 | *addrp = addr; | |
088568da | 1815 | read_memory (addr, buf, register_size (gdbarch, IA64_BR0_REGNUM)); |
4afcc598 JJ |
1816 | br0 = extract_unsigned_integer (buf, 8); |
1817 | } | |
1818 | store_unsigned_integer (valuep, 8, br0); | |
1819 | } | |
004d836a JJ |
1820 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || |
1821 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
1822 | { | |
1823 | CORE_ADDR addr = 0; | |
1824 | if (regnum >= V32_REGNUM) | |
1825 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1826 | addr = cache->saved_regs[regnum]; | |
244bc108 KB |
1827 | if (addr != 0) |
1828 | { | |
004d836a JJ |
1829 | *lvalp = lval_memory; |
1830 | *addrp = addr; | |
088568da | 1831 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
244bc108 | 1832 | } |
004d836a | 1833 | else if (cache->frameless) |
244bc108 | 1834 | { |
004d836a JJ |
1835 | char r_valuep[MAX_REGISTER_SIZE]; |
1836 | int r_optim; | |
1837 | int r_realnum; | |
1838 | enum lval_type r_lval; | |
1839 | CORE_ADDR r_addr; | |
1840 | CORE_ADDR prev_cfm, prev_bsp, prev_bof; | |
1841 | CORE_ADDR addr = 0; | |
1842 | if (regnum >= V32_REGNUM) | |
1843 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
1844 | ia64_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
1845 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1846 | prev_cfm = extract_unsigned_integer (r_valuep, 8); | |
1847 | ia64_frame_prev_register (next_frame, this_cache, IA64_BSP_REGNUM, | |
1848 | &r_optim, &r_lval, &r_addr, &r_realnum, r_valuep); | |
1849 | prev_bsp = extract_unsigned_integer (r_valuep, 8); | |
1850 | prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f)); | |
1851 | ||
1852 | addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM)); | |
1853 | *lvalp = lval_memory; | |
1854 | *addrp = addr; | |
088568da | 1855 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
244bc108 | 1856 | } |
16461d7d KB |
1857 | } |
1858 | else | |
1859 | { | |
004d836a | 1860 | CORE_ADDR addr = 0; |
3a854e23 KB |
1861 | if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM) |
1862 | { | |
1863 | /* Fetch floating point register rename base from current | |
004d836a JJ |
1864 | frame marker for this frame. */ |
1865 | int rrb_fr = (cache->cfm >> 25) & 0x7f; | |
3a854e23 KB |
1866 | |
1867 | /* Adjust the floating point register number to account for | |
004d836a | 1868 | register rotation. */ |
3a854e23 KB |
1869 | regnum = IA64_FR32_REGNUM |
1870 | + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96; | |
1871 | } | |
1872 | ||
004d836a JJ |
1873 | /* If we have stored a memory address, access the register. */ |
1874 | addr = cache->saved_regs[regnum]; | |
1875 | if (addr != 0) | |
1876 | { | |
1877 | *lvalp = lval_memory; | |
1878 | *addrp = addr; | |
088568da | 1879 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
004d836a JJ |
1880 | } |
1881 | /* Otherwise, punt and get the current value of the register. */ | |
1882 | else | |
1883 | frame_unwind_register (next_frame, regnum, valuep); | |
16461d7d | 1884 | } |
4afcc598 JJ |
1885 | |
1886 | if (gdbarch_debug >= 1) | |
1887 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 1888 | "regular prev register <%d> <%s> is 0x%s\n", regnum, |
4afcc598 | 1889 | (((unsigned) regnum <= IA64_NAT127_REGNUM) |
78ced177 JJ |
1890 | ? ia64_register_names[regnum] : "r??"), |
1891 | paddr_nz (extract_unsigned_integer (valuep, 8))); | |
16461d7d | 1892 | } |
004d836a JJ |
1893 | |
1894 | static const struct frame_unwind ia64_frame_unwind = | |
1895 | { | |
1896 | NORMAL_FRAME, | |
1897 | &ia64_frame_this_id, | |
1898 | &ia64_frame_prev_register | |
1899 | }; | |
1900 | ||
1901 | static const struct frame_unwind * | |
1902 | ia64_frame_sniffer (struct frame_info *next_frame) | |
1903 | { | |
1904 | return &ia64_frame_unwind; | |
1905 | } | |
1906 | ||
1907 | /* Signal trampolines. */ | |
1908 | ||
1909 | static void | |
2685572f UW |
1910 | ia64_sigtramp_frame_init_saved_regs (struct frame_info *next_frame, |
1911 | struct ia64_frame_cache *cache) | |
004d836a | 1912 | { |
2685572f UW |
1913 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
1914 | ||
1915 | if (tdep->sigcontext_register_address) | |
004d836a JJ |
1916 | { |
1917 | int regno; | |
1918 | ||
1919 | cache->saved_regs[IA64_VRAP_REGNUM] = | |
2685572f | 1920 | tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM); |
004d836a | 1921 | cache->saved_regs[IA64_CFM_REGNUM] = |
2685572f | 1922 | tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM); |
004d836a | 1923 | cache->saved_regs[IA64_PSR_REGNUM] = |
2685572f | 1924 | tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM); |
004d836a | 1925 | cache->saved_regs[IA64_BSP_REGNUM] = |
2685572f | 1926 | tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM); |
004d836a | 1927 | cache->saved_regs[IA64_RNAT_REGNUM] = |
2685572f | 1928 | tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM); |
004d836a | 1929 | cache->saved_regs[IA64_CCV_REGNUM] = |
2685572f | 1930 | tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM); |
004d836a | 1931 | cache->saved_regs[IA64_UNAT_REGNUM] = |
2685572f | 1932 | tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM); |
004d836a | 1933 | cache->saved_regs[IA64_FPSR_REGNUM] = |
2685572f | 1934 | tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM); |
004d836a | 1935 | cache->saved_regs[IA64_PFS_REGNUM] = |
2685572f | 1936 | tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM); |
004d836a | 1937 | cache->saved_regs[IA64_LC_REGNUM] = |
2685572f | 1938 | tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM); |
004d836a | 1939 | for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++) |
4afcc598 | 1940 | cache->saved_regs[regno] = |
2685572f | 1941 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
1942 | for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++) |
1943 | cache->saved_regs[regno] = | |
2685572f | 1944 | tdep->sigcontext_register_address (cache->base, regno); |
932644f0 | 1945 | for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++) |
004d836a | 1946 | cache->saved_regs[regno] = |
2685572f | 1947 | tdep->sigcontext_register_address (cache->base, regno); |
004d836a JJ |
1948 | } |
1949 | } | |
1950 | ||
1951 | static struct ia64_frame_cache * | |
1952 | ia64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache) | |
1953 | { | |
1954 | struct ia64_frame_cache *cache; | |
1955 | CORE_ADDR addr; | |
1956 | char buf[8]; | |
1957 | int i; | |
1958 | ||
1959 | if (*this_cache) | |
1960 | return *this_cache; | |
1961 | ||
1962 | cache = ia64_alloc_frame_cache (); | |
1963 | ||
1964 | frame_unwind_register (next_frame, sp_regnum, buf); | |
4afcc598 JJ |
1965 | /* Note that frame size is hard-coded below. We cannot calculate it |
1966 | via prologue examination. */ | |
1967 | cache->base = extract_unsigned_integer (buf, 8) + 16; | |
1968 | ||
1969 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
1970 | cache->bsp = extract_unsigned_integer (buf, 8); | |
1971 | ||
1972 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
1973 | cache->cfm = extract_unsigned_integer (buf, 8); | |
1974 | cache->sof = cache->cfm & 0x7f; | |
004d836a | 1975 | |
2685572f | 1976 | ia64_sigtramp_frame_init_saved_regs (next_frame, cache); |
004d836a JJ |
1977 | |
1978 | *this_cache = cache; | |
1979 | return cache; | |
1980 | } | |
1981 | ||
1982 | static void | |
1983 | ia64_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1984 | void **this_cache, struct frame_id *this_id) | |
1985 | { | |
1986 | struct ia64_frame_cache *cache = | |
1987 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
1988 | ||
4afcc598 JJ |
1989 | (*this_id) = frame_id_build_special (cache->base, frame_pc_unwind (next_frame), cache->bsp); |
1990 | if (gdbarch_debug >= 1) | |
1991 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
1992 | "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
1993 | paddr_nz (this_id->code_addr), | |
1994 | paddr_nz (this_id->stack_addr), | |
1995 | paddr_nz (cache->bsp), next_frame); | |
004d836a JJ |
1996 | } |
1997 | ||
1998 | static void | |
1999 | ia64_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2000 | void **this_cache, | |
2001 | int regnum, int *optimizedp, | |
2002 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2003 | int *realnump, gdb_byte *valuep) |
004d836a | 2004 | { |
4afcc598 JJ |
2005 | char dummy_valp[MAX_REGISTER_SIZE]; |
2006 | char buf[MAX_REGISTER_SIZE]; | |
2007 | ||
088568da | 2008 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
4afcc598 JJ |
2009 | struct ia64_frame_cache *cache = |
2010 | ia64_sigtramp_frame_cache (next_frame, this_cache); | |
2011 | ||
2012 | gdb_assert (regnum >= 0); | |
2013 | ||
2014 | if (!target_has_registers) | |
8a3fe4f8 | 2015 | error (_("No registers.")); |
4afcc598 JJ |
2016 | |
2017 | *optimizedp = 0; | |
2018 | *addrp = 0; | |
2019 | *lvalp = not_lval; | |
2020 | *realnump = -1; | |
2021 | ||
2022 | /* Rather than check each time if valuep is non-null, supply a dummy buffer | |
2023 | when valuep is not supplied. */ | |
2024 | if (!valuep) | |
2025 | valuep = dummy_valp; | |
2026 | ||
088568da | 2027 | memset (valuep, 0, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2028 | |
2029 | if (regnum == IA64_IP_REGNUM) | |
2030 | { | |
2031 | CORE_ADDR pc = 0; | |
2032 | CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM]; | |
2033 | ||
2034 | if (addr != 0) | |
2035 | { | |
2036 | *lvalp = lval_memory; | |
2037 | *addrp = addr; | |
088568da | 2038 | read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM)); |
4afcc598 JJ |
2039 | pc = extract_unsigned_integer (buf, 8); |
2040 | } | |
2041 | pc &= ~0xf; | |
2042 | store_unsigned_integer (valuep, 8, pc); | |
2043 | } | |
2044 | else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM) || | |
2045 | (regnum >= V32_REGNUM && regnum <= V127_REGNUM)) | |
2046 | { | |
2047 | CORE_ADDR addr = 0; | |
2048 | if (regnum >= V32_REGNUM) | |
2049 | regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM); | |
2050 | addr = cache->saved_regs[regnum]; | |
2051 | if (addr != 0) | |
2052 | { | |
2053 | *lvalp = lval_memory; | |
2054 | *addrp = addr; | |
088568da | 2055 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2056 | } |
2057 | } | |
2058 | else | |
2059 | { | |
2060 | /* All other registers not listed above. */ | |
2061 | CORE_ADDR addr = cache->saved_regs[regnum]; | |
2062 | if (addr != 0) | |
2063 | { | |
2064 | *lvalp = lval_memory; | |
2065 | *addrp = addr; | |
088568da | 2066 | read_memory (addr, valuep, register_size (gdbarch, regnum)); |
4afcc598 JJ |
2067 | } |
2068 | } | |
004d836a | 2069 | |
4afcc598 JJ |
2070 | if (gdbarch_debug >= 1) |
2071 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2072 | "sigtramp prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2073 | (regnum < IA64_GR32_REGNUM |
2074 | || (regnum > IA64_GR127_REGNUM | |
2075 | && regnum < LAST_PSEUDO_REGNUM)) | |
2076 | ? ia64_register_names[regnum] | |
2077 | : (regnum < LAST_PSEUDO_REGNUM | |
2078 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2079 | : "OUT_OF_RANGE"), | |
78ced177 | 2080 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
004d836a JJ |
2081 | } |
2082 | ||
2083 | static const struct frame_unwind ia64_sigtramp_frame_unwind = | |
2084 | { | |
2085 | SIGTRAMP_FRAME, | |
2086 | ia64_sigtramp_frame_this_id, | |
2087 | ia64_sigtramp_frame_prev_register | |
2088 | }; | |
2089 | ||
2090 | static const struct frame_unwind * | |
2091 | ia64_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2092 | { | |
74174d2e UW |
2093 | struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (next_frame)); |
2094 | if (tdep->pc_in_sigtramp) | |
2095 | { | |
2096 | CORE_ADDR pc = frame_pc_unwind (next_frame); | |
004d836a | 2097 | |
74174d2e UW |
2098 | if (tdep->pc_in_sigtramp (pc)) |
2099 | return &ia64_sigtramp_frame_unwind; | |
2100 | } | |
004d836a JJ |
2101 | |
2102 | return NULL; | |
2103 | } | |
2104 | \f | |
2105 | ||
2106 | static CORE_ADDR | |
2107 | ia64_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
2108 | { | |
2109 | struct ia64_frame_cache *cache = | |
2110 | ia64_frame_cache (next_frame, this_cache); | |
2111 | ||
2112 | return cache->base; | |
2113 | } | |
2114 | ||
2115 | static const struct frame_base ia64_frame_base = | |
2116 | { | |
2117 | &ia64_frame_unwind, | |
2118 | ia64_frame_base_address, | |
2119 | ia64_frame_base_address, | |
2120 | ia64_frame_base_address | |
2121 | }; | |
16461d7d | 2122 | |
968d1cb4 JJ |
2123 | #ifdef HAVE_LIBUNWIND_IA64_H |
2124 | ||
2125 | struct ia64_unwind_table_entry | |
2126 | { | |
2127 | unw_word_t start_offset; | |
2128 | unw_word_t end_offset; | |
2129 | unw_word_t info_offset; | |
2130 | }; | |
2131 | ||
2132 | static __inline__ uint64_t | |
2133 | ia64_rse_slot_num (uint64_t addr) | |
2134 | { | |
2135 | return (addr >> 3) & 0x3f; | |
2136 | } | |
2137 | ||
2138 | /* Skip over a designated number of registers in the backing | |
2139 | store, remembering every 64th position is for NAT. */ | |
2140 | static __inline__ uint64_t | |
2141 | ia64_rse_skip_regs (uint64_t addr, long num_regs) | |
2142 | { | |
2143 | long delta = ia64_rse_slot_num(addr) + num_regs; | |
2144 | ||
2145 | if (num_regs < 0) | |
2146 | delta -= 0x3e; | |
2147 | return addr + ((num_regs + delta/0x3f) << 3); | |
2148 | } | |
2149 | ||
2150 | /* Gdb libunwind-frame callback function to convert from an ia64 gdb register | |
2151 | number to a libunwind register number. */ | |
2152 | static int | |
2153 | ia64_gdb2uw_regnum (int regnum) | |
2154 | { | |
2155 | if (regnum == sp_regnum) | |
2156 | return UNW_IA64_SP; | |
2157 | else if (regnum == IA64_BSP_REGNUM) | |
2158 | return UNW_IA64_BSP; | |
2159 | else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128) | |
2160 | return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM); | |
2161 | else if ((unsigned) (regnum - V32_REGNUM) < 95) | |
2162 | return UNW_IA64_GR + 32 + (regnum - V32_REGNUM); | |
2163 | else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128) | |
2164 | return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM); | |
2165 | else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64) | |
2166 | return -1; | |
2167 | else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8) | |
2168 | return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM); | |
2169 | else if (regnum == IA64_PR_REGNUM) | |
2170 | return UNW_IA64_PR; | |
2171 | else if (regnum == IA64_IP_REGNUM) | |
2172 | return UNW_REG_IP; | |
2173 | else if (regnum == IA64_CFM_REGNUM) | |
2174 | return UNW_IA64_CFM; | |
2175 | else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128) | |
2176 | return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM); | |
2177 | else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128) | |
2178 | return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM); | |
2179 | else | |
2180 | return -1; | |
2181 | } | |
2182 | ||
2183 | /* Gdb libunwind-frame callback function to convert from a libunwind register | |
2184 | number to a ia64 gdb register number. */ | |
2185 | static int | |
2186 | ia64_uw2gdb_regnum (int uw_regnum) | |
2187 | { | |
2188 | if (uw_regnum == UNW_IA64_SP) | |
2189 | return sp_regnum; | |
2190 | else if (uw_regnum == UNW_IA64_BSP) | |
2191 | return IA64_BSP_REGNUM; | |
2192 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32) | |
2193 | return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR); | |
2194 | else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128) | |
2195 | return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32)); | |
2196 | else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128) | |
2197 | return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR); | |
2198 | else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8) | |
2199 | return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR); | |
2200 | else if (uw_regnum == UNW_IA64_PR) | |
2201 | return IA64_PR_REGNUM; | |
2202 | else if (uw_regnum == UNW_REG_IP) | |
2203 | return IA64_IP_REGNUM; | |
2204 | else if (uw_regnum == UNW_IA64_CFM) | |
2205 | return IA64_CFM_REGNUM; | |
2206 | else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128) | |
2207 | return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR); | |
2208 | else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128) | |
2209 | return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT); | |
2210 | else | |
2211 | return -1; | |
2212 | } | |
2213 | ||
2214 | /* Gdb libunwind-frame callback function to reveal if register is a float | |
2215 | register or not. */ | |
2216 | static int | |
2217 | ia64_is_fpreg (int uw_regnum) | |
2218 | { | |
2219 | return unw_is_fpreg (uw_regnum); | |
2220 | } | |
2221 | ||
2222 | /* Libunwind callback accessor function for general registers. */ | |
2223 | static int | |
2224 | ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2225 | int write, void *arg) | |
2226 | { | |
2227 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2228 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
2229 | struct frame_info *next_frame = arg; | |
2230 | long new_sof, old_sof; | |
2231 | char buf[MAX_REGISTER_SIZE]; | |
2232 | ||
45ecac4b UW |
2233 | /* We never call any libunwind routines that need to write registers. */ |
2234 | gdb_assert (!write); | |
968d1cb4 | 2235 | |
45ecac4b | 2236 | switch (uw_regnum) |
968d1cb4 | 2237 | { |
45ecac4b UW |
2238 | case UNW_REG_IP: |
2239 | /* Libunwind expects to see the pc value which means the slot number | |
2240 | from the psr must be merged with the ip word address. */ | |
2241 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
2242 | ip = extract_unsigned_integer (buf, 8); | |
2243 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
2244 | psr = extract_unsigned_integer (buf, 8); | |
2245 | *val = ip | ((psr >> 41) & 0x3); | |
2246 | break; | |
2247 | ||
2248 | case UNW_IA64_AR_BSP: | |
2249 | /* Libunwind expects to see the beginning of the current register | |
2250 | frame so we must account for the fact that ptrace() will return a value | |
2251 | for bsp that points *after* the current register frame. */ | |
2252 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2253 | bsp = extract_unsigned_integer (buf, 8); | |
2254 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2255 | cfm = extract_unsigned_integer (buf, 8); | |
2256 | sof = (cfm & 0x7f); | |
2257 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2258 | break; | |
968d1cb4 | 2259 | |
45ecac4b UW |
2260 | case UNW_IA64_AR_BSPSTORE: |
2261 | /* Libunwind wants bspstore to be after the current register frame. | |
2262 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2263 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2264 | *val = extract_unsigned_integer (buf, 8); | |
2265 | break; | |
2266 | ||
2267 | default: | |
2268 | /* For all other registers, just unwind the value directly. */ | |
2269 | frame_unwind_register (next_frame, regnum, buf); | |
2270 | *val = extract_unsigned_integer (buf, 8); | |
2271 | break; | |
968d1cb4 | 2272 | } |
45ecac4b UW |
2273 | |
2274 | if (gdbarch_debug >= 1) | |
2275 | fprintf_unfiltered (gdb_stdlog, | |
2276 | " access_reg: from cache: %4s=0x%s\n", | |
2277 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2278 | ? ia64_register_names[regnum] : "r??"), | |
2279 | paddr_nz (*val)); | |
968d1cb4 JJ |
2280 | return 0; |
2281 | } | |
2282 | ||
2283 | /* Libunwind callback accessor function for floating-point registers. */ | |
2284 | static int | |
2285 | ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val, | |
2286 | int write, void *arg) | |
2287 | { | |
2288 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
45ecac4b | 2289 | struct frame_info *next_frame = arg; |
968d1cb4 | 2290 | |
45ecac4b UW |
2291 | /* We never call any libunwind routines that need to write registers. */ |
2292 | gdb_assert (!write); | |
2293 | ||
2294 | frame_unwind_register (next_frame, regnum, (char *) val); | |
2295 | ||
968d1cb4 JJ |
2296 | return 0; |
2297 | } | |
2298 | ||
c5a27d9c JJ |
2299 | /* Libunwind callback accessor function for top-level rse registers. */ |
2300 | static int | |
2301 | ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val, | |
2302 | int write, void *arg) | |
2303 | { | |
2304 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2305 | unw_word_t bsp, sof, sol, cfm, psr, ip; | |
45ecac4b | 2306 | struct regcache *regcache = arg; |
c5a27d9c | 2307 | long new_sof, old_sof; |
45ecac4b | 2308 | char buf[MAX_REGISTER_SIZE]; |
c5a27d9c | 2309 | |
45ecac4b UW |
2310 | /* We never call any libunwind routines that need to write registers. */ |
2311 | gdb_assert (!write); | |
c5a27d9c | 2312 | |
45ecac4b | 2313 | switch (uw_regnum) |
c5a27d9c | 2314 | { |
45ecac4b UW |
2315 | case UNW_REG_IP: |
2316 | /* Libunwind expects to see the pc value which means the slot number | |
2317 | from the psr must be merged with the ip word address. */ | |
2318 | regcache_cooked_read (regcache, IA64_IP_REGNUM, buf); | |
2319 | ip = extract_unsigned_integer (buf, 8); | |
2320 | regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf); | |
2321 | psr = extract_unsigned_integer (buf, 8); | |
2322 | *val = ip | ((psr >> 41) & 0x3); | |
2323 | break; | |
c5a27d9c | 2324 | |
45ecac4b UW |
2325 | case UNW_IA64_AR_BSP: |
2326 | /* Libunwind expects to see the beginning of the current register | |
2327 | frame so we must account for the fact that ptrace() will return a value | |
2328 | for bsp that points *after* the current register frame. */ | |
2329 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2330 | bsp = extract_unsigned_integer (buf, 8); | |
2331 | regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf); | |
2332 | cfm = extract_unsigned_integer (buf, 8); | |
2333 | sof = (cfm & 0x7f); | |
2334 | *val = ia64_rse_skip_regs (bsp, -sof); | |
2335 | break; | |
c5a27d9c | 2336 | |
45ecac4b UW |
2337 | case UNW_IA64_AR_BSPSTORE: |
2338 | /* Libunwind wants bspstore to be after the current register frame. | |
2339 | This is what ptrace() and gdb treats as the regular bsp value. */ | |
2340 | regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf); | |
2341 | *val = extract_unsigned_integer (buf, 8); | |
2342 | break; | |
c5a27d9c | 2343 | |
45ecac4b UW |
2344 | default: |
2345 | /* For all other registers, just unwind the value directly. */ | |
2346 | regcache_cooked_read (regcache, regnum, buf); | |
2347 | *val = extract_unsigned_integer (buf, 8); | |
2348 | break; | |
c5a27d9c JJ |
2349 | } |
2350 | ||
2351 | if (gdbarch_debug >= 1) | |
2352 | fprintf_unfiltered (gdb_stdlog, | |
2353 | " access_rse_reg: from cache: %4s=0x%s\n", | |
2354 | (((unsigned) regnum <= IA64_NAT127_REGNUM) | |
2355 | ? ia64_register_names[regnum] : "r??"), | |
2356 | paddr_nz (*val)); | |
2357 | ||
2358 | return 0; | |
2359 | } | |
2360 | ||
45ecac4b UW |
2361 | /* Libunwind callback accessor function for top-level fp registers. */ |
2362 | static int | |
2363 | ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, | |
2364 | unw_fpreg_t *val, int write, void *arg) | |
2365 | { | |
2366 | int regnum = ia64_uw2gdb_regnum (uw_regnum); | |
2367 | struct regcache *regcache = arg; | |
2368 | ||
2369 | /* We never call any libunwind routines that need to write registers. */ | |
2370 | gdb_assert (!write); | |
2371 | ||
2372 | regcache_cooked_read (regcache, regnum, (char *) val); | |
2373 | ||
2374 | return 0; | |
2375 | } | |
2376 | ||
968d1cb4 JJ |
2377 | /* Libunwind callback accessor function for accessing memory. */ |
2378 | static int | |
2379 | ia64_access_mem (unw_addr_space_t as, | |
2380 | unw_word_t addr, unw_word_t *val, | |
2381 | int write, void *arg) | |
2382 | { | |
c5a27d9c JJ |
2383 | if (addr - KERNEL_START < ktab_size) |
2384 | { | |
2385 | unw_word_t *laddr = (unw_word_t*) ((char *) ktab | |
2386 | + (addr - KERNEL_START)); | |
2387 | ||
2388 | if (write) | |
2389 | *laddr = *val; | |
2390 | else | |
2391 | *val = *laddr; | |
2392 | return 0; | |
2393 | } | |
2394 | ||
968d1cb4 JJ |
2395 | /* XXX do we need to normalize byte-order here? */ |
2396 | if (write) | |
2397 | return target_write_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2398 | else | |
2399 | return target_read_memory (addr, (char *) val, sizeof (unw_word_t)); | |
2400 | } | |
2401 | ||
2402 | /* Call low-level function to access the kernel unwind table. */ | |
13547ab6 DJ |
2403 | static LONGEST |
2404 | getunwind_table (gdb_byte **buf_p) | |
968d1cb4 JJ |
2405 | { |
2406 | LONGEST x; | |
c5a27d9c | 2407 | |
10d6c8cd DJ |
2408 | /* FIXME drow/2005-09-10: This code used to call |
2409 | ia64_linux_xfer_unwind_table directly to fetch the unwind table | |
2410 | for the currently running ia64-linux kernel. That data should | |
2411 | come from the core file and be accessed via the auxv vector; if | |
2412 | we want to preserve fall back to the running kernel's table, then | |
2413 | we should find a way to override the corefile layer's | |
2414 | xfer_partial method. */ | |
968d1cb4 | 2415 | |
13547ab6 DJ |
2416 | x = target_read_alloc (¤t_target, TARGET_OBJECT_UNWIND_TABLE, |
2417 | NULL, buf_p); | |
2418 | ||
2419 | return x; | |
968d1cb4 | 2420 | } |
10d6c8cd | 2421 | |
968d1cb4 JJ |
2422 | /* Get the kernel unwind table. */ |
2423 | static int | |
2424 | get_kernel_table (unw_word_t ip, unw_dyn_info_t *di) | |
2425 | { | |
c5a27d9c | 2426 | static struct ia64_table_entry *etab; |
968d1cb4 | 2427 | |
c5a27d9c | 2428 | if (!ktab) |
968d1cb4 | 2429 | { |
13547ab6 | 2430 | gdb_byte *ktab_buf; |
eeec829c | 2431 | LONGEST size; |
13547ab6 | 2432 | |
eeec829c DJ |
2433 | size = getunwind_table (&ktab_buf); |
2434 | if (size <= 0) | |
13547ab6 | 2435 | return -UNW_ENOINFO; |
eeec829c DJ |
2436 | |
2437 | ktab = (struct ia64_table_entry *) ktab_buf; | |
2438 | ktab_size = size; | |
13547ab6 | 2439 | |
968d1cb4 | 2440 | for (etab = ktab; etab->start_offset; ++etab) |
c5a27d9c | 2441 | etab->info_offset += KERNEL_START; |
968d1cb4 JJ |
2442 | } |
2443 | ||
2444 | if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset) | |
2445 | return -UNW_ENOINFO; | |
2446 | ||
2447 | di->format = UNW_INFO_FORMAT_TABLE; | |
2448 | di->gp = 0; | |
2449 | di->start_ip = ktab[0].start_offset; | |
2450 | di->end_ip = etab[-1].end_offset; | |
2451 | di->u.ti.name_ptr = (unw_word_t) "<kernel>"; | |
2452 | di->u.ti.segbase = 0; | |
2453 | di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t); | |
2454 | di->u.ti.table_data = (unw_word_t *) ktab; | |
2455 | ||
2456 | if (gdbarch_debug >= 1) | |
2457 | fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': " | |
78ced177 JJ |
2458 | "segbase=0x%s, length=%s, gp=0x%s\n", |
2459 | (char *) di->u.ti.name_ptr, | |
2460 | paddr_nz (di->u.ti.segbase), | |
2461 | paddr_u (di->u.ti.table_len), | |
2462 | paddr_nz (di->gp)); | |
968d1cb4 JJ |
2463 | return 0; |
2464 | } | |
2465 | ||
2466 | /* Find the unwind table entry for a specified address. */ | |
2467 | static int | |
2468 | ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip, | |
2469 | unw_dyn_info_t *dip, void **buf) | |
2470 | { | |
2471 | Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL; | |
2472 | Elf_Internal_Ehdr *ehdr; | |
2473 | unw_word_t segbase = 0; | |
2474 | CORE_ADDR load_base; | |
2475 | bfd *bfd; | |
2476 | int i; | |
2477 | ||
2478 | bfd = objfile->obfd; | |
2479 | ||
2480 | ehdr = elf_tdata (bfd)->elf_header; | |
2481 | phdr = elf_tdata (bfd)->phdr; | |
2482 | ||
2483 | load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile)); | |
2484 | ||
2485 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2486 | { | |
2487 | switch (phdr[i].p_type) | |
2488 | { | |
2489 | case PT_LOAD: | |
2490 | if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr) | |
2491 | < phdr[i].p_memsz) | |
2492 | p_text = phdr + i; | |
2493 | break; | |
2494 | ||
2495 | case PT_IA_64_UNWIND: | |
2496 | p_unwind = phdr + i; | |
2497 | break; | |
2498 | ||
2499 | default: | |
2500 | break; | |
2501 | } | |
2502 | } | |
2503 | ||
c5a27d9c | 2504 | if (!p_text || !p_unwind) |
968d1cb4 JJ |
2505 | return -UNW_ENOINFO; |
2506 | ||
c5a27d9c JJ |
2507 | /* Verify that the segment that contains the IP also contains |
2508 | the static unwind table. If not, we may be in the Linux kernel's | |
2509 | DSO gate page in which case the unwind table is another segment. | |
2510 | Otherwise, we are dealing with runtime-generated code, for which we | |
2511 | have no info here. */ | |
968d1cb4 JJ |
2512 | segbase = p_text->p_vaddr + load_base; |
2513 | ||
c5a27d9c JJ |
2514 | if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz) |
2515 | { | |
2516 | int ok = 0; | |
2517 | for (i = 0; i < ehdr->e_phnum; ++i) | |
2518 | { | |
2519 | if (phdr[i].p_type == PT_LOAD | |
2520 | && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz) | |
2521 | { | |
2522 | ok = 1; | |
2523 | /* Get the segbase from the section containing the | |
2524 | libunwind table. */ | |
2525 | segbase = phdr[i].p_vaddr + load_base; | |
2526 | } | |
2527 | } | |
2528 | if (!ok) | |
2529 | return -UNW_ENOINFO; | |
2530 | } | |
2531 | ||
2532 | dip->start_ip = p_text->p_vaddr + load_base; | |
968d1cb4 | 2533 | dip->end_ip = dip->start_ip + p_text->p_memsz; |
b33e8514 | 2534 | dip->gp = ia64_find_global_pointer (ip); |
503ff15d KB |
2535 | dip->format = UNW_INFO_FORMAT_REMOTE_TABLE; |
2536 | dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd); | |
2537 | dip->u.rti.segbase = segbase; | |
2538 | dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t); | |
2539 | dip->u.rti.table_data = p_unwind->p_vaddr + load_base; | |
968d1cb4 JJ |
2540 | |
2541 | return 0; | |
2542 | } | |
2543 | ||
2544 | /* Libunwind callback accessor function to acquire procedure unwind-info. */ | |
2545 | static int | |
2546 | ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi, | |
2547 | int need_unwind_info, void *arg) | |
2548 | { | |
2549 | struct obj_section *sec = find_pc_section (ip); | |
2550 | unw_dyn_info_t di; | |
2551 | int ret; | |
2552 | void *buf = NULL; | |
2553 | ||
2554 | if (!sec) | |
2555 | { | |
2556 | /* XXX This only works if the host and the target architecture are | |
2557 | both ia64 and if the have (more or less) the same kernel | |
2558 | version. */ | |
2559 | if (get_kernel_table (ip, &di) < 0) | |
2560 | return -UNW_ENOINFO; | |
503ff15d KB |
2561 | |
2562 | if (gdbarch_debug >= 1) | |
78ced177 JJ |
2563 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2564 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2565 | "length=%s,data=0x%s)\n", | |
2566 | paddr_nz (ip), (char *)di.u.ti.name_ptr, | |
2567 | paddr_nz (di.u.ti.segbase), | |
2568 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2569 | paddr_nz (di.gp), | |
2570 | paddr_u (di.u.ti.table_len), | |
2571 | paddr_nz ((CORE_ADDR)di.u.ti.table_data)); | |
968d1cb4 JJ |
2572 | } |
2573 | else | |
2574 | { | |
2575 | ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf); | |
2576 | if (ret < 0) | |
2577 | return ret; | |
968d1cb4 | 2578 | |
503ff15d | 2579 | if (gdbarch_debug >= 1) |
78ced177 JJ |
2580 | fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> " |
2581 | "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s," | |
2582 | "length=%s,data=0x%s)\n", | |
2583 | paddr_nz (ip), (char *)di.u.rti.name_ptr, | |
2584 | paddr_nz (di.u.rti.segbase), | |
2585 | paddr_nz (di.start_ip), paddr_nz (di.end_ip), | |
2586 | paddr_nz (di.gp), | |
2587 | paddr_u (di.u.rti.table_len), | |
2588 | paddr_nz (di.u.rti.table_data)); | |
503ff15d | 2589 | } |
968d1cb4 | 2590 | |
503ff15d KB |
2591 | ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info, |
2592 | arg); | |
968d1cb4 JJ |
2593 | |
2594 | /* We no longer need the dyn info storage so free it. */ | |
2595 | xfree (buf); | |
2596 | ||
2597 | return ret; | |
2598 | } | |
2599 | ||
2600 | /* Libunwind callback accessor function for cleanup. */ | |
2601 | static void | |
2602 | ia64_put_unwind_info (unw_addr_space_t as, | |
2603 | unw_proc_info_t *pip, void *arg) | |
2604 | { | |
2605 | /* Nothing required for now. */ | |
2606 | } | |
2607 | ||
2608 | /* Libunwind callback accessor function to get head of the dynamic | |
2609 | unwind-info registration list. */ | |
2610 | static int | |
2611 | ia64_get_dyn_info_list (unw_addr_space_t as, | |
2612 | unw_word_t *dilap, void *arg) | |
2613 | { | |
2614 | struct obj_section *text_sec; | |
2615 | struct objfile *objfile; | |
2616 | unw_word_t ip, addr; | |
2617 | unw_dyn_info_t di; | |
2618 | int ret; | |
2619 | ||
2620 | if (!libunwind_is_initialized ()) | |
2621 | return -UNW_ENOINFO; | |
2622 | ||
2623 | for (objfile = object_files; objfile; objfile = objfile->next) | |
2624 | { | |
2625 | void *buf = NULL; | |
2626 | ||
2627 | text_sec = objfile->sections + SECT_OFF_TEXT (objfile); | |
2628 | ip = text_sec->addr; | |
2629 | ret = ia64_find_unwind_table (objfile, ip, &di, &buf); | |
2630 | if (ret >= 0) | |
2631 | { | |
503ff15d | 2632 | addr = libunwind_find_dyn_list (as, &di, arg); |
968d1cb4 JJ |
2633 | /* We no longer need the dyn info storage so free it. */ |
2634 | xfree (buf); | |
2635 | ||
2636 | if (addr) | |
2637 | { | |
2638 | if (gdbarch_debug >= 1) | |
2639 | fprintf_unfiltered (gdb_stdlog, | |
2640 | "dynamic unwind table in objfile %s " | |
78ced177 | 2641 | "at 0x%s (gp=0x%s)\n", |
968d1cb4 | 2642 | bfd_get_filename (objfile->obfd), |
78ced177 | 2643 | paddr_nz (addr), paddr_nz (di.gp)); |
968d1cb4 JJ |
2644 | *dilap = addr; |
2645 | return 0; | |
2646 | } | |
2647 | } | |
2648 | } | |
2649 | return -UNW_ENOINFO; | |
2650 | } | |
2651 | ||
2652 | ||
2653 | /* Frame interface functions for libunwind. */ | |
2654 | ||
2655 | static void | |
2656 | ia64_libunwind_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
7166c4a9 | 2657 | struct frame_id *this_id) |
968d1cb4 JJ |
2658 | { |
2659 | char buf[8]; | |
2660 | CORE_ADDR bsp; | |
2661 | struct frame_id id; | |
c5a27d9c JJ |
2662 | CORE_ADDR prev_ip, addr; |
2663 | int realnum, optimized; | |
2664 | enum lval_type lval; | |
2665 | ||
968d1cb4 JJ |
2666 | |
2667 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
c5a27d9c JJ |
2668 | if (frame_id_eq (id, null_frame_id)) |
2669 | { | |
2670 | (*this_id) = null_frame_id; | |
2671 | return; | |
2672 | } | |
968d1cb4 | 2673 | |
c5a27d9c JJ |
2674 | /* We must add the bsp as the special address for frame comparison |
2675 | purposes. */ | |
968d1cb4 JJ |
2676 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
2677 | bsp = extract_unsigned_integer (buf, 8); | |
2678 | ||
c5a27d9c JJ |
2679 | /* If the previous frame pc value is 0, then we are at the end of the stack |
2680 | and don't want to unwind past this frame. We return a null frame_id to | |
2681 | indicate this. */ | |
2682 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2683 | &optimized, &lval, &addr, &realnum, buf); |
2684 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2685 | |
2686 | if (prev_ip != 0) | |
2687 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2688 | else | |
2689 | (*this_id) = null_frame_id; | |
968d1cb4 JJ |
2690 | |
2691 | if (gdbarch_debug >= 1) | |
2692 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
2693 | "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", |
2694 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2695 | paddr_nz (bsp), next_frame); | |
968d1cb4 JJ |
2696 | } |
2697 | ||
2698 | static void | |
2699 | ia64_libunwind_frame_prev_register (struct frame_info *next_frame, | |
2700 | void **this_cache, | |
2701 | int regnum, int *optimizedp, | |
2702 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2703 | int *realnump, gdb_byte *valuep) |
968d1cb4 JJ |
2704 | { |
2705 | int reg = regnum; | |
2706 | ||
088568da | 2707 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
968d1cb4 JJ |
2708 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2709 | reg = IA64_PR_REGNUM; | |
2710 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2711 | reg = IA64_UNAT_REGNUM; | |
2712 | ||
2713 | /* Let libunwind do most of the work. */ | |
2714 | libunwind_frame_prev_register (next_frame, this_cache, reg, | |
2715 | optimizedp, lvalp, addrp, realnump, valuep); | |
2716 | ||
6672f2ae AS |
2717 | /* No more to do if the value is not supposed to be supplied. */ |
2718 | if (!valuep) | |
2719 | return; | |
2720 | ||
968d1cb4 JJ |
2721 | if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM) |
2722 | { | |
2723 | ULONGEST prN_val; | |
2724 | ||
2725 | if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM) | |
2726 | { | |
2727 | int rrb_pr = 0; | |
2728 | ULONGEST cfm; | |
2729 | unsigned char buf[MAX_REGISTER_SIZE]; | |
2730 | ||
2731 | /* Fetch predicate register rename base from current frame | |
2732 | marker for this frame. */ | |
2733 | frame_unwind_register (next_frame, IA64_CFM_REGNUM, buf); | |
2734 | cfm = extract_unsigned_integer (buf, 8); | |
2735 | rrb_pr = (cfm >> 32) & 0x3f; | |
2736 | ||
2737 | /* Adjust the register number to account for register rotation. */ | |
2738 | regnum = VP16_REGNUM | |
2739 | + ((regnum - VP16_REGNUM) + rrb_pr) % 48; | |
2740 | } | |
2741 | prN_val = extract_bit_field ((unsigned char *) valuep, | |
2742 | regnum - VP0_REGNUM, 1); | |
088568da | 2743 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), prN_val); |
968d1cb4 JJ |
2744 | } |
2745 | else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM) | |
2746 | { | |
2747 | ULONGEST unatN_val; | |
2748 | ||
2749 | unatN_val = extract_bit_field ((unsigned char *) valuep, | |
2750 | regnum - IA64_NAT0_REGNUM, 1); | |
088568da | 2751 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
968d1cb4 JJ |
2752 | unatN_val); |
2753 | } | |
2754 | else if (regnum == IA64_BSP_REGNUM) | |
2755 | { | |
2756 | char cfm_valuep[MAX_REGISTER_SIZE]; | |
2757 | int cfm_optim; | |
2758 | int cfm_realnum; | |
2759 | enum lval_type cfm_lval; | |
2760 | CORE_ADDR cfm_addr; | |
2761 | CORE_ADDR bsp, prev_cfm, prev_bsp; | |
2762 | ||
2763 | /* We want to calculate the previous bsp as the end of the previous register stack frame. | |
2764 | This corresponds to what the hardware bsp register will be if we pop the frame | |
2765 | back which is why we might have been called. We know that libunwind will pass us back | |
2766 | the beginning of the current frame so we should just add sof to it. */ | |
2767 | prev_bsp = extract_unsigned_integer (valuep, 8); | |
2768 | libunwind_frame_prev_register (next_frame, this_cache, IA64_CFM_REGNUM, | |
2769 | &cfm_optim, &cfm_lval, &cfm_addr, &cfm_realnum, cfm_valuep); | |
2770 | prev_cfm = extract_unsigned_integer (cfm_valuep, 8); | |
2771 | prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f)); | |
2772 | ||
088568da | 2773 | store_unsigned_integer (valuep, register_size (gdbarch, regnum), |
968d1cb4 JJ |
2774 | prev_bsp); |
2775 | } | |
2776 | ||
2777 | if (gdbarch_debug >= 1) | |
2778 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 | 2779 | "libunwind prev register <%s> is 0x%s\n", |
c5a27d9c JJ |
2780 | (regnum < IA64_GR32_REGNUM |
2781 | || (regnum > IA64_GR127_REGNUM | |
2782 | && regnum < LAST_PSEUDO_REGNUM)) | |
2783 | ? ia64_register_names[regnum] | |
2784 | : (regnum < LAST_PSEUDO_REGNUM | |
2785 | ? ia64_register_names[regnum-IA64_GR32_REGNUM+V32_REGNUM] | |
2786 | : "OUT_OF_RANGE"), | |
78ced177 | 2787 | paddr_nz (extract_unsigned_integer (valuep, 8))); |
968d1cb4 JJ |
2788 | } |
2789 | ||
2790 | static const struct frame_unwind ia64_libunwind_frame_unwind = | |
2791 | { | |
2792 | NORMAL_FRAME, | |
2793 | ia64_libunwind_frame_this_id, | |
272dfcfd AS |
2794 | ia64_libunwind_frame_prev_register, |
2795 | NULL, | |
2796 | NULL, | |
2797 | NULL, | |
2798 | libunwind_frame_dealloc_cache | |
968d1cb4 JJ |
2799 | }; |
2800 | ||
2801 | static const struct frame_unwind * | |
2802 | ia64_libunwind_frame_sniffer (struct frame_info *next_frame) | |
2803 | { | |
2804 | if (libunwind_is_initialized () && libunwind_frame_sniffer (next_frame)) | |
2805 | return &ia64_libunwind_frame_unwind; | |
2806 | ||
2807 | return NULL; | |
2808 | } | |
2809 | ||
c5a27d9c JJ |
2810 | static void |
2811 | ia64_libunwind_sigtramp_frame_this_id (struct frame_info *next_frame, void **this_cache, | |
2812 | struct frame_id *this_id) | |
2813 | { | |
2814 | char buf[8]; | |
2815 | CORE_ADDR bsp; | |
2816 | struct frame_id id; | |
2817 | CORE_ADDR prev_ip; | |
2818 | ||
2819 | libunwind_frame_this_id (next_frame, this_cache, &id); | |
2820 | if (frame_id_eq (id, null_frame_id)) | |
2821 | { | |
2822 | (*this_id) = null_frame_id; | |
2823 | return; | |
2824 | } | |
2825 | ||
2826 | /* We must add the bsp as the special address for frame comparison | |
2827 | purposes. */ | |
2828 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); | |
2829 | bsp = extract_unsigned_integer (buf, 8); | |
2830 | ||
2831 | /* For a sigtramp frame, we don't make the check for previous ip being 0. */ | |
2832 | (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp); | |
2833 | ||
2834 | if (gdbarch_debug >= 1) | |
2835 | fprintf_unfiltered (gdb_stdlog, | |
2836 | "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, next_frame %p\n", | |
2837 | paddr_nz (id.code_addr), paddr_nz (id.stack_addr), | |
2838 | paddr_nz (bsp), next_frame); | |
2839 | } | |
2840 | ||
2841 | static void | |
2842 | ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *next_frame, | |
2843 | void **this_cache, | |
2844 | int regnum, int *optimizedp, | |
2845 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
88d82102 | 2846 | int *realnump, gdb_byte *valuep) |
c5a27d9c JJ |
2847 | |
2848 | { | |
f1b4b38e | 2849 | gdb_byte buf[8]; |
c5a27d9c JJ |
2850 | CORE_ADDR prev_ip, addr; |
2851 | int realnum, optimized; | |
2852 | enum lval_type lval; | |
2853 | ||
2854 | ||
2855 | /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT | |
2856 | method of getting previous registers. */ | |
2857 | libunwind_frame_prev_register (next_frame, this_cache, IA64_IP_REGNUM, | |
f1b4b38e AS |
2858 | &optimized, &lval, &addr, &realnum, buf); |
2859 | prev_ip = extract_unsigned_integer (buf, 8); | |
c5a27d9c JJ |
2860 | |
2861 | if (prev_ip == 0) | |
2862 | { | |
2863 | void *tmp_cache = NULL; | |
2864 | ia64_sigtramp_frame_prev_register (next_frame, &tmp_cache, regnum, optimizedp, lvalp, | |
2865 | addrp, realnump, valuep); | |
2866 | } | |
2867 | else | |
2868 | ia64_libunwind_frame_prev_register (next_frame, this_cache, regnum, optimizedp, lvalp, | |
2869 | addrp, realnump, valuep); | |
2870 | } | |
2871 | ||
2872 | static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind = | |
2873 | { | |
2874 | SIGTRAMP_FRAME, | |
2875 | ia64_libunwind_sigtramp_frame_this_id, | |
2876 | ia64_libunwind_sigtramp_frame_prev_register | |
2877 | }; | |
2878 | ||
2879 | static const struct frame_unwind * | |
2880 | ia64_libunwind_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
2881 | { | |
2882 | if (libunwind_is_initialized ()) | |
2883 | { | |
2884 | if (libunwind_sigtramp_frame_sniffer (next_frame)) | |
2885 | return &ia64_libunwind_sigtramp_frame_unwind; | |
2886 | return NULL; | |
2887 | } | |
2888 | else | |
2889 | return ia64_sigtramp_frame_sniffer (next_frame); | |
2890 | } | |
2891 | ||
968d1cb4 JJ |
2892 | /* Set of libunwind callback acccessor functions. */ |
2893 | static unw_accessors_t ia64_unw_accessors = | |
2894 | { | |
2895 | ia64_find_proc_info_x, | |
2896 | ia64_put_unwind_info, | |
2897 | ia64_get_dyn_info_list, | |
2898 | ia64_access_mem, | |
2899 | ia64_access_reg, | |
2900 | ia64_access_fpreg, | |
2901 | /* resume */ | |
2902 | /* get_proc_name */ | |
2903 | }; | |
2904 | ||
c5a27d9c JJ |
2905 | /* Set of special libunwind callback acccessor functions specific for accessing |
2906 | the rse registers. At the top of the stack, we want libunwind to figure out | |
2907 | how to read r32 - r127. Though usually they are found sequentially in memory | |
2908 | starting from $bof, this is not always true. */ | |
2909 | static unw_accessors_t ia64_unw_rse_accessors = | |
2910 | { | |
2911 | ia64_find_proc_info_x, | |
2912 | ia64_put_unwind_info, | |
2913 | ia64_get_dyn_info_list, | |
2914 | ia64_access_mem, | |
2915 | ia64_access_rse_reg, | |
45ecac4b | 2916 | ia64_access_rse_fpreg, |
c5a27d9c JJ |
2917 | /* resume */ |
2918 | /* get_proc_name */ | |
2919 | }; | |
2920 | ||
968d1cb4 JJ |
2921 | /* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */ |
2922 | static struct libunwind_descr ia64_libunwind_descr = | |
2923 | { | |
2924 | ia64_gdb2uw_regnum, | |
2925 | ia64_uw2gdb_regnum, | |
2926 | ia64_is_fpreg, | |
2927 | &ia64_unw_accessors, | |
c5a27d9c | 2928 | &ia64_unw_rse_accessors, |
968d1cb4 JJ |
2929 | }; |
2930 | ||
2931 | #endif /* HAVE_LIBUNWIND_IA64_H */ | |
2932 | ||
4c8b6ae0 UW |
2933 | static int |
2934 | ia64_use_struct_convention (struct type *type) | |
16461d7d | 2935 | { |
64a5b29c KB |
2936 | struct type *float_elt_type; |
2937 | ||
4c8b6ae0 UW |
2938 | /* Don't use the struct convention for anything but structure, |
2939 | union, or array types. */ | |
2940 | if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2941 | || TYPE_CODE (type) == TYPE_CODE_UNION | |
2942 | || TYPE_CODE (type) == TYPE_CODE_ARRAY)) | |
2943 | return 0; | |
2944 | ||
64a5b29c KB |
2945 | /* HFAs are structures (or arrays) consisting entirely of floating |
2946 | point values of the same length. Up to 8 of these are returned | |
2947 | in registers. Don't use the struct convention when this is the | |
004d836a | 2948 | case. */ |
64a5b29c KB |
2949 | float_elt_type = is_float_or_hfa_type (type); |
2950 | if (float_elt_type != NULL | |
2951 | && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8) | |
2952 | return 0; | |
2953 | ||
2954 | /* Other structs of length 32 or less are returned in r8-r11. | |
004d836a | 2955 | Don't use the struct convention for those either. */ |
16461d7d KB |
2956 | return TYPE_LENGTH (type) > 32; |
2957 | } | |
2958 | ||
4c8b6ae0 | 2959 | static void |
2d522557 AC |
2960 | ia64_extract_return_value (struct type *type, struct regcache *regcache, |
2961 | gdb_byte *valbuf) | |
16461d7d | 2962 | { |
64a5b29c KB |
2963 | struct type *float_elt_type; |
2964 | ||
2965 | float_elt_type = is_float_or_hfa_type (type); | |
2966 | if (float_elt_type != NULL) | |
2967 | { | |
004d836a | 2968 | char from[MAX_REGISTER_SIZE]; |
64a5b29c KB |
2969 | int offset = 0; |
2970 | int regnum = IA64_FR8_REGNUM; | |
2971 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
2972 | ||
2973 | while (n-- > 0) | |
2974 | { | |
004d836a JJ |
2975 | regcache_cooked_read (regcache, regnum, from); |
2976 | convert_typed_floating (from, builtin_type_ia64_ext, | |
2977 | (char *)valbuf + offset, float_elt_type); | |
64a5b29c KB |
2978 | offset += TYPE_LENGTH (float_elt_type); |
2979 | regnum++; | |
2980 | } | |
2981 | } | |
16461d7d | 2982 | else |
004d836a JJ |
2983 | { |
2984 | ULONGEST val; | |
2985 | int offset = 0; | |
2986 | int regnum = IA64_GR8_REGNUM; | |
7b9ee6a8 DJ |
2987 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), |
2988 | IA64_GR8_REGNUM)); | |
004d836a JJ |
2989 | int n = TYPE_LENGTH (type) / reglen; |
2990 | int m = TYPE_LENGTH (type) % reglen; | |
16461d7d | 2991 | |
004d836a JJ |
2992 | while (n-- > 0) |
2993 | { | |
2994 | ULONGEST val; | |
2995 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
2996 | memcpy ((char *)valbuf + offset, &val, reglen); | |
2997 | offset += reglen; | |
2998 | regnum++; | |
2999 | } | |
16461d7d | 3000 | |
004d836a JJ |
3001 | if (m) |
3002 | { | |
3003 | regcache_cooked_read_unsigned (regcache, regnum, &val); | |
3004 | memcpy ((char *)valbuf + offset, &val, m); | |
3005 | } | |
3006 | } | |
16461d7d KB |
3007 | } |
3008 | ||
4c8b6ae0 UW |
3009 | static void |
3010 | ia64_store_return_value (struct type *type, struct regcache *regcache, | |
3011 | const gdb_byte *valbuf) | |
3012 | { | |
3013 | struct type *float_elt_type; | |
3014 | ||
3015 | float_elt_type = is_float_or_hfa_type (type); | |
3016 | if (float_elt_type != NULL) | |
3017 | { | |
3018 | char to[MAX_REGISTER_SIZE]; | |
3019 | int offset = 0; | |
3020 | int regnum = IA64_FR8_REGNUM; | |
3021 | int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type); | |
3022 | ||
3023 | while (n-- > 0) | |
3024 | { | |
3025 | convert_typed_floating ((char *)valbuf + offset, float_elt_type, | |
3026 | to, builtin_type_ia64_ext); | |
3027 | regcache_cooked_write (regcache, regnum, to); | |
3028 | offset += TYPE_LENGTH (float_elt_type); | |
3029 | regnum++; | |
3030 | } | |
3031 | } | |
3032 | else | |
3033 | { | |
3034 | ULONGEST val; | |
3035 | int offset = 0; | |
3036 | int regnum = IA64_GR8_REGNUM; | |
3037 | int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache), | |
3038 | IA64_GR8_REGNUM)); | |
3039 | int n = TYPE_LENGTH (type) / reglen; | |
3040 | int m = TYPE_LENGTH (type) % reglen; | |
3041 | ||
3042 | while (n-- > 0) | |
3043 | { | |
3044 | ULONGEST val; | |
3045 | memcpy (&val, (char *)valbuf + offset, reglen); | |
3046 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3047 | offset += reglen; | |
3048 | regnum++; | |
3049 | } | |
3050 | ||
3051 | if (m) | |
3052 | { | |
3053 | memcpy (&val, (char *)valbuf + offset, m); | |
3054 | regcache_cooked_write_unsigned (regcache, regnum, val); | |
3055 | } | |
3056 | } | |
3057 | } | |
3058 | ||
3059 | static enum return_value_convention | |
3060 | ia64_return_value (struct gdbarch *gdbarch, struct type *valtype, | |
3061 | struct regcache *regcache, gdb_byte *readbuf, | |
3062 | const gdb_byte *writebuf) | |
3063 | { | |
3064 | int struct_return = ia64_use_struct_convention (valtype); | |
3065 | ||
3066 | if (writebuf != NULL) | |
3067 | { | |
3068 | gdb_assert (!struct_return); | |
3069 | ia64_store_return_value (valtype, regcache, writebuf); | |
3070 | } | |
3071 | ||
3072 | if (readbuf != NULL) | |
3073 | { | |
3074 | gdb_assert (!struct_return); | |
3075 | ia64_extract_return_value (valtype, regcache, readbuf); | |
3076 | } | |
3077 | ||
3078 | if (struct_return) | |
3079 | return RETURN_VALUE_STRUCT_CONVENTION; | |
3080 | else | |
3081 | return RETURN_VALUE_REGISTER_CONVENTION; | |
3082 | } | |
16461d7d | 3083 | |
64a5b29c KB |
3084 | static int |
3085 | is_float_or_hfa_type_recurse (struct type *t, struct type **etp) | |
3086 | { | |
3087 | switch (TYPE_CODE (t)) | |
3088 | { | |
3089 | case TYPE_CODE_FLT: | |
3090 | if (*etp) | |
3091 | return TYPE_LENGTH (*etp) == TYPE_LENGTH (t); | |
3092 | else | |
3093 | { | |
3094 | *etp = t; | |
3095 | return 1; | |
3096 | } | |
3097 | break; | |
3098 | case TYPE_CODE_ARRAY: | |
98f96ba1 KB |
3099 | return |
3100 | is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)), | |
3101 | etp); | |
64a5b29c KB |
3102 | break; |
3103 | case TYPE_CODE_STRUCT: | |
3104 | { | |
3105 | int i; | |
3106 | ||
3107 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
98f96ba1 KB |
3108 | if (!is_float_or_hfa_type_recurse |
3109 | (check_typedef (TYPE_FIELD_TYPE (t, i)), etp)) | |
64a5b29c KB |
3110 | return 0; |
3111 | return 1; | |
3112 | } | |
3113 | break; | |
3114 | default: | |
3115 | return 0; | |
3116 | break; | |
3117 | } | |
3118 | } | |
3119 | ||
3120 | /* Determine if the given type is one of the floating point types or | |
3121 | and HFA (which is a struct, array, or combination thereof whose | |
004d836a | 3122 | bottom-most elements are all of the same floating point type). */ |
64a5b29c KB |
3123 | |
3124 | static struct type * | |
3125 | is_float_or_hfa_type (struct type *t) | |
3126 | { | |
3127 | struct type *et = 0; | |
3128 | ||
3129 | return is_float_or_hfa_type_recurse (t, &et) ? et : 0; | |
3130 | } | |
3131 | ||
3132 | ||
98f96ba1 KB |
3133 | /* Return 1 if the alignment of T is such that the next even slot |
3134 | should be used. Return 0, if the next available slot should | |
3135 | be used. (See section 8.5.1 of the IA-64 Software Conventions | |
004d836a | 3136 | and Runtime manual). */ |
98f96ba1 KB |
3137 | |
3138 | static int | |
3139 | slot_alignment_is_next_even (struct type *t) | |
3140 | { | |
3141 | switch (TYPE_CODE (t)) | |
3142 | { | |
3143 | case TYPE_CODE_INT: | |
3144 | case TYPE_CODE_FLT: | |
3145 | if (TYPE_LENGTH (t) > 8) | |
3146 | return 1; | |
3147 | else | |
3148 | return 0; | |
3149 | case TYPE_CODE_ARRAY: | |
3150 | return | |
3151 | slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t))); | |
3152 | case TYPE_CODE_STRUCT: | |
3153 | { | |
3154 | int i; | |
3155 | ||
3156 | for (i = 0; i < TYPE_NFIELDS (t); i++) | |
3157 | if (slot_alignment_is_next_even | |
3158 | (check_typedef (TYPE_FIELD_TYPE (t, i)))) | |
3159 | return 1; | |
3160 | return 0; | |
3161 | } | |
3162 | default: | |
3163 | return 0; | |
3164 | } | |
3165 | } | |
3166 | ||
64a5b29c KB |
3167 | /* Attempt to find (and return) the global pointer for the given |
3168 | function. | |
3169 | ||
3170 | This is a rather nasty bit of code searchs for the .dynamic section | |
3171 | in the objfile corresponding to the pc of the function we're trying | |
3172 | to call. Once it finds the addresses at which the .dynamic section | |
3173 | lives in the child process, it scans the Elf64_Dyn entries for a | |
3174 | DT_PLTGOT tag. If it finds one of these, the corresponding | |
3175 | d_un.d_ptr value is the global pointer. */ | |
3176 | ||
3177 | static CORE_ADDR | |
b33e8514 | 3178 | ia64_find_global_pointer (CORE_ADDR faddr) |
64a5b29c | 3179 | { |
76d689a6 | 3180 | struct obj_section *faddr_sect; |
64a5b29c | 3181 | |
76d689a6 KB |
3182 | faddr_sect = find_pc_section (faddr); |
3183 | if (faddr_sect != NULL) | |
64a5b29c KB |
3184 | { |
3185 | struct obj_section *osect; | |
3186 | ||
76d689a6 | 3187 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) |
64a5b29c KB |
3188 | { |
3189 | if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) | |
3190 | break; | |
3191 | } | |
3192 | ||
76d689a6 | 3193 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3194 | { |
3195 | CORE_ADDR addr; | |
3196 | ||
3197 | addr = osect->addr; | |
3198 | while (addr < osect->endaddr) | |
3199 | { | |
3200 | int status; | |
3201 | LONGEST tag; | |
3202 | char buf[8]; | |
3203 | ||
3204 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3205 | if (status != 0) | |
3206 | break; | |
3207 | tag = extract_signed_integer (buf, sizeof (buf)); | |
3208 | ||
3209 | if (tag == DT_PLTGOT) | |
3210 | { | |
3211 | CORE_ADDR global_pointer; | |
3212 | ||
3213 | status = target_read_memory (addr + 8, buf, sizeof (buf)); | |
3214 | if (status != 0) | |
3215 | break; | |
7c0b4a20 | 3216 | global_pointer = extract_unsigned_integer (buf, sizeof (buf)); |
64a5b29c KB |
3217 | |
3218 | /* The payoff... */ | |
3219 | return global_pointer; | |
3220 | } | |
3221 | ||
3222 | if (tag == DT_NULL) | |
3223 | break; | |
3224 | ||
3225 | addr += 16; | |
3226 | } | |
3227 | } | |
3228 | } | |
3229 | return 0; | |
3230 | } | |
3231 | ||
3232 | /* Given a function's address, attempt to find (and return) the | |
3233 | corresponding (canonical) function descriptor. Return 0 if | |
004d836a | 3234 | not found. */ |
64a5b29c KB |
3235 | static CORE_ADDR |
3236 | find_extant_func_descr (CORE_ADDR faddr) | |
3237 | { | |
76d689a6 | 3238 | struct obj_section *faddr_sect; |
64a5b29c | 3239 | |
004d836a | 3240 | /* Return early if faddr is already a function descriptor. */ |
76d689a6 KB |
3241 | faddr_sect = find_pc_section (faddr); |
3242 | if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0) | |
64a5b29c KB |
3243 | return faddr; |
3244 | ||
76d689a6 | 3245 | if (faddr_sect != NULL) |
64a5b29c | 3246 | { |
76d689a6 KB |
3247 | struct obj_section *osect; |
3248 | ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) | |
64a5b29c KB |
3249 | { |
3250 | if (strcmp (osect->the_bfd_section->name, ".opd") == 0) | |
3251 | break; | |
3252 | } | |
3253 | ||
76d689a6 | 3254 | if (osect < faddr_sect->objfile->sections_end) |
64a5b29c KB |
3255 | { |
3256 | CORE_ADDR addr; | |
3257 | ||
3258 | addr = osect->addr; | |
3259 | while (addr < osect->endaddr) | |
3260 | { | |
3261 | int status; | |
3262 | LONGEST faddr2; | |
3263 | char buf[8]; | |
3264 | ||
3265 | status = target_read_memory (addr, buf, sizeof (buf)); | |
3266 | if (status != 0) | |
3267 | break; | |
3268 | faddr2 = extract_signed_integer (buf, sizeof (buf)); | |
3269 | ||
3270 | if (faddr == faddr2) | |
3271 | return addr; | |
3272 | ||
3273 | addr += 16; | |
3274 | } | |
3275 | } | |
3276 | } | |
3277 | return 0; | |
3278 | } | |
3279 | ||
3280 | /* Attempt to find a function descriptor corresponding to the | |
3281 | given address. If none is found, construct one on the | |
004d836a | 3282 | stack using the address at fdaptr. */ |
64a5b29c KB |
3283 | |
3284 | static CORE_ADDR | |
9c9acae0 | 3285 | find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr) |
64a5b29c KB |
3286 | { |
3287 | CORE_ADDR fdesc; | |
3288 | ||
3289 | fdesc = find_extant_func_descr (faddr); | |
3290 | ||
3291 | if (fdesc == 0) | |
3292 | { | |
9c9acae0 | 3293 | ULONGEST global_pointer; |
64a5b29c KB |
3294 | char buf[16]; |
3295 | ||
3296 | fdesc = *fdaptr; | |
3297 | *fdaptr += 16; | |
3298 | ||
b33e8514 | 3299 | global_pointer = ia64_find_global_pointer (faddr); |
64a5b29c KB |
3300 | |
3301 | if (global_pointer == 0) | |
9c9acae0 UW |
3302 | regcache_cooked_read_unsigned (regcache, |
3303 | IA64_GR1_REGNUM, &global_pointer); | |
64a5b29c | 3304 | |
fbd9dcd3 AC |
3305 | store_unsigned_integer (buf, 8, faddr); |
3306 | store_unsigned_integer (buf + 8, 8, global_pointer); | |
64a5b29c KB |
3307 | |
3308 | write_memory (fdesc, buf, 16); | |
3309 | } | |
3310 | ||
3311 | return fdesc; | |
3312 | } | |
16461d7d | 3313 | |
af8b88dd JJ |
3314 | /* Use the following routine when printing out function pointers |
3315 | so the user can see the function address rather than just the | |
3316 | function descriptor. */ | |
3317 | static CORE_ADDR | |
e2d0e7eb AC |
3318 | ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr, |
3319 | struct target_ops *targ) | |
af8b88dd JJ |
3320 | { |
3321 | struct obj_section *s; | |
3322 | ||
3323 | s = find_pc_section (addr); | |
3324 | ||
3325 | /* check if ADDR points to a function descriptor. */ | |
3326 | if (s && strcmp (s->the_bfd_section->name, ".opd") == 0) | |
3327 | return read_memory_unsigned_integer (addr, 8); | |
3328 | ||
0d5de010 DJ |
3329 | /* There are also descriptors embedded in vtables. */ |
3330 | if (s) | |
3331 | { | |
3332 | struct minimal_symbol *minsym; | |
3333 | ||
3334 | minsym = lookup_minimal_symbol_by_pc (addr); | |
3335 | ||
3336 | if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym))) | |
3337 | return read_memory_unsigned_integer (addr, 8); | |
3338 | } | |
3339 | ||
af8b88dd JJ |
3340 | return addr; |
3341 | } | |
3342 | ||
a78f21af | 3343 | static CORE_ADDR |
004d836a JJ |
3344 | ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp) |
3345 | { | |
3346 | return sp & ~0xfLL; | |
3347 | } | |
3348 | ||
3349 | static CORE_ADDR | |
7d9b040b | 3350 | ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
8dd5115e AS |
3351 | struct regcache *regcache, CORE_ADDR bp_addr, |
3352 | int nargs, struct value **args, CORE_ADDR sp, | |
3353 | int struct_return, CORE_ADDR struct_addr) | |
16461d7d KB |
3354 | { |
3355 | int argno; | |
ea7c478f | 3356 | struct value *arg; |
16461d7d KB |
3357 | struct type *type; |
3358 | int len, argoffset; | |
64a5b29c | 3359 | int nslots, rseslots, memslots, slotnum, nfuncargs; |
16461d7d | 3360 | int floatreg; |
9c9acae0 UW |
3361 | ULONGEST bsp, cfm, pfs, new_bsp; |
3362 | CORE_ADDR funcdescaddr, pc, global_pointer; | |
7d9b040b | 3363 | CORE_ADDR func_addr = find_function_addr (function, NULL); |
16461d7d KB |
3364 | |
3365 | nslots = 0; | |
64a5b29c | 3366 | nfuncargs = 0; |
004d836a | 3367 | /* Count the number of slots needed for the arguments. */ |
16461d7d KB |
3368 | for (argno = 0; argno < nargs; argno++) |
3369 | { | |
3370 | arg = args[argno]; | |
4991999e | 3371 | type = check_typedef (value_type (arg)); |
16461d7d KB |
3372 | len = TYPE_LENGTH (type); |
3373 | ||
98f96ba1 | 3374 | if ((nslots & 1) && slot_alignment_is_next_even (type)) |
16461d7d KB |
3375 | nslots++; |
3376 | ||
64a5b29c KB |
3377 | if (TYPE_CODE (type) == TYPE_CODE_FUNC) |
3378 | nfuncargs++; | |
3379 | ||
16461d7d KB |
3380 | nslots += (len + 7) / 8; |
3381 | } | |
3382 | ||
004d836a | 3383 | /* Divvy up the slots between the RSE and the memory stack. */ |
16461d7d KB |
3384 | rseslots = (nslots > 8) ? 8 : nslots; |
3385 | memslots = nslots - rseslots; | |
3386 | ||
004d836a | 3387 | /* Allocate a new RSE frame. */ |
9c9acae0 | 3388 | regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm); |
16461d7d | 3389 | |
9c9acae0 | 3390 | regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp); |
16461d7d | 3391 | new_bsp = rse_address_add (bsp, rseslots); |
9c9acae0 | 3392 | regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp); |
16461d7d | 3393 | |
9c9acae0 | 3394 | regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs); |
16461d7d KB |
3395 | pfs &= 0xc000000000000000LL; |
3396 | pfs |= (cfm & 0xffffffffffffLL); | |
9c9acae0 | 3397 | regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs); |
16461d7d KB |
3398 | |
3399 | cfm &= 0xc000000000000000LL; | |
3400 | cfm |= rseslots; | |
9c9acae0 | 3401 | regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm); |
16461d7d | 3402 | |
64a5b29c KB |
3403 | /* We will attempt to find function descriptors in the .opd segment, |
3404 | but if we can't we'll construct them ourselves. That being the | |
004d836a | 3405 | case, we'll need to reserve space on the stack for them. */ |
64a5b29c KB |
3406 | funcdescaddr = sp - nfuncargs * 16; |
3407 | funcdescaddr &= ~0xfLL; | |
3408 | ||
3409 | /* Adjust the stack pointer to it's new value. The calling conventions | |
3410 | require us to have 16 bytes of scratch, plus whatever space is | |
004d836a | 3411 | necessary for the memory slots and our function descriptors. */ |
64a5b29c | 3412 | sp = sp - 16 - (memslots + nfuncargs) * 8; |
004d836a | 3413 | sp &= ~0xfLL; /* Maintain 16 byte alignment. */ |
16461d7d | 3414 | |
64a5b29c KB |
3415 | /* Place the arguments where they belong. The arguments will be |
3416 | either placed in the RSE backing store or on the memory stack. | |
3417 | In addition, floating point arguments or HFAs are placed in | |
004d836a | 3418 | floating point registers. */ |
16461d7d KB |
3419 | slotnum = 0; |
3420 | floatreg = IA64_FR8_REGNUM; | |
3421 | for (argno = 0; argno < nargs; argno++) | |
3422 | { | |
64a5b29c KB |
3423 | struct type *float_elt_type; |
3424 | ||
16461d7d | 3425 | arg = args[argno]; |
4991999e | 3426 | type = check_typedef (value_type (arg)); |
16461d7d | 3427 | len = TYPE_LENGTH (type); |
64a5b29c | 3428 | |
004d836a | 3429 | /* Special handling for function parameters. */ |
64a5b29c KB |
3430 | if (len == 8 |
3431 | && TYPE_CODE (type) == TYPE_CODE_PTR | |
3432 | && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC) | |
3433 | { | |
3434 | char val_buf[8]; | |
9c9acae0 | 3435 | ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8); |
fbd9dcd3 | 3436 | store_unsigned_integer (val_buf, 8, |
9c9acae0 | 3437 | find_func_descr (regcache, faddr, |
fbd9dcd3 | 3438 | &funcdescaddr)); |
64a5b29c KB |
3439 | if (slotnum < rseslots) |
3440 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3441 | else | |
3442 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3443 | slotnum++; | |
3444 | continue; | |
3445 | } | |
3446 | ||
004d836a | 3447 | /* Normal slots. */ |
98f96ba1 KB |
3448 | |
3449 | /* Skip odd slot if necessary... */ | |
3450 | if ((slotnum & 1) && slot_alignment_is_next_even (type)) | |
16461d7d | 3451 | slotnum++; |
98f96ba1 | 3452 | |
16461d7d KB |
3453 | argoffset = 0; |
3454 | while (len > 0) | |
3455 | { | |
3456 | char val_buf[8]; | |
3457 | ||
3458 | memset (val_buf, 0, 8); | |
0fd88904 | 3459 | memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len); |
16461d7d KB |
3460 | |
3461 | if (slotnum < rseslots) | |
3462 | write_memory (rse_address_add (bsp, slotnum), val_buf, 8); | |
3463 | else | |
3464 | write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8); | |
3465 | ||
3466 | argoffset += 8; | |
3467 | len -= 8; | |
3468 | slotnum++; | |
3469 | } | |
64a5b29c | 3470 | |
004d836a | 3471 | /* Handle floating point types (including HFAs). */ |
64a5b29c KB |
3472 | float_elt_type = is_float_or_hfa_type (type); |
3473 | if (float_elt_type != NULL) | |
3474 | { | |
3475 | argoffset = 0; | |
3476 | len = TYPE_LENGTH (type); | |
3477 | while (len > 0 && floatreg < IA64_FR16_REGNUM) | |
3478 | { | |
004d836a | 3479 | char to[MAX_REGISTER_SIZE]; |
0fd88904 | 3480 | convert_typed_floating (value_contents (arg) + argoffset, float_elt_type, |
004d836a JJ |
3481 | to, builtin_type_ia64_ext); |
3482 | regcache_cooked_write (regcache, floatreg, (void *)to); | |
64a5b29c KB |
3483 | floatreg++; |
3484 | argoffset += TYPE_LENGTH (float_elt_type); | |
3485 | len -= TYPE_LENGTH (float_elt_type); | |
3486 | } | |
16461d7d KB |
3487 | } |
3488 | } | |
3489 | ||
004d836a | 3490 | /* Store the struct return value in r8 if necessary. */ |
16461d7d KB |
3491 | if (struct_return) |
3492 | { | |
004d836a | 3493 | regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr); |
16461d7d KB |
3494 | } |
3495 | ||
b33e8514 | 3496 | global_pointer = ia64_find_global_pointer (func_addr); |
8dd5115e | 3497 | |
004d836a | 3498 | if (global_pointer != 0) |
9c9acae0 | 3499 | regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer); |
a59fe496 | 3500 | |
9c9acae0 | 3501 | regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr); |
16461d7d | 3502 | |
9c9acae0 | 3503 | regcache_cooked_write_unsigned (regcache, sp_regnum, sp); |
16461d7d KB |
3504 | |
3505 | return sp; | |
3506 | } | |
3507 | ||
004d836a JJ |
3508 | static struct frame_id |
3509 | ia64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3510 | { |
004d836a | 3511 | char buf[8]; |
4afcc598 | 3512 | CORE_ADDR sp, bsp; |
004d836a JJ |
3513 | |
3514 | frame_unwind_register (next_frame, sp_regnum, buf); | |
3515 | sp = extract_unsigned_integer (buf, 8); | |
3516 | ||
4afcc598 JJ |
3517 | frame_unwind_register (next_frame, IA64_BSP_REGNUM, buf); |
3518 | bsp = extract_unsigned_integer (buf, 8); | |
3519 | ||
3520 | if (gdbarch_debug >= 1) | |
3521 | fprintf_unfiltered (gdb_stdlog, | |
78ced177 JJ |
3522 | "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n", |
3523 | paddr_nz (frame_pc_unwind (next_frame)), | |
3524 | paddr_nz (sp), paddr_nz (bsp)); | |
4afcc598 JJ |
3525 | |
3526 | return frame_id_build_special (sp, frame_pc_unwind (next_frame), bsp); | |
16461d7d KB |
3527 | } |
3528 | ||
004d836a JJ |
3529 | static CORE_ADDR |
3530 | ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
16461d7d | 3531 | { |
004d836a JJ |
3532 | char buf[8]; |
3533 | CORE_ADDR ip, psr, pc; | |
3534 | ||
3535 | frame_unwind_register (next_frame, IA64_IP_REGNUM, buf); | |
3536 | ip = extract_unsigned_integer (buf, 8); | |
3537 | frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf); | |
3538 | psr = extract_unsigned_integer (buf, 8); | |
3539 | ||
3540 | pc = (ip & ~0xf) | ((psr >> 41) & 3); | |
3541 | return pc; | |
16461d7d KB |
3542 | } |
3543 | ||
6926787d AS |
3544 | static int |
3545 | ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info) | |
3546 | { | |
3547 | info->bytes_per_line = SLOT_MULTIPLIER; | |
3548 | return print_insn_ia64 (memaddr, info); | |
3549 | } | |
3550 | ||
16461d7d KB |
3551 | static struct gdbarch * |
3552 | ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
3553 | { | |
3554 | struct gdbarch *gdbarch; | |
244bc108 | 3555 | struct gdbarch_tdep *tdep; |
244bc108 | 3556 | |
85bf2b91 JJ |
3557 | /* If there is already a candidate, use it. */ |
3558 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
3559 | if (arches != NULL) | |
3560 | return arches->gdbarch; | |
16461d7d | 3561 | |
244bc108 KB |
3562 | tdep = xmalloc (sizeof (struct gdbarch_tdep)); |
3563 | gdbarch = gdbarch_alloc (&info, tdep); | |
244bc108 | 3564 | |
b33e8514 | 3565 | tdep->sigcontext_register_address = 0; |
74174d2e | 3566 | tdep->pc_in_sigtramp = 0; |
698cb3f0 | 3567 | |
5439edaa AC |
3568 | /* According to the ia64 specs, instructions that store long double |
3569 | floats in memory use a long-double format different than that | |
3570 | used in the floating registers. The memory format matches the | |
3571 | x86 extended float format which is 80 bits. An OS may choose to | |
3572 | use this format (e.g. GNU/Linux) or choose to use a different | |
3573 | format for storing long doubles (e.g. HPUX). In the latter case, | |
3574 | the setting of the format may be moved/overridden in an | |
3575 | OS-specific tdep file. */ | |
8da61cc4 | 3576 | set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext); |
32edc941 | 3577 | |
16461d7d KB |
3578 | set_gdbarch_short_bit (gdbarch, 16); |
3579 | set_gdbarch_int_bit (gdbarch, 32); | |
3580 | set_gdbarch_long_bit (gdbarch, 64); | |
3581 | set_gdbarch_long_long_bit (gdbarch, 64); | |
3582 | set_gdbarch_float_bit (gdbarch, 32); | |
3583 | set_gdbarch_double_bit (gdbarch, 64); | |
33c08150 | 3584 | set_gdbarch_long_double_bit (gdbarch, 128); |
16461d7d KB |
3585 | set_gdbarch_ptr_bit (gdbarch, 64); |
3586 | ||
004d836a JJ |
3587 | set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS); |
3588 | set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM); | |
16461d7d | 3589 | set_gdbarch_sp_regnum (gdbarch, sp_regnum); |
698cb3f0 | 3590 | set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM); |
16461d7d KB |
3591 | |
3592 | set_gdbarch_register_name (gdbarch, ia64_register_name); | |
004d836a | 3593 | set_gdbarch_register_type (gdbarch, ia64_register_type); |
16461d7d | 3594 | |
004d836a JJ |
3595 | set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read); |
3596 | set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write); | |
3597 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum); | |
3598 | set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p); | |
3599 | set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p); | |
3600 | set_gdbarch_register_to_value (gdbarch, ia64_register_to_value); | |
3601 | set_gdbarch_value_to_register (gdbarch, ia64_value_to_register); | |
16461d7d | 3602 | |
004d836a | 3603 | set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue); |
16461d7d | 3604 | |
4c8b6ae0 | 3605 | set_gdbarch_return_value (gdbarch, ia64_return_value); |
16461d7d KB |
3606 | |
3607 | set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint); | |
3608 | set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint); | |
3609 | set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc); | |
3610 | set_gdbarch_read_pc (gdbarch, ia64_read_pc); | |
b33e8514 | 3611 | set_gdbarch_write_pc (gdbarch, ia64_write_pc); |
16461d7d KB |
3612 | |
3613 | /* Settings for calling functions in the inferior. */ | |
8dd5115e | 3614 | set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call); |
004d836a JJ |
3615 | set_gdbarch_frame_align (gdbarch, ia64_frame_align); |
3616 | set_gdbarch_unwind_dummy_id (gdbarch, ia64_unwind_dummy_id); | |
16461d7d | 3617 | |
004d836a | 3618 | set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc); |
968d1cb4 | 3619 | #ifdef HAVE_LIBUNWIND_IA64_H |
c5a27d9c | 3620 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_sigtramp_frame_sniffer); |
968d1cb4 JJ |
3621 | frame_unwind_append_sniffer (gdbarch, ia64_libunwind_frame_sniffer); |
3622 | libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr); | |
c5a27d9c JJ |
3623 | #else |
3624 | frame_unwind_append_sniffer (gdbarch, ia64_sigtramp_frame_sniffer); | |
968d1cb4 | 3625 | #endif |
004d836a JJ |
3626 | frame_unwind_append_sniffer (gdbarch, ia64_frame_sniffer); |
3627 | frame_base_set_default (gdbarch, &ia64_frame_base); | |
16461d7d KB |
3628 | |
3629 | /* Settings that should be unnecessary. */ | |
3630 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
3631 | ||
6926787d | 3632 | set_gdbarch_print_insn (gdbarch, ia64_print_insn); |
af8b88dd | 3633 | set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr); |
6926787d | 3634 | |
0d5de010 DJ |
3635 | /* The virtual table contains 16-byte descriptors, not pointers to |
3636 | descriptors. */ | |
3637 | set_gdbarch_vtable_function_descriptors (gdbarch, 1); | |
3638 | ||
b33e8514 AS |
3639 | /* Hook in ABI-specific overrides, if they have been registered. */ |
3640 | gdbarch_init_osabi (info, gdbarch); | |
3641 | ||
16461d7d KB |
3642 | return gdbarch; |
3643 | } | |
3644 | ||
a78f21af AC |
3645 | extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */ |
3646 | ||
16461d7d KB |
3647 | void |
3648 | _initialize_ia64_tdep (void) | |
3649 | { | |
83acabca DJ |
3650 | /* Define the ia64 floating-point format to gdb. */ |
3651 | builtin_type_ia64_ext = | |
3652 | init_type (TYPE_CODE_FLT, 128 / 8, | |
3653 | 0, "builtin_type_ia64_ext", NULL); | |
3654 | TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext; | |
3655 | ||
b33e8514 | 3656 | gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL); |
16461d7d | 3657 | } |