2008-12-05 Tristan Gingold <gingold@adacore.com>
[deliverable/binutils-gdb.git] / gdb / ia64-tdep.c
CommitLineData
16461d7d 1/* Target-dependent code for the IA-64 for GDB, the GNU debugger.
ca557f44 2
9b254dd1 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
13547ab6 4 Free Software Foundation, Inc.
16461d7d
KB
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
16461d7d
KB
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
16461d7d
KB
20
21#include "defs.h"
22#include "inferior.h"
16461d7d 23#include "gdbcore.h"
8064c6ae 24#include "arch-utils.h"
16461d7d 25#include "floatformat.h"
e6bb342a 26#include "gdbtypes.h"
4e052eda 27#include "regcache.h"
004d836a
JJ
28#include "reggroups.h"
29#include "frame.h"
30#include "frame-base.h"
31#include "frame-unwind.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
bd1ce8ba 34#include "gdb_assert.h"
16461d7d
KB
35#include "objfiles.h"
36#include "elf/common.h" /* for DT_PLTGOT value */
244bc108 37#include "elf-bfd.h"
a89aa300 38#include "dis-asm.h"
7d9b040b 39#include "infcall.h"
b33e8514 40#include "osabi.h"
9fc9f5e2 41#include "ia64-tdep.h"
0d5de010 42#include "cp-abi.h"
16461d7d 43
968d1cb4 44#ifdef HAVE_LIBUNWIND_IA64_H
8973ff21 45#include "elf/ia64.h" /* for PT_IA_64_UNWIND value */
968d1cb4
JJ
46#include "libunwind-frame.h"
47#include "libunwind-ia64.h"
c5a27d9c
JJ
48
49/* Note: KERNEL_START is supposed to be an address which is not going
50 to ever contain any valid unwind info. For ia64 linux, the choice
51 of 0xc000000000000000 is fairly safe since that's uncached space.
52
53 We use KERNEL_START as follows: after obtaining the kernel's
54 unwind table via getunwind(), we project its unwind data into
55 address-range KERNEL_START-(KERNEL_START+ktab_size) and then
56 when ia64_access_mem() sees a memory access to this
57 address-range, we redirect it to ktab instead.
58
59 None of this hackery is needed with a modern kernel/libcs
60 which uses the kernel virtual DSO to provide access to the
61 kernel's unwind info. In that case, ktab_size remains 0 and
62 hence the value of KERNEL_START doesn't matter. */
63
64#define KERNEL_START 0xc000000000000000ULL
65
66static size_t ktab_size = 0;
67struct ia64_table_entry
68 {
69 uint64_t start_offset;
70 uint64_t end_offset;
71 uint64_t info_offset;
72 };
73
74static struct ia64_table_entry *ktab = NULL;
75
968d1cb4
JJ
76#endif
77
698cb3f0
KB
78/* An enumeration of the different IA-64 instruction types. */
79
16461d7d
KB
80typedef enum instruction_type
81{
82 A, /* Integer ALU ; I-unit or M-unit */
83 I, /* Non-ALU integer; I-unit */
84 M, /* Memory ; M-unit */
85 F, /* Floating-point ; F-unit */
86 B, /* Branch ; B-unit */
87 L, /* Extended (L+X) ; I-unit */
88 X, /* Extended (L+X) ; I-unit */
89 undefined /* undefined or reserved */
90} instruction_type;
91
92/* We represent IA-64 PC addresses as the value of the instruction
93 pointer or'd with some bit combination in the low nibble which
94 represents the slot number in the bundle addressed by the
95 instruction pointer. The problem is that the Linux kernel
96 multiplies its slot numbers (for exceptions) by one while the
97 disassembler multiplies its slot numbers by 6. In addition, I've
98 heard it said that the simulator uses 1 as the multiplier.
99
100 I've fixed the disassembler so that the bytes_per_line field will
101 be the slot multiplier. If bytes_per_line comes in as zero, it
102 is set to six (which is how it was set up initially). -- objdump
103 displays pretty disassembly dumps with this value. For our purposes,
104 we'll set bytes_per_line to SLOT_MULTIPLIER. This is okay since we
105 never want to also display the raw bytes the way objdump does. */
106
107#define SLOT_MULTIPLIER 1
108
109/* Length in bytes of an instruction bundle */
110
111#define BUNDLE_LEN 16
112
939c61fa
JK
113/* See the saved memory layout comment for ia64_memory_insert_breakpoint. */
114
115#if BREAKPOINT_MAX < BUNDLE_LEN - 2
116# error "BREAKPOINT_MAX < BUNDLE_LEN - 2"
117#endif
118
16461d7d
KB
119static gdbarch_init_ftype ia64_gdbarch_init;
120
121static gdbarch_register_name_ftype ia64_register_name;
004d836a 122static gdbarch_register_type_ftype ia64_register_type;
16461d7d 123static gdbarch_breakpoint_from_pc_ftype ia64_breakpoint_from_pc;
16461d7d 124static gdbarch_skip_prologue_ftype ia64_skip_prologue;
64a5b29c 125static struct type *is_float_or_hfa_type (struct type *t);
b33e8514 126static CORE_ADDR ia64_find_global_pointer (CORE_ADDR faddr);
16461d7d 127
004d836a
JJ
128static struct type *builtin_type_ia64_ext;
129
130#define NUM_IA64_RAW_REGS 462
16461d7d 131
16461d7d
KB
132static int sp_regnum = IA64_GR12_REGNUM;
133static int fp_regnum = IA64_VFP_REGNUM;
134static int lr_regnum = IA64_VRAP_REGNUM;
135
004d836a 136/* NOTE: we treat the register stack registers r32-r127 as pseudo-registers because
4afcc598 137 they may not be accessible via the ptrace register get/set interfaces. */
004d836a
JJ
138enum pseudo_regs { FIRST_PSEUDO_REGNUM = NUM_IA64_RAW_REGS, VBOF_REGNUM = IA64_NAT127_REGNUM + 1, V32_REGNUM,
139 V127_REGNUM = V32_REGNUM + 95,
140 VP0_REGNUM, VP16_REGNUM = VP0_REGNUM + 16, VP63_REGNUM = VP0_REGNUM + 63, LAST_PSEUDO_REGNUM };
16461d7d
KB
141
142/* Array of register names; There should be ia64_num_regs strings in
143 the initializer. */
144
145static char *ia64_register_names[] =
146{ "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
147 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
148 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
149 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
004d836a
JJ
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 "", "", "", "", "", "", "", "",
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
155 "", "", "", "", "", "", "", "",
156 "", "", "", "", "", "", "", "",
157 "", "", "", "", "", "", "", "",
158 "", "", "", "", "", "", "", "",
159 "", "", "", "", "", "", "", "",
160 "", "", "", "", "", "", "", "",
161 "", "", "", "", "", "", "", "",
16461d7d
KB
162
163 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
164 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
165 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
166 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
167 "f32", "f33", "f34", "f35", "f36", "f37", "f38", "f39",
168 "f40", "f41", "f42", "f43", "f44", "f45", "f46", "f47",
169 "f48", "f49", "f50", "f51", "f52", "f53", "f54", "f55",
170 "f56", "f57", "f58", "f59", "f60", "f61", "f62", "f63",
171 "f64", "f65", "f66", "f67", "f68", "f69", "f70", "f71",
172 "f72", "f73", "f74", "f75", "f76", "f77", "f78", "f79",
173 "f80", "f81", "f82", "f83", "f84", "f85", "f86", "f87",
174 "f88", "f89", "f90", "f91", "f92", "f93", "f94", "f95",
175 "f96", "f97", "f98", "f99", "f100", "f101", "f102", "f103",
176 "f104", "f105", "f106", "f107", "f108", "f109", "f110", "f111",
177 "f112", "f113", "f114", "f115", "f116", "f117", "f118", "f119",
178 "f120", "f121", "f122", "f123", "f124", "f125", "f126", "f127",
179
004d836a
JJ
180 "", "", "", "", "", "", "", "",
181 "", "", "", "", "", "", "", "",
182 "", "", "", "", "", "", "", "",
183 "", "", "", "", "", "", "", "",
184 "", "", "", "", "", "", "", "",
185 "", "", "", "", "", "", "", "",
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
16461d7d
KB
188
189 "b0", "b1", "b2", "b3", "b4", "b5", "b6", "b7",
190
191 "vfp", "vrap",
192
193 "pr", "ip", "psr", "cfm",
194
195 "kr0", "kr1", "kr2", "kr3", "kr4", "kr5", "kr6", "kr7",
196 "", "", "", "", "", "", "", "",
197 "rsc", "bsp", "bspstore", "rnat",
198 "", "fcr", "", "",
199 "eflag", "csd", "ssd", "cflg", "fsr", "fir", "fdr", "",
200 "ccv", "", "", "", "unat", "", "", "",
201 "fpsr", "", "", "", "itc",
202 "", "", "", "", "", "", "", "", "", "",
203 "", "", "", "", "", "", "", "", "",
204 "pfs", "lc", "ec",
205 "", "", "", "", "", "", "", "", "", "",
206 "", "", "", "", "", "", "", "", "", "",
207 "", "", "", "", "", "", "", "", "", "",
208 "", "", "", "", "", "", "", "", "", "",
209 "", "", "", "", "", "", "", "", "", "",
210 "", "", "", "", "", "", "", "", "", "",
211 "",
212 "nat0", "nat1", "nat2", "nat3", "nat4", "nat5", "nat6", "nat7",
213 "nat8", "nat9", "nat10", "nat11", "nat12", "nat13", "nat14", "nat15",
214 "nat16", "nat17", "nat18", "nat19", "nat20", "nat21", "nat22", "nat23",
215 "nat24", "nat25", "nat26", "nat27", "nat28", "nat29", "nat30", "nat31",
216 "nat32", "nat33", "nat34", "nat35", "nat36", "nat37", "nat38", "nat39",
217 "nat40", "nat41", "nat42", "nat43", "nat44", "nat45", "nat46", "nat47",
218 "nat48", "nat49", "nat50", "nat51", "nat52", "nat53", "nat54", "nat55",
219 "nat56", "nat57", "nat58", "nat59", "nat60", "nat61", "nat62", "nat63",
220 "nat64", "nat65", "nat66", "nat67", "nat68", "nat69", "nat70", "nat71",
221 "nat72", "nat73", "nat74", "nat75", "nat76", "nat77", "nat78", "nat79",
222 "nat80", "nat81", "nat82", "nat83", "nat84", "nat85", "nat86", "nat87",
223 "nat88", "nat89", "nat90", "nat91", "nat92", "nat93", "nat94", "nat95",
224 "nat96", "nat97", "nat98", "nat99", "nat100","nat101","nat102","nat103",
225 "nat104","nat105","nat106","nat107","nat108","nat109","nat110","nat111",
226 "nat112","nat113","nat114","nat115","nat116","nat117","nat118","nat119",
227 "nat120","nat121","nat122","nat123","nat124","nat125","nat126","nat127",
004d836a
JJ
228
229 "bof",
230
231 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
232 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
233 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
234 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
235 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
236 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
237 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
238 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
239 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
240 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
241 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
242 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
243
244 "p0", "p1", "p2", "p3", "p4", "p5", "p6", "p7",
245 "p8", "p9", "p10", "p11", "p12", "p13", "p14", "p15",
246 "p16", "p17", "p18", "p19", "p20", "p21", "p22", "p23",
247 "p24", "p25", "p26", "p27", "p28", "p29", "p30", "p31",
248 "p32", "p33", "p34", "p35", "p36", "p37", "p38", "p39",
249 "p40", "p41", "p42", "p43", "p44", "p45", "p46", "p47",
250 "p48", "p49", "p50", "p51", "p52", "p53", "p54", "p55",
251 "p56", "p57", "p58", "p59", "p60", "p61", "p62", "p63",
16461d7d
KB
252};
253
004d836a
JJ
254struct ia64_frame_cache
255{
256 CORE_ADDR base; /* frame pointer base for frame */
257 CORE_ADDR pc; /* function start pc for frame */
258 CORE_ADDR saved_sp; /* stack pointer for frame */
259 CORE_ADDR bsp; /* points at r32 for the current frame */
260 CORE_ADDR cfm; /* cfm value for current frame */
4afcc598 261 CORE_ADDR prev_cfm; /* cfm value for previous frame */
004d836a
JJ
262 int frameless;
263 int sof; /* Size of frame (decoded from cfm value) */
264 int sol; /* Size of locals (decoded from cfm value) */
265 int sor; /* Number of rotating registers. (decoded from cfm value) */
266 CORE_ADDR after_prologue;
267 /* Address of first instruction after the last
268 prologue instruction; Note that there may
269 be instructions from the function's body
270 intermingled with the prologue. */
271 int mem_stack_frame_size;
272 /* Size of the memory stack frame (may be zero),
273 or -1 if it has not been determined yet. */
274 int fp_reg; /* Register number (if any) used a frame pointer
244bc108 275 for this frame. 0 if no register is being used
16461d7d 276 as the frame pointer. */
004d836a
JJ
277
278 /* Saved registers. */
279 CORE_ADDR saved_regs[NUM_IA64_RAW_REGS];
280
281};
244bc108 282
004d836a
JJ
283int
284ia64_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
285 struct reggroup *group)
16461d7d 286{
004d836a
JJ
287 int vector_p;
288 int float_p;
289 int raw_p;
290 if (group == all_reggroup)
291 return 1;
292 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
293 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
294 raw_p = regnum < NUM_IA64_RAW_REGS;
295 if (group == float_reggroup)
296 return float_p;
297 if (group == vector_reggroup)
298 return vector_p;
299 if (group == general_reggroup)
300 return (!vector_p && !float_p);
301 if (group == save_reggroup || group == restore_reggroup)
302 return raw_p;
303 return 0;
16461d7d
KB
304}
305
004d836a 306static const char *
d93859e2 307ia64_register_name (struct gdbarch *gdbarch, int reg)
16461d7d 308{
004d836a 309 return ia64_register_names[reg];
16461d7d
KB
310}
311
004d836a
JJ
312struct type *
313ia64_register_type (struct gdbarch *arch, int reg)
16461d7d 314{
004d836a
JJ
315 if (reg >= IA64_FR0_REGNUM && reg <= IA64_FR127_REGNUM)
316 return builtin_type_ia64_ext;
317 else
0dfff4cb 318 return builtin_type (arch)->builtin_long;
16461d7d
KB
319}
320
a78f21af 321static int
d3f73121 322ia64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
16461d7d 323{
004d836a
JJ
324 if (reg >= IA64_GR32_REGNUM && reg <= IA64_GR127_REGNUM)
325 return V32_REGNUM + (reg - IA64_GR32_REGNUM);
326 return reg;
16461d7d
KB
327}
328
4afcc598 329static int
2fda21a6 330floatformat_valid (const struct floatformat *fmt, const void *from)
4afcc598
JJ
331{
332 return 1;
333}
334
16461d7d
KB
335const struct floatformat floatformat_ia64_ext =
336{
337 floatformat_little, 82, 0, 1, 17, 65535, 0x1ffff, 18, 64,
b14d30e1 338 floatformat_intbit_yes, "floatformat_ia64_ext", floatformat_valid, NULL
16461d7d
KB
339};
340
8da61cc4
DJ
341const struct floatformat *floatformats_ia64_ext[2] =
342{
343 &floatformat_ia64_ext,
344 &floatformat_ia64_ext
345};
346
16461d7d
KB
347
348/* Extract ``len'' bits from an instruction bundle starting at
349 bit ``from''. */
350
244bc108 351static long long
15c1e57f 352extract_bit_field (const char *bundle, int from, int len)
16461d7d
KB
353{
354 long long result = 0LL;
355 int to = from + len;
356 int from_byte = from / 8;
357 int to_byte = to / 8;
358 unsigned char *b = (unsigned char *) bundle;
359 unsigned char c;
360 int lshift;
361 int i;
362
363 c = b[from_byte];
364 if (from_byte == to_byte)
365 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
366 result = c >> (from % 8);
367 lshift = 8 - (from % 8);
368
369 for (i = from_byte+1; i < to_byte; i++)
370 {
371 result |= ((long long) b[i]) << lshift;
372 lshift += 8;
373 }
374
375 if (from_byte < to_byte && (to % 8 != 0))
376 {
377 c = b[to_byte];
378 c = ((unsigned char) (c << (8 - to % 8))) >> (8 - to % 8);
379 result |= ((long long) c) << lshift;
380 }
381
382 return result;
383}
384
385/* Replace the specified bits in an instruction bundle */
386
244bc108 387static void
16461d7d
KB
388replace_bit_field (char *bundle, long long val, int from, int len)
389{
390 int to = from + len;
391 int from_byte = from / 8;
392 int to_byte = to / 8;
393 unsigned char *b = (unsigned char *) bundle;
394 unsigned char c;
395
396 if (from_byte == to_byte)
397 {
398 unsigned char left, right;
399 c = b[from_byte];
400 left = (c >> (to % 8)) << (to % 8);
401 right = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
402 c = (unsigned char) (val & 0xff);
403 c = (unsigned char) (c << (from % 8 + 8 - to % 8)) >> (8 - to % 8);
404 c |= right | left;
405 b[from_byte] = c;
406 }
407 else
408 {
409 int i;
410 c = b[from_byte];
411 c = ((unsigned char) (c << (8 - from % 8))) >> (8 - from % 8);
412 c = c | (val << (from % 8));
413 b[from_byte] = c;
414 val >>= 8 - from % 8;
415
416 for (i = from_byte+1; i < to_byte; i++)
417 {
418 c = val & 0xff;
419 val >>= 8;
420 b[i] = c;
421 }
422
423 if (to % 8 != 0)
424 {
425 unsigned char cv = (unsigned char) val;
426 c = b[to_byte];
427 c = c >> (to % 8) << (to % 8);
428 c |= ((unsigned char) (cv << (8 - to % 8))) >> (8 - to % 8);
429 b[to_byte] = c;
430 }
431 }
432}
433
434/* Return the contents of slot N (for N = 0, 1, or 2) in
435 and instruction bundle */
436
244bc108 437static long long
2fc3ac7e 438slotN_contents (char *bundle, int slotnum)
16461d7d
KB
439{
440 return extract_bit_field (bundle, 5+41*slotnum, 41);
441}
442
443/* Store an instruction in an instruction bundle */
444
244bc108 445static void
2fc3ac7e 446replace_slotN_contents (char *bundle, long long instr, int slotnum)
16461d7d
KB
447{
448 replace_bit_field (bundle, instr, 5+41*slotnum, 41);
449}
450
939c61fa 451static const enum instruction_type template_encoding_table[32][3] =
16461d7d
KB
452{
453 { M, I, I }, /* 00 */
454 { M, I, I }, /* 01 */
455 { M, I, I }, /* 02 */
456 { M, I, I }, /* 03 */
457 { M, L, X }, /* 04 */
458 { M, L, X }, /* 05 */
459 { undefined, undefined, undefined }, /* 06 */
460 { undefined, undefined, undefined }, /* 07 */
461 { M, M, I }, /* 08 */
462 { M, M, I }, /* 09 */
463 { M, M, I }, /* 0A */
464 { M, M, I }, /* 0B */
465 { M, F, I }, /* 0C */
466 { M, F, I }, /* 0D */
467 { M, M, F }, /* 0E */
468 { M, M, F }, /* 0F */
469 { M, I, B }, /* 10 */
470 { M, I, B }, /* 11 */
471 { M, B, B }, /* 12 */
472 { M, B, B }, /* 13 */
473 { undefined, undefined, undefined }, /* 14 */
474 { undefined, undefined, undefined }, /* 15 */
475 { B, B, B }, /* 16 */
476 { B, B, B }, /* 17 */
477 { M, M, B }, /* 18 */
478 { M, M, B }, /* 19 */
479 { undefined, undefined, undefined }, /* 1A */
480 { undefined, undefined, undefined }, /* 1B */
481 { M, F, B }, /* 1C */
482 { M, F, B }, /* 1D */
483 { undefined, undefined, undefined }, /* 1E */
484 { undefined, undefined, undefined }, /* 1F */
485};
486
487/* Fetch and (partially) decode an instruction at ADDR and return the
488 address of the next instruction to fetch. */
489
490static CORE_ADDR
491fetch_instruction (CORE_ADDR addr, instruction_type *it, long long *instr)
492{
493 char bundle[BUNDLE_LEN];
494 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
495 long long template;
496 int val;
497
c26e1c2b
KB
498 /* Warn about slot numbers greater than 2. We used to generate
499 an error here on the assumption that the user entered an invalid
500 address. But, sometimes GDB itself requests an invalid address.
501 This can (easily) happen when execution stops in a function for
502 which there are no symbols. The prologue scanner will attempt to
503 find the beginning of the function - if the nearest symbol
504 happens to not be aligned on a bundle boundary (16 bytes), the
505 resulting starting address will cause GDB to think that the slot
506 number is too large.
507
508 So we warn about it and set the slot number to zero. It is
509 not necessarily a fatal condition, particularly if debugging
510 at the assembly language level. */
16461d7d 511 if (slotnum > 2)
c26e1c2b 512 {
8a3fe4f8
AC
513 warning (_("Can't fetch instructions for slot numbers greater than 2.\n"
514 "Using slot 0 instead"));
c26e1c2b
KB
515 slotnum = 0;
516 }
16461d7d
KB
517
518 addr &= ~0x0f;
519
520 val = target_read_memory (addr, bundle, BUNDLE_LEN);
521
522 if (val != 0)
523 return 0;
524
525 *instr = slotN_contents (bundle, slotnum);
526 template = extract_bit_field (bundle, 0, 5);
527 *it = template_encoding_table[(int)template][slotnum];
528
64a5b29c 529 if (slotnum == 2 || (slotnum == 1 && *it == L))
16461d7d
KB
530 addr += 16;
531 else
532 addr += (slotnum + 1) * SLOT_MULTIPLIER;
533
534 return addr;
535}
536
537/* There are 5 different break instructions (break.i, break.b,
538 break.m, break.f, and break.x), but they all have the same
539 encoding. (The five bit template in the low five bits of the
540 instruction bundle distinguishes one from another.)
541
542 The runtime architecture manual specifies that break instructions
543 used for debugging purposes must have the upper two bits of the 21
544 bit immediate set to a 0 and a 1 respectively. A breakpoint
545 instruction encodes the most significant bit of its 21 bit
546 immediate at bit 36 of the 41 bit instruction. The penultimate msb
547 is at bit 25 which leads to the pattern below.
548
549 Originally, I had this set up to do, e.g, a "break.i 0x80000" But
550 it turns out that 0x80000 was used as the syscall break in the early
551 simulators. So I changed the pattern slightly to do "break.i 0x080001"
552 instead. But that didn't work either (I later found out that this
553 pattern was used by the simulator that I was using.) So I ended up
939c61fa
JK
554 using the pattern seen below.
555
556 SHADOW_CONTENTS has byte-based addressing (PLACED_ADDRESS and SHADOW_LEN)
557 while we need bit-based addressing as the instructions length is 41 bits and
558 we must not modify/corrupt the adjacent slots in the same bundle.
559 Fortunately we may store larger memory incl. the adjacent bits with the
560 original memory content (not the possibly already stored breakpoints there).
561 We need to be careful in ia64_memory_remove_breakpoint to always restore
562 only the specific bits of this instruction ignoring any adjacent stored
563 bits.
564
565 We use the original addressing with the low nibble in the range <0..2> which
566 gets incorrectly interpreted by generic non-ia64 breakpoint_restore_shadows
567 as the direct byte offset of SHADOW_CONTENTS. We store whole BUNDLE_LEN
568 bytes just without these two possibly skipped bytes to not to exceed to the
569 next bundle.
570
571 If we would like to store the whole bundle to SHADOW_CONTENTS we would have
572 to store already the base address (`address & ~0x0f') into PLACED_ADDRESS.
573 In such case there is no other place where to store
574 SLOTNUM (`adress & 0x0f', value in the range <0..2>). We need to know
575 SLOTNUM in ia64_memory_remove_breakpoint.
576
577 ia64 16-byte bundle layout:
578 | 5 bits | slot 0 with 41 bits | slot 1 with 41 bits | slot 2 with 41 bits |
579
580 The current addressing used by the code below:
581 original PC placed_address placed_size required covered
582 == bp_tgt->shadow_len reqd \subset covered
583 0xABCDE0 0xABCDE0 0xE <0x0...0x5> <0x0..0xD>
584 0xABCDE1 0xABCDE1 0xE <0x5...0xA> <0x1..0xE>
585 0xABCDE2 0xABCDE2 0xE <0xA...0xF> <0x2..0xF>
586
587 `objdump -d' and some other tools show a bit unjustified offsets:
588 original PC byte where starts the instruction objdump offset
589 0xABCDE0 0xABCDE0 0xABCDE0
590 0xABCDE1 0xABCDE5 0xABCDE6
591 0xABCDE2 0xABCDEA 0xABCDEC
592 */
16461d7d 593
aaab4dba 594#define IA64_BREAKPOINT 0x00003333300LL
16461d7d
KB
595
596static int
ae4b2284
MD
597ia64_memory_insert_breakpoint (struct gdbarch *gdbarch,
598 struct bp_target_info *bp_tgt)
16461d7d 599{
8181d85f 600 CORE_ADDR addr = bp_tgt->placed_address;
939c61fa 601 gdb_byte bundle[BUNDLE_LEN];
16461d7d 602 int slotnum = (int) (addr & 0x0f) / SLOT_MULTIPLIER;
939c61fa 603 long long instr_breakpoint;
16461d7d 604 int val;
126fa72d 605 int template;
939c61fa 606 struct cleanup *cleanup;
16461d7d
KB
607
608 if (slotnum > 2)
8a3fe4f8 609 error (_("Can't insert breakpoint for slot numbers greater than 2."));
16461d7d
KB
610
611 addr &= ~0x0f;
612
939c61fa
JK
613 /* Disable the automatic memory restoration from breakpoints while
614 we read our instruction bundle. Otherwise, the general restoration
615 mechanism kicks in and we would possibly remove parts of the adjacent
616 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
617 breakpoint instruction bits region. */
618 cleanup = make_show_memory_breakpoints_cleanup (1);
16461d7d 619 val = target_read_memory (addr, bundle, BUNDLE_LEN);
126fa72d 620
939c61fa
JK
621 /* Check for L type instruction in slot 1, if present then bump up the slot
622 number to the slot 2. */
126fa72d 623 template = extract_bit_field (bundle, 0, 5);
939c61fa
JK
624 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
625 slotnum = 2;
626
627 /* Slot number 2 may skip at most 2 bytes at the beginning. */
628 bp_tgt->placed_size = bp_tgt->shadow_len = BUNDLE_LEN - 2;
629
630 /* Store the whole bundle, except for the initial skipped bytes by the slot
631 number interpreted as bytes offset in PLACED_ADDRESS. */
632 memcpy (bp_tgt->shadow_contents, bundle + slotnum, bp_tgt->shadow_len);
633
634 /* Breakpoints already present in the code will get deteacted and not get
635 reinserted by bp_loc_is_permanent. Multiple breakpoints at the same
636 location cannot induce the internal error as they are optimized into
637 a single instance by update_global_location_list. */
638 instr_breakpoint = slotN_contents (bundle, slotnum);
639 if (instr_breakpoint == IA64_BREAKPOINT)
640 internal_error (__FILE__, __LINE__,
641 _("Address %s already contains a breakpoint."),
642 paddr_nz (bp_tgt->placed_address));
aaab4dba 643 replace_slotN_contents (bundle, IA64_BREAKPOINT, slotnum);
939c61fa 644
16461d7d 645 if (val == 0)
939c61fa
JK
646 val = target_write_memory (addr + slotnum, bundle + slotnum,
647 bp_tgt->shadow_len);
16461d7d 648
939c61fa 649 do_cleanups (cleanup);
16461d7d
KB
650 return val;
651}
652
653static int
ae4b2284
MD
654ia64_memory_remove_breakpoint (struct gdbarch *gdbarch,
655 struct bp_target_info *bp_tgt)
16461d7d 656{
8181d85f 657 CORE_ADDR addr = bp_tgt->placed_address;
939c61fa 658 gdb_byte bundle_mem[BUNDLE_LEN], bundle_saved[BUNDLE_LEN];
16461d7d 659 int slotnum = (addr & 0x0f) / SLOT_MULTIPLIER;
939c61fa 660 long long instr_breakpoint, instr_saved;
16461d7d 661 int val;
126fa72d 662 int template;
1de34ab7 663 struct cleanup *cleanup;
16461d7d
KB
664
665 addr &= ~0x0f;
666
1de34ab7
JB
667 /* Disable the automatic memory restoration from breakpoints while
668 we read our instruction bundle. Otherwise, the general restoration
939c61fa
JK
669 mechanism kicks in and we would possibly remove parts of the adjacent
670 placed breakpoints. It is due to our SHADOW_CONTENTS overlapping the real
671 breakpoint instruction bits region. */
1de34ab7 672 cleanup = make_show_memory_breakpoints_cleanup (1);
939c61fa 673 val = target_read_memory (addr, bundle_mem, BUNDLE_LEN);
126fa72d 674
939c61fa
JK
675 /* Check for L type instruction in slot 1, if present then bump up the slot
676 number to the slot 2. */
677 template = extract_bit_field (bundle_mem, 0, 5);
678 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
679 slotnum = 2;
680
681 gdb_assert (bp_tgt->placed_size == BUNDLE_LEN - 2);
682 gdb_assert (bp_tgt->placed_size == bp_tgt->shadow_len);
683
684 instr_breakpoint = slotN_contents (bundle_mem, slotnum);
685 if (instr_breakpoint != IA64_BREAKPOINT)
126fa72d 686 {
939c61fa
JK
687 warning (_("Cannot remove breakpoint at address %s, "
688 "no break instruction at such address."),
689 paddr_nz (bp_tgt->placed_address));
690 return -1;
126fa72d
PS
691 }
692
939c61fa
JK
693 /* Extract the original saved instruction from SLOTNUM normalizing its
694 bit-shift for INSTR_SAVED. */
695 memcpy (bundle_saved, bundle_mem, BUNDLE_LEN);
696 memcpy (bundle_saved + slotnum, bp_tgt->shadow_contents, bp_tgt->shadow_len);
697 instr_saved = slotN_contents (bundle_saved, slotnum);
698
699 /* In BUNDLE_MEM be careful to modify only the bits belonging to SLOTNUM and
700 never any other possibly also stored in SHADOW_CONTENTS. */
701 replace_slotN_contents (bundle_mem, instr_saved, slotnum);
16461d7d 702 if (val == 0)
939c61fa 703 val = target_write_memory (addr, bundle_mem, BUNDLE_LEN);
16461d7d 704
1de34ab7 705 do_cleanups (cleanup);
16461d7d
KB
706 return val;
707}
708
939c61fa
JK
709/* As gdbarch_breakpoint_from_pc ranges have byte granularity and ia64
710 instruction slots ranges are bit-granular (41 bits) we have to provide an
711 extended range as described for ia64_memory_insert_breakpoint. We also take
712 care of preserving the `break' instruction 21-bit (or 62-bit) parameter to
713 make a match for permanent breakpoints. */
714
715static const gdb_byte *
67d57894 716ia64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
16461d7d 717{
939c61fa
JK
718 CORE_ADDR addr = *pcptr;
719 static gdb_byte bundle[BUNDLE_LEN];
720 int slotnum = (int) (*pcptr & 0x0f) / SLOT_MULTIPLIER;
721 long long instr_fetched;
722 int val;
723 int template;
724 struct cleanup *cleanup;
725
726 if (slotnum > 2)
727 error (_("Can't insert breakpoint for slot numbers greater than 2."));
728
729 addr &= ~0x0f;
730
731 /* Enable the automatic memory restoration from breakpoints while
732 we read our instruction bundle to match bp_loc_is_permanent. */
733 cleanup = make_show_memory_breakpoints_cleanup (0);
734 val = target_read_memory (addr, bundle, BUNDLE_LEN);
735 do_cleanups (cleanup);
736
737 /* The memory might be unreachable. This can happen, for instance,
738 when the user inserts a breakpoint at an invalid address. */
739 if (val != 0)
740 return NULL;
741
742 /* Check for L type instruction in slot 1, if present then bump up the slot
743 number to the slot 2. */
744 template = extract_bit_field (bundle, 0, 5);
745 if (slotnum == 1 && template_encoding_table[template][slotnum] == L)
746 slotnum = 2;
747
748 /* A break instruction has its all its opcode bits cleared except for
749 the parameter value. For L+X slot pair we are at the X slot (slot 2) so
750 we should not touch the L slot - the upper 41 bits of the parameter. */
751 instr_fetched = slotN_contents (bundle, slotnum);
752 instr_fetched &= 0x1003ffffc0;
753 replace_slotN_contents (bundle, instr_fetched, slotnum);
754
755 *lenptr = BUNDLE_LEN - 2;
756
757 /* SLOTNUM is possibly already locally modified - use caller's *PCPTR. */
758 return bundle + (*pcptr & 0x0f);
16461d7d
KB
759}
760
a78f21af 761static CORE_ADDR
61a1198a 762ia64_read_pc (struct regcache *regcache)
16461d7d 763{
61a1198a
UW
764 ULONGEST psr_value, pc_value;
765 int slot_num;
766
767 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
768 regcache_cooked_read_unsigned (regcache, IA64_IP_REGNUM, &pc_value);
769 slot_num = (psr_value >> 41) & 3;
16461d7d
KB
770
771 return pc_value | (slot_num * SLOT_MULTIPLIER);
772}
773
54a5c8d8 774void
61a1198a 775ia64_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
16461d7d
KB
776{
777 int slot_num = (int) (new_pc & 0xf) / SLOT_MULTIPLIER;
61a1198a
UW
778 ULONGEST psr_value;
779
780 regcache_cooked_read_unsigned (regcache, IA64_PSR_REGNUM, &psr_value);
16461d7d 781 psr_value &= ~(3LL << 41);
61a1198a 782 psr_value |= (ULONGEST)(slot_num & 0x3) << 41;
16461d7d
KB
783
784 new_pc &= ~0xfLL;
785
61a1198a
UW
786 regcache_cooked_write_unsigned (regcache, IA64_PSR_REGNUM, psr_value);
787 regcache_cooked_write_unsigned (regcache, IA64_IP_REGNUM, new_pc);
16461d7d
KB
788}
789
790#define IS_NaT_COLLECTION_ADDR(addr) ((((addr) >> 3) & 0x3f) == 0x3f)
791
792/* Returns the address of the slot that's NSLOTS slots away from
793 the address ADDR. NSLOTS may be positive or negative. */
794static CORE_ADDR
795rse_address_add(CORE_ADDR addr, int nslots)
796{
797 CORE_ADDR new_addr;
798 int mandatory_nat_slots = nslots / 63;
799 int direction = nslots < 0 ? -1 : 1;
800
801 new_addr = addr + 8 * (nslots + mandatory_nat_slots);
802
803 if ((new_addr >> 9) != ((addr + 8 * 64 * mandatory_nat_slots) >> 9))
804 new_addr += 8 * direction;
805
806 if (IS_NaT_COLLECTION_ADDR(new_addr))
807 new_addr += 8 * direction;
808
809 return new_addr;
810}
811
004d836a
JJ
812static void
813ia64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
88d82102 814 int regnum, gdb_byte *buf)
16461d7d 815{
004d836a 816 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
244bc108 817 {
88d82102 818#ifdef HAVE_LIBUNWIND_IA64_H
c5a27d9c
JJ
819 /* First try and use the libunwind special reg accessor, otherwise fallback to
820 standard logic. */
821 if (!libunwind_is_initialized ()
45ecac4b 822 || libunwind_get_reg_special (gdbarch, regcache, regnum, buf) != 0)
88d82102 823#endif
004d836a 824 {
c5a27d9c
JJ
825 /* The fallback position is to assume that r32-r127 are found sequentially
826 in memory starting at $bof. This isn't always true, but without libunwind,
827 this is the best we can do. */
828 ULONGEST cfm;
829 ULONGEST bsp;
830 CORE_ADDR reg;
831 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
832 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
833
834 /* The bsp points at the end of the register frame so we
835 subtract the size of frame from it to get start of register frame. */
836 bsp = rse_address_add (bsp, -(cfm & 0x7f));
837
838 if ((cfm & 0x7f) > regnum - V32_REGNUM)
839 {
840 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
841 reg = read_memory_integer ((CORE_ADDR)reg_addr, 8);
088568da 842 store_unsigned_integer (buf, register_size (gdbarch, regnum), reg);
c5a27d9c
JJ
843 }
844 else
088568da 845 store_unsigned_integer (buf, register_size (gdbarch, regnum), 0);
004d836a 846 }
004d836a
JJ
847 }
848 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
849 {
850 ULONGEST unatN_val;
851 ULONGEST unat;
852 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
853 unatN_val = (unat & (1LL << (regnum - IA64_NAT0_REGNUM))) != 0;
088568da 854 store_unsigned_integer (buf, register_size (gdbarch, regnum), unatN_val);
004d836a
JJ
855 }
856 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
857 {
858 ULONGEST natN_val = 0;
859 ULONGEST bsp;
860 ULONGEST cfm;
861 CORE_ADDR gr_addr = 0;
862 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
863 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
864
865 /* The bsp points at the end of the register frame so we
866 subtract the size of frame from it to get start of register frame. */
867 bsp = rse_address_add (bsp, -(cfm & 0x7f));
868
869 if ((cfm & 0x7f) > regnum - V32_REGNUM)
870 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
871
872 if (gr_addr != 0)
873 {
874 /* Compute address of nat collection bits. */
875 CORE_ADDR nat_addr = gr_addr | 0x1f8;
876 CORE_ADDR nat_collection;
877 int nat_bit;
878 /* If our nat collection address is bigger than bsp, we have to get
879 the nat collection from rnat. Otherwise, we fetch the nat
880 collection from the computed address. */
881 if (nat_addr >= bsp)
882 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
883 else
884 nat_collection = read_memory_integer (nat_addr, 8);
885 nat_bit = (gr_addr >> 3) & 0x3f;
886 natN_val = (nat_collection >> nat_bit) & 1;
887 }
888
088568da 889 store_unsigned_integer (buf, register_size (gdbarch, regnum), natN_val);
244bc108 890 }
004d836a
JJ
891 else if (regnum == VBOF_REGNUM)
892 {
893 /* A virtual register frame start is provided for user convenience.
894 It can be calculated as the bsp - sof (sizeof frame). */
895 ULONGEST bsp, vbsp;
896 ULONGEST cfm;
897 CORE_ADDR reg;
898 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
899 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
900
901 /* The bsp points at the end of the register frame so we
902 subtract the size of frame from it to get beginning of frame. */
903 vbsp = rse_address_add (bsp, -(cfm & 0x7f));
088568da 904 store_unsigned_integer (buf, register_size (gdbarch, regnum), vbsp);
004d836a
JJ
905 }
906 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
907 {
908 ULONGEST pr;
909 ULONGEST cfm;
910 ULONGEST prN_val;
911 CORE_ADDR reg;
912 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
913 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
914
915 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
916 {
917 /* Fetch predicate register rename base from current frame
918 marker for this frame. */
919 int rrb_pr = (cfm >> 32) & 0x3f;
920
921 /* Adjust the register number to account for register rotation. */
922 regnum = VP16_REGNUM
923 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
924 }
925 prN_val = (pr & (1LL << (regnum - VP0_REGNUM))) != 0;
088568da 926 store_unsigned_integer (buf, register_size (gdbarch, regnum), prN_val);
004d836a
JJ
927 }
928 else
088568da 929 memset (buf, 0, register_size (gdbarch, regnum));
16461d7d
KB
930}
931
004d836a
JJ
932static void
933ia64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
88d82102 934 int regnum, const gdb_byte *buf)
16461d7d 935{
004d836a 936 if (regnum >= V32_REGNUM && regnum <= V127_REGNUM)
244bc108 937 {
004d836a
JJ
938 ULONGEST bsp;
939 ULONGEST cfm;
940 CORE_ADDR reg;
941 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
942 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
943
944 bsp = rse_address_add (bsp, -(cfm & 0x7f));
945
946 if ((cfm & 0x7f) > regnum - V32_REGNUM)
947 {
948 ULONGEST reg_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
949 write_memory (reg_addr, (void *)buf, 8);
950 }
951 }
952 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
953 {
954 ULONGEST unatN_val, unat, unatN_mask;
955 regcache_cooked_read_unsigned (regcache, IA64_UNAT_REGNUM, &unat);
088568da 956 unatN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
004d836a
JJ
957 unatN_mask = (1LL << (regnum - IA64_NAT0_REGNUM));
958 if (unatN_val == 0)
959 unat &= ~unatN_mask;
960 else if (unatN_val == 1)
961 unat |= unatN_mask;
962 regcache_cooked_write_unsigned (regcache, IA64_UNAT_REGNUM, unat);
963 }
964 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
965 {
966 ULONGEST natN_val;
967 ULONGEST bsp;
968 ULONGEST cfm;
969 CORE_ADDR gr_addr = 0;
970 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
971 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
972
973 /* The bsp points at the end of the register frame so we
974 subtract the size of frame from it to get start of register frame. */
975 bsp = rse_address_add (bsp, -(cfm & 0x7f));
976
977 if ((cfm & 0x7f) > regnum - V32_REGNUM)
978 gr_addr = rse_address_add (bsp, (regnum - V32_REGNUM));
979
088568da 980 natN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
004d836a
JJ
981
982 if (gr_addr != 0 && (natN_val == 0 || natN_val == 1))
983 {
984 /* Compute address of nat collection bits. */
985 CORE_ADDR nat_addr = gr_addr | 0x1f8;
986 CORE_ADDR nat_collection;
987 int natN_bit = (gr_addr >> 3) & 0x3f;
988 ULONGEST natN_mask = (1LL << natN_bit);
989 /* If our nat collection address is bigger than bsp, we have to get
990 the nat collection from rnat. Otherwise, we fetch the nat
991 collection from the computed address. */
992 if (nat_addr >= bsp)
993 {
994 regcache_cooked_read_unsigned (regcache, IA64_RNAT_REGNUM, &nat_collection);
995 if (natN_val)
996 nat_collection |= natN_mask;
997 else
998 nat_collection &= ~natN_mask;
999 regcache_cooked_write_unsigned (regcache, IA64_RNAT_REGNUM, nat_collection);
1000 }
1001 else
1002 {
1003 char nat_buf[8];
1004 nat_collection = read_memory_integer (nat_addr, 8);
1005 if (natN_val)
1006 nat_collection |= natN_mask;
1007 else
1008 nat_collection &= ~natN_mask;
088568da 1009 store_unsigned_integer (nat_buf, register_size (gdbarch, regnum), nat_collection);
004d836a
JJ
1010 write_memory (nat_addr, nat_buf, 8);
1011 }
1012 }
1013 }
1014 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
1015 {
1016 ULONGEST pr;
1017 ULONGEST cfm;
1018 ULONGEST prN_val;
1019 ULONGEST prN_mask;
1020
1021 regcache_cooked_read_unsigned (regcache, IA64_PR_REGNUM, &pr);
1022 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
1023
1024 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
1025 {
1026 /* Fetch predicate register rename base from current frame
1027 marker for this frame. */
1028 int rrb_pr = (cfm >> 32) & 0x3f;
1029
1030 /* Adjust the register number to account for register rotation. */
1031 regnum = VP16_REGNUM
1032 + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
1033 }
088568da 1034 prN_val = extract_unsigned_integer (buf, register_size (gdbarch, regnum));
004d836a
JJ
1035 prN_mask = (1LL << (regnum - VP0_REGNUM));
1036 if (prN_val == 0)
1037 pr &= ~prN_mask;
1038 else if (prN_val == 1)
1039 pr |= prN_mask;
1040 regcache_cooked_write_unsigned (regcache, IA64_PR_REGNUM, pr);
244bc108 1041 }
16461d7d
KB
1042}
1043
004d836a
JJ
1044/* The ia64 needs to convert between various ieee floating-point formats
1045 and the special ia64 floating point register format. */
1046
1047static int
0abe36f5 1048ia64_convert_register_p (struct gdbarch *gdbarch, int regno, struct type *type)
004d836a 1049{
83acabca
DJ
1050 return (regno >= IA64_FR0_REGNUM && regno <= IA64_FR127_REGNUM
1051 && type != builtin_type_ia64_ext);
004d836a
JJ
1052}
1053
1054static void
1055ia64_register_to_value (struct frame_info *frame, int regnum,
88d82102 1056 struct type *valtype, gdb_byte *out)
004d836a
JJ
1057{
1058 char in[MAX_REGISTER_SIZE];
1059 frame_register_read (frame, regnum, in);
1060 convert_typed_floating (in, builtin_type_ia64_ext, out, valtype);
1061}
1062
1063static void
1064ia64_value_to_register (struct frame_info *frame, int regnum,
88d82102 1065 struct type *valtype, const gdb_byte *in)
004d836a
JJ
1066{
1067 char out[MAX_REGISTER_SIZE];
1068 convert_typed_floating (in, valtype, out, builtin_type_ia64_ext);
1069 put_frame_register (frame, regnum, out);
1070}
1071
1072
58ab00f9
KB
1073/* Limit the number of skipped non-prologue instructions since examining
1074 of the prologue is expensive. */
5ea2bd7f 1075static int max_skip_non_prologue_insns = 40;
58ab00f9
KB
1076
1077/* Given PC representing the starting address of a function, and
1078 LIM_PC which is the (sloppy) limit to which to scan when looking
1079 for a prologue, attempt to further refine this limit by using
1080 the line data in the symbol table. If successful, a better guess
1081 on where the prologue ends is returned, otherwise the previous
1082 value of lim_pc is returned. TRUST_LIMIT is a pointer to a flag
1083 which will be set to indicate whether the returned limit may be
1084 used with no further scanning in the event that the function is
1085 frameless. */
1086
634aa483
AC
1087/* FIXME: cagney/2004-02-14: This function and logic have largely been
1088 superseded by skip_prologue_using_sal. */
1089
58ab00f9
KB
1090static CORE_ADDR
1091refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc, int *trust_limit)
1092{
1093 struct symtab_and_line prologue_sal;
1094 CORE_ADDR start_pc = pc;
39312971
JB
1095 CORE_ADDR end_pc;
1096
1097 /* The prologue can not possibly go past the function end itself,
1098 so we can already adjust LIM_PC accordingly. */
1099 if (find_pc_partial_function (pc, NULL, NULL, &end_pc) && end_pc < lim_pc)
1100 lim_pc = end_pc;
58ab00f9
KB
1101
1102 /* Start off not trusting the limit. */
1103 *trust_limit = 0;
1104
1105 prologue_sal = find_pc_line (pc, 0);
1106 if (prologue_sal.line != 0)
1107 {
1108 int i;
1109 CORE_ADDR addr = prologue_sal.end;
1110
1111 /* Handle the case in which compiler's optimizer/scheduler
1112 has moved instructions into the prologue. We scan ahead
1113 in the function looking for address ranges whose corresponding
1114 line number is less than or equal to the first one that we
1115 found for the function. (It can be less than when the
1116 scheduler puts a body instruction before the first prologue
1117 instruction.) */
1118 for (i = 2 * max_skip_non_prologue_insns;
1119 i > 0 && (lim_pc == 0 || addr < lim_pc);
1120 i--)
1121 {
1122 struct symtab_and_line sal;
1123
1124 sal = find_pc_line (addr, 0);
1125 if (sal.line == 0)
1126 break;
1127 if (sal.line <= prologue_sal.line
1128 && sal.symtab == prologue_sal.symtab)
1129 {
1130 prologue_sal = sal;
1131 }
1132 addr = sal.end;
1133 }
1134
1135 if (lim_pc == 0 || prologue_sal.end < lim_pc)
1136 {
1137 lim_pc = prologue_sal.end;
1138 if (start_pc == get_pc_function_start (lim_pc))
1139 *trust_limit = 1;
1140 }
1141 }
1142 return lim_pc;
1143}
1144
16461d7d
KB
1145#define isScratch(_regnum_) ((_regnum_) == 2 || (_regnum_) == 3 \
1146 || (8 <= (_regnum_) && (_regnum_) <= 11) \
1147 || (14 <= (_regnum_) && (_regnum_) <= 31))
1148#define imm9(_instr_) \
1149 ( ((((_instr_) & 0x01000000000LL) ? -1 : 0) << 8) \
1150 | (((_instr_) & 0x00008000000LL) >> 20) \
1151 | (((_instr_) & 0x00000001fc0LL) >> 6))
1152
004d836a
JJ
1153/* Allocate and initialize a frame cache. */
1154
1155static struct ia64_frame_cache *
1156ia64_alloc_frame_cache (void)
1157{
1158 struct ia64_frame_cache *cache;
1159 int i;
1160
1161 cache = FRAME_OBSTACK_ZALLOC (struct ia64_frame_cache);
1162
1163 /* Base address. */
1164 cache->base = 0;
1165 cache->pc = 0;
1166 cache->cfm = 0;
4afcc598 1167 cache->prev_cfm = 0;
004d836a
JJ
1168 cache->sof = 0;
1169 cache->sol = 0;
1170 cache->sor = 0;
1171 cache->bsp = 0;
1172 cache->fp_reg = 0;
1173 cache->frameless = 1;
1174
1175 for (i = 0; i < NUM_IA64_RAW_REGS; i++)
1176 cache->saved_regs[i] = 0;
1177
1178 return cache;
1179}
1180
16461d7d 1181static CORE_ADDR
15c1e57f
JB
1182examine_prologue (CORE_ADDR pc, CORE_ADDR lim_pc,
1183 struct frame_info *this_frame,
1184 struct ia64_frame_cache *cache)
16461d7d
KB
1185{
1186 CORE_ADDR next_pc;
1187 CORE_ADDR last_prologue_pc = pc;
16461d7d
KB
1188 instruction_type it;
1189 long long instr;
16461d7d
KB
1190 int cfm_reg = 0;
1191 int ret_reg = 0;
1192 int fp_reg = 0;
1193 int unat_save_reg = 0;
1194 int pr_save_reg = 0;
1195 int mem_stack_frame_size = 0;
1196 int spill_reg = 0;
1197 CORE_ADDR spill_addr = 0;
0927a22b
KB
1198 char instores[8];
1199 char infpstores[8];
5ea2bd7f 1200 char reg_contents[256];
58ab00f9 1201 int trust_limit;
004d836a
JJ
1202 int frameless = 1;
1203 int i;
1204 CORE_ADDR addr;
1205 char buf[8];
1206 CORE_ADDR bof, sor, sol, sof, cfm, rrb_gr;
0927a22b
KB
1207
1208 memset (instores, 0, sizeof instores);
1209 memset (infpstores, 0, sizeof infpstores);
5ea2bd7f 1210 memset (reg_contents, 0, sizeof reg_contents);
16461d7d 1211
004d836a
JJ
1212 if (cache->after_prologue != 0
1213 && cache->after_prologue <= lim_pc)
1214 return cache->after_prologue;
16461d7d 1215
58ab00f9 1216 lim_pc = refine_prologue_limit (pc, lim_pc, &trust_limit);
16461d7d 1217 next_pc = fetch_instruction (pc, &it, &instr);
5ea2bd7f
JJ
1218
1219 /* We want to check if we have a recognizable function start before we
1220 look ahead for a prologue. */
16461d7d
KB
1221 if (pc < lim_pc && next_pc
1222 && it == M && ((instr & 0x1ee0000003fLL) == 0x02c00000000LL))
1223 {
5ea2bd7f 1224 /* alloc - start of a regular function. */
16461d7d
KB
1225 int sor = (int) ((instr & 0x00078000000LL) >> 27);
1226 int sol = (int) ((instr & 0x00007f00000LL) >> 20);
1227 int sof = (int) ((instr & 0x000000fe000LL) >> 13);
16461d7d 1228 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
004d836a
JJ
1229
1230 /* Verify that the current cfm matches what we think is the
1231 function start. If we have somehow jumped within a function,
1232 we do not want to interpret the prologue and calculate the
1233 addresses of various registers such as the return address.
1234 We will instead treat the frame as frameless. */
15c1e57f 1235 if (!this_frame ||
004d836a
JJ
1236 (sof == (cache->cfm & 0x7f) &&
1237 sol == ((cache->cfm >> 7) & 0x7f)))
1238 frameless = 0;
1239
16461d7d
KB
1240 cfm_reg = rN;
1241 last_prologue_pc = next_pc;
1242 pc = next_pc;
1243 }
1244 else
58ab00f9 1245 {
5ea2bd7f
JJ
1246 /* Look for a leaf routine. */
1247 if (pc < lim_pc && next_pc
1248 && (it == I || it == M)
1249 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1250 {
1251 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1252 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1253 | ((instr & 0x001f8000000LL) >> 20)
1254 | ((instr & 0x000000fe000LL) >> 13));
1255 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1256 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1257 int qp = (int) (instr & 0x0000000003fLL);
1258 if (qp == 0 && rN == 2 && imm == 0 && rM == 12 && fp_reg == 0)
1259 {
1260 /* mov r2, r12 - beginning of leaf routine */
1261 fp_reg = rN;
5ea2bd7f
JJ
1262 last_prologue_pc = next_pc;
1263 }
1264 }
1265
1266 /* If we don't recognize a regular function or leaf routine, we are
1267 done. */
1268 if (!fp_reg)
1269 {
1270 pc = lim_pc;
1271 if (trust_limit)
1272 last_prologue_pc = lim_pc;
1273 }
58ab00f9 1274 }
16461d7d
KB
1275
1276 /* Loop, looking for prologue instructions, keeping track of
1277 where preserved registers were spilled. */
1278 while (pc < lim_pc)
1279 {
1280 next_pc = fetch_instruction (pc, &it, &instr);
1281 if (next_pc == 0)
1282 break;
1283
594706e6 1284 if (it == B && ((instr & 0x1e1f800003fLL) != 0x04000000000LL))
0927a22b 1285 {
102d615a
JJ
1286 /* Exit loop upon hitting a non-nop branch instruction. */
1287 if (trust_limit)
1288 lim_pc = pc;
1289 break;
1290 }
1291 else if (((instr & 0x3fLL) != 0LL) &&
1292 (frameless || ret_reg != 0))
1293 {
1294 /* Exit loop upon hitting a predicated instruction if
1295 we already have the return register or if we are frameless. */
5ea2bd7f
JJ
1296 if (trust_limit)
1297 lim_pc = pc;
0927a22b
KB
1298 break;
1299 }
1300 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00188000000LL))
16461d7d
KB
1301 {
1302 /* Move from BR */
1303 int b2 = (int) ((instr & 0x0000000e000LL) >> 13);
1304 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1305 int qp = (int) (instr & 0x0000000003f);
1306
1307 if (qp == 0 && b2 == 0 && rN >= 32 && ret_reg == 0)
1308 {
1309 ret_reg = rN;
1310 last_prologue_pc = next_pc;
1311 }
1312 }
1313 else if ((it == I || it == M)
1314 && ((instr & 0x1ee00000000LL) == 0x10800000000LL))
1315 {
1316 /* adds rN = imm14, rM (or mov rN, rM when imm14 is 0) */
1317 int imm = (int) ((((instr & 0x01000000000LL) ? -1 : 0) << 13)
1318 | ((instr & 0x001f8000000LL) >> 20)
1319 | ((instr & 0x000000fe000LL) >> 13));
1320 int rM = (int) ((instr & 0x00007f00000LL) >> 20);
1321 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1322 int qp = (int) (instr & 0x0000000003fLL);
1323
1324 if (qp == 0 && rN >= 32 && imm == 0 && rM == 12 && fp_reg == 0)
1325 {
1326 /* mov rN, r12 */
1327 fp_reg = rN;
1328 last_prologue_pc = next_pc;
1329 }
1330 else if (qp == 0 && rN == 12 && rM == 12)
1331 {
1332 /* adds r12, -mem_stack_frame_size, r12 */
1333 mem_stack_frame_size -= imm;
1334 last_prologue_pc = next_pc;
1335 }
1336 else if (qp == 0 && rN == 2
1337 && ((rM == fp_reg && fp_reg != 0) || rM == 12))
1338 {
004d836a
JJ
1339 char buf[MAX_REGISTER_SIZE];
1340 CORE_ADDR saved_sp = 0;
16461d7d
KB
1341 /* adds r2, spilloffset, rFramePointer
1342 or
1343 adds r2, spilloffset, r12
1344
1345 Get ready for stf.spill or st8.spill instructions.
1346 The address to start spilling at is loaded into r2.
1347 FIXME: Why r2? That's what gcc currently uses; it
1348 could well be different for other compilers. */
1349
1350 /* Hmm... whether or not this will work will depend on
1351 where the pc is. If it's still early in the prologue
1352 this'll be wrong. FIXME */
15c1e57f 1353 if (this_frame)
004d836a 1354 {
15c1e57f 1355 get_frame_register (this_frame, sp_regnum, buf);
004d836a
JJ
1356 saved_sp = extract_unsigned_integer (buf, 8);
1357 }
1358 spill_addr = saved_sp
16461d7d
KB
1359 + (rM == 12 ? 0 : mem_stack_frame_size)
1360 + imm;
1361 spill_reg = rN;
1362 last_prologue_pc = next_pc;
1363 }
b7d038ae 1364 else if (qp == 0 && rM >= 32 && rM < 40 && !instores[rM-32] &&
5ea2bd7f
JJ
1365 rN < 256 && imm == 0)
1366 {
1367 /* mov rN, rM where rM is an input register */
1368 reg_contents[rN] = rM;
1369 last_prologue_pc = next_pc;
1370 }
1371 else if (frameless && qp == 0 && rN == fp_reg && imm == 0 &&
1372 rM == 2)
1373 {
1374 /* mov r12, r2 */
1375 last_prologue_pc = next_pc;
1376 break;
1377 }
16461d7d
KB
1378 }
1379 else if (it == M
1380 && ( ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
1381 || ((instr & 0x1ffc8000000LL) == 0x0cec0000000LL) ))
1382 {
1383 /* stf.spill [rN] = fM, imm9
1384 or
1385 stf.spill [rN] = fM */
1386
1387 int imm = imm9(instr);
1388 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1389 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1390 int qp = (int) (instr & 0x0000000003fLL);
1391 if (qp == 0 && rN == spill_reg && spill_addr != 0
1392 && ((2 <= fM && fM <= 5) || (16 <= fM && fM <= 31)))
1393 {
004d836a 1394 cache->saved_regs[IA64_FR0_REGNUM + fM] = spill_addr;
16461d7d 1395
594706e6 1396 if ((instr & 0x1efc0000000LL) == 0x0eec0000000LL)
16461d7d
KB
1397 spill_addr += imm;
1398 else
1399 spill_addr = 0; /* last one; must be done */
1400 last_prologue_pc = next_pc;
1401 }
1402 }
1403 else if ((it == M && ((instr & 0x1eff8000000LL) == 0x02110000000LL))
1404 || (it == I && ((instr & 0x1eff8000000LL) == 0x00050000000LL)) )
1405 {
1406 /* mov.m rN = arM
1407 or
1408 mov.i rN = arM */
1409
1410 int arM = (int) ((instr & 0x00007f00000LL) >> 20);
1411 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1412 int qp = (int) (instr & 0x0000000003fLL);
1413 if (qp == 0 && isScratch (rN) && arM == 36 /* ar.unat */)
1414 {
1415 /* We have something like "mov.m r3 = ar.unat". Remember the
1416 r3 (or whatever) and watch for a store of this register... */
1417 unat_save_reg = rN;
1418 last_prologue_pc = next_pc;
1419 }
1420 }
1421 else if (it == I && ((instr & 0x1eff8000000LL) == 0x00198000000LL))
1422 {
1423 /* mov rN = pr */
1424 int rN = (int) ((instr & 0x00000001fc0LL) >> 6);
1425 int qp = (int) (instr & 0x0000000003fLL);
1426 if (qp == 0 && isScratch (rN))
1427 {
1428 pr_save_reg = rN;
1429 last_prologue_pc = next_pc;
1430 }
1431 }
1432 else if (it == M
1433 && ( ((instr & 0x1ffc8000000LL) == 0x08cc0000000LL)
1434 || ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)))
1435 {
1436 /* st8 [rN] = rM
1437 or
1438 st8 [rN] = rM, imm9 */
1439 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1440 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1441 int qp = (int) (instr & 0x0000000003fLL);
5ea2bd7f 1442 int indirect = rM < 256 ? reg_contents[rM] : 0;
16461d7d
KB
1443 if (qp == 0 && rN == spill_reg && spill_addr != 0
1444 && (rM == unat_save_reg || rM == pr_save_reg))
1445 {
1446 /* We've found a spill of either the UNAT register or the PR
1447 register. (Well, not exactly; what we've actually found is
1448 a spill of the register that UNAT or PR was moved to).
1449 Record that fact and move on... */
1450 if (rM == unat_save_reg)
1451 {
1452 /* Track UNAT register */
004d836a 1453 cache->saved_regs[IA64_UNAT_REGNUM] = spill_addr;
16461d7d
KB
1454 unat_save_reg = 0;
1455 }
1456 else
1457 {
1458 /* Track PR register */
004d836a 1459 cache->saved_regs[IA64_PR_REGNUM] = spill_addr;
16461d7d
KB
1460 pr_save_reg = 0;
1461 }
1462 if ((instr & 0x1efc0000000LL) == 0x0acc0000000LL)
1463 /* st8 [rN] = rM, imm9 */
1464 spill_addr += imm9(instr);
1465 else
1466 spill_addr = 0; /* must be done spilling */
1467 last_prologue_pc = next_pc;
1468 }
0927a22b
KB
1469 else if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1470 {
1471 /* Allow up to one store of each input register. */
1472 instores[rM-32] = 1;
1473 last_prologue_pc = next_pc;
1474 }
5ea2bd7f
JJ
1475 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1476 !instores[indirect-32])
1477 {
1478 /* Allow an indirect store of an input register. */
1479 instores[indirect-32] = 1;
1480 last_prologue_pc = next_pc;
1481 }
0927a22b
KB
1482 }
1483 else if (it == M && ((instr & 0x1ff08000000LL) == 0x08c00000000LL))
1484 {
1485 /* One of
1486 st1 [rN] = rM
1487 st2 [rN] = rM
1488 st4 [rN] = rM
1489 st8 [rN] = rM
1490 Note that the st8 case is handled in the clause above.
1491
1492 Advance over stores of input registers. One store per input
1493 register is permitted. */
1494 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1495 int qp = (int) (instr & 0x0000000003fLL);
5ea2bd7f 1496 int indirect = rM < 256 ? reg_contents[rM] : 0;
0927a22b
KB
1497 if (qp == 0 && 32 <= rM && rM < 40 && !instores[rM-32])
1498 {
1499 instores[rM-32] = 1;
1500 last_prologue_pc = next_pc;
1501 }
5ea2bd7f
JJ
1502 else if (qp == 0 && 32 <= indirect && indirect < 40 &&
1503 !instores[indirect-32])
1504 {
1505 /* Allow an indirect store of an input register. */
1506 instores[indirect-32] = 1;
1507 last_prologue_pc = next_pc;
1508 }
0927a22b
KB
1509 }
1510 else if (it == M && ((instr & 0x1ff88000000LL) == 0x0cc80000000LL))
1511 {
1512 /* Either
1513 stfs [rN] = fM
1514 or
1515 stfd [rN] = fM
1516
1517 Advance over stores of floating point input registers. Again
1518 one store per register is permitted */
1519 int fM = (int) ((instr & 0x000000fe000LL) >> 13);
1520 int qp = (int) (instr & 0x0000000003fLL);
1521 if (qp == 0 && 8 <= fM && fM < 16 && !infpstores[fM - 8])
1522 {
1523 infpstores[fM-8] = 1;
1524 last_prologue_pc = next_pc;
1525 }
16461d7d
KB
1526 }
1527 else if (it == M
1528 && ( ((instr & 0x1ffc8000000LL) == 0x08ec0000000LL)
1529 || ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)))
1530 {
1531 /* st8.spill [rN] = rM
1532 or
1533 st8.spill [rN] = rM, imm9 */
1534 int rN = (int) ((instr & 0x00007f00000LL) >> 20);
1535 int rM = (int) ((instr & 0x000000fe000LL) >> 13);
1536 int qp = (int) (instr & 0x0000000003fLL);
1537 if (qp == 0 && rN == spill_reg && 4 <= rM && rM <= 7)
1538 {
1539 /* We've found a spill of one of the preserved general purpose
1540 regs. Record the spill address and advance the spill
1541 register if appropriate. */
004d836a 1542 cache->saved_regs[IA64_GR0_REGNUM + rM] = spill_addr;
16461d7d
KB
1543 if ((instr & 0x1efc0000000LL) == 0x0aec0000000LL)
1544 /* st8.spill [rN] = rM, imm9 */
1545 spill_addr += imm9(instr);
1546 else
1547 spill_addr = 0; /* Done spilling */
1548 last_prologue_pc = next_pc;
1549 }
1550 }
16461d7d
KB
1551
1552 pc = next_pc;
1553 }
1554
15c1e57f
JB
1555 /* If not frameless and we aren't called by skip_prologue, then we need
1556 to calculate registers for the previous frame which will be needed
1557 later. */
16461d7d 1558
15c1e57f 1559 if (!frameless && this_frame)
da50a4b7 1560 {
004d836a
JJ
1561 /* Extract the size of the rotating portion of the stack
1562 frame and the register rename base from the current
1563 frame marker. */
1564 cfm = cache->cfm;
1565 sor = cache->sor;
1566 sof = cache->sof;
1567 sol = cache->sol;
1568 rrb_gr = (cfm >> 18) & 0x7f;
1569
1570 /* Find the bof (beginning of frame). */
1571 bof = rse_address_add (cache->bsp, -sof);
1572
1573 for (i = 0, addr = bof;
1574 i < sof;
1575 i++, addr += 8)
1576 {
1577 if (IS_NaT_COLLECTION_ADDR (addr))
1578 {
1579 addr += 8;
1580 }
1581 if (i+32 == cfm_reg)
1582 cache->saved_regs[IA64_CFM_REGNUM] = addr;
1583 if (i+32 == ret_reg)
1584 cache->saved_regs[IA64_VRAP_REGNUM] = addr;
1585 if (i+32 == fp_reg)
1586 cache->saved_regs[IA64_VFP_REGNUM] = addr;
1587 }
16461d7d 1588
004d836a
JJ
1589 /* For the previous argument registers we require the previous bof.
1590 If we can't find the previous cfm, then we can do nothing. */
4afcc598 1591 cfm = 0;
004d836a
JJ
1592 if (cache->saved_regs[IA64_CFM_REGNUM] != 0)
1593 {
1594 cfm = read_memory_integer (cache->saved_regs[IA64_CFM_REGNUM], 8);
4afcc598
JJ
1595 }
1596 else if (cfm_reg != 0)
1597 {
15c1e57f 1598 get_frame_register (this_frame, cfm_reg, buf);
4afcc598
JJ
1599 cfm = extract_unsigned_integer (buf, 8);
1600 }
1601 cache->prev_cfm = cfm;
1602
1603 if (cfm != 0)
1604 {
004d836a
JJ
1605 sor = ((cfm >> 14) & 0xf) * 8;
1606 sof = (cfm & 0x7f);
1607 sol = (cfm >> 7) & 0x7f;
1608 rrb_gr = (cfm >> 18) & 0x7f;
1609
15c1e57f
JB
1610 /* The previous bof only requires subtraction of the sol (size of
1611 locals) due to the overlap between output and input of
1612 subsequent frames. */
004d836a
JJ
1613 bof = rse_address_add (bof, -sol);
1614
1615 for (i = 0, addr = bof;
1616 i < sof;
1617 i++, addr += 8)
1618 {
1619 if (IS_NaT_COLLECTION_ADDR (addr))
1620 {
1621 addr += 8;
1622 }
1623 if (i < sor)
1624 cache->saved_regs[IA64_GR32_REGNUM + ((i + (sor - rrb_gr)) % sor)]
1625 = addr;
1626 else
1627 cache->saved_regs[IA64_GR32_REGNUM + i] = addr;
1628 }
1629
1630 }
1631 }
1632
5ea2bd7f
JJ
1633 /* Try and trust the lim_pc value whenever possible. */
1634 if (trust_limit && lim_pc >= last_prologue_pc)
004d836a
JJ
1635 last_prologue_pc = lim_pc;
1636
1637 cache->frameless = frameless;
1638 cache->after_prologue = last_prologue_pc;
1639 cache->mem_stack_frame_size = mem_stack_frame_size;
1640 cache->fp_reg = fp_reg;
5ea2bd7f 1641
16461d7d
KB
1642 return last_prologue_pc;
1643}
1644
1645CORE_ADDR
6093d2eb 1646ia64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
16461d7d 1647{
004d836a
JJ
1648 struct ia64_frame_cache cache;
1649 cache.base = 0;
1650 cache.after_prologue = 0;
1651 cache.cfm = 0;
1652 cache.bsp = 0;
1653
1654 /* Call examine_prologue with - as third argument since we don't have a next frame pointer to send. */
1655 return examine_prologue (pc, pc+1024, 0, &cache);
16461d7d
KB
1656}
1657
004d836a
JJ
1658
1659/* Normal frames. */
1660
1661static struct ia64_frame_cache *
15c1e57f 1662ia64_frame_cache (struct frame_info *this_frame, void **this_cache)
16461d7d 1663{
004d836a
JJ
1664 struct ia64_frame_cache *cache;
1665 char buf[8];
1666 CORE_ADDR cfm, sof, sol, bsp, psr;
1667 int i;
16461d7d 1668
004d836a
JJ
1669 if (*this_cache)
1670 return *this_cache;
16461d7d 1671
004d836a
JJ
1672 cache = ia64_alloc_frame_cache ();
1673 *this_cache = cache;
16461d7d 1674
15c1e57f 1675 get_frame_register (this_frame, sp_regnum, buf);
004d836a 1676 cache->saved_sp = extract_unsigned_integer (buf, 8);
16461d7d 1677
004d836a
JJ
1678 /* We always want the bsp to point to the end of frame.
1679 This way, we can always get the beginning of frame (bof)
1680 by subtracting frame size. */
15c1e57f 1681 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
004d836a
JJ
1682 cache->bsp = extract_unsigned_integer (buf, 8);
1683
15c1e57f 1684 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
004d836a
JJ
1685 psr = extract_unsigned_integer (buf, 8);
1686
15c1e57f 1687 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
004d836a
JJ
1688 cfm = extract_unsigned_integer (buf, 8);
1689
1690 cache->sof = (cfm & 0x7f);
1691 cache->sol = (cfm >> 7) & 0x7f;
1692 cache->sor = ((cfm >> 14) & 0xf) * 8;
1693
1694 cache->cfm = cfm;
1695
15c1e57f 1696 cache->pc = get_frame_func (this_frame);
004d836a
JJ
1697
1698 if (cache->pc != 0)
15c1e57f 1699 examine_prologue (cache->pc, get_frame_pc (this_frame), this_frame, cache);
004d836a
JJ
1700
1701 cache->base = cache->saved_sp + cache->mem_stack_frame_size;
1702
1703 return cache;
16461d7d
KB
1704}
1705
a78f21af 1706static void
15c1e57f 1707ia64_frame_this_id (struct frame_info *this_frame, void **this_cache,
004d836a 1708 struct frame_id *this_id)
16461d7d 1709{
004d836a 1710 struct ia64_frame_cache *cache =
15c1e57f 1711 ia64_frame_cache (this_frame, this_cache);
16461d7d 1712
c5a27d9c 1713 /* If outermost frame, mark with null frame id. */
004d836a 1714 if (cache->base == 0)
c5a27d9c
JJ
1715 (*this_id) = null_frame_id;
1716 else
1717 (*this_id) = frame_id_build_special (cache->base, cache->pc, cache->bsp);
4afcc598
JJ
1718 if (gdbarch_debug >= 1)
1719 fprintf_unfiltered (gdb_stdlog,
15c1e57f 1720 "regular frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
78ced177
JJ
1721 paddr_nz (this_id->code_addr),
1722 paddr_nz (this_id->stack_addr),
15c1e57f 1723 paddr_nz (cache->bsp), this_frame);
004d836a 1724}
244bc108 1725
15c1e57f
JB
1726static struct value *
1727ia64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1728 int regnum)
004d836a 1729{
15c1e57f
JB
1730 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1731 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
004d836a
JJ
1732 char buf[8];
1733
1734 gdb_assert (regnum >= 0);
244bc108 1735
004d836a 1736 if (!target_has_registers)
8a3fe4f8 1737 error (_("No registers."));
244bc108 1738
088568da 1739 if (regnum == gdbarch_sp_regnum (gdbarch))
15c1e57f
JB
1740 return frame_unwind_got_constant (this_frame, regnum, cache->base);
1741
16461d7d
KB
1742 else if (regnum == IA64_BSP_REGNUM)
1743 {
15c1e57f
JB
1744 struct value *val;
1745 CORE_ADDR prev_cfm, bsp, prev_bsp;
1746
1747 /* We want to calculate the previous bsp as the end of the previous
1748 register stack frame. This corresponds to what the hardware bsp
1749 register will be if we pop the frame back which is why we might
1750 have been called. We know the beginning of the current frame is
1751 cache->bsp - cache->sof. This value in the previous frame points
1752 to the start of the output registers. We can calculate the end of
1753 that frame by adding the size of output:
1754 (sof (size of frame) - sol (size of locals)). */
1755 val = ia64_frame_prev_register (this_frame, this_cache, IA64_CFM_REGNUM);
1756 prev_cfm = extract_unsigned_integer (value_contents_all (val), 8);
004d836a 1757 bsp = rse_address_add (cache->bsp, -(cache->sof));
15c1e57f
JB
1758 prev_bsp =
1759 rse_address_add (bsp, (prev_cfm & 0x7f) - ((prev_cfm >> 7) & 0x7f));
004d836a 1760
15c1e57f 1761 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
004d836a 1762 }
15c1e57f 1763
004d836a
JJ
1764 else if (regnum == IA64_CFM_REGNUM)
1765 {
4afcc598
JJ
1766 CORE_ADDR addr = cache->saved_regs[IA64_CFM_REGNUM];
1767
1768 if (addr != 0)
15c1e57f
JB
1769 return frame_unwind_got_memory (this_frame, regnum, addr);
1770
1771 if (cache->prev_cfm)
1772 return frame_unwind_got_constant (this_frame, regnum, cache->prev_cfm);
1773
1774 if (cache->frameless)
1775 return frame_unwind_got_register (this_frame, IA64_PFS_REGNUM,
1776 IA64_PFS_REGNUM);
1777 return frame_unwind_got_register (this_frame, regnum, 0);
16461d7d 1778 }
15c1e57f 1779
16461d7d
KB
1780 else if (regnum == IA64_VFP_REGNUM)
1781 {
1782 /* If the function in question uses an automatic register (r32-r127)
1783 for the frame pointer, it'll be found by ia64_find_saved_register()
1784 above. If the function lacks one of these frame pointers, we can
004d836a 1785 still provide a value since we know the size of the frame. */
15c1e57f 1786 return frame_unwind_got_constant (this_frame, regnum, cache->base);
16461d7d 1787 }
15c1e57f 1788
004d836a 1789 else if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
16461d7d 1790 {
15c1e57f
JB
1791 struct value *pr_val;
1792 ULONGEST prN;
1793
1794 pr_val = ia64_frame_prev_register (this_frame, this_cache,
1795 IA64_PR_REGNUM);
004d836a 1796 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
3a854e23
KB
1797 {
1798 /* Fetch predicate register rename base from current frame
004d836a
JJ
1799 marker for this frame. */
1800 int rrb_pr = (cache->cfm >> 32) & 0x3f;
3a854e23 1801
004d836a 1802 /* Adjust the register number to account for register rotation. */
15c1e57f 1803 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
3a854e23 1804 }
15c1e57f
JB
1805 prN = extract_bit_field (value_contents_all (pr_val),
1806 regnum - VP0_REGNUM, 1);
1807 return frame_unwind_got_constant (this_frame, regnum, prN);
16461d7d 1808 }
15c1e57f 1809
16461d7d
KB
1810 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT31_REGNUM)
1811 {
15c1e57f
JB
1812 struct value *unat_val;
1813 ULONGEST unatN;
1814 unat_val = ia64_frame_prev_register (this_frame, this_cache,
1815 IA64_UNAT_REGNUM);
1816 unatN = extract_bit_field (value_contents_all (unat_val),
1817 regnum - IA64_NAT0_REGNUM, 1);
1818 return frame_unwind_got_constant (this_frame, regnum, unatN);
16461d7d 1819 }
15c1e57f 1820
16461d7d
KB
1821 else if (IA64_NAT32_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
1822 {
1823 int natval = 0;
1824 /* Find address of general register corresponding to nat bit we're
004d836a
JJ
1825 interested in. */
1826 CORE_ADDR gr_addr;
244bc108 1827
15c1e57f
JB
1828 gr_addr = cache->saved_regs[regnum - IA64_NAT0_REGNUM + IA64_GR0_REGNUM];
1829
004d836a 1830 if (gr_addr != 0)
244bc108 1831 {
004d836a 1832 /* Compute address of nat collection bits. */
16461d7d 1833 CORE_ADDR nat_addr = gr_addr | 0x1f8;
004d836a 1834 CORE_ADDR bsp;
16461d7d
KB
1835 CORE_ADDR nat_collection;
1836 int nat_bit;
15c1e57f 1837
16461d7d
KB
1838 /* If our nat collection address is bigger than bsp, we have to get
1839 the nat collection from rnat. Otherwise, we fetch the nat
004d836a 1840 collection from the computed address. */
15c1e57f 1841 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
004d836a 1842 bsp = extract_unsigned_integer (buf, 8);
16461d7d 1843 if (nat_addr >= bsp)
004d836a 1844 {
15c1e57f 1845 get_frame_register (this_frame, IA64_RNAT_REGNUM, buf);
004d836a
JJ
1846 nat_collection = extract_unsigned_integer (buf, 8);
1847 }
16461d7d
KB
1848 else
1849 nat_collection = read_memory_integer (nat_addr, 8);
1850 nat_bit = (gr_addr >> 3) & 0x3f;
1851 natval = (nat_collection >> nat_bit) & 1;
1852 }
004d836a 1853
15c1e57f 1854 return frame_unwind_got_constant (this_frame, regnum, natval);
244bc108 1855 }
15c1e57f 1856
244bc108
KB
1857 else if (regnum == IA64_IP_REGNUM)
1858 {
004d836a 1859 CORE_ADDR pc = 0;
4afcc598 1860 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
004d836a 1861
4afcc598 1862 if (addr != 0)
15c1e57f
JB
1863 {
1864 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
1865 pc = extract_unsigned_integer (buf, 8);
1866 }
4afcc598 1867 else if (cache->frameless)
004d836a 1868 {
15c1e57f 1869 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
4afcc598 1870 pc = extract_unsigned_integer (buf, 8);
244bc108 1871 }
004d836a 1872 pc &= ~0xf;
15c1e57f 1873 return frame_unwind_got_constant (this_frame, regnum, pc);
244bc108 1874 }
15c1e57f 1875
004d836a 1876 else if (regnum == IA64_PSR_REGNUM)
244bc108 1877 {
15c1e57f
JB
1878 /* We don't know how to get the complete previous PSR, but we need it
1879 for the slot information when we unwind the pc (pc is formed of IP
1880 register plus slot information from PSR). To get the previous
1881 slot information, we mask it off the return address. */
004d836a 1882 ULONGEST slot_num = 0;
15c1e57f 1883 CORE_ADDR pc = 0;
004d836a 1884 CORE_ADDR psr = 0;
4afcc598 1885 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
004d836a 1886
15c1e57f 1887 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
004d836a
JJ
1888 psr = extract_unsigned_integer (buf, 8);
1889
4afcc598 1890 if (addr != 0)
244bc108 1891 {
088568da 1892 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
004d836a 1893 pc = extract_unsigned_integer (buf, 8);
244bc108 1894 }
4afcc598 1895 else if (cache->frameless)
004d836a 1896 {
15c1e57f 1897 get_frame_register (this_frame, IA64_BR0_REGNUM, buf);
4afcc598 1898 pc = extract_unsigned_integer (buf, 8);
004d836a
JJ
1899 }
1900 psr &= ~(3LL << 41);
1901 slot_num = pc & 0x3LL;
1902 psr |= (CORE_ADDR)slot_num << 41;
15c1e57f 1903 return frame_unwind_got_constant (this_frame, regnum, psr);
004d836a 1904 }
15c1e57f 1905
4afcc598
JJ
1906 else if (regnum == IA64_BR0_REGNUM)
1907 {
4afcc598 1908 CORE_ADDR addr = cache->saved_regs[IA64_BR0_REGNUM];
15c1e57f 1909
4afcc598 1910 if (addr != 0)
15c1e57f
JB
1911 return frame_unwind_got_memory (this_frame, regnum, addr);
1912
1913 return frame_unwind_got_constant (this_frame, regnum, 0);
4afcc598 1914 }
15c1e57f
JB
1915
1916 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
1917 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
004d836a
JJ
1918 {
1919 CORE_ADDR addr = 0;
15c1e57f 1920
004d836a
JJ
1921 if (regnum >= V32_REGNUM)
1922 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
1923 addr = cache->saved_regs[regnum];
244bc108 1924 if (addr != 0)
15c1e57f
JB
1925 return frame_unwind_got_memory (this_frame, regnum, addr);
1926
1927 if (cache->frameless)
244bc108 1928 {
15c1e57f
JB
1929 struct value *reg_val;
1930 CORE_ADDR prev_cfm, prev_bsp, prev_bof;
1931
1932 /* FIXME: brobecker/2008-05-01: Doesn't this seem redundant
1933 with the same code above? */
004d836a
JJ
1934 if (regnum >= V32_REGNUM)
1935 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
15c1e57f
JB
1936 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1937 IA64_CFM_REGNUM);
1938 prev_cfm = extract_unsigned_integer (value_contents_all (reg_val),
1939 8);
1940 reg_val = ia64_frame_prev_register (this_frame, this_cache,
1941 IA64_BSP_REGNUM);
1942 prev_bsp = extract_unsigned_integer (value_contents_all (reg_val),
1943 8);
004d836a
JJ
1944 prev_bof = rse_address_add (prev_bsp, -(prev_cfm & 0x7f));
1945
1946 addr = rse_address_add (prev_bof, (regnum - IA64_GR32_REGNUM));
15c1e57f 1947 return frame_unwind_got_memory (this_frame, regnum, addr);
244bc108 1948 }
15c1e57f
JB
1949
1950 return frame_unwind_got_constant (this_frame, regnum, 0);
16461d7d 1951 }
15c1e57f
JB
1952
1953 else /* All other registers. */
16461d7d 1954 {
004d836a 1955 CORE_ADDR addr = 0;
15c1e57f 1956
3a854e23
KB
1957 if (IA64_FR32_REGNUM <= regnum && regnum <= IA64_FR127_REGNUM)
1958 {
1959 /* Fetch floating point register rename base from current
004d836a
JJ
1960 frame marker for this frame. */
1961 int rrb_fr = (cache->cfm >> 25) & 0x7f;
3a854e23
KB
1962
1963 /* Adjust the floating point register number to account for
004d836a 1964 register rotation. */
3a854e23
KB
1965 regnum = IA64_FR32_REGNUM
1966 + ((regnum - IA64_FR32_REGNUM) + rrb_fr) % 96;
1967 }
1968
004d836a
JJ
1969 /* If we have stored a memory address, access the register. */
1970 addr = cache->saved_regs[regnum];
1971 if (addr != 0)
15c1e57f 1972 return frame_unwind_got_memory (this_frame, regnum, addr);
004d836a
JJ
1973 /* Otherwise, punt and get the current value of the register. */
1974 else
15c1e57f 1975 return frame_unwind_got_register (this_frame, regnum, regnum);
16461d7d 1976 }
16461d7d 1977}
004d836a
JJ
1978
1979static const struct frame_unwind ia64_frame_unwind =
1980{
1981 NORMAL_FRAME,
1982 &ia64_frame_this_id,
15c1e57f
JB
1983 &ia64_frame_prev_register,
1984 NULL,
1985 default_frame_sniffer
004d836a
JJ
1986};
1987
004d836a
JJ
1988/* Signal trampolines. */
1989
1990static void
15c1e57f 1991ia64_sigtramp_frame_init_saved_regs (struct frame_info *this_frame,
2685572f 1992 struct ia64_frame_cache *cache)
004d836a 1993{
15c1e57f 1994 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2685572f
UW
1995
1996 if (tdep->sigcontext_register_address)
004d836a
JJ
1997 {
1998 int regno;
1999
2000 cache->saved_regs[IA64_VRAP_REGNUM] =
2685572f 2001 tdep->sigcontext_register_address (cache->base, IA64_IP_REGNUM);
004d836a 2002 cache->saved_regs[IA64_CFM_REGNUM] =
2685572f 2003 tdep->sigcontext_register_address (cache->base, IA64_CFM_REGNUM);
004d836a 2004 cache->saved_regs[IA64_PSR_REGNUM] =
2685572f 2005 tdep->sigcontext_register_address (cache->base, IA64_PSR_REGNUM);
004d836a 2006 cache->saved_regs[IA64_BSP_REGNUM] =
2685572f 2007 tdep->sigcontext_register_address (cache->base, IA64_BSP_REGNUM);
004d836a 2008 cache->saved_regs[IA64_RNAT_REGNUM] =
2685572f 2009 tdep->sigcontext_register_address (cache->base, IA64_RNAT_REGNUM);
004d836a 2010 cache->saved_regs[IA64_CCV_REGNUM] =
2685572f 2011 tdep->sigcontext_register_address (cache->base, IA64_CCV_REGNUM);
004d836a 2012 cache->saved_regs[IA64_UNAT_REGNUM] =
2685572f 2013 tdep->sigcontext_register_address (cache->base, IA64_UNAT_REGNUM);
004d836a 2014 cache->saved_regs[IA64_FPSR_REGNUM] =
2685572f 2015 tdep->sigcontext_register_address (cache->base, IA64_FPSR_REGNUM);
004d836a 2016 cache->saved_regs[IA64_PFS_REGNUM] =
2685572f 2017 tdep->sigcontext_register_address (cache->base, IA64_PFS_REGNUM);
004d836a 2018 cache->saved_regs[IA64_LC_REGNUM] =
2685572f 2019 tdep->sigcontext_register_address (cache->base, IA64_LC_REGNUM);
004d836a 2020 for (regno = IA64_GR1_REGNUM; regno <= IA64_GR31_REGNUM; regno++)
4afcc598 2021 cache->saved_regs[regno] =
2685572f 2022 tdep->sigcontext_register_address (cache->base, regno);
004d836a
JJ
2023 for (regno = IA64_BR0_REGNUM; regno <= IA64_BR7_REGNUM; regno++)
2024 cache->saved_regs[regno] =
2685572f 2025 tdep->sigcontext_register_address (cache->base, regno);
932644f0 2026 for (regno = IA64_FR2_REGNUM; regno <= IA64_FR31_REGNUM; regno++)
004d836a 2027 cache->saved_regs[regno] =
2685572f 2028 tdep->sigcontext_register_address (cache->base, regno);
004d836a
JJ
2029 }
2030}
2031
2032static struct ia64_frame_cache *
15c1e57f 2033ia64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
004d836a
JJ
2034{
2035 struct ia64_frame_cache *cache;
2036 CORE_ADDR addr;
2037 char buf[8];
2038 int i;
2039
2040 if (*this_cache)
2041 return *this_cache;
2042
2043 cache = ia64_alloc_frame_cache ();
2044
15c1e57f 2045 get_frame_register (this_frame, sp_regnum, buf);
4afcc598
JJ
2046 /* Note that frame size is hard-coded below. We cannot calculate it
2047 via prologue examination. */
2048 cache->base = extract_unsigned_integer (buf, 8) + 16;
2049
15c1e57f 2050 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
4afcc598
JJ
2051 cache->bsp = extract_unsigned_integer (buf, 8);
2052
15c1e57f 2053 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
4afcc598
JJ
2054 cache->cfm = extract_unsigned_integer (buf, 8);
2055 cache->sof = cache->cfm & 0x7f;
004d836a 2056
15c1e57f 2057 ia64_sigtramp_frame_init_saved_regs (this_frame, cache);
004d836a
JJ
2058
2059 *this_cache = cache;
2060 return cache;
2061}
2062
2063static void
15c1e57f
JB
2064ia64_sigtramp_frame_this_id (struct frame_info *this_frame,
2065 void **this_cache, struct frame_id *this_id)
004d836a
JJ
2066{
2067 struct ia64_frame_cache *cache =
15c1e57f 2068 ia64_sigtramp_frame_cache (this_frame, this_cache);
004d836a 2069
15c1e57f
JB
2070 (*this_id) = frame_id_build_special (cache->base,
2071 get_frame_pc (this_frame),
2072 cache->bsp);
4afcc598
JJ
2073 if (gdbarch_debug >= 1)
2074 fprintf_unfiltered (gdb_stdlog,
15c1e57f 2075 "sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
78ced177
JJ
2076 paddr_nz (this_id->code_addr),
2077 paddr_nz (this_id->stack_addr),
15c1e57f 2078 paddr_nz (cache->bsp), this_frame);
004d836a
JJ
2079}
2080
15c1e57f
JB
2081static struct value *
2082ia64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2083 void **this_cache, int regnum)
004d836a 2084{
4afcc598
JJ
2085 char buf[MAX_REGISTER_SIZE];
2086
15c1e57f 2087 struct gdbarch *gdbarch = get_frame_arch (this_frame);
4afcc598 2088 struct ia64_frame_cache *cache =
15c1e57f 2089 ia64_sigtramp_frame_cache (this_frame, this_cache);
4afcc598
JJ
2090
2091 gdb_assert (regnum >= 0);
2092
2093 if (!target_has_registers)
8a3fe4f8 2094 error (_("No registers."));
4afcc598 2095
4afcc598
JJ
2096 if (regnum == IA64_IP_REGNUM)
2097 {
2098 CORE_ADDR pc = 0;
2099 CORE_ADDR addr = cache->saved_regs[IA64_VRAP_REGNUM];
2100
2101 if (addr != 0)
2102 {
088568da 2103 read_memory (addr, buf, register_size (gdbarch, IA64_IP_REGNUM));
4afcc598
JJ
2104 pc = extract_unsigned_integer (buf, 8);
2105 }
2106 pc &= ~0xf;
15c1e57f 2107 return frame_unwind_got_constant (this_frame, regnum, pc);
4afcc598 2108 }
15c1e57f
JB
2109
2110 else if ((regnum >= IA64_GR32_REGNUM && regnum <= IA64_GR127_REGNUM)
2111 || (regnum >= V32_REGNUM && regnum <= V127_REGNUM))
4afcc598
JJ
2112 {
2113 CORE_ADDR addr = 0;
15c1e57f 2114
4afcc598
JJ
2115 if (regnum >= V32_REGNUM)
2116 regnum = IA64_GR32_REGNUM + (regnum - V32_REGNUM);
2117 addr = cache->saved_regs[regnum];
2118 if (addr != 0)
15c1e57f
JB
2119 return frame_unwind_got_memory (this_frame, regnum, addr);
2120
2121 return frame_unwind_got_constant (this_frame, regnum, 0);
4afcc598 2122 }
15c1e57f
JB
2123
2124 else /* All other registers not listed above. */
4afcc598 2125 {
4afcc598 2126 CORE_ADDR addr = cache->saved_regs[regnum];
15c1e57f 2127
4afcc598 2128 if (addr != 0)
15c1e57f 2129 return frame_unwind_got_memory (this_frame, regnum, addr);
004d836a 2130
15c1e57f
JB
2131 return frame_unwind_got_constant (this_frame, regnum, 0);
2132 }
004d836a
JJ
2133}
2134
15c1e57f
JB
2135static int
2136ia64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2137 struct frame_info *this_frame,
2138 void **this_cache)
004d836a 2139{
15c1e57f 2140 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
74174d2e
UW
2141 if (tdep->pc_in_sigtramp)
2142 {
15c1e57f 2143 CORE_ADDR pc = get_frame_pc (this_frame);
004d836a 2144
74174d2e 2145 if (tdep->pc_in_sigtramp (pc))
15c1e57f 2146 return 1;
74174d2e 2147 }
004d836a 2148
15c1e57f 2149 return 0;
004d836a 2150}
15c1e57f
JB
2151
2152static const struct frame_unwind ia64_sigtramp_frame_unwind =
2153{
2154 SIGTRAMP_FRAME,
2155 ia64_sigtramp_frame_this_id,
2156 ia64_sigtramp_frame_prev_register,
2157 NULL,
2158 ia64_sigtramp_frame_sniffer
2159};
2160
004d836a
JJ
2161\f
2162
2163static CORE_ADDR
15c1e57f 2164ia64_frame_base_address (struct frame_info *this_frame, void **this_cache)
004d836a 2165{
15c1e57f 2166 struct ia64_frame_cache *cache = ia64_frame_cache (this_frame, this_cache);
004d836a
JJ
2167
2168 return cache->base;
2169}
2170
2171static const struct frame_base ia64_frame_base =
2172{
2173 &ia64_frame_unwind,
2174 ia64_frame_base_address,
2175 ia64_frame_base_address,
2176 ia64_frame_base_address
2177};
16461d7d 2178
968d1cb4
JJ
2179#ifdef HAVE_LIBUNWIND_IA64_H
2180
2181struct ia64_unwind_table_entry
2182 {
2183 unw_word_t start_offset;
2184 unw_word_t end_offset;
2185 unw_word_t info_offset;
2186 };
2187
2188static __inline__ uint64_t
2189ia64_rse_slot_num (uint64_t addr)
2190{
2191 return (addr >> 3) & 0x3f;
2192}
2193
2194/* Skip over a designated number of registers in the backing
2195 store, remembering every 64th position is for NAT. */
2196static __inline__ uint64_t
2197ia64_rse_skip_regs (uint64_t addr, long num_regs)
2198{
2199 long delta = ia64_rse_slot_num(addr) + num_regs;
2200
2201 if (num_regs < 0)
2202 delta -= 0x3e;
2203 return addr + ((num_regs + delta/0x3f) << 3);
2204}
2205
2206/* Gdb libunwind-frame callback function to convert from an ia64 gdb register
2207 number to a libunwind register number. */
2208static int
2209ia64_gdb2uw_regnum (int regnum)
2210{
2211 if (regnum == sp_regnum)
2212 return UNW_IA64_SP;
2213 else if (regnum == IA64_BSP_REGNUM)
2214 return UNW_IA64_BSP;
2215 else if ((unsigned) (regnum - IA64_GR0_REGNUM) < 128)
2216 return UNW_IA64_GR + (regnum - IA64_GR0_REGNUM);
2217 else if ((unsigned) (regnum - V32_REGNUM) < 95)
2218 return UNW_IA64_GR + 32 + (regnum - V32_REGNUM);
2219 else if ((unsigned) (regnum - IA64_FR0_REGNUM) < 128)
2220 return UNW_IA64_FR + (regnum - IA64_FR0_REGNUM);
2221 else if ((unsigned) (regnum - IA64_PR0_REGNUM) < 64)
2222 return -1;
2223 else if ((unsigned) (regnum - IA64_BR0_REGNUM) < 8)
2224 return UNW_IA64_BR + (regnum - IA64_BR0_REGNUM);
2225 else if (regnum == IA64_PR_REGNUM)
2226 return UNW_IA64_PR;
2227 else if (regnum == IA64_IP_REGNUM)
2228 return UNW_REG_IP;
2229 else if (regnum == IA64_CFM_REGNUM)
2230 return UNW_IA64_CFM;
2231 else if ((unsigned) (regnum - IA64_AR0_REGNUM) < 128)
2232 return UNW_IA64_AR + (regnum - IA64_AR0_REGNUM);
2233 else if ((unsigned) (regnum - IA64_NAT0_REGNUM) < 128)
2234 return UNW_IA64_NAT + (regnum - IA64_NAT0_REGNUM);
2235 else
2236 return -1;
2237}
2238
2239/* Gdb libunwind-frame callback function to convert from a libunwind register
2240 number to a ia64 gdb register number. */
2241static int
2242ia64_uw2gdb_regnum (int uw_regnum)
2243{
2244 if (uw_regnum == UNW_IA64_SP)
2245 return sp_regnum;
2246 else if (uw_regnum == UNW_IA64_BSP)
2247 return IA64_BSP_REGNUM;
2248 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 32)
2249 return IA64_GR0_REGNUM + (uw_regnum - UNW_IA64_GR);
2250 else if ((unsigned) (uw_regnum - UNW_IA64_GR) < 128)
2251 return V32_REGNUM + (uw_regnum - (IA64_GR0_REGNUM + 32));
2252 else if ((unsigned) (uw_regnum - UNW_IA64_FR) < 128)
2253 return IA64_FR0_REGNUM + (uw_regnum - UNW_IA64_FR);
2254 else if ((unsigned) (uw_regnum - UNW_IA64_BR) < 8)
2255 return IA64_BR0_REGNUM + (uw_regnum - UNW_IA64_BR);
2256 else if (uw_regnum == UNW_IA64_PR)
2257 return IA64_PR_REGNUM;
2258 else if (uw_regnum == UNW_REG_IP)
2259 return IA64_IP_REGNUM;
2260 else if (uw_regnum == UNW_IA64_CFM)
2261 return IA64_CFM_REGNUM;
2262 else if ((unsigned) (uw_regnum - UNW_IA64_AR) < 128)
2263 return IA64_AR0_REGNUM + (uw_regnum - UNW_IA64_AR);
2264 else if ((unsigned) (uw_regnum - UNW_IA64_NAT) < 128)
2265 return IA64_NAT0_REGNUM + (uw_regnum - UNW_IA64_NAT);
2266 else
2267 return -1;
2268}
2269
2270/* Gdb libunwind-frame callback function to reveal if register is a float
2271 register or not. */
2272static int
2273ia64_is_fpreg (int uw_regnum)
2274{
2275 return unw_is_fpreg (uw_regnum);
2276}
2277
2278/* Libunwind callback accessor function for general registers. */
2279static int
2280ia64_access_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2281 int write, void *arg)
2282{
2283 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2284 unw_word_t bsp, sof, sol, cfm, psr, ip;
15c1e57f 2285 struct frame_info *this_frame = arg;
968d1cb4
JJ
2286 long new_sof, old_sof;
2287 char buf[MAX_REGISTER_SIZE];
2288
45ecac4b
UW
2289 /* We never call any libunwind routines that need to write registers. */
2290 gdb_assert (!write);
968d1cb4 2291
45ecac4b 2292 switch (uw_regnum)
968d1cb4 2293 {
45ecac4b
UW
2294 case UNW_REG_IP:
2295 /* Libunwind expects to see the pc value which means the slot number
2296 from the psr must be merged with the ip word address. */
15c1e57f 2297 get_frame_register (this_frame, IA64_IP_REGNUM, buf);
45ecac4b 2298 ip = extract_unsigned_integer (buf, 8);
15c1e57f 2299 get_frame_register (this_frame, IA64_PSR_REGNUM, buf);
45ecac4b
UW
2300 psr = extract_unsigned_integer (buf, 8);
2301 *val = ip | ((psr >> 41) & 0x3);
2302 break;
2303
2304 case UNW_IA64_AR_BSP:
2305 /* Libunwind expects to see the beginning of the current register
2306 frame so we must account for the fact that ptrace() will return a value
2307 for bsp that points *after* the current register frame. */
15c1e57f 2308 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
45ecac4b 2309 bsp = extract_unsigned_integer (buf, 8);
15c1e57f 2310 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
45ecac4b
UW
2311 cfm = extract_unsigned_integer (buf, 8);
2312 sof = (cfm & 0x7f);
2313 *val = ia64_rse_skip_regs (bsp, -sof);
2314 break;
968d1cb4 2315
45ecac4b
UW
2316 case UNW_IA64_AR_BSPSTORE:
2317 /* Libunwind wants bspstore to be after the current register frame.
2318 This is what ptrace() and gdb treats as the regular bsp value. */
15c1e57f 2319 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
45ecac4b
UW
2320 *val = extract_unsigned_integer (buf, 8);
2321 break;
2322
2323 default:
2324 /* For all other registers, just unwind the value directly. */
15c1e57f 2325 get_frame_register (this_frame, regnum, buf);
45ecac4b
UW
2326 *val = extract_unsigned_integer (buf, 8);
2327 break;
968d1cb4 2328 }
45ecac4b
UW
2329
2330 if (gdbarch_debug >= 1)
2331 fprintf_unfiltered (gdb_stdlog,
2332 " access_reg: from cache: %4s=0x%s\n",
2333 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2334 ? ia64_register_names[regnum] : "r??"),
2335 paddr_nz (*val));
968d1cb4
JJ
2336 return 0;
2337}
2338
2339/* Libunwind callback accessor function for floating-point registers. */
2340static int
2341ia64_access_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_fpreg_t *val,
2342 int write, void *arg)
2343{
2344 int regnum = ia64_uw2gdb_regnum (uw_regnum);
15c1e57f 2345 struct frame_info *this_frame = arg;
968d1cb4 2346
45ecac4b
UW
2347 /* We never call any libunwind routines that need to write registers. */
2348 gdb_assert (!write);
2349
15c1e57f 2350 get_frame_register (this_frame, regnum, (char *) val);
45ecac4b 2351
968d1cb4
JJ
2352 return 0;
2353}
2354
c5a27d9c
JJ
2355/* Libunwind callback accessor function for top-level rse registers. */
2356static int
2357ia64_access_rse_reg (unw_addr_space_t as, unw_regnum_t uw_regnum, unw_word_t *val,
2358 int write, void *arg)
2359{
2360 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2361 unw_word_t bsp, sof, sol, cfm, psr, ip;
45ecac4b 2362 struct regcache *regcache = arg;
c5a27d9c 2363 long new_sof, old_sof;
45ecac4b 2364 char buf[MAX_REGISTER_SIZE];
c5a27d9c 2365
45ecac4b
UW
2366 /* We never call any libunwind routines that need to write registers. */
2367 gdb_assert (!write);
c5a27d9c 2368
45ecac4b 2369 switch (uw_regnum)
c5a27d9c 2370 {
45ecac4b
UW
2371 case UNW_REG_IP:
2372 /* Libunwind expects to see the pc value which means the slot number
2373 from the psr must be merged with the ip word address. */
2374 regcache_cooked_read (regcache, IA64_IP_REGNUM, buf);
2375 ip = extract_unsigned_integer (buf, 8);
2376 regcache_cooked_read (regcache, IA64_PSR_REGNUM, buf);
2377 psr = extract_unsigned_integer (buf, 8);
2378 *val = ip | ((psr >> 41) & 0x3);
2379 break;
c5a27d9c 2380
45ecac4b
UW
2381 case UNW_IA64_AR_BSP:
2382 /* Libunwind expects to see the beginning of the current register
2383 frame so we must account for the fact that ptrace() will return a value
2384 for bsp that points *after* the current register frame. */
2385 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2386 bsp = extract_unsigned_integer (buf, 8);
2387 regcache_cooked_read (regcache, IA64_CFM_REGNUM, buf);
2388 cfm = extract_unsigned_integer (buf, 8);
2389 sof = (cfm & 0x7f);
2390 *val = ia64_rse_skip_regs (bsp, -sof);
2391 break;
c5a27d9c 2392
45ecac4b
UW
2393 case UNW_IA64_AR_BSPSTORE:
2394 /* Libunwind wants bspstore to be after the current register frame.
2395 This is what ptrace() and gdb treats as the regular bsp value. */
2396 regcache_cooked_read (regcache, IA64_BSP_REGNUM, buf);
2397 *val = extract_unsigned_integer (buf, 8);
2398 break;
c5a27d9c 2399
45ecac4b
UW
2400 default:
2401 /* For all other registers, just unwind the value directly. */
2402 regcache_cooked_read (regcache, regnum, buf);
2403 *val = extract_unsigned_integer (buf, 8);
2404 break;
c5a27d9c
JJ
2405 }
2406
2407 if (gdbarch_debug >= 1)
2408 fprintf_unfiltered (gdb_stdlog,
2409 " access_rse_reg: from cache: %4s=0x%s\n",
2410 (((unsigned) regnum <= IA64_NAT127_REGNUM)
2411 ? ia64_register_names[regnum] : "r??"),
2412 paddr_nz (*val));
2413
2414 return 0;
2415}
2416
45ecac4b
UW
2417/* Libunwind callback accessor function for top-level fp registers. */
2418static int
2419ia64_access_rse_fpreg (unw_addr_space_t as, unw_regnum_t uw_regnum,
2420 unw_fpreg_t *val, int write, void *arg)
2421{
2422 int regnum = ia64_uw2gdb_regnum (uw_regnum);
2423 struct regcache *regcache = arg;
2424
2425 /* We never call any libunwind routines that need to write registers. */
2426 gdb_assert (!write);
2427
2428 regcache_cooked_read (regcache, regnum, (char *) val);
2429
2430 return 0;
2431}
2432
968d1cb4
JJ
2433/* Libunwind callback accessor function for accessing memory. */
2434static int
2435ia64_access_mem (unw_addr_space_t as,
2436 unw_word_t addr, unw_word_t *val,
2437 int write, void *arg)
2438{
c5a27d9c
JJ
2439 if (addr - KERNEL_START < ktab_size)
2440 {
2441 unw_word_t *laddr = (unw_word_t*) ((char *) ktab
2442 + (addr - KERNEL_START));
2443
2444 if (write)
2445 *laddr = *val;
2446 else
2447 *val = *laddr;
2448 return 0;
2449 }
2450
968d1cb4
JJ
2451 /* XXX do we need to normalize byte-order here? */
2452 if (write)
2453 return target_write_memory (addr, (char *) val, sizeof (unw_word_t));
2454 else
2455 return target_read_memory (addr, (char *) val, sizeof (unw_word_t));
2456}
2457
2458/* Call low-level function to access the kernel unwind table. */
13547ab6
DJ
2459static LONGEST
2460getunwind_table (gdb_byte **buf_p)
968d1cb4
JJ
2461{
2462 LONGEST x;
c5a27d9c 2463
10d6c8cd
DJ
2464 /* FIXME drow/2005-09-10: This code used to call
2465 ia64_linux_xfer_unwind_table directly to fetch the unwind table
2466 for the currently running ia64-linux kernel. That data should
2467 come from the core file and be accessed via the auxv vector; if
2468 we want to preserve fall back to the running kernel's table, then
2469 we should find a way to override the corefile layer's
2470 xfer_partial method. */
968d1cb4 2471
13547ab6
DJ
2472 x = target_read_alloc (&current_target, TARGET_OBJECT_UNWIND_TABLE,
2473 NULL, buf_p);
2474
2475 return x;
968d1cb4 2476}
10d6c8cd 2477
968d1cb4
JJ
2478/* Get the kernel unwind table. */
2479static int
2480get_kernel_table (unw_word_t ip, unw_dyn_info_t *di)
2481{
c5a27d9c 2482 static struct ia64_table_entry *etab;
968d1cb4 2483
c5a27d9c 2484 if (!ktab)
968d1cb4 2485 {
13547ab6 2486 gdb_byte *ktab_buf;
eeec829c 2487 LONGEST size;
13547ab6 2488
eeec829c
DJ
2489 size = getunwind_table (&ktab_buf);
2490 if (size <= 0)
13547ab6 2491 return -UNW_ENOINFO;
eeec829c
DJ
2492
2493 ktab = (struct ia64_table_entry *) ktab_buf;
2494 ktab_size = size;
13547ab6 2495
968d1cb4 2496 for (etab = ktab; etab->start_offset; ++etab)
c5a27d9c 2497 etab->info_offset += KERNEL_START;
968d1cb4
JJ
2498 }
2499
2500 if (ip < ktab[0].start_offset || ip >= etab[-1].end_offset)
2501 return -UNW_ENOINFO;
2502
2503 di->format = UNW_INFO_FORMAT_TABLE;
2504 di->gp = 0;
2505 di->start_ip = ktab[0].start_offset;
2506 di->end_ip = etab[-1].end_offset;
2507 di->u.ti.name_ptr = (unw_word_t) "<kernel>";
2508 di->u.ti.segbase = 0;
2509 di->u.ti.table_len = ((char *) etab - (char *) ktab) / sizeof (unw_word_t);
2510 di->u.ti.table_data = (unw_word_t *) ktab;
2511
2512 if (gdbarch_debug >= 1)
2513 fprintf_unfiltered (gdb_stdlog, "get_kernel_table: found table `%s': "
78ced177
JJ
2514 "segbase=0x%s, length=%s, gp=0x%s\n",
2515 (char *) di->u.ti.name_ptr,
2516 paddr_nz (di->u.ti.segbase),
623d3eb1 2517 pulongest (di->u.ti.table_len),
78ced177 2518 paddr_nz (di->gp));
968d1cb4
JJ
2519 return 0;
2520}
2521
2522/* Find the unwind table entry for a specified address. */
2523static int
2524ia64_find_unwind_table (struct objfile *objfile, unw_word_t ip,
2525 unw_dyn_info_t *dip, void **buf)
2526{
2527 Elf_Internal_Phdr *phdr, *p_text = NULL, *p_unwind = NULL;
2528 Elf_Internal_Ehdr *ehdr;
2529 unw_word_t segbase = 0;
2530 CORE_ADDR load_base;
2531 bfd *bfd;
2532 int i;
2533
2534 bfd = objfile->obfd;
2535
2536 ehdr = elf_tdata (bfd)->elf_header;
2537 phdr = elf_tdata (bfd)->phdr;
2538
2539 load_base = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
2540
2541 for (i = 0; i < ehdr->e_phnum; ++i)
2542 {
2543 switch (phdr[i].p_type)
2544 {
2545 case PT_LOAD:
2546 if ((unw_word_t) (ip - load_base - phdr[i].p_vaddr)
2547 < phdr[i].p_memsz)
2548 p_text = phdr + i;
2549 break;
2550
2551 case PT_IA_64_UNWIND:
2552 p_unwind = phdr + i;
2553 break;
2554
2555 default:
2556 break;
2557 }
2558 }
2559
c5a27d9c 2560 if (!p_text || !p_unwind)
968d1cb4
JJ
2561 return -UNW_ENOINFO;
2562
c5a27d9c
JJ
2563 /* Verify that the segment that contains the IP also contains
2564 the static unwind table. If not, we may be in the Linux kernel's
2565 DSO gate page in which case the unwind table is another segment.
2566 Otherwise, we are dealing with runtime-generated code, for which we
2567 have no info here. */
968d1cb4
JJ
2568 segbase = p_text->p_vaddr + load_base;
2569
c5a27d9c
JJ
2570 if ((p_unwind->p_vaddr - p_text->p_vaddr) >= p_text->p_memsz)
2571 {
2572 int ok = 0;
2573 for (i = 0; i < ehdr->e_phnum; ++i)
2574 {
2575 if (phdr[i].p_type == PT_LOAD
2576 && (p_unwind->p_vaddr - phdr[i].p_vaddr) < phdr[i].p_memsz)
2577 {
2578 ok = 1;
2579 /* Get the segbase from the section containing the
2580 libunwind table. */
2581 segbase = phdr[i].p_vaddr + load_base;
2582 }
2583 }
2584 if (!ok)
2585 return -UNW_ENOINFO;
2586 }
2587
2588 dip->start_ip = p_text->p_vaddr + load_base;
968d1cb4 2589 dip->end_ip = dip->start_ip + p_text->p_memsz;
b33e8514 2590 dip->gp = ia64_find_global_pointer (ip);
503ff15d
KB
2591 dip->format = UNW_INFO_FORMAT_REMOTE_TABLE;
2592 dip->u.rti.name_ptr = (unw_word_t) bfd_get_filename (bfd);
2593 dip->u.rti.segbase = segbase;
2594 dip->u.rti.table_len = p_unwind->p_memsz / sizeof (unw_word_t);
2595 dip->u.rti.table_data = p_unwind->p_vaddr + load_base;
968d1cb4
JJ
2596
2597 return 0;
2598}
2599
2600/* Libunwind callback accessor function to acquire procedure unwind-info. */
2601static int
2602ia64_find_proc_info_x (unw_addr_space_t as, unw_word_t ip, unw_proc_info_t *pi,
2603 int need_unwind_info, void *arg)
2604{
2605 struct obj_section *sec = find_pc_section (ip);
2606 unw_dyn_info_t di;
2607 int ret;
2608 void *buf = NULL;
2609
2610 if (!sec)
2611 {
2612 /* XXX This only works if the host and the target architecture are
2613 both ia64 and if the have (more or less) the same kernel
2614 version. */
2615 if (get_kernel_table (ip, &di) < 0)
2616 return -UNW_ENOINFO;
503ff15d
KB
2617
2618 if (gdbarch_debug >= 1)
78ced177
JJ
2619 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2620 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2621 "length=%s,data=0x%s)\n",
2622 paddr_nz (ip), (char *)di.u.ti.name_ptr,
2623 paddr_nz (di.u.ti.segbase),
2624 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2625 paddr_nz (di.gp),
623d3eb1 2626 pulongest (di.u.ti.table_len),
78ced177 2627 paddr_nz ((CORE_ADDR)di.u.ti.table_data));
968d1cb4
JJ
2628 }
2629 else
2630 {
2631 ret = ia64_find_unwind_table (sec->objfile, ip, &di, &buf);
2632 if (ret < 0)
2633 return ret;
968d1cb4 2634
503ff15d 2635 if (gdbarch_debug >= 1)
78ced177
JJ
2636 fprintf_unfiltered (gdb_stdlog, "ia64_find_proc_info_x: 0x%s -> "
2637 "(name=`%s',segbase=0x%s,start=0x%s,end=0x%s,gp=0x%s,"
2638 "length=%s,data=0x%s)\n",
2639 paddr_nz (ip), (char *)di.u.rti.name_ptr,
2640 paddr_nz (di.u.rti.segbase),
2641 paddr_nz (di.start_ip), paddr_nz (di.end_ip),
2642 paddr_nz (di.gp),
623d3eb1 2643 pulongest (di.u.rti.table_len),
78ced177 2644 paddr_nz (di.u.rti.table_data));
503ff15d 2645 }
968d1cb4 2646
503ff15d
KB
2647 ret = libunwind_search_unwind_table (&as, ip, &di, pi, need_unwind_info,
2648 arg);
968d1cb4
JJ
2649
2650 /* We no longer need the dyn info storage so free it. */
2651 xfree (buf);
2652
2653 return ret;
2654}
2655
2656/* Libunwind callback accessor function for cleanup. */
2657static void
2658ia64_put_unwind_info (unw_addr_space_t as,
2659 unw_proc_info_t *pip, void *arg)
2660{
2661 /* Nothing required for now. */
2662}
2663
2664/* Libunwind callback accessor function to get head of the dynamic
2665 unwind-info registration list. */
2666static int
2667ia64_get_dyn_info_list (unw_addr_space_t as,
2668 unw_word_t *dilap, void *arg)
2669{
2670 struct obj_section *text_sec;
2671 struct objfile *objfile;
2672 unw_word_t ip, addr;
2673 unw_dyn_info_t di;
2674 int ret;
2675
2676 if (!libunwind_is_initialized ())
2677 return -UNW_ENOINFO;
2678
2679 for (objfile = object_files; objfile; objfile = objfile->next)
2680 {
2681 void *buf = NULL;
2682
2683 text_sec = objfile->sections + SECT_OFF_TEXT (objfile);
8b7a6d61 2684 ip = obj_section_addr (text_sec);
968d1cb4
JJ
2685 ret = ia64_find_unwind_table (objfile, ip, &di, &buf);
2686 if (ret >= 0)
2687 {
503ff15d 2688 addr = libunwind_find_dyn_list (as, &di, arg);
968d1cb4
JJ
2689 /* We no longer need the dyn info storage so free it. */
2690 xfree (buf);
2691
2692 if (addr)
2693 {
2694 if (gdbarch_debug >= 1)
2695 fprintf_unfiltered (gdb_stdlog,
2696 "dynamic unwind table in objfile %s "
78ced177 2697 "at 0x%s (gp=0x%s)\n",
968d1cb4 2698 bfd_get_filename (objfile->obfd),
78ced177 2699 paddr_nz (addr), paddr_nz (di.gp));
968d1cb4
JJ
2700 *dilap = addr;
2701 return 0;
2702 }
2703 }
2704 }
2705 return -UNW_ENOINFO;
2706}
2707
2708
2709/* Frame interface functions for libunwind. */
2710
2711static void
15c1e57f 2712ia64_libunwind_frame_this_id (struct frame_info *this_frame, void **this_cache,
7166c4a9 2713 struct frame_id *this_id)
968d1cb4 2714{
15c1e57f 2715 struct frame_id id;
968d1cb4
JJ
2716 char buf[8];
2717 CORE_ADDR bsp;
c5a27d9c 2718
968d1cb4 2719
15c1e57f 2720 libunwind_frame_this_id (this_frame, this_cache, &id);
c5a27d9c
JJ
2721 if (frame_id_eq (id, null_frame_id))
2722 {
2723 (*this_id) = null_frame_id;
2724 return;
2725 }
968d1cb4 2726
c5a27d9c
JJ
2727 /* We must add the bsp as the special address for frame comparison
2728 purposes. */
15c1e57f 2729 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
968d1cb4
JJ
2730 bsp = extract_unsigned_integer (buf, 8);
2731
15c1e57f 2732 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
968d1cb4
JJ
2733
2734 if (gdbarch_debug >= 1)
2735 fprintf_unfiltered (gdb_stdlog,
15c1e57f 2736 "libunwind frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
78ced177 2737 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
15c1e57f 2738 paddr_nz (bsp), this_frame);
968d1cb4
JJ
2739}
2740
15c1e57f
JB
2741static struct value *
2742ia64_libunwind_frame_prev_register (struct frame_info *this_frame,
2743 void **this_cache, int regnum)
968d1cb4
JJ
2744{
2745 int reg = regnum;
15c1e57f
JB
2746 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2747 struct value *val;
968d1cb4
JJ
2748
2749 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2750 reg = IA64_PR_REGNUM;
2751 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2752 reg = IA64_UNAT_REGNUM;
2753
2754 /* Let libunwind do most of the work. */
15c1e57f 2755 val = libunwind_frame_prev_register (this_frame, this_cache, reg);
6672f2ae 2756
968d1cb4
JJ
2757 if (VP0_REGNUM <= regnum && regnum <= VP63_REGNUM)
2758 {
2759 ULONGEST prN_val;
2760
2761 if (VP16_REGNUM <= regnum && regnum <= VP63_REGNUM)
2762 {
2763 int rrb_pr = 0;
2764 ULONGEST cfm;
2765 unsigned char buf[MAX_REGISTER_SIZE];
2766
2767 /* Fetch predicate register rename base from current frame
2768 marker for this frame. */
15c1e57f 2769 get_frame_register (this_frame, IA64_CFM_REGNUM, buf);
968d1cb4
JJ
2770 cfm = extract_unsigned_integer (buf, 8);
2771 rrb_pr = (cfm >> 32) & 0x3f;
2772
2773 /* Adjust the register number to account for register rotation. */
15c1e57f 2774 regnum = VP16_REGNUM + ((regnum - VP16_REGNUM) + rrb_pr) % 48;
968d1cb4 2775 }
15c1e57f 2776 prN_val = extract_bit_field (value_contents_all (val),
968d1cb4 2777 regnum - VP0_REGNUM, 1);
15c1e57f 2778 return frame_unwind_got_constant (this_frame, regnum, prN_val);
968d1cb4 2779 }
15c1e57f 2780
968d1cb4
JJ
2781 else if (IA64_NAT0_REGNUM <= regnum && regnum <= IA64_NAT127_REGNUM)
2782 {
2783 ULONGEST unatN_val;
2784
15c1e57f
JB
2785 unatN_val = extract_bit_field (value_contents_all (val),
2786 regnum - IA64_NAT0_REGNUM, 1);
2787 return frame_unwind_got_constant (this_frame, regnum, unatN_val);
968d1cb4 2788 }
15c1e57f 2789
968d1cb4
JJ
2790 else if (regnum == IA64_BSP_REGNUM)
2791 {
15c1e57f
JB
2792 struct value *cfm_val;
2793 CORE_ADDR prev_bsp, prev_cfm;
2794
2795 /* We want to calculate the previous bsp as the end of the previous
2796 register stack frame. This corresponds to what the hardware bsp
2797 register will be if we pop the frame back which is why we might
2798 have been called. We know that libunwind will pass us back the
2799 beginning of the current frame so we should just add sof to it. */
2800 prev_bsp = extract_unsigned_integer (value_contents_all (val), 8);
2801 cfm_val = libunwind_frame_prev_register (this_frame, this_cache,
2802 IA64_CFM_REGNUM);
2803 prev_cfm = extract_unsigned_integer (value_contents_all (cfm_val), 8);
968d1cb4
JJ
2804 prev_bsp = rse_address_add (prev_bsp, (prev_cfm & 0x7f));
2805
15c1e57f 2806 return frame_unwind_got_constant (this_frame, regnum, prev_bsp);
968d1cb4 2807 }
15c1e57f
JB
2808 else
2809 return val;
2810}
968d1cb4 2811
15c1e57f
JB
2812static int
2813ia64_libunwind_frame_sniffer (const struct frame_unwind *self,
2814 struct frame_info *this_frame,
2815 void **this_cache)
2816{
2817 if (libunwind_is_initialized ()
2818 && libunwind_frame_sniffer (self, this_frame, this_cache))
2819 return 1;
2820
2821 return 0;
968d1cb4
JJ
2822}
2823
2824static const struct frame_unwind ia64_libunwind_frame_unwind =
2825{
2826 NORMAL_FRAME,
2827 ia64_libunwind_frame_this_id,
272dfcfd
AS
2828 ia64_libunwind_frame_prev_register,
2829 NULL,
15c1e57f 2830 ia64_libunwind_frame_sniffer,
272dfcfd 2831 libunwind_frame_dealloc_cache
968d1cb4
JJ
2832};
2833
c5a27d9c 2834static void
15c1e57f
JB
2835ia64_libunwind_sigtramp_frame_this_id (struct frame_info *this_frame,
2836 void **this_cache,
c5a27d9c
JJ
2837 struct frame_id *this_id)
2838{
2839 char buf[8];
2840 CORE_ADDR bsp;
2841 struct frame_id id;
2842 CORE_ADDR prev_ip;
2843
15c1e57f 2844 libunwind_frame_this_id (this_frame, this_cache, &id);
c5a27d9c
JJ
2845 if (frame_id_eq (id, null_frame_id))
2846 {
2847 (*this_id) = null_frame_id;
2848 return;
2849 }
2850
2851 /* We must add the bsp as the special address for frame comparison
2852 purposes. */
15c1e57f 2853 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
c5a27d9c
JJ
2854 bsp = extract_unsigned_integer (buf, 8);
2855
2856 /* For a sigtramp frame, we don't make the check for previous ip being 0. */
2857 (*this_id) = frame_id_build_special (id.stack_addr, id.code_addr, bsp);
2858
2859 if (gdbarch_debug >= 1)
2860 fprintf_unfiltered (gdb_stdlog,
15c1e57f 2861 "libunwind sigtramp frame id: code 0x%s, stack 0x%s, special 0x%s, this_frame %p\n",
c5a27d9c 2862 paddr_nz (id.code_addr), paddr_nz (id.stack_addr),
15c1e57f 2863 paddr_nz (bsp), this_frame);
c5a27d9c
JJ
2864}
2865
15c1e57f
JB
2866static struct value *
2867ia64_libunwind_sigtramp_frame_prev_register (struct frame_info *this_frame,
2868 void **this_cache, int regnum)
c5a27d9c 2869{
15c1e57f
JB
2870 struct value *prev_ip_val;
2871 CORE_ADDR prev_ip;
c5a27d9c
JJ
2872
2873 /* If the previous frame pc value is 0, then we want to use the SIGCONTEXT
2874 method of getting previous registers. */
15c1e57f
JB
2875 prev_ip_val = libunwind_frame_prev_register (this_frame, this_cache,
2876 IA64_IP_REGNUM);
2877 prev_ip = extract_unsigned_integer (value_contents_all (prev_ip_val), 8);
c5a27d9c
JJ
2878
2879 if (prev_ip == 0)
2880 {
2881 void *tmp_cache = NULL;
15c1e57f
JB
2882 return ia64_sigtramp_frame_prev_register (this_frame, &tmp_cache,
2883 regnum);
c5a27d9c
JJ
2884 }
2885 else
15c1e57f 2886 return ia64_libunwind_frame_prev_register (this_frame, this_cache, regnum);
c5a27d9c
JJ
2887}
2888
15c1e57f
JB
2889static int
2890ia64_libunwind_sigtramp_frame_sniffer (const struct frame_unwind *self,
2891 struct frame_info *this_frame,
2892 void **this_cache)
c5a27d9c
JJ
2893{
2894 if (libunwind_is_initialized ())
2895 {
15c1e57f
JB
2896 if (libunwind_sigtramp_frame_sniffer (self, this_frame, this_cache))
2897 return 1;
2898 return 0;
c5a27d9c
JJ
2899 }
2900 else
15c1e57f 2901 return ia64_sigtramp_frame_sniffer (self, this_frame, this_cache);
c5a27d9c
JJ
2902}
2903
15c1e57f
JB
2904static const struct frame_unwind ia64_libunwind_sigtramp_frame_unwind =
2905{
2906 SIGTRAMP_FRAME,
2907 ia64_libunwind_sigtramp_frame_this_id,
2908 ia64_libunwind_sigtramp_frame_prev_register,
2909 NULL,
2910 ia64_libunwind_sigtramp_frame_sniffer
2911};
2912
968d1cb4
JJ
2913/* Set of libunwind callback acccessor functions. */
2914static unw_accessors_t ia64_unw_accessors =
2915{
2916 ia64_find_proc_info_x,
2917 ia64_put_unwind_info,
2918 ia64_get_dyn_info_list,
2919 ia64_access_mem,
2920 ia64_access_reg,
2921 ia64_access_fpreg,
2922 /* resume */
2923 /* get_proc_name */
2924};
2925
c5a27d9c
JJ
2926/* Set of special libunwind callback acccessor functions specific for accessing
2927 the rse registers. At the top of the stack, we want libunwind to figure out
2928 how to read r32 - r127. Though usually they are found sequentially in memory
2929 starting from $bof, this is not always true. */
2930static unw_accessors_t ia64_unw_rse_accessors =
2931{
2932 ia64_find_proc_info_x,
2933 ia64_put_unwind_info,
2934 ia64_get_dyn_info_list,
2935 ia64_access_mem,
2936 ia64_access_rse_reg,
45ecac4b 2937 ia64_access_rse_fpreg,
c5a27d9c
JJ
2938 /* resume */
2939 /* get_proc_name */
2940};
2941
968d1cb4
JJ
2942/* Set of ia64 gdb libunwind-frame callbacks and data for generic libunwind-frame code to use. */
2943static struct libunwind_descr ia64_libunwind_descr =
2944{
2945 ia64_gdb2uw_regnum,
2946 ia64_uw2gdb_regnum,
2947 ia64_is_fpreg,
2948 &ia64_unw_accessors,
c5a27d9c 2949 &ia64_unw_rse_accessors,
968d1cb4
JJ
2950};
2951
2952#endif /* HAVE_LIBUNWIND_IA64_H */
2953
4c8b6ae0
UW
2954static int
2955ia64_use_struct_convention (struct type *type)
16461d7d 2956{
64a5b29c
KB
2957 struct type *float_elt_type;
2958
4c8b6ae0
UW
2959 /* Don't use the struct convention for anything but structure,
2960 union, or array types. */
2961 if (!(TYPE_CODE (type) == TYPE_CODE_STRUCT
2962 || TYPE_CODE (type) == TYPE_CODE_UNION
2963 || TYPE_CODE (type) == TYPE_CODE_ARRAY))
2964 return 0;
2965
64a5b29c
KB
2966 /* HFAs are structures (or arrays) consisting entirely of floating
2967 point values of the same length. Up to 8 of these are returned
2968 in registers. Don't use the struct convention when this is the
004d836a 2969 case. */
64a5b29c
KB
2970 float_elt_type = is_float_or_hfa_type (type);
2971 if (float_elt_type != NULL
2972 && TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type) <= 8)
2973 return 0;
2974
2975 /* Other structs of length 32 or less are returned in r8-r11.
004d836a 2976 Don't use the struct convention for those either. */
16461d7d
KB
2977 return TYPE_LENGTH (type) > 32;
2978}
2979
4c8b6ae0 2980static void
2d522557
AC
2981ia64_extract_return_value (struct type *type, struct regcache *regcache,
2982 gdb_byte *valbuf)
16461d7d 2983{
64a5b29c
KB
2984 struct type *float_elt_type;
2985
2986 float_elt_type = is_float_or_hfa_type (type);
2987 if (float_elt_type != NULL)
2988 {
004d836a 2989 char from[MAX_REGISTER_SIZE];
64a5b29c
KB
2990 int offset = 0;
2991 int regnum = IA64_FR8_REGNUM;
2992 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
2993
2994 while (n-- > 0)
2995 {
004d836a
JJ
2996 regcache_cooked_read (regcache, regnum, from);
2997 convert_typed_floating (from, builtin_type_ia64_ext,
2998 (char *)valbuf + offset, float_elt_type);
64a5b29c
KB
2999 offset += TYPE_LENGTH (float_elt_type);
3000 regnum++;
3001 }
3002 }
16461d7d 3003 else
004d836a
JJ
3004 {
3005 ULONGEST val;
3006 int offset = 0;
3007 int regnum = IA64_GR8_REGNUM;
7b9ee6a8
DJ
3008 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3009 IA64_GR8_REGNUM));
004d836a
JJ
3010 int n = TYPE_LENGTH (type) / reglen;
3011 int m = TYPE_LENGTH (type) % reglen;
16461d7d 3012
004d836a
JJ
3013 while (n-- > 0)
3014 {
3015 ULONGEST val;
3016 regcache_cooked_read_unsigned (regcache, regnum, &val);
3017 memcpy ((char *)valbuf + offset, &val, reglen);
3018 offset += reglen;
3019 regnum++;
3020 }
16461d7d 3021
004d836a
JJ
3022 if (m)
3023 {
3024 regcache_cooked_read_unsigned (regcache, regnum, &val);
3025 memcpy ((char *)valbuf + offset, &val, m);
3026 }
3027 }
16461d7d
KB
3028}
3029
4c8b6ae0
UW
3030static void
3031ia64_store_return_value (struct type *type, struct regcache *regcache,
3032 const gdb_byte *valbuf)
3033{
3034 struct type *float_elt_type;
3035
3036 float_elt_type = is_float_or_hfa_type (type);
3037 if (float_elt_type != NULL)
3038 {
3039 char to[MAX_REGISTER_SIZE];
3040 int offset = 0;
3041 int regnum = IA64_FR8_REGNUM;
3042 int n = TYPE_LENGTH (type) / TYPE_LENGTH (float_elt_type);
3043
3044 while (n-- > 0)
3045 {
3046 convert_typed_floating ((char *)valbuf + offset, float_elt_type,
3047 to, builtin_type_ia64_ext);
3048 regcache_cooked_write (regcache, regnum, to);
3049 offset += TYPE_LENGTH (float_elt_type);
3050 regnum++;
3051 }
3052 }
3053 else
3054 {
3055 ULONGEST val;
3056 int offset = 0;
3057 int regnum = IA64_GR8_REGNUM;
3058 int reglen = TYPE_LENGTH (register_type (get_regcache_arch (regcache),
3059 IA64_GR8_REGNUM));
3060 int n = TYPE_LENGTH (type) / reglen;
3061 int m = TYPE_LENGTH (type) % reglen;
3062
3063 while (n-- > 0)
3064 {
3065 ULONGEST val;
3066 memcpy (&val, (char *)valbuf + offset, reglen);
3067 regcache_cooked_write_unsigned (regcache, regnum, val);
3068 offset += reglen;
3069 regnum++;
3070 }
3071
3072 if (m)
3073 {
3074 memcpy (&val, (char *)valbuf + offset, m);
3075 regcache_cooked_write_unsigned (regcache, regnum, val);
3076 }
3077 }
3078}
3079
3080static enum return_value_convention
c055b101
CV
3081ia64_return_value (struct gdbarch *gdbarch, struct type *func_type,
3082 struct type *valtype, struct regcache *regcache,
3083 gdb_byte *readbuf, const gdb_byte *writebuf)
4c8b6ae0
UW
3084{
3085 int struct_return = ia64_use_struct_convention (valtype);
3086
3087 if (writebuf != NULL)
3088 {
3089 gdb_assert (!struct_return);
3090 ia64_store_return_value (valtype, regcache, writebuf);
3091 }
3092
3093 if (readbuf != NULL)
3094 {
3095 gdb_assert (!struct_return);
3096 ia64_extract_return_value (valtype, regcache, readbuf);
3097 }
3098
3099 if (struct_return)
3100 return RETURN_VALUE_STRUCT_CONVENTION;
3101 else
3102 return RETURN_VALUE_REGISTER_CONVENTION;
3103}
16461d7d 3104
64a5b29c
KB
3105static int
3106is_float_or_hfa_type_recurse (struct type *t, struct type **etp)
3107{
3108 switch (TYPE_CODE (t))
3109 {
3110 case TYPE_CODE_FLT:
3111 if (*etp)
3112 return TYPE_LENGTH (*etp) == TYPE_LENGTH (t);
3113 else
3114 {
3115 *etp = t;
3116 return 1;
3117 }
3118 break;
3119 case TYPE_CODE_ARRAY:
98f96ba1
KB
3120 return
3121 is_float_or_hfa_type_recurse (check_typedef (TYPE_TARGET_TYPE (t)),
3122 etp);
64a5b29c
KB
3123 break;
3124 case TYPE_CODE_STRUCT:
3125 {
3126 int i;
3127
3128 for (i = 0; i < TYPE_NFIELDS (t); i++)
98f96ba1
KB
3129 if (!is_float_or_hfa_type_recurse
3130 (check_typedef (TYPE_FIELD_TYPE (t, i)), etp))
64a5b29c
KB
3131 return 0;
3132 return 1;
3133 }
3134 break;
3135 default:
3136 return 0;
3137 break;
3138 }
3139}
3140
3141/* Determine if the given type is one of the floating point types or
3142 and HFA (which is a struct, array, or combination thereof whose
004d836a 3143 bottom-most elements are all of the same floating point type). */
64a5b29c
KB
3144
3145static struct type *
3146is_float_or_hfa_type (struct type *t)
3147{
3148 struct type *et = 0;
3149
3150 return is_float_or_hfa_type_recurse (t, &et) ? et : 0;
3151}
3152
3153
98f96ba1
KB
3154/* Return 1 if the alignment of T is such that the next even slot
3155 should be used. Return 0, if the next available slot should
3156 be used. (See section 8.5.1 of the IA-64 Software Conventions
004d836a 3157 and Runtime manual). */
98f96ba1
KB
3158
3159static int
3160slot_alignment_is_next_even (struct type *t)
3161{
3162 switch (TYPE_CODE (t))
3163 {
3164 case TYPE_CODE_INT:
3165 case TYPE_CODE_FLT:
3166 if (TYPE_LENGTH (t) > 8)
3167 return 1;
3168 else
3169 return 0;
3170 case TYPE_CODE_ARRAY:
3171 return
3172 slot_alignment_is_next_even (check_typedef (TYPE_TARGET_TYPE (t)));
3173 case TYPE_CODE_STRUCT:
3174 {
3175 int i;
3176
3177 for (i = 0; i < TYPE_NFIELDS (t); i++)
3178 if (slot_alignment_is_next_even
3179 (check_typedef (TYPE_FIELD_TYPE (t, i))))
3180 return 1;
3181 return 0;
3182 }
3183 default:
3184 return 0;
3185 }
3186}
3187
64a5b29c
KB
3188/* Attempt to find (and return) the global pointer for the given
3189 function.
3190
3191 This is a rather nasty bit of code searchs for the .dynamic section
3192 in the objfile corresponding to the pc of the function we're trying
3193 to call. Once it finds the addresses at which the .dynamic section
3194 lives in the child process, it scans the Elf64_Dyn entries for a
3195 DT_PLTGOT tag. If it finds one of these, the corresponding
3196 d_un.d_ptr value is the global pointer. */
3197
3198static CORE_ADDR
b33e8514 3199ia64_find_global_pointer (CORE_ADDR faddr)
64a5b29c 3200{
76d689a6 3201 struct obj_section *faddr_sect;
64a5b29c 3202
76d689a6
KB
3203 faddr_sect = find_pc_section (faddr);
3204 if (faddr_sect != NULL)
64a5b29c
KB
3205 {
3206 struct obj_section *osect;
3207
76d689a6 3208 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
64a5b29c
KB
3209 {
3210 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
3211 break;
3212 }
3213
76d689a6 3214 if (osect < faddr_sect->objfile->sections_end)
64a5b29c 3215 {
aded6f54 3216 CORE_ADDR addr, endaddr;
64a5b29c 3217
aded6f54
PA
3218 addr = obj_section_addr (osect);
3219 endaddr = obj_section_endaddr (osect);
3220
3221 while (addr < endaddr)
64a5b29c
KB
3222 {
3223 int status;
3224 LONGEST tag;
3225 char buf[8];
3226
3227 status = target_read_memory (addr, buf, sizeof (buf));
3228 if (status != 0)
3229 break;
3230 tag = extract_signed_integer (buf, sizeof (buf));
3231
3232 if (tag == DT_PLTGOT)
3233 {
3234 CORE_ADDR global_pointer;
3235
3236 status = target_read_memory (addr + 8, buf, sizeof (buf));
3237 if (status != 0)
3238 break;
7c0b4a20 3239 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
64a5b29c
KB
3240
3241 /* The payoff... */
3242 return global_pointer;
3243 }
3244
3245 if (tag == DT_NULL)
3246 break;
3247
3248 addr += 16;
3249 }
3250 }
3251 }
3252 return 0;
3253}
3254
3255/* Given a function's address, attempt to find (and return) the
3256 corresponding (canonical) function descriptor. Return 0 if
004d836a 3257 not found. */
64a5b29c
KB
3258static CORE_ADDR
3259find_extant_func_descr (CORE_ADDR faddr)
3260{
76d689a6 3261 struct obj_section *faddr_sect;
64a5b29c 3262
004d836a 3263 /* Return early if faddr is already a function descriptor. */
76d689a6
KB
3264 faddr_sect = find_pc_section (faddr);
3265 if (faddr_sect && strcmp (faddr_sect->the_bfd_section->name, ".opd") == 0)
64a5b29c
KB
3266 return faddr;
3267
76d689a6 3268 if (faddr_sect != NULL)
64a5b29c 3269 {
76d689a6
KB
3270 struct obj_section *osect;
3271 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
64a5b29c
KB
3272 {
3273 if (strcmp (osect->the_bfd_section->name, ".opd") == 0)
3274 break;
3275 }
3276
76d689a6 3277 if (osect < faddr_sect->objfile->sections_end)
64a5b29c 3278 {
aded6f54
PA
3279 CORE_ADDR addr, endaddr;
3280
3281 addr = obj_section_addr (osect);
3282 endaddr = obj_section_endaddr (osect);
64a5b29c 3283
aded6f54 3284 while (addr < endaddr)
64a5b29c
KB
3285 {
3286 int status;
3287 LONGEST faddr2;
3288 char buf[8];
3289
3290 status = target_read_memory (addr, buf, sizeof (buf));
3291 if (status != 0)
3292 break;
3293 faddr2 = extract_signed_integer (buf, sizeof (buf));
3294
3295 if (faddr == faddr2)
3296 return addr;
3297
3298 addr += 16;
3299 }
3300 }
3301 }
3302 return 0;
3303}
3304
3305/* Attempt to find a function descriptor corresponding to the
3306 given address. If none is found, construct one on the
004d836a 3307 stack using the address at fdaptr. */
64a5b29c
KB
3308
3309static CORE_ADDR
9c9acae0 3310find_func_descr (struct regcache *regcache, CORE_ADDR faddr, CORE_ADDR *fdaptr)
64a5b29c
KB
3311{
3312 CORE_ADDR fdesc;
3313
3314 fdesc = find_extant_func_descr (faddr);
3315
3316 if (fdesc == 0)
3317 {
9c9acae0 3318 ULONGEST global_pointer;
64a5b29c
KB
3319 char buf[16];
3320
3321 fdesc = *fdaptr;
3322 *fdaptr += 16;
3323
b33e8514 3324 global_pointer = ia64_find_global_pointer (faddr);
64a5b29c
KB
3325
3326 if (global_pointer == 0)
9c9acae0
UW
3327 regcache_cooked_read_unsigned (regcache,
3328 IA64_GR1_REGNUM, &global_pointer);
64a5b29c 3329
fbd9dcd3
AC
3330 store_unsigned_integer (buf, 8, faddr);
3331 store_unsigned_integer (buf + 8, 8, global_pointer);
64a5b29c
KB
3332
3333 write_memory (fdesc, buf, 16);
3334 }
3335
3336 return fdesc;
3337}
16461d7d 3338
af8b88dd
JJ
3339/* Use the following routine when printing out function pointers
3340 so the user can see the function address rather than just the
3341 function descriptor. */
3342static CORE_ADDR
e2d0e7eb
AC
3343ia64_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
3344 struct target_ops *targ)
af8b88dd
JJ
3345{
3346 struct obj_section *s;
3347
3348 s = find_pc_section (addr);
3349
3350 /* check if ADDR points to a function descriptor. */
3351 if (s && strcmp (s->the_bfd_section->name, ".opd") == 0)
3352 return read_memory_unsigned_integer (addr, 8);
3353
fcac911a
JB
3354 /* Normally, functions live inside a section that is executable.
3355 So, if ADDR points to a non-executable section, then treat it
3356 as a function descriptor and return the target address iff
3357 the target address itself points to a section that is executable. */
b1e6fd19 3358 if (s && (s->the_bfd_section->flags & SEC_CODE) == 0)
fcac911a
JB
3359 {
3360 CORE_ADDR pc = read_memory_unsigned_integer (addr, 8);
3361 struct obj_section *pc_section = find_pc_section (pc);
3362
3363 if (pc_section && (pc_section->the_bfd_section->flags & SEC_CODE))
3364 return pc;
3365 }
b1e6fd19 3366
0d5de010
DJ
3367 /* There are also descriptors embedded in vtables. */
3368 if (s)
3369 {
3370 struct minimal_symbol *minsym;
3371
3372 minsym = lookup_minimal_symbol_by_pc (addr);
3373
3374 if (minsym && is_vtable_name (SYMBOL_LINKAGE_NAME (minsym)))
3375 return read_memory_unsigned_integer (addr, 8);
3376 }
3377
af8b88dd
JJ
3378 return addr;
3379}
3380
a78f21af 3381static CORE_ADDR
004d836a
JJ
3382ia64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3383{
3384 return sp & ~0xfLL;
3385}
3386
3387static CORE_ADDR
7d9b040b 3388ia64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
8dd5115e
AS
3389 struct regcache *regcache, CORE_ADDR bp_addr,
3390 int nargs, struct value **args, CORE_ADDR sp,
3391 int struct_return, CORE_ADDR struct_addr)
16461d7d
KB
3392{
3393 int argno;
ea7c478f 3394 struct value *arg;
16461d7d
KB
3395 struct type *type;
3396 int len, argoffset;
64a5b29c 3397 int nslots, rseslots, memslots, slotnum, nfuncargs;
16461d7d 3398 int floatreg;
9c9acae0
UW
3399 ULONGEST bsp, cfm, pfs, new_bsp;
3400 CORE_ADDR funcdescaddr, pc, global_pointer;
7d9b040b 3401 CORE_ADDR func_addr = find_function_addr (function, NULL);
16461d7d
KB
3402
3403 nslots = 0;
64a5b29c 3404 nfuncargs = 0;
004d836a 3405 /* Count the number of slots needed for the arguments. */
16461d7d
KB
3406 for (argno = 0; argno < nargs; argno++)
3407 {
3408 arg = args[argno];
4991999e 3409 type = check_typedef (value_type (arg));
16461d7d
KB
3410 len = TYPE_LENGTH (type);
3411
98f96ba1 3412 if ((nslots & 1) && slot_alignment_is_next_even (type))
16461d7d
KB
3413 nslots++;
3414
64a5b29c
KB
3415 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
3416 nfuncargs++;
3417
16461d7d
KB
3418 nslots += (len + 7) / 8;
3419 }
3420
004d836a 3421 /* Divvy up the slots between the RSE and the memory stack. */
16461d7d
KB
3422 rseslots = (nslots > 8) ? 8 : nslots;
3423 memslots = nslots - rseslots;
3424
004d836a 3425 /* Allocate a new RSE frame. */
9c9acae0 3426 regcache_cooked_read_unsigned (regcache, IA64_CFM_REGNUM, &cfm);
16461d7d 3427
9c9acae0 3428 regcache_cooked_read_unsigned (regcache, IA64_BSP_REGNUM, &bsp);
16461d7d 3429 new_bsp = rse_address_add (bsp, rseslots);
9c9acae0 3430 regcache_cooked_write_unsigned (regcache, IA64_BSP_REGNUM, new_bsp);
16461d7d 3431
9c9acae0 3432 regcache_cooked_read_unsigned (regcache, IA64_PFS_REGNUM, &pfs);
16461d7d
KB
3433 pfs &= 0xc000000000000000LL;
3434 pfs |= (cfm & 0xffffffffffffLL);
9c9acae0 3435 regcache_cooked_write_unsigned (regcache, IA64_PFS_REGNUM, pfs);
16461d7d
KB
3436
3437 cfm &= 0xc000000000000000LL;
3438 cfm |= rseslots;
9c9acae0 3439 regcache_cooked_write_unsigned (regcache, IA64_CFM_REGNUM, cfm);
16461d7d 3440
64a5b29c
KB
3441 /* We will attempt to find function descriptors in the .opd segment,
3442 but if we can't we'll construct them ourselves. That being the
004d836a 3443 case, we'll need to reserve space on the stack for them. */
64a5b29c
KB
3444 funcdescaddr = sp - nfuncargs * 16;
3445 funcdescaddr &= ~0xfLL;
3446
3447 /* Adjust the stack pointer to it's new value. The calling conventions
3448 require us to have 16 bytes of scratch, plus whatever space is
004d836a 3449 necessary for the memory slots and our function descriptors. */
64a5b29c 3450 sp = sp - 16 - (memslots + nfuncargs) * 8;
004d836a 3451 sp &= ~0xfLL; /* Maintain 16 byte alignment. */
16461d7d 3452
64a5b29c
KB
3453 /* Place the arguments where they belong. The arguments will be
3454 either placed in the RSE backing store or on the memory stack.
3455 In addition, floating point arguments or HFAs are placed in
004d836a 3456 floating point registers. */
16461d7d
KB
3457 slotnum = 0;
3458 floatreg = IA64_FR8_REGNUM;
3459 for (argno = 0; argno < nargs; argno++)
3460 {
64a5b29c
KB
3461 struct type *float_elt_type;
3462
16461d7d 3463 arg = args[argno];
4991999e 3464 type = check_typedef (value_type (arg));
16461d7d 3465 len = TYPE_LENGTH (type);
64a5b29c 3466
004d836a 3467 /* Special handling for function parameters. */
64a5b29c
KB
3468 if (len == 8
3469 && TYPE_CODE (type) == TYPE_CODE_PTR
3470 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
3471 {
3472 char val_buf[8];
9c9acae0 3473 ULONGEST faddr = extract_unsigned_integer (value_contents (arg), 8);
fbd9dcd3 3474 store_unsigned_integer (val_buf, 8,
9c9acae0 3475 find_func_descr (regcache, faddr,
fbd9dcd3 3476 &funcdescaddr));
64a5b29c
KB
3477 if (slotnum < rseslots)
3478 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3479 else
3480 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3481 slotnum++;
3482 continue;
3483 }
3484
004d836a 3485 /* Normal slots. */
98f96ba1
KB
3486
3487 /* Skip odd slot if necessary... */
3488 if ((slotnum & 1) && slot_alignment_is_next_even (type))
16461d7d 3489 slotnum++;
98f96ba1 3490
16461d7d
KB
3491 argoffset = 0;
3492 while (len > 0)
3493 {
3494 char val_buf[8];
3495
3496 memset (val_buf, 0, 8);
0fd88904 3497 memcpy (val_buf, value_contents (arg) + argoffset, (len > 8) ? 8 : len);
16461d7d
KB
3498
3499 if (slotnum < rseslots)
3500 write_memory (rse_address_add (bsp, slotnum), val_buf, 8);
3501 else
3502 write_memory (sp + 16 + 8 * (slotnum - rseslots), val_buf, 8);
3503
3504 argoffset += 8;
3505 len -= 8;
3506 slotnum++;
3507 }
64a5b29c 3508
004d836a 3509 /* Handle floating point types (including HFAs). */
64a5b29c
KB
3510 float_elt_type = is_float_or_hfa_type (type);
3511 if (float_elt_type != NULL)
3512 {
3513 argoffset = 0;
3514 len = TYPE_LENGTH (type);
3515 while (len > 0 && floatreg < IA64_FR16_REGNUM)
3516 {
004d836a 3517 char to[MAX_REGISTER_SIZE];
0fd88904 3518 convert_typed_floating (value_contents (arg) + argoffset, float_elt_type,
004d836a
JJ
3519 to, builtin_type_ia64_ext);
3520 regcache_cooked_write (regcache, floatreg, (void *)to);
64a5b29c
KB
3521 floatreg++;
3522 argoffset += TYPE_LENGTH (float_elt_type);
3523 len -= TYPE_LENGTH (float_elt_type);
3524 }
16461d7d
KB
3525 }
3526 }
3527
004d836a 3528 /* Store the struct return value in r8 if necessary. */
16461d7d
KB
3529 if (struct_return)
3530 {
004d836a 3531 regcache_cooked_write_unsigned (regcache, IA64_GR8_REGNUM, (ULONGEST)struct_addr);
16461d7d
KB
3532 }
3533
b33e8514 3534 global_pointer = ia64_find_global_pointer (func_addr);
8dd5115e 3535
004d836a 3536 if (global_pointer != 0)
9c9acae0 3537 regcache_cooked_write_unsigned (regcache, IA64_GR1_REGNUM, global_pointer);
a59fe496 3538
9c9acae0 3539 regcache_cooked_write_unsigned (regcache, IA64_BR0_REGNUM, bp_addr);
16461d7d 3540
9c9acae0 3541 regcache_cooked_write_unsigned (regcache, sp_regnum, sp);
16461d7d
KB
3542
3543 return sp;
3544}
3545
004d836a 3546static struct frame_id
15c1e57f 3547ia64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
16461d7d 3548{
004d836a 3549 char buf[8];
4afcc598 3550 CORE_ADDR sp, bsp;
004d836a 3551
15c1e57f 3552 get_frame_register (this_frame, sp_regnum, buf);
004d836a
JJ
3553 sp = extract_unsigned_integer (buf, 8);
3554
15c1e57f 3555 get_frame_register (this_frame, IA64_BSP_REGNUM, buf);
4afcc598
JJ
3556 bsp = extract_unsigned_integer (buf, 8);
3557
3558 if (gdbarch_debug >= 1)
3559 fprintf_unfiltered (gdb_stdlog,
78ced177 3560 "dummy frame id: code 0x%s, stack 0x%s, special 0x%s\n",
f92aeb88 3561 paddr_nz (get_frame_pc (this_frame)),
78ced177 3562 paddr_nz (sp), paddr_nz (bsp));
4afcc598 3563
15c1e57f 3564 return frame_id_build_special (sp, get_frame_pc (this_frame), bsp);
16461d7d
KB
3565}
3566
004d836a
JJ
3567static CORE_ADDR
3568ia64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
16461d7d 3569{
004d836a
JJ
3570 char buf[8];
3571 CORE_ADDR ip, psr, pc;
3572
3573 frame_unwind_register (next_frame, IA64_IP_REGNUM, buf);
3574 ip = extract_unsigned_integer (buf, 8);
3575 frame_unwind_register (next_frame, IA64_PSR_REGNUM, buf);
3576 psr = extract_unsigned_integer (buf, 8);
3577
3578 pc = (ip & ~0xf) | ((psr >> 41) & 3);
3579 return pc;
16461d7d
KB
3580}
3581
6926787d
AS
3582static int
3583ia64_print_insn (bfd_vma memaddr, struct disassemble_info *info)
3584{
3585 info->bytes_per_line = SLOT_MULTIPLIER;
3586 return print_insn_ia64 (memaddr, info);
3587}
3588
16461d7d
KB
3589static struct gdbarch *
3590ia64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3591{
3592 struct gdbarch *gdbarch;
244bc108 3593 struct gdbarch_tdep *tdep;
244bc108 3594
85bf2b91
JJ
3595 /* If there is already a candidate, use it. */
3596 arches = gdbarch_list_lookup_by_info (arches, &info);
3597 if (arches != NULL)
3598 return arches->gdbarch;
16461d7d 3599
244bc108
KB
3600 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3601 gdbarch = gdbarch_alloc (&info, tdep);
244bc108 3602
b33e8514 3603 tdep->sigcontext_register_address = 0;
74174d2e 3604 tdep->pc_in_sigtramp = 0;
698cb3f0 3605
5439edaa
AC
3606 /* According to the ia64 specs, instructions that store long double
3607 floats in memory use a long-double format different than that
3608 used in the floating registers. The memory format matches the
3609 x86 extended float format which is 80 bits. An OS may choose to
3610 use this format (e.g. GNU/Linux) or choose to use a different
3611 format for storing long doubles (e.g. HPUX). In the latter case,
3612 the setting of the format may be moved/overridden in an
3613 OS-specific tdep file. */
8da61cc4 3614 set_gdbarch_long_double_format (gdbarch, floatformats_i387_ext);
32edc941 3615
16461d7d
KB
3616 set_gdbarch_short_bit (gdbarch, 16);
3617 set_gdbarch_int_bit (gdbarch, 32);
3618 set_gdbarch_long_bit (gdbarch, 64);
3619 set_gdbarch_long_long_bit (gdbarch, 64);
3620 set_gdbarch_float_bit (gdbarch, 32);
3621 set_gdbarch_double_bit (gdbarch, 64);
33c08150 3622 set_gdbarch_long_double_bit (gdbarch, 128);
16461d7d
KB
3623 set_gdbarch_ptr_bit (gdbarch, 64);
3624
004d836a
JJ
3625 set_gdbarch_num_regs (gdbarch, NUM_IA64_RAW_REGS);
3626 set_gdbarch_num_pseudo_regs (gdbarch, LAST_PSEUDO_REGNUM - FIRST_PSEUDO_REGNUM);
16461d7d 3627 set_gdbarch_sp_regnum (gdbarch, sp_regnum);
698cb3f0 3628 set_gdbarch_fp0_regnum (gdbarch, IA64_FR0_REGNUM);
16461d7d
KB
3629
3630 set_gdbarch_register_name (gdbarch, ia64_register_name);
004d836a 3631 set_gdbarch_register_type (gdbarch, ia64_register_type);
16461d7d 3632
004d836a
JJ
3633 set_gdbarch_pseudo_register_read (gdbarch, ia64_pseudo_register_read);
3634 set_gdbarch_pseudo_register_write (gdbarch, ia64_pseudo_register_write);
3635 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, ia64_dwarf_reg_to_regnum);
3636 set_gdbarch_register_reggroup_p (gdbarch, ia64_register_reggroup_p);
3637 set_gdbarch_convert_register_p (gdbarch, ia64_convert_register_p);
3638 set_gdbarch_register_to_value (gdbarch, ia64_register_to_value);
3639 set_gdbarch_value_to_register (gdbarch, ia64_value_to_register);
16461d7d 3640
004d836a 3641 set_gdbarch_skip_prologue (gdbarch, ia64_skip_prologue);
16461d7d 3642
4c8b6ae0 3643 set_gdbarch_return_value (gdbarch, ia64_return_value);
16461d7d
KB
3644
3645 set_gdbarch_memory_insert_breakpoint (gdbarch, ia64_memory_insert_breakpoint);
3646 set_gdbarch_memory_remove_breakpoint (gdbarch, ia64_memory_remove_breakpoint);
3647 set_gdbarch_breakpoint_from_pc (gdbarch, ia64_breakpoint_from_pc);
3648 set_gdbarch_read_pc (gdbarch, ia64_read_pc);
b33e8514 3649 set_gdbarch_write_pc (gdbarch, ia64_write_pc);
16461d7d
KB
3650
3651 /* Settings for calling functions in the inferior. */
8dd5115e 3652 set_gdbarch_push_dummy_call (gdbarch, ia64_push_dummy_call);
004d836a 3653 set_gdbarch_frame_align (gdbarch, ia64_frame_align);
15c1e57f 3654 set_gdbarch_dummy_id (gdbarch, ia64_dummy_id);
16461d7d 3655
004d836a 3656 set_gdbarch_unwind_pc (gdbarch, ia64_unwind_pc);
968d1cb4 3657#ifdef HAVE_LIBUNWIND_IA64_H
15c1e57f
JB
3658 frame_unwind_append_unwinder (gdbarch,
3659 &ia64_libunwind_sigtramp_frame_unwind);
3660 frame_unwind_append_unwinder (gdbarch, &ia64_libunwind_frame_unwind);
3661 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
968d1cb4 3662 libunwind_frame_set_descr (gdbarch, &ia64_libunwind_descr);
c5a27d9c 3663#else
15c1e57f 3664 frame_unwind_append_unwinder (gdbarch, &ia64_sigtramp_frame_unwind);
968d1cb4 3665#endif
15c1e57f 3666 frame_unwind_append_unwinder (gdbarch, &ia64_frame_unwind);
004d836a 3667 frame_base_set_default (gdbarch, &ia64_frame_base);
16461d7d
KB
3668
3669 /* Settings that should be unnecessary. */
3670 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3671
6926787d 3672 set_gdbarch_print_insn (gdbarch, ia64_print_insn);
af8b88dd 3673 set_gdbarch_convert_from_func_ptr_addr (gdbarch, ia64_convert_from_func_ptr_addr);
6926787d 3674
0d5de010
DJ
3675 /* The virtual table contains 16-byte descriptors, not pointers to
3676 descriptors. */
3677 set_gdbarch_vtable_function_descriptors (gdbarch, 1);
3678
b33e8514
AS
3679 /* Hook in ABI-specific overrides, if they have been registered. */
3680 gdbarch_init_osabi (info, gdbarch);
3681
16461d7d
KB
3682 return gdbarch;
3683}
3684
a78f21af
AC
3685extern initialize_file_ftype _initialize_ia64_tdep; /* -Wmissing-prototypes */
3686
16461d7d
KB
3687void
3688_initialize_ia64_tdep (void)
3689{
83acabca
DJ
3690 /* Define the ia64 floating-point format to gdb. */
3691 builtin_type_ia64_ext =
3692 init_type (TYPE_CODE_FLT, 128 / 8,
3693 0, "builtin_type_ia64_ext", NULL);
3694 TYPE_FLOATFORMAT (builtin_type_ia64_ext) = floatformats_ia64_ext;
3695
b33e8514 3696 gdbarch_register (bfd_arch_ia64, ia64_gdbarch_init, NULL);
16461d7d 3697}
This page took 1.018136 seconds and 4 git commands to generate.