Make GDB wait for events after handling target File-I/O
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
94585166 1098 ptid_t process_ptid;
7a292a7a 1099
c906108c
SS
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1777feb0 1119 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1120
1121 mark_breakpoints_out ();
1122
95e50b27
PA
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
8a06aea7 1142 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
8358c15c 1151 th->control.step_resume_breakpoint = NULL;
186c406b 1152 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1153 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
c906108c 1156
95e50b27
PA
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
a75724bc
PA
1160 th->stop_requested = 0;
1161
95e50b27
PA
1162 update_breakpoints_after_exec ();
1163
1777feb0 1164 /* What is this a.out's name? */
94585166 1165 process_ptid = pid_to_ptid (pid);
6c95b8df 1166 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1167 target_pid_to_str (process_ptid),
6c95b8df 1168 execd_pathname);
c906108c
SS
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1171 inferior has essentially been killed & reborn. */
7a292a7a 1172
c906108c 1173 gdb_flush (gdb_stdout);
6ca15a4b
PA
1174
1175 breakpoint_init_inferior (inf_execd);
e85a822c 1176
a3be80c3 1177 if (*gdb_sysroot != '\0')
e85a822c 1178 {
998d2a3e 1179 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1180
224c3ddb 1181 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1182 strcpy (execd_pathname, name);
1183 xfree (name);
e85a822c 1184 }
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
94585166
DB
1204 inf = add_inferior_with_spaces ();
1205 inf->pid = pid;
1206 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1207
1208 set_current_inferior (inf);
94585166
DB
1209 set_current_program_space (inf->pspace);
1210 add_thread (ptid);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1777feb0 1225 /* That a.out is now the one to use. */
6c95b8df
PA
1226 exec_file_attach (execd_pathname, 0);
1227
c1e56572
JK
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
7dcd53a0
TT
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1236 NULL, 0);
1237
7dcd53a0
TT
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
c906108c 1240
9107fc8d
PA
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
268a4a75 1249 solib_create_inferior_hook (0);
c906108c 1250
4efc6507
DE
1251 jit_inferior_created_hook ();
1252
c1e56572
JK
1253 breakpoint_re_set ();
1254
c906108c
SS
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1777feb0 1257 to symbol_file_command...). */
c906108c
SS
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1777feb0 1263 matically get reset there in the new process.). */
c906108c
SS
1264}
1265
c2829269
PA
1266/* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273struct thread_info *step_over_queue_head;
1274
6c4cfb24
PA
1275/* Bit flags indicating what the thread needs to step over. */
1276
1277enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
31e77af2
PA
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333static void
963f9c80
PA
1334set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
31e77af2
PA
1336{
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
963f9c80 1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1340}
1341
1342/* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345static void
1346clear_step_over_info (void)
1347{
372316f1
PA
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
31e77af2
PA
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
963f9c80 1353 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
1370int
1371stepping_past_nonsteppable_watchpoint (void)
1372{
1373 return step_over_info.nonsteppable_watchpoint_p;
1374}
1375
6cc83d2a
PA
1376/* Returns true if step-over info is valid. */
1377
1378static int
1379step_over_info_valid_p (void)
1380{
963f9c80
PA
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1383}
1384
c906108c 1385\f
237fc4c9
PA
1386/* Displaced stepping. */
1387
1388/* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
fc1cf338
PA
1474/* Per-inferior displaced stepping state. */
1475struct displaced_step_inferior_state
1476{
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
3fc8eb30
PA
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
fc1cf338
PA
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505};
1506
1507/* The list of states of processes involved in displaced stepping
1508 presently. */
1509static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511/* Get the displaced stepping state of process PID. */
1512
1513static struct displaced_step_inferior_state *
1514get_displaced_stepping_state (int pid)
1515{
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525}
1526
372316f1
PA
1527/* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530static int
1531displaced_step_in_progress_any_inferior (void)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542}
1543
8f572e5c
PA
1544/* Return true if process PID has a thread doing a displaced step. */
1545
1546static int
1547displaced_step_in_progress (int pid)
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
fc1cf338
PA
1558/* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562static struct displaced_step_inferior_state *
1563add_displaced_stepping_state (int pid)
1564{
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
237fc4c9 1572
8d749320 1573 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
237fc4c9 1577
fc1cf338
PA
1578 return state;
1579}
1580
a42244db
YQ
1581/* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585struct displaced_step_closure*
1586get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587{
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597}
1598
fc1cf338 1599/* Remove the displaced stepping state of process PID. */
237fc4c9 1600
fc1cf338
PA
1601static void
1602remove_displaced_stepping_state (int pid)
1603{
1604 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1605
fc1cf338
PA
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622}
1623
1624static void
1625infrun_inferior_exit (struct inferior *inf)
1626{
1627 remove_displaced_stepping_state (inf->pid);
1628}
237fc4c9 1629
fff08868
HZ
1630/* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
72d0e2c5 1638static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1639
237fc4c9
PA
1640static void
1641show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644{
72d0e2c5 1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1649 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1650 else
3e43a32a
MS
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1654}
1655
fff08868 1656/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1657 over breakpoints of thread TP. */
fff08868 1658
237fc4c9 1659static int
3fc8eb30 1660use_displaced_stepping (struct thread_info *tp)
237fc4c9 1661{
3fc8eb30
PA
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
fbea99ea
PA
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
72d0e2c5 1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
237fc4c9
PA
1675}
1676
1677/* Clean out any stray displaced stepping state. */
1678static void
fc1cf338 1679displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1680{
1681 /* Indicate that there is no cleanup pending. */
fc1cf338 1682 displaced->step_ptid = null_ptid;
237fc4c9 1683
fc1cf338 1684 if (displaced->step_closure)
237fc4c9 1685 {
fc1cf338
PA
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
237fc4c9
PA
1689 }
1690}
1691
1692static void
fc1cf338 1693displaced_step_clear_cleanup (void *arg)
237fc4c9 1694{
9a3c8263
SM
1695 struct displaced_step_inferior_state *state
1696 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1697
1698 displaced_step_clear (state);
237fc4c9
PA
1699}
1700
1701/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1702void
1703displaced_step_dump_bytes (struct ui_file *file,
1704 const gdb_byte *buf,
1705 size_t len)
1706{
1707 int i;
1708
1709 for (i = 0; i < len; i++)
1710 fprintf_unfiltered (file, "%02x ", buf[i]);
1711 fputs_unfiltered ("\n", file);
1712}
1713
1714/* Prepare to single-step, using displaced stepping.
1715
1716 Note that we cannot use displaced stepping when we have a signal to
1717 deliver. If we have a signal to deliver and an instruction to step
1718 over, then after the step, there will be no indication from the
1719 target whether the thread entered a signal handler or ignored the
1720 signal and stepped over the instruction successfully --- both cases
1721 result in a simple SIGTRAP. In the first case we mustn't do a
1722 fixup, and in the second case we must --- but we can't tell which.
1723 Comments in the code for 'random signals' in handle_inferior_event
1724 explain how we handle this case instead.
1725
1726 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1727 stepped now; 0 if displaced stepping this thread got queued; or -1
1728 if this instruction can't be displaced stepped. */
1729
237fc4c9 1730static int
3fc8eb30 1731displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1732{
ad53cd71 1733 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1734 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1735 struct regcache *regcache = get_thread_regcache (ptid);
1736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737 CORE_ADDR original, copy;
1738 ULONGEST len;
1739 struct displaced_step_closure *closure;
fc1cf338 1740 struct displaced_step_inferior_state *displaced;
9e529e1d 1741 int status;
237fc4c9
PA
1742
1743 /* We should never reach this function if the architecture does not
1744 support displaced stepping. */
1745 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1746
c2829269
PA
1747 /* Nor if the thread isn't meant to step over a breakpoint. */
1748 gdb_assert (tp->control.trap_expected);
1749
c1e36e3e
PA
1750 /* Disable range stepping while executing in the scratch pad. We
1751 want a single-step even if executing the displaced instruction in
1752 the scratch buffer lands within the stepping range (e.g., a
1753 jump/branch). */
1754 tp->control.may_range_step = 0;
1755
fc1cf338
PA
1756 /* We have to displaced step one thread at a time, as we only have
1757 access to a single scratch space per inferior. */
237fc4c9 1758
fc1cf338
PA
1759 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1760
1761 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1762 {
1763 /* Already waiting for a displaced step to finish. Defer this
1764 request and place in queue. */
237fc4c9
PA
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
c2829269 1768 "displaced: deferring step of %s\n",
237fc4c9
PA
1769 target_pid_to_str (ptid));
1770
c2829269 1771 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1772 return 0;
1773 }
1774 else
1775 {
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "displaced: stepping %s now\n",
1779 target_pid_to_str (ptid));
1780 }
1781
fc1cf338 1782 displaced_step_clear (displaced);
237fc4c9 1783
ad53cd71
PA
1784 old_cleanups = save_inferior_ptid ();
1785 inferior_ptid = ptid;
1786
515630c5 1787 original = regcache_read_pc (regcache);
237fc4c9
PA
1788
1789 copy = gdbarch_displaced_step_location (gdbarch);
1790 len = gdbarch_max_insn_length (gdbarch);
1791
1792 /* Save the original contents of the copy area. */
224c3ddb 1793 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1794 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1795 &displaced->step_saved_copy);
9e529e1d
JK
1796 status = target_read_memory (copy, displaced->step_saved_copy, len);
1797 if (status != 0)
1798 throw_error (MEMORY_ERROR,
1799 _("Error accessing memory address %s (%s) for "
1800 "displaced-stepping scratch space."),
1801 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1802 if (debug_displaced)
1803 {
5af949e3
UW
1804 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1805 paddress (gdbarch, copy));
fc1cf338
PA
1806 displaced_step_dump_bytes (gdb_stdlog,
1807 displaced->step_saved_copy,
1808 len);
237fc4c9
PA
1809 };
1810
1811 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1812 original, copy, regcache);
7f03bd92
PA
1813 if (closure == NULL)
1814 {
1815 /* The architecture doesn't know how or want to displaced step
1816 this instruction or instruction sequence. Fallback to
1817 stepping over the breakpoint in-line. */
1818 do_cleanups (old_cleanups);
1819 return -1;
1820 }
237fc4c9 1821
9f5a595d
UW
1822 /* Save the information we need to fix things up if the step
1823 succeeds. */
fc1cf338
PA
1824 displaced->step_ptid = ptid;
1825 displaced->step_gdbarch = gdbarch;
1826 displaced->step_closure = closure;
1827 displaced->step_original = original;
1828 displaced->step_copy = copy;
9f5a595d 1829
fc1cf338 1830 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1831
1832 /* Resume execution at the copy. */
515630c5 1833 regcache_write_pc (regcache, copy);
237fc4c9 1834
ad53cd71
PA
1835 discard_cleanups (ignore_cleanups);
1836
1837 do_cleanups (old_cleanups);
237fc4c9
PA
1838
1839 if (debug_displaced)
5af949e3
UW
1840 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1841 paddress (gdbarch, copy));
237fc4c9 1842
237fc4c9
PA
1843 return 1;
1844}
1845
3fc8eb30
PA
1846/* Wrapper for displaced_step_prepare_throw that disabled further
1847 attempts at displaced stepping if we get a memory error. */
1848
1849static int
1850displaced_step_prepare (ptid_t ptid)
1851{
1852 int prepared = -1;
1853
1854 TRY
1855 {
1856 prepared = displaced_step_prepare_throw (ptid);
1857 }
1858 CATCH (ex, RETURN_MASK_ERROR)
1859 {
1860 struct displaced_step_inferior_state *displaced_state;
1861
1862 if (ex.error != MEMORY_ERROR)
1863 throw_exception (ex);
1864
1865 if (debug_infrun)
1866 {
1867 fprintf_unfiltered (gdb_stdlog,
1868 "infrun: disabling displaced stepping: %s\n",
1869 ex.message);
1870 }
1871
1872 /* Be verbose if "set displaced-stepping" is "on", silent if
1873 "auto". */
1874 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1875 {
fd7dcb94 1876 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1877 ex.message);
1878 }
1879
1880 /* Disable further displaced stepping attempts. */
1881 displaced_state
1882 = get_displaced_stepping_state (ptid_get_pid (ptid));
1883 displaced_state->failed_before = 1;
1884 }
1885 END_CATCH
1886
1887 return prepared;
1888}
1889
237fc4c9 1890static void
3e43a32a
MS
1891write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1892 const gdb_byte *myaddr, int len)
237fc4c9
PA
1893{
1894 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1895
237fc4c9
PA
1896 inferior_ptid = ptid;
1897 write_memory (memaddr, myaddr, len);
1898 do_cleanups (ptid_cleanup);
1899}
1900
e2d96639
YQ
1901/* Restore the contents of the copy area for thread PTID. */
1902
1903static void
1904displaced_step_restore (struct displaced_step_inferior_state *displaced,
1905 ptid_t ptid)
1906{
1907 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1908
1909 write_memory_ptid (ptid, displaced->step_copy,
1910 displaced->step_saved_copy, len);
1911 if (debug_displaced)
1912 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1913 target_pid_to_str (ptid),
1914 paddress (displaced->step_gdbarch,
1915 displaced->step_copy));
1916}
1917
372316f1
PA
1918/* If we displaced stepped an instruction successfully, adjust
1919 registers and memory to yield the same effect the instruction would
1920 have had if we had executed it at its original address, and return
1921 1. If the instruction didn't complete, relocate the PC and return
1922 -1. If the thread wasn't displaced stepping, return 0. */
1923
1924static int
2ea28649 1925displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1926{
1927 struct cleanup *old_cleanups;
fc1cf338
PA
1928 struct displaced_step_inferior_state *displaced
1929 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1930 int ret;
fc1cf338
PA
1931
1932 /* Was any thread of this process doing a displaced step? */
1933 if (displaced == NULL)
372316f1 1934 return 0;
237fc4c9
PA
1935
1936 /* Was this event for the pid we displaced? */
fc1cf338
PA
1937 if (ptid_equal (displaced->step_ptid, null_ptid)
1938 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1939 return 0;
237fc4c9 1940
fc1cf338 1941 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1942
e2d96639 1943 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1944
cb71640d
PA
1945 /* Fixup may need to read memory/registers. Switch to the thread
1946 that we're fixing up. Also, target_stopped_by_watchpoint checks
1947 the current thread. */
1948 switch_to_thread (event_ptid);
1949
237fc4c9 1950 /* Did the instruction complete successfully? */
cb71640d
PA
1951 if (signal == GDB_SIGNAL_TRAP
1952 && !(target_stopped_by_watchpoint ()
1953 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1954 || target_have_steppable_watchpoint)))
237fc4c9
PA
1955 {
1956 /* Fix up the resulting state. */
fc1cf338
PA
1957 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1958 displaced->step_closure,
1959 displaced->step_original,
1960 displaced->step_copy,
1961 get_thread_regcache (displaced->step_ptid));
372316f1 1962 ret = 1;
237fc4c9
PA
1963 }
1964 else
1965 {
1966 /* Since the instruction didn't complete, all we can do is
1967 relocate the PC. */
515630c5
UW
1968 struct regcache *regcache = get_thread_regcache (event_ptid);
1969 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1970
fc1cf338 1971 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1972 regcache_write_pc (regcache, pc);
372316f1 1973 ret = -1;
237fc4c9
PA
1974 }
1975
1976 do_cleanups (old_cleanups);
1977
fc1cf338 1978 displaced->step_ptid = null_ptid;
372316f1
PA
1979
1980 return ret;
c2829269 1981}
1c5cfe86 1982
4d9d9d04
PA
1983/* Data to be passed around while handling an event. This data is
1984 discarded between events. */
1985struct execution_control_state
1986{
1987 ptid_t ptid;
1988 /* The thread that got the event, if this was a thread event; NULL
1989 otherwise. */
1990 struct thread_info *event_thread;
1991
1992 struct target_waitstatus ws;
1993 int stop_func_filled_in;
1994 CORE_ADDR stop_func_start;
1995 CORE_ADDR stop_func_end;
1996 const char *stop_func_name;
1997 int wait_some_more;
1998
1999 /* True if the event thread hit the single-step breakpoint of
2000 another thread. Thus the event doesn't cause a stop, the thread
2001 needs to be single-stepped past the single-step breakpoint before
2002 we can switch back to the original stepping thread. */
2003 int hit_singlestep_breakpoint;
2004};
2005
2006/* Clear ECS and set it to point at TP. */
c2829269
PA
2007
2008static void
4d9d9d04
PA
2009reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2010{
2011 memset (ecs, 0, sizeof (*ecs));
2012 ecs->event_thread = tp;
2013 ecs->ptid = tp->ptid;
2014}
2015
2016static void keep_going_pass_signal (struct execution_control_state *ecs);
2017static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2018static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2019static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2020static void stop_all_threads (void);
4d9d9d04
PA
2021
2022/* Are there any pending step-over requests? If so, run all we can
2023 now and return true. Otherwise, return false. */
2024
2025static int
c2829269
PA
2026start_step_over (void)
2027{
2028 struct thread_info *tp, *next;
2029
372316f1
PA
2030 /* Don't start a new step-over if we already have an in-line
2031 step-over operation ongoing. */
2032 if (step_over_info_valid_p ())
2033 return 0;
2034
c2829269 2035 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2036 {
4d9d9d04
PA
2037 struct execution_control_state ecss;
2038 struct execution_control_state *ecs = &ecss;
372316f1
PA
2039 enum step_over_what step_what;
2040 int must_be_in_line;
c2829269
PA
2041
2042 next = thread_step_over_chain_next (tp);
237fc4c9 2043
c2829269
PA
2044 /* If this inferior already has a displaced step in process,
2045 don't start a new one. */
4d9d9d04 2046 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2047 continue;
2048
372316f1
PA
2049 step_what = thread_still_needs_step_over (tp);
2050 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2051 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2052 && !use_displaced_stepping (tp)));
372316f1
PA
2053
2054 /* We currently stop all threads of all processes to step-over
2055 in-line. If we need to start a new in-line step-over, let
2056 any pending displaced steps finish first. */
2057 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2058 return 0;
2059
c2829269
PA
2060 thread_step_over_chain_remove (tp);
2061
2062 if (step_over_queue_head == NULL)
2063 {
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: step-over queue now empty\n");
2067 }
2068
372316f1
PA
2069 if (tp->control.trap_expected
2070 || tp->resumed
2071 || tp->executing)
ad53cd71 2072 {
4d9d9d04
PA
2073 internal_error (__FILE__, __LINE__,
2074 "[%s] has inconsistent state: "
372316f1 2075 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2076 target_pid_to_str (tp->ptid),
2077 tp->control.trap_expected,
372316f1 2078 tp->resumed,
4d9d9d04 2079 tp->executing);
ad53cd71 2080 }
1c5cfe86 2081
4d9d9d04
PA
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resuming [%s] for step-over\n",
2085 target_pid_to_str (tp->ptid));
2086
2087 /* keep_going_pass_signal skips the step-over if the breakpoint
2088 is no longer inserted. In all-stop, we want to keep looking
2089 for a thread that needs a step-over instead of resuming TP,
2090 because we wouldn't be able to resume anything else until the
2091 target stops again. In non-stop, the resume always resumes
2092 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2093 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2094 continue;
8550d3b3 2095
4d9d9d04
PA
2096 switch_to_thread (tp->ptid);
2097 reset_ecs (ecs, tp);
2098 keep_going_pass_signal (ecs);
1c5cfe86 2099
4d9d9d04
PA
2100 if (!ecs->wait_some_more)
2101 error (_("Command aborted."));
1c5cfe86 2102
372316f1
PA
2103 gdb_assert (tp->resumed);
2104
2105 /* If we started a new in-line step-over, we're done. */
2106 if (step_over_info_valid_p ())
2107 {
2108 gdb_assert (tp->control.trap_expected);
2109 return 1;
2110 }
2111
fbea99ea 2112 if (!target_is_non_stop_p ())
4d9d9d04
PA
2113 {
2114 /* On all-stop, shouldn't have resumed unless we needed a
2115 step over. */
2116 gdb_assert (tp->control.trap_expected
2117 || tp->step_after_step_resume_breakpoint);
2118
2119 /* With remote targets (at least), in all-stop, we can't
2120 issue any further remote commands until the program stops
2121 again. */
2122 return 1;
1c5cfe86 2123 }
c2829269 2124
4d9d9d04
PA
2125 /* Either the thread no longer needed a step-over, or a new
2126 displaced stepping sequence started. Even in the latter
2127 case, continue looking. Maybe we can also start another
2128 displaced step on a thread of other process. */
237fc4c9 2129 }
4d9d9d04
PA
2130
2131 return 0;
237fc4c9
PA
2132}
2133
5231c1fd
PA
2134/* Update global variables holding ptids to hold NEW_PTID if they were
2135 holding OLD_PTID. */
2136static void
2137infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2138{
2139 struct displaced_step_request *it;
fc1cf338 2140 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2141
2142 if (ptid_equal (inferior_ptid, old_ptid))
2143 inferior_ptid = new_ptid;
2144
fc1cf338
PA
2145 for (displaced = displaced_step_inferior_states;
2146 displaced;
2147 displaced = displaced->next)
2148 {
2149 if (ptid_equal (displaced->step_ptid, old_ptid))
2150 displaced->step_ptid = new_ptid;
fc1cf338 2151 }
5231c1fd
PA
2152}
2153
237fc4c9
PA
2154\f
2155/* Resuming. */
c906108c
SS
2156
2157/* Things to clean up if we QUIT out of resume (). */
c906108c 2158static void
74b7792f 2159resume_cleanups (void *ignore)
c906108c 2160{
34b7e8a6
PA
2161 if (!ptid_equal (inferior_ptid, null_ptid))
2162 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2163
c906108c
SS
2164 normal_stop ();
2165}
2166
53904c9e
AC
2167static const char schedlock_off[] = "off";
2168static const char schedlock_on[] = "on";
2169static const char schedlock_step[] = "step";
f2665db5 2170static const char schedlock_replay[] = "replay";
40478521 2171static const char *const scheduler_enums[] = {
ef346e04
AC
2172 schedlock_off,
2173 schedlock_on,
2174 schedlock_step,
f2665db5 2175 schedlock_replay,
ef346e04
AC
2176 NULL
2177};
f2665db5 2178static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2179static void
2180show_scheduler_mode (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c, const char *value)
2182{
3e43a32a
MS
2183 fprintf_filtered (file,
2184 _("Mode for locking scheduler "
2185 "during execution is \"%s\".\n"),
920d2a44
AC
2186 value);
2187}
c906108c
SS
2188
2189static void
96baa820 2190set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2191{
eefe576e
AC
2192 if (!target_can_lock_scheduler)
2193 {
2194 scheduler_mode = schedlock_off;
2195 error (_("Target '%s' cannot support this command."), target_shortname);
2196 }
c906108c
SS
2197}
2198
d4db2f36
PA
2199/* True if execution commands resume all threads of all processes by
2200 default; otherwise, resume only threads of the current inferior
2201 process. */
2202int sched_multi = 0;
2203
2facfe5c
DD
2204/* Try to setup for software single stepping over the specified location.
2205 Return 1 if target_resume() should use hardware single step.
2206
2207 GDBARCH the current gdbarch.
2208 PC the location to step over. */
2209
2210static int
2211maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2212{
2213 int hw_step = 1;
2214
f02253f1
HZ
2215 if (execution_direction == EXEC_FORWARD
2216 && gdbarch_software_single_step_p (gdbarch)
99e40580 2217 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2218 {
99e40580 2219 hw_step = 0;
2facfe5c
DD
2220 }
2221 return hw_step;
2222}
c906108c 2223
f3263aa4
PA
2224/* See infrun.h. */
2225
09cee04b
PA
2226ptid_t
2227user_visible_resume_ptid (int step)
2228{
f3263aa4 2229 ptid_t resume_ptid;
09cee04b 2230
09cee04b
PA
2231 if (non_stop)
2232 {
2233 /* With non-stop mode on, threads are always handled
2234 individually. */
2235 resume_ptid = inferior_ptid;
2236 }
2237 else if ((scheduler_mode == schedlock_on)
03d46957 2238 || (scheduler_mode == schedlock_step && step))
09cee04b 2239 {
f3263aa4
PA
2240 /* User-settable 'scheduler' mode requires solo thread
2241 resume. */
09cee04b
PA
2242 resume_ptid = inferior_ptid;
2243 }
f2665db5
MM
2244 else if ((scheduler_mode == schedlock_replay)
2245 && target_record_will_replay (minus_one_ptid, execution_direction))
2246 {
2247 /* User-settable 'scheduler' mode requires solo thread resume in replay
2248 mode. */
2249 resume_ptid = inferior_ptid;
2250 }
f3263aa4
PA
2251 else if (!sched_multi && target_supports_multi_process ())
2252 {
2253 /* Resume all threads of the current process (and none of other
2254 processes). */
2255 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2256 }
2257 else
2258 {
2259 /* Resume all threads of all processes. */
2260 resume_ptid = RESUME_ALL;
2261 }
09cee04b
PA
2262
2263 return resume_ptid;
2264}
2265
fbea99ea
PA
2266/* Return a ptid representing the set of threads that we will resume,
2267 in the perspective of the target, assuming run control handling
2268 does not require leaving some threads stopped (e.g., stepping past
2269 breakpoint). USER_STEP indicates whether we're about to start the
2270 target for a stepping command. */
2271
2272static ptid_t
2273internal_resume_ptid (int user_step)
2274{
2275 /* In non-stop, we always control threads individually. Note that
2276 the target may always work in non-stop mode even with "set
2277 non-stop off", in which case user_visible_resume_ptid could
2278 return a wildcard ptid. */
2279 if (target_is_non_stop_p ())
2280 return inferior_ptid;
2281 else
2282 return user_visible_resume_ptid (user_step);
2283}
2284
64ce06e4
PA
2285/* Wrapper for target_resume, that handles infrun-specific
2286 bookkeeping. */
2287
2288static void
2289do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2290{
2291 struct thread_info *tp = inferior_thread ();
2292
2293 /* Install inferior's terminal modes. */
2294 target_terminal_inferior ();
2295
2296 /* Avoid confusing the next resume, if the next stop/resume
2297 happens to apply to another thread. */
2298 tp->suspend.stop_signal = GDB_SIGNAL_0;
2299
8f572e5c
PA
2300 /* Advise target which signals may be handled silently.
2301
2302 If we have removed breakpoints because we are stepping over one
2303 in-line (in any thread), we need to receive all signals to avoid
2304 accidentally skipping a breakpoint during execution of a signal
2305 handler.
2306
2307 Likewise if we're displaced stepping, otherwise a trap for a
2308 breakpoint in a signal handler might be confused with the
2309 displaced step finishing. We don't make the displaced_step_fixup
2310 step distinguish the cases instead, because:
2311
2312 - a backtrace while stopped in the signal handler would show the
2313 scratch pad as frame older than the signal handler, instead of
2314 the real mainline code.
2315
2316 - when the thread is later resumed, the signal handler would
2317 return to the scratch pad area, which would no longer be
2318 valid. */
2319 if (step_over_info_valid_p ()
2320 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2321 target_pass_signals (0, NULL);
2322 else
2323 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2324
2325 target_resume (resume_ptid, step, sig);
2326}
2327
c906108c
SS
2328/* Resume the inferior, but allow a QUIT. This is useful if the user
2329 wants to interrupt some lengthy single-stepping operation
2330 (for child processes, the SIGINT goes to the inferior, and so
2331 we get a SIGINT random_signal, but for remote debugging and perhaps
2332 other targets, that's not true).
2333
c906108c
SS
2334 SIG is the signal to give the inferior (zero for none). */
2335void
64ce06e4 2336resume (enum gdb_signal sig)
c906108c 2337{
74b7792f 2338 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2339 struct regcache *regcache = get_current_regcache ();
2340 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2341 struct thread_info *tp = inferior_thread ();
515630c5 2342 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2343 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2344 ptid_t resume_ptid;
856e7dd6
PA
2345 /* This represents the user's step vs continue request. When
2346 deciding whether "set scheduler-locking step" applies, it's the
2347 user's intention that counts. */
2348 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2349 /* This represents what we'll actually request the target to do.
2350 This can decay from a step to a continue, if e.g., we need to
2351 implement single-stepping with breakpoints (software
2352 single-step). */
6b403daa 2353 int step;
c7e8a53c 2354
c2829269
PA
2355 gdb_assert (!thread_is_in_step_over_chain (tp));
2356
c906108c
SS
2357 QUIT;
2358
372316f1
PA
2359 if (tp->suspend.waitstatus_pending_p)
2360 {
2361 if (debug_infrun)
2362 {
2363 char *statstr;
2364
2365 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2366 fprintf_unfiltered (gdb_stdlog,
2367 "infrun: resume: thread %s has pending wait status %s "
2368 "(currently_stepping=%d).\n",
2369 target_pid_to_str (tp->ptid), statstr,
2370 currently_stepping (tp));
2371 xfree (statstr);
2372 }
2373
2374 tp->resumed = 1;
2375
2376 /* FIXME: What should we do if we are supposed to resume this
2377 thread with a signal? Maybe we should maintain a queue of
2378 pending signals to deliver. */
2379 if (sig != GDB_SIGNAL_0)
2380 {
fd7dcb94 2381 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2382 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2383 }
2384
2385 tp->suspend.stop_signal = GDB_SIGNAL_0;
2386 discard_cleanups (old_cleanups);
2387
2388 if (target_can_async_p ())
2389 target_async (1);
2390 return;
2391 }
2392
2393 tp->stepped_breakpoint = 0;
2394
6b403daa
PA
2395 /* Depends on stepped_breakpoint. */
2396 step = currently_stepping (tp);
2397
74609e71
YQ
2398 if (current_inferior ()->waiting_for_vfork_done)
2399 {
48f9886d
PA
2400 /* Don't try to single-step a vfork parent that is waiting for
2401 the child to get out of the shared memory region (by exec'ing
2402 or exiting). This is particularly important on software
2403 single-step archs, as the child process would trip on the
2404 software single step breakpoint inserted for the parent
2405 process. Since the parent will not actually execute any
2406 instruction until the child is out of the shared region (such
2407 are vfork's semantics), it is safe to simply continue it.
2408 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2409 the parent, and tell it to `keep_going', which automatically
2410 re-sets it stepping. */
74609e71
YQ
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: resume : clear step\n");
a09dd441 2414 step = 0;
74609e71
YQ
2415 }
2416
527159b7 2417 if (debug_infrun)
237fc4c9 2418 fprintf_unfiltered (gdb_stdlog,
c9737c08 2419 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2420 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2421 step, gdb_signal_to_symbol_string (sig),
2422 tp->control.trap_expected,
0d9a9a5f
PA
2423 target_pid_to_str (inferior_ptid),
2424 paddress (gdbarch, pc));
c906108c 2425
c2c6d25f
JM
2426 /* Normally, by the time we reach `resume', the breakpoints are either
2427 removed or inserted, as appropriate. The exception is if we're sitting
2428 at a permanent breakpoint; we need to step over it, but permanent
2429 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2430 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2431 {
af48d08f
PA
2432 if (sig != GDB_SIGNAL_0)
2433 {
2434 /* We have a signal to pass to the inferior. The resume
2435 may, or may not take us to the signal handler. If this
2436 is a step, we'll need to stop in the signal handler, if
2437 there's one, (if the target supports stepping into
2438 handlers), or in the next mainline instruction, if
2439 there's no handler. If this is a continue, we need to be
2440 sure to run the handler with all breakpoints inserted.
2441 In all cases, set a breakpoint at the current address
2442 (where the handler returns to), and once that breakpoint
2443 is hit, resume skipping the permanent breakpoint. If
2444 that breakpoint isn't hit, then we've stepped into the
2445 signal handler (or hit some other event). We'll delete
2446 the step-resume breakpoint then. */
2447
2448 if (debug_infrun)
2449 fprintf_unfiltered (gdb_stdlog,
2450 "infrun: resume: skipping permanent breakpoint, "
2451 "deliver signal first\n");
2452
2453 clear_step_over_info ();
2454 tp->control.trap_expected = 0;
2455
2456 if (tp->control.step_resume_breakpoint == NULL)
2457 {
2458 /* Set a "high-priority" step-resume, as we don't want
2459 user breakpoints at PC to trigger (again) when this
2460 hits. */
2461 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2462 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2463
2464 tp->step_after_step_resume_breakpoint = step;
2465 }
2466
2467 insert_breakpoints ();
2468 }
2469 else
2470 {
2471 /* There's no signal to pass, we can go ahead and skip the
2472 permanent breakpoint manually. */
2473 if (debug_infrun)
2474 fprintf_unfiltered (gdb_stdlog,
2475 "infrun: resume: skipping permanent breakpoint\n");
2476 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2477 /* Update pc to reflect the new address from which we will
2478 execute instructions. */
2479 pc = regcache_read_pc (regcache);
2480
2481 if (step)
2482 {
2483 /* We've already advanced the PC, so the stepping part
2484 is done. Now we need to arrange for a trap to be
2485 reported to handle_inferior_event. Set a breakpoint
2486 at the current PC, and run to it. Don't update
2487 prev_pc, because if we end in
44a1ee51
PA
2488 switch_back_to_stepped_thread, we want the "expected
2489 thread advanced also" branch to be taken. IOW, we
2490 don't want this thread to step further from PC
af48d08f 2491 (overstep). */
1ac806b8 2492 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2493 insert_single_step_breakpoint (gdbarch, aspace, pc);
2494 insert_breakpoints ();
2495
fbea99ea 2496 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2497 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2498 discard_cleanups (old_cleanups);
372316f1 2499 tp->resumed = 1;
af48d08f
PA
2500 return;
2501 }
2502 }
6d350bb5 2503 }
c2c6d25f 2504
c1e36e3e
PA
2505 /* If we have a breakpoint to step over, make sure to do a single
2506 step only. Same if we have software watchpoints. */
2507 if (tp->control.trap_expected || bpstat_should_step ())
2508 tp->control.may_range_step = 0;
2509
237fc4c9
PA
2510 /* If enabled, step over breakpoints by executing a copy of the
2511 instruction at a different address.
2512
2513 We can't use displaced stepping when we have a signal to deliver;
2514 the comments for displaced_step_prepare explain why. The
2515 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2516 signals' explain what we do instead.
2517
2518 We can't use displaced stepping when we are waiting for vfork_done
2519 event, displaced stepping breaks the vfork child similarly as single
2520 step software breakpoint. */
3fc8eb30
PA
2521 if (tp->control.trap_expected
2522 && use_displaced_stepping (tp)
cb71640d 2523 && !step_over_info_valid_p ()
a493e3e2 2524 && sig == GDB_SIGNAL_0
74609e71 2525 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2526 {
3fc8eb30 2527 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2528
3fc8eb30 2529 if (prepared == 0)
d56b7306 2530 {
4d9d9d04
PA
2531 if (debug_infrun)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "Got placed in step-over queue\n");
2534
2535 tp->control.trap_expected = 0;
d56b7306
VP
2536 discard_cleanups (old_cleanups);
2537 return;
2538 }
3fc8eb30
PA
2539 else if (prepared < 0)
2540 {
2541 /* Fallback to stepping over the breakpoint in-line. */
2542
2543 if (target_is_non_stop_p ())
2544 stop_all_threads ();
2545
2546 set_step_over_info (get_regcache_aspace (regcache),
2547 regcache_read_pc (regcache), 0);
2548
2549 step = maybe_software_singlestep (gdbarch, pc);
2550
2551 insert_breakpoints ();
2552 }
2553 else if (prepared > 0)
2554 {
2555 struct displaced_step_inferior_state *displaced;
99e40580 2556
3fc8eb30
PA
2557 /* Update pc to reflect the new address from which we will
2558 execute instructions due to displaced stepping. */
2559 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2560
3fc8eb30
PA
2561 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2562 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2563 displaced->step_closure);
2564 }
237fc4c9
PA
2565 }
2566
2facfe5c 2567 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2568 else if (step)
2facfe5c 2569 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2570
30852783
UW
2571 /* Currently, our software single-step implementation leads to different
2572 results than hardware single-stepping in one situation: when stepping
2573 into delivering a signal which has an associated signal handler,
2574 hardware single-step will stop at the first instruction of the handler,
2575 while software single-step will simply skip execution of the handler.
2576
2577 For now, this difference in behavior is accepted since there is no
2578 easy way to actually implement single-stepping into a signal handler
2579 without kernel support.
2580
2581 However, there is one scenario where this difference leads to follow-on
2582 problems: if we're stepping off a breakpoint by removing all breakpoints
2583 and then single-stepping. In this case, the software single-step
2584 behavior means that even if there is a *breakpoint* in the signal
2585 handler, GDB still would not stop.
2586
2587 Fortunately, we can at least fix this particular issue. We detect
2588 here the case where we are about to deliver a signal while software
2589 single-stepping with breakpoints removed. In this situation, we
2590 revert the decisions to remove all breakpoints and insert single-
2591 step breakpoints, and instead we install a step-resume breakpoint
2592 at the current address, deliver the signal without stepping, and
2593 once we arrive back at the step-resume breakpoint, actually step
2594 over the breakpoint we originally wanted to step over. */
34b7e8a6 2595 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2596 && sig != GDB_SIGNAL_0
2597 && step_over_info_valid_p ())
30852783
UW
2598 {
2599 /* If we have nested signals or a pending signal is delivered
2600 immediately after a handler returns, might might already have
2601 a step-resume breakpoint set on the earlier handler. We cannot
2602 set another step-resume breakpoint; just continue on until the
2603 original breakpoint is hit. */
2604 if (tp->control.step_resume_breakpoint == NULL)
2605 {
2c03e5be 2606 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2607 tp->step_after_step_resume_breakpoint = 1;
2608 }
2609
34b7e8a6 2610 delete_single_step_breakpoints (tp);
30852783 2611
31e77af2 2612 clear_step_over_info ();
30852783 2613 tp->control.trap_expected = 0;
31e77af2
PA
2614
2615 insert_breakpoints ();
30852783
UW
2616 }
2617
b0f16a3e
SM
2618 /* If STEP is set, it's a request to use hardware stepping
2619 facilities. But in that case, we should never
2620 use singlestep breakpoint. */
34b7e8a6 2621 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2622
fbea99ea 2623 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2624 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2625 && tp->control.trap_expected)
2626 {
2627 /* We're allowing a thread to run past a breakpoint it has
2628 hit, by single-stepping the thread with the breakpoint
2629 removed. In which case, we need to single-step only this
2630 thread, and keep others stopped, as they can miss this
2631 breakpoint if allowed to run. */
2632 resume_ptid = inferior_ptid;
2633 }
fbea99ea
PA
2634 else
2635 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2636
7f5ef605
PA
2637 if (execution_direction != EXEC_REVERSE
2638 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2639 {
372316f1
PA
2640 /* There are two cases where we currently need to step a
2641 breakpoint instruction when we have a signal to deliver:
2642
2643 - See handle_signal_stop where we handle random signals that
2644 could take out us out of the stepping range. Normally, in
2645 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2646 signal handler with a breakpoint at PC, but there are cases
2647 where we should _always_ single-step, even if we have a
2648 step-resume breakpoint, like when a software watchpoint is
2649 set. Assuming single-stepping and delivering a signal at the
2650 same time would takes us to the signal handler, then we could
2651 have removed the breakpoint at PC to step over it. However,
2652 some hardware step targets (like e.g., Mac OS) can't step
2653 into signal handlers, and for those, we need to leave the
2654 breakpoint at PC inserted, as otherwise if the handler
2655 recurses and executes PC again, it'll miss the breakpoint.
2656 So we leave the breakpoint inserted anyway, but we need to
2657 record that we tried to step a breakpoint instruction, so
372316f1
PA
2658 that adjust_pc_after_break doesn't end up confused.
2659
2660 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2661 in one thread after another thread that was stepping had been
2662 momentarily paused for a step-over. When we re-resume the
2663 stepping thread, it may be resumed from that address with a
2664 breakpoint that hasn't trapped yet. Seen with
2665 gdb.threads/non-stop-fair-events.exp, on targets that don't
2666 do displaced stepping. */
2667
2668 if (debug_infrun)
2669 fprintf_unfiltered (gdb_stdlog,
2670 "infrun: resume: [%s] stepped breakpoint\n",
2671 target_pid_to_str (tp->ptid));
7f5ef605
PA
2672
2673 tp->stepped_breakpoint = 1;
2674
b0f16a3e
SM
2675 /* Most targets can step a breakpoint instruction, thus
2676 executing it normally. But if this one cannot, just
2677 continue and we will hit it anyway. */
7f5ef605 2678 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2679 step = 0;
2680 }
ef5cf84e 2681
b0f16a3e 2682 if (debug_displaced
cb71640d 2683 && tp->control.trap_expected
3fc8eb30 2684 && use_displaced_stepping (tp)
cb71640d 2685 && !step_over_info_valid_p ())
b0f16a3e 2686 {
d9b67d9f 2687 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2688 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2689 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2690 gdb_byte buf[4];
2691
2692 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2693 paddress (resume_gdbarch, actual_pc));
2694 read_memory (actual_pc, buf, sizeof (buf));
2695 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2696 }
237fc4c9 2697
b0f16a3e
SM
2698 if (tp->control.may_range_step)
2699 {
2700 /* If we're resuming a thread with the PC out of the step
2701 range, then we're doing some nested/finer run control
2702 operation, like stepping the thread out of the dynamic
2703 linker or the displaced stepping scratch pad. We
2704 shouldn't have allowed a range step then. */
2705 gdb_assert (pc_in_thread_step_range (pc, tp));
2706 }
c1e36e3e 2707
64ce06e4 2708 do_target_resume (resume_ptid, step, sig);
372316f1 2709 tp->resumed = 1;
c906108c
SS
2710 discard_cleanups (old_cleanups);
2711}
2712\f
237fc4c9 2713/* Proceeding. */
c906108c 2714
4c2f2a79
PA
2715/* See infrun.h. */
2716
2717/* Counter that tracks number of user visible stops. This can be used
2718 to tell whether a command has proceeded the inferior past the
2719 current location. This allows e.g., inferior function calls in
2720 breakpoint commands to not interrupt the command list. When the
2721 call finishes successfully, the inferior is standing at the same
2722 breakpoint as if nothing happened (and so we don't call
2723 normal_stop). */
2724static ULONGEST current_stop_id;
2725
2726/* See infrun.h. */
2727
2728ULONGEST
2729get_stop_id (void)
2730{
2731 return current_stop_id;
2732}
2733
2734/* Called when we report a user visible stop. */
2735
2736static void
2737new_stop_id (void)
2738{
2739 current_stop_id++;
2740}
2741
c906108c
SS
2742/* Clear out all variables saying what to do when inferior is continued.
2743 First do this, then set the ones you want, then call `proceed'. */
2744
a7212384
UW
2745static void
2746clear_proceed_status_thread (struct thread_info *tp)
c906108c 2747{
a7212384
UW
2748 if (debug_infrun)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "infrun: clear_proceed_status_thread (%s)\n",
2751 target_pid_to_str (tp->ptid));
d6b48e9c 2752
372316f1
PA
2753 /* If we're starting a new sequence, then the previous finished
2754 single-step is no longer relevant. */
2755 if (tp->suspend.waitstatus_pending_p)
2756 {
2757 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2758 {
2759 if (debug_infrun)
2760 fprintf_unfiltered (gdb_stdlog,
2761 "infrun: clear_proceed_status: pending "
2762 "event of %s was a finished step. "
2763 "Discarding.\n",
2764 target_pid_to_str (tp->ptid));
2765
2766 tp->suspend.waitstatus_pending_p = 0;
2767 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2768 }
2769 else if (debug_infrun)
2770 {
2771 char *statstr;
2772
2773 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2774 fprintf_unfiltered (gdb_stdlog,
2775 "infrun: clear_proceed_status_thread: thread %s "
2776 "has pending wait status %s "
2777 "(currently_stepping=%d).\n",
2778 target_pid_to_str (tp->ptid), statstr,
2779 currently_stepping (tp));
2780 xfree (statstr);
2781 }
2782 }
2783
70509625
PA
2784 /* If this signal should not be seen by program, give it zero.
2785 Used for debugging signals. */
2786 if (!signal_pass_state (tp->suspend.stop_signal))
2787 tp->suspend.stop_signal = GDB_SIGNAL_0;
2788
243a9253
PA
2789 thread_fsm_delete (tp->thread_fsm);
2790 tp->thread_fsm = NULL;
2791
16c381f0
JK
2792 tp->control.trap_expected = 0;
2793 tp->control.step_range_start = 0;
2794 tp->control.step_range_end = 0;
c1e36e3e 2795 tp->control.may_range_step = 0;
16c381f0
JK
2796 tp->control.step_frame_id = null_frame_id;
2797 tp->control.step_stack_frame_id = null_frame_id;
2798 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2799 tp->control.step_start_function = NULL;
a7212384 2800 tp->stop_requested = 0;
4e1c45ea 2801
16c381f0 2802 tp->control.stop_step = 0;
32400beb 2803
16c381f0 2804 tp->control.proceed_to_finish = 0;
414c69f7 2805
17b2616c 2806 tp->control.command_interp = NULL;
856e7dd6 2807 tp->control.stepping_command = 0;
17b2616c 2808
a7212384 2809 /* Discard any remaining commands or status from previous stop. */
16c381f0 2810 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2811}
32400beb 2812
a7212384 2813void
70509625 2814clear_proceed_status (int step)
a7212384 2815{
f2665db5
MM
2816 /* With scheduler-locking replay, stop replaying other threads if we're
2817 not replaying the user-visible resume ptid.
2818
2819 This is a convenience feature to not require the user to explicitly
2820 stop replaying the other threads. We're assuming that the user's
2821 intent is to resume tracing the recorded process. */
2822 if (!non_stop && scheduler_mode == schedlock_replay
2823 && target_record_is_replaying (minus_one_ptid)
2824 && !target_record_will_replay (user_visible_resume_ptid (step),
2825 execution_direction))
2826 target_record_stop_replaying ();
2827
6c95b8df
PA
2828 if (!non_stop)
2829 {
70509625
PA
2830 struct thread_info *tp;
2831 ptid_t resume_ptid;
2832
2833 resume_ptid = user_visible_resume_ptid (step);
2834
2835 /* In all-stop mode, delete the per-thread status of all threads
2836 we're about to resume, implicitly and explicitly. */
2837 ALL_NON_EXITED_THREADS (tp)
2838 {
2839 if (!ptid_match (tp->ptid, resume_ptid))
2840 continue;
2841 clear_proceed_status_thread (tp);
2842 }
6c95b8df
PA
2843 }
2844
a7212384
UW
2845 if (!ptid_equal (inferior_ptid, null_ptid))
2846 {
2847 struct inferior *inferior;
2848
2849 if (non_stop)
2850 {
6c95b8df
PA
2851 /* If in non-stop mode, only delete the per-thread status of
2852 the current thread. */
a7212384
UW
2853 clear_proceed_status_thread (inferior_thread ());
2854 }
6c95b8df 2855
d6b48e9c 2856 inferior = current_inferior ();
16c381f0 2857 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2858 }
2859
c906108c 2860 stop_after_trap = 0;
f3b1572e
PA
2861
2862 observer_notify_about_to_proceed ();
c906108c
SS
2863}
2864
99619bea
PA
2865/* Returns true if TP is still stopped at a breakpoint that needs
2866 stepping-over in order to make progress. If the breakpoint is gone
2867 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2868
2869static int
6c4cfb24 2870thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2871{
2872 if (tp->stepping_over_breakpoint)
2873 {
2874 struct regcache *regcache = get_thread_regcache (tp->ptid);
2875
2876 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2877 regcache_read_pc (regcache))
2878 == ordinary_breakpoint_here)
99619bea
PA
2879 return 1;
2880
2881 tp->stepping_over_breakpoint = 0;
2882 }
2883
2884 return 0;
2885}
2886
6c4cfb24
PA
2887/* Check whether thread TP still needs to start a step-over in order
2888 to make progress when resumed. Returns an bitwise or of enum
2889 step_over_what bits, indicating what needs to be stepped over. */
2890
2891static int
2892thread_still_needs_step_over (struct thread_info *tp)
2893{
2894 struct inferior *inf = find_inferior_ptid (tp->ptid);
2895 int what = 0;
2896
2897 if (thread_still_needs_step_over_bp (tp))
2898 what |= STEP_OVER_BREAKPOINT;
2899
2900 if (tp->stepping_over_watchpoint
2901 && !target_have_steppable_watchpoint)
2902 what |= STEP_OVER_WATCHPOINT;
2903
2904 return what;
2905}
2906
483805cf
PA
2907/* Returns true if scheduler locking applies. STEP indicates whether
2908 we're about to do a step/next-like command to a thread. */
2909
2910static int
856e7dd6 2911schedlock_applies (struct thread_info *tp)
483805cf
PA
2912{
2913 return (scheduler_mode == schedlock_on
2914 || (scheduler_mode == schedlock_step
f2665db5
MM
2915 && tp->control.stepping_command)
2916 || (scheduler_mode == schedlock_replay
2917 && target_record_will_replay (minus_one_ptid,
2918 execution_direction)));
483805cf
PA
2919}
2920
c906108c
SS
2921/* Basic routine for continuing the program in various fashions.
2922
2923 ADDR is the address to resume at, or -1 for resume where stopped.
2924 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2925 or -1 for act according to how it stopped.
c906108c 2926 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2927 -1 means return after that and print nothing.
2928 You should probably set various step_... variables
2929 before calling here, if you are stepping.
c906108c
SS
2930
2931 You should call clear_proceed_status before calling proceed. */
2932
2933void
64ce06e4 2934proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2935{
e58b0e63
PA
2936 struct regcache *regcache;
2937 struct gdbarch *gdbarch;
4e1c45ea 2938 struct thread_info *tp;
e58b0e63 2939 CORE_ADDR pc;
6c95b8df 2940 struct address_space *aspace;
4d9d9d04
PA
2941 ptid_t resume_ptid;
2942 struct execution_control_state ecss;
2943 struct execution_control_state *ecs = &ecss;
2944 struct cleanup *old_chain;
2945 int started;
c906108c 2946
e58b0e63
PA
2947 /* If we're stopped at a fork/vfork, follow the branch set by the
2948 "set follow-fork-mode" command; otherwise, we'll just proceed
2949 resuming the current thread. */
2950 if (!follow_fork ())
2951 {
2952 /* The target for some reason decided not to resume. */
2953 normal_stop ();
f148b27e
PA
2954 if (target_can_async_p ())
2955 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2956 return;
2957 }
2958
842951eb
PA
2959 /* We'll update this if & when we switch to a new thread. */
2960 previous_inferior_ptid = inferior_ptid;
2961
e58b0e63
PA
2962 regcache = get_current_regcache ();
2963 gdbarch = get_regcache_arch (regcache);
6c95b8df 2964 aspace = get_regcache_aspace (regcache);
e58b0e63 2965 pc = regcache_read_pc (regcache);
2adfaa28 2966 tp = inferior_thread ();
e58b0e63 2967
99619bea
PA
2968 /* Fill in with reasonable starting values. */
2969 init_thread_stepping_state (tp);
2970
c2829269
PA
2971 gdb_assert (!thread_is_in_step_over_chain (tp));
2972
2acceee2 2973 if (addr == (CORE_ADDR) -1)
c906108c 2974 {
af48d08f
PA
2975 if (pc == stop_pc
2976 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2977 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2978 /* There is a breakpoint at the address we will resume at,
2979 step one instruction before inserting breakpoints so that
2980 we do not stop right away (and report a second hit at this
b2175913
MS
2981 breakpoint).
2982
2983 Note, we don't do this in reverse, because we won't
2984 actually be executing the breakpoint insn anyway.
2985 We'll be (un-)executing the previous instruction. */
99619bea 2986 tp->stepping_over_breakpoint = 1;
515630c5
UW
2987 else if (gdbarch_single_step_through_delay_p (gdbarch)
2988 && gdbarch_single_step_through_delay (gdbarch,
2989 get_current_frame ()))
3352ef37
AC
2990 /* We stepped onto an instruction that needs to be stepped
2991 again before re-inserting the breakpoint, do so. */
99619bea 2992 tp->stepping_over_breakpoint = 1;
c906108c
SS
2993 }
2994 else
2995 {
515630c5 2996 regcache_write_pc (regcache, addr);
c906108c
SS
2997 }
2998
70509625
PA
2999 if (siggnal != GDB_SIGNAL_DEFAULT)
3000 tp->suspend.stop_signal = siggnal;
3001
17b2616c
PA
3002 /* Record the interpreter that issued the execution command that
3003 caused this thread to resume. If the top level interpreter is
3004 MI/async, and the execution command was a CLI command
3005 (next/step/etc.), we'll want to print stop event output to the MI
3006 console channel (the stepped-to line, etc.), as if the user
3007 entered the execution command on a real GDB console. */
4d9d9d04
PA
3008 tp->control.command_interp = command_interp ();
3009
3010 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3011
3012 /* If an exception is thrown from this point on, make sure to
3013 propagate GDB's knowledge of the executing state to the
3014 frontend/user running state. */
3015 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3016
3017 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3018 threads (e.g., we might need to set threads stepping over
3019 breakpoints first), from the user/frontend's point of view, all
3020 threads in RESUME_PTID are now running. Unless we're calling an
3021 inferior function, as in that case we pretend the inferior
3022 doesn't run at all. */
3023 if (!tp->control.in_infcall)
3024 set_running (resume_ptid, 1);
17b2616c 3025
527159b7 3026 if (debug_infrun)
8a9de0e4 3027 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3028 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3029 paddress (gdbarch, addr),
64ce06e4 3030 gdb_signal_to_symbol_string (siggnal));
527159b7 3031
4d9d9d04
PA
3032 annotate_starting ();
3033
3034 /* Make sure that output from GDB appears before output from the
3035 inferior. */
3036 gdb_flush (gdb_stdout);
3037
3038 /* In a multi-threaded task we may select another thread and
3039 then continue or step.
3040
3041 But if a thread that we're resuming had stopped at a breakpoint,
3042 it will immediately cause another breakpoint stop without any
3043 execution (i.e. it will report a breakpoint hit incorrectly). So
3044 we must step over it first.
3045
3046 Look for threads other than the current (TP) that reported a
3047 breakpoint hit and haven't been resumed yet since. */
3048
3049 /* If scheduler locking applies, we can avoid iterating over all
3050 threads. */
3051 if (!non_stop && !schedlock_applies (tp))
94cc34af 3052 {
4d9d9d04
PA
3053 struct thread_info *current = tp;
3054
3055 ALL_NON_EXITED_THREADS (tp)
3056 {
3057 /* Ignore the current thread here. It's handled
3058 afterwards. */
3059 if (tp == current)
3060 continue;
99619bea 3061
4d9d9d04
PA
3062 /* Ignore threads of processes we're not resuming. */
3063 if (!ptid_match (tp->ptid, resume_ptid))
3064 continue;
c906108c 3065
4d9d9d04
PA
3066 if (!thread_still_needs_step_over (tp))
3067 continue;
3068
3069 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3070
99619bea
PA
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "infrun: need to step-over [%s] first\n",
4d9d9d04 3074 target_pid_to_str (tp->ptid));
99619bea 3075
4d9d9d04 3076 thread_step_over_chain_enqueue (tp);
2adfaa28 3077 }
31e77af2 3078
4d9d9d04 3079 tp = current;
30852783
UW
3080 }
3081
4d9d9d04
PA
3082 /* Enqueue the current thread last, so that we move all other
3083 threads over their breakpoints first. */
3084 if (tp->stepping_over_breakpoint)
3085 thread_step_over_chain_enqueue (tp);
30852783 3086
4d9d9d04
PA
3087 /* If the thread isn't started, we'll still need to set its prev_pc,
3088 so that switch_back_to_stepped_thread knows the thread hasn't
3089 advanced. Must do this before resuming any thread, as in
3090 all-stop/remote, once we resume we can't send any other packet
3091 until the target stops again. */
3092 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3093
4d9d9d04 3094 started = start_step_over ();
c906108c 3095
4d9d9d04
PA
3096 if (step_over_info_valid_p ())
3097 {
3098 /* Either this thread started a new in-line step over, or some
3099 other thread was already doing one. In either case, don't
3100 resume anything else until the step-over is finished. */
3101 }
fbea99ea 3102 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3103 {
3104 /* A new displaced stepping sequence was started. In all-stop,
3105 we can't talk to the target anymore until it next stops. */
3106 }
fbea99ea
PA
3107 else if (!non_stop && target_is_non_stop_p ())
3108 {
3109 /* In all-stop, but the target is always in non-stop mode.
3110 Start all other threads that are implicitly resumed too. */
3111 ALL_NON_EXITED_THREADS (tp)
3112 {
3113 /* Ignore threads of processes we're not resuming. */
3114 if (!ptid_match (tp->ptid, resume_ptid))
3115 continue;
3116
3117 if (tp->resumed)
3118 {
3119 if (debug_infrun)
3120 fprintf_unfiltered (gdb_stdlog,
3121 "infrun: proceed: [%s] resumed\n",
3122 target_pid_to_str (tp->ptid));
3123 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3124 continue;
3125 }
3126
3127 if (thread_is_in_step_over_chain (tp))
3128 {
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: proceed: [%s] needs step-over\n",
3132 target_pid_to_str (tp->ptid));
3133 continue;
3134 }
3135
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "infrun: proceed: resuming %s\n",
3139 target_pid_to_str (tp->ptid));
3140
3141 reset_ecs (ecs, tp);
3142 switch_to_thread (tp->ptid);
3143 keep_going_pass_signal (ecs);
3144 if (!ecs->wait_some_more)
fd7dcb94 3145 error (_("Command aborted."));
fbea99ea
PA
3146 }
3147 }
372316f1 3148 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3149 {
3150 /* The thread wasn't started, and isn't queued, run it now. */
3151 reset_ecs (ecs, tp);
3152 switch_to_thread (tp->ptid);
3153 keep_going_pass_signal (ecs);
3154 if (!ecs->wait_some_more)
fd7dcb94 3155 error (_("Command aborted."));
4d9d9d04 3156 }
c906108c 3157
4d9d9d04 3158 discard_cleanups (old_chain);
c906108c 3159
0b333c5e
PA
3160 /* Tell the event loop to wait for it to stop. If the target
3161 supports asynchronous execution, it'll do this from within
3162 target_resume. */
362646f5 3163 if (!target_can_async_p ())
0b333c5e 3164 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3165}
c906108c
SS
3166\f
3167
3168/* Start remote-debugging of a machine over a serial link. */
96baa820 3169
c906108c 3170void
8621d6a9 3171start_remote (int from_tty)
c906108c 3172{
d6b48e9c 3173 struct inferior *inferior;
d6b48e9c
PA
3174
3175 inferior = current_inferior ();
16c381f0 3176 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3177
1777feb0 3178 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3179 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3180 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3181 nothing is returned (instead of just blocking). Because of this,
3182 targets expecting an immediate response need to, internally, set
3183 things up so that the target_wait() is forced to eventually
1777feb0 3184 timeout. */
6426a772
JM
3185 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3186 differentiate to its caller what the state of the target is after
3187 the initial open has been performed. Here we're assuming that
3188 the target has stopped. It should be possible to eventually have
3189 target_open() return to the caller an indication that the target
3190 is currently running and GDB state should be set to the same as
1777feb0 3191 for an async run. */
e4c8541f 3192 wait_for_inferior ();
8621d6a9
DJ
3193
3194 /* Now that the inferior has stopped, do any bookkeeping like
3195 loading shared libraries. We want to do this before normal_stop,
3196 so that the displayed frame is up to date. */
3197 post_create_inferior (&current_target, from_tty);
3198
6426a772 3199 normal_stop ();
c906108c
SS
3200}
3201
3202/* Initialize static vars when a new inferior begins. */
3203
3204void
96baa820 3205init_wait_for_inferior (void)
c906108c
SS
3206{
3207 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3208
c906108c
SS
3209 breakpoint_init_inferior (inf_starting);
3210
70509625 3211 clear_proceed_status (0);
9f976b41 3212
ca005067 3213 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3214
842951eb 3215 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3216
edb3359d
DJ
3217 /* Discard any skipped inlined frames. */
3218 clear_inline_frame_state (minus_one_ptid);
c906108c 3219}
237fc4c9 3220
c906108c 3221\f
488f131b 3222
ec9499be 3223static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3224
568d6575
UW
3225static void handle_step_into_function (struct gdbarch *gdbarch,
3226 struct execution_control_state *ecs);
3227static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3228 struct execution_control_state *ecs);
4f5d7f63 3229static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3230static void check_exception_resume (struct execution_control_state *,
28106bc2 3231 struct frame_info *);
611c83ae 3232
bdc36728 3233static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3234static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3235static void keep_going (struct execution_control_state *ecs);
94c57d6a 3236static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3237static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3238
252fbfc8
PA
3239/* Callback for iterate over threads. If the thread is stopped, but
3240 the user/frontend doesn't know about that yet, go through
3241 normal_stop, as if the thread had just stopped now. ARG points at
3242 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3243 ptid_is_pid(PTID) is true, applies to all threads of the process
3244 pointed at by PTID. Otherwise, apply only to the thread pointed by
3245 PTID. */
3246
3247static int
3248infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3249{
3250 ptid_t ptid = * (ptid_t *) arg;
3251
3252 if ((ptid_equal (info->ptid, ptid)
3253 || ptid_equal (minus_one_ptid, ptid)
3254 || (ptid_is_pid (ptid)
3255 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3256 && is_running (info->ptid)
3257 && !is_executing (info->ptid))
3258 {
3259 struct cleanup *old_chain;
3260 struct execution_control_state ecss;
3261 struct execution_control_state *ecs = &ecss;
3262
3263 memset (ecs, 0, sizeof (*ecs));
3264
3265 old_chain = make_cleanup_restore_current_thread ();
3266
f15cb84a
YQ
3267 overlay_cache_invalid = 1;
3268 /* Flush target cache before starting to handle each event.
3269 Target was running and cache could be stale. This is just a
3270 heuristic. Running threads may modify target memory, but we
3271 don't get any event. */
3272 target_dcache_invalidate ();
3273
252fbfc8
PA
3274 /* Go through handle_inferior_event/normal_stop, so we always
3275 have consistent output as if the stop event had been
3276 reported. */
3277 ecs->ptid = info->ptid;
243a9253 3278 ecs->event_thread = info;
252fbfc8 3279 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3280 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3281
3282 handle_inferior_event (ecs);
3283
3284 if (!ecs->wait_some_more)
3285 {
243a9253
PA
3286 /* Cancel any running execution command. */
3287 thread_cancel_execution_command (info);
3288
252fbfc8 3289 normal_stop ();
252fbfc8
PA
3290 }
3291
3292 do_cleanups (old_chain);
3293 }
3294
3295 return 0;
3296}
3297
3298/* This function is attached as a "thread_stop_requested" observer.
3299 Cleanup local state that assumed the PTID was to be resumed, and
3300 report the stop to the frontend. */
3301
2c0b251b 3302static void
252fbfc8
PA
3303infrun_thread_stop_requested (ptid_t ptid)
3304{
c2829269 3305 struct thread_info *tp;
252fbfc8 3306
c2829269
PA
3307 /* PTID was requested to stop. Remove matching threads from the
3308 step-over queue, so we don't try to resume them
3309 automatically. */
3310 ALL_NON_EXITED_THREADS (tp)
3311 if (ptid_match (tp->ptid, ptid))
3312 {
3313 if (thread_is_in_step_over_chain (tp))
3314 thread_step_over_chain_remove (tp);
3315 }
252fbfc8
PA
3316
3317 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3318}
3319
a07daef3
PA
3320static void
3321infrun_thread_thread_exit (struct thread_info *tp, int silent)
3322{
3323 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3324 nullify_last_target_wait_ptid ();
3325}
3326
0cbcdb96
PA
3327/* Delete the step resume, single-step and longjmp/exception resume
3328 breakpoints of TP. */
4e1c45ea 3329
0cbcdb96
PA
3330static void
3331delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3332{
0cbcdb96
PA
3333 delete_step_resume_breakpoint (tp);
3334 delete_exception_resume_breakpoint (tp);
34b7e8a6 3335 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3336}
3337
0cbcdb96
PA
3338/* If the target still has execution, call FUNC for each thread that
3339 just stopped. In all-stop, that's all the non-exited threads; in
3340 non-stop, that's the current thread, only. */
3341
3342typedef void (*for_each_just_stopped_thread_callback_func)
3343 (struct thread_info *tp);
4e1c45ea
PA
3344
3345static void
0cbcdb96 3346for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3347{
0cbcdb96 3348 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3349 return;
3350
fbea99ea 3351 if (target_is_non_stop_p ())
4e1c45ea 3352 {
0cbcdb96
PA
3353 /* If in non-stop mode, only the current thread stopped. */
3354 func (inferior_thread ());
4e1c45ea
PA
3355 }
3356 else
0cbcdb96
PA
3357 {
3358 struct thread_info *tp;
3359
3360 /* In all-stop mode, all threads have stopped. */
3361 ALL_NON_EXITED_THREADS (tp)
3362 {
3363 func (tp);
3364 }
3365 }
3366}
3367
3368/* Delete the step resume and longjmp/exception resume breakpoints of
3369 the threads that just stopped. */
3370
3371static void
3372delete_just_stopped_threads_infrun_breakpoints (void)
3373{
3374 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3375}
3376
3377/* Delete the single-step breakpoints of the threads that just
3378 stopped. */
7c16b83e 3379
34b7e8a6
PA
3380static void
3381delete_just_stopped_threads_single_step_breakpoints (void)
3382{
3383 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3384}
3385
1777feb0 3386/* A cleanup wrapper. */
4e1c45ea
PA
3387
3388static void
0cbcdb96 3389delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3390{
0cbcdb96 3391 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3392}
3393
221e1a37 3394/* See infrun.h. */
223698f8 3395
221e1a37 3396void
223698f8
DE
3397print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3398 const struct target_waitstatus *ws)
3399{
3400 char *status_string = target_waitstatus_to_string (ws);
3401 struct ui_file *tmp_stream = mem_fileopen ();
3402 char *text;
223698f8
DE
3403
3404 /* The text is split over several lines because it was getting too long.
3405 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3406 output as a unit; we want only one timestamp printed if debug_timestamp
3407 is set. */
3408
3409 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3410 "infrun: target_wait (%d.%ld.%ld",
3411 ptid_get_pid (waiton_ptid),
3412 ptid_get_lwp (waiton_ptid),
3413 ptid_get_tid (waiton_ptid));
dfd4cc63 3414 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3415 fprintf_unfiltered (tmp_stream,
3416 " [%s]", target_pid_to_str (waiton_ptid));
3417 fprintf_unfiltered (tmp_stream, ", status) =\n");
3418 fprintf_unfiltered (tmp_stream,
1176ecec 3419 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3420 ptid_get_pid (result_ptid),
1176ecec
PA
3421 ptid_get_lwp (result_ptid),
3422 ptid_get_tid (result_ptid),
dfd4cc63 3423 target_pid_to_str (result_ptid));
223698f8
DE
3424 fprintf_unfiltered (tmp_stream,
3425 "infrun: %s\n",
3426 status_string);
3427
759ef836 3428 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3429
3430 /* This uses %s in part to handle %'s in the text, but also to avoid
3431 a gcc error: the format attribute requires a string literal. */
3432 fprintf_unfiltered (gdb_stdlog, "%s", text);
3433
3434 xfree (status_string);
3435 xfree (text);
3436 ui_file_delete (tmp_stream);
3437}
3438
372316f1
PA
3439/* Select a thread at random, out of those which are resumed and have
3440 had events. */
3441
3442static struct thread_info *
3443random_pending_event_thread (ptid_t waiton_ptid)
3444{
3445 struct thread_info *event_tp;
3446 int num_events = 0;
3447 int random_selector;
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 ALL_NON_EXITED_THREADS (event_tp)
3452 if (ptid_match (event_tp->ptid, waiton_ptid)
3453 && event_tp->resumed
3454 && event_tp->suspend.waitstatus_pending_p)
3455 num_events++;
3456
3457 if (num_events == 0)
3458 return NULL;
3459
3460 /* Now randomly pick a thread out of those that have had events. */
3461 random_selector = (int)
3462 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3463
3464 if (debug_infrun && num_events > 1)
3465 fprintf_unfiltered (gdb_stdlog,
3466 "infrun: Found %d events, selecting #%d\n",
3467 num_events, random_selector);
3468
3469 /* Select the Nth thread that has had an event. */
3470 ALL_NON_EXITED_THREADS (event_tp)
3471 if (ptid_match (event_tp->ptid, waiton_ptid)
3472 && event_tp->resumed
3473 && event_tp->suspend.waitstatus_pending_p)
3474 if (random_selector-- == 0)
3475 break;
3476
3477 return event_tp;
3478}
3479
3480/* Wrapper for target_wait that first checks whether threads have
3481 pending statuses to report before actually asking the target for
3482 more events. */
3483
3484static ptid_t
3485do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3486{
3487 ptid_t event_ptid;
3488 struct thread_info *tp;
3489
3490 /* First check if there is a resumed thread with a wait status
3491 pending. */
3492 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3493 {
3494 tp = random_pending_event_thread (ptid);
3495 }
3496 else
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Waiting for specific thread %s.\n",
3501 target_pid_to_str (ptid));
3502
3503 /* We have a specific thread to check. */
3504 tp = find_thread_ptid (ptid);
3505 gdb_assert (tp != NULL);
3506 if (!tp->suspend.waitstatus_pending_p)
3507 tp = NULL;
3508 }
3509
3510 if (tp != NULL
3511 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3513 {
3514 struct regcache *regcache = get_thread_regcache (tp->ptid);
3515 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3516 CORE_ADDR pc;
3517 int discard = 0;
3518
3519 pc = regcache_read_pc (regcache);
3520
3521 if (pc != tp->suspend.stop_pc)
3522 {
3523 if (debug_infrun)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "infrun: PC of %s changed. was=%s, now=%s\n",
3526 target_pid_to_str (tp->ptid),
3527 paddress (gdbarch, tp->prev_pc),
3528 paddress (gdbarch, pc));
3529 discard = 1;
3530 }
3531 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: previous breakpoint of %s, at %s gone\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, pc));
3538
3539 discard = 1;
3540 }
3541
3542 if (discard)
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: pending event of %s cancelled.\n",
3547 target_pid_to_str (tp->ptid));
3548
3549 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3550 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3551 }
3552 }
3553
3554 if (tp != NULL)
3555 {
3556 if (debug_infrun)
3557 {
3558 char *statstr;
3559
3560 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: Using pending wait status %s for %s.\n",
3563 statstr,
3564 target_pid_to_str (tp->ptid));
3565 xfree (statstr);
3566 }
3567
3568 /* Now that we've selected our final event LWP, un-adjust its PC
3569 if it was a software breakpoint (and the target doesn't
3570 always adjust the PC itself). */
3571 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3572 && !target_supports_stopped_by_sw_breakpoint ())
3573 {
3574 struct regcache *regcache;
3575 struct gdbarch *gdbarch;
3576 int decr_pc;
3577
3578 regcache = get_thread_regcache (tp->ptid);
3579 gdbarch = get_regcache_arch (regcache);
3580
3581 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3582 if (decr_pc != 0)
3583 {
3584 CORE_ADDR pc;
3585
3586 pc = regcache_read_pc (regcache);
3587 regcache_write_pc (regcache, pc + decr_pc);
3588 }
3589 }
3590
3591 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3592 *status = tp->suspend.waitstatus;
3593 tp->suspend.waitstatus_pending_p = 0;
3594
3595 /* Wake up the event loop again, until all pending events are
3596 processed. */
3597 if (target_is_async_p ())
3598 mark_async_event_handler (infrun_async_inferior_event_token);
3599 return tp->ptid;
3600 }
3601
3602 /* But if we don't find one, we'll have to wait. */
3603
3604 if (deprecated_target_wait_hook)
3605 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3606 else
3607 event_ptid = target_wait (ptid, status, options);
3608
3609 return event_ptid;
3610}
3611
24291992
PA
3612/* Prepare and stabilize the inferior for detaching it. E.g.,
3613 detaching while a thread is displaced stepping is a recipe for
3614 crashing it, as nothing would readjust the PC out of the scratch
3615 pad. */
3616
3617void
3618prepare_for_detach (void)
3619{
3620 struct inferior *inf = current_inferior ();
3621 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3622 struct cleanup *old_chain_1;
3623 struct displaced_step_inferior_state *displaced;
3624
3625 displaced = get_displaced_stepping_state (inf->pid);
3626
3627 /* Is any thread of this process displaced stepping? If not,
3628 there's nothing else to do. */
3629 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3630 return;
3631
3632 if (debug_infrun)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "displaced-stepping in-process while detaching");
3635
3636 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3637 inf->detaching = 1;
3638
3639 while (!ptid_equal (displaced->step_ptid, null_ptid))
3640 {
3641 struct cleanup *old_chain_2;
3642 struct execution_control_state ecss;
3643 struct execution_control_state *ecs;
3644
3645 ecs = &ecss;
3646 memset (ecs, 0, sizeof (*ecs));
3647
3648 overlay_cache_invalid = 1;
f15cb84a
YQ
3649 /* Flush target cache before starting to handle each event.
3650 Target was running and cache could be stale. This is just a
3651 heuristic. Running threads may modify target memory, but we
3652 don't get any event. */
3653 target_dcache_invalidate ();
24291992 3654
372316f1 3655 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3656
3657 if (debug_infrun)
3658 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3659
3660 /* If an error happens while handling the event, propagate GDB's
3661 knowledge of the executing state to the frontend/user running
3662 state. */
3e43a32a
MS
3663 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3664 &minus_one_ptid);
24291992
PA
3665
3666 /* Now figure out what to do with the result of the result. */
3667 handle_inferior_event (ecs);
3668
3669 /* No error, don't finish the state yet. */
3670 discard_cleanups (old_chain_2);
3671
3672 /* Breakpoints and watchpoints are not installed on the target
3673 at this point, and signals are passed directly to the
3674 inferior, so this must mean the process is gone. */
3675 if (!ecs->wait_some_more)
3676 {
3677 discard_cleanups (old_chain_1);
3678 error (_("Program exited while detaching"));
3679 }
3680 }
3681
3682 discard_cleanups (old_chain_1);
3683}
3684
cd0fc7c3 3685/* Wait for control to return from inferior to debugger.
ae123ec6 3686
cd0fc7c3
SS
3687 If inferior gets a signal, we may decide to start it up again
3688 instead of returning. That is why there is a loop in this function.
3689 When this function actually returns it means the inferior
3690 should be left stopped and GDB should read more commands. */
3691
3692void
e4c8541f 3693wait_for_inferior (void)
cd0fc7c3
SS
3694{
3695 struct cleanup *old_cleanups;
e6f5c25b 3696 struct cleanup *thread_state_chain;
c906108c 3697
527159b7 3698 if (debug_infrun)
ae123ec6 3699 fprintf_unfiltered
e4c8541f 3700 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3701
0cbcdb96
PA
3702 old_cleanups
3703 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3704 NULL);
cd0fc7c3 3705
e6f5c25b
PA
3706 /* If an error happens while handling the event, propagate GDB's
3707 knowledge of the executing state to the frontend/user running
3708 state. */
3709 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3710
c906108c
SS
3711 while (1)
3712 {
ae25568b
PA
3713 struct execution_control_state ecss;
3714 struct execution_control_state *ecs = &ecss;
963f9c80 3715 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3716
ae25568b
PA
3717 memset (ecs, 0, sizeof (*ecs));
3718
ec9499be 3719 overlay_cache_invalid = 1;
ec9499be 3720
f15cb84a
YQ
3721 /* Flush target cache before starting to handle each event.
3722 Target was running and cache could be stale. This is just a
3723 heuristic. Running threads may modify target memory, but we
3724 don't get any event. */
3725 target_dcache_invalidate ();
3726
372316f1 3727 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3728
f00150c9 3729 if (debug_infrun)
223698f8 3730 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3731
cd0fc7c3
SS
3732 /* Now figure out what to do with the result of the result. */
3733 handle_inferior_event (ecs);
c906108c 3734
cd0fc7c3
SS
3735 if (!ecs->wait_some_more)
3736 break;
3737 }
4e1c45ea 3738
e6f5c25b
PA
3739 /* No error, don't finish the state yet. */
3740 discard_cleanups (thread_state_chain);
3741
cd0fc7c3
SS
3742 do_cleanups (old_cleanups);
3743}
c906108c 3744
d3d4baed
PA
3745/* Cleanup that reinstalls the readline callback handler, if the
3746 target is running in the background. If while handling the target
3747 event something triggered a secondary prompt, like e.g., a
3748 pagination prompt, we'll have removed the callback handler (see
3749 gdb_readline_wrapper_line). Need to do this as we go back to the
3750 event loop, ready to process further input. Note this has no
3751 effect if the handler hasn't actually been removed, because calling
3752 rl_callback_handler_install resets the line buffer, thus losing
3753 input. */
3754
3755static void
3756reinstall_readline_callback_handler_cleanup (void *arg)
3757{
6c400b59
PA
3758 if (!interpreter_async)
3759 {
3760 /* We're not going back to the top level event loop yet. Don't
3761 install the readline callback, as it'd prep the terminal,
3762 readline-style (raw, noecho) (e.g., --batch). We'll install
3763 it the next time the prompt is displayed, when we're ready
3764 for input. */
3765 return;
3766 }
3767
d3d4baed
PA
3768 if (async_command_editing_p && !sync_execution)
3769 gdb_rl_callback_handler_reinstall ();
3770}
3771
243a9253
PA
3772/* Clean up the FSMs of threads that are now stopped. In non-stop,
3773 that's just the event thread. In all-stop, that's all threads. */
3774
3775static void
3776clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3777{
3778 struct thread_info *thr = ecs->event_thread;
3779
3780 if (thr != NULL && thr->thread_fsm != NULL)
3781 thread_fsm_clean_up (thr->thread_fsm);
3782
3783 if (!non_stop)
3784 {
3785 ALL_NON_EXITED_THREADS (thr)
3786 {
3787 if (thr->thread_fsm == NULL)
3788 continue;
3789 if (thr == ecs->event_thread)
3790 continue;
3791
3792 switch_to_thread (thr->ptid);
3793 thread_fsm_clean_up (thr->thread_fsm);
3794 }
3795
3796 if (ecs->event_thread != NULL)
3797 switch_to_thread (ecs->event_thread->ptid);
3798 }
3799}
3800
170742de
PA
3801/* A cleanup that restores the execution direction to the value saved
3802 in *ARG. */
3803
3804static void
3805restore_execution_direction (void *arg)
3806{
3807 enum exec_direction_kind *save_exec_dir = (enum exec_direction_kind *) arg;
3808
3809 execution_direction = *save_exec_dir;
3810}
3811
1777feb0 3812/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3813 event loop whenever a change of state is detected on the file
1777feb0
MS
3814 descriptor corresponding to the target. It can be called more than
3815 once to complete a single execution command. In such cases we need
3816 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3817 that this function is called for a single execution command, then
3818 report to the user that the inferior has stopped, and do the
1777feb0 3819 necessary cleanups. */
43ff13b4
JM
3820
3821void
fba45db2 3822fetch_inferior_event (void *client_data)
43ff13b4 3823{
0d1e5fa7 3824 struct execution_control_state ecss;
a474d7c2 3825 struct execution_control_state *ecs = &ecss;
4f8d22e3 3826 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3827 struct cleanup *ts_old_chain;
4f8d22e3 3828 int was_sync = sync_execution;
170742de 3829 enum exec_direction_kind save_exec_dir = execution_direction;
0f641c01 3830 int cmd_done = 0;
963f9c80 3831 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3832
0d1e5fa7
PA
3833 memset (ecs, 0, sizeof (*ecs));
3834
d3d4baed
PA
3835 /* End up with readline processing input, if necessary. */
3836 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3837
c5187ac6
PA
3838 /* We're handling a live event, so make sure we're doing live
3839 debugging. If we're looking at traceframes while the target is
3840 running, we're going to need to get back to that mode after
3841 handling the event. */
3842 if (non_stop)
3843 {
3844 make_cleanup_restore_current_traceframe ();
e6e4e701 3845 set_current_traceframe (-1);
c5187ac6
PA
3846 }
3847
4f8d22e3
PA
3848 if (non_stop)
3849 /* In non-stop mode, the user/frontend should not notice a thread
3850 switch due to internal events. Make sure we reverse to the
3851 user selected thread and frame after handling the event and
3852 running any breakpoint commands. */
3853 make_cleanup_restore_current_thread ();
3854
ec9499be 3855 overlay_cache_invalid = 1;
f15cb84a
YQ
3856 /* Flush target cache before starting to handle each event. Target
3857 was running and cache could be stale. This is just a heuristic.
3858 Running threads may modify target memory, but we don't get any
3859 event. */
3860 target_dcache_invalidate ();
3dd5b83d 3861
170742de 3862 make_cleanup (restore_execution_direction, &save_exec_dir);
32231432
PA
3863 execution_direction = target_execution_direction ();
3864
0b333c5e
PA
3865 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3866 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3867
f00150c9 3868 if (debug_infrun)
223698f8 3869 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3870
29f49a6a
PA
3871 /* If an error happens while handling the event, propagate GDB's
3872 knowledge of the executing state to the frontend/user running
3873 state. */
fbea99ea 3874 if (!target_is_non_stop_p ())
29f49a6a
PA
3875 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3876 else
3877 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3878
353d1d73
JK
3879 /* Get executed before make_cleanup_restore_current_thread above to apply
3880 still for the thread which has thrown the exception. */
3881 make_bpstat_clear_actions_cleanup ();
3882
7c16b83e
PA
3883 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3884
43ff13b4 3885 /* Now figure out what to do with the result of the result. */
a474d7c2 3886 handle_inferior_event (ecs);
43ff13b4 3887
a474d7c2 3888 if (!ecs->wait_some_more)
43ff13b4 3889 {
c9657e70 3890 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3891 int should_stop = 1;
3892 struct thread_info *thr = ecs->event_thread;
388a7084 3893 int should_notify_stop = 1;
d6b48e9c 3894
0cbcdb96 3895 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3896
243a9253
PA
3897 if (thr != NULL)
3898 {
3899 struct thread_fsm *thread_fsm = thr->thread_fsm;
3900
3901 if (thread_fsm != NULL)
3902 should_stop = thread_fsm_should_stop (thread_fsm);
3903 }
3904
3905 if (!should_stop)
3906 {
3907 keep_going (ecs);
3908 }
c2d11a7d 3909 else
0f641c01 3910 {
243a9253
PA
3911 clean_up_just_stopped_threads_fsms (ecs);
3912
388a7084
PA
3913 if (thr != NULL && thr->thread_fsm != NULL)
3914 {
3915 should_notify_stop
3916 = thread_fsm_should_notify_stop (thr->thread_fsm);
3917 }
3918
3919 if (should_notify_stop)
3920 {
4c2f2a79
PA
3921 int proceeded = 0;
3922
388a7084
PA
3923 /* We may not find an inferior if this was a process exit. */
3924 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3925 proceeded = normal_stop ();
243a9253 3926
4c2f2a79
PA
3927 if (!proceeded)
3928 {
3929 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3930 cmd_done = 1;
3931 }
388a7084 3932 }
0f641c01 3933 }
43ff13b4 3934 }
4f8d22e3 3935
29f49a6a
PA
3936 /* No error, don't finish the thread states yet. */
3937 discard_cleanups (ts_old_chain);
3938
4f8d22e3
PA
3939 /* Revert thread and frame. */
3940 do_cleanups (old_chain);
3941
3942 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3943 restore the prompt (a synchronous execution command has finished,
3944 and we're ready for input). */
b4a14fd0 3945 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3946 observer_notify_sync_execution_done ();
0f641c01
PA
3947
3948 if (cmd_done
3949 && !was_sync
3950 && exec_done_display_p
3951 && (ptid_equal (inferior_ptid, null_ptid)
3952 || !is_running (inferior_ptid)))
3953 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3954}
3955
edb3359d
DJ
3956/* Record the frame and location we're currently stepping through. */
3957void
3958set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3959{
3960 struct thread_info *tp = inferior_thread ();
3961
16c381f0
JK
3962 tp->control.step_frame_id = get_frame_id (frame);
3963 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3964
3965 tp->current_symtab = sal.symtab;
3966 tp->current_line = sal.line;
3967}
3968
0d1e5fa7
PA
3969/* Clear context switchable stepping state. */
3970
3971void
4e1c45ea 3972init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3973{
7f5ef605 3974 tss->stepped_breakpoint = 0;
0d1e5fa7 3975 tss->stepping_over_breakpoint = 0;
963f9c80 3976 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3977 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3978}
3979
c32c64b7
DE
3980/* Set the cached copy of the last ptid/waitstatus. */
3981
3982static void
3983set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3984{
3985 target_last_wait_ptid = ptid;
3986 target_last_waitstatus = status;
3987}
3988
e02bc4cc 3989/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3990 target_wait()/deprecated_target_wait_hook(). The data is actually
3991 cached by handle_inferior_event(), which gets called immediately
3992 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3993
3994void
488f131b 3995get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3996{
39f77062 3997 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3998 *status = target_last_waitstatus;
3999}
4000
ac264b3b
MS
4001void
4002nullify_last_target_wait_ptid (void)
4003{
4004 target_last_wait_ptid = minus_one_ptid;
4005}
4006
dcf4fbde 4007/* Switch thread contexts. */
dd80620e
MS
4008
4009static void
0d1e5fa7 4010context_switch (ptid_t ptid)
dd80620e 4011{
4b51d87b 4012 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4013 {
4014 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4015 target_pid_to_str (inferior_ptid));
4016 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4017 target_pid_to_str (ptid));
fd48f117
DJ
4018 }
4019
0d1e5fa7 4020 switch_to_thread (ptid);
dd80620e
MS
4021}
4022
d8dd4d5f
PA
4023/* If the target can't tell whether we've hit breakpoints
4024 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4025 check whether that could have been caused by a breakpoint. If so,
4026 adjust the PC, per gdbarch_decr_pc_after_break. */
4027
4fa8626c 4028static void
d8dd4d5f
PA
4029adjust_pc_after_break (struct thread_info *thread,
4030 struct target_waitstatus *ws)
4fa8626c 4031{
24a73cce
UW
4032 struct regcache *regcache;
4033 struct gdbarch *gdbarch;
6c95b8df 4034 struct address_space *aspace;
118e6252 4035 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4036
4fa8626c
DJ
4037 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4038 we aren't, just return.
9709f61c
DJ
4039
4040 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4041 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4042 implemented by software breakpoints should be handled through the normal
4043 breakpoint layer.
8fb3e588 4044
4fa8626c
DJ
4045 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4046 different signals (SIGILL or SIGEMT for instance), but it is less
4047 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4048 gdbarch_decr_pc_after_break. I don't know any specific target that
4049 generates these signals at breakpoints (the code has been in GDB since at
4050 least 1992) so I can not guess how to handle them here.
8fb3e588 4051
e6cf7916
UW
4052 In earlier versions of GDB, a target with
4053 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4054 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4055 target with both of these set in GDB history, and it seems unlikely to be
4056 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4057
d8dd4d5f 4058 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4059 return;
4060
d8dd4d5f 4061 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4062 return;
4063
4058b839
PA
4064 /* In reverse execution, when a breakpoint is hit, the instruction
4065 under it has already been de-executed. The reported PC always
4066 points at the breakpoint address, so adjusting it further would
4067 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4068 architecture:
4069
4070 B1 0x08000000 : INSN1
4071 B2 0x08000001 : INSN2
4072 0x08000002 : INSN3
4073 PC -> 0x08000003 : INSN4
4074
4075 Say you're stopped at 0x08000003 as above. Reverse continuing
4076 from that point should hit B2 as below. Reading the PC when the
4077 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4078 been de-executed already.
4079
4080 B1 0x08000000 : INSN1
4081 B2 PC -> 0x08000001 : INSN2
4082 0x08000002 : INSN3
4083 0x08000003 : INSN4
4084
4085 We can't apply the same logic as for forward execution, because
4086 we would wrongly adjust the PC to 0x08000000, since there's a
4087 breakpoint at PC - 1. We'd then report a hit on B1, although
4088 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4089 behaviour. */
4090 if (execution_direction == EXEC_REVERSE)
4091 return;
4092
1cf4d951
PA
4093 /* If the target can tell whether the thread hit a SW breakpoint,
4094 trust it. Targets that can tell also adjust the PC
4095 themselves. */
4096 if (target_supports_stopped_by_sw_breakpoint ())
4097 return;
4098
4099 /* Note that relying on whether a breakpoint is planted in memory to
4100 determine this can fail. E.g,. the breakpoint could have been
4101 removed since. Or the thread could have been told to step an
4102 instruction the size of a breakpoint instruction, and only
4103 _after_ was a breakpoint inserted at its address. */
4104
24a73cce
UW
4105 /* If this target does not decrement the PC after breakpoints, then
4106 we have nothing to do. */
d8dd4d5f 4107 regcache = get_thread_regcache (thread->ptid);
24a73cce 4108 gdbarch = get_regcache_arch (regcache);
118e6252 4109
527a273a 4110 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4111 if (decr_pc == 0)
24a73cce
UW
4112 return;
4113
6c95b8df
PA
4114 aspace = get_regcache_aspace (regcache);
4115
8aad930b
AC
4116 /* Find the location where (if we've hit a breakpoint) the
4117 breakpoint would be. */
118e6252 4118 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4119
1cf4d951
PA
4120 /* If the target can't tell whether a software breakpoint triggered,
4121 fallback to figuring it out based on breakpoints we think were
4122 inserted in the target, and on whether the thread was stepped or
4123 continued. */
4124
1c5cfe86
PA
4125 /* Check whether there actually is a software breakpoint inserted at
4126 that location.
4127
4128 If in non-stop mode, a race condition is possible where we've
4129 removed a breakpoint, but stop events for that breakpoint were
4130 already queued and arrive later. To suppress those spurious
4131 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4132 and retire them after a number of stop events are reported. Note
4133 this is an heuristic and can thus get confused. The real fix is
4134 to get the "stopped by SW BP and needs adjustment" info out of
4135 the target/kernel (and thus never reach here; see above). */
6c95b8df 4136 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4137 || (target_is_non_stop_p ()
4138 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4139 {
77f9e713 4140 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4141
8213266a 4142 if (record_full_is_used ())
77f9e713 4143 record_full_gdb_operation_disable_set ();
96429cc8 4144
1c0fdd0e
UW
4145 /* When using hardware single-step, a SIGTRAP is reported for both
4146 a completed single-step and a software breakpoint. Need to
4147 differentiate between the two, as the latter needs adjusting
4148 but the former does not.
4149
4150 The SIGTRAP can be due to a completed hardware single-step only if
4151 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4152 - this thread is currently being stepped
4153
4154 If any of these events did not occur, we must have stopped due
4155 to hitting a software breakpoint, and have to back up to the
4156 breakpoint address.
4157
4158 As a special case, we could have hardware single-stepped a
4159 software breakpoint. In this case (prev_pc == breakpoint_pc),
4160 we also need to back up to the breakpoint address. */
4161
d8dd4d5f
PA
4162 if (thread_has_single_step_breakpoints_set (thread)
4163 || !currently_stepping (thread)
4164 || (thread->stepped_breakpoint
4165 && thread->prev_pc == breakpoint_pc))
515630c5 4166 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4167
77f9e713 4168 do_cleanups (old_cleanups);
8aad930b 4169 }
4fa8626c
DJ
4170}
4171
edb3359d
DJ
4172static int
4173stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4174{
4175 for (frame = get_prev_frame (frame);
4176 frame != NULL;
4177 frame = get_prev_frame (frame))
4178 {
4179 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4180 return 1;
4181 if (get_frame_type (frame) != INLINE_FRAME)
4182 break;
4183 }
4184
4185 return 0;
4186}
4187
a96d9b2e
SDJ
4188/* Auxiliary function that handles syscall entry/return events.
4189 It returns 1 if the inferior should keep going (and GDB
4190 should ignore the event), or 0 if the event deserves to be
4191 processed. */
ca2163eb 4192
a96d9b2e 4193static int
ca2163eb 4194handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4195{
ca2163eb 4196 struct regcache *regcache;
ca2163eb
PA
4197 int syscall_number;
4198
4199 if (!ptid_equal (ecs->ptid, inferior_ptid))
4200 context_switch (ecs->ptid);
4201
4202 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4203 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4204 stop_pc = regcache_read_pc (regcache);
4205
a96d9b2e
SDJ
4206 if (catch_syscall_enabled () > 0
4207 && catching_syscall_number (syscall_number) > 0)
4208 {
4209 if (debug_infrun)
4210 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4211 syscall_number);
a96d9b2e 4212
16c381f0 4213 ecs->event_thread->control.stop_bpstat
6c95b8df 4214 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4215 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4216
ce12b012 4217 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4218 {
4219 /* Catchpoint hit. */
ca2163eb
PA
4220 return 0;
4221 }
a96d9b2e 4222 }
ca2163eb
PA
4223
4224 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4225 keep_going (ecs);
4226 return 1;
a96d9b2e
SDJ
4227}
4228
7e324e48
GB
4229/* Lazily fill in the execution_control_state's stop_func_* fields. */
4230
4231static void
4232fill_in_stop_func (struct gdbarch *gdbarch,
4233 struct execution_control_state *ecs)
4234{
4235 if (!ecs->stop_func_filled_in)
4236 {
4237 /* Don't care about return value; stop_func_start and stop_func_name
4238 will both be 0 if it doesn't work. */
4239 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4240 &ecs->stop_func_start, &ecs->stop_func_end);
4241 ecs->stop_func_start
4242 += gdbarch_deprecated_function_start_offset (gdbarch);
4243
591a12a1
UW
4244 if (gdbarch_skip_entrypoint_p (gdbarch))
4245 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4246 ecs->stop_func_start);
4247
7e324e48
GB
4248 ecs->stop_func_filled_in = 1;
4249 }
4250}
4251
4f5d7f63
PA
4252
4253/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4254
4255static enum stop_kind
4256get_inferior_stop_soon (ptid_t ptid)
4257{
c9657e70 4258 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4259
4260 gdb_assert (inf != NULL);
4261 return inf->control.stop_soon;
4262}
4263
372316f1
PA
4264/* Wait for one event. Store the resulting waitstatus in WS, and
4265 return the event ptid. */
4266
4267static ptid_t
4268wait_one (struct target_waitstatus *ws)
4269{
4270 ptid_t event_ptid;
4271 ptid_t wait_ptid = minus_one_ptid;
4272
4273 overlay_cache_invalid = 1;
4274
4275 /* Flush target cache before starting to handle each event.
4276 Target was running and cache could be stale. This is just a
4277 heuristic. Running threads may modify target memory, but we
4278 don't get any event. */
4279 target_dcache_invalidate ();
4280
4281 if (deprecated_target_wait_hook)
4282 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4283 else
4284 event_ptid = target_wait (wait_ptid, ws, 0);
4285
4286 if (debug_infrun)
4287 print_target_wait_results (wait_ptid, event_ptid, ws);
4288
4289 return event_ptid;
4290}
4291
4292/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4293 instead of the current thread. */
4294#define THREAD_STOPPED_BY(REASON) \
4295static int \
4296thread_stopped_by_ ## REASON (ptid_t ptid) \
4297{ \
4298 struct cleanup *old_chain; \
4299 int res; \
4300 \
4301 old_chain = save_inferior_ptid (); \
4302 inferior_ptid = ptid; \
4303 \
4304 res = target_stopped_by_ ## REASON (); \
4305 \
4306 do_cleanups (old_chain); \
4307 \
4308 return res; \
4309}
4310
4311/* Generate thread_stopped_by_watchpoint. */
4312THREAD_STOPPED_BY (watchpoint)
4313/* Generate thread_stopped_by_sw_breakpoint. */
4314THREAD_STOPPED_BY (sw_breakpoint)
4315/* Generate thread_stopped_by_hw_breakpoint. */
4316THREAD_STOPPED_BY (hw_breakpoint)
4317
4318/* Cleanups that switches to the PTID pointed at by PTID_P. */
4319
4320static void
4321switch_to_thread_cleanup (void *ptid_p)
4322{
4323 ptid_t ptid = *(ptid_t *) ptid_p;
4324
4325 switch_to_thread (ptid);
4326}
4327
4328/* Save the thread's event and stop reason to process it later. */
4329
4330static void
4331save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4332{
4333 struct regcache *regcache;
4334 struct address_space *aspace;
4335
4336 if (debug_infrun)
4337 {
4338 char *statstr;
4339
4340 statstr = target_waitstatus_to_string (ws);
4341 fprintf_unfiltered (gdb_stdlog,
4342 "infrun: saving status %s for %d.%ld.%ld\n",
4343 statstr,
4344 ptid_get_pid (tp->ptid),
4345 ptid_get_lwp (tp->ptid),
4346 ptid_get_tid (tp->ptid));
4347 xfree (statstr);
4348 }
4349
4350 /* Record for later. */
4351 tp->suspend.waitstatus = *ws;
4352 tp->suspend.waitstatus_pending_p = 1;
4353
4354 regcache = get_thread_regcache (tp->ptid);
4355 aspace = get_regcache_aspace (regcache);
4356
4357 if (ws->kind == TARGET_WAITKIND_STOPPED
4358 && ws->value.sig == GDB_SIGNAL_TRAP)
4359 {
4360 CORE_ADDR pc = regcache_read_pc (regcache);
4361
4362 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4363
4364 if (thread_stopped_by_watchpoint (tp->ptid))
4365 {
4366 tp->suspend.stop_reason
4367 = TARGET_STOPPED_BY_WATCHPOINT;
4368 }
4369 else if (target_supports_stopped_by_sw_breakpoint ()
4370 && thread_stopped_by_sw_breakpoint (tp->ptid))
4371 {
4372 tp->suspend.stop_reason
4373 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4374 }
4375 else if (target_supports_stopped_by_hw_breakpoint ()
4376 && thread_stopped_by_hw_breakpoint (tp->ptid))
4377 {
4378 tp->suspend.stop_reason
4379 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4380 }
4381 else if (!target_supports_stopped_by_hw_breakpoint ()
4382 && hardware_breakpoint_inserted_here_p (aspace,
4383 pc))
4384 {
4385 tp->suspend.stop_reason
4386 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4387 }
4388 else if (!target_supports_stopped_by_sw_breakpoint ()
4389 && software_breakpoint_inserted_here_p (aspace,
4390 pc))
4391 {
4392 tp->suspend.stop_reason
4393 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4394 }
4395 else if (!thread_has_single_step_breakpoints_set (tp)
4396 && currently_stepping (tp))
4397 {
4398 tp->suspend.stop_reason
4399 = TARGET_STOPPED_BY_SINGLE_STEP;
4400 }
4401 }
4402}
4403
4404/* Stop all threads. */
4405
4406static void
4407stop_all_threads (void)
4408{
4409 /* We may need multiple passes to discover all threads. */
4410 int pass;
4411 int iterations = 0;
4412 ptid_t entry_ptid;
4413 struct cleanup *old_chain;
4414
fbea99ea 4415 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4416
4417 if (debug_infrun)
4418 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4419
4420 entry_ptid = inferior_ptid;
4421 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4422
4423 /* Request threads to stop, and then wait for the stops. Because
4424 threads we already know about can spawn more threads while we're
4425 trying to stop them, and we only learn about new threads when we
4426 update the thread list, do this in a loop, and keep iterating
4427 until two passes find no threads that need to be stopped. */
4428 for (pass = 0; pass < 2; pass++, iterations++)
4429 {
4430 if (debug_infrun)
4431 fprintf_unfiltered (gdb_stdlog,
4432 "infrun: stop_all_threads, pass=%d, "
4433 "iterations=%d\n", pass, iterations);
4434 while (1)
4435 {
4436 ptid_t event_ptid;
4437 struct target_waitstatus ws;
4438 int need_wait = 0;
4439 struct thread_info *t;
4440
4441 update_thread_list ();
4442
4443 /* Go through all threads looking for threads that we need
4444 to tell the target to stop. */
4445 ALL_NON_EXITED_THREADS (t)
4446 {
4447 if (t->executing)
4448 {
4449 /* If already stopping, don't request a stop again.
4450 We just haven't seen the notification yet. */
4451 if (!t->stop_requested)
4452 {
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: %s executing, "
4456 "need stop\n",
4457 target_pid_to_str (t->ptid));
4458 target_stop (t->ptid);
4459 t->stop_requested = 1;
4460 }
4461 else
4462 {
4463 if (debug_infrun)
4464 fprintf_unfiltered (gdb_stdlog,
4465 "infrun: %s executing, "
4466 "already stopping\n",
4467 target_pid_to_str (t->ptid));
4468 }
4469
4470 if (t->stop_requested)
4471 need_wait = 1;
4472 }
4473 else
4474 {
4475 if (debug_infrun)
4476 fprintf_unfiltered (gdb_stdlog,
4477 "infrun: %s not executing\n",
4478 target_pid_to_str (t->ptid));
4479
4480 /* The thread may be not executing, but still be
4481 resumed with a pending status to process. */
4482 t->resumed = 0;
4483 }
4484 }
4485
4486 if (!need_wait)
4487 break;
4488
4489 /* If we find new threads on the second iteration, restart
4490 over. We want to see two iterations in a row with all
4491 threads stopped. */
4492 if (pass > 0)
4493 pass = -1;
4494
4495 event_ptid = wait_one (&ws);
4496 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4497 {
4498 /* All resumed threads exited. */
4499 }
4500 else if (ws.kind == TARGET_WAITKIND_EXITED
4501 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4502 {
4503 if (debug_infrun)
4504 {
4505 ptid_t ptid = pid_to_ptid (ws.value.integer);
4506
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: %s exited while "
4509 "stopping threads\n",
4510 target_pid_to_str (ptid));
4511 }
4512 }
4513 else
4514 {
4515 t = find_thread_ptid (event_ptid);
4516 if (t == NULL)
4517 t = add_thread (event_ptid);
4518
4519 t->stop_requested = 0;
4520 t->executing = 0;
4521 t->resumed = 0;
4522 t->control.may_range_step = 0;
4523
4524 if (ws.kind == TARGET_WAITKIND_STOPPED
4525 && ws.value.sig == GDB_SIGNAL_0)
4526 {
4527 /* We caught the event that we intended to catch, so
4528 there's no event pending. */
4529 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4530 t->suspend.waitstatus_pending_p = 0;
4531
4532 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4533 {
4534 /* Add it back to the step-over queue. */
4535 if (debug_infrun)
4536 {
4537 fprintf_unfiltered (gdb_stdlog,
4538 "infrun: displaced-step of %s "
4539 "canceled: adding back to the "
4540 "step-over queue\n",
4541 target_pid_to_str (t->ptid));
4542 }
4543 t->control.trap_expected = 0;
4544 thread_step_over_chain_enqueue (t);
4545 }
4546 }
4547 else
4548 {
4549 enum gdb_signal sig;
4550 struct regcache *regcache;
4551 struct address_space *aspace;
4552
4553 if (debug_infrun)
4554 {
4555 char *statstr;
4556
4557 statstr = target_waitstatus_to_string (&ws);
4558 fprintf_unfiltered (gdb_stdlog,
4559 "infrun: target_wait %s, saving "
4560 "status for %d.%ld.%ld\n",
4561 statstr,
4562 ptid_get_pid (t->ptid),
4563 ptid_get_lwp (t->ptid),
4564 ptid_get_tid (t->ptid));
4565 xfree (statstr);
4566 }
4567
4568 /* Record for later. */
4569 save_waitstatus (t, &ws);
4570
4571 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4572 ? ws.value.sig : GDB_SIGNAL_0);
4573
4574 if (displaced_step_fixup (t->ptid, sig) < 0)
4575 {
4576 /* Add it back to the step-over queue. */
4577 t->control.trap_expected = 0;
4578 thread_step_over_chain_enqueue (t);
4579 }
4580
4581 regcache = get_thread_regcache (t->ptid);
4582 t->suspend.stop_pc = regcache_read_pc (regcache);
4583
4584 if (debug_infrun)
4585 {
4586 fprintf_unfiltered (gdb_stdlog,
4587 "infrun: saved stop_pc=%s for %s "
4588 "(currently_stepping=%d)\n",
4589 paddress (target_gdbarch (),
4590 t->suspend.stop_pc),
4591 target_pid_to_str (t->ptid),
4592 currently_stepping (t));
4593 }
4594 }
4595 }
4596 }
4597 }
4598
4599 do_cleanups (old_chain);
4600
4601 if (debug_infrun)
4602 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4603}
4604
05ba8510
PA
4605/* Given an execution control state that has been freshly filled in by
4606 an event from the inferior, figure out what it means and take
4607 appropriate action.
4608
4609 The alternatives are:
4610
22bcd14b 4611 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4612 debugger.
4613
4614 2) keep_going and return; to wait for the next event (set
4615 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4616 once). */
c906108c 4617
ec9499be 4618static void
0b6e5e10 4619handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4620{
d6b48e9c
PA
4621 enum stop_kind stop_soon;
4622
28736962
PA
4623 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4624 {
4625 /* We had an event in the inferior, but we are not interested in
4626 handling it at this level. The lower layers have already
4627 done what needs to be done, if anything.
4628
4629 One of the possible circumstances for this is when the
4630 inferior produces output for the console. The inferior has
4631 not stopped, and we are ignoring the event. Another possible
4632 circumstance is any event which the lower level knows will be
4633 reported multiple times without an intervening resume. */
4634 if (debug_infrun)
4635 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4636 prepare_to_wait (ecs);
4637 return;
4638 }
4639
0e5bf2a8
PA
4640 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4641 && target_can_async_p () && !sync_execution)
4642 {
4643 /* There were no unwaited-for children left in the target, but,
4644 we're not synchronously waiting for events either. Just
4645 ignore. Otherwise, if we were running a synchronous
4646 execution command, we need to cancel it and give the user
4647 back the terminal. */
4648 if (debug_infrun)
4649 fprintf_unfiltered (gdb_stdlog,
4650 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4651 prepare_to_wait (ecs);
4652 return;
4653 }
4654
1777feb0 4655 /* Cache the last pid/waitstatus. */
c32c64b7 4656 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4657
ca005067 4658 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4659 stop_stack_dummy = STOP_NONE;
ca005067 4660
0e5bf2a8
PA
4661 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4662 {
4663 /* No unwaited-for children left. IOW, all resumed children
4664 have exited. */
4665 if (debug_infrun)
4666 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4667
4668 stop_print_frame = 0;
22bcd14b 4669 stop_waiting (ecs);
0e5bf2a8
PA
4670 return;
4671 }
4672
8c90c137 4673 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4674 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4675 {
4676 ecs->event_thread = find_thread_ptid (ecs->ptid);
4677 /* If it's a new thread, add it to the thread database. */
4678 if (ecs->event_thread == NULL)
4679 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4680
4681 /* Disable range stepping. If the next step request could use a
4682 range, this will be end up re-enabled then. */
4683 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4684 }
88ed393a
JK
4685
4686 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4687 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4688
4689 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4690 reinit_frame_cache ();
4691
28736962
PA
4692 breakpoint_retire_moribund ();
4693
2b009048
DJ
4694 /* First, distinguish signals caused by the debugger from signals
4695 that have to do with the program's own actions. Note that
4696 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4697 on the operating system version. Here we detect when a SIGILL or
4698 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4699 something similar for SIGSEGV, since a SIGSEGV will be generated
4700 when we're trying to execute a breakpoint instruction on a
4701 non-executable stack. This happens for call dummy breakpoints
4702 for architectures like SPARC that place call dummies on the
4703 stack. */
2b009048 4704 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4705 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4706 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4707 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4708 {
de0a0249
UW
4709 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4710
4711 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4712 regcache_read_pc (regcache)))
4713 {
4714 if (debug_infrun)
4715 fprintf_unfiltered (gdb_stdlog,
4716 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4717 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4718 }
2b009048
DJ
4719 }
4720
28736962
PA
4721 /* Mark the non-executing threads accordingly. In all-stop, all
4722 threads of all processes are stopped when we get any event
e1316e60 4723 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4724 {
4725 ptid_t mark_ptid;
4726
fbea99ea 4727 if (!target_is_non_stop_p ())
372316f1
PA
4728 mark_ptid = minus_one_ptid;
4729 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4730 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4731 {
4732 /* If we're handling a process exit in non-stop mode, even
4733 though threads haven't been deleted yet, one would think
4734 that there is nothing to do, as threads of the dead process
4735 will be soon deleted, and threads of any other process were
4736 left running. However, on some targets, threads survive a
4737 process exit event. E.g., for the "checkpoint" command,
4738 when the current checkpoint/fork exits, linux-fork.c
4739 automatically switches to another fork from within
4740 target_mourn_inferior, by associating the same
4741 inferior/thread to another fork. We haven't mourned yet at
4742 this point, but we must mark any threads left in the
4743 process as not-executing so that finish_thread_state marks
4744 them stopped (in the user's perspective) if/when we present
4745 the stop to the user. */
4746 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4747 }
4748 else
4749 mark_ptid = ecs->ptid;
4750
4751 set_executing (mark_ptid, 0);
4752
4753 /* Likewise the resumed flag. */
4754 set_resumed (mark_ptid, 0);
4755 }
8c90c137 4756
488f131b
JB
4757 switch (ecs->ws.kind)
4758 {
4759 case TARGET_WAITKIND_LOADED:
527159b7 4760 if (debug_infrun)
8a9de0e4 4761 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4762 if (!ptid_equal (ecs->ptid, inferior_ptid))
4763 context_switch (ecs->ptid);
b0f4b84b
DJ
4764 /* Ignore gracefully during startup of the inferior, as it might
4765 be the shell which has just loaded some objects, otherwise
4766 add the symbols for the newly loaded objects. Also ignore at
4767 the beginning of an attach or remote session; we will query
4768 the full list of libraries once the connection is
4769 established. */
4f5d7f63
PA
4770
4771 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4772 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4773 {
edcc5120
TT
4774 struct regcache *regcache;
4775
edcc5120
TT
4776 regcache = get_thread_regcache (ecs->ptid);
4777
4778 handle_solib_event ();
4779
4780 ecs->event_thread->control.stop_bpstat
4781 = bpstat_stop_status (get_regcache_aspace (regcache),
4782 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4783
ce12b012 4784 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4785 {
4786 /* A catchpoint triggered. */
94c57d6a
PA
4787 process_event_stop_test (ecs);
4788 return;
edcc5120 4789 }
488f131b 4790
b0f4b84b
DJ
4791 /* If requested, stop when the dynamic linker notifies
4792 gdb of events. This allows the user to get control
4793 and place breakpoints in initializer routines for
4794 dynamically loaded objects (among other things). */
a493e3e2 4795 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4796 if (stop_on_solib_events)
4797 {
55409f9d
DJ
4798 /* Make sure we print "Stopped due to solib-event" in
4799 normal_stop. */
4800 stop_print_frame = 1;
4801
22bcd14b 4802 stop_waiting (ecs);
b0f4b84b
DJ
4803 return;
4804 }
488f131b 4805 }
b0f4b84b
DJ
4806
4807 /* If we are skipping through a shell, or through shared library
4808 loading that we aren't interested in, resume the program. If
5c09a2c5 4809 we're running the program normally, also resume. */
b0f4b84b
DJ
4810 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4811 {
74960c60
VP
4812 /* Loading of shared libraries might have changed breakpoint
4813 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4814 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4815 insert_breakpoints ();
64ce06e4 4816 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4817 prepare_to_wait (ecs);
4818 return;
4819 }
4820
5c09a2c5
PA
4821 /* But stop if we're attaching or setting up a remote
4822 connection. */
4823 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4824 || stop_soon == STOP_QUIETLY_REMOTE)
4825 {
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4828 stop_waiting (ecs);
5c09a2c5
PA
4829 return;
4830 }
4831
4832 internal_error (__FILE__, __LINE__,
4833 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4834
488f131b 4835 case TARGET_WAITKIND_SPURIOUS:
527159b7 4836 if (debug_infrun)
8a9de0e4 4837 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4838 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4839 context_switch (ecs->ptid);
64ce06e4 4840 resume (GDB_SIGNAL_0);
488f131b
JB
4841 prepare_to_wait (ecs);
4842 return;
c5aa993b 4843
488f131b 4844 case TARGET_WAITKIND_EXITED:
940c3c06 4845 case TARGET_WAITKIND_SIGNALLED:
527159b7 4846 if (debug_infrun)
940c3c06
PA
4847 {
4848 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4849 fprintf_unfiltered (gdb_stdlog,
4850 "infrun: TARGET_WAITKIND_EXITED\n");
4851 else
4852 fprintf_unfiltered (gdb_stdlog,
4853 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4854 }
4855
fb66883a 4856 inferior_ptid = ecs->ptid;
c9657e70 4857 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4858 set_current_program_space (current_inferior ()->pspace);
4859 handle_vfork_child_exec_or_exit (0);
1777feb0 4860 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4861
0c557179
SDJ
4862 /* Clearing any previous state of convenience variables. */
4863 clear_exit_convenience_vars ();
4864
940c3c06
PA
4865 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4866 {
4867 /* Record the exit code in the convenience variable $_exitcode, so
4868 that the user can inspect this again later. */
4869 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4870 (LONGEST) ecs->ws.value.integer);
4871
4872 /* Also record this in the inferior itself. */
4873 current_inferior ()->has_exit_code = 1;
4874 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4875
98eb56a4
PA
4876 /* Support the --return-child-result option. */
4877 return_child_result_value = ecs->ws.value.integer;
4878
fd664c91 4879 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4880 }
4881 else
0c557179
SDJ
4882 {
4883 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4884 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4885
4886 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4887 {
4888 /* Set the value of the internal variable $_exitsignal,
4889 which holds the signal uncaught by the inferior. */
4890 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4891 gdbarch_gdb_signal_to_target (gdbarch,
4892 ecs->ws.value.sig));
4893 }
4894 else
4895 {
4896 /* We don't have access to the target's method used for
4897 converting between signal numbers (GDB's internal
4898 representation <-> target's representation).
4899 Therefore, we cannot do a good job at displaying this
4900 information to the user. It's better to just warn
4901 her about it (if infrun debugging is enabled), and
4902 give up. */
4903 if (debug_infrun)
4904 fprintf_filtered (gdb_stdlog, _("\
4905Cannot fill $_exitsignal with the correct signal number.\n"));
4906 }
4907
fd664c91 4908 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4909 }
8cf64490 4910
488f131b
JB
4911 gdb_flush (gdb_stdout);
4912 target_mourn_inferior ();
488f131b 4913 stop_print_frame = 0;
22bcd14b 4914 stop_waiting (ecs);
488f131b 4915 return;
c5aa993b 4916
488f131b 4917 /* The following are the only cases in which we keep going;
1777feb0 4918 the above cases end in a continue or goto. */
488f131b 4919 case TARGET_WAITKIND_FORKED:
deb3b17b 4920 case TARGET_WAITKIND_VFORKED:
527159b7 4921 if (debug_infrun)
fed708ed
PA
4922 {
4923 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4924 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4925 else
4926 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4927 }
c906108c 4928
e2d96639
YQ
4929 /* Check whether the inferior is displaced stepping. */
4930 {
4931 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4932 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4933 struct displaced_step_inferior_state *displaced
4934 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4935
4936 /* If checking displaced stepping is supported, and thread
4937 ecs->ptid is displaced stepping. */
4938 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4939 {
4940 struct inferior *parent_inf
c9657e70 4941 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4942 struct regcache *child_regcache;
4943 CORE_ADDR parent_pc;
4944
4945 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4946 indicating that the displaced stepping of syscall instruction
4947 has been done. Perform cleanup for parent process here. Note
4948 that this operation also cleans up the child process for vfork,
4949 because their pages are shared. */
a493e3e2 4950 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4951 /* Start a new step-over in another thread if there's one
4952 that needs it. */
4953 start_step_over ();
e2d96639
YQ
4954
4955 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4956 {
4957 /* Restore scratch pad for child process. */
4958 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4959 }
4960
4961 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4962 the child's PC is also within the scratchpad. Set the child's PC
4963 to the parent's PC value, which has already been fixed up.
4964 FIXME: we use the parent's aspace here, although we're touching
4965 the child, because the child hasn't been added to the inferior
4966 list yet at this point. */
4967
4968 child_regcache
4969 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4970 gdbarch,
4971 parent_inf->aspace);
4972 /* Read PC value of parent process. */
4973 parent_pc = regcache_read_pc (regcache);
4974
4975 if (debug_displaced)
4976 fprintf_unfiltered (gdb_stdlog,
4977 "displaced: write child pc from %s to %s\n",
4978 paddress (gdbarch,
4979 regcache_read_pc (child_regcache)),
4980 paddress (gdbarch, parent_pc));
4981
4982 regcache_write_pc (child_regcache, parent_pc);
4983 }
4984 }
4985
5a2901d9 4986 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4987 context_switch (ecs->ptid);
5a2901d9 4988
b242c3c2
PA
4989 /* Immediately detach breakpoints from the child before there's
4990 any chance of letting the user delete breakpoints from the
4991 breakpoint lists. If we don't do this early, it's easy to
4992 leave left over traps in the child, vis: "break foo; catch
4993 fork; c; <fork>; del; c; <child calls foo>". We only follow
4994 the fork on the last `continue', and by that time the
4995 breakpoint at "foo" is long gone from the breakpoint table.
4996 If we vforked, then we don't need to unpatch here, since both
4997 parent and child are sharing the same memory pages; we'll
4998 need to unpatch at follow/detach time instead to be certain
4999 that new breakpoints added between catchpoint hit time and
5000 vfork follow are detached. */
5001 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5002 {
b242c3c2
PA
5003 /* This won't actually modify the breakpoint list, but will
5004 physically remove the breakpoints from the child. */
d80ee84f 5005 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5006 }
5007
34b7e8a6 5008 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5009
e58b0e63
PA
5010 /* In case the event is caught by a catchpoint, remember that
5011 the event is to be followed at the next resume of the thread,
5012 and not immediately. */
5013 ecs->event_thread->pending_follow = ecs->ws;
5014
fb14de7b 5015 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5016
16c381f0 5017 ecs->event_thread->control.stop_bpstat
6c95b8df 5018 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5019 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5020
ce12b012
PA
5021 /* If no catchpoint triggered for this, then keep going. Note
5022 that we're interested in knowing the bpstat actually causes a
5023 stop, not just if it may explain the signal. Software
5024 watchpoints, for example, always appear in the bpstat. */
5025 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5026 {
6c95b8df
PA
5027 ptid_t parent;
5028 ptid_t child;
e58b0e63 5029 int should_resume;
3e43a32a
MS
5030 int follow_child
5031 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5032
a493e3e2 5033 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5034
5035 should_resume = follow_fork ();
5036
6c95b8df
PA
5037 parent = ecs->ptid;
5038 child = ecs->ws.value.related_pid;
5039
5040 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5041 if (!detach_fork && (non_stop
5042 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5043 {
5044 if (follow_child)
5045 switch_to_thread (parent);
5046 else
5047 switch_to_thread (child);
5048
5049 ecs->event_thread = inferior_thread ();
5050 ecs->ptid = inferior_ptid;
5051 keep_going (ecs);
5052 }
5053
5054 if (follow_child)
5055 switch_to_thread (child);
5056 else
5057 switch_to_thread (parent);
5058
e58b0e63
PA
5059 ecs->event_thread = inferior_thread ();
5060 ecs->ptid = inferior_ptid;
5061
5062 if (should_resume)
5063 keep_going (ecs);
5064 else
22bcd14b 5065 stop_waiting (ecs);
04e68871
DJ
5066 return;
5067 }
94c57d6a
PA
5068 process_event_stop_test (ecs);
5069 return;
488f131b 5070
6c95b8df
PA
5071 case TARGET_WAITKIND_VFORK_DONE:
5072 /* Done with the shared memory region. Re-insert breakpoints in
5073 the parent, and keep going. */
5074
5075 if (debug_infrun)
3e43a32a
MS
5076 fprintf_unfiltered (gdb_stdlog,
5077 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5078
5079 if (!ptid_equal (ecs->ptid, inferior_ptid))
5080 context_switch (ecs->ptid);
5081
5082 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5083 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5084 /* This also takes care of reinserting breakpoints in the
5085 previously locked inferior. */
5086 keep_going (ecs);
5087 return;
5088
488f131b 5089 case TARGET_WAITKIND_EXECD:
527159b7 5090 if (debug_infrun)
fc5261f2 5091 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5092
5a2901d9 5093 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5094 context_switch (ecs->ptid);
5a2901d9 5095
fb14de7b 5096 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5097
6c95b8df
PA
5098 /* Do whatever is necessary to the parent branch of the vfork. */
5099 handle_vfork_child_exec_or_exit (1);
5100
795e548f
PA
5101 /* This causes the eventpoints and symbol table to be reset.
5102 Must do this now, before trying to determine whether to
5103 stop. */
71b43ef8 5104 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5105
17d8546e
DB
5106 /* In follow_exec we may have deleted the original thread and
5107 created a new one. Make sure that the event thread is the
5108 execd thread for that case (this is a nop otherwise). */
5109 ecs->event_thread = inferior_thread ();
5110
16c381f0 5111 ecs->event_thread->control.stop_bpstat
6c95b8df 5112 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5113 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5114
71b43ef8
PA
5115 /* Note that this may be referenced from inside
5116 bpstat_stop_status above, through inferior_has_execd. */
5117 xfree (ecs->ws.value.execd_pathname);
5118 ecs->ws.value.execd_pathname = NULL;
5119
04e68871 5120 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5121 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5122 {
a493e3e2 5123 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5124 keep_going (ecs);
5125 return;
5126 }
94c57d6a
PA
5127 process_event_stop_test (ecs);
5128 return;
488f131b 5129
b4dc5ffa
MK
5130 /* Be careful not to try to gather much state about a thread
5131 that's in a syscall. It's frequently a losing proposition. */
488f131b 5132 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5133 if (debug_infrun)
3e43a32a
MS
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5136 /* Getting the current syscall number. */
94c57d6a
PA
5137 if (handle_syscall_event (ecs) == 0)
5138 process_event_stop_test (ecs);
5139 return;
c906108c 5140
488f131b
JB
5141 /* Before examining the threads further, step this thread to
5142 get it entirely out of the syscall. (We get notice of the
5143 event when the thread is just on the verge of exiting a
5144 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5145 into user code.) */
488f131b 5146 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5147 if (debug_infrun)
3e43a32a
MS
5148 fprintf_unfiltered (gdb_stdlog,
5149 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5150 if (handle_syscall_event (ecs) == 0)
5151 process_event_stop_test (ecs);
5152 return;
c906108c 5153
488f131b 5154 case TARGET_WAITKIND_STOPPED:
527159b7 5155 if (debug_infrun)
8a9de0e4 5156 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5157 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5158 handle_signal_stop (ecs);
5159 return;
c906108c 5160
b2175913 5161 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5162 if (debug_infrun)
5163 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5164 /* Reverse execution: target ran out of history info. */
eab402df 5165
d1988021
MM
5166 /* Switch to the stopped thread. */
5167 if (!ptid_equal (ecs->ptid, inferior_ptid))
5168 context_switch (ecs->ptid);
5169 if (debug_infrun)
5170 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5171
34b7e8a6 5172 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5173 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5174 observer_notify_no_history ();
22bcd14b 5175 stop_waiting (ecs);
b2175913 5176 return;
488f131b 5177 }
4f5d7f63
PA
5178}
5179
0b6e5e10
JB
5180/* A wrapper around handle_inferior_event_1, which also makes sure
5181 that all temporary struct value objects that were created during
5182 the handling of the event get deleted at the end. */
5183
5184static void
5185handle_inferior_event (struct execution_control_state *ecs)
5186{
5187 struct value *mark = value_mark ();
5188
5189 handle_inferior_event_1 (ecs);
5190 /* Purge all temporary values created during the event handling,
5191 as it could be a long time before we return to the command level
5192 where such values would otherwise be purged. */
5193 value_free_to_mark (mark);
5194}
5195
372316f1
PA
5196/* Restart threads back to what they were trying to do back when we
5197 paused them for an in-line step-over. The EVENT_THREAD thread is
5198 ignored. */
4d9d9d04
PA
5199
5200static void
372316f1
PA
5201restart_threads (struct thread_info *event_thread)
5202{
5203 struct thread_info *tp;
5204 struct thread_info *step_over = NULL;
5205
5206 /* In case the instruction just stepped spawned a new thread. */
5207 update_thread_list ();
5208
5209 ALL_NON_EXITED_THREADS (tp)
5210 {
5211 if (tp == event_thread)
5212 {
5213 if (debug_infrun)
5214 fprintf_unfiltered (gdb_stdlog,
5215 "infrun: restart threads: "
5216 "[%s] is event thread\n",
5217 target_pid_to_str (tp->ptid));
5218 continue;
5219 }
5220
5221 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5222 {
5223 if (debug_infrun)
5224 fprintf_unfiltered (gdb_stdlog,
5225 "infrun: restart threads: "
5226 "[%s] not meant to be running\n",
5227 target_pid_to_str (tp->ptid));
5228 continue;
5229 }
5230
5231 if (tp->resumed)
5232 {
5233 if (debug_infrun)
5234 fprintf_unfiltered (gdb_stdlog,
5235 "infrun: restart threads: [%s] resumed\n",
5236 target_pid_to_str (tp->ptid));
5237 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5238 continue;
5239 }
5240
5241 if (thread_is_in_step_over_chain (tp))
5242 {
5243 if (debug_infrun)
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: restart threads: "
5246 "[%s] needs step-over\n",
5247 target_pid_to_str (tp->ptid));
5248 gdb_assert (!tp->resumed);
5249 continue;
5250 }
5251
5252
5253 if (tp->suspend.waitstatus_pending_p)
5254 {
5255 if (debug_infrun)
5256 fprintf_unfiltered (gdb_stdlog,
5257 "infrun: restart threads: "
5258 "[%s] has pending status\n",
5259 target_pid_to_str (tp->ptid));
5260 tp->resumed = 1;
5261 continue;
5262 }
5263
5264 /* If some thread needs to start a step-over at this point, it
5265 should still be in the step-over queue, and thus skipped
5266 above. */
5267 if (thread_still_needs_step_over (tp))
5268 {
5269 internal_error (__FILE__, __LINE__,
5270 "thread [%s] needs a step-over, but not in "
5271 "step-over queue\n",
5272 target_pid_to_str (tp->ptid));
5273 }
5274
5275 if (currently_stepping (tp))
5276 {
5277 if (debug_infrun)
5278 fprintf_unfiltered (gdb_stdlog,
5279 "infrun: restart threads: [%s] was stepping\n",
5280 target_pid_to_str (tp->ptid));
5281 keep_going_stepped_thread (tp);
5282 }
5283 else
5284 {
5285 struct execution_control_state ecss;
5286 struct execution_control_state *ecs = &ecss;
5287
5288 if (debug_infrun)
5289 fprintf_unfiltered (gdb_stdlog,
5290 "infrun: restart threads: [%s] continuing\n",
5291 target_pid_to_str (tp->ptid));
5292 reset_ecs (ecs, tp);
5293 switch_to_thread (tp->ptid);
5294 keep_going_pass_signal (ecs);
5295 }
5296 }
5297}
5298
5299/* Callback for iterate_over_threads. Find a resumed thread that has
5300 a pending waitstatus. */
5301
5302static int
5303resumed_thread_with_pending_status (struct thread_info *tp,
5304 void *arg)
5305{
5306 return (tp->resumed
5307 && tp->suspend.waitstatus_pending_p);
5308}
5309
5310/* Called when we get an event that may finish an in-line or
5311 out-of-line (displaced stepping) step-over started previously.
5312 Return true if the event is processed and we should go back to the
5313 event loop; false if the caller should continue processing the
5314 event. */
5315
5316static int
4d9d9d04
PA
5317finish_step_over (struct execution_control_state *ecs)
5318{
372316f1
PA
5319 int had_step_over_info;
5320
4d9d9d04
PA
5321 displaced_step_fixup (ecs->ptid,
5322 ecs->event_thread->suspend.stop_signal);
5323
372316f1
PA
5324 had_step_over_info = step_over_info_valid_p ();
5325
5326 if (had_step_over_info)
4d9d9d04
PA
5327 {
5328 /* If we're stepping over a breakpoint with all threads locked,
5329 then only the thread that was stepped should be reporting
5330 back an event. */
5331 gdb_assert (ecs->event_thread->control.trap_expected);
5332
5333 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5334 clear_step_over_info ();
5335 }
5336
fbea99ea 5337 if (!target_is_non_stop_p ())
372316f1 5338 return 0;
4d9d9d04
PA
5339
5340 /* Start a new step-over in another thread if there's one that
5341 needs it. */
5342 start_step_over ();
372316f1
PA
5343
5344 /* If we were stepping over a breakpoint before, and haven't started
5345 a new in-line step-over sequence, then restart all other threads
5346 (except the event thread). We can't do this in all-stop, as then
5347 e.g., we wouldn't be able to issue any other remote packet until
5348 these other threads stop. */
5349 if (had_step_over_info && !step_over_info_valid_p ())
5350 {
5351 struct thread_info *pending;
5352
5353 /* If we only have threads with pending statuses, the restart
5354 below won't restart any thread and so nothing re-inserts the
5355 breakpoint we just stepped over. But we need it inserted
5356 when we later process the pending events, otherwise if
5357 another thread has a pending event for this breakpoint too,
5358 we'd discard its event (because the breakpoint that
5359 originally caused the event was no longer inserted). */
5360 context_switch (ecs->ptid);
5361 insert_breakpoints ();
5362
5363 restart_threads (ecs->event_thread);
5364
5365 /* If we have events pending, go through handle_inferior_event
5366 again, picking up a pending event at random. This avoids
5367 thread starvation. */
5368
5369 /* But not if we just stepped over a watchpoint in order to let
5370 the instruction execute so we can evaluate its expression.
5371 The set of watchpoints that triggered is recorded in the
5372 breakpoint objects themselves (see bp->watchpoint_triggered).
5373 If we processed another event first, that other event could
5374 clobber this info. */
5375 if (ecs->event_thread->stepping_over_watchpoint)
5376 return 0;
5377
5378 pending = iterate_over_threads (resumed_thread_with_pending_status,
5379 NULL);
5380 if (pending != NULL)
5381 {
5382 struct thread_info *tp = ecs->event_thread;
5383 struct regcache *regcache;
5384
5385 if (debug_infrun)
5386 {
5387 fprintf_unfiltered (gdb_stdlog,
5388 "infrun: found resumed threads with "
5389 "pending events, saving status\n");
5390 }
5391
5392 gdb_assert (pending != tp);
5393
5394 /* Record the event thread's event for later. */
5395 save_waitstatus (tp, &ecs->ws);
5396 /* This was cleared early, by handle_inferior_event. Set it
5397 so this pending event is considered by
5398 do_target_wait. */
5399 tp->resumed = 1;
5400
5401 gdb_assert (!tp->executing);
5402
5403 regcache = get_thread_regcache (tp->ptid);
5404 tp->suspend.stop_pc = regcache_read_pc (regcache);
5405
5406 if (debug_infrun)
5407 {
5408 fprintf_unfiltered (gdb_stdlog,
5409 "infrun: saved stop_pc=%s for %s "
5410 "(currently_stepping=%d)\n",
5411 paddress (target_gdbarch (),
5412 tp->suspend.stop_pc),
5413 target_pid_to_str (tp->ptid),
5414 currently_stepping (tp));
5415 }
5416
5417 /* This in-line step-over finished; clear this so we won't
5418 start a new one. This is what handle_signal_stop would
5419 do, if we returned false. */
5420 tp->stepping_over_breakpoint = 0;
5421
5422 /* Wake up the event loop again. */
5423 mark_async_event_handler (infrun_async_inferior_event_token);
5424
5425 prepare_to_wait (ecs);
5426 return 1;
5427 }
5428 }
5429
5430 return 0;
4d9d9d04
PA
5431}
5432
4f5d7f63
PA
5433/* Come here when the program has stopped with a signal. */
5434
5435static void
5436handle_signal_stop (struct execution_control_state *ecs)
5437{
5438 struct frame_info *frame;
5439 struct gdbarch *gdbarch;
5440 int stopped_by_watchpoint;
5441 enum stop_kind stop_soon;
5442 int random_signal;
c906108c 5443
f0407826
DE
5444 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5445
5446 /* Do we need to clean up the state of a thread that has
5447 completed a displaced single-step? (Doing so usually affects
5448 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5449 if (finish_step_over (ecs))
5450 return;
f0407826
DE
5451
5452 /* If we either finished a single-step or hit a breakpoint, but
5453 the user wanted this thread to be stopped, pretend we got a
5454 SIG0 (generic unsignaled stop). */
5455 if (ecs->event_thread->stop_requested
5456 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5457 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5458
515630c5 5459 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5460
527159b7 5461 if (debug_infrun)
237fc4c9 5462 {
5af949e3
UW
5463 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5465 struct cleanup *old_chain = save_inferior_ptid ();
5466
5467 inferior_ptid = ecs->ptid;
5af949e3
UW
5468
5469 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5470 paddress (gdbarch, stop_pc));
d92524f1 5471 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5472 {
5473 CORE_ADDR addr;
abbb1732 5474
237fc4c9
PA
5475 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5476
5477 if (target_stopped_data_address (&current_target, &addr))
5478 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5479 "infrun: stopped data address = %s\n",
5480 paddress (gdbarch, addr));
237fc4c9
PA
5481 else
5482 fprintf_unfiltered (gdb_stdlog,
5483 "infrun: (no data address available)\n");
5484 }
7f82dfc7
JK
5485
5486 do_cleanups (old_chain);
237fc4c9 5487 }
527159b7 5488
36fa8042
PA
5489 /* This is originated from start_remote(), start_inferior() and
5490 shared libraries hook functions. */
5491 stop_soon = get_inferior_stop_soon (ecs->ptid);
5492 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5493 {
5494 if (!ptid_equal (ecs->ptid, inferior_ptid))
5495 context_switch (ecs->ptid);
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5498 stop_print_frame = 1;
22bcd14b 5499 stop_waiting (ecs);
36fa8042
PA
5500 return;
5501 }
5502
5503 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5504 && stop_after_trap)
5505 {
5506 if (!ptid_equal (ecs->ptid, inferior_ptid))
5507 context_switch (ecs->ptid);
5508 if (debug_infrun)
5509 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5510 stop_print_frame = 0;
22bcd14b 5511 stop_waiting (ecs);
36fa8042
PA
5512 return;
5513 }
5514
5515 /* This originates from attach_command(). We need to overwrite
5516 the stop_signal here, because some kernels don't ignore a
5517 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5518 See more comments in inferior.h. On the other hand, if we
5519 get a non-SIGSTOP, report it to the user - assume the backend
5520 will handle the SIGSTOP if it should show up later.
5521
5522 Also consider that the attach is complete when we see a
5523 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5524 target extended-remote report it instead of a SIGSTOP
5525 (e.g. gdbserver). We already rely on SIGTRAP being our
5526 signal, so this is no exception.
5527
5528 Also consider that the attach is complete when we see a
5529 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5530 the target to stop all threads of the inferior, in case the
5531 low level attach operation doesn't stop them implicitly. If
5532 they weren't stopped implicitly, then the stub will report a
5533 GDB_SIGNAL_0, meaning: stopped for no particular reason
5534 other than GDB's request. */
5535 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5536 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5537 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5538 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5539 {
5540 stop_print_frame = 1;
22bcd14b 5541 stop_waiting (ecs);
36fa8042
PA
5542 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5543 return;
5544 }
5545
488f131b 5546 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5547 so, then switch to that thread. */
5548 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5549 {
527159b7 5550 if (debug_infrun)
8a9de0e4 5551 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5552
0d1e5fa7 5553 context_switch (ecs->ptid);
c5aa993b 5554
9a4105ab
AC
5555 if (deprecated_context_hook)
5556 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5557 }
c906108c 5558
568d6575
UW
5559 /* At this point, get hold of the now-current thread's frame. */
5560 frame = get_current_frame ();
5561 gdbarch = get_frame_arch (frame);
5562
2adfaa28 5563 /* Pull the single step breakpoints out of the target. */
af48d08f 5564 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5565 {
af48d08f
PA
5566 struct regcache *regcache;
5567 struct address_space *aspace;
5568 CORE_ADDR pc;
2adfaa28 5569
af48d08f
PA
5570 regcache = get_thread_regcache (ecs->ptid);
5571 aspace = get_regcache_aspace (regcache);
5572 pc = regcache_read_pc (regcache);
34b7e8a6 5573
af48d08f
PA
5574 /* However, before doing so, if this single-step breakpoint was
5575 actually for another thread, set this thread up for moving
5576 past it. */
5577 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5578 aspace, pc))
5579 {
5580 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5581 {
5582 if (debug_infrun)
5583 {
5584 fprintf_unfiltered (gdb_stdlog,
af48d08f 5585 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5586 "single-step breakpoint\n",
5587 target_pid_to_str (ecs->ptid));
2adfaa28 5588 }
af48d08f
PA
5589 ecs->hit_singlestep_breakpoint = 1;
5590 }
5591 }
5592 else
5593 {
5594 if (debug_infrun)
5595 {
5596 fprintf_unfiltered (gdb_stdlog,
5597 "infrun: [%s] hit its "
5598 "single-step breakpoint\n",
5599 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5600 }
5601 }
488f131b 5602 }
af48d08f 5603 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5604
963f9c80
PA
5605 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5606 && ecs->event_thread->control.trap_expected
5607 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5608 stopped_by_watchpoint = 0;
5609 else
5610 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5611
5612 /* If necessary, step over this watchpoint. We'll be back to display
5613 it in a moment. */
5614 if (stopped_by_watchpoint
d92524f1 5615 && (target_have_steppable_watchpoint
568d6575 5616 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5617 {
488f131b
JB
5618 /* At this point, we are stopped at an instruction which has
5619 attempted to write to a piece of memory under control of
5620 a watchpoint. The instruction hasn't actually executed
5621 yet. If we were to evaluate the watchpoint expression
5622 now, we would get the old value, and therefore no change
5623 would seem to have occurred.
5624
5625 In order to make watchpoints work `right', we really need
5626 to complete the memory write, and then evaluate the
d983da9c
DJ
5627 watchpoint expression. We do this by single-stepping the
5628 target.
5629
7f89fd65 5630 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5631 it. For example, the PA can (with some kernel cooperation)
5632 single step over a watchpoint without disabling the watchpoint.
5633
5634 It is far more common to need to disable a watchpoint to step
5635 the inferior over it. If we have non-steppable watchpoints,
5636 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5637 disable all watchpoints.
5638
5639 Any breakpoint at PC must also be stepped over -- if there's
5640 one, it will have already triggered before the watchpoint
5641 triggered, and we either already reported it to the user, or
5642 it didn't cause a stop and we called keep_going. In either
5643 case, if there was a breakpoint at PC, we must be trying to
5644 step past it. */
5645 ecs->event_thread->stepping_over_watchpoint = 1;
5646 keep_going (ecs);
488f131b
JB
5647 return;
5648 }
5649
4e1c45ea 5650 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5651 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5652 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5653 ecs->event_thread->control.stop_step = 0;
488f131b 5654 stop_print_frame = 1;
488f131b 5655 stopped_by_random_signal = 0;
488f131b 5656
edb3359d
DJ
5657 /* Hide inlined functions starting here, unless we just performed stepi or
5658 nexti. After stepi and nexti, always show the innermost frame (not any
5659 inline function call sites). */
16c381f0 5660 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5661 {
5662 struct address_space *aspace =
5663 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5664
5665 /* skip_inline_frames is expensive, so we avoid it if we can
5666 determine that the address is one where functions cannot have
5667 been inlined. This improves performance with inferiors that
5668 load a lot of shared libraries, because the solib event
5669 breakpoint is defined as the address of a function (i.e. not
5670 inline). Note that we have to check the previous PC as well
5671 as the current one to catch cases when we have just
5672 single-stepped off a breakpoint prior to reinstating it.
5673 Note that we're assuming that the code we single-step to is
5674 not inline, but that's not definitive: there's nothing
5675 preventing the event breakpoint function from containing
5676 inlined code, and the single-step ending up there. If the
5677 user had set a breakpoint on that inlined code, the missing
5678 skip_inline_frames call would break things. Fortunately
5679 that's an extremely unlikely scenario. */
09ac7c10 5680 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5681 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5682 && ecs->event_thread->control.trap_expected
5683 && pc_at_non_inline_function (aspace,
5684 ecs->event_thread->prev_pc,
09ac7c10 5685 &ecs->ws)))
1c5a993e
MR
5686 {
5687 skip_inline_frames (ecs->ptid);
5688
5689 /* Re-fetch current thread's frame in case that invalidated
5690 the frame cache. */
5691 frame = get_current_frame ();
5692 gdbarch = get_frame_arch (frame);
5693 }
0574c78f 5694 }
edb3359d 5695
a493e3e2 5696 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5697 && ecs->event_thread->control.trap_expected
568d6575 5698 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5699 && currently_stepping (ecs->event_thread))
3352ef37 5700 {
b50d7442 5701 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5702 also on an instruction that needs to be stepped multiple
1777feb0 5703 times before it's been fully executing. E.g., architectures
3352ef37
AC
5704 with a delay slot. It needs to be stepped twice, once for
5705 the instruction and once for the delay slot. */
5706 int step_through_delay
568d6575 5707 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5708
527159b7 5709 if (debug_infrun && step_through_delay)
8a9de0e4 5710 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5711 if (ecs->event_thread->control.step_range_end == 0
5712 && step_through_delay)
3352ef37
AC
5713 {
5714 /* The user issued a continue when stopped at a breakpoint.
5715 Set up for another trap and get out of here. */
4e1c45ea 5716 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5717 keep_going (ecs);
5718 return;
5719 }
5720 else if (step_through_delay)
5721 {
5722 /* The user issued a step when stopped at a breakpoint.
5723 Maybe we should stop, maybe we should not - the delay
5724 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5725 case, don't decide that here, just set
5726 ecs->stepping_over_breakpoint, making sure we
5727 single-step again before breakpoints are re-inserted. */
4e1c45ea 5728 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5729 }
5730 }
5731
ab04a2af
TT
5732 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5733 handles this event. */
5734 ecs->event_thread->control.stop_bpstat
5735 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5736 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5737
ab04a2af
TT
5738 /* Following in case break condition called a
5739 function. */
5740 stop_print_frame = 1;
73dd234f 5741
ab04a2af
TT
5742 /* This is where we handle "moribund" watchpoints. Unlike
5743 software breakpoints traps, hardware watchpoint traps are
5744 always distinguishable from random traps. If no high-level
5745 watchpoint is associated with the reported stop data address
5746 anymore, then the bpstat does not explain the signal ---
5747 simply make sure to ignore it if `stopped_by_watchpoint' is
5748 set. */
5749
5750 if (debug_infrun
5751 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5752 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5753 GDB_SIGNAL_TRAP)
ab04a2af
TT
5754 && stopped_by_watchpoint)
5755 fprintf_unfiltered (gdb_stdlog,
5756 "infrun: no user watchpoint explains "
5757 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5758
bac7d97b 5759 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5760 at one stage in the past included checks for an inferior
5761 function call's call dummy's return breakpoint. The original
5762 comment, that went with the test, read:
03cebad2 5763
ab04a2af
TT
5764 ``End of a stack dummy. Some systems (e.g. Sony news) give
5765 another signal besides SIGTRAP, so check here as well as
5766 above.''
73dd234f 5767
ab04a2af
TT
5768 If someone ever tries to get call dummys on a
5769 non-executable stack to work (where the target would stop
5770 with something like a SIGSEGV), then those tests might need
5771 to be re-instated. Given, however, that the tests were only
5772 enabled when momentary breakpoints were not being used, I
5773 suspect that it won't be the case.
488f131b 5774
ab04a2af
TT
5775 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5776 be necessary for call dummies on a non-executable stack on
5777 SPARC. */
488f131b 5778
bac7d97b 5779 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5780 random_signal
5781 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5782 ecs->event_thread->suspend.stop_signal);
bac7d97b 5783
1cf4d951
PA
5784 /* Maybe this was a trap for a software breakpoint that has since
5785 been removed. */
5786 if (random_signal && target_stopped_by_sw_breakpoint ())
5787 {
5788 if (program_breakpoint_here_p (gdbarch, stop_pc))
5789 {
5790 struct regcache *regcache;
5791 int decr_pc;
5792
5793 /* Re-adjust PC to what the program would see if GDB was not
5794 debugging it. */
5795 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5796 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5797 if (decr_pc != 0)
5798 {
5799 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5800
5801 if (record_full_is_used ())
5802 record_full_gdb_operation_disable_set ();
5803
5804 regcache_write_pc (regcache, stop_pc + decr_pc);
5805
5806 do_cleanups (old_cleanups);
5807 }
5808 }
5809 else
5810 {
5811 /* A delayed software breakpoint event. Ignore the trap. */
5812 if (debug_infrun)
5813 fprintf_unfiltered (gdb_stdlog,
5814 "infrun: delayed software breakpoint "
5815 "trap, ignoring\n");
5816 random_signal = 0;
5817 }
5818 }
5819
5820 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5821 has since been removed. */
5822 if (random_signal && target_stopped_by_hw_breakpoint ())
5823 {
5824 /* A delayed hardware breakpoint event. Ignore the trap. */
5825 if (debug_infrun)
5826 fprintf_unfiltered (gdb_stdlog,
5827 "infrun: delayed hardware breakpoint/watchpoint "
5828 "trap, ignoring\n");
5829 random_signal = 0;
5830 }
5831
bac7d97b
PA
5832 /* If not, perhaps stepping/nexting can. */
5833 if (random_signal)
5834 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5835 && currently_stepping (ecs->event_thread));
ab04a2af 5836
2adfaa28
PA
5837 /* Perhaps the thread hit a single-step breakpoint of _another_
5838 thread. Single-step breakpoints are transparent to the
5839 breakpoints module. */
5840 if (random_signal)
5841 random_signal = !ecs->hit_singlestep_breakpoint;
5842
bac7d97b
PA
5843 /* No? Perhaps we got a moribund watchpoint. */
5844 if (random_signal)
5845 random_signal = !stopped_by_watchpoint;
ab04a2af 5846
488f131b
JB
5847 /* For the program's own signals, act according to
5848 the signal handling tables. */
5849
ce12b012 5850 if (random_signal)
488f131b
JB
5851 {
5852 /* Signal not for debugging purposes. */
c9657e70 5853 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5854 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5855
527159b7 5856 if (debug_infrun)
c9737c08
PA
5857 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5858 gdb_signal_to_symbol_string (stop_signal));
527159b7 5859
488f131b
JB
5860 stopped_by_random_signal = 1;
5861
252fbfc8
PA
5862 /* Always stop on signals if we're either just gaining control
5863 of the program, or the user explicitly requested this thread
5864 to remain stopped. */
d6b48e9c 5865 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5866 || ecs->event_thread->stop_requested
24291992 5867 || (!inf->detaching
16c381f0 5868 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5869 {
22bcd14b 5870 stop_waiting (ecs);
488f131b
JB
5871 return;
5872 }
b57bacec
PA
5873
5874 /* Notify observers the signal has "handle print" set. Note we
5875 returned early above if stopping; normal_stop handles the
5876 printing in that case. */
5877 if (signal_print[ecs->event_thread->suspend.stop_signal])
5878 {
5879 /* The signal table tells us to print about this signal. */
5880 target_terminal_ours_for_output ();
5881 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5882 target_terminal_inferior ();
5883 }
488f131b
JB
5884
5885 /* Clear the signal if it should not be passed. */
16c381f0 5886 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5887 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5888
fb14de7b 5889 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5890 && ecs->event_thread->control.trap_expected
8358c15c 5891 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5892 {
372316f1
PA
5893 int was_in_line;
5894
68f53502
AC
5895 /* We were just starting a new sequence, attempting to
5896 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5897 Instead this signal arrives. This signal will take us out
68f53502
AC
5898 of the stepping range so GDB needs to remember to, when
5899 the signal handler returns, resume stepping off that
5900 breakpoint. */
5901 /* To simplify things, "continue" is forced to use the same
5902 code paths as single-step - set a breakpoint at the
5903 signal return address and then, once hit, step off that
5904 breakpoint. */
237fc4c9
PA
5905 if (debug_infrun)
5906 fprintf_unfiltered (gdb_stdlog,
5907 "infrun: signal arrived while stepping over "
5908 "breakpoint\n");
d3169d93 5909
372316f1
PA
5910 was_in_line = step_over_info_valid_p ();
5911 clear_step_over_info ();
2c03e5be 5912 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5913 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5914 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5915 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5916
fbea99ea 5917 if (target_is_non_stop_p ())
372316f1 5918 {
fbea99ea
PA
5919 /* Either "set non-stop" is "on", or the target is
5920 always in non-stop mode. In this case, we have a bit
5921 more work to do. Resume the current thread, and if
5922 we had paused all threads, restart them while the
5923 signal handler runs. */
372316f1
PA
5924 keep_going (ecs);
5925
372316f1
PA
5926 if (was_in_line)
5927 {
372316f1
PA
5928 restart_threads (ecs->event_thread);
5929 }
5930 else if (debug_infrun)
5931 {
5932 fprintf_unfiltered (gdb_stdlog,
5933 "infrun: no need to restart threads\n");
5934 }
5935 return;
5936 }
5937
d137e6dc
PA
5938 /* If we were nexting/stepping some other thread, switch to
5939 it, so that we don't continue it, losing control. */
5940 if (!switch_back_to_stepped_thread (ecs))
5941 keep_going (ecs);
9d799f85 5942 return;
68f53502 5943 }
9d799f85 5944
e5f8a7cc
PA
5945 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5946 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5947 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5948 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5949 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5950 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5951 {
5952 /* The inferior is about to take a signal that will take it
5953 out of the single step range. Set a breakpoint at the
5954 current PC (which is presumably where the signal handler
5955 will eventually return) and then allow the inferior to
5956 run free.
5957
5958 Note that this is only needed for a signal delivered
5959 while in the single-step range. Nested signals aren't a
5960 problem as they eventually all return. */
237fc4c9
PA
5961 if (debug_infrun)
5962 fprintf_unfiltered (gdb_stdlog,
5963 "infrun: signal may take us out of "
5964 "single-step range\n");
5965
372316f1 5966 clear_step_over_info ();
2c03e5be 5967 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5968 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5969 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5970 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5971 keep_going (ecs);
5972 return;
d303a6c7 5973 }
9d799f85
AC
5974
5975 /* Note: step_resume_breakpoint may be non-NULL. This occures
5976 when either there's a nested signal, or when there's a
5977 pending signal enabled just as the signal handler returns
5978 (leaving the inferior at the step-resume-breakpoint without
5979 actually executing it). Either way continue until the
5980 breakpoint is really hit. */
c447ac0b
PA
5981
5982 if (!switch_back_to_stepped_thread (ecs))
5983 {
5984 if (debug_infrun)
5985 fprintf_unfiltered (gdb_stdlog,
5986 "infrun: random signal, keep going\n");
5987
5988 keep_going (ecs);
5989 }
5990 return;
488f131b 5991 }
94c57d6a
PA
5992
5993 process_event_stop_test (ecs);
5994}
5995
5996/* Come here when we've got some debug event / signal we can explain
5997 (IOW, not a random signal), and test whether it should cause a
5998 stop, or whether we should resume the inferior (transparently).
5999 E.g., could be a breakpoint whose condition evaluates false; we
6000 could be still stepping within the line; etc. */
6001
6002static void
6003process_event_stop_test (struct execution_control_state *ecs)
6004{
6005 struct symtab_and_line stop_pc_sal;
6006 struct frame_info *frame;
6007 struct gdbarch *gdbarch;
cdaa5b73
PA
6008 CORE_ADDR jmp_buf_pc;
6009 struct bpstat_what what;
94c57d6a 6010
cdaa5b73 6011 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6012
cdaa5b73
PA
6013 frame = get_current_frame ();
6014 gdbarch = get_frame_arch (frame);
fcf3daef 6015
cdaa5b73 6016 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6017
cdaa5b73
PA
6018 if (what.call_dummy)
6019 {
6020 stop_stack_dummy = what.call_dummy;
6021 }
186c406b 6022
243a9253
PA
6023 /* A few breakpoint types have callbacks associated (e.g.,
6024 bp_jit_event). Run them now. */
6025 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6026
cdaa5b73
PA
6027 /* If we hit an internal event that triggers symbol changes, the
6028 current frame will be invalidated within bpstat_what (e.g., if we
6029 hit an internal solib event). Re-fetch it. */
6030 frame = get_current_frame ();
6031 gdbarch = get_frame_arch (frame);
e2e4d78b 6032
cdaa5b73
PA
6033 switch (what.main_action)
6034 {
6035 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6036 /* If we hit the breakpoint at longjmp while stepping, we
6037 install a momentary breakpoint at the target of the
6038 jmp_buf. */
186c406b 6039
cdaa5b73
PA
6040 if (debug_infrun)
6041 fprintf_unfiltered (gdb_stdlog,
6042 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6043
cdaa5b73 6044 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6045
cdaa5b73
PA
6046 if (what.is_longjmp)
6047 {
6048 struct value *arg_value;
6049
6050 /* If we set the longjmp breakpoint via a SystemTap probe,
6051 then use it to extract the arguments. The destination PC
6052 is the third argument to the probe. */
6053 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6054 if (arg_value)
8fa0c4f8
AA
6055 {
6056 jmp_buf_pc = value_as_address (arg_value);
6057 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6058 }
cdaa5b73
PA
6059 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6060 || !gdbarch_get_longjmp_target (gdbarch,
6061 frame, &jmp_buf_pc))
e2e4d78b 6062 {
cdaa5b73
PA
6063 if (debug_infrun)
6064 fprintf_unfiltered (gdb_stdlog,
6065 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6066 "(!gdbarch_get_longjmp_target)\n");
6067 keep_going (ecs);
6068 return;
e2e4d78b 6069 }
e2e4d78b 6070
cdaa5b73
PA
6071 /* Insert a breakpoint at resume address. */
6072 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6073 }
6074 else
6075 check_exception_resume (ecs, frame);
6076 keep_going (ecs);
6077 return;
e81a37f7 6078
cdaa5b73
PA
6079 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6080 {
6081 struct frame_info *init_frame;
e81a37f7 6082
cdaa5b73 6083 /* There are several cases to consider.
c906108c 6084
cdaa5b73
PA
6085 1. The initiating frame no longer exists. In this case we
6086 must stop, because the exception or longjmp has gone too
6087 far.
2c03e5be 6088
cdaa5b73
PA
6089 2. The initiating frame exists, and is the same as the
6090 current frame. We stop, because the exception or longjmp
6091 has been caught.
2c03e5be 6092
cdaa5b73
PA
6093 3. The initiating frame exists and is different from the
6094 current frame. This means the exception or longjmp has
6095 been caught beneath the initiating frame, so keep going.
c906108c 6096
cdaa5b73
PA
6097 4. longjmp breakpoint has been placed just to protect
6098 against stale dummy frames and user is not interested in
6099 stopping around longjmps. */
c5aa993b 6100
cdaa5b73
PA
6101 if (debug_infrun)
6102 fprintf_unfiltered (gdb_stdlog,
6103 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6104
cdaa5b73
PA
6105 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6106 != NULL);
6107 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6108
cdaa5b73
PA
6109 if (what.is_longjmp)
6110 {
b67a2c6f 6111 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6112
cdaa5b73 6113 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6114 {
cdaa5b73
PA
6115 /* Case 4. */
6116 keep_going (ecs);
6117 return;
e5ef252a 6118 }
cdaa5b73 6119 }
c5aa993b 6120
cdaa5b73 6121 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6122
cdaa5b73
PA
6123 if (init_frame)
6124 {
6125 struct frame_id current_id
6126 = get_frame_id (get_current_frame ());
6127 if (frame_id_eq (current_id,
6128 ecs->event_thread->initiating_frame))
6129 {
6130 /* Case 2. Fall through. */
6131 }
6132 else
6133 {
6134 /* Case 3. */
6135 keep_going (ecs);
6136 return;
6137 }
68f53502 6138 }
488f131b 6139
cdaa5b73
PA
6140 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6141 exists. */
6142 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6143
bdc36728 6144 end_stepping_range (ecs);
cdaa5b73
PA
6145 }
6146 return;
e5ef252a 6147
cdaa5b73
PA
6148 case BPSTAT_WHAT_SINGLE:
6149 if (debug_infrun)
6150 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6151 ecs->event_thread->stepping_over_breakpoint = 1;
6152 /* Still need to check other stuff, at least the case where we
6153 are stepping and step out of the right range. */
6154 break;
e5ef252a 6155
cdaa5b73
PA
6156 case BPSTAT_WHAT_STEP_RESUME:
6157 if (debug_infrun)
6158 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6159
cdaa5b73
PA
6160 delete_step_resume_breakpoint (ecs->event_thread);
6161 if (ecs->event_thread->control.proceed_to_finish
6162 && execution_direction == EXEC_REVERSE)
6163 {
6164 struct thread_info *tp = ecs->event_thread;
6165
6166 /* We are finishing a function in reverse, and just hit the
6167 step-resume breakpoint at the start address of the
6168 function, and we're almost there -- just need to back up
6169 by one more single-step, which should take us back to the
6170 function call. */
6171 tp->control.step_range_start = tp->control.step_range_end = 1;
6172 keep_going (ecs);
e5ef252a 6173 return;
cdaa5b73
PA
6174 }
6175 fill_in_stop_func (gdbarch, ecs);
6176 if (stop_pc == ecs->stop_func_start
6177 && execution_direction == EXEC_REVERSE)
6178 {
6179 /* We are stepping over a function call in reverse, and just
6180 hit the step-resume breakpoint at the start address of
6181 the function. Go back to single-stepping, which should
6182 take us back to the function call. */
6183 ecs->event_thread->stepping_over_breakpoint = 1;
6184 keep_going (ecs);
6185 return;
6186 }
6187 break;
e5ef252a 6188
cdaa5b73
PA
6189 case BPSTAT_WHAT_STOP_NOISY:
6190 if (debug_infrun)
6191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6192 stop_print_frame = 1;
e5ef252a 6193
99619bea
PA
6194 /* Assume the thread stopped for a breapoint. We'll still check
6195 whether a/the breakpoint is there when the thread is next
6196 resumed. */
6197 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6198
22bcd14b 6199 stop_waiting (ecs);
cdaa5b73 6200 return;
e5ef252a 6201
cdaa5b73
PA
6202 case BPSTAT_WHAT_STOP_SILENT:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6205 stop_print_frame = 0;
e5ef252a 6206
99619bea
PA
6207 /* Assume the thread stopped for a breapoint. We'll still check
6208 whether a/the breakpoint is there when the thread is next
6209 resumed. */
6210 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6211 stop_waiting (ecs);
cdaa5b73
PA
6212 return;
6213
6214 case BPSTAT_WHAT_HP_STEP_RESUME:
6215 if (debug_infrun)
6216 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6217
6218 delete_step_resume_breakpoint (ecs->event_thread);
6219 if (ecs->event_thread->step_after_step_resume_breakpoint)
6220 {
6221 /* Back when the step-resume breakpoint was inserted, we
6222 were trying to single-step off a breakpoint. Go back to
6223 doing that. */
6224 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6225 ecs->event_thread->stepping_over_breakpoint = 1;
6226 keep_going (ecs);
6227 return;
e5ef252a 6228 }
cdaa5b73
PA
6229 break;
6230
6231 case BPSTAT_WHAT_KEEP_CHECKING:
6232 break;
e5ef252a 6233 }
c906108c 6234
af48d08f
PA
6235 /* If we stepped a permanent breakpoint and we had a high priority
6236 step-resume breakpoint for the address we stepped, but we didn't
6237 hit it, then we must have stepped into the signal handler. The
6238 step-resume was only necessary to catch the case of _not_
6239 stepping into the handler, so delete it, and fall through to
6240 checking whether the step finished. */
6241 if (ecs->event_thread->stepped_breakpoint)
6242 {
6243 struct breakpoint *sr_bp
6244 = ecs->event_thread->control.step_resume_breakpoint;
6245
8d707a12
PA
6246 if (sr_bp != NULL
6247 && sr_bp->loc->permanent
af48d08f
PA
6248 && sr_bp->type == bp_hp_step_resume
6249 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6250 {
6251 if (debug_infrun)
6252 fprintf_unfiltered (gdb_stdlog,
6253 "infrun: stepped permanent breakpoint, stopped in "
6254 "handler\n");
6255 delete_step_resume_breakpoint (ecs->event_thread);
6256 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6257 }
6258 }
6259
cdaa5b73
PA
6260 /* We come here if we hit a breakpoint but should not stop for it.
6261 Possibly we also were stepping and should stop for that. So fall
6262 through and test for stepping. But, if not stepping, do not
6263 stop. */
c906108c 6264
a7212384
UW
6265 /* In all-stop mode, if we're currently stepping but have stopped in
6266 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6267 if (switch_back_to_stepped_thread (ecs))
6268 return;
776f04fa 6269
8358c15c 6270 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6271 {
527159b7 6272 if (debug_infrun)
d3169d93
DJ
6273 fprintf_unfiltered (gdb_stdlog,
6274 "infrun: step-resume breakpoint is inserted\n");
527159b7 6275
488f131b
JB
6276 /* Having a step-resume breakpoint overrides anything
6277 else having to do with stepping commands until
6278 that breakpoint is reached. */
488f131b
JB
6279 keep_going (ecs);
6280 return;
6281 }
c5aa993b 6282
16c381f0 6283 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6284 {
527159b7 6285 if (debug_infrun)
8a9de0e4 6286 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6287 /* Likewise if we aren't even stepping. */
488f131b
JB
6288 keep_going (ecs);
6289 return;
6290 }
c5aa993b 6291
4b7703ad
JB
6292 /* Re-fetch current thread's frame in case the code above caused
6293 the frame cache to be re-initialized, making our FRAME variable
6294 a dangling pointer. */
6295 frame = get_current_frame ();
628fe4e4 6296 gdbarch = get_frame_arch (frame);
7e324e48 6297 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6298
488f131b 6299 /* If stepping through a line, keep going if still within it.
c906108c 6300
488f131b
JB
6301 Note that step_range_end is the address of the first instruction
6302 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6303 within it!
6304
6305 Note also that during reverse execution, we may be stepping
6306 through a function epilogue and therefore must detect when
6307 the current-frame changes in the middle of a line. */
6308
ce4c476a 6309 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6310 && (execution_direction != EXEC_REVERSE
388a8562 6311 || frame_id_eq (get_frame_id (frame),
16c381f0 6312 ecs->event_thread->control.step_frame_id)))
488f131b 6313 {
527159b7 6314 if (debug_infrun)
5af949e3
UW
6315 fprintf_unfiltered
6316 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6317 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6318 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6319
c1e36e3e
PA
6320 /* Tentatively re-enable range stepping; `resume' disables it if
6321 necessary (e.g., if we're stepping over a breakpoint or we
6322 have software watchpoints). */
6323 ecs->event_thread->control.may_range_step = 1;
6324
b2175913
MS
6325 /* When stepping backward, stop at beginning of line range
6326 (unless it's the function entry point, in which case
6327 keep going back to the call point). */
16c381f0 6328 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6329 && stop_pc != ecs->stop_func_start
6330 && execution_direction == EXEC_REVERSE)
bdc36728 6331 end_stepping_range (ecs);
b2175913
MS
6332 else
6333 keep_going (ecs);
6334
488f131b
JB
6335 return;
6336 }
c5aa993b 6337
488f131b 6338 /* We stepped out of the stepping range. */
c906108c 6339
488f131b 6340 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6341 loader dynamic symbol resolution code...
6342
6343 EXEC_FORWARD: we keep on single stepping until we exit the run
6344 time loader code and reach the callee's address.
6345
6346 EXEC_REVERSE: we've already executed the callee (backward), and
6347 the runtime loader code is handled just like any other
6348 undebuggable function call. Now we need only keep stepping
6349 backward through the trampoline code, and that's handled further
6350 down, so there is nothing for us to do here. */
6351
6352 if (execution_direction != EXEC_REVERSE
16c381f0 6353 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6354 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6355 {
4c8c40e6 6356 CORE_ADDR pc_after_resolver =
568d6575 6357 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6358
527159b7 6359 if (debug_infrun)
3e43a32a
MS
6360 fprintf_unfiltered (gdb_stdlog,
6361 "infrun: stepped into dynsym resolve code\n");
527159b7 6362
488f131b
JB
6363 if (pc_after_resolver)
6364 {
6365 /* Set up a step-resume breakpoint at the address
6366 indicated by SKIP_SOLIB_RESOLVER. */
6367 struct symtab_and_line sr_sal;
abbb1732 6368
fe39c653 6369 init_sal (&sr_sal);
488f131b 6370 sr_sal.pc = pc_after_resolver;
6c95b8df 6371 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6372
a6d9a66e
UW
6373 insert_step_resume_breakpoint_at_sal (gdbarch,
6374 sr_sal, null_frame_id);
c5aa993b 6375 }
c906108c 6376
488f131b
JB
6377 keep_going (ecs);
6378 return;
6379 }
c906108c 6380
16c381f0
JK
6381 if (ecs->event_thread->control.step_range_end != 1
6382 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6383 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6384 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6385 {
527159b7 6386 if (debug_infrun)
3e43a32a
MS
6387 fprintf_unfiltered (gdb_stdlog,
6388 "infrun: stepped into signal trampoline\n");
42edda50 6389 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6390 a signal trampoline (either by a signal being delivered or by
6391 the signal handler returning). Just single-step until the
6392 inferior leaves the trampoline (either by calling the handler
6393 or returning). */
488f131b
JB
6394 keep_going (ecs);
6395 return;
6396 }
c906108c 6397
14132e89
MR
6398 /* If we're in the return path from a shared library trampoline,
6399 we want to proceed through the trampoline when stepping. */
6400 /* macro/2012-04-25: This needs to come before the subroutine
6401 call check below as on some targets return trampolines look
6402 like subroutine calls (MIPS16 return thunks). */
6403 if (gdbarch_in_solib_return_trampoline (gdbarch,
6404 stop_pc, ecs->stop_func_name)
6405 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6406 {
6407 /* Determine where this trampoline returns. */
6408 CORE_ADDR real_stop_pc;
6409
6410 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6411
6412 if (debug_infrun)
6413 fprintf_unfiltered (gdb_stdlog,
6414 "infrun: stepped into solib return tramp\n");
6415
6416 /* Only proceed through if we know where it's going. */
6417 if (real_stop_pc)
6418 {
6419 /* And put the step-breakpoint there and go until there. */
6420 struct symtab_and_line sr_sal;
6421
6422 init_sal (&sr_sal); /* initialize to zeroes */
6423 sr_sal.pc = real_stop_pc;
6424 sr_sal.section = find_pc_overlay (sr_sal.pc);
6425 sr_sal.pspace = get_frame_program_space (frame);
6426
6427 /* Do not specify what the fp should be when we stop since
6428 on some machines the prologue is where the new fp value
6429 is established. */
6430 insert_step_resume_breakpoint_at_sal (gdbarch,
6431 sr_sal, null_frame_id);
6432
6433 /* Restart without fiddling with the step ranges or
6434 other state. */
6435 keep_going (ecs);
6436 return;
6437 }
6438 }
6439
c17eaafe
DJ
6440 /* Check for subroutine calls. The check for the current frame
6441 equalling the step ID is not necessary - the check of the
6442 previous frame's ID is sufficient - but it is a common case and
6443 cheaper than checking the previous frame's ID.
14e60db5
DJ
6444
6445 NOTE: frame_id_eq will never report two invalid frame IDs as
6446 being equal, so to get into this block, both the current and
6447 previous frame must have valid frame IDs. */
005ca36a
JB
6448 /* The outer_frame_id check is a heuristic to detect stepping
6449 through startup code. If we step over an instruction which
6450 sets the stack pointer from an invalid value to a valid value,
6451 we may detect that as a subroutine call from the mythical
6452 "outermost" function. This could be fixed by marking
6453 outermost frames as !stack_p,code_p,special_p. Then the
6454 initial outermost frame, before sp was valid, would
ce6cca6d 6455 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6456 for more. */
edb3359d 6457 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6458 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6459 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6460 ecs->event_thread->control.step_stack_frame_id)
6461 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6462 outer_frame_id)
885eeb5b
PA
6463 || (ecs->event_thread->control.step_start_function
6464 != find_pc_function (stop_pc)))))
488f131b 6465 {
95918acb 6466 CORE_ADDR real_stop_pc;
8fb3e588 6467
527159b7 6468 if (debug_infrun)
8a9de0e4 6469 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6470
b7a084be 6471 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6472 {
6473 /* I presume that step_over_calls is only 0 when we're
6474 supposed to be stepping at the assembly language level
6475 ("stepi"). Just stop. */
388a8562 6476 /* And this works the same backward as frontward. MVS */
bdc36728 6477 end_stepping_range (ecs);
95918acb
AC
6478 return;
6479 }
8fb3e588 6480
388a8562
MS
6481 /* Reverse stepping through solib trampolines. */
6482
6483 if (execution_direction == EXEC_REVERSE
16c381f0 6484 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6485 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6486 || (ecs->stop_func_start == 0
6487 && in_solib_dynsym_resolve_code (stop_pc))))
6488 {
6489 /* Any solib trampoline code can be handled in reverse
6490 by simply continuing to single-step. We have already
6491 executed the solib function (backwards), and a few
6492 steps will take us back through the trampoline to the
6493 caller. */
6494 keep_going (ecs);
6495 return;
6496 }
6497
16c381f0 6498 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6499 {
b2175913
MS
6500 /* We're doing a "next".
6501
6502 Normal (forward) execution: set a breakpoint at the
6503 callee's return address (the address at which the caller
6504 will resume).
6505
6506 Reverse (backward) execution. set the step-resume
6507 breakpoint at the start of the function that we just
6508 stepped into (backwards), and continue to there. When we
6130d0b7 6509 get there, we'll need to single-step back to the caller. */
b2175913
MS
6510
6511 if (execution_direction == EXEC_REVERSE)
6512 {
acf9414f
JK
6513 /* If we're already at the start of the function, we've either
6514 just stepped backward into a single instruction function,
6515 or stepped back out of a signal handler to the first instruction
6516 of the function. Just keep going, which will single-step back
6517 to the caller. */
58c48e72 6518 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6519 {
6520 struct symtab_and_line sr_sal;
6521
6522 /* Normal function call return (static or dynamic). */
6523 init_sal (&sr_sal);
6524 sr_sal.pc = ecs->stop_func_start;
6525 sr_sal.pspace = get_frame_program_space (frame);
6526 insert_step_resume_breakpoint_at_sal (gdbarch,
6527 sr_sal, null_frame_id);
6528 }
b2175913
MS
6529 }
6530 else
568d6575 6531 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6532
8567c30f
AC
6533 keep_going (ecs);
6534 return;
6535 }
a53c66de 6536
95918acb 6537 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6538 calling routine and the real function), locate the real
6539 function. That's what tells us (a) whether we want to step
6540 into it at all, and (b) what prologue we want to run to the
6541 end of, if we do step into it. */
568d6575 6542 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6543 if (real_stop_pc == 0)
568d6575 6544 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6545 if (real_stop_pc != 0)
6546 ecs->stop_func_start = real_stop_pc;
8fb3e588 6547
db5f024e 6548 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6549 {
6550 struct symtab_and_line sr_sal;
abbb1732 6551
1b2bfbb9
RC
6552 init_sal (&sr_sal);
6553 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6554 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6555
a6d9a66e
UW
6556 insert_step_resume_breakpoint_at_sal (gdbarch,
6557 sr_sal, null_frame_id);
8fb3e588
AC
6558 keep_going (ecs);
6559 return;
1b2bfbb9
RC
6560 }
6561
95918acb 6562 /* If we have line number information for the function we are
1bfeeb0f
JL
6563 thinking of stepping into and the function isn't on the skip
6564 list, step into it.
95918acb 6565
8fb3e588
AC
6566 If there are several symtabs at that PC (e.g. with include
6567 files), just want to know whether *any* of them have line
6568 numbers. find_pc_line handles this. */
95918acb
AC
6569 {
6570 struct symtab_and_line tmp_sal;
8fb3e588 6571
95918acb 6572 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6573 if (tmp_sal.line != 0
85817405
JK
6574 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6575 &tmp_sal))
95918acb 6576 {
b2175913 6577 if (execution_direction == EXEC_REVERSE)
568d6575 6578 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6579 else
568d6575 6580 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6581 return;
6582 }
6583 }
6584
6585 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6586 set, we stop the step so that the user has a chance to switch
6587 in assembly mode. */
16c381f0 6588 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6589 && step_stop_if_no_debug)
95918acb 6590 {
bdc36728 6591 end_stepping_range (ecs);
95918acb
AC
6592 return;
6593 }
6594
b2175913
MS
6595 if (execution_direction == EXEC_REVERSE)
6596 {
acf9414f
JK
6597 /* If we're already at the start of the function, we've either just
6598 stepped backward into a single instruction function without line
6599 number info, or stepped back out of a signal handler to the first
6600 instruction of the function without line number info. Just keep
6601 going, which will single-step back to the caller. */
6602 if (ecs->stop_func_start != stop_pc)
6603 {
6604 /* Set a breakpoint at callee's start address.
6605 From there we can step once and be back in the caller. */
6606 struct symtab_and_line sr_sal;
abbb1732 6607
acf9414f
JK
6608 init_sal (&sr_sal);
6609 sr_sal.pc = ecs->stop_func_start;
6610 sr_sal.pspace = get_frame_program_space (frame);
6611 insert_step_resume_breakpoint_at_sal (gdbarch,
6612 sr_sal, null_frame_id);
6613 }
b2175913
MS
6614 }
6615 else
6616 /* Set a breakpoint at callee's return address (the address
6617 at which the caller will resume). */
568d6575 6618 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6619
95918acb 6620 keep_going (ecs);
488f131b 6621 return;
488f131b 6622 }
c906108c 6623
fdd654f3
MS
6624 /* Reverse stepping through solib trampolines. */
6625
6626 if (execution_direction == EXEC_REVERSE
16c381f0 6627 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6628 {
6629 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6630 || (ecs->stop_func_start == 0
6631 && in_solib_dynsym_resolve_code (stop_pc)))
6632 {
6633 /* Any solib trampoline code can be handled in reverse
6634 by simply continuing to single-step. We have already
6635 executed the solib function (backwards), and a few
6636 steps will take us back through the trampoline to the
6637 caller. */
6638 keep_going (ecs);
6639 return;
6640 }
6641 else if (in_solib_dynsym_resolve_code (stop_pc))
6642 {
6643 /* Stepped backward into the solib dynsym resolver.
6644 Set a breakpoint at its start and continue, then
6645 one more step will take us out. */
6646 struct symtab_and_line sr_sal;
abbb1732 6647
fdd654f3
MS
6648 init_sal (&sr_sal);
6649 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6650 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6651 insert_step_resume_breakpoint_at_sal (gdbarch,
6652 sr_sal, null_frame_id);
6653 keep_going (ecs);
6654 return;
6655 }
6656 }
6657
2afb61aa 6658 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6659
1b2bfbb9
RC
6660 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6661 the trampoline processing logic, however, there are some trampolines
6662 that have no names, so we should do trampoline handling first. */
16c381f0 6663 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6664 && ecs->stop_func_name == NULL
2afb61aa 6665 && stop_pc_sal.line == 0)
1b2bfbb9 6666 {
527159b7 6667 if (debug_infrun)
3e43a32a
MS
6668 fprintf_unfiltered (gdb_stdlog,
6669 "infrun: stepped into undebuggable function\n");
527159b7 6670
1b2bfbb9 6671 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6672 undebuggable function (where there is no debugging information
6673 and no line number corresponding to the address where the
1b2bfbb9
RC
6674 inferior stopped). Since we want to skip this kind of code,
6675 we keep going until the inferior returns from this
14e60db5
DJ
6676 function - unless the user has asked us not to (via
6677 set step-mode) or we no longer know how to get back
6678 to the call site. */
6679 if (step_stop_if_no_debug
c7ce8faa 6680 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6681 {
6682 /* If we have no line number and the step-stop-if-no-debug
6683 is set, we stop the step so that the user has a chance to
6684 switch in assembly mode. */
bdc36728 6685 end_stepping_range (ecs);
1b2bfbb9
RC
6686 return;
6687 }
6688 else
6689 {
6690 /* Set a breakpoint at callee's return address (the address
6691 at which the caller will resume). */
568d6575 6692 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6693 keep_going (ecs);
6694 return;
6695 }
6696 }
6697
16c381f0 6698 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6699 {
6700 /* It is stepi or nexti. We always want to stop stepping after
6701 one instruction. */
527159b7 6702 if (debug_infrun)
8a9de0e4 6703 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6704 end_stepping_range (ecs);
1b2bfbb9
RC
6705 return;
6706 }
6707
2afb61aa 6708 if (stop_pc_sal.line == 0)
488f131b
JB
6709 {
6710 /* We have no line number information. That means to stop
6711 stepping (does this always happen right after one instruction,
6712 when we do "s" in a function with no line numbers,
6713 or can this happen as a result of a return or longjmp?). */
527159b7 6714 if (debug_infrun)
8a9de0e4 6715 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6716 end_stepping_range (ecs);
488f131b
JB
6717 return;
6718 }
c906108c 6719
edb3359d
DJ
6720 /* Look for "calls" to inlined functions, part one. If the inline
6721 frame machinery detected some skipped call sites, we have entered
6722 a new inline function. */
6723
6724 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6725 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6726 && inline_skipped_frames (ecs->ptid))
6727 {
6728 struct symtab_and_line call_sal;
6729
6730 if (debug_infrun)
6731 fprintf_unfiltered (gdb_stdlog,
6732 "infrun: stepped into inlined function\n");
6733
6734 find_frame_sal (get_current_frame (), &call_sal);
6735
16c381f0 6736 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6737 {
6738 /* For "step", we're going to stop. But if the call site
6739 for this inlined function is on the same source line as
6740 we were previously stepping, go down into the function
6741 first. Otherwise stop at the call site. */
6742
6743 if (call_sal.line == ecs->event_thread->current_line
6744 && call_sal.symtab == ecs->event_thread->current_symtab)
6745 step_into_inline_frame (ecs->ptid);
6746
bdc36728 6747 end_stepping_range (ecs);
edb3359d
DJ
6748 return;
6749 }
6750 else
6751 {
6752 /* For "next", we should stop at the call site if it is on a
6753 different source line. Otherwise continue through the
6754 inlined function. */
6755 if (call_sal.line == ecs->event_thread->current_line
6756 && call_sal.symtab == ecs->event_thread->current_symtab)
6757 keep_going (ecs);
6758 else
bdc36728 6759 end_stepping_range (ecs);
edb3359d
DJ
6760 return;
6761 }
6762 }
6763
6764 /* Look for "calls" to inlined functions, part two. If we are still
6765 in the same real function we were stepping through, but we have
6766 to go further up to find the exact frame ID, we are stepping
6767 through a more inlined call beyond its call site. */
6768
6769 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6770 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6771 ecs->event_thread->control.step_frame_id)
edb3359d 6772 && stepped_in_from (get_current_frame (),
16c381f0 6773 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6774 {
6775 if (debug_infrun)
6776 fprintf_unfiltered (gdb_stdlog,
6777 "infrun: stepping through inlined function\n");
6778
16c381f0 6779 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6780 keep_going (ecs);
6781 else
bdc36728 6782 end_stepping_range (ecs);
edb3359d
DJ
6783 return;
6784 }
6785
2afb61aa 6786 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6787 && (ecs->event_thread->current_line != stop_pc_sal.line
6788 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6789 {
6790 /* We are at the start of a different line. So stop. Note that
6791 we don't stop if we step into the middle of a different line.
6792 That is said to make things like for (;;) statements work
6793 better. */
527159b7 6794 if (debug_infrun)
3e43a32a
MS
6795 fprintf_unfiltered (gdb_stdlog,
6796 "infrun: stepped to a different line\n");
bdc36728 6797 end_stepping_range (ecs);
488f131b
JB
6798 return;
6799 }
c906108c 6800
488f131b 6801 /* We aren't done stepping.
c906108c 6802
488f131b
JB
6803 Optimize by setting the stepping range to the line.
6804 (We might not be in the original line, but if we entered a
6805 new line in mid-statement, we continue stepping. This makes
6806 things like for(;;) statements work better.) */
c906108c 6807
16c381f0
JK
6808 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6809 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6810 ecs->event_thread->control.may_range_step = 1;
edb3359d 6811 set_step_info (frame, stop_pc_sal);
488f131b 6812
527159b7 6813 if (debug_infrun)
8a9de0e4 6814 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6815 keep_going (ecs);
104c1213
JM
6816}
6817
c447ac0b
PA
6818/* In all-stop mode, if we're currently stepping but have stopped in
6819 some other thread, we may need to switch back to the stepped
6820 thread. Returns true we set the inferior running, false if we left
6821 it stopped (and the event needs further processing). */
6822
6823static int
6824switch_back_to_stepped_thread (struct execution_control_state *ecs)
6825{
fbea99ea 6826 if (!target_is_non_stop_p ())
c447ac0b
PA
6827 {
6828 struct thread_info *tp;
99619bea
PA
6829 struct thread_info *stepping_thread;
6830
6831 /* If any thread is blocked on some internal breakpoint, and we
6832 simply need to step over that breakpoint to get it going
6833 again, do that first. */
6834
6835 /* However, if we see an event for the stepping thread, then we
6836 know all other threads have been moved past their breakpoints
6837 already. Let the caller check whether the step is finished,
6838 etc., before deciding to move it past a breakpoint. */
6839 if (ecs->event_thread->control.step_range_end != 0)
6840 return 0;
6841
6842 /* Check if the current thread is blocked on an incomplete
6843 step-over, interrupted by a random signal. */
6844 if (ecs->event_thread->control.trap_expected
6845 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6846 {
99619bea
PA
6847 if (debug_infrun)
6848 {
6849 fprintf_unfiltered (gdb_stdlog,
6850 "infrun: need to finish step-over of [%s]\n",
6851 target_pid_to_str (ecs->event_thread->ptid));
6852 }
6853 keep_going (ecs);
6854 return 1;
6855 }
2adfaa28 6856
99619bea
PA
6857 /* Check if the current thread is blocked by a single-step
6858 breakpoint of another thread. */
6859 if (ecs->hit_singlestep_breakpoint)
6860 {
6861 if (debug_infrun)
6862 {
6863 fprintf_unfiltered (gdb_stdlog,
6864 "infrun: need to step [%s] over single-step "
6865 "breakpoint\n",
6866 target_pid_to_str (ecs->ptid));
6867 }
6868 keep_going (ecs);
6869 return 1;
6870 }
6871
4d9d9d04
PA
6872 /* If this thread needs yet another step-over (e.g., stepping
6873 through a delay slot), do it first before moving on to
6874 another thread. */
6875 if (thread_still_needs_step_over (ecs->event_thread))
6876 {
6877 if (debug_infrun)
6878 {
6879 fprintf_unfiltered (gdb_stdlog,
6880 "infrun: thread [%s] still needs step-over\n",
6881 target_pid_to_str (ecs->event_thread->ptid));
6882 }
6883 keep_going (ecs);
6884 return 1;
6885 }
70509625 6886
483805cf
PA
6887 /* If scheduler locking applies even if not stepping, there's no
6888 need to walk over threads. Above we've checked whether the
6889 current thread is stepping. If some other thread not the
6890 event thread is stepping, then it must be that scheduler
6891 locking is not in effect. */
856e7dd6 6892 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6893 return 0;
6894
4d9d9d04
PA
6895 /* Otherwise, we no longer expect a trap in the current thread.
6896 Clear the trap_expected flag before switching back -- this is
6897 what keep_going does as well, if we call it. */
6898 ecs->event_thread->control.trap_expected = 0;
6899
6900 /* Likewise, clear the signal if it should not be passed. */
6901 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6902 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6903
6904 /* Do all pending step-overs before actually proceeding with
483805cf 6905 step/next/etc. */
4d9d9d04
PA
6906 if (start_step_over ())
6907 {
6908 prepare_to_wait (ecs);
6909 return 1;
6910 }
6911
6912 /* Look for the stepping/nexting thread. */
483805cf 6913 stepping_thread = NULL;
4d9d9d04 6914
034f788c 6915 ALL_NON_EXITED_THREADS (tp)
483805cf 6916 {
fbea99ea
PA
6917 /* Ignore threads of processes the caller is not
6918 resuming. */
483805cf 6919 if (!sched_multi
1afd5965 6920 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6921 continue;
6922
6923 /* When stepping over a breakpoint, we lock all threads
6924 except the one that needs to move past the breakpoint.
6925 If a non-event thread has this set, the "incomplete
6926 step-over" check above should have caught it earlier. */
372316f1
PA
6927 if (tp->control.trap_expected)
6928 {
6929 internal_error (__FILE__, __LINE__,
6930 "[%s] has inconsistent state: "
6931 "trap_expected=%d\n",
6932 target_pid_to_str (tp->ptid),
6933 tp->control.trap_expected);
6934 }
483805cf
PA
6935
6936 /* Did we find the stepping thread? */
6937 if (tp->control.step_range_end)
6938 {
6939 /* Yep. There should only one though. */
6940 gdb_assert (stepping_thread == NULL);
6941
6942 /* The event thread is handled at the top, before we
6943 enter this loop. */
6944 gdb_assert (tp != ecs->event_thread);
6945
6946 /* If some thread other than the event thread is
6947 stepping, then scheduler locking can't be in effect,
6948 otherwise we wouldn't have resumed the current event
6949 thread in the first place. */
856e7dd6 6950 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6951
6952 stepping_thread = tp;
6953 }
99619bea
PA
6954 }
6955
483805cf 6956 if (stepping_thread != NULL)
99619bea 6957 {
c447ac0b
PA
6958 if (debug_infrun)
6959 fprintf_unfiltered (gdb_stdlog,
6960 "infrun: switching back to stepped thread\n");
6961
2ac7589c
PA
6962 if (keep_going_stepped_thread (stepping_thread))
6963 {
6964 prepare_to_wait (ecs);
6965 return 1;
6966 }
6967 }
6968 }
2adfaa28 6969
2ac7589c
PA
6970 return 0;
6971}
2adfaa28 6972
2ac7589c
PA
6973/* Set a previously stepped thread back to stepping. Returns true on
6974 success, false if the resume is not possible (e.g., the thread
6975 vanished). */
6976
6977static int
6978keep_going_stepped_thread (struct thread_info *tp)
6979{
6980 struct frame_info *frame;
6981 struct gdbarch *gdbarch;
6982 struct execution_control_state ecss;
6983 struct execution_control_state *ecs = &ecss;
2adfaa28 6984
2ac7589c
PA
6985 /* If the stepping thread exited, then don't try to switch back and
6986 resume it, which could fail in several different ways depending
6987 on the target. Instead, just keep going.
2adfaa28 6988
2ac7589c
PA
6989 We can find a stepping dead thread in the thread list in two
6990 cases:
2adfaa28 6991
2ac7589c
PA
6992 - The target supports thread exit events, and when the target
6993 tries to delete the thread from the thread list, inferior_ptid
6994 pointed at the exiting thread. In such case, calling
6995 delete_thread does not really remove the thread from the list;
6996 instead, the thread is left listed, with 'exited' state.
64ce06e4 6997
2ac7589c
PA
6998 - The target's debug interface does not support thread exit
6999 events, and so we have no idea whatsoever if the previously
7000 stepping thread is still alive. For that reason, we need to
7001 synchronously query the target now. */
2adfaa28 7002
2ac7589c
PA
7003 if (is_exited (tp->ptid)
7004 || !target_thread_alive (tp->ptid))
7005 {
7006 if (debug_infrun)
7007 fprintf_unfiltered (gdb_stdlog,
7008 "infrun: not resuming previously "
7009 "stepped thread, it has vanished\n");
7010
7011 delete_thread (tp->ptid);
7012 return 0;
c447ac0b 7013 }
2ac7589c
PA
7014
7015 if (debug_infrun)
7016 fprintf_unfiltered (gdb_stdlog,
7017 "infrun: resuming previously stepped thread\n");
7018
7019 reset_ecs (ecs, tp);
7020 switch_to_thread (tp->ptid);
7021
7022 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7023 frame = get_current_frame ();
7024 gdbarch = get_frame_arch (frame);
7025
7026 /* If the PC of the thread we were trying to single-step has
7027 changed, then that thread has trapped or been signaled, but the
7028 event has not been reported to GDB yet. Re-poll the target
7029 looking for this particular thread's event (i.e. temporarily
7030 enable schedlock) by:
7031
7032 - setting a break at the current PC
7033 - resuming that particular thread, only (by setting trap
7034 expected)
7035
7036 This prevents us continuously moving the single-step breakpoint
7037 forward, one instruction at a time, overstepping. */
7038
7039 if (stop_pc != tp->prev_pc)
7040 {
7041 ptid_t resume_ptid;
7042
7043 if (debug_infrun)
7044 fprintf_unfiltered (gdb_stdlog,
7045 "infrun: expected thread advanced also (%s -> %s)\n",
7046 paddress (target_gdbarch (), tp->prev_pc),
7047 paddress (target_gdbarch (), stop_pc));
7048
7049 /* Clear the info of the previous step-over, as it's no longer
7050 valid (if the thread was trying to step over a breakpoint, it
7051 has already succeeded). It's what keep_going would do too,
7052 if we called it. Do this before trying to insert the sss
7053 breakpoint, otherwise if we were previously trying to step
7054 over this exact address in another thread, the breakpoint is
7055 skipped. */
7056 clear_step_over_info ();
7057 tp->control.trap_expected = 0;
7058
7059 insert_single_step_breakpoint (get_frame_arch (frame),
7060 get_frame_address_space (frame),
7061 stop_pc);
7062
372316f1 7063 tp->resumed = 1;
fbea99ea 7064 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7065 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7066 }
7067 else
7068 {
7069 if (debug_infrun)
7070 fprintf_unfiltered (gdb_stdlog,
7071 "infrun: expected thread still hasn't advanced\n");
7072
7073 keep_going_pass_signal (ecs);
7074 }
7075 return 1;
c447ac0b
PA
7076}
7077
8b061563
PA
7078/* Is thread TP in the middle of (software or hardware)
7079 single-stepping? (Note the result of this function must never be
7080 passed directly as target_resume's STEP parameter.) */
104c1213 7081
a289b8f6 7082static int
b3444185 7083currently_stepping (struct thread_info *tp)
a7212384 7084{
8358c15c
JK
7085 return ((tp->control.step_range_end
7086 && tp->control.step_resume_breakpoint == NULL)
7087 || tp->control.trap_expected
af48d08f 7088 || tp->stepped_breakpoint
8358c15c 7089 || bpstat_should_step ());
a7212384
UW
7090}
7091
b2175913
MS
7092/* Inferior has stepped into a subroutine call with source code that
7093 we should not step over. Do step to the first line of code in
7094 it. */
c2c6d25f
JM
7095
7096static void
568d6575
UW
7097handle_step_into_function (struct gdbarch *gdbarch,
7098 struct execution_control_state *ecs)
c2c6d25f 7099{
43f3e411 7100 struct compunit_symtab *cust;
2afb61aa 7101 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7102
7e324e48
GB
7103 fill_in_stop_func (gdbarch, ecs);
7104
43f3e411
DE
7105 cust = find_pc_compunit_symtab (stop_pc);
7106 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7107 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7108 ecs->stop_func_start);
c2c6d25f 7109
2afb61aa 7110 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7111 /* Use the step_resume_break to step until the end of the prologue,
7112 even if that involves jumps (as it seems to on the vax under
7113 4.2). */
7114 /* If the prologue ends in the middle of a source line, continue to
7115 the end of that source line (if it is still within the function).
7116 Otherwise, just go to end of prologue. */
2afb61aa
PA
7117 if (stop_func_sal.end
7118 && stop_func_sal.pc != ecs->stop_func_start
7119 && stop_func_sal.end < ecs->stop_func_end)
7120 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7121
2dbd5e30
KB
7122 /* Architectures which require breakpoint adjustment might not be able
7123 to place a breakpoint at the computed address. If so, the test
7124 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7125 ecs->stop_func_start to an address at which a breakpoint may be
7126 legitimately placed.
8fb3e588 7127
2dbd5e30
KB
7128 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7129 made, GDB will enter an infinite loop when stepping through
7130 optimized code consisting of VLIW instructions which contain
7131 subinstructions corresponding to different source lines. On
7132 FR-V, it's not permitted to place a breakpoint on any but the
7133 first subinstruction of a VLIW instruction. When a breakpoint is
7134 set, GDB will adjust the breakpoint address to the beginning of
7135 the VLIW instruction. Thus, we need to make the corresponding
7136 adjustment here when computing the stop address. */
8fb3e588 7137
568d6575 7138 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7139 {
7140 ecs->stop_func_start
568d6575 7141 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7142 ecs->stop_func_start);
2dbd5e30
KB
7143 }
7144
c2c6d25f
JM
7145 if (ecs->stop_func_start == stop_pc)
7146 {
7147 /* We are already there: stop now. */
bdc36728 7148 end_stepping_range (ecs);
c2c6d25f
JM
7149 return;
7150 }
7151 else
7152 {
7153 /* Put the step-breakpoint there and go until there. */
fe39c653 7154 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7155 sr_sal.pc = ecs->stop_func_start;
7156 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7157 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7158
c2c6d25f 7159 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7160 some machines the prologue is where the new fp value is
7161 established. */
a6d9a66e 7162 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7163
7164 /* And make sure stepping stops right away then. */
16c381f0
JK
7165 ecs->event_thread->control.step_range_end
7166 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7167 }
7168 keep_going (ecs);
7169}
d4f3574e 7170
b2175913
MS
7171/* Inferior has stepped backward into a subroutine call with source
7172 code that we should not step over. Do step to the beginning of the
7173 last line of code in it. */
7174
7175static void
568d6575
UW
7176handle_step_into_function_backward (struct gdbarch *gdbarch,
7177 struct execution_control_state *ecs)
b2175913 7178{
43f3e411 7179 struct compunit_symtab *cust;
167e4384 7180 struct symtab_and_line stop_func_sal;
b2175913 7181
7e324e48
GB
7182 fill_in_stop_func (gdbarch, ecs);
7183
43f3e411
DE
7184 cust = find_pc_compunit_symtab (stop_pc);
7185 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7186 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7187 ecs->stop_func_start);
7188
7189 stop_func_sal = find_pc_line (stop_pc, 0);
7190
7191 /* OK, we're just going to keep stepping here. */
7192 if (stop_func_sal.pc == stop_pc)
7193 {
7194 /* We're there already. Just stop stepping now. */
bdc36728 7195 end_stepping_range (ecs);
b2175913
MS
7196 }
7197 else
7198 {
7199 /* Else just reset the step range and keep going.
7200 No step-resume breakpoint, they don't work for
7201 epilogues, which can have multiple entry paths. */
16c381f0
JK
7202 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7203 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7204 keep_going (ecs);
7205 }
7206 return;
7207}
7208
d3169d93 7209/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7210 This is used to both functions and to skip over code. */
7211
7212static void
2c03e5be
PA
7213insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7214 struct symtab_and_line sr_sal,
7215 struct frame_id sr_id,
7216 enum bptype sr_type)
44cbf7b5 7217{
611c83ae
PA
7218 /* There should never be more than one step-resume or longjmp-resume
7219 breakpoint per thread, so we should never be setting a new
44cbf7b5 7220 step_resume_breakpoint when one is already active. */
8358c15c 7221 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7222 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7223
7224 if (debug_infrun)
7225 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7226 "infrun: inserting step-resume breakpoint at %s\n",
7227 paddress (gdbarch, sr_sal.pc));
d3169d93 7228
8358c15c 7229 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7230 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7231}
7232
9da8c2a0 7233void
2c03e5be
PA
7234insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7235 struct symtab_and_line sr_sal,
7236 struct frame_id sr_id)
7237{
7238 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7239 sr_sal, sr_id,
7240 bp_step_resume);
44cbf7b5 7241}
7ce450bd 7242
2c03e5be
PA
7243/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7244 This is used to skip a potential signal handler.
7ce450bd 7245
14e60db5
DJ
7246 This is called with the interrupted function's frame. The signal
7247 handler, when it returns, will resume the interrupted function at
7248 RETURN_FRAME.pc. */
d303a6c7
AC
7249
7250static void
2c03e5be 7251insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7252{
7253 struct symtab_and_line sr_sal;
a6d9a66e 7254 struct gdbarch *gdbarch;
d303a6c7 7255
f4c1edd8 7256 gdb_assert (return_frame != NULL);
d303a6c7
AC
7257 init_sal (&sr_sal); /* initialize to zeros */
7258
a6d9a66e 7259 gdbarch = get_frame_arch (return_frame);
568d6575 7260 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7261 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7262 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7263
2c03e5be
PA
7264 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7265 get_stack_frame_id (return_frame),
7266 bp_hp_step_resume);
d303a6c7
AC
7267}
7268
2c03e5be
PA
7269/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7270 is used to skip a function after stepping into it (for "next" or if
7271 the called function has no debugging information).
14e60db5
DJ
7272
7273 The current function has almost always been reached by single
7274 stepping a call or return instruction. NEXT_FRAME belongs to the
7275 current function, and the breakpoint will be set at the caller's
7276 resume address.
7277
7278 This is a separate function rather than reusing
2c03e5be 7279 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7280 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7281 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7282
7283static void
7284insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7285{
7286 struct symtab_and_line sr_sal;
a6d9a66e 7287 struct gdbarch *gdbarch;
14e60db5
DJ
7288
7289 /* We shouldn't have gotten here if we don't know where the call site
7290 is. */
c7ce8faa 7291 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7292
7293 init_sal (&sr_sal); /* initialize to zeros */
7294
a6d9a66e 7295 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7296 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7297 frame_unwind_caller_pc (next_frame));
14e60db5 7298 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7299 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7300
a6d9a66e 7301 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7302 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7303}
7304
611c83ae
PA
7305/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7306 new breakpoint at the target of a jmp_buf. The handling of
7307 longjmp-resume uses the same mechanisms used for handling
7308 "step-resume" breakpoints. */
7309
7310static void
a6d9a66e 7311insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7312{
e81a37f7
TT
7313 /* There should never be more than one longjmp-resume breakpoint per
7314 thread, so we should never be setting a new
611c83ae 7315 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7316 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7317
7318 if (debug_infrun)
7319 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7320 "infrun: inserting longjmp-resume breakpoint at %s\n",
7321 paddress (gdbarch, pc));
611c83ae 7322
e81a37f7 7323 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7324 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7325}
7326
186c406b
TT
7327/* Insert an exception resume breakpoint. TP is the thread throwing
7328 the exception. The block B is the block of the unwinder debug hook
7329 function. FRAME is the frame corresponding to the call to this
7330 function. SYM is the symbol of the function argument holding the
7331 target PC of the exception. */
7332
7333static void
7334insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7335 const struct block *b,
186c406b
TT
7336 struct frame_info *frame,
7337 struct symbol *sym)
7338{
492d29ea 7339 TRY
186c406b 7340 {
63e43d3a 7341 struct block_symbol vsym;
186c406b
TT
7342 struct value *value;
7343 CORE_ADDR handler;
7344 struct breakpoint *bp;
7345
63e43d3a
PMR
7346 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7347 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7348 /* If the value was optimized out, revert to the old behavior. */
7349 if (! value_optimized_out (value))
7350 {
7351 handler = value_as_address (value);
7352
7353 if (debug_infrun)
7354 fprintf_unfiltered (gdb_stdlog,
7355 "infrun: exception resume at %lx\n",
7356 (unsigned long) handler);
7357
7358 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7359 handler, bp_exception_resume);
c70a6932
JK
7360
7361 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7362 frame = NULL;
7363
186c406b
TT
7364 bp->thread = tp->num;
7365 inferior_thread ()->control.exception_resume_breakpoint = bp;
7366 }
7367 }
492d29ea
PA
7368 CATCH (e, RETURN_MASK_ERROR)
7369 {
7370 /* We want to ignore errors here. */
7371 }
7372 END_CATCH
186c406b
TT
7373}
7374
28106bc2
SDJ
7375/* A helper for check_exception_resume that sets an
7376 exception-breakpoint based on a SystemTap probe. */
7377
7378static void
7379insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7380 const struct bound_probe *probe,
28106bc2
SDJ
7381 struct frame_info *frame)
7382{
7383 struct value *arg_value;
7384 CORE_ADDR handler;
7385 struct breakpoint *bp;
7386
7387 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7388 if (!arg_value)
7389 return;
7390
7391 handler = value_as_address (arg_value);
7392
7393 if (debug_infrun)
7394 fprintf_unfiltered (gdb_stdlog,
7395 "infrun: exception resume at %s\n",
6bac7473 7396 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7397 handler));
7398
7399 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7400 handler, bp_exception_resume);
7401 bp->thread = tp->num;
7402 inferior_thread ()->control.exception_resume_breakpoint = bp;
7403}
7404
186c406b
TT
7405/* This is called when an exception has been intercepted. Check to
7406 see whether the exception's destination is of interest, and if so,
7407 set an exception resume breakpoint there. */
7408
7409static void
7410check_exception_resume (struct execution_control_state *ecs,
28106bc2 7411 struct frame_info *frame)
186c406b 7412{
729662a5 7413 struct bound_probe probe;
28106bc2
SDJ
7414 struct symbol *func;
7415
7416 /* First see if this exception unwinding breakpoint was set via a
7417 SystemTap probe point. If so, the probe has two arguments: the
7418 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7419 set a breakpoint there. */
6bac7473 7420 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7421 if (probe.probe)
28106bc2 7422 {
729662a5 7423 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7424 return;
7425 }
7426
7427 func = get_frame_function (frame);
7428 if (!func)
7429 return;
186c406b 7430
492d29ea 7431 TRY
186c406b 7432 {
3977b71f 7433 const struct block *b;
8157b174 7434 struct block_iterator iter;
186c406b
TT
7435 struct symbol *sym;
7436 int argno = 0;
7437
7438 /* The exception breakpoint is a thread-specific breakpoint on
7439 the unwinder's debug hook, declared as:
7440
7441 void _Unwind_DebugHook (void *cfa, void *handler);
7442
7443 The CFA argument indicates the frame to which control is
7444 about to be transferred. HANDLER is the destination PC.
7445
7446 We ignore the CFA and set a temporary breakpoint at HANDLER.
7447 This is not extremely efficient but it avoids issues in gdb
7448 with computing the DWARF CFA, and it also works even in weird
7449 cases such as throwing an exception from inside a signal
7450 handler. */
7451
7452 b = SYMBOL_BLOCK_VALUE (func);
7453 ALL_BLOCK_SYMBOLS (b, iter, sym)
7454 {
7455 if (!SYMBOL_IS_ARGUMENT (sym))
7456 continue;
7457
7458 if (argno == 0)
7459 ++argno;
7460 else
7461 {
7462 insert_exception_resume_breakpoint (ecs->event_thread,
7463 b, frame, sym);
7464 break;
7465 }
7466 }
7467 }
492d29ea
PA
7468 CATCH (e, RETURN_MASK_ERROR)
7469 {
7470 }
7471 END_CATCH
186c406b
TT
7472}
7473
104c1213 7474static void
22bcd14b 7475stop_waiting (struct execution_control_state *ecs)
104c1213 7476{
527159b7 7477 if (debug_infrun)
22bcd14b 7478 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7479
31e77af2
PA
7480 clear_step_over_info ();
7481
cd0fc7c3
SS
7482 /* Let callers know we don't want to wait for the inferior anymore. */
7483 ecs->wait_some_more = 0;
fbea99ea
PA
7484
7485 /* If all-stop, but the target is always in non-stop mode, stop all
7486 threads now that we're presenting the stop to the user. */
7487 if (!non_stop && target_is_non_stop_p ())
7488 stop_all_threads ();
cd0fc7c3
SS
7489}
7490
4d9d9d04
PA
7491/* Like keep_going, but passes the signal to the inferior, even if the
7492 signal is set to nopass. */
d4f3574e
SS
7493
7494static void
4d9d9d04 7495keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7496{
c4dbc9af
PA
7497 /* Make sure normal_stop is called if we get a QUIT handled before
7498 reaching resume. */
7499 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7500
4d9d9d04 7501 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7502 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7503
d4f3574e 7504 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7505 ecs->event_thread->prev_pc
7506 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7507
4d9d9d04 7508 if (ecs->event_thread->control.trap_expected)
d4f3574e 7509 {
4d9d9d04
PA
7510 struct thread_info *tp = ecs->event_thread;
7511
7512 if (debug_infrun)
7513 fprintf_unfiltered (gdb_stdlog,
7514 "infrun: %s has trap_expected set, "
7515 "resuming to collect trap\n",
7516 target_pid_to_str (tp->ptid));
7517
a9ba6bae
PA
7518 /* We haven't yet gotten our trap, and either: intercepted a
7519 non-signal event (e.g., a fork); or took a signal which we
7520 are supposed to pass through to the inferior. Simply
7521 continue. */
c4dbc9af 7522 discard_cleanups (old_cleanups);
64ce06e4 7523 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7524 }
372316f1
PA
7525 else if (step_over_info_valid_p ())
7526 {
7527 /* Another thread is stepping over a breakpoint in-line. If
7528 this thread needs a step-over too, queue the request. In
7529 either case, this resume must be deferred for later. */
7530 struct thread_info *tp = ecs->event_thread;
7531
7532 if (ecs->hit_singlestep_breakpoint
7533 || thread_still_needs_step_over (tp))
7534 {
7535 if (debug_infrun)
7536 fprintf_unfiltered (gdb_stdlog,
7537 "infrun: step-over already in progress: "
7538 "step-over for %s deferred\n",
7539 target_pid_to_str (tp->ptid));
7540 thread_step_over_chain_enqueue (tp);
7541 }
7542 else
7543 {
7544 if (debug_infrun)
7545 fprintf_unfiltered (gdb_stdlog,
7546 "infrun: step-over in progress: "
7547 "resume of %s deferred\n",
7548 target_pid_to_str (tp->ptid));
7549 }
7550
7551 discard_cleanups (old_cleanups);
7552 }
d4f3574e
SS
7553 else
7554 {
31e77af2 7555 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7556 int remove_bp;
7557 int remove_wps;
6c4cfb24 7558 enum step_over_what step_what;
31e77af2 7559
d4f3574e 7560 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7561 anyway (if we got a signal, the user asked it be passed to
7562 the child)
7563 -- or --
7564 We got our expected trap, but decided we should resume from
7565 it.
d4f3574e 7566
a9ba6bae 7567 We're going to run this baby now!
d4f3574e 7568
c36b740a
VP
7569 Note that insert_breakpoints won't try to re-insert
7570 already inserted breakpoints. Therefore, we don't
7571 care if breakpoints were already inserted, or not. */
a9ba6bae 7572
31e77af2
PA
7573 /* If we need to step over a breakpoint, and we're not using
7574 displaced stepping to do so, insert all breakpoints
7575 (watchpoints, etc.) but the one we're stepping over, step one
7576 instruction, and then re-insert the breakpoint when that step
7577 is finished. */
963f9c80 7578
6c4cfb24
PA
7579 step_what = thread_still_needs_step_over (ecs->event_thread);
7580
963f9c80 7581 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7582 || (step_what & STEP_OVER_BREAKPOINT));
7583 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7584
cb71640d
PA
7585 /* We can't use displaced stepping if we need to step past a
7586 watchpoint. The instruction copied to the scratch pad would
7587 still trigger the watchpoint. */
7588 if (remove_bp
3fc8eb30 7589 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7590 {
31e77af2 7591 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7592 regcache_read_pc (regcache), remove_wps);
45e8c884 7593 }
963f9c80
PA
7594 else if (remove_wps)
7595 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7596
7597 /* If we now need to do an in-line step-over, we need to stop
7598 all other threads. Note this must be done before
7599 insert_breakpoints below, because that removes the breakpoint
7600 we're about to step over, otherwise other threads could miss
7601 it. */
fbea99ea 7602 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7603 stop_all_threads ();
abbb1732 7604
31e77af2 7605 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7606 TRY
31e77af2
PA
7607 {
7608 insert_breakpoints ();
7609 }
492d29ea 7610 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7611 {
7612 exception_print (gdb_stderr, e);
22bcd14b 7613 stop_waiting (ecs);
de1fe8c8 7614 discard_cleanups (old_cleanups);
31e77af2 7615 return;
d4f3574e 7616 }
492d29ea 7617 END_CATCH
d4f3574e 7618
963f9c80 7619 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7620
c4dbc9af 7621 discard_cleanups (old_cleanups);
64ce06e4 7622 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7623 }
7624
488f131b 7625 prepare_to_wait (ecs);
d4f3574e
SS
7626}
7627
4d9d9d04
PA
7628/* Called when we should continue running the inferior, because the
7629 current event doesn't cause a user visible stop. This does the
7630 resuming part; waiting for the next event is done elsewhere. */
7631
7632static void
7633keep_going (struct execution_control_state *ecs)
7634{
7635 if (ecs->event_thread->control.trap_expected
7636 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7637 ecs->event_thread->control.trap_expected = 0;
7638
7639 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7640 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7641 keep_going_pass_signal (ecs);
7642}
7643
104c1213
JM
7644/* This function normally comes after a resume, before
7645 handle_inferior_event exits. It takes care of any last bits of
7646 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7647
104c1213
JM
7648static void
7649prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7650{
527159b7 7651 if (debug_infrun)
8a9de0e4 7652 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7653
104c1213 7654 ecs->wait_some_more = 1;
0b333c5e
PA
7655
7656 if (!target_is_async_p ())
7657 mark_infrun_async_event_handler ();
c906108c 7658}
11cf8741 7659
fd664c91 7660/* We are done with the step range of a step/next/si/ni command.
b57bacec 7661 Called once for each n of a "step n" operation. */
fd664c91
PA
7662
7663static void
bdc36728 7664end_stepping_range (struct execution_control_state *ecs)
fd664c91 7665{
bdc36728 7666 ecs->event_thread->control.stop_step = 1;
bdc36728 7667 stop_waiting (ecs);
fd664c91
PA
7668}
7669
33d62d64
JK
7670/* Several print_*_reason functions to print why the inferior has stopped.
7671 We always print something when the inferior exits, or receives a signal.
7672 The rest of the cases are dealt with later on in normal_stop and
7673 print_it_typical. Ideally there should be a call to one of these
7674 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7675 stop_waiting is called.
33d62d64 7676
fd664c91
PA
7677 Note that we don't call these directly, instead we delegate that to
7678 the interpreters, through observers. Interpreters then call these
7679 with whatever uiout is right. */
33d62d64 7680
fd664c91
PA
7681void
7682print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7683{
fd664c91 7684 /* For CLI-like interpreters, print nothing. */
33d62d64 7685
fd664c91
PA
7686 if (ui_out_is_mi_like_p (uiout))
7687 {
7688 ui_out_field_string (uiout, "reason",
7689 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7690 }
7691}
33d62d64 7692
fd664c91
PA
7693void
7694print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7695{
33d62d64
JK
7696 annotate_signalled ();
7697 if (ui_out_is_mi_like_p (uiout))
7698 ui_out_field_string
7699 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7700 ui_out_text (uiout, "\nProgram terminated with signal ");
7701 annotate_signal_name ();
7702 ui_out_field_string (uiout, "signal-name",
2ea28649 7703 gdb_signal_to_name (siggnal));
33d62d64
JK
7704 annotate_signal_name_end ();
7705 ui_out_text (uiout, ", ");
7706 annotate_signal_string ();
7707 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7708 gdb_signal_to_string (siggnal));
33d62d64
JK
7709 annotate_signal_string_end ();
7710 ui_out_text (uiout, ".\n");
7711 ui_out_text (uiout, "The program no longer exists.\n");
7712}
7713
fd664c91
PA
7714void
7715print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7716{
fda326dd
TT
7717 struct inferior *inf = current_inferior ();
7718 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7719
33d62d64
JK
7720 annotate_exited (exitstatus);
7721 if (exitstatus)
7722 {
7723 if (ui_out_is_mi_like_p (uiout))
7724 ui_out_field_string (uiout, "reason",
7725 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7726 ui_out_text (uiout, "[Inferior ");
7727 ui_out_text (uiout, plongest (inf->num));
7728 ui_out_text (uiout, " (");
7729 ui_out_text (uiout, pidstr);
7730 ui_out_text (uiout, ") exited with code ");
33d62d64 7731 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7732 ui_out_text (uiout, "]\n");
33d62d64
JK
7733 }
7734 else
11cf8741 7735 {
9dc5e2a9 7736 if (ui_out_is_mi_like_p (uiout))
034dad6f 7737 ui_out_field_string
33d62d64 7738 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7739 ui_out_text (uiout, "[Inferior ");
7740 ui_out_text (uiout, plongest (inf->num));
7741 ui_out_text (uiout, " (");
7742 ui_out_text (uiout, pidstr);
7743 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7744 }
33d62d64
JK
7745}
7746
fd664c91
PA
7747void
7748print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7749{
7750 annotate_signal ();
7751
a493e3e2 7752 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7753 {
7754 struct thread_info *t = inferior_thread ();
7755
7756 ui_out_text (uiout, "\n[");
7757 ui_out_field_string (uiout, "thread-name",
7758 target_pid_to_str (t->ptid));
7759 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7760 ui_out_text (uiout, " stopped");
7761 }
7762 else
7763 {
7764 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7765 annotate_signal_name ();
33d62d64
JK
7766 if (ui_out_is_mi_like_p (uiout))
7767 ui_out_field_string
7768 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7769 ui_out_field_string (uiout, "signal-name",
2ea28649 7770 gdb_signal_to_name (siggnal));
8b93c638
JM
7771 annotate_signal_name_end ();
7772 ui_out_text (uiout, ", ");
7773 annotate_signal_string ();
488f131b 7774 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7775 gdb_signal_to_string (siggnal));
8b93c638 7776 annotate_signal_string_end ();
33d62d64
JK
7777 }
7778 ui_out_text (uiout, ".\n");
7779}
252fbfc8 7780
fd664c91
PA
7781void
7782print_no_history_reason (struct ui_out *uiout)
33d62d64 7783{
fd664c91 7784 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7785}
43ff13b4 7786
0c7e1a46
PA
7787/* Print current location without a level number, if we have changed
7788 functions or hit a breakpoint. Print source line if we have one.
7789 bpstat_print contains the logic deciding in detail what to print,
7790 based on the event(s) that just occurred. */
7791
243a9253
PA
7792static void
7793print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7794{
7795 int bpstat_ret;
f486487f 7796 enum print_what source_flag;
0c7e1a46
PA
7797 int do_frame_printing = 1;
7798 struct thread_info *tp = inferior_thread ();
7799
7800 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7801 switch (bpstat_ret)
7802 {
7803 case PRINT_UNKNOWN:
7804 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7805 should) carry around the function and does (or should) use
7806 that when doing a frame comparison. */
7807 if (tp->control.stop_step
7808 && frame_id_eq (tp->control.step_frame_id,
7809 get_frame_id (get_current_frame ()))
885eeb5b 7810 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7811 {
7812 /* Finished step, just print source line. */
7813 source_flag = SRC_LINE;
7814 }
7815 else
7816 {
7817 /* Print location and source line. */
7818 source_flag = SRC_AND_LOC;
7819 }
7820 break;
7821 case PRINT_SRC_AND_LOC:
7822 /* Print location and source line. */
7823 source_flag = SRC_AND_LOC;
7824 break;
7825 case PRINT_SRC_ONLY:
7826 source_flag = SRC_LINE;
7827 break;
7828 case PRINT_NOTHING:
7829 /* Something bogus. */
7830 source_flag = SRC_LINE;
7831 do_frame_printing = 0;
7832 break;
7833 default:
7834 internal_error (__FILE__, __LINE__, _("Unknown value."));
7835 }
7836
7837 /* The behavior of this routine with respect to the source
7838 flag is:
7839 SRC_LINE: Print only source line
7840 LOCATION: Print only location
7841 SRC_AND_LOC: Print location and source line. */
7842 if (do_frame_printing)
7843 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7844}
7845
7846/* Cleanup that restores a previous current uiout. */
7847
7848static void
7849restore_current_uiout_cleanup (void *arg)
7850{
9a3c8263 7851 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7852
7853 current_uiout = saved_uiout;
7854}
7855
7856/* See infrun.h. */
7857
7858void
7859print_stop_event (struct ui_out *uiout)
7860{
7861 struct cleanup *old_chain;
7862 struct target_waitstatus last;
7863 ptid_t last_ptid;
7864 struct thread_info *tp;
7865
7866 get_last_target_status (&last_ptid, &last);
7867
7868 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7869 current_uiout = uiout;
7870
7871 print_stop_location (&last);
0c7e1a46
PA
7872
7873 /* Display the auto-display expressions. */
7874 do_displays ();
243a9253
PA
7875
7876 do_cleanups (old_chain);
7877
7878 tp = inferior_thread ();
7879 if (tp->thread_fsm != NULL
7880 && thread_fsm_finished_p (tp->thread_fsm))
7881 {
7882 struct return_value_info *rv;
7883
7884 rv = thread_fsm_return_value (tp->thread_fsm);
7885 if (rv != NULL)
7886 print_return_value (uiout, rv);
7887 }
0c7e1a46
PA
7888}
7889
388a7084
PA
7890/* See infrun.h. */
7891
7892void
7893maybe_remove_breakpoints (void)
7894{
7895 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7896 {
7897 if (remove_breakpoints ())
7898 {
7899 target_terminal_ours_for_output ();
7900 printf_filtered (_("Cannot remove breakpoints because "
7901 "program is no longer writable.\nFurther "
7902 "execution is probably impossible.\n"));
7903 }
7904 }
7905}
7906
4c2f2a79
PA
7907/* The execution context that just caused a normal stop. */
7908
7909struct stop_context
7910{
7911 /* The stop ID. */
7912 ULONGEST stop_id;
c906108c 7913
4c2f2a79 7914 /* The event PTID. */
c906108c 7915
4c2f2a79
PA
7916 ptid_t ptid;
7917
7918 /* If stopp for a thread event, this is the thread that caused the
7919 stop. */
7920 struct thread_info *thread;
7921
7922 /* The inferior that caused the stop. */
7923 int inf_num;
7924};
7925
7926/* Returns a new stop context. If stopped for a thread event, this
7927 takes a strong reference to the thread. */
7928
7929static struct stop_context *
7930save_stop_context (void)
7931{
224c3ddb 7932 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7933
7934 sc->stop_id = get_stop_id ();
7935 sc->ptid = inferior_ptid;
7936 sc->inf_num = current_inferior ()->num;
7937
7938 if (!ptid_equal (inferior_ptid, null_ptid))
7939 {
7940 /* Take a strong reference so that the thread can't be deleted
7941 yet. */
7942 sc->thread = inferior_thread ();
7943 sc->thread->refcount++;
7944 }
7945 else
7946 sc->thread = NULL;
7947
7948 return sc;
7949}
7950
7951/* Release a stop context previously created with save_stop_context.
7952 Releases the strong reference to the thread as well. */
7953
7954static void
7955release_stop_context_cleanup (void *arg)
7956{
9a3c8263 7957 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7958
7959 if (sc->thread != NULL)
7960 sc->thread->refcount--;
7961 xfree (sc);
7962}
7963
7964/* Return true if the current context no longer matches the saved stop
7965 context. */
7966
7967static int
7968stop_context_changed (struct stop_context *prev)
7969{
7970 if (!ptid_equal (prev->ptid, inferior_ptid))
7971 return 1;
7972 if (prev->inf_num != current_inferior ()->num)
7973 return 1;
7974 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7975 return 1;
7976 if (get_stop_id () != prev->stop_id)
7977 return 1;
7978 return 0;
7979}
7980
7981/* See infrun.h. */
7982
7983int
96baa820 7984normal_stop (void)
c906108c 7985{
73b65bb0
DJ
7986 struct target_waitstatus last;
7987 ptid_t last_ptid;
29f49a6a 7988 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7989 ptid_t pid_ptid;
73b65bb0
DJ
7990
7991 get_last_target_status (&last_ptid, &last);
7992
4c2f2a79
PA
7993 new_stop_id ();
7994
29f49a6a
PA
7995 /* If an exception is thrown from this point on, make sure to
7996 propagate GDB's knowledge of the executing state to the
7997 frontend/user running state. A QUIT is an easy exception to see
7998 here, so do this before any filtered output. */
c35b1492
PA
7999 if (!non_stop)
8000 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8001 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8002 || last.kind == TARGET_WAITKIND_EXITED)
8003 {
8004 /* On some targets, we may still have live threads in the
8005 inferior when we get a process exit event. E.g., for
8006 "checkpoint", when the current checkpoint/fork exits,
8007 linux-fork.c automatically switches to another fork from
8008 within target_mourn_inferior. */
8009 if (!ptid_equal (inferior_ptid, null_ptid))
8010 {
8011 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8012 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8013 }
8014 }
8015 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8016 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8017
b57bacec
PA
8018 /* As we're presenting a stop, and potentially removing breakpoints,
8019 update the thread list so we can tell whether there are threads
8020 running on the target. With target remote, for example, we can
8021 only learn about new threads when we explicitly update the thread
8022 list. Do this before notifying the interpreters about signal
8023 stops, end of stepping ranges, etc., so that the "new thread"
8024 output is emitted before e.g., "Program received signal FOO",
8025 instead of after. */
8026 update_thread_list ();
8027
8028 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8029 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8030
c906108c
SS
8031 /* As with the notification of thread events, we want to delay
8032 notifying the user that we've switched thread context until
8033 the inferior actually stops.
8034
73b65bb0
DJ
8035 There's no point in saying anything if the inferior has exited.
8036 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8037 "received a signal".
8038
8039 Also skip saying anything in non-stop mode. In that mode, as we
8040 don't want GDB to switch threads behind the user's back, to avoid
8041 races where the user is typing a command to apply to thread x,
8042 but GDB switches to thread y before the user finishes entering
8043 the command, fetch_inferior_event installs a cleanup to restore
8044 the current thread back to the thread the user had selected right
8045 after this event is handled, so we're not really switching, only
8046 informing of a stop. */
4f8d22e3
PA
8047 if (!non_stop
8048 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8049 && target_has_execution
8050 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8051 && last.kind != TARGET_WAITKIND_EXITED
8052 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8053 {
8054 target_terminal_ours_for_output ();
a3f17187 8055 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8056 target_pid_to_str (inferior_ptid));
b8fa951a 8057 annotate_thread_changed ();
39f77062 8058 previous_inferior_ptid = inferior_ptid;
c906108c 8059 }
c906108c 8060
0e5bf2a8
PA
8061 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8062 {
8063 gdb_assert (sync_execution || !target_can_async_p ());
8064
8065 target_terminal_ours_for_output ();
8066 printf_filtered (_("No unwaited-for children left.\n"));
8067 }
8068
b57bacec 8069 /* Note: this depends on the update_thread_list call above. */
388a7084 8070 maybe_remove_breakpoints ();
c906108c 8071
c906108c
SS
8072 /* If an auto-display called a function and that got a signal,
8073 delete that auto-display to avoid an infinite recursion. */
8074
8075 if (stopped_by_random_signal)
8076 disable_current_display ();
8077
c906108c 8078 target_terminal_ours ();
0f641c01 8079 async_enable_stdin ();
c906108c 8080
388a7084
PA
8081 /* Let the user/frontend see the threads as stopped. */
8082 do_cleanups (old_chain);
8083
8084 /* Select innermost stack frame - i.e., current frame is frame 0,
8085 and current location is based on that. Handle the case where the
8086 dummy call is returning after being stopped. E.g. the dummy call
8087 previously hit a breakpoint. (If the dummy call returns
8088 normally, we won't reach here.) Do this before the stop hook is
8089 run, so that it doesn't get to see the temporary dummy frame,
8090 which is not where we'll present the stop. */
8091 if (has_stack_frames ())
8092 {
8093 if (stop_stack_dummy == STOP_STACK_DUMMY)
8094 {
8095 /* Pop the empty frame that contains the stack dummy. This
8096 also restores inferior state prior to the call (struct
8097 infcall_suspend_state). */
8098 struct frame_info *frame = get_current_frame ();
8099
8100 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8101 frame_pop (frame);
8102 /* frame_pop calls reinit_frame_cache as the last thing it
8103 does which means there's now no selected frame. */
8104 }
8105
8106 select_frame (get_current_frame ());
8107
8108 /* Set the current source location. */
8109 set_current_sal_from_frame (get_current_frame ());
8110 }
dd7e2d2b
PA
8111
8112 /* Look up the hook_stop and run it (CLI internally handles problem
8113 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8114 if (stop_command != NULL)
8115 {
8116 struct stop_context *saved_context = save_stop_context ();
8117 struct cleanup *old_chain
8118 = make_cleanup (release_stop_context_cleanup, saved_context);
8119
8120 catch_errors (hook_stop_stub, stop_command,
8121 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8122
8123 /* If the stop hook resumes the target, then there's no point in
8124 trying to notify about the previous stop; its context is
8125 gone. Likewise if the command switches thread or inferior --
8126 the observers would print a stop for the wrong
8127 thread/inferior. */
8128 if (stop_context_changed (saved_context))
8129 {
8130 do_cleanups (old_chain);
8131 return 1;
8132 }
8133 do_cleanups (old_chain);
8134 }
dd7e2d2b 8135
388a7084
PA
8136 /* Notify observers about the stop. This is where the interpreters
8137 print the stop event. */
8138 if (!ptid_equal (inferior_ptid, null_ptid))
8139 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8140 stop_print_frame);
8141 else
8142 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8143
243a9253
PA
8144 annotate_stopped ();
8145
48844aa6
PA
8146 if (target_has_execution)
8147 {
8148 if (last.kind != TARGET_WAITKIND_SIGNALLED
8149 && last.kind != TARGET_WAITKIND_EXITED)
8150 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8151 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8152 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8153 }
6c95b8df
PA
8154
8155 /* Try to get rid of automatically added inferiors that are no
8156 longer needed. Keeping those around slows down things linearly.
8157 Note that this never removes the current inferior. */
8158 prune_inferiors ();
4c2f2a79
PA
8159
8160 return 0;
c906108c
SS
8161}
8162
8163static int
96baa820 8164hook_stop_stub (void *cmd)
c906108c 8165{
5913bcb0 8166 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8167 return (0);
8168}
8169\f
c5aa993b 8170int
96baa820 8171signal_stop_state (int signo)
c906108c 8172{
d6b48e9c 8173 return signal_stop[signo];
c906108c
SS
8174}
8175
c5aa993b 8176int
96baa820 8177signal_print_state (int signo)
c906108c
SS
8178{
8179 return signal_print[signo];
8180}
8181
c5aa993b 8182int
96baa820 8183signal_pass_state (int signo)
c906108c
SS
8184{
8185 return signal_program[signo];
8186}
8187
2455069d
UW
8188static void
8189signal_cache_update (int signo)
8190{
8191 if (signo == -1)
8192 {
a493e3e2 8193 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8194 signal_cache_update (signo);
8195
8196 return;
8197 }
8198
8199 signal_pass[signo] = (signal_stop[signo] == 0
8200 && signal_print[signo] == 0
ab04a2af
TT
8201 && signal_program[signo] == 1
8202 && signal_catch[signo] == 0);
2455069d
UW
8203}
8204
488f131b 8205int
7bda5e4a 8206signal_stop_update (int signo, int state)
d4f3574e
SS
8207{
8208 int ret = signal_stop[signo];
abbb1732 8209
d4f3574e 8210 signal_stop[signo] = state;
2455069d 8211 signal_cache_update (signo);
d4f3574e
SS
8212 return ret;
8213}
8214
488f131b 8215int
7bda5e4a 8216signal_print_update (int signo, int state)
d4f3574e
SS
8217{
8218 int ret = signal_print[signo];
abbb1732 8219
d4f3574e 8220 signal_print[signo] = state;
2455069d 8221 signal_cache_update (signo);
d4f3574e
SS
8222 return ret;
8223}
8224
488f131b 8225int
7bda5e4a 8226signal_pass_update (int signo, int state)
d4f3574e
SS
8227{
8228 int ret = signal_program[signo];
abbb1732 8229
d4f3574e 8230 signal_program[signo] = state;
2455069d 8231 signal_cache_update (signo);
d4f3574e
SS
8232 return ret;
8233}
8234
ab04a2af
TT
8235/* Update the global 'signal_catch' from INFO and notify the
8236 target. */
8237
8238void
8239signal_catch_update (const unsigned int *info)
8240{
8241 int i;
8242
8243 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8244 signal_catch[i] = info[i] > 0;
8245 signal_cache_update (-1);
8246 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8247}
8248
c906108c 8249static void
96baa820 8250sig_print_header (void)
c906108c 8251{
3e43a32a
MS
8252 printf_filtered (_("Signal Stop\tPrint\tPass "
8253 "to program\tDescription\n"));
c906108c
SS
8254}
8255
8256static void
2ea28649 8257sig_print_info (enum gdb_signal oursig)
c906108c 8258{
2ea28649 8259 const char *name = gdb_signal_to_name (oursig);
c906108c 8260 int name_padding = 13 - strlen (name);
96baa820 8261
c906108c
SS
8262 if (name_padding <= 0)
8263 name_padding = 0;
8264
8265 printf_filtered ("%s", name);
488f131b 8266 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8267 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8268 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8269 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8270 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8271}
8272
8273/* Specify how various signals in the inferior should be handled. */
8274
8275static void
96baa820 8276handle_command (char *args, int from_tty)
c906108c
SS
8277{
8278 char **argv;
8279 int digits, wordlen;
8280 int sigfirst, signum, siglast;
2ea28649 8281 enum gdb_signal oursig;
c906108c
SS
8282 int allsigs;
8283 int nsigs;
8284 unsigned char *sigs;
8285 struct cleanup *old_chain;
8286
8287 if (args == NULL)
8288 {
e2e0b3e5 8289 error_no_arg (_("signal to handle"));
c906108c
SS
8290 }
8291
1777feb0 8292 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8293
a493e3e2 8294 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8295 sigs = (unsigned char *) alloca (nsigs);
8296 memset (sigs, 0, nsigs);
8297
1777feb0 8298 /* Break the command line up into args. */
c906108c 8299
d1a41061 8300 argv = gdb_buildargv (args);
7a292a7a 8301 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8302
8303 /* Walk through the args, looking for signal oursigs, signal names, and
8304 actions. Signal numbers and signal names may be interspersed with
8305 actions, with the actions being performed for all signals cumulatively
1777feb0 8306 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8307
8308 while (*argv != NULL)
8309 {
8310 wordlen = strlen (*argv);
8311 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8312 {;
8313 }
8314 allsigs = 0;
8315 sigfirst = siglast = -1;
8316
8317 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8318 {
8319 /* Apply action to all signals except those used by the
1777feb0 8320 debugger. Silently skip those. */
c906108c
SS
8321 allsigs = 1;
8322 sigfirst = 0;
8323 siglast = nsigs - 1;
8324 }
8325 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8326 {
8327 SET_SIGS (nsigs, sigs, signal_stop);
8328 SET_SIGS (nsigs, sigs, signal_print);
8329 }
8330 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8331 {
8332 UNSET_SIGS (nsigs, sigs, signal_program);
8333 }
8334 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8335 {
8336 SET_SIGS (nsigs, sigs, signal_print);
8337 }
8338 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8339 {
8340 SET_SIGS (nsigs, sigs, signal_program);
8341 }
8342 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8343 {
8344 UNSET_SIGS (nsigs, sigs, signal_stop);
8345 }
8346 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8347 {
8348 SET_SIGS (nsigs, sigs, signal_program);
8349 }
8350 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8351 {
8352 UNSET_SIGS (nsigs, sigs, signal_print);
8353 UNSET_SIGS (nsigs, sigs, signal_stop);
8354 }
8355 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8356 {
8357 UNSET_SIGS (nsigs, sigs, signal_program);
8358 }
8359 else if (digits > 0)
8360 {
8361 /* It is numeric. The numeric signal refers to our own
8362 internal signal numbering from target.h, not to host/target
8363 signal number. This is a feature; users really should be
8364 using symbolic names anyway, and the common ones like
8365 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8366
8367 sigfirst = siglast = (int)
2ea28649 8368 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8369 if ((*argv)[digits] == '-')
8370 {
8371 siglast = (int)
2ea28649 8372 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8373 }
8374 if (sigfirst > siglast)
8375 {
1777feb0 8376 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8377 signum = sigfirst;
8378 sigfirst = siglast;
8379 siglast = signum;
8380 }
8381 }
8382 else
8383 {
2ea28649 8384 oursig = gdb_signal_from_name (*argv);
a493e3e2 8385 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8386 {
8387 sigfirst = siglast = (int) oursig;
8388 }
8389 else
8390 {
8391 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8392 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8393 }
8394 }
8395
8396 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8397 which signals to apply actions to. */
c906108c
SS
8398
8399 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8400 {
2ea28649 8401 switch ((enum gdb_signal) signum)
c906108c 8402 {
a493e3e2
PA
8403 case GDB_SIGNAL_TRAP:
8404 case GDB_SIGNAL_INT:
c906108c
SS
8405 if (!allsigs && !sigs[signum])
8406 {
9e2f0ad4 8407 if (query (_("%s is used by the debugger.\n\
3e43a32a 8408Are you sure you want to change it? "),
2ea28649 8409 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8410 {
8411 sigs[signum] = 1;
8412 }
8413 else
8414 {
a3f17187 8415 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8416 gdb_flush (gdb_stdout);
8417 }
8418 }
8419 break;
a493e3e2
PA
8420 case GDB_SIGNAL_0:
8421 case GDB_SIGNAL_DEFAULT:
8422 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8423 /* Make sure that "all" doesn't print these. */
8424 break;
8425 default:
8426 sigs[signum] = 1;
8427 break;
8428 }
8429 }
8430
8431 argv++;
8432 }
8433
3a031f65
PA
8434 for (signum = 0; signum < nsigs; signum++)
8435 if (sigs[signum])
8436 {
2455069d 8437 signal_cache_update (-1);
a493e3e2
PA
8438 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8439 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8440
3a031f65
PA
8441 if (from_tty)
8442 {
8443 /* Show the results. */
8444 sig_print_header ();
8445 for (; signum < nsigs; signum++)
8446 if (sigs[signum])
aead7601 8447 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8448 }
8449
8450 break;
8451 }
c906108c
SS
8452
8453 do_cleanups (old_chain);
8454}
8455
de0bea00
MF
8456/* Complete the "handle" command. */
8457
8458static VEC (char_ptr) *
8459handle_completer (struct cmd_list_element *ignore,
6f937416 8460 const char *text, const char *word)
de0bea00
MF
8461{
8462 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8463 static const char * const keywords[] =
8464 {
8465 "all",
8466 "stop",
8467 "ignore",
8468 "print",
8469 "pass",
8470 "nostop",
8471 "noignore",
8472 "noprint",
8473 "nopass",
8474 NULL,
8475 };
8476
8477 vec_signals = signal_completer (ignore, text, word);
8478 vec_keywords = complete_on_enum (keywords, word, word);
8479
8480 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8481 VEC_free (char_ptr, vec_signals);
8482 VEC_free (char_ptr, vec_keywords);
8483 return return_val;
8484}
8485
2ea28649
PA
8486enum gdb_signal
8487gdb_signal_from_command (int num)
ed01b82c
PA
8488{
8489 if (num >= 1 && num <= 15)
2ea28649 8490 return (enum gdb_signal) num;
ed01b82c
PA
8491 error (_("Only signals 1-15 are valid as numeric signals.\n\
8492Use \"info signals\" for a list of symbolic signals."));
8493}
8494
c906108c
SS
8495/* Print current contents of the tables set by the handle command.
8496 It is possible we should just be printing signals actually used
8497 by the current target (but for things to work right when switching
8498 targets, all signals should be in the signal tables). */
8499
8500static void
96baa820 8501signals_info (char *signum_exp, int from_tty)
c906108c 8502{
2ea28649 8503 enum gdb_signal oursig;
abbb1732 8504
c906108c
SS
8505 sig_print_header ();
8506
8507 if (signum_exp)
8508 {
8509 /* First see if this is a symbol name. */
2ea28649 8510 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8511 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8512 {
8513 /* No, try numeric. */
8514 oursig =
2ea28649 8515 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8516 }
8517 sig_print_info (oursig);
8518 return;
8519 }
8520
8521 printf_filtered ("\n");
8522 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8523 for (oursig = GDB_SIGNAL_FIRST;
8524 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8525 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8526 {
8527 QUIT;
8528
a493e3e2
PA
8529 if (oursig != GDB_SIGNAL_UNKNOWN
8530 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8531 sig_print_info (oursig);
8532 }
8533
3e43a32a
MS
8534 printf_filtered (_("\nUse the \"handle\" command "
8535 "to change these tables.\n"));
c906108c 8536}
4aa995e1 8537
c709acd1
PA
8538/* Check if it makes sense to read $_siginfo from the current thread
8539 at this point. If not, throw an error. */
8540
8541static void
8542validate_siginfo_access (void)
8543{
8544 /* No current inferior, no siginfo. */
8545 if (ptid_equal (inferior_ptid, null_ptid))
8546 error (_("No thread selected."));
8547
8548 /* Don't try to read from a dead thread. */
8549 if (is_exited (inferior_ptid))
8550 error (_("The current thread has terminated"));
8551
8552 /* ... or from a spinning thread. */
8553 if (is_running (inferior_ptid))
8554 error (_("Selected thread is running."));
8555}
8556
4aa995e1
PA
8557/* The $_siginfo convenience variable is a bit special. We don't know
8558 for sure the type of the value until we actually have a chance to
7a9dd1b2 8559 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8560 also dependent on which thread you have selected.
8561
8562 1. making $_siginfo be an internalvar that creates a new value on
8563 access.
8564
8565 2. making the value of $_siginfo be an lval_computed value. */
8566
8567/* This function implements the lval_computed support for reading a
8568 $_siginfo value. */
8569
8570static void
8571siginfo_value_read (struct value *v)
8572{
8573 LONGEST transferred;
8574
c709acd1
PA
8575 validate_siginfo_access ();
8576
4aa995e1
PA
8577 transferred =
8578 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8579 NULL,
8580 value_contents_all_raw (v),
8581 value_offset (v),
8582 TYPE_LENGTH (value_type (v)));
8583
8584 if (transferred != TYPE_LENGTH (value_type (v)))
8585 error (_("Unable to read siginfo"));
8586}
8587
8588/* This function implements the lval_computed support for writing a
8589 $_siginfo value. */
8590
8591static void
8592siginfo_value_write (struct value *v, struct value *fromval)
8593{
8594 LONGEST transferred;
8595
c709acd1
PA
8596 validate_siginfo_access ();
8597
4aa995e1
PA
8598 transferred = target_write (&current_target,
8599 TARGET_OBJECT_SIGNAL_INFO,
8600 NULL,
8601 value_contents_all_raw (fromval),
8602 value_offset (v),
8603 TYPE_LENGTH (value_type (fromval)));
8604
8605 if (transferred != TYPE_LENGTH (value_type (fromval)))
8606 error (_("Unable to write siginfo"));
8607}
8608
c8f2448a 8609static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8610 {
8611 siginfo_value_read,
8612 siginfo_value_write
8613 };
8614
8615/* Return a new value with the correct type for the siginfo object of
78267919
UW
8616 the current thread using architecture GDBARCH. Return a void value
8617 if there's no object available. */
4aa995e1 8618
2c0b251b 8619static struct value *
22d2b532
SDJ
8620siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8621 void *ignore)
4aa995e1 8622{
4aa995e1 8623 if (target_has_stack
78267919
UW
8624 && !ptid_equal (inferior_ptid, null_ptid)
8625 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8626 {
78267919 8627 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8628
78267919 8629 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8630 }
8631
78267919 8632 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8633}
8634
c906108c 8635\f
16c381f0
JK
8636/* infcall_suspend_state contains state about the program itself like its
8637 registers and any signal it received when it last stopped.
8638 This state must be restored regardless of how the inferior function call
8639 ends (either successfully, or after it hits a breakpoint or signal)
8640 if the program is to properly continue where it left off. */
8641
8642struct infcall_suspend_state
7a292a7a 8643{
16c381f0 8644 struct thread_suspend_state thread_suspend;
16c381f0
JK
8645
8646 /* Other fields: */
7a292a7a 8647 CORE_ADDR stop_pc;
b89667eb 8648 struct regcache *registers;
1736ad11 8649
35515841 8650 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8651 struct gdbarch *siginfo_gdbarch;
8652
8653 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8654 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8655 content would be invalid. */
8656 gdb_byte *siginfo_data;
b89667eb
DE
8657};
8658
16c381f0
JK
8659struct infcall_suspend_state *
8660save_infcall_suspend_state (void)
b89667eb 8661{
16c381f0 8662 struct infcall_suspend_state *inf_state;
b89667eb 8663 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8664 struct regcache *regcache = get_current_regcache ();
8665 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8666 gdb_byte *siginfo_data = NULL;
8667
8668 if (gdbarch_get_siginfo_type_p (gdbarch))
8669 {
8670 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8671 size_t len = TYPE_LENGTH (type);
8672 struct cleanup *back_to;
8673
224c3ddb 8674 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8675 back_to = make_cleanup (xfree, siginfo_data);
8676
8677 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8678 siginfo_data, 0, len) == len)
8679 discard_cleanups (back_to);
8680 else
8681 {
8682 /* Errors ignored. */
8683 do_cleanups (back_to);
8684 siginfo_data = NULL;
8685 }
8686 }
8687
41bf6aca 8688 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8689
8690 if (siginfo_data)
8691 {
8692 inf_state->siginfo_gdbarch = gdbarch;
8693 inf_state->siginfo_data = siginfo_data;
8694 }
b89667eb 8695
16c381f0 8696 inf_state->thread_suspend = tp->suspend;
16c381f0 8697
35515841 8698 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8699 GDB_SIGNAL_0 anyway. */
8700 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8701
b89667eb
DE
8702 inf_state->stop_pc = stop_pc;
8703
1736ad11 8704 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8705
8706 return inf_state;
8707}
8708
8709/* Restore inferior session state to INF_STATE. */
8710
8711void
16c381f0 8712restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8713{
8714 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8715 struct regcache *regcache = get_current_regcache ();
8716 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8717
16c381f0 8718 tp->suspend = inf_state->thread_suspend;
16c381f0 8719
b89667eb
DE
8720 stop_pc = inf_state->stop_pc;
8721
1736ad11
JK
8722 if (inf_state->siginfo_gdbarch == gdbarch)
8723 {
8724 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8725
8726 /* Errors ignored. */
8727 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8728 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8729 }
8730
b89667eb
DE
8731 /* The inferior can be gone if the user types "print exit(0)"
8732 (and perhaps other times). */
8733 if (target_has_execution)
8734 /* NB: The register write goes through to the target. */
1736ad11 8735 regcache_cpy (regcache, inf_state->registers);
803b5f95 8736
16c381f0 8737 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8738}
8739
8740static void
16c381f0 8741do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8742{
9a3c8263 8743 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8744}
8745
8746struct cleanup *
16c381f0
JK
8747make_cleanup_restore_infcall_suspend_state
8748 (struct infcall_suspend_state *inf_state)
b89667eb 8749{
16c381f0 8750 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8751}
8752
8753void
16c381f0 8754discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8755{
8756 regcache_xfree (inf_state->registers);
803b5f95 8757 xfree (inf_state->siginfo_data);
b89667eb
DE
8758 xfree (inf_state);
8759}
8760
8761struct regcache *
16c381f0 8762get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8763{
8764 return inf_state->registers;
8765}
8766
16c381f0
JK
8767/* infcall_control_state contains state regarding gdb's control of the
8768 inferior itself like stepping control. It also contains session state like
8769 the user's currently selected frame. */
b89667eb 8770
16c381f0 8771struct infcall_control_state
b89667eb 8772{
16c381f0
JK
8773 struct thread_control_state thread_control;
8774 struct inferior_control_state inferior_control;
d82142e2
JK
8775
8776 /* Other fields: */
8777 enum stop_stack_kind stop_stack_dummy;
8778 int stopped_by_random_signal;
7a292a7a 8779 int stop_after_trap;
7a292a7a 8780
b89667eb 8781 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8782 struct frame_id selected_frame_id;
7a292a7a
SS
8783};
8784
c906108c 8785/* Save all of the information associated with the inferior<==>gdb
b89667eb 8786 connection. */
c906108c 8787
16c381f0
JK
8788struct infcall_control_state *
8789save_infcall_control_state (void)
c906108c 8790{
8d749320
SM
8791 struct infcall_control_state *inf_status =
8792 XNEW (struct infcall_control_state);
4e1c45ea 8793 struct thread_info *tp = inferior_thread ();
d6b48e9c 8794 struct inferior *inf = current_inferior ();
7a292a7a 8795
16c381f0
JK
8796 inf_status->thread_control = tp->control;
8797 inf_status->inferior_control = inf->control;
d82142e2 8798
8358c15c 8799 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8800 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8801
16c381f0
JK
8802 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8803 chain. If caller's caller is walking the chain, they'll be happier if we
8804 hand them back the original chain when restore_infcall_control_state is
8805 called. */
8806 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8807
8808 /* Other fields: */
8809 inf_status->stop_stack_dummy = stop_stack_dummy;
8810 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8811 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8812
206415a3 8813 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8814
7a292a7a 8815 return inf_status;
c906108c
SS
8816}
8817
c906108c 8818static int
96baa820 8819restore_selected_frame (void *args)
c906108c 8820{
488f131b 8821 struct frame_id *fid = (struct frame_id *) args;
c906108c 8822 struct frame_info *frame;
c906108c 8823
101dcfbe 8824 frame = frame_find_by_id (*fid);
c906108c 8825
aa0cd9c1
AC
8826 /* If inf_status->selected_frame_id is NULL, there was no previously
8827 selected frame. */
101dcfbe 8828 if (frame == NULL)
c906108c 8829 {
8a3fe4f8 8830 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8831 return 0;
8832 }
8833
0f7d239c 8834 select_frame (frame);
c906108c
SS
8835
8836 return (1);
8837}
8838
b89667eb
DE
8839/* Restore inferior session state to INF_STATUS. */
8840
c906108c 8841void
16c381f0 8842restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8843{
4e1c45ea 8844 struct thread_info *tp = inferior_thread ();
d6b48e9c 8845 struct inferior *inf = current_inferior ();
4e1c45ea 8846
8358c15c
JK
8847 if (tp->control.step_resume_breakpoint)
8848 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8849
5b79abe7
TT
8850 if (tp->control.exception_resume_breakpoint)
8851 tp->control.exception_resume_breakpoint->disposition
8852 = disp_del_at_next_stop;
8853
d82142e2 8854 /* Handle the bpstat_copy of the chain. */
16c381f0 8855 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8856
16c381f0
JK
8857 tp->control = inf_status->thread_control;
8858 inf->control = inf_status->inferior_control;
d82142e2
JK
8859
8860 /* Other fields: */
8861 stop_stack_dummy = inf_status->stop_stack_dummy;
8862 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8863 stop_after_trap = inf_status->stop_after_trap;
c906108c 8864
b89667eb 8865 if (target_has_stack)
c906108c 8866 {
c906108c 8867 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8868 walking the stack might encounter a garbage pointer and
8869 error() trying to dereference it. */
488f131b
JB
8870 if (catch_errors
8871 (restore_selected_frame, &inf_status->selected_frame_id,
8872 "Unable to restore previously selected frame:\n",
8873 RETURN_MASK_ERROR) == 0)
c906108c
SS
8874 /* Error in restoring the selected frame. Select the innermost
8875 frame. */
0f7d239c 8876 select_frame (get_current_frame ());
c906108c 8877 }
c906108c 8878
72cec141 8879 xfree (inf_status);
7a292a7a 8880}
c906108c 8881
74b7792f 8882static void
16c381f0 8883do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8884{
9a3c8263 8885 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8886}
8887
8888struct cleanup *
16c381f0
JK
8889make_cleanup_restore_infcall_control_state
8890 (struct infcall_control_state *inf_status)
74b7792f 8891{
16c381f0 8892 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8893}
8894
c906108c 8895void
16c381f0 8896discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8897{
8358c15c
JK
8898 if (inf_status->thread_control.step_resume_breakpoint)
8899 inf_status->thread_control.step_resume_breakpoint->disposition
8900 = disp_del_at_next_stop;
8901
5b79abe7
TT
8902 if (inf_status->thread_control.exception_resume_breakpoint)
8903 inf_status->thread_control.exception_resume_breakpoint->disposition
8904 = disp_del_at_next_stop;
8905
1777feb0 8906 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8907 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8908
72cec141 8909 xfree (inf_status);
7a292a7a 8910}
b89667eb 8911\f
ca6724c1
KB
8912/* restore_inferior_ptid() will be used by the cleanup machinery
8913 to restore the inferior_ptid value saved in a call to
8914 save_inferior_ptid(). */
ce696e05
KB
8915
8916static void
8917restore_inferior_ptid (void *arg)
8918{
9a3c8263 8919 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8920
ce696e05
KB
8921 inferior_ptid = *saved_ptid_ptr;
8922 xfree (arg);
8923}
8924
8925/* Save the value of inferior_ptid so that it may be restored by a
8926 later call to do_cleanups(). Returns the struct cleanup pointer
8927 needed for later doing the cleanup. */
8928
8929struct cleanup *
8930save_inferior_ptid (void)
8931{
8d749320 8932 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8933
ce696e05
KB
8934 *saved_ptid_ptr = inferior_ptid;
8935 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8936}
0c557179 8937
7f89fd65 8938/* See infrun.h. */
0c557179
SDJ
8939
8940void
8941clear_exit_convenience_vars (void)
8942{
8943 clear_internalvar (lookup_internalvar ("_exitsignal"));
8944 clear_internalvar (lookup_internalvar ("_exitcode"));
8945}
c5aa993b 8946\f
488f131b 8947
b2175913
MS
8948/* User interface for reverse debugging:
8949 Set exec-direction / show exec-direction commands
8950 (returns error unless target implements to_set_exec_direction method). */
8951
170742de 8952enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8953static const char exec_forward[] = "forward";
8954static const char exec_reverse[] = "reverse";
8955static const char *exec_direction = exec_forward;
40478521 8956static const char *const exec_direction_names[] = {
b2175913
MS
8957 exec_forward,
8958 exec_reverse,
8959 NULL
8960};
8961
8962static void
8963set_exec_direction_func (char *args, int from_tty,
8964 struct cmd_list_element *cmd)
8965{
8966 if (target_can_execute_reverse)
8967 {
8968 if (!strcmp (exec_direction, exec_forward))
8969 execution_direction = EXEC_FORWARD;
8970 else if (!strcmp (exec_direction, exec_reverse))
8971 execution_direction = EXEC_REVERSE;
8972 }
8bbed405
MS
8973 else
8974 {
8975 exec_direction = exec_forward;
8976 error (_("Target does not support this operation."));
8977 }
b2175913
MS
8978}
8979
8980static void
8981show_exec_direction_func (struct ui_file *out, int from_tty,
8982 struct cmd_list_element *cmd, const char *value)
8983{
8984 switch (execution_direction) {
8985 case EXEC_FORWARD:
8986 fprintf_filtered (out, _("Forward.\n"));
8987 break;
8988 case EXEC_REVERSE:
8989 fprintf_filtered (out, _("Reverse.\n"));
8990 break;
b2175913 8991 default:
d8b34453
PA
8992 internal_error (__FILE__, __LINE__,
8993 _("bogus execution_direction value: %d"),
8994 (int) execution_direction);
b2175913
MS
8995 }
8996}
8997
d4db2f36
PA
8998static void
8999show_schedule_multiple (struct ui_file *file, int from_tty,
9000 struct cmd_list_element *c, const char *value)
9001{
3e43a32a
MS
9002 fprintf_filtered (file, _("Resuming the execution of threads "
9003 "of all processes is %s.\n"), value);
d4db2f36 9004}
ad52ddc6 9005
22d2b532
SDJ
9006/* Implementation of `siginfo' variable. */
9007
9008static const struct internalvar_funcs siginfo_funcs =
9009{
9010 siginfo_make_value,
9011 NULL,
9012 NULL
9013};
9014
372316f1
PA
9015/* Callback for infrun's target events source. This is marked when a
9016 thread has a pending status to process. */
9017
9018static void
9019infrun_async_inferior_event_handler (gdb_client_data data)
9020{
372316f1
PA
9021 inferior_event_handler (INF_REG_EVENT, NULL);
9022}
9023
c906108c 9024void
96baa820 9025_initialize_infrun (void)
c906108c 9026{
52f0bd74
AC
9027 int i;
9028 int numsigs;
de0bea00 9029 struct cmd_list_element *c;
c906108c 9030
372316f1
PA
9031 /* Register extra event sources in the event loop. */
9032 infrun_async_inferior_event_token
9033 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9034
1bedd215
AC
9035 add_info ("signals", signals_info, _("\
9036What debugger does when program gets various signals.\n\
9037Specify a signal as argument to print info on that signal only."));
c906108c
SS
9038 add_info_alias ("handle", "signals", 0);
9039
de0bea00 9040 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9041Specify how to handle signals.\n\
486c7739 9042Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9043Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9044If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9045will be displayed instead.\n\
9046\n\
c906108c
SS
9047Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9048from 1-15 are allowed for compatibility with old versions of GDB.\n\
9049Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9050The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9051used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9052\n\
1bedd215 9053Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9054\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9055Stop means reenter debugger if this signal happens (implies print).\n\
9056Print means print a message if this signal happens.\n\
9057Pass means let program see this signal; otherwise program doesn't know.\n\
9058Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9059Pass and Stop may be combined.\n\
9060\n\
9061Multiple signals may be specified. Signal numbers and signal names\n\
9062may be interspersed with actions, with the actions being performed for\n\
9063all signals cumulatively specified."));
de0bea00 9064 set_cmd_completer (c, handle_completer);
486c7739 9065
c906108c 9066 if (!dbx_commands)
1a966eab
AC
9067 stop_command = add_cmd ("stop", class_obscure,
9068 not_just_help_class_command, _("\
9069There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9070This allows you to set a list of commands to be run each time execution\n\
1a966eab 9071of the program stops."), &cmdlist);
c906108c 9072
ccce17b0 9073 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9074Set inferior debugging."), _("\
9075Show inferior debugging."), _("\
9076When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9077 NULL,
9078 show_debug_infrun,
9079 &setdebuglist, &showdebuglist);
527159b7 9080
3e43a32a
MS
9081 add_setshow_boolean_cmd ("displaced", class_maintenance,
9082 &debug_displaced, _("\
237fc4c9
PA
9083Set displaced stepping debugging."), _("\
9084Show displaced stepping debugging."), _("\
9085When non-zero, displaced stepping specific debugging is enabled."),
9086 NULL,
9087 show_debug_displaced,
9088 &setdebuglist, &showdebuglist);
9089
ad52ddc6
PA
9090 add_setshow_boolean_cmd ("non-stop", no_class,
9091 &non_stop_1, _("\
9092Set whether gdb controls the inferior in non-stop mode."), _("\
9093Show whether gdb controls the inferior in non-stop mode."), _("\
9094When debugging a multi-threaded program and this setting is\n\
9095off (the default, also called all-stop mode), when one thread stops\n\
9096(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9097all other threads in the program while you interact with the thread of\n\
9098interest. When you continue or step a thread, you can allow the other\n\
9099threads to run, or have them remain stopped, but while you inspect any\n\
9100thread's state, all threads stop.\n\
9101\n\
9102In non-stop mode, when one thread stops, other threads can continue\n\
9103to run freely. You'll be able to step each thread independently,\n\
9104leave it stopped or free to run as needed."),
9105 set_non_stop,
9106 show_non_stop,
9107 &setlist,
9108 &showlist);
9109
a493e3e2 9110 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9111 signal_stop = XNEWVEC (unsigned char, numsigs);
9112 signal_print = XNEWVEC (unsigned char, numsigs);
9113 signal_program = XNEWVEC (unsigned char, numsigs);
9114 signal_catch = XNEWVEC (unsigned char, numsigs);
9115 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9116 for (i = 0; i < numsigs; i++)
9117 {
9118 signal_stop[i] = 1;
9119 signal_print[i] = 1;
9120 signal_program[i] = 1;
ab04a2af 9121 signal_catch[i] = 0;
c906108c
SS
9122 }
9123
4d9d9d04
PA
9124 /* Signals caused by debugger's own actions should not be given to
9125 the program afterwards.
9126
9127 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9128 explicitly specifies that it should be delivered to the target
9129 program. Typically, that would occur when a user is debugging a
9130 target monitor on a simulator: the target monitor sets a
9131 breakpoint; the simulator encounters this breakpoint and halts
9132 the simulation handing control to GDB; GDB, noting that the stop
9133 address doesn't map to any known breakpoint, returns control back
9134 to the simulator; the simulator then delivers the hardware
9135 equivalent of a GDB_SIGNAL_TRAP to the program being
9136 debugged. */
a493e3e2
PA
9137 signal_program[GDB_SIGNAL_TRAP] = 0;
9138 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9139
9140 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9141 signal_stop[GDB_SIGNAL_ALRM] = 0;
9142 signal_print[GDB_SIGNAL_ALRM] = 0;
9143 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9144 signal_print[GDB_SIGNAL_VTALRM] = 0;
9145 signal_stop[GDB_SIGNAL_PROF] = 0;
9146 signal_print[GDB_SIGNAL_PROF] = 0;
9147 signal_stop[GDB_SIGNAL_CHLD] = 0;
9148 signal_print[GDB_SIGNAL_CHLD] = 0;
9149 signal_stop[GDB_SIGNAL_IO] = 0;
9150 signal_print[GDB_SIGNAL_IO] = 0;
9151 signal_stop[GDB_SIGNAL_POLL] = 0;
9152 signal_print[GDB_SIGNAL_POLL] = 0;
9153 signal_stop[GDB_SIGNAL_URG] = 0;
9154 signal_print[GDB_SIGNAL_URG] = 0;
9155 signal_stop[GDB_SIGNAL_WINCH] = 0;
9156 signal_print[GDB_SIGNAL_WINCH] = 0;
9157 signal_stop[GDB_SIGNAL_PRIO] = 0;
9158 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9159
cd0fc7c3
SS
9160 /* These signals are used internally by user-level thread
9161 implementations. (See signal(5) on Solaris.) Like the above
9162 signals, a healthy program receives and handles them as part of
9163 its normal operation. */
a493e3e2
PA
9164 signal_stop[GDB_SIGNAL_LWP] = 0;
9165 signal_print[GDB_SIGNAL_LWP] = 0;
9166 signal_stop[GDB_SIGNAL_WAITING] = 0;
9167 signal_print[GDB_SIGNAL_WAITING] = 0;
9168 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9169 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9170
2455069d
UW
9171 /* Update cached state. */
9172 signal_cache_update (-1);
9173
85c07804
AC
9174 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9175 &stop_on_solib_events, _("\
9176Set stopping for shared library events."), _("\
9177Show stopping for shared library events."), _("\
c906108c
SS
9178If nonzero, gdb will give control to the user when the dynamic linker\n\
9179notifies gdb of shared library events. The most common event of interest\n\
85c07804 9180to the user would be loading/unloading of a new library."),
f9e14852 9181 set_stop_on_solib_events,
920d2a44 9182 show_stop_on_solib_events,
85c07804 9183 &setlist, &showlist);
c906108c 9184
7ab04401
AC
9185 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9186 follow_fork_mode_kind_names,
9187 &follow_fork_mode_string, _("\
9188Set debugger response to a program call of fork or vfork."), _("\
9189Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9190A fork or vfork creates a new process. follow-fork-mode can be:\n\
9191 parent - the original process is debugged after a fork\n\
9192 child - the new process is debugged after a fork\n\
ea1dd7bc 9193The unfollowed process will continue to run.\n\
7ab04401
AC
9194By default, the debugger will follow the parent process."),
9195 NULL,
920d2a44 9196 show_follow_fork_mode_string,
7ab04401
AC
9197 &setlist, &showlist);
9198
6c95b8df
PA
9199 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9200 follow_exec_mode_names,
9201 &follow_exec_mode_string, _("\
9202Set debugger response to a program call of exec."), _("\
9203Show debugger response to a program call of exec."), _("\
9204An exec call replaces the program image of a process.\n\
9205\n\
9206follow-exec-mode can be:\n\
9207\n\
cce7e648 9208 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9209to this new inferior. The program the process was running before\n\
9210the exec call can be restarted afterwards by restarting the original\n\
9211inferior.\n\
9212\n\
9213 same - the debugger keeps the process bound to the same inferior.\n\
9214The new executable image replaces the previous executable loaded in\n\
9215the inferior. Restarting the inferior after the exec call restarts\n\
9216the executable the process was running after the exec call.\n\
9217\n\
9218By default, the debugger will use the same inferior."),
9219 NULL,
9220 show_follow_exec_mode_string,
9221 &setlist, &showlist);
9222
7ab04401
AC
9223 add_setshow_enum_cmd ("scheduler-locking", class_run,
9224 scheduler_enums, &scheduler_mode, _("\
9225Set mode for locking scheduler during execution."), _("\
9226Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9227off == no locking (threads may preempt at any time)\n\
9228on == full locking (no thread except the current thread may run)\n\
9229 This applies to both normal execution and replay mode.\n\
9230step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9231 In this mode, other threads may run during other commands.\n\
9232 This applies to both normal execution and replay mode.\n\
9233replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9234 set_schedlock_func, /* traps on target vector */
920d2a44 9235 show_scheduler_mode,
7ab04401 9236 &setlist, &showlist);
5fbbeb29 9237
d4db2f36
PA
9238 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9239Set mode for resuming threads of all processes."), _("\
9240Show mode for resuming threads of all processes."), _("\
9241When on, execution commands (such as 'continue' or 'next') resume all\n\
9242threads of all processes. When off (which is the default), execution\n\
9243commands only resume the threads of the current process. The set of\n\
9244threads that are resumed is further refined by the scheduler-locking\n\
9245mode (see help set scheduler-locking)."),
9246 NULL,
9247 show_schedule_multiple,
9248 &setlist, &showlist);
9249
5bf193a2
AC
9250 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9251Set mode of the step operation."), _("\
9252Show mode of the step operation."), _("\
9253When set, doing a step over a function without debug line information\n\
9254will stop at the first instruction of that function. Otherwise, the\n\
9255function is skipped and the step command stops at a different source line."),
9256 NULL,
920d2a44 9257 show_step_stop_if_no_debug,
5bf193a2 9258 &setlist, &showlist);
ca6724c1 9259
72d0e2c5
YQ
9260 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9261 &can_use_displaced_stepping, _("\
237fc4c9
PA
9262Set debugger's willingness to use displaced stepping."), _("\
9263Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9264If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9265supported by the target architecture. If off, gdb will not use displaced\n\
9266stepping to step over breakpoints, even if such is supported by the target\n\
9267architecture. If auto (which is the default), gdb will use displaced stepping\n\
9268if the target architecture supports it and non-stop mode is active, but will not\n\
9269use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9270 NULL,
9271 show_can_use_displaced_stepping,
9272 &setlist, &showlist);
237fc4c9 9273
b2175913
MS
9274 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9275 &exec_direction, _("Set direction of execution.\n\
9276Options are 'forward' or 'reverse'."),
9277 _("Show direction of execution (forward/reverse)."),
9278 _("Tells gdb whether to execute forward or backward."),
9279 set_exec_direction_func, show_exec_direction_func,
9280 &setlist, &showlist);
9281
6c95b8df
PA
9282 /* Set/show detach-on-fork: user-settable mode. */
9283
9284 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9285Set whether gdb will detach the child of a fork."), _("\
9286Show whether gdb will detach the child of a fork."), _("\
9287Tells gdb whether to detach the child of a fork."),
9288 NULL, NULL, &setlist, &showlist);
9289
03583c20
UW
9290 /* Set/show disable address space randomization mode. */
9291
9292 add_setshow_boolean_cmd ("disable-randomization", class_support,
9293 &disable_randomization, _("\
9294Set disabling of debuggee's virtual address space randomization."), _("\
9295Show disabling of debuggee's virtual address space randomization."), _("\
9296When this mode is on (which is the default), randomization of the virtual\n\
9297address space is disabled. Standalone programs run with the randomization\n\
9298enabled by default on some platforms."),
9299 &set_disable_randomization,
9300 &show_disable_randomization,
9301 &setlist, &showlist);
9302
ca6724c1 9303 /* ptid initializations */
ca6724c1
KB
9304 inferior_ptid = null_ptid;
9305 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9306
9307 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9308 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9309 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9310 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9311
9312 /* Explicitly create without lookup, since that tries to create a
9313 value with a void typed value, and when we get here, gdbarch
9314 isn't initialized yet. At this point, we're quite sure there
9315 isn't another convenience variable of the same name. */
22d2b532 9316 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9317
9318 add_setshow_boolean_cmd ("observer", no_class,
9319 &observer_mode_1, _("\
9320Set whether gdb controls the inferior in observer mode."), _("\
9321Show whether gdb controls the inferior in observer mode."), _("\
9322In observer mode, GDB can get data from the inferior, but not\n\
9323affect its execution. Registers and memory may not be changed,\n\
9324breakpoints may not be set, and the program cannot be interrupted\n\
9325or signalled."),
9326 set_observer_mode,
9327 show_observer_mode,
9328 &setlist,
9329 &showlist);
c906108c 9330}
This page took 3.852731 seconds and 4 git commands to generate.