gdb/gdbserver:
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
28106bc2
SDJ
58#include "probe.h"
59#include "objfiles.h"
de0bea00 60#include "completer.h"
c906108c
SS
61
62/* Prototypes for local functions */
63
96baa820 64static void signals_info (char *, int);
c906108c 65
96baa820 66static void handle_command (char *, int);
c906108c 67
2ea28649 68static void sig_print_info (enum gdb_signal);
c906108c 69
96baa820 70static void sig_print_header (void);
c906108c 71
74b7792f 72static void resume_cleanups (void *);
c906108c 73
96baa820 74static int hook_stop_stub (void *);
c906108c 75
96baa820
JM
76static int restore_selected_frame (void *);
77
4ef3f3be 78static int follow_fork (void);
96baa820
JM
79
80static void set_schedlock_func (char *args, int from_tty,
488f131b 81 struct cmd_list_element *c);
96baa820 82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
b3444185
PA
85static int currently_stepping_or_nexting_callback (struct thread_info *tp,
86 void *data);
a7212384 87
96baa820
JM
88static void xdb_handle_command (char *args, int from_tty);
89
6a6b96b9 90static int prepare_to_proceed (int);
ea67f13b 91
33d62d64
JK
92static void print_exited_reason (int exitstatus);
93
2ea28649 94static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
95
96static void print_no_history_reason (void);
97
2ea28649 98static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
99
100static void print_end_stepping_range_reason (void);
101
96baa820 102void _initialize_infrun (void);
43ff13b4 103
e58b0e63
PA
104void nullify_last_target_wait_ptid (void);
105
2c03e5be 106static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
107
108static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
109
2484c66b
UW
110static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
111
5fbbeb29
CF
112/* When set, stop the 'step' command if we enter a function which has
113 no line number information. The normal behavior is that we step
114 over such function. */
115int step_stop_if_no_debug = 0;
920d2a44
AC
116static void
117show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
118 struct cmd_list_element *c, const char *value)
119{
120 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
121}
5fbbeb29 122
1777feb0 123/* In asynchronous mode, but simulating synchronous execution. */
96baa820 124
43ff13b4
JM
125int sync_execution = 0;
126
c906108c
SS
127/* wait_for_inferior and normal_stop use this to notify the user
128 when the inferior stopped in a different thread than it had been
96baa820
JM
129 running in. */
130
39f77062 131static ptid_t previous_inferior_ptid;
7a292a7a 132
6c95b8df
PA
133/* Default behavior is to detach newly forked processes (legacy). */
134int detach_fork = 1;
135
237fc4c9
PA
136int debug_displaced = 0;
137static void
138show_debug_displaced (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140{
141 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
142}
143
ccce17b0 144unsigned int debug_infrun = 0;
920d2a44
AC
145static void
146show_debug_infrun (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148{
149 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
150}
527159b7 151
03583c20
UW
152
153/* Support for disabling address space randomization. */
154
155int disable_randomization = 1;
156
157static void
158show_disable_randomization (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 if (target_supports_disable_randomization ())
162 fprintf_filtered (file,
163 _("Disabling randomization of debuggee's "
164 "virtual address space is %s.\n"),
165 value);
166 else
167 fputs_filtered (_("Disabling randomization of debuggee's "
168 "virtual address space is unsupported on\n"
169 "this platform.\n"), file);
170}
171
172static void
173set_disable_randomization (char *args, int from_tty,
174 struct cmd_list_element *c)
175{
176 if (!target_supports_disable_randomization ())
177 error (_("Disabling randomization of debuggee's "
178 "virtual address space is unsupported on\n"
179 "this platform."));
180}
181
182
d4f3574e
SS
183/* If the program uses ELF-style shared libraries, then calls to
184 functions in shared libraries go through stubs, which live in a
185 table called the PLT (Procedure Linkage Table). The first time the
186 function is called, the stub sends control to the dynamic linker,
187 which looks up the function's real address, patches the stub so
188 that future calls will go directly to the function, and then passes
189 control to the function.
190
191 If we are stepping at the source level, we don't want to see any of
192 this --- we just want to skip over the stub and the dynamic linker.
193 The simple approach is to single-step until control leaves the
194 dynamic linker.
195
ca557f44
AC
196 However, on some systems (e.g., Red Hat's 5.2 distribution) the
197 dynamic linker calls functions in the shared C library, so you
198 can't tell from the PC alone whether the dynamic linker is still
199 running. In this case, we use a step-resume breakpoint to get us
200 past the dynamic linker, as if we were using "next" to step over a
201 function call.
d4f3574e 202
cfd8ab24 203 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
204 linker code or not. Normally, this means we single-step. However,
205 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
206 address where we can place a step-resume breakpoint to get past the
207 linker's symbol resolution function.
208
cfd8ab24 209 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
210 pretty portable way, by comparing the PC against the address ranges
211 of the dynamic linker's sections.
212
213 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
214 it depends on internal details of the dynamic linker. It's usually
215 not too hard to figure out where to put a breakpoint, but it
216 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
217 sanity checking. If it can't figure things out, returning zero and
218 getting the (possibly confusing) stepping behavior is better than
219 signalling an error, which will obscure the change in the
220 inferior's state. */
c906108c 221
c906108c
SS
222/* This function returns TRUE if pc is the address of an instruction
223 that lies within the dynamic linker (such as the event hook, or the
224 dld itself).
225
226 This function must be used only when a dynamic linker event has
227 been caught, and the inferior is being stepped out of the hook, or
228 undefined results are guaranteed. */
229
230#ifndef SOLIB_IN_DYNAMIC_LINKER
231#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
232#endif
233
d914c394
SS
234/* "Observer mode" is somewhat like a more extreme version of
235 non-stop, in which all GDB operations that might affect the
236 target's execution have been disabled. */
237
238static int non_stop_1 = 0;
239
240int observer_mode = 0;
241static int observer_mode_1 = 0;
242
243static void
244set_observer_mode (char *args, int from_tty,
245 struct cmd_list_element *c)
246{
247 extern int pagination_enabled;
248
249 if (target_has_execution)
250 {
251 observer_mode_1 = observer_mode;
252 error (_("Cannot change this setting while the inferior is running."));
253 }
254
255 observer_mode = observer_mode_1;
256
257 may_write_registers = !observer_mode;
258 may_write_memory = !observer_mode;
259 may_insert_breakpoints = !observer_mode;
260 may_insert_tracepoints = !observer_mode;
261 /* We can insert fast tracepoints in or out of observer mode,
262 but enable them if we're going into this mode. */
263 if (observer_mode)
264 may_insert_fast_tracepoints = 1;
265 may_stop = !observer_mode;
266 update_target_permissions ();
267
268 /* Going *into* observer mode we must force non-stop, then
269 going out we leave it that way. */
270 if (observer_mode)
271 {
272 target_async_permitted = 1;
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = 1;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280}
281
282static void
283show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285{
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287}
288
289/* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295void
296update_observer_mode (void)
297{
298 int newval;
299
300 newval = (!may_insert_breakpoints
301 && !may_insert_tracepoints
302 && may_insert_fast_tracepoints
303 && !may_stop
304 && non_stop);
305
306 /* Let the user know if things change. */
307 if (newval != observer_mode)
308 printf_filtered (_("Observer mode is now %s.\n"),
309 (newval ? "on" : "off"));
310
311 observer_mode = observer_mode_1 = newval;
312}
c2c6d25f 313
c906108c
SS
314/* Tables of how to react to signals; the user sets them. */
315
316static unsigned char *signal_stop;
317static unsigned char *signal_print;
318static unsigned char *signal_program;
319
2455069d
UW
320/* Table of signals that the target may silently handle.
321 This is automatically determined from the flags above,
322 and simply cached here. */
323static unsigned char *signal_pass;
324
c906108c
SS
325#define SET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 1; \
331 } while (0)
332
333#define UNSET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 0; \
339 } while (0)
340
9b224c5e
PA
341/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
342 this function is to avoid exporting `signal_program'. */
343
344void
345update_signals_program_target (void)
346{
a493e3e2 347 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
348}
349
1777feb0 350/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 351
edb3359d 352#define RESUME_ALL minus_one_ptid
c906108c
SS
353
354/* Command list pointer for the "stop" placeholder. */
355
356static struct cmd_list_element *stop_command;
357
c906108c
SS
358/* Function inferior was in as of last step command. */
359
360static struct symbol *step_start_function;
361
c906108c
SS
362/* Nonzero if we want to give control to the user when we're notified
363 of shared library events by the dynamic linker. */
628fe4e4 364int stop_on_solib_events;
920d2a44
AC
365static void
366show_stop_on_solib_events (struct ui_file *file, int from_tty,
367 struct cmd_list_element *c, const char *value)
368{
369 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
370 value);
371}
c906108c 372
c906108c
SS
373/* Nonzero means expecting a trace trap
374 and should stop the inferior and return silently when it happens. */
375
376int stop_after_trap;
377
642fd101
DE
378/* Save register contents here when executing a "finish" command or are
379 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
380 Thus this contains the return value from the called function (assuming
381 values are returned in a register). */
382
72cec141 383struct regcache *stop_registers;
c906108c 384
c906108c
SS
385/* Nonzero after stop if current stack frame should be printed. */
386
387static int stop_print_frame;
388
e02bc4cc 389/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
390 returned by target_wait()/deprecated_target_wait_hook(). This
391 information is returned by get_last_target_status(). */
39f77062 392static ptid_t target_last_wait_ptid;
e02bc4cc
DS
393static struct target_waitstatus target_last_waitstatus;
394
0d1e5fa7
PA
395static void context_switch (ptid_t ptid);
396
4e1c45ea 397void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
398
399void init_infwait_state (void);
a474d7c2 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
e58b0e63
PA
422/* Tell the target to follow the fork we're stopped at. Returns true
423 if the inferior should be resumed; false, if the target for some
424 reason decided it's best not to resume. */
425
6604731b 426static int
4ef3f3be 427follow_fork (void)
c906108c 428{
ea1dd7bc 429 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
430 int should_resume = 1;
431 struct thread_info *tp;
432
433 /* Copy user stepping state to the new inferior thread. FIXME: the
434 followed fork child thread should have a copy of most of the
4e3990f4
DE
435 parent thread structure's run control related fields, not just these.
436 Initialized to avoid "may be used uninitialized" warnings from gcc. */
437 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 438 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
439 CORE_ADDR step_range_start = 0;
440 CORE_ADDR step_range_end = 0;
441 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
442
443 if (!non_stop)
444 {
445 ptid_t wait_ptid;
446 struct target_waitstatus wait_status;
447
448 /* Get the last target status returned by target_wait(). */
449 get_last_target_status (&wait_ptid, &wait_status);
450
451 /* If not stopped at a fork event, then there's nothing else to
452 do. */
453 if (wait_status.kind != TARGET_WAITKIND_FORKED
454 && wait_status.kind != TARGET_WAITKIND_VFORKED)
455 return 1;
456
457 /* Check if we switched over from WAIT_PTID, since the event was
458 reported. */
459 if (!ptid_equal (wait_ptid, minus_one_ptid)
460 && !ptid_equal (inferior_ptid, wait_ptid))
461 {
462 /* We did. Switch back to WAIT_PTID thread, to tell the
463 target to follow it (in either direction). We'll
464 afterwards refuse to resume, and inform the user what
465 happened. */
466 switch_to_thread (wait_ptid);
467 should_resume = 0;
468 }
469 }
470
471 tp = inferior_thread ();
472
473 /* If there were any forks/vforks that were caught and are now to be
474 followed, then do so now. */
475 switch (tp->pending_follow.kind)
476 {
477 case TARGET_WAITKIND_FORKED:
478 case TARGET_WAITKIND_VFORKED:
479 {
480 ptid_t parent, child;
481
482 /* If the user did a next/step, etc, over a fork call,
483 preserve the stepping state in the fork child. */
484 if (follow_child && should_resume)
485 {
8358c15c
JK
486 step_resume_breakpoint = clone_momentary_breakpoint
487 (tp->control.step_resume_breakpoint);
16c381f0
JK
488 step_range_start = tp->control.step_range_start;
489 step_range_end = tp->control.step_range_end;
490 step_frame_id = tp->control.step_frame_id;
186c406b
TT
491 exception_resume_breakpoint
492 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
493
494 /* For now, delete the parent's sr breakpoint, otherwise,
495 parent/child sr breakpoints are considered duplicates,
496 and the child version will not be installed. Remove
497 this when the breakpoints module becomes aware of
498 inferiors and address spaces. */
499 delete_step_resume_breakpoint (tp);
16c381f0
JK
500 tp->control.step_range_start = 0;
501 tp->control.step_range_end = 0;
502 tp->control.step_frame_id = null_frame_id;
186c406b 503 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
504 }
505
506 parent = inferior_ptid;
507 child = tp->pending_follow.value.related_pid;
508
509 /* Tell the target to do whatever is necessary to follow
510 either parent or child. */
511 if (target_follow_fork (follow_child))
512 {
513 /* Target refused to follow, or there's some other reason
514 we shouldn't resume. */
515 should_resume = 0;
516 }
517 else
518 {
519 /* This pending follow fork event is now handled, one way
520 or another. The previous selected thread may be gone
521 from the lists by now, but if it is still around, need
522 to clear the pending follow request. */
e09875d4 523 tp = find_thread_ptid (parent);
e58b0e63
PA
524 if (tp)
525 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
526
527 /* This makes sure we don't try to apply the "Switched
528 over from WAIT_PID" logic above. */
529 nullify_last_target_wait_ptid ();
530
1777feb0 531 /* If we followed the child, switch to it... */
e58b0e63
PA
532 if (follow_child)
533 {
534 switch_to_thread (child);
535
536 /* ... and preserve the stepping state, in case the
537 user was stepping over the fork call. */
538 if (should_resume)
539 {
540 tp = inferior_thread ();
8358c15c
JK
541 tp->control.step_resume_breakpoint
542 = step_resume_breakpoint;
16c381f0
JK
543 tp->control.step_range_start = step_range_start;
544 tp->control.step_range_end = step_range_end;
545 tp->control.step_frame_id = step_frame_id;
186c406b
TT
546 tp->control.exception_resume_breakpoint
547 = exception_resume_breakpoint;
e58b0e63
PA
548 }
549 else
550 {
551 /* If we get here, it was because we're trying to
552 resume from a fork catchpoint, but, the user
553 has switched threads away from the thread that
554 forked. In that case, the resume command
555 issued is most likely not applicable to the
556 child, so just warn, and refuse to resume. */
3e43a32a
MS
557 warning (_("Not resuming: switched threads "
558 "before following fork child.\n"));
e58b0e63
PA
559 }
560
561 /* Reset breakpoints in the child as appropriate. */
562 follow_inferior_reset_breakpoints ();
563 }
564 else
565 switch_to_thread (parent);
566 }
567 }
568 break;
569 case TARGET_WAITKIND_SPURIOUS:
570 /* Nothing to follow. */
571 break;
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected pending_follow.kind %d\n",
575 tp->pending_follow.kind);
576 break;
577 }
c906108c 578
e58b0e63 579 return should_resume;
c906108c
SS
580}
581
6604731b
DJ
582void
583follow_inferior_reset_breakpoints (void)
c906108c 584{
4e1c45ea
PA
585 struct thread_info *tp = inferior_thread ();
586
6604731b
DJ
587 /* Was there a step_resume breakpoint? (There was if the user
588 did a "next" at the fork() call.) If so, explicitly reset its
589 thread number.
590
591 step_resumes are a form of bp that are made to be per-thread.
592 Since we created the step_resume bp when the parent process
593 was being debugged, and now are switching to the child process,
594 from the breakpoint package's viewpoint, that's a switch of
595 "threads". We must update the bp's notion of which thread
596 it is for, or it'll be ignored when it triggers. */
597
8358c15c
JK
598 if (tp->control.step_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 600
186c406b
TT
601 if (tp->control.exception_resume_breakpoint)
602 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
603
6604731b
DJ
604 /* Reinsert all breakpoints in the child. The user may have set
605 breakpoints after catching the fork, in which case those
606 were never set in the child, but only in the parent. This makes
607 sure the inserted breakpoints match the breakpoint list. */
608
609 breakpoint_re_set ();
610 insert_breakpoints ();
c906108c 611}
c906108c 612
6c95b8df
PA
613/* The child has exited or execed: resume threads of the parent the
614 user wanted to be executing. */
615
616static int
617proceed_after_vfork_done (struct thread_info *thread,
618 void *arg)
619{
620 int pid = * (int *) arg;
621
622 if (ptid_get_pid (thread->ptid) == pid
623 && is_running (thread->ptid)
624 && !is_executing (thread->ptid)
625 && !thread->stop_requested
a493e3e2 626 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
627 {
628 if (debug_infrun)
629 fprintf_unfiltered (gdb_stdlog,
630 "infrun: resuming vfork parent thread %s\n",
631 target_pid_to_str (thread->ptid));
632
633 switch_to_thread (thread->ptid);
634 clear_proceed_status ();
a493e3e2 635 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
636 }
637
638 return 0;
639}
640
641/* Called whenever we notice an exec or exit event, to handle
642 detaching or resuming a vfork parent. */
643
644static void
645handle_vfork_child_exec_or_exit (int exec)
646{
647 struct inferior *inf = current_inferior ();
648
649 if (inf->vfork_parent)
650 {
651 int resume_parent = -1;
652
653 /* This exec or exit marks the end of the shared memory region
654 between the parent and the child. If the user wanted to
655 detach from the parent, now is the time. */
656
657 if (inf->vfork_parent->pending_detach)
658 {
659 struct thread_info *tp;
660 struct cleanup *old_chain;
661 struct program_space *pspace;
662 struct address_space *aspace;
663
1777feb0 664 /* follow-fork child, detach-on-fork on. */
6c95b8df 665
68c9da30
PA
666 inf->vfork_parent->pending_detach = 0;
667
f50f4e56
PA
668 if (!exec)
669 {
670 /* If we're handling a child exit, then inferior_ptid
671 points at the inferior's pid, not to a thread. */
672 old_chain = save_inferior_ptid ();
673 save_current_program_space ();
674 save_current_inferior ();
675 }
676 else
677 old_chain = save_current_space_and_thread ();
6c95b8df
PA
678
679 /* We're letting loose of the parent. */
680 tp = any_live_thread_of_process (inf->vfork_parent->pid);
681 switch_to_thread (tp->ptid);
682
683 /* We're about to detach from the parent, which implicitly
684 removes breakpoints from its address space. There's a
685 catch here: we want to reuse the spaces for the child,
686 but, parent/child are still sharing the pspace at this
687 point, although the exec in reality makes the kernel give
688 the child a fresh set of new pages. The problem here is
689 that the breakpoints module being unaware of this, would
690 likely chose the child process to write to the parent
691 address space. Swapping the child temporarily away from
692 the spaces has the desired effect. Yes, this is "sort
693 of" a hack. */
694
695 pspace = inf->pspace;
696 aspace = inf->aspace;
697 inf->aspace = NULL;
698 inf->pspace = NULL;
699
700 if (debug_infrun || info_verbose)
701 {
702 target_terminal_ours ();
703
704 if (exec)
705 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
706 "Detaching vfork parent process "
707 "%d after child exec.\n",
6c95b8df
PA
708 inf->vfork_parent->pid);
709 else
710 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
711 "Detaching vfork parent process "
712 "%d after child exit.\n",
6c95b8df
PA
713 inf->vfork_parent->pid);
714 }
715
716 target_detach (NULL, 0);
717
718 /* Put it back. */
719 inf->pspace = pspace;
720 inf->aspace = aspace;
721
722 do_cleanups (old_chain);
723 }
724 else if (exec)
725 {
726 /* We're staying attached to the parent, so, really give the
727 child a new address space. */
728 inf->pspace = add_program_space (maybe_new_address_space ());
729 inf->aspace = inf->pspace->aspace;
730 inf->removable = 1;
731 set_current_program_space (inf->pspace);
732
733 resume_parent = inf->vfork_parent->pid;
734
735 /* Break the bonds. */
736 inf->vfork_parent->vfork_child = NULL;
737 }
738 else
739 {
740 struct cleanup *old_chain;
741 struct program_space *pspace;
742
743 /* If this is a vfork child exiting, then the pspace and
744 aspaces were shared with the parent. Since we're
745 reporting the process exit, we'll be mourning all that is
746 found in the address space, and switching to null_ptid,
747 preparing to start a new inferior. But, since we don't
748 want to clobber the parent's address/program spaces, we
749 go ahead and create a new one for this exiting
750 inferior. */
751
752 /* Switch to null_ptid, so that clone_program_space doesn't want
753 to read the selected frame of a dead process. */
754 old_chain = save_inferior_ptid ();
755 inferior_ptid = null_ptid;
756
757 /* This inferior is dead, so avoid giving the breakpoints
758 module the option to write through to it (cloning a
759 program space resets breakpoints). */
760 inf->aspace = NULL;
761 inf->pspace = NULL;
762 pspace = add_program_space (maybe_new_address_space ());
763 set_current_program_space (pspace);
764 inf->removable = 1;
7dcd53a0 765 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
766 clone_program_space (pspace, inf->vfork_parent->pspace);
767 inf->pspace = pspace;
768 inf->aspace = pspace->aspace;
769
770 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 771 inferior. */
6c95b8df
PA
772 do_cleanups (old_chain);
773
774 resume_parent = inf->vfork_parent->pid;
775 /* Break the bonds. */
776 inf->vfork_parent->vfork_child = NULL;
777 }
778
779 inf->vfork_parent = NULL;
780
781 gdb_assert (current_program_space == inf->pspace);
782
783 if (non_stop && resume_parent != -1)
784 {
785 /* If the user wanted the parent to be running, let it go
786 free now. */
787 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
788
789 if (debug_infrun)
3e43a32a
MS
790 fprintf_unfiltered (gdb_stdlog,
791 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
792 resume_parent);
793
794 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
795
796 do_cleanups (old_chain);
797 }
798 }
799}
800
801/* Enum strings for "set|show displaced-stepping". */
802
803static const char follow_exec_mode_new[] = "new";
804static const char follow_exec_mode_same[] = "same";
40478521 805static const char *const follow_exec_mode_names[] =
6c95b8df
PA
806{
807 follow_exec_mode_new,
808 follow_exec_mode_same,
809 NULL,
810};
811
812static const char *follow_exec_mode_string = follow_exec_mode_same;
813static void
814show_follow_exec_mode_string (struct ui_file *file, int from_tty,
815 struct cmd_list_element *c, const char *value)
816{
817 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
818}
819
1777feb0 820/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 821
c906108c 822static void
3a3e9ee3 823follow_exec (ptid_t pid, char *execd_pathname)
c906108c 824{
4e1c45ea 825 struct thread_info *th = inferior_thread ();
6c95b8df 826 struct inferior *inf = current_inferior ();
7a292a7a 827
c906108c
SS
828 /* This is an exec event that we actually wish to pay attention to.
829 Refresh our symbol table to the newly exec'd program, remove any
830 momentary bp's, etc.
831
832 If there are breakpoints, they aren't really inserted now,
833 since the exec() transformed our inferior into a fresh set
834 of instructions.
835
836 We want to preserve symbolic breakpoints on the list, since
837 we have hopes that they can be reset after the new a.out's
838 symbol table is read.
839
840 However, any "raw" breakpoints must be removed from the list
841 (e.g., the solib bp's), since their address is probably invalid
842 now.
843
844 And, we DON'T want to call delete_breakpoints() here, since
845 that may write the bp's "shadow contents" (the instruction
846 value that was overwritten witha TRAP instruction). Since
1777feb0 847 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
848
849 mark_breakpoints_out ();
850
c906108c
SS
851 update_breakpoints_after_exec ();
852
853 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 854 statement through an exec(). */
8358c15c 855 th->control.step_resume_breakpoint = NULL;
186c406b 856 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
857 th->control.step_range_start = 0;
858 th->control.step_range_end = 0;
c906108c 859
a75724bc
PA
860 /* The target reports the exec event to the main thread, even if
861 some other thread does the exec, and even if the main thread was
862 already stopped --- if debugging in non-stop mode, it's possible
863 the user had the main thread held stopped in the previous image
864 --- release it now. This is the same behavior as step-over-exec
865 with scheduler-locking on in all-stop mode. */
866 th->stop_requested = 0;
867
1777feb0 868 /* What is this a.out's name? */
6c95b8df
PA
869 printf_unfiltered (_("%s is executing new program: %s\n"),
870 target_pid_to_str (inferior_ptid),
871 execd_pathname);
c906108c
SS
872
873 /* We've followed the inferior through an exec. Therefore, the
1777feb0 874 inferior has essentially been killed & reborn. */
7a292a7a 875
c906108c 876 gdb_flush (gdb_stdout);
6ca15a4b
PA
877
878 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
879
880 if (gdb_sysroot && *gdb_sysroot)
881 {
882 char *name = alloca (strlen (gdb_sysroot)
883 + strlen (execd_pathname)
884 + 1);
abbb1732 885
e85a822c
DJ
886 strcpy (name, gdb_sysroot);
887 strcat (name, execd_pathname);
888 execd_pathname = name;
889 }
c906108c 890
cce9b6bf
PA
891 /* Reset the shared library package. This ensures that we get a
892 shlib event when the child reaches "_start", at which point the
893 dld will have had a chance to initialize the child. */
894 /* Also, loading a symbol file below may trigger symbol lookups, and
895 we don't want those to be satisfied by the libraries of the
896 previous incarnation of this process. */
897 no_shared_libraries (NULL, 0);
898
6c95b8df
PA
899 if (follow_exec_mode_string == follow_exec_mode_new)
900 {
901 struct program_space *pspace;
6c95b8df
PA
902
903 /* The user wants to keep the old inferior and program spaces
904 around. Create a new fresh one, and switch to it. */
905
906 inf = add_inferior (current_inferior ()->pid);
907 pspace = add_program_space (maybe_new_address_space ());
908 inf->pspace = pspace;
909 inf->aspace = pspace->aspace;
910
911 exit_inferior_num_silent (current_inferior ()->num);
912
913 set_current_inferior (inf);
914 set_current_program_space (pspace);
915 }
916
917 gdb_assert (current_program_space == inf->pspace);
918
1777feb0 919 /* That a.out is now the one to use. */
6c95b8df
PA
920 exec_file_attach (execd_pathname, 0);
921
c1e56572
JK
922 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
923 (Position Independent Executable) main symbol file will get applied by
924 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
925 the breakpoints with the zero displacement. */
926
7dcd53a0
TT
927 symbol_file_add (execd_pathname,
928 (inf->symfile_flags
929 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
930 NULL, 0);
931
7dcd53a0
TT
932 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
933 set_initial_language ();
c906108c 934
7a292a7a 935#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 936 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 937#else
268a4a75 938 solib_create_inferior_hook (0);
7a292a7a 939#endif
c906108c 940
4efc6507
DE
941 jit_inferior_created_hook ();
942
c1e56572
JK
943 breakpoint_re_set ();
944
c906108c
SS
945 /* Reinsert all breakpoints. (Those which were symbolic have
946 been reset to the proper address in the new a.out, thanks
1777feb0 947 to symbol_file_command...). */
c906108c
SS
948 insert_breakpoints ();
949
950 /* The next resume of this inferior should bring it to the shlib
951 startup breakpoints. (If the user had also set bp's on
952 "main" from the old (parent) process, then they'll auto-
1777feb0 953 matically get reset there in the new process.). */
c906108c
SS
954}
955
956/* Non-zero if we just simulating a single-step. This is needed
957 because we cannot remove the breakpoints in the inferior process
958 until after the `wait' in `wait_for_inferior'. */
959static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
960
961/* The thread we inserted single-step breakpoints for. */
962static ptid_t singlestep_ptid;
963
fd48f117
DJ
964/* PC when we started this single-step. */
965static CORE_ADDR singlestep_pc;
966
9f976b41
DJ
967/* If another thread hit the singlestep breakpoint, we save the original
968 thread here so that we can resume single-stepping it later. */
969static ptid_t saved_singlestep_ptid;
970static int stepping_past_singlestep_breakpoint;
6a6b96b9 971
ca67fcb8
VP
972/* If not equal to null_ptid, this means that after stepping over breakpoint
973 is finished, we need to switch to deferred_step_ptid, and step it.
974
975 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 976 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
977 breakpoint in the thread which hit the breakpoint, but then continue
978 stepping the thread user has selected. */
979static ptid_t deferred_step_ptid;
c906108c 980\f
237fc4c9
PA
981/* Displaced stepping. */
982
983/* In non-stop debugging mode, we must take special care to manage
984 breakpoints properly; in particular, the traditional strategy for
985 stepping a thread past a breakpoint it has hit is unsuitable.
986 'Displaced stepping' is a tactic for stepping one thread past a
987 breakpoint it has hit while ensuring that other threads running
988 concurrently will hit the breakpoint as they should.
989
990 The traditional way to step a thread T off a breakpoint in a
991 multi-threaded program in all-stop mode is as follows:
992
993 a0) Initially, all threads are stopped, and breakpoints are not
994 inserted.
995 a1) We single-step T, leaving breakpoints uninserted.
996 a2) We insert breakpoints, and resume all threads.
997
998 In non-stop debugging, however, this strategy is unsuitable: we
999 don't want to have to stop all threads in the system in order to
1000 continue or step T past a breakpoint. Instead, we use displaced
1001 stepping:
1002
1003 n0) Initially, T is stopped, other threads are running, and
1004 breakpoints are inserted.
1005 n1) We copy the instruction "under" the breakpoint to a separate
1006 location, outside the main code stream, making any adjustments
1007 to the instruction, register, and memory state as directed by
1008 T's architecture.
1009 n2) We single-step T over the instruction at its new location.
1010 n3) We adjust the resulting register and memory state as directed
1011 by T's architecture. This includes resetting T's PC to point
1012 back into the main instruction stream.
1013 n4) We resume T.
1014
1015 This approach depends on the following gdbarch methods:
1016
1017 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1018 indicate where to copy the instruction, and how much space must
1019 be reserved there. We use these in step n1.
1020
1021 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1022 address, and makes any necessary adjustments to the instruction,
1023 register contents, and memory. We use this in step n1.
1024
1025 - gdbarch_displaced_step_fixup adjusts registers and memory after
1026 we have successfuly single-stepped the instruction, to yield the
1027 same effect the instruction would have had if we had executed it
1028 at its original address. We use this in step n3.
1029
1030 - gdbarch_displaced_step_free_closure provides cleanup.
1031
1032 The gdbarch_displaced_step_copy_insn and
1033 gdbarch_displaced_step_fixup functions must be written so that
1034 copying an instruction with gdbarch_displaced_step_copy_insn,
1035 single-stepping across the copied instruction, and then applying
1036 gdbarch_displaced_insn_fixup should have the same effects on the
1037 thread's memory and registers as stepping the instruction in place
1038 would have. Exactly which responsibilities fall to the copy and
1039 which fall to the fixup is up to the author of those functions.
1040
1041 See the comments in gdbarch.sh for details.
1042
1043 Note that displaced stepping and software single-step cannot
1044 currently be used in combination, although with some care I think
1045 they could be made to. Software single-step works by placing
1046 breakpoints on all possible subsequent instructions; if the
1047 displaced instruction is a PC-relative jump, those breakpoints
1048 could fall in very strange places --- on pages that aren't
1049 executable, or at addresses that are not proper instruction
1050 boundaries. (We do generally let other threads run while we wait
1051 to hit the software single-step breakpoint, and they might
1052 encounter such a corrupted instruction.) One way to work around
1053 this would be to have gdbarch_displaced_step_copy_insn fully
1054 simulate the effect of PC-relative instructions (and return NULL)
1055 on architectures that use software single-stepping.
1056
1057 In non-stop mode, we can have independent and simultaneous step
1058 requests, so more than one thread may need to simultaneously step
1059 over a breakpoint. The current implementation assumes there is
1060 only one scratch space per process. In this case, we have to
1061 serialize access to the scratch space. If thread A wants to step
1062 over a breakpoint, but we are currently waiting for some other
1063 thread to complete a displaced step, we leave thread A stopped and
1064 place it in the displaced_step_request_queue. Whenever a displaced
1065 step finishes, we pick the next thread in the queue and start a new
1066 displaced step operation on it. See displaced_step_prepare and
1067 displaced_step_fixup for details. */
1068
237fc4c9
PA
1069struct displaced_step_request
1070{
1071 ptid_t ptid;
1072 struct displaced_step_request *next;
1073};
1074
fc1cf338
PA
1075/* Per-inferior displaced stepping state. */
1076struct displaced_step_inferior_state
1077{
1078 /* Pointer to next in linked list. */
1079 struct displaced_step_inferior_state *next;
1080
1081 /* The process this displaced step state refers to. */
1082 int pid;
1083
1084 /* A queue of pending displaced stepping requests. One entry per
1085 thread that needs to do a displaced step. */
1086 struct displaced_step_request *step_request_queue;
1087
1088 /* If this is not null_ptid, this is the thread carrying out a
1089 displaced single-step in process PID. This thread's state will
1090 require fixing up once it has completed its step. */
1091 ptid_t step_ptid;
1092
1093 /* The architecture the thread had when we stepped it. */
1094 struct gdbarch *step_gdbarch;
1095
1096 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1097 for post-step cleanup. */
1098 struct displaced_step_closure *step_closure;
1099
1100 /* The address of the original instruction, and the copy we
1101 made. */
1102 CORE_ADDR step_original, step_copy;
1103
1104 /* Saved contents of copy area. */
1105 gdb_byte *step_saved_copy;
1106};
1107
1108/* The list of states of processes involved in displaced stepping
1109 presently. */
1110static struct displaced_step_inferior_state *displaced_step_inferior_states;
1111
1112/* Get the displaced stepping state of process PID. */
1113
1114static struct displaced_step_inferior_state *
1115get_displaced_stepping_state (int pid)
1116{
1117 struct displaced_step_inferior_state *state;
1118
1119 for (state = displaced_step_inferior_states;
1120 state != NULL;
1121 state = state->next)
1122 if (state->pid == pid)
1123 return state;
1124
1125 return NULL;
1126}
1127
1128/* Add a new displaced stepping state for process PID to the displaced
1129 stepping state list, or return a pointer to an already existing
1130 entry, if it already exists. Never returns NULL. */
1131
1132static struct displaced_step_inferior_state *
1133add_displaced_stepping_state (int pid)
1134{
1135 struct displaced_step_inferior_state *state;
1136
1137 for (state = displaced_step_inferior_states;
1138 state != NULL;
1139 state = state->next)
1140 if (state->pid == pid)
1141 return state;
237fc4c9 1142
fc1cf338
PA
1143 state = xcalloc (1, sizeof (*state));
1144 state->pid = pid;
1145 state->next = displaced_step_inferior_states;
1146 displaced_step_inferior_states = state;
237fc4c9 1147
fc1cf338
PA
1148 return state;
1149}
1150
a42244db
YQ
1151/* If inferior is in displaced stepping, and ADDR equals to starting address
1152 of copy area, return corresponding displaced_step_closure. Otherwise,
1153 return NULL. */
1154
1155struct displaced_step_closure*
1156get_displaced_step_closure_by_addr (CORE_ADDR addr)
1157{
1158 struct displaced_step_inferior_state *displaced
1159 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1160
1161 /* If checking the mode of displaced instruction in copy area. */
1162 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1163 && (displaced->step_copy == addr))
1164 return displaced->step_closure;
1165
1166 return NULL;
1167}
1168
fc1cf338 1169/* Remove the displaced stepping state of process PID. */
237fc4c9 1170
fc1cf338
PA
1171static void
1172remove_displaced_stepping_state (int pid)
1173{
1174 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1175
fc1cf338
PA
1176 gdb_assert (pid != 0);
1177
1178 it = displaced_step_inferior_states;
1179 prev_next_p = &displaced_step_inferior_states;
1180 while (it)
1181 {
1182 if (it->pid == pid)
1183 {
1184 *prev_next_p = it->next;
1185 xfree (it);
1186 return;
1187 }
1188
1189 prev_next_p = &it->next;
1190 it = *prev_next_p;
1191 }
1192}
1193
1194static void
1195infrun_inferior_exit (struct inferior *inf)
1196{
1197 remove_displaced_stepping_state (inf->pid);
1198}
237fc4c9 1199
fff08868
HZ
1200/* If ON, and the architecture supports it, GDB will use displaced
1201 stepping to step over breakpoints. If OFF, or if the architecture
1202 doesn't support it, GDB will instead use the traditional
1203 hold-and-step approach. If AUTO (which is the default), GDB will
1204 decide which technique to use to step over breakpoints depending on
1205 which of all-stop or non-stop mode is active --- displaced stepping
1206 in non-stop mode; hold-and-step in all-stop mode. */
1207
72d0e2c5 1208static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1209
237fc4c9
PA
1210static void
1211show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1212 struct cmd_list_element *c,
1213 const char *value)
1214{
72d0e2c5 1215 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1216 fprintf_filtered (file,
1217 _("Debugger's willingness to use displaced stepping "
1218 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1219 value, non_stop ? "on" : "off");
1220 else
3e43a32a
MS
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1224}
1225
fff08868
HZ
1226/* Return non-zero if displaced stepping can/should be used to step
1227 over breakpoints. */
1228
237fc4c9
PA
1229static int
1230use_displaced_stepping (struct gdbarch *gdbarch)
1231{
72d0e2c5
YQ
1232 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1233 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1234 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1235 && !RECORD_IS_USED);
237fc4c9
PA
1236}
1237
1238/* Clean out any stray displaced stepping state. */
1239static void
fc1cf338 1240displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1241{
1242 /* Indicate that there is no cleanup pending. */
fc1cf338 1243 displaced->step_ptid = null_ptid;
237fc4c9 1244
fc1cf338 1245 if (displaced->step_closure)
237fc4c9 1246 {
fc1cf338
PA
1247 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1248 displaced->step_closure);
1249 displaced->step_closure = NULL;
237fc4c9
PA
1250 }
1251}
1252
1253static void
fc1cf338 1254displaced_step_clear_cleanup (void *arg)
237fc4c9 1255{
fc1cf338
PA
1256 struct displaced_step_inferior_state *state = arg;
1257
1258 displaced_step_clear (state);
237fc4c9
PA
1259}
1260
1261/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1262void
1263displaced_step_dump_bytes (struct ui_file *file,
1264 const gdb_byte *buf,
1265 size_t len)
1266{
1267 int i;
1268
1269 for (i = 0; i < len; i++)
1270 fprintf_unfiltered (file, "%02x ", buf[i]);
1271 fputs_unfiltered ("\n", file);
1272}
1273
1274/* Prepare to single-step, using displaced stepping.
1275
1276 Note that we cannot use displaced stepping when we have a signal to
1277 deliver. If we have a signal to deliver and an instruction to step
1278 over, then after the step, there will be no indication from the
1279 target whether the thread entered a signal handler or ignored the
1280 signal and stepped over the instruction successfully --- both cases
1281 result in a simple SIGTRAP. In the first case we mustn't do a
1282 fixup, and in the second case we must --- but we can't tell which.
1283 Comments in the code for 'random signals' in handle_inferior_event
1284 explain how we handle this case instead.
1285
1286 Returns 1 if preparing was successful -- this thread is going to be
1287 stepped now; or 0 if displaced stepping this thread got queued. */
1288static int
1289displaced_step_prepare (ptid_t ptid)
1290{
ad53cd71 1291 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1292 struct regcache *regcache = get_thread_regcache (ptid);
1293 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1294 CORE_ADDR original, copy;
1295 ULONGEST len;
1296 struct displaced_step_closure *closure;
fc1cf338 1297 struct displaced_step_inferior_state *displaced;
9e529e1d 1298 int status;
237fc4c9
PA
1299
1300 /* We should never reach this function if the architecture does not
1301 support displaced stepping. */
1302 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1303
fc1cf338
PA
1304 /* We have to displaced step one thread at a time, as we only have
1305 access to a single scratch space per inferior. */
237fc4c9 1306
fc1cf338
PA
1307 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1308
1309 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1310 {
1311 /* Already waiting for a displaced step to finish. Defer this
1312 request and place in queue. */
1313 struct displaced_step_request *req, *new_req;
1314
1315 if (debug_displaced)
1316 fprintf_unfiltered (gdb_stdlog,
1317 "displaced: defering step of %s\n",
1318 target_pid_to_str (ptid));
1319
1320 new_req = xmalloc (sizeof (*new_req));
1321 new_req->ptid = ptid;
1322 new_req->next = NULL;
1323
fc1cf338 1324 if (displaced->step_request_queue)
237fc4c9 1325 {
fc1cf338 1326 for (req = displaced->step_request_queue;
237fc4c9
PA
1327 req && req->next;
1328 req = req->next)
1329 ;
1330 req->next = new_req;
1331 }
1332 else
fc1cf338 1333 displaced->step_request_queue = new_req;
237fc4c9
PA
1334
1335 return 0;
1336 }
1337 else
1338 {
1339 if (debug_displaced)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "displaced: stepping %s now\n",
1342 target_pid_to_str (ptid));
1343 }
1344
fc1cf338 1345 displaced_step_clear (displaced);
237fc4c9 1346
ad53cd71
PA
1347 old_cleanups = save_inferior_ptid ();
1348 inferior_ptid = ptid;
1349
515630c5 1350 original = regcache_read_pc (regcache);
237fc4c9
PA
1351
1352 copy = gdbarch_displaced_step_location (gdbarch);
1353 len = gdbarch_max_insn_length (gdbarch);
1354
1355 /* Save the original contents of the copy area. */
fc1cf338 1356 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1357 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1358 &displaced->step_saved_copy);
9e529e1d
JK
1359 status = target_read_memory (copy, displaced->step_saved_copy, len);
1360 if (status != 0)
1361 throw_error (MEMORY_ERROR,
1362 _("Error accessing memory address %s (%s) for "
1363 "displaced-stepping scratch space."),
1364 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1365 if (debug_displaced)
1366 {
5af949e3
UW
1367 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1368 paddress (gdbarch, copy));
fc1cf338
PA
1369 displaced_step_dump_bytes (gdb_stdlog,
1370 displaced->step_saved_copy,
1371 len);
237fc4c9
PA
1372 };
1373
1374 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1375 original, copy, regcache);
237fc4c9
PA
1376
1377 /* We don't support the fully-simulated case at present. */
1378 gdb_assert (closure);
1379
9f5a595d
UW
1380 /* Save the information we need to fix things up if the step
1381 succeeds. */
fc1cf338
PA
1382 displaced->step_ptid = ptid;
1383 displaced->step_gdbarch = gdbarch;
1384 displaced->step_closure = closure;
1385 displaced->step_original = original;
1386 displaced->step_copy = copy;
9f5a595d 1387
fc1cf338 1388 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1389
1390 /* Resume execution at the copy. */
515630c5 1391 regcache_write_pc (regcache, copy);
237fc4c9 1392
ad53cd71
PA
1393 discard_cleanups (ignore_cleanups);
1394
1395 do_cleanups (old_cleanups);
237fc4c9
PA
1396
1397 if (debug_displaced)
5af949e3
UW
1398 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1399 paddress (gdbarch, copy));
237fc4c9 1400
237fc4c9
PA
1401 return 1;
1402}
1403
237fc4c9 1404static void
3e43a32a
MS
1405write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1406 const gdb_byte *myaddr, int len)
237fc4c9
PA
1407{
1408 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1409
237fc4c9
PA
1410 inferior_ptid = ptid;
1411 write_memory (memaddr, myaddr, len);
1412 do_cleanups (ptid_cleanup);
1413}
1414
e2d96639
YQ
1415/* Restore the contents of the copy area for thread PTID. */
1416
1417static void
1418displaced_step_restore (struct displaced_step_inferior_state *displaced,
1419 ptid_t ptid)
1420{
1421 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1422
1423 write_memory_ptid (ptid, displaced->step_copy,
1424 displaced->step_saved_copy, len);
1425 if (debug_displaced)
1426 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1427 target_pid_to_str (ptid),
1428 paddress (displaced->step_gdbarch,
1429 displaced->step_copy));
1430}
1431
237fc4c9 1432static void
2ea28649 1433displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1434{
1435 struct cleanup *old_cleanups;
fc1cf338
PA
1436 struct displaced_step_inferior_state *displaced
1437 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1438
1439 /* Was any thread of this process doing a displaced step? */
1440 if (displaced == NULL)
1441 return;
237fc4c9
PA
1442
1443 /* Was this event for the pid we displaced? */
fc1cf338
PA
1444 if (ptid_equal (displaced->step_ptid, null_ptid)
1445 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1446 return;
1447
fc1cf338 1448 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1449
e2d96639 1450 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1451
1452 /* Did the instruction complete successfully? */
a493e3e2 1453 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1454 {
1455 /* Fix up the resulting state. */
fc1cf338
PA
1456 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1457 displaced->step_closure,
1458 displaced->step_original,
1459 displaced->step_copy,
1460 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1461 }
1462 else
1463 {
1464 /* Since the instruction didn't complete, all we can do is
1465 relocate the PC. */
515630c5
UW
1466 struct regcache *regcache = get_thread_regcache (event_ptid);
1467 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1468
fc1cf338 1469 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1470 regcache_write_pc (regcache, pc);
237fc4c9
PA
1471 }
1472
1473 do_cleanups (old_cleanups);
1474
fc1cf338 1475 displaced->step_ptid = null_ptid;
1c5cfe86 1476
237fc4c9 1477 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1478 one now. Leave the state object around, since we're likely to
1479 need it again soon. */
1480 while (displaced->step_request_queue)
237fc4c9
PA
1481 {
1482 struct displaced_step_request *head;
1483 ptid_t ptid;
5af949e3 1484 struct regcache *regcache;
929dfd4f 1485 struct gdbarch *gdbarch;
1c5cfe86 1486 CORE_ADDR actual_pc;
6c95b8df 1487 struct address_space *aspace;
237fc4c9 1488
fc1cf338 1489 head = displaced->step_request_queue;
237fc4c9 1490 ptid = head->ptid;
fc1cf338 1491 displaced->step_request_queue = head->next;
237fc4c9
PA
1492 xfree (head);
1493
ad53cd71
PA
1494 context_switch (ptid);
1495
5af949e3
UW
1496 regcache = get_thread_regcache (ptid);
1497 actual_pc = regcache_read_pc (regcache);
6c95b8df 1498 aspace = get_regcache_aspace (regcache);
1c5cfe86 1499
6c95b8df 1500 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1501 {
1c5cfe86
PA
1502 if (debug_displaced)
1503 fprintf_unfiltered (gdb_stdlog,
1504 "displaced: stepping queued %s now\n",
1505 target_pid_to_str (ptid));
1506
1507 displaced_step_prepare (ptid);
1508
929dfd4f
JB
1509 gdbarch = get_regcache_arch (regcache);
1510
1c5cfe86
PA
1511 if (debug_displaced)
1512 {
929dfd4f 1513 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1514 gdb_byte buf[4];
1515
5af949e3
UW
1516 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1517 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1518 read_memory (actual_pc, buf, sizeof (buf));
1519 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1520 }
1521
fc1cf338
PA
1522 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1523 displaced->step_closure))
a493e3e2 1524 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1525 else
a493e3e2 1526 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1527
1528 /* Done, we're stepping a thread. */
1529 break;
ad53cd71 1530 }
1c5cfe86
PA
1531 else
1532 {
1533 int step;
1534 struct thread_info *tp = inferior_thread ();
1535
1536 /* The breakpoint we were sitting under has since been
1537 removed. */
16c381f0 1538 tp->control.trap_expected = 0;
1c5cfe86
PA
1539
1540 /* Go back to what we were trying to do. */
1541 step = currently_stepping (tp);
ad53cd71 1542
1c5cfe86 1543 if (debug_displaced)
3e43a32a 1544 fprintf_unfiltered (gdb_stdlog,
27d2932e 1545 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1546 target_pid_to_str (tp->ptid), step);
1547
a493e3e2
PA
1548 target_resume (ptid, step, GDB_SIGNAL_0);
1549 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1550
1551 /* This request was discarded. See if there's any other
1552 thread waiting for its turn. */
1553 }
237fc4c9
PA
1554 }
1555}
1556
5231c1fd
PA
1557/* Update global variables holding ptids to hold NEW_PTID if they were
1558 holding OLD_PTID. */
1559static void
1560infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1561{
1562 struct displaced_step_request *it;
fc1cf338 1563 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1564
1565 if (ptid_equal (inferior_ptid, old_ptid))
1566 inferior_ptid = new_ptid;
1567
1568 if (ptid_equal (singlestep_ptid, old_ptid))
1569 singlestep_ptid = new_ptid;
1570
5231c1fd
PA
1571 if (ptid_equal (deferred_step_ptid, old_ptid))
1572 deferred_step_ptid = new_ptid;
1573
fc1cf338
PA
1574 for (displaced = displaced_step_inferior_states;
1575 displaced;
1576 displaced = displaced->next)
1577 {
1578 if (ptid_equal (displaced->step_ptid, old_ptid))
1579 displaced->step_ptid = new_ptid;
1580
1581 for (it = displaced->step_request_queue; it; it = it->next)
1582 if (ptid_equal (it->ptid, old_ptid))
1583 it->ptid = new_ptid;
1584 }
5231c1fd
PA
1585}
1586
237fc4c9
PA
1587\f
1588/* Resuming. */
c906108c
SS
1589
1590/* Things to clean up if we QUIT out of resume (). */
c906108c 1591static void
74b7792f 1592resume_cleanups (void *ignore)
c906108c
SS
1593{
1594 normal_stop ();
1595}
1596
53904c9e
AC
1597static const char schedlock_off[] = "off";
1598static const char schedlock_on[] = "on";
1599static const char schedlock_step[] = "step";
40478521 1600static const char *const scheduler_enums[] = {
ef346e04
AC
1601 schedlock_off,
1602 schedlock_on,
1603 schedlock_step,
1604 NULL
1605};
920d2a44
AC
1606static const char *scheduler_mode = schedlock_off;
1607static void
1608show_scheduler_mode (struct ui_file *file, int from_tty,
1609 struct cmd_list_element *c, const char *value)
1610{
3e43a32a
MS
1611 fprintf_filtered (file,
1612 _("Mode for locking scheduler "
1613 "during execution is \"%s\".\n"),
920d2a44
AC
1614 value);
1615}
c906108c
SS
1616
1617static void
96baa820 1618set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1619{
eefe576e
AC
1620 if (!target_can_lock_scheduler)
1621 {
1622 scheduler_mode = schedlock_off;
1623 error (_("Target '%s' cannot support this command."), target_shortname);
1624 }
c906108c
SS
1625}
1626
d4db2f36
PA
1627/* True if execution commands resume all threads of all processes by
1628 default; otherwise, resume only threads of the current inferior
1629 process. */
1630int sched_multi = 0;
1631
2facfe5c
DD
1632/* Try to setup for software single stepping over the specified location.
1633 Return 1 if target_resume() should use hardware single step.
1634
1635 GDBARCH the current gdbarch.
1636 PC the location to step over. */
1637
1638static int
1639maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1640{
1641 int hw_step = 1;
1642
f02253f1
HZ
1643 if (execution_direction == EXEC_FORWARD
1644 && gdbarch_software_single_step_p (gdbarch)
99e40580 1645 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1646 {
99e40580
UW
1647 hw_step = 0;
1648 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1649 `wait_for_inferior'. */
99e40580
UW
1650 singlestep_breakpoints_inserted_p = 1;
1651 singlestep_ptid = inferior_ptid;
1652 singlestep_pc = pc;
2facfe5c
DD
1653 }
1654 return hw_step;
1655}
c906108c 1656
09cee04b
PA
1657/* Return a ptid representing the set of threads that we will proceed,
1658 in the perspective of the user/frontend. We may actually resume
1659 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1660 breakpoint that needs stepping-off, but that should not be visible
1661 to the user/frontend, and neither should the frontend/user be
1662 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1663 internal run control handling, if a previous command wanted them
1664 resumed. */
1665
1666ptid_t
1667user_visible_resume_ptid (int step)
1668{
1669 /* By default, resume all threads of all processes. */
1670 ptid_t resume_ptid = RESUME_ALL;
1671
1672 /* Maybe resume only all threads of the current process. */
1673 if (!sched_multi && target_supports_multi_process ())
1674 {
1675 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1676 }
1677
1678 /* Maybe resume a single thread after all. */
1679 if (non_stop)
1680 {
1681 /* With non-stop mode on, threads are always handled
1682 individually. */
1683 resume_ptid = inferior_ptid;
1684 }
1685 else if ((scheduler_mode == schedlock_on)
1686 || (scheduler_mode == schedlock_step
1687 && (step || singlestep_breakpoints_inserted_p)))
1688 {
1689 /* User-settable 'scheduler' mode requires solo thread resume. */
1690 resume_ptid = inferior_ptid;
1691 }
1692
1693 return resume_ptid;
1694}
1695
c906108c
SS
1696/* Resume the inferior, but allow a QUIT. This is useful if the user
1697 wants to interrupt some lengthy single-stepping operation
1698 (for child processes, the SIGINT goes to the inferior, and so
1699 we get a SIGINT random_signal, but for remote debugging and perhaps
1700 other targets, that's not true).
1701
1702 STEP nonzero if we should step (zero to continue instead).
1703 SIG is the signal to give the inferior (zero for none). */
1704void
2ea28649 1705resume (int step, enum gdb_signal sig)
c906108c
SS
1706{
1707 int should_resume = 1;
74b7792f 1708 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1709 struct regcache *regcache = get_current_regcache ();
1710 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1711 struct thread_info *tp = inferior_thread ();
515630c5 1712 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1713 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1714
c906108c
SS
1715 QUIT;
1716
74609e71
YQ
1717 if (current_inferior ()->waiting_for_vfork_done)
1718 {
48f9886d
PA
1719 /* Don't try to single-step a vfork parent that is waiting for
1720 the child to get out of the shared memory region (by exec'ing
1721 or exiting). This is particularly important on software
1722 single-step archs, as the child process would trip on the
1723 software single step breakpoint inserted for the parent
1724 process. Since the parent will not actually execute any
1725 instruction until the child is out of the shared region (such
1726 are vfork's semantics), it is safe to simply continue it.
1727 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1728 the parent, and tell it to `keep_going', which automatically
1729 re-sets it stepping. */
74609e71
YQ
1730 if (debug_infrun)
1731 fprintf_unfiltered (gdb_stdlog,
1732 "infrun: resume : clear step\n");
1733 step = 0;
1734 }
1735
527159b7 1736 if (debug_infrun)
237fc4c9
PA
1737 fprintf_unfiltered (gdb_stdlog,
1738 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1739 "trap_expected=%d, current thread [%s] at %s\n",
1740 step, sig, tp->control.trap_expected,
1741 target_pid_to_str (inferior_ptid),
1742 paddress (gdbarch, pc));
c906108c 1743
c2c6d25f
JM
1744 /* Normally, by the time we reach `resume', the breakpoints are either
1745 removed or inserted, as appropriate. The exception is if we're sitting
1746 at a permanent breakpoint; we need to step over it, but permanent
1747 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1748 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1749 {
515630c5
UW
1750 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1751 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1752 else
ac74f770
MS
1753 error (_("\
1754The program is stopped at a permanent breakpoint, but GDB does not know\n\
1755how to step past a permanent breakpoint on this architecture. Try using\n\
1756a command like `return' or `jump' to continue execution."));
6d350bb5 1757 }
c2c6d25f 1758
237fc4c9
PA
1759 /* If enabled, step over breakpoints by executing a copy of the
1760 instruction at a different address.
1761
1762 We can't use displaced stepping when we have a signal to deliver;
1763 the comments for displaced_step_prepare explain why. The
1764 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1765 signals' explain what we do instead.
1766
1767 We can't use displaced stepping when we are waiting for vfork_done
1768 event, displaced stepping breaks the vfork child similarly as single
1769 step software breakpoint. */
515630c5 1770 if (use_displaced_stepping (gdbarch)
16c381f0 1771 && (tp->control.trap_expected
929dfd4f 1772 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1773 && sig == GDB_SIGNAL_0
74609e71 1774 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1775 {
fc1cf338
PA
1776 struct displaced_step_inferior_state *displaced;
1777
237fc4c9 1778 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1779 {
1780 /* Got placed in displaced stepping queue. Will be resumed
1781 later when all the currently queued displaced stepping
7f7efbd9
VP
1782 requests finish. The thread is not executing at this point,
1783 and the call to set_executing will be made later. But we
1784 need to call set_running here, since from frontend point of view,
1785 the thread is running. */
1786 set_running (inferior_ptid, 1);
d56b7306
VP
1787 discard_cleanups (old_cleanups);
1788 return;
1789 }
99e40580 1790
ca7781d2
LM
1791 /* Update pc to reflect the new address from which we will execute
1792 instructions due to displaced stepping. */
1793 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1794
fc1cf338
PA
1795 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1796 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1797 displaced->step_closure);
237fc4c9
PA
1798 }
1799
2facfe5c 1800 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1801 else if (step)
2facfe5c 1802 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1803
30852783
UW
1804 /* Currently, our software single-step implementation leads to different
1805 results than hardware single-stepping in one situation: when stepping
1806 into delivering a signal which has an associated signal handler,
1807 hardware single-step will stop at the first instruction of the handler,
1808 while software single-step will simply skip execution of the handler.
1809
1810 For now, this difference in behavior is accepted since there is no
1811 easy way to actually implement single-stepping into a signal handler
1812 without kernel support.
1813
1814 However, there is one scenario where this difference leads to follow-on
1815 problems: if we're stepping off a breakpoint by removing all breakpoints
1816 and then single-stepping. In this case, the software single-step
1817 behavior means that even if there is a *breakpoint* in the signal
1818 handler, GDB still would not stop.
1819
1820 Fortunately, we can at least fix this particular issue. We detect
1821 here the case where we are about to deliver a signal while software
1822 single-stepping with breakpoints removed. In this situation, we
1823 revert the decisions to remove all breakpoints and insert single-
1824 step breakpoints, and instead we install a step-resume breakpoint
1825 at the current address, deliver the signal without stepping, and
1826 once we arrive back at the step-resume breakpoint, actually step
1827 over the breakpoint we originally wanted to step over. */
1828 if (singlestep_breakpoints_inserted_p
a493e3e2 1829 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1830 {
1831 /* If we have nested signals or a pending signal is delivered
1832 immediately after a handler returns, might might already have
1833 a step-resume breakpoint set on the earlier handler. We cannot
1834 set another step-resume breakpoint; just continue on until the
1835 original breakpoint is hit. */
1836 if (tp->control.step_resume_breakpoint == NULL)
1837 {
2c03e5be 1838 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1839 tp->step_after_step_resume_breakpoint = 1;
1840 }
1841
1842 remove_single_step_breakpoints ();
1843 singlestep_breakpoints_inserted_p = 0;
1844
1845 insert_breakpoints ();
1846 tp->control.trap_expected = 0;
1847 }
1848
c906108c
SS
1849 if (should_resume)
1850 {
39f77062 1851 ptid_t resume_ptid;
dfcd3bfb 1852
cd76b0b7
VP
1853 /* If STEP is set, it's a request to use hardware stepping
1854 facilities. But in that case, we should never
1855 use singlestep breakpoint. */
1856 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1857
d4db2f36
PA
1858 /* Decide the set of threads to ask the target to resume. Start
1859 by assuming everything will be resumed, than narrow the set
1860 by applying increasingly restricting conditions. */
09cee04b 1861 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1862
1863 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1864 if (singlestep_breakpoints_inserted_p
1865 && stepping_past_singlestep_breakpoint)
c906108c 1866 {
cd76b0b7
VP
1867 /* The situation here is as follows. In thread T1 we wanted to
1868 single-step. Lacking hardware single-stepping we've
1869 set breakpoint at the PC of the next instruction -- call it
1870 P. After resuming, we've hit that breakpoint in thread T2.
1871 Now we've removed original breakpoint, inserted breakpoint
1872 at P+1, and try to step to advance T2 past breakpoint.
1873 We need to step only T2, as if T1 is allowed to freely run,
1874 it can run past P, and if other threads are allowed to run,
1875 they can hit breakpoint at P+1, and nested hits of single-step
1876 breakpoints is not something we'd want -- that's complicated
1877 to support, and has no value. */
1878 resume_ptid = inferior_ptid;
1879 }
d4db2f36 1880 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1881 && tp->control.trap_expected)
cd76b0b7 1882 {
74960c60
VP
1883 /* We're allowing a thread to run past a breakpoint it has
1884 hit, by single-stepping the thread with the breakpoint
1885 removed. In which case, we need to single-step only this
1886 thread, and keep others stopped, as they can miss this
1887 breakpoint if allowed to run.
1888
1889 The current code actually removes all breakpoints when
1890 doing this, not just the one being stepped over, so if we
1891 let other threads run, we can actually miss any
1892 breakpoint, not just the one at PC. */
ef5cf84e 1893 resume_ptid = inferior_ptid;
c906108c 1894 }
ef5cf84e 1895
515630c5 1896 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1897 {
1898 /* Most targets can step a breakpoint instruction, thus
1899 executing it normally. But if this one cannot, just
1900 continue and we will hit it anyway. */
6c95b8df 1901 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1902 step = 0;
1903 }
237fc4c9
PA
1904
1905 if (debug_displaced
515630c5 1906 && use_displaced_stepping (gdbarch)
16c381f0 1907 && tp->control.trap_expected)
237fc4c9 1908 {
515630c5 1909 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1910 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1911 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1912 gdb_byte buf[4];
1913
5af949e3
UW
1914 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1915 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1916 read_memory (actual_pc, buf, sizeof (buf));
1917 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1918 }
1919
e58b0e63
PA
1920 /* Install inferior's terminal modes. */
1921 target_terminal_inferior ();
1922
2020b7ab
PA
1923 /* Avoid confusing the next resume, if the next stop/resume
1924 happens to apply to another thread. */
a493e3e2 1925 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1926
2455069d
UW
1927 /* Advise target which signals may be handled silently. If we have
1928 removed breakpoints because we are stepping over one (which can
1929 happen only if we are not using displaced stepping), we need to
1930 receive all signals to avoid accidentally skipping a breakpoint
1931 during execution of a signal handler. */
1932 if ((step || singlestep_breakpoints_inserted_p)
1933 && tp->control.trap_expected
1934 && !use_displaced_stepping (gdbarch))
1935 target_pass_signals (0, NULL);
1936 else
a493e3e2 1937 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1938
607cecd2 1939 target_resume (resume_ptid, step, sig);
c906108c
SS
1940 }
1941
1942 discard_cleanups (old_cleanups);
1943}
1944\f
237fc4c9 1945/* Proceeding. */
c906108c
SS
1946
1947/* Clear out all variables saying what to do when inferior is continued.
1948 First do this, then set the ones you want, then call `proceed'. */
1949
a7212384
UW
1950static void
1951clear_proceed_status_thread (struct thread_info *tp)
c906108c 1952{
a7212384
UW
1953 if (debug_infrun)
1954 fprintf_unfiltered (gdb_stdlog,
1955 "infrun: clear_proceed_status_thread (%s)\n",
1956 target_pid_to_str (tp->ptid));
d6b48e9c 1957
16c381f0
JK
1958 tp->control.trap_expected = 0;
1959 tp->control.step_range_start = 0;
1960 tp->control.step_range_end = 0;
1961 tp->control.step_frame_id = null_frame_id;
1962 tp->control.step_stack_frame_id = null_frame_id;
1963 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1964 tp->stop_requested = 0;
4e1c45ea 1965
16c381f0 1966 tp->control.stop_step = 0;
32400beb 1967
16c381f0 1968 tp->control.proceed_to_finish = 0;
414c69f7 1969
a7212384 1970 /* Discard any remaining commands or status from previous stop. */
16c381f0 1971 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1972}
32400beb 1973
a7212384
UW
1974static int
1975clear_proceed_status_callback (struct thread_info *tp, void *data)
1976{
1977 if (is_exited (tp->ptid))
1978 return 0;
d6b48e9c 1979
a7212384
UW
1980 clear_proceed_status_thread (tp);
1981 return 0;
1982}
1983
1984void
1985clear_proceed_status (void)
1986{
6c95b8df
PA
1987 if (!non_stop)
1988 {
1989 /* In all-stop mode, delete the per-thread status of all
1990 threads, even if inferior_ptid is null_ptid, there may be
1991 threads on the list. E.g., we may be launching a new
1992 process, while selecting the executable. */
1993 iterate_over_threads (clear_proceed_status_callback, NULL);
1994 }
1995
a7212384
UW
1996 if (!ptid_equal (inferior_ptid, null_ptid))
1997 {
1998 struct inferior *inferior;
1999
2000 if (non_stop)
2001 {
6c95b8df
PA
2002 /* If in non-stop mode, only delete the per-thread status of
2003 the current thread. */
a7212384
UW
2004 clear_proceed_status_thread (inferior_thread ());
2005 }
6c95b8df 2006
d6b48e9c 2007 inferior = current_inferior ();
16c381f0 2008 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2009 }
2010
c906108c 2011 stop_after_trap = 0;
f3b1572e
PA
2012
2013 observer_notify_about_to_proceed ();
c906108c 2014
d5c31457
UW
2015 if (stop_registers)
2016 {
2017 regcache_xfree (stop_registers);
2018 stop_registers = NULL;
2019 }
c906108c
SS
2020}
2021
5a437975
DE
2022/* Check the current thread against the thread that reported the most recent
2023 event. If a step-over is required return TRUE and set the current thread
2024 to the old thread. Otherwise return FALSE.
2025
1777feb0 2026 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2027
2028static int
6a6b96b9 2029prepare_to_proceed (int step)
ea67f13b
DJ
2030{
2031 ptid_t wait_ptid;
2032 struct target_waitstatus wait_status;
5a437975
DE
2033 int schedlock_enabled;
2034
2035 /* With non-stop mode on, threads are always handled individually. */
2036 gdb_assert (! non_stop);
ea67f13b
DJ
2037
2038 /* Get the last target status returned by target_wait(). */
2039 get_last_target_status (&wait_ptid, &wait_status);
2040
6a6b96b9 2041 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2042 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2043 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2044 && wait_status.value.sig != GDB_SIGNAL_ILL
2045 && wait_status.value.sig != GDB_SIGNAL_SEGV
2046 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2047 {
2048 return 0;
2049 }
2050
5a437975
DE
2051 schedlock_enabled = (scheduler_mode == schedlock_on
2052 || (scheduler_mode == schedlock_step
2053 && step));
2054
d4db2f36
PA
2055 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2056 if (schedlock_enabled)
2057 return 0;
2058
2059 /* Don't switch over if we're about to resume some other process
2060 other than WAIT_PTID's, and schedule-multiple is off. */
2061 if (!sched_multi
2062 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2063 return 0;
2064
6a6b96b9 2065 /* Switched over from WAIT_PID. */
ea67f13b 2066 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2067 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2068 {
515630c5
UW
2069 struct regcache *regcache = get_thread_regcache (wait_ptid);
2070
6c95b8df
PA
2071 if (breakpoint_here_p (get_regcache_aspace (regcache),
2072 regcache_read_pc (regcache)))
ea67f13b 2073 {
515630c5
UW
2074 /* If stepping, remember current thread to switch back to. */
2075 if (step)
2076 deferred_step_ptid = inferior_ptid;
ea67f13b 2077
515630c5
UW
2078 /* Switch back to WAIT_PID thread. */
2079 switch_to_thread (wait_ptid);
6a6b96b9 2080
0d9a9a5f
PA
2081 if (debug_infrun)
2082 fprintf_unfiltered (gdb_stdlog,
2083 "infrun: prepare_to_proceed (step=%d), "
2084 "switched to [%s]\n",
2085 step, target_pid_to_str (inferior_ptid));
2086
515630c5
UW
2087 /* We return 1 to indicate that there is a breakpoint here,
2088 so we need to step over it before continuing to avoid
1777feb0 2089 hitting it straight away. */
515630c5
UW
2090 return 1;
2091 }
ea67f13b
DJ
2092 }
2093
2094 return 0;
ea67f13b 2095}
e4846b08 2096
c906108c
SS
2097/* Basic routine for continuing the program in various fashions.
2098
2099 ADDR is the address to resume at, or -1 for resume where stopped.
2100 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2101 or -1 for act according to how it stopped.
c906108c 2102 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2103 -1 means return after that and print nothing.
2104 You should probably set various step_... variables
2105 before calling here, if you are stepping.
c906108c
SS
2106
2107 You should call clear_proceed_status before calling proceed. */
2108
2109void
2ea28649 2110proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2111{
e58b0e63
PA
2112 struct regcache *regcache;
2113 struct gdbarch *gdbarch;
4e1c45ea 2114 struct thread_info *tp;
e58b0e63 2115 CORE_ADDR pc;
6c95b8df 2116 struct address_space *aspace;
c906108c
SS
2117 int oneproc = 0;
2118
e58b0e63
PA
2119 /* If we're stopped at a fork/vfork, follow the branch set by the
2120 "set follow-fork-mode" command; otherwise, we'll just proceed
2121 resuming the current thread. */
2122 if (!follow_fork ())
2123 {
2124 /* The target for some reason decided not to resume. */
2125 normal_stop ();
f148b27e
PA
2126 if (target_can_async_p ())
2127 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2128 return;
2129 }
2130
842951eb
PA
2131 /* We'll update this if & when we switch to a new thread. */
2132 previous_inferior_ptid = inferior_ptid;
2133
e58b0e63
PA
2134 regcache = get_current_regcache ();
2135 gdbarch = get_regcache_arch (regcache);
6c95b8df 2136 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2137 pc = regcache_read_pc (regcache);
2138
c906108c 2139 if (step > 0)
515630c5 2140 step_start_function = find_pc_function (pc);
c906108c
SS
2141 if (step < 0)
2142 stop_after_trap = 1;
2143
2acceee2 2144 if (addr == (CORE_ADDR) -1)
c906108c 2145 {
6c95b8df 2146 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2147 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2148 /* There is a breakpoint at the address we will resume at,
2149 step one instruction before inserting breakpoints so that
2150 we do not stop right away (and report a second hit at this
b2175913
MS
2151 breakpoint).
2152
2153 Note, we don't do this in reverse, because we won't
2154 actually be executing the breakpoint insn anyway.
2155 We'll be (un-)executing the previous instruction. */
2156
c906108c 2157 oneproc = 1;
515630c5
UW
2158 else if (gdbarch_single_step_through_delay_p (gdbarch)
2159 && gdbarch_single_step_through_delay (gdbarch,
2160 get_current_frame ()))
3352ef37
AC
2161 /* We stepped onto an instruction that needs to be stepped
2162 again before re-inserting the breakpoint, do so. */
c906108c
SS
2163 oneproc = 1;
2164 }
2165 else
2166 {
515630c5 2167 regcache_write_pc (regcache, addr);
c906108c
SS
2168 }
2169
527159b7 2170 if (debug_infrun)
8a9de0e4 2171 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2172 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2173 paddress (gdbarch, addr), siggnal, step);
527159b7 2174
94cc34af
PA
2175 if (non_stop)
2176 /* In non-stop, each thread is handled individually. The context
2177 must already be set to the right thread here. */
2178 ;
2179 else
2180 {
2181 /* In a multi-threaded task we may select another thread and
2182 then continue or step.
c906108c 2183
94cc34af
PA
2184 But if the old thread was stopped at a breakpoint, it will
2185 immediately cause another breakpoint stop without any
2186 execution (i.e. it will report a breakpoint hit incorrectly).
2187 So we must step over it first.
c906108c 2188
94cc34af
PA
2189 prepare_to_proceed checks the current thread against the
2190 thread that reported the most recent event. If a step-over
2191 is required it returns TRUE and sets the current thread to
1777feb0 2192 the old thread. */
94cc34af
PA
2193 if (prepare_to_proceed (step))
2194 oneproc = 1;
2195 }
c906108c 2196
4e1c45ea
PA
2197 /* prepare_to_proceed may change the current thread. */
2198 tp = inferior_thread ();
2199
30852783
UW
2200 if (oneproc)
2201 {
2202 tp->control.trap_expected = 1;
2203 /* If displaced stepping is enabled, we can step over the
2204 breakpoint without hitting it, so leave all breakpoints
2205 inserted. Otherwise we need to disable all breakpoints, step
2206 one instruction, and then re-add them when that step is
2207 finished. */
2208 if (!use_displaced_stepping (gdbarch))
2209 remove_breakpoints ();
2210 }
2211
2212 /* We can insert breakpoints if we're not trying to step over one,
2213 or if we are stepping over one but we're using displaced stepping
2214 to do so. */
2215 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2216 insert_breakpoints ();
2217
2020b7ab
PA
2218 if (!non_stop)
2219 {
2220 /* Pass the last stop signal to the thread we're resuming,
2221 irrespective of whether the current thread is the thread that
2222 got the last event or not. This was historically GDB's
2223 behaviour before keeping a stop_signal per thread. */
2224
2225 struct thread_info *last_thread;
2226 ptid_t last_ptid;
2227 struct target_waitstatus last_status;
2228
2229 get_last_target_status (&last_ptid, &last_status);
2230 if (!ptid_equal (inferior_ptid, last_ptid)
2231 && !ptid_equal (last_ptid, null_ptid)
2232 && !ptid_equal (last_ptid, minus_one_ptid))
2233 {
e09875d4 2234 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2235 if (last_thread)
2236 {
16c381f0 2237 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2238 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2239 }
2240 }
2241 }
2242
a493e3e2 2243 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2244 tp->suspend.stop_signal = siggnal;
c906108c
SS
2245 /* If this signal should not be seen by program,
2246 give it zero. Used for debugging signals. */
16c381f0 2247 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2248 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2249
2250 annotate_starting ();
2251
2252 /* Make sure that output from GDB appears before output from the
2253 inferior. */
2254 gdb_flush (gdb_stdout);
2255
e4846b08
JJ
2256 /* Refresh prev_pc value just prior to resuming. This used to be
2257 done in stop_stepping, however, setting prev_pc there did not handle
2258 scenarios such as inferior function calls or returning from
2259 a function via the return command. In those cases, the prev_pc
2260 value was not set properly for subsequent commands. The prev_pc value
2261 is used to initialize the starting line number in the ecs. With an
2262 invalid value, the gdb next command ends up stopping at the position
2263 represented by the next line table entry past our start position.
2264 On platforms that generate one line table entry per line, this
2265 is not a problem. However, on the ia64, the compiler generates
2266 extraneous line table entries that do not increase the line number.
2267 When we issue the gdb next command on the ia64 after an inferior call
2268 or a return command, we often end up a few instructions forward, still
2269 within the original line we started.
2270
d5cd6034
JB
2271 An attempt was made to refresh the prev_pc at the same time the
2272 execution_control_state is initialized (for instance, just before
2273 waiting for an inferior event). But this approach did not work
2274 because of platforms that use ptrace, where the pc register cannot
2275 be read unless the inferior is stopped. At that point, we are not
2276 guaranteed the inferior is stopped and so the regcache_read_pc() call
2277 can fail. Setting the prev_pc value here ensures the value is updated
2278 correctly when the inferior is stopped. */
4e1c45ea 2279 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2280
59f0d5d9 2281 /* Fill in with reasonable starting values. */
4e1c45ea 2282 init_thread_stepping_state (tp);
59f0d5d9 2283
59f0d5d9
PA
2284 /* Reset to normal state. */
2285 init_infwait_state ();
2286
c906108c 2287 /* Resume inferior. */
16c381f0 2288 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2289
2290 /* Wait for it to stop (if not standalone)
2291 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2292 /* Do this only if we are not using the event loop, or if the target
1777feb0 2293 does not support asynchronous execution. */
362646f5 2294 if (!target_can_async_p ())
43ff13b4 2295 {
e4c8541f 2296 wait_for_inferior ();
43ff13b4
JM
2297 normal_stop ();
2298 }
c906108c 2299}
c906108c
SS
2300\f
2301
2302/* Start remote-debugging of a machine over a serial link. */
96baa820 2303
c906108c 2304void
8621d6a9 2305start_remote (int from_tty)
c906108c 2306{
d6b48e9c 2307 struct inferior *inferior;
d6b48e9c
PA
2308
2309 inferior = current_inferior ();
16c381f0 2310 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2311
1777feb0 2312 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2313 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2314 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2315 nothing is returned (instead of just blocking). Because of this,
2316 targets expecting an immediate response need to, internally, set
2317 things up so that the target_wait() is forced to eventually
1777feb0 2318 timeout. */
6426a772
JM
2319 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2320 differentiate to its caller what the state of the target is after
2321 the initial open has been performed. Here we're assuming that
2322 the target has stopped. It should be possible to eventually have
2323 target_open() return to the caller an indication that the target
2324 is currently running and GDB state should be set to the same as
1777feb0 2325 for an async run. */
e4c8541f 2326 wait_for_inferior ();
8621d6a9
DJ
2327
2328 /* Now that the inferior has stopped, do any bookkeeping like
2329 loading shared libraries. We want to do this before normal_stop,
2330 so that the displayed frame is up to date. */
2331 post_create_inferior (&current_target, from_tty);
2332
6426a772 2333 normal_stop ();
c906108c
SS
2334}
2335
2336/* Initialize static vars when a new inferior begins. */
2337
2338void
96baa820 2339init_wait_for_inferior (void)
c906108c
SS
2340{
2341 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2342
c906108c
SS
2343 breakpoint_init_inferior (inf_starting);
2344
c906108c 2345 clear_proceed_status ();
9f976b41
DJ
2346
2347 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2348 deferred_step_ptid = null_ptid;
ca005067
DJ
2349
2350 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2351
842951eb 2352 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2353 init_infwait_state ();
2354
edb3359d
DJ
2355 /* Discard any skipped inlined frames. */
2356 clear_inline_frame_state (minus_one_ptid);
c906108c 2357}
237fc4c9 2358
c906108c 2359\f
b83266a0
SS
2360/* This enum encodes possible reasons for doing a target_wait, so that
2361 wfi can call target_wait in one place. (Ultimately the call will be
2362 moved out of the infinite loop entirely.) */
2363
c5aa993b
JM
2364enum infwait_states
2365{
cd0fc7c3
SS
2366 infwait_normal_state,
2367 infwait_thread_hop_state,
d983da9c 2368 infwait_step_watch_state,
cd0fc7c3 2369 infwait_nonstep_watch_state
b83266a0
SS
2370};
2371
0d1e5fa7
PA
2372/* The PTID we'll do a target_wait on.*/
2373ptid_t waiton_ptid;
2374
2375/* Current inferior wait state. */
2376enum infwait_states infwait_state;
cd0fc7c3 2377
0d1e5fa7
PA
2378/* Data to be passed around while handling an event. This data is
2379 discarded between events. */
c5aa993b 2380struct execution_control_state
488f131b 2381{
0d1e5fa7 2382 ptid_t ptid;
4e1c45ea
PA
2383 /* The thread that got the event, if this was a thread event; NULL
2384 otherwise. */
2385 struct thread_info *event_thread;
2386
488f131b 2387 struct target_waitstatus ws;
488f131b 2388 int random_signal;
7e324e48 2389 int stop_func_filled_in;
488f131b
JB
2390 CORE_ADDR stop_func_start;
2391 CORE_ADDR stop_func_end;
2c02bd72 2392 const char *stop_func_name;
488f131b
JB
2393 int wait_some_more;
2394};
2395
ec9499be 2396static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2397
568d6575
UW
2398static void handle_step_into_function (struct gdbarch *gdbarch,
2399 struct execution_control_state *ecs);
2400static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2401 struct execution_control_state *ecs);
186c406b 2402static void check_exception_resume (struct execution_control_state *,
28106bc2 2403 struct frame_info *);
611c83ae 2404
104c1213
JM
2405static void stop_stepping (struct execution_control_state *ecs);
2406static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2407static void keep_going (struct execution_control_state *ecs);
104c1213 2408
252fbfc8
PA
2409/* Callback for iterate over threads. If the thread is stopped, but
2410 the user/frontend doesn't know about that yet, go through
2411 normal_stop, as if the thread had just stopped now. ARG points at
2412 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2413 ptid_is_pid(PTID) is true, applies to all threads of the process
2414 pointed at by PTID. Otherwise, apply only to the thread pointed by
2415 PTID. */
2416
2417static int
2418infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2419{
2420 ptid_t ptid = * (ptid_t *) arg;
2421
2422 if ((ptid_equal (info->ptid, ptid)
2423 || ptid_equal (minus_one_ptid, ptid)
2424 || (ptid_is_pid (ptid)
2425 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2426 && is_running (info->ptid)
2427 && !is_executing (info->ptid))
2428 {
2429 struct cleanup *old_chain;
2430 struct execution_control_state ecss;
2431 struct execution_control_state *ecs = &ecss;
2432
2433 memset (ecs, 0, sizeof (*ecs));
2434
2435 old_chain = make_cleanup_restore_current_thread ();
2436
252fbfc8
PA
2437 /* Go through handle_inferior_event/normal_stop, so we always
2438 have consistent output as if the stop event had been
2439 reported. */
2440 ecs->ptid = info->ptid;
e09875d4 2441 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2442 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2443 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2444
2445 handle_inferior_event (ecs);
2446
2447 if (!ecs->wait_some_more)
2448 {
2449 struct thread_info *tp;
2450
2451 normal_stop ();
2452
fa4cd53f 2453 /* Finish off the continuations. */
252fbfc8 2454 tp = inferior_thread ();
fa4cd53f
PA
2455 do_all_intermediate_continuations_thread (tp, 1);
2456 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2457 }
2458
2459 do_cleanups (old_chain);
2460 }
2461
2462 return 0;
2463}
2464
2465/* This function is attached as a "thread_stop_requested" observer.
2466 Cleanup local state that assumed the PTID was to be resumed, and
2467 report the stop to the frontend. */
2468
2c0b251b 2469static void
252fbfc8
PA
2470infrun_thread_stop_requested (ptid_t ptid)
2471{
fc1cf338 2472 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2473
2474 /* PTID was requested to stop. Remove it from the displaced
2475 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2476
2477 for (displaced = displaced_step_inferior_states;
2478 displaced;
2479 displaced = displaced->next)
252fbfc8 2480 {
fc1cf338 2481 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2482
fc1cf338
PA
2483 it = displaced->step_request_queue;
2484 prev_next_p = &displaced->step_request_queue;
2485 while (it)
252fbfc8 2486 {
fc1cf338
PA
2487 if (ptid_match (it->ptid, ptid))
2488 {
2489 *prev_next_p = it->next;
2490 it->next = NULL;
2491 xfree (it);
2492 }
252fbfc8 2493 else
fc1cf338
PA
2494 {
2495 prev_next_p = &it->next;
2496 }
252fbfc8 2497
fc1cf338 2498 it = *prev_next_p;
252fbfc8 2499 }
252fbfc8
PA
2500 }
2501
2502 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2503}
2504
a07daef3
PA
2505static void
2506infrun_thread_thread_exit (struct thread_info *tp, int silent)
2507{
2508 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2509 nullify_last_target_wait_ptid ();
2510}
2511
4e1c45ea
PA
2512/* Callback for iterate_over_threads. */
2513
2514static int
2515delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2516{
2517 if (is_exited (info->ptid))
2518 return 0;
2519
2520 delete_step_resume_breakpoint (info);
186c406b 2521 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2522 return 0;
2523}
2524
2525/* In all-stop, delete the step resume breakpoint of any thread that
2526 had one. In non-stop, delete the step resume breakpoint of the
2527 thread that just stopped. */
2528
2529static void
2530delete_step_thread_step_resume_breakpoint (void)
2531{
2532 if (!target_has_execution
2533 || ptid_equal (inferior_ptid, null_ptid))
2534 /* If the inferior has exited, we have already deleted the step
2535 resume breakpoints out of GDB's lists. */
2536 return;
2537
2538 if (non_stop)
2539 {
2540 /* If in non-stop mode, only delete the step-resume or
2541 longjmp-resume breakpoint of the thread that just stopped
2542 stepping. */
2543 struct thread_info *tp = inferior_thread ();
abbb1732 2544
4e1c45ea 2545 delete_step_resume_breakpoint (tp);
186c406b 2546 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2547 }
2548 else
2549 /* In all-stop mode, delete all step-resume and longjmp-resume
2550 breakpoints of any thread that had them. */
2551 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2552}
2553
1777feb0 2554/* A cleanup wrapper. */
4e1c45ea
PA
2555
2556static void
2557delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2558{
2559 delete_step_thread_step_resume_breakpoint ();
2560}
2561
223698f8
DE
2562/* Pretty print the results of target_wait, for debugging purposes. */
2563
2564static void
2565print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2566 const struct target_waitstatus *ws)
2567{
2568 char *status_string = target_waitstatus_to_string (ws);
2569 struct ui_file *tmp_stream = mem_fileopen ();
2570 char *text;
223698f8
DE
2571
2572 /* The text is split over several lines because it was getting too long.
2573 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2574 output as a unit; we want only one timestamp printed if debug_timestamp
2575 is set. */
2576
2577 fprintf_unfiltered (tmp_stream,
2578 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2579 if (PIDGET (waiton_ptid) != -1)
2580 fprintf_unfiltered (tmp_stream,
2581 " [%s]", target_pid_to_str (waiton_ptid));
2582 fprintf_unfiltered (tmp_stream, ", status) =\n");
2583 fprintf_unfiltered (tmp_stream,
2584 "infrun: %d [%s],\n",
2585 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2586 fprintf_unfiltered (tmp_stream,
2587 "infrun: %s\n",
2588 status_string);
2589
759ef836 2590 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2591
2592 /* This uses %s in part to handle %'s in the text, but also to avoid
2593 a gcc error: the format attribute requires a string literal. */
2594 fprintf_unfiltered (gdb_stdlog, "%s", text);
2595
2596 xfree (status_string);
2597 xfree (text);
2598 ui_file_delete (tmp_stream);
2599}
2600
24291992
PA
2601/* Prepare and stabilize the inferior for detaching it. E.g.,
2602 detaching while a thread is displaced stepping is a recipe for
2603 crashing it, as nothing would readjust the PC out of the scratch
2604 pad. */
2605
2606void
2607prepare_for_detach (void)
2608{
2609 struct inferior *inf = current_inferior ();
2610 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2611 struct cleanup *old_chain_1;
2612 struct displaced_step_inferior_state *displaced;
2613
2614 displaced = get_displaced_stepping_state (inf->pid);
2615
2616 /* Is any thread of this process displaced stepping? If not,
2617 there's nothing else to do. */
2618 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2619 return;
2620
2621 if (debug_infrun)
2622 fprintf_unfiltered (gdb_stdlog,
2623 "displaced-stepping in-process while detaching");
2624
2625 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2626 inf->detaching = 1;
2627
2628 while (!ptid_equal (displaced->step_ptid, null_ptid))
2629 {
2630 struct cleanup *old_chain_2;
2631 struct execution_control_state ecss;
2632 struct execution_control_state *ecs;
2633
2634 ecs = &ecss;
2635 memset (ecs, 0, sizeof (*ecs));
2636
2637 overlay_cache_invalid = 1;
2638
24291992
PA
2639 if (deprecated_target_wait_hook)
2640 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2641 else
2642 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2643
2644 if (debug_infrun)
2645 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2646
2647 /* If an error happens while handling the event, propagate GDB's
2648 knowledge of the executing state to the frontend/user running
2649 state. */
3e43a32a
MS
2650 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2651 &minus_one_ptid);
24291992
PA
2652
2653 /* Now figure out what to do with the result of the result. */
2654 handle_inferior_event (ecs);
2655
2656 /* No error, don't finish the state yet. */
2657 discard_cleanups (old_chain_2);
2658
2659 /* Breakpoints and watchpoints are not installed on the target
2660 at this point, and signals are passed directly to the
2661 inferior, so this must mean the process is gone. */
2662 if (!ecs->wait_some_more)
2663 {
2664 discard_cleanups (old_chain_1);
2665 error (_("Program exited while detaching"));
2666 }
2667 }
2668
2669 discard_cleanups (old_chain_1);
2670}
2671
cd0fc7c3 2672/* Wait for control to return from inferior to debugger.
ae123ec6 2673
cd0fc7c3
SS
2674 If inferior gets a signal, we may decide to start it up again
2675 instead of returning. That is why there is a loop in this function.
2676 When this function actually returns it means the inferior
2677 should be left stopped and GDB should read more commands. */
2678
2679void
e4c8541f 2680wait_for_inferior (void)
cd0fc7c3
SS
2681{
2682 struct cleanup *old_cleanups;
c906108c 2683
527159b7 2684 if (debug_infrun)
ae123ec6 2685 fprintf_unfiltered
e4c8541f 2686 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2687
4e1c45ea
PA
2688 old_cleanups =
2689 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2690
c906108c
SS
2691 while (1)
2692 {
ae25568b
PA
2693 struct execution_control_state ecss;
2694 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2695 struct cleanup *old_chain;
2696
ae25568b
PA
2697 memset (ecs, 0, sizeof (*ecs));
2698
ec9499be 2699 overlay_cache_invalid = 1;
ec9499be 2700
9a4105ab 2701 if (deprecated_target_wait_hook)
47608cb1 2702 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2703 else
47608cb1 2704 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2705
f00150c9 2706 if (debug_infrun)
223698f8 2707 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2708
29f49a6a
PA
2709 /* If an error happens while handling the event, propagate GDB's
2710 knowledge of the executing state to the frontend/user running
2711 state. */
2712 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2713
cd0fc7c3
SS
2714 /* Now figure out what to do with the result of the result. */
2715 handle_inferior_event (ecs);
c906108c 2716
29f49a6a
PA
2717 /* No error, don't finish the state yet. */
2718 discard_cleanups (old_chain);
2719
cd0fc7c3
SS
2720 if (!ecs->wait_some_more)
2721 break;
2722 }
4e1c45ea 2723
cd0fc7c3
SS
2724 do_cleanups (old_cleanups);
2725}
c906108c 2726
1777feb0 2727/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2728 event loop whenever a change of state is detected on the file
1777feb0
MS
2729 descriptor corresponding to the target. It can be called more than
2730 once to complete a single execution command. In such cases we need
2731 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2732 that this function is called for a single execution command, then
2733 report to the user that the inferior has stopped, and do the
1777feb0 2734 necessary cleanups. */
43ff13b4
JM
2735
2736void
fba45db2 2737fetch_inferior_event (void *client_data)
43ff13b4 2738{
0d1e5fa7 2739 struct execution_control_state ecss;
a474d7c2 2740 struct execution_control_state *ecs = &ecss;
4f8d22e3 2741 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2742 struct cleanup *ts_old_chain;
4f8d22e3 2743 int was_sync = sync_execution;
0f641c01 2744 int cmd_done = 0;
43ff13b4 2745
0d1e5fa7
PA
2746 memset (ecs, 0, sizeof (*ecs));
2747
c5187ac6
PA
2748 /* We're handling a live event, so make sure we're doing live
2749 debugging. If we're looking at traceframes while the target is
2750 running, we're going to need to get back to that mode after
2751 handling the event. */
2752 if (non_stop)
2753 {
2754 make_cleanup_restore_current_traceframe ();
e6e4e701 2755 set_current_traceframe (-1);
c5187ac6
PA
2756 }
2757
4f8d22e3
PA
2758 if (non_stop)
2759 /* In non-stop mode, the user/frontend should not notice a thread
2760 switch due to internal events. Make sure we reverse to the
2761 user selected thread and frame after handling the event and
2762 running any breakpoint commands. */
2763 make_cleanup_restore_current_thread ();
2764
ec9499be 2765 overlay_cache_invalid = 1;
3dd5b83d 2766
32231432
PA
2767 make_cleanup_restore_integer (&execution_direction);
2768 execution_direction = target_execution_direction ();
2769
9a4105ab 2770 if (deprecated_target_wait_hook)
a474d7c2 2771 ecs->ptid =
47608cb1 2772 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2773 else
47608cb1 2774 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2775
f00150c9 2776 if (debug_infrun)
223698f8 2777 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2778
29f49a6a
PA
2779 /* If an error happens while handling the event, propagate GDB's
2780 knowledge of the executing state to the frontend/user running
2781 state. */
2782 if (!non_stop)
2783 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2784 else
2785 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2786
353d1d73
JK
2787 /* Get executed before make_cleanup_restore_current_thread above to apply
2788 still for the thread which has thrown the exception. */
2789 make_bpstat_clear_actions_cleanup ();
2790
43ff13b4 2791 /* Now figure out what to do with the result of the result. */
a474d7c2 2792 handle_inferior_event (ecs);
43ff13b4 2793
a474d7c2 2794 if (!ecs->wait_some_more)
43ff13b4 2795 {
d6b48e9c
PA
2796 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2797
4e1c45ea 2798 delete_step_thread_step_resume_breakpoint ();
f107f563 2799
d6b48e9c 2800 /* We may not find an inferior if this was a process exit. */
16c381f0 2801 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2802 normal_stop ();
2803
af679fd0 2804 if (target_has_execution
0e5bf2a8 2805 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2806 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2807 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2808 && ecs->event_thread->step_multi
16c381f0 2809 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2810 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2811 else
0f641c01
PA
2812 {
2813 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2814 cmd_done = 1;
2815 }
43ff13b4 2816 }
4f8d22e3 2817
29f49a6a
PA
2818 /* No error, don't finish the thread states yet. */
2819 discard_cleanups (ts_old_chain);
2820
4f8d22e3
PA
2821 /* Revert thread and frame. */
2822 do_cleanups (old_chain);
2823
2824 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2825 restore the prompt (a synchronous execution command has finished,
2826 and we're ready for input). */
b4a14fd0 2827 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2828 display_gdb_prompt (0);
0f641c01
PA
2829
2830 if (cmd_done
2831 && !was_sync
2832 && exec_done_display_p
2833 && (ptid_equal (inferior_ptid, null_ptid)
2834 || !is_running (inferior_ptid)))
2835 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2836}
2837
edb3359d
DJ
2838/* Record the frame and location we're currently stepping through. */
2839void
2840set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2841{
2842 struct thread_info *tp = inferior_thread ();
2843
16c381f0
JK
2844 tp->control.step_frame_id = get_frame_id (frame);
2845 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2846
2847 tp->current_symtab = sal.symtab;
2848 tp->current_line = sal.line;
2849}
2850
0d1e5fa7
PA
2851/* Clear context switchable stepping state. */
2852
2853void
4e1c45ea 2854init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2855{
2856 tss->stepping_over_breakpoint = 0;
2857 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2858}
2859
e02bc4cc 2860/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2861 target_wait()/deprecated_target_wait_hook(). The data is actually
2862 cached by handle_inferior_event(), which gets called immediately
2863 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2864
2865void
488f131b 2866get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2867{
39f77062 2868 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2869 *status = target_last_waitstatus;
2870}
2871
ac264b3b
MS
2872void
2873nullify_last_target_wait_ptid (void)
2874{
2875 target_last_wait_ptid = minus_one_ptid;
2876}
2877
dcf4fbde 2878/* Switch thread contexts. */
dd80620e
MS
2879
2880static void
0d1e5fa7 2881context_switch (ptid_t ptid)
dd80620e 2882{
4b51d87b 2883 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2884 {
2885 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2886 target_pid_to_str (inferior_ptid));
2887 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2888 target_pid_to_str (ptid));
fd48f117
DJ
2889 }
2890
0d1e5fa7 2891 switch_to_thread (ptid);
dd80620e
MS
2892}
2893
4fa8626c
DJ
2894static void
2895adjust_pc_after_break (struct execution_control_state *ecs)
2896{
24a73cce
UW
2897 struct regcache *regcache;
2898 struct gdbarch *gdbarch;
6c95b8df 2899 struct address_space *aspace;
8aad930b 2900 CORE_ADDR breakpoint_pc;
4fa8626c 2901
4fa8626c
DJ
2902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2903 we aren't, just return.
9709f61c
DJ
2904
2905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2907 implemented by software breakpoints should be handled through the normal
2908 breakpoint layer.
8fb3e588 2909
4fa8626c
DJ
2910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2911 different signals (SIGILL or SIGEMT for instance), but it is less
2912 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2913 gdbarch_decr_pc_after_break. I don't know any specific target that
2914 generates these signals at breakpoints (the code has been in GDB since at
2915 least 1992) so I can not guess how to handle them here.
8fb3e588 2916
e6cf7916
UW
2917 In earlier versions of GDB, a target with
2918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2920 target with both of these set in GDB history, and it seems unlikely to be
2921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2922
2923 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2924 return;
2925
a493e3e2 2926 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2927 return;
2928
4058b839
PA
2929 /* In reverse execution, when a breakpoint is hit, the instruction
2930 under it has already been de-executed. The reported PC always
2931 points at the breakpoint address, so adjusting it further would
2932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2933 architecture:
2934
2935 B1 0x08000000 : INSN1
2936 B2 0x08000001 : INSN2
2937 0x08000002 : INSN3
2938 PC -> 0x08000003 : INSN4
2939
2940 Say you're stopped at 0x08000003 as above. Reverse continuing
2941 from that point should hit B2 as below. Reading the PC when the
2942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2943 been de-executed already.
2944
2945 B1 0x08000000 : INSN1
2946 B2 PC -> 0x08000001 : INSN2
2947 0x08000002 : INSN3
2948 0x08000003 : INSN4
2949
2950 We can't apply the same logic as for forward execution, because
2951 we would wrongly adjust the PC to 0x08000000, since there's a
2952 breakpoint at PC - 1. We'd then report a hit on B1, although
2953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2954 behaviour. */
2955 if (execution_direction == EXEC_REVERSE)
2956 return;
2957
24a73cce
UW
2958 /* If this target does not decrement the PC after breakpoints, then
2959 we have nothing to do. */
2960 regcache = get_thread_regcache (ecs->ptid);
2961 gdbarch = get_regcache_arch (regcache);
2962 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2963 return;
2964
6c95b8df
PA
2965 aspace = get_regcache_aspace (regcache);
2966
8aad930b
AC
2967 /* Find the location where (if we've hit a breakpoint) the
2968 breakpoint would be. */
515630c5
UW
2969 breakpoint_pc = regcache_read_pc (regcache)
2970 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2971
1c5cfe86
PA
2972 /* Check whether there actually is a software breakpoint inserted at
2973 that location.
2974
2975 If in non-stop mode, a race condition is possible where we've
2976 removed a breakpoint, but stop events for that breakpoint were
2977 already queued and arrive later. To suppress those spurious
2978 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2979 and retire them after a number of stop events are reported. */
6c95b8df
PA
2980 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2981 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2982 {
96429cc8 2983 struct cleanup *old_cleanups = NULL;
abbb1732 2984
96429cc8
HZ
2985 if (RECORD_IS_USED)
2986 old_cleanups = record_gdb_operation_disable_set ();
2987
1c0fdd0e
UW
2988 /* When using hardware single-step, a SIGTRAP is reported for both
2989 a completed single-step and a software breakpoint. Need to
2990 differentiate between the two, as the latter needs adjusting
2991 but the former does not.
2992
2993 The SIGTRAP can be due to a completed hardware single-step only if
2994 - we didn't insert software single-step breakpoints
2995 - the thread to be examined is still the current thread
2996 - this thread is currently being stepped
2997
2998 If any of these events did not occur, we must have stopped due
2999 to hitting a software breakpoint, and have to back up to the
3000 breakpoint address.
3001
3002 As a special case, we could have hardware single-stepped a
3003 software breakpoint. In this case (prev_pc == breakpoint_pc),
3004 we also need to back up to the breakpoint address. */
3005
3006 if (singlestep_breakpoints_inserted_p
3007 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3008 || !currently_stepping (ecs->event_thread)
3009 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3010 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3011
3012 if (RECORD_IS_USED)
3013 do_cleanups (old_cleanups);
8aad930b 3014 }
4fa8626c
DJ
3015}
3016
0d1e5fa7
PA
3017void
3018init_infwait_state (void)
3019{
3020 waiton_ptid = pid_to_ptid (-1);
3021 infwait_state = infwait_normal_state;
3022}
3023
94cc34af
PA
3024void
3025error_is_running (void)
3026{
3e43a32a
MS
3027 error (_("Cannot execute this command while "
3028 "the selected thread is running."));
94cc34af
PA
3029}
3030
3031void
3032ensure_not_running (void)
3033{
3034 if (is_running (inferior_ptid))
3035 error_is_running ();
3036}
3037
edb3359d
DJ
3038static int
3039stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3040{
3041 for (frame = get_prev_frame (frame);
3042 frame != NULL;
3043 frame = get_prev_frame (frame))
3044 {
3045 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3046 return 1;
3047 if (get_frame_type (frame) != INLINE_FRAME)
3048 break;
3049 }
3050
3051 return 0;
3052}
3053
a96d9b2e
SDJ
3054/* Auxiliary function that handles syscall entry/return events.
3055 It returns 1 if the inferior should keep going (and GDB
3056 should ignore the event), or 0 if the event deserves to be
3057 processed. */
ca2163eb 3058
a96d9b2e 3059static int
ca2163eb 3060handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3061{
ca2163eb
PA
3062 struct regcache *regcache;
3063 struct gdbarch *gdbarch;
3064 int syscall_number;
3065
3066 if (!ptid_equal (ecs->ptid, inferior_ptid))
3067 context_switch (ecs->ptid);
3068
3069 regcache = get_thread_regcache (ecs->ptid);
3070 gdbarch = get_regcache_arch (regcache);
f90263c1 3071 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3072 stop_pc = regcache_read_pc (regcache);
3073
a96d9b2e
SDJ
3074 if (catch_syscall_enabled () > 0
3075 && catching_syscall_number (syscall_number) > 0)
3076 {
3077 if (debug_infrun)
3078 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3079 syscall_number);
a96d9b2e 3080
16c381f0 3081 ecs->event_thread->control.stop_bpstat
6c95b8df 3082 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3083 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3084 ecs->random_signal
3085 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3086
ca2163eb
PA
3087 if (!ecs->random_signal)
3088 {
3089 /* Catchpoint hit. */
a493e3e2 3090 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3091 return 0;
3092 }
a96d9b2e 3093 }
ca2163eb
PA
3094
3095 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3096 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3097 keep_going (ecs);
3098 return 1;
a96d9b2e
SDJ
3099}
3100
7e324e48
GB
3101/* Clear the supplied execution_control_state's stop_func_* fields. */
3102
3103static void
3104clear_stop_func (struct execution_control_state *ecs)
3105{
3106 ecs->stop_func_filled_in = 0;
3107 ecs->stop_func_start = 0;
3108 ecs->stop_func_end = 0;
3109 ecs->stop_func_name = NULL;
3110}
3111
3112/* Lazily fill in the execution_control_state's stop_func_* fields. */
3113
3114static void
3115fill_in_stop_func (struct gdbarch *gdbarch,
3116 struct execution_control_state *ecs)
3117{
3118 if (!ecs->stop_func_filled_in)
3119 {
3120 /* Don't care about return value; stop_func_start and stop_func_name
3121 will both be 0 if it doesn't work. */
3122 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3123 &ecs->stop_func_start, &ecs->stop_func_end);
3124 ecs->stop_func_start
3125 += gdbarch_deprecated_function_start_offset (gdbarch);
3126
3127 ecs->stop_func_filled_in = 1;
3128 }
3129}
3130
cd0fc7c3
SS
3131/* Given an execution control state that has been freshly filled in
3132 by an event from the inferior, figure out what it means and take
3133 appropriate action. */
c906108c 3134
ec9499be 3135static void
96baa820 3136handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3137{
568d6575
UW
3138 struct frame_info *frame;
3139 struct gdbarch *gdbarch;
d983da9c
DJ
3140 int stopped_by_watchpoint;
3141 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3142 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3143 enum stop_kind stop_soon;
3144
28736962
PA
3145 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3146 {
3147 /* We had an event in the inferior, but we are not interested in
3148 handling it at this level. The lower layers have already
3149 done what needs to be done, if anything.
3150
3151 One of the possible circumstances for this is when the
3152 inferior produces output for the console. The inferior has
3153 not stopped, and we are ignoring the event. Another possible
3154 circumstance is any event which the lower level knows will be
3155 reported multiple times without an intervening resume. */
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3158 prepare_to_wait (ecs);
3159 return;
3160 }
3161
0e5bf2a8
PA
3162 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3163 && target_can_async_p () && !sync_execution)
3164 {
3165 /* There were no unwaited-for children left in the target, but,
3166 we're not synchronously waiting for events either. Just
3167 ignore. Otherwise, if we were running a synchronous
3168 execution command, we need to cancel it and give the user
3169 back the terminal. */
3170 if (debug_infrun)
3171 fprintf_unfiltered (gdb_stdlog,
3172 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3173 prepare_to_wait (ecs);
3174 return;
3175 }
3176
d6b48e9c 3177 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3178 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3179 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3180 {
3181 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3182
d6b48e9c 3183 gdb_assert (inf);
16c381f0 3184 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3185 }
3186 else
3187 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3188
1777feb0 3189 /* Cache the last pid/waitstatus. */
39f77062 3190 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3191 target_last_waitstatus = ecs->ws;
e02bc4cc 3192
ca005067 3193 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3194 stop_stack_dummy = STOP_NONE;
ca005067 3195
0e5bf2a8
PA
3196 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3197 {
3198 /* No unwaited-for children left. IOW, all resumed children
3199 have exited. */
3200 if (debug_infrun)
3201 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3202
3203 stop_print_frame = 0;
3204 stop_stepping (ecs);
3205 return;
3206 }
3207
8c90c137 3208 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3209 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3210 {
3211 ecs->event_thread = find_thread_ptid (ecs->ptid);
3212 /* If it's a new thread, add it to the thread database. */
3213 if (ecs->event_thread == NULL)
3214 ecs->event_thread = add_thread (ecs->ptid);
3215 }
88ed393a
JK
3216
3217 /* Dependent on valid ECS->EVENT_THREAD. */
3218 adjust_pc_after_break (ecs);
3219
3220 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3221 reinit_frame_cache ();
3222
28736962
PA
3223 breakpoint_retire_moribund ();
3224
2b009048
DJ
3225 /* First, distinguish signals caused by the debugger from signals
3226 that have to do with the program's own actions. Note that
3227 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3228 on the operating system version. Here we detect when a SIGILL or
3229 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3230 something similar for SIGSEGV, since a SIGSEGV will be generated
3231 when we're trying to execute a breakpoint instruction on a
3232 non-executable stack. This happens for call dummy breakpoints
3233 for architectures like SPARC that place call dummies on the
3234 stack. */
2b009048 3235 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3236 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3237 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3238 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3239 {
de0a0249
UW
3240 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3241
3242 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3243 regcache_read_pc (regcache)))
3244 {
3245 if (debug_infrun)
3246 fprintf_unfiltered (gdb_stdlog,
3247 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3248 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3249 }
2b009048
DJ
3250 }
3251
28736962
PA
3252 /* Mark the non-executing threads accordingly. In all-stop, all
3253 threads of all processes are stopped when we get any event
3254 reported. In non-stop mode, only the event thread stops. If
3255 we're handling a process exit in non-stop mode, there's nothing
3256 to do, as threads of the dead process are gone, and threads of
3257 any other process were left running. */
3258 if (!non_stop)
3259 set_executing (minus_one_ptid, 0);
3260 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3261 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3262 set_executing (ecs->ptid, 0);
8c90c137 3263
0d1e5fa7 3264 switch (infwait_state)
488f131b
JB
3265 {
3266 case infwait_thread_hop_state:
527159b7 3267 if (debug_infrun)
8a9de0e4 3268 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3269 break;
b83266a0 3270
488f131b 3271 case infwait_normal_state:
527159b7 3272 if (debug_infrun)
8a9de0e4 3273 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3274 break;
3275
3276 case infwait_step_watch_state:
3277 if (debug_infrun)
3278 fprintf_unfiltered (gdb_stdlog,
3279 "infrun: infwait_step_watch_state\n");
3280
3281 stepped_after_stopped_by_watchpoint = 1;
488f131b 3282 break;
b83266a0 3283
488f131b 3284 case infwait_nonstep_watch_state:
527159b7 3285 if (debug_infrun)
8a9de0e4
AC
3286 fprintf_unfiltered (gdb_stdlog,
3287 "infrun: infwait_nonstep_watch_state\n");
488f131b 3288 insert_breakpoints ();
c906108c 3289
488f131b
JB
3290 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3291 handle things like signals arriving and other things happening
3292 in combination correctly? */
3293 stepped_after_stopped_by_watchpoint = 1;
3294 break;
65e82032
AC
3295
3296 default:
e2e0b3e5 3297 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3298 }
ec9499be 3299
0d1e5fa7 3300 infwait_state = infwait_normal_state;
ec9499be 3301 waiton_ptid = pid_to_ptid (-1);
c906108c 3302
488f131b
JB
3303 switch (ecs->ws.kind)
3304 {
3305 case TARGET_WAITKIND_LOADED:
527159b7 3306 if (debug_infrun)
8a9de0e4 3307 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3308 /* Ignore gracefully during startup of the inferior, as it might
3309 be the shell which has just loaded some objects, otherwise
3310 add the symbols for the newly loaded objects. Also ignore at
3311 the beginning of an attach or remote session; we will query
3312 the full list of libraries once the connection is
3313 established. */
c0236d92 3314 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3315 {
edcc5120
TT
3316 struct regcache *regcache;
3317
3318 if (!ptid_equal (ecs->ptid, inferior_ptid))
3319 context_switch (ecs->ptid);
3320 regcache = get_thread_regcache (ecs->ptid);
3321
3322 handle_solib_event ();
3323
3324 ecs->event_thread->control.stop_bpstat
3325 = bpstat_stop_status (get_regcache_aspace (regcache),
3326 stop_pc, ecs->ptid, &ecs->ws);
3327 ecs->random_signal
3328 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3329
3330 if (!ecs->random_signal)
3331 {
3332 /* A catchpoint triggered. */
a493e3e2 3333 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3334 goto process_event_stop_test;
3335 }
488f131b 3336
b0f4b84b
DJ
3337 /* If requested, stop when the dynamic linker notifies
3338 gdb of events. This allows the user to get control
3339 and place breakpoints in initializer routines for
3340 dynamically loaded objects (among other things). */
a493e3e2 3341 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3342 if (stop_on_solib_events)
3343 {
55409f9d
DJ
3344 /* Make sure we print "Stopped due to solib-event" in
3345 normal_stop. */
3346 stop_print_frame = 1;
3347
b0f4b84b
DJ
3348 stop_stepping (ecs);
3349 return;
3350 }
488f131b 3351 }
b0f4b84b
DJ
3352
3353 /* If we are skipping through a shell, or through shared library
3354 loading that we aren't interested in, resume the program. If
3355 we're running the program normally, also resume. But stop if
3356 we're attaching or setting up a remote connection. */
3357 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3358 {
8b3ee56d
PA
3359 if (!ptid_equal (ecs->ptid, inferior_ptid))
3360 context_switch (ecs->ptid);
3361
74960c60
VP
3362 /* Loading of shared libraries might have changed breakpoint
3363 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3364 if (stop_soon == NO_STOP_QUIETLY
3365 && !breakpoints_always_inserted_mode ())
74960c60 3366 insert_breakpoints ();
a493e3e2 3367 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3368 prepare_to_wait (ecs);
3369 return;
3370 }
3371
3372 break;
c5aa993b 3373
488f131b 3374 case TARGET_WAITKIND_SPURIOUS:
527159b7 3375 if (debug_infrun)
8a9de0e4 3376 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3377 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3378 context_switch (ecs->ptid);
a493e3e2 3379 resume (0, GDB_SIGNAL_0);
488f131b
JB
3380 prepare_to_wait (ecs);
3381 return;
c5aa993b 3382
488f131b 3383 case TARGET_WAITKIND_EXITED:
940c3c06 3384 case TARGET_WAITKIND_SIGNALLED:
527159b7 3385 if (debug_infrun)
940c3c06
PA
3386 {
3387 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3388 fprintf_unfiltered (gdb_stdlog,
3389 "infrun: TARGET_WAITKIND_EXITED\n");
3390 else
3391 fprintf_unfiltered (gdb_stdlog,
3392 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3393 }
3394
fb66883a 3395 inferior_ptid = ecs->ptid;
6c95b8df
PA
3396 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3397 set_current_program_space (current_inferior ()->pspace);
3398 handle_vfork_child_exec_or_exit (0);
1777feb0 3399 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3400
940c3c06
PA
3401 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3402 {
3403 /* Record the exit code in the convenience variable $_exitcode, so
3404 that the user can inspect this again later. */
3405 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3406 (LONGEST) ecs->ws.value.integer);
3407
3408 /* Also record this in the inferior itself. */
3409 current_inferior ()->has_exit_code = 1;
3410 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3411
940c3c06
PA
3412 print_exited_reason (ecs->ws.value.integer);
3413 }
3414 else
3415 print_signal_exited_reason (ecs->ws.value.sig);
8cf64490 3416
488f131b
JB
3417 gdb_flush (gdb_stdout);
3418 target_mourn_inferior ();
1c0fdd0e 3419 singlestep_breakpoints_inserted_p = 0;
d03285ec 3420 cancel_single_step_breakpoints ();
488f131b
JB
3421 stop_print_frame = 0;
3422 stop_stepping (ecs);
3423 return;
c5aa993b 3424
488f131b 3425 /* The following are the only cases in which we keep going;
1777feb0 3426 the above cases end in a continue or goto. */
488f131b 3427 case TARGET_WAITKIND_FORKED:
deb3b17b 3428 case TARGET_WAITKIND_VFORKED:
527159b7 3429 if (debug_infrun)
fed708ed
PA
3430 {
3431 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3432 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3433 else
3434 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3435 }
c906108c 3436
e2d96639
YQ
3437 /* Check whether the inferior is displaced stepping. */
3438 {
3439 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3440 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3441 struct displaced_step_inferior_state *displaced
3442 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3443
3444 /* If checking displaced stepping is supported, and thread
3445 ecs->ptid is displaced stepping. */
3446 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3447 {
3448 struct inferior *parent_inf
3449 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3450 struct regcache *child_regcache;
3451 CORE_ADDR parent_pc;
3452
3453 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3454 indicating that the displaced stepping of syscall instruction
3455 has been done. Perform cleanup for parent process here. Note
3456 that this operation also cleans up the child process for vfork,
3457 because their pages are shared. */
a493e3e2 3458 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3459
3460 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3461 {
3462 /* Restore scratch pad for child process. */
3463 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3464 }
3465
3466 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3467 the child's PC is also within the scratchpad. Set the child's PC
3468 to the parent's PC value, which has already been fixed up.
3469 FIXME: we use the parent's aspace here, although we're touching
3470 the child, because the child hasn't been added to the inferior
3471 list yet at this point. */
3472
3473 child_regcache
3474 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3475 gdbarch,
3476 parent_inf->aspace);
3477 /* Read PC value of parent process. */
3478 parent_pc = regcache_read_pc (regcache);
3479
3480 if (debug_displaced)
3481 fprintf_unfiltered (gdb_stdlog,
3482 "displaced: write child pc from %s to %s\n",
3483 paddress (gdbarch,
3484 regcache_read_pc (child_regcache)),
3485 paddress (gdbarch, parent_pc));
3486
3487 regcache_write_pc (child_regcache, parent_pc);
3488 }
3489 }
3490
5a2901d9 3491 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3492 context_switch (ecs->ptid);
5a2901d9 3493
b242c3c2
PA
3494 /* Immediately detach breakpoints from the child before there's
3495 any chance of letting the user delete breakpoints from the
3496 breakpoint lists. If we don't do this early, it's easy to
3497 leave left over traps in the child, vis: "break foo; catch
3498 fork; c; <fork>; del; c; <child calls foo>". We only follow
3499 the fork on the last `continue', and by that time the
3500 breakpoint at "foo" is long gone from the breakpoint table.
3501 If we vforked, then we don't need to unpatch here, since both
3502 parent and child are sharing the same memory pages; we'll
3503 need to unpatch at follow/detach time instead to be certain
3504 that new breakpoints added between catchpoint hit time and
3505 vfork follow are detached. */
3506 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3507 {
b242c3c2
PA
3508 /* This won't actually modify the breakpoint list, but will
3509 physically remove the breakpoints from the child. */
d80ee84f 3510 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3511 }
3512
d03285ec
UW
3513 if (singlestep_breakpoints_inserted_p)
3514 {
1777feb0 3515 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3516 remove_single_step_breakpoints ();
3517 singlestep_breakpoints_inserted_p = 0;
3518 }
3519
e58b0e63
PA
3520 /* In case the event is caught by a catchpoint, remember that
3521 the event is to be followed at the next resume of the thread,
3522 and not immediately. */
3523 ecs->event_thread->pending_follow = ecs->ws;
3524
fb14de7b 3525 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3526
16c381f0 3527 ecs->event_thread->control.stop_bpstat
6c95b8df 3528 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3529 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3530
67822962
PA
3531 /* Note that we're interested in knowing the bpstat actually
3532 causes a stop, not just if it may explain the signal.
3533 Software watchpoints, for example, always appear in the
3534 bpstat. */
16c381f0
JK
3535 ecs->random_signal
3536 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3537
3538 /* If no catchpoint triggered for this, then keep going. */
3539 if (ecs->random_signal)
3540 {
6c95b8df
PA
3541 ptid_t parent;
3542 ptid_t child;
e58b0e63 3543 int should_resume;
3e43a32a
MS
3544 int follow_child
3545 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3546
a493e3e2 3547 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3548
3549 should_resume = follow_fork ();
3550
6c95b8df
PA
3551 parent = ecs->ptid;
3552 child = ecs->ws.value.related_pid;
3553
3554 /* In non-stop mode, also resume the other branch. */
3555 if (non_stop && !detach_fork)
3556 {
3557 if (follow_child)
3558 switch_to_thread (parent);
3559 else
3560 switch_to_thread (child);
3561
3562 ecs->event_thread = inferior_thread ();
3563 ecs->ptid = inferior_ptid;
3564 keep_going (ecs);
3565 }
3566
3567 if (follow_child)
3568 switch_to_thread (child);
3569 else
3570 switch_to_thread (parent);
3571
e58b0e63
PA
3572 ecs->event_thread = inferior_thread ();
3573 ecs->ptid = inferior_ptid;
3574
3575 if (should_resume)
3576 keep_going (ecs);
3577 else
3578 stop_stepping (ecs);
04e68871
DJ
3579 return;
3580 }
a493e3e2 3581 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3582 goto process_event_stop_test;
3583
6c95b8df
PA
3584 case TARGET_WAITKIND_VFORK_DONE:
3585 /* Done with the shared memory region. Re-insert breakpoints in
3586 the parent, and keep going. */
3587
3588 if (debug_infrun)
3e43a32a
MS
3589 fprintf_unfiltered (gdb_stdlog,
3590 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3591
3592 if (!ptid_equal (ecs->ptid, inferior_ptid))
3593 context_switch (ecs->ptid);
3594
3595 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3596 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3597 /* This also takes care of reinserting breakpoints in the
3598 previously locked inferior. */
3599 keep_going (ecs);
3600 return;
3601
488f131b 3602 case TARGET_WAITKIND_EXECD:
527159b7 3603 if (debug_infrun)
fc5261f2 3604 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3605
5a2901d9 3606 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3607 context_switch (ecs->ptid);
5a2901d9 3608
d03285ec
UW
3609 singlestep_breakpoints_inserted_p = 0;
3610 cancel_single_step_breakpoints ();
3611
fb14de7b 3612 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3613
6c95b8df
PA
3614 /* Do whatever is necessary to the parent branch of the vfork. */
3615 handle_vfork_child_exec_or_exit (1);
3616
795e548f
PA
3617 /* This causes the eventpoints and symbol table to be reset.
3618 Must do this now, before trying to determine whether to
3619 stop. */
71b43ef8 3620 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3621
16c381f0 3622 ecs->event_thread->control.stop_bpstat
6c95b8df 3623 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3624 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3625 ecs->random_signal
3626 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3627
71b43ef8
PA
3628 /* Note that this may be referenced from inside
3629 bpstat_stop_status above, through inferior_has_execd. */
3630 xfree (ecs->ws.value.execd_pathname);
3631 ecs->ws.value.execd_pathname = NULL;
3632
04e68871
DJ
3633 /* If no catchpoint triggered for this, then keep going. */
3634 if (ecs->random_signal)
3635 {
a493e3e2 3636 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3637 keep_going (ecs);
3638 return;
3639 }
a493e3e2 3640 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3641 goto process_event_stop_test;
3642
b4dc5ffa
MK
3643 /* Be careful not to try to gather much state about a thread
3644 that's in a syscall. It's frequently a losing proposition. */
488f131b 3645 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3646 if (debug_infrun)
3e43a32a
MS
3647 fprintf_unfiltered (gdb_stdlog,
3648 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3649 /* Getting the current syscall number. */
ca2163eb 3650 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3651 return;
3652 goto process_event_stop_test;
c906108c 3653
488f131b
JB
3654 /* Before examining the threads further, step this thread to
3655 get it entirely out of the syscall. (We get notice of the
3656 event when the thread is just on the verge of exiting a
3657 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3658 into user code.) */
488f131b 3659 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3660 if (debug_infrun)
3e43a32a
MS
3661 fprintf_unfiltered (gdb_stdlog,
3662 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3663 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3664 return;
3665 goto process_event_stop_test;
c906108c 3666
488f131b 3667 case TARGET_WAITKIND_STOPPED:
527159b7 3668 if (debug_infrun)
8a9de0e4 3669 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3670 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3671 break;
c906108c 3672
b2175913 3673 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3674 if (debug_infrun)
3675 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3676 /* Reverse execution: target ran out of history info. */
eab402df
PA
3677
3678 /* Pull the single step breakpoints out of the target. */
3679 if (singlestep_breakpoints_inserted_p)
3680 {
3681 if (!ptid_equal (ecs->ptid, inferior_ptid))
3682 context_switch (ecs->ptid);
3683 remove_single_step_breakpoints ();
3684 singlestep_breakpoints_inserted_p = 0;
3685 }
fb14de7b 3686 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3687 print_no_history_reason ();
b2175913
MS
3688 stop_stepping (ecs);
3689 return;
488f131b 3690 }
c906108c 3691
2020b7ab 3692 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3693 {
3694 /* Do we need to clean up the state of a thread that has
3695 completed a displaced single-step? (Doing so usually affects
3696 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3697 displaced_step_fixup (ecs->ptid,
3698 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3699
3700 /* If we either finished a single-step or hit a breakpoint, but
3701 the user wanted this thread to be stopped, pretend we got a
3702 SIG0 (generic unsignaled stop). */
3703
3704 if (ecs->event_thread->stop_requested
a493e3e2
PA
3705 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3706 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3707 }
237fc4c9 3708
515630c5 3709 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3710
527159b7 3711 if (debug_infrun)
237fc4c9 3712 {
5af949e3
UW
3713 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3714 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3715 struct cleanup *old_chain = save_inferior_ptid ();
3716
3717 inferior_ptid = ecs->ptid;
5af949e3
UW
3718
3719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3720 paddress (gdbarch, stop_pc));
d92524f1 3721 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3722 {
3723 CORE_ADDR addr;
abbb1732 3724
237fc4c9
PA
3725 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3726
3727 if (target_stopped_data_address (&current_target, &addr))
3728 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3729 "infrun: stopped data address = %s\n",
3730 paddress (gdbarch, addr));
237fc4c9
PA
3731 else
3732 fprintf_unfiltered (gdb_stdlog,
3733 "infrun: (no data address available)\n");
3734 }
7f82dfc7
JK
3735
3736 do_cleanups (old_chain);
237fc4c9 3737 }
527159b7 3738
9f976b41
DJ
3739 if (stepping_past_singlestep_breakpoint)
3740 {
1c0fdd0e 3741 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3742 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3743 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3744
3745 stepping_past_singlestep_breakpoint = 0;
3746
3747 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3748 breakpoint, or stopped for some other reason. It would be nice if
3749 we could tell, but we can't reliably. */
a493e3e2 3750 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3751 {
527159b7 3752 if (debug_infrun)
3e43a32a
MS
3753 fprintf_unfiltered (gdb_stdlog,
3754 "infrun: stepping_past_"
3755 "singlestep_breakpoint\n");
9f976b41 3756 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3757 if (!ptid_equal (ecs->ptid, inferior_ptid))
3758 context_switch (ecs->ptid);
e0cd558a 3759 remove_single_step_breakpoints ();
9f976b41
DJ
3760 singlestep_breakpoints_inserted_p = 0;
3761
3762 ecs->random_signal = 0;
16c381f0 3763 ecs->event_thread->control.trap_expected = 0;
9f976b41 3764
0d1e5fa7 3765 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3766 if (deprecated_context_hook)
3767 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41 3768
a493e3e2 3769 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3770 prepare_to_wait (ecs);
3771 return;
3772 }
3773 }
3774
ca67fcb8 3775 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3776 {
94cc34af
PA
3777 /* In non-stop mode, there's never a deferred_step_ptid set. */
3778 gdb_assert (!non_stop);
3779
6a6b96b9
UW
3780 /* If we stopped for some other reason than single-stepping, ignore
3781 the fact that we were supposed to switch back. */
a493e3e2 3782 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3783 {
3784 if (debug_infrun)
3785 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3786 "infrun: handling deferred step\n");
6a6b96b9
UW
3787
3788 /* Pull the single step breakpoints out of the target. */
3789 if (singlestep_breakpoints_inserted_p)
3790 {
8b3ee56d
PA
3791 if (!ptid_equal (ecs->ptid, inferior_ptid))
3792 context_switch (ecs->ptid);
6a6b96b9
UW
3793 remove_single_step_breakpoints ();
3794 singlestep_breakpoints_inserted_p = 0;
3795 }
3796
cd3da28e
PA
3797 ecs->event_thread->control.trap_expected = 0;
3798
d25f45d9 3799 context_switch (deferred_step_ptid);
ca67fcb8 3800 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3801 /* Suppress spurious "Switching to ..." message. */
3802 previous_inferior_ptid = inferior_ptid;
3803
a493e3e2 3804 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3805 prepare_to_wait (ecs);
3806 return;
3807 }
ca67fcb8
VP
3808
3809 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3810 }
3811
488f131b
JB
3812 /* See if a thread hit a thread-specific breakpoint that was meant for
3813 another thread. If so, then step that thread past the breakpoint,
3814 and continue it. */
3815
a493e3e2 3816 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3817 {
9f976b41 3818 int thread_hop_needed = 0;
cf00dfa7
VP
3819 struct address_space *aspace =
3820 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3821
f8d40ec8 3822 /* Check if a regular breakpoint has been hit before checking
1777feb0 3823 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3824 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3825 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3826 {
c5aa993b 3827 ecs->random_signal = 0;
6c95b8df 3828 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3829 thread_hop_needed = 1;
3830 }
1c0fdd0e 3831 else if (singlestep_breakpoints_inserted_p)
9f976b41 3832 {
fd48f117
DJ
3833 /* We have not context switched yet, so this should be true
3834 no matter which thread hit the singlestep breakpoint. */
3835 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3836 if (debug_infrun)
3837 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3838 "trap for %s\n",
3839 target_pid_to_str (ecs->ptid));
3840
9f976b41
DJ
3841 ecs->random_signal = 0;
3842 /* The call to in_thread_list is necessary because PTIDs sometimes
3843 change when we go from single-threaded to multi-threaded. If
3844 the singlestep_ptid is still in the list, assume that it is
3845 really different from ecs->ptid. */
3846 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3847 && in_thread_list (singlestep_ptid))
3848 {
fd48f117
DJ
3849 /* If the PC of the thread we were trying to single-step
3850 has changed, discard this event (which we were going
3851 to ignore anyway), and pretend we saw that thread
3852 trap. This prevents us continuously moving the
3853 single-step breakpoint forward, one instruction at a
3854 time. If the PC has changed, then the thread we were
3855 trying to single-step has trapped or been signalled,
3856 but the event has not been reported to GDB yet.
3857
3858 There might be some cases where this loses signal
3859 information, if a signal has arrived at exactly the
3860 same time that the PC changed, but this is the best
3861 we can do with the information available. Perhaps we
3862 should arrange to report all events for all threads
3863 when they stop, or to re-poll the remote looking for
3864 this particular thread (i.e. temporarily enable
3865 schedlock). */
515630c5
UW
3866
3867 CORE_ADDR new_singlestep_pc
3868 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3869
3870 if (new_singlestep_pc != singlestep_pc)
fd48f117 3871 {
2ea28649 3872 enum gdb_signal stop_signal;
2020b7ab 3873
fd48f117
DJ
3874 if (debug_infrun)
3875 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3876 " but expected thread advanced also\n");
3877
3878 /* The current context still belongs to
3879 singlestep_ptid. Don't swap here, since that's
3880 the context we want to use. Just fudge our
3881 state and continue. */
16c381f0 3882 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3883 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3884 ecs->ptid = singlestep_ptid;
e09875d4 3885 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3886 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3887 stop_pc = new_singlestep_pc;
fd48f117
DJ
3888 }
3889 else
3890 {
3891 if (debug_infrun)
3892 fprintf_unfiltered (gdb_stdlog,
3893 "infrun: unexpected thread\n");
3894
3895 thread_hop_needed = 1;
3896 stepping_past_singlestep_breakpoint = 1;
3897 saved_singlestep_ptid = singlestep_ptid;
3898 }
9f976b41
DJ
3899 }
3900 }
3901
3902 if (thread_hop_needed)
8fb3e588 3903 {
9f5a595d 3904 struct regcache *thread_regcache;
237fc4c9 3905 int remove_status = 0;
8fb3e588 3906
527159b7 3907 if (debug_infrun)
8a9de0e4 3908 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3909
b3444185
PA
3910 /* Switch context before touching inferior memory, the
3911 previous thread may have exited. */
3912 if (!ptid_equal (inferior_ptid, ecs->ptid))
3913 context_switch (ecs->ptid);
3914
8fb3e588 3915 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3916 Just continue. */
8fb3e588 3917
1c0fdd0e 3918 if (singlestep_breakpoints_inserted_p)
488f131b 3919 {
1777feb0 3920 /* Pull the single step breakpoints out of the target. */
e0cd558a 3921 remove_single_step_breakpoints ();
8fb3e588
AC
3922 singlestep_breakpoints_inserted_p = 0;
3923 }
3924
237fc4c9
PA
3925 /* If the arch can displace step, don't remove the
3926 breakpoints. */
9f5a595d
UW
3927 thread_regcache = get_thread_regcache (ecs->ptid);
3928 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3929 remove_status = remove_breakpoints ();
3930
8fb3e588
AC
3931 /* Did we fail to remove breakpoints? If so, try
3932 to set the PC past the bp. (There's at least
3933 one situation in which we can fail to remove
3934 the bp's: On HP-UX's that use ttrace, we can't
3935 change the address space of a vforking child
3936 process until the child exits (well, okay, not
1777feb0 3937 then either :-) or execs. */
8fb3e588 3938 if (remove_status != 0)
9d9cd7ac 3939 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3940 else
3941 { /* Single step */
94cc34af
PA
3942 if (!non_stop)
3943 {
3944 /* Only need to require the next event from this
3945 thread in all-stop mode. */
3946 waiton_ptid = ecs->ptid;
3947 infwait_state = infwait_thread_hop_state;
3948 }
8fb3e588 3949
4e1c45ea 3950 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3951 keep_going (ecs);
8fb3e588
AC
3952 return;
3953 }
488f131b 3954 }
1c0fdd0e 3955 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3956 {
8fb3e588
AC
3957 ecs->random_signal = 0;
3958 }
488f131b
JB
3959 }
3960 else
3961 ecs->random_signal = 1;
c906108c 3962
488f131b 3963 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3964 so, then switch to that thread. */
3965 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3966 {
527159b7 3967 if (debug_infrun)
8a9de0e4 3968 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3969
0d1e5fa7 3970 context_switch (ecs->ptid);
c5aa993b 3971
9a4105ab
AC
3972 if (deprecated_context_hook)
3973 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3974 }
c906108c 3975
568d6575
UW
3976 /* At this point, get hold of the now-current thread's frame. */
3977 frame = get_current_frame ();
3978 gdbarch = get_frame_arch (frame);
3979
1c0fdd0e 3980 if (singlestep_breakpoints_inserted_p)
488f131b 3981 {
1777feb0 3982 /* Pull the single step breakpoints out of the target. */
e0cd558a 3983 remove_single_step_breakpoints ();
488f131b
JB
3984 singlestep_breakpoints_inserted_p = 0;
3985 }
c906108c 3986
d983da9c
DJ
3987 if (stepped_after_stopped_by_watchpoint)
3988 stopped_by_watchpoint = 0;
3989 else
3990 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3991
3992 /* If necessary, step over this watchpoint. We'll be back to display
3993 it in a moment. */
3994 if (stopped_by_watchpoint
d92524f1 3995 && (target_have_steppable_watchpoint
568d6575 3996 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3997 {
488f131b
JB
3998 /* At this point, we are stopped at an instruction which has
3999 attempted to write to a piece of memory under control of
4000 a watchpoint. The instruction hasn't actually executed
4001 yet. If we were to evaluate the watchpoint expression
4002 now, we would get the old value, and therefore no change
4003 would seem to have occurred.
4004
4005 In order to make watchpoints work `right', we really need
4006 to complete the memory write, and then evaluate the
d983da9c
DJ
4007 watchpoint expression. We do this by single-stepping the
4008 target.
4009
4010 It may not be necessary to disable the watchpoint to stop over
4011 it. For example, the PA can (with some kernel cooperation)
4012 single step over a watchpoint without disabling the watchpoint.
4013
4014 It is far more common to need to disable a watchpoint to step
4015 the inferior over it. If we have non-steppable watchpoints,
4016 we must disable the current watchpoint; it's simplest to
4017 disable all watchpoints and breakpoints. */
2facfe5c
DD
4018 int hw_step = 1;
4019
d92524f1 4020 if (!target_have_steppable_watchpoint)
2455069d
UW
4021 {
4022 remove_breakpoints ();
4023 /* See comment in resume why we need to stop bypassing signals
4024 while breakpoints have been removed. */
4025 target_pass_signals (0, NULL);
4026 }
2facfe5c 4027 /* Single step */
568d6575 4028 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4029 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4030 waiton_ptid = ecs->ptid;
d92524f1 4031 if (target_have_steppable_watchpoint)
0d1e5fa7 4032 infwait_state = infwait_step_watch_state;
d983da9c 4033 else
0d1e5fa7 4034 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4035 prepare_to_wait (ecs);
4036 return;
4037 }
4038
7e324e48 4039 clear_stop_func (ecs);
4e1c45ea 4040 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4041 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4042 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4043 stop_print_frame = 1;
4044 ecs->random_signal = 0;
4045 stopped_by_random_signal = 0;
488f131b 4046
edb3359d
DJ
4047 /* Hide inlined functions starting here, unless we just performed stepi or
4048 nexti. After stepi and nexti, always show the innermost frame (not any
4049 inline function call sites). */
16c381f0 4050 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4051 {
4052 struct address_space *aspace =
4053 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4054
4055 /* skip_inline_frames is expensive, so we avoid it if we can
4056 determine that the address is one where functions cannot have
4057 been inlined. This improves performance with inferiors that
4058 load a lot of shared libraries, because the solib event
4059 breakpoint is defined as the address of a function (i.e. not
4060 inline). Note that we have to check the previous PC as well
4061 as the current one to catch cases when we have just
4062 single-stepped off a breakpoint prior to reinstating it.
4063 Note that we're assuming that the code we single-step to is
4064 not inline, but that's not definitive: there's nothing
4065 preventing the event breakpoint function from containing
4066 inlined code, and the single-step ending up there. If the
4067 user had set a breakpoint on that inlined code, the missing
4068 skip_inline_frames call would break things. Fortunately
4069 that's an extremely unlikely scenario. */
09ac7c10 4070 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4071 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4072 && ecs->event_thread->control.trap_expected
4073 && pc_at_non_inline_function (aspace,
4074 ecs->event_thread->prev_pc,
09ac7c10 4075 &ecs->ws)))
1c5a993e
MR
4076 {
4077 skip_inline_frames (ecs->ptid);
4078
4079 /* Re-fetch current thread's frame in case that invalidated
4080 the frame cache. */
4081 frame = get_current_frame ();
4082 gdbarch = get_frame_arch (frame);
4083 }
0574c78f 4084 }
edb3359d 4085
a493e3e2 4086 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4087 && ecs->event_thread->control.trap_expected
568d6575 4088 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4089 && currently_stepping (ecs->event_thread))
3352ef37 4090 {
b50d7442 4091 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4092 also on an instruction that needs to be stepped multiple
1777feb0 4093 times before it's been fully executing. E.g., architectures
3352ef37
AC
4094 with a delay slot. It needs to be stepped twice, once for
4095 the instruction and once for the delay slot. */
4096 int step_through_delay
568d6575 4097 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4098
527159b7 4099 if (debug_infrun && step_through_delay)
8a9de0e4 4100 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4101 if (ecs->event_thread->control.step_range_end == 0
4102 && step_through_delay)
3352ef37
AC
4103 {
4104 /* The user issued a continue when stopped at a breakpoint.
4105 Set up for another trap and get out of here. */
4e1c45ea 4106 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4107 keep_going (ecs);
4108 return;
4109 }
4110 else if (step_through_delay)
4111 {
4112 /* The user issued a step when stopped at a breakpoint.
4113 Maybe we should stop, maybe we should not - the delay
4114 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4115 case, don't decide that here, just set
4116 ecs->stepping_over_breakpoint, making sure we
4117 single-step again before breakpoints are re-inserted. */
4e1c45ea 4118 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4119 }
4120 }
4121
488f131b
JB
4122 /* Look at the cause of the stop, and decide what to do.
4123 The alternatives are:
0d1e5fa7
PA
4124 1) stop_stepping and return; to really stop and return to the debugger,
4125 2) keep_going and return to start up again
4e1c45ea 4126 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4127 3) set ecs->random_signal to 1, and the decision between 1 and 2
4128 will be made according to the signal handling tables. */
4129
a493e3e2 4130 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
b0f4b84b
DJ
4131 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4132 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4133 {
a493e3e2 4134 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4135 && stop_after_trap)
488f131b 4136 {
527159b7 4137 if (debug_infrun)
8a9de0e4 4138 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4139 stop_print_frame = 0;
4140 stop_stepping (ecs);
4141 return;
4142 }
c54cfec8
EZ
4143
4144 /* This is originated from start_remote(), start_inferior() and
4145 shared libraries hook functions. */
b0f4b84b 4146 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4147 {
527159b7 4148 if (debug_infrun)
8a9de0e4 4149 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4150 stop_stepping (ecs);
4151 return;
4152 }
4153
c54cfec8 4154 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4155 the stop_signal here, because some kernels don't ignore a
4156 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4157 See more comments in inferior.h. On the other hand, if we
a0ef4274 4158 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4159 will handle the SIGSTOP if it should show up later.
4160
4161 Also consider that the attach is complete when we see a
4162 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4163 target extended-remote report it instead of a SIGSTOP
4164 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4165 signal, so this is no exception.
4166
4167 Also consider that the attach is complete when we see a
a493e3e2 4168 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
e0ba6746
PA
4169 the target to stop all threads of the inferior, in case the
4170 low level attach operation doesn't stop them implicitly. If
4171 they weren't stopped implicitly, then the stub will report a
a493e3e2 4172 GDB_SIGNAL_0, meaning: stopped for no particular reason
e0ba6746 4173 other than GDB's request. */
a0ef4274 4174 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
a493e3e2
PA
4175 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4176 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4177 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
c54cfec8
EZ
4178 {
4179 stop_stepping (ecs);
a493e3e2 4180 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
c54cfec8
EZ
4181 return;
4182 }
4183
09ac7c10
TT
4184 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4185 handles this event. */
16c381f0 4186 ecs->event_thread->control.stop_bpstat
6c95b8df 4187 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4188 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4189
fba57f8f
VP
4190 /* Following in case break condition called a
4191 function. */
4192 stop_print_frame = 1;
488f131b 4193
db82e815
PA
4194 /* This is where we handle "moribund" watchpoints. Unlike
4195 software breakpoints traps, hardware watchpoint traps are
4196 always distinguishable from random traps. If no high-level
4197 watchpoint is associated with the reported stop data address
4198 anymore, then the bpstat does not explain the signal ---
4199 simply make sure to ignore it if `stopped_by_watchpoint' is
4200 set. */
4201
4202 if (debug_infrun
a493e3e2 4203 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4204 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4205 && stopped_by_watchpoint)
3e43a32a
MS
4206 fprintf_unfiltered (gdb_stdlog,
4207 "infrun: no user watchpoint explains "
4208 "watchpoint SIGTRAP, ignoring\n");
db82e815 4209
73dd234f 4210 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4211 at one stage in the past included checks for an inferior
4212 function call's call dummy's return breakpoint. The original
4213 comment, that went with the test, read:
73dd234f 4214
8fb3e588
AC
4215 ``End of a stack dummy. Some systems (e.g. Sony news) give
4216 another signal besides SIGTRAP, so check here as well as
4217 above.''
73dd234f 4218
8002d778 4219 If someone ever tries to get call dummys on a
73dd234f 4220 non-executable stack to work (where the target would stop
03cebad2
MK
4221 with something like a SIGSEGV), then those tests might need
4222 to be re-instated. Given, however, that the tests were only
73dd234f 4223 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4224 suspect that it won't be the case.
4225
8fb3e588
AC
4226 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4227 be necessary for call dummies on a non-executable stack on
4228 SPARC. */
73dd234f 4229
a493e3e2 4230 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4231 ecs->random_signal
16c381f0 4232 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4233 || stopped_by_watchpoint
16c381f0
JK
4234 || ecs->event_thread->control.trap_expected
4235 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4236 && (ecs->event_thread->control.step_resume_breakpoint
4237 == NULL)));
488f131b
JB
4238 else
4239 {
16c381f0
JK
4240 ecs->random_signal = !bpstat_explains_signal
4241 (ecs->event_thread->control.stop_bpstat);
488f131b 4242 if (!ecs->random_signal)
a493e3e2 4243 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
4244 }
4245 }
4246
4247 /* When we reach this point, we've pretty much decided
4248 that the reason for stopping must've been a random
1777feb0 4249 (unexpected) signal. */
488f131b
JB
4250
4251 else
4252 ecs->random_signal = 1;
488f131b 4253
04e68871 4254process_event_stop_test:
568d6575
UW
4255
4256 /* Re-fetch current thread's frame in case we did a
4257 "goto process_event_stop_test" above. */
4258 frame = get_current_frame ();
4259 gdbarch = get_frame_arch (frame);
4260
488f131b
JB
4261 /* For the program's own signals, act according to
4262 the signal handling tables. */
4263
4264 if (ecs->random_signal)
4265 {
4266 /* Signal not for debugging purposes. */
4267 int printed = 0;
24291992 4268 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4269
527159b7 4270 if (debug_infrun)
2020b7ab 4271 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4272 ecs->event_thread->suspend.stop_signal);
527159b7 4273
488f131b
JB
4274 stopped_by_random_signal = 1;
4275
16c381f0 4276 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4277 {
4278 printed = 1;
4279 target_terminal_ours_for_output ();
16c381f0
JK
4280 print_signal_received_reason
4281 (ecs->event_thread->suspend.stop_signal);
488f131b 4282 }
252fbfc8
PA
4283 /* Always stop on signals if we're either just gaining control
4284 of the program, or the user explicitly requested this thread
4285 to remain stopped. */
d6b48e9c 4286 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4287 || ecs->event_thread->stop_requested
24291992 4288 || (!inf->detaching
16c381f0 4289 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4290 {
4291 stop_stepping (ecs);
4292 return;
4293 }
4294 /* If not going to stop, give terminal back
4295 if we took it away. */
4296 else if (printed)
4297 target_terminal_inferior ();
4298
4299 /* Clear the signal if it should not be passed. */
16c381f0 4300 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4301 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4302
fb14de7b 4303 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4304 && ecs->event_thread->control.trap_expected
8358c15c 4305 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4306 {
4307 /* We were just starting a new sequence, attempting to
4308 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4309 Instead this signal arrives. This signal will take us out
68f53502
AC
4310 of the stepping range so GDB needs to remember to, when
4311 the signal handler returns, resume stepping off that
4312 breakpoint. */
4313 /* To simplify things, "continue" is forced to use the same
4314 code paths as single-step - set a breakpoint at the
4315 signal return address and then, once hit, step off that
4316 breakpoint. */
237fc4c9
PA
4317 if (debug_infrun)
4318 fprintf_unfiltered (gdb_stdlog,
4319 "infrun: signal arrived while stepping over "
4320 "breakpoint\n");
d3169d93 4321
2c03e5be 4322 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4323 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4324 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4325 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4326 keep_going (ecs);
4327 return;
68f53502 4328 }
9d799f85 4329
16c381f0 4330 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4331 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
16c381f0
JK
4332 && (ecs->event_thread->control.step_range_start <= stop_pc
4333 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4334 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4335 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4336 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4337 {
4338 /* The inferior is about to take a signal that will take it
4339 out of the single step range. Set a breakpoint at the
4340 current PC (which is presumably where the signal handler
4341 will eventually return) and then allow the inferior to
4342 run free.
4343
4344 Note that this is only needed for a signal delivered
4345 while in the single-step range. Nested signals aren't a
4346 problem as they eventually all return. */
237fc4c9
PA
4347 if (debug_infrun)
4348 fprintf_unfiltered (gdb_stdlog,
4349 "infrun: signal may take us out of "
4350 "single-step range\n");
4351
2c03e5be 4352 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4353 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4354 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4355 keep_going (ecs);
4356 return;
d303a6c7 4357 }
9d799f85
AC
4358
4359 /* Note: step_resume_breakpoint may be non-NULL. This occures
4360 when either there's a nested signal, or when there's a
4361 pending signal enabled just as the signal handler returns
4362 (leaving the inferior at the step-resume-breakpoint without
4363 actually executing it). Either way continue until the
4364 breakpoint is really hit. */
488f131b 4365 }
e5ef252a
PA
4366 else
4367 {
4368 /* Handle cases caused by hitting a breakpoint. */
488f131b 4369
e5ef252a
PA
4370 CORE_ADDR jmp_buf_pc;
4371 struct bpstat_what what;
611c83ae 4372
e5ef252a 4373 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4374
e5ef252a 4375 if (what.call_dummy)
e81a37f7 4376 {
e5ef252a
PA
4377 stop_stack_dummy = what.call_dummy;
4378 }
186c406b 4379
e5ef252a
PA
4380 /* If we hit an internal event that triggers symbol changes, the
4381 current frame will be invalidated within bpstat_what (e.g.,
4382 if we hit an internal solib event). Re-fetch it. */
4383 frame = get_current_frame ();
4384 gdbarch = get_frame_arch (frame);
e2e4d78b 4385
e5ef252a
PA
4386 switch (what.main_action)
4387 {
4388 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4389 /* If we hit the breakpoint at longjmp while stepping, we
4390 install a momentary breakpoint at the target of the
4391 jmp_buf. */
186c406b 4392
e81a37f7
TT
4393 if (debug_infrun)
4394 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4395 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4396
e5ef252a 4397 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4398
e2e4d78b
JK
4399 if (what.is_longjmp)
4400 {
e5ef252a
PA
4401 struct value *arg_value;
4402
4403 /* If we set the longjmp breakpoint via a SystemTap
4404 probe, then use it to extract the arguments. The
4405 destination PC is the third argument to the
4406 probe. */
4407 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4408 if (arg_value)
4409 jmp_buf_pc = value_as_address (arg_value);
4410 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4411 || !gdbarch_get_longjmp_target (gdbarch,
4412 frame, &jmp_buf_pc))
e2e4d78b 4413 {
e5ef252a
PA
4414 if (debug_infrun)
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4417 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4418 keep_going (ecs);
4419 return;
4420 }
e5ef252a
PA
4421
4422 /* Insert a breakpoint at resume address. */
4423 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4424 }
e5ef252a
PA
4425 else
4426 check_exception_resume (ecs, frame);
4427 keep_going (ecs);
4428 return;
e2e4d78b 4429
e5ef252a
PA
4430 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4431 {
4432 struct frame_info *init_frame;
e2e4d78b 4433
e5ef252a 4434 /* There are several cases to consider.
e81a37f7 4435
e5ef252a
PA
4436 1. The initiating frame no longer exists. In this case
4437 we must stop, because the exception or longjmp has gone
4438 too far.
e81a37f7 4439
e5ef252a
PA
4440 2. The initiating frame exists, and is the same as the
4441 current frame. We stop, because the exception or
4442 longjmp has been caught.
c906108c 4443
e5ef252a
PA
4444 3. The initiating frame exists and is different from
4445 the current frame. This means the exception or longjmp
4446 has been caught beneath the initiating frame, so keep
4447 going.
2c03e5be 4448
e5ef252a
PA
4449 4. longjmp breakpoint has been placed just to protect
4450 against stale dummy frames and user is not interested
4451 in stopping around longjmps. */
2c03e5be 4452
e5ef252a
PA
4453 if (debug_infrun)
4454 fprintf_unfiltered (gdb_stdlog,
4455 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4456
e5ef252a
PA
4457 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4458 != NULL);
4459 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4460
e5ef252a
PA
4461 if (what.is_longjmp)
4462 {
4463 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4464
e5ef252a
PA
4465 if (!frame_id_p (ecs->event_thread->initiating_frame))
4466 {
4467 /* Case 4. */
4468 keep_going (ecs);
4469 return;
4470 }
4471 }
c5aa993b 4472
e5ef252a 4473 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4474
e5ef252a
PA
4475 if (init_frame)
4476 {
4477 struct frame_id current_id
4478 = get_frame_id (get_current_frame ());
4479 if (frame_id_eq (current_id,
4480 ecs->event_thread->initiating_frame))
4481 {
4482 /* Case 2. Fall through. */
4483 }
4484 else
4485 {
4486 /* Case 3. */
4487 keep_going (ecs);
4488 return;
4489 }
4490 }
c5aa993b 4491
e5ef252a
PA
4492 /* For Cases 1 and 2, remove the step-resume breakpoint,
4493 if it exists. */
4494 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4495
e5ef252a
PA
4496 ecs->event_thread->control.stop_step = 1;
4497 print_end_stepping_range_reason ();
4498 stop_stepping (ecs);
68f53502 4499 }
e5ef252a 4500 return;
488f131b 4501
e5ef252a
PA
4502 case BPSTAT_WHAT_SINGLE:
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4505 ecs->event_thread->stepping_over_breakpoint = 1;
4506 /* Still need to check other stuff, at least the case where
4507 we are stepping and step out of the right range. */
4508 break;
4509
4510 case BPSTAT_WHAT_STEP_RESUME:
4511 if (debug_infrun)
4512 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4513
4514 delete_step_resume_breakpoint (ecs->event_thread);
4515 if (ecs->event_thread->control.proceed_to_finish
4516 && execution_direction == EXEC_REVERSE)
4517 {
4518 struct thread_info *tp = ecs->event_thread;
4519
4520 /* We are finishing a function in reverse, and just hit
4521 the step-resume breakpoint at the start address of
4522 the function, and we're almost there -- just need to
4523 back up by one more single-step, which should take us
4524 back to the function call. */
4525 tp->control.step_range_start = tp->control.step_range_end = 1;
4526 keep_going (ecs);
4527 return;
4528 }
4529 fill_in_stop_func (gdbarch, ecs);
4530 if (stop_pc == ecs->stop_func_start
4531 && execution_direction == EXEC_REVERSE)
4532 {
4533 /* We are stepping over a function call in reverse, and
4534 just hit the step-resume breakpoint at the start
4535 address of the function. Go back to single-stepping,
4536 which should take us back to the function call. */
4537 ecs->event_thread->stepping_over_breakpoint = 1;
4538 keep_going (ecs);
4539 return;
4540 }
4541 break;
4542
4543 case BPSTAT_WHAT_STOP_NOISY:
4544 if (debug_infrun)
4545 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4546 stop_print_frame = 1;
4547
4548 /* We are about to nuke the step_resume_breakpointt via the
4549 cleanup chain, so no need to worry about it here. */
4550
4551 stop_stepping (ecs);
4552 return;
4553
4554 case BPSTAT_WHAT_STOP_SILENT:
4555 if (debug_infrun)
4556 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4557 stop_print_frame = 0;
4558
4559 /* We are about to nuke the step_resume_breakpoin via the
4560 cleanup chain, so no need to worry about it here. */
4561
4562 stop_stepping (ecs);
4563 return;
4564
4565 case BPSTAT_WHAT_HP_STEP_RESUME:
4566 if (debug_infrun)
4567 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4568
4569 delete_step_resume_breakpoint (ecs->event_thread);
4570 if (ecs->event_thread->step_after_step_resume_breakpoint)
4571 {
4572 /* Back when the step-resume breakpoint was inserted, we
4573 were trying to single-step off a breakpoint. Go back
4574 to doing that. */
4575 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4576 ecs->event_thread->stepping_over_breakpoint = 1;
4577 keep_going (ecs);
4578 return;
4579 }
4580 break;
4581
4582 case BPSTAT_WHAT_KEEP_CHECKING:
4583 break;
4584 }
4585 }
c906108c 4586
488f131b
JB
4587 /* We come here if we hit a breakpoint but should not
4588 stop for it. Possibly we also were stepping
4589 and should stop for that. So fall through and
4590 test for stepping. But, if not stepping,
4591 do not stop. */
c906108c 4592
a7212384
UW
4593 /* In all-stop mode, if we're currently stepping but have stopped in
4594 some other thread, we need to switch back to the stepped thread. */
4595 if (!non_stop)
4596 {
4597 struct thread_info *tp;
abbb1732 4598
b3444185 4599 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4600 ecs->event_thread);
4601 if (tp)
4602 {
4603 /* However, if the current thread is blocked on some internal
4604 breakpoint, and we simply need to step over that breakpoint
4605 to get it going again, do that first. */
16c381f0 4606 if ((ecs->event_thread->control.trap_expected
a493e3e2 4607 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4608 || ecs->event_thread->stepping_over_breakpoint)
4609 {
4610 keep_going (ecs);
4611 return;
4612 }
4613
66852e9c
PA
4614 /* If the stepping thread exited, then don't try to switch
4615 back and resume it, which could fail in several different
4616 ways depending on the target. Instead, just keep going.
4617
4618 We can find a stepping dead thread in the thread list in
4619 two cases:
4620
4621 - The target supports thread exit events, and when the
4622 target tries to delete the thread from the thread list,
4623 inferior_ptid pointed at the exiting thread. In such
4624 case, calling delete_thread does not really remove the
4625 thread from the list; instead, the thread is left listed,
4626 with 'exited' state.
4627
4628 - The target's debug interface does not support thread
4629 exit events, and so we have no idea whatsoever if the
4630 previously stepping thread is still alive. For that
4631 reason, we need to synchronously query the target
4632 now. */
b3444185
PA
4633 if (is_exited (tp->ptid)
4634 || !target_thread_alive (tp->ptid))
4635 {
4636 if (debug_infrun)
3e43a32a
MS
4637 fprintf_unfiltered (gdb_stdlog,
4638 "infrun: not switching back to "
4639 "stepped thread, it has vanished\n");
b3444185
PA
4640
4641 delete_thread (tp->ptid);
4642 keep_going (ecs);
4643 return;
4644 }
4645
a7212384
UW
4646 /* Otherwise, we no longer expect a trap in the current thread.
4647 Clear the trap_expected flag before switching back -- this is
4648 what keep_going would do as well, if we called it. */
16c381f0 4649 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4650
4651 if (debug_infrun)
4652 fprintf_unfiltered (gdb_stdlog,
4653 "infrun: switching back to stepped thread\n");
4654
4655 ecs->event_thread = tp;
4656 ecs->ptid = tp->ptid;
4657 context_switch (ecs->ptid);
4658 keep_going (ecs);
4659 return;
4660 }
4661 }
4662
8358c15c 4663 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4664 {
527159b7 4665 if (debug_infrun)
d3169d93
DJ
4666 fprintf_unfiltered (gdb_stdlog,
4667 "infrun: step-resume breakpoint is inserted\n");
527159b7 4668
488f131b
JB
4669 /* Having a step-resume breakpoint overrides anything
4670 else having to do with stepping commands until
4671 that breakpoint is reached. */
488f131b
JB
4672 keep_going (ecs);
4673 return;
4674 }
c5aa993b 4675
16c381f0 4676 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4677 {
527159b7 4678 if (debug_infrun)
8a9de0e4 4679 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4680 /* Likewise if we aren't even stepping. */
488f131b
JB
4681 keep_going (ecs);
4682 return;
4683 }
c5aa993b 4684
4b7703ad
JB
4685 /* Re-fetch current thread's frame in case the code above caused
4686 the frame cache to be re-initialized, making our FRAME variable
4687 a dangling pointer. */
4688 frame = get_current_frame ();
628fe4e4 4689 gdbarch = get_frame_arch (frame);
7e324e48 4690 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4691
488f131b 4692 /* If stepping through a line, keep going if still within it.
c906108c 4693
488f131b
JB
4694 Note that step_range_end is the address of the first instruction
4695 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4696 within it!
4697
4698 Note also that during reverse execution, we may be stepping
4699 through a function epilogue and therefore must detect when
4700 the current-frame changes in the middle of a line. */
4701
16c381f0
JK
4702 if (stop_pc >= ecs->event_thread->control.step_range_start
4703 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4704 && (execution_direction != EXEC_REVERSE
388a8562 4705 || frame_id_eq (get_frame_id (frame),
16c381f0 4706 ecs->event_thread->control.step_frame_id)))
488f131b 4707 {
527159b7 4708 if (debug_infrun)
5af949e3
UW
4709 fprintf_unfiltered
4710 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4711 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4712 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4713
4714 /* When stepping backward, stop at beginning of line range
4715 (unless it's the function entry point, in which case
4716 keep going back to the call point). */
16c381f0 4717 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4718 && stop_pc != ecs->stop_func_start
4719 && execution_direction == EXEC_REVERSE)
4720 {
16c381f0 4721 ecs->event_thread->control.stop_step = 1;
33d62d64 4722 print_end_stepping_range_reason ();
b2175913
MS
4723 stop_stepping (ecs);
4724 }
4725 else
4726 keep_going (ecs);
4727
488f131b
JB
4728 return;
4729 }
c5aa993b 4730
488f131b 4731 /* We stepped out of the stepping range. */
c906108c 4732
488f131b 4733 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4734 loader dynamic symbol resolution code...
4735
4736 EXEC_FORWARD: we keep on single stepping until we exit the run
4737 time loader code and reach the callee's address.
4738
4739 EXEC_REVERSE: we've already executed the callee (backward), and
4740 the runtime loader code is handled just like any other
4741 undebuggable function call. Now we need only keep stepping
4742 backward through the trampoline code, and that's handled further
4743 down, so there is nothing for us to do here. */
4744
4745 if (execution_direction != EXEC_REVERSE
16c381f0 4746 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4747 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4748 {
4c8c40e6 4749 CORE_ADDR pc_after_resolver =
568d6575 4750 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4751
527159b7 4752 if (debug_infrun)
3e43a32a
MS
4753 fprintf_unfiltered (gdb_stdlog,
4754 "infrun: stepped into dynsym resolve code\n");
527159b7 4755
488f131b
JB
4756 if (pc_after_resolver)
4757 {
4758 /* Set up a step-resume breakpoint at the address
4759 indicated by SKIP_SOLIB_RESOLVER. */
4760 struct symtab_and_line sr_sal;
abbb1732 4761
fe39c653 4762 init_sal (&sr_sal);
488f131b 4763 sr_sal.pc = pc_after_resolver;
6c95b8df 4764 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4765
a6d9a66e
UW
4766 insert_step_resume_breakpoint_at_sal (gdbarch,
4767 sr_sal, null_frame_id);
c5aa993b 4768 }
c906108c 4769
488f131b
JB
4770 keep_going (ecs);
4771 return;
4772 }
c906108c 4773
16c381f0
JK
4774 if (ecs->event_thread->control.step_range_end != 1
4775 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4776 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4777 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4778 {
527159b7 4779 if (debug_infrun)
3e43a32a
MS
4780 fprintf_unfiltered (gdb_stdlog,
4781 "infrun: stepped into signal trampoline\n");
42edda50 4782 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4783 a signal trampoline (either by a signal being delivered or by
4784 the signal handler returning). Just single-step until the
4785 inferior leaves the trampoline (either by calling the handler
4786 or returning). */
488f131b
JB
4787 keep_going (ecs);
4788 return;
4789 }
c906108c 4790
14132e89
MR
4791 /* If we're in the return path from a shared library trampoline,
4792 we want to proceed through the trampoline when stepping. */
4793 /* macro/2012-04-25: This needs to come before the subroutine
4794 call check below as on some targets return trampolines look
4795 like subroutine calls (MIPS16 return thunks). */
4796 if (gdbarch_in_solib_return_trampoline (gdbarch,
4797 stop_pc, ecs->stop_func_name)
4798 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4799 {
4800 /* Determine where this trampoline returns. */
4801 CORE_ADDR real_stop_pc;
4802
4803 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4804
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: stepped into solib return tramp\n");
4808
4809 /* Only proceed through if we know where it's going. */
4810 if (real_stop_pc)
4811 {
4812 /* And put the step-breakpoint there and go until there. */
4813 struct symtab_and_line sr_sal;
4814
4815 init_sal (&sr_sal); /* initialize to zeroes */
4816 sr_sal.pc = real_stop_pc;
4817 sr_sal.section = find_pc_overlay (sr_sal.pc);
4818 sr_sal.pspace = get_frame_program_space (frame);
4819
4820 /* Do not specify what the fp should be when we stop since
4821 on some machines the prologue is where the new fp value
4822 is established. */
4823 insert_step_resume_breakpoint_at_sal (gdbarch,
4824 sr_sal, null_frame_id);
4825
4826 /* Restart without fiddling with the step ranges or
4827 other state. */
4828 keep_going (ecs);
4829 return;
4830 }
4831 }
4832
c17eaafe
DJ
4833 /* Check for subroutine calls. The check for the current frame
4834 equalling the step ID is not necessary - the check of the
4835 previous frame's ID is sufficient - but it is a common case and
4836 cheaper than checking the previous frame's ID.
14e60db5
DJ
4837
4838 NOTE: frame_id_eq will never report two invalid frame IDs as
4839 being equal, so to get into this block, both the current and
4840 previous frame must have valid frame IDs. */
005ca36a
JB
4841 /* The outer_frame_id check is a heuristic to detect stepping
4842 through startup code. If we step over an instruction which
4843 sets the stack pointer from an invalid value to a valid value,
4844 we may detect that as a subroutine call from the mythical
4845 "outermost" function. This could be fixed by marking
4846 outermost frames as !stack_p,code_p,special_p. Then the
4847 initial outermost frame, before sp was valid, would
ce6cca6d 4848 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4849 for more. */
edb3359d 4850 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4851 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4852 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4853 ecs->event_thread->control.step_stack_frame_id)
4854 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4855 outer_frame_id)
4856 || step_start_function != find_pc_function (stop_pc))))
488f131b 4857 {
95918acb 4858 CORE_ADDR real_stop_pc;
8fb3e588 4859
527159b7 4860 if (debug_infrun)
8a9de0e4 4861 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4862
16c381f0
JK
4863 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4864 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4865 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4866 ecs->stop_func_start)))
95918acb
AC
4867 {
4868 /* I presume that step_over_calls is only 0 when we're
4869 supposed to be stepping at the assembly language level
4870 ("stepi"). Just stop. */
4871 /* Also, maybe we just did a "nexti" inside a prolog, so we
4872 thought it was a subroutine call but it was not. Stop as
4873 well. FENN */
388a8562 4874 /* And this works the same backward as frontward. MVS */
16c381f0 4875 ecs->event_thread->control.stop_step = 1;
33d62d64 4876 print_end_stepping_range_reason ();
95918acb
AC
4877 stop_stepping (ecs);
4878 return;
4879 }
8fb3e588 4880
388a8562
MS
4881 /* Reverse stepping through solib trampolines. */
4882
4883 if (execution_direction == EXEC_REVERSE
16c381f0 4884 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4885 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4886 || (ecs->stop_func_start == 0
4887 && in_solib_dynsym_resolve_code (stop_pc))))
4888 {
4889 /* Any solib trampoline code can be handled in reverse
4890 by simply continuing to single-step. We have already
4891 executed the solib function (backwards), and a few
4892 steps will take us back through the trampoline to the
4893 caller. */
4894 keep_going (ecs);
4895 return;
4896 }
4897
16c381f0 4898 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4899 {
b2175913
MS
4900 /* We're doing a "next".
4901
4902 Normal (forward) execution: set a breakpoint at the
4903 callee's return address (the address at which the caller
4904 will resume).
4905
4906 Reverse (backward) execution. set the step-resume
4907 breakpoint at the start of the function that we just
4908 stepped into (backwards), and continue to there. When we
6130d0b7 4909 get there, we'll need to single-step back to the caller. */
b2175913
MS
4910
4911 if (execution_direction == EXEC_REVERSE)
4912 {
acf9414f
JK
4913 /* If we're already at the start of the function, we've either
4914 just stepped backward into a single instruction function,
4915 or stepped back out of a signal handler to the first instruction
4916 of the function. Just keep going, which will single-step back
4917 to the caller. */
4918 if (ecs->stop_func_start != stop_pc)
4919 {
4920 struct symtab_and_line sr_sal;
4921
4922 /* Normal function call return (static or dynamic). */
4923 init_sal (&sr_sal);
4924 sr_sal.pc = ecs->stop_func_start;
4925 sr_sal.pspace = get_frame_program_space (frame);
4926 insert_step_resume_breakpoint_at_sal (gdbarch,
4927 sr_sal, null_frame_id);
4928 }
b2175913
MS
4929 }
4930 else
568d6575 4931 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4932
8567c30f
AC
4933 keep_going (ecs);
4934 return;
4935 }
a53c66de 4936
95918acb 4937 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4938 calling routine and the real function), locate the real
4939 function. That's what tells us (a) whether we want to step
4940 into it at all, and (b) what prologue we want to run to the
4941 end of, if we do step into it. */
568d6575 4942 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4943 if (real_stop_pc == 0)
568d6575 4944 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4945 if (real_stop_pc != 0)
4946 ecs->stop_func_start = real_stop_pc;
8fb3e588 4947
db5f024e 4948 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4949 {
4950 struct symtab_and_line sr_sal;
abbb1732 4951
1b2bfbb9
RC
4952 init_sal (&sr_sal);
4953 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4954 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4955
a6d9a66e
UW
4956 insert_step_resume_breakpoint_at_sal (gdbarch,
4957 sr_sal, null_frame_id);
8fb3e588
AC
4958 keep_going (ecs);
4959 return;
1b2bfbb9
RC
4960 }
4961
95918acb 4962 /* If we have line number information for the function we are
1bfeeb0f
JL
4963 thinking of stepping into and the function isn't on the skip
4964 list, step into it.
95918acb 4965
8fb3e588
AC
4966 If there are several symtabs at that PC (e.g. with include
4967 files), just want to know whether *any* of them have line
4968 numbers. find_pc_line handles this. */
95918acb
AC
4969 {
4970 struct symtab_and_line tmp_sal;
8fb3e588 4971
95918acb 4972 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4973 if (tmp_sal.line != 0
4974 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4975 {
b2175913 4976 if (execution_direction == EXEC_REVERSE)
568d6575 4977 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4978 else
568d6575 4979 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4980 return;
4981 }
4982 }
4983
4984 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4985 set, we stop the step so that the user has a chance to switch
4986 in assembly mode. */
16c381f0 4987 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4988 && step_stop_if_no_debug)
95918acb 4989 {
16c381f0 4990 ecs->event_thread->control.stop_step = 1;
33d62d64 4991 print_end_stepping_range_reason ();
95918acb
AC
4992 stop_stepping (ecs);
4993 return;
4994 }
4995
b2175913
MS
4996 if (execution_direction == EXEC_REVERSE)
4997 {
acf9414f
JK
4998 /* If we're already at the start of the function, we've either just
4999 stepped backward into a single instruction function without line
5000 number info, or stepped back out of a signal handler to the first
5001 instruction of the function without line number info. Just keep
5002 going, which will single-step back to the caller. */
5003 if (ecs->stop_func_start != stop_pc)
5004 {
5005 /* Set a breakpoint at callee's start address.
5006 From there we can step once and be back in the caller. */
5007 struct symtab_and_line sr_sal;
abbb1732 5008
acf9414f
JK
5009 init_sal (&sr_sal);
5010 sr_sal.pc = ecs->stop_func_start;
5011 sr_sal.pspace = get_frame_program_space (frame);
5012 insert_step_resume_breakpoint_at_sal (gdbarch,
5013 sr_sal, null_frame_id);
5014 }
b2175913
MS
5015 }
5016 else
5017 /* Set a breakpoint at callee's return address (the address
5018 at which the caller will resume). */
568d6575 5019 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5020
95918acb 5021 keep_going (ecs);
488f131b 5022 return;
488f131b 5023 }
c906108c 5024
fdd654f3
MS
5025 /* Reverse stepping through solib trampolines. */
5026
5027 if (execution_direction == EXEC_REVERSE
16c381f0 5028 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5029 {
5030 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5031 || (ecs->stop_func_start == 0
5032 && in_solib_dynsym_resolve_code (stop_pc)))
5033 {
5034 /* Any solib trampoline code can be handled in reverse
5035 by simply continuing to single-step. We have already
5036 executed the solib function (backwards), and a few
5037 steps will take us back through the trampoline to the
5038 caller. */
5039 keep_going (ecs);
5040 return;
5041 }
5042 else if (in_solib_dynsym_resolve_code (stop_pc))
5043 {
5044 /* Stepped backward into the solib dynsym resolver.
5045 Set a breakpoint at its start and continue, then
5046 one more step will take us out. */
5047 struct symtab_and_line sr_sal;
abbb1732 5048
fdd654f3
MS
5049 init_sal (&sr_sal);
5050 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5051 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5052 insert_step_resume_breakpoint_at_sal (gdbarch,
5053 sr_sal, null_frame_id);
5054 keep_going (ecs);
5055 return;
5056 }
5057 }
5058
2afb61aa 5059 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5060
1b2bfbb9
RC
5061 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5062 the trampoline processing logic, however, there are some trampolines
5063 that have no names, so we should do trampoline handling first. */
16c381f0 5064 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5065 && ecs->stop_func_name == NULL
2afb61aa 5066 && stop_pc_sal.line == 0)
1b2bfbb9 5067 {
527159b7 5068 if (debug_infrun)
3e43a32a
MS
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: stepped into undebuggable function\n");
527159b7 5071
1b2bfbb9 5072 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5073 undebuggable function (where there is no debugging information
5074 and no line number corresponding to the address where the
1b2bfbb9
RC
5075 inferior stopped). Since we want to skip this kind of code,
5076 we keep going until the inferior returns from this
14e60db5
DJ
5077 function - unless the user has asked us not to (via
5078 set step-mode) or we no longer know how to get back
5079 to the call site. */
5080 if (step_stop_if_no_debug
c7ce8faa 5081 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5082 {
5083 /* If we have no line number and the step-stop-if-no-debug
5084 is set, we stop the step so that the user has a chance to
5085 switch in assembly mode. */
16c381f0 5086 ecs->event_thread->control.stop_step = 1;
33d62d64 5087 print_end_stepping_range_reason ();
1b2bfbb9
RC
5088 stop_stepping (ecs);
5089 return;
5090 }
5091 else
5092 {
5093 /* Set a breakpoint at callee's return address (the address
5094 at which the caller will resume). */
568d6575 5095 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5096 keep_going (ecs);
5097 return;
5098 }
5099 }
5100
16c381f0 5101 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5102 {
5103 /* It is stepi or nexti. We always want to stop stepping after
5104 one instruction. */
527159b7 5105 if (debug_infrun)
8a9de0e4 5106 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5107 ecs->event_thread->control.stop_step = 1;
33d62d64 5108 print_end_stepping_range_reason ();
1b2bfbb9
RC
5109 stop_stepping (ecs);
5110 return;
5111 }
5112
2afb61aa 5113 if (stop_pc_sal.line == 0)
488f131b
JB
5114 {
5115 /* We have no line number information. That means to stop
5116 stepping (does this always happen right after one instruction,
5117 when we do "s" in a function with no line numbers,
5118 or can this happen as a result of a return or longjmp?). */
527159b7 5119 if (debug_infrun)
8a9de0e4 5120 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5121 ecs->event_thread->control.stop_step = 1;
33d62d64 5122 print_end_stepping_range_reason ();
488f131b
JB
5123 stop_stepping (ecs);
5124 return;
5125 }
c906108c 5126
edb3359d
DJ
5127 /* Look for "calls" to inlined functions, part one. If the inline
5128 frame machinery detected some skipped call sites, we have entered
5129 a new inline function. */
5130
5131 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5132 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5133 && inline_skipped_frames (ecs->ptid))
5134 {
5135 struct symtab_and_line call_sal;
5136
5137 if (debug_infrun)
5138 fprintf_unfiltered (gdb_stdlog,
5139 "infrun: stepped into inlined function\n");
5140
5141 find_frame_sal (get_current_frame (), &call_sal);
5142
16c381f0 5143 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5144 {
5145 /* For "step", we're going to stop. But if the call site
5146 for this inlined function is on the same source line as
5147 we were previously stepping, go down into the function
5148 first. Otherwise stop at the call site. */
5149
5150 if (call_sal.line == ecs->event_thread->current_line
5151 && call_sal.symtab == ecs->event_thread->current_symtab)
5152 step_into_inline_frame (ecs->ptid);
5153
16c381f0 5154 ecs->event_thread->control.stop_step = 1;
33d62d64 5155 print_end_stepping_range_reason ();
edb3359d
DJ
5156 stop_stepping (ecs);
5157 return;
5158 }
5159 else
5160 {
5161 /* For "next", we should stop at the call site if it is on a
5162 different source line. Otherwise continue through the
5163 inlined function. */
5164 if (call_sal.line == ecs->event_thread->current_line
5165 && call_sal.symtab == ecs->event_thread->current_symtab)
5166 keep_going (ecs);
5167 else
5168 {
16c381f0 5169 ecs->event_thread->control.stop_step = 1;
33d62d64 5170 print_end_stepping_range_reason ();
edb3359d
DJ
5171 stop_stepping (ecs);
5172 }
5173 return;
5174 }
5175 }
5176
5177 /* Look for "calls" to inlined functions, part two. If we are still
5178 in the same real function we were stepping through, but we have
5179 to go further up to find the exact frame ID, we are stepping
5180 through a more inlined call beyond its call site. */
5181
5182 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5183 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5184 ecs->event_thread->control.step_frame_id)
edb3359d 5185 && stepped_in_from (get_current_frame (),
16c381f0 5186 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5187 {
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog,
5190 "infrun: stepping through inlined function\n");
5191
16c381f0 5192 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5193 keep_going (ecs);
5194 else
5195 {
16c381f0 5196 ecs->event_thread->control.stop_step = 1;
33d62d64 5197 print_end_stepping_range_reason ();
edb3359d
DJ
5198 stop_stepping (ecs);
5199 }
5200 return;
5201 }
5202
2afb61aa 5203 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5204 && (ecs->event_thread->current_line != stop_pc_sal.line
5205 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5206 {
5207 /* We are at the start of a different line. So stop. Note that
5208 we don't stop if we step into the middle of a different line.
5209 That is said to make things like for (;;) statements work
5210 better. */
527159b7 5211 if (debug_infrun)
3e43a32a
MS
5212 fprintf_unfiltered (gdb_stdlog,
5213 "infrun: stepped to a different line\n");
16c381f0 5214 ecs->event_thread->control.stop_step = 1;
33d62d64 5215 print_end_stepping_range_reason ();
488f131b
JB
5216 stop_stepping (ecs);
5217 return;
5218 }
c906108c 5219
488f131b 5220 /* We aren't done stepping.
c906108c 5221
488f131b
JB
5222 Optimize by setting the stepping range to the line.
5223 (We might not be in the original line, but if we entered a
5224 new line in mid-statement, we continue stepping. This makes
5225 things like for(;;) statements work better.) */
c906108c 5226
16c381f0
JK
5227 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5228 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5229 set_step_info (frame, stop_pc_sal);
488f131b 5230
527159b7 5231 if (debug_infrun)
8a9de0e4 5232 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5233 keep_going (ecs);
104c1213
JM
5234}
5235
b3444185 5236/* Is thread TP in the middle of single-stepping? */
104c1213 5237
a289b8f6 5238static int
b3444185 5239currently_stepping (struct thread_info *tp)
a7212384 5240{
8358c15c
JK
5241 return ((tp->control.step_range_end
5242 && tp->control.step_resume_breakpoint == NULL)
5243 || tp->control.trap_expected
8358c15c 5244 || bpstat_should_step ());
a7212384
UW
5245}
5246
b3444185
PA
5247/* Returns true if any thread *but* the one passed in "data" is in the
5248 middle of stepping or of handling a "next". */
a7212384 5249
104c1213 5250static int
b3444185 5251currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5252{
b3444185
PA
5253 if (tp == data)
5254 return 0;
5255
16c381f0 5256 return (tp->control.step_range_end
ede1849f 5257 || tp->control.trap_expected);
104c1213 5258}
c906108c 5259
b2175913
MS
5260/* Inferior has stepped into a subroutine call with source code that
5261 we should not step over. Do step to the first line of code in
5262 it. */
c2c6d25f
JM
5263
5264static void
568d6575
UW
5265handle_step_into_function (struct gdbarch *gdbarch,
5266 struct execution_control_state *ecs)
c2c6d25f
JM
5267{
5268 struct symtab *s;
2afb61aa 5269 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5270
7e324e48
GB
5271 fill_in_stop_func (gdbarch, ecs);
5272
c2c6d25f
JM
5273 s = find_pc_symtab (stop_pc);
5274 if (s && s->language != language_asm)
568d6575 5275 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5276 ecs->stop_func_start);
c2c6d25f 5277
2afb61aa 5278 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5279 /* Use the step_resume_break to step until the end of the prologue,
5280 even if that involves jumps (as it seems to on the vax under
5281 4.2). */
5282 /* If the prologue ends in the middle of a source line, continue to
5283 the end of that source line (if it is still within the function).
5284 Otherwise, just go to end of prologue. */
2afb61aa
PA
5285 if (stop_func_sal.end
5286 && stop_func_sal.pc != ecs->stop_func_start
5287 && stop_func_sal.end < ecs->stop_func_end)
5288 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5289
2dbd5e30
KB
5290 /* Architectures which require breakpoint adjustment might not be able
5291 to place a breakpoint at the computed address. If so, the test
5292 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5293 ecs->stop_func_start to an address at which a breakpoint may be
5294 legitimately placed.
8fb3e588 5295
2dbd5e30
KB
5296 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5297 made, GDB will enter an infinite loop when stepping through
5298 optimized code consisting of VLIW instructions which contain
5299 subinstructions corresponding to different source lines. On
5300 FR-V, it's not permitted to place a breakpoint on any but the
5301 first subinstruction of a VLIW instruction. When a breakpoint is
5302 set, GDB will adjust the breakpoint address to the beginning of
5303 the VLIW instruction. Thus, we need to make the corresponding
5304 adjustment here when computing the stop address. */
8fb3e588 5305
568d6575 5306 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5307 {
5308 ecs->stop_func_start
568d6575 5309 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5310 ecs->stop_func_start);
2dbd5e30
KB
5311 }
5312
c2c6d25f
JM
5313 if (ecs->stop_func_start == stop_pc)
5314 {
5315 /* We are already there: stop now. */
16c381f0 5316 ecs->event_thread->control.stop_step = 1;
33d62d64 5317 print_end_stepping_range_reason ();
c2c6d25f
JM
5318 stop_stepping (ecs);
5319 return;
5320 }
5321 else
5322 {
5323 /* Put the step-breakpoint there and go until there. */
fe39c653 5324 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5325 sr_sal.pc = ecs->stop_func_start;
5326 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5327 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5328
c2c6d25f 5329 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5330 some machines the prologue is where the new fp value is
5331 established. */
a6d9a66e 5332 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5333
5334 /* And make sure stepping stops right away then. */
16c381f0
JK
5335 ecs->event_thread->control.step_range_end
5336 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5337 }
5338 keep_going (ecs);
5339}
d4f3574e 5340
b2175913
MS
5341/* Inferior has stepped backward into a subroutine call with source
5342 code that we should not step over. Do step to the beginning of the
5343 last line of code in it. */
5344
5345static void
568d6575
UW
5346handle_step_into_function_backward (struct gdbarch *gdbarch,
5347 struct execution_control_state *ecs)
b2175913
MS
5348{
5349 struct symtab *s;
167e4384 5350 struct symtab_and_line stop_func_sal;
b2175913 5351
7e324e48
GB
5352 fill_in_stop_func (gdbarch, ecs);
5353
b2175913
MS
5354 s = find_pc_symtab (stop_pc);
5355 if (s && s->language != language_asm)
568d6575 5356 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5357 ecs->stop_func_start);
5358
5359 stop_func_sal = find_pc_line (stop_pc, 0);
5360
5361 /* OK, we're just going to keep stepping here. */
5362 if (stop_func_sal.pc == stop_pc)
5363 {
5364 /* We're there already. Just stop stepping now. */
16c381f0 5365 ecs->event_thread->control.stop_step = 1;
33d62d64 5366 print_end_stepping_range_reason ();
b2175913
MS
5367 stop_stepping (ecs);
5368 }
5369 else
5370 {
5371 /* Else just reset the step range and keep going.
5372 No step-resume breakpoint, they don't work for
5373 epilogues, which can have multiple entry paths. */
16c381f0
JK
5374 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5375 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5376 keep_going (ecs);
5377 }
5378 return;
5379}
5380
d3169d93 5381/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5382 This is used to both functions and to skip over code. */
5383
5384static void
2c03e5be
PA
5385insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5386 struct symtab_and_line sr_sal,
5387 struct frame_id sr_id,
5388 enum bptype sr_type)
44cbf7b5 5389{
611c83ae
PA
5390 /* There should never be more than one step-resume or longjmp-resume
5391 breakpoint per thread, so we should never be setting a new
44cbf7b5 5392 step_resume_breakpoint when one is already active. */
8358c15c 5393 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5394 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5395
5396 if (debug_infrun)
5397 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5398 "infrun: inserting step-resume breakpoint at %s\n",
5399 paddress (gdbarch, sr_sal.pc));
d3169d93 5400
8358c15c 5401 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5402 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5403}
5404
9da8c2a0 5405void
2c03e5be
PA
5406insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5407 struct symtab_and_line sr_sal,
5408 struct frame_id sr_id)
5409{
5410 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5411 sr_sal, sr_id,
5412 bp_step_resume);
44cbf7b5 5413}
7ce450bd 5414
2c03e5be
PA
5415/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5416 This is used to skip a potential signal handler.
7ce450bd 5417
14e60db5
DJ
5418 This is called with the interrupted function's frame. The signal
5419 handler, when it returns, will resume the interrupted function at
5420 RETURN_FRAME.pc. */
d303a6c7
AC
5421
5422static void
2c03e5be 5423insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5424{
5425 struct symtab_and_line sr_sal;
a6d9a66e 5426 struct gdbarch *gdbarch;
d303a6c7 5427
f4c1edd8 5428 gdb_assert (return_frame != NULL);
d303a6c7
AC
5429 init_sal (&sr_sal); /* initialize to zeros */
5430
a6d9a66e 5431 gdbarch = get_frame_arch (return_frame);
568d6575 5432 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5433 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5434 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5435
2c03e5be
PA
5436 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5437 get_stack_frame_id (return_frame),
5438 bp_hp_step_resume);
d303a6c7
AC
5439}
5440
2c03e5be
PA
5441/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5442 is used to skip a function after stepping into it (for "next" or if
5443 the called function has no debugging information).
14e60db5
DJ
5444
5445 The current function has almost always been reached by single
5446 stepping a call or return instruction. NEXT_FRAME belongs to the
5447 current function, and the breakpoint will be set at the caller's
5448 resume address.
5449
5450 This is a separate function rather than reusing
2c03e5be 5451 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5452 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5453 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5454
5455static void
5456insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5457{
5458 struct symtab_and_line sr_sal;
a6d9a66e 5459 struct gdbarch *gdbarch;
14e60db5
DJ
5460
5461 /* We shouldn't have gotten here if we don't know where the call site
5462 is. */
c7ce8faa 5463 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5464
5465 init_sal (&sr_sal); /* initialize to zeros */
5466
a6d9a66e 5467 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5468 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5469 frame_unwind_caller_pc (next_frame));
14e60db5 5470 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5471 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5472
a6d9a66e 5473 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5474 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5475}
5476
611c83ae
PA
5477/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5478 new breakpoint at the target of a jmp_buf. The handling of
5479 longjmp-resume uses the same mechanisms used for handling
5480 "step-resume" breakpoints. */
5481
5482static void
a6d9a66e 5483insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5484{
e81a37f7
TT
5485 /* There should never be more than one longjmp-resume breakpoint per
5486 thread, so we should never be setting a new
611c83ae 5487 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5488 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5489
5490 if (debug_infrun)
5491 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5492 "infrun: inserting longjmp-resume breakpoint at %s\n",
5493 paddress (gdbarch, pc));
611c83ae 5494
e81a37f7 5495 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5496 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5497}
5498
186c406b
TT
5499/* Insert an exception resume breakpoint. TP is the thread throwing
5500 the exception. The block B is the block of the unwinder debug hook
5501 function. FRAME is the frame corresponding to the call to this
5502 function. SYM is the symbol of the function argument holding the
5503 target PC of the exception. */
5504
5505static void
5506insert_exception_resume_breakpoint (struct thread_info *tp,
5507 struct block *b,
5508 struct frame_info *frame,
5509 struct symbol *sym)
5510{
bfd189b1 5511 volatile struct gdb_exception e;
186c406b
TT
5512
5513 /* We want to ignore errors here. */
5514 TRY_CATCH (e, RETURN_MASK_ERROR)
5515 {
5516 struct symbol *vsym;
5517 struct value *value;
5518 CORE_ADDR handler;
5519 struct breakpoint *bp;
5520
5521 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5522 value = read_var_value (vsym, frame);
5523 /* If the value was optimized out, revert to the old behavior. */
5524 if (! value_optimized_out (value))
5525 {
5526 handler = value_as_address (value);
5527
5528 if (debug_infrun)
5529 fprintf_unfiltered (gdb_stdlog,
5530 "infrun: exception resume at %lx\n",
5531 (unsigned long) handler);
5532
5533 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5534 handler, bp_exception_resume);
c70a6932
JK
5535
5536 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5537 frame = NULL;
5538
186c406b
TT
5539 bp->thread = tp->num;
5540 inferior_thread ()->control.exception_resume_breakpoint = bp;
5541 }
5542 }
5543}
5544
28106bc2
SDJ
5545/* A helper for check_exception_resume that sets an
5546 exception-breakpoint based on a SystemTap probe. */
5547
5548static void
5549insert_exception_resume_from_probe (struct thread_info *tp,
5550 const struct probe *probe,
28106bc2
SDJ
5551 struct frame_info *frame)
5552{
5553 struct value *arg_value;
5554 CORE_ADDR handler;
5555 struct breakpoint *bp;
5556
5557 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5558 if (!arg_value)
5559 return;
5560
5561 handler = value_as_address (arg_value);
5562
5563 if (debug_infrun)
5564 fprintf_unfiltered (gdb_stdlog,
5565 "infrun: exception resume at %s\n",
6bac7473 5566 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5567 handler));
5568
5569 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5570 handler, bp_exception_resume);
5571 bp->thread = tp->num;
5572 inferior_thread ()->control.exception_resume_breakpoint = bp;
5573}
5574
186c406b
TT
5575/* This is called when an exception has been intercepted. Check to
5576 see whether the exception's destination is of interest, and if so,
5577 set an exception resume breakpoint there. */
5578
5579static void
5580check_exception_resume (struct execution_control_state *ecs,
28106bc2 5581 struct frame_info *frame)
186c406b 5582{
bfd189b1 5583 volatile struct gdb_exception e;
28106bc2
SDJ
5584 const struct probe *probe;
5585 struct symbol *func;
5586
5587 /* First see if this exception unwinding breakpoint was set via a
5588 SystemTap probe point. If so, the probe has two arguments: the
5589 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5590 set a breakpoint there. */
6bac7473 5591 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5592 if (probe)
5593 {
6bac7473 5594 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5595 return;
5596 }
5597
5598 func = get_frame_function (frame);
5599 if (!func)
5600 return;
186c406b
TT
5601
5602 TRY_CATCH (e, RETURN_MASK_ERROR)
5603 {
5604 struct block *b;
8157b174 5605 struct block_iterator iter;
186c406b
TT
5606 struct symbol *sym;
5607 int argno = 0;
5608
5609 /* The exception breakpoint is a thread-specific breakpoint on
5610 the unwinder's debug hook, declared as:
5611
5612 void _Unwind_DebugHook (void *cfa, void *handler);
5613
5614 The CFA argument indicates the frame to which control is
5615 about to be transferred. HANDLER is the destination PC.
5616
5617 We ignore the CFA and set a temporary breakpoint at HANDLER.
5618 This is not extremely efficient but it avoids issues in gdb
5619 with computing the DWARF CFA, and it also works even in weird
5620 cases such as throwing an exception from inside a signal
5621 handler. */
5622
5623 b = SYMBOL_BLOCK_VALUE (func);
5624 ALL_BLOCK_SYMBOLS (b, iter, sym)
5625 {
5626 if (!SYMBOL_IS_ARGUMENT (sym))
5627 continue;
5628
5629 if (argno == 0)
5630 ++argno;
5631 else
5632 {
5633 insert_exception_resume_breakpoint (ecs->event_thread,
5634 b, frame, sym);
5635 break;
5636 }
5637 }
5638 }
5639}
5640
104c1213
JM
5641static void
5642stop_stepping (struct execution_control_state *ecs)
5643{
527159b7 5644 if (debug_infrun)
8a9de0e4 5645 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5646
cd0fc7c3
SS
5647 /* Let callers know we don't want to wait for the inferior anymore. */
5648 ecs->wait_some_more = 0;
5649}
5650
d4f3574e
SS
5651/* This function handles various cases where we need to continue
5652 waiting for the inferior. */
1777feb0 5653/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5654
5655static void
5656keep_going (struct execution_control_state *ecs)
5657{
c4dbc9af
PA
5658 /* Make sure normal_stop is called if we get a QUIT handled before
5659 reaching resume. */
5660 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5661
d4f3574e 5662 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5663 ecs->event_thread->prev_pc
5664 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5665
d4f3574e
SS
5666 /* If we did not do break;, it means we should keep running the
5667 inferior and not return to debugger. */
5668
16c381f0 5669 if (ecs->event_thread->control.trap_expected
a493e3e2 5670 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5671 {
5672 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5673 the inferior, else we'd not get here) and we haven't yet
5674 gotten our trap. Simply continue. */
c4dbc9af
PA
5675
5676 discard_cleanups (old_cleanups);
2020b7ab 5677 resume (currently_stepping (ecs->event_thread),
16c381f0 5678 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5679 }
5680 else
5681 {
5682 /* Either the trap was not expected, but we are continuing
488f131b
JB
5683 anyway (the user asked that this signal be passed to the
5684 child)
5685 -- or --
5686 The signal was SIGTRAP, e.g. it was our signal, but we
5687 decided we should resume from it.
d4f3574e 5688
c36b740a 5689 We're going to run this baby now!
d4f3574e 5690
c36b740a
VP
5691 Note that insert_breakpoints won't try to re-insert
5692 already inserted breakpoints. Therefore, we don't
5693 care if breakpoints were already inserted, or not. */
5694
4e1c45ea 5695 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5696 {
9f5a595d 5697 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5698
9f5a595d 5699 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5700 /* Since we can't do a displaced step, we have to remove
5701 the breakpoint while we step it. To keep things
5702 simple, we remove them all. */
5703 remove_breakpoints ();
45e8c884
VP
5704 }
5705 else
d4f3574e 5706 {
bfd189b1 5707 volatile struct gdb_exception e;
abbb1732 5708
569631c6
UW
5709 /* Stop stepping when inserting breakpoints
5710 has failed. */
e236ba44
VP
5711 TRY_CATCH (e, RETURN_MASK_ERROR)
5712 {
5713 insert_breakpoints ();
5714 }
5715 if (e.reason < 0)
d4f3574e 5716 {
97bd5475 5717 exception_print (gdb_stderr, e);
d4f3574e
SS
5718 stop_stepping (ecs);
5719 return;
5720 }
d4f3574e
SS
5721 }
5722
16c381f0
JK
5723 ecs->event_thread->control.trap_expected
5724 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5725
5726 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5727 specifies that such a signal should be delivered to the
5728 target program).
5729
5730 Typically, this would occure when a user is debugging a
5731 target monitor on a simulator: the target monitor sets a
5732 breakpoint; the simulator encounters this break-point and
5733 halts the simulation handing control to GDB; GDB, noteing
5734 that the break-point isn't valid, returns control back to the
5735 simulator; the simulator then delivers the hardware
1777feb0 5736 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5737
a493e3e2 5738 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5739 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5740 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5741
c4dbc9af 5742 discard_cleanups (old_cleanups);
2020b7ab 5743 resume (currently_stepping (ecs->event_thread),
16c381f0 5744 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5745 }
5746
488f131b 5747 prepare_to_wait (ecs);
d4f3574e
SS
5748}
5749
104c1213
JM
5750/* This function normally comes after a resume, before
5751 handle_inferior_event exits. It takes care of any last bits of
5752 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5753
104c1213
JM
5754static void
5755prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5756{
527159b7 5757 if (debug_infrun)
8a9de0e4 5758 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5759
104c1213
JM
5760 /* This is the old end of the while loop. Let everybody know we
5761 want to wait for the inferior some more and get called again
5762 soon. */
5763 ecs->wait_some_more = 1;
c906108c 5764}
11cf8741 5765
33d62d64
JK
5766/* Several print_*_reason functions to print why the inferior has stopped.
5767 We always print something when the inferior exits, or receives a signal.
5768 The rest of the cases are dealt with later on in normal_stop and
5769 print_it_typical. Ideally there should be a call to one of these
5770 print_*_reason functions functions from handle_inferior_event each time
5771 stop_stepping is called. */
5772
5773/* Print why the inferior has stopped.
5774 We are done with a step/next/si/ni command, print why the inferior has
5775 stopped. For now print nothing. Print a message only if not in the middle
5776 of doing a "step n" operation for n > 1. */
5777
5778static void
5779print_end_stepping_range_reason (void)
5780{
16c381f0
JK
5781 if ((!inferior_thread ()->step_multi
5782 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5783 && ui_out_is_mi_like_p (current_uiout))
5784 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5785 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5786}
5787
5788/* The inferior was terminated by a signal, print why it stopped. */
5789
11cf8741 5790static void
2ea28649 5791print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5792{
79a45e25
PA
5793 struct ui_out *uiout = current_uiout;
5794
33d62d64
JK
5795 annotate_signalled ();
5796 if (ui_out_is_mi_like_p (uiout))
5797 ui_out_field_string
5798 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5799 ui_out_text (uiout, "\nProgram terminated with signal ");
5800 annotate_signal_name ();
5801 ui_out_field_string (uiout, "signal-name",
2ea28649 5802 gdb_signal_to_name (siggnal));
33d62d64
JK
5803 annotate_signal_name_end ();
5804 ui_out_text (uiout, ", ");
5805 annotate_signal_string ();
5806 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5807 gdb_signal_to_string (siggnal));
33d62d64
JK
5808 annotate_signal_string_end ();
5809 ui_out_text (uiout, ".\n");
5810 ui_out_text (uiout, "The program no longer exists.\n");
5811}
5812
5813/* The inferior program is finished, print why it stopped. */
5814
5815static void
5816print_exited_reason (int exitstatus)
5817{
fda326dd
TT
5818 struct inferior *inf = current_inferior ();
5819 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5820 struct ui_out *uiout = current_uiout;
fda326dd 5821
33d62d64
JK
5822 annotate_exited (exitstatus);
5823 if (exitstatus)
5824 {
5825 if (ui_out_is_mi_like_p (uiout))
5826 ui_out_field_string (uiout, "reason",
5827 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5828 ui_out_text (uiout, "[Inferior ");
5829 ui_out_text (uiout, plongest (inf->num));
5830 ui_out_text (uiout, " (");
5831 ui_out_text (uiout, pidstr);
5832 ui_out_text (uiout, ") exited with code ");
33d62d64 5833 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5834 ui_out_text (uiout, "]\n");
33d62d64
JK
5835 }
5836 else
11cf8741 5837 {
9dc5e2a9 5838 if (ui_out_is_mi_like_p (uiout))
034dad6f 5839 ui_out_field_string
33d62d64 5840 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5841 ui_out_text (uiout, "[Inferior ");
5842 ui_out_text (uiout, plongest (inf->num));
5843 ui_out_text (uiout, " (");
5844 ui_out_text (uiout, pidstr);
5845 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5846 }
5847 /* Support the --return-child-result option. */
5848 return_child_result_value = exitstatus;
5849}
5850
5851/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5852 tells us to print about it. */
33d62d64
JK
5853
5854static void
2ea28649 5855print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5856{
79a45e25
PA
5857 struct ui_out *uiout = current_uiout;
5858
33d62d64
JK
5859 annotate_signal ();
5860
a493e3e2 5861 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5862 {
5863 struct thread_info *t = inferior_thread ();
5864
5865 ui_out_text (uiout, "\n[");
5866 ui_out_field_string (uiout, "thread-name",
5867 target_pid_to_str (t->ptid));
5868 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5869 ui_out_text (uiout, " stopped");
5870 }
5871 else
5872 {
5873 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5874 annotate_signal_name ();
33d62d64
JK
5875 if (ui_out_is_mi_like_p (uiout))
5876 ui_out_field_string
5877 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5878 ui_out_field_string (uiout, "signal-name",
2ea28649 5879 gdb_signal_to_name (siggnal));
8b93c638
JM
5880 annotate_signal_name_end ();
5881 ui_out_text (uiout, ", ");
5882 annotate_signal_string ();
488f131b 5883 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5884 gdb_signal_to_string (siggnal));
8b93c638 5885 annotate_signal_string_end ();
33d62d64
JK
5886 }
5887 ui_out_text (uiout, ".\n");
5888}
252fbfc8 5889
33d62d64
JK
5890/* Reverse execution: target ran out of history info, print why the inferior
5891 has stopped. */
252fbfc8 5892
33d62d64
JK
5893static void
5894print_no_history_reason (void)
5895{
79a45e25 5896 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5897}
43ff13b4 5898
c906108c
SS
5899/* Here to return control to GDB when the inferior stops for real.
5900 Print appropriate messages, remove breakpoints, give terminal our modes.
5901
5902 STOP_PRINT_FRAME nonzero means print the executing frame
5903 (pc, function, args, file, line number and line text).
5904 BREAKPOINTS_FAILED nonzero means stop was due to error
5905 attempting to insert breakpoints. */
5906
5907void
96baa820 5908normal_stop (void)
c906108c 5909{
73b65bb0
DJ
5910 struct target_waitstatus last;
5911 ptid_t last_ptid;
29f49a6a 5912 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5913
5914 get_last_target_status (&last_ptid, &last);
5915
29f49a6a
PA
5916 /* If an exception is thrown from this point on, make sure to
5917 propagate GDB's knowledge of the executing state to the
5918 frontend/user running state. A QUIT is an easy exception to see
5919 here, so do this before any filtered output. */
c35b1492
PA
5920 if (!non_stop)
5921 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5922 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5923 && last.kind != TARGET_WAITKIND_EXITED
5924 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5925 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5926
4f8d22e3
PA
5927 /* In non-stop mode, we don't want GDB to switch threads behind the
5928 user's back, to avoid races where the user is typing a command to
5929 apply to thread x, but GDB switches to thread y before the user
5930 finishes entering the command. */
5931
c906108c
SS
5932 /* As with the notification of thread events, we want to delay
5933 notifying the user that we've switched thread context until
5934 the inferior actually stops.
5935
73b65bb0
DJ
5936 There's no point in saying anything if the inferior has exited.
5937 Note that SIGNALLED here means "exited with a signal", not
5938 "received a signal". */
4f8d22e3
PA
5939 if (!non_stop
5940 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5941 && target_has_execution
5942 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5943 && last.kind != TARGET_WAITKIND_EXITED
5944 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5945 {
5946 target_terminal_ours_for_output ();
a3f17187 5947 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5948 target_pid_to_str (inferior_ptid));
b8fa951a 5949 annotate_thread_changed ();
39f77062 5950 previous_inferior_ptid = inferior_ptid;
c906108c 5951 }
c906108c 5952
0e5bf2a8
PA
5953 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5954 {
5955 gdb_assert (sync_execution || !target_can_async_p ());
5956
5957 target_terminal_ours_for_output ();
5958 printf_filtered (_("No unwaited-for children left.\n"));
5959 }
5960
74960c60 5961 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5962 {
5963 if (remove_breakpoints ())
5964 {
5965 target_terminal_ours_for_output ();
3e43a32a
MS
5966 printf_filtered (_("Cannot remove breakpoints because "
5967 "program is no longer writable.\nFurther "
5968 "execution is probably impossible.\n"));
c906108c
SS
5969 }
5970 }
c906108c 5971
c906108c
SS
5972 /* If an auto-display called a function and that got a signal,
5973 delete that auto-display to avoid an infinite recursion. */
5974
5975 if (stopped_by_random_signal)
5976 disable_current_display ();
5977
5978 /* Don't print a message if in the middle of doing a "step n"
5979 operation for n > 1 */
af679fd0
PA
5980 if (target_has_execution
5981 && last.kind != TARGET_WAITKIND_SIGNALLED
5982 && last.kind != TARGET_WAITKIND_EXITED
5983 && inferior_thread ()->step_multi
16c381f0 5984 && inferior_thread ()->control.stop_step)
c906108c
SS
5985 goto done;
5986
5987 target_terminal_ours ();
0f641c01 5988 async_enable_stdin ();
c906108c 5989
7abfe014
DJ
5990 /* Set the current source location. This will also happen if we
5991 display the frame below, but the current SAL will be incorrect
5992 during a user hook-stop function. */
d729566a 5993 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5994 set_current_sal_from_frame (get_current_frame (), 1);
5995
dd7e2d2b
PA
5996 /* Let the user/frontend see the threads as stopped. */
5997 do_cleanups (old_chain);
5998
5999 /* Look up the hook_stop and run it (CLI internally handles problem
6000 of stop_command's pre-hook not existing). */
6001 if (stop_command)
6002 catch_errors (hook_stop_stub, stop_command,
6003 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6004
d729566a 6005 if (!has_stack_frames ())
d51fd4c8 6006 goto done;
c906108c 6007
32400beb
PA
6008 if (last.kind == TARGET_WAITKIND_SIGNALLED
6009 || last.kind == TARGET_WAITKIND_EXITED)
6010 goto done;
6011
c906108c
SS
6012 /* Select innermost stack frame - i.e., current frame is frame 0,
6013 and current location is based on that.
6014 Don't do this on return from a stack dummy routine,
1777feb0 6015 or if the program has exited. */
c906108c
SS
6016
6017 if (!stop_stack_dummy)
6018 {
0f7d239c 6019 select_frame (get_current_frame ());
c906108c
SS
6020
6021 /* Print current location without a level number, if
c5aa993b
JM
6022 we have changed functions or hit a breakpoint.
6023 Print source line if we have one.
6024 bpstat_print() contains the logic deciding in detail
1777feb0 6025 what to print, based on the event(s) that just occurred. */
c906108c 6026
d01a8610
AS
6027 /* If --batch-silent is enabled then there's no need to print the current
6028 source location, and to try risks causing an error message about
6029 missing source files. */
6030 if (stop_print_frame && !batch_silent)
c906108c
SS
6031 {
6032 int bpstat_ret;
6033 int source_flag;
917317f4 6034 int do_frame_printing = 1;
347bddb7 6035 struct thread_info *tp = inferior_thread ();
c906108c 6036
36dfb11c 6037 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6038 switch (bpstat_ret)
6039 {
6040 case PRINT_UNKNOWN:
aa0cd9c1 6041 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6042 (or should) carry around the function and does (or
6043 should) use that when doing a frame comparison. */
16c381f0
JK
6044 if (tp->control.stop_step
6045 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6046 get_frame_id (get_current_frame ()))
917317f4 6047 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6048 source_flag = SRC_LINE; /* Finished step, just
6049 print source line. */
917317f4 6050 else
1777feb0
MS
6051 source_flag = SRC_AND_LOC; /* Print location and
6052 source line. */
917317f4
JM
6053 break;
6054 case PRINT_SRC_AND_LOC:
1777feb0
MS
6055 source_flag = SRC_AND_LOC; /* Print location and
6056 source line. */
917317f4
JM
6057 break;
6058 case PRINT_SRC_ONLY:
c5394b80 6059 source_flag = SRC_LINE;
917317f4
JM
6060 break;
6061 case PRINT_NOTHING:
488f131b 6062 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6063 do_frame_printing = 0;
6064 break;
6065 default:
e2e0b3e5 6066 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6067 }
c906108c
SS
6068
6069 /* The behavior of this routine with respect to the source
6070 flag is:
c5394b80
JM
6071 SRC_LINE: Print only source line
6072 LOCATION: Print only location
1777feb0 6073 SRC_AND_LOC: Print location and source line. */
917317f4 6074 if (do_frame_printing)
b04f3ab4 6075 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6076
6077 /* Display the auto-display expressions. */
6078 do_displays ();
6079 }
6080 }
6081
6082 /* Save the function value return registers, if we care.
6083 We might be about to restore their previous contents. */
9da8c2a0
PA
6084 if (inferior_thread ()->control.proceed_to_finish
6085 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6086 {
6087 /* This should not be necessary. */
6088 if (stop_registers)
6089 regcache_xfree (stop_registers);
6090
6091 /* NB: The copy goes through to the target picking up the value of
6092 all the registers. */
6093 stop_registers = regcache_dup (get_current_regcache ());
6094 }
c906108c 6095
aa7d318d 6096 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6097 {
b89667eb
DE
6098 /* Pop the empty frame that contains the stack dummy.
6099 This also restores inferior state prior to the call
16c381f0 6100 (struct infcall_suspend_state). */
b89667eb 6101 struct frame_info *frame = get_current_frame ();
abbb1732 6102
b89667eb
DE
6103 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6104 frame_pop (frame);
3e43a32a
MS
6105 /* frame_pop() calls reinit_frame_cache as the last thing it
6106 does which means there's currently no selected frame. We
6107 don't need to re-establish a selected frame if the dummy call
6108 returns normally, that will be done by
6109 restore_infcall_control_state. However, we do have to handle
6110 the case where the dummy call is returning after being
6111 stopped (e.g. the dummy call previously hit a breakpoint).
6112 We can't know which case we have so just always re-establish
6113 a selected frame here. */
0f7d239c 6114 select_frame (get_current_frame ());
c906108c
SS
6115 }
6116
c906108c
SS
6117done:
6118 annotate_stopped ();
41d2bdb4
PA
6119
6120 /* Suppress the stop observer if we're in the middle of:
6121
6122 - a step n (n > 1), as there still more steps to be done.
6123
6124 - a "finish" command, as the observer will be called in
6125 finish_command_continuation, so it can include the inferior
6126 function's return value.
6127
6128 - calling an inferior function, as we pretend we inferior didn't
6129 run at all. The return value of the call is handled by the
6130 expression evaluator, through call_function_by_hand. */
6131
6132 if (!target_has_execution
6133 || last.kind == TARGET_WAITKIND_SIGNALLED
6134 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6135 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6136 || (!(inferior_thread ()->step_multi
6137 && inferior_thread ()->control.stop_step)
16c381f0
JK
6138 && !(inferior_thread ()->control.stop_bpstat
6139 && inferior_thread ()->control.proceed_to_finish)
6140 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6141 {
6142 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6143 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6144 stop_print_frame);
347bddb7 6145 else
1d33d6ba 6146 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6147 }
347bddb7 6148
48844aa6
PA
6149 if (target_has_execution)
6150 {
6151 if (last.kind != TARGET_WAITKIND_SIGNALLED
6152 && last.kind != TARGET_WAITKIND_EXITED)
6153 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6154 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6155 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6156 }
6c95b8df
PA
6157
6158 /* Try to get rid of automatically added inferiors that are no
6159 longer needed. Keeping those around slows down things linearly.
6160 Note that this never removes the current inferior. */
6161 prune_inferiors ();
c906108c
SS
6162}
6163
6164static int
96baa820 6165hook_stop_stub (void *cmd)
c906108c 6166{
5913bcb0 6167 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6168 return (0);
6169}
6170\f
c5aa993b 6171int
96baa820 6172signal_stop_state (int signo)
c906108c 6173{
d6b48e9c 6174 return signal_stop[signo];
c906108c
SS
6175}
6176
c5aa993b 6177int
96baa820 6178signal_print_state (int signo)
c906108c
SS
6179{
6180 return signal_print[signo];
6181}
6182
c5aa993b 6183int
96baa820 6184signal_pass_state (int signo)
c906108c
SS
6185{
6186 return signal_program[signo];
6187}
6188
2455069d
UW
6189static void
6190signal_cache_update (int signo)
6191{
6192 if (signo == -1)
6193 {
a493e3e2 6194 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6195 signal_cache_update (signo);
6196
6197 return;
6198 }
6199
6200 signal_pass[signo] = (signal_stop[signo] == 0
6201 && signal_print[signo] == 0
6202 && signal_program[signo] == 1);
6203}
6204
488f131b 6205int
7bda5e4a 6206signal_stop_update (int signo, int state)
d4f3574e
SS
6207{
6208 int ret = signal_stop[signo];
abbb1732 6209
d4f3574e 6210 signal_stop[signo] = state;
2455069d 6211 signal_cache_update (signo);
d4f3574e
SS
6212 return ret;
6213}
6214
488f131b 6215int
7bda5e4a 6216signal_print_update (int signo, int state)
d4f3574e
SS
6217{
6218 int ret = signal_print[signo];
abbb1732 6219
d4f3574e 6220 signal_print[signo] = state;
2455069d 6221 signal_cache_update (signo);
d4f3574e
SS
6222 return ret;
6223}
6224
488f131b 6225int
7bda5e4a 6226signal_pass_update (int signo, int state)
d4f3574e
SS
6227{
6228 int ret = signal_program[signo];
abbb1732 6229
d4f3574e 6230 signal_program[signo] = state;
2455069d 6231 signal_cache_update (signo);
d4f3574e
SS
6232 return ret;
6233}
6234
c906108c 6235static void
96baa820 6236sig_print_header (void)
c906108c 6237{
3e43a32a
MS
6238 printf_filtered (_("Signal Stop\tPrint\tPass "
6239 "to program\tDescription\n"));
c906108c
SS
6240}
6241
6242static void
2ea28649 6243sig_print_info (enum gdb_signal oursig)
c906108c 6244{
2ea28649 6245 const char *name = gdb_signal_to_name (oursig);
c906108c 6246 int name_padding = 13 - strlen (name);
96baa820 6247
c906108c
SS
6248 if (name_padding <= 0)
6249 name_padding = 0;
6250
6251 printf_filtered ("%s", name);
488f131b 6252 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6253 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6254 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6255 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6256 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6257}
6258
6259/* Specify how various signals in the inferior should be handled. */
6260
6261static void
96baa820 6262handle_command (char *args, int from_tty)
c906108c
SS
6263{
6264 char **argv;
6265 int digits, wordlen;
6266 int sigfirst, signum, siglast;
2ea28649 6267 enum gdb_signal oursig;
c906108c
SS
6268 int allsigs;
6269 int nsigs;
6270 unsigned char *sigs;
6271 struct cleanup *old_chain;
6272
6273 if (args == NULL)
6274 {
e2e0b3e5 6275 error_no_arg (_("signal to handle"));
c906108c
SS
6276 }
6277
1777feb0 6278 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6279
a493e3e2 6280 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6281 sigs = (unsigned char *) alloca (nsigs);
6282 memset (sigs, 0, nsigs);
6283
1777feb0 6284 /* Break the command line up into args. */
c906108c 6285
d1a41061 6286 argv = gdb_buildargv (args);
7a292a7a 6287 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6288
6289 /* Walk through the args, looking for signal oursigs, signal names, and
6290 actions. Signal numbers and signal names may be interspersed with
6291 actions, with the actions being performed for all signals cumulatively
1777feb0 6292 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6293
6294 while (*argv != NULL)
6295 {
6296 wordlen = strlen (*argv);
6297 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6298 {;
6299 }
6300 allsigs = 0;
6301 sigfirst = siglast = -1;
6302
6303 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6304 {
6305 /* Apply action to all signals except those used by the
1777feb0 6306 debugger. Silently skip those. */
c906108c
SS
6307 allsigs = 1;
6308 sigfirst = 0;
6309 siglast = nsigs - 1;
6310 }
6311 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6312 {
6313 SET_SIGS (nsigs, sigs, signal_stop);
6314 SET_SIGS (nsigs, sigs, signal_print);
6315 }
6316 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6317 {
6318 UNSET_SIGS (nsigs, sigs, signal_program);
6319 }
6320 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6321 {
6322 SET_SIGS (nsigs, sigs, signal_print);
6323 }
6324 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6325 {
6326 SET_SIGS (nsigs, sigs, signal_program);
6327 }
6328 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6329 {
6330 UNSET_SIGS (nsigs, sigs, signal_stop);
6331 }
6332 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6333 {
6334 SET_SIGS (nsigs, sigs, signal_program);
6335 }
6336 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6337 {
6338 UNSET_SIGS (nsigs, sigs, signal_print);
6339 UNSET_SIGS (nsigs, sigs, signal_stop);
6340 }
6341 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6342 {
6343 UNSET_SIGS (nsigs, sigs, signal_program);
6344 }
6345 else if (digits > 0)
6346 {
6347 /* It is numeric. The numeric signal refers to our own
6348 internal signal numbering from target.h, not to host/target
6349 signal number. This is a feature; users really should be
6350 using symbolic names anyway, and the common ones like
6351 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6352
6353 sigfirst = siglast = (int)
2ea28649 6354 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6355 if ((*argv)[digits] == '-')
6356 {
6357 siglast = (int)
2ea28649 6358 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6359 }
6360 if (sigfirst > siglast)
6361 {
1777feb0 6362 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6363 signum = sigfirst;
6364 sigfirst = siglast;
6365 siglast = signum;
6366 }
6367 }
6368 else
6369 {
2ea28649 6370 oursig = gdb_signal_from_name (*argv);
a493e3e2 6371 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6372 {
6373 sigfirst = siglast = (int) oursig;
6374 }
6375 else
6376 {
6377 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6378 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6379 }
6380 }
6381
6382 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6383 which signals to apply actions to. */
c906108c
SS
6384
6385 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6386 {
2ea28649 6387 switch ((enum gdb_signal) signum)
c906108c 6388 {
a493e3e2
PA
6389 case GDB_SIGNAL_TRAP:
6390 case GDB_SIGNAL_INT:
c906108c
SS
6391 if (!allsigs && !sigs[signum])
6392 {
9e2f0ad4 6393 if (query (_("%s is used by the debugger.\n\
3e43a32a 6394Are you sure you want to change it? "),
2ea28649 6395 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6396 {
6397 sigs[signum] = 1;
6398 }
6399 else
6400 {
a3f17187 6401 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6402 gdb_flush (gdb_stdout);
6403 }
6404 }
6405 break;
a493e3e2
PA
6406 case GDB_SIGNAL_0:
6407 case GDB_SIGNAL_DEFAULT:
6408 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6409 /* Make sure that "all" doesn't print these. */
6410 break;
6411 default:
6412 sigs[signum] = 1;
6413 break;
6414 }
6415 }
6416
6417 argv++;
6418 }
6419
3a031f65
PA
6420 for (signum = 0; signum < nsigs; signum++)
6421 if (sigs[signum])
6422 {
2455069d 6423 signal_cache_update (-1);
a493e3e2
PA
6424 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6425 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6426
3a031f65
PA
6427 if (from_tty)
6428 {
6429 /* Show the results. */
6430 sig_print_header ();
6431 for (; signum < nsigs; signum++)
6432 if (sigs[signum])
6433 sig_print_info (signum);
6434 }
6435
6436 break;
6437 }
c906108c
SS
6438
6439 do_cleanups (old_chain);
6440}
6441
de0bea00
MF
6442/* Complete the "handle" command. */
6443
6444static VEC (char_ptr) *
6445handle_completer (struct cmd_list_element *ignore,
6446 char *text, char *word)
6447{
6448 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6449 static const char * const keywords[] =
6450 {
6451 "all",
6452 "stop",
6453 "ignore",
6454 "print",
6455 "pass",
6456 "nostop",
6457 "noignore",
6458 "noprint",
6459 "nopass",
6460 NULL,
6461 };
6462
6463 vec_signals = signal_completer (ignore, text, word);
6464 vec_keywords = complete_on_enum (keywords, word, word);
6465
6466 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6467 VEC_free (char_ptr, vec_signals);
6468 VEC_free (char_ptr, vec_keywords);
6469 return return_val;
6470}
6471
c906108c 6472static void
96baa820 6473xdb_handle_command (char *args, int from_tty)
c906108c
SS
6474{
6475 char **argv;
6476 struct cleanup *old_chain;
6477
d1a41061
PP
6478 if (args == NULL)
6479 error_no_arg (_("xdb command"));
6480
1777feb0 6481 /* Break the command line up into args. */
c906108c 6482
d1a41061 6483 argv = gdb_buildargv (args);
7a292a7a 6484 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6485 if (argv[1] != (char *) NULL)
6486 {
6487 char *argBuf;
6488 int bufLen;
6489
6490 bufLen = strlen (argv[0]) + 20;
6491 argBuf = (char *) xmalloc (bufLen);
6492 if (argBuf)
6493 {
6494 int validFlag = 1;
2ea28649 6495 enum gdb_signal oursig;
c906108c 6496
2ea28649 6497 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6498 memset (argBuf, 0, bufLen);
6499 if (strcmp (argv[1], "Q") == 0)
6500 sprintf (argBuf, "%s %s", argv[0], "noprint");
6501 else
6502 {
6503 if (strcmp (argv[1], "s") == 0)
6504 {
6505 if (!signal_stop[oursig])
6506 sprintf (argBuf, "%s %s", argv[0], "stop");
6507 else
6508 sprintf (argBuf, "%s %s", argv[0], "nostop");
6509 }
6510 else if (strcmp (argv[1], "i") == 0)
6511 {
6512 if (!signal_program[oursig])
6513 sprintf (argBuf, "%s %s", argv[0], "pass");
6514 else
6515 sprintf (argBuf, "%s %s", argv[0], "nopass");
6516 }
6517 else if (strcmp (argv[1], "r") == 0)
6518 {
6519 if (!signal_print[oursig])
6520 sprintf (argBuf, "%s %s", argv[0], "print");
6521 else
6522 sprintf (argBuf, "%s %s", argv[0], "noprint");
6523 }
6524 else
6525 validFlag = 0;
6526 }
6527 if (validFlag)
6528 handle_command (argBuf, from_tty);
6529 else
a3f17187 6530 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6531 if (argBuf)
b8c9b27d 6532 xfree (argBuf);
c906108c
SS
6533 }
6534 }
6535 do_cleanups (old_chain);
6536}
6537
2ea28649
PA
6538enum gdb_signal
6539gdb_signal_from_command (int num)
ed01b82c
PA
6540{
6541 if (num >= 1 && num <= 15)
2ea28649 6542 return (enum gdb_signal) num;
ed01b82c
PA
6543 error (_("Only signals 1-15 are valid as numeric signals.\n\
6544Use \"info signals\" for a list of symbolic signals."));
6545}
6546
c906108c
SS
6547/* Print current contents of the tables set by the handle command.
6548 It is possible we should just be printing signals actually used
6549 by the current target (but for things to work right when switching
6550 targets, all signals should be in the signal tables). */
6551
6552static void
96baa820 6553signals_info (char *signum_exp, int from_tty)
c906108c 6554{
2ea28649 6555 enum gdb_signal oursig;
abbb1732 6556
c906108c
SS
6557 sig_print_header ();
6558
6559 if (signum_exp)
6560 {
6561 /* First see if this is a symbol name. */
2ea28649 6562 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6563 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6564 {
6565 /* No, try numeric. */
6566 oursig =
2ea28649 6567 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6568 }
6569 sig_print_info (oursig);
6570 return;
6571 }
6572
6573 printf_filtered ("\n");
6574 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6575 for (oursig = GDB_SIGNAL_FIRST;
6576 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6577 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6578 {
6579 QUIT;
6580
a493e3e2
PA
6581 if (oursig != GDB_SIGNAL_UNKNOWN
6582 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6583 sig_print_info (oursig);
6584 }
6585
3e43a32a
MS
6586 printf_filtered (_("\nUse the \"handle\" command "
6587 "to change these tables.\n"));
c906108c 6588}
4aa995e1 6589
c709acd1
PA
6590/* Check if it makes sense to read $_siginfo from the current thread
6591 at this point. If not, throw an error. */
6592
6593static void
6594validate_siginfo_access (void)
6595{
6596 /* No current inferior, no siginfo. */
6597 if (ptid_equal (inferior_ptid, null_ptid))
6598 error (_("No thread selected."));
6599
6600 /* Don't try to read from a dead thread. */
6601 if (is_exited (inferior_ptid))
6602 error (_("The current thread has terminated"));
6603
6604 /* ... or from a spinning thread. */
6605 if (is_running (inferior_ptid))
6606 error (_("Selected thread is running."));
6607}
6608
4aa995e1
PA
6609/* The $_siginfo convenience variable is a bit special. We don't know
6610 for sure the type of the value until we actually have a chance to
7a9dd1b2 6611 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6612 also dependent on which thread you have selected.
6613
6614 1. making $_siginfo be an internalvar that creates a new value on
6615 access.
6616
6617 2. making the value of $_siginfo be an lval_computed value. */
6618
6619/* This function implements the lval_computed support for reading a
6620 $_siginfo value. */
6621
6622static void
6623siginfo_value_read (struct value *v)
6624{
6625 LONGEST transferred;
6626
c709acd1
PA
6627 validate_siginfo_access ();
6628
4aa995e1
PA
6629 transferred =
6630 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6631 NULL,
6632 value_contents_all_raw (v),
6633 value_offset (v),
6634 TYPE_LENGTH (value_type (v)));
6635
6636 if (transferred != TYPE_LENGTH (value_type (v)))
6637 error (_("Unable to read siginfo"));
6638}
6639
6640/* This function implements the lval_computed support for writing a
6641 $_siginfo value. */
6642
6643static void
6644siginfo_value_write (struct value *v, struct value *fromval)
6645{
6646 LONGEST transferred;
6647
c709acd1
PA
6648 validate_siginfo_access ();
6649
4aa995e1
PA
6650 transferred = target_write (&current_target,
6651 TARGET_OBJECT_SIGNAL_INFO,
6652 NULL,
6653 value_contents_all_raw (fromval),
6654 value_offset (v),
6655 TYPE_LENGTH (value_type (fromval)));
6656
6657 if (transferred != TYPE_LENGTH (value_type (fromval)))
6658 error (_("Unable to write siginfo"));
6659}
6660
c8f2448a 6661static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6662 {
6663 siginfo_value_read,
6664 siginfo_value_write
6665 };
6666
6667/* Return a new value with the correct type for the siginfo object of
78267919
UW
6668 the current thread using architecture GDBARCH. Return a void value
6669 if there's no object available. */
4aa995e1 6670
2c0b251b 6671static struct value *
22d2b532
SDJ
6672siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6673 void *ignore)
4aa995e1 6674{
4aa995e1 6675 if (target_has_stack
78267919
UW
6676 && !ptid_equal (inferior_ptid, null_ptid)
6677 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6678 {
78267919 6679 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6680
78267919 6681 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6682 }
6683
78267919 6684 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6685}
6686
c906108c 6687\f
16c381f0
JK
6688/* infcall_suspend_state contains state about the program itself like its
6689 registers and any signal it received when it last stopped.
6690 This state must be restored regardless of how the inferior function call
6691 ends (either successfully, or after it hits a breakpoint or signal)
6692 if the program is to properly continue where it left off. */
6693
6694struct infcall_suspend_state
7a292a7a 6695{
16c381f0 6696 struct thread_suspend_state thread_suspend;
dd80ea3c 6697#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6698 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6699#endif
16c381f0
JK
6700
6701 /* Other fields: */
7a292a7a 6702 CORE_ADDR stop_pc;
b89667eb 6703 struct regcache *registers;
1736ad11 6704
35515841 6705 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6706 struct gdbarch *siginfo_gdbarch;
6707
6708 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6709 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6710 content would be invalid. */
6711 gdb_byte *siginfo_data;
b89667eb
DE
6712};
6713
16c381f0
JK
6714struct infcall_suspend_state *
6715save_infcall_suspend_state (void)
b89667eb 6716{
16c381f0 6717 struct infcall_suspend_state *inf_state;
b89667eb 6718 struct thread_info *tp = inferior_thread ();
16c381f0 6719 struct inferior *inf = current_inferior ();
1736ad11
JK
6720 struct regcache *regcache = get_current_regcache ();
6721 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6722 gdb_byte *siginfo_data = NULL;
6723
6724 if (gdbarch_get_siginfo_type_p (gdbarch))
6725 {
6726 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6727 size_t len = TYPE_LENGTH (type);
6728 struct cleanup *back_to;
6729
6730 siginfo_data = xmalloc (len);
6731 back_to = make_cleanup (xfree, siginfo_data);
6732
6733 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6734 siginfo_data, 0, len) == len)
6735 discard_cleanups (back_to);
6736 else
6737 {
6738 /* Errors ignored. */
6739 do_cleanups (back_to);
6740 siginfo_data = NULL;
6741 }
6742 }
6743
16c381f0 6744 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6745
6746 if (siginfo_data)
6747 {
6748 inf_state->siginfo_gdbarch = gdbarch;
6749 inf_state->siginfo_data = siginfo_data;
6750 }
b89667eb 6751
16c381f0 6752 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6753#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6754 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6755#endif
16c381f0 6756
35515841 6757 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6758 GDB_SIGNAL_0 anyway. */
6759 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6760
b89667eb
DE
6761 inf_state->stop_pc = stop_pc;
6762
1736ad11 6763 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6764
6765 return inf_state;
6766}
6767
6768/* Restore inferior session state to INF_STATE. */
6769
6770void
16c381f0 6771restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6772{
6773 struct thread_info *tp = inferior_thread ();
16c381f0 6774 struct inferior *inf = current_inferior ();
1736ad11
JK
6775 struct regcache *regcache = get_current_regcache ();
6776 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6777
16c381f0 6778 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6779#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6780 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6781#endif
16c381f0 6782
b89667eb
DE
6783 stop_pc = inf_state->stop_pc;
6784
1736ad11
JK
6785 if (inf_state->siginfo_gdbarch == gdbarch)
6786 {
6787 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6788
6789 /* Errors ignored. */
6790 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6791 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6792 }
6793
b89667eb
DE
6794 /* The inferior can be gone if the user types "print exit(0)"
6795 (and perhaps other times). */
6796 if (target_has_execution)
6797 /* NB: The register write goes through to the target. */
1736ad11 6798 regcache_cpy (regcache, inf_state->registers);
803b5f95 6799
16c381f0 6800 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6801}
6802
6803static void
16c381f0 6804do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6805{
16c381f0 6806 restore_infcall_suspend_state (state);
b89667eb
DE
6807}
6808
6809struct cleanup *
16c381f0
JK
6810make_cleanup_restore_infcall_suspend_state
6811 (struct infcall_suspend_state *inf_state)
b89667eb 6812{
16c381f0 6813 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6814}
6815
6816void
16c381f0 6817discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6818{
6819 regcache_xfree (inf_state->registers);
803b5f95 6820 xfree (inf_state->siginfo_data);
b89667eb
DE
6821 xfree (inf_state);
6822}
6823
6824struct regcache *
16c381f0 6825get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6826{
6827 return inf_state->registers;
6828}
6829
16c381f0
JK
6830/* infcall_control_state contains state regarding gdb's control of the
6831 inferior itself like stepping control. It also contains session state like
6832 the user's currently selected frame. */
b89667eb 6833
16c381f0 6834struct infcall_control_state
b89667eb 6835{
16c381f0
JK
6836 struct thread_control_state thread_control;
6837 struct inferior_control_state inferior_control;
d82142e2
JK
6838
6839 /* Other fields: */
6840 enum stop_stack_kind stop_stack_dummy;
6841 int stopped_by_random_signal;
7a292a7a 6842 int stop_after_trap;
7a292a7a 6843
b89667eb 6844 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6845 struct frame_id selected_frame_id;
7a292a7a
SS
6846};
6847
c906108c 6848/* Save all of the information associated with the inferior<==>gdb
b89667eb 6849 connection. */
c906108c 6850
16c381f0
JK
6851struct infcall_control_state *
6852save_infcall_control_state (void)
c906108c 6853{
16c381f0 6854 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6855 struct thread_info *tp = inferior_thread ();
d6b48e9c 6856 struct inferior *inf = current_inferior ();
7a292a7a 6857
16c381f0
JK
6858 inf_status->thread_control = tp->control;
6859 inf_status->inferior_control = inf->control;
d82142e2 6860
8358c15c 6861 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6862 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6863
16c381f0
JK
6864 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6865 chain. If caller's caller is walking the chain, they'll be happier if we
6866 hand them back the original chain when restore_infcall_control_state is
6867 called. */
6868 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6869
6870 /* Other fields: */
6871 inf_status->stop_stack_dummy = stop_stack_dummy;
6872 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6873 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6874
206415a3 6875 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6876
7a292a7a 6877 return inf_status;
c906108c
SS
6878}
6879
c906108c 6880static int
96baa820 6881restore_selected_frame (void *args)
c906108c 6882{
488f131b 6883 struct frame_id *fid = (struct frame_id *) args;
c906108c 6884 struct frame_info *frame;
c906108c 6885
101dcfbe 6886 frame = frame_find_by_id (*fid);
c906108c 6887
aa0cd9c1
AC
6888 /* If inf_status->selected_frame_id is NULL, there was no previously
6889 selected frame. */
101dcfbe 6890 if (frame == NULL)
c906108c 6891 {
8a3fe4f8 6892 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6893 return 0;
6894 }
6895
0f7d239c 6896 select_frame (frame);
c906108c
SS
6897
6898 return (1);
6899}
6900
b89667eb
DE
6901/* Restore inferior session state to INF_STATUS. */
6902
c906108c 6903void
16c381f0 6904restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6905{
4e1c45ea 6906 struct thread_info *tp = inferior_thread ();
d6b48e9c 6907 struct inferior *inf = current_inferior ();
4e1c45ea 6908
8358c15c
JK
6909 if (tp->control.step_resume_breakpoint)
6910 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6911
5b79abe7
TT
6912 if (tp->control.exception_resume_breakpoint)
6913 tp->control.exception_resume_breakpoint->disposition
6914 = disp_del_at_next_stop;
6915
d82142e2 6916 /* Handle the bpstat_copy of the chain. */
16c381f0 6917 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6918
16c381f0
JK
6919 tp->control = inf_status->thread_control;
6920 inf->control = inf_status->inferior_control;
d82142e2
JK
6921
6922 /* Other fields: */
6923 stop_stack_dummy = inf_status->stop_stack_dummy;
6924 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6925 stop_after_trap = inf_status->stop_after_trap;
c906108c 6926
b89667eb 6927 if (target_has_stack)
c906108c 6928 {
c906108c 6929 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6930 walking the stack might encounter a garbage pointer and
6931 error() trying to dereference it. */
488f131b
JB
6932 if (catch_errors
6933 (restore_selected_frame, &inf_status->selected_frame_id,
6934 "Unable to restore previously selected frame:\n",
6935 RETURN_MASK_ERROR) == 0)
c906108c
SS
6936 /* Error in restoring the selected frame. Select the innermost
6937 frame. */
0f7d239c 6938 select_frame (get_current_frame ());
c906108c 6939 }
c906108c 6940
72cec141 6941 xfree (inf_status);
7a292a7a 6942}
c906108c 6943
74b7792f 6944static void
16c381f0 6945do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6946{
16c381f0 6947 restore_infcall_control_state (sts);
74b7792f
AC
6948}
6949
6950struct cleanup *
16c381f0
JK
6951make_cleanup_restore_infcall_control_state
6952 (struct infcall_control_state *inf_status)
74b7792f 6953{
16c381f0 6954 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6955}
6956
c906108c 6957void
16c381f0 6958discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6959{
8358c15c
JK
6960 if (inf_status->thread_control.step_resume_breakpoint)
6961 inf_status->thread_control.step_resume_breakpoint->disposition
6962 = disp_del_at_next_stop;
6963
5b79abe7
TT
6964 if (inf_status->thread_control.exception_resume_breakpoint)
6965 inf_status->thread_control.exception_resume_breakpoint->disposition
6966 = disp_del_at_next_stop;
6967
1777feb0 6968 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6969 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6970
72cec141 6971 xfree (inf_status);
7a292a7a 6972}
b89667eb 6973\f
0723dbf5
PA
6974int
6975ptid_match (ptid_t ptid, ptid_t filter)
6976{
0723dbf5
PA
6977 if (ptid_equal (filter, minus_one_ptid))
6978 return 1;
6979 if (ptid_is_pid (filter)
6980 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6981 return 1;
6982 else if (ptid_equal (ptid, filter))
6983 return 1;
6984
6985 return 0;
6986}
6987
ca6724c1
KB
6988/* restore_inferior_ptid() will be used by the cleanup machinery
6989 to restore the inferior_ptid value saved in a call to
6990 save_inferior_ptid(). */
ce696e05
KB
6991
6992static void
6993restore_inferior_ptid (void *arg)
6994{
6995 ptid_t *saved_ptid_ptr = arg;
abbb1732 6996
ce696e05
KB
6997 inferior_ptid = *saved_ptid_ptr;
6998 xfree (arg);
6999}
7000
7001/* Save the value of inferior_ptid so that it may be restored by a
7002 later call to do_cleanups(). Returns the struct cleanup pointer
7003 needed for later doing the cleanup. */
7004
7005struct cleanup *
7006save_inferior_ptid (void)
7007{
7008 ptid_t *saved_ptid_ptr;
7009
7010 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7011 *saved_ptid_ptr = inferior_ptid;
7012 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7013}
c5aa993b 7014\f
488f131b 7015
b2175913
MS
7016/* User interface for reverse debugging:
7017 Set exec-direction / show exec-direction commands
7018 (returns error unless target implements to_set_exec_direction method). */
7019
32231432 7020int execution_direction = EXEC_FORWARD;
b2175913
MS
7021static const char exec_forward[] = "forward";
7022static const char exec_reverse[] = "reverse";
7023static const char *exec_direction = exec_forward;
40478521 7024static const char *const exec_direction_names[] = {
b2175913
MS
7025 exec_forward,
7026 exec_reverse,
7027 NULL
7028};
7029
7030static void
7031set_exec_direction_func (char *args, int from_tty,
7032 struct cmd_list_element *cmd)
7033{
7034 if (target_can_execute_reverse)
7035 {
7036 if (!strcmp (exec_direction, exec_forward))
7037 execution_direction = EXEC_FORWARD;
7038 else if (!strcmp (exec_direction, exec_reverse))
7039 execution_direction = EXEC_REVERSE;
7040 }
8bbed405
MS
7041 else
7042 {
7043 exec_direction = exec_forward;
7044 error (_("Target does not support this operation."));
7045 }
b2175913
MS
7046}
7047
7048static void
7049show_exec_direction_func (struct ui_file *out, int from_tty,
7050 struct cmd_list_element *cmd, const char *value)
7051{
7052 switch (execution_direction) {
7053 case EXEC_FORWARD:
7054 fprintf_filtered (out, _("Forward.\n"));
7055 break;
7056 case EXEC_REVERSE:
7057 fprintf_filtered (out, _("Reverse.\n"));
7058 break;
b2175913 7059 default:
d8b34453
PA
7060 internal_error (__FILE__, __LINE__,
7061 _("bogus execution_direction value: %d"),
7062 (int) execution_direction);
b2175913
MS
7063 }
7064}
7065
7066/* User interface for non-stop mode. */
7067
ad52ddc6 7068int non_stop = 0;
ad52ddc6
PA
7069
7070static void
7071set_non_stop (char *args, int from_tty,
7072 struct cmd_list_element *c)
7073{
7074 if (target_has_execution)
7075 {
7076 non_stop_1 = non_stop;
7077 error (_("Cannot change this setting while the inferior is running."));
7078 }
7079
7080 non_stop = non_stop_1;
7081}
7082
7083static void
7084show_non_stop (struct ui_file *file, int from_tty,
7085 struct cmd_list_element *c, const char *value)
7086{
7087 fprintf_filtered (file,
7088 _("Controlling the inferior in non-stop mode is %s.\n"),
7089 value);
7090}
7091
d4db2f36
PA
7092static void
7093show_schedule_multiple (struct ui_file *file, int from_tty,
7094 struct cmd_list_element *c, const char *value)
7095{
3e43a32a
MS
7096 fprintf_filtered (file, _("Resuming the execution of threads "
7097 "of all processes is %s.\n"), value);
d4db2f36 7098}
ad52ddc6 7099
22d2b532
SDJ
7100/* Implementation of `siginfo' variable. */
7101
7102static const struct internalvar_funcs siginfo_funcs =
7103{
7104 siginfo_make_value,
7105 NULL,
7106 NULL
7107};
7108
c906108c 7109void
96baa820 7110_initialize_infrun (void)
c906108c 7111{
52f0bd74
AC
7112 int i;
7113 int numsigs;
de0bea00 7114 struct cmd_list_element *c;
c906108c 7115
1bedd215
AC
7116 add_info ("signals", signals_info, _("\
7117What debugger does when program gets various signals.\n\
7118Specify a signal as argument to print info on that signal only."));
c906108c
SS
7119 add_info_alias ("handle", "signals", 0);
7120
de0bea00 7121 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7122Specify how to handle signals.\n\
486c7739 7123Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7124Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7125If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7126will be displayed instead.\n\
7127\n\
c906108c
SS
7128Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7129from 1-15 are allowed for compatibility with old versions of GDB.\n\
7130Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7131The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7132used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7133\n\
1bedd215 7134Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7135\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7136Stop means reenter debugger if this signal happens (implies print).\n\
7137Print means print a message if this signal happens.\n\
7138Pass means let program see this signal; otherwise program doesn't know.\n\
7139Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7140Pass and Stop may be combined.\n\
7141\n\
7142Multiple signals may be specified. Signal numbers and signal names\n\
7143may be interspersed with actions, with the actions being performed for\n\
7144all signals cumulatively specified."));
de0bea00 7145 set_cmd_completer (c, handle_completer);
486c7739 7146
c906108c
SS
7147 if (xdb_commands)
7148 {
1bedd215
AC
7149 add_com ("lz", class_info, signals_info, _("\
7150What debugger does when program gets various signals.\n\
7151Specify a signal as argument to print info on that signal only."));
7152 add_com ("z", class_run, xdb_handle_command, _("\
7153Specify how to handle a signal.\n\
c906108c
SS
7154Args are signals and actions to apply to those signals.\n\
7155Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7156from 1-15 are allowed for compatibility with old versions of GDB.\n\
7157Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7158The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7159used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7160Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7161\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7162nopass), \"Q\" (noprint)\n\
7163Stop means reenter debugger if this signal happens (implies print).\n\
7164Print means print a message if this signal happens.\n\
7165Pass means let program see this signal; otherwise program doesn't know.\n\
7166Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7167Pass and Stop may be combined."));
c906108c
SS
7168 }
7169
7170 if (!dbx_commands)
1a966eab
AC
7171 stop_command = add_cmd ("stop", class_obscure,
7172 not_just_help_class_command, _("\
7173There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7174This allows you to set a list of commands to be run each time execution\n\
1a966eab 7175of the program stops."), &cmdlist);
c906108c 7176
ccce17b0 7177 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7178Set inferior debugging."), _("\
7179Show inferior debugging."), _("\
7180When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7181 NULL,
7182 show_debug_infrun,
7183 &setdebuglist, &showdebuglist);
527159b7 7184
3e43a32a
MS
7185 add_setshow_boolean_cmd ("displaced", class_maintenance,
7186 &debug_displaced, _("\
237fc4c9
PA
7187Set displaced stepping debugging."), _("\
7188Show displaced stepping debugging."), _("\
7189When non-zero, displaced stepping specific debugging is enabled."),
7190 NULL,
7191 show_debug_displaced,
7192 &setdebuglist, &showdebuglist);
7193
ad52ddc6
PA
7194 add_setshow_boolean_cmd ("non-stop", no_class,
7195 &non_stop_1, _("\
7196Set whether gdb controls the inferior in non-stop mode."), _("\
7197Show whether gdb controls the inferior in non-stop mode."), _("\
7198When debugging a multi-threaded program and this setting is\n\
7199off (the default, also called all-stop mode), when one thread stops\n\
7200(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7201all other threads in the program while you interact with the thread of\n\
7202interest. When you continue or step a thread, you can allow the other\n\
7203threads to run, or have them remain stopped, but while you inspect any\n\
7204thread's state, all threads stop.\n\
7205\n\
7206In non-stop mode, when one thread stops, other threads can continue\n\
7207to run freely. You'll be able to step each thread independently,\n\
7208leave it stopped or free to run as needed."),
7209 set_non_stop,
7210 show_non_stop,
7211 &setlist,
7212 &showlist);
7213
a493e3e2 7214 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7215 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7216 signal_print = (unsigned char *)
7217 xmalloc (sizeof (signal_print[0]) * numsigs);
7218 signal_program = (unsigned char *)
7219 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7220 signal_pass = (unsigned char *)
7221 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7222 for (i = 0; i < numsigs; i++)
7223 {
7224 signal_stop[i] = 1;
7225 signal_print[i] = 1;
7226 signal_program[i] = 1;
7227 }
7228
7229 /* Signals caused by debugger's own actions
7230 should not be given to the program afterwards. */
a493e3e2
PA
7231 signal_program[GDB_SIGNAL_TRAP] = 0;
7232 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7233
7234 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7235 signal_stop[GDB_SIGNAL_ALRM] = 0;
7236 signal_print[GDB_SIGNAL_ALRM] = 0;
7237 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7238 signal_print[GDB_SIGNAL_VTALRM] = 0;
7239 signal_stop[GDB_SIGNAL_PROF] = 0;
7240 signal_print[GDB_SIGNAL_PROF] = 0;
7241 signal_stop[GDB_SIGNAL_CHLD] = 0;
7242 signal_print[GDB_SIGNAL_CHLD] = 0;
7243 signal_stop[GDB_SIGNAL_IO] = 0;
7244 signal_print[GDB_SIGNAL_IO] = 0;
7245 signal_stop[GDB_SIGNAL_POLL] = 0;
7246 signal_print[GDB_SIGNAL_POLL] = 0;
7247 signal_stop[GDB_SIGNAL_URG] = 0;
7248 signal_print[GDB_SIGNAL_URG] = 0;
7249 signal_stop[GDB_SIGNAL_WINCH] = 0;
7250 signal_print[GDB_SIGNAL_WINCH] = 0;
7251 signal_stop[GDB_SIGNAL_PRIO] = 0;
7252 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7253
cd0fc7c3
SS
7254 /* These signals are used internally by user-level thread
7255 implementations. (See signal(5) on Solaris.) Like the above
7256 signals, a healthy program receives and handles them as part of
7257 its normal operation. */
a493e3e2
PA
7258 signal_stop[GDB_SIGNAL_LWP] = 0;
7259 signal_print[GDB_SIGNAL_LWP] = 0;
7260 signal_stop[GDB_SIGNAL_WAITING] = 0;
7261 signal_print[GDB_SIGNAL_WAITING] = 0;
7262 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7263 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7264
2455069d
UW
7265 /* Update cached state. */
7266 signal_cache_update (-1);
7267
85c07804
AC
7268 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7269 &stop_on_solib_events, _("\
7270Set stopping for shared library events."), _("\
7271Show stopping for shared library events."), _("\
c906108c
SS
7272If nonzero, gdb will give control to the user when the dynamic linker\n\
7273notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7274to the user would be loading/unloading of a new library."),
7275 NULL,
920d2a44 7276 show_stop_on_solib_events,
85c07804 7277 &setlist, &showlist);
c906108c 7278
7ab04401
AC
7279 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7280 follow_fork_mode_kind_names,
7281 &follow_fork_mode_string, _("\
7282Set debugger response to a program call of fork or vfork."), _("\
7283Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7284A fork or vfork creates a new process. follow-fork-mode can be:\n\
7285 parent - the original process is debugged after a fork\n\
7286 child - the new process is debugged after a fork\n\
ea1dd7bc 7287The unfollowed process will continue to run.\n\
7ab04401
AC
7288By default, the debugger will follow the parent process."),
7289 NULL,
920d2a44 7290 show_follow_fork_mode_string,
7ab04401
AC
7291 &setlist, &showlist);
7292
6c95b8df
PA
7293 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7294 follow_exec_mode_names,
7295 &follow_exec_mode_string, _("\
7296Set debugger response to a program call of exec."), _("\
7297Show debugger response to a program call of exec."), _("\
7298An exec call replaces the program image of a process.\n\
7299\n\
7300follow-exec-mode can be:\n\
7301\n\
cce7e648 7302 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7303to this new inferior. The program the process was running before\n\
7304the exec call can be restarted afterwards by restarting the original\n\
7305inferior.\n\
7306\n\
7307 same - the debugger keeps the process bound to the same inferior.\n\
7308The new executable image replaces the previous executable loaded in\n\
7309the inferior. Restarting the inferior after the exec call restarts\n\
7310the executable the process was running after the exec call.\n\
7311\n\
7312By default, the debugger will use the same inferior."),
7313 NULL,
7314 show_follow_exec_mode_string,
7315 &setlist, &showlist);
7316
7ab04401
AC
7317 add_setshow_enum_cmd ("scheduler-locking", class_run,
7318 scheduler_enums, &scheduler_mode, _("\
7319Set mode for locking scheduler during execution."), _("\
7320Show mode for locking scheduler during execution."), _("\
c906108c
SS
7321off == no locking (threads may preempt at any time)\n\
7322on == full locking (no thread except the current thread may run)\n\
7323step == scheduler locked during every single-step operation.\n\
7324 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7325 Other threads may run while stepping over a function call ('next')."),
7326 set_schedlock_func, /* traps on target vector */
920d2a44 7327 show_scheduler_mode,
7ab04401 7328 &setlist, &showlist);
5fbbeb29 7329
d4db2f36
PA
7330 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7331Set mode for resuming threads of all processes."), _("\
7332Show mode for resuming threads of all processes."), _("\
7333When on, execution commands (such as 'continue' or 'next') resume all\n\
7334threads of all processes. When off (which is the default), execution\n\
7335commands only resume the threads of the current process. The set of\n\
7336threads that are resumed is further refined by the scheduler-locking\n\
7337mode (see help set scheduler-locking)."),
7338 NULL,
7339 show_schedule_multiple,
7340 &setlist, &showlist);
7341
5bf193a2
AC
7342 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7343Set mode of the step operation."), _("\
7344Show mode of the step operation."), _("\
7345When set, doing a step over a function without debug line information\n\
7346will stop at the first instruction of that function. Otherwise, the\n\
7347function is skipped and the step command stops at a different source line."),
7348 NULL,
920d2a44 7349 show_step_stop_if_no_debug,
5bf193a2 7350 &setlist, &showlist);
ca6724c1 7351
72d0e2c5
YQ
7352 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7353 &can_use_displaced_stepping, _("\
237fc4c9
PA
7354Set debugger's willingness to use displaced stepping."), _("\
7355Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7356If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7357supported by the target architecture. If off, gdb will not use displaced\n\
7358stepping to step over breakpoints, even if such is supported by the target\n\
7359architecture. If auto (which is the default), gdb will use displaced stepping\n\
7360if the target architecture supports it and non-stop mode is active, but will not\n\
7361use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7362 NULL,
7363 show_can_use_displaced_stepping,
7364 &setlist, &showlist);
237fc4c9 7365
b2175913
MS
7366 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7367 &exec_direction, _("Set direction of execution.\n\
7368Options are 'forward' or 'reverse'."),
7369 _("Show direction of execution (forward/reverse)."),
7370 _("Tells gdb whether to execute forward or backward."),
7371 set_exec_direction_func, show_exec_direction_func,
7372 &setlist, &showlist);
7373
6c95b8df
PA
7374 /* Set/show detach-on-fork: user-settable mode. */
7375
7376 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7377Set whether gdb will detach the child of a fork."), _("\
7378Show whether gdb will detach the child of a fork."), _("\
7379Tells gdb whether to detach the child of a fork."),
7380 NULL, NULL, &setlist, &showlist);
7381
03583c20
UW
7382 /* Set/show disable address space randomization mode. */
7383
7384 add_setshow_boolean_cmd ("disable-randomization", class_support,
7385 &disable_randomization, _("\
7386Set disabling of debuggee's virtual address space randomization."), _("\
7387Show disabling of debuggee's virtual address space randomization."), _("\
7388When this mode is on (which is the default), randomization of the virtual\n\
7389address space is disabled. Standalone programs run with the randomization\n\
7390enabled by default on some platforms."),
7391 &set_disable_randomization,
7392 &show_disable_randomization,
7393 &setlist, &showlist);
7394
ca6724c1 7395 /* ptid initializations */
ca6724c1
KB
7396 inferior_ptid = null_ptid;
7397 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7398
7399 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7400 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7401 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7402 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7403
7404 /* Explicitly create without lookup, since that tries to create a
7405 value with a void typed value, and when we get here, gdbarch
7406 isn't initialized yet. At this point, we're quite sure there
7407 isn't another convenience variable of the same name. */
22d2b532 7408 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7409
7410 add_setshow_boolean_cmd ("observer", no_class,
7411 &observer_mode_1, _("\
7412Set whether gdb controls the inferior in observer mode."), _("\
7413Show whether gdb controls the inferior in observer mode."), _("\
7414In observer mode, GDB can get data from the inferior, but not\n\
7415affect its execution. Registers and memory may not be changed,\n\
7416breakpoints may not be set, and the program cannot be interrupted\n\
7417or signalled."),
7418 set_observer_mode,
7419 show_observer_mode,
7420 &setlist,
7421 &showlist);
c906108c 7422}
This page took 1.7068 seconds and 4 git commands to generate.