* gdb.cp/virtfunc.exp (make_one_vtable_result): Handle extra output
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
28e7fd62 4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
d02ed0bb 52#include "record-full.h"
edb3359d 53#include "inline-frame.h"
4efc6507 54#include "jit.h"
06cd862c 55#include "tracepoint.h"
be34f849 56#include "continuations.h"
b4a14fd0 57#include "interps.h"
1bfeeb0f 58#include "skip.h"
28106bc2
SDJ
59#include "probe.h"
60#include "objfiles.h"
de0bea00 61#include "completer.h"
9107fc8d 62#include "target-descriptions.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820
JM
81
82static void set_schedlock_func (char *args, int from_tty,
488f131b 83 struct cmd_list_element *c);
96baa820 84
a289b8f6
JK
85static int currently_stepping (struct thread_info *tp);
86
b3444185
PA
87static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
a7212384 89
96baa820
JM
90static void xdb_handle_command (char *args, int from_tty);
91
6a6b96b9 92static int prepare_to_proceed (int);
ea67f13b 93
33d62d64
JK
94static void print_exited_reason (int exitstatus);
95
2ea28649 96static void print_signal_exited_reason (enum gdb_signal siggnal);
33d62d64
JK
97
98static void print_no_history_reason (void);
99
2ea28649 100static void print_signal_received_reason (enum gdb_signal siggnal);
33d62d64
JK
101
102static void print_end_stepping_range_reason (void);
103
96baa820 104void _initialize_infrun (void);
43ff13b4 105
e58b0e63
PA
106void nullify_last_target_wait_ptid (void);
107
2c03e5be 108static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
109
110static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
2484c66b
UW
112static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
5fbbeb29
CF
114/* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117int step_stop_if_no_debug = 0;
920d2a44
AC
118static void
119show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121{
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123}
5fbbeb29 124
1777feb0 125/* In asynchronous mode, but simulating synchronous execution. */
96baa820 126
43ff13b4
JM
127int sync_execution = 0;
128
c906108c
SS
129/* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
96baa820
JM
131 running in. */
132
39f77062 133static ptid_t previous_inferior_ptid;
7a292a7a 134
6c95b8df
PA
135/* Default behavior is to detach newly forked processes (legacy). */
136int detach_fork = 1;
137
237fc4c9
PA
138int debug_displaced = 0;
139static void
140show_debug_displaced (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
144}
145
ccce17b0 146unsigned int debug_infrun = 0;
920d2a44
AC
147static void
148show_debug_infrun (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
152}
527159b7 153
03583c20
UW
154
155/* Support for disabling address space randomization. */
156
157int disable_randomization = 1;
158
159static void
160show_disable_randomization (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162{
163 if (target_supports_disable_randomization ())
164 fprintf_filtered (file,
165 _("Disabling randomization of debuggee's "
166 "virtual address space is %s.\n"),
167 value);
168 else
169 fputs_filtered (_("Disabling randomization of debuggee's "
170 "virtual address space is unsupported on\n"
171 "this platform.\n"), file);
172}
173
174static void
175set_disable_randomization (char *args, int from_tty,
176 struct cmd_list_element *c)
177{
178 if (!target_supports_disable_randomization ())
179 error (_("Disabling randomization of debuggee's "
180 "virtual address space is unsupported on\n"
181 "this platform."));
182}
183
184
d4f3574e
SS
185/* If the program uses ELF-style shared libraries, then calls to
186 functions in shared libraries go through stubs, which live in a
187 table called the PLT (Procedure Linkage Table). The first time the
188 function is called, the stub sends control to the dynamic linker,
189 which looks up the function's real address, patches the stub so
190 that future calls will go directly to the function, and then passes
191 control to the function.
192
193 If we are stepping at the source level, we don't want to see any of
194 this --- we just want to skip over the stub and the dynamic linker.
195 The simple approach is to single-step until control leaves the
196 dynamic linker.
197
ca557f44
AC
198 However, on some systems (e.g., Red Hat's 5.2 distribution) the
199 dynamic linker calls functions in the shared C library, so you
200 can't tell from the PC alone whether the dynamic linker is still
201 running. In this case, we use a step-resume breakpoint to get us
202 past the dynamic linker, as if we were using "next" to step over a
203 function call.
d4f3574e 204
cfd8ab24 205 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
206 linker code or not. Normally, this means we single-step. However,
207 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
208 address where we can place a step-resume breakpoint to get past the
209 linker's symbol resolution function.
210
cfd8ab24 211 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
212 pretty portable way, by comparing the PC against the address ranges
213 of the dynamic linker's sections.
214
215 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
216 it depends on internal details of the dynamic linker. It's usually
217 not too hard to figure out where to put a breakpoint, but it
218 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
219 sanity checking. If it can't figure things out, returning zero and
220 getting the (possibly confusing) stepping behavior is better than
221 signalling an error, which will obscure the change in the
222 inferior's state. */
c906108c 223
c906108c
SS
224/* This function returns TRUE if pc is the address of an instruction
225 that lies within the dynamic linker (such as the event hook, or the
226 dld itself).
227
228 This function must be used only when a dynamic linker event has
229 been caught, and the inferior is being stepped out of the hook, or
230 undefined results are guaranteed. */
231
232#ifndef SOLIB_IN_DYNAMIC_LINKER
233#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
234#endif
235
d914c394
SS
236/* "Observer mode" is somewhat like a more extreme version of
237 non-stop, in which all GDB operations that might affect the
238 target's execution have been disabled. */
239
240static int non_stop_1 = 0;
241
242int observer_mode = 0;
243static int observer_mode_1 = 0;
244
245static void
246set_observer_mode (char *args, int from_tty,
247 struct cmd_list_element *c)
248{
249 extern int pagination_enabled;
250
251 if (target_has_execution)
252 {
253 observer_mode_1 = observer_mode;
254 error (_("Cannot change this setting while the inferior is running."));
255 }
256
257 observer_mode = observer_mode_1;
258
259 may_write_registers = !observer_mode;
260 may_write_memory = !observer_mode;
261 may_insert_breakpoints = !observer_mode;
262 may_insert_tracepoints = !observer_mode;
263 /* We can insert fast tracepoints in or out of observer mode,
264 but enable them if we're going into this mode. */
265 if (observer_mode)
266 may_insert_fast_tracepoints = 1;
267 may_stop = !observer_mode;
268 update_target_permissions ();
269
270 /* Going *into* observer mode we must force non-stop, then
271 going out we leave it that way. */
272 if (observer_mode)
273 {
274 target_async_permitted = 1;
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Function inferior was in as of last step command. */
367
368static struct symbol *step_start_function;
369
c906108c
SS
370/* Nonzero if we want to give control to the user when we're notified
371 of shared library events by the dynamic linker. */
628fe4e4 372int stop_on_solib_events;
f9e14852
GB
373
374/* Enable or disable optional shared library event breakpoints
375 as appropriate when the above flag is changed. */
376
377static void
378set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
379{
380 update_solib_breakpoints ();
381}
382
920d2a44
AC
383static void
384show_stop_on_solib_events (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c, const char *value)
386{
387 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
388 value);
389}
c906108c 390
c906108c
SS
391/* Nonzero means expecting a trace trap
392 and should stop the inferior and return silently when it happens. */
393
394int stop_after_trap;
395
642fd101
DE
396/* Save register contents here when executing a "finish" command or are
397 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
398 Thus this contains the return value from the called function (assuming
399 values are returned in a register). */
400
72cec141 401struct regcache *stop_registers;
c906108c 402
c906108c
SS
403/* Nonzero after stop if current stack frame should be printed. */
404
405static int stop_print_frame;
406
e02bc4cc 407/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
408 returned by target_wait()/deprecated_target_wait_hook(). This
409 information is returned by get_last_target_status(). */
39f77062 410static ptid_t target_last_wait_ptid;
e02bc4cc
DS
411static struct target_waitstatus target_last_waitstatus;
412
0d1e5fa7
PA
413static void context_switch (ptid_t ptid);
414
4e1c45ea 415void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 416
7a76f5b8 417static void init_infwait_state (void);
a474d7c2 418
53904c9e
AC
419static const char follow_fork_mode_child[] = "child";
420static const char follow_fork_mode_parent[] = "parent";
421
40478521 422static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
423 follow_fork_mode_child,
424 follow_fork_mode_parent,
425 NULL
ef346e04 426};
c906108c 427
53904c9e 428static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
429static void
430show_follow_fork_mode_string (struct ui_file *file, int from_tty,
431 struct cmd_list_element *c, const char *value)
432{
3e43a32a
MS
433 fprintf_filtered (file,
434 _("Debugger response to a program "
435 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
436 value);
437}
c906108c
SS
438\f
439
e58b0e63
PA
440/* Tell the target to follow the fork we're stopped at. Returns true
441 if the inferior should be resumed; false, if the target for some
442 reason decided it's best not to resume. */
443
6604731b 444static int
4ef3f3be 445follow_fork (void)
c906108c 446{
ea1dd7bc 447 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
448 int should_resume = 1;
449 struct thread_info *tp;
450
451 /* Copy user stepping state to the new inferior thread. FIXME: the
452 followed fork child thread should have a copy of most of the
4e3990f4
DE
453 parent thread structure's run control related fields, not just these.
454 Initialized to avoid "may be used uninitialized" warnings from gcc. */
455 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 456 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
457 CORE_ADDR step_range_start = 0;
458 CORE_ADDR step_range_end = 0;
459 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
460
461 if (!non_stop)
462 {
463 ptid_t wait_ptid;
464 struct target_waitstatus wait_status;
465
466 /* Get the last target status returned by target_wait(). */
467 get_last_target_status (&wait_ptid, &wait_status);
468
469 /* If not stopped at a fork event, then there's nothing else to
470 do. */
471 if (wait_status.kind != TARGET_WAITKIND_FORKED
472 && wait_status.kind != TARGET_WAITKIND_VFORKED)
473 return 1;
474
475 /* Check if we switched over from WAIT_PTID, since the event was
476 reported. */
477 if (!ptid_equal (wait_ptid, minus_one_ptid)
478 && !ptid_equal (inferior_ptid, wait_ptid))
479 {
480 /* We did. Switch back to WAIT_PTID thread, to tell the
481 target to follow it (in either direction). We'll
482 afterwards refuse to resume, and inform the user what
483 happened. */
484 switch_to_thread (wait_ptid);
485 should_resume = 0;
486 }
487 }
488
489 tp = inferior_thread ();
490
491 /* If there were any forks/vforks that were caught and are now to be
492 followed, then do so now. */
493 switch (tp->pending_follow.kind)
494 {
495 case TARGET_WAITKIND_FORKED:
496 case TARGET_WAITKIND_VFORKED:
497 {
498 ptid_t parent, child;
499
500 /* If the user did a next/step, etc, over a fork call,
501 preserve the stepping state in the fork child. */
502 if (follow_child && should_resume)
503 {
8358c15c
JK
504 step_resume_breakpoint = clone_momentary_breakpoint
505 (tp->control.step_resume_breakpoint);
16c381f0
JK
506 step_range_start = tp->control.step_range_start;
507 step_range_end = tp->control.step_range_end;
508 step_frame_id = tp->control.step_frame_id;
186c406b
TT
509 exception_resume_breakpoint
510 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
511
512 /* For now, delete the parent's sr breakpoint, otherwise,
513 parent/child sr breakpoints are considered duplicates,
514 and the child version will not be installed. Remove
515 this when the breakpoints module becomes aware of
516 inferiors and address spaces. */
517 delete_step_resume_breakpoint (tp);
16c381f0
JK
518 tp->control.step_range_start = 0;
519 tp->control.step_range_end = 0;
520 tp->control.step_frame_id = null_frame_id;
186c406b 521 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
522 }
523
524 parent = inferior_ptid;
525 child = tp->pending_follow.value.related_pid;
526
527 /* Tell the target to do whatever is necessary to follow
528 either parent or child. */
529 if (target_follow_fork (follow_child))
530 {
531 /* Target refused to follow, or there's some other reason
532 we shouldn't resume. */
533 should_resume = 0;
534 }
535 else
536 {
537 /* This pending follow fork event is now handled, one way
538 or another. The previous selected thread may be gone
539 from the lists by now, but if it is still around, need
540 to clear the pending follow request. */
e09875d4 541 tp = find_thread_ptid (parent);
e58b0e63
PA
542 if (tp)
543 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
544
545 /* This makes sure we don't try to apply the "Switched
546 over from WAIT_PID" logic above. */
547 nullify_last_target_wait_ptid ();
548
1777feb0 549 /* If we followed the child, switch to it... */
e58b0e63
PA
550 if (follow_child)
551 {
552 switch_to_thread (child);
553
554 /* ... and preserve the stepping state, in case the
555 user was stepping over the fork call. */
556 if (should_resume)
557 {
558 tp = inferior_thread ();
8358c15c
JK
559 tp->control.step_resume_breakpoint
560 = step_resume_breakpoint;
16c381f0
JK
561 tp->control.step_range_start = step_range_start;
562 tp->control.step_range_end = step_range_end;
563 tp->control.step_frame_id = step_frame_id;
186c406b
TT
564 tp->control.exception_resume_breakpoint
565 = exception_resume_breakpoint;
e58b0e63
PA
566 }
567 else
568 {
569 /* If we get here, it was because we're trying to
570 resume from a fork catchpoint, but, the user
571 has switched threads away from the thread that
572 forked. In that case, the resume command
573 issued is most likely not applicable to the
574 child, so just warn, and refuse to resume. */
3e43a32a
MS
575 warning (_("Not resuming: switched threads "
576 "before following fork child.\n"));
e58b0e63
PA
577 }
578
579 /* Reset breakpoints in the child as appropriate. */
580 follow_inferior_reset_breakpoints ();
581 }
582 else
583 switch_to_thread (parent);
584 }
585 }
586 break;
587 case TARGET_WAITKIND_SPURIOUS:
588 /* Nothing to follow. */
589 break;
590 default:
591 internal_error (__FILE__, __LINE__,
592 "Unexpected pending_follow.kind %d\n",
593 tp->pending_follow.kind);
594 break;
595 }
c906108c 596
e58b0e63 597 return should_resume;
c906108c
SS
598}
599
6604731b
DJ
600void
601follow_inferior_reset_breakpoints (void)
c906108c 602{
4e1c45ea
PA
603 struct thread_info *tp = inferior_thread ();
604
6604731b
DJ
605 /* Was there a step_resume breakpoint? (There was if the user
606 did a "next" at the fork() call.) If so, explicitly reset its
607 thread number.
608
609 step_resumes are a form of bp that are made to be per-thread.
610 Since we created the step_resume bp when the parent process
611 was being debugged, and now are switching to the child process,
612 from the breakpoint package's viewpoint, that's a switch of
613 "threads". We must update the bp's notion of which thread
614 it is for, or it'll be ignored when it triggers. */
615
8358c15c
JK
616 if (tp->control.step_resume_breakpoint)
617 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 618
186c406b
TT
619 if (tp->control.exception_resume_breakpoint)
620 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
621
6604731b
DJ
622 /* Reinsert all breakpoints in the child. The user may have set
623 breakpoints after catching the fork, in which case those
624 were never set in the child, but only in the parent. This makes
625 sure the inserted breakpoints match the breakpoint list. */
626
627 breakpoint_re_set ();
628 insert_breakpoints ();
c906108c 629}
c906108c 630
6c95b8df
PA
631/* The child has exited or execed: resume threads of the parent the
632 user wanted to be executing. */
633
634static int
635proceed_after_vfork_done (struct thread_info *thread,
636 void *arg)
637{
638 int pid = * (int *) arg;
639
640 if (ptid_get_pid (thread->ptid) == pid
641 && is_running (thread->ptid)
642 && !is_executing (thread->ptid)
643 && !thread->stop_requested
a493e3e2 644 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
645 {
646 if (debug_infrun)
647 fprintf_unfiltered (gdb_stdlog,
648 "infrun: resuming vfork parent thread %s\n",
649 target_pid_to_str (thread->ptid));
650
651 switch_to_thread (thread->ptid);
652 clear_proceed_status ();
a493e3e2 653 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
654 }
655
656 return 0;
657}
658
659/* Called whenever we notice an exec or exit event, to handle
660 detaching or resuming a vfork parent. */
661
662static void
663handle_vfork_child_exec_or_exit (int exec)
664{
665 struct inferior *inf = current_inferior ();
666
667 if (inf->vfork_parent)
668 {
669 int resume_parent = -1;
670
671 /* This exec or exit marks the end of the shared memory region
672 between the parent and the child. If the user wanted to
673 detach from the parent, now is the time. */
674
675 if (inf->vfork_parent->pending_detach)
676 {
677 struct thread_info *tp;
678 struct cleanup *old_chain;
679 struct program_space *pspace;
680 struct address_space *aspace;
681
1777feb0 682 /* follow-fork child, detach-on-fork on. */
6c95b8df 683
68c9da30
PA
684 inf->vfork_parent->pending_detach = 0;
685
f50f4e56
PA
686 if (!exec)
687 {
688 /* If we're handling a child exit, then inferior_ptid
689 points at the inferior's pid, not to a thread. */
690 old_chain = save_inferior_ptid ();
691 save_current_program_space ();
692 save_current_inferior ();
693 }
694 else
695 old_chain = save_current_space_and_thread ();
6c95b8df
PA
696
697 /* We're letting loose of the parent. */
698 tp = any_live_thread_of_process (inf->vfork_parent->pid);
699 switch_to_thread (tp->ptid);
700
701 /* We're about to detach from the parent, which implicitly
702 removes breakpoints from its address space. There's a
703 catch here: we want to reuse the spaces for the child,
704 but, parent/child are still sharing the pspace at this
705 point, although the exec in reality makes the kernel give
706 the child a fresh set of new pages. The problem here is
707 that the breakpoints module being unaware of this, would
708 likely chose the child process to write to the parent
709 address space. Swapping the child temporarily away from
710 the spaces has the desired effect. Yes, this is "sort
711 of" a hack. */
712
713 pspace = inf->pspace;
714 aspace = inf->aspace;
715 inf->aspace = NULL;
716 inf->pspace = NULL;
717
718 if (debug_infrun || info_verbose)
719 {
720 target_terminal_ours ();
721
722 if (exec)
723 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
724 "Detaching vfork parent process "
725 "%d after child exec.\n",
6c95b8df
PA
726 inf->vfork_parent->pid);
727 else
728 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
729 "Detaching vfork parent process "
730 "%d after child exit.\n",
6c95b8df
PA
731 inf->vfork_parent->pid);
732 }
733
734 target_detach (NULL, 0);
735
736 /* Put it back. */
737 inf->pspace = pspace;
738 inf->aspace = aspace;
739
740 do_cleanups (old_chain);
741 }
742 else if (exec)
743 {
744 /* We're staying attached to the parent, so, really give the
745 child a new address space. */
746 inf->pspace = add_program_space (maybe_new_address_space ());
747 inf->aspace = inf->pspace->aspace;
748 inf->removable = 1;
749 set_current_program_space (inf->pspace);
750
751 resume_parent = inf->vfork_parent->pid;
752
753 /* Break the bonds. */
754 inf->vfork_parent->vfork_child = NULL;
755 }
756 else
757 {
758 struct cleanup *old_chain;
759 struct program_space *pspace;
760
761 /* If this is a vfork child exiting, then the pspace and
762 aspaces were shared with the parent. Since we're
763 reporting the process exit, we'll be mourning all that is
764 found in the address space, and switching to null_ptid,
765 preparing to start a new inferior. But, since we don't
766 want to clobber the parent's address/program spaces, we
767 go ahead and create a new one for this exiting
768 inferior. */
769
770 /* Switch to null_ptid, so that clone_program_space doesn't want
771 to read the selected frame of a dead process. */
772 old_chain = save_inferior_ptid ();
773 inferior_ptid = null_ptid;
774
775 /* This inferior is dead, so avoid giving the breakpoints
776 module the option to write through to it (cloning a
777 program space resets breakpoints). */
778 inf->aspace = NULL;
779 inf->pspace = NULL;
780 pspace = add_program_space (maybe_new_address_space ());
781 set_current_program_space (pspace);
782 inf->removable = 1;
7dcd53a0 783 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
784 clone_program_space (pspace, inf->vfork_parent->pspace);
785 inf->pspace = pspace;
786 inf->aspace = pspace->aspace;
787
788 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 789 inferior. */
6c95b8df
PA
790 do_cleanups (old_chain);
791
792 resume_parent = inf->vfork_parent->pid;
793 /* Break the bonds. */
794 inf->vfork_parent->vfork_child = NULL;
795 }
796
797 inf->vfork_parent = NULL;
798
799 gdb_assert (current_program_space == inf->pspace);
800
801 if (non_stop && resume_parent != -1)
802 {
803 /* If the user wanted the parent to be running, let it go
804 free now. */
805 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
806
807 if (debug_infrun)
3e43a32a
MS
808 fprintf_unfiltered (gdb_stdlog,
809 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
810 resume_parent);
811
812 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
813
814 do_cleanups (old_chain);
815 }
816 }
817}
818
eb6c553b 819/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
820
821static const char follow_exec_mode_new[] = "new";
822static const char follow_exec_mode_same[] = "same";
40478521 823static const char *const follow_exec_mode_names[] =
6c95b8df
PA
824{
825 follow_exec_mode_new,
826 follow_exec_mode_same,
827 NULL,
828};
829
830static const char *follow_exec_mode_string = follow_exec_mode_same;
831static void
832show_follow_exec_mode_string (struct ui_file *file, int from_tty,
833 struct cmd_list_element *c, const char *value)
834{
835 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
836}
837
1777feb0 838/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 839
c906108c 840static void
3a3e9ee3 841follow_exec (ptid_t pid, char *execd_pathname)
c906108c 842{
4e1c45ea 843 struct thread_info *th = inferior_thread ();
6c95b8df 844 struct inferior *inf = current_inferior ();
7a292a7a 845
c906108c
SS
846 /* This is an exec event that we actually wish to pay attention to.
847 Refresh our symbol table to the newly exec'd program, remove any
848 momentary bp's, etc.
849
850 If there are breakpoints, they aren't really inserted now,
851 since the exec() transformed our inferior into a fresh set
852 of instructions.
853
854 We want to preserve symbolic breakpoints on the list, since
855 we have hopes that they can be reset after the new a.out's
856 symbol table is read.
857
858 However, any "raw" breakpoints must be removed from the list
859 (e.g., the solib bp's), since their address is probably invalid
860 now.
861
862 And, we DON'T want to call delete_breakpoints() here, since
863 that may write the bp's "shadow contents" (the instruction
864 value that was overwritten witha TRAP instruction). Since
1777feb0 865 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
866
867 mark_breakpoints_out ();
868
c906108c
SS
869 update_breakpoints_after_exec ();
870
871 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 872 statement through an exec(). */
8358c15c 873 th->control.step_resume_breakpoint = NULL;
186c406b 874 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
875 th->control.step_range_start = 0;
876 th->control.step_range_end = 0;
c906108c 877
a75724bc
PA
878 /* The target reports the exec event to the main thread, even if
879 some other thread does the exec, and even if the main thread was
880 already stopped --- if debugging in non-stop mode, it's possible
881 the user had the main thread held stopped in the previous image
882 --- release it now. This is the same behavior as step-over-exec
883 with scheduler-locking on in all-stop mode. */
884 th->stop_requested = 0;
885
1777feb0 886 /* What is this a.out's name? */
6c95b8df
PA
887 printf_unfiltered (_("%s is executing new program: %s\n"),
888 target_pid_to_str (inferior_ptid),
889 execd_pathname);
c906108c
SS
890
891 /* We've followed the inferior through an exec. Therefore, the
1777feb0 892 inferior has essentially been killed & reborn. */
7a292a7a 893
c906108c 894 gdb_flush (gdb_stdout);
6ca15a4b
PA
895
896 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
897
898 if (gdb_sysroot && *gdb_sysroot)
899 {
900 char *name = alloca (strlen (gdb_sysroot)
901 + strlen (execd_pathname)
902 + 1);
abbb1732 903
e85a822c
DJ
904 strcpy (name, gdb_sysroot);
905 strcat (name, execd_pathname);
906 execd_pathname = name;
907 }
c906108c 908
cce9b6bf
PA
909 /* Reset the shared library package. This ensures that we get a
910 shlib event when the child reaches "_start", at which point the
911 dld will have had a chance to initialize the child. */
912 /* Also, loading a symbol file below may trigger symbol lookups, and
913 we don't want those to be satisfied by the libraries of the
914 previous incarnation of this process. */
915 no_shared_libraries (NULL, 0);
916
6c95b8df
PA
917 if (follow_exec_mode_string == follow_exec_mode_new)
918 {
919 struct program_space *pspace;
6c95b8df
PA
920
921 /* The user wants to keep the old inferior and program spaces
922 around. Create a new fresh one, and switch to it. */
923
924 inf = add_inferior (current_inferior ()->pid);
925 pspace = add_program_space (maybe_new_address_space ());
926 inf->pspace = pspace;
927 inf->aspace = pspace->aspace;
928
929 exit_inferior_num_silent (current_inferior ()->num);
930
931 set_current_inferior (inf);
932 set_current_program_space (pspace);
933 }
9107fc8d
PA
934 else
935 {
936 /* The old description may no longer be fit for the new image.
937 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
938 old description; we'll read a new one below. No need to do
939 this on "follow-exec-mode new", as the old inferior stays
940 around (its description is later cleared/refetched on
941 restart). */
942 target_clear_description ();
943 }
6c95b8df
PA
944
945 gdb_assert (current_program_space == inf->pspace);
946
1777feb0 947 /* That a.out is now the one to use. */
6c95b8df
PA
948 exec_file_attach (execd_pathname, 0);
949
c1e56572
JK
950 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
951 (Position Independent Executable) main symbol file will get applied by
952 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
953 the breakpoints with the zero displacement. */
954
7dcd53a0
TT
955 symbol_file_add (execd_pathname,
956 (inf->symfile_flags
957 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
958 NULL, 0);
959
7dcd53a0
TT
960 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
961 set_initial_language ();
c906108c 962
9107fc8d
PA
963 /* If the target can specify a description, read it. Must do this
964 after flipping to the new executable (because the target supplied
965 description must be compatible with the executable's
966 architecture, and the old executable may e.g., be 32-bit, while
967 the new one 64-bit), and before anything involving memory or
968 registers. */
969 target_find_description ();
970
268a4a75 971 solib_create_inferior_hook (0);
c906108c 972
4efc6507
DE
973 jit_inferior_created_hook ();
974
c1e56572
JK
975 breakpoint_re_set ();
976
c906108c
SS
977 /* Reinsert all breakpoints. (Those which were symbolic have
978 been reset to the proper address in the new a.out, thanks
1777feb0 979 to symbol_file_command...). */
c906108c
SS
980 insert_breakpoints ();
981
982 /* The next resume of this inferior should bring it to the shlib
983 startup breakpoints. (If the user had also set bp's on
984 "main" from the old (parent) process, then they'll auto-
1777feb0 985 matically get reset there in the new process.). */
c906108c
SS
986}
987
988/* Non-zero if we just simulating a single-step. This is needed
989 because we cannot remove the breakpoints in the inferior process
990 until after the `wait' in `wait_for_inferior'. */
991static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
992
993/* The thread we inserted single-step breakpoints for. */
994static ptid_t singlestep_ptid;
995
fd48f117
DJ
996/* PC when we started this single-step. */
997static CORE_ADDR singlestep_pc;
998
9f976b41
DJ
999/* If another thread hit the singlestep breakpoint, we save the original
1000 thread here so that we can resume single-stepping it later. */
1001static ptid_t saved_singlestep_ptid;
1002static int stepping_past_singlestep_breakpoint;
6a6b96b9 1003
ca67fcb8
VP
1004/* If not equal to null_ptid, this means that after stepping over breakpoint
1005 is finished, we need to switch to deferred_step_ptid, and step it.
1006
1007 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 1008 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
1009 breakpoint in the thread which hit the breakpoint, but then continue
1010 stepping the thread user has selected. */
1011static ptid_t deferred_step_ptid;
c906108c 1012\f
237fc4c9
PA
1013/* Displaced stepping. */
1014
1015/* In non-stop debugging mode, we must take special care to manage
1016 breakpoints properly; in particular, the traditional strategy for
1017 stepping a thread past a breakpoint it has hit is unsuitable.
1018 'Displaced stepping' is a tactic for stepping one thread past a
1019 breakpoint it has hit while ensuring that other threads running
1020 concurrently will hit the breakpoint as they should.
1021
1022 The traditional way to step a thread T off a breakpoint in a
1023 multi-threaded program in all-stop mode is as follows:
1024
1025 a0) Initially, all threads are stopped, and breakpoints are not
1026 inserted.
1027 a1) We single-step T, leaving breakpoints uninserted.
1028 a2) We insert breakpoints, and resume all threads.
1029
1030 In non-stop debugging, however, this strategy is unsuitable: we
1031 don't want to have to stop all threads in the system in order to
1032 continue or step T past a breakpoint. Instead, we use displaced
1033 stepping:
1034
1035 n0) Initially, T is stopped, other threads are running, and
1036 breakpoints are inserted.
1037 n1) We copy the instruction "under" the breakpoint to a separate
1038 location, outside the main code stream, making any adjustments
1039 to the instruction, register, and memory state as directed by
1040 T's architecture.
1041 n2) We single-step T over the instruction at its new location.
1042 n3) We adjust the resulting register and memory state as directed
1043 by T's architecture. This includes resetting T's PC to point
1044 back into the main instruction stream.
1045 n4) We resume T.
1046
1047 This approach depends on the following gdbarch methods:
1048
1049 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1050 indicate where to copy the instruction, and how much space must
1051 be reserved there. We use these in step n1.
1052
1053 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1054 address, and makes any necessary adjustments to the instruction,
1055 register contents, and memory. We use this in step n1.
1056
1057 - gdbarch_displaced_step_fixup adjusts registers and memory after
1058 we have successfuly single-stepped the instruction, to yield the
1059 same effect the instruction would have had if we had executed it
1060 at its original address. We use this in step n3.
1061
1062 - gdbarch_displaced_step_free_closure provides cleanup.
1063
1064 The gdbarch_displaced_step_copy_insn and
1065 gdbarch_displaced_step_fixup functions must be written so that
1066 copying an instruction with gdbarch_displaced_step_copy_insn,
1067 single-stepping across the copied instruction, and then applying
1068 gdbarch_displaced_insn_fixup should have the same effects on the
1069 thread's memory and registers as stepping the instruction in place
1070 would have. Exactly which responsibilities fall to the copy and
1071 which fall to the fixup is up to the author of those functions.
1072
1073 See the comments in gdbarch.sh for details.
1074
1075 Note that displaced stepping and software single-step cannot
1076 currently be used in combination, although with some care I think
1077 they could be made to. Software single-step works by placing
1078 breakpoints on all possible subsequent instructions; if the
1079 displaced instruction is a PC-relative jump, those breakpoints
1080 could fall in very strange places --- on pages that aren't
1081 executable, or at addresses that are not proper instruction
1082 boundaries. (We do generally let other threads run while we wait
1083 to hit the software single-step breakpoint, and they might
1084 encounter such a corrupted instruction.) One way to work around
1085 this would be to have gdbarch_displaced_step_copy_insn fully
1086 simulate the effect of PC-relative instructions (and return NULL)
1087 on architectures that use software single-stepping.
1088
1089 In non-stop mode, we can have independent and simultaneous step
1090 requests, so more than one thread may need to simultaneously step
1091 over a breakpoint. The current implementation assumes there is
1092 only one scratch space per process. In this case, we have to
1093 serialize access to the scratch space. If thread A wants to step
1094 over a breakpoint, but we are currently waiting for some other
1095 thread to complete a displaced step, we leave thread A stopped and
1096 place it in the displaced_step_request_queue. Whenever a displaced
1097 step finishes, we pick the next thread in the queue and start a new
1098 displaced step operation on it. See displaced_step_prepare and
1099 displaced_step_fixup for details. */
1100
237fc4c9
PA
1101struct displaced_step_request
1102{
1103 ptid_t ptid;
1104 struct displaced_step_request *next;
1105};
1106
fc1cf338
PA
1107/* Per-inferior displaced stepping state. */
1108struct displaced_step_inferior_state
1109{
1110 /* Pointer to next in linked list. */
1111 struct displaced_step_inferior_state *next;
1112
1113 /* The process this displaced step state refers to. */
1114 int pid;
1115
1116 /* A queue of pending displaced stepping requests. One entry per
1117 thread that needs to do a displaced step. */
1118 struct displaced_step_request *step_request_queue;
1119
1120 /* If this is not null_ptid, this is the thread carrying out a
1121 displaced single-step in process PID. This thread's state will
1122 require fixing up once it has completed its step. */
1123 ptid_t step_ptid;
1124
1125 /* The architecture the thread had when we stepped it. */
1126 struct gdbarch *step_gdbarch;
1127
1128 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1129 for post-step cleanup. */
1130 struct displaced_step_closure *step_closure;
1131
1132 /* The address of the original instruction, and the copy we
1133 made. */
1134 CORE_ADDR step_original, step_copy;
1135
1136 /* Saved contents of copy area. */
1137 gdb_byte *step_saved_copy;
1138};
1139
1140/* The list of states of processes involved in displaced stepping
1141 presently. */
1142static struct displaced_step_inferior_state *displaced_step_inferior_states;
1143
1144/* Get the displaced stepping state of process PID. */
1145
1146static struct displaced_step_inferior_state *
1147get_displaced_stepping_state (int pid)
1148{
1149 struct displaced_step_inferior_state *state;
1150
1151 for (state = displaced_step_inferior_states;
1152 state != NULL;
1153 state = state->next)
1154 if (state->pid == pid)
1155 return state;
1156
1157 return NULL;
1158}
1159
1160/* Add a new displaced stepping state for process PID to the displaced
1161 stepping state list, or return a pointer to an already existing
1162 entry, if it already exists. Never returns NULL. */
1163
1164static struct displaced_step_inferior_state *
1165add_displaced_stepping_state (int pid)
1166{
1167 struct displaced_step_inferior_state *state;
1168
1169 for (state = displaced_step_inferior_states;
1170 state != NULL;
1171 state = state->next)
1172 if (state->pid == pid)
1173 return state;
237fc4c9 1174
fc1cf338
PA
1175 state = xcalloc (1, sizeof (*state));
1176 state->pid = pid;
1177 state->next = displaced_step_inferior_states;
1178 displaced_step_inferior_states = state;
237fc4c9 1179
fc1cf338
PA
1180 return state;
1181}
1182
a42244db
YQ
1183/* If inferior is in displaced stepping, and ADDR equals to starting address
1184 of copy area, return corresponding displaced_step_closure. Otherwise,
1185 return NULL. */
1186
1187struct displaced_step_closure*
1188get_displaced_step_closure_by_addr (CORE_ADDR addr)
1189{
1190 struct displaced_step_inferior_state *displaced
1191 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1192
1193 /* If checking the mode of displaced instruction in copy area. */
1194 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1195 && (displaced->step_copy == addr))
1196 return displaced->step_closure;
1197
1198 return NULL;
1199}
1200
fc1cf338 1201/* Remove the displaced stepping state of process PID. */
237fc4c9 1202
fc1cf338
PA
1203static void
1204remove_displaced_stepping_state (int pid)
1205{
1206 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1207
fc1cf338
PA
1208 gdb_assert (pid != 0);
1209
1210 it = displaced_step_inferior_states;
1211 prev_next_p = &displaced_step_inferior_states;
1212 while (it)
1213 {
1214 if (it->pid == pid)
1215 {
1216 *prev_next_p = it->next;
1217 xfree (it);
1218 return;
1219 }
1220
1221 prev_next_p = &it->next;
1222 it = *prev_next_p;
1223 }
1224}
1225
1226static void
1227infrun_inferior_exit (struct inferior *inf)
1228{
1229 remove_displaced_stepping_state (inf->pid);
1230}
237fc4c9 1231
fff08868
HZ
1232/* If ON, and the architecture supports it, GDB will use displaced
1233 stepping to step over breakpoints. If OFF, or if the architecture
1234 doesn't support it, GDB will instead use the traditional
1235 hold-and-step approach. If AUTO (which is the default), GDB will
1236 decide which technique to use to step over breakpoints depending on
1237 which of all-stop or non-stop mode is active --- displaced stepping
1238 in non-stop mode; hold-and-step in all-stop mode. */
1239
72d0e2c5 1240static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1241
237fc4c9
PA
1242static void
1243show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1244 struct cmd_list_element *c,
1245 const char *value)
1246{
72d0e2c5 1247 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1248 fprintf_filtered (file,
1249 _("Debugger's willingness to use displaced stepping "
1250 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1251 value, non_stop ? "on" : "off");
1252 else
3e43a32a
MS
1253 fprintf_filtered (file,
1254 _("Debugger's willingness to use displaced stepping "
1255 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1256}
1257
fff08868
HZ
1258/* Return non-zero if displaced stepping can/should be used to step
1259 over breakpoints. */
1260
237fc4c9
PA
1261static int
1262use_displaced_stepping (struct gdbarch *gdbarch)
1263{
72d0e2c5
YQ
1264 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1265 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8
HZ
1266 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1267 && !RECORD_IS_USED);
237fc4c9
PA
1268}
1269
1270/* Clean out any stray displaced stepping state. */
1271static void
fc1cf338 1272displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1273{
1274 /* Indicate that there is no cleanup pending. */
fc1cf338 1275 displaced->step_ptid = null_ptid;
237fc4c9 1276
fc1cf338 1277 if (displaced->step_closure)
237fc4c9 1278 {
fc1cf338
PA
1279 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1280 displaced->step_closure);
1281 displaced->step_closure = NULL;
237fc4c9
PA
1282 }
1283}
1284
1285static void
fc1cf338 1286displaced_step_clear_cleanup (void *arg)
237fc4c9 1287{
fc1cf338
PA
1288 struct displaced_step_inferior_state *state = arg;
1289
1290 displaced_step_clear (state);
237fc4c9
PA
1291}
1292
1293/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1294void
1295displaced_step_dump_bytes (struct ui_file *file,
1296 const gdb_byte *buf,
1297 size_t len)
1298{
1299 int i;
1300
1301 for (i = 0; i < len; i++)
1302 fprintf_unfiltered (file, "%02x ", buf[i]);
1303 fputs_unfiltered ("\n", file);
1304}
1305
1306/* Prepare to single-step, using displaced stepping.
1307
1308 Note that we cannot use displaced stepping when we have a signal to
1309 deliver. If we have a signal to deliver and an instruction to step
1310 over, then after the step, there will be no indication from the
1311 target whether the thread entered a signal handler or ignored the
1312 signal and stepped over the instruction successfully --- both cases
1313 result in a simple SIGTRAP. In the first case we mustn't do a
1314 fixup, and in the second case we must --- but we can't tell which.
1315 Comments in the code for 'random signals' in handle_inferior_event
1316 explain how we handle this case instead.
1317
1318 Returns 1 if preparing was successful -- this thread is going to be
1319 stepped now; or 0 if displaced stepping this thread got queued. */
1320static int
1321displaced_step_prepare (ptid_t ptid)
1322{
ad53cd71 1323 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1324 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1325 struct regcache *regcache = get_thread_regcache (ptid);
1326 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1327 CORE_ADDR original, copy;
1328 ULONGEST len;
1329 struct displaced_step_closure *closure;
fc1cf338 1330 struct displaced_step_inferior_state *displaced;
9e529e1d 1331 int status;
237fc4c9
PA
1332
1333 /* We should never reach this function if the architecture does not
1334 support displaced stepping. */
1335 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1336
c1e36e3e
PA
1337 /* Disable range stepping while executing in the scratch pad. We
1338 want a single-step even if executing the displaced instruction in
1339 the scratch buffer lands within the stepping range (e.g., a
1340 jump/branch). */
1341 tp->control.may_range_step = 0;
1342
fc1cf338
PA
1343 /* We have to displaced step one thread at a time, as we only have
1344 access to a single scratch space per inferior. */
237fc4c9 1345
fc1cf338
PA
1346 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1347
1348 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1349 {
1350 /* Already waiting for a displaced step to finish. Defer this
1351 request and place in queue. */
1352 struct displaced_step_request *req, *new_req;
1353
1354 if (debug_displaced)
1355 fprintf_unfiltered (gdb_stdlog,
1356 "displaced: defering step of %s\n",
1357 target_pid_to_str (ptid));
1358
1359 new_req = xmalloc (sizeof (*new_req));
1360 new_req->ptid = ptid;
1361 new_req->next = NULL;
1362
fc1cf338 1363 if (displaced->step_request_queue)
237fc4c9 1364 {
fc1cf338 1365 for (req = displaced->step_request_queue;
237fc4c9
PA
1366 req && req->next;
1367 req = req->next)
1368 ;
1369 req->next = new_req;
1370 }
1371 else
fc1cf338 1372 displaced->step_request_queue = new_req;
237fc4c9
PA
1373
1374 return 0;
1375 }
1376 else
1377 {
1378 if (debug_displaced)
1379 fprintf_unfiltered (gdb_stdlog,
1380 "displaced: stepping %s now\n",
1381 target_pid_to_str (ptid));
1382 }
1383
fc1cf338 1384 displaced_step_clear (displaced);
237fc4c9 1385
ad53cd71
PA
1386 old_cleanups = save_inferior_ptid ();
1387 inferior_ptid = ptid;
1388
515630c5 1389 original = regcache_read_pc (regcache);
237fc4c9
PA
1390
1391 copy = gdbarch_displaced_step_location (gdbarch);
1392 len = gdbarch_max_insn_length (gdbarch);
1393
1394 /* Save the original contents of the copy area. */
fc1cf338 1395 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1396 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1397 &displaced->step_saved_copy);
9e529e1d
JK
1398 status = target_read_memory (copy, displaced->step_saved_copy, len);
1399 if (status != 0)
1400 throw_error (MEMORY_ERROR,
1401 _("Error accessing memory address %s (%s) for "
1402 "displaced-stepping scratch space."),
1403 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1404 if (debug_displaced)
1405 {
5af949e3
UW
1406 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1407 paddress (gdbarch, copy));
fc1cf338
PA
1408 displaced_step_dump_bytes (gdb_stdlog,
1409 displaced->step_saved_copy,
1410 len);
237fc4c9
PA
1411 };
1412
1413 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1414 original, copy, regcache);
237fc4c9
PA
1415
1416 /* We don't support the fully-simulated case at present. */
1417 gdb_assert (closure);
1418
9f5a595d
UW
1419 /* Save the information we need to fix things up if the step
1420 succeeds. */
fc1cf338
PA
1421 displaced->step_ptid = ptid;
1422 displaced->step_gdbarch = gdbarch;
1423 displaced->step_closure = closure;
1424 displaced->step_original = original;
1425 displaced->step_copy = copy;
9f5a595d 1426
fc1cf338 1427 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1428
1429 /* Resume execution at the copy. */
515630c5 1430 regcache_write_pc (regcache, copy);
237fc4c9 1431
ad53cd71
PA
1432 discard_cleanups (ignore_cleanups);
1433
1434 do_cleanups (old_cleanups);
237fc4c9
PA
1435
1436 if (debug_displaced)
5af949e3
UW
1437 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1438 paddress (gdbarch, copy));
237fc4c9 1439
237fc4c9
PA
1440 return 1;
1441}
1442
237fc4c9 1443static void
3e43a32a
MS
1444write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1445 const gdb_byte *myaddr, int len)
237fc4c9
PA
1446{
1447 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1448
237fc4c9
PA
1449 inferior_ptid = ptid;
1450 write_memory (memaddr, myaddr, len);
1451 do_cleanups (ptid_cleanup);
1452}
1453
e2d96639
YQ
1454/* Restore the contents of the copy area for thread PTID. */
1455
1456static void
1457displaced_step_restore (struct displaced_step_inferior_state *displaced,
1458 ptid_t ptid)
1459{
1460 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1461
1462 write_memory_ptid (ptid, displaced->step_copy,
1463 displaced->step_saved_copy, len);
1464 if (debug_displaced)
1465 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1466 target_pid_to_str (ptid),
1467 paddress (displaced->step_gdbarch,
1468 displaced->step_copy));
1469}
1470
237fc4c9 1471static void
2ea28649 1472displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1473{
1474 struct cleanup *old_cleanups;
fc1cf338
PA
1475 struct displaced_step_inferior_state *displaced
1476 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1477
1478 /* Was any thread of this process doing a displaced step? */
1479 if (displaced == NULL)
1480 return;
237fc4c9
PA
1481
1482 /* Was this event for the pid we displaced? */
fc1cf338
PA
1483 if (ptid_equal (displaced->step_ptid, null_ptid)
1484 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1485 return;
1486
fc1cf338 1487 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1488
e2d96639 1489 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1490
1491 /* Did the instruction complete successfully? */
a493e3e2 1492 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1493 {
1494 /* Fix up the resulting state. */
fc1cf338
PA
1495 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1496 displaced->step_closure,
1497 displaced->step_original,
1498 displaced->step_copy,
1499 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1500 }
1501 else
1502 {
1503 /* Since the instruction didn't complete, all we can do is
1504 relocate the PC. */
515630c5
UW
1505 struct regcache *regcache = get_thread_regcache (event_ptid);
1506 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1507
fc1cf338 1508 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1509 regcache_write_pc (regcache, pc);
237fc4c9
PA
1510 }
1511
1512 do_cleanups (old_cleanups);
1513
fc1cf338 1514 displaced->step_ptid = null_ptid;
1c5cfe86 1515
237fc4c9 1516 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1517 one now. Leave the state object around, since we're likely to
1518 need it again soon. */
1519 while (displaced->step_request_queue)
237fc4c9
PA
1520 {
1521 struct displaced_step_request *head;
1522 ptid_t ptid;
5af949e3 1523 struct regcache *regcache;
929dfd4f 1524 struct gdbarch *gdbarch;
1c5cfe86 1525 CORE_ADDR actual_pc;
6c95b8df 1526 struct address_space *aspace;
237fc4c9 1527
fc1cf338 1528 head = displaced->step_request_queue;
237fc4c9 1529 ptid = head->ptid;
fc1cf338 1530 displaced->step_request_queue = head->next;
237fc4c9
PA
1531 xfree (head);
1532
ad53cd71
PA
1533 context_switch (ptid);
1534
5af949e3
UW
1535 regcache = get_thread_regcache (ptid);
1536 actual_pc = regcache_read_pc (regcache);
6c95b8df 1537 aspace = get_regcache_aspace (regcache);
1c5cfe86 1538
6c95b8df 1539 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1540 {
1c5cfe86
PA
1541 if (debug_displaced)
1542 fprintf_unfiltered (gdb_stdlog,
1543 "displaced: stepping queued %s now\n",
1544 target_pid_to_str (ptid));
1545
1546 displaced_step_prepare (ptid);
1547
929dfd4f
JB
1548 gdbarch = get_regcache_arch (regcache);
1549
1c5cfe86
PA
1550 if (debug_displaced)
1551 {
929dfd4f 1552 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1553 gdb_byte buf[4];
1554
5af949e3
UW
1555 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1556 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1557 read_memory (actual_pc, buf, sizeof (buf));
1558 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1559 }
1560
fc1cf338
PA
1561 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1562 displaced->step_closure))
a493e3e2 1563 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1564 else
a493e3e2 1565 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1566
1567 /* Done, we're stepping a thread. */
1568 break;
ad53cd71 1569 }
1c5cfe86
PA
1570 else
1571 {
1572 int step;
1573 struct thread_info *tp = inferior_thread ();
1574
1575 /* The breakpoint we were sitting under has since been
1576 removed. */
16c381f0 1577 tp->control.trap_expected = 0;
1c5cfe86
PA
1578
1579 /* Go back to what we were trying to do. */
1580 step = currently_stepping (tp);
ad53cd71 1581
1c5cfe86 1582 if (debug_displaced)
3e43a32a 1583 fprintf_unfiltered (gdb_stdlog,
27d2932e 1584 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1585 target_pid_to_str (tp->ptid), step);
1586
a493e3e2
PA
1587 target_resume (ptid, step, GDB_SIGNAL_0);
1588 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1589
1590 /* This request was discarded. See if there's any other
1591 thread waiting for its turn. */
1592 }
237fc4c9
PA
1593 }
1594}
1595
5231c1fd
PA
1596/* Update global variables holding ptids to hold NEW_PTID if they were
1597 holding OLD_PTID. */
1598static void
1599infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1600{
1601 struct displaced_step_request *it;
fc1cf338 1602 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1603
1604 if (ptid_equal (inferior_ptid, old_ptid))
1605 inferior_ptid = new_ptid;
1606
1607 if (ptid_equal (singlestep_ptid, old_ptid))
1608 singlestep_ptid = new_ptid;
1609
5231c1fd
PA
1610 if (ptid_equal (deferred_step_ptid, old_ptid))
1611 deferred_step_ptid = new_ptid;
1612
fc1cf338
PA
1613 for (displaced = displaced_step_inferior_states;
1614 displaced;
1615 displaced = displaced->next)
1616 {
1617 if (ptid_equal (displaced->step_ptid, old_ptid))
1618 displaced->step_ptid = new_ptid;
1619
1620 for (it = displaced->step_request_queue; it; it = it->next)
1621 if (ptid_equal (it->ptid, old_ptid))
1622 it->ptid = new_ptid;
1623 }
5231c1fd
PA
1624}
1625
237fc4c9
PA
1626\f
1627/* Resuming. */
c906108c
SS
1628
1629/* Things to clean up if we QUIT out of resume (). */
c906108c 1630static void
74b7792f 1631resume_cleanups (void *ignore)
c906108c
SS
1632{
1633 normal_stop ();
1634}
1635
53904c9e
AC
1636static const char schedlock_off[] = "off";
1637static const char schedlock_on[] = "on";
1638static const char schedlock_step[] = "step";
40478521 1639static const char *const scheduler_enums[] = {
ef346e04
AC
1640 schedlock_off,
1641 schedlock_on,
1642 schedlock_step,
1643 NULL
1644};
920d2a44
AC
1645static const char *scheduler_mode = schedlock_off;
1646static void
1647show_scheduler_mode (struct ui_file *file, int from_tty,
1648 struct cmd_list_element *c, const char *value)
1649{
3e43a32a
MS
1650 fprintf_filtered (file,
1651 _("Mode for locking scheduler "
1652 "during execution is \"%s\".\n"),
920d2a44
AC
1653 value);
1654}
c906108c
SS
1655
1656static void
96baa820 1657set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1658{
eefe576e
AC
1659 if (!target_can_lock_scheduler)
1660 {
1661 scheduler_mode = schedlock_off;
1662 error (_("Target '%s' cannot support this command."), target_shortname);
1663 }
c906108c
SS
1664}
1665
d4db2f36
PA
1666/* True if execution commands resume all threads of all processes by
1667 default; otherwise, resume only threads of the current inferior
1668 process. */
1669int sched_multi = 0;
1670
2facfe5c
DD
1671/* Try to setup for software single stepping over the specified location.
1672 Return 1 if target_resume() should use hardware single step.
1673
1674 GDBARCH the current gdbarch.
1675 PC the location to step over. */
1676
1677static int
1678maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1679{
1680 int hw_step = 1;
1681
f02253f1
HZ
1682 if (execution_direction == EXEC_FORWARD
1683 && gdbarch_software_single_step_p (gdbarch)
99e40580 1684 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1685 {
99e40580
UW
1686 hw_step = 0;
1687 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1688 `wait_for_inferior'. */
99e40580
UW
1689 singlestep_breakpoints_inserted_p = 1;
1690 singlestep_ptid = inferior_ptid;
1691 singlestep_pc = pc;
2facfe5c
DD
1692 }
1693 return hw_step;
1694}
c906108c 1695
09cee04b
PA
1696/* Return a ptid representing the set of threads that we will proceed,
1697 in the perspective of the user/frontend. We may actually resume
1698 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1699 breakpoint that needs stepping-off, but that should not be visible
1700 to the user/frontend, and neither should the frontend/user be
1701 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1702 internal run control handling, if a previous command wanted them
1703 resumed. */
1704
1705ptid_t
1706user_visible_resume_ptid (int step)
1707{
1708 /* By default, resume all threads of all processes. */
1709 ptid_t resume_ptid = RESUME_ALL;
1710
1711 /* Maybe resume only all threads of the current process. */
1712 if (!sched_multi && target_supports_multi_process ())
1713 {
1714 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1715 }
1716
1717 /* Maybe resume a single thread after all. */
1718 if (non_stop)
1719 {
1720 /* With non-stop mode on, threads are always handled
1721 individually. */
1722 resume_ptid = inferior_ptid;
1723 }
1724 else if ((scheduler_mode == schedlock_on)
1725 || (scheduler_mode == schedlock_step
1726 && (step || singlestep_breakpoints_inserted_p)))
1727 {
1728 /* User-settable 'scheduler' mode requires solo thread resume. */
1729 resume_ptid = inferior_ptid;
1730 }
1731
1732 return resume_ptid;
1733}
1734
c906108c
SS
1735/* Resume the inferior, but allow a QUIT. This is useful if the user
1736 wants to interrupt some lengthy single-stepping operation
1737 (for child processes, the SIGINT goes to the inferior, and so
1738 we get a SIGINT random_signal, but for remote debugging and perhaps
1739 other targets, that's not true).
1740
1741 STEP nonzero if we should step (zero to continue instead).
1742 SIG is the signal to give the inferior (zero for none). */
1743void
2ea28649 1744resume (int step, enum gdb_signal sig)
c906108c
SS
1745{
1746 int should_resume = 1;
74b7792f 1747 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1748 struct regcache *regcache = get_current_regcache ();
1749 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1750 struct thread_info *tp = inferior_thread ();
515630c5 1751 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1752 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1753
c906108c
SS
1754 QUIT;
1755
74609e71
YQ
1756 if (current_inferior ()->waiting_for_vfork_done)
1757 {
48f9886d
PA
1758 /* Don't try to single-step a vfork parent that is waiting for
1759 the child to get out of the shared memory region (by exec'ing
1760 or exiting). This is particularly important on software
1761 single-step archs, as the child process would trip on the
1762 software single step breakpoint inserted for the parent
1763 process. Since the parent will not actually execute any
1764 instruction until the child is out of the shared region (such
1765 are vfork's semantics), it is safe to simply continue it.
1766 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1767 the parent, and tell it to `keep_going', which automatically
1768 re-sets it stepping. */
74609e71
YQ
1769 if (debug_infrun)
1770 fprintf_unfiltered (gdb_stdlog,
1771 "infrun: resume : clear step\n");
1772 step = 0;
1773 }
1774
527159b7 1775 if (debug_infrun)
237fc4c9
PA
1776 fprintf_unfiltered (gdb_stdlog,
1777 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1778 "trap_expected=%d, current thread [%s] at %s\n",
1779 step, sig, tp->control.trap_expected,
1780 target_pid_to_str (inferior_ptid),
1781 paddress (gdbarch, pc));
c906108c 1782
c2c6d25f
JM
1783 /* Normally, by the time we reach `resume', the breakpoints are either
1784 removed or inserted, as appropriate. The exception is if we're sitting
1785 at a permanent breakpoint; we need to step over it, but permanent
1786 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1787 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1788 {
515630c5
UW
1789 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1790 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1791 else
ac74f770
MS
1792 error (_("\
1793The program is stopped at a permanent breakpoint, but GDB does not know\n\
1794how to step past a permanent breakpoint on this architecture. Try using\n\
1795a command like `return' or `jump' to continue execution."));
6d350bb5 1796 }
c2c6d25f 1797
c1e36e3e
PA
1798 /* If we have a breakpoint to step over, make sure to do a single
1799 step only. Same if we have software watchpoints. */
1800 if (tp->control.trap_expected || bpstat_should_step ())
1801 tp->control.may_range_step = 0;
1802
237fc4c9
PA
1803 /* If enabled, step over breakpoints by executing a copy of the
1804 instruction at a different address.
1805
1806 We can't use displaced stepping when we have a signal to deliver;
1807 the comments for displaced_step_prepare explain why. The
1808 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1809 signals' explain what we do instead.
1810
1811 We can't use displaced stepping when we are waiting for vfork_done
1812 event, displaced stepping breaks the vfork child similarly as single
1813 step software breakpoint. */
515630c5 1814 if (use_displaced_stepping (gdbarch)
16c381f0 1815 && (tp->control.trap_expected
929dfd4f 1816 || (step && gdbarch_software_single_step_p (gdbarch)))
a493e3e2 1817 && sig == GDB_SIGNAL_0
74609e71 1818 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1819 {
fc1cf338
PA
1820 struct displaced_step_inferior_state *displaced;
1821
237fc4c9 1822 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1823 {
1824 /* Got placed in displaced stepping queue. Will be resumed
1825 later when all the currently queued displaced stepping
7f7efbd9
VP
1826 requests finish. The thread is not executing at this point,
1827 and the call to set_executing will be made later. But we
1828 need to call set_running here, since from frontend point of view,
1829 the thread is running. */
1830 set_running (inferior_ptid, 1);
d56b7306
VP
1831 discard_cleanups (old_cleanups);
1832 return;
1833 }
99e40580 1834
ca7781d2
LM
1835 /* Update pc to reflect the new address from which we will execute
1836 instructions due to displaced stepping. */
1837 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1838
fc1cf338
PA
1839 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1840 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1841 displaced->step_closure);
237fc4c9
PA
1842 }
1843
2facfe5c 1844 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1845 else if (step)
2facfe5c 1846 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1847
30852783
UW
1848 /* Currently, our software single-step implementation leads to different
1849 results than hardware single-stepping in one situation: when stepping
1850 into delivering a signal which has an associated signal handler,
1851 hardware single-step will stop at the first instruction of the handler,
1852 while software single-step will simply skip execution of the handler.
1853
1854 For now, this difference in behavior is accepted since there is no
1855 easy way to actually implement single-stepping into a signal handler
1856 without kernel support.
1857
1858 However, there is one scenario where this difference leads to follow-on
1859 problems: if we're stepping off a breakpoint by removing all breakpoints
1860 and then single-stepping. In this case, the software single-step
1861 behavior means that even if there is a *breakpoint* in the signal
1862 handler, GDB still would not stop.
1863
1864 Fortunately, we can at least fix this particular issue. We detect
1865 here the case where we are about to deliver a signal while software
1866 single-stepping with breakpoints removed. In this situation, we
1867 revert the decisions to remove all breakpoints and insert single-
1868 step breakpoints, and instead we install a step-resume breakpoint
1869 at the current address, deliver the signal without stepping, and
1870 once we arrive back at the step-resume breakpoint, actually step
1871 over the breakpoint we originally wanted to step over. */
1872 if (singlestep_breakpoints_inserted_p
a493e3e2 1873 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
30852783
UW
1874 {
1875 /* If we have nested signals or a pending signal is delivered
1876 immediately after a handler returns, might might already have
1877 a step-resume breakpoint set on the earlier handler. We cannot
1878 set another step-resume breakpoint; just continue on until the
1879 original breakpoint is hit. */
1880 if (tp->control.step_resume_breakpoint == NULL)
1881 {
2c03e5be 1882 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1883 tp->step_after_step_resume_breakpoint = 1;
1884 }
1885
1886 remove_single_step_breakpoints ();
1887 singlestep_breakpoints_inserted_p = 0;
1888
1889 insert_breakpoints ();
1890 tp->control.trap_expected = 0;
1891 }
1892
c906108c
SS
1893 if (should_resume)
1894 {
39f77062 1895 ptid_t resume_ptid;
dfcd3bfb 1896
cd76b0b7
VP
1897 /* If STEP is set, it's a request to use hardware stepping
1898 facilities. But in that case, we should never
1899 use singlestep breakpoint. */
1900 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1901
d4db2f36
PA
1902 /* Decide the set of threads to ask the target to resume. Start
1903 by assuming everything will be resumed, than narrow the set
1904 by applying increasingly restricting conditions. */
09cee04b 1905 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1906
1907 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1908 if (singlestep_breakpoints_inserted_p
1909 && stepping_past_singlestep_breakpoint)
c906108c 1910 {
cd76b0b7
VP
1911 /* The situation here is as follows. In thread T1 we wanted to
1912 single-step. Lacking hardware single-stepping we've
1913 set breakpoint at the PC of the next instruction -- call it
1914 P. After resuming, we've hit that breakpoint in thread T2.
1915 Now we've removed original breakpoint, inserted breakpoint
1916 at P+1, and try to step to advance T2 past breakpoint.
1917 We need to step only T2, as if T1 is allowed to freely run,
1918 it can run past P, and if other threads are allowed to run,
1919 they can hit breakpoint at P+1, and nested hits of single-step
1920 breakpoints is not something we'd want -- that's complicated
1921 to support, and has no value. */
1922 resume_ptid = inferior_ptid;
1923 }
d4db2f36 1924 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1925 && tp->control.trap_expected)
cd76b0b7 1926 {
74960c60
VP
1927 /* We're allowing a thread to run past a breakpoint it has
1928 hit, by single-stepping the thread with the breakpoint
1929 removed. In which case, we need to single-step only this
1930 thread, and keep others stopped, as they can miss this
1931 breakpoint if allowed to run.
1932
1933 The current code actually removes all breakpoints when
1934 doing this, not just the one being stepped over, so if we
1935 let other threads run, we can actually miss any
1936 breakpoint, not just the one at PC. */
ef5cf84e 1937 resume_ptid = inferior_ptid;
c906108c 1938 }
ef5cf84e 1939
515630c5 1940 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1941 {
1942 /* Most targets can step a breakpoint instruction, thus
1943 executing it normally. But if this one cannot, just
1944 continue and we will hit it anyway. */
6c95b8df 1945 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1946 step = 0;
1947 }
237fc4c9
PA
1948
1949 if (debug_displaced
515630c5 1950 && use_displaced_stepping (gdbarch)
16c381f0 1951 && tp->control.trap_expected)
237fc4c9 1952 {
515630c5 1953 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1954 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1955 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1956 gdb_byte buf[4];
1957
5af949e3
UW
1958 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1959 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1960 read_memory (actual_pc, buf, sizeof (buf));
1961 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1962 }
1963
c1e36e3e
PA
1964 if (tp->control.may_range_step)
1965 {
1966 /* If we're resuming a thread with the PC out of the step
1967 range, then we're doing some nested/finer run control
1968 operation, like stepping the thread out of the dynamic
1969 linker or the displaced stepping scratch pad. We
1970 shouldn't have allowed a range step then. */
1971 gdb_assert (pc_in_thread_step_range (pc, tp));
1972 }
1973
e58b0e63
PA
1974 /* Install inferior's terminal modes. */
1975 target_terminal_inferior ();
1976
2020b7ab
PA
1977 /* Avoid confusing the next resume, if the next stop/resume
1978 happens to apply to another thread. */
a493e3e2 1979 tp->suspend.stop_signal = GDB_SIGNAL_0;
607cecd2 1980
2455069d
UW
1981 /* Advise target which signals may be handled silently. If we have
1982 removed breakpoints because we are stepping over one (which can
1983 happen only if we are not using displaced stepping), we need to
1984 receive all signals to avoid accidentally skipping a breakpoint
1985 during execution of a signal handler. */
1986 if ((step || singlestep_breakpoints_inserted_p)
1987 && tp->control.trap_expected
1988 && !use_displaced_stepping (gdbarch))
1989 target_pass_signals (0, NULL);
1990 else
a493e3e2 1991 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 1992
607cecd2 1993 target_resume (resume_ptid, step, sig);
c906108c
SS
1994 }
1995
1996 discard_cleanups (old_cleanups);
1997}
1998\f
237fc4c9 1999/* Proceeding. */
c906108c
SS
2000
2001/* Clear out all variables saying what to do when inferior is continued.
2002 First do this, then set the ones you want, then call `proceed'. */
2003
a7212384
UW
2004static void
2005clear_proceed_status_thread (struct thread_info *tp)
c906108c 2006{
a7212384
UW
2007 if (debug_infrun)
2008 fprintf_unfiltered (gdb_stdlog,
2009 "infrun: clear_proceed_status_thread (%s)\n",
2010 target_pid_to_str (tp->ptid));
d6b48e9c 2011
16c381f0
JK
2012 tp->control.trap_expected = 0;
2013 tp->control.step_range_start = 0;
2014 tp->control.step_range_end = 0;
c1e36e3e 2015 tp->control.may_range_step = 0;
16c381f0
JK
2016 tp->control.step_frame_id = null_frame_id;
2017 tp->control.step_stack_frame_id = null_frame_id;
2018 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2019 tp->stop_requested = 0;
4e1c45ea 2020
16c381f0 2021 tp->control.stop_step = 0;
32400beb 2022
16c381f0 2023 tp->control.proceed_to_finish = 0;
414c69f7 2024
a7212384 2025 /* Discard any remaining commands or status from previous stop. */
16c381f0 2026 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2027}
32400beb 2028
a7212384
UW
2029static int
2030clear_proceed_status_callback (struct thread_info *tp, void *data)
2031{
2032 if (is_exited (tp->ptid))
2033 return 0;
d6b48e9c 2034
a7212384
UW
2035 clear_proceed_status_thread (tp);
2036 return 0;
2037}
2038
2039void
2040clear_proceed_status (void)
2041{
6c95b8df
PA
2042 if (!non_stop)
2043 {
2044 /* In all-stop mode, delete the per-thread status of all
2045 threads, even if inferior_ptid is null_ptid, there may be
2046 threads on the list. E.g., we may be launching a new
2047 process, while selecting the executable. */
2048 iterate_over_threads (clear_proceed_status_callback, NULL);
2049 }
2050
a7212384
UW
2051 if (!ptid_equal (inferior_ptid, null_ptid))
2052 {
2053 struct inferior *inferior;
2054
2055 if (non_stop)
2056 {
6c95b8df
PA
2057 /* If in non-stop mode, only delete the per-thread status of
2058 the current thread. */
a7212384
UW
2059 clear_proceed_status_thread (inferior_thread ());
2060 }
6c95b8df 2061
d6b48e9c 2062 inferior = current_inferior ();
16c381f0 2063 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2064 }
2065
c906108c 2066 stop_after_trap = 0;
f3b1572e
PA
2067
2068 observer_notify_about_to_proceed ();
c906108c 2069
d5c31457
UW
2070 if (stop_registers)
2071 {
2072 regcache_xfree (stop_registers);
2073 stop_registers = NULL;
2074 }
c906108c
SS
2075}
2076
5a437975
DE
2077/* Check the current thread against the thread that reported the most recent
2078 event. If a step-over is required return TRUE and set the current thread
2079 to the old thread. Otherwise return FALSE.
2080
1777feb0 2081 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2082
2083static int
6a6b96b9 2084prepare_to_proceed (int step)
ea67f13b
DJ
2085{
2086 ptid_t wait_ptid;
2087 struct target_waitstatus wait_status;
5a437975
DE
2088 int schedlock_enabled;
2089
2090 /* With non-stop mode on, threads are always handled individually. */
2091 gdb_assert (! non_stop);
ea67f13b
DJ
2092
2093 /* Get the last target status returned by target_wait(). */
2094 get_last_target_status (&wait_ptid, &wait_status);
2095
6a6b96b9 2096 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2097 if (wait_status.kind != TARGET_WAITKIND_STOPPED
a493e3e2
PA
2098 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2099 && wait_status.value.sig != GDB_SIGNAL_ILL
2100 && wait_status.value.sig != GDB_SIGNAL_SEGV
2101 && wait_status.value.sig != GDB_SIGNAL_EMT))
ea67f13b
DJ
2102 {
2103 return 0;
2104 }
2105
5a437975
DE
2106 schedlock_enabled = (scheduler_mode == schedlock_on
2107 || (scheduler_mode == schedlock_step
2108 && step));
2109
d4db2f36
PA
2110 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2111 if (schedlock_enabled)
2112 return 0;
2113
2114 /* Don't switch over if we're about to resume some other process
2115 other than WAIT_PTID's, and schedule-multiple is off. */
2116 if (!sched_multi
2117 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2118 return 0;
2119
6a6b96b9 2120 /* Switched over from WAIT_PID. */
ea67f13b 2121 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2122 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2123 {
515630c5
UW
2124 struct regcache *regcache = get_thread_regcache (wait_ptid);
2125
6c95b8df
PA
2126 if (breakpoint_here_p (get_regcache_aspace (regcache),
2127 regcache_read_pc (regcache)))
ea67f13b 2128 {
515630c5
UW
2129 /* If stepping, remember current thread to switch back to. */
2130 if (step)
2131 deferred_step_ptid = inferior_ptid;
ea67f13b 2132
515630c5
UW
2133 /* Switch back to WAIT_PID thread. */
2134 switch_to_thread (wait_ptid);
6a6b96b9 2135
0d9a9a5f
PA
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog,
2138 "infrun: prepare_to_proceed (step=%d), "
2139 "switched to [%s]\n",
2140 step, target_pid_to_str (inferior_ptid));
2141
515630c5
UW
2142 /* We return 1 to indicate that there is a breakpoint here,
2143 so we need to step over it before continuing to avoid
1777feb0 2144 hitting it straight away. */
515630c5
UW
2145 return 1;
2146 }
ea67f13b
DJ
2147 }
2148
2149 return 0;
ea67f13b 2150}
e4846b08 2151
c906108c
SS
2152/* Basic routine for continuing the program in various fashions.
2153
2154 ADDR is the address to resume at, or -1 for resume where stopped.
2155 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2156 or -1 for act according to how it stopped.
c906108c 2157 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2158 -1 means return after that and print nothing.
2159 You should probably set various step_... variables
2160 before calling here, if you are stepping.
c906108c
SS
2161
2162 You should call clear_proceed_status before calling proceed. */
2163
2164void
2ea28649 2165proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2166{
e58b0e63
PA
2167 struct regcache *regcache;
2168 struct gdbarch *gdbarch;
4e1c45ea 2169 struct thread_info *tp;
e58b0e63 2170 CORE_ADDR pc;
6c95b8df 2171 struct address_space *aspace;
0de5618e
YQ
2172 /* GDB may force the inferior to step due to various reasons. */
2173 int force_step = 0;
c906108c 2174
e58b0e63
PA
2175 /* If we're stopped at a fork/vfork, follow the branch set by the
2176 "set follow-fork-mode" command; otherwise, we'll just proceed
2177 resuming the current thread. */
2178 if (!follow_fork ())
2179 {
2180 /* The target for some reason decided not to resume. */
2181 normal_stop ();
f148b27e
PA
2182 if (target_can_async_p ())
2183 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2184 return;
2185 }
2186
842951eb
PA
2187 /* We'll update this if & when we switch to a new thread. */
2188 previous_inferior_ptid = inferior_ptid;
2189
e58b0e63
PA
2190 regcache = get_current_regcache ();
2191 gdbarch = get_regcache_arch (regcache);
6c95b8df 2192 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2193 pc = regcache_read_pc (regcache);
2194
c906108c 2195 if (step > 0)
515630c5 2196 step_start_function = find_pc_function (pc);
c906108c
SS
2197 if (step < 0)
2198 stop_after_trap = 1;
2199
2acceee2 2200 if (addr == (CORE_ADDR) -1)
c906108c 2201 {
6c95b8df 2202 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2203 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2204 /* There is a breakpoint at the address we will resume at,
2205 step one instruction before inserting breakpoints so that
2206 we do not stop right away (and report a second hit at this
b2175913
MS
2207 breakpoint).
2208
2209 Note, we don't do this in reverse, because we won't
2210 actually be executing the breakpoint insn anyway.
2211 We'll be (un-)executing the previous instruction. */
2212
0de5618e 2213 force_step = 1;
515630c5
UW
2214 else if (gdbarch_single_step_through_delay_p (gdbarch)
2215 && gdbarch_single_step_through_delay (gdbarch,
2216 get_current_frame ()))
3352ef37
AC
2217 /* We stepped onto an instruction that needs to be stepped
2218 again before re-inserting the breakpoint, do so. */
0de5618e 2219 force_step = 1;
c906108c
SS
2220 }
2221 else
2222 {
515630c5 2223 regcache_write_pc (regcache, addr);
c906108c
SS
2224 }
2225
527159b7 2226 if (debug_infrun)
8a9de0e4 2227 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2228 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2229 paddress (gdbarch, addr), siggnal, step);
527159b7 2230
94cc34af
PA
2231 if (non_stop)
2232 /* In non-stop, each thread is handled individually. The context
2233 must already be set to the right thread here. */
2234 ;
2235 else
2236 {
2237 /* In a multi-threaded task we may select another thread and
2238 then continue or step.
c906108c 2239
94cc34af
PA
2240 But if the old thread was stopped at a breakpoint, it will
2241 immediately cause another breakpoint stop without any
2242 execution (i.e. it will report a breakpoint hit incorrectly).
2243 So we must step over it first.
c906108c 2244
94cc34af
PA
2245 prepare_to_proceed checks the current thread against the
2246 thread that reported the most recent event. If a step-over
2247 is required it returns TRUE and sets the current thread to
1777feb0 2248 the old thread. */
94cc34af 2249 if (prepare_to_proceed (step))
0de5618e 2250 force_step = 1;
94cc34af 2251 }
c906108c 2252
4e1c45ea
PA
2253 /* prepare_to_proceed may change the current thread. */
2254 tp = inferior_thread ();
2255
0de5618e 2256 if (force_step)
30852783
UW
2257 {
2258 tp->control.trap_expected = 1;
2259 /* If displaced stepping is enabled, we can step over the
2260 breakpoint without hitting it, so leave all breakpoints
2261 inserted. Otherwise we need to disable all breakpoints, step
2262 one instruction, and then re-add them when that step is
2263 finished. */
2264 if (!use_displaced_stepping (gdbarch))
2265 remove_breakpoints ();
2266 }
2267
2268 /* We can insert breakpoints if we're not trying to step over one,
2269 or if we are stepping over one but we're using displaced stepping
2270 to do so. */
2271 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2272 insert_breakpoints ();
2273
2020b7ab
PA
2274 if (!non_stop)
2275 {
2276 /* Pass the last stop signal to the thread we're resuming,
2277 irrespective of whether the current thread is the thread that
2278 got the last event or not. This was historically GDB's
2279 behaviour before keeping a stop_signal per thread. */
2280
2281 struct thread_info *last_thread;
2282 ptid_t last_ptid;
2283 struct target_waitstatus last_status;
2284
2285 get_last_target_status (&last_ptid, &last_status);
2286 if (!ptid_equal (inferior_ptid, last_ptid)
2287 && !ptid_equal (last_ptid, null_ptid)
2288 && !ptid_equal (last_ptid, minus_one_ptid))
2289 {
e09875d4 2290 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2291 if (last_thread)
2292 {
16c381f0 2293 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
a493e3e2 2294 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2020b7ab
PA
2295 }
2296 }
2297 }
2298
a493e3e2 2299 if (siggnal != GDB_SIGNAL_DEFAULT)
16c381f0 2300 tp->suspend.stop_signal = siggnal;
c906108c
SS
2301 /* If this signal should not be seen by program,
2302 give it zero. Used for debugging signals. */
16c381f0 2303 else if (!signal_program[tp->suspend.stop_signal])
a493e3e2 2304 tp->suspend.stop_signal = GDB_SIGNAL_0;
c906108c
SS
2305
2306 annotate_starting ();
2307
2308 /* Make sure that output from GDB appears before output from the
2309 inferior. */
2310 gdb_flush (gdb_stdout);
2311
e4846b08
JJ
2312 /* Refresh prev_pc value just prior to resuming. This used to be
2313 done in stop_stepping, however, setting prev_pc there did not handle
2314 scenarios such as inferior function calls or returning from
2315 a function via the return command. In those cases, the prev_pc
2316 value was not set properly for subsequent commands. The prev_pc value
2317 is used to initialize the starting line number in the ecs. With an
2318 invalid value, the gdb next command ends up stopping at the position
2319 represented by the next line table entry past our start position.
2320 On platforms that generate one line table entry per line, this
2321 is not a problem. However, on the ia64, the compiler generates
2322 extraneous line table entries that do not increase the line number.
2323 When we issue the gdb next command on the ia64 after an inferior call
2324 or a return command, we often end up a few instructions forward, still
2325 within the original line we started.
2326
d5cd6034
JB
2327 An attempt was made to refresh the prev_pc at the same time the
2328 execution_control_state is initialized (for instance, just before
2329 waiting for an inferior event). But this approach did not work
2330 because of platforms that use ptrace, where the pc register cannot
2331 be read unless the inferior is stopped. At that point, we are not
2332 guaranteed the inferior is stopped and so the regcache_read_pc() call
2333 can fail. Setting the prev_pc value here ensures the value is updated
2334 correctly when the inferior is stopped. */
4e1c45ea 2335 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2336
59f0d5d9 2337 /* Fill in with reasonable starting values. */
4e1c45ea 2338 init_thread_stepping_state (tp);
59f0d5d9 2339
59f0d5d9
PA
2340 /* Reset to normal state. */
2341 init_infwait_state ();
2342
c906108c 2343 /* Resume inferior. */
0de5618e
YQ
2344 resume (force_step || step || bpstat_should_step (),
2345 tp->suspend.stop_signal);
c906108c
SS
2346
2347 /* Wait for it to stop (if not standalone)
2348 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2349 /* Do this only if we are not using the event loop, or if the target
1777feb0 2350 does not support asynchronous execution. */
362646f5 2351 if (!target_can_async_p ())
43ff13b4 2352 {
e4c8541f 2353 wait_for_inferior ();
43ff13b4
JM
2354 normal_stop ();
2355 }
c906108c 2356}
c906108c
SS
2357\f
2358
2359/* Start remote-debugging of a machine over a serial link. */
96baa820 2360
c906108c 2361void
8621d6a9 2362start_remote (int from_tty)
c906108c 2363{
d6b48e9c 2364 struct inferior *inferior;
d6b48e9c
PA
2365
2366 inferior = current_inferior ();
16c381f0 2367 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2368
1777feb0 2369 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2370 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2371 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2372 nothing is returned (instead of just blocking). Because of this,
2373 targets expecting an immediate response need to, internally, set
2374 things up so that the target_wait() is forced to eventually
1777feb0 2375 timeout. */
6426a772
JM
2376 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2377 differentiate to its caller what the state of the target is after
2378 the initial open has been performed. Here we're assuming that
2379 the target has stopped. It should be possible to eventually have
2380 target_open() return to the caller an indication that the target
2381 is currently running and GDB state should be set to the same as
1777feb0 2382 for an async run. */
e4c8541f 2383 wait_for_inferior ();
8621d6a9
DJ
2384
2385 /* Now that the inferior has stopped, do any bookkeeping like
2386 loading shared libraries. We want to do this before normal_stop,
2387 so that the displayed frame is up to date. */
2388 post_create_inferior (&current_target, from_tty);
2389
6426a772 2390 normal_stop ();
c906108c
SS
2391}
2392
2393/* Initialize static vars when a new inferior begins. */
2394
2395void
96baa820 2396init_wait_for_inferior (void)
c906108c
SS
2397{
2398 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2399
c906108c
SS
2400 breakpoint_init_inferior (inf_starting);
2401
c906108c 2402 clear_proceed_status ();
9f976b41
DJ
2403
2404 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2405 deferred_step_ptid = null_ptid;
ca005067
DJ
2406
2407 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2408
842951eb 2409 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2410 init_infwait_state ();
2411
edb3359d
DJ
2412 /* Discard any skipped inlined frames. */
2413 clear_inline_frame_state (minus_one_ptid);
c906108c 2414}
237fc4c9 2415
c906108c 2416\f
b83266a0
SS
2417/* This enum encodes possible reasons for doing a target_wait, so that
2418 wfi can call target_wait in one place. (Ultimately the call will be
2419 moved out of the infinite loop entirely.) */
2420
c5aa993b
JM
2421enum infwait_states
2422{
cd0fc7c3
SS
2423 infwait_normal_state,
2424 infwait_thread_hop_state,
d983da9c 2425 infwait_step_watch_state,
cd0fc7c3 2426 infwait_nonstep_watch_state
b83266a0
SS
2427};
2428
0d1e5fa7
PA
2429/* The PTID we'll do a target_wait on.*/
2430ptid_t waiton_ptid;
2431
2432/* Current inferior wait state. */
8870954f 2433static enum infwait_states infwait_state;
cd0fc7c3 2434
0d1e5fa7
PA
2435/* Data to be passed around while handling an event. This data is
2436 discarded between events. */
c5aa993b 2437struct execution_control_state
488f131b 2438{
0d1e5fa7 2439 ptid_t ptid;
4e1c45ea
PA
2440 /* The thread that got the event, if this was a thread event; NULL
2441 otherwise. */
2442 struct thread_info *event_thread;
2443
488f131b 2444 struct target_waitstatus ws;
488f131b 2445 int random_signal;
7e324e48 2446 int stop_func_filled_in;
488f131b
JB
2447 CORE_ADDR stop_func_start;
2448 CORE_ADDR stop_func_end;
2c02bd72 2449 const char *stop_func_name;
488f131b
JB
2450 int wait_some_more;
2451};
2452
ec9499be 2453static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2454
568d6575
UW
2455static void handle_step_into_function (struct gdbarch *gdbarch,
2456 struct execution_control_state *ecs);
2457static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2458 struct execution_control_state *ecs);
186c406b 2459static void check_exception_resume (struct execution_control_state *,
28106bc2 2460 struct frame_info *);
611c83ae 2461
104c1213
JM
2462static void stop_stepping (struct execution_control_state *ecs);
2463static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2464static void keep_going (struct execution_control_state *ecs);
104c1213 2465
252fbfc8
PA
2466/* Callback for iterate over threads. If the thread is stopped, but
2467 the user/frontend doesn't know about that yet, go through
2468 normal_stop, as if the thread had just stopped now. ARG points at
2469 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2470 ptid_is_pid(PTID) is true, applies to all threads of the process
2471 pointed at by PTID. Otherwise, apply only to the thread pointed by
2472 PTID. */
2473
2474static int
2475infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2476{
2477 ptid_t ptid = * (ptid_t *) arg;
2478
2479 if ((ptid_equal (info->ptid, ptid)
2480 || ptid_equal (minus_one_ptid, ptid)
2481 || (ptid_is_pid (ptid)
2482 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2483 && is_running (info->ptid)
2484 && !is_executing (info->ptid))
2485 {
2486 struct cleanup *old_chain;
2487 struct execution_control_state ecss;
2488 struct execution_control_state *ecs = &ecss;
2489
2490 memset (ecs, 0, sizeof (*ecs));
2491
2492 old_chain = make_cleanup_restore_current_thread ();
2493
252fbfc8
PA
2494 /* Go through handle_inferior_event/normal_stop, so we always
2495 have consistent output as if the stop event had been
2496 reported. */
2497 ecs->ptid = info->ptid;
e09875d4 2498 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2499 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2500 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2501
2502 handle_inferior_event (ecs);
2503
2504 if (!ecs->wait_some_more)
2505 {
2506 struct thread_info *tp;
2507
2508 normal_stop ();
2509
fa4cd53f 2510 /* Finish off the continuations. */
252fbfc8 2511 tp = inferior_thread ();
fa4cd53f
PA
2512 do_all_intermediate_continuations_thread (tp, 1);
2513 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2514 }
2515
2516 do_cleanups (old_chain);
2517 }
2518
2519 return 0;
2520}
2521
2522/* This function is attached as a "thread_stop_requested" observer.
2523 Cleanup local state that assumed the PTID was to be resumed, and
2524 report the stop to the frontend. */
2525
2c0b251b 2526static void
252fbfc8
PA
2527infrun_thread_stop_requested (ptid_t ptid)
2528{
fc1cf338 2529 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2530
2531 /* PTID was requested to stop. Remove it from the displaced
2532 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2533
2534 for (displaced = displaced_step_inferior_states;
2535 displaced;
2536 displaced = displaced->next)
252fbfc8 2537 {
fc1cf338 2538 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2539
fc1cf338
PA
2540 it = displaced->step_request_queue;
2541 prev_next_p = &displaced->step_request_queue;
2542 while (it)
252fbfc8 2543 {
fc1cf338
PA
2544 if (ptid_match (it->ptid, ptid))
2545 {
2546 *prev_next_p = it->next;
2547 it->next = NULL;
2548 xfree (it);
2549 }
252fbfc8 2550 else
fc1cf338
PA
2551 {
2552 prev_next_p = &it->next;
2553 }
252fbfc8 2554
fc1cf338 2555 it = *prev_next_p;
252fbfc8 2556 }
252fbfc8
PA
2557 }
2558
2559 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2560}
2561
a07daef3
PA
2562static void
2563infrun_thread_thread_exit (struct thread_info *tp, int silent)
2564{
2565 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2566 nullify_last_target_wait_ptid ();
2567}
2568
4e1c45ea
PA
2569/* Callback for iterate_over_threads. */
2570
2571static int
2572delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2573{
2574 if (is_exited (info->ptid))
2575 return 0;
2576
2577 delete_step_resume_breakpoint (info);
186c406b 2578 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2579 return 0;
2580}
2581
2582/* In all-stop, delete the step resume breakpoint of any thread that
2583 had one. In non-stop, delete the step resume breakpoint of the
2584 thread that just stopped. */
2585
2586static void
2587delete_step_thread_step_resume_breakpoint (void)
2588{
2589 if (!target_has_execution
2590 || ptid_equal (inferior_ptid, null_ptid))
2591 /* If the inferior has exited, we have already deleted the step
2592 resume breakpoints out of GDB's lists. */
2593 return;
2594
2595 if (non_stop)
2596 {
2597 /* If in non-stop mode, only delete the step-resume or
2598 longjmp-resume breakpoint of the thread that just stopped
2599 stepping. */
2600 struct thread_info *tp = inferior_thread ();
abbb1732 2601
4e1c45ea 2602 delete_step_resume_breakpoint (tp);
186c406b 2603 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2604 }
2605 else
2606 /* In all-stop mode, delete all step-resume and longjmp-resume
2607 breakpoints of any thread that had them. */
2608 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2609}
2610
1777feb0 2611/* A cleanup wrapper. */
4e1c45ea
PA
2612
2613static void
2614delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2615{
2616 delete_step_thread_step_resume_breakpoint ();
2617}
2618
223698f8
DE
2619/* Pretty print the results of target_wait, for debugging purposes. */
2620
2621static void
2622print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2623 const struct target_waitstatus *ws)
2624{
2625 char *status_string = target_waitstatus_to_string (ws);
2626 struct ui_file *tmp_stream = mem_fileopen ();
2627 char *text;
223698f8
DE
2628
2629 /* The text is split over several lines because it was getting too long.
2630 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2631 output as a unit; we want only one timestamp printed if debug_timestamp
2632 is set. */
2633
2634 fprintf_unfiltered (tmp_stream,
2635 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2636 if (PIDGET (waiton_ptid) != -1)
2637 fprintf_unfiltered (tmp_stream,
2638 " [%s]", target_pid_to_str (waiton_ptid));
2639 fprintf_unfiltered (tmp_stream, ", status) =\n");
2640 fprintf_unfiltered (tmp_stream,
2641 "infrun: %d [%s],\n",
2642 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2643 fprintf_unfiltered (tmp_stream,
2644 "infrun: %s\n",
2645 status_string);
2646
759ef836 2647 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2648
2649 /* This uses %s in part to handle %'s in the text, but also to avoid
2650 a gcc error: the format attribute requires a string literal. */
2651 fprintf_unfiltered (gdb_stdlog, "%s", text);
2652
2653 xfree (status_string);
2654 xfree (text);
2655 ui_file_delete (tmp_stream);
2656}
2657
24291992
PA
2658/* Prepare and stabilize the inferior for detaching it. E.g.,
2659 detaching while a thread is displaced stepping is a recipe for
2660 crashing it, as nothing would readjust the PC out of the scratch
2661 pad. */
2662
2663void
2664prepare_for_detach (void)
2665{
2666 struct inferior *inf = current_inferior ();
2667 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2668 struct cleanup *old_chain_1;
2669 struct displaced_step_inferior_state *displaced;
2670
2671 displaced = get_displaced_stepping_state (inf->pid);
2672
2673 /* Is any thread of this process displaced stepping? If not,
2674 there's nothing else to do. */
2675 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2676 return;
2677
2678 if (debug_infrun)
2679 fprintf_unfiltered (gdb_stdlog,
2680 "displaced-stepping in-process while detaching");
2681
2682 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2683 inf->detaching = 1;
2684
2685 while (!ptid_equal (displaced->step_ptid, null_ptid))
2686 {
2687 struct cleanup *old_chain_2;
2688 struct execution_control_state ecss;
2689 struct execution_control_state *ecs;
2690
2691 ecs = &ecss;
2692 memset (ecs, 0, sizeof (*ecs));
2693
2694 overlay_cache_invalid = 1;
2695
24291992
PA
2696 if (deprecated_target_wait_hook)
2697 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2698 else
2699 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2700
2701 if (debug_infrun)
2702 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2703
2704 /* If an error happens while handling the event, propagate GDB's
2705 knowledge of the executing state to the frontend/user running
2706 state. */
3e43a32a
MS
2707 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2708 &minus_one_ptid);
24291992
PA
2709
2710 /* Now figure out what to do with the result of the result. */
2711 handle_inferior_event (ecs);
2712
2713 /* No error, don't finish the state yet. */
2714 discard_cleanups (old_chain_2);
2715
2716 /* Breakpoints and watchpoints are not installed on the target
2717 at this point, and signals are passed directly to the
2718 inferior, so this must mean the process is gone. */
2719 if (!ecs->wait_some_more)
2720 {
2721 discard_cleanups (old_chain_1);
2722 error (_("Program exited while detaching"));
2723 }
2724 }
2725
2726 discard_cleanups (old_chain_1);
2727}
2728
cd0fc7c3 2729/* Wait for control to return from inferior to debugger.
ae123ec6 2730
cd0fc7c3
SS
2731 If inferior gets a signal, we may decide to start it up again
2732 instead of returning. That is why there is a loop in this function.
2733 When this function actually returns it means the inferior
2734 should be left stopped and GDB should read more commands. */
2735
2736void
e4c8541f 2737wait_for_inferior (void)
cd0fc7c3
SS
2738{
2739 struct cleanup *old_cleanups;
c906108c 2740
527159b7 2741 if (debug_infrun)
ae123ec6 2742 fprintf_unfiltered
e4c8541f 2743 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2744
4e1c45ea
PA
2745 old_cleanups =
2746 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2747
c906108c
SS
2748 while (1)
2749 {
ae25568b
PA
2750 struct execution_control_state ecss;
2751 struct execution_control_state *ecs = &ecss;
29f49a6a
PA
2752 struct cleanup *old_chain;
2753
ae25568b
PA
2754 memset (ecs, 0, sizeof (*ecs));
2755
ec9499be 2756 overlay_cache_invalid = 1;
ec9499be 2757
9a4105ab 2758 if (deprecated_target_wait_hook)
47608cb1 2759 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2760 else
47608cb1 2761 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2762
f00150c9 2763 if (debug_infrun)
223698f8 2764 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2765
29f49a6a
PA
2766 /* If an error happens while handling the event, propagate GDB's
2767 knowledge of the executing state to the frontend/user running
2768 state. */
2769 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2770
cd0fc7c3
SS
2771 /* Now figure out what to do with the result of the result. */
2772 handle_inferior_event (ecs);
c906108c 2773
29f49a6a
PA
2774 /* No error, don't finish the state yet. */
2775 discard_cleanups (old_chain);
2776
cd0fc7c3
SS
2777 if (!ecs->wait_some_more)
2778 break;
2779 }
4e1c45ea 2780
cd0fc7c3
SS
2781 do_cleanups (old_cleanups);
2782}
c906108c 2783
1777feb0 2784/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2785 event loop whenever a change of state is detected on the file
1777feb0
MS
2786 descriptor corresponding to the target. It can be called more than
2787 once to complete a single execution command. In such cases we need
2788 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2789 that this function is called for a single execution command, then
2790 report to the user that the inferior has stopped, and do the
1777feb0 2791 necessary cleanups. */
43ff13b4
JM
2792
2793void
fba45db2 2794fetch_inferior_event (void *client_data)
43ff13b4 2795{
0d1e5fa7 2796 struct execution_control_state ecss;
a474d7c2 2797 struct execution_control_state *ecs = &ecss;
4f8d22e3 2798 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2799 struct cleanup *ts_old_chain;
4f8d22e3 2800 int was_sync = sync_execution;
0f641c01 2801 int cmd_done = 0;
43ff13b4 2802
0d1e5fa7
PA
2803 memset (ecs, 0, sizeof (*ecs));
2804
c5187ac6
PA
2805 /* We're handling a live event, so make sure we're doing live
2806 debugging. If we're looking at traceframes while the target is
2807 running, we're going to need to get back to that mode after
2808 handling the event. */
2809 if (non_stop)
2810 {
2811 make_cleanup_restore_current_traceframe ();
e6e4e701 2812 set_current_traceframe (-1);
c5187ac6
PA
2813 }
2814
4f8d22e3
PA
2815 if (non_stop)
2816 /* In non-stop mode, the user/frontend should not notice a thread
2817 switch due to internal events. Make sure we reverse to the
2818 user selected thread and frame after handling the event and
2819 running any breakpoint commands. */
2820 make_cleanup_restore_current_thread ();
2821
ec9499be 2822 overlay_cache_invalid = 1;
3dd5b83d 2823
32231432
PA
2824 make_cleanup_restore_integer (&execution_direction);
2825 execution_direction = target_execution_direction ();
2826
9a4105ab 2827 if (deprecated_target_wait_hook)
a474d7c2 2828 ecs->ptid =
47608cb1 2829 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2830 else
47608cb1 2831 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2832
f00150c9 2833 if (debug_infrun)
223698f8 2834 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2835
29f49a6a
PA
2836 /* If an error happens while handling the event, propagate GDB's
2837 knowledge of the executing state to the frontend/user running
2838 state. */
2839 if (!non_stop)
2840 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2841 else
2842 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2843
353d1d73
JK
2844 /* Get executed before make_cleanup_restore_current_thread above to apply
2845 still for the thread which has thrown the exception. */
2846 make_bpstat_clear_actions_cleanup ();
2847
43ff13b4 2848 /* Now figure out what to do with the result of the result. */
a474d7c2 2849 handle_inferior_event (ecs);
43ff13b4 2850
a474d7c2 2851 if (!ecs->wait_some_more)
43ff13b4 2852 {
d6b48e9c
PA
2853 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2854
4e1c45ea 2855 delete_step_thread_step_resume_breakpoint ();
f107f563 2856
d6b48e9c 2857 /* We may not find an inferior if this was a process exit. */
16c381f0 2858 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2859 normal_stop ();
2860
af679fd0 2861 if (target_has_execution
0e5bf2a8 2862 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2863 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2864 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2865 && ecs->event_thread->step_multi
16c381f0 2866 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2867 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2868 else
0f641c01
PA
2869 {
2870 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2871 cmd_done = 1;
2872 }
43ff13b4 2873 }
4f8d22e3 2874
29f49a6a
PA
2875 /* No error, don't finish the thread states yet. */
2876 discard_cleanups (ts_old_chain);
2877
4f8d22e3
PA
2878 /* Revert thread and frame. */
2879 do_cleanups (old_chain);
2880
2881 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2882 restore the prompt (a synchronous execution command has finished,
2883 and we're ready for input). */
b4a14fd0 2884 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2885 display_gdb_prompt (0);
0f641c01
PA
2886
2887 if (cmd_done
2888 && !was_sync
2889 && exec_done_display_p
2890 && (ptid_equal (inferior_ptid, null_ptid)
2891 || !is_running (inferior_ptid)))
2892 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2893}
2894
edb3359d
DJ
2895/* Record the frame and location we're currently stepping through. */
2896void
2897set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2898{
2899 struct thread_info *tp = inferior_thread ();
2900
16c381f0
JK
2901 tp->control.step_frame_id = get_frame_id (frame);
2902 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2903
2904 tp->current_symtab = sal.symtab;
2905 tp->current_line = sal.line;
2906}
2907
0d1e5fa7
PA
2908/* Clear context switchable stepping state. */
2909
2910void
4e1c45ea 2911init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2912{
2913 tss->stepping_over_breakpoint = 0;
2914 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2915}
2916
e02bc4cc 2917/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2918 target_wait()/deprecated_target_wait_hook(). The data is actually
2919 cached by handle_inferior_event(), which gets called immediately
2920 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2921
2922void
488f131b 2923get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2924{
39f77062 2925 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2926 *status = target_last_waitstatus;
2927}
2928
ac264b3b
MS
2929void
2930nullify_last_target_wait_ptid (void)
2931{
2932 target_last_wait_ptid = minus_one_ptid;
2933}
2934
dcf4fbde 2935/* Switch thread contexts. */
dd80620e
MS
2936
2937static void
0d1e5fa7 2938context_switch (ptid_t ptid)
dd80620e 2939{
4b51d87b 2940 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2941 {
2942 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2943 target_pid_to_str (inferior_ptid));
2944 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2945 target_pid_to_str (ptid));
fd48f117
DJ
2946 }
2947
0d1e5fa7 2948 switch_to_thread (ptid);
dd80620e
MS
2949}
2950
4fa8626c
DJ
2951static void
2952adjust_pc_after_break (struct execution_control_state *ecs)
2953{
24a73cce
UW
2954 struct regcache *regcache;
2955 struct gdbarch *gdbarch;
6c95b8df 2956 struct address_space *aspace;
8aad930b 2957 CORE_ADDR breakpoint_pc;
4fa8626c 2958
4fa8626c
DJ
2959 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2960 we aren't, just return.
9709f61c
DJ
2961
2962 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2963 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2964 implemented by software breakpoints should be handled through the normal
2965 breakpoint layer.
8fb3e588 2966
4fa8626c
DJ
2967 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2968 different signals (SIGILL or SIGEMT for instance), but it is less
2969 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2970 gdbarch_decr_pc_after_break. I don't know any specific target that
2971 generates these signals at breakpoints (the code has been in GDB since at
2972 least 1992) so I can not guess how to handle them here.
8fb3e588 2973
e6cf7916
UW
2974 In earlier versions of GDB, a target with
2975 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2976 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2977 target with both of these set in GDB history, and it seems unlikely to be
2978 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2979
2980 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2981 return;
2982
a493e3e2 2983 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
2984 return;
2985
4058b839
PA
2986 /* In reverse execution, when a breakpoint is hit, the instruction
2987 under it has already been de-executed. The reported PC always
2988 points at the breakpoint address, so adjusting it further would
2989 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2990 architecture:
2991
2992 B1 0x08000000 : INSN1
2993 B2 0x08000001 : INSN2
2994 0x08000002 : INSN3
2995 PC -> 0x08000003 : INSN4
2996
2997 Say you're stopped at 0x08000003 as above. Reverse continuing
2998 from that point should hit B2 as below. Reading the PC when the
2999 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3000 been de-executed already.
3001
3002 B1 0x08000000 : INSN1
3003 B2 PC -> 0x08000001 : INSN2
3004 0x08000002 : INSN3
3005 0x08000003 : INSN4
3006
3007 We can't apply the same logic as for forward execution, because
3008 we would wrongly adjust the PC to 0x08000000, since there's a
3009 breakpoint at PC - 1. We'd then report a hit on B1, although
3010 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3011 behaviour. */
3012 if (execution_direction == EXEC_REVERSE)
3013 return;
3014
24a73cce
UW
3015 /* If this target does not decrement the PC after breakpoints, then
3016 we have nothing to do. */
3017 regcache = get_thread_regcache (ecs->ptid);
3018 gdbarch = get_regcache_arch (regcache);
3019 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3020 return;
3021
6c95b8df
PA
3022 aspace = get_regcache_aspace (regcache);
3023
8aad930b
AC
3024 /* Find the location where (if we've hit a breakpoint) the
3025 breakpoint would be. */
515630c5
UW
3026 breakpoint_pc = regcache_read_pc (regcache)
3027 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 3028
1c5cfe86
PA
3029 /* Check whether there actually is a software breakpoint inserted at
3030 that location.
3031
3032 If in non-stop mode, a race condition is possible where we've
3033 removed a breakpoint, but stop events for that breakpoint were
3034 already queued and arrive later. To suppress those spurious
3035 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3036 and retire them after a number of stop events are reported. */
6c95b8df
PA
3037 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3038 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3039 {
77f9e713 3040 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3041
96429cc8 3042 if (RECORD_IS_USED)
77f9e713 3043 record_full_gdb_operation_disable_set ();
96429cc8 3044
1c0fdd0e
UW
3045 /* When using hardware single-step, a SIGTRAP is reported for both
3046 a completed single-step and a software breakpoint. Need to
3047 differentiate between the two, as the latter needs adjusting
3048 but the former does not.
3049
3050 The SIGTRAP can be due to a completed hardware single-step only if
3051 - we didn't insert software single-step breakpoints
3052 - the thread to be examined is still the current thread
3053 - this thread is currently being stepped
3054
3055 If any of these events did not occur, we must have stopped due
3056 to hitting a software breakpoint, and have to back up to the
3057 breakpoint address.
3058
3059 As a special case, we could have hardware single-stepped a
3060 software breakpoint. In this case (prev_pc == breakpoint_pc),
3061 we also need to back up to the breakpoint address. */
3062
3063 if (singlestep_breakpoints_inserted_p
3064 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3065 || !currently_stepping (ecs->event_thread)
3066 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3067 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3068
77f9e713 3069 do_cleanups (old_cleanups);
8aad930b 3070 }
4fa8626c
DJ
3071}
3072
7a76f5b8 3073static void
0d1e5fa7
PA
3074init_infwait_state (void)
3075{
3076 waiton_ptid = pid_to_ptid (-1);
3077 infwait_state = infwait_normal_state;
3078}
3079
edb3359d
DJ
3080static int
3081stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3082{
3083 for (frame = get_prev_frame (frame);
3084 frame != NULL;
3085 frame = get_prev_frame (frame))
3086 {
3087 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3088 return 1;
3089 if (get_frame_type (frame) != INLINE_FRAME)
3090 break;
3091 }
3092
3093 return 0;
3094}
3095
a96d9b2e
SDJ
3096/* Auxiliary function that handles syscall entry/return events.
3097 It returns 1 if the inferior should keep going (and GDB
3098 should ignore the event), or 0 if the event deserves to be
3099 processed. */
ca2163eb 3100
a96d9b2e 3101static int
ca2163eb 3102handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3103{
ca2163eb 3104 struct regcache *regcache;
ca2163eb
PA
3105 int syscall_number;
3106
3107 if (!ptid_equal (ecs->ptid, inferior_ptid))
3108 context_switch (ecs->ptid);
3109
3110 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3111 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3112 stop_pc = regcache_read_pc (regcache);
3113
a96d9b2e
SDJ
3114 if (catch_syscall_enabled () > 0
3115 && catching_syscall_number (syscall_number) > 0)
3116 {
ab04a2af
TT
3117 enum bpstat_signal_value sval;
3118
a96d9b2e
SDJ
3119 if (debug_infrun)
3120 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3121 syscall_number);
a96d9b2e 3122
16c381f0 3123 ecs->event_thread->control.stop_bpstat
6c95b8df 3124 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3125 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3126
3127 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3128 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
a96d9b2e 3129
ca2163eb
PA
3130 if (!ecs->random_signal)
3131 {
3132 /* Catchpoint hit. */
a493e3e2 3133 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
ca2163eb
PA
3134 return 0;
3135 }
a96d9b2e 3136 }
ca2163eb
PA
3137
3138 /* If no catchpoint triggered for this, then keep going. */
a493e3e2 3139 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
ca2163eb
PA
3140 keep_going (ecs);
3141 return 1;
a96d9b2e
SDJ
3142}
3143
7e324e48
GB
3144/* Clear the supplied execution_control_state's stop_func_* fields. */
3145
3146static void
3147clear_stop_func (struct execution_control_state *ecs)
3148{
3149 ecs->stop_func_filled_in = 0;
3150 ecs->stop_func_start = 0;
3151 ecs->stop_func_end = 0;
3152 ecs->stop_func_name = NULL;
3153}
3154
3155/* Lazily fill in the execution_control_state's stop_func_* fields. */
3156
3157static void
3158fill_in_stop_func (struct gdbarch *gdbarch,
3159 struct execution_control_state *ecs)
3160{
3161 if (!ecs->stop_func_filled_in)
3162 {
3163 /* Don't care about return value; stop_func_start and stop_func_name
3164 will both be 0 if it doesn't work. */
3165 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3166 &ecs->stop_func_start, &ecs->stop_func_end);
3167 ecs->stop_func_start
3168 += gdbarch_deprecated_function_start_offset (gdbarch);
3169
3170 ecs->stop_func_filled_in = 1;
3171 }
3172}
3173
cd0fc7c3
SS
3174/* Given an execution control state that has been freshly filled in
3175 by an event from the inferior, figure out what it means and take
3176 appropriate action. */
c906108c 3177
ec9499be 3178static void
96baa820 3179handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3180{
568d6575
UW
3181 struct frame_info *frame;
3182 struct gdbarch *gdbarch;
d983da9c
DJ
3183 int stopped_by_watchpoint;
3184 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3185 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3186 enum stop_kind stop_soon;
3187
28736962
PA
3188 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3189 {
3190 /* We had an event in the inferior, but we are not interested in
3191 handling it at this level. The lower layers have already
3192 done what needs to be done, if anything.
3193
3194 One of the possible circumstances for this is when the
3195 inferior produces output for the console. The inferior has
3196 not stopped, and we are ignoring the event. Another possible
3197 circumstance is any event which the lower level knows will be
3198 reported multiple times without an intervening resume. */
3199 if (debug_infrun)
3200 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3201 prepare_to_wait (ecs);
3202 return;
3203 }
3204
0e5bf2a8
PA
3205 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3206 && target_can_async_p () && !sync_execution)
3207 {
3208 /* There were no unwaited-for children left in the target, but,
3209 we're not synchronously waiting for events either. Just
3210 ignore. Otherwise, if we were running a synchronous
3211 execution command, we need to cancel it and give the user
3212 back the terminal. */
3213 if (debug_infrun)
3214 fprintf_unfiltered (gdb_stdlog,
3215 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3216 prepare_to_wait (ecs);
3217 return;
3218 }
3219
d6b48e9c 3220 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3221 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3222 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3223 {
3224 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3225
d6b48e9c 3226 gdb_assert (inf);
16c381f0 3227 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3228 }
3229 else
3230 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3231
1777feb0 3232 /* Cache the last pid/waitstatus. */
39f77062 3233 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3234 target_last_waitstatus = ecs->ws;
e02bc4cc 3235
ca005067 3236 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3237 stop_stack_dummy = STOP_NONE;
ca005067 3238
0e5bf2a8
PA
3239 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3240 {
3241 /* No unwaited-for children left. IOW, all resumed children
3242 have exited. */
3243 if (debug_infrun)
3244 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3245
3246 stop_print_frame = 0;
3247 stop_stepping (ecs);
3248 return;
3249 }
3250
8c90c137 3251 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3252 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3253 {
3254 ecs->event_thread = find_thread_ptid (ecs->ptid);
3255 /* If it's a new thread, add it to the thread database. */
3256 if (ecs->event_thread == NULL)
3257 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3258
3259 /* Disable range stepping. If the next step request could use a
3260 range, this will be end up re-enabled then. */
3261 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3262 }
88ed393a
JK
3263
3264 /* Dependent on valid ECS->EVENT_THREAD. */
3265 adjust_pc_after_break (ecs);
3266
3267 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3268 reinit_frame_cache ();
3269
28736962
PA
3270 breakpoint_retire_moribund ();
3271
2b009048
DJ
3272 /* First, distinguish signals caused by the debugger from signals
3273 that have to do with the program's own actions. Note that
3274 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3275 on the operating system version. Here we detect when a SIGILL or
3276 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3277 something similar for SIGSEGV, since a SIGSEGV will be generated
3278 when we're trying to execute a breakpoint instruction on a
3279 non-executable stack. This happens for call dummy breakpoints
3280 for architectures like SPARC that place call dummies on the
3281 stack. */
2b009048 3282 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3283 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3284 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3285 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3286 {
de0a0249
UW
3287 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3288
3289 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3290 regcache_read_pc (regcache)))
3291 {
3292 if (debug_infrun)
3293 fprintf_unfiltered (gdb_stdlog,
3294 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3295 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3296 }
2b009048
DJ
3297 }
3298
28736962
PA
3299 /* Mark the non-executing threads accordingly. In all-stop, all
3300 threads of all processes are stopped when we get any event
3301 reported. In non-stop mode, only the event thread stops. If
3302 we're handling a process exit in non-stop mode, there's nothing
3303 to do, as threads of the dead process are gone, and threads of
3304 any other process were left running. */
3305 if (!non_stop)
3306 set_executing (minus_one_ptid, 0);
3307 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3308 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3309 set_executing (ecs->ptid, 0);
8c90c137 3310
0d1e5fa7 3311 switch (infwait_state)
488f131b
JB
3312 {
3313 case infwait_thread_hop_state:
527159b7 3314 if (debug_infrun)
8a9de0e4 3315 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3316 break;
b83266a0 3317
488f131b 3318 case infwait_normal_state:
527159b7 3319 if (debug_infrun)
8a9de0e4 3320 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3321 break;
3322
3323 case infwait_step_watch_state:
3324 if (debug_infrun)
3325 fprintf_unfiltered (gdb_stdlog,
3326 "infrun: infwait_step_watch_state\n");
3327
3328 stepped_after_stopped_by_watchpoint = 1;
488f131b 3329 break;
b83266a0 3330
488f131b 3331 case infwait_nonstep_watch_state:
527159b7 3332 if (debug_infrun)
8a9de0e4
AC
3333 fprintf_unfiltered (gdb_stdlog,
3334 "infrun: infwait_nonstep_watch_state\n");
488f131b 3335 insert_breakpoints ();
c906108c 3336
488f131b
JB
3337 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3338 handle things like signals arriving and other things happening
3339 in combination correctly? */
3340 stepped_after_stopped_by_watchpoint = 1;
3341 break;
65e82032
AC
3342
3343 default:
e2e0b3e5 3344 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3345 }
ec9499be 3346
0d1e5fa7 3347 infwait_state = infwait_normal_state;
ec9499be 3348 waiton_ptid = pid_to_ptid (-1);
c906108c 3349
488f131b
JB
3350 switch (ecs->ws.kind)
3351 {
3352 case TARGET_WAITKIND_LOADED:
527159b7 3353 if (debug_infrun)
8a9de0e4 3354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3355 /* Ignore gracefully during startup of the inferior, as it might
3356 be the shell which has just loaded some objects, otherwise
3357 add the symbols for the newly loaded objects. Also ignore at
3358 the beginning of an attach or remote session; we will query
3359 the full list of libraries once the connection is
3360 established. */
c0236d92 3361 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3362 {
edcc5120 3363 struct regcache *regcache;
ab04a2af 3364 enum bpstat_signal_value sval;
edcc5120
TT
3365
3366 if (!ptid_equal (ecs->ptid, inferior_ptid))
3367 context_switch (ecs->ptid);
3368 regcache = get_thread_regcache (ecs->ptid);
3369
3370 handle_solib_event ();
3371
3372 ecs->event_thread->control.stop_bpstat
3373 = bpstat_stop_status (get_regcache_aspace (regcache),
3374 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af
TT
3375
3376 sval
3377 = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3378 ecs->random_signal = sval == BPSTAT_SIGNAL_NO;
edcc5120
TT
3379
3380 if (!ecs->random_signal)
3381 {
3382 /* A catchpoint triggered. */
a493e3e2 3383 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
edcc5120
TT
3384 goto process_event_stop_test;
3385 }
488f131b 3386
b0f4b84b
DJ
3387 /* If requested, stop when the dynamic linker notifies
3388 gdb of events. This allows the user to get control
3389 and place breakpoints in initializer routines for
3390 dynamically loaded objects (among other things). */
a493e3e2 3391 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3392 if (stop_on_solib_events)
3393 {
55409f9d
DJ
3394 /* Make sure we print "Stopped due to solib-event" in
3395 normal_stop. */
3396 stop_print_frame = 1;
3397
b0f4b84b
DJ
3398 stop_stepping (ecs);
3399 return;
3400 }
488f131b 3401 }
b0f4b84b
DJ
3402
3403 /* If we are skipping through a shell, or through shared library
3404 loading that we aren't interested in, resume the program. If
3405 we're running the program normally, also resume. But stop if
3406 we're attaching or setting up a remote connection. */
3407 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3408 {
8b3ee56d
PA
3409 if (!ptid_equal (ecs->ptid, inferior_ptid))
3410 context_switch (ecs->ptid);
3411
74960c60
VP
3412 /* Loading of shared libraries might have changed breakpoint
3413 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3414 if (stop_soon == NO_STOP_QUIETLY
3415 && !breakpoints_always_inserted_mode ())
74960c60 3416 insert_breakpoints ();
a493e3e2 3417 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3418 prepare_to_wait (ecs);
3419 return;
3420 }
3421
3422 break;
c5aa993b 3423
488f131b 3424 case TARGET_WAITKIND_SPURIOUS:
527159b7 3425 if (debug_infrun)
8a9de0e4 3426 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3427 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3428 context_switch (ecs->ptid);
a493e3e2 3429 resume (0, GDB_SIGNAL_0);
488f131b
JB
3430 prepare_to_wait (ecs);
3431 return;
c5aa993b 3432
488f131b 3433 case TARGET_WAITKIND_EXITED:
940c3c06 3434 case TARGET_WAITKIND_SIGNALLED:
527159b7 3435 if (debug_infrun)
940c3c06
PA
3436 {
3437 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3438 fprintf_unfiltered (gdb_stdlog,
3439 "infrun: TARGET_WAITKIND_EXITED\n");
3440 else
3441 fprintf_unfiltered (gdb_stdlog,
3442 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3443 }
3444
fb66883a 3445 inferior_ptid = ecs->ptid;
6c95b8df
PA
3446 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3447 set_current_program_space (current_inferior ()->pspace);
3448 handle_vfork_child_exec_or_exit (0);
1777feb0 3449 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3450
940c3c06
PA
3451 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3452 {
3453 /* Record the exit code in the convenience variable $_exitcode, so
3454 that the user can inspect this again later. */
3455 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3456 (LONGEST) ecs->ws.value.integer);
3457
3458 /* Also record this in the inferior itself. */
3459 current_inferior ()->has_exit_code = 1;
3460 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3461
940c3c06
PA
3462 print_exited_reason (ecs->ws.value.integer);
3463 }
3464 else
3465 print_signal_exited_reason (ecs->ws.value.sig);
8cf64490 3466
488f131b
JB
3467 gdb_flush (gdb_stdout);
3468 target_mourn_inferior ();
1c0fdd0e 3469 singlestep_breakpoints_inserted_p = 0;
d03285ec 3470 cancel_single_step_breakpoints ();
488f131b
JB
3471 stop_print_frame = 0;
3472 stop_stepping (ecs);
3473 return;
c5aa993b 3474
488f131b 3475 /* The following are the only cases in which we keep going;
1777feb0 3476 the above cases end in a continue or goto. */
488f131b 3477 case TARGET_WAITKIND_FORKED:
deb3b17b 3478 case TARGET_WAITKIND_VFORKED:
527159b7 3479 if (debug_infrun)
fed708ed
PA
3480 {
3481 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3482 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3483 else
3484 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3485 }
c906108c 3486
e2d96639
YQ
3487 /* Check whether the inferior is displaced stepping. */
3488 {
3489 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3490 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3491 struct displaced_step_inferior_state *displaced
3492 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3493
3494 /* If checking displaced stepping is supported, and thread
3495 ecs->ptid is displaced stepping. */
3496 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3497 {
3498 struct inferior *parent_inf
3499 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3500 struct regcache *child_regcache;
3501 CORE_ADDR parent_pc;
3502
3503 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3504 indicating that the displaced stepping of syscall instruction
3505 has been done. Perform cleanup for parent process here. Note
3506 that this operation also cleans up the child process for vfork,
3507 because their pages are shared. */
a493e3e2 3508 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3509
3510 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3511 {
3512 /* Restore scratch pad for child process. */
3513 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3514 }
3515
3516 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3517 the child's PC is also within the scratchpad. Set the child's PC
3518 to the parent's PC value, which has already been fixed up.
3519 FIXME: we use the parent's aspace here, although we're touching
3520 the child, because the child hasn't been added to the inferior
3521 list yet at this point. */
3522
3523 child_regcache
3524 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3525 gdbarch,
3526 parent_inf->aspace);
3527 /* Read PC value of parent process. */
3528 parent_pc = regcache_read_pc (regcache);
3529
3530 if (debug_displaced)
3531 fprintf_unfiltered (gdb_stdlog,
3532 "displaced: write child pc from %s to %s\n",
3533 paddress (gdbarch,
3534 regcache_read_pc (child_regcache)),
3535 paddress (gdbarch, parent_pc));
3536
3537 regcache_write_pc (child_regcache, parent_pc);
3538 }
3539 }
3540
5a2901d9 3541 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3542 context_switch (ecs->ptid);
5a2901d9 3543
b242c3c2
PA
3544 /* Immediately detach breakpoints from the child before there's
3545 any chance of letting the user delete breakpoints from the
3546 breakpoint lists. If we don't do this early, it's easy to
3547 leave left over traps in the child, vis: "break foo; catch
3548 fork; c; <fork>; del; c; <child calls foo>". We only follow
3549 the fork on the last `continue', and by that time the
3550 breakpoint at "foo" is long gone from the breakpoint table.
3551 If we vforked, then we don't need to unpatch here, since both
3552 parent and child are sharing the same memory pages; we'll
3553 need to unpatch at follow/detach time instead to be certain
3554 that new breakpoints added between catchpoint hit time and
3555 vfork follow are detached. */
3556 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3557 {
b242c3c2
PA
3558 /* This won't actually modify the breakpoint list, but will
3559 physically remove the breakpoints from the child. */
d80ee84f 3560 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3561 }
3562
d03285ec
UW
3563 if (singlestep_breakpoints_inserted_p)
3564 {
1777feb0 3565 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3566 remove_single_step_breakpoints ();
3567 singlestep_breakpoints_inserted_p = 0;
3568 }
3569
e58b0e63
PA
3570 /* In case the event is caught by a catchpoint, remember that
3571 the event is to be followed at the next resume of the thread,
3572 and not immediately. */
3573 ecs->event_thread->pending_follow = ecs->ws;
3574
fb14de7b 3575 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3576
16c381f0 3577 ecs->event_thread->control.stop_bpstat
6c95b8df 3578 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3579 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3580
67822962
PA
3581 /* Note that we're interested in knowing the bpstat actually
3582 causes a stop, not just if it may explain the signal.
3583 Software watchpoints, for example, always appear in the
3584 bpstat. */
16c381f0
JK
3585 ecs->random_signal
3586 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3587
3588 /* If no catchpoint triggered for this, then keep going. */
3589 if (ecs->random_signal)
3590 {
6c95b8df
PA
3591 ptid_t parent;
3592 ptid_t child;
e58b0e63 3593 int should_resume;
3e43a32a
MS
3594 int follow_child
3595 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3596
a493e3e2 3597 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3598
3599 should_resume = follow_fork ();
3600
6c95b8df
PA
3601 parent = ecs->ptid;
3602 child = ecs->ws.value.related_pid;
3603
3604 /* In non-stop mode, also resume the other branch. */
3605 if (non_stop && !detach_fork)
3606 {
3607 if (follow_child)
3608 switch_to_thread (parent);
3609 else
3610 switch_to_thread (child);
3611
3612 ecs->event_thread = inferior_thread ();
3613 ecs->ptid = inferior_ptid;
3614 keep_going (ecs);
3615 }
3616
3617 if (follow_child)
3618 switch_to_thread (child);
3619 else
3620 switch_to_thread (parent);
3621
e58b0e63
PA
3622 ecs->event_thread = inferior_thread ();
3623 ecs->ptid = inferior_ptid;
3624
3625 if (should_resume)
3626 keep_going (ecs);
3627 else
3628 stop_stepping (ecs);
04e68871
DJ
3629 return;
3630 }
a493e3e2 3631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3632 goto process_event_stop_test;
3633
6c95b8df
PA
3634 case TARGET_WAITKIND_VFORK_DONE:
3635 /* Done with the shared memory region. Re-insert breakpoints in
3636 the parent, and keep going. */
3637
3638 if (debug_infrun)
3e43a32a
MS
3639 fprintf_unfiltered (gdb_stdlog,
3640 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3641
3642 if (!ptid_equal (ecs->ptid, inferior_ptid))
3643 context_switch (ecs->ptid);
3644
3645 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3646 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3647 /* This also takes care of reinserting breakpoints in the
3648 previously locked inferior. */
3649 keep_going (ecs);
3650 return;
3651
488f131b 3652 case TARGET_WAITKIND_EXECD:
527159b7 3653 if (debug_infrun)
fc5261f2 3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3655
5a2901d9 3656 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3657 context_switch (ecs->ptid);
5a2901d9 3658
d03285ec
UW
3659 singlestep_breakpoints_inserted_p = 0;
3660 cancel_single_step_breakpoints ();
3661
fb14de7b 3662 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3663
6c95b8df
PA
3664 /* Do whatever is necessary to the parent branch of the vfork. */
3665 handle_vfork_child_exec_or_exit (1);
3666
795e548f
PA
3667 /* This causes the eventpoints and symbol table to be reset.
3668 Must do this now, before trying to determine whether to
3669 stop. */
71b43ef8 3670 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3671
16c381f0 3672 ecs->event_thread->control.stop_bpstat
6c95b8df 3673 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3674 stop_pc, ecs->ptid, &ecs->ws);
16c381f0 3675 ecs->random_signal
ab04a2af
TT
3676 = (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
3677 == BPSTAT_SIGNAL_NO);
795e548f 3678
71b43ef8
PA
3679 /* Note that this may be referenced from inside
3680 bpstat_stop_status above, through inferior_has_execd. */
3681 xfree (ecs->ws.value.execd_pathname);
3682 ecs->ws.value.execd_pathname = NULL;
3683
04e68871
DJ
3684 /* If no catchpoint triggered for this, then keep going. */
3685 if (ecs->random_signal)
3686 {
a493e3e2 3687 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
3688 keep_going (ecs);
3689 return;
3690 }
a493e3e2 3691 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
488f131b
JB
3692 goto process_event_stop_test;
3693
b4dc5ffa
MK
3694 /* Be careful not to try to gather much state about a thread
3695 that's in a syscall. It's frequently a losing proposition. */
488f131b 3696 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3697 if (debug_infrun)
3e43a32a
MS
3698 fprintf_unfiltered (gdb_stdlog,
3699 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3700 /* Getting the current syscall number. */
ca2163eb 3701 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3702 return;
3703 goto process_event_stop_test;
c906108c 3704
488f131b
JB
3705 /* Before examining the threads further, step this thread to
3706 get it entirely out of the syscall. (We get notice of the
3707 event when the thread is just on the verge of exiting a
3708 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3709 into user code.) */
488f131b 3710 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3711 if (debug_infrun)
3e43a32a
MS
3712 fprintf_unfiltered (gdb_stdlog,
3713 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3714 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3715 return;
3716 goto process_event_stop_test;
c906108c 3717
488f131b 3718 case TARGET_WAITKIND_STOPPED:
527159b7 3719 if (debug_infrun)
8a9de0e4 3720 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3721 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3722 break;
c906108c 3723
b2175913 3724 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3725 if (debug_infrun)
3726 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3727 /* Reverse execution: target ran out of history info. */
eab402df
PA
3728
3729 /* Pull the single step breakpoints out of the target. */
3730 if (singlestep_breakpoints_inserted_p)
3731 {
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 context_switch (ecs->ptid);
3734 remove_single_step_breakpoints ();
3735 singlestep_breakpoints_inserted_p = 0;
3736 }
fb14de7b 3737 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3738 print_no_history_reason ();
b2175913
MS
3739 stop_stepping (ecs);
3740 return;
488f131b 3741 }
c906108c 3742
2020b7ab 3743 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3744 {
3745 /* Do we need to clean up the state of a thread that has
3746 completed a displaced single-step? (Doing so usually affects
3747 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3748 displaced_step_fixup (ecs->ptid,
3749 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3750
3751 /* If we either finished a single-step or hit a breakpoint, but
3752 the user wanted this thread to be stopped, pretend we got a
3753 SIG0 (generic unsignaled stop). */
3754
3755 if (ecs->event_thread->stop_requested
a493e3e2
PA
3756 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3757 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
252fbfc8 3758 }
237fc4c9 3759
515630c5 3760 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3761
527159b7 3762 if (debug_infrun)
237fc4c9 3763 {
5af949e3
UW
3764 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3765 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3766 struct cleanup *old_chain = save_inferior_ptid ();
3767
3768 inferior_ptid = ecs->ptid;
5af949e3
UW
3769
3770 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3771 paddress (gdbarch, stop_pc));
d92524f1 3772 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3773 {
3774 CORE_ADDR addr;
abbb1732 3775
237fc4c9
PA
3776 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3777
3778 if (target_stopped_data_address (&current_target, &addr))
3779 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3780 "infrun: stopped data address = %s\n",
3781 paddress (gdbarch, addr));
237fc4c9
PA
3782 else
3783 fprintf_unfiltered (gdb_stdlog,
3784 "infrun: (no data address available)\n");
3785 }
7f82dfc7
JK
3786
3787 do_cleanups (old_chain);
237fc4c9 3788 }
527159b7 3789
9f976b41
DJ
3790 if (stepping_past_singlestep_breakpoint)
3791 {
1c0fdd0e 3792 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3793 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3794 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3795
3796 stepping_past_singlestep_breakpoint = 0;
3797
3798 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3799 breakpoint, or stopped for some other reason. It would be nice if
3800 we could tell, but we can't reliably. */
a493e3e2 3801 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8fb3e588 3802 {
527159b7 3803 if (debug_infrun)
3e43a32a
MS
3804 fprintf_unfiltered (gdb_stdlog,
3805 "infrun: stepping_past_"
3806 "singlestep_breakpoint\n");
9f976b41 3807 /* Pull the single step breakpoints out of the target. */
8b3ee56d
PA
3808 if (!ptid_equal (ecs->ptid, inferior_ptid))
3809 context_switch (ecs->ptid);
e0cd558a 3810 remove_single_step_breakpoints ();
9f976b41
DJ
3811 singlestep_breakpoints_inserted_p = 0;
3812
3813 ecs->random_signal = 0;
16c381f0 3814 ecs->event_thread->control.trap_expected = 0;
9f976b41 3815
0d1e5fa7 3816 context_switch (saved_singlestep_ptid);
9a4105ab 3817 if (deprecated_context_hook)
de9f1b68 3818 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
9f976b41 3819
a493e3e2 3820 resume (1, GDB_SIGNAL_0);
9f976b41
DJ
3821 prepare_to_wait (ecs);
3822 return;
3823 }
3824 }
3825
ca67fcb8 3826 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3827 {
94cc34af
PA
3828 /* In non-stop mode, there's never a deferred_step_ptid set. */
3829 gdb_assert (!non_stop);
3830
6a6b96b9
UW
3831 /* If we stopped for some other reason than single-stepping, ignore
3832 the fact that we were supposed to switch back. */
a493e3e2 3833 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6a6b96b9
UW
3834 {
3835 if (debug_infrun)
3836 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3837 "infrun: handling deferred step\n");
6a6b96b9
UW
3838
3839 /* Pull the single step breakpoints out of the target. */
3840 if (singlestep_breakpoints_inserted_p)
3841 {
8b3ee56d
PA
3842 if (!ptid_equal (ecs->ptid, inferior_ptid))
3843 context_switch (ecs->ptid);
6a6b96b9
UW
3844 remove_single_step_breakpoints ();
3845 singlestep_breakpoints_inserted_p = 0;
3846 }
3847
cd3da28e
PA
3848 ecs->event_thread->control.trap_expected = 0;
3849
d25f45d9 3850 context_switch (deferred_step_ptid);
ca67fcb8 3851 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3852 /* Suppress spurious "Switching to ..." message. */
3853 previous_inferior_ptid = inferior_ptid;
3854
a493e3e2 3855 resume (1, GDB_SIGNAL_0);
6a6b96b9
UW
3856 prepare_to_wait (ecs);
3857 return;
3858 }
ca67fcb8
VP
3859
3860 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3861 }
3862
488f131b
JB
3863 /* See if a thread hit a thread-specific breakpoint that was meant for
3864 another thread. If so, then step that thread past the breakpoint,
3865 and continue it. */
3866
a493e3e2 3867 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 3868 {
9f976b41 3869 int thread_hop_needed = 0;
cf00dfa7
VP
3870 struct address_space *aspace =
3871 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3872
f8d40ec8 3873 /* Check if a regular breakpoint has been hit before checking
1777feb0 3874 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3875 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3876 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3877 {
c5aa993b 3878 ecs->random_signal = 0;
6c95b8df 3879 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3880 thread_hop_needed = 1;
3881 }
1c0fdd0e 3882 else if (singlestep_breakpoints_inserted_p)
9f976b41 3883 {
fd48f117
DJ
3884 /* We have not context switched yet, so this should be true
3885 no matter which thread hit the singlestep breakpoint. */
3886 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3887 if (debug_infrun)
3888 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3889 "trap for %s\n",
3890 target_pid_to_str (ecs->ptid));
3891
9f976b41
DJ
3892 ecs->random_signal = 0;
3893 /* The call to in_thread_list is necessary because PTIDs sometimes
3894 change when we go from single-threaded to multi-threaded. If
3895 the singlestep_ptid is still in the list, assume that it is
3896 really different from ecs->ptid. */
3897 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3898 && in_thread_list (singlestep_ptid))
3899 {
fd48f117
DJ
3900 /* If the PC of the thread we were trying to single-step
3901 has changed, discard this event (which we were going
3902 to ignore anyway), and pretend we saw that thread
3903 trap. This prevents us continuously moving the
3904 single-step breakpoint forward, one instruction at a
3905 time. If the PC has changed, then the thread we were
3906 trying to single-step has trapped or been signalled,
3907 but the event has not been reported to GDB yet.
3908
3909 There might be some cases where this loses signal
3910 information, if a signal has arrived at exactly the
3911 same time that the PC changed, but this is the best
3912 we can do with the information available. Perhaps we
3913 should arrange to report all events for all threads
3914 when they stop, or to re-poll the remote looking for
3915 this particular thread (i.e. temporarily enable
3916 schedlock). */
515630c5
UW
3917
3918 CORE_ADDR new_singlestep_pc
3919 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3920
3921 if (new_singlestep_pc != singlestep_pc)
fd48f117 3922 {
2ea28649 3923 enum gdb_signal stop_signal;
2020b7ab 3924
fd48f117
DJ
3925 if (debug_infrun)
3926 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3927 " but expected thread advanced also\n");
3928
3929 /* The current context still belongs to
3930 singlestep_ptid. Don't swap here, since that's
3931 the context we want to use. Just fudge our
3932 state and continue. */
16c381f0 3933 stop_signal = ecs->event_thread->suspend.stop_signal;
a493e3e2 3934 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
fd48f117 3935 ecs->ptid = singlestep_ptid;
e09875d4 3936 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3937 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3938 stop_pc = new_singlestep_pc;
fd48f117
DJ
3939 }
3940 else
3941 {
3942 if (debug_infrun)
3943 fprintf_unfiltered (gdb_stdlog,
3944 "infrun: unexpected thread\n");
3945
3946 thread_hop_needed = 1;
3947 stepping_past_singlestep_breakpoint = 1;
3948 saved_singlestep_ptid = singlestep_ptid;
3949 }
9f976b41
DJ
3950 }
3951 }
3952
3953 if (thread_hop_needed)
8fb3e588 3954 {
9f5a595d 3955 struct regcache *thread_regcache;
237fc4c9 3956 int remove_status = 0;
8fb3e588 3957
527159b7 3958 if (debug_infrun)
8a9de0e4 3959 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3960
b3444185
PA
3961 /* Switch context before touching inferior memory, the
3962 previous thread may have exited. */
3963 if (!ptid_equal (inferior_ptid, ecs->ptid))
3964 context_switch (ecs->ptid);
3965
8fb3e588 3966 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3967 Just continue. */
8fb3e588 3968
1c0fdd0e 3969 if (singlestep_breakpoints_inserted_p)
488f131b 3970 {
1777feb0 3971 /* Pull the single step breakpoints out of the target. */
e0cd558a 3972 remove_single_step_breakpoints ();
8fb3e588
AC
3973 singlestep_breakpoints_inserted_p = 0;
3974 }
3975
237fc4c9
PA
3976 /* If the arch can displace step, don't remove the
3977 breakpoints. */
9f5a595d
UW
3978 thread_regcache = get_thread_regcache (ecs->ptid);
3979 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3980 remove_status = remove_breakpoints ();
3981
8fb3e588
AC
3982 /* Did we fail to remove breakpoints? If so, try
3983 to set the PC past the bp. (There's at least
3984 one situation in which we can fail to remove
3985 the bp's: On HP-UX's that use ttrace, we can't
3986 change the address space of a vforking child
3987 process until the child exits (well, okay, not
1777feb0 3988 then either :-) or execs. */
8fb3e588 3989 if (remove_status != 0)
9d9cd7ac 3990 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3991 else
3992 { /* Single step */
94cc34af
PA
3993 if (!non_stop)
3994 {
3995 /* Only need to require the next event from this
3996 thread in all-stop mode. */
3997 waiton_ptid = ecs->ptid;
3998 infwait_state = infwait_thread_hop_state;
3999 }
8fb3e588 4000
4e1c45ea 4001 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 4002 keep_going (ecs);
8fb3e588
AC
4003 return;
4004 }
488f131b 4005 }
1c0fdd0e 4006 else if (singlestep_breakpoints_inserted_p)
8fb3e588 4007 {
8fb3e588
AC
4008 ecs->random_signal = 0;
4009 }
488f131b
JB
4010 }
4011 else
4012 ecs->random_signal = 1;
c906108c 4013
488f131b 4014 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4015 so, then switch to that thread. */
4016 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4017 {
527159b7 4018 if (debug_infrun)
8a9de0e4 4019 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4020
0d1e5fa7 4021 context_switch (ecs->ptid);
c5aa993b 4022
9a4105ab
AC
4023 if (deprecated_context_hook)
4024 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4025 }
c906108c 4026
568d6575
UW
4027 /* At this point, get hold of the now-current thread's frame. */
4028 frame = get_current_frame ();
4029 gdbarch = get_frame_arch (frame);
4030
1c0fdd0e 4031 if (singlestep_breakpoints_inserted_p)
488f131b 4032 {
1777feb0 4033 /* Pull the single step breakpoints out of the target. */
e0cd558a 4034 remove_single_step_breakpoints ();
488f131b
JB
4035 singlestep_breakpoints_inserted_p = 0;
4036 }
c906108c 4037
d983da9c
DJ
4038 if (stepped_after_stopped_by_watchpoint)
4039 stopped_by_watchpoint = 0;
4040 else
4041 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4042
4043 /* If necessary, step over this watchpoint. We'll be back to display
4044 it in a moment. */
4045 if (stopped_by_watchpoint
d92524f1 4046 && (target_have_steppable_watchpoint
568d6575 4047 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4048 {
488f131b
JB
4049 /* At this point, we are stopped at an instruction which has
4050 attempted to write to a piece of memory under control of
4051 a watchpoint. The instruction hasn't actually executed
4052 yet. If we were to evaluate the watchpoint expression
4053 now, we would get the old value, and therefore no change
4054 would seem to have occurred.
4055
4056 In order to make watchpoints work `right', we really need
4057 to complete the memory write, and then evaluate the
d983da9c
DJ
4058 watchpoint expression. We do this by single-stepping the
4059 target.
4060
4061 It may not be necessary to disable the watchpoint to stop over
4062 it. For example, the PA can (with some kernel cooperation)
4063 single step over a watchpoint without disabling the watchpoint.
4064
4065 It is far more common to need to disable a watchpoint to step
4066 the inferior over it. If we have non-steppable watchpoints,
4067 we must disable the current watchpoint; it's simplest to
4068 disable all watchpoints and breakpoints. */
2facfe5c
DD
4069 int hw_step = 1;
4070
d92524f1 4071 if (!target_have_steppable_watchpoint)
2455069d
UW
4072 {
4073 remove_breakpoints ();
4074 /* See comment in resume why we need to stop bypassing signals
4075 while breakpoints have been removed. */
4076 target_pass_signals (0, NULL);
4077 }
2facfe5c 4078 /* Single step */
568d6575 4079 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
a493e3e2 4080 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
0d1e5fa7 4081 waiton_ptid = ecs->ptid;
d92524f1 4082 if (target_have_steppable_watchpoint)
0d1e5fa7 4083 infwait_state = infwait_step_watch_state;
d983da9c 4084 else
0d1e5fa7 4085 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4086 prepare_to_wait (ecs);
4087 return;
4088 }
4089
7e324e48 4090 clear_stop_func (ecs);
4e1c45ea 4091 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4092 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4093 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4094 stop_print_frame = 1;
4095 ecs->random_signal = 0;
4096 stopped_by_random_signal = 0;
488f131b 4097
edb3359d
DJ
4098 /* Hide inlined functions starting here, unless we just performed stepi or
4099 nexti. After stepi and nexti, always show the innermost frame (not any
4100 inline function call sites). */
16c381f0 4101 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4102 {
4103 struct address_space *aspace =
4104 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4105
4106 /* skip_inline_frames is expensive, so we avoid it if we can
4107 determine that the address is one where functions cannot have
4108 been inlined. This improves performance with inferiors that
4109 load a lot of shared libraries, because the solib event
4110 breakpoint is defined as the address of a function (i.e. not
4111 inline). Note that we have to check the previous PC as well
4112 as the current one to catch cases when we have just
4113 single-stepped off a breakpoint prior to reinstating it.
4114 Note that we're assuming that the code we single-step to is
4115 not inline, but that's not definitive: there's nothing
4116 preventing the event breakpoint function from containing
4117 inlined code, and the single-step ending up there. If the
4118 user had set a breakpoint on that inlined code, the missing
4119 skip_inline_frames call would break things. Fortunately
4120 that's an extremely unlikely scenario. */
09ac7c10 4121 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4122 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4123 && ecs->event_thread->control.trap_expected
4124 && pc_at_non_inline_function (aspace,
4125 ecs->event_thread->prev_pc,
09ac7c10 4126 &ecs->ws)))
1c5a993e
MR
4127 {
4128 skip_inline_frames (ecs->ptid);
4129
4130 /* Re-fetch current thread's frame in case that invalidated
4131 the frame cache. */
4132 frame = get_current_frame ();
4133 gdbarch = get_frame_arch (frame);
4134 }
0574c78f 4135 }
edb3359d 4136
a493e3e2 4137 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4138 && ecs->event_thread->control.trap_expected
568d6575 4139 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4140 && currently_stepping (ecs->event_thread))
3352ef37 4141 {
b50d7442 4142 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4143 also on an instruction that needs to be stepped multiple
1777feb0 4144 times before it's been fully executing. E.g., architectures
3352ef37
AC
4145 with a delay slot. It needs to be stepped twice, once for
4146 the instruction and once for the delay slot. */
4147 int step_through_delay
568d6575 4148 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4149
527159b7 4150 if (debug_infrun && step_through_delay)
8a9de0e4 4151 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4152 if (ecs->event_thread->control.step_range_end == 0
4153 && step_through_delay)
3352ef37
AC
4154 {
4155 /* The user issued a continue when stopped at a breakpoint.
4156 Set up for another trap and get out of here. */
4e1c45ea 4157 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4158 keep_going (ecs);
4159 return;
4160 }
4161 else if (step_through_delay)
4162 {
4163 /* The user issued a step when stopped at a breakpoint.
4164 Maybe we should stop, maybe we should not - the delay
4165 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4166 case, don't decide that here, just set
4167 ecs->stepping_over_breakpoint, making sure we
4168 single-step again before breakpoints are re-inserted. */
4e1c45ea 4169 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4170 }
4171 }
4172
488f131b
JB
4173 /* Look at the cause of the stop, and decide what to do.
4174 The alternatives are:
0d1e5fa7
PA
4175 1) stop_stepping and return; to really stop and return to the debugger,
4176 2) keep_going and return to start up again
4e1c45ea 4177 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4178 3) set ecs->random_signal to 1, and the decision between 1 and 2
4179 will be made according to the signal handling tables. */
4180
a493e3e2 4181 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
ab04a2af 4182 && stop_after_trap)
488f131b 4183 {
ab04a2af
TT
4184 if (debug_infrun)
4185 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4186 stop_print_frame = 0;
4187 stop_stepping (ecs);
4188 return;
4189 }
488f131b 4190
ab04a2af
TT
4191 /* This is originated from start_remote(), start_inferior() and
4192 shared libraries hook functions. */
4193 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4194 {
4195 if (debug_infrun)
4196 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4197 stop_stepping (ecs);
4198 return;
4199 }
c54cfec8 4200
ab04a2af
TT
4201 /* This originates from attach_command(). We need to overwrite
4202 the stop_signal here, because some kernels don't ignore a
4203 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4204 See more comments in inferior.h. On the other hand, if we
4205 get a non-SIGSTOP, report it to the user - assume the backend
4206 will handle the SIGSTOP if it should show up later.
4207
4208 Also consider that the attach is complete when we see a
4209 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4210 target extended-remote report it instead of a SIGSTOP
4211 (e.g. gdbserver). We already rely on SIGTRAP being our
4212 signal, so this is no exception.
4213
4214 Also consider that the attach is complete when we see a
4215 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4216 the target to stop all threads of the inferior, in case the
4217 low level attach operation doesn't stop them implicitly. If
4218 they weren't stopped implicitly, then the stub will report a
4219 GDB_SIGNAL_0, meaning: stopped for no particular reason
4220 other than GDB's request. */
4221 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4222 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4223 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4224 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4225 {
4226 stop_stepping (ecs);
4227 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4228 return;
4229 }
6c95b8df 4230
ab04a2af
TT
4231 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4232 handles this event. */
4233 ecs->event_thread->control.stop_bpstat
4234 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4235 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4236
ab04a2af
TT
4237 /* Following in case break condition called a
4238 function. */
4239 stop_print_frame = 1;
73dd234f 4240
ab04a2af
TT
4241 /* This is where we handle "moribund" watchpoints. Unlike
4242 software breakpoints traps, hardware watchpoint traps are
4243 always distinguishable from random traps. If no high-level
4244 watchpoint is associated with the reported stop data address
4245 anymore, then the bpstat does not explain the signal ---
4246 simply make sure to ignore it if `stopped_by_watchpoint' is
4247 set. */
4248
4249 if (debug_infrun
4250 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4251 && (bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4252 == BPSTAT_SIGNAL_NO)
4253 && stopped_by_watchpoint)
4254 fprintf_unfiltered (gdb_stdlog,
4255 "infrun: no user watchpoint explains "
4256 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4257
ab04a2af
TT
4258 /* NOTE: cagney/2003-03-29: These two checks for a random signal
4259 at one stage in the past included checks for an inferior
4260 function call's call dummy's return breakpoint. The original
4261 comment, that went with the test, read:
03cebad2 4262
ab04a2af
TT
4263 ``End of a stack dummy. Some systems (e.g. Sony news) give
4264 another signal besides SIGTRAP, so check here as well as
4265 above.''
73dd234f 4266
ab04a2af
TT
4267 If someone ever tries to get call dummys on a
4268 non-executable stack to work (where the target would stop
4269 with something like a SIGSEGV), then those tests might need
4270 to be re-instated. Given, however, that the tests were only
4271 enabled when momentary breakpoints were not being used, I
4272 suspect that it won't be the case.
488f131b 4273
ab04a2af
TT
4274 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4275 be necessary for call dummies on a non-executable stack on
4276 SPARC. */
488f131b 4277
ab04a2af
TT
4278 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4279 ecs->random_signal
4280 = !((bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
4281 != BPSTAT_SIGNAL_NO)
4282 || stopped_by_watchpoint
4283 || ecs->event_thread->control.trap_expected
4284 || (ecs->event_thread->control.step_range_end
4285 && (ecs->event_thread->control.step_resume_breakpoint
4286 == NULL)));
488f131b 4287 else
ab04a2af
TT
4288 {
4289 enum bpstat_signal_value sval;
4290
4291 sval = bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
4292 ecs->random_signal = (sval == BPSTAT_SIGNAL_NO);
4293
4294 if (sval == BPSTAT_SIGNAL_HIDE)
4295 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_TRAP;
4296 }
488f131b 4297
04e68871 4298process_event_stop_test:
568d6575
UW
4299
4300 /* Re-fetch current thread's frame in case we did a
4301 "goto process_event_stop_test" above. */
4302 frame = get_current_frame ();
4303 gdbarch = get_frame_arch (frame);
4304
488f131b
JB
4305 /* For the program's own signals, act according to
4306 the signal handling tables. */
4307
4308 if (ecs->random_signal)
4309 {
4310 /* Signal not for debugging purposes. */
4311 int printed = 0;
24291992 4312 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4313
527159b7 4314 if (debug_infrun)
2020b7ab 4315 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4316 ecs->event_thread->suspend.stop_signal);
527159b7 4317
488f131b
JB
4318 stopped_by_random_signal = 1;
4319
16c381f0 4320 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4321 {
4322 printed = 1;
4323 target_terminal_ours_for_output ();
16c381f0
JK
4324 print_signal_received_reason
4325 (ecs->event_thread->suspend.stop_signal);
488f131b 4326 }
252fbfc8
PA
4327 /* Always stop on signals if we're either just gaining control
4328 of the program, or the user explicitly requested this thread
4329 to remain stopped. */
d6b48e9c 4330 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4331 || ecs->event_thread->stop_requested
24291992 4332 || (!inf->detaching
16c381f0 4333 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4334 {
4335 stop_stepping (ecs);
4336 return;
4337 }
4338 /* If not going to stop, give terminal back
4339 if we took it away. */
4340 else if (printed)
4341 target_terminal_inferior ();
4342
4343 /* Clear the signal if it should not be passed. */
16c381f0 4344 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4345 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4346
fb14de7b 4347 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4348 && ecs->event_thread->control.trap_expected
8358c15c 4349 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4350 {
4351 /* We were just starting a new sequence, attempting to
4352 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4353 Instead this signal arrives. This signal will take us out
68f53502
AC
4354 of the stepping range so GDB needs to remember to, when
4355 the signal handler returns, resume stepping off that
4356 breakpoint. */
4357 /* To simplify things, "continue" is forced to use the same
4358 code paths as single-step - set a breakpoint at the
4359 signal return address and then, once hit, step off that
4360 breakpoint. */
237fc4c9
PA
4361 if (debug_infrun)
4362 fprintf_unfiltered (gdb_stdlog,
4363 "infrun: signal arrived while stepping over "
4364 "breakpoint\n");
d3169d93 4365
2c03e5be 4366 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4367 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4368 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4369 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4370 keep_going (ecs);
4371 return;
68f53502 4372 }
9d799f85 4373
16c381f0 4374 if (ecs->event_thread->control.step_range_end != 0
a493e3e2 4375 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
ce4c476a 4376 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
edb3359d 4377 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4378 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4379 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4380 {
4381 /* The inferior is about to take a signal that will take it
4382 out of the single step range. Set a breakpoint at the
4383 current PC (which is presumably where the signal handler
4384 will eventually return) and then allow the inferior to
4385 run free.
4386
4387 Note that this is only needed for a signal delivered
4388 while in the single-step range. Nested signals aren't a
4389 problem as they eventually all return. */
237fc4c9
PA
4390 if (debug_infrun)
4391 fprintf_unfiltered (gdb_stdlog,
4392 "infrun: signal may take us out of "
4393 "single-step range\n");
4394
2c03e5be 4395 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4396 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4397 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4398 keep_going (ecs);
4399 return;
d303a6c7 4400 }
9d799f85
AC
4401
4402 /* Note: step_resume_breakpoint may be non-NULL. This occures
4403 when either there's a nested signal, or when there's a
4404 pending signal enabled just as the signal handler returns
4405 (leaving the inferior at the step-resume-breakpoint without
4406 actually executing it). Either way continue until the
4407 breakpoint is really hit. */
488f131b 4408 }
e5ef252a
PA
4409 else
4410 {
4411 /* Handle cases caused by hitting a breakpoint. */
488f131b 4412
e5ef252a
PA
4413 CORE_ADDR jmp_buf_pc;
4414 struct bpstat_what what;
611c83ae 4415
e5ef252a 4416 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4417
e5ef252a 4418 if (what.call_dummy)
e81a37f7 4419 {
e5ef252a
PA
4420 stop_stack_dummy = what.call_dummy;
4421 }
186c406b 4422
e5ef252a
PA
4423 /* If we hit an internal event that triggers symbol changes, the
4424 current frame will be invalidated within bpstat_what (e.g.,
4425 if we hit an internal solib event). Re-fetch it. */
4426 frame = get_current_frame ();
4427 gdbarch = get_frame_arch (frame);
e2e4d78b 4428
e5ef252a
PA
4429 switch (what.main_action)
4430 {
4431 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4432 /* If we hit the breakpoint at longjmp while stepping, we
4433 install a momentary breakpoint at the target of the
4434 jmp_buf. */
186c406b 4435
e81a37f7
TT
4436 if (debug_infrun)
4437 fprintf_unfiltered (gdb_stdlog,
e5ef252a 4438 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4439
e5ef252a 4440 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4441
e2e4d78b
JK
4442 if (what.is_longjmp)
4443 {
e5ef252a
PA
4444 struct value *arg_value;
4445
4446 /* If we set the longjmp breakpoint via a SystemTap
4447 probe, then use it to extract the arguments. The
4448 destination PC is the third argument to the
4449 probe. */
4450 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4451 if (arg_value)
4452 jmp_buf_pc = value_as_address (arg_value);
4453 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4454 || !gdbarch_get_longjmp_target (gdbarch,
4455 frame, &jmp_buf_pc))
e2e4d78b 4456 {
e5ef252a
PA
4457 if (debug_infrun)
4458 fprintf_unfiltered (gdb_stdlog,
4459 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4460 "(!gdbarch_get_longjmp_target)\n");
e2e4d78b
JK
4461 keep_going (ecs);
4462 return;
4463 }
e5ef252a
PA
4464
4465 /* Insert a breakpoint at resume address. */
4466 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
e2e4d78b 4467 }
e5ef252a
PA
4468 else
4469 check_exception_resume (ecs, frame);
4470 keep_going (ecs);
4471 return;
e2e4d78b 4472
e5ef252a
PA
4473 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4474 {
4475 struct frame_info *init_frame;
e2e4d78b 4476
e5ef252a 4477 /* There are several cases to consider.
e81a37f7 4478
e5ef252a
PA
4479 1. The initiating frame no longer exists. In this case
4480 we must stop, because the exception or longjmp has gone
4481 too far.
e81a37f7 4482
e5ef252a
PA
4483 2. The initiating frame exists, and is the same as the
4484 current frame. We stop, because the exception or
4485 longjmp has been caught.
c906108c 4486
e5ef252a
PA
4487 3. The initiating frame exists and is different from
4488 the current frame. This means the exception or longjmp
4489 has been caught beneath the initiating frame, so keep
4490 going.
2c03e5be 4491
e5ef252a
PA
4492 4. longjmp breakpoint has been placed just to protect
4493 against stale dummy frames and user is not interested
4494 in stopping around longjmps. */
2c03e5be 4495
e5ef252a
PA
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c906108c 4499
e5ef252a
PA
4500 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4501 != NULL);
4502 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4503
e5ef252a
PA
4504 if (what.is_longjmp)
4505 {
4506 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
c5aa993b 4507
e5ef252a
PA
4508 if (!frame_id_p (ecs->event_thread->initiating_frame))
4509 {
4510 /* Case 4. */
4511 keep_going (ecs);
4512 return;
4513 }
4514 }
c5aa993b 4515
e5ef252a 4516 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
c5aa993b 4517
e5ef252a
PA
4518 if (init_frame)
4519 {
4520 struct frame_id current_id
4521 = get_frame_id (get_current_frame ());
4522 if (frame_id_eq (current_id,
4523 ecs->event_thread->initiating_frame))
4524 {
4525 /* Case 2. Fall through. */
4526 }
4527 else
4528 {
4529 /* Case 3. */
4530 keep_going (ecs);
4531 return;
4532 }
4533 }
c5aa993b 4534
e5ef252a
PA
4535 /* For Cases 1 and 2, remove the step-resume breakpoint,
4536 if it exists. */
4537 delete_step_resume_breakpoint (ecs->event_thread);
527159b7 4538
e5ef252a
PA
4539 ecs->event_thread->control.stop_step = 1;
4540 print_end_stepping_range_reason ();
4541 stop_stepping (ecs);
68f53502 4542 }
e5ef252a 4543 return;
488f131b 4544
e5ef252a
PA
4545 case BPSTAT_WHAT_SINGLE:
4546 if (debug_infrun)
4547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4548 ecs->event_thread->stepping_over_breakpoint = 1;
4549 /* Still need to check other stuff, at least the case where
4550 we are stepping and step out of the right range. */
4551 break;
4552
4553 case BPSTAT_WHAT_STEP_RESUME:
4554 if (debug_infrun)
4555 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4556
4557 delete_step_resume_breakpoint (ecs->event_thread);
4558 if (ecs->event_thread->control.proceed_to_finish
4559 && execution_direction == EXEC_REVERSE)
4560 {
4561 struct thread_info *tp = ecs->event_thread;
4562
4563 /* We are finishing a function in reverse, and just hit
4564 the step-resume breakpoint at the start address of
4565 the function, and we're almost there -- just need to
4566 back up by one more single-step, which should take us
4567 back to the function call. */
4568 tp->control.step_range_start = tp->control.step_range_end = 1;
4569 keep_going (ecs);
4570 return;
4571 }
4572 fill_in_stop_func (gdbarch, ecs);
4573 if (stop_pc == ecs->stop_func_start
4574 && execution_direction == EXEC_REVERSE)
4575 {
4576 /* We are stepping over a function call in reverse, and
4577 just hit the step-resume breakpoint at the start
4578 address of the function. Go back to single-stepping,
4579 which should take us back to the function call. */
4580 ecs->event_thread->stepping_over_breakpoint = 1;
4581 keep_going (ecs);
4582 return;
4583 }
4584 break;
4585
4586 case BPSTAT_WHAT_STOP_NOISY:
4587 if (debug_infrun)
4588 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4589 stop_print_frame = 1;
4590
4591 /* We are about to nuke the step_resume_breakpointt via the
4592 cleanup chain, so no need to worry about it here. */
4593
4594 stop_stepping (ecs);
4595 return;
4596
4597 case BPSTAT_WHAT_STOP_SILENT:
4598 if (debug_infrun)
4599 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4600 stop_print_frame = 0;
4601
4602 /* We are about to nuke the step_resume_breakpoin via the
4603 cleanup chain, so no need to worry about it here. */
4604
4605 stop_stepping (ecs);
4606 return;
4607
4608 case BPSTAT_WHAT_HP_STEP_RESUME:
4609 if (debug_infrun)
4610 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4611
4612 delete_step_resume_breakpoint (ecs->event_thread);
4613 if (ecs->event_thread->step_after_step_resume_breakpoint)
4614 {
4615 /* Back when the step-resume breakpoint was inserted, we
4616 were trying to single-step off a breakpoint. Go back
4617 to doing that. */
4618 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4619 ecs->event_thread->stepping_over_breakpoint = 1;
4620 keep_going (ecs);
4621 return;
4622 }
4623 break;
4624
4625 case BPSTAT_WHAT_KEEP_CHECKING:
4626 break;
4627 }
4628 }
c906108c 4629
488f131b
JB
4630 /* We come here if we hit a breakpoint but should not
4631 stop for it. Possibly we also were stepping
4632 and should stop for that. So fall through and
4633 test for stepping. But, if not stepping,
4634 do not stop. */
c906108c 4635
a7212384
UW
4636 /* In all-stop mode, if we're currently stepping but have stopped in
4637 some other thread, we need to switch back to the stepped thread. */
4638 if (!non_stop)
4639 {
4640 struct thread_info *tp;
abbb1732 4641
b3444185 4642 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4643 ecs->event_thread);
4644 if (tp)
4645 {
4646 /* However, if the current thread is blocked on some internal
4647 breakpoint, and we simply need to step over that breakpoint
4648 to get it going again, do that first. */
16c381f0 4649 if ((ecs->event_thread->control.trap_expected
a493e3e2 4650 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
a7212384
UW
4651 || ecs->event_thread->stepping_over_breakpoint)
4652 {
4653 keep_going (ecs);
4654 return;
4655 }
4656
66852e9c
PA
4657 /* If the stepping thread exited, then don't try to switch
4658 back and resume it, which could fail in several different
4659 ways depending on the target. Instead, just keep going.
4660
4661 We can find a stepping dead thread in the thread list in
4662 two cases:
4663
4664 - The target supports thread exit events, and when the
4665 target tries to delete the thread from the thread list,
4666 inferior_ptid pointed at the exiting thread. In such
4667 case, calling delete_thread does not really remove the
4668 thread from the list; instead, the thread is left listed,
4669 with 'exited' state.
4670
4671 - The target's debug interface does not support thread
4672 exit events, and so we have no idea whatsoever if the
4673 previously stepping thread is still alive. For that
4674 reason, we need to synchronously query the target
4675 now. */
b3444185
PA
4676 if (is_exited (tp->ptid)
4677 || !target_thread_alive (tp->ptid))
4678 {
4679 if (debug_infrun)
3e43a32a
MS
4680 fprintf_unfiltered (gdb_stdlog,
4681 "infrun: not switching back to "
4682 "stepped thread, it has vanished\n");
b3444185
PA
4683
4684 delete_thread (tp->ptid);
4685 keep_going (ecs);
4686 return;
4687 }
4688
a7212384
UW
4689 /* Otherwise, we no longer expect a trap in the current thread.
4690 Clear the trap_expected flag before switching back -- this is
4691 what keep_going would do as well, if we called it. */
16c381f0 4692 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4693
4694 if (debug_infrun)
4695 fprintf_unfiltered (gdb_stdlog,
4696 "infrun: switching back to stepped thread\n");
4697
4698 ecs->event_thread = tp;
4699 ecs->ptid = tp->ptid;
4700 context_switch (ecs->ptid);
4701 keep_going (ecs);
4702 return;
4703 }
4704 }
4705
8358c15c 4706 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4707 {
527159b7 4708 if (debug_infrun)
d3169d93
DJ
4709 fprintf_unfiltered (gdb_stdlog,
4710 "infrun: step-resume breakpoint is inserted\n");
527159b7 4711
488f131b
JB
4712 /* Having a step-resume breakpoint overrides anything
4713 else having to do with stepping commands until
4714 that breakpoint is reached. */
488f131b
JB
4715 keep_going (ecs);
4716 return;
4717 }
c5aa993b 4718
16c381f0 4719 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4720 {
527159b7 4721 if (debug_infrun)
8a9de0e4 4722 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4723 /* Likewise if we aren't even stepping. */
488f131b
JB
4724 keep_going (ecs);
4725 return;
4726 }
c5aa993b 4727
4b7703ad
JB
4728 /* Re-fetch current thread's frame in case the code above caused
4729 the frame cache to be re-initialized, making our FRAME variable
4730 a dangling pointer. */
4731 frame = get_current_frame ();
628fe4e4 4732 gdbarch = get_frame_arch (frame);
7e324e48 4733 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4734
488f131b 4735 /* If stepping through a line, keep going if still within it.
c906108c 4736
488f131b
JB
4737 Note that step_range_end is the address of the first instruction
4738 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4739 within it!
4740
4741 Note also that during reverse execution, we may be stepping
4742 through a function epilogue and therefore must detect when
4743 the current-frame changes in the middle of a line. */
4744
ce4c476a 4745 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4746 && (execution_direction != EXEC_REVERSE
388a8562 4747 || frame_id_eq (get_frame_id (frame),
16c381f0 4748 ecs->event_thread->control.step_frame_id)))
488f131b 4749 {
527159b7 4750 if (debug_infrun)
5af949e3
UW
4751 fprintf_unfiltered
4752 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4753 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4754 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4755
c1e36e3e
PA
4756 /* Tentatively re-enable range stepping; `resume' disables it if
4757 necessary (e.g., if we're stepping over a breakpoint or we
4758 have software watchpoints). */
4759 ecs->event_thread->control.may_range_step = 1;
4760
b2175913
MS
4761 /* When stepping backward, stop at beginning of line range
4762 (unless it's the function entry point, in which case
4763 keep going back to the call point). */
16c381f0 4764 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4765 && stop_pc != ecs->stop_func_start
4766 && execution_direction == EXEC_REVERSE)
4767 {
16c381f0 4768 ecs->event_thread->control.stop_step = 1;
33d62d64 4769 print_end_stepping_range_reason ();
b2175913
MS
4770 stop_stepping (ecs);
4771 }
4772 else
4773 keep_going (ecs);
4774
488f131b
JB
4775 return;
4776 }
c5aa993b 4777
488f131b 4778 /* We stepped out of the stepping range. */
c906108c 4779
488f131b 4780 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4781 loader dynamic symbol resolution code...
4782
4783 EXEC_FORWARD: we keep on single stepping until we exit the run
4784 time loader code and reach the callee's address.
4785
4786 EXEC_REVERSE: we've already executed the callee (backward), and
4787 the runtime loader code is handled just like any other
4788 undebuggable function call. Now we need only keep stepping
4789 backward through the trampoline code, and that's handled further
4790 down, so there is nothing for us to do here. */
4791
4792 if (execution_direction != EXEC_REVERSE
16c381f0 4793 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4794 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4795 {
4c8c40e6 4796 CORE_ADDR pc_after_resolver =
568d6575 4797 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4798
527159b7 4799 if (debug_infrun)
3e43a32a
MS
4800 fprintf_unfiltered (gdb_stdlog,
4801 "infrun: stepped into dynsym resolve code\n");
527159b7 4802
488f131b
JB
4803 if (pc_after_resolver)
4804 {
4805 /* Set up a step-resume breakpoint at the address
4806 indicated by SKIP_SOLIB_RESOLVER. */
4807 struct symtab_and_line sr_sal;
abbb1732 4808
fe39c653 4809 init_sal (&sr_sal);
488f131b 4810 sr_sal.pc = pc_after_resolver;
6c95b8df 4811 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4812
a6d9a66e
UW
4813 insert_step_resume_breakpoint_at_sal (gdbarch,
4814 sr_sal, null_frame_id);
c5aa993b 4815 }
c906108c 4816
488f131b
JB
4817 keep_going (ecs);
4818 return;
4819 }
c906108c 4820
16c381f0
JK
4821 if (ecs->event_thread->control.step_range_end != 1
4822 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4823 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4824 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4825 {
527159b7 4826 if (debug_infrun)
3e43a32a
MS
4827 fprintf_unfiltered (gdb_stdlog,
4828 "infrun: stepped into signal trampoline\n");
42edda50 4829 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4830 a signal trampoline (either by a signal being delivered or by
4831 the signal handler returning). Just single-step until the
4832 inferior leaves the trampoline (either by calling the handler
4833 or returning). */
488f131b
JB
4834 keep_going (ecs);
4835 return;
4836 }
c906108c 4837
14132e89
MR
4838 /* If we're in the return path from a shared library trampoline,
4839 we want to proceed through the trampoline when stepping. */
4840 /* macro/2012-04-25: This needs to come before the subroutine
4841 call check below as on some targets return trampolines look
4842 like subroutine calls (MIPS16 return thunks). */
4843 if (gdbarch_in_solib_return_trampoline (gdbarch,
4844 stop_pc, ecs->stop_func_name)
4845 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4846 {
4847 /* Determine where this trampoline returns. */
4848 CORE_ADDR real_stop_pc;
4849
4850 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4851
4852 if (debug_infrun)
4853 fprintf_unfiltered (gdb_stdlog,
4854 "infrun: stepped into solib return tramp\n");
4855
4856 /* Only proceed through if we know where it's going. */
4857 if (real_stop_pc)
4858 {
4859 /* And put the step-breakpoint there and go until there. */
4860 struct symtab_and_line sr_sal;
4861
4862 init_sal (&sr_sal); /* initialize to zeroes */
4863 sr_sal.pc = real_stop_pc;
4864 sr_sal.section = find_pc_overlay (sr_sal.pc);
4865 sr_sal.pspace = get_frame_program_space (frame);
4866
4867 /* Do not specify what the fp should be when we stop since
4868 on some machines the prologue is where the new fp value
4869 is established. */
4870 insert_step_resume_breakpoint_at_sal (gdbarch,
4871 sr_sal, null_frame_id);
4872
4873 /* Restart without fiddling with the step ranges or
4874 other state. */
4875 keep_going (ecs);
4876 return;
4877 }
4878 }
4879
c17eaafe
DJ
4880 /* Check for subroutine calls. The check for the current frame
4881 equalling the step ID is not necessary - the check of the
4882 previous frame's ID is sufficient - but it is a common case and
4883 cheaper than checking the previous frame's ID.
14e60db5
DJ
4884
4885 NOTE: frame_id_eq will never report two invalid frame IDs as
4886 being equal, so to get into this block, both the current and
4887 previous frame must have valid frame IDs. */
005ca36a
JB
4888 /* The outer_frame_id check is a heuristic to detect stepping
4889 through startup code. If we step over an instruction which
4890 sets the stack pointer from an invalid value to a valid value,
4891 we may detect that as a subroutine call from the mythical
4892 "outermost" function. This could be fixed by marking
4893 outermost frames as !stack_p,code_p,special_p. Then the
4894 initial outermost frame, before sp was valid, would
ce6cca6d 4895 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4896 for more. */
edb3359d 4897 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4898 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4899 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4900 ecs->event_thread->control.step_stack_frame_id)
4901 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4902 outer_frame_id)
4903 || step_start_function != find_pc_function (stop_pc))))
488f131b 4904 {
95918acb 4905 CORE_ADDR real_stop_pc;
8fb3e588 4906
527159b7 4907 if (debug_infrun)
8a9de0e4 4908 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4909
16c381f0
JK
4910 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4911 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4912 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4913 ecs->stop_func_start)))
95918acb
AC
4914 {
4915 /* I presume that step_over_calls is only 0 when we're
4916 supposed to be stepping at the assembly language level
4917 ("stepi"). Just stop. */
4918 /* Also, maybe we just did a "nexti" inside a prolog, so we
4919 thought it was a subroutine call but it was not. Stop as
4920 well. FENN */
388a8562 4921 /* And this works the same backward as frontward. MVS */
16c381f0 4922 ecs->event_thread->control.stop_step = 1;
33d62d64 4923 print_end_stepping_range_reason ();
95918acb
AC
4924 stop_stepping (ecs);
4925 return;
4926 }
8fb3e588 4927
388a8562
MS
4928 /* Reverse stepping through solib trampolines. */
4929
4930 if (execution_direction == EXEC_REVERSE
16c381f0 4931 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4932 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4933 || (ecs->stop_func_start == 0
4934 && in_solib_dynsym_resolve_code (stop_pc))))
4935 {
4936 /* Any solib trampoline code can be handled in reverse
4937 by simply continuing to single-step. We have already
4938 executed the solib function (backwards), and a few
4939 steps will take us back through the trampoline to the
4940 caller. */
4941 keep_going (ecs);
4942 return;
4943 }
4944
16c381f0 4945 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4946 {
b2175913
MS
4947 /* We're doing a "next".
4948
4949 Normal (forward) execution: set a breakpoint at the
4950 callee's return address (the address at which the caller
4951 will resume).
4952
4953 Reverse (backward) execution. set the step-resume
4954 breakpoint at the start of the function that we just
4955 stepped into (backwards), and continue to there. When we
6130d0b7 4956 get there, we'll need to single-step back to the caller. */
b2175913
MS
4957
4958 if (execution_direction == EXEC_REVERSE)
4959 {
acf9414f
JK
4960 /* If we're already at the start of the function, we've either
4961 just stepped backward into a single instruction function,
4962 or stepped back out of a signal handler to the first instruction
4963 of the function. Just keep going, which will single-step back
4964 to the caller. */
4965 if (ecs->stop_func_start != stop_pc)
4966 {
4967 struct symtab_and_line sr_sal;
4968
4969 /* Normal function call return (static or dynamic). */
4970 init_sal (&sr_sal);
4971 sr_sal.pc = ecs->stop_func_start;
4972 sr_sal.pspace = get_frame_program_space (frame);
4973 insert_step_resume_breakpoint_at_sal (gdbarch,
4974 sr_sal, null_frame_id);
4975 }
b2175913
MS
4976 }
4977 else
568d6575 4978 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4979
8567c30f
AC
4980 keep_going (ecs);
4981 return;
4982 }
a53c66de 4983
95918acb 4984 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4985 calling routine and the real function), locate the real
4986 function. That's what tells us (a) whether we want to step
4987 into it at all, and (b) what prologue we want to run to the
4988 end of, if we do step into it. */
568d6575 4989 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4990 if (real_stop_pc == 0)
568d6575 4991 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4992 if (real_stop_pc != 0)
4993 ecs->stop_func_start = real_stop_pc;
8fb3e588 4994
db5f024e 4995 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4996 {
4997 struct symtab_and_line sr_sal;
abbb1732 4998
1b2bfbb9
RC
4999 init_sal (&sr_sal);
5000 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5001 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5002
a6d9a66e
UW
5003 insert_step_resume_breakpoint_at_sal (gdbarch,
5004 sr_sal, null_frame_id);
8fb3e588
AC
5005 keep_going (ecs);
5006 return;
1b2bfbb9
RC
5007 }
5008
95918acb 5009 /* If we have line number information for the function we are
1bfeeb0f
JL
5010 thinking of stepping into and the function isn't on the skip
5011 list, step into it.
95918acb 5012
8fb3e588
AC
5013 If there are several symtabs at that PC (e.g. with include
5014 files), just want to know whether *any* of them have line
5015 numbers. find_pc_line handles this. */
95918acb
AC
5016 {
5017 struct symtab_and_line tmp_sal;
8fb3e588 5018
95918acb 5019 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5020 if (tmp_sal.line != 0
85817405
JK
5021 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5022 &tmp_sal))
95918acb 5023 {
b2175913 5024 if (execution_direction == EXEC_REVERSE)
568d6575 5025 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5026 else
568d6575 5027 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5028 return;
5029 }
5030 }
5031
5032 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5033 set, we stop the step so that the user has a chance to switch
5034 in assembly mode. */
16c381f0 5035 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5036 && step_stop_if_no_debug)
95918acb 5037 {
16c381f0 5038 ecs->event_thread->control.stop_step = 1;
33d62d64 5039 print_end_stepping_range_reason ();
95918acb
AC
5040 stop_stepping (ecs);
5041 return;
5042 }
5043
b2175913
MS
5044 if (execution_direction == EXEC_REVERSE)
5045 {
acf9414f
JK
5046 /* If we're already at the start of the function, we've either just
5047 stepped backward into a single instruction function without line
5048 number info, or stepped back out of a signal handler to the first
5049 instruction of the function without line number info. Just keep
5050 going, which will single-step back to the caller. */
5051 if (ecs->stop_func_start != stop_pc)
5052 {
5053 /* Set a breakpoint at callee's start address.
5054 From there we can step once and be back in the caller. */
5055 struct symtab_and_line sr_sal;
abbb1732 5056
acf9414f
JK
5057 init_sal (&sr_sal);
5058 sr_sal.pc = ecs->stop_func_start;
5059 sr_sal.pspace = get_frame_program_space (frame);
5060 insert_step_resume_breakpoint_at_sal (gdbarch,
5061 sr_sal, null_frame_id);
5062 }
b2175913
MS
5063 }
5064 else
5065 /* Set a breakpoint at callee's return address (the address
5066 at which the caller will resume). */
568d6575 5067 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5068
95918acb 5069 keep_going (ecs);
488f131b 5070 return;
488f131b 5071 }
c906108c 5072
fdd654f3
MS
5073 /* Reverse stepping through solib trampolines. */
5074
5075 if (execution_direction == EXEC_REVERSE
16c381f0 5076 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5077 {
5078 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5079 || (ecs->stop_func_start == 0
5080 && in_solib_dynsym_resolve_code (stop_pc)))
5081 {
5082 /* Any solib trampoline code can be handled in reverse
5083 by simply continuing to single-step. We have already
5084 executed the solib function (backwards), and a few
5085 steps will take us back through the trampoline to the
5086 caller. */
5087 keep_going (ecs);
5088 return;
5089 }
5090 else if (in_solib_dynsym_resolve_code (stop_pc))
5091 {
5092 /* Stepped backward into the solib dynsym resolver.
5093 Set a breakpoint at its start and continue, then
5094 one more step will take us out. */
5095 struct symtab_and_line sr_sal;
abbb1732 5096
fdd654f3
MS
5097 init_sal (&sr_sal);
5098 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5099 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5100 insert_step_resume_breakpoint_at_sal (gdbarch,
5101 sr_sal, null_frame_id);
5102 keep_going (ecs);
5103 return;
5104 }
5105 }
5106
2afb61aa 5107 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5108
1b2bfbb9
RC
5109 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5110 the trampoline processing logic, however, there are some trampolines
5111 that have no names, so we should do trampoline handling first. */
16c381f0 5112 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5113 && ecs->stop_func_name == NULL
2afb61aa 5114 && stop_pc_sal.line == 0)
1b2bfbb9 5115 {
527159b7 5116 if (debug_infrun)
3e43a32a
MS
5117 fprintf_unfiltered (gdb_stdlog,
5118 "infrun: stepped into undebuggable function\n");
527159b7 5119
1b2bfbb9 5120 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5121 undebuggable function (where there is no debugging information
5122 and no line number corresponding to the address where the
1b2bfbb9
RC
5123 inferior stopped). Since we want to skip this kind of code,
5124 we keep going until the inferior returns from this
14e60db5
DJ
5125 function - unless the user has asked us not to (via
5126 set step-mode) or we no longer know how to get back
5127 to the call site. */
5128 if (step_stop_if_no_debug
c7ce8faa 5129 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5130 {
5131 /* If we have no line number and the step-stop-if-no-debug
5132 is set, we stop the step so that the user has a chance to
5133 switch in assembly mode. */
16c381f0 5134 ecs->event_thread->control.stop_step = 1;
33d62d64 5135 print_end_stepping_range_reason ();
1b2bfbb9
RC
5136 stop_stepping (ecs);
5137 return;
5138 }
5139 else
5140 {
5141 /* Set a breakpoint at callee's return address (the address
5142 at which the caller will resume). */
568d6575 5143 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5144 keep_going (ecs);
5145 return;
5146 }
5147 }
5148
16c381f0 5149 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5150 {
5151 /* It is stepi or nexti. We always want to stop stepping after
5152 one instruction. */
527159b7 5153 if (debug_infrun)
8a9de0e4 5154 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5155 ecs->event_thread->control.stop_step = 1;
33d62d64 5156 print_end_stepping_range_reason ();
1b2bfbb9
RC
5157 stop_stepping (ecs);
5158 return;
5159 }
5160
2afb61aa 5161 if (stop_pc_sal.line == 0)
488f131b
JB
5162 {
5163 /* We have no line number information. That means to stop
5164 stepping (does this always happen right after one instruction,
5165 when we do "s" in a function with no line numbers,
5166 or can this happen as a result of a return or longjmp?). */
527159b7 5167 if (debug_infrun)
8a9de0e4 5168 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5169 ecs->event_thread->control.stop_step = 1;
33d62d64 5170 print_end_stepping_range_reason ();
488f131b
JB
5171 stop_stepping (ecs);
5172 return;
5173 }
c906108c 5174
edb3359d
DJ
5175 /* Look for "calls" to inlined functions, part one. If the inline
5176 frame machinery detected some skipped call sites, we have entered
5177 a new inline function. */
5178
5179 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5180 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5181 && inline_skipped_frames (ecs->ptid))
5182 {
5183 struct symtab_and_line call_sal;
5184
5185 if (debug_infrun)
5186 fprintf_unfiltered (gdb_stdlog,
5187 "infrun: stepped into inlined function\n");
5188
5189 find_frame_sal (get_current_frame (), &call_sal);
5190
16c381f0 5191 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5192 {
5193 /* For "step", we're going to stop. But if the call site
5194 for this inlined function is on the same source line as
5195 we were previously stepping, go down into the function
5196 first. Otherwise stop at the call site. */
5197
5198 if (call_sal.line == ecs->event_thread->current_line
5199 && call_sal.symtab == ecs->event_thread->current_symtab)
5200 step_into_inline_frame (ecs->ptid);
5201
16c381f0 5202 ecs->event_thread->control.stop_step = 1;
33d62d64 5203 print_end_stepping_range_reason ();
edb3359d
DJ
5204 stop_stepping (ecs);
5205 return;
5206 }
5207 else
5208 {
5209 /* For "next", we should stop at the call site if it is on a
5210 different source line. Otherwise continue through the
5211 inlined function. */
5212 if (call_sal.line == ecs->event_thread->current_line
5213 && call_sal.symtab == ecs->event_thread->current_symtab)
5214 keep_going (ecs);
5215 else
5216 {
16c381f0 5217 ecs->event_thread->control.stop_step = 1;
33d62d64 5218 print_end_stepping_range_reason ();
edb3359d
DJ
5219 stop_stepping (ecs);
5220 }
5221 return;
5222 }
5223 }
5224
5225 /* Look for "calls" to inlined functions, part two. If we are still
5226 in the same real function we were stepping through, but we have
5227 to go further up to find the exact frame ID, we are stepping
5228 through a more inlined call beyond its call site. */
5229
5230 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5231 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5232 ecs->event_thread->control.step_frame_id)
edb3359d 5233 && stepped_in_from (get_current_frame (),
16c381f0 5234 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5235 {
5236 if (debug_infrun)
5237 fprintf_unfiltered (gdb_stdlog,
5238 "infrun: stepping through inlined function\n");
5239
16c381f0 5240 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5241 keep_going (ecs);
5242 else
5243 {
16c381f0 5244 ecs->event_thread->control.stop_step = 1;
33d62d64 5245 print_end_stepping_range_reason ();
edb3359d
DJ
5246 stop_stepping (ecs);
5247 }
5248 return;
5249 }
5250
2afb61aa 5251 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5252 && (ecs->event_thread->current_line != stop_pc_sal.line
5253 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5254 {
5255 /* We are at the start of a different line. So stop. Note that
5256 we don't stop if we step into the middle of a different line.
5257 That is said to make things like for (;;) statements work
5258 better. */
527159b7 5259 if (debug_infrun)
3e43a32a
MS
5260 fprintf_unfiltered (gdb_stdlog,
5261 "infrun: stepped to a different line\n");
16c381f0 5262 ecs->event_thread->control.stop_step = 1;
33d62d64 5263 print_end_stepping_range_reason ();
488f131b
JB
5264 stop_stepping (ecs);
5265 return;
5266 }
c906108c 5267
488f131b 5268 /* We aren't done stepping.
c906108c 5269
488f131b
JB
5270 Optimize by setting the stepping range to the line.
5271 (We might not be in the original line, but if we entered a
5272 new line in mid-statement, we continue stepping. This makes
5273 things like for(;;) statements work better.) */
c906108c 5274
16c381f0
JK
5275 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5276 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5277 ecs->event_thread->control.may_range_step = 1;
edb3359d 5278 set_step_info (frame, stop_pc_sal);
488f131b 5279
527159b7 5280 if (debug_infrun)
8a9de0e4 5281 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5282 keep_going (ecs);
104c1213
JM
5283}
5284
b3444185 5285/* Is thread TP in the middle of single-stepping? */
104c1213 5286
a289b8f6 5287static int
b3444185 5288currently_stepping (struct thread_info *tp)
a7212384 5289{
8358c15c
JK
5290 return ((tp->control.step_range_end
5291 && tp->control.step_resume_breakpoint == NULL)
5292 || tp->control.trap_expected
8358c15c 5293 || bpstat_should_step ());
a7212384
UW
5294}
5295
b3444185
PA
5296/* Returns true if any thread *but* the one passed in "data" is in the
5297 middle of stepping or of handling a "next". */
a7212384 5298
104c1213 5299static int
b3444185 5300currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5301{
b3444185
PA
5302 if (tp == data)
5303 return 0;
5304
16c381f0 5305 return (tp->control.step_range_end
ede1849f 5306 || tp->control.trap_expected);
104c1213 5307}
c906108c 5308
b2175913
MS
5309/* Inferior has stepped into a subroutine call with source code that
5310 we should not step over. Do step to the first line of code in
5311 it. */
c2c6d25f
JM
5312
5313static void
568d6575
UW
5314handle_step_into_function (struct gdbarch *gdbarch,
5315 struct execution_control_state *ecs)
c2c6d25f
JM
5316{
5317 struct symtab *s;
2afb61aa 5318 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5319
7e324e48
GB
5320 fill_in_stop_func (gdbarch, ecs);
5321
c2c6d25f
JM
5322 s = find_pc_symtab (stop_pc);
5323 if (s && s->language != language_asm)
568d6575 5324 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5325 ecs->stop_func_start);
c2c6d25f 5326
2afb61aa 5327 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5328 /* Use the step_resume_break to step until the end of the prologue,
5329 even if that involves jumps (as it seems to on the vax under
5330 4.2). */
5331 /* If the prologue ends in the middle of a source line, continue to
5332 the end of that source line (if it is still within the function).
5333 Otherwise, just go to end of prologue. */
2afb61aa
PA
5334 if (stop_func_sal.end
5335 && stop_func_sal.pc != ecs->stop_func_start
5336 && stop_func_sal.end < ecs->stop_func_end)
5337 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5338
2dbd5e30
KB
5339 /* Architectures which require breakpoint adjustment might not be able
5340 to place a breakpoint at the computed address. If so, the test
5341 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5342 ecs->stop_func_start to an address at which a breakpoint may be
5343 legitimately placed.
8fb3e588 5344
2dbd5e30
KB
5345 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5346 made, GDB will enter an infinite loop when stepping through
5347 optimized code consisting of VLIW instructions which contain
5348 subinstructions corresponding to different source lines. On
5349 FR-V, it's not permitted to place a breakpoint on any but the
5350 first subinstruction of a VLIW instruction. When a breakpoint is
5351 set, GDB will adjust the breakpoint address to the beginning of
5352 the VLIW instruction. Thus, we need to make the corresponding
5353 adjustment here when computing the stop address. */
8fb3e588 5354
568d6575 5355 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5356 {
5357 ecs->stop_func_start
568d6575 5358 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5359 ecs->stop_func_start);
2dbd5e30
KB
5360 }
5361
c2c6d25f
JM
5362 if (ecs->stop_func_start == stop_pc)
5363 {
5364 /* We are already there: stop now. */
16c381f0 5365 ecs->event_thread->control.stop_step = 1;
33d62d64 5366 print_end_stepping_range_reason ();
c2c6d25f
JM
5367 stop_stepping (ecs);
5368 return;
5369 }
5370 else
5371 {
5372 /* Put the step-breakpoint there and go until there. */
fe39c653 5373 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5374 sr_sal.pc = ecs->stop_func_start;
5375 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5376 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5377
c2c6d25f 5378 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5379 some machines the prologue is where the new fp value is
5380 established. */
a6d9a66e 5381 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5382
5383 /* And make sure stepping stops right away then. */
16c381f0
JK
5384 ecs->event_thread->control.step_range_end
5385 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5386 }
5387 keep_going (ecs);
5388}
d4f3574e 5389
b2175913
MS
5390/* Inferior has stepped backward into a subroutine call with source
5391 code that we should not step over. Do step to the beginning of the
5392 last line of code in it. */
5393
5394static void
568d6575
UW
5395handle_step_into_function_backward (struct gdbarch *gdbarch,
5396 struct execution_control_state *ecs)
b2175913
MS
5397{
5398 struct symtab *s;
167e4384 5399 struct symtab_and_line stop_func_sal;
b2175913 5400
7e324e48
GB
5401 fill_in_stop_func (gdbarch, ecs);
5402
b2175913
MS
5403 s = find_pc_symtab (stop_pc);
5404 if (s && s->language != language_asm)
568d6575 5405 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5406 ecs->stop_func_start);
5407
5408 stop_func_sal = find_pc_line (stop_pc, 0);
5409
5410 /* OK, we're just going to keep stepping here. */
5411 if (stop_func_sal.pc == stop_pc)
5412 {
5413 /* We're there already. Just stop stepping now. */
16c381f0 5414 ecs->event_thread->control.stop_step = 1;
33d62d64 5415 print_end_stepping_range_reason ();
b2175913
MS
5416 stop_stepping (ecs);
5417 }
5418 else
5419 {
5420 /* Else just reset the step range and keep going.
5421 No step-resume breakpoint, they don't work for
5422 epilogues, which can have multiple entry paths. */
16c381f0
JK
5423 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5424 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5425 keep_going (ecs);
5426 }
5427 return;
5428}
5429
d3169d93 5430/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5431 This is used to both functions and to skip over code. */
5432
5433static void
2c03e5be
PA
5434insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5435 struct symtab_and_line sr_sal,
5436 struct frame_id sr_id,
5437 enum bptype sr_type)
44cbf7b5 5438{
611c83ae
PA
5439 /* There should never be more than one step-resume or longjmp-resume
5440 breakpoint per thread, so we should never be setting a new
44cbf7b5 5441 step_resume_breakpoint when one is already active. */
8358c15c 5442 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5443 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5444
5445 if (debug_infrun)
5446 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5447 "infrun: inserting step-resume breakpoint at %s\n",
5448 paddress (gdbarch, sr_sal.pc));
d3169d93 5449
8358c15c 5450 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5451 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5452}
5453
9da8c2a0 5454void
2c03e5be
PA
5455insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5456 struct symtab_and_line sr_sal,
5457 struct frame_id sr_id)
5458{
5459 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5460 sr_sal, sr_id,
5461 bp_step_resume);
44cbf7b5 5462}
7ce450bd 5463
2c03e5be
PA
5464/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5465 This is used to skip a potential signal handler.
7ce450bd 5466
14e60db5
DJ
5467 This is called with the interrupted function's frame. The signal
5468 handler, when it returns, will resume the interrupted function at
5469 RETURN_FRAME.pc. */
d303a6c7
AC
5470
5471static void
2c03e5be 5472insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5473{
5474 struct symtab_and_line sr_sal;
a6d9a66e 5475 struct gdbarch *gdbarch;
d303a6c7 5476
f4c1edd8 5477 gdb_assert (return_frame != NULL);
d303a6c7
AC
5478 init_sal (&sr_sal); /* initialize to zeros */
5479
a6d9a66e 5480 gdbarch = get_frame_arch (return_frame);
568d6575 5481 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5482 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5483 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5484
2c03e5be
PA
5485 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5486 get_stack_frame_id (return_frame),
5487 bp_hp_step_resume);
d303a6c7
AC
5488}
5489
2c03e5be
PA
5490/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5491 is used to skip a function after stepping into it (for "next" or if
5492 the called function has no debugging information).
14e60db5
DJ
5493
5494 The current function has almost always been reached by single
5495 stepping a call or return instruction. NEXT_FRAME belongs to the
5496 current function, and the breakpoint will be set at the caller's
5497 resume address.
5498
5499 This is a separate function rather than reusing
2c03e5be 5500 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5501 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5502 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5503
5504static void
5505insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5506{
5507 struct symtab_and_line sr_sal;
a6d9a66e 5508 struct gdbarch *gdbarch;
14e60db5
DJ
5509
5510 /* We shouldn't have gotten here if we don't know where the call site
5511 is. */
c7ce8faa 5512 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5513
5514 init_sal (&sr_sal); /* initialize to zeros */
5515
a6d9a66e 5516 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5517 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5518 frame_unwind_caller_pc (next_frame));
14e60db5 5519 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5520 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5521
a6d9a66e 5522 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5523 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5524}
5525
611c83ae
PA
5526/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5527 new breakpoint at the target of a jmp_buf. The handling of
5528 longjmp-resume uses the same mechanisms used for handling
5529 "step-resume" breakpoints. */
5530
5531static void
a6d9a66e 5532insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5533{
e81a37f7
TT
5534 /* There should never be more than one longjmp-resume breakpoint per
5535 thread, so we should never be setting a new
611c83ae 5536 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5537 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5538
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5541 "infrun: inserting longjmp-resume breakpoint at %s\n",
5542 paddress (gdbarch, pc));
611c83ae 5543
e81a37f7 5544 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5545 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5546}
5547
186c406b
TT
5548/* Insert an exception resume breakpoint. TP is the thread throwing
5549 the exception. The block B is the block of the unwinder debug hook
5550 function. FRAME is the frame corresponding to the call to this
5551 function. SYM is the symbol of the function argument holding the
5552 target PC of the exception. */
5553
5554static void
5555insert_exception_resume_breakpoint (struct thread_info *tp,
5556 struct block *b,
5557 struct frame_info *frame,
5558 struct symbol *sym)
5559{
bfd189b1 5560 volatile struct gdb_exception e;
186c406b
TT
5561
5562 /* We want to ignore errors here. */
5563 TRY_CATCH (e, RETURN_MASK_ERROR)
5564 {
5565 struct symbol *vsym;
5566 struct value *value;
5567 CORE_ADDR handler;
5568 struct breakpoint *bp;
5569
5570 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5571 value = read_var_value (vsym, frame);
5572 /* If the value was optimized out, revert to the old behavior. */
5573 if (! value_optimized_out (value))
5574 {
5575 handler = value_as_address (value);
5576
5577 if (debug_infrun)
5578 fprintf_unfiltered (gdb_stdlog,
5579 "infrun: exception resume at %lx\n",
5580 (unsigned long) handler);
5581
5582 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5583 handler, bp_exception_resume);
c70a6932
JK
5584
5585 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5586 frame = NULL;
5587
186c406b
TT
5588 bp->thread = tp->num;
5589 inferior_thread ()->control.exception_resume_breakpoint = bp;
5590 }
5591 }
5592}
5593
28106bc2
SDJ
5594/* A helper for check_exception_resume that sets an
5595 exception-breakpoint based on a SystemTap probe. */
5596
5597static void
5598insert_exception_resume_from_probe (struct thread_info *tp,
5599 const struct probe *probe,
28106bc2
SDJ
5600 struct frame_info *frame)
5601{
5602 struct value *arg_value;
5603 CORE_ADDR handler;
5604 struct breakpoint *bp;
5605
5606 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5607 if (!arg_value)
5608 return;
5609
5610 handler = value_as_address (arg_value);
5611
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: exception resume at %s\n",
6bac7473 5615 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5616 handler));
5617
5618 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5619 handler, bp_exception_resume);
5620 bp->thread = tp->num;
5621 inferior_thread ()->control.exception_resume_breakpoint = bp;
5622}
5623
186c406b
TT
5624/* This is called when an exception has been intercepted. Check to
5625 see whether the exception's destination is of interest, and if so,
5626 set an exception resume breakpoint there. */
5627
5628static void
5629check_exception_resume (struct execution_control_state *ecs,
28106bc2 5630 struct frame_info *frame)
186c406b 5631{
bfd189b1 5632 volatile struct gdb_exception e;
28106bc2
SDJ
5633 const struct probe *probe;
5634 struct symbol *func;
5635
5636 /* First see if this exception unwinding breakpoint was set via a
5637 SystemTap probe point. If so, the probe has two arguments: the
5638 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5639 set a breakpoint there. */
6bac7473 5640 probe = find_probe_by_pc (get_frame_pc (frame));
28106bc2
SDJ
5641 if (probe)
5642 {
6bac7473 5643 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
28106bc2
SDJ
5644 return;
5645 }
5646
5647 func = get_frame_function (frame);
5648 if (!func)
5649 return;
186c406b
TT
5650
5651 TRY_CATCH (e, RETURN_MASK_ERROR)
5652 {
5653 struct block *b;
8157b174 5654 struct block_iterator iter;
186c406b
TT
5655 struct symbol *sym;
5656 int argno = 0;
5657
5658 /* The exception breakpoint is a thread-specific breakpoint on
5659 the unwinder's debug hook, declared as:
5660
5661 void _Unwind_DebugHook (void *cfa, void *handler);
5662
5663 The CFA argument indicates the frame to which control is
5664 about to be transferred. HANDLER is the destination PC.
5665
5666 We ignore the CFA and set a temporary breakpoint at HANDLER.
5667 This is not extremely efficient but it avoids issues in gdb
5668 with computing the DWARF CFA, and it also works even in weird
5669 cases such as throwing an exception from inside a signal
5670 handler. */
5671
5672 b = SYMBOL_BLOCK_VALUE (func);
5673 ALL_BLOCK_SYMBOLS (b, iter, sym)
5674 {
5675 if (!SYMBOL_IS_ARGUMENT (sym))
5676 continue;
5677
5678 if (argno == 0)
5679 ++argno;
5680 else
5681 {
5682 insert_exception_resume_breakpoint (ecs->event_thread,
5683 b, frame, sym);
5684 break;
5685 }
5686 }
5687 }
5688}
5689
104c1213
JM
5690static void
5691stop_stepping (struct execution_control_state *ecs)
5692{
527159b7 5693 if (debug_infrun)
8a9de0e4 5694 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5695
cd0fc7c3
SS
5696 /* Let callers know we don't want to wait for the inferior anymore. */
5697 ecs->wait_some_more = 0;
5698}
5699
d4f3574e
SS
5700/* This function handles various cases where we need to continue
5701 waiting for the inferior. */
1777feb0 5702/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5703
5704static void
5705keep_going (struct execution_control_state *ecs)
5706{
c4dbc9af
PA
5707 /* Make sure normal_stop is called if we get a QUIT handled before
5708 reaching resume. */
5709 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5710
d4f3574e 5711 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5712 ecs->event_thread->prev_pc
5713 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5714
d4f3574e
SS
5715 /* If we did not do break;, it means we should keep running the
5716 inferior and not return to debugger. */
5717
16c381f0 5718 if (ecs->event_thread->control.trap_expected
a493e3e2 5719 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e
SS
5720 {
5721 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5722 the inferior, else we'd not get here) and we haven't yet
5723 gotten our trap. Simply continue. */
c4dbc9af
PA
5724
5725 discard_cleanups (old_cleanups);
2020b7ab 5726 resume (currently_stepping (ecs->event_thread),
16c381f0 5727 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5728 }
5729 else
5730 {
5731 /* Either the trap was not expected, but we are continuing
488f131b
JB
5732 anyway (the user asked that this signal be passed to the
5733 child)
5734 -- or --
5735 The signal was SIGTRAP, e.g. it was our signal, but we
5736 decided we should resume from it.
d4f3574e 5737
c36b740a 5738 We're going to run this baby now!
d4f3574e 5739
c36b740a
VP
5740 Note that insert_breakpoints won't try to re-insert
5741 already inserted breakpoints. Therefore, we don't
5742 care if breakpoints were already inserted, or not. */
5743
4e1c45ea 5744 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5745 {
9f5a595d 5746 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5747
9f5a595d 5748 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5749 /* Since we can't do a displaced step, we have to remove
5750 the breakpoint while we step it. To keep things
5751 simple, we remove them all. */
5752 remove_breakpoints ();
45e8c884
VP
5753 }
5754 else
d4f3574e 5755 {
bfd189b1 5756 volatile struct gdb_exception e;
abbb1732 5757
569631c6
UW
5758 /* Stop stepping when inserting breakpoints
5759 has failed. */
e236ba44
VP
5760 TRY_CATCH (e, RETURN_MASK_ERROR)
5761 {
5762 insert_breakpoints ();
5763 }
5764 if (e.reason < 0)
d4f3574e 5765 {
97bd5475 5766 exception_print (gdb_stderr, e);
d4f3574e
SS
5767 stop_stepping (ecs);
5768 return;
5769 }
d4f3574e
SS
5770 }
5771
16c381f0
JK
5772 ecs->event_thread->control.trap_expected
5773 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5774
5775 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5776 specifies that such a signal should be delivered to the
5777 target program).
5778
5779 Typically, this would occure when a user is debugging a
5780 target monitor on a simulator: the target monitor sets a
5781 breakpoint; the simulator encounters this break-point and
5782 halts the simulation handing control to GDB; GDB, noteing
5783 that the break-point isn't valid, returns control back to the
5784 simulator; the simulator then delivers the hardware
1777feb0 5785 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5786
a493e3e2 5787 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5788 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 5789 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 5790
c4dbc9af 5791 discard_cleanups (old_cleanups);
2020b7ab 5792 resume (currently_stepping (ecs->event_thread),
16c381f0 5793 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5794 }
5795
488f131b 5796 prepare_to_wait (ecs);
d4f3574e
SS
5797}
5798
104c1213
JM
5799/* This function normally comes after a resume, before
5800 handle_inferior_event exits. It takes care of any last bits of
5801 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5802
104c1213
JM
5803static void
5804prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5805{
527159b7 5806 if (debug_infrun)
8a9de0e4 5807 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5808
104c1213
JM
5809 /* This is the old end of the while loop. Let everybody know we
5810 want to wait for the inferior some more and get called again
5811 soon. */
5812 ecs->wait_some_more = 1;
c906108c 5813}
11cf8741 5814
33d62d64
JK
5815/* Several print_*_reason functions to print why the inferior has stopped.
5816 We always print something when the inferior exits, or receives a signal.
5817 The rest of the cases are dealt with later on in normal_stop and
5818 print_it_typical. Ideally there should be a call to one of these
5819 print_*_reason functions functions from handle_inferior_event each time
5820 stop_stepping is called. */
5821
5822/* Print why the inferior has stopped.
5823 We are done with a step/next/si/ni command, print why the inferior has
5824 stopped. For now print nothing. Print a message only if not in the middle
5825 of doing a "step n" operation for n > 1. */
5826
5827static void
5828print_end_stepping_range_reason (void)
5829{
16c381f0
JK
5830 if ((!inferior_thread ()->step_multi
5831 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5832 && ui_out_is_mi_like_p (current_uiout))
5833 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5834 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5835}
5836
5837/* The inferior was terminated by a signal, print why it stopped. */
5838
11cf8741 5839static void
2ea28649 5840print_signal_exited_reason (enum gdb_signal siggnal)
11cf8741 5841{
79a45e25
PA
5842 struct ui_out *uiout = current_uiout;
5843
33d62d64
JK
5844 annotate_signalled ();
5845 if (ui_out_is_mi_like_p (uiout))
5846 ui_out_field_string
5847 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5848 ui_out_text (uiout, "\nProgram terminated with signal ");
5849 annotate_signal_name ();
5850 ui_out_field_string (uiout, "signal-name",
2ea28649 5851 gdb_signal_to_name (siggnal));
33d62d64
JK
5852 annotate_signal_name_end ();
5853 ui_out_text (uiout, ", ");
5854 annotate_signal_string ();
5855 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5856 gdb_signal_to_string (siggnal));
33d62d64
JK
5857 annotate_signal_string_end ();
5858 ui_out_text (uiout, ".\n");
5859 ui_out_text (uiout, "The program no longer exists.\n");
5860}
5861
5862/* The inferior program is finished, print why it stopped. */
5863
5864static void
5865print_exited_reason (int exitstatus)
5866{
fda326dd
TT
5867 struct inferior *inf = current_inferior ();
5868 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5869 struct ui_out *uiout = current_uiout;
fda326dd 5870
33d62d64
JK
5871 annotate_exited (exitstatus);
5872 if (exitstatus)
5873 {
5874 if (ui_out_is_mi_like_p (uiout))
5875 ui_out_field_string (uiout, "reason",
5876 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5877 ui_out_text (uiout, "[Inferior ");
5878 ui_out_text (uiout, plongest (inf->num));
5879 ui_out_text (uiout, " (");
5880 ui_out_text (uiout, pidstr);
5881 ui_out_text (uiout, ") exited with code ");
33d62d64 5882 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5883 ui_out_text (uiout, "]\n");
33d62d64
JK
5884 }
5885 else
11cf8741 5886 {
9dc5e2a9 5887 if (ui_out_is_mi_like_p (uiout))
034dad6f 5888 ui_out_field_string
33d62d64 5889 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5890 ui_out_text (uiout, "[Inferior ");
5891 ui_out_text (uiout, plongest (inf->num));
5892 ui_out_text (uiout, " (");
5893 ui_out_text (uiout, pidstr);
5894 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5895 }
5896 /* Support the --return-child-result option. */
5897 return_child_result_value = exitstatus;
5898}
5899
5900/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5901 tells us to print about it. */
33d62d64
JK
5902
5903static void
2ea28649 5904print_signal_received_reason (enum gdb_signal siggnal)
33d62d64 5905{
79a45e25
PA
5906 struct ui_out *uiout = current_uiout;
5907
33d62d64
JK
5908 annotate_signal ();
5909
a493e3e2 5910 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
5911 {
5912 struct thread_info *t = inferior_thread ();
5913
5914 ui_out_text (uiout, "\n[");
5915 ui_out_field_string (uiout, "thread-name",
5916 target_pid_to_str (t->ptid));
5917 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5918 ui_out_text (uiout, " stopped");
5919 }
5920 else
5921 {
5922 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5923 annotate_signal_name ();
33d62d64
JK
5924 if (ui_out_is_mi_like_p (uiout))
5925 ui_out_field_string
5926 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5927 ui_out_field_string (uiout, "signal-name",
2ea28649 5928 gdb_signal_to_name (siggnal));
8b93c638
JM
5929 annotate_signal_name_end ();
5930 ui_out_text (uiout, ", ");
5931 annotate_signal_string ();
488f131b 5932 ui_out_field_string (uiout, "signal-meaning",
2ea28649 5933 gdb_signal_to_string (siggnal));
8b93c638 5934 annotate_signal_string_end ();
33d62d64
JK
5935 }
5936 ui_out_text (uiout, ".\n");
5937}
252fbfc8 5938
33d62d64
JK
5939/* Reverse execution: target ran out of history info, print why the inferior
5940 has stopped. */
252fbfc8 5941
33d62d64
JK
5942static void
5943print_no_history_reason (void)
5944{
79a45e25 5945 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5946}
43ff13b4 5947
c906108c
SS
5948/* Here to return control to GDB when the inferior stops for real.
5949 Print appropriate messages, remove breakpoints, give terminal our modes.
5950
5951 STOP_PRINT_FRAME nonzero means print the executing frame
5952 (pc, function, args, file, line number and line text).
5953 BREAKPOINTS_FAILED nonzero means stop was due to error
5954 attempting to insert breakpoints. */
5955
5956void
96baa820 5957normal_stop (void)
c906108c 5958{
73b65bb0
DJ
5959 struct target_waitstatus last;
5960 ptid_t last_ptid;
29f49a6a 5961 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5962
5963 get_last_target_status (&last_ptid, &last);
5964
29f49a6a
PA
5965 /* If an exception is thrown from this point on, make sure to
5966 propagate GDB's knowledge of the executing state to the
5967 frontend/user running state. A QUIT is an easy exception to see
5968 here, so do this before any filtered output. */
c35b1492
PA
5969 if (!non_stop)
5970 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5971 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5972 && last.kind != TARGET_WAITKIND_EXITED
5973 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5974 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5975
4f8d22e3
PA
5976 /* In non-stop mode, we don't want GDB to switch threads behind the
5977 user's back, to avoid races where the user is typing a command to
5978 apply to thread x, but GDB switches to thread y before the user
5979 finishes entering the command. */
5980
c906108c
SS
5981 /* As with the notification of thread events, we want to delay
5982 notifying the user that we've switched thread context until
5983 the inferior actually stops.
5984
73b65bb0
DJ
5985 There's no point in saying anything if the inferior has exited.
5986 Note that SIGNALLED here means "exited with a signal", not
5987 "received a signal". */
4f8d22e3
PA
5988 if (!non_stop
5989 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5990 && target_has_execution
5991 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5992 && last.kind != TARGET_WAITKIND_EXITED
5993 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5994 {
5995 target_terminal_ours_for_output ();
a3f17187 5996 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5997 target_pid_to_str (inferior_ptid));
b8fa951a 5998 annotate_thread_changed ();
39f77062 5999 previous_inferior_ptid = inferior_ptid;
c906108c 6000 }
c906108c 6001
0e5bf2a8
PA
6002 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6003 {
6004 gdb_assert (sync_execution || !target_can_async_p ());
6005
6006 target_terminal_ours_for_output ();
6007 printf_filtered (_("No unwaited-for children left.\n"));
6008 }
6009
74960c60 6010 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
6011 {
6012 if (remove_breakpoints ())
6013 {
6014 target_terminal_ours_for_output ();
3e43a32a
MS
6015 printf_filtered (_("Cannot remove breakpoints because "
6016 "program is no longer writable.\nFurther "
6017 "execution is probably impossible.\n"));
c906108c
SS
6018 }
6019 }
c906108c 6020
c906108c
SS
6021 /* If an auto-display called a function and that got a signal,
6022 delete that auto-display to avoid an infinite recursion. */
6023
6024 if (stopped_by_random_signal)
6025 disable_current_display ();
6026
6027 /* Don't print a message if in the middle of doing a "step n"
6028 operation for n > 1 */
af679fd0
PA
6029 if (target_has_execution
6030 && last.kind != TARGET_WAITKIND_SIGNALLED
6031 && last.kind != TARGET_WAITKIND_EXITED
6032 && inferior_thread ()->step_multi
16c381f0 6033 && inferior_thread ()->control.stop_step)
c906108c
SS
6034 goto done;
6035
6036 target_terminal_ours ();
0f641c01 6037 async_enable_stdin ();
c906108c 6038
7abfe014
DJ
6039 /* Set the current source location. This will also happen if we
6040 display the frame below, but the current SAL will be incorrect
6041 during a user hook-stop function. */
d729566a 6042 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
6043 set_current_sal_from_frame (get_current_frame (), 1);
6044
dd7e2d2b
PA
6045 /* Let the user/frontend see the threads as stopped. */
6046 do_cleanups (old_chain);
6047
6048 /* Look up the hook_stop and run it (CLI internally handles problem
6049 of stop_command's pre-hook not existing). */
6050 if (stop_command)
6051 catch_errors (hook_stop_stub, stop_command,
6052 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6053
d729566a 6054 if (!has_stack_frames ())
d51fd4c8 6055 goto done;
c906108c 6056
32400beb
PA
6057 if (last.kind == TARGET_WAITKIND_SIGNALLED
6058 || last.kind == TARGET_WAITKIND_EXITED)
6059 goto done;
6060
c906108c
SS
6061 /* Select innermost stack frame - i.e., current frame is frame 0,
6062 and current location is based on that.
6063 Don't do this on return from a stack dummy routine,
1777feb0 6064 or if the program has exited. */
c906108c
SS
6065
6066 if (!stop_stack_dummy)
6067 {
0f7d239c 6068 select_frame (get_current_frame ());
c906108c
SS
6069
6070 /* Print current location without a level number, if
c5aa993b
JM
6071 we have changed functions or hit a breakpoint.
6072 Print source line if we have one.
6073 bpstat_print() contains the logic deciding in detail
1777feb0 6074 what to print, based on the event(s) that just occurred. */
c906108c 6075
d01a8610
AS
6076 /* If --batch-silent is enabled then there's no need to print the current
6077 source location, and to try risks causing an error message about
6078 missing source files. */
6079 if (stop_print_frame && !batch_silent)
c906108c
SS
6080 {
6081 int bpstat_ret;
6082 int source_flag;
917317f4 6083 int do_frame_printing = 1;
347bddb7 6084 struct thread_info *tp = inferior_thread ();
c906108c 6085
36dfb11c 6086 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
6087 switch (bpstat_ret)
6088 {
6089 case PRINT_UNKNOWN:
aa0cd9c1 6090 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6091 (or should) carry around the function and does (or
6092 should) use that when doing a frame comparison. */
16c381f0
JK
6093 if (tp->control.stop_step
6094 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6095 get_frame_id (get_current_frame ()))
917317f4 6096 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6097 source_flag = SRC_LINE; /* Finished step, just
6098 print source line. */
917317f4 6099 else
1777feb0
MS
6100 source_flag = SRC_AND_LOC; /* Print location and
6101 source line. */
917317f4
JM
6102 break;
6103 case PRINT_SRC_AND_LOC:
1777feb0
MS
6104 source_flag = SRC_AND_LOC; /* Print location and
6105 source line. */
917317f4
JM
6106 break;
6107 case PRINT_SRC_ONLY:
c5394b80 6108 source_flag = SRC_LINE;
917317f4
JM
6109 break;
6110 case PRINT_NOTHING:
488f131b 6111 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6112 do_frame_printing = 0;
6113 break;
6114 default:
e2e0b3e5 6115 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6116 }
c906108c
SS
6117
6118 /* The behavior of this routine with respect to the source
6119 flag is:
c5394b80
JM
6120 SRC_LINE: Print only source line
6121 LOCATION: Print only location
1777feb0 6122 SRC_AND_LOC: Print location and source line. */
917317f4 6123 if (do_frame_printing)
b04f3ab4 6124 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6125
6126 /* Display the auto-display expressions. */
6127 do_displays ();
6128 }
6129 }
6130
6131 /* Save the function value return registers, if we care.
6132 We might be about to restore their previous contents. */
9da8c2a0
PA
6133 if (inferior_thread ()->control.proceed_to_finish
6134 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6135 {
6136 /* This should not be necessary. */
6137 if (stop_registers)
6138 regcache_xfree (stop_registers);
6139
6140 /* NB: The copy goes through to the target picking up the value of
6141 all the registers. */
6142 stop_registers = regcache_dup (get_current_regcache ());
6143 }
c906108c 6144
aa7d318d 6145 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6146 {
b89667eb
DE
6147 /* Pop the empty frame that contains the stack dummy.
6148 This also restores inferior state prior to the call
16c381f0 6149 (struct infcall_suspend_state). */
b89667eb 6150 struct frame_info *frame = get_current_frame ();
abbb1732 6151
b89667eb
DE
6152 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6153 frame_pop (frame);
3e43a32a
MS
6154 /* frame_pop() calls reinit_frame_cache as the last thing it
6155 does which means there's currently no selected frame. We
6156 don't need to re-establish a selected frame if the dummy call
6157 returns normally, that will be done by
6158 restore_infcall_control_state. However, we do have to handle
6159 the case where the dummy call is returning after being
6160 stopped (e.g. the dummy call previously hit a breakpoint).
6161 We can't know which case we have so just always re-establish
6162 a selected frame here. */
0f7d239c 6163 select_frame (get_current_frame ());
c906108c
SS
6164 }
6165
c906108c
SS
6166done:
6167 annotate_stopped ();
41d2bdb4
PA
6168
6169 /* Suppress the stop observer if we're in the middle of:
6170
6171 - a step n (n > 1), as there still more steps to be done.
6172
6173 - a "finish" command, as the observer will be called in
6174 finish_command_continuation, so it can include the inferior
6175 function's return value.
6176
6177 - calling an inferior function, as we pretend we inferior didn't
6178 run at all. The return value of the call is handled by the
6179 expression evaluator, through call_function_by_hand. */
6180
6181 if (!target_has_execution
6182 || last.kind == TARGET_WAITKIND_SIGNALLED
6183 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6184 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6185 || (!(inferior_thread ()->step_multi
6186 && inferior_thread ()->control.stop_step)
16c381f0
JK
6187 && !(inferior_thread ()->control.stop_bpstat
6188 && inferior_thread ()->control.proceed_to_finish)
6189 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6190 {
6191 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6192 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6193 stop_print_frame);
347bddb7 6194 else
1d33d6ba 6195 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6196 }
347bddb7 6197
48844aa6
PA
6198 if (target_has_execution)
6199 {
6200 if (last.kind != TARGET_WAITKIND_SIGNALLED
6201 && last.kind != TARGET_WAITKIND_EXITED)
6202 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6203 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6204 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6205 }
6c95b8df
PA
6206
6207 /* Try to get rid of automatically added inferiors that are no
6208 longer needed. Keeping those around slows down things linearly.
6209 Note that this never removes the current inferior. */
6210 prune_inferiors ();
c906108c
SS
6211}
6212
6213static int
96baa820 6214hook_stop_stub (void *cmd)
c906108c 6215{
5913bcb0 6216 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6217 return (0);
6218}
6219\f
c5aa993b 6220int
96baa820 6221signal_stop_state (int signo)
c906108c 6222{
d6b48e9c 6223 return signal_stop[signo];
c906108c
SS
6224}
6225
c5aa993b 6226int
96baa820 6227signal_print_state (int signo)
c906108c
SS
6228{
6229 return signal_print[signo];
6230}
6231
c5aa993b 6232int
96baa820 6233signal_pass_state (int signo)
c906108c
SS
6234{
6235 return signal_program[signo];
6236}
6237
2455069d
UW
6238static void
6239signal_cache_update (int signo)
6240{
6241 if (signo == -1)
6242 {
a493e3e2 6243 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6244 signal_cache_update (signo);
6245
6246 return;
6247 }
6248
6249 signal_pass[signo] = (signal_stop[signo] == 0
6250 && signal_print[signo] == 0
ab04a2af
TT
6251 && signal_program[signo] == 1
6252 && signal_catch[signo] == 0);
2455069d
UW
6253}
6254
488f131b 6255int
7bda5e4a 6256signal_stop_update (int signo, int state)
d4f3574e
SS
6257{
6258 int ret = signal_stop[signo];
abbb1732 6259
d4f3574e 6260 signal_stop[signo] = state;
2455069d 6261 signal_cache_update (signo);
d4f3574e
SS
6262 return ret;
6263}
6264
488f131b 6265int
7bda5e4a 6266signal_print_update (int signo, int state)
d4f3574e
SS
6267{
6268 int ret = signal_print[signo];
abbb1732 6269
d4f3574e 6270 signal_print[signo] = state;
2455069d 6271 signal_cache_update (signo);
d4f3574e
SS
6272 return ret;
6273}
6274
488f131b 6275int
7bda5e4a 6276signal_pass_update (int signo, int state)
d4f3574e
SS
6277{
6278 int ret = signal_program[signo];
abbb1732 6279
d4f3574e 6280 signal_program[signo] = state;
2455069d 6281 signal_cache_update (signo);
d4f3574e
SS
6282 return ret;
6283}
6284
ab04a2af
TT
6285/* Update the global 'signal_catch' from INFO and notify the
6286 target. */
6287
6288void
6289signal_catch_update (const unsigned int *info)
6290{
6291 int i;
6292
6293 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6294 signal_catch[i] = info[i] > 0;
6295 signal_cache_update (-1);
6296 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6297}
6298
c906108c 6299static void
96baa820 6300sig_print_header (void)
c906108c 6301{
3e43a32a
MS
6302 printf_filtered (_("Signal Stop\tPrint\tPass "
6303 "to program\tDescription\n"));
c906108c
SS
6304}
6305
6306static void
2ea28649 6307sig_print_info (enum gdb_signal oursig)
c906108c 6308{
2ea28649 6309 const char *name = gdb_signal_to_name (oursig);
c906108c 6310 int name_padding = 13 - strlen (name);
96baa820 6311
c906108c
SS
6312 if (name_padding <= 0)
6313 name_padding = 0;
6314
6315 printf_filtered ("%s", name);
488f131b 6316 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6317 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6318 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6319 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6320 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6321}
6322
6323/* Specify how various signals in the inferior should be handled. */
6324
6325static void
96baa820 6326handle_command (char *args, int from_tty)
c906108c
SS
6327{
6328 char **argv;
6329 int digits, wordlen;
6330 int sigfirst, signum, siglast;
2ea28649 6331 enum gdb_signal oursig;
c906108c
SS
6332 int allsigs;
6333 int nsigs;
6334 unsigned char *sigs;
6335 struct cleanup *old_chain;
6336
6337 if (args == NULL)
6338 {
e2e0b3e5 6339 error_no_arg (_("signal to handle"));
c906108c
SS
6340 }
6341
1777feb0 6342 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6343
a493e3e2 6344 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6345 sigs = (unsigned char *) alloca (nsigs);
6346 memset (sigs, 0, nsigs);
6347
1777feb0 6348 /* Break the command line up into args. */
c906108c 6349
d1a41061 6350 argv = gdb_buildargv (args);
7a292a7a 6351 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6352
6353 /* Walk through the args, looking for signal oursigs, signal names, and
6354 actions. Signal numbers and signal names may be interspersed with
6355 actions, with the actions being performed for all signals cumulatively
1777feb0 6356 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6357
6358 while (*argv != NULL)
6359 {
6360 wordlen = strlen (*argv);
6361 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6362 {;
6363 }
6364 allsigs = 0;
6365 sigfirst = siglast = -1;
6366
6367 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6368 {
6369 /* Apply action to all signals except those used by the
1777feb0 6370 debugger. Silently skip those. */
c906108c
SS
6371 allsigs = 1;
6372 sigfirst = 0;
6373 siglast = nsigs - 1;
6374 }
6375 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6376 {
6377 SET_SIGS (nsigs, sigs, signal_stop);
6378 SET_SIGS (nsigs, sigs, signal_print);
6379 }
6380 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6381 {
6382 UNSET_SIGS (nsigs, sigs, signal_program);
6383 }
6384 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6385 {
6386 SET_SIGS (nsigs, sigs, signal_print);
6387 }
6388 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6389 {
6390 SET_SIGS (nsigs, sigs, signal_program);
6391 }
6392 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6393 {
6394 UNSET_SIGS (nsigs, sigs, signal_stop);
6395 }
6396 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6397 {
6398 SET_SIGS (nsigs, sigs, signal_program);
6399 }
6400 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6401 {
6402 UNSET_SIGS (nsigs, sigs, signal_print);
6403 UNSET_SIGS (nsigs, sigs, signal_stop);
6404 }
6405 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6406 {
6407 UNSET_SIGS (nsigs, sigs, signal_program);
6408 }
6409 else if (digits > 0)
6410 {
6411 /* It is numeric. The numeric signal refers to our own
6412 internal signal numbering from target.h, not to host/target
6413 signal number. This is a feature; users really should be
6414 using symbolic names anyway, and the common ones like
6415 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6416
6417 sigfirst = siglast = (int)
2ea28649 6418 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6419 if ((*argv)[digits] == '-')
6420 {
6421 siglast = (int)
2ea28649 6422 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6423 }
6424 if (sigfirst > siglast)
6425 {
1777feb0 6426 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6427 signum = sigfirst;
6428 sigfirst = siglast;
6429 siglast = signum;
6430 }
6431 }
6432 else
6433 {
2ea28649 6434 oursig = gdb_signal_from_name (*argv);
a493e3e2 6435 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6436 {
6437 sigfirst = siglast = (int) oursig;
6438 }
6439 else
6440 {
6441 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6442 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6443 }
6444 }
6445
6446 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6447 which signals to apply actions to. */
c906108c
SS
6448
6449 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6450 {
2ea28649 6451 switch ((enum gdb_signal) signum)
c906108c 6452 {
a493e3e2
PA
6453 case GDB_SIGNAL_TRAP:
6454 case GDB_SIGNAL_INT:
c906108c
SS
6455 if (!allsigs && !sigs[signum])
6456 {
9e2f0ad4 6457 if (query (_("%s is used by the debugger.\n\
3e43a32a 6458Are you sure you want to change it? "),
2ea28649 6459 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6460 {
6461 sigs[signum] = 1;
6462 }
6463 else
6464 {
a3f17187 6465 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6466 gdb_flush (gdb_stdout);
6467 }
6468 }
6469 break;
a493e3e2
PA
6470 case GDB_SIGNAL_0:
6471 case GDB_SIGNAL_DEFAULT:
6472 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6473 /* Make sure that "all" doesn't print these. */
6474 break;
6475 default:
6476 sigs[signum] = 1;
6477 break;
6478 }
6479 }
6480
6481 argv++;
6482 }
6483
3a031f65
PA
6484 for (signum = 0; signum < nsigs; signum++)
6485 if (sigs[signum])
6486 {
2455069d 6487 signal_cache_update (-1);
a493e3e2
PA
6488 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6489 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6490
3a031f65
PA
6491 if (from_tty)
6492 {
6493 /* Show the results. */
6494 sig_print_header ();
6495 for (; signum < nsigs; signum++)
6496 if (sigs[signum])
6497 sig_print_info (signum);
6498 }
6499
6500 break;
6501 }
c906108c
SS
6502
6503 do_cleanups (old_chain);
6504}
6505
de0bea00
MF
6506/* Complete the "handle" command. */
6507
6508static VEC (char_ptr) *
6509handle_completer (struct cmd_list_element *ignore,
6f937416 6510 const char *text, const char *word)
de0bea00
MF
6511{
6512 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6513 static const char * const keywords[] =
6514 {
6515 "all",
6516 "stop",
6517 "ignore",
6518 "print",
6519 "pass",
6520 "nostop",
6521 "noignore",
6522 "noprint",
6523 "nopass",
6524 NULL,
6525 };
6526
6527 vec_signals = signal_completer (ignore, text, word);
6528 vec_keywords = complete_on_enum (keywords, word, word);
6529
6530 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6531 VEC_free (char_ptr, vec_signals);
6532 VEC_free (char_ptr, vec_keywords);
6533 return return_val;
6534}
6535
c906108c 6536static void
96baa820 6537xdb_handle_command (char *args, int from_tty)
c906108c
SS
6538{
6539 char **argv;
6540 struct cleanup *old_chain;
6541
d1a41061
PP
6542 if (args == NULL)
6543 error_no_arg (_("xdb command"));
6544
1777feb0 6545 /* Break the command line up into args. */
c906108c 6546
d1a41061 6547 argv = gdb_buildargv (args);
7a292a7a 6548 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6549 if (argv[1] != (char *) NULL)
6550 {
6551 char *argBuf;
6552 int bufLen;
6553
6554 bufLen = strlen (argv[0]) + 20;
6555 argBuf = (char *) xmalloc (bufLen);
6556 if (argBuf)
6557 {
6558 int validFlag = 1;
2ea28649 6559 enum gdb_signal oursig;
c906108c 6560
2ea28649 6561 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6562 memset (argBuf, 0, bufLen);
6563 if (strcmp (argv[1], "Q") == 0)
6564 sprintf (argBuf, "%s %s", argv[0], "noprint");
6565 else
6566 {
6567 if (strcmp (argv[1], "s") == 0)
6568 {
6569 if (!signal_stop[oursig])
6570 sprintf (argBuf, "%s %s", argv[0], "stop");
6571 else
6572 sprintf (argBuf, "%s %s", argv[0], "nostop");
6573 }
6574 else if (strcmp (argv[1], "i") == 0)
6575 {
6576 if (!signal_program[oursig])
6577 sprintf (argBuf, "%s %s", argv[0], "pass");
6578 else
6579 sprintf (argBuf, "%s %s", argv[0], "nopass");
6580 }
6581 else if (strcmp (argv[1], "r") == 0)
6582 {
6583 if (!signal_print[oursig])
6584 sprintf (argBuf, "%s %s", argv[0], "print");
6585 else
6586 sprintf (argBuf, "%s %s", argv[0], "noprint");
6587 }
6588 else
6589 validFlag = 0;
6590 }
6591 if (validFlag)
6592 handle_command (argBuf, from_tty);
6593 else
a3f17187 6594 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6595 if (argBuf)
b8c9b27d 6596 xfree (argBuf);
c906108c
SS
6597 }
6598 }
6599 do_cleanups (old_chain);
6600}
6601
2ea28649
PA
6602enum gdb_signal
6603gdb_signal_from_command (int num)
ed01b82c
PA
6604{
6605 if (num >= 1 && num <= 15)
2ea28649 6606 return (enum gdb_signal) num;
ed01b82c
PA
6607 error (_("Only signals 1-15 are valid as numeric signals.\n\
6608Use \"info signals\" for a list of symbolic signals."));
6609}
6610
c906108c
SS
6611/* Print current contents of the tables set by the handle command.
6612 It is possible we should just be printing signals actually used
6613 by the current target (but for things to work right when switching
6614 targets, all signals should be in the signal tables). */
6615
6616static void
96baa820 6617signals_info (char *signum_exp, int from_tty)
c906108c 6618{
2ea28649 6619 enum gdb_signal oursig;
abbb1732 6620
c906108c
SS
6621 sig_print_header ();
6622
6623 if (signum_exp)
6624 {
6625 /* First see if this is a symbol name. */
2ea28649 6626 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 6627 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
6628 {
6629 /* No, try numeric. */
6630 oursig =
2ea28649 6631 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6632 }
6633 sig_print_info (oursig);
6634 return;
6635 }
6636
6637 printf_filtered ("\n");
6638 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
6639 for (oursig = GDB_SIGNAL_FIRST;
6640 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 6641 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
6642 {
6643 QUIT;
6644
a493e3e2
PA
6645 if (oursig != GDB_SIGNAL_UNKNOWN
6646 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
6647 sig_print_info (oursig);
6648 }
6649
3e43a32a
MS
6650 printf_filtered (_("\nUse the \"handle\" command "
6651 "to change these tables.\n"));
c906108c 6652}
4aa995e1 6653
c709acd1
PA
6654/* Check if it makes sense to read $_siginfo from the current thread
6655 at this point. If not, throw an error. */
6656
6657static void
6658validate_siginfo_access (void)
6659{
6660 /* No current inferior, no siginfo. */
6661 if (ptid_equal (inferior_ptid, null_ptid))
6662 error (_("No thread selected."));
6663
6664 /* Don't try to read from a dead thread. */
6665 if (is_exited (inferior_ptid))
6666 error (_("The current thread has terminated"));
6667
6668 /* ... or from a spinning thread. */
6669 if (is_running (inferior_ptid))
6670 error (_("Selected thread is running."));
6671}
6672
4aa995e1
PA
6673/* The $_siginfo convenience variable is a bit special. We don't know
6674 for sure the type of the value until we actually have a chance to
7a9dd1b2 6675 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6676 also dependent on which thread you have selected.
6677
6678 1. making $_siginfo be an internalvar that creates a new value on
6679 access.
6680
6681 2. making the value of $_siginfo be an lval_computed value. */
6682
6683/* This function implements the lval_computed support for reading a
6684 $_siginfo value. */
6685
6686static void
6687siginfo_value_read (struct value *v)
6688{
6689 LONGEST transferred;
6690
c709acd1
PA
6691 validate_siginfo_access ();
6692
4aa995e1
PA
6693 transferred =
6694 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6695 NULL,
6696 value_contents_all_raw (v),
6697 value_offset (v),
6698 TYPE_LENGTH (value_type (v)));
6699
6700 if (transferred != TYPE_LENGTH (value_type (v)))
6701 error (_("Unable to read siginfo"));
6702}
6703
6704/* This function implements the lval_computed support for writing a
6705 $_siginfo value. */
6706
6707static void
6708siginfo_value_write (struct value *v, struct value *fromval)
6709{
6710 LONGEST transferred;
6711
c709acd1
PA
6712 validate_siginfo_access ();
6713
4aa995e1
PA
6714 transferred = target_write (&current_target,
6715 TARGET_OBJECT_SIGNAL_INFO,
6716 NULL,
6717 value_contents_all_raw (fromval),
6718 value_offset (v),
6719 TYPE_LENGTH (value_type (fromval)));
6720
6721 if (transferred != TYPE_LENGTH (value_type (fromval)))
6722 error (_("Unable to write siginfo"));
6723}
6724
c8f2448a 6725static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6726 {
6727 siginfo_value_read,
6728 siginfo_value_write
6729 };
6730
6731/* Return a new value with the correct type for the siginfo object of
78267919
UW
6732 the current thread using architecture GDBARCH. Return a void value
6733 if there's no object available. */
4aa995e1 6734
2c0b251b 6735static struct value *
22d2b532
SDJ
6736siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6737 void *ignore)
4aa995e1 6738{
4aa995e1 6739 if (target_has_stack
78267919
UW
6740 && !ptid_equal (inferior_ptid, null_ptid)
6741 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6742 {
78267919 6743 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6744
78267919 6745 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6746 }
6747
78267919 6748 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6749}
6750
c906108c 6751\f
16c381f0
JK
6752/* infcall_suspend_state contains state about the program itself like its
6753 registers and any signal it received when it last stopped.
6754 This state must be restored regardless of how the inferior function call
6755 ends (either successfully, or after it hits a breakpoint or signal)
6756 if the program is to properly continue where it left off. */
6757
6758struct infcall_suspend_state
7a292a7a 6759{
16c381f0 6760 struct thread_suspend_state thread_suspend;
dd80ea3c 6761#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6762 struct inferior_suspend_state inferior_suspend;
dd80ea3c 6763#endif
16c381f0
JK
6764
6765 /* Other fields: */
7a292a7a 6766 CORE_ADDR stop_pc;
b89667eb 6767 struct regcache *registers;
1736ad11 6768
35515841 6769 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6770 struct gdbarch *siginfo_gdbarch;
6771
6772 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6773 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6774 content would be invalid. */
6775 gdb_byte *siginfo_data;
b89667eb
DE
6776};
6777
16c381f0
JK
6778struct infcall_suspend_state *
6779save_infcall_suspend_state (void)
b89667eb 6780{
16c381f0 6781 struct infcall_suspend_state *inf_state;
b89667eb 6782 struct thread_info *tp = inferior_thread ();
974a734b 6783#if 0
16c381f0 6784 struct inferior *inf = current_inferior ();
974a734b 6785#endif
1736ad11
JK
6786 struct regcache *regcache = get_current_regcache ();
6787 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6788 gdb_byte *siginfo_data = NULL;
6789
6790 if (gdbarch_get_siginfo_type_p (gdbarch))
6791 {
6792 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6793 size_t len = TYPE_LENGTH (type);
6794 struct cleanup *back_to;
6795
6796 siginfo_data = xmalloc (len);
6797 back_to = make_cleanup (xfree, siginfo_data);
6798
6799 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6800 siginfo_data, 0, len) == len)
6801 discard_cleanups (back_to);
6802 else
6803 {
6804 /* Errors ignored. */
6805 do_cleanups (back_to);
6806 siginfo_data = NULL;
6807 }
6808 }
6809
16c381f0 6810 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6811
6812 if (siginfo_data)
6813 {
6814 inf_state->siginfo_gdbarch = gdbarch;
6815 inf_state->siginfo_data = siginfo_data;
6816 }
b89667eb 6817
16c381f0 6818 inf_state->thread_suspend = tp->suspend;
dd80ea3c 6819#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6820 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 6821#endif
16c381f0 6822
35515841 6823 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
6824 GDB_SIGNAL_0 anyway. */
6825 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 6826
b89667eb
DE
6827 inf_state->stop_pc = stop_pc;
6828
1736ad11 6829 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6830
6831 return inf_state;
6832}
6833
6834/* Restore inferior session state to INF_STATE. */
6835
6836void
16c381f0 6837restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6838{
6839 struct thread_info *tp = inferior_thread ();
974a734b 6840#if 0
16c381f0 6841 struct inferior *inf = current_inferior ();
974a734b 6842#endif
1736ad11
JK
6843 struct regcache *regcache = get_current_regcache ();
6844 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6845
16c381f0 6846 tp->suspend = inf_state->thread_suspend;
dd80ea3c 6847#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 6848 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 6849#endif
16c381f0 6850
b89667eb
DE
6851 stop_pc = inf_state->stop_pc;
6852
1736ad11
JK
6853 if (inf_state->siginfo_gdbarch == gdbarch)
6854 {
6855 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
6856
6857 /* Errors ignored. */
6858 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 6859 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
6860 }
6861
b89667eb
DE
6862 /* The inferior can be gone if the user types "print exit(0)"
6863 (and perhaps other times). */
6864 if (target_has_execution)
6865 /* NB: The register write goes through to the target. */
1736ad11 6866 regcache_cpy (regcache, inf_state->registers);
803b5f95 6867
16c381f0 6868 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6869}
6870
6871static void
16c381f0 6872do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6873{
16c381f0 6874 restore_infcall_suspend_state (state);
b89667eb
DE
6875}
6876
6877struct cleanup *
16c381f0
JK
6878make_cleanup_restore_infcall_suspend_state
6879 (struct infcall_suspend_state *inf_state)
b89667eb 6880{
16c381f0 6881 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6882}
6883
6884void
16c381f0 6885discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6886{
6887 regcache_xfree (inf_state->registers);
803b5f95 6888 xfree (inf_state->siginfo_data);
b89667eb
DE
6889 xfree (inf_state);
6890}
6891
6892struct regcache *
16c381f0 6893get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6894{
6895 return inf_state->registers;
6896}
6897
16c381f0
JK
6898/* infcall_control_state contains state regarding gdb's control of the
6899 inferior itself like stepping control. It also contains session state like
6900 the user's currently selected frame. */
b89667eb 6901
16c381f0 6902struct infcall_control_state
b89667eb 6903{
16c381f0
JK
6904 struct thread_control_state thread_control;
6905 struct inferior_control_state inferior_control;
d82142e2
JK
6906
6907 /* Other fields: */
6908 enum stop_stack_kind stop_stack_dummy;
6909 int stopped_by_random_signal;
7a292a7a 6910 int stop_after_trap;
7a292a7a 6911
b89667eb 6912 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6913 struct frame_id selected_frame_id;
7a292a7a
SS
6914};
6915
c906108c 6916/* Save all of the information associated with the inferior<==>gdb
b89667eb 6917 connection. */
c906108c 6918
16c381f0
JK
6919struct infcall_control_state *
6920save_infcall_control_state (void)
c906108c 6921{
16c381f0 6922 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6923 struct thread_info *tp = inferior_thread ();
d6b48e9c 6924 struct inferior *inf = current_inferior ();
7a292a7a 6925
16c381f0
JK
6926 inf_status->thread_control = tp->control;
6927 inf_status->inferior_control = inf->control;
d82142e2 6928
8358c15c 6929 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6930 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6931
16c381f0
JK
6932 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6933 chain. If caller's caller is walking the chain, they'll be happier if we
6934 hand them back the original chain when restore_infcall_control_state is
6935 called. */
6936 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6937
6938 /* Other fields: */
6939 inf_status->stop_stack_dummy = stop_stack_dummy;
6940 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6941 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6942
206415a3 6943 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6944
7a292a7a 6945 return inf_status;
c906108c
SS
6946}
6947
c906108c 6948static int
96baa820 6949restore_selected_frame (void *args)
c906108c 6950{
488f131b 6951 struct frame_id *fid = (struct frame_id *) args;
c906108c 6952 struct frame_info *frame;
c906108c 6953
101dcfbe 6954 frame = frame_find_by_id (*fid);
c906108c 6955
aa0cd9c1
AC
6956 /* If inf_status->selected_frame_id is NULL, there was no previously
6957 selected frame. */
101dcfbe 6958 if (frame == NULL)
c906108c 6959 {
8a3fe4f8 6960 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6961 return 0;
6962 }
6963
0f7d239c 6964 select_frame (frame);
c906108c
SS
6965
6966 return (1);
6967}
6968
b89667eb
DE
6969/* Restore inferior session state to INF_STATUS. */
6970
c906108c 6971void
16c381f0 6972restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6973{
4e1c45ea 6974 struct thread_info *tp = inferior_thread ();
d6b48e9c 6975 struct inferior *inf = current_inferior ();
4e1c45ea 6976
8358c15c
JK
6977 if (tp->control.step_resume_breakpoint)
6978 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6979
5b79abe7
TT
6980 if (tp->control.exception_resume_breakpoint)
6981 tp->control.exception_resume_breakpoint->disposition
6982 = disp_del_at_next_stop;
6983
d82142e2 6984 /* Handle the bpstat_copy of the chain. */
16c381f0 6985 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6986
16c381f0
JK
6987 tp->control = inf_status->thread_control;
6988 inf->control = inf_status->inferior_control;
d82142e2
JK
6989
6990 /* Other fields: */
6991 stop_stack_dummy = inf_status->stop_stack_dummy;
6992 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6993 stop_after_trap = inf_status->stop_after_trap;
c906108c 6994
b89667eb 6995 if (target_has_stack)
c906108c 6996 {
c906108c 6997 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6998 walking the stack might encounter a garbage pointer and
6999 error() trying to dereference it. */
488f131b
JB
7000 if (catch_errors
7001 (restore_selected_frame, &inf_status->selected_frame_id,
7002 "Unable to restore previously selected frame:\n",
7003 RETURN_MASK_ERROR) == 0)
c906108c
SS
7004 /* Error in restoring the selected frame. Select the innermost
7005 frame. */
0f7d239c 7006 select_frame (get_current_frame ());
c906108c 7007 }
c906108c 7008
72cec141 7009 xfree (inf_status);
7a292a7a 7010}
c906108c 7011
74b7792f 7012static void
16c381f0 7013do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7014{
16c381f0 7015 restore_infcall_control_state (sts);
74b7792f
AC
7016}
7017
7018struct cleanup *
16c381f0
JK
7019make_cleanup_restore_infcall_control_state
7020 (struct infcall_control_state *inf_status)
74b7792f 7021{
16c381f0 7022 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7023}
7024
c906108c 7025void
16c381f0 7026discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7027{
8358c15c
JK
7028 if (inf_status->thread_control.step_resume_breakpoint)
7029 inf_status->thread_control.step_resume_breakpoint->disposition
7030 = disp_del_at_next_stop;
7031
5b79abe7
TT
7032 if (inf_status->thread_control.exception_resume_breakpoint)
7033 inf_status->thread_control.exception_resume_breakpoint->disposition
7034 = disp_del_at_next_stop;
7035
1777feb0 7036 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7037 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7038
72cec141 7039 xfree (inf_status);
7a292a7a 7040}
b89667eb 7041\f
0723dbf5
PA
7042int
7043ptid_match (ptid_t ptid, ptid_t filter)
7044{
0723dbf5
PA
7045 if (ptid_equal (filter, minus_one_ptid))
7046 return 1;
7047 if (ptid_is_pid (filter)
7048 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7049 return 1;
7050 else if (ptid_equal (ptid, filter))
7051 return 1;
7052
7053 return 0;
7054}
7055
ca6724c1
KB
7056/* restore_inferior_ptid() will be used by the cleanup machinery
7057 to restore the inferior_ptid value saved in a call to
7058 save_inferior_ptid(). */
ce696e05
KB
7059
7060static void
7061restore_inferior_ptid (void *arg)
7062{
7063 ptid_t *saved_ptid_ptr = arg;
abbb1732 7064
ce696e05
KB
7065 inferior_ptid = *saved_ptid_ptr;
7066 xfree (arg);
7067}
7068
7069/* Save the value of inferior_ptid so that it may be restored by a
7070 later call to do_cleanups(). Returns the struct cleanup pointer
7071 needed for later doing the cleanup. */
7072
7073struct cleanup *
7074save_inferior_ptid (void)
7075{
7076 ptid_t *saved_ptid_ptr;
7077
7078 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7079 *saved_ptid_ptr = inferior_ptid;
7080 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7081}
c5aa993b 7082\f
488f131b 7083
b2175913
MS
7084/* User interface for reverse debugging:
7085 Set exec-direction / show exec-direction commands
7086 (returns error unless target implements to_set_exec_direction method). */
7087
32231432 7088int execution_direction = EXEC_FORWARD;
b2175913
MS
7089static const char exec_forward[] = "forward";
7090static const char exec_reverse[] = "reverse";
7091static const char *exec_direction = exec_forward;
40478521 7092static const char *const exec_direction_names[] = {
b2175913
MS
7093 exec_forward,
7094 exec_reverse,
7095 NULL
7096};
7097
7098static void
7099set_exec_direction_func (char *args, int from_tty,
7100 struct cmd_list_element *cmd)
7101{
7102 if (target_can_execute_reverse)
7103 {
7104 if (!strcmp (exec_direction, exec_forward))
7105 execution_direction = EXEC_FORWARD;
7106 else if (!strcmp (exec_direction, exec_reverse))
7107 execution_direction = EXEC_REVERSE;
7108 }
8bbed405
MS
7109 else
7110 {
7111 exec_direction = exec_forward;
7112 error (_("Target does not support this operation."));
7113 }
b2175913
MS
7114}
7115
7116static void
7117show_exec_direction_func (struct ui_file *out, int from_tty,
7118 struct cmd_list_element *cmd, const char *value)
7119{
7120 switch (execution_direction) {
7121 case EXEC_FORWARD:
7122 fprintf_filtered (out, _("Forward.\n"));
7123 break;
7124 case EXEC_REVERSE:
7125 fprintf_filtered (out, _("Reverse.\n"));
7126 break;
b2175913 7127 default:
d8b34453
PA
7128 internal_error (__FILE__, __LINE__,
7129 _("bogus execution_direction value: %d"),
7130 (int) execution_direction);
b2175913
MS
7131 }
7132}
7133
7134/* User interface for non-stop mode. */
7135
ad52ddc6 7136int non_stop = 0;
ad52ddc6
PA
7137
7138static void
7139set_non_stop (char *args, int from_tty,
7140 struct cmd_list_element *c)
7141{
7142 if (target_has_execution)
7143 {
7144 non_stop_1 = non_stop;
7145 error (_("Cannot change this setting while the inferior is running."));
7146 }
7147
7148 non_stop = non_stop_1;
7149}
7150
7151static void
7152show_non_stop (struct ui_file *file, int from_tty,
7153 struct cmd_list_element *c, const char *value)
7154{
7155 fprintf_filtered (file,
7156 _("Controlling the inferior in non-stop mode is %s.\n"),
7157 value);
7158}
7159
d4db2f36
PA
7160static void
7161show_schedule_multiple (struct ui_file *file, int from_tty,
7162 struct cmd_list_element *c, const char *value)
7163{
3e43a32a
MS
7164 fprintf_filtered (file, _("Resuming the execution of threads "
7165 "of all processes is %s.\n"), value);
d4db2f36 7166}
ad52ddc6 7167
22d2b532
SDJ
7168/* Implementation of `siginfo' variable. */
7169
7170static const struct internalvar_funcs siginfo_funcs =
7171{
7172 siginfo_make_value,
7173 NULL,
7174 NULL
7175};
7176
c906108c 7177void
96baa820 7178_initialize_infrun (void)
c906108c 7179{
52f0bd74
AC
7180 int i;
7181 int numsigs;
de0bea00 7182 struct cmd_list_element *c;
c906108c 7183
1bedd215
AC
7184 add_info ("signals", signals_info, _("\
7185What debugger does when program gets various signals.\n\
7186Specify a signal as argument to print info on that signal only."));
c906108c
SS
7187 add_info_alias ("handle", "signals", 0);
7188
de0bea00 7189 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7190Specify how to handle signals.\n\
486c7739 7191Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7192Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7193If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7194will be displayed instead.\n\
7195\n\
c906108c
SS
7196Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7197from 1-15 are allowed for compatibility with old versions of GDB.\n\
7198Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7199The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7200used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7201\n\
1bedd215 7202Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7203\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7204Stop means reenter debugger if this signal happens (implies print).\n\
7205Print means print a message if this signal happens.\n\
7206Pass means let program see this signal; otherwise program doesn't know.\n\
7207Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7208Pass and Stop may be combined.\n\
7209\n\
7210Multiple signals may be specified. Signal numbers and signal names\n\
7211may be interspersed with actions, with the actions being performed for\n\
7212all signals cumulatively specified."));
de0bea00 7213 set_cmd_completer (c, handle_completer);
486c7739 7214
c906108c
SS
7215 if (xdb_commands)
7216 {
1bedd215
AC
7217 add_com ("lz", class_info, signals_info, _("\
7218What debugger does when program gets various signals.\n\
7219Specify a signal as argument to print info on that signal only."));
7220 add_com ("z", class_run, xdb_handle_command, _("\
7221Specify how to handle a signal.\n\
c906108c
SS
7222Args are signals and actions to apply to those signals.\n\
7223Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7224from 1-15 are allowed for compatibility with old versions of GDB.\n\
7225Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7226The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7227used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7228Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7229\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7230nopass), \"Q\" (noprint)\n\
7231Stop means reenter debugger if this signal happens (implies print).\n\
7232Print means print a message if this signal happens.\n\
7233Pass means let program see this signal; otherwise program doesn't know.\n\
7234Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7235Pass and Stop may be combined."));
c906108c
SS
7236 }
7237
7238 if (!dbx_commands)
1a966eab
AC
7239 stop_command = add_cmd ("stop", class_obscure,
7240 not_just_help_class_command, _("\
7241There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7242This allows you to set a list of commands to be run each time execution\n\
1a966eab 7243of the program stops."), &cmdlist);
c906108c 7244
ccce17b0 7245 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7246Set inferior debugging."), _("\
7247Show inferior debugging."), _("\
7248When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7249 NULL,
7250 show_debug_infrun,
7251 &setdebuglist, &showdebuglist);
527159b7 7252
3e43a32a
MS
7253 add_setshow_boolean_cmd ("displaced", class_maintenance,
7254 &debug_displaced, _("\
237fc4c9
PA
7255Set displaced stepping debugging."), _("\
7256Show displaced stepping debugging."), _("\
7257When non-zero, displaced stepping specific debugging is enabled."),
7258 NULL,
7259 show_debug_displaced,
7260 &setdebuglist, &showdebuglist);
7261
ad52ddc6
PA
7262 add_setshow_boolean_cmd ("non-stop", no_class,
7263 &non_stop_1, _("\
7264Set whether gdb controls the inferior in non-stop mode."), _("\
7265Show whether gdb controls the inferior in non-stop mode."), _("\
7266When debugging a multi-threaded program and this setting is\n\
7267off (the default, also called all-stop mode), when one thread stops\n\
7268(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7269all other threads in the program while you interact with the thread of\n\
7270interest. When you continue or step a thread, you can allow the other\n\
7271threads to run, or have them remain stopped, but while you inspect any\n\
7272thread's state, all threads stop.\n\
7273\n\
7274In non-stop mode, when one thread stops, other threads can continue\n\
7275to run freely. You'll be able to step each thread independently,\n\
7276leave it stopped or free to run as needed."),
7277 set_non_stop,
7278 show_non_stop,
7279 &setlist,
7280 &showlist);
7281
a493e3e2 7282 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7283 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7284 signal_print = (unsigned char *)
7285 xmalloc (sizeof (signal_print[0]) * numsigs);
7286 signal_program = (unsigned char *)
7287 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7288 signal_catch = (unsigned char *)
7289 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d
UW
7290 signal_pass = (unsigned char *)
7291 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7292 for (i = 0; i < numsigs; i++)
7293 {
7294 signal_stop[i] = 1;
7295 signal_print[i] = 1;
7296 signal_program[i] = 1;
ab04a2af 7297 signal_catch[i] = 0;
c906108c
SS
7298 }
7299
7300 /* Signals caused by debugger's own actions
7301 should not be given to the program afterwards. */
a493e3e2
PA
7302 signal_program[GDB_SIGNAL_TRAP] = 0;
7303 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7304
7305 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7306 signal_stop[GDB_SIGNAL_ALRM] = 0;
7307 signal_print[GDB_SIGNAL_ALRM] = 0;
7308 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7309 signal_print[GDB_SIGNAL_VTALRM] = 0;
7310 signal_stop[GDB_SIGNAL_PROF] = 0;
7311 signal_print[GDB_SIGNAL_PROF] = 0;
7312 signal_stop[GDB_SIGNAL_CHLD] = 0;
7313 signal_print[GDB_SIGNAL_CHLD] = 0;
7314 signal_stop[GDB_SIGNAL_IO] = 0;
7315 signal_print[GDB_SIGNAL_IO] = 0;
7316 signal_stop[GDB_SIGNAL_POLL] = 0;
7317 signal_print[GDB_SIGNAL_POLL] = 0;
7318 signal_stop[GDB_SIGNAL_URG] = 0;
7319 signal_print[GDB_SIGNAL_URG] = 0;
7320 signal_stop[GDB_SIGNAL_WINCH] = 0;
7321 signal_print[GDB_SIGNAL_WINCH] = 0;
7322 signal_stop[GDB_SIGNAL_PRIO] = 0;
7323 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7324
cd0fc7c3
SS
7325 /* These signals are used internally by user-level thread
7326 implementations. (See signal(5) on Solaris.) Like the above
7327 signals, a healthy program receives and handles them as part of
7328 its normal operation. */
a493e3e2
PA
7329 signal_stop[GDB_SIGNAL_LWP] = 0;
7330 signal_print[GDB_SIGNAL_LWP] = 0;
7331 signal_stop[GDB_SIGNAL_WAITING] = 0;
7332 signal_print[GDB_SIGNAL_WAITING] = 0;
7333 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7334 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7335
2455069d
UW
7336 /* Update cached state. */
7337 signal_cache_update (-1);
7338
85c07804
AC
7339 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7340 &stop_on_solib_events, _("\
7341Set stopping for shared library events."), _("\
7342Show stopping for shared library events."), _("\
c906108c
SS
7343If nonzero, gdb will give control to the user when the dynamic linker\n\
7344notifies gdb of shared library events. The most common event of interest\n\
85c07804 7345to the user would be loading/unloading of a new library."),
f9e14852 7346 set_stop_on_solib_events,
920d2a44 7347 show_stop_on_solib_events,
85c07804 7348 &setlist, &showlist);
c906108c 7349
7ab04401
AC
7350 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7351 follow_fork_mode_kind_names,
7352 &follow_fork_mode_string, _("\
7353Set debugger response to a program call of fork or vfork."), _("\
7354Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7355A fork or vfork creates a new process. follow-fork-mode can be:\n\
7356 parent - the original process is debugged after a fork\n\
7357 child - the new process is debugged after a fork\n\
ea1dd7bc 7358The unfollowed process will continue to run.\n\
7ab04401
AC
7359By default, the debugger will follow the parent process."),
7360 NULL,
920d2a44 7361 show_follow_fork_mode_string,
7ab04401
AC
7362 &setlist, &showlist);
7363
6c95b8df
PA
7364 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7365 follow_exec_mode_names,
7366 &follow_exec_mode_string, _("\
7367Set debugger response to a program call of exec."), _("\
7368Show debugger response to a program call of exec."), _("\
7369An exec call replaces the program image of a process.\n\
7370\n\
7371follow-exec-mode can be:\n\
7372\n\
cce7e648 7373 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7374to this new inferior. The program the process was running before\n\
7375the exec call can be restarted afterwards by restarting the original\n\
7376inferior.\n\
7377\n\
7378 same - the debugger keeps the process bound to the same inferior.\n\
7379The new executable image replaces the previous executable loaded in\n\
7380the inferior. Restarting the inferior after the exec call restarts\n\
7381the executable the process was running after the exec call.\n\
7382\n\
7383By default, the debugger will use the same inferior."),
7384 NULL,
7385 show_follow_exec_mode_string,
7386 &setlist, &showlist);
7387
7ab04401
AC
7388 add_setshow_enum_cmd ("scheduler-locking", class_run,
7389 scheduler_enums, &scheduler_mode, _("\
7390Set mode for locking scheduler during execution."), _("\
7391Show mode for locking scheduler during execution."), _("\
c906108c
SS
7392off == no locking (threads may preempt at any time)\n\
7393on == full locking (no thread except the current thread may run)\n\
7394step == scheduler locked during every single-step operation.\n\
7395 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7396 Other threads may run while stepping over a function call ('next')."),
7397 set_schedlock_func, /* traps on target vector */
920d2a44 7398 show_scheduler_mode,
7ab04401 7399 &setlist, &showlist);
5fbbeb29 7400
d4db2f36
PA
7401 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7402Set mode for resuming threads of all processes."), _("\
7403Show mode for resuming threads of all processes."), _("\
7404When on, execution commands (such as 'continue' or 'next') resume all\n\
7405threads of all processes. When off (which is the default), execution\n\
7406commands only resume the threads of the current process. The set of\n\
7407threads that are resumed is further refined by the scheduler-locking\n\
7408mode (see help set scheduler-locking)."),
7409 NULL,
7410 show_schedule_multiple,
7411 &setlist, &showlist);
7412
5bf193a2
AC
7413 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7414Set mode of the step operation."), _("\
7415Show mode of the step operation."), _("\
7416When set, doing a step over a function without debug line information\n\
7417will stop at the first instruction of that function. Otherwise, the\n\
7418function is skipped and the step command stops at a different source line."),
7419 NULL,
920d2a44 7420 show_step_stop_if_no_debug,
5bf193a2 7421 &setlist, &showlist);
ca6724c1 7422
72d0e2c5
YQ
7423 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7424 &can_use_displaced_stepping, _("\
237fc4c9
PA
7425Set debugger's willingness to use displaced stepping."), _("\
7426Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7427If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7428supported by the target architecture. If off, gdb will not use displaced\n\
7429stepping to step over breakpoints, even if such is supported by the target\n\
7430architecture. If auto (which is the default), gdb will use displaced stepping\n\
7431if the target architecture supports it and non-stop mode is active, but will not\n\
7432use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7433 NULL,
7434 show_can_use_displaced_stepping,
7435 &setlist, &showlist);
237fc4c9 7436
b2175913
MS
7437 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7438 &exec_direction, _("Set direction of execution.\n\
7439Options are 'forward' or 'reverse'."),
7440 _("Show direction of execution (forward/reverse)."),
7441 _("Tells gdb whether to execute forward or backward."),
7442 set_exec_direction_func, show_exec_direction_func,
7443 &setlist, &showlist);
7444
6c95b8df
PA
7445 /* Set/show detach-on-fork: user-settable mode. */
7446
7447 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7448Set whether gdb will detach the child of a fork."), _("\
7449Show whether gdb will detach the child of a fork."), _("\
7450Tells gdb whether to detach the child of a fork."),
7451 NULL, NULL, &setlist, &showlist);
7452
03583c20
UW
7453 /* Set/show disable address space randomization mode. */
7454
7455 add_setshow_boolean_cmd ("disable-randomization", class_support,
7456 &disable_randomization, _("\
7457Set disabling of debuggee's virtual address space randomization."), _("\
7458Show disabling of debuggee's virtual address space randomization."), _("\
7459When this mode is on (which is the default), randomization of the virtual\n\
7460address space is disabled. Standalone programs run with the randomization\n\
7461enabled by default on some platforms."),
7462 &set_disable_randomization,
7463 &show_disable_randomization,
7464 &setlist, &showlist);
7465
ca6724c1 7466 /* ptid initializations */
ca6724c1
KB
7467 inferior_ptid = null_ptid;
7468 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7469
7470 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7471 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7472 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7473 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7474
7475 /* Explicitly create without lookup, since that tries to create a
7476 value with a void typed value, and when we get here, gdbarch
7477 isn't initialized yet. At this point, we're quite sure there
7478 isn't another convenience variable of the same name. */
22d2b532 7479 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7480
7481 add_setshow_boolean_cmd ("observer", no_class,
7482 &observer_mode_1, _("\
7483Set whether gdb controls the inferior in observer mode."), _("\
7484Show whether gdb controls the inferior in observer mode."), _("\
7485In observer mode, GDB can get data from the inferior, but not\n\
7486affect its execution. Registers and memory may not be changed,\n\
7487breakpoints may not be set, and the program cannot be interrupted\n\
7488or signalled."),
7489 set_observer_mode,
7490 show_observer_mode,
7491 &setlist,
7492 &showlist);
c906108c 7493}
This page took 1.855886 seconds and 4 git commands to generate.