Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
3666a048 4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
bab37966 22#include "displaced-stepping.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include <ctype.h>
25#include "symtab.h"
26#include "frame.h"
27#include "inferior.h"
28#include "breakpoint.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
2f4fcf00 32#include "target-connection.h"
c906108c
SS
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
2acceee2 37#include "inf-loop.h"
4e052eda 38#include "regcache.h"
fd0407d6 39#include "value.h"
76727919 40#include "observable.h"
f636b87d 41#include "language.h"
a77053c2 42#include "solib.h"
f17517ea 43#include "main.h"
186c406b 44#include "block.h"
034dad6f 45#include "mi/mi-common.h"
4f8d22e3 46#include "event-top.h"
96429cc8 47#include "record.h"
d02ed0bb 48#include "record-full.h"
edb3359d 49#include "inline-frame.h"
4efc6507 50#include "jit.h"
06cd862c 51#include "tracepoint.h"
1bfeeb0f 52#include "skip.h"
28106bc2
SDJ
53#include "probe.h"
54#include "objfiles.h"
de0bea00 55#include "completer.h"
9107fc8d 56#include "target-descriptions.h"
f15cb84a 57#include "target-dcache.h"
d83ad864 58#include "terminal.h"
ff862be4 59#include "solist.h"
400b5eca 60#include "gdbsupport/event-loop.h"
243a9253 61#include "thread-fsm.h"
268a13a5 62#include "gdbsupport/enum-flags.h"
5ed8105e 63#include "progspace-and-thread.h"
268a13a5 64#include "gdbsupport/gdb_optional.h"
46a62268 65#include "arch-utils.h"
268a13a5
TT
66#include "gdbsupport/scope-exit.h"
67#include "gdbsupport/forward-scope-exit.h"
06cc9596 68#include "gdbsupport/gdb_select.h"
5b6d1e4f 69#include <unordered_map>
93b54c8e 70#include "async-event.h"
b161a60d
SM
71#include "gdbsupport/selftest.h"
72#include "scoped-mock-context.h"
73#include "test-target.h"
ba988419 74#include "gdbsupport/common-debug.h"
c906108c
SS
75
76/* Prototypes for local functions */
77
2ea28649 78static void sig_print_info (enum gdb_signal);
c906108c 79
96baa820 80static void sig_print_header (void);
c906108c 81
d83ad864
DB
82static void follow_inferior_reset_breakpoints (void);
83
c4464ade 84static bool currently_stepping (struct thread_info *tp);
a289b8f6 85
2c03e5be 86static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
87
88static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
2484c66b
UW
90static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
c4464ade 92static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
8550d3b3 93
aff4e175
AB
94static void resume (gdb_signal sig);
95
5b6d1e4f
PA
96static void wait_for_inferior (inferior *inf);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
1eb8556f 115 infrun_debug_printf ("enable=%d", enable);
372316f1
PA
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
491144b5 135bool step_stop_if_no_debug = false;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
491144b5 154static bool detach_fork = true;
6c95b8df 155
94ba44a6 156bool debug_infrun = false;
920d2a44
AC
157static void
158show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162}
527159b7 163
03583c20
UW
164/* Support for disabling address space randomization. */
165
491144b5 166bool disable_randomization = true;
03583c20
UW
167
168static void
169show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181}
182
183static void
eb4c3f4a 184set_disable_randomization (const char *args, int from_tty,
03583c20
UW
185 struct cmd_list_element *c)
186{
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191}
192
d32dc48e
PA
193/* User interface for non-stop mode. */
194
491144b5
CB
195bool non_stop = false;
196static bool non_stop_1 = false;
d32dc48e
PA
197
198static void
eb4c3f4a 199set_non_stop (const char *args, int from_tty,
d32dc48e
PA
200 struct cmd_list_element *c)
201{
55f6301a 202 if (target_has_execution ())
d32dc48e
PA
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209}
210
211static void
212show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214{
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218}
219
d914c394
SS
220/* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
6bd434d6 224static bool observer_mode = false;
491144b5 225static bool observer_mode_1 = false;
d914c394
SS
226
227static void
eb4c3f4a 228set_observer_mode (const char *args, int from_tty,
d914c394
SS
229 struct cmd_list_element *c)
230{
55f6301a 231 if (target_has_execution ())
d914c394
SS
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
491144b5 246 may_insert_fast_tracepoints = true;
d914c394
SS
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
d914c394 254 pagination_enabled = 0;
491144b5 255 non_stop = non_stop_1 = true;
d914c394
SS
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261}
262
263static void
264show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266{
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268}
269
270/* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276void
277update_observer_mode (void)
278{
491144b5
CB
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
d914c394
SS
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291}
c2c6d25f 292
c906108c
SS
293/* Tables of how to react to signals; the user sets them. */
294
adc6a863
PA
295static unsigned char signal_stop[GDB_SIGNAL_LAST];
296static unsigned char signal_print[GDB_SIGNAL_LAST];
297static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 298
ab04a2af
TT
299/* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
301 signal" command. */
302static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 303
2455069d
UW
304/* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
adc6a863 307static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 308
c906108c
SS
309#define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317#define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
9b224c5e
PA
325/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328void
329update_signals_program_target (void)
330{
adc6a863 331 target_program_signals (signal_program);
9b224c5e
PA
332}
333
1777feb0 334/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 335
edb3359d 336#define RESUME_ALL minus_one_ptid
c906108c
SS
337
338/* Command list pointer for the "stop" placeholder. */
339
340static struct cmd_list_element *stop_command;
341
c906108c
SS
342/* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
628fe4e4 344int stop_on_solib_events;
f9e14852
GB
345
346/* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349static void
eb4c3f4a
TT
350set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
f9e14852
GB
352{
353 update_solib_breakpoints ();
354}
355
920d2a44
AC
356static void
357show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359{
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362}
c906108c 363
c4464ade 364/* True after stop if current stack frame should be printed. */
c906108c 365
c4464ade 366static bool stop_print_frame;
c906108c 367
5b6d1e4f
PA
368/* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371static process_stratum_target *target_last_proc_target;
39f77062 372static ptid_t target_last_wait_ptid;
e02bc4cc
DS
373static struct target_waitstatus target_last_waitstatus;
374
4e1c45ea 375void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 376
53904c9e
AC
377static const char follow_fork_mode_child[] = "child";
378static const char follow_fork_mode_parent[] = "parent";
379
40478521 380static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
ef346e04 384};
c906108c 385
53904c9e 386static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
387static void
388show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390{
3e43a32a
MS
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
394 value);
395}
c906108c
SS
396\f
397
d83ad864
DB
398/* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
5ab2fbf1
SM
404static bool
405follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
406{
407 int has_vforked;
79639e11 408 ptid_t parent_ptid, child_ptid;
d83ad864
DB
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
79639e11
PA
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 417 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426Can not resume the parent process over vfork in the foreground while\n\
427holding the child stopped. Try \"set detach-on-fork\" or \
428\"set schedule-multiple\".\n"));
d83ad864
DB
429 return 1;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
d83ad864
DB
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
00431a78 447 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
448 }
449
f67c0c91 450 if (print_inferior_events)
d83ad864 451 {
8dd06f7a 452 /* Ensure that we have a process ptid. */
e99b03dc 453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 454
223ffa71 455 target_terminal::ours_for_output ();
d83ad864 456 fprintf_filtered (gdb_stdlog,
f67c0c91 457 _("[Detaching after %s from child %s]\n"),
6f259a23 458 has_vforked ? "vfork" : "fork",
a068643d 459 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
d83ad864
DB
465
466 /* Add process to GDB's tables. */
e99b03dc 467 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
5ed8105e 475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 476
2a00d7ce 477 set_current_inferior (child_inf);
5b6d1e4f 478 switch_to_no_thread ();
d83ad864 479 child_inf->symfile_flags = SYMFILE_NO_READ;
02980c56 480 child_inf->push_target (parent_inf->process_target ());
18493a00
PA
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
d83ad864
DB
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
5b6d1e4f
PA
491 exec_on_vfork ();
492
d83ad864
DB
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
18493a00
PA
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
d83ad864
DB
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
564b1e3f 509 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
18493a00
PA
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
d83ad864
DB
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
d83ad864
DB
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
f67c0c91 551 if (print_inferior_events)
d83ad864 552 {
f67c0c91
SDJ
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
223ffa71 556 target_terminal::ours_for_output ();
6f259a23 557 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
6f259a23 560 has_vforked ? "vfork" : "fork",
f67c0c91 561 child_pid.c_str ());
d83ad864
DB
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
e99b03dc 567 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
5b6d1e4f 577 process_stratum_target *target = parent_inf->process_target ();
d83ad864 578
5b6d1e4f
PA
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
8dd06f7a 618
5b6d1e4f
PA
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
6f259a23 622
5b6d1e4f 623 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 624
5b6d1e4f
PA
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
d83ad864 628
5b6d1e4f 629 set_current_inferior (child_inf);
02980c56 630 child_inf->push_target (target);
5b6d1e4f 631 }
d83ad864 632
18493a00 633 thread_info *child_thr = add_thread_silent (target, child_ptid);
d83ad864
DB
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
642
643 exec_on_vfork ();
d83ad864
DB
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
564b1e3f 648 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
18493a00
PA
661
662 switch_to_thread (child_thr);
d83ad864
DB
663 }
664
665 return target_follow_fork (follow_child, detach_fork);
666}
667
e58b0e63
PA
668/* Tell the target to follow the fork we're stopped at. Returns true
669 if the inferior should be resumed; false, if the target for some
670 reason decided it's best not to resume. */
671
5ab2fbf1
SM
672static bool
673follow_fork ()
c906108c 674{
5ab2fbf1
SM
675 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
676 bool should_resume = true;
e58b0e63
PA
677 struct thread_info *tp;
678
679 /* Copy user stepping state to the new inferior thread. FIXME: the
680 followed fork child thread should have a copy of most of the
4e3990f4
DE
681 parent thread structure's run control related fields, not just these.
682 Initialized to avoid "may be used uninitialized" warnings from gcc. */
683 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 684 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
685 CORE_ADDR step_range_start = 0;
686 CORE_ADDR step_range_end = 0;
bf4cb9be
TV
687 int current_line = 0;
688 symtab *current_symtab = NULL;
4e3990f4 689 struct frame_id step_frame_id = { 0 };
8980e177 690 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
691
692 if (!non_stop)
693 {
5b6d1e4f 694 process_stratum_target *wait_target;
e58b0e63
PA
695 ptid_t wait_ptid;
696 struct target_waitstatus wait_status;
697
698 /* Get the last target status returned by target_wait(). */
5b6d1e4f 699 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
700
701 /* If not stopped at a fork event, then there's nothing else to
702 do. */
703 if (wait_status.kind != TARGET_WAITKIND_FORKED
704 && wait_status.kind != TARGET_WAITKIND_VFORKED)
705 return 1;
706
707 /* Check if we switched over from WAIT_PTID, since the event was
708 reported. */
00431a78 709 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
710 && (current_inferior ()->process_target () != wait_target
711 || inferior_ptid != wait_ptid))
e58b0e63
PA
712 {
713 /* We did. Switch back to WAIT_PTID thread, to tell the
714 target to follow it (in either direction). We'll
715 afterwards refuse to resume, and inform the user what
716 happened. */
5b6d1e4f 717 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 718 switch_to_thread (wait_thread);
5ab2fbf1 719 should_resume = false;
e58b0e63
PA
720 }
721 }
722
723 tp = inferior_thread ();
724
725 /* If there were any forks/vforks that were caught and are now to be
726 followed, then do so now. */
727 switch (tp->pending_follow.kind)
728 {
729 case TARGET_WAITKIND_FORKED:
730 case TARGET_WAITKIND_VFORKED:
731 {
732 ptid_t parent, child;
733
734 /* If the user did a next/step, etc, over a fork call,
735 preserve the stepping state in the fork child. */
736 if (follow_child && should_resume)
737 {
8358c15c
JK
738 step_resume_breakpoint = clone_momentary_breakpoint
739 (tp->control.step_resume_breakpoint);
16c381f0
JK
740 step_range_start = tp->control.step_range_start;
741 step_range_end = tp->control.step_range_end;
bf4cb9be
TV
742 current_line = tp->current_line;
743 current_symtab = tp->current_symtab;
16c381f0 744 step_frame_id = tp->control.step_frame_id;
186c406b
TT
745 exception_resume_breakpoint
746 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 747 thread_fsm = tp->thread_fsm;
e58b0e63
PA
748
749 /* For now, delete the parent's sr breakpoint, otherwise,
750 parent/child sr breakpoints are considered duplicates,
751 and the child version will not be installed. Remove
752 this when the breakpoints module becomes aware of
753 inferiors and address spaces. */
754 delete_step_resume_breakpoint (tp);
16c381f0
JK
755 tp->control.step_range_start = 0;
756 tp->control.step_range_end = 0;
757 tp->control.step_frame_id = null_frame_id;
186c406b 758 delete_exception_resume_breakpoint (tp);
8980e177 759 tp->thread_fsm = NULL;
e58b0e63
PA
760 }
761
762 parent = inferior_ptid;
763 child = tp->pending_follow.value.related_pid;
764
5b6d1e4f 765 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
766 /* Set up inferior(s) as specified by the caller, and tell the
767 target to do whatever is necessary to follow either parent
768 or child. */
769 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
770 {
771 /* Target refused to follow, or there's some other reason
772 we shouldn't resume. */
773 should_resume = 0;
774 }
775 else
776 {
777 /* This pending follow fork event is now handled, one way
778 or another. The previous selected thread may be gone
779 from the lists by now, but if it is still around, need
780 to clear the pending follow request. */
5b6d1e4f 781 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
782 if (tp)
783 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
784
785 /* This makes sure we don't try to apply the "Switched
786 over from WAIT_PID" logic above. */
787 nullify_last_target_wait_ptid ();
788
1777feb0 789 /* If we followed the child, switch to it... */
e58b0e63
PA
790 if (follow_child)
791 {
5b6d1e4f 792 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 793 switch_to_thread (child_thr);
e58b0e63
PA
794
795 /* ... and preserve the stepping state, in case the
796 user was stepping over the fork call. */
797 if (should_resume)
798 {
799 tp = inferior_thread ();
8358c15c
JK
800 tp->control.step_resume_breakpoint
801 = step_resume_breakpoint;
16c381f0
JK
802 tp->control.step_range_start = step_range_start;
803 tp->control.step_range_end = step_range_end;
bf4cb9be
TV
804 tp->current_line = current_line;
805 tp->current_symtab = current_symtab;
16c381f0 806 tp->control.step_frame_id = step_frame_id;
186c406b
TT
807 tp->control.exception_resume_breakpoint
808 = exception_resume_breakpoint;
8980e177 809 tp->thread_fsm = thread_fsm;
e58b0e63
PA
810 }
811 else
812 {
813 /* If we get here, it was because we're trying to
814 resume from a fork catchpoint, but, the user
815 has switched threads away from the thread that
816 forked. In that case, the resume command
817 issued is most likely not applicable to the
818 child, so just warn, and refuse to resume. */
3e43a32a 819 warning (_("Not resuming: switched threads "
fd7dcb94 820 "before following fork child."));
e58b0e63
PA
821 }
822
823 /* Reset breakpoints in the child as appropriate. */
824 follow_inferior_reset_breakpoints ();
825 }
e58b0e63
PA
826 }
827 }
828 break;
829 case TARGET_WAITKIND_SPURIOUS:
830 /* Nothing to follow. */
831 break;
832 default:
833 internal_error (__FILE__, __LINE__,
834 "Unexpected pending_follow.kind %d\n",
835 tp->pending_follow.kind);
836 break;
837 }
c906108c 838
e58b0e63 839 return should_resume;
c906108c
SS
840}
841
d83ad864 842static void
6604731b 843follow_inferior_reset_breakpoints (void)
c906108c 844{
4e1c45ea
PA
845 struct thread_info *tp = inferior_thread ();
846
6604731b
DJ
847 /* Was there a step_resume breakpoint? (There was if the user
848 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
849 thread number. Cloned step_resume breakpoints are disabled on
850 creation, so enable it here now that it is associated with the
851 correct thread.
6604731b
DJ
852
853 step_resumes are a form of bp that are made to be per-thread.
854 Since we created the step_resume bp when the parent process
855 was being debugged, and now are switching to the child process,
856 from the breakpoint package's viewpoint, that's a switch of
857 "threads". We must update the bp's notion of which thread
858 it is for, or it'll be ignored when it triggers. */
859
8358c15c 860 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
861 {
862 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
863 tp->control.step_resume_breakpoint->loc->enabled = 1;
864 }
6604731b 865
a1aa2221 866 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 867 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
868 {
869 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
870 tp->control.exception_resume_breakpoint->loc->enabled = 1;
871 }
186c406b 872
6604731b
DJ
873 /* Reinsert all breakpoints in the child. The user may have set
874 breakpoints after catching the fork, in which case those
875 were never set in the child, but only in the parent. This makes
876 sure the inserted breakpoints match the breakpoint list. */
877
878 breakpoint_re_set ();
879 insert_breakpoints ();
c906108c 880}
c906108c 881
6c95b8df
PA
882/* The child has exited or execed: resume threads of the parent the
883 user wanted to be executing. */
884
885static int
886proceed_after_vfork_done (struct thread_info *thread,
887 void *arg)
888{
889 int pid = * (int *) arg;
890
00431a78
PA
891 if (thread->ptid.pid () == pid
892 && thread->state == THREAD_RUNNING
893 && !thread->executing
6c95b8df 894 && !thread->stop_requested
a493e3e2 895 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df 896 {
1eb8556f
SM
897 infrun_debug_printf ("resuming vfork parent thread %s",
898 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 899
00431a78 900 switch_to_thread (thread);
70509625 901 clear_proceed_status (0);
64ce06e4 902 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
903 }
904
905 return 0;
906}
907
908/* Called whenever we notice an exec or exit event, to handle
909 detaching or resuming a vfork parent. */
910
911static void
912handle_vfork_child_exec_or_exit (int exec)
913{
914 struct inferior *inf = current_inferior ();
915
916 if (inf->vfork_parent)
917 {
918 int resume_parent = -1;
919
920 /* This exec or exit marks the end of the shared memory region
b73715df
TV
921 between the parent and the child. Break the bonds. */
922 inferior *vfork_parent = inf->vfork_parent;
923 inf->vfork_parent->vfork_child = NULL;
924 inf->vfork_parent = NULL;
6c95b8df 925
b73715df
TV
926 /* If the user wanted to detach from the parent, now is the
927 time. */
928 if (vfork_parent->pending_detach)
6c95b8df 929 {
6c95b8df
PA
930 struct program_space *pspace;
931 struct address_space *aspace;
932
1777feb0 933 /* follow-fork child, detach-on-fork on. */
6c95b8df 934
b73715df 935 vfork_parent->pending_detach = 0;
68c9da30 936
18493a00 937 scoped_restore_current_pspace_and_thread restore_thread;
6c95b8df
PA
938
939 /* We're letting loose of the parent. */
18493a00 940 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
00431a78 941 switch_to_thread (tp);
6c95b8df
PA
942
943 /* We're about to detach from the parent, which implicitly
944 removes breakpoints from its address space. There's a
945 catch here: we want to reuse the spaces for the child,
946 but, parent/child are still sharing the pspace at this
947 point, although the exec in reality makes the kernel give
948 the child a fresh set of new pages. The problem here is
949 that the breakpoints module being unaware of this, would
950 likely chose the child process to write to the parent
951 address space. Swapping the child temporarily away from
952 the spaces has the desired effect. Yes, this is "sort
953 of" a hack. */
954
955 pspace = inf->pspace;
956 aspace = inf->aspace;
957 inf->aspace = NULL;
958 inf->pspace = NULL;
959
f67c0c91 960 if (print_inferior_events)
6c95b8df 961 {
a068643d 962 std::string pidstr
b73715df 963 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 964
223ffa71 965 target_terminal::ours_for_output ();
6c95b8df
PA
966
967 if (exec)
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
f67c0c91 970 _("[Detaching vfork parent %s "
a068643d 971 "after child exec]\n"), pidstr.c_str ());
6f259a23 972 }
6c95b8df 973 else
6f259a23
DB
974 {
975 fprintf_filtered (gdb_stdlog,
f67c0c91 976 _("[Detaching vfork parent %s "
a068643d 977 "after child exit]\n"), pidstr.c_str ());
6f259a23 978 }
6c95b8df
PA
979 }
980
b73715df 981 target_detach (vfork_parent, 0);
6c95b8df
PA
982
983 /* Put it back. */
984 inf->pspace = pspace;
985 inf->aspace = aspace;
6c95b8df
PA
986 }
987 else if (exec)
988 {
989 /* We're staying attached to the parent, so, really give the
990 child a new address space. */
564b1e3f 991 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
992 inf->aspace = inf->pspace->aspace;
993 inf->removable = 1;
994 set_current_program_space (inf->pspace);
995
b73715df 996 resume_parent = vfork_parent->pid;
6c95b8df
PA
997 }
998 else
999 {
6c95b8df
PA
1000 /* If this is a vfork child exiting, then the pspace and
1001 aspaces were shared with the parent. Since we're
1002 reporting the process exit, we'll be mourning all that is
1003 found in the address space, and switching to null_ptid,
1004 preparing to start a new inferior. But, since we don't
1005 want to clobber the parent's address/program spaces, we
1006 go ahead and create a new one for this exiting
1007 inferior. */
1008
18493a00 1009 /* Switch to no-thread while running clone_program_space, so
5ed8105e
PA
1010 that clone_program_space doesn't want to read the
1011 selected frame of a dead process. */
18493a00
PA
1012 scoped_restore_current_thread restore_thread;
1013 switch_to_no_thread ();
6c95b8df 1014
53af73bf
PA
1015 inf->pspace = new program_space (maybe_new_address_space ());
1016 inf->aspace = inf->pspace->aspace;
1017 set_current_program_space (inf->pspace);
6c95b8df 1018 inf->removable = 1;
7dcd53a0 1019 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1020 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1021
b73715df 1022 resume_parent = vfork_parent->pid;
6c95b8df
PA
1023 }
1024
6c95b8df
PA
1025 gdb_assert (current_program_space == inf->pspace);
1026
1027 if (non_stop && resume_parent != -1)
1028 {
1029 /* If the user wanted the parent to be running, let it go
1030 free now. */
5ed8105e 1031 scoped_restore_current_thread restore_thread;
6c95b8df 1032
1eb8556f
SM
1033 infrun_debug_printf ("resuming vfork parent process %d",
1034 resume_parent);
6c95b8df
PA
1035
1036 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
ecf45d2c 1060/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
4ca51187 1063follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1064{
6c95b8df 1065 struct inferior *inf = current_inferior ();
e99b03dc 1066 int pid = ptid.pid ();
94585166 1067 ptid_t process_ptid;
7a292a7a 1068
65d2b333
PW
1069 /* Switch terminal for any messages produced e.g. by
1070 breakpoint_re_set. */
1071 target_terminal::ours_for_output ();
1072
c906108c
SS
1073 /* This is an exec event that we actually wish to pay attention to.
1074 Refresh our symbol table to the newly exec'd program, remove any
1075 momentary bp's, etc.
1076
1077 If there are breakpoints, they aren't really inserted now,
1078 since the exec() transformed our inferior into a fresh set
1079 of instructions.
1080
1081 We want to preserve symbolic breakpoints on the list, since
1082 we have hopes that they can be reset after the new a.out's
1083 symbol table is read.
1084
1085 However, any "raw" breakpoints must be removed from the list
1086 (e.g., the solib bp's), since their address is probably invalid
1087 now.
1088
1089 And, we DON'T want to call delete_breakpoints() here, since
1090 that may write the bp's "shadow contents" (the instruction
85102364 1091 value that was overwritten with a TRAP instruction). Since
1777feb0 1092 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1093
1094 mark_breakpoints_out ();
1095
95e50b27
PA
1096 /* The target reports the exec event to the main thread, even if
1097 some other thread does the exec, and even if the main thread was
1098 stopped or already gone. We may still have non-leader threads of
1099 the process on our list. E.g., on targets that don't have thread
1100 exit events (like remote); or on native Linux in non-stop mode if
1101 there were only two threads in the inferior and the non-leader
1102 one is the one that execs (and nothing forces an update of the
1103 thread list up to here). When debugging remotely, it's best to
1104 avoid extra traffic, when possible, so avoid syncing the thread
1105 list with the target, and instead go ahead and delete all threads
1106 of the process but one that reported the event. Note this must
1107 be done before calling update_breakpoints_after_exec, as
1108 otherwise clearing the threads' resources would reference stale
1109 thread breakpoints -- it may have been one of these threads that
1110 stepped across the exec. We could just clear their stepping
1111 states, but as long as we're iterating, might as well delete
1112 them. Deleting them now rather than at the next user-visible
1113 stop provides a nicer sequence of events for user and MI
1114 notifications. */
08036331 1115 for (thread_info *th : all_threads_safe ())
d7e15655 1116 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1117 delete_thread (th);
95e50b27
PA
1118
1119 /* We also need to clear any left over stale state for the
1120 leader/event thread. E.g., if there was any step-resume
1121 breakpoint or similar, it's gone now. We cannot truly
1122 step-to-next statement through an exec(). */
08036331 1123 thread_info *th = inferior_thread ();
8358c15c 1124 th->control.step_resume_breakpoint = NULL;
186c406b 1125 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1126 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1127 th->control.step_range_start = 0;
1128 th->control.step_range_end = 0;
c906108c 1129
95e50b27
PA
1130 /* The user may have had the main thread held stopped in the
1131 previous image (e.g., schedlock on, or non-stop). Release
1132 it now. */
a75724bc
PA
1133 th->stop_requested = 0;
1134
95e50b27
PA
1135 update_breakpoints_after_exec ();
1136
1777feb0 1137 /* What is this a.out's name? */
f2907e49 1138 process_ptid = ptid_t (pid);
6c95b8df 1139 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1140 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1141 exec_file_target);
c906108c
SS
1142
1143 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1144 inferior has essentially been killed & reborn. */
7a292a7a 1145
6ca15a4b 1146 breakpoint_init_inferior (inf_execd);
e85a822c 1147
797bc1cb
TT
1148 gdb::unique_xmalloc_ptr<char> exec_file_host
1149 = exec_file_find (exec_file_target, NULL);
ff862be4 1150
ecf45d2c
SL
1151 /* If we were unable to map the executable target pathname onto a host
1152 pathname, tell the user that. Otherwise GDB's subsequent behavior
1153 is confusing. Maybe it would even be better to stop at this point
1154 so that the user can specify a file manually before continuing. */
1155 if (exec_file_host == NULL)
1156 warning (_("Could not load symbols for executable %s.\n"
1157 "Do you need \"set sysroot\"?"),
1158 exec_file_target);
c906108c 1159
cce9b6bf
PA
1160 /* Reset the shared library package. This ensures that we get a
1161 shlib event when the child reaches "_start", at which point the
1162 dld will have had a chance to initialize the child. */
1163 /* Also, loading a symbol file below may trigger symbol lookups, and
1164 we don't want those to be satisfied by the libraries of the
1165 previous incarnation of this process. */
1166 no_shared_libraries (NULL, 0);
1167
6c95b8df
PA
1168 if (follow_exec_mode_string == follow_exec_mode_new)
1169 {
6c95b8df
PA
1170 /* The user wants to keep the old inferior and program spaces
1171 around. Create a new fresh one, and switch to it. */
1172
35ed81d4
SM
1173 /* Do exit processing for the original inferior before setting the new
1174 inferior's pid. Having two inferiors with the same pid would confuse
1175 find_inferior_p(t)id. Transfer the terminal state and info from the
1176 old to the new inferior. */
1177 inf = add_inferior_with_spaces ();
1178 swap_terminal_info (inf, current_inferior ());
057302ce 1179 exit_inferior_silent (current_inferior ());
17d8546e 1180
94585166 1181 inf->pid = pid;
ecf45d2c 1182 target_follow_exec (inf, exec_file_target);
6c95b8df 1183
5b6d1e4f
PA
1184 inferior *org_inferior = current_inferior ();
1185 switch_to_inferior_no_thread (inf);
02980c56 1186 inf->push_target (org_inferior->process_target ());
5b6d1e4f
PA
1187 thread_info *thr = add_thread (inf->process_target (), ptid);
1188 switch_to_thread (thr);
6c95b8df 1189 }
9107fc8d
PA
1190 else
1191 {
1192 /* The old description may no longer be fit for the new image.
1193 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1194 old description; we'll read a new one below. No need to do
1195 this on "follow-exec-mode new", as the old inferior stays
1196 around (its description is later cleared/refetched on
1197 restart). */
1198 target_clear_description ();
1199 }
6c95b8df
PA
1200
1201 gdb_assert (current_program_space == inf->pspace);
1202
ecf45d2c
SL
1203 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1204 because the proper displacement for a PIE (Position Independent
1205 Executable) main symbol file will only be computed by
1206 solib_create_inferior_hook below. breakpoint_re_set would fail
1207 to insert the breakpoints with the zero displacement. */
797bc1cb 1208 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1209
9107fc8d
PA
1210 /* If the target can specify a description, read it. Must do this
1211 after flipping to the new executable (because the target supplied
1212 description must be compatible with the executable's
1213 architecture, and the old executable may e.g., be 32-bit, while
1214 the new one 64-bit), and before anything involving memory or
1215 registers. */
1216 target_find_description ();
1217
42a4fec5 1218 gdb::observers::inferior_execd.notify (inf);
4efc6507 1219
c1e56572
JK
1220 breakpoint_re_set ();
1221
c906108c
SS
1222 /* Reinsert all breakpoints. (Those which were symbolic have
1223 been reset to the proper address in the new a.out, thanks
1777feb0 1224 to symbol_file_command...). */
c906108c
SS
1225 insert_breakpoints ();
1226
1227 /* The next resume of this inferior should bring it to the shlib
1228 startup breakpoints. (If the user had also set bp's on
1229 "main" from the old (parent) process, then they'll auto-
1777feb0 1230 matically get reset there in the new process.). */
c906108c
SS
1231}
1232
28d5518b 1233/* The chain of threads that need to do a step-over operation to get
c2829269
PA
1234 past e.g., a breakpoint. What technique is used to step over the
1235 breakpoint/watchpoint does not matter -- all threads end up in the
1236 same queue, to maintain rough temporal order of execution, in order
1237 to avoid starvation, otherwise, we could e.g., find ourselves
1238 constantly stepping the same couple threads past their breakpoints
1239 over and over, if the single-step finish fast enough. */
28d5518b 1240struct thread_info *global_thread_step_over_chain_head;
c2829269 1241
6c4cfb24
PA
1242/* Bit flags indicating what the thread needs to step over. */
1243
8d297bbf 1244enum step_over_what_flag
6c4cfb24
PA
1245 {
1246 /* Step over a breakpoint. */
1247 STEP_OVER_BREAKPOINT = 1,
1248
1249 /* Step past a non-continuable watchpoint, in order to let the
1250 instruction execute so we can evaluate the watchpoint
1251 expression. */
1252 STEP_OVER_WATCHPOINT = 2
1253 };
8d297bbf 1254DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1255
963f9c80 1256/* Info about an instruction that is being stepped over. */
31e77af2
PA
1257
1258struct step_over_info
1259{
963f9c80
PA
1260 /* If we're stepping past a breakpoint, this is the address space
1261 and address of the instruction the breakpoint is set at. We'll
1262 skip inserting all breakpoints here. Valid iff ASPACE is
1263 non-NULL. */
ac7d717c
PA
1264 const address_space *aspace = nullptr;
1265 CORE_ADDR address = 0;
963f9c80
PA
1266
1267 /* The instruction being stepped over triggers a nonsteppable
1268 watchpoint. If true, we'll skip inserting watchpoints. */
ac7d717c 1269 int nonsteppable_watchpoint_p = 0;
21edc42f
YQ
1270
1271 /* The thread's global number. */
ac7d717c 1272 int thread = -1;
31e77af2
PA
1273};
1274
1275/* The step-over info of the location that is being stepped over.
1276
1277 Note that with async/breakpoint always-inserted mode, a user might
1278 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1279 being stepped over. As setting a new breakpoint inserts all
1280 breakpoints, we need to make sure the breakpoint being stepped over
1281 isn't inserted then. We do that by only clearing the step-over
1282 info when the step-over is actually finished (or aborted).
1283
1284 Presently GDB can only step over one breakpoint at any given time.
1285 Given threads that can't run code in the same address space as the
1286 breakpoint's can't really miss the breakpoint, GDB could be taught
1287 to step-over at most one breakpoint per address space (so this info
1288 could move to the address space object if/when GDB is extended).
1289 The set of breakpoints being stepped over will normally be much
1290 smaller than the set of all breakpoints, so a flag in the
1291 breakpoint location structure would be wasteful. A separate list
1292 also saves complexity and run-time, as otherwise we'd have to go
1293 through all breakpoint locations clearing their flag whenever we
1294 start a new sequence. Similar considerations weigh against storing
1295 this info in the thread object. Plus, not all step overs actually
1296 have breakpoint locations -- e.g., stepping past a single-step
1297 breakpoint, or stepping to complete a non-continuable
1298 watchpoint. */
1299static struct step_over_info step_over_info;
1300
1301/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1302 stepping over.
1303 N.B. We record the aspace and address now, instead of say just the thread,
1304 because when we need the info later the thread may be running. */
31e77af2
PA
1305
1306static void
8b86c959 1307set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1308 int nonsteppable_watchpoint_p,
1309 int thread)
31e77af2
PA
1310{
1311 step_over_info.aspace = aspace;
1312 step_over_info.address = address;
963f9c80 1313 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1314 step_over_info.thread = thread;
31e77af2
PA
1315}
1316
1317/* Called when we're not longer stepping over a breakpoint / an
1318 instruction, so all breakpoints are free to be (re)inserted. */
1319
1320static void
1321clear_step_over_info (void)
1322{
1eb8556f 1323 infrun_debug_printf ("clearing step over info");
31e77af2
PA
1324 step_over_info.aspace = NULL;
1325 step_over_info.address = 0;
963f9c80 1326 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1327 step_over_info.thread = -1;
31e77af2
PA
1328}
1329
7f89fd65 1330/* See infrun.h. */
31e77af2
PA
1331
1332int
1333stepping_past_instruction_at (struct address_space *aspace,
1334 CORE_ADDR address)
1335{
1336 return (step_over_info.aspace != NULL
1337 && breakpoint_address_match (aspace, address,
1338 step_over_info.aspace,
1339 step_over_info.address));
1340}
1341
963f9c80
PA
1342/* See infrun.h. */
1343
21edc42f
YQ
1344int
1345thread_is_stepping_over_breakpoint (int thread)
1346{
1347 return (step_over_info.thread != -1
1348 && thread == step_over_info.thread);
1349}
1350
1351/* See infrun.h. */
1352
963f9c80
PA
1353int
1354stepping_past_nonsteppable_watchpoint (void)
1355{
1356 return step_over_info.nonsteppable_watchpoint_p;
1357}
1358
6cc83d2a
PA
1359/* Returns true if step-over info is valid. */
1360
c4464ade 1361static bool
6cc83d2a
PA
1362step_over_info_valid_p (void)
1363{
963f9c80
PA
1364 return (step_over_info.aspace != NULL
1365 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1366}
1367
c906108c 1368\f
237fc4c9
PA
1369/* Displaced stepping. */
1370
1371/* In non-stop debugging mode, we must take special care to manage
1372 breakpoints properly; in particular, the traditional strategy for
1373 stepping a thread past a breakpoint it has hit is unsuitable.
1374 'Displaced stepping' is a tactic for stepping one thread past a
1375 breakpoint it has hit while ensuring that other threads running
1376 concurrently will hit the breakpoint as they should.
1377
1378 The traditional way to step a thread T off a breakpoint in a
1379 multi-threaded program in all-stop mode is as follows:
1380
1381 a0) Initially, all threads are stopped, and breakpoints are not
1382 inserted.
1383 a1) We single-step T, leaving breakpoints uninserted.
1384 a2) We insert breakpoints, and resume all threads.
1385
1386 In non-stop debugging, however, this strategy is unsuitable: we
1387 don't want to have to stop all threads in the system in order to
1388 continue or step T past a breakpoint. Instead, we use displaced
1389 stepping:
1390
1391 n0) Initially, T is stopped, other threads are running, and
1392 breakpoints are inserted.
1393 n1) We copy the instruction "under" the breakpoint to a separate
1394 location, outside the main code stream, making any adjustments
1395 to the instruction, register, and memory state as directed by
1396 T's architecture.
1397 n2) We single-step T over the instruction at its new location.
1398 n3) We adjust the resulting register and memory state as directed
1399 by T's architecture. This includes resetting T's PC to point
1400 back into the main instruction stream.
1401 n4) We resume T.
1402
1403 This approach depends on the following gdbarch methods:
1404
1405 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1406 indicate where to copy the instruction, and how much space must
1407 be reserved there. We use these in step n1.
1408
1409 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1410 address, and makes any necessary adjustments to the instruction,
1411 register contents, and memory. We use this in step n1.
1412
1413 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1414 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1415 same effect the instruction would have had if we had executed it
1416 at its original address. We use this in step n3.
1417
237fc4c9
PA
1418 The gdbarch_displaced_step_copy_insn and
1419 gdbarch_displaced_step_fixup functions must be written so that
1420 copying an instruction with gdbarch_displaced_step_copy_insn,
1421 single-stepping across the copied instruction, and then applying
1422 gdbarch_displaced_insn_fixup should have the same effects on the
1423 thread's memory and registers as stepping the instruction in place
1424 would have. Exactly which responsibilities fall to the copy and
1425 which fall to the fixup is up to the author of those functions.
1426
1427 See the comments in gdbarch.sh for details.
1428
1429 Note that displaced stepping and software single-step cannot
1430 currently be used in combination, although with some care I think
1431 they could be made to. Software single-step works by placing
1432 breakpoints on all possible subsequent instructions; if the
1433 displaced instruction is a PC-relative jump, those breakpoints
1434 could fall in very strange places --- on pages that aren't
1435 executable, or at addresses that are not proper instruction
1436 boundaries. (We do generally let other threads run while we wait
1437 to hit the software single-step breakpoint, and they might
1438 encounter such a corrupted instruction.) One way to work around
1439 this would be to have gdbarch_displaced_step_copy_insn fully
1440 simulate the effect of PC-relative instructions (and return NULL)
1441 on architectures that use software single-stepping.
1442
1443 In non-stop mode, we can have independent and simultaneous step
1444 requests, so more than one thread may need to simultaneously step
1445 over a breakpoint. The current implementation assumes there is
1446 only one scratch space per process. In this case, we have to
1447 serialize access to the scratch space. If thread A wants to step
1448 over a breakpoint, but we are currently waiting for some other
1449 thread to complete a displaced step, we leave thread A stopped and
1450 place it in the displaced_step_request_queue. Whenever a displaced
1451 step finishes, we pick the next thread in the queue and start a new
1452 displaced step operation on it. See displaced_step_prepare and
7def77a1 1453 displaced_step_finish for details. */
237fc4c9 1454
a46d1843 1455/* Return true if THREAD is doing a displaced step. */
c0987663 1456
c4464ade 1457static bool
00431a78 1458displaced_step_in_progress_thread (thread_info *thread)
c0987663 1459{
00431a78 1460 gdb_assert (thread != NULL);
c0987663 1461
187b041e 1462 return thread->displaced_step_state.in_progress ();
c0987663
YQ
1463}
1464
a46d1843 1465/* Return true if INF has a thread doing a displaced step. */
8f572e5c 1466
c4464ade 1467static bool
00431a78 1468displaced_step_in_progress (inferior *inf)
8f572e5c 1469{
187b041e 1470 return inf->displaced_step_state.in_progress_count > 0;
fc1cf338
PA
1471}
1472
187b041e 1473/* Return true if any thread is doing a displaced step. */
a42244db 1474
187b041e
SM
1475static bool
1476displaced_step_in_progress_any_thread ()
a42244db 1477{
187b041e
SM
1478 for (inferior *inf : all_non_exited_inferiors ())
1479 {
1480 if (displaced_step_in_progress (inf))
1481 return true;
1482 }
a42244db 1483
187b041e 1484 return false;
a42244db
YQ
1485}
1486
fc1cf338
PA
1487static void
1488infrun_inferior_exit (struct inferior *inf)
1489{
d20172fc 1490 inf->displaced_step_state.reset ();
fc1cf338 1491}
237fc4c9 1492
3b7a962d
SM
1493static void
1494infrun_inferior_execd (inferior *inf)
1495{
187b041e
SM
1496 /* If some threads where was doing a displaced step in this inferior at the
1497 moment of the exec, they no longer exist. Even if the exec'ing thread
3b7a962d
SM
1498 doing a displaced step, we don't want to to any fixup nor restore displaced
1499 stepping buffer bytes. */
1500 inf->displaced_step_state.reset ();
1501
187b041e
SM
1502 for (thread_info *thread : inf->threads ())
1503 thread->displaced_step_state.reset ();
1504
3b7a962d
SM
1505 /* Since an in-line step is done with everything else stopped, if there was
1506 one in progress at the time of the exec, it must have been the exec'ing
1507 thread. */
1508 clear_step_over_info ();
1509}
1510
fff08868
HZ
1511/* If ON, and the architecture supports it, GDB will use displaced
1512 stepping to step over breakpoints. If OFF, or if the architecture
1513 doesn't support it, GDB will instead use the traditional
1514 hold-and-step approach. If AUTO (which is the default), GDB will
1515 decide which technique to use to step over breakpoints depending on
9822cb57 1516 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1517
72d0e2c5 1518static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1519
237fc4c9
PA
1520static void
1521show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524{
72d0e2c5 1525 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1526 fprintf_filtered (file,
1527 _("Debugger's willingness to use displaced stepping "
1528 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1529 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1530 else
3e43a32a
MS
1531 fprintf_filtered (file,
1532 _("Debugger's willingness to use displaced stepping "
1533 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1534}
1535
9822cb57
SM
1536/* Return true if the gdbarch implements the required methods to use
1537 displaced stepping. */
1538
1539static bool
1540gdbarch_supports_displaced_stepping (gdbarch *arch)
1541{
187b041e
SM
1542 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1543 that if `prepare` is provided, so is `finish`. */
1544 return gdbarch_displaced_step_prepare_p (arch);
9822cb57
SM
1545}
1546
fff08868 1547/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1548 over breakpoints of thread TP. */
fff08868 1549
9822cb57
SM
1550static bool
1551use_displaced_stepping (thread_info *tp)
237fc4c9 1552{
9822cb57
SM
1553 /* If the user disabled it explicitly, don't use displaced stepping. */
1554 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1555 return false;
1556
1557 /* If "auto", only use displaced stepping if the target operates in a non-stop
1558 way. */
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1560 && !target_is_non_stop_p ())
1561 return false;
1562
1563 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1564
1565 /* If the architecture doesn't implement displaced stepping, don't use
1566 it. */
1567 if (!gdbarch_supports_displaced_stepping (gdbarch))
1568 return false;
1569
1570 /* If recording, don't use displaced stepping. */
1571 if (find_record_target () != nullptr)
1572 return false;
1573
9822cb57
SM
1574 /* If displaced stepping failed before for this inferior, don't bother trying
1575 again. */
f5f01699 1576 if (tp->inf->displaced_step_state.failed_before)
9822cb57
SM
1577 return false;
1578
1579 return true;
237fc4c9
PA
1580}
1581
187b041e 1582/* Simple function wrapper around displaced_step_thread_state::reset. */
d8d83535 1583
237fc4c9 1584static void
187b041e 1585displaced_step_reset (displaced_step_thread_state *displaced)
237fc4c9 1586{
d8d83535 1587 displaced->reset ();
237fc4c9
PA
1588}
1589
d8d83535
SM
1590/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1591 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1592
1593using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9 1594
136821d9
SM
1595/* See infrun.h. */
1596
1597std::string
1598displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
237fc4c9 1599{
136821d9 1600 std::string ret;
237fc4c9 1601
136821d9
SM
1602 for (size_t i = 0; i < len; i++)
1603 {
1604 if (i == 0)
1605 ret += string_printf ("%02x", buf[i]);
1606 else
1607 ret += string_printf (" %02x", buf[i]);
1608 }
1609
1610 return ret;
237fc4c9
PA
1611}
1612
1613/* Prepare to single-step, using displaced stepping.
1614
1615 Note that we cannot use displaced stepping when we have a signal to
1616 deliver. If we have a signal to deliver and an instruction to step
1617 over, then after the step, there will be no indication from the
1618 target whether the thread entered a signal handler or ignored the
1619 signal and stepped over the instruction successfully --- both cases
1620 result in a simple SIGTRAP. In the first case we mustn't do a
1621 fixup, and in the second case we must --- but we can't tell which.
1622 Comments in the code for 'random signals' in handle_inferior_event
1623 explain how we handle this case instead.
1624
bab37966
SM
1625 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1626 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1627 if displaced stepping this thread got queued; or
1628 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1629 stepped. */
7f03bd92 1630
bab37966 1631static displaced_step_prepare_status
00431a78 1632displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1633{
00431a78 1634 regcache *regcache = get_thread_regcache (tp);
ac7936df 1635 struct gdbarch *gdbarch = regcache->arch ();
187b041e
SM
1636 displaced_step_thread_state &disp_step_thread_state
1637 = tp->displaced_step_state;
237fc4c9
PA
1638
1639 /* We should never reach this function if the architecture does not
1640 support displaced stepping. */
9822cb57 1641 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1642
c2829269
PA
1643 /* Nor if the thread isn't meant to step over a breakpoint. */
1644 gdb_assert (tp->control.trap_expected);
1645
c1e36e3e
PA
1646 /* Disable range stepping while executing in the scratch pad. We
1647 want a single-step even if executing the displaced instruction in
1648 the scratch buffer lands within the stepping range (e.g., a
1649 jump/branch). */
1650 tp->control.may_range_step = 0;
1651
187b041e
SM
1652 /* We are about to start a displaced step for this thread. If one is already
1653 in progress, something's wrong. */
1654 gdb_assert (!disp_step_thread_state.in_progress ());
237fc4c9 1655
187b041e 1656 if (tp->inf->displaced_step_state.unavailable)
237fc4c9 1657 {
187b041e
SM
1658 /* The gdbarch tells us it's not worth asking to try a prepare because
1659 it is likely that it will return unavailable, so don't bother asking. */
237fc4c9 1660
136821d9
SM
1661 displaced_debug_printf ("deferring step of %s",
1662 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1663
28d5518b 1664 global_thread_step_over_chain_enqueue (tp);
bab37966 1665 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
237fc4c9 1666 }
237fc4c9 1667
187b041e
SM
1668 displaced_debug_printf ("displaced-stepping %s now",
1669 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1670
00431a78
PA
1671 scoped_restore_current_thread restore_thread;
1672
1673 switch_to_thread (tp);
ad53cd71 1674
187b041e
SM
1675 CORE_ADDR original_pc = regcache_read_pc (regcache);
1676 CORE_ADDR displaced_pc;
237fc4c9 1677
187b041e
SM
1678 displaced_step_prepare_status status
1679 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
237fc4c9 1680
187b041e 1681 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
d35ae833 1682 {
187b041e
SM
1683 displaced_debug_printf ("failed to prepare (%s)",
1684 target_pid_to_str (tp->ptid).c_str ());
d35ae833 1685
bab37966 1686 return DISPLACED_STEP_PREPARE_STATUS_CANT;
d35ae833 1687 }
187b041e 1688 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
7f03bd92 1689 {
187b041e
SM
1690 /* Not enough displaced stepping resources available, defer this
1691 request by placing it the queue. */
1692
1693 displaced_debug_printf ("not enough resources available, "
1694 "deferring step of %s",
1695 target_pid_to_str (tp->ptid).c_str ());
1696
1697 global_thread_step_over_chain_enqueue (tp);
1698
1699 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
7f03bd92 1700 }
237fc4c9 1701
187b041e
SM
1702 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1703
9f5a595d
UW
1704 /* Save the information we need to fix things up if the step
1705 succeeds. */
187b041e 1706 disp_step_thread_state.set (gdbarch);
9f5a595d 1707
187b041e 1708 tp->inf->displaced_step_state.in_progress_count++;
ad53cd71 1709
187b041e
SM
1710 displaced_debug_printf ("prepared successfully thread=%s, "
1711 "original_pc=%s, displaced_pc=%s",
1712 target_pid_to_str (tp->ptid).c_str (),
1713 paddress (gdbarch, original_pc),
1714 paddress (gdbarch, displaced_pc));
237fc4c9 1715
bab37966 1716 return DISPLACED_STEP_PREPARE_STATUS_OK;
237fc4c9
PA
1717}
1718
3fc8eb30
PA
1719/* Wrapper for displaced_step_prepare_throw that disabled further
1720 attempts at displaced stepping if we get a memory error. */
1721
bab37966 1722static displaced_step_prepare_status
00431a78 1723displaced_step_prepare (thread_info *thread)
3fc8eb30 1724{
bab37966
SM
1725 displaced_step_prepare_status status
1726 = DISPLACED_STEP_PREPARE_STATUS_CANT;
3fc8eb30 1727
a70b8144 1728 try
3fc8eb30 1729 {
bab37966 1730 status = displaced_step_prepare_throw (thread);
3fc8eb30 1731 }
230d2906 1732 catch (const gdb_exception_error &ex)
3fc8eb30 1733 {
16b41842
PA
1734 if (ex.error != MEMORY_ERROR
1735 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1736 throw;
3fc8eb30 1737
1eb8556f
SM
1738 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1739 ex.what ());
3fc8eb30
PA
1740
1741 /* Be verbose if "set displaced-stepping" is "on", silent if
1742 "auto". */
1743 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1744 {
fd7dcb94 1745 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1746 ex.what ());
3fc8eb30
PA
1747 }
1748
1749 /* Disable further displaced stepping attempts. */
f5f01699 1750 thread->inf->displaced_step_state.failed_before = 1;
3fc8eb30 1751 }
3fc8eb30 1752
bab37966 1753 return status;
3fc8eb30
PA
1754}
1755
bab37966
SM
1756/* If we displaced stepped an instruction successfully, adjust registers and
1757 memory to yield the same effect the instruction would have had if we had
1758 executed it at its original address, and return
1759 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1760 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
372316f1 1761
bab37966
SM
1762 If the thread wasn't displaced stepping, return
1763 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1764
1765static displaced_step_finish_status
7def77a1 1766displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1767{
187b041e 1768 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
fc1cf338 1769
187b041e
SM
1770 /* Was this thread performing a displaced step? */
1771 if (!displaced->in_progress ())
bab37966 1772 return DISPLACED_STEP_FINISH_STATUS_OK;
237fc4c9 1773
187b041e
SM
1774 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1775 event_thread->inf->displaced_step_state.in_progress_count--;
1776
cb71640d
PA
1777 /* Fixup may need to read memory/registers. Switch to the thread
1778 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d 1779 the current thread, and displaced_step_restore performs ptid-dependent
328d42d8 1780 memory accesses using current_inferior(). */
00431a78 1781 switch_to_thread (event_thread);
cb71640d 1782
d43b7a2d
TBA
1783 displaced_step_reset_cleanup cleanup (displaced);
1784
187b041e
SM
1785 /* Do the fixup, and release the resources acquired to do the displaced
1786 step. */
1787 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1788 event_thread, signal);
c2829269 1789}
1c5cfe86 1790
4d9d9d04
PA
1791/* Data to be passed around while handling an event. This data is
1792 discarded between events. */
1793struct execution_control_state
1794{
5b6d1e4f 1795 process_stratum_target *target;
4d9d9d04
PA
1796 ptid_t ptid;
1797 /* The thread that got the event, if this was a thread event; NULL
1798 otherwise. */
1799 struct thread_info *event_thread;
1800
1801 struct target_waitstatus ws;
1802 int stop_func_filled_in;
1803 CORE_ADDR stop_func_start;
1804 CORE_ADDR stop_func_end;
1805 const char *stop_func_name;
1806 int wait_some_more;
1807
1808 /* True if the event thread hit the single-step breakpoint of
1809 another thread. Thus the event doesn't cause a stop, the thread
1810 needs to be single-stepped past the single-step breakpoint before
1811 we can switch back to the original stepping thread. */
1812 int hit_singlestep_breakpoint;
1813};
1814
1815/* Clear ECS and set it to point at TP. */
c2829269
PA
1816
1817static void
4d9d9d04
PA
1818reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1819{
1820 memset (ecs, 0, sizeof (*ecs));
1821 ecs->event_thread = tp;
1822 ecs->ptid = tp->ptid;
1823}
1824
1825static void keep_going_pass_signal (struct execution_control_state *ecs);
1826static void prepare_to_wait (struct execution_control_state *ecs);
c4464ade 1827static bool keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1828static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1829
1830/* Are there any pending step-over requests? If so, run all we can
1831 now and return true. Otherwise, return false. */
1832
c4464ade 1833static bool
c2829269
PA
1834start_step_over (void)
1835{
3ec3145c
SM
1836 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1837
187b041e 1838 thread_info *next;
c2829269 1839
372316f1
PA
1840 /* Don't start a new step-over if we already have an in-line
1841 step-over operation ongoing. */
1842 if (step_over_info_valid_p ())
c4464ade 1843 return false;
372316f1 1844
187b041e
SM
1845 /* Steal the global thread step over chain. As we try to initiate displaced
1846 steps, threads will be enqueued in the global chain if no buffers are
1847 available. If we iterated on the global chain directly, we might iterate
1848 indefinitely. */
1849 thread_info *threads_to_step = global_thread_step_over_chain_head;
1850 global_thread_step_over_chain_head = NULL;
1851
1852 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1853 thread_step_over_chain_length (threads_to_step));
1854
1855 bool started = false;
1856
1857 /* On scope exit (whatever the reason, return or exception), if there are
1858 threads left in the THREADS_TO_STEP chain, put back these threads in the
1859 global list. */
1860 SCOPE_EXIT
1861 {
1862 if (threads_to_step == nullptr)
1863 infrun_debug_printf ("step-over queue now empty");
1864 else
1865 {
1866 infrun_debug_printf ("putting back %d threads to step in global queue",
1867 thread_step_over_chain_length (threads_to_step));
1868
1869 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1870 }
1871 };
1872
1873 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
237fc4c9 1874 {
4d9d9d04
PA
1875 struct execution_control_state ecss;
1876 struct execution_control_state *ecs = &ecss;
8d297bbf 1877 step_over_what step_what;
372316f1 1878 int must_be_in_line;
c2829269 1879
c65d6b55
PA
1880 gdb_assert (!tp->stop_requested);
1881
187b041e 1882 next = thread_step_over_chain_next (threads_to_step, tp);
237fc4c9 1883
187b041e
SM
1884 if (tp->inf->displaced_step_state.unavailable)
1885 {
1886 /* The arch told us to not even try preparing another displaced step
1887 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1888 will get moved to the global chain on scope exit. */
1889 continue;
1890 }
1891
1892 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1893 while we try to prepare the displaced step, we don't add it back to
1894 the global step over chain. This is to avoid a thread staying in the
1895 step over chain indefinitely if something goes wrong when resuming it
1896 If the error is intermittent and it still needs a step over, it will
1897 get enqueued again when we try to resume it normally. */
1898 thread_step_over_chain_remove (&threads_to_step, tp);
c2829269 1899
372316f1
PA
1900 step_what = thread_still_needs_step_over (tp);
1901 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1902 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1903 && !use_displaced_stepping (tp)));
372316f1
PA
1904
1905 /* We currently stop all threads of all processes to step-over
1906 in-line. If we need to start a new in-line step-over, let
1907 any pending displaced steps finish first. */
187b041e
SM
1908 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1909 {
1910 global_thread_step_over_chain_enqueue (tp);
1911 continue;
1912 }
c2829269 1913
372316f1
PA
1914 if (tp->control.trap_expected
1915 || tp->resumed
1916 || tp->executing)
ad53cd71 1917 {
4d9d9d04
PA
1918 internal_error (__FILE__, __LINE__,
1919 "[%s] has inconsistent state: "
372316f1 1920 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 1921 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 1922 tp->control.trap_expected,
372316f1 1923 tp->resumed,
4d9d9d04 1924 tp->executing);
ad53cd71 1925 }
1c5cfe86 1926
1eb8556f
SM
1927 infrun_debug_printf ("resuming [%s] for step-over",
1928 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
1929
1930 /* keep_going_pass_signal skips the step-over if the breakpoint
1931 is no longer inserted. In all-stop, we want to keep looking
1932 for a thread that needs a step-over instead of resuming TP,
1933 because we wouldn't be able to resume anything else until the
1934 target stops again. In non-stop, the resume always resumes
1935 only TP, so it's OK to let the thread resume freely. */
fbea99ea 1936 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 1937 continue;
8550d3b3 1938
00431a78 1939 switch_to_thread (tp);
4d9d9d04
PA
1940 reset_ecs (ecs, tp);
1941 keep_going_pass_signal (ecs);
1c5cfe86 1942
4d9d9d04
PA
1943 if (!ecs->wait_some_more)
1944 error (_("Command aborted."));
1c5cfe86 1945
187b041e
SM
1946 /* If the thread's step over could not be initiated because no buffers
1947 were available, it was re-added to the global step over chain. */
1948 if (tp->resumed)
1949 {
1950 infrun_debug_printf ("[%s] was resumed.",
1951 target_pid_to_str (tp->ptid).c_str ());
1952 gdb_assert (!thread_is_in_step_over_chain (tp));
1953 }
1954 else
1955 {
1956 infrun_debug_printf ("[%s] was NOT resumed.",
1957 target_pid_to_str (tp->ptid).c_str ());
1958 gdb_assert (thread_is_in_step_over_chain (tp));
1959 }
372316f1
PA
1960
1961 /* If we started a new in-line step-over, we're done. */
1962 if (step_over_info_valid_p ())
1963 {
1964 gdb_assert (tp->control.trap_expected);
187b041e
SM
1965 started = true;
1966 break;
372316f1
PA
1967 }
1968
fbea99ea 1969 if (!target_is_non_stop_p ())
4d9d9d04
PA
1970 {
1971 /* On all-stop, shouldn't have resumed unless we needed a
1972 step over. */
1973 gdb_assert (tp->control.trap_expected
1974 || tp->step_after_step_resume_breakpoint);
1975
1976 /* With remote targets (at least), in all-stop, we can't
1977 issue any further remote commands until the program stops
1978 again. */
187b041e
SM
1979 started = true;
1980 break;
1c5cfe86 1981 }
c2829269 1982
4d9d9d04
PA
1983 /* Either the thread no longer needed a step-over, or a new
1984 displaced stepping sequence started. Even in the latter
1985 case, continue looking. Maybe we can also start another
1986 displaced step on a thread of other process. */
237fc4c9 1987 }
4d9d9d04 1988
187b041e 1989 return started;
237fc4c9
PA
1990}
1991
5231c1fd
PA
1992/* Update global variables holding ptids to hold NEW_PTID if they were
1993 holding OLD_PTID. */
1994static void
b161a60d
SM
1995infrun_thread_ptid_changed (process_stratum_target *target,
1996 ptid_t old_ptid, ptid_t new_ptid)
5231c1fd 1997{
b161a60d
SM
1998 if (inferior_ptid == old_ptid
1999 && current_inferior ()->process_target () == target)
5231c1fd 2000 inferior_ptid = new_ptid;
5231c1fd
PA
2001}
2002
237fc4c9 2003\f
c906108c 2004
53904c9e
AC
2005static const char schedlock_off[] = "off";
2006static const char schedlock_on[] = "on";
2007static const char schedlock_step[] = "step";
f2665db5 2008static const char schedlock_replay[] = "replay";
40478521 2009static const char *const scheduler_enums[] = {
ef346e04
AC
2010 schedlock_off,
2011 schedlock_on,
2012 schedlock_step,
f2665db5 2013 schedlock_replay,
ef346e04
AC
2014 NULL
2015};
f2665db5 2016static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2017static void
2018show_scheduler_mode (struct ui_file *file, int from_tty,
2019 struct cmd_list_element *c, const char *value)
2020{
3e43a32a
MS
2021 fprintf_filtered (file,
2022 _("Mode for locking scheduler "
2023 "during execution is \"%s\".\n"),
920d2a44
AC
2024 value);
2025}
c906108c
SS
2026
2027static void
eb4c3f4a 2028set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2029{
8a3ecb79 2030 if (!target_can_lock_scheduler ())
eefe576e
AC
2031 {
2032 scheduler_mode = schedlock_off;
d777bf0d
SM
2033 error (_("Target '%s' cannot support this command."),
2034 target_shortname ());
eefe576e 2035 }
c906108c
SS
2036}
2037
d4db2f36
PA
2038/* True if execution commands resume all threads of all processes by
2039 default; otherwise, resume only threads of the current inferior
2040 process. */
491144b5 2041bool sched_multi = false;
d4db2f36 2042
2facfe5c 2043/* Try to setup for software single stepping over the specified location.
c4464ade 2044 Return true if target_resume() should use hardware single step.
2facfe5c
DD
2045
2046 GDBARCH the current gdbarch.
2047 PC the location to step over. */
2048
c4464ade 2049static bool
2facfe5c
DD
2050maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2051{
c4464ade 2052 bool hw_step = true;
2facfe5c 2053
f02253f1 2054 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2055 && gdbarch_software_single_step_p (gdbarch))
2056 hw_step = !insert_single_step_breakpoints (gdbarch);
2057
2facfe5c
DD
2058 return hw_step;
2059}
c906108c 2060
f3263aa4
PA
2061/* See infrun.h. */
2062
09cee04b
PA
2063ptid_t
2064user_visible_resume_ptid (int step)
2065{
f3263aa4 2066 ptid_t resume_ptid;
09cee04b 2067
09cee04b
PA
2068 if (non_stop)
2069 {
2070 /* With non-stop mode on, threads are always handled
2071 individually. */
2072 resume_ptid = inferior_ptid;
2073 }
2074 else if ((scheduler_mode == schedlock_on)
03d46957 2075 || (scheduler_mode == schedlock_step && step))
09cee04b 2076 {
f3263aa4
PA
2077 /* User-settable 'scheduler' mode requires solo thread
2078 resume. */
09cee04b
PA
2079 resume_ptid = inferior_ptid;
2080 }
f2665db5
MM
2081 else if ((scheduler_mode == schedlock_replay)
2082 && target_record_will_replay (minus_one_ptid, execution_direction))
2083 {
2084 /* User-settable 'scheduler' mode requires solo thread resume in replay
2085 mode. */
2086 resume_ptid = inferior_ptid;
2087 }
f3263aa4
PA
2088 else if (!sched_multi && target_supports_multi_process ())
2089 {
2090 /* Resume all threads of the current process (and none of other
2091 processes). */
e99b03dc 2092 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2093 }
2094 else
2095 {
2096 /* Resume all threads of all processes. */
2097 resume_ptid = RESUME_ALL;
2098 }
09cee04b
PA
2099
2100 return resume_ptid;
2101}
2102
5b6d1e4f
PA
2103/* See infrun.h. */
2104
2105process_stratum_target *
2106user_visible_resume_target (ptid_t resume_ptid)
2107{
2108 return (resume_ptid == minus_one_ptid && sched_multi
2109 ? NULL
2110 : current_inferior ()->process_target ());
2111}
2112
fbea99ea
PA
2113/* Return a ptid representing the set of threads that we will resume,
2114 in the perspective of the target, assuming run control handling
2115 does not require leaving some threads stopped (e.g., stepping past
2116 breakpoint). USER_STEP indicates whether we're about to start the
2117 target for a stepping command. */
2118
2119static ptid_t
2120internal_resume_ptid (int user_step)
2121{
2122 /* In non-stop, we always control threads individually. Note that
2123 the target may always work in non-stop mode even with "set
2124 non-stop off", in which case user_visible_resume_ptid could
2125 return a wildcard ptid. */
2126 if (target_is_non_stop_p ())
2127 return inferior_ptid;
2128 else
2129 return user_visible_resume_ptid (user_step);
2130}
2131
64ce06e4
PA
2132/* Wrapper for target_resume, that handles infrun-specific
2133 bookkeeping. */
2134
2135static void
c4464ade 2136do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
64ce06e4
PA
2137{
2138 struct thread_info *tp = inferior_thread ();
2139
c65d6b55
PA
2140 gdb_assert (!tp->stop_requested);
2141
64ce06e4 2142 /* Install inferior's terminal modes. */
223ffa71 2143 target_terminal::inferior ();
64ce06e4
PA
2144
2145 /* Avoid confusing the next resume, if the next stop/resume
2146 happens to apply to another thread. */
2147 tp->suspend.stop_signal = GDB_SIGNAL_0;
2148
8f572e5c
PA
2149 /* Advise target which signals may be handled silently.
2150
2151 If we have removed breakpoints because we are stepping over one
2152 in-line (in any thread), we need to receive all signals to avoid
2153 accidentally skipping a breakpoint during execution of a signal
2154 handler.
2155
2156 Likewise if we're displaced stepping, otherwise a trap for a
2157 breakpoint in a signal handler might be confused with the
7def77a1 2158 displaced step finishing. We don't make the displaced_step_finish
8f572e5c
PA
2159 step distinguish the cases instead, because:
2160
2161 - a backtrace while stopped in the signal handler would show the
2162 scratch pad as frame older than the signal handler, instead of
2163 the real mainline code.
2164
2165 - when the thread is later resumed, the signal handler would
2166 return to the scratch pad area, which would no longer be
2167 valid. */
2168 if (step_over_info_valid_p ()
00431a78 2169 || displaced_step_in_progress (tp->inf))
adc6a863 2170 target_pass_signals ({});
64ce06e4 2171 else
adc6a863 2172 target_pass_signals (signal_pass);
64ce06e4
PA
2173
2174 target_resume (resume_ptid, step, sig);
85ad3aaf 2175
5b6d1e4f
PA
2176 if (target_can_async_p ())
2177 target_async (1);
64ce06e4
PA
2178}
2179
d930703d 2180/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2181 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2182 call 'resume', which handles exceptions. */
c906108c 2183
71d378ae
PA
2184static void
2185resume_1 (enum gdb_signal sig)
c906108c 2186{
515630c5 2187 struct regcache *regcache = get_current_regcache ();
ac7936df 2188 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2189 struct thread_info *tp = inferior_thread ();
8b86c959 2190 const address_space *aspace = regcache->aspace ();
b0f16a3e 2191 ptid_t resume_ptid;
856e7dd6
PA
2192 /* This represents the user's step vs continue request. When
2193 deciding whether "set scheduler-locking step" applies, it's the
2194 user's intention that counts. */
2195 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2196 /* This represents what we'll actually request the target to do.
2197 This can decay from a step to a continue, if e.g., we need to
2198 implement single-stepping with breakpoints (software
2199 single-step). */
c4464ade 2200 bool step;
c7e8a53c 2201
c65d6b55 2202 gdb_assert (!tp->stop_requested);
c2829269
PA
2203 gdb_assert (!thread_is_in_step_over_chain (tp));
2204
372316f1
PA
2205 if (tp->suspend.waitstatus_pending_p)
2206 {
1eb8556f
SM
2207 infrun_debug_printf
2208 ("thread %s has pending wait "
2209 "status %s (currently_stepping=%d).",
2210 target_pid_to_str (tp->ptid).c_str (),
2211 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2212 currently_stepping (tp));
372316f1 2213
5b6d1e4f 2214 tp->inf->process_target ()->threads_executing = true;
719546c4 2215 tp->resumed = true;
372316f1
PA
2216
2217 /* FIXME: What should we do if we are supposed to resume this
2218 thread with a signal? Maybe we should maintain a queue of
2219 pending signals to deliver. */
2220 if (sig != GDB_SIGNAL_0)
2221 {
fd7dcb94 2222 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2223 gdb_signal_to_name (sig),
2224 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2225 }
2226
2227 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2228
2229 if (target_can_async_p ())
9516f85a
AB
2230 {
2231 target_async (1);
2232 /* Tell the event loop we have an event to process. */
2233 mark_async_event_handler (infrun_async_inferior_event_token);
2234 }
372316f1
PA
2235 return;
2236 }
2237
2238 tp->stepped_breakpoint = 0;
2239
6b403daa
PA
2240 /* Depends on stepped_breakpoint. */
2241 step = currently_stepping (tp);
2242
74609e71
YQ
2243 if (current_inferior ()->waiting_for_vfork_done)
2244 {
48f9886d
PA
2245 /* Don't try to single-step a vfork parent that is waiting for
2246 the child to get out of the shared memory region (by exec'ing
2247 or exiting). This is particularly important on software
2248 single-step archs, as the child process would trip on the
2249 software single step breakpoint inserted for the parent
2250 process. Since the parent will not actually execute any
2251 instruction until the child is out of the shared region (such
2252 are vfork's semantics), it is safe to simply continue it.
2253 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2254 the parent, and tell it to `keep_going', which automatically
2255 re-sets it stepping. */
1eb8556f 2256 infrun_debug_printf ("resume : clear step");
c4464ade 2257 step = false;
74609e71
YQ
2258 }
2259
7ca9b62a
TBA
2260 CORE_ADDR pc = regcache_read_pc (regcache);
2261
1eb8556f
SM
2262 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2263 "current thread [%s] at %s",
2264 step, gdb_signal_to_symbol_string (sig),
2265 tp->control.trap_expected,
2266 target_pid_to_str (inferior_ptid).c_str (),
2267 paddress (gdbarch, pc));
c906108c 2268
c2c6d25f
JM
2269 /* Normally, by the time we reach `resume', the breakpoints are either
2270 removed or inserted, as appropriate. The exception is if we're sitting
2271 at a permanent breakpoint; we need to step over it, but permanent
2272 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2273 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2274 {
af48d08f
PA
2275 if (sig != GDB_SIGNAL_0)
2276 {
2277 /* We have a signal to pass to the inferior. The resume
2278 may, or may not take us to the signal handler. If this
2279 is a step, we'll need to stop in the signal handler, if
2280 there's one, (if the target supports stepping into
2281 handlers), or in the next mainline instruction, if
2282 there's no handler. If this is a continue, we need to be
2283 sure to run the handler with all breakpoints inserted.
2284 In all cases, set a breakpoint at the current address
2285 (where the handler returns to), and once that breakpoint
2286 is hit, resume skipping the permanent breakpoint. If
2287 that breakpoint isn't hit, then we've stepped into the
2288 signal handler (or hit some other event). We'll delete
2289 the step-resume breakpoint then. */
2290
1eb8556f
SM
2291 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2292 "deliver signal first");
af48d08f
PA
2293
2294 clear_step_over_info ();
2295 tp->control.trap_expected = 0;
2296
2297 if (tp->control.step_resume_breakpoint == NULL)
2298 {
2299 /* Set a "high-priority" step-resume, as we don't want
2300 user breakpoints at PC to trigger (again) when this
2301 hits. */
2302 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2303 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2304
2305 tp->step_after_step_resume_breakpoint = step;
2306 }
2307
2308 insert_breakpoints ();
2309 }
2310 else
2311 {
2312 /* There's no signal to pass, we can go ahead and skip the
2313 permanent breakpoint manually. */
1eb8556f 2314 infrun_debug_printf ("skipping permanent breakpoint");
af48d08f
PA
2315 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2316 /* Update pc to reflect the new address from which we will
2317 execute instructions. */
2318 pc = regcache_read_pc (regcache);
2319
2320 if (step)
2321 {
2322 /* We've already advanced the PC, so the stepping part
2323 is done. Now we need to arrange for a trap to be
2324 reported to handle_inferior_event. Set a breakpoint
2325 at the current PC, and run to it. Don't update
2326 prev_pc, because if we end in
44a1ee51
PA
2327 switch_back_to_stepped_thread, we want the "expected
2328 thread advanced also" branch to be taken. IOW, we
2329 don't want this thread to step further from PC
af48d08f 2330 (overstep). */
1ac806b8 2331 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2332 insert_single_step_breakpoint (gdbarch, aspace, pc);
2333 insert_breakpoints ();
2334
fbea99ea 2335 resume_ptid = internal_resume_ptid (user_step);
c4464ade 2336 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
719546c4 2337 tp->resumed = true;
af48d08f
PA
2338 return;
2339 }
2340 }
6d350bb5 2341 }
c2c6d25f 2342
c1e36e3e
PA
2343 /* If we have a breakpoint to step over, make sure to do a single
2344 step only. Same if we have software watchpoints. */
2345 if (tp->control.trap_expected || bpstat_should_step ())
2346 tp->control.may_range_step = 0;
2347
7da6a5b9
LM
2348 /* If displaced stepping is enabled, step over breakpoints by executing a
2349 copy of the instruction at a different address.
237fc4c9
PA
2350
2351 We can't use displaced stepping when we have a signal to deliver;
2352 the comments for displaced_step_prepare explain why. The
2353 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2354 signals' explain what we do instead.
2355
2356 We can't use displaced stepping when we are waiting for vfork_done
2357 event, displaced stepping breaks the vfork child similarly as single
2358 step software breakpoint. */
3fc8eb30
PA
2359 if (tp->control.trap_expected
2360 && use_displaced_stepping (tp)
cb71640d 2361 && !step_over_info_valid_p ()
a493e3e2 2362 && sig == GDB_SIGNAL_0
74609e71 2363 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2364 {
bab37966
SM
2365 displaced_step_prepare_status prepare_status
2366 = displaced_step_prepare (tp);
fc1cf338 2367
bab37966 2368 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
d56b7306 2369 {
1eb8556f 2370 infrun_debug_printf ("Got placed in step-over queue");
4d9d9d04
PA
2371
2372 tp->control.trap_expected = 0;
d56b7306
VP
2373 return;
2374 }
bab37966 2375 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
3fc8eb30
PA
2376 {
2377 /* Fallback to stepping over the breakpoint in-line. */
2378
2379 if (target_is_non_stop_p ())
2380 stop_all_threads ();
2381
a01bda52 2382 set_step_over_info (regcache->aspace (),
21edc42f 2383 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2384
2385 step = maybe_software_singlestep (gdbarch, pc);
2386
2387 insert_breakpoints ();
2388 }
bab37966 2389 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
3fc8eb30 2390 {
3fc8eb30
PA
2391 /* Update pc to reflect the new address from which we will
2392 execute instructions due to displaced stepping. */
00431a78 2393 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2394
40a53766 2395 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
3fc8eb30 2396 }
bab37966
SM
2397 else
2398 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2399 "value."));
237fc4c9
PA
2400 }
2401
2facfe5c 2402 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2403 else if (step)
2facfe5c 2404 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2405
30852783
UW
2406 /* Currently, our software single-step implementation leads to different
2407 results than hardware single-stepping in one situation: when stepping
2408 into delivering a signal which has an associated signal handler,
2409 hardware single-step will stop at the first instruction of the handler,
2410 while software single-step will simply skip execution of the handler.
2411
2412 For now, this difference in behavior is accepted since there is no
2413 easy way to actually implement single-stepping into a signal handler
2414 without kernel support.
2415
2416 However, there is one scenario where this difference leads to follow-on
2417 problems: if we're stepping off a breakpoint by removing all breakpoints
2418 and then single-stepping. In this case, the software single-step
2419 behavior means that even if there is a *breakpoint* in the signal
2420 handler, GDB still would not stop.
2421
2422 Fortunately, we can at least fix this particular issue. We detect
2423 here the case where we are about to deliver a signal while software
2424 single-stepping with breakpoints removed. In this situation, we
2425 revert the decisions to remove all breakpoints and insert single-
2426 step breakpoints, and instead we install a step-resume breakpoint
2427 at the current address, deliver the signal without stepping, and
2428 once we arrive back at the step-resume breakpoint, actually step
2429 over the breakpoint we originally wanted to step over. */
34b7e8a6 2430 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2431 && sig != GDB_SIGNAL_0
2432 && step_over_info_valid_p ())
30852783
UW
2433 {
2434 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2435 immediately after a handler returns, might already have
30852783
UW
2436 a step-resume breakpoint set on the earlier handler. We cannot
2437 set another step-resume breakpoint; just continue on until the
2438 original breakpoint is hit. */
2439 if (tp->control.step_resume_breakpoint == NULL)
2440 {
2c03e5be 2441 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2442 tp->step_after_step_resume_breakpoint = 1;
2443 }
2444
34b7e8a6 2445 delete_single_step_breakpoints (tp);
30852783 2446
31e77af2 2447 clear_step_over_info ();
30852783 2448 tp->control.trap_expected = 0;
31e77af2
PA
2449
2450 insert_breakpoints ();
30852783
UW
2451 }
2452
b0f16a3e
SM
2453 /* If STEP is set, it's a request to use hardware stepping
2454 facilities. But in that case, we should never
2455 use singlestep breakpoint. */
34b7e8a6 2456 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2457
fbea99ea 2458 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2459 if (tp->control.trap_expected)
b0f16a3e
SM
2460 {
2461 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2462 hit, either by single-stepping the thread with the breakpoint
2463 removed, or by displaced stepping, with the breakpoint inserted.
2464 In the former case, we need to single-step only this thread,
2465 and keep others stopped, as they can miss this breakpoint if
2466 allowed to run. That's not really a problem for displaced
2467 stepping, but, we still keep other threads stopped, in case
2468 another thread is also stopped for a breakpoint waiting for
2469 its turn in the displaced stepping queue. */
b0f16a3e
SM
2470 resume_ptid = inferior_ptid;
2471 }
fbea99ea
PA
2472 else
2473 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2474
7f5ef605
PA
2475 if (execution_direction != EXEC_REVERSE
2476 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2477 {
372316f1
PA
2478 /* There are two cases where we currently need to step a
2479 breakpoint instruction when we have a signal to deliver:
2480
2481 - See handle_signal_stop where we handle random signals that
2482 could take out us out of the stepping range. Normally, in
2483 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2484 signal handler with a breakpoint at PC, but there are cases
2485 where we should _always_ single-step, even if we have a
2486 step-resume breakpoint, like when a software watchpoint is
2487 set. Assuming single-stepping and delivering a signal at the
2488 same time would takes us to the signal handler, then we could
2489 have removed the breakpoint at PC to step over it. However,
2490 some hardware step targets (like e.g., Mac OS) can't step
2491 into signal handlers, and for those, we need to leave the
2492 breakpoint at PC inserted, as otherwise if the handler
2493 recurses and executes PC again, it'll miss the breakpoint.
2494 So we leave the breakpoint inserted anyway, but we need to
2495 record that we tried to step a breakpoint instruction, so
372316f1
PA
2496 that adjust_pc_after_break doesn't end up confused.
2497
dda83cd7 2498 - In non-stop if we insert a breakpoint (e.g., a step-resume)
372316f1
PA
2499 in one thread after another thread that was stepping had been
2500 momentarily paused for a step-over. When we re-resume the
2501 stepping thread, it may be resumed from that address with a
2502 breakpoint that hasn't trapped yet. Seen with
2503 gdb.threads/non-stop-fair-events.exp, on targets that don't
2504 do displaced stepping. */
2505
1eb8556f
SM
2506 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2507 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2508
2509 tp->stepped_breakpoint = 1;
2510
b0f16a3e
SM
2511 /* Most targets can step a breakpoint instruction, thus
2512 executing it normally. But if this one cannot, just
2513 continue and we will hit it anyway. */
7f5ef605 2514 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4464ade 2515 step = false;
b0f16a3e 2516 }
ef5cf84e 2517
b0f16a3e 2518 if (debug_displaced
cb71640d 2519 && tp->control.trap_expected
3fc8eb30 2520 && use_displaced_stepping (tp)
cb71640d 2521 && !step_over_info_valid_p ())
b0f16a3e 2522 {
00431a78 2523 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2524 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2525 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2526 gdb_byte buf[4];
2527
b0f16a3e 2528 read_memory (actual_pc, buf, sizeof (buf));
136821d9
SM
2529 displaced_debug_printf ("run %s: %s",
2530 paddress (resume_gdbarch, actual_pc),
2531 displaced_step_dump_bytes
2532 (buf, sizeof (buf)).c_str ());
b0f16a3e 2533 }
237fc4c9 2534
b0f16a3e
SM
2535 if (tp->control.may_range_step)
2536 {
2537 /* If we're resuming a thread with the PC out of the step
2538 range, then we're doing some nested/finer run control
2539 operation, like stepping the thread out of the dynamic
2540 linker or the displaced stepping scratch pad. We
2541 shouldn't have allowed a range step then. */
2542 gdb_assert (pc_in_thread_step_range (pc, tp));
2543 }
c1e36e3e 2544
64ce06e4 2545 do_target_resume (resume_ptid, step, sig);
719546c4 2546 tp->resumed = true;
c906108c 2547}
71d378ae
PA
2548
2549/* Resume the inferior. SIG is the signal to give the inferior
2550 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2551 rolls back state on error. */
2552
aff4e175 2553static void
71d378ae
PA
2554resume (gdb_signal sig)
2555{
a70b8144 2556 try
71d378ae
PA
2557 {
2558 resume_1 (sig);
2559 }
230d2906 2560 catch (const gdb_exception &ex)
71d378ae
PA
2561 {
2562 /* If resuming is being aborted for any reason, delete any
2563 single-step breakpoint resume_1 may have created, to avoid
2564 confusing the following resumption, and to avoid leaving
2565 single-step breakpoints perturbing other threads, in case
2566 we're running in non-stop mode. */
2567 if (inferior_ptid != null_ptid)
2568 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2569 throw;
71d378ae 2570 }
71d378ae
PA
2571}
2572
c906108c 2573\f
237fc4c9 2574/* Proceeding. */
c906108c 2575
4c2f2a79
PA
2576/* See infrun.h. */
2577
2578/* Counter that tracks number of user visible stops. This can be used
2579 to tell whether a command has proceeded the inferior past the
2580 current location. This allows e.g., inferior function calls in
2581 breakpoint commands to not interrupt the command list. When the
2582 call finishes successfully, the inferior is standing at the same
2583 breakpoint as if nothing happened (and so we don't call
2584 normal_stop). */
2585static ULONGEST current_stop_id;
2586
2587/* See infrun.h. */
2588
2589ULONGEST
2590get_stop_id (void)
2591{
2592 return current_stop_id;
2593}
2594
2595/* Called when we report a user visible stop. */
2596
2597static void
2598new_stop_id (void)
2599{
2600 current_stop_id++;
2601}
2602
c906108c
SS
2603/* Clear out all variables saying what to do when inferior is continued.
2604 First do this, then set the ones you want, then call `proceed'. */
2605
a7212384
UW
2606static void
2607clear_proceed_status_thread (struct thread_info *tp)
c906108c 2608{
1eb8556f 2609 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2610
372316f1
PA
2611 /* If we're starting a new sequence, then the previous finished
2612 single-step is no longer relevant. */
2613 if (tp->suspend.waitstatus_pending_p)
2614 {
2615 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2616 {
1eb8556f
SM
2617 infrun_debug_printf ("pending event of %s was a finished step. "
2618 "Discarding.",
2619 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2620
2621 tp->suspend.waitstatus_pending_p = 0;
2622 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2623 }
1eb8556f 2624 else
372316f1 2625 {
1eb8556f
SM
2626 infrun_debug_printf
2627 ("thread %s has pending wait status %s (currently_stepping=%d).",
2628 target_pid_to_str (tp->ptid).c_str (),
2629 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2630 currently_stepping (tp));
372316f1
PA
2631 }
2632 }
2633
70509625
PA
2634 /* If this signal should not be seen by program, give it zero.
2635 Used for debugging signals. */
2636 if (!signal_pass_state (tp->suspend.stop_signal))
2637 tp->suspend.stop_signal = GDB_SIGNAL_0;
2638
46e3ed7f 2639 delete tp->thread_fsm;
243a9253
PA
2640 tp->thread_fsm = NULL;
2641
16c381f0
JK
2642 tp->control.trap_expected = 0;
2643 tp->control.step_range_start = 0;
2644 tp->control.step_range_end = 0;
c1e36e3e 2645 tp->control.may_range_step = 0;
16c381f0
JK
2646 tp->control.step_frame_id = null_frame_id;
2647 tp->control.step_stack_frame_id = null_frame_id;
2648 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2649 tp->control.step_start_function = NULL;
a7212384 2650 tp->stop_requested = 0;
4e1c45ea 2651
16c381f0 2652 tp->control.stop_step = 0;
32400beb 2653
16c381f0 2654 tp->control.proceed_to_finish = 0;
414c69f7 2655
856e7dd6 2656 tp->control.stepping_command = 0;
17b2616c 2657
a7212384 2658 /* Discard any remaining commands or status from previous stop. */
16c381f0 2659 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2660}
32400beb 2661
a7212384 2662void
70509625 2663clear_proceed_status (int step)
a7212384 2664{
f2665db5
MM
2665 /* With scheduler-locking replay, stop replaying other threads if we're
2666 not replaying the user-visible resume ptid.
2667
2668 This is a convenience feature to not require the user to explicitly
2669 stop replaying the other threads. We're assuming that the user's
2670 intent is to resume tracing the recorded process. */
2671 if (!non_stop && scheduler_mode == schedlock_replay
2672 && target_record_is_replaying (minus_one_ptid)
2673 && !target_record_will_replay (user_visible_resume_ptid (step),
2674 execution_direction))
2675 target_record_stop_replaying ();
2676
08036331 2677 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2678 {
08036331 2679 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2680 process_stratum_target *resume_target
2681 = user_visible_resume_target (resume_ptid);
70509625
PA
2682
2683 /* In all-stop mode, delete the per-thread status of all threads
2684 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2685 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2686 clear_proceed_status_thread (tp);
6c95b8df
PA
2687 }
2688
d7e15655 2689 if (inferior_ptid != null_ptid)
a7212384
UW
2690 {
2691 struct inferior *inferior;
2692
2693 if (non_stop)
2694 {
6c95b8df
PA
2695 /* If in non-stop mode, only delete the per-thread status of
2696 the current thread. */
a7212384
UW
2697 clear_proceed_status_thread (inferior_thread ());
2698 }
6c95b8df 2699
d6b48e9c 2700 inferior = current_inferior ();
16c381f0 2701 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2702 }
2703
76727919 2704 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2705}
2706
99619bea
PA
2707/* Returns true if TP is still stopped at a breakpoint that needs
2708 stepping-over in order to make progress. If the breakpoint is gone
2709 meanwhile, we can skip the whole step-over dance. */
ea67f13b 2710
c4464ade 2711static bool
6c4cfb24 2712thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2713{
2714 if (tp->stepping_over_breakpoint)
2715 {
00431a78 2716 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2717
a01bda52 2718 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2719 regcache_read_pc (regcache))
2720 == ordinary_breakpoint_here)
c4464ade 2721 return true;
99619bea
PA
2722
2723 tp->stepping_over_breakpoint = 0;
2724 }
2725
c4464ade 2726 return false;
99619bea
PA
2727}
2728
6c4cfb24
PA
2729/* Check whether thread TP still needs to start a step-over in order
2730 to make progress when resumed. Returns an bitwise or of enum
2731 step_over_what bits, indicating what needs to be stepped over. */
2732
8d297bbf 2733static step_over_what
6c4cfb24
PA
2734thread_still_needs_step_over (struct thread_info *tp)
2735{
8d297bbf 2736 step_over_what what = 0;
6c4cfb24
PA
2737
2738 if (thread_still_needs_step_over_bp (tp))
2739 what |= STEP_OVER_BREAKPOINT;
2740
2741 if (tp->stepping_over_watchpoint
9aed480c 2742 && !target_have_steppable_watchpoint ())
6c4cfb24
PA
2743 what |= STEP_OVER_WATCHPOINT;
2744
2745 return what;
2746}
2747
483805cf
PA
2748/* Returns true if scheduler locking applies. STEP indicates whether
2749 we're about to do a step/next-like command to a thread. */
2750
c4464ade 2751static bool
856e7dd6 2752schedlock_applies (struct thread_info *tp)
483805cf
PA
2753{
2754 return (scheduler_mode == schedlock_on
2755 || (scheduler_mode == schedlock_step
f2665db5
MM
2756 && tp->control.stepping_command)
2757 || (scheduler_mode == schedlock_replay
2758 && target_record_will_replay (minus_one_ptid,
2759 execution_direction)));
483805cf
PA
2760}
2761
1192f124
SM
2762/* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2763 stacks that have threads executing and don't have threads with
2764 pending events. */
5b6d1e4f
PA
2765
2766static void
1192f124
SM
2767maybe_set_commit_resumed_all_targets ()
2768{
b4b1a226
SM
2769 scoped_restore_current_thread restore_thread;
2770
1192f124
SM
2771 for (inferior *inf : all_non_exited_inferiors ())
2772 {
2773 process_stratum_target *proc_target = inf->process_target ();
2774
2775 if (proc_target->commit_resumed_state)
2776 {
2777 /* We already set this in a previous iteration, via another
2778 inferior sharing the process_stratum target. */
2779 continue;
2780 }
2781
2782 /* If the target has no resumed threads, it would be useless to
2783 ask it to commit the resumed threads. */
2784 if (!proc_target->threads_executing)
2785 {
2786 infrun_debug_printf ("not requesting commit-resumed for target "
2787 "%s, no resumed threads",
2788 proc_target->shortname ());
2789 continue;
2790 }
2791
2792 /* As an optimization, if a thread from this target has some
2793 status to report, handle it before requiring the target to
2794 commit its resumed threads: handling the status might lead to
2795 resuming more threads. */
2796 bool has_thread_with_pending_status = false;
2797 for (thread_info *thread : all_non_exited_threads (proc_target))
2798 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2799 {
2800 has_thread_with_pending_status = true;
2801 break;
2802 }
2803
2804 if (has_thread_with_pending_status)
2805 {
2806 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2807 " thread has a pending waitstatus",
2808 proc_target->shortname ());
2809 continue;
2810 }
2811
b4b1a226
SM
2812 switch_to_inferior_no_thread (inf);
2813
2814 if (target_has_pending_events ())
2815 {
2816 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2817 "target has pending events",
2818 proc_target->shortname ());
2819 continue;
2820 }
2821
1192f124
SM
2822 infrun_debug_printf ("enabling commit-resumed for target %s",
2823 proc_target->shortname ());
2824
2825 proc_target->commit_resumed_state = true;
2826 }
2827}
2828
2829/* See infrun.h. */
2830
2831void
2832maybe_call_commit_resumed_all_targets ()
5b6d1e4f
PA
2833{
2834 scoped_restore_current_thread restore_thread;
2835
1192f124
SM
2836 for (inferior *inf : all_non_exited_inferiors ())
2837 {
2838 process_stratum_target *proc_target = inf->process_target ();
2839
2840 if (!proc_target->commit_resumed_state)
2841 continue;
2842
2843 switch_to_inferior_no_thread (inf);
2844
2845 infrun_debug_printf ("calling commit_resumed for target %s",
2846 proc_target->shortname());
2847
2848 target_commit_resumed ();
2849 }
2850}
2851
2852/* To track nesting of scoped_disable_commit_resumed objects, ensuring
2853 that only the outermost one attempts to re-enable
2854 commit-resumed. */
2855static bool enable_commit_resumed = true;
2856
2857/* See infrun.h. */
2858
2859scoped_disable_commit_resumed::scoped_disable_commit_resumed
2860 (const char *reason)
2861 : m_reason (reason),
2862 m_prev_enable_commit_resumed (enable_commit_resumed)
2863{
2864 infrun_debug_printf ("reason=%s", m_reason);
2865
2866 enable_commit_resumed = false;
5b6d1e4f
PA
2867
2868 for (inferior *inf : all_non_exited_inferiors ())
1192f124
SM
2869 {
2870 process_stratum_target *proc_target = inf->process_target ();
5b6d1e4f 2871
1192f124
SM
2872 if (m_prev_enable_commit_resumed)
2873 {
2874 /* This is the outermost instance: force all
2875 COMMIT_RESUMED_STATE to false. */
2876 proc_target->commit_resumed_state = false;
2877 }
2878 else
2879 {
2880 /* This is not the outermost instance, we expect
2881 COMMIT_RESUMED_STATE to have been cleared by the
2882 outermost instance. */
2883 gdb_assert (!proc_target->commit_resumed_state);
2884 }
2885 }
2886}
2887
2888/* See infrun.h. */
2889
2890void
2891scoped_disable_commit_resumed::reset ()
2892{
2893 if (m_reset)
2894 return;
2895 m_reset = true;
2896
2897 infrun_debug_printf ("reason=%s", m_reason);
2898
2899 gdb_assert (!enable_commit_resumed);
2900
2901 enable_commit_resumed = m_prev_enable_commit_resumed;
2902
2903 if (m_prev_enable_commit_resumed)
5b6d1e4f 2904 {
1192f124
SM
2905 /* This is the outermost instance, re-enable
2906 COMMIT_RESUMED_STATE on the targets where it's possible. */
2907 maybe_set_commit_resumed_all_targets ();
2908 }
2909 else
2910 {
2911 /* This is not the outermost instance, we expect
2912 COMMIT_RESUMED_STATE to still be false. */
2913 for (inferior *inf : all_non_exited_inferiors ())
2914 {
2915 process_stratum_target *proc_target = inf->process_target ();
2916 gdb_assert (!proc_target->commit_resumed_state);
2917 }
2918 }
2919}
2920
2921/* See infrun.h. */
2922
2923scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2924{
2925 reset ();
2926}
2927
2928/* See infrun.h. */
2929
2930void
2931scoped_disable_commit_resumed::reset_and_commit ()
2932{
2933 reset ();
2934 maybe_call_commit_resumed_all_targets ();
2935}
2936
2937/* See infrun.h. */
2938
2939scoped_enable_commit_resumed::scoped_enable_commit_resumed
2940 (const char *reason)
2941 : m_reason (reason),
2942 m_prev_enable_commit_resumed (enable_commit_resumed)
2943{
2944 infrun_debug_printf ("reason=%s", m_reason);
2945
2946 if (!enable_commit_resumed)
2947 {
2948 enable_commit_resumed = true;
2949
2950 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2951 possible. */
2952 maybe_set_commit_resumed_all_targets ();
2953
2954 maybe_call_commit_resumed_all_targets ();
2955 }
2956}
2957
2958/* See infrun.h. */
2959
2960scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2961{
2962 infrun_debug_printf ("reason=%s", m_reason);
2963
2964 gdb_assert (enable_commit_resumed);
2965
2966 enable_commit_resumed = m_prev_enable_commit_resumed;
2967
2968 if (!enable_commit_resumed)
2969 {
2970 /* Force all COMMIT_RESUMED_STATE back to false. */
2971 for (inferior *inf : all_non_exited_inferiors ())
2972 {
2973 process_stratum_target *proc_target = inf->process_target ();
2974 proc_target->commit_resumed_state = false;
2975 }
5b6d1e4f
PA
2976 }
2977}
2978
2f4fcf00
PA
2979/* Check that all the targets we're about to resume are in non-stop
2980 mode. Ideally, we'd only care whether all targets support
2981 target-async, but we're not there yet. E.g., stop_all_threads
2982 doesn't know how to handle all-stop targets. Also, the remote
2983 protocol in all-stop mode is synchronous, irrespective of
2984 target-async, which means that things like a breakpoint re-set
2985 triggered by one target would try to read memory from all targets
2986 and fail. */
2987
2988static void
2989check_multi_target_resumption (process_stratum_target *resume_target)
2990{
2991 if (!non_stop && resume_target == nullptr)
2992 {
2993 scoped_restore_current_thread restore_thread;
2994
2995 /* This is used to track whether we're resuming more than one
2996 target. */
2997 process_stratum_target *first_connection = nullptr;
2998
2999 /* The first inferior we see with a target that does not work in
3000 always-non-stop mode. */
3001 inferior *first_not_non_stop = nullptr;
3002
f058c521 3003 for (inferior *inf : all_non_exited_inferiors ())
2f4fcf00
PA
3004 {
3005 switch_to_inferior_no_thread (inf);
3006
55f6301a 3007 if (!target_has_execution ())
2f4fcf00
PA
3008 continue;
3009
3010 process_stratum_target *proc_target
3011 = current_inferior ()->process_target();
3012
3013 if (!target_is_non_stop_p ())
3014 first_not_non_stop = inf;
3015
3016 if (first_connection == nullptr)
3017 first_connection = proc_target;
3018 else if (first_connection != proc_target
3019 && first_not_non_stop != nullptr)
3020 {
3021 switch_to_inferior_no_thread (first_not_non_stop);
3022
3023 proc_target = current_inferior ()->process_target();
3024
3025 error (_("Connection %d (%s) does not support "
3026 "multi-target resumption."),
3027 proc_target->connection_number,
3028 make_target_connection_string (proc_target).c_str ());
3029 }
3030 }
3031 }
3032}
3033
c906108c
SS
3034/* Basic routine for continuing the program in various fashions.
3035
3036 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
3037 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3038 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
3039
3040 You should call clear_proceed_status before calling proceed. */
3041
3042void
64ce06e4 3043proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 3044{
3ec3145c
SM
3045 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3046
e58b0e63
PA
3047 struct regcache *regcache;
3048 struct gdbarch *gdbarch;
e58b0e63 3049 CORE_ADDR pc;
4d9d9d04
PA
3050 struct execution_control_state ecss;
3051 struct execution_control_state *ecs = &ecss;
c4464ade 3052 bool started;
c906108c 3053
e58b0e63
PA
3054 /* If we're stopped at a fork/vfork, follow the branch set by the
3055 "set follow-fork-mode" command; otherwise, we'll just proceed
3056 resuming the current thread. */
3057 if (!follow_fork ())
3058 {
3059 /* The target for some reason decided not to resume. */
3060 normal_stop ();
f148b27e 3061 if (target_can_async_p ())
b1a35af2 3062 inferior_event_handler (INF_EXEC_COMPLETE);
e58b0e63
PA
3063 return;
3064 }
3065
842951eb
PA
3066 /* We'll update this if & when we switch to a new thread. */
3067 previous_inferior_ptid = inferior_ptid;
3068
e58b0e63 3069 regcache = get_current_regcache ();
ac7936df 3070 gdbarch = regcache->arch ();
8b86c959
YQ
3071 const address_space *aspace = regcache->aspace ();
3072
fc75c28b
TBA
3073 pc = regcache_read_pc_protected (regcache);
3074
08036331 3075 thread_info *cur_thr = inferior_thread ();
e58b0e63 3076
99619bea 3077 /* Fill in with reasonable starting values. */
08036331 3078 init_thread_stepping_state (cur_thr);
99619bea 3079
08036331 3080 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 3081
5b6d1e4f
PA
3082 ptid_t resume_ptid
3083 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3084 process_stratum_target *resume_target
3085 = user_visible_resume_target (resume_ptid);
3086
2f4fcf00
PA
3087 check_multi_target_resumption (resume_target);
3088
2acceee2 3089 if (addr == (CORE_ADDR) -1)
c906108c 3090 {
08036331 3091 if (pc == cur_thr->suspend.stop_pc
af48d08f 3092 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3093 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3094 /* There is a breakpoint at the address we will resume at,
3095 step one instruction before inserting breakpoints so that
3096 we do not stop right away (and report a second hit at this
b2175913
MS
3097 breakpoint).
3098
3099 Note, we don't do this in reverse, because we won't
3100 actually be executing the breakpoint insn anyway.
3101 We'll be (un-)executing the previous instruction. */
08036331 3102 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3103 else if (gdbarch_single_step_through_delay_p (gdbarch)
3104 && gdbarch_single_step_through_delay (gdbarch,
3105 get_current_frame ()))
3352ef37
AC
3106 /* We stepped onto an instruction that needs to be stepped
3107 again before re-inserting the breakpoint, do so. */
08036331 3108 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3109 }
3110 else
3111 {
515630c5 3112 regcache_write_pc (regcache, addr);
c906108c
SS
3113 }
3114
70509625 3115 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3116 cur_thr->suspend.stop_signal = siggnal;
70509625 3117
4d9d9d04
PA
3118 /* If an exception is thrown from this point on, make sure to
3119 propagate GDB's knowledge of the executing state to the
3120 frontend/user running state. */
5b6d1e4f 3121 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3122
3123 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3124 threads (e.g., we might need to set threads stepping over
3125 breakpoints first), from the user/frontend's point of view, all
3126 threads in RESUME_PTID are now running. Unless we're calling an
3127 inferior function, as in that case we pretend the inferior
3128 doesn't run at all. */
08036331 3129 if (!cur_thr->control.in_infcall)
719546c4 3130 set_running (resume_target, resume_ptid, true);
17b2616c 3131
1eb8556f
SM
3132 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3133 gdb_signal_to_symbol_string (siggnal));
527159b7 3134
4d9d9d04
PA
3135 annotate_starting ();
3136
3137 /* Make sure that output from GDB appears before output from the
3138 inferior. */
3139 gdb_flush (gdb_stdout);
3140
d930703d
PA
3141 /* Since we've marked the inferior running, give it the terminal. A
3142 QUIT/Ctrl-C from here on is forwarded to the target (which can
3143 still detect attempts to unblock a stuck connection with repeated
3144 Ctrl-C from within target_pass_ctrlc). */
3145 target_terminal::inferior ();
3146
4d9d9d04
PA
3147 /* In a multi-threaded task we may select another thread and
3148 then continue or step.
3149
3150 But if a thread that we're resuming had stopped at a breakpoint,
3151 it will immediately cause another breakpoint stop without any
3152 execution (i.e. it will report a breakpoint hit incorrectly). So
3153 we must step over it first.
3154
3155 Look for threads other than the current (TP) that reported a
3156 breakpoint hit and haven't been resumed yet since. */
3157
3158 /* If scheduler locking applies, we can avoid iterating over all
3159 threads. */
08036331 3160 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3161 {
5b6d1e4f
PA
3162 for (thread_info *tp : all_non_exited_threads (resume_target,
3163 resume_ptid))
08036331 3164 {
f3f8ece4
PA
3165 switch_to_thread_no_regs (tp);
3166
4d9d9d04
PA
3167 /* Ignore the current thread here. It's handled
3168 afterwards. */
08036331 3169 if (tp == cur_thr)
4d9d9d04 3170 continue;
c906108c 3171
4d9d9d04
PA
3172 if (!thread_still_needs_step_over (tp))
3173 continue;
3174
3175 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3176
1eb8556f
SM
3177 infrun_debug_printf ("need to step-over [%s] first",
3178 target_pid_to_str (tp->ptid).c_str ());
99619bea 3179
28d5518b 3180 global_thread_step_over_chain_enqueue (tp);
2adfaa28 3181 }
f3f8ece4
PA
3182
3183 switch_to_thread (cur_thr);
30852783
UW
3184 }
3185
4d9d9d04
PA
3186 /* Enqueue the current thread last, so that we move all other
3187 threads over their breakpoints first. */
08036331 3188 if (cur_thr->stepping_over_breakpoint)
28d5518b 3189 global_thread_step_over_chain_enqueue (cur_thr);
30852783 3190
4d9d9d04
PA
3191 /* If the thread isn't started, we'll still need to set its prev_pc,
3192 so that switch_back_to_stepped_thread knows the thread hasn't
3193 advanced. Must do this before resuming any thread, as in
3194 all-stop/remote, once we resume we can't send any other packet
3195 until the target stops again. */
fc75c28b 3196 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
99619bea 3197
a9bc57b9 3198 {
1192f124 3199 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
85ad3aaf 3200
a9bc57b9 3201 started = start_step_over ();
c906108c 3202
a9bc57b9
TT
3203 if (step_over_info_valid_p ())
3204 {
3205 /* Either this thread started a new in-line step over, or some
3206 other thread was already doing one. In either case, don't
3207 resume anything else until the step-over is finished. */
3208 }
3209 else if (started && !target_is_non_stop_p ())
3210 {
3211 /* A new displaced stepping sequence was started. In all-stop,
3212 we can't talk to the target anymore until it next stops. */
3213 }
3214 else if (!non_stop && target_is_non_stop_p ())
3215 {
3ec3145c
SM
3216 INFRUN_SCOPED_DEBUG_START_END
3217 ("resuming threads, all-stop-on-top-of-non-stop");
3218
a9bc57b9
TT
3219 /* In all-stop, but the target is always in non-stop mode.
3220 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3221 for (thread_info *tp : all_non_exited_threads (resume_target,
3222 resume_ptid))
3223 {
3224 switch_to_thread_no_regs (tp);
3225
f9fac3c8
SM
3226 if (!tp->inf->has_execution ())
3227 {
1eb8556f
SM
3228 infrun_debug_printf ("[%s] target has no execution",
3229 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3230 continue;
3231 }
f3f8ece4 3232
f9fac3c8
SM
3233 if (tp->resumed)
3234 {
1eb8556f
SM
3235 infrun_debug_printf ("[%s] resumed",
3236 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3237 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3238 continue;
3239 }
fbea99ea 3240
f9fac3c8
SM
3241 if (thread_is_in_step_over_chain (tp))
3242 {
1eb8556f
SM
3243 infrun_debug_printf ("[%s] needs step-over",
3244 target_pid_to_str (tp->ptid).c_str ());
f9fac3c8
SM
3245 continue;
3246 }
fbea99ea 3247
1eb8556f 3248 infrun_debug_printf ("resuming %s",
dda83cd7 3249 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3250
f9fac3c8
SM
3251 reset_ecs (ecs, tp);
3252 switch_to_thread (tp);
3253 keep_going_pass_signal (ecs);
3254 if (!ecs->wait_some_more)
3255 error (_("Command aborted."));
3256 }
a9bc57b9 3257 }
08036331 3258 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3259 {
3260 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3261 reset_ecs (ecs, cur_thr);
3262 switch_to_thread (cur_thr);
a9bc57b9
TT
3263 keep_going_pass_signal (ecs);
3264 if (!ecs->wait_some_more)
3265 error (_("Command aborted."));
3266 }
c906108c 3267
1192f124
SM
3268 disable_commit_resumed.reset_and_commit ();
3269 }
85ad3aaf 3270
731f534f 3271 finish_state.release ();
c906108c 3272
873657b9
PA
3273 /* If we've switched threads above, switch back to the previously
3274 current thread. We don't want the user to see a different
3275 selected thread. */
3276 switch_to_thread (cur_thr);
3277
0b333c5e
PA
3278 /* Tell the event loop to wait for it to stop. If the target
3279 supports asynchronous execution, it'll do this from within
3280 target_resume. */
362646f5 3281 if (!target_can_async_p ())
0b333c5e 3282 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3283}
c906108c
SS
3284\f
3285
3286/* Start remote-debugging of a machine over a serial link. */
96baa820 3287
c906108c 3288void
8621d6a9 3289start_remote (int from_tty)
c906108c 3290{
5b6d1e4f
PA
3291 inferior *inf = current_inferior ();
3292 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3293
1777feb0 3294 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3295 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3296 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3297 nothing is returned (instead of just blocking). Because of this,
3298 targets expecting an immediate response need to, internally, set
3299 things up so that the target_wait() is forced to eventually
1777feb0 3300 timeout. */
6426a772
JM
3301 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3302 differentiate to its caller what the state of the target is after
3303 the initial open has been performed. Here we're assuming that
3304 the target has stopped. It should be possible to eventually have
3305 target_open() return to the caller an indication that the target
3306 is currently running and GDB state should be set to the same as
1777feb0 3307 for an async run. */
5b6d1e4f 3308 wait_for_inferior (inf);
8621d6a9
DJ
3309
3310 /* Now that the inferior has stopped, do any bookkeeping like
3311 loading shared libraries. We want to do this before normal_stop,
3312 so that the displayed frame is up to date. */
a7aba266 3313 post_create_inferior (from_tty);
8621d6a9 3314
6426a772 3315 normal_stop ();
c906108c
SS
3316}
3317
3318/* Initialize static vars when a new inferior begins. */
3319
3320void
96baa820 3321init_wait_for_inferior (void)
c906108c
SS
3322{
3323 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3324
c906108c
SS
3325 breakpoint_init_inferior (inf_starting);
3326
70509625 3327 clear_proceed_status (0);
9f976b41 3328
ab1ddbcf 3329 nullify_last_target_wait_ptid ();
237fc4c9 3330
842951eb 3331 previous_inferior_ptid = inferior_ptid;
c906108c 3332}
237fc4c9 3333
c906108c 3334\f
488f131b 3335
ec9499be 3336static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3337
568d6575
UW
3338static void handle_step_into_function (struct gdbarch *gdbarch,
3339 struct execution_control_state *ecs);
3340static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3341 struct execution_control_state *ecs);
4f5d7f63 3342static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3343static void check_exception_resume (struct execution_control_state *,
28106bc2 3344 struct frame_info *);
611c83ae 3345
bdc36728 3346static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3347static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3348static void keep_going (struct execution_control_state *ecs);
94c57d6a 3349static void process_event_stop_test (struct execution_control_state *ecs);
c4464ade 3350static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3351
252fbfc8
PA
3352/* This function is attached as a "thread_stop_requested" observer.
3353 Cleanup local state that assumed the PTID was to be resumed, and
3354 report the stop to the frontend. */
3355
2c0b251b 3356static void
252fbfc8
PA
3357infrun_thread_stop_requested (ptid_t ptid)
3358{
5b6d1e4f
PA
3359 process_stratum_target *curr_target = current_inferior ()->process_target ();
3360
c65d6b55
PA
3361 /* PTID was requested to stop. If the thread was already stopped,
3362 but the user/frontend doesn't know about that yet (e.g., the
3363 thread had been temporarily paused for some step-over), set up
3364 for reporting the stop now. */
5b6d1e4f 3365 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3366 {
3367 if (tp->state != THREAD_RUNNING)
3368 continue;
3369 if (tp->executing)
3370 continue;
c65d6b55 3371
08036331
PA
3372 /* Remove matching threads from the step-over queue, so
3373 start_step_over doesn't try to resume them
3374 automatically. */
3375 if (thread_is_in_step_over_chain (tp))
28d5518b 3376 global_thread_step_over_chain_remove (tp);
c65d6b55 3377
08036331
PA
3378 /* If the thread is stopped, but the user/frontend doesn't
3379 know about that yet, queue a pending event, as if the
3380 thread had just stopped now. Unless the thread already had
3381 a pending event. */
3382 if (!tp->suspend.waitstatus_pending_p)
3383 {
3384 tp->suspend.waitstatus_pending_p = 1;
3385 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3386 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3387 }
c65d6b55 3388
08036331
PA
3389 /* Clear the inline-frame state, since we're re-processing the
3390 stop. */
5b6d1e4f 3391 clear_inline_frame_state (tp);
c65d6b55 3392
08036331
PA
3393 /* If this thread was paused because some other thread was
3394 doing an inline-step over, let that finish first. Once
3395 that happens, we'll restart all threads and consume pending
3396 stop events then. */
3397 if (step_over_info_valid_p ())
3398 continue;
3399
3400 /* Otherwise we can process the (new) pending event now. Set
3401 it so this pending event is considered by
3402 do_target_wait. */
719546c4 3403 tp->resumed = true;
08036331 3404 }
252fbfc8
PA
3405}
3406
a07daef3
PA
3407static void
3408infrun_thread_thread_exit (struct thread_info *tp, int silent)
3409{
5b6d1e4f
PA
3410 if (target_last_proc_target == tp->inf->process_target ()
3411 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3412 nullify_last_target_wait_ptid ();
3413}
3414
0cbcdb96
PA
3415/* Delete the step resume, single-step and longjmp/exception resume
3416 breakpoints of TP. */
4e1c45ea 3417
0cbcdb96
PA
3418static void
3419delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3420{
0cbcdb96
PA
3421 delete_step_resume_breakpoint (tp);
3422 delete_exception_resume_breakpoint (tp);
34b7e8a6 3423 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3424}
3425
0cbcdb96
PA
3426/* If the target still has execution, call FUNC for each thread that
3427 just stopped. In all-stop, that's all the non-exited threads; in
3428 non-stop, that's the current thread, only. */
3429
3430typedef void (*for_each_just_stopped_thread_callback_func)
3431 (struct thread_info *tp);
4e1c45ea
PA
3432
3433static void
0cbcdb96 3434for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3435{
55f6301a 3436 if (!target_has_execution () || inferior_ptid == null_ptid)
4e1c45ea
PA
3437 return;
3438
fbea99ea 3439 if (target_is_non_stop_p ())
4e1c45ea 3440 {
0cbcdb96
PA
3441 /* If in non-stop mode, only the current thread stopped. */
3442 func (inferior_thread ());
4e1c45ea
PA
3443 }
3444 else
0cbcdb96 3445 {
0cbcdb96 3446 /* In all-stop mode, all threads have stopped. */
08036331
PA
3447 for (thread_info *tp : all_non_exited_threads ())
3448 func (tp);
0cbcdb96
PA
3449 }
3450}
3451
3452/* Delete the step resume and longjmp/exception resume breakpoints of
3453 the threads that just stopped. */
3454
3455static void
3456delete_just_stopped_threads_infrun_breakpoints (void)
3457{
3458 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3459}
3460
3461/* Delete the single-step breakpoints of the threads that just
3462 stopped. */
7c16b83e 3463
34b7e8a6
PA
3464static void
3465delete_just_stopped_threads_single_step_breakpoints (void)
3466{
3467 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3468}
3469
221e1a37 3470/* See infrun.h. */
223698f8 3471
221e1a37 3472void
223698f8
DE
3473print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3474 const struct target_waitstatus *ws)
3475{
e71daf80
SM
3476 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3477 waiton_ptid.pid (),
3478 waiton_ptid.lwp (),
3479 waiton_ptid.tid (),
3480 target_pid_to_str (waiton_ptid).c_str ());
3481 infrun_debug_printf (" %d.%ld.%ld [%s],",
3482 result_ptid.pid (),
3483 result_ptid.lwp (),
3484 result_ptid.tid (),
3485 target_pid_to_str (result_ptid).c_str ());
3486 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
223698f8
DE
3487}
3488
372316f1
PA
3489/* Select a thread at random, out of those which are resumed and have
3490 had events. */
3491
3492static struct thread_info *
5b6d1e4f 3493random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3494{
372316f1 3495 int num_events = 0;
08036331 3496
5b6d1e4f 3497 auto has_event = [&] (thread_info *tp)
08036331 3498 {
5b6d1e4f
PA
3499 return (tp->ptid.matches (waiton_ptid)
3500 && tp->resumed
08036331
PA
3501 && tp->suspend.waitstatus_pending_p);
3502 };
372316f1
PA
3503
3504 /* First see how many events we have. Count only resumed threads
3505 that have an event pending. */
5b6d1e4f 3506 for (thread_info *tp : inf->non_exited_threads ())
08036331 3507 if (has_event (tp))
372316f1
PA
3508 num_events++;
3509
3510 if (num_events == 0)
3511 return NULL;
3512
3513 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3514 int random_selector = (int) ((num_events * (double) rand ())
3515 / (RAND_MAX + 1.0));
372316f1 3516
1eb8556f
SM
3517 if (num_events > 1)
3518 infrun_debug_printf ("Found %d events, selecting #%d",
3519 num_events, random_selector);
372316f1
PA
3520
3521 /* Select the Nth thread that has had an event. */
5b6d1e4f 3522 for (thread_info *tp : inf->non_exited_threads ())
08036331 3523 if (has_event (tp))
372316f1 3524 if (random_selector-- == 0)
08036331 3525 return tp;
372316f1 3526
08036331 3527 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3528}
3529
3530/* Wrapper for target_wait that first checks whether threads have
3531 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3532 more events. INF is the inferior we're using to call target_wait
3533 on. */
372316f1
PA
3534
3535static ptid_t
5b6d1e4f 3536do_target_wait_1 (inferior *inf, ptid_t ptid,
b60cea74 3537 target_waitstatus *status, target_wait_flags options)
372316f1
PA
3538{
3539 ptid_t event_ptid;
3540 struct thread_info *tp;
3541
24ed6739
AB
3542 /* We know that we are looking for an event in the target of inferior
3543 INF, but we don't know which thread the event might come from. As
3544 such we want to make sure that INFERIOR_PTID is reset so that none of
3545 the wait code relies on it - doing so is always a mistake. */
3546 switch_to_inferior_no_thread (inf);
3547
372316f1
PA
3548 /* First check if there is a resumed thread with a wait status
3549 pending. */
d7e15655 3550 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3551 {
5b6d1e4f 3552 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3553 }
3554 else
3555 {
1eb8556f
SM
3556 infrun_debug_printf ("Waiting for specific thread %s.",
3557 target_pid_to_str (ptid).c_str ());
372316f1
PA
3558
3559 /* We have a specific thread to check. */
5b6d1e4f 3560 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3561 gdb_assert (tp != NULL);
3562 if (!tp->suspend.waitstatus_pending_p)
3563 tp = NULL;
3564 }
3565
3566 if (tp != NULL
3567 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3568 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3569 {
00431a78 3570 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3571 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3572 CORE_ADDR pc;
3573 int discard = 0;
3574
3575 pc = regcache_read_pc (regcache);
3576
3577 if (pc != tp->suspend.stop_pc)
3578 {
1eb8556f
SM
3579 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3580 target_pid_to_str (tp->ptid).c_str (),
3581 paddress (gdbarch, tp->suspend.stop_pc),
3582 paddress (gdbarch, pc));
372316f1
PA
3583 discard = 1;
3584 }
a01bda52 3585 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1 3586 {
1eb8556f
SM
3587 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3588 target_pid_to_str (tp->ptid).c_str (),
3589 paddress (gdbarch, pc));
372316f1
PA
3590
3591 discard = 1;
3592 }
3593
3594 if (discard)
3595 {
1eb8556f
SM
3596 infrun_debug_printf ("pending event of %s cancelled.",
3597 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3598
3599 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3600 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3601 }
3602 }
3603
3604 if (tp != NULL)
3605 {
1eb8556f
SM
3606 infrun_debug_printf ("Using pending wait status %s for %s.",
3607 target_waitstatus_to_string
3608 (&tp->suspend.waitstatus).c_str (),
3609 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3610
3611 /* Now that we've selected our final event LWP, un-adjust its PC
3612 if it was a software breakpoint (and the target doesn't
3613 always adjust the PC itself). */
3614 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3615 && !target_supports_stopped_by_sw_breakpoint ())
3616 {
3617 struct regcache *regcache;
3618 struct gdbarch *gdbarch;
3619 int decr_pc;
3620
00431a78 3621 regcache = get_thread_regcache (tp);
ac7936df 3622 gdbarch = regcache->arch ();
372316f1
PA
3623
3624 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3625 if (decr_pc != 0)
3626 {
3627 CORE_ADDR pc;
3628
3629 pc = regcache_read_pc (regcache);
3630 regcache_write_pc (regcache, pc + decr_pc);
3631 }
3632 }
3633
3634 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3635 *status = tp->suspend.waitstatus;
3636 tp->suspend.waitstatus_pending_p = 0;
3637
3638 /* Wake up the event loop again, until all pending events are
3639 processed. */
3640 if (target_is_async_p ())
3641 mark_async_event_handler (infrun_async_inferior_event_token);
3642 return tp->ptid;
3643 }
3644
3645 /* But if we don't find one, we'll have to wait. */
3646
d3a07122
SM
3647 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3648 a blocking wait. */
3649 if (!target_can_async_p ())
3650 options &= ~TARGET_WNOHANG;
3651
372316f1
PA
3652 if (deprecated_target_wait_hook)
3653 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3654 else
3655 event_ptid = target_wait (ptid, status, options);
3656
3657 return event_ptid;
3658}
3659
5b6d1e4f
PA
3660/* Wrapper for target_wait that first checks whether threads have
3661 pending statuses to report before actually asking the target for
b3e3a4c1 3662 more events. Polls for events from all inferiors/targets. */
5b6d1e4f
PA
3663
3664static bool
b60cea74
TT
3665do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3666 target_wait_flags options)
5b6d1e4f
PA
3667{
3668 int num_inferiors = 0;
3669 int random_selector;
3670
b3e3a4c1
SM
3671 /* For fairness, we pick the first inferior/target to poll at random
3672 out of all inferiors that may report events, and then continue
3673 polling the rest of the inferior list starting from that one in a
3674 circular fashion until the whole list is polled once. */
5b6d1e4f
PA
3675
3676 auto inferior_matches = [&wait_ptid] (inferior *inf)
3677 {
3678 return (inf->process_target () != NULL
5b6d1e4f
PA
3679 && ptid_t (inf->pid).matches (wait_ptid));
3680 };
3681
b3e3a4c1 3682 /* First see how many matching inferiors we have. */
5b6d1e4f
PA
3683 for (inferior *inf : all_inferiors ())
3684 if (inferior_matches (inf))
3685 num_inferiors++;
3686
3687 if (num_inferiors == 0)
3688 {
3689 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3690 return false;
3691 }
3692
b3e3a4c1 3693 /* Now randomly pick an inferior out of those that matched. */
5b6d1e4f
PA
3694 random_selector = (int)
3695 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3696
1eb8556f
SM
3697 if (num_inferiors > 1)
3698 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3699 num_inferiors, random_selector);
5b6d1e4f 3700
b3e3a4c1 3701 /* Select the Nth inferior that matched. */
5b6d1e4f
PA
3702
3703 inferior *selected = nullptr;
3704
3705 for (inferior *inf : all_inferiors ())
3706 if (inferior_matches (inf))
3707 if (random_selector-- == 0)
3708 {
3709 selected = inf;
3710 break;
3711 }
3712
b3e3a4c1 3713 /* Now poll for events out of each of the matching inferior's
5b6d1e4f
PA
3714 targets, starting from the selected one. */
3715
3716 auto do_wait = [&] (inferior *inf)
3717 {
5b6d1e4f
PA
3718 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3719 ecs->target = inf->process_target ();
3720 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3721 };
3722
b3e3a4c1
SM
3723 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3724 here spuriously after the target is all stopped and we've already
5b6d1e4f
PA
3725 reported the stop to the user, polling for events. */
3726 scoped_restore_current_thread restore_thread;
3727
3728 int inf_num = selected->num;
3729 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3730 if (inferior_matches (inf))
3731 if (do_wait (inf))
3732 return true;
3733
3734 for (inferior *inf = inferior_list;
3735 inf != NULL && inf->num < inf_num;
3736 inf = inf->next)
3737 if (inferior_matches (inf))
3738 if (do_wait (inf))
3739 return true;
3740
3741 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3742 return false;
3743}
3744
8ff53139
PA
3745/* An event reported by wait_one. */
3746
3747struct wait_one_event
3748{
3749 /* The target the event came out of. */
3750 process_stratum_target *target;
3751
3752 /* The PTID the event was for. */
3753 ptid_t ptid;
3754
3755 /* The waitstatus. */
3756 target_waitstatus ws;
3757};
3758
3759static bool handle_one (const wait_one_event &event);
ac7d717c 3760static void restart_threads (struct thread_info *event_thread);
8ff53139 3761
24291992
PA
3762/* Prepare and stabilize the inferior for detaching it. E.g.,
3763 detaching while a thread is displaced stepping is a recipe for
3764 crashing it, as nothing would readjust the PC out of the scratch
3765 pad. */
3766
3767void
3768prepare_for_detach (void)
3769{
3770 struct inferior *inf = current_inferior ();
f2907e49 3771 ptid_t pid_ptid = ptid_t (inf->pid);
8ff53139 3772 scoped_restore_current_thread restore_thread;
24291992 3773
9bcb1f16 3774 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3775
8ff53139
PA
3776 /* Remove all threads of INF from the global step-over chain. We
3777 want to stop any ongoing step-over, not start any new one. */
3778 thread_info *next;
3779 for (thread_info *tp = global_thread_step_over_chain_head;
3780 tp != nullptr;
3781 tp = next)
24291992 3782 {
8ff53139
PA
3783 next = global_thread_step_over_chain_next (tp);
3784 if (tp->inf == inf)
3785 global_thread_step_over_chain_remove (tp);
3786 }
24291992 3787
ac7d717c
PA
3788 /* If we were already in the middle of an inline step-over, and the
3789 thread stepping belongs to the inferior we're detaching, we need
3790 to restart the threads of other inferiors. */
3791 if (step_over_info.thread != -1)
3792 {
3793 infrun_debug_printf ("inline step-over in-process while detaching");
3794
3795 thread_info *thr = find_thread_global_id (step_over_info.thread);
3796 if (thr->inf == inf)
3797 {
3798 /* Since we removed threads of INF from the step-over chain,
3799 we know this won't start a step-over for INF. */
3800 clear_step_over_info ();
3801
3802 if (target_is_non_stop_p ())
3803 {
3804 /* Start a new step-over in another thread if there's
3805 one that needs it. */
3806 start_step_over ();
3807
3808 /* Restart all other threads (except the
3809 previously-stepping thread, since that one is still
3810 running). */
3811 if (!step_over_info_valid_p ())
3812 restart_threads (thr);
3813 }
3814 }
3815 }
3816
8ff53139
PA
3817 if (displaced_step_in_progress (inf))
3818 {
3819 infrun_debug_printf ("displaced-stepping in-process while detaching");
24291992 3820
8ff53139 3821 /* Stop threads currently displaced stepping, aborting it. */
24291992 3822
8ff53139
PA
3823 for (thread_info *thr : inf->non_exited_threads ())
3824 {
3825 if (thr->displaced_step_state.in_progress ())
3826 {
3827 if (thr->executing)
3828 {
3829 if (!thr->stop_requested)
3830 {
3831 target_stop (thr->ptid);
3832 thr->stop_requested = true;
3833 }
3834 }
3835 else
3836 thr->resumed = false;
3837 }
3838 }
24291992 3839
8ff53139
PA
3840 while (displaced_step_in_progress (inf))
3841 {
3842 wait_one_event event;
24291992 3843
8ff53139
PA
3844 event.target = inf->process_target ();
3845 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
24291992 3846
8ff53139
PA
3847 if (debug_infrun)
3848 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
24291992 3849
8ff53139
PA
3850 handle_one (event);
3851 }
24291992 3852
8ff53139
PA
3853 /* It's OK to leave some of the threads of INF stopped, since
3854 they'll be detached shortly. */
24291992 3855 }
24291992
PA
3856}
3857
cd0fc7c3 3858/* Wait for control to return from inferior to debugger.
ae123ec6 3859
cd0fc7c3
SS
3860 If inferior gets a signal, we may decide to start it up again
3861 instead of returning. That is why there is a loop in this function.
3862 When this function actually returns it means the inferior
3863 should be left stopped and GDB should read more commands. */
3864
5b6d1e4f
PA
3865static void
3866wait_for_inferior (inferior *inf)
cd0fc7c3 3867{
1eb8556f 3868 infrun_debug_printf ("wait_for_inferior ()");
527159b7 3869
4c41382a 3870 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3871
e6f5c25b
PA
3872 /* If an error happens while handling the event, propagate GDB's
3873 knowledge of the executing state to the frontend/user running
3874 state. */
5b6d1e4f
PA
3875 scoped_finish_thread_state finish_state
3876 (inf->process_target (), minus_one_ptid);
e6f5c25b 3877
c906108c
SS
3878 while (1)
3879 {
ae25568b
PA
3880 struct execution_control_state ecss;
3881 struct execution_control_state *ecs = &ecss;
29f49a6a 3882
ae25568b
PA
3883 memset (ecs, 0, sizeof (*ecs));
3884
ec9499be 3885 overlay_cache_invalid = 1;
ec9499be 3886
f15cb84a
YQ
3887 /* Flush target cache before starting to handle each event.
3888 Target was running and cache could be stale. This is just a
3889 heuristic. Running threads may modify target memory, but we
3890 don't get any event. */
3891 target_dcache_invalidate ();
3892
5b6d1e4f
PA
3893 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3894 ecs->target = inf->process_target ();
c906108c 3895
f00150c9 3896 if (debug_infrun)
5b6d1e4f 3897 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3898
cd0fc7c3
SS
3899 /* Now figure out what to do with the result of the result. */
3900 handle_inferior_event (ecs);
c906108c 3901
cd0fc7c3
SS
3902 if (!ecs->wait_some_more)
3903 break;
3904 }
4e1c45ea 3905
e6f5c25b 3906 /* No error, don't finish the state yet. */
731f534f 3907 finish_state.release ();
cd0fc7c3 3908}
c906108c 3909
d3d4baed
PA
3910/* Cleanup that reinstalls the readline callback handler, if the
3911 target is running in the background. If while handling the target
3912 event something triggered a secondary prompt, like e.g., a
3913 pagination prompt, we'll have removed the callback handler (see
3914 gdb_readline_wrapper_line). Need to do this as we go back to the
3915 event loop, ready to process further input. Note this has no
3916 effect if the handler hasn't actually been removed, because calling
3917 rl_callback_handler_install resets the line buffer, thus losing
3918 input. */
3919
3920static void
d238133d 3921reinstall_readline_callback_handler_cleanup ()
d3d4baed 3922{
3b12939d
PA
3923 struct ui *ui = current_ui;
3924
3925 if (!ui->async)
6c400b59
PA
3926 {
3927 /* We're not going back to the top level event loop yet. Don't
3928 install the readline callback, as it'd prep the terminal,
3929 readline-style (raw, noecho) (e.g., --batch). We'll install
3930 it the next time the prompt is displayed, when we're ready
3931 for input. */
3932 return;
3933 }
3934
3b12939d 3935 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3936 gdb_rl_callback_handler_reinstall ();
3937}
3938
243a9253
PA
3939/* Clean up the FSMs of threads that are now stopped. In non-stop,
3940 that's just the event thread. In all-stop, that's all threads. */
3941
3942static void
3943clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3944{
08036331
PA
3945 if (ecs->event_thread != NULL
3946 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3947 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3948
3949 if (!non_stop)
3950 {
08036331 3951 for (thread_info *thr : all_non_exited_threads ())
dda83cd7 3952 {
243a9253
PA
3953 if (thr->thread_fsm == NULL)
3954 continue;
3955 if (thr == ecs->event_thread)
3956 continue;
3957
00431a78 3958 switch_to_thread (thr);
46e3ed7f 3959 thr->thread_fsm->clean_up (thr);
243a9253
PA
3960 }
3961
3962 if (ecs->event_thread != NULL)
00431a78 3963 switch_to_thread (ecs->event_thread);
243a9253
PA
3964 }
3965}
3966
3b12939d
PA
3967/* Helper for all_uis_check_sync_execution_done that works on the
3968 current UI. */
3969
3970static void
3971check_curr_ui_sync_execution_done (void)
3972{
3973 struct ui *ui = current_ui;
3974
3975 if (ui->prompt_state == PROMPT_NEEDED
3976 && ui->async
3977 && !gdb_in_secondary_prompt_p (ui))
3978 {
223ffa71 3979 target_terminal::ours ();
76727919 3980 gdb::observers::sync_execution_done.notify ();
3eb7562a 3981 ui_register_input_event_handler (ui);
3b12939d
PA
3982 }
3983}
3984
3985/* See infrun.h. */
3986
3987void
3988all_uis_check_sync_execution_done (void)
3989{
0e454242 3990 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3991 {
3992 check_curr_ui_sync_execution_done ();
3993 }
3994}
3995
a8836c93
PA
3996/* See infrun.h. */
3997
3998void
3999all_uis_on_sync_execution_starting (void)
4000{
0e454242 4001 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
4002 {
4003 if (current_ui->prompt_state == PROMPT_NEEDED)
4004 async_disable_stdin ();
4005 }
4006}
4007
1777feb0 4008/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 4009 event loop whenever a change of state is detected on the file
1777feb0
MS
4010 descriptor corresponding to the target. It can be called more than
4011 once to complete a single execution command. In such cases we need
4012 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
4013 that this function is called for a single execution command, then
4014 report to the user that the inferior has stopped, and do the
1777feb0 4015 necessary cleanups. */
43ff13b4
JM
4016
4017void
b1a35af2 4018fetch_inferior_event ()
43ff13b4 4019{
3ec3145c
SM
4020 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4021
0d1e5fa7 4022 struct execution_control_state ecss;
a474d7c2 4023 struct execution_control_state *ecs = &ecss;
0f641c01 4024 int cmd_done = 0;
43ff13b4 4025
0d1e5fa7
PA
4026 memset (ecs, 0, sizeof (*ecs));
4027
c61db772
PA
4028 /* Events are always processed with the main UI as current UI. This
4029 way, warnings, debug output, etc. are always consistently sent to
4030 the main console. */
4b6749b9 4031 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 4032
b78b3a29
TBA
4033 /* Temporarily disable pagination. Otherwise, the user would be
4034 given an option to press 'q' to quit, which would cause an early
4035 exit and could leave GDB in a half-baked state. */
4036 scoped_restore save_pagination
4037 = make_scoped_restore (&pagination_enabled, false);
4038
d3d4baed 4039 /* End up with readline processing input, if necessary. */
d238133d
TT
4040 {
4041 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4042
4043 /* We're handling a live event, so make sure we're doing live
4044 debugging. If we're looking at traceframes while the target is
4045 running, we're going to need to get back to that mode after
4046 handling the event. */
4047 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4048 if (non_stop)
4049 {
4050 maybe_restore_traceframe.emplace ();
4051 set_current_traceframe (-1);
4052 }
43ff13b4 4053
873657b9
PA
4054 /* The user/frontend should not notice a thread switch due to
4055 internal events. Make sure we revert to the user selected
4056 thread and frame after handling the event and running any
4057 breakpoint commands. */
4058 scoped_restore_current_thread restore_thread;
d238133d
TT
4059
4060 overlay_cache_invalid = 1;
4061 /* Flush target cache before starting to handle each event. Target
4062 was running and cache could be stale. This is just a heuristic.
4063 Running threads may modify target memory, but we don't get any
4064 event. */
4065 target_dcache_invalidate ();
4066
4067 scoped_restore save_exec_dir
4068 = make_scoped_restore (&execution_direction,
4069 target_execution_direction ());
4070
1192f124
SM
4071 /* Allow targets to pause their resumed threads while we handle
4072 the event. */
4073 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4074
5b6d1e4f 4075 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
1192f124
SM
4076 {
4077 infrun_debug_printf ("do_target_wait returned no event");
4078 disable_commit_resumed.reset_and_commit ();
4079 return;
4080 }
5b6d1e4f
PA
4081
4082 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4083
4084 /* Switch to the target that generated the event, so we can do
7f08fd51
TBA
4085 target calls. */
4086 switch_to_target_no_thread (ecs->target);
d238133d
TT
4087
4088 if (debug_infrun)
5b6d1e4f 4089 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4090
4091 /* If an error happens while handling the event, propagate GDB's
4092 knowledge of the executing state to the frontend/user running
4093 state. */
4094 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4095 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4096
979a0d13 4097 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4098 still for the thread which has thrown the exception. */
4099 auto defer_bpstat_clear
4100 = make_scope_exit (bpstat_clear_actions);
4101 auto defer_delete_threads
4102 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4103
4104 /* Now figure out what to do with the result of the result. */
4105 handle_inferior_event (ecs);
4106
4107 if (!ecs->wait_some_more)
4108 {
5b6d1e4f 4109 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
758cb810 4110 bool should_stop = true;
d238133d 4111 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4112
d238133d 4113 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4114
d238133d
TT
4115 if (thr != NULL)
4116 {
4117 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4118
d238133d 4119 if (thread_fsm != NULL)
46e3ed7f 4120 should_stop = thread_fsm->should_stop (thr);
d238133d 4121 }
243a9253 4122
d238133d
TT
4123 if (!should_stop)
4124 {
4125 keep_going (ecs);
4126 }
4127 else
4128 {
46e3ed7f 4129 bool should_notify_stop = true;
d238133d 4130 int proceeded = 0;
1840d81a 4131
d238133d 4132 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4133
d238133d 4134 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4135 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4136
d238133d
TT
4137 if (should_notify_stop)
4138 {
4139 /* We may not find an inferior if this was a process exit. */
4140 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4141 proceeded = normal_stop ();
4142 }
243a9253 4143
d238133d
TT
4144 if (!proceeded)
4145 {
b1a35af2 4146 inferior_event_handler (INF_EXEC_COMPLETE);
d238133d
TT
4147 cmd_done = 1;
4148 }
873657b9
PA
4149
4150 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4151 previously selected thread is gone. We have two
4152 choices - switch to no thread selected, or restore the
4153 previously selected thread (now exited). We chose the
4154 later, just because that's what GDB used to do. After
4155 this, "info threads" says "The current thread <Thread
4156 ID 2> has terminated." instead of "No thread
4157 selected.". */
4158 if (!non_stop
4159 && cmd_done
4160 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4161 restore_thread.dont_restore ();
d238133d
TT
4162 }
4163 }
4f8d22e3 4164
d238133d
TT
4165 defer_delete_threads.release ();
4166 defer_bpstat_clear.release ();
29f49a6a 4167
d238133d
TT
4168 /* No error, don't finish the thread states yet. */
4169 finish_state.release ();
731f534f 4170
1192f124
SM
4171 disable_commit_resumed.reset_and_commit ();
4172
d238133d
TT
4173 /* This scope is used to ensure that readline callbacks are
4174 reinstalled here. */
4175 }
4f8d22e3 4176
3b12939d
PA
4177 /* If a UI was in sync execution mode, and now isn't, restore its
4178 prompt (a synchronous execution command has finished, and we're
4179 ready for input). */
4180 all_uis_check_sync_execution_done ();
0f641c01
PA
4181
4182 if (cmd_done
0f641c01 4183 && exec_done_display_p
00431a78
PA
4184 && (inferior_ptid == null_ptid
4185 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4186 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4187}
4188
29734269
SM
4189/* See infrun.h. */
4190
edb3359d 4191void
29734269
SM
4192set_step_info (thread_info *tp, struct frame_info *frame,
4193 struct symtab_and_line sal)
edb3359d 4194{
29734269
SM
4195 /* This can be removed once this function no longer implicitly relies on the
4196 inferior_ptid value. */
4197 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4198
16c381f0
JK
4199 tp->control.step_frame_id = get_frame_id (frame);
4200 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4201
4202 tp->current_symtab = sal.symtab;
4203 tp->current_line = sal.line;
4204}
4205
0d1e5fa7
PA
4206/* Clear context switchable stepping state. */
4207
4208void
4e1c45ea 4209init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4210{
7f5ef605 4211 tss->stepped_breakpoint = 0;
0d1e5fa7 4212 tss->stepping_over_breakpoint = 0;
963f9c80 4213 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4214 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4215}
4216
ab1ddbcf 4217/* See infrun.h. */
c32c64b7 4218
6efcd9a8 4219void
5b6d1e4f
PA
4220set_last_target_status (process_stratum_target *target, ptid_t ptid,
4221 target_waitstatus status)
c32c64b7 4222{
5b6d1e4f 4223 target_last_proc_target = target;
c32c64b7
DE
4224 target_last_wait_ptid = ptid;
4225 target_last_waitstatus = status;
4226}
4227
ab1ddbcf 4228/* See infrun.h. */
e02bc4cc
DS
4229
4230void
5b6d1e4f
PA
4231get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4232 target_waitstatus *status)
e02bc4cc 4233{
5b6d1e4f
PA
4234 if (target != nullptr)
4235 *target = target_last_proc_target;
ab1ddbcf
PA
4236 if (ptid != nullptr)
4237 *ptid = target_last_wait_ptid;
4238 if (status != nullptr)
4239 *status = target_last_waitstatus;
e02bc4cc
DS
4240}
4241
ab1ddbcf
PA
4242/* See infrun.h. */
4243
ac264b3b
MS
4244void
4245nullify_last_target_wait_ptid (void)
4246{
5b6d1e4f 4247 target_last_proc_target = nullptr;
ac264b3b 4248 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4249 target_last_waitstatus = {};
ac264b3b
MS
4250}
4251
dcf4fbde 4252/* Switch thread contexts. */
dd80620e
MS
4253
4254static void
00431a78 4255context_switch (execution_control_state *ecs)
dd80620e 4256{
1eb8556f 4257 if (ecs->ptid != inferior_ptid
5b6d1e4f
PA
4258 && (inferior_ptid == null_ptid
4259 || ecs->event_thread != inferior_thread ()))
fd48f117 4260 {
1eb8556f
SM
4261 infrun_debug_printf ("Switching context from %s to %s",
4262 target_pid_to_str (inferior_ptid).c_str (),
4263 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4264 }
4265
00431a78 4266 switch_to_thread (ecs->event_thread);
dd80620e
MS
4267}
4268
d8dd4d5f
PA
4269/* If the target can't tell whether we've hit breakpoints
4270 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4271 check whether that could have been caused by a breakpoint. If so,
4272 adjust the PC, per gdbarch_decr_pc_after_break. */
4273
4fa8626c 4274static void
d8dd4d5f
PA
4275adjust_pc_after_break (struct thread_info *thread,
4276 struct target_waitstatus *ws)
4fa8626c 4277{
24a73cce
UW
4278 struct regcache *regcache;
4279 struct gdbarch *gdbarch;
118e6252 4280 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4281
4fa8626c
DJ
4282 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4283 we aren't, just return.
9709f61c
DJ
4284
4285 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4286 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4287 implemented by software breakpoints should be handled through the normal
4288 breakpoint layer.
8fb3e588 4289
4fa8626c
DJ
4290 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4291 different signals (SIGILL or SIGEMT for instance), but it is less
4292 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4293 gdbarch_decr_pc_after_break. I don't know any specific target that
4294 generates these signals at breakpoints (the code has been in GDB since at
4295 least 1992) so I can not guess how to handle them here.
8fb3e588 4296
e6cf7916
UW
4297 In earlier versions of GDB, a target with
4298 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4299 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4300 target with both of these set in GDB history, and it seems unlikely to be
4301 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4302
d8dd4d5f 4303 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4304 return;
4305
d8dd4d5f 4306 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4307 return;
4308
4058b839
PA
4309 /* In reverse execution, when a breakpoint is hit, the instruction
4310 under it has already been de-executed. The reported PC always
4311 points at the breakpoint address, so adjusting it further would
4312 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4313 architecture:
4314
4315 B1 0x08000000 : INSN1
4316 B2 0x08000001 : INSN2
4317 0x08000002 : INSN3
4318 PC -> 0x08000003 : INSN4
4319
4320 Say you're stopped at 0x08000003 as above. Reverse continuing
4321 from that point should hit B2 as below. Reading the PC when the
4322 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4323 been de-executed already.
4324
4325 B1 0x08000000 : INSN1
4326 B2 PC -> 0x08000001 : INSN2
4327 0x08000002 : INSN3
4328 0x08000003 : INSN4
4329
4330 We can't apply the same logic as for forward execution, because
4331 we would wrongly adjust the PC to 0x08000000, since there's a
4332 breakpoint at PC - 1. We'd then report a hit on B1, although
4333 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4334 behaviour. */
4335 if (execution_direction == EXEC_REVERSE)
4336 return;
4337
1cf4d951
PA
4338 /* If the target can tell whether the thread hit a SW breakpoint,
4339 trust it. Targets that can tell also adjust the PC
4340 themselves. */
4341 if (target_supports_stopped_by_sw_breakpoint ())
4342 return;
4343
4344 /* Note that relying on whether a breakpoint is planted in memory to
4345 determine this can fail. E.g,. the breakpoint could have been
4346 removed since. Or the thread could have been told to step an
4347 instruction the size of a breakpoint instruction, and only
4348 _after_ was a breakpoint inserted at its address. */
4349
24a73cce
UW
4350 /* If this target does not decrement the PC after breakpoints, then
4351 we have nothing to do. */
00431a78 4352 regcache = get_thread_regcache (thread);
ac7936df 4353 gdbarch = regcache->arch ();
118e6252 4354
527a273a 4355 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4356 if (decr_pc == 0)
24a73cce
UW
4357 return;
4358
8b86c959 4359 const address_space *aspace = regcache->aspace ();
6c95b8df 4360
8aad930b
AC
4361 /* Find the location where (if we've hit a breakpoint) the
4362 breakpoint would be. */
118e6252 4363 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4364
1cf4d951
PA
4365 /* If the target can't tell whether a software breakpoint triggered,
4366 fallback to figuring it out based on breakpoints we think were
4367 inserted in the target, and on whether the thread was stepped or
4368 continued. */
4369
1c5cfe86
PA
4370 /* Check whether there actually is a software breakpoint inserted at
4371 that location.
4372
4373 If in non-stop mode, a race condition is possible where we've
4374 removed a breakpoint, but stop events for that breakpoint were
4375 already queued and arrive later. To suppress those spurious
4376 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4377 and retire them after a number of stop events are reported. Note
4378 this is an heuristic and can thus get confused. The real fix is
4379 to get the "stopped by SW BP and needs adjustment" info out of
4380 the target/kernel (and thus never reach here; see above). */
6c95b8df 4381 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4382 || (target_is_non_stop_p ()
4383 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4384 {
07036511 4385 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4386
8213266a 4387 if (record_full_is_used ())
07036511
TT
4388 restore_operation_disable.emplace
4389 (record_full_gdb_operation_disable_set ());
96429cc8 4390
1c0fdd0e
UW
4391 /* When using hardware single-step, a SIGTRAP is reported for both
4392 a completed single-step and a software breakpoint. Need to
4393 differentiate between the two, as the latter needs adjusting
4394 but the former does not.
4395
4396 The SIGTRAP can be due to a completed hardware single-step only if
4397 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4398 - this thread is currently being stepped
4399
4400 If any of these events did not occur, we must have stopped due
4401 to hitting a software breakpoint, and have to back up to the
4402 breakpoint address.
4403
4404 As a special case, we could have hardware single-stepped a
4405 software breakpoint. In this case (prev_pc == breakpoint_pc),
4406 we also need to back up to the breakpoint address. */
4407
d8dd4d5f
PA
4408 if (thread_has_single_step_breakpoints_set (thread)
4409 || !currently_stepping (thread)
4410 || (thread->stepped_breakpoint
4411 && thread->prev_pc == breakpoint_pc))
515630c5 4412 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4413 }
4fa8626c
DJ
4414}
4415
c4464ade 4416static bool
edb3359d
DJ
4417stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4418{
4419 for (frame = get_prev_frame (frame);
4420 frame != NULL;
4421 frame = get_prev_frame (frame))
4422 {
4423 if (frame_id_eq (get_frame_id (frame), step_frame_id))
c4464ade
SM
4424 return true;
4425
edb3359d
DJ
4426 if (get_frame_type (frame) != INLINE_FRAME)
4427 break;
4428 }
4429
c4464ade 4430 return false;
edb3359d
DJ
4431}
4432
4a4c04f1
BE
4433/* Look for an inline frame that is marked for skip.
4434 If PREV_FRAME is TRUE start at the previous frame,
4435 otherwise start at the current frame. Stop at the
4436 first non-inline frame, or at the frame where the
4437 step started. */
4438
4439static bool
4440inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4441{
4442 struct frame_info *frame = get_current_frame ();
4443
4444 if (prev_frame)
4445 frame = get_prev_frame (frame);
4446
4447 for (; frame != NULL; frame = get_prev_frame (frame))
4448 {
4449 const char *fn = NULL;
4450 symtab_and_line sal;
4451 struct symbol *sym;
4452
4453 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4454 break;
4455 if (get_frame_type (frame) != INLINE_FRAME)
4456 break;
4457
4458 sal = find_frame_sal (frame);
4459 sym = get_frame_function (frame);
4460
4461 if (sym != NULL)
4462 fn = sym->print_name ();
4463
4464 if (sal.line != 0
4465 && function_name_is_marked_for_skip (fn, sal))
4466 return true;
4467 }
4468
4469 return false;
4470}
4471
c65d6b55
PA
4472/* If the event thread has the stop requested flag set, pretend it
4473 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4474 target_stop). */
4475
4476static bool
4477handle_stop_requested (struct execution_control_state *ecs)
4478{
4479 if (ecs->event_thread->stop_requested)
4480 {
4481 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4482 ecs->ws.value.sig = GDB_SIGNAL_0;
4483 handle_signal_stop (ecs);
4484 return true;
4485 }
4486 return false;
4487}
4488
a96d9b2e 4489/* Auxiliary function that handles syscall entry/return events.
c4464ade
SM
4490 It returns true if the inferior should keep going (and GDB
4491 should ignore the event), or false if the event deserves to be
a96d9b2e 4492 processed. */
ca2163eb 4493
c4464ade 4494static bool
ca2163eb 4495handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4496{
ca2163eb 4497 struct regcache *regcache;
ca2163eb
PA
4498 int syscall_number;
4499
00431a78 4500 context_switch (ecs);
ca2163eb 4501
00431a78 4502 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4503 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4504 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4505
a96d9b2e
SDJ
4506 if (catch_syscall_enabled () > 0
4507 && catching_syscall_number (syscall_number) > 0)
4508 {
1eb8556f 4509 infrun_debug_printf ("syscall number=%d", syscall_number);
a96d9b2e 4510
16c381f0 4511 ecs->event_thread->control.stop_bpstat
a01bda52 4512 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4513 ecs->event_thread->suspend.stop_pc,
4514 ecs->event_thread, &ecs->ws);
ab04a2af 4515
c65d6b55 4516 if (handle_stop_requested (ecs))
c4464ade 4517 return false;
c65d6b55 4518
ce12b012 4519 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4520 {
4521 /* Catchpoint hit. */
c4464ade 4522 return false;
ca2163eb 4523 }
a96d9b2e 4524 }
ca2163eb 4525
c65d6b55 4526 if (handle_stop_requested (ecs))
c4464ade 4527 return false;
c65d6b55 4528
ca2163eb 4529 /* If no catchpoint triggered for this, then keep going. */
ca2163eb 4530 keep_going (ecs);
c4464ade
SM
4531
4532 return true;
a96d9b2e
SDJ
4533}
4534
7e324e48
GB
4535/* Lazily fill in the execution_control_state's stop_func_* fields. */
4536
4537static void
4538fill_in_stop_func (struct gdbarch *gdbarch,
4539 struct execution_control_state *ecs)
4540{
4541 if (!ecs->stop_func_filled_in)
4542 {
98a617f8 4543 const block *block;
fe830662 4544 const general_symbol_info *gsi;
98a617f8 4545
7e324e48
GB
4546 /* Don't care about return value; stop_func_start and stop_func_name
4547 will both be 0 if it doesn't work. */
fe830662
TT
4548 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4549 &gsi,
4550 &ecs->stop_func_start,
4551 &ecs->stop_func_end,
4552 &block);
4553 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
98a617f8
KB
4554
4555 /* The call to find_pc_partial_function, above, will set
4556 stop_func_start and stop_func_end to the start and end
4557 of the range containing the stop pc. If this range
4558 contains the entry pc for the block (which is always the
4559 case for contiguous blocks), advance stop_func_start past
4560 the function's start offset and entrypoint. Note that
4561 stop_func_start is NOT advanced when in a range of a
4562 non-contiguous block that does not contain the entry pc. */
4563 if (block != nullptr
4564 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4565 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4566 {
4567 ecs->stop_func_start
4568 += gdbarch_deprecated_function_start_offset (gdbarch);
4569
4570 if (gdbarch_skip_entrypoint_p (gdbarch))
4571 ecs->stop_func_start
4572 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4573 }
591a12a1 4574
7e324e48
GB
4575 ecs->stop_func_filled_in = 1;
4576 }
4577}
4578
4f5d7f63 4579
00431a78 4580/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4581
4582static enum stop_kind
00431a78 4583get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4584{
5b6d1e4f 4585 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4586
4587 gdb_assert (inf != NULL);
4588 return inf->control.stop_soon;
4589}
4590
5b6d1e4f
PA
4591/* Poll for one event out of the current target. Store the resulting
4592 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4593
4594static ptid_t
5b6d1e4f 4595poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4596{
4597 ptid_t event_ptid;
372316f1
PA
4598
4599 overlay_cache_invalid = 1;
4600
4601 /* Flush target cache before starting to handle each event.
4602 Target was running and cache could be stale. This is just a
4603 heuristic. Running threads may modify target memory, but we
4604 don't get any event. */
4605 target_dcache_invalidate ();
4606
4607 if (deprecated_target_wait_hook)
5b6d1e4f 4608 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4609 else
5b6d1e4f 4610 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4611
4612 if (debug_infrun)
5b6d1e4f 4613 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4614
4615 return event_ptid;
4616}
4617
5b6d1e4f
PA
4618/* Wait for one event out of any target. */
4619
4620static wait_one_event
4621wait_one ()
4622{
4623 while (1)
4624 {
4625 for (inferior *inf : all_inferiors ())
4626 {
4627 process_stratum_target *target = inf->process_target ();
4628 if (target == NULL
4629 || !target->is_async_p ()
4630 || !target->threads_executing)
4631 continue;
4632
4633 switch_to_inferior_no_thread (inf);
4634
4635 wait_one_event event;
4636 event.target = target;
4637 event.ptid = poll_one_curr_target (&event.ws);
4638
4639 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4640 {
4641 /* If nothing is resumed, remove the target from the
4642 event loop. */
4643 target_async (0);
4644 }
4645 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4646 return event;
4647 }
4648
4649 /* Block waiting for some event. */
4650
4651 fd_set readfds;
4652 int nfds = 0;
4653
4654 FD_ZERO (&readfds);
4655
4656 for (inferior *inf : all_inferiors ())
4657 {
4658 process_stratum_target *target = inf->process_target ();
4659 if (target == NULL
4660 || !target->is_async_p ()
4661 || !target->threads_executing)
4662 continue;
4663
4664 int fd = target->async_wait_fd ();
4665 FD_SET (fd, &readfds);
4666 if (nfds <= fd)
4667 nfds = fd + 1;
4668 }
4669
4670 if (nfds == 0)
4671 {
4672 /* No waitable targets left. All must be stopped. */
4673 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4674 }
4675
4676 QUIT;
4677
4678 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4679 if (numfds < 0)
4680 {
4681 if (errno == EINTR)
4682 continue;
4683 else
4684 perror_with_name ("interruptible_select");
4685 }
4686 }
4687}
4688
372316f1
PA
4689/* Save the thread's event and stop reason to process it later. */
4690
4691static void
5b6d1e4f 4692save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4693{
1eb8556f
SM
4694 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4695 target_waitstatus_to_string (ws).c_str (),
4696 tp->ptid.pid (),
4697 tp->ptid.lwp (),
4698 tp->ptid.tid ());
372316f1
PA
4699
4700 /* Record for later. */
4701 tp->suspend.waitstatus = *ws;
4702 tp->suspend.waitstatus_pending_p = 1;
4703
00431a78 4704 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4705 const address_space *aspace = regcache->aspace ();
372316f1
PA
4706
4707 if (ws->kind == TARGET_WAITKIND_STOPPED
4708 && ws->value.sig == GDB_SIGNAL_TRAP)
4709 {
4710 CORE_ADDR pc = regcache_read_pc (regcache);
4711
4712 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4713
18493a00
PA
4714 scoped_restore_current_thread restore_thread;
4715 switch_to_thread (tp);
4716
4717 if (target_stopped_by_watchpoint ())
372316f1
PA
4718 {
4719 tp->suspend.stop_reason
4720 = TARGET_STOPPED_BY_WATCHPOINT;
4721 }
4722 else if (target_supports_stopped_by_sw_breakpoint ()
18493a00 4723 && target_stopped_by_sw_breakpoint ())
372316f1
PA
4724 {
4725 tp->suspend.stop_reason
4726 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4727 }
4728 else if (target_supports_stopped_by_hw_breakpoint ()
18493a00 4729 && target_stopped_by_hw_breakpoint ())
372316f1
PA
4730 {
4731 tp->suspend.stop_reason
4732 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4733 }
4734 else if (!target_supports_stopped_by_hw_breakpoint ()
4735 && hardware_breakpoint_inserted_here_p (aspace,
4736 pc))
4737 {
4738 tp->suspend.stop_reason
4739 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4740 }
4741 else if (!target_supports_stopped_by_sw_breakpoint ()
4742 && software_breakpoint_inserted_here_p (aspace,
4743 pc))
4744 {
4745 tp->suspend.stop_reason
4746 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4747 }
4748 else if (!thread_has_single_step_breakpoints_set (tp)
4749 && currently_stepping (tp))
4750 {
4751 tp->suspend.stop_reason
4752 = TARGET_STOPPED_BY_SINGLE_STEP;
4753 }
4754 }
4755}
4756
293b3ebc
TBA
4757/* Mark the non-executing threads accordingly. In all-stop, all
4758 threads of all processes are stopped when we get any event
4759 reported. In non-stop mode, only the event thread stops. */
4760
4761static void
4762mark_non_executing_threads (process_stratum_target *target,
4763 ptid_t event_ptid,
4764 struct target_waitstatus ws)
4765{
4766 ptid_t mark_ptid;
4767
4768 if (!target_is_non_stop_p ())
4769 mark_ptid = minus_one_ptid;
4770 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4771 || ws.kind == TARGET_WAITKIND_EXITED)
4772 {
4773 /* If we're handling a process exit in non-stop mode, even
4774 though threads haven't been deleted yet, one would think
4775 that there is nothing to do, as threads of the dead process
4776 will be soon deleted, and threads of any other process were
4777 left running. However, on some targets, threads survive a
4778 process exit event. E.g., for the "checkpoint" command,
4779 when the current checkpoint/fork exits, linux-fork.c
4780 automatically switches to another fork from within
4781 target_mourn_inferior, by associating the same
4782 inferior/thread to another fork. We haven't mourned yet at
4783 this point, but we must mark any threads left in the
4784 process as not-executing so that finish_thread_state marks
4785 them stopped (in the user's perspective) if/when we present
4786 the stop to the user. */
4787 mark_ptid = ptid_t (event_ptid.pid ());
4788 }
4789 else
4790 mark_ptid = event_ptid;
4791
4792 set_executing (target, mark_ptid, false);
4793
4794 /* Likewise the resumed flag. */
4795 set_resumed (target, mark_ptid, false);
4796}
4797
d758e62c
PA
4798/* Handle one event after stopping threads. If the eventing thread
4799 reports back any interesting event, we leave it pending. If the
4800 eventing thread was in the middle of a displaced step, we
8ff53139
PA
4801 cancel/finish it, and unless the thread's inferior is being
4802 detached, put the thread back in the step-over chain. Returns true
4803 if there are no resumed threads left in the target (thus there's no
4804 point in waiting further), false otherwise. */
d758e62c
PA
4805
4806static bool
4807handle_one (const wait_one_event &event)
4808{
4809 infrun_debug_printf
4810 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4811 target_pid_to_str (event.ptid).c_str ());
4812
4813 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4814 {
4815 /* All resumed threads exited. */
4816 return true;
4817 }
4818 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4819 || event.ws.kind == TARGET_WAITKIND_EXITED
4820 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4821 {
4822 /* One thread/process exited/signalled. */
4823
4824 thread_info *t = nullptr;
4825
4826 /* The target may have reported just a pid. If so, try
4827 the first non-exited thread. */
4828 if (event.ptid.is_pid ())
4829 {
4830 int pid = event.ptid.pid ();
4831 inferior *inf = find_inferior_pid (event.target, pid);
4832 for (thread_info *tp : inf->non_exited_threads ())
4833 {
4834 t = tp;
4835 break;
4836 }
4837
4838 /* If there is no available thread, the event would
4839 have to be appended to a per-inferior event list,
4840 which does not exist (and if it did, we'd have
4841 to adjust run control command to be able to
4842 resume such an inferior). We assert here instead
4843 of going into an infinite loop. */
4844 gdb_assert (t != nullptr);
4845
4846 infrun_debug_printf
4847 ("using %s", target_pid_to_str (t->ptid).c_str ());
4848 }
4849 else
4850 {
4851 t = find_thread_ptid (event.target, event.ptid);
4852 /* Check if this is the first time we see this thread.
4853 Don't bother adding if it individually exited. */
4854 if (t == nullptr
4855 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4856 t = add_thread (event.target, event.ptid);
4857 }
4858
4859 if (t != nullptr)
4860 {
4861 /* Set the threads as non-executing to avoid
4862 another stop attempt on them. */
4863 switch_to_thread_no_regs (t);
4864 mark_non_executing_threads (event.target, event.ptid,
4865 event.ws);
4866 save_waitstatus (t, &event.ws);
4867 t->stop_requested = false;
4868 }
4869 }
4870 else
4871 {
4872 thread_info *t = find_thread_ptid (event.target, event.ptid);
4873 if (t == NULL)
4874 t = add_thread (event.target, event.ptid);
4875
4876 t->stop_requested = 0;
4877 t->executing = 0;
4878 t->resumed = false;
4879 t->control.may_range_step = 0;
4880
4881 /* This may be the first time we see the inferior report
4882 a stop. */
4883 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4884 if (inf->needs_setup)
4885 {
4886 switch_to_thread_no_regs (t);
4887 setup_inferior (0);
4888 }
4889
4890 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4891 && event.ws.value.sig == GDB_SIGNAL_0)
4892 {
4893 /* We caught the event that we intended to catch, so
4894 there's no event pending. */
4895 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4896 t->suspend.waitstatus_pending_p = 0;
4897
4898 if (displaced_step_finish (t, GDB_SIGNAL_0)
4899 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4900 {
4901 /* Add it back to the step-over queue. */
4902 infrun_debug_printf
4903 ("displaced-step of %s canceled",
4904 target_pid_to_str (t->ptid).c_str ());
4905
4906 t->control.trap_expected = 0;
8ff53139
PA
4907 if (!t->inf->detaching)
4908 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4909 }
4910 }
4911 else
4912 {
4913 enum gdb_signal sig;
4914 struct regcache *regcache;
4915
4916 infrun_debug_printf
4917 ("target_wait %s, saving status for %d.%ld.%ld",
4918 target_waitstatus_to_string (&event.ws).c_str (),
4919 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4920
4921 /* Record for later. */
4922 save_waitstatus (t, &event.ws);
4923
4924 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4925 ? event.ws.value.sig : GDB_SIGNAL_0);
4926
4927 if (displaced_step_finish (t, sig)
4928 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4929 {
4930 /* Add it back to the step-over queue. */
4931 t->control.trap_expected = 0;
8ff53139
PA
4932 if (!t->inf->detaching)
4933 global_thread_step_over_chain_enqueue (t);
d758e62c
PA
4934 }
4935
4936 regcache = get_thread_regcache (t);
4937 t->suspend.stop_pc = regcache_read_pc (regcache);
4938
4939 infrun_debug_printf ("saved stop_pc=%s for %s "
4940 "(currently_stepping=%d)",
4941 paddress (target_gdbarch (),
4942 t->suspend.stop_pc),
4943 target_pid_to_str (t->ptid).c_str (),
4944 currently_stepping (t));
4945 }
4946 }
4947
4948 return false;
4949}
4950
6efcd9a8 4951/* See infrun.h. */
372316f1 4952
6efcd9a8 4953void
372316f1
PA
4954stop_all_threads (void)
4955{
4956 /* We may need multiple passes to discover all threads. */
4957 int pass;
4958 int iterations = 0;
372316f1 4959
53cccef1 4960 gdb_assert (exists_non_stop_target ());
372316f1 4961
1eb8556f 4962 infrun_debug_printf ("starting");
372316f1 4963
00431a78 4964 scoped_restore_current_thread restore_thread;
372316f1 4965
6ad82919
TBA
4966 /* Enable thread events of all targets. */
4967 for (auto *target : all_non_exited_process_targets ())
4968 {
4969 switch_to_target_no_thread (target);
4970 target_thread_events (true);
4971 }
4972
4973 SCOPE_EXIT
4974 {
4975 /* Disable thread events of all targets. */
4976 for (auto *target : all_non_exited_process_targets ())
4977 {
4978 switch_to_target_no_thread (target);
4979 target_thread_events (false);
4980 }
4981
17417fb0 4982 /* Use debug_prefixed_printf directly to get a meaningful function
dda83cd7 4983 name. */
6ad82919 4984 if (debug_infrun)
17417fb0 4985 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
6ad82919 4986 };
65706a29 4987
372316f1
PA
4988 /* Request threads to stop, and then wait for the stops. Because
4989 threads we already know about can spawn more threads while we're
4990 trying to stop them, and we only learn about new threads when we
4991 update the thread list, do this in a loop, and keep iterating
4992 until two passes find no threads that need to be stopped. */
4993 for (pass = 0; pass < 2; pass++, iterations++)
4994 {
1eb8556f 4995 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
372316f1
PA
4996 while (1)
4997 {
29d6859f 4998 int waits_needed = 0;
372316f1 4999
a05575d3
TBA
5000 for (auto *target : all_non_exited_process_targets ())
5001 {
5002 switch_to_target_no_thread (target);
5003 update_thread_list ();
5004 }
372316f1
PA
5005
5006 /* Go through all threads looking for threads that we need
5007 to tell the target to stop. */
08036331 5008 for (thread_info *t : all_non_exited_threads ())
372316f1 5009 {
53cccef1
TBA
5010 /* For a single-target setting with an all-stop target,
5011 we would not even arrive here. For a multi-target
5012 setting, until GDB is able to handle a mixture of
5013 all-stop and non-stop targets, simply skip all-stop
5014 targets' threads. This should be fine due to the
5015 protection of 'check_multi_target_resumption'. */
5016
5017 switch_to_thread_no_regs (t);
5018 if (!target_is_non_stop_p ())
5019 continue;
5020
372316f1
PA
5021 if (t->executing)
5022 {
5023 /* If already stopping, don't request a stop again.
5024 We just haven't seen the notification yet. */
5025 if (!t->stop_requested)
5026 {
1eb8556f
SM
5027 infrun_debug_printf (" %s executing, need stop",
5028 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5029 target_stop (t->ptid);
5030 t->stop_requested = 1;
5031 }
5032 else
5033 {
1eb8556f
SM
5034 infrun_debug_printf (" %s executing, already stopping",
5035 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5036 }
5037
5038 if (t->stop_requested)
29d6859f 5039 waits_needed++;
372316f1
PA
5040 }
5041 else
5042 {
1eb8556f
SM
5043 infrun_debug_printf (" %s not executing",
5044 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
5045
5046 /* The thread may be not executing, but still be
5047 resumed with a pending status to process. */
719546c4 5048 t->resumed = false;
372316f1
PA
5049 }
5050 }
5051
29d6859f 5052 if (waits_needed == 0)
372316f1
PA
5053 break;
5054
5055 /* If we find new threads on the second iteration, restart
5056 over. We want to see two iterations in a row with all
5057 threads stopped. */
5058 if (pass > 0)
5059 pass = -1;
5060
29d6859f 5061 for (int i = 0; i < waits_needed; i++)
c29705b7 5062 {
29d6859f 5063 wait_one_event event = wait_one ();
d758e62c
PA
5064 if (handle_one (event))
5065 break;
372316f1
PA
5066 }
5067 }
5068 }
372316f1
PA
5069}
5070
f4836ba9
PA
5071/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5072
c4464ade 5073static bool
f4836ba9
PA
5074handle_no_resumed (struct execution_control_state *ecs)
5075{
3b12939d 5076 if (target_can_async_p ())
f4836ba9 5077 {
c4464ade 5078 bool any_sync = false;
f4836ba9 5079
2dab0c7b 5080 for (ui *ui : all_uis ())
3b12939d
PA
5081 {
5082 if (ui->prompt_state == PROMPT_BLOCKED)
5083 {
c4464ade 5084 any_sync = true;
3b12939d
PA
5085 break;
5086 }
5087 }
5088 if (!any_sync)
5089 {
5090 /* There were no unwaited-for children left in the target, but,
5091 we're not synchronously waiting for events either. Just
5092 ignore. */
5093
1eb8556f 5094 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
3b12939d 5095 prepare_to_wait (ecs);
c4464ade 5096 return true;
3b12939d 5097 }
f4836ba9
PA
5098 }
5099
5100 /* Otherwise, if we were running a synchronous execution command, we
5101 may need to cancel it and give the user back the terminal.
5102
5103 In non-stop mode, the target can't tell whether we've already
5104 consumed previous stop events, so it can end up sending us a
5105 no-resumed event like so:
5106
5107 #0 - thread 1 is left stopped
5108
5109 #1 - thread 2 is resumed and hits breakpoint
dda83cd7 5110 -> TARGET_WAITKIND_STOPPED
f4836ba9
PA
5111
5112 #2 - thread 3 is resumed and exits
dda83cd7 5113 this is the last resumed thread, so
f4836ba9
PA
5114 -> TARGET_WAITKIND_NO_RESUMED
5115
5116 #3 - gdb processes stop for thread 2 and decides to re-resume
dda83cd7 5117 it.
f4836ba9
PA
5118
5119 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
dda83cd7 5120 thread 2 is now resumed, so the event should be ignored.
f4836ba9
PA
5121
5122 IOW, if the stop for thread 2 doesn't end a foreground command,
5123 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5124 event. But it could be that the event meant that thread 2 itself
5125 (or whatever other thread was the last resumed thread) exited.
5126
5127 To address this we refresh the thread list and check whether we
5128 have resumed threads _now_. In the example above, this removes
5129 thread 3 from the thread list. If thread 2 was re-resumed, we
5130 ignore this event. If we find no thread resumed, then we cancel
7d3badc6
PA
5131 the synchronous command and show "no unwaited-for " to the
5132 user. */
f4836ba9 5133
d6cc5d98 5134 inferior *curr_inf = current_inferior ();
7d3badc6 5135
d6cc5d98
PA
5136 scoped_restore_current_thread restore_thread;
5137
5138 for (auto *target : all_non_exited_process_targets ())
5139 {
5140 switch_to_target_no_thread (target);
5141 update_thread_list ();
5142 }
5143
5144 /* If:
5145
5146 - the current target has no thread executing, and
5147 - the current inferior is native, and
5148 - the current inferior is the one which has the terminal, and
5149 - we did nothing,
5150
5151 then a Ctrl-C from this point on would remain stuck in the
5152 kernel, until a thread resumes and dequeues it. That would
5153 result in the GDB CLI not reacting to Ctrl-C, not able to
5154 interrupt the program. To address this, if the current inferior
5155 no longer has any thread executing, we give the terminal to some
5156 other inferior that has at least one thread executing. */
5157 bool swap_terminal = true;
5158
5159 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5160 whether to report it to the user. */
5161 bool ignore_event = false;
7d3badc6
PA
5162
5163 for (thread_info *thread : all_non_exited_threads ())
f4836ba9 5164 {
d6cc5d98
PA
5165 if (swap_terminal && thread->executing)
5166 {
5167 if (thread->inf != curr_inf)
5168 {
5169 target_terminal::ours ();
5170
5171 switch_to_thread (thread);
5172 target_terminal::inferior ();
5173 }
5174 swap_terminal = false;
5175 }
5176
5177 if (!ignore_event
5178 && (thread->executing
5179 || thread->suspend.waitstatus_pending_p))
f4836ba9 5180 {
7d3badc6
PA
5181 /* Either there were no unwaited-for children left in the
5182 target at some point, but there are now, or some target
5183 other than the eventing one has unwaited-for children
5184 left. Just ignore. */
1eb8556f
SM
5185 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5186 "(ignoring: found resumed)");
d6cc5d98
PA
5187
5188 ignore_event = true;
f4836ba9 5189 }
d6cc5d98
PA
5190
5191 if (ignore_event && !swap_terminal)
5192 break;
5193 }
5194
5195 if (ignore_event)
5196 {
5197 switch_to_inferior_no_thread (curr_inf);
5198 prepare_to_wait (ecs);
c4464ade 5199 return true;
f4836ba9
PA
5200 }
5201
5202 /* Go ahead and report the event. */
c4464ade 5203 return false;
f4836ba9
PA
5204}
5205
05ba8510
PA
5206/* Given an execution control state that has been freshly filled in by
5207 an event from the inferior, figure out what it means and take
5208 appropriate action.
5209
5210 The alternatives are:
5211
22bcd14b 5212 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5213 debugger.
5214
5215 2) keep_going and return; to wait for the next event (set
5216 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5217 once). */
c906108c 5218
ec9499be 5219static void
595915c1 5220handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5221{
595915c1
TT
5222 /* Make sure that all temporary struct value objects that were
5223 created during the handling of the event get deleted at the
5224 end. */
5225 scoped_value_mark free_values;
5226
1eb8556f 5227 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
c29705b7 5228
28736962
PA
5229 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5230 {
5231 /* We had an event in the inferior, but we are not interested in
5232 handling it at this level. The lower layers have already
5233 done what needs to be done, if anything.
5234
5235 One of the possible circumstances for this is when the
5236 inferior produces output for the console. The inferior has
5237 not stopped, and we are ignoring the event. Another possible
5238 circumstance is any event which the lower level knows will be
5239 reported multiple times without an intervening resume. */
28736962
PA
5240 prepare_to_wait (ecs);
5241 return;
5242 }
5243
65706a29
PA
5244 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5245 {
65706a29
PA
5246 prepare_to_wait (ecs);
5247 return;
5248 }
5249
0e5bf2a8 5250 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5251 && handle_no_resumed (ecs))
5252 return;
0e5bf2a8 5253
5b6d1e4f
PA
5254 /* Cache the last target/ptid/waitstatus. */
5255 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5256
ca005067 5257 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5258 stop_stack_dummy = STOP_NONE;
ca005067 5259
0e5bf2a8
PA
5260 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5261 {
5262 /* No unwaited-for children left. IOW, all resumed children
5263 have exited. */
c4464ade 5264 stop_print_frame = false;
22bcd14b 5265 stop_waiting (ecs);
0e5bf2a8
PA
5266 return;
5267 }
5268
8c90c137 5269 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5270 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5271 {
5b6d1e4f 5272 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5273 /* If it's a new thread, add it to the thread database. */
5274 if (ecs->event_thread == NULL)
5b6d1e4f 5275 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5276
5277 /* Disable range stepping. If the next step request could use a
5278 range, this will be end up re-enabled then. */
5279 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5280 }
88ed393a
JK
5281
5282 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5283 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5284
5285 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5286 reinit_frame_cache ();
5287
28736962
PA
5288 breakpoint_retire_moribund ();
5289
2b009048
DJ
5290 /* First, distinguish signals caused by the debugger from signals
5291 that have to do with the program's own actions. Note that
5292 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5293 on the operating system version. Here we detect when a SIGILL or
5294 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5295 something similar for SIGSEGV, since a SIGSEGV will be generated
5296 when we're trying to execute a breakpoint instruction on a
5297 non-executable stack. This happens for call dummy breakpoints
5298 for architectures like SPARC that place call dummies on the
5299 stack. */
2b009048 5300 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5301 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5302 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5303 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5304 {
00431a78 5305 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5306
a01bda52 5307 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5308 regcache_read_pc (regcache)))
5309 {
1eb8556f 5310 infrun_debug_printf ("Treating signal as SIGTRAP");
a493e3e2 5311 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5312 }
2b009048
DJ
5313 }
5314
293b3ebc 5315 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
8c90c137 5316
488f131b
JB
5317 switch (ecs->ws.kind)
5318 {
5319 case TARGET_WAITKIND_LOADED:
72d383bb
SM
5320 {
5321 context_switch (ecs);
5322 /* Ignore gracefully during startup of the inferior, as it might
5323 be the shell which has just loaded some objects, otherwise
5324 add the symbols for the newly loaded objects. Also ignore at
5325 the beginning of an attach or remote session; we will query
5326 the full list of libraries once the connection is
5327 established. */
5328
5329 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5330 if (stop_soon == NO_STOP_QUIETLY)
5331 {
5332 struct regcache *regcache;
edcc5120 5333
72d383bb 5334 regcache = get_thread_regcache (ecs->event_thread);
edcc5120 5335
72d383bb 5336 handle_solib_event ();
ab04a2af 5337
72d383bb
SM
5338 ecs->event_thread->control.stop_bpstat
5339 = bpstat_stop_status (regcache->aspace (),
5340 ecs->event_thread->suspend.stop_pc,
5341 ecs->event_thread, &ecs->ws);
c65d6b55 5342
72d383bb 5343 if (handle_stop_requested (ecs))
94c57d6a 5344 return;
488f131b 5345
72d383bb
SM
5346 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5347 {
5348 /* A catchpoint triggered. */
5349 process_event_stop_test (ecs);
5350 return;
5351 }
55409f9d 5352
72d383bb
SM
5353 /* If requested, stop when the dynamic linker notifies
5354 gdb of events. This allows the user to get control
5355 and place breakpoints in initializer routines for
5356 dynamically loaded objects (among other things). */
5357 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5358 if (stop_on_solib_events)
5359 {
5360 /* Make sure we print "Stopped due to solib-event" in
5361 normal_stop. */
5362 stop_print_frame = true;
b0f4b84b 5363
72d383bb
SM
5364 stop_waiting (ecs);
5365 return;
5366 }
5367 }
b0f4b84b 5368
72d383bb
SM
5369 /* If we are skipping through a shell, or through shared library
5370 loading that we aren't interested in, resume the program. If
5371 we're running the program normally, also resume. */
5372 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5373 {
5374 /* Loading of shared libraries might have changed breakpoint
5375 addresses. Make sure new breakpoints are inserted. */
5376 if (stop_soon == NO_STOP_QUIETLY)
5377 insert_breakpoints ();
5378 resume (GDB_SIGNAL_0);
5379 prepare_to_wait (ecs);
5380 return;
5381 }
5c09a2c5 5382
72d383bb
SM
5383 /* But stop if we're attaching or setting up a remote
5384 connection. */
5385 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5386 || stop_soon == STOP_QUIETLY_REMOTE)
5387 {
5388 infrun_debug_printf ("quietly stopped");
5389 stop_waiting (ecs);
5390 return;
5391 }
5392
5393 internal_error (__FILE__, __LINE__,
5394 _("unhandled stop_soon: %d"), (int) stop_soon);
5395 }
c5aa993b 5396
488f131b 5397 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5398 if (handle_stop_requested (ecs))
5399 return;
00431a78 5400 context_switch (ecs);
64ce06e4 5401 resume (GDB_SIGNAL_0);
488f131b
JB
5402 prepare_to_wait (ecs);
5403 return;
c5aa993b 5404
65706a29 5405 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5406 if (handle_stop_requested (ecs))
5407 return;
00431a78 5408 context_switch (ecs);
65706a29
PA
5409 if (!switch_back_to_stepped_thread (ecs))
5410 keep_going (ecs);
5411 return;
5412
488f131b 5413 case TARGET_WAITKIND_EXITED:
940c3c06 5414 case TARGET_WAITKIND_SIGNALLED:
18493a00
PA
5415 {
5416 /* Depending on the system, ecs->ptid may point to a thread or
5417 to a process. On some targets, target_mourn_inferior may
5418 need to have access to the just-exited thread. That is the
5419 case of GNU/Linux's "checkpoint" support, for example.
5420 Call the switch_to_xxx routine as appropriate. */
5421 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5422 if (thr != nullptr)
5423 switch_to_thread (thr);
5424 else
5425 {
5426 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5427 switch_to_inferior_no_thread (inf);
5428 }
5429 }
6c95b8df 5430 handle_vfork_child_exec_or_exit (0);
223ffa71 5431 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5432
0c557179
SDJ
5433 /* Clearing any previous state of convenience variables. */
5434 clear_exit_convenience_vars ();
5435
940c3c06
PA
5436 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5437 {
5438 /* Record the exit code in the convenience variable $_exitcode, so
5439 that the user can inspect this again later. */
5440 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5441 (LONGEST) ecs->ws.value.integer);
5442
5443 /* Also record this in the inferior itself. */
5444 current_inferior ()->has_exit_code = 1;
5445 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5446
98eb56a4
PA
5447 /* Support the --return-child-result option. */
5448 return_child_result_value = ecs->ws.value.integer;
5449
76727919 5450 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5451 }
5452 else
0c557179 5453 {
00431a78 5454 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5455
5456 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5457 {
5458 /* Set the value of the internal variable $_exitsignal,
5459 which holds the signal uncaught by the inferior. */
5460 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5461 gdbarch_gdb_signal_to_target (gdbarch,
5462 ecs->ws.value.sig));
5463 }
5464 else
5465 {
5466 /* We don't have access to the target's method used for
5467 converting between signal numbers (GDB's internal
5468 representation <-> target's representation).
5469 Therefore, we cannot do a good job at displaying this
5470 information to the user. It's better to just warn
5471 her about it (if infrun debugging is enabled), and
5472 give up. */
1eb8556f
SM
5473 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5474 "signal number.");
0c557179
SDJ
5475 }
5476
76727919 5477 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5478 }
8cf64490 5479
488f131b 5480 gdb_flush (gdb_stdout);
bc1e6c81 5481 target_mourn_inferior (inferior_ptid);
c4464ade 5482 stop_print_frame = false;
22bcd14b 5483 stop_waiting (ecs);
488f131b 5484 return;
c5aa993b 5485
488f131b 5486 case TARGET_WAITKIND_FORKED:
deb3b17b 5487 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5488 /* Check whether the inferior is displaced stepping. */
5489 {
00431a78 5490 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5491 struct gdbarch *gdbarch = regcache->arch ();
c0aba012 5492 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639 5493
187b041e
SM
5494 /* If this is a fork (child gets its own address space copy) and some
5495 displaced step buffers were in use at the time of the fork, restore
5496 the displaced step buffer bytes in the child process. */
c0aba012 5497 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
187b041e
SM
5498 gdbarch_displaced_step_restore_all_in_ptid
5499 (gdbarch, parent_inf, ecs->ws.value.related_pid);
c0aba012
SM
5500
5501 /* If displaced stepping is supported, and thread ecs->ptid is
5502 displaced stepping. */
00431a78 5503 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639 5504 {
e2d96639
YQ
5505 struct regcache *child_regcache;
5506 CORE_ADDR parent_pc;
5507
5508 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5509 indicating that the displaced stepping of syscall instruction
5510 has been done. Perform cleanup for parent process here. Note
5511 that this operation also cleans up the child process for vfork,
5512 because their pages are shared. */
7def77a1 5513 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5514 /* Start a new step-over in another thread if there's one
5515 that needs it. */
5516 start_step_over ();
e2d96639 5517
e2d96639
YQ
5518 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5519 the child's PC is also within the scratchpad. Set the child's PC
5520 to the parent's PC value, which has already been fixed up.
5521 FIXME: we use the parent's aspace here, although we're touching
5522 the child, because the child hasn't been added to the inferior
5523 list yet at this point. */
5524
5525 child_regcache
5b6d1e4f
PA
5526 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5527 ecs->ws.value.related_pid,
e2d96639
YQ
5528 gdbarch,
5529 parent_inf->aspace);
5530 /* Read PC value of parent process. */
5531 parent_pc = regcache_read_pc (regcache);
5532
136821d9
SM
5533 displaced_debug_printf ("write child pc from %s to %s",
5534 paddress (gdbarch,
5535 regcache_read_pc (child_regcache)),
5536 paddress (gdbarch, parent_pc));
e2d96639
YQ
5537
5538 regcache_write_pc (child_regcache, parent_pc);
5539 }
5540 }
5541
00431a78 5542 context_switch (ecs);
5a2901d9 5543
b242c3c2
PA
5544 /* Immediately detach breakpoints from the child before there's
5545 any chance of letting the user delete breakpoints from the
5546 breakpoint lists. If we don't do this early, it's easy to
5547 leave left over traps in the child, vis: "break foo; catch
5548 fork; c; <fork>; del; c; <child calls foo>". We only follow
5549 the fork on the last `continue', and by that time the
5550 breakpoint at "foo" is long gone from the breakpoint table.
5551 If we vforked, then we don't need to unpatch here, since both
5552 parent and child are sharing the same memory pages; we'll
5553 need to unpatch at follow/detach time instead to be certain
5554 that new breakpoints added between catchpoint hit time and
5555 vfork follow are detached. */
5556 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5557 {
b242c3c2
PA
5558 /* This won't actually modify the breakpoint list, but will
5559 physically remove the breakpoints from the child. */
d80ee84f 5560 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5561 }
5562
34b7e8a6 5563 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5564
e58b0e63
PA
5565 /* In case the event is caught by a catchpoint, remember that
5566 the event is to be followed at the next resume of the thread,
5567 and not immediately. */
5568 ecs->event_thread->pending_follow = ecs->ws;
5569
f2ffa92b
PA
5570 ecs->event_thread->suspend.stop_pc
5571 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5572
16c381f0 5573 ecs->event_thread->control.stop_bpstat
a01bda52 5574 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5575 ecs->event_thread->suspend.stop_pc,
5576 ecs->event_thread, &ecs->ws);
675bf4cb 5577
c65d6b55
PA
5578 if (handle_stop_requested (ecs))
5579 return;
5580
ce12b012
PA
5581 /* If no catchpoint triggered for this, then keep going. Note
5582 that we're interested in knowing the bpstat actually causes a
5583 stop, not just if it may explain the signal. Software
5584 watchpoints, for example, always appear in the bpstat. */
5585 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5586 {
5ab2fbf1 5587 bool follow_child
3e43a32a 5588 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5589
a493e3e2 5590 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5591
5b6d1e4f
PA
5592 process_stratum_target *targ
5593 = ecs->event_thread->inf->process_target ();
5594
5ab2fbf1 5595 bool should_resume = follow_fork ();
e58b0e63 5596
5b6d1e4f
PA
5597 /* Note that one of these may be an invalid pointer,
5598 depending on detach_fork. */
00431a78 5599 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5600 thread_info *child
5601 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5602
a2077e25
PA
5603 /* At this point, the parent is marked running, and the
5604 child is marked stopped. */
5605
5606 /* If not resuming the parent, mark it stopped. */
5607 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5608 parent->set_running (false);
a2077e25
PA
5609
5610 /* If resuming the child, mark it running. */
5611 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5612 child->set_running (true);
a2077e25 5613
6c95b8df 5614 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5615 if (!detach_fork && (non_stop
5616 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5617 {
5618 if (follow_child)
5619 switch_to_thread (parent);
5620 else
5621 switch_to_thread (child);
5622
5623 ecs->event_thread = inferior_thread ();
5624 ecs->ptid = inferior_ptid;
5625 keep_going (ecs);
5626 }
5627
5628 if (follow_child)
5629 switch_to_thread (child);
5630 else
5631 switch_to_thread (parent);
5632
e58b0e63
PA
5633 ecs->event_thread = inferior_thread ();
5634 ecs->ptid = inferior_ptid;
5635
5636 if (should_resume)
5637 keep_going (ecs);
5638 else
22bcd14b 5639 stop_waiting (ecs);
04e68871
DJ
5640 return;
5641 }
94c57d6a
PA
5642 process_event_stop_test (ecs);
5643 return;
488f131b 5644
6c95b8df
PA
5645 case TARGET_WAITKIND_VFORK_DONE:
5646 /* Done with the shared memory region. Re-insert breakpoints in
5647 the parent, and keep going. */
5648
00431a78 5649 context_switch (ecs);
6c95b8df
PA
5650
5651 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5652 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5653
5654 if (handle_stop_requested (ecs))
5655 return;
5656
6c95b8df
PA
5657 /* This also takes care of reinserting breakpoints in the
5658 previously locked inferior. */
5659 keep_going (ecs);
5660 return;
5661
488f131b 5662 case TARGET_WAITKIND_EXECD:
488f131b 5663
cbd2b4e3
PA
5664 /* Note we can't read registers yet (the stop_pc), because we
5665 don't yet know the inferior's post-exec architecture.
5666 'stop_pc' is explicitly read below instead. */
00431a78 5667 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5668
6c95b8df
PA
5669 /* Do whatever is necessary to the parent branch of the vfork. */
5670 handle_vfork_child_exec_or_exit (1);
5671
795e548f 5672 /* This causes the eventpoints and symbol table to be reset.
dda83cd7
SM
5673 Must do this now, before trying to determine whether to
5674 stop. */
71b43ef8 5675 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5676
17d8546e
DB
5677 /* In follow_exec we may have deleted the original thread and
5678 created a new one. Make sure that the event thread is the
5679 execd thread for that case (this is a nop otherwise). */
5680 ecs->event_thread = inferior_thread ();
5681
f2ffa92b
PA
5682 ecs->event_thread->suspend.stop_pc
5683 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5684
16c381f0 5685 ecs->event_thread->control.stop_bpstat
a01bda52 5686 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5687 ecs->event_thread->suspend.stop_pc,
5688 ecs->event_thread, &ecs->ws);
795e548f 5689
71b43ef8
PA
5690 /* Note that this may be referenced from inside
5691 bpstat_stop_status above, through inferior_has_execd. */
5692 xfree (ecs->ws.value.execd_pathname);
5693 ecs->ws.value.execd_pathname = NULL;
5694
c65d6b55
PA
5695 if (handle_stop_requested (ecs))
5696 return;
5697
04e68871 5698 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5699 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5700 {
a493e3e2 5701 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5702 keep_going (ecs);
5703 return;
5704 }
94c57d6a
PA
5705 process_event_stop_test (ecs);
5706 return;
488f131b 5707
b4dc5ffa 5708 /* Be careful not to try to gather much state about a thread
dda83cd7 5709 that's in a syscall. It's frequently a losing proposition. */
488f131b 5710 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5711 /* Getting the current syscall number. */
94c57d6a
PA
5712 if (handle_syscall_event (ecs) == 0)
5713 process_event_stop_test (ecs);
5714 return;
c906108c 5715
488f131b 5716 /* Before examining the threads further, step this thread to
dda83cd7
SM
5717 get it entirely out of the syscall. (We get notice of the
5718 event when the thread is just on the verge of exiting a
5719 syscall. Stepping one instruction seems to get it back
5720 into user code.) */
488f131b 5721 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5722 if (handle_syscall_event (ecs) == 0)
5723 process_event_stop_test (ecs);
5724 return;
c906108c 5725
488f131b 5726 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5727 handle_signal_stop (ecs);
5728 return;
c906108c 5729
b2175913
MS
5730 case TARGET_WAITKIND_NO_HISTORY:
5731 /* Reverse execution: target ran out of history info. */
eab402df 5732
d1988021 5733 /* Switch to the stopped thread. */
00431a78 5734 context_switch (ecs);
1eb8556f 5735 infrun_debug_printf ("stopped");
d1988021 5736
34b7e8a6 5737 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5738 ecs->event_thread->suspend.stop_pc
5739 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5740
5741 if (handle_stop_requested (ecs))
5742 return;
5743
76727919 5744 gdb::observers::no_history.notify ();
22bcd14b 5745 stop_waiting (ecs);
b2175913 5746 return;
488f131b 5747 }
4f5d7f63
PA
5748}
5749
372316f1
PA
5750/* Restart threads back to what they were trying to do back when we
5751 paused them for an in-line step-over. The EVENT_THREAD thread is
5752 ignored. */
4d9d9d04
PA
5753
5754static void
372316f1
PA
5755restart_threads (struct thread_info *event_thread)
5756{
372316f1
PA
5757 /* In case the instruction just stepped spawned a new thread. */
5758 update_thread_list ();
5759
08036331 5760 for (thread_info *tp : all_non_exited_threads ())
372316f1 5761 {
ac7d717c
PA
5762 if (tp->inf->detaching)
5763 {
5764 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5765 target_pid_to_str (tp->ptid).c_str ());
5766 continue;
5767 }
5768
f3f8ece4
PA
5769 switch_to_thread_no_regs (tp);
5770
372316f1
PA
5771 if (tp == event_thread)
5772 {
1eb8556f
SM
5773 infrun_debug_printf ("restart threads: [%s] is event thread",
5774 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5775 continue;
5776 }
5777
5778 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5779 {
1eb8556f
SM
5780 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5781 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5782 continue;
5783 }
5784
5785 if (tp->resumed)
5786 {
1eb8556f
SM
5787 infrun_debug_printf ("restart threads: [%s] resumed",
5788 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5789 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5790 continue;
5791 }
5792
5793 if (thread_is_in_step_over_chain (tp))
5794 {
1eb8556f
SM
5795 infrun_debug_printf ("restart threads: [%s] needs step-over",
5796 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5797 gdb_assert (!tp->resumed);
5798 continue;
5799 }
5800
5801
5802 if (tp->suspend.waitstatus_pending_p)
5803 {
1eb8556f
SM
5804 infrun_debug_printf ("restart threads: [%s] has pending status",
5805 target_pid_to_str (tp->ptid).c_str ());
719546c4 5806 tp->resumed = true;
372316f1
PA
5807 continue;
5808 }
5809
c65d6b55
PA
5810 gdb_assert (!tp->stop_requested);
5811
372316f1
PA
5812 /* If some thread needs to start a step-over at this point, it
5813 should still be in the step-over queue, and thus skipped
5814 above. */
5815 if (thread_still_needs_step_over (tp))
5816 {
5817 internal_error (__FILE__, __LINE__,
5818 "thread [%s] needs a step-over, but not in "
5819 "step-over queue\n",
a068643d 5820 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5821 }
5822
5823 if (currently_stepping (tp))
5824 {
1eb8556f
SM
5825 infrun_debug_printf ("restart threads: [%s] was stepping",
5826 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5827 keep_going_stepped_thread (tp);
5828 }
5829 else
5830 {
5831 struct execution_control_state ecss;
5832 struct execution_control_state *ecs = &ecss;
5833
1eb8556f
SM
5834 infrun_debug_printf ("restart threads: [%s] continuing",
5835 target_pid_to_str (tp->ptid).c_str ());
372316f1 5836 reset_ecs (ecs, tp);
00431a78 5837 switch_to_thread (tp);
372316f1
PA
5838 keep_going_pass_signal (ecs);
5839 }
5840 }
5841}
5842
5843/* Callback for iterate_over_threads. Find a resumed thread that has
5844 a pending waitstatus. */
5845
5846static int
5847resumed_thread_with_pending_status (struct thread_info *tp,
5848 void *arg)
5849{
5850 return (tp->resumed
5851 && tp->suspend.waitstatus_pending_p);
5852}
5853
5854/* Called when we get an event that may finish an in-line or
5855 out-of-line (displaced stepping) step-over started previously.
5856 Return true if the event is processed and we should go back to the
5857 event loop; false if the caller should continue processing the
5858 event. */
5859
5860static int
4d9d9d04
PA
5861finish_step_over (struct execution_control_state *ecs)
5862{
7def77a1
SM
5863 displaced_step_finish (ecs->event_thread,
5864 ecs->event_thread->suspend.stop_signal);
4d9d9d04 5865
c4464ade 5866 bool had_step_over_info = step_over_info_valid_p ();
372316f1
PA
5867
5868 if (had_step_over_info)
4d9d9d04
PA
5869 {
5870 /* If we're stepping over a breakpoint with all threads locked,
5871 then only the thread that was stepped should be reporting
5872 back an event. */
5873 gdb_assert (ecs->event_thread->control.trap_expected);
5874
c65d6b55 5875 clear_step_over_info ();
4d9d9d04
PA
5876 }
5877
fbea99ea 5878 if (!target_is_non_stop_p ())
372316f1 5879 return 0;
4d9d9d04
PA
5880
5881 /* Start a new step-over in another thread if there's one that
5882 needs it. */
5883 start_step_over ();
372316f1
PA
5884
5885 /* If we were stepping over a breakpoint before, and haven't started
5886 a new in-line step-over sequence, then restart all other threads
5887 (except the event thread). We can't do this in all-stop, as then
5888 e.g., we wouldn't be able to issue any other remote packet until
5889 these other threads stop. */
5890 if (had_step_over_info && !step_over_info_valid_p ())
5891 {
5892 struct thread_info *pending;
5893
5894 /* If we only have threads with pending statuses, the restart
5895 below won't restart any thread and so nothing re-inserts the
5896 breakpoint we just stepped over. But we need it inserted
5897 when we later process the pending events, otherwise if
5898 another thread has a pending event for this breakpoint too,
5899 we'd discard its event (because the breakpoint that
5900 originally caused the event was no longer inserted). */
00431a78 5901 context_switch (ecs);
372316f1
PA
5902 insert_breakpoints ();
5903
5904 restart_threads (ecs->event_thread);
5905
5906 /* If we have events pending, go through handle_inferior_event
5907 again, picking up a pending event at random. This avoids
5908 thread starvation. */
5909
5910 /* But not if we just stepped over a watchpoint in order to let
5911 the instruction execute so we can evaluate its expression.
5912 The set of watchpoints that triggered is recorded in the
5913 breakpoint objects themselves (see bp->watchpoint_triggered).
5914 If we processed another event first, that other event could
5915 clobber this info. */
5916 if (ecs->event_thread->stepping_over_watchpoint)
5917 return 0;
5918
5919 pending = iterate_over_threads (resumed_thread_with_pending_status,
5920 NULL);
5921 if (pending != NULL)
5922 {
5923 struct thread_info *tp = ecs->event_thread;
5924 struct regcache *regcache;
5925
1eb8556f
SM
5926 infrun_debug_printf ("found resumed threads with "
5927 "pending events, saving status");
372316f1
PA
5928
5929 gdb_assert (pending != tp);
5930
5931 /* Record the event thread's event for later. */
5932 save_waitstatus (tp, &ecs->ws);
5933 /* This was cleared early, by handle_inferior_event. Set it
5934 so this pending event is considered by
5935 do_target_wait. */
719546c4 5936 tp->resumed = true;
372316f1
PA
5937
5938 gdb_assert (!tp->executing);
5939
00431a78 5940 regcache = get_thread_regcache (tp);
372316f1
PA
5941 tp->suspend.stop_pc = regcache_read_pc (regcache);
5942
1eb8556f
SM
5943 infrun_debug_printf ("saved stop_pc=%s for %s "
5944 "(currently_stepping=%d)",
5945 paddress (target_gdbarch (),
dda83cd7 5946 tp->suspend.stop_pc),
1eb8556f
SM
5947 target_pid_to_str (tp->ptid).c_str (),
5948 currently_stepping (tp));
372316f1
PA
5949
5950 /* This in-line step-over finished; clear this so we won't
5951 start a new one. This is what handle_signal_stop would
5952 do, if we returned false. */
5953 tp->stepping_over_breakpoint = 0;
5954
5955 /* Wake up the event loop again. */
5956 mark_async_event_handler (infrun_async_inferior_event_token);
5957
5958 prepare_to_wait (ecs);
5959 return 1;
5960 }
5961 }
5962
5963 return 0;
4d9d9d04
PA
5964}
5965
4f5d7f63
PA
5966/* Come here when the program has stopped with a signal. */
5967
5968static void
5969handle_signal_stop (struct execution_control_state *ecs)
5970{
5971 struct frame_info *frame;
5972 struct gdbarch *gdbarch;
5973 int stopped_by_watchpoint;
5974 enum stop_kind stop_soon;
5975 int random_signal;
c906108c 5976
f0407826
DE
5977 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5978
c65d6b55
PA
5979 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5980
f0407826
DE
5981 /* Do we need to clean up the state of a thread that has
5982 completed a displaced single-step? (Doing so usually affects
5983 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5984 if (finish_step_over (ecs))
5985 return;
f0407826
DE
5986
5987 /* If we either finished a single-step or hit a breakpoint, but
5988 the user wanted this thread to be stopped, pretend we got a
5989 SIG0 (generic unsignaled stop). */
5990 if (ecs->event_thread->stop_requested
5991 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5992 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5993
f2ffa92b
PA
5994 ecs->event_thread->suspend.stop_pc
5995 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5996
2ab76a18
PA
5997 context_switch (ecs);
5998
5999 if (deprecated_context_hook)
6000 deprecated_context_hook (ecs->event_thread->global_num);
6001
527159b7 6002 if (debug_infrun)
237fc4c9 6003 {
00431a78 6004 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 6005 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 6006
1eb8556f
SM
6007 infrun_debug_printf ("stop_pc=%s",
6008 paddress (reg_gdbarch,
6009 ecs->event_thread->suspend.stop_pc));
d92524f1 6010 if (target_stopped_by_watchpoint ())
237fc4c9 6011 {
dda83cd7 6012 CORE_ADDR addr;
abbb1732 6013
1eb8556f 6014 infrun_debug_printf ("stopped by watchpoint");
237fc4c9 6015
328d42d8
SM
6016 if (target_stopped_data_address (current_inferior ()->top_target (),
6017 &addr))
1eb8556f 6018 infrun_debug_printf ("stopped data address=%s",
dda83cd7
SM
6019 paddress (reg_gdbarch, addr));
6020 else
1eb8556f 6021 infrun_debug_printf ("(no data address available)");
237fc4c9
PA
6022 }
6023 }
527159b7 6024
36fa8042
PA
6025 /* This is originated from start_remote(), start_inferior() and
6026 shared libraries hook functions. */
00431a78 6027 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
6028 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6029 {
1eb8556f 6030 infrun_debug_printf ("quietly stopped");
c4464ade 6031 stop_print_frame = true;
22bcd14b 6032 stop_waiting (ecs);
36fa8042
PA
6033 return;
6034 }
6035
36fa8042
PA
6036 /* This originates from attach_command(). We need to overwrite
6037 the stop_signal here, because some kernels don't ignore a
6038 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6039 See more comments in inferior.h. On the other hand, if we
6040 get a non-SIGSTOP, report it to the user - assume the backend
6041 will handle the SIGSTOP if it should show up later.
6042
6043 Also consider that the attach is complete when we see a
6044 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6045 target extended-remote report it instead of a SIGSTOP
6046 (e.g. gdbserver). We already rely on SIGTRAP being our
6047 signal, so this is no exception.
6048
6049 Also consider that the attach is complete when we see a
6050 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6051 the target to stop all threads of the inferior, in case the
6052 low level attach operation doesn't stop them implicitly. If
6053 they weren't stopped implicitly, then the stub will report a
6054 GDB_SIGNAL_0, meaning: stopped for no particular reason
6055 other than GDB's request. */
6056 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6057 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6058 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6059 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6060 {
c4464ade 6061 stop_print_frame = true;
22bcd14b 6062 stop_waiting (ecs);
36fa8042
PA
6063 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6064 return;
6065 }
6066
568d6575
UW
6067 /* At this point, get hold of the now-current thread's frame. */
6068 frame = get_current_frame ();
6069 gdbarch = get_frame_arch (frame);
6070
2adfaa28 6071 /* Pull the single step breakpoints out of the target. */
af48d08f 6072 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 6073 {
af48d08f 6074 struct regcache *regcache;
af48d08f 6075 CORE_ADDR pc;
2adfaa28 6076
00431a78 6077 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
6078 const address_space *aspace = regcache->aspace ();
6079
af48d08f 6080 pc = regcache_read_pc (regcache);
34b7e8a6 6081
af48d08f
PA
6082 /* However, before doing so, if this single-step breakpoint was
6083 actually for another thread, set this thread up for moving
6084 past it. */
6085 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6086 aspace, pc))
6087 {
6088 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28 6089 {
1eb8556f
SM
6090 infrun_debug_printf ("[%s] hit another thread's single-step "
6091 "breakpoint",
6092 target_pid_to_str (ecs->ptid).c_str ());
af48d08f
PA
6093 ecs->hit_singlestep_breakpoint = 1;
6094 }
6095 }
6096 else
6097 {
1eb8556f
SM
6098 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6099 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 6100 }
488f131b 6101 }
af48d08f 6102 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 6103
963f9c80
PA
6104 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6105 && ecs->event_thread->control.trap_expected
6106 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6107 stopped_by_watchpoint = 0;
6108 else
6109 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6110
6111 /* If necessary, step over this watchpoint. We'll be back to display
6112 it in a moment. */
6113 if (stopped_by_watchpoint
9aed480c 6114 && (target_have_steppable_watchpoint ()
568d6575 6115 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6116 {
488f131b 6117 /* At this point, we are stopped at an instruction which has
dda83cd7
SM
6118 attempted to write to a piece of memory under control of
6119 a watchpoint. The instruction hasn't actually executed
6120 yet. If we were to evaluate the watchpoint expression
6121 now, we would get the old value, and therefore no change
6122 would seem to have occurred.
6123
6124 In order to make watchpoints work `right', we really need
6125 to complete the memory write, and then evaluate the
6126 watchpoint expression. We do this by single-stepping the
d983da9c
DJ
6127 target.
6128
7f89fd65 6129 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6130 it. For example, the PA can (with some kernel cooperation)
6131 single step over a watchpoint without disabling the watchpoint.
6132
6133 It is far more common to need to disable a watchpoint to step
6134 the inferior over it. If we have non-steppable watchpoints,
6135 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6136 disable all watchpoints.
6137
6138 Any breakpoint at PC must also be stepped over -- if there's
6139 one, it will have already triggered before the watchpoint
6140 triggered, and we either already reported it to the user, or
6141 it didn't cause a stop and we called keep_going. In either
6142 case, if there was a breakpoint at PC, we must be trying to
6143 step past it. */
6144 ecs->event_thread->stepping_over_watchpoint = 1;
6145 keep_going (ecs);
488f131b
JB
6146 return;
6147 }
6148
4e1c45ea 6149 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6150 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6151 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6152 ecs->event_thread->control.stop_step = 0;
c4464ade 6153 stop_print_frame = true;
488f131b 6154 stopped_by_random_signal = 0;
ddfe970e 6155 bpstat stop_chain = NULL;
488f131b 6156
edb3359d
DJ
6157 /* Hide inlined functions starting here, unless we just performed stepi or
6158 nexti. After stepi and nexti, always show the innermost frame (not any
6159 inline function call sites). */
16c381f0 6160 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6161 {
00431a78
PA
6162 const address_space *aspace
6163 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6164
6165 /* skip_inline_frames is expensive, so we avoid it if we can
6166 determine that the address is one where functions cannot have
6167 been inlined. This improves performance with inferiors that
6168 load a lot of shared libraries, because the solib event
6169 breakpoint is defined as the address of a function (i.e. not
6170 inline). Note that we have to check the previous PC as well
6171 as the current one to catch cases when we have just
6172 single-stepped off a breakpoint prior to reinstating it.
6173 Note that we're assuming that the code we single-step to is
6174 not inline, but that's not definitive: there's nothing
6175 preventing the event breakpoint function from containing
6176 inlined code, and the single-step ending up there. If the
6177 user had set a breakpoint on that inlined code, the missing
6178 skip_inline_frames call would break things. Fortunately
6179 that's an extremely unlikely scenario. */
f2ffa92b
PA
6180 if (!pc_at_non_inline_function (aspace,
6181 ecs->event_thread->suspend.stop_pc,
6182 &ecs->ws)
a210c238
MR
6183 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6184 && ecs->event_thread->control.trap_expected
6185 && pc_at_non_inline_function (aspace,
6186 ecs->event_thread->prev_pc,
09ac7c10 6187 &ecs->ws)))
1c5a993e 6188 {
f2ffa92b
PA
6189 stop_chain = build_bpstat_chain (aspace,
6190 ecs->event_thread->suspend.stop_pc,
6191 &ecs->ws);
00431a78 6192 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6193
6194 /* Re-fetch current thread's frame in case that invalidated
6195 the frame cache. */
6196 frame = get_current_frame ();
6197 gdbarch = get_frame_arch (frame);
6198 }
0574c78f 6199 }
edb3359d 6200
a493e3e2 6201 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6202 && ecs->event_thread->control.trap_expected
568d6575 6203 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6204 && currently_stepping (ecs->event_thread))
3352ef37 6205 {
b50d7442 6206 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6207 also on an instruction that needs to be stepped multiple
1777feb0 6208 times before it's been fully executing. E.g., architectures
3352ef37
AC
6209 with a delay slot. It needs to be stepped twice, once for
6210 the instruction and once for the delay slot. */
6211 int step_through_delay
568d6575 6212 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6213
1eb8556f
SM
6214 if (step_through_delay)
6215 infrun_debug_printf ("step through delay");
6216
16c381f0
JK
6217 if (ecs->event_thread->control.step_range_end == 0
6218 && step_through_delay)
3352ef37
AC
6219 {
6220 /* The user issued a continue when stopped at a breakpoint.
6221 Set up for another trap and get out of here. */
dda83cd7
SM
6222 ecs->event_thread->stepping_over_breakpoint = 1;
6223 keep_going (ecs);
6224 return;
3352ef37
AC
6225 }
6226 else if (step_through_delay)
6227 {
6228 /* The user issued a step when stopped at a breakpoint.
6229 Maybe we should stop, maybe we should not - the delay
6230 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6231 case, don't decide that here, just set
6232 ecs->stepping_over_breakpoint, making sure we
6233 single-step again before breakpoints are re-inserted. */
4e1c45ea 6234 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6235 }
6236 }
6237
ab04a2af
TT
6238 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6239 handles this event. */
6240 ecs->event_thread->control.stop_bpstat
a01bda52 6241 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6242 ecs->event_thread->suspend.stop_pc,
6243 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6244
ab04a2af
TT
6245 /* Following in case break condition called a
6246 function. */
c4464ade 6247 stop_print_frame = true;
73dd234f 6248
ab04a2af
TT
6249 /* This is where we handle "moribund" watchpoints. Unlike
6250 software breakpoints traps, hardware watchpoint traps are
6251 always distinguishable from random traps. If no high-level
6252 watchpoint is associated with the reported stop data address
6253 anymore, then the bpstat does not explain the signal ---
6254 simply make sure to ignore it if `stopped_by_watchpoint' is
6255 set. */
6256
1eb8556f 6257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6258 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6259 GDB_SIGNAL_TRAP)
ab04a2af 6260 && stopped_by_watchpoint)
1eb8556f
SM
6261 {
6262 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6263 "ignoring");
6264 }
73dd234f 6265
bac7d97b 6266 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6267 at one stage in the past included checks for an inferior
6268 function call's call dummy's return breakpoint. The original
6269 comment, that went with the test, read:
03cebad2 6270
ab04a2af
TT
6271 ``End of a stack dummy. Some systems (e.g. Sony news) give
6272 another signal besides SIGTRAP, so check here as well as
6273 above.''
73dd234f 6274
ab04a2af
TT
6275 If someone ever tries to get call dummys on a
6276 non-executable stack to work (where the target would stop
6277 with something like a SIGSEGV), then those tests might need
6278 to be re-instated. Given, however, that the tests were only
6279 enabled when momentary breakpoints were not being used, I
6280 suspect that it won't be the case.
488f131b 6281
ab04a2af
TT
6282 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6283 be necessary for call dummies on a non-executable stack on
6284 SPARC. */
488f131b 6285
bac7d97b 6286 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6287 random_signal
6288 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6289 ecs->event_thread->suspend.stop_signal);
bac7d97b 6290
1cf4d951
PA
6291 /* Maybe this was a trap for a software breakpoint that has since
6292 been removed. */
6293 if (random_signal && target_stopped_by_sw_breakpoint ())
6294 {
5133a315
LM
6295 if (gdbarch_program_breakpoint_here_p (gdbarch,
6296 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6297 {
6298 struct regcache *regcache;
6299 int decr_pc;
6300
6301 /* Re-adjust PC to what the program would see if GDB was not
6302 debugging it. */
00431a78 6303 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6304 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6305 if (decr_pc != 0)
6306 {
07036511
TT
6307 gdb::optional<scoped_restore_tmpl<int>>
6308 restore_operation_disable;
1cf4d951
PA
6309
6310 if (record_full_is_used ())
07036511
TT
6311 restore_operation_disable.emplace
6312 (record_full_gdb_operation_disable_set ());
1cf4d951 6313
f2ffa92b
PA
6314 regcache_write_pc (regcache,
6315 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6316 }
6317 }
6318 else
6319 {
6320 /* A delayed software breakpoint event. Ignore the trap. */
1eb8556f 6321 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
1cf4d951
PA
6322 random_signal = 0;
6323 }
6324 }
6325
6326 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6327 has since been removed. */
6328 if (random_signal && target_stopped_by_hw_breakpoint ())
6329 {
6330 /* A delayed hardware breakpoint event. Ignore the trap. */
1eb8556f
SM
6331 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6332 "trap, ignoring");
1cf4d951
PA
6333 random_signal = 0;
6334 }
6335
bac7d97b
PA
6336 /* If not, perhaps stepping/nexting can. */
6337 if (random_signal)
6338 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6339 && currently_stepping (ecs->event_thread));
ab04a2af 6340
2adfaa28
PA
6341 /* Perhaps the thread hit a single-step breakpoint of _another_
6342 thread. Single-step breakpoints are transparent to the
6343 breakpoints module. */
6344 if (random_signal)
6345 random_signal = !ecs->hit_singlestep_breakpoint;
6346
bac7d97b
PA
6347 /* No? Perhaps we got a moribund watchpoint. */
6348 if (random_signal)
6349 random_signal = !stopped_by_watchpoint;
ab04a2af 6350
c65d6b55
PA
6351 /* Always stop if the user explicitly requested this thread to
6352 remain stopped. */
6353 if (ecs->event_thread->stop_requested)
6354 {
6355 random_signal = 1;
1eb8556f 6356 infrun_debug_printf ("user-requested stop");
c65d6b55
PA
6357 }
6358
488f131b
JB
6359 /* For the program's own signals, act according to
6360 the signal handling tables. */
6361
ce12b012 6362 if (random_signal)
488f131b
JB
6363 {
6364 /* Signal not for debugging purposes. */
c9737c08 6365 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6366
1eb8556f
SM
6367 infrun_debug_printf ("random signal (%s)",
6368 gdb_signal_to_symbol_string (stop_signal));
527159b7 6369
488f131b
JB
6370 stopped_by_random_signal = 1;
6371
252fbfc8
PA
6372 /* Always stop on signals if we're either just gaining control
6373 of the program, or the user explicitly requested this thread
6374 to remain stopped. */
d6b48e9c 6375 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6376 || ecs->event_thread->stop_requested
8ff53139 6377 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
488f131b 6378 {
22bcd14b 6379 stop_waiting (ecs);
488f131b
JB
6380 return;
6381 }
b57bacec
PA
6382
6383 /* Notify observers the signal has "handle print" set. Note we
6384 returned early above if stopping; normal_stop handles the
6385 printing in that case. */
6386 if (signal_print[ecs->event_thread->suspend.stop_signal])
6387 {
6388 /* The signal table tells us to print about this signal. */
223ffa71 6389 target_terminal::ours_for_output ();
76727919 6390 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6391 target_terminal::inferior ();
b57bacec 6392 }
488f131b
JB
6393
6394 /* Clear the signal if it should not be passed. */
16c381f0 6395 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6396 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6397
f2ffa92b 6398 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6399 && ecs->event_thread->control.trap_expected
8358c15c 6400 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6401 {
6402 /* We were just starting a new sequence, attempting to
6403 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6404 Instead this signal arrives. This signal will take us out
68f53502
AC
6405 of the stepping range so GDB needs to remember to, when
6406 the signal handler returns, resume stepping off that
6407 breakpoint. */
6408 /* To simplify things, "continue" is forced to use the same
6409 code paths as single-step - set a breakpoint at the
6410 signal return address and then, once hit, step off that
6411 breakpoint. */
1eb8556f 6412 infrun_debug_printf ("signal arrived while stepping over breakpoint");
d3169d93 6413
2c03e5be 6414 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6415 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6416 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6417 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6418
6419 /* If we were nexting/stepping some other thread, switch to
6420 it, so that we don't continue it, losing control. */
6421 if (!switch_back_to_stepped_thread (ecs))
6422 keep_going (ecs);
9d799f85 6423 return;
68f53502 6424 }
9d799f85 6425
e5f8a7cc 6426 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6427 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6428 ecs->event_thread)
e5f8a7cc 6429 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6430 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6431 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6432 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6433 {
6434 /* The inferior is about to take a signal that will take it
6435 out of the single step range. Set a breakpoint at the
6436 current PC (which is presumably where the signal handler
6437 will eventually return) and then allow the inferior to
6438 run free.
6439
6440 Note that this is only needed for a signal delivered
6441 while in the single-step range. Nested signals aren't a
6442 problem as they eventually all return. */
1eb8556f 6443 infrun_debug_printf ("signal may take us out of single-step range");
237fc4c9 6444
372316f1 6445 clear_step_over_info ();
2c03e5be 6446 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6447 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6448 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6449 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6450 keep_going (ecs);
6451 return;
d303a6c7 6452 }
9d799f85 6453
85102364 6454 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6455 when either there's a nested signal, or when there's a
6456 pending signal enabled just as the signal handler returns
6457 (leaving the inferior at the step-resume-breakpoint without
6458 actually executing it). Either way continue until the
6459 breakpoint is really hit. */
c447ac0b
PA
6460
6461 if (!switch_back_to_stepped_thread (ecs))
6462 {
1eb8556f 6463 infrun_debug_printf ("random signal, keep going");
c447ac0b
PA
6464
6465 keep_going (ecs);
6466 }
6467 return;
488f131b 6468 }
94c57d6a
PA
6469
6470 process_event_stop_test (ecs);
6471}
6472
6473/* Come here when we've got some debug event / signal we can explain
6474 (IOW, not a random signal), and test whether it should cause a
6475 stop, or whether we should resume the inferior (transparently).
6476 E.g., could be a breakpoint whose condition evaluates false; we
6477 could be still stepping within the line; etc. */
6478
6479static void
6480process_event_stop_test (struct execution_control_state *ecs)
6481{
6482 struct symtab_and_line stop_pc_sal;
6483 struct frame_info *frame;
6484 struct gdbarch *gdbarch;
cdaa5b73
PA
6485 CORE_ADDR jmp_buf_pc;
6486 struct bpstat_what what;
94c57d6a 6487
cdaa5b73 6488 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6489
cdaa5b73
PA
6490 frame = get_current_frame ();
6491 gdbarch = get_frame_arch (frame);
fcf3daef 6492
cdaa5b73 6493 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6494
cdaa5b73
PA
6495 if (what.call_dummy)
6496 {
6497 stop_stack_dummy = what.call_dummy;
6498 }
186c406b 6499
243a9253
PA
6500 /* A few breakpoint types have callbacks associated (e.g.,
6501 bp_jit_event). Run them now. */
6502 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6503
cdaa5b73
PA
6504 /* If we hit an internal event that triggers symbol changes, the
6505 current frame will be invalidated within bpstat_what (e.g., if we
6506 hit an internal solib event). Re-fetch it. */
6507 frame = get_current_frame ();
6508 gdbarch = get_frame_arch (frame);
e2e4d78b 6509
cdaa5b73
PA
6510 switch (what.main_action)
6511 {
6512 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6513 /* If we hit the breakpoint at longjmp while stepping, we
6514 install a momentary breakpoint at the target of the
6515 jmp_buf. */
186c406b 6516
1eb8556f 6517 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
186c406b 6518
cdaa5b73 6519 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6520
cdaa5b73
PA
6521 if (what.is_longjmp)
6522 {
6523 struct value *arg_value;
6524
6525 /* If we set the longjmp breakpoint via a SystemTap probe,
6526 then use it to extract the arguments. The destination PC
6527 is the third argument to the probe. */
6528 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6529 if (arg_value)
8fa0c4f8
AA
6530 {
6531 jmp_buf_pc = value_as_address (arg_value);
6532 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6533 }
cdaa5b73
PA
6534 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6535 || !gdbarch_get_longjmp_target (gdbarch,
6536 frame, &jmp_buf_pc))
e2e4d78b 6537 {
1eb8556f
SM
6538 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6539 "(!gdbarch_get_longjmp_target)");
cdaa5b73
PA
6540 keep_going (ecs);
6541 return;
e2e4d78b 6542 }
e2e4d78b 6543
cdaa5b73
PA
6544 /* Insert a breakpoint at resume address. */
6545 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6546 }
6547 else
6548 check_exception_resume (ecs, frame);
6549 keep_going (ecs);
6550 return;
e81a37f7 6551
cdaa5b73
PA
6552 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6553 {
6554 struct frame_info *init_frame;
e81a37f7 6555
cdaa5b73 6556 /* There are several cases to consider.
c906108c 6557
cdaa5b73
PA
6558 1. The initiating frame no longer exists. In this case we
6559 must stop, because the exception or longjmp has gone too
6560 far.
2c03e5be 6561
cdaa5b73
PA
6562 2. The initiating frame exists, and is the same as the
6563 current frame. We stop, because the exception or longjmp
6564 has been caught.
2c03e5be 6565
cdaa5b73
PA
6566 3. The initiating frame exists and is different from the
6567 current frame. This means the exception or longjmp has
6568 been caught beneath the initiating frame, so keep going.
c906108c 6569
cdaa5b73
PA
6570 4. longjmp breakpoint has been placed just to protect
6571 against stale dummy frames and user is not interested in
6572 stopping around longjmps. */
c5aa993b 6573
1eb8556f 6574 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
c5aa993b 6575
cdaa5b73
PA
6576 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6577 != NULL);
6578 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6579
cdaa5b73
PA
6580 if (what.is_longjmp)
6581 {
b67a2c6f 6582 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6583
cdaa5b73 6584 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6585 {
cdaa5b73
PA
6586 /* Case 4. */
6587 keep_going (ecs);
6588 return;
e5ef252a 6589 }
cdaa5b73 6590 }
c5aa993b 6591
cdaa5b73 6592 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6593
cdaa5b73
PA
6594 if (init_frame)
6595 {
6596 struct frame_id current_id
6597 = get_frame_id (get_current_frame ());
6598 if (frame_id_eq (current_id,
6599 ecs->event_thread->initiating_frame))
6600 {
6601 /* Case 2. Fall through. */
6602 }
6603 else
6604 {
6605 /* Case 3. */
6606 keep_going (ecs);
6607 return;
6608 }
68f53502 6609 }
488f131b 6610
cdaa5b73
PA
6611 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6612 exists. */
6613 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6614
bdc36728 6615 end_stepping_range (ecs);
cdaa5b73
PA
6616 }
6617 return;
e5ef252a 6618
cdaa5b73 6619 case BPSTAT_WHAT_SINGLE:
1eb8556f 6620 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
cdaa5b73
PA
6621 ecs->event_thread->stepping_over_breakpoint = 1;
6622 /* Still need to check other stuff, at least the case where we
6623 are stepping and step out of the right range. */
6624 break;
e5ef252a 6625
cdaa5b73 6626 case BPSTAT_WHAT_STEP_RESUME:
1eb8556f 6627 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
e5ef252a 6628
cdaa5b73
PA
6629 delete_step_resume_breakpoint (ecs->event_thread);
6630 if (ecs->event_thread->control.proceed_to_finish
6631 && execution_direction == EXEC_REVERSE)
6632 {
6633 struct thread_info *tp = ecs->event_thread;
6634
6635 /* We are finishing a function in reverse, and just hit the
6636 step-resume breakpoint at the start address of the
6637 function, and we're almost there -- just need to back up
6638 by one more single-step, which should take us back to the
6639 function call. */
6640 tp->control.step_range_start = tp->control.step_range_end = 1;
6641 keep_going (ecs);
e5ef252a 6642 return;
cdaa5b73
PA
6643 }
6644 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6645 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6646 && execution_direction == EXEC_REVERSE)
6647 {
6648 /* We are stepping over a function call in reverse, and just
6649 hit the step-resume breakpoint at the start address of
6650 the function. Go back to single-stepping, which should
6651 take us back to the function call. */
6652 ecs->event_thread->stepping_over_breakpoint = 1;
6653 keep_going (ecs);
6654 return;
6655 }
6656 break;
e5ef252a 6657
cdaa5b73 6658 case BPSTAT_WHAT_STOP_NOISY:
1eb8556f 6659 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
c4464ade 6660 stop_print_frame = true;
e5ef252a 6661
33bf4c5c 6662 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6663 whether a/the breakpoint is there when the thread is next
6664 resumed. */
6665 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6666
22bcd14b 6667 stop_waiting (ecs);
cdaa5b73 6668 return;
e5ef252a 6669
cdaa5b73 6670 case BPSTAT_WHAT_STOP_SILENT:
1eb8556f 6671 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
c4464ade 6672 stop_print_frame = false;
e5ef252a 6673
33bf4c5c 6674 /* Assume the thread stopped for a breakpoint. We'll still check
99619bea
PA
6675 whether a/the breakpoint is there when the thread is next
6676 resumed. */
6677 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6678 stop_waiting (ecs);
cdaa5b73
PA
6679 return;
6680
6681 case BPSTAT_WHAT_HP_STEP_RESUME:
1eb8556f 6682 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
cdaa5b73
PA
6683
6684 delete_step_resume_breakpoint (ecs->event_thread);
6685 if (ecs->event_thread->step_after_step_resume_breakpoint)
6686 {
6687 /* Back when the step-resume breakpoint was inserted, we
6688 were trying to single-step off a breakpoint. Go back to
6689 doing that. */
6690 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6691 ecs->event_thread->stepping_over_breakpoint = 1;
6692 keep_going (ecs);
6693 return;
e5ef252a 6694 }
cdaa5b73
PA
6695 break;
6696
6697 case BPSTAT_WHAT_KEEP_CHECKING:
6698 break;
e5ef252a 6699 }
c906108c 6700
af48d08f
PA
6701 /* If we stepped a permanent breakpoint and we had a high priority
6702 step-resume breakpoint for the address we stepped, but we didn't
6703 hit it, then we must have stepped into the signal handler. The
6704 step-resume was only necessary to catch the case of _not_
6705 stepping into the handler, so delete it, and fall through to
6706 checking whether the step finished. */
6707 if (ecs->event_thread->stepped_breakpoint)
6708 {
6709 struct breakpoint *sr_bp
6710 = ecs->event_thread->control.step_resume_breakpoint;
6711
8d707a12
PA
6712 if (sr_bp != NULL
6713 && sr_bp->loc->permanent
af48d08f
PA
6714 && sr_bp->type == bp_hp_step_resume
6715 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6716 {
1eb8556f 6717 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
af48d08f
PA
6718 delete_step_resume_breakpoint (ecs->event_thread);
6719 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6720 }
6721 }
6722
cdaa5b73
PA
6723 /* We come here if we hit a breakpoint but should not stop for it.
6724 Possibly we also were stepping and should stop for that. So fall
6725 through and test for stepping. But, if not stepping, do not
6726 stop. */
c906108c 6727
a7212384
UW
6728 /* In all-stop mode, if we're currently stepping but have stopped in
6729 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6730 if (switch_back_to_stepped_thread (ecs))
6731 return;
776f04fa 6732
8358c15c 6733 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6734 {
1eb8556f 6735 infrun_debug_printf ("step-resume breakpoint is inserted");
527159b7 6736
488f131b 6737 /* Having a step-resume breakpoint overrides anything
dda83cd7
SM
6738 else having to do with stepping commands until
6739 that breakpoint is reached. */
488f131b
JB
6740 keep_going (ecs);
6741 return;
6742 }
c5aa993b 6743
16c381f0 6744 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6745 {
1eb8556f 6746 infrun_debug_printf ("no stepping, continue");
488f131b 6747 /* Likewise if we aren't even stepping. */
488f131b
JB
6748 keep_going (ecs);
6749 return;
6750 }
c5aa993b 6751
4b7703ad
JB
6752 /* Re-fetch current thread's frame in case the code above caused
6753 the frame cache to be re-initialized, making our FRAME variable
6754 a dangling pointer. */
6755 frame = get_current_frame ();
628fe4e4 6756 gdbarch = get_frame_arch (frame);
7e324e48 6757 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6758
488f131b 6759 /* If stepping through a line, keep going if still within it.
c906108c 6760
488f131b
JB
6761 Note that step_range_end is the address of the first instruction
6762 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6763 within it!
6764
6765 Note also that during reverse execution, we may be stepping
6766 through a function epilogue and therefore must detect when
6767 the current-frame changes in the middle of a line. */
6768
f2ffa92b
PA
6769 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6770 ecs->event_thread)
31410e84 6771 && (execution_direction != EXEC_REVERSE
388a8562 6772 || frame_id_eq (get_frame_id (frame),
16c381f0 6773 ecs->event_thread->control.step_frame_id)))
488f131b 6774 {
1eb8556f
SM
6775 infrun_debug_printf
6776 ("stepping inside range [%s-%s]",
6777 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6778 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6779
c1e36e3e
PA
6780 /* Tentatively re-enable range stepping; `resume' disables it if
6781 necessary (e.g., if we're stepping over a breakpoint or we
6782 have software watchpoints). */
6783 ecs->event_thread->control.may_range_step = 1;
6784
b2175913
MS
6785 /* When stepping backward, stop at beginning of line range
6786 (unless it's the function entry point, in which case
6787 keep going back to the call point). */
f2ffa92b 6788 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6789 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6790 && stop_pc != ecs->stop_func_start
6791 && execution_direction == EXEC_REVERSE)
bdc36728 6792 end_stepping_range (ecs);
b2175913
MS
6793 else
6794 keep_going (ecs);
6795
488f131b
JB
6796 return;
6797 }
c5aa993b 6798
488f131b 6799 /* We stepped out of the stepping range. */
c906108c 6800
488f131b 6801 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6802 loader dynamic symbol resolution code...
6803
6804 EXEC_FORWARD: we keep on single stepping until we exit the run
6805 time loader code and reach the callee's address.
6806
6807 EXEC_REVERSE: we've already executed the callee (backward), and
6808 the runtime loader code is handled just like any other
6809 undebuggable function call. Now we need only keep stepping
6810 backward through the trampoline code, and that's handled further
6811 down, so there is nothing for us to do here. */
6812
6813 if (execution_direction != EXEC_REVERSE
16c381f0 6814 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6815 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6816 {
4c8c40e6 6817 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6818 gdbarch_skip_solib_resolver (gdbarch,
6819 ecs->event_thread->suspend.stop_pc);
c906108c 6820
1eb8556f 6821 infrun_debug_printf ("stepped into dynsym resolve code");
527159b7 6822
488f131b
JB
6823 if (pc_after_resolver)
6824 {
6825 /* Set up a step-resume breakpoint at the address
6826 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6827 symtab_and_line sr_sal;
488f131b 6828 sr_sal.pc = pc_after_resolver;
6c95b8df 6829 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6830
a6d9a66e
UW
6831 insert_step_resume_breakpoint_at_sal (gdbarch,
6832 sr_sal, null_frame_id);
c5aa993b 6833 }
c906108c 6834
488f131b
JB
6835 keep_going (ecs);
6836 return;
6837 }
c906108c 6838
1d509aa6
MM
6839 /* Step through an indirect branch thunk. */
6840 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6841 && gdbarch_in_indirect_branch_thunk (gdbarch,
6842 ecs->event_thread->suspend.stop_pc))
1d509aa6 6843 {
1eb8556f 6844 infrun_debug_printf ("stepped into indirect branch thunk");
1d509aa6
MM
6845 keep_going (ecs);
6846 return;
6847 }
6848
16c381f0
JK
6849 if (ecs->event_thread->control.step_range_end != 1
6850 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6851 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6852 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6853 {
1eb8556f 6854 infrun_debug_printf ("stepped into signal trampoline");
42edda50 6855 /* The inferior, while doing a "step" or "next", has ended up in
dda83cd7
SM
6856 a signal trampoline (either by a signal being delivered or by
6857 the signal handler returning). Just single-step until the
6858 inferior leaves the trampoline (either by calling the handler
6859 or returning). */
488f131b
JB
6860 keep_going (ecs);
6861 return;
6862 }
c906108c 6863
14132e89
MR
6864 /* If we're in the return path from a shared library trampoline,
6865 we want to proceed through the trampoline when stepping. */
6866 /* macro/2012-04-25: This needs to come before the subroutine
6867 call check below as on some targets return trampolines look
6868 like subroutine calls (MIPS16 return thunks). */
6869 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6870 ecs->event_thread->suspend.stop_pc,
6871 ecs->stop_func_name)
14132e89
MR
6872 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6873 {
6874 /* Determine where this trampoline returns. */
f2ffa92b
PA
6875 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6876 CORE_ADDR real_stop_pc
6877 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89 6878
1eb8556f 6879 infrun_debug_printf ("stepped into solib return tramp");
14132e89
MR
6880
6881 /* Only proceed through if we know where it's going. */
6882 if (real_stop_pc)
6883 {
6884 /* And put the step-breakpoint there and go until there. */
51abb421 6885 symtab_and_line sr_sal;
14132e89
MR
6886 sr_sal.pc = real_stop_pc;
6887 sr_sal.section = find_pc_overlay (sr_sal.pc);
6888 sr_sal.pspace = get_frame_program_space (frame);
6889
6890 /* Do not specify what the fp should be when we stop since
6891 on some machines the prologue is where the new fp value
6892 is established. */
6893 insert_step_resume_breakpoint_at_sal (gdbarch,
6894 sr_sal, null_frame_id);
6895
6896 /* Restart without fiddling with the step ranges or
6897 other state. */
6898 keep_going (ecs);
6899 return;
6900 }
6901 }
6902
c17eaafe
DJ
6903 /* Check for subroutine calls. The check for the current frame
6904 equalling the step ID is not necessary - the check of the
6905 previous frame's ID is sufficient - but it is a common case and
6906 cheaper than checking the previous frame's ID.
14e60db5
DJ
6907
6908 NOTE: frame_id_eq will never report two invalid frame IDs as
6909 being equal, so to get into this block, both the current and
6910 previous frame must have valid frame IDs. */
005ca36a
JB
6911 /* The outer_frame_id check is a heuristic to detect stepping
6912 through startup code. If we step over an instruction which
6913 sets the stack pointer from an invalid value to a valid value,
6914 we may detect that as a subroutine call from the mythical
6915 "outermost" function. This could be fixed by marking
6916 outermost frames as !stack_p,code_p,special_p. Then the
6917 initial outermost frame, before sp was valid, would
ce6cca6d 6918 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6919 for more. */
edb3359d 6920 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6921 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6922 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6923 ecs->event_thread->control.step_stack_frame_id)
6924 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6925 outer_frame_id)
885eeb5b 6926 || (ecs->event_thread->control.step_start_function
f2ffa92b 6927 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6928 {
f2ffa92b 6929 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6930 CORE_ADDR real_stop_pc;
8fb3e588 6931
1eb8556f 6932 infrun_debug_printf ("stepped into subroutine");
527159b7 6933
b7a084be 6934 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6935 {
6936 /* I presume that step_over_calls is only 0 when we're
6937 supposed to be stepping at the assembly language level
6938 ("stepi"). Just stop. */
388a8562 6939 /* And this works the same backward as frontward. MVS */
bdc36728 6940 end_stepping_range (ecs);
95918acb
AC
6941 return;
6942 }
8fb3e588 6943
388a8562
MS
6944 /* Reverse stepping through solib trampolines. */
6945
6946 if (execution_direction == EXEC_REVERSE
16c381f0 6947 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6948 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6949 || (ecs->stop_func_start == 0
6950 && in_solib_dynsym_resolve_code (stop_pc))))
6951 {
6952 /* Any solib trampoline code can be handled in reverse
6953 by simply continuing to single-step. We have already
6954 executed the solib function (backwards), and a few
6955 steps will take us back through the trampoline to the
6956 caller. */
6957 keep_going (ecs);
6958 return;
6959 }
6960
16c381f0 6961 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6962 {
b2175913
MS
6963 /* We're doing a "next".
6964
6965 Normal (forward) execution: set a breakpoint at the
6966 callee's return address (the address at which the caller
6967 will resume).
6968
6969 Reverse (backward) execution. set the step-resume
6970 breakpoint at the start of the function that we just
6971 stepped into (backwards), and continue to there. When we
6130d0b7 6972 get there, we'll need to single-step back to the caller. */
b2175913
MS
6973
6974 if (execution_direction == EXEC_REVERSE)
6975 {
acf9414f
JK
6976 /* If we're already at the start of the function, we've either
6977 just stepped backward into a single instruction function,
6978 or stepped back out of a signal handler to the first instruction
6979 of the function. Just keep going, which will single-step back
6980 to the caller. */
58c48e72 6981 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6982 {
acf9414f 6983 /* Normal function call return (static or dynamic). */
51abb421 6984 symtab_and_line sr_sal;
acf9414f
JK
6985 sr_sal.pc = ecs->stop_func_start;
6986 sr_sal.pspace = get_frame_program_space (frame);
6987 insert_step_resume_breakpoint_at_sal (gdbarch,
6988 sr_sal, null_frame_id);
6989 }
b2175913
MS
6990 }
6991 else
568d6575 6992 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6993
8567c30f
AC
6994 keep_going (ecs);
6995 return;
6996 }
a53c66de 6997
95918acb 6998 /* If we are in a function call trampoline (a stub between the
dda83cd7
SM
6999 calling routine and the real function), locate the real
7000 function. That's what tells us (a) whether we want to step
7001 into it at all, and (b) what prologue we want to run to the
7002 end of, if we do step into it. */
568d6575 7003 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 7004 if (real_stop_pc == 0)
568d6575 7005 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
7006 if (real_stop_pc != 0)
7007 ecs->stop_func_start = real_stop_pc;
8fb3e588 7008
db5f024e 7009 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 7010 {
51abb421 7011 symtab_and_line sr_sal;
1b2bfbb9 7012 sr_sal.pc = ecs->stop_func_start;
6c95b8df 7013 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 7014
a6d9a66e
UW
7015 insert_step_resume_breakpoint_at_sal (gdbarch,
7016 sr_sal, null_frame_id);
8fb3e588
AC
7017 keep_going (ecs);
7018 return;
1b2bfbb9
RC
7019 }
7020
95918acb 7021 /* If we have line number information for the function we are
1bfeeb0f
JL
7022 thinking of stepping into and the function isn't on the skip
7023 list, step into it.
95918acb 7024
dda83cd7
SM
7025 If there are several symtabs at that PC (e.g. with include
7026 files), just want to know whether *any* of them have line
7027 numbers. find_pc_line handles this. */
95918acb
AC
7028 {
7029 struct symtab_and_line tmp_sal;
8fb3e588 7030
95918acb 7031 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 7032 if (tmp_sal.line != 0
85817405 7033 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
7034 tmp_sal)
7035 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 7036 {
b2175913 7037 if (execution_direction == EXEC_REVERSE)
568d6575 7038 handle_step_into_function_backward (gdbarch, ecs);
b2175913 7039 else
568d6575 7040 handle_step_into_function (gdbarch, ecs);
95918acb
AC
7041 return;
7042 }
7043 }
7044
7045 /* If we have no line number and the step-stop-if-no-debug is
dda83cd7
SM
7046 set, we stop the step so that the user has a chance to switch
7047 in assembly mode. */
16c381f0 7048 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 7049 && step_stop_if_no_debug)
95918acb 7050 {
bdc36728 7051 end_stepping_range (ecs);
95918acb
AC
7052 return;
7053 }
7054
b2175913
MS
7055 if (execution_direction == EXEC_REVERSE)
7056 {
acf9414f
JK
7057 /* If we're already at the start of the function, we've either just
7058 stepped backward into a single instruction function without line
7059 number info, or stepped back out of a signal handler to the first
7060 instruction of the function without line number info. Just keep
7061 going, which will single-step back to the caller. */
7062 if (ecs->stop_func_start != stop_pc)
7063 {
7064 /* Set a breakpoint at callee's start address.
7065 From there we can step once and be back in the caller. */
51abb421 7066 symtab_and_line sr_sal;
acf9414f
JK
7067 sr_sal.pc = ecs->stop_func_start;
7068 sr_sal.pspace = get_frame_program_space (frame);
7069 insert_step_resume_breakpoint_at_sal (gdbarch,
7070 sr_sal, null_frame_id);
7071 }
b2175913
MS
7072 }
7073 else
7074 /* Set a breakpoint at callee's return address (the address
7075 at which the caller will resume). */
568d6575 7076 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7077
95918acb 7078 keep_going (ecs);
488f131b 7079 return;
488f131b 7080 }
c906108c 7081
fdd654f3
MS
7082 /* Reverse stepping through solib trampolines. */
7083
7084 if (execution_direction == EXEC_REVERSE
16c381f0 7085 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7086 {
f2ffa92b
PA
7087 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7088
fdd654f3
MS
7089 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7090 || (ecs->stop_func_start == 0
7091 && in_solib_dynsym_resolve_code (stop_pc)))
7092 {
7093 /* Any solib trampoline code can be handled in reverse
7094 by simply continuing to single-step. We have already
7095 executed the solib function (backwards), and a few
7096 steps will take us back through the trampoline to the
7097 caller. */
7098 keep_going (ecs);
7099 return;
7100 }
7101 else if (in_solib_dynsym_resolve_code (stop_pc))
7102 {
7103 /* Stepped backward into the solib dynsym resolver.
7104 Set a breakpoint at its start and continue, then
7105 one more step will take us out. */
51abb421 7106 symtab_and_line sr_sal;
fdd654f3 7107 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7108 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7109 insert_step_resume_breakpoint_at_sal (gdbarch,
7110 sr_sal, null_frame_id);
7111 keep_going (ecs);
7112 return;
7113 }
7114 }
7115
8c95582d
AB
7116 /* This always returns the sal for the inner-most frame when we are in a
7117 stack of inlined frames, even if GDB actually believes that it is in a
7118 more outer frame. This is checked for below by calls to
7119 inline_skipped_frames. */
f2ffa92b 7120 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7121
1b2bfbb9
RC
7122 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7123 the trampoline processing logic, however, there are some trampolines
7124 that have no names, so we should do trampoline handling first. */
16c381f0 7125 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7126 && ecs->stop_func_name == NULL
2afb61aa 7127 && stop_pc_sal.line == 0)
1b2bfbb9 7128 {
1eb8556f 7129 infrun_debug_printf ("stepped into undebuggable function");
527159b7 7130
1b2bfbb9 7131 /* The inferior just stepped into, or returned to, an
dda83cd7
SM
7132 undebuggable function (where there is no debugging information
7133 and no line number corresponding to the address where the
7134 inferior stopped). Since we want to skip this kind of code,
7135 we keep going until the inferior returns from this
7136 function - unless the user has asked us not to (via
7137 set step-mode) or we no longer know how to get back
7138 to the call site. */
14e60db5 7139 if (step_stop_if_no_debug
c7ce8faa 7140 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7141 {
7142 /* If we have no line number and the step-stop-if-no-debug
7143 is set, we stop the step so that the user has a chance to
7144 switch in assembly mode. */
bdc36728 7145 end_stepping_range (ecs);
1b2bfbb9
RC
7146 return;
7147 }
7148 else
7149 {
7150 /* Set a breakpoint at callee's return address (the address
7151 at which the caller will resume). */
568d6575 7152 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7153 keep_going (ecs);
7154 return;
7155 }
7156 }
7157
16c381f0 7158 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7159 {
7160 /* It is stepi or nexti. We always want to stop stepping after
dda83cd7 7161 one instruction. */
1eb8556f 7162 infrun_debug_printf ("stepi/nexti");
bdc36728 7163 end_stepping_range (ecs);
1b2bfbb9
RC
7164 return;
7165 }
7166
2afb61aa 7167 if (stop_pc_sal.line == 0)
488f131b
JB
7168 {
7169 /* We have no line number information. That means to stop
dda83cd7
SM
7170 stepping (does this always happen right after one instruction,
7171 when we do "s" in a function with no line numbers,
7172 or can this happen as a result of a return or longjmp?). */
1eb8556f 7173 infrun_debug_printf ("line number info");
bdc36728 7174 end_stepping_range (ecs);
488f131b
JB
7175 return;
7176 }
c906108c 7177
edb3359d
DJ
7178 /* Look for "calls" to inlined functions, part one. If the inline
7179 frame machinery detected some skipped call sites, we have entered
7180 a new inline function. */
7181
7182 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7183 ecs->event_thread->control.step_frame_id)
00431a78 7184 && inline_skipped_frames (ecs->event_thread))
edb3359d 7185 {
1eb8556f 7186 infrun_debug_printf ("stepped into inlined function");
edb3359d 7187
51abb421 7188 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7189
16c381f0 7190 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7191 {
7192 /* For "step", we're going to stop. But if the call site
7193 for this inlined function is on the same source line as
7194 we were previously stepping, go down into the function
7195 first. Otherwise stop at the call site. */
7196
7197 if (call_sal.line == ecs->event_thread->current_line
7198 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7199 {
7200 step_into_inline_frame (ecs->event_thread);
7201 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7202 {
7203 keep_going (ecs);
7204 return;
7205 }
7206 }
edb3359d 7207
bdc36728 7208 end_stepping_range (ecs);
edb3359d
DJ
7209 return;
7210 }
7211 else
7212 {
7213 /* For "next", we should stop at the call site if it is on a
7214 different source line. Otherwise continue through the
7215 inlined function. */
7216 if (call_sal.line == ecs->event_thread->current_line
7217 && call_sal.symtab == ecs->event_thread->current_symtab)
7218 keep_going (ecs);
7219 else
bdc36728 7220 end_stepping_range (ecs);
edb3359d
DJ
7221 return;
7222 }
7223 }
7224
7225 /* Look for "calls" to inlined functions, part two. If we are still
7226 in the same real function we were stepping through, but we have
7227 to go further up to find the exact frame ID, we are stepping
7228 through a more inlined call beyond its call site. */
7229
7230 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7231 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7232 ecs->event_thread->control.step_frame_id)
edb3359d 7233 && stepped_in_from (get_current_frame (),
16c381f0 7234 ecs->event_thread->control.step_frame_id))
edb3359d 7235 {
1eb8556f 7236 infrun_debug_printf ("stepping through inlined function");
edb3359d 7237
4a4c04f1
BE
7238 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7239 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7240 keep_going (ecs);
7241 else
bdc36728 7242 end_stepping_range (ecs);
edb3359d
DJ
7243 return;
7244 }
7245
8c95582d 7246 bool refresh_step_info = true;
f2ffa92b 7247 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7248 && (ecs->event_thread->current_line != stop_pc_sal.line
7249 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7250 {
ebde6f2d
TV
7251 /* We are at a different line. */
7252
8c95582d
AB
7253 if (stop_pc_sal.is_stmt)
7254 {
ebde6f2d
TV
7255 /* We are at the start of a statement.
7256
7257 So stop. Note that we don't stop if we step into the middle of a
7258 statement. That is said to make things like for (;;) statements
7259 work better. */
1eb8556f 7260 infrun_debug_printf ("stepped to a different line");
8c95582d
AB
7261 end_stepping_range (ecs);
7262 return;
7263 }
7264 else if (frame_id_eq (get_frame_id (get_current_frame ()),
ebde6f2d 7265 ecs->event_thread->control.step_frame_id))
8c95582d 7266 {
ebde6f2d
TV
7267 /* We are not at the start of a statement, and we have not changed
7268 frame.
7269
7270 We ignore this line table entry, and continue stepping forward,
8c95582d
AB
7271 looking for a better place to stop. */
7272 refresh_step_info = false;
1eb8556f
SM
7273 infrun_debug_printf ("stepped to a different line, but "
7274 "it's not the start of a statement");
8c95582d 7275 }
ebde6f2d
TV
7276 else
7277 {
7278 /* We are not the start of a statement, and we have changed frame.
7279
7280 We ignore this line table entry, and continue stepping forward,
7281 looking for a better place to stop. Keep refresh_step_info at
7282 true to note that the frame has changed, but ignore the line
7283 number to make sure we don't ignore a subsequent entry with the
7284 same line number. */
7285 stop_pc_sal.line = 0;
7286 infrun_debug_printf ("stepped to a different frame, but "
7287 "it's not the start of a statement");
7288 }
488f131b 7289 }
c906108c 7290
488f131b 7291 /* We aren't done stepping.
c906108c 7292
488f131b
JB
7293 Optimize by setting the stepping range to the line.
7294 (We might not be in the original line, but if we entered a
7295 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7296 things like for(;;) statements work better.)
7297
7298 If we entered a SAL that indicates a non-statement line table entry,
7299 then we update the stepping range, but we don't update the step info,
7300 which includes things like the line number we are stepping away from.
7301 This means we will stop when we find a line table entry that is marked
7302 as is-statement, even if it matches the non-statement one we just
7303 stepped into. */
c906108c 7304
16c381f0
JK
7305 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7306 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7307 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7308 if (refresh_step_info)
7309 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7310
1eb8556f 7311 infrun_debug_printf ("keep going");
488f131b 7312 keep_going (ecs);
104c1213
JM
7313}
7314
408f6686
PA
7315static bool restart_stepped_thread (process_stratum_target *resume_target,
7316 ptid_t resume_ptid);
7317
c447ac0b
PA
7318/* In all-stop mode, if we're currently stepping but have stopped in
7319 some other thread, we may need to switch back to the stepped
7320 thread. Returns true we set the inferior running, false if we left
7321 it stopped (and the event needs further processing). */
7322
c4464ade 7323static bool
c447ac0b
PA
7324switch_back_to_stepped_thread (struct execution_control_state *ecs)
7325{
fbea99ea 7326 if (!target_is_non_stop_p ())
c447ac0b 7327 {
99619bea
PA
7328 /* If any thread is blocked on some internal breakpoint, and we
7329 simply need to step over that breakpoint to get it going
7330 again, do that first. */
7331
7332 /* However, if we see an event for the stepping thread, then we
7333 know all other threads have been moved past their breakpoints
7334 already. Let the caller check whether the step is finished,
7335 etc., before deciding to move it past a breakpoint. */
7336 if (ecs->event_thread->control.step_range_end != 0)
c4464ade 7337 return false;
99619bea
PA
7338
7339 /* Check if the current thread is blocked on an incomplete
7340 step-over, interrupted by a random signal. */
7341 if (ecs->event_thread->control.trap_expected
7342 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7343 {
1eb8556f
SM
7344 infrun_debug_printf
7345 ("need to finish step-over of [%s]",
7346 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea 7347 keep_going (ecs);
c4464ade 7348 return true;
99619bea 7349 }
2adfaa28 7350
99619bea
PA
7351 /* Check if the current thread is blocked by a single-step
7352 breakpoint of another thread. */
7353 if (ecs->hit_singlestep_breakpoint)
7354 {
1eb8556f
SM
7355 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7356 target_pid_to_str (ecs->ptid).c_str ());
99619bea 7357 keep_going (ecs);
c4464ade 7358 return true;
99619bea
PA
7359 }
7360
4d9d9d04
PA
7361 /* If this thread needs yet another step-over (e.g., stepping
7362 through a delay slot), do it first before moving on to
7363 another thread. */
7364 if (thread_still_needs_step_over (ecs->event_thread))
7365 {
1eb8556f
SM
7366 infrun_debug_printf
7367 ("thread [%s] still needs step-over",
7368 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04 7369 keep_going (ecs);
c4464ade 7370 return true;
4d9d9d04 7371 }
70509625 7372
483805cf
PA
7373 /* If scheduler locking applies even if not stepping, there's no
7374 need to walk over threads. Above we've checked whether the
7375 current thread is stepping. If some other thread not the
7376 event thread is stepping, then it must be that scheduler
7377 locking is not in effect. */
856e7dd6 7378 if (schedlock_applies (ecs->event_thread))
c4464ade 7379 return false;
483805cf 7380
4d9d9d04
PA
7381 /* Otherwise, we no longer expect a trap in the current thread.
7382 Clear the trap_expected flag before switching back -- this is
7383 what keep_going does as well, if we call it. */
7384 ecs->event_thread->control.trap_expected = 0;
7385
7386 /* Likewise, clear the signal if it should not be passed. */
7387 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7388 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7389
408f6686 7390 if (restart_stepped_thread (ecs->target, ecs->ptid))
4d9d9d04
PA
7391 {
7392 prepare_to_wait (ecs);
c4464ade 7393 return true;
4d9d9d04
PA
7394 }
7395
408f6686
PA
7396 switch_to_thread (ecs->event_thread);
7397 }
4d9d9d04 7398
408f6686
PA
7399 return false;
7400}
f3f8ece4 7401
408f6686
PA
7402/* Look for the thread that was stepping, and resume it.
7403 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7404 is resuming. Return true if a thread was started, false
7405 otherwise. */
483805cf 7406
408f6686
PA
7407static bool
7408restart_stepped_thread (process_stratum_target *resume_target,
7409 ptid_t resume_ptid)
7410{
7411 /* Do all pending step-overs before actually proceeding with
7412 step/next/etc. */
7413 if (start_step_over ())
7414 return true;
483805cf 7415
408f6686
PA
7416 for (thread_info *tp : all_threads_safe ())
7417 {
7418 if (tp->state == THREAD_EXITED)
7419 continue;
7420
7421 if (tp->suspend.waitstatus_pending_p)
7422 continue;
483805cf 7423
408f6686
PA
7424 /* Ignore threads of processes the caller is not
7425 resuming. */
7426 if (!sched_multi
7427 && (tp->inf->process_target () != resume_target
7428 || tp->inf->pid != resume_ptid.pid ()))
7429 continue;
483805cf 7430
408f6686
PA
7431 if (tp->control.trap_expected)
7432 {
7433 infrun_debug_printf ("switching back to stepped thread (step-over)");
483805cf 7434
408f6686
PA
7435 if (keep_going_stepped_thread (tp))
7436 return true;
99619bea 7437 }
408f6686
PA
7438 }
7439
7440 for (thread_info *tp : all_threads_safe ())
7441 {
7442 if (tp->state == THREAD_EXITED)
7443 continue;
7444
7445 if (tp->suspend.waitstatus_pending_p)
7446 continue;
99619bea 7447
408f6686
PA
7448 /* Ignore threads of processes the caller is not
7449 resuming. */
7450 if (!sched_multi
7451 && (tp->inf->process_target () != resume_target
7452 || tp->inf->pid != resume_ptid.pid ()))
7453 continue;
7454
7455 /* Did we find the stepping thread? */
7456 if (tp->control.step_range_end)
99619bea 7457 {
408f6686 7458 infrun_debug_printf ("switching back to stepped thread (stepping)");
c447ac0b 7459
408f6686
PA
7460 if (keep_going_stepped_thread (tp))
7461 return true;
2ac7589c
PA
7462 }
7463 }
2adfaa28 7464
c4464ade 7465 return false;
2ac7589c 7466}
2adfaa28 7467
408f6686
PA
7468/* See infrun.h. */
7469
7470void
7471restart_after_all_stop_detach (process_stratum_target *proc_target)
7472{
7473 /* Note we don't check target_is_non_stop_p() here, because the
7474 current inferior may no longer have a process_stratum target
7475 pushed, as we just detached. */
7476
7477 /* See if we have a THREAD_RUNNING thread that need to be
7478 re-resumed. If we have any thread that is already executing,
7479 then we don't need to resume the target -- it is already been
7480 resumed. With the remote target (in all-stop), it's even
7481 impossible to issue another resumption if the target is already
7482 resumed, until the target reports a stop. */
7483 for (thread_info *thr : all_threads (proc_target))
7484 {
7485 if (thr->state != THREAD_RUNNING)
7486 continue;
7487
7488 /* If we have any thread that is already executing, then we
7489 don't need to resume the target -- it is already been
7490 resumed. */
7491 if (thr->executing)
7492 return;
7493
7494 /* If we have a pending event to process, skip resuming the
7495 target and go straight to processing it. */
7496 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7497 return;
7498 }
7499
7500 /* Alright, we need to re-resume the target. If a thread was
7501 stepping, we need to restart it stepping. */
7502 if (restart_stepped_thread (proc_target, minus_one_ptid))
7503 return;
7504
7505 /* Otherwise, find the first THREAD_RUNNING thread and resume
7506 it. */
7507 for (thread_info *thr : all_threads (proc_target))
7508 {
7509 if (thr->state != THREAD_RUNNING)
7510 continue;
7511
7512 execution_control_state ecs;
7513 reset_ecs (&ecs, thr);
7514 switch_to_thread (thr);
7515 keep_going (&ecs);
7516 return;
7517 }
7518}
7519
2ac7589c
PA
7520/* Set a previously stepped thread back to stepping. Returns true on
7521 success, false if the resume is not possible (e.g., the thread
7522 vanished). */
7523
c4464ade 7524static bool
2ac7589c
PA
7525keep_going_stepped_thread (struct thread_info *tp)
7526{
7527 struct frame_info *frame;
2ac7589c
PA
7528 struct execution_control_state ecss;
7529 struct execution_control_state *ecs = &ecss;
2adfaa28 7530
2ac7589c
PA
7531 /* If the stepping thread exited, then don't try to switch back and
7532 resume it, which could fail in several different ways depending
7533 on the target. Instead, just keep going.
2adfaa28 7534
2ac7589c
PA
7535 We can find a stepping dead thread in the thread list in two
7536 cases:
2adfaa28 7537
2ac7589c
PA
7538 - The target supports thread exit events, and when the target
7539 tries to delete the thread from the thread list, inferior_ptid
7540 pointed at the exiting thread. In such case, calling
7541 delete_thread does not really remove the thread from the list;
7542 instead, the thread is left listed, with 'exited' state.
64ce06e4 7543
2ac7589c
PA
7544 - The target's debug interface does not support thread exit
7545 events, and so we have no idea whatsoever if the previously
7546 stepping thread is still alive. For that reason, we need to
7547 synchronously query the target now. */
2adfaa28 7548
00431a78 7549 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c 7550 {
1eb8556f
SM
7551 infrun_debug_printf ("not resuming previously stepped thread, it has "
7552 "vanished");
2ac7589c 7553
00431a78 7554 delete_thread (tp);
c4464ade 7555 return false;
c447ac0b 7556 }
2ac7589c 7557
1eb8556f 7558 infrun_debug_printf ("resuming previously stepped thread");
2ac7589c
PA
7559
7560 reset_ecs (ecs, tp);
00431a78 7561 switch_to_thread (tp);
2ac7589c 7562
f2ffa92b 7563 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7564 frame = get_current_frame ();
2ac7589c
PA
7565
7566 /* If the PC of the thread we were trying to single-step has
7567 changed, then that thread has trapped or been signaled, but the
7568 event has not been reported to GDB yet. Re-poll the target
7569 looking for this particular thread's event (i.e. temporarily
7570 enable schedlock) by:
7571
7572 - setting a break at the current PC
7573 - resuming that particular thread, only (by setting trap
7574 expected)
7575
7576 This prevents us continuously moving the single-step breakpoint
7577 forward, one instruction at a time, overstepping. */
7578
f2ffa92b 7579 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7580 {
7581 ptid_t resume_ptid;
7582
1eb8556f
SM
7583 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7584 paddress (target_gdbarch (), tp->prev_pc),
7585 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7586
7587 /* Clear the info of the previous step-over, as it's no longer
7588 valid (if the thread was trying to step over a breakpoint, it
7589 has already succeeded). It's what keep_going would do too,
7590 if we called it. Do this before trying to insert the sss
7591 breakpoint, otherwise if we were previously trying to step
7592 over this exact address in another thread, the breakpoint is
7593 skipped. */
7594 clear_step_over_info ();
7595 tp->control.trap_expected = 0;
7596
7597 insert_single_step_breakpoint (get_frame_arch (frame),
7598 get_frame_address_space (frame),
f2ffa92b 7599 tp->suspend.stop_pc);
2ac7589c 7600
719546c4 7601 tp->resumed = true;
fbea99ea 7602 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
c4464ade 7603 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2ac7589c
PA
7604 }
7605 else
7606 {
1eb8556f 7607 infrun_debug_printf ("expected thread still hasn't advanced");
2ac7589c
PA
7608
7609 keep_going_pass_signal (ecs);
7610 }
c4464ade
SM
7611
7612 return true;
c447ac0b
PA
7613}
7614
8b061563
PA
7615/* Is thread TP in the middle of (software or hardware)
7616 single-stepping? (Note the result of this function must never be
7617 passed directly as target_resume's STEP parameter.) */
104c1213 7618
c4464ade 7619static bool
b3444185 7620currently_stepping (struct thread_info *tp)
a7212384 7621{
8358c15c
JK
7622 return ((tp->control.step_range_end
7623 && tp->control.step_resume_breakpoint == NULL)
7624 || tp->control.trap_expected
af48d08f 7625 || tp->stepped_breakpoint
8358c15c 7626 || bpstat_should_step ());
a7212384
UW
7627}
7628
b2175913
MS
7629/* Inferior has stepped into a subroutine call with source code that
7630 we should not step over. Do step to the first line of code in
7631 it. */
c2c6d25f
JM
7632
7633static void
568d6575
UW
7634handle_step_into_function (struct gdbarch *gdbarch,
7635 struct execution_control_state *ecs)
c2c6d25f 7636{
7e324e48
GB
7637 fill_in_stop_func (gdbarch, ecs);
7638
f2ffa92b
PA
7639 compunit_symtab *cust
7640 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7641 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7642 ecs->stop_func_start
7643 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7644
51abb421 7645 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7646 /* Use the step_resume_break to step until the end of the prologue,
7647 even if that involves jumps (as it seems to on the vax under
7648 4.2). */
7649 /* If the prologue ends in the middle of a source line, continue to
7650 the end of that source line (if it is still within the function).
7651 Otherwise, just go to end of prologue. */
2afb61aa
PA
7652 if (stop_func_sal.end
7653 && stop_func_sal.pc != ecs->stop_func_start
7654 && stop_func_sal.end < ecs->stop_func_end)
7655 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7656
2dbd5e30
KB
7657 /* Architectures which require breakpoint adjustment might not be able
7658 to place a breakpoint at the computed address. If so, the test
7659 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7660 ecs->stop_func_start to an address at which a breakpoint may be
7661 legitimately placed.
8fb3e588 7662
2dbd5e30
KB
7663 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7664 made, GDB will enter an infinite loop when stepping through
7665 optimized code consisting of VLIW instructions which contain
7666 subinstructions corresponding to different source lines. On
7667 FR-V, it's not permitted to place a breakpoint on any but the
7668 first subinstruction of a VLIW instruction. When a breakpoint is
7669 set, GDB will adjust the breakpoint address to the beginning of
7670 the VLIW instruction. Thus, we need to make the corresponding
7671 adjustment here when computing the stop address. */
8fb3e588 7672
568d6575 7673 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7674 {
7675 ecs->stop_func_start
568d6575 7676 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7677 ecs->stop_func_start);
2dbd5e30
KB
7678 }
7679
f2ffa92b 7680 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7681 {
7682 /* We are already there: stop now. */
bdc36728 7683 end_stepping_range (ecs);
c2c6d25f
JM
7684 return;
7685 }
7686 else
7687 {
7688 /* Put the step-breakpoint there and go until there. */
51abb421 7689 symtab_and_line sr_sal;
c2c6d25f
JM
7690 sr_sal.pc = ecs->stop_func_start;
7691 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7692 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7693
c2c6d25f 7694 /* Do not specify what the fp should be when we stop since on
dda83cd7
SM
7695 some machines the prologue is where the new fp value is
7696 established. */
a6d9a66e 7697 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7698
7699 /* And make sure stepping stops right away then. */
16c381f0 7700 ecs->event_thread->control.step_range_end
dda83cd7 7701 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7702 }
7703 keep_going (ecs);
7704}
d4f3574e 7705
b2175913
MS
7706/* Inferior has stepped backward into a subroutine call with source
7707 code that we should not step over. Do step to the beginning of the
7708 last line of code in it. */
7709
7710static void
568d6575
UW
7711handle_step_into_function_backward (struct gdbarch *gdbarch,
7712 struct execution_control_state *ecs)
b2175913 7713{
43f3e411 7714 struct compunit_symtab *cust;
167e4384 7715 struct symtab_and_line stop_func_sal;
b2175913 7716
7e324e48
GB
7717 fill_in_stop_func (gdbarch, ecs);
7718
f2ffa92b 7719 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7720 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7721 ecs->stop_func_start
7722 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7723
f2ffa92b 7724 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7725
7726 /* OK, we're just going to keep stepping here. */
f2ffa92b 7727 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7728 {
7729 /* We're there already. Just stop stepping now. */
bdc36728 7730 end_stepping_range (ecs);
b2175913
MS
7731 }
7732 else
7733 {
7734 /* Else just reset the step range and keep going.
7735 No step-resume breakpoint, they don't work for
7736 epilogues, which can have multiple entry paths. */
16c381f0
JK
7737 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7738 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7739 keep_going (ecs);
7740 }
7741 return;
7742}
7743
d3169d93 7744/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7745 This is used to both functions and to skip over code. */
7746
7747static void
2c03e5be
PA
7748insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7749 struct symtab_and_line sr_sal,
7750 struct frame_id sr_id,
7751 enum bptype sr_type)
44cbf7b5 7752{
611c83ae
PA
7753 /* There should never be more than one step-resume or longjmp-resume
7754 breakpoint per thread, so we should never be setting a new
44cbf7b5 7755 step_resume_breakpoint when one is already active. */
8358c15c 7756 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7757 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93 7758
1eb8556f
SM
7759 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7760 paddress (gdbarch, sr_sal.pc));
d3169d93 7761
8358c15c 7762 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7763 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7764}
7765
9da8c2a0 7766void
2c03e5be
PA
7767insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7768 struct symtab_and_line sr_sal,
7769 struct frame_id sr_id)
7770{
7771 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7772 sr_sal, sr_id,
7773 bp_step_resume);
44cbf7b5 7774}
7ce450bd 7775
2c03e5be
PA
7776/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7777 This is used to skip a potential signal handler.
7ce450bd 7778
14e60db5
DJ
7779 This is called with the interrupted function's frame. The signal
7780 handler, when it returns, will resume the interrupted function at
7781 RETURN_FRAME.pc. */
d303a6c7
AC
7782
7783static void
2c03e5be 7784insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7785{
f4c1edd8 7786 gdb_assert (return_frame != NULL);
d303a6c7 7787
51abb421
PA
7788 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7789
7790 symtab_and_line sr_sal;
568d6575 7791 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7792 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7793 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7794
2c03e5be
PA
7795 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7796 get_stack_frame_id (return_frame),
7797 bp_hp_step_resume);
d303a6c7
AC
7798}
7799
2c03e5be
PA
7800/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7801 is used to skip a function after stepping into it (for "next" or if
7802 the called function has no debugging information).
14e60db5
DJ
7803
7804 The current function has almost always been reached by single
7805 stepping a call or return instruction. NEXT_FRAME belongs to the
7806 current function, and the breakpoint will be set at the caller's
7807 resume address.
7808
7809 This is a separate function rather than reusing
2c03e5be 7810 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7811 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7812 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7813
7814static void
7815insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7816{
14e60db5
DJ
7817 /* We shouldn't have gotten here if we don't know where the call site
7818 is. */
c7ce8faa 7819 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7820
51abb421 7821 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7822
51abb421 7823 symtab_and_line sr_sal;
c7ce8faa
DJ
7824 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7825 frame_unwind_caller_pc (next_frame));
14e60db5 7826 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7827 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7828
a6d9a66e 7829 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7830 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7831}
7832
611c83ae
PA
7833/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7834 new breakpoint at the target of a jmp_buf. The handling of
7835 longjmp-resume uses the same mechanisms used for handling
7836 "step-resume" breakpoints. */
7837
7838static void
a6d9a66e 7839insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7840{
e81a37f7
TT
7841 /* There should never be more than one longjmp-resume breakpoint per
7842 thread, so we should never be setting a new
611c83ae 7843 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7844 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae 7845
1eb8556f
SM
7846 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7847 paddress (gdbarch, pc));
611c83ae 7848
e81a37f7 7849 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7850 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7851}
7852
186c406b
TT
7853/* Insert an exception resume breakpoint. TP is the thread throwing
7854 the exception. The block B is the block of the unwinder debug hook
7855 function. FRAME is the frame corresponding to the call to this
7856 function. SYM is the symbol of the function argument holding the
7857 target PC of the exception. */
7858
7859static void
7860insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7861 const struct block *b,
186c406b
TT
7862 struct frame_info *frame,
7863 struct symbol *sym)
7864{
a70b8144 7865 try
186c406b 7866 {
63e43d3a 7867 struct block_symbol vsym;
186c406b
TT
7868 struct value *value;
7869 CORE_ADDR handler;
7870 struct breakpoint *bp;
7871
987012b8 7872 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7873 b, VAR_DOMAIN);
63e43d3a 7874 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7875 /* If the value was optimized out, revert to the old behavior. */
7876 if (! value_optimized_out (value))
7877 {
7878 handler = value_as_address (value);
7879
1eb8556f
SM
7880 infrun_debug_printf ("exception resume at %lx",
7881 (unsigned long) handler);
186c406b
TT
7882
7883 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7884 handler,
7885 bp_exception_resume).release ();
c70a6932
JK
7886
7887 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7888 frame = NULL;
7889
5d5658a1 7890 bp->thread = tp->global_num;
186c406b
TT
7891 inferior_thread ()->control.exception_resume_breakpoint = bp;
7892 }
7893 }
230d2906 7894 catch (const gdb_exception_error &e)
492d29ea
PA
7895 {
7896 /* We want to ignore errors here. */
7897 }
186c406b
TT
7898}
7899
28106bc2
SDJ
7900/* A helper for check_exception_resume that sets an
7901 exception-breakpoint based on a SystemTap probe. */
7902
7903static void
7904insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7905 const struct bound_probe *probe,
28106bc2
SDJ
7906 struct frame_info *frame)
7907{
7908 struct value *arg_value;
7909 CORE_ADDR handler;
7910 struct breakpoint *bp;
7911
7912 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7913 if (!arg_value)
7914 return;
7915
7916 handler = value_as_address (arg_value);
7917
1eb8556f
SM
7918 infrun_debug_printf ("exception resume at %s",
7919 paddress (probe->objfile->arch (), handler));
28106bc2
SDJ
7920
7921 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7922 handler, bp_exception_resume).release ();
5d5658a1 7923 bp->thread = tp->global_num;
28106bc2
SDJ
7924 inferior_thread ()->control.exception_resume_breakpoint = bp;
7925}
7926
186c406b
TT
7927/* This is called when an exception has been intercepted. Check to
7928 see whether the exception's destination is of interest, and if so,
7929 set an exception resume breakpoint there. */
7930
7931static void
7932check_exception_resume (struct execution_control_state *ecs,
28106bc2 7933 struct frame_info *frame)
186c406b 7934{
729662a5 7935 struct bound_probe probe;
28106bc2
SDJ
7936 struct symbol *func;
7937
7938 /* First see if this exception unwinding breakpoint was set via a
7939 SystemTap probe point. If so, the probe has two arguments: the
7940 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7941 set a breakpoint there. */
6bac7473 7942 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7943 if (probe.prob)
28106bc2 7944 {
729662a5 7945 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7946 return;
7947 }
7948
7949 func = get_frame_function (frame);
7950 if (!func)
7951 return;
186c406b 7952
a70b8144 7953 try
186c406b 7954 {
3977b71f 7955 const struct block *b;
8157b174 7956 struct block_iterator iter;
186c406b
TT
7957 struct symbol *sym;
7958 int argno = 0;
7959
7960 /* The exception breakpoint is a thread-specific breakpoint on
7961 the unwinder's debug hook, declared as:
7962
7963 void _Unwind_DebugHook (void *cfa, void *handler);
7964
7965 The CFA argument indicates the frame to which control is
7966 about to be transferred. HANDLER is the destination PC.
7967
7968 We ignore the CFA and set a temporary breakpoint at HANDLER.
7969 This is not extremely efficient but it avoids issues in gdb
7970 with computing the DWARF CFA, and it also works even in weird
7971 cases such as throwing an exception from inside a signal
7972 handler. */
7973
7974 b = SYMBOL_BLOCK_VALUE (func);
7975 ALL_BLOCK_SYMBOLS (b, iter, sym)
7976 {
7977 if (!SYMBOL_IS_ARGUMENT (sym))
7978 continue;
7979
7980 if (argno == 0)
7981 ++argno;
7982 else
7983 {
7984 insert_exception_resume_breakpoint (ecs->event_thread,
7985 b, frame, sym);
7986 break;
7987 }
7988 }
7989 }
230d2906 7990 catch (const gdb_exception_error &e)
492d29ea
PA
7991 {
7992 }
186c406b
TT
7993}
7994
104c1213 7995static void
22bcd14b 7996stop_waiting (struct execution_control_state *ecs)
104c1213 7997{
1eb8556f 7998 infrun_debug_printf ("stop_waiting");
527159b7 7999
cd0fc7c3
SS
8000 /* Let callers know we don't want to wait for the inferior anymore. */
8001 ecs->wait_some_more = 0;
fbea99ea 8002
53cccef1 8003 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 8004 threads now that we're presenting the stop to the user. */
53cccef1 8005 if (!non_stop && exists_non_stop_target ())
fbea99ea 8006 stop_all_threads ();
cd0fc7c3
SS
8007}
8008
4d9d9d04
PA
8009/* Like keep_going, but passes the signal to the inferior, even if the
8010 signal is set to nopass. */
d4f3574e
SS
8011
8012static void
4d9d9d04 8013keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 8014{
d7e15655 8015 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 8016 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 8017
d4f3574e 8018 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 8019 ecs->event_thread->prev_pc
fc75c28b 8020 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
d4f3574e 8021
4d9d9d04 8022 if (ecs->event_thread->control.trap_expected)
d4f3574e 8023 {
4d9d9d04
PA
8024 struct thread_info *tp = ecs->event_thread;
8025
1eb8556f
SM
8026 infrun_debug_printf ("%s has trap_expected set, "
8027 "resuming to collect trap",
8028 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 8029
a9ba6bae
PA
8030 /* We haven't yet gotten our trap, and either: intercepted a
8031 non-signal event (e.g., a fork); or took a signal which we
8032 are supposed to pass through to the inferior. Simply
8033 continue. */
64ce06e4 8034 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 8035 }
372316f1
PA
8036 else if (step_over_info_valid_p ())
8037 {
8038 /* Another thread is stepping over a breakpoint in-line. If
8039 this thread needs a step-over too, queue the request. In
8040 either case, this resume must be deferred for later. */
8041 struct thread_info *tp = ecs->event_thread;
8042
8043 if (ecs->hit_singlestep_breakpoint
8044 || thread_still_needs_step_over (tp))
8045 {
1eb8556f
SM
8046 infrun_debug_printf ("step-over already in progress: "
8047 "step-over for %s deferred",
8048 target_pid_to_str (tp->ptid).c_str ());
28d5518b 8049 global_thread_step_over_chain_enqueue (tp);
372316f1
PA
8050 }
8051 else
8052 {
1eb8556f
SM
8053 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8054 target_pid_to_str (tp->ptid).c_str ());
372316f1 8055 }
372316f1 8056 }
d4f3574e
SS
8057 else
8058 {
31e77af2 8059 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
8060 int remove_bp;
8061 int remove_wps;
8d297bbf 8062 step_over_what step_what;
31e77af2 8063
d4f3574e 8064 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
8065 anyway (if we got a signal, the user asked it be passed to
8066 the child)
8067 -- or --
8068 We got our expected trap, but decided we should resume from
8069 it.
d4f3574e 8070
a9ba6bae 8071 We're going to run this baby now!
d4f3574e 8072
c36b740a
VP
8073 Note that insert_breakpoints won't try to re-insert
8074 already inserted breakpoints. Therefore, we don't
8075 care if breakpoints were already inserted, or not. */
a9ba6bae 8076
31e77af2
PA
8077 /* If we need to step over a breakpoint, and we're not using
8078 displaced stepping to do so, insert all breakpoints
8079 (watchpoints, etc.) but the one we're stepping over, step one
8080 instruction, and then re-insert the breakpoint when that step
8081 is finished. */
963f9c80 8082
6c4cfb24
PA
8083 step_what = thread_still_needs_step_over (ecs->event_thread);
8084
963f9c80 8085 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
8086 || (step_what & STEP_OVER_BREAKPOINT));
8087 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8088
cb71640d
PA
8089 /* We can't use displaced stepping if we need to step past a
8090 watchpoint. The instruction copied to the scratch pad would
8091 still trigger the watchpoint. */
8092 if (remove_bp
3fc8eb30 8093 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8094 {
a01bda52 8095 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8096 regcache_read_pc (regcache), remove_wps,
8097 ecs->event_thread->global_num);
45e8c884 8098 }
963f9c80 8099 else if (remove_wps)
21edc42f 8100 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8101
8102 /* If we now need to do an in-line step-over, we need to stop
8103 all other threads. Note this must be done before
8104 insert_breakpoints below, because that removes the breakpoint
8105 we're about to step over, otherwise other threads could miss
8106 it. */
fbea99ea 8107 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8108 stop_all_threads ();
abbb1732 8109
31e77af2 8110 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8111 try
31e77af2
PA
8112 {
8113 insert_breakpoints ();
8114 }
230d2906 8115 catch (const gdb_exception_error &e)
31e77af2
PA
8116 {
8117 exception_print (gdb_stderr, e);
22bcd14b 8118 stop_waiting (ecs);
bdf2a94a 8119 clear_step_over_info ();
31e77af2 8120 return;
d4f3574e
SS
8121 }
8122
963f9c80 8123 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8124
64ce06e4 8125 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8126 }
8127
488f131b 8128 prepare_to_wait (ecs);
d4f3574e
SS
8129}
8130
4d9d9d04
PA
8131/* Called when we should continue running the inferior, because the
8132 current event doesn't cause a user visible stop. This does the
8133 resuming part; waiting for the next event is done elsewhere. */
8134
8135static void
8136keep_going (struct execution_control_state *ecs)
8137{
8138 if (ecs->event_thread->control.trap_expected
8139 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8140 ecs->event_thread->control.trap_expected = 0;
8141
8142 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8143 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8144 keep_going_pass_signal (ecs);
8145}
8146
104c1213
JM
8147/* This function normally comes after a resume, before
8148 handle_inferior_event exits. It takes care of any last bits of
8149 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8150
104c1213
JM
8151static void
8152prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8153{
1eb8556f 8154 infrun_debug_printf ("prepare_to_wait");
104c1213 8155
104c1213 8156 ecs->wait_some_more = 1;
0b333c5e 8157
42bd97a6
PA
8158 /* If the target can't async, emulate it by marking the infrun event
8159 handler such that as soon as we get back to the event-loop, we
8160 immediately end up in fetch_inferior_event again calling
8161 target_wait. */
8162 if (!target_can_async_p ())
0b333c5e 8163 mark_infrun_async_event_handler ();
c906108c 8164}
11cf8741 8165
fd664c91 8166/* We are done with the step range of a step/next/si/ni command.
b57bacec 8167 Called once for each n of a "step n" operation. */
fd664c91
PA
8168
8169static void
bdc36728 8170end_stepping_range (struct execution_control_state *ecs)
fd664c91 8171{
bdc36728 8172 ecs->event_thread->control.stop_step = 1;
bdc36728 8173 stop_waiting (ecs);
fd664c91
PA
8174}
8175
33d62d64
JK
8176/* Several print_*_reason functions to print why the inferior has stopped.
8177 We always print something when the inferior exits, or receives a signal.
8178 The rest of the cases are dealt with later on in normal_stop and
8179 print_it_typical. Ideally there should be a call to one of these
8180 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8181 stop_waiting is called.
33d62d64 8182
fd664c91
PA
8183 Note that we don't call these directly, instead we delegate that to
8184 the interpreters, through observers. Interpreters then call these
8185 with whatever uiout is right. */
33d62d64 8186
fd664c91
PA
8187void
8188print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8189{
fd664c91 8190 /* For CLI-like interpreters, print nothing. */
33d62d64 8191
112e8700 8192 if (uiout->is_mi_like_p ())
fd664c91 8193 {
112e8700 8194 uiout->field_string ("reason",
fd664c91
PA
8195 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8196 }
8197}
33d62d64 8198
fd664c91
PA
8199void
8200print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8201{
33d62d64 8202 annotate_signalled ();
112e8700
SM
8203 if (uiout->is_mi_like_p ())
8204 uiout->field_string
8205 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8206 uiout->text ("\nProgram terminated with signal ");
33d62d64 8207 annotate_signal_name ();
112e8700 8208 uiout->field_string ("signal-name",
2ea28649 8209 gdb_signal_to_name (siggnal));
33d62d64 8210 annotate_signal_name_end ();
112e8700 8211 uiout->text (", ");
33d62d64 8212 annotate_signal_string ();
112e8700 8213 uiout->field_string ("signal-meaning",
2ea28649 8214 gdb_signal_to_string (siggnal));
33d62d64 8215 annotate_signal_string_end ();
112e8700
SM
8216 uiout->text (".\n");
8217 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8218}
8219
fd664c91
PA
8220void
8221print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8222{
fda326dd 8223 struct inferior *inf = current_inferior ();
a068643d 8224 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8225
33d62d64
JK
8226 annotate_exited (exitstatus);
8227 if (exitstatus)
8228 {
112e8700
SM
8229 if (uiout->is_mi_like_p ())
8230 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8231 std::string exit_code_str
8232 = string_printf ("0%o", (unsigned int) exitstatus);
8233 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8234 plongest (inf->num), pidstr.c_str (),
8235 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8236 }
8237 else
11cf8741 8238 {
112e8700
SM
8239 if (uiout->is_mi_like_p ())
8240 uiout->field_string
8241 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8242 uiout->message ("[Inferior %s (%s) exited normally]\n",
8243 plongest (inf->num), pidstr.c_str ());
33d62d64 8244 }
33d62d64
JK
8245}
8246
fd664c91
PA
8247void
8248print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8249{
f303dbd6
PA
8250 struct thread_info *thr = inferior_thread ();
8251
33d62d64
JK
8252 annotate_signal ();
8253
112e8700 8254 if (uiout->is_mi_like_p ())
f303dbd6
PA
8255 ;
8256 else if (show_thread_that_caused_stop ())
33d62d64 8257 {
f303dbd6 8258 const char *name;
33d62d64 8259
112e8700 8260 uiout->text ("\nThread ");
33eca680 8261 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8262
8263 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8264 if (name != NULL)
8265 {
112e8700 8266 uiout->text (" \"");
33eca680 8267 uiout->field_string ("name", name);
112e8700 8268 uiout->text ("\"");
f303dbd6 8269 }
33d62d64 8270 }
f303dbd6 8271 else
112e8700 8272 uiout->text ("\nProgram");
f303dbd6 8273
112e8700
SM
8274 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8275 uiout->text (" stopped");
33d62d64
JK
8276 else
8277 {
112e8700 8278 uiout->text (" received signal ");
8b93c638 8279 annotate_signal_name ();
112e8700
SM
8280 if (uiout->is_mi_like_p ())
8281 uiout->field_string
8282 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8283 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8284 annotate_signal_name_end ();
112e8700 8285 uiout->text (", ");
8b93c638 8286 annotate_signal_string ();
112e8700 8287 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21 8288
272bb05c
JB
8289 struct regcache *regcache = get_current_regcache ();
8290 struct gdbarch *gdbarch = regcache->arch ();
8291 if (gdbarch_report_signal_info_p (gdbarch))
8292 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8293
8b93c638 8294 annotate_signal_string_end ();
33d62d64 8295 }
112e8700 8296 uiout->text (".\n");
33d62d64 8297}
252fbfc8 8298
fd664c91
PA
8299void
8300print_no_history_reason (struct ui_out *uiout)
33d62d64 8301{
112e8700 8302 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8303}
43ff13b4 8304
0c7e1a46
PA
8305/* Print current location without a level number, if we have changed
8306 functions or hit a breakpoint. Print source line if we have one.
8307 bpstat_print contains the logic deciding in detail what to print,
8308 based on the event(s) that just occurred. */
8309
243a9253
PA
8310static void
8311print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8312{
8313 int bpstat_ret;
f486487f 8314 enum print_what source_flag;
0c7e1a46
PA
8315 int do_frame_printing = 1;
8316 struct thread_info *tp = inferior_thread ();
8317
8318 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8319 switch (bpstat_ret)
8320 {
8321 case PRINT_UNKNOWN:
8322 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8323 should) carry around the function and does (or should) use
8324 that when doing a frame comparison. */
8325 if (tp->control.stop_step
8326 && frame_id_eq (tp->control.step_frame_id,
8327 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8328 && (tp->control.step_start_function
8329 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8330 {
8331 /* Finished step, just print source line. */
8332 source_flag = SRC_LINE;
8333 }
8334 else
8335 {
8336 /* Print location and source line. */
8337 source_flag = SRC_AND_LOC;
8338 }
8339 break;
8340 case PRINT_SRC_AND_LOC:
8341 /* Print location and source line. */
8342 source_flag = SRC_AND_LOC;
8343 break;
8344 case PRINT_SRC_ONLY:
8345 source_flag = SRC_LINE;
8346 break;
8347 case PRINT_NOTHING:
8348 /* Something bogus. */
8349 source_flag = SRC_LINE;
8350 do_frame_printing = 0;
8351 break;
8352 default:
8353 internal_error (__FILE__, __LINE__, _("Unknown value."));
8354 }
8355
8356 /* The behavior of this routine with respect to the source
8357 flag is:
8358 SRC_LINE: Print only source line
8359 LOCATION: Print only location
8360 SRC_AND_LOC: Print location and source line. */
8361 if (do_frame_printing)
8362 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8363}
8364
243a9253
PA
8365/* See infrun.h. */
8366
8367void
4c7d57e7 8368print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8369{
243a9253 8370 struct target_waitstatus last;
243a9253
PA
8371 struct thread_info *tp;
8372
5b6d1e4f 8373 get_last_target_status (nullptr, nullptr, &last);
243a9253 8374
67ad9399
TT
8375 {
8376 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8377
67ad9399 8378 print_stop_location (&last);
243a9253 8379
67ad9399 8380 /* Display the auto-display expressions. */
4c7d57e7
TT
8381 if (displays)
8382 do_displays ();
67ad9399 8383 }
243a9253
PA
8384
8385 tp = inferior_thread ();
8386 if (tp->thread_fsm != NULL
46e3ed7f 8387 && tp->thread_fsm->finished_p ())
243a9253
PA
8388 {
8389 struct return_value_info *rv;
8390
46e3ed7f 8391 rv = tp->thread_fsm->return_value ();
243a9253
PA
8392 if (rv != NULL)
8393 print_return_value (uiout, rv);
8394 }
0c7e1a46
PA
8395}
8396
388a7084
PA
8397/* See infrun.h. */
8398
8399void
8400maybe_remove_breakpoints (void)
8401{
55f6301a 8402 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
388a7084
PA
8403 {
8404 if (remove_breakpoints ())
8405 {
223ffa71 8406 target_terminal::ours_for_output ();
388a7084
PA
8407 printf_filtered (_("Cannot remove breakpoints because "
8408 "program is no longer writable.\nFurther "
8409 "execution is probably impossible.\n"));
8410 }
8411 }
8412}
8413
4c2f2a79
PA
8414/* The execution context that just caused a normal stop. */
8415
8416struct stop_context
8417{
2d844eaf 8418 stop_context ();
2d844eaf
TT
8419
8420 DISABLE_COPY_AND_ASSIGN (stop_context);
8421
8422 bool changed () const;
8423
4c2f2a79
PA
8424 /* The stop ID. */
8425 ULONGEST stop_id;
c906108c 8426
4c2f2a79 8427 /* The event PTID. */
c906108c 8428
4c2f2a79
PA
8429 ptid_t ptid;
8430
8431 /* If stopp for a thread event, this is the thread that caused the
8432 stop. */
d634cd0b 8433 thread_info_ref thread;
4c2f2a79
PA
8434
8435 /* The inferior that caused the stop. */
8436 int inf_num;
8437};
8438
2d844eaf 8439/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8440 takes a strong reference to the thread. */
8441
2d844eaf 8442stop_context::stop_context ()
4c2f2a79 8443{
2d844eaf
TT
8444 stop_id = get_stop_id ();
8445 ptid = inferior_ptid;
8446 inf_num = current_inferior ()->num;
4c2f2a79 8447
d7e15655 8448 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8449 {
8450 /* Take a strong reference so that the thread can't be deleted
8451 yet. */
d634cd0b 8452 thread = thread_info_ref::new_reference (inferior_thread ());
4c2f2a79 8453 }
4c2f2a79
PA
8454}
8455
8456/* Return true if the current context no longer matches the saved stop
8457 context. */
8458
2d844eaf
TT
8459bool
8460stop_context::changed () const
8461{
8462 if (ptid != inferior_ptid)
8463 return true;
8464 if (inf_num != current_inferior ()->num)
8465 return true;
8466 if (thread != NULL && thread->state != THREAD_STOPPED)
8467 return true;
8468 if (get_stop_id () != stop_id)
8469 return true;
8470 return false;
4c2f2a79
PA
8471}
8472
8473/* See infrun.h. */
8474
8475int
96baa820 8476normal_stop (void)
c906108c 8477{
73b65bb0 8478 struct target_waitstatus last;
73b65bb0 8479
5b6d1e4f 8480 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8481
4c2f2a79
PA
8482 new_stop_id ();
8483
29f49a6a
PA
8484 /* If an exception is thrown from this point on, make sure to
8485 propagate GDB's knowledge of the executing state to the
8486 frontend/user running state. A QUIT is an easy exception to see
8487 here, so do this before any filtered output. */
731f534f 8488
5b6d1e4f 8489 ptid_t finish_ptid = null_ptid;
731f534f 8490
c35b1492 8491 if (!non_stop)
5b6d1e4f 8492 finish_ptid = minus_one_ptid;
e1316e60
PA
8493 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8494 || last.kind == TARGET_WAITKIND_EXITED)
8495 {
8496 /* On some targets, we may still have live threads in the
8497 inferior when we get a process exit event. E.g., for
8498 "checkpoint", when the current checkpoint/fork exits,
8499 linux-fork.c automatically switches to another fork from
8500 within target_mourn_inferior. */
731f534f 8501 if (inferior_ptid != null_ptid)
5b6d1e4f 8502 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8503 }
8504 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8505 finish_ptid = inferior_ptid;
8506
8507 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8508 if (finish_ptid != null_ptid)
8509 {
8510 maybe_finish_thread_state.emplace
8511 (user_visible_resume_target (finish_ptid), finish_ptid);
8512 }
29f49a6a 8513
b57bacec
PA
8514 /* As we're presenting a stop, and potentially removing breakpoints,
8515 update the thread list so we can tell whether there are threads
8516 running on the target. With target remote, for example, we can
8517 only learn about new threads when we explicitly update the thread
8518 list. Do this before notifying the interpreters about signal
8519 stops, end of stepping ranges, etc., so that the "new thread"
8520 output is emitted before e.g., "Program received signal FOO",
8521 instead of after. */
8522 update_thread_list ();
8523
8524 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8525 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8526
c906108c
SS
8527 /* As with the notification of thread events, we want to delay
8528 notifying the user that we've switched thread context until
8529 the inferior actually stops.
8530
73b65bb0
DJ
8531 There's no point in saying anything if the inferior has exited.
8532 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8533 "received a signal".
8534
8535 Also skip saying anything in non-stop mode. In that mode, as we
8536 don't want GDB to switch threads behind the user's back, to avoid
8537 races where the user is typing a command to apply to thread x,
8538 but GDB switches to thread y before the user finishes entering
8539 the command, fetch_inferior_event installs a cleanup to restore
8540 the current thread back to the thread the user had selected right
8541 after this event is handled, so we're not really switching, only
8542 informing of a stop. */
4f8d22e3 8543 if (!non_stop
731f534f 8544 && previous_inferior_ptid != inferior_ptid
55f6301a 8545 && target_has_execution ()
73b65bb0 8546 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8547 && last.kind != TARGET_WAITKIND_EXITED
8548 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8549 {
0e454242 8550 SWITCH_THRU_ALL_UIS ()
3b12939d 8551 {
223ffa71 8552 target_terminal::ours_for_output ();
3b12939d 8553 printf_filtered (_("[Switching to %s]\n"),
a068643d 8554 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8555 annotate_thread_changed ();
8556 }
39f77062 8557 previous_inferior_ptid = inferior_ptid;
c906108c 8558 }
c906108c 8559
0e5bf2a8
PA
8560 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8561 {
0e454242 8562 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8563 if (current_ui->prompt_state == PROMPT_BLOCKED)
8564 {
223ffa71 8565 target_terminal::ours_for_output ();
3b12939d
PA
8566 printf_filtered (_("No unwaited-for children left.\n"));
8567 }
0e5bf2a8
PA
8568 }
8569
b57bacec 8570 /* Note: this depends on the update_thread_list call above. */
388a7084 8571 maybe_remove_breakpoints ();
c906108c 8572
c906108c
SS
8573 /* If an auto-display called a function and that got a signal,
8574 delete that auto-display to avoid an infinite recursion. */
8575
8576 if (stopped_by_random_signal)
8577 disable_current_display ();
8578
0e454242 8579 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8580 {
8581 async_enable_stdin ();
8582 }
c906108c 8583
388a7084 8584 /* Let the user/frontend see the threads as stopped. */
731f534f 8585 maybe_finish_thread_state.reset ();
388a7084
PA
8586
8587 /* Select innermost stack frame - i.e., current frame is frame 0,
8588 and current location is based on that. Handle the case where the
8589 dummy call is returning after being stopped. E.g. the dummy call
8590 previously hit a breakpoint. (If the dummy call returns
8591 normally, we won't reach here.) Do this before the stop hook is
8592 run, so that it doesn't get to see the temporary dummy frame,
8593 which is not where we'll present the stop. */
8594 if (has_stack_frames ())
8595 {
8596 if (stop_stack_dummy == STOP_STACK_DUMMY)
8597 {
8598 /* Pop the empty frame that contains the stack dummy. This
8599 also restores inferior state prior to the call (struct
8600 infcall_suspend_state). */
8601 struct frame_info *frame = get_current_frame ();
8602
8603 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8604 frame_pop (frame);
8605 /* frame_pop calls reinit_frame_cache as the last thing it
8606 does which means there's now no selected frame. */
8607 }
8608
8609 select_frame (get_current_frame ());
8610
8611 /* Set the current source location. */
8612 set_current_sal_from_frame (get_current_frame ());
8613 }
dd7e2d2b
PA
8614
8615 /* Look up the hook_stop and run it (CLI internally handles problem
8616 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8617 if (stop_command != NULL)
8618 {
2d844eaf 8619 stop_context saved_context;
4c2f2a79 8620
a70b8144 8621 try
bf469271
PA
8622 {
8623 execute_cmd_pre_hook (stop_command);
8624 }
230d2906 8625 catch (const gdb_exception &ex)
bf469271
PA
8626 {
8627 exception_fprintf (gdb_stderr, ex,
8628 "Error while running hook_stop:\n");
8629 }
4c2f2a79
PA
8630
8631 /* If the stop hook resumes the target, then there's no point in
8632 trying to notify about the previous stop; its context is
8633 gone. Likewise if the command switches thread or inferior --
8634 the observers would print a stop for the wrong
8635 thread/inferior. */
2d844eaf
TT
8636 if (saved_context.changed ())
8637 return 1;
4c2f2a79 8638 }
dd7e2d2b 8639
388a7084
PA
8640 /* Notify observers about the stop. This is where the interpreters
8641 print the stop event. */
d7e15655 8642 if (inferior_ptid != null_ptid)
76727919 8643 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
24a7f1b5 8644 stop_print_frame);
388a7084 8645 else
76727919 8646 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8647
243a9253
PA
8648 annotate_stopped ();
8649
55f6301a 8650 if (target_has_execution ())
48844aa6
PA
8651 {
8652 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8653 && last.kind != TARGET_WAITKIND_EXITED
8654 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8655 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8656 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8657 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8658 }
6c95b8df
PA
8659
8660 /* Try to get rid of automatically added inferiors that are no
8661 longer needed. Keeping those around slows down things linearly.
8662 Note that this never removes the current inferior. */
8663 prune_inferiors ();
4c2f2a79
PA
8664
8665 return 0;
c906108c 8666}
c906108c 8667\f
c5aa993b 8668int
96baa820 8669signal_stop_state (int signo)
c906108c 8670{
d6b48e9c 8671 return signal_stop[signo];
c906108c
SS
8672}
8673
c5aa993b 8674int
96baa820 8675signal_print_state (int signo)
c906108c
SS
8676{
8677 return signal_print[signo];
8678}
8679
c5aa993b 8680int
96baa820 8681signal_pass_state (int signo)
c906108c
SS
8682{
8683 return signal_program[signo];
8684}
8685
2455069d
UW
8686static void
8687signal_cache_update (int signo)
8688{
8689 if (signo == -1)
8690 {
a493e3e2 8691 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8692 signal_cache_update (signo);
8693
8694 return;
8695 }
8696
8697 signal_pass[signo] = (signal_stop[signo] == 0
8698 && signal_print[signo] == 0
ab04a2af
TT
8699 && signal_program[signo] == 1
8700 && signal_catch[signo] == 0);
2455069d
UW
8701}
8702
488f131b 8703int
7bda5e4a 8704signal_stop_update (int signo, int state)
d4f3574e
SS
8705{
8706 int ret = signal_stop[signo];
abbb1732 8707
d4f3574e 8708 signal_stop[signo] = state;
2455069d 8709 signal_cache_update (signo);
d4f3574e
SS
8710 return ret;
8711}
8712
488f131b 8713int
7bda5e4a 8714signal_print_update (int signo, int state)
d4f3574e
SS
8715{
8716 int ret = signal_print[signo];
abbb1732 8717
d4f3574e 8718 signal_print[signo] = state;
2455069d 8719 signal_cache_update (signo);
d4f3574e
SS
8720 return ret;
8721}
8722
488f131b 8723int
7bda5e4a 8724signal_pass_update (int signo, int state)
d4f3574e
SS
8725{
8726 int ret = signal_program[signo];
abbb1732 8727
d4f3574e 8728 signal_program[signo] = state;
2455069d 8729 signal_cache_update (signo);
d4f3574e
SS
8730 return ret;
8731}
8732
ab04a2af
TT
8733/* Update the global 'signal_catch' from INFO and notify the
8734 target. */
8735
8736void
8737signal_catch_update (const unsigned int *info)
8738{
8739 int i;
8740
8741 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8742 signal_catch[i] = info[i] > 0;
8743 signal_cache_update (-1);
adc6a863 8744 target_pass_signals (signal_pass);
ab04a2af
TT
8745}
8746
c906108c 8747static void
96baa820 8748sig_print_header (void)
c906108c 8749{
3e43a32a
MS
8750 printf_filtered (_("Signal Stop\tPrint\tPass "
8751 "to program\tDescription\n"));
c906108c
SS
8752}
8753
8754static void
2ea28649 8755sig_print_info (enum gdb_signal oursig)
c906108c 8756{
2ea28649 8757 const char *name = gdb_signal_to_name (oursig);
c906108c 8758 int name_padding = 13 - strlen (name);
96baa820 8759
c906108c
SS
8760 if (name_padding <= 0)
8761 name_padding = 0;
8762
8763 printf_filtered ("%s", name);
488f131b 8764 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8765 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8766 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8767 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8768 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8769}
8770
8771/* Specify how various signals in the inferior should be handled. */
8772
8773static void
0b39b52e 8774handle_command (const char *args, int from_tty)
c906108c 8775{
c906108c 8776 int digits, wordlen;
b926417a 8777 int sigfirst, siglast;
2ea28649 8778 enum gdb_signal oursig;
c906108c 8779 int allsigs;
c906108c
SS
8780
8781 if (args == NULL)
8782 {
e2e0b3e5 8783 error_no_arg (_("signal to handle"));
c906108c
SS
8784 }
8785
1777feb0 8786 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8787
adc6a863
PA
8788 const size_t nsigs = GDB_SIGNAL_LAST;
8789 unsigned char sigs[nsigs] {};
c906108c 8790
1777feb0 8791 /* Break the command line up into args. */
c906108c 8792
773a1edc 8793 gdb_argv built_argv (args);
c906108c
SS
8794
8795 /* Walk through the args, looking for signal oursigs, signal names, and
8796 actions. Signal numbers and signal names may be interspersed with
8797 actions, with the actions being performed for all signals cumulatively
1777feb0 8798 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8799
773a1edc 8800 for (char *arg : built_argv)
c906108c 8801 {
773a1edc
TT
8802 wordlen = strlen (arg);
8803 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8804 {;
8805 }
8806 allsigs = 0;
8807 sigfirst = siglast = -1;
8808
773a1edc 8809 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8810 {
8811 /* Apply action to all signals except those used by the
1777feb0 8812 debugger. Silently skip those. */
c906108c
SS
8813 allsigs = 1;
8814 sigfirst = 0;
8815 siglast = nsigs - 1;
8816 }
773a1edc 8817 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8818 {
8819 SET_SIGS (nsigs, sigs, signal_stop);
8820 SET_SIGS (nsigs, sigs, signal_print);
8821 }
773a1edc 8822 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8823 {
8824 UNSET_SIGS (nsigs, sigs, signal_program);
8825 }
773a1edc 8826 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8827 {
8828 SET_SIGS (nsigs, sigs, signal_print);
8829 }
773a1edc 8830 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8831 {
8832 SET_SIGS (nsigs, sigs, signal_program);
8833 }
773a1edc 8834 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8835 {
8836 UNSET_SIGS (nsigs, sigs, signal_stop);
8837 }
773a1edc 8838 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8839 {
8840 SET_SIGS (nsigs, sigs, signal_program);
8841 }
773a1edc 8842 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8843 {
8844 UNSET_SIGS (nsigs, sigs, signal_print);
8845 UNSET_SIGS (nsigs, sigs, signal_stop);
8846 }
773a1edc 8847 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8848 {
8849 UNSET_SIGS (nsigs, sigs, signal_program);
8850 }
8851 else if (digits > 0)
8852 {
8853 /* It is numeric. The numeric signal refers to our own
8854 internal signal numbering from target.h, not to host/target
8855 signal number. This is a feature; users really should be
8856 using symbolic names anyway, and the common ones like
8857 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8858
8859 sigfirst = siglast = (int)
773a1edc
TT
8860 gdb_signal_from_command (atoi (arg));
8861 if (arg[digits] == '-')
c906108c
SS
8862 {
8863 siglast = (int)
773a1edc 8864 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8865 }
8866 if (sigfirst > siglast)
8867 {
1777feb0 8868 /* Bet he didn't figure we'd think of this case... */
b926417a 8869 std::swap (sigfirst, siglast);
c906108c
SS
8870 }
8871 }
8872 else
8873 {
773a1edc 8874 oursig = gdb_signal_from_name (arg);
a493e3e2 8875 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8876 {
8877 sigfirst = siglast = (int) oursig;
8878 }
8879 else
8880 {
8881 /* Not a number and not a recognized flag word => complain. */
773a1edc 8882 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8883 }
8884 }
8885
8886 /* If any signal numbers or symbol names were found, set flags for
dda83cd7 8887 which signals to apply actions to. */
c906108c 8888
b926417a 8889 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8890 {
2ea28649 8891 switch ((enum gdb_signal) signum)
c906108c 8892 {
a493e3e2
PA
8893 case GDB_SIGNAL_TRAP:
8894 case GDB_SIGNAL_INT:
c906108c
SS
8895 if (!allsigs && !sigs[signum])
8896 {
9e2f0ad4 8897 if (query (_("%s is used by the debugger.\n\
3e43a32a 8898Are you sure you want to change it? "),
2ea28649 8899 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8900 {
8901 sigs[signum] = 1;
8902 }
8903 else
c119e040 8904 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8905 }
8906 break;
a493e3e2
PA
8907 case GDB_SIGNAL_0:
8908 case GDB_SIGNAL_DEFAULT:
8909 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8910 /* Make sure that "all" doesn't print these. */
8911 break;
8912 default:
8913 sigs[signum] = 1;
8914 break;
8915 }
8916 }
c906108c
SS
8917 }
8918
b926417a 8919 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8920 if (sigs[signum])
8921 {
2455069d 8922 signal_cache_update (-1);
adc6a863
PA
8923 target_pass_signals (signal_pass);
8924 target_program_signals (signal_program);
c906108c 8925
3a031f65
PA
8926 if (from_tty)
8927 {
8928 /* Show the results. */
8929 sig_print_header ();
8930 for (; signum < nsigs; signum++)
8931 if (sigs[signum])
aead7601 8932 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8933 }
8934
8935 break;
8936 }
c906108c
SS
8937}
8938
de0bea00
MF
8939/* Complete the "handle" command. */
8940
eb3ff9a5 8941static void
de0bea00 8942handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8943 completion_tracker &tracker,
6f937416 8944 const char *text, const char *word)
de0bea00 8945{
de0bea00
MF
8946 static const char * const keywords[] =
8947 {
8948 "all",
8949 "stop",
8950 "ignore",
8951 "print",
8952 "pass",
8953 "nostop",
8954 "noignore",
8955 "noprint",
8956 "nopass",
8957 NULL,
8958 };
8959
eb3ff9a5
PA
8960 signal_completer (ignore, tracker, text, word);
8961 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8962}
8963
2ea28649
PA
8964enum gdb_signal
8965gdb_signal_from_command (int num)
ed01b82c
PA
8966{
8967 if (num >= 1 && num <= 15)
2ea28649 8968 return (enum gdb_signal) num;
ed01b82c
PA
8969 error (_("Only signals 1-15 are valid as numeric signals.\n\
8970Use \"info signals\" for a list of symbolic signals."));
8971}
8972
c906108c
SS
8973/* Print current contents of the tables set by the handle command.
8974 It is possible we should just be printing signals actually used
8975 by the current target (but for things to work right when switching
8976 targets, all signals should be in the signal tables). */
8977
8978static void
1d12d88f 8979info_signals_command (const char *signum_exp, int from_tty)
c906108c 8980{
2ea28649 8981 enum gdb_signal oursig;
abbb1732 8982
c906108c
SS
8983 sig_print_header ();
8984
8985 if (signum_exp)
8986 {
8987 /* First see if this is a symbol name. */
2ea28649 8988 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8989 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8990 {
8991 /* No, try numeric. */
8992 oursig =
2ea28649 8993 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8994 }
8995 sig_print_info (oursig);
8996 return;
8997 }
8998
8999 printf_filtered ("\n");
9000 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
9001 for (oursig = GDB_SIGNAL_FIRST;
9002 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 9003 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
9004 {
9005 QUIT;
9006
a493e3e2
PA
9007 if (oursig != GDB_SIGNAL_UNKNOWN
9008 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
9009 sig_print_info (oursig);
9010 }
9011
3e43a32a
MS
9012 printf_filtered (_("\nUse the \"handle\" command "
9013 "to change these tables.\n"));
c906108c 9014}
4aa995e1
PA
9015
9016/* The $_siginfo convenience variable is a bit special. We don't know
9017 for sure the type of the value until we actually have a chance to
7a9dd1b2 9018 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
9019 also dependent on which thread you have selected.
9020
9021 1. making $_siginfo be an internalvar that creates a new value on
9022 access.
9023
9024 2. making the value of $_siginfo be an lval_computed value. */
9025
9026/* This function implements the lval_computed support for reading a
9027 $_siginfo value. */
9028
9029static void
9030siginfo_value_read (struct value *v)
9031{
9032 LONGEST transferred;
9033
a911d87a
PA
9034 /* If we can access registers, so can we access $_siginfo. Likewise
9035 vice versa. */
9036 validate_registers_access ();
c709acd1 9037
4aa995e1 9038 transferred =
328d42d8
SM
9039 target_read (current_inferior ()->top_target (),
9040 TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
9041 NULL,
9042 value_contents_all_raw (v),
9043 value_offset (v),
9044 TYPE_LENGTH (value_type (v)));
9045
9046 if (transferred != TYPE_LENGTH (value_type (v)))
9047 error (_("Unable to read siginfo"));
9048}
9049
9050/* This function implements the lval_computed support for writing a
9051 $_siginfo value. */
9052
9053static void
9054siginfo_value_write (struct value *v, struct value *fromval)
9055{
9056 LONGEST transferred;
9057
a911d87a
PA
9058 /* If we can access registers, so can we access $_siginfo. Likewise
9059 vice versa. */
9060 validate_registers_access ();
c709acd1 9061
328d42d8 9062 transferred = target_write (current_inferior ()->top_target (),
4aa995e1
PA
9063 TARGET_OBJECT_SIGNAL_INFO,
9064 NULL,
9065 value_contents_all_raw (fromval),
9066 value_offset (v),
9067 TYPE_LENGTH (value_type (fromval)));
9068
9069 if (transferred != TYPE_LENGTH (value_type (fromval)))
9070 error (_("Unable to write siginfo"));
9071}
9072
c8f2448a 9073static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9074 {
9075 siginfo_value_read,
9076 siginfo_value_write
9077 };
9078
9079/* Return a new value with the correct type for the siginfo object of
78267919
UW
9080 the current thread using architecture GDBARCH. Return a void value
9081 if there's no object available. */
4aa995e1 9082
2c0b251b 9083static struct value *
22d2b532
SDJ
9084siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9085 void *ignore)
4aa995e1 9086{
841de120 9087 if (target_has_stack ()
d7e15655 9088 && inferior_ptid != null_ptid
78267919 9089 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9090 {
78267919 9091 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9092
78267919 9093 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9094 }
9095
78267919 9096 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9097}
9098
c906108c 9099\f
16c381f0
JK
9100/* infcall_suspend_state contains state about the program itself like its
9101 registers and any signal it received when it last stopped.
9102 This state must be restored regardless of how the inferior function call
9103 ends (either successfully, or after it hits a breakpoint or signal)
9104 if the program is to properly continue where it left off. */
9105
6bf78e29 9106class infcall_suspend_state
7a292a7a 9107{
6bf78e29
AB
9108public:
9109 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9110 once the inferior function call has finished. */
9111 infcall_suspend_state (struct gdbarch *gdbarch,
dda83cd7
SM
9112 const struct thread_info *tp,
9113 struct regcache *regcache)
6bf78e29
AB
9114 : m_thread_suspend (tp->suspend),
9115 m_registers (new readonly_detached_regcache (*regcache))
9116 {
9117 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9118
9119 if (gdbarch_get_siginfo_type_p (gdbarch))
9120 {
dda83cd7
SM
9121 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9122 size_t len = TYPE_LENGTH (type);
6bf78e29 9123
dda83cd7 9124 siginfo_data.reset ((gdb_byte *) xmalloc (len));
6bf78e29 9125
328d42d8
SM
9126 if (target_read (current_inferior ()->top_target (),
9127 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7
SM
9128 siginfo_data.get (), 0, len) != len)
9129 {
9130 /* Errors ignored. */
9131 siginfo_data.reset (nullptr);
9132 }
6bf78e29
AB
9133 }
9134
9135 if (siginfo_data)
9136 {
dda83cd7
SM
9137 m_siginfo_gdbarch = gdbarch;
9138 m_siginfo_data = std::move (siginfo_data);
6bf78e29
AB
9139 }
9140 }
9141
9142 /* Return a pointer to the stored register state. */
16c381f0 9143
6bf78e29
AB
9144 readonly_detached_regcache *registers () const
9145 {
9146 return m_registers.get ();
9147 }
9148
9149 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9150
9151 void restore (struct gdbarch *gdbarch,
dda83cd7
SM
9152 struct thread_info *tp,
9153 struct regcache *regcache) const
6bf78e29
AB
9154 {
9155 tp->suspend = m_thread_suspend;
9156
9157 if (m_siginfo_gdbarch == gdbarch)
9158 {
dda83cd7 9159 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6bf78e29 9160
dda83cd7 9161 /* Errors ignored. */
328d42d8
SM
9162 target_write (current_inferior ()->top_target (),
9163 TARGET_OBJECT_SIGNAL_INFO, NULL,
dda83cd7 9164 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
6bf78e29
AB
9165 }
9166
9167 /* The inferior can be gone if the user types "print exit(0)"
9168 (and perhaps other times). */
55f6301a 9169 if (target_has_execution ())
6bf78e29
AB
9170 /* NB: The register write goes through to the target. */
9171 regcache->restore (registers ());
9172 }
9173
9174private:
9175 /* How the current thread stopped before the inferior function call was
9176 executed. */
9177 struct thread_suspend_state m_thread_suspend;
9178
9179 /* The registers before the inferior function call was executed. */
9180 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9181
35515841 9182 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9183 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9184
9185 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9186 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9187 content would be invalid. */
6bf78e29 9188 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9189};
9190
cb524840
TT
9191infcall_suspend_state_up
9192save_infcall_suspend_state ()
b89667eb 9193{
b89667eb 9194 struct thread_info *tp = inferior_thread ();
1736ad11 9195 struct regcache *regcache = get_current_regcache ();
ac7936df 9196 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9197
6bf78e29
AB
9198 infcall_suspend_state_up inf_state
9199 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9200
6bf78e29
AB
9201 /* Having saved the current state, adjust the thread state, discarding
9202 any stop signal information. The stop signal is not useful when
9203 starting an inferior function call, and run_inferior_call will not use
9204 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9205 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9206
b89667eb
DE
9207 return inf_state;
9208}
9209
9210/* Restore inferior session state to INF_STATE. */
9211
9212void
16c381f0 9213restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9214{
9215 struct thread_info *tp = inferior_thread ();
1736ad11 9216 struct regcache *regcache = get_current_regcache ();
ac7936df 9217 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9218
6bf78e29 9219 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9220 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9221}
9222
b89667eb 9223void
16c381f0 9224discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9225{
dd848631 9226 delete inf_state;
b89667eb
DE
9227}
9228
daf6667d 9229readonly_detached_regcache *
16c381f0 9230get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9231{
6bf78e29 9232 return inf_state->registers ();
b89667eb
DE
9233}
9234
16c381f0
JK
9235/* infcall_control_state contains state regarding gdb's control of the
9236 inferior itself like stepping control. It also contains session state like
9237 the user's currently selected frame. */
b89667eb 9238
16c381f0 9239struct infcall_control_state
b89667eb 9240{
16c381f0
JK
9241 struct thread_control_state thread_control;
9242 struct inferior_control_state inferior_control;
d82142e2
JK
9243
9244 /* Other fields: */
ee841dd8
TT
9245 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9246 int stopped_by_random_signal = 0;
7a292a7a 9247
79952e69
PA
9248 /* ID and level of the selected frame when the inferior function
9249 call was made. */
ee841dd8 9250 struct frame_id selected_frame_id {};
79952e69 9251 int selected_frame_level = -1;
7a292a7a
SS
9252};
9253
c906108c 9254/* Save all of the information associated with the inferior<==>gdb
b89667eb 9255 connection. */
c906108c 9256
cb524840
TT
9257infcall_control_state_up
9258save_infcall_control_state ()
c906108c 9259{
cb524840 9260 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9261 struct thread_info *tp = inferior_thread ();
d6b48e9c 9262 struct inferior *inf = current_inferior ();
7a292a7a 9263
16c381f0
JK
9264 inf_status->thread_control = tp->control;
9265 inf_status->inferior_control = inf->control;
d82142e2 9266
8358c15c 9267 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9268 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9269
16c381f0
JK
9270 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9271 chain. If caller's caller is walking the chain, they'll be happier if we
9272 hand them back the original chain when restore_infcall_control_state is
9273 called. */
9274 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9275
9276 /* Other fields: */
9277 inf_status->stop_stack_dummy = stop_stack_dummy;
9278 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9279
79952e69
PA
9280 save_selected_frame (&inf_status->selected_frame_id,
9281 &inf_status->selected_frame_level);
b89667eb 9282
7a292a7a 9283 return inf_status;
c906108c
SS
9284}
9285
b89667eb
DE
9286/* Restore inferior session state to INF_STATUS. */
9287
c906108c 9288void
16c381f0 9289restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9290{
4e1c45ea 9291 struct thread_info *tp = inferior_thread ();
d6b48e9c 9292 struct inferior *inf = current_inferior ();
4e1c45ea 9293
8358c15c
JK
9294 if (tp->control.step_resume_breakpoint)
9295 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9296
5b79abe7
TT
9297 if (tp->control.exception_resume_breakpoint)
9298 tp->control.exception_resume_breakpoint->disposition
9299 = disp_del_at_next_stop;
9300
d82142e2 9301 /* Handle the bpstat_copy of the chain. */
16c381f0 9302 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9303
16c381f0
JK
9304 tp->control = inf_status->thread_control;
9305 inf->control = inf_status->inferior_control;
d82142e2
JK
9306
9307 /* Other fields: */
9308 stop_stack_dummy = inf_status->stop_stack_dummy;
9309 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9310
841de120 9311 if (target_has_stack ())
c906108c 9312 {
79952e69
PA
9313 restore_selected_frame (inf_status->selected_frame_id,
9314 inf_status->selected_frame_level);
c906108c 9315 }
c906108c 9316
ee841dd8 9317 delete inf_status;
7a292a7a 9318}
c906108c
SS
9319
9320void
16c381f0 9321discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9322{
8358c15c
JK
9323 if (inf_status->thread_control.step_resume_breakpoint)
9324 inf_status->thread_control.step_resume_breakpoint->disposition
9325 = disp_del_at_next_stop;
9326
5b79abe7
TT
9327 if (inf_status->thread_control.exception_resume_breakpoint)
9328 inf_status->thread_control.exception_resume_breakpoint->disposition
9329 = disp_del_at_next_stop;
9330
1777feb0 9331 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9332 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9333
ee841dd8 9334 delete inf_status;
7a292a7a 9335}
b89667eb 9336\f
7f89fd65 9337/* See infrun.h. */
0c557179
SDJ
9338
9339void
9340clear_exit_convenience_vars (void)
9341{
9342 clear_internalvar (lookup_internalvar ("_exitsignal"));
9343 clear_internalvar (lookup_internalvar ("_exitcode"));
9344}
c5aa993b 9345\f
488f131b 9346
b2175913
MS
9347/* User interface for reverse debugging:
9348 Set exec-direction / show exec-direction commands
9349 (returns error unless target implements to_set_exec_direction method). */
9350
170742de 9351enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9352static const char exec_forward[] = "forward";
9353static const char exec_reverse[] = "reverse";
9354static const char *exec_direction = exec_forward;
40478521 9355static const char *const exec_direction_names[] = {
b2175913
MS
9356 exec_forward,
9357 exec_reverse,
9358 NULL
9359};
9360
9361static void
eb4c3f4a 9362set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9363 struct cmd_list_element *cmd)
9364{
05374cfd 9365 if (target_can_execute_reverse ())
b2175913
MS
9366 {
9367 if (!strcmp (exec_direction, exec_forward))
9368 execution_direction = EXEC_FORWARD;
9369 else if (!strcmp (exec_direction, exec_reverse))
9370 execution_direction = EXEC_REVERSE;
9371 }
8bbed405
MS
9372 else
9373 {
9374 exec_direction = exec_forward;
9375 error (_("Target does not support this operation."));
9376 }
b2175913
MS
9377}
9378
9379static void
9380show_exec_direction_func (struct ui_file *out, int from_tty,
9381 struct cmd_list_element *cmd, const char *value)
9382{
9383 switch (execution_direction) {
9384 case EXEC_FORWARD:
9385 fprintf_filtered (out, _("Forward.\n"));
9386 break;
9387 case EXEC_REVERSE:
9388 fprintf_filtered (out, _("Reverse.\n"));
9389 break;
b2175913 9390 default:
d8b34453
PA
9391 internal_error (__FILE__, __LINE__,
9392 _("bogus execution_direction value: %d"),
9393 (int) execution_direction);
b2175913
MS
9394 }
9395}
9396
d4db2f36
PA
9397static void
9398show_schedule_multiple (struct ui_file *file, int from_tty,
9399 struct cmd_list_element *c, const char *value)
9400{
3e43a32a
MS
9401 fprintf_filtered (file, _("Resuming the execution of threads "
9402 "of all processes is %s.\n"), value);
d4db2f36 9403}
ad52ddc6 9404
22d2b532
SDJ
9405/* Implementation of `siginfo' variable. */
9406
9407static const struct internalvar_funcs siginfo_funcs =
9408{
9409 siginfo_make_value,
9410 NULL,
9411 NULL
9412};
9413
372316f1
PA
9414/* Callback for infrun's target events source. This is marked when a
9415 thread has a pending status to process. */
9416
9417static void
9418infrun_async_inferior_event_handler (gdb_client_data data)
9419{
6b36ddeb 9420 clear_async_event_handler (infrun_async_inferior_event_token);
b1a35af2 9421 inferior_event_handler (INF_REG_EVENT);
372316f1
PA
9422}
9423
8087c3fa 9424#if GDB_SELF_TEST
b161a60d
SM
9425namespace selftests
9426{
9427
9428/* Verify that when two threads with the same ptid exist (from two different
9429 targets) and one of them changes ptid, we only update inferior_ptid if
9430 it is appropriate. */
9431
9432static void
9433infrun_thread_ptid_changed ()
9434{
9435 gdbarch *arch = current_inferior ()->gdbarch;
9436
9437 /* The thread which inferior_ptid represents changes ptid. */
9438 {
9439 scoped_restore_current_pspace_and_thread restore;
9440
9441 scoped_mock_context<test_target_ops> target1 (arch);
9442 scoped_mock_context<test_target_ops> target2 (arch);
9443 target2.mock_inferior.next = &target1.mock_inferior;
9444
9445 ptid_t old_ptid (111, 222);
9446 ptid_t new_ptid (111, 333);
9447
9448 target1.mock_inferior.pid = old_ptid.pid ();
9449 target1.mock_thread.ptid = old_ptid;
9450 target2.mock_inferior.pid = old_ptid.pid ();
9451 target2.mock_thread.ptid = old_ptid;
9452
9453 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9454 set_current_inferior (&target1.mock_inferior);
9455
9456 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9457
9458 gdb_assert (inferior_ptid == new_ptid);
9459 }
9460
9461 /* A thread with the same ptid as inferior_ptid, but from another target,
9462 changes ptid. */
9463 {
9464 scoped_restore_current_pspace_and_thread restore;
9465
9466 scoped_mock_context<test_target_ops> target1 (arch);
9467 scoped_mock_context<test_target_ops> target2 (arch);
9468 target2.mock_inferior.next = &target1.mock_inferior;
9469
9470 ptid_t old_ptid (111, 222);
9471 ptid_t new_ptid (111, 333);
9472
9473 target1.mock_inferior.pid = old_ptid.pid ();
9474 target1.mock_thread.ptid = old_ptid;
9475 target2.mock_inferior.pid = old_ptid.pid ();
9476 target2.mock_thread.ptid = old_ptid;
9477
9478 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9479 set_current_inferior (&target2.mock_inferior);
9480
9481 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9482
9483 gdb_assert (inferior_ptid == old_ptid);
9484 }
9485}
9486
9487} /* namespace selftests */
9488
8087c3fa
JB
9489#endif /* GDB_SELF_TEST */
9490
6c265988 9491void _initialize_infrun ();
c906108c 9492void
6c265988 9493_initialize_infrun ()
c906108c 9494{
de0bea00 9495 struct cmd_list_element *c;
c906108c 9496
372316f1
PA
9497 /* Register extra event sources in the event loop. */
9498 infrun_async_inferior_event_token
db20ebdf
SM
9499 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9500 "infrun");
372316f1 9501
11db9430 9502 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9503What debugger does when program gets various signals.\n\
9504Specify a signal as argument to print info on that signal only."));
c906108c
SS
9505 add_info_alias ("handle", "signals", 0);
9506
de0bea00 9507 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9508Specify how to handle signals.\n\
486c7739 9509Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9510Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9511If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9512will be displayed instead.\n\
9513\n\
c906108c
SS
9514Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9515from 1-15 are allowed for compatibility with old versions of GDB.\n\
9516Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9517The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9518used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9519\n\
1bedd215 9520Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9521\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9522Stop means reenter debugger if this signal happens (implies print).\n\
9523Print means print a message if this signal happens.\n\
9524Pass means let program see this signal; otherwise program doesn't know.\n\
9525Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9526Pass and Stop may be combined.\n\
9527\n\
9528Multiple signals may be specified. Signal numbers and signal names\n\
9529may be interspersed with actions, with the actions being performed for\n\
9530all signals cumulatively specified."));
de0bea00 9531 set_cmd_completer (c, handle_completer);
486c7739 9532
c906108c 9533 if (!dbx_commands)
1a966eab
AC
9534 stop_command = add_cmd ("stop", class_obscure,
9535 not_just_help_class_command, _("\
9536There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9537This allows you to set a list of commands to be run each time execution\n\
1a966eab 9538of the program stops."), &cmdlist);
c906108c 9539
94ba44a6
SM
9540 add_setshow_boolean_cmd
9541 ("infrun", class_maintenance, &debug_infrun,
9542 _("Set inferior debugging."),
9543 _("Show inferior debugging."),
9544 _("When non-zero, inferior specific debugging is enabled."),
9545 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
527159b7 9546
ad52ddc6
PA
9547 add_setshow_boolean_cmd ("non-stop", no_class,
9548 &non_stop_1, _("\
9549Set whether gdb controls the inferior in non-stop mode."), _("\
9550Show whether gdb controls the inferior in non-stop mode."), _("\
9551When debugging a multi-threaded program and this setting is\n\
9552off (the default, also called all-stop mode), when one thread stops\n\
9553(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9554all other threads in the program while you interact with the thread of\n\
9555interest. When you continue or step a thread, you can allow the other\n\
9556threads to run, or have them remain stopped, but while you inspect any\n\
9557thread's state, all threads stop.\n\
9558\n\
9559In non-stop mode, when one thread stops, other threads can continue\n\
9560to run freely. You'll be able to step each thread independently,\n\
9561leave it stopped or free to run as needed."),
9562 set_non_stop,
9563 show_non_stop,
9564 &setlist,
9565 &showlist);
9566
adc6a863 9567 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9568 {
9569 signal_stop[i] = 1;
9570 signal_print[i] = 1;
9571 signal_program[i] = 1;
ab04a2af 9572 signal_catch[i] = 0;
c906108c
SS
9573 }
9574
4d9d9d04
PA
9575 /* Signals caused by debugger's own actions should not be given to
9576 the program afterwards.
9577
9578 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9579 explicitly specifies that it should be delivered to the target
9580 program. Typically, that would occur when a user is debugging a
9581 target monitor on a simulator: the target monitor sets a
9582 breakpoint; the simulator encounters this breakpoint and halts
9583 the simulation handing control to GDB; GDB, noting that the stop
9584 address doesn't map to any known breakpoint, returns control back
9585 to the simulator; the simulator then delivers the hardware
9586 equivalent of a GDB_SIGNAL_TRAP to the program being
9587 debugged. */
a493e3e2
PA
9588 signal_program[GDB_SIGNAL_TRAP] = 0;
9589 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9590
9591 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9592 signal_stop[GDB_SIGNAL_ALRM] = 0;
9593 signal_print[GDB_SIGNAL_ALRM] = 0;
9594 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9595 signal_print[GDB_SIGNAL_VTALRM] = 0;
9596 signal_stop[GDB_SIGNAL_PROF] = 0;
9597 signal_print[GDB_SIGNAL_PROF] = 0;
9598 signal_stop[GDB_SIGNAL_CHLD] = 0;
9599 signal_print[GDB_SIGNAL_CHLD] = 0;
9600 signal_stop[GDB_SIGNAL_IO] = 0;
9601 signal_print[GDB_SIGNAL_IO] = 0;
9602 signal_stop[GDB_SIGNAL_POLL] = 0;
9603 signal_print[GDB_SIGNAL_POLL] = 0;
9604 signal_stop[GDB_SIGNAL_URG] = 0;
9605 signal_print[GDB_SIGNAL_URG] = 0;
9606 signal_stop[GDB_SIGNAL_WINCH] = 0;
9607 signal_print[GDB_SIGNAL_WINCH] = 0;
9608 signal_stop[GDB_SIGNAL_PRIO] = 0;
9609 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9610
cd0fc7c3
SS
9611 /* These signals are used internally by user-level thread
9612 implementations. (See signal(5) on Solaris.) Like the above
9613 signals, a healthy program receives and handles them as part of
9614 its normal operation. */
a493e3e2
PA
9615 signal_stop[GDB_SIGNAL_LWP] = 0;
9616 signal_print[GDB_SIGNAL_LWP] = 0;
9617 signal_stop[GDB_SIGNAL_WAITING] = 0;
9618 signal_print[GDB_SIGNAL_WAITING] = 0;
9619 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9620 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9621 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9622 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9623
2455069d
UW
9624 /* Update cached state. */
9625 signal_cache_update (-1);
9626
85c07804
AC
9627 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9628 &stop_on_solib_events, _("\
9629Set stopping for shared library events."), _("\
9630Show stopping for shared library events."), _("\
c906108c
SS
9631If nonzero, gdb will give control to the user when the dynamic linker\n\
9632notifies gdb of shared library events. The most common event of interest\n\
85c07804 9633to the user would be loading/unloading of a new library."),
f9e14852 9634 set_stop_on_solib_events,
920d2a44 9635 show_stop_on_solib_events,
85c07804 9636 &setlist, &showlist);
c906108c 9637
7ab04401
AC
9638 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9639 follow_fork_mode_kind_names,
9640 &follow_fork_mode_string, _("\
9641Set debugger response to a program call of fork or vfork."), _("\
9642Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9643A fork or vfork creates a new process. follow-fork-mode can be:\n\
9644 parent - the original process is debugged after a fork\n\
9645 child - the new process is debugged after a fork\n\
ea1dd7bc 9646The unfollowed process will continue to run.\n\
7ab04401
AC
9647By default, the debugger will follow the parent process."),
9648 NULL,
920d2a44 9649 show_follow_fork_mode_string,
7ab04401
AC
9650 &setlist, &showlist);
9651
6c95b8df
PA
9652 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9653 follow_exec_mode_names,
9654 &follow_exec_mode_string, _("\
9655Set debugger response to a program call of exec."), _("\
9656Show debugger response to a program call of exec."), _("\
9657An exec call replaces the program image of a process.\n\
9658\n\
9659follow-exec-mode can be:\n\
9660\n\
cce7e648 9661 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9662to this new inferior. The program the process was running before\n\
9663the exec call can be restarted afterwards by restarting the original\n\
9664inferior.\n\
9665\n\
9666 same - the debugger keeps the process bound to the same inferior.\n\
9667The new executable image replaces the previous executable loaded in\n\
9668the inferior. Restarting the inferior after the exec call restarts\n\
9669the executable the process was running after the exec call.\n\
9670\n\
9671By default, the debugger will use the same inferior."),
9672 NULL,
9673 show_follow_exec_mode_string,
9674 &setlist, &showlist);
9675
7ab04401
AC
9676 add_setshow_enum_cmd ("scheduler-locking", class_run,
9677 scheduler_enums, &scheduler_mode, _("\
9678Set mode for locking scheduler during execution."), _("\
9679Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9680off == no locking (threads may preempt at any time)\n\
9681on == full locking (no thread except the current thread may run)\n\
dda83cd7 9682 This applies to both normal execution and replay mode.\n\
f2665db5 9683step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
dda83cd7
SM
9684 In this mode, other threads may run during other commands.\n\
9685 This applies to both normal execution and replay mode.\n\
f2665db5 9686replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9687 set_schedlock_func, /* traps on target vector */
920d2a44 9688 show_scheduler_mode,
7ab04401 9689 &setlist, &showlist);
5fbbeb29 9690
d4db2f36
PA
9691 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9692Set mode for resuming threads of all processes."), _("\
9693Show mode for resuming threads of all processes."), _("\
9694When on, execution commands (such as 'continue' or 'next') resume all\n\
9695threads of all processes. When off (which is the default), execution\n\
9696commands only resume the threads of the current process. The set of\n\
9697threads that are resumed is further refined by the scheduler-locking\n\
9698mode (see help set scheduler-locking)."),
9699 NULL,
9700 show_schedule_multiple,
9701 &setlist, &showlist);
9702
5bf193a2
AC
9703 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9704Set mode of the step operation."), _("\
9705Show mode of the step operation."), _("\
9706When set, doing a step over a function without debug line information\n\
9707will stop at the first instruction of that function. Otherwise, the\n\
9708function is skipped and the step command stops at a different source line."),
9709 NULL,
920d2a44 9710 show_step_stop_if_no_debug,
5bf193a2 9711 &setlist, &showlist);
ca6724c1 9712
72d0e2c5
YQ
9713 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9714 &can_use_displaced_stepping, _("\
237fc4c9
PA
9715Set debugger's willingness to use displaced stepping."), _("\
9716Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9717If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9718supported by the target architecture. If off, gdb will not use displaced\n\
9719stepping to step over breakpoints, even if such is supported by the target\n\
9720architecture. If auto (which is the default), gdb will use displaced stepping\n\
9721if the target architecture supports it and non-stop mode is active, but will not\n\
9722use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9723 NULL,
9724 show_can_use_displaced_stepping,
9725 &setlist, &showlist);
237fc4c9 9726
b2175913
MS
9727 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9728 &exec_direction, _("Set direction of execution.\n\
9729Options are 'forward' or 'reverse'."),
9730 _("Show direction of execution (forward/reverse)."),
9731 _("Tells gdb whether to execute forward or backward."),
9732 set_exec_direction_func, show_exec_direction_func,
9733 &setlist, &showlist);
9734
6c95b8df
PA
9735 /* Set/show detach-on-fork: user-settable mode. */
9736
9737 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9738Set whether gdb will detach the child of a fork."), _("\
9739Show whether gdb will detach the child of a fork."), _("\
9740Tells gdb whether to detach the child of a fork."),
9741 NULL, NULL, &setlist, &showlist);
9742
03583c20
UW
9743 /* Set/show disable address space randomization mode. */
9744
9745 add_setshow_boolean_cmd ("disable-randomization", class_support,
9746 &disable_randomization, _("\
9747Set disabling of debuggee's virtual address space randomization."), _("\
9748Show disabling of debuggee's virtual address space randomization."), _("\
9749When this mode is on (which is the default), randomization of the virtual\n\
9750address space is disabled. Standalone programs run with the randomization\n\
9751enabled by default on some platforms."),
9752 &set_disable_randomization,
9753 &show_disable_randomization,
9754 &setlist, &showlist);
9755
ca6724c1 9756 /* ptid initializations */
ca6724c1
KB
9757 inferior_ptid = null_ptid;
9758 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9759
76727919
TT
9760 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9761 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9762 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9763 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
3b7a962d 9764 gdb::observers::inferior_execd.attach (infrun_inferior_execd);
4aa995e1
PA
9765
9766 /* Explicitly create without lookup, since that tries to create a
9767 value with a void typed value, and when we get here, gdbarch
9768 isn't initialized yet. At this point, we're quite sure there
9769 isn't another convenience variable of the same name. */
22d2b532 9770 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9771
9772 add_setshow_boolean_cmd ("observer", no_class,
9773 &observer_mode_1, _("\
9774Set whether gdb controls the inferior in observer mode."), _("\
9775Show whether gdb controls the inferior in observer mode."), _("\
9776In observer mode, GDB can get data from the inferior, but not\n\
9777affect its execution. Registers and memory may not be changed,\n\
9778breakpoints may not be set, and the program cannot be interrupted\n\
9779or signalled."),
9780 set_observer_mode,
9781 show_observer_mode,
9782 &setlist,
9783 &showlist);
b161a60d
SM
9784
9785#if GDB_SELF_TEST
9786 selftests::register_test ("infrun_thread_ptid_changed",
9787 selftests::infrun_thread_ptid_changed);
9788#endif
c906108c 9789}
This page took 5.110064 seconds and 4 git commands to generate.