Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
ecd75fc8 4 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
411 int parent_pid, child_pid;
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
415 parent_pid = ptid_get_lwp (inferior_ptid);
416 if (parent_pid == 0)
417 parent_pid = ptid_get_pid (inferior_ptid);
418 child_pid
419 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid);
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
423 && (!target_is_async_p () || sync_execution)
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
435 /* FIXME output string > 80 columns. */
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
444 struct cleanup *old_chain;
445
446 /* Before detaching from the child, remove all breakpoints
447 from it. If we forked, then this has already been taken
448 care of by infrun.c. If we vforked however, any
449 breakpoint inserted in the parent is visible in the
450 child, even those added while stopped in a vfork
451 catchpoint. This will remove the breakpoints from the
452 parent also, but they'll be reinserted below. */
453 if (has_vforked)
454 {
455 /* Keep breakpoints list in sync. */
456 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
457 }
458
459 if (info_verbose || debug_infrun)
460 {
6f259a23 461 target_terminal_ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
6f259a23
DB
463 _("Detaching after %s from "
464 "child process %d.\n"),
465 has_vforked ? "vfork" : "fork",
d83ad864
DB
466 child_pid);
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
472 struct cleanup *old_chain;
473
474 /* Add process to GDB's tables. */
475 child_inf = add_inferior (child_pid);
476
477 parent_inf = current_inferior ();
478 child_inf->attach_flag = parent_inf->attach_flag;
479 copy_terminal_info (child_inf, parent_inf);
480 child_inf->gdbarch = parent_inf->gdbarch;
481 copy_inferior_target_desc_info (child_inf, parent_inf);
482
483 old_chain = save_inferior_ptid ();
484 save_current_program_space ();
485
486 inferior_ptid = ptid_build (child_pid, child_pid, 0);
487 add_thread (inferior_ptid);
488 child_inf->symfile_flags = SYMFILE_NO_READ;
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
497 /* The parent will be frozen until the child is done
498 with the shared region. Keep track of the
499 parent. */
500 child_inf->vfork_parent = parent_inf;
501 child_inf->pending_detach = 0;
502 parent_inf->vfork_child = child_inf;
503 parent_inf->pending_detach = 0;
504 }
505 else
506 {
507 child_inf->aspace = new_address_space ();
508 child_inf->pspace = add_program_space (child_inf->aspace);
509 child_inf->removable = 1;
510 set_current_program_space (child_inf->pspace);
511 clone_program_space (child_inf->pspace, parent_inf->pspace);
512
513 /* Let the shared library layer (e.g., solib-svr4) learn
514 about this new process, relocate the cloned exec, pull
515 in shared libraries, and install the solib event
516 breakpoint. If a "cloned-VM" event was propagated
517 better throughout the core, this wouldn't be
518 required. */
519 solib_create_inferior_hook (0);
520 }
521
522 do_cleanups (old_chain);
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
548 if (info_verbose || debug_infrun)
549 {
6f259a23
DB
550 target_terminal_ours_for_output ();
551 fprintf_filtered (gdb_stdlog,
552 _("Attaching after process %d "
553 "%s to child process %d.\n"),
554 parent_pid,
555 has_vforked ? "vfork" : "fork",
556 child_pid);
d83ad864
DB
557 }
558
559 /* Add the new inferior first, so that the target_detach below
560 doesn't unpush the target. */
561
562 child_inf = add_inferior (child_pid);
563
564 parent_inf = current_inferior ();
565 child_inf->attach_flag = parent_inf->attach_flag;
566 copy_terminal_info (child_inf, parent_inf);
567 child_inf->gdbarch = parent_inf->gdbarch;
568 copy_inferior_target_desc_info (child_inf, parent_inf);
569
570 parent_pspace = parent_inf->pspace;
571
572 /* If we're vforking, we want to hold on to the parent until the
573 child exits or execs. At child exec or exit time we can
574 remove the old breakpoints from the parent and detach or
575 resume debugging it. Otherwise, detach the parent now; we'll
576 want to reuse it's program/address spaces, but we can't set
577 them to the child before removing breakpoints from the
578 parent, otherwise, the breakpoints module could decide to
579 remove breakpoints from the wrong process (since they'd be
580 assigned to the same address space). */
581
582 if (has_vforked)
583 {
584 gdb_assert (child_inf->vfork_parent == NULL);
585 gdb_assert (parent_inf->vfork_child == NULL);
586 child_inf->vfork_parent = parent_inf;
587 child_inf->pending_detach = 0;
588 parent_inf->vfork_child = child_inf;
589 parent_inf->pending_detach = detach_fork;
590 parent_inf->waiting_for_vfork_done = 0;
591 }
592 else if (detach_fork)
6f259a23
DB
593 {
594 if (info_verbose || debug_infrun)
595 {
596 target_terminal_ours_for_output ();
597 fprintf_filtered (gdb_stdlog,
598 _("Detaching after fork from "
599 "child process %d.\n"),
600 child_pid);
601 }
602
603 target_detach (NULL, 0);
604 }
d83ad864
DB
605
606 /* Note that the detach above makes PARENT_INF dangling. */
607
608 /* Add the child thread to the appropriate lists, and switch to
609 this new thread, before cloning the program space, and
610 informing the solib layer about this new process. */
611
612 inferior_ptid = ptid_build (child_pid, child_pid, 0);
613 add_thread (inferior_ptid);
614
615 /* If this is a vfork child, then the address-space is shared
616 with the parent. If we detached from the parent, then we can
617 reuse the parent's program/address spaces. */
618 if (has_vforked || detach_fork)
619 {
620 child_inf->pspace = parent_pspace;
621 child_inf->aspace = child_inf->pspace->aspace;
622 }
623 else
624 {
625 child_inf->aspace = new_address_space ();
626 child_inf->pspace = add_program_space (child_inf->aspace);
627 child_inf->removable = 1;
628 child_inf->symfile_flags = SYMFILE_NO_READ;
629 set_current_program_space (child_inf->pspace);
630 clone_program_space (child_inf->pspace, parent_pspace);
631
632 /* Let the shared library layer (e.g., solib-svr4) learn
633 about this new process, relocate the cloned exec, pull in
634 shared libraries, and install the solib event breakpoint.
635 If a "cloned-VM" event was propagated better throughout
636 the core, this wouldn't be required. */
637 solib_create_inferior_hook (0);
638 }
639 }
640
641 return target_follow_fork (follow_child, detach_fork);
642}
643
e58b0e63
PA
644/* Tell the target to follow the fork we're stopped at. Returns true
645 if the inferior should be resumed; false, if the target for some
646 reason decided it's best not to resume. */
647
6604731b 648static int
4ef3f3be 649follow_fork (void)
c906108c 650{
ea1dd7bc 651 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
652 int should_resume = 1;
653 struct thread_info *tp;
654
655 /* Copy user stepping state to the new inferior thread. FIXME: the
656 followed fork child thread should have a copy of most of the
4e3990f4
DE
657 parent thread structure's run control related fields, not just these.
658 Initialized to avoid "may be used uninitialized" warnings from gcc. */
659 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 660 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
661 CORE_ADDR step_range_start = 0;
662 CORE_ADDR step_range_end = 0;
663 struct frame_id step_frame_id = { 0 };
17b2616c 664 struct interp *command_interp = NULL;
e58b0e63
PA
665
666 if (!non_stop)
667 {
668 ptid_t wait_ptid;
669 struct target_waitstatus wait_status;
670
671 /* Get the last target status returned by target_wait(). */
672 get_last_target_status (&wait_ptid, &wait_status);
673
674 /* If not stopped at a fork event, then there's nothing else to
675 do. */
676 if (wait_status.kind != TARGET_WAITKIND_FORKED
677 && wait_status.kind != TARGET_WAITKIND_VFORKED)
678 return 1;
679
680 /* Check if we switched over from WAIT_PTID, since the event was
681 reported. */
682 if (!ptid_equal (wait_ptid, minus_one_ptid)
683 && !ptid_equal (inferior_ptid, wait_ptid))
684 {
685 /* We did. Switch back to WAIT_PTID thread, to tell the
686 target to follow it (in either direction). We'll
687 afterwards refuse to resume, and inform the user what
688 happened. */
689 switch_to_thread (wait_ptid);
690 should_resume = 0;
691 }
692 }
693
694 tp = inferior_thread ();
695
696 /* If there were any forks/vforks that were caught and are now to be
697 followed, then do so now. */
698 switch (tp->pending_follow.kind)
699 {
700 case TARGET_WAITKIND_FORKED:
701 case TARGET_WAITKIND_VFORKED:
702 {
703 ptid_t parent, child;
704
705 /* If the user did a next/step, etc, over a fork call,
706 preserve the stepping state in the fork child. */
707 if (follow_child && should_resume)
708 {
8358c15c
JK
709 step_resume_breakpoint = clone_momentary_breakpoint
710 (tp->control.step_resume_breakpoint);
16c381f0
JK
711 step_range_start = tp->control.step_range_start;
712 step_range_end = tp->control.step_range_end;
713 step_frame_id = tp->control.step_frame_id;
186c406b
TT
714 exception_resume_breakpoint
715 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 716 command_interp = tp->control.command_interp;
e58b0e63
PA
717
718 /* For now, delete the parent's sr breakpoint, otherwise,
719 parent/child sr breakpoints are considered duplicates,
720 and the child version will not be installed. Remove
721 this when the breakpoints module becomes aware of
722 inferiors and address spaces. */
723 delete_step_resume_breakpoint (tp);
16c381f0
JK
724 tp->control.step_range_start = 0;
725 tp->control.step_range_end = 0;
726 tp->control.step_frame_id = null_frame_id;
186c406b 727 delete_exception_resume_breakpoint (tp);
17b2616c 728 tp->control.command_interp = NULL;
e58b0e63
PA
729 }
730
731 parent = inferior_ptid;
732 child = tp->pending_follow.value.related_pid;
733
d83ad864
DB
734 /* Set up inferior(s) as specified by the caller, and tell the
735 target to do whatever is necessary to follow either parent
736 or child. */
737 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
738 {
739 /* Target refused to follow, or there's some other reason
740 we shouldn't resume. */
741 should_resume = 0;
742 }
743 else
744 {
745 /* This pending follow fork event is now handled, one way
746 or another. The previous selected thread may be gone
747 from the lists by now, but if it is still around, need
748 to clear the pending follow request. */
e09875d4 749 tp = find_thread_ptid (parent);
e58b0e63
PA
750 if (tp)
751 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
752
753 /* This makes sure we don't try to apply the "Switched
754 over from WAIT_PID" logic above. */
755 nullify_last_target_wait_ptid ();
756
1777feb0 757 /* If we followed the child, switch to it... */
e58b0e63
PA
758 if (follow_child)
759 {
760 switch_to_thread (child);
761
762 /* ... and preserve the stepping state, in case the
763 user was stepping over the fork call. */
764 if (should_resume)
765 {
766 tp = inferior_thread ();
8358c15c
JK
767 tp->control.step_resume_breakpoint
768 = step_resume_breakpoint;
16c381f0
JK
769 tp->control.step_range_start = step_range_start;
770 tp->control.step_range_end = step_range_end;
771 tp->control.step_frame_id = step_frame_id;
186c406b
TT
772 tp->control.exception_resume_breakpoint
773 = exception_resume_breakpoint;
17b2616c 774 tp->control.command_interp = command_interp;
e58b0e63
PA
775 }
776 else
777 {
778 /* If we get here, it was because we're trying to
779 resume from a fork catchpoint, but, the user
780 has switched threads away from the thread that
781 forked. In that case, the resume command
782 issued is most likely not applicable to the
783 child, so just warn, and refuse to resume. */
3e43a32a
MS
784 warning (_("Not resuming: switched threads "
785 "before following fork child.\n"));
e58b0e63
PA
786 }
787
788 /* Reset breakpoints in the child as appropriate. */
789 follow_inferior_reset_breakpoints ();
790 }
791 else
792 switch_to_thread (parent);
793 }
794 }
795 break;
796 case TARGET_WAITKIND_SPURIOUS:
797 /* Nothing to follow. */
798 break;
799 default:
800 internal_error (__FILE__, __LINE__,
801 "Unexpected pending_follow.kind %d\n",
802 tp->pending_follow.kind);
803 break;
804 }
c906108c 805
e58b0e63 806 return should_resume;
c906108c
SS
807}
808
d83ad864 809static void
6604731b 810follow_inferior_reset_breakpoints (void)
c906108c 811{
4e1c45ea
PA
812 struct thread_info *tp = inferior_thread ();
813
6604731b
DJ
814 /* Was there a step_resume breakpoint? (There was if the user
815 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
816 thread number. Cloned step_resume breakpoints are disabled on
817 creation, so enable it here now that it is associated with the
818 correct thread.
6604731b
DJ
819
820 step_resumes are a form of bp that are made to be per-thread.
821 Since we created the step_resume bp when the parent process
822 was being debugged, and now are switching to the child process,
823 from the breakpoint package's viewpoint, that's a switch of
824 "threads". We must update the bp's notion of which thread
825 it is for, or it'll be ignored when it triggers. */
826
8358c15c 827 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
828 {
829 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
830 tp->control.step_resume_breakpoint->loc->enabled = 1;
831 }
6604731b 832
a1aa2221 833 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 834 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
835 {
836 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
837 tp->control.exception_resume_breakpoint->loc->enabled = 1;
838 }
186c406b 839
6604731b
DJ
840 /* Reinsert all breakpoints in the child. The user may have set
841 breakpoints after catching the fork, in which case those
842 were never set in the child, but only in the parent. This makes
843 sure the inserted breakpoints match the breakpoint list. */
844
845 breakpoint_re_set ();
846 insert_breakpoints ();
c906108c 847}
c906108c 848
6c95b8df
PA
849/* The child has exited or execed: resume threads of the parent the
850 user wanted to be executing. */
851
852static int
853proceed_after_vfork_done (struct thread_info *thread,
854 void *arg)
855{
856 int pid = * (int *) arg;
857
858 if (ptid_get_pid (thread->ptid) == pid
859 && is_running (thread->ptid)
860 && !is_executing (thread->ptid)
861 && !thread->stop_requested
a493e3e2 862 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
863 {
864 if (debug_infrun)
865 fprintf_unfiltered (gdb_stdlog,
866 "infrun: resuming vfork parent thread %s\n",
867 target_pid_to_str (thread->ptid));
868
869 switch_to_thread (thread->ptid);
70509625 870 clear_proceed_status (0);
a493e3e2 871 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
872 }
873
874 return 0;
875}
876
877/* Called whenever we notice an exec or exit event, to handle
878 detaching or resuming a vfork parent. */
879
880static void
881handle_vfork_child_exec_or_exit (int exec)
882{
883 struct inferior *inf = current_inferior ();
884
885 if (inf->vfork_parent)
886 {
887 int resume_parent = -1;
888
889 /* This exec or exit marks the end of the shared memory region
890 between the parent and the child. If the user wanted to
891 detach from the parent, now is the time. */
892
893 if (inf->vfork_parent->pending_detach)
894 {
895 struct thread_info *tp;
896 struct cleanup *old_chain;
897 struct program_space *pspace;
898 struct address_space *aspace;
899
1777feb0 900 /* follow-fork child, detach-on-fork on. */
6c95b8df 901
68c9da30
PA
902 inf->vfork_parent->pending_detach = 0;
903
f50f4e56
PA
904 if (!exec)
905 {
906 /* If we're handling a child exit, then inferior_ptid
907 points at the inferior's pid, not to a thread. */
908 old_chain = save_inferior_ptid ();
909 save_current_program_space ();
910 save_current_inferior ();
911 }
912 else
913 old_chain = save_current_space_and_thread ();
6c95b8df
PA
914
915 /* We're letting loose of the parent. */
916 tp = any_live_thread_of_process (inf->vfork_parent->pid);
917 switch_to_thread (tp->ptid);
918
919 /* We're about to detach from the parent, which implicitly
920 removes breakpoints from its address space. There's a
921 catch here: we want to reuse the spaces for the child,
922 but, parent/child are still sharing the pspace at this
923 point, although the exec in reality makes the kernel give
924 the child a fresh set of new pages. The problem here is
925 that the breakpoints module being unaware of this, would
926 likely chose the child process to write to the parent
927 address space. Swapping the child temporarily away from
928 the spaces has the desired effect. Yes, this is "sort
929 of" a hack. */
930
931 pspace = inf->pspace;
932 aspace = inf->aspace;
933 inf->aspace = NULL;
934 inf->pspace = NULL;
935
936 if (debug_infrun || info_verbose)
937 {
6f259a23 938 target_terminal_ours_for_output ();
6c95b8df
PA
939
940 if (exec)
6f259a23
DB
941 {
942 fprintf_filtered (gdb_stdlog,
943 _("Detaching vfork parent process "
944 "%d after child exec.\n"),
945 inf->vfork_parent->pid);
946 }
6c95b8df 947 else
6f259a23
DB
948 {
949 fprintf_filtered (gdb_stdlog,
950 _("Detaching vfork parent process "
951 "%d after child exit.\n"),
952 inf->vfork_parent->pid);
953 }
6c95b8df
PA
954 }
955
956 target_detach (NULL, 0);
957
958 /* Put it back. */
959 inf->pspace = pspace;
960 inf->aspace = aspace;
961
962 do_cleanups (old_chain);
963 }
964 else if (exec)
965 {
966 /* We're staying attached to the parent, so, really give the
967 child a new address space. */
968 inf->pspace = add_program_space (maybe_new_address_space ());
969 inf->aspace = inf->pspace->aspace;
970 inf->removable = 1;
971 set_current_program_space (inf->pspace);
972
973 resume_parent = inf->vfork_parent->pid;
974
975 /* Break the bonds. */
976 inf->vfork_parent->vfork_child = NULL;
977 }
978 else
979 {
980 struct cleanup *old_chain;
981 struct program_space *pspace;
982
983 /* If this is a vfork child exiting, then the pspace and
984 aspaces were shared with the parent. Since we're
985 reporting the process exit, we'll be mourning all that is
986 found in the address space, and switching to null_ptid,
987 preparing to start a new inferior. But, since we don't
988 want to clobber the parent's address/program spaces, we
989 go ahead and create a new one for this exiting
990 inferior. */
991
992 /* Switch to null_ptid, so that clone_program_space doesn't want
993 to read the selected frame of a dead process. */
994 old_chain = save_inferior_ptid ();
995 inferior_ptid = null_ptid;
996
997 /* This inferior is dead, so avoid giving the breakpoints
998 module the option to write through to it (cloning a
999 program space resets breakpoints). */
1000 inf->aspace = NULL;
1001 inf->pspace = NULL;
1002 pspace = add_program_space (maybe_new_address_space ());
1003 set_current_program_space (pspace);
1004 inf->removable = 1;
7dcd53a0 1005 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1006 clone_program_space (pspace, inf->vfork_parent->pspace);
1007 inf->pspace = pspace;
1008 inf->aspace = pspace->aspace;
1009
1010 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1011 inferior. */
6c95b8df
PA
1012 do_cleanups (old_chain);
1013
1014 resume_parent = inf->vfork_parent->pid;
1015 /* Break the bonds. */
1016 inf->vfork_parent->vfork_child = NULL;
1017 }
1018
1019 inf->vfork_parent = NULL;
1020
1021 gdb_assert (current_program_space == inf->pspace);
1022
1023 if (non_stop && resume_parent != -1)
1024 {
1025 /* If the user wanted the parent to be running, let it go
1026 free now. */
1027 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1028
1029 if (debug_infrun)
3e43a32a
MS
1030 fprintf_unfiltered (gdb_stdlog,
1031 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1032 resume_parent);
1033
1034 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1035
1036 do_cleanups (old_chain);
1037 }
1038 }
1039}
1040
eb6c553b 1041/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1042
1043static const char follow_exec_mode_new[] = "new";
1044static const char follow_exec_mode_same[] = "same";
40478521 1045static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1046{
1047 follow_exec_mode_new,
1048 follow_exec_mode_same,
1049 NULL,
1050};
1051
1052static const char *follow_exec_mode_string = follow_exec_mode_same;
1053static void
1054show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1055 struct cmd_list_element *c, const char *value)
1056{
1057 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1058}
1059
1777feb0 1060/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1061
c906108c 1062static void
3a3e9ee3 1063follow_exec (ptid_t pid, char *execd_pathname)
c906108c 1064{
4e1c45ea 1065 struct thread_info *th = inferior_thread ();
6c95b8df 1066 struct inferior *inf = current_inferior ();
7a292a7a 1067
c906108c
SS
1068 /* This is an exec event that we actually wish to pay attention to.
1069 Refresh our symbol table to the newly exec'd program, remove any
1070 momentary bp's, etc.
1071
1072 If there are breakpoints, they aren't really inserted now,
1073 since the exec() transformed our inferior into a fresh set
1074 of instructions.
1075
1076 We want to preserve symbolic breakpoints on the list, since
1077 we have hopes that they can be reset after the new a.out's
1078 symbol table is read.
1079
1080 However, any "raw" breakpoints must be removed from the list
1081 (e.g., the solib bp's), since their address is probably invalid
1082 now.
1083
1084 And, we DON'T want to call delete_breakpoints() here, since
1085 that may write the bp's "shadow contents" (the instruction
1086 value that was overwritten witha TRAP instruction). Since
1777feb0 1087 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1088
1089 mark_breakpoints_out ();
1090
c906108c
SS
1091 update_breakpoints_after_exec ();
1092
1093 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 1094 statement through an exec(). */
8358c15c 1095 th->control.step_resume_breakpoint = NULL;
186c406b 1096 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1097 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1098 th->control.step_range_start = 0;
1099 th->control.step_range_end = 0;
c906108c 1100
a75724bc
PA
1101 /* The target reports the exec event to the main thread, even if
1102 some other thread does the exec, and even if the main thread was
1103 already stopped --- if debugging in non-stop mode, it's possible
1104 the user had the main thread held stopped in the previous image
1105 --- release it now. This is the same behavior as step-over-exec
1106 with scheduler-locking on in all-stop mode. */
1107 th->stop_requested = 0;
1108
1777feb0 1109 /* What is this a.out's name? */
6c95b8df
PA
1110 printf_unfiltered (_("%s is executing new program: %s\n"),
1111 target_pid_to_str (inferior_ptid),
1112 execd_pathname);
c906108c
SS
1113
1114 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1115 inferior has essentially been killed & reborn. */
7a292a7a 1116
c906108c 1117 gdb_flush (gdb_stdout);
6ca15a4b
PA
1118
1119 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1120
1121 if (gdb_sysroot && *gdb_sysroot)
1122 {
1123 char *name = alloca (strlen (gdb_sysroot)
1124 + strlen (execd_pathname)
1125 + 1);
abbb1732 1126
e85a822c
DJ
1127 strcpy (name, gdb_sysroot);
1128 strcat (name, execd_pathname);
1129 execd_pathname = name;
1130 }
c906108c 1131
cce9b6bf
PA
1132 /* Reset the shared library package. This ensures that we get a
1133 shlib event when the child reaches "_start", at which point the
1134 dld will have had a chance to initialize the child. */
1135 /* Also, loading a symbol file below may trigger symbol lookups, and
1136 we don't want those to be satisfied by the libraries of the
1137 previous incarnation of this process. */
1138 no_shared_libraries (NULL, 0);
1139
6c95b8df
PA
1140 if (follow_exec_mode_string == follow_exec_mode_new)
1141 {
1142 struct program_space *pspace;
6c95b8df
PA
1143
1144 /* The user wants to keep the old inferior and program spaces
1145 around. Create a new fresh one, and switch to it. */
1146
1147 inf = add_inferior (current_inferior ()->pid);
1148 pspace = add_program_space (maybe_new_address_space ());
1149 inf->pspace = pspace;
1150 inf->aspace = pspace->aspace;
1151
1152 exit_inferior_num_silent (current_inferior ()->num);
1153
1154 set_current_inferior (inf);
1155 set_current_program_space (pspace);
1156 }
9107fc8d
PA
1157 else
1158 {
1159 /* The old description may no longer be fit for the new image.
1160 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1161 old description; we'll read a new one below. No need to do
1162 this on "follow-exec-mode new", as the old inferior stays
1163 around (its description is later cleared/refetched on
1164 restart). */
1165 target_clear_description ();
1166 }
6c95b8df
PA
1167
1168 gdb_assert (current_program_space == inf->pspace);
1169
1777feb0 1170 /* That a.out is now the one to use. */
6c95b8df
PA
1171 exec_file_attach (execd_pathname, 0);
1172
c1e56572
JK
1173 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1174 (Position Independent Executable) main symbol file will get applied by
1175 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1176 the breakpoints with the zero displacement. */
1177
7dcd53a0
TT
1178 symbol_file_add (execd_pathname,
1179 (inf->symfile_flags
1180 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1181 NULL, 0);
1182
7dcd53a0
TT
1183 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1184 set_initial_language ();
c906108c 1185
9107fc8d
PA
1186 /* If the target can specify a description, read it. Must do this
1187 after flipping to the new executable (because the target supplied
1188 description must be compatible with the executable's
1189 architecture, and the old executable may e.g., be 32-bit, while
1190 the new one 64-bit), and before anything involving memory or
1191 registers. */
1192 target_find_description ();
1193
268a4a75 1194 solib_create_inferior_hook (0);
c906108c 1195
4efc6507
DE
1196 jit_inferior_created_hook ();
1197
c1e56572
JK
1198 breakpoint_re_set ();
1199
c906108c
SS
1200 /* Reinsert all breakpoints. (Those which were symbolic have
1201 been reset to the proper address in the new a.out, thanks
1777feb0 1202 to symbol_file_command...). */
c906108c
SS
1203 insert_breakpoints ();
1204
1205 /* The next resume of this inferior should bring it to the shlib
1206 startup breakpoints. (If the user had also set bp's on
1207 "main" from the old (parent) process, then they'll auto-
1777feb0 1208 matically get reset there in the new process.). */
c906108c
SS
1209}
1210
963f9c80 1211/* Info about an instruction that is being stepped over. */
31e77af2
PA
1212
1213struct step_over_info
1214{
963f9c80
PA
1215 /* If we're stepping past a breakpoint, this is the address space
1216 and address of the instruction the breakpoint is set at. We'll
1217 skip inserting all breakpoints here. Valid iff ASPACE is
1218 non-NULL. */
31e77af2 1219 struct address_space *aspace;
31e77af2 1220 CORE_ADDR address;
963f9c80
PA
1221
1222 /* The instruction being stepped over triggers a nonsteppable
1223 watchpoint. If true, we'll skip inserting watchpoints. */
1224 int nonsteppable_watchpoint_p;
31e77af2
PA
1225};
1226
1227/* The step-over info of the location that is being stepped over.
1228
1229 Note that with async/breakpoint always-inserted mode, a user might
1230 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1231 being stepped over. As setting a new breakpoint inserts all
1232 breakpoints, we need to make sure the breakpoint being stepped over
1233 isn't inserted then. We do that by only clearing the step-over
1234 info when the step-over is actually finished (or aborted).
1235
1236 Presently GDB can only step over one breakpoint at any given time.
1237 Given threads that can't run code in the same address space as the
1238 breakpoint's can't really miss the breakpoint, GDB could be taught
1239 to step-over at most one breakpoint per address space (so this info
1240 could move to the address space object if/when GDB is extended).
1241 The set of breakpoints being stepped over will normally be much
1242 smaller than the set of all breakpoints, so a flag in the
1243 breakpoint location structure would be wasteful. A separate list
1244 also saves complexity and run-time, as otherwise we'd have to go
1245 through all breakpoint locations clearing their flag whenever we
1246 start a new sequence. Similar considerations weigh against storing
1247 this info in the thread object. Plus, not all step overs actually
1248 have breakpoint locations -- e.g., stepping past a single-step
1249 breakpoint, or stepping to complete a non-continuable
1250 watchpoint. */
1251static struct step_over_info step_over_info;
1252
1253/* Record the address of the breakpoint/instruction we're currently
1254 stepping over. */
1255
1256static void
963f9c80
PA
1257set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1258 int nonsteppable_watchpoint_p)
31e77af2
PA
1259{
1260 step_over_info.aspace = aspace;
1261 step_over_info.address = address;
963f9c80 1262 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1263}
1264
1265/* Called when we're not longer stepping over a breakpoint / an
1266 instruction, so all breakpoints are free to be (re)inserted. */
1267
1268static void
1269clear_step_over_info (void)
1270{
1271 step_over_info.aspace = NULL;
1272 step_over_info.address = 0;
963f9c80 1273 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1274}
1275
7f89fd65 1276/* See infrun.h. */
31e77af2
PA
1277
1278int
1279stepping_past_instruction_at (struct address_space *aspace,
1280 CORE_ADDR address)
1281{
1282 return (step_over_info.aspace != NULL
1283 && breakpoint_address_match (aspace, address,
1284 step_over_info.aspace,
1285 step_over_info.address));
1286}
1287
963f9c80
PA
1288/* See infrun.h. */
1289
1290int
1291stepping_past_nonsteppable_watchpoint (void)
1292{
1293 return step_over_info.nonsteppable_watchpoint_p;
1294}
1295
6cc83d2a
PA
1296/* Returns true if step-over info is valid. */
1297
1298static int
1299step_over_info_valid_p (void)
1300{
963f9c80
PA
1301 return (step_over_info.aspace != NULL
1302 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1303}
1304
c906108c 1305\f
237fc4c9
PA
1306/* Displaced stepping. */
1307
1308/* In non-stop debugging mode, we must take special care to manage
1309 breakpoints properly; in particular, the traditional strategy for
1310 stepping a thread past a breakpoint it has hit is unsuitable.
1311 'Displaced stepping' is a tactic for stepping one thread past a
1312 breakpoint it has hit while ensuring that other threads running
1313 concurrently will hit the breakpoint as they should.
1314
1315 The traditional way to step a thread T off a breakpoint in a
1316 multi-threaded program in all-stop mode is as follows:
1317
1318 a0) Initially, all threads are stopped, and breakpoints are not
1319 inserted.
1320 a1) We single-step T, leaving breakpoints uninserted.
1321 a2) We insert breakpoints, and resume all threads.
1322
1323 In non-stop debugging, however, this strategy is unsuitable: we
1324 don't want to have to stop all threads in the system in order to
1325 continue or step T past a breakpoint. Instead, we use displaced
1326 stepping:
1327
1328 n0) Initially, T is stopped, other threads are running, and
1329 breakpoints are inserted.
1330 n1) We copy the instruction "under" the breakpoint to a separate
1331 location, outside the main code stream, making any adjustments
1332 to the instruction, register, and memory state as directed by
1333 T's architecture.
1334 n2) We single-step T over the instruction at its new location.
1335 n3) We adjust the resulting register and memory state as directed
1336 by T's architecture. This includes resetting T's PC to point
1337 back into the main instruction stream.
1338 n4) We resume T.
1339
1340 This approach depends on the following gdbarch methods:
1341
1342 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1343 indicate where to copy the instruction, and how much space must
1344 be reserved there. We use these in step n1.
1345
1346 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1347 address, and makes any necessary adjustments to the instruction,
1348 register contents, and memory. We use this in step n1.
1349
1350 - gdbarch_displaced_step_fixup adjusts registers and memory after
1351 we have successfuly single-stepped the instruction, to yield the
1352 same effect the instruction would have had if we had executed it
1353 at its original address. We use this in step n3.
1354
1355 - gdbarch_displaced_step_free_closure provides cleanup.
1356
1357 The gdbarch_displaced_step_copy_insn and
1358 gdbarch_displaced_step_fixup functions must be written so that
1359 copying an instruction with gdbarch_displaced_step_copy_insn,
1360 single-stepping across the copied instruction, and then applying
1361 gdbarch_displaced_insn_fixup should have the same effects on the
1362 thread's memory and registers as stepping the instruction in place
1363 would have. Exactly which responsibilities fall to the copy and
1364 which fall to the fixup is up to the author of those functions.
1365
1366 See the comments in gdbarch.sh for details.
1367
1368 Note that displaced stepping and software single-step cannot
1369 currently be used in combination, although with some care I think
1370 they could be made to. Software single-step works by placing
1371 breakpoints on all possible subsequent instructions; if the
1372 displaced instruction is a PC-relative jump, those breakpoints
1373 could fall in very strange places --- on pages that aren't
1374 executable, or at addresses that are not proper instruction
1375 boundaries. (We do generally let other threads run while we wait
1376 to hit the software single-step breakpoint, and they might
1377 encounter such a corrupted instruction.) One way to work around
1378 this would be to have gdbarch_displaced_step_copy_insn fully
1379 simulate the effect of PC-relative instructions (and return NULL)
1380 on architectures that use software single-stepping.
1381
1382 In non-stop mode, we can have independent and simultaneous step
1383 requests, so more than one thread may need to simultaneously step
1384 over a breakpoint. The current implementation assumes there is
1385 only one scratch space per process. In this case, we have to
1386 serialize access to the scratch space. If thread A wants to step
1387 over a breakpoint, but we are currently waiting for some other
1388 thread to complete a displaced step, we leave thread A stopped and
1389 place it in the displaced_step_request_queue. Whenever a displaced
1390 step finishes, we pick the next thread in the queue and start a new
1391 displaced step operation on it. See displaced_step_prepare and
1392 displaced_step_fixup for details. */
1393
237fc4c9
PA
1394struct displaced_step_request
1395{
1396 ptid_t ptid;
1397 struct displaced_step_request *next;
1398};
1399
fc1cf338
PA
1400/* Per-inferior displaced stepping state. */
1401struct displaced_step_inferior_state
1402{
1403 /* Pointer to next in linked list. */
1404 struct displaced_step_inferior_state *next;
1405
1406 /* The process this displaced step state refers to. */
1407 int pid;
1408
1409 /* A queue of pending displaced stepping requests. One entry per
1410 thread that needs to do a displaced step. */
1411 struct displaced_step_request *step_request_queue;
1412
1413 /* If this is not null_ptid, this is the thread carrying out a
1414 displaced single-step in process PID. This thread's state will
1415 require fixing up once it has completed its step. */
1416 ptid_t step_ptid;
1417
1418 /* The architecture the thread had when we stepped it. */
1419 struct gdbarch *step_gdbarch;
1420
1421 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1422 for post-step cleanup. */
1423 struct displaced_step_closure *step_closure;
1424
1425 /* The address of the original instruction, and the copy we
1426 made. */
1427 CORE_ADDR step_original, step_copy;
1428
1429 /* Saved contents of copy area. */
1430 gdb_byte *step_saved_copy;
1431};
1432
1433/* The list of states of processes involved in displaced stepping
1434 presently. */
1435static struct displaced_step_inferior_state *displaced_step_inferior_states;
1436
1437/* Get the displaced stepping state of process PID. */
1438
1439static struct displaced_step_inferior_state *
1440get_displaced_stepping_state (int pid)
1441{
1442 struct displaced_step_inferior_state *state;
1443
1444 for (state = displaced_step_inferior_states;
1445 state != NULL;
1446 state = state->next)
1447 if (state->pid == pid)
1448 return state;
1449
1450 return NULL;
1451}
1452
1453/* Add a new displaced stepping state for process PID to the displaced
1454 stepping state list, or return a pointer to an already existing
1455 entry, if it already exists. Never returns NULL. */
1456
1457static struct displaced_step_inferior_state *
1458add_displaced_stepping_state (int pid)
1459{
1460 struct displaced_step_inferior_state *state;
1461
1462 for (state = displaced_step_inferior_states;
1463 state != NULL;
1464 state = state->next)
1465 if (state->pid == pid)
1466 return state;
237fc4c9 1467
fc1cf338
PA
1468 state = xcalloc (1, sizeof (*state));
1469 state->pid = pid;
1470 state->next = displaced_step_inferior_states;
1471 displaced_step_inferior_states = state;
237fc4c9 1472
fc1cf338
PA
1473 return state;
1474}
1475
a42244db
YQ
1476/* If inferior is in displaced stepping, and ADDR equals to starting address
1477 of copy area, return corresponding displaced_step_closure. Otherwise,
1478 return NULL. */
1479
1480struct displaced_step_closure*
1481get_displaced_step_closure_by_addr (CORE_ADDR addr)
1482{
1483 struct displaced_step_inferior_state *displaced
1484 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1485
1486 /* If checking the mode of displaced instruction in copy area. */
1487 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1488 && (displaced->step_copy == addr))
1489 return displaced->step_closure;
1490
1491 return NULL;
1492}
1493
fc1cf338 1494/* Remove the displaced stepping state of process PID. */
237fc4c9 1495
fc1cf338
PA
1496static void
1497remove_displaced_stepping_state (int pid)
1498{
1499 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1500
fc1cf338
PA
1501 gdb_assert (pid != 0);
1502
1503 it = displaced_step_inferior_states;
1504 prev_next_p = &displaced_step_inferior_states;
1505 while (it)
1506 {
1507 if (it->pid == pid)
1508 {
1509 *prev_next_p = it->next;
1510 xfree (it);
1511 return;
1512 }
1513
1514 prev_next_p = &it->next;
1515 it = *prev_next_p;
1516 }
1517}
1518
1519static void
1520infrun_inferior_exit (struct inferior *inf)
1521{
1522 remove_displaced_stepping_state (inf->pid);
1523}
237fc4c9 1524
fff08868
HZ
1525/* If ON, and the architecture supports it, GDB will use displaced
1526 stepping to step over breakpoints. If OFF, or if the architecture
1527 doesn't support it, GDB will instead use the traditional
1528 hold-and-step approach. If AUTO (which is the default), GDB will
1529 decide which technique to use to step over breakpoints depending on
1530 which of all-stop or non-stop mode is active --- displaced stepping
1531 in non-stop mode; hold-and-step in all-stop mode. */
1532
72d0e2c5 1533static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1534
237fc4c9
PA
1535static void
1536show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1537 struct cmd_list_element *c,
1538 const char *value)
1539{
72d0e2c5 1540 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1541 fprintf_filtered (file,
1542 _("Debugger's willingness to use displaced stepping "
1543 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1544 value, non_stop ? "on" : "off");
1545 else
3e43a32a
MS
1546 fprintf_filtered (file,
1547 _("Debugger's willingness to use displaced stepping "
1548 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1549}
1550
fff08868
HZ
1551/* Return non-zero if displaced stepping can/should be used to step
1552 over breakpoints. */
1553
237fc4c9
PA
1554static int
1555use_displaced_stepping (struct gdbarch *gdbarch)
1556{
72d0e2c5
YQ
1557 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1558 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1559 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1560 && find_record_target () == NULL);
237fc4c9
PA
1561}
1562
1563/* Clean out any stray displaced stepping state. */
1564static void
fc1cf338 1565displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1566{
1567 /* Indicate that there is no cleanup pending. */
fc1cf338 1568 displaced->step_ptid = null_ptid;
237fc4c9 1569
fc1cf338 1570 if (displaced->step_closure)
237fc4c9 1571 {
fc1cf338
PA
1572 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1573 displaced->step_closure);
1574 displaced->step_closure = NULL;
237fc4c9
PA
1575 }
1576}
1577
1578static void
fc1cf338 1579displaced_step_clear_cleanup (void *arg)
237fc4c9 1580{
fc1cf338
PA
1581 struct displaced_step_inferior_state *state = arg;
1582
1583 displaced_step_clear (state);
237fc4c9
PA
1584}
1585
1586/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1587void
1588displaced_step_dump_bytes (struct ui_file *file,
1589 const gdb_byte *buf,
1590 size_t len)
1591{
1592 int i;
1593
1594 for (i = 0; i < len; i++)
1595 fprintf_unfiltered (file, "%02x ", buf[i]);
1596 fputs_unfiltered ("\n", file);
1597}
1598
1599/* Prepare to single-step, using displaced stepping.
1600
1601 Note that we cannot use displaced stepping when we have a signal to
1602 deliver. If we have a signal to deliver and an instruction to step
1603 over, then after the step, there will be no indication from the
1604 target whether the thread entered a signal handler or ignored the
1605 signal and stepped over the instruction successfully --- both cases
1606 result in a simple SIGTRAP. In the first case we mustn't do a
1607 fixup, and in the second case we must --- but we can't tell which.
1608 Comments in the code for 'random signals' in handle_inferior_event
1609 explain how we handle this case instead.
1610
1611 Returns 1 if preparing was successful -- this thread is going to be
1612 stepped now; or 0 if displaced stepping this thread got queued. */
1613static int
1614displaced_step_prepare (ptid_t ptid)
1615{
ad53cd71 1616 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1617 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1618 struct regcache *regcache = get_thread_regcache (ptid);
1619 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1620 CORE_ADDR original, copy;
1621 ULONGEST len;
1622 struct displaced_step_closure *closure;
fc1cf338 1623 struct displaced_step_inferior_state *displaced;
9e529e1d 1624 int status;
237fc4c9
PA
1625
1626 /* We should never reach this function if the architecture does not
1627 support displaced stepping. */
1628 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1629
c1e36e3e
PA
1630 /* Disable range stepping while executing in the scratch pad. We
1631 want a single-step even if executing the displaced instruction in
1632 the scratch buffer lands within the stepping range (e.g., a
1633 jump/branch). */
1634 tp->control.may_range_step = 0;
1635
fc1cf338
PA
1636 /* We have to displaced step one thread at a time, as we only have
1637 access to a single scratch space per inferior. */
237fc4c9 1638
fc1cf338
PA
1639 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1640
1641 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1642 {
1643 /* Already waiting for a displaced step to finish. Defer this
1644 request and place in queue. */
1645 struct displaced_step_request *req, *new_req;
1646
1647 if (debug_displaced)
1648 fprintf_unfiltered (gdb_stdlog,
1649 "displaced: defering step of %s\n",
1650 target_pid_to_str (ptid));
1651
1652 new_req = xmalloc (sizeof (*new_req));
1653 new_req->ptid = ptid;
1654 new_req->next = NULL;
1655
fc1cf338 1656 if (displaced->step_request_queue)
237fc4c9 1657 {
fc1cf338 1658 for (req = displaced->step_request_queue;
237fc4c9
PA
1659 req && req->next;
1660 req = req->next)
1661 ;
1662 req->next = new_req;
1663 }
1664 else
fc1cf338 1665 displaced->step_request_queue = new_req;
237fc4c9
PA
1666
1667 return 0;
1668 }
1669 else
1670 {
1671 if (debug_displaced)
1672 fprintf_unfiltered (gdb_stdlog,
1673 "displaced: stepping %s now\n",
1674 target_pid_to_str (ptid));
1675 }
1676
fc1cf338 1677 displaced_step_clear (displaced);
237fc4c9 1678
ad53cd71
PA
1679 old_cleanups = save_inferior_ptid ();
1680 inferior_ptid = ptid;
1681
515630c5 1682 original = regcache_read_pc (regcache);
237fc4c9
PA
1683
1684 copy = gdbarch_displaced_step_location (gdbarch);
1685 len = gdbarch_max_insn_length (gdbarch);
1686
1687 /* Save the original contents of the copy area. */
fc1cf338 1688 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1689 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1690 &displaced->step_saved_copy);
9e529e1d
JK
1691 status = target_read_memory (copy, displaced->step_saved_copy, len);
1692 if (status != 0)
1693 throw_error (MEMORY_ERROR,
1694 _("Error accessing memory address %s (%s) for "
1695 "displaced-stepping scratch space."),
1696 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1697 if (debug_displaced)
1698 {
5af949e3
UW
1699 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1700 paddress (gdbarch, copy));
fc1cf338
PA
1701 displaced_step_dump_bytes (gdb_stdlog,
1702 displaced->step_saved_copy,
1703 len);
237fc4c9
PA
1704 };
1705
1706 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1707 original, copy, regcache);
237fc4c9
PA
1708
1709 /* We don't support the fully-simulated case at present. */
1710 gdb_assert (closure);
1711
9f5a595d
UW
1712 /* Save the information we need to fix things up if the step
1713 succeeds. */
fc1cf338
PA
1714 displaced->step_ptid = ptid;
1715 displaced->step_gdbarch = gdbarch;
1716 displaced->step_closure = closure;
1717 displaced->step_original = original;
1718 displaced->step_copy = copy;
9f5a595d 1719
fc1cf338 1720 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1721
1722 /* Resume execution at the copy. */
515630c5 1723 regcache_write_pc (regcache, copy);
237fc4c9 1724
ad53cd71
PA
1725 discard_cleanups (ignore_cleanups);
1726
1727 do_cleanups (old_cleanups);
237fc4c9
PA
1728
1729 if (debug_displaced)
5af949e3
UW
1730 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1731 paddress (gdbarch, copy));
237fc4c9 1732
237fc4c9
PA
1733 return 1;
1734}
1735
237fc4c9 1736static void
3e43a32a
MS
1737write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1738 const gdb_byte *myaddr, int len)
237fc4c9
PA
1739{
1740 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1741
237fc4c9
PA
1742 inferior_ptid = ptid;
1743 write_memory (memaddr, myaddr, len);
1744 do_cleanups (ptid_cleanup);
1745}
1746
e2d96639
YQ
1747/* Restore the contents of the copy area for thread PTID. */
1748
1749static void
1750displaced_step_restore (struct displaced_step_inferior_state *displaced,
1751 ptid_t ptid)
1752{
1753 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1754
1755 write_memory_ptid (ptid, displaced->step_copy,
1756 displaced->step_saved_copy, len);
1757 if (debug_displaced)
1758 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1759 target_pid_to_str (ptid),
1760 paddress (displaced->step_gdbarch,
1761 displaced->step_copy));
1762}
1763
237fc4c9 1764static void
2ea28649 1765displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1766{
1767 struct cleanup *old_cleanups;
fc1cf338
PA
1768 struct displaced_step_inferior_state *displaced
1769 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1770
1771 /* Was any thread of this process doing a displaced step? */
1772 if (displaced == NULL)
1773 return;
237fc4c9
PA
1774
1775 /* Was this event for the pid we displaced? */
fc1cf338
PA
1776 if (ptid_equal (displaced->step_ptid, null_ptid)
1777 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1778 return;
1779
fc1cf338 1780 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1781
e2d96639 1782 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1783
1784 /* Did the instruction complete successfully? */
a493e3e2 1785 if (signal == GDB_SIGNAL_TRAP)
237fc4c9
PA
1786 {
1787 /* Fix up the resulting state. */
fc1cf338
PA
1788 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1789 displaced->step_closure,
1790 displaced->step_original,
1791 displaced->step_copy,
1792 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1793 }
1794 else
1795 {
1796 /* Since the instruction didn't complete, all we can do is
1797 relocate the PC. */
515630c5
UW
1798 struct regcache *regcache = get_thread_regcache (event_ptid);
1799 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1800
fc1cf338 1801 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1802 regcache_write_pc (regcache, pc);
237fc4c9
PA
1803 }
1804
1805 do_cleanups (old_cleanups);
1806
fc1cf338 1807 displaced->step_ptid = null_ptid;
1c5cfe86 1808
237fc4c9 1809 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1810 one now. Leave the state object around, since we're likely to
1811 need it again soon. */
1812 while (displaced->step_request_queue)
237fc4c9
PA
1813 {
1814 struct displaced_step_request *head;
1815 ptid_t ptid;
5af949e3 1816 struct regcache *regcache;
929dfd4f 1817 struct gdbarch *gdbarch;
1c5cfe86 1818 CORE_ADDR actual_pc;
6c95b8df 1819 struct address_space *aspace;
237fc4c9 1820
fc1cf338 1821 head = displaced->step_request_queue;
237fc4c9 1822 ptid = head->ptid;
fc1cf338 1823 displaced->step_request_queue = head->next;
237fc4c9
PA
1824 xfree (head);
1825
ad53cd71
PA
1826 context_switch (ptid);
1827
5af949e3
UW
1828 regcache = get_thread_regcache (ptid);
1829 actual_pc = regcache_read_pc (regcache);
6c95b8df 1830 aspace = get_regcache_aspace (regcache);
1c5cfe86 1831
6c95b8df 1832 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1833 {
1c5cfe86
PA
1834 if (debug_displaced)
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: stepping queued %s now\n",
1837 target_pid_to_str (ptid));
1838
1839 displaced_step_prepare (ptid);
1840
929dfd4f
JB
1841 gdbarch = get_regcache_arch (regcache);
1842
1c5cfe86
PA
1843 if (debug_displaced)
1844 {
929dfd4f 1845 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1846 gdb_byte buf[4];
1847
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1849 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1850 read_memory (actual_pc, buf, sizeof (buf));
1851 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1852 }
1853
fc1cf338
PA
1854 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1855 displaced->step_closure))
a493e3e2 1856 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1857 else
a493e3e2 1858 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1859
1860 /* Done, we're stepping a thread. */
1861 break;
ad53cd71 1862 }
1c5cfe86
PA
1863 else
1864 {
1865 int step;
1866 struct thread_info *tp = inferior_thread ();
1867
1868 /* The breakpoint we were sitting under has since been
1869 removed. */
16c381f0 1870 tp->control.trap_expected = 0;
1c5cfe86
PA
1871
1872 /* Go back to what we were trying to do. */
1873 step = currently_stepping (tp);
ad53cd71 1874
1c5cfe86 1875 if (debug_displaced)
3e43a32a 1876 fprintf_unfiltered (gdb_stdlog,
27d2932e 1877 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1878 target_pid_to_str (tp->ptid), step);
1879
a493e3e2
PA
1880 target_resume (ptid, step, GDB_SIGNAL_0);
1881 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1882
1883 /* This request was discarded. See if there's any other
1884 thread waiting for its turn. */
1885 }
237fc4c9
PA
1886 }
1887}
1888
5231c1fd
PA
1889/* Update global variables holding ptids to hold NEW_PTID if they were
1890 holding OLD_PTID. */
1891static void
1892infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1893{
1894 struct displaced_step_request *it;
fc1cf338 1895 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1896
1897 if (ptid_equal (inferior_ptid, old_ptid))
1898 inferior_ptid = new_ptid;
1899
fc1cf338
PA
1900 for (displaced = displaced_step_inferior_states;
1901 displaced;
1902 displaced = displaced->next)
1903 {
1904 if (ptid_equal (displaced->step_ptid, old_ptid))
1905 displaced->step_ptid = new_ptid;
1906
1907 for (it = displaced->step_request_queue; it; it = it->next)
1908 if (ptid_equal (it->ptid, old_ptid))
1909 it->ptid = new_ptid;
1910 }
5231c1fd
PA
1911}
1912
237fc4c9
PA
1913\f
1914/* Resuming. */
c906108c
SS
1915
1916/* Things to clean up if we QUIT out of resume (). */
c906108c 1917static void
74b7792f 1918resume_cleanups (void *ignore)
c906108c 1919{
34b7e8a6
PA
1920 if (!ptid_equal (inferior_ptid, null_ptid))
1921 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1922
c906108c
SS
1923 normal_stop ();
1924}
1925
53904c9e
AC
1926static const char schedlock_off[] = "off";
1927static const char schedlock_on[] = "on";
1928static const char schedlock_step[] = "step";
40478521 1929static const char *const scheduler_enums[] = {
ef346e04
AC
1930 schedlock_off,
1931 schedlock_on,
1932 schedlock_step,
1933 NULL
1934};
920d2a44
AC
1935static const char *scheduler_mode = schedlock_off;
1936static void
1937show_scheduler_mode (struct ui_file *file, int from_tty,
1938 struct cmd_list_element *c, const char *value)
1939{
3e43a32a
MS
1940 fprintf_filtered (file,
1941 _("Mode for locking scheduler "
1942 "during execution is \"%s\".\n"),
920d2a44
AC
1943 value);
1944}
c906108c
SS
1945
1946static void
96baa820 1947set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1948{
eefe576e
AC
1949 if (!target_can_lock_scheduler)
1950 {
1951 scheduler_mode = schedlock_off;
1952 error (_("Target '%s' cannot support this command."), target_shortname);
1953 }
c906108c
SS
1954}
1955
d4db2f36
PA
1956/* True if execution commands resume all threads of all processes by
1957 default; otherwise, resume only threads of the current inferior
1958 process. */
1959int sched_multi = 0;
1960
2facfe5c
DD
1961/* Try to setup for software single stepping over the specified location.
1962 Return 1 if target_resume() should use hardware single step.
1963
1964 GDBARCH the current gdbarch.
1965 PC the location to step over. */
1966
1967static int
1968maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1969{
1970 int hw_step = 1;
1971
f02253f1
HZ
1972 if (execution_direction == EXEC_FORWARD
1973 && gdbarch_software_single_step_p (gdbarch)
99e40580 1974 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1975 {
99e40580 1976 hw_step = 0;
2facfe5c
DD
1977 }
1978 return hw_step;
1979}
c906108c 1980
09cee04b
PA
1981ptid_t
1982user_visible_resume_ptid (int step)
1983{
1984 /* By default, resume all threads of all processes. */
1985 ptid_t resume_ptid = RESUME_ALL;
1986
1987 /* Maybe resume only all threads of the current process. */
1988 if (!sched_multi && target_supports_multi_process ())
1989 {
1990 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1991 }
1992
1993 /* Maybe resume a single thread after all. */
1994 if (non_stop)
1995 {
1996 /* With non-stop mode on, threads are always handled
1997 individually. */
1998 resume_ptid = inferior_ptid;
1999 }
2000 else if ((scheduler_mode == schedlock_on)
03d46957 2001 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2002 {
2003 /* User-settable 'scheduler' mode requires solo thread resume. */
2004 resume_ptid = inferior_ptid;
2005 }
2006
70509625
PA
2007 /* We may actually resume fewer threads at first, e.g., if a thread
2008 is stopped at a breakpoint that needs stepping-off, but that
2009 should not be visible to the user/frontend, and neither should
2010 the frontend/user be allowed to proceed any of the threads that
2011 happen to be stopped for internal run control handling, if a
2012 previous command wanted them resumed. */
09cee04b
PA
2013 return resume_ptid;
2014}
2015
c906108c
SS
2016/* Resume the inferior, but allow a QUIT. This is useful if the user
2017 wants to interrupt some lengthy single-stepping operation
2018 (for child processes, the SIGINT goes to the inferior, and so
2019 we get a SIGINT random_signal, but for remote debugging and perhaps
2020 other targets, that's not true).
2021
2022 STEP nonzero if we should step (zero to continue instead).
2023 SIG is the signal to give the inferior (zero for none). */
2024void
2ea28649 2025resume (int step, enum gdb_signal sig)
c906108c 2026{
74b7792f 2027 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2028 struct regcache *regcache = get_current_regcache ();
2029 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2030 struct thread_info *tp = inferior_thread ();
515630c5 2031 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2032 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2033 ptid_t resume_ptid;
a09dd441
PA
2034 /* From here on, this represents the caller's step vs continue
2035 request, while STEP represents what we'll actually request the
2036 target to do. STEP can decay from a step to a continue, if e.g.,
2037 we need to implement single-stepping with breakpoints (software
2038 single-step). When deciding whether "set scheduler-locking step"
2039 applies, it's the callers intention that counts. */
2040 const int entry_step = step;
c7e8a53c 2041
af48d08f
PA
2042 tp->stepped_breakpoint = 0;
2043
c906108c
SS
2044 QUIT;
2045
74609e71
YQ
2046 if (current_inferior ()->waiting_for_vfork_done)
2047 {
48f9886d
PA
2048 /* Don't try to single-step a vfork parent that is waiting for
2049 the child to get out of the shared memory region (by exec'ing
2050 or exiting). This is particularly important on software
2051 single-step archs, as the child process would trip on the
2052 software single step breakpoint inserted for the parent
2053 process. Since the parent will not actually execute any
2054 instruction until the child is out of the shared region (such
2055 are vfork's semantics), it is safe to simply continue it.
2056 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2057 the parent, and tell it to `keep_going', which automatically
2058 re-sets it stepping. */
74609e71
YQ
2059 if (debug_infrun)
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: resume : clear step\n");
a09dd441 2062 step = 0;
74609e71
YQ
2063 }
2064
527159b7 2065 if (debug_infrun)
237fc4c9 2066 fprintf_unfiltered (gdb_stdlog,
c9737c08 2067 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2068 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2069 step, gdb_signal_to_symbol_string (sig),
2070 tp->control.trap_expected,
0d9a9a5f
PA
2071 target_pid_to_str (inferior_ptid),
2072 paddress (gdbarch, pc));
c906108c 2073
c2c6d25f
JM
2074 /* Normally, by the time we reach `resume', the breakpoints are either
2075 removed or inserted, as appropriate. The exception is if we're sitting
2076 at a permanent breakpoint; we need to step over it, but permanent
2077 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2078 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2079 {
af48d08f
PA
2080 if (sig != GDB_SIGNAL_0)
2081 {
2082 /* We have a signal to pass to the inferior. The resume
2083 may, or may not take us to the signal handler. If this
2084 is a step, we'll need to stop in the signal handler, if
2085 there's one, (if the target supports stepping into
2086 handlers), or in the next mainline instruction, if
2087 there's no handler. If this is a continue, we need to be
2088 sure to run the handler with all breakpoints inserted.
2089 In all cases, set a breakpoint at the current address
2090 (where the handler returns to), and once that breakpoint
2091 is hit, resume skipping the permanent breakpoint. If
2092 that breakpoint isn't hit, then we've stepped into the
2093 signal handler (or hit some other event). We'll delete
2094 the step-resume breakpoint then. */
2095
2096 if (debug_infrun)
2097 fprintf_unfiltered (gdb_stdlog,
2098 "infrun: resume: skipping permanent breakpoint, "
2099 "deliver signal first\n");
2100
2101 clear_step_over_info ();
2102 tp->control.trap_expected = 0;
2103
2104 if (tp->control.step_resume_breakpoint == NULL)
2105 {
2106 /* Set a "high-priority" step-resume, as we don't want
2107 user breakpoints at PC to trigger (again) when this
2108 hits. */
2109 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2110 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2111
2112 tp->step_after_step_resume_breakpoint = step;
2113 }
2114
2115 insert_breakpoints ();
2116 }
2117 else
2118 {
2119 /* There's no signal to pass, we can go ahead and skip the
2120 permanent breakpoint manually. */
2121 if (debug_infrun)
2122 fprintf_unfiltered (gdb_stdlog,
2123 "infrun: resume: skipping permanent breakpoint\n");
2124 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2125 /* Update pc to reflect the new address from which we will
2126 execute instructions. */
2127 pc = regcache_read_pc (regcache);
2128
2129 if (step)
2130 {
2131 /* We've already advanced the PC, so the stepping part
2132 is done. Now we need to arrange for a trap to be
2133 reported to handle_inferior_event. Set a breakpoint
2134 at the current PC, and run to it. Don't update
2135 prev_pc, because if we end in
2136 switch_back_to_stepping, we want the "expected thread
2137 advanced also" branch to be taken. IOW, we don't
2138 want this thread to step further from PC
2139 (overstep). */
2140 insert_single_step_breakpoint (gdbarch, aspace, pc);
2141 insert_breakpoints ();
2142
2143 tp->suspend.stop_signal = GDB_SIGNAL_0;
2144 /* We're continuing with all breakpoints inserted. It's
2145 safe to let the target bypass signals. */
2146 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2147 /* ... and safe to let other threads run, according to
2148 schedlock. */
2149 resume_ptid = user_visible_resume_ptid (entry_step);
2150 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2151 discard_cleanups (old_cleanups);
2152 return;
2153 }
2154 }
6d350bb5 2155 }
c2c6d25f 2156
c1e36e3e
PA
2157 /* If we have a breakpoint to step over, make sure to do a single
2158 step only. Same if we have software watchpoints. */
2159 if (tp->control.trap_expected || bpstat_should_step ())
2160 tp->control.may_range_step = 0;
2161
237fc4c9
PA
2162 /* If enabled, step over breakpoints by executing a copy of the
2163 instruction at a different address.
2164
2165 We can't use displaced stepping when we have a signal to deliver;
2166 the comments for displaced_step_prepare explain why. The
2167 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2168 signals' explain what we do instead.
2169
2170 We can't use displaced stepping when we are waiting for vfork_done
2171 event, displaced stepping breaks the vfork child similarly as single
2172 step software breakpoint. */
515630c5 2173 if (use_displaced_stepping (gdbarch)
36728e82 2174 && tp->control.trap_expected
a493e3e2 2175 && sig == GDB_SIGNAL_0
74609e71 2176 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2177 {
fc1cf338
PA
2178 struct displaced_step_inferior_state *displaced;
2179
237fc4c9 2180 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2181 {
2182 /* Got placed in displaced stepping queue. Will be resumed
2183 later when all the currently queued displaced stepping
251bde03
PA
2184 requests finish. The thread is not executing at this
2185 point, and the call to set_executing will be made later.
2186 But we need to call set_running here, since from the
2187 user/frontend's point of view, threads were set running.
2188 Unless we're calling an inferior function, as in that
2189 case we pretend the inferior doesn't run at all. */
2190 if (!tp->control.in_infcall)
a09dd441 2191 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2192 discard_cleanups (old_cleanups);
2193 return;
2194 }
99e40580 2195
ca7781d2
LM
2196 /* Update pc to reflect the new address from which we will execute
2197 instructions due to displaced stepping. */
2198 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2199
fc1cf338 2200 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2201 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2202 displaced->step_closure);
237fc4c9
PA
2203 }
2204
2facfe5c 2205 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2206 else if (step)
2facfe5c 2207 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2208
30852783
UW
2209 /* Currently, our software single-step implementation leads to different
2210 results than hardware single-stepping in one situation: when stepping
2211 into delivering a signal which has an associated signal handler,
2212 hardware single-step will stop at the first instruction of the handler,
2213 while software single-step will simply skip execution of the handler.
2214
2215 For now, this difference in behavior is accepted since there is no
2216 easy way to actually implement single-stepping into a signal handler
2217 without kernel support.
2218
2219 However, there is one scenario where this difference leads to follow-on
2220 problems: if we're stepping off a breakpoint by removing all breakpoints
2221 and then single-stepping. In this case, the software single-step
2222 behavior means that even if there is a *breakpoint* in the signal
2223 handler, GDB still would not stop.
2224
2225 Fortunately, we can at least fix this particular issue. We detect
2226 here the case where we are about to deliver a signal while software
2227 single-stepping with breakpoints removed. In this situation, we
2228 revert the decisions to remove all breakpoints and insert single-
2229 step breakpoints, and instead we install a step-resume breakpoint
2230 at the current address, deliver the signal without stepping, and
2231 once we arrive back at the step-resume breakpoint, actually step
2232 over the breakpoint we originally wanted to step over. */
34b7e8a6 2233 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2234 && sig != GDB_SIGNAL_0
2235 && step_over_info_valid_p ())
30852783
UW
2236 {
2237 /* If we have nested signals or a pending signal is delivered
2238 immediately after a handler returns, might might already have
2239 a step-resume breakpoint set on the earlier handler. We cannot
2240 set another step-resume breakpoint; just continue on until the
2241 original breakpoint is hit. */
2242 if (tp->control.step_resume_breakpoint == NULL)
2243 {
2c03e5be 2244 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2245 tp->step_after_step_resume_breakpoint = 1;
2246 }
2247
34b7e8a6 2248 delete_single_step_breakpoints (tp);
30852783 2249
31e77af2 2250 clear_step_over_info ();
30852783 2251 tp->control.trap_expected = 0;
31e77af2
PA
2252
2253 insert_breakpoints ();
30852783
UW
2254 }
2255
b0f16a3e
SM
2256 /* If STEP is set, it's a request to use hardware stepping
2257 facilities. But in that case, we should never
2258 use singlestep breakpoint. */
34b7e8a6 2259 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2260
b0f16a3e
SM
2261 /* Decide the set of threads to ask the target to resume. Start
2262 by assuming everything will be resumed, than narrow the set
2263 by applying increasingly restricting conditions. */
a09dd441 2264 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2265
251bde03
PA
2266 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2267 (e.g., we might need to step over a breakpoint), from the
2268 user/frontend's point of view, all threads in RESUME_PTID are now
2269 running. Unless we're calling an inferior function, as in that
2270 case pretend we inferior doesn't run at all. */
2271 if (!tp->control.in_infcall)
2272 set_running (resume_ptid, 1);
2273
b0f16a3e 2274 /* Maybe resume a single thread after all. */
34b7e8a6 2275 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2276 && tp->control.trap_expected)
2277 {
2278 /* We're allowing a thread to run past a breakpoint it has
2279 hit, by single-stepping the thread with the breakpoint
2280 removed. In which case, we need to single-step only this
2281 thread, and keep others stopped, as they can miss this
2282 breakpoint if allowed to run. */
2283 resume_ptid = inferior_ptid;
2284 }
d4db2f36 2285
7f5ef605
PA
2286 if (execution_direction != EXEC_REVERSE
2287 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2288 {
7f5ef605
PA
2289 /* The only case we currently need to step a breakpoint
2290 instruction is when we have a signal to deliver. See
2291 handle_signal_stop where we handle random signals that could
2292 take out us out of the stepping range. Normally, in that
2293 case we end up continuing (instead of stepping) over the
2294 signal handler with a breakpoint at PC, but there are cases
2295 where we should _always_ single-step, even if we have a
2296 step-resume breakpoint, like when a software watchpoint is
2297 set. Assuming single-stepping and delivering a signal at the
2298 same time would takes us to the signal handler, then we could
2299 have removed the breakpoint at PC to step over it. However,
2300 some hardware step targets (like e.g., Mac OS) can't step
2301 into signal handlers, and for those, we need to leave the
2302 breakpoint at PC inserted, as otherwise if the handler
2303 recurses and executes PC again, it'll miss the breakpoint.
2304 So we leave the breakpoint inserted anyway, but we need to
2305 record that we tried to step a breakpoint instruction, so
2306 that adjust_pc_after_break doesn't end up confused. */
2307 gdb_assert (sig != GDB_SIGNAL_0);
2308
2309 tp->stepped_breakpoint = 1;
2310
b0f16a3e
SM
2311 /* Most targets can step a breakpoint instruction, thus
2312 executing it normally. But if this one cannot, just
2313 continue and we will hit it anyway. */
7f5ef605 2314 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2315 step = 0;
2316 }
ef5cf84e 2317
b0f16a3e
SM
2318 if (debug_displaced
2319 && use_displaced_stepping (gdbarch)
2320 && tp->control.trap_expected)
2321 {
2322 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2323 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2324 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2325 gdb_byte buf[4];
2326
2327 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2328 paddress (resume_gdbarch, actual_pc));
2329 read_memory (actual_pc, buf, sizeof (buf));
2330 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2331 }
237fc4c9 2332
b0f16a3e
SM
2333 if (tp->control.may_range_step)
2334 {
2335 /* If we're resuming a thread with the PC out of the step
2336 range, then we're doing some nested/finer run control
2337 operation, like stepping the thread out of the dynamic
2338 linker or the displaced stepping scratch pad. We
2339 shouldn't have allowed a range step then. */
2340 gdb_assert (pc_in_thread_step_range (pc, tp));
2341 }
c1e36e3e 2342
b0f16a3e
SM
2343 /* Install inferior's terminal modes. */
2344 target_terminal_inferior ();
2345
2346 /* Avoid confusing the next resume, if the next stop/resume
2347 happens to apply to another thread. */
2348 tp->suspend.stop_signal = GDB_SIGNAL_0;
2349
2350 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2351 removed breakpoints because we are stepping over one (in any
2352 thread), we need to receive all signals to avoid accidentally
2353 skipping a breakpoint during execution of a signal handler. */
2354 if (step_over_info_valid_p ())
b0f16a3e
SM
2355 target_pass_signals (0, NULL);
2356 else
2357 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2358
b0f16a3e 2359 target_resume (resume_ptid, step, sig);
c906108c
SS
2360
2361 discard_cleanups (old_cleanups);
2362}
2363\f
237fc4c9 2364/* Proceeding. */
c906108c
SS
2365
2366/* Clear out all variables saying what to do when inferior is continued.
2367 First do this, then set the ones you want, then call `proceed'. */
2368
a7212384
UW
2369static void
2370clear_proceed_status_thread (struct thread_info *tp)
c906108c 2371{
a7212384
UW
2372 if (debug_infrun)
2373 fprintf_unfiltered (gdb_stdlog,
2374 "infrun: clear_proceed_status_thread (%s)\n",
2375 target_pid_to_str (tp->ptid));
d6b48e9c 2376
70509625
PA
2377 /* If this signal should not be seen by program, give it zero.
2378 Used for debugging signals. */
2379 if (!signal_pass_state (tp->suspend.stop_signal))
2380 tp->suspend.stop_signal = GDB_SIGNAL_0;
2381
16c381f0
JK
2382 tp->control.trap_expected = 0;
2383 tp->control.step_range_start = 0;
2384 tp->control.step_range_end = 0;
c1e36e3e 2385 tp->control.may_range_step = 0;
16c381f0
JK
2386 tp->control.step_frame_id = null_frame_id;
2387 tp->control.step_stack_frame_id = null_frame_id;
2388 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2389 tp->stop_requested = 0;
4e1c45ea 2390
16c381f0 2391 tp->control.stop_step = 0;
32400beb 2392
16c381f0 2393 tp->control.proceed_to_finish = 0;
414c69f7 2394
17b2616c
PA
2395 tp->control.command_interp = NULL;
2396
a7212384 2397 /* Discard any remaining commands or status from previous stop. */
16c381f0 2398 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2399}
32400beb 2400
a7212384 2401void
70509625 2402clear_proceed_status (int step)
a7212384 2403{
6c95b8df
PA
2404 if (!non_stop)
2405 {
70509625
PA
2406 struct thread_info *tp;
2407 ptid_t resume_ptid;
2408
2409 resume_ptid = user_visible_resume_ptid (step);
2410
2411 /* In all-stop mode, delete the per-thread status of all threads
2412 we're about to resume, implicitly and explicitly. */
2413 ALL_NON_EXITED_THREADS (tp)
2414 {
2415 if (!ptid_match (tp->ptid, resume_ptid))
2416 continue;
2417 clear_proceed_status_thread (tp);
2418 }
6c95b8df
PA
2419 }
2420
a7212384
UW
2421 if (!ptid_equal (inferior_ptid, null_ptid))
2422 {
2423 struct inferior *inferior;
2424
2425 if (non_stop)
2426 {
6c95b8df
PA
2427 /* If in non-stop mode, only delete the per-thread status of
2428 the current thread. */
a7212384
UW
2429 clear_proceed_status_thread (inferior_thread ());
2430 }
6c95b8df 2431
d6b48e9c 2432 inferior = current_inferior ();
16c381f0 2433 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2434 }
2435
c906108c 2436 stop_after_trap = 0;
f3b1572e 2437
31e77af2
PA
2438 clear_step_over_info ();
2439
f3b1572e 2440 observer_notify_about_to_proceed ();
c906108c 2441
d5c31457
UW
2442 if (stop_registers)
2443 {
2444 regcache_xfree (stop_registers);
2445 stop_registers = NULL;
2446 }
c906108c
SS
2447}
2448
99619bea
PA
2449/* Returns true if TP is still stopped at a breakpoint that needs
2450 stepping-over in order to make progress. If the breakpoint is gone
2451 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2452
2453static int
99619bea
PA
2454thread_still_needs_step_over (struct thread_info *tp)
2455{
2456 if (tp->stepping_over_breakpoint)
2457 {
2458 struct regcache *regcache = get_thread_regcache (tp->ptid);
2459
2460 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2461 regcache_read_pc (regcache))
2462 == ordinary_breakpoint_here)
99619bea
PA
2463 return 1;
2464
2465 tp->stepping_over_breakpoint = 0;
2466 }
2467
2468 return 0;
2469}
2470
483805cf
PA
2471/* Returns true if scheduler locking applies. STEP indicates whether
2472 we're about to do a step/next-like command to a thread. */
2473
2474static int
2475schedlock_applies (int step)
2476{
2477 return (scheduler_mode == schedlock_on
2478 || (scheduler_mode == schedlock_step
2479 && step));
2480}
2481
99619bea
PA
2482/* Look a thread other than EXCEPT that has previously reported a
2483 breakpoint event, and thus needs a step-over in order to make
2484 progress. Returns NULL is none is found. STEP indicates whether
2485 we're about to step the current thread, in order to decide whether
2486 "set scheduler-locking step" applies. */
2487
2488static struct thread_info *
2489find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2490{
99619bea 2491 struct thread_info *tp, *current;
5a437975
DE
2492
2493 /* With non-stop mode on, threads are always handled individually. */
2494 gdb_assert (! non_stop);
ea67f13b 2495
99619bea 2496 current = inferior_thread ();
d4db2f36 2497
99619bea
PA
2498 /* If scheduler locking applies, we can avoid iterating over all
2499 threads. */
483805cf 2500 if (schedlock_applies (step))
ea67f13b 2501 {
99619bea
PA
2502 if (except != current
2503 && thread_still_needs_step_over (current))
2504 return current;
515630c5 2505
99619bea
PA
2506 return NULL;
2507 }
0d9a9a5f 2508
034f788c 2509 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2510 {
2511 /* Ignore the EXCEPT thread. */
2512 if (tp == except)
2513 continue;
2514 /* Ignore threads of processes we're not resuming. */
2515 if (!sched_multi
2516 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2517 continue;
2518
2519 if (thread_still_needs_step_over (tp))
2520 return tp;
ea67f13b
DJ
2521 }
2522
99619bea 2523 return NULL;
ea67f13b 2524}
e4846b08 2525
c906108c
SS
2526/* Basic routine for continuing the program in various fashions.
2527
2528 ADDR is the address to resume at, or -1 for resume where stopped.
2529 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2530 or -1 for act according to how it stopped.
c906108c 2531 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2532 -1 means return after that and print nothing.
2533 You should probably set various step_... variables
2534 before calling here, if you are stepping.
c906108c
SS
2535
2536 You should call clear_proceed_status before calling proceed. */
2537
2538void
2ea28649 2539proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2540{
e58b0e63
PA
2541 struct regcache *regcache;
2542 struct gdbarch *gdbarch;
4e1c45ea 2543 struct thread_info *tp;
e58b0e63 2544 CORE_ADDR pc;
6c95b8df 2545 struct address_space *aspace;
c906108c 2546
e58b0e63
PA
2547 /* If we're stopped at a fork/vfork, follow the branch set by the
2548 "set follow-fork-mode" command; otherwise, we'll just proceed
2549 resuming the current thread. */
2550 if (!follow_fork ())
2551 {
2552 /* The target for some reason decided not to resume. */
2553 normal_stop ();
f148b27e
PA
2554 if (target_can_async_p ())
2555 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2556 return;
2557 }
2558
842951eb
PA
2559 /* We'll update this if & when we switch to a new thread. */
2560 previous_inferior_ptid = inferior_ptid;
2561
e58b0e63
PA
2562 regcache = get_current_regcache ();
2563 gdbarch = get_regcache_arch (regcache);
6c95b8df 2564 aspace = get_regcache_aspace (regcache);
e58b0e63 2565 pc = regcache_read_pc (regcache);
2adfaa28 2566 tp = inferior_thread ();
e58b0e63 2567
c906108c 2568 if (step > 0)
515630c5 2569 step_start_function = find_pc_function (pc);
c906108c
SS
2570 if (step < 0)
2571 stop_after_trap = 1;
2572
99619bea
PA
2573 /* Fill in with reasonable starting values. */
2574 init_thread_stepping_state (tp);
2575
2acceee2 2576 if (addr == (CORE_ADDR) -1)
c906108c 2577 {
af48d08f
PA
2578 if (pc == stop_pc
2579 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2580 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2581 /* There is a breakpoint at the address we will resume at,
2582 step one instruction before inserting breakpoints so that
2583 we do not stop right away (and report a second hit at this
b2175913
MS
2584 breakpoint).
2585
2586 Note, we don't do this in reverse, because we won't
2587 actually be executing the breakpoint insn anyway.
2588 We'll be (un-)executing the previous instruction. */
99619bea 2589 tp->stepping_over_breakpoint = 1;
515630c5
UW
2590 else if (gdbarch_single_step_through_delay_p (gdbarch)
2591 && gdbarch_single_step_through_delay (gdbarch,
2592 get_current_frame ()))
3352ef37
AC
2593 /* We stepped onto an instruction that needs to be stepped
2594 again before re-inserting the breakpoint, do so. */
99619bea 2595 tp->stepping_over_breakpoint = 1;
c906108c
SS
2596 }
2597 else
2598 {
515630c5 2599 regcache_write_pc (regcache, addr);
c906108c
SS
2600 }
2601
70509625
PA
2602 if (siggnal != GDB_SIGNAL_DEFAULT)
2603 tp->suspend.stop_signal = siggnal;
2604
17b2616c
PA
2605 /* Record the interpreter that issued the execution command that
2606 caused this thread to resume. If the top level interpreter is
2607 MI/async, and the execution command was a CLI command
2608 (next/step/etc.), we'll want to print stop event output to the MI
2609 console channel (the stepped-to line, etc.), as if the user
2610 entered the execution command on a real GDB console. */
2611 inferior_thread ()->control.command_interp = command_interp ();
2612
527159b7 2613 if (debug_infrun)
8a9de0e4 2614 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2615 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2616 paddress (gdbarch, addr),
2617 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2618
94cc34af
PA
2619 if (non_stop)
2620 /* In non-stop, each thread is handled individually. The context
2621 must already be set to the right thread here. */
2622 ;
2623 else
2624 {
99619bea
PA
2625 struct thread_info *step_over;
2626
94cc34af
PA
2627 /* In a multi-threaded task we may select another thread and
2628 then continue or step.
c906108c 2629
94cc34af
PA
2630 But if the old thread was stopped at a breakpoint, it will
2631 immediately cause another breakpoint stop without any
2632 execution (i.e. it will report a breakpoint hit incorrectly).
2633 So we must step over it first.
c906108c 2634
99619bea
PA
2635 Look for a thread other than the current (TP) that reported a
2636 breakpoint hit and hasn't been resumed yet since. */
2637 step_over = find_thread_needs_step_over (step, tp);
2638 if (step_over != NULL)
2adfaa28 2639 {
99619bea
PA
2640 if (debug_infrun)
2641 fprintf_unfiltered (gdb_stdlog,
2642 "infrun: need to step-over [%s] first\n",
2643 target_pid_to_str (step_over->ptid));
2644
2645 /* Store the prev_pc for the stepping thread too, needed by
2646 switch_back_to_stepping thread. */
2647 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2648 switch_to_thread (step_over->ptid);
2649 tp = step_over;
2adfaa28 2650 }
94cc34af 2651 }
c906108c 2652
31e77af2
PA
2653 /* If we need to step over a breakpoint, and we're not using
2654 displaced stepping to do so, insert all breakpoints (watchpoints,
2655 etc.) but the one we're stepping over, step one instruction, and
2656 then re-insert the breakpoint when that step is finished. */
99619bea 2657 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2658 {
31e77af2
PA
2659 struct regcache *regcache = get_current_regcache ();
2660
2661 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2662 regcache_read_pc (regcache), 0);
30852783 2663 }
31e77af2
PA
2664 else
2665 clear_step_over_info ();
30852783 2666
31e77af2 2667 insert_breakpoints ();
30852783 2668
99619bea
PA
2669 tp->control.trap_expected = tp->stepping_over_breakpoint;
2670
c906108c
SS
2671 annotate_starting ();
2672
2673 /* Make sure that output from GDB appears before output from the
2674 inferior. */
2675 gdb_flush (gdb_stdout);
2676
e4846b08 2677 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2678 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2679 scenarios such as inferior function calls or returning from
2680 a function via the return command. In those cases, the prev_pc
2681 value was not set properly for subsequent commands. The prev_pc value
2682 is used to initialize the starting line number in the ecs. With an
2683 invalid value, the gdb next command ends up stopping at the position
2684 represented by the next line table entry past our start position.
2685 On platforms that generate one line table entry per line, this
2686 is not a problem. However, on the ia64, the compiler generates
2687 extraneous line table entries that do not increase the line number.
2688 When we issue the gdb next command on the ia64 after an inferior call
2689 or a return command, we often end up a few instructions forward, still
2690 within the original line we started.
2691
d5cd6034
JB
2692 An attempt was made to refresh the prev_pc at the same time the
2693 execution_control_state is initialized (for instance, just before
2694 waiting for an inferior event). But this approach did not work
2695 because of platforms that use ptrace, where the pc register cannot
2696 be read unless the inferior is stopped. At that point, we are not
2697 guaranteed the inferior is stopped and so the regcache_read_pc() call
2698 can fail. Setting the prev_pc value here ensures the value is updated
2699 correctly when the inferior is stopped. */
4e1c45ea 2700 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2701
c906108c 2702 /* Resume inferior. */
99619bea 2703 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2704 tp->suspend.stop_signal);
c906108c
SS
2705
2706 /* Wait for it to stop (if not standalone)
2707 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2708 /* Do this only if we are not using the event loop, or if the target
1777feb0 2709 does not support asynchronous execution. */
362646f5 2710 if (!target_can_async_p ())
43ff13b4 2711 {
e4c8541f 2712 wait_for_inferior ();
43ff13b4
JM
2713 normal_stop ();
2714 }
c906108c 2715}
c906108c
SS
2716\f
2717
2718/* Start remote-debugging of a machine over a serial link. */
96baa820 2719
c906108c 2720void
8621d6a9 2721start_remote (int from_tty)
c906108c 2722{
d6b48e9c 2723 struct inferior *inferior;
d6b48e9c
PA
2724
2725 inferior = current_inferior ();
16c381f0 2726 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2727
1777feb0 2728 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2729 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2730 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2731 nothing is returned (instead of just blocking). Because of this,
2732 targets expecting an immediate response need to, internally, set
2733 things up so that the target_wait() is forced to eventually
1777feb0 2734 timeout. */
6426a772
JM
2735 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2736 differentiate to its caller what the state of the target is after
2737 the initial open has been performed. Here we're assuming that
2738 the target has stopped. It should be possible to eventually have
2739 target_open() return to the caller an indication that the target
2740 is currently running and GDB state should be set to the same as
1777feb0 2741 for an async run. */
e4c8541f 2742 wait_for_inferior ();
8621d6a9
DJ
2743
2744 /* Now that the inferior has stopped, do any bookkeeping like
2745 loading shared libraries. We want to do this before normal_stop,
2746 so that the displayed frame is up to date. */
2747 post_create_inferior (&current_target, from_tty);
2748
6426a772 2749 normal_stop ();
c906108c
SS
2750}
2751
2752/* Initialize static vars when a new inferior begins. */
2753
2754void
96baa820 2755init_wait_for_inferior (void)
c906108c
SS
2756{
2757 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2758
c906108c
SS
2759 breakpoint_init_inferior (inf_starting);
2760
70509625 2761 clear_proceed_status (0);
9f976b41 2762
ca005067 2763 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2764
842951eb 2765 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2766
edb3359d
DJ
2767 /* Discard any skipped inlined frames. */
2768 clear_inline_frame_state (minus_one_ptid);
c906108c 2769}
237fc4c9 2770
c906108c 2771\f
0d1e5fa7
PA
2772/* Data to be passed around while handling an event. This data is
2773 discarded between events. */
c5aa993b 2774struct execution_control_state
488f131b 2775{
0d1e5fa7 2776 ptid_t ptid;
4e1c45ea
PA
2777 /* The thread that got the event, if this was a thread event; NULL
2778 otherwise. */
2779 struct thread_info *event_thread;
2780
488f131b 2781 struct target_waitstatus ws;
7e324e48 2782 int stop_func_filled_in;
488f131b
JB
2783 CORE_ADDR stop_func_start;
2784 CORE_ADDR stop_func_end;
2c02bd72 2785 const char *stop_func_name;
488f131b 2786 int wait_some_more;
4f5d7f63 2787
2adfaa28
PA
2788 /* True if the event thread hit the single-step breakpoint of
2789 another thread. Thus the event doesn't cause a stop, the thread
2790 needs to be single-stepped past the single-step breakpoint before
2791 we can switch back to the original stepping thread. */
2792 int hit_singlestep_breakpoint;
488f131b
JB
2793};
2794
ec9499be 2795static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2796
568d6575
UW
2797static void handle_step_into_function (struct gdbarch *gdbarch,
2798 struct execution_control_state *ecs);
2799static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2800 struct execution_control_state *ecs);
4f5d7f63 2801static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2802static void check_exception_resume (struct execution_control_state *,
28106bc2 2803 struct frame_info *);
611c83ae 2804
bdc36728 2805static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2806static void stop_waiting (struct execution_control_state *ecs);
104c1213 2807static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2808static void keep_going (struct execution_control_state *ecs);
94c57d6a 2809static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2810static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2811
252fbfc8
PA
2812/* Callback for iterate over threads. If the thread is stopped, but
2813 the user/frontend doesn't know about that yet, go through
2814 normal_stop, as if the thread had just stopped now. ARG points at
2815 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2816 ptid_is_pid(PTID) is true, applies to all threads of the process
2817 pointed at by PTID. Otherwise, apply only to the thread pointed by
2818 PTID. */
2819
2820static int
2821infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2822{
2823 ptid_t ptid = * (ptid_t *) arg;
2824
2825 if ((ptid_equal (info->ptid, ptid)
2826 || ptid_equal (minus_one_ptid, ptid)
2827 || (ptid_is_pid (ptid)
2828 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2829 && is_running (info->ptid)
2830 && !is_executing (info->ptid))
2831 {
2832 struct cleanup *old_chain;
2833 struct execution_control_state ecss;
2834 struct execution_control_state *ecs = &ecss;
2835
2836 memset (ecs, 0, sizeof (*ecs));
2837
2838 old_chain = make_cleanup_restore_current_thread ();
2839
f15cb84a
YQ
2840 overlay_cache_invalid = 1;
2841 /* Flush target cache before starting to handle each event.
2842 Target was running and cache could be stale. This is just a
2843 heuristic. Running threads may modify target memory, but we
2844 don't get any event. */
2845 target_dcache_invalidate ();
2846
252fbfc8
PA
2847 /* Go through handle_inferior_event/normal_stop, so we always
2848 have consistent output as if the stop event had been
2849 reported. */
2850 ecs->ptid = info->ptid;
e09875d4 2851 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2852 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2853 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2854
2855 handle_inferior_event (ecs);
2856
2857 if (!ecs->wait_some_more)
2858 {
2859 struct thread_info *tp;
2860
2861 normal_stop ();
2862
fa4cd53f 2863 /* Finish off the continuations. */
252fbfc8 2864 tp = inferior_thread ();
fa4cd53f
PA
2865 do_all_intermediate_continuations_thread (tp, 1);
2866 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2867 }
2868
2869 do_cleanups (old_chain);
2870 }
2871
2872 return 0;
2873}
2874
2875/* This function is attached as a "thread_stop_requested" observer.
2876 Cleanup local state that assumed the PTID was to be resumed, and
2877 report the stop to the frontend. */
2878
2c0b251b 2879static void
252fbfc8
PA
2880infrun_thread_stop_requested (ptid_t ptid)
2881{
fc1cf338 2882 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2883
2884 /* PTID was requested to stop. Remove it from the displaced
2885 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2886
2887 for (displaced = displaced_step_inferior_states;
2888 displaced;
2889 displaced = displaced->next)
252fbfc8 2890 {
fc1cf338 2891 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2892
fc1cf338
PA
2893 it = displaced->step_request_queue;
2894 prev_next_p = &displaced->step_request_queue;
2895 while (it)
252fbfc8 2896 {
fc1cf338
PA
2897 if (ptid_match (it->ptid, ptid))
2898 {
2899 *prev_next_p = it->next;
2900 it->next = NULL;
2901 xfree (it);
2902 }
252fbfc8 2903 else
fc1cf338
PA
2904 {
2905 prev_next_p = &it->next;
2906 }
252fbfc8 2907
fc1cf338 2908 it = *prev_next_p;
252fbfc8 2909 }
252fbfc8
PA
2910 }
2911
2912 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2913}
2914
a07daef3
PA
2915static void
2916infrun_thread_thread_exit (struct thread_info *tp, int silent)
2917{
2918 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2919 nullify_last_target_wait_ptid ();
2920}
2921
0cbcdb96
PA
2922/* Delete the step resume, single-step and longjmp/exception resume
2923 breakpoints of TP. */
4e1c45ea 2924
0cbcdb96
PA
2925static void
2926delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2927{
0cbcdb96
PA
2928 delete_step_resume_breakpoint (tp);
2929 delete_exception_resume_breakpoint (tp);
34b7e8a6 2930 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2931}
2932
0cbcdb96
PA
2933/* If the target still has execution, call FUNC for each thread that
2934 just stopped. In all-stop, that's all the non-exited threads; in
2935 non-stop, that's the current thread, only. */
2936
2937typedef void (*for_each_just_stopped_thread_callback_func)
2938 (struct thread_info *tp);
4e1c45ea
PA
2939
2940static void
0cbcdb96 2941for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2942{
0cbcdb96 2943 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2944 return;
2945
2946 if (non_stop)
2947 {
0cbcdb96
PA
2948 /* If in non-stop mode, only the current thread stopped. */
2949 func (inferior_thread ());
4e1c45ea
PA
2950 }
2951 else
0cbcdb96
PA
2952 {
2953 struct thread_info *tp;
2954
2955 /* In all-stop mode, all threads have stopped. */
2956 ALL_NON_EXITED_THREADS (tp)
2957 {
2958 func (tp);
2959 }
2960 }
2961}
2962
2963/* Delete the step resume and longjmp/exception resume breakpoints of
2964 the threads that just stopped. */
2965
2966static void
2967delete_just_stopped_threads_infrun_breakpoints (void)
2968{
2969 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2970}
2971
2972/* Delete the single-step breakpoints of the threads that just
2973 stopped. */
7c16b83e 2974
34b7e8a6
PA
2975static void
2976delete_just_stopped_threads_single_step_breakpoints (void)
2977{
2978 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
2979}
2980
1777feb0 2981/* A cleanup wrapper. */
4e1c45ea
PA
2982
2983static void
0cbcdb96 2984delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 2985{
0cbcdb96 2986 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
2987}
2988
223698f8
DE
2989/* Pretty print the results of target_wait, for debugging purposes. */
2990
2991static void
2992print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2993 const struct target_waitstatus *ws)
2994{
2995 char *status_string = target_waitstatus_to_string (ws);
2996 struct ui_file *tmp_stream = mem_fileopen ();
2997 char *text;
223698f8
DE
2998
2999 /* The text is split over several lines because it was getting too long.
3000 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3001 output as a unit; we want only one timestamp printed if debug_timestamp
3002 is set. */
3003
3004 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
3005 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3006 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3007 fprintf_unfiltered (tmp_stream,
3008 " [%s]", target_pid_to_str (waiton_ptid));
3009 fprintf_unfiltered (tmp_stream, ", status) =\n");
3010 fprintf_unfiltered (tmp_stream,
3011 "infrun: %d [%s],\n",
dfd4cc63
LM
3012 ptid_get_pid (result_ptid),
3013 target_pid_to_str (result_ptid));
223698f8
DE
3014 fprintf_unfiltered (tmp_stream,
3015 "infrun: %s\n",
3016 status_string);
3017
759ef836 3018 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3019
3020 /* This uses %s in part to handle %'s in the text, but also to avoid
3021 a gcc error: the format attribute requires a string literal. */
3022 fprintf_unfiltered (gdb_stdlog, "%s", text);
3023
3024 xfree (status_string);
3025 xfree (text);
3026 ui_file_delete (tmp_stream);
3027}
3028
24291992
PA
3029/* Prepare and stabilize the inferior for detaching it. E.g.,
3030 detaching while a thread is displaced stepping is a recipe for
3031 crashing it, as nothing would readjust the PC out of the scratch
3032 pad. */
3033
3034void
3035prepare_for_detach (void)
3036{
3037 struct inferior *inf = current_inferior ();
3038 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3039 struct cleanup *old_chain_1;
3040 struct displaced_step_inferior_state *displaced;
3041
3042 displaced = get_displaced_stepping_state (inf->pid);
3043
3044 /* Is any thread of this process displaced stepping? If not,
3045 there's nothing else to do. */
3046 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3047 return;
3048
3049 if (debug_infrun)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "displaced-stepping in-process while detaching");
3052
3053 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3054 inf->detaching = 1;
3055
3056 while (!ptid_equal (displaced->step_ptid, null_ptid))
3057 {
3058 struct cleanup *old_chain_2;
3059 struct execution_control_state ecss;
3060 struct execution_control_state *ecs;
3061
3062 ecs = &ecss;
3063 memset (ecs, 0, sizeof (*ecs));
3064
3065 overlay_cache_invalid = 1;
f15cb84a
YQ
3066 /* Flush target cache before starting to handle each event.
3067 Target was running and cache could be stale. This is just a
3068 heuristic. Running threads may modify target memory, but we
3069 don't get any event. */
3070 target_dcache_invalidate ();
24291992 3071
24291992
PA
3072 if (deprecated_target_wait_hook)
3073 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3074 else
3075 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3076
3077 if (debug_infrun)
3078 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3079
3080 /* If an error happens while handling the event, propagate GDB's
3081 knowledge of the executing state to the frontend/user running
3082 state. */
3e43a32a
MS
3083 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3084 &minus_one_ptid);
24291992
PA
3085
3086 /* Now figure out what to do with the result of the result. */
3087 handle_inferior_event (ecs);
3088
3089 /* No error, don't finish the state yet. */
3090 discard_cleanups (old_chain_2);
3091
3092 /* Breakpoints and watchpoints are not installed on the target
3093 at this point, and signals are passed directly to the
3094 inferior, so this must mean the process is gone. */
3095 if (!ecs->wait_some_more)
3096 {
3097 discard_cleanups (old_chain_1);
3098 error (_("Program exited while detaching"));
3099 }
3100 }
3101
3102 discard_cleanups (old_chain_1);
3103}
3104
cd0fc7c3 3105/* Wait for control to return from inferior to debugger.
ae123ec6 3106
cd0fc7c3
SS
3107 If inferior gets a signal, we may decide to start it up again
3108 instead of returning. That is why there is a loop in this function.
3109 When this function actually returns it means the inferior
3110 should be left stopped and GDB should read more commands. */
3111
3112void
e4c8541f 3113wait_for_inferior (void)
cd0fc7c3
SS
3114{
3115 struct cleanup *old_cleanups;
c906108c 3116
527159b7 3117 if (debug_infrun)
ae123ec6 3118 fprintf_unfiltered
e4c8541f 3119 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3120
0cbcdb96
PA
3121 old_cleanups
3122 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3123 NULL);
cd0fc7c3 3124
c906108c
SS
3125 while (1)
3126 {
ae25568b
PA
3127 struct execution_control_state ecss;
3128 struct execution_control_state *ecs = &ecss;
29f49a6a 3129 struct cleanup *old_chain;
963f9c80 3130 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3131
ae25568b
PA
3132 memset (ecs, 0, sizeof (*ecs));
3133
ec9499be 3134 overlay_cache_invalid = 1;
ec9499be 3135
f15cb84a
YQ
3136 /* Flush target cache before starting to handle each event.
3137 Target was running and cache could be stale. This is just a
3138 heuristic. Running threads may modify target memory, but we
3139 don't get any event. */
3140 target_dcache_invalidate ();
3141
9a4105ab 3142 if (deprecated_target_wait_hook)
47608cb1 3143 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3144 else
47608cb1 3145 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3146
f00150c9 3147 if (debug_infrun)
223698f8 3148 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3149
29f49a6a
PA
3150 /* If an error happens while handling the event, propagate GDB's
3151 knowledge of the executing state to the frontend/user running
3152 state. */
3153 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3154
cd0fc7c3
SS
3155 /* Now figure out what to do with the result of the result. */
3156 handle_inferior_event (ecs);
c906108c 3157
29f49a6a
PA
3158 /* No error, don't finish the state yet. */
3159 discard_cleanups (old_chain);
3160
cd0fc7c3
SS
3161 if (!ecs->wait_some_more)
3162 break;
3163 }
4e1c45ea 3164
cd0fc7c3
SS
3165 do_cleanups (old_cleanups);
3166}
c906108c 3167
d3d4baed
PA
3168/* Cleanup that reinstalls the readline callback handler, if the
3169 target is running in the background. If while handling the target
3170 event something triggered a secondary prompt, like e.g., a
3171 pagination prompt, we'll have removed the callback handler (see
3172 gdb_readline_wrapper_line). Need to do this as we go back to the
3173 event loop, ready to process further input. Note this has no
3174 effect if the handler hasn't actually been removed, because calling
3175 rl_callback_handler_install resets the line buffer, thus losing
3176 input. */
3177
3178static void
3179reinstall_readline_callback_handler_cleanup (void *arg)
3180{
3181 if (async_command_editing_p && !sync_execution)
3182 gdb_rl_callback_handler_reinstall ();
3183}
3184
1777feb0 3185/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3186 event loop whenever a change of state is detected on the file
1777feb0
MS
3187 descriptor corresponding to the target. It can be called more than
3188 once to complete a single execution command. In such cases we need
3189 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3190 that this function is called for a single execution command, then
3191 report to the user that the inferior has stopped, and do the
1777feb0 3192 necessary cleanups. */
43ff13b4
JM
3193
3194void
fba45db2 3195fetch_inferior_event (void *client_data)
43ff13b4 3196{
0d1e5fa7 3197 struct execution_control_state ecss;
a474d7c2 3198 struct execution_control_state *ecs = &ecss;
4f8d22e3 3199 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3200 struct cleanup *ts_old_chain;
4f8d22e3 3201 int was_sync = sync_execution;
0f641c01 3202 int cmd_done = 0;
963f9c80 3203 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3204
0d1e5fa7
PA
3205 memset (ecs, 0, sizeof (*ecs));
3206
d3d4baed
PA
3207 /* End up with readline processing input, if necessary. */
3208 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3209
c5187ac6
PA
3210 /* We're handling a live event, so make sure we're doing live
3211 debugging. If we're looking at traceframes while the target is
3212 running, we're going to need to get back to that mode after
3213 handling the event. */
3214 if (non_stop)
3215 {
3216 make_cleanup_restore_current_traceframe ();
e6e4e701 3217 set_current_traceframe (-1);
c5187ac6
PA
3218 }
3219
4f8d22e3
PA
3220 if (non_stop)
3221 /* In non-stop mode, the user/frontend should not notice a thread
3222 switch due to internal events. Make sure we reverse to the
3223 user selected thread and frame after handling the event and
3224 running any breakpoint commands. */
3225 make_cleanup_restore_current_thread ();
3226
ec9499be 3227 overlay_cache_invalid = 1;
f15cb84a
YQ
3228 /* Flush target cache before starting to handle each event. Target
3229 was running and cache could be stale. This is just a heuristic.
3230 Running threads may modify target memory, but we don't get any
3231 event. */
3232 target_dcache_invalidate ();
3dd5b83d 3233
32231432
PA
3234 make_cleanup_restore_integer (&execution_direction);
3235 execution_direction = target_execution_direction ();
3236
9a4105ab 3237 if (deprecated_target_wait_hook)
a474d7c2 3238 ecs->ptid =
47608cb1 3239 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3240 else
47608cb1 3241 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3242
f00150c9 3243 if (debug_infrun)
223698f8 3244 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3245
29f49a6a
PA
3246 /* If an error happens while handling the event, propagate GDB's
3247 knowledge of the executing state to the frontend/user running
3248 state. */
3249 if (!non_stop)
3250 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3251 else
3252 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3253
353d1d73
JK
3254 /* Get executed before make_cleanup_restore_current_thread above to apply
3255 still for the thread which has thrown the exception. */
3256 make_bpstat_clear_actions_cleanup ();
3257
7c16b83e
PA
3258 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3259
43ff13b4 3260 /* Now figure out what to do with the result of the result. */
a474d7c2 3261 handle_inferior_event (ecs);
43ff13b4 3262
a474d7c2 3263 if (!ecs->wait_some_more)
43ff13b4 3264 {
d6b48e9c
PA
3265 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
3266
0cbcdb96 3267 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3268
d6b48e9c 3269 /* We may not find an inferior if this was a process exit. */
16c381f0 3270 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3271 normal_stop ();
3272
af679fd0 3273 if (target_has_execution
0e5bf2a8 3274 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3275 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3276 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3277 && ecs->event_thread->step_multi
16c381f0 3278 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3279 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3280 else
0f641c01
PA
3281 {
3282 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3283 cmd_done = 1;
3284 }
43ff13b4 3285 }
4f8d22e3 3286
29f49a6a
PA
3287 /* No error, don't finish the thread states yet. */
3288 discard_cleanups (ts_old_chain);
3289
4f8d22e3
PA
3290 /* Revert thread and frame. */
3291 do_cleanups (old_chain);
3292
3293 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3294 restore the prompt (a synchronous execution command has finished,
3295 and we're ready for input). */
b4a14fd0 3296 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3297 observer_notify_sync_execution_done ();
0f641c01
PA
3298
3299 if (cmd_done
3300 && !was_sync
3301 && exec_done_display_p
3302 && (ptid_equal (inferior_ptid, null_ptid)
3303 || !is_running (inferior_ptid)))
3304 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3305}
3306
edb3359d
DJ
3307/* Record the frame and location we're currently stepping through. */
3308void
3309set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3310{
3311 struct thread_info *tp = inferior_thread ();
3312
16c381f0
JK
3313 tp->control.step_frame_id = get_frame_id (frame);
3314 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3315
3316 tp->current_symtab = sal.symtab;
3317 tp->current_line = sal.line;
3318}
3319
0d1e5fa7
PA
3320/* Clear context switchable stepping state. */
3321
3322void
4e1c45ea 3323init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3324{
7f5ef605 3325 tss->stepped_breakpoint = 0;
0d1e5fa7 3326 tss->stepping_over_breakpoint = 0;
963f9c80 3327 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3328 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3329}
3330
c32c64b7
DE
3331/* Set the cached copy of the last ptid/waitstatus. */
3332
3333static void
3334set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3335{
3336 target_last_wait_ptid = ptid;
3337 target_last_waitstatus = status;
3338}
3339
e02bc4cc 3340/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3341 target_wait()/deprecated_target_wait_hook(). The data is actually
3342 cached by handle_inferior_event(), which gets called immediately
3343 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3344
3345void
488f131b 3346get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3347{
39f77062 3348 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3349 *status = target_last_waitstatus;
3350}
3351
ac264b3b
MS
3352void
3353nullify_last_target_wait_ptid (void)
3354{
3355 target_last_wait_ptid = minus_one_ptid;
3356}
3357
dcf4fbde 3358/* Switch thread contexts. */
dd80620e
MS
3359
3360static void
0d1e5fa7 3361context_switch (ptid_t ptid)
dd80620e 3362{
4b51d87b 3363 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3364 {
3365 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3366 target_pid_to_str (inferior_ptid));
3367 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3368 target_pid_to_str (ptid));
fd48f117
DJ
3369 }
3370
0d1e5fa7 3371 switch_to_thread (ptid);
dd80620e
MS
3372}
3373
4fa8626c
DJ
3374static void
3375adjust_pc_after_break (struct execution_control_state *ecs)
3376{
24a73cce
UW
3377 struct regcache *regcache;
3378 struct gdbarch *gdbarch;
6c95b8df 3379 struct address_space *aspace;
118e6252 3380 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3381
4fa8626c
DJ
3382 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3383 we aren't, just return.
9709f61c
DJ
3384
3385 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3386 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3387 implemented by software breakpoints should be handled through the normal
3388 breakpoint layer.
8fb3e588 3389
4fa8626c
DJ
3390 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3391 different signals (SIGILL or SIGEMT for instance), but it is less
3392 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3393 gdbarch_decr_pc_after_break. I don't know any specific target that
3394 generates these signals at breakpoints (the code has been in GDB since at
3395 least 1992) so I can not guess how to handle them here.
8fb3e588 3396
e6cf7916
UW
3397 In earlier versions of GDB, a target with
3398 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3399 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3400 target with both of these set in GDB history, and it seems unlikely to be
3401 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3402
3403 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3404 return;
3405
a493e3e2 3406 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3407 return;
3408
4058b839
PA
3409 /* In reverse execution, when a breakpoint is hit, the instruction
3410 under it has already been de-executed. The reported PC always
3411 points at the breakpoint address, so adjusting it further would
3412 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3413 architecture:
3414
3415 B1 0x08000000 : INSN1
3416 B2 0x08000001 : INSN2
3417 0x08000002 : INSN3
3418 PC -> 0x08000003 : INSN4
3419
3420 Say you're stopped at 0x08000003 as above. Reverse continuing
3421 from that point should hit B2 as below. Reading the PC when the
3422 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3423 been de-executed already.
3424
3425 B1 0x08000000 : INSN1
3426 B2 PC -> 0x08000001 : INSN2
3427 0x08000002 : INSN3
3428 0x08000003 : INSN4
3429
3430 We can't apply the same logic as for forward execution, because
3431 we would wrongly adjust the PC to 0x08000000, since there's a
3432 breakpoint at PC - 1. We'd then report a hit on B1, although
3433 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3434 behaviour. */
3435 if (execution_direction == EXEC_REVERSE)
3436 return;
3437
24a73cce
UW
3438 /* If this target does not decrement the PC after breakpoints, then
3439 we have nothing to do. */
3440 regcache = get_thread_regcache (ecs->ptid);
3441 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3442
3443 decr_pc = target_decr_pc_after_break (gdbarch);
3444 if (decr_pc == 0)
24a73cce
UW
3445 return;
3446
6c95b8df
PA
3447 aspace = get_regcache_aspace (regcache);
3448
8aad930b
AC
3449 /* Find the location where (if we've hit a breakpoint) the
3450 breakpoint would be. */
118e6252 3451 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3452
1c5cfe86
PA
3453 /* Check whether there actually is a software breakpoint inserted at
3454 that location.
3455
3456 If in non-stop mode, a race condition is possible where we've
3457 removed a breakpoint, but stop events for that breakpoint were
3458 already queued and arrive later. To suppress those spurious
3459 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3460 and retire them after a number of stop events are reported. */
6c95b8df
PA
3461 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3462 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3463 {
77f9e713 3464 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3465
8213266a 3466 if (record_full_is_used ())
77f9e713 3467 record_full_gdb_operation_disable_set ();
96429cc8 3468
1c0fdd0e
UW
3469 /* When using hardware single-step, a SIGTRAP is reported for both
3470 a completed single-step and a software breakpoint. Need to
3471 differentiate between the two, as the latter needs adjusting
3472 but the former does not.
3473
3474 The SIGTRAP can be due to a completed hardware single-step only if
3475 - we didn't insert software single-step breakpoints
3476 - the thread to be examined is still the current thread
3477 - this thread is currently being stepped
3478
3479 If any of these events did not occur, we must have stopped due
3480 to hitting a software breakpoint, and have to back up to the
3481 breakpoint address.
3482
3483 As a special case, we could have hardware single-stepped a
3484 software breakpoint. In this case (prev_pc == breakpoint_pc),
3485 we also need to back up to the breakpoint address. */
3486
34b7e8a6 3487 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
1c0fdd0e 3488 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea 3489 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3490 || (ecs->event_thread->stepped_breakpoint
3491 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3492 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3493
77f9e713 3494 do_cleanups (old_cleanups);
8aad930b 3495 }
4fa8626c
DJ
3496}
3497
edb3359d
DJ
3498static int
3499stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3500{
3501 for (frame = get_prev_frame (frame);
3502 frame != NULL;
3503 frame = get_prev_frame (frame))
3504 {
3505 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3506 return 1;
3507 if (get_frame_type (frame) != INLINE_FRAME)
3508 break;
3509 }
3510
3511 return 0;
3512}
3513
a96d9b2e
SDJ
3514/* Auxiliary function that handles syscall entry/return events.
3515 It returns 1 if the inferior should keep going (and GDB
3516 should ignore the event), or 0 if the event deserves to be
3517 processed. */
ca2163eb 3518
a96d9b2e 3519static int
ca2163eb 3520handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3521{
ca2163eb 3522 struct regcache *regcache;
ca2163eb
PA
3523 int syscall_number;
3524
3525 if (!ptid_equal (ecs->ptid, inferior_ptid))
3526 context_switch (ecs->ptid);
3527
3528 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3529 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3530 stop_pc = regcache_read_pc (regcache);
3531
a96d9b2e
SDJ
3532 if (catch_syscall_enabled () > 0
3533 && catching_syscall_number (syscall_number) > 0)
3534 {
3535 if (debug_infrun)
3536 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3537 syscall_number);
a96d9b2e 3538
16c381f0 3539 ecs->event_thread->control.stop_bpstat
6c95b8df 3540 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3541 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3542
ce12b012 3543 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3544 {
3545 /* Catchpoint hit. */
ca2163eb
PA
3546 return 0;
3547 }
a96d9b2e 3548 }
ca2163eb
PA
3549
3550 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3551 keep_going (ecs);
3552 return 1;
a96d9b2e
SDJ
3553}
3554
7e324e48
GB
3555/* Lazily fill in the execution_control_state's stop_func_* fields. */
3556
3557static void
3558fill_in_stop_func (struct gdbarch *gdbarch,
3559 struct execution_control_state *ecs)
3560{
3561 if (!ecs->stop_func_filled_in)
3562 {
3563 /* Don't care about return value; stop_func_start and stop_func_name
3564 will both be 0 if it doesn't work. */
3565 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3566 &ecs->stop_func_start, &ecs->stop_func_end);
3567 ecs->stop_func_start
3568 += gdbarch_deprecated_function_start_offset (gdbarch);
3569
591a12a1
UW
3570 if (gdbarch_skip_entrypoint_p (gdbarch))
3571 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3572 ecs->stop_func_start);
3573
7e324e48
GB
3574 ecs->stop_func_filled_in = 1;
3575 }
3576}
3577
4f5d7f63
PA
3578
3579/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3580
3581static enum stop_kind
3582get_inferior_stop_soon (ptid_t ptid)
3583{
3584 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3585
3586 gdb_assert (inf != NULL);
3587 return inf->control.stop_soon;
3588}
3589
05ba8510
PA
3590/* Given an execution control state that has been freshly filled in by
3591 an event from the inferior, figure out what it means and take
3592 appropriate action.
3593
3594 The alternatives are:
3595
22bcd14b 3596 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3597 debugger.
3598
3599 2) keep_going and return; to wait for the next event (set
3600 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3601 once). */
c906108c 3602
ec9499be 3603static void
96baa820 3604handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3605{
d6b48e9c
PA
3606 enum stop_kind stop_soon;
3607
28736962
PA
3608 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3609 {
3610 /* We had an event in the inferior, but we are not interested in
3611 handling it at this level. The lower layers have already
3612 done what needs to be done, if anything.
3613
3614 One of the possible circumstances for this is when the
3615 inferior produces output for the console. The inferior has
3616 not stopped, and we are ignoring the event. Another possible
3617 circumstance is any event which the lower level knows will be
3618 reported multiple times without an intervening resume. */
3619 if (debug_infrun)
3620 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3621 prepare_to_wait (ecs);
3622 return;
3623 }
3624
0e5bf2a8
PA
3625 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3626 && target_can_async_p () && !sync_execution)
3627 {
3628 /* There were no unwaited-for children left in the target, but,
3629 we're not synchronously waiting for events either. Just
3630 ignore. Otherwise, if we were running a synchronous
3631 execution command, we need to cancel it and give the user
3632 back the terminal. */
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3636 prepare_to_wait (ecs);
3637 return;
3638 }
3639
1777feb0 3640 /* Cache the last pid/waitstatus. */
c32c64b7 3641 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3642
ca005067 3643 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3644 stop_stack_dummy = STOP_NONE;
ca005067 3645
0e5bf2a8
PA
3646 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3647 {
3648 /* No unwaited-for children left. IOW, all resumed children
3649 have exited. */
3650 if (debug_infrun)
3651 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3652
3653 stop_print_frame = 0;
22bcd14b 3654 stop_waiting (ecs);
0e5bf2a8
PA
3655 return;
3656 }
3657
8c90c137 3658 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3659 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3660 {
3661 ecs->event_thread = find_thread_ptid (ecs->ptid);
3662 /* If it's a new thread, add it to the thread database. */
3663 if (ecs->event_thread == NULL)
3664 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3665
3666 /* Disable range stepping. If the next step request could use a
3667 range, this will be end up re-enabled then. */
3668 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3669 }
88ed393a
JK
3670
3671 /* Dependent on valid ECS->EVENT_THREAD. */
3672 adjust_pc_after_break (ecs);
3673
3674 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3675 reinit_frame_cache ();
3676
28736962
PA
3677 breakpoint_retire_moribund ();
3678
2b009048
DJ
3679 /* First, distinguish signals caused by the debugger from signals
3680 that have to do with the program's own actions. Note that
3681 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3682 on the operating system version. Here we detect when a SIGILL or
3683 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3684 something similar for SIGSEGV, since a SIGSEGV will be generated
3685 when we're trying to execute a breakpoint instruction on a
3686 non-executable stack. This happens for call dummy breakpoints
3687 for architectures like SPARC that place call dummies on the
3688 stack. */
2b009048 3689 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3690 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3691 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3692 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3693 {
de0a0249
UW
3694 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3695
3696 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3697 regcache_read_pc (regcache)))
3698 {
3699 if (debug_infrun)
3700 fprintf_unfiltered (gdb_stdlog,
3701 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3702 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3703 }
2b009048
DJ
3704 }
3705
28736962
PA
3706 /* Mark the non-executing threads accordingly. In all-stop, all
3707 threads of all processes are stopped when we get any event
3708 reported. In non-stop mode, only the event thread stops. If
3709 we're handling a process exit in non-stop mode, there's nothing
3710 to do, as threads of the dead process are gone, and threads of
3711 any other process were left running. */
3712 if (!non_stop)
3713 set_executing (minus_one_ptid, 0);
3714 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3715 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3716 set_executing (ecs->ptid, 0);
8c90c137 3717
488f131b
JB
3718 switch (ecs->ws.kind)
3719 {
3720 case TARGET_WAITKIND_LOADED:
527159b7 3721 if (debug_infrun)
8a9de0e4 3722 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3723 if (!ptid_equal (ecs->ptid, inferior_ptid))
3724 context_switch (ecs->ptid);
b0f4b84b
DJ
3725 /* Ignore gracefully during startup of the inferior, as it might
3726 be the shell which has just loaded some objects, otherwise
3727 add the symbols for the newly loaded objects. Also ignore at
3728 the beginning of an attach or remote session; we will query
3729 the full list of libraries once the connection is
3730 established. */
4f5d7f63
PA
3731
3732 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3733 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3734 {
edcc5120
TT
3735 struct regcache *regcache;
3736
edcc5120
TT
3737 regcache = get_thread_regcache (ecs->ptid);
3738
3739 handle_solib_event ();
3740
3741 ecs->event_thread->control.stop_bpstat
3742 = bpstat_stop_status (get_regcache_aspace (regcache),
3743 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3744
ce12b012 3745 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3746 {
3747 /* A catchpoint triggered. */
94c57d6a
PA
3748 process_event_stop_test (ecs);
3749 return;
edcc5120 3750 }
488f131b 3751
b0f4b84b
DJ
3752 /* If requested, stop when the dynamic linker notifies
3753 gdb of events. This allows the user to get control
3754 and place breakpoints in initializer routines for
3755 dynamically loaded objects (among other things). */
a493e3e2 3756 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3757 if (stop_on_solib_events)
3758 {
55409f9d
DJ
3759 /* Make sure we print "Stopped due to solib-event" in
3760 normal_stop. */
3761 stop_print_frame = 1;
3762
22bcd14b 3763 stop_waiting (ecs);
b0f4b84b
DJ
3764 return;
3765 }
488f131b 3766 }
b0f4b84b
DJ
3767
3768 /* If we are skipping through a shell, or through shared library
3769 loading that we aren't interested in, resume the program. If
5c09a2c5 3770 we're running the program normally, also resume. */
b0f4b84b
DJ
3771 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3772 {
74960c60
VP
3773 /* Loading of shared libraries might have changed breakpoint
3774 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3775 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3776 insert_breakpoints ();
a493e3e2 3777 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3778 prepare_to_wait (ecs);
3779 return;
3780 }
3781
5c09a2c5
PA
3782 /* But stop if we're attaching or setting up a remote
3783 connection. */
3784 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3785 || stop_soon == STOP_QUIETLY_REMOTE)
3786 {
3787 if (debug_infrun)
3788 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3789 stop_waiting (ecs);
5c09a2c5
PA
3790 return;
3791 }
3792
3793 internal_error (__FILE__, __LINE__,
3794 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3795
488f131b 3796 case TARGET_WAITKIND_SPURIOUS:
527159b7 3797 if (debug_infrun)
8a9de0e4 3798 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3799 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3800 context_switch (ecs->ptid);
a493e3e2 3801 resume (0, GDB_SIGNAL_0);
488f131b
JB
3802 prepare_to_wait (ecs);
3803 return;
c5aa993b 3804
488f131b 3805 case TARGET_WAITKIND_EXITED:
940c3c06 3806 case TARGET_WAITKIND_SIGNALLED:
527159b7 3807 if (debug_infrun)
940c3c06
PA
3808 {
3809 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3810 fprintf_unfiltered (gdb_stdlog,
3811 "infrun: TARGET_WAITKIND_EXITED\n");
3812 else
3813 fprintf_unfiltered (gdb_stdlog,
3814 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3815 }
3816
fb66883a 3817 inferior_ptid = ecs->ptid;
6c95b8df
PA
3818 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3819 set_current_program_space (current_inferior ()->pspace);
3820 handle_vfork_child_exec_or_exit (0);
1777feb0 3821 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3822
0c557179
SDJ
3823 /* Clearing any previous state of convenience variables. */
3824 clear_exit_convenience_vars ();
3825
940c3c06
PA
3826 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3827 {
3828 /* Record the exit code in the convenience variable $_exitcode, so
3829 that the user can inspect this again later. */
3830 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3831 (LONGEST) ecs->ws.value.integer);
3832
3833 /* Also record this in the inferior itself. */
3834 current_inferior ()->has_exit_code = 1;
3835 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3836
98eb56a4
PA
3837 /* Support the --return-child-result option. */
3838 return_child_result_value = ecs->ws.value.integer;
3839
fd664c91 3840 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3841 }
3842 else
0c557179
SDJ
3843 {
3844 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3845 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3846
3847 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3848 {
3849 /* Set the value of the internal variable $_exitsignal,
3850 which holds the signal uncaught by the inferior. */
3851 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3852 gdbarch_gdb_signal_to_target (gdbarch,
3853 ecs->ws.value.sig));
3854 }
3855 else
3856 {
3857 /* We don't have access to the target's method used for
3858 converting between signal numbers (GDB's internal
3859 representation <-> target's representation).
3860 Therefore, we cannot do a good job at displaying this
3861 information to the user. It's better to just warn
3862 her about it (if infrun debugging is enabled), and
3863 give up. */
3864 if (debug_infrun)
3865 fprintf_filtered (gdb_stdlog, _("\
3866Cannot fill $_exitsignal with the correct signal number.\n"));
3867 }
3868
fd664c91 3869 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3870 }
8cf64490 3871
488f131b
JB
3872 gdb_flush (gdb_stdout);
3873 target_mourn_inferior ();
488f131b 3874 stop_print_frame = 0;
22bcd14b 3875 stop_waiting (ecs);
488f131b 3876 return;
c5aa993b 3877
488f131b 3878 /* The following are the only cases in which we keep going;
1777feb0 3879 the above cases end in a continue or goto. */
488f131b 3880 case TARGET_WAITKIND_FORKED:
deb3b17b 3881 case TARGET_WAITKIND_VFORKED:
527159b7 3882 if (debug_infrun)
fed708ed
PA
3883 {
3884 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3885 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3886 else
3887 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3888 }
c906108c 3889
e2d96639
YQ
3890 /* Check whether the inferior is displaced stepping. */
3891 {
3892 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3893 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3894 struct displaced_step_inferior_state *displaced
3895 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3896
3897 /* If checking displaced stepping is supported, and thread
3898 ecs->ptid is displaced stepping. */
3899 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3900 {
3901 struct inferior *parent_inf
3902 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3903 struct regcache *child_regcache;
3904 CORE_ADDR parent_pc;
3905
3906 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3907 indicating that the displaced stepping of syscall instruction
3908 has been done. Perform cleanup for parent process here. Note
3909 that this operation also cleans up the child process for vfork,
3910 because their pages are shared. */
a493e3e2 3911 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3912
3913 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3914 {
3915 /* Restore scratch pad for child process. */
3916 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3917 }
3918
3919 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3920 the child's PC is also within the scratchpad. Set the child's PC
3921 to the parent's PC value, which has already been fixed up.
3922 FIXME: we use the parent's aspace here, although we're touching
3923 the child, because the child hasn't been added to the inferior
3924 list yet at this point. */
3925
3926 child_regcache
3927 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3928 gdbarch,
3929 parent_inf->aspace);
3930 /* Read PC value of parent process. */
3931 parent_pc = regcache_read_pc (regcache);
3932
3933 if (debug_displaced)
3934 fprintf_unfiltered (gdb_stdlog,
3935 "displaced: write child pc from %s to %s\n",
3936 paddress (gdbarch,
3937 regcache_read_pc (child_regcache)),
3938 paddress (gdbarch, parent_pc));
3939
3940 regcache_write_pc (child_regcache, parent_pc);
3941 }
3942 }
3943
5a2901d9 3944 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3945 context_switch (ecs->ptid);
5a2901d9 3946
b242c3c2
PA
3947 /* Immediately detach breakpoints from the child before there's
3948 any chance of letting the user delete breakpoints from the
3949 breakpoint lists. If we don't do this early, it's easy to
3950 leave left over traps in the child, vis: "break foo; catch
3951 fork; c; <fork>; del; c; <child calls foo>". We only follow
3952 the fork on the last `continue', and by that time the
3953 breakpoint at "foo" is long gone from the breakpoint table.
3954 If we vforked, then we don't need to unpatch here, since both
3955 parent and child are sharing the same memory pages; we'll
3956 need to unpatch at follow/detach time instead to be certain
3957 that new breakpoints added between catchpoint hit time and
3958 vfork follow are detached. */
3959 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3960 {
b242c3c2
PA
3961 /* This won't actually modify the breakpoint list, but will
3962 physically remove the breakpoints from the child. */
d80ee84f 3963 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
3964 }
3965
34b7e8a6 3966 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 3967
e58b0e63
PA
3968 /* In case the event is caught by a catchpoint, remember that
3969 the event is to be followed at the next resume of the thread,
3970 and not immediately. */
3971 ecs->event_thread->pending_follow = ecs->ws;
3972
fb14de7b 3973 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3974
16c381f0 3975 ecs->event_thread->control.stop_bpstat
6c95b8df 3976 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3977 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3978
ce12b012
PA
3979 /* If no catchpoint triggered for this, then keep going. Note
3980 that we're interested in knowing the bpstat actually causes a
3981 stop, not just if it may explain the signal. Software
3982 watchpoints, for example, always appear in the bpstat. */
3983 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 3984 {
6c95b8df
PA
3985 ptid_t parent;
3986 ptid_t child;
e58b0e63 3987 int should_resume;
3e43a32a
MS
3988 int follow_child
3989 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3990
a493e3e2 3991 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
3992
3993 should_resume = follow_fork ();
3994
6c95b8df
PA
3995 parent = ecs->ptid;
3996 child = ecs->ws.value.related_pid;
3997
3998 /* In non-stop mode, also resume the other branch. */
3999 if (non_stop && !detach_fork)
4000 {
4001 if (follow_child)
4002 switch_to_thread (parent);
4003 else
4004 switch_to_thread (child);
4005
4006 ecs->event_thread = inferior_thread ();
4007 ecs->ptid = inferior_ptid;
4008 keep_going (ecs);
4009 }
4010
4011 if (follow_child)
4012 switch_to_thread (child);
4013 else
4014 switch_to_thread (parent);
4015
e58b0e63
PA
4016 ecs->event_thread = inferior_thread ();
4017 ecs->ptid = inferior_ptid;
4018
4019 if (should_resume)
4020 keep_going (ecs);
4021 else
22bcd14b 4022 stop_waiting (ecs);
04e68871
DJ
4023 return;
4024 }
94c57d6a
PA
4025 process_event_stop_test (ecs);
4026 return;
488f131b 4027
6c95b8df
PA
4028 case TARGET_WAITKIND_VFORK_DONE:
4029 /* Done with the shared memory region. Re-insert breakpoints in
4030 the parent, and keep going. */
4031
4032 if (debug_infrun)
3e43a32a
MS
4033 fprintf_unfiltered (gdb_stdlog,
4034 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4035
4036 if (!ptid_equal (ecs->ptid, inferior_ptid))
4037 context_switch (ecs->ptid);
4038
4039 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4040 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4041 /* This also takes care of reinserting breakpoints in the
4042 previously locked inferior. */
4043 keep_going (ecs);
4044 return;
4045
488f131b 4046 case TARGET_WAITKIND_EXECD:
527159b7 4047 if (debug_infrun)
fc5261f2 4048 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4049
5a2901d9 4050 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4051 context_switch (ecs->ptid);
5a2901d9 4052
fb14de7b 4053 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4054
6c95b8df
PA
4055 /* Do whatever is necessary to the parent branch of the vfork. */
4056 handle_vfork_child_exec_or_exit (1);
4057
795e548f
PA
4058 /* This causes the eventpoints and symbol table to be reset.
4059 Must do this now, before trying to determine whether to
4060 stop. */
71b43ef8 4061 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4062
16c381f0 4063 ecs->event_thread->control.stop_bpstat
6c95b8df 4064 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4065 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4066
71b43ef8
PA
4067 /* Note that this may be referenced from inside
4068 bpstat_stop_status above, through inferior_has_execd. */
4069 xfree (ecs->ws.value.execd_pathname);
4070 ecs->ws.value.execd_pathname = NULL;
4071
04e68871 4072 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4073 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4074 {
a493e3e2 4075 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4076 keep_going (ecs);
4077 return;
4078 }
94c57d6a
PA
4079 process_event_stop_test (ecs);
4080 return;
488f131b 4081
b4dc5ffa
MK
4082 /* Be careful not to try to gather much state about a thread
4083 that's in a syscall. It's frequently a losing proposition. */
488f131b 4084 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4085 if (debug_infrun)
3e43a32a
MS
4086 fprintf_unfiltered (gdb_stdlog,
4087 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4088 /* Getting the current syscall number. */
94c57d6a
PA
4089 if (handle_syscall_event (ecs) == 0)
4090 process_event_stop_test (ecs);
4091 return;
c906108c 4092
488f131b
JB
4093 /* Before examining the threads further, step this thread to
4094 get it entirely out of the syscall. (We get notice of the
4095 event when the thread is just on the verge of exiting a
4096 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4097 into user code.) */
488f131b 4098 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4099 if (debug_infrun)
3e43a32a
MS
4100 fprintf_unfiltered (gdb_stdlog,
4101 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4102 if (handle_syscall_event (ecs) == 0)
4103 process_event_stop_test (ecs);
4104 return;
c906108c 4105
488f131b 4106 case TARGET_WAITKIND_STOPPED:
527159b7 4107 if (debug_infrun)
8a9de0e4 4108 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4109 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4110 handle_signal_stop (ecs);
4111 return;
c906108c 4112
b2175913 4113 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4114 if (debug_infrun)
4115 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4116 /* Reverse execution: target ran out of history info. */
eab402df 4117
34b7e8a6 4118 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4119 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4120 observer_notify_no_history ();
22bcd14b 4121 stop_waiting (ecs);
b2175913 4122 return;
488f131b 4123 }
4f5d7f63
PA
4124}
4125
4126/* Come here when the program has stopped with a signal. */
4127
4128static void
4129handle_signal_stop (struct execution_control_state *ecs)
4130{
4131 struct frame_info *frame;
4132 struct gdbarch *gdbarch;
4133 int stopped_by_watchpoint;
4134 enum stop_kind stop_soon;
4135 int random_signal;
c906108c 4136
f0407826
DE
4137 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4138
4139 /* Do we need to clean up the state of a thread that has
4140 completed a displaced single-step? (Doing so usually affects
4141 the PC, so do it here, before we set stop_pc.) */
4142 displaced_step_fixup (ecs->ptid,
4143 ecs->event_thread->suspend.stop_signal);
4144
4145 /* If we either finished a single-step or hit a breakpoint, but
4146 the user wanted this thread to be stopped, pretend we got a
4147 SIG0 (generic unsignaled stop). */
4148 if (ecs->event_thread->stop_requested
4149 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4150 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4151
515630c5 4152 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4153
527159b7 4154 if (debug_infrun)
237fc4c9 4155 {
5af949e3
UW
4156 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4157 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4158 struct cleanup *old_chain = save_inferior_ptid ();
4159
4160 inferior_ptid = ecs->ptid;
5af949e3
UW
4161
4162 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4163 paddress (gdbarch, stop_pc));
d92524f1 4164 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4165 {
4166 CORE_ADDR addr;
abbb1732 4167
237fc4c9
PA
4168 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4169
4170 if (target_stopped_data_address (&current_target, &addr))
4171 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4172 "infrun: stopped data address = %s\n",
4173 paddress (gdbarch, addr));
237fc4c9
PA
4174 else
4175 fprintf_unfiltered (gdb_stdlog,
4176 "infrun: (no data address available)\n");
4177 }
7f82dfc7
JK
4178
4179 do_cleanups (old_chain);
237fc4c9 4180 }
527159b7 4181
36fa8042
PA
4182 /* This is originated from start_remote(), start_inferior() and
4183 shared libraries hook functions. */
4184 stop_soon = get_inferior_stop_soon (ecs->ptid);
4185 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4186 {
4187 if (!ptid_equal (ecs->ptid, inferior_ptid))
4188 context_switch (ecs->ptid);
4189 if (debug_infrun)
4190 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4191 stop_print_frame = 1;
22bcd14b 4192 stop_waiting (ecs);
36fa8042
PA
4193 return;
4194 }
4195
4196 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4197 && stop_after_trap)
4198 {
4199 if (!ptid_equal (ecs->ptid, inferior_ptid))
4200 context_switch (ecs->ptid);
4201 if (debug_infrun)
4202 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4203 stop_print_frame = 0;
22bcd14b 4204 stop_waiting (ecs);
36fa8042
PA
4205 return;
4206 }
4207
4208 /* This originates from attach_command(). We need to overwrite
4209 the stop_signal here, because some kernels don't ignore a
4210 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4211 See more comments in inferior.h. On the other hand, if we
4212 get a non-SIGSTOP, report it to the user - assume the backend
4213 will handle the SIGSTOP if it should show up later.
4214
4215 Also consider that the attach is complete when we see a
4216 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4217 target extended-remote report it instead of a SIGSTOP
4218 (e.g. gdbserver). We already rely on SIGTRAP being our
4219 signal, so this is no exception.
4220
4221 Also consider that the attach is complete when we see a
4222 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4223 the target to stop all threads of the inferior, in case the
4224 low level attach operation doesn't stop them implicitly. If
4225 they weren't stopped implicitly, then the stub will report a
4226 GDB_SIGNAL_0, meaning: stopped for no particular reason
4227 other than GDB's request. */
4228 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4229 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4230 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4231 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4232 {
4233 stop_print_frame = 1;
22bcd14b 4234 stop_waiting (ecs);
36fa8042
PA
4235 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4236 return;
4237 }
4238
488f131b 4239 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4240 so, then switch to that thread. */
4241 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4242 {
527159b7 4243 if (debug_infrun)
8a9de0e4 4244 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4245
0d1e5fa7 4246 context_switch (ecs->ptid);
c5aa993b 4247
9a4105ab
AC
4248 if (deprecated_context_hook)
4249 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4250 }
c906108c 4251
568d6575
UW
4252 /* At this point, get hold of the now-current thread's frame. */
4253 frame = get_current_frame ();
4254 gdbarch = get_frame_arch (frame);
4255
2adfaa28 4256 /* Pull the single step breakpoints out of the target. */
af48d08f 4257 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4258 {
af48d08f
PA
4259 struct regcache *regcache;
4260 struct address_space *aspace;
4261 CORE_ADDR pc;
2adfaa28 4262
af48d08f
PA
4263 regcache = get_thread_regcache (ecs->ptid);
4264 aspace = get_regcache_aspace (regcache);
4265 pc = regcache_read_pc (regcache);
34b7e8a6 4266
af48d08f
PA
4267 /* However, before doing so, if this single-step breakpoint was
4268 actually for another thread, set this thread up for moving
4269 past it. */
4270 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4271 aspace, pc))
4272 {
4273 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4274 {
4275 if (debug_infrun)
4276 {
4277 fprintf_unfiltered (gdb_stdlog,
af48d08f 4278 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4279 "single-step breakpoint\n",
4280 target_pid_to_str (ecs->ptid));
2adfaa28 4281 }
af48d08f
PA
4282 ecs->hit_singlestep_breakpoint = 1;
4283 }
4284 }
4285 else
4286 {
4287 if (debug_infrun)
4288 {
4289 fprintf_unfiltered (gdb_stdlog,
4290 "infrun: [%s] hit its "
4291 "single-step breakpoint\n",
4292 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4293 }
4294 }
488f131b 4295 }
af48d08f 4296 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4297
963f9c80
PA
4298 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4299 && ecs->event_thread->control.trap_expected
4300 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4301 stopped_by_watchpoint = 0;
4302 else
4303 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4304
4305 /* If necessary, step over this watchpoint. We'll be back to display
4306 it in a moment. */
4307 if (stopped_by_watchpoint
d92524f1 4308 && (target_have_steppable_watchpoint
568d6575 4309 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4310 {
488f131b
JB
4311 /* At this point, we are stopped at an instruction which has
4312 attempted to write to a piece of memory under control of
4313 a watchpoint. The instruction hasn't actually executed
4314 yet. If we were to evaluate the watchpoint expression
4315 now, we would get the old value, and therefore no change
4316 would seem to have occurred.
4317
4318 In order to make watchpoints work `right', we really need
4319 to complete the memory write, and then evaluate the
d983da9c
DJ
4320 watchpoint expression. We do this by single-stepping the
4321 target.
4322
7f89fd65 4323 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4324 it. For example, the PA can (with some kernel cooperation)
4325 single step over a watchpoint without disabling the watchpoint.
4326
4327 It is far more common to need to disable a watchpoint to step
4328 the inferior over it. If we have non-steppable watchpoints,
4329 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4330 disable all watchpoints.
4331
4332 Any breakpoint at PC must also be stepped over -- if there's
4333 one, it will have already triggered before the watchpoint
4334 triggered, and we either already reported it to the user, or
4335 it didn't cause a stop and we called keep_going. In either
4336 case, if there was a breakpoint at PC, we must be trying to
4337 step past it. */
4338 ecs->event_thread->stepping_over_watchpoint = 1;
4339 keep_going (ecs);
488f131b
JB
4340 return;
4341 }
4342
4e1c45ea 4343 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4344 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4345 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4346 ecs->event_thread->control.stop_step = 0;
488f131b 4347 stop_print_frame = 1;
488f131b 4348 stopped_by_random_signal = 0;
488f131b 4349
edb3359d
DJ
4350 /* Hide inlined functions starting here, unless we just performed stepi or
4351 nexti. After stepi and nexti, always show the innermost frame (not any
4352 inline function call sites). */
16c381f0 4353 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4354 {
4355 struct address_space *aspace =
4356 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4357
4358 /* skip_inline_frames is expensive, so we avoid it if we can
4359 determine that the address is one where functions cannot have
4360 been inlined. This improves performance with inferiors that
4361 load a lot of shared libraries, because the solib event
4362 breakpoint is defined as the address of a function (i.e. not
4363 inline). Note that we have to check the previous PC as well
4364 as the current one to catch cases when we have just
4365 single-stepped off a breakpoint prior to reinstating it.
4366 Note that we're assuming that the code we single-step to is
4367 not inline, but that's not definitive: there's nothing
4368 preventing the event breakpoint function from containing
4369 inlined code, and the single-step ending up there. If the
4370 user had set a breakpoint on that inlined code, the missing
4371 skip_inline_frames call would break things. Fortunately
4372 that's an extremely unlikely scenario. */
09ac7c10 4373 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4374 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4375 && ecs->event_thread->control.trap_expected
4376 && pc_at_non_inline_function (aspace,
4377 ecs->event_thread->prev_pc,
09ac7c10 4378 &ecs->ws)))
1c5a993e
MR
4379 {
4380 skip_inline_frames (ecs->ptid);
4381
4382 /* Re-fetch current thread's frame in case that invalidated
4383 the frame cache. */
4384 frame = get_current_frame ();
4385 gdbarch = get_frame_arch (frame);
4386 }
0574c78f 4387 }
edb3359d 4388
a493e3e2 4389 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4390 && ecs->event_thread->control.trap_expected
568d6575 4391 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4392 && currently_stepping (ecs->event_thread))
3352ef37 4393 {
b50d7442 4394 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4395 also on an instruction that needs to be stepped multiple
1777feb0 4396 times before it's been fully executing. E.g., architectures
3352ef37
AC
4397 with a delay slot. It needs to be stepped twice, once for
4398 the instruction and once for the delay slot. */
4399 int step_through_delay
568d6575 4400 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4401
527159b7 4402 if (debug_infrun && step_through_delay)
8a9de0e4 4403 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4404 if (ecs->event_thread->control.step_range_end == 0
4405 && step_through_delay)
3352ef37
AC
4406 {
4407 /* The user issued a continue when stopped at a breakpoint.
4408 Set up for another trap and get out of here. */
4e1c45ea 4409 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4410 keep_going (ecs);
4411 return;
4412 }
4413 else if (step_through_delay)
4414 {
4415 /* The user issued a step when stopped at a breakpoint.
4416 Maybe we should stop, maybe we should not - the delay
4417 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4418 case, don't decide that here, just set
4419 ecs->stepping_over_breakpoint, making sure we
4420 single-step again before breakpoints are re-inserted. */
4e1c45ea 4421 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4422 }
4423 }
4424
ab04a2af
TT
4425 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4426 handles this event. */
4427 ecs->event_thread->control.stop_bpstat
4428 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4429 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4430
ab04a2af
TT
4431 /* Following in case break condition called a
4432 function. */
4433 stop_print_frame = 1;
73dd234f 4434
ab04a2af
TT
4435 /* This is where we handle "moribund" watchpoints. Unlike
4436 software breakpoints traps, hardware watchpoint traps are
4437 always distinguishable from random traps. If no high-level
4438 watchpoint is associated with the reported stop data address
4439 anymore, then the bpstat does not explain the signal ---
4440 simply make sure to ignore it if `stopped_by_watchpoint' is
4441 set. */
4442
4443 if (debug_infrun
4444 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4445 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4446 GDB_SIGNAL_TRAP)
ab04a2af
TT
4447 && stopped_by_watchpoint)
4448 fprintf_unfiltered (gdb_stdlog,
4449 "infrun: no user watchpoint explains "
4450 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4451
bac7d97b 4452 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4453 at one stage in the past included checks for an inferior
4454 function call's call dummy's return breakpoint. The original
4455 comment, that went with the test, read:
03cebad2 4456
ab04a2af
TT
4457 ``End of a stack dummy. Some systems (e.g. Sony news) give
4458 another signal besides SIGTRAP, so check here as well as
4459 above.''
73dd234f 4460
ab04a2af
TT
4461 If someone ever tries to get call dummys on a
4462 non-executable stack to work (where the target would stop
4463 with something like a SIGSEGV), then those tests might need
4464 to be re-instated. Given, however, that the tests were only
4465 enabled when momentary breakpoints were not being used, I
4466 suspect that it won't be the case.
488f131b 4467
ab04a2af
TT
4468 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4469 be necessary for call dummies on a non-executable stack on
4470 SPARC. */
488f131b 4471
bac7d97b 4472 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4473 random_signal
4474 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4475 ecs->event_thread->suspend.stop_signal);
bac7d97b
PA
4476
4477 /* If not, perhaps stepping/nexting can. */
4478 if (random_signal)
4479 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4480 && currently_stepping (ecs->event_thread));
ab04a2af 4481
2adfaa28
PA
4482 /* Perhaps the thread hit a single-step breakpoint of _another_
4483 thread. Single-step breakpoints are transparent to the
4484 breakpoints module. */
4485 if (random_signal)
4486 random_signal = !ecs->hit_singlestep_breakpoint;
4487
bac7d97b
PA
4488 /* No? Perhaps we got a moribund watchpoint. */
4489 if (random_signal)
4490 random_signal = !stopped_by_watchpoint;
ab04a2af 4491
488f131b
JB
4492 /* For the program's own signals, act according to
4493 the signal handling tables. */
4494
ce12b012 4495 if (random_signal)
488f131b
JB
4496 {
4497 /* Signal not for debugging purposes. */
24291992 4498 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
c9737c08 4499 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4500
527159b7 4501 if (debug_infrun)
c9737c08
PA
4502 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4503 gdb_signal_to_symbol_string (stop_signal));
527159b7 4504
488f131b
JB
4505 stopped_by_random_signal = 1;
4506
252fbfc8
PA
4507 /* Always stop on signals if we're either just gaining control
4508 of the program, or the user explicitly requested this thread
4509 to remain stopped. */
d6b48e9c 4510 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4511 || ecs->event_thread->stop_requested
24291992 4512 || (!inf->detaching
16c381f0 4513 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4514 {
22bcd14b 4515 stop_waiting (ecs);
488f131b
JB
4516 return;
4517 }
b57bacec
PA
4518
4519 /* Notify observers the signal has "handle print" set. Note we
4520 returned early above if stopping; normal_stop handles the
4521 printing in that case. */
4522 if (signal_print[ecs->event_thread->suspend.stop_signal])
4523 {
4524 /* The signal table tells us to print about this signal. */
4525 target_terminal_ours_for_output ();
4526 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4527 target_terminal_inferior ();
4528 }
488f131b
JB
4529
4530 /* Clear the signal if it should not be passed. */
16c381f0 4531 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4532 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4533
fb14de7b 4534 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4535 && ecs->event_thread->control.trap_expected
8358c15c 4536 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4537 {
4538 /* We were just starting a new sequence, attempting to
4539 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4540 Instead this signal arrives. This signal will take us out
68f53502
AC
4541 of the stepping range so GDB needs to remember to, when
4542 the signal handler returns, resume stepping off that
4543 breakpoint. */
4544 /* To simplify things, "continue" is forced to use the same
4545 code paths as single-step - set a breakpoint at the
4546 signal return address and then, once hit, step off that
4547 breakpoint. */
237fc4c9
PA
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: signal arrived while stepping over "
4551 "breakpoint\n");
d3169d93 4552
2c03e5be 4553 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4554 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4555 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4556 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4557
4558 /* If we were nexting/stepping some other thread, switch to
4559 it, so that we don't continue it, losing control. */
4560 if (!switch_back_to_stepped_thread (ecs))
4561 keep_going (ecs);
9d799f85 4562 return;
68f53502 4563 }
9d799f85 4564
e5f8a7cc
PA
4565 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4566 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4567 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4568 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4569 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4570 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4571 {
4572 /* The inferior is about to take a signal that will take it
4573 out of the single step range. Set a breakpoint at the
4574 current PC (which is presumably where the signal handler
4575 will eventually return) and then allow the inferior to
4576 run free.
4577
4578 Note that this is only needed for a signal delivered
4579 while in the single-step range. Nested signals aren't a
4580 problem as they eventually all return. */
237fc4c9
PA
4581 if (debug_infrun)
4582 fprintf_unfiltered (gdb_stdlog,
4583 "infrun: signal may take us out of "
4584 "single-step range\n");
4585
2c03e5be 4586 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4587 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4588 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4589 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4590 keep_going (ecs);
4591 return;
d303a6c7 4592 }
9d799f85
AC
4593
4594 /* Note: step_resume_breakpoint may be non-NULL. This occures
4595 when either there's a nested signal, or when there's a
4596 pending signal enabled just as the signal handler returns
4597 (leaving the inferior at the step-resume-breakpoint without
4598 actually executing it). Either way continue until the
4599 breakpoint is really hit. */
c447ac0b
PA
4600
4601 if (!switch_back_to_stepped_thread (ecs))
4602 {
4603 if (debug_infrun)
4604 fprintf_unfiltered (gdb_stdlog,
4605 "infrun: random signal, keep going\n");
4606
4607 keep_going (ecs);
4608 }
4609 return;
488f131b 4610 }
94c57d6a
PA
4611
4612 process_event_stop_test (ecs);
4613}
4614
4615/* Come here when we've got some debug event / signal we can explain
4616 (IOW, not a random signal), and test whether it should cause a
4617 stop, or whether we should resume the inferior (transparently).
4618 E.g., could be a breakpoint whose condition evaluates false; we
4619 could be still stepping within the line; etc. */
4620
4621static void
4622process_event_stop_test (struct execution_control_state *ecs)
4623{
4624 struct symtab_and_line stop_pc_sal;
4625 struct frame_info *frame;
4626 struct gdbarch *gdbarch;
cdaa5b73
PA
4627 CORE_ADDR jmp_buf_pc;
4628 struct bpstat_what what;
94c57d6a 4629
cdaa5b73 4630 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4631
cdaa5b73
PA
4632 frame = get_current_frame ();
4633 gdbarch = get_frame_arch (frame);
fcf3daef 4634
cdaa5b73 4635 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4636
cdaa5b73
PA
4637 if (what.call_dummy)
4638 {
4639 stop_stack_dummy = what.call_dummy;
4640 }
186c406b 4641
cdaa5b73
PA
4642 /* If we hit an internal event that triggers symbol changes, the
4643 current frame will be invalidated within bpstat_what (e.g., if we
4644 hit an internal solib event). Re-fetch it. */
4645 frame = get_current_frame ();
4646 gdbarch = get_frame_arch (frame);
e2e4d78b 4647
cdaa5b73
PA
4648 switch (what.main_action)
4649 {
4650 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4651 /* If we hit the breakpoint at longjmp while stepping, we
4652 install a momentary breakpoint at the target of the
4653 jmp_buf. */
186c406b 4654
cdaa5b73
PA
4655 if (debug_infrun)
4656 fprintf_unfiltered (gdb_stdlog,
4657 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4658
cdaa5b73 4659 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4660
cdaa5b73
PA
4661 if (what.is_longjmp)
4662 {
4663 struct value *arg_value;
4664
4665 /* If we set the longjmp breakpoint via a SystemTap probe,
4666 then use it to extract the arguments. The destination PC
4667 is the third argument to the probe. */
4668 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4669 if (arg_value)
8fa0c4f8
AA
4670 {
4671 jmp_buf_pc = value_as_address (arg_value);
4672 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4673 }
cdaa5b73
PA
4674 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4675 || !gdbarch_get_longjmp_target (gdbarch,
4676 frame, &jmp_buf_pc))
e2e4d78b 4677 {
cdaa5b73
PA
4678 if (debug_infrun)
4679 fprintf_unfiltered (gdb_stdlog,
4680 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4681 "(!gdbarch_get_longjmp_target)\n");
4682 keep_going (ecs);
4683 return;
e2e4d78b 4684 }
e2e4d78b 4685
cdaa5b73
PA
4686 /* Insert a breakpoint at resume address. */
4687 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4688 }
4689 else
4690 check_exception_resume (ecs, frame);
4691 keep_going (ecs);
4692 return;
e81a37f7 4693
cdaa5b73
PA
4694 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4695 {
4696 struct frame_info *init_frame;
e81a37f7 4697
cdaa5b73 4698 /* There are several cases to consider.
c906108c 4699
cdaa5b73
PA
4700 1. The initiating frame no longer exists. In this case we
4701 must stop, because the exception or longjmp has gone too
4702 far.
2c03e5be 4703
cdaa5b73
PA
4704 2. The initiating frame exists, and is the same as the
4705 current frame. We stop, because the exception or longjmp
4706 has been caught.
2c03e5be 4707
cdaa5b73
PA
4708 3. The initiating frame exists and is different from the
4709 current frame. This means the exception or longjmp has
4710 been caught beneath the initiating frame, so keep going.
c906108c 4711
cdaa5b73
PA
4712 4. longjmp breakpoint has been placed just to protect
4713 against stale dummy frames and user is not interested in
4714 stopping around longjmps. */
c5aa993b 4715
cdaa5b73
PA
4716 if (debug_infrun)
4717 fprintf_unfiltered (gdb_stdlog,
4718 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4719
cdaa5b73
PA
4720 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4721 != NULL);
4722 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4723
cdaa5b73
PA
4724 if (what.is_longjmp)
4725 {
b67a2c6f 4726 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4727
cdaa5b73 4728 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4729 {
cdaa5b73
PA
4730 /* Case 4. */
4731 keep_going (ecs);
4732 return;
e5ef252a 4733 }
cdaa5b73 4734 }
c5aa993b 4735
cdaa5b73 4736 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4737
cdaa5b73
PA
4738 if (init_frame)
4739 {
4740 struct frame_id current_id
4741 = get_frame_id (get_current_frame ());
4742 if (frame_id_eq (current_id,
4743 ecs->event_thread->initiating_frame))
4744 {
4745 /* Case 2. Fall through. */
4746 }
4747 else
4748 {
4749 /* Case 3. */
4750 keep_going (ecs);
4751 return;
4752 }
68f53502 4753 }
488f131b 4754
cdaa5b73
PA
4755 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4756 exists. */
4757 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4758
bdc36728 4759 end_stepping_range (ecs);
cdaa5b73
PA
4760 }
4761 return;
e5ef252a 4762
cdaa5b73
PA
4763 case BPSTAT_WHAT_SINGLE:
4764 if (debug_infrun)
4765 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4766 ecs->event_thread->stepping_over_breakpoint = 1;
4767 /* Still need to check other stuff, at least the case where we
4768 are stepping and step out of the right range. */
4769 break;
e5ef252a 4770
cdaa5b73
PA
4771 case BPSTAT_WHAT_STEP_RESUME:
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4774
cdaa5b73
PA
4775 delete_step_resume_breakpoint (ecs->event_thread);
4776 if (ecs->event_thread->control.proceed_to_finish
4777 && execution_direction == EXEC_REVERSE)
4778 {
4779 struct thread_info *tp = ecs->event_thread;
4780
4781 /* We are finishing a function in reverse, and just hit the
4782 step-resume breakpoint at the start address of the
4783 function, and we're almost there -- just need to back up
4784 by one more single-step, which should take us back to the
4785 function call. */
4786 tp->control.step_range_start = tp->control.step_range_end = 1;
4787 keep_going (ecs);
e5ef252a 4788 return;
cdaa5b73
PA
4789 }
4790 fill_in_stop_func (gdbarch, ecs);
4791 if (stop_pc == ecs->stop_func_start
4792 && execution_direction == EXEC_REVERSE)
4793 {
4794 /* We are stepping over a function call in reverse, and just
4795 hit the step-resume breakpoint at the start address of
4796 the function. Go back to single-stepping, which should
4797 take us back to the function call. */
4798 ecs->event_thread->stepping_over_breakpoint = 1;
4799 keep_going (ecs);
4800 return;
4801 }
4802 break;
e5ef252a 4803
cdaa5b73
PA
4804 case BPSTAT_WHAT_STOP_NOISY:
4805 if (debug_infrun)
4806 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4807 stop_print_frame = 1;
e5ef252a 4808
99619bea
PA
4809 /* Assume the thread stopped for a breapoint. We'll still check
4810 whether a/the breakpoint is there when the thread is next
4811 resumed. */
4812 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4813
22bcd14b 4814 stop_waiting (ecs);
cdaa5b73 4815 return;
e5ef252a 4816
cdaa5b73
PA
4817 case BPSTAT_WHAT_STOP_SILENT:
4818 if (debug_infrun)
4819 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4820 stop_print_frame = 0;
e5ef252a 4821
99619bea
PA
4822 /* Assume the thread stopped for a breapoint. We'll still check
4823 whether a/the breakpoint is there when the thread is next
4824 resumed. */
4825 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4826 stop_waiting (ecs);
cdaa5b73
PA
4827 return;
4828
4829 case BPSTAT_WHAT_HP_STEP_RESUME:
4830 if (debug_infrun)
4831 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4832
4833 delete_step_resume_breakpoint (ecs->event_thread);
4834 if (ecs->event_thread->step_after_step_resume_breakpoint)
4835 {
4836 /* Back when the step-resume breakpoint was inserted, we
4837 were trying to single-step off a breakpoint. Go back to
4838 doing that. */
4839 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4840 ecs->event_thread->stepping_over_breakpoint = 1;
4841 keep_going (ecs);
4842 return;
e5ef252a 4843 }
cdaa5b73
PA
4844 break;
4845
4846 case BPSTAT_WHAT_KEEP_CHECKING:
4847 break;
e5ef252a 4848 }
c906108c 4849
af48d08f
PA
4850 /* If we stepped a permanent breakpoint and we had a high priority
4851 step-resume breakpoint for the address we stepped, but we didn't
4852 hit it, then we must have stepped into the signal handler. The
4853 step-resume was only necessary to catch the case of _not_
4854 stepping into the handler, so delete it, and fall through to
4855 checking whether the step finished. */
4856 if (ecs->event_thread->stepped_breakpoint)
4857 {
4858 struct breakpoint *sr_bp
4859 = ecs->event_thread->control.step_resume_breakpoint;
4860
4861 if (sr_bp->loc->permanent
4862 && sr_bp->type == bp_hp_step_resume
4863 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4864 {
4865 if (debug_infrun)
4866 fprintf_unfiltered (gdb_stdlog,
4867 "infrun: stepped permanent breakpoint, stopped in "
4868 "handler\n");
4869 delete_step_resume_breakpoint (ecs->event_thread);
4870 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4871 }
4872 }
4873
cdaa5b73
PA
4874 /* We come here if we hit a breakpoint but should not stop for it.
4875 Possibly we also were stepping and should stop for that. So fall
4876 through and test for stepping. But, if not stepping, do not
4877 stop. */
c906108c 4878
a7212384
UW
4879 /* In all-stop mode, if we're currently stepping but have stopped in
4880 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4881 if (switch_back_to_stepped_thread (ecs))
4882 return;
776f04fa 4883
8358c15c 4884 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4885 {
527159b7 4886 if (debug_infrun)
d3169d93
DJ
4887 fprintf_unfiltered (gdb_stdlog,
4888 "infrun: step-resume breakpoint is inserted\n");
527159b7 4889
488f131b
JB
4890 /* Having a step-resume breakpoint overrides anything
4891 else having to do with stepping commands until
4892 that breakpoint is reached. */
488f131b
JB
4893 keep_going (ecs);
4894 return;
4895 }
c5aa993b 4896
16c381f0 4897 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4898 {
527159b7 4899 if (debug_infrun)
8a9de0e4 4900 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4901 /* Likewise if we aren't even stepping. */
488f131b
JB
4902 keep_going (ecs);
4903 return;
4904 }
c5aa993b 4905
4b7703ad
JB
4906 /* Re-fetch current thread's frame in case the code above caused
4907 the frame cache to be re-initialized, making our FRAME variable
4908 a dangling pointer. */
4909 frame = get_current_frame ();
628fe4e4 4910 gdbarch = get_frame_arch (frame);
7e324e48 4911 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4912
488f131b 4913 /* If stepping through a line, keep going if still within it.
c906108c 4914
488f131b
JB
4915 Note that step_range_end is the address of the first instruction
4916 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4917 within it!
4918
4919 Note also that during reverse execution, we may be stepping
4920 through a function epilogue and therefore must detect when
4921 the current-frame changes in the middle of a line. */
4922
ce4c476a 4923 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 4924 && (execution_direction != EXEC_REVERSE
388a8562 4925 || frame_id_eq (get_frame_id (frame),
16c381f0 4926 ecs->event_thread->control.step_frame_id)))
488f131b 4927 {
527159b7 4928 if (debug_infrun)
5af949e3
UW
4929 fprintf_unfiltered
4930 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4931 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4932 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 4933
c1e36e3e
PA
4934 /* Tentatively re-enable range stepping; `resume' disables it if
4935 necessary (e.g., if we're stepping over a breakpoint or we
4936 have software watchpoints). */
4937 ecs->event_thread->control.may_range_step = 1;
4938
b2175913
MS
4939 /* When stepping backward, stop at beginning of line range
4940 (unless it's the function entry point, in which case
4941 keep going back to the call point). */
16c381f0 4942 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4943 && stop_pc != ecs->stop_func_start
4944 && execution_direction == EXEC_REVERSE)
bdc36728 4945 end_stepping_range (ecs);
b2175913
MS
4946 else
4947 keep_going (ecs);
4948
488f131b
JB
4949 return;
4950 }
c5aa993b 4951
488f131b 4952 /* We stepped out of the stepping range. */
c906108c 4953
488f131b 4954 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4955 loader dynamic symbol resolution code...
4956
4957 EXEC_FORWARD: we keep on single stepping until we exit the run
4958 time loader code and reach the callee's address.
4959
4960 EXEC_REVERSE: we've already executed the callee (backward), and
4961 the runtime loader code is handled just like any other
4962 undebuggable function call. Now we need only keep stepping
4963 backward through the trampoline code, and that's handled further
4964 down, so there is nothing for us to do here. */
4965
4966 if (execution_direction != EXEC_REVERSE
16c381f0 4967 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4968 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4969 {
4c8c40e6 4970 CORE_ADDR pc_after_resolver =
568d6575 4971 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4972
527159b7 4973 if (debug_infrun)
3e43a32a
MS
4974 fprintf_unfiltered (gdb_stdlog,
4975 "infrun: stepped into dynsym resolve code\n");
527159b7 4976
488f131b
JB
4977 if (pc_after_resolver)
4978 {
4979 /* Set up a step-resume breakpoint at the address
4980 indicated by SKIP_SOLIB_RESOLVER. */
4981 struct symtab_and_line sr_sal;
abbb1732 4982
fe39c653 4983 init_sal (&sr_sal);
488f131b 4984 sr_sal.pc = pc_after_resolver;
6c95b8df 4985 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4986
a6d9a66e
UW
4987 insert_step_resume_breakpoint_at_sal (gdbarch,
4988 sr_sal, null_frame_id);
c5aa993b 4989 }
c906108c 4990
488f131b
JB
4991 keep_going (ecs);
4992 return;
4993 }
c906108c 4994
16c381f0
JK
4995 if (ecs->event_thread->control.step_range_end != 1
4996 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4997 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4998 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4999 {
527159b7 5000 if (debug_infrun)
3e43a32a
MS
5001 fprintf_unfiltered (gdb_stdlog,
5002 "infrun: stepped into signal trampoline\n");
42edda50 5003 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5004 a signal trampoline (either by a signal being delivered or by
5005 the signal handler returning). Just single-step until the
5006 inferior leaves the trampoline (either by calling the handler
5007 or returning). */
488f131b
JB
5008 keep_going (ecs);
5009 return;
5010 }
c906108c 5011
14132e89
MR
5012 /* If we're in the return path from a shared library trampoline,
5013 we want to proceed through the trampoline when stepping. */
5014 /* macro/2012-04-25: This needs to come before the subroutine
5015 call check below as on some targets return trampolines look
5016 like subroutine calls (MIPS16 return thunks). */
5017 if (gdbarch_in_solib_return_trampoline (gdbarch,
5018 stop_pc, ecs->stop_func_name)
5019 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5020 {
5021 /* Determine where this trampoline returns. */
5022 CORE_ADDR real_stop_pc;
5023
5024 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5025
5026 if (debug_infrun)
5027 fprintf_unfiltered (gdb_stdlog,
5028 "infrun: stepped into solib return tramp\n");
5029
5030 /* Only proceed through if we know where it's going. */
5031 if (real_stop_pc)
5032 {
5033 /* And put the step-breakpoint there and go until there. */
5034 struct symtab_and_line sr_sal;
5035
5036 init_sal (&sr_sal); /* initialize to zeroes */
5037 sr_sal.pc = real_stop_pc;
5038 sr_sal.section = find_pc_overlay (sr_sal.pc);
5039 sr_sal.pspace = get_frame_program_space (frame);
5040
5041 /* Do not specify what the fp should be when we stop since
5042 on some machines the prologue is where the new fp value
5043 is established. */
5044 insert_step_resume_breakpoint_at_sal (gdbarch,
5045 sr_sal, null_frame_id);
5046
5047 /* Restart without fiddling with the step ranges or
5048 other state. */
5049 keep_going (ecs);
5050 return;
5051 }
5052 }
5053
c17eaafe
DJ
5054 /* Check for subroutine calls. The check for the current frame
5055 equalling the step ID is not necessary - the check of the
5056 previous frame's ID is sufficient - but it is a common case and
5057 cheaper than checking the previous frame's ID.
14e60db5
DJ
5058
5059 NOTE: frame_id_eq will never report two invalid frame IDs as
5060 being equal, so to get into this block, both the current and
5061 previous frame must have valid frame IDs. */
005ca36a
JB
5062 /* The outer_frame_id check is a heuristic to detect stepping
5063 through startup code. If we step over an instruction which
5064 sets the stack pointer from an invalid value to a valid value,
5065 we may detect that as a subroutine call from the mythical
5066 "outermost" function. This could be fixed by marking
5067 outermost frames as !stack_p,code_p,special_p. Then the
5068 initial outermost frame, before sp was valid, would
ce6cca6d 5069 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5070 for more. */
edb3359d 5071 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5072 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5073 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5074 ecs->event_thread->control.step_stack_frame_id)
5075 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
5076 outer_frame_id)
5077 || step_start_function != find_pc_function (stop_pc))))
488f131b 5078 {
95918acb 5079 CORE_ADDR real_stop_pc;
8fb3e588 5080
527159b7 5081 if (debug_infrun)
8a9de0e4 5082 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5083
b7a084be 5084 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5085 {
5086 /* I presume that step_over_calls is only 0 when we're
5087 supposed to be stepping at the assembly language level
5088 ("stepi"). Just stop. */
388a8562 5089 /* And this works the same backward as frontward. MVS */
bdc36728 5090 end_stepping_range (ecs);
95918acb
AC
5091 return;
5092 }
8fb3e588 5093
388a8562
MS
5094 /* Reverse stepping through solib trampolines. */
5095
5096 if (execution_direction == EXEC_REVERSE
16c381f0 5097 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5098 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5099 || (ecs->stop_func_start == 0
5100 && in_solib_dynsym_resolve_code (stop_pc))))
5101 {
5102 /* Any solib trampoline code can be handled in reverse
5103 by simply continuing to single-step. We have already
5104 executed the solib function (backwards), and a few
5105 steps will take us back through the trampoline to the
5106 caller. */
5107 keep_going (ecs);
5108 return;
5109 }
5110
16c381f0 5111 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5112 {
b2175913
MS
5113 /* We're doing a "next".
5114
5115 Normal (forward) execution: set a breakpoint at the
5116 callee's return address (the address at which the caller
5117 will resume).
5118
5119 Reverse (backward) execution. set the step-resume
5120 breakpoint at the start of the function that we just
5121 stepped into (backwards), and continue to there. When we
6130d0b7 5122 get there, we'll need to single-step back to the caller. */
b2175913
MS
5123
5124 if (execution_direction == EXEC_REVERSE)
5125 {
acf9414f
JK
5126 /* If we're already at the start of the function, we've either
5127 just stepped backward into a single instruction function,
5128 or stepped back out of a signal handler to the first instruction
5129 of the function. Just keep going, which will single-step back
5130 to the caller. */
58c48e72 5131 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5132 {
5133 struct symtab_and_line sr_sal;
5134
5135 /* Normal function call return (static or dynamic). */
5136 init_sal (&sr_sal);
5137 sr_sal.pc = ecs->stop_func_start;
5138 sr_sal.pspace = get_frame_program_space (frame);
5139 insert_step_resume_breakpoint_at_sal (gdbarch,
5140 sr_sal, null_frame_id);
5141 }
b2175913
MS
5142 }
5143 else
568d6575 5144 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5145
8567c30f
AC
5146 keep_going (ecs);
5147 return;
5148 }
a53c66de 5149
95918acb 5150 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5151 calling routine and the real function), locate the real
5152 function. That's what tells us (a) whether we want to step
5153 into it at all, and (b) what prologue we want to run to the
5154 end of, if we do step into it. */
568d6575 5155 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5156 if (real_stop_pc == 0)
568d6575 5157 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5158 if (real_stop_pc != 0)
5159 ecs->stop_func_start = real_stop_pc;
8fb3e588 5160
db5f024e 5161 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5162 {
5163 struct symtab_and_line sr_sal;
abbb1732 5164
1b2bfbb9
RC
5165 init_sal (&sr_sal);
5166 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5167 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5168
a6d9a66e
UW
5169 insert_step_resume_breakpoint_at_sal (gdbarch,
5170 sr_sal, null_frame_id);
8fb3e588
AC
5171 keep_going (ecs);
5172 return;
1b2bfbb9
RC
5173 }
5174
95918acb 5175 /* If we have line number information for the function we are
1bfeeb0f
JL
5176 thinking of stepping into and the function isn't on the skip
5177 list, step into it.
95918acb 5178
8fb3e588
AC
5179 If there are several symtabs at that PC (e.g. with include
5180 files), just want to know whether *any* of them have line
5181 numbers. find_pc_line handles this. */
95918acb
AC
5182 {
5183 struct symtab_and_line tmp_sal;
8fb3e588 5184
95918acb 5185 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5186 if (tmp_sal.line != 0
85817405
JK
5187 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5188 &tmp_sal))
95918acb 5189 {
b2175913 5190 if (execution_direction == EXEC_REVERSE)
568d6575 5191 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5192 else
568d6575 5193 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5194 return;
5195 }
5196 }
5197
5198 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5199 set, we stop the step so that the user has a chance to switch
5200 in assembly mode. */
16c381f0 5201 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5202 && step_stop_if_no_debug)
95918acb 5203 {
bdc36728 5204 end_stepping_range (ecs);
95918acb
AC
5205 return;
5206 }
5207
b2175913
MS
5208 if (execution_direction == EXEC_REVERSE)
5209 {
acf9414f
JK
5210 /* If we're already at the start of the function, we've either just
5211 stepped backward into a single instruction function without line
5212 number info, or stepped back out of a signal handler to the first
5213 instruction of the function without line number info. Just keep
5214 going, which will single-step back to the caller. */
5215 if (ecs->stop_func_start != stop_pc)
5216 {
5217 /* Set a breakpoint at callee's start address.
5218 From there we can step once and be back in the caller. */
5219 struct symtab_and_line sr_sal;
abbb1732 5220
acf9414f
JK
5221 init_sal (&sr_sal);
5222 sr_sal.pc = ecs->stop_func_start;
5223 sr_sal.pspace = get_frame_program_space (frame);
5224 insert_step_resume_breakpoint_at_sal (gdbarch,
5225 sr_sal, null_frame_id);
5226 }
b2175913
MS
5227 }
5228 else
5229 /* Set a breakpoint at callee's return address (the address
5230 at which the caller will resume). */
568d6575 5231 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5232
95918acb 5233 keep_going (ecs);
488f131b 5234 return;
488f131b 5235 }
c906108c 5236
fdd654f3
MS
5237 /* Reverse stepping through solib trampolines. */
5238
5239 if (execution_direction == EXEC_REVERSE
16c381f0 5240 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5241 {
5242 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5243 || (ecs->stop_func_start == 0
5244 && in_solib_dynsym_resolve_code (stop_pc)))
5245 {
5246 /* Any solib trampoline code can be handled in reverse
5247 by simply continuing to single-step. We have already
5248 executed the solib function (backwards), and a few
5249 steps will take us back through the trampoline to the
5250 caller. */
5251 keep_going (ecs);
5252 return;
5253 }
5254 else if (in_solib_dynsym_resolve_code (stop_pc))
5255 {
5256 /* Stepped backward into the solib dynsym resolver.
5257 Set a breakpoint at its start and continue, then
5258 one more step will take us out. */
5259 struct symtab_and_line sr_sal;
abbb1732 5260
fdd654f3
MS
5261 init_sal (&sr_sal);
5262 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5263 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5264 insert_step_resume_breakpoint_at_sal (gdbarch,
5265 sr_sal, null_frame_id);
5266 keep_going (ecs);
5267 return;
5268 }
5269 }
5270
2afb61aa 5271 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5272
1b2bfbb9
RC
5273 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5274 the trampoline processing logic, however, there are some trampolines
5275 that have no names, so we should do trampoline handling first. */
16c381f0 5276 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5277 && ecs->stop_func_name == NULL
2afb61aa 5278 && stop_pc_sal.line == 0)
1b2bfbb9 5279 {
527159b7 5280 if (debug_infrun)
3e43a32a
MS
5281 fprintf_unfiltered (gdb_stdlog,
5282 "infrun: stepped into undebuggable function\n");
527159b7 5283
1b2bfbb9 5284 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5285 undebuggable function (where there is no debugging information
5286 and no line number corresponding to the address where the
1b2bfbb9
RC
5287 inferior stopped). Since we want to skip this kind of code,
5288 we keep going until the inferior returns from this
14e60db5
DJ
5289 function - unless the user has asked us not to (via
5290 set step-mode) or we no longer know how to get back
5291 to the call site. */
5292 if (step_stop_if_no_debug
c7ce8faa 5293 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5294 {
5295 /* If we have no line number and the step-stop-if-no-debug
5296 is set, we stop the step so that the user has a chance to
5297 switch in assembly mode. */
bdc36728 5298 end_stepping_range (ecs);
1b2bfbb9
RC
5299 return;
5300 }
5301 else
5302 {
5303 /* Set a breakpoint at callee's return address (the address
5304 at which the caller will resume). */
568d6575 5305 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5306 keep_going (ecs);
5307 return;
5308 }
5309 }
5310
16c381f0 5311 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5312 {
5313 /* It is stepi or nexti. We always want to stop stepping after
5314 one instruction. */
527159b7 5315 if (debug_infrun)
8a9de0e4 5316 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5317 end_stepping_range (ecs);
1b2bfbb9
RC
5318 return;
5319 }
5320
2afb61aa 5321 if (stop_pc_sal.line == 0)
488f131b
JB
5322 {
5323 /* We have no line number information. That means to stop
5324 stepping (does this always happen right after one instruction,
5325 when we do "s" in a function with no line numbers,
5326 or can this happen as a result of a return or longjmp?). */
527159b7 5327 if (debug_infrun)
8a9de0e4 5328 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5329 end_stepping_range (ecs);
488f131b
JB
5330 return;
5331 }
c906108c 5332
edb3359d
DJ
5333 /* Look for "calls" to inlined functions, part one. If the inline
5334 frame machinery detected some skipped call sites, we have entered
5335 a new inline function. */
5336
5337 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5338 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5339 && inline_skipped_frames (ecs->ptid))
5340 {
5341 struct symtab_and_line call_sal;
5342
5343 if (debug_infrun)
5344 fprintf_unfiltered (gdb_stdlog,
5345 "infrun: stepped into inlined function\n");
5346
5347 find_frame_sal (get_current_frame (), &call_sal);
5348
16c381f0 5349 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5350 {
5351 /* For "step", we're going to stop. But if the call site
5352 for this inlined function is on the same source line as
5353 we were previously stepping, go down into the function
5354 first. Otherwise stop at the call site. */
5355
5356 if (call_sal.line == ecs->event_thread->current_line
5357 && call_sal.symtab == ecs->event_thread->current_symtab)
5358 step_into_inline_frame (ecs->ptid);
5359
bdc36728 5360 end_stepping_range (ecs);
edb3359d
DJ
5361 return;
5362 }
5363 else
5364 {
5365 /* For "next", we should stop at the call site if it is on a
5366 different source line. Otherwise continue through the
5367 inlined function. */
5368 if (call_sal.line == ecs->event_thread->current_line
5369 && call_sal.symtab == ecs->event_thread->current_symtab)
5370 keep_going (ecs);
5371 else
bdc36728 5372 end_stepping_range (ecs);
edb3359d
DJ
5373 return;
5374 }
5375 }
5376
5377 /* Look for "calls" to inlined functions, part two. If we are still
5378 in the same real function we were stepping through, but we have
5379 to go further up to find the exact frame ID, we are stepping
5380 through a more inlined call beyond its call site. */
5381
5382 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5383 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5384 ecs->event_thread->control.step_frame_id)
edb3359d 5385 && stepped_in_from (get_current_frame (),
16c381f0 5386 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5387 {
5388 if (debug_infrun)
5389 fprintf_unfiltered (gdb_stdlog,
5390 "infrun: stepping through inlined function\n");
5391
16c381f0 5392 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5393 keep_going (ecs);
5394 else
bdc36728 5395 end_stepping_range (ecs);
edb3359d
DJ
5396 return;
5397 }
5398
2afb61aa 5399 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5400 && (ecs->event_thread->current_line != stop_pc_sal.line
5401 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5402 {
5403 /* We are at the start of a different line. So stop. Note that
5404 we don't stop if we step into the middle of a different line.
5405 That is said to make things like for (;;) statements work
5406 better. */
527159b7 5407 if (debug_infrun)
3e43a32a
MS
5408 fprintf_unfiltered (gdb_stdlog,
5409 "infrun: stepped to a different line\n");
bdc36728 5410 end_stepping_range (ecs);
488f131b
JB
5411 return;
5412 }
c906108c 5413
488f131b 5414 /* We aren't done stepping.
c906108c 5415
488f131b
JB
5416 Optimize by setting the stepping range to the line.
5417 (We might not be in the original line, but if we entered a
5418 new line in mid-statement, we continue stepping. This makes
5419 things like for(;;) statements work better.) */
c906108c 5420
16c381f0
JK
5421 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5422 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5423 ecs->event_thread->control.may_range_step = 1;
edb3359d 5424 set_step_info (frame, stop_pc_sal);
488f131b 5425
527159b7 5426 if (debug_infrun)
8a9de0e4 5427 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5428 keep_going (ecs);
104c1213
JM
5429}
5430
c447ac0b
PA
5431/* In all-stop mode, if we're currently stepping but have stopped in
5432 some other thread, we may need to switch back to the stepped
5433 thread. Returns true we set the inferior running, false if we left
5434 it stopped (and the event needs further processing). */
5435
5436static int
5437switch_back_to_stepped_thread (struct execution_control_state *ecs)
5438{
5439 if (!non_stop)
5440 {
5441 struct thread_info *tp;
99619bea 5442 struct thread_info *stepping_thread;
483805cf 5443 struct thread_info *step_over;
99619bea
PA
5444
5445 /* If any thread is blocked on some internal breakpoint, and we
5446 simply need to step over that breakpoint to get it going
5447 again, do that first. */
5448
5449 /* However, if we see an event for the stepping thread, then we
5450 know all other threads have been moved past their breakpoints
5451 already. Let the caller check whether the step is finished,
5452 etc., before deciding to move it past a breakpoint. */
5453 if (ecs->event_thread->control.step_range_end != 0)
5454 return 0;
5455
5456 /* Check if the current thread is blocked on an incomplete
5457 step-over, interrupted by a random signal. */
5458 if (ecs->event_thread->control.trap_expected
5459 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5460 {
99619bea
PA
5461 if (debug_infrun)
5462 {
5463 fprintf_unfiltered (gdb_stdlog,
5464 "infrun: need to finish step-over of [%s]\n",
5465 target_pid_to_str (ecs->event_thread->ptid));
5466 }
5467 keep_going (ecs);
5468 return 1;
5469 }
2adfaa28 5470
99619bea
PA
5471 /* Check if the current thread is blocked by a single-step
5472 breakpoint of another thread. */
5473 if (ecs->hit_singlestep_breakpoint)
5474 {
5475 if (debug_infrun)
5476 {
5477 fprintf_unfiltered (gdb_stdlog,
5478 "infrun: need to step [%s] over single-step "
5479 "breakpoint\n",
5480 target_pid_to_str (ecs->ptid));
5481 }
5482 keep_going (ecs);
5483 return 1;
5484 }
5485
483805cf
PA
5486 /* Otherwise, we no longer expect a trap in the current thread.
5487 Clear the trap_expected flag before switching back -- this is
5488 what keep_going does as well, if we call it. */
5489 ecs->event_thread->control.trap_expected = 0;
5490
70509625
PA
5491 /* Likewise, clear the signal if it should not be passed. */
5492 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5493 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5494
483805cf
PA
5495 /* If scheduler locking applies even if not stepping, there's no
5496 need to walk over threads. Above we've checked whether the
5497 current thread is stepping. If some other thread not the
5498 event thread is stepping, then it must be that scheduler
5499 locking is not in effect. */
5500 if (schedlock_applies (0))
5501 return 0;
5502
5503 /* Look for the stepping/nexting thread, and check if any other
5504 thread other than the stepping thread needs to start a
5505 step-over. Do all step-overs before actually proceeding with
5506 step/next/etc. */
5507 stepping_thread = NULL;
5508 step_over = NULL;
034f788c 5509 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5510 {
5511 /* Ignore threads of processes we're not resuming. */
5512 if (!sched_multi
5513 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5514 continue;
5515
5516 /* When stepping over a breakpoint, we lock all threads
5517 except the one that needs to move past the breakpoint.
5518 If a non-event thread has this set, the "incomplete
5519 step-over" check above should have caught it earlier. */
5520 gdb_assert (!tp->control.trap_expected);
5521
5522 /* Did we find the stepping thread? */
5523 if (tp->control.step_range_end)
5524 {
5525 /* Yep. There should only one though. */
5526 gdb_assert (stepping_thread == NULL);
5527
5528 /* The event thread is handled at the top, before we
5529 enter this loop. */
5530 gdb_assert (tp != ecs->event_thread);
5531
5532 /* If some thread other than the event thread is
5533 stepping, then scheduler locking can't be in effect,
5534 otherwise we wouldn't have resumed the current event
5535 thread in the first place. */
35420406 5536 gdb_assert (!schedlock_applies (currently_stepping (tp)));
483805cf
PA
5537
5538 stepping_thread = tp;
5539 }
5540 else if (thread_still_needs_step_over (tp))
5541 {
5542 step_over = tp;
5543
5544 /* At the top we've returned early if the event thread
5545 is stepping. If some other thread not the event
5546 thread is stepping, then scheduler locking can't be
5547 in effect, and we can resume this thread. No need to
5548 keep looking for the stepping thread then. */
5549 break;
5550 }
5551 }
99619bea 5552
483805cf 5553 if (step_over != NULL)
99619bea 5554 {
483805cf 5555 tp = step_over;
99619bea 5556 if (debug_infrun)
c447ac0b 5557 {
99619bea
PA
5558 fprintf_unfiltered (gdb_stdlog,
5559 "infrun: need to step-over [%s]\n",
5560 target_pid_to_str (tp->ptid));
c447ac0b
PA
5561 }
5562
483805cf 5563 /* Only the stepping thread should have this set. */
99619bea
PA
5564 gdb_assert (tp->control.step_range_end == 0);
5565
99619bea
PA
5566 ecs->ptid = tp->ptid;
5567 ecs->event_thread = tp;
5568 switch_to_thread (ecs->ptid);
5569 keep_going (ecs);
5570 return 1;
5571 }
5572
483805cf 5573 if (stepping_thread != NULL)
99619bea
PA
5574 {
5575 struct frame_info *frame;
5576 struct gdbarch *gdbarch;
5577
483805cf
PA
5578 tp = stepping_thread;
5579
c447ac0b
PA
5580 /* If the stepping thread exited, then don't try to switch
5581 back and resume it, which could fail in several different
5582 ways depending on the target. Instead, just keep going.
5583
5584 We can find a stepping dead thread in the thread list in
5585 two cases:
5586
5587 - The target supports thread exit events, and when the
5588 target tries to delete the thread from the thread list,
5589 inferior_ptid pointed at the exiting thread. In such
5590 case, calling delete_thread does not really remove the
5591 thread from the list; instead, the thread is left listed,
5592 with 'exited' state.
5593
5594 - The target's debug interface does not support thread
5595 exit events, and so we have no idea whatsoever if the
5596 previously stepping thread is still alive. For that
5597 reason, we need to synchronously query the target
5598 now. */
5599 if (is_exited (tp->ptid)
5600 || !target_thread_alive (tp->ptid))
5601 {
5602 if (debug_infrun)
5603 fprintf_unfiltered (gdb_stdlog,
5604 "infrun: not switching back to "
5605 "stepped thread, it has vanished\n");
5606
5607 delete_thread (tp->ptid);
5608 keep_going (ecs);
5609 return 1;
5610 }
5611
c447ac0b
PA
5612 if (debug_infrun)
5613 fprintf_unfiltered (gdb_stdlog,
5614 "infrun: switching back to stepped thread\n");
5615
5616 ecs->event_thread = tp;
5617 ecs->ptid = tp->ptid;
5618 context_switch (ecs->ptid);
2adfaa28
PA
5619
5620 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5621 frame = get_current_frame ();
5622 gdbarch = get_frame_arch (frame);
5623
5624 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5625 changed, then that thread has trapped or been signaled,
5626 but the event has not been reported to GDB yet. Re-poll
5627 the target looking for this particular thread's event
5628 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5629
5630 - setting a break at the current PC
5631 - resuming that particular thread, only (by setting
5632 trap expected)
5633
5634 This prevents us continuously moving the single-step
5635 breakpoint forward, one instruction at a time,
5636 overstepping. */
5637
af48d08f 5638 if (stop_pc != tp->prev_pc)
2adfaa28
PA
5639 {
5640 if (debug_infrun)
5641 fprintf_unfiltered (gdb_stdlog,
5642 "infrun: expected thread advanced also\n");
5643
7c16b83e
PA
5644 /* Clear the info of the previous step-over, as it's no
5645 longer valid. It's what keep_going would do too, if
5646 we called it. Must do this before trying to insert
5647 the sss breakpoint, otherwise if we were previously
5648 trying to step over this exact address in another
5649 thread, the breakpoint ends up not installed. */
5650 clear_step_over_info ();
5651
2adfaa28
PA
5652 insert_single_step_breakpoint (get_frame_arch (frame),
5653 get_frame_address_space (frame),
5654 stop_pc);
2adfaa28 5655 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5656
5657 resume (0, GDB_SIGNAL_0);
5658 prepare_to_wait (ecs);
5659 }
5660 else
5661 {
5662 if (debug_infrun)
5663 fprintf_unfiltered (gdb_stdlog,
5664 "infrun: expected thread still "
5665 "hasn't advanced\n");
5666 keep_going (ecs);
5667 }
5668
c447ac0b
PA
5669 return 1;
5670 }
5671 }
5672 return 0;
5673}
5674
b3444185 5675/* Is thread TP in the middle of single-stepping? */
104c1213 5676
a289b8f6 5677static int
b3444185 5678currently_stepping (struct thread_info *tp)
a7212384 5679{
8358c15c
JK
5680 return ((tp->control.step_range_end
5681 && tp->control.step_resume_breakpoint == NULL)
5682 || tp->control.trap_expected
af48d08f 5683 || tp->stepped_breakpoint
8358c15c 5684 || bpstat_should_step ());
a7212384
UW
5685}
5686
b2175913
MS
5687/* Inferior has stepped into a subroutine call with source code that
5688 we should not step over. Do step to the first line of code in
5689 it. */
c2c6d25f
JM
5690
5691static void
568d6575
UW
5692handle_step_into_function (struct gdbarch *gdbarch,
5693 struct execution_control_state *ecs)
c2c6d25f 5694{
43f3e411 5695 struct compunit_symtab *cust;
2afb61aa 5696 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5697
7e324e48
GB
5698 fill_in_stop_func (gdbarch, ecs);
5699
43f3e411
DE
5700 cust = find_pc_compunit_symtab (stop_pc);
5701 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5702 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5703 ecs->stop_func_start);
c2c6d25f 5704
2afb61aa 5705 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5706 /* Use the step_resume_break to step until the end of the prologue,
5707 even if that involves jumps (as it seems to on the vax under
5708 4.2). */
5709 /* If the prologue ends in the middle of a source line, continue to
5710 the end of that source line (if it is still within the function).
5711 Otherwise, just go to end of prologue. */
2afb61aa
PA
5712 if (stop_func_sal.end
5713 && stop_func_sal.pc != ecs->stop_func_start
5714 && stop_func_sal.end < ecs->stop_func_end)
5715 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5716
2dbd5e30
KB
5717 /* Architectures which require breakpoint adjustment might not be able
5718 to place a breakpoint at the computed address. If so, the test
5719 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5720 ecs->stop_func_start to an address at which a breakpoint may be
5721 legitimately placed.
8fb3e588 5722
2dbd5e30
KB
5723 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5724 made, GDB will enter an infinite loop when stepping through
5725 optimized code consisting of VLIW instructions which contain
5726 subinstructions corresponding to different source lines. On
5727 FR-V, it's not permitted to place a breakpoint on any but the
5728 first subinstruction of a VLIW instruction. When a breakpoint is
5729 set, GDB will adjust the breakpoint address to the beginning of
5730 the VLIW instruction. Thus, we need to make the corresponding
5731 adjustment here when computing the stop address. */
8fb3e588 5732
568d6575 5733 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5734 {
5735 ecs->stop_func_start
568d6575 5736 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5737 ecs->stop_func_start);
2dbd5e30
KB
5738 }
5739
c2c6d25f
JM
5740 if (ecs->stop_func_start == stop_pc)
5741 {
5742 /* We are already there: stop now. */
bdc36728 5743 end_stepping_range (ecs);
c2c6d25f
JM
5744 return;
5745 }
5746 else
5747 {
5748 /* Put the step-breakpoint there and go until there. */
fe39c653 5749 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5750 sr_sal.pc = ecs->stop_func_start;
5751 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5752 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5753
c2c6d25f 5754 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5755 some machines the prologue is where the new fp value is
5756 established. */
a6d9a66e 5757 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5758
5759 /* And make sure stepping stops right away then. */
16c381f0
JK
5760 ecs->event_thread->control.step_range_end
5761 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5762 }
5763 keep_going (ecs);
5764}
d4f3574e 5765
b2175913
MS
5766/* Inferior has stepped backward into a subroutine call with source
5767 code that we should not step over. Do step to the beginning of the
5768 last line of code in it. */
5769
5770static void
568d6575
UW
5771handle_step_into_function_backward (struct gdbarch *gdbarch,
5772 struct execution_control_state *ecs)
b2175913 5773{
43f3e411 5774 struct compunit_symtab *cust;
167e4384 5775 struct symtab_and_line stop_func_sal;
b2175913 5776
7e324e48
GB
5777 fill_in_stop_func (gdbarch, ecs);
5778
43f3e411
DE
5779 cust = find_pc_compunit_symtab (stop_pc);
5780 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5781 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5782 ecs->stop_func_start);
5783
5784 stop_func_sal = find_pc_line (stop_pc, 0);
5785
5786 /* OK, we're just going to keep stepping here. */
5787 if (stop_func_sal.pc == stop_pc)
5788 {
5789 /* We're there already. Just stop stepping now. */
bdc36728 5790 end_stepping_range (ecs);
b2175913
MS
5791 }
5792 else
5793 {
5794 /* Else just reset the step range and keep going.
5795 No step-resume breakpoint, they don't work for
5796 epilogues, which can have multiple entry paths. */
16c381f0
JK
5797 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5798 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5799 keep_going (ecs);
5800 }
5801 return;
5802}
5803
d3169d93 5804/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5805 This is used to both functions and to skip over code. */
5806
5807static void
2c03e5be
PA
5808insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5809 struct symtab_and_line sr_sal,
5810 struct frame_id sr_id,
5811 enum bptype sr_type)
44cbf7b5 5812{
611c83ae
PA
5813 /* There should never be more than one step-resume or longjmp-resume
5814 breakpoint per thread, so we should never be setting a new
44cbf7b5 5815 step_resume_breakpoint when one is already active. */
8358c15c 5816 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5817 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5818
5819 if (debug_infrun)
5820 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5821 "infrun: inserting step-resume breakpoint at %s\n",
5822 paddress (gdbarch, sr_sal.pc));
d3169d93 5823
8358c15c 5824 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5825 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5826}
5827
9da8c2a0 5828void
2c03e5be
PA
5829insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5830 struct symtab_and_line sr_sal,
5831 struct frame_id sr_id)
5832{
5833 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5834 sr_sal, sr_id,
5835 bp_step_resume);
44cbf7b5 5836}
7ce450bd 5837
2c03e5be
PA
5838/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5839 This is used to skip a potential signal handler.
7ce450bd 5840
14e60db5
DJ
5841 This is called with the interrupted function's frame. The signal
5842 handler, when it returns, will resume the interrupted function at
5843 RETURN_FRAME.pc. */
d303a6c7
AC
5844
5845static void
2c03e5be 5846insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5847{
5848 struct symtab_and_line sr_sal;
a6d9a66e 5849 struct gdbarch *gdbarch;
d303a6c7 5850
f4c1edd8 5851 gdb_assert (return_frame != NULL);
d303a6c7
AC
5852 init_sal (&sr_sal); /* initialize to zeros */
5853
a6d9a66e 5854 gdbarch = get_frame_arch (return_frame);
568d6575 5855 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5856 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5857 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5858
2c03e5be
PA
5859 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5860 get_stack_frame_id (return_frame),
5861 bp_hp_step_resume);
d303a6c7
AC
5862}
5863
2c03e5be
PA
5864/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5865 is used to skip a function after stepping into it (for "next" or if
5866 the called function has no debugging information).
14e60db5
DJ
5867
5868 The current function has almost always been reached by single
5869 stepping a call or return instruction. NEXT_FRAME belongs to the
5870 current function, and the breakpoint will be set at the caller's
5871 resume address.
5872
5873 This is a separate function rather than reusing
2c03e5be 5874 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5875 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5876 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5877
5878static void
5879insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5880{
5881 struct symtab_and_line sr_sal;
a6d9a66e 5882 struct gdbarch *gdbarch;
14e60db5
DJ
5883
5884 /* We shouldn't have gotten here if we don't know where the call site
5885 is. */
c7ce8faa 5886 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5887
5888 init_sal (&sr_sal); /* initialize to zeros */
5889
a6d9a66e 5890 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5891 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5892 frame_unwind_caller_pc (next_frame));
14e60db5 5893 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5894 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5895
a6d9a66e 5896 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5897 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5898}
5899
611c83ae
PA
5900/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5901 new breakpoint at the target of a jmp_buf. The handling of
5902 longjmp-resume uses the same mechanisms used for handling
5903 "step-resume" breakpoints. */
5904
5905static void
a6d9a66e 5906insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 5907{
e81a37f7
TT
5908 /* There should never be more than one longjmp-resume breakpoint per
5909 thread, so we should never be setting a new
611c83ae 5910 longjmp_resume_breakpoint when one is already active. */
e81a37f7 5911 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
5912
5913 if (debug_infrun)
5914 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5915 "infrun: inserting longjmp-resume breakpoint at %s\n",
5916 paddress (gdbarch, pc));
611c83ae 5917
e81a37f7 5918 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 5919 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5920}
5921
186c406b
TT
5922/* Insert an exception resume breakpoint. TP is the thread throwing
5923 the exception. The block B is the block of the unwinder debug hook
5924 function. FRAME is the frame corresponding to the call to this
5925 function. SYM is the symbol of the function argument holding the
5926 target PC of the exception. */
5927
5928static void
5929insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 5930 const struct block *b,
186c406b
TT
5931 struct frame_info *frame,
5932 struct symbol *sym)
5933{
bfd189b1 5934 volatile struct gdb_exception e;
186c406b
TT
5935
5936 /* We want to ignore errors here. */
5937 TRY_CATCH (e, RETURN_MASK_ERROR)
5938 {
5939 struct symbol *vsym;
5940 struct value *value;
5941 CORE_ADDR handler;
5942 struct breakpoint *bp;
5943
5944 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5945 value = read_var_value (vsym, frame);
5946 /* If the value was optimized out, revert to the old behavior. */
5947 if (! value_optimized_out (value))
5948 {
5949 handler = value_as_address (value);
5950
5951 if (debug_infrun)
5952 fprintf_unfiltered (gdb_stdlog,
5953 "infrun: exception resume at %lx\n",
5954 (unsigned long) handler);
5955
5956 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5957 handler, bp_exception_resume);
c70a6932
JK
5958
5959 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5960 frame = NULL;
5961
186c406b
TT
5962 bp->thread = tp->num;
5963 inferior_thread ()->control.exception_resume_breakpoint = bp;
5964 }
5965 }
5966}
5967
28106bc2
SDJ
5968/* A helper for check_exception_resume that sets an
5969 exception-breakpoint based on a SystemTap probe. */
5970
5971static void
5972insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 5973 const struct bound_probe *probe,
28106bc2
SDJ
5974 struct frame_info *frame)
5975{
5976 struct value *arg_value;
5977 CORE_ADDR handler;
5978 struct breakpoint *bp;
5979
5980 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5981 if (!arg_value)
5982 return;
5983
5984 handler = value_as_address (arg_value);
5985
5986 if (debug_infrun)
5987 fprintf_unfiltered (gdb_stdlog,
5988 "infrun: exception resume at %s\n",
6bac7473 5989 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
5990 handler));
5991
5992 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5993 handler, bp_exception_resume);
5994 bp->thread = tp->num;
5995 inferior_thread ()->control.exception_resume_breakpoint = bp;
5996}
5997
186c406b
TT
5998/* This is called when an exception has been intercepted. Check to
5999 see whether the exception's destination is of interest, and if so,
6000 set an exception resume breakpoint there. */
6001
6002static void
6003check_exception_resume (struct execution_control_state *ecs,
28106bc2 6004 struct frame_info *frame)
186c406b 6005{
bfd189b1 6006 volatile struct gdb_exception e;
729662a5 6007 struct bound_probe probe;
28106bc2
SDJ
6008 struct symbol *func;
6009
6010 /* First see if this exception unwinding breakpoint was set via a
6011 SystemTap probe point. If so, the probe has two arguments: the
6012 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6013 set a breakpoint there. */
6bac7473 6014 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6015 if (probe.probe)
28106bc2 6016 {
729662a5 6017 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6018 return;
6019 }
6020
6021 func = get_frame_function (frame);
6022 if (!func)
6023 return;
186c406b
TT
6024
6025 TRY_CATCH (e, RETURN_MASK_ERROR)
6026 {
3977b71f 6027 const struct block *b;
8157b174 6028 struct block_iterator iter;
186c406b
TT
6029 struct symbol *sym;
6030 int argno = 0;
6031
6032 /* The exception breakpoint is a thread-specific breakpoint on
6033 the unwinder's debug hook, declared as:
6034
6035 void _Unwind_DebugHook (void *cfa, void *handler);
6036
6037 The CFA argument indicates the frame to which control is
6038 about to be transferred. HANDLER is the destination PC.
6039
6040 We ignore the CFA and set a temporary breakpoint at HANDLER.
6041 This is not extremely efficient but it avoids issues in gdb
6042 with computing the DWARF CFA, and it also works even in weird
6043 cases such as throwing an exception from inside a signal
6044 handler. */
6045
6046 b = SYMBOL_BLOCK_VALUE (func);
6047 ALL_BLOCK_SYMBOLS (b, iter, sym)
6048 {
6049 if (!SYMBOL_IS_ARGUMENT (sym))
6050 continue;
6051
6052 if (argno == 0)
6053 ++argno;
6054 else
6055 {
6056 insert_exception_resume_breakpoint (ecs->event_thread,
6057 b, frame, sym);
6058 break;
6059 }
6060 }
6061 }
6062}
6063
104c1213 6064static void
22bcd14b 6065stop_waiting (struct execution_control_state *ecs)
104c1213 6066{
527159b7 6067 if (debug_infrun)
22bcd14b 6068 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6069
31e77af2
PA
6070 clear_step_over_info ();
6071
cd0fc7c3
SS
6072 /* Let callers know we don't want to wait for the inferior anymore. */
6073 ecs->wait_some_more = 0;
6074}
6075
a9ba6bae
PA
6076/* Called when we should continue running the inferior, because the
6077 current event doesn't cause a user visible stop. This does the
6078 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6079
6080static void
6081keep_going (struct execution_control_state *ecs)
6082{
c4dbc9af
PA
6083 /* Make sure normal_stop is called if we get a QUIT handled before
6084 reaching resume. */
6085 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6086
d4f3574e 6087 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6088 ecs->event_thread->prev_pc
6089 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6090
16c381f0 6091 if (ecs->event_thread->control.trap_expected
a493e3e2 6092 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6093 {
a9ba6bae
PA
6094 /* We haven't yet gotten our trap, and either: intercepted a
6095 non-signal event (e.g., a fork); or took a signal which we
6096 are supposed to pass through to the inferior. Simply
6097 continue. */
c4dbc9af 6098 discard_cleanups (old_cleanups);
2020b7ab 6099 resume (currently_stepping (ecs->event_thread),
16c381f0 6100 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6101 }
6102 else
6103 {
31e77af2
PA
6104 volatile struct gdb_exception e;
6105 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6106 int remove_bp;
6107 int remove_wps;
31e77af2 6108
d4f3574e 6109 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6110 anyway (if we got a signal, the user asked it be passed to
6111 the child)
6112 -- or --
6113 We got our expected trap, but decided we should resume from
6114 it.
d4f3574e 6115
a9ba6bae 6116 We're going to run this baby now!
d4f3574e 6117
c36b740a
VP
6118 Note that insert_breakpoints won't try to re-insert
6119 already inserted breakpoints. Therefore, we don't
6120 care if breakpoints were already inserted, or not. */
a9ba6bae 6121
31e77af2
PA
6122 /* If we need to step over a breakpoint, and we're not using
6123 displaced stepping to do so, insert all breakpoints
6124 (watchpoints, etc.) but the one we're stepping over, step one
6125 instruction, and then re-insert the breakpoint when that step
6126 is finished. */
963f9c80
PA
6127
6128 remove_bp = (ecs->hit_singlestep_breakpoint
6129 || thread_still_needs_step_over (ecs->event_thread));
6130 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6131 && !target_have_steppable_watchpoint);
6132
6133 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6134 {
31e77af2 6135 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6136 regcache_read_pc (regcache), remove_wps);
45e8c884 6137 }
963f9c80
PA
6138 else if (remove_wps)
6139 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6140 else
31e77af2 6141 clear_step_over_info ();
abbb1732 6142
31e77af2
PA
6143 /* Stop stepping if inserting breakpoints fails. */
6144 TRY_CATCH (e, RETURN_MASK_ERROR)
6145 {
6146 insert_breakpoints ();
6147 }
6148 if (e.reason < 0)
6149 {
6150 exception_print (gdb_stderr, e);
22bcd14b 6151 stop_waiting (ecs);
31e77af2 6152 return;
d4f3574e
SS
6153 }
6154
963f9c80 6155 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6156
a9ba6bae
PA
6157 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6158 explicitly specifies that such a signal should be delivered
6159 to the target program). Typically, that would occur when a
6160 user is debugging a target monitor on a simulator: the target
6161 monitor sets a breakpoint; the simulator encounters this
6162 breakpoint and halts the simulation handing control to GDB;
6163 GDB, noting that the stop address doesn't map to any known
6164 breakpoint, returns control back to the simulator; the
6165 simulator then delivers the hardware equivalent of a
6166 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6167 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6168 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6169 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6170
c4dbc9af 6171 discard_cleanups (old_cleanups);
2020b7ab 6172 resume (currently_stepping (ecs->event_thread),
16c381f0 6173 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6174 }
6175
488f131b 6176 prepare_to_wait (ecs);
d4f3574e
SS
6177}
6178
104c1213
JM
6179/* This function normally comes after a resume, before
6180 handle_inferior_event exits. It takes care of any last bits of
6181 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6182
104c1213
JM
6183static void
6184prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6185{
527159b7 6186 if (debug_infrun)
8a9de0e4 6187 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6188
104c1213
JM
6189 /* This is the old end of the while loop. Let everybody know we
6190 want to wait for the inferior some more and get called again
6191 soon. */
6192 ecs->wait_some_more = 1;
c906108c 6193}
11cf8741 6194
fd664c91 6195/* We are done with the step range of a step/next/si/ni command.
b57bacec 6196 Called once for each n of a "step n" operation. */
fd664c91
PA
6197
6198static void
bdc36728 6199end_stepping_range (struct execution_control_state *ecs)
fd664c91 6200{
bdc36728 6201 ecs->event_thread->control.stop_step = 1;
bdc36728 6202 stop_waiting (ecs);
fd664c91
PA
6203}
6204
33d62d64
JK
6205/* Several print_*_reason functions to print why the inferior has stopped.
6206 We always print something when the inferior exits, or receives a signal.
6207 The rest of the cases are dealt with later on in normal_stop and
6208 print_it_typical. Ideally there should be a call to one of these
6209 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6210 stop_waiting is called.
33d62d64 6211
fd664c91
PA
6212 Note that we don't call these directly, instead we delegate that to
6213 the interpreters, through observers. Interpreters then call these
6214 with whatever uiout is right. */
33d62d64 6215
fd664c91
PA
6216void
6217print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6218{
fd664c91 6219 /* For CLI-like interpreters, print nothing. */
33d62d64 6220
fd664c91
PA
6221 if (ui_out_is_mi_like_p (uiout))
6222 {
6223 ui_out_field_string (uiout, "reason",
6224 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6225 }
6226}
33d62d64 6227
fd664c91
PA
6228void
6229print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6230{
33d62d64
JK
6231 annotate_signalled ();
6232 if (ui_out_is_mi_like_p (uiout))
6233 ui_out_field_string
6234 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6235 ui_out_text (uiout, "\nProgram terminated with signal ");
6236 annotate_signal_name ();
6237 ui_out_field_string (uiout, "signal-name",
2ea28649 6238 gdb_signal_to_name (siggnal));
33d62d64
JK
6239 annotate_signal_name_end ();
6240 ui_out_text (uiout, ", ");
6241 annotate_signal_string ();
6242 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6243 gdb_signal_to_string (siggnal));
33d62d64
JK
6244 annotate_signal_string_end ();
6245 ui_out_text (uiout, ".\n");
6246 ui_out_text (uiout, "The program no longer exists.\n");
6247}
6248
fd664c91
PA
6249void
6250print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6251{
fda326dd
TT
6252 struct inferior *inf = current_inferior ();
6253 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6254
33d62d64
JK
6255 annotate_exited (exitstatus);
6256 if (exitstatus)
6257 {
6258 if (ui_out_is_mi_like_p (uiout))
6259 ui_out_field_string (uiout, "reason",
6260 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6261 ui_out_text (uiout, "[Inferior ");
6262 ui_out_text (uiout, plongest (inf->num));
6263 ui_out_text (uiout, " (");
6264 ui_out_text (uiout, pidstr);
6265 ui_out_text (uiout, ") exited with code ");
33d62d64 6266 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6267 ui_out_text (uiout, "]\n");
33d62d64
JK
6268 }
6269 else
11cf8741 6270 {
9dc5e2a9 6271 if (ui_out_is_mi_like_p (uiout))
034dad6f 6272 ui_out_field_string
33d62d64 6273 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6274 ui_out_text (uiout, "[Inferior ");
6275 ui_out_text (uiout, plongest (inf->num));
6276 ui_out_text (uiout, " (");
6277 ui_out_text (uiout, pidstr);
6278 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6279 }
33d62d64
JK
6280}
6281
fd664c91
PA
6282void
6283print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6284{
6285 annotate_signal ();
6286
a493e3e2 6287 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6288 {
6289 struct thread_info *t = inferior_thread ();
6290
6291 ui_out_text (uiout, "\n[");
6292 ui_out_field_string (uiout, "thread-name",
6293 target_pid_to_str (t->ptid));
6294 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6295 ui_out_text (uiout, " stopped");
6296 }
6297 else
6298 {
6299 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6300 annotate_signal_name ();
33d62d64
JK
6301 if (ui_out_is_mi_like_p (uiout))
6302 ui_out_field_string
6303 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6304 ui_out_field_string (uiout, "signal-name",
2ea28649 6305 gdb_signal_to_name (siggnal));
8b93c638
JM
6306 annotate_signal_name_end ();
6307 ui_out_text (uiout, ", ");
6308 annotate_signal_string ();
488f131b 6309 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6310 gdb_signal_to_string (siggnal));
8b93c638 6311 annotate_signal_string_end ();
33d62d64
JK
6312 }
6313 ui_out_text (uiout, ".\n");
6314}
252fbfc8 6315
fd664c91
PA
6316void
6317print_no_history_reason (struct ui_out *uiout)
33d62d64 6318{
fd664c91 6319 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6320}
43ff13b4 6321
0c7e1a46
PA
6322/* Print current location without a level number, if we have changed
6323 functions or hit a breakpoint. Print source line if we have one.
6324 bpstat_print contains the logic deciding in detail what to print,
6325 based on the event(s) that just occurred. */
6326
6327void
6328print_stop_event (struct target_waitstatus *ws)
6329{
6330 int bpstat_ret;
6331 int source_flag;
6332 int do_frame_printing = 1;
6333 struct thread_info *tp = inferior_thread ();
6334
6335 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6336 switch (bpstat_ret)
6337 {
6338 case PRINT_UNKNOWN:
6339 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6340 should) carry around the function and does (or should) use
6341 that when doing a frame comparison. */
6342 if (tp->control.stop_step
6343 && frame_id_eq (tp->control.step_frame_id,
6344 get_frame_id (get_current_frame ()))
6345 && step_start_function == find_pc_function (stop_pc))
6346 {
6347 /* Finished step, just print source line. */
6348 source_flag = SRC_LINE;
6349 }
6350 else
6351 {
6352 /* Print location and source line. */
6353 source_flag = SRC_AND_LOC;
6354 }
6355 break;
6356 case PRINT_SRC_AND_LOC:
6357 /* Print location and source line. */
6358 source_flag = SRC_AND_LOC;
6359 break;
6360 case PRINT_SRC_ONLY:
6361 source_flag = SRC_LINE;
6362 break;
6363 case PRINT_NOTHING:
6364 /* Something bogus. */
6365 source_flag = SRC_LINE;
6366 do_frame_printing = 0;
6367 break;
6368 default:
6369 internal_error (__FILE__, __LINE__, _("Unknown value."));
6370 }
6371
6372 /* The behavior of this routine with respect to the source
6373 flag is:
6374 SRC_LINE: Print only source line
6375 LOCATION: Print only location
6376 SRC_AND_LOC: Print location and source line. */
6377 if (do_frame_printing)
6378 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6379
6380 /* Display the auto-display expressions. */
6381 do_displays ();
6382}
6383
c906108c
SS
6384/* Here to return control to GDB when the inferior stops for real.
6385 Print appropriate messages, remove breakpoints, give terminal our modes.
6386
6387 STOP_PRINT_FRAME nonzero means print the executing frame
6388 (pc, function, args, file, line number and line text).
6389 BREAKPOINTS_FAILED nonzero means stop was due to error
6390 attempting to insert breakpoints. */
6391
6392void
96baa820 6393normal_stop (void)
c906108c 6394{
73b65bb0
DJ
6395 struct target_waitstatus last;
6396 ptid_t last_ptid;
29f49a6a 6397 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6398
6399 get_last_target_status (&last_ptid, &last);
6400
29f49a6a
PA
6401 /* If an exception is thrown from this point on, make sure to
6402 propagate GDB's knowledge of the executing state to the
6403 frontend/user running state. A QUIT is an easy exception to see
6404 here, so do this before any filtered output. */
c35b1492
PA
6405 if (!non_stop)
6406 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6407 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6408 && last.kind != TARGET_WAITKIND_EXITED
6409 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6410 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6411
b57bacec
PA
6412 /* As we're presenting a stop, and potentially removing breakpoints,
6413 update the thread list so we can tell whether there are threads
6414 running on the target. With target remote, for example, we can
6415 only learn about new threads when we explicitly update the thread
6416 list. Do this before notifying the interpreters about signal
6417 stops, end of stepping ranges, etc., so that the "new thread"
6418 output is emitted before e.g., "Program received signal FOO",
6419 instead of after. */
6420 update_thread_list ();
6421
6422 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6423 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6424
c906108c
SS
6425 /* As with the notification of thread events, we want to delay
6426 notifying the user that we've switched thread context until
6427 the inferior actually stops.
6428
73b65bb0
DJ
6429 There's no point in saying anything if the inferior has exited.
6430 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6431 "received a signal".
6432
6433 Also skip saying anything in non-stop mode. In that mode, as we
6434 don't want GDB to switch threads behind the user's back, to avoid
6435 races where the user is typing a command to apply to thread x,
6436 but GDB switches to thread y before the user finishes entering
6437 the command, fetch_inferior_event installs a cleanup to restore
6438 the current thread back to the thread the user had selected right
6439 after this event is handled, so we're not really switching, only
6440 informing of a stop. */
4f8d22e3
PA
6441 if (!non_stop
6442 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6443 && target_has_execution
6444 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6445 && last.kind != TARGET_WAITKIND_EXITED
6446 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6447 {
6448 target_terminal_ours_for_output ();
a3f17187 6449 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6450 target_pid_to_str (inferior_ptid));
b8fa951a 6451 annotate_thread_changed ();
39f77062 6452 previous_inferior_ptid = inferior_ptid;
c906108c 6453 }
c906108c 6454
0e5bf2a8
PA
6455 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6456 {
6457 gdb_assert (sync_execution || !target_can_async_p ());
6458
6459 target_terminal_ours_for_output ();
6460 printf_filtered (_("No unwaited-for children left.\n"));
6461 }
6462
b57bacec 6463 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6464 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6465 {
6466 if (remove_breakpoints ())
6467 {
6468 target_terminal_ours_for_output ();
3e43a32a
MS
6469 printf_filtered (_("Cannot remove breakpoints because "
6470 "program is no longer writable.\nFurther "
6471 "execution is probably impossible.\n"));
c906108c
SS
6472 }
6473 }
c906108c 6474
c906108c
SS
6475 /* If an auto-display called a function and that got a signal,
6476 delete that auto-display to avoid an infinite recursion. */
6477
6478 if (stopped_by_random_signal)
6479 disable_current_display ();
6480
b57bacec 6481 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6482 if (target_has_execution
6483 && last.kind != TARGET_WAITKIND_SIGNALLED
6484 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6485 && inferior_thread ()->control.stop_step)
b57bacec 6486 {
31cc0b80 6487 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6488 n > 1 */
6489 if (inferior_thread ()->step_multi)
6490 goto done;
6491
6492 observer_notify_end_stepping_range ();
6493 }
c906108c
SS
6494
6495 target_terminal_ours ();
0f641c01 6496 async_enable_stdin ();
c906108c 6497
7abfe014
DJ
6498 /* Set the current source location. This will also happen if we
6499 display the frame below, but the current SAL will be incorrect
6500 during a user hook-stop function. */
d729566a 6501 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6502 set_current_sal_from_frame (get_current_frame ());
7abfe014 6503
251bde03
PA
6504 /* Let the user/frontend see the threads as stopped, but do nothing
6505 if the thread was running an infcall. We may be e.g., evaluating
6506 a breakpoint condition. In that case, the thread had state
6507 THREAD_RUNNING before the infcall, and shall remain set to
6508 running, all without informing the user/frontend about state
6509 transition changes. If this is actually a call command, then the
6510 thread was originally already stopped, so there's no state to
6511 finish either. */
6512 if (target_has_execution && inferior_thread ()->control.in_infcall)
6513 discard_cleanups (old_chain);
6514 else
6515 do_cleanups (old_chain);
dd7e2d2b
PA
6516
6517 /* Look up the hook_stop and run it (CLI internally handles problem
6518 of stop_command's pre-hook not existing). */
6519 if (stop_command)
6520 catch_errors (hook_stop_stub, stop_command,
6521 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6522
d729566a 6523 if (!has_stack_frames ())
d51fd4c8 6524 goto done;
c906108c 6525
32400beb
PA
6526 if (last.kind == TARGET_WAITKIND_SIGNALLED
6527 || last.kind == TARGET_WAITKIND_EXITED)
6528 goto done;
6529
c906108c
SS
6530 /* Select innermost stack frame - i.e., current frame is frame 0,
6531 and current location is based on that.
6532 Don't do this on return from a stack dummy routine,
1777feb0 6533 or if the program has exited. */
c906108c
SS
6534
6535 if (!stop_stack_dummy)
6536 {
0f7d239c 6537 select_frame (get_current_frame ());
c906108c 6538
d01a8610
AS
6539 /* If --batch-silent is enabled then there's no need to print the current
6540 source location, and to try risks causing an error message about
6541 missing source files. */
6542 if (stop_print_frame && !batch_silent)
0c7e1a46 6543 print_stop_event (&last);
c906108c
SS
6544 }
6545
6546 /* Save the function value return registers, if we care.
6547 We might be about to restore their previous contents. */
9da8c2a0
PA
6548 if (inferior_thread ()->control.proceed_to_finish
6549 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6550 {
6551 /* This should not be necessary. */
6552 if (stop_registers)
6553 regcache_xfree (stop_registers);
6554
6555 /* NB: The copy goes through to the target picking up the value of
6556 all the registers. */
6557 stop_registers = regcache_dup (get_current_regcache ());
6558 }
c906108c 6559
aa7d318d 6560 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6561 {
b89667eb
DE
6562 /* Pop the empty frame that contains the stack dummy.
6563 This also restores inferior state prior to the call
16c381f0 6564 (struct infcall_suspend_state). */
b89667eb 6565 struct frame_info *frame = get_current_frame ();
abbb1732 6566
b89667eb
DE
6567 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6568 frame_pop (frame);
3e43a32a
MS
6569 /* frame_pop() calls reinit_frame_cache as the last thing it
6570 does which means there's currently no selected frame. We
6571 don't need to re-establish a selected frame if the dummy call
6572 returns normally, that will be done by
6573 restore_infcall_control_state. However, we do have to handle
6574 the case where the dummy call is returning after being
6575 stopped (e.g. the dummy call previously hit a breakpoint).
6576 We can't know which case we have so just always re-establish
6577 a selected frame here. */
0f7d239c 6578 select_frame (get_current_frame ());
c906108c
SS
6579 }
6580
c906108c
SS
6581done:
6582 annotate_stopped ();
41d2bdb4
PA
6583
6584 /* Suppress the stop observer if we're in the middle of:
6585
6586 - a step n (n > 1), as there still more steps to be done.
6587
6588 - a "finish" command, as the observer will be called in
6589 finish_command_continuation, so it can include the inferior
6590 function's return value.
6591
6592 - calling an inferior function, as we pretend we inferior didn't
6593 run at all. The return value of the call is handled by the
6594 expression evaluator, through call_function_by_hand. */
6595
6596 if (!target_has_execution
6597 || last.kind == TARGET_WAITKIND_SIGNALLED
6598 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6599 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6600 || (!(inferior_thread ()->step_multi
6601 && inferior_thread ()->control.stop_step)
16c381f0
JK
6602 && !(inferior_thread ()->control.stop_bpstat
6603 && inferior_thread ()->control.proceed_to_finish)
6604 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6605 {
6606 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6607 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6608 stop_print_frame);
347bddb7 6609 else
1d33d6ba 6610 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6611 }
347bddb7 6612
48844aa6
PA
6613 if (target_has_execution)
6614 {
6615 if (last.kind != TARGET_WAITKIND_SIGNALLED
6616 && last.kind != TARGET_WAITKIND_EXITED)
6617 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6618 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6619 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6620 }
6c95b8df
PA
6621
6622 /* Try to get rid of automatically added inferiors that are no
6623 longer needed. Keeping those around slows down things linearly.
6624 Note that this never removes the current inferior. */
6625 prune_inferiors ();
c906108c
SS
6626}
6627
6628static int
96baa820 6629hook_stop_stub (void *cmd)
c906108c 6630{
5913bcb0 6631 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6632 return (0);
6633}
6634\f
c5aa993b 6635int
96baa820 6636signal_stop_state (int signo)
c906108c 6637{
d6b48e9c 6638 return signal_stop[signo];
c906108c
SS
6639}
6640
c5aa993b 6641int
96baa820 6642signal_print_state (int signo)
c906108c
SS
6643{
6644 return signal_print[signo];
6645}
6646
c5aa993b 6647int
96baa820 6648signal_pass_state (int signo)
c906108c
SS
6649{
6650 return signal_program[signo];
6651}
6652
2455069d
UW
6653static void
6654signal_cache_update (int signo)
6655{
6656 if (signo == -1)
6657 {
a493e3e2 6658 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6659 signal_cache_update (signo);
6660
6661 return;
6662 }
6663
6664 signal_pass[signo] = (signal_stop[signo] == 0
6665 && signal_print[signo] == 0
ab04a2af
TT
6666 && signal_program[signo] == 1
6667 && signal_catch[signo] == 0);
2455069d
UW
6668}
6669
488f131b 6670int
7bda5e4a 6671signal_stop_update (int signo, int state)
d4f3574e
SS
6672{
6673 int ret = signal_stop[signo];
abbb1732 6674
d4f3574e 6675 signal_stop[signo] = state;
2455069d 6676 signal_cache_update (signo);
d4f3574e
SS
6677 return ret;
6678}
6679
488f131b 6680int
7bda5e4a 6681signal_print_update (int signo, int state)
d4f3574e
SS
6682{
6683 int ret = signal_print[signo];
abbb1732 6684
d4f3574e 6685 signal_print[signo] = state;
2455069d 6686 signal_cache_update (signo);
d4f3574e
SS
6687 return ret;
6688}
6689
488f131b 6690int
7bda5e4a 6691signal_pass_update (int signo, int state)
d4f3574e
SS
6692{
6693 int ret = signal_program[signo];
abbb1732 6694
d4f3574e 6695 signal_program[signo] = state;
2455069d 6696 signal_cache_update (signo);
d4f3574e
SS
6697 return ret;
6698}
6699
ab04a2af
TT
6700/* Update the global 'signal_catch' from INFO and notify the
6701 target. */
6702
6703void
6704signal_catch_update (const unsigned int *info)
6705{
6706 int i;
6707
6708 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6709 signal_catch[i] = info[i] > 0;
6710 signal_cache_update (-1);
6711 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6712}
6713
c906108c 6714static void
96baa820 6715sig_print_header (void)
c906108c 6716{
3e43a32a
MS
6717 printf_filtered (_("Signal Stop\tPrint\tPass "
6718 "to program\tDescription\n"));
c906108c
SS
6719}
6720
6721static void
2ea28649 6722sig_print_info (enum gdb_signal oursig)
c906108c 6723{
2ea28649 6724 const char *name = gdb_signal_to_name (oursig);
c906108c 6725 int name_padding = 13 - strlen (name);
96baa820 6726
c906108c
SS
6727 if (name_padding <= 0)
6728 name_padding = 0;
6729
6730 printf_filtered ("%s", name);
488f131b 6731 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6732 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6733 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6734 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6735 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6736}
6737
6738/* Specify how various signals in the inferior should be handled. */
6739
6740static void
96baa820 6741handle_command (char *args, int from_tty)
c906108c
SS
6742{
6743 char **argv;
6744 int digits, wordlen;
6745 int sigfirst, signum, siglast;
2ea28649 6746 enum gdb_signal oursig;
c906108c
SS
6747 int allsigs;
6748 int nsigs;
6749 unsigned char *sigs;
6750 struct cleanup *old_chain;
6751
6752 if (args == NULL)
6753 {
e2e0b3e5 6754 error_no_arg (_("signal to handle"));
c906108c
SS
6755 }
6756
1777feb0 6757 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6758
a493e3e2 6759 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6760 sigs = (unsigned char *) alloca (nsigs);
6761 memset (sigs, 0, nsigs);
6762
1777feb0 6763 /* Break the command line up into args. */
c906108c 6764
d1a41061 6765 argv = gdb_buildargv (args);
7a292a7a 6766 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6767
6768 /* Walk through the args, looking for signal oursigs, signal names, and
6769 actions. Signal numbers and signal names may be interspersed with
6770 actions, with the actions being performed for all signals cumulatively
1777feb0 6771 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6772
6773 while (*argv != NULL)
6774 {
6775 wordlen = strlen (*argv);
6776 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6777 {;
6778 }
6779 allsigs = 0;
6780 sigfirst = siglast = -1;
6781
6782 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6783 {
6784 /* Apply action to all signals except those used by the
1777feb0 6785 debugger. Silently skip those. */
c906108c
SS
6786 allsigs = 1;
6787 sigfirst = 0;
6788 siglast = nsigs - 1;
6789 }
6790 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6791 {
6792 SET_SIGS (nsigs, sigs, signal_stop);
6793 SET_SIGS (nsigs, sigs, signal_print);
6794 }
6795 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6796 {
6797 UNSET_SIGS (nsigs, sigs, signal_program);
6798 }
6799 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6800 {
6801 SET_SIGS (nsigs, sigs, signal_print);
6802 }
6803 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6804 {
6805 SET_SIGS (nsigs, sigs, signal_program);
6806 }
6807 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6808 {
6809 UNSET_SIGS (nsigs, sigs, signal_stop);
6810 }
6811 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6812 {
6813 SET_SIGS (nsigs, sigs, signal_program);
6814 }
6815 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6816 {
6817 UNSET_SIGS (nsigs, sigs, signal_print);
6818 UNSET_SIGS (nsigs, sigs, signal_stop);
6819 }
6820 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6821 {
6822 UNSET_SIGS (nsigs, sigs, signal_program);
6823 }
6824 else if (digits > 0)
6825 {
6826 /* It is numeric. The numeric signal refers to our own
6827 internal signal numbering from target.h, not to host/target
6828 signal number. This is a feature; users really should be
6829 using symbolic names anyway, and the common ones like
6830 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6831
6832 sigfirst = siglast = (int)
2ea28649 6833 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6834 if ((*argv)[digits] == '-')
6835 {
6836 siglast = (int)
2ea28649 6837 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6838 }
6839 if (sigfirst > siglast)
6840 {
1777feb0 6841 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6842 signum = sigfirst;
6843 sigfirst = siglast;
6844 siglast = signum;
6845 }
6846 }
6847 else
6848 {
2ea28649 6849 oursig = gdb_signal_from_name (*argv);
a493e3e2 6850 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6851 {
6852 sigfirst = siglast = (int) oursig;
6853 }
6854 else
6855 {
6856 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6857 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6858 }
6859 }
6860
6861 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6862 which signals to apply actions to. */
c906108c
SS
6863
6864 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6865 {
2ea28649 6866 switch ((enum gdb_signal) signum)
c906108c 6867 {
a493e3e2
PA
6868 case GDB_SIGNAL_TRAP:
6869 case GDB_SIGNAL_INT:
c906108c
SS
6870 if (!allsigs && !sigs[signum])
6871 {
9e2f0ad4 6872 if (query (_("%s is used by the debugger.\n\
3e43a32a 6873Are you sure you want to change it? "),
2ea28649 6874 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6875 {
6876 sigs[signum] = 1;
6877 }
6878 else
6879 {
a3f17187 6880 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6881 gdb_flush (gdb_stdout);
6882 }
6883 }
6884 break;
a493e3e2
PA
6885 case GDB_SIGNAL_0:
6886 case GDB_SIGNAL_DEFAULT:
6887 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6888 /* Make sure that "all" doesn't print these. */
6889 break;
6890 default:
6891 sigs[signum] = 1;
6892 break;
6893 }
6894 }
6895
6896 argv++;
6897 }
6898
3a031f65
PA
6899 for (signum = 0; signum < nsigs; signum++)
6900 if (sigs[signum])
6901 {
2455069d 6902 signal_cache_update (-1);
a493e3e2
PA
6903 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6904 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 6905
3a031f65
PA
6906 if (from_tty)
6907 {
6908 /* Show the results. */
6909 sig_print_header ();
6910 for (; signum < nsigs; signum++)
6911 if (sigs[signum])
6912 sig_print_info (signum);
6913 }
6914
6915 break;
6916 }
c906108c
SS
6917
6918 do_cleanups (old_chain);
6919}
6920
de0bea00
MF
6921/* Complete the "handle" command. */
6922
6923static VEC (char_ptr) *
6924handle_completer (struct cmd_list_element *ignore,
6f937416 6925 const char *text, const char *word)
de0bea00
MF
6926{
6927 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6928 static const char * const keywords[] =
6929 {
6930 "all",
6931 "stop",
6932 "ignore",
6933 "print",
6934 "pass",
6935 "nostop",
6936 "noignore",
6937 "noprint",
6938 "nopass",
6939 NULL,
6940 };
6941
6942 vec_signals = signal_completer (ignore, text, word);
6943 vec_keywords = complete_on_enum (keywords, word, word);
6944
6945 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6946 VEC_free (char_ptr, vec_signals);
6947 VEC_free (char_ptr, vec_keywords);
6948 return return_val;
6949}
6950
c906108c 6951static void
96baa820 6952xdb_handle_command (char *args, int from_tty)
c906108c
SS
6953{
6954 char **argv;
6955 struct cleanup *old_chain;
6956
d1a41061
PP
6957 if (args == NULL)
6958 error_no_arg (_("xdb command"));
6959
1777feb0 6960 /* Break the command line up into args. */
c906108c 6961
d1a41061 6962 argv = gdb_buildargv (args);
7a292a7a 6963 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6964 if (argv[1] != (char *) NULL)
6965 {
6966 char *argBuf;
6967 int bufLen;
6968
6969 bufLen = strlen (argv[0]) + 20;
6970 argBuf = (char *) xmalloc (bufLen);
6971 if (argBuf)
6972 {
6973 int validFlag = 1;
2ea28649 6974 enum gdb_signal oursig;
c906108c 6975
2ea28649 6976 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
6977 memset (argBuf, 0, bufLen);
6978 if (strcmp (argv[1], "Q") == 0)
6979 sprintf (argBuf, "%s %s", argv[0], "noprint");
6980 else
6981 {
6982 if (strcmp (argv[1], "s") == 0)
6983 {
6984 if (!signal_stop[oursig])
6985 sprintf (argBuf, "%s %s", argv[0], "stop");
6986 else
6987 sprintf (argBuf, "%s %s", argv[0], "nostop");
6988 }
6989 else if (strcmp (argv[1], "i") == 0)
6990 {
6991 if (!signal_program[oursig])
6992 sprintf (argBuf, "%s %s", argv[0], "pass");
6993 else
6994 sprintf (argBuf, "%s %s", argv[0], "nopass");
6995 }
6996 else if (strcmp (argv[1], "r") == 0)
6997 {
6998 if (!signal_print[oursig])
6999 sprintf (argBuf, "%s %s", argv[0], "print");
7000 else
7001 sprintf (argBuf, "%s %s", argv[0], "noprint");
7002 }
7003 else
7004 validFlag = 0;
7005 }
7006 if (validFlag)
7007 handle_command (argBuf, from_tty);
7008 else
a3f17187 7009 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 7010 if (argBuf)
b8c9b27d 7011 xfree (argBuf);
c906108c
SS
7012 }
7013 }
7014 do_cleanups (old_chain);
7015}
7016
2ea28649
PA
7017enum gdb_signal
7018gdb_signal_from_command (int num)
ed01b82c
PA
7019{
7020 if (num >= 1 && num <= 15)
2ea28649 7021 return (enum gdb_signal) num;
ed01b82c
PA
7022 error (_("Only signals 1-15 are valid as numeric signals.\n\
7023Use \"info signals\" for a list of symbolic signals."));
7024}
7025
c906108c
SS
7026/* Print current contents of the tables set by the handle command.
7027 It is possible we should just be printing signals actually used
7028 by the current target (but for things to work right when switching
7029 targets, all signals should be in the signal tables). */
7030
7031static void
96baa820 7032signals_info (char *signum_exp, int from_tty)
c906108c 7033{
2ea28649 7034 enum gdb_signal oursig;
abbb1732 7035
c906108c
SS
7036 sig_print_header ();
7037
7038 if (signum_exp)
7039 {
7040 /* First see if this is a symbol name. */
2ea28649 7041 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7042 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7043 {
7044 /* No, try numeric. */
7045 oursig =
2ea28649 7046 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7047 }
7048 sig_print_info (oursig);
7049 return;
7050 }
7051
7052 printf_filtered ("\n");
7053 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7054 for (oursig = GDB_SIGNAL_FIRST;
7055 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7056 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7057 {
7058 QUIT;
7059
a493e3e2
PA
7060 if (oursig != GDB_SIGNAL_UNKNOWN
7061 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7062 sig_print_info (oursig);
7063 }
7064
3e43a32a
MS
7065 printf_filtered (_("\nUse the \"handle\" command "
7066 "to change these tables.\n"));
c906108c 7067}
4aa995e1 7068
c709acd1
PA
7069/* Check if it makes sense to read $_siginfo from the current thread
7070 at this point. If not, throw an error. */
7071
7072static void
7073validate_siginfo_access (void)
7074{
7075 /* No current inferior, no siginfo. */
7076 if (ptid_equal (inferior_ptid, null_ptid))
7077 error (_("No thread selected."));
7078
7079 /* Don't try to read from a dead thread. */
7080 if (is_exited (inferior_ptid))
7081 error (_("The current thread has terminated"));
7082
7083 /* ... or from a spinning thread. */
7084 if (is_running (inferior_ptid))
7085 error (_("Selected thread is running."));
7086}
7087
4aa995e1
PA
7088/* The $_siginfo convenience variable is a bit special. We don't know
7089 for sure the type of the value until we actually have a chance to
7a9dd1b2 7090 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7091 also dependent on which thread you have selected.
7092
7093 1. making $_siginfo be an internalvar that creates a new value on
7094 access.
7095
7096 2. making the value of $_siginfo be an lval_computed value. */
7097
7098/* This function implements the lval_computed support for reading a
7099 $_siginfo value. */
7100
7101static void
7102siginfo_value_read (struct value *v)
7103{
7104 LONGEST transferred;
7105
c709acd1
PA
7106 validate_siginfo_access ();
7107
4aa995e1
PA
7108 transferred =
7109 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7110 NULL,
7111 value_contents_all_raw (v),
7112 value_offset (v),
7113 TYPE_LENGTH (value_type (v)));
7114
7115 if (transferred != TYPE_LENGTH (value_type (v)))
7116 error (_("Unable to read siginfo"));
7117}
7118
7119/* This function implements the lval_computed support for writing a
7120 $_siginfo value. */
7121
7122static void
7123siginfo_value_write (struct value *v, struct value *fromval)
7124{
7125 LONGEST transferred;
7126
c709acd1
PA
7127 validate_siginfo_access ();
7128
4aa995e1
PA
7129 transferred = target_write (&current_target,
7130 TARGET_OBJECT_SIGNAL_INFO,
7131 NULL,
7132 value_contents_all_raw (fromval),
7133 value_offset (v),
7134 TYPE_LENGTH (value_type (fromval)));
7135
7136 if (transferred != TYPE_LENGTH (value_type (fromval)))
7137 error (_("Unable to write siginfo"));
7138}
7139
c8f2448a 7140static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7141 {
7142 siginfo_value_read,
7143 siginfo_value_write
7144 };
7145
7146/* Return a new value with the correct type for the siginfo object of
78267919
UW
7147 the current thread using architecture GDBARCH. Return a void value
7148 if there's no object available. */
4aa995e1 7149
2c0b251b 7150static struct value *
22d2b532
SDJ
7151siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7152 void *ignore)
4aa995e1 7153{
4aa995e1 7154 if (target_has_stack
78267919
UW
7155 && !ptid_equal (inferior_ptid, null_ptid)
7156 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7157 {
78267919 7158 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7159
78267919 7160 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7161 }
7162
78267919 7163 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7164}
7165
c906108c 7166\f
16c381f0
JK
7167/* infcall_suspend_state contains state about the program itself like its
7168 registers and any signal it received when it last stopped.
7169 This state must be restored regardless of how the inferior function call
7170 ends (either successfully, or after it hits a breakpoint or signal)
7171 if the program is to properly continue where it left off. */
7172
7173struct infcall_suspend_state
7a292a7a 7174{
16c381f0 7175 struct thread_suspend_state thread_suspend;
dd80ea3c 7176#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7177 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7178#endif
16c381f0
JK
7179
7180 /* Other fields: */
7a292a7a 7181 CORE_ADDR stop_pc;
b89667eb 7182 struct regcache *registers;
1736ad11 7183
35515841 7184 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7185 struct gdbarch *siginfo_gdbarch;
7186
7187 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7188 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7189 content would be invalid. */
7190 gdb_byte *siginfo_data;
b89667eb
DE
7191};
7192
16c381f0
JK
7193struct infcall_suspend_state *
7194save_infcall_suspend_state (void)
b89667eb 7195{
16c381f0 7196 struct infcall_suspend_state *inf_state;
b89667eb 7197 struct thread_info *tp = inferior_thread ();
974a734b 7198#if 0
16c381f0 7199 struct inferior *inf = current_inferior ();
974a734b 7200#endif
1736ad11
JK
7201 struct regcache *regcache = get_current_regcache ();
7202 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7203 gdb_byte *siginfo_data = NULL;
7204
7205 if (gdbarch_get_siginfo_type_p (gdbarch))
7206 {
7207 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7208 size_t len = TYPE_LENGTH (type);
7209 struct cleanup *back_to;
7210
7211 siginfo_data = xmalloc (len);
7212 back_to = make_cleanup (xfree, siginfo_data);
7213
7214 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7215 siginfo_data, 0, len) == len)
7216 discard_cleanups (back_to);
7217 else
7218 {
7219 /* Errors ignored. */
7220 do_cleanups (back_to);
7221 siginfo_data = NULL;
7222 }
7223 }
7224
41bf6aca 7225 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7226
7227 if (siginfo_data)
7228 {
7229 inf_state->siginfo_gdbarch = gdbarch;
7230 inf_state->siginfo_data = siginfo_data;
7231 }
b89667eb 7232
16c381f0 7233 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7234#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7235 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7236#endif
16c381f0 7237
35515841 7238 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7239 GDB_SIGNAL_0 anyway. */
7240 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7241
b89667eb
DE
7242 inf_state->stop_pc = stop_pc;
7243
1736ad11 7244 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7245
7246 return inf_state;
7247}
7248
7249/* Restore inferior session state to INF_STATE. */
7250
7251void
16c381f0 7252restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7253{
7254 struct thread_info *tp = inferior_thread ();
974a734b 7255#if 0
16c381f0 7256 struct inferior *inf = current_inferior ();
974a734b 7257#endif
1736ad11
JK
7258 struct regcache *regcache = get_current_regcache ();
7259 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7260
16c381f0 7261 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7262#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7263 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7264#endif
16c381f0 7265
b89667eb
DE
7266 stop_pc = inf_state->stop_pc;
7267
1736ad11
JK
7268 if (inf_state->siginfo_gdbarch == gdbarch)
7269 {
7270 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7271
7272 /* Errors ignored. */
7273 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7274 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7275 }
7276
b89667eb
DE
7277 /* The inferior can be gone if the user types "print exit(0)"
7278 (and perhaps other times). */
7279 if (target_has_execution)
7280 /* NB: The register write goes through to the target. */
1736ad11 7281 regcache_cpy (regcache, inf_state->registers);
803b5f95 7282
16c381f0 7283 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7284}
7285
7286static void
16c381f0 7287do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7288{
16c381f0 7289 restore_infcall_suspend_state (state);
b89667eb
DE
7290}
7291
7292struct cleanup *
16c381f0
JK
7293make_cleanup_restore_infcall_suspend_state
7294 (struct infcall_suspend_state *inf_state)
b89667eb 7295{
16c381f0 7296 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7297}
7298
7299void
16c381f0 7300discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7301{
7302 regcache_xfree (inf_state->registers);
803b5f95 7303 xfree (inf_state->siginfo_data);
b89667eb
DE
7304 xfree (inf_state);
7305}
7306
7307struct regcache *
16c381f0 7308get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7309{
7310 return inf_state->registers;
7311}
7312
16c381f0
JK
7313/* infcall_control_state contains state regarding gdb's control of the
7314 inferior itself like stepping control. It also contains session state like
7315 the user's currently selected frame. */
b89667eb 7316
16c381f0 7317struct infcall_control_state
b89667eb 7318{
16c381f0
JK
7319 struct thread_control_state thread_control;
7320 struct inferior_control_state inferior_control;
d82142e2
JK
7321
7322 /* Other fields: */
7323 enum stop_stack_kind stop_stack_dummy;
7324 int stopped_by_random_signal;
7a292a7a 7325 int stop_after_trap;
7a292a7a 7326
b89667eb 7327 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7328 struct frame_id selected_frame_id;
7a292a7a
SS
7329};
7330
c906108c 7331/* Save all of the information associated with the inferior<==>gdb
b89667eb 7332 connection. */
c906108c 7333
16c381f0
JK
7334struct infcall_control_state *
7335save_infcall_control_state (void)
c906108c 7336{
16c381f0 7337 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7338 struct thread_info *tp = inferior_thread ();
d6b48e9c 7339 struct inferior *inf = current_inferior ();
7a292a7a 7340
16c381f0
JK
7341 inf_status->thread_control = tp->control;
7342 inf_status->inferior_control = inf->control;
d82142e2 7343
8358c15c 7344 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7345 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7346
16c381f0
JK
7347 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7348 chain. If caller's caller is walking the chain, they'll be happier if we
7349 hand them back the original chain when restore_infcall_control_state is
7350 called. */
7351 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7352
7353 /* Other fields: */
7354 inf_status->stop_stack_dummy = stop_stack_dummy;
7355 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7356 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7357
206415a3 7358 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7359
7a292a7a 7360 return inf_status;
c906108c
SS
7361}
7362
c906108c 7363static int
96baa820 7364restore_selected_frame (void *args)
c906108c 7365{
488f131b 7366 struct frame_id *fid = (struct frame_id *) args;
c906108c 7367 struct frame_info *frame;
c906108c 7368
101dcfbe 7369 frame = frame_find_by_id (*fid);
c906108c 7370
aa0cd9c1
AC
7371 /* If inf_status->selected_frame_id is NULL, there was no previously
7372 selected frame. */
101dcfbe 7373 if (frame == NULL)
c906108c 7374 {
8a3fe4f8 7375 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7376 return 0;
7377 }
7378
0f7d239c 7379 select_frame (frame);
c906108c
SS
7380
7381 return (1);
7382}
7383
b89667eb
DE
7384/* Restore inferior session state to INF_STATUS. */
7385
c906108c 7386void
16c381f0 7387restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7388{
4e1c45ea 7389 struct thread_info *tp = inferior_thread ();
d6b48e9c 7390 struct inferior *inf = current_inferior ();
4e1c45ea 7391
8358c15c
JK
7392 if (tp->control.step_resume_breakpoint)
7393 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7394
5b79abe7
TT
7395 if (tp->control.exception_resume_breakpoint)
7396 tp->control.exception_resume_breakpoint->disposition
7397 = disp_del_at_next_stop;
7398
d82142e2 7399 /* Handle the bpstat_copy of the chain. */
16c381f0 7400 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7401
16c381f0
JK
7402 tp->control = inf_status->thread_control;
7403 inf->control = inf_status->inferior_control;
d82142e2
JK
7404
7405 /* Other fields: */
7406 stop_stack_dummy = inf_status->stop_stack_dummy;
7407 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7408 stop_after_trap = inf_status->stop_after_trap;
c906108c 7409
b89667eb 7410 if (target_has_stack)
c906108c 7411 {
c906108c 7412 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7413 walking the stack might encounter a garbage pointer and
7414 error() trying to dereference it. */
488f131b
JB
7415 if (catch_errors
7416 (restore_selected_frame, &inf_status->selected_frame_id,
7417 "Unable to restore previously selected frame:\n",
7418 RETURN_MASK_ERROR) == 0)
c906108c
SS
7419 /* Error in restoring the selected frame. Select the innermost
7420 frame. */
0f7d239c 7421 select_frame (get_current_frame ());
c906108c 7422 }
c906108c 7423
72cec141 7424 xfree (inf_status);
7a292a7a 7425}
c906108c 7426
74b7792f 7427static void
16c381f0 7428do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7429{
16c381f0 7430 restore_infcall_control_state (sts);
74b7792f
AC
7431}
7432
7433struct cleanup *
16c381f0
JK
7434make_cleanup_restore_infcall_control_state
7435 (struct infcall_control_state *inf_status)
74b7792f 7436{
16c381f0 7437 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7438}
7439
c906108c 7440void
16c381f0 7441discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7442{
8358c15c
JK
7443 if (inf_status->thread_control.step_resume_breakpoint)
7444 inf_status->thread_control.step_resume_breakpoint->disposition
7445 = disp_del_at_next_stop;
7446
5b79abe7
TT
7447 if (inf_status->thread_control.exception_resume_breakpoint)
7448 inf_status->thread_control.exception_resume_breakpoint->disposition
7449 = disp_del_at_next_stop;
7450
1777feb0 7451 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7452 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7453
72cec141 7454 xfree (inf_status);
7a292a7a 7455}
b89667eb 7456\f
ca6724c1
KB
7457/* restore_inferior_ptid() will be used by the cleanup machinery
7458 to restore the inferior_ptid value saved in a call to
7459 save_inferior_ptid(). */
ce696e05
KB
7460
7461static void
7462restore_inferior_ptid (void *arg)
7463{
7464 ptid_t *saved_ptid_ptr = arg;
abbb1732 7465
ce696e05
KB
7466 inferior_ptid = *saved_ptid_ptr;
7467 xfree (arg);
7468}
7469
7470/* Save the value of inferior_ptid so that it may be restored by a
7471 later call to do_cleanups(). Returns the struct cleanup pointer
7472 needed for later doing the cleanup. */
7473
7474struct cleanup *
7475save_inferior_ptid (void)
7476{
7477 ptid_t *saved_ptid_ptr;
7478
7479 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7480 *saved_ptid_ptr = inferior_ptid;
7481 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7482}
0c557179 7483
7f89fd65 7484/* See infrun.h. */
0c557179
SDJ
7485
7486void
7487clear_exit_convenience_vars (void)
7488{
7489 clear_internalvar (lookup_internalvar ("_exitsignal"));
7490 clear_internalvar (lookup_internalvar ("_exitcode"));
7491}
c5aa993b 7492\f
488f131b 7493
b2175913
MS
7494/* User interface for reverse debugging:
7495 Set exec-direction / show exec-direction commands
7496 (returns error unless target implements to_set_exec_direction method). */
7497
32231432 7498int execution_direction = EXEC_FORWARD;
b2175913
MS
7499static const char exec_forward[] = "forward";
7500static const char exec_reverse[] = "reverse";
7501static const char *exec_direction = exec_forward;
40478521 7502static const char *const exec_direction_names[] = {
b2175913
MS
7503 exec_forward,
7504 exec_reverse,
7505 NULL
7506};
7507
7508static void
7509set_exec_direction_func (char *args, int from_tty,
7510 struct cmd_list_element *cmd)
7511{
7512 if (target_can_execute_reverse)
7513 {
7514 if (!strcmp (exec_direction, exec_forward))
7515 execution_direction = EXEC_FORWARD;
7516 else if (!strcmp (exec_direction, exec_reverse))
7517 execution_direction = EXEC_REVERSE;
7518 }
8bbed405
MS
7519 else
7520 {
7521 exec_direction = exec_forward;
7522 error (_("Target does not support this operation."));
7523 }
b2175913
MS
7524}
7525
7526static void
7527show_exec_direction_func (struct ui_file *out, int from_tty,
7528 struct cmd_list_element *cmd, const char *value)
7529{
7530 switch (execution_direction) {
7531 case EXEC_FORWARD:
7532 fprintf_filtered (out, _("Forward.\n"));
7533 break;
7534 case EXEC_REVERSE:
7535 fprintf_filtered (out, _("Reverse.\n"));
7536 break;
b2175913 7537 default:
d8b34453
PA
7538 internal_error (__FILE__, __LINE__,
7539 _("bogus execution_direction value: %d"),
7540 (int) execution_direction);
b2175913
MS
7541 }
7542}
7543
d4db2f36
PA
7544static void
7545show_schedule_multiple (struct ui_file *file, int from_tty,
7546 struct cmd_list_element *c, const char *value)
7547{
3e43a32a
MS
7548 fprintf_filtered (file, _("Resuming the execution of threads "
7549 "of all processes is %s.\n"), value);
d4db2f36 7550}
ad52ddc6 7551
22d2b532
SDJ
7552/* Implementation of `siginfo' variable. */
7553
7554static const struct internalvar_funcs siginfo_funcs =
7555{
7556 siginfo_make_value,
7557 NULL,
7558 NULL
7559};
7560
c906108c 7561void
96baa820 7562_initialize_infrun (void)
c906108c 7563{
52f0bd74
AC
7564 int i;
7565 int numsigs;
de0bea00 7566 struct cmd_list_element *c;
c906108c 7567
1bedd215
AC
7568 add_info ("signals", signals_info, _("\
7569What debugger does when program gets various signals.\n\
7570Specify a signal as argument to print info on that signal only."));
c906108c
SS
7571 add_info_alias ("handle", "signals", 0);
7572
de0bea00 7573 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7574Specify how to handle signals.\n\
486c7739 7575Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7576Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7577If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7578will be displayed instead.\n\
7579\n\
c906108c
SS
7580Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7581from 1-15 are allowed for compatibility with old versions of GDB.\n\
7582Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7583The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7584used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7585\n\
1bedd215 7586Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7587\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7588Stop means reenter debugger if this signal happens (implies print).\n\
7589Print means print a message if this signal happens.\n\
7590Pass means let program see this signal; otherwise program doesn't know.\n\
7591Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7592Pass and Stop may be combined.\n\
7593\n\
7594Multiple signals may be specified. Signal numbers and signal names\n\
7595may be interspersed with actions, with the actions being performed for\n\
7596all signals cumulatively specified."));
de0bea00 7597 set_cmd_completer (c, handle_completer);
486c7739 7598
c906108c
SS
7599 if (xdb_commands)
7600 {
1bedd215
AC
7601 add_com ("lz", class_info, signals_info, _("\
7602What debugger does when program gets various signals.\n\
7603Specify a signal as argument to print info on that signal only."));
7604 add_com ("z", class_run, xdb_handle_command, _("\
7605Specify how to handle a signal.\n\
c906108c
SS
7606Args are signals and actions to apply to those signals.\n\
7607Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7608from 1-15 are allowed for compatibility with old versions of GDB.\n\
7609Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7610The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7611used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7612Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7613\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7614nopass), \"Q\" (noprint)\n\
7615Stop means reenter debugger if this signal happens (implies print).\n\
7616Print means print a message if this signal happens.\n\
7617Pass means let program see this signal; otherwise program doesn't know.\n\
7618Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7619Pass and Stop may be combined."));
c906108c
SS
7620 }
7621
7622 if (!dbx_commands)
1a966eab
AC
7623 stop_command = add_cmd ("stop", class_obscure,
7624 not_just_help_class_command, _("\
7625There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7626This allows you to set a list of commands to be run each time execution\n\
1a966eab 7627of the program stops."), &cmdlist);
c906108c 7628
ccce17b0 7629 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7630Set inferior debugging."), _("\
7631Show inferior debugging."), _("\
7632When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7633 NULL,
7634 show_debug_infrun,
7635 &setdebuglist, &showdebuglist);
527159b7 7636
3e43a32a
MS
7637 add_setshow_boolean_cmd ("displaced", class_maintenance,
7638 &debug_displaced, _("\
237fc4c9
PA
7639Set displaced stepping debugging."), _("\
7640Show displaced stepping debugging."), _("\
7641When non-zero, displaced stepping specific debugging is enabled."),
7642 NULL,
7643 show_debug_displaced,
7644 &setdebuglist, &showdebuglist);
7645
ad52ddc6
PA
7646 add_setshow_boolean_cmd ("non-stop", no_class,
7647 &non_stop_1, _("\
7648Set whether gdb controls the inferior in non-stop mode."), _("\
7649Show whether gdb controls the inferior in non-stop mode."), _("\
7650When debugging a multi-threaded program and this setting is\n\
7651off (the default, also called all-stop mode), when one thread stops\n\
7652(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7653all other threads in the program while you interact with the thread of\n\
7654interest. When you continue or step a thread, you can allow the other\n\
7655threads to run, or have them remain stopped, but while you inspect any\n\
7656thread's state, all threads stop.\n\
7657\n\
7658In non-stop mode, when one thread stops, other threads can continue\n\
7659to run freely. You'll be able to step each thread independently,\n\
7660leave it stopped or free to run as needed."),
7661 set_non_stop,
7662 show_non_stop,
7663 &setlist,
7664 &showlist);
7665
a493e3e2 7666 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7667 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7668 signal_print = (unsigned char *)
7669 xmalloc (sizeof (signal_print[0]) * numsigs);
7670 signal_program = (unsigned char *)
7671 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7672 signal_catch = (unsigned char *)
7673 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7674 signal_pass = (unsigned char *)
4395285e 7675 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7676 for (i = 0; i < numsigs; i++)
7677 {
7678 signal_stop[i] = 1;
7679 signal_print[i] = 1;
7680 signal_program[i] = 1;
ab04a2af 7681 signal_catch[i] = 0;
c906108c
SS
7682 }
7683
7684 /* Signals caused by debugger's own actions
7685 should not be given to the program afterwards. */
a493e3e2
PA
7686 signal_program[GDB_SIGNAL_TRAP] = 0;
7687 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7688
7689 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7690 signal_stop[GDB_SIGNAL_ALRM] = 0;
7691 signal_print[GDB_SIGNAL_ALRM] = 0;
7692 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7693 signal_print[GDB_SIGNAL_VTALRM] = 0;
7694 signal_stop[GDB_SIGNAL_PROF] = 0;
7695 signal_print[GDB_SIGNAL_PROF] = 0;
7696 signal_stop[GDB_SIGNAL_CHLD] = 0;
7697 signal_print[GDB_SIGNAL_CHLD] = 0;
7698 signal_stop[GDB_SIGNAL_IO] = 0;
7699 signal_print[GDB_SIGNAL_IO] = 0;
7700 signal_stop[GDB_SIGNAL_POLL] = 0;
7701 signal_print[GDB_SIGNAL_POLL] = 0;
7702 signal_stop[GDB_SIGNAL_URG] = 0;
7703 signal_print[GDB_SIGNAL_URG] = 0;
7704 signal_stop[GDB_SIGNAL_WINCH] = 0;
7705 signal_print[GDB_SIGNAL_WINCH] = 0;
7706 signal_stop[GDB_SIGNAL_PRIO] = 0;
7707 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7708
cd0fc7c3
SS
7709 /* These signals are used internally by user-level thread
7710 implementations. (See signal(5) on Solaris.) Like the above
7711 signals, a healthy program receives and handles them as part of
7712 its normal operation. */
a493e3e2
PA
7713 signal_stop[GDB_SIGNAL_LWP] = 0;
7714 signal_print[GDB_SIGNAL_LWP] = 0;
7715 signal_stop[GDB_SIGNAL_WAITING] = 0;
7716 signal_print[GDB_SIGNAL_WAITING] = 0;
7717 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7718 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7719
2455069d
UW
7720 /* Update cached state. */
7721 signal_cache_update (-1);
7722
85c07804
AC
7723 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7724 &stop_on_solib_events, _("\
7725Set stopping for shared library events."), _("\
7726Show stopping for shared library events."), _("\
c906108c
SS
7727If nonzero, gdb will give control to the user when the dynamic linker\n\
7728notifies gdb of shared library events. The most common event of interest\n\
85c07804 7729to the user would be loading/unloading of a new library."),
f9e14852 7730 set_stop_on_solib_events,
920d2a44 7731 show_stop_on_solib_events,
85c07804 7732 &setlist, &showlist);
c906108c 7733
7ab04401
AC
7734 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7735 follow_fork_mode_kind_names,
7736 &follow_fork_mode_string, _("\
7737Set debugger response to a program call of fork or vfork."), _("\
7738Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7739A fork or vfork creates a new process. follow-fork-mode can be:\n\
7740 parent - the original process is debugged after a fork\n\
7741 child - the new process is debugged after a fork\n\
ea1dd7bc 7742The unfollowed process will continue to run.\n\
7ab04401
AC
7743By default, the debugger will follow the parent process."),
7744 NULL,
920d2a44 7745 show_follow_fork_mode_string,
7ab04401
AC
7746 &setlist, &showlist);
7747
6c95b8df
PA
7748 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7749 follow_exec_mode_names,
7750 &follow_exec_mode_string, _("\
7751Set debugger response to a program call of exec."), _("\
7752Show debugger response to a program call of exec."), _("\
7753An exec call replaces the program image of a process.\n\
7754\n\
7755follow-exec-mode can be:\n\
7756\n\
cce7e648 7757 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7758to this new inferior. The program the process was running before\n\
7759the exec call can be restarted afterwards by restarting the original\n\
7760inferior.\n\
7761\n\
7762 same - the debugger keeps the process bound to the same inferior.\n\
7763The new executable image replaces the previous executable loaded in\n\
7764the inferior. Restarting the inferior after the exec call restarts\n\
7765the executable the process was running after the exec call.\n\
7766\n\
7767By default, the debugger will use the same inferior."),
7768 NULL,
7769 show_follow_exec_mode_string,
7770 &setlist, &showlist);
7771
7ab04401
AC
7772 add_setshow_enum_cmd ("scheduler-locking", class_run,
7773 scheduler_enums, &scheduler_mode, _("\
7774Set mode for locking scheduler during execution."), _("\
7775Show mode for locking scheduler during execution."), _("\
c906108c
SS
7776off == no locking (threads may preempt at any time)\n\
7777on == full locking (no thread except the current thread may run)\n\
7778step == scheduler locked during every single-step operation.\n\
7779 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7780 Other threads may run while stepping over a function call ('next')."),
7781 set_schedlock_func, /* traps on target vector */
920d2a44 7782 show_scheduler_mode,
7ab04401 7783 &setlist, &showlist);
5fbbeb29 7784
d4db2f36
PA
7785 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7786Set mode for resuming threads of all processes."), _("\
7787Show mode for resuming threads of all processes."), _("\
7788When on, execution commands (such as 'continue' or 'next') resume all\n\
7789threads of all processes. When off (which is the default), execution\n\
7790commands only resume the threads of the current process. The set of\n\
7791threads that are resumed is further refined by the scheduler-locking\n\
7792mode (see help set scheduler-locking)."),
7793 NULL,
7794 show_schedule_multiple,
7795 &setlist, &showlist);
7796
5bf193a2
AC
7797 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7798Set mode of the step operation."), _("\
7799Show mode of the step operation."), _("\
7800When set, doing a step over a function without debug line information\n\
7801will stop at the first instruction of that function. Otherwise, the\n\
7802function is skipped and the step command stops at a different source line."),
7803 NULL,
920d2a44 7804 show_step_stop_if_no_debug,
5bf193a2 7805 &setlist, &showlist);
ca6724c1 7806
72d0e2c5
YQ
7807 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7808 &can_use_displaced_stepping, _("\
237fc4c9
PA
7809Set debugger's willingness to use displaced stepping."), _("\
7810Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7811If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7812supported by the target architecture. If off, gdb will not use displaced\n\
7813stepping to step over breakpoints, even if such is supported by the target\n\
7814architecture. If auto (which is the default), gdb will use displaced stepping\n\
7815if the target architecture supports it and non-stop mode is active, but will not\n\
7816use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7817 NULL,
7818 show_can_use_displaced_stepping,
7819 &setlist, &showlist);
237fc4c9 7820
b2175913
MS
7821 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7822 &exec_direction, _("Set direction of execution.\n\
7823Options are 'forward' or 'reverse'."),
7824 _("Show direction of execution (forward/reverse)."),
7825 _("Tells gdb whether to execute forward or backward."),
7826 set_exec_direction_func, show_exec_direction_func,
7827 &setlist, &showlist);
7828
6c95b8df
PA
7829 /* Set/show detach-on-fork: user-settable mode. */
7830
7831 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7832Set whether gdb will detach the child of a fork."), _("\
7833Show whether gdb will detach the child of a fork."), _("\
7834Tells gdb whether to detach the child of a fork."),
7835 NULL, NULL, &setlist, &showlist);
7836
03583c20
UW
7837 /* Set/show disable address space randomization mode. */
7838
7839 add_setshow_boolean_cmd ("disable-randomization", class_support,
7840 &disable_randomization, _("\
7841Set disabling of debuggee's virtual address space randomization."), _("\
7842Show disabling of debuggee's virtual address space randomization."), _("\
7843When this mode is on (which is the default), randomization of the virtual\n\
7844address space is disabled. Standalone programs run with the randomization\n\
7845enabled by default on some platforms."),
7846 &set_disable_randomization,
7847 &show_disable_randomization,
7848 &setlist, &showlist);
7849
ca6724c1 7850 /* ptid initializations */
ca6724c1
KB
7851 inferior_ptid = null_ptid;
7852 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7853
7854 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7855 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7856 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7857 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7858
7859 /* Explicitly create without lookup, since that tries to create a
7860 value with a void typed value, and when we get here, gdbarch
7861 isn't initialized yet. At this point, we're quite sure there
7862 isn't another convenience variable of the same name. */
22d2b532 7863 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7864
7865 add_setshow_boolean_cmd ("observer", no_class,
7866 &observer_mode_1, _("\
7867Set whether gdb controls the inferior in observer mode."), _("\
7868Show whether gdb controls the inferior in observer mode."), _("\
7869In observer mode, GDB can get data from the inferior, but not\n\
7870affect its execution. Registers and memory may not be changed,\n\
7871breakpoints may not be set, and the program cannot be interrupted\n\
7872or signalled."),
7873 set_observer_mode,
7874 show_observer_mode,
7875 &setlist,
7876 &showlist);
c906108c 7877}
This page took 2.007246 seconds and 4 git commands to generate.