Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
ecd75fc8 | 4 | Copyright (C) 1986-2014 Free Software Foundation, Inc. |
c906108c | 5 | |
c5aa993b | 6 | This file is part of GDB. |
c906108c | 7 | |
c5aa993b JM |
8 | This program is free software; you can redistribute it and/or modify |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 11 | (at your option) any later version. |
c906108c | 12 | |
c5aa993b JM |
13 | This program is distributed in the hope that it will be useful, |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
c906108c | 17 | |
c5aa993b | 18 | You should have received a copy of the GNU General Public License |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
20 | |
21 | #include "defs.h" | |
45741a9c | 22 | #include "infrun.h" |
c906108c SS |
23 | #include <ctype.h> |
24 | #include "symtab.h" | |
25 | #include "frame.h" | |
26 | #include "inferior.h" | |
27 | #include "breakpoint.h" | |
03f2053f | 28 | #include "gdb_wait.h" |
c906108c SS |
29 | #include "gdbcore.h" |
30 | #include "gdbcmd.h" | |
210661e7 | 31 | #include "cli/cli-script.h" |
c906108c SS |
32 | #include "target.h" |
33 | #include "gdbthread.h" | |
34 | #include "annotate.h" | |
1adeb98a | 35 | #include "symfile.h" |
7a292a7a | 36 | #include "top.h" |
c906108c | 37 | #include <signal.h> |
2acceee2 | 38 | #include "inf-loop.h" |
4e052eda | 39 | #include "regcache.h" |
fd0407d6 | 40 | #include "value.h" |
06600e06 | 41 | #include "observer.h" |
f636b87d | 42 | #include "language.h" |
a77053c2 | 43 | #include "solib.h" |
f17517ea | 44 | #include "main.h" |
186c406b TT |
45 | #include "dictionary.h" |
46 | #include "block.h" | |
034dad6f | 47 | #include "mi/mi-common.h" |
4f8d22e3 | 48 | #include "event-top.h" |
96429cc8 | 49 | #include "record.h" |
d02ed0bb | 50 | #include "record-full.h" |
edb3359d | 51 | #include "inline-frame.h" |
4efc6507 | 52 | #include "jit.h" |
06cd862c | 53 | #include "tracepoint.h" |
be34f849 | 54 | #include "continuations.h" |
b4a14fd0 | 55 | #include "interps.h" |
1bfeeb0f | 56 | #include "skip.h" |
28106bc2 SDJ |
57 | #include "probe.h" |
58 | #include "objfiles.h" | |
de0bea00 | 59 | #include "completer.h" |
9107fc8d | 60 | #include "target-descriptions.h" |
f15cb84a | 61 | #include "target-dcache.h" |
d83ad864 | 62 | #include "terminal.h" |
c906108c SS |
63 | |
64 | /* Prototypes for local functions */ | |
65 | ||
96baa820 | 66 | static void signals_info (char *, int); |
c906108c | 67 | |
96baa820 | 68 | static void handle_command (char *, int); |
c906108c | 69 | |
2ea28649 | 70 | static void sig_print_info (enum gdb_signal); |
c906108c | 71 | |
96baa820 | 72 | static void sig_print_header (void); |
c906108c | 73 | |
74b7792f | 74 | static void resume_cleanups (void *); |
c906108c | 75 | |
96baa820 | 76 | static int hook_stop_stub (void *); |
c906108c | 77 | |
96baa820 JM |
78 | static int restore_selected_frame (void *); |
79 | ||
4ef3f3be | 80 | static int follow_fork (void); |
96baa820 | 81 | |
d83ad864 DB |
82 | static int follow_fork_inferior (int follow_child, int detach_fork); |
83 | ||
84 | static void follow_inferior_reset_breakpoints (void); | |
85 | ||
96baa820 | 86 | static void set_schedlock_func (char *args, int from_tty, |
488f131b | 87 | struct cmd_list_element *c); |
96baa820 | 88 | |
a289b8f6 JK |
89 | static int currently_stepping (struct thread_info *tp); |
90 | ||
96baa820 JM |
91 | static void xdb_handle_command (char *args, int from_tty); |
92 | ||
93 | void _initialize_infrun (void); | |
43ff13b4 | 94 | |
e58b0e63 PA |
95 | void nullify_last_target_wait_ptid (void); |
96 | ||
2c03e5be | 97 | static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *); |
2484c66b UW |
98 | |
99 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); | |
100 | ||
2484c66b UW |
101 | static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR); |
102 | ||
5fbbeb29 CF |
103 | /* When set, stop the 'step' command if we enter a function which has |
104 | no line number information. The normal behavior is that we step | |
105 | over such function. */ | |
106 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
107 | static void |
108 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
109 | struct cmd_list_element *c, const char *value) | |
110 | { | |
111 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
112 | } | |
5fbbeb29 | 113 | |
1777feb0 | 114 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 115 | |
43ff13b4 JM |
116 | int sync_execution = 0; |
117 | ||
b9f437de PA |
118 | /* proceed and normal_stop use this to notify the user when the |
119 | inferior stopped in a different thread than it had been running | |
120 | in. */ | |
96baa820 | 121 | |
39f77062 | 122 | static ptid_t previous_inferior_ptid; |
7a292a7a | 123 | |
07107ca6 LM |
124 | /* If set (default for legacy reasons), when following a fork, GDB |
125 | will detach from one of the fork branches, child or parent. | |
126 | Exactly which branch is detached depends on 'set follow-fork-mode' | |
127 | setting. */ | |
128 | ||
129 | static int detach_fork = 1; | |
6c95b8df | 130 | |
237fc4c9 PA |
131 | int debug_displaced = 0; |
132 | static void | |
133 | show_debug_displaced (struct ui_file *file, int from_tty, | |
134 | struct cmd_list_element *c, const char *value) | |
135 | { | |
136 | fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value); | |
137 | } | |
138 | ||
ccce17b0 | 139 | unsigned int debug_infrun = 0; |
920d2a44 AC |
140 | static void |
141 | show_debug_infrun (struct ui_file *file, int from_tty, | |
142 | struct cmd_list_element *c, const char *value) | |
143 | { | |
144 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
145 | } | |
527159b7 | 146 | |
03583c20 UW |
147 | |
148 | /* Support for disabling address space randomization. */ | |
149 | ||
150 | int disable_randomization = 1; | |
151 | ||
152 | static void | |
153 | show_disable_randomization (struct ui_file *file, int from_tty, | |
154 | struct cmd_list_element *c, const char *value) | |
155 | { | |
156 | if (target_supports_disable_randomization ()) | |
157 | fprintf_filtered (file, | |
158 | _("Disabling randomization of debuggee's " | |
159 | "virtual address space is %s.\n"), | |
160 | value); | |
161 | else | |
162 | fputs_filtered (_("Disabling randomization of debuggee's " | |
163 | "virtual address space is unsupported on\n" | |
164 | "this platform.\n"), file); | |
165 | } | |
166 | ||
167 | static void | |
168 | set_disable_randomization (char *args, int from_tty, | |
169 | struct cmd_list_element *c) | |
170 | { | |
171 | if (!target_supports_disable_randomization ()) | |
172 | error (_("Disabling randomization of debuggee's " | |
173 | "virtual address space is unsupported on\n" | |
174 | "this platform.")); | |
175 | } | |
176 | ||
d32dc48e PA |
177 | /* User interface for non-stop mode. */ |
178 | ||
179 | int non_stop = 0; | |
180 | static int non_stop_1 = 0; | |
181 | ||
182 | static void | |
183 | set_non_stop (char *args, int from_tty, | |
184 | struct cmd_list_element *c) | |
185 | { | |
186 | if (target_has_execution) | |
187 | { | |
188 | non_stop_1 = non_stop; | |
189 | error (_("Cannot change this setting while the inferior is running.")); | |
190 | } | |
191 | ||
192 | non_stop = non_stop_1; | |
193 | } | |
194 | ||
195 | static void | |
196 | show_non_stop (struct ui_file *file, int from_tty, | |
197 | struct cmd_list_element *c, const char *value) | |
198 | { | |
199 | fprintf_filtered (file, | |
200 | _("Controlling the inferior in non-stop mode is %s.\n"), | |
201 | value); | |
202 | } | |
203 | ||
d914c394 SS |
204 | /* "Observer mode" is somewhat like a more extreme version of |
205 | non-stop, in which all GDB operations that might affect the | |
206 | target's execution have been disabled. */ | |
207 | ||
d914c394 SS |
208 | int observer_mode = 0; |
209 | static int observer_mode_1 = 0; | |
210 | ||
211 | static void | |
212 | set_observer_mode (char *args, int from_tty, | |
213 | struct cmd_list_element *c) | |
214 | { | |
d914c394 SS |
215 | if (target_has_execution) |
216 | { | |
217 | observer_mode_1 = observer_mode; | |
218 | error (_("Cannot change this setting while the inferior is running.")); | |
219 | } | |
220 | ||
221 | observer_mode = observer_mode_1; | |
222 | ||
223 | may_write_registers = !observer_mode; | |
224 | may_write_memory = !observer_mode; | |
225 | may_insert_breakpoints = !observer_mode; | |
226 | may_insert_tracepoints = !observer_mode; | |
227 | /* We can insert fast tracepoints in or out of observer mode, | |
228 | but enable them if we're going into this mode. */ | |
229 | if (observer_mode) | |
230 | may_insert_fast_tracepoints = 1; | |
231 | may_stop = !observer_mode; | |
232 | update_target_permissions (); | |
233 | ||
234 | /* Going *into* observer mode we must force non-stop, then | |
235 | going out we leave it that way. */ | |
236 | if (observer_mode) | |
237 | { | |
d914c394 SS |
238 | pagination_enabled = 0; |
239 | non_stop = non_stop_1 = 1; | |
240 | } | |
241 | ||
242 | if (from_tty) | |
243 | printf_filtered (_("Observer mode is now %s.\n"), | |
244 | (observer_mode ? "on" : "off")); | |
245 | } | |
246 | ||
247 | static void | |
248 | show_observer_mode (struct ui_file *file, int from_tty, | |
249 | struct cmd_list_element *c, const char *value) | |
250 | { | |
251 | fprintf_filtered (file, _("Observer mode is %s.\n"), value); | |
252 | } | |
253 | ||
254 | /* This updates the value of observer mode based on changes in | |
255 | permissions. Note that we are deliberately ignoring the values of | |
256 | may-write-registers and may-write-memory, since the user may have | |
257 | reason to enable these during a session, for instance to turn on a | |
258 | debugging-related global. */ | |
259 | ||
260 | void | |
261 | update_observer_mode (void) | |
262 | { | |
263 | int newval; | |
264 | ||
265 | newval = (!may_insert_breakpoints | |
266 | && !may_insert_tracepoints | |
267 | && may_insert_fast_tracepoints | |
268 | && !may_stop | |
269 | && non_stop); | |
270 | ||
271 | /* Let the user know if things change. */ | |
272 | if (newval != observer_mode) | |
273 | printf_filtered (_("Observer mode is now %s.\n"), | |
274 | (newval ? "on" : "off")); | |
275 | ||
276 | observer_mode = observer_mode_1 = newval; | |
277 | } | |
c2c6d25f | 278 | |
c906108c SS |
279 | /* Tables of how to react to signals; the user sets them. */ |
280 | ||
281 | static unsigned char *signal_stop; | |
282 | static unsigned char *signal_print; | |
283 | static unsigned char *signal_program; | |
284 | ||
ab04a2af TT |
285 | /* Table of signals that are registered with "catch signal". A |
286 | non-zero entry indicates that the signal is caught by some "catch | |
287 | signal" command. This has size GDB_SIGNAL_LAST, to accommodate all | |
288 | signals. */ | |
289 | static unsigned char *signal_catch; | |
290 | ||
2455069d UW |
291 | /* Table of signals that the target may silently handle. |
292 | This is automatically determined from the flags above, | |
293 | and simply cached here. */ | |
294 | static unsigned char *signal_pass; | |
295 | ||
c906108c SS |
296 | #define SET_SIGS(nsigs,sigs,flags) \ |
297 | do { \ | |
298 | int signum = (nsigs); \ | |
299 | while (signum-- > 0) \ | |
300 | if ((sigs)[signum]) \ | |
301 | (flags)[signum] = 1; \ | |
302 | } while (0) | |
303 | ||
304 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
305 | do { \ | |
306 | int signum = (nsigs); \ | |
307 | while (signum-- > 0) \ | |
308 | if ((sigs)[signum]) \ | |
309 | (flags)[signum] = 0; \ | |
310 | } while (0) | |
311 | ||
9b224c5e PA |
312 | /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of |
313 | this function is to avoid exporting `signal_program'. */ | |
314 | ||
315 | void | |
316 | update_signals_program_target (void) | |
317 | { | |
a493e3e2 | 318 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); |
9b224c5e PA |
319 | } |
320 | ||
1777feb0 | 321 | /* Value to pass to target_resume() to cause all threads to resume. */ |
39f77062 | 322 | |
edb3359d | 323 | #define RESUME_ALL minus_one_ptid |
c906108c SS |
324 | |
325 | /* Command list pointer for the "stop" placeholder. */ | |
326 | ||
327 | static struct cmd_list_element *stop_command; | |
328 | ||
c906108c SS |
329 | /* Function inferior was in as of last step command. */ |
330 | ||
331 | static struct symbol *step_start_function; | |
332 | ||
c906108c SS |
333 | /* Nonzero if we want to give control to the user when we're notified |
334 | of shared library events by the dynamic linker. */ | |
628fe4e4 | 335 | int stop_on_solib_events; |
f9e14852 GB |
336 | |
337 | /* Enable or disable optional shared library event breakpoints | |
338 | as appropriate when the above flag is changed. */ | |
339 | ||
340 | static void | |
341 | set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c) | |
342 | { | |
343 | update_solib_breakpoints (); | |
344 | } | |
345 | ||
920d2a44 AC |
346 | static void |
347 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
348 | struct cmd_list_element *c, const char *value) | |
349 | { | |
350 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
351 | value); | |
352 | } | |
c906108c | 353 | |
c906108c SS |
354 | /* Nonzero means expecting a trace trap |
355 | and should stop the inferior and return silently when it happens. */ | |
356 | ||
357 | int stop_after_trap; | |
358 | ||
642fd101 DE |
359 | /* Save register contents here when executing a "finish" command or are |
360 | about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set. | |
c906108c SS |
361 | Thus this contains the return value from the called function (assuming |
362 | values are returned in a register). */ | |
363 | ||
72cec141 | 364 | struct regcache *stop_registers; |
c906108c | 365 | |
c906108c SS |
366 | /* Nonzero after stop if current stack frame should be printed. */ |
367 | ||
368 | static int stop_print_frame; | |
369 | ||
e02bc4cc | 370 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
371 | returned by target_wait()/deprecated_target_wait_hook(). This |
372 | information is returned by get_last_target_status(). */ | |
39f77062 | 373 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
374 | static struct target_waitstatus target_last_waitstatus; |
375 | ||
0d1e5fa7 PA |
376 | static void context_switch (ptid_t ptid); |
377 | ||
4e1c45ea | 378 | void init_thread_stepping_state (struct thread_info *tss); |
0d1e5fa7 | 379 | |
53904c9e AC |
380 | static const char follow_fork_mode_child[] = "child"; |
381 | static const char follow_fork_mode_parent[] = "parent"; | |
382 | ||
40478521 | 383 | static const char *const follow_fork_mode_kind_names[] = { |
53904c9e AC |
384 | follow_fork_mode_child, |
385 | follow_fork_mode_parent, | |
386 | NULL | |
ef346e04 | 387 | }; |
c906108c | 388 | |
53904c9e | 389 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
390 | static void |
391 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
392 | struct cmd_list_element *c, const char *value) | |
393 | { | |
3e43a32a MS |
394 | fprintf_filtered (file, |
395 | _("Debugger response to a program " | |
396 | "call of fork or vfork is \"%s\".\n"), | |
920d2a44 AC |
397 | value); |
398 | } | |
c906108c SS |
399 | \f |
400 | ||
d83ad864 DB |
401 | /* Handle changes to the inferior list based on the type of fork, |
402 | which process is being followed, and whether the other process | |
403 | should be detached. On entry inferior_ptid must be the ptid of | |
404 | the fork parent. At return inferior_ptid is the ptid of the | |
405 | followed inferior. */ | |
406 | ||
407 | static int | |
408 | follow_fork_inferior (int follow_child, int detach_fork) | |
409 | { | |
410 | int has_vforked; | |
411 | int parent_pid, child_pid; | |
412 | ||
413 | has_vforked = (inferior_thread ()->pending_follow.kind | |
414 | == TARGET_WAITKIND_VFORKED); | |
415 | parent_pid = ptid_get_lwp (inferior_ptid); | |
416 | if (parent_pid == 0) | |
417 | parent_pid = ptid_get_pid (inferior_ptid); | |
418 | child_pid | |
419 | = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid); | |
420 | ||
421 | if (has_vforked | |
422 | && !non_stop /* Non-stop always resumes both branches. */ | |
423 | && (!target_is_async_p () || sync_execution) | |
424 | && !(follow_child || detach_fork || sched_multi)) | |
425 | { | |
426 | /* The parent stays blocked inside the vfork syscall until the | |
427 | child execs or exits. If we don't let the child run, then | |
428 | the parent stays blocked. If we're telling the parent to run | |
429 | in the foreground, the user will not be able to ctrl-c to get | |
430 | back the terminal, effectively hanging the debug session. */ | |
431 | fprintf_filtered (gdb_stderr, _("\ | |
432 | Can not resume the parent process over vfork in the foreground while\n\ | |
433 | holding the child stopped. Try \"set detach-on-fork\" or \ | |
434 | \"set schedule-multiple\".\n")); | |
435 | /* FIXME output string > 80 columns. */ | |
436 | return 1; | |
437 | } | |
438 | ||
439 | if (!follow_child) | |
440 | { | |
441 | /* Detach new forked process? */ | |
442 | if (detach_fork) | |
443 | { | |
444 | struct cleanup *old_chain; | |
445 | ||
446 | /* Before detaching from the child, remove all breakpoints | |
447 | from it. If we forked, then this has already been taken | |
448 | care of by infrun.c. If we vforked however, any | |
449 | breakpoint inserted in the parent is visible in the | |
450 | child, even those added while stopped in a vfork | |
451 | catchpoint. This will remove the breakpoints from the | |
452 | parent also, but they'll be reinserted below. */ | |
453 | if (has_vforked) | |
454 | { | |
455 | /* Keep breakpoints list in sync. */ | |
456 | remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); | |
457 | } | |
458 | ||
459 | if (info_verbose || debug_infrun) | |
460 | { | |
6f259a23 | 461 | target_terminal_ours_for_output (); |
d83ad864 | 462 | fprintf_filtered (gdb_stdlog, |
6f259a23 DB |
463 | _("Detaching after %s from " |
464 | "child process %d.\n"), | |
465 | has_vforked ? "vfork" : "fork", | |
d83ad864 DB |
466 | child_pid); |
467 | } | |
468 | } | |
469 | else | |
470 | { | |
471 | struct inferior *parent_inf, *child_inf; | |
472 | struct cleanup *old_chain; | |
473 | ||
474 | /* Add process to GDB's tables. */ | |
475 | child_inf = add_inferior (child_pid); | |
476 | ||
477 | parent_inf = current_inferior (); | |
478 | child_inf->attach_flag = parent_inf->attach_flag; | |
479 | copy_terminal_info (child_inf, parent_inf); | |
480 | child_inf->gdbarch = parent_inf->gdbarch; | |
481 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
482 | ||
483 | old_chain = save_inferior_ptid (); | |
484 | save_current_program_space (); | |
485 | ||
486 | inferior_ptid = ptid_build (child_pid, child_pid, 0); | |
487 | add_thread (inferior_ptid); | |
488 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
489 | ||
490 | /* If this is a vfork child, then the address-space is | |
491 | shared with the parent. */ | |
492 | if (has_vforked) | |
493 | { | |
494 | child_inf->pspace = parent_inf->pspace; | |
495 | child_inf->aspace = parent_inf->aspace; | |
496 | ||
497 | /* The parent will be frozen until the child is done | |
498 | with the shared region. Keep track of the | |
499 | parent. */ | |
500 | child_inf->vfork_parent = parent_inf; | |
501 | child_inf->pending_detach = 0; | |
502 | parent_inf->vfork_child = child_inf; | |
503 | parent_inf->pending_detach = 0; | |
504 | } | |
505 | else | |
506 | { | |
507 | child_inf->aspace = new_address_space (); | |
508 | child_inf->pspace = add_program_space (child_inf->aspace); | |
509 | child_inf->removable = 1; | |
510 | set_current_program_space (child_inf->pspace); | |
511 | clone_program_space (child_inf->pspace, parent_inf->pspace); | |
512 | ||
513 | /* Let the shared library layer (e.g., solib-svr4) learn | |
514 | about this new process, relocate the cloned exec, pull | |
515 | in shared libraries, and install the solib event | |
516 | breakpoint. If a "cloned-VM" event was propagated | |
517 | better throughout the core, this wouldn't be | |
518 | required. */ | |
519 | solib_create_inferior_hook (0); | |
520 | } | |
521 | ||
522 | do_cleanups (old_chain); | |
523 | } | |
524 | ||
525 | if (has_vforked) | |
526 | { | |
527 | struct inferior *parent_inf; | |
528 | ||
529 | parent_inf = current_inferior (); | |
530 | ||
531 | /* If we detached from the child, then we have to be careful | |
532 | to not insert breakpoints in the parent until the child | |
533 | is done with the shared memory region. However, if we're | |
534 | staying attached to the child, then we can and should | |
535 | insert breakpoints, so that we can debug it. A | |
536 | subsequent child exec or exit is enough to know when does | |
537 | the child stops using the parent's address space. */ | |
538 | parent_inf->waiting_for_vfork_done = detach_fork; | |
539 | parent_inf->pspace->breakpoints_not_allowed = detach_fork; | |
540 | } | |
541 | } | |
542 | else | |
543 | { | |
544 | /* Follow the child. */ | |
545 | struct inferior *parent_inf, *child_inf; | |
546 | struct program_space *parent_pspace; | |
547 | ||
548 | if (info_verbose || debug_infrun) | |
549 | { | |
6f259a23 DB |
550 | target_terminal_ours_for_output (); |
551 | fprintf_filtered (gdb_stdlog, | |
552 | _("Attaching after process %d " | |
553 | "%s to child process %d.\n"), | |
554 | parent_pid, | |
555 | has_vforked ? "vfork" : "fork", | |
556 | child_pid); | |
d83ad864 DB |
557 | } |
558 | ||
559 | /* Add the new inferior first, so that the target_detach below | |
560 | doesn't unpush the target. */ | |
561 | ||
562 | child_inf = add_inferior (child_pid); | |
563 | ||
564 | parent_inf = current_inferior (); | |
565 | child_inf->attach_flag = parent_inf->attach_flag; | |
566 | copy_terminal_info (child_inf, parent_inf); | |
567 | child_inf->gdbarch = parent_inf->gdbarch; | |
568 | copy_inferior_target_desc_info (child_inf, parent_inf); | |
569 | ||
570 | parent_pspace = parent_inf->pspace; | |
571 | ||
572 | /* If we're vforking, we want to hold on to the parent until the | |
573 | child exits or execs. At child exec or exit time we can | |
574 | remove the old breakpoints from the parent and detach or | |
575 | resume debugging it. Otherwise, detach the parent now; we'll | |
576 | want to reuse it's program/address spaces, but we can't set | |
577 | them to the child before removing breakpoints from the | |
578 | parent, otherwise, the breakpoints module could decide to | |
579 | remove breakpoints from the wrong process (since they'd be | |
580 | assigned to the same address space). */ | |
581 | ||
582 | if (has_vforked) | |
583 | { | |
584 | gdb_assert (child_inf->vfork_parent == NULL); | |
585 | gdb_assert (parent_inf->vfork_child == NULL); | |
586 | child_inf->vfork_parent = parent_inf; | |
587 | child_inf->pending_detach = 0; | |
588 | parent_inf->vfork_child = child_inf; | |
589 | parent_inf->pending_detach = detach_fork; | |
590 | parent_inf->waiting_for_vfork_done = 0; | |
591 | } | |
592 | else if (detach_fork) | |
6f259a23 DB |
593 | { |
594 | if (info_verbose || debug_infrun) | |
595 | { | |
596 | target_terminal_ours_for_output (); | |
597 | fprintf_filtered (gdb_stdlog, | |
598 | _("Detaching after fork from " | |
599 | "child process %d.\n"), | |
600 | child_pid); | |
601 | } | |
602 | ||
603 | target_detach (NULL, 0); | |
604 | } | |
d83ad864 DB |
605 | |
606 | /* Note that the detach above makes PARENT_INF dangling. */ | |
607 | ||
608 | /* Add the child thread to the appropriate lists, and switch to | |
609 | this new thread, before cloning the program space, and | |
610 | informing the solib layer about this new process. */ | |
611 | ||
612 | inferior_ptid = ptid_build (child_pid, child_pid, 0); | |
613 | add_thread (inferior_ptid); | |
614 | ||
615 | /* If this is a vfork child, then the address-space is shared | |
616 | with the parent. If we detached from the parent, then we can | |
617 | reuse the parent's program/address spaces. */ | |
618 | if (has_vforked || detach_fork) | |
619 | { | |
620 | child_inf->pspace = parent_pspace; | |
621 | child_inf->aspace = child_inf->pspace->aspace; | |
622 | } | |
623 | else | |
624 | { | |
625 | child_inf->aspace = new_address_space (); | |
626 | child_inf->pspace = add_program_space (child_inf->aspace); | |
627 | child_inf->removable = 1; | |
628 | child_inf->symfile_flags = SYMFILE_NO_READ; | |
629 | set_current_program_space (child_inf->pspace); | |
630 | clone_program_space (child_inf->pspace, parent_pspace); | |
631 | ||
632 | /* Let the shared library layer (e.g., solib-svr4) learn | |
633 | about this new process, relocate the cloned exec, pull in | |
634 | shared libraries, and install the solib event breakpoint. | |
635 | If a "cloned-VM" event was propagated better throughout | |
636 | the core, this wouldn't be required. */ | |
637 | solib_create_inferior_hook (0); | |
638 | } | |
639 | } | |
640 | ||
641 | return target_follow_fork (follow_child, detach_fork); | |
642 | } | |
643 | ||
e58b0e63 PA |
644 | /* Tell the target to follow the fork we're stopped at. Returns true |
645 | if the inferior should be resumed; false, if the target for some | |
646 | reason decided it's best not to resume. */ | |
647 | ||
6604731b | 648 | static int |
4ef3f3be | 649 | follow_fork (void) |
c906108c | 650 | { |
ea1dd7bc | 651 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
e58b0e63 PA |
652 | int should_resume = 1; |
653 | struct thread_info *tp; | |
654 | ||
655 | /* Copy user stepping state to the new inferior thread. FIXME: the | |
656 | followed fork child thread should have a copy of most of the | |
4e3990f4 DE |
657 | parent thread structure's run control related fields, not just these. |
658 | Initialized to avoid "may be used uninitialized" warnings from gcc. */ | |
659 | struct breakpoint *step_resume_breakpoint = NULL; | |
186c406b | 660 | struct breakpoint *exception_resume_breakpoint = NULL; |
4e3990f4 DE |
661 | CORE_ADDR step_range_start = 0; |
662 | CORE_ADDR step_range_end = 0; | |
663 | struct frame_id step_frame_id = { 0 }; | |
17b2616c | 664 | struct interp *command_interp = NULL; |
e58b0e63 PA |
665 | |
666 | if (!non_stop) | |
667 | { | |
668 | ptid_t wait_ptid; | |
669 | struct target_waitstatus wait_status; | |
670 | ||
671 | /* Get the last target status returned by target_wait(). */ | |
672 | get_last_target_status (&wait_ptid, &wait_status); | |
673 | ||
674 | /* If not stopped at a fork event, then there's nothing else to | |
675 | do. */ | |
676 | if (wait_status.kind != TARGET_WAITKIND_FORKED | |
677 | && wait_status.kind != TARGET_WAITKIND_VFORKED) | |
678 | return 1; | |
679 | ||
680 | /* Check if we switched over from WAIT_PTID, since the event was | |
681 | reported. */ | |
682 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
683 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
684 | { | |
685 | /* We did. Switch back to WAIT_PTID thread, to tell the | |
686 | target to follow it (in either direction). We'll | |
687 | afterwards refuse to resume, and inform the user what | |
688 | happened. */ | |
689 | switch_to_thread (wait_ptid); | |
690 | should_resume = 0; | |
691 | } | |
692 | } | |
693 | ||
694 | tp = inferior_thread (); | |
695 | ||
696 | /* If there were any forks/vforks that were caught and are now to be | |
697 | followed, then do so now. */ | |
698 | switch (tp->pending_follow.kind) | |
699 | { | |
700 | case TARGET_WAITKIND_FORKED: | |
701 | case TARGET_WAITKIND_VFORKED: | |
702 | { | |
703 | ptid_t parent, child; | |
704 | ||
705 | /* If the user did a next/step, etc, over a fork call, | |
706 | preserve the stepping state in the fork child. */ | |
707 | if (follow_child && should_resume) | |
708 | { | |
8358c15c JK |
709 | step_resume_breakpoint = clone_momentary_breakpoint |
710 | (tp->control.step_resume_breakpoint); | |
16c381f0 JK |
711 | step_range_start = tp->control.step_range_start; |
712 | step_range_end = tp->control.step_range_end; | |
713 | step_frame_id = tp->control.step_frame_id; | |
186c406b TT |
714 | exception_resume_breakpoint |
715 | = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint); | |
17b2616c | 716 | command_interp = tp->control.command_interp; |
e58b0e63 PA |
717 | |
718 | /* For now, delete the parent's sr breakpoint, otherwise, | |
719 | parent/child sr breakpoints are considered duplicates, | |
720 | and the child version will not be installed. Remove | |
721 | this when the breakpoints module becomes aware of | |
722 | inferiors and address spaces. */ | |
723 | delete_step_resume_breakpoint (tp); | |
16c381f0 JK |
724 | tp->control.step_range_start = 0; |
725 | tp->control.step_range_end = 0; | |
726 | tp->control.step_frame_id = null_frame_id; | |
186c406b | 727 | delete_exception_resume_breakpoint (tp); |
17b2616c | 728 | tp->control.command_interp = NULL; |
e58b0e63 PA |
729 | } |
730 | ||
731 | parent = inferior_ptid; | |
732 | child = tp->pending_follow.value.related_pid; | |
733 | ||
d83ad864 DB |
734 | /* Set up inferior(s) as specified by the caller, and tell the |
735 | target to do whatever is necessary to follow either parent | |
736 | or child. */ | |
737 | if (follow_fork_inferior (follow_child, detach_fork)) | |
e58b0e63 PA |
738 | { |
739 | /* Target refused to follow, or there's some other reason | |
740 | we shouldn't resume. */ | |
741 | should_resume = 0; | |
742 | } | |
743 | else | |
744 | { | |
745 | /* This pending follow fork event is now handled, one way | |
746 | or another. The previous selected thread may be gone | |
747 | from the lists by now, but if it is still around, need | |
748 | to clear the pending follow request. */ | |
e09875d4 | 749 | tp = find_thread_ptid (parent); |
e58b0e63 PA |
750 | if (tp) |
751 | tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS; | |
752 | ||
753 | /* This makes sure we don't try to apply the "Switched | |
754 | over from WAIT_PID" logic above. */ | |
755 | nullify_last_target_wait_ptid (); | |
756 | ||
1777feb0 | 757 | /* If we followed the child, switch to it... */ |
e58b0e63 PA |
758 | if (follow_child) |
759 | { | |
760 | switch_to_thread (child); | |
761 | ||
762 | /* ... and preserve the stepping state, in case the | |
763 | user was stepping over the fork call. */ | |
764 | if (should_resume) | |
765 | { | |
766 | tp = inferior_thread (); | |
8358c15c JK |
767 | tp->control.step_resume_breakpoint |
768 | = step_resume_breakpoint; | |
16c381f0 JK |
769 | tp->control.step_range_start = step_range_start; |
770 | tp->control.step_range_end = step_range_end; | |
771 | tp->control.step_frame_id = step_frame_id; | |
186c406b TT |
772 | tp->control.exception_resume_breakpoint |
773 | = exception_resume_breakpoint; | |
17b2616c | 774 | tp->control.command_interp = command_interp; |
e58b0e63 PA |
775 | } |
776 | else | |
777 | { | |
778 | /* If we get here, it was because we're trying to | |
779 | resume from a fork catchpoint, but, the user | |
780 | has switched threads away from the thread that | |
781 | forked. In that case, the resume command | |
782 | issued is most likely not applicable to the | |
783 | child, so just warn, and refuse to resume. */ | |
3e43a32a MS |
784 | warning (_("Not resuming: switched threads " |
785 | "before following fork child.\n")); | |
e58b0e63 PA |
786 | } |
787 | ||
788 | /* Reset breakpoints in the child as appropriate. */ | |
789 | follow_inferior_reset_breakpoints (); | |
790 | } | |
791 | else | |
792 | switch_to_thread (parent); | |
793 | } | |
794 | } | |
795 | break; | |
796 | case TARGET_WAITKIND_SPURIOUS: | |
797 | /* Nothing to follow. */ | |
798 | break; | |
799 | default: | |
800 | internal_error (__FILE__, __LINE__, | |
801 | "Unexpected pending_follow.kind %d\n", | |
802 | tp->pending_follow.kind); | |
803 | break; | |
804 | } | |
c906108c | 805 | |
e58b0e63 | 806 | return should_resume; |
c906108c SS |
807 | } |
808 | ||
d83ad864 | 809 | static void |
6604731b | 810 | follow_inferior_reset_breakpoints (void) |
c906108c | 811 | { |
4e1c45ea PA |
812 | struct thread_info *tp = inferior_thread (); |
813 | ||
6604731b DJ |
814 | /* Was there a step_resume breakpoint? (There was if the user |
815 | did a "next" at the fork() call.) If so, explicitly reset its | |
a1aa2221 LM |
816 | thread number. Cloned step_resume breakpoints are disabled on |
817 | creation, so enable it here now that it is associated with the | |
818 | correct thread. | |
6604731b DJ |
819 | |
820 | step_resumes are a form of bp that are made to be per-thread. | |
821 | Since we created the step_resume bp when the parent process | |
822 | was being debugged, and now are switching to the child process, | |
823 | from the breakpoint package's viewpoint, that's a switch of | |
824 | "threads". We must update the bp's notion of which thread | |
825 | it is for, or it'll be ignored when it triggers. */ | |
826 | ||
8358c15c | 827 | if (tp->control.step_resume_breakpoint) |
a1aa2221 LM |
828 | { |
829 | breakpoint_re_set_thread (tp->control.step_resume_breakpoint); | |
830 | tp->control.step_resume_breakpoint->loc->enabled = 1; | |
831 | } | |
6604731b | 832 | |
a1aa2221 | 833 | /* Treat exception_resume breakpoints like step_resume breakpoints. */ |
186c406b | 834 | if (tp->control.exception_resume_breakpoint) |
a1aa2221 LM |
835 | { |
836 | breakpoint_re_set_thread (tp->control.exception_resume_breakpoint); | |
837 | tp->control.exception_resume_breakpoint->loc->enabled = 1; | |
838 | } | |
186c406b | 839 | |
6604731b DJ |
840 | /* Reinsert all breakpoints in the child. The user may have set |
841 | breakpoints after catching the fork, in which case those | |
842 | were never set in the child, but only in the parent. This makes | |
843 | sure the inserted breakpoints match the breakpoint list. */ | |
844 | ||
845 | breakpoint_re_set (); | |
846 | insert_breakpoints (); | |
c906108c | 847 | } |
c906108c | 848 | |
6c95b8df PA |
849 | /* The child has exited or execed: resume threads of the parent the |
850 | user wanted to be executing. */ | |
851 | ||
852 | static int | |
853 | proceed_after_vfork_done (struct thread_info *thread, | |
854 | void *arg) | |
855 | { | |
856 | int pid = * (int *) arg; | |
857 | ||
858 | if (ptid_get_pid (thread->ptid) == pid | |
859 | && is_running (thread->ptid) | |
860 | && !is_executing (thread->ptid) | |
861 | && !thread->stop_requested | |
a493e3e2 | 862 | && thread->suspend.stop_signal == GDB_SIGNAL_0) |
6c95b8df PA |
863 | { |
864 | if (debug_infrun) | |
865 | fprintf_unfiltered (gdb_stdlog, | |
866 | "infrun: resuming vfork parent thread %s\n", | |
867 | target_pid_to_str (thread->ptid)); | |
868 | ||
869 | switch_to_thread (thread->ptid); | |
70509625 | 870 | clear_proceed_status (0); |
a493e3e2 | 871 | proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0); |
6c95b8df PA |
872 | } |
873 | ||
874 | return 0; | |
875 | } | |
876 | ||
877 | /* Called whenever we notice an exec or exit event, to handle | |
878 | detaching or resuming a vfork parent. */ | |
879 | ||
880 | static void | |
881 | handle_vfork_child_exec_or_exit (int exec) | |
882 | { | |
883 | struct inferior *inf = current_inferior (); | |
884 | ||
885 | if (inf->vfork_parent) | |
886 | { | |
887 | int resume_parent = -1; | |
888 | ||
889 | /* This exec or exit marks the end of the shared memory region | |
890 | between the parent and the child. If the user wanted to | |
891 | detach from the parent, now is the time. */ | |
892 | ||
893 | if (inf->vfork_parent->pending_detach) | |
894 | { | |
895 | struct thread_info *tp; | |
896 | struct cleanup *old_chain; | |
897 | struct program_space *pspace; | |
898 | struct address_space *aspace; | |
899 | ||
1777feb0 | 900 | /* follow-fork child, detach-on-fork on. */ |
6c95b8df | 901 | |
68c9da30 PA |
902 | inf->vfork_parent->pending_detach = 0; |
903 | ||
f50f4e56 PA |
904 | if (!exec) |
905 | { | |
906 | /* If we're handling a child exit, then inferior_ptid | |
907 | points at the inferior's pid, not to a thread. */ | |
908 | old_chain = save_inferior_ptid (); | |
909 | save_current_program_space (); | |
910 | save_current_inferior (); | |
911 | } | |
912 | else | |
913 | old_chain = save_current_space_and_thread (); | |
6c95b8df PA |
914 | |
915 | /* We're letting loose of the parent. */ | |
916 | tp = any_live_thread_of_process (inf->vfork_parent->pid); | |
917 | switch_to_thread (tp->ptid); | |
918 | ||
919 | /* We're about to detach from the parent, which implicitly | |
920 | removes breakpoints from its address space. There's a | |
921 | catch here: we want to reuse the spaces for the child, | |
922 | but, parent/child are still sharing the pspace at this | |
923 | point, although the exec in reality makes the kernel give | |
924 | the child a fresh set of new pages. The problem here is | |
925 | that the breakpoints module being unaware of this, would | |
926 | likely chose the child process to write to the parent | |
927 | address space. Swapping the child temporarily away from | |
928 | the spaces has the desired effect. Yes, this is "sort | |
929 | of" a hack. */ | |
930 | ||
931 | pspace = inf->pspace; | |
932 | aspace = inf->aspace; | |
933 | inf->aspace = NULL; | |
934 | inf->pspace = NULL; | |
935 | ||
936 | if (debug_infrun || info_verbose) | |
937 | { | |
6f259a23 | 938 | target_terminal_ours_for_output (); |
6c95b8df PA |
939 | |
940 | if (exec) | |
6f259a23 DB |
941 | { |
942 | fprintf_filtered (gdb_stdlog, | |
943 | _("Detaching vfork parent process " | |
944 | "%d after child exec.\n"), | |
945 | inf->vfork_parent->pid); | |
946 | } | |
6c95b8df | 947 | else |
6f259a23 DB |
948 | { |
949 | fprintf_filtered (gdb_stdlog, | |
950 | _("Detaching vfork parent process " | |
951 | "%d after child exit.\n"), | |
952 | inf->vfork_parent->pid); | |
953 | } | |
6c95b8df PA |
954 | } |
955 | ||
956 | target_detach (NULL, 0); | |
957 | ||
958 | /* Put it back. */ | |
959 | inf->pspace = pspace; | |
960 | inf->aspace = aspace; | |
961 | ||
962 | do_cleanups (old_chain); | |
963 | } | |
964 | else if (exec) | |
965 | { | |
966 | /* We're staying attached to the parent, so, really give the | |
967 | child a new address space. */ | |
968 | inf->pspace = add_program_space (maybe_new_address_space ()); | |
969 | inf->aspace = inf->pspace->aspace; | |
970 | inf->removable = 1; | |
971 | set_current_program_space (inf->pspace); | |
972 | ||
973 | resume_parent = inf->vfork_parent->pid; | |
974 | ||
975 | /* Break the bonds. */ | |
976 | inf->vfork_parent->vfork_child = NULL; | |
977 | } | |
978 | else | |
979 | { | |
980 | struct cleanup *old_chain; | |
981 | struct program_space *pspace; | |
982 | ||
983 | /* If this is a vfork child exiting, then the pspace and | |
984 | aspaces were shared with the parent. Since we're | |
985 | reporting the process exit, we'll be mourning all that is | |
986 | found in the address space, and switching to null_ptid, | |
987 | preparing to start a new inferior. But, since we don't | |
988 | want to clobber the parent's address/program spaces, we | |
989 | go ahead and create a new one for this exiting | |
990 | inferior. */ | |
991 | ||
992 | /* Switch to null_ptid, so that clone_program_space doesn't want | |
993 | to read the selected frame of a dead process. */ | |
994 | old_chain = save_inferior_ptid (); | |
995 | inferior_ptid = null_ptid; | |
996 | ||
997 | /* This inferior is dead, so avoid giving the breakpoints | |
998 | module the option to write through to it (cloning a | |
999 | program space resets breakpoints). */ | |
1000 | inf->aspace = NULL; | |
1001 | inf->pspace = NULL; | |
1002 | pspace = add_program_space (maybe_new_address_space ()); | |
1003 | set_current_program_space (pspace); | |
1004 | inf->removable = 1; | |
7dcd53a0 | 1005 | inf->symfile_flags = SYMFILE_NO_READ; |
6c95b8df PA |
1006 | clone_program_space (pspace, inf->vfork_parent->pspace); |
1007 | inf->pspace = pspace; | |
1008 | inf->aspace = pspace->aspace; | |
1009 | ||
1010 | /* Put back inferior_ptid. We'll continue mourning this | |
1777feb0 | 1011 | inferior. */ |
6c95b8df PA |
1012 | do_cleanups (old_chain); |
1013 | ||
1014 | resume_parent = inf->vfork_parent->pid; | |
1015 | /* Break the bonds. */ | |
1016 | inf->vfork_parent->vfork_child = NULL; | |
1017 | } | |
1018 | ||
1019 | inf->vfork_parent = NULL; | |
1020 | ||
1021 | gdb_assert (current_program_space == inf->pspace); | |
1022 | ||
1023 | if (non_stop && resume_parent != -1) | |
1024 | { | |
1025 | /* If the user wanted the parent to be running, let it go | |
1026 | free now. */ | |
1027 | struct cleanup *old_chain = make_cleanup_restore_current_thread (); | |
1028 | ||
1029 | if (debug_infrun) | |
3e43a32a MS |
1030 | fprintf_unfiltered (gdb_stdlog, |
1031 | "infrun: resuming vfork parent process %d\n", | |
6c95b8df PA |
1032 | resume_parent); |
1033 | ||
1034 | iterate_over_threads (proceed_after_vfork_done, &resume_parent); | |
1035 | ||
1036 | do_cleanups (old_chain); | |
1037 | } | |
1038 | } | |
1039 | } | |
1040 | ||
eb6c553b | 1041 | /* Enum strings for "set|show follow-exec-mode". */ |
6c95b8df PA |
1042 | |
1043 | static const char follow_exec_mode_new[] = "new"; | |
1044 | static const char follow_exec_mode_same[] = "same"; | |
40478521 | 1045 | static const char *const follow_exec_mode_names[] = |
6c95b8df PA |
1046 | { |
1047 | follow_exec_mode_new, | |
1048 | follow_exec_mode_same, | |
1049 | NULL, | |
1050 | }; | |
1051 | ||
1052 | static const char *follow_exec_mode_string = follow_exec_mode_same; | |
1053 | static void | |
1054 | show_follow_exec_mode_string (struct ui_file *file, int from_tty, | |
1055 | struct cmd_list_element *c, const char *value) | |
1056 | { | |
1057 | fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value); | |
1058 | } | |
1059 | ||
1777feb0 | 1060 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
1adeb98a | 1061 | |
c906108c | 1062 | static void |
3a3e9ee3 | 1063 | follow_exec (ptid_t pid, char *execd_pathname) |
c906108c | 1064 | { |
4e1c45ea | 1065 | struct thread_info *th = inferior_thread (); |
6c95b8df | 1066 | struct inferior *inf = current_inferior (); |
7a292a7a | 1067 | |
c906108c SS |
1068 | /* This is an exec event that we actually wish to pay attention to. |
1069 | Refresh our symbol table to the newly exec'd program, remove any | |
1070 | momentary bp's, etc. | |
1071 | ||
1072 | If there are breakpoints, they aren't really inserted now, | |
1073 | since the exec() transformed our inferior into a fresh set | |
1074 | of instructions. | |
1075 | ||
1076 | We want to preserve symbolic breakpoints on the list, since | |
1077 | we have hopes that they can be reset after the new a.out's | |
1078 | symbol table is read. | |
1079 | ||
1080 | However, any "raw" breakpoints must be removed from the list | |
1081 | (e.g., the solib bp's), since their address is probably invalid | |
1082 | now. | |
1083 | ||
1084 | And, we DON'T want to call delete_breakpoints() here, since | |
1085 | that may write the bp's "shadow contents" (the instruction | |
1086 | value that was overwritten witha TRAP instruction). Since | |
1777feb0 | 1087 | we now have a new a.out, those shadow contents aren't valid. */ |
6c95b8df PA |
1088 | |
1089 | mark_breakpoints_out (); | |
1090 | ||
c906108c SS |
1091 | update_breakpoints_after_exec (); |
1092 | ||
1093 | /* If there was one, it's gone now. We cannot truly step-to-next | |
1777feb0 | 1094 | statement through an exec(). */ |
8358c15c | 1095 | th->control.step_resume_breakpoint = NULL; |
186c406b | 1096 | th->control.exception_resume_breakpoint = NULL; |
34b7e8a6 | 1097 | th->control.single_step_breakpoints = NULL; |
16c381f0 JK |
1098 | th->control.step_range_start = 0; |
1099 | th->control.step_range_end = 0; | |
c906108c | 1100 | |
a75724bc PA |
1101 | /* The target reports the exec event to the main thread, even if |
1102 | some other thread does the exec, and even if the main thread was | |
1103 | already stopped --- if debugging in non-stop mode, it's possible | |
1104 | the user had the main thread held stopped in the previous image | |
1105 | --- release it now. This is the same behavior as step-over-exec | |
1106 | with scheduler-locking on in all-stop mode. */ | |
1107 | th->stop_requested = 0; | |
1108 | ||
1777feb0 | 1109 | /* What is this a.out's name? */ |
6c95b8df PA |
1110 | printf_unfiltered (_("%s is executing new program: %s\n"), |
1111 | target_pid_to_str (inferior_ptid), | |
1112 | execd_pathname); | |
c906108c SS |
1113 | |
1114 | /* We've followed the inferior through an exec. Therefore, the | |
1777feb0 | 1115 | inferior has essentially been killed & reborn. */ |
7a292a7a | 1116 | |
c906108c | 1117 | gdb_flush (gdb_stdout); |
6ca15a4b PA |
1118 | |
1119 | breakpoint_init_inferior (inf_execd); | |
e85a822c DJ |
1120 | |
1121 | if (gdb_sysroot && *gdb_sysroot) | |
1122 | { | |
1123 | char *name = alloca (strlen (gdb_sysroot) | |
1124 | + strlen (execd_pathname) | |
1125 | + 1); | |
abbb1732 | 1126 | |
e85a822c DJ |
1127 | strcpy (name, gdb_sysroot); |
1128 | strcat (name, execd_pathname); | |
1129 | execd_pathname = name; | |
1130 | } | |
c906108c | 1131 | |
cce9b6bf PA |
1132 | /* Reset the shared library package. This ensures that we get a |
1133 | shlib event when the child reaches "_start", at which point the | |
1134 | dld will have had a chance to initialize the child. */ | |
1135 | /* Also, loading a symbol file below may trigger symbol lookups, and | |
1136 | we don't want those to be satisfied by the libraries of the | |
1137 | previous incarnation of this process. */ | |
1138 | no_shared_libraries (NULL, 0); | |
1139 | ||
6c95b8df PA |
1140 | if (follow_exec_mode_string == follow_exec_mode_new) |
1141 | { | |
1142 | struct program_space *pspace; | |
6c95b8df PA |
1143 | |
1144 | /* The user wants to keep the old inferior and program spaces | |
1145 | around. Create a new fresh one, and switch to it. */ | |
1146 | ||
1147 | inf = add_inferior (current_inferior ()->pid); | |
1148 | pspace = add_program_space (maybe_new_address_space ()); | |
1149 | inf->pspace = pspace; | |
1150 | inf->aspace = pspace->aspace; | |
1151 | ||
1152 | exit_inferior_num_silent (current_inferior ()->num); | |
1153 | ||
1154 | set_current_inferior (inf); | |
1155 | set_current_program_space (pspace); | |
1156 | } | |
9107fc8d PA |
1157 | else |
1158 | { | |
1159 | /* The old description may no longer be fit for the new image. | |
1160 | E.g, a 64-bit process exec'ed a 32-bit process. Clear the | |
1161 | old description; we'll read a new one below. No need to do | |
1162 | this on "follow-exec-mode new", as the old inferior stays | |
1163 | around (its description is later cleared/refetched on | |
1164 | restart). */ | |
1165 | target_clear_description (); | |
1166 | } | |
6c95b8df PA |
1167 | |
1168 | gdb_assert (current_program_space == inf->pspace); | |
1169 | ||
1777feb0 | 1170 | /* That a.out is now the one to use. */ |
6c95b8df PA |
1171 | exec_file_attach (execd_pathname, 0); |
1172 | ||
c1e56572 JK |
1173 | /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE |
1174 | (Position Independent Executable) main symbol file will get applied by | |
1175 | solib_create_inferior_hook below. breakpoint_re_set would fail to insert | |
1176 | the breakpoints with the zero displacement. */ | |
1177 | ||
7dcd53a0 TT |
1178 | symbol_file_add (execd_pathname, |
1179 | (inf->symfile_flags | |
1180 | | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET), | |
c1e56572 JK |
1181 | NULL, 0); |
1182 | ||
7dcd53a0 TT |
1183 | if ((inf->symfile_flags & SYMFILE_NO_READ) == 0) |
1184 | set_initial_language (); | |
c906108c | 1185 | |
9107fc8d PA |
1186 | /* If the target can specify a description, read it. Must do this |
1187 | after flipping to the new executable (because the target supplied | |
1188 | description must be compatible with the executable's | |
1189 | architecture, and the old executable may e.g., be 32-bit, while | |
1190 | the new one 64-bit), and before anything involving memory or | |
1191 | registers. */ | |
1192 | target_find_description (); | |
1193 | ||
268a4a75 | 1194 | solib_create_inferior_hook (0); |
c906108c | 1195 | |
4efc6507 DE |
1196 | jit_inferior_created_hook (); |
1197 | ||
c1e56572 JK |
1198 | breakpoint_re_set (); |
1199 | ||
c906108c SS |
1200 | /* Reinsert all breakpoints. (Those which were symbolic have |
1201 | been reset to the proper address in the new a.out, thanks | |
1777feb0 | 1202 | to symbol_file_command...). */ |
c906108c SS |
1203 | insert_breakpoints (); |
1204 | ||
1205 | /* The next resume of this inferior should bring it to the shlib | |
1206 | startup breakpoints. (If the user had also set bp's on | |
1207 | "main" from the old (parent) process, then they'll auto- | |
1777feb0 | 1208 | matically get reset there in the new process.). */ |
c906108c SS |
1209 | } |
1210 | ||
963f9c80 | 1211 | /* Info about an instruction that is being stepped over. */ |
31e77af2 PA |
1212 | |
1213 | struct step_over_info | |
1214 | { | |
963f9c80 PA |
1215 | /* If we're stepping past a breakpoint, this is the address space |
1216 | and address of the instruction the breakpoint is set at. We'll | |
1217 | skip inserting all breakpoints here. Valid iff ASPACE is | |
1218 | non-NULL. */ | |
31e77af2 | 1219 | struct address_space *aspace; |
31e77af2 | 1220 | CORE_ADDR address; |
963f9c80 PA |
1221 | |
1222 | /* The instruction being stepped over triggers a nonsteppable | |
1223 | watchpoint. If true, we'll skip inserting watchpoints. */ | |
1224 | int nonsteppable_watchpoint_p; | |
31e77af2 PA |
1225 | }; |
1226 | ||
1227 | /* The step-over info of the location that is being stepped over. | |
1228 | ||
1229 | Note that with async/breakpoint always-inserted mode, a user might | |
1230 | set a new breakpoint/watchpoint/etc. exactly while a breakpoint is | |
1231 | being stepped over. As setting a new breakpoint inserts all | |
1232 | breakpoints, we need to make sure the breakpoint being stepped over | |
1233 | isn't inserted then. We do that by only clearing the step-over | |
1234 | info when the step-over is actually finished (or aborted). | |
1235 | ||
1236 | Presently GDB can only step over one breakpoint at any given time. | |
1237 | Given threads that can't run code in the same address space as the | |
1238 | breakpoint's can't really miss the breakpoint, GDB could be taught | |
1239 | to step-over at most one breakpoint per address space (so this info | |
1240 | could move to the address space object if/when GDB is extended). | |
1241 | The set of breakpoints being stepped over will normally be much | |
1242 | smaller than the set of all breakpoints, so a flag in the | |
1243 | breakpoint location structure would be wasteful. A separate list | |
1244 | also saves complexity and run-time, as otherwise we'd have to go | |
1245 | through all breakpoint locations clearing their flag whenever we | |
1246 | start a new sequence. Similar considerations weigh against storing | |
1247 | this info in the thread object. Plus, not all step overs actually | |
1248 | have breakpoint locations -- e.g., stepping past a single-step | |
1249 | breakpoint, or stepping to complete a non-continuable | |
1250 | watchpoint. */ | |
1251 | static struct step_over_info step_over_info; | |
1252 | ||
1253 | /* Record the address of the breakpoint/instruction we're currently | |
1254 | stepping over. */ | |
1255 | ||
1256 | static void | |
963f9c80 PA |
1257 | set_step_over_info (struct address_space *aspace, CORE_ADDR address, |
1258 | int nonsteppable_watchpoint_p) | |
31e77af2 PA |
1259 | { |
1260 | step_over_info.aspace = aspace; | |
1261 | step_over_info.address = address; | |
963f9c80 | 1262 | step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p; |
31e77af2 PA |
1263 | } |
1264 | ||
1265 | /* Called when we're not longer stepping over a breakpoint / an | |
1266 | instruction, so all breakpoints are free to be (re)inserted. */ | |
1267 | ||
1268 | static void | |
1269 | clear_step_over_info (void) | |
1270 | { | |
1271 | step_over_info.aspace = NULL; | |
1272 | step_over_info.address = 0; | |
963f9c80 | 1273 | step_over_info.nonsteppable_watchpoint_p = 0; |
31e77af2 PA |
1274 | } |
1275 | ||
7f89fd65 | 1276 | /* See infrun.h. */ |
31e77af2 PA |
1277 | |
1278 | int | |
1279 | stepping_past_instruction_at (struct address_space *aspace, | |
1280 | CORE_ADDR address) | |
1281 | { | |
1282 | return (step_over_info.aspace != NULL | |
1283 | && breakpoint_address_match (aspace, address, | |
1284 | step_over_info.aspace, | |
1285 | step_over_info.address)); | |
1286 | } | |
1287 | ||
963f9c80 PA |
1288 | /* See infrun.h. */ |
1289 | ||
1290 | int | |
1291 | stepping_past_nonsteppable_watchpoint (void) | |
1292 | { | |
1293 | return step_over_info.nonsteppable_watchpoint_p; | |
1294 | } | |
1295 | ||
6cc83d2a PA |
1296 | /* Returns true if step-over info is valid. */ |
1297 | ||
1298 | static int | |
1299 | step_over_info_valid_p (void) | |
1300 | { | |
963f9c80 PA |
1301 | return (step_over_info.aspace != NULL |
1302 | || stepping_past_nonsteppable_watchpoint ()); | |
6cc83d2a PA |
1303 | } |
1304 | ||
c906108c | 1305 | \f |
237fc4c9 PA |
1306 | /* Displaced stepping. */ |
1307 | ||
1308 | /* In non-stop debugging mode, we must take special care to manage | |
1309 | breakpoints properly; in particular, the traditional strategy for | |
1310 | stepping a thread past a breakpoint it has hit is unsuitable. | |
1311 | 'Displaced stepping' is a tactic for stepping one thread past a | |
1312 | breakpoint it has hit while ensuring that other threads running | |
1313 | concurrently will hit the breakpoint as they should. | |
1314 | ||
1315 | The traditional way to step a thread T off a breakpoint in a | |
1316 | multi-threaded program in all-stop mode is as follows: | |
1317 | ||
1318 | a0) Initially, all threads are stopped, and breakpoints are not | |
1319 | inserted. | |
1320 | a1) We single-step T, leaving breakpoints uninserted. | |
1321 | a2) We insert breakpoints, and resume all threads. | |
1322 | ||
1323 | In non-stop debugging, however, this strategy is unsuitable: we | |
1324 | don't want to have to stop all threads in the system in order to | |
1325 | continue or step T past a breakpoint. Instead, we use displaced | |
1326 | stepping: | |
1327 | ||
1328 | n0) Initially, T is stopped, other threads are running, and | |
1329 | breakpoints are inserted. | |
1330 | n1) We copy the instruction "under" the breakpoint to a separate | |
1331 | location, outside the main code stream, making any adjustments | |
1332 | to the instruction, register, and memory state as directed by | |
1333 | T's architecture. | |
1334 | n2) We single-step T over the instruction at its new location. | |
1335 | n3) We adjust the resulting register and memory state as directed | |
1336 | by T's architecture. This includes resetting T's PC to point | |
1337 | back into the main instruction stream. | |
1338 | n4) We resume T. | |
1339 | ||
1340 | This approach depends on the following gdbarch methods: | |
1341 | ||
1342 | - gdbarch_max_insn_length and gdbarch_displaced_step_location | |
1343 | indicate where to copy the instruction, and how much space must | |
1344 | be reserved there. We use these in step n1. | |
1345 | ||
1346 | - gdbarch_displaced_step_copy_insn copies a instruction to a new | |
1347 | address, and makes any necessary adjustments to the instruction, | |
1348 | register contents, and memory. We use this in step n1. | |
1349 | ||
1350 | - gdbarch_displaced_step_fixup adjusts registers and memory after | |
1351 | we have successfuly single-stepped the instruction, to yield the | |
1352 | same effect the instruction would have had if we had executed it | |
1353 | at its original address. We use this in step n3. | |
1354 | ||
1355 | - gdbarch_displaced_step_free_closure provides cleanup. | |
1356 | ||
1357 | The gdbarch_displaced_step_copy_insn and | |
1358 | gdbarch_displaced_step_fixup functions must be written so that | |
1359 | copying an instruction with gdbarch_displaced_step_copy_insn, | |
1360 | single-stepping across the copied instruction, and then applying | |
1361 | gdbarch_displaced_insn_fixup should have the same effects on the | |
1362 | thread's memory and registers as stepping the instruction in place | |
1363 | would have. Exactly which responsibilities fall to the copy and | |
1364 | which fall to the fixup is up to the author of those functions. | |
1365 | ||
1366 | See the comments in gdbarch.sh for details. | |
1367 | ||
1368 | Note that displaced stepping and software single-step cannot | |
1369 | currently be used in combination, although with some care I think | |
1370 | they could be made to. Software single-step works by placing | |
1371 | breakpoints on all possible subsequent instructions; if the | |
1372 | displaced instruction is a PC-relative jump, those breakpoints | |
1373 | could fall in very strange places --- on pages that aren't | |
1374 | executable, or at addresses that are not proper instruction | |
1375 | boundaries. (We do generally let other threads run while we wait | |
1376 | to hit the software single-step breakpoint, and they might | |
1377 | encounter such a corrupted instruction.) One way to work around | |
1378 | this would be to have gdbarch_displaced_step_copy_insn fully | |
1379 | simulate the effect of PC-relative instructions (and return NULL) | |
1380 | on architectures that use software single-stepping. | |
1381 | ||
1382 | In non-stop mode, we can have independent and simultaneous step | |
1383 | requests, so more than one thread may need to simultaneously step | |
1384 | over a breakpoint. The current implementation assumes there is | |
1385 | only one scratch space per process. In this case, we have to | |
1386 | serialize access to the scratch space. If thread A wants to step | |
1387 | over a breakpoint, but we are currently waiting for some other | |
1388 | thread to complete a displaced step, we leave thread A stopped and | |
1389 | place it in the displaced_step_request_queue. Whenever a displaced | |
1390 | step finishes, we pick the next thread in the queue and start a new | |
1391 | displaced step operation on it. See displaced_step_prepare and | |
1392 | displaced_step_fixup for details. */ | |
1393 | ||
237fc4c9 PA |
1394 | struct displaced_step_request |
1395 | { | |
1396 | ptid_t ptid; | |
1397 | struct displaced_step_request *next; | |
1398 | }; | |
1399 | ||
fc1cf338 PA |
1400 | /* Per-inferior displaced stepping state. */ |
1401 | struct displaced_step_inferior_state | |
1402 | { | |
1403 | /* Pointer to next in linked list. */ | |
1404 | struct displaced_step_inferior_state *next; | |
1405 | ||
1406 | /* The process this displaced step state refers to. */ | |
1407 | int pid; | |
1408 | ||
1409 | /* A queue of pending displaced stepping requests. One entry per | |
1410 | thread that needs to do a displaced step. */ | |
1411 | struct displaced_step_request *step_request_queue; | |
1412 | ||
1413 | /* If this is not null_ptid, this is the thread carrying out a | |
1414 | displaced single-step in process PID. This thread's state will | |
1415 | require fixing up once it has completed its step. */ | |
1416 | ptid_t step_ptid; | |
1417 | ||
1418 | /* The architecture the thread had when we stepped it. */ | |
1419 | struct gdbarch *step_gdbarch; | |
1420 | ||
1421 | /* The closure provided gdbarch_displaced_step_copy_insn, to be used | |
1422 | for post-step cleanup. */ | |
1423 | struct displaced_step_closure *step_closure; | |
1424 | ||
1425 | /* The address of the original instruction, and the copy we | |
1426 | made. */ | |
1427 | CORE_ADDR step_original, step_copy; | |
1428 | ||
1429 | /* Saved contents of copy area. */ | |
1430 | gdb_byte *step_saved_copy; | |
1431 | }; | |
1432 | ||
1433 | /* The list of states of processes involved in displaced stepping | |
1434 | presently. */ | |
1435 | static struct displaced_step_inferior_state *displaced_step_inferior_states; | |
1436 | ||
1437 | /* Get the displaced stepping state of process PID. */ | |
1438 | ||
1439 | static struct displaced_step_inferior_state * | |
1440 | get_displaced_stepping_state (int pid) | |
1441 | { | |
1442 | struct displaced_step_inferior_state *state; | |
1443 | ||
1444 | for (state = displaced_step_inferior_states; | |
1445 | state != NULL; | |
1446 | state = state->next) | |
1447 | if (state->pid == pid) | |
1448 | return state; | |
1449 | ||
1450 | return NULL; | |
1451 | } | |
1452 | ||
1453 | /* Add a new displaced stepping state for process PID to the displaced | |
1454 | stepping state list, or return a pointer to an already existing | |
1455 | entry, if it already exists. Never returns NULL. */ | |
1456 | ||
1457 | static struct displaced_step_inferior_state * | |
1458 | add_displaced_stepping_state (int pid) | |
1459 | { | |
1460 | struct displaced_step_inferior_state *state; | |
1461 | ||
1462 | for (state = displaced_step_inferior_states; | |
1463 | state != NULL; | |
1464 | state = state->next) | |
1465 | if (state->pid == pid) | |
1466 | return state; | |
237fc4c9 | 1467 | |
fc1cf338 PA |
1468 | state = xcalloc (1, sizeof (*state)); |
1469 | state->pid = pid; | |
1470 | state->next = displaced_step_inferior_states; | |
1471 | displaced_step_inferior_states = state; | |
237fc4c9 | 1472 | |
fc1cf338 PA |
1473 | return state; |
1474 | } | |
1475 | ||
a42244db YQ |
1476 | /* If inferior is in displaced stepping, and ADDR equals to starting address |
1477 | of copy area, return corresponding displaced_step_closure. Otherwise, | |
1478 | return NULL. */ | |
1479 | ||
1480 | struct displaced_step_closure* | |
1481 | get_displaced_step_closure_by_addr (CORE_ADDR addr) | |
1482 | { | |
1483 | struct displaced_step_inferior_state *displaced | |
1484 | = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); | |
1485 | ||
1486 | /* If checking the mode of displaced instruction in copy area. */ | |
1487 | if (displaced && !ptid_equal (displaced->step_ptid, null_ptid) | |
1488 | && (displaced->step_copy == addr)) | |
1489 | return displaced->step_closure; | |
1490 | ||
1491 | return NULL; | |
1492 | } | |
1493 | ||
fc1cf338 | 1494 | /* Remove the displaced stepping state of process PID. */ |
237fc4c9 | 1495 | |
fc1cf338 PA |
1496 | static void |
1497 | remove_displaced_stepping_state (int pid) | |
1498 | { | |
1499 | struct displaced_step_inferior_state *it, **prev_next_p; | |
237fc4c9 | 1500 | |
fc1cf338 PA |
1501 | gdb_assert (pid != 0); |
1502 | ||
1503 | it = displaced_step_inferior_states; | |
1504 | prev_next_p = &displaced_step_inferior_states; | |
1505 | while (it) | |
1506 | { | |
1507 | if (it->pid == pid) | |
1508 | { | |
1509 | *prev_next_p = it->next; | |
1510 | xfree (it); | |
1511 | return; | |
1512 | } | |
1513 | ||
1514 | prev_next_p = &it->next; | |
1515 | it = *prev_next_p; | |
1516 | } | |
1517 | } | |
1518 | ||
1519 | static void | |
1520 | infrun_inferior_exit (struct inferior *inf) | |
1521 | { | |
1522 | remove_displaced_stepping_state (inf->pid); | |
1523 | } | |
237fc4c9 | 1524 | |
fff08868 HZ |
1525 | /* If ON, and the architecture supports it, GDB will use displaced |
1526 | stepping to step over breakpoints. If OFF, or if the architecture | |
1527 | doesn't support it, GDB will instead use the traditional | |
1528 | hold-and-step approach. If AUTO (which is the default), GDB will | |
1529 | decide which technique to use to step over breakpoints depending on | |
1530 | which of all-stop or non-stop mode is active --- displaced stepping | |
1531 | in non-stop mode; hold-and-step in all-stop mode. */ | |
1532 | ||
72d0e2c5 | 1533 | static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO; |
fff08868 | 1534 | |
237fc4c9 PA |
1535 | static void |
1536 | show_can_use_displaced_stepping (struct ui_file *file, int from_tty, | |
1537 | struct cmd_list_element *c, | |
1538 | const char *value) | |
1539 | { | |
72d0e2c5 | 1540 | if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO) |
3e43a32a MS |
1541 | fprintf_filtered (file, |
1542 | _("Debugger's willingness to use displaced stepping " | |
1543 | "to step over breakpoints is %s (currently %s).\n"), | |
fff08868 HZ |
1544 | value, non_stop ? "on" : "off"); |
1545 | else | |
3e43a32a MS |
1546 | fprintf_filtered (file, |
1547 | _("Debugger's willingness to use displaced stepping " | |
1548 | "to step over breakpoints is %s.\n"), value); | |
237fc4c9 PA |
1549 | } |
1550 | ||
fff08868 HZ |
1551 | /* Return non-zero if displaced stepping can/should be used to step |
1552 | over breakpoints. */ | |
1553 | ||
237fc4c9 PA |
1554 | static int |
1555 | use_displaced_stepping (struct gdbarch *gdbarch) | |
1556 | { | |
72d0e2c5 YQ |
1557 | return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop) |
1558 | || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE) | |
96429cc8 | 1559 | && gdbarch_displaced_step_copy_insn_p (gdbarch) |
8213266a | 1560 | && find_record_target () == NULL); |
237fc4c9 PA |
1561 | } |
1562 | ||
1563 | /* Clean out any stray displaced stepping state. */ | |
1564 | static void | |
fc1cf338 | 1565 | displaced_step_clear (struct displaced_step_inferior_state *displaced) |
237fc4c9 PA |
1566 | { |
1567 | /* Indicate that there is no cleanup pending. */ | |
fc1cf338 | 1568 | displaced->step_ptid = null_ptid; |
237fc4c9 | 1569 | |
fc1cf338 | 1570 | if (displaced->step_closure) |
237fc4c9 | 1571 | { |
fc1cf338 PA |
1572 | gdbarch_displaced_step_free_closure (displaced->step_gdbarch, |
1573 | displaced->step_closure); | |
1574 | displaced->step_closure = NULL; | |
237fc4c9 PA |
1575 | } |
1576 | } | |
1577 | ||
1578 | static void | |
fc1cf338 | 1579 | displaced_step_clear_cleanup (void *arg) |
237fc4c9 | 1580 | { |
fc1cf338 PA |
1581 | struct displaced_step_inferior_state *state = arg; |
1582 | ||
1583 | displaced_step_clear (state); | |
237fc4c9 PA |
1584 | } |
1585 | ||
1586 | /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */ | |
1587 | void | |
1588 | displaced_step_dump_bytes (struct ui_file *file, | |
1589 | const gdb_byte *buf, | |
1590 | size_t len) | |
1591 | { | |
1592 | int i; | |
1593 | ||
1594 | for (i = 0; i < len; i++) | |
1595 | fprintf_unfiltered (file, "%02x ", buf[i]); | |
1596 | fputs_unfiltered ("\n", file); | |
1597 | } | |
1598 | ||
1599 | /* Prepare to single-step, using displaced stepping. | |
1600 | ||
1601 | Note that we cannot use displaced stepping when we have a signal to | |
1602 | deliver. If we have a signal to deliver and an instruction to step | |
1603 | over, then after the step, there will be no indication from the | |
1604 | target whether the thread entered a signal handler or ignored the | |
1605 | signal and stepped over the instruction successfully --- both cases | |
1606 | result in a simple SIGTRAP. In the first case we mustn't do a | |
1607 | fixup, and in the second case we must --- but we can't tell which. | |
1608 | Comments in the code for 'random signals' in handle_inferior_event | |
1609 | explain how we handle this case instead. | |
1610 | ||
1611 | Returns 1 if preparing was successful -- this thread is going to be | |
1612 | stepped now; or 0 if displaced stepping this thread got queued. */ | |
1613 | static int | |
1614 | displaced_step_prepare (ptid_t ptid) | |
1615 | { | |
ad53cd71 | 1616 | struct cleanup *old_cleanups, *ignore_cleanups; |
c1e36e3e | 1617 | struct thread_info *tp = find_thread_ptid (ptid); |
237fc4c9 PA |
1618 | struct regcache *regcache = get_thread_regcache (ptid); |
1619 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
1620 | CORE_ADDR original, copy; | |
1621 | ULONGEST len; | |
1622 | struct displaced_step_closure *closure; | |
fc1cf338 | 1623 | struct displaced_step_inferior_state *displaced; |
9e529e1d | 1624 | int status; |
237fc4c9 PA |
1625 | |
1626 | /* We should never reach this function if the architecture does not | |
1627 | support displaced stepping. */ | |
1628 | gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch)); | |
1629 | ||
c1e36e3e PA |
1630 | /* Disable range stepping while executing in the scratch pad. We |
1631 | want a single-step even if executing the displaced instruction in | |
1632 | the scratch buffer lands within the stepping range (e.g., a | |
1633 | jump/branch). */ | |
1634 | tp->control.may_range_step = 0; | |
1635 | ||
fc1cf338 PA |
1636 | /* We have to displaced step one thread at a time, as we only have |
1637 | access to a single scratch space per inferior. */ | |
237fc4c9 | 1638 | |
fc1cf338 PA |
1639 | displaced = add_displaced_stepping_state (ptid_get_pid (ptid)); |
1640 | ||
1641 | if (!ptid_equal (displaced->step_ptid, null_ptid)) | |
237fc4c9 PA |
1642 | { |
1643 | /* Already waiting for a displaced step to finish. Defer this | |
1644 | request and place in queue. */ | |
1645 | struct displaced_step_request *req, *new_req; | |
1646 | ||
1647 | if (debug_displaced) | |
1648 | fprintf_unfiltered (gdb_stdlog, | |
1649 | "displaced: defering step of %s\n", | |
1650 | target_pid_to_str (ptid)); | |
1651 | ||
1652 | new_req = xmalloc (sizeof (*new_req)); | |
1653 | new_req->ptid = ptid; | |
1654 | new_req->next = NULL; | |
1655 | ||
fc1cf338 | 1656 | if (displaced->step_request_queue) |
237fc4c9 | 1657 | { |
fc1cf338 | 1658 | for (req = displaced->step_request_queue; |
237fc4c9 PA |
1659 | req && req->next; |
1660 | req = req->next) | |
1661 | ; | |
1662 | req->next = new_req; | |
1663 | } | |
1664 | else | |
fc1cf338 | 1665 | displaced->step_request_queue = new_req; |
237fc4c9 PA |
1666 | |
1667 | return 0; | |
1668 | } | |
1669 | else | |
1670 | { | |
1671 | if (debug_displaced) | |
1672 | fprintf_unfiltered (gdb_stdlog, | |
1673 | "displaced: stepping %s now\n", | |
1674 | target_pid_to_str (ptid)); | |
1675 | } | |
1676 | ||
fc1cf338 | 1677 | displaced_step_clear (displaced); |
237fc4c9 | 1678 | |
ad53cd71 PA |
1679 | old_cleanups = save_inferior_ptid (); |
1680 | inferior_ptid = ptid; | |
1681 | ||
515630c5 | 1682 | original = regcache_read_pc (regcache); |
237fc4c9 PA |
1683 | |
1684 | copy = gdbarch_displaced_step_location (gdbarch); | |
1685 | len = gdbarch_max_insn_length (gdbarch); | |
1686 | ||
1687 | /* Save the original contents of the copy area. */ | |
fc1cf338 | 1688 | displaced->step_saved_copy = xmalloc (len); |
ad53cd71 | 1689 | ignore_cleanups = make_cleanup (free_current_contents, |
fc1cf338 | 1690 | &displaced->step_saved_copy); |
9e529e1d JK |
1691 | status = target_read_memory (copy, displaced->step_saved_copy, len); |
1692 | if (status != 0) | |
1693 | throw_error (MEMORY_ERROR, | |
1694 | _("Error accessing memory address %s (%s) for " | |
1695 | "displaced-stepping scratch space."), | |
1696 | paddress (gdbarch, copy), safe_strerror (status)); | |
237fc4c9 PA |
1697 | if (debug_displaced) |
1698 | { | |
5af949e3 UW |
1699 | fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ", |
1700 | paddress (gdbarch, copy)); | |
fc1cf338 PA |
1701 | displaced_step_dump_bytes (gdb_stdlog, |
1702 | displaced->step_saved_copy, | |
1703 | len); | |
237fc4c9 PA |
1704 | }; |
1705 | ||
1706 | closure = gdbarch_displaced_step_copy_insn (gdbarch, | |
ad53cd71 | 1707 | original, copy, regcache); |
237fc4c9 PA |
1708 | |
1709 | /* We don't support the fully-simulated case at present. */ | |
1710 | gdb_assert (closure); | |
1711 | ||
9f5a595d UW |
1712 | /* Save the information we need to fix things up if the step |
1713 | succeeds. */ | |
fc1cf338 PA |
1714 | displaced->step_ptid = ptid; |
1715 | displaced->step_gdbarch = gdbarch; | |
1716 | displaced->step_closure = closure; | |
1717 | displaced->step_original = original; | |
1718 | displaced->step_copy = copy; | |
9f5a595d | 1719 | |
fc1cf338 | 1720 | make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 PA |
1721 | |
1722 | /* Resume execution at the copy. */ | |
515630c5 | 1723 | regcache_write_pc (regcache, copy); |
237fc4c9 | 1724 | |
ad53cd71 PA |
1725 | discard_cleanups (ignore_cleanups); |
1726 | ||
1727 | do_cleanups (old_cleanups); | |
237fc4c9 PA |
1728 | |
1729 | if (debug_displaced) | |
5af949e3 UW |
1730 | fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n", |
1731 | paddress (gdbarch, copy)); | |
237fc4c9 | 1732 | |
237fc4c9 PA |
1733 | return 1; |
1734 | } | |
1735 | ||
237fc4c9 | 1736 | static void |
3e43a32a MS |
1737 | write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, |
1738 | const gdb_byte *myaddr, int len) | |
237fc4c9 PA |
1739 | { |
1740 | struct cleanup *ptid_cleanup = save_inferior_ptid (); | |
abbb1732 | 1741 | |
237fc4c9 PA |
1742 | inferior_ptid = ptid; |
1743 | write_memory (memaddr, myaddr, len); | |
1744 | do_cleanups (ptid_cleanup); | |
1745 | } | |
1746 | ||
e2d96639 YQ |
1747 | /* Restore the contents of the copy area for thread PTID. */ |
1748 | ||
1749 | static void | |
1750 | displaced_step_restore (struct displaced_step_inferior_state *displaced, | |
1751 | ptid_t ptid) | |
1752 | { | |
1753 | ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch); | |
1754 | ||
1755 | write_memory_ptid (ptid, displaced->step_copy, | |
1756 | displaced->step_saved_copy, len); | |
1757 | if (debug_displaced) | |
1758 | fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n", | |
1759 | target_pid_to_str (ptid), | |
1760 | paddress (displaced->step_gdbarch, | |
1761 | displaced->step_copy)); | |
1762 | } | |
1763 | ||
237fc4c9 | 1764 | static void |
2ea28649 | 1765 | displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal) |
237fc4c9 PA |
1766 | { |
1767 | struct cleanup *old_cleanups; | |
fc1cf338 PA |
1768 | struct displaced_step_inferior_state *displaced |
1769 | = get_displaced_stepping_state (ptid_get_pid (event_ptid)); | |
1770 | ||
1771 | /* Was any thread of this process doing a displaced step? */ | |
1772 | if (displaced == NULL) | |
1773 | return; | |
237fc4c9 PA |
1774 | |
1775 | /* Was this event for the pid we displaced? */ | |
fc1cf338 PA |
1776 | if (ptid_equal (displaced->step_ptid, null_ptid) |
1777 | || ! ptid_equal (displaced->step_ptid, event_ptid)) | |
237fc4c9 PA |
1778 | return; |
1779 | ||
fc1cf338 | 1780 | old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced); |
237fc4c9 | 1781 | |
e2d96639 | 1782 | displaced_step_restore (displaced, displaced->step_ptid); |
237fc4c9 PA |
1783 | |
1784 | /* Did the instruction complete successfully? */ | |
a493e3e2 | 1785 | if (signal == GDB_SIGNAL_TRAP) |
237fc4c9 PA |
1786 | { |
1787 | /* Fix up the resulting state. */ | |
fc1cf338 PA |
1788 | gdbarch_displaced_step_fixup (displaced->step_gdbarch, |
1789 | displaced->step_closure, | |
1790 | displaced->step_original, | |
1791 | displaced->step_copy, | |
1792 | get_thread_regcache (displaced->step_ptid)); | |
237fc4c9 PA |
1793 | } |
1794 | else | |
1795 | { | |
1796 | /* Since the instruction didn't complete, all we can do is | |
1797 | relocate the PC. */ | |
515630c5 UW |
1798 | struct regcache *regcache = get_thread_regcache (event_ptid); |
1799 | CORE_ADDR pc = regcache_read_pc (regcache); | |
abbb1732 | 1800 | |
fc1cf338 | 1801 | pc = displaced->step_original + (pc - displaced->step_copy); |
515630c5 | 1802 | regcache_write_pc (regcache, pc); |
237fc4c9 PA |
1803 | } |
1804 | ||
1805 | do_cleanups (old_cleanups); | |
1806 | ||
fc1cf338 | 1807 | displaced->step_ptid = null_ptid; |
1c5cfe86 | 1808 | |
237fc4c9 | 1809 | /* Are there any pending displaced stepping requests? If so, run |
fc1cf338 PA |
1810 | one now. Leave the state object around, since we're likely to |
1811 | need it again soon. */ | |
1812 | while (displaced->step_request_queue) | |
237fc4c9 PA |
1813 | { |
1814 | struct displaced_step_request *head; | |
1815 | ptid_t ptid; | |
5af949e3 | 1816 | struct regcache *regcache; |
929dfd4f | 1817 | struct gdbarch *gdbarch; |
1c5cfe86 | 1818 | CORE_ADDR actual_pc; |
6c95b8df | 1819 | struct address_space *aspace; |
237fc4c9 | 1820 | |
fc1cf338 | 1821 | head = displaced->step_request_queue; |
237fc4c9 | 1822 | ptid = head->ptid; |
fc1cf338 | 1823 | displaced->step_request_queue = head->next; |
237fc4c9 PA |
1824 | xfree (head); |
1825 | ||
ad53cd71 PA |
1826 | context_switch (ptid); |
1827 | ||
5af949e3 UW |
1828 | regcache = get_thread_regcache (ptid); |
1829 | actual_pc = regcache_read_pc (regcache); | |
6c95b8df | 1830 | aspace = get_regcache_aspace (regcache); |
1c5cfe86 | 1831 | |
6c95b8df | 1832 | if (breakpoint_here_p (aspace, actual_pc)) |
ad53cd71 | 1833 | { |
1c5cfe86 PA |
1834 | if (debug_displaced) |
1835 | fprintf_unfiltered (gdb_stdlog, | |
1836 | "displaced: stepping queued %s now\n", | |
1837 | target_pid_to_str (ptid)); | |
1838 | ||
1839 | displaced_step_prepare (ptid); | |
1840 | ||
929dfd4f JB |
1841 | gdbarch = get_regcache_arch (regcache); |
1842 | ||
1c5cfe86 PA |
1843 | if (debug_displaced) |
1844 | { | |
929dfd4f | 1845 | CORE_ADDR actual_pc = regcache_read_pc (regcache); |
1c5cfe86 PA |
1846 | gdb_byte buf[4]; |
1847 | ||
5af949e3 UW |
1848 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", |
1849 | paddress (gdbarch, actual_pc)); | |
1c5cfe86 PA |
1850 | read_memory (actual_pc, buf, sizeof (buf)); |
1851 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
1852 | } | |
1853 | ||
fc1cf338 PA |
1854 | if (gdbarch_displaced_step_hw_singlestep (gdbarch, |
1855 | displaced->step_closure)) | |
a493e3e2 | 1856 | target_resume (ptid, 1, GDB_SIGNAL_0); |
99e40580 | 1857 | else |
a493e3e2 | 1858 | target_resume (ptid, 0, GDB_SIGNAL_0); |
1c5cfe86 PA |
1859 | |
1860 | /* Done, we're stepping a thread. */ | |
1861 | break; | |
ad53cd71 | 1862 | } |
1c5cfe86 PA |
1863 | else |
1864 | { | |
1865 | int step; | |
1866 | struct thread_info *tp = inferior_thread (); | |
1867 | ||
1868 | /* The breakpoint we were sitting under has since been | |
1869 | removed. */ | |
16c381f0 | 1870 | tp->control.trap_expected = 0; |
1c5cfe86 PA |
1871 | |
1872 | /* Go back to what we were trying to do. */ | |
1873 | step = currently_stepping (tp); | |
ad53cd71 | 1874 | |
1c5cfe86 | 1875 | if (debug_displaced) |
3e43a32a | 1876 | fprintf_unfiltered (gdb_stdlog, |
27d2932e | 1877 | "displaced: breakpoint is gone: %s, step(%d)\n", |
1c5cfe86 PA |
1878 | target_pid_to_str (tp->ptid), step); |
1879 | ||
a493e3e2 PA |
1880 | target_resume (ptid, step, GDB_SIGNAL_0); |
1881 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
1c5cfe86 PA |
1882 | |
1883 | /* This request was discarded. See if there's any other | |
1884 | thread waiting for its turn. */ | |
1885 | } | |
237fc4c9 PA |
1886 | } |
1887 | } | |
1888 | ||
5231c1fd PA |
1889 | /* Update global variables holding ptids to hold NEW_PTID if they were |
1890 | holding OLD_PTID. */ | |
1891 | static void | |
1892 | infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid) | |
1893 | { | |
1894 | struct displaced_step_request *it; | |
fc1cf338 | 1895 | struct displaced_step_inferior_state *displaced; |
5231c1fd PA |
1896 | |
1897 | if (ptid_equal (inferior_ptid, old_ptid)) | |
1898 | inferior_ptid = new_ptid; | |
1899 | ||
fc1cf338 PA |
1900 | for (displaced = displaced_step_inferior_states; |
1901 | displaced; | |
1902 | displaced = displaced->next) | |
1903 | { | |
1904 | if (ptid_equal (displaced->step_ptid, old_ptid)) | |
1905 | displaced->step_ptid = new_ptid; | |
1906 | ||
1907 | for (it = displaced->step_request_queue; it; it = it->next) | |
1908 | if (ptid_equal (it->ptid, old_ptid)) | |
1909 | it->ptid = new_ptid; | |
1910 | } | |
5231c1fd PA |
1911 | } |
1912 | ||
237fc4c9 PA |
1913 | \f |
1914 | /* Resuming. */ | |
c906108c SS |
1915 | |
1916 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 1917 | static void |
74b7792f | 1918 | resume_cleanups (void *ignore) |
c906108c | 1919 | { |
34b7e8a6 PA |
1920 | if (!ptid_equal (inferior_ptid, null_ptid)) |
1921 | delete_single_step_breakpoints (inferior_thread ()); | |
7c16b83e | 1922 | |
c906108c SS |
1923 | normal_stop (); |
1924 | } | |
1925 | ||
53904c9e AC |
1926 | static const char schedlock_off[] = "off"; |
1927 | static const char schedlock_on[] = "on"; | |
1928 | static const char schedlock_step[] = "step"; | |
40478521 | 1929 | static const char *const scheduler_enums[] = { |
ef346e04 AC |
1930 | schedlock_off, |
1931 | schedlock_on, | |
1932 | schedlock_step, | |
1933 | NULL | |
1934 | }; | |
920d2a44 AC |
1935 | static const char *scheduler_mode = schedlock_off; |
1936 | static void | |
1937 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
1938 | struct cmd_list_element *c, const char *value) | |
1939 | { | |
3e43a32a MS |
1940 | fprintf_filtered (file, |
1941 | _("Mode for locking scheduler " | |
1942 | "during execution is \"%s\".\n"), | |
920d2a44 AC |
1943 | value); |
1944 | } | |
c906108c SS |
1945 | |
1946 | static void | |
96baa820 | 1947 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 1948 | { |
eefe576e AC |
1949 | if (!target_can_lock_scheduler) |
1950 | { | |
1951 | scheduler_mode = schedlock_off; | |
1952 | error (_("Target '%s' cannot support this command."), target_shortname); | |
1953 | } | |
c906108c SS |
1954 | } |
1955 | ||
d4db2f36 PA |
1956 | /* True if execution commands resume all threads of all processes by |
1957 | default; otherwise, resume only threads of the current inferior | |
1958 | process. */ | |
1959 | int sched_multi = 0; | |
1960 | ||
2facfe5c DD |
1961 | /* Try to setup for software single stepping over the specified location. |
1962 | Return 1 if target_resume() should use hardware single step. | |
1963 | ||
1964 | GDBARCH the current gdbarch. | |
1965 | PC the location to step over. */ | |
1966 | ||
1967 | static int | |
1968 | maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1969 | { | |
1970 | int hw_step = 1; | |
1971 | ||
f02253f1 HZ |
1972 | if (execution_direction == EXEC_FORWARD |
1973 | && gdbarch_software_single_step_p (gdbarch) | |
99e40580 | 1974 | && gdbarch_software_single_step (gdbarch, get_current_frame ())) |
2facfe5c | 1975 | { |
99e40580 | 1976 | hw_step = 0; |
2facfe5c DD |
1977 | } |
1978 | return hw_step; | |
1979 | } | |
c906108c | 1980 | |
09cee04b PA |
1981 | ptid_t |
1982 | user_visible_resume_ptid (int step) | |
1983 | { | |
1984 | /* By default, resume all threads of all processes. */ | |
1985 | ptid_t resume_ptid = RESUME_ALL; | |
1986 | ||
1987 | /* Maybe resume only all threads of the current process. */ | |
1988 | if (!sched_multi && target_supports_multi_process ()) | |
1989 | { | |
1990 | resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); | |
1991 | } | |
1992 | ||
1993 | /* Maybe resume a single thread after all. */ | |
1994 | if (non_stop) | |
1995 | { | |
1996 | /* With non-stop mode on, threads are always handled | |
1997 | individually. */ | |
1998 | resume_ptid = inferior_ptid; | |
1999 | } | |
2000 | else if ((scheduler_mode == schedlock_on) | |
03d46957 | 2001 | || (scheduler_mode == schedlock_step && step)) |
09cee04b PA |
2002 | { |
2003 | /* User-settable 'scheduler' mode requires solo thread resume. */ | |
2004 | resume_ptid = inferior_ptid; | |
2005 | } | |
2006 | ||
70509625 PA |
2007 | /* We may actually resume fewer threads at first, e.g., if a thread |
2008 | is stopped at a breakpoint that needs stepping-off, but that | |
2009 | should not be visible to the user/frontend, and neither should | |
2010 | the frontend/user be allowed to proceed any of the threads that | |
2011 | happen to be stopped for internal run control handling, if a | |
2012 | previous command wanted them resumed. */ | |
09cee04b PA |
2013 | return resume_ptid; |
2014 | } | |
2015 | ||
c906108c SS |
2016 | /* Resume the inferior, but allow a QUIT. This is useful if the user |
2017 | wants to interrupt some lengthy single-stepping operation | |
2018 | (for child processes, the SIGINT goes to the inferior, and so | |
2019 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
2020 | other targets, that's not true). | |
2021 | ||
2022 | STEP nonzero if we should step (zero to continue instead). | |
2023 | SIG is the signal to give the inferior (zero for none). */ | |
2024 | void | |
2ea28649 | 2025 | resume (int step, enum gdb_signal sig) |
c906108c | 2026 | { |
74b7792f | 2027 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
515630c5 UW |
2028 | struct regcache *regcache = get_current_regcache (); |
2029 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
4e1c45ea | 2030 | struct thread_info *tp = inferior_thread (); |
515630c5 | 2031 | CORE_ADDR pc = regcache_read_pc (regcache); |
6c95b8df | 2032 | struct address_space *aspace = get_regcache_aspace (regcache); |
b0f16a3e | 2033 | ptid_t resume_ptid; |
a09dd441 PA |
2034 | /* From here on, this represents the caller's step vs continue |
2035 | request, while STEP represents what we'll actually request the | |
2036 | target to do. STEP can decay from a step to a continue, if e.g., | |
2037 | we need to implement single-stepping with breakpoints (software | |
2038 | single-step). When deciding whether "set scheduler-locking step" | |
2039 | applies, it's the callers intention that counts. */ | |
2040 | const int entry_step = step; | |
c7e8a53c | 2041 | |
af48d08f PA |
2042 | tp->stepped_breakpoint = 0; |
2043 | ||
c906108c SS |
2044 | QUIT; |
2045 | ||
74609e71 YQ |
2046 | if (current_inferior ()->waiting_for_vfork_done) |
2047 | { | |
48f9886d PA |
2048 | /* Don't try to single-step a vfork parent that is waiting for |
2049 | the child to get out of the shared memory region (by exec'ing | |
2050 | or exiting). This is particularly important on software | |
2051 | single-step archs, as the child process would trip on the | |
2052 | software single step breakpoint inserted for the parent | |
2053 | process. Since the parent will not actually execute any | |
2054 | instruction until the child is out of the shared region (such | |
2055 | are vfork's semantics), it is safe to simply continue it. | |
2056 | Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for | |
2057 | the parent, and tell it to `keep_going', which automatically | |
2058 | re-sets it stepping. */ | |
74609e71 YQ |
2059 | if (debug_infrun) |
2060 | fprintf_unfiltered (gdb_stdlog, | |
2061 | "infrun: resume : clear step\n"); | |
a09dd441 | 2062 | step = 0; |
74609e71 YQ |
2063 | } |
2064 | ||
527159b7 | 2065 | if (debug_infrun) |
237fc4c9 | 2066 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 | 2067 | "infrun: resume (step=%d, signal=%s), " |
0d9a9a5f | 2068 | "trap_expected=%d, current thread [%s] at %s\n", |
c9737c08 PA |
2069 | step, gdb_signal_to_symbol_string (sig), |
2070 | tp->control.trap_expected, | |
0d9a9a5f PA |
2071 | target_pid_to_str (inferior_ptid), |
2072 | paddress (gdbarch, pc)); | |
c906108c | 2073 | |
c2c6d25f JM |
2074 | /* Normally, by the time we reach `resume', the breakpoints are either |
2075 | removed or inserted, as appropriate. The exception is if we're sitting | |
2076 | at a permanent breakpoint; we need to step over it, but permanent | |
2077 | breakpoints can't be removed. So we have to test for it here. */ | |
6c95b8df | 2078 | if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here) |
6d350bb5 | 2079 | { |
af48d08f PA |
2080 | if (sig != GDB_SIGNAL_0) |
2081 | { | |
2082 | /* We have a signal to pass to the inferior. The resume | |
2083 | may, or may not take us to the signal handler. If this | |
2084 | is a step, we'll need to stop in the signal handler, if | |
2085 | there's one, (if the target supports stepping into | |
2086 | handlers), or in the next mainline instruction, if | |
2087 | there's no handler. If this is a continue, we need to be | |
2088 | sure to run the handler with all breakpoints inserted. | |
2089 | In all cases, set a breakpoint at the current address | |
2090 | (where the handler returns to), and once that breakpoint | |
2091 | is hit, resume skipping the permanent breakpoint. If | |
2092 | that breakpoint isn't hit, then we've stepped into the | |
2093 | signal handler (or hit some other event). We'll delete | |
2094 | the step-resume breakpoint then. */ | |
2095 | ||
2096 | if (debug_infrun) | |
2097 | fprintf_unfiltered (gdb_stdlog, | |
2098 | "infrun: resume: skipping permanent breakpoint, " | |
2099 | "deliver signal first\n"); | |
2100 | ||
2101 | clear_step_over_info (); | |
2102 | tp->control.trap_expected = 0; | |
2103 | ||
2104 | if (tp->control.step_resume_breakpoint == NULL) | |
2105 | { | |
2106 | /* Set a "high-priority" step-resume, as we don't want | |
2107 | user breakpoints at PC to trigger (again) when this | |
2108 | hits. */ | |
2109 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); | |
2110 | gdb_assert (tp->control.step_resume_breakpoint->loc->permanent); | |
2111 | ||
2112 | tp->step_after_step_resume_breakpoint = step; | |
2113 | } | |
2114 | ||
2115 | insert_breakpoints (); | |
2116 | } | |
2117 | else | |
2118 | { | |
2119 | /* There's no signal to pass, we can go ahead and skip the | |
2120 | permanent breakpoint manually. */ | |
2121 | if (debug_infrun) | |
2122 | fprintf_unfiltered (gdb_stdlog, | |
2123 | "infrun: resume: skipping permanent breakpoint\n"); | |
2124 | gdbarch_skip_permanent_breakpoint (gdbarch, regcache); | |
2125 | /* Update pc to reflect the new address from which we will | |
2126 | execute instructions. */ | |
2127 | pc = regcache_read_pc (regcache); | |
2128 | ||
2129 | if (step) | |
2130 | { | |
2131 | /* We've already advanced the PC, so the stepping part | |
2132 | is done. Now we need to arrange for a trap to be | |
2133 | reported to handle_inferior_event. Set a breakpoint | |
2134 | at the current PC, and run to it. Don't update | |
2135 | prev_pc, because if we end in | |
2136 | switch_back_to_stepping, we want the "expected thread | |
2137 | advanced also" branch to be taken. IOW, we don't | |
2138 | want this thread to step further from PC | |
2139 | (overstep). */ | |
2140 | insert_single_step_breakpoint (gdbarch, aspace, pc); | |
2141 | insert_breakpoints (); | |
2142 | ||
2143 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2144 | /* We're continuing with all breakpoints inserted. It's | |
2145 | safe to let the target bypass signals. */ | |
2146 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2147 | /* ... and safe to let other threads run, according to | |
2148 | schedlock. */ | |
2149 | resume_ptid = user_visible_resume_ptid (entry_step); | |
2150 | target_resume (resume_ptid, 0, GDB_SIGNAL_0); | |
2151 | discard_cleanups (old_cleanups); | |
2152 | return; | |
2153 | } | |
2154 | } | |
6d350bb5 | 2155 | } |
c2c6d25f | 2156 | |
c1e36e3e PA |
2157 | /* If we have a breakpoint to step over, make sure to do a single |
2158 | step only. Same if we have software watchpoints. */ | |
2159 | if (tp->control.trap_expected || bpstat_should_step ()) | |
2160 | tp->control.may_range_step = 0; | |
2161 | ||
237fc4c9 PA |
2162 | /* If enabled, step over breakpoints by executing a copy of the |
2163 | instruction at a different address. | |
2164 | ||
2165 | We can't use displaced stepping when we have a signal to deliver; | |
2166 | the comments for displaced_step_prepare explain why. The | |
2167 | comments in the handle_inferior event for dealing with 'random | |
74609e71 YQ |
2168 | signals' explain what we do instead. |
2169 | ||
2170 | We can't use displaced stepping when we are waiting for vfork_done | |
2171 | event, displaced stepping breaks the vfork child similarly as single | |
2172 | step software breakpoint. */ | |
515630c5 | 2173 | if (use_displaced_stepping (gdbarch) |
36728e82 | 2174 | && tp->control.trap_expected |
a493e3e2 | 2175 | && sig == GDB_SIGNAL_0 |
74609e71 | 2176 | && !current_inferior ()->waiting_for_vfork_done) |
237fc4c9 | 2177 | { |
fc1cf338 PA |
2178 | struct displaced_step_inferior_state *displaced; |
2179 | ||
237fc4c9 | 2180 | if (!displaced_step_prepare (inferior_ptid)) |
d56b7306 VP |
2181 | { |
2182 | /* Got placed in displaced stepping queue. Will be resumed | |
2183 | later when all the currently queued displaced stepping | |
251bde03 PA |
2184 | requests finish. The thread is not executing at this |
2185 | point, and the call to set_executing will be made later. | |
2186 | But we need to call set_running here, since from the | |
2187 | user/frontend's point of view, threads were set running. | |
2188 | Unless we're calling an inferior function, as in that | |
2189 | case we pretend the inferior doesn't run at all. */ | |
2190 | if (!tp->control.in_infcall) | |
a09dd441 | 2191 | set_running (user_visible_resume_ptid (entry_step), 1); |
d56b7306 VP |
2192 | discard_cleanups (old_cleanups); |
2193 | return; | |
2194 | } | |
99e40580 | 2195 | |
ca7781d2 LM |
2196 | /* Update pc to reflect the new address from which we will execute |
2197 | instructions due to displaced stepping. */ | |
2198 | pc = regcache_read_pc (get_thread_regcache (inferior_ptid)); | |
2199 | ||
fc1cf338 | 2200 | displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid)); |
a09dd441 PA |
2201 | step = gdbarch_displaced_step_hw_singlestep (gdbarch, |
2202 | displaced->step_closure); | |
237fc4c9 PA |
2203 | } |
2204 | ||
2facfe5c | 2205 | /* Do we need to do it the hard way, w/temp breakpoints? */ |
99e40580 | 2206 | else if (step) |
2facfe5c | 2207 | step = maybe_software_singlestep (gdbarch, pc); |
c906108c | 2208 | |
30852783 UW |
2209 | /* Currently, our software single-step implementation leads to different |
2210 | results than hardware single-stepping in one situation: when stepping | |
2211 | into delivering a signal which has an associated signal handler, | |
2212 | hardware single-step will stop at the first instruction of the handler, | |
2213 | while software single-step will simply skip execution of the handler. | |
2214 | ||
2215 | For now, this difference in behavior is accepted since there is no | |
2216 | easy way to actually implement single-stepping into a signal handler | |
2217 | without kernel support. | |
2218 | ||
2219 | However, there is one scenario where this difference leads to follow-on | |
2220 | problems: if we're stepping off a breakpoint by removing all breakpoints | |
2221 | and then single-stepping. In this case, the software single-step | |
2222 | behavior means that even if there is a *breakpoint* in the signal | |
2223 | handler, GDB still would not stop. | |
2224 | ||
2225 | Fortunately, we can at least fix this particular issue. We detect | |
2226 | here the case where we are about to deliver a signal while software | |
2227 | single-stepping with breakpoints removed. In this situation, we | |
2228 | revert the decisions to remove all breakpoints and insert single- | |
2229 | step breakpoints, and instead we install a step-resume breakpoint | |
2230 | at the current address, deliver the signal without stepping, and | |
2231 | once we arrive back at the step-resume breakpoint, actually step | |
2232 | over the breakpoint we originally wanted to step over. */ | |
34b7e8a6 | 2233 | if (thread_has_single_step_breakpoints_set (tp) |
6cc83d2a PA |
2234 | && sig != GDB_SIGNAL_0 |
2235 | && step_over_info_valid_p ()) | |
30852783 UW |
2236 | { |
2237 | /* If we have nested signals or a pending signal is delivered | |
2238 | immediately after a handler returns, might might already have | |
2239 | a step-resume breakpoint set on the earlier handler. We cannot | |
2240 | set another step-resume breakpoint; just continue on until the | |
2241 | original breakpoint is hit. */ | |
2242 | if (tp->control.step_resume_breakpoint == NULL) | |
2243 | { | |
2c03e5be | 2244 | insert_hp_step_resume_breakpoint_at_frame (get_current_frame ()); |
30852783 UW |
2245 | tp->step_after_step_resume_breakpoint = 1; |
2246 | } | |
2247 | ||
34b7e8a6 | 2248 | delete_single_step_breakpoints (tp); |
30852783 | 2249 | |
31e77af2 | 2250 | clear_step_over_info (); |
30852783 | 2251 | tp->control.trap_expected = 0; |
31e77af2 PA |
2252 | |
2253 | insert_breakpoints (); | |
30852783 UW |
2254 | } |
2255 | ||
b0f16a3e SM |
2256 | /* If STEP is set, it's a request to use hardware stepping |
2257 | facilities. But in that case, we should never | |
2258 | use singlestep breakpoint. */ | |
34b7e8a6 | 2259 | gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step)); |
dfcd3bfb | 2260 | |
b0f16a3e SM |
2261 | /* Decide the set of threads to ask the target to resume. Start |
2262 | by assuming everything will be resumed, than narrow the set | |
2263 | by applying increasingly restricting conditions. */ | |
a09dd441 | 2264 | resume_ptid = user_visible_resume_ptid (entry_step); |
cd76b0b7 | 2265 | |
251bde03 PA |
2266 | /* Even if RESUME_PTID is a wildcard, and we end up resuming less |
2267 | (e.g., we might need to step over a breakpoint), from the | |
2268 | user/frontend's point of view, all threads in RESUME_PTID are now | |
2269 | running. Unless we're calling an inferior function, as in that | |
2270 | case pretend we inferior doesn't run at all. */ | |
2271 | if (!tp->control.in_infcall) | |
2272 | set_running (resume_ptid, 1); | |
2273 | ||
b0f16a3e | 2274 | /* Maybe resume a single thread after all. */ |
34b7e8a6 | 2275 | if ((step || thread_has_single_step_breakpoints_set (tp)) |
b0f16a3e SM |
2276 | && tp->control.trap_expected) |
2277 | { | |
2278 | /* We're allowing a thread to run past a breakpoint it has | |
2279 | hit, by single-stepping the thread with the breakpoint | |
2280 | removed. In which case, we need to single-step only this | |
2281 | thread, and keep others stopped, as they can miss this | |
2282 | breakpoint if allowed to run. */ | |
2283 | resume_ptid = inferior_ptid; | |
2284 | } | |
d4db2f36 | 2285 | |
7f5ef605 PA |
2286 | if (execution_direction != EXEC_REVERSE |
2287 | && step && breakpoint_inserted_here_p (aspace, pc)) | |
b0f16a3e | 2288 | { |
7f5ef605 PA |
2289 | /* The only case we currently need to step a breakpoint |
2290 | instruction is when we have a signal to deliver. See | |
2291 | handle_signal_stop where we handle random signals that could | |
2292 | take out us out of the stepping range. Normally, in that | |
2293 | case we end up continuing (instead of stepping) over the | |
2294 | signal handler with a breakpoint at PC, but there are cases | |
2295 | where we should _always_ single-step, even if we have a | |
2296 | step-resume breakpoint, like when a software watchpoint is | |
2297 | set. Assuming single-stepping and delivering a signal at the | |
2298 | same time would takes us to the signal handler, then we could | |
2299 | have removed the breakpoint at PC to step over it. However, | |
2300 | some hardware step targets (like e.g., Mac OS) can't step | |
2301 | into signal handlers, and for those, we need to leave the | |
2302 | breakpoint at PC inserted, as otherwise if the handler | |
2303 | recurses and executes PC again, it'll miss the breakpoint. | |
2304 | So we leave the breakpoint inserted anyway, but we need to | |
2305 | record that we tried to step a breakpoint instruction, so | |
2306 | that adjust_pc_after_break doesn't end up confused. */ | |
2307 | gdb_assert (sig != GDB_SIGNAL_0); | |
2308 | ||
2309 | tp->stepped_breakpoint = 1; | |
2310 | ||
b0f16a3e SM |
2311 | /* Most targets can step a breakpoint instruction, thus |
2312 | executing it normally. But if this one cannot, just | |
2313 | continue and we will hit it anyway. */ | |
7f5ef605 | 2314 | if (gdbarch_cannot_step_breakpoint (gdbarch)) |
b0f16a3e SM |
2315 | step = 0; |
2316 | } | |
ef5cf84e | 2317 | |
b0f16a3e SM |
2318 | if (debug_displaced |
2319 | && use_displaced_stepping (gdbarch) | |
2320 | && tp->control.trap_expected) | |
2321 | { | |
2322 | struct regcache *resume_regcache = get_thread_regcache (resume_ptid); | |
2323 | struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache); | |
2324 | CORE_ADDR actual_pc = regcache_read_pc (resume_regcache); | |
2325 | gdb_byte buf[4]; | |
2326 | ||
2327 | fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ", | |
2328 | paddress (resume_gdbarch, actual_pc)); | |
2329 | read_memory (actual_pc, buf, sizeof (buf)); | |
2330 | displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf)); | |
2331 | } | |
237fc4c9 | 2332 | |
b0f16a3e SM |
2333 | if (tp->control.may_range_step) |
2334 | { | |
2335 | /* If we're resuming a thread with the PC out of the step | |
2336 | range, then we're doing some nested/finer run control | |
2337 | operation, like stepping the thread out of the dynamic | |
2338 | linker or the displaced stepping scratch pad. We | |
2339 | shouldn't have allowed a range step then. */ | |
2340 | gdb_assert (pc_in_thread_step_range (pc, tp)); | |
2341 | } | |
c1e36e3e | 2342 | |
b0f16a3e SM |
2343 | /* Install inferior's terminal modes. */ |
2344 | target_terminal_inferior (); | |
2345 | ||
2346 | /* Avoid confusing the next resume, if the next stop/resume | |
2347 | happens to apply to another thread. */ | |
2348 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2349 | ||
2350 | /* Advise target which signals may be handled silently. If we have | |
6cc83d2a PA |
2351 | removed breakpoints because we are stepping over one (in any |
2352 | thread), we need to receive all signals to avoid accidentally | |
2353 | skipping a breakpoint during execution of a signal handler. */ | |
2354 | if (step_over_info_valid_p ()) | |
b0f16a3e SM |
2355 | target_pass_signals (0, NULL); |
2356 | else | |
2357 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
2455069d | 2358 | |
b0f16a3e | 2359 | target_resume (resume_ptid, step, sig); |
c906108c SS |
2360 | |
2361 | discard_cleanups (old_cleanups); | |
2362 | } | |
2363 | \f | |
237fc4c9 | 2364 | /* Proceeding. */ |
c906108c SS |
2365 | |
2366 | /* Clear out all variables saying what to do when inferior is continued. | |
2367 | First do this, then set the ones you want, then call `proceed'. */ | |
2368 | ||
a7212384 UW |
2369 | static void |
2370 | clear_proceed_status_thread (struct thread_info *tp) | |
c906108c | 2371 | { |
a7212384 UW |
2372 | if (debug_infrun) |
2373 | fprintf_unfiltered (gdb_stdlog, | |
2374 | "infrun: clear_proceed_status_thread (%s)\n", | |
2375 | target_pid_to_str (tp->ptid)); | |
d6b48e9c | 2376 | |
70509625 PA |
2377 | /* If this signal should not be seen by program, give it zero. |
2378 | Used for debugging signals. */ | |
2379 | if (!signal_pass_state (tp->suspend.stop_signal)) | |
2380 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
2381 | ||
16c381f0 JK |
2382 | tp->control.trap_expected = 0; |
2383 | tp->control.step_range_start = 0; | |
2384 | tp->control.step_range_end = 0; | |
c1e36e3e | 2385 | tp->control.may_range_step = 0; |
16c381f0 JK |
2386 | tp->control.step_frame_id = null_frame_id; |
2387 | tp->control.step_stack_frame_id = null_frame_id; | |
2388 | tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE; | |
a7212384 | 2389 | tp->stop_requested = 0; |
4e1c45ea | 2390 | |
16c381f0 | 2391 | tp->control.stop_step = 0; |
32400beb | 2392 | |
16c381f0 | 2393 | tp->control.proceed_to_finish = 0; |
414c69f7 | 2394 | |
17b2616c PA |
2395 | tp->control.command_interp = NULL; |
2396 | ||
a7212384 | 2397 | /* Discard any remaining commands or status from previous stop. */ |
16c381f0 | 2398 | bpstat_clear (&tp->control.stop_bpstat); |
a7212384 | 2399 | } |
32400beb | 2400 | |
a7212384 | 2401 | void |
70509625 | 2402 | clear_proceed_status (int step) |
a7212384 | 2403 | { |
6c95b8df PA |
2404 | if (!non_stop) |
2405 | { | |
70509625 PA |
2406 | struct thread_info *tp; |
2407 | ptid_t resume_ptid; | |
2408 | ||
2409 | resume_ptid = user_visible_resume_ptid (step); | |
2410 | ||
2411 | /* In all-stop mode, delete the per-thread status of all threads | |
2412 | we're about to resume, implicitly and explicitly. */ | |
2413 | ALL_NON_EXITED_THREADS (tp) | |
2414 | { | |
2415 | if (!ptid_match (tp->ptid, resume_ptid)) | |
2416 | continue; | |
2417 | clear_proceed_status_thread (tp); | |
2418 | } | |
6c95b8df PA |
2419 | } |
2420 | ||
a7212384 UW |
2421 | if (!ptid_equal (inferior_ptid, null_ptid)) |
2422 | { | |
2423 | struct inferior *inferior; | |
2424 | ||
2425 | if (non_stop) | |
2426 | { | |
6c95b8df PA |
2427 | /* If in non-stop mode, only delete the per-thread status of |
2428 | the current thread. */ | |
a7212384 UW |
2429 | clear_proceed_status_thread (inferior_thread ()); |
2430 | } | |
6c95b8df | 2431 | |
d6b48e9c | 2432 | inferior = current_inferior (); |
16c381f0 | 2433 | inferior->control.stop_soon = NO_STOP_QUIETLY; |
4e1c45ea PA |
2434 | } |
2435 | ||
c906108c | 2436 | stop_after_trap = 0; |
f3b1572e | 2437 | |
31e77af2 PA |
2438 | clear_step_over_info (); |
2439 | ||
f3b1572e | 2440 | observer_notify_about_to_proceed (); |
c906108c | 2441 | |
d5c31457 UW |
2442 | if (stop_registers) |
2443 | { | |
2444 | regcache_xfree (stop_registers); | |
2445 | stop_registers = NULL; | |
2446 | } | |
c906108c SS |
2447 | } |
2448 | ||
99619bea PA |
2449 | /* Returns true if TP is still stopped at a breakpoint that needs |
2450 | stepping-over in order to make progress. If the breakpoint is gone | |
2451 | meanwhile, we can skip the whole step-over dance. */ | |
ea67f13b DJ |
2452 | |
2453 | static int | |
99619bea PA |
2454 | thread_still_needs_step_over (struct thread_info *tp) |
2455 | { | |
2456 | if (tp->stepping_over_breakpoint) | |
2457 | { | |
2458 | struct regcache *regcache = get_thread_regcache (tp->ptid); | |
2459 | ||
2460 | if (breakpoint_here_p (get_regcache_aspace (regcache), | |
af48d08f PA |
2461 | regcache_read_pc (regcache)) |
2462 | == ordinary_breakpoint_here) | |
99619bea PA |
2463 | return 1; |
2464 | ||
2465 | tp->stepping_over_breakpoint = 0; | |
2466 | } | |
2467 | ||
2468 | return 0; | |
2469 | } | |
2470 | ||
483805cf PA |
2471 | /* Returns true if scheduler locking applies. STEP indicates whether |
2472 | we're about to do a step/next-like command to a thread. */ | |
2473 | ||
2474 | static int | |
2475 | schedlock_applies (int step) | |
2476 | { | |
2477 | return (scheduler_mode == schedlock_on | |
2478 | || (scheduler_mode == schedlock_step | |
2479 | && step)); | |
2480 | } | |
2481 | ||
99619bea PA |
2482 | /* Look a thread other than EXCEPT that has previously reported a |
2483 | breakpoint event, and thus needs a step-over in order to make | |
2484 | progress. Returns NULL is none is found. STEP indicates whether | |
2485 | we're about to step the current thread, in order to decide whether | |
2486 | "set scheduler-locking step" applies. */ | |
2487 | ||
2488 | static struct thread_info * | |
2489 | find_thread_needs_step_over (int step, struct thread_info *except) | |
ea67f13b | 2490 | { |
99619bea | 2491 | struct thread_info *tp, *current; |
5a437975 DE |
2492 | |
2493 | /* With non-stop mode on, threads are always handled individually. */ | |
2494 | gdb_assert (! non_stop); | |
ea67f13b | 2495 | |
99619bea | 2496 | current = inferior_thread (); |
d4db2f36 | 2497 | |
99619bea PA |
2498 | /* If scheduler locking applies, we can avoid iterating over all |
2499 | threads. */ | |
483805cf | 2500 | if (schedlock_applies (step)) |
ea67f13b | 2501 | { |
99619bea PA |
2502 | if (except != current |
2503 | && thread_still_needs_step_over (current)) | |
2504 | return current; | |
515630c5 | 2505 | |
99619bea PA |
2506 | return NULL; |
2507 | } | |
0d9a9a5f | 2508 | |
034f788c | 2509 | ALL_NON_EXITED_THREADS (tp) |
99619bea PA |
2510 | { |
2511 | /* Ignore the EXCEPT thread. */ | |
2512 | if (tp == except) | |
2513 | continue; | |
2514 | /* Ignore threads of processes we're not resuming. */ | |
2515 | if (!sched_multi | |
2516 | && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid)) | |
2517 | continue; | |
2518 | ||
2519 | if (thread_still_needs_step_over (tp)) | |
2520 | return tp; | |
ea67f13b DJ |
2521 | } |
2522 | ||
99619bea | 2523 | return NULL; |
ea67f13b | 2524 | } |
e4846b08 | 2525 | |
c906108c SS |
2526 | /* Basic routine for continuing the program in various fashions. |
2527 | ||
2528 | ADDR is the address to resume at, or -1 for resume where stopped. | |
2529 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 2530 | or -1 for act according to how it stopped. |
c906108c | 2531 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
2532 | -1 means return after that and print nothing. |
2533 | You should probably set various step_... variables | |
2534 | before calling here, if you are stepping. | |
c906108c SS |
2535 | |
2536 | You should call clear_proceed_status before calling proceed. */ | |
2537 | ||
2538 | void | |
2ea28649 | 2539 | proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step) |
c906108c | 2540 | { |
e58b0e63 PA |
2541 | struct regcache *regcache; |
2542 | struct gdbarch *gdbarch; | |
4e1c45ea | 2543 | struct thread_info *tp; |
e58b0e63 | 2544 | CORE_ADDR pc; |
6c95b8df | 2545 | struct address_space *aspace; |
c906108c | 2546 | |
e58b0e63 PA |
2547 | /* If we're stopped at a fork/vfork, follow the branch set by the |
2548 | "set follow-fork-mode" command; otherwise, we'll just proceed | |
2549 | resuming the current thread. */ | |
2550 | if (!follow_fork ()) | |
2551 | { | |
2552 | /* The target for some reason decided not to resume. */ | |
2553 | normal_stop (); | |
f148b27e PA |
2554 | if (target_can_async_p ()) |
2555 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
e58b0e63 PA |
2556 | return; |
2557 | } | |
2558 | ||
842951eb PA |
2559 | /* We'll update this if & when we switch to a new thread. */ |
2560 | previous_inferior_ptid = inferior_ptid; | |
2561 | ||
e58b0e63 PA |
2562 | regcache = get_current_regcache (); |
2563 | gdbarch = get_regcache_arch (regcache); | |
6c95b8df | 2564 | aspace = get_regcache_aspace (regcache); |
e58b0e63 | 2565 | pc = regcache_read_pc (regcache); |
2adfaa28 | 2566 | tp = inferior_thread (); |
e58b0e63 | 2567 | |
c906108c | 2568 | if (step > 0) |
515630c5 | 2569 | step_start_function = find_pc_function (pc); |
c906108c SS |
2570 | if (step < 0) |
2571 | stop_after_trap = 1; | |
2572 | ||
99619bea PA |
2573 | /* Fill in with reasonable starting values. */ |
2574 | init_thread_stepping_state (tp); | |
2575 | ||
2acceee2 | 2576 | if (addr == (CORE_ADDR) -1) |
c906108c | 2577 | { |
af48d08f PA |
2578 | if (pc == stop_pc |
2579 | && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here | |
b2175913 | 2580 | && execution_direction != EXEC_REVERSE) |
3352ef37 AC |
2581 | /* There is a breakpoint at the address we will resume at, |
2582 | step one instruction before inserting breakpoints so that | |
2583 | we do not stop right away (and report a second hit at this | |
b2175913 MS |
2584 | breakpoint). |
2585 | ||
2586 | Note, we don't do this in reverse, because we won't | |
2587 | actually be executing the breakpoint insn anyway. | |
2588 | We'll be (un-)executing the previous instruction. */ | |
99619bea | 2589 | tp->stepping_over_breakpoint = 1; |
515630c5 UW |
2590 | else if (gdbarch_single_step_through_delay_p (gdbarch) |
2591 | && gdbarch_single_step_through_delay (gdbarch, | |
2592 | get_current_frame ())) | |
3352ef37 AC |
2593 | /* We stepped onto an instruction that needs to be stepped |
2594 | again before re-inserting the breakpoint, do so. */ | |
99619bea | 2595 | tp->stepping_over_breakpoint = 1; |
c906108c SS |
2596 | } |
2597 | else | |
2598 | { | |
515630c5 | 2599 | regcache_write_pc (regcache, addr); |
c906108c SS |
2600 | } |
2601 | ||
70509625 PA |
2602 | if (siggnal != GDB_SIGNAL_DEFAULT) |
2603 | tp->suspend.stop_signal = siggnal; | |
2604 | ||
17b2616c PA |
2605 | /* Record the interpreter that issued the execution command that |
2606 | caused this thread to resume. If the top level interpreter is | |
2607 | MI/async, and the execution command was a CLI command | |
2608 | (next/step/etc.), we'll want to print stop event output to the MI | |
2609 | console channel (the stepped-to line, etc.), as if the user | |
2610 | entered the execution command on a real GDB console. */ | |
2611 | inferior_thread ()->control.command_interp = command_interp (); | |
2612 | ||
527159b7 | 2613 | if (debug_infrun) |
8a9de0e4 | 2614 | fprintf_unfiltered (gdb_stdlog, |
c9737c08 PA |
2615 | "infrun: proceed (addr=%s, signal=%s, step=%d)\n", |
2616 | paddress (gdbarch, addr), | |
2617 | gdb_signal_to_symbol_string (siggnal), step); | |
527159b7 | 2618 | |
94cc34af PA |
2619 | if (non_stop) |
2620 | /* In non-stop, each thread is handled individually. The context | |
2621 | must already be set to the right thread here. */ | |
2622 | ; | |
2623 | else | |
2624 | { | |
99619bea PA |
2625 | struct thread_info *step_over; |
2626 | ||
94cc34af PA |
2627 | /* In a multi-threaded task we may select another thread and |
2628 | then continue or step. | |
c906108c | 2629 | |
94cc34af PA |
2630 | But if the old thread was stopped at a breakpoint, it will |
2631 | immediately cause another breakpoint stop without any | |
2632 | execution (i.e. it will report a breakpoint hit incorrectly). | |
2633 | So we must step over it first. | |
c906108c | 2634 | |
99619bea PA |
2635 | Look for a thread other than the current (TP) that reported a |
2636 | breakpoint hit and hasn't been resumed yet since. */ | |
2637 | step_over = find_thread_needs_step_over (step, tp); | |
2638 | if (step_over != NULL) | |
2adfaa28 | 2639 | { |
99619bea PA |
2640 | if (debug_infrun) |
2641 | fprintf_unfiltered (gdb_stdlog, | |
2642 | "infrun: need to step-over [%s] first\n", | |
2643 | target_pid_to_str (step_over->ptid)); | |
2644 | ||
2645 | /* Store the prev_pc for the stepping thread too, needed by | |
2646 | switch_back_to_stepping thread. */ | |
2647 | tp->prev_pc = regcache_read_pc (get_current_regcache ()); | |
2648 | switch_to_thread (step_over->ptid); | |
2649 | tp = step_over; | |
2adfaa28 | 2650 | } |
94cc34af | 2651 | } |
c906108c | 2652 | |
31e77af2 PA |
2653 | /* If we need to step over a breakpoint, and we're not using |
2654 | displaced stepping to do so, insert all breakpoints (watchpoints, | |
2655 | etc.) but the one we're stepping over, step one instruction, and | |
2656 | then re-insert the breakpoint when that step is finished. */ | |
99619bea | 2657 | if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch)) |
30852783 | 2658 | { |
31e77af2 PA |
2659 | struct regcache *regcache = get_current_regcache (); |
2660 | ||
2661 | set_step_over_info (get_regcache_aspace (regcache), | |
963f9c80 | 2662 | regcache_read_pc (regcache), 0); |
30852783 | 2663 | } |
31e77af2 PA |
2664 | else |
2665 | clear_step_over_info (); | |
30852783 | 2666 | |
31e77af2 | 2667 | insert_breakpoints (); |
30852783 | 2668 | |
99619bea PA |
2669 | tp->control.trap_expected = tp->stepping_over_breakpoint; |
2670 | ||
c906108c SS |
2671 | annotate_starting (); |
2672 | ||
2673 | /* Make sure that output from GDB appears before output from the | |
2674 | inferior. */ | |
2675 | gdb_flush (gdb_stdout); | |
2676 | ||
e4846b08 | 2677 | /* Refresh prev_pc value just prior to resuming. This used to be |
22bcd14b | 2678 | done in stop_waiting, however, setting prev_pc there did not handle |
e4846b08 JJ |
2679 | scenarios such as inferior function calls or returning from |
2680 | a function via the return command. In those cases, the prev_pc | |
2681 | value was not set properly for subsequent commands. The prev_pc value | |
2682 | is used to initialize the starting line number in the ecs. With an | |
2683 | invalid value, the gdb next command ends up stopping at the position | |
2684 | represented by the next line table entry past our start position. | |
2685 | On platforms that generate one line table entry per line, this | |
2686 | is not a problem. However, on the ia64, the compiler generates | |
2687 | extraneous line table entries that do not increase the line number. | |
2688 | When we issue the gdb next command on the ia64 after an inferior call | |
2689 | or a return command, we often end up a few instructions forward, still | |
2690 | within the original line we started. | |
2691 | ||
d5cd6034 JB |
2692 | An attempt was made to refresh the prev_pc at the same time the |
2693 | execution_control_state is initialized (for instance, just before | |
2694 | waiting for an inferior event). But this approach did not work | |
2695 | because of platforms that use ptrace, where the pc register cannot | |
2696 | be read unless the inferior is stopped. At that point, we are not | |
2697 | guaranteed the inferior is stopped and so the regcache_read_pc() call | |
2698 | can fail. Setting the prev_pc value here ensures the value is updated | |
2699 | correctly when the inferior is stopped. */ | |
4e1c45ea | 2700 | tp->prev_pc = regcache_read_pc (get_current_regcache ()); |
e4846b08 | 2701 | |
c906108c | 2702 | /* Resume inferior. */ |
99619bea | 2703 | resume (tp->control.trap_expected || step || bpstat_should_step (), |
0de5618e | 2704 | tp->suspend.stop_signal); |
c906108c SS |
2705 | |
2706 | /* Wait for it to stop (if not standalone) | |
2707 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 | 2708 | /* Do this only if we are not using the event loop, or if the target |
1777feb0 | 2709 | does not support asynchronous execution. */ |
362646f5 | 2710 | if (!target_can_async_p ()) |
43ff13b4 | 2711 | { |
e4c8541f | 2712 | wait_for_inferior (); |
43ff13b4 JM |
2713 | normal_stop (); |
2714 | } | |
c906108c | 2715 | } |
c906108c SS |
2716 | \f |
2717 | ||
2718 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 2719 | |
c906108c | 2720 | void |
8621d6a9 | 2721 | start_remote (int from_tty) |
c906108c | 2722 | { |
d6b48e9c | 2723 | struct inferior *inferior; |
d6b48e9c PA |
2724 | |
2725 | inferior = current_inferior (); | |
16c381f0 | 2726 | inferior->control.stop_soon = STOP_QUIETLY_REMOTE; |
43ff13b4 | 2727 | |
1777feb0 | 2728 | /* Always go on waiting for the target, regardless of the mode. */ |
6426a772 | 2729 | /* FIXME: cagney/1999-09-23: At present it isn't possible to |
7e73cedf | 2730 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
2731 | nothing is returned (instead of just blocking). Because of this, |
2732 | targets expecting an immediate response need to, internally, set | |
2733 | things up so that the target_wait() is forced to eventually | |
1777feb0 | 2734 | timeout. */ |
6426a772 JM |
2735 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to |
2736 | differentiate to its caller what the state of the target is after | |
2737 | the initial open has been performed. Here we're assuming that | |
2738 | the target has stopped. It should be possible to eventually have | |
2739 | target_open() return to the caller an indication that the target | |
2740 | is currently running and GDB state should be set to the same as | |
1777feb0 | 2741 | for an async run. */ |
e4c8541f | 2742 | wait_for_inferior (); |
8621d6a9 DJ |
2743 | |
2744 | /* Now that the inferior has stopped, do any bookkeeping like | |
2745 | loading shared libraries. We want to do this before normal_stop, | |
2746 | so that the displayed frame is up to date. */ | |
2747 | post_create_inferior (¤t_target, from_tty); | |
2748 | ||
6426a772 | 2749 | normal_stop (); |
c906108c SS |
2750 | } |
2751 | ||
2752 | /* Initialize static vars when a new inferior begins. */ | |
2753 | ||
2754 | void | |
96baa820 | 2755 | init_wait_for_inferior (void) |
c906108c SS |
2756 | { |
2757 | /* These are meaningless until the first time through wait_for_inferior. */ | |
c906108c | 2758 | |
c906108c SS |
2759 | breakpoint_init_inferior (inf_starting); |
2760 | ||
70509625 | 2761 | clear_proceed_status (0); |
9f976b41 | 2762 | |
ca005067 | 2763 | target_last_wait_ptid = minus_one_ptid; |
237fc4c9 | 2764 | |
842951eb | 2765 | previous_inferior_ptid = inferior_ptid; |
0d1e5fa7 | 2766 | |
edb3359d DJ |
2767 | /* Discard any skipped inlined frames. */ |
2768 | clear_inline_frame_state (minus_one_ptid); | |
c906108c | 2769 | } |
237fc4c9 | 2770 | |
c906108c | 2771 | \f |
0d1e5fa7 PA |
2772 | /* Data to be passed around while handling an event. This data is |
2773 | discarded between events. */ | |
c5aa993b | 2774 | struct execution_control_state |
488f131b | 2775 | { |
0d1e5fa7 | 2776 | ptid_t ptid; |
4e1c45ea PA |
2777 | /* The thread that got the event, if this was a thread event; NULL |
2778 | otherwise. */ | |
2779 | struct thread_info *event_thread; | |
2780 | ||
488f131b | 2781 | struct target_waitstatus ws; |
7e324e48 | 2782 | int stop_func_filled_in; |
488f131b JB |
2783 | CORE_ADDR stop_func_start; |
2784 | CORE_ADDR stop_func_end; | |
2c02bd72 | 2785 | const char *stop_func_name; |
488f131b | 2786 | int wait_some_more; |
4f5d7f63 | 2787 | |
2adfaa28 PA |
2788 | /* True if the event thread hit the single-step breakpoint of |
2789 | another thread. Thus the event doesn't cause a stop, the thread | |
2790 | needs to be single-stepped past the single-step breakpoint before | |
2791 | we can switch back to the original stepping thread. */ | |
2792 | int hit_singlestep_breakpoint; | |
488f131b JB |
2793 | }; |
2794 | ||
ec9499be | 2795 | static void handle_inferior_event (struct execution_control_state *ecs); |
cd0fc7c3 | 2796 | |
568d6575 UW |
2797 | static void handle_step_into_function (struct gdbarch *gdbarch, |
2798 | struct execution_control_state *ecs); | |
2799 | static void handle_step_into_function_backward (struct gdbarch *gdbarch, | |
2800 | struct execution_control_state *ecs); | |
4f5d7f63 | 2801 | static void handle_signal_stop (struct execution_control_state *ecs); |
186c406b | 2802 | static void check_exception_resume (struct execution_control_state *, |
28106bc2 | 2803 | struct frame_info *); |
611c83ae | 2804 | |
bdc36728 | 2805 | static void end_stepping_range (struct execution_control_state *ecs); |
22bcd14b | 2806 | static void stop_waiting (struct execution_control_state *ecs); |
104c1213 | 2807 | static void prepare_to_wait (struct execution_control_state *ecs); |
d4f3574e | 2808 | static void keep_going (struct execution_control_state *ecs); |
94c57d6a | 2809 | static void process_event_stop_test (struct execution_control_state *ecs); |
c447ac0b | 2810 | static int switch_back_to_stepped_thread (struct execution_control_state *ecs); |
104c1213 | 2811 | |
252fbfc8 PA |
2812 | /* Callback for iterate over threads. If the thread is stopped, but |
2813 | the user/frontend doesn't know about that yet, go through | |
2814 | normal_stop, as if the thread had just stopped now. ARG points at | |
2815 | a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If | |
2816 | ptid_is_pid(PTID) is true, applies to all threads of the process | |
2817 | pointed at by PTID. Otherwise, apply only to the thread pointed by | |
2818 | PTID. */ | |
2819 | ||
2820 | static int | |
2821 | infrun_thread_stop_requested_callback (struct thread_info *info, void *arg) | |
2822 | { | |
2823 | ptid_t ptid = * (ptid_t *) arg; | |
2824 | ||
2825 | if ((ptid_equal (info->ptid, ptid) | |
2826 | || ptid_equal (minus_one_ptid, ptid) | |
2827 | || (ptid_is_pid (ptid) | |
2828 | && ptid_get_pid (ptid) == ptid_get_pid (info->ptid))) | |
2829 | && is_running (info->ptid) | |
2830 | && !is_executing (info->ptid)) | |
2831 | { | |
2832 | struct cleanup *old_chain; | |
2833 | struct execution_control_state ecss; | |
2834 | struct execution_control_state *ecs = &ecss; | |
2835 | ||
2836 | memset (ecs, 0, sizeof (*ecs)); | |
2837 | ||
2838 | old_chain = make_cleanup_restore_current_thread (); | |
2839 | ||
f15cb84a YQ |
2840 | overlay_cache_invalid = 1; |
2841 | /* Flush target cache before starting to handle each event. | |
2842 | Target was running and cache could be stale. This is just a | |
2843 | heuristic. Running threads may modify target memory, but we | |
2844 | don't get any event. */ | |
2845 | target_dcache_invalidate (); | |
2846 | ||
252fbfc8 PA |
2847 | /* Go through handle_inferior_event/normal_stop, so we always |
2848 | have consistent output as if the stop event had been | |
2849 | reported. */ | |
2850 | ecs->ptid = info->ptid; | |
e09875d4 | 2851 | ecs->event_thread = find_thread_ptid (info->ptid); |
252fbfc8 | 2852 | ecs->ws.kind = TARGET_WAITKIND_STOPPED; |
a493e3e2 | 2853 | ecs->ws.value.sig = GDB_SIGNAL_0; |
252fbfc8 PA |
2854 | |
2855 | handle_inferior_event (ecs); | |
2856 | ||
2857 | if (!ecs->wait_some_more) | |
2858 | { | |
2859 | struct thread_info *tp; | |
2860 | ||
2861 | normal_stop (); | |
2862 | ||
fa4cd53f | 2863 | /* Finish off the continuations. */ |
252fbfc8 | 2864 | tp = inferior_thread (); |
fa4cd53f PA |
2865 | do_all_intermediate_continuations_thread (tp, 1); |
2866 | do_all_continuations_thread (tp, 1); | |
252fbfc8 PA |
2867 | } |
2868 | ||
2869 | do_cleanups (old_chain); | |
2870 | } | |
2871 | ||
2872 | return 0; | |
2873 | } | |
2874 | ||
2875 | /* This function is attached as a "thread_stop_requested" observer. | |
2876 | Cleanup local state that assumed the PTID was to be resumed, and | |
2877 | report the stop to the frontend. */ | |
2878 | ||
2c0b251b | 2879 | static void |
252fbfc8 PA |
2880 | infrun_thread_stop_requested (ptid_t ptid) |
2881 | { | |
fc1cf338 | 2882 | struct displaced_step_inferior_state *displaced; |
252fbfc8 PA |
2883 | |
2884 | /* PTID was requested to stop. Remove it from the displaced | |
2885 | stepping queue, so we don't try to resume it automatically. */ | |
fc1cf338 PA |
2886 | |
2887 | for (displaced = displaced_step_inferior_states; | |
2888 | displaced; | |
2889 | displaced = displaced->next) | |
252fbfc8 | 2890 | { |
fc1cf338 | 2891 | struct displaced_step_request *it, **prev_next_p; |
252fbfc8 | 2892 | |
fc1cf338 PA |
2893 | it = displaced->step_request_queue; |
2894 | prev_next_p = &displaced->step_request_queue; | |
2895 | while (it) | |
252fbfc8 | 2896 | { |
fc1cf338 PA |
2897 | if (ptid_match (it->ptid, ptid)) |
2898 | { | |
2899 | *prev_next_p = it->next; | |
2900 | it->next = NULL; | |
2901 | xfree (it); | |
2902 | } | |
252fbfc8 | 2903 | else |
fc1cf338 PA |
2904 | { |
2905 | prev_next_p = &it->next; | |
2906 | } | |
252fbfc8 | 2907 | |
fc1cf338 | 2908 | it = *prev_next_p; |
252fbfc8 | 2909 | } |
252fbfc8 PA |
2910 | } |
2911 | ||
2912 | iterate_over_threads (infrun_thread_stop_requested_callback, &ptid); | |
2913 | } | |
2914 | ||
a07daef3 PA |
2915 | static void |
2916 | infrun_thread_thread_exit (struct thread_info *tp, int silent) | |
2917 | { | |
2918 | if (ptid_equal (target_last_wait_ptid, tp->ptid)) | |
2919 | nullify_last_target_wait_ptid (); | |
2920 | } | |
2921 | ||
0cbcdb96 PA |
2922 | /* Delete the step resume, single-step and longjmp/exception resume |
2923 | breakpoints of TP. */ | |
4e1c45ea | 2924 | |
0cbcdb96 PA |
2925 | static void |
2926 | delete_thread_infrun_breakpoints (struct thread_info *tp) | |
4e1c45ea | 2927 | { |
0cbcdb96 PA |
2928 | delete_step_resume_breakpoint (tp); |
2929 | delete_exception_resume_breakpoint (tp); | |
34b7e8a6 | 2930 | delete_single_step_breakpoints (tp); |
4e1c45ea PA |
2931 | } |
2932 | ||
0cbcdb96 PA |
2933 | /* If the target still has execution, call FUNC for each thread that |
2934 | just stopped. In all-stop, that's all the non-exited threads; in | |
2935 | non-stop, that's the current thread, only. */ | |
2936 | ||
2937 | typedef void (*for_each_just_stopped_thread_callback_func) | |
2938 | (struct thread_info *tp); | |
4e1c45ea PA |
2939 | |
2940 | static void | |
0cbcdb96 | 2941 | for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func) |
4e1c45ea | 2942 | { |
0cbcdb96 | 2943 | if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid)) |
4e1c45ea PA |
2944 | return; |
2945 | ||
2946 | if (non_stop) | |
2947 | { | |
0cbcdb96 PA |
2948 | /* If in non-stop mode, only the current thread stopped. */ |
2949 | func (inferior_thread ()); | |
4e1c45ea PA |
2950 | } |
2951 | else | |
0cbcdb96 PA |
2952 | { |
2953 | struct thread_info *tp; | |
2954 | ||
2955 | /* In all-stop mode, all threads have stopped. */ | |
2956 | ALL_NON_EXITED_THREADS (tp) | |
2957 | { | |
2958 | func (tp); | |
2959 | } | |
2960 | } | |
2961 | } | |
2962 | ||
2963 | /* Delete the step resume and longjmp/exception resume breakpoints of | |
2964 | the threads that just stopped. */ | |
2965 | ||
2966 | static void | |
2967 | delete_just_stopped_threads_infrun_breakpoints (void) | |
2968 | { | |
2969 | for_each_just_stopped_thread (delete_thread_infrun_breakpoints); | |
34b7e8a6 PA |
2970 | } |
2971 | ||
2972 | /* Delete the single-step breakpoints of the threads that just | |
2973 | stopped. */ | |
7c16b83e | 2974 | |
34b7e8a6 PA |
2975 | static void |
2976 | delete_just_stopped_threads_single_step_breakpoints (void) | |
2977 | { | |
2978 | for_each_just_stopped_thread (delete_single_step_breakpoints); | |
4e1c45ea PA |
2979 | } |
2980 | ||
1777feb0 | 2981 | /* A cleanup wrapper. */ |
4e1c45ea PA |
2982 | |
2983 | static void | |
0cbcdb96 | 2984 | delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg) |
4e1c45ea | 2985 | { |
0cbcdb96 | 2986 | delete_just_stopped_threads_infrun_breakpoints (); |
4e1c45ea PA |
2987 | } |
2988 | ||
223698f8 DE |
2989 | /* Pretty print the results of target_wait, for debugging purposes. */ |
2990 | ||
2991 | static void | |
2992 | print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid, | |
2993 | const struct target_waitstatus *ws) | |
2994 | { | |
2995 | char *status_string = target_waitstatus_to_string (ws); | |
2996 | struct ui_file *tmp_stream = mem_fileopen (); | |
2997 | char *text; | |
223698f8 DE |
2998 | |
2999 | /* The text is split over several lines because it was getting too long. | |
3000 | Call fprintf_unfiltered (gdb_stdlog) once so that the text is still | |
3001 | output as a unit; we want only one timestamp printed if debug_timestamp | |
3002 | is set. */ | |
3003 | ||
3004 | fprintf_unfiltered (tmp_stream, | |
dfd4cc63 LM |
3005 | "infrun: target_wait (%d", ptid_get_pid (waiton_ptid)); |
3006 | if (ptid_get_pid (waiton_ptid) != -1) | |
223698f8 DE |
3007 | fprintf_unfiltered (tmp_stream, |
3008 | " [%s]", target_pid_to_str (waiton_ptid)); | |
3009 | fprintf_unfiltered (tmp_stream, ", status) =\n"); | |
3010 | fprintf_unfiltered (tmp_stream, | |
3011 | "infrun: %d [%s],\n", | |
dfd4cc63 LM |
3012 | ptid_get_pid (result_ptid), |
3013 | target_pid_to_str (result_ptid)); | |
223698f8 DE |
3014 | fprintf_unfiltered (tmp_stream, |
3015 | "infrun: %s\n", | |
3016 | status_string); | |
3017 | ||
759ef836 | 3018 | text = ui_file_xstrdup (tmp_stream, NULL); |
223698f8 DE |
3019 | |
3020 | /* This uses %s in part to handle %'s in the text, but also to avoid | |
3021 | a gcc error: the format attribute requires a string literal. */ | |
3022 | fprintf_unfiltered (gdb_stdlog, "%s", text); | |
3023 | ||
3024 | xfree (status_string); | |
3025 | xfree (text); | |
3026 | ui_file_delete (tmp_stream); | |
3027 | } | |
3028 | ||
24291992 PA |
3029 | /* Prepare and stabilize the inferior for detaching it. E.g., |
3030 | detaching while a thread is displaced stepping is a recipe for | |
3031 | crashing it, as nothing would readjust the PC out of the scratch | |
3032 | pad. */ | |
3033 | ||
3034 | void | |
3035 | prepare_for_detach (void) | |
3036 | { | |
3037 | struct inferior *inf = current_inferior (); | |
3038 | ptid_t pid_ptid = pid_to_ptid (inf->pid); | |
3039 | struct cleanup *old_chain_1; | |
3040 | struct displaced_step_inferior_state *displaced; | |
3041 | ||
3042 | displaced = get_displaced_stepping_state (inf->pid); | |
3043 | ||
3044 | /* Is any thread of this process displaced stepping? If not, | |
3045 | there's nothing else to do. */ | |
3046 | if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid)) | |
3047 | return; | |
3048 | ||
3049 | if (debug_infrun) | |
3050 | fprintf_unfiltered (gdb_stdlog, | |
3051 | "displaced-stepping in-process while detaching"); | |
3052 | ||
3053 | old_chain_1 = make_cleanup_restore_integer (&inf->detaching); | |
3054 | inf->detaching = 1; | |
3055 | ||
3056 | while (!ptid_equal (displaced->step_ptid, null_ptid)) | |
3057 | { | |
3058 | struct cleanup *old_chain_2; | |
3059 | struct execution_control_state ecss; | |
3060 | struct execution_control_state *ecs; | |
3061 | ||
3062 | ecs = &ecss; | |
3063 | memset (ecs, 0, sizeof (*ecs)); | |
3064 | ||
3065 | overlay_cache_invalid = 1; | |
f15cb84a YQ |
3066 | /* Flush target cache before starting to handle each event. |
3067 | Target was running and cache could be stale. This is just a | |
3068 | heuristic. Running threads may modify target memory, but we | |
3069 | don't get any event. */ | |
3070 | target_dcache_invalidate (); | |
24291992 | 3071 | |
24291992 PA |
3072 | if (deprecated_target_wait_hook) |
3073 | ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0); | |
3074 | else | |
3075 | ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0); | |
3076 | ||
3077 | if (debug_infrun) | |
3078 | print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws); | |
3079 | ||
3080 | /* If an error happens while handling the event, propagate GDB's | |
3081 | knowledge of the executing state to the frontend/user running | |
3082 | state. */ | |
3e43a32a MS |
3083 | old_chain_2 = make_cleanup (finish_thread_state_cleanup, |
3084 | &minus_one_ptid); | |
24291992 PA |
3085 | |
3086 | /* Now figure out what to do with the result of the result. */ | |
3087 | handle_inferior_event (ecs); | |
3088 | ||
3089 | /* No error, don't finish the state yet. */ | |
3090 | discard_cleanups (old_chain_2); | |
3091 | ||
3092 | /* Breakpoints and watchpoints are not installed on the target | |
3093 | at this point, and signals are passed directly to the | |
3094 | inferior, so this must mean the process is gone. */ | |
3095 | if (!ecs->wait_some_more) | |
3096 | { | |
3097 | discard_cleanups (old_chain_1); | |
3098 | error (_("Program exited while detaching")); | |
3099 | } | |
3100 | } | |
3101 | ||
3102 | discard_cleanups (old_chain_1); | |
3103 | } | |
3104 | ||
cd0fc7c3 | 3105 | /* Wait for control to return from inferior to debugger. |
ae123ec6 | 3106 | |
cd0fc7c3 SS |
3107 | If inferior gets a signal, we may decide to start it up again |
3108 | instead of returning. That is why there is a loop in this function. | |
3109 | When this function actually returns it means the inferior | |
3110 | should be left stopped and GDB should read more commands. */ | |
3111 | ||
3112 | void | |
e4c8541f | 3113 | wait_for_inferior (void) |
cd0fc7c3 SS |
3114 | { |
3115 | struct cleanup *old_cleanups; | |
c906108c | 3116 | |
527159b7 | 3117 | if (debug_infrun) |
ae123ec6 | 3118 | fprintf_unfiltered |
e4c8541f | 3119 | (gdb_stdlog, "infrun: wait_for_inferior ()\n"); |
527159b7 | 3120 | |
0cbcdb96 PA |
3121 | old_cleanups |
3122 | = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, | |
3123 | NULL); | |
cd0fc7c3 | 3124 | |
c906108c SS |
3125 | while (1) |
3126 | { | |
ae25568b PA |
3127 | struct execution_control_state ecss; |
3128 | struct execution_control_state *ecs = &ecss; | |
29f49a6a | 3129 | struct cleanup *old_chain; |
963f9c80 | 3130 | ptid_t waiton_ptid = minus_one_ptid; |
29f49a6a | 3131 | |
ae25568b PA |
3132 | memset (ecs, 0, sizeof (*ecs)); |
3133 | ||
ec9499be | 3134 | overlay_cache_invalid = 1; |
ec9499be | 3135 | |
f15cb84a YQ |
3136 | /* Flush target cache before starting to handle each event. |
3137 | Target was running and cache could be stale. This is just a | |
3138 | heuristic. Running threads may modify target memory, but we | |
3139 | don't get any event. */ | |
3140 | target_dcache_invalidate (); | |
3141 | ||
9a4105ab | 3142 | if (deprecated_target_wait_hook) |
47608cb1 | 3143 | ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0); |
cd0fc7c3 | 3144 | else |
47608cb1 | 3145 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0); |
c906108c | 3146 | |
f00150c9 | 3147 | if (debug_infrun) |
223698f8 | 3148 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3149 | |
29f49a6a PA |
3150 | /* If an error happens while handling the event, propagate GDB's |
3151 | knowledge of the executing state to the frontend/user running | |
3152 | state. */ | |
3153 | old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3154 | ||
cd0fc7c3 SS |
3155 | /* Now figure out what to do with the result of the result. */ |
3156 | handle_inferior_event (ecs); | |
c906108c | 3157 | |
29f49a6a PA |
3158 | /* No error, don't finish the state yet. */ |
3159 | discard_cleanups (old_chain); | |
3160 | ||
cd0fc7c3 SS |
3161 | if (!ecs->wait_some_more) |
3162 | break; | |
3163 | } | |
4e1c45ea | 3164 | |
cd0fc7c3 SS |
3165 | do_cleanups (old_cleanups); |
3166 | } | |
c906108c | 3167 | |
d3d4baed PA |
3168 | /* Cleanup that reinstalls the readline callback handler, if the |
3169 | target is running in the background. If while handling the target | |
3170 | event something triggered a secondary prompt, like e.g., a | |
3171 | pagination prompt, we'll have removed the callback handler (see | |
3172 | gdb_readline_wrapper_line). Need to do this as we go back to the | |
3173 | event loop, ready to process further input. Note this has no | |
3174 | effect if the handler hasn't actually been removed, because calling | |
3175 | rl_callback_handler_install resets the line buffer, thus losing | |
3176 | input. */ | |
3177 | ||
3178 | static void | |
3179 | reinstall_readline_callback_handler_cleanup (void *arg) | |
3180 | { | |
3181 | if (async_command_editing_p && !sync_execution) | |
3182 | gdb_rl_callback_handler_reinstall (); | |
3183 | } | |
3184 | ||
1777feb0 | 3185 | /* Asynchronous version of wait_for_inferior. It is called by the |
43ff13b4 | 3186 | event loop whenever a change of state is detected on the file |
1777feb0 MS |
3187 | descriptor corresponding to the target. It can be called more than |
3188 | once to complete a single execution command. In such cases we need | |
3189 | to keep the state in a global variable ECSS. If it is the last time | |
a474d7c2 PA |
3190 | that this function is called for a single execution command, then |
3191 | report to the user that the inferior has stopped, and do the | |
1777feb0 | 3192 | necessary cleanups. */ |
43ff13b4 JM |
3193 | |
3194 | void | |
fba45db2 | 3195 | fetch_inferior_event (void *client_data) |
43ff13b4 | 3196 | { |
0d1e5fa7 | 3197 | struct execution_control_state ecss; |
a474d7c2 | 3198 | struct execution_control_state *ecs = &ecss; |
4f8d22e3 | 3199 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
29f49a6a | 3200 | struct cleanup *ts_old_chain; |
4f8d22e3 | 3201 | int was_sync = sync_execution; |
0f641c01 | 3202 | int cmd_done = 0; |
963f9c80 | 3203 | ptid_t waiton_ptid = minus_one_ptid; |
43ff13b4 | 3204 | |
0d1e5fa7 PA |
3205 | memset (ecs, 0, sizeof (*ecs)); |
3206 | ||
d3d4baed PA |
3207 | /* End up with readline processing input, if necessary. */ |
3208 | make_cleanup (reinstall_readline_callback_handler_cleanup, NULL); | |
3209 | ||
c5187ac6 PA |
3210 | /* We're handling a live event, so make sure we're doing live |
3211 | debugging. If we're looking at traceframes while the target is | |
3212 | running, we're going to need to get back to that mode after | |
3213 | handling the event. */ | |
3214 | if (non_stop) | |
3215 | { | |
3216 | make_cleanup_restore_current_traceframe (); | |
e6e4e701 | 3217 | set_current_traceframe (-1); |
c5187ac6 PA |
3218 | } |
3219 | ||
4f8d22e3 PA |
3220 | if (non_stop) |
3221 | /* In non-stop mode, the user/frontend should not notice a thread | |
3222 | switch due to internal events. Make sure we reverse to the | |
3223 | user selected thread and frame after handling the event and | |
3224 | running any breakpoint commands. */ | |
3225 | make_cleanup_restore_current_thread (); | |
3226 | ||
ec9499be | 3227 | overlay_cache_invalid = 1; |
f15cb84a YQ |
3228 | /* Flush target cache before starting to handle each event. Target |
3229 | was running and cache could be stale. This is just a heuristic. | |
3230 | Running threads may modify target memory, but we don't get any | |
3231 | event. */ | |
3232 | target_dcache_invalidate (); | |
3dd5b83d | 3233 | |
32231432 PA |
3234 | make_cleanup_restore_integer (&execution_direction); |
3235 | execution_direction = target_execution_direction (); | |
3236 | ||
9a4105ab | 3237 | if (deprecated_target_wait_hook) |
a474d7c2 | 3238 | ecs->ptid = |
47608cb1 | 3239 | deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 3240 | else |
47608cb1 | 3241 | ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG); |
43ff13b4 | 3242 | |
f00150c9 | 3243 | if (debug_infrun) |
223698f8 | 3244 | print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws); |
f00150c9 | 3245 | |
29f49a6a PA |
3246 | /* If an error happens while handling the event, propagate GDB's |
3247 | knowledge of the executing state to the frontend/user running | |
3248 | state. */ | |
3249 | if (!non_stop) | |
3250 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
3251 | else | |
3252 | ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid); | |
3253 | ||
353d1d73 JK |
3254 | /* Get executed before make_cleanup_restore_current_thread above to apply |
3255 | still for the thread which has thrown the exception. */ | |
3256 | make_bpstat_clear_actions_cleanup (); | |
3257 | ||
7c16b83e PA |
3258 | make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL); |
3259 | ||
43ff13b4 | 3260 | /* Now figure out what to do with the result of the result. */ |
a474d7c2 | 3261 | handle_inferior_event (ecs); |
43ff13b4 | 3262 | |
a474d7c2 | 3263 | if (!ecs->wait_some_more) |
43ff13b4 | 3264 | { |
d6b48e9c PA |
3265 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); |
3266 | ||
0cbcdb96 | 3267 | delete_just_stopped_threads_infrun_breakpoints (); |
f107f563 | 3268 | |
d6b48e9c | 3269 | /* We may not find an inferior if this was a process exit. */ |
16c381f0 | 3270 | if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY) |
83c265ab PA |
3271 | normal_stop (); |
3272 | ||
af679fd0 | 3273 | if (target_has_execution |
0e5bf2a8 | 3274 | && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED |
af679fd0 PA |
3275 | && ecs->ws.kind != TARGET_WAITKIND_EXITED |
3276 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
3277 | && ecs->event_thread->step_multi | |
16c381f0 | 3278 | && ecs->event_thread->control.stop_step) |
c2d11a7d JM |
3279 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); |
3280 | else | |
0f641c01 PA |
3281 | { |
3282 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
3283 | cmd_done = 1; | |
3284 | } | |
43ff13b4 | 3285 | } |
4f8d22e3 | 3286 | |
29f49a6a PA |
3287 | /* No error, don't finish the thread states yet. */ |
3288 | discard_cleanups (ts_old_chain); | |
3289 | ||
4f8d22e3 PA |
3290 | /* Revert thread and frame. */ |
3291 | do_cleanups (old_chain); | |
3292 | ||
3293 | /* If the inferior was in sync execution mode, and now isn't, | |
0f641c01 PA |
3294 | restore the prompt (a synchronous execution command has finished, |
3295 | and we're ready for input). */ | |
b4a14fd0 | 3296 | if (interpreter_async && was_sync && !sync_execution) |
92bcb5f9 | 3297 | observer_notify_sync_execution_done (); |
0f641c01 PA |
3298 | |
3299 | if (cmd_done | |
3300 | && !was_sync | |
3301 | && exec_done_display_p | |
3302 | && (ptid_equal (inferior_ptid, null_ptid) | |
3303 | || !is_running (inferior_ptid))) | |
3304 | printf_unfiltered (_("completed.\n")); | |
43ff13b4 JM |
3305 | } |
3306 | ||
edb3359d DJ |
3307 | /* Record the frame and location we're currently stepping through. */ |
3308 | void | |
3309 | set_step_info (struct frame_info *frame, struct symtab_and_line sal) | |
3310 | { | |
3311 | struct thread_info *tp = inferior_thread (); | |
3312 | ||
16c381f0 JK |
3313 | tp->control.step_frame_id = get_frame_id (frame); |
3314 | tp->control.step_stack_frame_id = get_stack_frame_id (frame); | |
edb3359d DJ |
3315 | |
3316 | tp->current_symtab = sal.symtab; | |
3317 | tp->current_line = sal.line; | |
3318 | } | |
3319 | ||
0d1e5fa7 PA |
3320 | /* Clear context switchable stepping state. */ |
3321 | ||
3322 | void | |
4e1c45ea | 3323 | init_thread_stepping_state (struct thread_info *tss) |
0d1e5fa7 | 3324 | { |
7f5ef605 | 3325 | tss->stepped_breakpoint = 0; |
0d1e5fa7 | 3326 | tss->stepping_over_breakpoint = 0; |
963f9c80 | 3327 | tss->stepping_over_watchpoint = 0; |
0d1e5fa7 | 3328 | tss->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 SS |
3329 | } |
3330 | ||
c32c64b7 DE |
3331 | /* Set the cached copy of the last ptid/waitstatus. */ |
3332 | ||
3333 | static void | |
3334 | set_last_target_status (ptid_t ptid, struct target_waitstatus status) | |
3335 | { | |
3336 | target_last_wait_ptid = ptid; | |
3337 | target_last_waitstatus = status; | |
3338 | } | |
3339 | ||
e02bc4cc | 3340 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
3341 | target_wait()/deprecated_target_wait_hook(). The data is actually |
3342 | cached by handle_inferior_event(), which gets called immediately | |
3343 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
3344 | |
3345 | void | |
488f131b | 3346 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 3347 | { |
39f77062 | 3348 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
3349 | *status = target_last_waitstatus; |
3350 | } | |
3351 | ||
ac264b3b MS |
3352 | void |
3353 | nullify_last_target_wait_ptid (void) | |
3354 | { | |
3355 | target_last_wait_ptid = minus_one_ptid; | |
3356 | } | |
3357 | ||
dcf4fbde | 3358 | /* Switch thread contexts. */ |
dd80620e MS |
3359 | |
3360 | static void | |
0d1e5fa7 | 3361 | context_switch (ptid_t ptid) |
dd80620e | 3362 | { |
4b51d87b | 3363 | if (debug_infrun && !ptid_equal (ptid, inferior_ptid)) |
fd48f117 DJ |
3364 | { |
3365 | fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ", | |
3366 | target_pid_to_str (inferior_ptid)); | |
3367 | fprintf_unfiltered (gdb_stdlog, "to %s\n", | |
0d1e5fa7 | 3368 | target_pid_to_str (ptid)); |
fd48f117 DJ |
3369 | } |
3370 | ||
0d1e5fa7 | 3371 | switch_to_thread (ptid); |
dd80620e MS |
3372 | } |
3373 | ||
4fa8626c DJ |
3374 | static void |
3375 | adjust_pc_after_break (struct execution_control_state *ecs) | |
3376 | { | |
24a73cce UW |
3377 | struct regcache *regcache; |
3378 | struct gdbarch *gdbarch; | |
6c95b8df | 3379 | struct address_space *aspace; |
118e6252 | 3380 | CORE_ADDR breakpoint_pc, decr_pc; |
4fa8626c | 3381 | |
4fa8626c DJ |
3382 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If |
3383 | we aren't, just return. | |
9709f61c DJ |
3384 | |
3385 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
b798847d UW |
3386 | affected by gdbarch_decr_pc_after_break. Other waitkinds which are |
3387 | implemented by software breakpoints should be handled through the normal | |
3388 | breakpoint layer. | |
8fb3e588 | 3389 | |
4fa8626c DJ |
3390 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
3391 | different signals (SIGILL or SIGEMT for instance), but it is less | |
3392 | clear where the PC is pointing afterwards. It may not match | |
b798847d UW |
3393 | gdbarch_decr_pc_after_break. I don't know any specific target that |
3394 | generates these signals at breakpoints (the code has been in GDB since at | |
3395 | least 1992) so I can not guess how to handle them here. | |
8fb3e588 | 3396 | |
e6cf7916 UW |
3397 | In earlier versions of GDB, a target with |
3398 | gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a | |
b798847d UW |
3399 | watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any |
3400 | target with both of these set in GDB history, and it seems unlikely to be | |
3401 | correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */ | |
4fa8626c DJ |
3402 | |
3403 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
3404 | return; | |
3405 | ||
a493e3e2 | 3406 | if (ecs->ws.value.sig != GDB_SIGNAL_TRAP) |
4fa8626c DJ |
3407 | return; |
3408 | ||
4058b839 PA |
3409 | /* In reverse execution, when a breakpoint is hit, the instruction |
3410 | under it has already been de-executed. The reported PC always | |
3411 | points at the breakpoint address, so adjusting it further would | |
3412 | be wrong. E.g., consider this case on a decr_pc_after_break == 1 | |
3413 | architecture: | |
3414 | ||
3415 | B1 0x08000000 : INSN1 | |
3416 | B2 0x08000001 : INSN2 | |
3417 | 0x08000002 : INSN3 | |
3418 | PC -> 0x08000003 : INSN4 | |
3419 | ||
3420 | Say you're stopped at 0x08000003 as above. Reverse continuing | |
3421 | from that point should hit B2 as below. Reading the PC when the | |
3422 | SIGTRAP is reported should read 0x08000001 and INSN2 should have | |
3423 | been de-executed already. | |
3424 | ||
3425 | B1 0x08000000 : INSN1 | |
3426 | B2 PC -> 0x08000001 : INSN2 | |
3427 | 0x08000002 : INSN3 | |
3428 | 0x08000003 : INSN4 | |
3429 | ||
3430 | We can't apply the same logic as for forward execution, because | |
3431 | we would wrongly adjust the PC to 0x08000000, since there's a | |
3432 | breakpoint at PC - 1. We'd then report a hit on B1, although | |
3433 | INSN1 hadn't been de-executed yet. Doing nothing is the correct | |
3434 | behaviour. */ | |
3435 | if (execution_direction == EXEC_REVERSE) | |
3436 | return; | |
3437 | ||
24a73cce UW |
3438 | /* If this target does not decrement the PC after breakpoints, then |
3439 | we have nothing to do. */ | |
3440 | regcache = get_thread_regcache (ecs->ptid); | |
3441 | gdbarch = get_regcache_arch (regcache); | |
118e6252 MM |
3442 | |
3443 | decr_pc = target_decr_pc_after_break (gdbarch); | |
3444 | if (decr_pc == 0) | |
24a73cce UW |
3445 | return; |
3446 | ||
6c95b8df PA |
3447 | aspace = get_regcache_aspace (regcache); |
3448 | ||
8aad930b AC |
3449 | /* Find the location where (if we've hit a breakpoint) the |
3450 | breakpoint would be. */ | |
118e6252 | 3451 | breakpoint_pc = regcache_read_pc (regcache) - decr_pc; |
8aad930b | 3452 | |
1c5cfe86 PA |
3453 | /* Check whether there actually is a software breakpoint inserted at |
3454 | that location. | |
3455 | ||
3456 | If in non-stop mode, a race condition is possible where we've | |
3457 | removed a breakpoint, but stop events for that breakpoint were | |
3458 | already queued and arrive later. To suppress those spurious | |
3459 | SIGTRAPs, we keep a list of such breakpoint locations for a bit, | |
3460 | and retire them after a number of stop events are reported. */ | |
6c95b8df PA |
3461 | if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc) |
3462 | || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc))) | |
8aad930b | 3463 | { |
77f9e713 | 3464 | struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL); |
abbb1732 | 3465 | |
8213266a | 3466 | if (record_full_is_used ()) |
77f9e713 | 3467 | record_full_gdb_operation_disable_set (); |
96429cc8 | 3468 | |
1c0fdd0e UW |
3469 | /* When using hardware single-step, a SIGTRAP is reported for both |
3470 | a completed single-step and a software breakpoint. Need to | |
3471 | differentiate between the two, as the latter needs adjusting | |
3472 | but the former does not. | |
3473 | ||
3474 | The SIGTRAP can be due to a completed hardware single-step only if | |
3475 | - we didn't insert software single-step breakpoints | |
3476 | - the thread to be examined is still the current thread | |
3477 | - this thread is currently being stepped | |
3478 | ||
3479 | If any of these events did not occur, we must have stopped due | |
3480 | to hitting a software breakpoint, and have to back up to the | |
3481 | breakpoint address. | |
3482 | ||
3483 | As a special case, we could have hardware single-stepped a | |
3484 | software breakpoint. In this case (prev_pc == breakpoint_pc), | |
3485 | we also need to back up to the breakpoint address. */ | |
3486 | ||
34b7e8a6 | 3487 | if (thread_has_single_step_breakpoints_set (ecs->event_thread) |
1c0fdd0e | 3488 | || !ptid_equal (ecs->ptid, inferior_ptid) |
4e1c45ea | 3489 | || !currently_stepping (ecs->event_thread) |
7f5ef605 PA |
3490 | || (ecs->event_thread->stepped_breakpoint |
3491 | && ecs->event_thread->prev_pc == breakpoint_pc)) | |
515630c5 | 3492 | regcache_write_pc (regcache, breakpoint_pc); |
96429cc8 | 3493 | |
77f9e713 | 3494 | do_cleanups (old_cleanups); |
8aad930b | 3495 | } |
4fa8626c DJ |
3496 | } |
3497 | ||
edb3359d DJ |
3498 | static int |
3499 | stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id) | |
3500 | { | |
3501 | for (frame = get_prev_frame (frame); | |
3502 | frame != NULL; | |
3503 | frame = get_prev_frame (frame)) | |
3504 | { | |
3505 | if (frame_id_eq (get_frame_id (frame), step_frame_id)) | |
3506 | return 1; | |
3507 | if (get_frame_type (frame) != INLINE_FRAME) | |
3508 | break; | |
3509 | } | |
3510 | ||
3511 | return 0; | |
3512 | } | |
3513 | ||
a96d9b2e SDJ |
3514 | /* Auxiliary function that handles syscall entry/return events. |
3515 | It returns 1 if the inferior should keep going (and GDB | |
3516 | should ignore the event), or 0 if the event deserves to be | |
3517 | processed. */ | |
ca2163eb | 3518 | |
a96d9b2e | 3519 | static int |
ca2163eb | 3520 | handle_syscall_event (struct execution_control_state *ecs) |
a96d9b2e | 3521 | { |
ca2163eb | 3522 | struct regcache *regcache; |
ca2163eb PA |
3523 | int syscall_number; |
3524 | ||
3525 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
3526 | context_switch (ecs->ptid); | |
3527 | ||
3528 | regcache = get_thread_regcache (ecs->ptid); | |
f90263c1 | 3529 | syscall_number = ecs->ws.value.syscall_number; |
ca2163eb PA |
3530 | stop_pc = regcache_read_pc (regcache); |
3531 | ||
a96d9b2e SDJ |
3532 | if (catch_syscall_enabled () > 0 |
3533 | && catching_syscall_number (syscall_number) > 0) | |
3534 | { | |
3535 | if (debug_infrun) | |
3536 | fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n", | |
3537 | syscall_number); | |
a96d9b2e | 3538 | |
16c381f0 | 3539 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 3540 | = bpstat_stop_status (get_regcache_aspace (regcache), |
09ac7c10 | 3541 | stop_pc, ecs->ptid, &ecs->ws); |
ab04a2af | 3542 | |
ce12b012 | 3543 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
ca2163eb PA |
3544 | { |
3545 | /* Catchpoint hit. */ | |
ca2163eb PA |
3546 | return 0; |
3547 | } | |
a96d9b2e | 3548 | } |
ca2163eb PA |
3549 | |
3550 | /* If no catchpoint triggered for this, then keep going. */ | |
ca2163eb PA |
3551 | keep_going (ecs); |
3552 | return 1; | |
a96d9b2e SDJ |
3553 | } |
3554 | ||
7e324e48 GB |
3555 | /* Lazily fill in the execution_control_state's stop_func_* fields. */ |
3556 | ||
3557 | static void | |
3558 | fill_in_stop_func (struct gdbarch *gdbarch, | |
3559 | struct execution_control_state *ecs) | |
3560 | { | |
3561 | if (!ecs->stop_func_filled_in) | |
3562 | { | |
3563 | /* Don't care about return value; stop_func_start and stop_func_name | |
3564 | will both be 0 if it doesn't work. */ | |
3565 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
3566 | &ecs->stop_func_start, &ecs->stop_func_end); | |
3567 | ecs->stop_func_start | |
3568 | += gdbarch_deprecated_function_start_offset (gdbarch); | |
3569 | ||
591a12a1 UW |
3570 | if (gdbarch_skip_entrypoint_p (gdbarch)) |
3571 | ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch, | |
3572 | ecs->stop_func_start); | |
3573 | ||
7e324e48 GB |
3574 | ecs->stop_func_filled_in = 1; |
3575 | } | |
3576 | } | |
3577 | ||
4f5d7f63 PA |
3578 | |
3579 | /* Return the STOP_SOON field of the inferior pointed at by PTID. */ | |
3580 | ||
3581 | static enum stop_kind | |
3582 | get_inferior_stop_soon (ptid_t ptid) | |
3583 | { | |
3584 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid)); | |
3585 | ||
3586 | gdb_assert (inf != NULL); | |
3587 | return inf->control.stop_soon; | |
3588 | } | |
3589 | ||
05ba8510 PA |
3590 | /* Given an execution control state that has been freshly filled in by |
3591 | an event from the inferior, figure out what it means and take | |
3592 | appropriate action. | |
3593 | ||
3594 | The alternatives are: | |
3595 | ||
22bcd14b | 3596 | 1) stop_waiting and return; to really stop and return to the |
05ba8510 PA |
3597 | debugger. |
3598 | ||
3599 | 2) keep_going and return; to wait for the next event (set | |
3600 | ecs->event_thread->stepping_over_breakpoint to 1 to single step | |
3601 | once). */ | |
c906108c | 3602 | |
ec9499be | 3603 | static void |
96baa820 | 3604 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 3605 | { |
d6b48e9c PA |
3606 | enum stop_kind stop_soon; |
3607 | ||
28736962 PA |
3608 | if (ecs->ws.kind == TARGET_WAITKIND_IGNORE) |
3609 | { | |
3610 | /* We had an event in the inferior, but we are not interested in | |
3611 | handling it at this level. The lower layers have already | |
3612 | done what needs to be done, if anything. | |
3613 | ||
3614 | One of the possible circumstances for this is when the | |
3615 | inferior produces output for the console. The inferior has | |
3616 | not stopped, and we are ignoring the event. Another possible | |
3617 | circumstance is any event which the lower level knows will be | |
3618 | reported multiple times without an intervening resume. */ | |
3619 | if (debug_infrun) | |
3620 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); | |
3621 | prepare_to_wait (ecs); | |
3622 | return; | |
3623 | } | |
3624 | ||
0e5bf2a8 PA |
3625 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED |
3626 | && target_can_async_p () && !sync_execution) | |
3627 | { | |
3628 | /* There were no unwaited-for children left in the target, but, | |
3629 | we're not synchronously waiting for events either. Just | |
3630 | ignore. Otherwise, if we were running a synchronous | |
3631 | execution command, we need to cancel it and give the user | |
3632 | back the terminal. */ | |
3633 | if (debug_infrun) | |
3634 | fprintf_unfiltered (gdb_stdlog, | |
3635 | "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n"); | |
3636 | prepare_to_wait (ecs); | |
3637 | return; | |
3638 | } | |
3639 | ||
1777feb0 | 3640 | /* Cache the last pid/waitstatus. */ |
c32c64b7 | 3641 | set_last_target_status (ecs->ptid, ecs->ws); |
e02bc4cc | 3642 | |
ca005067 | 3643 | /* Always clear state belonging to the previous time we stopped. */ |
aa7d318d | 3644 | stop_stack_dummy = STOP_NONE; |
ca005067 | 3645 | |
0e5bf2a8 PA |
3646 | if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED) |
3647 | { | |
3648 | /* No unwaited-for children left. IOW, all resumed children | |
3649 | have exited. */ | |
3650 | if (debug_infrun) | |
3651 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n"); | |
3652 | ||
3653 | stop_print_frame = 0; | |
22bcd14b | 3654 | stop_waiting (ecs); |
0e5bf2a8 PA |
3655 | return; |
3656 | } | |
3657 | ||
8c90c137 | 3658 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED |
64776a0b | 3659 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED) |
359f5fe6 PA |
3660 | { |
3661 | ecs->event_thread = find_thread_ptid (ecs->ptid); | |
3662 | /* If it's a new thread, add it to the thread database. */ | |
3663 | if (ecs->event_thread == NULL) | |
3664 | ecs->event_thread = add_thread (ecs->ptid); | |
c1e36e3e PA |
3665 | |
3666 | /* Disable range stepping. If the next step request could use a | |
3667 | range, this will be end up re-enabled then. */ | |
3668 | ecs->event_thread->control.may_range_step = 0; | |
359f5fe6 | 3669 | } |
88ed393a JK |
3670 | |
3671 | /* Dependent on valid ECS->EVENT_THREAD. */ | |
3672 | adjust_pc_after_break (ecs); | |
3673 | ||
3674 | /* Dependent on the current PC value modified by adjust_pc_after_break. */ | |
3675 | reinit_frame_cache (); | |
3676 | ||
28736962 PA |
3677 | breakpoint_retire_moribund (); |
3678 | ||
2b009048 DJ |
3679 | /* First, distinguish signals caused by the debugger from signals |
3680 | that have to do with the program's own actions. Note that | |
3681 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
3682 | on the operating system version. Here we detect when a SIGILL or | |
3683 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
3684 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
3685 | when we're trying to execute a breakpoint instruction on a | |
3686 | non-executable stack. This happens for call dummy breakpoints | |
3687 | for architectures like SPARC that place call dummies on the | |
3688 | stack. */ | |
2b009048 | 3689 | if (ecs->ws.kind == TARGET_WAITKIND_STOPPED |
a493e3e2 PA |
3690 | && (ecs->ws.value.sig == GDB_SIGNAL_ILL |
3691 | || ecs->ws.value.sig == GDB_SIGNAL_SEGV | |
3692 | || ecs->ws.value.sig == GDB_SIGNAL_EMT)) | |
2b009048 | 3693 | { |
de0a0249 UW |
3694 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
3695 | ||
3696 | if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), | |
3697 | regcache_read_pc (regcache))) | |
3698 | { | |
3699 | if (debug_infrun) | |
3700 | fprintf_unfiltered (gdb_stdlog, | |
3701 | "infrun: Treating signal as SIGTRAP\n"); | |
a493e3e2 | 3702 | ecs->ws.value.sig = GDB_SIGNAL_TRAP; |
de0a0249 | 3703 | } |
2b009048 DJ |
3704 | } |
3705 | ||
28736962 PA |
3706 | /* Mark the non-executing threads accordingly. In all-stop, all |
3707 | threads of all processes are stopped when we get any event | |
3708 | reported. In non-stop mode, only the event thread stops. If | |
3709 | we're handling a process exit in non-stop mode, there's nothing | |
3710 | to do, as threads of the dead process are gone, and threads of | |
3711 | any other process were left running. */ | |
3712 | if (!non_stop) | |
3713 | set_executing (minus_one_ptid, 0); | |
3714 | else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED | |
3715 | && ecs->ws.kind != TARGET_WAITKIND_EXITED) | |
7aee8dc2 | 3716 | set_executing (ecs->ptid, 0); |
8c90c137 | 3717 | |
488f131b JB |
3718 | switch (ecs->ws.kind) |
3719 | { | |
3720 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 3721 | if (debug_infrun) |
8a9de0e4 | 3722 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
5c09a2c5 PA |
3723 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
3724 | context_switch (ecs->ptid); | |
b0f4b84b DJ |
3725 | /* Ignore gracefully during startup of the inferior, as it might |
3726 | be the shell which has just loaded some objects, otherwise | |
3727 | add the symbols for the newly loaded objects. Also ignore at | |
3728 | the beginning of an attach or remote session; we will query | |
3729 | the full list of libraries once the connection is | |
3730 | established. */ | |
4f5d7f63 PA |
3731 | |
3732 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
c0236d92 | 3733 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b | 3734 | { |
edcc5120 TT |
3735 | struct regcache *regcache; |
3736 | ||
edcc5120 TT |
3737 | regcache = get_thread_regcache (ecs->ptid); |
3738 | ||
3739 | handle_solib_event (); | |
3740 | ||
3741 | ecs->event_thread->control.stop_bpstat | |
3742 | = bpstat_stop_status (get_regcache_aspace (regcache), | |
3743 | stop_pc, ecs->ptid, &ecs->ws); | |
ab04a2af | 3744 | |
ce12b012 | 3745 | if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
edcc5120 TT |
3746 | { |
3747 | /* A catchpoint triggered. */ | |
94c57d6a PA |
3748 | process_event_stop_test (ecs); |
3749 | return; | |
edcc5120 | 3750 | } |
488f131b | 3751 | |
b0f4b84b DJ |
3752 | /* If requested, stop when the dynamic linker notifies |
3753 | gdb of events. This allows the user to get control | |
3754 | and place breakpoints in initializer routines for | |
3755 | dynamically loaded objects (among other things). */ | |
a493e3e2 | 3756 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
b0f4b84b DJ |
3757 | if (stop_on_solib_events) |
3758 | { | |
55409f9d DJ |
3759 | /* Make sure we print "Stopped due to solib-event" in |
3760 | normal_stop. */ | |
3761 | stop_print_frame = 1; | |
3762 | ||
22bcd14b | 3763 | stop_waiting (ecs); |
b0f4b84b DJ |
3764 | return; |
3765 | } | |
488f131b | 3766 | } |
b0f4b84b DJ |
3767 | |
3768 | /* If we are skipping through a shell, or through shared library | |
3769 | loading that we aren't interested in, resume the program. If | |
5c09a2c5 | 3770 | we're running the program normally, also resume. */ |
b0f4b84b DJ |
3771 | if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY) |
3772 | { | |
74960c60 VP |
3773 | /* Loading of shared libraries might have changed breakpoint |
3774 | addresses. Make sure new breakpoints are inserted. */ | |
a25a5a45 | 3775 | if (stop_soon == NO_STOP_QUIETLY) |
74960c60 | 3776 | insert_breakpoints (); |
a493e3e2 | 3777 | resume (0, GDB_SIGNAL_0); |
b0f4b84b DJ |
3778 | prepare_to_wait (ecs); |
3779 | return; | |
3780 | } | |
3781 | ||
5c09a2c5 PA |
3782 | /* But stop if we're attaching or setting up a remote |
3783 | connection. */ | |
3784 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
3785 | || stop_soon == STOP_QUIETLY_REMOTE) | |
3786 | { | |
3787 | if (debug_infrun) | |
3788 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
22bcd14b | 3789 | stop_waiting (ecs); |
5c09a2c5 PA |
3790 | return; |
3791 | } | |
3792 | ||
3793 | internal_error (__FILE__, __LINE__, | |
3794 | _("unhandled stop_soon: %d"), (int) stop_soon); | |
c5aa993b | 3795 | |
488f131b | 3796 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 3797 | if (debug_infrun) |
8a9de0e4 | 3798 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
64776a0b | 3799 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
8b3ee56d | 3800 | context_switch (ecs->ptid); |
a493e3e2 | 3801 | resume (0, GDB_SIGNAL_0); |
488f131b JB |
3802 | prepare_to_wait (ecs); |
3803 | return; | |
c5aa993b | 3804 | |
488f131b | 3805 | case TARGET_WAITKIND_EXITED: |
940c3c06 | 3806 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 3807 | if (debug_infrun) |
940c3c06 PA |
3808 | { |
3809 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) | |
3810 | fprintf_unfiltered (gdb_stdlog, | |
3811 | "infrun: TARGET_WAITKIND_EXITED\n"); | |
3812 | else | |
3813 | fprintf_unfiltered (gdb_stdlog, | |
3814 | "infrun: TARGET_WAITKIND_SIGNALLED\n"); | |
3815 | } | |
3816 | ||
fb66883a | 3817 | inferior_ptid = ecs->ptid; |
6c95b8df PA |
3818 | set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid))); |
3819 | set_current_program_space (current_inferior ()->pspace); | |
3820 | handle_vfork_child_exec_or_exit (0); | |
1777feb0 | 3821 | target_terminal_ours (); /* Must do this before mourn anyway. */ |
488f131b | 3822 | |
0c557179 SDJ |
3823 | /* Clearing any previous state of convenience variables. */ |
3824 | clear_exit_convenience_vars (); | |
3825 | ||
940c3c06 PA |
3826 | if (ecs->ws.kind == TARGET_WAITKIND_EXITED) |
3827 | { | |
3828 | /* Record the exit code in the convenience variable $_exitcode, so | |
3829 | that the user can inspect this again later. */ | |
3830 | set_internalvar_integer (lookup_internalvar ("_exitcode"), | |
3831 | (LONGEST) ecs->ws.value.integer); | |
3832 | ||
3833 | /* Also record this in the inferior itself. */ | |
3834 | current_inferior ()->has_exit_code = 1; | |
3835 | current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer; | |
8cf64490 | 3836 | |
98eb56a4 PA |
3837 | /* Support the --return-child-result option. */ |
3838 | return_child_result_value = ecs->ws.value.integer; | |
3839 | ||
fd664c91 | 3840 | observer_notify_exited (ecs->ws.value.integer); |
940c3c06 PA |
3841 | } |
3842 | else | |
0c557179 SDJ |
3843 | { |
3844 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
3845 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3846 | ||
3847 | if (gdbarch_gdb_signal_to_target_p (gdbarch)) | |
3848 | { | |
3849 | /* Set the value of the internal variable $_exitsignal, | |
3850 | which holds the signal uncaught by the inferior. */ | |
3851 | set_internalvar_integer (lookup_internalvar ("_exitsignal"), | |
3852 | gdbarch_gdb_signal_to_target (gdbarch, | |
3853 | ecs->ws.value.sig)); | |
3854 | } | |
3855 | else | |
3856 | { | |
3857 | /* We don't have access to the target's method used for | |
3858 | converting between signal numbers (GDB's internal | |
3859 | representation <-> target's representation). | |
3860 | Therefore, we cannot do a good job at displaying this | |
3861 | information to the user. It's better to just warn | |
3862 | her about it (if infrun debugging is enabled), and | |
3863 | give up. */ | |
3864 | if (debug_infrun) | |
3865 | fprintf_filtered (gdb_stdlog, _("\ | |
3866 | Cannot fill $_exitsignal with the correct signal number.\n")); | |
3867 | } | |
3868 | ||
fd664c91 | 3869 | observer_notify_signal_exited (ecs->ws.value.sig); |
0c557179 | 3870 | } |
8cf64490 | 3871 | |
488f131b JB |
3872 | gdb_flush (gdb_stdout); |
3873 | target_mourn_inferior (); | |
488f131b | 3874 | stop_print_frame = 0; |
22bcd14b | 3875 | stop_waiting (ecs); |
488f131b | 3876 | return; |
c5aa993b | 3877 | |
488f131b | 3878 | /* The following are the only cases in which we keep going; |
1777feb0 | 3879 | the above cases end in a continue or goto. */ |
488f131b | 3880 | case TARGET_WAITKIND_FORKED: |
deb3b17b | 3881 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 3882 | if (debug_infrun) |
fed708ed PA |
3883 | { |
3884 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
3885 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); | |
3886 | else | |
3887 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n"); | |
3888 | } | |
c906108c | 3889 | |
e2d96639 YQ |
3890 | /* Check whether the inferior is displaced stepping. */ |
3891 | { | |
3892 | struct regcache *regcache = get_thread_regcache (ecs->ptid); | |
3893 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
3894 | struct displaced_step_inferior_state *displaced | |
3895 | = get_displaced_stepping_state (ptid_get_pid (ecs->ptid)); | |
3896 | ||
3897 | /* If checking displaced stepping is supported, and thread | |
3898 | ecs->ptid is displaced stepping. */ | |
3899 | if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid)) | |
3900 | { | |
3901 | struct inferior *parent_inf | |
3902 | = find_inferior_pid (ptid_get_pid (ecs->ptid)); | |
3903 | struct regcache *child_regcache; | |
3904 | CORE_ADDR parent_pc; | |
3905 | ||
3906 | /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED, | |
3907 | indicating that the displaced stepping of syscall instruction | |
3908 | has been done. Perform cleanup for parent process here. Note | |
3909 | that this operation also cleans up the child process for vfork, | |
3910 | because their pages are shared. */ | |
a493e3e2 | 3911 | displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP); |
e2d96639 YQ |
3912 | |
3913 | if (ecs->ws.kind == TARGET_WAITKIND_FORKED) | |
3914 | { | |
3915 | /* Restore scratch pad for child process. */ | |
3916 | displaced_step_restore (displaced, ecs->ws.value.related_pid); | |
3917 | } | |
3918 | ||
3919 | /* Since the vfork/fork syscall instruction was executed in the scratchpad, | |
3920 | the child's PC is also within the scratchpad. Set the child's PC | |
3921 | to the parent's PC value, which has already been fixed up. | |
3922 | FIXME: we use the parent's aspace here, although we're touching | |
3923 | the child, because the child hasn't been added to the inferior | |
3924 | list yet at this point. */ | |
3925 | ||
3926 | child_regcache | |
3927 | = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid, | |
3928 | gdbarch, | |
3929 | parent_inf->aspace); | |
3930 | /* Read PC value of parent process. */ | |
3931 | parent_pc = regcache_read_pc (regcache); | |
3932 | ||
3933 | if (debug_displaced) | |
3934 | fprintf_unfiltered (gdb_stdlog, | |
3935 | "displaced: write child pc from %s to %s\n", | |
3936 | paddress (gdbarch, | |
3937 | regcache_read_pc (child_regcache)), | |
3938 | paddress (gdbarch, parent_pc)); | |
3939 | ||
3940 | regcache_write_pc (child_regcache, parent_pc); | |
3941 | } | |
3942 | } | |
3943 | ||
5a2901d9 | 3944 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 3945 | context_switch (ecs->ptid); |
5a2901d9 | 3946 | |
b242c3c2 PA |
3947 | /* Immediately detach breakpoints from the child before there's |
3948 | any chance of letting the user delete breakpoints from the | |
3949 | breakpoint lists. If we don't do this early, it's easy to | |
3950 | leave left over traps in the child, vis: "break foo; catch | |
3951 | fork; c; <fork>; del; c; <child calls foo>". We only follow | |
3952 | the fork on the last `continue', and by that time the | |
3953 | breakpoint at "foo" is long gone from the breakpoint table. | |
3954 | If we vforked, then we don't need to unpatch here, since both | |
3955 | parent and child are sharing the same memory pages; we'll | |
3956 | need to unpatch at follow/detach time instead to be certain | |
3957 | that new breakpoints added between catchpoint hit time and | |
3958 | vfork follow are detached. */ | |
3959 | if (ecs->ws.kind != TARGET_WAITKIND_VFORKED) | |
3960 | { | |
b242c3c2 PA |
3961 | /* This won't actually modify the breakpoint list, but will |
3962 | physically remove the breakpoints from the child. */ | |
d80ee84f | 3963 | detach_breakpoints (ecs->ws.value.related_pid); |
b242c3c2 PA |
3964 | } |
3965 | ||
34b7e8a6 | 3966 | delete_just_stopped_threads_single_step_breakpoints (); |
d03285ec | 3967 | |
e58b0e63 PA |
3968 | /* In case the event is caught by a catchpoint, remember that |
3969 | the event is to be followed at the next resume of the thread, | |
3970 | and not immediately. */ | |
3971 | ecs->event_thread->pending_follow = ecs->ws; | |
3972 | ||
fb14de7b | 3973 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
675bf4cb | 3974 | |
16c381f0 | 3975 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 3976 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 3977 | stop_pc, ecs->ptid, &ecs->ws); |
675bf4cb | 3978 | |
ce12b012 PA |
3979 | /* If no catchpoint triggered for this, then keep going. Note |
3980 | that we're interested in knowing the bpstat actually causes a | |
3981 | stop, not just if it may explain the signal. Software | |
3982 | watchpoints, for example, always appear in the bpstat. */ | |
3983 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) | |
04e68871 | 3984 | { |
6c95b8df PA |
3985 | ptid_t parent; |
3986 | ptid_t child; | |
e58b0e63 | 3987 | int should_resume; |
3e43a32a MS |
3988 | int follow_child |
3989 | = (follow_fork_mode_string == follow_fork_mode_child); | |
e58b0e63 | 3990 | |
a493e3e2 | 3991 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
e58b0e63 PA |
3992 | |
3993 | should_resume = follow_fork (); | |
3994 | ||
6c95b8df PA |
3995 | parent = ecs->ptid; |
3996 | child = ecs->ws.value.related_pid; | |
3997 | ||
3998 | /* In non-stop mode, also resume the other branch. */ | |
3999 | if (non_stop && !detach_fork) | |
4000 | { | |
4001 | if (follow_child) | |
4002 | switch_to_thread (parent); | |
4003 | else | |
4004 | switch_to_thread (child); | |
4005 | ||
4006 | ecs->event_thread = inferior_thread (); | |
4007 | ecs->ptid = inferior_ptid; | |
4008 | keep_going (ecs); | |
4009 | } | |
4010 | ||
4011 | if (follow_child) | |
4012 | switch_to_thread (child); | |
4013 | else | |
4014 | switch_to_thread (parent); | |
4015 | ||
e58b0e63 PA |
4016 | ecs->event_thread = inferior_thread (); |
4017 | ecs->ptid = inferior_ptid; | |
4018 | ||
4019 | if (should_resume) | |
4020 | keep_going (ecs); | |
4021 | else | |
22bcd14b | 4022 | stop_waiting (ecs); |
04e68871 DJ |
4023 | return; |
4024 | } | |
94c57d6a PA |
4025 | process_event_stop_test (ecs); |
4026 | return; | |
488f131b | 4027 | |
6c95b8df PA |
4028 | case TARGET_WAITKIND_VFORK_DONE: |
4029 | /* Done with the shared memory region. Re-insert breakpoints in | |
4030 | the parent, and keep going. */ | |
4031 | ||
4032 | if (debug_infrun) | |
3e43a32a MS |
4033 | fprintf_unfiltered (gdb_stdlog, |
4034 | "infrun: TARGET_WAITKIND_VFORK_DONE\n"); | |
6c95b8df PA |
4035 | |
4036 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4037 | context_switch (ecs->ptid); | |
4038 | ||
4039 | current_inferior ()->waiting_for_vfork_done = 0; | |
56710373 | 4040 | current_inferior ()->pspace->breakpoints_not_allowed = 0; |
6c95b8df PA |
4041 | /* This also takes care of reinserting breakpoints in the |
4042 | previously locked inferior. */ | |
4043 | keep_going (ecs); | |
4044 | return; | |
4045 | ||
488f131b | 4046 | case TARGET_WAITKIND_EXECD: |
527159b7 | 4047 | if (debug_infrun) |
fc5261f2 | 4048 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b | 4049 | |
5a2901d9 | 4050 | if (!ptid_equal (ecs->ptid, inferior_ptid)) |
c3a01a22 | 4051 | context_switch (ecs->ptid); |
5a2901d9 | 4052 | |
fb14de7b | 4053 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
795e548f | 4054 | |
6c95b8df PA |
4055 | /* Do whatever is necessary to the parent branch of the vfork. */ |
4056 | handle_vfork_child_exec_or_exit (1); | |
4057 | ||
795e548f PA |
4058 | /* This causes the eventpoints and symbol table to be reset. |
4059 | Must do this now, before trying to determine whether to | |
4060 | stop. */ | |
71b43ef8 | 4061 | follow_exec (inferior_ptid, ecs->ws.value.execd_pathname); |
795e548f | 4062 | |
16c381f0 | 4063 | ecs->event_thread->control.stop_bpstat |
6c95b8df | 4064 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), |
09ac7c10 | 4065 | stop_pc, ecs->ptid, &ecs->ws); |
795e548f | 4066 | |
71b43ef8 PA |
4067 | /* Note that this may be referenced from inside |
4068 | bpstat_stop_status above, through inferior_has_execd. */ | |
4069 | xfree (ecs->ws.value.execd_pathname); | |
4070 | ecs->ws.value.execd_pathname = NULL; | |
4071 | ||
04e68871 | 4072 | /* If no catchpoint triggered for this, then keep going. */ |
ce12b012 | 4073 | if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat)) |
04e68871 | 4074 | { |
a493e3e2 | 4075 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
04e68871 DJ |
4076 | keep_going (ecs); |
4077 | return; | |
4078 | } | |
94c57d6a PA |
4079 | process_event_stop_test (ecs); |
4080 | return; | |
488f131b | 4081 | |
b4dc5ffa MK |
4082 | /* Be careful not to try to gather much state about a thread |
4083 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 4084 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 4085 | if (debug_infrun) |
3e43a32a MS |
4086 | fprintf_unfiltered (gdb_stdlog, |
4087 | "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); | |
1777feb0 | 4088 | /* Getting the current syscall number. */ |
94c57d6a PA |
4089 | if (handle_syscall_event (ecs) == 0) |
4090 | process_event_stop_test (ecs); | |
4091 | return; | |
c906108c | 4092 | |
488f131b JB |
4093 | /* Before examining the threads further, step this thread to |
4094 | get it entirely out of the syscall. (We get notice of the | |
4095 | event when the thread is just on the verge of exiting a | |
4096 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 4097 | into user code.) */ |
488f131b | 4098 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 4099 | if (debug_infrun) |
3e43a32a MS |
4100 | fprintf_unfiltered (gdb_stdlog, |
4101 | "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); | |
94c57d6a PA |
4102 | if (handle_syscall_event (ecs) == 0) |
4103 | process_event_stop_test (ecs); | |
4104 | return; | |
c906108c | 4105 | |
488f131b | 4106 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 4107 | if (debug_infrun) |
8a9de0e4 | 4108 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
16c381f0 | 4109 | ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig; |
4f5d7f63 PA |
4110 | handle_signal_stop (ecs); |
4111 | return; | |
c906108c | 4112 | |
b2175913 | 4113 | case TARGET_WAITKIND_NO_HISTORY: |
4b4e080e PA |
4114 | if (debug_infrun) |
4115 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n"); | |
b2175913 | 4116 | /* Reverse execution: target ran out of history info. */ |
eab402df | 4117 | |
34b7e8a6 | 4118 | delete_just_stopped_threads_single_step_breakpoints (); |
fb14de7b | 4119 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
fd664c91 | 4120 | observer_notify_no_history (); |
22bcd14b | 4121 | stop_waiting (ecs); |
b2175913 | 4122 | return; |
488f131b | 4123 | } |
4f5d7f63 PA |
4124 | } |
4125 | ||
4126 | /* Come here when the program has stopped with a signal. */ | |
4127 | ||
4128 | static void | |
4129 | handle_signal_stop (struct execution_control_state *ecs) | |
4130 | { | |
4131 | struct frame_info *frame; | |
4132 | struct gdbarch *gdbarch; | |
4133 | int stopped_by_watchpoint; | |
4134 | enum stop_kind stop_soon; | |
4135 | int random_signal; | |
c906108c | 4136 | |
f0407826 DE |
4137 | gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED); |
4138 | ||
4139 | /* Do we need to clean up the state of a thread that has | |
4140 | completed a displaced single-step? (Doing so usually affects | |
4141 | the PC, so do it here, before we set stop_pc.) */ | |
4142 | displaced_step_fixup (ecs->ptid, | |
4143 | ecs->event_thread->suspend.stop_signal); | |
4144 | ||
4145 | /* If we either finished a single-step or hit a breakpoint, but | |
4146 | the user wanted this thread to be stopped, pretend we got a | |
4147 | SIG0 (generic unsignaled stop). */ | |
4148 | if (ecs->event_thread->stop_requested | |
4149 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) | |
4150 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
237fc4c9 | 4151 | |
515630c5 | 4152 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); |
488f131b | 4153 | |
527159b7 | 4154 | if (debug_infrun) |
237fc4c9 | 4155 | { |
5af949e3 UW |
4156 | struct regcache *regcache = get_thread_regcache (ecs->ptid); |
4157 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7f82dfc7 JK |
4158 | struct cleanup *old_chain = save_inferior_ptid (); |
4159 | ||
4160 | inferior_ptid = ecs->ptid; | |
5af949e3 UW |
4161 | |
4162 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n", | |
4163 | paddress (gdbarch, stop_pc)); | |
d92524f1 | 4164 | if (target_stopped_by_watchpoint ()) |
237fc4c9 PA |
4165 | { |
4166 | CORE_ADDR addr; | |
abbb1732 | 4167 | |
237fc4c9 PA |
4168 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n"); |
4169 | ||
4170 | if (target_stopped_data_address (¤t_target, &addr)) | |
4171 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
4172 | "infrun: stopped data address = %s\n", |
4173 | paddress (gdbarch, addr)); | |
237fc4c9 PA |
4174 | else |
4175 | fprintf_unfiltered (gdb_stdlog, | |
4176 | "infrun: (no data address available)\n"); | |
4177 | } | |
7f82dfc7 JK |
4178 | |
4179 | do_cleanups (old_chain); | |
237fc4c9 | 4180 | } |
527159b7 | 4181 | |
36fa8042 PA |
4182 | /* This is originated from start_remote(), start_inferior() and |
4183 | shared libraries hook functions. */ | |
4184 | stop_soon = get_inferior_stop_soon (ecs->ptid); | |
4185 | if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE) | |
4186 | { | |
4187 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4188 | context_switch (ecs->ptid); | |
4189 | if (debug_infrun) | |
4190 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); | |
4191 | stop_print_frame = 1; | |
22bcd14b | 4192 | stop_waiting (ecs); |
36fa8042 PA |
4193 | return; |
4194 | } | |
4195 | ||
4196 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
4197 | && stop_after_trap) | |
4198 | { | |
4199 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
4200 | context_switch (ecs->ptid); | |
4201 | if (debug_infrun) | |
4202 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); | |
4203 | stop_print_frame = 0; | |
22bcd14b | 4204 | stop_waiting (ecs); |
36fa8042 PA |
4205 | return; |
4206 | } | |
4207 | ||
4208 | /* This originates from attach_command(). We need to overwrite | |
4209 | the stop_signal here, because some kernels don't ignore a | |
4210 | SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call. | |
4211 | See more comments in inferior.h. On the other hand, if we | |
4212 | get a non-SIGSTOP, report it to the user - assume the backend | |
4213 | will handle the SIGSTOP if it should show up later. | |
4214 | ||
4215 | Also consider that the attach is complete when we see a | |
4216 | SIGTRAP. Some systems (e.g. Windows), and stubs supporting | |
4217 | target extended-remote report it instead of a SIGSTOP | |
4218 | (e.g. gdbserver). We already rely on SIGTRAP being our | |
4219 | signal, so this is no exception. | |
4220 | ||
4221 | Also consider that the attach is complete when we see a | |
4222 | GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell | |
4223 | the target to stop all threads of the inferior, in case the | |
4224 | low level attach operation doesn't stop them implicitly. If | |
4225 | they weren't stopped implicitly, then the stub will report a | |
4226 | GDB_SIGNAL_0, meaning: stopped for no particular reason | |
4227 | other than GDB's request. */ | |
4228 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP | |
4229 | && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP | |
4230 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
4231 | || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0)) | |
4232 | { | |
4233 | stop_print_frame = 1; | |
22bcd14b | 4234 | stop_waiting (ecs); |
36fa8042 PA |
4235 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
4236 | return; | |
4237 | } | |
4238 | ||
488f131b | 4239 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
4240 | so, then switch to that thread. */ |
4241 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 4242 | { |
527159b7 | 4243 | if (debug_infrun) |
8a9de0e4 | 4244 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 4245 | |
0d1e5fa7 | 4246 | context_switch (ecs->ptid); |
c5aa993b | 4247 | |
9a4105ab AC |
4248 | if (deprecated_context_hook) |
4249 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
488f131b | 4250 | } |
c906108c | 4251 | |
568d6575 UW |
4252 | /* At this point, get hold of the now-current thread's frame. */ |
4253 | frame = get_current_frame (); | |
4254 | gdbarch = get_frame_arch (frame); | |
4255 | ||
2adfaa28 | 4256 | /* Pull the single step breakpoints out of the target. */ |
af48d08f | 4257 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP) |
488f131b | 4258 | { |
af48d08f PA |
4259 | struct regcache *regcache; |
4260 | struct address_space *aspace; | |
4261 | CORE_ADDR pc; | |
2adfaa28 | 4262 | |
af48d08f PA |
4263 | regcache = get_thread_regcache (ecs->ptid); |
4264 | aspace = get_regcache_aspace (regcache); | |
4265 | pc = regcache_read_pc (regcache); | |
34b7e8a6 | 4266 | |
af48d08f PA |
4267 | /* However, before doing so, if this single-step breakpoint was |
4268 | actually for another thread, set this thread up for moving | |
4269 | past it. */ | |
4270 | if (!thread_has_single_step_breakpoint_here (ecs->event_thread, | |
4271 | aspace, pc)) | |
4272 | { | |
4273 | if (single_step_breakpoint_inserted_here_p (aspace, pc)) | |
2adfaa28 PA |
4274 | { |
4275 | if (debug_infrun) | |
4276 | { | |
4277 | fprintf_unfiltered (gdb_stdlog, | |
af48d08f | 4278 | "infrun: [%s] hit another thread's " |
34b7e8a6 PA |
4279 | "single-step breakpoint\n", |
4280 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 | 4281 | } |
af48d08f PA |
4282 | ecs->hit_singlestep_breakpoint = 1; |
4283 | } | |
4284 | } | |
4285 | else | |
4286 | { | |
4287 | if (debug_infrun) | |
4288 | { | |
4289 | fprintf_unfiltered (gdb_stdlog, | |
4290 | "infrun: [%s] hit its " | |
4291 | "single-step breakpoint\n", | |
4292 | target_pid_to_str (ecs->ptid)); | |
2adfaa28 PA |
4293 | } |
4294 | } | |
488f131b | 4295 | } |
af48d08f | 4296 | delete_just_stopped_threads_single_step_breakpoints (); |
c906108c | 4297 | |
963f9c80 PA |
4298 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
4299 | && ecs->event_thread->control.trap_expected | |
4300 | && ecs->event_thread->stepping_over_watchpoint) | |
d983da9c DJ |
4301 | stopped_by_watchpoint = 0; |
4302 | else | |
4303 | stopped_by_watchpoint = watchpoints_triggered (&ecs->ws); | |
4304 | ||
4305 | /* If necessary, step over this watchpoint. We'll be back to display | |
4306 | it in a moment. */ | |
4307 | if (stopped_by_watchpoint | |
d92524f1 | 4308 | && (target_have_steppable_watchpoint |
568d6575 | 4309 | || gdbarch_have_nonsteppable_watchpoint (gdbarch))) |
488f131b | 4310 | { |
488f131b JB |
4311 | /* At this point, we are stopped at an instruction which has |
4312 | attempted to write to a piece of memory under control of | |
4313 | a watchpoint. The instruction hasn't actually executed | |
4314 | yet. If we were to evaluate the watchpoint expression | |
4315 | now, we would get the old value, and therefore no change | |
4316 | would seem to have occurred. | |
4317 | ||
4318 | In order to make watchpoints work `right', we really need | |
4319 | to complete the memory write, and then evaluate the | |
d983da9c DJ |
4320 | watchpoint expression. We do this by single-stepping the |
4321 | target. | |
4322 | ||
7f89fd65 | 4323 | It may not be necessary to disable the watchpoint to step over |
d983da9c DJ |
4324 | it. For example, the PA can (with some kernel cooperation) |
4325 | single step over a watchpoint without disabling the watchpoint. | |
4326 | ||
4327 | It is far more common to need to disable a watchpoint to step | |
4328 | the inferior over it. If we have non-steppable watchpoints, | |
4329 | we must disable the current watchpoint; it's simplest to | |
963f9c80 PA |
4330 | disable all watchpoints. |
4331 | ||
4332 | Any breakpoint at PC must also be stepped over -- if there's | |
4333 | one, it will have already triggered before the watchpoint | |
4334 | triggered, and we either already reported it to the user, or | |
4335 | it didn't cause a stop and we called keep_going. In either | |
4336 | case, if there was a breakpoint at PC, we must be trying to | |
4337 | step past it. */ | |
4338 | ecs->event_thread->stepping_over_watchpoint = 1; | |
4339 | keep_going (ecs); | |
488f131b JB |
4340 | return; |
4341 | } | |
4342 | ||
4e1c45ea | 4343 | ecs->event_thread->stepping_over_breakpoint = 0; |
963f9c80 | 4344 | ecs->event_thread->stepping_over_watchpoint = 0; |
16c381f0 JK |
4345 | bpstat_clear (&ecs->event_thread->control.stop_bpstat); |
4346 | ecs->event_thread->control.stop_step = 0; | |
488f131b | 4347 | stop_print_frame = 1; |
488f131b | 4348 | stopped_by_random_signal = 0; |
488f131b | 4349 | |
edb3359d DJ |
4350 | /* Hide inlined functions starting here, unless we just performed stepi or |
4351 | nexti. After stepi and nexti, always show the innermost frame (not any | |
4352 | inline function call sites). */ | |
16c381f0 | 4353 | if (ecs->event_thread->control.step_range_end != 1) |
0574c78f GB |
4354 | { |
4355 | struct address_space *aspace = | |
4356 | get_regcache_aspace (get_thread_regcache (ecs->ptid)); | |
4357 | ||
4358 | /* skip_inline_frames is expensive, so we avoid it if we can | |
4359 | determine that the address is one where functions cannot have | |
4360 | been inlined. This improves performance with inferiors that | |
4361 | load a lot of shared libraries, because the solib event | |
4362 | breakpoint is defined as the address of a function (i.e. not | |
4363 | inline). Note that we have to check the previous PC as well | |
4364 | as the current one to catch cases when we have just | |
4365 | single-stepped off a breakpoint prior to reinstating it. | |
4366 | Note that we're assuming that the code we single-step to is | |
4367 | not inline, but that's not definitive: there's nothing | |
4368 | preventing the event breakpoint function from containing | |
4369 | inlined code, and the single-step ending up there. If the | |
4370 | user had set a breakpoint on that inlined code, the missing | |
4371 | skip_inline_frames call would break things. Fortunately | |
4372 | that's an extremely unlikely scenario. */ | |
09ac7c10 | 4373 | if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws) |
a210c238 MR |
4374 | && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
4375 | && ecs->event_thread->control.trap_expected | |
4376 | && pc_at_non_inline_function (aspace, | |
4377 | ecs->event_thread->prev_pc, | |
09ac7c10 | 4378 | &ecs->ws))) |
1c5a993e MR |
4379 | { |
4380 | skip_inline_frames (ecs->ptid); | |
4381 | ||
4382 | /* Re-fetch current thread's frame in case that invalidated | |
4383 | the frame cache. */ | |
4384 | frame = get_current_frame (); | |
4385 | gdbarch = get_frame_arch (frame); | |
4386 | } | |
0574c78f | 4387 | } |
edb3359d | 4388 | |
a493e3e2 | 4389 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 4390 | && ecs->event_thread->control.trap_expected |
568d6575 | 4391 | && gdbarch_single_step_through_delay_p (gdbarch) |
4e1c45ea | 4392 | && currently_stepping (ecs->event_thread)) |
3352ef37 | 4393 | { |
b50d7442 | 4394 | /* We're trying to step off a breakpoint. Turns out that we're |
3352ef37 | 4395 | also on an instruction that needs to be stepped multiple |
1777feb0 | 4396 | times before it's been fully executing. E.g., architectures |
3352ef37 AC |
4397 | with a delay slot. It needs to be stepped twice, once for |
4398 | the instruction and once for the delay slot. */ | |
4399 | int step_through_delay | |
568d6575 | 4400 | = gdbarch_single_step_through_delay (gdbarch, frame); |
abbb1732 | 4401 | |
527159b7 | 4402 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 4403 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
16c381f0 JK |
4404 | if (ecs->event_thread->control.step_range_end == 0 |
4405 | && step_through_delay) | |
3352ef37 AC |
4406 | { |
4407 | /* The user issued a continue when stopped at a breakpoint. | |
4408 | Set up for another trap and get out of here. */ | |
4e1c45ea | 4409 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
4410 | keep_going (ecs); |
4411 | return; | |
4412 | } | |
4413 | else if (step_through_delay) | |
4414 | { | |
4415 | /* The user issued a step when stopped at a breakpoint. | |
4416 | Maybe we should stop, maybe we should not - the delay | |
4417 | slot *might* correspond to a line of source. In any | |
ca67fcb8 VP |
4418 | case, don't decide that here, just set |
4419 | ecs->stepping_over_breakpoint, making sure we | |
4420 | single-step again before breakpoints are re-inserted. */ | |
4e1c45ea | 4421 | ecs->event_thread->stepping_over_breakpoint = 1; |
3352ef37 AC |
4422 | } |
4423 | } | |
4424 | ||
ab04a2af TT |
4425 | /* See if there is a breakpoint/watchpoint/catchpoint/etc. that |
4426 | handles this event. */ | |
4427 | ecs->event_thread->control.stop_bpstat | |
4428 | = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()), | |
4429 | stop_pc, ecs->ptid, &ecs->ws); | |
db82e815 | 4430 | |
ab04a2af TT |
4431 | /* Following in case break condition called a |
4432 | function. */ | |
4433 | stop_print_frame = 1; | |
73dd234f | 4434 | |
ab04a2af TT |
4435 | /* This is where we handle "moribund" watchpoints. Unlike |
4436 | software breakpoints traps, hardware watchpoint traps are | |
4437 | always distinguishable from random traps. If no high-level | |
4438 | watchpoint is associated with the reported stop data address | |
4439 | anymore, then the bpstat does not explain the signal --- | |
4440 | simply make sure to ignore it if `stopped_by_watchpoint' is | |
4441 | set. */ | |
4442 | ||
4443 | if (debug_infrun | |
4444 | && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
47591c29 | 4445 | && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, |
427cd150 | 4446 | GDB_SIGNAL_TRAP) |
ab04a2af TT |
4447 | && stopped_by_watchpoint) |
4448 | fprintf_unfiltered (gdb_stdlog, | |
4449 | "infrun: no user watchpoint explains " | |
4450 | "watchpoint SIGTRAP, ignoring\n"); | |
73dd234f | 4451 | |
bac7d97b | 4452 | /* NOTE: cagney/2003-03-29: These checks for a random signal |
ab04a2af TT |
4453 | at one stage in the past included checks for an inferior |
4454 | function call's call dummy's return breakpoint. The original | |
4455 | comment, that went with the test, read: | |
03cebad2 | 4456 | |
ab04a2af TT |
4457 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
4458 | another signal besides SIGTRAP, so check here as well as | |
4459 | above.'' | |
73dd234f | 4460 | |
ab04a2af TT |
4461 | If someone ever tries to get call dummys on a |
4462 | non-executable stack to work (where the target would stop | |
4463 | with something like a SIGSEGV), then those tests might need | |
4464 | to be re-instated. Given, however, that the tests were only | |
4465 | enabled when momentary breakpoints were not being used, I | |
4466 | suspect that it won't be the case. | |
488f131b | 4467 | |
ab04a2af TT |
4468 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
4469 | be necessary for call dummies on a non-executable stack on | |
4470 | SPARC. */ | |
488f131b | 4471 | |
bac7d97b | 4472 | /* See if the breakpoints module can explain the signal. */ |
47591c29 PA |
4473 | random_signal |
4474 | = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat, | |
4475 | ecs->event_thread->suspend.stop_signal); | |
bac7d97b PA |
4476 | |
4477 | /* If not, perhaps stepping/nexting can. */ | |
4478 | if (random_signal) | |
4479 | random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP | |
4480 | && currently_stepping (ecs->event_thread)); | |
ab04a2af | 4481 | |
2adfaa28 PA |
4482 | /* Perhaps the thread hit a single-step breakpoint of _another_ |
4483 | thread. Single-step breakpoints are transparent to the | |
4484 | breakpoints module. */ | |
4485 | if (random_signal) | |
4486 | random_signal = !ecs->hit_singlestep_breakpoint; | |
4487 | ||
bac7d97b PA |
4488 | /* No? Perhaps we got a moribund watchpoint. */ |
4489 | if (random_signal) | |
4490 | random_signal = !stopped_by_watchpoint; | |
ab04a2af | 4491 | |
488f131b JB |
4492 | /* For the program's own signals, act according to |
4493 | the signal handling tables. */ | |
4494 | ||
ce12b012 | 4495 | if (random_signal) |
488f131b JB |
4496 | { |
4497 | /* Signal not for debugging purposes. */ | |
24291992 | 4498 | struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid)); |
c9737c08 | 4499 | enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal; |
488f131b | 4500 | |
527159b7 | 4501 | if (debug_infrun) |
c9737c08 PA |
4502 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n", |
4503 | gdb_signal_to_symbol_string (stop_signal)); | |
527159b7 | 4504 | |
488f131b JB |
4505 | stopped_by_random_signal = 1; |
4506 | ||
252fbfc8 PA |
4507 | /* Always stop on signals if we're either just gaining control |
4508 | of the program, or the user explicitly requested this thread | |
4509 | to remain stopped. */ | |
d6b48e9c | 4510 | if (stop_soon != NO_STOP_QUIETLY |
252fbfc8 | 4511 | || ecs->event_thread->stop_requested |
24291992 | 4512 | || (!inf->detaching |
16c381f0 | 4513 | && signal_stop_state (ecs->event_thread->suspend.stop_signal))) |
488f131b | 4514 | { |
22bcd14b | 4515 | stop_waiting (ecs); |
488f131b JB |
4516 | return; |
4517 | } | |
b57bacec PA |
4518 | |
4519 | /* Notify observers the signal has "handle print" set. Note we | |
4520 | returned early above if stopping; normal_stop handles the | |
4521 | printing in that case. */ | |
4522 | if (signal_print[ecs->event_thread->suspend.stop_signal]) | |
4523 | { | |
4524 | /* The signal table tells us to print about this signal. */ | |
4525 | target_terminal_ours_for_output (); | |
4526 | observer_notify_signal_received (ecs->event_thread->suspend.stop_signal); | |
4527 | target_terminal_inferior (); | |
4528 | } | |
488f131b JB |
4529 | |
4530 | /* Clear the signal if it should not be passed. */ | |
16c381f0 | 4531 | if (signal_program[ecs->event_thread->suspend.stop_signal] == 0) |
a493e3e2 | 4532 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
488f131b | 4533 | |
fb14de7b | 4534 | if (ecs->event_thread->prev_pc == stop_pc |
16c381f0 | 4535 | && ecs->event_thread->control.trap_expected |
8358c15c | 4536 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
68f53502 AC |
4537 | { |
4538 | /* We were just starting a new sequence, attempting to | |
4539 | single-step off of a breakpoint and expecting a SIGTRAP. | |
237fc4c9 | 4540 | Instead this signal arrives. This signal will take us out |
68f53502 AC |
4541 | of the stepping range so GDB needs to remember to, when |
4542 | the signal handler returns, resume stepping off that | |
4543 | breakpoint. */ | |
4544 | /* To simplify things, "continue" is forced to use the same | |
4545 | code paths as single-step - set a breakpoint at the | |
4546 | signal return address and then, once hit, step off that | |
4547 | breakpoint. */ | |
237fc4c9 PA |
4548 | if (debug_infrun) |
4549 | fprintf_unfiltered (gdb_stdlog, | |
4550 | "infrun: signal arrived while stepping over " | |
4551 | "breakpoint\n"); | |
d3169d93 | 4552 | |
2c03e5be | 4553 | insert_hp_step_resume_breakpoint_at_frame (frame); |
4e1c45ea | 4554 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
4555 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
4556 | ecs->event_thread->control.trap_expected = 0; | |
d137e6dc PA |
4557 | |
4558 | /* If we were nexting/stepping some other thread, switch to | |
4559 | it, so that we don't continue it, losing control. */ | |
4560 | if (!switch_back_to_stepped_thread (ecs)) | |
4561 | keep_going (ecs); | |
9d799f85 | 4562 | return; |
68f53502 | 4563 | } |
9d799f85 | 4564 | |
e5f8a7cc PA |
4565 | if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0 |
4566 | && (pc_in_thread_step_range (stop_pc, ecs->event_thread) | |
4567 | || ecs->event_thread->control.step_range_end == 1) | |
edb3359d | 4568 | && frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 4569 | ecs->event_thread->control.step_stack_frame_id) |
8358c15c | 4570 | && ecs->event_thread->control.step_resume_breakpoint == NULL) |
d303a6c7 AC |
4571 | { |
4572 | /* The inferior is about to take a signal that will take it | |
4573 | out of the single step range. Set a breakpoint at the | |
4574 | current PC (which is presumably where the signal handler | |
4575 | will eventually return) and then allow the inferior to | |
4576 | run free. | |
4577 | ||
4578 | Note that this is only needed for a signal delivered | |
4579 | while in the single-step range. Nested signals aren't a | |
4580 | problem as they eventually all return. */ | |
237fc4c9 PA |
4581 | if (debug_infrun) |
4582 | fprintf_unfiltered (gdb_stdlog, | |
4583 | "infrun: signal may take us out of " | |
4584 | "single-step range\n"); | |
4585 | ||
2c03e5be | 4586 | insert_hp_step_resume_breakpoint_at_frame (frame); |
e5f8a7cc | 4587 | ecs->event_thread->step_after_step_resume_breakpoint = 1; |
2455069d UW |
4588 | /* Reset trap_expected to ensure breakpoints are re-inserted. */ |
4589 | ecs->event_thread->control.trap_expected = 0; | |
9d799f85 AC |
4590 | keep_going (ecs); |
4591 | return; | |
d303a6c7 | 4592 | } |
9d799f85 AC |
4593 | |
4594 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
4595 | when either there's a nested signal, or when there's a | |
4596 | pending signal enabled just as the signal handler returns | |
4597 | (leaving the inferior at the step-resume-breakpoint without | |
4598 | actually executing it). Either way continue until the | |
4599 | breakpoint is really hit. */ | |
c447ac0b PA |
4600 | |
4601 | if (!switch_back_to_stepped_thread (ecs)) | |
4602 | { | |
4603 | if (debug_infrun) | |
4604 | fprintf_unfiltered (gdb_stdlog, | |
4605 | "infrun: random signal, keep going\n"); | |
4606 | ||
4607 | keep_going (ecs); | |
4608 | } | |
4609 | return; | |
488f131b | 4610 | } |
94c57d6a PA |
4611 | |
4612 | process_event_stop_test (ecs); | |
4613 | } | |
4614 | ||
4615 | /* Come here when we've got some debug event / signal we can explain | |
4616 | (IOW, not a random signal), and test whether it should cause a | |
4617 | stop, or whether we should resume the inferior (transparently). | |
4618 | E.g., could be a breakpoint whose condition evaluates false; we | |
4619 | could be still stepping within the line; etc. */ | |
4620 | ||
4621 | static void | |
4622 | process_event_stop_test (struct execution_control_state *ecs) | |
4623 | { | |
4624 | struct symtab_and_line stop_pc_sal; | |
4625 | struct frame_info *frame; | |
4626 | struct gdbarch *gdbarch; | |
cdaa5b73 PA |
4627 | CORE_ADDR jmp_buf_pc; |
4628 | struct bpstat_what what; | |
94c57d6a | 4629 | |
cdaa5b73 | 4630 | /* Handle cases caused by hitting a breakpoint. */ |
611c83ae | 4631 | |
cdaa5b73 PA |
4632 | frame = get_current_frame (); |
4633 | gdbarch = get_frame_arch (frame); | |
fcf3daef | 4634 | |
cdaa5b73 | 4635 | what = bpstat_what (ecs->event_thread->control.stop_bpstat); |
611c83ae | 4636 | |
cdaa5b73 PA |
4637 | if (what.call_dummy) |
4638 | { | |
4639 | stop_stack_dummy = what.call_dummy; | |
4640 | } | |
186c406b | 4641 | |
cdaa5b73 PA |
4642 | /* If we hit an internal event that triggers symbol changes, the |
4643 | current frame will be invalidated within bpstat_what (e.g., if we | |
4644 | hit an internal solib event). Re-fetch it. */ | |
4645 | frame = get_current_frame (); | |
4646 | gdbarch = get_frame_arch (frame); | |
e2e4d78b | 4647 | |
cdaa5b73 PA |
4648 | switch (what.main_action) |
4649 | { | |
4650 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: | |
4651 | /* If we hit the breakpoint at longjmp while stepping, we | |
4652 | install a momentary breakpoint at the target of the | |
4653 | jmp_buf. */ | |
186c406b | 4654 | |
cdaa5b73 PA |
4655 | if (debug_infrun) |
4656 | fprintf_unfiltered (gdb_stdlog, | |
4657 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); | |
186c406b | 4658 | |
cdaa5b73 | 4659 | ecs->event_thread->stepping_over_breakpoint = 1; |
611c83ae | 4660 | |
cdaa5b73 PA |
4661 | if (what.is_longjmp) |
4662 | { | |
4663 | struct value *arg_value; | |
4664 | ||
4665 | /* If we set the longjmp breakpoint via a SystemTap probe, | |
4666 | then use it to extract the arguments. The destination PC | |
4667 | is the third argument to the probe. */ | |
4668 | arg_value = probe_safe_evaluate_at_pc (frame, 2); | |
4669 | if (arg_value) | |
8fa0c4f8 AA |
4670 | { |
4671 | jmp_buf_pc = value_as_address (arg_value); | |
4672 | jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc); | |
4673 | } | |
cdaa5b73 PA |
4674 | else if (!gdbarch_get_longjmp_target_p (gdbarch) |
4675 | || !gdbarch_get_longjmp_target (gdbarch, | |
4676 | frame, &jmp_buf_pc)) | |
e2e4d78b | 4677 | { |
cdaa5b73 PA |
4678 | if (debug_infrun) |
4679 | fprintf_unfiltered (gdb_stdlog, | |
4680 | "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME " | |
4681 | "(!gdbarch_get_longjmp_target)\n"); | |
4682 | keep_going (ecs); | |
4683 | return; | |
e2e4d78b | 4684 | } |
e2e4d78b | 4685 | |
cdaa5b73 PA |
4686 | /* Insert a breakpoint at resume address. */ |
4687 | insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc); | |
4688 | } | |
4689 | else | |
4690 | check_exception_resume (ecs, frame); | |
4691 | keep_going (ecs); | |
4692 | return; | |
e81a37f7 | 4693 | |
cdaa5b73 PA |
4694 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
4695 | { | |
4696 | struct frame_info *init_frame; | |
e81a37f7 | 4697 | |
cdaa5b73 | 4698 | /* There are several cases to consider. |
c906108c | 4699 | |
cdaa5b73 PA |
4700 | 1. The initiating frame no longer exists. In this case we |
4701 | must stop, because the exception or longjmp has gone too | |
4702 | far. | |
2c03e5be | 4703 | |
cdaa5b73 PA |
4704 | 2. The initiating frame exists, and is the same as the |
4705 | current frame. We stop, because the exception or longjmp | |
4706 | has been caught. | |
2c03e5be | 4707 | |
cdaa5b73 PA |
4708 | 3. The initiating frame exists and is different from the |
4709 | current frame. This means the exception or longjmp has | |
4710 | been caught beneath the initiating frame, so keep going. | |
c906108c | 4711 | |
cdaa5b73 PA |
4712 | 4. longjmp breakpoint has been placed just to protect |
4713 | against stale dummy frames and user is not interested in | |
4714 | stopping around longjmps. */ | |
c5aa993b | 4715 | |
cdaa5b73 PA |
4716 | if (debug_infrun) |
4717 | fprintf_unfiltered (gdb_stdlog, | |
4718 | "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); | |
c5aa993b | 4719 | |
cdaa5b73 PA |
4720 | gdb_assert (ecs->event_thread->control.exception_resume_breakpoint |
4721 | != NULL); | |
4722 | delete_exception_resume_breakpoint (ecs->event_thread); | |
c5aa993b | 4723 | |
cdaa5b73 PA |
4724 | if (what.is_longjmp) |
4725 | { | |
b67a2c6f | 4726 | check_longjmp_breakpoint_for_call_dummy (ecs->event_thread); |
c5aa993b | 4727 | |
cdaa5b73 | 4728 | if (!frame_id_p (ecs->event_thread->initiating_frame)) |
e5ef252a | 4729 | { |
cdaa5b73 PA |
4730 | /* Case 4. */ |
4731 | keep_going (ecs); | |
4732 | return; | |
e5ef252a | 4733 | } |
cdaa5b73 | 4734 | } |
c5aa993b | 4735 | |
cdaa5b73 | 4736 | init_frame = frame_find_by_id (ecs->event_thread->initiating_frame); |
527159b7 | 4737 | |
cdaa5b73 PA |
4738 | if (init_frame) |
4739 | { | |
4740 | struct frame_id current_id | |
4741 | = get_frame_id (get_current_frame ()); | |
4742 | if (frame_id_eq (current_id, | |
4743 | ecs->event_thread->initiating_frame)) | |
4744 | { | |
4745 | /* Case 2. Fall through. */ | |
4746 | } | |
4747 | else | |
4748 | { | |
4749 | /* Case 3. */ | |
4750 | keep_going (ecs); | |
4751 | return; | |
4752 | } | |
68f53502 | 4753 | } |
488f131b | 4754 | |
cdaa5b73 PA |
4755 | /* For Cases 1 and 2, remove the step-resume breakpoint, if it |
4756 | exists. */ | |
4757 | delete_step_resume_breakpoint (ecs->event_thread); | |
e5ef252a | 4758 | |
bdc36728 | 4759 | end_stepping_range (ecs); |
cdaa5b73 PA |
4760 | } |
4761 | return; | |
e5ef252a | 4762 | |
cdaa5b73 PA |
4763 | case BPSTAT_WHAT_SINGLE: |
4764 | if (debug_infrun) | |
4765 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); | |
4766 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4767 | /* Still need to check other stuff, at least the case where we | |
4768 | are stepping and step out of the right range. */ | |
4769 | break; | |
e5ef252a | 4770 | |
cdaa5b73 PA |
4771 | case BPSTAT_WHAT_STEP_RESUME: |
4772 | if (debug_infrun) | |
4773 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); | |
e5ef252a | 4774 | |
cdaa5b73 PA |
4775 | delete_step_resume_breakpoint (ecs->event_thread); |
4776 | if (ecs->event_thread->control.proceed_to_finish | |
4777 | && execution_direction == EXEC_REVERSE) | |
4778 | { | |
4779 | struct thread_info *tp = ecs->event_thread; | |
4780 | ||
4781 | /* We are finishing a function in reverse, and just hit the | |
4782 | step-resume breakpoint at the start address of the | |
4783 | function, and we're almost there -- just need to back up | |
4784 | by one more single-step, which should take us back to the | |
4785 | function call. */ | |
4786 | tp->control.step_range_start = tp->control.step_range_end = 1; | |
4787 | keep_going (ecs); | |
e5ef252a | 4788 | return; |
cdaa5b73 PA |
4789 | } |
4790 | fill_in_stop_func (gdbarch, ecs); | |
4791 | if (stop_pc == ecs->stop_func_start | |
4792 | && execution_direction == EXEC_REVERSE) | |
4793 | { | |
4794 | /* We are stepping over a function call in reverse, and just | |
4795 | hit the step-resume breakpoint at the start address of | |
4796 | the function. Go back to single-stepping, which should | |
4797 | take us back to the function call. */ | |
4798 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4799 | keep_going (ecs); | |
4800 | return; | |
4801 | } | |
4802 | break; | |
e5ef252a | 4803 | |
cdaa5b73 PA |
4804 | case BPSTAT_WHAT_STOP_NOISY: |
4805 | if (debug_infrun) | |
4806 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); | |
4807 | stop_print_frame = 1; | |
e5ef252a | 4808 | |
99619bea PA |
4809 | /* Assume the thread stopped for a breapoint. We'll still check |
4810 | whether a/the breakpoint is there when the thread is next | |
4811 | resumed. */ | |
4812 | ecs->event_thread->stepping_over_breakpoint = 1; | |
e5ef252a | 4813 | |
22bcd14b | 4814 | stop_waiting (ecs); |
cdaa5b73 | 4815 | return; |
e5ef252a | 4816 | |
cdaa5b73 PA |
4817 | case BPSTAT_WHAT_STOP_SILENT: |
4818 | if (debug_infrun) | |
4819 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); | |
4820 | stop_print_frame = 0; | |
e5ef252a | 4821 | |
99619bea PA |
4822 | /* Assume the thread stopped for a breapoint. We'll still check |
4823 | whether a/the breakpoint is there when the thread is next | |
4824 | resumed. */ | |
4825 | ecs->event_thread->stepping_over_breakpoint = 1; | |
22bcd14b | 4826 | stop_waiting (ecs); |
cdaa5b73 PA |
4827 | return; |
4828 | ||
4829 | case BPSTAT_WHAT_HP_STEP_RESUME: | |
4830 | if (debug_infrun) | |
4831 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n"); | |
4832 | ||
4833 | delete_step_resume_breakpoint (ecs->event_thread); | |
4834 | if (ecs->event_thread->step_after_step_resume_breakpoint) | |
4835 | { | |
4836 | /* Back when the step-resume breakpoint was inserted, we | |
4837 | were trying to single-step off a breakpoint. Go back to | |
4838 | doing that. */ | |
4839 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
4840 | ecs->event_thread->stepping_over_breakpoint = 1; | |
4841 | keep_going (ecs); | |
4842 | return; | |
e5ef252a | 4843 | } |
cdaa5b73 PA |
4844 | break; |
4845 | ||
4846 | case BPSTAT_WHAT_KEEP_CHECKING: | |
4847 | break; | |
e5ef252a | 4848 | } |
c906108c | 4849 | |
af48d08f PA |
4850 | /* If we stepped a permanent breakpoint and we had a high priority |
4851 | step-resume breakpoint for the address we stepped, but we didn't | |
4852 | hit it, then we must have stepped into the signal handler. The | |
4853 | step-resume was only necessary to catch the case of _not_ | |
4854 | stepping into the handler, so delete it, and fall through to | |
4855 | checking whether the step finished. */ | |
4856 | if (ecs->event_thread->stepped_breakpoint) | |
4857 | { | |
4858 | struct breakpoint *sr_bp | |
4859 | = ecs->event_thread->control.step_resume_breakpoint; | |
4860 | ||
4861 | if (sr_bp->loc->permanent | |
4862 | && sr_bp->type == bp_hp_step_resume | |
4863 | && sr_bp->loc->address == ecs->event_thread->prev_pc) | |
4864 | { | |
4865 | if (debug_infrun) | |
4866 | fprintf_unfiltered (gdb_stdlog, | |
4867 | "infrun: stepped permanent breakpoint, stopped in " | |
4868 | "handler\n"); | |
4869 | delete_step_resume_breakpoint (ecs->event_thread); | |
4870 | ecs->event_thread->step_after_step_resume_breakpoint = 0; | |
4871 | } | |
4872 | } | |
4873 | ||
cdaa5b73 PA |
4874 | /* We come here if we hit a breakpoint but should not stop for it. |
4875 | Possibly we also were stepping and should stop for that. So fall | |
4876 | through and test for stepping. But, if not stepping, do not | |
4877 | stop. */ | |
c906108c | 4878 | |
a7212384 UW |
4879 | /* In all-stop mode, if we're currently stepping but have stopped in |
4880 | some other thread, we need to switch back to the stepped thread. */ | |
c447ac0b PA |
4881 | if (switch_back_to_stepped_thread (ecs)) |
4882 | return; | |
776f04fa | 4883 | |
8358c15c | 4884 | if (ecs->event_thread->control.step_resume_breakpoint) |
488f131b | 4885 | { |
527159b7 | 4886 | if (debug_infrun) |
d3169d93 DJ |
4887 | fprintf_unfiltered (gdb_stdlog, |
4888 | "infrun: step-resume breakpoint is inserted\n"); | |
527159b7 | 4889 | |
488f131b JB |
4890 | /* Having a step-resume breakpoint overrides anything |
4891 | else having to do with stepping commands until | |
4892 | that breakpoint is reached. */ | |
488f131b JB |
4893 | keep_going (ecs); |
4894 | return; | |
4895 | } | |
c5aa993b | 4896 | |
16c381f0 | 4897 | if (ecs->event_thread->control.step_range_end == 0) |
488f131b | 4898 | { |
527159b7 | 4899 | if (debug_infrun) |
8a9de0e4 | 4900 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 4901 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
4902 | keep_going (ecs); |
4903 | return; | |
4904 | } | |
c5aa993b | 4905 | |
4b7703ad JB |
4906 | /* Re-fetch current thread's frame in case the code above caused |
4907 | the frame cache to be re-initialized, making our FRAME variable | |
4908 | a dangling pointer. */ | |
4909 | frame = get_current_frame (); | |
628fe4e4 | 4910 | gdbarch = get_frame_arch (frame); |
7e324e48 | 4911 | fill_in_stop_func (gdbarch, ecs); |
4b7703ad | 4912 | |
488f131b | 4913 | /* If stepping through a line, keep going if still within it. |
c906108c | 4914 | |
488f131b JB |
4915 | Note that step_range_end is the address of the first instruction |
4916 | beyond the step range, and NOT the address of the last instruction | |
31410e84 MS |
4917 | within it! |
4918 | ||
4919 | Note also that during reverse execution, we may be stepping | |
4920 | through a function epilogue and therefore must detect when | |
4921 | the current-frame changes in the middle of a line. */ | |
4922 | ||
ce4c476a | 4923 | if (pc_in_thread_step_range (stop_pc, ecs->event_thread) |
31410e84 | 4924 | && (execution_direction != EXEC_REVERSE |
388a8562 | 4925 | || frame_id_eq (get_frame_id (frame), |
16c381f0 | 4926 | ecs->event_thread->control.step_frame_id))) |
488f131b | 4927 | { |
527159b7 | 4928 | if (debug_infrun) |
5af949e3 UW |
4929 | fprintf_unfiltered |
4930 | (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n", | |
16c381f0 JK |
4931 | paddress (gdbarch, ecs->event_thread->control.step_range_start), |
4932 | paddress (gdbarch, ecs->event_thread->control.step_range_end)); | |
b2175913 | 4933 | |
c1e36e3e PA |
4934 | /* Tentatively re-enable range stepping; `resume' disables it if |
4935 | necessary (e.g., if we're stepping over a breakpoint or we | |
4936 | have software watchpoints). */ | |
4937 | ecs->event_thread->control.may_range_step = 1; | |
4938 | ||
b2175913 MS |
4939 | /* When stepping backward, stop at beginning of line range |
4940 | (unless it's the function entry point, in which case | |
4941 | keep going back to the call point). */ | |
16c381f0 | 4942 | if (stop_pc == ecs->event_thread->control.step_range_start |
b2175913 MS |
4943 | && stop_pc != ecs->stop_func_start |
4944 | && execution_direction == EXEC_REVERSE) | |
bdc36728 | 4945 | end_stepping_range (ecs); |
b2175913 MS |
4946 | else |
4947 | keep_going (ecs); | |
4948 | ||
488f131b JB |
4949 | return; |
4950 | } | |
c5aa993b | 4951 | |
488f131b | 4952 | /* We stepped out of the stepping range. */ |
c906108c | 4953 | |
488f131b | 4954 | /* If we are stepping at the source level and entered the runtime |
388a8562 MS |
4955 | loader dynamic symbol resolution code... |
4956 | ||
4957 | EXEC_FORWARD: we keep on single stepping until we exit the run | |
4958 | time loader code and reach the callee's address. | |
4959 | ||
4960 | EXEC_REVERSE: we've already executed the callee (backward), and | |
4961 | the runtime loader code is handled just like any other | |
4962 | undebuggable function call. Now we need only keep stepping | |
4963 | backward through the trampoline code, and that's handled further | |
4964 | down, so there is nothing for us to do here. */ | |
4965 | ||
4966 | if (execution_direction != EXEC_REVERSE | |
16c381f0 | 4967 | && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
cfd8ab24 | 4968 | && in_solib_dynsym_resolve_code (stop_pc)) |
488f131b | 4969 | { |
4c8c40e6 | 4970 | CORE_ADDR pc_after_resolver = |
568d6575 | 4971 | gdbarch_skip_solib_resolver (gdbarch, stop_pc); |
c906108c | 4972 | |
527159b7 | 4973 | if (debug_infrun) |
3e43a32a MS |
4974 | fprintf_unfiltered (gdb_stdlog, |
4975 | "infrun: stepped into dynsym resolve code\n"); | |
527159b7 | 4976 | |
488f131b JB |
4977 | if (pc_after_resolver) |
4978 | { | |
4979 | /* Set up a step-resume breakpoint at the address | |
4980 | indicated by SKIP_SOLIB_RESOLVER. */ | |
4981 | struct symtab_and_line sr_sal; | |
abbb1732 | 4982 | |
fe39c653 | 4983 | init_sal (&sr_sal); |
488f131b | 4984 | sr_sal.pc = pc_after_resolver; |
6c95b8df | 4985 | sr_sal.pspace = get_frame_program_space (frame); |
488f131b | 4986 | |
a6d9a66e UW |
4987 | insert_step_resume_breakpoint_at_sal (gdbarch, |
4988 | sr_sal, null_frame_id); | |
c5aa993b | 4989 | } |
c906108c | 4990 | |
488f131b JB |
4991 | keep_going (ecs); |
4992 | return; | |
4993 | } | |
c906108c | 4994 | |
16c381f0 JK |
4995 | if (ecs->event_thread->control.step_range_end != 1 |
4996 | && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE | |
4997 | || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) | |
568d6575 | 4998 | && get_frame_type (frame) == SIGTRAMP_FRAME) |
488f131b | 4999 | { |
527159b7 | 5000 | if (debug_infrun) |
3e43a32a MS |
5001 | fprintf_unfiltered (gdb_stdlog, |
5002 | "infrun: stepped into signal trampoline\n"); | |
42edda50 | 5003 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
5004 | a signal trampoline (either by a signal being delivered or by |
5005 | the signal handler returning). Just single-step until the | |
5006 | inferior leaves the trampoline (either by calling the handler | |
5007 | or returning). */ | |
488f131b JB |
5008 | keep_going (ecs); |
5009 | return; | |
5010 | } | |
c906108c | 5011 | |
14132e89 MR |
5012 | /* If we're in the return path from a shared library trampoline, |
5013 | we want to proceed through the trampoline when stepping. */ | |
5014 | /* macro/2012-04-25: This needs to come before the subroutine | |
5015 | call check below as on some targets return trampolines look | |
5016 | like subroutine calls (MIPS16 return thunks). */ | |
5017 | if (gdbarch_in_solib_return_trampoline (gdbarch, | |
5018 | stop_pc, ecs->stop_func_name) | |
5019 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) | |
5020 | { | |
5021 | /* Determine where this trampoline returns. */ | |
5022 | CORE_ADDR real_stop_pc; | |
5023 | ||
5024 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); | |
5025 | ||
5026 | if (debug_infrun) | |
5027 | fprintf_unfiltered (gdb_stdlog, | |
5028 | "infrun: stepped into solib return tramp\n"); | |
5029 | ||
5030 | /* Only proceed through if we know where it's going. */ | |
5031 | if (real_stop_pc) | |
5032 | { | |
5033 | /* And put the step-breakpoint there and go until there. */ | |
5034 | struct symtab_and_line sr_sal; | |
5035 | ||
5036 | init_sal (&sr_sal); /* initialize to zeroes */ | |
5037 | sr_sal.pc = real_stop_pc; | |
5038 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
5039 | sr_sal.pspace = get_frame_program_space (frame); | |
5040 | ||
5041 | /* Do not specify what the fp should be when we stop since | |
5042 | on some machines the prologue is where the new fp value | |
5043 | is established. */ | |
5044 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
5045 | sr_sal, null_frame_id); | |
5046 | ||
5047 | /* Restart without fiddling with the step ranges or | |
5048 | other state. */ | |
5049 | keep_going (ecs); | |
5050 | return; | |
5051 | } | |
5052 | } | |
5053 | ||
c17eaafe DJ |
5054 | /* Check for subroutine calls. The check for the current frame |
5055 | equalling the step ID is not necessary - the check of the | |
5056 | previous frame's ID is sufficient - but it is a common case and | |
5057 | cheaper than checking the previous frame's ID. | |
14e60db5 DJ |
5058 | |
5059 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
5060 | being equal, so to get into this block, both the current and | |
5061 | previous frame must have valid frame IDs. */ | |
005ca36a JB |
5062 | /* The outer_frame_id check is a heuristic to detect stepping |
5063 | through startup code. If we step over an instruction which | |
5064 | sets the stack pointer from an invalid value to a valid value, | |
5065 | we may detect that as a subroutine call from the mythical | |
5066 | "outermost" function. This could be fixed by marking | |
5067 | outermost frames as !stack_p,code_p,special_p. Then the | |
5068 | initial outermost frame, before sp was valid, would | |
ce6cca6d | 5069 | have code_addr == &_start. See the comment in frame_id_eq |
005ca36a | 5070 | for more. */ |
edb3359d | 5071 | if (!frame_id_eq (get_stack_frame_id (frame), |
16c381f0 | 5072 | ecs->event_thread->control.step_stack_frame_id) |
005ca36a | 5073 | && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()), |
16c381f0 JK |
5074 | ecs->event_thread->control.step_stack_frame_id) |
5075 | && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id, | |
005ca36a JB |
5076 | outer_frame_id) |
5077 | || step_start_function != find_pc_function (stop_pc)))) | |
488f131b | 5078 | { |
95918acb | 5079 | CORE_ADDR real_stop_pc; |
8fb3e588 | 5080 | |
527159b7 | 5081 | if (debug_infrun) |
8a9de0e4 | 5082 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 5083 | |
b7a084be | 5084 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE) |
95918acb AC |
5085 | { |
5086 | /* I presume that step_over_calls is only 0 when we're | |
5087 | supposed to be stepping at the assembly language level | |
5088 | ("stepi"). Just stop. */ | |
388a8562 | 5089 | /* And this works the same backward as frontward. MVS */ |
bdc36728 | 5090 | end_stepping_range (ecs); |
95918acb AC |
5091 | return; |
5092 | } | |
8fb3e588 | 5093 | |
388a8562 MS |
5094 | /* Reverse stepping through solib trampolines. */ |
5095 | ||
5096 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 5097 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE |
388a8562 MS |
5098 | && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) |
5099 | || (ecs->stop_func_start == 0 | |
5100 | && in_solib_dynsym_resolve_code (stop_pc)))) | |
5101 | { | |
5102 | /* Any solib trampoline code can be handled in reverse | |
5103 | by simply continuing to single-step. We have already | |
5104 | executed the solib function (backwards), and a few | |
5105 | steps will take us back through the trampoline to the | |
5106 | caller. */ | |
5107 | keep_going (ecs); | |
5108 | return; | |
5109 | } | |
5110 | ||
16c381f0 | 5111 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
8567c30f | 5112 | { |
b2175913 MS |
5113 | /* We're doing a "next". |
5114 | ||
5115 | Normal (forward) execution: set a breakpoint at the | |
5116 | callee's return address (the address at which the caller | |
5117 | will resume). | |
5118 | ||
5119 | Reverse (backward) execution. set the step-resume | |
5120 | breakpoint at the start of the function that we just | |
5121 | stepped into (backwards), and continue to there. When we | |
6130d0b7 | 5122 | get there, we'll need to single-step back to the caller. */ |
b2175913 MS |
5123 | |
5124 | if (execution_direction == EXEC_REVERSE) | |
5125 | { | |
acf9414f JK |
5126 | /* If we're already at the start of the function, we've either |
5127 | just stepped backward into a single instruction function, | |
5128 | or stepped back out of a signal handler to the first instruction | |
5129 | of the function. Just keep going, which will single-step back | |
5130 | to the caller. */ | |
58c48e72 | 5131 | if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0) |
acf9414f JK |
5132 | { |
5133 | struct symtab_and_line sr_sal; | |
5134 | ||
5135 | /* Normal function call return (static or dynamic). */ | |
5136 | init_sal (&sr_sal); | |
5137 | sr_sal.pc = ecs->stop_func_start; | |
5138 | sr_sal.pspace = get_frame_program_space (frame); | |
5139 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
5140 | sr_sal, null_frame_id); | |
5141 | } | |
b2175913 MS |
5142 | } |
5143 | else | |
568d6575 | 5144 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 5145 | |
8567c30f AC |
5146 | keep_going (ecs); |
5147 | return; | |
5148 | } | |
a53c66de | 5149 | |
95918acb | 5150 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
5151 | calling routine and the real function), locate the real |
5152 | function. That's what tells us (a) whether we want to step | |
5153 | into it at all, and (b) what prologue we want to run to the | |
5154 | end of, if we do step into it. */ | |
568d6575 | 5155 | real_stop_pc = skip_language_trampoline (frame, stop_pc); |
95918acb | 5156 | if (real_stop_pc == 0) |
568d6575 | 5157 | real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc); |
95918acb AC |
5158 | if (real_stop_pc != 0) |
5159 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 5160 | |
db5f024e | 5161 | if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc)) |
1b2bfbb9 RC |
5162 | { |
5163 | struct symtab_and_line sr_sal; | |
abbb1732 | 5164 | |
1b2bfbb9 RC |
5165 | init_sal (&sr_sal); |
5166 | sr_sal.pc = ecs->stop_func_start; | |
6c95b8df | 5167 | sr_sal.pspace = get_frame_program_space (frame); |
1b2bfbb9 | 5168 | |
a6d9a66e UW |
5169 | insert_step_resume_breakpoint_at_sal (gdbarch, |
5170 | sr_sal, null_frame_id); | |
8fb3e588 AC |
5171 | keep_going (ecs); |
5172 | return; | |
1b2bfbb9 RC |
5173 | } |
5174 | ||
95918acb | 5175 | /* If we have line number information for the function we are |
1bfeeb0f JL |
5176 | thinking of stepping into and the function isn't on the skip |
5177 | list, step into it. | |
95918acb | 5178 | |
8fb3e588 AC |
5179 | If there are several symtabs at that PC (e.g. with include |
5180 | files), just want to know whether *any* of them have line | |
5181 | numbers. find_pc_line handles this. */ | |
95918acb AC |
5182 | { |
5183 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 5184 | |
95918acb | 5185 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2b914b52 | 5186 | if (tmp_sal.line != 0 |
85817405 JK |
5187 | && !function_name_is_marked_for_skip (ecs->stop_func_name, |
5188 | &tmp_sal)) | |
95918acb | 5189 | { |
b2175913 | 5190 | if (execution_direction == EXEC_REVERSE) |
568d6575 | 5191 | handle_step_into_function_backward (gdbarch, ecs); |
b2175913 | 5192 | else |
568d6575 | 5193 | handle_step_into_function (gdbarch, ecs); |
95918acb AC |
5194 | return; |
5195 | } | |
5196 | } | |
5197 | ||
5198 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
5199 | set, we stop the step so that the user has a chance to switch |
5200 | in assembly mode. */ | |
16c381f0 | 5201 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
078130d0 | 5202 | && step_stop_if_no_debug) |
95918acb | 5203 | { |
bdc36728 | 5204 | end_stepping_range (ecs); |
95918acb AC |
5205 | return; |
5206 | } | |
5207 | ||
b2175913 MS |
5208 | if (execution_direction == EXEC_REVERSE) |
5209 | { | |
acf9414f JK |
5210 | /* If we're already at the start of the function, we've either just |
5211 | stepped backward into a single instruction function without line | |
5212 | number info, or stepped back out of a signal handler to the first | |
5213 | instruction of the function without line number info. Just keep | |
5214 | going, which will single-step back to the caller. */ | |
5215 | if (ecs->stop_func_start != stop_pc) | |
5216 | { | |
5217 | /* Set a breakpoint at callee's start address. | |
5218 | From there we can step once and be back in the caller. */ | |
5219 | struct symtab_and_line sr_sal; | |
abbb1732 | 5220 | |
acf9414f JK |
5221 | init_sal (&sr_sal); |
5222 | sr_sal.pc = ecs->stop_func_start; | |
5223 | sr_sal.pspace = get_frame_program_space (frame); | |
5224 | insert_step_resume_breakpoint_at_sal (gdbarch, | |
5225 | sr_sal, null_frame_id); | |
5226 | } | |
b2175913 MS |
5227 | } |
5228 | else | |
5229 | /* Set a breakpoint at callee's return address (the address | |
5230 | at which the caller will resume). */ | |
568d6575 | 5231 | insert_step_resume_breakpoint_at_caller (frame); |
b2175913 | 5232 | |
95918acb | 5233 | keep_going (ecs); |
488f131b | 5234 | return; |
488f131b | 5235 | } |
c906108c | 5236 | |
fdd654f3 MS |
5237 | /* Reverse stepping through solib trampolines. */ |
5238 | ||
5239 | if (execution_direction == EXEC_REVERSE | |
16c381f0 | 5240 | && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE) |
fdd654f3 MS |
5241 | { |
5242 | if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc) | |
5243 | || (ecs->stop_func_start == 0 | |
5244 | && in_solib_dynsym_resolve_code (stop_pc))) | |
5245 | { | |
5246 | /* Any solib trampoline code can be handled in reverse | |
5247 | by simply continuing to single-step. We have already | |
5248 | executed the solib function (backwards), and a few | |
5249 | steps will take us back through the trampoline to the | |
5250 | caller. */ | |
5251 | keep_going (ecs); | |
5252 | return; | |
5253 | } | |
5254 | else if (in_solib_dynsym_resolve_code (stop_pc)) | |
5255 | { | |
5256 | /* Stepped backward into the solib dynsym resolver. | |
5257 | Set a breakpoint at its start and continue, then | |
5258 | one more step will take us out. */ | |
5259 | struct symtab_and_line sr_sal; | |
abbb1732 | 5260 | |
fdd654f3 MS |
5261 | init_sal (&sr_sal); |
5262 | sr_sal.pc = ecs->stop_func_start; | |
9d1807c3 | 5263 | sr_sal.pspace = get_frame_program_space (frame); |
fdd654f3 MS |
5264 | insert_step_resume_breakpoint_at_sal (gdbarch, |
5265 | sr_sal, null_frame_id); | |
5266 | keep_going (ecs); | |
5267 | return; | |
5268 | } | |
5269 | } | |
5270 | ||
2afb61aa | 5271 | stop_pc_sal = find_pc_line (stop_pc, 0); |
7ed0fe66 | 5272 | |
1b2bfbb9 RC |
5273 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
5274 | the trampoline processing logic, however, there are some trampolines | |
5275 | that have no names, so we should do trampoline handling first. */ | |
16c381f0 | 5276 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE |
7ed0fe66 | 5277 | && ecs->stop_func_name == NULL |
2afb61aa | 5278 | && stop_pc_sal.line == 0) |
1b2bfbb9 | 5279 | { |
527159b7 | 5280 | if (debug_infrun) |
3e43a32a MS |
5281 | fprintf_unfiltered (gdb_stdlog, |
5282 | "infrun: stepped into undebuggable function\n"); | |
527159b7 | 5283 | |
1b2bfbb9 | 5284 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
5285 | undebuggable function (where there is no debugging information |
5286 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
5287 | inferior stopped). Since we want to skip this kind of code, |
5288 | we keep going until the inferior returns from this | |
14e60db5 DJ |
5289 | function - unless the user has asked us not to (via |
5290 | set step-mode) or we no longer know how to get back | |
5291 | to the call site. */ | |
5292 | if (step_stop_if_no_debug | |
c7ce8faa | 5293 | || !frame_id_p (frame_unwind_caller_id (frame))) |
1b2bfbb9 RC |
5294 | { |
5295 | /* If we have no line number and the step-stop-if-no-debug | |
5296 | is set, we stop the step so that the user has a chance to | |
5297 | switch in assembly mode. */ | |
bdc36728 | 5298 | end_stepping_range (ecs); |
1b2bfbb9 RC |
5299 | return; |
5300 | } | |
5301 | else | |
5302 | { | |
5303 | /* Set a breakpoint at callee's return address (the address | |
5304 | at which the caller will resume). */ | |
568d6575 | 5305 | insert_step_resume_breakpoint_at_caller (frame); |
1b2bfbb9 RC |
5306 | keep_going (ecs); |
5307 | return; | |
5308 | } | |
5309 | } | |
5310 | ||
16c381f0 | 5311 | if (ecs->event_thread->control.step_range_end == 1) |
1b2bfbb9 RC |
5312 | { |
5313 | /* It is stepi or nexti. We always want to stop stepping after | |
5314 | one instruction. */ | |
527159b7 | 5315 | if (debug_infrun) |
8a9de0e4 | 5316 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
bdc36728 | 5317 | end_stepping_range (ecs); |
1b2bfbb9 RC |
5318 | return; |
5319 | } | |
5320 | ||
2afb61aa | 5321 | if (stop_pc_sal.line == 0) |
488f131b JB |
5322 | { |
5323 | /* We have no line number information. That means to stop | |
5324 | stepping (does this always happen right after one instruction, | |
5325 | when we do "s" in a function with no line numbers, | |
5326 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 5327 | if (debug_infrun) |
8a9de0e4 | 5328 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
bdc36728 | 5329 | end_stepping_range (ecs); |
488f131b JB |
5330 | return; |
5331 | } | |
c906108c | 5332 | |
edb3359d DJ |
5333 | /* Look for "calls" to inlined functions, part one. If the inline |
5334 | frame machinery detected some skipped call sites, we have entered | |
5335 | a new inline function. */ | |
5336 | ||
5337 | if (frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 5338 | ecs->event_thread->control.step_frame_id) |
edb3359d DJ |
5339 | && inline_skipped_frames (ecs->ptid)) |
5340 | { | |
5341 | struct symtab_and_line call_sal; | |
5342 | ||
5343 | if (debug_infrun) | |
5344 | fprintf_unfiltered (gdb_stdlog, | |
5345 | "infrun: stepped into inlined function\n"); | |
5346 | ||
5347 | find_frame_sal (get_current_frame (), &call_sal); | |
5348 | ||
16c381f0 | 5349 | if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL) |
edb3359d DJ |
5350 | { |
5351 | /* For "step", we're going to stop. But if the call site | |
5352 | for this inlined function is on the same source line as | |
5353 | we were previously stepping, go down into the function | |
5354 | first. Otherwise stop at the call site. */ | |
5355 | ||
5356 | if (call_sal.line == ecs->event_thread->current_line | |
5357 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
5358 | step_into_inline_frame (ecs->ptid); | |
5359 | ||
bdc36728 | 5360 | end_stepping_range (ecs); |
edb3359d DJ |
5361 | return; |
5362 | } | |
5363 | else | |
5364 | { | |
5365 | /* For "next", we should stop at the call site if it is on a | |
5366 | different source line. Otherwise continue through the | |
5367 | inlined function. */ | |
5368 | if (call_sal.line == ecs->event_thread->current_line | |
5369 | && call_sal.symtab == ecs->event_thread->current_symtab) | |
5370 | keep_going (ecs); | |
5371 | else | |
bdc36728 | 5372 | end_stepping_range (ecs); |
edb3359d DJ |
5373 | return; |
5374 | } | |
5375 | } | |
5376 | ||
5377 | /* Look for "calls" to inlined functions, part two. If we are still | |
5378 | in the same real function we were stepping through, but we have | |
5379 | to go further up to find the exact frame ID, we are stepping | |
5380 | through a more inlined call beyond its call site. */ | |
5381 | ||
5382 | if (get_frame_type (get_current_frame ()) == INLINE_FRAME | |
5383 | && !frame_id_eq (get_frame_id (get_current_frame ()), | |
16c381f0 | 5384 | ecs->event_thread->control.step_frame_id) |
edb3359d | 5385 | && stepped_in_from (get_current_frame (), |
16c381f0 | 5386 | ecs->event_thread->control.step_frame_id)) |
edb3359d DJ |
5387 | { |
5388 | if (debug_infrun) | |
5389 | fprintf_unfiltered (gdb_stdlog, | |
5390 | "infrun: stepping through inlined function\n"); | |
5391 | ||
16c381f0 | 5392 | if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL) |
edb3359d DJ |
5393 | keep_going (ecs); |
5394 | else | |
bdc36728 | 5395 | end_stepping_range (ecs); |
edb3359d DJ |
5396 | return; |
5397 | } | |
5398 | ||
2afb61aa | 5399 | if ((stop_pc == stop_pc_sal.pc) |
4e1c45ea PA |
5400 | && (ecs->event_thread->current_line != stop_pc_sal.line |
5401 | || ecs->event_thread->current_symtab != stop_pc_sal.symtab)) | |
488f131b JB |
5402 | { |
5403 | /* We are at the start of a different line. So stop. Note that | |
5404 | we don't stop if we step into the middle of a different line. | |
5405 | That is said to make things like for (;;) statements work | |
5406 | better. */ | |
527159b7 | 5407 | if (debug_infrun) |
3e43a32a MS |
5408 | fprintf_unfiltered (gdb_stdlog, |
5409 | "infrun: stepped to a different line\n"); | |
bdc36728 | 5410 | end_stepping_range (ecs); |
488f131b JB |
5411 | return; |
5412 | } | |
c906108c | 5413 | |
488f131b | 5414 | /* We aren't done stepping. |
c906108c | 5415 | |
488f131b JB |
5416 | Optimize by setting the stepping range to the line. |
5417 | (We might not be in the original line, but if we entered a | |
5418 | new line in mid-statement, we continue stepping. This makes | |
5419 | things like for(;;) statements work better.) */ | |
c906108c | 5420 | |
16c381f0 JK |
5421 | ecs->event_thread->control.step_range_start = stop_pc_sal.pc; |
5422 | ecs->event_thread->control.step_range_end = stop_pc_sal.end; | |
c1e36e3e | 5423 | ecs->event_thread->control.may_range_step = 1; |
edb3359d | 5424 | set_step_info (frame, stop_pc_sal); |
488f131b | 5425 | |
527159b7 | 5426 | if (debug_infrun) |
8a9de0e4 | 5427 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 5428 | keep_going (ecs); |
104c1213 JM |
5429 | } |
5430 | ||
c447ac0b PA |
5431 | /* In all-stop mode, if we're currently stepping but have stopped in |
5432 | some other thread, we may need to switch back to the stepped | |
5433 | thread. Returns true we set the inferior running, false if we left | |
5434 | it stopped (and the event needs further processing). */ | |
5435 | ||
5436 | static int | |
5437 | switch_back_to_stepped_thread (struct execution_control_state *ecs) | |
5438 | { | |
5439 | if (!non_stop) | |
5440 | { | |
5441 | struct thread_info *tp; | |
99619bea | 5442 | struct thread_info *stepping_thread; |
483805cf | 5443 | struct thread_info *step_over; |
99619bea PA |
5444 | |
5445 | /* If any thread is blocked on some internal breakpoint, and we | |
5446 | simply need to step over that breakpoint to get it going | |
5447 | again, do that first. */ | |
5448 | ||
5449 | /* However, if we see an event for the stepping thread, then we | |
5450 | know all other threads have been moved past their breakpoints | |
5451 | already. Let the caller check whether the step is finished, | |
5452 | etc., before deciding to move it past a breakpoint. */ | |
5453 | if (ecs->event_thread->control.step_range_end != 0) | |
5454 | return 0; | |
5455 | ||
5456 | /* Check if the current thread is blocked on an incomplete | |
5457 | step-over, interrupted by a random signal. */ | |
5458 | if (ecs->event_thread->control.trap_expected | |
5459 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) | |
c447ac0b | 5460 | { |
99619bea PA |
5461 | if (debug_infrun) |
5462 | { | |
5463 | fprintf_unfiltered (gdb_stdlog, | |
5464 | "infrun: need to finish step-over of [%s]\n", | |
5465 | target_pid_to_str (ecs->event_thread->ptid)); | |
5466 | } | |
5467 | keep_going (ecs); | |
5468 | return 1; | |
5469 | } | |
2adfaa28 | 5470 | |
99619bea PA |
5471 | /* Check if the current thread is blocked by a single-step |
5472 | breakpoint of another thread. */ | |
5473 | if (ecs->hit_singlestep_breakpoint) | |
5474 | { | |
5475 | if (debug_infrun) | |
5476 | { | |
5477 | fprintf_unfiltered (gdb_stdlog, | |
5478 | "infrun: need to step [%s] over single-step " | |
5479 | "breakpoint\n", | |
5480 | target_pid_to_str (ecs->ptid)); | |
5481 | } | |
5482 | keep_going (ecs); | |
5483 | return 1; | |
5484 | } | |
5485 | ||
483805cf PA |
5486 | /* Otherwise, we no longer expect a trap in the current thread. |
5487 | Clear the trap_expected flag before switching back -- this is | |
5488 | what keep_going does as well, if we call it. */ | |
5489 | ecs->event_thread->control.trap_expected = 0; | |
5490 | ||
70509625 PA |
5491 | /* Likewise, clear the signal if it should not be passed. */ |
5492 | if (!signal_program[ecs->event_thread->suspend.stop_signal]) | |
5493 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; | |
5494 | ||
483805cf PA |
5495 | /* If scheduler locking applies even if not stepping, there's no |
5496 | need to walk over threads. Above we've checked whether the | |
5497 | current thread is stepping. If some other thread not the | |
5498 | event thread is stepping, then it must be that scheduler | |
5499 | locking is not in effect. */ | |
5500 | if (schedlock_applies (0)) | |
5501 | return 0; | |
5502 | ||
5503 | /* Look for the stepping/nexting thread, and check if any other | |
5504 | thread other than the stepping thread needs to start a | |
5505 | step-over. Do all step-overs before actually proceeding with | |
5506 | step/next/etc. */ | |
5507 | stepping_thread = NULL; | |
5508 | step_over = NULL; | |
034f788c | 5509 | ALL_NON_EXITED_THREADS (tp) |
483805cf PA |
5510 | { |
5511 | /* Ignore threads of processes we're not resuming. */ | |
5512 | if (!sched_multi | |
5513 | && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid)) | |
5514 | continue; | |
5515 | ||
5516 | /* When stepping over a breakpoint, we lock all threads | |
5517 | except the one that needs to move past the breakpoint. | |
5518 | If a non-event thread has this set, the "incomplete | |
5519 | step-over" check above should have caught it earlier. */ | |
5520 | gdb_assert (!tp->control.trap_expected); | |
5521 | ||
5522 | /* Did we find the stepping thread? */ | |
5523 | if (tp->control.step_range_end) | |
5524 | { | |
5525 | /* Yep. There should only one though. */ | |
5526 | gdb_assert (stepping_thread == NULL); | |
5527 | ||
5528 | /* The event thread is handled at the top, before we | |
5529 | enter this loop. */ | |
5530 | gdb_assert (tp != ecs->event_thread); | |
5531 | ||
5532 | /* If some thread other than the event thread is | |
5533 | stepping, then scheduler locking can't be in effect, | |
5534 | otherwise we wouldn't have resumed the current event | |
5535 | thread in the first place. */ | |
35420406 | 5536 | gdb_assert (!schedlock_applies (currently_stepping (tp))); |
483805cf PA |
5537 | |
5538 | stepping_thread = tp; | |
5539 | } | |
5540 | else if (thread_still_needs_step_over (tp)) | |
5541 | { | |
5542 | step_over = tp; | |
5543 | ||
5544 | /* At the top we've returned early if the event thread | |
5545 | is stepping. If some other thread not the event | |
5546 | thread is stepping, then scheduler locking can't be | |
5547 | in effect, and we can resume this thread. No need to | |
5548 | keep looking for the stepping thread then. */ | |
5549 | break; | |
5550 | } | |
5551 | } | |
99619bea | 5552 | |
483805cf | 5553 | if (step_over != NULL) |
99619bea | 5554 | { |
483805cf | 5555 | tp = step_over; |
99619bea | 5556 | if (debug_infrun) |
c447ac0b | 5557 | { |
99619bea PA |
5558 | fprintf_unfiltered (gdb_stdlog, |
5559 | "infrun: need to step-over [%s]\n", | |
5560 | target_pid_to_str (tp->ptid)); | |
c447ac0b PA |
5561 | } |
5562 | ||
483805cf | 5563 | /* Only the stepping thread should have this set. */ |
99619bea PA |
5564 | gdb_assert (tp->control.step_range_end == 0); |
5565 | ||
99619bea PA |
5566 | ecs->ptid = tp->ptid; |
5567 | ecs->event_thread = tp; | |
5568 | switch_to_thread (ecs->ptid); | |
5569 | keep_going (ecs); | |
5570 | return 1; | |
5571 | } | |
5572 | ||
483805cf | 5573 | if (stepping_thread != NULL) |
99619bea PA |
5574 | { |
5575 | struct frame_info *frame; | |
5576 | struct gdbarch *gdbarch; | |
5577 | ||
483805cf PA |
5578 | tp = stepping_thread; |
5579 | ||
c447ac0b PA |
5580 | /* If the stepping thread exited, then don't try to switch |
5581 | back and resume it, which could fail in several different | |
5582 | ways depending on the target. Instead, just keep going. | |
5583 | ||
5584 | We can find a stepping dead thread in the thread list in | |
5585 | two cases: | |
5586 | ||
5587 | - The target supports thread exit events, and when the | |
5588 | target tries to delete the thread from the thread list, | |
5589 | inferior_ptid pointed at the exiting thread. In such | |
5590 | case, calling delete_thread does not really remove the | |
5591 | thread from the list; instead, the thread is left listed, | |
5592 | with 'exited' state. | |
5593 | ||
5594 | - The target's debug interface does not support thread | |
5595 | exit events, and so we have no idea whatsoever if the | |
5596 | previously stepping thread is still alive. For that | |
5597 | reason, we need to synchronously query the target | |
5598 | now. */ | |
5599 | if (is_exited (tp->ptid) | |
5600 | || !target_thread_alive (tp->ptid)) | |
5601 | { | |
5602 | if (debug_infrun) | |
5603 | fprintf_unfiltered (gdb_stdlog, | |
5604 | "infrun: not switching back to " | |
5605 | "stepped thread, it has vanished\n"); | |
5606 | ||
5607 | delete_thread (tp->ptid); | |
5608 | keep_going (ecs); | |
5609 | return 1; | |
5610 | } | |
5611 | ||
c447ac0b PA |
5612 | if (debug_infrun) |
5613 | fprintf_unfiltered (gdb_stdlog, | |
5614 | "infrun: switching back to stepped thread\n"); | |
5615 | ||
5616 | ecs->event_thread = tp; | |
5617 | ecs->ptid = tp->ptid; | |
5618 | context_switch (ecs->ptid); | |
2adfaa28 PA |
5619 | |
5620 | stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
5621 | frame = get_current_frame (); | |
5622 | gdbarch = get_frame_arch (frame); | |
5623 | ||
5624 | /* If the PC of the thread we were trying to single-step has | |
99619bea PA |
5625 | changed, then that thread has trapped or been signaled, |
5626 | but the event has not been reported to GDB yet. Re-poll | |
5627 | the target looking for this particular thread's event | |
5628 | (i.e. temporarily enable schedlock) by: | |
2adfaa28 PA |
5629 | |
5630 | - setting a break at the current PC | |
5631 | - resuming that particular thread, only (by setting | |
5632 | trap expected) | |
5633 | ||
5634 | This prevents us continuously moving the single-step | |
5635 | breakpoint forward, one instruction at a time, | |
5636 | overstepping. */ | |
5637 | ||
af48d08f | 5638 | if (stop_pc != tp->prev_pc) |
2adfaa28 PA |
5639 | { |
5640 | if (debug_infrun) | |
5641 | fprintf_unfiltered (gdb_stdlog, | |
5642 | "infrun: expected thread advanced also\n"); | |
5643 | ||
7c16b83e PA |
5644 | /* Clear the info of the previous step-over, as it's no |
5645 | longer valid. It's what keep_going would do too, if | |
5646 | we called it. Must do this before trying to insert | |
5647 | the sss breakpoint, otherwise if we were previously | |
5648 | trying to step over this exact address in another | |
5649 | thread, the breakpoint ends up not installed. */ | |
5650 | clear_step_over_info (); | |
5651 | ||
2adfaa28 PA |
5652 | insert_single_step_breakpoint (get_frame_arch (frame), |
5653 | get_frame_address_space (frame), | |
5654 | stop_pc); | |
2adfaa28 | 5655 | ecs->event_thread->control.trap_expected = 1; |
2adfaa28 PA |
5656 | |
5657 | resume (0, GDB_SIGNAL_0); | |
5658 | prepare_to_wait (ecs); | |
5659 | } | |
5660 | else | |
5661 | { | |
5662 | if (debug_infrun) | |
5663 | fprintf_unfiltered (gdb_stdlog, | |
5664 | "infrun: expected thread still " | |
5665 | "hasn't advanced\n"); | |
5666 | keep_going (ecs); | |
5667 | } | |
5668 | ||
c447ac0b PA |
5669 | return 1; |
5670 | } | |
5671 | } | |
5672 | return 0; | |
5673 | } | |
5674 | ||
b3444185 | 5675 | /* Is thread TP in the middle of single-stepping? */ |
104c1213 | 5676 | |
a289b8f6 | 5677 | static int |
b3444185 | 5678 | currently_stepping (struct thread_info *tp) |
a7212384 | 5679 | { |
8358c15c JK |
5680 | return ((tp->control.step_range_end |
5681 | && tp->control.step_resume_breakpoint == NULL) | |
5682 | || tp->control.trap_expected | |
af48d08f | 5683 | || tp->stepped_breakpoint |
8358c15c | 5684 | || bpstat_should_step ()); |
a7212384 UW |
5685 | } |
5686 | ||
b2175913 MS |
5687 | /* Inferior has stepped into a subroutine call with source code that |
5688 | we should not step over. Do step to the first line of code in | |
5689 | it. */ | |
c2c6d25f JM |
5690 | |
5691 | static void | |
568d6575 UW |
5692 | handle_step_into_function (struct gdbarch *gdbarch, |
5693 | struct execution_control_state *ecs) | |
c2c6d25f | 5694 | { |
43f3e411 | 5695 | struct compunit_symtab *cust; |
2afb61aa | 5696 | struct symtab_and_line stop_func_sal, sr_sal; |
c2c6d25f | 5697 | |
7e324e48 GB |
5698 | fill_in_stop_func (gdbarch, ecs); |
5699 | ||
43f3e411 DE |
5700 | cust = find_pc_compunit_symtab (stop_pc); |
5701 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 5702 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 | 5703 | ecs->stop_func_start); |
c2c6d25f | 5704 | |
2afb61aa | 5705 | stop_func_sal = find_pc_line (ecs->stop_func_start, 0); |
c2c6d25f JM |
5706 | /* Use the step_resume_break to step until the end of the prologue, |
5707 | even if that involves jumps (as it seems to on the vax under | |
5708 | 4.2). */ | |
5709 | /* If the prologue ends in the middle of a source line, continue to | |
5710 | the end of that source line (if it is still within the function). | |
5711 | Otherwise, just go to end of prologue. */ | |
2afb61aa PA |
5712 | if (stop_func_sal.end |
5713 | && stop_func_sal.pc != ecs->stop_func_start | |
5714 | && stop_func_sal.end < ecs->stop_func_end) | |
5715 | ecs->stop_func_start = stop_func_sal.end; | |
c2c6d25f | 5716 | |
2dbd5e30 KB |
5717 | /* Architectures which require breakpoint adjustment might not be able |
5718 | to place a breakpoint at the computed address. If so, the test | |
5719 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
5720 | ecs->stop_func_start to an address at which a breakpoint may be | |
5721 | legitimately placed. | |
8fb3e588 | 5722 | |
2dbd5e30 KB |
5723 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
5724 | made, GDB will enter an infinite loop when stepping through | |
5725 | optimized code consisting of VLIW instructions which contain | |
5726 | subinstructions corresponding to different source lines. On | |
5727 | FR-V, it's not permitted to place a breakpoint on any but the | |
5728 | first subinstruction of a VLIW instruction. When a breakpoint is | |
5729 | set, GDB will adjust the breakpoint address to the beginning of | |
5730 | the VLIW instruction. Thus, we need to make the corresponding | |
5731 | adjustment here when computing the stop address. */ | |
8fb3e588 | 5732 | |
568d6575 | 5733 | if (gdbarch_adjust_breakpoint_address_p (gdbarch)) |
2dbd5e30 KB |
5734 | { |
5735 | ecs->stop_func_start | |
568d6575 | 5736 | = gdbarch_adjust_breakpoint_address (gdbarch, |
8fb3e588 | 5737 | ecs->stop_func_start); |
2dbd5e30 KB |
5738 | } |
5739 | ||
c2c6d25f JM |
5740 | if (ecs->stop_func_start == stop_pc) |
5741 | { | |
5742 | /* We are already there: stop now. */ | |
bdc36728 | 5743 | end_stepping_range (ecs); |
c2c6d25f JM |
5744 | return; |
5745 | } | |
5746 | else | |
5747 | { | |
5748 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 5749 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
5750 | sr_sal.pc = ecs->stop_func_start; |
5751 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
6c95b8df | 5752 | sr_sal.pspace = get_frame_program_space (get_current_frame ()); |
44cbf7b5 | 5753 | |
c2c6d25f | 5754 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
5755 | some machines the prologue is where the new fp value is |
5756 | established. */ | |
a6d9a66e | 5757 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id); |
c2c6d25f JM |
5758 | |
5759 | /* And make sure stepping stops right away then. */ | |
16c381f0 JK |
5760 | ecs->event_thread->control.step_range_end |
5761 | = ecs->event_thread->control.step_range_start; | |
c2c6d25f JM |
5762 | } |
5763 | keep_going (ecs); | |
5764 | } | |
d4f3574e | 5765 | |
b2175913 MS |
5766 | /* Inferior has stepped backward into a subroutine call with source |
5767 | code that we should not step over. Do step to the beginning of the | |
5768 | last line of code in it. */ | |
5769 | ||
5770 | static void | |
568d6575 UW |
5771 | handle_step_into_function_backward (struct gdbarch *gdbarch, |
5772 | struct execution_control_state *ecs) | |
b2175913 | 5773 | { |
43f3e411 | 5774 | struct compunit_symtab *cust; |
167e4384 | 5775 | struct symtab_and_line stop_func_sal; |
b2175913 | 5776 | |
7e324e48 GB |
5777 | fill_in_stop_func (gdbarch, ecs); |
5778 | ||
43f3e411 DE |
5779 | cust = find_pc_compunit_symtab (stop_pc); |
5780 | if (cust != NULL && compunit_language (cust) != language_asm) | |
568d6575 | 5781 | ecs->stop_func_start = gdbarch_skip_prologue (gdbarch, |
b2175913 MS |
5782 | ecs->stop_func_start); |
5783 | ||
5784 | stop_func_sal = find_pc_line (stop_pc, 0); | |
5785 | ||
5786 | /* OK, we're just going to keep stepping here. */ | |
5787 | if (stop_func_sal.pc == stop_pc) | |
5788 | { | |
5789 | /* We're there already. Just stop stepping now. */ | |
bdc36728 | 5790 | end_stepping_range (ecs); |
b2175913 MS |
5791 | } |
5792 | else | |
5793 | { | |
5794 | /* Else just reset the step range and keep going. | |
5795 | No step-resume breakpoint, they don't work for | |
5796 | epilogues, which can have multiple entry paths. */ | |
16c381f0 JK |
5797 | ecs->event_thread->control.step_range_start = stop_func_sal.pc; |
5798 | ecs->event_thread->control.step_range_end = stop_func_sal.end; | |
b2175913 MS |
5799 | keep_going (ecs); |
5800 | } | |
5801 | return; | |
5802 | } | |
5803 | ||
d3169d93 | 5804 | /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID. |
44cbf7b5 AC |
5805 | This is used to both functions and to skip over code. */ |
5806 | ||
5807 | static void | |
2c03e5be PA |
5808 | insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch, |
5809 | struct symtab_and_line sr_sal, | |
5810 | struct frame_id sr_id, | |
5811 | enum bptype sr_type) | |
44cbf7b5 | 5812 | { |
611c83ae PA |
5813 | /* There should never be more than one step-resume or longjmp-resume |
5814 | breakpoint per thread, so we should never be setting a new | |
44cbf7b5 | 5815 | step_resume_breakpoint when one is already active. */ |
8358c15c | 5816 | gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL); |
2c03e5be | 5817 | gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume); |
d3169d93 DJ |
5818 | |
5819 | if (debug_infrun) | |
5820 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5821 | "infrun: inserting step-resume breakpoint at %s\n", |
5822 | paddress (gdbarch, sr_sal.pc)); | |
d3169d93 | 5823 | |
8358c15c | 5824 | inferior_thread ()->control.step_resume_breakpoint |
2c03e5be PA |
5825 | = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type); |
5826 | } | |
5827 | ||
9da8c2a0 | 5828 | void |
2c03e5be PA |
5829 | insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch, |
5830 | struct symtab_and_line sr_sal, | |
5831 | struct frame_id sr_id) | |
5832 | { | |
5833 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, | |
5834 | sr_sal, sr_id, | |
5835 | bp_step_resume); | |
44cbf7b5 | 5836 | } |
7ce450bd | 5837 | |
2c03e5be PA |
5838 | /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc. |
5839 | This is used to skip a potential signal handler. | |
7ce450bd | 5840 | |
14e60db5 DJ |
5841 | This is called with the interrupted function's frame. The signal |
5842 | handler, when it returns, will resume the interrupted function at | |
5843 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
5844 | |
5845 | static void | |
2c03e5be | 5846 | insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
5847 | { |
5848 | struct symtab_and_line sr_sal; | |
a6d9a66e | 5849 | struct gdbarch *gdbarch; |
d303a6c7 | 5850 | |
f4c1edd8 | 5851 | gdb_assert (return_frame != NULL); |
d303a6c7 AC |
5852 | init_sal (&sr_sal); /* initialize to zeros */ |
5853 | ||
a6d9a66e | 5854 | gdbarch = get_frame_arch (return_frame); |
568d6575 | 5855 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame)); |
d303a6c7 | 5856 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 5857 | sr_sal.pspace = get_frame_program_space (return_frame); |
d303a6c7 | 5858 | |
2c03e5be PA |
5859 | insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal, |
5860 | get_stack_frame_id (return_frame), | |
5861 | bp_hp_step_resume); | |
d303a6c7 AC |
5862 | } |
5863 | ||
2c03e5be PA |
5864 | /* Insert a "step-resume breakpoint" at the previous frame's PC. This |
5865 | is used to skip a function after stepping into it (for "next" or if | |
5866 | the called function has no debugging information). | |
14e60db5 DJ |
5867 | |
5868 | The current function has almost always been reached by single | |
5869 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
5870 | current function, and the breakpoint will be set at the caller's | |
5871 | resume address. | |
5872 | ||
5873 | This is a separate function rather than reusing | |
2c03e5be | 5874 | insert_hp_step_resume_breakpoint_at_frame in order to avoid |
14e60db5 | 5875 | get_prev_frame, which may stop prematurely (see the implementation |
c7ce8faa | 5876 | of frame_unwind_caller_id for an example). */ |
14e60db5 DJ |
5877 | |
5878 | static void | |
5879 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
5880 | { | |
5881 | struct symtab_and_line sr_sal; | |
a6d9a66e | 5882 | struct gdbarch *gdbarch; |
14e60db5 DJ |
5883 | |
5884 | /* We shouldn't have gotten here if we don't know where the call site | |
5885 | is. */ | |
c7ce8faa | 5886 | gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame))); |
14e60db5 DJ |
5887 | |
5888 | init_sal (&sr_sal); /* initialize to zeros */ | |
5889 | ||
a6d9a66e | 5890 | gdbarch = frame_unwind_caller_arch (next_frame); |
c7ce8faa DJ |
5891 | sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, |
5892 | frame_unwind_caller_pc (next_frame)); | |
14e60db5 | 5893 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
6c95b8df | 5894 | sr_sal.pspace = frame_unwind_program_space (next_frame); |
14e60db5 | 5895 | |
a6d9a66e | 5896 | insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, |
c7ce8faa | 5897 | frame_unwind_caller_id (next_frame)); |
14e60db5 DJ |
5898 | } |
5899 | ||
611c83ae PA |
5900 | /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a |
5901 | new breakpoint at the target of a jmp_buf. The handling of | |
5902 | longjmp-resume uses the same mechanisms used for handling | |
5903 | "step-resume" breakpoints. */ | |
5904 | ||
5905 | static void | |
a6d9a66e | 5906 | insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc) |
611c83ae | 5907 | { |
e81a37f7 TT |
5908 | /* There should never be more than one longjmp-resume breakpoint per |
5909 | thread, so we should never be setting a new | |
611c83ae | 5910 | longjmp_resume_breakpoint when one is already active. */ |
e81a37f7 | 5911 | gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL); |
611c83ae PA |
5912 | |
5913 | if (debug_infrun) | |
5914 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
5915 | "infrun: inserting longjmp-resume breakpoint at %s\n", |
5916 | paddress (gdbarch, pc)); | |
611c83ae | 5917 | |
e81a37f7 | 5918 | inferior_thread ()->control.exception_resume_breakpoint = |
a6d9a66e | 5919 | set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume); |
611c83ae PA |
5920 | } |
5921 | ||
186c406b TT |
5922 | /* Insert an exception resume breakpoint. TP is the thread throwing |
5923 | the exception. The block B is the block of the unwinder debug hook | |
5924 | function. FRAME is the frame corresponding to the call to this | |
5925 | function. SYM is the symbol of the function argument holding the | |
5926 | target PC of the exception. */ | |
5927 | ||
5928 | static void | |
5929 | insert_exception_resume_breakpoint (struct thread_info *tp, | |
3977b71f | 5930 | const struct block *b, |
186c406b TT |
5931 | struct frame_info *frame, |
5932 | struct symbol *sym) | |
5933 | { | |
bfd189b1 | 5934 | volatile struct gdb_exception e; |
186c406b TT |
5935 | |
5936 | /* We want to ignore errors here. */ | |
5937 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
5938 | { | |
5939 | struct symbol *vsym; | |
5940 | struct value *value; | |
5941 | CORE_ADDR handler; | |
5942 | struct breakpoint *bp; | |
5943 | ||
5944 | vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL); | |
5945 | value = read_var_value (vsym, frame); | |
5946 | /* If the value was optimized out, revert to the old behavior. */ | |
5947 | if (! value_optimized_out (value)) | |
5948 | { | |
5949 | handler = value_as_address (value); | |
5950 | ||
5951 | if (debug_infrun) | |
5952 | fprintf_unfiltered (gdb_stdlog, | |
5953 | "infrun: exception resume at %lx\n", | |
5954 | (unsigned long) handler); | |
5955 | ||
5956 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
5957 | handler, bp_exception_resume); | |
c70a6932 JK |
5958 | |
5959 | /* set_momentary_breakpoint_at_pc invalidates FRAME. */ | |
5960 | frame = NULL; | |
5961 | ||
186c406b TT |
5962 | bp->thread = tp->num; |
5963 | inferior_thread ()->control.exception_resume_breakpoint = bp; | |
5964 | } | |
5965 | } | |
5966 | } | |
5967 | ||
28106bc2 SDJ |
5968 | /* A helper for check_exception_resume that sets an |
5969 | exception-breakpoint based on a SystemTap probe. */ | |
5970 | ||
5971 | static void | |
5972 | insert_exception_resume_from_probe (struct thread_info *tp, | |
729662a5 | 5973 | const struct bound_probe *probe, |
28106bc2 SDJ |
5974 | struct frame_info *frame) |
5975 | { | |
5976 | struct value *arg_value; | |
5977 | CORE_ADDR handler; | |
5978 | struct breakpoint *bp; | |
5979 | ||
5980 | arg_value = probe_safe_evaluate_at_pc (frame, 1); | |
5981 | if (!arg_value) | |
5982 | return; | |
5983 | ||
5984 | handler = value_as_address (arg_value); | |
5985 | ||
5986 | if (debug_infrun) | |
5987 | fprintf_unfiltered (gdb_stdlog, | |
5988 | "infrun: exception resume at %s\n", | |
6bac7473 | 5989 | paddress (get_objfile_arch (probe->objfile), |
28106bc2 SDJ |
5990 | handler)); |
5991 | ||
5992 | bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame), | |
5993 | handler, bp_exception_resume); | |
5994 | bp->thread = tp->num; | |
5995 | inferior_thread ()->control.exception_resume_breakpoint = bp; | |
5996 | } | |
5997 | ||
186c406b TT |
5998 | /* This is called when an exception has been intercepted. Check to |
5999 | see whether the exception's destination is of interest, and if so, | |
6000 | set an exception resume breakpoint there. */ | |
6001 | ||
6002 | static void | |
6003 | check_exception_resume (struct execution_control_state *ecs, | |
28106bc2 | 6004 | struct frame_info *frame) |
186c406b | 6005 | { |
bfd189b1 | 6006 | volatile struct gdb_exception e; |
729662a5 | 6007 | struct bound_probe probe; |
28106bc2 SDJ |
6008 | struct symbol *func; |
6009 | ||
6010 | /* First see if this exception unwinding breakpoint was set via a | |
6011 | SystemTap probe point. If so, the probe has two arguments: the | |
6012 | CFA and the HANDLER. We ignore the CFA, extract the handler, and | |
6013 | set a breakpoint there. */ | |
6bac7473 | 6014 | probe = find_probe_by_pc (get_frame_pc (frame)); |
729662a5 | 6015 | if (probe.probe) |
28106bc2 | 6016 | { |
729662a5 | 6017 | insert_exception_resume_from_probe (ecs->event_thread, &probe, frame); |
28106bc2 SDJ |
6018 | return; |
6019 | } | |
6020 | ||
6021 | func = get_frame_function (frame); | |
6022 | if (!func) | |
6023 | return; | |
186c406b TT |
6024 | |
6025 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6026 | { | |
3977b71f | 6027 | const struct block *b; |
8157b174 | 6028 | struct block_iterator iter; |
186c406b TT |
6029 | struct symbol *sym; |
6030 | int argno = 0; | |
6031 | ||
6032 | /* The exception breakpoint is a thread-specific breakpoint on | |
6033 | the unwinder's debug hook, declared as: | |
6034 | ||
6035 | void _Unwind_DebugHook (void *cfa, void *handler); | |
6036 | ||
6037 | The CFA argument indicates the frame to which control is | |
6038 | about to be transferred. HANDLER is the destination PC. | |
6039 | ||
6040 | We ignore the CFA and set a temporary breakpoint at HANDLER. | |
6041 | This is not extremely efficient but it avoids issues in gdb | |
6042 | with computing the DWARF CFA, and it also works even in weird | |
6043 | cases such as throwing an exception from inside a signal | |
6044 | handler. */ | |
6045 | ||
6046 | b = SYMBOL_BLOCK_VALUE (func); | |
6047 | ALL_BLOCK_SYMBOLS (b, iter, sym) | |
6048 | { | |
6049 | if (!SYMBOL_IS_ARGUMENT (sym)) | |
6050 | continue; | |
6051 | ||
6052 | if (argno == 0) | |
6053 | ++argno; | |
6054 | else | |
6055 | { | |
6056 | insert_exception_resume_breakpoint (ecs->event_thread, | |
6057 | b, frame, sym); | |
6058 | break; | |
6059 | } | |
6060 | } | |
6061 | } | |
6062 | } | |
6063 | ||
104c1213 | 6064 | static void |
22bcd14b | 6065 | stop_waiting (struct execution_control_state *ecs) |
104c1213 | 6066 | { |
527159b7 | 6067 | if (debug_infrun) |
22bcd14b | 6068 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n"); |
527159b7 | 6069 | |
31e77af2 PA |
6070 | clear_step_over_info (); |
6071 | ||
cd0fc7c3 SS |
6072 | /* Let callers know we don't want to wait for the inferior anymore. */ |
6073 | ecs->wait_some_more = 0; | |
6074 | } | |
6075 | ||
a9ba6bae PA |
6076 | /* Called when we should continue running the inferior, because the |
6077 | current event doesn't cause a user visible stop. This does the | |
6078 | resuming part; waiting for the next event is done elsewhere. */ | |
d4f3574e SS |
6079 | |
6080 | static void | |
6081 | keep_going (struct execution_control_state *ecs) | |
6082 | { | |
c4dbc9af PA |
6083 | /* Make sure normal_stop is called if we get a QUIT handled before |
6084 | reaching resume. */ | |
6085 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); | |
6086 | ||
d4f3574e | 6087 | /* Save the pc before execution, to compare with pc after stop. */ |
fb14de7b UW |
6088 | ecs->event_thread->prev_pc |
6089 | = regcache_read_pc (get_thread_regcache (ecs->ptid)); | |
d4f3574e | 6090 | |
16c381f0 | 6091 | if (ecs->event_thread->control.trap_expected |
a493e3e2 | 6092 | && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP) |
d4f3574e | 6093 | { |
a9ba6bae PA |
6094 | /* We haven't yet gotten our trap, and either: intercepted a |
6095 | non-signal event (e.g., a fork); or took a signal which we | |
6096 | are supposed to pass through to the inferior. Simply | |
6097 | continue. */ | |
c4dbc9af | 6098 | discard_cleanups (old_cleanups); |
2020b7ab | 6099 | resume (currently_stepping (ecs->event_thread), |
16c381f0 | 6100 | ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
6101 | } |
6102 | else | |
6103 | { | |
31e77af2 PA |
6104 | volatile struct gdb_exception e; |
6105 | struct regcache *regcache = get_current_regcache (); | |
963f9c80 PA |
6106 | int remove_bp; |
6107 | int remove_wps; | |
31e77af2 | 6108 | |
d4f3574e | 6109 | /* Either the trap was not expected, but we are continuing |
a9ba6bae PA |
6110 | anyway (if we got a signal, the user asked it be passed to |
6111 | the child) | |
6112 | -- or -- | |
6113 | We got our expected trap, but decided we should resume from | |
6114 | it. | |
d4f3574e | 6115 | |
a9ba6bae | 6116 | We're going to run this baby now! |
d4f3574e | 6117 | |
c36b740a VP |
6118 | Note that insert_breakpoints won't try to re-insert |
6119 | already inserted breakpoints. Therefore, we don't | |
6120 | care if breakpoints were already inserted, or not. */ | |
a9ba6bae | 6121 | |
31e77af2 PA |
6122 | /* If we need to step over a breakpoint, and we're not using |
6123 | displaced stepping to do so, insert all breakpoints | |
6124 | (watchpoints, etc.) but the one we're stepping over, step one | |
6125 | instruction, and then re-insert the breakpoint when that step | |
6126 | is finished. */ | |
963f9c80 PA |
6127 | |
6128 | remove_bp = (ecs->hit_singlestep_breakpoint | |
6129 | || thread_still_needs_step_over (ecs->event_thread)); | |
6130 | remove_wps = (ecs->event_thread->stepping_over_watchpoint | |
6131 | && !target_have_steppable_watchpoint); | |
6132 | ||
6133 | if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache))) | |
45e8c884 | 6134 | { |
31e77af2 | 6135 | set_step_over_info (get_regcache_aspace (regcache), |
963f9c80 | 6136 | regcache_read_pc (regcache), remove_wps); |
45e8c884 | 6137 | } |
963f9c80 PA |
6138 | else if (remove_wps) |
6139 | set_step_over_info (NULL, 0, remove_wps); | |
45e8c884 | 6140 | else |
31e77af2 | 6141 | clear_step_over_info (); |
abbb1732 | 6142 | |
31e77af2 PA |
6143 | /* Stop stepping if inserting breakpoints fails. */ |
6144 | TRY_CATCH (e, RETURN_MASK_ERROR) | |
6145 | { | |
6146 | insert_breakpoints (); | |
6147 | } | |
6148 | if (e.reason < 0) | |
6149 | { | |
6150 | exception_print (gdb_stderr, e); | |
22bcd14b | 6151 | stop_waiting (ecs); |
31e77af2 | 6152 | return; |
d4f3574e SS |
6153 | } |
6154 | ||
963f9c80 | 6155 | ecs->event_thread->control.trap_expected = (remove_bp || remove_wps); |
d4f3574e | 6156 | |
a9ba6bae PA |
6157 | /* Do not deliver GDB_SIGNAL_TRAP (except when the user |
6158 | explicitly specifies that such a signal should be delivered | |
6159 | to the target program). Typically, that would occur when a | |
6160 | user is debugging a target monitor on a simulator: the target | |
6161 | monitor sets a breakpoint; the simulator encounters this | |
6162 | breakpoint and halts the simulation handing control to GDB; | |
6163 | GDB, noting that the stop address doesn't map to any known | |
6164 | breakpoint, returns control back to the simulator; the | |
6165 | simulator then delivers the hardware equivalent of a | |
6166 | GDB_SIGNAL_TRAP to the program being debugged. */ | |
a493e3e2 | 6167 | if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP |
16c381f0 | 6168 | && !signal_program[ecs->event_thread->suspend.stop_signal]) |
a493e3e2 | 6169 | ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0; |
d4f3574e | 6170 | |
c4dbc9af | 6171 | discard_cleanups (old_cleanups); |
2020b7ab | 6172 | resume (currently_stepping (ecs->event_thread), |
16c381f0 | 6173 | ecs->event_thread->suspend.stop_signal); |
d4f3574e SS |
6174 | } |
6175 | ||
488f131b | 6176 | prepare_to_wait (ecs); |
d4f3574e SS |
6177 | } |
6178 | ||
104c1213 JM |
6179 | /* This function normally comes after a resume, before |
6180 | handle_inferior_event exits. It takes care of any last bits of | |
6181 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 6182 | |
104c1213 JM |
6183 | static void |
6184 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 6185 | { |
527159b7 | 6186 | if (debug_infrun) |
8a9de0e4 | 6187 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 | 6188 | |
104c1213 JM |
6189 | /* This is the old end of the while loop. Let everybody know we |
6190 | want to wait for the inferior some more and get called again | |
6191 | soon. */ | |
6192 | ecs->wait_some_more = 1; | |
c906108c | 6193 | } |
11cf8741 | 6194 | |
fd664c91 | 6195 | /* We are done with the step range of a step/next/si/ni command. |
b57bacec | 6196 | Called once for each n of a "step n" operation. */ |
fd664c91 PA |
6197 | |
6198 | static void | |
bdc36728 | 6199 | end_stepping_range (struct execution_control_state *ecs) |
fd664c91 | 6200 | { |
bdc36728 | 6201 | ecs->event_thread->control.stop_step = 1; |
bdc36728 | 6202 | stop_waiting (ecs); |
fd664c91 PA |
6203 | } |
6204 | ||
33d62d64 JK |
6205 | /* Several print_*_reason functions to print why the inferior has stopped. |
6206 | We always print something when the inferior exits, or receives a signal. | |
6207 | The rest of the cases are dealt with later on in normal_stop and | |
6208 | print_it_typical. Ideally there should be a call to one of these | |
6209 | print_*_reason functions functions from handle_inferior_event each time | |
22bcd14b | 6210 | stop_waiting is called. |
33d62d64 | 6211 | |
fd664c91 PA |
6212 | Note that we don't call these directly, instead we delegate that to |
6213 | the interpreters, through observers. Interpreters then call these | |
6214 | with whatever uiout is right. */ | |
33d62d64 | 6215 | |
fd664c91 PA |
6216 | void |
6217 | print_end_stepping_range_reason (struct ui_out *uiout) | |
33d62d64 | 6218 | { |
fd664c91 | 6219 | /* For CLI-like interpreters, print nothing. */ |
33d62d64 | 6220 | |
fd664c91 PA |
6221 | if (ui_out_is_mi_like_p (uiout)) |
6222 | { | |
6223 | ui_out_field_string (uiout, "reason", | |
6224 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
6225 | } | |
6226 | } | |
33d62d64 | 6227 | |
fd664c91 PA |
6228 | void |
6229 | print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
11cf8741 | 6230 | { |
33d62d64 JK |
6231 | annotate_signalled (); |
6232 | if (ui_out_is_mi_like_p (uiout)) | |
6233 | ui_out_field_string | |
6234 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
6235 | ui_out_text (uiout, "\nProgram terminated with signal "); | |
6236 | annotate_signal_name (); | |
6237 | ui_out_field_string (uiout, "signal-name", | |
2ea28649 | 6238 | gdb_signal_to_name (siggnal)); |
33d62d64 JK |
6239 | annotate_signal_name_end (); |
6240 | ui_out_text (uiout, ", "); | |
6241 | annotate_signal_string (); | |
6242 | ui_out_field_string (uiout, "signal-meaning", | |
2ea28649 | 6243 | gdb_signal_to_string (siggnal)); |
33d62d64 JK |
6244 | annotate_signal_string_end (); |
6245 | ui_out_text (uiout, ".\n"); | |
6246 | ui_out_text (uiout, "The program no longer exists.\n"); | |
6247 | } | |
6248 | ||
fd664c91 PA |
6249 | void |
6250 | print_exited_reason (struct ui_out *uiout, int exitstatus) | |
33d62d64 | 6251 | { |
fda326dd TT |
6252 | struct inferior *inf = current_inferior (); |
6253 | const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid)); | |
6254 | ||
33d62d64 JK |
6255 | annotate_exited (exitstatus); |
6256 | if (exitstatus) | |
6257 | { | |
6258 | if (ui_out_is_mi_like_p (uiout)) | |
6259 | ui_out_field_string (uiout, "reason", | |
6260 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
fda326dd TT |
6261 | ui_out_text (uiout, "[Inferior "); |
6262 | ui_out_text (uiout, plongest (inf->num)); | |
6263 | ui_out_text (uiout, " ("); | |
6264 | ui_out_text (uiout, pidstr); | |
6265 | ui_out_text (uiout, ") exited with code "); | |
33d62d64 | 6266 | ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus); |
fda326dd | 6267 | ui_out_text (uiout, "]\n"); |
33d62d64 JK |
6268 | } |
6269 | else | |
11cf8741 | 6270 | { |
9dc5e2a9 | 6271 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f | 6272 | ui_out_field_string |
33d62d64 | 6273 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); |
fda326dd TT |
6274 | ui_out_text (uiout, "[Inferior "); |
6275 | ui_out_text (uiout, plongest (inf->num)); | |
6276 | ui_out_text (uiout, " ("); | |
6277 | ui_out_text (uiout, pidstr); | |
6278 | ui_out_text (uiout, ") exited normally]\n"); | |
33d62d64 | 6279 | } |
33d62d64 JK |
6280 | } |
6281 | ||
fd664c91 PA |
6282 | void |
6283 | print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal) | |
33d62d64 JK |
6284 | { |
6285 | annotate_signal (); | |
6286 | ||
a493e3e2 | 6287 | if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout)) |
33d62d64 JK |
6288 | { |
6289 | struct thread_info *t = inferior_thread (); | |
6290 | ||
6291 | ui_out_text (uiout, "\n["); | |
6292 | ui_out_field_string (uiout, "thread-name", | |
6293 | target_pid_to_str (t->ptid)); | |
6294 | ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num); | |
6295 | ui_out_text (uiout, " stopped"); | |
6296 | } | |
6297 | else | |
6298 | { | |
6299 | ui_out_text (uiout, "\nProgram received signal "); | |
8b93c638 | 6300 | annotate_signal_name (); |
33d62d64 JK |
6301 | if (ui_out_is_mi_like_p (uiout)) |
6302 | ui_out_field_string | |
6303 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b | 6304 | ui_out_field_string (uiout, "signal-name", |
2ea28649 | 6305 | gdb_signal_to_name (siggnal)); |
8b93c638 JM |
6306 | annotate_signal_name_end (); |
6307 | ui_out_text (uiout, ", "); | |
6308 | annotate_signal_string (); | |
488f131b | 6309 | ui_out_field_string (uiout, "signal-meaning", |
2ea28649 | 6310 | gdb_signal_to_string (siggnal)); |
8b93c638 | 6311 | annotate_signal_string_end (); |
33d62d64 JK |
6312 | } |
6313 | ui_out_text (uiout, ".\n"); | |
6314 | } | |
252fbfc8 | 6315 | |
fd664c91 PA |
6316 | void |
6317 | print_no_history_reason (struct ui_out *uiout) | |
33d62d64 | 6318 | { |
fd664c91 | 6319 | ui_out_text (uiout, "\nNo more reverse-execution history.\n"); |
11cf8741 | 6320 | } |
43ff13b4 | 6321 | |
0c7e1a46 PA |
6322 | /* Print current location without a level number, if we have changed |
6323 | functions or hit a breakpoint. Print source line if we have one. | |
6324 | bpstat_print contains the logic deciding in detail what to print, | |
6325 | based on the event(s) that just occurred. */ | |
6326 | ||
6327 | void | |
6328 | print_stop_event (struct target_waitstatus *ws) | |
6329 | { | |
6330 | int bpstat_ret; | |
6331 | int source_flag; | |
6332 | int do_frame_printing = 1; | |
6333 | struct thread_info *tp = inferior_thread (); | |
6334 | ||
6335 | bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind); | |
6336 | switch (bpstat_ret) | |
6337 | { | |
6338 | case PRINT_UNKNOWN: | |
6339 | /* FIXME: cagney/2002-12-01: Given that a frame ID does (or | |
6340 | should) carry around the function and does (or should) use | |
6341 | that when doing a frame comparison. */ | |
6342 | if (tp->control.stop_step | |
6343 | && frame_id_eq (tp->control.step_frame_id, | |
6344 | get_frame_id (get_current_frame ())) | |
6345 | && step_start_function == find_pc_function (stop_pc)) | |
6346 | { | |
6347 | /* Finished step, just print source line. */ | |
6348 | source_flag = SRC_LINE; | |
6349 | } | |
6350 | else | |
6351 | { | |
6352 | /* Print location and source line. */ | |
6353 | source_flag = SRC_AND_LOC; | |
6354 | } | |
6355 | break; | |
6356 | case PRINT_SRC_AND_LOC: | |
6357 | /* Print location and source line. */ | |
6358 | source_flag = SRC_AND_LOC; | |
6359 | break; | |
6360 | case PRINT_SRC_ONLY: | |
6361 | source_flag = SRC_LINE; | |
6362 | break; | |
6363 | case PRINT_NOTHING: | |
6364 | /* Something bogus. */ | |
6365 | source_flag = SRC_LINE; | |
6366 | do_frame_printing = 0; | |
6367 | break; | |
6368 | default: | |
6369 | internal_error (__FILE__, __LINE__, _("Unknown value.")); | |
6370 | } | |
6371 | ||
6372 | /* The behavior of this routine with respect to the source | |
6373 | flag is: | |
6374 | SRC_LINE: Print only source line | |
6375 | LOCATION: Print only location | |
6376 | SRC_AND_LOC: Print location and source line. */ | |
6377 | if (do_frame_printing) | |
6378 | print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1); | |
6379 | ||
6380 | /* Display the auto-display expressions. */ | |
6381 | do_displays (); | |
6382 | } | |
6383 | ||
c906108c SS |
6384 | /* Here to return control to GDB when the inferior stops for real. |
6385 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
6386 | ||
6387 | STOP_PRINT_FRAME nonzero means print the executing frame | |
6388 | (pc, function, args, file, line number and line text). | |
6389 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
6390 | attempting to insert breakpoints. */ | |
6391 | ||
6392 | void | |
96baa820 | 6393 | normal_stop (void) |
c906108c | 6394 | { |
73b65bb0 DJ |
6395 | struct target_waitstatus last; |
6396 | ptid_t last_ptid; | |
29f49a6a | 6397 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
73b65bb0 DJ |
6398 | |
6399 | get_last_target_status (&last_ptid, &last); | |
6400 | ||
29f49a6a PA |
6401 | /* If an exception is thrown from this point on, make sure to |
6402 | propagate GDB's knowledge of the executing state to the | |
6403 | frontend/user running state. A QUIT is an easy exception to see | |
6404 | here, so do this before any filtered output. */ | |
c35b1492 PA |
6405 | if (!non_stop) |
6406 | make_cleanup (finish_thread_state_cleanup, &minus_one_ptid); | |
6407 | else if (last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
6408 | && last.kind != TARGET_WAITKIND_EXITED |
6409 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c35b1492 | 6410 | make_cleanup (finish_thread_state_cleanup, &inferior_ptid); |
29f49a6a | 6411 | |
b57bacec PA |
6412 | /* As we're presenting a stop, and potentially removing breakpoints, |
6413 | update the thread list so we can tell whether there are threads | |
6414 | running on the target. With target remote, for example, we can | |
6415 | only learn about new threads when we explicitly update the thread | |
6416 | list. Do this before notifying the interpreters about signal | |
6417 | stops, end of stepping ranges, etc., so that the "new thread" | |
6418 | output is emitted before e.g., "Program received signal FOO", | |
6419 | instead of after. */ | |
6420 | update_thread_list (); | |
6421 | ||
6422 | if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal) | |
6423 | observer_notify_signal_received (inferior_thread ()->suspend.stop_signal); | |
6424 | ||
c906108c SS |
6425 | /* As with the notification of thread events, we want to delay |
6426 | notifying the user that we've switched thread context until | |
6427 | the inferior actually stops. | |
6428 | ||
73b65bb0 DJ |
6429 | There's no point in saying anything if the inferior has exited. |
6430 | Note that SIGNALLED here means "exited with a signal", not | |
b65dc60b PA |
6431 | "received a signal". |
6432 | ||
6433 | Also skip saying anything in non-stop mode. In that mode, as we | |
6434 | don't want GDB to switch threads behind the user's back, to avoid | |
6435 | races where the user is typing a command to apply to thread x, | |
6436 | but GDB switches to thread y before the user finishes entering | |
6437 | the command, fetch_inferior_event installs a cleanup to restore | |
6438 | the current thread back to the thread the user had selected right | |
6439 | after this event is handled, so we're not really switching, only | |
6440 | informing of a stop. */ | |
4f8d22e3 PA |
6441 | if (!non_stop |
6442 | && !ptid_equal (previous_inferior_ptid, inferior_ptid) | |
73b65bb0 DJ |
6443 | && target_has_execution |
6444 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
0e5bf2a8 PA |
6445 | && last.kind != TARGET_WAITKIND_EXITED |
6446 | && last.kind != TARGET_WAITKIND_NO_RESUMED) | |
c906108c SS |
6447 | { |
6448 | target_terminal_ours_for_output (); | |
a3f17187 | 6449 | printf_filtered (_("[Switching to %s]\n"), |
c95310c6 | 6450 | target_pid_to_str (inferior_ptid)); |
b8fa951a | 6451 | annotate_thread_changed (); |
39f77062 | 6452 | previous_inferior_ptid = inferior_ptid; |
c906108c | 6453 | } |
c906108c | 6454 | |
0e5bf2a8 PA |
6455 | if (last.kind == TARGET_WAITKIND_NO_RESUMED) |
6456 | { | |
6457 | gdb_assert (sync_execution || !target_can_async_p ()); | |
6458 | ||
6459 | target_terminal_ours_for_output (); | |
6460 | printf_filtered (_("No unwaited-for children left.\n")); | |
6461 | } | |
6462 | ||
b57bacec | 6463 | /* Note: this depends on the update_thread_list call above. */ |
a25a5a45 | 6464 | if (!breakpoints_should_be_inserted_now () && target_has_execution) |
c906108c SS |
6465 | { |
6466 | if (remove_breakpoints ()) | |
6467 | { | |
6468 | target_terminal_ours_for_output (); | |
3e43a32a MS |
6469 | printf_filtered (_("Cannot remove breakpoints because " |
6470 | "program is no longer writable.\nFurther " | |
6471 | "execution is probably impossible.\n")); | |
c906108c SS |
6472 | } |
6473 | } | |
c906108c | 6474 | |
c906108c SS |
6475 | /* If an auto-display called a function and that got a signal, |
6476 | delete that auto-display to avoid an infinite recursion. */ | |
6477 | ||
6478 | if (stopped_by_random_signal) | |
6479 | disable_current_display (); | |
6480 | ||
b57bacec | 6481 | /* Notify observers if we finished a "step"-like command, etc. */ |
af679fd0 PA |
6482 | if (target_has_execution |
6483 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
6484 | && last.kind != TARGET_WAITKIND_EXITED | |
16c381f0 | 6485 | && inferior_thread ()->control.stop_step) |
b57bacec | 6486 | { |
31cc0b80 | 6487 | /* But not if in the middle of doing a "step n" operation for |
b57bacec PA |
6488 | n > 1 */ |
6489 | if (inferior_thread ()->step_multi) | |
6490 | goto done; | |
6491 | ||
6492 | observer_notify_end_stepping_range (); | |
6493 | } | |
c906108c SS |
6494 | |
6495 | target_terminal_ours (); | |
0f641c01 | 6496 | async_enable_stdin (); |
c906108c | 6497 | |
7abfe014 DJ |
6498 | /* Set the current source location. This will also happen if we |
6499 | display the frame below, but the current SAL will be incorrect | |
6500 | during a user hook-stop function. */ | |
d729566a | 6501 | if (has_stack_frames () && !stop_stack_dummy) |
5166082f | 6502 | set_current_sal_from_frame (get_current_frame ()); |
7abfe014 | 6503 | |
251bde03 PA |
6504 | /* Let the user/frontend see the threads as stopped, but do nothing |
6505 | if the thread was running an infcall. We may be e.g., evaluating | |
6506 | a breakpoint condition. In that case, the thread had state | |
6507 | THREAD_RUNNING before the infcall, and shall remain set to | |
6508 | running, all without informing the user/frontend about state | |
6509 | transition changes. If this is actually a call command, then the | |
6510 | thread was originally already stopped, so there's no state to | |
6511 | finish either. */ | |
6512 | if (target_has_execution && inferior_thread ()->control.in_infcall) | |
6513 | discard_cleanups (old_chain); | |
6514 | else | |
6515 | do_cleanups (old_chain); | |
dd7e2d2b PA |
6516 | |
6517 | /* Look up the hook_stop and run it (CLI internally handles problem | |
6518 | of stop_command's pre-hook not existing). */ | |
6519 | if (stop_command) | |
6520 | catch_errors (hook_stop_stub, stop_command, | |
6521 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
6522 | ||
d729566a | 6523 | if (!has_stack_frames ()) |
d51fd4c8 | 6524 | goto done; |
c906108c | 6525 | |
32400beb PA |
6526 | if (last.kind == TARGET_WAITKIND_SIGNALLED |
6527 | || last.kind == TARGET_WAITKIND_EXITED) | |
6528 | goto done; | |
6529 | ||
c906108c SS |
6530 | /* Select innermost stack frame - i.e., current frame is frame 0, |
6531 | and current location is based on that. | |
6532 | Don't do this on return from a stack dummy routine, | |
1777feb0 | 6533 | or if the program has exited. */ |
c906108c SS |
6534 | |
6535 | if (!stop_stack_dummy) | |
6536 | { | |
0f7d239c | 6537 | select_frame (get_current_frame ()); |
c906108c | 6538 | |
d01a8610 AS |
6539 | /* If --batch-silent is enabled then there's no need to print the current |
6540 | source location, and to try risks causing an error message about | |
6541 | missing source files. */ | |
6542 | if (stop_print_frame && !batch_silent) | |
0c7e1a46 | 6543 | print_stop_event (&last); |
c906108c SS |
6544 | } |
6545 | ||
6546 | /* Save the function value return registers, if we care. | |
6547 | We might be about to restore their previous contents. */ | |
9da8c2a0 PA |
6548 | if (inferior_thread ()->control.proceed_to_finish |
6549 | && execution_direction != EXEC_REVERSE) | |
d5c31457 UW |
6550 | { |
6551 | /* This should not be necessary. */ | |
6552 | if (stop_registers) | |
6553 | regcache_xfree (stop_registers); | |
6554 | ||
6555 | /* NB: The copy goes through to the target picking up the value of | |
6556 | all the registers. */ | |
6557 | stop_registers = regcache_dup (get_current_regcache ()); | |
6558 | } | |
c906108c | 6559 | |
aa7d318d | 6560 | if (stop_stack_dummy == STOP_STACK_DUMMY) |
c906108c | 6561 | { |
b89667eb DE |
6562 | /* Pop the empty frame that contains the stack dummy. |
6563 | This also restores inferior state prior to the call | |
16c381f0 | 6564 | (struct infcall_suspend_state). */ |
b89667eb | 6565 | struct frame_info *frame = get_current_frame (); |
abbb1732 | 6566 | |
b89667eb DE |
6567 | gdb_assert (get_frame_type (frame) == DUMMY_FRAME); |
6568 | frame_pop (frame); | |
3e43a32a MS |
6569 | /* frame_pop() calls reinit_frame_cache as the last thing it |
6570 | does which means there's currently no selected frame. We | |
6571 | don't need to re-establish a selected frame if the dummy call | |
6572 | returns normally, that will be done by | |
6573 | restore_infcall_control_state. However, we do have to handle | |
6574 | the case where the dummy call is returning after being | |
6575 | stopped (e.g. the dummy call previously hit a breakpoint). | |
6576 | We can't know which case we have so just always re-establish | |
6577 | a selected frame here. */ | |
0f7d239c | 6578 | select_frame (get_current_frame ()); |
c906108c SS |
6579 | } |
6580 | ||
c906108c SS |
6581 | done: |
6582 | annotate_stopped (); | |
41d2bdb4 PA |
6583 | |
6584 | /* Suppress the stop observer if we're in the middle of: | |
6585 | ||
6586 | - a step n (n > 1), as there still more steps to be done. | |
6587 | ||
6588 | - a "finish" command, as the observer will be called in | |
6589 | finish_command_continuation, so it can include the inferior | |
6590 | function's return value. | |
6591 | ||
6592 | - calling an inferior function, as we pretend we inferior didn't | |
6593 | run at all. The return value of the call is handled by the | |
6594 | expression evaluator, through call_function_by_hand. */ | |
6595 | ||
6596 | if (!target_has_execution | |
6597 | || last.kind == TARGET_WAITKIND_SIGNALLED | |
6598 | || last.kind == TARGET_WAITKIND_EXITED | |
0e5bf2a8 | 6599 | || last.kind == TARGET_WAITKIND_NO_RESUMED |
2ca0b532 PA |
6600 | || (!(inferior_thread ()->step_multi |
6601 | && inferior_thread ()->control.stop_step) | |
16c381f0 JK |
6602 | && !(inferior_thread ()->control.stop_bpstat |
6603 | && inferior_thread ()->control.proceed_to_finish) | |
6604 | && !inferior_thread ()->control.in_infcall)) | |
347bddb7 PA |
6605 | { |
6606 | if (!ptid_equal (inferior_ptid, null_ptid)) | |
16c381f0 | 6607 | observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat, |
1d33d6ba | 6608 | stop_print_frame); |
347bddb7 | 6609 | else |
1d33d6ba | 6610 | observer_notify_normal_stop (NULL, stop_print_frame); |
347bddb7 | 6611 | } |
347bddb7 | 6612 | |
48844aa6 PA |
6613 | if (target_has_execution) |
6614 | { | |
6615 | if (last.kind != TARGET_WAITKIND_SIGNALLED | |
6616 | && last.kind != TARGET_WAITKIND_EXITED) | |
6617 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
6618 | Delete any breakpoint that is to be deleted at the next stop. */ | |
16c381f0 | 6619 | breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat); |
94cc34af | 6620 | } |
6c95b8df PA |
6621 | |
6622 | /* Try to get rid of automatically added inferiors that are no | |
6623 | longer needed. Keeping those around slows down things linearly. | |
6624 | Note that this never removes the current inferior. */ | |
6625 | prune_inferiors (); | |
c906108c SS |
6626 | } |
6627 | ||
6628 | static int | |
96baa820 | 6629 | hook_stop_stub (void *cmd) |
c906108c | 6630 | { |
5913bcb0 | 6631 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
6632 | return (0); |
6633 | } | |
6634 | \f | |
c5aa993b | 6635 | int |
96baa820 | 6636 | signal_stop_state (int signo) |
c906108c | 6637 | { |
d6b48e9c | 6638 | return signal_stop[signo]; |
c906108c SS |
6639 | } |
6640 | ||
c5aa993b | 6641 | int |
96baa820 | 6642 | signal_print_state (int signo) |
c906108c SS |
6643 | { |
6644 | return signal_print[signo]; | |
6645 | } | |
6646 | ||
c5aa993b | 6647 | int |
96baa820 | 6648 | signal_pass_state (int signo) |
c906108c SS |
6649 | { |
6650 | return signal_program[signo]; | |
6651 | } | |
6652 | ||
2455069d UW |
6653 | static void |
6654 | signal_cache_update (int signo) | |
6655 | { | |
6656 | if (signo == -1) | |
6657 | { | |
a493e3e2 | 6658 | for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++) |
2455069d UW |
6659 | signal_cache_update (signo); |
6660 | ||
6661 | return; | |
6662 | } | |
6663 | ||
6664 | signal_pass[signo] = (signal_stop[signo] == 0 | |
6665 | && signal_print[signo] == 0 | |
ab04a2af TT |
6666 | && signal_program[signo] == 1 |
6667 | && signal_catch[signo] == 0); | |
2455069d UW |
6668 | } |
6669 | ||
488f131b | 6670 | int |
7bda5e4a | 6671 | signal_stop_update (int signo, int state) |
d4f3574e SS |
6672 | { |
6673 | int ret = signal_stop[signo]; | |
abbb1732 | 6674 | |
d4f3574e | 6675 | signal_stop[signo] = state; |
2455069d | 6676 | signal_cache_update (signo); |
d4f3574e SS |
6677 | return ret; |
6678 | } | |
6679 | ||
488f131b | 6680 | int |
7bda5e4a | 6681 | signal_print_update (int signo, int state) |
d4f3574e SS |
6682 | { |
6683 | int ret = signal_print[signo]; | |
abbb1732 | 6684 | |
d4f3574e | 6685 | signal_print[signo] = state; |
2455069d | 6686 | signal_cache_update (signo); |
d4f3574e SS |
6687 | return ret; |
6688 | } | |
6689 | ||
488f131b | 6690 | int |
7bda5e4a | 6691 | signal_pass_update (int signo, int state) |
d4f3574e SS |
6692 | { |
6693 | int ret = signal_program[signo]; | |
abbb1732 | 6694 | |
d4f3574e | 6695 | signal_program[signo] = state; |
2455069d | 6696 | signal_cache_update (signo); |
d4f3574e SS |
6697 | return ret; |
6698 | } | |
6699 | ||
ab04a2af TT |
6700 | /* Update the global 'signal_catch' from INFO and notify the |
6701 | target. */ | |
6702 | ||
6703 | void | |
6704 | signal_catch_update (const unsigned int *info) | |
6705 | { | |
6706 | int i; | |
6707 | ||
6708 | for (i = 0; i < GDB_SIGNAL_LAST; ++i) | |
6709 | signal_catch[i] = info[i] > 0; | |
6710 | signal_cache_update (-1); | |
6711 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); | |
6712 | } | |
6713 | ||
c906108c | 6714 | static void |
96baa820 | 6715 | sig_print_header (void) |
c906108c | 6716 | { |
3e43a32a MS |
6717 | printf_filtered (_("Signal Stop\tPrint\tPass " |
6718 | "to program\tDescription\n")); | |
c906108c SS |
6719 | } |
6720 | ||
6721 | static void | |
2ea28649 | 6722 | sig_print_info (enum gdb_signal oursig) |
c906108c | 6723 | { |
2ea28649 | 6724 | const char *name = gdb_signal_to_name (oursig); |
c906108c | 6725 | int name_padding = 13 - strlen (name); |
96baa820 | 6726 | |
c906108c SS |
6727 | if (name_padding <= 0) |
6728 | name_padding = 0; | |
6729 | ||
6730 | printf_filtered ("%s", name); | |
488f131b | 6731 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
6732 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
6733 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
6734 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
2ea28649 | 6735 | printf_filtered ("%s\n", gdb_signal_to_string (oursig)); |
c906108c SS |
6736 | } |
6737 | ||
6738 | /* Specify how various signals in the inferior should be handled. */ | |
6739 | ||
6740 | static void | |
96baa820 | 6741 | handle_command (char *args, int from_tty) |
c906108c SS |
6742 | { |
6743 | char **argv; | |
6744 | int digits, wordlen; | |
6745 | int sigfirst, signum, siglast; | |
2ea28649 | 6746 | enum gdb_signal oursig; |
c906108c SS |
6747 | int allsigs; |
6748 | int nsigs; | |
6749 | unsigned char *sigs; | |
6750 | struct cleanup *old_chain; | |
6751 | ||
6752 | if (args == NULL) | |
6753 | { | |
e2e0b3e5 | 6754 | error_no_arg (_("signal to handle")); |
c906108c SS |
6755 | } |
6756 | ||
1777feb0 | 6757 | /* Allocate and zero an array of flags for which signals to handle. */ |
c906108c | 6758 | |
a493e3e2 | 6759 | nsigs = (int) GDB_SIGNAL_LAST; |
c906108c SS |
6760 | sigs = (unsigned char *) alloca (nsigs); |
6761 | memset (sigs, 0, nsigs); | |
6762 | ||
1777feb0 | 6763 | /* Break the command line up into args. */ |
c906108c | 6764 | |
d1a41061 | 6765 | argv = gdb_buildargv (args); |
7a292a7a | 6766 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
6767 | |
6768 | /* Walk through the args, looking for signal oursigs, signal names, and | |
6769 | actions. Signal numbers and signal names may be interspersed with | |
6770 | actions, with the actions being performed for all signals cumulatively | |
1777feb0 | 6771 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ |
c906108c SS |
6772 | |
6773 | while (*argv != NULL) | |
6774 | { | |
6775 | wordlen = strlen (*argv); | |
6776 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
6777 | {; | |
6778 | } | |
6779 | allsigs = 0; | |
6780 | sigfirst = siglast = -1; | |
6781 | ||
6782 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
6783 | { | |
6784 | /* Apply action to all signals except those used by the | |
1777feb0 | 6785 | debugger. Silently skip those. */ |
c906108c SS |
6786 | allsigs = 1; |
6787 | sigfirst = 0; | |
6788 | siglast = nsigs - 1; | |
6789 | } | |
6790 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
6791 | { | |
6792 | SET_SIGS (nsigs, sigs, signal_stop); | |
6793 | SET_SIGS (nsigs, sigs, signal_print); | |
6794 | } | |
6795 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
6796 | { | |
6797 | UNSET_SIGS (nsigs, sigs, signal_program); | |
6798 | } | |
6799 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
6800 | { | |
6801 | SET_SIGS (nsigs, sigs, signal_print); | |
6802 | } | |
6803 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
6804 | { | |
6805 | SET_SIGS (nsigs, sigs, signal_program); | |
6806 | } | |
6807 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
6808 | { | |
6809 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
6810 | } | |
6811 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
6812 | { | |
6813 | SET_SIGS (nsigs, sigs, signal_program); | |
6814 | } | |
6815 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
6816 | { | |
6817 | UNSET_SIGS (nsigs, sigs, signal_print); | |
6818 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
6819 | } | |
6820 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
6821 | { | |
6822 | UNSET_SIGS (nsigs, sigs, signal_program); | |
6823 | } | |
6824 | else if (digits > 0) | |
6825 | { | |
6826 | /* It is numeric. The numeric signal refers to our own | |
6827 | internal signal numbering from target.h, not to host/target | |
6828 | signal number. This is a feature; users really should be | |
6829 | using symbolic names anyway, and the common ones like | |
6830 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
6831 | ||
6832 | sigfirst = siglast = (int) | |
2ea28649 | 6833 | gdb_signal_from_command (atoi (*argv)); |
c906108c SS |
6834 | if ((*argv)[digits] == '-') |
6835 | { | |
6836 | siglast = (int) | |
2ea28649 | 6837 | gdb_signal_from_command (atoi ((*argv) + digits + 1)); |
c906108c SS |
6838 | } |
6839 | if (sigfirst > siglast) | |
6840 | { | |
1777feb0 | 6841 | /* Bet he didn't figure we'd think of this case... */ |
c906108c SS |
6842 | signum = sigfirst; |
6843 | sigfirst = siglast; | |
6844 | siglast = signum; | |
6845 | } | |
6846 | } | |
6847 | else | |
6848 | { | |
2ea28649 | 6849 | oursig = gdb_signal_from_name (*argv); |
a493e3e2 | 6850 | if (oursig != GDB_SIGNAL_UNKNOWN) |
c906108c SS |
6851 | { |
6852 | sigfirst = siglast = (int) oursig; | |
6853 | } | |
6854 | else | |
6855 | { | |
6856 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 6857 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
6858 | } |
6859 | } | |
6860 | ||
6861 | /* If any signal numbers or symbol names were found, set flags for | |
1777feb0 | 6862 | which signals to apply actions to. */ |
c906108c SS |
6863 | |
6864 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
6865 | { | |
2ea28649 | 6866 | switch ((enum gdb_signal) signum) |
c906108c | 6867 | { |
a493e3e2 PA |
6868 | case GDB_SIGNAL_TRAP: |
6869 | case GDB_SIGNAL_INT: | |
c906108c SS |
6870 | if (!allsigs && !sigs[signum]) |
6871 | { | |
9e2f0ad4 | 6872 | if (query (_("%s is used by the debugger.\n\ |
3e43a32a | 6873 | Are you sure you want to change it? "), |
2ea28649 | 6874 | gdb_signal_to_name ((enum gdb_signal) signum))) |
c906108c SS |
6875 | { |
6876 | sigs[signum] = 1; | |
6877 | } | |
6878 | else | |
6879 | { | |
a3f17187 | 6880 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
6881 | gdb_flush (gdb_stdout); |
6882 | } | |
6883 | } | |
6884 | break; | |
a493e3e2 PA |
6885 | case GDB_SIGNAL_0: |
6886 | case GDB_SIGNAL_DEFAULT: | |
6887 | case GDB_SIGNAL_UNKNOWN: | |
c906108c SS |
6888 | /* Make sure that "all" doesn't print these. */ |
6889 | break; | |
6890 | default: | |
6891 | sigs[signum] = 1; | |
6892 | break; | |
6893 | } | |
6894 | } | |
6895 | ||
6896 | argv++; | |
6897 | } | |
6898 | ||
3a031f65 PA |
6899 | for (signum = 0; signum < nsigs; signum++) |
6900 | if (sigs[signum]) | |
6901 | { | |
2455069d | 6902 | signal_cache_update (-1); |
a493e3e2 PA |
6903 | target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass); |
6904 | target_program_signals ((int) GDB_SIGNAL_LAST, signal_program); | |
c906108c | 6905 | |
3a031f65 PA |
6906 | if (from_tty) |
6907 | { | |
6908 | /* Show the results. */ | |
6909 | sig_print_header (); | |
6910 | for (; signum < nsigs; signum++) | |
6911 | if (sigs[signum]) | |
6912 | sig_print_info (signum); | |
6913 | } | |
6914 | ||
6915 | break; | |
6916 | } | |
c906108c SS |
6917 | |
6918 | do_cleanups (old_chain); | |
6919 | } | |
6920 | ||
de0bea00 MF |
6921 | /* Complete the "handle" command. */ |
6922 | ||
6923 | static VEC (char_ptr) * | |
6924 | handle_completer (struct cmd_list_element *ignore, | |
6f937416 | 6925 | const char *text, const char *word) |
de0bea00 MF |
6926 | { |
6927 | VEC (char_ptr) *vec_signals, *vec_keywords, *return_val; | |
6928 | static const char * const keywords[] = | |
6929 | { | |
6930 | "all", | |
6931 | "stop", | |
6932 | "ignore", | |
6933 | "print", | |
6934 | "pass", | |
6935 | "nostop", | |
6936 | "noignore", | |
6937 | "noprint", | |
6938 | "nopass", | |
6939 | NULL, | |
6940 | }; | |
6941 | ||
6942 | vec_signals = signal_completer (ignore, text, word); | |
6943 | vec_keywords = complete_on_enum (keywords, word, word); | |
6944 | ||
6945 | return_val = VEC_merge (char_ptr, vec_signals, vec_keywords); | |
6946 | VEC_free (char_ptr, vec_signals); | |
6947 | VEC_free (char_ptr, vec_keywords); | |
6948 | return return_val; | |
6949 | } | |
6950 | ||
c906108c | 6951 | static void |
96baa820 | 6952 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
6953 | { |
6954 | char **argv; | |
6955 | struct cleanup *old_chain; | |
6956 | ||
d1a41061 PP |
6957 | if (args == NULL) |
6958 | error_no_arg (_("xdb command")); | |
6959 | ||
1777feb0 | 6960 | /* Break the command line up into args. */ |
c906108c | 6961 | |
d1a41061 | 6962 | argv = gdb_buildargv (args); |
7a292a7a | 6963 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
6964 | if (argv[1] != (char *) NULL) |
6965 | { | |
6966 | char *argBuf; | |
6967 | int bufLen; | |
6968 | ||
6969 | bufLen = strlen (argv[0]) + 20; | |
6970 | argBuf = (char *) xmalloc (bufLen); | |
6971 | if (argBuf) | |
6972 | { | |
6973 | int validFlag = 1; | |
2ea28649 | 6974 | enum gdb_signal oursig; |
c906108c | 6975 | |
2ea28649 | 6976 | oursig = gdb_signal_from_name (argv[0]); |
c906108c SS |
6977 | memset (argBuf, 0, bufLen); |
6978 | if (strcmp (argv[1], "Q") == 0) | |
6979 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
6980 | else | |
6981 | { | |
6982 | if (strcmp (argv[1], "s") == 0) | |
6983 | { | |
6984 | if (!signal_stop[oursig]) | |
6985 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
6986 | else | |
6987 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
6988 | } | |
6989 | else if (strcmp (argv[1], "i") == 0) | |
6990 | { | |
6991 | if (!signal_program[oursig]) | |
6992 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
6993 | else | |
6994 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
6995 | } | |
6996 | else if (strcmp (argv[1], "r") == 0) | |
6997 | { | |
6998 | if (!signal_print[oursig]) | |
6999 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
7000 | else | |
7001 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
7002 | } | |
7003 | else | |
7004 | validFlag = 0; | |
7005 | } | |
7006 | if (validFlag) | |
7007 | handle_command (argBuf, from_tty); | |
7008 | else | |
a3f17187 | 7009 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 7010 | if (argBuf) |
b8c9b27d | 7011 | xfree (argBuf); |
c906108c SS |
7012 | } |
7013 | } | |
7014 | do_cleanups (old_chain); | |
7015 | } | |
7016 | ||
2ea28649 PA |
7017 | enum gdb_signal |
7018 | gdb_signal_from_command (int num) | |
ed01b82c PA |
7019 | { |
7020 | if (num >= 1 && num <= 15) | |
2ea28649 | 7021 | return (enum gdb_signal) num; |
ed01b82c PA |
7022 | error (_("Only signals 1-15 are valid as numeric signals.\n\ |
7023 | Use \"info signals\" for a list of symbolic signals.")); | |
7024 | } | |
7025 | ||
c906108c SS |
7026 | /* Print current contents of the tables set by the handle command. |
7027 | It is possible we should just be printing signals actually used | |
7028 | by the current target (but for things to work right when switching | |
7029 | targets, all signals should be in the signal tables). */ | |
7030 | ||
7031 | static void | |
96baa820 | 7032 | signals_info (char *signum_exp, int from_tty) |
c906108c | 7033 | { |
2ea28649 | 7034 | enum gdb_signal oursig; |
abbb1732 | 7035 | |
c906108c SS |
7036 | sig_print_header (); |
7037 | ||
7038 | if (signum_exp) | |
7039 | { | |
7040 | /* First see if this is a symbol name. */ | |
2ea28649 | 7041 | oursig = gdb_signal_from_name (signum_exp); |
a493e3e2 | 7042 | if (oursig == GDB_SIGNAL_UNKNOWN) |
c906108c SS |
7043 | { |
7044 | /* No, try numeric. */ | |
7045 | oursig = | |
2ea28649 | 7046 | gdb_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
7047 | } |
7048 | sig_print_info (oursig); | |
7049 | return; | |
7050 | } | |
7051 | ||
7052 | printf_filtered ("\n"); | |
7053 | /* These ugly casts brought to you by the native VAX compiler. */ | |
a493e3e2 PA |
7054 | for (oursig = GDB_SIGNAL_FIRST; |
7055 | (int) oursig < (int) GDB_SIGNAL_LAST; | |
2ea28649 | 7056 | oursig = (enum gdb_signal) ((int) oursig + 1)) |
c906108c SS |
7057 | { |
7058 | QUIT; | |
7059 | ||
a493e3e2 PA |
7060 | if (oursig != GDB_SIGNAL_UNKNOWN |
7061 | && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0) | |
c906108c SS |
7062 | sig_print_info (oursig); |
7063 | } | |
7064 | ||
3e43a32a MS |
7065 | printf_filtered (_("\nUse the \"handle\" command " |
7066 | "to change these tables.\n")); | |
c906108c | 7067 | } |
4aa995e1 | 7068 | |
c709acd1 PA |
7069 | /* Check if it makes sense to read $_siginfo from the current thread |
7070 | at this point. If not, throw an error. */ | |
7071 | ||
7072 | static void | |
7073 | validate_siginfo_access (void) | |
7074 | { | |
7075 | /* No current inferior, no siginfo. */ | |
7076 | if (ptid_equal (inferior_ptid, null_ptid)) | |
7077 | error (_("No thread selected.")); | |
7078 | ||
7079 | /* Don't try to read from a dead thread. */ | |
7080 | if (is_exited (inferior_ptid)) | |
7081 | error (_("The current thread has terminated")); | |
7082 | ||
7083 | /* ... or from a spinning thread. */ | |
7084 | if (is_running (inferior_ptid)) | |
7085 | error (_("Selected thread is running.")); | |
7086 | } | |
7087 | ||
4aa995e1 PA |
7088 | /* The $_siginfo convenience variable is a bit special. We don't know |
7089 | for sure the type of the value until we actually have a chance to | |
7a9dd1b2 | 7090 | fetch the data. The type can change depending on gdbarch, so it is |
4aa995e1 PA |
7091 | also dependent on which thread you have selected. |
7092 | ||
7093 | 1. making $_siginfo be an internalvar that creates a new value on | |
7094 | access. | |
7095 | ||
7096 | 2. making the value of $_siginfo be an lval_computed value. */ | |
7097 | ||
7098 | /* This function implements the lval_computed support for reading a | |
7099 | $_siginfo value. */ | |
7100 | ||
7101 | static void | |
7102 | siginfo_value_read (struct value *v) | |
7103 | { | |
7104 | LONGEST transferred; | |
7105 | ||
c709acd1 PA |
7106 | validate_siginfo_access (); |
7107 | ||
4aa995e1 PA |
7108 | transferred = |
7109 | target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, | |
7110 | NULL, | |
7111 | value_contents_all_raw (v), | |
7112 | value_offset (v), | |
7113 | TYPE_LENGTH (value_type (v))); | |
7114 | ||
7115 | if (transferred != TYPE_LENGTH (value_type (v))) | |
7116 | error (_("Unable to read siginfo")); | |
7117 | } | |
7118 | ||
7119 | /* This function implements the lval_computed support for writing a | |
7120 | $_siginfo value. */ | |
7121 | ||
7122 | static void | |
7123 | siginfo_value_write (struct value *v, struct value *fromval) | |
7124 | { | |
7125 | LONGEST transferred; | |
7126 | ||
c709acd1 PA |
7127 | validate_siginfo_access (); |
7128 | ||
4aa995e1 PA |
7129 | transferred = target_write (¤t_target, |
7130 | TARGET_OBJECT_SIGNAL_INFO, | |
7131 | NULL, | |
7132 | value_contents_all_raw (fromval), | |
7133 | value_offset (v), | |
7134 | TYPE_LENGTH (value_type (fromval))); | |
7135 | ||
7136 | if (transferred != TYPE_LENGTH (value_type (fromval))) | |
7137 | error (_("Unable to write siginfo")); | |
7138 | } | |
7139 | ||
c8f2448a | 7140 | static const struct lval_funcs siginfo_value_funcs = |
4aa995e1 PA |
7141 | { |
7142 | siginfo_value_read, | |
7143 | siginfo_value_write | |
7144 | }; | |
7145 | ||
7146 | /* Return a new value with the correct type for the siginfo object of | |
78267919 UW |
7147 | the current thread using architecture GDBARCH. Return a void value |
7148 | if there's no object available. */ | |
4aa995e1 | 7149 | |
2c0b251b | 7150 | static struct value * |
22d2b532 SDJ |
7151 | siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var, |
7152 | void *ignore) | |
4aa995e1 | 7153 | { |
4aa995e1 | 7154 | if (target_has_stack |
78267919 UW |
7155 | && !ptid_equal (inferior_ptid, null_ptid) |
7156 | && gdbarch_get_siginfo_type_p (gdbarch)) | |
4aa995e1 | 7157 | { |
78267919 | 7158 | struct type *type = gdbarch_get_siginfo_type (gdbarch); |
abbb1732 | 7159 | |
78267919 | 7160 | return allocate_computed_value (type, &siginfo_value_funcs, NULL); |
4aa995e1 PA |
7161 | } |
7162 | ||
78267919 | 7163 | return allocate_value (builtin_type (gdbarch)->builtin_void); |
4aa995e1 PA |
7164 | } |
7165 | ||
c906108c | 7166 | \f |
16c381f0 JK |
7167 | /* infcall_suspend_state contains state about the program itself like its |
7168 | registers and any signal it received when it last stopped. | |
7169 | This state must be restored regardless of how the inferior function call | |
7170 | ends (either successfully, or after it hits a breakpoint or signal) | |
7171 | if the program is to properly continue where it left off. */ | |
7172 | ||
7173 | struct infcall_suspend_state | |
7a292a7a | 7174 | { |
16c381f0 | 7175 | struct thread_suspend_state thread_suspend; |
dd80ea3c | 7176 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 7177 | struct inferior_suspend_state inferior_suspend; |
dd80ea3c | 7178 | #endif |
16c381f0 JK |
7179 | |
7180 | /* Other fields: */ | |
7a292a7a | 7181 | CORE_ADDR stop_pc; |
b89667eb | 7182 | struct regcache *registers; |
1736ad11 | 7183 | |
35515841 | 7184 | /* Format of SIGINFO_DATA or NULL if it is not present. */ |
1736ad11 JK |
7185 | struct gdbarch *siginfo_gdbarch; |
7186 | ||
7187 | /* The inferior format depends on SIGINFO_GDBARCH and it has a length of | |
7188 | TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the | |
7189 | content would be invalid. */ | |
7190 | gdb_byte *siginfo_data; | |
b89667eb DE |
7191 | }; |
7192 | ||
16c381f0 JK |
7193 | struct infcall_suspend_state * |
7194 | save_infcall_suspend_state (void) | |
b89667eb | 7195 | { |
16c381f0 | 7196 | struct infcall_suspend_state *inf_state; |
b89667eb | 7197 | struct thread_info *tp = inferior_thread (); |
974a734b | 7198 | #if 0 |
16c381f0 | 7199 | struct inferior *inf = current_inferior (); |
974a734b | 7200 | #endif |
1736ad11 JK |
7201 | struct regcache *regcache = get_current_regcache (); |
7202 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
7203 | gdb_byte *siginfo_data = NULL; | |
7204 | ||
7205 | if (gdbarch_get_siginfo_type_p (gdbarch)) | |
7206 | { | |
7207 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
7208 | size_t len = TYPE_LENGTH (type); | |
7209 | struct cleanup *back_to; | |
7210 | ||
7211 | siginfo_data = xmalloc (len); | |
7212 | back_to = make_cleanup (xfree, siginfo_data); | |
7213 | ||
7214 | if (target_read (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
7215 | siginfo_data, 0, len) == len) | |
7216 | discard_cleanups (back_to); | |
7217 | else | |
7218 | { | |
7219 | /* Errors ignored. */ | |
7220 | do_cleanups (back_to); | |
7221 | siginfo_data = NULL; | |
7222 | } | |
7223 | } | |
7224 | ||
41bf6aca | 7225 | inf_state = XCNEW (struct infcall_suspend_state); |
1736ad11 JK |
7226 | |
7227 | if (siginfo_data) | |
7228 | { | |
7229 | inf_state->siginfo_gdbarch = gdbarch; | |
7230 | inf_state->siginfo_data = siginfo_data; | |
7231 | } | |
b89667eb | 7232 | |
16c381f0 | 7233 | inf_state->thread_suspend = tp->suspend; |
dd80ea3c | 7234 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 7235 | inf_state->inferior_suspend = inf->suspend; |
dd80ea3c | 7236 | #endif |
16c381f0 | 7237 | |
35515841 | 7238 | /* run_inferior_call will not use the signal due to its `proceed' call with |
a493e3e2 PA |
7239 | GDB_SIGNAL_0 anyway. */ |
7240 | tp->suspend.stop_signal = GDB_SIGNAL_0; | |
35515841 | 7241 | |
b89667eb DE |
7242 | inf_state->stop_pc = stop_pc; |
7243 | ||
1736ad11 | 7244 | inf_state->registers = regcache_dup (regcache); |
b89667eb DE |
7245 | |
7246 | return inf_state; | |
7247 | } | |
7248 | ||
7249 | /* Restore inferior session state to INF_STATE. */ | |
7250 | ||
7251 | void | |
16c381f0 | 7252 | restore_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
7253 | { |
7254 | struct thread_info *tp = inferior_thread (); | |
974a734b | 7255 | #if 0 |
16c381f0 | 7256 | struct inferior *inf = current_inferior (); |
974a734b | 7257 | #endif |
1736ad11 JK |
7258 | struct regcache *regcache = get_current_regcache (); |
7259 | struct gdbarch *gdbarch = get_regcache_arch (regcache); | |
b89667eb | 7260 | |
16c381f0 | 7261 | tp->suspend = inf_state->thread_suspend; |
dd80ea3c | 7262 | #if 0 /* Currently unused and empty structures are not valid C. */ |
16c381f0 | 7263 | inf->suspend = inf_state->inferior_suspend; |
dd80ea3c | 7264 | #endif |
16c381f0 | 7265 | |
b89667eb DE |
7266 | stop_pc = inf_state->stop_pc; |
7267 | ||
1736ad11 JK |
7268 | if (inf_state->siginfo_gdbarch == gdbarch) |
7269 | { | |
7270 | struct type *type = gdbarch_get_siginfo_type (gdbarch); | |
1736ad11 JK |
7271 | |
7272 | /* Errors ignored. */ | |
7273 | target_write (¤t_target, TARGET_OBJECT_SIGNAL_INFO, NULL, | |
6acef6cd | 7274 | inf_state->siginfo_data, 0, TYPE_LENGTH (type)); |
1736ad11 JK |
7275 | } |
7276 | ||
b89667eb DE |
7277 | /* The inferior can be gone if the user types "print exit(0)" |
7278 | (and perhaps other times). */ | |
7279 | if (target_has_execution) | |
7280 | /* NB: The register write goes through to the target. */ | |
1736ad11 | 7281 | regcache_cpy (regcache, inf_state->registers); |
803b5f95 | 7282 | |
16c381f0 | 7283 | discard_infcall_suspend_state (inf_state); |
b89667eb DE |
7284 | } |
7285 | ||
7286 | static void | |
16c381f0 | 7287 | do_restore_infcall_suspend_state_cleanup (void *state) |
b89667eb | 7288 | { |
16c381f0 | 7289 | restore_infcall_suspend_state (state); |
b89667eb DE |
7290 | } |
7291 | ||
7292 | struct cleanup * | |
16c381f0 JK |
7293 | make_cleanup_restore_infcall_suspend_state |
7294 | (struct infcall_suspend_state *inf_state) | |
b89667eb | 7295 | { |
16c381f0 | 7296 | return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state); |
b89667eb DE |
7297 | } |
7298 | ||
7299 | void | |
16c381f0 | 7300 | discard_infcall_suspend_state (struct infcall_suspend_state *inf_state) |
b89667eb DE |
7301 | { |
7302 | regcache_xfree (inf_state->registers); | |
803b5f95 | 7303 | xfree (inf_state->siginfo_data); |
b89667eb DE |
7304 | xfree (inf_state); |
7305 | } | |
7306 | ||
7307 | struct regcache * | |
16c381f0 | 7308 | get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state) |
b89667eb DE |
7309 | { |
7310 | return inf_state->registers; | |
7311 | } | |
7312 | ||
16c381f0 JK |
7313 | /* infcall_control_state contains state regarding gdb's control of the |
7314 | inferior itself like stepping control. It also contains session state like | |
7315 | the user's currently selected frame. */ | |
b89667eb | 7316 | |
16c381f0 | 7317 | struct infcall_control_state |
b89667eb | 7318 | { |
16c381f0 JK |
7319 | struct thread_control_state thread_control; |
7320 | struct inferior_control_state inferior_control; | |
d82142e2 JK |
7321 | |
7322 | /* Other fields: */ | |
7323 | enum stop_stack_kind stop_stack_dummy; | |
7324 | int stopped_by_random_signal; | |
7a292a7a | 7325 | int stop_after_trap; |
7a292a7a | 7326 | |
b89667eb | 7327 | /* ID if the selected frame when the inferior function call was made. */ |
101dcfbe | 7328 | struct frame_id selected_frame_id; |
7a292a7a SS |
7329 | }; |
7330 | ||
c906108c | 7331 | /* Save all of the information associated with the inferior<==>gdb |
b89667eb | 7332 | connection. */ |
c906108c | 7333 | |
16c381f0 JK |
7334 | struct infcall_control_state * |
7335 | save_infcall_control_state (void) | |
c906108c | 7336 | { |
16c381f0 | 7337 | struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status)); |
4e1c45ea | 7338 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 7339 | struct inferior *inf = current_inferior (); |
7a292a7a | 7340 | |
16c381f0 JK |
7341 | inf_status->thread_control = tp->control; |
7342 | inf_status->inferior_control = inf->control; | |
d82142e2 | 7343 | |
8358c15c | 7344 | tp->control.step_resume_breakpoint = NULL; |
5b79abe7 | 7345 | tp->control.exception_resume_breakpoint = NULL; |
8358c15c | 7346 | |
16c381f0 JK |
7347 | /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of |
7348 | chain. If caller's caller is walking the chain, they'll be happier if we | |
7349 | hand them back the original chain when restore_infcall_control_state is | |
7350 | called. */ | |
7351 | tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat); | |
d82142e2 JK |
7352 | |
7353 | /* Other fields: */ | |
7354 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
7355 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
7356 | inf_status->stop_after_trap = stop_after_trap; | |
c5aa993b | 7357 | |
206415a3 | 7358 | inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL)); |
b89667eb | 7359 | |
7a292a7a | 7360 | return inf_status; |
c906108c SS |
7361 | } |
7362 | ||
c906108c | 7363 | static int |
96baa820 | 7364 | restore_selected_frame (void *args) |
c906108c | 7365 | { |
488f131b | 7366 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 7367 | struct frame_info *frame; |
c906108c | 7368 | |
101dcfbe | 7369 | frame = frame_find_by_id (*fid); |
c906108c | 7370 | |
aa0cd9c1 AC |
7371 | /* If inf_status->selected_frame_id is NULL, there was no previously |
7372 | selected frame. */ | |
101dcfbe | 7373 | if (frame == NULL) |
c906108c | 7374 | { |
8a3fe4f8 | 7375 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
7376 | return 0; |
7377 | } | |
7378 | ||
0f7d239c | 7379 | select_frame (frame); |
c906108c SS |
7380 | |
7381 | return (1); | |
7382 | } | |
7383 | ||
b89667eb DE |
7384 | /* Restore inferior session state to INF_STATUS. */ |
7385 | ||
c906108c | 7386 | void |
16c381f0 | 7387 | restore_infcall_control_state (struct infcall_control_state *inf_status) |
c906108c | 7388 | { |
4e1c45ea | 7389 | struct thread_info *tp = inferior_thread (); |
d6b48e9c | 7390 | struct inferior *inf = current_inferior (); |
4e1c45ea | 7391 | |
8358c15c JK |
7392 | if (tp->control.step_resume_breakpoint) |
7393 | tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop; | |
7394 | ||
5b79abe7 TT |
7395 | if (tp->control.exception_resume_breakpoint) |
7396 | tp->control.exception_resume_breakpoint->disposition | |
7397 | = disp_del_at_next_stop; | |
7398 | ||
d82142e2 | 7399 | /* Handle the bpstat_copy of the chain. */ |
16c381f0 | 7400 | bpstat_clear (&tp->control.stop_bpstat); |
d82142e2 | 7401 | |
16c381f0 JK |
7402 | tp->control = inf_status->thread_control; |
7403 | inf->control = inf_status->inferior_control; | |
d82142e2 JK |
7404 | |
7405 | /* Other fields: */ | |
7406 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
7407 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
7408 | stop_after_trap = inf_status->stop_after_trap; | |
c906108c | 7409 | |
b89667eb | 7410 | if (target_has_stack) |
c906108c | 7411 | { |
c906108c | 7412 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
7413 | walking the stack might encounter a garbage pointer and |
7414 | error() trying to dereference it. */ | |
488f131b JB |
7415 | if (catch_errors |
7416 | (restore_selected_frame, &inf_status->selected_frame_id, | |
7417 | "Unable to restore previously selected frame:\n", | |
7418 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
7419 | /* Error in restoring the selected frame. Select the innermost |
7420 | frame. */ | |
0f7d239c | 7421 | select_frame (get_current_frame ()); |
c906108c | 7422 | } |
c906108c | 7423 | |
72cec141 | 7424 | xfree (inf_status); |
7a292a7a | 7425 | } |
c906108c | 7426 | |
74b7792f | 7427 | static void |
16c381f0 | 7428 | do_restore_infcall_control_state_cleanup (void *sts) |
74b7792f | 7429 | { |
16c381f0 | 7430 | restore_infcall_control_state (sts); |
74b7792f AC |
7431 | } |
7432 | ||
7433 | struct cleanup * | |
16c381f0 JK |
7434 | make_cleanup_restore_infcall_control_state |
7435 | (struct infcall_control_state *inf_status) | |
74b7792f | 7436 | { |
16c381f0 | 7437 | return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status); |
74b7792f AC |
7438 | } |
7439 | ||
c906108c | 7440 | void |
16c381f0 | 7441 | discard_infcall_control_state (struct infcall_control_state *inf_status) |
7a292a7a | 7442 | { |
8358c15c JK |
7443 | if (inf_status->thread_control.step_resume_breakpoint) |
7444 | inf_status->thread_control.step_resume_breakpoint->disposition | |
7445 | = disp_del_at_next_stop; | |
7446 | ||
5b79abe7 TT |
7447 | if (inf_status->thread_control.exception_resume_breakpoint) |
7448 | inf_status->thread_control.exception_resume_breakpoint->disposition | |
7449 | = disp_del_at_next_stop; | |
7450 | ||
1777feb0 | 7451 | /* See save_infcall_control_state for info on stop_bpstat. */ |
16c381f0 | 7452 | bpstat_clear (&inf_status->thread_control.stop_bpstat); |
8358c15c | 7453 | |
72cec141 | 7454 | xfree (inf_status); |
7a292a7a | 7455 | } |
b89667eb | 7456 | \f |
ca6724c1 KB |
7457 | /* restore_inferior_ptid() will be used by the cleanup machinery |
7458 | to restore the inferior_ptid value saved in a call to | |
7459 | save_inferior_ptid(). */ | |
ce696e05 KB |
7460 | |
7461 | static void | |
7462 | restore_inferior_ptid (void *arg) | |
7463 | { | |
7464 | ptid_t *saved_ptid_ptr = arg; | |
abbb1732 | 7465 | |
ce696e05 KB |
7466 | inferior_ptid = *saved_ptid_ptr; |
7467 | xfree (arg); | |
7468 | } | |
7469 | ||
7470 | /* Save the value of inferior_ptid so that it may be restored by a | |
7471 | later call to do_cleanups(). Returns the struct cleanup pointer | |
7472 | needed for later doing the cleanup. */ | |
7473 | ||
7474 | struct cleanup * | |
7475 | save_inferior_ptid (void) | |
7476 | { | |
7477 | ptid_t *saved_ptid_ptr; | |
7478 | ||
7479 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
7480 | *saved_ptid_ptr = inferior_ptid; | |
7481 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
7482 | } | |
0c557179 | 7483 | |
7f89fd65 | 7484 | /* See infrun.h. */ |
0c557179 SDJ |
7485 | |
7486 | void | |
7487 | clear_exit_convenience_vars (void) | |
7488 | { | |
7489 | clear_internalvar (lookup_internalvar ("_exitsignal")); | |
7490 | clear_internalvar (lookup_internalvar ("_exitcode")); | |
7491 | } | |
c5aa993b | 7492 | \f |
488f131b | 7493 | |
b2175913 MS |
7494 | /* User interface for reverse debugging: |
7495 | Set exec-direction / show exec-direction commands | |
7496 | (returns error unless target implements to_set_exec_direction method). */ | |
7497 | ||
32231432 | 7498 | int execution_direction = EXEC_FORWARD; |
b2175913 MS |
7499 | static const char exec_forward[] = "forward"; |
7500 | static const char exec_reverse[] = "reverse"; | |
7501 | static const char *exec_direction = exec_forward; | |
40478521 | 7502 | static const char *const exec_direction_names[] = { |
b2175913 MS |
7503 | exec_forward, |
7504 | exec_reverse, | |
7505 | NULL | |
7506 | }; | |
7507 | ||
7508 | static void | |
7509 | set_exec_direction_func (char *args, int from_tty, | |
7510 | struct cmd_list_element *cmd) | |
7511 | { | |
7512 | if (target_can_execute_reverse) | |
7513 | { | |
7514 | if (!strcmp (exec_direction, exec_forward)) | |
7515 | execution_direction = EXEC_FORWARD; | |
7516 | else if (!strcmp (exec_direction, exec_reverse)) | |
7517 | execution_direction = EXEC_REVERSE; | |
7518 | } | |
8bbed405 MS |
7519 | else |
7520 | { | |
7521 | exec_direction = exec_forward; | |
7522 | error (_("Target does not support this operation.")); | |
7523 | } | |
b2175913 MS |
7524 | } |
7525 | ||
7526 | static void | |
7527 | show_exec_direction_func (struct ui_file *out, int from_tty, | |
7528 | struct cmd_list_element *cmd, const char *value) | |
7529 | { | |
7530 | switch (execution_direction) { | |
7531 | case EXEC_FORWARD: | |
7532 | fprintf_filtered (out, _("Forward.\n")); | |
7533 | break; | |
7534 | case EXEC_REVERSE: | |
7535 | fprintf_filtered (out, _("Reverse.\n")); | |
7536 | break; | |
b2175913 | 7537 | default: |
d8b34453 PA |
7538 | internal_error (__FILE__, __LINE__, |
7539 | _("bogus execution_direction value: %d"), | |
7540 | (int) execution_direction); | |
b2175913 MS |
7541 | } |
7542 | } | |
7543 | ||
d4db2f36 PA |
7544 | static void |
7545 | show_schedule_multiple (struct ui_file *file, int from_tty, | |
7546 | struct cmd_list_element *c, const char *value) | |
7547 | { | |
3e43a32a MS |
7548 | fprintf_filtered (file, _("Resuming the execution of threads " |
7549 | "of all processes is %s.\n"), value); | |
d4db2f36 | 7550 | } |
ad52ddc6 | 7551 | |
22d2b532 SDJ |
7552 | /* Implementation of `siginfo' variable. */ |
7553 | ||
7554 | static const struct internalvar_funcs siginfo_funcs = | |
7555 | { | |
7556 | siginfo_make_value, | |
7557 | NULL, | |
7558 | NULL | |
7559 | }; | |
7560 | ||
c906108c | 7561 | void |
96baa820 | 7562 | _initialize_infrun (void) |
c906108c | 7563 | { |
52f0bd74 AC |
7564 | int i; |
7565 | int numsigs; | |
de0bea00 | 7566 | struct cmd_list_element *c; |
c906108c | 7567 | |
1bedd215 AC |
7568 | add_info ("signals", signals_info, _("\ |
7569 | What debugger does when program gets various signals.\n\ | |
7570 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
7571 | add_info_alias ("handle", "signals", 0); |
7572 | ||
de0bea00 | 7573 | c = add_com ("handle", class_run, handle_command, _("\ |
dfbd5e7b | 7574 | Specify how to handle signals.\n\ |
486c7739 | 7575 | Usage: handle SIGNAL [ACTIONS]\n\ |
c906108c | 7576 | Args are signals and actions to apply to those signals.\n\ |
dfbd5e7b | 7577 | If no actions are specified, the current settings for the specified signals\n\ |
486c7739 MF |
7578 | will be displayed instead.\n\ |
7579 | \n\ | |
c906108c SS |
7580 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ |
7581 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
7582 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
7583 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 7584 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
486c7739 | 7585 | \n\ |
1bedd215 | 7586 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ |
c906108c SS |
7587 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
7588 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
7589 | Print means print a message if this signal happens.\n\ | |
7590 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
7591 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
dfbd5e7b PA |
7592 | Pass and Stop may be combined.\n\ |
7593 | \n\ | |
7594 | Multiple signals may be specified. Signal numbers and signal names\n\ | |
7595 | may be interspersed with actions, with the actions being performed for\n\ | |
7596 | all signals cumulatively specified.")); | |
de0bea00 | 7597 | set_cmd_completer (c, handle_completer); |
486c7739 | 7598 | |
c906108c SS |
7599 | if (xdb_commands) |
7600 | { | |
1bedd215 AC |
7601 | add_com ("lz", class_info, signals_info, _("\ |
7602 | What debugger does when program gets various signals.\n\ | |
7603 | Specify a signal as argument to print info on that signal only.")); | |
7604 | add_com ("z", class_run, xdb_handle_command, _("\ | |
7605 | Specify how to handle a signal.\n\ | |
c906108c SS |
7606 | Args are signals and actions to apply to those signals.\n\ |
7607 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
7608 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
7609 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
7610 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 | 7611 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
cce7e648 | 7612 | Recognized actions include \"s\" (toggles between stop and nostop),\n\ |
c906108c SS |
7613 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
7614 | nopass), \"Q\" (noprint)\n\ | |
7615 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
7616 | Print means print a message if this signal happens.\n\ | |
7617 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
7618 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 7619 | Pass and Stop may be combined.")); |
c906108c SS |
7620 | } |
7621 | ||
7622 | if (!dbx_commands) | |
1a966eab AC |
7623 | stop_command = add_cmd ("stop", class_obscure, |
7624 | not_just_help_class_command, _("\ | |
7625 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 7626 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 7627 | of the program stops."), &cmdlist); |
c906108c | 7628 | |
ccce17b0 | 7629 | add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
85c07804 AC |
7630 | Set inferior debugging."), _("\ |
7631 | Show inferior debugging."), _("\ | |
7632 | When non-zero, inferior specific debugging is enabled."), | |
ccce17b0 YQ |
7633 | NULL, |
7634 | show_debug_infrun, | |
7635 | &setdebuglist, &showdebuglist); | |
527159b7 | 7636 | |
3e43a32a MS |
7637 | add_setshow_boolean_cmd ("displaced", class_maintenance, |
7638 | &debug_displaced, _("\ | |
237fc4c9 PA |
7639 | Set displaced stepping debugging."), _("\ |
7640 | Show displaced stepping debugging."), _("\ | |
7641 | When non-zero, displaced stepping specific debugging is enabled."), | |
7642 | NULL, | |
7643 | show_debug_displaced, | |
7644 | &setdebuglist, &showdebuglist); | |
7645 | ||
ad52ddc6 PA |
7646 | add_setshow_boolean_cmd ("non-stop", no_class, |
7647 | &non_stop_1, _("\ | |
7648 | Set whether gdb controls the inferior in non-stop mode."), _("\ | |
7649 | Show whether gdb controls the inferior in non-stop mode."), _("\ | |
7650 | When debugging a multi-threaded program and this setting is\n\ | |
7651 | off (the default, also called all-stop mode), when one thread stops\n\ | |
7652 | (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\ | |
7653 | all other threads in the program while you interact with the thread of\n\ | |
7654 | interest. When you continue or step a thread, you can allow the other\n\ | |
7655 | threads to run, or have them remain stopped, but while you inspect any\n\ | |
7656 | thread's state, all threads stop.\n\ | |
7657 | \n\ | |
7658 | In non-stop mode, when one thread stops, other threads can continue\n\ | |
7659 | to run freely. You'll be able to step each thread independently,\n\ | |
7660 | leave it stopped or free to run as needed."), | |
7661 | set_non_stop, | |
7662 | show_non_stop, | |
7663 | &setlist, | |
7664 | &showlist); | |
7665 | ||
a493e3e2 | 7666 | numsigs = (int) GDB_SIGNAL_LAST; |
488f131b | 7667 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
7668 | signal_print = (unsigned char *) |
7669 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
7670 | signal_program = (unsigned char *) | |
7671 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
ab04a2af TT |
7672 | signal_catch = (unsigned char *) |
7673 | xmalloc (sizeof (signal_catch[0]) * numsigs); | |
2455069d | 7674 | signal_pass = (unsigned char *) |
4395285e | 7675 | xmalloc (sizeof (signal_pass[0]) * numsigs); |
c906108c SS |
7676 | for (i = 0; i < numsigs; i++) |
7677 | { | |
7678 | signal_stop[i] = 1; | |
7679 | signal_print[i] = 1; | |
7680 | signal_program[i] = 1; | |
ab04a2af | 7681 | signal_catch[i] = 0; |
c906108c SS |
7682 | } |
7683 | ||
7684 | /* Signals caused by debugger's own actions | |
7685 | should not be given to the program afterwards. */ | |
a493e3e2 PA |
7686 | signal_program[GDB_SIGNAL_TRAP] = 0; |
7687 | signal_program[GDB_SIGNAL_INT] = 0; | |
c906108c SS |
7688 | |
7689 | /* Signals that are not errors should not normally enter the debugger. */ | |
a493e3e2 PA |
7690 | signal_stop[GDB_SIGNAL_ALRM] = 0; |
7691 | signal_print[GDB_SIGNAL_ALRM] = 0; | |
7692 | signal_stop[GDB_SIGNAL_VTALRM] = 0; | |
7693 | signal_print[GDB_SIGNAL_VTALRM] = 0; | |
7694 | signal_stop[GDB_SIGNAL_PROF] = 0; | |
7695 | signal_print[GDB_SIGNAL_PROF] = 0; | |
7696 | signal_stop[GDB_SIGNAL_CHLD] = 0; | |
7697 | signal_print[GDB_SIGNAL_CHLD] = 0; | |
7698 | signal_stop[GDB_SIGNAL_IO] = 0; | |
7699 | signal_print[GDB_SIGNAL_IO] = 0; | |
7700 | signal_stop[GDB_SIGNAL_POLL] = 0; | |
7701 | signal_print[GDB_SIGNAL_POLL] = 0; | |
7702 | signal_stop[GDB_SIGNAL_URG] = 0; | |
7703 | signal_print[GDB_SIGNAL_URG] = 0; | |
7704 | signal_stop[GDB_SIGNAL_WINCH] = 0; | |
7705 | signal_print[GDB_SIGNAL_WINCH] = 0; | |
7706 | signal_stop[GDB_SIGNAL_PRIO] = 0; | |
7707 | signal_print[GDB_SIGNAL_PRIO] = 0; | |
c906108c | 7708 | |
cd0fc7c3 SS |
7709 | /* These signals are used internally by user-level thread |
7710 | implementations. (See signal(5) on Solaris.) Like the above | |
7711 | signals, a healthy program receives and handles them as part of | |
7712 | its normal operation. */ | |
a493e3e2 PA |
7713 | signal_stop[GDB_SIGNAL_LWP] = 0; |
7714 | signal_print[GDB_SIGNAL_LWP] = 0; | |
7715 | signal_stop[GDB_SIGNAL_WAITING] = 0; | |
7716 | signal_print[GDB_SIGNAL_WAITING] = 0; | |
7717 | signal_stop[GDB_SIGNAL_CANCEL] = 0; | |
7718 | signal_print[GDB_SIGNAL_CANCEL] = 0; | |
cd0fc7c3 | 7719 | |
2455069d UW |
7720 | /* Update cached state. */ |
7721 | signal_cache_update (-1); | |
7722 | ||
85c07804 AC |
7723 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
7724 | &stop_on_solib_events, _("\ | |
7725 | Set stopping for shared library events."), _("\ | |
7726 | Show stopping for shared library events."), _("\ | |
c906108c SS |
7727 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
7728 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 | 7729 | to the user would be loading/unloading of a new library."), |
f9e14852 | 7730 | set_stop_on_solib_events, |
920d2a44 | 7731 | show_stop_on_solib_events, |
85c07804 | 7732 | &setlist, &showlist); |
c906108c | 7733 | |
7ab04401 AC |
7734 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
7735 | follow_fork_mode_kind_names, | |
7736 | &follow_fork_mode_string, _("\ | |
7737 | Set debugger response to a program call of fork or vfork."), _("\ | |
7738 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
7739 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
7740 | parent - the original process is debugged after a fork\n\ | |
7741 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 7742 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
7743 | By default, the debugger will follow the parent process."), |
7744 | NULL, | |
920d2a44 | 7745 | show_follow_fork_mode_string, |
7ab04401 AC |
7746 | &setlist, &showlist); |
7747 | ||
6c95b8df PA |
7748 | add_setshow_enum_cmd ("follow-exec-mode", class_run, |
7749 | follow_exec_mode_names, | |
7750 | &follow_exec_mode_string, _("\ | |
7751 | Set debugger response to a program call of exec."), _("\ | |
7752 | Show debugger response to a program call of exec."), _("\ | |
7753 | An exec call replaces the program image of a process.\n\ | |
7754 | \n\ | |
7755 | follow-exec-mode can be:\n\ | |
7756 | \n\ | |
cce7e648 | 7757 | new - the debugger creates a new inferior and rebinds the process\n\ |
6c95b8df PA |
7758 | to this new inferior. The program the process was running before\n\ |
7759 | the exec call can be restarted afterwards by restarting the original\n\ | |
7760 | inferior.\n\ | |
7761 | \n\ | |
7762 | same - the debugger keeps the process bound to the same inferior.\n\ | |
7763 | The new executable image replaces the previous executable loaded in\n\ | |
7764 | the inferior. Restarting the inferior after the exec call restarts\n\ | |
7765 | the executable the process was running after the exec call.\n\ | |
7766 | \n\ | |
7767 | By default, the debugger will use the same inferior."), | |
7768 | NULL, | |
7769 | show_follow_exec_mode_string, | |
7770 | &setlist, &showlist); | |
7771 | ||
7ab04401 AC |
7772 | add_setshow_enum_cmd ("scheduler-locking", class_run, |
7773 | scheduler_enums, &scheduler_mode, _("\ | |
7774 | Set mode for locking scheduler during execution."), _("\ | |
7775 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
7776 | off == no locking (threads may preempt at any time)\n\ |
7777 | on == full locking (no thread except the current thread may run)\n\ | |
7778 | step == scheduler locked during every single-step operation.\n\ | |
7779 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
7780 | Other threads may run while stepping over a function call ('next')."), |
7781 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 7782 | show_scheduler_mode, |
7ab04401 | 7783 | &setlist, &showlist); |
5fbbeb29 | 7784 | |
d4db2f36 PA |
7785 | add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\ |
7786 | Set mode for resuming threads of all processes."), _("\ | |
7787 | Show mode for resuming threads of all processes."), _("\ | |
7788 | When on, execution commands (such as 'continue' or 'next') resume all\n\ | |
7789 | threads of all processes. When off (which is the default), execution\n\ | |
7790 | commands only resume the threads of the current process. The set of\n\ | |
7791 | threads that are resumed is further refined by the scheduler-locking\n\ | |
7792 | mode (see help set scheduler-locking)."), | |
7793 | NULL, | |
7794 | show_schedule_multiple, | |
7795 | &setlist, &showlist); | |
7796 | ||
5bf193a2 AC |
7797 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
7798 | Set mode of the step operation."), _("\ | |
7799 | Show mode of the step operation."), _("\ | |
7800 | When set, doing a step over a function without debug line information\n\ | |
7801 | will stop at the first instruction of that function. Otherwise, the\n\ | |
7802 | function is skipped and the step command stops at a different source line."), | |
7803 | NULL, | |
920d2a44 | 7804 | show_step_stop_if_no_debug, |
5bf193a2 | 7805 | &setlist, &showlist); |
ca6724c1 | 7806 | |
72d0e2c5 YQ |
7807 | add_setshow_auto_boolean_cmd ("displaced-stepping", class_run, |
7808 | &can_use_displaced_stepping, _("\ | |
237fc4c9 PA |
7809 | Set debugger's willingness to use displaced stepping."), _("\ |
7810 | Show debugger's willingness to use displaced stepping."), _("\ | |
fff08868 HZ |
7811 | If on, gdb will use displaced stepping to step over breakpoints if it is\n\ |
7812 | supported by the target architecture. If off, gdb will not use displaced\n\ | |
7813 | stepping to step over breakpoints, even if such is supported by the target\n\ | |
7814 | architecture. If auto (which is the default), gdb will use displaced stepping\n\ | |
7815 | if the target architecture supports it and non-stop mode is active, but will not\n\ | |
7816 | use it in all-stop mode (see help set non-stop)."), | |
72d0e2c5 YQ |
7817 | NULL, |
7818 | show_can_use_displaced_stepping, | |
7819 | &setlist, &showlist); | |
237fc4c9 | 7820 | |
b2175913 MS |
7821 | add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names, |
7822 | &exec_direction, _("Set direction of execution.\n\ | |
7823 | Options are 'forward' or 'reverse'."), | |
7824 | _("Show direction of execution (forward/reverse)."), | |
7825 | _("Tells gdb whether to execute forward or backward."), | |
7826 | set_exec_direction_func, show_exec_direction_func, | |
7827 | &setlist, &showlist); | |
7828 | ||
6c95b8df PA |
7829 | /* Set/show detach-on-fork: user-settable mode. */ |
7830 | ||
7831 | add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\ | |
7832 | Set whether gdb will detach the child of a fork."), _("\ | |
7833 | Show whether gdb will detach the child of a fork."), _("\ | |
7834 | Tells gdb whether to detach the child of a fork."), | |
7835 | NULL, NULL, &setlist, &showlist); | |
7836 | ||
03583c20 UW |
7837 | /* Set/show disable address space randomization mode. */ |
7838 | ||
7839 | add_setshow_boolean_cmd ("disable-randomization", class_support, | |
7840 | &disable_randomization, _("\ | |
7841 | Set disabling of debuggee's virtual address space randomization."), _("\ | |
7842 | Show disabling of debuggee's virtual address space randomization."), _("\ | |
7843 | When this mode is on (which is the default), randomization of the virtual\n\ | |
7844 | address space is disabled. Standalone programs run with the randomization\n\ | |
7845 | enabled by default on some platforms."), | |
7846 | &set_disable_randomization, | |
7847 | &show_disable_randomization, | |
7848 | &setlist, &showlist); | |
7849 | ||
ca6724c1 | 7850 | /* ptid initializations */ |
ca6724c1 KB |
7851 | inferior_ptid = null_ptid; |
7852 | target_last_wait_ptid = minus_one_ptid; | |
5231c1fd PA |
7853 | |
7854 | observer_attach_thread_ptid_changed (infrun_thread_ptid_changed); | |
252fbfc8 | 7855 | observer_attach_thread_stop_requested (infrun_thread_stop_requested); |
a07daef3 | 7856 | observer_attach_thread_exit (infrun_thread_thread_exit); |
fc1cf338 | 7857 | observer_attach_inferior_exit (infrun_inferior_exit); |
4aa995e1 PA |
7858 | |
7859 | /* Explicitly create without lookup, since that tries to create a | |
7860 | value with a void typed value, and when we get here, gdbarch | |
7861 | isn't initialized yet. At this point, we're quite sure there | |
7862 | isn't another convenience variable of the same name. */ | |
22d2b532 | 7863 | create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL); |
d914c394 SS |
7864 | |
7865 | add_setshow_boolean_cmd ("observer", no_class, | |
7866 | &observer_mode_1, _("\ | |
7867 | Set whether gdb controls the inferior in observer mode."), _("\ | |
7868 | Show whether gdb controls the inferior in observer mode."), _("\ | |
7869 | In observer mode, GDB can get data from the inferior, but not\n\ | |
7870 | affect its execution. Registers and memory may not be changed,\n\ | |
7871 | breakpoints may not be set, and the program cannot be interrupted\n\ | |
7872 | or signalled."), | |
7873 | set_observer_mode, | |
7874 | show_observer_mode, | |
7875 | &setlist, | |
7876 | &showlist); | |
c906108c | 7877 | } |