2002-01-23 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
c906108c 1/* Target-struct-independent code to start (run) and stop an inferior process.
8926118c
AC
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include <ctype.h>
27#include "symtab.h"
28#include "frame.h"
29#include "inferior.h"
30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
c906108c
SS
44
45/* Prototypes for local functions */
46
96baa820 47static void signals_info (char *, int);
c906108c 48
96baa820 49static void handle_command (char *, int);
c906108c 50
96baa820 51static void sig_print_info (enum target_signal);
c906108c 52
96baa820 53static void sig_print_header (void);
c906108c 54
74b7792f 55static void resume_cleanups (void *);
c906108c 56
96baa820 57static int hook_stop_stub (void *);
c906108c 58
96baa820 59static void delete_breakpoint_current_contents (void *);
c906108c 60
96baa820
JM
61static void set_follow_fork_mode_command (char *arg, int from_tty,
62 struct cmd_list_element * c);
7a292a7a 63
96baa820
JM
64static struct inferior_status *xmalloc_inferior_status (void);
65
66static void free_inferior_status (struct inferior_status *);
67
68static int restore_selected_frame (void *);
69
70static void build_infrun (void);
71
72static void follow_inferior_fork (int parent_pid, int child_pid,
73 int has_forked, int has_vforked);
74
75static void follow_fork (int parent_pid, int child_pid);
76
77static void follow_vfork (int parent_pid, int child_pid);
78
79static void set_schedlock_func (char *args, int from_tty,
80 struct cmd_list_element * c);
81
96baa820
JM
82struct execution_control_state;
83
84static int currently_stepping (struct execution_control_state *ecs);
85
86static void xdb_handle_command (char *args, int from_tty);
87
88void _initialize_infrun (void);
43ff13b4 89
c906108c
SS
90int inferior_ignoring_startup_exec_events = 0;
91int inferior_ignoring_leading_exec_events = 0;
92
5fbbeb29
CF
93/* When set, stop the 'step' command if we enter a function which has
94 no line number information. The normal behavior is that we step
95 over such function. */
96int step_stop_if_no_debug = 0;
97
43ff13b4 98/* In asynchronous mode, but simulating synchronous execution. */
96baa820 99
43ff13b4
JM
100int sync_execution = 0;
101
c906108c
SS
102/* wait_for_inferior and normal_stop use this to notify the user
103 when the inferior stopped in a different thread than it had been
96baa820
JM
104 running in. */
105
39f77062 106static ptid_t previous_inferior_ptid;
7a292a7a
SS
107
108/* This is true for configurations that may follow through execl() and
109 similar functions. At present this is only true for HP-UX native. */
110
111#ifndef MAY_FOLLOW_EXEC
112#define MAY_FOLLOW_EXEC (0)
c906108c
SS
113#endif
114
7a292a7a
SS
115static int may_follow_exec = MAY_FOLLOW_EXEC;
116
c906108c
SS
117/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
118 program. It needs to examine the jmp_buf argument and extract the PC
119 from it. The return value is non-zero on success, zero otherwise. */
120
121#ifndef GET_LONGJMP_TARGET
122#define GET_LONGJMP_TARGET(PC_ADDR) 0
123#endif
124
125
c906108c
SS
126/* Dynamic function trampolines are similar to solib trampolines in that they
127 are between the caller and the callee. The difference is that when you
128 enter a dynamic trampoline, you can't determine the callee's address. Some
129 (usually complex) code needs to run in the dynamic trampoline to figure out
130 the callee's address. This macro is usually called twice. First, when we
131 enter the trampoline (looks like a normal function call at that point). It
132 should return the PC of a point within the trampoline where the callee's
133 address is known. Second, when we hit the breakpoint, this routine returns
134 the callee's address. At that point, things proceed as per a step resume
135 breakpoint. */
136
137#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
138#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
139#endif
140
d4f3574e
SS
141/* If the program uses ELF-style shared libraries, then calls to
142 functions in shared libraries go through stubs, which live in a
143 table called the PLT (Procedure Linkage Table). The first time the
144 function is called, the stub sends control to the dynamic linker,
145 which looks up the function's real address, patches the stub so
146 that future calls will go directly to the function, and then passes
147 control to the function.
148
149 If we are stepping at the source level, we don't want to see any of
150 this --- we just want to skip over the stub and the dynamic linker.
151 The simple approach is to single-step until control leaves the
152 dynamic linker.
153
154 However, on some systems (e.g., Red Hat Linux 5.2) the dynamic
155 linker calls functions in the shared C library, so you can't tell
156 from the PC alone whether the dynamic linker is still running. In
157 this case, we use a step-resume breakpoint to get us past the
158 dynamic linker, as if we were using "next" to step over a function
159 call.
160
161 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
162 linker code or not. Normally, this means we single-step. However,
163 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
164 address where we can place a step-resume breakpoint to get past the
165 linker's symbol resolution function.
166
167 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
168 pretty portable way, by comparing the PC against the address ranges
169 of the dynamic linker's sections.
170
171 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
172 it depends on internal details of the dynamic linker. It's usually
173 not too hard to figure out where to put a breakpoint, but it
174 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
175 sanity checking. If it can't figure things out, returning zero and
176 getting the (possibly confusing) stepping behavior is better than
177 signalling an error, which will obscure the change in the
178 inferior's state. */
c906108c
SS
179
180#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
181#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
182#endif
183
d4f3574e
SS
184#ifndef SKIP_SOLIB_RESOLVER
185#define SKIP_SOLIB_RESOLVER(pc) 0
186#endif
187
c906108c
SS
188/* In some shared library schemes, the return path from a shared library
189 call may need to go through a trampoline too. */
190
191#ifndef IN_SOLIB_RETURN_TRAMPOLINE
192#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
193#endif
194
195/* This function returns TRUE if pc is the address of an instruction
196 that lies within the dynamic linker (such as the event hook, or the
197 dld itself).
198
199 This function must be used only when a dynamic linker event has
200 been caught, and the inferior is being stepped out of the hook, or
201 undefined results are guaranteed. */
202
203#ifndef SOLIB_IN_DYNAMIC_LINKER
204#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
205#endif
206
207/* On MIPS16, a function that returns a floating point value may call
208 a library helper function to copy the return value to a floating point
209 register. The IGNORE_HELPER_CALL macro returns non-zero if we
210 should ignore (i.e. step over) this function call. */
211#ifndef IGNORE_HELPER_CALL
212#define IGNORE_HELPER_CALL(pc) 0
213#endif
214
215/* On some systems, the PC may be left pointing at an instruction that won't
216 actually be executed. This is usually indicated by a bit in the PSW. If
217 we find ourselves in such a state, then we step the target beyond the
218 nullified instruction before returning control to the user so as to avoid
219 confusion. */
220
221#ifndef INSTRUCTION_NULLIFIED
222#define INSTRUCTION_NULLIFIED 0
223#endif
224
c2c6d25f
JM
225/* We can't step off a permanent breakpoint in the ordinary way, because we
226 can't remove it. Instead, we have to advance the PC to the next
227 instruction. This macro should expand to a pointer to a function that
228 does that, or zero if we have no such function. If we don't have a
229 definition for it, we have to report an error. */
230#ifndef SKIP_PERMANENT_BREAKPOINT
231#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
232static void
c2d11a7d 233default_skip_permanent_breakpoint (void)
c2c6d25f
JM
234{
235 error_begin ();
236 fprintf_filtered (gdb_stderr, "\
237The program is stopped at a permanent breakpoint, but GDB does not know\n\
238how to step past a permanent breakpoint on this architecture. Try using\n\
239a command like `return' or `jump' to continue execution.\n");
240 return_to_top_level (RETURN_ERROR);
241}
242#endif
243
244
7a292a7a
SS
245/* Convert the #defines into values. This is temporary until wfi control
246 flow is completely sorted out. */
247
248#ifndef HAVE_STEPPABLE_WATCHPOINT
249#define HAVE_STEPPABLE_WATCHPOINT 0
250#else
251#undef HAVE_STEPPABLE_WATCHPOINT
252#define HAVE_STEPPABLE_WATCHPOINT 1
253#endif
254
255#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
256#define HAVE_NONSTEPPABLE_WATCHPOINT 0
257#else
258#undef HAVE_NONSTEPPABLE_WATCHPOINT
259#define HAVE_NONSTEPPABLE_WATCHPOINT 1
260#endif
261
262#ifndef HAVE_CONTINUABLE_WATCHPOINT
263#define HAVE_CONTINUABLE_WATCHPOINT 0
264#else
265#undef HAVE_CONTINUABLE_WATCHPOINT
266#define HAVE_CONTINUABLE_WATCHPOINT 1
267#endif
268
692590c1
MS
269#ifndef CANNOT_STEP_HW_WATCHPOINTS
270#define CANNOT_STEP_HW_WATCHPOINTS 0
271#else
272#undef CANNOT_STEP_HW_WATCHPOINTS
273#define CANNOT_STEP_HW_WATCHPOINTS 1
274#endif
275
c906108c
SS
276/* Tables of how to react to signals; the user sets them. */
277
278static unsigned char *signal_stop;
279static unsigned char *signal_print;
280static unsigned char *signal_program;
281
282#define SET_SIGS(nsigs,sigs,flags) \
283 do { \
284 int signum = (nsigs); \
285 while (signum-- > 0) \
286 if ((sigs)[signum]) \
287 (flags)[signum] = 1; \
288 } while (0)
289
290#define UNSET_SIGS(nsigs,sigs,flags) \
291 do { \
292 int signum = (nsigs); \
293 while (signum-- > 0) \
294 if ((sigs)[signum]) \
295 (flags)[signum] = 0; \
296 } while (0)
297
39f77062
KB
298/* Value to pass to target_resume() to cause all threads to resume */
299
300#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
301
302/* Command list pointer for the "stop" placeholder. */
303
304static struct cmd_list_element *stop_command;
305
306/* Nonzero if breakpoints are now inserted in the inferior. */
307
308static int breakpoints_inserted;
309
310/* Function inferior was in as of last step command. */
311
312static struct symbol *step_start_function;
313
314/* Nonzero if we are expecting a trace trap and should proceed from it. */
315
316static int trap_expected;
317
318#ifdef SOLIB_ADD
319/* Nonzero if we want to give control to the user when we're notified
320 of shared library events by the dynamic linker. */
321static int stop_on_solib_events;
322#endif
323
324#ifdef HP_OS_BUG
325/* Nonzero if the next time we try to continue the inferior, it will
326 step one instruction and generate a spurious trace trap.
327 This is used to compensate for a bug in HP-UX. */
328
329static int trap_expected_after_continue;
330#endif
331
332/* Nonzero means expecting a trace trap
333 and should stop the inferior and return silently when it happens. */
334
335int stop_after_trap;
336
337/* Nonzero means expecting a trap and caller will handle it themselves.
338 It is used after attach, due to attaching to a process;
339 when running in the shell before the child program has been exec'd;
340 and when running some kinds of remote stuff (FIXME?). */
341
342int stop_soon_quietly;
343
344/* Nonzero if proceed is being used for a "finish" command or a similar
345 situation when stop_registers should be saved. */
346
347int proceed_to_finish;
348
349/* Save register contents here when about to pop a stack dummy frame,
350 if-and-only-if proceed_to_finish is set.
351 Thus this contains the return value from the called function (assuming
352 values are returned in a register). */
353
7a292a7a 354char *stop_registers;
c906108c
SS
355
356/* Nonzero if program stopped due to error trying to insert breakpoints. */
357
358static int breakpoints_failed;
359
360/* Nonzero after stop if current stack frame should be printed. */
361
362static int stop_print_frame;
363
364static struct breakpoint *step_resume_breakpoint = NULL;
365static struct breakpoint *through_sigtramp_breakpoint = NULL;
366
367/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
368 interactions with an inferior that is running a kernel function
369 (aka, a system call or "syscall"). wait_for_inferior therefore
370 may have a need to know when the inferior is in a syscall. This
371 is a count of the number of inferior threads which are known to
372 currently be running in a syscall. */
373static int number_of_threads_in_syscalls;
374
e02bc4cc
DS
375/* This is a cached copy of the pid/waitstatus of the last event
376 returned by target_wait()/target_wait_hook(). This information is
377 returned by get_last_target_status(). */
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
c906108c
SS
381/* This is used to remember when a fork, vfork or exec event
382 was caught by a catchpoint, and thus the event is to be
383 followed at the next resume of the inferior, and not
384 immediately. */
385static struct
386 {
387 enum target_waitkind kind;
388 struct
389 {
390 int parent_pid;
391 int saw_parent_fork;
392 int child_pid;
393 int saw_child_fork;
394 int saw_child_exec;
395 }
396 fork_event;
397 char *execd_pathname;
398 }
399pending_follow;
400
401/* Some platforms don't allow us to do anything meaningful with a
402 vforked child until it has exec'd. Vforked processes on such
403 platforms can only be followed after they've exec'd.
404
405 When this is set to 0, a vfork can be immediately followed,
406 and an exec can be followed merely as an exec. When this is
407 set to 1, a vfork event has been seen, but cannot be followed
408 until the exec is seen.
409
39f77062 410 (In the latter case, inferior_ptid is still the parent of the
c906108c
SS
411 vfork, and pending_follow.fork_event.child_pid is the child. The
412 appropriate process is followed, according to the setting of
413 follow-fork-mode.) */
414static int follow_vfork_when_exec;
415
53904c9e
AC
416static const char follow_fork_mode_ask[] = "ask";
417static const char follow_fork_mode_both[] = "both";
418static const char follow_fork_mode_child[] = "child";
419static const char follow_fork_mode_parent[] = "parent";
420
421static const char *follow_fork_mode_kind_names[] =
c906108c 422{
53904c9e 423 follow_fork_mode_ask,
ef346e04
AC
424 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
425 kernel problem. It's also not terribly useful without a GUI to
426 help the user drive two debuggers. So for now, I'm disabling the
427 "both" option. */
53904c9e
AC
428 /* follow_fork_mode_both, */
429 follow_fork_mode_child,
430 follow_fork_mode_parent,
431 NULL
ef346e04 432};
c906108c 433
53904c9e 434static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
435\f
436
c906108c 437static void
96baa820
JM
438follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
439 int has_vforked)
c906108c
SS
440{
441 int followed_parent = 0;
442 int followed_child = 0;
c906108c
SS
443
444 /* Which process did the user want us to follow? */
53904c9e 445 const char *follow_mode = follow_fork_mode_string;
c906108c
SS
446
447 /* Or, did the user not know, and want us to ask? */
e28d556f 448 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 449 {
8e65ff28
AC
450 internal_error (__FILE__, __LINE__,
451 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 452 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
453 }
454
455 /* If we're to be following the parent, then detach from child_pid.
456 We're already following the parent, so need do nothing explicit
457 for it. */
53904c9e 458 if (follow_mode == follow_fork_mode_parent)
c906108c
SS
459 {
460 followed_parent = 1;
461
462 /* We're already attached to the parent, by default. */
463
464 /* Before detaching from the child, remove all breakpoints from
465 it. (This won't actually modify the breakpoint list, but will
466 physically remove the breakpoints from the child.) */
467 if (!has_vforked || !follow_vfork_when_exec)
468 {
469 detach_breakpoints (child_pid);
7a292a7a 470#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 471 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 472#endif
c906108c
SS
473 }
474
475 /* Detach from the child. */
476 dont_repeat ();
477
478 target_require_detach (child_pid, "", 1);
479 }
480
481 /* If we're to be following the child, then attach to it, detach
39f77062 482 from inferior_ptid, and set inferior_ptid to child_pid. */
53904c9e 483 else if (follow_mode == follow_fork_mode_child)
c906108c
SS
484 {
485 char child_pid_spelling[100]; /* Arbitrary length. */
486
487 followed_child = 1;
488
489 /* Before detaching from the parent, detach all breakpoints from
490 the child. But only if we're forking, or if we follow vforks
491 as soon as they happen. (If we're following vforks only when
492 the child has exec'd, then it's very wrong to try to write
493 back the "shadow contents" of inserted breakpoints now -- they
494 belong to the child's pre-exec'd a.out.) */
495 if (!has_vforked || !follow_vfork_when_exec)
496 {
497 detach_breakpoints (child_pid);
498 }
499
500 /* Before detaching from the parent, remove all breakpoints from it. */
501 remove_breakpoints ();
502
503 /* Also reset the solib inferior hook from the parent. */
7a292a7a 504#ifdef SOLIB_REMOVE_INFERIOR_HOOK
39f77062 505 SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 506#endif
c906108c
SS
507
508 /* Detach from the parent. */
509 dont_repeat ();
510 target_detach (NULL, 1);
511
512 /* Attach to the child. */
39f77062 513 inferior_ptid = pid_to_ptid (child_pid);
c906108c
SS
514 sprintf (child_pid_spelling, "%d", child_pid);
515 dont_repeat ();
516
517 target_require_attach (child_pid_spelling, 1);
518
519 /* Was there a step_resume breakpoint? (There was if the user
520 did a "next" at the fork() call.) If so, explicitly reset its
521 thread number.
522
523 step_resumes are a form of bp that are made to be per-thread.
524 Since we created the step_resume bp when the parent process
525 was being debugged, and now are switching to the child process,
526 from the breakpoint package's viewpoint, that's a switch of
527 "threads". We must update the bp's notion of which thread
528 it is for, or it'll be ignored when it triggers... */
529 if (step_resume_breakpoint &&
530 (!has_vforked || !follow_vfork_when_exec))
531 breakpoint_re_set_thread (step_resume_breakpoint);
532
533 /* Reinsert all breakpoints in the child. (The user may've set
534 breakpoints after catching the fork, in which case those
535 actually didn't get set in the child, but only in the parent.) */
536 if (!has_vforked || !follow_vfork_when_exec)
537 {
538 breakpoint_re_set ();
539 insert_breakpoints ();
540 }
541 }
542
543 /* If we're to be following both parent and child, then fork ourselves,
544 and attach the debugger clone to the child. */
53904c9e 545 else if (follow_mode == follow_fork_mode_both)
c906108c
SS
546 {
547 char pid_suffix[100]; /* Arbitrary length. */
548
549 /* Clone ourselves to follow the child. This is the end of our
c5aa993b 550 involvement with child_pid; our clone will take it from here... */
c906108c
SS
551 dont_repeat ();
552 target_clone_and_follow_inferior (child_pid, &followed_child);
553 followed_parent = !followed_child;
554
555 /* We continue to follow the parent. To help distinguish the two
556 debuggers, though, both we and our clone will reset our prompts. */
39f77062 557 sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
c906108c
SS
558 set_prompt (strcat (get_prompt (), pid_suffix));
559 }
560
561 /* The parent and child of a vfork share the same address space.
562 Also, on some targets the order in which vfork and exec events
563 are received for parent in child requires some delicate handling
564 of the events.
565
566 For instance, on ptrace-based HPUX we receive the child's vfork
567 event first, at which time the parent has been suspended by the
568 OS and is essentially untouchable until the child's exit or second
569 exec event arrives. At that time, the parent's vfork event is
570 delivered to us, and that's when we see and decide how to follow
571 the vfork. But to get to that point, we must continue the child
572 until it execs or exits. To do that smoothly, all breakpoints
573 must be removed from the child, in case there are any set between
574 the vfork() and exec() calls. But removing them from the child
575 also removes them from the parent, due to the shared-address-space
576 nature of a vfork'd parent and child. On HPUX, therefore, we must
577 take care to restore the bp's to the parent before we continue it.
578 Else, it's likely that we may not stop in the expected place. (The
579 worst scenario is when the user tries to step over a vfork() call;
580 the step-resume bp must be restored for the step to properly stop
581 in the parent after the call completes!)
582
583 Sequence of events, as reported to gdb from HPUX:
584
c5aa993b
JM
585 Parent Child Action for gdb to take
586 -------------------------------------------------------
587 1 VFORK Continue child
588 2 EXEC
589 3 EXEC or EXIT
590 4 VFORK */
c906108c
SS
591 if (has_vforked)
592 {
593 target_post_follow_vfork (parent_pid,
594 followed_parent,
595 child_pid,
596 followed_child);
597 }
598
599 pending_follow.fork_event.saw_parent_fork = 0;
600 pending_follow.fork_event.saw_child_fork = 0;
c906108c
SS
601}
602
603static void
96baa820 604follow_fork (int parent_pid, int child_pid)
c906108c
SS
605{
606 follow_inferior_fork (parent_pid, child_pid, 1, 0);
607}
608
609
610/* Forward declaration. */
96baa820 611static void follow_exec (int, char *);
c906108c
SS
612
613static void
96baa820 614follow_vfork (int parent_pid, int child_pid)
c906108c
SS
615{
616 follow_inferior_fork (parent_pid, child_pid, 0, 1);
617
618 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
39f77062
KB
619 if (pending_follow.fork_event.saw_child_exec
620 && (PIDGET (inferior_ptid) == child_pid))
c906108c
SS
621 {
622 pending_follow.fork_event.saw_child_exec = 0;
623 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 624 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 625 xfree (pending_follow.execd_pathname);
c906108c
SS
626 }
627}
c906108c 628
1adeb98a
FN
629/* EXECD_PATHNAME is assumed to be non-NULL. */
630
c906108c 631static void
96baa820 632follow_exec (int pid, char *execd_pathname)
c906108c 633{
c906108c 634 int saved_pid = pid;
7a292a7a
SS
635 struct target_ops *tgt;
636
637 if (!may_follow_exec)
638 return;
c906108c
SS
639
640 /* Did this exec() follow a vfork()? If so, we must follow the
641 vfork now too. Do it before following the exec. */
642 if (follow_vfork_when_exec &&
643 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
644 {
645 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
646 follow_vfork (PIDGET (inferior_ptid),
647 pending_follow.fork_event.child_pid);
c906108c 648 follow_vfork_when_exec = 0;
39f77062 649 saved_pid = PIDGET (inferior_ptid);
c906108c
SS
650
651 /* Did we follow the parent? If so, we're done. If we followed
652 the child then we must also follow its exec(). */
39f77062 653 if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
c906108c
SS
654 return;
655 }
656
657 /* This is an exec event that we actually wish to pay attention to.
658 Refresh our symbol table to the newly exec'd program, remove any
659 momentary bp's, etc.
660
661 If there are breakpoints, they aren't really inserted now,
662 since the exec() transformed our inferior into a fresh set
663 of instructions.
664
665 We want to preserve symbolic breakpoints on the list, since
666 we have hopes that they can be reset after the new a.out's
667 symbol table is read.
668
669 However, any "raw" breakpoints must be removed from the list
670 (e.g., the solib bp's), since their address is probably invalid
671 now.
672
673 And, we DON'T want to call delete_breakpoints() here, since
674 that may write the bp's "shadow contents" (the instruction
675 value that was overwritten witha TRAP instruction). Since
676 we now have a new a.out, those shadow contents aren't valid. */
677 update_breakpoints_after_exec ();
678
679 /* If there was one, it's gone now. We cannot truly step-to-next
680 statement through an exec(). */
681 step_resume_breakpoint = NULL;
682 step_range_start = 0;
683 step_range_end = 0;
684
685 /* If there was one, it's gone now. */
686 through_sigtramp_breakpoint = NULL;
687
688 /* What is this a.out's name? */
689 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
690
691 /* We've followed the inferior through an exec. Therefore, the
692 inferior has essentially been killed & reborn. */
7a292a7a
SS
693
694 /* First collect the run target in effect. */
695 tgt = find_run_target ();
696 /* If we can't find one, things are in a very strange state... */
697 if (tgt == NULL)
698 error ("Could find run target to save before following exec");
699
c906108c
SS
700 gdb_flush (gdb_stdout);
701 target_mourn_inferior ();
39f77062
KB
702 inferior_ptid = pid_to_ptid (saved_pid);
703 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 704 push_target (tgt);
c906108c
SS
705
706 /* That a.out is now the one to use. */
707 exec_file_attach (execd_pathname, 0);
708
709 /* And also is where symbols can be found. */
1adeb98a 710 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
711
712 /* Reset the shared library package. This ensures that we get
713 a shlib event when the child reaches "_start", at which point
714 the dld will have had a chance to initialize the child. */
7a292a7a 715#if defined(SOLIB_RESTART)
c906108c 716 SOLIB_RESTART ();
7a292a7a
SS
717#endif
718#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 719 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 720#endif
c906108c
SS
721
722 /* Reinsert all breakpoints. (Those which were symbolic have
723 been reset to the proper address in the new a.out, thanks
724 to symbol_file_command...) */
725 insert_breakpoints ();
726
727 /* The next resume of this inferior should bring it to the shlib
728 startup breakpoints. (If the user had also set bp's on
729 "main" from the old (parent) process, then they'll auto-
730 matically get reset there in the new process.) */
c906108c
SS
731}
732
733/* Non-zero if we just simulating a single-step. This is needed
734 because we cannot remove the breakpoints in the inferior process
735 until after the `wait' in `wait_for_inferior'. */
736static int singlestep_breakpoints_inserted_p = 0;
737\f
738
739/* Things to clean up if we QUIT out of resume (). */
740/* ARGSUSED */
741static void
74b7792f 742resume_cleanups (void *ignore)
c906108c
SS
743{
744 normal_stop ();
745}
746
53904c9e
AC
747static const char schedlock_off[] = "off";
748static const char schedlock_on[] = "on";
749static const char schedlock_step[] = "step";
750static const char *scheduler_mode = schedlock_off;
751static const char *scheduler_enums[] =
ef346e04
AC
752{
753 schedlock_off,
754 schedlock_on,
755 schedlock_step,
756 NULL
757};
c906108c
SS
758
759static void
96baa820 760set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
761{
762 if (c->type == set_cmd)
763 if (!target_can_lock_scheduler)
764 {
765 scheduler_mode = schedlock_off;
766 error ("Target '%s' cannot support this command.",
767 target_shortname);
768 }
769}
770
771
772/* Resume the inferior, but allow a QUIT. This is useful if the user
773 wants to interrupt some lengthy single-stepping operation
774 (for child processes, the SIGINT goes to the inferior, and so
775 we get a SIGINT random_signal, but for remote debugging and perhaps
776 other targets, that's not true).
777
778 STEP nonzero if we should step (zero to continue instead).
779 SIG is the signal to give the inferior (zero for none). */
780void
96baa820 781resume (int step, enum target_signal sig)
c906108c
SS
782{
783 int should_resume = 1;
74b7792f 784 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
785 QUIT;
786
ef5cf84e
MS
787 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
788
c906108c 789
692590c1
MS
790 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
791 over an instruction that causes a page fault without triggering
792 a hardware watchpoint. The kernel properly notices that it shouldn't
793 stop, because the hardware watchpoint is not triggered, but it forgets
794 the step request and continues the program normally.
795 Work around the problem by removing hardware watchpoints if a step is
796 requested, GDB will check for a hardware watchpoint trigger after the
797 step anyway. */
798 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
799 remove_hw_watchpoints ();
800
801
c2c6d25f
JM
802 /* Normally, by the time we reach `resume', the breakpoints are either
803 removed or inserted, as appropriate. The exception is if we're sitting
804 at a permanent breakpoint; we need to step over it, but permanent
805 breakpoints can't be removed. So we have to test for it here. */
806 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
807 SKIP_PERMANENT_BREAKPOINT ();
808
b0ed3589 809 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
810 {
811 /* Do it the hard way, w/temp breakpoints */
c5aa993b 812 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
813 /* ...and don't ask hardware to do it. */
814 step = 0;
815 /* and do not pull these breakpoints until after a `wait' in
816 `wait_for_inferior' */
817 singlestep_breakpoints_inserted_p = 1;
818 }
819
820 /* Handle any optimized stores to the inferior NOW... */
821#ifdef DO_DEFERRED_STORES
822 DO_DEFERRED_STORES;
823#endif
824
c906108c
SS
825 /* If there were any forks/vforks/execs that were caught and are
826 now to be followed, then do so. */
827 switch (pending_follow.kind)
828 {
829 case (TARGET_WAITKIND_FORKED):
830 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
831 follow_fork (PIDGET (inferior_ptid),
832 pending_follow.fork_event.child_pid);
c906108c
SS
833 break;
834
835 case (TARGET_WAITKIND_VFORKED):
836 {
837 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
838
839 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062
KB
840 follow_vfork (PIDGET (inferior_ptid),
841 pending_follow.fork_event.child_pid);
c906108c
SS
842
843 /* Did we follow the child, but not yet see the child's exec event?
c5aa993b
JM
844 If so, then it actually ought to be waiting for us; we respond to
845 parent vfork events. We don't actually want to resume the child
846 in this situation; we want to just get its exec event. */
c906108c 847 if (!saw_child_exec &&
39f77062 848 (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
c906108c
SS
849 should_resume = 0;
850 }
851 break;
852
853 case (TARGET_WAITKIND_EXECD):
854 /* If we saw a vfork event but couldn't follow it until we saw
c5aa993b 855 an exec, then now might be the time! */
c906108c
SS
856 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
857 /* follow_exec is called as soon as the exec event is seen. */
858 break;
859
860 default:
861 break;
862 }
c906108c
SS
863
864 /* Install inferior's terminal modes. */
865 target_terminal_inferior ();
866
867 if (should_resume)
868 {
39f77062 869 ptid_t resume_ptid;
dfcd3bfb 870
ef5cf84e
MS
871 resume_ptid = RESUME_ALL; /* Default */
872
873 if ((step || singlestep_breakpoints_inserted_p) &&
874 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 875 {
ef5cf84e
MS
876 /* Stepping past a breakpoint without inserting breakpoints.
877 Make sure only the current thread gets to step, so that
878 other threads don't sneak past breakpoints while they are
879 not inserted. */
c906108c 880
ef5cf84e 881 resume_ptid = inferior_ptid;
c906108c 882 }
ef5cf84e
MS
883
884 if ((scheduler_mode == schedlock_on) ||
885 (scheduler_mode == schedlock_step &&
886 (step || singlestep_breakpoints_inserted_p)))
c906108c 887 {
ef5cf84e 888 /* User-settable 'scheduler' mode requires solo thread resume. */
39f77062 889 resume_ptid = inferior_ptid;
c906108c 890 }
ef5cf84e
MS
891
892#ifdef CANNOT_STEP_BREAKPOINT
893 /* Most targets can step a breakpoint instruction, thus executing it
894 normally. But if this one cannot, just continue and we will hit
895 it anyway. */
896 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
897 step = 0;
898#endif
39f77062 899 target_resume (resume_ptid, step, sig);
c906108c
SS
900 }
901
902 discard_cleanups (old_cleanups);
903}
904\f
905
906/* Clear out all variables saying what to do when inferior is continued.
907 First do this, then set the ones you want, then call `proceed'. */
908
909void
96baa820 910clear_proceed_status (void)
c906108c
SS
911{
912 trap_expected = 0;
913 step_range_start = 0;
914 step_range_end = 0;
915 step_frame_address = 0;
5fbbeb29 916 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
917 stop_after_trap = 0;
918 stop_soon_quietly = 0;
919 proceed_to_finish = 0;
920 breakpoint_proceeded = 1; /* We're about to proceed... */
921
922 /* Discard any remaining commands or status from previous stop. */
923 bpstat_clear (&stop_bpstat);
924}
925
926/* Basic routine for continuing the program in various fashions.
927
928 ADDR is the address to resume at, or -1 for resume where stopped.
929 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 930 or -1 for act according to how it stopped.
c906108c 931 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
932 -1 means return after that and print nothing.
933 You should probably set various step_... variables
934 before calling here, if you are stepping.
c906108c
SS
935
936 You should call clear_proceed_status before calling proceed. */
937
938void
96baa820 939proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
940{
941 int oneproc = 0;
942
943 if (step > 0)
944 step_start_function = find_pc_function (read_pc ());
945 if (step < 0)
946 stop_after_trap = 1;
947
2acceee2 948 if (addr == (CORE_ADDR) -1)
c906108c
SS
949 {
950 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
951 step one instruction before inserting breakpoints
952 so that we do not stop right away (and report a second
c906108c
SS
953 hit at this breakpoint). */
954
955 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
956 oneproc = 1;
957
958#ifndef STEP_SKIPS_DELAY
959#define STEP_SKIPS_DELAY(pc) (0)
960#define STEP_SKIPS_DELAY_P (0)
961#endif
962 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
963 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
964 is slow (it needs to read memory from the target). */
c906108c
SS
965 if (STEP_SKIPS_DELAY_P
966 && breakpoint_here_p (read_pc () + 4)
967 && STEP_SKIPS_DELAY (read_pc ()))
968 oneproc = 1;
969 }
970 else
971 {
972 write_pc (addr);
c906108c
SS
973 }
974
975#ifdef PREPARE_TO_PROCEED
976 /* In a multi-threaded task we may select another thread
977 and then continue or step.
978
979 But if the old thread was stopped at a breakpoint, it
980 will immediately cause another breakpoint stop without
981 any execution (i.e. it will report a breakpoint hit
982 incorrectly). So we must step over it first.
983
984 PREPARE_TO_PROCEED checks the current thread against the thread
985 that reported the most recent event. If a step-over is required
986 it returns TRUE and sets the current thread to the old thread. */
9e086581 987 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
988 {
989 oneproc = 1;
c906108c
SS
990 }
991
992#endif /* PREPARE_TO_PROCEED */
993
994#ifdef HP_OS_BUG
995 if (trap_expected_after_continue)
996 {
997 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
998 the first instruction is executed. Force step one
999 instruction to clear this condition. This should not occur
1000 if step is nonzero, but it is harmless in that case. */
c906108c
SS
1001 oneproc = 1;
1002 trap_expected_after_continue = 0;
1003 }
1004#endif /* HP_OS_BUG */
1005
1006 if (oneproc)
1007 /* We will get a trace trap after one instruction.
1008 Continue it automatically and insert breakpoints then. */
1009 trap_expected = 1;
1010 else
1011 {
1012 int temp = insert_breakpoints ();
1013 if (temp)
1014 {
010a3cd9 1015 print_sys_errmsg ("insert_breakpoints", temp);
c906108c 1016 error ("Cannot insert breakpoints.\n\
010a3cd9
EZ
1017The same program may be running in another process,\n\
1018or you may have requested too many hardware\n\
1019breakpoints and/or watchpoints.\n");
c906108c
SS
1020 }
1021
1022 breakpoints_inserted = 1;
1023 }
1024
1025 if (siggnal != TARGET_SIGNAL_DEFAULT)
1026 stop_signal = siggnal;
1027 /* If this signal should not be seen by program,
1028 give it zero. Used for debugging signals. */
1029 else if (!signal_program[stop_signal])
1030 stop_signal = TARGET_SIGNAL_0;
1031
1032 annotate_starting ();
1033
1034 /* Make sure that output from GDB appears before output from the
1035 inferior. */
1036 gdb_flush (gdb_stdout);
1037
1038 /* Resume inferior. */
1039 resume (oneproc || step || bpstat_should_step (), stop_signal);
1040
1041 /* Wait for it to stop (if not standalone)
1042 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1043 /* Do this only if we are not using the event loop, or if the target
1044 does not support asynchronous execution. */
6426a772 1045 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
1046 {
1047 wait_for_inferior ();
1048 normal_stop ();
1049 }
c906108c
SS
1050}
1051
1052/* Record the pc and sp of the program the last time it stopped.
1053 These are just used internally by wait_for_inferior, but need
1054 to be preserved over calls to it and cleared when the inferior
1055 is started. */
1056static CORE_ADDR prev_pc;
1057static CORE_ADDR prev_func_start;
1058static char *prev_func_name;
1059\f
1060
1061/* Start remote-debugging of a machine over a serial link. */
96baa820 1062
c906108c 1063void
96baa820 1064start_remote (void)
c906108c
SS
1065{
1066 init_thread_list ();
1067 init_wait_for_inferior ();
1068 stop_soon_quietly = 1;
1069 trap_expected = 0;
43ff13b4 1070
6426a772
JM
1071 /* Always go on waiting for the target, regardless of the mode. */
1072 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1073 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1074 nothing is returned (instead of just blocking). Because of this,
1075 targets expecting an immediate response need to, internally, set
1076 things up so that the target_wait() is forced to eventually
1077 timeout. */
1078 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1079 differentiate to its caller what the state of the target is after
1080 the initial open has been performed. Here we're assuming that
1081 the target has stopped. It should be possible to eventually have
1082 target_open() return to the caller an indication that the target
1083 is currently running and GDB state should be set to the same as
1084 for an async run. */
1085 wait_for_inferior ();
1086 normal_stop ();
c906108c
SS
1087}
1088
1089/* Initialize static vars when a new inferior begins. */
1090
1091void
96baa820 1092init_wait_for_inferior (void)
c906108c
SS
1093{
1094 /* These are meaningless until the first time through wait_for_inferior. */
1095 prev_pc = 0;
1096 prev_func_start = 0;
1097 prev_func_name = NULL;
1098
1099#ifdef HP_OS_BUG
1100 trap_expected_after_continue = 0;
1101#endif
1102 breakpoints_inserted = 0;
1103 breakpoint_init_inferior (inf_starting);
1104
1105 /* Don't confuse first call to proceed(). */
1106 stop_signal = TARGET_SIGNAL_0;
1107
1108 /* The first resume is not following a fork/vfork/exec. */
1109 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1110 pending_follow.fork_event.saw_parent_fork = 0;
1111 pending_follow.fork_event.saw_child_fork = 0;
1112 pending_follow.fork_event.saw_child_exec = 0;
1113
1114 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1115 number_of_threads_in_syscalls = 0;
1116
1117 clear_proceed_status ();
1118}
1119
1120static void
96baa820 1121delete_breakpoint_current_contents (void *arg)
c906108c
SS
1122{
1123 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1124 if (*breakpointp != NULL)
1125 {
1126 delete_breakpoint (*breakpointp);
1127 *breakpointp = NULL;
1128 }
1129}
1130\f
b83266a0
SS
1131/* This enum encodes possible reasons for doing a target_wait, so that
1132 wfi can call target_wait in one place. (Ultimately the call will be
1133 moved out of the infinite loop entirely.) */
1134
c5aa993b
JM
1135enum infwait_states
1136{
cd0fc7c3
SS
1137 infwait_normal_state,
1138 infwait_thread_hop_state,
1139 infwait_nullified_state,
1140 infwait_nonstep_watch_state
b83266a0
SS
1141};
1142
11cf8741
JM
1143/* Why did the inferior stop? Used to print the appropriate messages
1144 to the interface from within handle_inferior_event(). */
1145enum inferior_stop_reason
1146{
1147 /* We don't know why. */
1148 STOP_UNKNOWN,
1149 /* Step, next, nexti, stepi finished. */
1150 END_STEPPING_RANGE,
1151 /* Found breakpoint. */
1152 BREAKPOINT_HIT,
1153 /* Inferior terminated by signal. */
1154 SIGNAL_EXITED,
1155 /* Inferior exited. */
1156 EXITED,
1157 /* Inferior received signal, and user asked to be notified. */
1158 SIGNAL_RECEIVED
1159};
1160
cd0fc7c3
SS
1161/* This structure contains what used to be local variables in
1162 wait_for_inferior. Probably many of them can return to being
1163 locals in handle_inferior_event. */
1164
c5aa993b
JM
1165struct execution_control_state
1166 {
1167 struct target_waitstatus ws;
1168 struct target_waitstatus *wp;
1169 int another_trap;
1170 int random_signal;
1171 CORE_ADDR stop_func_start;
1172 CORE_ADDR stop_func_end;
1173 char *stop_func_name;
1174 struct symtab_and_line sal;
1175 int remove_breakpoints_on_following_step;
1176 int current_line;
1177 struct symtab *current_symtab;
1178 int handling_longjmp; /* FIXME */
39f77062
KB
1179 ptid_t ptid;
1180 ptid_t saved_inferior_ptid;
c5aa993b
JM
1181 int update_step_sp;
1182 int stepping_through_solib_after_catch;
1183 bpstat stepping_through_solib_catchpoints;
1184 int enable_hw_watchpoints_after_wait;
1185 int stepping_through_sigtramp;
1186 int new_thread_event;
1187 struct target_waitstatus tmpstatus;
1188 enum infwait_states infwait_state;
39f77062 1189 ptid_t waiton_ptid;
c5aa993b
JM
1190 int wait_some_more;
1191 };
1192
96baa820 1193void init_execution_control_state (struct execution_control_state * ecs);
c5aa993b 1194
96baa820 1195void handle_inferior_event (struct execution_control_state * ecs);
cd0fc7c3 1196
104c1213 1197static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 1198static void step_into_function (struct execution_control_state *ecs);
d4f3574e 1199static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
1200static void stop_stepping (struct execution_control_state *ecs);
1201static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1202static void keep_going (struct execution_control_state *ecs);
11cf8741 1203static void print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info);
104c1213 1204
cd0fc7c3
SS
1205/* Wait for control to return from inferior to debugger.
1206 If inferior gets a signal, we may decide to start it up again
1207 instead of returning. That is why there is a loop in this function.
1208 When this function actually returns it means the inferior
1209 should be left stopped and GDB should read more commands. */
1210
1211void
96baa820 1212wait_for_inferior (void)
cd0fc7c3
SS
1213{
1214 struct cleanup *old_cleanups;
1215 struct execution_control_state ecss;
1216 struct execution_control_state *ecs;
c906108c 1217
8601f500 1218 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1219 &step_resume_breakpoint);
1220 make_cleanup (delete_breakpoint_current_contents,
1221 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1222
1223 /* wfi still stays in a loop, so it's OK just to take the address of
1224 a local to get the ecs pointer. */
1225 ecs = &ecss;
1226
1227 /* Fill in with reasonable starting values. */
1228 init_execution_control_state (ecs);
1229
c906108c 1230 /* We'll update this if & when we switch to a new thread. */
39f77062 1231 previous_inferior_ptid = inferior_ptid;
c906108c 1232
cd0fc7c3
SS
1233 overlay_cache_invalid = 1;
1234
1235 /* We have to invalidate the registers BEFORE calling target_wait
1236 because they can be loaded from the target while in target_wait.
1237 This makes remote debugging a bit more efficient for those
1238 targets that provide critical registers as part of their normal
1239 status mechanism. */
1240
1241 registers_changed ();
b83266a0 1242
c906108c
SS
1243 while (1)
1244 {
cd0fc7c3 1245 if (target_wait_hook)
39f77062 1246 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1247 else
39f77062 1248 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1249
cd0fc7c3
SS
1250 /* Now figure out what to do with the result of the result. */
1251 handle_inferior_event (ecs);
c906108c 1252
cd0fc7c3
SS
1253 if (!ecs->wait_some_more)
1254 break;
1255 }
1256 do_cleanups (old_cleanups);
1257}
c906108c 1258
43ff13b4
JM
1259/* Asynchronous version of wait_for_inferior. It is called by the
1260 event loop whenever a change of state is detected on the file
1261 descriptor corresponding to the target. It can be called more than
1262 once to complete a single execution command. In such cases we need
1263 to keep the state in a global variable ASYNC_ECSS. If it is the
1264 last time that this function is called for a single execution
1265 command, then report to the user that the inferior has stopped, and
1266 do the necessary cleanups. */
1267
1268struct execution_control_state async_ecss;
1269struct execution_control_state *async_ecs;
1270
1271void
fba45db2 1272fetch_inferior_event (void *client_data)
43ff13b4
JM
1273{
1274 static struct cleanup *old_cleanups;
1275
c5aa993b 1276 async_ecs = &async_ecss;
43ff13b4
JM
1277
1278 if (!async_ecs->wait_some_more)
1279 {
8601f500 1280 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1281 &step_resume_breakpoint);
43ff13b4 1282 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1283 &through_sigtramp_breakpoint);
43ff13b4
JM
1284
1285 /* Fill in with reasonable starting values. */
1286 init_execution_control_state (async_ecs);
1287
43ff13b4 1288 /* We'll update this if & when we switch to a new thread. */
39f77062 1289 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1290
1291 overlay_cache_invalid = 1;
1292
1293 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1294 because they can be loaded from the target while in target_wait.
1295 This makes remote debugging a bit more efficient for those
1296 targets that provide critical registers as part of their normal
1297 status mechanism. */
43ff13b4
JM
1298
1299 registers_changed ();
1300 }
1301
1302 if (target_wait_hook)
39f77062 1303 async_ecs->ptid = target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1304 else
39f77062 1305 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1306
1307 /* Now figure out what to do with the result of the result. */
1308 handle_inferior_event (async_ecs);
1309
1310 if (!async_ecs->wait_some_more)
1311 {
adf40b2e
JM
1312 /* Do only the cleanups that have been added by this
1313 function. Let the continuations for the commands do the rest,
1314 if there are any. */
43ff13b4
JM
1315 do_exec_cleanups (old_cleanups);
1316 normal_stop ();
c2d11a7d
JM
1317 if (step_multi && stop_step)
1318 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1319 else
1320 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1321 }
1322}
1323
cd0fc7c3
SS
1324/* Prepare an execution control state for looping through a
1325 wait_for_inferior-type loop. */
1326
1327void
96baa820 1328init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1329{
c2d11a7d 1330 /* ecs->another_trap? */
cd0fc7c3
SS
1331 ecs->random_signal = 0;
1332 ecs->remove_breakpoints_on_following_step = 0;
1333 ecs->handling_longjmp = 0; /* FIXME */
1334 ecs->update_step_sp = 0;
1335 ecs->stepping_through_solib_after_catch = 0;
1336 ecs->stepping_through_solib_catchpoints = NULL;
1337 ecs->enable_hw_watchpoints_after_wait = 0;
1338 ecs->stepping_through_sigtramp = 0;
1339 ecs->sal = find_pc_line (prev_pc, 0);
1340 ecs->current_line = ecs->sal.line;
1341 ecs->current_symtab = ecs->sal.symtab;
1342 ecs->infwait_state = infwait_normal_state;
39f77062 1343 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1344 ecs->wp = &(ecs->ws);
1345}
1346
a0b3c4fd 1347/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1348 sanity check. There should never be more than one step-resume
1349 breakpoint per thread, so we should never be setting a new
1350 step_resume_breakpoint when one is already active. */
a0b3c4fd 1351static void
96baa820 1352check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1353{
1354 if (step_resume_breakpoint)
1355 warning ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1356}
1357
e02bc4cc
DS
1358/* Return the cached copy of the last pid/waitstatus returned by
1359 target_wait()/target_wait_hook(). The data is actually cached by
1360 handle_inferior_event(), which gets called immediately after
1361 target_wait()/target_wait_hook(). */
1362
1363void
39f77062 1364get_last_target_status(ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1365{
39f77062 1366 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1367 *status = target_last_waitstatus;
1368}
1369
dd80620e
MS
1370/* Switch thread contexts, maintaining "infrun state". */
1371
1372static void
1373context_switch (struct execution_control_state *ecs)
1374{
1375 /* Caution: it may happen that the new thread (or the old one!)
1376 is not in the thread list. In this case we must not attempt
1377 to "switch context", or we run the risk that our context may
1378 be lost. This may happen as a result of the target module
1379 mishandling thread creation. */
1380
1381 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1382 { /* Perform infrun state context switch: */
1383 /* Save infrun state for the old thread. */
1384 save_infrun_state (inferior_ptid, prev_pc,
1385 prev_func_start, prev_func_name,
1386 trap_expected, step_resume_breakpoint,
1387 through_sigtramp_breakpoint, step_range_start,
1388 step_range_end, step_frame_address,
1389 ecs->handling_longjmp, ecs->another_trap,
1390 ecs->stepping_through_solib_after_catch,
1391 ecs->stepping_through_solib_catchpoints,
1392 ecs->stepping_through_sigtramp,
1393 ecs->current_line, ecs->current_symtab,
1394 step_sp);
1395
1396 /* Load infrun state for the new thread. */
1397 load_infrun_state (ecs->ptid, &prev_pc,
1398 &prev_func_start, &prev_func_name,
1399 &trap_expected, &step_resume_breakpoint,
1400 &through_sigtramp_breakpoint, &step_range_start,
1401 &step_range_end, &step_frame_address,
1402 &ecs->handling_longjmp, &ecs->another_trap,
1403 &ecs->stepping_through_solib_after_catch,
1404 &ecs->stepping_through_solib_catchpoints,
1405 &ecs->stepping_through_sigtramp,
1406 &ecs->current_line, &ecs->current_symtab,
1407 &step_sp);
1408 }
1409 inferior_ptid = ecs->ptid;
1410}
1411
1412
cd0fc7c3
SS
1413/* Given an execution control state that has been freshly filled in
1414 by an event from the inferior, figure out what it means and take
1415 appropriate action. */
c906108c 1416
cd0fc7c3 1417void
96baa820 1418handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3
SS
1419{
1420 CORE_ADDR tmp;
1421 int stepped_after_stopped_by_watchpoint;
1422
e02bc4cc 1423 /* Cache the last pid/waitstatus. */
39f77062 1424 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1425 target_last_waitstatus = *ecs->wp;
1426
cd0fc7c3
SS
1427 /* Keep this extra brace for now, minimizes diffs. */
1428 {
c5aa993b
JM
1429 switch (ecs->infwait_state)
1430 {
dd80620e
MS
1431 case infwait_thread_hop_state:
1432 /* Cancel the waiton_ptid. */
1433 ecs->waiton_ptid = pid_to_ptid (-1);
1434 /* Fall thru to the normal_state case. */
1435
c5aa993b 1436 case infwait_normal_state:
c5aa993b
JM
1437 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1438 is serviced in this loop, below. */
1439 if (ecs->enable_hw_watchpoints_after_wait)
1440 {
39f77062 1441 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
c5aa993b
JM
1442 ecs->enable_hw_watchpoints_after_wait = 0;
1443 }
1444 stepped_after_stopped_by_watchpoint = 0;
1445 break;
b83266a0 1446
c5aa993b
JM
1447 case infwait_nullified_state:
1448 break;
b83266a0 1449
c5aa993b
JM
1450 case infwait_nonstep_watch_state:
1451 insert_breakpoints ();
b83266a0 1452
c5aa993b
JM
1453 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1454 handle things like signals arriving and other things happening
1455 in combination correctly? */
1456 stepped_after_stopped_by_watchpoint = 1;
1457 break;
1458 }
1459 ecs->infwait_state = infwait_normal_state;
c906108c 1460
c5aa993b 1461 flush_cached_frames ();
c906108c 1462
c5aa993b 1463 /* If it's a new process, add it to the thread database */
c906108c 1464
39f77062
KB
1465 ecs->new_thread_event = (! ptid_equal (ecs->ptid, inferior_ptid)
1466 && ! in_thread_list (ecs->ptid));
c906108c 1467
c5aa993b
JM
1468 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1469 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1470 && ecs->new_thread_event)
1471 {
39f77062 1472 add_thread (ecs->ptid);
c906108c 1473
8b93c638 1474 ui_out_text (uiout, "[New ");
39f77062 1475 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
8b93c638 1476 ui_out_text (uiout, "]\n");
c906108c
SS
1477
1478#if 0
c5aa993b
JM
1479 /* NOTE: This block is ONLY meant to be invoked in case of a
1480 "thread creation event"! If it is invoked for any other
1481 sort of event (such as a new thread landing on a breakpoint),
1482 the event will be discarded, which is almost certainly
1483 a bad thing!
1484
1485 To avoid this, the low-level module (eg. target_wait)
1486 should call in_thread_list and add_thread, so that the
1487 new thread is known by the time we get here. */
1488
1489 /* We may want to consider not doing a resume here in order
1490 to give the user a chance to play with the new thread.
1491 It might be good to make that a user-settable option. */
1492
1493 /* At this point, all threads are stopped (happens
1494 automatically in either the OS or the native code).
1495 Therefore we need to continue all threads in order to
1496 make progress. */
1497
39f77062 1498 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
104c1213
JM
1499 prepare_to_wait (ecs);
1500 return;
c906108c 1501#endif
c5aa993b 1502 }
c906108c 1503
c5aa993b
JM
1504 switch (ecs->ws.kind)
1505 {
1506 case TARGET_WAITKIND_LOADED:
1507 /* Ignore gracefully during startup of the inferior, as it
1508 might be the shell which has just loaded some objects,
1509 otherwise add the symbols for the newly loaded objects. */
c906108c 1510#ifdef SOLIB_ADD
c5aa993b
JM
1511 if (!stop_soon_quietly)
1512 {
1513 /* Remove breakpoints, SOLIB_ADD might adjust
1514 breakpoint addresses via breakpoint_re_set. */
1515 if (breakpoints_inserted)
1516 remove_breakpoints ();
c906108c 1517
c5aa993b 1518 /* Check for any newly added shared libraries if we're
990f9fe3
FF
1519 supposed to be adding them automatically. Switch
1520 terminal for any messages produced by
1521 breakpoint_re_set. */
1522 target_terminal_ours_for_output ();
1523 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1524 target_terminal_inferior ();
c906108c 1525
c5aa993b
JM
1526 /* Reinsert breakpoints and continue. */
1527 if (breakpoints_inserted)
1528 insert_breakpoints ();
1529 }
c906108c 1530#endif
c5aa993b 1531 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1532 prepare_to_wait (ecs);
1533 return;
c5aa993b
JM
1534
1535 case TARGET_WAITKIND_SPURIOUS:
1536 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1537 prepare_to_wait (ecs);
1538 return;
c5aa993b
JM
1539
1540 case TARGET_WAITKIND_EXITED:
1541 target_terminal_ours (); /* Must do this before mourn anyway */
11cf8741 1542 print_stop_reason (EXITED, ecs->ws.value.integer);
c5aa993b
JM
1543
1544 /* Record the exit code in the convenience variable $_exitcode, so
1545 that the user can inspect this again later. */
1546 set_internalvar (lookup_internalvar ("_exitcode"),
1547 value_from_longest (builtin_type_int,
1548 (LONGEST) ecs->ws.value.integer));
1549 gdb_flush (gdb_stdout);
1550 target_mourn_inferior ();
b0ed3589 1551 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
c5aa993b 1552 stop_print_frame = 0;
104c1213
JM
1553 stop_stepping (ecs);
1554 return;
c5aa993b
JM
1555
1556 case TARGET_WAITKIND_SIGNALLED:
1557 stop_print_frame = 0;
1558 stop_signal = ecs->ws.value.sig;
1559 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1560
c7e79b4b
ND
1561 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1562 reach here unless the inferior is dead. However, for years
1563 target_kill() was called here, which hints that fatal signals aren't
1564 really fatal on some systems. If that's true, then some changes
1565 may be needed. */
1566 target_mourn_inferior ();
c5aa993b 1567
11cf8741 1568 print_stop_reason (SIGNAL_EXITED, stop_signal);
b0ed3589 1569 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
104c1213
JM
1570 stop_stepping (ecs);
1571 return;
c5aa993b
JM
1572
1573 /* The following are the only cases in which we keep going;
1574 the above cases end in a continue or goto. */
1575 case TARGET_WAITKIND_FORKED:
1576 stop_signal = TARGET_SIGNAL_TRAP;
1577 pending_follow.kind = ecs->ws.kind;
1578
1579 /* Ignore fork events reported for the parent; we're only
1580 interested in reacting to forks of the child. Note that
1581 we expect the child's fork event to be available if we
1582 waited for it now. */
39f77062 1583 if (ptid_equal (inferior_ptid, ecs->ptid))
c5aa993b
JM
1584 {
1585 pending_follow.fork_event.saw_parent_fork = 1;
39f77062 1586 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
c5aa993b 1587 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
104c1213
JM
1588 prepare_to_wait (ecs);
1589 return;
c5aa993b
JM
1590 }
1591 else
1592 {
1593 pending_follow.fork_event.saw_child_fork = 1;
39f77062 1594 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
c5aa993b
JM
1595 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1596 }
c906108c 1597
39f77062
KB
1598 stop_pc = read_pc_pid (ecs->ptid);
1599 ecs->saved_inferior_ptid = inferior_ptid;
1600 inferior_ptid = ecs->ptid;
80b34fab
MS
1601 /* The second argument of bpstat_stop_status is meant to help
1602 distinguish between a breakpoint trap and a singlestep trap.
1603 This is only important on targets where DECR_PC_AFTER_BREAK
1604 is non-zero. The prev_pc test is meant to distinguish between
1605 singlestepping a trap instruction, and singlestepping thru a
1606 jump to the instruction following a trap instruction. */
1607
1608 stop_bpstat = bpstat_stop_status (&stop_pc,
1609 currently_stepping (ecs) &&
1610 prev_pc !=
1611 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1612 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
39f77062 1613 inferior_ptid = ecs->saved_inferior_ptid;
c5aa993b
JM
1614 goto process_event_stop_test;
1615
1616 /* If this a platform which doesn't allow a debugger to touch a
1617 vfork'd inferior until after it exec's, then we'd best keep
1618 our fingers entirely off the inferior, other than continuing
1619 it. This has the unfortunate side-effect that catchpoints
1620 of vforks will be ignored. But since the platform doesn't
1621 allow the inferior be touched at vfork time, there's really
1622 little choice. */
1623 case TARGET_WAITKIND_VFORKED:
1624 stop_signal = TARGET_SIGNAL_TRAP;
1625 pending_follow.kind = ecs->ws.kind;
1626
1627 /* Is this a vfork of the parent? If so, then give any
1628 vfork catchpoints a chance to trigger now. (It's
1629 dangerous to do so if the child canot be touched until
1630 it execs, and the child has not yet exec'd. We probably
1631 should warn the user to that effect when the catchpoint
1632 triggers...) */
39f77062 1633 if (ptid_equal (ecs->ptid, inferior_ptid))
c5aa993b
JM
1634 {
1635 pending_follow.fork_event.saw_parent_fork = 1;
39f77062 1636 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
c5aa993b
JM
1637 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1638 }
c906108c 1639
c5aa993b
JM
1640 /* If we've seen the child's vfork event but cannot really touch
1641 the child until it execs, then we must continue the child now.
1642 Else, give any vfork catchpoints a chance to trigger now. */
1643 else
1644 {
1645 pending_follow.fork_event.saw_child_fork = 1;
39f77062 1646 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
c5aa993b 1647 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
39f77062
KB
1648 target_post_startup_inferior (
1649 pid_to_ptid (pending_follow.fork_event.child_pid));
c5aa993b
JM
1650 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1651 if (follow_vfork_when_exec)
1652 {
39f77062 1653 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
104c1213
JM
1654 prepare_to_wait (ecs);
1655 return;
c5aa993b
JM
1656 }
1657 }
c906108c 1658
c5aa993b 1659 stop_pc = read_pc ();
80b34fab
MS
1660 /* The second argument of bpstat_stop_status is meant to help
1661 distinguish between a breakpoint trap and a singlestep trap.
1662 This is only important on targets where DECR_PC_AFTER_BREAK
1663 is non-zero. The prev_pc test is meant to distinguish between
1664 singlestepping a trap instruction, and singlestepping thru a
1665 jump to the instruction following a trap instruction. */
1666
1667 stop_bpstat = bpstat_stop_status (&stop_pc,
1668 currently_stepping (ecs) &&
1669 prev_pc !=
1670 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b
JM
1671 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1672 goto process_event_stop_test;
1673
1674 case TARGET_WAITKIND_EXECD:
1675 stop_signal = TARGET_SIGNAL_TRAP;
1676
1677 /* Is this a target which reports multiple exec events per actual
1678 call to exec()? (HP-UX using ptrace does, for example.) If so,
1679 ignore all but the last one. Just resume the exec'r, and wait
1680 for the next exec event. */
1681 if (inferior_ignoring_leading_exec_events)
1682 {
1683 inferior_ignoring_leading_exec_events--;
1684 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1685 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
39f77062 1686 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
104c1213
JM
1687 prepare_to_wait (ecs);
1688 return;
c5aa993b
JM
1689 }
1690 inferior_ignoring_leading_exec_events =
1691 target_reported_exec_events_per_exec_call () - 1;
c906108c 1692
96baa820
JM
1693 pending_follow.execd_pathname =
1694 savestring (ecs->ws.value.execd_pathname,
1695 strlen (ecs->ws.value.execd_pathname));
c906108c 1696
39f77062 1697 /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
c5aa993b 1698 child of a vfork exec?
c906108c 1699
c5aa993b
JM
1700 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1701 HP-UX, events associated with a vforking inferior come in
1702 threes: a vfork event for the child (always first), followed
1703 a vfork event for the parent and an exec event for the child.
1704 The latter two can come in either order.
c906108c 1705
c5aa993b
JM
1706 If we get the parent vfork event first, life's good: We follow
1707 either the parent or child, and then the child's exec event is
1708 a "don't care".
c906108c 1709
c5aa993b
JM
1710 But if we get the child's exec event first, then we delay
1711 responding to it until we handle the parent's vfork. Because,
1712 otherwise we can't satisfy a "catch vfork". */
1713 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1714 {
1715 pending_follow.fork_event.saw_child_exec = 1;
1716
1717 /* On some targets, the child must be resumed before
1718 the parent vfork event is delivered. A single-step
1719 suffices. */
1720 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
39f77062 1721 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c5aa993b 1722 /* We expect the parent vfork event to be available now. */
104c1213
JM
1723 prepare_to_wait (ecs);
1724 return;
c5aa993b 1725 }
c906108c 1726
c5aa993b
JM
1727 /* This causes the eventpoints and symbol table to be reset. Must
1728 do this now, before trying to determine whether to stop. */
39f77062 1729 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 1730 xfree (pending_follow.execd_pathname);
c5aa993b 1731
39f77062
KB
1732 stop_pc = read_pc_pid (ecs->ptid);
1733 ecs->saved_inferior_ptid = inferior_ptid;
1734 inferior_ptid = ecs->ptid;
80b34fab
MS
1735 /* The second argument of bpstat_stop_status is meant to help
1736 distinguish between a breakpoint trap and a singlestep trap.
1737 This is only important on targets where DECR_PC_AFTER_BREAK
1738 is non-zero. The prev_pc test is meant to distinguish between
1739 singlestepping a trap instruction, and singlestepping thru a
1740 jump to the instruction following a trap instruction. */
1741
1742 stop_bpstat = bpstat_stop_status (&stop_pc,
1743 currently_stepping (ecs) &&
1744 prev_pc !=
1745 stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1746 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
39f77062 1747 inferior_ptid = ecs->saved_inferior_ptid;
c5aa993b
JM
1748 goto process_event_stop_test;
1749
1750 /* These syscall events are returned on HP-UX, as part of its
1751 implementation of page-protection-based "hardware" watchpoints.
1752 HP-UX has unfortunate interactions between page-protections and
1753 some system calls. Our solution is to disable hardware watches
1754 when a system call is entered, and reenable them when the syscall
1755 completes. The downside of this is that we may miss the precise
1756 point at which a watched piece of memory is modified. "Oh well."
1757
1758 Note that we may have multiple threads running, which may each
1759 enter syscalls at roughly the same time. Since we don't have a
1760 good notion currently of whether a watched piece of memory is
1761 thread-private, we'd best not have any page-protections active
1762 when any thread is in a syscall. Thus, we only want to reenable
1763 hardware watches when no threads are in a syscall.
1764
1765 Also, be careful not to try to gather much state about a thread
1766 that's in a syscall. It's frequently a losing proposition. */
1767 case TARGET_WAITKIND_SYSCALL_ENTRY:
1768 number_of_threads_in_syscalls++;
1769 if (number_of_threads_in_syscalls == 1)
1770 {
39f77062 1771 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
c5aa993b
JM
1772 }
1773 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1774 prepare_to_wait (ecs);
1775 return;
c906108c 1776
c5aa993b 1777 /* Before examining the threads further, step this thread to
c906108c
SS
1778 get it entirely out of the syscall. (We get notice of the
1779 event when the thread is just on the verge of exiting a
1780 syscall. Stepping one instruction seems to get it back
1781 into user code.)
1782
1783 Note that although the logical place to reenable h/w watches
1784 is here, we cannot. We cannot reenable them before stepping
1785 the thread (this causes the next wait on the thread to hang).
1786
1787 Nor can we enable them after stepping until we've done a wait.
cd0fc7c3 1788 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
c906108c
SS
1789 here, which will be serviced immediately after the target
1790 is waited on. */
c5aa993b 1791 case TARGET_WAITKIND_SYSCALL_RETURN:
39f77062 1792 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1793
c5aa993b
JM
1794 if (number_of_threads_in_syscalls > 0)
1795 {
1796 number_of_threads_in_syscalls--;
1797 ecs->enable_hw_watchpoints_after_wait =
1798 (number_of_threads_in_syscalls == 0);
1799 }
104c1213
JM
1800 prepare_to_wait (ecs);
1801 return;
c906108c 1802
c5aa993b
JM
1803 case TARGET_WAITKIND_STOPPED:
1804 stop_signal = ecs->ws.value.sig;
1805 break;
c4093a6a
JM
1806
1807 /* We had an event in the inferior, but we are not interested
1808 in handling it at this level. The lower layers have already
1809 done what needs to be done, if anything. This case can
1810 occur only when the target is async or extended-async. One
1811 of the circumstamces for this to happen is when the
1812 inferior produces output for the console. The inferior has
1813 not stopped, and we are ignoring the event. */
1814 case TARGET_WAITKIND_IGNORE:
1815 ecs->wait_some_more = 1;
1816 return;
c5aa993b 1817 }
c906108c 1818
c5aa993b
JM
1819 /* We may want to consider not doing a resume here in order to give
1820 the user a chance to play with the new thread. It might be good
1821 to make that a user-settable option. */
c906108c 1822
c5aa993b
JM
1823 /* At this point, all threads are stopped (happens automatically in
1824 either the OS or the native code). Therefore we need to continue
1825 all threads in order to make progress. */
1826 if (ecs->new_thread_event)
1827 {
39f77062 1828 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
104c1213
JM
1829 prepare_to_wait (ecs);
1830 return;
c5aa993b 1831 }
c906108c 1832
39f77062 1833 stop_pc = read_pc_pid (ecs->ptid);
c906108c 1834
c5aa993b
JM
1835 /* See if a thread hit a thread-specific breakpoint that was meant for
1836 another thread. If so, then step that thread past the breakpoint,
1837 and continue it. */
c906108c 1838
c5aa993b
JM
1839 if (stop_signal == TARGET_SIGNAL_TRAP)
1840 {
b0ed3589 1841 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
c5aa993b
JM
1842 ecs->random_signal = 0;
1843 else if (breakpoints_inserted
1844 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1845 {
cd0fc7c3 1846 ecs->random_signal = 0;
c5aa993b 1847 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
39f77062 1848 ecs->ptid))
c5aa993b
JM
1849 {
1850 int remove_status;
1851
1852 /* Saw a breakpoint, but it was hit by the wrong thread.
1853 Just continue. */
80b34fab
MS
1854 if (DECR_PC_AFTER_BREAK)
1855 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
c5aa993b
JM
1856
1857 remove_status = remove_breakpoints ();
1858 /* Did we fail to remove breakpoints? If so, try
1859 to set the PC past the bp. (There's at least
1860 one situation in which we can fail to remove
1861 the bp's: On HP-UX's that use ttrace, we can't
1862 change the address space of a vforking child
1863 process until the child exits (well, okay, not
1864 then either :-) or execs. */
1865 if (remove_status != 0)
1866 {
80b34fab
MS
1867 /* FIXME! This is obviously non-portable! */
1868 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4,
1869 ecs->ptid);
c6ad9598
MS
1870 /* We need to restart all the threads now,
1871 * unles we're running in scheduler-locked mode.
1872 * Use currently_stepping to determine whether to
1873 * step or continue.
1874 */
dd80620e 1875 /* FIXME MVS: is there any reason not to call resume()? */
c6ad9598
MS
1876 if (scheduler_mode == schedlock_on)
1877 target_resume (ecs->ptid,
1878 currently_stepping (ecs),
1879 TARGET_SIGNAL_0);
1880 else
1881 target_resume (RESUME_ALL,
1882 currently_stepping (ecs),
1883 TARGET_SIGNAL_0);
1884 prepare_to_wait (ecs);
1885 return;
c5aa993b
JM
1886 }
1887 else
1888 { /* Single step */
dd80620e
MS
1889 breakpoints_inserted = 0;
1890 if (!ptid_equal (inferior_ptid, ecs->ptid))
1891 context_switch (ecs);
39f77062 1892 ecs->waiton_ptid = ecs->ptid;
c5aa993b 1893 ecs->wp = &(ecs->ws);
dd80620e
MS
1894 ecs->another_trap = 1;
1895
c5aa993b 1896 ecs->infwait_state = infwait_thread_hop_state;
dd80620e
MS
1897 keep_going (ecs);
1898 registers_changed ();
104c1213 1899 return;
c5aa993b 1900 }
c5aa993b 1901 }
c5aa993b
JM
1902 }
1903 }
1904 else
1905 ecs->random_signal = 1;
1906
1907 /* See if something interesting happened to the non-current thread. If
1908 so, then switch to that thread, and eventually give control back to
1909 the user.
1910
1911 Note that if there's any kind of pending follow (i.e., of a fork,
1912 vfork or exec), we don't want to do this now. Rather, we'll let
1913 the next resume handle it. */
39f77062 1914 if (! ptid_equal (ecs->ptid, inferior_ptid) &&
c5aa993b
JM
1915 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1916 {
1917 int printed = 0;
c906108c 1918
c5aa993b
JM
1919 /* If it's a random signal for a non-current thread, notify user
1920 if he's expressed an interest. */
1921 if (ecs->random_signal
1922 && signal_print[stop_signal])
1923 {
c906108c
SS
1924/* ??rehrauer: I don't understand the rationale for this code. If the
1925 inferior will stop as a result of this signal, then the act of handling
1926 the stop ought to print a message that's couches the stoppage in user
1927 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1928 won't stop as a result of the signal -- i.e., if the signal is merely
1929 a side-effect of something GDB's doing "under the covers" for the
1930 user, such as stepping threads over a breakpoint they shouldn't stop
1931 for -- then the message seems to be a serious annoyance at best.
1932
1933 For now, remove the message altogether. */
1934#if 0
c5aa993b
JM
1935 printed = 1;
1936 target_terminal_ours_for_output ();
1937 printf_filtered ("\nProgram received signal %s, %s.\n",
1938 target_signal_to_name (stop_signal),
1939 target_signal_to_string (stop_signal));
1940 gdb_flush (gdb_stdout);
c906108c 1941#endif
c5aa993b 1942 }
c906108c 1943
c5aa993b
JM
1944 /* If it's not SIGTRAP and not a signal we want to stop for, then
1945 continue the thread. */
c906108c 1946
c5aa993b
JM
1947 if (stop_signal != TARGET_SIGNAL_TRAP
1948 && !signal_stop[stop_signal])
1949 {
1950 if (printed)
1951 target_terminal_inferior ();
c906108c 1952
c5aa993b
JM
1953 /* Clear the signal if it should not be passed. */
1954 if (signal_program[stop_signal] == 0)
1955 stop_signal = TARGET_SIGNAL_0;
c906108c 1956
39f77062 1957 target_resume (ecs->ptid, 0, stop_signal);
104c1213
JM
1958 prepare_to_wait (ecs);
1959 return;
c5aa993b 1960 }
c906108c 1961
c5aa993b
JM
1962 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1963 and fall into the rest of wait_for_inferior(). */
1964
dd80620e 1965 context_switch (ecs);
c5aa993b 1966
c5aa993b 1967 if (context_hook)
39f77062 1968 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1969
c5aa993b
JM
1970 flush_cached_frames ();
1971 }
c906108c 1972
b0ed3589 1973 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
c5aa993b
JM
1974 {
1975 /* Pull the single step breakpoints out of the target. */
1976 SOFTWARE_SINGLE_STEP (0, 0);
1977 singlestep_breakpoints_inserted_p = 0;
1978 }
c906108c 1979
c5aa993b
JM
1980 /* If PC is pointing at a nullified instruction, then step beyond
1981 it so that the user won't be confused when GDB appears to be ready
1982 to execute it. */
c906108c 1983
c5aa993b
JM
1984 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1985 if (INSTRUCTION_NULLIFIED)
1986 {
1987 registers_changed ();
39f77062 1988 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1989
c5aa993b
JM
1990 /* We may have received a signal that we want to pass to
1991 the inferior; therefore, we must not clobber the waitstatus
1992 in WS. */
c906108c 1993
c5aa993b 1994 ecs->infwait_state = infwait_nullified_state;
39f77062 1995 ecs->waiton_ptid = ecs->ptid;
c5aa993b 1996 ecs->wp = &(ecs->tmpstatus);
104c1213
JM
1997 prepare_to_wait (ecs);
1998 return;
c5aa993b 1999 }
c906108c 2000
c5aa993b
JM
2001 /* It may not be necessary to disable the watchpoint to stop over
2002 it. For example, the PA can (with some kernel cooperation)
2003 single step over a watchpoint without disabling the watchpoint. */
2004 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2005 {
2006 resume (1, 0);
104c1213
JM
2007 prepare_to_wait (ecs);
2008 return;
c5aa993b 2009 }
c906108c 2010
c5aa993b
JM
2011 /* It is far more common to need to disable a watchpoint to step
2012 the inferior over it. FIXME. What else might a debug
2013 register or page protection watchpoint scheme need here? */
2014 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2015 {
2016 /* At this point, we are stopped at an instruction which has
2017 attempted to write to a piece of memory under control of
2018 a watchpoint. The instruction hasn't actually executed
2019 yet. If we were to evaluate the watchpoint expression
2020 now, we would get the old value, and therefore no change
2021 would seem to have occurred.
2022
2023 In order to make watchpoints work `right', we really need
2024 to complete the memory write, and then evaluate the
2025 watchpoint expression. The following code does that by
2026 removing the watchpoint (actually, all watchpoints and
2027 breakpoints), single-stepping the target, re-inserting
2028 watchpoints, and then falling through to let normal
2029 single-step processing handle proceed. Since this
2030 includes evaluating watchpoints, things will come to a
2031 stop in the correct manner. */
2032
80b34fab
MS
2033 if (DECR_PC_AFTER_BREAK)
2034 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b
JM
2035
2036 remove_breakpoints ();
2037 registers_changed ();
39f77062 2038 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 2039
39f77062 2040 ecs->waiton_ptid = ecs->ptid;
c5aa993b
JM
2041 ecs->wp = &(ecs->ws);
2042 ecs->infwait_state = infwait_nonstep_watch_state;
104c1213
JM
2043 prepare_to_wait (ecs);
2044 return;
c5aa993b 2045 }
c906108c 2046
c5aa993b
JM
2047 /* It may be possible to simply continue after a watchpoint. */
2048 if (HAVE_CONTINUABLE_WATCHPOINT)
2049 STOPPED_BY_WATCHPOINT (ecs->ws);
2050
2051 ecs->stop_func_start = 0;
2052 ecs->stop_func_end = 0;
2053 ecs->stop_func_name = 0;
2054 /* Don't care about return value; stop_func_start and stop_func_name
2055 will both be 0 if it doesn't work. */
2056 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2057 &ecs->stop_func_start, &ecs->stop_func_end);
2058 ecs->stop_func_start += FUNCTION_START_OFFSET;
2059 ecs->another_trap = 0;
2060 bpstat_clear (&stop_bpstat);
2061 stop_step = 0;
2062 stop_stack_dummy = 0;
2063 stop_print_frame = 1;
2064 ecs->random_signal = 0;
2065 stopped_by_random_signal = 0;
2066 breakpoints_failed = 0;
2067
2068 /* Look at the cause of the stop, and decide what to do.
2069 The alternatives are:
2070 1) break; to really stop and return to the debugger,
2071 2) drop through to start up again
2072 (set ecs->another_trap to 1 to single step once)
2073 3) set ecs->random_signal to 1, and the decision between 1 and 2
2074 will be made according to the signal handling tables. */
2075
2076 /* First, distinguish signals caused by the debugger from signals
2077 that have to do with the program's own actions.
2078 Note that breakpoint insns may cause SIGTRAP or SIGILL
2079 or SIGEMT, depending on the operating system version.
2080 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2081 and change it to SIGTRAP. */
2082
2083 if (stop_signal == TARGET_SIGNAL_TRAP
2084 || (breakpoints_inserted &&
2085 (stop_signal == TARGET_SIGNAL_ILL
2086 || stop_signal == TARGET_SIGNAL_EMT
2087 ))
2088 || stop_soon_quietly)
2089 {
2090 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2091 {
2092 stop_print_frame = 0;
104c1213
JM
2093 stop_stepping (ecs);
2094 return;
c5aa993b
JM
2095 }
2096 if (stop_soon_quietly)
104c1213
JM
2097 {
2098 stop_stepping (ecs);
2099 return;
2100 }
c906108c 2101
c5aa993b
JM
2102 /* Don't even think about breakpoints
2103 if just proceeded over a breakpoint.
c906108c 2104
c5aa993b
JM
2105 However, if we are trying to proceed over a breakpoint
2106 and end up in sigtramp, then through_sigtramp_breakpoint
2107 will be set and we should check whether we've hit the
2108 step breakpoint. */
2109 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2110 && through_sigtramp_breakpoint == NULL)
2111 bpstat_clear (&stop_bpstat);
2112 else
2113 {
2114 /* See if there is a breakpoint at the current PC. */
80b34fab
MS
2115
2116 /* The second argument of bpstat_stop_status is meant to help
2117 distinguish between a breakpoint trap and a singlestep trap.
2118 This is only important on targets where DECR_PC_AFTER_BREAK
2119 is non-zero. The prev_pc test is meant to distinguish between
2120 singlestepping a trap instruction, and singlestepping thru a
2121 jump to the instruction following a trap instruction. */
2122
c5aa993b
JM
2123 stop_bpstat = bpstat_stop_status
2124 (&stop_pc,
6426a772
JM
2125 /* Pass TRUE if our reason for stopping is something other
2126 than hitting a breakpoint. We do this by checking that
2127 1) stepping is going on and 2) we didn't hit a breakpoint
2128 in a signal handler without an intervening stop in
2129 sigtramp, which is detected by a new stack pointer value
2130 below any usual function calling stack adjustments. */
c5aa993b 2131 (currently_stepping (ecs)
80b34fab 2132 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
c5aa993b 2133 && !(step_range_end
6426a772 2134 && INNER_THAN (read_sp (), (step_sp - 16))))
c5aa993b
JM
2135 );
2136 /* Following in case break condition called a
2137 function. */
2138 stop_print_frame = 1;
2139 }
c906108c 2140
c5aa993b
JM
2141 if (stop_signal == TARGET_SIGNAL_TRAP)
2142 ecs->random_signal
2143 = !(bpstat_explains_signal (stop_bpstat)
2144 || trap_expected
2145 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2146 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2147 FRAME_FP (get_current_frame ())))
2148 || (step_range_end && step_resume_breakpoint == NULL));
2149
2150 else
2151 {
cd0fc7c3 2152 ecs->random_signal
c906108c 2153 = !(bpstat_explains_signal (stop_bpstat)
c5aa993b
JM
2154 /* End of a stack dummy. Some systems (e.g. Sony
2155 news) give another signal besides SIGTRAP, so
2156 check here as well as above. */
7a292a7a
SS
2157 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2158 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2159 FRAME_FP (get_current_frame ())))
c5aa993b
JM
2160 );
2161 if (!ecs->random_signal)
2162 stop_signal = TARGET_SIGNAL_TRAP;
2163 }
2164 }
c906108c 2165
c5aa993b
JM
2166 /* When we reach this point, we've pretty much decided
2167 that the reason for stopping must've been a random
2168 (unexpected) signal. */
2169
2170 else
2171 ecs->random_signal = 1;
2172 /* If a fork, vfork or exec event was seen, then there are two
2173 possible responses we can make:
2174
2175 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2176 then we must stop now and issue a prompt. We will resume
2177 the inferior when the user tells us to.
2178 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2179 then we must resume the inferior now and keep checking.
2180
2181 In either case, we must take appropriate steps to "follow" the
2182 the fork/vfork/exec when the inferior is resumed. For example,
2183 if follow-fork-mode is "child", then we must detach from the
2184 parent inferior and follow the new child inferior.
2185
2186 In either case, setting pending_follow causes the next resume()
2187 to take the appropriate following action. */
2188 process_event_stop_test:
2189 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2190 {
2191 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2192 {
2193 trap_expected = 1;
2194 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2195 keep_going (ecs);
2196 return;
c5aa993b
JM
2197 }
2198 }
2199 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2200 {
2201 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2202 {
d4f3574e
SS
2203 stop_signal = TARGET_SIGNAL_0;
2204 keep_going (ecs);
2205 return;
c5aa993b
JM
2206 }
2207 }
2208 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2209 {
2210 pending_follow.kind = ecs->ws.kind;
2211 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2212 {
2213 trap_expected = 1;
2214 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2215 keep_going (ecs);
2216 return;
c5aa993b
JM
2217 }
2218 }
c906108c 2219
c5aa993b
JM
2220 /* For the program's own signals, act according to
2221 the signal handling tables. */
c906108c 2222
c5aa993b
JM
2223 if (ecs->random_signal)
2224 {
2225 /* Signal not for debugging purposes. */
2226 int printed = 0;
2227
2228 stopped_by_random_signal = 1;
2229
2230 if (signal_print[stop_signal])
2231 {
2232 printed = 1;
2233 target_terminal_ours_for_output ();
11cf8741 2234 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
c5aa993b
JM
2235 }
2236 if (signal_stop[stop_signal])
104c1213
JM
2237 {
2238 stop_stepping (ecs);
2239 return;
2240 }
c5aa993b
JM
2241 /* If not going to stop, give terminal back
2242 if we took it away. */
2243 else if (printed)
2244 target_terminal_inferior ();
2245
2246 /* Clear the signal if it should not be passed. */
2247 if (signal_program[stop_signal] == 0)
2248 stop_signal = TARGET_SIGNAL_0;
2249
a0b3c4fd
JM
2250 /* I'm not sure whether this needs to be check_sigtramp2 or
2251 whether it could/should be keep_going.
2252
2253 This used to jump to step_over_function if we are stepping,
2254 which is wrong.
2255
2256 Suppose the user does a `next' over a function call, and while
2257 that call is in progress, the inferior receives a signal for
2258 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2259 that case, when we reach this point, there is already a
2260 step-resume breakpoint established, right where it should be:
2261 immediately after the function call the user is "next"-ing
d4f3574e 2262 over. If we call step_over_function now, two bad things
a0b3c4fd
JM
2263 happen:
2264
2265 - we'll create a new breakpoint, at wherever the current
2266 frame's return address happens to be. That could be
2267 anywhere, depending on what function call happens to be on
2268 the top of the stack at that point. Point is, it's probably
2269 not where we need it.
2270
2271 - the existing step-resume breakpoint (which is at the correct
2272 address) will get orphaned: step_resume_breakpoint will point
2273 to the new breakpoint, and the old step-resume breakpoint
2274 will never be cleaned up.
2275
2276 The old behavior was meant to help HP-UX single-step out of
2277 sigtramps. It would place the new breakpoint at prev_pc, which
2278 was certainly wrong. I don't know the details there, so fixing
2279 this probably breaks that. As with anything else, it's up to
2280 the HP-UX maintainer to furnish a fix that doesn't break other
2281 platforms. --JimB, 20 May 1999 */
104c1213 2282 check_sigtramp2 (ecs);
e441088d
MK
2283 keep_going (ecs);
2284 return;
c5aa993b
JM
2285 }
2286
2287 /* Handle cases caused by hitting a breakpoint. */
2288 {
2289 CORE_ADDR jmp_buf_pc;
2290 struct bpstat_what what;
2291
2292 what = bpstat_what (stop_bpstat);
2293
2294 if (what.call_dummy)
c906108c 2295 {
c5aa993b
JM
2296 stop_stack_dummy = 1;
2297#ifdef HP_OS_BUG
2298 trap_expected_after_continue = 1;
2299#endif
c906108c 2300 }
c5aa993b
JM
2301
2302 switch (what.main_action)
c906108c 2303 {
c5aa993b
JM
2304 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2305 /* If we hit the breakpoint at longjmp, disable it for the
2306 duration of this command. Then, install a temporary
2307 breakpoint at the target of the jmp_buf. */
2308 disable_longjmp_breakpoint ();
2309 remove_breakpoints ();
2310 breakpoints_inserted = 0;
2311 if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
d4f3574e
SS
2312 {
2313 keep_going (ecs);
2314 return;
2315 }
c5aa993b
JM
2316
2317 /* Need to blow away step-resume breakpoint, as it
2318 interferes with us */
2319 if (step_resume_breakpoint != NULL)
c906108c 2320 {
8601f500 2321 delete_step_resume_breakpoint (&step_resume_breakpoint);
c906108c 2322 }
c5aa993b
JM
2323 /* Not sure whether we need to blow this away too, but probably
2324 it is like the step-resume breakpoint. */
2325 if (through_sigtramp_breakpoint != NULL)
c906108c 2326 {
c5aa993b
JM
2327 delete_breakpoint (through_sigtramp_breakpoint);
2328 through_sigtramp_breakpoint = NULL;
c906108c 2329 }
c906108c 2330
c5aa993b
JM
2331#if 0
2332 /* FIXME - Need to implement nested temporary breakpoints */
2333 if (step_over_calls > 0)
2334 set_longjmp_resume_breakpoint (jmp_buf_pc,
2335 get_current_frame ());
2336 else
2337#endif /* 0 */
2338 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2339 ecs->handling_longjmp = 1; /* FIXME */
d4f3574e
SS
2340 keep_going (ecs);
2341 return;
c906108c 2342
c5aa993b
JM
2343 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2344 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2345 remove_breakpoints ();
2346 breakpoints_inserted = 0;
2347#if 0
2348 /* FIXME - Need to implement nested temporary breakpoints */
2349 if (step_over_calls
2350 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2351 step_frame_address)))
2352 {
2353 ecs->another_trap = 1;
d4f3574e
SS
2354 keep_going (ecs);
2355 return;
c5aa993b
JM
2356 }
2357#endif /* 0 */
2358 disable_longjmp_breakpoint ();
2359 ecs->handling_longjmp = 0; /* FIXME */
2360 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2361 break;
2362 /* else fallthrough */
c906108c 2363
c5aa993b
JM
2364 case BPSTAT_WHAT_SINGLE:
2365 if (breakpoints_inserted)
c906108c 2366 {
c5aa993b 2367 remove_breakpoints ();
c906108c 2368 }
c5aa993b
JM
2369 breakpoints_inserted = 0;
2370 ecs->another_trap = 1;
2371 /* Still need to check other stuff, at least the case
2372 where we are stepping and step out of the right range. */
2373 break;
c906108c 2374
c5aa993b
JM
2375 case BPSTAT_WHAT_STOP_NOISY:
2376 stop_print_frame = 1;
c906108c 2377
c5aa993b
JM
2378 /* We are about to nuke the step_resume_breakpoint and
2379 through_sigtramp_breakpoint via the cleanup chain, so
2380 no need to worry about it here. */
c906108c 2381
104c1213
JM
2382 stop_stepping (ecs);
2383 return;
c906108c 2384
c5aa993b
JM
2385 case BPSTAT_WHAT_STOP_SILENT:
2386 stop_print_frame = 0;
c906108c 2387
c5aa993b
JM
2388 /* We are about to nuke the step_resume_breakpoint and
2389 through_sigtramp_breakpoint via the cleanup chain, so
2390 no need to worry about it here. */
c906108c 2391
104c1213
JM
2392 stop_stepping (ecs);
2393 return;
c906108c 2394
c5aa993b
JM
2395 case BPSTAT_WHAT_STEP_RESUME:
2396 /* This proably demands a more elegant solution, but, yeah
2397 right...
2398
2399 This function's use of the simple variable
2400 step_resume_breakpoint doesn't seem to accomodate
2401 simultaneously active step-resume bp's, although the
2402 breakpoint list certainly can.
2403
2404 If we reach here and step_resume_breakpoint is already
2405 NULL, then apparently we have multiple active
2406 step-resume bp's. We'll just delete the breakpoint we
53a5351d
JM
2407 stopped at, and carry on.
2408
2409 Correction: what the code currently does is delete a
2410 step-resume bp, but it makes no effort to ensure that
2411 the one deleted is the one currently stopped at. MVS */
2412
c5aa993b
JM
2413 if (step_resume_breakpoint == NULL)
2414 {
2415 step_resume_breakpoint =
2416 bpstat_find_step_resume_breakpoint (stop_bpstat);
2417 }
8601f500 2418 delete_step_resume_breakpoint (&step_resume_breakpoint);
c5aa993b
JM
2419 break;
2420
2421 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2422 if (through_sigtramp_breakpoint)
2423 delete_breakpoint (through_sigtramp_breakpoint);
2424 through_sigtramp_breakpoint = NULL;
2425
2426 /* If were waiting for a trap, hitting the step_resume_break
2427 doesn't count as getting it. */
2428 if (trap_expected)
2429 ecs->another_trap = 1;
2430 break;
c906108c 2431
c5aa993b
JM
2432 case BPSTAT_WHAT_CHECK_SHLIBS:
2433 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2434#ifdef SOLIB_ADD
c906108c 2435 {
c5aa993b
JM
2436 /* Remove breakpoints, we eventually want to step over the
2437 shlib event breakpoint, and SOLIB_ADD might adjust
2438 breakpoint addresses via breakpoint_re_set. */
2439 if (breakpoints_inserted)
2440 remove_breakpoints ();
c906108c 2441 breakpoints_inserted = 0;
c906108c 2442
c5aa993b 2443 /* Check for any newly added shared libraries if we're
990f9fe3
FF
2444 supposed to be adding them automatically. Switch
2445 terminal for any messages produced by
2446 breakpoint_re_set. */
2447 target_terminal_ours_for_output ();
2448 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2449 target_terminal_inferior ();
c5aa993b
JM
2450
2451 /* Try to reenable shared library breakpoints, additional
2452 code segments in shared libraries might be mapped in now. */
2453 re_enable_breakpoints_in_shlibs ();
2454
2455 /* If requested, stop when the dynamic linker notifies
2456 gdb of events. This allows the user to get control
2457 and place breakpoints in initializer routines for
2458 dynamically loaded objects (among other things). */
2459 if (stop_on_solib_events)
c906108c 2460 {
104c1213
JM
2461 stop_stepping (ecs);
2462 return;
c906108c
SS
2463 }
2464
c5aa993b
JM
2465 /* If we stopped due to an explicit catchpoint, then the
2466 (see above) call to SOLIB_ADD pulled in any symbols
2467 from a newly-loaded library, if appropriate.
2468
2469 We do want the inferior to stop, but not where it is
2470 now, which is in the dynamic linker callback. Rather,
2471 we would like it stop in the user's program, just after
2472 the call that caused this catchpoint to trigger. That
2473 gives the user a more useful vantage from which to
2474 examine their program's state. */
2475 else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2476 {
2477 /* ??rehrauer: If I could figure out how to get the
2478 right return PC from here, we could just set a temp
2479 breakpoint and resume. I'm not sure we can without
2480 cracking open the dld's shared libraries and sniffing
2481 their unwind tables and text/data ranges, and that's
2482 not a terribly portable notion.
2483
2484 Until that time, we must step the inferior out of the
2485 dld callback, and also out of the dld itself (and any
2486 code or stubs in libdld.sl, such as "shl_load" and
2487 friends) until we reach non-dld code. At that point,
2488 we can stop stepping. */
2489 bpstat_get_triggered_catchpoints (stop_bpstat,
2490 &ecs->stepping_through_solib_catchpoints);
2491 ecs->stepping_through_solib_after_catch = 1;
2492
2493 /* Be sure to lift all breakpoints, so the inferior does
2494 actually step past this point... */
2495 ecs->another_trap = 1;
2496 break;
2497 }
2498 else
c906108c 2499 {
c5aa993b 2500 /* We want to step over this breakpoint, then keep going. */
cd0fc7c3 2501 ecs->another_trap = 1;
c5aa993b 2502 break;
c906108c 2503 }
c5aa993b
JM
2504 }
2505#endif
2506 break;
c906108c 2507
c5aa993b
JM
2508 case BPSTAT_WHAT_LAST:
2509 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2510
c5aa993b
JM
2511 case BPSTAT_WHAT_KEEP_CHECKING:
2512 break;
2513 }
2514 }
c906108c 2515
c5aa993b
JM
2516 /* We come here if we hit a breakpoint but should not
2517 stop for it. Possibly we also were stepping
2518 and should stop for that. So fall through and
2519 test for stepping. But, if not stepping,
2520 do not stop. */
c906108c 2521
c5aa993b
JM
2522 /* Are we stepping to get the inferior out of the dynamic
2523 linker's hook (and possibly the dld itself) after catching
2524 a shlib event? */
2525 if (ecs->stepping_through_solib_after_catch)
2526 {
2527#if defined(SOLIB_ADD)
2528 /* Have we reached our destination? If not, keep going. */
39f77062 2529 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
c5aa993b
JM
2530 {
2531 ecs->another_trap = 1;
d4f3574e
SS
2532 keep_going (ecs);
2533 return;
c5aa993b
JM
2534 }
2535#endif
2536 /* Else, stop and report the catchpoint(s) whose triggering
2537 caused us to begin stepping. */
2538 ecs->stepping_through_solib_after_catch = 0;
2539 bpstat_clear (&stop_bpstat);
2540 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2541 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2542 stop_print_frame = 1;
104c1213
JM
2543 stop_stepping (ecs);
2544 return;
c5aa993b 2545 }
c906108c 2546
c5aa993b
JM
2547 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2548 {
2549 /* This is the old way of detecting the end of the stack dummy.
2550 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2551 handled above. As soon as we can test it on all of them, all
2552 architectures should define it. */
2553
2554 /* If this is the breakpoint at the end of a stack dummy,
2555 just stop silently, unless the user was doing an si/ni, in which
2556 case she'd better know what she's doing. */
2557
2558 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2559 FRAME_FP (get_current_frame ()))
2560 && !step_range_end)
2561 {
c906108c 2562 stop_print_frame = 0;
c5aa993b
JM
2563 stop_stack_dummy = 1;
2564#ifdef HP_OS_BUG
2565 trap_expected_after_continue = 1;
2566#endif
104c1213
JM
2567 stop_stepping (ecs);
2568 return;
c5aa993b
JM
2569 }
2570 }
c906108c 2571
c5aa993b 2572 if (step_resume_breakpoint)
104c1213
JM
2573 {
2574 /* Having a step-resume breakpoint overrides anything
2575 else having to do with stepping commands until
2576 that breakpoint is reached. */
2577 /* I'm not sure whether this needs to be check_sigtramp2 or
2578 whether it could/should be keep_going. */
2579 check_sigtramp2 (ecs);
d4f3574e
SS
2580 keep_going (ecs);
2581 return;
104c1213
JM
2582 }
2583
c5aa993b 2584 if (step_range_end == 0)
104c1213
JM
2585 {
2586 /* Likewise if we aren't even stepping. */
2587 /* I'm not sure whether this needs to be check_sigtramp2 or
2588 whether it could/should be keep_going. */
2589 check_sigtramp2 (ecs);
d4f3574e
SS
2590 keep_going (ecs);
2591 return;
104c1213 2592 }
c5aa993b
JM
2593
2594 /* If stepping through a line, keep going if still within it.
2595
2596 Note that step_range_end is the address of the first instruction
2597 beyond the step range, and NOT the address of the last instruction
2598 within it! */
2599 if (stop_pc >= step_range_start
2600 && stop_pc < step_range_end)
2601 {
2602 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2603 So definately need to check for sigtramp here. */
104c1213 2604 check_sigtramp2 (ecs);
d4f3574e
SS
2605 keep_going (ecs);
2606 return;
c5aa993b 2607 }
c906108c 2608
c5aa993b 2609 /* We stepped out of the stepping range. */
c906108c 2610
c5aa993b
JM
2611 /* If we are stepping at the source level and entered the runtime
2612 loader dynamic symbol resolution code, we keep on single stepping
2613 until we exit the run time loader code and reach the callee's
2614 address. */
5fbbeb29 2615 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
d4f3574e
SS
2616 {
2617 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2618
2619 if (pc_after_resolver)
2620 {
2621 /* Set up a step-resume breakpoint at the address
2622 indicated by SKIP_SOLIB_RESOLVER. */
2623 struct symtab_and_line sr_sal;
2624 INIT_SAL (&sr_sal);
2625 sr_sal.pc = pc_after_resolver;
2626
2627 check_for_old_step_resume_breakpoint ();
2628 step_resume_breakpoint =
2629 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2630 if (breakpoints_inserted)
2631 insert_breakpoints ();
2632 }
2633
2634 keep_going (ecs);
2635 return;
2636 }
c906108c 2637
c5aa993b
JM
2638 /* We can't update step_sp every time through the loop, because
2639 reading the stack pointer would slow down stepping too much.
2640 But we can update it every time we leave the step range. */
2641 ecs->update_step_sp = 1;
c906108c 2642
c5aa993b
JM
2643 /* Did we just take a signal? */
2644 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2645 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2646 && INNER_THAN (read_sp (), step_sp))
2647 {
2648 /* We've just taken a signal; go until we are back to
2649 the point where we took it and one more. */
c906108c 2650
c5aa993b
JM
2651 /* Note: The test above succeeds not only when we stepped
2652 into a signal handler, but also when we step past the last
2653 statement of a signal handler and end up in the return stub
2654 of the signal handler trampoline. To distinguish between
2655 these two cases, check that the frame is INNER_THAN the
2656 previous one below. pai/1997-09-11 */
c906108c 2657
c906108c 2658
c5aa993b
JM
2659 {
2660 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
c906108c 2661
c5aa993b
JM
2662 if (INNER_THAN (current_frame, step_frame_address))
2663 {
2664 /* We have just taken a signal; go until we are back to
2665 the point where we took it and one more. */
c906108c 2666
c5aa993b
JM
2667 /* This code is needed at least in the following case:
2668 The user types "next" and then a signal arrives (before
2669 the "next" is done). */
c906108c 2670
c5aa993b
JM
2671 /* Note that if we are stopped at a breakpoint, then we need
2672 the step_resume breakpoint to override any breakpoints at
2673 the same location, so that we will still step over the
2674 breakpoint even though the signal happened. */
2675 struct symtab_and_line sr_sal;
c906108c 2676
c5aa993b
JM
2677 INIT_SAL (&sr_sal);
2678 sr_sal.symtab = NULL;
2679 sr_sal.line = 0;
2680 sr_sal.pc = prev_pc;
2681 /* We could probably be setting the frame to
2682 step_frame_address; I don't think anyone thought to
2683 try it. */
a0b3c4fd 2684 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2685 step_resume_breakpoint =
2686 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2687 if (breakpoints_inserted)
2688 insert_breakpoints ();
c906108c 2689 }
c5aa993b 2690 else
c906108c 2691 {
c5aa993b
JM
2692 /* We just stepped out of a signal handler and into
2693 its calling trampoline.
2694
d4f3574e 2695 Normally, we'd call step_over_function from
c5aa993b
JM
2696 here, but for some reason GDB can't unwind the
2697 stack correctly to find the real PC for the point
2698 user code where the signal trampoline will return
2699 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2700 But signal trampolines are pretty small stubs of
2701 code, anyway, so it's OK instead to just
2702 single-step out. Note: assuming such trampolines
2703 don't exhibit recursion on any platform... */
2704 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2705 &ecs->stop_func_start,
2706 &ecs->stop_func_end);
2707 /* Readjust stepping range */
2708 step_range_start = ecs->stop_func_start;
2709 step_range_end = ecs->stop_func_end;
2710 ecs->stepping_through_sigtramp = 1;
c906108c 2711 }
c906108c
SS
2712 }
2713
c906108c 2714
c5aa993b
JM
2715 /* If this is stepi or nexti, make sure that the stepping range
2716 gets us past that instruction. */
2717 if (step_range_end == 1)
2718 /* FIXME: Does this run afoul of the code below which, if
2719 we step into the middle of a line, resets the stepping
2720 range? */
2721 step_range_end = (step_range_start = prev_pc) + 1;
c906108c 2722
c5aa993b 2723 ecs->remove_breakpoints_on_following_step = 1;
d4f3574e
SS
2724 keep_going (ecs);
2725 return;
c5aa993b 2726 }
c906108c 2727
c5aa993b
JM
2728 if (stop_pc == ecs->stop_func_start /* Quick test */
2729 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2730 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2731 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2732 || ecs->stop_func_name == 0)
2733 {
2734 /* It's a subroutine call. */
c906108c 2735
100a02e1
AC
2736 if ((step_over_calls == STEP_OVER_NONE)
2737 || ((step_range_end == 1)
2738 && in_prologue (prev_pc, ecs->stop_func_start)))
c906108c 2739 {
c5aa993b
JM
2740 /* I presume that step_over_calls is only 0 when we're
2741 supposed to be stepping at the assembly language level
2742 ("stepi"). Just stop. */
100a02e1
AC
2743 /* Also, maybe we just did a "nexti" inside a prolog,
2744 so we thought it was a subroutine call but it was not.
2745 Stop as well. FENN */
c5aa993b 2746 stop_step = 1;
11cf8741 2747 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2748 stop_stepping (ecs);
2749 return;
c5aa993b 2750 }
c906108c 2751
5fbbeb29 2752 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
d4f3574e
SS
2753 {
2754 /* We're doing a "next". */
d41707c8
MK
2755
2756 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2757 && INNER_THAN (step_frame_address, read_sp()))
2758 /* We stepped out of a signal handler, and into its
2759 calling trampoline. This is misdetected as a
2760 subroutine call, but stepping over the signal
2761 trampoline isn't such a bad idea. In order to do
2762 that, we have to ignore the value in
2763 step_frame_address, since that doesn't represent the
2764 frame that'll reach when we return from the signal
2765 trampoline. Otherwise we'll probably continue to the
2766 end of the program. */
2767 step_frame_address = 0;
2768
d4f3574e
SS
2769 step_over_function (ecs);
2770 keep_going (ecs);
2771 return;
2772 }
c5aa993b
JM
2773
2774 /* If we are in a function call trampoline (a stub between
2775 the calling routine and the real function), locate the real
2776 function. That's what tells us (a) whether we want to step
2777 into it at all, and (b) what prologue we want to run to
2778 the end of, if we do step into it. */
2779 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2780 if (tmp != 0)
2781 ecs->stop_func_start = tmp;
2782 else
2783 {
2784 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2785 if (tmp)
c906108c 2786 {
c5aa993b
JM
2787 struct symtab_and_line xxx;
2788 /* Why isn't this s_a_l called "sr_sal", like all of the
2789 other s_a_l's where this code is duplicated? */
2790 INIT_SAL (&xxx); /* initialize to zeroes */
2791 xxx.pc = tmp;
2792 xxx.section = find_pc_overlay (xxx.pc);
a0b3c4fd 2793 check_for_old_step_resume_breakpoint ();
c906108c 2794 step_resume_breakpoint =
c5aa993b
JM
2795 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2796 insert_breakpoints ();
d4f3574e
SS
2797 keep_going (ecs);
2798 return;
c906108c
SS
2799 }
2800 }
2801
c5aa993b
JM
2802 /* If we have line number information for the function we
2803 are thinking of stepping into, step into it.
c906108c 2804
c5aa993b
JM
2805 If there are several symtabs at that PC (e.g. with include
2806 files), just want to know whether *any* of them have line
2807 numbers. find_pc_line handles this. */
2808 {
2809 struct symtab_and_line tmp_sal;
c906108c 2810
c5aa993b
JM
2811 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2812 if (tmp_sal.line != 0)
c2c6d25f
JM
2813 {
2814 step_into_function (ecs);
2815 return;
2816 }
c906108c 2817 }
5fbbeb29
CF
2818
2819 /* If we have no line number and the step-stop-if-no-debug
2820 is set, we stop the step so that the user has a chance to
2821 switch in assembly mode. */
2822 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2823 {
2824 stop_step = 1;
2825 print_stop_reason (END_STEPPING_RANGE, 0);
2826 stop_stepping (ecs);
2827 return;
2828 }
2829
d4f3574e
SS
2830 step_over_function (ecs);
2831 keep_going (ecs);
2832 return;
c906108c 2833
c5aa993b 2834 }
c906108c 2835
c5aa993b 2836 /* We've wandered out of the step range. */
c906108c 2837
c5aa993b 2838 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2839
c5aa993b
JM
2840 if (step_range_end == 1)
2841 {
2842 /* It is stepi or nexti. We always want to stop stepping after
2843 one instruction. */
2844 stop_step = 1;
11cf8741 2845 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2846 stop_stepping (ecs);
2847 return;
c5aa993b 2848 }
c906108c 2849
c5aa993b
JM
2850 /* If we're in the return path from a shared library trampoline,
2851 we want to proceed through the trampoline when stepping. */
2852 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2853 {
2854 CORE_ADDR tmp;
c906108c 2855
c5aa993b
JM
2856 /* Determine where this trampoline returns. */
2857 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2858
c5aa993b
JM
2859 /* Only proceed through if we know where it's going. */
2860 if (tmp)
2861 {
2862 /* And put the step-breakpoint there and go until there. */
2863 struct symtab_and_line sr_sal;
c906108c 2864
c5aa993b
JM
2865 INIT_SAL (&sr_sal); /* initialize to zeroes */
2866 sr_sal.pc = tmp;
2867 sr_sal.section = find_pc_overlay (sr_sal.pc);
2868 /* Do not specify what the fp should be when we stop
2869 since on some machines the prologue
2870 is where the new fp value is established. */
a0b3c4fd 2871 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2872 step_resume_breakpoint =
2873 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2874 if (breakpoints_inserted)
2875 insert_breakpoints ();
c906108c 2876
c5aa993b
JM
2877 /* Restart without fiddling with the step ranges or
2878 other state. */
d4f3574e
SS
2879 keep_going (ecs);
2880 return;
c5aa993b
JM
2881 }
2882 }
c906108c 2883
c5aa993b 2884 if (ecs->sal.line == 0)
c906108c 2885 {
c5aa993b
JM
2886 /* We have no line number information. That means to stop
2887 stepping (does this always happen right after one instruction,
2888 when we do "s" in a function with no line numbers,
2889 or can this happen as a result of a return or longjmp?). */
2890 stop_step = 1;
11cf8741 2891 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2892 stop_stepping (ecs);
2893 return;
c906108c
SS
2894 }
2895
c5aa993b
JM
2896 if ((stop_pc == ecs->sal.pc)
2897 && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
2898 {
2899 /* We are at the start of a different line. So stop. Note that
2900 we don't stop if we step into the middle of a different line.
2901 That is said to make things like for (;;) statements work
2902 better. */
2903 stop_step = 1;
11cf8741 2904 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2905 stop_stepping (ecs);
2906 return;
c5aa993b 2907 }
c906108c 2908
c5aa993b 2909 /* We aren't done stepping.
c906108c 2910
c5aa993b
JM
2911 Optimize by setting the stepping range to the line.
2912 (We might not be in the original line, but if we entered a
2913 new line in mid-statement, we continue stepping. This makes
2914 things like for(;;) statements work better.) */
c906108c 2915
c5aa993b
JM
2916 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2917 {
2918 /* If this is the last line of the function, don't keep stepping
2919 (it would probably step us out of the function).
2920 This is particularly necessary for a one-line function,
2921 in which after skipping the prologue we better stop even though
2922 we will be in mid-line. */
2923 stop_step = 1;
11cf8741 2924 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2925 stop_stepping (ecs);
2926 return;
c5aa993b
JM
2927 }
2928 step_range_start = ecs->sal.pc;
2929 step_range_end = ecs->sal.end;
2930 step_frame_address = FRAME_FP (get_current_frame ());
2931 ecs->current_line = ecs->sal.line;
2932 ecs->current_symtab = ecs->sal.symtab;
2933
2934 /* In the case where we just stepped out of a function into the middle
2935 of a line of the caller, continue stepping, but step_frame_address
2936 must be modified to current frame */
2937 {
2938 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2939 if (!(INNER_THAN (current_frame, step_frame_address)))
2940 step_frame_address = current_frame;
2941 }
c906108c 2942
d4f3574e 2943 keep_going (ecs);
cd0fc7c3 2944
104c1213 2945 } /* extra brace, to preserve old indentation */
104c1213
JM
2946}
2947
2948/* Are we in the middle of stepping? */
2949
2950static int
2951currently_stepping (struct execution_control_state *ecs)
2952{
2953 return ((through_sigtramp_breakpoint == NULL
2954 && !ecs->handling_longjmp
2955 && ((step_range_end && step_resume_breakpoint == NULL)
2956 || trap_expected))
2957 || ecs->stepping_through_solib_after_catch
2958 || bpstat_should_step ());
2959}
c906108c 2960
104c1213
JM
2961static void
2962check_sigtramp2 (struct execution_control_state *ecs)
2963{
2964 if (trap_expected
2965 && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2966 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2967 && INNER_THAN (read_sp (), step_sp))
2968 {
2969 /* What has happened here is that we have just stepped the
2970 inferior with a signal (because it is a signal which
2971 shouldn't make us stop), thus stepping into sigtramp.
2972
2973 So we need to set a step_resume_break_address breakpoint and
2974 continue until we hit it, and then step. FIXME: This should
2975 be more enduring than a step_resume breakpoint; we should
2976 know that we will later need to keep going rather than
2977 re-hitting the breakpoint here (see the testsuite,
2978 gdb.base/signals.exp where it says "exceedingly difficult"). */
2979
2980 struct symtab_and_line sr_sal;
2981
2982 INIT_SAL (&sr_sal); /* initialize to zeroes */
2983 sr_sal.pc = prev_pc;
2984 sr_sal.section = find_pc_overlay (sr_sal.pc);
2985 /* We perhaps could set the frame if we kept track of what the
2986 frame corresponding to prev_pc was. But we don't, so don't. */
2987 through_sigtramp_breakpoint =
2988 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2989 if (breakpoints_inserted)
2990 insert_breakpoints ();
cd0fc7c3 2991
104c1213
JM
2992 ecs->remove_breakpoints_on_following_step = 1;
2993 ecs->another_trap = 1;
2994 }
2995}
2996
c2c6d25f
JM
2997/* Subroutine call with source code we should not step over. Do step
2998 to the first line of code in it. */
2999
3000static void
3001step_into_function (struct execution_control_state *ecs)
3002{
3003 struct symtab *s;
3004 struct symtab_and_line sr_sal;
3005
3006 s = find_pc_symtab (stop_pc);
3007 if (s && s->language != language_asm)
3008 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
3009
3010 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3011 /* Use the step_resume_break to step until the end of the prologue,
3012 even if that involves jumps (as it seems to on the vax under
3013 4.2). */
3014 /* If the prologue ends in the middle of a source line, continue to
3015 the end of that source line (if it is still within the function).
3016 Otherwise, just go to end of prologue. */
3017#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3018 /* no, don't either. It skips any code that's legitimately on the
3019 first line. */
3020#else
3021 if (ecs->sal.end
3022 && ecs->sal.pc != ecs->stop_func_start
3023 && ecs->sal.end < ecs->stop_func_end)
3024 ecs->stop_func_start = ecs->sal.end;
3025#endif
3026
3027 if (ecs->stop_func_start == stop_pc)
3028 {
3029 /* We are already there: stop now. */
3030 stop_step = 1;
11cf8741 3031 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3032 stop_stepping (ecs);
3033 return;
3034 }
3035 else
3036 {
3037 /* Put the step-breakpoint there and go until there. */
3038 INIT_SAL (&sr_sal); /* initialize to zeroes */
3039 sr_sal.pc = ecs->stop_func_start;
3040 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3041 /* Do not specify what the fp should be when we stop since on
3042 some machines the prologue is where the new fp value is
3043 established. */
3044 check_for_old_step_resume_breakpoint ();
3045 step_resume_breakpoint =
3046 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3047 if (breakpoints_inserted)
3048 insert_breakpoints ();
3049
3050 /* And make sure stepping stops right away then. */
3051 step_range_end = step_range_start;
3052 }
3053 keep_going (ecs);
3054}
d4f3574e
SS
3055
3056/* We've just entered a callee, and we wish to resume until it returns
3057 to the caller. Setting a step_resume breakpoint on the return
3058 address will catch a return from the callee.
3059
3060 However, if the callee is recursing, we want to be careful not to
3061 catch returns of those recursive calls, but only of THIS instance
3062 of the call.
3063
3064 To do this, we set the step_resume bp's frame to our current
3065 caller's frame (step_frame_address, which is set by the "next" or
3066 "until" command, before execution begins). */
3067
3068static void
3069step_over_function (struct execution_control_state *ecs)
3070{
3071 struct symtab_and_line sr_sal;
3072
3073 INIT_SAL (&sr_sal); /* initialize to zeros */
3074 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3075 sr_sal.section = find_pc_overlay (sr_sal.pc);
3076
3077 check_for_old_step_resume_breakpoint ();
3078 step_resume_breakpoint =
3079 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3080
d41707c8 3081 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
d4f3574e
SS
3082 step_resume_breakpoint->frame = step_frame_address;
3083
3084 if (breakpoints_inserted)
3085 insert_breakpoints ();
3086}
3087
104c1213
JM
3088static void
3089stop_stepping (struct execution_control_state *ecs)
3090{
c906108c
SS
3091 if (target_has_execution)
3092 {
3093 /* Are we stopping for a vfork event? We only stop when we see
3094 the child's event. However, we may not yet have seen the
39f77062 3095 parent's event. And, inferior_ptid is still set to the
104c1213
JM
3096 parent's pid, until we resume again and follow either the
3097 parent or child.
c906108c 3098
39f77062 3099 To ensure that we can really touch inferior_ptid (aka, the
c906108c
SS
3100 parent process) -- which calls to functions like read_pc
3101 implicitly do -- wait on the parent if necessary. */
3102 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3103 && !pending_follow.fork_event.saw_parent_fork)
3104 {
39f77062 3105 ptid_t parent_ptid;
c906108c
SS
3106
3107 do
3108 {
3109 if (target_wait_hook)
39f77062 3110 parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
c906108c 3111 else
39f77062 3112 parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
c906108c 3113 }
39f77062 3114 while (! ptid_equal (parent_ptid, inferior_ptid));
c906108c
SS
3115 }
3116
c906108c 3117 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
3118 time, just like we did above if we didn't break out of the
3119 loop. */
c906108c 3120 prev_pc = read_pc ();
cd0fc7c3
SS
3121 prev_func_start = ecs->stop_func_start;
3122 prev_func_name = ecs->stop_func_name;
c906108c 3123 }
104c1213 3124
cd0fc7c3
SS
3125 /* Let callers know we don't want to wait for the inferior anymore. */
3126 ecs->wait_some_more = 0;
3127}
3128
d4f3574e
SS
3129/* This function handles various cases where we need to continue
3130 waiting for the inferior. */
3131/* (Used to be the keep_going: label in the old wait_for_inferior) */
3132
3133static void
3134keep_going (struct execution_control_state *ecs)
3135{
3136 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3137 vforked child between its creation and subsequent exit or call to
3138 exec(). However, I had big problems in this rather creaky exec
3139 engine, getting that to work. The fundamental problem is that
3140 I'm trying to debug two processes via an engine that only
3141 understands a single process with possibly multiple threads.
3142
3143 Hence, this spot is known to have problems when
3144 target_can_follow_vfork_prior_to_exec returns 1. */
3145
3146 /* Save the pc before execution, to compare with pc after stop. */
3147 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3148 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3149 BREAK is defined, the
3150 original pc would not have
3151 been at the start of a
3152 function. */
3153 prev_func_name = ecs->stop_func_name;
3154
3155 if (ecs->update_step_sp)
3156 step_sp = read_sp ();
3157 ecs->update_step_sp = 0;
3158
3159 /* If we did not do break;, it means we should keep running the
3160 inferior and not return to debugger. */
3161
3162 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3163 {
3164 /* We took a signal (which we are supposed to pass through to
3165 the inferior, else we'd have done a break above) and we
3166 haven't yet gotten our trap. Simply continue. */
3167 resume (currently_stepping (ecs), stop_signal);
3168 }
3169 else
3170 {
3171 /* Either the trap was not expected, but we are continuing
3172 anyway (the user asked that this signal be passed to the
3173 child)
3174 -- or --
3175 The signal was SIGTRAP, e.g. it was our signal, but we
3176 decided we should resume from it.
3177
3178 We're going to run this baby now!
3179
3180 Insert breakpoints now, unless we are trying to one-proceed
3181 past a breakpoint. */
3182 /* If we've just finished a special step resume and we don't
3183 want to hit a breakpoint, pull em out. */
3184 if (step_resume_breakpoint == NULL
3185 && through_sigtramp_breakpoint == NULL
3186 && ecs->remove_breakpoints_on_following_step)
3187 {
3188 ecs->remove_breakpoints_on_following_step = 0;
3189 remove_breakpoints ();
3190 breakpoints_inserted = 0;
3191 }
3192 else if (!breakpoints_inserted &&
3193 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3194 {
3195 breakpoints_failed = insert_breakpoints ();
3196 if (breakpoints_failed)
3197 {
3198 stop_stepping (ecs);
3199 return;
3200 }
3201 breakpoints_inserted = 1;
3202 }
3203
3204 trap_expected = ecs->another_trap;
3205
3206 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3207 specifies that such a signal should be delivered to the
3208 target program).
3209
3210 Typically, this would occure when a user is debugging a
3211 target monitor on a simulator: the target monitor sets a
3212 breakpoint; the simulator encounters this break-point and
3213 halts the simulation handing control to GDB; GDB, noteing
3214 that the break-point isn't valid, returns control back to the
3215 simulator; the simulator then delivers the hardware
3216 equivalent of a SIGNAL_TRAP to the program being debugged. */
3217
3218 if (stop_signal == TARGET_SIGNAL_TRAP
3219 && !signal_program[stop_signal])
3220 stop_signal = TARGET_SIGNAL_0;
3221
3222#ifdef SHIFT_INST_REGS
3223 /* I'm not sure when this following segment applies. I do know,
3224 now, that we shouldn't rewrite the regs when we were stopped
3225 by a random signal from the inferior process. */
3226 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
3227 (this is only used on the 88k). */
3228
3229 if (!bpstat_explains_signal (stop_bpstat)
3230 && (stop_signal != TARGET_SIGNAL_CHLD)
3231 && !stopped_by_random_signal)
3232 SHIFT_INST_REGS ();
3233#endif /* SHIFT_INST_REGS */
3234
3235 resume (currently_stepping (ecs), stop_signal);
3236 }
3237
3238 prepare_to_wait (ecs);
3239}
3240
104c1213
JM
3241/* This function normally comes after a resume, before
3242 handle_inferior_event exits. It takes care of any last bits of
3243 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3244
104c1213
JM
3245static void
3246prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3247{
104c1213
JM
3248 if (ecs->infwait_state == infwait_normal_state)
3249 {
3250 overlay_cache_invalid = 1;
3251
3252 /* We have to invalidate the registers BEFORE calling
3253 target_wait because they can be loaded from the target while
3254 in target_wait. This makes remote debugging a bit more
3255 efficient for those targets that provide critical registers
3256 as part of their normal status mechanism. */
3257
3258 registers_changed ();
39f77062 3259 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3260 ecs->wp = &(ecs->ws);
3261 }
3262 /* This is the old end of the while loop. Let everybody know we
3263 want to wait for the inferior some more and get called again
3264 soon. */
3265 ecs->wait_some_more = 1;
c906108c 3266}
11cf8741
JM
3267
3268/* Print why the inferior has stopped. We always print something when
3269 the inferior exits, or receives a signal. The rest of the cases are
3270 dealt with later on in normal_stop() and print_it_typical(). Ideally
3271 there should be a call to this function from handle_inferior_event()
3272 each time stop_stepping() is called.*/
3273static void
3274print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3275{
3276 switch (stop_reason)
3277 {
3278 case STOP_UNKNOWN:
3279 /* We don't deal with these cases from handle_inferior_event()
3280 yet. */
3281 break;
3282 case END_STEPPING_RANGE:
3283 /* We are done with a step/next/si/ni command. */
3284 /* For now print nothing. */
fb40c209
AC
3285 /* Print a message only if not in the middle of doing a "step n"
3286 operation for n > 1 */
3287 if (!step_multi || !stop_step)
9dc5e2a9 3288 if (ui_out_is_mi_like_p (uiout))
fb40c209 3289 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
3290 break;
3291 case BREAKPOINT_HIT:
3292 /* We found a breakpoint. */
3293 /* For now print nothing. */
3294 break;
3295 case SIGNAL_EXITED:
3296 /* The inferior was terminated by a signal. */
8b93c638 3297 annotate_signalled ();
9dc5e2a9 3298 if (ui_out_is_mi_like_p (uiout))
fb40c209 3299 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3300 ui_out_text (uiout, "\nProgram terminated with signal ");
3301 annotate_signal_name ();
3302 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3303 annotate_signal_name_end ();
3304 ui_out_text (uiout, ", ");
3305 annotate_signal_string ();
3306 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3307 annotate_signal_string_end ();
3308 ui_out_text (uiout, ".\n");
3309 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3310 break;
3311 case EXITED:
3312 /* The inferior program is finished. */
8b93c638
JM
3313 annotate_exited (stop_info);
3314 if (stop_info)
3315 {
9dc5e2a9 3316 if (ui_out_is_mi_like_p (uiout))
fb40c209 3317 ui_out_field_string (uiout, "reason", "exited");
8b93c638
JM
3318 ui_out_text (uiout, "\nProgram exited with code ");
3319 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) stop_info);
3320 ui_out_text (uiout, ".\n");
3321 }
3322 else
3323 {
9dc5e2a9 3324 if (ui_out_is_mi_like_p (uiout))
fb40c209 3325 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3326 ui_out_text (uiout, "\nProgram exited normally.\n");
3327 }
11cf8741
JM
3328 break;
3329 case SIGNAL_RECEIVED:
3330 /* Signal received. The signal table tells us to print about
3331 it. */
8b93c638
JM
3332 annotate_signal ();
3333 ui_out_text (uiout, "\nProgram received signal ");
3334 annotate_signal_name ();
84c6c83c
KS
3335 if (ui_out_is_mi_like_p (uiout))
3336 ui_out_field_string (uiout, "reason", "signal-received");
8b93c638
JM
3337 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3338 annotate_signal_name_end ();
3339 ui_out_text (uiout, ", ");
3340 annotate_signal_string ();
3341 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3342 annotate_signal_string_end ();
3343 ui_out_text (uiout, ".\n");
11cf8741
JM
3344 break;
3345 default:
8e65ff28
AC
3346 internal_error (__FILE__, __LINE__,
3347 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3348 break;
3349 }
3350}
c906108c 3351\f
43ff13b4 3352
c906108c
SS
3353/* Here to return control to GDB when the inferior stops for real.
3354 Print appropriate messages, remove breakpoints, give terminal our modes.
3355
3356 STOP_PRINT_FRAME nonzero means print the executing frame
3357 (pc, function, args, file, line number and line text).
3358 BREAKPOINTS_FAILED nonzero means stop was due to error
3359 attempting to insert breakpoints. */
3360
3361void
96baa820 3362normal_stop (void)
c906108c 3363{
c906108c
SS
3364 /* As with the notification of thread events, we want to delay
3365 notifying the user that we've switched thread context until
3366 the inferior actually stops.
3367
3368 (Note that there's no point in saying anything if the inferior
3369 has exited!) */
39f77062 3370 if (! ptid_equal (previous_inferior_ptid, inferior_ptid)
7a292a7a 3371 && target_has_execution)
c906108c
SS
3372 {
3373 target_terminal_ours_for_output ();
c3f6f71d 3374 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3375 target_pid_or_tid_to_str (inferior_ptid));
3376 previous_inferior_ptid = inferior_ptid;
c906108c 3377 }
c906108c
SS
3378
3379 /* Make sure that the current_frame's pc is correct. This
3380 is a correction for setting up the frame info before doing
3381 DECR_PC_AFTER_BREAK */
3382 if (target_has_execution && get_current_frame ())
3383 (get_current_frame ())->pc = read_pc ();
3384
3385 if (breakpoints_failed)
3386 {
3387 target_terminal_ours_for_output ();
010a3cd9 3388 print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
c906108c 3389 printf_filtered ("Stopped; cannot insert breakpoints.\n\
010a3cd9
EZ
3390The same program may be running in another process,\n\
3391or you may have requested too many hardware breakpoints\n\
3392and/or watchpoints.\n");
c906108c
SS
3393 }
3394
3395 if (target_has_execution && breakpoints_inserted)
3396 {
3397 if (remove_breakpoints ())
3398 {
3399 target_terminal_ours_for_output ();
3400 printf_filtered ("Cannot remove breakpoints because ");
3401 printf_filtered ("program is no longer writable.\n");
3402 printf_filtered ("It might be running in another process.\n");
3403 printf_filtered ("Further execution is probably impossible.\n");
3404 }
3405 }
3406 breakpoints_inserted = 0;
3407
3408 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3409 Delete any breakpoint that is to be deleted at the next stop. */
3410
3411 breakpoint_auto_delete (stop_bpstat);
3412
3413 /* If an auto-display called a function and that got a signal,
3414 delete that auto-display to avoid an infinite recursion. */
3415
3416 if (stopped_by_random_signal)
3417 disable_current_display ();
3418
3419 /* Don't print a message if in the middle of doing a "step n"
3420 operation for n > 1 */
3421 if (step_multi && stop_step)
3422 goto done;
3423
3424 target_terminal_ours ();
3425
c906108c
SS
3426 /* Look up the hook_stop and run it if it exists. */
3427
73bc900d 3428 if (stop_command && stop_command->hook_pre)
c906108c 3429 {
73bc900d 3430 catch_errors (hook_stop_stub, stop_command->hook_pre,
c906108c
SS
3431 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3432 }
3433
3434 if (!target_has_stack)
3435 {
3436
3437 goto done;
3438 }
3439
3440 /* Select innermost stack frame - i.e., current frame is frame 0,
3441 and current location is based on that.
3442 Don't do this on return from a stack dummy routine,
3443 or if the program has exited. */
3444
3445 if (!stop_stack_dummy)
3446 {
3447 select_frame (get_current_frame (), 0);
3448
3449 /* Print current location without a level number, if
c5aa993b
JM
3450 we have changed functions or hit a breakpoint.
3451 Print source line if we have one.
3452 bpstat_print() contains the logic deciding in detail
3453 what to print, based on the event(s) that just occurred. */
c906108c 3454
d082b2bb
AC
3455 if (stop_print_frame
3456 && selected_frame)
c906108c
SS
3457 {
3458 int bpstat_ret;
3459 int source_flag;
917317f4 3460 int do_frame_printing = 1;
c906108c
SS
3461
3462 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3463 switch (bpstat_ret)
3464 {
3465 case PRINT_UNKNOWN:
3466 if (stop_step
3467 && step_frame_address == FRAME_FP (get_current_frame ())
3468 && step_start_function == find_pc_function (stop_pc))
c5394b80 3469 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3470 else
c5394b80 3471 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3472 break;
3473 case PRINT_SRC_AND_LOC:
c5394b80 3474 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3475 break;
3476 case PRINT_SRC_ONLY:
c5394b80 3477 source_flag = SRC_LINE;
917317f4
JM
3478 break;
3479 case PRINT_NOTHING:
88665544 3480 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3481 do_frame_printing = 0;
3482 break;
3483 default:
8e65ff28
AC
3484 internal_error (__FILE__, __LINE__,
3485 "Unknown value.");
917317f4 3486 }
fb40c209
AC
3487 /* For mi, have the same behavior every time we stop:
3488 print everything but the source line. */
9dc5e2a9 3489 if (ui_out_is_mi_like_p (uiout))
fb40c209 3490 source_flag = LOC_AND_ADDRESS;
c906108c 3491
9dc5e2a9 3492 if (ui_out_is_mi_like_p (uiout))
39f77062
KB
3493 ui_out_field_int (uiout, "thread-id",
3494 pid_to_thread_id (inferior_ptid));
c906108c
SS
3495 /* The behavior of this routine with respect to the source
3496 flag is:
c5394b80
JM
3497 SRC_LINE: Print only source line
3498 LOCATION: Print only location
3499 SRC_AND_LOC: Print location and source line */
917317f4
JM
3500 if (do_frame_printing)
3501 show_and_print_stack_frame (selected_frame, -1, source_flag);
c906108c
SS
3502
3503 /* Display the auto-display expressions. */
3504 do_displays ();
3505 }
3506 }
3507
3508 /* Save the function value return registers, if we care.
3509 We might be about to restore their previous contents. */
3510 if (proceed_to_finish)
3511 read_register_bytes (0, stop_registers, REGISTER_BYTES);
3512
3513 if (stop_stack_dummy)
3514 {
3515 /* Pop the empty frame that contains the stack dummy.
3516 POP_FRAME ends with a setting of the current frame, so we
c5aa993b 3517 can use that next. */
c906108c
SS
3518 POP_FRAME;
3519 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3520 Can't rely on restore_inferior_status because that only gets
3521 called if we don't stop in the called function. */
c906108c
SS
3522 stop_pc = read_pc ();
3523 select_frame (get_current_frame (), 0);
3524 }
3525
c906108c
SS
3526done:
3527 annotate_stopped ();
3528}
3529
3530static int
96baa820 3531hook_stop_stub (void *cmd)
c906108c
SS
3532{
3533 execute_user_command ((struct cmd_list_element *) cmd, 0);
3534 return (0);
3535}
3536\f
c5aa993b 3537int
96baa820 3538signal_stop_state (int signo)
c906108c
SS
3539{
3540 return signal_stop[signo];
3541}
3542
c5aa993b 3543int
96baa820 3544signal_print_state (int signo)
c906108c
SS
3545{
3546 return signal_print[signo];
3547}
3548
c5aa993b 3549int
96baa820 3550signal_pass_state (int signo)
c906108c
SS
3551{
3552 return signal_program[signo];
3553}
3554
d4f3574e
SS
3555int signal_stop_update (signo, state)
3556 int signo;
3557 int state;
3558{
3559 int ret = signal_stop[signo];
3560 signal_stop[signo] = state;
3561 return ret;
3562}
3563
3564int signal_print_update (signo, state)
3565 int signo;
3566 int state;
3567{
3568 int ret = signal_print[signo];
3569 signal_print[signo] = state;
3570 return ret;
3571}
3572
3573int signal_pass_update (signo, state)
3574 int signo;
3575 int state;
3576{
3577 int ret = signal_program[signo];
3578 signal_program[signo] = state;
3579 return ret;
3580}
3581
c906108c 3582static void
96baa820 3583sig_print_header (void)
c906108c
SS
3584{
3585 printf_filtered ("\
3586Signal Stop\tPrint\tPass to program\tDescription\n");
3587}
3588
3589static void
96baa820 3590sig_print_info (enum target_signal oursig)
c906108c
SS
3591{
3592 char *name = target_signal_to_name (oursig);
3593 int name_padding = 13 - strlen (name);
96baa820 3594
c906108c
SS
3595 if (name_padding <= 0)
3596 name_padding = 0;
3597
3598 printf_filtered ("%s", name);
3599 printf_filtered ("%*.*s ", name_padding, name_padding,
3600 " ");
3601 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3602 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3603 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3604 printf_filtered ("%s\n", target_signal_to_string (oursig));
3605}
3606
3607/* Specify how various signals in the inferior should be handled. */
3608
3609static void
96baa820 3610handle_command (char *args, int from_tty)
c906108c
SS
3611{
3612 char **argv;
3613 int digits, wordlen;
3614 int sigfirst, signum, siglast;
3615 enum target_signal oursig;
3616 int allsigs;
3617 int nsigs;
3618 unsigned char *sigs;
3619 struct cleanup *old_chain;
3620
3621 if (args == NULL)
3622 {
3623 error_no_arg ("signal to handle");
3624 }
3625
3626 /* Allocate and zero an array of flags for which signals to handle. */
3627
3628 nsigs = (int) TARGET_SIGNAL_LAST;
3629 sigs = (unsigned char *) alloca (nsigs);
3630 memset (sigs, 0, nsigs);
3631
3632 /* Break the command line up into args. */
3633
3634 argv = buildargv (args);
3635 if (argv == NULL)
3636 {
3637 nomem (0);
3638 }
7a292a7a 3639 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3640
3641 /* Walk through the args, looking for signal oursigs, signal names, and
3642 actions. Signal numbers and signal names may be interspersed with
3643 actions, with the actions being performed for all signals cumulatively
3644 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3645
3646 while (*argv != NULL)
3647 {
3648 wordlen = strlen (*argv);
3649 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3650 {;
3651 }
3652 allsigs = 0;
3653 sigfirst = siglast = -1;
3654
3655 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3656 {
3657 /* Apply action to all signals except those used by the
3658 debugger. Silently skip those. */
3659 allsigs = 1;
3660 sigfirst = 0;
3661 siglast = nsigs - 1;
3662 }
3663 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3664 {
3665 SET_SIGS (nsigs, sigs, signal_stop);
3666 SET_SIGS (nsigs, sigs, signal_print);
3667 }
3668 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3669 {
3670 UNSET_SIGS (nsigs, sigs, signal_program);
3671 }
3672 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3673 {
3674 SET_SIGS (nsigs, sigs, signal_print);
3675 }
3676 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3677 {
3678 SET_SIGS (nsigs, sigs, signal_program);
3679 }
3680 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3681 {
3682 UNSET_SIGS (nsigs, sigs, signal_stop);
3683 }
3684 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3685 {
3686 SET_SIGS (nsigs, sigs, signal_program);
3687 }
3688 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3689 {
3690 UNSET_SIGS (nsigs, sigs, signal_print);
3691 UNSET_SIGS (nsigs, sigs, signal_stop);
3692 }
3693 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3694 {
3695 UNSET_SIGS (nsigs, sigs, signal_program);
3696 }
3697 else if (digits > 0)
3698 {
3699 /* It is numeric. The numeric signal refers to our own
3700 internal signal numbering from target.h, not to host/target
3701 signal number. This is a feature; users really should be
3702 using symbolic names anyway, and the common ones like
3703 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3704
3705 sigfirst = siglast = (int)
3706 target_signal_from_command (atoi (*argv));
3707 if ((*argv)[digits] == '-')
3708 {
3709 siglast = (int)
3710 target_signal_from_command (atoi ((*argv) + digits + 1));
3711 }
3712 if (sigfirst > siglast)
3713 {
3714 /* Bet he didn't figure we'd think of this case... */
3715 signum = sigfirst;
3716 sigfirst = siglast;
3717 siglast = signum;
3718 }
3719 }
3720 else
3721 {
3722 oursig = target_signal_from_name (*argv);
3723 if (oursig != TARGET_SIGNAL_UNKNOWN)
3724 {
3725 sigfirst = siglast = (int) oursig;
3726 }
3727 else
3728 {
3729 /* Not a number and not a recognized flag word => complain. */
3730 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3731 }
3732 }
3733
3734 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3735 which signals to apply actions to. */
c906108c
SS
3736
3737 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3738 {
3739 switch ((enum target_signal) signum)
3740 {
3741 case TARGET_SIGNAL_TRAP:
3742 case TARGET_SIGNAL_INT:
3743 if (!allsigs && !sigs[signum])
3744 {
3745 if (query ("%s is used by the debugger.\n\
3746Are you sure you want to change it? ",
3747 target_signal_to_name
3748 ((enum target_signal) signum)))
3749 {
3750 sigs[signum] = 1;
3751 }
3752 else
3753 {
3754 printf_unfiltered ("Not confirmed, unchanged.\n");
3755 gdb_flush (gdb_stdout);
3756 }
3757 }
3758 break;
3759 case TARGET_SIGNAL_0:
3760 case TARGET_SIGNAL_DEFAULT:
3761 case TARGET_SIGNAL_UNKNOWN:
3762 /* Make sure that "all" doesn't print these. */
3763 break;
3764 default:
3765 sigs[signum] = 1;
3766 break;
3767 }
3768 }
3769
3770 argv++;
3771 }
3772
39f77062 3773 target_notice_signals (inferior_ptid);
c906108c
SS
3774
3775 if (from_tty)
3776 {
3777 /* Show the results. */
3778 sig_print_header ();
3779 for (signum = 0; signum < nsigs; signum++)
3780 {
3781 if (sigs[signum])
3782 {
3783 sig_print_info (signum);
3784 }
3785 }
3786 }
3787
3788 do_cleanups (old_chain);
3789}
3790
3791static void
96baa820 3792xdb_handle_command (char *args, int from_tty)
c906108c
SS
3793{
3794 char **argv;
3795 struct cleanup *old_chain;
3796
3797 /* Break the command line up into args. */
3798
3799 argv = buildargv (args);
3800 if (argv == NULL)
3801 {
3802 nomem (0);
3803 }
7a292a7a 3804 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3805 if (argv[1] != (char *) NULL)
3806 {
3807 char *argBuf;
3808 int bufLen;
3809
3810 bufLen = strlen (argv[0]) + 20;
3811 argBuf = (char *) xmalloc (bufLen);
3812 if (argBuf)
3813 {
3814 int validFlag = 1;
3815 enum target_signal oursig;
3816
3817 oursig = target_signal_from_name (argv[0]);
3818 memset (argBuf, 0, bufLen);
3819 if (strcmp (argv[1], "Q") == 0)
3820 sprintf (argBuf, "%s %s", argv[0], "noprint");
3821 else
3822 {
3823 if (strcmp (argv[1], "s") == 0)
3824 {
3825 if (!signal_stop[oursig])
3826 sprintf (argBuf, "%s %s", argv[0], "stop");
3827 else
3828 sprintf (argBuf, "%s %s", argv[0], "nostop");
3829 }
3830 else if (strcmp (argv[1], "i") == 0)
3831 {
3832 if (!signal_program[oursig])
3833 sprintf (argBuf, "%s %s", argv[0], "pass");
3834 else
3835 sprintf (argBuf, "%s %s", argv[0], "nopass");
3836 }
3837 else if (strcmp (argv[1], "r") == 0)
3838 {
3839 if (!signal_print[oursig])
3840 sprintf (argBuf, "%s %s", argv[0], "print");
3841 else
3842 sprintf (argBuf, "%s %s", argv[0], "noprint");
3843 }
3844 else
3845 validFlag = 0;
3846 }
3847 if (validFlag)
3848 handle_command (argBuf, from_tty);
3849 else
3850 printf_filtered ("Invalid signal handling flag.\n");
3851 if (argBuf)
b8c9b27d 3852 xfree (argBuf);
c906108c
SS
3853 }
3854 }
3855 do_cleanups (old_chain);
3856}
3857
3858/* Print current contents of the tables set by the handle command.
3859 It is possible we should just be printing signals actually used
3860 by the current target (but for things to work right when switching
3861 targets, all signals should be in the signal tables). */
3862
3863static void
96baa820 3864signals_info (char *signum_exp, int from_tty)
c906108c
SS
3865{
3866 enum target_signal oursig;
3867 sig_print_header ();
3868
3869 if (signum_exp)
3870 {
3871 /* First see if this is a symbol name. */
3872 oursig = target_signal_from_name (signum_exp);
3873 if (oursig == TARGET_SIGNAL_UNKNOWN)
3874 {
3875 /* No, try numeric. */
3876 oursig =
bb518678 3877 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3878 }
3879 sig_print_info (oursig);
3880 return;
3881 }
3882
3883 printf_filtered ("\n");
3884 /* These ugly casts brought to you by the native VAX compiler. */
3885 for (oursig = TARGET_SIGNAL_FIRST;
3886 (int) oursig < (int) TARGET_SIGNAL_LAST;
3887 oursig = (enum target_signal) ((int) oursig + 1))
3888 {
3889 QUIT;
3890
3891 if (oursig != TARGET_SIGNAL_UNKNOWN
3892 && oursig != TARGET_SIGNAL_DEFAULT
3893 && oursig != TARGET_SIGNAL_0)
3894 sig_print_info (oursig);
3895 }
3896
3897 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3898}
3899\f
7a292a7a
SS
3900struct inferior_status
3901{
3902 enum target_signal stop_signal;
3903 CORE_ADDR stop_pc;
3904 bpstat stop_bpstat;
3905 int stop_step;
3906 int stop_stack_dummy;
3907 int stopped_by_random_signal;
3908 int trap_expected;
3909 CORE_ADDR step_range_start;
3910 CORE_ADDR step_range_end;
3911 CORE_ADDR step_frame_address;
5fbbeb29 3912 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3913 CORE_ADDR step_resume_break_address;
3914 int stop_after_trap;
3915 int stop_soon_quietly;
3916 CORE_ADDR selected_frame_address;
3917 char *stop_registers;
3918
3919 /* These are here because if call_function_by_hand has written some
3920 registers and then decides to call error(), we better not have changed
3921 any registers. */
3922 char *registers;
3923
3924 int selected_level;
3925 int breakpoint_proceeded;
3926 int restore_stack_info;
3927 int proceed_to_finish;
3928};
3929
7a292a7a 3930static struct inferior_status *
96baa820 3931xmalloc_inferior_status (void)
7a292a7a
SS
3932{
3933 struct inferior_status *inf_status;
3934 inf_status = xmalloc (sizeof (struct inferior_status));
3935 inf_status->stop_registers = xmalloc (REGISTER_BYTES);
3936 inf_status->registers = xmalloc (REGISTER_BYTES);
3937 return inf_status;
3938}
3939
7a292a7a 3940static void
96baa820 3941free_inferior_status (struct inferior_status *inf_status)
7a292a7a 3942{
b8c9b27d
KB
3943 xfree (inf_status->registers);
3944 xfree (inf_status->stop_registers);
3945 xfree (inf_status);
7a292a7a
SS
3946}
3947
3948void
96baa820
JM
3949write_inferior_status_register (struct inferior_status *inf_status, int regno,
3950 LONGEST val)
7a292a7a 3951{
c5aa993b 3952 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3953 void *buf = alloca (size);
3954 store_signed_integer (buf, size, val);
3955 memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
3956}
3957
c906108c
SS
3958/* Save all of the information associated with the inferior<==>gdb
3959 connection. INF_STATUS is a pointer to a "struct inferior_status"
3960 (defined in inferior.h). */
3961
7a292a7a 3962struct inferior_status *
96baa820 3963save_inferior_status (int restore_stack_info)
c906108c 3964{
7a292a7a
SS
3965 struct inferior_status *inf_status = xmalloc_inferior_status ();
3966
c906108c
SS
3967 inf_status->stop_signal = stop_signal;
3968 inf_status->stop_pc = stop_pc;
3969 inf_status->stop_step = stop_step;
3970 inf_status->stop_stack_dummy = stop_stack_dummy;
3971 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3972 inf_status->trap_expected = trap_expected;
3973 inf_status->step_range_start = step_range_start;
3974 inf_status->step_range_end = step_range_end;
3975 inf_status->step_frame_address = step_frame_address;
3976 inf_status->step_over_calls = step_over_calls;
3977 inf_status->stop_after_trap = stop_after_trap;
3978 inf_status->stop_soon_quietly = stop_soon_quietly;
3979 /* Save original bpstat chain here; replace it with copy of chain.
3980 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3981 hand them back the original chain when restore_inferior_status is
3982 called. */
c906108c
SS
3983 inf_status->stop_bpstat = stop_bpstat;
3984 stop_bpstat = bpstat_copy (stop_bpstat);
3985 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3986 inf_status->restore_stack_info = restore_stack_info;
3987 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3988
c906108c
SS
3989 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
3990
3991 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
3992
3993 record_selected_frame (&(inf_status->selected_frame_address),
3994 &(inf_status->selected_level));
7a292a7a 3995 return inf_status;
c906108c
SS
3996}
3997
3998struct restore_selected_frame_args
3999{
4000 CORE_ADDR frame_address;
4001 int level;
4002};
4003
c906108c 4004static int
96baa820 4005restore_selected_frame (void *args)
c906108c
SS
4006{
4007 struct restore_selected_frame_args *fr =
4008 (struct restore_selected_frame_args *) args;
4009 struct frame_info *frame;
4010 int level = fr->level;
4011
4012 frame = find_relative_frame (get_current_frame (), &level);
4013
4014 /* If inf_status->selected_frame_address is NULL, there was no
4015 previously selected frame. */
4016 if (frame == NULL ||
4017 /* FRAME_FP (frame) != fr->frame_address || */
4018 /* elz: deleted this check as a quick fix to the problem that
c5aa993b
JM
4019 for function called by hand gdb creates no internal frame
4020 structure and the real stack and gdb's idea of stack are
4021 different if nested calls by hands are made.
c906108c 4022
c5aa993b 4023 mvs: this worries me. */
c906108c
SS
4024 level != 0)
4025 {
4026 warning ("Unable to restore previously selected frame.\n");
4027 return 0;
4028 }
4029
4030 select_frame (frame, fr->level);
4031
4032 return (1);
4033}
4034
4035void
96baa820 4036restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4037{
4038 stop_signal = inf_status->stop_signal;
4039 stop_pc = inf_status->stop_pc;
4040 stop_step = inf_status->stop_step;
4041 stop_stack_dummy = inf_status->stop_stack_dummy;
4042 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4043 trap_expected = inf_status->trap_expected;
4044 step_range_start = inf_status->step_range_start;
4045 step_range_end = inf_status->step_range_end;
4046 step_frame_address = inf_status->step_frame_address;
4047 step_over_calls = inf_status->step_over_calls;
4048 stop_after_trap = inf_status->stop_after_trap;
4049 stop_soon_quietly = inf_status->stop_soon_quietly;
4050 bpstat_clear (&stop_bpstat);
4051 stop_bpstat = inf_status->stop_bpstat;
4052 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4053 proceed_to_finish = inf_status->proceed_to_finish;
4054
7a292a7a 4055 /* FIXME: Is the restore of stop_registers always needed */
c906108c
SS
4056 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
4057
4058 /* The inferior can be gone if the user types "print exit(0)"
4059 (and perhaps other times). */
4060 if (target_has_execution)
4061 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4062
c906108c
SS
4063 /* FIXME: If we are being called after stopping in a function which
4064 is called from gdb, we should not be trying to restore the
4065 selected frame; it just prints a spurious error message (The
4066 message is useful, however, in detecting bugs in gdb (like if gdb
4067 clobbers the stack)). In fact, should we be restoring the
4068 inferior status at all in that case? . */
4069
4070 if (target_has_stack && inf_status->restore_stack_info)
4071 {
4072 struct restore_selected_frame_args fr;
4073 fr.level = inf_status->selected_level;
4074 fr.frame_address = inf_status->selected_frame_address;
4075 /* The point of catch_errors is that if the stack is clobbered,
c5aa993b
JM
4076 walking the stack might encounter a garbage pointer and error()
4077 trying to dereference it. */
c906108c
SS
4078 if (catch_errors (restore_selected_frame, &fr,
4079 "Unable to restore previously selected frame:\n",
4080 RETURN_MASK_ERROR) == 0)
4081 /* Error in restoring the selected frame. Select the innermost
4082 frame. */
4083
4084
4085 select_frame (get_current_frame (), 0);
4086
4087 }
c906108c 4088
7a292a7a
SS
4089 free_inferior_status (inf_status);
4090}
c906108c 4091
74b7792f
AC
4092static void
4093do_restore_inferior_status_cleanup (void *sts)
4094{
4095 restore_inferior_status (sts);
4096}
4097
4098struct cleanup *
4099make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4100{
4101 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4102}
4103
c906108c 4104void
96baa820 4105discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4106{
4107 /* See save_inferior_status for info on stop_bpstat. */
4108 bpstat_clear (&inf_status->stop_bpstat);
4109 free_inferior_status (inf_status);
4110}
4111
ca6724c1
KB
4112/* Oft used ptids */
4113ptid_t null_ptid;
4114ptid_t minus_one_ptid;
4115
4116/* Create a ptid given the necessary PID, LWP, and TID components. */
4117
4118ptid_t
4119ptid_build (int pid, long lwp, long tid)
4120{
4121 ptid_t ptid;
4122
4123 ptid.pid = pid;
4124 ptid.lwp = lwp;
4125 ptid.tid = tid;
4126 return ptid;
4127}
4128
4129/* Create a ptid from just a pid. */
4130
4131ptid_t
4132pid_to_ptid (int pid)
4133{
4134 return ptid_build (pid, 0, 0);
4135}
4136
4137/* Fetch the pid (process id) component from a ptid. */
4138
4139int
4140ptid_get_pid (ptid_t ptid)
4141{
4142 return ptid.pid;
4143}
4144
4145/* Fetch the lwp (lightweight process) component from a ptid. */
4146
4147long
4148ptid_get_lwp (ptid_t ptid)
4149{
4150 return ptid.lwp;
4151}
4152
4153/* Fetch the tid (thread id) component from a ptid. */
4154
4155long
4156ptid_get_tid (ptid_t ptid)
4157{
4158 return ptid.tid;
4159}
4160
4161/* ptid_equal() is used to test equality of two ptids. */
4162
4163int
4164ptid_equal (ptid_t ptid1, ptid_t ptid2)
4165{
4166 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
4167 && ptid1.tid == ptid2.tid);
4168}
4169
4170/* restore_inferior_ptid() will be used by the cleanup machinery
4171 to restore the inferior_ptid value saved in a call to
4172 save_inferior_ptid(). */
ce696e05
KB
4173
4174static void
4175restore_inferior_ptid (void *arg)
4176{
4177 ptid_t *saved_ptid_ptr = arg;
4178 inferior_ptid = *saved_ptid_ptr;
4179 xfree (arg);
4180}
4181
4182/* Save the value of inferior_ptid so that it may be restored by a
4183 later call to do_cleanups(). Returns the struct cleanup pointer
4184 needed for later doing the cleanup. */
4185
4186struct cleanup *
4187save_inferior_ptid (void)
4188{
4189 ptid_t *saved_ptid_ptr;
4190
4191 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4192 *saved_ptid_ptr = inferior_ptid;
4193 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4194}
4195
c5aa993b 4196\f
7a292a7a 4197static void
96baa820 4198build_infrun (void)
7a292a7a
SS
4199{
4200 stop_registers = xmalloc (REGISTER_BYTES);
4201}
c906108c 4202
c906108c 4203void
96baa820 4204_initialize_infrun (void)
c906108c
SS
4205{
4206 register int i;
4207 register int numsigs;
4208 struct cmd_list_element *c;
4209
7a292a7a
SS
4210 build_infrun ();
4211
0f71a2f6
JM
4212 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4213 register_gdbarch_swap (NULL, 0, build_infrun);
4214
c906108c
SS
4215 add_info ("signals", signals_info,
4216 "What debugger does when program gets various signals.\n\
4217Specify a signal as argument to print info on that signal only.");
4218 add_info_alias ("handle", "signals", 0);
4219
4220 add_com ("handle", class_run, handle_command,
4221 concat ("Specify how to handle a signal.\n\
4222Args are signals and actions to apply to those signals.\n\
4223Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4224from 1-15 are allowed for compatibility with old versions of GDB.\n\
4225Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4226The special arg \"all\" is recognized to mean all signals except those\n\
4227used by the debugger, typically SIGTRAP and SIGINT.\n",
4228 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4229\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4230Stop means reenter debugger if this signal happens (implies print).\n\
4231Print means print a message if this signal happens.\n\
4232Pass means let program see this signal; otherwise program doesn't know.\n\
4233Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4234Pass and Stop may be combined.", NULL));
4235 if (xdb_commands)
4236 {
4237 add_com ("lz", class_info, signals_info,
4238 "What debugger does when program gets various signals.\n\
4239Specify a signal as argument to print info on that signal only.");
4240 add_com ("z", class_run, xdb_handle_command,
4241 concat ("Specify how to handle a signal.\n\
4242Args are signals and actions to apply to those signals.\n\
4243Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4244from 1-15 are allowed for compatibility with old versions of GDB.\n\
4245Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4246The special arg \"all\" is recognized to mean all signals except those\n\
4247used by the debugger, typically SIGTRAP and SIGINT.\n",
4248 "Recognized actions include \"s\" (toggles between stop and nostop), \n\
4249\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4250nopass), \"Q\" (noprint)\n\
4251Stop means reenter debugger if this signal happens (implies print).\n\
4252Print means print a message if this signal happens.\n\
4253Pass means let program see this signal; otherwise program doesn't know.\n\
4254Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4255Pass and Stop may be combined.", NULL));
4256 }
4257
4258 if (!dbx_commands)
4259 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
4260 "There is no `stop' command, but you can set a hook on `stop'.\n\
4261This allows you to set a list of commands to be run each time execution\n\
4262of the program stops.", &cmdlist);
4263
4264 numsigs = (int) TARGET_SIGNAL_LAST;
4265 signal_stop = (unsigned char *)
4266 xmalloc (sizeof (signal_stop[0]) * numsigs);
4267 signal_print = (unsigned char *)
4268 xmalloc (sizeof (signal_print[0]) * numsigs);
4269 signal_program = (unsigned char *)
4270 xmalloc (sizeof (signal_program[0]) * numsigs);
4271 for (i = 0; i < numsigs; i++)
4272 {
4273 signal_stop[i] = 1;
4274 signal_print[i] = 1;
4275 signal_program[i] = 1;
4276 }
4277
4278 /* Signals caused by debugger's own actions
4279 should not be given to the program afterwards. */
4280 signal_program[TARGET_SIGNAL_TRAP] = 0;
4281 signal_program[TARGET_SIGNAL_INT] = 0;
4282
4283 /* Signals that are not errors should not normally enter the debugger. */
4284 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4285 signal_print[TARGET_SIGNAL_ALRM] = 0;
4286 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4287 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4288 signal_stop[TARGET_SIGNAL_PROF] = 0;
4289 signal_print[TARGET_SIGNAL_PROF] = 0;
4290 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4291 signal_print[TARGET_SIGNAL_CHLD] = 0;
4292 signal_stop[TARGET_SIGNAL_IO] = 0;
4293 signal_print[TARGET_SIGNAL_IO] = 0;
4294 signal_stop[TARGET_SIGNAL_POLL] = 0;
4295 signal_print[TARGET_SIGNAL_POLL] = 0;
4296 signal_stop[TARGET_SIGNAL_URG] = 0;
4297 signal_print[TARGET_SIGNAL_URG] = 0;
4298 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4299 signal_print[TARGET_SIGNAL_WINCH] = 0;
4300
cd0fc7c3
SS
4301 /* These signals are used internally by user-level thread
4302 implementations. (See signal(5) on Solaris.) Like the above
4303 signals, a healthy program receives and handles them as part of
4304 its normal operation. */
4305 signal_stop[TARGET_SIGNAL_LWP] = 0;
4306 signal_print[TARGET_SIGNAL_LWP] = 0;
4307 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4308 signal_print[TARGET_SIGNAL_WAITING] = 0;
4309 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4310 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4311
c906108c
SS
4312#ifdef SOLIB_ADD
4313 add_show_from_set
4314 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4315 (char *) &stop_on_solib_events,
4316 "Set stopping for shared library events.\n\
4317If nonzero, gdb will give control to the user when the dynamic linker\n\
4318notifies gdb of shared library events. The most common event of interest\n\
4319to the user would be loading/unloading of a new library.\n",
4320 &setlist),
4321 &showlist);
4322#endif
4323
4324 c = add_set_enum_cmd ("follow-fork-mode",
4325 class_run,
4326 follow_fork_mode_kind_names,
1ed2a135 4327 &follow_fork_mode_string,
c906108c
SS
4328/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4329 kernel problem. It's also not terribly useful without a GUI to
4330 help the user drive two debuggers. So for now, I'm disabling
4331 the "both" option. */
c5aa993b
JM
4332/* "Set debugger response to a program call of fork \
4333 or vfork.\n\
4334 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4335 parent - the original process is debugged after a fork\n\
4336 child - the new process is debugged after a fork\n\
4337 both - both the parent and child are debugged after a fork\n\
4338 ask - the debugger will ask for one of the above choices\n\
4339 For \"both\", another copy of the debugger will be started to follow\n\
4340 the new child process. The original debugger will continue to follow\n\
4341 the original parent process. To distinguish their prompts, the\n\
4342 debugger copy's prompt will be changed.\n\
4343 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4344 By default, the debugger will follow the parent process.",
4345 */
c906108c
SS
4346 "Set debugger response to a program call of fork \
4347or vfork.\n\
4348A fork or vfork creates a new process. follow-fork-mode can be:\n\
4349 parent - the original process is debugged after a fork\n\
4350 child - the new process is debugged after a fork\n\
4351 ask - the debugger will ask for one of the above choices\n\
4352For \"parent\" or \"child\", the unfollowed process will run free.\n\
4353By default, the debugger will follow the parent process.",
4354 &setlist);
c5aa993b 4355/* c->function.sfunc = ; */
c906108c
SS
4356 add_show_from_set (c, &showlist);
4357
c906108c
SS
4358 c = add_set_enum_cmd ("scheduler-locking", class_run,
4359 scheduler_enums, /* array of string names */
1ed2a135 4360 &scheduler_mode, /* current mode */
c906108c
SS
4361 "Set mode for locking scheduler during execution.\n\
4362off == no locking (threads may preempt at any time)\n\
4363on == full locking (no thread except the current thread may run)\n\
4364step == scheduler locked during every single-step operation.\n\
4365 In this mode, no other thread may run during a step command.\n\
4366 Other threads may run while stepping over a function call ('next').",
4367 &setlist);
4368
4369 c->function.sfunc = set_schedlock_func; /* traps on target vector */
4370 add_show_from_set (c, &showlist);
5fbbeb29
CF
4371
4372 c = add_set_cmd ("step-mode", class_run,
4373 var_boolean, (char*) &step_stop_if_no_debug,
4374"Set mode of the step operation. When set, doing a step over a\n\
4375function without debug line information will stop at the first\n\
4376instruction of that function. Otherwise, the function is skipped and\n\
4377the step command stops at a different source line.",
4378 &setlist);
4379 add_show_from_set (c, &showlist);
ca6724c1
KB
4380
4381 /* ptid initializations */
4382 null_ptid = ptid_build (0, 0, 0);
4383 minus_one_ptid = ptid_build (-1, 0, 0);
4384 inferior_ptid = null_ptid;
4385 target_last_wait_ptid = minus_one_ptid;
c906108c 4386}
This page took 0.360469 seconds and 4 git commands to generate.