gdbserver/linux-low: turn '{collect, supply}_ptrace_register' into methods
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
372316f1 59#include "event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
5b6d1e4f
PA
67#include "gdb_select.h"
68#include <unordered_map>
c906108c
SS
69
70/* Prototypes for local functions */
71
2ea28649 72static void sig_print_info (enum gdb_signal);
c906108c 73
96baa820 74static void sig_print_header (void);
c906108c 75
d83ad864
DB
76static void follow_inferior_reset_breakpoints (void);
77
a289b8f6
JK
78static int currently_stepping (struct thread_info *tp);
79
2c03e5be 80static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
81
82static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
83
2484c66b
UW
84static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
85
8550d3b3
YQ
86static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
87
aff4e175
AB
88static void resume (gdb_signal sig);
89
5b6d1e4f
PA
90static void wait_for_inferior (inferior *inf);
91
372316f1
PA
92/* Asynchronous signal handler registered as event loop source for
93 when we have pending events ready to be passed to the core. */
94static struct async_event_handler *infrun_async_inferior_event_token;
95
96/* Stores whether infrun_async was previously enabled or disabled.
97 Starts off as -1, indicating "never enabled/disabled". */
98static int infrun_is_async = -1;
99
100/* See infrun.h. */
101
102void
103infrun_async (int enable)
104{
105 if (infrun_is_async != enable)
106 {
107 infrun_is_async = enable;
108
109 if (debug_infrun)
110 fprintf_unfiltered (gdb_stdlog,
111 "infrun: infrun_async(%d)\n",
112 enable);
113
114 if (enable)
115 mark_async_event_handler (infrun_async_inferior_event_token);
116 else
117 clear_async_event_handler (infrun_async_inferior_event_token);
118 }
119}
120
0b333c5e
PA
121/* See infrun.h. */
122
123void
124mark_infrun_async_event_handler (void)
125{
126 mark_async_event_handler (infrun_async_inferior_event_token);
127}
128
5fbbeb29
CF
129/* When set, stop the 'step' command if we enter a function which has
130 no line number information. The normal behavior is that we step
131 over such function. */
491144b5 132bool step_stop_if_no_debug = false;
920d2a44
AC
133static void
134show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c, const char *value)
136{
137 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
138}
5fbbeb29 139
b9f437de
PA
140/* proceed and normal_stop use this to notify the user when the
141 inferior stopped in a different thread than it had been running
142 in. */
96baa820 143
39f77062 144static ptid_t previous_inferior_ptid;
7a292a7a 145
07107ca6
LM
146/* If set (default for legacy reasons), when following a fork, GDB
147 will detach from one of the fork branches, child or parent.
148 Exactly which branch is detached depends on 'set follow-fork-mode'
149 setting. */
150
491144b5 151static bool detach_fork = true;
6c95b8df 152
491144b5 153bool debug_displaced = false;
237fc4c9
PA
154static void
155show_debug_displaced (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
159}
160
ccce17b0 161unsigned int debug_infrun = 0;
920d2a44
AC
162static void
163show_debug_infrun (struct ui_file *file, int from_tty,
164 struct cmd_list_element *c, const char *value)
165{
166 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
167}
527159b7 168
03583c20
UW
169
170/* Support for disabling address space randomization. */
171
491144b5 172bool disable_randomization = true;
03583c20
UW
173
174static void
175show_disable_randomization (struct ui_file *file, int from_tty,
176 struct cmd_list_element *c, const char *value)
177{
178 if (target_supports_disable_randomization ())
179 fprintf_filtered (file,
180 _("Disabling randomization of debuggee's "
181 "virtual address space is %s.\n"),
182 value);
183 else
184 fputs_filtered (_("Disabling randomization of debuggee's "
185 "virtual address space is unsupported on\n"
186 "this platform.\n"), file);
187}
188
189static void
eb4c3f4a 190set_disable_randomization (const char *args, int from_tty,
03583c20
UW
191 struct cmd_list_element *c)
192{
193 if (!target_supports_disable_randomization ())
194 error (_("Disabling randomization of debuggee's "
195 "virtual address space is unsupported on\n"
196 "this platform."));
197}
198
d32dc48e
PA
199/* User interface for non-stop mode. */
200
491144b5
CB
201bool non_stop = false;
202static bool non_stop_1 = false;
d32dc48e
PA
203
204static void
eb4c3f4a 205set_non_stop (const char *args, int from_tty,
d32dc48e
PA
206 struct cmd_list_element *c)
207{
208 if (target_has_execution)
209 {
210 non_stop_1 = non_stop;
211 error (_("Cannot change this setting while the inferior is running."));
212 }
213
214 non_stop = non_stop_1;
215}
216
217static void
218show_non_stop (struct ui_file *file, int from_tty,
219 struct cmd_list_element *c, const char *value)
220{
221 fprintf_filtered (file,
222 _("Controlling the inferior in non-stop mode is %s.\n"),
223 value);
224}
225
d914c394
SS
226/* "Observer mode" is somewhat like a more extreme version of
227 non-stop, in which all GDB operations that might affect the
228 target's execution have been disabled. */
229
491144b5
CB
230bool observer_mode = false;
231static bool observer_mode_1 = false;
d914c394
SS
232
233static void
eb4c3f4a 234set_observer_mode (const char *args, int from_tty,
d914c394
SS
235 struct cmd_list_element *c)
236{
d914c394
SS
237 if (target_has_execution)
238 {
239 observer_mode_1 = observer_mode;
240 error (_("Cannot change this setting while the inferior is running."));
241 }
242
243 observer_mode = observer_mode_1;
244
245 may_write_registers = !observer_mode;
246 may_write_memory = !observer_mode;
247 may_insert_breakpoints = !observer_mode;
248 may_insert_tracepoints = !observer_mode;
249 /* We can insert fast tracepoints in or out of observer mode,
250 but enable them if we're going into this mode. */
251 if (observer_mode)
491144b5 252 may_insert_fast_tracepoints = true;
d914c394
SS
253 may_stop = !observer_mode;
254 update_target_permissions ();
255
256 /* Going *into* observer mode we must force non-stop, then
257 going out we leave it that way. */
258 if (observer_mode)
259 {
d914c394 260 pagination_enabled = 0;
491144b5 261 non_stop = non_stop_1 = true;
d914c394
SS
262 }
263
264 if (from_tty)
265 printf_filtered (_("Observer mode is now %s.\n"),
266 (observer_mode ? "on" : "off"));
267}
268
269static void
270show_observer_mode (struct ui_file *file, int from_tty,
271 struct cmd_list_element *c, const char *value)
272{
273 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
274}
275
276/* This updates the value of observer mode based on changes in
277 permissions. Note that we are deliberately ignoring the values of
278 may-write-registers and may-write-memory, since the user may have
279 reason to enable these during a session, for instance to turn on a
280 debugging-related global. */
281
282void
283update_observer_mode (void)
284{
491144b5
CB
285 bool newval = (!may_insert_breakpoints
286 && !may_insert_tracepoints
287 && may_insert_fast_tracepoints
288 && !may_stop
289 && non_stop);
d914c394
SS
290
291 /* Let the user know if things change. */
292 if (newval != observer_mode)
293 printf_filtered (_("Observer mode is now %s.\n"),
294 (newval ? "on" : "off"));
295
296 observer_mode = observer_mode_1 = newval;
297}
c2c6d25f 298
c906108c
SS
299/* Tables of how to react to signals; the user sets them. */
300
adc6a863
PA
301static unsigned char signal_stop[GDB_SIGNAL_LAST];
302static unsigned char signal_print[GDB_SIGNAL_LAST];
303static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 304
ab04a2af
TT
305/* Table of signals that are registered with "catch signal". A
306 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
307 signal" command. */
308static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 309
2455069d
UW
310/* Table of signals that the target may silently handle.
311 This is automatically determined from the flags above,
312 and simply cached here. */
adc6a863 313static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 314
c906108c
SS
315#define SET_SIGS(nsigs,sigs,flags) \
316 do { \
317 int signum = (nsigs); \
318 while (signum-- > 0) \
319 if ((sigs)[signum]) \
320 (flags)[signum] = 1; \
321 } while (0)
322
323#define UNSET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 0; \
329 } while (0)
330
9b224c5e
PA
331/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
332 this function is to avoid exporting `signal_program'. */
333
334void
335update_signals_program_target (void)
336{
adc6a863 337 target_program_signals (signal_program);
9b224c5e
PA
338}
339
1777feb0 340/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 341
edb3359d 342#define RESUME_ALL minus_one_ptid
c906108c
SS
343
344/* Command list pointer for the "stop" placeholder. */
345
346static struct cmd_list_element *stop_command;
347
c906108c
SS
348/* Nonzero if we want to give control to the user when we're notified
349 of shared library events by the dynamic linker. */
628fe4e4 350int stop_on_solib_events;
f9e14852
GB
351
352/* Enable or disable optional shared library event breakpoints
353 as appropriate when the above flag is changed. */
354
355static void
eb4c3f4a
TT
356set_stop_on_solib_events (const char *args,
357 int from_tty, struct cmd_list_element *c)
f9e14852
GB
358{
359 update_solib_breakpoints ();
360}
361
920d2a44
AC
362static void
363show_stop_on_solib_events (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c, const char *value)
365{
366 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
367 value);
368}
c906108c 369
c906108c
SS
370/* Nonzero after stop if current stack frame should be printed. */
371
372static int stop_print_frame;
373
5b6d1e4f
PA
374/* This is a cached copy of the target/ptid/waitstatus of the last
375 event returned by target_wait()/deprecated_target_wait_hook().
376 This information is returned by get_last_target_status(). */
377static process_stratum_target *target_last_proc_target;
39f77062 378static ptid_t target_last_wait_ptid;
e02bc4cc
DS
379static struct target_waitstatus target_last_waitstatus;
380
4e1c45ea 381void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 382
53904c9e
AC
383static const char follow_fork_mode_child[] = "child";
384static const char follow_fork_mode_parent[] = "parent";
385
40478521 386static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
387 follow_fork_mode_child,
388 follow_fork_mode_parent,
389 NULL
ef346e04 390};
c906108c 391
53904c9e 392static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
393static void
394show_follow_fork_mode_string (struct ui_file *file, int from_tty,
395 struct cmd_list_element *c, const char *value)
396{
3e43a32a
MS
397 fprintf_filtered (file,
398 _("Debugger response to a program "
399 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
400 value);
401}
c906108c
SS
402\f
403
d83ad864
DB
404/* Handle changes to the inferior list based on the type of fork,
405 which process is being followed, and whether the other process
406 should be detached. On entry inferior_ptid must be the ptid of
407 the fork parent. At return inferior_ptid is the ptid of the
408 followed inferior. */
409
5ab2fbf1
SM
410static bool
411follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
412{
413 int has_vforked;
79639e11 414 ptid_t parent_ptid, child_ptid;
d83ad864
DB
415
416 has_vforked = (inferior_thread ()->pending_follow.kind
417 == TARGET_WAITKIND_VFORKED);
79639e11
PA
418 parent_ptid = inferior_ptid;
419 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
420
421 if (has_vforked
422 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 423 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
424 && !(follow_child || detach_fork || sched_multi))
425 {
426 /* The parent stays blocked inside the vfork syscall until the
427 child execs or exits. If we don't let the child run, then
428 the parent stays blocked. If we're telling the parent to run
429 in the foreground, the user will not be able to ctrl-c to get
430 back the terminal, effectively hanging the debug session. */
431 fprintf_filtered (gdb_stderr, _("\
432Can not resume the parent process over vfork in the foreground while\n\
433holding the child stopped. Try \"set detach-on-fork\" or \
434\"set schedule-multiple\".\n"));
d83ad864
DB
435 return 1;
436 }
437
438 if (!follow_child)
439 {
440 /* Detach new forked process? */
441 if (detach_fork)
442 {
d83ad864
DB
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
00431a78 453 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
454 }
455
f67c0c91 456 if (print_inferior_events)
d83ad864 457 {
8dd06f7a 458 /* Ensure that we have a process ptid. */
e99b03dc 459 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 460
223ffa71 461 target_terminal::ours_for_output ();
d83ad864 462 fprintf_filtered (gdb_stdlog,
f67c0c91 463 _("[Detaching after %s from child %s]\n"),
6f259a23 464 has_vforked ? "vfork" : "fork",
a068643d 465 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
466 }
467 }
468 else
469 {
470 struct inferior *parent_inf, *child_inf;
d83ad864
DB
471
472 /* Add process to GDB's tables. */
e99b03dc 473 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
474
475 parent_inf = current_inferior ();
476 child_inf->attach_flag = parent_inf->attach_flag;
477 copy_terminal_info (child_inf, parent_inf);
478 child_inf->gdbarch = parent_inf->gdbarch;
479 copy_inferior_target_desc_info (child_inf, parent_inf);
480
5ed8105e 481 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 482
2a00d7ce 483 set_current_inferior (child_inf);
5b6d1e4f 484 switch_to_no_thread ();
d83ad864 485 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
486 push_target (parent_inf->process_target ());
487 add_thread_silent (child_inf->process_target (), child_ptid);
488 inferior_ptid = child_ptid;
d83ad864
DB
489
490 /* If this is a vfork child, then the address-space is
491 shared with the parent. */
492 if (has_vforked)
493 {
494 child_inf->pspace = parent_inf->pspace;
495 child_inf->aspace = parent_inf->aspace;
496
5b6d1e4f
PA
497 exec_on_vfork ();
498
d83ad864
DB
499 /* The parent will be frozen until the child is done
500 with the shared region. Keep track of the
501 parent. */
502 child_inf->vfork_parent = parent_inf;
503 child_inf->pending_detach = 0;
504 parent_inf->vfork_child = child_inf;
505 parent_inf->pending_detach = 0;
506 }
507 else
508 {
509 child_inf->aspace = new_address_space ();
564b1e3f 510 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
511 child_inf->removable = 1;
512 set_current_program_space (child_inf->pspace);
513 clone_program_space (child_inf->pspace, parent_inf->pspace);
514
515 /* Let the shared library layer (e.g., solib-svr4) learn
516 about this new process, relocate the cloned exec, pull
517 in shared libraries, and install the solib event
518 breakpoint. If a "cloned-VM" event was propagated
519 better throughout the core, this wouldn't be
520 required. */
521 solib_create_inferior_hook (0);
522 }
d83ad864
DB
523 }
524
525 if (has_vforked)
526 {
527 struct inferior *parent_inf;
528
529 parent_inf = current_inferior ();
530
531 /* If we detached from the child, then we have to be careful
532 to not insert breakpoints in the parent until the child
533 is done with the shared memory region. However, if we're
534 staying attached to the child, then we can and should
535 insert breakpoints, so that we can debug it. A
536 subsequent child exec or exit is enough to know when does
537 the child stops using the parent's address space. */
538 parent_inf->waiting_for_vfork_done = detach_fork;
539 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
540 }
541 }
542 else
543 {
544 /* Follow the child. */
545 struct inferior *parent_inf, *child_inf;
546 struct program_space *parent_pspace;
547
f67c0c91 548 if (print_inferior_events)
d83ad864 549 {
f67c0c91
SDJ
550 std::string parent_pid = target_pid_to_str (parent_ptid);
551 std::string child_pid = target_pid_to_str (child_ptid);
552
223ffa71 553 target_terminal::ours_for_output ();
6f259a23 554 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
555 _("[Attaching after %s %s to child %s]\n"),
556 parent_pid.c_str (),
6f259a23 557 has_vforked ? "vfork" : "fork",
f67c0c91 558 child_pid.c_str ());
d83ad864
DB
559 }
560
561 /* Add the new inferior first, so that the target_detach below
562 doesn't unpush the target. */
563
e99b03dc 564 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
565
566 parent_inf = current_inferior ();
567 child_inf->attach_flag = parent_inf->attach_flag;
568 copy_terminal_info (child_inf, parent_inf);
569 child_inf->gdbarch = parent_inf->gdbarch;
570 copy_inferior_target_desc_info (child_inf, parent_inf);
571
572 parent_pspace = parent_inf->pspace;
573
5b6d1e4f 574 process_stratum_target *target = parent_inf->process_target ();
d83ad864 575
5b6d1e4f
PA
576 {
577 /* Hold a strong reference to the target while (maybe)
578 detaching the parent. Otherwise detaching could close the
579 target. */
580 auto target_ref = target_ops_ref::new_reference (target);
581
582 /* If we're vforking, we want to hold on to the parent until
583 the child exits or execs. At child exec or exit time we
584 can remove the old breakpoints from the parent and detach
585 or resume debugging it. Otherwise, detach the parent now;
586 we'll want to reuse it's program/address spaces, but we
587 can't set them to the child before removing breakpoints
588 from the parent, otherwise, the breakpoints module could
589 decide to remove breakpoints from the wrong process (since
590 they'd be assigned to the same address space). */
591
592 if (has_vforked)
593 {
594 gdb_assert (child_inf->vfork_parent == NULL);
595 gdb_assert (parent_inf->vfork_child == NULL);
596 child_inf->vfork_parent = parent_inf;
597 child_inf->pending_detach = 0;
598 parent_inf->vfork_child = child_inf;
599 parent_inf->pending_detach = detach_fork;
600 parent_inf->waiting_for_vfork_done = 0;
601 }
602 else if (detach_fork)
603 {
604 if (print_inferior_events)
605 {
606 /* Ensure that we have a process ptid. */
607 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
608
609 target_terminal::ours_for_output ();
610 fprintf_filtered (gdb_stdlog,
611 _("[Detaching after fork from "
612 "parent %s]\n"),
613 target_pid_to_str (process_ptid).c_str ());
614 }
8dd06f7a 615
5b6d1e4f
PA
616 target_detach (parent_inf, 0);
617 parent_inf = NULL;
618 }
6f259a23 619
5b6d1e4f 620 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 621
5b6d1e4f
PA
622 /* Add the child thread to the appropriate lists, and switch
623 to this new thread, before cloning the program space, and
624 informing the solib layer about this new process. */
d83ad864 625
5b6d1e4f
PA
626 set_current_inferior (child_inf);
627 push_target (target);
628 }
d83ad864 629
5b6d1e4f 630 add_thread_silent (target, child_ptid);
79639e11 631 inferior_ptid = child_ptid;
d83ad864
DB
632
633 /* If this is a vfork child, then the address-space is shared
634 with the parent. If we detached from the parent, then we can
635 reuse the parent's program/address spaces. */
636 if (has_vforked || detach_fork)
637 {
638 child_inf->pspace = parent_pspace;
639 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
640
641 exec_on_vfork ();
d83ad864
DB
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
564b1e3f 646 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
5ab2fbf1
SM
668static bool
669follow_fork ()
c906108c 670{
5ab2fbf1
SM
671 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
672 bool should_resume = true;
e58b0e63
PA
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
5b6d1e4f 688 process_stratum_target *wait_target;
e58b0e63
PA
689 ptid_t wait_ptid;
690 struct target_waitstatus wait_status;
691
692 /* Get the last target status returned by target_wait(). */
5b6d1e4f 693 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
694
695 /* If not stopped at a fork event, then there's nothing else to
696 do. */
697 if (wait_status.kind != TARGET_WAITKIND_FORKED
698 && wait_status.kind != TARGET_WAITKIND_VFORKED)
699 return 1;
700
701 /* Check if we switched over from WAIT_PTID, since the event was
702 reported. */
00431a78 703 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
704 && (current_inferior ()->process_target () != wait_target
705 || inferior_ptid != wait_ptid))
e58b0e63
PA
706 {
707 /* We did. Switch back to WAIT_PTID thread, to tell the
708 target to follow it (in either direction). We'll
709 afterwards refuse to resume, and inform the user what
710 happened. */
5b6d1e4f 711 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 712 switch_to_thread (wait_thread);
5ab2fbf1 713 should_resume = false;
e58b0e63
PA
714 }
715 }
716
717 tp = inferior_thread ();
718
719 /* If there were any forks/vforks that were caught and are now to be
720 followed, then do so now. */
721 switch (tp->pending_follow.kind)
722 {
723 case TARGET_WAITKIND_FORKED:
724 case TARGET_WAITKIND_VFORKED:
725 {
726 ptid_t parent, child;
727
728 /* If the user did a next/step, etc, over a fork call,
729 preserve the stepping state in the fork child. */
730 if (follow_child && should_resume)
731 {
8358c15c
JK
732 step_resume_breakpoint = clone_momentary_breakpoint
733 (tp->control.step_resume_breakpoint);
16c381f0
JK
734 step_range_start = tp->control.step_range_start;
735 step_range_end = tp->control.step_range_end;
736 step_frame_id = tp->control.step_frame_id;
186c406b
TT
737 exception_resume_breakpoint
738 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 739 thread_fsm = tp->thread_fsm;
e58b0e63
PA
740
741 /* For now, delete the parent's sr breakpoint, otherwise,
742 parent/child sr breakpoints are considered duplicates,
743 and the child version will not be installed. Remove
744 this when the breakpoints module becomes aware of
745 inferiors and address spaces. */
746 delete_step_resume_breakpoint (tp);
16c381f0
JK
747 tp->control.step_range_start = 0;
748 tp->control.step_range_end = 0;
749 tp->control.step_frame_id = null_frame_id;
186c406b 750 delete_exception_resume_breakpoint (tp);
8980e177 751 tp->thread_fsm = NULL;
e58b0e63
PA
752 }
753
754 parent = inferior_ptid;
755 child = tp->pending_follow.value.related_pid;
756
5b6d1e4f 757 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
758 /* Set up inferior(s) as specified by the caller, and tell the
759 target to do whatever is necessary to follow either parent
760 or child. */
761 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
762 {
763 /* Target refused to follow, or there's some other reason
764 we shouldn't resume. */
765 should_resume = 0;
766 }
767 else
768 {
769 /* This pending follow fork event is now handled, one way
770 or another. The previous selected thread may be gone
771 from the lists by now, but if it is still around, need
772 to clear the pending follow request. */
5b6d1e4f 773 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
774 if (tp)
775 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
776
777 /* This makes sure we don't try to apply the "Switched
778 over from WAIT_PID" logic above. */
779 nullify_last_target_wait_ptid ();
780
1777feb0 781 /* If we followed the child, switch to it... */
e58b0e63
PA
782 if (follow_child)
783 {
5b6d1e4f 784 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 785 switch_to_thread (child_thr);
e58b0e63
PA
786
787 /* ... and preserve the stepping state, in case the
788 user was stepping over the fork call. */
789 if (should_resume)
790 {
791 tp = inferior_thread ();
8358c15c
JK
792 tp->control.step_resume_breakpoint
793 = step_resume_breakpoint;
16c381f0
JK
794 tp->control.step_range_start = step_range_start;
795 tp->control.step_range_end = step_range_end;
796 tp->control.step_frame_id = step_frame_id;
186c406b
TT
797 tp->control.exception_resume_breakpoint
798 = exception_resume_breakpoint;
8980e177 799 tp->thread_fsm = thread_fsm;
e58b0e63
PA
800 }
801 else
802 {
803 /* If we get here, it was because we're trying to
804 resume from a fork catchpoint, but, the user
805 has switched threads away from the thread that
806 forked. In that case, the resume command
807 issued is most likely not applicable to the
808 child, so just warn, and refuse to resume. */
3e43a32a 809 warning (_("Not resuming: switched threads "
fd7dcb94 810 "before following fork child."));
e58b0e63
PA
811 }
812
813 /* Reset breakpoints in the child as appropriate. */
814 follow_inferior_reset_breakpoints ();
815 }
e58b0e63
PA
816 }
817 }
818 break;
819 case TARGET_WAITKIND_SPURIOUS:
820 /* Nothing to follow. */
821 break;
822 default:
823 internal_error (__FILE__, __LINE__,
824 "Unexpected pending_follow.kind %d\n",
825 tp->pending_follow.kind);
826 break;
827 }
c906108c 828
e58b0e63 829 return should_resume;
c906108c
SS
830}
831
d83ad864 832static void
6604731b 833follow_inferior_reset_breakpoints (void)
c906108c 834{
4e1c45ea
PA
835 struct thread_info *tp = inferior_thread ();
836
6604731b
DJ
837 /* Was there a step_resume breakpoint? (There was if the user
838 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
839 thread number. Cloned step_resume breakpoints are disabled on
840 creation, so enable it here now that it is associated with the
841 correct thread.
6604731b
DJ
842
843 step_resumes are a form of bp that are made to be per-thread.
844 Since we created the step_resume bp when the parent process
845 was being debugged, and now are switching to the child process,
846 from the breakpoint package's viewpoint, that's a switch of
847 "threads". We must update the bp's notion of which thread
848 it is for, or it'll be ignored when it triggers. */
849
8358c15c 850 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
851 {
852 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
853 tp->control.step_resume_breakpoint->loc->enabled = 1;
854 }
6604731b 855
a1aa2221 856 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 857 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
860 tp->control.exception_resume_breakpoint->loc->enabled = 1;
861 }
186c406b 862
6604731b
DJ
863 /* Reinsert all breakpoints in the child. The user may have set
864 breakpoints after catching the fork, in which case those
865 were never set in the child, but only in the parent. This makes
866 sure the inserted breakpoints match the breakpoint list. */
867
868 breakpoint_re_set ();
869 insert_breakpoints ();
c906108c 870}
c906108c 871
6c95b8df
PA
872/* The child has exited or execed: resume threads of the parent the
873 user wanted to be executing. */
874
875static int
876proceed_after_vfork_done (struct thread_info *thread,
877 void *arg)
878{
879 int pid = * (int *) arg;
880
00431a78
PA
881 if (thread->ptid.pid () == pid
882 && thread->state == THREAD_RUNNING
883 && !thread->executing
6c95b8df 884 && !thread->stop_requested
a493e3e2 885 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
886 {
887 if (debug_infrun)
888 fprintf_unfiltered (gdb_stdlog,
889 "infrun: resuming vfork parent thread %s\n",
a068643d 890 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 891
00431a78 892 switch_to_thread (thread);
70509625 893 clear_proceed_status (0);
64ce06e4 894 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
895 }
896
897 return 0;
898}
899
5ed8105e
PA
900/* Save/restore inferior_ptid, current program space and current
901 inferior. Only use this if the current context points at an exited
902 inferior (and therefore there's no current thread to save). */
903class scoped_restore_exited_inferior
904{
905public:
906 scoped_restore_exited_inferior ()
907 : m_saved_ptid (&inferior_ptid)
908 {}
909
910private:
911 scoped_restore_tmpl<ptid_t> m_saved_ptid;
912 scoped_restore_current_program_space m_pspace;
913 scoped_restore_current_inferior m_inferior;
914};
915
6c95b8df
PA
916/* Called whenever we notice an exec or exit event, to handle
917 detaching or resuming a vfork parent. */
918
919static void
920handle_vfork_child_exec_or_exit (int exec)
921{
922 struct inferior *inf = current_inferior ();
923
924 if (inf->vfork_parent)
925 {
926 int resume_parent = -1;
927
928 /* This exec or exit marks the end of the shared memory region
b73715df
TV
929 between the parent and the child. Break the bonds. */
930 inferior *vfork_parent = inf->vfork_parent;
931 inf->vfork_parent->vfork_child = NULL;
932 inf->vfork_parent = NULL;
6c95b8df 933
b73715df
TV
934 /* If the user wanted to detach from the parent, now is the
935 time. */
936 if (vfork_parent->pending_detach)
6c95b8df
PA
937 {
938 struct thread_info *tp;
6c95b8df
PA
939 struct program_space *pspace;
940 struct address_space *aspace;
941
1777feb0 942 /* follow-fork child, detach-on-fork on. */
6c95b8df 943
b73715df 944 vfork_parent->pending_detach = 0;
68c9da30 945
5ed8105e
PA
946 gdb::optional<scoped_restore_exited_inferior>
947 maybe_restore_inferior;
948 gdb::optional<scoped_restore_current_pspace_and_thread>
949 maybe_restore_thread;
950
951 /* If we're handling a child exit, then inferior_ptid points
952 at the inferior's pid, not to a thread. */
f50f4e56 953 if (!exec)
5ed8105e 954 maybe_restore_inferior.emplace ();
f50f4e56 955 else
5ed8105e 956 maybe_restore_thread.emplace ();
6c95b8df
PA
957
958 /* We're letting loose of the parent. */
b73715df 959 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 960 switch_to_thread (tp);
6c95b8df
PA
961
962 /* We're about to detach from the parent, which implicitly
963 removes breakpoints from its address space. There's a
964 catch here: we want to reuse the spaces for the child,
965 but, parent/child are still sharing the pspace at this
966 point, although the exec in reality makes the kernel give
967 the child a fresh set of new pages. The problem here is
968 that the breakpoints module being unaware of this, would
969 likely chose the child process to write to the parent
970 address space. Swapping the child temporarily away from
971 the spaces has the desired effect. Yes, this is "sort
972 of" a hack. */
973
974 pspace = inf->pspace;
975 aspace = inf->aspace;
976 inf->aspace = NULL;
977 inf->pspace = NULL;
978
f67c0c91 979 if (print_inferior_events)
6c95b8df 980 {
a068643d 981 std::string pidstr
b73715df 982 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 983
223ffa71 984 target_terminal::ours_for_output ();
6c95b8df
PA
985
986 if (exec)
6f259a23
DB
987 {
988 fprintf_filtered (gdb_stdlog,
f67c0c91 989 _("[Detaching vfork parent %s "
a068643d 990 "after child exec]\n"), pidstr.c_str ());
6f259a23 991 }
6c95b8df 992 else
6f259a23
DB
993 {
994 fprintf_filtered (gdb_stdlog,
f67c0c91 995 _("[Detaching vfork parent %s "
a068643d 996 "after child exit]\n"), pidstr.c_str ());
6f259a23 997 }
6c95b8df
PA
998 }
999
b73715df 1000 target_detach (vfork_parent, 0);
6c95b8df
PA
1001
1002 /* Put it back. */
1003 inf->pspace = pspace;
1004 inf->aspace = aspace;
6c95b8df
PA
1005 }
1006 else if (exec)
1007 {
1008 /* We're staying attached to the parent, so, really give the
1009 child a new address space. */
564b1e3f 1010 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1011 inf->aspace = inf->pspace->aspace;
1012 inf->removable = 1;
1013 set_current_program_space (inf->pspace);
1014
b73715df 1015 resume_parent = vfork_parent->pid;
6c95b8df
PA
1016 }
1017 else
1018 {
6c95b8df
PA
1019 /* If this is a vfork child exiting, then the pspace and
1020 aspaces were shared with the parent. Since we're
1021 reporting the process exit, we'll be mourning all that is
1022 found in the address space, and switching to null_ptid,
1023 preparing to start a new inferior. But, since we don't
1024 want to clobber the parent's address/program spaces, we
1025 go ahead and create a new one for this exiting
1026 inferior. */
1027
5ed8105e
PA
1028 /* Switch to null_ptid while running clone_program_space, so
1029 that clone_program_space doesn't want to read the
1030 selected frame of a dead process. */
1031 scoped_restore restore_ptid
1032 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1033
53af73bf
PA
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 set_current_program_space (inf->pspace);
6c95b8df 1037 inf->removable = 1;
7dcd53a0 1038 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1039 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1040
b73715df 1041 resume_parent = vfork_parent->pid;
6c95b8df
PA
1042 }
1043
6c95b8df
PA
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
4ca51187 1084follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
65d2b333
PW
1090 /* Switch terminal for any messages produced e.g. by
1091 breakpoint_re_set. */
1092 target_terminal::ours_for_output ();
1093
c906108c
SS
1094 /* This is an exec event that we actually wish to pay attention to.
1095 Refresh our symbol table to the newly exec'd program, remove any
1096 momentary bp's, etc.
1097
1098 If there are breakpoints, they aren't really inserted now,
1099 since the exec() transformed our inferior into a fresh set
1100 of instructions.
1101
1102 We want to preserve symbolic breakpoints on the list, since
1103 we have hopes that they can be reset after the new a.out's
1104 symbol table is read.
1105
1106 However, any "raw" breakpoints must be removed from the list
1107 (e.g., the solib bp's), since their address is probably invalid
1108 now.
1109
1110 And, we DON'T want to call delete_breakpoints() here, since
1111 that may write the bp's "shadow contents" (the instruction
85102364 1112 value that was overwritten with a TRAP instruction). Since
1777feb0 1113 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1114
1115 mark_breakpoints_out ();
1116
95e50b27
PA
1117 /* The target reports the exec event to the main thread, even if
1118 some other thread does the exec, and even if the main thread was
1119 stopped or already gone. We may still have non-leader threads of
1120 the process on our list. E.g., on targets that don't have thread
1121 exit events (like remote); or on native Linux in non-stop mode if
1122 there were only two threads in the inferior and the non-leader
1123 one is the one that execs (and nothing forces an update of the
1124 thread list up to here). When debugging remotely, it's best to
1125 avoid extra traffic, when possible, so avoid syncing the thread
1126 list with the target, and instead go ahead and delete all threads
1127 of the process but one that reported the event. Note this must
1128 be done before calling update_breakpoints_after_exec, as
1129 otherwise clearing the threads' resources would reference stale
1130 thread breakpoints -- it may have been one of these threads that
1131 stepped across the exec. We could just clear their stepping
1132 states, but as long as we're iterating, might as well delete
1133 them. Deleting them now rather than at the next user-visible
1134 stop provides a nicer sequence of events for user and MI
1135 notifications. */
08036331 1136 for (thread_info *th : all_threads_safe ())
d7e15655 1137 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1138 delete_thread (th);
95e50b27
PA
1139
1140 /* We also need to clear any left over stale state for the
1141 leader/event thread. E.g., if there was any step-resume
1142 breakpoint or similar, it's gone now. We cannot truly
1143 step-to-next statement through an exec(). */
08036331 1144 thread_info *th = inferior_thread ();
8358c15c 1145 th->control.step_resume_breakpoint = NULL;
186c406b 1146 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1147 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1148 th->control.step_range_start = 0;
1149 th->control.step_range_end = 0;
c906108c 1150
95e50b27
PA
1151 /* The user may have had the main thread held stopped in the
1152 previous image (e.g., schedlock on, or non-stop). Release
1153 it now. */
a75724bc
PA
1154 th->stop_requested = 0;
1155
95e50b27
PA
1156 update_breakpoints_after_exec ();
1157
1777feb0 1158 /* What is this a.out's name? */
f2907e49 1159 process_ptid = ptid_t (pid);
6c95b8df 1160 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1161 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1162 exec_file_target);
c906108c
SS
1163
1164 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1165 inferior has essentially been killed & reborn. */
7a292a7a 1166
6ca15a4b 1167 breakpoint_init_inferior (inf_execd);
e85a822c 1168
797bc1cb
TT
1169 gdb::unique_xmalloc_ptr<char> exec_file_host
1170 = exec_file_find (exec_file_target, NULL);
ff862be4 1171
ecf45d2c
SL
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
35ed81d4
SM
1194 /* Do exit processing for the original inferior before setting the new
1195 inferior's pid. Having two inferiors with the same pid would confuse
1196 find_inferior_p(t)id. Transfer the terminal state and info from the
1197 old to the new inferior. */
1198 inf = add_inferior_with_spaces ();
1199 swap_terminal_info (inf, current_inferior ());
057302ce 1200 exit_inferior_silent (current_inferior ());
17d8546e 1201
94585166 1202 inf->pid = pid;
ecf45d2c 1203 target_follow_exec (inf, exec_file_target);
6c95b8df 1204
5b6d1e4f
PA
1205 inferior *org_inferior = current_inferior ();
1206 switch_to_inferior_no_thread (inf);
1207 push_target (org_inferior->process_target ());
1208 thread_info *thr = add_thread (inf->process_target (), ptid);
1209 switch_to_thread (thr);
6c95b8df 1210 }
9107fc8d
PA
1211 else
1212 {
1213 /* The old description may no longer be fit for the new image.
1214 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1215 old description; we'll read a new one below. No need to do
1216 this on "follow-exec-mode new", as the old inferior stays
1217 around (its description is later cleared/refetched on
1218 restart). */
1219 target_clear_description ();
1220 }
6c95b8df
PA
1221
1222 gdb_assert (current_program_space == inf->pspace);
1223
ecf45d2c
SL
1224 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1225 because the proper displacement for a PIE (Position Independent
1226 Executable) main symbol file will only be computed by
1227 solib_create_inferior_hook below. breakpoint_re_set would fail
1228 to insert the breakpoints with the zero displacement. */
797bc1cb 1229 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1230
9107fc8d
PA
1231 /* If the target can specify a description, read it. Must do this
1232 after flipping to the new executable (because the target supplied
1233 description must be compatible with the executable's
1234 architecture, and the old executable may e.g., be 32-bit, while
1235 the new one 64-bit), and before anything involving memory or
1236 registers. */
1237 target_find_description ();
1238
268a4a75 1239 solib_create_inferior_hook (0);
c906108c 1240
4efc6507
DE
1241 jit_inferior_created_hook ();
1242
c1e56572
JK
1243 breakpoint_re_set ();
1244
c906108c
SS
1245 /* Reinsert all breakpoints. (Those which were symbolic have
1246 been reset to the proper address in the new a.out, thanks
1777feb0 1247 to symbol_file_command...). */
c906108c
SS
1248 insert_breakpoints ();
1249
1250 /* The next resume of this inferior should bring it to the shlib
1251 startup breakpoints. (If the user had also set bp's on
1252 "main" from the old (parent) process, then they'll auto-
1777feb0 1253 matically get reset there in the new process.). */
c906108c
SS
1254}
1255
c2829269
PA
1256/* The queue of threads that need to do a step-over operation to get
1257 past e.g., a breakpoint. What technique is used to step over the
1258 breakpoint/watchpoint does not matter -- all threads end up in the
1259 same queue, to maintain rough temporal order of execution, in order
1260 to avoid starvation, otherwise, we could e.g., find ourselves
1261 constantly stepping the same couple threads past their breakpoints
1262 over and over, if the single-step finish fast enough. */
1263struct thread_info *step_over_queue_head;
1264
6c4cfb24
PA
1265/* Bit flags indicating what the thread needs to step over. */
1266
8d297bbf 1267enum step_over_what_flag
6c4cfb24
PA
1268 {
1269 /* Step over a breakpoint. */
1270 STEP_OVER_BREAKPOINT = 1,
1271
1272 /* Step past a non-continuable watchpoint, in order to let the
1273 instruction execute so we can evaluate the watchpoint
1274 expression. */
1275 STEP_OVER_WATCHPOINT = 2
1276 };
8d297bbf 1277DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1278
963f9c80 1279/* Info about an instruction that is being stepped over. */
31e77af2
PA
1280
1281struct step_over_info
1282{
963f9c80
PA
1283 /* If we're stepping past a breakpoint, this is the address space
1284 and address of the instruction the breakpoint is set at. We'll
1285 skip inserting all breakpoints here. Valid iff ASPACE is
1286 non-NULL. */
8b86c959 1287 const address_space *aspace;
31e77af2 1288 CORE_ADDR address;
963f9c80
PA
1289
1290 /* The instruction being stepped over triggers a nonsteppable
1291 watchpoint. If true, we'll skip inserting watchpoints. */
1292 int nonsteppable_watchpoint_p;
21edc42f
YQ
1293
1294 /* The thread's global number. */
1295 int thread;
31e77af2
PA
1296};
1297
1298/* The step-over info of the location that is being stepped over.
1299
1300 Note that with async/breakpoint always-inserted mode, a user might
1301 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1302 being stepped over. As setting a new breakpoint inserts all
1303 breakpoints, we need to make sure the breakpoint being stepped over
1304 isn't inserted then. We do that by only clearing the step-over
1305 info when the step-over is actually finished (or aborted).
1306
1307 Presently GDB can only step over one breakpoint at any given time.
1308 Given threads that can't run code in the same address space as the
1309 breakpoint's can't really miss the breakpoint, GDB could be taught
1310 to step-over at most one breakpoint per address space (so this info
1311 could move to the address space object if/when GDB is extended).
1312 The set of breakpoints being stepped over will normally be much
1313 smaller than the set of all breakpoints, so a flag in the
1314 breakpoint location structure would be wasteful. A separate list
1315 also saves complexity and run-time, as otherwise we'd have to go
1316 through all breakpoint locations clearing their flag whenever we
1317 start a new sequence. Similar considerations weigh against storing
1318 this info in the thread object. Plus, not all step overs actually
1319 have breakpoint locations -- e.g., stepping past a single-step
1320 breakpoint, or stepping to complete a non-continuable
1321 watchpoint. */
1322static struct step_over_info step_over_info;
1323
1324/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1325 stepping over.
1326 N.B. We record the aspace and address now, instead of say just the thread,
1327 because when we need the info later the thread may be running. */
31e77af2
PA
1328
1329static void
8b86c959 1330set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1331 int nonsteppable_watchpoint_p,
1332 int thread)
31e77af2
PA
1333{
1334 step_over_info.aspace = aspace;
1335 step_over_info.address = address;
963f9c80 1336 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1337 step_over_info.thread = thread;
31e77af2
PA
1338}
1339
1340/* Called when we're not longer stepping over a breakpoint / an
1341 instruction, so all breakpoints are free to be (re)inserted. */
1342
1343static void
1344clear_step_over_info (void)
1345{
372316f1
PA
1346 if (debug_infrun)
1347 fprintf_unfiltered (gdb_stdlog,
1348 "infrun: clear_step_over_info\n");
31e77af2
PA
1349 step_over_info.aspace = NULL;
1350 step_over_info.address = 0;
963f9c80 1351 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1352 step_over_info.thread = -1;
31e77af2
PA
1353}
1354
7f89fd65 1355/* See infrun.h. */
31e77af2
PA
1356
1357int
1358stepping_past_instruction_at (struct address_space *aspace,
1359 CORE_ADDR address)
1360{
1361 return (step_over_info.aspace != NULL
1362 && breakpoint_address_match (aspace, address,
1363 step_over_info.aspace,
1364 step_over_info.address));
1365}
1366
963f9c80
PA
1367/* See infrun.h. */
1368
21edc42f
YQ
1369int
1370thread_is_stepping_over_breakpoint (int thread)
1371{
1372 return (step_over_info.thread != -1
1373 && thread == step_over_info.thread);
1374}
1375
1376/* See infrun.h. */
1377
963f9c80
PA
1378int
1379stepping_past_nonsteppable_watchpoint (void)
1380{
1381 return step_over_info.nonsteppable_watchpoint_p;
1382}
1383
6cc83d2a
PA
1384/* Returns true if step-over info is valid. */
1385
1386static int
1387step_over_info_valid_p (void)
1388{
963f9c80
PA
1389 return (step_over_info.aspace != NULL
1390 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1391}
1392
c906108c 1393\f
237fc4c9
PA
1394/* Displaced stepping. */
1395
1396/* In non-stop debugging mode, we must take special care to manage
1397 breakpoints properly; in particular, the traditional strategy for
1398 stepping a thread past a breakpoint it has hit is unsuitable.
1399 'Displaced stepping' is a tactic for stepping one thread past a
1400 breakpoint it has hit while ensuring that other threads running
1401 concurrently will hit the breakpoint as they should.
1402
1403 The traditional way to step a thread T off a breakpoint in a
1404 multi-threaded program in all-stop mode is as follows:
1405
1406 a0) Initially, all threads are stopped, and breakpoints are not
1407 inserted.
1408 a1) We single-step T, leaving breakpoints uninserted.
1409 a2) We insert breakpoints, and resume all threads.
1410
1411 In non-stop debugging, however, this strategy is unsuitable: we
1412 don't want to have to stop all threads in the system in order to
1413 continue or step T past a breakpoint. Instead, we use displaced
1414 stepping:
1415
1416 n0) Initially, T is stopped, other threads are running, and
1417 breakpoints are inserted.
1418 n1) We copy the instruction "under" the breakpoint to a separate
1419 location, outside the main code stream, making any adjustments
1420 to the instruction, register, and memory state as directed by
1421 T's architecture.
1422 n2) We single-step T over the instruction at its new location.
1423 n3) We adjust the resulting register and memory state as directed
1424 by T's architecture. This includes resetting T's PC to point
1425 back into the main instruction stream.
1426 n4) We resume T.
1427
1428 This approach depends on the following gdbarch methods:
1429
1430 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1431 indicate where to copy the instruction, and how much space must
1432 be reserved there. We use these in step n1.
1433
1434 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1435 address, and makes any necessary adjustments to the instruction,
1436 register contents, and memory. We use this in step n1.
1437
1438 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1439 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1440 same effect the instruction would have had if we had executed it
1441 at its original address. We use this in step n3.
1442
237fc4c9
PA
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
cfba9872
SM
1480/* Default destructor for displaced_step_closure. */
1481
1482displaced_step_closure::~displaced_step_closure () = default;
1483
fc1cf338
PA
1484/* Get the displaced stepping state of process PID. */
1485
39a36629 1486static displaced_step_inferior_state *
00431a78 1487get_displaced_stepping_state (inferior *inf)
fc1cf338 1488{
d20172fc 1489 return &inf->displaced_step_state;
fc1cf338
PA
1490}
1491
372316f1
PA
1492/* Returns true if any inferior has a thread doing a displaced
1493 step. */
1494
39a36629
SM
1495static bool
1496displaced_step_in_progress_any_inferior ()
372316f1 1497{
d20172fc 1498 for (inferior *i : all_inferiors ())
39a36629 1499 {
d20172fc 1500 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1501 return true;
1502 }
372316f1 1503
39a36629 1504 return false;
372316f1
PA
1505}
1506
c0987663
YQ
1507/* Return true if thread represented by PTID is doing a displaced
1508 step. */
1509
1510static int
00431a78 1511displaced_step_in_progress_thread (thread_info *thread)
c0987663 1512{
00431a78 1513 gdb_assert (thread != NULL);
c0987663 1514
d20172fc 1515 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1516}
1517
8f572e5c
PA
1518/* Return true if process PID has a thread doing a displaced step. */
1519
1520static int
00431a78 1521displaced_step_in_progress (inferior *inf)
8f572e5c 1522{
d20172fc 1523 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1524}
1525
a42244db
YQ
1526/* If inferior is in displaced stepping, and ADDR equals to starting address
1527 of copy area, return corresponding displaced_step_closure. Otherwise,
1528 return NULL. */
1529
1530struct displaced_step_closure*
1531get_displaced_step_closure_by_addr (CORE_ADDR addr)
1532{
d20172fc 1533 displaced_step_inferior_state *displaced
00431a78 1534 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1535
1536 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1537 if (displaced->step_thread != nullptr
00431a78 1538 && displaced->step_copy == addr)
d8d83535 1539 return displaced->step_closure.get ();
a42244db
YQ
1540
1541 return NULL;
1542}
1543
fc1cf338
PA
1544static void
1545infrun_inferior_exit (struct inferior *inf)
1546{
d20172fc 1547 inf->displaced_step_state.reset ();
fc1cf338 1548}
237fc4c9 1549
fff08868
HZ
1550/* If ON, and the architecture supports it, GDB will use displaced
1551 stepping to step over breakpoints. If OFF, or if the architecture
1552 doesn't support it, GDB will instead use the traditional
1553 hold-and-step approach. If AUTO (which is the default), GDB will
1554 decide which technique to use to step over breakpoints depending on
9822cb57 1555 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1556
72d0e2c5 1557static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1558
237fc4c9
PA
1559static void
1560show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1561 struct cmd_list_element *c,
1562 const char *value)
1563{
72d0e2c5 1564 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1568 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1569 else
3e43a32a
MS
1570 fprintf_filtered (file,
1571 _("Debugger's willingness to use displaced stepping "
1572 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1573}
1574
9822cb57
SM
1575/* Return true if the gdbarch implements the required methods to use
1576 displaced stepping. */
1577
1578static bool
1579gdbarch_supports_displaced_stepping (gdbarch *arch)
1580{
1581 /* Only check for the presence of step_copy_insn. Other required methods
1582 are checked by the gdbarch validation. */
1583 return gdbarch_displaced_step_copy_insn_p (arch);
1584}
1585
fff08868 1586/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1587 over breakpoints of thread TP. */
fff08868 1588
9822cb57
SM
1589static bool
1590use_displaced_stepping (thread_info *tp)
237fc4c9 1591{
9822cb57
SM
1592 /* If the user disabled it explicitly, don't use displaced stepping. */
1593 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1594 return false;
1595
1596 /* If "auto", only use displaced stepping if the target operates in a non-stop
1597 way. */
1598 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1599 && !target_is_non_stop_p ())
1600 return false;
1601
1602 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1603
1604 /* If the architecture doesn't implement displaced stepping, don't use
1605 it. */
1606 if (!gdbarch_supports_displaced_stepping (gdbarch))
1607 return false;
1608
1609 /* If recording, don't use displaced stepping. */
1610 if (find_record_target () != nullptr)
1611 return false;
1612
d20172fc
SM
1613 displaced_step_inferior_state *displaced_state
1614 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1615
9822cb57
SM
1616 /* If displaced stepping failed before for this inferior, don't bother trying
1617 again. */
1618 if (displaced_state->failed_before)
1619 return false;
1620
1621 return true;
237fc4c9
PA
1622}
1623
d8d83535
SM
1624/* Simple function wrapper around displaced_step_inferior_state::reset. */
1625
237fc4c9 1626static void
d8d83535 1627displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1628{
d8d83535 1629 displaced->reset ();
237fc4c9
PA
1630}
1631
d8d83535
SM
1632/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1633 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1634
1635using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1636
1637/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1638void
1639displaced_step_dump_bytes (struct ui_file *file,
1640 const gdb_byte *buf,
1641 size_t len)
1642{
1643 int i;
1644
1645 for (i = 0; i < len; i++)
1646 fprintf_unfiltered (file, "%02x ", buf[i]);
1647 fputs_unfiltered ("\n", file);
1648}
1649
1650/* Prepare to single-step, using displaced stepping.
1651
1652 Note that we cannot use displaced stepping when we have a signal to
1653 deliver. If we have a signal to deliver and an instruction to step
1654 over, then after the step, there will be no indication from the
1655 target whether the thread entered a signal handler or ignored the
1656 signal and stepped over the instruction successfully --- both cases
1657 result in a simple SIGTRAP. In the first case we mustn't do a
1658 fixup, and in the second case we must --- but we can't tell which.
1659 Comments in the code for 'random signals' in handle_inferior_event
1660 explain how we handle this case instead.
1661
1662 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1663 stepped now; 0 if displaced stepping this thread got queued; or -1
1664 if this instruction can't be displaced stepped. */
1665
237fc4c9 1666static int
00431a78 1667displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1668{
00431a78 1669 regcache *regcache = get_thread_regcache (tp);
ac7936df 1670 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1671 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1672 CORE_ADDR original, copy;
1673 ULONGEST len;
9e529e1d 1674 int status;
237fc4c9
PA
1675
1676 /* We should never reach this function if the architecture does not
1677 support displaced stepping. */
9822cb57 1678 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1679
c2829269
PA
1680 /* Nor if the thread isn't meant to step over a breakpoint. */
1681 gdb_assert (tp->control.trap_expected);
1682
c1e36e3e
PA
1683 /* Disable range stepping while executing in the scratch pad. We
1684 want a single-step even if executing the displaced instruction in
1685 the scratch buffer lands within the stepping range (e.g., a
1686 jump/branch). */
1687 tp->control.may_range_step = 0;
1688
fc1cf338
PA
1689 /* We have to displaced step one thread at a time, as we only have
1690 access to a single scratch space per inferior. */
237fc4c9 1691
d20172fc
SM
1692 displaced_step_inferior_state *displaced
1693 = get_displaced_stepping_state (tp->inf);
fc1cf338 1694
00431a78 1695 if (displaced->step_thread != nullptr)
237fc4c9
PA
1696 {
1697 /* Already waiting for a displaced step to finish. Defer this
1698 request and place in queue. */
237fc4c9
PA
1699
1700 if (debug_displaced)
1701 fprintf_unfiltered (gdb_stdlog,
c2829269 1702 "displaced: deferring step of %s\n",
a068643d 1703 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1704
c2829269 1705 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1706 return 0;
1707 }
1708 else
1709 {
1710 if (debug_displaced)
1711 fprintf_unfiltered (gdb_stdlog,
1712 "displaced: stepping %s now\n",
a068643d 1713 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1714 }
1715
d8d83535 1716 displaced_step_reset (displaced);
237fc4c9 1717
00431a78
PA
1718 scoped_restore_current_thread restore_thread;
1719
1720 switch_to_thread (tp);
ad53cd71 1721
515630c5 1722 original = regcache_read_pc (regcache);
237fc4c9
PA
1723
1724 copy = gdbarch_displaced_step_location (gdbarch);
1725 len = gdbarch_max_insn_length (gdbarch);
1726
d35ae833
PA
1727 if (breakpoint_in_range_p (aspace, copy, len))
1728 {
1729 /* There's a breakpoint set in the scratch pad location range
1730 (which is usually around the entry point). We'd either
1731 install it before resuming, which would overwrite/corrupt the
1732 scratch pad, or if it was already inserted, this displaced
1733 step would overwrite it. The latter is OK in the sense that
1734 we already assume that no thread is going to execute the code
1735 in the scratch pad range (after initial startup) anyway, but
1736 the former is unacceptable. Simply punt and fallback to
1737 stepping over this breakpoint in-line. */
1738 if (debug_displaced)
1739 {
1740 fprintf_unfiltered (gdb_stdlog,
1741 "displaced: breakpoint set in scratch pad. "
1742 "Stepping over breakpoint in-line instead.\n");
1743 }
1744
d35ae833
PA
1745 return -1;
1746 }
1747
237fc4c9 1748 /* Save the original contents of the copy area. */
d20172fc
SM
1749 displaced->step_saved_copy.resize (len);
1750 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1751 if (status != 0)
1752 throw_error (MEMORY_ERROR,
1753 _("Error accessing memory address %s (%s) for "
1754 "displaced-stepping scratch space."),
1755 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1756 if (debug_displaced)
1757 {
5af949e3
UW
1758 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1759 paddress (gdbarch, copy));
fc1cf338 1760 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1761 displaced->step_saved_copy.data (),
fc1cf338 1762 len);
237fc4c9
PA
1763 };
1764
e8217e61
SM
1765 displaced->step_closure
1766 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1767 if (displaced->step_closure == NULL)
7f03bd92
PA
1768 {
1769 /* The architecture doesn't know how or want to displaced step
1770 this instruction or instruction sequence. Fallback to
1771 stepping over the breakpoint in-line. */
7f03bd92
PA
1772 return -1;
1773 }
237fc4c9 1774
9f5a595d
UW
1775 /* Save the information we need to fix things up if the step
1776 succeeds. */
00431a78 1777 displaced->step_thread = tp;
fc1cf338 1778 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1779 displaced->step_original = original;
1780 displaced->step_copy = copy;
9f5a595d 1781
9799571e 1782 {
d8d83535 1783 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1784
9799571e
TT
1785 /* Resume execution at the copy. */
1786 regcache_write_pc (regcache, copy);
237fc4c9 1787
9799571e
TT
1788 cleanup.release ();
1789 }
ad53cd71 1790
237fc4c9 1791 if (debug_displaced)
5af949e3
UW
1792 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1793 paddress (gdbarch, copy));
237fc4c9 1794
237fc4c9
PA
1795 return 1;
1796}
1797
3fc8eb30
PA
1798/* Wrapper for displaced_step_prepare_throw that disabled further
1799 attempts at displaced stepping if we get a memory error. */
1800
1801static int
00431a78 1802displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1803{
1804 int prepared = -1;
1805
a70b8144 1806 try
3fc8eb30 1807 {
00431a78 1808 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1809 }
230d2906 1810 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1811 {
1812 struct displaced_step_inferior_state *displaced_state;
1813
16b41842
PA
1814 if (ex.error != MEMORY_ERROR
1815 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1816 throw;
3fc8eb30
PA
1817
1818 if (debug_infrun)
1819 {
1820 fprintf_unfiltered (gdb_stdlog,
1821 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1822 ex.what ());
3fc8eb30
PA
1823 }
1824
1825 /* Be verbose if "set displaced-stepping" is "on", silent if
1826 "auto". */
1827 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1828 {
fd7dcb94 1829 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1830 ex.what ());
3fc8eb30
PA
1831 }
1832
1833 /* Disable further displaced stepping attempts. */
1834 displaced_state
00431a78 1835 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1836 displaced_state->failed_before = 1;
1837 }
3fc8eb30
PA
1838
1839 return prepared;
1840}
1841
237fc4c9 1842static void
3e43a32a
MS
1843write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1844 const gdb_byte *myaddr, int len)
237fc4c9 1845{
2989a365 1846 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1847
237fc4c9
PA
1848 inferior_ptid = ptid;
1849 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1850}
1851
e2d96639
YQ
1852/* Restore the contents of the copy area for thread PTID. */
1853
1854static void
1855displaced_step_restore (struct displaced_step_inferior_state *displaced,
1856 ptid_t ptid)
1857{
1858 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1859
1860 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1861 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1862 if (debug_displaced)
1863 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1864 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1865 paddress (displaced->step_gdbarch,
1866 displaced->step_copy));
1867}
1868
372316f1
PA
1869/* If we displaced stepped an instruction successfully, adjust
1870 registers and memory to yield the same effect the instruction would
1871 have had if we had executed it at its original address, and return
1872 1. If the instruction didn't complete, relocate the PC and return
1873 -1. If the thread wasn't displaced stepping, return 0. */
1874
1875static int
00431a78 1876displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1877{
fc1cf338 1878 struct displaced_step_inferior_state *displaced
00431a78 1879 = get_displaced_stepping_state (event_thread->inf);
372316f1 1880 int ret;
fc1cf338 1881
00431a78
PA
1882 /* Was this event for the thread we displaced? */
1883 if (displaced->step_thread != event_thread)
372316f1 1884 return 0;
237fc4c9 1885
d8d83535 1886 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1887
00431a78 1888 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1889
cb71640d
PA
1890 /* Fixup may need to read memory/registers. Switch to the thread
1891 that we're fixing up. Also, target_stopped_by_watchpoint checks
1892 the current thread. */
00431a78 1893 switch_to_thread (event_thread);
cb71640d 1894
237fc4c9 1895 /* Did the instruction complete successfully? */
cb71640d
PA
1896 if (signal == GDB_SIGNAL_TRAP
1897 && !(target_stopped_by_watchpoint ()
1898 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1899 || target_have_steppable_watchpoint)))
237fc4c9
PA
1900 {
1901 /* Fix up the resulting state. */
fc1cf338 1902 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1903 displaced->step_closure.get (),
fc1cf338
PA
1904 displaced->step_original,
1905 displaced->step_copy,
00431a78 1906 get_thread_regcache (displaced->step_thread));
372316f1 1907 ret = 1;
237fc4c9
PA
1908 }
1909 else
1910 {
1911 /* Since the instruction didn't complete, all we can do is
1912 relocate the PC. */
00431a78 1913 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1914 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1915
fc1cf338 1916 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1917 regcache_write_pc (regcache, pc);
372316f1 1918 ret = -1;
237fc4c9
PA
1919 }
1920
372316f1 1921 return ret;
c2829269 1922}
1c5cfe86 1923
4d9d9d04
PA
1924/* Data to be passed around while handling an event. This data is
1925 discarded between events. */
1926struct execution_control_state
1927{
5b6d1e4f 1928 process_stratum_target *target;
4d9d9d04
PA
1929 ptid_t ptid;
1930 /* The thread that got the event, if this was a thread event; NULL
1931 otherwise. */
1932 struct thread_info *event_thread;
1933
1934 struct target_waitstatus ws;
1935 int stop_func_filled_in;
1936 CORE_ADDR stop_func_start;
1937 CORE_ADDR stop_func_end;
1938 const char *stop_func_name;
1939 int wait_some_more;
1940
1941 /* True if the event thread hit the single-step breakpoint of
1942 another thread. Thus the event doesn't cause a stop, the thread
1943 needs to be single-stepped past the single-step breakpoint before
1944 we can switch back to the original stepping thread. */
1945 int hit_singlestep_breakpoint;
1946};
1947
1948/* Clear ECS and set it to point at TP. */
c2829269
PA
1949
1950static void
4d9d9d04
PA
1951reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1952{
1953 memset (ecs, 0, sizeof (*ecs));
1954 ecs->event_thread = tp;
1955 ecs->ptid = tp->ptid;
1956}
1957
1958static void keep_going_pass_signal (struct execution_control_state *ecs);
1959static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1960static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1961static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1962
1963/* Are there any pending step-over requests? If so, run all we can
1964 now and return true. Otherwise, return false. */
1965
1966static int
c2829269
PA
1967start_step_over (void)
1968{
1969 struct thread_info *tp, *next;
1970
372316f1
PA
1971 /* Don't start a new step-over if we already have an in-line
1972 step-over operation ongoing. */
1973 if (step_over_info_valid_p ())
1974 return 0;
1975
c2829269 1976 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1977 {
4d9d9d04
PA
1978 struct execution_control_state ecss;
1979 struct execution_control_state *ecs = &ecss;
8d297bbf 1980 step_over_what step_what;
372316f1 1981 int must_be_in_line;
c2829269 1982
c65d6b55
PA
1983 gdb_assert (!tp->stop_requested);
1984
c2829269 1985 next = thread_step_over_chain_next (tp);
237fc4c9 1986
c2829269
PA
1987 /* If this inferior already has a displaced step in process,
1988 don't start a new one. */
00431a78 1989 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1990 continue;
1991
372316f1
PA
1992 step_what = thread_still_needs_step_over (tp);
1993 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1994 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1995 && !use_displaced_stepping (tp)));
372316f1
PA
1996
1997 /* We currently stop all threads of all processes to step-over
1998 in-line. If we need to start a new in-line step-over, let
1999 any pending displaced steps finish first. */
2000 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2001 return 0;
2002
c2829269
PA
2003 thread_step_over_chain_remove (tp);
2004
2005 if (step_over_queue_head == NULL)
2006 {
2007 if (debug_infrun)
2008 fprintf_unfiltered (gdb_stdlog,
2009 "infrun: step-over queue now empty\n");
2010 }
2011
372316f1
PA
2012 if (tp->control.trap_expected
2013 || tp->resumed
2014 || tp->executing)
ad53cd71 2015 {
4d9d9d04
PA
2016 internal_error (__FILE__, __LINE__,
2017 "[%s] has inconsistent state: "
372316f1 2018 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2019 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2020 tp->control.trap_expected,
372316f1 2021 tp->resumed,
4d9d9d04 2022 tp->executing);
ad53cd71 2023 }
1c5cfe86 2024
4d9d9d04
PA
2025 if (debug_infrun)
2026 fprintf_unfiltered (gdb_stdlog,
2027 "infrun: resuming [%s] for step-over\n",
a068643d 2028 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2029
2030 /* keep_going_pass_signal skips the step-over if the breakpoint
2031 is no longer inserted. In all-stop, we want to keep looking
2032 for a thread that needs a step-over instead of resuming TP,
2033 because we wouldn't be able to resume anything else until the
2034 target stops again. In non-stop, the resume always resumes
2035 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2036 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2037 continue;
8550d3b3 2038
00431a78 2039 switch_to_thread (tp);
4d9d9d04
PA
2040 reset_ecs (ecs, tp);
2041 keep_going_pass_signal (ecs);
1c5cfe86 2042
4d9d9d04
PA
2043 if (!ecs->wait_some_more)
2044 error (_("Command aborted."));
1c5cfe86 2045
372316f1
PA
2046 gdb_assert (tp->resumed);
2047
2048 /* If we started a new in-line step-over, we're done. */
2049 if (step_over_info_valid_p ())
2050 {
2051 gdb_assert (tp->control.trap_expected);
2052 return 1;
2053 }
2054
fbea99ea 2055 if (!target_is_non_stop_p ())
4d9d9d04
PA
2056 {
2057 /* On all-stop, shouldn't have resumed unless we needed a
2058 step over. */
2059 gdb_assert (tp->control.trap_expected
2060 || tp->step_after_step_resume_breakpoint);
2061
2062 /* With remote targets (at least), in all-stop, we can't
2063 issue any further remote commands until the program stops
2064 again. */
2065 return 1;
1c5cfe86 2066 }
c2829269 2067
4d9d9d04
PA
2068 /* Either the thread no longer needed a step-over, or a new
2069 displaced stepping sequence started. Even in the latter
2070 case, continue looking. Maybe we can also start another
2071 displaced step on a thread of other process. */
237fc4c9 2072 }
4d9d9d04
PA
2073
2074 return 0;
237fc4c9
PA
2075}
2076
5231c1fd
PA
2077/* Update global variables holding ptids to hold NEW_PTID if they were
2078 holding OLD_PTID. */
2079static void
2080infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2081{
d7e15655 2082 if (inferior_ptid == old_ptid)
5231c1fd 2083 inferior_ptid = new_ptid;
5231c1fd
PA
2084}
2085
237fc4c9 2086\f
c906108c 2087
53904c9e
AC
2088static const char schedlock_off[] = "off";
2089static const char schedlock_on[] = "on";
2090static const char schedlock_step[] = "step";
f2665db5 2091static const char schedlock_replay[] = "replay";
40478521 2092static const char *const scheduler_enums[] = {
ef346e04
AC
2093 schedlock_off,
2094 schedlock_on,
2095 schedlock_step,
f2665db5 2096 schedlock_replay,
ef346e04
AC
2097 NULL
2098};
f2665db5 2099static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2100static void
2101show_scheduler_mode (struct ui_file *file, int from_tty,
2102 struct cmd_list_element *c, const char *value)
2103{
3e43a32a
MS
2104 fprintf_filtered (file,
2105 _("Mode for locking scheduler "
2106 "during execution is \"%s\".\n"),
920d2a44
AC
2107 value);
2108}
c906108c
SS
2109
2110static void
eb4c3f4a 2111set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2112{
eefe576e
AC
2113 if (!target_can_lock_scheduler)
2114 {
2115 scheduler_mode = schedlock_off;
2116 error (_("Target '%s' cannot support this command."), target_shortname);
2117 }
c906108c
SS
2118}
2119
d4db2f36
PA
2120/* True if execution commands resume all threads of all processes by
2121 default; otherwise, resume only threads of the current inferior
2122 process. */
491144b5 2123bool sched_multi = false;
d4db2f36 2124
2facfe5c
DD
2125/* Try to setup for software single stepping over the specified location.
2126 Return 1 if target_resume() should use hardware single step.
2127
2128 GDBARCH the current gdbarch.
2129 PC the location to step over. */
2130
2131static int
2132maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2133{
2134 int hw_step = 1;
2135
f02253f1 2136 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2137 && gdbarch_software_single_step_p (gdbarch))
2138 hw_step = !insert_single_step_breakpoints (gdbarch);
2139
2facfe5c
DD
2140 return hw_step;
2141}
c906108c 2142
f3263aa4
PA
2143/* See infrun.h. */
2144
09cee04b
PA
2145ptid_t
2146user_visible_resume_ptid (int step)
2147{
f3263aa4 2148 ptid_t resume_ptid;
09cee04b 2149
09cee04b
PA
2150 if (non_stop)
2151 {
2152 /* With non-stop mode on, threads are always handled
2153 individually. */
2154 resume_ptid = inferior_ptid;
2155 }
2156 else if ((scheduler_mode == schedlock_on)
03d46957 2157 || (scheduler_mode == schedlock_step && step))
09cee04b 2158 {
f3263aa4
PA
2159 /* User-settable 'scheduler' mode requires solo thread
2160 resume. */
09cee04b
PA
2161 resume_ptid = inferior_ptid;
2162 }
f2665db5
MM
2163 else if ((scheduler_mode == schedlock_replay)
2164 && target_record_will_replay (minus_one_ptid, execution_direction))
2165 {
2166 /* User-settable 'scheduler' mode requires solo thread resume in replay
2167 mode. */
2168 resume_ptid = inferior_ptid;
2169 }
f3263aa4
PA
2170 else if (!sched_multi && target_supports_multi_process ())
2171 {
2172 /* Resume all threads of the current process (and none of other
2173 processes). */
e99b03dc 2174 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2175 }
2176 else
2177 {
2178 /* Resume all threads of all processes. */
2179 resume_ptid = RESUME_ALL;
2180 }
09cee04b
PA
2181
2182 return resume_ptid;
2183}
2184
5b6d1e4f
PA
2185/* See infrun.h. */
2186
2187process_stratum_target *
2188user_visible_resume_target (ptid_t resume_ptid)
2189{
2190 return (resume_ptid == minus_one_ptid && sched_multi
2191 ? NULL
2192 : current_inferior ()->process_target ());
2193}
2194
fbea99ea
PA
2195/* Return a ptid representing the set of threads that we will resume,
2196 in the perspective of the target, assuming run control handling
2197 does not require leaving some threads stopped (e.g., stepping past
2198 breakpoint). USER_STEP indicates whether we're about to start the
2199 target for a stepping command. */
2200
2201static ptid_t
2202internal_resume_ptid (int user_step)
2203{
2204 /* In non-stop, we always control threads individually. Note that
2205 the target may always work in non-stop mode even with "set
2206 non-stop off", in which case user_visible_resume_ptid could
2207 return a wildcard ptid. */
2208 if (target_is_non_stop_p ())
2209 return inferior_ptid;
2210 else
2211 return user_visible_resume_ptid (user_step);
2212}
2213
64ce06e4
PA
2214/* Wrapper for target_resume, that handles infrun-specific
2215 bookkeeping. */
2216
2217static void
2218do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2219{
2220 struct thread_info *tp = inferior_thread ();
2221
c65d6b55
PA
2222 gdb_assert (!tp->stop_requested);
2223
64ce06e4 2224 /* Install inferior's terminal modes. */
223ffa71 2225 target_terminal::inferior ();
64ce06e4
PA
2226
2227 /* Avoid confusing the next resume, if the next stop/resume
2228 happens to apply to another thread. */
2229 tp->suspend.stop_signal = GDB_SIGNAL_0;
2230
8f572e5c
PA
2231 /* Advise target which signals may be handled silently.
2232
2233 If we have removed breakpoints because we are stepping over one
2234 in-line (in any thread), we need to receive all signals to avoid
2235 accidentally skipping a breakpoint during execution of a signal
2236 handler.
2237
2238 Likewise if we're displaced stepping, otherwise a trap for a
2239 breakpoint in a signal handler might be confused with the
2240 displaced step finishing. We don't make the displaced_step_fixup
2241 step distinguish the cases instead, because:
2242
2243 - a backtrace while stopped in the signal handler would show the
2244 scratch pad as frame older than the signal handler, instead of
2245 the real mainline code.
2246
2247 - when the thread is later resumed, the signal handler would
2248 return to the scratch pad area, which would no longer be
2249 valid. */
2250 if (step_over_info_valid_p ()
00431a78 2251 || displaced_step_in_progress (tp->inf))
adc6a863 2252 target_pass_signals ({});
64ce06e4 2253 else
adc6a863 2254 target_pass_signals (signal_pass);
64ce06e4
PA
2255
2256 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2257
2258 target_commit_resume ();
5b6d1e4f
PA
2259
2260 if (target_can_async_p ())
2261 target_async (1);
64ce06e4
PA
2262}
2263
d930703d 2264/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2265 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2266 call 'resume', which handles exceptions. */
c906108c 2267
71d378ae
PA
2268static void
2269resume_1 (enum gdb_signal sig)
c906108c 2270{
515630c5 2271 struct regcache *regcache = get_current_regcache ();
ac7936df 2272 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2273 struct thread_info *tp = inferior_thread ();
515630c5 2274 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2275 const address_space *aspace = regcache->aspace ();
b0f16a3e 2276 ptid_t resume_ptid;
856e7dd6
PA
2277 /* This represents the user's step vs continue request. When
2278 deciding whether "set scheduler-locking step" applies, it's the
2279 user's intention that counts. */
2280 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2281 /* This represents what we'll actually request the target to do.
2282 This can decay from a step to a continue, if e.g., we need to
2283 implement single-stepping with breakpoints (software
2284 single-step). */
6b403daa 2285 int step;
c7e8a53c 2286
c65d6b55 2287 gdb_assert (!tp->stop_requested);
c2829269
PA
2288 gdb_assert (!thread_is_in_step_over_chain (tp));
2289
372316f1
PA
2290 if (tp->suspend.waitstatus_pending_p)
2291 {
2292 if (debug_infrun)
2293 {
23fdd69e
SM
2294 std::string statstr
2295 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2296
372316f1 2297 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2298 "infrun: resume: thread %s has pending wait "
2299 "status %s (currently_stepping=%d).\n",
a068643d
TT
2300 target_pid_to_str (tp->ptid).c_str (),
2301 statstr.c_str (),
372316f1 2302 currently_stepping (tp));
372316f1
PA
2303 }
2304
5b6d1e4f 2305 tp->inf->process_target ()->threads_executing = true;
719546c4 2306 tp->resumed = true;
372316f1
PA
2307
2308 /* FIXME: What should we do if we are supposed to resume this
2309 thread with a signal? Maybe we should maintain a queue of
2310 pending signals to deliver. */
2311 if (sig != GDB_SIGNAL_0)
2312 {
fd7dcb94 2313 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2314 gdb_signal_to_name (sig),
2315 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2316 }
2317
2318 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2319
2320 if (target_can_async_p ())
9516f85a
AB
2321 {
2322 target_async (1);
2323 /* Tell the event loop we have an event to process. */
2324 mark_async_event_handler (infrun_async_inferior_event_token);
2325 }
372316f1
PA
2326 return;
2327 }
2328
2329 tp->stepped_breakpoint = 0;
2330
6b403daa
PA
2331 /* Depends on stepped_breakpoint. */
2332 step = currently_stepping (tp);
2333
74609e71
YQ
2334 if (current_inferior ()->waiting_for_vfork_done)
2335 {
48f9886d
PA
2336 /* Don't try to single-step a vfork parent that is waiting for
2337 the child to get out of the shared memory region (by exec'ing
2338 or exiting). This is particularly important on software
2339 single-step archs, as the child process would trip on the
2340 software single step breakpoint inserted for the parent
2341 process. Since the parent will not actually execute any
2342 instruction until the child is out of the shared region (such
2343 are vfork's semantics), it is safe to simply continue it.
2344 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2345 the parent, and tell it to `keep_going', which automatically
2346 re-sets it stepping. */
74609e71
YQ
2347 if (debug_infrun)
2348 fprintf_unfiltered (gdb_stdlog,
2349 "infrun: resume : clear step\n");
a09dd441 2350 step = 0;
74609e71
YQ
2351 }
2352
527159b7 2353 if (debug_infrun)
237fc4c9 2354 fprintf_unfiltered (gdb_stdlog,
c9737c08 2355 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2356 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2357 step, gdb_signal_to_symbol_string (sig),
2358 tp->control.trap_expected,
a068643d 2359 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2360 paddress (gdbarch, pc));
c906108c 2361
c2c6d25f
JM
2362 /* Normally, by the time we reach `resume', the breakpoints are either
2363 removed or inserted, as appropriate. The exception is if we're sitting
2364 at a permanent breakpoint; we need to step over it, but permanent
2365 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2366 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2367 {
af48d08f
PA
2368 if (sig != GDB_SIGNAL_0)
2369 {
2370 /* We have a signal to pass to the inferior. The resume
2371 may, or may not take us to the signal handler. If this
2372 is a step, we'll need to stop in the signal handler, if
2373 there's one, (if the target supports stepping into
2374 handlers), or in the next mainline instruction, if
2375 there's no handler. If this is a continue, we need to be
2376 sure to run the handler with all breakpoints inserted.
2377 In all cases, set a breakpoint at the current address
2378 (where the handler returns to), and once that breakpoint
2379 is hit, resume skipping the permanent breakpoint. If
2380 that breakpoint isn't hit, then we've stepped into the
2381 signal handler (or hit some other event). We'll delete
2382 the step-resume breakpoint then. */
2383
2384 if (debug_infrun)
2385 fprintf_unfiltered (gdb_stdlog,
2386 "infrun: resume: skipping permanent breakpoint, "
2387 "deliver signal first\n");
2388
2389 clear_step_over_info ();
2390 tp->control.trap_expected = 0;
2391
2392 if (tp->control.step_resume_breakpoint == NULL)
2393 {
2394 /* Set a "high-priority" step-resume, as we don't want
2395 user breakpoints at PC to trigger (again) when this
2396 hits. */
2397 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2398 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2399
2400 tp->step_after_step_resume_breakpoint = step;
2401 }
2402
2403 insert_breakpoints ();
2404 }
2405 else
2406 {
2407 /* There's no signal to pass, we can go ahead and skip the
2408 permanent breakpoint manually. */
2409 if (debug_infrun)
2410 fprintf_unfiltered (gdb_stdlog,
2411 "infrun: resume: skipping permanent breakpoint\n");
2412 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2413 /* Update pc to reflect the new address from which we will
2414 execute instructions. */
2415 pc = regcache_read_pc (regcache);
2416
2417 if (step)
2418 {
2419 /* We've already advanced the PC, so the stepping part
2420 is done. Now we need to arrange for a trap to be
2421 reported to handle_inferior_event. Set a breakpoint
2422 at the current PC, and run to it. Don't update
2423 prev_pc, because if we end in
44a1ee51
PA
2424 switch_back_to_stepped_thread, we want the "expected
2425 thread advanced also" branch to be taken. IOW, we
2426 don't want this thread to step further from PC
af48d08f 2427 (overstep). */
1ac806b8 2428 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2429 insert_single_step_breakpoint (gdbarch, aspace, pc);
2430 insert_breakpoints ();
2431
fbea99ea 2432 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2433 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2434 tp->resumed = true;
af48d08f
PA
2435 return;
2436 }
2437 }
6d350bb5 2438 }
c2c6d25f 2439
c1e36e3e
PA
2440 /* If we have a breakpoint to step over, make sure to do a single
2441 step only. Same if we have software watchpoints. */
2442 if (tp->control.trap_expected || bpstat_should_step ())
2443 tp->control.may_range_step = 0;
2444
7da6a5b9
LM
2445 /* If displaced stepping is enabled, step over breakpoints by executing a
2446 copy of the instruction at a different address.
237fc4c9
PA
2447
2448 We can't use displaced stepping when we have a signal to deliver;
2449 the comments for displaced_step_prepare explain why. The
2450 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2451 signals' explain what we do instead.
2452
2453 We can't use displaced stepping when we are waiting for vfork_done
2454 event, displaced stepping breaks the vfork child similarly as single
2455 step software breakpoint. */
3fc8eb30
PA
2456 if (tp->control.trap_expected
2457 && use_displaced_stepping (tp)
cb71640d 2458 && !step_over_info_valid_p ()
a493e3e2 2459 && sig == GDB_SIGNAL_0
74609e71 2460 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2461 {
00431a78 2462 int prepared = displaced_step_prepare (tp);
fc1cf338 2463
3fc8eb30 2464 if (prepared == 0)
d56b7306 2465 {
4d9d9d04
PA
2466 if (debug_infrun)
2467 fprintf_unfiltered (gdb_stdlog,
2468 "Got placed in step-over queue\n");
2469
2470 tp->control.trap_expected = 0;
d56b7306
VP
2471 return;
2472 }
3fc8eb30
PA
2473 else if (prepared < 0)
2474 {
2475 /* Fallback to stepping over the breakpoint in-line. */
2476
2477 if (target_is_non_stop_p ())
2478 stop_all_threads ();
2479
a01bda52 2480 set_step_over_info (regcache->aspace (),
21edc42f 2481 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2482
2483 step = maybe_software_singlestep (gdbarch, pc);
2484
2485 insert_breakpoints ();
2486 }
2487 else if (prepared > 0)
2488 {
2489 struct displaced_step_inferior_state *displaced;
99e40580 2490
3fc8eb30
PA
2491 /* Update pc to reflect the new address from which we will
2492 execute instructions due to displaced stepping. */
00431a78 2493 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2494
00431a78 2495 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2496 step = gdbarch_displaced_step_hw_singlestep
2497 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2498 }
237fc4c9
PA
2499 }
2500
2facfe5c 2501 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2502 else if (step)
2facfe5c 2503 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2504
30852783
UW
2505 /* Currently, our software single-step implementation leads to different
2506 results than hardware single-stepping in one situation: when stepping
2507 into delivering a signal which has an associated signal handler,
2508 hardware single-step will stop at the first instruction of the handler,
2509 while software single-step will simply skip execution of the handler.
2510
2511 For now, this difference in behavior is accepted since there is no
2512 easy way to actually implement single-stepping into a signal handler
2513 without kernel support.
2514
2515 However, there is one scenario where this difference leads to follow-on
2516 problems: if we're stepping off a breakpoint by removing all breakpoints
2517 and then single-stepping. In this case, the software single-step
2518 behavior means that even if there is a *breakpoint* in the signal
2519 handler, GDB still would not stop.
2520
2521 Fortunately, we can at least fix this particular issue. We detect
2522 here the case where we are about to deliver a signal while software
2523 single-stepping with breakpoints removed. In this situation, we
2524 revert the decisions to remove all breakpoints and insert single-
2525 step breakpoints, and instead we install a step-resume breakpoint
2526 at the current address, deliver the signal without stepping, and
2527 once we arrive back at the step-resume breakpoint, actually step
2528 over the breakpoint we originally wanted to step over. */
34b7e8a6 2529 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2530 && sig != GDB_SIGNAL_0
2531 && step_over_info_valid_p ())
30852783
UW
2532 {
2533 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2534 immediately after a handler returns, might already have
30852783
UW
2535 a step-resume breakpoint set on the earlier handler. We cannot
2536 set another step-resume breakpoint; just continue on until the
2537 original breakpoint is hit. */
2538 if (tp->control.step_resume_breakpoint == NULL)
2539 {
2c03e5be 2540 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2541 tp->step_after_step_resume_breakpoint = 1;
2542 }
2543
34b7e8a6 2544 delete_single_step_breakpoints (tp);
30852783 2545
31e77af2 2546 clear_step_over_info ();
30852783 2547 tp->control.trap_expected = 0;
31e77af2
PA
2548
2549 insert_breakpoints ();
30852783
UW
2550 }
2551
b0f16a3e
SM
2552 /* If STEP is set, it's a request to use hardware stepping
2553 facilities. But in that case, we should never
2554 use singlestep breakpoint. */
34b7e8a6 2555 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2556
fbea99ea 2557 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2558 if (tp->control.trap_expected)
b0f16a3e
SM
2559 {
2560 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2561 hit, either by single-stepping the thread with the breakpoint
2562 removed, or by displaced stepping, with the breakpoint inserted.
2563 In the former case, we need to single-step only this thread,
2564 and keep others stopped, as they can miss this breakpoint if
2565 allowed to run. That's not really a problem for displaced
2566 stepping, but, we still keep other threads stopped, in case
2567 another thread is also stopped for a breakpoint waiting for
2568 its turn in the displaced stepping queue. */
b0f16a3e
SM
2569 resume_ptid = inferior_ptid;
2570 }
fbea99ea
PA
2571 else
2572 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2573
7f5ef605
PA
2574 if (execution_direction != EXEC_REVERSE
2575 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2576 {
372316f1
PA
2577 /* There are two cases where we currently need to step a
2578 breakpoint instruction when we have a signal to deliver:
2579
2580 - See handle_signal_stop where we handle random signals that
2581 could take out us out of the stepping range. Normally, in
2582 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2583 signal handler with a breakpoint at PC, but there are cases
2584 where we should _always_ single-step, even if we have a
2585 step-resume breakpoint, like when a software watchpoint is
2586 set. Assuming single-stepping and delivering a signal at the
2587 same time would takes us to the signal handler, then we could
2588 have removed the breakpoint at PC to step over it. However,
2589 some hardware step targets (like e.g., Mac OS) can't step
2590 into signal handlers, and for those, we need to leave the
2591 breakpoint at PC inserted, as otherwise if the handler
2592 recurses and executes PC again, it'll miss the breakpoint.
2593 So we leave the breakpoint inserted anyway, but we need to
2594 record that we tried to step a breakpoint instruction, so
372316f1
PA
2595 that adjust_pc_after_break doesn't end up confused.
2596
2597 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2598 in one thread after another thread that was stepping had been
2599 momentarily paused for a step-over. When we re-resume the
2600 stepping thread, it may be resumed from that address with a
2601 breakpoint that hasn't trapped yet. Seen with
2602 gdb.threads/non-stop-fair-events.exp, on targets that don't
2603 do displaced stepping. */
2604
2605 if (debug_infrun)
2606 fprintf_unfiltered (gdb_stdlog,
2607 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2608 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2609
2610 tp->stepped_breakpoint = 1;
2611
b0f16a3e
SM
2612 /* Most targets can step a breakpoint instruction, thus
2613 executing it normally. But if this one cannot, just
2614 continue and we will hit it anyway. */
7f5ef605 2615 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2616 step = 0;
2617 }
ef5cf84e 2618
b0f16a3e 2619 if (debug_displaced
cb71640d 2620 && tp->control.trap_expected
3fc8eb30 2621 && use_displaced_stepping (tp)
cb71640d 2622 && !step_over_info_valid_p ())
b0f16a3e 2623 {
00431a78 2624 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2625 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2626 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2627 gdb_byte buf[4];
2628
2629 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2630 paddress (resume_gdbarch, actual_pc));
2631 read_memory (actual_pc, buf, sizeof (buf));
2632 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2633 }
237fc4c9 2634
b0f16a3e
SM
2635 if (tp->control.may_range_step)
2636 {
2637 /* If we're resuming a thread with the PC out of the step
2638 range, then we're doing some nested/finer run control
2639 operation, like stepping the thread out of the dynamic
2640 linker or the displaced stepping scratch pad. We
2641 shouldn't have allowed a range step then. */
2642 gdb_assert (pc_in_thread_step_range (pc, tp));
2643 }
c1e36e3e 2644
64ce06e4 2645 do_target_resume (resume_ptid, step, sig);
719546c4 2646 tp->resumed = true;
c906108c 2647}
71d378ae
PA
2648
2649/* Resume the inferior. SIG is the signal to give the inferior
2650 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2651 rolls back state on error. */
2652
aff4e175 2653static void
71d378ae
PA
2654resume (gdb_signal sig)
2655{
a70b8144 2656 try
71d378ae
PA
2657 {
2658 resume_1 (sig);
2659 }
230d2906 2660 catch (const gdb_exception &ex)
71d378ae
PA
2661 {
2662 /* If resuming is being aborted for any reason, delete any
2663 single-step breakpoint resume_1 may have created, to avoid
2664 confusing the following resumption, and to avoid leaving
2665 single-step breakpoints perturbing other threads, in case
2666 we're running in non-stop mode. */
2667 if (inferior_ptid != null_ptid)
2668 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2669 throw;
71d378ae 2670 }
71d378ae
PA
2671}
2672
c906108c 2673\f
237fc4c9 2674/* Proceeding. */
c906108c 2675
4c2f2a79
PA
2676/* See infrun.h. */
2677
2678/* Counter that tracks number of user visible stops. This can be used
2679 to tell whether a command has proceeded the inferior past the
2680 current location. This allows e.g., inferior function calls in
2681 breakpoint commands to not interrupt the command list. When the
2682 call finishes successfully, the inferior is standing at the same
2683 breakpoint as if nothing happened (and so we don't call
2684 normal_stop). */
2685static ULONGEST current_stop_id;
2686
2687/* See infrun.h. */
2688
2689ULONGEST
2690get_stop_id (void)
2691{
2692 return current_stop_id;
2693}
2694
2695/* Called when we report a user visible stop. */
2696
2697static void
2698new_stop_id (void)
2699{
2700 current_stop_id++;
2701}
2702
c906108c
SS
2703/* Clear out all variables saying what to do when inferior is continued.
2704 First do this, then set the ones you want, then call `proceed'. */
2705
a7212384
UW
2706static void
2707clear_proceed_status_thread (struct thread_info *tp)
c906108c 2708{
a7212384
UW
2709 if (debug_infrun)
2710 fprintf_unfiltered (gdb_stdlog,
2711 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2712 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2713
372316f1
PA
2714 /* If we're starting a new sequence, then the previous finished
2715 single-step is no longer relevant. */
2716 if (tp->suspend.waitstatus_pending_p)
2717 {
2718 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2719 {
2720 if (debug_infrun)
2721 fprintf_unfiltered (gdb_stdlog,
2722 "infrun: clear_proceed_status: pending "
2723 "event of %s was a finished step. "
2724 "Discarding.\n",
a068643d 2725 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2726
2727 tp->suspend.waitstatus_pending_p = 0;
2728 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2729 }
2730 else if (debug_infrun)
2731 {
23fdd69e
SM
2732 std::string statstr
2733 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2734
372316f1
PA
2735 fprintf_unfiltered (gdb_stdlog,
2736 "infrun: clear_proceed_status_thread: thread %s "
2737 "has pending wait status %s "
2738 "(currently_stepping=%d).\n",
a068643d
TT
2739 target_pid_to_str (tp->ptid).c_str (),
2740 statstr.c_str (),
372316f1 2741 currently_stepping (tp));
372316f1
PA
2742 }
2743 }
2744
70509625
PA
2745 /* If this signal should not be seen by program, give it zero.
2746 Used for debugging signals. */
2747 if (!signal_pass_state (tp->suspend.stop_signal))
2748 tp->suspend.stop_signal = GDB_SIGNAL_0;
2749
46e3ed7f 2750 delete tp->thread_fsm;
243a9253
PA
2751 tp->thread_fsm = NULL;
2752
16c381f0
JK
2753 tp->control.trap_expected = 0;
2754 tp->control.step_range_start = 0;
2755 tp->control.step_range_end = 0;
c1e36e3e 2756 tp->control.may_range_step = 0;
16c381f0
JK
2757 tp->control.step_frame_id = null_frame_id;
2758 tp->control.step_stack_frame_id = null_frame_id;
2759 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2760 tp->control.step_start_function = NULL;
a7212384 2761 tp->stop_requested = 0;
4e1c45ea 2762
16c381f0 2763 tp->control.stop_step = 0;
32400beb 2764
16c381f0 2765 tp->control.proceed_to_finish = 0;
414c69f7 2766
856e7dd6 2767 tp->control.stepping_command = 0;
17b2616c 2768
a7212384 2769 /* Discard any remaining commands or status from previous stop. */
16c381f0 2770 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2771}
32400beb 2772
a7212384 2773void
70509625 2774clear_proceed_status (int step)
a7212384 2775{
f2665db5
MM
2776 /* With scheduler-locking replay, stop replaying other threads if we're
2777 not replaying the user-visible resume ptid.
2778
2779 This is a convenience feature to not require the user to explicitly
2780 stop replaying the other threads. We're assuming that the user's
2781 intent is to resume tracing the recorded process. */
2782 if (!non_stop && scheduler_mode == schedlock_replay
2783 && target_record_is_replaying (minus_one_ptid)
2784 && !target_record_will_replay (user_visible_resume_ptid (step),
2785 execution_direction))
2786 target_record_stop_replaying ();
2787
08036331 2788 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2789 {
08036331 2790 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2791 process_stratum_target *resume_target
2792 = user_visible_resume_target (resume_ptid);
70509625
PA
2793
2794 /* In all-stop mode, delete the per-thread status of all threads
2795 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2796 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2797 clear_proceed_status_thread (tp);
6c95b8df
PA
2798 }
2799
d7e15655 2800 if (inferior_ptid != null_ptid)
a7212384
UW
2801 {
2802 struct inferior *inferior;
2803
2804 if (non_stop)
2805 {
6c95b8df
PA
2806 /* If in non-stop mode, only delete the per-thread status of
2807 the current thread. */
a7212384
UW
2808 clear_proceed_status_thread (inferior_thread ());
2809 }
6c95b8df 2810
d6b48e9c 2811 inferior = current_inferior ();
16c381f0 2812 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2813 }
2814
76727919 2815 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2816}
2817
99619bea
PA
2818/* Returns true if TP is still stopped at a breakpoint that needs
2819 stepping-over in order to make progress. If the breakpoint is gone
2820 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2821
2822static int
6c4cfb24 2823thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2824{
2825 if (tp->stepping_over_breakpoint)
2826 {
00431a78 2827 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2828
a01bda52 2829 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2830 regcache_read_pc (regcache))
2831 == ordinary_breakpoint_here)
99619bea
PA
2832 return 1;
2833
2834 tp->stepping_over_breakpoint = 0;
2835 }
2836
2837 return 0;
2838}
2839
6c4cfb24
PA
2840/* Check whether thread TP still needs to start a step-over in order
2841 to make progress when resumed. Returns an bitwise or of enum
2842 step_over_what bits, indicating what needs to be stepped over. */
2843
8d297bbf 2844static step_over_what
6c4cfb24
PA
2845thread_still_needs_step_over (struct thread_info *tp)
2846{
8d297bbf 2847 step_over_what what = 0;
6c4cfb24
PA
2848
2849 if (thread_still_needs_step_over_bp (tp))
2850 what |= STEP_OVER_BREAKPOINT;
2851
2852 if (tp->stepping_over_watchpoint
2853 && !target_have_steppable_watchpoint)
2854 what |= STEP_OVER_WATCHPOINT;
2855
2856 return what;
2857}
2858
483805cf
PA
2859/* Returns true if scheduler locking applies. STEP indicates whether
2860 we're about to do a step/next-like command to a thread. */
2861
2862static int
856e7dd6 2863schedlock_applies (struct thread_info *tp)
483805cf
PA
2864{
2865 return (scheduler_mode == schedlock_on
2866 || (scheduler_mode == schedlock_step
f2665db5
MM
2867 && tp->control.stepping_command)
2868 || (scheduler_mode == schedlock_replay
2869 && target_record_will_replay (minus_one_ptid,
2870 execution_direction)));
483805cf
PA
2871}
2872
5b6d1e4f
PA
2873/* Calls target_commit_resume on all targets. */
2874
2875static void
2876commit_resume_all_targets ()
2877{
2878 scoped_restore_current_thread restore_thread;
2879
2880 /* Map between process_target and a representative inferior. This
2881 is to avoid committing a resume in the same target more than
2882 once. Resumptions must be idempotent, so this is an
2883 optimization. */
2884 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2885
2886 for (inferior *inf : all_non_exited_inferiors ())
2887 if (inf->has_execution ())
2888 conn_inf[inf->process_target ()] = inf;
2889
2890 for (const auto &ci : conn_inf)
2891 {
2892 inferior *inf = ci.second;
2893 switch_to_inferior_no_thread (inf);
2894 target_commit_resume ();
2895 }
2896}
2897
2f4fcf00
PA
2898/* Check that all the targets we're about to resume are in non-stop
2899 mode. Ideally, we'd only care whether all targets support
2900 target-async, but we're not there yet. E.g., stop_all_threads
2901 doesn't know how to handle all-stop targets. Also, the remote
2902 protocol in all-stop mode is synchronous, irrespective of
2903 target-async, which means that things like a breakpoint re-set
2904 triggered by one target would try to read memory from all targets
2905 and fail. */
2906
2907static void
2908check_multi_target_resumption (process_stratum_target *resume_target)
2909{
2910 if (!non_stop && resume_target == nullptr)
2911 {
2912 scoped_restore_current_thread restore_thread;
2913
2914 /* This is used to track whether we're resuming more than one
2915 target. */
2916 process_stratum_target *first_connection = nullptr;
2917
2918 /* The first inferior we see with a target that does not work in
2919 always-non-stop mode. */
2920 inferior *first_not_non_stop = nullptr;
2921
2922 for (inferior *inf : all_non_exited_inferiors (resume_target))
2923 {
2924 switch_to_inferior_no_thread (inf);
2925
2926 if (!target_has_execution)
2927 continue;
2928
2929 process_stratum_target *proc_target
2930 = current_inferior ()->process_target();
2931
2932 if (!target_is_non_stop_p ())
2933 first_not_non_stop = inf;
2934
2935 if (first_connection == nullptr)
2936 first_connection = proc_target;
2937 else if (first_connection != proc_target
2938 && first_not_non_stop != nullptr)
2939 {
2940 switch_to_inferior_no_thread (first_not_non_stop);
2941
2942 proc_target = current_inferior ()->process_target();
2943
2944 error (_("Connection %d (%s) does not support "
2945 "multi-target resumption."),
2946 proc_target->connection_number,
2947 make_target_connection_string (proc_target).c_str ());
2948 }
2949 }
2950 }
2951}
2952
c906108c
SS
2953/* Basic routine for continuing the program in various fashions.
2954
2955 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2956 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2957 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2958
2959 You should call clear_proceed_status before calling proceed. */
2960
2961void
64ce06e4 2962proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2963{
e58b0e63
PA
2964 struct regcache *regcache;
2965 struct gdbarch *gdbarch;
e58b0e63 2966 CORE_ADDR pc;
4d9d9d04
PA
2967 struct execution_control_state ecss;
2968 struct execution_control_state *ecs = &ecss;
4d9d9d04 2969 int started;
c906108c 2970
e58b0e63
PA
2971 /* If we're stopped at a fork/vfork, follow the branch set by the
2972 "set follow-fork-mode" command; otherwise, we'll just proceed
2973 resuming the current thread. */
2974 if (!follow_fork ())
2975 {
2976 /* The target for some reason decided not to resume. */
2977 normal_stop ();
f148b27e
PA
2978 if (target_can_async_p ())
2979 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2980 return;
2981 }
2982
842951eb
PA
2983 /* We'll update this if & when we switch to a new thread. */
2984 previous_inferior_ptid = inferior_ptid;
2985
e58b0e63 2986 regcache = get_current_regcache ();
ac7936df 2987 gdbarch = regcache->arch ();
8b86c959
YQ
2988 const address_space *aspace = regcache->aspace ();
2989
e58b0e63 2990 pc = regcache_read_pc (regcache);
08036331 2991 thread_info *cur_thr = inferior_thread ();
e58b0e63 2992
99619bea 2993 /* Fill in with reasonable starting values. */
08036331 2994 init_thread_stepping_state (cur_thr);
99619bea 2995
08036331 2996 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2997
5b6d1e4f
PA
2998 ptid_t resume_ptid
2999 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3000 process_stratum_target *resume_target
3001 = user_visible_resume_target (resume_ptid);
3002
2f4fcf00
PA
3003 check_multi_target_resumption (resume_target);
3004
2acceee2 3005 if (addr == (CORE_ADDR) -1)
c906108c 3006 {
08036331 3007 if (pc == cur_thr->suspend.stop_pc
af48d08f 3008 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3009 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3010 /* There is a breakpoint at the address we will resume at,
3011 step one instruction before inserting breakpoints so that
3012 we do not stop right away (and report a second hit at this
b2175913
MS
3013 breakpoint).
3014
3015 Note, we don't do this in reverse, because we won't
3016 actually be executing the breakpoint insn anyway.
3017 We'll be (un-)executing the previous instruction. */
08036331 3018 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3019 else if (gdbarch_single_step_through_delay_p (gdbarch)
3020 && gdbarch_single_step_through_delay (gdbarch,
3021 get_current_frame ()))
3352ef37
AC
3022 /* We stepped onto an instruction that needs to be stepped
3023 again before re-inserting the breakpoint, do so. */
08036331 3024 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3025 }
3026 else
3027 {
515630c5 3028 regcache_write_pc (regcache, addr);
c906108c
SS
3029 }
3030
70509625 3031 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3032 cur_thr->suspend.stop_signal = siggnal;
70509625 3033
4d9d9d04
PA
3034 /* If an exception is thrown from this point on, make sure to
3035 propagate GDB's knowledge of the executing state to the
3036 frontend/user running state. */
5b6d1e4f 3037 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3038
3039 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3040 threads (e.g., we might need to set threads stepping over
3041 breakpoints first), from the user/frontend's point of view, all
3042 threads in RESUME_PTID are now running. Unless we're calling an
3043 inferior function, as in that case we pretend the inferior
3044 doesn't run at all. */
08036331 3045 if (!cur_thr->control.in_infcall)
719546c4 3046 set_running (resume_target, resume_ptid, true);
17b2616c 3047
527159b7 3048 if (debug_infrun)
8a9de0e4 3049 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3050 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3051 paddress (gdbarch, addr),
64ce06e4 3052 gdb_signal_to_symbol_string (siggnal));
527159b7 3053
4d9d9d04
PA
3054 annotate_starting ();
3055
3056 /* Make sure that output from GDB appears before output from the
3057 inferior. */
3058 gdb_flush (gdb_stdout);
3059
d930703d
PA
3060 /* Since we've marked the inferior running, give it the terminal. A
3061 QUIT/Ctrl-C from here on is forwarded to the target (which can
3062 still detect attempts to unblock a stuck connection with repeated
3063 Ctrl-C from within target_pass_ctrlc). */
3064 target_terminal::inferior ();
3065
4d9d9d04
PA
3066 /* In a multi-threaded task we may select another thread and
3067 then continue or step.
3068
3069 But if a thread that we're resuming had stopped at a breakpoint,
3070 it will immediately cause another breakpoint stop without any
3071 execution (i.e. it will report a breakpoint hit incorrectly). So
3072 we must step over it first.
3073
3074 Look for threads other than the current (TP) that reported a
3075 breakpoint hit and haven't been resumed yet since. */
3076
3077 /* If scheduler locking applies, we can avoid iterating over all
3078 threads. */
08036331 3079 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3080 {
5b6d1e4f
PA
3081 for (thread_info *tp : all_non_exited_threads (resume_target,
3082 resume_ptid))
08036331 3083 {
f3f8ece4
PA
3084 switch_to_thread_no_regs (tp);
3085
4d9d9d04
PA
3086 /* Ignore the current thread here. It's handled
3087 afterwards. */
08036331 3088 if (tp == cur_thr)
4d9d9d04 3089 continue;
c906108c 3090
4d9d9d04
PA
3091 if (!thread_still_needs_step_over (tp))
3092 continue;
3093
3094 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3095
99619bea
PA
3096 if (debug_infrun)
3097 fprintf_unfiltered (gdb_stdlog,
3098 "infrun: need to step-over [%s] first\n",
a068643d 3099 target_pid_to_str (tp->ptid).c_str ());
99619bea 3100
4d9d9d04 3101 thread_step_over_chain_enqueue (tp);
2adfaa28 3102 }
f3f8ece4
PA
3103
3104 switch_to_thread (cur_thr);
30852783
UW
3105 }
3106
4d9d9d04
PA
3107 /* Enqueue the current thread last, so that we move all other
3108 threads over their breakpoints first. */
08036331
PA
3109 if (cur_thr->stepping_over_breakpoint)
3110 thread_step_over_chain_enqueue (cur_thr);
30852783 3111
4d9d9d04
PA
3112 /* If the thread isn't started, we'll still need to set its prev_pc,
3113 so that switch_back_to_stepped_thread knows the thread hasn't
3114 advanced. Must do this before resuming any thread, as in
3115 all-stop/remote, once we resume we can't send any other packet
3116 until the target stops again. */
08036331 3117 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3118
a9bc57b9
TT
3119 {
3120 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3121
a9bc57b9 3122 started = start_step_over ();
c906108c 3123
a9bc57b9
TT
3124 if (step_over_info_valid_p ())
3125 {
3126 /* Either this thread started a new in-line step over, or some
3127 other thread was already doing one. In either case, don't
3128 resume anything else until the step-over is finished. */
3129 }
3130 else if (started && !target_is_non_stop_p ())
3131 {
3132 /* A new displaced stepping sequence was started. In all-stop,
3133 we can't talk to the target anymore until it next stops. */
3134 }
3135 else if (!non_stop && target_is_non_stop_p ())
3136 {
3137 /* In all-stop, but the target is always in non-stop mode.
3138 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3139 for (thread_info *tp : all_non_exited_threads (resume_target,
3140 resume_ptid))
3141 {
3142 switch_to_thread_no_regs (tp);
3143
f9fac3c8
SM
3144 if (!tp->inf->has_execution ())
3145 {
3146 if (debug_infrun)
3147 fprintf_unfiltered (gdb_stdlog,
3148 "infrun: proceed: [%s] target has "
3149 "no execution\n",
3150 target_pid_to_str (tp->ptid).c_str ());
3151 continue;
3152 }
f3f8ece4 3153
f9fac3c8
SM
3154 if (tp->resumed)
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] resumed\n",
3159 target_pid_to_str (tp->ptid).c_str ());
3160 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3161 continue;
3162 }
fbea99ea 3163
f9fac3c8
SM
3164 if (thread_is_in_step_over_chain (tp))
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] needs step-over\n",
3169 target_pid_to_str (tp->ptid).c_str ());
3170 continue;
3171 }
fbea99ea 3172
f9fac3c8
SM
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: resuming %s\n",
3176 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3177
f9fac3c8
SM
3178 reset_ecs (ecs, tp);
3179 switch_to_thread (tp);
3180 keep_going_pass_signal (ecs);
3181 if (!ecs->wait_some_more)
3182 error (_("Command aborted."));
3183 }
a9bc57b9 3184 }
08036331 3185 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3186 {
3187 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3188 reset_ecs (ecs, cur_thr);
3189 switch_to_thread (cur_thr);
a9bc57b9
TT
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
3192 error (_("Command aborted."));
3193 }
3194 }
c906108c 3195
5b6d1e4f 3196 commit_resume_all_targets ();
85ad3aaf 3197
731f534f 3198 finish_state.release ();
c906108c 3199
873657b9
PA
3200 /* If we've switched threads above, switch back to the previously
3201 current thread. We don't want the user to see a different
3202 selected thread. */
3203 switch_to_thread (cur_thr);
3204
0b333c5e
PA
3205 /* Tell the event loop to wait for it to stop. If the target
3206 supports asynchronous execution, it'll do this from within
3207 target_resume. */
362646f5 3208 if (!target_can_async_p ())
0b333c5e 3209 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3210}
c906108c
SS
3211\f
3212
3213/* Start remote-debugging of a machine over a serial link. */
96baa820 3214
c906108c 3215void
8621d6a9 3216start_remote (int from_tty)
c906108c 3217{
5b6d1e4f
PA
3218 inferior *inf = current_inferior ();
3219 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3220
1777feb0 3221 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3222 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3223 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3224 nothing is returned (instead of just blocking). Because of this,
3225 targets expecting an immediate response need to, internally, set
3226 things up so that the target_wait() is forced to eventually
1777feb0 3227 timeout. */
6426a772
JM
3228 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3229 differentiate to its caller what the state of the target is after
3230 the initial open has been performed. Here we're assuming that
3231 the target has stopped. It should be possible to eventually have
3232 target_open() return to the caller an indication that the target
3233 is currently running and GDB state should be set to the same as
1777feb0 3234 for an async run. */
5b6d1e4f 3235 wait_for_inferior (inf);
8621d6a9
DJ
3236
3237 /* Now that the inferior has stopped, do any bookkeeping like
3238 loading shared libraries. We want to do this before normal_stop,
3239 so that the displayed frame is up to date. */
8b88a78e 3240 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3241
6426a772 3242 normal_stop ();
c906108c
SS
3243}
3244
3245/* Initialize static vars when a new inferior begins. */
3246
3247void
96baa820 3248init_wait_for_inferior (void)
c906108c
SS
3249{
3250 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3251
c906108c
SS
3252 breakpoint_init_inferior (inf_starting);
3253
70509625 3254 clear_proceed_status (0);
9f976b41 3255
ab1ddbcf 3256 nullify_last_target_wait_ptid ();
237fc4c9 3257
842951eb 3258 previous_inferior_ptid = inferior_ptid;
c906108c 3259}
237fc4c9 3260
c906108c 3261\f
488f131b 3262
ec9499be 3263static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3264
568d6575
UW
3265static void handle_step_into_function (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
4f5d7f63 3269static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3270static void check_exception_resume (struct execution_control_state *,
28106bc2 3271 struct frame_info *);
611c83ae 3272
bdc36728 3273static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3274static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3275static void keep_going (struct execution_control_state *ecs);
94c57d6a 3276static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3277static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3278
252fbfc8
PA
3279/* This function is attached as a "thread_stop_requested" observer.
3280 Cleanup local state that assumed the PTID was to be resumed, and
3281 report the stop to the frontend. */
3282
2c0b251b 3283static void
252fbfc8
PA
3284infrun_thread_stop_requested (ptid_t ptid)
3285{
5b6d1e4f
PA
3286 process_stratum_target *curr_target = current_inferior ()->process_target ();
3287
c65d6b55
PA
3288 /* PTID was requested to stop. If the thread was already stopped,
3289 but the user/frontend doesn't know about that yet (e.g., the
3290 thread had been temporarily paused for some step-over), set up
3291 for reporting the stop now. */
5b6d1e4f 3292 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3293 {
3294 if (tp->state != THREAD_RUNNING)
3295 continue;
3296 if (tp->executing)
3297 continue;
c65d6b55 3298
08036331
PA
3299 /* Remove matching threads from the step-over queue, so
3300 start_step_over doesn't try to resume them
3301 automatically. */
3302 if (thread_is_in_step_over_chain (tp))
3303 thread_step_over_chain_remove (tp);
c65d6b55 3304
08036331
PA
3305 /* If the thread is stopped, but the user/frontend doesn't
3306 know about that yet, queue a pending event, as if the
3307 thread had just stopped now. Unless the thread already had
3308 a pending event. */
3309 if (!tp->suspend.waitstatus_pending_p)
3310 {
3311 tp->suspend.waitstatus_pending_p = 1;
3312 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3313 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3314 }
c65d6b55 3315
08036331
PA
3316 /* Clear the inline-frame state, since we're re-processing the
3317 stop. */
5b6d1e4f 3318 clear_inline_frame_state (tp);
c65d6b55 3319
08036331
PA
3320 /* If this thread was paused because some other thread was
3321 doing an inline-step over, let that finish first. Once
3322 that happens, we'll restart all threads and consume pending
3323 stop events then. */
3324 if (step_over_info_valid_p ())
3325 continue;
3326
3327 /* Otherwise we can process the (new) pending event now. Set
3328 it so this pending event is considered by
3329 do_target_wait. */
719546c4 3330 tp->resumed = true;
08036331 3331 }
252fbfc8
PA
3332}
3333
a07daef3
PA
3334static void
3335infrun_thread_thread_exit (struct thread_info *tp, int silent)
3336{
5b6d1e4f
PA
3337 if (target_last_proc_target == tp->inf->process_target ()
3338 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3339 nullify_last_target_wait_ptid ();
3340}
3341
0cbcdb96
PA
3342/* Delete the step resume, single-step and longjmp/exception resume
3343 breakpoints of TP. */
4e1c45ea 3344
0cbcdb96
PA
3345static void
3346delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3347{
0cbcdb96
PA
3348 delete_step_resume_breakpoint (tp);
3349 delete_exception_resume_breakpoint (tp);
34b7e8a6 3350 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3351}
3352
0cbcdb96
PA
3353/* If the target still has execution, call FUNC for each thread that
3354 just stopped. In all-stop, that's all the non-exited threads; in
3355 non-stop, that's the current thread, only. */
3356
3357typedef void (*for_each_just_stopped_thread_callback_func)
3358 (struct thread_info *tp);
4e1c45ea
PA
3359
3360static void
0cbcdb96 3361for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3362{
d7e15655 3363 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3364 return;
3365
fbea99ea 3366 if (target_is_non_stop_p ())
4e1c45ea 3367 {
0cbcdb96
PA
3368 /* If in non-stop mode, only the current thread stopped. */
3369 func (inferior_thread ());
4e1c45ea
PA
3370 }
3371 else
0cbcdb96 3372 {
0cbcdb96 3373 /* In all-stop mode, all threads have stopped. */
08036331
PA
3374 for (thread_info *tp : all_non_exited_threads ())
3375 func (tp);
0cbcdb96
PA
3376 }
3377}
3378
3379/* Delete the step resume and longjmp/exception resume breakpoints of
3380 the threads that just stopped. */
3381
3382static void
3383delete_just_stopped_threads_infrun_breakpoints (void)
3384{
3385 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3386}
3387
3388/* Delete the single-step breakpoints of the threads that just
3389 stopped. */
7c16b83e 3390
34b7e8a6
PA
3391static void
3392delete_just_stopped_threads_single_step_breakpoints (void)
3393{
3394 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3395}
3396
221e1a37 3397/* See infrun.h. */
223698f8 3398
221e1a37 3399void
223698f8
DE
3400print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3401 const struct target_waitstatus *ws)
3402{
23fdd69e 3403 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3404 string_file stb;
223698f8
DE
3405
3406 /* The text is split over several lines because it was getting too long.
3407 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3408 output as a unit; we want only one timestamp printed if debug_timestamp
3409 is set. */
3410
d7e74731 3411 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3412 waiton_ptid.pid (),
e38504b3 3413 waiton_ptid.lwp (),
cc6bcb54 3414 waiton_ptid.tid ());
e99b03dc 3415 if (waiton_ptid.pid () != -1)
a068643d 3416 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3417 stb.printf (", status) =\n");
3418 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3419 result_ptid.pid (),
e38504b3 3420 result_ptid.lwp (),
cc6bcb54 3421 result_ptid.tid (),
a068643d 3422 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3423 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3424
3425 /* This uses %s in part to handle %'s in the text, but also to avoid
3426 a gcc error: the format attribute requires a string literal. */
d7e74731 3427 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3428}
3429
372316f1
PA
3430/* Select a thread at random, out of those which are resumed and have
3431 had events. */
3432
3433static struct thread_info *
5b6d1e4f 3434random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3435{
372316f1 3436 int num_events = 0;
08036331 3437
5b6d1e4f 3438 auto has_event = [&] (thread_info *tp)
08036331 3439 {
5b6d1e4f
PA
3440 return (tp->ptid.matches (waiton_ptid)
3441 && tp->resumed
08036331
PA
3442 && tp->suspend.waitstatus_pending_p);
3443 };
372316f1
PA
3444
3445 /* First see how many events we have. Count only resumed threads
3446 that have an event pending. */
5b6d1e4f 3447 for (thread_info *tp : inf->non_exited_threads ())
08036331 3448 if (has_event (tp))
372316f1
PA
3449 num_events++;
3450
3451 if (num_events == 0)
3452 return NULL;
3453
3454 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3455 int random_selector = (int) ((num_events * (double) rand ())
3456 / (RAND_MAX + 1.0));
372316f1
PA
3457
3458 if (debug_infrun && num_events > 1)
3459 fprintf_unfiltered (gdb_stdlog,
3460 "infrun: Found %d events, selecting #%d\n",
3461 num_events, random_selector);
3462
3463 /* Select the Nth thread that has had an event. */
5b6d1e4f 3464 for (thread_info *tp : inf->non_exited_threads ())
08036331 3465 if (has_event (tp))
372316f1 3466 if (random_selector-- == 0)
08036331 3467 return tp;
372316f1 3468
08036331 3469 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3470}
3471
3472/* Wrapper for target_wait that first checks whether threads have
3473 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3474 more events. INF is the inferior we're using to call target_wait
3475 on. */
372316f1
PA
3476
3477static ptid_t
5b6d1e4f
PA
3478do_target_wait_1 (inferior *inf, ptid_t ptid,
3479 target_waitstatus *status, int options)
372316f1
PA
3480{
3481 ptid_t event_ptid;
3482 struct thread_info *tp;
3483
24ed6739
AB
3484 /* We know that we are looking for an event in the target of inferior
3485 INF, but we don't know which thread the event might come from. As
3486 such we want to make sure that INFERIOR_PTID is reset so that none of
3487 the wait code relies on it - doing so is always a mistake. */
3488 switch_to_inferior_no_thread (inf);
3489
372316f1
PA
3490 /* First check if there is a resumed thread with a wait status
3491 pending. */
d7e15655 3492 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3493 {
5b6d1e4f 3494 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3495 }
3496 else
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Waiting for specific thread %s.\n",
a068643d 3501 target_pid_to_str (ptid).c_str ());
372316f1
PA
3502
3503 /* We have a specific thread to check. */
5b6d1e4f 3504 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3505 gdb_assert (tp != NULL);
3506 if (!tp->suspend.waitstatus_pending_p)
3507 tp = NULL;
3508 }
3509
3510 if (tp != NULL
3511 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3513 {
00431a78 3514 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3515 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3516 CORE_ADDR pc;
3517 int discard = 0;
3518
3519 pc = regcache_read_pc (regcache);
3520
3521 if (pc != tp->suspend.stop_pc)
3522 {
3523 if (debug_infrun)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3526 target_pid_to_str (tp->ptid).c_str (),
defd2172 3527 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3528 paddress (gdbarch, pc));
3529 discard = 1;
3530 }
a01bda52 3531 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3536 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3537 paddress (gdbarch, pc));
3538
3539 discard = 1;
3540 }
3541
3542 if (discard)
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: pending event of %s cancelled.\n",
a068643d 3547 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3548
3549 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3550 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3551 }
3552 }
3553
3554 if (tp != NULL)
3555 {
3556 if (debug_infrun)
3557 {
23fdd69e
SM
3558 std::string statstr
3559 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3560
372316f1
PA
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3563 statstr.c_str (),
a068643d 3564 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3565 }
3566
3567 /* Now that we've selected our final event LWP, un-adjust its PC
3568 if it was a software breakpoint (and the target doesn't
3569 always adjust the PC itself). */
3570 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3571 && !target_supports_stopped_by_sw_breakpoint ())
3572 {
3573 struct regcache *regcache;
3574 struct gdbarch *gdbarch;
3575 int decr_pc;
3576
00431a78 3577 regcache = get_thread_regcache (tp);
ac7936df 3578 gdbarch = regcache->arch ();
372316f1
PA
3579
3580 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3581 if (decr_pc != 0)
3582 {
3583 CORE_ADDR pc;
3584
3585 pc = regcache_read_pc (regcache);
3586 regcache_write_pc (regcache, pc + decr_pc);
3587 }
3588 }
3589
3590 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3591 *status = tp->suspend.waitstatus;
3592 tp->suspend.waitstatus_pending_p = 0;
3593
3594 /* Wake up the event loop again, until all pending events are
3595 processed. */
3596 if (target_is_async_p ())
3597 mark_async_event_handler (infrun_async_inferior_event_token);
3598 return tp->ptid;
3599 }
3600
3601 /* But if we don't find one, we'll have to wait. */
3602
3603 if (deprecated_target_wait_hook)
3604 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3605 else
3606 event_ptid = target_wait (ptid, status, options);
3607
3608 return event_ptid;
3609}
3610
5b6d1e4f
PA
3611/* Returns true if INF has any resumed thread with a status
3612 pending. */
3613
3614static bool
3615threads_are_resumed_pending_p (inferior *inf)
3616{
3617 for (thread_info *tp : inf->non_exited_threads ())
3618 if (tp->resumed
3619 && tp->suspend.waitstatus_pending_p)
3620 return true;
3621
3622 return false;
3623}
3624
3625/* Wrapper for target_wait that first checks whether threads have
3626 pending statuses to report before actually asking the target for
3627 more events. Polls for events from all inferiors/targets. */
3628
3629static bool
3630do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3631{
3632 int num_inferiors = 0;
3633 int random_selector;
3634
3635 /* For fairness, we pick the first inferior/target to poll at
3636 random, and then continue polling the rest of the inferior list
3637 starting from that one in a circular fashion until the whole list
3638 is polled once. */
3639
3640 auto inferior_matches = [&wait_ptid] (inferior *inf)
3641 {
3642 return (inf->process_target () != NULL
3643 && (threads_are_executing (inf->process_target ())
3644 || threads_are_resumed_pending_p (inf))
3645 && ptid_t (inf->pid).matches (wait_ptid));
3646 };
3647
3648 /* First see how many resumed inferiors we have. */
3649 for (inferior *inf : all_inferiors ())
3650 if (inferior_matches (inf))
3651 num_inferiors++;
3652
3653 if (num_inferiors == 0)
3654 {
3655 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3656 return false;
3657 }
3658
3659 /* Now randomly pick an inferior out of those that were resumed. */
3660 random_selector = (int)
3661 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3662
3663 if (debug_infrun && num_inferiors > 1)
3664 fprintf_unfiltered (gdb_stdlog,
3665 "infrun: Found %d inferiors, starting at #%d\n",
3666 num_inferiors, random_selector);
3667
3668 /* Select the Nth inferior that was resumed. */
3669
3670 inferior *selected = nullptr;
3671
3672 for (inferior *inf : all_inferiors ())
3673 if (inferior_matches (inf))
3674 if (random_selector-- == 0)
3675 {
3676 selected = inf;
3677 break;
3678 }
3679
3680 /* Now poll for events out of each of the resumed inferior's
3681 targets, starting from the selected one. */
3682
3683 auto do_wait = [&] (inferior *inf)
3684 {
5b6d1e4f
PA
3685 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3686 ecs->target = inf->process_target ();
3687 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3688 };
3689
3690 /* Needed in all-stop+target-non-stop mode, because we end up here
3691 spuriously after the target is all stopped and we've already
3692 reported the stop to the user, polling for events. */
3693 scoped_restore_current_thread restore_thread;
3694
3695 int inf_num = selected->num;
3696 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3697 if (inferior_matches (inf))
3698 if (do_wait (inf))
3699 return true;
3700
3701 for (inferior *inf = inferior_list;
3702 inf != NULL && inf->num < inf_num;
3703 inf = inf->next)
3704 if (inferior_matches (inf))
3705 if (do_wait (inf))
3706 return true;
3707
3708 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3709 return false;
3710}
3711
24291992
PA
3712/* Prepare and stabilize the inferior for detaching it. E.g.,
3713 detaching while a thread is displaced stepping is a recipe for
3714 crashing it, as nothing would readjust the PC out of the scratch
3715 pad. */
3716
3717void
3718prepare_for_detach (void)
3719{
3720 struct inferior *inf = current_inferior ();
f2907e49 3721 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3722
00431a78 3723 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3724
3725 /* Is any thread of this process displaced stepping? If not,
3726 there's nothing else to do. */
d20172fc 3727 if (displaced->step_thread == nullptr)
24291992
PA
3728 return;
3729
3730 if (debug_infrun)
3731 fprintf_unfiltered (gdb_stdlog,
3732 "displaced-stepping in-process while detaching");
3733
9bcb1f16 3734 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3735
00431a78 3736 while (displaced->step_thread != nullptr)
24291992 3737 {
24291992
PA
3738 struct execution_control_state ecss;
3739 struct execution_control_state *ecs;
3740
3741 ecs = &ecss;
3742 memset (ecs, 0, sizeof (*ecs));
3743
3744 overlay_cache_invalid = 1;
f15cb84a
YQ
3745 /* Flush target cache before starting to handle each event.
3746 Target was running and cache could be stale. This is just a
3747 heuristic. Running threads may modify target memory, but we
3748 don't get any event. */
3749 target_dcache_invalidate ();
24291992 3750
5b6d1e4f 3751 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3752
3753 if (debug_infrun)
3754 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3755
3756 /* If an error happens while handling the event, propagate GDB's
3757 knowledge of the executing state to the frontend/user running
3758 state. */
5b6d1e4f
PA
3759 scoped_finish_thread_state finish_state (inf->process_target (),
3760 minus_one_ptid);
24291992
PA
3761
3762 /* Now figure out what to do with the result of the result. */
3763 handle_inferior_event (ecs);
3764
3765 /* No error, don't finish the state yet. */
731f534f 3766 finish_state.release ();
24291992
PA
3767
3768 /* Breakpoints and watchpoints are not installed on the target
3769 at this point, and signals are passed directly to the
3770 inferior, so this must mean the process is gone. */
3771 if (!ecs->wait_some_more)
3772 {
9bcb1f16 3773 restore_detaching.release ();
24291992
PA
3774 error (_("Program exited while detaching"));
3775 }
3776 }
3777
9bcb1f16 3778 restore_detaching.release ();
24291992
PA
3779}
3780
cd0fc7c3 3781/* Wait for control to return from inferior to debugger.
ae123ec6 3782
cd0fc7c3
SS
3783 If inferior gets a signal, we may decide to start it up again
3784 instead of returning. That is why there is a loop in this function.
3785 When this function actually returns it means the inferior
3786 should be left stopped and GDB should read more commands. */
3787
5b6d1e4f
PA
3788static void
3789wait_for_inferior (inferior *inf)
cd0fc7c3 3790{
527159b7 3791 if (debug_infrun)
ae123ec6 3792 fprintf_unfiltered
e4c8541f 3793 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3794
4c41382a 3795 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3796
e6f5c25b
PA
3797 /* If an error happens while handling the event, propagate GDB's
3798 knowledge of the executing state to the frontend/user running
3799 state. */
5b6d1e4f
PA
3800 scoped_finish_thread_state finish_state
3801 (inf->process_target (), minus_one_ptid);
e6f5c25b 3802
c906108c
SS
3803 while (1)
3804 {
ae25568b
PA
3805 struct execution_control_state ecss;
3806 struct execution_control_state *ecs = &ecss;
29f49a6a 3807
ae25568b
PA
3808 memset (ecs, 0, sizeof (*ecs));
3809
ec9499be 3810 overlay_cache_invalid = 1;
ec9499be 3811
f15cb84a
YQ
3812 /* Flush target cache before starting to handle each event.
3813 Target was running and cache could be stale. This is just a
3814 heuristic. Running threads may modify target memory, but we
3815 don't get any event. */
3816 target_dcache_invalidate ();
3817
5b6d1e4f
PA
3818 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3819 ecs->target = inf->process_target ();
c906108c 3820
f00150c9 3821 if (debug_infrun)
5b6d1e4f 3822 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3823
cd0fc7c3
SS
3824 /* Now figure out what to do with the result of the result. */
3825 handle_inferior_event (ecs);
c906108c 3826
cd0fc7c3
SS
3827 if (!ecs->wait_some_more)
3828 break;
3829 }
4e1c45ea 3830
e6f5c25b 3831 /* No error, don't finish the state yet. */
731f534f 3832 finish_state.release ();
cd0fc7c3 3833}
c906108c 3834
d3d4baed
PA
3835/* Cleanup that reinstalls the readline callback handler, if the
3836 target is running in the background. If while handling the target
3837 event something triggered a secondary prompt, like e.g., a
3838 pagination prompt, we'll have removed the callback handler (see
3839 gdb_readline_wrapper_line). Need to do this as we go back to the
3840 event loop, ready to process further input. Note this has no
3841 effect if the handler hasn't actually been removed, because calling
3842 rl_callback_handler_install resets the line buffer, thus losing
3843 input. */
3844
3845static void
d238133d 3846reinstall_readline_callback_handler_cleanup ()
d3d4baed 3847{
3b12939d
PA
3848 struct ui *ui = current_ui;
3849
3850 if (!ui->async)
6c400b59
PA
3851 {
3852 /* We're not going back to the top level event loop yet. Don't
3853 install the readline callback, as it'd prep the terminal,
3854 readline-style (raw, noecho) (e.g., --batch). We'll install
3855 it the next time the prompt is displayed, when we're ready
3856 for input. */
3857 return;
3858 }
3859
3b12939d 3860 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3861 gdb_rl_callback_handler_reinstall ();
3862}
3863
243a9253
PA
3864/* Clean up the FSMs of threads that are now stopped. In non-stop,
3865 that's just the event thread. In all-stop, that's all threads. */
3866
3867static void
3868clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3869{
08036331
PA
3870 if (ecs->event_thread != NULL
3871 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3872 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3873
3874 if (!non_stop)
3875 {
08036331 3876 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3877 {
3878 if (thr->thread_fsm == NULL)
3879 continue;
3880 if (thr == ecs->event_thread)
3881 continue;
3882
00431a78 3883 switch_to_thread (thr);
46e3ed7f 3884 thr->thread_fsm->clean_up (thr);
243a9253
PA
3885 }
3886
3887 if (ecs->event_thread != NULL)
00431a78 3888 switch_to_thread (ecs->event_thread);
243a9253
PA
3889 }
3890}
3891
3b12939d
PA
3892/* Helper for all_uis_check_sync_execution_done that works on the
3893 current UI. */
3894
3895static void
3896check_curr_ui_sync_execution_done (void)
3897{
3898 struct ui *ui = current_ui;
3899
3900 if (ui->prompt_state == PROMPT_NEEDED
3901 && ui->async
3902 && !gdb_in_secondary_prompt_p (ui))
3903 {
223ffa71 3904 target_terminal::ours ();
76727919 3905 gdb::observers::sync_execution_done.notify ();
3eb7562a 3906 ui_register_input_event_handler (ui);
3b12939d
PA
3907 }
3908}
3909
3910/* See infrun.h. */
3911
3912void
3913all_uis_check_sync_execution_done (void)
3914{
0e454242 3915 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3916 {
3917 check_curr_ui_sync_execution_done ();
3918 }
3919}
3920
a8836c93
PA
3921/* See infrun.h. */
3922
3923void
3924all_uis_on_sync_execution_starting (void)
3925{
0e454242 3926 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3927 {
3928 if (current_ui->prompt_state == PROMPT_NEEDED)
3929 async_disable_stdin ();
3930 }
3931}
3932
1777feb0 3933/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3934 event loop whenever a change of state is detected on the file
1777feb0
MS
3935 descriptor corresponding to the target. It can be called more than
3936 once to complete a single execution command. In such cases we need
3937 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3938 that this function is called for a single execution command, then
3939 report to the user that the inferior has stopped, and do the
1777feb0 3940 necessary cleanups. */
43ff13b4
JM
3941
3942void
fba45db2 3943fetch_inferior_event (void *client_data)
43ff13b4 3944{
0d1e5fa7 3945 struct execution_control_state ecss;
a474d7c2 3946 struct execution_control_state *ecs = &ecss;
0f641c01 3947 int cmd_done = 0;
43ff13b4 3948
0d1e5fa7
PA
3949 memset (ecs, 0, sizeof (*ecs));
3950
c61db772
PA
3951 /* Events are always processed with the main UI as current UI. This
3952 way, warnings, debug output, etc. are always consistently sent to
3953 the main console. */
4b6749b9 3954 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3955
d3d4baed 3956 /* End up with readline processing input, if necessary. */
d238133d
TT
3957 {
3958 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3959
3960 /* We're handling a live event, so make sure we're doing live
3961 debugging. If we're looking at traceframes while the target is
3962 running, we're going to need to get back to that mode after
3963 handling the event. */
3964 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3965 if (non_stop)
3966 {
3967 maybe_restore_traceframe.emplace ();
3968 set_current_traceframe (-1);
3969 }
43ff13b4 3970
873657b9
PA
3971 /* The user/frontend should not notice a thread switch due to
3972 internal events. Make sure we revert to the user selected
3973 thread and frame after handling the event and running any
3974 breakpoint commands. */
3975 scoped_restore_current_thread restore_thread;
d238133d
TT
3976
3977 overlay_cache_invalid = 1;
3978 /* Flush target cache before starting to handle each event. Target
3979 was running and cache could be stale. This is just a heuristic.
3980 Running threads may modify target memory, but we don't get any
3981 event. */
3982 target_dcache_invalidate ();
3983
3984 scoped_restore save_exec_dir
3985 = make_scoped_restore (&execution_direction,
3986 target_execution_direction ());
3987
5b6d1e4f
PA
3988 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3989 return;
3990
3991 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3992
3993 /* Switch to the target that generated the event, so we can do
3994 target calls. Any inferior bound to the target will do, so we
3995 just switch to the first we find. */
3996 for (inferior *inf : all_inferiors (ecs->target))
3997 {
3998 switch_to_inferior_no_thread (inf);
3999 break;
4000 }
d238133d
TT
4001
4002 if (debug_infrun)
5b6d1e4f 4003 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4004
4005 /* If an error happens while handling the event, propagate GDB's
4006 knowledge of the executing state to the frontend/user running
4007 state. */
4008 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4009 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4010
979a0d13 4011 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4012 still for the thread which has thrown the exception. */
4013 auto defer_bpstat_clear
4014 = make_scope_exit (bpstat_clear_actions);
4015 auto defer_delete_threads
4016 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4017
4018 /* Now figure out what to do with the result of the result. */
4019 handle_inferior_event (ecs);
4020
4021 if (!ecs->wait_some_more)
4022 {
5b6d1e4f 4023 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4024 int should_stop = 1;
4025 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4026
d238133d 4027 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4028
d238133d
TT
4029 if (thr != NULL)
4030 {
4031 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4032
d238133d 4033 if (thread_fsm != NULL)
46e3ed7f 4034 should_stop = thread_fsm->should_stop (thr);
d238133d 4035 }
243a9253 4036
d238133d
TT
4037 if (!should_stop)
4038 {
4039 keep_going (ecs);
4040 }
4041 else
4042 {
46e3ed7f 4043 bool should_notify_stop = true;
d238133d 4044 int proceeded = 0;
1840d81a 4045
d238133d 4046 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4047
d238133d 4048 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4049 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4050
d238133d
TT
4051 if (should_notify_stop)
4052 {
4053 /* We may not find an inferior if this was a process exit. */
4054 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4055 proceeded = normal_stop ();
4056 }
243a9253 4057
d238133d
TT
4058 if (!proceeded)
4059 {
4060 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4061 cmd_done = 1;
4062 }
873657b9
PA
4063
4064 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4065 previously selected thread is gone. We have two
4066 choices - switch to no thread selected, or restore the
4067 previously selected thread (now exited). We chose the
4068 later, just because that's what GDB used to do. After
4069 this, "info threads" says "The current thread <Thread
4070 ID 2> has terminated." instead of "No thread
4071 selected.". */
4072 if (!non_stop
4073 && cmd_done
4074 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4075 restore_thread.dont_restore ();
d238133d
TT
4076 }
4077 }
4f8d22e3 4078
d238133d
TT
4079 defer_delete_threads.release ();
4080 defer_bpstat_clear.release ();
29f49a6a 4081
d238133d
TT
4082 /* No error, don't finish the thread states yet. */
4083 finish_state.release ();
731f534f 4084
d238133d
TT
4085 /* This scope is used to ensure that readline callbacks are
4086 reinstalled here. */
4087 }
4f8d22e3 4088
3b12939d
PA
4089 /* If a UI was in sync execution mode, and now isn't, restore its
4090 prompt (a synchronous execution command has finished, and we're
4091 ready for input). */
4092 all_uis_check_sync_execution_done ();
0f641c01
PA
4093
4094 if (cmd_done
0f641c01 4095 && exec_done_display_p
00431a78
PA
4096 && (inferior_ptid == null_ptid
4097 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4098 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4099}
4100
29734269
SM
4101/* See infrun.h. */
4102
edb3359d 4103void
29734269
SM
4104set_step_info (thread_info *tp, struct frame_info *frame,
4105 struct symtab_and_line sal)
edb3359d 4106{
29734269
SM
4107 /* This can be removed once this function no longer implicitly relies on the
4108 inferior_ptid value. */
4109 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4110
16c381f0
JK
4111 tp->control.step_frame_id = get_frame_id (frame);
4112 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4113
4114 tp->current_symtab = sal.symtab;
4115 tp->current_line = sal.line;
4116}
4117
0d1e5fa7
PA
4118/* Clear context switchable stepping state. */
4119
4120void
4e1c45ea 4121init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4122{
7f5ef605 4123 tss->stepped_breakpoint = 0;
0d1e5fa7 4124 tss->stepping_over_breakpoint = 0;
963f9c80 4125 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4126 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4127}
4128
ab1ddbcf 4129/* See infrun.h. */
c32c64b7 4130
6efcd9a8 4131void
5b6d1e4f
PA
4132set_last_target_status (process_stratum_target *target, ptid_t ptid,
4133 target_waitstatus status)
c32c64b7 4134{
5b6d1e4f 4135 target_last_proc_target = target;
c32c64b7
DE
4136 target_last_wait_ptid = ptid;
4137 target_last_waitstatus = status;
4138}
4139
ab1ddbcf 4140/* See infrun.h. */
e02bc4cc
DS
4141
4142void
5b6d1e4f
PA
4143get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4144 target_waitstatus *status)
e02bc4cc 4145{
5b6d1e4f
PA
4146 if (target != nullptr)
4147 *target = target_last_proc_target;
ab1ddbcf
PA
4148 if (ptid != nullptr)
4149 *ptid = target_last_wait_ptid;
4150 if (status != nullptr)
4151 *status = target_last_waitstatus;
e02bc4cc
DS
4152}
4153
ab1ddbcf
PA
4154/* See infrun.h. */
4155
ac264b3b
MS
4156void
4157nullify_last_target_wait_ptid (void)
4158{
5b6d1e4f 4159 target_last_proc_target = nullptr;
ac264b3b 4160 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4161 target_last_waitstatus = {};
ac264b3b
MS
4162}
4163
dcf4fbde 4164/* Switch thread contexts. */
dd80620e
MS
4165
4166static void
00431a78 4167context_switch (execution_control_state *ecs)
dd80620e 4168{
00431a78
PA
4169 if (debug_infrun
4170 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4171 && (inferior_ptid == null_ptid
4172 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4173 {
4174 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4175 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4176 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4177 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4178 }
4179
00431a78 4180 switch_to_thread (ecs->event_thread);
dd80620e
MS
4181}
4182
d8dd4d5f
PA
4183/* If the target can't tell whether we've hit breakpoints
4184 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4185 check whether that could have been caused by a breakpoint. If so,
4186 adjust the PC, per gdbarch_decr_pc_after_break. */
4187
4fa8626c 4188static void
d8dd4d5f
PA
4189adjust_pc_after_break (struct thread_info *thread,
4190 struct target_waitstatus *ws)
4fa8626c 4191{
24a73cce
UW
4192 struct regcache *regcache;
4193 struct gdbarch *gdbarch;
118e6252 4194 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4195
4fa8626c
DJ
4196 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4197 we aren't, just return.
9709f61c
DJ
4198
4199 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4200 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4201 implemented by software breakpoints should be handled through the normal
4202 breakpoint layer.
8fb3e588 4203
4fa8626c
DJ
4204 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4205 different signals (SIGILL or SIGEMT for instance), but it is less
4206 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4207 gdbarch_decr_pc_after_break. I don't know any specific target that
4208 generates these signals at breakpoints (the code has been in GDB since at
4209 least 1992) so I can not guess how to handle them here.
8fb3e588 4210
e6cf7916
UW
4211 In earlier versions of GDB, a target with
4212 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4213 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4214 target with both of these set in GDB history, and it seems unlikely to be
4215 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4216
d8dd4d5f 4217 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4218 return;
4219
d8dd4d5f 4220 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4221 return;
4222
4058b839
PA
4223 /* In reverse execution, when a breakpoint is hit, the instruction
4224 under it has already been de-executed. The reported PC always
4225 points at the breakpoint address, so adjusting it further would
4226 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4227 architecture:
4228
4229 B1 0x08000000 : INSN1
4230 B2 0x08000001 : INSN2
4231 0x08000002 : INSN3
4232 PC -> 0x08000003 : INSN4
4233
4234 Say you're stopped at 0x08000003 as above. Reverse continuing
4235 from that point should hit B2 as below. Reading the PC when the
4236 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4237 been de-executed already.
4238
4239 B1 0x08000000 : INSN1
4240 B2 PC -> 0x08000001 : INSN2
4241 0x08000002 : INSN3
4242 0x08000003 : INSN4
4243
4244 We can't apply the same logic as for forward execution, because
4245 we would wrongly adjust the PC to 0x08000000, since there's a
4246 breakpoint at PC - 1. We'd then report a hit on B1, although
4247 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4248 behaviour. */
4249 if (execution_direction == EXEC_REVERSE)
4250 return;
4251
1cf4d951
PA
4252 /* If the target can tell whether the thread hit a SW breakpoint,
4253 trust it. Targets that can tell also adjust the PC
4254 themselves. */
4255 if (target_supports_stopped_by_sw_breakpoint ())
4256 return;
4257
4258 /* Note that relying on whether a breakpoint is planted in memory to
4259 determine this can fail. E.g,. the breakpoint could have been
4260 removed since. Or the thread could have been told to step an
4261 instruction the size of a breakpoint instruction, and only
4262 _after_ was a breakpoint inserted at its address. */
4263
24a73cce
UW
4264 /* If this target does not decrement the PC after breakpoints, then
4265 we have nothing to do. */
00431a78 4266 regcache = get_thread_regcache (thread);
ac7936df 4267 gdbarch = regcache->arch ();
118e6252 4268
527a273a 4269 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4270 if (decr_pc == 0)
24a73cce
UW
4271 return;
4272
8b86c959 4273 const address_space *aspace = regcache->aspace ();
6c95b8df 4274
8aad930b
AC
4275 /* Find the location where (if we've hit a breakpoint) the
4276 breakpoint would be. */
118e6252 4277 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4278
1cf4d951
PA
4279 /* If the target can't tell whether a software breakpoint triggered,
4280 fallback to figuring it out based on breakpoints we think were
4281 inserted in the target, and on whether the thread was stepped or
4282 continued. */
4283
1c5cfe86
PA
4284 /* Check whether there actually is a software breakpoint inserted at
4285 that location.
4286
4287 If in non-stop mode, a race condition is possible where we've
4288 removed a breakpoint, but stop events for that breakpoint were
4289 already queued and arrive later. To suppress those spurious
4290 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4291 and retire them after a number of stop events are reported. Note
4292 this is an heuristic and can thus get confused. The real fix is
4293 to get the "stopped by SW BP and needs adjustment" info out of
4294 the target/kernel (and thus never reach here; see above). */
6c95b8df 4295 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4296 || (target_is_non_stop_p ()
4297 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4298 {
07036511 4299 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4300
8213266a 4301 if (record_full_is_used ())
07036511
TT
4302 restore_operation_disable.emplace
4303 (record_full_gdb_operation_disable_set ());
96429cc8 4304
1c0fdd0e
UW
4305 /* When using hardware single-step, a SIGTRAP is reported for both
4306 a completed single-step and a software breakpoint. Need to
4307 differentiate between the two, as the latter needs adjusting
4308 but the former does not.
4309
4310 The SIGTRAP can be due to a completed hardware single-step only if
4311 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4312 - this thread is currently being stepped
4313
4314 If any of these events did not occur, we must have stopped due
4315 to hitting a software breakpoint, and have to back up to the
4316 breakpoint address.
4317
4318 As a special case, we could have hardware single-stepped a
4319 software breakpoint. In this case (prev_pc == breakpoint_pc),
4320 we also need to back up to the breakpoint address. */
4321
d8dd4d5f
PA
4322 if (thread_has_single_step_breakpoints_set (thread)
4323 || !currently_stepping (thread)
4324 || (thread->stepped_breakpoint
4325 && thread->prev_pc == breakpoint_pc))
515630c5 4326 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4327 }
4fa8626c
DJ
4328}
4329
edb3359d
DJ
4330static int
4331stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4332{
4333 for (frame = get_prev_frame (frame);
4334 frame != NULL;
4335 frame = get_prev_frame (frame))
4336 {
4337 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4338 return 1;
4339 if (get_frame_type (frame) != INLINE_FRAME)
4340 break;
4341 }
4342
4343 return 0;
4344}
4345
4a4c04f1
BE
4346/* Look for an inline frame that is marked for skip.
4347 If PREV_FRAME is TRUE start at the previous frame,
4348 otherwise start at the current frame. Stop at the
4349 first non-inline frame, or at the frame where the
4350 step started. */
4351
4352static bool
4353inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4354{
4355 struct frame_info *frame = get_current_frame ();
4356
4357 if (prev_frame)
4358 frame = get_prev_frame (frame);
4359
4360 for (; frame != NULL; frame = get_prev_frame (frame))
4361 {
4362 const char *fn = NULL;
4363 symtab_and_line sal;
4364 struct symbol *sym;
4365
4366 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4367 break;
4368 if (get_frame_type (frame) != INLINE_FRAME)
4369 break;
4370
4371 sal = find_frame_sal (frame);
4372 sym = get_frame_function (frame);
4373
4374 if (sym != NULL)
4375 fn = sym->print_name ();
4376
4377 if (sal.line != 0
4378 && function_name_is_marked_for_skip (fn, sal))
4379 return true;
4380 }
4381
4382 return false;
4383}
4384
c65d6b55
PA
4385/* If the event thread has the stop requested flag set, pretend it
4386 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4387 target_stop). */
4388
4389static bool
4390handle_stop_requested (struct execution_control_state *ecs)
4391{
4392 if (ecs->event_thread->stop_requested)
4393 {
4394 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4395 ecs->ws.value.sig = GDB_SIGNAL_0;
4396 handle_signal_stop (ecs);
4397 return true;
4398 }
4399 return false;
4400}
4401
a96d9b2e
SDJ
4402/* Auxiliary function that handles syscall entry/return events.
4403 It returns 1 if the inferior should keep going (and GDB
4404 should ignore the event), or 0 if the event deserves to be
4405 processed. */
ca2163eb 4406
a96d9b2e 4407static int
ca2163eb 4408handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4409{
ca2163eb 4410 struct regcache *regcache;
ca2163eb
PA
4411 int syscall_number;
4412
00431a78 4413 context_switch (ecs);
ca2163eb 4414
00431a78 4415 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4416 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4417 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4418
a96d9b2e
SDJ
4419 if (catch_syscall_enabled () > 0
4420 && catching_syscall_number (syscall_number) > 0)
4421 {
4422 if (debug_infrun)
4423 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4424 syscall_number);
a96d9b2e 4425
16c381f0 4426 ecs->event_thread->control.stop_bpstat
a01bda52 4427 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4428 ecs->event_thread->suspend.stop_pc,
4429 ecs->event_thread, &ecs->ws);
ab04a2af 4430
c65d6b55
PA
4431 if (handle_stop_requested (ecs))
4432 return 0;
4433
ce12b012 4434 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4435 {
4436 /* Catchpoint hit. */
ca2163eb
PA
4437 return 0;
4438 }
a96d9b2e 4439 }
ca2163eb 4440
c65d6b55
PA
4441 if (handle_stop_requested (ecs))
4442 return 0;
4443
ca2163eb 4444 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4445 keep_going (ecs);
4446 return 1;
a96d9b2e
SDJ
4447}
4448
7e324e48
GB
4449/* Lazily fill in the execution_control_state's stop_func_* fields. */
4450
4451static void
4452fill_in_stop_func (struct gdbarch *gdbarch,
4453 struct execution_control_state *ecs)
4454{
4455 if (!ecs->stop_func_filled_in)
4456 {
98a617f8
KB
4457 const block *block;
4458
7e324e48
GB
4459 /* Don't care about return value; stop_func_start and stop_func_name
4460 will both be 0 if it doesn't work. */
98a617f8
KB
4461 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4462 &ecs->stop_func_name,
4463 &ecs->stop_func_start,
4464 &ecs->stop_func_end,
4465 &block);
4466
4467 /* The call to find_pc_partial_function, above, will set
4468 stop_func_start and stop_func_end to the start and end
4469 of the range containing the stop pc. If this range
4470 contains the entry pc for the block (which is always the
4471 case for contiguous blocks), advance stop_func_start past
4472 the function's start offset and entrypoint. Note that
4473 stop_func_start is NOT advanced when in a range of a
4474 non-contiguous block that does not contain the entry pc. */
4475 if (block != nullptr
4476 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4477 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4478 {
4479 ecs->stop_func_start
4480 += gdbarch_deprecated_function_start_offset (gdbarch);
4481
4482 if (gdbarch_skip_entrypoint_p (gdbarch))
4483 ecs->stop_func_start
4484 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4485 }
591a12a1 4486
7e324e48
GB
4487 ecs->stop_func_filled_in = 1;
4488 }
4489}
4490
4f5d7f63 4491
00431a78 4492/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4493
4494static enum stop_kind
00431a78 4495get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4496{
5b6d1e4f 4497 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4498
4499 gdb_assert (inf != NULL);
4500 return inf->control.stop_soon;
4501}
4502
5b6d1e4f
PA
4503/* Poll for one event out of the current target. Store the resulting
4504 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4505
4506static ptid_t
5b6d1e4f 4507poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4508{
4509 ptid_t event_ptid;
372316f1
PA
4510
4511 overlay_cache_invalid = 1;
4512
4513 /* Flush target cache before starting to handle each event.
4514 Target was running and cache could be stale. This is just a
4515 heuristic. Running threads may modify target memory, but we
4516 don't get any event. */
4517 target_dcache_invalidate ();
4518
4519 if (deprecated_target_wait_hook)
5b6d1e4f 4520 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4521 else
5b6d1e4f 4522 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4523
4524 if (debug_infrun)
5b6d1e4f 4525 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4526
4527 return event_ptid;
4528}
4529
5b6d1e4f
PA
4530/* An event reported by wait_one. */
4531
4532struct wait_one_event
4533{
4534 /* The target the event came out of. */
4535 process_stratum_target *target;
4536
4537 /* The PTID the event was for. */
4538 ptid_t ptid;
4539
4540 /* The waitstatus. */
4541 target_waitstatus ws;
4542};
4543
4544/* Wait for one event out of any target. */
4545
4546static wait_one_event
4547wait_one ()
4548{
4549 while (1)
4550 {
4551 for (inferior *inf : all_inferiors ())
4552 {
4553 process_stratum_target *target = inf->process_target ();
4554 if (target == NULL
4555 || !target->is_async_p ()
4556 || !target->threads_executing)
4557 continue;
4558
4559 switch_to_inferior_no_thread (inf);
4560
4561 wait_one_event event;
4562 event.target = target;
4563 event.ptid = poll_one_curr_target (&event.ws);
4564
4565 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4566 {
4567 /* If nothing is resumed, remove the target from the
4568 event loop. */
4569 target_async (0);
4570 }
4571 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4572 return event;
4573 }
4574
4575 /* Block waiting for some event. */
4576
4577 fd_set readfds;
4578 int nfds = 0;
4579
4580 FD_ZERO (&readfds);
4581
4582 for (inferior *inf : all_inferiors ())
4583 {
4584 process_stratum_target *target = inf->process_target ();
4585 if (target == NULL
4586 || !target->is_async_p ()
4587 || !target->threads_executing)
4588 continue;
4589
4590 int fd = target->async_wait_fd ();
4591 FD_SET (fd, &readfds);
4592 if (nfds <= fd)
4593 nfds = fd + 1;
4594 }
4595
4596 if (nfds == 0)
4597 {
4598 /* No waitable targets left. All must be stopped. */
4599 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4600 }
4601
4602 QUIT;
4603
4604 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4605 if (numfds < 0)
4606 {
4607 if (errno == EINTR)
4608 continue;
4609 else
4610 perror_with_name ("interruptible_select");
4611 }
4612 }
4613}
4614
372316f1
PA
4615/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4616 instead of the current thread. */
4617#define THREAD_STOPPED_BY(REASON) \
4618static int \
4619thread_stopped_by_ ## REASON (ptid_t ptid) \
4620{ \
2989a365 4621 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4622 inferior_ptid = ptid; \
4623 \
2989a365 4624 return target_stopped_by_ ## REASON (); \
372316f1
PA
4625}
4626
4627/* Generate thread_stopped_by_watchpoint. */
4628THREAD_STOPPED_BY (watchpoint)
4629/* Generate thread_stopped_by_sw_breakpoint. */
4630THREAD_STOPPED_BY (sw_breakpoint)
4631/* Generate thread_stopped_by_hw_breakpoint. */
4632THREAD_STOPPED_BY (hw_breakpoint)
4633
372316f1
PA
4634/* Save the thread's event and stop reason to process it later. */
4635
4636static void
5b6d1e4f 4637save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4638{
372316f1
PA
4639 if (debug_infrun)
4640 {
23fdd69e 4641 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4642
372316f1
PA
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4645 statstr.c_str (),
e99b03dc 4646 tp->ptid.pid (),
e38504b3 4647 tp->ptid.lwp (),
cc6bcb54 4648 tp->ptid.tid ());
372316f1
PA
4649 }
4650
4651 /* Record for later. */
4652 tp->suspend.waitstatus = *ws;
4653 tp->suspend.waitstatus_pending_p = 1;
4654
00431a78 4655 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4656 const address_space *aspace = regcache->aspace ();
372316f1
PA
4657
4658 if (ws->kind == TARGET_WAITKIND_STOPPED
4659 && ws->value.sig == GDB_SIGNAL_TRAP)
4660 {
4661 CORE_ADDR pc = regcache_read_pc (regcache);
4662
4663 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4664
4665 if (thread_stopped_by_watchpoint (tp->ptid))
4666 {
4667 tp->suspend.stop_reason
4668 = TARGET_STOPPED_BY_WATCHPOINT;
4669 }
4670 else if (target_supports_stopped_by_sw_breakpoint ()
4671 && thread_stopped_by_sw_breakpoint (tp->ptid))
4672 {
4673 tp->suspend.stop_reason
4674 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4675 }
4676 else if (target_supports_stopped_by_hw_breakpoint ()
4677 && thread_stopped_by_hw_breakpoint (tp->ptid))
4678 {
4679 tp->suspend.stop_reason
4680 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4681 }
4682 else if (!target_supports_stopped_by_hw_breakpoint ()
4683 && hardware_breakpoint_inserted_here_p (aspace,
4684 pc))
4685 {
4686 tp->suspend.stop_reason
4687 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4688 }
4689 else if (!target_supports_stopped_by_sw_breakpoint ()
4690 && software_breakpoint_inserted_here_p (aspace,
4691 pc))
4692 {
4693 tp->suspend.stop_reason
4694 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4695 }
4696 else if (!thread_has_single_step_breakpoints_set (tp)
4697 && currently_stepping (tp))
4698 {
4699 tp->suspend.stop_reason
4700 = TARGET_STOPPED_BY_SINGLE_STEP;
4701 }
4702 }
4703}
4704
6efcd9a8 4705/* See infrun.h. */
372316f1 4706
6efcd9a8 4707void
372316f1
PA
4708stop_all_threads (void)
4709{
4710 /* We may need multiple passes to discover all threads. */
4711 int pass;
4712 int iterations = 0;
372316f1 4713
53cccef1 4714 gdb_assert (exists_non_stop_target ());
372316f1
PA
4715
4716 if (debug_infrun)
4717 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4718
00431a78 4719 scoped_restore_current_thread restore_thread;
372316f1 4720
65706a29 4721 target_thread_events (1);
9885e6bb 4722 SCOPE_EXIT { target_thread_events (0); };
65706a29 4723
372316f1
PA
4724 /* Request threads to stop, and then wait for the stops. Because
4725 threads we already know about can spawn more threads while we're
4726 trying to stop them, and we only learn about new threads when we
4727 update the thread list, do this in a loop, and keep iterating
4728 until two passes find no threads that need to be stopped. */
4729 for (pass = 0; pass < 2; pass++, iterations++)
4730 {
4731 if (debug_infrun)
4732 fprintf_unfiltered (gdb_stdlog,
4733 "infrun: stop_all_threads, pass=%d, "
4734 "iterations=%d\n", pass, iterations);
4735 while (1)
4736 {
372316f1 4737 int need_wait = 0;
372316f1
PA
4738
4739 update_thread_list ();
4740
4741 /* Go through all threads looking for threads that we need
4742 to tell the target to stop. */
08036331 4743 for (thread_info *t : all_non_exited_threads ())
372316f1 4744 {
53cccef1
TBA
4745 /* For a single-target setting with an all-stop target,
4746 we would not even arrive here. For a multi-target
4747 setting, until GDB is able to handle a mixture of
4748 all-stop and non-stop targets, simply skip all-stop
4749 targets' threads. This should be fine due to the
4750 protection of 'check_multi_target_resumption'. */
4751
4752 switch_to_thread_no_regs (t);
4753 if (!target_is_non_stop_p ())
4754 continue;
4755
372316f1
PA
4756 if (t->executing)
4757 {
4758 /* If already stopping, don't request a stop again.
4759 We just haven't seen the notification yet. */
4760 if (!t->stop_requested)
4761 {
4762 if (debug_infrun)
4763 fprintf_unfiltered (gdb_stdlog,
4764 "infrun: %s executing, "
4765 "need stop\n",
a068643d 4766 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4767 target_stop (t->ptid);
4768 t->stop_requested = 1;
4769 }
4770 else
4771 {
4772 if (debug_infrun)
4773 fprintf_unfiltered (gdb_stdlog,
4774 "infrun: %s executing, "
4775 "already stopping\n",
a068643d 4776 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4777 }
4778
4779 if (t->stop_requested)
4780 need_wait = 1;
4781 }
4782 else
4783 {
4784 if (debug_infrun)
4785 fprintf_unfiltered (gdb_stdlog,
4786 "infrun: %s not executing\n",
a068643d 4787 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4788
4789 /* The thread may be not executing, but still be
4790 resumed with a pending status to process. */
719546c4 4791 t->resumed = false;
372316f1
PA
4792 }
4793 }
4794
4795 if (!need_wait)
4796 break;
4797
4798 /* If we find new threads on the second iteration, restart
4799 over. We want to see two iterations in a row with all
4800 threads stopped. */
4801 if (pass > 0)
4802 pass = -1;
4803
5b6d1e4f
PA
4804 wait_one_event event = wait_one ();
4805
c29705b7 4806 if (debug_infrun)
372316f1 4807 {
c29705b7
PW
4808 fprintf_unfiltered (gdb_stdlog,
4809 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4810 target_waitstatus_to_string (&event.ws).c_str (),
4811 target_pid_to_str (event.ptid).c_str ());
372316f1 4812 }
372316f1 4813
5b6d1e4f
PA
4814 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4815 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4816 || event.ws.kind == TARGET_WAITKIND_EXITED
4817 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4818 {
4819 /* All resumed threads exited
4820 or one thread/process exited/signalled. */
372316f1
PA
4821 }
4822 else
4823 {
5b6d1e4f 4824 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4825 if (t == NULL)
5b6d1e4f 4826 t = add_thread (event.target, event.ptid);
372316f1
PA
4827
4828 t->stop_requested = 0;
4829 t->executing = 0;
719546c4 4830 t->resumed = false;
372316f1
PA
4831 t->control.may_range_step = 0;
4832
6efcd9a8
PA
4833 /* This may be the first time we see the inferior report
4834 a stop. */
5b6d1e4f 4835 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4836 if (inf->needs_setup)
4837 {
4838 switch_to_thread_no_regs (t);
4839 setup_inferior (0);
4840 }
4841
5b6d1e4f
PA
4842 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4843 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4844 {
4845 /* We caught the event that we intended to catch, so
4846 there's no event pending. */
4847 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4848 t->suspend.waitstatus_pending_p = 0;
4849
00431a78 4850 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4851 {
4852 /* Add it back to the step-over queue. */
4853 if (debug_infrun)
4854 {
4855 fprintf_unfiltered (gdb_stdlog,
4856 "infrun: displaced-step of %s "
4857 "canceled: adding back to the "
4858 "step-over queue\n",
a068643d 4859 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4860 }
4861 t->control.trap_expected = 0;
4862 thread_step_over_chain_enqueue (t);
4863 }
4864 }
4865 else
4866 {
4867 enum gdb_signal sig;
4868 struct regcache *regcache;
372316f1
PA
4869
4870 if (debug_infrun)
4871 {
5b6d1e4f 4872 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4873
372316f1
PA
4874 fprintf_unfiltered (gdb_stdlog,
4875 "infrun: target_wait %s, saving "
4876 "status for %d.%ld.%ld\n",
23fdd69e 4877 statstr.c_str (),
e99b03dc 4878 t->ptid.pid (),
e38504b3 4879 t->ptid.lwp (),
cc6bcb54 4880 t->ptid.tid ());
372316f1
PA
4881 }
4882
4883 /* Record for later. */
5b6d1e4f 4884 save_waitstatus (t, &event.ws);
372316f1 4885
5b6d1e4f
PA
4886 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4887 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4888
00431a78 4889 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4890 {
4891 /* Add it back to the step-over queue. */
4892 t->control.trap_expected = 0;
4893 thread_step_over_chain_enqueue (t);
4894 }
4895
00431a78 4896 regcache = get_thread_regcache (t);
372316f1
PA
4897 t->suspend.stop_pc = regcache_read_pc (regcache);
4898
4899 if (debug_infrun)
4900 {
4901 fprintf_unfiltered (gdb_stdlog,
4902 "infrun: saved stop_pc=%s for %s "
4903 "(currently_stepping=%d)\n",
4904 paddress (target_gdbarch (),
4905 t->suspend.stop_pc),
a068643d 4906 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4907 currently_stepping (t));
4908 }
4909 }
4910 }
4911 }
4912 }
4913
372316f1
PA
4914 if (debug_infrun)
4915 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4916}
4917
f4836ba9
PA
4918/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4919
4920static int
4921handle_no_resumed (struct execution_control_state *ecs)
4922{
3b12939d 4923 if (target_can_async_p ())
f4836ba9 4924 {
3b12939d
PA
4925 struct ui *ui;
4926 int any_sync = 0;
f4836ba9 4927
3b12939d
PA
4928 ALL_UIS (ui)
4929 {
4930 if (ui->prompt_state == PROMPT_BLOCKED)
4931 {
4932 any_sync = 1;
4933 break;
4934 }
4935 }
4936 if (!any_sync)
4937 {
4938 /* There were no unwaited-for children left in the target, but,
4939 we're not synchronously waiting for events either. Just
4940 ignore. */
4941
4942 if (debug_infrun)
4943 fprintf_unfiltered (gdb_stdlog,
4944 "infrun: TARGET_WAITKIND_NO_RESUMED "
4945 "(ignoring: bg)\n");
4946 prepare_to_wait (ecs);
4947 return 1;
4948 }
f4836ba9
PA
4949 }
4950
4951 /* Otherwise, if we were running a synchronous execution command, we
4952 may need to cancel it and give the user back the terminal.
4953
4954 In non-stop mode, the target can't tell whether we've already
4955 consumed previous stop events, so it can end up sending us a
4956 no-resumed event like so:
4957
4958 #0 - thread 1 is left stopped
4959
4960 #1 - thread 2 is resumed and hits breakpoint
4961 -> TARGET_WAITKIND_STOPPED
4962
4963 #2 - thread 3 is resumed and exits
4964 this is the last resumed thread, so
4965 -> TARGET_WAITKIND_NO_RESUMED
4966
4967 #3 - gdb processes stop for thread 2 and decides to re-resume
4968 it.
4969
4970 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4971 thread 2 is now resumed, so the event should be ignored.
4972
4973 IOW, if the stop for thread 2 doesn't end a foreground command,
4974 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4975 event. But it could be that the event meant that thread 2 itself
4976 (or whatever other thread was the last resumed thread) exited.
4977
4978 To address this we refresh the thread list and check whether we
4979 have resumed threads _now_. In the example above, this removes
4980 thread 3 from the thread list. If thread 2 was re-resumed, we
4981 ignore this event. If we find no thread resumed, then we cancel
4982 the synchronous command show "no unwaited-for " to the user. */
4983 update_thread_list ();
4984
5b6d1e4f 4985 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4986 {
4987 if (thread->executing
4988 || thread->suspend.waitstatus_pending_p)
4989 {
4990 /* There were no unwaited-for children left in the target at
4991 some point, but there are now. Just ignore. */
4992 if (debug_infrun)
4993 fprintf_unfiltered (gdb_stdlog,
4994 "infrun: TARGET_WAITKIND_NO_RESUMED "
4995 "(ignoring: found resumed)\n");
4996 prepare_to_wait (ecs);
4997 return 1;
4998 }
4999 }
5000
5001 /* Note however that we may find no resumed thread because the whole
5002 process exited meanwhile (thus updating the thread list results
5003 in an empty thread list). In this case we know we'll be getting
5004 a process exit event shortly. */
5b6d1e4f 5005 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 5006 {
08036331 5007 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
5008 if (thread == NULL)
5009 {
5010 if (debug_infrun)
5011 fprintf_unfiltered (gdb_stdlog,
5012 "infrun: TARGET_WAITKIND_NO_RESUMED "
5013 "(expect process exit)\n");
5014 prepare_to_wait (ecs);
5015 return 1;
5016 }
5017 }
5018
5019 /* Go ahead and report the event. */
5020 return 0;
5021}
5022
05ba8510
PA
5023/* Given an execution control state that has been freshly filled in by
5024 an event from the inferior, figure out what it means and take
5025 appropriate action.
5026
5027 The alternatives are:
5028
22bcd14b 5029 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5030 debugger.
5031
5032 2) keep_going and return; to wait for the next event (set
5033 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5034 once). */
c906108c 5035
ec9499be 5036static void
595915c1 5037handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5038{
595915c1
TT
5039 /* Make sure that all temporary struct value objects that were
5040 created during the handling of the event get deleted at the
5041 end. */
5042 scoped_value_mark free_values;
5043
d6b48e9c
PA
5044 enum stop_kind stop_soon;
5045
c29705b7
PW
5046 if (debug_infrun)
5047 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5048 target_waitstatus_to_string (&ecs->ws).c_str ());
5049
28736962
PA
5050 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5051 {
5052 /* We had an event in the inferior, but we are not interested in
5053 handling it at this level. The lower layers have already
5054 done what needs to be done, if anything.
5055
5056 One of the possible circumstances for this is when the
5057 inferior produces output for the console. The inferior has
5058 not stopped, and we are ignoring the event. Another possible
5059 circumstance is any event which the lower level knows will be
5060 reported multiple times without an intervening resume. */
28736962
PA
5061 prepare_to_wait (ecs);
5062 return;
5063 }
5064
65706a29
PA
5065 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5066 {
65706a29
PA
5067 prepare_to_wait (ecs);
5068 return;
5069 }
5070
0e5bf2a8 5071 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5072 && handle_no_resumed (ecs))
5073 return;
0e5bf2a8 5074
5b6d1e4f
PA
5075 /* Cache the last target/ptid/waitstatus. */
5076 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5077
ca005067 5078 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5079 stop_stack_dummy = STOP_NONE;
ca005067 5080
0e5bf2a8
PA
5081 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5082 {
5083 /* No unwaited-for children left. IOW, all resumed children
5084 have exited. */
0e5bf2a8 5085 stop_print_frame = 0;
22bcd14b 5086 stop_waiting (ecs);
0e5bf2a8
PA
5087 return;
5088 }
5089
8c90c137 5090 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5091 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5092 {
5b6d1e4f 5093 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5094 /* If it's a new thread, add it to the thread database. */
5095 if (ecs->event_thread == NULL)
5b6d1e4f 5096 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5097
5098 /* Disable range stepping. If the next step request could use a
5099 range, this will be end up re-enabled then. */
5100 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5101 }
88ed393a
JK
5102
5103 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5104 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5105
5106 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5107 reinit_frame_cache ();
5108
28736962
PA
5109 breakpoint_retire_moribund ();
5110
2b009048
DJ
5111 /* First, distinguish signals caused by the debugger from signals
5112 that have to do with the program's own actions. Note that
5113 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5114 on the operating system version. Here we detect when a SIGILL or
5115 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5116 something similar for SIGSEGV, since a SIGSEGV will be generated
5117 when we're trying to execute a breakpoint instruction on a
5118 non-executable stack. This happens for call dummy breakpoints
5119 for architectures like SPARC that place call dummies on the
5120 stack. */
2b009048 5121 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5122 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5123 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5124 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5125 {
00431a78 5126 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5127
a01bda52 5128 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5129 regcache_read_pc (regcache)))
5130 {
5131 if (debug_infrun)
5132 fprintf_unfiltered (gdb_stdlog,
5133 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5134 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5135 }
2b009048
DJ
5136 }
5137
28736962
PA
5138 /* Mark the non-executing threads accordingly. In all-stop, all
5139 threads of all processes are stopped when we get any event
e1316e60 5140 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5141 {
5142 ptid_t mark_ptid;
5143
fbea99ea 5144 if (!target_is_non_stop_p ())
372316f1
PA
5145 mark_ptid = minus_one_ptid;
5146 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5147 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5148 {
5149 /* If we're handling a process exit in non-stop mode, even
5150 though threads haven't been deleted yet, one would think
5151 that there is nothing to do, as threads of the dead process
5152 will be soon deleted, and threads of any other process were
5153 left running. However, on some targets, threads survive a
5154 process exit event. E.g., for the "checkpoint" command,
5155 when the current checkpoint/fork exits, linux-fork.c
5156 automatically switches to another fork from within
5157 target_mourn_inferior, by associating the same
5158 inferior/thread to another fork. We haven't mourned yet at
5159 this point, but we must mark any threads left in the
5160 process as not-executing so that finish_thread_state marks
5161 them stopped (in the user's perspective) if/when we present
5162 the stop to the user. */
e99b03dc 5163 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5164 }
5165 else
5166 mark_ptid = ecs->ptid;
5167
719546c4 5168 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5169
5170 /* Likewise the resumed flag. */
719546c4 5171 set_resumed (ecs->target, mark_ptid, false);
372316f1 5172 }
8c90c137 5173
488f131b
JB
5174 switch (ecs->ws.kind)
5175 {
5176 case TARGET_WAITKIND_LOADED:
00431a78 5177 context_switch (ecs);
b0f4b84b
DJ
5178 /* Ignore gracefully during startup of the inferior, as it might
5179 be the shell which has just loaded some objects, otherwise
5180 add the symbols for the newly loaded objects. Also ignore at
5181 the beginning of an attach or remote session; we will query
5182 the full list of libraries once the connection is
5183 established. */
4f5d7f63 5184
00431a78 5185 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5186 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5187 {
edcc5120
TT
5188 struct regcache *regcache;
5189
00431a78 5190 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5191
5192 handle_solib_event ();
5193
5194 ecs->event_thread->control.stop_bpstat
a01bda52 5195 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5196 ecs->event_thread->suspend.stop_pc,
5197 ecs->event_thread, &ecs->ws);
ab04a2af 5198
c65d6b55
PA
5199 if (handle_stop_requested (ecs))
5200 return;
5201
ce12b012 5202 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5203 {
5204 /* A catchpoint triggered. */
94c57d6a
PA
5205 process_event_stop_test (ecs);
5206 return;
edcc5120 5207 }
488f131b 5208
b0f4b84b
DJ
5209 /* If requested, stop when the dynamic linker notifies
5210 gdb of events. This allows the user to get control
5211 and place breakpoints in initializer routines for
5212 dynamically loaded objects (among other things). */
a493e3e2 5213 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5214 if (stop_on_solib_events)
5215 {
55409f9d
DJ
5216 /* Make sure we print "Stopped due to solib-event" in
5217 normal_stop. */
5218 stop_print_frame = 1;
5219
22bcd14b 5220 stop_waiting (ecs);
b0f4b84b
DJ
5221 return;
5222 }
488f131b 5223 }
b0f4b84b
DJ
5224
5225 /* If we are skipping through a shell, or through shared library
5226 loading that we aren't interested in, resume the program. If
5c09a2c5 5227 we're running the program normally, also resume. */
b0f4b84b
DJ
5228 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5229 {
74960c60
VP
5230 /* Loading of shared libraries might have changed breakpoint
5231 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5232 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5233 insert_breakpoints ();
64ce06e4 5234 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5235 prepare_to_wait (ecs);
5236 return;
5237 }
5238
5c09a2c5
PA
5239 /* But stop if we're attaching or setting up a remote
5240 connection. */
5241 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5242 || stop_soon == STOP_QUIETLY_REMOTE)
5243 {
5244 if (debug_infrun)
5245 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5246 stop_waiting (ecs);
5c09a2c5
PA
5247 return;
5248 }
5249
5250 internal_error (__FILE__, __LINE__,
5251 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5252
488f131b 5253 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5254 if (handle_stop_requested (ecs))
5255 return;
00431a78 5256 context_switch (ecs);
64ce06e4 5257 resume (GDB_SIGNAL_0);
488f131b
JB
5258 prepare_to_wait (ecs);
5259 return;
c5aa993b 5260
65706a29 5261 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5262 if (handle_stop_requested (ecs))
5263 return;
00431a78 5264 context_switch (ecs);
65706a29
PA
5265 if (!switch_back_to_stepped_thread (ecs))
5266 keep_going (ecs);
5267 return;
5268
488f131b 5269 case TARGET_WAITKIND_EXITED:
940c3c06 5270 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5271 inferior_ptid = ecs->ptid;
5b6d1e4f 5272 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5273 set_current_program_space (current_inferior ()->pspace);
5274 handle_vfork_child_exec_or_exit (0);
223ffa71 5275 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5276
0c557179
SDJ
5277 /* Clearing any previous state of convenience variables. */
5278 clear_exit_convenience_vars ();
5279
940c3c06
PA
5280 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5281 {
5282 /* Record the exit code in the convenience variable $_exitcode, so
5283 that the user can inspect this again later. */
5284 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5285 (LONGEST) ecs->ws.value.integer);
5286
5287 /* Also record this in the inferior itself. */
5288 current_inferior ()->has_exit_code = 1;
5289 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5290
98eb56a4
PA
5291 /* Support the --return-child-result option. */
5292 return_child_result_value = ecs->ws.value.integer;
5293
76727919 5294 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5295 }
5296 else
0c557179 5297 {
00431a78 5298 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5299
5300 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5301 {
5302 /* Set the value of the internal variable $_exitsignal,
5303 which holds the signal uncaught by the inferior. */
5304 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5305 gdbarch_gdb_signal_to_target (gdbarch,
5306 ecs->ws.value.sig));
5307 }
5308 else
5309 {
5310 /* We don't have access to the target's method used for
5311 converting between signal numbers (GDB's internal
5312 representation <-> target's representation).
5313 Therefore, we cannot do a good job at displaying this
5314 information to the user. It's better to just warn
5315 her about it (if infrun debugging is enabled), and
5316 give up. */
5317 if (debug_infrun)
5318 fprintf_filtered (gdb_stdlog, _("\
5319Cannot fill $_exitsignal with the correct signal number.\n"));
5320 }
5321
76727919 5322 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5323 }
8cf64490 5324
488f131b 5325 gdb_flush (gdb_stdout);
bc1e6c81 5326 target_mourn_inferior (inferior_ptid);
488f131b 5327 stop_print_frame = 0;
22bcd14b 5328 stop_waiting (ecs);
488f131b 5329 return;
c5aa993b 5330
488f131b 5331 case TARGET_WAITKIND_FORKED:
deb3b17b 5332 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5333 /* Check whether the inferior is displaced stepping. */
5334 {
00431a78 5335 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5336 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5337
5338 /* If checking displaced stepping is supported, and thread
5339 ecs->ptid is displaced stepping. */
00431a78 5340 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5341 {
5342 struct inferior *parent_inf
5b6d1e4f 5343 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5344 struct regcache *child_regcache;
5345 CORE_ADDR parent_pc;
5346
d8d83535
SM
5347 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5348 {
5349 struct displaced_step_inferior_state *displaced
5350 = get_displaced_stepping_state (parent_inf);
5351
5352 /* Restore scratch pad for child process. */
5353 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5354 }
5355
e2d96639
YQ
5356 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5357 indicating that the displaced stepping of syscall instruction
5358 has been done. Perform cleanup for parent process here. Note
5359 that this operation also cleans up the child process for vfork,
5360 because their pages are shared. */
00431a78 5361 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5362 /* Start a new step-over in another thread if there's one
5363 that needs it. */
5364 start_step_over ();
e2d96639 5365
e2d96639
YQ
5366 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5367 the child's PC is also within the scratchpad. Set the child's PC
5368 to the parent's PC value, which has already been fixed up.
5369 FIXME: we use the parent's aspace here, although we're touching
5370 the child, because the child hasn't been added to the inferior
5371 list yet at this point. */
5372
5373 child_regcache
5b6d1e4f
PA
5374 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5375 ecs->ws.value.related_pid,
e2d96639
YQ
5376 gdbarch,
5377 parent_inf->aspace);
5378 /* Read PC value of parent process. */
5379 parent_pc = regcache_read_pc (regcache);
5380
5381 if (debug_displaced)
5382 fprintf_unfiltered (gdb_stdlog,
5383 "displaced: write child pc from %s to %s\n",
5384 paddress (gdbarch,
5385 regcache_read_pc (child_regcache)),
5386 paddress (gdbarch, parent_pc));
5387
5388 regcache_write_pc (child_regcache, parent_pc);
5389 }
5390 }
5391
00431a78 5392 context_switch (ecs);
5a2901d9 5393
b242c3c2
PA
5394 /* Immediately detach breakpoints from the child before there's
5395 any chance of letting the user delete breakpoints from the
5396 breakpoint lists. If we don't do this early, it's easy to
5397 leave left over traps in the child, vis: "break foo; catch
5398 fork; c; <fork>; del; c; <child calls foo>". We only follow
5399 the fork on the last `continue', and by that time the
5400 breakpoint at "foo" is long gone from the breakpoint table.
5401 If we vforked, then we don't need to unpatch here, since both
5402 parent and child are sharing the same memory pages; we'll
5403 need to unpatch at follow/detach time instead to be certain
5404 that new breakpoints added between catchpoint hit time and
5405 vfork follow are detached. */
5406 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5407 {
b242c3c2
PA
5408 /* This won't actually modify the breakpoint list, but will
5409 physically remove the breakpoints from the child. */
d80ee84f 5410 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5411 }
5412
34b7e8a6 5413 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5414
e58b0e63
PA
5415 /* In case the event is caught by a catchpoint, remember that
5416 the event is to be followed at the next resume of the thread,
5417 and not immediately. */
5418 ecs->event_thread->pending_follow = ecs->ws;
5419
f2ffa92b
PA
5420 ecs->event_thread->suspend.stop_pc
5421 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5422
16c381f0 5423 ecs->event_thread->control.stop_bpstat
a01bda52 5424 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5425 ecs->event_thread->suspend.stop_pc,
5426 ecs->event_thread, &ecs->ws);
675bf4cb 5427
c65d6b55
PA
5428 if (handle_stop_requested (ecs))
5429 return;
5430
ce12b012
PA
5431 /* If no catchpoint triggered for this, then keep going. Note
5432 that we're interested in knowing the bpstat actually causes a
5433 stop, not just if it may explain the signal. Software
5434 watchpoints, for example, always appear in the bpstat. */
5435 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5436 {
5ab2fbf1 5437 bool follow_child
3e43a32a 5438 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5439
a493e3e2 5440 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5441
5b6d1e4f
PA
5442 process_stratum_target *targ
5443 = ecs->event_thread->inf->process_target ();
5444
5ab2fbf1 5445 bool should_resume = follow_fork ();
e58b0e63 5446
5b6d1e4f
PA
5447 /* Note that one of these may be an invalid pointer,
5448 depending on detach_fork. */
00431a78 5449 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5450 thread_info *child
5451 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5452
a2077e25
PA
5453 /* At this point, the parent is marked running, and the
5454 child is marked stopped. */
5455
5456 /* If not resuming the parent, mark it stopped. */
5457 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5458 parent->set_running (false);
a2077e25
PA
5459
5460 /* If resuming the child, mark it running. */
5461 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5462 child->set_running (true);
a2077e25 5463
6c95b8df 5464 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5465 if (!detach_fork && (non_stop
5466 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5467 {
5468 if (follow_child)
5469 switch_to_thread (parent);
5470 else
5471 switch_to_thread (child);
5472
5473 ecs->event_thread = inferior_thread ();
5474 ecs->ptid = inferior_ptid;
5475 keep_going (ecs);
5476 }
5477
5478 if (follow_child)
5479 switch_to_thread (child);
5480 else
5481 switch_to_thread (parent);
5482
e58b0e63
PA
5483 ecs->event_thread = inferior_thread ();
5484 ecs->ptid = inferior_ptid;
5485
5486 if (should_resume)
5487 keep_going (ecs);
5488 else
22bcd14b 5489 stop_waiting (ecs);
04e68871
DJ
5490 return;
5491 }
94c57d6a
PA
5492 process_event_stop_test (ecs);
5493 return;
488f131b 5494
6c95b8df
PA
5495 case TARGET_WAITKIND_VFORK_DONE:
5496 /* Done with the shared memory region. Re-insert breakpoints in
5497 the parent, and keep going. */
5498
00431a78 5499 context_switch (ecs);
6c95b8df
PA
5500
5501 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5502 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5503
5504 if (handle_stop_requested (ecs))
5505 return;
5506
6c95b8df
PA
5507 /* This also takes care of reinserting breakpoints in the
5508 previously locked inferior. */
5509 keep_going (ecs);
5510 return;
5511
488f131b 5512 case TARGET_WAITKIND_EXECD:
488f131b 5513
cbd2b4e3
PA
5514 /* Note we can't read registers yet (the stop_pc), because we
5515 don't yet know the inferior's post-exec architecture.
5516 'stop_pc' is explicitly read below instead. */
00431a78 5517 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5518
6c95b8df
PA
5519 /* Do whatever is necessary to the parent branch of the vfork. */
5520 handle_vfork_child_exec_or_exit (1);
5521
795e548f
PA
5522 /* This causes the eventpoints and symbol table to be reset.
5523 Must do this now, before trying to determine whether to
5524 stop. */
71b43ef8 5525 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5526
17d8546e
DB
5527 /* In follow_exec we may have deleted the original thread and
5528 created a new one. Make sure that the event thread is the
5529 execd thread for that case (this is a nop otherwise). */
5530 ecs->event_thread = inferior_thread ();
5531
f2ffa92b
PA
5532 ecs->event_thread->suspend.stop_pc
5533 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5534
16c381f0 5535 ecs->event_thread->control.stop_bpstat
a01bda52 5536 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5537 ecs->event_thread->suspend.stop_pc,
5538 ecs->event_thread, &ecs->ws);
795e548f 5539
71b43ef8
PA
5540 /* Note that this may be referenced from inside
5541 bpstat_stop_status above, through inferior_has_execd. */
5542 xfree (ecs->ws.value.execd_pathname);
5543 ecs->ws.value.execd_pathname = NULL;
5544
c65d6b55
PA
5545 if (handle_stop_requested (ecs))
5546 return;
5547
04e68871 5548 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5549 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5550 {
a493e3e2 5551 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5552 keep_going (ecs);
5553 return;
5554 }
94c57d6a
PA
5555 process_event_stop_test (ecs);
5556 return;
488f131b 5557
b4dc5ffa
MK
5558 /* Be careful not to try to gather much state about a thread
5559 that's in a syscall. It's frequently a losing proposition. */
488f131b 5560 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5561 /* Getting the current syscall number. */
94c57d6a
PA
5562 if (handle_syscall_event (ecs) == 0)
5563 process_event_stop_test (ecs);
5564 return;
c906108c 5565
488f131b
JB
5566 /* Before examining the threads further, step this thread to
5567 get it entirely out of the syscall. (We get notice of the
5568 event when the thread is just on the verge of exiting a
5569 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5570 into user code.) */
488f131b 5571 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5572 if (handle_syscall_event (ecs) == 0)
5573 process_event_stop_test (ecs);
5574 return;
c906108c 5575
488f131b 5576 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5577 handle_signal_stop (ecs);
5578 return;
c906108c 5579
b2175913
MS
5580 case TARGET_WAITKIND_NO_HISTORY:
5581 /* Reverse execution: target ran out of history info. */
eab402df 5582
d1988021 5583 /* Switch to the stopped thread. */
00431a78 5584 context_switch (ecs);
d1988021
MM
5585 if (debug_infrun)
5586 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5587
34b7e8a6 5588 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5589 ecs->event_thread->suspend.stop_pc
5590 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5591
5592 if (handle_stop_requested (ecs))
5593 return;
5594
76727919 5595 gdb::observers::no_history.notify ();
22bcd14b 5596 stop_waiting (ecs);
b2175913 5597 return;
488f131b 5598 }
4f5d7f63
PA
5599}
5600
372316f1
PA
5601/* Restart threads back to what they were trying to do back when we
5602 paused them for an in-line step-over. The EVENT_THREAD thread is
5603 ignored. */
4d9d9d04
PA
5604
5605static void
372316f1
PA
5606restart_threads (struct thread_info *event_thread)
5607{
372316f1
PA
5608 /* In case the instruction just stepped spawned a new thread. */
5609 update_thread_list ();
5610
08036331 5611 for (thread_info *tp : all_non_exited_threads ())
372316f1 5612 {
f3f8ece4
PA
5613 switch_to_thread_no_regs (tp);
5614
372316f1
PA
5615 if (tp == event_thread)
5616 {
5617 if (debug_infrun)
5618 fprintf_unfiltered (gdb_stdlog,
5619 "infrun: restart threads: "
5620 "[%s] is event thread\n",
a068643d 5621 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5622 continue;
5623 }
5624
5625 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5626 {
5627 if (debug_infrun)
5628 fprintf_unfiltered (gdb_stdlog,
5629 "infrun: restart threads: "
5630 "[%s] not meant to be running\n",
a068643d 5631 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5632 continue;
5633 }
5634
5635 if (tp->resumed)
5636 {
5637 if (debug_infrun)
5638 fprintf_unfiltered (gdb_stdlog,
5639 "infrun: restart threads: [%s] resumed\n",
a068643d 5640 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5641 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5642 continue;
5643 }
5644
5645 if (thread_is_in_step_over_chain (tp))
5646 {
5647 if (debug_infrun)
5648 fprintf_unfiltered (gdb_stdlog,
5649 "infrun: restart threads: "
5650 "[%s] needs step-over\n",
a068643d 5651 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5652 gdb_assert (!tp->resumed);
5653 continue;
5654 }
5655
5656
5657 if (tp->suspend.waitstatus_pending_p)
5658 {
5659 if (debug_infrun)
5660 fprintf_unfiltered (gdb_stdlog,
5661 "infrun: restart threads: "
5662 "[%s] has pending status\n",
a068643d 5663 target_pid_to_str (tp->ptid).c_str ());
719546c4 5664 tp->resumed = true;
372316f1
PA
5665 continue;
5666 }
5667
c65d6b55
PA
5668 gdb_assert (!tp->stop_requested);
5669
372316f1
PA
5670 /* If some thread needs to start a step-over at this point, it
5671 should still be in the step-over queue, and thus skipped
5672 above. */
5673 if (thread_still_needs_step_over (tp))
5674 {
5675 internal_error (__FILE__, __LINE__,
5676 "thread [%s] needs a step-over, but not in "
5677 "step-over queue\n",
a068643d 5678 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5679 }
5680
5681 if (currently_stepping (tp))
5682 {
5683 if (debug_infrun)
5684 fprintf_unfiltered (gdb_stdlog,
5685 "infrun: restart threads: [%s] was stepping\n",
a068643d 5686 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5687 keep_going_stepped_thread (tp);
5688 }
5689 else
5690 {
5691 struct execution_control_state ecss;
5692 struct execution_control_state *ecs = &ecss;
5693
5694 if (debug_infrun)
5695 fprintf_unfiltered (gdb_stdlog,
5696 "infrun: restart threads: [%s] continuing\n",
a068643d 5697 target_pid_to_str (tp->ptid).c_str ());
372316f1 5698 reset_ecs (ecs, tp);
00431a78 5699 switch_to_thread (tp);
372316f1
PA
5700 keep_going_pass_signal (ecs);
5701 }
5702 }
5703}
5704
5705/* Callback for iterate_over_threads. Find a resumed thread that has
5706 a pending waitstatus. */
5707
5708static int
5709resumed_thread_with_pending_status (struct thread_info *tp,
5710 void *arg)
5711{
5712 return (tp->resumed
5713 && tp->suspend.waitstatus_pending_p);
5714}
5715
5716/* Called when we get an event that may finish an in-line or
5717 out-of-line (displaced stepping) step-over started previously.
5718 Return true if the event is processed and we should go back to the
5719 event loop; false if the caller should continue processing the
5720 event. */
5721
5722static int
4d9d9d04
PA
5723finish_step_over (struct execution_control_state *ecs)
5724{
372316f1
PA
5725 int had_step_over_info;
5726
00431a78 5727 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5728 ecs->event_thread->suspend.stop_signal);
5729
372316f1
PA
5730 had_step_over_info = step_over_info_valid_p ();
5731
5732 if (had_step_over_info)
4d9d9d04
PA
5733 {
5734 /* If we're stepping over a breakpoint with all threads locked,
5735 then only the thread that was stepped should be reporting
5736 back an event. */
5737 gdb_assert (ecs->event_thread->control.trap_expected);
5738
c65d6b55 5739 clear_step_over_info ();
4d9d9d04
PA
5740 }
5741
fbea99ea 5742 if (!target_is_non_stop_p ())
372316f1 5743 return 0;
4d9d9d04
PA
5744
5745 /* Start a new step-over in another thread if there's one that
5746 needs it. */
5747 start_step_over ();
372316f1
PA
5748
5749 /* If we were stepping over a breakpoint before, and haven't started
5750 a new in-line step-over sequence, then restart all other threads
5751 (except the event thread). We can't do this in all-stop, as then
5752 e.g., we wouldn't be able to issue any other remote packet until
5753 these other threads stop. */
5754 if (had_step_over_info && !step_over_info_valid_p ())
5755 {
5756 struct thread_info *pending;
5757
5758 /* If we only have threads with pending statuses, the restart
5759 below won't restart any thread and so nothing re-inserts the
5760 breakpoint we just stepped over. But we need it inserted
5761 when we later process the pending events, otherwise if
5762 another thread has a pending event for this breakpoint too,
5763 we'd discard its event (because the breakpoint that
5764 originally caused the event was no longer inserted). */
00431a78 5765 context_switch (ecs);
372316f1
PA
5766 insert_breakpoints ();
5767
5768 restart_threads (ecs->event_thread);
5769
5770 /* If we have events pending, go through handle_inferior_event
5771 again, picking up a pending event at random. This avoids
5772 thread starvation. */
5773
5774 /* But not if we just stepped over a watchpoint in order to let
5775 the instruction execute so we can evaluate its expression.
5776 The set of watchpoints that triggered is recorded in the
5777 breakpoint objects themselves (see bp->watchpoint_triggered).
5778 If we processed another event first, that other event could
5779 clobber this info. */
5780 if (ecs->event_thread->stepping_over_watchpoint)
5781 return 0;
5782
5783 pending = iterate_over_threads (resumed_thread_with_pending_status,
5784 NULL);
5785 if (pending != NULL)
5786 {
5787 struct thread_info *tp = ecs->event_thread;
5788 struct regcache *regcache;
5789
5790 if (debug_infrun)
5791 {
5792 fprintf_unfiltered (gdb_stdlog,
5793 "infrun: found resumed threads with "
5794 "pending events, saving status\n");
5795 }
5796
5797 gdb_assert (pending != tp);
5798
5799 /* Record the event thread's event for later. */
5800 save_waitstatus (tp, &ecs->ws);
5801 /* This was cleared early, by handle_inferior_event. Set it
5802 so this pending event is considered by
5803 do_target_wait. */
719546c4 5804 tp->resumed = true;
372316f1
PA
5805
5806 gdb_assert (!tp->executing);
5807
00431a78 5808 regcache = get_thread_regcache (tp);
372316f1
PA
5809 tp->suspend.stop_pc = regcache_read_pc (regcache);
5810
5811 if (debug_infrun)
5812 {
5813 fprintf_unfiltered (gdb_stdlog,
5814 "infrun: saved stop_pc=%s for %s "
5815 "(currently_stepping=%d)\n",
5816 paddress (target_gdbarch (),
5817 tp->suspend.stop_pc),
a068643d 5818 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5819 currently_stepping (tp));
5820 }
5821
5822 /* This in-line step-over finished; clear this so we won't
5823 start a new one. This is what handle_signal_stop would
5824 do, if we returned false. */
5825 tp->stepping_over_breakpoint = 0;
5826
5827 /* Wake up the event loop again. */
5828 mark_async_event_handler (infrun_async_inferior_event_token);
5829
5830 prepare_to_wait (ecs);
5831 return 1;
5832 }
5833 }
5834
5835 return 0;
4d9d9d04
PA
5836}
5837
4f5d7f63
PA
5838/* Come here when the program has stopped with a signal. */
5839
5840static void
5841handle_signal_stop (struct execution_control_state *ecs)
5842{
5843 struct frame_info *frame;
5844 struct gdbarch *gdbarch;
5845 int stopped_by_watchpoint;
5846 enum stop_kind stop_soon;
5847 int random_signal;
c906108c 5848
f0407826
DE
5849 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5850
c65d6b55
PA
5851 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5852
f0407826
DE
5853 /* Do we need to clean up the state of a thread that has
5854 completed a displaced single-step? (Doing so usually affects
5855 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5856 if (finish_step_over (ecs))
5857 return;
f0407826
DE
5858
5859 /* If we either finished a single-step or hit a breakpoint, but
5860 the user wanted this thread to be stopped, pretend we got a
5861 SIG0 (generic unsignaled stop). */
5862 if (ecs->event_thread->stop_requested
5863 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5864 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5865
f2ffa92b
PA
5866 ecs->event_thread->suspend.stop_pc
5867 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5868
527159b7 5869 if (debug_infrun)
237fc4c9 5870 {
00431a78 5871 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5872 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5873
f3f8ece4 5874 switch_to_thread (ecs->event_thread);
5af949e3
UW
5875
5876 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5877 paddress (reg_gdbarch,
f2ffa92b 5878 ecs->event_thread->suspend.stop_pc));
d92524f1 5879 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5880 {
5881 CORE_ADDR addr;
abbb1732 5882
237fc4c9
PA
5883 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5884
8b88a78e 5885 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5886 fprintf_unfiltered (gdb_stdlog,
5af949e3 5887 "infrun: stopped data address = %s\n",
b926417a 5888 paddress (reg_gdbarch, addr));
237fc4c9
PA
5889 else
5890 fprintf_unfiltered (gdb_stdlog,
5891 "infrun: (no data address available)\n");
5892 }
5893 }
527159b7 5894
36fa8042
PA
5895 /* This is originated from start_remote(), start_inferior() and
5896 shared libraries hook functions. */
00431a78 5897 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5898 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5899 {
00431a78 5900 context_switch (ecs);
36fa8042
PA
5901 if (debug_infrun)
5902 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5903 stop_print_frame = 1;
22bcd14b 5904 stop_waiting (ecs);
36fa8042
PA
5905 return;
5906 }
5907
36fa8042
PA
5908 /* This originates from attach_command(). We need to overwrite
5909 the stop_signal here, because some kernels don't ignore a
5910 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5911 See more comments in inferior.h. On the other hand, if we
5912 get a non-SIGSTOP, report it to the user - assume the backend
5913 will handle the SIGSTOP if it should show up later.
5914
5915 Also consider that the attach is complete when we see a
5916 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5917 target extended-remote report it instead of a SIGSTOP
5918 (e.g. gdbserver). We already rely on SIGTRAP being our
5919 signal, so this is no exception.
5920
5921 Also consider that the attach is complete when we see a
5922 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5923 the target to stop all threads of the inferior, in case the
5924 low level attach operation doesn't stop them implicitly. If
5925 they weren't stopped implicitly, then the stub will report a
5926 GDB_SIGNAL_0, meaning: stopped for no particular reason
5927 other than GDB's request. */
5928 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5929 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5930 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5931 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5932 {
5933 stop_print_frame = 1;
22bcd14b 5934 stop_waiting (ecs);
36fa8042
PA
5935 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5936 return;
5937 }
5938
488f131b 5939 /* See if something interesting happened to the non-current thread. If
b40c7d58 5940 so, then switch to that thread. */
d7e15655 5941 if (ecs->ptid != inferior_ptid)
488f131b 5942 {
527159b7 5943 if (debug_infrun)
8a9de0e4 5944 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5945
00431a78 5946 context_switch (ecs);
c5aa993b 5947
9a4105ab 5948 if (deprecated_context_hook)
00431a78 5949 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5950 }
c906108c 5951
568d6575
UW
5952 /* At this point, get hold of the now-current thread's frame. */
5953 frame = get_current_frame ();
5954 gdbarch = get_frame_arch (frame);
5955
2adfaa28 5956 /* Pull the single step breakpoints out of the target. */
af48d08f 5957 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5958 {
af48d08f 5959 struct regcache *regcache;
af48d08f 5960 CORE_ADDR pc;
2adfaa28 5961
00431a78 5962 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5963 const address_space *aspace = regcache->aspace ();
5964
af48d08f 5965 pc = regcache_read_pc (regcache);
34b7e8a6 5966
af48d08f
PA
5967 /* However, before doing so, if this single-step breakpoint was
5968 actually for another thread, set this thread up for moving
5969 past it. */
5970 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5971 aspace, pc))
5972 {
5973 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5974 {
5975 if (debug_infrun)
5976 {
5977 fprintf_unfiltered (gdb_stdlog,
af48d08f 5978 "infrun: [%s] hit another thread's "
34b7e8a6 5979 "single-step breakpoint\n",
a068643d 5980 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5981 }
af48d08f
PA
5982 ecs->hit_singlestep_breakpoint = 1;
5983 }
5984 }
5985 else
5986 {
5987 if (debug_infrun)
5988 {
5989 fprintf_unfiltered (gdb_stdlog,
5990 "infrun: [%s] hit its "
5991 "single-step breakpoint\n",
a068643d 5992 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5993 }
5994 }
488f131b 5995 }
af48d08f 5996 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5997
963f9c80
PA
5998 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5999 && ecs->event_thread->control.trap_expected
6000 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6001 stopped_by_watchpoint = 0;
6002 else
6003 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6004
6005 /* If necessary, step over this watchpoint. We'll be back to display
6006 it in a moment. */
6007 if (stopped_by_watchpoint
d92524f1 6008 && (target_have_steppable_watchpoint
568d6575 6009 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6010 {
488f131b
JB
6011 /* At this point, we are stopped at an instruction which has
6012 attempted to write to a piece of memory under control of
6013 a watchpoint. The instruction hasn't actually executed
6014 yet. If we were to evaluate the watchpoint expression
6015 now, we would get the old value, and therefore no change
6016 would seem to have occurred.
6017
6018 In order to make watchpoints work `right', we really need
6019 to complete the memory write, and then evaluate the
d983da9c
DJ
6020 watchpoint expression. We do this by single-stepping the
6021 target.
6022
7f89fd65 6023 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6024 it. For example, the PA can (with some kernel cooperation)
6025 single step over a watchpoint without disabling the watchpoint.
6026
6027 It is far more common to need to disable a watchpoint to step
6028 the inferior over it. If we have non-steppable watchpoints,
6029 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6030 disable all watchpoints.
6031
6032 Any breakpoint at PC must also be stepped over -- if there's
6033 one, it will have already triggered before the watchpoint
6034 triggered, and we either already reported it to the user, or
6035 it didn't cause a stop and we called keep_going. In either
6036 case, if there was a breakpoint at PC, we must be trying to
6037 step past it. */
6038 ecs->event_thread->stepping_over_watchpoint = 1;
6039 keep_going (ecs);
488f131b
JB
6040 return;
6041 }
6042
4e1c45ea 6043 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6044 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6045 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6046 ecs->event_thread->control.stop_step = 0;
488f131b 6047 stop_print_frame = 1;
488f131b 6048 stopped_by_random_signal = 0;
ddfe970e 6049 bpstat stop_chain = NULL;
488f131b 6050
edb3359d
DJ
6051 /* Hide inlined functions starting here, unless we just performed stepi or
6052 nexti. After stepi and nexti, always show the innermost frame (not any
6053 inline function call sites). */
16c381f0 6054 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6055 {
00431a78
PA
6056 const address_space *aspace
6057 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6058
6059 /* skip_inline_frames is expensive, so we avoid it if we can
6060 determine that the address is one where functions cannot have
6061 been inlined. This improves performance with inferiors that
6062 load a lot of shared libraries, because the solib event
6063 breakpoint is defined as the address of a function (i.e. not
6064 inline). Note that we have to check the previous PC as well
6065 as the current one to catch cases when we have just
6066 single-stepped off a breakpoint prior to reinstating it.
6067 Note that we're assuming that the code we single-step to is
6068 not inline, but that's not definitive: there's nothing
6069 preventing the event breakpoint function from containing
6070 inlined code, and the single-step ending up there. If the
6071 user had set a breakpoint on that inlined code, the missing
6072 skip_inline_frames call would break things. Fortunately
6073 that's an extremely unlikely scenario. */
f2ffa92b
PA
6074 if (!pc_at_non_inline_function (aspace,
6075 ecs->event_thread->suspend.stop_pc,
6076 &ecs->ws)
a210c238
MR
6077 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6078 && ecs->event_thread->control.trap_expected
6079 && pc_at_non_inline_function (aspace,
6080 ecs->event_thread->prev_pc,
09ac7c10 6081 &ecs->ws)))
1c5a993e 6082 {
f2ffa92b
PA
6083 stop_chain = build_bpstat_chain (aspace,
6084 ecs->event_thread->suspend.stop_pc,
6085 &ecs->ws);
00431a78 6086 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6087
6088 /* Re-fetch current thread's frame in case that invalidated
6089 the frame cache. */
6090 frame = get_current_frame ();
6091 gdbarch = get_frame_arch (frame);
6092 }
0574c78f 6093 }
edb3359d 6094
a493e3e2 6095 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6096 && ecs->event_thread->control.trap_expected
568d6575 6097 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6098 && currently_stepping (ecs->event_thread))
3352ef37 6099 {
b50d7442 6100 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6101 also on an instruction that needs to be stepped multiple
1777feb0 6102 times before it's been fully executing. E.g., architectures
3352ef37
AC
6103 with a delay slot. It needs to be stepped twice, once for
6104 the instruction and once for the delay slot. */
6105 int step_through_delay
568d6575 6106 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6107
527159b7 6108 if (debug_infrun && step_through_delay)
8a9de0e4 6109 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6110 if (ecs->event_thread->control.step_range_end == 0
6111 && step_through_delay)
3352ef37
AC
6112 {
6113 /* The user issued a continue when stopped at a breakpoint.
6114 Set up for another trap and get out of here. */
4e1c45ea 6115 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6116 keep_going (ecs);
6117 return;
6118 }
6119 else if (step_through_delay)
6120 {
6121 /* The user issued a step when stopped at a breakpoint.
6122 Maybe we should stop, maybe we should not - the delay
6123 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6124 case, don't decide that here, just set
6125 ecs->stepping_over_breakpoint, making sure we
6126 single-step again before breakpoints are re-inserted. */
4e1c45ea 6127 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6128 }
6129 }
6130
ab04a2af
TT
6131 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6132 handles this event. */
6133 ecs->event_thread->control.stop_bpstat
a01bda52 6134 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6135 ecs->event_thread->suspend.stop_pc,
6136 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6137
ab04a2af
TT
6138 /* Following in case break condition called a
6139 function. */
6140 stop_print_frame = 1;
73dd234f 6141
ab04a2af
TT
6142 /* This is where we handle "moribund" watchpoints. Unlike
6143 software breakpoints traps, hardware watchpoint traps are
6144 always distinguishable from random traps. If no high-level
6145 watchpoint is associated with the reported stop data address
6146 anymore, then the bpstat does not explain the signal ---
6147 simply make sure to ignore it if `stopped_by_watchpoint' is
6148 set. */
6149
6150 if (debug_infrun
6151 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6152 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6153 GDB_SIGNAL_TRAP)
ab04a2af
TT
6154 && stopped_by_watchpoint)
6155 fprintf_unfiltered (gdb_stdlog,
6156 "infrun: no user watchpoint explains "
6157 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6158
bac7d97b 6159 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6160 at one stage in the past included checks for an inferior
6161 function call's call dummy's return breakpoint. The original
6162 comment, that went with the test, read:
03cebad2 6163
ab04a2af
TT
6164 ``End of a stack dummy. Some systems (e.g. Sony news) give
6165 another signal besides SIGTRAP, so check here as well as
6166 above.''
73dd234f 6167
ab04a2af
TT
6168 If someone ever tries to get call dummys on a
6169 non-executable stack to work (where the target would stop
6170 with something like a SIGSEGV), then those tests might need
6171 to be re-instated. Given, however, that the tests were only
6172 enabled when momentary breakpoints were not being used, I
6173 suspect that it won't be the case.
488f131b 6174
ab04a2af
TT
6175 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6176 be necessary for call dummies on a non-executable stack on
6177 SPARC. */
488f131b 6178
bac7d97b 6179 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6180 random_signal
6181 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6182 ecs->event_thread->suspend.stop_signal);
bac7d97b 6183
1cf4d951
PA
6184 /* Maybe this was a trap for a software breakpoint that has since
6185 been removed. */
6186 if (random_signal && target_stopped_by_sw_breakpoint ())
6187 {
5133a315
LM
6188 if (gdbarch_program_breakpoint_here_p (gdbarch,
6189 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6190 {
6191 struct regcache *regcache;
6192 int decr_pc;
6193
6194 /* Re-adjust PC to what the program would see if GDB was not
6195 debugging it. */
00431a78 6196 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6197 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6198 if (decr_pc != 0)
6199 {
07036511
TT
6200 gdb::optional<scoped_restore_tmpl<int>>
6201 restore_operation_disable;
1cf4d951
PA
6202
6203 if (record_full_is_used ())
07036511
TT
6204 restore_operation_disable.emplace
6205 (record_full_gdb_operation_disable_set ());
1cf4d951 6206
f2ffa92b
PA
6207 regcache_write_pc (regcache,
6208 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6209 }
6210 }
6211 else
6212 {
6213 /* A delayed software breakpoint event. Ignore the trap. */
6214 if (debug_infrun)
6215 fprintf_unfiltered (gdb_stdlog,
6216 "infrun: delayed software breakpoint "
6217 "trap, ignoring\n");
6218 random_signal = 0;
6219 }
6220 }
6221
6222 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6223 has since been removed. */
6224 if (random_signal && target_stopped_by_hw_breakpoint ())
6225 {
6226 /* A delayed hardware breakpoint event. Ignore the trap. */
6227 if (debug_infrun)
6228 fprintf_unfiltered (gdb_stdlog,
6229 "infrun: delayed hardware breakpoint/watchpoint "
6230 "trap, ignoring\n");
6231 random_signal = 0;
6232 }
6233
bac7d97b
PA
6234 /* If not, perhaps stepping/nexting can. */
6235 if (random_signal)
6236 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6237 && currently_stepping (ecs->event_thread));
ab04a2af 6238
2adfaa28
PA
6239 /* Perhaps the thread hit a single-step breakpoint of _another_
6240 thread. Single-step breakpoints are transparent to the
6241 breakpoints module. */
6242 if (random_signal)
6243 random_signal = !ecs->hit_singlestep_breakpoint;
6244
bac7d97b
PA
6245 /* No? Perhaps we got a moribund watchpoint. */
6246 if (random_signal)
6247 random_signal = !stopped_by_watchpoint;
ab04a2af 6248
c65d6b55
PA
6249 /* Always stop if the user explicitly requested this thread to
6250 remain stopped. */
6251 if (ecs->event_thread->stop_requested)
6252 {
6253 random_signal = 1;
6254 if (debug_infrun)
6255 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6256 }
6257
488f131b
JB
6258 /* For the program's own signals, act according to
6259 the signal handling tables. */
6260
ce12b012 6261 if (random_signal)
488f131b
JB
6262 {
6263 /* Signal not for debugging purposes. */
5b6d1e4f 6264 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6265 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6266
527159b7 6267 if (debug_infrun)
c9737c08
PA
6268 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6269 gdb_signal_to_symbol_string (stop_signal));
527159b7 6270
488f131b
JB
6271 stopped_by_random_signal = 1;
6272
252fbfc8
PA
6273 /* Always stop on signals if we're either just gaining control
6274 of the program, or the user explicitly requested this thread
6275 to remain stopped. */
d6b48e9c 6276 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6277 || ecs->event_thread->stop_requested
24291992 6278 || (!inf->detaching
16c381f0 6279 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6280 {
22bcd14b 6281 stop_waiting (ecs);
488f131b
JB
6282 return;
6283 }
b57bacec
PA
6284
6285 /* Notify observers the signal has "handle print" set. Note we
6286 returned early above if stopping; normal_stop handles the
6287 printing in that case. */
6288 if (signal_print[ecs->event_thread->suspend.stop_signal])
6289 {
6290 /* The signal table tells us to print about this signal. */
223ffa71 6291 target_terminal::ours_for_output ();
76727919 6292 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6293 target_terminal::inferior ();
b57bacec 6294 }
488f131b
JB
6295
6296 /* Clear the signal if it should not be passed. */
16c381f0 6297 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6298 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6299
f2ffa92b 6300 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6301 && ecs->event_thread->control.trap_expected
8358c15c 6302 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6303 {
6304 /* We were just starting a new sequence, attempting to
6305 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6306 Instead this signal arrives. This signal will take us out
68f53502
AC
6307 of the stepping range so GDB needs to remember to, when
6308 the signal handler returns, resume stepping off that
6309 breakpoint. */
6310 /* To simplify things, "continue" is forced to use the same
6311 code paths as single-step - set a breakpoint at the
6312 signal return address and then, once hit, step off that
6313 breakpoint. */
237fc4c9
PA
6314 if (debug_infrun)
6315 fprintf_unfiltered (gdb_stdlog,
6316 "infrun: signal arrived while stepping over "
6317 "breakpoint\n");
d3169d93 6318
2c03e5be 6319 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6320 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6321 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6322 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6323
6324 /* If we were nexting/stepping some other thread, switch to
6325 it, so that we don't continue it, losing control. */
6326 if (!switch_back_to_stepped_thread (ecs))
6327 keep_going (ecs);
9d799f85 6328 return;
68f53502 6329 }
9d799f85 6330
e5f8a7cc 6331 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6332 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6333 ecs->event_thread)
e5f8a7cc 6334 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6335 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6336 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6337 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6338 {
6339 /* The inferior is about to take a signal that will take it
6340 out of the single step range. Set a breakpoint at the
6341 current PC (which is presumably where the signal handler
6342 will eventually return) and then allow the inferior to
6343 run free.
6344
6345 Note that this is only needed for a signal delivered
6346 while in the single-step range. Nested signals aren't a
6347 problem as they eventually all return. */
237fc4c9
PA
6348 if (debug_infrun)
6349 fprintf_unfiltered (gdb_stdlog,
6350 "infrun: signal may take us out of "
6351 "single-step range\n");
6352
372316f1 6353 clear_step_over_info ();
2c03e5be 6354 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6355 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6356 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6357 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6358 keep_going (ecs);
6359 return;
d303a6c7 6360 }
9d799f85 6361
85102364 6362 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6363 when either there's a nested signal, or when there's a
6364 pending signal enabled just as the signal handler returns
6365 (leaving the inferior at the step-resume-breakpoint without
6366 actually executing it). Either way continue until the
6367 breakpoint is really hit. */
c447ac0b
PA
6368
6369 if (!switch_back_to_stepped_thread (ecs))
6370 {
6371 if (debug_infrun)
6372 fprintf_unfiltered (gdb_stdlog,
6373 "infrun: random signal, keep going\n");
6374
6375 keep_going (ecs);
6376 }
6377 return;
488f131b 6378 }
94c57d6a
PA
6379
6380 process_event_stop_test (ecs);
6381}
6382
6383/* Come here when we've got some debug event / signal we can explain
6384 (IOW, not a random signal), and test whether it should cause a
6385 stop, or whether we should resume the inferior (transparently).
6386 E.g., could be a breakpoint whose condition evaluates false; we
6387 could be still stepping within the line; etc. */
6388
6389static void
6390process_event_stop_test (struct execution_control_state *ecs)
6391{
6392 struct symtab_and_line stop_pc_sal;
6393 struct frame_info *frame;
6394 struct gdbarch *gdbarch;
cdaa5b73
PA
6395 CORE_ADDR jmp_buf_pc;
6396 struct bpstat_what what;
94c57d6a 6397
cdaa5b73 6398 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6399
cdaa5b73
PA
6400 frame = get_current_frame ();
6401 gdbarch = get_frame_arch (frame);
fcf3daef 6402
cdaa5b73 6403 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6404
cdaa5b73
PA
6405 if (what.call_dummy)
6406 {
6407 stop_stack_dummy = what.call_dummy;
6408 }
186c406b 6409
243a9253
PA
6410 /* A few breakpoint types have callbacks associated (e.g.,
6411 bp_jit_event). Run them now. */
6412 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6413
cdaa5b73
PA
6414 /* If we hit an internal event that triggers symbol changes, the
6415 current frame will be invalidated within bpstat_what (e.g., if we
6416 hit an internal solib event). Re-fetch it. */
6417 frame = get_current_frame ();
6418 gdbarch = get_frame_arch (frame);
e2e4d78b 6419
cdaa5b73
PA
6420 switch (what.main_action)
6421 {
6422 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6423 /* If we hit the breakpoint at longjmp while stepping, we
6424 install a momentary breakpoint at the target of the
6425 jmp_buf. */
186c406b 6426
cdaa5b73
PA
6427 if (debug_infrun)
6428 fprintf_unfiltered (gdb_stdlog,
6429 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6430
cdaa5b73 6431 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6432
cdaa5b73
PA
6433 if (what.is_longjmp)
6434 {
6435 struct value *arg_value;
6436
6437 /* If we set the longjmp breakpoint via a SystemTap probe,
6438 then use it to extract the arguments. The destination PC
6439 is the third argument to the probe. */
6440 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6441 if (arg_value)
8fa0c4f8
AA
6442 {
6443 jmp_buf_pc = value_as_address (arg_value);
6444 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6445 }
cdaa5b73
PA
6446 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6447 || !gdbarch_get_longjmp_target (gdbarch,
6448 frame, &jmp_buf_pc))
e2e4d78b 6449 {
cdaa5b73
PA
6450 if (debug_infrun)
6451 fprintf_unfiltered (gdb_stdlog,
6452 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6453 "(!gdbarch_get_longjmp_target)\n");
6454 keep_going (ecs);
6455 return;
e2e4d78b 6456 }
e2e4d78b 6457
cdaa5b73
PA
6458 /* Insert a breakpoint at resume address. */
6459 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6460 }
6461 else
6462 check_exception_resume (ecs, frame);
6463 keep_going (ecs);
6464 return;
e81a37f7 6465
cdaa5b73
PA
6466 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6467 {
6468 struct frame_info *init_frame;
e81a37f7 6469
cdaa5b73 6470 /* There are several cases to consider.
c906108c 6471
cdaa5b73
PA
6472 1. The initiating frame no longer exists. In this case we
6473 must stop, because the exception or longjmp has gone too
6474 far.
2c03e5be 6475
cdaa5b73
PA
6476 2. The initiating frame exists, and is the same as the
6477 current frame. We stop, because the exception or longjmp
6478 has been caught.
2c03e5be 6479
cdaa5b73
PA
6480 3. The initiating frame exists and is different from the
6481 current frame. This means the exception or longjmp has
6482 been caught beneath the initiating frame, so keep going.
c906108c 6483
cdaa5b73
PA
6484 4. longjmp breakpoint has been placed just to protect
6485 against stale dummy frames and user is not interested in
6486 stopping around longjmps. */
c5aa993b 6487
cdaa5b73
PA
6488 if (debug_infrun)
6489 fprintf_unfiltered (gdb_stdlog,
6490 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6491
cdaa5b73
PA
6492 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6493 != NULL);
6494 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6495
cdaa5b73
PA
6496 if (what.is_longjmp)
6497 {
b67a2c6f 6498 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6499
cdaa5b73 6500 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6501 {
cdaa5b73
PA
6502 /* Case 4. */
6503 keep_going (ecs);
6504 return;
e5ef252a 6505 }
cdaa5b73 6506 }
c5aa993b 6507
cdaa5b73 6508 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6509
cdaa5b73
PA
6510 if (init_frame)
6511 {
6512 struct frame_id current_id
6513 = get_frame_id (get_current_frame ());
6514 if (frame_id_eq (current_id,
6515 ecs->event_thread->initiating_frame))
6516 {
6517 /* Case 2. Fall through. */
6518 }
6519 else
6520 {
6521 /* Case 3. */
6522 keep_going (ecs);
6523 return;
6524 }
68f53502 6525 }
488f131b 6526
cdaa5b73
PA
6527 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6528 exists. */
6529 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6530
bdc36728 6531 end_stepping_range (ecs);
cdaa5b73
PA
6532 }
6533 return;
e5ef252a 6534
cdaa5b73
PA
6535 case BPSTAT_WHAT_SINGLE:
6536 if (debug_infrun)
6537 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6538 ecs->event_thread->stepping_over_breakpoint = 1;
6539 /* Still need to check other stuff, at least the case where we
6540 are stepping and step out of the right range. */
6541 break;
e5ef252a 6542
cdaa5b73
PA
6543 case BPSTAT_WHAT_STEP_RESUME:
6544 if (debug_infrun)
6545 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6546
cdaa5b73
PA
6547 delete_step_resume_breakpoint (ecs->event_thread);
6548 if (ecs->event_thread->control.proceed_to_finish
6549 && execution_direction == EXEC_REVERSE)
6550 {
6551 struct thread_info *tp = ecs->event_thread;
6552
6553 /* We are finishing a function in reverse, and just hit the
6554 step-resume breakpoint at the start address of the
6555 function, and we're almost there -- just need to back up
6556 by one more single-step, which should take us back to the
6557 function call. */
6558 tp->control.step_range_start = tp->control.step_range_end = 1;
6559 keep_going (ecs);
e5ef252a 6560 return;
cdaa5b73
PA
6561 }
6562 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6563 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6564 && execution_direction == EXEC_REVERSE)
6565 {
6566 /* We are stepping over a function call in reverse, and just
6567 hit the step-resume breakpoint at the start address of
6568 the function. Go back to single-stepping, which should
6569 take us back to the function call. */
6570 ecs->event_thread->stepping_over_breakpoint = 1;
6571 keep_going (ecs);
6572 return;
6573 }
6574 break;
e5ef252a 6575
cdaa5b73
PA
6576 case BPSTAT_WHAT_STOP_NOISY:
6577 if (debug_infrun)
6578 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6579 stop_print_frame = 1;
e5ef252a 6580
99619bea
PA
6581 /* Assume the thread stopped for a breapoint. We'll still check
6582 whether a/the breakpoint is there when the thread is next
6583 resumed. */
6584 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6585
22bcd14b 6586 stop_waiting (ecs);
cdaa5b73 6587 return;
e5ef252a 6588
cdaa5b73
PA
6589 case BPSTAT_WHAT_STOP_SILENT:
6590 if (debug_infrun)
6591 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6592 stop_print_frame = 0;
e5ef252a 6593
99619bea
PA
6594 /* Assume the thread stopped for a breapoint. We'll still check
6595 whether a/the breakpoint is there when the thread is next
6596 resumed. */
6597 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6598 stop_waiting (ecs);
cdaa5b73
PA
6599 return;
6600
6601 case BPSTAT_WHAT_HP_STEP_RESUME:
6602 if (debug_infrun)
6603 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6604
6605 delete_step_resume_breakpoint (ecs->event_thread);
6606 if (ecs->event_thread->step_after_step_resume_breakpoint)
6607 {
6608 /* Back when the step-resume breakpoint was inserted, we
6609 were trying to single-step off a breakpoint. Go back to
6610 doing that. */
6611 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6612 ecs->event_thread->stepping_over_breakpoint = 1;
6613 keep_going (ecs);
6614 return;
e5ef252a 6615 }
cdaa5b73
PA
6616 break;
6617
6618 case BPSTAT_WHAT_KEEP_CHECKING:
6619 break;
e5ef252a 6620 }
c906108c 6621
af48d08f
PA
6622 /* If we stepped a permanent breakpoint and we had a high priority
6623 step-resume breakpoint for the address we stepped, but we didn't
6624 hit it, then we must have stepped into the signal handler. The
6625 step-resume was only necessary to catch the case of _not_
6626 stepping into the handler, so delete it, and fall through to
6627 checking whether the step finished. */
6628 if (ecs->event_thread->stepped_breakpoint)
6629 {
6630 struct breakpoint *sr_bp
6631 = ecs->event_thread->control.step_resume_breakpoint;
6632
8d707a12
PA
6633 if (sr_bp != NULL
6634 && sr_bp->loc->permanent
af48d08f
PA
6635 && sr_bp->type == bp_hp_step_resume
6636 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6637 {
6638 if (debug_infrun)
6639 fprintf_unfiltered (gdb_stdlog,
6640 "infrun: stepped permanent breakpoint, stopped in "
6641 "handler\n");
6642 delete_step_resume_breakpoint (ecs->event_thread);
6643 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6644 }
6645 }
6646
cdaa5b73
PA
6647 /* We come here if we hit a breakpoint but should not stop for it.
6648 Possibly we also were stepping and should stop for that. So fall
6649 through and test for stepping. But, if not stepping, do not
6650 stop. */
c906108c 6651
a7212384
UW
6652 /* In all-stop mode, if we're currently stepping but have stopped in
6653 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6654 if (switch_back_to_stepped_thread (ecs))
6655 return;
776f04fa 6656
8358c15c 6657 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6658 {
527159b7 6659 if (debug_infrun)
d3169d93
DJ
6660 fprintf_unfiltered (gdb_stdlog,
6661 "infrun: step-resume breakpoint is inserted\n");
527159b7 6662
488f131b
JB
6663 /* Having a step-resume breakpoint overrides anything
6664 else having to do with stepping commands until
6665 that breakpoint is reached. */
488f131b
JB
6666 keep_going (ecs);
6667 return;
6668 }
c5aa993b 6669
16c381f0 6670 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6671 {
527159b7 6672 if (debug_infrun)
8a9de0e4 6673 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6674 /* Likewise if we aren't even stepping. */
488f131b
JB
6675 keep_going (ecs);
6676 return;
6677 }
c5aa993b 6678
4b7703ad
JB
6679 /* Re-fetch current thread's frame in case the code above caused
6680 the frame cache to be re-initialized, making our FRAME variable
6681 a dangling pointer. */
6682 frame = get_current_frame ();
628fe4e4 6683 gdbarch = get_frame_arch (frame);
7e324e48 6684 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6685
488f131b 6686 /* If stepping through a line, keep going if still within it.
c906108c 6687
488f131b
JB
6688 Note that step_range_end is the address of the first instruction
6689 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6690 within it!
6691
6692 Note also that during reverse execution, we may be stepping
6693 through a function epilogue and therefore must detect when
6694 the current-frame changes in the middle of a line. */
6695
f2ffa92b
PA
6696 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6697 ecs->event_thread)
31410e84 6698 && (execution_direction != EXEC_REVERSE
388a8562 6699 || frame_id_eq (get_frame_id (frame),
16c381f0 6700 ecs->event_thread->control.step_frame_id)))
488f131b 6701 {
527159b7 6702 if (debug_infrun)
5af949e3
UW
6703 fprintf_unfiltered
6704 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6705 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6706 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6707
c1e36e3e
PA
6708 /* Tentatively re-enable range stepping; `resume' disables it if
6709 necessary (e.g., if we're stepping over a breakpoint or we
6710 have software watchpoints). */
6711 ecs->event_thread->control.may_range_step = 1;
6712
b2175913
MS
6713 /* When stepping backward, stop at beginning of line range
6714 (unless it's the function entry point, in which case
6715 keep going back to the call point). */
f2ffa92b 6716 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6717 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6718 && stop_pc != ecs->stop_func_start
6719 && execution_direction == EXEC_REVERSE)
bdc36728 6720 end_stepping_range (ecs);
b2175913
MS
6721 else
6722 keep_going (ecs);
6723
488f131b
JB
6724 return;
6725 }
c5aa993b 6726
488f131b 6727 /* We stepped out of the stepping range. */
c906108c 6728
488f131b 6729 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6730 loader dynamic symbol resolution code...
6731
6732 EXEC_FORWARD: we keep on single stepping until we exit the run
6733 time loader code and reach the callee's address.
6734
6735 EXEC_REVERSE: we've already executed the callee (backward), and
6736 the runtime loader code is handled just like any other
6737 undebuggable function call. Now we need only keep stepping
6738 backward through the trampoline code, and that's handled further
6739 down, so there is nothing for us to do here. */
6740
6741 if (execution_direction != EXEC_REVERSE
16c381f0 6742 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6743 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6744 {
4c8c40e6 6745 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6746 gdbarch_skip_solib_resolver (gdbarch,
6747 ecs->event_thread->suspend.stop_pc);
c906108c 6748
527159b7 6749 if (debug_infrun)
3e43a32a
MS
6750 fprintf_unfiltered (gdb_stdlog,
6751 "infrun: stepped into dynsym resolve code\n");
527159b7 6752
488f131b
JB
6753 if (pc_after_resolver)
6754 {
6755 /* Set up a step-resume breakpoint at the address
6756 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6757 symtab_and_line sr_sal;
488f131b 6758 sr_sal.pc = pc_after_resolver;
6c95b8df 6759 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6760
a6d9a66e
UW
6761 insert_step_resume_breakpoint_at_sal (gdbarch,
6762 sr_sal, null_frame_id);
c5aa993b 6763 }
c906108c 6764
488f131b
JB
6765 keep_going (ecs);
6766 return;
6767 }
c906108c 6768
1d509aa6
MM
6769 /* Step through an indirect branch thunk. */
6770 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6771 && gdbarch_in_indirect_branch_thunk (gdbarch,
6772 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6773 {
6774 if (debug_infrun)
6775 fprintf_unfiltered (gdb_stdlog,
6776 "infrun: stepped into indirect branch thunk\n");
6777 keep_going (ecs);
6778 return;
6779 }
6780
16c381f0
JK
6781 if (ecs->event_thread->control.step_range_end != 1
6782 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6783 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6784 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6785 {
527159b7 6786 if (debug_infrun)
3e43a32a
MS
6787 fprintf_unfiltered (gdb_stdlog,
6788 "infrun: stepped into signal trampoline\n");
42edda50 6789 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6790 a signal trampoline (either by a signal being delivered or by
6791 the signal handler returning). Just single-step until the
6792 inferior leaves the trampoline (either by calling the handler
6793 or returning). */
488f131b
JB
6794 keep_going (ecs);
6795 return;
6796 }
c906108c 6797
14132e89
MR
6798 /* If we're in the return path from a shared library trampoline,
6799 we want to proceed through the trampoline when stepping. */
6800 /* macro/2012-04-25: This needs to come before the subroutine
6801 call check below as on some targets return trampolines look
6802 like subroutine calls (MIPS16 return thunks). */
6803 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6804 ecs->event_thread->suspend.stop_pc,
6805 ecs->stop_func_name)
14132e89
MR
6806 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6807 {
6808 /* Determine where this trampoline returns. */
f2ffa92b
PA
6809 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6810 CORE_ADDR real_stop_pc
6811 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6812
6813 if (debug_infrun)
6814 fprintf_unfiltered (gdb_stdlog,
6815 "infrun: stepped into solib return tramp\n");
6816
6817 /* Only proceed through if we know where it's going. */
6818 if (real_stop_pc)
6819 {
6820 /* And put the step-breakpoint there and go until there. */
51abb421 6821 symtab_and_line sr_sal;
14132e89
MR
6822 sr_sal.pc = real_stop_pc;
6823 sr_sal.section = find_pc_overlay (sr_sal.pc);
6824 sr_sal.pspace = get_frame_program_space (frame);
6825
6826 /* Do not specify what the fp should be when we stop since
6827 on some machines the prologue is where the new fp value
6828 is established. */
6829 insert_step_resume_breakpoint_at_sal (gdbarch,
6830 sr_sal, null_frame_id);
6831
6832 /* Restart without fiddling with the step ranges or
6833 other state. */
6834 keep_going (ecs);
6835 return;
6836 }
6837 }
6838
c17eaafe
DJ
6839 /* Check for subroutine calls. The check for the current frame
6840 equalling the step ID is not necessary - the check of the
6841 previous frame's ID is sufficient - but it is a common case and
6842 cheaper than checking the previous frame's ID.
14e60db5
DJ
6843
6844 NOTE: frame_id_eq will never report two invalid frame IDs as
6845 being equal, so to get into this block, both the current and
6846 previous frame must have valid frame IDs. */
005ca36a
JB
6847 /* The outer_frame_id check is a heuristic to detect stepping
6848 through startup code. If we step over an instruction which
6849 sets the stack pointer from an invalid value to a valid value,
6850 we may detect that as a subroutine call from the mythical
6851 "outermost" function. This could be fixed by marking
6852 outermost frames as !stack_p,code_p,special_p. Then the
6853 initial outermost frame, before sp was valid, would
ce6cca6d 6854 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6855 for more. */
edb3359d 6856 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6857 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6858 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6859 ecs->event_thread->control.step_stack_frame_id)
6860 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6861 outer_frame_id)
885eeb5b 6862 || (ecs->event_thread->control.step_start_function
f2ffa92b 6863 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6864 {
f2ffa92b 6865 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6866 CORE_ADDR real_stop_pc;
8fb3e588 6867
527159b7 6868 if (debug_infrun)
8a9de0e4 6869 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6870
b7a084be 6871 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6872 {
6873 /* I presume that step_over_calls is only 0 when we're
6874 supposed to be stepping at the assembly language level
6875 ("stepi"). Just stop. */
388a8562 6876 /* And this works the same backward as frontward. MVS */
bdc36728 6877 end_stepping_range (ecs);
95918acb
AC
6878 return;
6879 }
8fb3e588 6880
388a8562
MS
6881 /* Reverse stepping through solib trampolines. */
6882
6883 if (execution_direction == EXEC_REVERSE
16c381f0 6884 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6885 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6886 || (ecs->stop_func_start == 0
6887 && in_solib_dynsym_resolve_code (stop_pc))))
6888 {
6889 /* Any solib trampoline code can be handled in reverse
6890 by simply continuing to single-step. We have already
6891 executed the solib function (backwards), and a few
6892 steps will take us back through the trampoline to the
6893 caller. */
6894 keep_going (ecs);
6895 return;
6896 }
6897
16c381f0 6898 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6899 {
b2175913
MS
6900 /* We're doing a "next".
6901
6902 Normal (forward) execution: set a breakpoint at the
6903 callee's return address (the address at which the caller
6904 will resume).
6905
6906 Reverse (backward) execution. set the step-resume
6907 breakpoint at the start of the function that we just
6908 stepped into (backwards), and continue to there. When we
6130d0b7 6909 get there, we'll need to single-step back to the caller. */
b2175913
MS
6910
6911 if (execution_direction == EXEC_REVERSE)
6912 {
acf9414f
JK
6913 /* If we're already at the start of the function, we've either
6914 just stepped backward into a single instruction function,
6915 or stepped back out of a signal handler to the first instruction
6916 of the function. Just keep going, which will single-step back
6917 to the caller. */
58c48e72 6918 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6919 {
acf9414f 6920 /* Normal function call return (static or dynamic). */
51abb421 6921 symtab_and_line sr_sal;
acf9414f
JK
6922 sr_sal.pc = ecs->stop_func_start;
6923 sr_sal.pspace = get_frame_program_space (frame);
6924 insert_step_resume_breakpoint_at_sal (gdbarch,
6925 sr_sal, null_frame_id);
6926 }
b2175913
MS
6927 }
6928 else
568d6575 6929 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6930
8567c30f
AC
6931 keep_going (ecs);
6932 return;
6933 }
a53c66de 6934
95918acb 6935 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6936 calling routine and the real function), locate the real
6937 function. That's what tells us (a) whether we want to step
6938 into it at all, and (b) what prologue we want to run to the
6939 end of, if we do step into it. */
568d6575 6940 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6941 if (real_stop_pc == 0)
568d6575 6942 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6943 if (real_stop_pc != 0)
6944 ecs->stop_func_start = real_stop_pc;
8fb3e588 6945
db5f024e 6946 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6947 {
51abb421 6948 symtab_and_line sr_sal;
1b2bfbb9 6949 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6950 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6951
a6d9a66e
UW
6952 insert_step_resume_breakpoint_at_sal (gdbarch,
6953 sr_sal, null_frame_id);
8fb3e588
AC
6954 keep_going (ecs);
6955 return;
1b2bfbb9
RC
6956 }
6957
95918acb 6958 /* If we have line number information for the function we are
1bfeeb0f
JL
6959 thinking of stepping into and the function isn't on the skip
6960 list, step into it.
95918acb 6961
8fb3e588
AC
6962 If there are several symtabs at that PC (e.g. with include
6963 files), just want to know whether *any* of them have line
6964 numbers. find_pc_line handles this. */
95918acb
AC
6965 {
6966 struct symtab_and_line tmp_sal;
8fb3e588 6967
95918acb 6968 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6969 if (tmp_sal.line != 0
85817405 6970 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6971 tmp_sal)
6972 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6973 {
b2175913 6974 if (execution_direction == EXEC_REVERSE)
568d6575 6975 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6976 else
568d6575 6977 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6978 return;
6979 }
6980 }
6981
6982 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6983 set, we stop the step so that the user has a chance to switch
6984 in assembly mode. */
16c381f0 6985 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6986 && step_stop_if_no_debug)
95918acb 6987 {
bdc36728 6988 end_stepping_range (ecs);
95918acb
AC
6989 return;
6990 }
6991
b2175913
MS
6992 if (execution_direction == EXEC_REVERSE)
6993 {
acf9414f
JK
6994 /* If we're already at the start of the function, we've either just
6995 stepped backward into a single instruction function without line
6996 number info, or stepped back out of a signal handler to the first
6997 instruction of the function without line number info. Just keep
6998 going, which will single-step back to the caller. */
6999 if (ecs->stop_func_start != stop_pc)
7000 {
7001 /* Set a breakpoint at callee's start address.
7002 From there we can step once and be back in the caller. */
51abb421 7003 symtab_and_line sr_sal;
acf9414f
JK
7004 sr_sal.pc = ecs->stop_func_start;
7005 sr_sal.pspace = get_frame_program_space (frame);
7006 insert_step_resume_breakpoint_at_sal (gdbarch,
7007 sr_sal, null_frame_id);
7008 }
b2175913
MS
7009 }
7010 else
7011 /* Set a breakpoint at callee's return address (the address
7012 at which the caller will resume). */
568d6575 7013 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7014
95918acb 7015 keep_going (ecs);
488f131b 7016 return;
488f131b 7017 }
c906108c 7018
fdd654f3
MS
7019 /* Reverse stepping through solib trampolines. */
7020
7021 if (execution_direction == EXEC_REVERSE
16c381f0 7022 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7023 {
f2ffa92b
PA
7024 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7025
fdd654f3
MS
7026 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7027 || (ecs->stop_func_start == 0
7028 && in_solib_dynsym_resolve_code (stop_pc)))
7029 {
7030 /* Any solib trampoline code can be handled in reverse
7031 by simply continuing to single-step. We have already
7032 executed the solib function (backwards), and a few
7033 steps will take us back through the trampoline to the
7034 caller. */
7035 keep_going (ecs);
7036 return;
7037 }
7038 else if (in_solib_dynsym_resolve_code (stop_pc))
7039 {
7040 /* Stepped backward into the solib dynsym resolver.
7041 Set a breakpoint at its start and continue, then
7042 one more step will take us out. */
51abb421 7043 symtab_and_line sr_sal;
fdd654f3 7044 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7045 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7046 insert_step_resume_breakpoint_at_sal (gdbarch,
7047 sr_sal, null_frame_id);
7048 keep_going (ecs);
7049 return;
7050 }
7051 }
7052
8c95582d
AB
7053 /* This always returns the sal for the inner-most frame when we are in a
7054 stack of inlined frames, even if GDB actually believes that it is in a
7055 more outer frame. This is checked for below by calls to
7056 inline_skipped_frames. */
f2ffa92b 7057 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7058
1b2bfbb9
RC
7059 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7060 the trampoline processing logic, however, there are some trampolines
7061 that have no names, so we should do trampoline handling first. */
16c381f0 7062 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7063 && ecs->stop_func_name == NULL
2afb61aa 7064 && stop_pc_sal.line == 0)
1b2bfbb9 7065 {
527159b7 7066 if (debug_infrun)
3e43a32a
MS
7067 fprintf_unfiltered (gdb_stdlog,
7068 "infrun: stepped into undebuggable function\n");
527159b7 7069
1b2bfbb9 7070 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7071 undebuggable function (where there is no debugging information
7072 and no line number corresponding to the address where the
1b2bfbb9
RC
7073 inferior stopped). Since we want to skip this kind of code,
7074 we keep going until the inferior returns from this
14e60db5
DJ
7075 function - unless the user has asked us not to (via
7076 set step-mode) or we no longer know how to get back
7077 to the call site. */
7078 if (step_stop_if_no_debug
c7ce8faa 7079 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7080 {
7081 /* If we have no line number and the step-stop-if-no-debug
7082 is set, we stop the step so that the user has a chance to
7083 switch in assembly mode. */
bdc36728 7084 end_stepping_range (ecs);
1b2bfbb9
RC
7085 return;
7086 }
7087 else
7088 {
7089 /* Set a breakpoint at callee's return address (the address
7090 at which the caller will resume). */
568d6575 7091 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7092 keep_going (ecs);
7093 return;
7094 }
7095 }
7096
16c381f0 7097 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7098 {
7099 /* It is stepi or nexti. We always want to stop stepping after
7100 one instruction. */
527159b7 7101 if (debug_infrun)
8a9de0e4 7102 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7103 end_stepping_range (ecs);
1b2bfbb9
RC
7104 return;
7105 }
7106
2afb61aa 7107 if (stop_pc_sal.line == 0)
488f131b
JB
7108 {
7109 /* We have no line number information. That means to stop
7110 stepping (does this always happen right after one instruction,
7111 when we do "s" in a function with no line numbers,
7112 or can this happen as a result of a return or longjmp?). */
527159b7 7113 if (debug_infrun)
8a9de0e4 7114 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7115 end_stepping_range (ecs);
488f131b
JB
7116 return;
7117 }
c906108c 7118
edb3359d
DJ
7119 /* Look for "calls" to inlined functions, part one. If the inline
7120 frame machinery detected some skipped call sites, we have entered
7121 a new inline function. */
7122
7123 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7124 ecs->event_thread->control.step_frame_id)
00431a78 7125 && inline_skipped_frames (ecs->event_thread))
edb3359d 7126 {
edb3359d
DJ
7127 if (debug_infrun)
7128 fprintf_unfiltered (gdb_stdlog,
7129 "infrun: stepped into inlined function\n");
7130
51abb421 7131 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7132
16c381f0 7133 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7134 {
7135 /* For "step", we're going to stop. But if the call site
7136 for this inlined function is on the same source line as
7137 we were previously stepping, go down into the function
7138 first. Otherwise stop at the call site. */
7139
7140 if (call_sal.line == ecs->event_thread->current_line
7141 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7142 {
7143 step_into_inline_frame (ecs->event_thread);
7144 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7145 {
7146 keep_going (ecs);
7147 return;
7148 }
7149 }
edb3359d 7150
bdc36728 7151 end_stepping_range (ecs);
edb3359d
DJ
7152 return;
7153 }
7154 else
7155 {
7156 /* For "next", we should stop at the call site if it is on a
7157 different source line. Otherwise continue through the
7158 inlined function. */
7159 if (call_sal.line == ecs->event_thread->current_line
7160 && call_sal.symtab == ecs->event_thread->current_symtab)
7161 keep_going (ecs);
7162 else
bdc36728 7163 end_stepping_range (ecs);
edb3359d
DJ
7164 return;
7165 }
7166 }
7167
7168 /* Look for "calls" to inlined functions, part two. If we are still
7169 in the same real function we were stepping through, but we have
7170 to go further up to find the exact frame ID, we are stepping
7171 through a more inlined call beyond its call site. */
7172
7173 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7174 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7175 ecs->event_thread->control.step_frame_id)
edb3359d 7176 && stepped_in_from (get_current_frame (),
16c381f0 7177 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7178 {
7179 if (debug_infrun)
7180 fprintf_unfiltered (gdb_stdlog,
7181 "infrun: stepping through inlined function\n");
7182
4a4c04f1
BE
7183 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7184 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7185 keep_going (ecs);
7186 else
bdc36728 7187 end_stepping_range (ecs);
edb3359d
DJ
7188 return;
7189 }
7190
8c95582d 7191 bool refresh_step_info = true;
f2ffa92b 7192 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7193 && (ecs->event_thread->current_line != stop_pc_sal.line
7194 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7195 {
8c95582d
AB
7196 if (stop_pc_sal.is_stmt)
7197 {
7198 /* We are at the start of a different line. So stop. Note that
7199 we don't stop if we step into the middle of a different line.
7200 That is said to make things like for (;;) statements work
7201 better. */
7202 if (debug_infrun)
7203 fprintf_unfiltered (gdb_stdlog,
7204 "infrun: stepped to a different line\n");
7205 end_stepping_range (ecs);
7206 return;
7207 }
7208 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7209 ecs->event_thread->control.step_frame_id))
7210 {
7211 /* We are at the start of a different line, however, this line is
7212 not marked as a statement, and we have not changed frame. We
7213 ignore this line table entry, and continue stepping forward,
7214 looking for a better place to stop. */
7215 refresh_step_info = false;
7216 if (debug_infrun)
7217 fprintf_unfiltered (gdb_stdlog,
7218 "infrun: stepped to a different line, but "
7219 "it's not the start of a statement\n");
7220 }
488f131b 7221 }
c906108c 7222
488f131b 7223 /* We aren't done stepping.
c906108c 7224
488f131b
JB
7225 Optimize by setting the stepping range to the line.
7226 (We might not be in the original line, but if we entered a
7227 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7228 things like for(;;) statements work better.)
7229
7230 If we entered a SAL that indicates a non-statement line table entry,
7231 then we update the stepping range, but we don't update the step info,
7232 which includes things like the line number we are stepping away from.
7233 This means we will stop when we find a line table entry that is marked
7234 as is-statement, even if it matches the non-statement one we just
7235 stepped into. */
c906108c 7236
16c381f0
JK
7237 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7238 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7239 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7240 if (refresh_step_info)
7241 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7242
527159b7 7243 if (debug_infrun)
8a9de0e4 7244 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7245 keep_going (ecs);
104c1213
JM
7246}
7247
c447ac0b
PA
7248/* In all-stop mode, if we're currently stepping but have stopped in
7249 some other thread, we may need to switch back to the stepped
7250 thread. Returns true we set the inferior running, false if we left
7251 it stopped (and the event needs further processing). */
7252
7253static int
7254switch_back_to_stepped_thread (struct execution_control_state *ecs)
7255{
fbea99ea 7256 if (!target_is_non_stop_p ())
c447ac0b 7257 {
99619bea
PA
7258 struct thread_info *stepping_thread;
7259
7260 /* If any thread is blocked on some internal breakpoint, and we
7261 simply need to step over that breakpoint to get it going
7262 again, do that first. */
7263
7264 /* However, if we see an event for the stepping thread, then we
7265 know all other threads have been moved past their breakpoints
7266 already. Let the caller check whether the step is finished,
7267 etc., before deciding to move it past a breakpoint. */
7268 if (ecs->event_thread->control.step_range_end != 0)
7269 return 0;
7270
7271 /* Check if the current thread is blocked on an incomplete
7272 step-over, interrupted by a random signal. */
7273 if (ecs->event_thread->control.trap_expected
7274 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7275 {
99619bea
PA
7276 if (debug_infrun)
7277 {
7278 fprintf_unfiltered (gdb_stdlog,
7279 "infrun: need to finish step-over of [%s]\n",
a068643d 7280 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7281 }
7282 keep_going (ecs);
7283 return 1;
7284 }
2adfaa28 7285
99619bea
PA
7286 /* Check if the current thread is blocked by a single-step
7287 breakpoint of another thread. */
7288 if (ecs->hit_singlestep_breakpoint)
7289 {
7290 if (debug_infrun)
7291 {
7292 fprintf_unfiltered (gdb_stdlog,
7293 "infrun: need to step [%s] over single-step "
7294 "breakpoint\n",
a068643d 7295 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7296 }
7297 keep_going (ecs);
7298 return 1;
7299 }
7300
4d9d9d04
PA
7301 /* If this thread needs yet another step-over (e.g., stepping
7302 through a delay slot), do it first before moving on to
7303 another thread. */
7304 if (thread_still_needs_step_over (ecs->event_thread))
7305 {
7306 if (debug_infrun)
7307 {
7308 fprintf_unfiltered (gdb_stdlog,
7309 "infrun: thread [%s] still needs step-over\n",
a068643d 7310 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7311 }
7312 keep_going (ecs);
7313 return 1;
7314 }
70509625 7315
483805cf
PA
7316 /* If scheduler locking applies even if not stepping, there's no
7317 need to walk over threads. Above we've checked whether the
7318 current thread is stepping. If some other thread not the
7319 event thread is stepping, then it must be that scheduler
7320 locking is not in effect. */
856e7dd6 7321 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7322 return 0;
7323
4d9d9d04
PA
7324 /* Otherwise, we no longer expect a trap in the current thread.
7325 Clear the trap_expected flag before switching back -- this is
7326 what keep_going does as well, if we call it. */
7327 ecs->event_thread->control.trap_expected = 0;
7328
7329 /* Likewise, clear the signal if it should not be passed. */
7330 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7331 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7332
7333 /* Do all pending step-overs before actually proceeding with
483805cf 7334 step/next/etc. */
4d9d9d04
PA
7335 if (start_step_over ())
7336 {
7337 prepare_to_wait (ecs);
7338 return 1;
7339 }
7340
7341 /* Look for the stepping/nexting thread. */
483805cf 7342 stepping_thread = NULL;
4d9d9d04 7343
08036331 7344 for (thread_info *tp : all_non_exited_threads ())
483805cf 7345 {
f3f8ece4
PA
7346 switch_to_thread_no_regs (tp);
7347
fbea99ea
PA
7348 /* Ignore threads of processes the caller is not
7349 resuming. */
483805cf 7350 if (!sched_multi
5b6d1e4f
PA
7351 && (tp->inf->process_target () != ecs->target
7352 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7353 continue;
7354
7355 /* When stepping over a breakpoint, we lock all threads
7356 except the one that needs to move past the breakpoint.
7357 If a non-event thread has this set, the "incomplete
7358 step-over" check above should have caught it earlier. */
372316f1
PA
7359 if (tp->control.trap_expected)
7360 {
7361 internal_error (__FILE__, __LINE__,
7362 "[%s] has inconsistent state: "
7363 "trap_expected=%d\n",
a068643d 7364 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7365 tp->control.trap_expected);
7366 }
483805cf
PA
7367
7368 /* Did we find the stepping thread? */
7369 if (tp->control.step_range_end)
7370 {
7371 /* Yep. There should only one though. */
7372 gdb_assert (stepping_thread == NULL);
7373
7374 /* The event thread is handled at the top, before we
7375 enter this loop. */
7376 gdb_assert (tp != ecs->event_thread);
7377
7378 /* If some thread other than the event thread is
7379 stepping, then scheduler locking can't be in effect,
7380 otherwise we wouldn't have resumed the current event
7381 thread in the first place. */
856e7dd6 7382 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7383
7384 stepping_thread = tp;
7385 }
99619bea
PA
7386 }
7387
483805cf 7388 if (stepping_thread != NULL)
99619bea 7389 {
c447ac0b
PA
7390 if (debug_infrun)
7391 fprintf_unfiltered (gdb_stdlog,
7392 "infrun: switching back to stepped thread\n");
7393
2ac7589c
PA
7394 if (keep_going_stepped_thread (stepping_thread))
7395 {
7396 prepare_to_wait (ecs);
7397 return 1;
7398 }
7399 }
f3f8ece4
PA
7400
7401 switch_to_thread (ecs->event_thread);
2ac7589c 7402 }
2adfaa28 7403
2ac7589c
PA
7404 return 0;
7405}
2adfaa28 7406
2ac7589c
PA
7407/* Set a previously stepped thread back to stepping. Returns true on
7408 success, false if the resume is not possible (e.g., the thread
7409 vanished). */
7410
7411static int
7412keep_going_stepped_thread (struct thread_info *tp)
7413{
7414 struct frame_info *frame;
2ac7589c
PA
7415 struct execution_control_state ecss;
7416 struct execution_control_state *ecs = &ecss;
2adfaa28 7417
2ac7589c
PA
7418 /* If the stepping thread exited, then don't try to switch back and
7419 resume it, which could fail in several different ways depending
7420 on the target. Instead, just keep going.
2adfaa28 7421
2ac7589c
PA
7422 We can find a stepping dead thread in the thread list in two
7423 cases:
2adfaa28 7424
2ac7589c
PA
7425 - The target supports thread exit events, and when the target
7426 tries to delete the thread from the thread list, inferior_ptid
7427 pointed at the exiting thread. In such case, calling
7428 delete_thread does not really remove the thread from the list;
7429 instead, the thread is left listed, with 'exited' state.
64ce06e4 7430
2ac7589c
PA
7431 - The target's debug interface does not support thread exit
7432 events, and so we have no idea whatsoever if the previously
7433 stepping thread is still alive. For that reason, we need to
7434 synchronously query the target now. */
2adfaa28 7435
00431a78 7436 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7437 {
7438 if (debug_infrun)
7439 fprintf_unfiltered (gdb_stdlog,
7440 "infrun: not resuming previously "
7441 "stepped thread, it has vanished\n");
7442
00431a78 7443 delete_thread (tp);
2ac7589c 7444 return 0;
c447ac0b 7445 }
2ac7589c
PA
7446
7447 if (debug_infrun)
7448 fprintf_unfiltered (gdb_stdlog,
7449 "infrun: resuming previously stepped thread\n");
7450
7451 reset_ecs (ecs, tp);
00431a78 7452 switch_to_thread (tp);
2ac7589c 7453
f2ffa92b 7454 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7455 frame = get_current_frame ();
2ac7589c
PA
7456
7457 /* If the PC of the thread we were trying to single-step has
7458 changed, then that thread has trapped or been signaled, but the
7459 event has not been reported to GDB yet. Re-poll the target
7460 looking for this particular thread's event (i.e. temporarily
7461 enable schedlock) by:
7462
7463 - setting a break at the current PC
7464 - resuming that particular thread, only (by setting trap
7465 expected)
7466
7467 This prevents us continuously moving the single-step breakpoint
7468 forward, one instruction at a time, overstepping. */
7469
f2ffa92b 7470 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7471 {
7472 ptid_t resume_ptid;
7473
7474 if (debug_infrun)
7475 fprintf_unfiltered (gdb_stdlog,
7476 "infrun: expected thread advanced also (%s -> %s)\n",
7477 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7478 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7479
7480 /* Clear the info of the previous step-over, as it's no longer
7481 valid (if the thread was trying to step over a breakpoint, it
7482 has already succeeded). It's what keep_going would do too,
7483 if we called it. Do this before trying to insert the sss
7484 breakpoint, otherwise if we were previously trying to step
7485 over this exact address in another thread, the breakpoint is
7486 skipped. */
7487 clear_step_over_info ();
7488 tp->control.trap_expected = 0;
7489
7490 insert_single_step_breakpoint (get_frame_arch (frame),
7491 get_frame_address_space (frame),
f2ffa92b 7492 tp->suspend.stop_pc);
2ac7589c 7493
719546c4 7494 tp->resumed = true;
fbea99ea 7495 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7496 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7497 }
7498 else
7499 {
7500 if (debug_infrun)
7501 fprintf_unfiltered (gdb_stdlog,
7502 "infrun: expected thread still hasn't advanced\n");
7503
7504 keep_going_pass_signal (ecs);
7505 }
7506 return 1;
c447ac0b
PA
7507}
7508
8b061563
PA
7509/* Is thread TP in the middle of (software or hardware)
7510 single-stepping? (Note the result of this function must never be
7511 passed directly as target_resume's STEP parameter.) */
104c1213 7512
a289b8f6 7513static int
b3444185 7514currently_stepping (struct thread_info *tp)
a7212384 7515{
8358c15c
JK
7516 return ((tp->control.step_range_end
7517 && tp->control.step_resume_breakpoint == NULL)
7518 || tp->control.trap_expected
af48d08f 7519 || tp->stepped_breakpoint
8358c15c 7520 || bpstat_should_step ());
a7212384
UW
7521}
7522
b2175913
MS
7523/* Inferior has stepped into a subroutine call with source code that
7524 we should not step over. Do step to the first line of code in
7525 it. */
c2c6d25f
JM
7526
7527static void
568d6575
UW
7528handle_step_into_function (struct gdbarch *gdbarch,
7529 struct execution_control_state *ecs)
c2c6d25f 7530{
7e324e48
GB
7531 fill_in_stop_func (gdbarch, ecs);
7532
f2ffa92b
PA
7533 compunit_symtab *cust
7534 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7535 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7536 ecs->stop_func_start
7537 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7538
51abb421 7539 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7540 /* Use the step_resume_break to step until the end of the prologue,
7541 even if that involves jumps (as it seems to on the vax under
7542 4.2). */
7543 /* If the prologue ends in the middle of a source line, continue to
7544 the end of that source line (if it is still within the function).
7545 Otherwise, just go to end of prologue. */
2afb61aa
PA
7546 if (stop_func_sal.end
7547 && stop_func_sal.pc != ecs->stop_func_start
7548 && stop_func_sal.end < ecs->stop_func_end)
7549 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7550
2dbd5e30
KB
7551 /* Architectures which require breakpoint adjustment might not be able
7552 to place a breakpoint at the computed address. If so, the test
7553 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7554 ecs->stop_func_start to an address at which a breakpoint may be
7555 legitimately placed.
8fb3e588 7556
2dbd5e30
KB
7557 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7558 made, GDB will enter an infinite loop when stepping through
7559 optimized code consisting of VLIW instructions which contain
7560 subinstructions corresponding to different source lines. On
7561 FR-V, it's not permitted to place a breakpoint on any but the
7562 first subinstruction of a VLIW instruction. When a breakpoint is
7563 set, GDB will adjust the breakpoint address to the beginning of
7564 the VLIW instruction. Thus, we need to make the corresponding
7565 adjustment here when computing the stop address. */
8fb3e588 7566
568d6575 7567 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7568 {
7569 ecs->stop_func_start
568d6575 7570 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7571 ecs->stop_func_start);
2dbd5e30
KB
7572 }
7573
f2ffa92b 7574 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7575 {
7576 /* We are already there: stop now. */
bdc36728 7577 end_stepping_range (ecs);
c2c6d25f
JM
7578 return;
7579 }
7580 else
7581 {
7582 /* Put the step-breakpoint there and go until there. */
51abb421 7583 symtab_and_line sr_sal;
c2c6d25f
JM
7584 sr_sal.pc = ecs->stop_func_start;
7585 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7586 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7587
c2c6d25f 7588 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7589 some machines the prologue is where the new fp value is
7590 established. */
a6d9a66e 7591 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7592
7593 /* And make sure stepping stops right away then. */
16c381f0
JK
7594 ecs->event_thread->control.step_range_end
7595 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7596 }
7597 keep_going (ecs);
7598}
d4f3574e 7599
b2175913
MS
7600/* Inferior has stepped backward into a subroutine call with source
7601 code that we should not step over. Do step to the beginning of the
7602 last line of code in it. */
7603
7604static void
568d6575
UW
7605handle_step_into_function_backward (struct gdbarch *gdbarch,
7606 struct execution_control_state *ecs)
b2175913 7607{
43f3e411 7608 struct compunit_symtab *cust;
167e4384 7609 struct symtab_and_line stop_func_sal;
b2175913 7610
7e324e48
GB
7611 fill_in_stop_func (gdbarch, ecs);
7612
f2ffa92b 7613 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7614 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7615 ecs->stop_func_start
7616 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7617
f2ffa92b 7618 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7619
7620 /* OK, we're just going to keep stepping here. */
f2ffa92b 7621 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7622 {
7623 /* We're there already. Just stop stepping now. */
bdc36728 7624 end_stepping_range (ecs);
b2175913
MS
7625 }
7626 else
7627 {
7628 /* Else just reset the step range and keep going.
7629 No step-resume breakpoint, they don't work for
7630 epilogues, which can have multiple entry paths. */
16c381f0
JK
7631 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7632 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7633 keep_going (ecs);
7634 }
7635 return;
7636}
7637
d3169d93 7638/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7639 This is used to both functions and to skip over code. */
7640
7641static void
2c03e5be
PA
7642insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7643 struct symtab_and_line sr_sal,
7644 struct frame_id sr_id,
7645 enum bptype sr_type)
44cbf7b5 7646{
611c83ae
PA
7647 /* There should never be more than one step-resume or longjmp-resume
7648 breakpoint per thread, so we should never be setting a new
44cbf7b5 7649 step_resume_breakpoint when one is already active. */
8358c15c 7650 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7651 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7652
7653 if (debug_infrun)
7654 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7655 "infrun: inserting step-resume breakpoint at %s\n",
7656 paddress (gdbarch, sr_sal.pc));
d3169d93 7657
8358c15c 7658 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7659 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7660}
7661
9da8c2a0 7662void
2c03e5be
PA
7663insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7664 struct symtab_and_line sr_sal,
7665 struct frame_id sr_id)
7666{
7667 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7668 sr_sal, sr_id,
7669 bp_step_resume);
44cbf7b5 7670}
7ce450bd 7671
2c03e5be
PA
7672/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7673 This is used to skip a potential signal handler.
7ce450bd 7674
14e60db5
DJ
7675 This is called with the interrupted function's frame. The signal
7676 handler, when it returns, will resume the interrupted function at
7677 RETURN_FRAME.pc. */
d303a6c7
AC
7678
7679static void
2c03e5be 7680insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7681{
f4c1edd8 7682 gdb_assert (return_frame != NULL);
d303a6c7 7683
51abb421
PA
7684 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7685
7686 symtab_and_line sr_sal;
568d6575 7687 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7688 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7689 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7690
2c03e5be
PA
7691 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7692 get_stack_frame_id (return_frame),
7693 bp_hp_step_resume);
d303a6c7
AC
7694}
7695
2c03e5be
PA
7696/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7697 is used to skip a function after stepping into it (for "next" or if
7698 the called function has no debugging information).
14e60db5
DJ
7699
7700 The current function has almost always been reached by single
7701 stepping a call or return instruction. NEXT_FRAME belongs to the
7702 current function, and the breakpoint will be set at the caller's
7703 resume address.
7704
7705 This is a separate function rather than reusing
2c03e5be 7706 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7707 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7708 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7709
7710static void
7711insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7712{
14e60db5
DJ
7713 /* We shouldn't have gotten here if we don't know where the call site
7714 is. */
c7ce8faa 7715 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7716
51abb421 7717 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7718
51abb421 7719 symtab_and_line sr_sal;
c7ce8faa
DJ
7720 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7721 frame_unwind_caller_pc (next_frame));
14e60db5 7722 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7723 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7724
a6d9a66e 7725 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7726 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7727}
7728
611c83ae
PA
7729/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7730 new breakpoint at the target of a jmp_buf. The handling of
7731 longjmp-resume uses the same mechanisms used for handling
7732 "step-resume" breakpoints. */
7733
7734static void
a6d9a66e 7735insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7736{
e81a37f7
TT
7737 /* There should never be more than one longjmp-resume breakpoint per
7738 thread, so we should never be setting a new
611c83ae 7739 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7740 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7741
7742 if (debug_infrun)
7743 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7744 "infrun: inserting longjmp-resume breakpoint at %s\n",
7745 paddress (gdbarch, pc));
611c83ae 7746
e81a37f7 7747 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7748 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7749}
7750
186c406b
TT
7751/* Insert an exception resume breakpoint. TP is the thread throwing
7752 the exception. The block B is the block of the unwinder debug hook
7753 function. FRAME is the frame corresponding to the call to this
7754 function. SYM is the symbol of the function argument holding the
7755 target PC of the exception. */
7756
7757static void
7758insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7759 const struct block *b,
186c406b
TT
7760 struct frame_info *frame,
7761 struct symbol *sym)
7762{
a70b8144 7763 try
186c406b 7764 {
63e43d3a 7765 struct block_symbol vsym;
186c406b
TT
7766 struct value *value;
7767 CORE_ADDR handler;
7768 struct breakpoint *bp;
7769
987012b8 7770 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7771 b, VAR_DOMAIN);
63e43d3a 7772 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7773 /* If the value was optimized out, revert to the old behavior. */
7774 if (! value_optimized_out (value))
7775 {
7776 handler = value_as_address (value);
7777
7778 if (debug_infrun)
7779 fprintf_unfiltered (gdb_stdlog,
7780 "infrun: exception resume at %lx\n",
7781 (unsigned long) handler);
7782
7783 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7784 handler,
7785 bp_exception_resume).release ();
c70a6932
JK
7786
7787 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7788 frame = NULL;
7789
5d5658a1 7790 bp->thread = tp->global_num;
186c406b
TT
7791 inferior_thread ()->control.exception_resume_breakpoint = bp;
7792 }
7793 }
230d2906 7794 catch (const gdb_exception_error &e)
492d29ea
PA
7795 {
7796 /* We want to ignore errors here. */
7797 }
186c406b
TT
7798}
7799
28106bc2
SDJ
7800/* A helper for check_exception_resume that sets an
7801 exception-breakpoint based on a SystemTap probe. */
7802
7803static void
7804insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7805 const struct bound_probe *probe,
28106bc2
SDJ
7806 struct frame_info *frame)
7807{
7808 struct value *arg_value;
7809 CORE_ADDR handler;
7810 struct breakpoint *bp;
7811
7812 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7813 if (!arg_value)
7814 return;
7815
7816 handler = value_as_address (arg_value);
7817
7818 if (debug_infrun)
7819 fprintf_unfiltered (gdb_stdlog,
7820 "infrun: exception resume at %s\n",
6bac7473 7821 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7822 handler));
7823
7824 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7825 handler, bp_exception_resume).release ();
5d5658a1 7826 bp->thread = tp->global_num;
28106bc2
SDJ
7827 inferior_thread ()->control.exception_resume_breakpoint = bp;
7828}
7829
186c406b
TT
7830/* This is called when an exception has been intercepted. Check to
7831 see whether the exception's destination is of interest, and if so,
7832 set an exception resume breakpoint there. */
7833
7834static void
7835check_exception_resume (struct execution_control_state *ecs,
28106bc2 7836 struct frame_info *frame)
186c406b 7837{
729662a5 7838 struct bound_probe probe;
28106bc2
SDJ
7839 struct symbol *func;
7840
7841 /* First see if this exception unwinding breakpoint was set via a
7842 SystemTap probe point. If so, the probe has two arguments: the
7843 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7844 set a breakpoint there. */
6bac7473 7845 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7846 if (probe.prob)
28106bc2 7847 {
729662a5 7848 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7849 return;
7850 }
7851
7852 func = get_frame_function (frame);
7853 if (!func)
7854 return;
186c406b 7855
a70b8144 7856 try
186c406b 7857 {
3977b71f 7858 const struct block *b;
8157b174 7859 struct block_iterator iter;
186c406b
TT
7860 struct symbol *sym;
7861 int argno = 0;
7862
7863 /* The exception breakpoint is a thread-specific breakpoint on
7864 the unwinder's debug hook, declared as:
7865
7866 void _Unwind_DebugHook (void *cfa, void *handler);
7867
7868 The CFA argument indicates the frame to which control is
7869 about to be transferred. HANDLER is the destination PC.
7870
7871 We ignore the CFA and set a temporary breakpoint at HANDLER.
7872 This is not extremely efficient but it avoids issues in gdb
7873 with computing the DWARF CFA, and it also works even in weird
7874 cases such as throwing an exception from inside a signal
7875 handler. */
7876
7877 b = SYMBOL_BLOCK_VALUE (func);
7878 ALL_BLOCK_SYMBOLS (b, iter, sym)
7879 {
7880 if (!SYMBOL_IS_ARGUMENT (sym))
7881 continue;
7882
7883 if (argno == 0)
7884 ++argno;
7885 else
7886 {
7887 insert_exception_resume_breakpoint (ecs->event_thread,
7888 b, frame, sym);
7889 break;
7890 }
7891 }
7892 }
230d2906 7893 catch (const gdb_exception_error &e)
492d29ea
PA
7894 {
7895 }
186c406b
TT
7896}
7897
104c1213 7898static void
22bcd14b 7899stop_waiting (struct execution_control_state *ecs)
104c1213 7900{
527159b7 7901 if (debug_infrun)
22bcd14b 7902 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7903
cd0fc7c3
SS
7904 /* Let callers know we don't want to wait for the inferior anymore. */
7905 ecs->wait_some_more = 0;
fbea99ea 7906
53cccef1 7907 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7908 threads now that we're presenting the stop to the user. */
53cccef1 7909 if (!non_stop && exists_non_stop_target ())
fbea99ea 7910 stop_all_threads ();
cd0fc7c3
SS
7911}
7912
4d9d9d04
PA
7913/* Like keep_going, but passes the signal to the inferior, even if the
7914 signal is set to nopass. */
d4f3574e
SS
7915
7916static void
4d9d9d04 7917keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7918{
d7e15655 7919 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7920 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7921
d4f3574e 7922 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7923 ecs->event_thread->prev_pc
00431a78 7924 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7925
4d9d9d04 7926 if (ecs->event_thread->control.trap_expected)
d4f3574e 7927 {
4d9d9d04
PA
7928 struct thread_info *tp = ecs->event_thread;
7929
7930 if (debug_infrun)
7931 fprintf_unfiltered (gdb_stdlog,
7932 "infrun: %s has trap_expected set, "
7933 "resuming to collect trap\n",
a068643d 7934 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7935
a9ba6bae
PA
7936 /* We haven't yet gotten our trap, and either: intercepted a
7937 non-signal event (e.g., a fork); or took a signal which we
7938 are supposed to pass through to the inferior. Simply
7939 continue. */
64ce06e4 7940 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7941 }
372316f1
PA
7942 else if (step_over_info_valid_p ())
7943 {
7944 /* Another thread is stepping over a breakpoint in-line. If
7945 this thread needs a step-over too, queue the request. In
7946 either case, this resume must be deferred for later. */
7947 struct thread_info *tp = ecs->event_thread;
7948
7949 if (ecs->hit_singlestep_breakpoint
7950 || thread_still_needs_step_over (tp))
7951 {
7952 if (debug_infrun)
7953 fprintf_unfiltered (gdb_stdlog,
7954 "infrun: step-over already in progress: "
7955 "step-over for %s deferred\n",
a068643d 7956 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7957 thread_step_over_chain_enqueue (tp);
7958 }
7959 else
7960 {
7961 if (debug_infrun)
7962 fprintf_unfiltered (gdb_stdlog,
7963 "infrun: step-over in progress: "
7964 "resume of %s deferred\n",
a068643d 7965 target_pid_to_str (tp->ptid).c_str ());
372316f1 7966 }
372316f1 7967 }
d4f3574e
SS
7968 else
7969 {
31e77af2 7970 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7971 int remove_bp;
7972 int remove_wps;
8d297bbf 7973 step_over_what step_what;
31e77af2 7974
d4f3574e 7975 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7976 anyway (if we got a signal, the user asked it be passed to
7977 the child)
7978 -- or --
7979 We got our expected trap, but decided we should resume from
7980 it.
d4f3574e 7981
a9ba6bae 7982 We're going to run this baby now!
d4f3574e 7983
c36b740a
VP
7984 Note that insert_breakpoints won't try to re-insert
7985 already inserted breakpoints. Therefore, we don't
7986 care if breakpoints were already inserted, or not. */
a9ba6bae 7987
31e77af2
PA
7988 /* If we need to step over a breakpoint, and we're not using
7989 displaced stepping to do so, insert all breakpoints
7990 (watchpoints, etc.) but the one we're stepping over, step one
7991 instruction, and then re-insert the breakpoint when that step
7992 is finished. */
963f9c80 7993
6c4cfb24
PA
7994 step_what = thread_still_needs_step_over (ecs->event_thread);
7995
963f9c80 7996 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7997 || (step_what & STEP_OVER_BREAKPOINT));
7998 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7999
cb71640d
PA
8000 /* We can't use displaced stepping if we need to step past a
8001 watchpoint. The instruction copied to the scratch pad would
8002 still trigger the watchpoint. */
8003 if (remove_bp
3fc8eb30 8004 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8005 {
a01bda52 8006 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8007 regcache_read_pc (regcache), remove_wps,
8008 ecs->event_thread->global_num);
45e8c884 8009 }
963f9c80 8010 else if (remove_wps)
21edc42f 8011 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8012
8013 /* If we now need to do an in-line step-over, we need to stop
8014 all other threads. Note this must be done before
8015 insert_breakpoints below, because that removes the breakpoint
8016 we're about to step over, otherwise other threads could miss
8017 it. */
fbea99ea 8018 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8019 stop_all_threads ();
abbb1732 8020
31e77af2 8021 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8022 try
31e77af2
PA
8023 {
8024 insert_breakpoints ();
8025 }
230d2906 8026 catch (const gdb_exception_error &e)
31e77af2
PA
8027 {
8028 exception_print (gdb_stderr, e);
22bcd14b 8029 stop_waiting (ecs);
bdf2a94a 8030 clear_step_over_info ();
31e77af2 8031 return;
d4f3574e
SS
8032 }
8033
963f9c80 8034 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8035
64ce06e4 8036 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8037 }
8038
488f131b 8039 prepare_to_wait (ecs);
d4f3574e
SS
8040}
8041
4d9d9d04
PA
8042/* Called when we should continue running the inferior, because the
8043 current event doesn't cause a user visible stop. This does the
8044 resuming part; waiting for the next event is done elsewhere. */
8045
8046static void
8047keep_going (struct execution_control_state *ecs)
8048{
8049 if (ecs->event_thread->control.trap_expected
8050 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8051 ecs->event_thread->control.trap_expected = 0;
8052
8053 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8054 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8055 keep_going_pass_signal (ecs);
8056}
8057
104c1213
JM
8058/* This function normally comes after a resume, before
8059 handle_inferior_event exits. It takes care of any last bits of
8060 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8061
104c1213
JM
8062static void
8063prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8064{
527159b7 8065 if (debug_infrun)
8a9de0e4 8066 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8067
104c1213 8068 ecs->wait_some_more = 1;
0b333c5e
PA
8069
8070 if (!target_is_async_p ())
8071 mark_infrun_async_event_handler ();
c906108c 8072}
11cf8741 8073
fd664c91 8074/* We are done with the step range of a step/next/si/ni command.
b57bacec 8075 Called once for each n of a "step n" operation. */
fd664c91
PA
8076
8077static void
bdc36728 8078end_stepping_range (struct execution_control_state *ecs)
fd664c91 8079{
bdc36728 8080 ecs->event_thread->control.stop_step = 1;
bdc36728 8081 stop_waiting (ecs);
fd664c91
PA
8082}
8083
33d62d64
JK
8084/* Several print_*_reason functions to print why the inferior has stopped.
8085 We always print something when the inferior exits, or receives a signal.
8086 The rest of the cases are dealt with later on in normal_stop and
8087 print_it_typical. Ideally there should be a call to one of these
8088 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8089 stop_waiting is called.
33d62d64 8090
fd664c91
PA
8091 Note that we don't call these directly, instead we delegate that to
8092 the interpreters, through observers. Interpreters then call these
8093 with whatever uiout is right. */
33d62d64 8094
fd664c91
PA
8095void
8096print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8097{
fd664c91 8098 /* For CLI-like interpreters, print nothing. */
33d62d64 8099
112e8700 8100 if (uiout->is_mi_like_p ())
fd664c91 8101 {
112e8700 8102 uiout->field_string ("reason",
fd664c91
PA
8103 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8104 }
8105}
33d62d64 8106
fd664c91
PA
8107void
8108print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8109{
33d62d64 8110 annotate_signalled ();
112e8700
SM
8111 if (uiout->is_mi_like_p ())
8112 uiout->field_string
8113 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8114 uiout->text ("\nProgram terminated with signal ");
33d62d64 8115 annotate_signal_name ();
112e8700 8116 uiout->field_string ("signal-name",
2ea28649 8117 gdb_signal_to_name (siggnal));
33d62d64 8118 annotate_signal_name_end ();
112e8700 8119 uiout->text (", ");
33d62d64 8120 annotate_signal_string ();
112e8700 8121 uiout->field_string ("signal-meaning",
2ea28649 8122 gdb_signal_to_string (siggnal));
33d62d64 8123 annotate_signal_string_end ();
112e8700
SM
8124 uiout->text (".\n");
8125 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8126}
8127
fd664c91
PA
8128void
8129print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8130{
fda326dd 8131 struct inferior *inf = current_inferior ();
a068643d 8132 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8133
33d62d64
JK
8134 annotate_exited (exitstatus);
8135 if (exitstatus)
8136 {
112e8700
SM
8137 if (uiout->is_mi_like_p ())
8138 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8139 std::string exit_code_str
8140 = string_printf ("0%o", (unsigned int) exitstatus);
8141 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8142 plongest (inf->num), pidstr.c_str (),
8143 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8144 }
8145 else
11cf8741 8146 {
112e8700
SM
8147 if (uiout->is_mi_like_p ())
8148 uiout->field_string
8149 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8150 uiout->message ("[Inferior %s (%s) exited normally]\n",
8151 plongest (inf->num), pidstr.c_str ());
33d62d64 8152 }
33d62d64
JK
8153}
8154
012b3a21
WT
8155/* Some targets/architectures can do extra processing/display of
8156 segmentation faults. E.g., Intel MPX boundary faults.
8157 Call the architecture dependent function to handle the fault. */
8158
8159static void
8160handle_segmentation_fault (struct ui_out *uiout)
8161{
8162 struct regcache *regcache = get_current_regcache ();
ac7936df 8163 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8164
8165 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8166 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8167}
8168
fd664c91
PA
8169void
8170print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8171{
f303dbd6
PA
8172 struct thread_info *thr = inferior_thread ();
8173
33d62d64
JK
8174 annotate_signal ();
8175
112e8700 8176 if (uiout->is_mi_like_p ())
f303dbd6
PA
8177 ;
8178 else if (show_thread_that_caused_stop ())
33d62d64 8179 {
f303dbd6 8180 const char *name;
33d62d64 8181
112e8700 8182 uiout->text ("\nThread ");
33eca680 8183 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8184
8185 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8186 if (name != NULL)
8187 {
112e8700 8188 uiout->text (" \"");
33eca680 8189 uiout->field_string ("name", name);
112e8700 8190 uiout->text ("\"");
f303dbd6 8191 }
33d62d64 8192 }
f303dbd6 8193 else
112e8700 8194 uiout->text ("\nProgram");
f303dbd6 8195
112e8700
SM
8196 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8197 uiout->text (" stopped");
33d62d64
JK
8198 else
8199 {
112e8700 8200 uiout->text (" received signal ");
8b93c638 8201 annotate_signal_name ();
112e8700
SM
8202 if (uiout->is_mi_like_p ())
8203 uiout->field_string
8204 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8205 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8206 annotate_signal_name_end ();
112e8700 8207 uiout->text (", ");
8b93c638 8208 annotate_signal_string ();
112e8700 8209 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8210
8211 if (siggnal == GDB_SIGNAL_SEGV)
8212 handle_segmentation_fault (uiout);
8213
8b93c638 8214 annotate_signal_string_end ();
33d62d64 8215 }
112e8700 8216 uiout->text (".\n");
33d62d64 8217}
252fbfc8 8218
fd664c91
PA
8219void
8220print_no_history_reason (struct ui_out *uiout)
33d62d64 8221{
112e8700 8222 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8223}
43ff13b4 8224
0c7e1a46
PA
8225/* Print current location without a level number, if we have changed
8226 functions or hit a breakpoint. Print source line if we have one.
8227 bpstat_print contains the logic deciding in detail what to print,
8228 based on the event(s) that just occurred. */
8229
243a9253
PA
8230static void
8231print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8232{
8233 int bpstat_ret;
f486487f 8234 enum print_what source_flag;
0c7e1a46
PA
8235 int do_frame_printing = 1;
8236 struct thread_info *tp = inferior_thread ();
8237
8238 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8239 switch (bpstat_ret)
8240 {
8241 case PRINT_UNKNOWN:
8242 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8243 should) carry around the function and does (or should) use
8244 that when doing a frame comparison. */
8245 if (tp->control.stop_step
8246 && frame_id_eq (tp->control.step_frame_id,
8247 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8248 && (tp->control.step_start_function
8249 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8250 {
8251 /* Finished step, just print source line. */
8252 source_flag = SRC_LINE;
8253 }
8254 else
8255 {
8256 /* Print location and source line. */
8257 source_flag = SRC_AND_LOC;
8258 }
8259 break;
8260 case PRINT_SRC_AND_LOC:
8261 /* Print location and source line. */
8262 source_flag = SRC_AND_LOC;
8263 break;
8264 case PRINT_SRC_ONLY:
8265 source_flag = SRC_LINE;
8266 break;
8267 case PRINT_NOTHING:
8268 /* Something bogus. */
8269 source_flag = SRC_LINE;
8270 do_frame_printing = 0;
8271 break;
8272 default:
8273 internal_error (__FILE__, __LINE__, _("Unknown value."));
8274 }
8275
8276 /* The behavior of this routine with respect to the source
8277 flag is:
8278 SRC_LINE: Print only source line
8279 LOCATION: Print only location
8280 SRC_AND_LOC: Print location and source line. */
8281 if (do_frame_printing)
8282 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8283}
8284
243a9253
PA
8285/* See infrun.h. */
8286
8287void
4c7d57e7 8288print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8289{
243a9253 8290 struct target_waitstatus last;
243a9253
PA
8291 struct thread_info *tp;
8292
5b6d1e4f 8293 get_last_target_status (nullptr, nullptr, &last);
243a9253 8294
67ad9399
TT
8295 {
8296 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8297
67ad9399 8298 print_stop_location (&last);
243a9253 8299
67ad9399 8300 /* Display the auto-display expressions. */
4c7d57e7
TT
8301 if (displays)
8302 do_displays ();
67ad9399 8303 }
243a9253
PA
8304
8305 tp = inferior_thread ();
8306 if (tp->thread_fsm != NULL
46e3ed7f 8307 && tp->thread_fsm->finished_p ())
243a9253
PA
8308 {
8309 struct return_value_info *rv;
8310
46e3ed7f 8311 rv = tp->thread_fsm->return_value ();
243a9253
PA
8312 if (rv != NULL)
8313 print_return_value (uiout, rv);
8314 }
0c7e1a46
PA
8315}
8316
388a7084
PA
8317/* See infrun.h. */
8318
8319void
8320maybe_remove_breakpoints (void)
8321{
8322 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8323 {
8324 if (remove_breakpoints ())
8325 {
223ffa71 8326 target_terminal::ours_for_output ();
388a7084
PA
8327 printf_filtered (_("Cannot remove breakpoints because "
8328 "program is no longer writable.\nFurther "
8329 "execution is probably impossible.\n"));
8330 }
8331 }
8332}
8333
4c2f2a79
PA
8334/* The execution context that just caused a normal stop. */
8335
8336struct stop_context
8337{
2d844eaf
TT
8338 stop_context ();
8339 ~stop_context ();
8340
8341 DISABLE_COPY_AND_ASSIGN (stop_context);
8342
8343 bool changed () const;
8344
4c2f2a79
PA
8345 /* The stop ID. */
8346 ULONGEST stop_id;
c906108c 8347
4c2f2a79 8348 /* The event PTID. */
c906108c 8349
4c2f2a79
PA
8350 ptid_t ptid;
8351
8352 /* If stopp for a thread event, this is the thread that caused the
8353 stop. */
8354 struct thread_info *thread;
8355
8356 /* The inferior that caused the stop. */
8357 int inf_num;
8358};
8359
2d844eaf 8360/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8361 takes a strong reference to the thread. */
8362
2d844eaf 8363stop_context::stop_context ()
4c2f2a79 8364{
2d844eaf
TT
8365 stop_id = get_stop_id ();
8366 ptid = inferior_ptid;
8367 inf_num = current_inferior ()->num;
4c2f2a79 8368
d7e15655 8369 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8370 {
8371 /* Take a strong reference so that the thread can't be deleted
8372 yet. */
2d844eaf
TT
8373 thread = inferior_thread ();
8374 thread->incref ();
4c2f2a79
PA
8375 }
8376 else
2d844eaf 8377 thread = NULL;
4c2f2a79
PA
8378}
8379
8380/* Release a stop context previously created with save_stop_context.
8381 Releases the strong reference to the thread as well. */
8382
2d844eaf 8383stop_context::~stop_context ()
4c2f2a79 8384{
2d844eaf
TT
8385 if (thread != NULL)
8386 thread->decref ();
4c2f2a79
PA
8387}
8388
8389/* Return true if the current context no longer matches the saved stop
8390 context. */
8391
2d844eaf
TT
8392bool
8393stop_context::changed () const
8394{
8395 if (ptid != inferior_ptid)
8396 return true;
8397 if (inf_num != current_inferior ()->num)
8398 return true;
8399 if (thread != NULL && thread->state != THREAD_STOPPED)
8400 return true;
8401 if (get_stop_id () != stop_id)
8402 return true;
8403 return false;
4c2f2a79
PA
8404}
8405
8406/* See infrun.h. */
8407
8408int
96baa820 8409normal_stop (void)
c906108c 8410{
73b65bb0 8411 struct target_waitstatus last;
73b65bb0 8412
5b6d1e4f 8413 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8414
4c2f2a79
PA
8415 new_stop_id ();
8416
29f49a6a
PA
8417 /* If an exception is thrown from this point on, make sure to
8418 propagate GDB's knowledge of the executing state to the
8419 frontend/user running state. A QUIT is an easy exception to see
8420 here, so do this before any filtered output. */
731f534f 8421
5b6d1e4f 8422 ptid_t finish_ptid = null_ptid;
731f534f 8423
c35b1492 8424 if (!non_stop)
5b6d1e4f 8425 finish_ptid = minus_one_ptid;
e1316e60
PA
8426 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8427 || last.kind == TARGET_WAITKIND_EXITED)
8428 {
8429 /* On some targets, we may still have live threads in the
8430 inferior when we get a process exit event. E.g., for
8431 "checkpoint", when the current checkpoint/fork exits,
8432 linux-fork.c automatically switches to another fork from
8433 within target_mourn_inferior. */
731f534f 8434 if (inferior_ptid != null_ptid)
5b6d1e4f 8435 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8436 }
8437 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8438 finish_ptid = inferior_ptid;
8439
8440 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8441 if (finish_ptid != null_ptid)
8442 {
8443 maybe_finish_thread_state.emplace
8444 (user_visible_resume_target (finish_ptid), finish_ptid);
8445 }
29f49a6a 8446
b57bacec
PA
8447 /* As we're presenting a stop, and potentially removing breakpoints,
8448 update the thread list so we can tell whether there are threads
8449 running on the target. With target remote, for example, we can
8450 only learn about new threads when we explicitly update the thread
8451 list. Do this before notifying the interpreters about signal
8452 stops, end of stepping ranges, etc., so that the "new thread"
8453 output is emitted before e.g., "Program received signal FOO",
8454 instead of after. */
8455 update_thread_list ();
8456
8457 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8458 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8459
c906108c
SS
8460 /* As with the notification of thread events, we want to delay
8461 notifying the user that we've switched thread context until
8462 the inferior actually stops.
8463
73b65bb0
DJ
8464 There's no point in saying anything if the inferior has exited.
8465 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8466 "received a signal".
8467
8468 Also skip saying anything in non-stop mode. In that mode, as we
8469 don't want GDB to switch threads behind the user's back, to avoid
8470 races where the user is typing a command to apply to thread x,
8471 but GDB switches to thread y before the user finishes entering
8472 the command, fetch_inferior_event installs a cleanup to restore
8473 the current thread back to the thread the user had selected right
8474 after this event is handled, so we're not really switching, only
8475 informing of a stop. */
4f8d22e3 8476 if (!non_stop
731f534f 8477 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8478 && target_has_execution
8479 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8480 && last.kind != TARGET_WAITKIND_EXITED
8481 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8482 {
0e454242 8483 SWITCH_THRU_ALL_UIS ()
3b12939d 8484 {
223ffa71 8485 target_terminal::ours_for_output ();
3b12939d 8486 printf_filtered (_("[Switching to %s]\n"),
a068643d 8487 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8488 annotate_thread_changed ();
8489 }
39f77062 8490 previous_inferior_ptid = inferior_ptid;
c906108c 8491 }
c906108c 8492
0e5bf2a8
PA
8493 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8494 {
0e454242 8495 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8496 if (current_ui->prompt_state == PROMPT_BLOCKED)
8497 {
223ffa71 8498 target_terminal::ours_for_output ();
3b12939d
PA
8499 printf_filtered (_("No unwaited-for children left.\n"));
8500 }
0e5bf2a8
PA
8501 }
8502
b57bacec 8503 /* Note: this depends on the update_thread_list call above. */
388a7084 8504 maybe_remove_breakpoints ();
c906108c 8505
c906108c
SS
8506 /* If an auto-display called a function and that got a signal,
8507 delete that auto-display to avoid an infinite recursion. */
8508
8509 if (stopped_by_random_signal)
8510 disable_current_display ();
8511
0e454242 8512 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8513 {
8514 async_enable_stdin ();
8515 }
c906108c 8516
388a7084 8517 /* Let the user/frontend see the threads as stopped. */
731f534f 8518 maybe_finish_thread_state.reset ();
388a7084
PA
8519
8520 /* Select innermost stack frame - i.e., current frame is frame 0,
8521 and current location is based on that. Handle the case where the
8522 dummy call is returning after being stopped. E.g. the dummy call
8523 previously hit a breakpoint. (If the dummy call returns
8524 normally, we won't reach here.) Do this before the stop hook is
8525 run, so that it doesn't get to see the temporary dummy frame,
8526 which is not where we'll present the stop. */
8527 if (has_stack_frames ())
8528 {
8529 if (stop_stack_dummy == STOP_STACK_DUMMY)
8530 {
8531 /* Pop the empty frame that contains the stack dummy. This
8532 also restores inferior state prior to the call (struct
8533 infcall_suspend_state). */
8534 struct frame_info *frame = get_current_frame ();
8535
8536 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8537 frame_pop (frame);
8538 /* frame_pop calls reinit_frame_cache as the last thing it
8539 does which means there's now no selected frame. */
8540 }
8541
8542 select_frame (get_current_frame ());
8543
8544 /* Set the current source location. */
8545 set_current_sal_from_frame (get_current_frame ());
8546 }
dd7e2d2b
PA
8547
8548 /* Look up the hook_stop and run it (CLI internally handles problem
8549 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8550 if (stop_command != NULL)
8551 {
2d844eaf 8552 stop_context saved_context;
4c2f2a79 8553
a70b8144 8554 try
bf469271
PA
8555 {
8556 execute_cmd_pre_hook (stop_command);
8557 }
230d2906 8558 catch (const gdb_exception &ex)
bf469271
PA
8559 {
8560 exception_fprintf (gdb_stderr, ex,
8561 "Error while running hook_stop:\n");
8562 }
4c2f2a79
PA
8563
8564 /* If the stop hook resumes the target, then there's no point in
8565 trying to notify about the previous stop; its context is
8566 gone. Likewise if the command switches thread or inferior --
8567 the observers would print a stop for the wrong
8568 thread/inferior. */
2d844eaf
TT
8569 if (saved_context.changed ())
8570 return 1;
4c2f2a79 8571 }
dd7e2d2b 8572
388a7084
PA
8573 /* Notify observers about the stop. This is where the interpreters
8574 print the stop event. */
d7e15655 8575 if (inferior_ptid != null_ptid)
76727919 8576 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8577 stop_print_frame);
8578 else
76727919 8579 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8580
243a9253
PA
8581 annotate_stopped ();
8582
48844aa6
PA
8583 if (target_has_execution)
8584 {
8585 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8586 && last.kind != TARGET_WAITKIND_EXITED
8587 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8588 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8589 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8590 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8591 }
6c95b8df
PA
8592
8593 /* Try to get rid of automatically added inferiors that are no
8594 longer needed. Keeping those around slows down things linearly.
8595 Note that this never removes the current inferior. */
8596 prune_inferiors ();
4c2f2a79
PA
8597
8598 return 0;
c906108c 8599}
c906108c 8600\f
c5aa993b 8601int
96baa820 8602signal_stop_state (int signo)
c906108c 8603{
d6b48e9c 8604 return signal_stop[signo];
c906108c
SS
8605}
8606
c5aa993b 8607int
96baa820 8608signal_print_state (int signo)
c906108c
SS
8609{
8610 return signal_print[signo];
8611}
8612
c5aa993b 8613int
96baa820 8614signal_pass_state (int signo)
c906108c
SS
8615{
8616 return signal_program[signo];
8617}
8618
2455069d
UW
8619static void
8620signal_cache_update (int signo)
8621{
8622 if (signo == -1)
8623 {
a493e3e2 8624 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8625 signal_cache_update (signo);
8626
8627 return;
8628 }
8629
8630 signal_pass[signo] = (signal_stop[signo] == 0
8631 && signal_print[signo] == 0
ab04a2af
TT
8632 && signal_program[signo] == 1
8633 && signal_catch[signo] == 0);
2455069d
UW
8634}
8635
488f131b 8636int
7bda5e4a 8637signal_stop_update (int signo, int state)
d4f3574e
SS
8638{
8639 int ret = signal_stop[signo];
abbb1732 8640
d4f3574e 8641 signal_stop[signo] = state;
2455069d 8642 signal_cache_update (signo);
d4f3574e
SS
8643 return ret;
8644}
8645
488f131b 8646int
7bda5e4a 8647signal_print_update (int signo, int state)
d4f3574e
SS
8648{
8649 int ret = signal_print[signo];
abbb1732 8650
d4f3574e 8651 signal_print[signo] = state;
2455069d 8652 signal_cache_update (signo);
d4f3574e
SS
8653 return ret;
8654}
8655
488f131b 8656int
7bda5e4a 8657signal_pass_update (int signo, int state)
d4f3574e
SS
8658{
8659 int ret = signal_program[signo];
abbb1732 8660
d4f3574e 8661 signal_program[signo] = state;
2455069d 8662 signal_cache_update (signo);
d4f3574e
SS
8663 return ret;
8664}
8665
ab04a2af
TT
8666/* Update the global 'signal_catch' from INFO and notify the
8667 target. */
8668
8669void
8670signal_catch_update (const unsigned int *info)
8671{
8672 int i;
8673
8674 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8675 signal_catch[i] = info[i] > 0;
8676 signal_cache_update (-1);
adc6a863 8677 target_pass_signals (signal_pass);
ab04a2af
TT
8678}
8679
c906108c 8680static void
96baa820 8681sig_print_header (void)
c906108c 8682{
3e43a32a
MS
8683 printf_filtered (_("Signal Stop\tPrint\tPass "
8684 "to program\tDescription\n"));
c906108c
SS
8685}
8686
8687static void
2ea28649 8688sig_print_info (enum gdb_signal oursig)
c906108c 8689{
2ea28649 8690 const char *name = gdb_signal_to_name (oursig);
c906108c 8691 int name_padding = 13 - strlen (name);
96baa820 8692
c906108c
SS
8693 if (name_padding <= 0)
8694 name_padding = 0;
8695
8696 printf_filtered ("%s", name);
488f131b 8697 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8698 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8699 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8700 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8701 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8702}
8703
8704/* Specify how various signals in the inferior should be handled. */
8705
8706static void
0b39b52e 8707handle_command (const char *args, int from_tty)
c906108c 8708{
c906108c 8709 int digits, wordlen;
b926417a 8710 int sigfirst, siglast;
2ea28649 8711 enum gdb_signal oursig;
c906108c 8712 int allsigs;
c906108c
SS
8713
8714 if (args == NULL)
8715 {
e2e0b3e5 8716 error_no_arg (_("signal to handle"));
c906108c
SS
8717 }
8718
1777feb0 8719 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8720
adc6a863
PA
8721 const size_t nsigs = GDB_SIGNAL_LAST;
8722 unsigned char sigs[nsigs] {};
c906108c 8723
1777feb0 8724 /* Break the command line up into args. */
c906108c 8725
773a1edc 8726 gdb_argv built_argv (args);
c906108c
SS
8727
8728 /* Walk through the args, looking for signal oursigs, signal names, and
8729 actions. Signal numbers and signal names may be interspersed with
8730 actions, with the actions being performed for all signals cumulatively
1777feb0 8731 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8732
773a1edc 8733 for (char *arg : built_argv)
c906108c 8734 {
773a1edc
TT
8735 wordlen = strlen (arg);
8736 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8737 {;
8738 }
8739 allsigs = 0;
8740 sigfirst = siglast = -1;
8741
773a1edc 8742 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8743 {
8744 /* Apply action to all signals except those used by the
1777feb0 8745 debugger. Silently skip those. */
c906108c
SS
8746 allsigs = 1;
8747 sigfirst = 0;
8748 siglast = nsigs - 1;
8749 }
773a1edc 8750 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8751 {
8752 SET_SIGS (nsigs, sigs, signal_stop);
8753 SET_SIGS (nsigs, sigs, signal_print);
8754 }
773a1edc 8755 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8756 {
8757 UNSET_SIGS (nsigs, sigs, signal_program);
8758 }
773a1edc 8759 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8760 {
8761 SET_SIGS (nsigs, sigs, signal_print);
8762 }
773a1edc 8763 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8764 {
8765 SET_SIGS (nsigs, sigs, signal_program);
8766 }
773a1edc 8767 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8768 {
8769 UNSET_SIGS (nsigs, sigs, signal_stop);
8770 }
773a1edc 8771 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8772 {
8773 SET_SIGS (nsigs, sigs, signal_program);
8774 }
773a1edc 8775 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8776 {
8777 UNSET_SIGS (nsigs, sigs, signal_print);
8778 UNSET_SIGS (nsigs, sigs, signal_stop);
8779 }
773a1edc 8780 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8781 {
8782 UNSET_SIGS (nsigs, sigs, signal_program);
8783 }
8784 else if (digits > 0)
8785 {
8786 /* It is numeric. The numeric signal refers to our own
8787 internal signal numbering from target.h, not to host/target
8788 signal number. This is a feature; users really should be
8789 using symbolic names anyway, and the common ones like
8790 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8791
8792 sigfirst = siglast = (int)
773a1edc
TT
8793 gdb_signal_from_command (atoi (arg));
8794 if (arg[digits] == '-')
c906108c
SS
8795 {
8796 siglast = (int)
773a1edc 8797 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8798 }
8799 if (sigfirst > siglast)
8800 {
1777feb0 8801 /* Bet he didn't figure we'd think of this case... */
b926417a 8802 std::swap (sigfirst, siglast);
c906108c
SS
8803 }
8804 }
8805 else
8806 {
773a1edc 8807 oursig = gdb_signal_from_name (arg);
a493e3e2 8808 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8809 {
8810 sigfirst = siglast = (int) oursig;
8811 }
8812 else
8813 {
8814 /* Not a number and not a recognized flag word => complain. */
773a1edc 8815 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8816 }
8817 }
8818
8819 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8820 which signals to apply actions to. */
c906108c 8821
b926417a 8822 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8823 {
2ea28649 8824 switch ((enum gdb_signal) signum)
c906108c 8825 {
a493e3e2
PA
8826 case GDB_SIGNAL_TRAP:
8827 case GDB_SIGNAL_INT:
c906108c
SS
8828 if (!allsigs && !sigs[signum])
8829 {
9e2f0ad4 8830 if (query (_("%s is used by the debugger.\n\
3e43a32a 8831Are you sure you want to change it? "),
2ea28649 8832 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8833 {
8834 sigs[signum] = 1;
8835 }
8836 else
c119e040 8837 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8838 }
8839 break;
a493e3e2
PA
8840 case GDB_SIGNAL_0:
8841 case GDB_SIGNAL_DEFAULT:
8842 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8843 /* Make sure that "all" doesn't print these. */
8844 break;
8845 default:
8846 sigs[signum] = 1;
8847 break;
8848 }
8849 }
c906108c
SS
8850 }
8851
b926417a 8852 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8853 if (sigs[signum])
8854 {
2455069d 8855 signal_cache_update (-1);
adc6a863
PA
8856 target_pass_signals (signal_pass);
8857 target_program_signals (signal_program);
c906108c 8858
3a031f65
PA
8859 if (from_tty)
8860 {
8861 /* Show the results. */
8862 sig_print_header ();
8863 for (; signum < nsigs; signum++)
8864 if (sigs[signum])
aead7601 8865 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8866 }
8867
8868 break;
8869 }
c906108c
SS
8870}
8871
de0bea00
MF
8872/* Complete the "handle" command. */
8873
eb3ff9a5 8874static void
de0bea00 8875handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8876 completion_tracker &tracker,
6f937416 8877 const char *text, const char *word)
de0bea00 8878{
de0bea00
MF
8879 static const char * const keywords[] =
8880 {
8881 "all",
8882 "stop",
8883 "ignore",
8884 "print",
8885 "pass",
8886 "nostop",
8887 "noignore",
8888 "noprint",
8889 "nopass",
8890 NULL,
8891 };
8892
eb3ff9a5
PA
8893 signal_completer (ignore, tracker, text, word);
8894 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8895}
8896
2ea28649
PA
8897enum gdb_signal
8898gdb_signal_from_command (int num)
ed01b82c
PA
8899{
8900 if (num >= 1 && num <= 15)
2ea28649 8901 return (enum gdb_signal) num;
ed01b82c
PA
8902 error (_("Only signals 1-15 are valid as numeric signals.\n\
8903Use \"info signals\" for a list of symbolic signals."));
8904}
8905
c906108c
SS
8906/* Print current contents of the tables set by the handle command.
8907 It is possible we should just be printing signals actually used
8908 by the current target (but for things to work right when switching
8909 targets, all signals should be in the signal tables). */
8910
8911static void
1d12d88f 8912info_signals_command (const char *signum_exp, int from_tty)
c906108c 8913{
2ea28649 8914 enum gdb_signal oursig;
abbb1732 8915
c906108c
SS
8916 sig_print_header ();
8917
8918 if (signum_exp)
8919 {
8920 /* First see if this is a symbol name. */
2ea28649 8921 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8922 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8923 {
8924 /* No, try numeric. */
8925 oursig =
2ea28649 8926 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8927 }
8928 sig_print_info (oursig);
8929 return;
8930 }
8931
8932 printf_filtered ("\n");
8933 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8934 for (oursig = GDB_SIGNAL_FIRST;
8935 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8936 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8937 {
8938 QUIT;
8939
a493e3e2
PA
8940 if (oursig != GDB_SIGNAL_UNKNOWN
8941 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8942 sig_print_info (oursig);
8943 }
8944
3e43a32a
MS
8945 printf_filtered (_("\nUse the \"handle\" command "
8946 "to change these tables.\n"));
c906108c 8947}
4aa995e1
PA
8948
8949/* The $_siginfo convenience variable is a bit special. We don't know
8950 for sure the type of the value until we actually have a chance to
7a9dd1b2 8951 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8952 also dependent on which thread you have selected.
8953
8954 1. making $_siginfo be an internalvar that creates a new value on
8955 access.
8956
8957 2. making the value of $_siginfo be an lval_computed value. */
8958
8959/* This function implements the lval_computed support for reading a
8960 $_siginfo value. */
8961
8962static void
8963siginfo_value_read (struct value *v)
8964{
8965 LONGEST transferred;
8966
a911d87a
PA
8967 /* If we can access registers, so can we access $_siginfo. Likewise
8968 vice versa. */
8969 validate_registers_access ();
c709acd1 8970
4aa995e1 8971 transferred =
8b88a78e 8972 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8973 NULL,
8974 value_contents_all_raw (v),
8975 value_offset (v),
8976 TYPE_LENGTH (value_type (v)));
8977
8978 if (transferred != TYPE_LENGTH (value_type (v)))
8979 error (_("Unable to read siginfo"));
8980}
8981
8982/* This function implements the lval_computed support for writing a
8983 $_siginfo value. */
8984
8985static void
8986siginfo_value_write (struct value *v, struct value *fromval)
8987{
8988 LONGEST transferred;
8989
a911d87a
PA
8990 /* If we can access registers, so can we access $_siginfo. Likewise
8991 vice versa. */
8992 validate_registers_access ();
c709acd1 8993
8b88a78e 8994 transferred = target_write (current_top_target (),
4aa995e1
PA
8995 TARGET_OBJECT_SIGNAL_INFO,
8996 NULL,
8997 value_contents_all_raw (fromval),
8998 value_offset (v),
8999 TYPE_LENGTH (value_type (fromval)));
9000
9001 if (transferred != TYPE_LENGTH (value_type (fromval)))
9002 error (_("Unable to write siginfo"));
9003}
9004
c8f2448a 9005static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9006 {
9007 siginfo_value_read,
9008 siginfo_value_write
9009 };
9010
9011/* Return a new value with the correct type for the siginfo object of
78267919
UW
9012 the current thread using architecture GDBARCH. Return a void value
9013 if there's no object available. */
4aa995e1 9014
2c0b251b 9015static struct value *
22d2b532
SDJ
9016siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9017 void *ignore)
4aa995e1 9018{
4aa995e1 9019 if (target_has_stack
d7e15655 9020 && inferior_ptid != null_ptid
78267919 9021 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9022 {
78267919 9023 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9024
78267919 9025 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9026 }
9027
78267919 9028 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9029}
9030
c906108c 9031\f
16c381f0
JK
9032/* infcall_suspend_state contains state about the program itself like its
9033 registers and any signal it received when it last stopped.
9034 This state must be restored regardless of how the inferior function call
9035 ends (either successfully, or after it hits a breakpoint or signal)
9036 if the program is to properly continue where it left off. */
9037
6bf78e29 9038class infcall_suspend_state
7a292a7a 9039{
6bf78e29
AB
9040public:
9041 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9042 once the inferior function call has finished. */
9043 infcall_suspend_state (struct gdbarch *gdbarch,
9044 const struct thread_info *tp,
9045 struct regcache *regcache)
9046 : m_thread_suspend (tp->suspend),
9047 m_registers (new readonly_detached_regcache (*regcache))
9048 {
9049 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9050
9051 if (gdbarch_get_siginfo_type_p (gdbarch))
9052 {
9053 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9054 size_t len = TYPE_LENGTH (type);
9055
9056 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9057
9058 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9059 siginfo_data.get (), 0, len) != len)
9060 {
9061 /* Errors ignored. */
9062 siginfo_data.reset (nullptr);
9063 }
9064 }
9065
9066 if (siginfo_data)
9067 {
9068 m_siginfo_gdbarch = gdbarch;
9069 m_siginfo_data = std::move (siginfo_data);
9070 }
9071 }
9072
9073 /* Return a pointer to the stored register state. */
16c381f0 9074
6bf78e29
AB
9075 readonly_detached_regcache *registers () const
9076 {
9077 return m_registers.get ();
9078 }
9079
9080 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9081
9082 void restore (struct gdbarch *gdbarch,
9083 struct thread_info *tp,
9084 struct regcache *regcache) const
9085 {
9086 tp->suspend = m_thread_suspend;
9087
9088 if (m_siginfo_gdbarch == gdbarch)
9089 {
9090 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9091
9092 /* Errors ignored. */
9093 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9094 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9095 }
9096
9097 /* The inferior can be gone if the user types "print exit(0)"
9098 (and perhaps other times). */
9099 if (target_has_execution)
9100 /* NB: The register write goes through to the target. */
9101 regcache->restore (registers ());
9102 }
9103
9104private:
9105 /* How the current thread stopped before the inferior function call was
9106 executed. */
9107 struct thread_suspend_state m_thread_suspend;
9108
9109 /* The registers before the inferior function call was executed. */
9110 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9111
35515841 9112 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9113 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9114
9115 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9116 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9117 content would be invalid. */
6bf78e29 9118 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9119};
9120
cb524840
TT
9121infcall_suspend_state_up
9122save_infcall_suspend_state ()
b89667eb 9123{
b89667eb 9124 struct thread_info *tp = inferior_thread ();
1736ad11 9125 struct regcache *regcache = get_current_regcache ();
ac7936df 9126 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9127
6bf78e29
AB
9128 infcall_suspend_state_up inf_state
9129 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9130
6bf78e29
AB
9131 /* Having saved the current state, adjust the thread state, discarding
9132 any stop signal information. The stop signal is not useful when
9133 starting an inferior function call, and run_inferior_call will not use
9134 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9135 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9136
b89667eb
DE
9137 return inf_state;
9138}
9139
9140/* Restore inferior session state to INF_STATE. */
9141
9142void
16c381f0 9143restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9144{
9145 struct thread_info *tp = inferior_thread ();
1736ad11 9146 struct regcache *regcache = get_current_regcache ();
ac7936df 9147 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9148
6bf78e29 9149 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9150 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9151}
9152
b89667eb 9153void
16c381f0 9154discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9155{
dd848631 9156 delete inf_state;
b89667eb
DE
9157}
9158
daf6667d 9159readonly_detached_regcache *
16c381f0 9160get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9161{
6bf78e29 9162 return inf_state->registers ();
b89667eb
DE
9163}
9164
16c381f0
JK
9165/* infcall_control_state contains state regarding gdb's control of the
9166 inferior itself like stepping control. It also contains session state like
9167 the user's currently selected frame. */
b89667eb 9168
16c381f0 9169struct infcall_control_state
b89667eb 9170{
16c381f0
JK
9171 struct thread_control_state thread_control;
9172 struct inferior_control_state inferior_control;
d82142e2
JK
9173
9174 /* Other fields: */
ee841dd8
TT
9175 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9176 int stopped_by_random_signal = 0;
7a292a7a 9177
b89667eb 9178 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9179 struct frame_id selected_frame_id {};
7a292a7a
SS
9180};
9181
c906108c 9182/* Save all of the information associated with the inferior<==>gdb
b89667eb 9183 connection. */
c906108c 9184
cb524840
TT
9185infcall_control_state_up
9186save_infcall_control_state ()
c906108c 9187{
cb524840 9188 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9189 struct thread_info *tp = inferior_thread ();
d6b48e9c 9190 struct inferior *inf = current_inferior ();
7a292a7a 9191
16c381f0
JK
9192 inf_status->thread_control = tp->control;
9193 inf_status->inferior_control = inf->control;
d82142e2 9194
8358c15c 9195 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9196 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9197
16c381f0
JK
9198 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9199 chain. If caller's caller is walking the chain, they'll be happier if we
9200 hand them back the original chain when restore_infcall_control_state is
9201 called. */
9202 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9203
9204 /* Other fields: */
9205 inf_status->stop_stack_dummy = stop_stack_dummy;
9206 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9207
206415a3 9208 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9209
7a292a7a 9210 return inf_status;
c906108c
SS
9211}
9212
bf469271
PA
9213static void
9214restore_selected_frame (const frame_id &fid)
c906108c 9215{
bf469271 9216 frame_info *frame = frame_find_by_id (fid);
c906108c 9217
aa0cd9c1
AC
9218 /* If inf_status->selected_frame_id is NULL, there was no previously
9219 selected frame. */
101dcfbe 9220 if (frame == NULL)
c906108c 9221 {
8a3fe4f8 9222 warning (_("Unable to restore previously selected frame."));
bf469271 9223 return;
c906108c
SS
9224 }
9225
0f7d239c 9226 select_frame (frame);
c906108c
SS
9227}
9228
b89667eb
DE
9229/* Restore inferior session state to INF_STATUS. */
9230
c906108c 9231void
16c381f0 9232restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9233{
4e1c45ea 9234 struct thread_info *tp = inferior_thread ();
d6b48e9c 9235 struct inferior *inf = current_inferior ();
4e1c45ea 9236
8358c15c
JK
9237 if (tp->control.step_resume_breakpoint)
9238 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9239
5b79abe7
TT
9240 if (tp->control.exception_resume_breakpoint)
9241 tp->control.exception_resume_breakpoint->disposition
9242 = disp_del_at_next_stop;
9243
d82142e2 9244 /* Handle the bpstat_copy of the chain. */
16c381f0 9245 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9246
16c381f0
JK
9247 tp->control = inf_status->thread_control;
9248 inf->control = inf_status->inferior_control;
d82142e2
JK
9249
9250 /* Other fields: */
9251 stop_stack_dummy = inf_status->stop_stack_dummy;
9252 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9253
b89667eb 9254 if (target_has_stack)
c906108c 9255 {
bf469271 9256 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9257 walking the stack might encounter a garbage pointer and
9258 error() trying to dereference it. */
a70b8144 9259 try
bf469271
PA
9260 {
9261 restore_selected_frame (inf_status->selected_frame_id);
9262 }
230d2906 9263 catch (const gdb_exception_error &ex)
bf469271
PA
9264 {
9265 exception_fprintf (gdb_stderr, ex,
9266 "Unable to restore previously selected frame:\n");
9267 /* Error in restoring the selected frame. Select the
9268 innermost frame. */
9269 select_frame (get_current_frame ());
9270 }
c906108c 9271 }
c906108c 9272
ee841dd8 9273 delete inf_status;
7a292a7a 9274}
c906108c
SS
9275
9276void
16c381f0 9277discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9278{
8358c15c
JK
9279 if (inf_status->thread_control.step_resume_breakpoint)
9280 inf_status->thread_control.step_resume_breakpoint->disposition
9281 = disp_del_at_next_stop;
9282
5b79abe7
TT
9283 if (inf_status->thread_control.exception_resume_breakpoint)
9284 inf_status->thread_control.exception_resume_breakpoint->disposition
9285 = disp_del_at_next_stop;
9286
1777feb0 9287 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9288 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9289
ee841dd8 9290 delete inf_status;
7a292a7a 9291}
b89667eb 9292\f
7f89fd65 9293/* See infrun.h. */
0c557179
SDJ
9294
9295void
9296clear_exit_convenience_vars (void)
9297{
9298 clear_internalvar (lookup_internalvar ("_exitsignal"));
9299 clear_internalvar (lookup_internalvar ("_exitcode"));
9300}
c5aa993b 9301\f
488f131b 9302
b2175913
MS
9303/* User interface for reverse debugging:
9304 Set exec-direction / show exec-direction commands
9305 (returns error unless target implements to_set_exec_direction method). */
9306
170742de 9307enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9308static const char exec_forward[] = "forward";
9309static const char exec_reverse[] = "reverse";
9310static const char *exec_direction = exec_forward;
40478521 9311static const char *const exec_direction_names[] = {
b2175913
MS
9312 exec_forward,
9313 exec_reverse,
9314 NULL
9315};
9316
9317static void
eb4c3f4a 9318set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9319 struct cmd_list_element *cmd)
9320{
9321 if (target_can_execute_reverse)
9322 {
9323 if (!strcmp (exec_direction, exec_forward))
9324 execution_direction = EXEC_FORWARD;
9325 else if (!strcmp (exec_direction, exec_reverse))
9326 execution_direction = EXEC_REVERSE;
9327 }
8bbed405
MS
9328 else
9329 {
9330 exec_direction = exec_forward;
9331 error (_("Target does not support this operation."));
9332 }
b2175913
MS
9333}
9334
9335static void
9336show_exec_direction_func (struct ui_file *out, int from_tty,
9337 struct cmd_list_element *cmd, const char *value)
9338{
9339 switch (execution_direction) {
9340 case EXEC_FORWARD:
9341 fprintf_filtered (out, _("Forward.\n"));
9342 break;
9343 case EXEC_REVERSE:
9344 fprintf_filtered (out, _("Reverse.\n"));
9345 break;
b2175913 9346 default:
d8b34453
PA
9347 internal_error (__FILE__, __LINE__,
9348 _("bogus execution_direction value: %d"),
9349 (int) execution_direction);
b2175913
MS
9350 }
9351}
9352
d4db2f36
PA
9353static void
9354show_schedule_multiple (struct ui_file *file, int from_tty,
9355 struct cmd_list_element *c, const char *value)
9356{
3e43a32a
MS
9357 fprintf_filtered (file, _("Resuming the execution of threads "
9358 "of all processes is %s.\n"), value);
d4db2f36 9359}
ad52ddc6 9360
22d2b532
SDJ
9361/* Implementation of `siginfo' variable. */
9362
9363static const struct internalvar_funcs siginfo_funcs =
9364{
9365 siginfo_make_value,
9366 NULL,
9367 NULL
9368};
9369
372316f1
PA
9370/* Callback for infrun's target events source. This is marked when a
9371 thread has a pending status to process. */
9372
9373static void
9374infrun_async_inferior_event_handler (gdb_client_data data)
9375{
372316f1
PA
9376 inferior_event_handler (INF_REG_EVENT, NULL);
9377}
9378
6c265988 9379void _initialize_infrun ();
c906108c 9380void
6c265988 9381_initialize_infrun ()
c906108c 9382{
de0bea00 9383 struct cmd_list_element *c;
c906108c 9384
372316f1
PA
9385 /* Register extra event sources in the event loop. */
9386 infrun_async_inferior_event_token
9387 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9388
11db9430 9389 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9390What debugger does when program gets various signals.\n\
9391Specify a signal as argument to print info on that signal only."));
c906108c
SS
9392 add_info_alias ("handle", "signals", 0);
9393
de0bea00 9394 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9395Specify how to handle signals.\n\
486c7739 9396Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9397Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9398If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9399will be displayed instead.\n\
9400\n\
c906108c
SS
9401Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9402from 1-15 are allowed for compatibility with old versions of GDB.\n\
9403Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9404The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9405used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9406\n\
1bedd215 9407Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9408\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9409Stop means reenter debugger if this signal happens (implies print).\n\
9410Print means print a message if this signal happens.\n\
9411Pass means let program see this signal; otherwise program doesn't know.\n\
9412Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9413Pass and Stop may be combined.\n\
9414\n\
9415Multiple signals may be specified. Signal numbers and signal names\n\
9416may be interspersed with actions, with the actions being performed for\n\
9417all signals cumulatively specified."));
de0bea00 9418 set_cmd_completer (c, handle_completer);
486c7739 9419
c906108c 9420 if (!dbx_commands)
1a966eab
AC
9421 stop_command = add_cmd ("stop", class_obscure,
9422 not_just_help_class_command, _("\
9423There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9424This allows you to set a list of commands to be run each time execution\n\
1a966eab 9425of the program stops."), &cmdlist);
c906108c 9426
ccce17b0 9427 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9428Set inferior debugging."), _("\
9429Show inferior debugging."), _("\
9430When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9431 NULL,
9432 show_debug_infrun,
9433 &setdebuglist, &showdebuglist);
527159b7 9434
3e43a32a
MS
9435 add_setshow_boolean_cmd ("displaced", class_maintenance,
9436 &debug_displaced, _("\
237fc4c9
PA
9437Set displaced stepping debugging."), _("\
9438Show displaced stepping debugging."), _("\
9439When non-zero, displaced stepping specific debugging is enabled."),
9440 NULL,
9441 show_debug_displaced,
9442 &setdebuglist, &showdebuglist);
9443
ad52ddc6
PA
9444 add_setshow_boolean_cmd ("non-stop", no_class,
9445 &non_stop_1, _("\
9446Set whether gdb controls the inferior in non-stop mode."), _("\
9447Show whether gdb controls the inferior in non-stop mode."), _("\
9448When debugging a multi-threaded program and this setting is\n\
9449off (the default, also called all-stop mode), when one thread stops\n\
9450(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9451all other threads in the program while you interact with the thread of\n\
9452interest. When you continue or step a thread, you can allow the other\n\
9453threads to run, or have them remain stopped, but while you inspect any\n\
9454thread's state, all threads stop.\n\
9455\n\
9456In non-stop mode, when one thread stops, other threads can continue\n\
9457to run freely. You'll be able to step each thread independently,\n\
9458leave it stopped or free to run as needed."),
9459 set_non_stop,
9460 show_non_stop,
9461 &setlist,
9462 &showlist);
9463
adc6a863 9464 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9465 {
9466 signal_stop[i] = 1;
9467 signal_print[i] = 1;
9468 signal_program[i] = 1;
ab04a2af 9469 signal_catch[i] = 0;
c906108c
SS
9470 }
9471
4d9d9d04
PA
9472 /* Signals caused by debugger's own actions should not be given to
9473 the program afterwards.
9474
9475 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9476 explicitly specifies that it should be delivered to the target
9477 program. Typically, that would occur when a user is debugging a
9478 target monitor on a simulator: the target monitor sets a
9479 breakpoint; the simulator encounters this breakpoint and halts
9480 the simulation handing control to GDB; GDB, noting that the stop
9481 address doesn't map to any known breakpoint, returns control back
9482 to the simulator; the simulator then delivers the hardware
9483 equivalent of a GDB_SIGNAL_TRAP to the program being
9484 debugged. */
a493e3e2
PA
9485 signal_program[GDB_SIGNAL_TRAP] = 0;
9486 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9487
9488 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9489 signal_stop[GDB_SIGNAL_ALRM] = 0;
9490 signal_print[GDB_SIGNAL_ALRM] = 0;
9491 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9492 signal_print[GDB_SIGNAL_VTALRM] = 0;
9493 signal_stop[GDB_SIGNAL_PROF] = 0;
9494 signal_print[GDB_SIGNAL_PROF] = 0;
9495 signal_stop[GDB_SIGNAL_CHLD] = 0;
9496 signal_print[GDB_SIGNAL_CHLD] = 0;
9497 signal_stop[GDB_SIGNAL_IO] = 0;
9498 signal_print[GDB_SIGNAL_IO] = 0;
9499 signal_stop[GDB_SIGNAL_POLL] = 0;
9500 signal_print[GDB_SIGNAL_POLL] = 0;
9501 signal_stop[GDB_SIGNAL_URG] = 0;
9502 signal_print[GDB_SIGNAL_URG] = 0;
9503 signal_stop[GDB_SIGNAL_WINCH] = 0;
9504 signal_print[GDB_SIGNAL_WINCH] = 0;
9505 signal_stop[GDB_SIGNAL_PRIO] = 0;
9506 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9507
cd0fc7c3
SS
9508 /* These signals are used internally by user-level thread
9509 implementations. (See signal(5) on Solaris.) Like the above
9510 signals, a healthy program receives and handles them as part of
9511 its normal operation. */
a493e3e2
PA
9512 signal_stop[GDB_SIGNAL_LWP] = 0;
9513 signal_print[GDB_SIGNAL_LWP] = 0;
9514 signal_stop[GDB_SIGNAL_WAITING] = 0;
9515 signal_print[GDB_SIGNAL_WAITING] = 0;
9516 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9517 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9518 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9519 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9520
2455069d
UW
9521 /* Update cached state. */
9522 signal_cache_update (-1);
9523
85c07804
AC
9524 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9525 &stop_on_solib_events, _("\
9526Set stopping for shared library events."), _("\
9527Show stopping for shared library events."), _("\
c906108c
SS
9528If nonzero, gdb will give control to the user when the dynamic linker\n\
9529notifies gdb of shared library events. The most common event of interest\n\
85c07804 9530to the user would be loading/unloading of a new library."),
f9e14852 9531 set_stop_on_solib_events,
920d2a44 9532 show_stop_on_solib_events,
85c07804 9533 &setlist, &showlist);
c906108c 9534
7ab04401
AC
9535 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9536 follow_fork_mode_kind_names,
9537 &follow_fork_mode_string, _("\
9538Set debugger response to a program call of fork or vfork."), _("\
9539Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9540A fork or vfork creates a new process. follow-fork-mode can be:\n\
9541 parent - the original process is debugged after a fork\n\
9542 child - the new process is debugged after a fork\n\
ea1dd7bc 9543The unfollowed process will continue to run.\n\
7ab04401
AC
9544By default, the debugger will follow the parent process."),
9545 NULL,
920d2a44 9546 show_follow_fork_mode_string,
7ab04401
AC
9547 &setlist, &showlist);
9548
6c95b8df
PA
9549 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9550 follow_exec_mode_names,
9551 &follow_exec_mode_string, _("\
9552Set debugger response to a program call of exec."), _("\
9553Show debugger response to a program call of exec."), _("\
9554An exec call replaces the program image of a process.\n\
9555\n\
9556follow-exec-mode can be:\n\
9557\n\
cce7e648 9558 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9559to this new inferior. The program the process was running before\n\
9560the exec call can be restarted afterwards by restarting the original\n\
9561inferior.\n\
9562\n\
9563 same - the debugger keeps the process bound to the same inferior.\n\
9564The new executable image replaces the previous executable loaded in\n\
9565the inferior. Restarting the inferior after the exec call restarts\n\
9566the executable the process was running after the exec call.\n\
9567\n\
9568By default, the debugger will use the same inferior."),
9569 NULL,
9570 show_follow_exec_mode_string,
9571 &setlist, &showlist);
9572
7ab04401
AC
9573 add_setshow_enum_cmd ("scheduler-locking", class_run,
9574 scheduler_enums, &scheduler_mode, _("\
9575Set mode for locking scheduler during execution."), _("\
9576Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9577off == no locking (threads may preempt at any time)\n\
9578on == full locking (no thread except the current thread may run)\n\
9579 This applies to both normal execution and replay mode.\n\
9580step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9581 In this mode, other threads may run during other commands.\n\
9582 This applies to both normal execution and replay mode.\n\
9583replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9584 set_schedlock_func, /* traps on target vector */
920d2a44 9585 show_scheduler_mode,
7ab04401 9586 &setlist, &showlist);
5fbbeb29 9587
d4db2f36
PA
9588 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9589Set mode for resuming threads of all processes."), _("\
9590Show mode for resuming threads of all processes."), _("\
9591When on, execution commands (such as 'continue' or 'next') resume all\n\
9592threads of all processes. When off (which is the default), execution\n\
9593commands only resume the threads of the current process. The set of\n\
9594threads that are resumed is further refined by the scheduler-locking\n\
9595mode (see help set scheduler-locking)."),
9596 NULL,
9597 show_schedule_multiple,
9598 &setlist, &showlist);
9599
5bf193a2
AC
9600 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9601Set mode of the step operation."), _("\
9602Show mode of the step operation."), _("\
9603When set, doing a step over a function without debug line information\n\
9604will stop at the first instruction of that function. Otherwise, the\n\
9605function is skipped and the step command stops at a different source line."),
9606 NULL,
920d2a44 9607 show_step_stop_if_no_debug,
5bf193a2 9608 &setlist, &showlist);
ca6724c1 9609
72d0e2c5
YQ
9610 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9611 &can_use_displaced_stepping, _("\
237fc4c9
PA
9612Set debugger's willingness to use displaced stepping."), _("\
9613Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9614If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9615supported by the target architecture. If off, gdb will not use displaced\n\
9616stepping to step over breakpoints, even if such is supported by the target\n\
9617architecture. If auto (which is the default), gdb will use displaced stepping\n\
9618if the target architecture supports it and non-stop mode is active, but will not\n\
9619use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9620 NULL,
9621 show_can_use_displaced_stepping,
9622 &setlist, &showlist);
237fc4c9 9623
b2175913
MS
9624 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9625 &exec_direction, _("Set direction of execution.\n\
9626Options are 'forward' or 'reverse'."),
9627 _("Show direction of execution (forward/reverse)."),
9628 _("Tells gdb whether to execute forward or backward."),
9629 set_exec_direction_func, show_exec_direction_func,
9630 &setlist, &showlist);
9631
6c95b8df
PA
9632 /* Set/show detach-on-fork: user-settable mode. */
9633
9634 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9635Set whether gdb will detach the child of a fork."), _("\
9636Show whether gdb will detach the child of a fork."), _("\
9637Tells gdb whether to detach the child of a fork."),
9638 NULL, NULL, &setlist, &showlist);
9639
03583c20
UW
9640 /* Set/show disable address space randomization mode. */
9641
9642 add_setshow_boolean_cmd ("disable-randomization", class_support,
9643 &disable_randomization, _("\
9644Set disabling of debuggee's virtual address space randomization."), _("\
9645Show disabling of debuggee's virtual address space randomization."), _("\
9646When this mode is on (which is the default), randomization of the virtual\n\
9647address space is disabled. Standalone programs run with the randomization\n\
9648enabled by default on some platforms."),
9649 &set_disable_randomization,
9650 &show_disable_randomization,
9651 &setlist, &showlist);
9652
ca6724c1 9653 /* ptid initializations */
ca6724c1
KB
9654 inferior_ptid = null_ptid;
9655 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9656
76727919
TT
9657 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9658 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9659 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9660 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9661
9662 /* Explicitly create without lookup, since that tries to create a
9663 value with a void typed value, and when we get here, gdbarch
9664 isn't initialized yet. At this point, we're quite sure there
9665 isn't another convenience variable of the same name. */
22d2b532 9666 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9667
9668 add_setshow_boolean_cmd ("observer", no_class,
9669 &observer_mode_1, _("\
9670Set whether gdb controls the inferior in observer mode."), _("\
9671Show whether gdb controls the inferior in observer mode."), _("\
9672In observer mode, GDB can get data from the inferior, but not\n\
9673affect its execution. Registers and memory may not be changed,\n\
9674breakpoints may not be set, and the program cannot be interrupted\n\
9675or signalled."),
9676 set_observer_mode,
9677 show_observer_mode,
9678 &setlist,
9679 &showlist);
c906108c 9680}
This page took 3.00804 seconds and 4 git commands to generate.