2012-04-20 Sergio Durigan Junior <sergiodj@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
0b302171 4 Copyright (C) 1986-2012 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
60250e8b 27#include "exceptions.h"
c906108c 28#include "breakpoint.h"
03f2053f 29#include "gdb_wait.h"
c906108c
SS
30#include "gdbcore.h"
31#include "gdbcmd.h"
210661e7 32#include "cli/cli-script.h"
c906108c
SS
33#include "target.h"
34#include "gdbthread.h"
35#include "annotate.h"
1adeb98a 36#include "symfile.h"
7a292a7a 37#include "top.h"
c906108c 38#include <signal.h>
2acceee2 39#include "inf-loop.h"
4e052eda 40#include "regcache.h"
fd0407d6 41#include "value.h"
06600e06 42#include "observer.h"
f636b87d 43#include "language.h"
a77053c2 44#include "solib.h"
f17517ea 45#include "main.h"
186c406b
TT
46#include "dictionary.h"
47#include "block.h"
9f976b41 48#include "gdb_assert.h"
034dad6f 49#include "mi/mi-common.h"
4f8d22e3 50#include "event-top.h"
96429cc8 51#include "record.h"
edb3359d 52#include "inline-frame.h"
4efc6507 53#include "jit.h"
06cd862c 54#include "tracepoint.h"
be34f849 55#include "continuations.h"
b4a14fd0 56#include "interps.h"
1bfeeb0f 57#include "skip.h"
c906108c
SS
58
59/* Prototypes for local functions */
60
96baa820 61static void signals_info (char *, int);
c906108c 62
96baa820 63static void handle_command (char *, int);
c906108c 64
96baa820 65static void sig_print_info (enum target_signal);
c906108c 66
96baa820 67static void sig_print_header (void);
c906108c 68
74b7792f 69static void resume_cleanups (void *);
c906108c 70
96baa820 71static int hook_stop_stub (void *);
c906108c 72
96baa820
JM
73static int restore_selected_frame (void *);
74
4ef3f3be 75static int follow_fork (void);
96baa820
JM
76
77static void set_schedlock_func (char *args, int from_tty,
488f131b 78 struct cmd_list_element *c);
96baa820 79
a289b8f6
JK
80static int currently_stepping (struct thread_info *tp);
81
b3444185
PA
82static int currently_stepping_or_nexting_callback (struct thread_info *tp,
83 void *data);
a7212384 84
96baa820
JM
85static void xdb_handle_command (char *args, int from_tty);
86
6a6b96b9 87static int prepare_to_proceed (int);
ea67f13b 88
33d62d64
JK
89static void print_exited_reason (int exitstatus);
90
91static void print_signal_exited_reason (enum target_signal siggnal);
92
93static void print_no_history_reason (void);
94
95static void print_signal_received_reason (enum target_signal siggnal);
96
97static void print_end_stepping_range_reason (void);
98
96baa820 99void _initialize_infrun (void);
43ff13b4 100
e58b0e63
PA
101void nullify_last_target_wait_ptid (void);
102
2c03e5be 103static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
104
105static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
106
2484c66b
UW
107static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
108
5fbbeb29
CF
109/* When set, stop the 'step' command if we enter a function which has
110 no line number information. The normal behavior is that we step
111 over such function. */
112int step_stop_if_no_debug = 0;
920d2a44
AC
113static void
114show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c, const char *value)
116{
117 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
118}
5fbbeb29 119
1777feb0 120/* In asynchronous mode, but simulating synchronous execution. */
96baa820 121
43ff13b4
JM
122int sync_execution = 0;
123
c906108c
SS
124/* wait_for_inferior and normal_stop use this to notify the user
125 when the inferior stopped in a different thread than it had been
96baa820
JM
126 running in. */
127
39f77062 128static ptid_t previous_inferior_ptid;
7a292a7a 129
6c95b8df
PA
130/* Default behavior is to detach newly forked processes (legacy). */
131int detach_fork = 1;
132
237fc4c9
PA
133int debug_displaced = 0;
134static void
135show_debug_displaced (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
139}
140
628fe4e4 141int debug_infrun = 0;
920d2a44
AC
142static void
143show_debug_infrun (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145{
146 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
147}
527159b7 148
03583c20
UW
149
150/* Support for disabling address space randomization. */
151
152int disable_randomization = 1;
153
154static void
155show_disable_randomization (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157{
158 if (target_supports_disable_randomization ())
159 fprintf_filtered (file,
160 _("Disabling randomization of debuggee's "
161 "virtual address space is %s.\n"),
162 value);
163 else
164 fputs_filtered (_("Disabling randomization of debuggee's "
165 "virtual address space is unsupported on\n"
166 "this platform.\n"), file);
167}
168
169static void
170set_disable_randomization (char *args, int from_tty,
171 struct cmd_list_element *c)
172{
173 if (!target_supports_disable_randomization ())
174 error (_("Disabling randomization of debuggee's "
175 "virtual address space is unsupported on\n"
176 "this platform."));
177}
178
179
d4f3574e
SS
180/* If the program uses ELF-style shared libraries, then calls to
181 functions in shared libraries go through stubs, which live in a
182 table called the PLT (Procedure Linkage Table). The first time the
183 function is called, the stub sends control to the dynamic linker,
184 which looks up the function's real address, patches the stub so
185 that future calls will go directly to the function, and then passes
186 control to the function.
187
188 If we are stepping at the source level, we don't want to see any of
189 this --- we just want to skip over the stub and the dynamic linker.
190 The simple approach is to single-step until control leaves the
191 dynamic linker.
192
ca557f44
AC
193 However, on some systems (e.g., Red Hat's 5.2 distribution) the
194 dynamic linker calls functions in the shared C library, so you
195 can't tell from the PC alone whether the dynamic linker is still
196 running. In this case, we use a step-resume breakpoint to get us
197 past the dynamic linker, as if we were using "next" to step over a
198 function call.
d4f3574e 199
cfd8ab24 200 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
201 linker code or not. Normally, this means we single-step. However,
202 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
203 address where we can place a step-resume breakpoint to get past the
204 linker's symbol resolution function.
205
cfd8ab24 206 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
207 pretty portable way, by comparing the PC against the address ranges
208 of the dynamic linker's sections.
209
210 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
211 it depends on internal details of the dynamic linker. It's usually
212 not too hard to figure out where to put a breakpoint, but it
213 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
214 sanity checking. If it can't figure things out, returning zero and
215 getting the (possibly confusing) stepping behavior is better than
216 signalling an error, which will obscure the change in the
217 inferior's state. */
c906108c 218
c906108c
SS
219/* This function returns TRUE if pc is the address of an instruction
220 that lies within the dynamic linker (such as the event hook, or the
221 dld itself).
222
223 This function must be used only when a dynamic linker event has
224 been caught, and the inferior is being stepped out of the hook, or
225 undefined results are guaranteed. */
226
227#ifndef SOLIB_IN_DYNAMIC_LINKER
228#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
229#endif
230
d914c394
SS
231/* "Observer mode" is somewhat like a more extreme version of
232 non-stop, in which all GDB operations that might affect the
233 target's execution have been disabled. */
234
235static int non_stop_1 = 0;
236
237int observer_mode = 0;
238static int observer_mode_1 = 0;
239
240static void
241set_observer_mode (char *args, int from_tty,
242 struct cmd_list_element *c)
243{
244 extern int pagination_enabled;
245
246 if (target_has_execution)
247 {
248 observer_mode_1 = observer_mode;
249 error (_("Cannot change this setting while the inferior is running."));
250 }
251
252 observer_mode = observer_mode_1;
253
254 may_write_registers = !observer_mode;
255 may_write_memory = !observer_mode;
256 may_insert_breakpoints = !observer_mode;
257 may_insert_tracepoints = !observer_mode;
258 /* We can insert fast tracepoints in or out of observer mode,
259 but enable them if we're going into this mode. */
260 if (observer_mode)
261 may_insert_fast_tracepoints = 1;
262 may_stop = !observer_mode;
263 update_target_permissions ();
264
265 /* Going *into* observer mode we must force non-stop, then
266 going out we leave it that way. */
267 if (observer_mode)
268 {
269 target_async_permitted = 1;
270 pagination_enabled = 0;
271 non_stop = non_stop_1 = 1;
272 }
273
274 if (from_tty)
275 printf_filtered (_("Observer mode is now %s.\n"),
276 (observer_mode ? "on" : "off"));
277}
278
279static void
280show_observer_mode (struct ui_file *file, int from_tty,
281 struct cmd_list_element *c, const char *value)
282{
283 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
284}
285
286/* This updates the value of observer mode based on changes in
287 permissions. Note that we are deliberately ignoring the values of
288 may-write-registers and may-write-memory, since the user may have
289 reason to enable these during a session, for instance to turn on a
290 debugging-related global. */
291
292void
293update_observer_mode (void)
294{
295 int newval;
296
297 newval = (!may_insert_breakpoints
298 && !may_insert_tracepoints
299 && may_insert_fast_tracepoints
300 && !may_stop
301 && non_stop);
302
303 /* Let the user know if things change. */
304 if (newval != observer_mode)
305 printf_filtered (_("Observer mode is now %s.\n"),
306 (newval ? "on" : "off"));
307
308 observer_mode = observer_mode_1 = newval;
309}
c2c6d25f 310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
2455069d
UW
317/* Table of signals that the target may silently handle.
318 This is automatically determined from the flags above,
319 and simply cached here. */
320static unsigned char *signal_pass;
321
c906108c
SS
322#define SET_SIGS(nsigs,sigs,flags) \
323 do { \
324 int signum = (nsigs); \
325 while (signum-- > 0) \
326 if ((sigs)[signum]) \
327 (flags)[signum] = 1; \
328 } while (0)
329
330#define UNSET_SIGS(nsigs,sigs,flags) \
331 do { \
332 int signum = (nsigs); \
333 while (signum-- > 0) \
334 if ((sigs)[signum]) \
335 (flags)[signum] = 0; \
336 } while (0)
337
9b224c5e
PA
338/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
339 this function is to avoid exporting `signal_program'. */
340
341void
342update_signals_program_target (void)
343{
344 target_program_signals ((int) TARGET_SIGNAL_LAST, signal_program);
345}
346
1777feb0 347/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 348
edb3359d 349#define RESUME_ALL minus_one_ptid
c906108c
SS
350
351/* Command list pointer for the "stop" placeholder. */
352
353static struct cmd_list_element *stop_command;
354
c906108c
SS
355/* Function inferior was in as of last step command. */
356
357static struct symbol *step_start_function;
358
c906108c
SS
359/* Nonzero if we want to give control to the user when we're notified
360 of shared library events by the dynamic linker. */
628fe4e4 361int stop_on_solib_events;
920d2a44
AC
362static void
363show_stop_on_solib_events (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c, const char *value)
365{
366 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
367 value);
368}
c906108c 369
c906108c
SS
370/* Nonzero means expecting a trace trap
371 and should stop the inferior and return silently when it happens. */
372
373int stop_after_trap;
374
642fd101
DE
375/* Save register contents here when executing a "finish" command or are
376 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
377 Thus this contains the return value from the called function (assuming
378 values are returned in a register). */
379
72cec141 380struct regcache *stop_registers;
c906108c 381
c906108c
SS
382/* Nonzero after stop if current stack frame should be printed. */
383
384static int stop_print_frame;
385
e02bc4cc 386/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
387 returned by target_wait()/deprecated_target_wait_hook(). This
388 information is returned by get_last_target_status(). */
39f77062 389static ptid_t target_last_wait_ptid;
e02bc4cc
DS
390static struct target_waitstatus target_last_waitstatus;
391
0d1e5fa7
PA
392static void context_switch (ptid_t ptid);
393
4e1c45ea 394void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
395
396void init_infwait_state (void);
a474d7c2 397
53904c9e
AC
398static const char follow_fork_mode_child[] = "child";
399static const char follow_fork_mode_parent[] = "parent";
400
40478521 401static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
402 follow_fork_mode_child,
403 follow_fork_mode_parent,
404 NULL
ef346e04 405};
c906108c 406
53904c9e 407static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
408static void
409show_follow_fork_mode_string (struct ui_file *file, int from_tty,
410 struct cmd_list_element *c, const char *value)
411{
3e43a32a
MS
412 fprintf_filtered (file,
413 _("Debugger response to a program "
414 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
415 value);
416}
c906108c
SS
417\f
418
e58b0e63
PA
419/* Tell the target to follow the fork we're stopped at. Returns true
420 if the inferior should be resumed; false, if the target for some
421 reason decided it's best not to resume. */
422
6604731b 423static int
4ef3f3be 424follow_fork (void)
c906108c 425{
ea1dd7bc 426 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
427 int should_resume = 1;
428 struct thread_info *tp;
429
430 /* Copy user stepping state to the new inferior thread. FIXME: the
431 followed fork child thread should have a copy of most of the
4e3990f4
DE
432 parent thread structure's run control related fields, not just these.
433 Initialized to avoid "may be used uninitialized" warnings from gcc. */
434 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 435 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
436 CORE_ADDR step_range_start = 0;
437 CORE_ADDR step_range_end = 0;
438 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
439
440 if (!non_stop)
441 {
442 ptid_t wait_ptid;
443 struct target_waitstatus wait_status;
444
445 /* Get the last target status returned by target_wait(). */
446 get_last_target_status (&wait_ptid, &wait_status);
447
448 /* If not stopped at a fork event, then there's nothing else to
449 do. */
450 if (wait_status.kind != TARGET_WAITKIND_FORKED
451 && wait_status.kind != TARGET_WAITKIND_VFORKED)
452 return 1;
453
454 /* Check if we switched over from WAIT_PTID, since the event was
455 reported. */
456 if (!ptid_equal (wait_ptid, minus_one_ptid)
457 && !ptid_equal (inferior_ptid, wait_ptid))
458 {
459 /* We did. Switch back to WAIT_PTID thread, to tell the
460 target to follow it (in either direction). We'll
461 afterwards refuse to resume, and inform the user what
462 happened. */
463 switch_to_thread (wait_ptid);
464 should_resume = 0;
465 }
466 }
467
468 tp = inferior_thread ();
469
470 /* If there were any forks/vforks that were caught and are now to be
471 followed, then do so now. */
472 switch (tp->pending_follow.kind)
473 {
474 case TARGET_WAITKIND_FORKED:
475 case TARGET_WAITKIND_VFORKED:
476 {
477 ptid_t parent, child;
478
479 /* If the user did a next/step, etc, over a fork call,
480 preserve the stepping state in the fork child. */
481 if (follow_child && should_resume)
482 {
8358c15c
JK
483 step_resume_breakpoint = clone_momentary_breakpoint
484 (tp->control.step_resume_breakpoint);
16c381f0
JK
485 step_range_start = tp->control.step_range_start;
486 step_range_end = tp->control.step_range_end;
487 step_frame_id = tp->control.step_frame_id;
186c406b
TT
488 exception_resume_breakpoint
489 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
490
491 /* For now, delete the parent's sr breakpoint, otherwise,
492 parent/child sr breakpoints are considered duplicates,
493 and the child version will not be installed. Remove
494 this when the breakpoints module becomes aware of
495 inferiors and address spaces. */
496 delete_step_resume_breakpoint (tp);
16c381f0
JK
497 tp->control.step_range_start = 0;
498 tp->control.step_range_end = 0;
499 tp->control.step_frame_id = null_frame_id;
186c406b 500 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
501 }
502
503 parent = inferior_ptid;
504 child = tp->pending_follow.value.related_pid;
505
506 /* Tell the target to do whatever is necessary to follow
507 either parent or child. */
508 if (target_follow_fork (follow_child))
509 {
510 /* Target refused to follow, or there's some other reason
511 we shouldn't resume. */
512 should_resume = 0;
513 }
514 else
515 {
516 /* This pending follow fork event is now handled, one way
517 or another. The previous selected thread may be gone
518 from the lists by now, but if it is still around, need
519 to clear the pending follow request. */
e09875d4 520 tp = find_thread_ptid (parent);
e58b0e63
PA
521 if (tp)
522 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
523
524 /* This makes sure we don't try to apply the "Switched
525 over from WAIT_PID" logic above. */
526 nullify_last_target_wait_ptid ();
527
1777feb0 528 /* If we followed the child, switch to it... */
e58b0e63
PA
529 if (follow_child)
530 {
531 switch_to_thread (child);
532
533 /* ... and preserve the stepping state, in case the
534 user was stepping over the fork call. */
535 if (should_resume)
536 {
537 tp = inferior_thread ();
8358c15c
JK
538 tp->control.step_resume_breakpoint
539 = step_resume_breakpoint;
16c381f0
JK
540 tp->control.step_range_start = step_range_start;
541 tp->control.step_range_end = step_range_end;
542 tp->control.step_frame_id = step_frame_id;
186c406b
TT
543 tp->control.exception_resume_breakpoint
544 = exception_resume_breakpoint;
e58b0e63
PA
545 }
546 else
547 {
548 /* If we get here, it was because we're trying to
549 resume from a fork catchpoint, but, the user
550 has switched threads away from the thread that
551 forked. In that case, the resume command
552 issued is most likely not applicable to the
553 child, so just warn, and refuse to resume. */
3e43a32a
MS
554 warning (_("Not resuming: switched threads "
555 "before following fork child.\n"));
e58b0e63
PA
556 }
557
558 /* Reset breakpoints in the child as appropriate. */
559 follow_inferior_reset_breakpoints ();
560 }
561 else
562 switch_to_thread (parent);
563 }
564 }
565 break;
566 case TARGET_WAITKIND_SPURIOUS:
567 /* Nothing to follow. */
568 break;
569 default:
570 internal_error (__FILE__, __LINE__,
571 "Unexpected pending_follow.kind %d\n",
572 tp->pending_follow.kind);
573 break;
574 }
c906108c 575
e58b0e63 576 return should_resume;
c906108c
SS
577}
578
6604731b
DJ
579void
580follow_inferior_reset_breakpoints (void)
c906108c 581{
4e1c45ea
PA
582 struct thread_info *tp = inferior_thread ();
583
6604731b
DJ
584 /* Was there a step_resume breakpoint? (There was if the user
585 did a "next" at the fork() call.) If so, explicitly reset its
586 thread number.
587
588 step_resumes are a form of bp that are made to be per-thread.
589 Since we created the step_resume bp when the parent process
590 was being debugged, and now are switching to the child process,
591 from the breakpoint package's viewpoint, that's a switch of
592 "threads". We must update the bp's notion of which thread
593 it is for, or it'll be ignored when it triggers. */
594
8358c15c
JK
595 if (tp->control.step_resume_breakpoint)
596 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 597
186c406b
TT
598 if (tp->control.exception_resume_breakpoint)
599 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
600
6604731b
DJ
601 /* Reinsert all breakpoints in the child. The user may have set
602 breakpoints after catching the fork, in which case those
603 were never set in the child, but only in the parent. This makes
604 sure the inserted breakpoints match the breakpoint list. */
605
606 breakpoint_re_set ();
607 insert_breakpoints ();
c906108c 608}
c906108c 609
6c95b8df
PA
610/* The child has exited or execed: resume threads of the parent the
611 user wanted to be executing. */
612
613static int
614proceed_after_vfork_done (struct thread_info *thread,
615 void *arg)
616{
617 int pid = * (int *) arg;
618
619 if (ptid_get_pid (thread->ptid) == pid
620 && is_running (thread->ptid)
621 && !is_executing (thread->ptid)
622 && !thread->stop_requested
16c381f0 623 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
624 {
625 if (debug_infrun)
626 fprintf_unfiltered (gdb_stdlog,
627 "infrun: resuming vfork parent thread %s\n",
628 target_pid_to_str (thread->ptid));
629
630 switch_to_thread (thread->ptid);
631 clear_proceed_status ();
632 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
633 }
634
635 return 0;
636}
637
638/* Called whenever we notice an exec or exit event, to handle
639 detaching or resuming a vfork parent. */
640
641static void
642handle_vfork_child_exec_or_exit (int exec)
643{
644 struct inferior *inf = current_inferior ();
645
646 if (inf->vfork_parent)
647 {
648 int resume_parent = -1;
649
650 /* This exec or exit marks the end of the shared memory region
651 between the parent and the child. If the user wanted to
652 detach from the parent, now is the time. */
653
654 if (inf->vfork_parent->pending_detach)
655 {
656 struct thread_info *tp;
657 struct cleanup *old_chain;
658 struct program_space *pspace;
659 struct address_space *aspace;
660
1777feb0 661 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
662
663 old_chain = make_cleanup_restore_current_thread ();
664
665 /* We're letting loose of the parent. */
666 tp = any_live_thread_of_process (inf->vfork_parent->pid);
667 switch_to_thread (tp->ptid);
668
669 /* We're about to detach from the parent, which implicitly
670 removes breakpoints from its address space. There's a
671 catch here: we want to reuse the spaces for the child,
672 but, parent/child are still sharing the pspace at this
673 point, although the exec in reality makes the kernel give
674 the child a fresh set of new pages. The problem here is
675 that the breakpoints module being unaware of this, would
676 likely chose the child process to write to the parent
677 address space. Swapping the child temporarily away from
678 the spaces has the desired effect. Yes, this is "sort
679 of" a hack. */
680
681 pspace = inf->pspace;
682 aspace = inf->aspace;
683 inf->aspace = NULL;
684 inf->pspace = NULL;
685
686 if (debug_infrun || info_verbose)
687 {
688 target_terminal_ours ();
689
690 if (exec)
691 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
692 "Detaching vfork parent process "
693 "%d after child exec.\n",
6c95b8df
PA
694 inf->vfork_parent->pid);
695 else
696 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
697 "Detaching vfork parent process "
698 "%d after child exit.\n",
6c95b8df
PA
699 inf->vfork_parent->pid);
700 }
701
702 target_detach (NULL, 0);
703
704 /* Put it back. */
705 inf->pspace = pspace;
706 inf->aspace = aspace;
707
708 do_cleanups (old_chain);
709 }
710 else if (exec)
711 {
712 /* We're staying attached to the parent, so, really give the
713 child a new address space. */
714 inf->pspace = add_program_space (maybe_new_address_space ());
715 inf->aspace = inf->pspace->aspace;
716 inf->removable = 1;
717 set_current_program_space (inf->pspace);
718
719 resume_parent = inf->vfork_parent->pid;
720
721 /* Break the bonds. */
722 inf->vfork_parent->vfork_child = NULL;
723 }
724 else
725 {
726 struct cleanup *old_chain;
727 struct program_space *pspace;
728
729 /* If this is a vfork child exiting, then the pspace and
730 aspaces were shared with the parent. Since we're
731 reporting the process exit, we'll be mourning all that is
732 found in the address space, and switching to null_ptid,
733 preparing to start a new inferior. But, since we don't
734 want to clobber the parent's address/program spaces, we
735 go ahead and create a new one for this exiting
736 inferior. */
737
738 /* Switch to null_ptid, so that clone_program_space doesn't want
739 to read the selected frame of a dead process. */
740 old_chain = save_inferior_ptid ();
741 inferior_ptid = null_ptid;
742
743 /* This inferior is dead, so avoid giving the breakpoints
744 module the option to write through to it (cloning a
745 program space resets breakpoints). */
746 inf->aspace = NULL;
747 inf->pspace = NULL;
748 pspace = add_program_space (maybe_new_address_space ());
749 set_current_program_space (pspace);
750 inf->removable = 1;
7dcd53a0 751 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
752 clone_program_space (pspace, inf->vfork_parent->pspace);
753 inf->pspace = pspace;
754 inf->aspace = pspace->aspace;
755
756 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 757 inferior. */
6c95b8df
PA
758 do_cleanups (old_chain);
759
760 resume_parent = inf->vfork_parent->pid;
761 /* Break the bonds. */
762 inf->vfork_parent->vfork_child = NULL;
763 }
764
765 inf->vfork_parent = NULL;
766
767 gdb_assert (current_program_space == inf->pspace);
768
769 if (non_stop && resume_parent != -1)
770 {
771 /* If the user wanted the parent to be running, let it go
772 free now. */
773 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
774
775 if (debug_infrun)
3e43a32a
MS
776 fprintf_unfiltered (gdb_stdlog,
777 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
778 resume_parent);
779
780 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
781
782 do_cleanups (old_chain);
783 }
784 }
785}
786
787/* Enum strings for "set|show displaced-stepping". */
788
789static const char follow_exec_mode_new[] = "new";
790static const char follow_exec_mode_same[] = "same";
40478521 791static const char *const follow_exec_mode_names[] =
6c95b8df
PA
792{
793 follow_exec_mode_new,
794 follow_exec_mode_same,
795 NULL,
796};
797
798static const char *follow_exec_mode_string = follow_exec_mode_same;
799static void
800show_follow_exec_mode_string (struct ui_file *file, int from_tty,
801 struct cmd_list_element *c, const char *value)
802{
803 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
804}
805
1777feb0 806/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 807
c906108c 808static void
3a3e9ee3 809follow_exec (ptid_t pid, char *execd_pathname)
c906108c 810{
4e1c45ea 811 struct thread_info *th = inferior_thread ();
6c95b8df 812 struct inferior *inf = current_inferior ();
7a292a7a 813
c906108c
SS
814 /* This is an exec event that we actually wish to pay attention to.
815 Refresh our symbol table to the newly exec'd program, remove any
816 momentary bp's, etc.
817
818 If there are breakpoints, they aren't really inserted now,
819 since the exec() transformed our inferior into a fresh set
820 of instructions.
821
822 We want to preserve symbolic breakpoints on the list, since
823 we have hopes that they can be reset after the new a.out's
824 symbol table is read.
825
826 However, any "raw" breakpoints must be removed from the list
827 (e.g., the solib bp's), since their address is probably invalid
828 now.
829
830 And, we DON'T want to call delete_breakpoints() here, since
831 that may write the bp's "shadow contents" (the instruction
832 value that was overwritten witha TRAP instruction). Since
1777feb0 833 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
834
835 mark_breakpoints_out ();
836
c906108c
SS
837 update_breakpoints_after_exec ();
838
839 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 840 statement through an exec(). */
8358c15c 841 th->control.step_resume_breakpoint = NULL;
186c406b 842 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
843 th->control.step_range_start = 0;
844 th->control.step_range_end = 0;
c906108c 845
a75724bc
PA
846 /* The target reports the exec event to the main thread, even if
847 some other thread does the exec, and even if the main thread was
848 already stopped --- if debugging in non-stop mode, it's possible
849 the user had the main thread held stopped in the previous image
850 --- release it now. This is the same behavior as step-over-exec
851 with scheduler-locking on in all-stop mode. */
852 th->stop_requested = 0;
853
1777feb0 854 /* What is this a.out's name? */
6c95b8df
PA
855 printf_unfiltered (_("%s is executing new program: %s\n"),
856 target_pid_to_str (inferior_ptid),
857 execd_pathname);
c906108c
SS
858
859 /* We've followed the inferior through an exec. Therefore, the
1777feb0 860 inferior has essentially been killed & reborn. */
7a292a7a 861
c906108c 862 gdb_flush (gdb_stdout);
6ca15a4b
PA
863
864 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
865
866 if (gdb_sysroot && *gdb_sysroot)
867 {
868 char *name = alloca (strlen (gdb_sysroot)
869 + strlen (execd_pathname)
870 + 1);
abbb1732 871
e85a822c
DJ
872 strcpy (name, gdb_sysroot);
873 strcat (name, execd_pathname);
874 execd_pathname = name;
875 }
c906108c 876
cce9b6bf
PA
877 /* Reset the shared library package. This ensures that we get a
878 shlib event when the child reaches "_start", at which point the
879 dld will have had a chance to initialize the child. */
880 /* Also, loading a symbol file below may trigger symbol lookups, and
881 we don't want those to be satisfied by the libraries of the
882 previous incarnation of this process. */
883 no_shared_libraries (NULL, 0);
884
6c95b8df
PA
885 if (follow_exec_mode_string == follow_exec_mode_new)
886 {
887 struct program_space *pspace;
6c95b8df
PA
888
889 /* The user wants to keep the old inferior and program spaces
890 around. Create a new fresh one, and switch to it. */
891
892 inf = add_inferior (current_inferior ()->pid);
893 pspace = add_program_space (maybe_new_address_space ());
894 inf->pspace = pspace;
895 inf->aspace = pspace->aspace;
896
897 exit_inferior_num_silent (current_inferior ()->num);
898
899 set_current_inferior (inf);
900 set_current_program_space (pspace);
901 }
902
903 gdb_assert (current_program_space == inf->pspace);
904
1777feb0 905 /* That a.out is now the one to use. */
6c95b8df
PA
906 exec_file_attach (execd_pathname, 0);
907
c1e56572
JK
908 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
909 (Position Independent Executable) main symbol file will get applied by
910 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
911 the breakpoints with the zero displacement. */
912
7dcd53a0
TT
913 symbol_file_add (execd_pathname,
914 (inf->symfile_flags
915 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
916 NULL, 0);
917
7dcd53a0
TT
918 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
919 set_initial_language ();
c906108c 920
7a292a7a 921#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 922 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 923#else
268a4a75 924 solib_create_inferior_hook (0);
7a292a7a 925#endif
c906108c 926
4efc6507
DE
927 jit_inferior_created_hook ();
928
c1e56572
JK
929 breakpoint_re_set ();
930
c906108c
SS
931 /* Reinsert all breakpoints. (Those which were symbolic have
932 been reset to the proper address in the new a.out, thanks
1777feb0 933 to symbol_file_command...). */
c906108c
SS
934 insert_breakpoints ();
935
936 /* The next resume of this inferior should bring it to the shlib
937 startup breakpoints. (If the user had also set bp's on
938 "main" from the old (parent) process, then they'll auto-
1777feb0 939 matically get reset there in the new process.). */
c906108c
SS
940}
941
942/* Non-zero if we just simulating a single-step. This is needed
943 because we cannot remove the breakpoints in the inferior process
944 until after the `wait' in `wait_for_inferior'. */
945static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
946
947/* The thread we inserted single-step breakpoints for. */
948static ptid_t singlestep_ptid;
949
fd48f117
DJ
950/* PC when we started this single-step. */
951static CORE_ADDR singlestep_pc;
952
9f976b41
DJ
953/* If another thread hit the singlestep breakpoint, we save the original
954 thread here so that we can resume single-stepping it later. */
955static ptid_t saved_singlestep_ptid;
956static int stepping_past_singlestep_breakpoint;
6a6b96b9 957
ca67fcb8
VP
958/* If not equal to null_ptid, this means that after stepping over breakpoint
959 is finished, we need to switch to deferred_step_ptid, and step it.
960
961 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 962 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
963 breakpoint in the thread which hit the breakpoint, but then continue
964 stepping the thread user has selected. */
965static ptid_t deferred_step_ptid;
c906108c 966\f
237fc4c9
PA
967/* Displaced stepping. */
968
969/* In non-stop debugging mode, we must take special care to manage
970 breakpoints properly; in particular, the traditional strategy for
971 stepping a thread past a breakpoint it has hit is unsuitable.
972 'Displaced stepping' is a tactic for stepping one thread past a
973 breakpoint it has hit while ensuring that other threads running
974 concurrently will hit the breakpoint as they should.
975
976 The traditional way to step a thread T off a breakpoint in a
977 multi-threaded program in all-stop mode is as follows:
978
979 a0) Initially, all threads are stopped, and breakpoints are not
980 inserted.
981 a1) We single-step T, leaving breakpoints uninserted.
982 a2) We insert breakpoints, and resume all threads.
983
984 In non-stop debugging, however, this strategy is unsuitable: we
985 don't want to have to stop all threads in the system in order to
986 continue or step T past a breakpoint. Instead, we use displaced
987 stepping:
988
989 n0) Initially, T is stopped, other threads are running, and
990 breakpoints are inserted.
991 n1) We copy the instruction "under" the breakpoint to a separate
992 location, outside the main code stream, making any adjustments
993 to the instruction, register, and memory state as directed by
994 T's architecture.
995 n2) We single-step T over the instruction at its new location.
996 n3) We adjust the resulting register and memory state as directed
997 by T's architecture. This includes resetting T's PC to point
998 back into the main instruction stream.
999 n4) We resume T.
1000
1001 This approach depends on the following gdbarch methods:
1002
1003 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1004 indicate where to copy the instruction, and how much space must
1005 be reserved there. We use these in step n1.
1006
1007 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1008 address, and makes any necessary adjustments to the instruction,
1009 register contents, and memory. We use this in step n1.
1010
1011 - gdbarch_displaced_step_fixup adjusts registers and memory after
1012 we have successfuly single-stepped the instruction, to yield the
1013 same effect the instruction would have had if we had executed it
1014 at its original address. We use this in step n3.
1015
1016 - gdbarch_displaced_step_free_closure provides cleanup.
1017
1018 The gdbarch_displaced_step_copy_insn and
1019 gdbarch_displaced_step_fixup functions must be written so that
1020 copying an instruction with gdbarch_displaced_step_copy_insn,
1021 single-stepping across the copied instruction, and then applying
1022 gdbarch_displaced_insn_fixup should have the same effects on the
1023 thread's memory and registers as stepping the instruction in place
1024 would have. Exactly which responsibilities fall to the copy and
1025 which fall to the fixup is up to the author of those functions.
1026
1027 See the comments in gdbarch.sh for details.
1028
1029 Note that displaced stepping and software single-step cannot
1030 currently be used in combination, although with some care I think
1031 they could be made to. Software single-step works by placing
1032 breakpoints on all possible subsequent instructions; if the
1033 displaced instruction is a PC-relative jump, those breakpoints
1034 could fall in very strange places --- on pages that aren't
1035 executable, or at addresses that are not proper instruction
1036 boundaries. (We do generally let other threads run while we wait
1037 to hit the software single-step breakpoint, and they might
1038 encounter such a corrupted instruction.) One way to work around
1039 this would be to have gdbarch_displaced_step_copy_insn fully
1040 simulate the effect of PC-relative instructions (and return NULL)
1041 on architectures that use software single-stepping.
1042
1043 In non-stop mode, we can have independent and simultaneous step
1044 requests, so more than one thread may need to simultaneously step
1045 over a breakpoint. The current implementation assumes there is
1046 only one scratch space per process. In this case, we have to
1047 serialize access to the scratch space. If thread A wants to step
1048 over a breakpoint, but we are currently waiting for some other
1049 thread to complete a displaced step, we leave thread A stopped and
1050 place it in the displaced_step_request_queue. Whenever a displaced
1051 step finishes, we pick the next thread in the queue and start a new
1052 displaced step operation on it. See displaced_step_prepare and
1053 displaced_step_fixup for details. */
1054
237fc4c9
PA
1055struct displaced_step_request
1056{
1057 ptid_t ptid;
1058 struct displaced_step_request *next;
1059};
1060
fc1cf338
PA
1061/* Per-inferior displaced stepping state. */
1062struct displaced_step_inferior_state
1063{
1064 /* Pointer to next in linked list. */
1065 struct displaced_step_inferior_state *next;
1066
1067 /* The process this displaced step state refers to. */
1068 int pid;
1069
1070 /* A queue of pending displaced stepping requests. One entry per
1071 thread that needs to do a displaced step. */
1072 struct displaced_step_request *step_request_queue;
1073
1074 /* If this is not null_ptid, this is the thread carrying out a
1075 displaced single-step in process PID. This thread's state will
1076 require fixing up once it has completed its step. */
1077 ptid_t step_ptid;
1078
1079 /* The architecture the thread had when we stepped it. */
1080 struct gdbarch *step_gdbarch;
1081
1082 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1083 for post-step cleanup. */
1084 struct displaced_step_closure *step_closure;
1085
1086 /* The address of the original instruction, and the copy we
1087 made. */
1088 CORE_ADDR step_original, step_copy;
1089
1090 /* Saved contents of copy area. */
1091 gdb_byte *step_saved_copy;
1092};
1093
1094/* The list of states of processes involved in displaced stepping
1095 presently. */
1096static struct displaced_step_inferior_state *displaced_step_inferior_states;
1097
1098/* Get the displaced stepping state of process PID. */
1099
1100static struct displaced_step_inferior_state *
1101get_displaced_stepping_state (int pid)
1102{
1103 struct displaced_step_inferior_state *state;
1104
1105 for (state = displaced_step_inferior_states;
1106 state != NULL;
1107 state = state->next)
1108 if (state->pid == pid)
1109 return state;
1110
1111 return NULL;
1112}
1113
1114/* Add a new displaced stepping state for process PID to the displaced
1115 stepping state list, or return a pointer to an already existing
1116 entry, if it already exists. Never returns NULL. */
1117
1118static struct displaced_step_inferior_state *
1119add_displaced_stepping_state (int pid)
1120{
1121 struct displaced_step_inferior_state *state;
1122
1123 for (state = displaced_step_inferior_states;
1124 state != NULL;
1125 state = state->next)
1126 if (state->pid == pid)
1127 return state;
237fc4c9 1128
fc1cf338
PA
1129 state = xcalloc (1, sizeof (*state));
1130 state->pid = pid;
1131 state->next = displaced_step_inferior_states;
1132 displaced_step_inferior_states = state;
237fc4c9 1133
fc1cf338
PA
1134 return state;
1135}
1136
a42244db
YQ
1137/* If inferior is in displaced stepping, and ADDR equals to starting address
1138 of copy area, return corresponding displaced_step_closure. Otherwise,
1139 return NULL. */
1140
1141struct displaced_step_closure*
1142get_displaced_step_closure_by_addr (CORE_ADDR addr)
1143{
1144 struct displaced_step_inferior_state *displaced
1145 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1146
1147 /* If checking the mode of displaced instruction in copy area. */
1148 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1149 && (displaced->step_copy == addr))
1150 return displaced->step_closure;
1151
1152 return NULL;
1153}
1154
fc1cf338 1155/* Remove the displaced stepping state of process PID. */
237fc4c9 1156
fc1cf338
PA
1157static void
1158remove_displaced_stepping_state (int pid)
1159{
1160 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1161
fc1cf338
PA
1162 gdb_assert (pid != 0);
1163
1164 it = displaced_step_inferior_states;
1165 prev_next_p = &displaced_step_inferior_states;
1166 while (it)
1167 {
1168 if (it->pid == pid)
1169 {
1170 *prev_next_p = it->next;
1171 xfree (it);
1172 return;
1173 }
1174
1175 prev_next_p = &it->next;
1176 it = *prev_next_p;
1177 }
1178}
1179
1180static void
1181infrun_inferior_exit (struct inferior *inf)
1182{
1183 remove_displaced_stepping_state (inf->pid);
1184}
237fc4c9 1185
fff08868
HZ
1186/* Enum strings for "set|show displaced-stepping". */
1187
1188static const char can_use_displaced_stepping_auto[] = "auto";
1189static const char can_use_displaced_stepping_on[] = "on";
1190static const char can_use_displaced_stepping_off[] = "off";
40478521 1191static const char *const can_use_displaced_stepping_enum[] =
fff08868
HZ
1192{
1193 can_use_displaced_stepping_auto,
1194 can_use_displaced_stepping_on,
1195 can_use_displaced_stepping_off,
1196 NULL,
1197};
1198
1199/* If ON, and the architecture supports it, GDB will use displaced
1200 stepping to step over breakpoints. If OFF, or if the architecture
1201 doesn't support it, GDB will instead use the traditional
1202 hold-and-step approach. If AUTO (which is the default), GDB will
1203 decide which technique to use to step over breakpoints depending on
1204 which of all-stop or non-stop mode is active --- displaced stepping
1205 in non-stop mode; hold-and-step in all-stop mode. */
1206
1207static const char *can_use_displaced_stepping =
1208 can_use_displaced_stepping_auto;
1209
237fc4c9
PA
1210static void
1211show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1212 struct cmd_list_element *c,
1213 const char *value)
1214{
fff08868 1215 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1216 fprintf_filtered (file,
1217 _("Debugger's willingness to use displaced stepping "
1218 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1219 value, non_stop ? "on" : "off");
1220 else
3e43a32a
MS
1221 fprintf_filtered (file,
1222 _("Debugger's willingness to use displaced stepping "
1223 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1224}
1225
fff08868
HZ
1226/* Return non-zero if displaced stepping can/should be used to step
1227 over breakpoints. */
1228
237fc4c9
PA
1229static int
1230use_displaced_stepping (struct gdbarch *gdbarch)
1231{
fff08868
HZ
1232 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1233 && non_stop)
1234 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1235 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1236 && !RECORD_IS_USED);
237fc4c9
PA
1237}
1238
1239/* Clean out any stray displaced stepping state. */
1240static void
fc1cf338 1241displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1242{
1243 /* Indicate that there is no cleanup pending. */
fc1cf338 1244 displaced->step_ptid = null_ptid;
237fc4c9 1245
fc1cf338 1246 if (displaced->step_closure)
237fc4c9 1247 {
fc1cf338
PA
1248 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1249 displaced->step_closure);
1250 displaced->step_closure = NULL;
237fc4c9
PA
1251 }
1252}
1253
1254static void
fc1cf338 1255displaced_step_clear_cleanup (void *arg)
237fc4c9 1256{
fc1cf338
PA
1257 struct displaced_step_inferior_state *state = arg;
1258
1259 displaced_step_clear (state);
237fc4c9
PA
1260}
1261
1262/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1263void
1264displaced_step_dump_bytes (struct ui_file *file,
1265 const gdb_byte *buf,
1266 size_t len)
1267{
1268 int i;
1269
1270 for (i = 0; i < len; i++)
1271 fprintf_unfiltered (file, "%02x ", buf[i]);
1272 fputs_unfiltered ("\n", file);
1273}
1274
1275/* Prepare to single-step, using displaced stepping.
1276
1277 Note that we cannot use displaced stepping when we have a signal to
1278 deliver. If we have a signal to deliver and an instruction to step
1279 over, then after the step, there will be no indication from the
1280 target whether the thread entered a signal handler or ignored the
1281 signal and stepped over the instruction successfully --- both cases
1282 result in a simple SIGTRAP. In the first case we mustn't do a
1283 fixup, and in the second case we must --- but we can't tell which.
1284 Comments in the code for 'random signals' in handle_inferior_event
1285 explain how we handle this case instead.
1286
1287 Returns 1 if preparing was successful -- this thread is going to be
1288 stepped now; or 0 if displaced stepping this thread got queued. */
1289static int
1290displaced_step_prepare (ptid_t ptid)
1291{
ad53cd71 1292 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1293 struct regcache *regcache = get_thread_regcache (ptid);
1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1295 CORE_ADDR original, copy;
1296 ULONGEST len;
1297 struct displaced_step_closure *closure;
fc1cf338 1298 struct displaced_step_inferior_state *displaced;
9e529e1d 1299 int status;
237fc4c9
PA
1300
1301 /* We should never reach this function if the architecture does not
1302 support displaced stepping. */
1303 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1304
fc1cf338
PA
1305 /* We have to displaced step one thread at a time, as we only have
1306 access to a single scratch space per inferior. */
237fc4c9 1307
fc1cf338
PA
1308 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1309
1310 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1311 {
1312 /* Already waiting for a displaced step to finish. Defer this
1313 request and place in queue. */
1314 struct displaced_step_request *req, *new_req;
1315
1316 if (debug_displaced)
1317 fprintf_unfiltered (gdb_stdlog,
1318 "displaced: defering step of %s\n",
1319 target_pid_to_str (ptid));
1320
1321 new_req = xmalloc (sizeof (*new_req));
1322 new_req->ptid = ptid;
1323 new_req->next = NULL;
1324
fc1cf338 1325 if (displaced->step_request_queue)
237fc4c9 1326 {
fc1cf338 1327 for (req = displaced->step_request_queue;
237fc4c9
PA
1328 req && req->next;
1329 req = req->next)
1330 ;
1331 req->next = new_req;
1332 }
1333 else
fc1cf338 1334 displaced->step_request_queue = new_req;
237fc4c9
PA
1335
1336 return 0;
1337 }
1338 else
1339 {
1340 if (debug_displaced)
1341 fprintf_unfiltered (gdb_stdlog,
1342 "displaced: stepping %s now\n",
1343 target_pid_to_str (ptid));
1344 }
1345
fc1cf338 1346 displaced_step_clear (displaced);
237fc4c9 1347
ad53cd71
PA
1348 old_cleanups = save_inferior_ptid ();
1349 inferior_ptid = ptid;
1350
515630c5 1351 original = regcache_read_pc (regcache);
237fc4c9
PA
1352
1353 copy = gdbarch_displaced_step_location (gdbarch);
1354 len = gdbarch_max_insn_length (gdbarch);
1355
1356 /* Save the original contents of the copy area. */
fc1cf338 1357 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1358 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1359 &displaced->step_saved_copy);
9e529e1d
JK
1360 status = target_read_memory (copy, displaced->step_saved_copy, len);
1361 if (status != 0)
1362 throw_error (MEMORY_ERROR,
1363 _("Error accessing memory address %s (%s) for "
1364 "displaced-stepping scratch space."),
1365 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1366 if (debug_displaced)
1367 {
5af949e3
UW
1368 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1369 paddress (gdbarch, copy));
fc1cf338
PA
1370 displaced_step_dump_bytes (gdb_stdlog,
1371 displaced->step_saved_copy,
1372 len);
237fc4c9
PA
1373 };
1374
1375 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1376 original, copy, regcache);
237fc4c9
PA
1377
1378 /* We don't support the fully-simulated case at present. */
1379 gdb_assert (closure);
1380
9f5a595d
UW
1381 /* Save the information we need to fix things up if the step
1382 succeeds. */
fc1cf338
PA
1383 displaced->step_ptid = ptid;
1384 displaced->step_gdbarch = gdbarch;
1385 displaced->step_closure = closure;
1386 displaced->step_original = original;
1387 displaced->step_copy = copy;
9f5a595d 1388
fc1cf338 1389 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1390
1391 /* Resume execution at the copy. */
515630c5 1392 regcache_write_pc (regcache, copy);
237fc4c9 1393
ad53cd71
PA
1394 discard_cleanups (ignore_cleanups);
1395
1396 do_cleanups (old_cleanups);
237fc4c9
PA
1397
1398 if (debug_displaced)
5af949e3
UW
1399 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1400 paddress (gdbarch, copy));
237fc4c9 1401
237fc4c9
PA
1402 return 1;
1403}
1404
237fc4c9 1405static void
3e43a32a
MS
1406write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1407 const gdb_byte *myaddr, int len)
237fc4c9
PA
1408{
1409 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1410
237fc4c9
PA
1411 inferior_ptid = ptid;
1412 write_memory (memaddr, myaddr, len);
1413 do_cleanups (ptid_cleanup);
1414}
1415
e2d96639
YQ
1416/* Restore the contents of the copy area for thread PTID. */
1417
1418static void
1419displaced_step_restore (struct displaced_step_inferior_state *displaced,
1420 ptid_t ptid)
1421{
1422 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1423
1424 write_memory_ptid (ptid, displaced->step_copy,
1425 displaced->step_saved_copy, len);
1426 if (debug_displaced)
1427 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1428 target_pid_to_str (ptid),
1429 paddress (displaced->step_gdbarch,
1430 displaced->step_copy));
1431}
1432
237fc4c9
PA
1433static void
1434displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1435{
1436 struct cleanup *old_cleanups;
fc1cf338
PA
1437 struct displaced_step_inferior_state *displaced
1438 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1439
1440 /* Was any thread of this process doing a displaced step? */
1441 if (displaced == NULL)
1442 return;
237fc4c9
PA
1443
1444 /* Was this event for the pid we displaced? */
fc1cf338
PA
1445 if (ptid_equal (displaced->step_ptid, null_ptid)
1446 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1447 return;
1448
fc1cf338 1449 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1450
e2d96639 1451 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1452
1453 /* Did the instruction complete successfully? */
1454 if (signal == TARGET_SIGNAL_TRAP)
1455 {
1456 /* Fix up the resulting state. */
fc1cf338
PA
1457 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1458 displaced->step_closure,
1459 displaced->step_original,
1460 displaced->step_copy,
1461 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1462 }
1463 else
1464 {
1465 /* Since the instruction didn't complete, all we can do is
1466 relocate the PC. */
515630c5
UW
1467 struct regcache *regcache = get_thread_regcache (event_ptid);
1468 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1469
fc1cf338 1470 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1471 regcache_write_pc (regcache, pc);
237fc4c9
PA
1472 }
1473
1474 do_cleanups (old_cleanups);
1475
fc1cf338 1476 displaced->step_ptid = null_ptid;
1c5cfe86 1477
237fc4c9 1478 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1479 one now. Leave the state object around, since we're likely to
1480 need it again soon. */
1481 while (displaced->step_request_queue)
237fc4c9
PA
1482 {
1483 struct displaced_step_request *head;
1484 ptid_t ptid;
5af949e3 1485 struct regcache *regcache;
929dfd4f 1486 struct gdbarch *gdbarch;
1c5cfe86 1487 CORE_ADDR actual_pc;
6c95b8df 1488 struct address_space *aspace;
237fc4c9 1489
fc1cf338 1490 head = displaced->step_request_queue;
237fc4c9 1491 ptid = head->ptid;
fc1cf338 1492 displaced->step_request_queue = head->next;
237fc4c9
PA
1493 xfree (head);
1494
ad53cd71
PA
1495 context_switch (ptid);
1496
5af949e3
UW
1497 regcache = get_thread_regcache (ptid);
1498 actual_pc = regcache_read_pc (regcache);
6c95b8df 1499 aspace = get_regcache_aspace (regcache);
1c5cfe86 1500
6c95b8df 1501 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1502 {
1c5cfe86
PA
1503 if (debug_displaced)
1504 fprintf_unfiltered (gdb_stdlog,
1505 "displaced: stepping queued %s now\n",
1506 target_pid_to_str (ptid));
1507
1508 displaced_step_prepare (ptid);
1509
929dfd4f
JB
1510 gdbarch = get_regcache_arch (regcache);
1511
1c5cfe86
PA
1512 if (debug_displaced)
1513 {
929dfd4f 1514 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1515 gdb_byte buf[4];
1516
5af949e3
UW
1517 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1518 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1519 read_memory (actual_pc, buf, sizeof (buf));
1520 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1521 }
1522
fc1cf338
PA
1523 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1524 displaced->step_closure))
929dfd4f 1525 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1526 else
1527 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1528
1529 /* Done, we're stepping a thread. */
1530 break;
ad53cd71 1531 }
1c5cfe86
PA
1532 else
1533 {
1534 int step;
1535 struct thread_info *tp = inferior_thread ();
1536
1537 /* The breakpoint we were sitting under has since been
1538 removed. */
16c381f0 1539 tp->control.trap_expected = 0;
1c5cfe86
PA
1540
1541 /* Go back to what we were trying to do. */
1542 step = currently_stepping (tp);
ad53cd71 1543
1c5cfe86 1544 if (debug_displaced)
3e43a32a
MS
1545 fprintf_unfiltered (gdb_stdlog,
1546 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1547 target_pid_to_str (tp->ptid), step);
1548
1549 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1550 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1551
1552 /* This request was discarded. See if there's any other
1553 thread waiting for its turn. */
1554 }
237fc4c9
PA
1555 }
1556}
1557
5231c1fd
PA
1558/* Update global variables holding ptids to hold NEW_PTID if they were
1559 holding OLD_PTID. */
1560static void
1561infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1562{
1563 struct displaced_step_request *it;
fc1cf338 1564 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1565
1566 if (ptid_equal (inferior_ptid, old_ptid))
1567 inferior_ptid = new_ptid;
1568
1569 if (ptid_equal (singlestep_ptid, old_ptid))
1570 singlestep_ptid = new_ptid;
1571
5231c1fd
PA
1572 if (ptid_equal (deferred_step_ptid, old_ptid))
1573 deferred_step_ptid = new_ptid;
1574
fc1cf338
PA
1575 for (displaced = displaced_step_inferior_states;
1576 displaced;
1577 displaced = displaced->next)
1578 {
1579 if (ptid_equal (displaced->step_ptid, old_ptid))
1580 displaced->step_ptid = new_ptid;
1581
1582 for (it = displaced->step_request_queue; it; it = it->next)
1583 if (ptid_equal (it->ptid, old_ptid))
1584 it->ptid = new_ptid;
1585 }
5231c1fd
PA
1586}
1587
237fc4c9
PA
1588\f
1589/* Resuming. */
c906108c
SS
1590
1591/* Things to clean up if we QUIT out of resume (). */
c906108c 1592static void
74b7792f 1593resume_cleanups (void *ignore)
c906108c
SS
1594{
1595 normal_stop ();
1596}
1597
53904c9e
AC
1598static const char schedlock_off[] = "off";
1599static const char schedlock_on[] = "on";
1600static const char schedlock_step[] = "step";
40478521 1601static const char *const scheduler_enums[] = {
ef346e04
AC
1602 schedlock_off,
1603 schedlock_on,
1604 schedlock_step,
1605 NULL
1606};
920d2a44
AC
1607static const char *scheduler_mode = schedlock_off;
1608static void
1609show_scheduler_mode (struct ui_file *file, int from_tty,
1610 struct cmd_list_element *c, const char *value)
1611{
3e43a32a
MS
1612 fprintf_filtered (file,
1613 _("Mode for locking scheduler "
1614 "during execution is \"%s\".\n"),
920d2a44
AC
1615 value);
1616}
c906108c
SS
1617
1618static void
96baa820 1619set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1620{
eefe576e
AC
1621 if (!target_can_lock_scheduler)
1622 {
1623 scheduler_mode = schedlock_off;
1624 error (_("Target '%s' cannot support this command."), target_shortname);
1625 }
c906108c
SS
1626}
1627
d4db2f36
PA
1628/* True if execution commands resume all threads of all processes by
1629 default; otherwise, resume only threads of the current inferior
1630 process. */
1631int sched_multi = 0;
1632
2facfe5c
DD
1633/* Try to setup for software single stepping over the specified location.
1634 Return 1 if target_resume() should use hardware single step.
1635
1636 GDBARCH the current gdbarch.
1637 PC the location to step over. */
1638
1639static int
1640maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1641{
1642 int hw_step = 1;
1643
f02253f1
HZ
1644 if (execution_direction == EXEC_FORWARD
1645 && gdbarch_software_single_step_p (gdbarch)
99e40580 1646 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1647 {
99e40580
UW
1648 hw_step = 0;
1649 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1650 `wait_for_inferior'. */
99e40580
UW
1651 singlestep_breakpoints_inserted_p = 1;
1652 singlestep_ptid = inferior_ptid;
1653 singlestep_pc = pc;
2facfe5c
DD
1654 }
1655 return hw_step;
1656}
c906108c 1657
09cee04b
PA
1658/* Return a ptid representing the set of threads that we will proceed,
1659 in the perspective of the user/frontend. We may actually resume
1660 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1661 breakpoint that needs stepping-off, but that should not be visible
1662 to the user/frontend, and neither should the frontend/user be
1663 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1664 internal run control handling, if a previous command wanted them
1665 resumed. */
1666
1667ptid_t
1668user_visible_resume_ptid (int step)
1669{
1670 /* By default, resume all threads of all processes. */
1671 ptid_t resume_ptid = RESUME_ALL;
1672
1673 /* Maybe resume only all threads of the current process. */
1674 if (!sched_multi && target_supports_multi_process ())
1675 {
1676 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1677 }
1678
1679 /* Maybe resume a single thread after all. */
1680 if (non_stop)
1681 {
1682 /* With non-stop mode on, threads are always handled
1683 individually. */
1684 resume_ptid = inferior_ptid;
1685 }
1686 else if ((scheduler_mode == schedlock_on)
1687 || (scheduler_mode == schedlock_step
1688 && (step || singlestep_breakpoints_inserted_p)))
1689 {
1690 /* User-settable 'scheduler' mode requires solo thread resume. */
1691 resume_ptid = inferior_ptid;
1692 }
1693
1694 return resume_ptid;
1695}
1696
c906108c
SS
1697/* Resume the inferior, but allow a QUIT. This is useful if the user
1698 wants to interrupt some lengthy single-stepping operation
1699 (for child processes, the SIGINT goes to the inferior, and so
1700 we get a SIGINT random_signal, but for remote debugging and perhaps
1701 other targets, that's not true).
1702
1703 STEP nonzero if we should step (zero to continue instead).
1704 SIG is the signal to give the inferior (zero for none). */
1705void
96baa820 1706resume (int step, enum target_signal sig)
c906108c
SS
1707{
1708 int should_resume = 1;
74b7792f 1709 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1710 struct regcache *regcache = get_current_regcache ();
1711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1712 struct thread_info *tp = inferior_thread ();
515630c5 1713 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1714 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1715
c906108c
SS
1716 QUIT;
1717
74609e71
YQ
1718 if (current_inferior ()->waiting_for_vfork_done)
1719 {
48f9886d
PA
1720 /* Don't try to single-step a vfork parent that is waiting for
1721 the child to get out of the shared memory region (by exec'ing
1722 or exiting). This is particularly important on software
1723 single-step archs, as the child process would trip on the
1724 software single step breakpoint inserted for the parent
1725 process. Since the parent will not actually execute any
1726 instruction until the child is out of the shared region (such
1727 are vfork's semantics), it is safe to simply continue it.
1728 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1729 the parent, and tell it to `keep_going', which automatically
1730 re-sets it stepping. */
74609e71
YQ
1731 if (debug_infrun)
1732 fprintf_unfiltered (gdb_stdlog,
1733 "infrun: resume : clear step\n");
1734 step = 0;
1735 }
1736
527159b7 1737 if (debug_infrun)
237fc4c9
PA
1738 fprintf_unfiltered (gdb_stdlog,
1739 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1740 "trap_expected=%d, current thread [%s] at %s\n",
1741 step, sig, tp->control.trap_expected,
1742 target_pid_to_str (inferior_ptid),
1743 paddress (gdbarch, pc));
c906108c 1744
c2c6d25f
JM
1745 /* Normally, by the time we reach `resume', the breakpoints are either
1746 removed or inserted, as appropriate. The exception is if we're sitting
1747 at a permanent breakpoint; we need to step over it, but permanent
1748 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1749 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1750 {
515630c5
UW
1751 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1752 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1753 else
ac74f770
MS
1754 error (_("\
1755The program is stopped at a permanent breakpoint, but GDB does not know\n\
1756how to step past a permanent breakpoint on this architecture. Try using\n\
1757a command like `return' or `jump' to continue execution."));
6d350bb5 1758 }
c2c6d25f 1759
237fc4c9
PA
1760 /* If enabled, step over breakpoints by executing a copy of the
1761 instruction at a different address.
1762
1763 We can't use displaced stepping when we have a signal to deliver;
1764 the comments for displaced_step_prepare explain why. The
1765 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1766 signals' explain what we do instead.
1767
1768 We can't use displaced stepping when we are waiting for vfork_done
1769 event, displaced stepping breaks the vfork child similarly as single
1770 step software breakpoint. */
515630c5 1771 if (use_displaced_stepping (gdbarch)
16c381f0 1772 && (tp->control.trap_expected
929dfd4f 1773 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1774 && sig == TARGET_SIGNAL_0
1775 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1776 {
fc1cf338
PA
1777 struct displaced_step_inferior_state *displaced;
1778
237fc4c9 1779 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1780 {
1781 /* Got placed in displaced stepping queue. Will be resumed
1782 later when all the currently queued displaced stepping
7f7efbd9
VP
1783 requests finish. The thread is not executing at this point,
1784 and the call to set_executing will be made later. But we
1785 need to call set_running here, since from frontend point of view,
1786 the thread is running. */
1787 set_running (inferior_ptid, 1);
d56b7306
VP
1788 discard_cleanups (old_cleanups);
1789 return;
1790 }
99e40580 1791
ca7781d2
LM
1792 /* Update pc to reflect the new address from which we will execute
1793 instructions due to displaced stepping. */
1794 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1795
fc1cf338
PA
1796 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1797 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1798 displaced->step_closure);
237fc4c9
PA
1799 }
1800
2facfe5c 1801 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1802 else if (step)
2facfe5c 1803 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1804
30852783
UW
1805 /* Currently, our software single-step implementation leads to different
1806 results than hardware single-stepping in one situation: when stepping
1807 into delivering a signal which has an associated signal handler,
1808 hardware single-step will stop at the first instruction of the handler,
1809 while software single-step will simply skip execution of the handler.
1810
1811 For now, this difference in behavior is accepted since there is no
1812 easy way to actually implement single-stepping into a signal handler
1813 without kernel support.
1814
1815 However, there is one scenario where this difference leads to follow-on
1816 problems: if we're stepping off a breakpoint by removing all breakpoints
1817 and then single-stepping. In this case, the software single-step
1818 behavior means that even if there is a *breakpoint* in the signal
1819 handler, GDB still would not stop.
1820
1821 Fortunately, we can at least fix this particular issue. We detect
1822 here the case where we are about to deliver a signal while software
1823 single-stepping with breakpoints removed. In this situation, we
1824 revert the decisions to remove all breakpoints and insert single-
1825 step breakpoints, and instead we install a step-resume breakpoint
1826 at the current address, deliver the signal without stepping, and
1827 once we arrive back at the step-resume breakpoint, actually step
1828 over the breakpoint we originally wanted to step over. */
1829 if (singlestep_breakpoints_inserted_p
1830 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1831 {
1832 /* If we have nested signals or a pending signal is delivered
1833 immediately after a handler returns, might might already have
1834 a step-resume breakpoint set on the earlier handler. We cannot
1835 set another step-resume breakpoint; just continue on until the
1836 original breakpoint is hit. */
1837 if (tp->control.step_resume_breakpoint == NULL)
1838 {
2c03e5be 1839 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1840 tp->step_after_step_resume_breakpoint = 1;
1841 }
1842
1843 remove_single_step_breakpoints ();
1844 singlestep_breakpoints_inserted_p = 0;
1845
1846 insert_breakpoints ();
1847 tp->control.trap_expected = 0;
1848 }
1849
c906108c
SS
1850 if (should_resume)
1851 {
39f77062 1852 ptid_t resume_ptid;
dfcd3bfb 1853
cd76b0b7
VP
1854 /* If STEP is set, it's a request to use hardware stepping
1855 facilities. But in that case, we should never
1856 use singlestep breakpoint. */
1857 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1858
d4db2f36
PA
1859 /* Decide the set of threads to ask the target to resume. Start
1860 by assuming everything will be resumed, than narrow the set
1861 by applying increasingly restricting conditions. */
09cee04b 1862 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1863
1864 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1865 if (singlestep_breakpoints_inserted_p
1866 && stepping_past_singlestep_breakpoint)
c906108c 1867 {
cd76b0b7
VP
1868 /* The situation here is as follows. In thread T1 we wanted to
1869 single-step. Lacking hardware single-stepping we've
1870 set breakpoint at the PC of the next instruction -- call it
1871 P. After resuming, we've hit that breakpoint in thread T2.
1872 Now we've removed original breakpoint, inserted breakpoint
1873 at P+1, and try to step to advance T2 past breakpoint.
1874 We need to step only T2, as if T1 is allowed to freely run,
1875 it can run past P, and if other threads are allowed to run,
1876 they can hit breakpoint at P+1, and nested hits of single-step
1877 breakpoints is not something we'd want -- that's complicated
1878 to support, and has no value. */
1879 resume_ptid = inferior_ptid;
1880 }
d4db2f36 1881 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1882 && tp->control.trap_expected)
cd76b0b7 1883 {
74960c60
VP
1884 /* We're allowing a thread to run past a breakpoint it has
1885 hit, by single-stepping the thread with the breakpoint
1886 removed. In which case, we need to single-step only this
1887 thread, and keep others stopped, as they can miss this
1888 breakpoint if allowed to run.
1889
1890 The current code actually removes all breakpoints when
1891 doing this, not just the one being stepped over, so if we
1892 let other threads run, we can actually miss any
1893 breakpoint, not just the one at PC. */
ef5cf84e 1894 resume_ptid = inferior_ptid;
c906108c 1895 }
ef5cf84e 1896
515630c5 1897 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1898 {
1899 /* Most targets can step a breakpoint instruction, thus
1900 executing it normally. But if this one cannot, just
1901 continue and we will hit it anyway. */
6c95b8df 1902 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1903 step = 0;
1904 }
237fc4c9
PA
1905
1906 if (debug_displaced
515630c5 1907 && use_displaced_stepping (gdbarch)
16c381f0 1908 && tp->control.trap_expected)
237fc4c9 1909 {
515630c5 1910 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1911 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1912 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1913 gdb_byte buf[4];
1914
5af949e3
UW
1915 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1916 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1917 read_memory (actual_pc, buf, sizeof (buf));
1918 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1919 }
1920
e58b0e63
PA
1921 /* Install inferior's terminal modes. */
1922 target_terminal_inferior ();
1923
2020b7ab
PA
1924 /* Avoid confusing the next resume, if the next stop/resume
1925 happens to apply to another thread. */
16c381f0 1926 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1927
2455069d
UW
1928 /* Advise target which signals may be handled silently. If we have
1929 removed breakpoints because we are stepping over one (which can
1930 happen only if we are not using displaced stepping), we need to
1931 receive all signals to avoid accidentally skipping a breakpoint
1932 during execution of a signal handler. */
1933 if ((step || singlestep_breakpoints_inserted_p)
1934 && tp->control.trap_expected
1935 && !use_displaced_stepping (gdbarch))
1936 target_pass_signals (0, NULL);
1937 else
1938 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1939
607cecd2 1940 target_resume (resume_ptid, step, sig);
c906108c
SS
1941 }
1942
1943 discard_cleanups (old_cleanups);
1944}
1945\f
237fc4c9 1946/* Proceeding. */
c906108c
SS
1947
1948/* Clear out all variables saying what to do when inferior is continued.
1949 First do this, then set the ones you want, then call `proceed'. */
1950
a7212384
UW
1951static void
1952clear_proceed_status_thread (struct thread_info *tp)
c906108c 1953{
a7212384
UW
1954 if (debug_infrun)
1955 fprintf_unfiltered (gdb_stdlog,
1956 "infrun: clear_proceed_status_thread (%s)\n",
1957 target_pid_to_str (tp->ptid));
d6b48e9c 1958
16c381f0
JK
1959 tp->control.trap_expected = 0;
1960 tp->control.step_range_start = 0;
1961 tp->control.step_range_end = 0;
1962 tp->control.step_frame_id = null_frame_id;
1963 tp->control.step_stack_frame_id = null_frame_id;
1964 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1965 tp->stop_requested = 0;
4e1c45ea 1966
16c381f0 1967 tp->control.stop_step = 0;
32400beb 1968
16c381f0 1969 tp->control.proceed_to_finish = 0;
414c69f7 1970
a7212384 1971 /* Discard any remaining commands or status from previous stop. */
16c381f0 1972 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1973}
32400beb 1974
a7212384
UW
1975static int
1976clear_proceed_status_callback (struct thread_info *tp, void *data)
1977{
1978 if (is_exited (tp->ptid))
1979 return 0;
d6b48e9c 1980
a7212384
UW
1981 clear_proceed_status_thread (tp);
1982 return 0;
1983}
1984
1985void
1986clear_proceed_status (void)
1987{
6c95b8df
PA
1988 if (!non_stop)
1989 {
1990 /* In all-stop mode, delete the per-thread status of all
1991 threads, even if inferior_ptid is null_ptid, there may be
1992 threads on the list. E.g., we may be launching a new
1993 process, while selecting the executable. */
1994 iterate_over_threads (clear_proceed_status_callback, NULL);
1995 }
1996
a7212384
UW
1997 if (!ptid_equal (inferior_ptid, null_ptid))
1998 {
1999 struct inferior *inferior;
2000
2001 if (non_stop)
2002 {
6c95b8df
PA
2003 /* If in non-stop mode, only delete the per-thread status of
2004 the current thread. */
a7212384
UW
2005 clear_proceed_status_thread (inferior_thread ());
2006 }
6c95b8df 2007
d6b48e9c 2008 inferior = current_inferior ();
16c381f0 2009 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2010 }
2011
c906108c 2012 stop_after_trap = 0;
f3b1572e
PA
2013
2014 observer_notify_about_to_proceed ();
c906108c 2015
d5c31457
UW
2016 if (stop_registers)
2017 {
2018 regcache_xfree (stop_registers);
2019 stop_registers = NULL;
2020 }
c906108c
SS
2021}
2022
5a437975
DE
2023/* Check the current thread against the thread that reported the most recent
2024 event. If a step-over is required return TRUE and set the current thread
2025 to the old thread. Otherwise return FALSE.
2026
1777feb0 2027 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2028
2029static int
6a6b96b9 2030prepare_to_proceed (int step)
ea67f13b
DJ
2031{
2032 ptid_t wait_ptid;
2033 struct target_waitstatus wait_status;
5a437975
DE
2034 int schedlock_enabled;
2035
2036 /* With non-stop mode on, threads are always handled individually. */
2037 gdb_assert (! non_stop);
ea67f13b
DJ
2038
2039 /* Get the last target status returned by target_wait(). */
2040 get_last_target_status (&wait_ptid, &wait_status);
2041
6a6b96b9 2042 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2043 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2044 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2045 && wait_status.value.sig != TARGET_SIGNAL_ILL
2046 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2047 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2048 {
2049 return 0;
2050 }
2051
5a437975
DE
2052 schedlock_enabled = (scheduler_mode == schedlock_on
2053 || (scheduler_mode == schedlock_step
2054 && step));
2055
d4db2f36
PA
2056 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2057 if (schedlock_enabled)
2058 return 0;
2059
2060 /* Don't switch over if we're about to resume some other process
2061 other than WAIT_PTID's, and schedule-multiple is off. */
2062 if (!sched_multi
2063 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2064 return 0;
2065
6a6b96b9 2066 /* Switched over from WAIT_PID. */
ea67f13b 2067 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2068 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2069 {
515630c5
UW
2070 struct regcache *regcache = get_thread_regcache (wait_ptid);
2071
6c95b8df
PA
2072 if (breakpoint_here_p (get_regcache_aspace (regcache),
2073 regcache_read_pc (regcache)))
ea67f13b 2074 {
515630c5
UW
2075 /* If stepping, remember current thread to switch back to. */
2076 if (step)
2077 deferred_step_ptid = inferior_ptid;
ea67f13b 2078
515630c5
UW
2079 /* Switch back to WAIT_PID thread. */
2080 switch_to_thread (wait_ptid);
6a6b96b9 2081
0d9a9a5f
PA
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: prepare_to_proceed (step=%d), "
2085 "switched to [%s]\n",
2086 step, target_pid_to_str (inferior_ptid));
2087
515630c5
UW
2088 /* We return 1 to indicate that there is a breakpoint here,
2089 so we need to step over it before continuing to avoid
1777feb0 2090 hitting it straight away. */
515630c5
UW
2091 return 1;
2092 }
ea67f13b
DJ
2093 }
2094
2095 return 0;
ea67f13b 2096}
e4846b08 2097
c906108c
SS
2098/* Basic routine for continuing the program in various fashions.
2099
2100 ADDR is the address to resume at, or -1 for resume where stopped.
2101 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2102 or -1 for act according to how it stopped.
c906108c 2103 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2104 -1 means return after that and print nothing.
2105 You should probably set various step_... variables
2106 before calling here, if you are stepping.
c906108c
SS
2107
2108 You should call clear_proceed_status before calling proceed. */
2109
2110void
96baa820 2111proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2112{
e58b0e63
PA
2113 struct regcache *regcache;
2114 struct gdbarch *gdbarch;
4e1c45ea 2115 struct thread_info *tp;
e58b0e63 2116 CORE_ADDR pc;
6c95b8df 2117 struct address_space *aspace;
c906108c
SS
2118 int oneproc = 0;
2119
e58b0e63
PA
2120 /* If we're stopped at a fork/vfork, follow the branch set by the
2121 "set follow-fork-mode" command; otherwise, we'll just proceed
2122 resuming the current thread. */
2123 if (!follow_fork ())
2124 {
2125 /* The target for some reason decided not to resume. */
2126 normal_stop ();
f148b27e
PA
2127 if (target_can_async_p ())
2128 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2129 return;
2130 }
2131
842951eb
PA
2132 /* We'll update this if & when we switch to a new thread. */
2133 previous_inferior_ptid = inferior_ptid;
2134
e58b0e63
PA
2135 regcache = get_current_regcache ();
2136 gdbarch = get_regcache_arch (regcache);
6c95b8df 2137 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2138 pc = regcache_read_pc (regcache);
2139
c906108c 2140 if (step > 0)
515630c5 2141 step_start_function = find_pc_function (pc);
c906108c
SS
2142 if (step < 0)
2143 stop_after_trap = 1;
2144
2acceee2 2145 if (addr == (CORE_ADDR) -1)
c906108c 2146 {
6c95b8df 2147 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2148 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2149 /* There is a breakpoint at the address we will resume at,
2150 step one instruction before inserting breakpoints so that
2151 we do not stop right away (and report a second hit at this
b2175913
MS
2152 breakpoint).
2153
2154 Note, we don't do this in reverse, because we won't
2155 actually be executing the breakpoint insn anyway.
2156 We'll be (un-)executing the previous instruction. */
2157
c906108c 2158 oneproc = 1;
515630c5
UW
2159 else if (gdbarch_single_step_through_delay_p (gdbarch)
2160 && gdbarch_single_step_through_delay (gdbarch,
2161 get_current_frame ()))
3352ef37
AC
2162 /* We stepped onto an instruction that needs to be stepped
2163 again before re-inserting the breakpoint, do so. */
c906108c
SS
2164 oneproc = 1;
2165 }
2166 else
2167 {
515630c5 2168 regcache_write_pc (regcache, addr);
c906108c
SS
2169 }
2170
527159b7 2171 if (debug_infrun)
8a9de0e4 2172 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2173 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2174 paddress (gdbarch, addr), siggnal, step);
527159b7 2175
94cc34af
PA
2176 if (non_stop)
2177 /* In non-stop, each thread is handled individually. The context
2178 must already be set to the right thread here. */
2179 ;
2180 else
2181 {
2182 /* In a multi-threaded task we may select another thread and
2183 then continue or step.
c906108c 2184
94cc34af
PA
2185 But if the old thread was stopped at a breakpoint, it will
2186 immediately cause another breakpoint stop without any
2187 execution (i.e. it will report a breakpoint hit incorrectly).
2188 So we must step over it first.
c906108c 2189
94cc34af
PA
2190 prepare_to_proceed checks the current thread against the
2191 thread that reported the most recent event. If a step-over
2192 is required it returns TRUE and sets the current thread to
1777feb0 2193 the old thread. */
94cc34af
PA
2194 if (prepare_to_proceed (step))
2195 oneproc = 1;
2196 }
c906108c 2197
4e1c45ea
PA
2198 /* prepare_to_proceed may change the current thread. */
2199 tp = inferior_thread ();
2200
30852783
UW
2201 if (oneproc)
2202 {
2203 tp->control.trap_expected = 1;
2204 /* If displaced stepping is enabled, we can step over the
2205 breakpoint without hitting it, so leave all breakpoints
2206 inserted. Otherwise we need to disable all breakpoints, step
2207 one instruction, and then re-add them when that step is
2208 finished. */
2209 if (!use_displaced_stepping (gdbarch))
2210 remove_breakpoints ();
2211 }
2212
2213 /* We can insert breakpoints if we're not trying to step over one,
2214 or if we are stepping over one but we're using displaced stepping
2215 to do so. */
2216 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2217 insert_breakpoints ();
2218
2020b7ab
PA
2219 if (!non_stop)
2220 {
2221 /* Pass the last stop signal to the thread we're resuming,
2222 irrespective of whether the current thread is the thread that
2223 got the last event or not. This was historically GDB's
2224 behaviour before keeping a stop_signal per thread. */
2225
2226 struct thread_info *last_thread;
2227 ptid_t last_ptid;
2228 struct target_waitstatus last_status;
2229
2230 get_last_target_status (&last_ptid, &last_status);
2231 if (!ptid_equal (inferior_ptid, last_ptid)
2232 && !ptid_equal (last_ptid, null_ptid)
2233 && !ptid_equal (last_ptid, minus_one_ptid))
2234 {
e09875d4 2235 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2236 if (last_thread)
2237 {
16c381f0
JK
2238 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2239 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2240 }
2241 }
2242 }
2243
c906108c 2244 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2245 tp->suspend.stop_signal = siggnal;
c906108c
SS
2246 /* If this signal should not be seen by program,
2247 give it zero. Used for debugging signals. */
16c381f0
JK
2248 else if (!signal_program[tp->suspend.stop_signal])
2249 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2250
2251 annotate_starting ();
2252
2253 /* Make sure that output from GDB appears before output from the
2254 inferior. */
2255 gdb_flush (gdb_stdout);
2256
e4846b08
JJ
2257 /* Refresh prev_pc value just prior to resuming. This used to be
2258 done in stop_stepping, however, setting prev_pc there did not handle
2259 scenarios such as inferior function calls or returning from
2260 a function via the return command. In those cases, the prev_pc
2261 value was not set properly for subsequent commands. The prev_pc value
2262 is used to initialize the starting line number in the ecs. With an
2263 invalid value, the gdb next command ends up stopping at the position
2264 represented by the next line table entry past our start position.
2265 On platforms that generate one line table entry per line, this
2266 is not a problem. However, on the ia64, the compiler generates
2267 extraneous line table entries that do not increase the line number.
2268 When we issue the gdb next command on the ia64 after an inferior call
2269 or a return command, we often end up a few instructions forward, still
2270 within the original line we started.
2271
d5cd6034
JB
2272 An attempt was made to refresh the prev_pc at the same time the
2273 execution_control_state is initialized (for instance, just before
2274 waiting for an inferior event). But this approach did not work
2275 because of platforms that use ptrace, where the pc register cannot
2276 be read unless the inferior is stopped. At that point, we are not
2277 guaranteed the inferior is stopped and so the regcache_read_pc() call
2278 can fail. Setting the prev_pc value here ensures the value is updated
2279 correctly when the inferior is stopped. */
4e1c45ea 2280 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2281
59f0d5d9 2282 /* Fill in with reasonable starting values. */
4e1c45ea 2283 init_thread_stepping_state (tp);
59f0d5d9 2284
59f0d5d9
PA
2285 /* Reset to normal state. */
2286 init_infwait_state ();
2287
c906108c 2288 /* Resume inferior. */
16c381f0 2289 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2290
2291 /* Wait for it to stop (if not standalone)
2292 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2293 /* Do this only if we are not using the event loop, or if the target
1777feb0 2294 does not support asynchronous execution. */
362646f5 2295 if (!target_can_async_p ())
43ff13b4 2296 {
e4c8541f 2297 wait_for_inferior ();
43ff13b4
JM
2298 normal_stop ();
2299 }
c906108c 2300}
c906108c
SS
2301\f
2302
2303/* Start remote-debugging of a machine over a serial link. */
96baa820 2304
c906108c 2305void
8621d6a9 2306start_remote (int from_tty)
c906108c 2307{
d6b48e9c 2308 struct inferior *inferior;
d6b48e9c
PA
2309
2310 inferior = current_inferior ();
16c381f0 2311 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2312
1777feb0 2313 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2314 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2315 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2316 nothing is returned (instead of just blocking). Because of this,
2317 targets expecting an immediate response need to, internally, set
2318 things up so that the target_wait() is forced to eventually
1777feb0 2319 timeout. */
6426a772
JM
2320 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2321 differentiate to its caller what the state of the target is after
2322 the initial open has been performed. Here we're assuming that
2323 the target has stopped. It should be possible to eventually have
2324 target_open() return to the caller an indication that the target
2325 is currently running and GDB state should be set to the same as
1777feb0 2326 for an async run. */
e4c8541f 2327 wait_for_inferior ();
8621d6a9
DJ
2328
2329 /* Now that the inferior has stopped, do any bookkeeping like
2330 loading shared libraries. We want to do this before normal_stop,
2331 so that the displayed frame is up to date. */
2332 post_create_inferior (&current_target, from_tty);
2333
6426a772 2334 normal_stop ();
c906108c
SS
2335}
2336
2337/* Initialize static vars when a new inferior begins. */
2338
2339void
96baa820 2340init_wait_for_inferior (void)
c906108c
SS
2341{
2342 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2343
c906108c
SS
2344 breakpoint_init_inferior (inf_starting);
2345
c906108c 2346 clear_proceed_status ();
9f976b41
DJ
2347
2348 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2349 deferred_step_ptid = null_ptid;
ca005067
DJ
2350
2351 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2352
842951eb 2353 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2354 init_infwait_state ();
2355
edb3359d
DJ
2356 /* Discard any skipped inlined frames. */
2357 clear_inline_frame_state (minus_one_ptid);
c906108c 2358}
237fc4c9 2359
c906108c 2360\f
b83266a0
SS
2361/* This enum encodes possible reasons for doing a target_wait, so that
2362 wfi can call target_wait in one place. (Ultimately the call will be
2363 moved out of the infinite loop entirely.) */
2364
c5aa993b
JM
2365enum infwait_states
2366{
cd0fc7c3
SS
2367 infwait_normal_state,
2368 infwait_thread_hop_state,
d983da9c 2369 infwait_step_watch_state,
cd0fc7c3 2370 infwait_nonstep_watch_state
b83266a0
SS
2371};
2372
0d1e5fa7
PA
2373/* The PTID we'll do a target_wait on.*/
2374ptid_t waiton_ptid;
2375
2376/* Current inferior wait state. */
2377enum infwait_states infwait_state;
cd0fc7c3 2378
0d1e5fa7
PA
2379/* Data to be passed around while handling an event. This data is
2380 discarded between events. */
c5aa993b 2381struct execution_control_state
488f131b 2382{
0d1e5fa7 2383 ptid_t ptid;
4e1c45ea
PA
2384 /* The thread that got the event, if this was a thread event; NULL
2385 otherwise. */
2386 struct thread_info *event_thread;
2387
488f131b 2388 struct target_waitstatus ws;
488f131b 2389 int random_signal;
7e324e48 2390 int stop_func_filled_in;
488f131b
JB
2391 CORE_ADDR stop_func_start;
2392 CORE_ADDR stop_func_end;
2c02bd72 2393 const char *stop_func_name;
488f131b 2394 int new_thread_event;
488f131b
JB
2395 int wait_some_more;
2396};
2397
ec9499be 2398static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2399
568d6575
UW
2400static void handle_step_into_function (struct gdbarch *gdbarch,
2401 struct execution_control_state *ecs);
2402static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2403 struct execution_control_state *ecs);
186c406b
TT
2404static void check_exception_resume (struct execution_control_state *,
2405 struct frame_info *, struct symbol *);
611c83ae 2406
104c1213
JM
2407static void stop_stepping (struct execution_control_state *ecs);
2408static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2409static void keep_going (struct execution_control_state *ecs);
104c1213 2410
252fbfc8
PA
2411/* Callback for iterate over threads. If the thread is stopped, but
2412 the user/frontend doesn't know about that yet, go through
2413 normal_stop, as if the thread had just stopped now. ARG points at
2414 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2415 ptid_is_pid(PTID) is true, applies to all threads of the process
2416 pointed at by PTID. Otherwise, apply only to the thread pointed by
2417 PTID. */
2418
2419static int
2420infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2421{
2422 ptid_t ptid = * (ptid_t *) arg;
2423
2424 if ((ptid_equal (info->ptid, ptid)
2425 || ptid_equal (minus_one_ptid, ptid)
2426 || (ptid_is_pid (ptid)
2427 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2428 && is_running (info->ptid)
2429 && !is_executing (info->ptid))
2430 {
2431 struct cleanup *old_chain;
2432 struct execution_control_state ecss;
2433 struct execution_control_state *ecs = &ecss;
2434
2435 memset (ecs, 0, sizeof (*ecs));
2436
2437 old_chain = make_cleanup_restore_current_thread ();
2438
2439 switch_to_thread (info->ptid);
2440
2441 /* Go through handle_inferior_event/normal_stop, so we always
2442 have consistent output as if the stop event had been
2443 reported. */
2444 ecs->ptid = info->ptid;
e09875d4 2445 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2446 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2447 ecs->ws.value.sig = TARGET_SIGNAL_0;
2448
2449 handle_inferior_event (ecs);
2450
2451 if (!ecs->wait_some_more)
2452 {
2453 struct thread_info *tp;
2454
2455 normal_stop ();
2456
fa4cd53f 2457 /* Finish off the continuations. */
252fbfc8 2458 tp = inferior_thread ();
fa4cd53f
PA
2459 do_all_intermediate_continuations_thread (tp, 1);
2460 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2461 }
2462
2463 do_cleanups (old_chain);
2464 }
2465
2466 return 0;
2467}
2468
2469/* This function is attached as a "thread_stop_requested" observer.
2470 Cleanup local state that assumed the PTID was to be resumed, and
2471 report the stop to the frontend. */
2472
2c0b251b 2473static void
252fbfc8
PA
2474infrun_thread_stop_requested (ptid_t ptid)
2475{
fc1cf338 2476 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2477
2478 /* PTID was requested to stop. Remove it from the displaced
2479 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2480
2481 for (displaced = displaced_step_inferior_states;
2482 displaced;
2483 displaced = displaced->next)
252fbfc8 2484 {
fc1cf338 2485 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2486
fc1cf338
PA
2487 it = displaced->step_request_queue;
2488 prev_next_p = &displaced->step_request_queue;
2489 while (it)
252fbfc8 2490 {
fc1cf338
PA
2491 if (ptid_match (it->ptid, ptid))
2492 {
2493 *prev_next_p = it->next;
2494 it->next = NULL;
2495 xfree (it);
2496 }
252fbfc8 2497 else
fc1cf338
PA
2498 {
2499 prev_next_p = &it->next;
2500 }
252fbfc8 2501
fc1cf338 2502 it = *prev_next_p;
252fbfc8 2503 }
252fbfc8
PA
2504 }
2505
2506 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2507}
2508
a07daef3
PA
2509static void
2510infrun_thread_thread_exit (struct thread_info *tp, int silent)
2511{
2512 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2513 nullify_last_target_wait_ptid ();
2514}
2515
4e1c45ea
PA
2516/* Callback for iterate_over_threads. */
2517
2518static int
2519delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2520{
2521 if (is_exited (info->ptid))
2522 return 0;
2523
2524 delete_step_resume_breakpoint (info);
186c406b 2525 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2526 return 0;
2527}
2528
2529/* In all-stop, delete the step resume breakpoint of any thread that
2530 had one. In non-stop, delete the step resume breakpoint of the
2531 thread that just stopped. */
2532
2533static void
2534delete_step_thread_step_resume_breakpoint (void)
2535{
2536 if (!target_has_execution
2537 || ptid_equal (inferior_ptid, null_ptid))
2538 /* If the inferior has exited, we have already deleted the step
2539 resume breakpoints out of GDB's lists. */
2540 return;
2541
2542 if (non_stop)
2543 {
2544 /* If in non-stop mode, only delete the step-resume or
2545 longjmp-resume breakpoint of the thread that just stopped
2546 stepping. */
2547 struct thread_info *tp = inferior_thread ();
abbb1732 2548
4e1c45ea 2549 delete_step_resume_breakpoint (tp);
186c406b 2550 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2551 }
2552 else
2553 /* In all-stop mode, delete all step-resume and longjmp-resume
2554 breakpoints of any thread that had them. */
2555 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2556}
2557
1777feb0 2558/* A cleanup wrapper. */
4e1c45ea
PA
2559
2560static void
2561delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2562{
2563 delete_step_thread_step_resume_breakpoint ();
2564}
2565
223698f8
DE
2566/* Pretty print the results of target_wait, for debugging purposes. */
2567
2568static void
2569print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2570 const struct target_waitstatus *ws)
2571{
2572 char *status_string = target_waitstatus_to_string (ws);
2573 struct ui_file *tmp_stream = mem_fileopen ();
2574 char *text;
223698f8
DE
2575
2576 /* The text is split over several lines because it was getting too long.
2577 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2578 output as a unit; we want only one timestamp printed if debug_timestamp
2579 is set. */
2580
2581 fprintf_unfiltered (tmp_stream,
2582 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2583 if (PIDGET (waiton_ptid) != -1)
2584 fprintf_unfiltered (tmp_stream,
2585 " [%s]", target_pid_to_str (waiton_ptid));
2586 fprintf_unfiltered (tmp_stream, ", status) =\n");
2587 fprintf_unfiltered (tmp_stream,
2588 "infrun: %d [%s],\n",
2589 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2590 fprintf_unfiltered (tmp_stream,
2591 "infrun: %s\n",
2592 status_string);
2593
759ef836 2594 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2595
2596 /* This uses %s in part to handle %'s in the text, but also to avoid
2597 a gcc error: the format attribute requires a string literal. */
2598 fprintf_unfiltered (gdb_stdlog, "%s", text);
2599
2600 xfree (status_string);
2601 xfree (text);
2602 ui_file_delete (tmp_stream);
2603}
2604
24291992
PA
2605/* Prepare and stabilize the inferior for detaching it. E.g.,
2606 detaching while a thread is displaced stepping is a recipe for
2607 crashing it, as nothing would readjust the PC out of the scratch
2608 pad. */
2609
2610void
2611prepare_for_detach (void)
2612{
2613 struct inferior *inf = current_inferior ();
2614 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2615 struct cleanup *old_chain_1;
2616 struct displaced_step_inferior_state *displaced;
2617
2618 displaced = get_displaced_stepping_state (inf->pid);
2619
2620 /* Is any thread of this process displaced stepping? If not,
2621 there's nothing else to do. */
2622 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2623 return;
2624
2625 if (debug_infrun)
2626 fprintf_unfiltered (gdb_stdlog,
2627 "displaced-stepping in-process while detaching");
2628
2629 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2630 inf->detaching = 1;
2631
2632 while (!ptid_equal (displaced->step_ptid, null_ptid))
2633 {
2634 struct cleanup *old_chain_2;
2635 struct execution_control_state ecss;
2636 struct execution_control_state *ecs;
2637
2638 ecs = &ecss;
2639 memset (ecs, 0, sizeof (*ecs));
2640
2641 overlay_cache_invalid = 1;
2642
24291992
PA
2643 if (deprecated_target_wait_hook)
2644 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2645 else
2646 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2647
2648 if (debug_infrun)
2649 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2650
2651 /* If an error happens while handling the event, propagate GDB's
2652 knowledge of the executing state to the frontend/user running
2653 state. */
3e43a32a
MS
2654 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2655 &minus_one_ptid);
24291992 2656
4d533103
PA
2657 /* In non-stop mode, each thread is handled individually.
2658 Switch early, so the global state is set correctly for this
2659 thread. */
2660 if (non_stop
2661 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2662 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2663 context_switch (ecs->ptid);
2664
24291992
PA
2665 /* Now figure out what to do with the result of the result. */
2666 handle_inferior_event (ecs);
2667
2668 /* No error, don't finish the state yet. */
2669 discard_cleanups (old_chain_2);
2670
2671 /* Breakpoints and watchpoints are not installed on the target
2672 at this point, and signals are passed directly to the
2673 inferior, so this must mean the process is gone. */
2674 if (!ecs->wait_some_more)
2675 {
2676 discard_cleanups (old_chain_1);
2677 error (_("Program exited while detaching"));
2678 }
2679 }
2680
2681 discard_cleanups (old_chain_1);
2682}
2683
cd0fc7c3 2684/* Wait for control to return from inferior to debugger.
ae123ec6 2685
cd0fc7c3
SS
2686 If inferior gets a signal, we may decide to start it up again
2687 instead of returning. That is why there is a loop in this function.
2688 When this function actually returns it means the inferior
2689 should be left stopped and GDB should read more commands. */
2690
2691void
e4c8541f 2692wait_for_inferior (void)
cd0fc7c3
SS
2693{
2694 struct cleanup *old_cleanups;
0d1e5fa7 2695 struct execution_control_state ecss;
cd0fc7c3 2696 struct execution_control_state *ecs;
c906108c 2697
527159b7 2698 if (debug_infrun)
ae123ec6 2699 fprintf_unfiltered
e4c8541f 2700 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2701
4e1c45ea
PA
2702 old_cleanups =
2703 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2704
cd0fc7c3 2705 ecs = &ecss;
0d1e5fa7
PA
2706 memset (ecs, 0, sizeof (*ecs));
2707
c906108c
SS
2708 while (1)
2709 {
29f49a6a
PA
2710 struct cleanup *old_chain;
2711
ec9499be 2712 overlay_cache_invalid = 1;
ec9499be 2713
9a4105ab 2714 if (deprecated_target_wait_hook)
47608cb1 2715 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2716 else
47608cb1 2717 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2718
f00150c9 2719 if (debug_infrun)
223698f8 2720 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2721
29f49a6a
PA
2722 /* If an error happens while handling the event, propagate GDB's
2723 knowledge of the executing state to the frontend/user running
2724 state. */
2725 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2726
cd0fc7c3
SS
2727 /* Now figure out what to do with the result of the result. */
2728 handle_inferior_event (ecs);
c906108c 2729
29f49a6a
PA
2730 /* No error, don't finish the state yet. */
2731 discard_cleanups (old_chain);
2732
cd0fc7c3
SS
2733 if (!ecs->wait_some_more)
2734 break;
2735 }
4e1c45ea 2736
cd0fc7c3
SS
2737 do_cleanups (old_cleanups);
2738}
c906108c 2739
1777feb0 2740/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2741 event loop whenever a change of state is detected on the file
1777feb0
MS
2742 descriptor corresponding to the target. It can be called more than
2743 once to complete a single execution command. In such cases we need
2744 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2745 that this function is called for a single execution command, then
2746 report to the user that the inferior has stopped, and do the
1777feb0 2747 necessary cleanups. */
43ff13b4
JM
2748
2749void
fba45db2 2750fetch_inferior_event (void *client_data)
43ff13b4 2751{
0d1e5fa7 2752 struct execution_control_state ecss;
a474d7c2 2753 struct execution_control_state *ecs = &ecss;
4f8d22e3 2754 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2755 struct cleanup *ts_old_chain;
4f8d22e3 2756 int was_sync = sync_execution;
0f641c01 2757 int cmd_done = 0;
43ff13b4 2758
0d1e5fa7
PA
2759 memset (ecs, 0, sizeof (*ecs));
2760
c5187ac6
PA
2761 /* We're handling a live event, so make sure we're doing live
2762 debugging. If we're looking at traceframes while the target is
2763 running, we're going to need to get back to that mode after
2764 handling the event. */
2765 if (non_stop)
2766 {
2767 make_cleanup_restore_current_traceframe ();
e6e4e701 2768 set_current_traceframe (-1);
c5187ac6
PA
2769 }
2770
4f8d22e3
PA
2771 if (non_stop)
2772 /* In non-stop mode, the user/frontend should not notice a thread
2773 switch due to internal events. Make sure we reverse to the
2774 user selected thread and frame after handling the event and
2775 running any breakpoint commands. */
2776 make_cleanup_restore_current_thread ();
2777
ec9499be 2778 overlay_cache_invalid = 1;
3dd5b83d 2779
32231432
PA
2780 make_cleanup_restore_integer (&execution_direction);
2781 execution_direction = target_execution_direction ();
2782
9a4105ab 2783 if (deprecated_target_wait_hook)
a474d7c2 2784 ecs->ptid =
47608cb1 2785 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2786 else
47608cb1 2787 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2788
f00150c9 2789 if (debug_infrun)
223698f8 2790 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2791
94cc34af
PA
2792 if (non_stop
2793 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2794 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2795 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2796 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2797 /* In non-stop mode, each thread is handled individually. Switch
2798 early, so the global state is set correctly for this
2799 thread. */
2800 context_switch (ecs->ptid);
2801
29f49a6a
PA
2802 /* If an error happens while handling the event, propagate GDB's
2803 knowledge of the executing state to the frontend/user running
2804 state. */
2805 if (!non_stop)
2806 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2807 else
2808 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2809
353d1d73
JK
2810 /* Get executed before make_cleanup_restore_current_thread above to apply
2811 still for the thread which has thrown the exception. */
2812 make_bpstat_clear_actions_cleanup ();
2813
43ff13b4 2814 /* Now figure out what to do with the result of the result. */
a474d7c2 2815 handle_inferior_event (ecs);
43ff13b4 2816
a474d7c2 2817 if (!ecs->wait_some_more)
43ff13b4 2818 {
d6b48e9c
PA
2819 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2820
4e1c45ea 2821 delete_step_thread_step_resume_breakpoint ();
f107f563 2822
d6b48e9c 2823 /* We may not find an inferior if this was a process exit. */
16c381f0 2824 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2825 normal_stop ();
2826
af679fd0 2827 if (target_has_execution
0e5bf2a8 2828 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2829 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2830 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2831 && ecs->event_thread->step_multi
16c381f0 2832 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2833 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2834 else
0f641c01
PA
2835 {
2836 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2837 cmd_done = 1;
2838 }
43ff13b4 2839 }
4f8d22e3 2840
29f49a6a
PA
2841 /* No error, don't finish the thread states yet. */
2842 discard_cleanups (ts_old_chain);
2843
4f8d22e3
PA
2844 /* Revert thread and frame. */
2845 do_cleanups (old_chain);
2846
2847 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2848 restore the prompt (a synchronous execution command has finished,
2849 and we're ready for input). */
b4a14fd0 2850 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2851 display_gdb_prompt (0);
0f641c01
PA
2852
2853 if (cmd_done
2854 && !was_sync
2855 && exec_done_display_p
2856 && (ptid_equal (inferior_ptid, null_ptid)
2857 || !is_running (inferior_ptid)))
2858 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2859}
2860
edb3359d
DJ
2861/* Record the frame and location we're currently stepping through. */
2862void
2863set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2864{
2865 struct thread_info *tp = inferior_thread ();
2866
16c381f0
JK
2867 tp->control.step_frame_id = get_frame_id (frame);
2868 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2869
2870 tp->current_symtab = sal.symtab;
2871 tp->current_line = sal.line;
2872}
2873
0d1e5fa7
PA
2874/* Clear context switchable stepping state. */
2875
2876void
4e1c45ea 2877init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2878{
2879 tss->stepping_over_breakpoint = 0;
2880 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2881}
2882
e02bc4cc 2883/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2884 target_wait()/deprecated_target_wait_hook(). The data is actually
2885 cached by handle_inferior_event(), which gets called immediately
2886 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2887
2888void
488f131b 2889get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2890{
39f77062 2891 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2892 *status = target_last_waitstatus;
2893}
2894
ac264b3b
MS
2895void
2896nullify_last_target_wait_ptid (void)
2897{
2898 target_last_wait_ptid = minus_one_ptid;
2899}
2900
dcf4fbde 2901/* Switch thread contexts. */
dd80620e
MS
2902
2903static void
0d1e5fa7 2904context_switch (ptid_t ptid)
dd80620e 2905{
4b51d87b 2906 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2907 {
2908 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2909 target_pid_to_str (inferior_ptid));
2910 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2911 target_pid_to_str (ptid));
fd48f117
DJ
2912 }
2913
0d1e5fa7 2914 switch_to_thread (ptid);
dd80620e
MS
2915}
2916
4fa8626c
DJ
2917static void
2918adjust_pc_after_break (struct execution_control_state *ecs)
2919{
24a73cce
UW
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
6c95b8df 2922 struct address_space *aspace;
8aad930b 2923 CORE_ADDR breakpoint_pc;
4fa8626c 2924
4fa8626c
DJ
2925 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2926 we aren't, just return.
9709f61c
DJ
2927
2928 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2929 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2930 implemented by software breakpoints should be handled through the normal
2931 breakpoint layer.
8fb3e588 2932
4fa8626c
DJ
2933 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2934 different signals (SIGILL or SIGEMT for instance), but it is less
2935 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2936 gdbarch_decr_pc_after_break. I don't know any specific target that
2937 generates these signals at breakpoints (the code has been in GDB since at
2938 least 1992) so I can not guess how to handle them here.
8fb3e588 2939
e6cf7916
UW
2940 In earlier versions of GDB, a target with
2941 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2942 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2943 target with both of these set in GDB history, and it seems unlikely to be
2944 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2945
2946 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2947 return;
2948
2949 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2950 return;
2951
4058b839
PA
2952 /* In reverse execution, when a breakpoint is hit, the instruction
2953 under it has already been de-executed. The reported PC always
2954 points at the breakpoint address, so adjusting it further would
2955 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2956 architecture:
2957
2958 B1 0x08000000 : INSN1
2959 B2 0x08000001 : INSN2
2960 0x08000002 : INSN3
2961 PC -> 0x08000003 : INSN4
2962
2963 Say you're stopped at 0x08000003 as above. Reverse continuing
2964 from that point should hit B2 as below. Reading the PC when the
2965 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2966 been de-executed already.
2967
2968 B1 0x08000000 : INSN1
2969 B2 PC -> 0x08000001 : INSN2
2970 0x08000002 : INSN3
2971 0x08000003 : INSN4
2972
2973 We can't apply the same logic as for forward execution, because
2974 we would wrongly adjust the PC to 0x08000000, since there's a
2975 breakpoint at PC - 1. We'd then report a hit on B1, although
2976 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2977 behaviour. */
2978 if (execution_direction == EXEC_REVERSE)
2979 return;
2980
24a73cce
UW
2981 /* If this target does not decrement the PC after breakpoints, then
2982 we have nothing to do. */
2983 regcache = get_thread_regcache (ecs->ptid);
2984 gdbarch = get_regcache_arch (regcache);
2985 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2986 return;
2987
6c95b8df
PA
2988 aspace = get_regcache_aspace (regcache);
2989
8aad930b
AC
2990 /* Find the location where (if we've hit a breakpoint) the
2991 breakpoint would be. */
515630c5
UW
2992 breakpoint_pc = regcache_read_pc (regcache)
2993 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2994
1c5cfe86
PA
2995 /* Check whether there actually is a software breakpoint inserted at
2996 that location.
2997
2998 If in non-stop mode, a race condition is possible where we've
2999 removed a breakpoint, but stop events for that breakpoint were
3000 already queued and arrive later. To suppress those spurious
3001 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3002 and retire them after a number of stop events are reported. */
6c95b8df
PA
3003 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3004 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3005 {
96429cc8 3006 struct cleanup *old_cleanups = NULL;
abbb1732 3007
96429cc8
HZ
3008 if (RECORD_IS_USED)
3009 old_cleanups = record_gdb_operation_disable_set ();
3010
1c0fdd0e
UW
3011 /* When using hardware single-step, a SIGTRAP is reported for both
3012 a completed single-step and a software breakpoint. Need to
3013 differentiate between the two, as the latter needs adjusting
3014 but the former does not.
3015
3016 The SIGTRAP can be due to a completed hardware single-step only if
3017 - we didn't insert software single-step breakpoints
3018 - the thread to be examined is still the current thread
3019 - this thread is currently being stepped
3020
3021 If any of these events did not occur, we must have stopped due
3022 to hitting a software breakpoint, and have to back up to the
3023 breakpoint address.
3024
3025 As a special case, we could have hardware single-stepped a
3026 software breakpoint. In this case (prev_pc == breakpoint_pc),
3027 we also need to back up to the breakpoint address. */
3028
3029 if (singlestep_breakpoints_inserted_p
3030 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3031 || !currently_stepping (ecs->event_thread)
3032 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3033 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3034
3035 if (RECORD_IS_USED)
3036 do_cleanups (old_cleanups);
8aad930b 3037 }
4fa8626c
DJ
3038}
3039
0d1e5fa7
PA
3040void
3041init_infwait_state (void)
3042{
3043 waiton_ptid = pid_to_ptid (-1);
3044 infwait_state = infwait_normal_state;
3045}
3046
94cc34af
PA
3047void
3048error_is_running (void)
3049{
3e43a32a
MS
3050 error (_("Cannot execute this command while "
3051 "the selected thread is running."));
94cc34af
PA
3052}
3053
3054void
3055ensure_not_running (void)
3056{
3057 if (is_running (inferior_ptid))
3058 error_is_running ();
3059}
3060
edb3359d
DJ
3061static int
3062stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3063{
3064 for (frame = get_prev_frame (frame);
3065 frame != NULL;
3066 frame = get_prev_frame (frame))
3067 {
3068 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3069 return 1;
3070 if (get_frame_type (frame) != INLINE_FRAME)
3071 break;
3072 }
3073
3074 return 0;
3075}
3076
a96d9b2e
SDJ
3077/* Auxiliary function that handles syscall entry/return events.
3078 It returns 1 if the inferior should keep going (and GDB
3079 should ignore the event), or 0 if the event deserves to be
3080 processed. */
ca2163eb 3081
a96d9b2e 3082static int
ca2163eb 3083handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3084{
ca2163eb
PA
3085 struct regcache *regcache;
3086 struct gdbarch *gdbarch;
3087 int syscall_number;
3088
3089 if (!ptid_equal (ecs->ptid, inferior_ptid))
3090 context_switch (ecs->ptid);
3091
3092 regcache = get_thread_regcache (ecs->ptid);
3093 gdbarch = get_regcache_arch (regcache);
f90263c1 3094 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3095 stop_pc = regcache_read_pc (regcache);
3096
a96d9b2e
SDJ
3097 if (catch_syscall_enabled () > 0
3098 && catching_syscall_number (syscall_number) > 0)
3099 {
3100 if (debug_infrun)
3101 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3102 syscall_number);
a96d9b2e 3103
16c381f0 3104 ecs->event_thread->control.stop_bpstat
6c95b8df 3105 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3106 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3107 ecs->random_signal
3108 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3109
ca2163eb
PA
3110 if (!ecs->random_signal)
3111 {
3112 /* Catchpoint hit. */
16c381f0 3113 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3114 return 0;
3115 }
a96d9b2e 3116 }
ca2163eb
PA
3117
3118 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3119 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3120 keep_going (ecs);
3121 return 1;
a96d9b2e
SDJ
3122}
3123
7e324e48
GB
3124/* Clear the supplied execution_control_state's stop_func_* fields. */
3125
3126static void
3127clear_stop_func (struct execution_control_state *ecs)
3128{
3129 ecs->stop_func_filled_in = 0;
3130 ecs->stop_func_start = 0;
3131 ecs->stop_func_end = 0;
3132 ecs->stop_func_name = NULL;
3133}
3134
3135/* Lazily fill in the execution_control_state's stop_func_* fields. */
3136
3137static void
3138fill_in_stop_func (struct gdbarch *gdbarch,
3139 struct execution_control_state *ecs)
3140{
3141 if (!ecs->stop_func_filled_in)
3142 {
3143 /* Don't care about return value; stop_func_start and stop_func_name
3144 will both be 0 if it doesn't work. */
3145 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3146 &ecs->stop_func_start, &ecs->stop_func_end);
3147 ecs->stop_func_start
3148 += gdbarch_deprecated_function_start_offset (gdbarch);
3149
3150 ecs->stop_func_filled_in = 1;
3151 }
3152}
3153
cd0fc7c3
SS
3154/* Given an execution control state that has been freshly filled in
3155 by an event from the inferior, figure out what it means and take
3156 appropriate action. */
c906108c 3157
ec9499be 3158static void
96baa820 3159handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3160{
568d6575
UW
3161 struct frame_info *frame;
3162 struct gdbarch *gdbarch;
d983da9c
DJ
3163 int stopped_by_watchpoint;
3164 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3165 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3166 enum stop_kind stop_soon;
3167
28736962
PA
3168 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3169 {
3170 /* We had an event in the inferior, but we are not interested in
3171 handling it at this level. The lower layers have already
3172 done what needs to be done, if anything.
3173
3174 One of the possible circumstances for this is when the
3175 inferior produces output for the console. The inferior has
3176 not stopped, and we are ignoring the event. Another possible
3177 circumstance is any event which the lower level knows will be
3178 reported multiple times without an intervening resume. */
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3181 prepare_to_wait (ecs);
3182 return;
3183 }
3184
0e5bf2a8
PA
3185 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3186 && target_can_async_p () && !sync_execution)
3187 {
3188 /* There were no unwaited-for children left in the target, but,
3189 we're not synchronously waiting for events either. Just
3190 ignore. Otherwise, if we were running a synchronous
3191 execution command, we need to cancel it and give the user
3192 back the terminal. */
3193 if (debug_infrun)
3194 fprintf_unfiltered (gdb_stdlog,
3195 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3196 prepare_to_wait (ecs);
3197 return;
3198 }
3199
d6b48e9c 3200 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3201 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3202 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3203 {
3204 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3205
d6b48e9c 3206 gdb_assert (inf);
16c381f0 3207 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3208 }
3209 else
3210 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3211
1777feb0 3212 /* Cache the last pid/waitstatus. */
39f77062 3213 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3214 target_last_waitstatus = ecs->ws;
e02bc4cc 3215
ca005067 3216 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3217 stop_stack_dummy = STOP_NONE;
ca005067 3218
0e5bf2a8
PA
3219 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3220 {
3221 /* No unwaited-for children left. IOW, all resumed children
3222 have exited. */
3223 if (debug_infrun)
3224 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3225
3226 stop_print_frame = 0;
3227 stop_stepping (ecs);
3228 return;
3229 }
3230
1777feb0 3231 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3232
3233 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3234 && !ptid_equal (ecs->ptid, minus_one_ptid)
3235 && !in_thread_list (ecs->ptid));
3236
3237 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3238 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3239 add_thread (ecs->ptid);
3240
e09875d4 3241 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3242
3243 /* Dependent on valid ECS->EVENT_THREAD. */
3244 adjust_pc_after_break (ecs);
3245
3246 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3247 reinit_frame_cache ();
3248
28736962
PA
3249 breakpoint_retire_moribund ();
3250
2b009048
DJ
3251 /* First, distinguish signals caused by the debugger from signals
3252 that have to do with the program's own actions. Note that
3253 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3254 on the operating system version. Here we detect when a SIGILL or
3255 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3256 something similar for SIGSEGV, since a SIGSEGV will be generated
3257 when we're trying to execute a breakpoint instruction on a
3258 non-executable stack. This happens for call dummy breakpoints
3259 for architectures like SPARC that place call dummies on the
3260 stack. */
2b009048
DJ
3261 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3262 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3263 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3264 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3265 {
de0a0249
UW
3266 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3267
3268 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3269 regcache_read_pc (regcache)))
3270 {
3271 if (debug_infrun)
3272 fprintf_unfiltered (gdb_stdlog,
3273 "infrun: Treating signal as SIGTRAP\n");
3274 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3275 }
2b009048
DJ
3276 }
3277
28736962
PA
3278 /* Mark the non-executing threads accordingly. In all-stop, all
3279 threads of all processes are stopped when we get any event
3280 reported. In non-stop mode, only the event thread stops. If
3281 we're handling a process exit in non-stop mode, there's nothing
3282 to do, as threads of the dead process are gone, and threads of
3283 any other process were left running. */
3284 if (!non_stop)
3285 set_executing (minus_one_ptid, 0);
3286 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3287 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3288 set_executing (ecs->ptid, 0);
8c90c137 3289
0d1e5fa7 3290 switch (infwait_state)
488f131b
JB
3291 {
3292 case infwait_thread_hop_state:
527159b7 3293 if (debug_infrun)
8a9de0e4 3294 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3295 break;
b83266a0 3296
488f131b 3297 case infwait_normal_state:
527159b7 3298 if (debug_infrun)
8a9de0e4 3299 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3300 break;
3301
3302 case infwait_step_watch_state:
3303 if (debug_infrun)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_step_watch_state\n");
3306
3307 stepped_after_stopped_by_watchpoint = 1;
488f131b 3308 break;
b83266a0 3309
488f131b 3310 case infwait_nonstep_watch_state:
527159b7 3311 if (debug_infrun)
8a9de0e4
AC
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: infwait_nonstep_watch_state\n");
488f131b 3314 insert_breakpoints ();
c906108c 3315
488f131b
JB
3316 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3317 handle things like signals arriving and other things happening
3318 in combination correctly? */
3319 stepped_after_stopped_by_watchpoint = 1;
3320 break;
65e82032
AC
3321
3322 default:
e2e0b3e5 3323 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3324 }
ec9499be 3325
0d1e5fa7 3326 infwait_state = infwait_normal_state;
ec9499be 3327 waiton_ptid = pid_to_ptid (-1);
c906108c 3328
488f131b
JB
3329 switch (ecs->ws.kind)
3330 {
3331 case TARGET_WAITKIND_LOADED:
527159b7 3332 if (debug_infrun)
8a9de0e4 3333 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3334 /* Ignore gracefully during startup of the inferior, as it might
3335 be the shell which has just loaded some objects, otherwise
3336 add the symbols for the newly loaded objects. Also ignore at
3337 the beginning of an attach or remote session; we will query
3338 the full list of libraries once the connection is
3339 established. */
c0236d92 3340 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3341 {
edcc5120
TT
3342 struct regcache *regcache;
3343
3344 if (!ptid_equal (ecs->ptid, inferior_ptid))
3345 context_switch (ecs->ptid);
3346 regcache = get_thread_regcache (ecs->ptid);
3347
3348 handle_solib_event ();
3349
3350 ecs->event_thread->control.stop_bpstat
3351 = bpstat_stop_status (get_regcache_aspace (regcache),
3352 stop_pc, ecs->ptid, &ecs->ws);
3353 ecs->random_signal
3354 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
3355
3356 if (!ecs->random_signal)
3357 {
3358 /* A catchpoint triggered. */
3359 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
3360 goto process_event_stop_test;
3361 }
488f131b 3362
b0f4b84b
DJ
3363 /* If requested, stop when the dynamic linker notifies
3364 gdb of events. This allows the user to get control
3365 and place breakpoints in initializer routines for
3366 dynamically loaded objects (among other things). */
edcc5120 3367 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
b0f4b84b
DJ
3368 if (stop_on_solib_events)
3369 {
55409f9d
DJ
3370 /* Make sure we print "Stopped due to solib-event" in
3371 normal_stop. */
3372 stop_print_frame = 1;
3373
b0f4b84b
DJ
3374 stop_stepping (ecs);
3375 return;
3376 }
488f131b 3377 }
b0f4b84b
DJ
3378
3379 /* If we are skipping through a shell, or through shared library
3380 loading that we aren't interested in, resume the program. If
3381 we're running the program normally, also resume. But stop if
3382 we're attaching or setting up a remote connection. */
3383 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3384 {
74960c60
VP
3385 /* Loading of shared libraries might have changed breakpoint
3386 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3387 if (stop_soon == NO_STOP_QUIETLY
3388 && !breakpoints_always_inserted_mode ())
74960c60 3389 insert_breakpoints ();
b0f4b84b
DJ
3390 resume (0, TARGET_SIGNAL_0);
3391 prepare_to_wait (ecs);
3392 return;
3393 }
3394
3395 break;
c5aa993b 3396
488f131b 3397 case TARGET_WAITKIND_SPURIOUS:
527159b7 3398 if (debug_infrun)
8a9de0e4 3399 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3400 resume (0, TARGET_SIGNAL_0);
3401 prepare_to_wait (ecs);
3402 return;
c5aa993b 3403
488f131b 3404 case TARGET_WAITKIND_EXITED:
527159b7 3405 if (debug_infrun)
8a9de0e4 3406 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3407 inferior_ptid = ecs->ptid;
6c95b8df
PA
3408 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3409 set_current_program_space (current_inferior ()->pspace);
3410 handle_vfork_child_exec_or_exit (0);
1777feb0 3411 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3412 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3413
3414 /* Record the exit code in the convenience variable $_exitcode, so
3415 that the user can inspect this again later. */
4fa62494
UW
3416 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3417 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3418
3419 /* Also record this in the inferior itself. */
3420 current_inferior ()->has_exit_code = 1;
3421 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3422
488f131b
JB
3423 gdb_flush (gdb_stdout);
3424 target_mourn_inferior ();
1c0fdd0e 3425 singlestep_breakpoints_inserted_p = 0;
d03285ec 3426 cancel_single_step_breakpoints ();
488f131b
JB
3427 stop_print_frame = 0;
3428 stop_stepping (ecs);
3429 return;
c5aa993b 3430
488f131b 3431 case TARGET_WAITKIND_SIGNALLED:
527159b7 3432 if (debug_infrun)
8a9de0e4 3433 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3434 inferior_ptid = ecs->ptid;
6c95b8df
PA
3435 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3436 set_current_program_space (current_inferior ()->pspace);
3437 handle_vfork_child_exec_or_exit (0);
488f131b 3438 stop_print_frame = 0;
1777feb0 3439 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3440
488f131b
JB
3441 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3442 reach here unless the inferior is dead. However, for years
3443 target_kill() was called here, which hints that fatal signals aren't
3444 really fatal on some systems. If that's true, then some changes
1777feb0 3445 may be needed. */
488f131b 3446 target_mourn_inferior ();
c906108c 3447
33d62d64 3448 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3449 singlestep_breakpoints_inserted_p = 0;
d03285ec 3450 cancel_single_step_breakpoints ();
488f131b
JB
3451 stop_stepping (ecs);
3452 return;
c906108c 3453
488f131b 3454 /* The following are the only cases in which we keep going;
1777feb0 3455 the above cases end in a continue or goto. */
488f131b 3456 case TARGET_WAITKIND_FORKED:
deb3b17b 3457 case TARGET_WAITKIND_VFORKED:
527159b7 3458 if (debug_infrun)
8a9de0e4 3459 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3460
e2d96639
YQ
3461 /* Check whether the inferior is displaced stepping. */
3462 {
3463 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3465 struct displaced_step_inferior_state *displaced
3466 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3467
3468 /* If checking displaced stepping is supported, and thread
3469 ecs->ptid is displaced stepping. */
3470 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3471 {
3472 struct inferior *parent_inf
3473 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3474 struct regcache *child_regcache;
3475 CORE_ADDR parent_pc;
3476
3477 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3478 indicating that the displaced stepping of syscall instruction
3479 has been done. Perform cleanup for parent process here. Note
3480 that this operation also cleans up the child process for vfork,
3481 because their pages are shared. */
3482 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3483
3484 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3485 {
3486 /* Restore scratch pad for child process. */
3487 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3488 }
3489
3490 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3491 the child's PC is also within the scratchpad. Set the child's PC
3492 to the parent's PC value, which has already been fixed up.
3493 FIXME: we use the parent's aspace here, although we're touching
3494 the child, because the child hasn't been added to the inferior
3495 list yet at this point. */
3496
3497 child_regcache
3498 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3499 gdbarch,
3500 parent_inf->aspace);
3501 /* Read PC value of parent process. */
3502 parent_pc = regcache_read_pc (regcache);
3503
3504 if (debug_displaced)
3505 fprintf_unfiltered (gdb_stdlog,
3506 "displaced: write child pc from %s to %s\n",
3507 paddress (gdbarch,
3508 regcache_read_pc (child_regcache)),
3509 paddress (gdbarch, parent_pc));
3510
3511 regcache_write_pc (child_regcache, parent_pc);
3512 }
3513 }
3514
5a2901d9
DJ
3515 if (!ptid_equal (ecs->ptid, inferior_ptid))
3516 {
0d1e5fa7 3517 context_switch (ecs->ptid);
35f196d9 3518 reinit_frame_cache ();
5a2901d9
DJ
3519 }
3520
b242c3c2
PA
3521 /* Immediately detach breakpoints from the child before there's
3522 any chance of letting the user delete breakpoints from the
3523 breakpoint lists. If we don't do this early, it's easy to
3524 leave left over traps in the child, vis: "break foo; catch
3525 fork; c; <fork>; del; c; <child calls foo>". We only follow
3526 the fork on the last `continue', and by that time the
3527 breakpoint at "foo" is long gone from the breakpoint table.
3528 If we vforked, then we don't need to unpatch here, since both
3529 parent and child are sharing the same memory pages; we'll
3530 need to unpatch at follow/detach time instead to be certain
3531 that new breakpoints added between catchpoint hit time and
3532 vfork follow are detached. */
3533 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3534 {
3535 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3536
3537 /* This won't actually modify the breakpoint list, but will
3538 physically remove the breakpoints from the child. */
3539 detach_breakpoints (child_pid);
3540 }
3541
d03285ec
UW
3542 if (singlestep_breakpoints_inserted_p)
3543 {
1777feb0 3544 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3545 remove_single_step_breakpoints ();
3546 singlestep_breakpoints_inserted_p = 0;
3547 }
3548
e58b0e63
PA
3549 /* In case the event is caught by a catchpoint, remember that
3550 the event is to be followed at the next resume of the thread,
3551 and not immediately. */
3552 ecs->event_thread->pending_follow = ecs->ws;
3553
fb14de7b 3554 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3555
16c381f0 3556 ecs->event_thread->control.stop_bpstat
6c95b8df 3557 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3558 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 3559
67822962
PA
3560 /* Note that we're interested in knowing the bpstat actually
3561 causes a stop, not just if it may explain the signal.
3562 Software watchpoints, for example, always appear in the
3563 bpstat. */
16c381f0
JK
3564 ecs->random_signal
3565 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3566
3567 /* If no catchpoint triggered for this, then keep going. */
3568 if (ecs->random_signal)
3569 {
6c95b8df
PA
3570 ptid_t parent;
3571 ptid_t child;
e58b0e63 3572 int should_resume;
3e43a32a
MS
3573 int follow_child
3574 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3575
16c381f0 3576 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3577
3578 should_resume = follow_fork ();
3579
6c95b8df
PA
3580 parent = ecs->ptid;
3581 child = ecs->ws.value.related_pid;
3582
3583 /* In non-stop mode, also resume the other branch. */
3584 if (non_stop && !detach_fork)
3585 {
3586 if (follow_child)
3587 switch_to_thread (parent);
3588 else
3589 switch_to_thread (child);
3590
3591 ecs->event_thread = inferior_thread ();
3592 ecs->ptid = inferior_ptid;
3593 keep_going (ecs);
3594 }
3595
3596 if (follow_child)
3597 switch_to_thread (child);
3598 else
3599 switch_to_thread (parent);
3600
e58b0e63
PA
3601 ecs->event_thread = inferior_thread ();
3602 ecs->ptid = inferior_ptid;
3603
3604 if (should_resume)
3605 keep_going (ecs);
3606 else
3607 stop_stepping (ecs);
04e68871
DJ
3608 return;
3609 }
16c381f0 3610 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3611 goto process_event_stop_test;
3612
6c95b8df
PA
3613 case TARGET_WAITKIND_VFORK_DONE:
3614 /* Done with the shared memory region. Re-insert breakpoints in
3615 the parent, and keep going. */
3616
3617 if (debug_infrun)
3e43a32a
MS
3618 fprintf_unfiltered (gdb_stdlog,
3619 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3620
3621 if (!ptid_equal (ecs->ptid, inferior_ptid))
3622 context_switch (ecs->ptid);
3623
3624 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3625 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3626 /* This also takes care of reinserting breakpoints in the
3627 previously locked inferior. */
3628 keep_going (ecs);
3629 return;
3630
488f131b 3631 case TARGET_WAITKIND_EXECD:
527159b7 3632 if (debug_infrun)
fc5261f2 3633 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3634
5a2901d9
DJ
3635 if (!ptid_equal (ecs->ptid, inferior_ptid))
3636 {
0d1e5fa7 3637 context_switch (ecs->ptid);
35f196d9 3638 reinit_frame_cache ();
5a2901d9
DJ
3639 }
3640
d03285ec
UW
3641 singlestep_breakpoints_inserted_p = 0;
3642 cancel_single_step_breakpoints ();
3643
fb14de7b 3644 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3645
6c95b8df
PA
3646 /* Do whatever is necessary to the parent branch of the vfork. */
3647 handle_vfork_child_exec_or_exit (1);
3648
795e548f
PA
3649 /* This causes the eventpoints and symbol table to be reset.
3650 Must do this now, before trying to determine whether to
3651 stop. */
71b43ef8 3652 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3653
16c381f0 3654 ecs->event_thread->control.stop_bpstat
6c95b8df 3655 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 3656 stop_pc, ecs->ptid, &ecs->ws);
16c381f0
JK
3657 ecs->random_signal
3658 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3659
71b43ef8
PA
3660 /* Note that this may be referenced from inside
3661 bpstat_stop_status above, through inferior_has_execd. */
3662 xfree (ecs->ws.value.execd_pathname);
3663 ecs->ws.value.execd_pathname = NULL;
3664
04e68871
DJ
3665 /* If no catchpoint triggered for this, then keep going. */
3666 if (ecs->random_signal)
3667 {
16c381f0 3668 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3669 keep_going (ecs);
3670 return;
3671 }
16c381f0 3672 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3673 goto process_event_stop_test;
3674
b4dc5ffa
MK
3675 /* Be careful not to try to gather much state about a thread
3676 that's in a syscall. It's frequently a losing proposition. */
488f131b 3677 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3678 if (debug_infrun)
3e43a32a
MS
3679 fprintf_unfiltered (gdb_stdlog,
3680 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3681 /* Getting the current syscall number. */
ca2163eb 3682 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3683 return;
3684 goto process_event_stop_test;
c906108c 3685
488f131b
JB
3686 /* Before examining the threads further, step this thread to
3687 get it entirely out of the syscall. (We get notice of the
3688 event when the thread is just on the verge of exiting a
3689 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3690 into user code.) */
488f131b 3691 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3692 if (debug_infrun)
3e43a32a
MS
3693 fprintf_unfiltered (gdb_stdlog,
3694 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3695 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3696 return;
3697 goto process_event_stop_test;
c906108c 3698
488f131b 3699 case TARGET_WAITKIND_STOPPED:
527159b7 3700 if (debug_infrun)
8a9de0e4 3701 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3702 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3703 break;
c906108c 3704
b2175913 3705 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3706 if (debug_infrun)
3707 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3708 /* Reverse execution: target ran out of history info. */
fb14de7b 3709 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3710 print_no_history_reason ();
b2175913
MS
3711 stop_stepping (ecs);
3712 return;
488f131b 3713 }
c906108c 3714
488f131b
JB
3715 if (ecs->new_thread_event)
3716 {
94cc34af
PA
3717 if (non_stop)
3718 /* Non-stop assumes that the target handles adding new threads
3719 to the thread list. */
3e43a32a
MS
3720 internal_error (__FILE__, __LINE__,
3721 "targets should add new threads to the thread "
3722 "list themselves in non-stop mode.");
94cc34af
PA
3723
3724 /* We may want to consider not doing a resume here in order to
3725 give the user a chance to play with the new thread. It might
3726 be good to make that a user-settable option. */
3727
3728 /* At this point, all threads are stopped (happens automatically
3729 in either the OS or the native code). Therefore we need to
3730 continue all threads in order to make progress. */
3731
173853dc
PA
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 context_switch (ecs->ptid);
488f131b
JB
3734 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3735 prepare_to_wait (ecs);
3736 return;
3737 }
c906108c 3738
2020b7ab 3739 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3740 {
3741 /* Do we need to clean up the state of a thread that has
3742 completed a displaced single-step? (Doing so usually affects
3743 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3744 displaced_step_fixup (ecs->ptid,
3745 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3746
3747 /* If we either finished a single-step or hit a breakpoint, but
3748 the user wanted this thread to be stopped, pretend we got a
3749 SIG0 (generic unsignaled stop). */
3750
3751 if (ecs->event_thread->stop_requested
16c381f0
JK
3752 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3753 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3754 }
237fc4c9 3755
515630c5 3756 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3757
527159b7 3758 if (debug_infrun)
237fc4c9 3759 {
5af949e3
UW
3760 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3761 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3762 struct cleanup *old_chain = save_inferior_ptid ();
3763
3764 inferior_ptid = ecs->ptid;
5af949e3
UW
3765
3766 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3767 paddress (gdbarch, stop_pc));
d92524f1 3768 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3769 {
3770 CORE_ADDR addr;
abbb1732 3771
237fc4c9
PA
3772 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3773
3774 if (target_stopped_data_address (&current_target, &addr))
3775 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3776 "infrun: stopped data address = %s\n",
3777 paddress (gdbarch, addr));
237fc4c9
PA
3778 else
3779 fprintf_unfiltered (gdb_stdlog,
3780 "infrun: (no data address available)\n");
3781 }
7f82dfc7
JK
3782
3783 do_cleanups (old_chain);
237fc4c9 3784 }
527159b7 3785
9f976b41
DJ
3786 if (stepping_past_singlestep_breakpoint)
3787 {
1c0fdd0e 3788 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3789 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3790 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3791
3792 stepping_past_singlestep_breakpoint = 0;
3793
3794 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3795 breakpoint, or stopped for some other reason. It would be nice if
3796 we could tell, but we can't reliably. */
16c381f0 3797 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3798 {
527159b7 3799 if (debug_infrun)
3e43a32a
MS
3800 fprintf_unfiltered (gdb_stdlog,
3801 "infrun: stepping_past_"
3802 "singlestep_breakpoint\n");
9f976b41 3803 /* Pull the single step breakpoints out of the target. */
e0cd558a 3804 remove_single_step_breakpoints ();
9f976b41
DJ
3805 singlestep_breakpoints_inserted_p = 0;
3806
3807 ecs->random_signal = 0;
16c381f0 3808 ecs->event_thread->control.trap_expected = 0;
9f976b41 3809
0d1e5fa7 3810 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3811 if (deprecated_context_hook)
3812 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3813
3814 resume (1, TARGET_SIGNAL_0);
3815 prepare_to_wait (ecs);
3816 return;
3817 }
3818 }
3819
ca67fcb8 3820 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3821 {
94cc34af
PA
3822 /* In non-stop mode, there's never a deferred_step_ptid set. */
3823 gdb_assert (!non_stop);
3824
6a6b96b9
UW
3825 /* If we stopped for some other reason than single-stepping, ignore
3826 the fact that we were supposed to switch back. */
16c381f0 3827 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3828 {
3829 if (debug_infrun)
3830 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3831 "infrun: handling deferred step\n");
6a6b96b9
UW
3832
3833 /* Pull the single step breakpoints out of the target. */
3834 if (singlestep_breakpoints_inserted_p)
3835 {
3836 remove_single_step_breakpoints ();
3837 singlestep_breakpoints_inserted_p = 0;
3838 }
3839
cd3da28e
PA
3840 ecs->event_thread->control.trap_expected = 0;
3841
6a6b96b9
UW
3842 /* Note: We do not call context_switch at this point, as the
3843 context is already set up for stepping the original thread. */
ca67fcb8
VP
3844 switch_to_thread (deferred_step_ptid);
3845 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3846 /* Suppress spurious "Switching to ..." message. */
3847 previous_inferior_ptid = inferior_ptid;
3848
3849 resume (1, TARGET_SIGNAL_0);
3850 prepare_to_wait (ecs);
3851 return;
3852 }
ca67fcb8
VP
3853
3854 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3855 }
3856
488f131b
JB
3857 /* See if a thread hit a thread-specific breakpoint that was meant for
3858 another thread. If so, then step that thread past the breakpoint,
3859 and continue it. */
3860
16c381f0 3861 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3862 {
9f976b41 3863 int thread_hop_needed = 0;
cf00dfa7
VP
3864 struct address_space *aspace =
3865 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3866
f8d40ec8 3867 /* Check if a regular breakpoint has been hit before checking
1777feb0 3868 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3869 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3870 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3871 {
c5aa993b 3872 ecs->random_signal = 0;
6c95b8df 3873 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3874 thread_hop_needed = 1;
3875 }
1c0fdd0e 3876 else if (singlestep_breakpoints_inserted_p)
9f976b41 3877 {
fd48f117
DJ
3878 /* We have not context switched yet, so this should be true
3879 no matter which thread hit the singlestep breakpoint. */
3880 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3881 if (debug_infrun)
3882 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3883 "trap for %s\n",
3884 target_pid_to_str (ecs->ptid));
3885
9f976b41
DJ
3886 ecs->random_signal = 0;
3887 /* The call to in_thread_list is necessary because PTIDs sometimes
3888 change when we go from single-threaded to multi-threaded. If
3889 the singlestep_ptid is still in the list, assume that it is
3890 really different from ecs->ptid. */
3891 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3892 && in_thread_list (singlestep_ptid))
3893 {
fd48f117
DJ
3894 /* If the PC of the thread we were trying to single-step
3895 has changed, discard this event (which we were going
3896 to ignore anyway), and pretend we saw that thread
3897 trap. This prevents us continuously moving the
3898 single-step breakpoint forward, one instruction at a
3899 time. If the PC has changed, then the thread we were
3900 trying to single-step has trapped or been signalled,
3901 but the event has not been reported to GDB yet.
3902
3903 There might be some cases where this loses signal
3904 information, if a signal has arrived at exactly the
3905 same time that the PC changed, but this is the best
3906 we can do with the information available. Perhaps we
3907 should arrange to report all events for all threads
3908 when they stop, or to re-poll the remote looking for
3909 this particular thread (i.e. temporarily enable
3910 schedlock). */
515630c5
UW
3911
3912 CORE_ADDR new_singlestep_pc
3913 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3914
3915 if (new_singlestep_pc != singlestep_pc)
fd48f117 3916 {
2020b7ab
PA
3917 enum target_signal stop_signal;
3918
fd48f117
DJ
3919 if (debug_infrun)
3920 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3921 " but expected thread advanced also\n");
3922
3923 /* The current context still belongs to
3924 singlestep_ptid. Don't swap here, since that's
3925 the context we want to use. Just fudge our
3926 state and continue. */
16c381f0
JK
3927 stop_signal = ecs->event_thread->suspend.stop_signal;
3928 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3929 ecs->ptid = singlestep_ptid;
e09875d4 3930 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3931 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3932 stop_pc = new_singlestep_pc;
fd48f117
DJ
3933 }
3934 else
3935 {
3936 if (debug_infrun)
3937 fprintf_unfiltered (gdb_stdlog,
3938 "infrun: unexpected thread\n");
3939
3940 thread_hop_needed = 1;
3941 stepping_past_singlestep_breakpoint = 1;
3942 saved_singlestep_ptid = singlestep_ptid;
3943 }
9f976b41
DJ
3944 }
3945 }
3946
3947 if (thread_hop_needed)
8fb3e588 3948 {
9f5a595d 3949 struct regcache *thread_regcache;
237fc4c9 3950 int remove_status = 0;
8fb3e588 3951
527159b7 3952 if (debug_infrun)
8a9de0e4 3953 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3954
b3444185
PA
3955 /* Switch context before touching inferior memory, the
3956 previous thread may have exited. */
3957 if (!ptid_equal (inferior_ptid, ecs->ptid))
3958 context_switch (ecs->ptid);
3959
8fb3e588 3960 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3961 Just continue. */
8fb3e588 3962
1c0fdd0e 3963 if (singlestep_breakpoints_inserted_p)
488f131b 3964 {
1777feb0 3965 /* Pull the single step breakpoints out of the target. */
e0cd558a 3966 remove_single_step_breakpoints ();
8fb3e588
AC
3967 singlestep_breakpoints_inserted_p = 0;
3968 }
3969
237fc4c9
PA
3970 /* If the arch can displace step, don't remove the
3971 breakpoints. */
9f5a595d
UW
3972 thread_regcache = get_thread_regcache (ecs->ptid);
3973 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3974 remove_status = remove_breakpoints ();
3975
8fb3e588
AC
3976 /* Did we fail to remove breakpoints? If so, try
3977 to set the PC past the bp. (There's at least
3978 one situation in which we can fail to remove
3979 the bp's: On HP-UX's that use ttrace, we can't
3980 change the address space of a vforking child
3981 process until the child exits (well, okay, not
1777feb0 3982 then either :-) or execs. */
8fb3e588 3983 if (remove_status != 0)
9d9cd7ac 3984 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3985 else
3986 { /* Single step */
94cc34af
PA
3987 if (!non_stop)
3988 {
3989 /* Only need to require the next event from this
3990 thread in all-stop mode. */
3991 waiton_ptid = ecs->ptid;
3992 infwait_state = infwait_thread_hop_state;
3993 }
8fb3e588 3994
4e1c45ea 3995 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3996 keep_going (ecs);
8fb3e588
AC
3997 return;
3998 }
488f131b 3999 }
1c0fdd0e 4000 else if (singlestep_breakpoints_inserted_p)
8fb3e588 4001 {
8fb3e588
AC
4002 ecs->random_signal = 0;
4003 }
488f131b
JB
4004 }
4005 else
4006 ecs->random_signal = 1;
c906108c 4007
488f131b 4008 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4009 so, then switch to that thread. */
4010 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4011 {
527159b7 4012 if (debug_infrun)
8a9de0e4 4013 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4014
0d1e5fa7 4015 context_switch (ecs->ptid);
c5aa993b 4016
9a4105ab
AC
4017 if (deprecated_context_hook)
4018 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4019 }
c906108c 4020
568d6575
UW
4021 /* At this point, get hold of the now-current thread's frame. */
4022 frame = get_current_frame ();
4023 gdbarch = get_frame_arch (frame);
4024
1c0fdd0e 4025 if (singlestep_breakpoints_inserted_p)
488f131b 4026 {
1777feb0 4027 /* Pull the single step breakpoints out of the target. */
e0cd558a 4028 remove_single_step_breakpoints ();
488f131b
JB
4029 singlestep_breakpoints_inserted_p = 0;
4030 }
c906108c 4031
d983da9c
DJ
4032 if (stepped_after_stopped_by_watchpoint)
4033 stopped_by_watchpoint = 0;
4034 else
4035 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4036
4037 /* If necessary, step over this watchpoint. We'll be back to display
4038 it in a moment. */
4039 if (stopped_by_watchpoint
d92524f1 4040 && (target_have_steppable_watchpoint
568d6575 4041 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4042 {
488f131b
JB
4043 /* At this point, we are stopped at an instruction which has
4044 attempted to write to a piece of memory under control of
4045 a watchpoint. The instruction hasn't actually executed
4046 yet. If we were to evaluate the watchpoint expression
4047 now, we would get the old value, and therefore no change
4048 would seem to have occurred.
4049
4050 In order to make watchpoints work `right', we really need
4051 to complete the memory write, and then evaluate the
d983da9c
DJ
4052 watchpoint expression. We do this by single-stepping the
4053 target.
4054
4055 It may not be necessary to disable the watchpoint to stop over
4056 it. For example, the PA can (with some kernel cooperation)
4057 single step over a watchpoint without disabling the watchpoint.
4058
4059 It is far more common to need to disable a watchpoint to step
4060 the inferior over it. If we have non-steppable watchpoints,
4061 we must disable the current watchpoint; it's simplest to
4062 disable all watchpoints and breakpoints. */
2facfe5c
DD
4063 int hw_step = 1;
4064
d92524f1 4065 if (!target_have_steppable_watchpoint)
2455069d
UW
4066 {
4067 remove_breakpoints ();
4068 /* See comment in resume why we need to stop bypassing signals
4069 while breakpoints have been removed. */
4070 target_pass_signals (0, NULL);
4071 }
2facfe5c 4072 /* Single step */
568d6575 4073 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4074 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4075 waiton_ptid = ecs->ptid;
d92524f1 4076 if (target_have_steppable_watchpoint)
0d1e5fa7 4077 infwait_state = infwait_step_watch_state;
d983da9c 4078 else
0d1e5fa7 4079 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4080 prepare_to_wait (ecs);
4081 return;
4082 }
4083
7e324e48 4084 clear_stop_func (ecs);
4e1c45ea 4085 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4086 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4087 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4088 stop_print_frame = 1;
4089 ecs->random_signal = 0;
4090 stopped_by_random_signal = 0;
488f131b 4091
edb3359d
DJ
4092 /* Hide inlined functions starting here, unless we just performed stepi or
4093 nexti. After stepi and nexti, always show the innermost frame (not any
4094 inline function call sites). */
16c381f0 4095 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4096 {
4097 struct address_space *aspace =
4098 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4099
4100 /* skip_inline_frames is expensive, so we avoid it if we can
4101 determine that the address is one where functions cannot have
4102 been inlined. This improves performance with inferiors that
4103 load a lot of shared libraries, because the solib event
4104 breakpoint is defined as the address of a function (i.e. not
4105 inline). Note that we have to check the previous PC as well
4106 as the current one to catch cases when we have just
4107 single-stepped off a breakpoint prior to reinstating it.
4108 Note that we're assuming that the code we single-step to is
4109 not inline, but that's not definitive: there's nothing
4110 preventing the event breakpoint function from containing
4111 inlined code, and the single-step ending up there. If the
4112 user had set a breakpoint on that inlined code, the missing
4113 skip_inline_frames call would break things. Fortunately
4114 that's an extremely unlikely scenario. */
09ac7c10 4115 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
0574c78f
GB
4116 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4117 && ecs->event_thread->control.trap_expected
4118 && pc_at_non_inline_function (aspace,
09ac7c10
TT
4119 ecs->event_thread->prev_pc,
4120 &ecs->ws)))
0574c78f
GB
4121 skip_inline_frames (ecs->ptid);
4122 }
edb3359d 4123
16c381f0
JK
4124 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4125 && ecs->event_thread->control.trap_expected
568d6575 4126 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4127 && currently_stepping (ecs->event_thread))
3352ef37 4128 {
b50d7442 4129 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4130 also on an instruction that needs to be stepped multiple
1777feb0 4131 times before it's been fully executing. E.g., architectures
3352ef37
AC
4132 with a delay slot. It needs to be stepped twice, once for
4133 the instruction and once for the delay slot. */
4134 int step_through_delay
568d6575 4135 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4136
527159b7 4137 if (debug_infrun && step_through_delay)
8a9de0e4 4138 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4139 if (ecs->event_thread->control.step_range_end == 0
4140 && step_through_delay)
3352ef37
AC
4141 {
4142 /* The user issued a continue when stopped at a breakpoint.
4143 Set up for another trap and get out of here. */
4e1c45ea 4144 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4145 keep_going (ecs);
4146 return;
4147 }
4148 else if (step_through_delay)
4149 {
4150 /* The user issued a step when stopped at a breakpoint.
4151 Maybe we should stop, maybe we should not - the delay
4152 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4153 case, don't decide that here, just set
4154 ecs->stepping_over_breakpoint, making sure we
4155 single-step again before breakpoints are re-inserted. */
4e1c45ea 4156 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4157 }
4158 }
4159
488f131b
JB
4160 /* Look at the cause of the stop, and decide what to do.
4161 The alternatives are:
0d1e5fa7
PA
4162 1) stop_stepping and return; to really stop and return to the debugger,
4163 2) keep_going and return to start up again
4e1c45ea 4164 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4165 3) set ecs->random_signal to 1, and the decision between 1 and 2
4166 will be made according to the signal handling tables. */
4167
16c381f0 4168 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4169 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4170 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4171 {
16c381f0
JK
4172 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4173 && stop_after_trap)
488f131b 4174 {
527159b7 4175 if (debug_infrun)
8a9de0e4 4176 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4177 stop_print_frame = 0;
4178 stop_stepping (ecs);
4179 return;
4180 }
c54cfec8
EZ
4181
4182 /* This is originated from start_remote(), start_inferior() and
4183 shared libraries hook functions. */
b0f4b84b 4184 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4185 {
527159b7 4186 if (debug_infrun)
8a9de0e4 4187 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4188 stop_stepping (ecs);
4189 return;
4190 }
4191
c54cfec8 4192 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4193 the stop_signal here, because some kernels don't ignore a
4194 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4195 See more comments in inferior.h. On the other hand, if we
a0ef4274 4196 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4197 will handle the SIGSTOP if it should show up later.
4198
4199 Also consider that the attach is complete when we see a
4200 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4201 target extended-remote report it instead of a SIGSTOP
4202 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4203 signal, so this is no exception.
4204
4205 Also consider that the attach is complete when we see a
4206 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4207 the target to stop all threads of the inferior, in case the
4208 low level attach operation doesn't stop them implicitly. If
4209 they weren't stopped implicitly, then the stub will report a
4210 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4211 other than GDB's request. */
a0ef4274 4212 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4213 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4214 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4215 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4216 {
4217 stop_stepping (ecs);
16c381f0 4218 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4219 return;
4220 }
4221
09ac7c10
TT
4222 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4223 handles this event. */
16c381f0 4224 ecs->event_thread->control.stop_bpstat
6c95b8df 4225 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4226 stop_pc, ecs->ptid, &ecs->ws);
6c95b8df 4227
fba57f8f
VP
4228 /* Following in case break condition called a
4229 function. */
4230 stop_print_frame = 1;
488f131b 4231
db82e815
PA
4232 /* This is where we handle "moribund" watchpoints. Unlike
4233 software breakpoints traps, hardware watchpoint traps are
4234 always distinguishable from random traps. If no high-level
4235 watchpoint is associated with the reported stop data address
4236 anymore, then the bpstat does not explain the signal ---
4237 simply make sure to ignore it if `stopped_by_watchpoint' is
4238 set. */
4239
4240 if (debug_infrun
16c381f0
JK
4241 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4242 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4243 && stopped_by_watchpoint)
3e43a32a
MS
4244 fprintf_unfiltered (gdb_stdlog,
4245 "infrun: no user watchpoint explains "
4246 "watchpoint SIGTRAP, ignoring\n");
db82e815 4247
73dd234f 4248 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4249 at one stage in the past included checks for an inferior
4250 function call's call dummy's return breakpoint. The original
4251 comment, that went with the test, read:
73dd234f 4252
8fb3e588
AC
4253 ``End of a stack dummy. Some systems (e.g. Sony news) give
4254 another signal besides SIGTRAP, so check here as well as
4255 above.''
73dd234f 4256
8002d778 4257 If someone ever tries to get call dummys on a
73dd234f 4258 non-executable stack to work (where the target would stop
03cebad2
MK
4259 with something like a SIGSEGV), then those tests might need
4260 to be re-instated. Given, however, that the tests were only
73dd234f 4261 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4262 suspect that it won't be the case.
4263
8fb3e588
AC
4264 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4265 be necessary for call dummies on a non-executable stack on
4266 SPARC. */
73dd234f 4267
16c381f0 4268 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4269 ecs->random_signal
16c381f0 4270 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4271 || stopped_by_watchpoint
16c381f0
JK
4272 || ecs->event_thread->control.trap_expected
4273 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4274 && (ecs->event_thread->control.step_resume_breakpoint
4275 == NULL)));
488f131b
JB
4276 else
4277 {
16c381f0
JK
4278 ecs->random_signal = !bpstat_explains_signal
4279 (ecs->event_thread->control.stop_bpstat);
488f131b 4280 if (!ecs->random_signal)
16c381f0 4281 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4282 }
4283 }
4284
4285 /* When we reach this point, we've pretty much decided
4286 that the reason for stopping must've been a random
1777feb0 4287 (unexpected) signal. */
488f131b
JB
4288
4289 else
4290 ecs->random_signal = 1;
488f131b 4291
04e68871 4292process_event_stop_test:
568d6575
UW
4293
4294 /* Re-fetch current thread's frame in case we did a
4295 "goto process_event_stop_test" above. */
4296 frame = get_current_frame ();
4297 gdbarch = get_frame_arch (frame);
4298
488f131b
JB
4299 /* For the program's own signals, act according to
4300 the signal handling tables. */
4301
4302 if (ecs->random_signal)
4303 {
4304 /* Signal not for debugging purposes. */
4305 int printed = 0;
24291992 4306 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4307
527159b7 4308 if (debug_infrun)
2020b7ab 4309 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4310 ecs->event_thread->suspend.stop_signal);
527159b7 4311
488f131b
JB
4312 stopped_by_random_signal = 1;
4313
16c381f0 4314 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4315 {
4316 printed = 1;
4317 target_terminal_ours_for_output ();
16c381f0
JK
4318 print_signal_received_reason
4319 (ecs->event_thread->suspend.stop_signal);
488f131b 4320 }
252fbfc8
PA
4321 /* Always stop on signals if we're either just gaining control
4322 of the program, or the user explicitly requested this thread
4323 to remain stopped. */
d6b48e9c 4324 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4325 || ecs->event_thread->stop_requested
24291992 4326 || (!inf->detaching
16c381f0 4327 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4328 {
4329 stop_stepping (ecs);
4330 return;
4331 }
4332 /* If not going to stop, give terminal back
4333 if we took it away. */
4334 else if (printed)
4335 target_terminal_inferior ();
4336
4337 /* Clear the signal if it should not be passed. */
16c381f0
JK
4338 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4339 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4340
fb14de7b 4341 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4342 && ecs->event_thread->control.trap_expected
8358c15c 4343 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4344 {
4345 /* We were just starting a new sequence, attempting to
4346 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4347 Instead this signal arrives. This signal will take us out
68f53502
AC
4348 of the stepping range so GDB needs to remember to, when
4349 the signal handler returns, resume stepping off that
4350 breakpoint. */
4351 /* To simplify things, "continue" is forced to use the same
4352 code paths as single-step - set a breakpoint at the
4353 signal return address and then, once hit, step off that
4354 breakpoint. */
237fc4c9
PA
4355 if (debug_infrun)
4356 fprintf_unfiltered (gdb_stdlog,
4357 "infrun: signal arrived while stepping over "
4358 "breakpoint\n");
d3169d93 4359
2c03e5be 4360 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4361 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4362 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4363 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4364 keep_going (ecs);
4365 return;
68f53502 4366 }
9d799f85 4367
16c381f0
JK
4368 if (ecs->event_thread->control.step_range_end != 0
4369 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4370 && (ecs->event_thread->control.step_range_start <= stop_pc
4371 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4372 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4373 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4374 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4375 {
4376 /* The inferior is about to take a signal that will take it
4377 out of the single step range. Set a breakpoint at the
4378 current PC (which is presumably where the signal handler
4379 will eventually return) and then allow the inferior to
4380 run free.
4381
4382 Note that this is only needed for a signal delivered
4383 while in the single-step range. Nested signals aren't a
4384 problem as they eventually all return. */
237fc4c9
PA
4385 if (debug_infrun)
4386 fprintf_unfiltered (gdb_stdlog,
4387 "infrun: signal may take us out of "
4388 "single-step range\n");
4389
2c03e5be 4390 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4391 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4392 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4393 keep_going (ecs);
4394 return;
d303a6c7 4395 }
9d799f85
AC
4396
4397 /* Note: step_resume_breakpoint may be non-NULL. This occures
4398 when either there's a nested signal, or when there's a
4399 pending signal enabled just as the signal handler returns
4400 (leaving the inferior at the step-resume-breakpoint without
4401 actually executing it). Either way continue until the
4402 breakpoint is really hit. */
488f131b
JB
4403 keep_going (ecs);
4404 return;
4405 }
4406
4407 /* Handle cases caused by hitting a breakpoint. */
4408 {
4409 CORE_ADDR jmp_buf_pc;
4410 struct bpstat_what what;
4411
16c381f0 4412 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4413
4414 if (what.call_dummy)
4415 {
aa7d318d 4416 stop_stack_dummy = what.call_dummy;
c5aa993b 4417 }
c906108c 4418
628fe4e4
JK
4419 /* If we hit an internal event that triggers symbol changes, the
4420 current frame will be invalidated within bpstat_what (e.g., if
4421 we hit an internal solib event). Re-fetch it. */
4422 frame = get_current_frame ();
4423 gdbarch = get_frame_arch (frame);
4424
488f131b 4425 switch (what.main_action)
c5aa993b 4426 {
488f131b 4427 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4428 /* If we hit the breakpoint at longjmp while stepping, we
4429 install a momentary breakpoint at the target of the
4430 jmp_buf. */
4431
4432 if (debug_infrun)
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4435
4e1c45ea 4436 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4437
186c406b 4438 if (what.is_longjmp)
c5aa993b 4439 {
186c406b
TT
4440 if (!gdbarch_get_longjmp_target_p (gdbarch)
4441 || !gdbarch_get_longjmp_target (gdbarch,
4442 frame, &jmp_buf_pc))
4443 {
4444 if (debug_infrun)
3e43a32a
MS
4445 fprintf_unfiltered (gdb_stdlog,
4446 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4447 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4448 keep_going (ecs);
4449 return;
4450 }
488f131b 4451
186c406b
TT
4452 /* We're going to replace the current step-resume breakpoint
4453 with a longjmp-resume breakpoint. */
4454 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4455
186c406b
TT
4456 /* Insert a breakpoint at resume address. */
4457 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4458 }
4459 else
4460 {
4461 struct symbol *func = get_frame_function (frame);
c906108c 4462
186c406b
TT
4463 if (func)
4464 check_exception_resume (ecs, frame, func);
4465 }
488f131b
JB
4466 keep_going (ecs);
4467 return;
c906108c 4468
488f131b 4469 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4470 if (debug_infrun)
611c83ae
PA
4471 fprintf_unfiltered (gdb_stdlog,
4472 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4473
186c406b
TT
4474 if (what.is_longjmp)
4475 {
4476 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4477 != NULL);
4478 delete_step_resume_breakpoint (ecs->event_thread);
4479 }
4480 else
4481 {
4482 /* There are several cases to consider.
4483
4484 1. The initiating frame no longer exists. In this case
4485 we must stop, because the exception has gone too far.
4486
4487 2. The initiating frame exists, and is the same as the
4488 current frame. We stop, because the exception has been
4489 caught.
4490
4491 3. The initiating frame exists and is different from
4492 the current frame. This means the exception has been
4493 caught beneath the initiating frame, so keep going. */
4494 struct frame_info *init_frame
4495 = frame_find_by_id (ecs->event_thread->initiating_frame);
4496
4497 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4498 != NULL);
4499 delete_exception_resume_breakpoint (ecs->event_thread);
4500
4501 if (init_frame)
4502 {
4503 struct frame_id current_id
4504 = get_frame_id (get_current_frame ());
4505 if (frame_id_eq (current_id,
4506 ecs->event_thread->initiating_frame))
4507 {
4508 /* Case 2. Fall through. */
4509 }
4510 else
4511 {
4512 /* Case 3. */
4513 keep_going (ecs);
4514 return;
4515 }
4516 }
4517
4518 /* For Cases 1 and 2, remove the step-resume breakpoint,
4519 if it exists. */
4520 delete_step_resume_breakpoint (ecs->event_thread);
4521 }
611c83ae 4522
16c381f0 4523 ecs->event_thread->control.stop_step = 1;
33d62d64 4524 print_end_stepping_range_reason ();
611c83ae
PA
4525 stop_stepping (ecs);
4526 return;
488f131b
JB
4527
4528 case BPSTAT_WHAT_SINGLE:
527159b7 4529 if (debug_infrun)
8802d8ed 4530 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4531 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4532 /* Still need to check other stuff, at least the case
4533 where we are stepping and step out of the right range. */
4534 break;
c906108c 4535
2c03e5be
PA
4536 case BPSTAT_WHAT_STEP_RESUME:
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4539
4540 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4541 if (ecs->event_thread->control.proceed_to_finish
4542 && execution_direction == EXEC_REVERSE)
4543 {
4544 struct thread_info *tp = ecs->event_thread;
4545
4546 /* We are finishing a function in reverse, and just hit
4547 the step-resume breakpoint at the start address of the
4548 function, and we're almost there -- just need to back
4549 up by one more single-step, which should take us back
4550 to the function call. */
4551 tp->control.step_range_start = tp->control.step_range_end = 1;
4552 keep_going (ecs);
4553 return;
4554 }
7e324e48 4555 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4556 if (stop_pc == ecs->stop_func_start
4557 && execution_direction == EXEC_REVERSE)
4558 {
4559 /* We are stepping over a function call in reverse, and
4560 just hit the step-resume breakpoint at the start
4561 address of the function. Go back to single-stepping,
4562 which should take us back to the function call. */
4563 ecs->event_thread->stepping_over_breakpoint = 1;
4564 keep_going (ecs);
4565 return;
4566 }
4567 break;
4568
488f131b 4569 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4570 if (debug_infrun)
8802d8ed 4571 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4572 stop_print_frame = 1;
c906108c 4573
d303a6c7
AC
4574 /* We are about to nuke the step_resume_breakpointt via the
4575 cleanup chain, so no need to worry about it here. */
c5aa993b 4576
488f131b
JB
4577 stop_stepping (ecs);
4578 return;
c5aa993b 4579
488f131b 4580 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4581 if (debug_infrun)
8802d8ed 4582 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4583 stop_print_frame = 0;
c5aa993b 4584
d303a6c7
AC
4585 /* We are about to nuke the step_resume_breakpoin via the
4586 cleanup chain, so no need to worry about it here. */
c5aa993b 4587
488f131b 4588 stop_stepping (ecs);
e441088d 4589 return;
c5aa993b 4590
2c03e5be 4591 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4592 if (debug_infrun)
2c03e5be 4593 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4594
4e1c45ea
PA
4595 delete_step_resume_breakpoint (ecs->event_thread);
4596 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4597 {
4598 /* Back when the step-resume breakpoint was inserted, we
4599 were trying to single-step off a breakpoint. Go back
4600 to doing that. */
4e1c45ea
PA
4601 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4602 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4603 keep_going (ecs);
4604 return;
4605 }
488f131b
JB
4606 break;
4607
488f131b
JB
4608 case BPSTAT_WHAT_KEEP_CHECKING:
4609 break;
4610 }
4611 }
c906108c 4612
488f131b
JB
4613 /* We come here if we hit a breakpoint but should not
4614 stop for it. Possibly we also were stepping
4615 and should stop for that. So fall through and
4616 test for stepping. But, if not stepping,
4617 do not stop. */
c906108c 4618
a7212384
UW
4619 /* In all-stop mode, if we're currently stepping but have stopped in
4620 some other thread, we need to switch back to the stepped thread. */
4621 if (!non_stop)
4622 {
4623 struct thread_info *tp;
abbb1732 4624
b3444185 4625 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4626 ecs->event_thread);
4627 if (tp)
4628 {
4629 /* However, if the current thread is blocked on some internal
4630 breakpoint, and we simply need to step over that breakpoint
4631 to get it going again, do that first. */
16c381f0
JK
4632 if ((ecs->event_thread->control.trap_expected
4633 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4634 || ecs->event_thread->stepping_over_breakpoint)
4635 {
4636 keep_going (ecs);
4637 return;
4638 }
4639
66852e9c
PA
4640 /* If the stepping thread exited, then don't try to switch
4641 back and resume it, which could fail in several different
4642 ways depending on the target. Instead, just keep going.
4643
4644 We can find a stepping dead thread in the thread list in
4645 two cases:
4646
4647 - The target supports thread exit events, and when the
4648 target tries to delete the thread from the thread list,
4649 inferior_ptid pointed at the exiting thread. In such
4650 case, calling delete_thread does not really remove the
4651 thread from the list; instead, the thread is left listed,
4652 with 'exited' state.
4653
4654 - The target's debug interface does not support thread
4655 exit events, and so we have no idea whatsoever if the
4656 previously stepping thread is still alive. For that
4657 reason, we need to synchronously query the target
4658 now. */
b3444185
PA
4659 if (is_exited (tp->ptid)
4660 || !target_thread_alive (tp->ptid))
4661 {
4662 if (debug_infrun)
3e43a32a
MS
4663 fprintf_unfiltered (gdb_stdlog,
4664 "infrun: not switching back to "
4665 "stepped thread, it has vanished\n");
b3444185
PA
4666
4667 delete_thread (tp->ptid);
4668 keep_going (ecs);
4669 return;
4670 }
4671
a7212384
UW
4672 /* Otherwise, we no longer expect a trap in the current thread.
4673 Clear the trap_expected flag before switching back -- this is
4674 what keep_going would do as well, if we called it. */
16c381f0 4675 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4676
4677 if (debug_infrun)
4678 fprintf_unfiltered (gdb_stdlog,
4679 "infrun: switching back to stepped thread\n");
4680
4681 ecs->event_thread = tp;
4682 ecs->ptid = tp->ptid;
4683 context_switch (ecs->ptid);
4684 keep_going (ecs);
4685 return;
4686 }
4687 }
4688
8358c15c 4689 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4690 {
527159b7 4691 if (debug_infrun)
d3169d93
DJ
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: step-resume breakpoint is inserted\n");
527159b7 4694
488f131b
JB
4695 /* Having a step-resume breakpoint overrides anything
4696 else having to do with stepping commands until
4697 that breakpoint is reached. */
488f131b
JB
4698 keep_going (ecs);
4699 return;
4700 }
c5aa993b 4701
16c381f0 4702 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4703 {
527159b7 4704 if (debug_infrun)
8a9de0e4 4705 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4706 /* Likewise if we aren't even stepping. */
488f131b
JB
4707 keep_going (ecs);
4708 return;
4709 }
c5aa993b 4710
4b7703ad
JB
4711 /* Re-fetch current thread's frame in case the code above caused
4712 the frame cache to be re-initialized, making our FRAME variable
4713 a dangling pointer. */
4714 frame = get_current_frame ();
628fe4e4 4715 gdbarch = get_frame_arch (frame);
7e324e48 4716 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4717
488f131b 4718 /* If stepping through a line, keep going if still within it.
c906108c 4719
488f131b
JB
4720 Note that step_range_end is the address of the first instruction
4721 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4722 within it!
4723
4724 Note also that during reverse execution, we may be stepping
4725 through a function epilogue and therefore must detect when
4726 the current-frame changes in the middle of a line. */
4727
16c381f0
JK
4728 if (stop_pc >= ecs->event_thread->control.step_range_start
4729 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4730 && (execution_direction != EXEC_REVERSE
388a8562 4731 || frame_id_eq (get_frame_id (frame),
16c381f0 4732 ecs->event_thread->control.step_frame_id)))
488f131b 4733 {
527159b7 4734 if (debug_infrun)
5af949e3
UW
4735 fprintf_unfiltered
4736 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4737 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4738 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4739
4740 /* When stepping backward, stop at beginning of line range
4741 (unless it's the function entry point, in which case
4742 keep going back to the call point). */
16c381f0 4743 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4744 && stop_pc != ecs->stop_func_start
4745 && execution_direction == EXEC_REVERSE)
4746 {
16c381f0 4747 ecs->event_thread->control.stop_step = 1;
33d62d64 4748 print_end_stepping_range_reason ();
b2175913
MS
4749 stop_stepping (ecs);
4750 }
4751 else
4752 keep_going (ecs);
4753
488f131b
JB
4754 return;
4755 }
c5aa993b 4756
488f131b 4757 /* We stepped out of the stepping range. */
c906108c 4758
488f131b 4759 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4760 loader dynamic symbol resolution code...
4761
4762 EXEC_FORWARD: we keep on single stepping until we exit the run
4763 time loader code and reach the callee's address.
4764
4765 EXEC_REVERSE: we've already executed the callee (backward), and
4766 the runtime loader code is handled just like any other
4767 undebuggable function call. Now we need only keep stepping
4768 backward through the trampoline code, and that's handled further
4769 down, so there is nothing for us to do here. */
4770
4771 if (execution_direction != EXEC_REVERSE
16c381f0 4772 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4773 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4774 {
4c8c40e6 4775 CORE_ADDR pc_after_resolver =
568d6575 4776 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4777
527159b7 4778 if (debug_infrun)
3e43a32a
MS
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: stepped into dynsym resolve code\n");
527159b7 4781
488f131b
JB
4782 if (pc_after_resolver)
4783 {
4784 /* Set up a step-resume breakpoint at the address
4785 indicated by SKIP_SOLIB_RESOLVER. */
4786 struct symtab_and_line sr_sal;
abbb1732 4787
fe39c653 4788 init_sal (&sr_sal);
488f131b 4789 sr_sal.pc = pc_after_resolver;
6c95b8df 4790 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4791
a6d9a66e
UW
4792 insert_step_resume_breakpoint_at_sal (gdbarch,
4793 sr_sal, null_frame_id);
c5aa993b 4794 }
c906108c 4795
488f131b
JB
4796 keep_going (ecs);
4797 return;
4798 }
c906108c 4799
16c381f0
JK
4800 if (ecs->event_thread->control.step_range_end != 1
4801 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4802 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4803 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4804 {
527159b7 4805 if (debug_infrun)
3e43a32a
MS
4806 fprintf_unfiltered (gdb_stdlog,
4807 "infrun: stepped into signal trampoline\n");
42edda50 4808 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4809 a signal trampoline (either by a signal being delivered or by
4810 the signal handler returning). Just single-step until the
4811 inferior leaves the trampoline (either by calling the handler
4812 or returning). */
488f131b
JB
4813 keep_going (ecs);
4814 return;
4815 }
c906108c 4816
c17eaafe
DJ
4817 /* Check for subroutine calls. The check for the current frame
4818 equalling the step ID is not necessary - the check of the
4819 previous frame's ID is sufficient - but it is a common case and
4820 cheaper than checking the previous frame's ID.
14e60db5
DJ
4821
4822 NOTE: frame_id_eq will never report two invalid frame IDs as
4823 being equal, so to get into this block, both the current and
4824 previous frame must have valid frame IDs. */
005ca36a
JB
4825 /* The outer_frame_id check is a heuristic to detect stepping
4826 through startup code. If we step over an instruction which
4827 sets the stack pointer from an invalid value to a valid value,
4828 we may detect that as a subroutine call from the mythical
4829 "outermost" function. This could be fixed by marking
4830 outermost frames as !stack_p,code_p,special_p. Then the
4831 initial outermost frame, before sp was valid, would
ce6cca6d 4832 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4833 for more. */
edb3359d 4834 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4835 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4836 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4837 ecs->event_thread->control.step_stack_frame_id)
4838 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4839 outer_frame_id)
4840 || step_start_function != find_pc_function (stop_pc))))
488f131b 4841 {
95918acb 4842 CORE_ADDR real_stop_pc;
8fb3e588 4843
527159b7 4844 if (debug_infrun)
8a9de0e4 4845 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4846
16c381f0
JK
4847 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4848 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4849 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4850 ecs->stop_func_start)))
95918acb
AC
4851 {
4852 /* I presume that step_over_calls is only 0 when we're
4853 supposed to be stepping at the assembly language level
4854 ("stepi"). Just stop. */
4855 /* Also, maybe we just did a "nexti" inside a prolog, so we
4856 thought it was a subroutine call but it was not. Stop as
4857 well. FENN */
388a8562 4858 /* And this works the same backward as frontward. MVS */
16c381f0 4859 ecs->event_thread->control.stop_step = 1;
33d62d64 4860 print_end_stepping_range_reason ();
95918acb
AC
4861 stop_stepping (ecs);
4862 return;
4863 }
8fb3e588 4864
388a8562
MS
4865 /* Reverse stepping through solib trampolines. */
4866
4867 if (execution_direction == EXEC_REVERSE
16c381f0 4868 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4869 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4870 || (ecs->stop_func_start == 0
4871 && in_solib_dynsym_resolve_code (stop_pc))))
4872 {
4873 /* Any solib trampoline code can be handled in reverse
4874 by simply continuing to single-step. We have already
4875 executed the solib function (backwards), and a few
4876 steps will take us back through the trampoline to the
4877 caller. */
4878 keep_going (ecs);
4879 return;
4880 }
4881
16c381f0 4882 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4883 {
b2175913
MS
4884 /* We're doing a "next".
4885
4886 Normal (forward) execution: set a breakpoint at the
4887 callee's return address (the address at which the caller
4888 will resume).
4889
4890 Reverse (backward) execution. set the step-resume
4891 breakpoint at the start of the function that we just
4892 stepped into (backwards), and continue to there. When we
6130d0b7 4893 get there, we'll need to single-step back to the caller. */
b2175913
MS
4894
4895 if (execution_direction == EXEC_REVERSE)
4896 {
4897 struct symtab_and_line sr_sal;
3067f6e5 4898
388a8562
MS
4899 /* Normal function call return (static or dynamic). */
4900 init_sal (&sr_sal);
4901 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4902 sr_sal.pspace = get_frame_program_space (frame);
4903 insert_step_resume_breakpoint_at_sal (gdbarch,
4904 sr_sal, null_frame_id);
b2175913
MS
4905 }
4906 else
568d6575 4907 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4908
8567c30f
AC
4909 keep_going (ecs);
4910 return;
4911 }
a53c66de 4912
95918acb 4913 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4914 calling routine and the real function), locate the real
4915 function. That's what tells us (a) whether we want to step
4916 into it at all, and (b) what prologue we want to run to the
4917 end of, if we do step into it. */
568d6575 4918 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4919 if (real_stop_pc == 0)
568d6575 4920 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4921 if (real_stop_pc != 0)
4922 ecs->stop_func_start = real_stop_pc;
8fb3e588 4923
db5f024e 4924 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4925 {
4926 struct symtab_and_line sr_sal;
abbb1732 4927
1b2bfbb9
RC
4928 init_sal (&sr_sal);
4929 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4930 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4931
a6d9a66e
UW
4932 insert_step_resume_breakpoint_at_sal (gdbarch,
4933 sr_sal, null_frame_id);
8fb3e588
AC
4934 keep_going (ecs);
4935 return;
1b2bfbb9
RC
4936 }
4937
95918acb 4938 /* If we have line number information for the function we are
1bfeeb0f
JL
4939 thinking of stepping into and the function isn't on the skip
4940 list, step into it.
95918acb 4941
8fb3e588
AC
4942 If there are several symtabs at that PC (e.g. with include
4943 files), just want to know whether *any* of them have line
4944 numbers. find_pc_line handles this. */
95918acb
AC
4945 {
4946 struct symtab_and_line tmp_sal;
8fb3e588 4947
95918acb 4948 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52
JB
4949 if (tmp_sal.line != 0
4950 && !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4951 {
b2175913 4952 if (execution_direction == EXEC_REVERSE)
568d6575 4953 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4954 else
568d6575 4955 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4956 return;
4957 }
4958 }
4959
4960 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4961 set, we stop the step so that the user has a chance to switch
4962 in assembly mode. */
16c381f0 4963 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4964 && step_stop_if_no_debug)
95918acb 4965 {
16c381f0 4966 ecs->event_thread->control.stop_step = 1;
33d62d64 4967 print_end_stepping_range_reason ();
95918acb
AC
4968 stop_stepping (ecs);
4969 return;
4970 }
4971
b2175913
MS
4972 if (execution_direction == EXEC_REVERSE)
4973 {
4974 /* Set a breakpoint at callee's start address.
4975 From there we can step once and be back in the caller. */
4976 struct symtab_and_line sr_sal;
abbb1732 4977
b2175913
MS
4978 init_sal (&sr_sal);
4979 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4980 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4981 insert_step_resume_breakpoint_at_sal (gdbarch,
4982 sr_sal, null_frame_id);
b2175913
MS
4983 }
4984 else
4985 /* Set a breakpoint at callee's return address (the address
4986 at which the caller will resume). */
568d6575 4987 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4988
95918acb 4989 keep_going (ecs);
488f131b 4990 return;
488f131b 4991 }
c906108c 4992
fdd654f3
MS
4993 /* Reverse stepping through solib trampolines. */
4994
4995 if (execution_direction == EXEC_REVERSE
16c381f0 4996 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4997 {
4998 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4999 || (ecs->stop_func_start == 0
5000 && in_solib_dynsym_resolve_code (stop_pc)))
5001 {
5002 /* Any solib trampoline code can be handled in reverse
5003 by simply continuing to single-step. We have already
5004 executed the solib function (backwards), and a few
5005 steps will take us back through the trampoline to the
5006 caller. */
5007 keep_going (ecs);
5008 return;
5009 }
5010 else if (in_solib_dynsym_resolve_code (stop_pc))
5011 {
5012 /* Stepped backward into the solib dynsym resolver.
5013 Set a breakpoint at its start and continue, then
5014 one more step will take us out. */
5015 struct symtab_and_line sr_sal;
abbb1732 5016
fdd654f3
MS
5017 init_sal (&sr_sal);
5018 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5019 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5020 insert_step_resume_breakpoint_at_sal (gdbarch,
5021 sr_sal, null_frame_id);
5022 keep_going (ecs);
5023 return;
5024 }
5025 }
5026
488f131b
JB
5027 /* If we're in the return path from a shared library trampoline,
5028 we want to proceed through the trampoline when stepping. */
568d6575 5029 if (gdbarch_in_solib_return_trampoline (gdbarch,
473347ad
MR
5030 stop_pc, ecs->stop_func_name)
5031 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
488f131b 5032 {
488f131b 5033 /* Determine where this trampoline returns. */
52f729a7 5034 CORE_ADDR real_stop_pc;
abbb1732 5035
568d6575 5036 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5037
527159b7 5038 if (debug_infrun)
3e43a32a
MS
5039 fprintf_unfiltered (gdb_stdlog,
5040 "infrun: stepped into solib return tramp\n");
527159b7 5041
488f131b 5042 /* Only proceed through if we know where it's going. */
d764a824 5043 if (real_stop_pc)
488f131b 5044 {
1777feb0 5045 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5046 struct symtab_and_line sr_sal;
5047
fe39c653 5048 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5049 sr_sal.pc = real_stop_pc;
488f131b 5050 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5051 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5052
5053 /* Do not specify what the fp should be when we stop since
5054 on some machines the prologue is where the new fp value
5055 is established. */
a6d9a66e
UW
5056 insert_step_resume_breakpoint_at_sal (gdbarch,
5057 sr_sal, null_frame_id);
c906108c 5058
488f131b
JB
5059 /* Restart without fiddling with the step ranges or
5060 other state. */
5061 keep_going (ecs);
5062 return;
5063 }
5064 }
c906108c 5065
2afb61aa 5066 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5067
1b2bfbb9
RC
5068 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5069 the trampoline processing logic, however, there are some trampolines
5070 that have no names, so we should do trampoline handling first. */
16c381f0 5071 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5072 && ecs->stop_func_name == NULL
2afb61aa 5073 && stop_pc_sal.line == 0)
1b2bfbb9 5074 {
527159b7 5075 if (debug_infrun)
3e43a32a
MS
5076 fprintf_unfiltered (gdb_stdlog,
5077 "infrun: stepped into undebuggable function\n");
527159b7 5078
1b2bfbb9 5079 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5080 undebuggable function (where there is no debugging information
5081 and no line number corresponding to the address where the
1b2bfbb9
RC
5082 inferior stopped). Since we want to skip this kind of code,
5083 we keep going until the inferior returns from this
14e60db5
DJ
5084 function - unless the user has asked us not to (via
5085 set step-mode) or we no longer know how to get back
5086 to the call site. */
5087 if (step_stop_if_no_debug
c7ce8faa 5088 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5089 {
5090 /* If we have no line number and the step-stop-if-no-debug
5091 is set, we stop the step so that the user has a chance to
5092 switch in assembly mode. */
16c381f0 5093 ecs->event_thread->control.stop_step = 1;
33d62d64 5094 print_end_stepping_range_reason ();
1b2bfbb9
RC
5095 stop_stepping (ecs);
5096 return;
5097 }
5098 else
5099 {
5100 /* Set a breakpoint at callee's return address (the address
5101 at which the caller will resume). */
568d6575 5102 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5103 keep_going (ecs);
5104 return;
5105 }
5106 }
5107
16c381f0 5108 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5109 {
5110 /* It is stepi or nexti. We always want to stop stepping after
5111 one instruction. */
527159b7 5112 if (debug_infrun)
8a9de0e4 5113 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5114 ecs->event_thread->control.stop_step = 1;
33d62d64 5115 print_end_stepping_range_reason ();
1b2bfbb9
RC
5116 stop_stepping (ecs);
5117 return;
5118 }
5119
2afb61aa 5120 if (stop_pc_sal.line == 0)
488f131b
JB
5121 {
5122 /* We have no line number information. That means to stop
5123 stepping (does this always happen right after one instruction,
5124 when we do "s" in a function with no line numbers,
5125 or can this happen as a result of a return or longjmp?). */
527159b7 5126 if (debug_infrun)
8a9de0e4 5127 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5128 ecs->event_thread->control.stop_step = 1;
33d62d64 5129 print_end_stepping_range_reason ();
488f131b
JB
5130 stop_stepping (ecs);
5131 return;
5132 }
c906108c 5133
edb3359d
DJ
5134 /* Look for "calls" to inlined functions, part one. If the inline
5135 frame machinery detected some skipped call sites, we have entered
5136 a new inline function. */
5137
5138 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5139 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5140 && inline_skipped_frames (ecs->ptid))
5141 {
5142 struct symtab_and_line call_sal;
5143
5144 if (debug_infrun)
5145 fprintf_unfiltered (gdb_stdlog,
5146 "infrun: stepped into inlined function\n");
5147
5148 find_frame_sal (get_current_frame (), &call_sal);
5149
16c381f0 5150 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5151 {
5152 /* For "step", we're going to stop. But if the call site
5153 for this inlined function is on the same source line as
5154 we were previously stepping, go down into the function
5155 first. Otherwise stop at the call site. */
5156
5157 if (call_sal.line == ecs->event_thread->current_line
5158 && call_sal.symtab == ecs->event_thread->current_symtab)
5159 step_into_inline_frame (ecs->ptid);
5160
16c381f0 5161 ecs->event_thread->control.stop_step = 1;
33d62d64 5162 print_end_stepping_range_reason ();
edb3359d
DJ
5163 stop_stepping (ecs);
5164 return;
5165 }
5166 else
5167 {
5168 /* For "next", we should stop at the call site if it is on a
5169 different source line. Otherwise continue through the
5170 inlined function. */
5171 if (call_sal.line == ecs->event_thread->current_line
5172 && call_sal.symtab == ecs->event_thread->current_symtab)
5173 keep_going (ecs);
5174 else
5175 {
16c381f0 5176 ecs->event_thread->control.stop_step = 1;
33d62d64 5177 print_end_stepping_range_reason ();
edb3359d
DJ
5178 stop_stepping (ecs);
5179 }
5180 return;
5181 }
5182 }
5183
5184 /* Look for "calls" to inlined functions, part two. If we are still
5185 in the same real function we were stepping through, but we have
5186 to go further up to find the exact frame ID, we are stepping
5187 through a more inlined call beyond its call site. */
5188
5189 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5190 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5191 ecs->event_thread->control.step_frame_id)
edb3359d 5192 && stepped_in_from (get_current_frame (),
16c381f0 5193 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5194 {
5195 if (debug_infrun)
5196 fprintf_unfiltered (gdb_stdlog,
5197 "infrun: stepping through inlined function\n");
5198
16c381f0 5199 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5200 keep_going (ecs);
5201 else
5202 {
16c381f0 5203 ecs->event_thread->control.stop_step = 1;
33d62d64 5204 print_end_stepping_range_reason ();
edb3359d
DJ
5205 stop_stepping (ecs);
5206 }
5207 return;
5208 }
5209
2afb61aa 5210 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5211 && (ecs->event_thread->current_line != stop_pc_sal.line
5212 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5213 {
5214 /* We are at the start of a different line. So stop. Note that
5215 we don't stop if we step into the middle of a different line.
5216 That is said to make things like for (;;) statements work
5217 better. */
527159b7 5218 if (debug_infrun)
3e43a32a
MS
5219 fprintf_unfiltered (gdb_stdlog,
5220 "infrun: stepped to a different line\n");
16c381f0 5221 ecs->event_thread->control.stop_step = 1;
33d62d64 5222 print_end_stepping_range_reason ();
488f131b
JB
5223 stop_stepping (ecs);
5224 return;
5225 }
c906108c 5226
488f131b 5227 /* We aren't done stepping.
c906108c 5228
488f131b
JB
5229 Optimize by setting the stepping range to the line.
5230 (We might not be in the original line, but if we entered a
5231 new line in mid-statement, we continue stepping. This makes
5232 things like for(;;) statements work better.) */
c906108c 5233
16c381f0
JK
5234 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5235 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5236 set_step_info (frame, stop_pc_sal);
488f131b 5237
527159b7 5238 if (debug_infrun)
8a9de0e4 5239 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5240 keep_going (ecs);
104c1213
JM
5241}
5242
b3444185 5243/* Is thread TP in the middle of single-stepping? */
104c1213 5244
a289b8f6 5245static int
b3444185 5246currently_stepping (struct thread_info *tp)
a7212384 5247{
8358c15c
JK
5248 return ((tp->control.step_range_end
5249 && tp->control.step_resume_breakpoint == NULL)
5250 || tp->control.trap_expected
8358c15c 5251 || bpstat_should_step ());
a7212384
UW
5252}
5253
b3444185
PA
5254/* Returns true if any thread *but* the one passed in "data" is in the
5255 middle of stepping or of handling a "next". */
a7212384 5256
104c1213 5257static int
b3444185 5258currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5259{
b3444185
PA
5260 if (tp == data)
5261 return 0;
5262
16c381f0 5263 return (tp->control.step_range_end
ede1849f 5264 || tp->control.trap_expected);
104c1213 5265}
c906108c 5266
b2175913
MS
5267/* Inferior has stepped into a subroutine call with source code that
5268 we should not step over. Do step to the first line of code in
5269 it. */
c2c6d25f
JM
5270
5271static void
568d6575
UW
5272handle_step_into_function (struct gdbarch *gdbarch,
5273 struct execution_control_state *ecs)
c2c6d25f
JM
5274{
5275 struct symtab *s;
2afb61aa 5276 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5277
7e324e48
GB
5278 fill_in_stop_func (gdbarch, ecs);
5279
c2c6d25f
JM
5280 s = find_pc_symtab (stop_pc);
5281 if (s && s->language != language_asm)
568d6575 5282 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5283 ecs->stop_func_start);
c2c6d25f 5284
2afb61aa 5285 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5286 /* Use the step_resume_break to step until the end of the prologue,
5287 even if that involves jumps (as it seems to on the vax under
5288 4.2). */
5289 /* If the prologue ends in the middle of a source line, continue to
5290 the end of that source line (if it is still within the function).
5291 Otherwise, just go to end of prologue. */
2afb61aa
PA
5292 if (stop_func_sal.end
5293 && stop_func_sal.pc != ecs->stop_func_start
5294 && stop_func_sal.end < ecs->stop_func_end)
5295 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5296
2dbd5e30
KB
5297 /* Architectures which require breakpoint adjustment might not be able
5298 to place a breakpoint at the computed address. If so, the test
5299 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5300 ecs->stop_func_start to an address at which a breakpoint may be
5301 legitimately placed.
8fb3e588 5302
2dbd5e30
KB
5303 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5304 made, GDB will enter an infinite loop when stepping through
5305 optimized code consisting of VLIW instructions which contain
5306 subinstructions corresponding to different source lines. On
5307 FR-V, it's not permitted to place a breakpoint on any but the
5308 first subinstruction of a VLIW instruction. When a breakpoint is
5309 set, GDB will adjust the breakpoint address to the beginning of
5310 the VLIW instruction. Thus, we need to make the corresponding
5311 adjustment here when computing the stop address. */
8fb3e588 5312
568d6575 5313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5314 {
5315 ecs->stop_func_start
568d6575 5316 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5317 ecs->stop_func_start);
2dbd5e30
KB
5318 }
5319
c2c6d25f
JM
5320 if (ecs->stop_func_start == stop_pc)
5321 {
5322 /* We are already there: stop now. */
16c381f0 5323 ecs->event_thread->control.stop_step = 1;
33d62d64 5324 print_end_stepping_range_reason ();
c2c6d25f
JM
5325 stop_stepping (ecs);
5326 return;
5327 }
5328 else
5329 {
5330 /* Put the step-breakpoint there and go until there. */
fe39c653 5331 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5332 sr_sal.pc = ecs->stop_func_start;
5333 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5334 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5335
c2c6d25f 5336 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5337 some machines the prologue is where the new fp value is
5338 established. */
a6d9a66e 5339 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5340
5341 /* And make sure stepping stops right away then. */
16c381f0
JK
5342 ecs->event_thread->control.step_range_end
5343 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5344 }
5345 keep_going (ecs);
5346}
d4f3574e 5347
b2175913
MS
5348/* Inferior has stepped backward into a subroutine call with source
5349 code that we should not step over. Do step to the beginning of the
5350 last line of code in it. */
5351
5352static void
568d6575
UW
5353handle_step_into_function_backward (struct gdbarch *gdbarch,
5354 struct execution_control_state *ecs)
b2175913
MS
5355{
5356 struct symtab *s;
167e4384 5357 struct symtab_and_line stop_func_sal;
b2175913 5358
7e324e48
GB
5359 fill_in_stop_func (gdbarch, ecs);
5360
b2175913
MS
5361 s = find_pc_symtab (stop_pc);
5362 if (s && s->language != language_asm)
568d6575 5363 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5364 ecs->stop_func_start);
5365
5366 stop_func_sal = find_pc_line (stop_pc, 0);
5367
5368 /* OK, we're just going to keep stepping here. */
5369 if (stop_func_sal.pc == stop_pc)
5370 {
5371 /* We're there already. Just stop stepping now. */
16c381f0 5372 ecs->event_thread->control.stop_step = 1;
33d62d64 5373 print_end_stepping_range_reason ();
b2175913
MS
5374 stop_stepping (ecs);
5375 }
5376 else
5377 {
5378 /* Else just reset the step range and keep going.
5379 No step-resume breakpoint, they don't work for
5380 epilogues, which can have multiple entry paths. */
16c381f0
JK
5381 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5382 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5383 keep_going (ecs);
5384 }
5385 return;
5386}
5387
d3169d93 5388/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5389 This is used to both functions and to skip over code. */
5390
5391static void
2c03e5be
PA
5392insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5393 struct symtab_and_line sr_sal,
5394 struct frame_id sr_id,
5395 enum bptype sr_type)
44cbf7b5 5396{
611c83ae
PA
5397 /* There should never be more than one step-resume or longjmp-resume
5398 breakpoint per thread, so we should never be setting a new
44cbf7b5 5399 step_resume_breakpoint when one is already active. */
8358c15c 5400 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5401 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5402
5403 if (debug_infrun)
5404 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5405 "infrun: inserting step-resume breakpoint at %s\n",
5406 paddress (gdbarch, sr_sal.pc));
d3169d93 5407
8358c15c 5408 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5409 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5410}
5411
9da8c2a0 5412void
2c03e5be
PA
5413insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5414 struct symtab_and_line sr_sal,
5415 struct frame_id sr_id)
5416{
5417 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5418 sr_sal, sr_id,
5419 bp_step_resume);
44cbf7b5 5420}
7ce450bd 5421
2c03e5be
PA
5422/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5423 This is used to skip a potential signal handler.
7ce450bd 5424
14e60db5
DJ
5425 This is called with the interrupted function's frame. The signal
5426 handler, when it returns, will resume the interrupted function at
5427 RETURN_FRAME.pc. */
d303a6c7
AC
5428
5429static void
2c03e5be 5430insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5431{
5432 struct symtab_and_line sr_sal;
a6d9a66e 5433 struct gdbarch *gdbarch;
d303a6c7 5434
f4c1edd8 5435 gdb_assert (return_frame != NULL);
d303a6c7
AC
5436 init_sal (&sr_sal); /* initialize to zeros */
5437
a6d9a66e 5438 gdbarch = get_frame_arch (return_frame);
568d6575 5439 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5440 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5441 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5442
2c03e5be
PA
5443 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5444 get_stack_frame_id (return_frame),
5445 bp_hp_step_resume);
d303a6c7
AC
5446}
5447
2c03e5be
PA
5448/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5449 is used to skip a function after stepping into it (for "next" or if
5450 the called function has no debugging information).
14e60db5
DJ
5451
5452 The current function has almost always been reached by single
5453 stepping a call or return instruction. NEXT_FRAME belongs to the
5454 current function, and the breakpoint will be set at the caller's
5455 resume address.
5456
5457 This is a separate function rather than reusing
2c03e5be 5458 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5459 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5460 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5461
5462static void
5463insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5464{
5465 struct symtab_and_line sr_sal;
a6d9a66e 5466 struct gdbarch *gdbarch;
14e60db5
DJ
5467
5468 /* We shouldn't have gotten here if we don't know where the call site
5469 is. */
c7ce8faa 5470 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5471
5472 init_sal (&sr_sal); /* initialize to zeros */
5473
a6d9a66e 5474 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5475 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5476 frame_unwind_caller_pc (next_frame));
14e60db5 5477 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5478 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5479
a6d9a66e 5480 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5481 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5482}
5483
611c83ae
PA
5484/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5485 new breakpoint at the target of a jmp_buf. The handling of
5486 longjmp-resume uses the same mechanisms used for handling
5487 "step-resume" breakpoints. */
5488
5489static void
a6d9a66e 5490insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5491{
5492 /* There should never be more than one step-resume or longjmp-resume
5493 breakpoint per thread, so we should never be setting a new
5494 longjmp_resume_breakpoint when one is already active. */
8358c15c 5495 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5496
5497 if (debug_infrun)
5498 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5499 "infrun: inserting longjmp-resume breakpoint at %s\n",
5500 paddress (gdbarch, pc));
611c83ae 5501
8358c15c 5502 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5503 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5504}
5505
186c406b
TT
5506/* Insert an exception resume breakpoint. TP is the thread throwing
5507 the exception. The block B is the block of the unwinder debug hook
5508 function. FRAME is the frame corresponding to the call to this
5509 function. SYM is the symbol of the function argument holding the
5510 target PC of the exception. */
5511
5512static void
5513insert_exception_resume_breakpoint (struct thread_info *tp,
5514 struct block *b,
5515 struct frame_info *frame,
5516 struct symbol *sym)
5517{
bfd189b1 5518 volatile struct gdb_exception e;
186c406b
TT
5519
5520 /* We want to ignore errors here. */
5521 TRY_CATCH (e, RETURN_MASK_ERROR)
5522 {
5523 struct symbol *vsym;
5524 struct value *value;
5525 CORE_ADDR handler;
5526 struct breakpoint *bp;
5527
5528 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5529 value = read_var_value (vsym, frame);
5530 /* If the value was optimized out, revert to the old behavior. */
5531 if (! value_optimized_out (value))
5532 {
5533 handler = value_as_address (value);
5534
5535 if (debug_infrun)
5536 fprintf_unfiltered (gdb_stdlog,
5537 "infrun: exception resume at %lx\n",
5538 (unsigned long) handler);
5539
5540 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5541 handler, bp_exception_resume);
c70a6932
JK
5542
5543 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5544 frame = NULL;
5545
186c406b
TT
5546 bp->thread = tp->num;
5547 inferior_thread ()->control.exception_resume_breakpoint = bp;
5548 }
5549 }
5550}
5551
5552/* This is called when an exception has been intercepted. Check to
5553 see whether the exception's destination is of interest, and if so,
5554 set an exception resume breakpoint there. */
5555
5556static void
5557check_exception_resume (struct execution_control_state *ecs,
5558 struct frame_info *frame, struct symbol *func)
5559{
bfd189b1 5560 volatile struct gdb_exception e;
186c406b
TT
5561
5562 TRY_CATCH (e, RETURN_MASK_ERROR)
5563 {
5564 struct block *b;
5565 struct dict_iterator iter;
5566 struct symbol *sym;
5567 int argno = 0;
5568
5569 /* The exception breakpoint is a thread-specific breakpoint on
5570 the unwinder's debug hook, declared as:
5571
5572 void _Unwind_DebugHook (void *cfa, void *handler);
5573
5574 The CFA argument indicates the frame to which control is
5575 about to be transferred. HANDLER is the destination PC.
5576
5577 We ignore the CFA and set a temporary breakpoint at HANDLER.
5578 This is not extremely efficient but it avoids issues in gdb
5579 with computing the DWARF CFA, and it also works even in weird
5580 cases such as throwing an exception from inside a signal
5581 handler. */
5582
5583 b = SYMBOL_BLOCK_VALUE (func);
5584 ALL_BLOCK_SYMBOLS (b, iter, sym)
5585 {
5586 if (!SYMBOL_IS_ARGUMENT (sym))
5587 continue;
5588
5589 if (argno == 0)
5590 ++argno;
5591 else
5592 {
5593 insert_exception_resume_breakpoint (ecs->event_thread,
5594 b, frame, sym);
5595 break;
5596 }
5597 }
5598 }
5599}
5600
104c1213
JM
5601static void
5602stop_stepping (struct execution_control_state *ecs)
5603{
527159b7 5604 if (debug_infrun)
8a9de0e4 5605 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5606
cd0fc7c3
SS
5607 /* Let callers know we don't want to wait for the inferior anymore. */
5608 ecs->wait_some_more = 0;
5609}
5610
d4f3574e
SS
5611/* This function handles various cases where we need to continue
5612 waiting for the inferior. */
1777feb0 5613/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5614
5615static void
5616keep_going (struct execution_control_state *ecs)
5617{
c4dbc9af
PA
5618 /* Make sure normal_stop is called if we get a QUIT handled before
5619 reaching resume. */
5620 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5621
d4f3574e 5622 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5623 ecs->event_thread->prev_pc
5624 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5625
d4f3574e
SS
5626 /* If we did not do break;, it means we should keep running the
5627 inferior and not return to debugger. */
5628
16c381f0
JK
5629 if (ecs->event_thread->control.trap_expected
5630 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5631 {
5632 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5633 the inferior, else we'd not get here) and we haven't yet
5634 gotten our trap. Simply continue. */
c4dbc9af
PA
5635
5636 discard_cleanups (old_cleanups);
2020b7ab 5637 resume (currently_stepping (ecs->event_thread),
16c381f0 5638 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5639 }
5640 else
5641 {
5642 /* Either the trap was not expected, but we are continuing
488f131b
JB
5643 anyway (the user asked that this signal be passed to the
5644 child)
5645 -- or --
5646 The signal was SIGTRAP, e.g. it was our signal, but we
5647 decided we should resume from it.
d4f3574e 5648
c36b740a 5649 We're going to run this baby now!
d4f3574e 5650
c36b740a
VP
5651 Note that insert_breakpoints won't try to re-insert
5652 already inserted breakpoints. Therefore, we don't
5653 care if breakpoints were already inserted, or not. */
5654
4e1c45ea 5655 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5656 {
9f5a595d 5657 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5658
9f5a595d 5659 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5660 /* Since we can't do a displaced step, we have to remove
5661 the breakpoint while we step it. To keep things
5662 simple, we remove them all. */
5663 remove_breakpoints ();
45e8c884
VP
5664 }
5665 else
d4f3574e 5666 {
bfd189b1 5667 volatile struct gdb_exception e;
abbb1732 5668
569631c6
UW
5669 /* Stop stepping when inserting breakpoints
5670 has failed. */
e236ba44
VP
5671 TRY_CATCH (e, RETURN_MASK_ERROR)
5672 {
5673 insert_breakpoints ();
5674 }
5675 if (e.reason < 0)
d4f3574e 5676 {
97bd5475 5677 exception_print (gdb_stderr, e);
d4f3574e
SS
5678 stop_stepping (ecs);
5679 return;
5680 }
d4f3574e
SS
5681 }
5682
16c381f0
JK
5683 ecs->event_thread->control.trap_expected
5684 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5685
5686 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5687 specifies that such a signal should be delivered to the
5688 target program).
5689
5690 Typically, this would occure when a user is debugging a
5691 target monitor on a simulator: the target monitor sets a
5692 breakpoint; the simulator encounters this break-point and
5693 halts the simulation handing control to GDB; GDB, noteing
5694 that the break-point isn't valid, returns control back to the
5695 simulator; the simulator then delivers the hardware
1777feb0 5696 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5697
16c381f0
JK
5698 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5699 && !signal_program[ecs->event_thread->suspend.stop_signal])
5700 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5701
c4dbc9af 5702 discard_cleanups (old_cleanups);
2020b7ab 5703 resume (currently_stepping (ecs->event_thread),
16c381f0 5704 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5705 }
5706
488f131b 5707 prepare_to_wait (ecs);
d4f3574e
SS
5708}
5709
104c1213
JM
5710/* This function normally comes after a resume, before
5711 handle_inferior_event exits. It takes care of any last bits of
5712 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5713
104c1213
JM
5714static void
5715prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5716{
527159b7 5717 if (debug_infrun)
8a9de0e4 5718 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5719
104c1213
JM
5720 /* This is the old end of the while loop. Let everybody know we
5721 want to wait for the inferior some more and get called again
5722 soon. */
5723 ecs->wait_some_more = 1;
c906108c 5724}
11cf8741 5725
33d62d64
JK
5726/* Several print_*_reason functions to print why the inferior has stopped.
5727 We always print something when the inferior exits, or receives a signal.
5728 The rest of the cases are dealt with later on in normal_stop and
5729 print_it_typical. Ideally there should be a call to one of these
5730 print_*_reason functions functions from handle_inferior_event each time
5731 stop_stepping is called. */
5732
5733/* Print why the inferior has stopped.
5734 We are done with a step/next/si/ni command, print why the inferior has
5735 stopped. For now print nothing. Print a message only if not in the middle
5736 of doing a "step n" operation for n > 1. */
5737
5738static void
5739print_end_stepping_range_reason (void)
5740{
16c381f0
JK
5741 if ((!inferior_thread ()->step_multi
5742 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5743 && ui_out_is_mi_like_p (current_uiout))
5744 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5745 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5746}
5747
5748/* The inferior was terminated by a signal, print why it stopped. */
5749
11cf8741 5750static void
33d62d64 5751print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5752{
79a45e25
PA
5753 struct ui_out *uiout = current_uiout;
5754
33d62d64
JK
5755 annotate_signalled ();
5756 if (ui_out_is_mi_like_p (uiout))
5757 ui_out_field_string
5758 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5759 ui_out_text (uiout, "\nProgram terminated with signal ");
5760 annotate_signal_name ();
5761 ui_out_field_string (uiout, "signal-name",
5762 target_signal_to_name (siggnal));
5763 annotate_signal_name_end ();
5764 ui_out_text (uiout, ", ");
5765 annotate_signal_string ();
5766 ui_out_field_string (uiout, "signal-meaning",
5767 target_signal_to_string (siggnal));
5768 annotate_signal_string_end ();
5769 ui_out_text (uiout, ".\n");
5770 ui_out_text (uiout, "The program no longer exists.\n");
5771}
5772
5773/* The inferior program is finished, print why it stopped. */
5774
5775static void
5776print_exited_reason (int exitstatus)
5777{
fda326dd
TT
5778 struct inferior *inf = current_inferior ();
5779 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5780 struct ui_out *uiout = current_uiout;
fda326dd 5781
33d62d64
JK
5782 annotate_exited (exitstatus);
5783 if (exitstatus)
5784 {
5785 if (ui_out_is_mi_like_p (uiout))
5786 ui_out_field_string (uiout, "reason",
5787 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5788 ui_out_text (uiout, "[Inferior ");
5789 ui_out_text (uiout, plongest (inf->num));
5790 ui_out_text (uiout, " (");
5791 ui_out_text (uiout, pidstr);
5792 ui_out_text (uiout, ") exited with code ");
33d62d64 5793 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5794 ui_out_text (uiout, "]\n");
33d62d64
JK
5795 }
5796 else
11cf8741 5797 {
9dc5e2a9 5798 if (ui_out_is_mi_like_p (uiout))
034dad6f 5799 ui_out_field_string
33d62d64 5800 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5801 ui_out_text (uiout, "[Inferior ");
5802 ui_out_text (uiout, plongest (inf->num));
5803 ui_out_text (uiout, " (");
5804 ui_out_text (uiout, pidstr);
5805 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5806 }
5807 /* Support the --return-child-result option. */
5808 return_child_result_value = exitstatus;
5809}
5810
5811/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5812 tells us to print about it. */
33d62d64
JK
5813
5814static void
5815print_signal_received_reason (enum target_signal siggnal)
5816{
79a45e25
PA
5817 struct ui_out *uiout = current_uiout;
5818
33d62d64
JK
5819 annotate_signal ();
5820
5821 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5822 {
5823 struct thread_info *t = inferior_thread ();
5824
5825 ui_out_text (uiout, "\n[");
5826 ui_out_field_string (uiout, "thread-name",
5827 target_pid_to_str (t->ptid));
5828 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5829 ui_out_text (uiout, " stopped");
5830 }
5831 else
5832 {
5833 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5834 annotate_signal_name ();
33d62d64
JK
5835 if (ui_out_is_mi_like_p (uiout))
5836 ui_out_field_string
5837 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5838 ui_out_field_string (uiout, "signal-name",
33d62d64 5839 target_signal_to_name (siggnal));
8b93c638
JM
5840 annotate_signal_name_end ();
5841 ui_out_text (uiout, ", ");
5842 annotate_signal_string ();
488f131b 5843 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5844 target_signal_to_string (siggnal));
8b93c638 5845 annotate_signal_string_end ();
33d62d64
JK
5846 }
5847 ui_out_text (uiout, ".\n");
5848}
252fbfc8 5849
33d62d64
JK
5850/* Reverse execution: target ran out of history info, print why the inferior
5851 has stopped. */
252fbfc8 5852
33d62d64
JK
5853static void
5854print_no_history_reason (void)
5855{
79a45e25 5856 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5857}
43ff13b4 5858
c906108c
SS
5859/* Here to return control to GDB when the inferior stops for real.
5860 Print appropriate messages, remove breakpoints, give terminal our modes.
5861
5862 STOP_PRINT_FRAME nonzero means print the executing frame
5863 (pc, function, args, file, line number and line text).
5864 BREAKPOINTS_FAILED nonzero means stop was due to error
5865 attempting to insert breakpoints. */
5866
5867void
96baa820 5868normal_stop (void)
c906108c 5869{
73b65bb0
DJ
5870 struct target_waitstatus last;
5871 ptid_t last_ptid;
29f49a6a 5872 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5873
5874 get_last_target_status (&last_ptid, &last);
5875
29f49a6a
PA
5876 /* If an exception is thrown from this point on, make sure to
5877 propagate GDB's knowledge of the executing state to the
5878 frontend/user running state. A QUIT is an easy exception to see
5879 here, so do this before any filtered output. */
c35b1492
PA
5880 if (!non_stop)
5881 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5882 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5883 && last.kind != TARGET_WAITKIND_EXITED
5884 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5885 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5886
4f8d22e3
PA
5887 /* In non-stop mode, we don't want GDB to switch threads behind the
5888 user's back, to avoid races where the user is typing a command to
5889 apply to thread x, but GDB switches to thread y before the user
5890 finishes entering the command. */
5891
c906108c
SS
5892 /* As with the notification of thread events, we want to delay
5893 notifying the user that we've switched thread context until
5894 the inferior actually stops.
5895
73b65bb0
DJ
5896 There's no point in saying anything if the inferior has exited.
5897 Note that SIGNALLED here means "exited with a signal", not
5898 "received a signal". */
4f8d22e3
PA
5899 if (!non_stop
5900 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5901 && target_has_execution
5902 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5903 && last.kind != TARGET_WAITKIND_EXITED
5904 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5905 {
5906 target_terminal_ours_for_output ();
a3f17187 5907 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5908 target_pid_to_str (inferior_ptid));
b8fa951a 5909 annotate_thread_changed ();
39f77062 5910 previous_inferior_ptid = inferior_ptid;
c906108c 5911 }
c906108c 5912
0e5bf2a8
PA
5913 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5914 {
5915 gdb_assert (sync_execution || !target_can_async_p ());
5916
5917 target_terminal_ours_for_output ();
5918 printf_filtered (_("No unwaited-for children left.\n"));
5919 }
5920
74960c60 5921 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5922 {
5923 if (remove_breakpoints ())
5924 {
5925 target_terminal_ours_for_output ();
3e43a32a
MS
5926 printf_filtered (_("Cannot remove breakpoints because "
5927 "program is no longer writable.\nFurther "
5928 "execution is probably impossible.\n"));
c906108c
SS
5929 }
5930 }
c906108c 5931
c906108c
SS
5932 /* If an auto-display called a function and that got a signal,
5933 delete that auto-display to avoid an infinite recursion. */
5934
5935 if (stopped_by_random_signal)
5936 disable_current_display ();
5937
5938 /* Don't print a message if in the middle of doing a "step n"
5939 operation for n > 1 */
af679fd0
PA
5940 if (target_has_execution
5941 && last.kind != TARGET_WAITKIND_SIGNALLED
5942 && last.kind != TARGET_WAITKIND_EXITED
5943 && inferior_thread ()->step_multi
16c381f0 5944 && inferior_thread ()->control.stop_step)
c906108c
SS
5945 goto done;
5946
5947 target_terminal_ours ();
0f641c01 5948 async_enable_stdin ();
c906108c 5949
7abfe014
DJ
5950 /* Set the current source location. This will also happen if we
5951 display the frame below, but the current SAL will be incorrect
5952 during a user hook-stop function. */
d729566a 5953 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5954 set_current_sal_from_frame (get_current_frame (), 1);
5955
dd7e2d2b
PA
5956 /* Let the user/frontend see the threads as stopped. */
5957 do_cleanups (old_chain);
5958
5959 /* Look up the hook_stop and run it (CLI internally handles problem
5960 of stop_command's pre-hook not existing). */
5961 if (stop_command)
5962 catch_errors (hook_stop_stub, stop_command,
5963 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5964
d729566a 5965 if (!has_stack_frames ())
d51fd4c8 5966 goto done;
c906108c 5967
32400beb
PA
5968 if (last.kind == TARGET_WAITKIND_SIGNALLED
5969 || last.kind == TARGET_WAITKIND_EXITED)
5970 goto done;
5971
c906108c
SS
5972 /* Select innermost stack frame - i.e., current frame is frame 0,
5973 and current location is based on that.
5974 Don't do this on return from a stack dummy routine,
1777feb0 5975 or if the program has exited. */
c906108c
SS
5976
5977 if (!stop_stack_dummy)
5978 {
0f7d239c 5979 select_frame (get_current_frame ());
c906108c
SS
5980
5981 /* Print current location without a level number, if
c5aa993b
JM
5982 we have changed functions or hit a breakpoint.
5983 Print source line if we have one.
5984 bpstat_print() contains the logic deciding in detail
1777feb0 5985 what to print, based on the event(s) that just occurred. */
c906108c 5986
d01a8610
AS
5987 /* If --batch-silent is enabled then there's no need to print the current
5988 source location, and to try risks causing an error message about
5989 missing source files. */
5990 if (stop_print_frame && !batch_silent)
c906108c
SS
5991 {
5992 int bpstat_ret;
5993 int source_flag;
917317f4 5994 int do_frame_printing = 1;
347bddb7 5995 struct thread_info *tp = inferior_thread ();
c906108c 5996
36dfb11c 5997 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
917317f4
JM
5998 switch (bpstat_ret)
5999 {
6000 case PRINT_UNKNOWN:
aa0cd9c1 6001 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
6002 (or should) carry around the function and does (or
6003 should) use that when doing a frame comparison. */
16c381f0
JK
6004 if (tp->control.stop_step
6005 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 6006 get_frame_id (get_current_frame ()))
917317f4 6007 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
6008 source_flag = SRC_LINE; /* Finished step, just
6009 print source line. */
917317f4 6010 else
1777feb0
MS
6011 source_flag = SRC_AND_LOC; /* Print location and
6012 source line. */
917317f4
JM
6013 break;
6014 case PRINT_SRC_AND_LOC:
1777feb0
MS
6015 source_flag = SRC_AND_LOC; /* Print location and
6016 source line. */
917317f4
JM
6017 break;
6018 case PRINT_SRC_ONLY:
c5394b80 6019 source_flag = SRC_LINE;
917317f4
JM
6020 break;
6021 case PRINT_NOTHING:
488f131b 6022 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6023 do_frame_printing = 0;
6024 break;
6025 default:
e2e0b3e5 6026 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6027 }
c906108c
SS
6028
6029 /* The behavior of this routine with respect to the source
6030 flag is:
c5394b80
JM
6031 SRC_LINE: Print only source line
6032 LOCATION: Print only location
1777feb0 6033 SRC_AND_LOC: Print location and source line. */
917317f4 6034 if (do_frame_printing)
b04f3ab4 6035 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6036
6037 /* Display the auto-display expressions. */
6038 do_displays ();
6039 }
6040 }
6041
6042 /* Save the function value return registers, if we care.
6043 We might be about to restore their previous contents. */
9da8c2a0
PA
6044 if (inferior_thread ()->control.proceed_to_finish
6045 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6046 {
6047 /* This should not be necessary. */
6048 if (stop_registers)
6049 regcache_xfree (stop_registers);
6050
6051 /* NB: The copy goes through to the target picking up the value of
6052 all the registers. */
6053 stop_registers = regcache_dup (get_current_regcache ());
6054 }
c906108c 6055
aa7d318d 6056 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6057 {
b89667eb
DE
6058 /* Pop the empty frame that contains the stack dummy.
6059 This also restores inferior state prior to the call
16c381f0 6060 (struct infcall_suspend_state). */
b89667eb 6061 struct frame_info *frame = get_current_frame ();
abbb1732 6062
b89667eb
DE
6063 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6064 frame_pop (frame);
3e43a32a
MS
6065 /* frame_pop() calls reinit_frame_cache as the last thing it
6066 does which means there's currently no selected frame. We
6067 don't need to re-establish a selected frame if the dummy call
6068 returns normally, that will be done by
6069 restore_infcall_control_state. However, we do have to handle
6070 the case where the dummy call is returning after being
6071 stopped (e.g. the dummy call previously hit a breakpoint).
6072 We can't know which case we have so just always re-establish
6073 a selected frame here. */
0f7d239c 6074 select_frame (get_current_frame ());
c906108c
SS
6075 }
6076
c906108c
SS
6077done:
6078 annotate_stopped ();
41d2bdb4
PA
6079
6080 /* Suppress the stop observer if we're in the middle of:
6081
6082 - a step n (n > 1), as there still more steps to be done.
6083
6084 - a "finish" command, as the observer will be called in
6085 finish_command_continuation, so it can include the inferior
6086 function's return value.
6087
6088 - calling an inferior function, as we pretend we inferior didn't
6089 run at all. The return value of the call is handled by the
6090 expression evaluator, through call_function_by_hand. */
6091
6092 if (!target_has_execution
6093 || last.kind == TARGET_WAITKIND_SIGNALLED
6094 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6095 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6096 || (!(inferior_thread ()->step_multi
6097 && inferior_thread ()->control.stop_step)
16c381f0
JK
6098 && !(inferior_thread ()->control.stop_bpstat
6099 && inferior_thread ()->control.proceed_to_finish)
6100 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6101 {
6102 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6103 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6104 stop_print_frame);
347bddb7 6105 else
1d33d6ba 6106 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6107 }
347bddb7 6108
48844aa6
PA
6109 if (target_has_execution)
6110 {
6111 if (last.kind != TARGET_WAITKIND_SIGNALLED
6112 && last.kind != TARGET_WAITKIND_EXITED)
6113 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6114 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6115 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6116 }
6c95b8df
PA
6117
6118 /* Try to get rid of automatically added inferiors that are no
6119 longer needed. Keeping those around slows down things linearly.
6120 Note that this never removes the current inferior. */
6121 prune_inferiors ();
c906108c
SS
6122}
6123
6124static int
96baa820 6125hook_stop_stub (void *cmd)
c906108c 6126{
5913bcb0 6127 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6128 return (0);
6129}
6130\f
c5aa993b 6131int
96baa820 6132signal_stop_state (int signo)
c906108c 6133{
d6b48e9c 6134 return signal_stop[signo];
c906108c
SS
6135}
6136
c5aa993b 6137int
96baa820 6138signal_print_state (int signo)
c906108c
SS
6139{
6140 return signal_print[signo];
6141}
6142
c5aa993b 6143int
96baa820 6144signal_pass_state (int signo)
c906108c
SS
6145{
6146 return signal_program[signo];
6147}
6148
2455069d
UW
6149static void
6150signal_cache_update (int signo)
6151{
6152 if (signo == -1)
6153 {
6154 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6155 signal_cache_update (signo);
6156
6157 return;
6158 }
6159
6160 signal_pass[signo] = (signal_stop[signo] == 0
6161 && signal_print[signo] == 0
6162 && signal_program[signo] == 1);
6163}
6164
488f131b 6165int
7bda5e4a 6166signal_stop_update (int signo, int state)
d4f3574e
SS
6167{
6168 int ret = signal_stop[signo];
abbb1732 6169
d4f3574e 6170 signal_stop[signo] = state;
2455069d 6171 signal_cache_update (signo);
d4f3574e
SS
6172 return ret;
6173}
6174
488f131b 6175int
7bda5e4a 6176signal_print_update (int signo, int state)
d4f3574e
SS
6177{
6178 int ret = signal_print[signo];
abbb1732 6179
d4f3574e 6180 signal_print[signo] = state;
2455069d 6181 signal_cache_update (signo);
d4f3574e
SS
6182 return ret;
6183}
6184
488f131b 6185int
7bda5e4a 6186signal_pass_update (int signo, int state)
d4f3574e
SS
6187{
6188 int ret = signal_program[signo];
abbb1732 6189
d4f3574e 6190 signal_program[signo] = state;
2455069d 6191 signal_cache_update (signo);
d4f3574e
SS
6192 return ret;
6193}
6194
c906108c 6195static void
96baa820 6196sig_print_header (void)
c906108c 6197{
3e43a32a
MS
6198 printf_filtered (_("Signal Stop\tPrint\tPass "
6199 "to program\tDescription\n"));
c906108c
SS
6200}
6201
6202static void
96baa820 6203sig_print_info (enum target_signal oursig)
c906108c 6204{
54363045 6205 const char *name = target_signal_to_name (oursig);
c906108c 6206 int name_padding = 13 - strlen (name);
96baa820 6207
c906108c
SS
6208 if (name_padding <= 0)
6209 name_padding = 0;
6210
6211 printf_filtered ("%s", name);
488f131b 6212 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6213 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6214 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6215 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6216 printf_filtered ("%s\n", target_signal_to_string (oursig));
6217}
6218
6219/* Specify how various signals in the inferior should be handled. */
6220
6221static void
96baa820 6222handle_command (char *args, int from_tty)
c906108c
SS
6223{
6224 char **argv;
6225 int digits, wordlen;
6226 int sigfirst, signum, siglast;
6227 enum target_signal oursig;
6228 int allsigs;
6229 int nsigs;
6230 unsigned char *sigs;
6231 struct cleanup *old_chain;
6232
6233 if (args == NULL)
6234 {
e2e0b3e5 6235 error_no_arg (_("signal to handle"));
c906108c
SS
6236 }
6237
1777feb0 6238 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6239
6240 nsigs = (int) TARGET_SIGNAL_LAST;
6241 sigs = (unsigned char *) alloca (nsigs);
6242 memset (sigs, 0, nsigs);
6243
1777feb0 6244 /* Break the command line up into args. */
c906108c 6245
d1a41061 6246 argv = gdb_buildargv (args);
7a292a7a 6247 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6248
6249 /* Walk through the args, looking for signal oursigs, signal names, and
6250 actions. Signal numbers and signal names may be interspersed with
6251 actions, with the actions being performed for all signals cumulatively
1777feb0 6252 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6253
6254 while (*argv != NULL)
6255 {
6256 wordlen = strlen (*argv);
6257 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6258 {;
6259 }
6260 allsigs = 0;
6261 sigfirst = siglast = -1;
6262
6263 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6264 {
6265 /* Apply action to all signals except those used by the
1777feb0 6266 debugger. Silently skip those. */
c906108c
SS
6267 allsigs = 1;
6268 sigfirst = 0;
6269 siglast = nsigs - 1;
6270 }
6271 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6272 {
6273 SET_SIGS (nsigs, sigs, signal_stop);
6274 SET_SIGS (nsigs, sigs, signal_print);
6275 }
6276 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6277 {
6278 UNSET_SIGS (nsigs, sigs, signal_program);
6279 }
6280 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6281 {
6282 SET_SIGS (nsigs, sigs, signal_print);
6283 }
6284 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6285 {
6286 SET_SIGS (nsigs, sigs, signal_program);
6287 }
6288 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6289 {
6290 UNSET_SIGS (nsigs, sigs, signal_stop);
6291 }
6292 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6293 {
6294 SET_SIGS (nsigs, sigs, signal_program);
6295 }
6296 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6297 {
6298 UNSET_SIGS (nsigs, sigs, signal_print);
6299 UNSET_SIGS (nsigs, sigs, signal_stop);
6300 }
6301 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6302 {
6303 UNSET_SIGS (nsigs, sigs, signal_program);
6304 }
6305 else if (digits > 0)
6306 {
6307 /* It is numeric. The numeric signal refers to our own
6308 internal signal numbering from target.h, not to host/target
6309 signal number. This is a feature; users really should be
6310 using symbolic names anyway, and the common ones like
6311 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6312
6313 sigfirst = siglast = (int)
6314 target_signal_from_command (atoi (*argv));
6315 if ((*argv)[digits] == '-')
6316 {
6317 siglast = (int)
6318 target_signal_from_command (atoi ((*argv) + digits + 1));
6319 }
6320 if (sigfirst > siglast)
6321 {
1777feb0 6322 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6323 signum = sigfirst;
6324 sigfirst = siglast;
6325 siglast = signum;
6326 }
6327 }
6328 else
6329 {
6330 oursig = target_signal_from_name (*argv);
6331 if (oursig != TARGET_SIGNAL_UNKNOWN)
6332 {
6333 sigfirst = siglast = (int) oursig;
6334 }
6335 else
6336 {
6337 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6338 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6339 }
6340 }
6341
6342 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6343 which signals to apply actions to. */
c906108c
SS
6344
6345 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6346 {
6347 switch ((enum target_signal) signum)
6348 {
6349 case TARGET_SIGNAL_TRAP:
6350 case TARGET_SIGNAL_INT:
6351 if (!allsigs && !sigs[signum])
6352 {
9e2f0ad4 6353 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6354Are you sure you want to change it? "),
6355 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6356 {
6357 sigs[signum] = 1;
6358 }
6359 else
6360 {
a3f17187 6361 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6362 gdb_flush (gdb_stdout);
6363 }
6364 }
6365 break;
6366 case TARGET_SIGNAL_0:
6367 case TARGET_SIGNAL_DEFAULT:
6368 case TARGET_SIGNAL_UNKNOWN:
6369 /* Make sure that "all" doesn't print these. */
6370 break;
6371 default:
6372 sigs[signum] = 1;
6373 break;
6374 }
6375 }
6376
6377 argv++;
6378 }
6379
3a031f65
PA
6380 for (signum = 0; signum < nsigs; signum++)
6381 if (sigs[signum])
6382 {
2455069d
UW
6383 signal_cache_update (-1);
6384 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
9b224c5e 6385 target_program_signals ((int) TARGET_SIGNAL_LAST, signal_program);
c906108c 6386
3a031f65
PA
6387 if (from_tty)
6388 {
6389 /* Show the results. */
6390 sig_print_header ();
6391 for (; signum < nsigs; signum++)
6392 if (sigs[signum])
6393 sig_print_info (signum);
6394 }
6395
6396 break;
6397 }
c906108c
SS
6398
6399 do_cleanups (old_chain);
6400}
6401
6402static void
96baa820 6403xdb_handle_command (char *args, int from_tty)
c906108c
SS
6404{
6405 char **argv;
6406 struct cleanup *old_chain;
6407
d1a41061
PP
6408 if (args == NULL)
6409 error_no_arg (_("xdb command"));
6410
1777feb0 6411 /* Break the command line up into args. */
c906108c 6412
d1a41061 6413 argv = gdb_buildargv (args);
7a292a7a 6414 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6415 if (argv[1] != (char *) NULL)
6416 {
6417 char *argBuf;
6418 int bufLen;
6419
6420 bufLen = strlen (argv[0]) + 20;
6421 argBuf = (char *) xmalloc (bufLen);
6422 if (argBuf)
6423 {
6424 int validFlag = 1;
6425 enum target_signal oursig;
6426
6427 oursig = target_signal_from_name (argv[0]);
6428 memset (argBuf, 0, bufLen);
6429 if (strcmp (argv[1], "Q") == 0)
6430 sprintf (argBuf, "%s %s", argv[0], "noprint");
6431 else
6432 {
6433 if (strcmp (argv[1], "s") == 0)
6434 {
6435 if (!signal_stop[oursig])
6436 sprintf (argBuf, "%s %s", argv[0], "stop");
6437 else
6438 sprintf (argBuf, "%s %s", argv[0], "nostop");
6439 }
6440 else if (strcmp (argv[1], "i") == 0)
6441 {
6442 if (!signal_program[oursig])
6443 sprintf (argBuf, "%s %s", argv[0], "pass");
6444 else
6445 sprintf (argBuf, "%s %s", argv[0], "nopass");
6446 }
6447 else if (strcmp (argv[1], "r") == 0)
6448 {
6449 if (!signal_print[oursig])
6450 sprintf (argBuf, "%s %s", argv[0], "print");
6451 else
6452 sprintf (argBuf, "%s %s", argv[0], "noprint");
6453 }
6454 else
6455 validFlag = 0;
6456 }
6457 if (validFlag)
6458 handle_command (argBuf, from_tty);
6459 else
a3f17187 6460 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6461 if (argBuf)
b8c9b27d 6462 xfree (argBuf);
c906108c
SS
6463 }
6464 }
6465 do_cleanups (old_chain);
6466}
6467
ed01b82c
PA
6468enum target_signal
6469target_signal_from_command (int num)
6470{
6471 if (num >= 1 && num <= 15)
6472 return (enum target_signal) num;
6473 error (_("Only signals 1-15 are valid as numeric signals.\n\
6474Use \"info signals\" for a list of symbolic signals."));
6475}
6476
c906108c
SS
6477/* Print current contents of the tables set by the handle command.
6478 It is possible we should just be printing signals actually used
6479 by the current target (but for things to work right when switching
6480 targets, all signals should be in the signal tables). */
6481
6482static void
96baa820 6483signals_info (char *signum_exp, int from_tty)
c906108c
SS
6484{
6485 enum target_signal oursig;
abbb1732 6486
c906108c
SS
6487 sig_print_header ();
6488
6489 if (signum_exp)
6490 {
6491 /* First see if this is a symbol name. */
6492 oursig = target_signal_from_name (signum_exp);
6493 if (oursig == TARGET_SIGNAL_UNKNOWN)
6494 {
6495 /* No, try numeric. */
6496 oursig =
bb518678 6497 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6498 }
6499 sig_print_info (oursig);
6500 return;
6501 }
6502
6503 printf_filtered ("\n");
6504 /* These ugly casts brought to you by the native VAX compiler. */
6505 for (oursig = TARGET_SIGNAL_FIRST;
6506 (int) oursig < (int) TARGET_SIGNAL_LAST;
6507 oursig = (enum target_signal) ((int) oursig + 1))
6508 {
6509 QUIT;
6510
6511 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6512 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6513 sig_print_info (oursig);
6514 }
6515
3e43a32a
MS
6516 printf_filtered (_("\nUse the \"handle\" command "
6517 "to change these tables.\n"));
c906108c 6518}
4aa995e1 6519
c709acd1
PA
6520/* Check if it makes sense to read $_siginfo from the current thread
6521 at this point. If not, throw an error. */
6522
6523static void
6524validate_siginfo_access (void)
6525{
6526 /* No current inferior, no siginfo. */
6527 if (ptid_equal (inferior_ptid, null_ptid))
6528 error (_("No thread selected."));
6529
6530 /* Don't try to read from a dead thread. */
6531 if (is_exited (inferior_ptid))
6532 error (_("The current thread has terminated"));
6533
6534 /* ... or from a spinning thread. */
6535 if (is_running (inferior_ptid))
6536 error (_("Selected thread is running."));
6537}
6538
4aa995e1
PA
6539/* The $_siginfo convenience variable is a bit special. We don't know
6540 for sure the type of the value until we actually have a chance to
7a9dd1b2 6541 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6542 also dependent on which thread you have selected.
6543
6544 1. making $_siginfo be an internalvar that creates a new value on
6545 access.
6546
6547 2. making the value of $_siginfo be an lval_computed value. */
6548
6549/* This function implements the lval_computed support for reading a
6550 $_siginfo value. */
6551
6552static void
6553siginfo_value_read (struct value *v)
6554{
6555 LONGEST transferred;
6556
c709acd1
PA
6557 validate_siginfo_access ();
6558
4aa995e1
PA
6559 transferred =
6560 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6561 NULL,
6562 value_contents_all_raw (v),
6563 value_offset (v),
6564 TYPE_LENGTH (value_type (v)));
6565
6566 if (transferred != TYPE_LENGTH (value_type (v)))
6567 error (_("Unable to read siginfo"));
6568}
6569
6570/* This function implements the lval_computed support for writing a
6571 $_siginfo value. */
6572
6573static void
6574siginfo_value_write (struct value *v, struct value *fromval)
6575{
6576 LONGEST transferred;
6577
c709acd1
PA
6578 validate_siginfo_access ();
6579
4aa995e1
PA
6580 transferred = target_write (&current_target,
6581 TARGET_OBJECT_SIGNAL_INFO,
6582 NULL,
6583 value_contents_all_raw (fromval),
6584 value_offset (v),
6585 TYPE_LENGTH (value_type (fromval)));
6586
6587 if (transferred != TYPE_LENGTH (value_type (fromval)))
6588 error (_("Unable to write siginfo"));
6589}
6590
c8f2448a 6591static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6592 {
6593 siginfo_value_read,
6594 siginfo_value_write
6595 };
6596
6597/* Return a new value with the correct type for the siginfo object of
78267919
UW
6598 the current thread using architecture GDBARCH. Return a void value
6599 if there's no object available. */
4aa995e1 6600
2c0b251b 6601static struct value *
78267919 6602siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6603{
4aa995e1 6604 if (target_has_stack
78267919
UW
6605 && !ptid_equal (inferior_ptid, null_ptid)
6606 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6607 {
78267919 6608 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6609
78267919 6610 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6611 }
6612
78267919 6613 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6614}
6615
c906108c 6616\f
16c381f0
JK
6617/* infcall_suspend_state contains state about the program itself like its
6618 registers and any signal it received when it last stopped.
6619 This state must be restored regardless of how the inferior function call
6620 ends (either successfully, or after it hits a breakpoint or signal)
6621 if the program is to properly continue where it left off. */
6622
6623struct infcall_suspend_state
7a292a7a 6624{
16c381f0
JK
6625 struct thread_suspend_state thread_suspend;
6626 struct inferior_suspend_state inferior_suspend;
6627
6628 /* Other fields: */
7a292a7a 6629 CORE_ADDR stop_pc;
b89667eb 6630 struct regcache *registers;
1736ad11 6631
35515841 6632 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6633 struct gdbarch *siginfo_gdbarch;
6634
6635 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6636 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6637 content would be invalid. */
6638 gdb_byte *siginfo_data;
b89667eb
DE
6639};
6640
16c381f0
JK
6641struct infcall_suspend_state *
6642save_infcall_suspend_state (void)
b89667eb 6643{
16c381f0 6644 struct infcall_suspend_state *inf_state;
b89667eb 6645 struct thread_info *tp = inferior_thread ();
16c381f0 6646 struct inferior *inf = current_inferior ();
1736ad11
JK
6647 struct regcache *regcache = get_current_regcache ();
6648 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6649 gdb_byte *siginfo_data = NULL;
6650
6651 if (gdbarch_get_siginfo_type_p (gdbarch))
6652 {
6653 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6654 size_t len = TYPE_LENGTH (type);
6655 struct cleanup *back_to;
6656
6657 siginfo_data = xmalloc (len);
6658 back_to = make_cleanup (xfree, siginfo_data);
6659
6660 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6661 siginfo_data, 0, len) == len)
6662 discard_cleanups (back_to);
6663 else
6664 {
6665 /* Errors ignored. */
6666 do_cleanups (back_to);
6667 siginfo_data = NULL;
6668 }
6669 }
6670
16c381f0 6671 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6672
6673 if (siginfo_data)
6674 {
6675 inf_state->siginfo_gdbarch = gdbarch;
6676 inf_state->siginfo_data = siginfo_data;
6677 }
b89667eb 6678
16c381f0
JK
6679 inf_state->thread_suspend = tp->suspend;
6680 inf_state->inferior_suspend = inf->suspend;
6681
35515841
JK
6682 /* run_inferior_call will not use the signal due to its `proceed' call with
6683 TARGET_SIGNAL_0 anyway. */
16c381f0 6684 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6685
b89667eb
DE
6686 inf_state->stop_pc = stop_pc;
6687
1736ad11 6688 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6689
6690 return inf_state;
6691}
6692
6693/* Restore inferior session state to INF_STATE. */
6694
6695void
16c381f0 6696restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6697{
6698 struct thread_info *tp = inferior_thread ();
16c381f0 6699 struct inferior *inf = current_inferior ();
1736ad11
JK
6700 struct regcache *regcache = get_current_regcache ();
6701 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6702
16c381f0
JK
6703 tp->suspend = inf_state->thread_suspend;
6704 inf->suspend = inf_state->inferior_suspend;
6705
b89667eb
DE
6706 stop_pc = inf_state->stop_pc;
6707
1736ad11
JK
6708 if (inf_state->siginfo_gdbarch == gdbarch)
6709 {
6710 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6711 size_t len = TYPE_LENGTH (type);
6712
6713 /* Errors ignored. */
6714 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6715 inf_state->siginfo_data, 0, len);
6716 }
6717
b89667eb
DE
6718 /* The inferior can be gone if the user types "print exit(0)"
6719 (and perhaps other times). */
6720 if (target_has_execution)
6721 /* NB: The register write goes through to the target. */
1736ad11 6722 regcache_cpy (regcache, inf_state->registers);
803b5f95 6723
16c381f0 6724 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6725}
6726
6727static void
16c381f0 6728do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6729{
16c381f0 6730 restore_infcall_suspend_state (state);
b89667eb
DE
6731}
6732
6733struct cleanup *
16c381f0
JK
6734make_cleanup_restore_infcall_suspend_state
6735 (struct infcall_suspend_state *inf_state)
b89667eb 6736{
16c381f0 6737 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6738}
6739
6740void
16c381f0 6741discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6742{
6743 regcache_xfree (inf_state->registers);
803b5f95 6744 xfree (inf_state->siginfo_data);
b89667eb
DE
6745 xfree (inf_state);
6746}
6747
6748struct regcache *
16c381f0 6749get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6750{
6751 return inf_state->registers;
6752}
6753
16c381f0
JK
6754/* infcall_control_state contains state regarding gdb's control of the
6755 inferior itself like stepping control. It also contains session state like
6756 the user's currently selected frame. */
b89667eb 6757
16c381f0 6758struct infcall_control_state
b89667eb 6759{
16c381f0
JK
6760 struct thread_control_state thread_control;
6761 struct inferior_control_state inferior_control;
d82142e2
JK
6762
6763 /* Other fields: */
6764 enum stop_stack_kind stop_stack_dummy;
6765 int stopped_by_random_signal;
7a292a7a 6766 int stop_after_trap;
7a292a7a 6767
b89667eb 6768 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6769 struct frame_id selected_frame_id;
7a292a7a
SS
6770};
6771
c906108c 6772/* Save all of the information associated with the inferior<==>gdb
b89667eb 6773 connection. */
c906108c 6774
16c381f0
JK
6775struct infcall_control_state *
6776save_infcall_control_state (void)
c906108c 6777{
16c381f0 6778 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6779 struct thread_info *tp = inferior_thread ();
d6b48e9c 6780 struct inferior *inf = current_inferior ();
7a292a7a 6781
16c381f0
JK
6782 inf_status->thread_control = tp->control;
6783 inf_status->inferior_control = inf->control;
d82142e2 6784
8358c15c 6785 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6786 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6787
16c381f0
JK
6788 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6789 chain. If caller's caller is walking the chain, they'll be happier if we
6790 hand them back the original chain when restore_infcall_control_state is
6791 called. */
6792 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6793
6794 /* Other fields: */
6795 inf_status->stop_stack_dummy = stop_stack_dummy;
6796 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6797 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6798
206415a3 6799 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6800
7a292a7a 6801 return inf_status;
c906108c
SS
6802}
6803
c906108c 6804static int
96baa820 6805restore_selected_frame (void *args)
c906108c 6806{
488f131b 6807 struct frame_id *fid = (struct frame_id *) args;
c906108c 6808 struct frame_info *frame;
c906108c 6809
101dcfbe 6810 frame = frame_find_by_id (*fid);
c906108c 6811
aa0cd9c1
AC
6812 /* If inf_status->selected_frame_id is NULL, there was no previously
6813 selected frame. */
101dcfbe 6814 if (frame == NULL)
c906108c 6815 {
8a3fe4f8 6816 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6817 return 0;
6818 }
6819
0f7d239c 6820 select_frame (frame);
c906108c
SS
6821
6822 return (1);
6823}
6824
b89667eb
DE
6825/* Restore inferior session state to INF_STATUS. */
6826
c906108c 6827void
16c381f0 6828restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6829{
4e1c45ea 6830 struct thread_info *tp = inferior_thread ();
d6b48e9c 6831 struct inferior *inf = current_inferior ();
4e1c45ea 6832
8358c15c
JK
6833 if (tp->control.step_resume_breakpoint)
6834 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6835
5b79abe7
TT
6836 if (tp->control.exception_resume_breakpoint)
6837 tp->control.exception_resume_breakpoint->disposition
6838 = disp_del_at_next_stop;
6839
d82142e2 6840 /* Handle the bpstat_copy of the chain. */
16c381f0 6841 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6842
16c381f0
JK
6843 tp->control = inf_status->thread_control;
6844 inf->control = inf_status->inferior_control;
d82142e2
JK
6845
6846 /* Other fields: */
6847 stop_stack_dummy = inf_status->stop_stack_dummy;
6848 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6849 stop_after_trap = inf_status->stop_after_trap;
c906108c 6850
b89667eb 6851 if (target_has_stack)
c906108c 6852 {
c906108c 6853 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6854 walking the stack might encounter a garbage pointer and
6855 error() trying to dereference it. */
488f131b
JB
6856 if (catch_errors
6857 (restore_selected_frame, &inf_status->selected_frame_id,
6858 "Unable to restore previously selected frame:\n",
6859 RETURN_MASK_ERROR) == 0)
c906108c
SS
6860 /* Error in restoring the selected frame. Select the innermost
6861 frame. */
0f7d239c 6862 select_frame (get_current_frame ());
c906108c 6863 }
c906108c 6864
72cec141 6865 xfree (inf_status);
7a292a7a 6866}
c906108c 6867
74b7792f 6868static void
16c381f0 6869do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6870{
16c381f0 6871 restore_infcall_control_state (sts);
74b7792f
AC
6872}
6873
6874struct cleanup *
16c381f0
JK
6875make_cleanup_restore_infcall_control_state
6876 (struct infcall_control_state *inf_status)
74b7792f 6877{
16c381f0 6878 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6879}
6880
c906108c 6881void
16c381f0 6882discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6883{
8358c15c
JK
6884 if (inf_status->thread_control.step_resume_breakpoint)
6885 inf_status->thread_control.step_resume_breakpoint->disposition
6886 = disp_del_at_next_stop;
6887
5b79abe7
TT
6888 if (inf_status->thread_control.exception_resume_breakpoint)
6889 inf_status->thread_control.exception_resume_breakpoint->disposition
6890 = disp_del_at_next_stop;
6891
1777feb0 6892 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6893 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6894
72cec141 6895 xfree (inf_status);
7a292a7a 6896}
b89667eb 6897\f
0723dbf5
PA
6898int
6899ptid_match (ptid_t ptid, ptid_t filter)
6900{
0723dbf5
PA
6901 if (ptid_equal (filter, minus_one_ptid))
6902 return 1;
6903 if (ptid_is_pid (filter)
6904 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6905 return 1;
6906 else if (ptid_equal (ptid, filter))
6907 return 1;
6908
6909 return 0;
6910}
6911
ca6724c1
KB
6912/* restore_inferior_ptid() will be used by the cleanup machinery
6913 to restore the inferior_ptid value saved in a call to
6914 save_inferior_ptid(). */
ce696e05
KB
6915
6916static void
6917restore_inferior_ptid (void *arg)
6918{
6919 ptid_t *saved_ptid_ptr = arg;
abbb1732 6920
ce696e05
KB
6921 inferior_ptid = *saved_ptid_ptr;
6922 xfree (arg);
6923}
6924
6925/* Save the value of inferior_ptid so that it may be restored by a
6926 later call to do_cleanups(). Returns the struct cleanup pointer
6927 needed for later doing the cleanup. */
6928
6929struct cleanup *
6930save_inferior_ptid (void)
6931{
6932 ptid_t *saved_ptid_ptr;
6933
6934 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6935 *saved_ptid_ptr = inferior_ptid;
6936 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6937}
c5aa993b 6938\f
488f131b 6939
b2175913
MS
6940/* User interface for reverse debugging:
6941 Set exec-direction / show exec-direction commands
6942 (returns error unless target implements to_set_exec_direction method). */
6943
32231432 6944int execution_direction = EXEC_FORWARD;
b2175913
MS
6945static const char exec_forward[] = "forward";
6946static const char exec_reverse[] = "reverse";
6947static const char *exec_direction = exec_forward;
40478521 6948static const char *const exec_direction_names[] = {
b2175913
MS
6949 exec_forward,
6950 exec_reverse,
6951 NULL
6952};
6953
6954static void
6955set_exec_direction_func (char *args, int from_tty,
6956 struct cmd_list_element *cmd)
6957{
6958 if (target_can_execute_reverse)
6959 {
6960 if (!strcmp (exec_direction, exec_forward))
6961 execution_direction = EXEC_FORWARD;
6962 else if (!strcmp (exec_direction, exec_reverse))
6963 execution_direction = EXEC_REVERSE;
6964 }
8bbed405
MS
6965 else
6966 {
6967 exec_direction = exec_forward;
6968 error (_("Target does not support this operation."));
6969 }
b2175913
MS
6970}
6971
6972static void
6973show_exec_direction_func (struct ui_file *out, int from_tty,
6974 struct cmd_list_element *cmd, const char *value)
6975{
6976 switch (execution_direction) {
6977 case EXEC_FORWARD:
6978 fprintf_filtered (out, _("Forward.\n"));
6979 break;
6980 case EXEC_REVERSE:
6981 fprintf_filtered (out, _("Reverse.\n"));
6982 break;
b2175913 6983 default:
d8b34453
PA
6984 internal_error (__FILE__, __LINE__,
6985 _("bogus execution_direction value: %d"),
6986 (int) execution_direction);
b2175913
MS
6987 }
6988}
6989
6990/* User interface for non-stop mode. */
6991
ad52ddc6 6992int non_stop = 0;
ad52ddc6
PA
6993
6994static void
6995set_non_stop (char *args, int from_tty,
6996 struct cmd_list_element *c)
6997{
6998 if (target_has_execution)
6999 {
7000 non_stop_1 = non_stop;
7001 error (_("Cannot change this setting while the inferior is running."));
7002 }
7003
7004 non_stop = non_stop_1;
7005}
7006
7007static void
7008show_non_stop (struct ui_file *file, int from_tty,
7009 struct cmd_list_element *c, const char *value)
7010{
7011 fprintf_filtered (file,
7012 _("Controlling the inferior in non-stop mode is %s.\n"),
7013 value);
7014}
7015
d4db2f36
PA
7016static void
7017show_schedule_multiple (struct ui_file *file, int from_tty,
7018 struct cmd_list_element *c, const char *value)
7019{
3e43a32a
MS
7020 fprintf_filtered (file, _("Resuming the execution of threads "
7021 "of all processes is %s.\n"), value);
d4db2f36 7022}
ad52ddc6 7023
c906108c 7024void
96baa820 7025_initialize_infrun (void)
c906108c 7026{
52f0bd74
AC
7027 int i;
7028 int numsigs;
c906108c 7029
1bedd215
AC
7030 add_info ("signals", signals_info, _("\
7031What debugger does when program gets various signals.\n\
7032Specify a signal as argument to print info on that signal only."));
c906108c
SS
7033 add_info_alias ("handle", "signals", 0);
7034
1bedd215
AC
7035 add_com ("handle", class_run, handle_command, _("\
7036Specify how to handle a signal.\n\
c906108c
SS
7037Args are signals and actions to apply to those signals.\n\
7038Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7039from 1-15 are allowed for compatibility with old versions of GDB.\n\
7040Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7041The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7042used by the debugger, typically SIGTRAP and SIGINT.\n\
7043Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7044\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7045Stop means reenter debugger if this signal happens (implies print).\n\
7046Print means print a message if this signal happens.\n\
7047Pass means let program see this signal; otherwise program doesn't know.\n\
7048Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7049Pass and Stop may be combined."));
c906108c
SS
7050 if (xdb_commands)
7051 {
1bedd215
AC
7052 add_com ("lz", class_info, signals_info, _("\
7053What debugger does when program gets various signals.\n\
7054Specify a signal as argument to print info on that signal only."));
7055 add_com ("z", class_run, xdb_handle_command, _("\
7056Specify how to handle a signal.\n\
c906108c
SS
7057Args are signals and actions to apply to those signals.\n\
7058Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7059from 1-15 are allowed for compatibility with old versions of GDB.\n\
7060Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7061The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7062used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7063Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7064\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7065nopass), \"Q\" (noprint)\n\
7066Stop means reenter debugger if this signal happens (implies print).\n\
7067Print means print a message if this signal happens.\n\
7068Pass means let program see this signal; otherwise program doesn't know.\n\
7069Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7070Pass and Stop may be combined."));
c906108c
SS
7071 }
7072
7073 if (!dbx_commands)
1a966eab
AC
7074 stop_command = add_cmd ("stop", class_obscure,
7075 not_just_help_class_command, _("\
7076There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7077This allows you to set a list of commands to be run each time execution\n\
1a966eab 7078of the program stops."), &cmdlist);
c906108c 7079
85c07804
AC
7080 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7081Set inferior debugging."), _("\
7082Show inferior debugging."), _("\
7083When non-zero, inferior specific debugging is enabled."),
7084 NULL,
920d2a44 7085 show_debug_infrun,
85c07804 7086 &setdebuglist, &showdebuglist);
527159b7 7087
3e43a32a
MS
7088 add_setshow_boolean_cmd ("displaced", class_maintenance,
7089 &debug_displaced, _("\
237fc4c9
PA
7090Set displaced stepping debugging."), _("\
7091Show displaced stepping debugging."), _("\
7092When non-zero, displaced stepping specific debugging is enabled."),
7093 NULL,
7094 show_debug_displaced,
7095 &setdebuglist, &showdebuglist);
7096
ad52ddc6
PA
7097 add_setshow_boolean_cmd ("non-stop", no_class,
7098 &non_stop_1, _("\
7099Set whether gdb controls the inferior in non-stop mode."), _("\
7100Show whether gdb controls the inferior in non-stop mode."), _("\
7101When debugging a multi-threaded program and this setting is\n\
7102off (the default, also called all-stop mode), when one thread stops\n\
7103(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7104all other threads in the program while you interact with the thread of\n\
7105interest. When you continue or step a thread, you can allow the other\n\
7106threads to run, or have them remain stopped, but while you inspect any\n\
7107thread's state, all threads stop.\n\
7108\n\
7109In non-stop mode, when one thread stops, other threads can continue\n\
7110to run freely. You'll be able to step each thread independently,\n\
7111leave it stopped or free to run as needed."),
7112 set_non_stop,
7113 show_non_stop,
7114 &setlist,
7115 &showlist);
7116
c906108c 7117 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7118 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7119 signal_print = (unsigned char *)
7120 xmalloc (sizeof (signal_print[0]) * numsigs);
7121 signal_program = (unsigned char *)
7122 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7123 signal_pass = (unsigned char *)
7124 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7125 for (i = 0; i < numsigs; i++)
7126 {
7127 signal_stop[i] = 1;
7128 signal_print[i] = 1;
7129 signal_program[i] = 1;
7130 }
7131
7132 /* Signals caused by debugger's own actions
7133 should not be given to the program afterwards. */
7134 signal_program[TARGET_SIGNAL_TRAP] = 0;
7135 signal_program[TARGET_SIGNAL_INT] = 0;
7136
7137 /* Signals that are not errors should not normally enter the debugger. */
7138 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7139 signal_print[TARGET_SIGNAL_ALRM] = 0;
7140 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7141 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7142 signal_stop[TARGET_SIGNAL_PROF] = 0;
7143 signal_print[TARGET_SIGNAL_PROF] = 0;
7144 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7145 signal_print[TARGET_SIGNAL_CHLD] = 0;
7146 signal_stop[TARGET_SIGNAL_IO] = 0;
7147 signal_print[TARGET_SIGNAL_IO] = 0;
7148 signal_stop[TARGET_SIGNAL_POLL] = 0;
7149 signal_print[TARGET_SIGNAL_POLL] = 0;
7150 signal_stop[TARGET_SIGNAL_URG] = 0;
7151 signal_print[TARGET_SIGNAL_URG] = 0;
7152 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7153 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7154 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7155 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7156
cd0fc7c3
SS
7157 /* These signals are used internally by user-level thread
7158 implementations. (See signal(5) on Solaris.) Like the above
7159 signals, a healthy program receives and handles them as part of
7160 its normal operation. */
7161 signal_stop[TARGET_SIGNAL_LWP] = 0;
7162 signal_print[TARGET_SIGNAL_LWP] = 0;
7163 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7164 signal_print[TARGET_SIGNAL_WAITING] = 0;
7165 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7166 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7167
2455069d
UW
7168 /* Update cached state. */
7169 signal_cache_update (-1);
7170
85c07804
AC
7171 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7172 &stop_on_solib_events, _("\
7173Set stopping for shared library events."), _("\
7174Show stopping for shared library events."), _("\
c906108c
SS
7175If nonzero, gdb will give control to the user when the dynamic linker\n\
7176notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7177to the user would be loading/unloading of a new library."),
7178 NULL,
920d2a44 7179 show_stop_on_solib_events,
85c07804 7180 &setlist, &showlist);
c906108c 7181
7ab04401
AC
7182 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7183 follow_fork_mode_kind_names,
7184 &follow_fork_mode_string, _("\
7185Set debugger response to a program call of fork or vfork."), _("\
7186Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7187A fork or vfork creates a new process. follow-fork-mode can be:\n\
7188 parent - the original process is debugged after a fork\n\
7189 child - the new process is debugged after a fork\n\
ea1dd7bc 7190The unfollowed process will continue to run.\n\
7ab04401
AC
7191By default, the debugger will follow the parent process."),
7192 NULL,
920d2a44 7193 show_follow_fork_mode_string,
7ab04401
AC
7194 &setlist, &showlist);
7195
6c95b8df
PA
7196 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7197 follow_exec_mode_names,
7198 &follow_exec_mode_string, _("\
7199Set debugger response to a program call of exec."), _("\
7200Show debugger response to a program call of exec."), _("\
7201An exec call replaces the program image of a process.\n\
7202\n\
7203follow-exec-mode can be:\n\
7204\n\
cce7e648 7205 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7206to this new inferior. The program the process was running before\n\
7207the exec call can be restarted afterwards by restarting the original\n\
7208inferior.\n\
7209\n\
7210 same - the debugger keeps the process bound to the same inferior.\n\
7211The new executable image replaces the previous executable loaded in\n\
7212the inferior. Restarting the inferior after the exec call restarts\n\
7213the executable the process was running after the exec call.\n\
7214\n\
7215By default, the debugger will use the same inferior."),
7216 NULL,
7217 show_follow_exec_mode_string,
7218 &setlist, &showlist);
7219
7ab04401
AC
7220 add_setshow_enum_cmd ("scheduler-locking", class_run,
7221 scheduler_enums, &scheduler_mode, _("\
7222Set mode for locking scheduler during execution."), _("\
7223Show mode for locking scheduler during execution."), _("\
c906108c
SS
7224off == no locking (threads may preempt at any time)\n\
7225on == full locking (no thread except the current thread may run)\n\
7226step == scheduler locked during every single-step operation.\n\
7227 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7228 Other threads may run while stepping over a function call ('next')."),
7229 set_schedlock_func, /* traps on target vector */
920d2a44 7230 show_scheduler_mode,
7ab04401 7231 &setlist, &showlist);
5fbbeb29 7232
d4db2f36
PA
7233 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7234Set mode for resuming threads of all processes."), _("\
7235Show mode for resuming threads of all processes."), _("\
7236When on, execution commands (such as 'continue' or 'next') resume all\n\
7237threads of all processes. When off (which is the default), execution\n\
7238commands only resume the threads of the current process. The set of\n\
7239threads that are resumed is further refined by the scheduler-locking\n\
7240mode (see help set scheduler-locking)."),
7241 NULL,
7242 show_schedule_multiple,
7243 &setlist, &showlist);
7244
5bf193a2
AC
7245 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7246Set mode of the step operation."), _("\
7247Show mode of the step operation."), _("\
7248When set, doing a step over a function without debug line information\n\
7249will stop at the first instruction of that function. Otherwise, the\n\
7250function is skipped and the step command stops at a different source line."),
7251 NULL,
920d2a44 7252 show_step_stop_if_no_debug,
5bf193a2 7253 &setlist, &showlist);
ca6724c1 7254
fff08868
HZ
7255 add_setshow_enum_cmd ("displaced-stepping", class_run,
7256 can_use_displaced_stepping_enum,
7257 &can_use_displaced_stepping, _("\
237fc4c9
PA
7258Set debugger's willingness to use displaced stepping."), _("\
7259Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7260If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7261supported by the target architecture. If off, gdb will not use displaced\n\
7262stepping to step over breakpoints, even if such is supported by the target\n\
7263architecture. If auto (which is the default), gdb will use displaced stepping\n\
7264if the target architecture supports it and non-stop mode is active, but will not\n\
7265use it in all-stop mode (see help set non-stop)."),
7266 NULL,
7267 show_can_use_displaced_stepping,
7268 &setlist, &showlist);
237fc4c9 7269
b2175913
MS
7270 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7271 &exec_direction, _("Set direction of execution.\n\
7272Options are 'forward' or 'reverse'."),
7273 _("Show direction of execution (forward/reverse)."),
7274 _("Tells gdb whether to execute forward or backward."),
7275 set_exec_direction_func, show_exec_direction_func,
7276 &setlist, &showlist);
7277
6c95b8df
PA
7278 /* Set/show detach-on-fork: user-settable mode. */
7279
7280 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7281Set whether gdb will detach the child of a fork."), _("\
7282Show whether gdb will detach the child of a fork."), _("\
7283Tells gdb whether to detach the child of a fork."),
7284 NULL, NULL, &setlist, &showlist);
7285
03583c20
UW
7286 /* Set/show disable address space randomization mode. */
7287
7288 add_setshow_boolean_cmd ("disable-randomization", class_support,
7289 &disable_randomization, _("\
7290Set disabling of debuggee's virtual address space randomization."), _("\
7291Show disabling of debuggee's virtual address space randomization."), _("\
7292When this mode is on (which is the default), randomization of the virtual\n\
7293address space is disabled. Standalone programs run with the randomization\n\
7294enabled by default on some platforms."),
7295 &set_disable_randomization,
7296 &show_disable_randomization,
7297 &setlist, &showlist);
7298
ca6724c1 7299 /* ptid initializations */
ca6724c1
KB
7300 inferior_ptid = null_ptid;
7301 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7302
7303 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7304 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7305 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7306 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7307
7308 /* Explicitly create without lookup, since that tries to create a
7309 value with a void typed value, and when we get here, gdbarch
7310 isn't initialized yet. At this point, we're quite sure there
7311 isn't another convenience variable of the same name. */
7312 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7313
7314 add_setshow_boolean_cmd ("observer", no_class,
7315 &observer_mode_1, _("\
7316Set whether gdb controls the inferior in observer mode."), _("\
7317Show whether gdb controls the inferior in observer mode."), _("\
7318In observer mode, GDB can get data from the inferior, but not\n\
7319affect its execution. Registers and memory may not be changed,\n\
7320breakpoints may not be set, and the program cannot be interrupted\n\
7321or signalled."),
7322 set_observer_mode,
7323 show_observer_mode,
7324 &setlist,
7325 &showlist);
c906108c 7326}
This page took 2.249572 seconds and 4 git commands to generate.