2011-10-27 Phil Muldoon <pmuldoon@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
b4a14fd0 58#include "interps.h"
c906108c
SS
59
60/* Prototypes for local functions */
61
96baa820 62static void signals_info (char *, int);
c906108c 63
96baa820 64static void handle_command (char *, int);
c906108c 65
96baa820 66static void sig_print_info (enum target_signal);
c906108c 67
96baa820 68static void sig_print_header (void);
c906108c 69
74b7792f 70static void resume_cleanups (void *);
c906108c 71
96baa820 72static int hook_stop_stub (void *);
c906108c 73
96baa820
JM
74static int restore_selected_frame (void *);
75
4ef3f3be 76static int follow_fork (void);
96baa820
JM
77
78static void set_schedlock_func (char *args, int from_tty,
488f131b 79 struct cmd_list_element *c);
96baa820 80
a289b8f6
JK
81static int currently_stepping (struct thread_info *tp);
82
b3444185
PA
83static int currently_stepping_or_nexting_callback (struct thread_info *tp,
84 void *data);
a7212384 85
96baa820
JM
86static void xdb_handle_command (char *args, int from_tty);
87
6a6b96b9 88static int prepare_to_proceed (int);
ea67f13b 89
33d62d64
JK
90static void print_exited_reason (int exitstatus);
91
92static void print_signal_exited_reason (enum target_signal siggnal);
93
94static void print_no_history_reason (void);
95
96static void print_signal_received_reason (enum target_signal siggnal);
97
98static void print_end_stepping_range_reason (void);
99
96baa820 100void _initialize_infrun (void);
43ff13b4 101
e58b0e63
PA
102void nullify_last_target_wait_ptid (void);
103
2c03e5be 104static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
105
106static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
107
2484c66b
UW
108static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
109
5fbbeb29
CF
110/* When set, stop the 'step' command if we enter a function which has
111 no line number information. The normal behavior is that we step
112 over such function. */
113int step_stop_if_no_debug = 0;
920d2a44
AC
114static void
115show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
119}
5fbbeb29 120
1777feb0 121/* In asynchronous mode, but simulating synchronous execution. */
96baa820 122
43ff13b4
JM
123int sync_execution = 0;
124
c906108c
SS
125/* wait_for_inferior and normal_stop use this to notify the user
126 when the inferior stopped in a different thread than it had been
96baa820
JM
127 running in. */
128
39f77062 129static ptid_t previous_inferior_ptid;
7a292a7a 130
6c95b8df
PA
131/* Default behavior is to detach newly forked processes (legacy). */
132int detach_fork = 1;
133
237fc4c9
PA
134int debug_displaced = 0;
135static void
136show_debug_displaced (struct ui_file *file, int from_tty,
137 struct cmd_list_element *c, const char *value)
138{
139 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
140}
141
628fe4e4 142int debug_infrun = 0;
920d2a44
AC
143static void
144show_debug_infrun (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146{
147 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
148}
527159b7 149
03583c20
UW
150
151/* Support for disabling address space randomization. */
152
153int disable_randomization = 1;
154
155static void
156show_disable_randomization (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 if (target_supports_disable_randomization ())
160 fprintf_filtered (file,
161 _("Disabling randomization of debuggee's "
162 "virtual address space is %s.\n"),
163 value);
164 else
165 fputs_filtered (_("Disabling randomization of debuggee's "
166 "virtual address space is unsupported on\n"
167 "this platform.\n"), file);
168}
169
170static void
171set_disable_randomization (char *args, int from_tty,
172 struct cmd_list_element *c)
173{
174 if (!target_supports_disable_randomization ())
175 error (_("Disabling randomization of debuggee's "
176 "virtual address space is unsupported on\n"
177 "this platform."));
178}
179
180
d4f3574e
SS
181/* If the program uses ELF-style shared libraries, then calls to
182 functions in shared libraries go through stubs, which live in a
183 table called the PLT (Procedure Linkage Table). The first time the
184 function is called, the stub sends control to the dynamic linker,
185 which looks up the function's real address, patches the stub so
186 that future calls will go directly to the function, and then passes
187 control to the function.
188
189 If we are stepping at the source level, we don't want to see any of
190 this --- we just want to skip over the stub and the dynamic linker.
191 The simple approach is to single-step until control leaves the
192 dynamic linker.
193
ca557f44
AC
194 However, on some systems (e.g., Red Hat's 5.2 distribution) the
195 dynamic linker calls functions in the shared C library, so you
196 can't tell from the PC alone whether the dynamic linker is still
197 running. In this case, we use a step-resume breakpoint to get us
198 past the dynamic linker, as if we were using "next" to step over a
199 function call.
d4f3574e 200
cfd8ab24 201 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
202 linker code or not. Normally, this means we single-step. However,
203 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
204 address where we can place a step-resume breakpoint to get past the
205 linker's symbol resolution function.
206
cfd8ab24 207 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
208 pretty portable way, by comparing the PC against the address ranges
209 of the dynamic linker's sections.
210
211 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
212 it depends on internal details of the dynamic linker. It's usually
213 not too hard to figure out where to put a breakpoint, but it
214 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
215 sanity checking. If it can't figure things out, returning zero and
216 getting the (possibly confusing) stepping behavior is better than
217 signalling an error, which will obscure the change in the
218 inferior's state. */
c906108c 219
c906108c
SS
220/* This function returns TRUE if pc is the address of an instruction
221 that lies within the dynamic linker (such as the event hook, or the
222 dld itself).
223
224 This function must be used only when a dynamic linker event has
225 been caught, and the inferior is being stepped out of the hook, or
226 undefined results are guaranteed. */
227
228#ifndef SOLIB_IN_DYNAMIC_LINKER
229#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
230#endif
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
236static int non_stop_1 = 0;
237
238int observer_mode = 0;
239static int observer_mode_1 = 0;
240
241static void
242set_observer_mode (char *args, int from_tty,
243 struct cmd_list_element *c)
244{
245 extern int pagination_enabled;
246
247 if (target_has_execution)
248 {
249 observer_mode_1 = observer_mode;
250 error (_("Cannot change this setting while the inferior is running."));
251 }
252
253 observer_mode = observer_mode_1;
254
255 may_write_registers = !observer_mode;
256 may_write_memory = !observer_mode;
257 may_insert_breakpoints = !observer_mode;
258 may_insert_tracepoints = !observer_mode;
259 /* We can insert fast tracepoints in or out of observer mode,
260 but enable them if we're going into this mode. */
261 if (observer_mode)
262 may_insert_fast_tracepoints = 1;
263 may_stop = !observer_mode;
264 update_target_permissions ();
265
266 /* Going *into* observer mode we must force non-stop, then
267 going out we leave it that way. */
268 if (observer_mode)
269 {
270 target_async_permitted = 1;
271 pagination_enabled = 0;
272 non_stop = non_stop_1 = 1;
273 }
274
275 if (from_tty)
276 printf_filtered (_("Observer mode is now %s.\n"),
277 (observer_mode ? "on" : "off"));
278}
279
280static void
281show_observer_mode (struct ui_file *file, int from_tty,
282 struct cmd_list_element *c, const char *value)
283{
284 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
285}
286
287/* This updates the value of observer mode based on changes in
288 permissions. Note that we are deliberately ignoring the values of
289 may-write-registers and may-write-memory, since the user may have
290 reason to enable these during a session, for instance to turn on a
291 debugging-related global. */
292
293void
294update_observer_mode (void)
295{
296 int newval;
297
298 newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310}
c2c6d25f 311
c906108c
SS
312/* Tables of how to react to signals; the user sets them. */
313
314static unsigned char *signal_stop;
315static unsigned char *signal_print;
316static unsigned char *signal_program;
317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
321static unsigned char *signal_pass;
322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
1777feb0 339/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 340
edb3359d 341#define RESUME_ALL minus_one_ptid
c906108c
SS
342
343/* Command list pointer for the "stop" placeholder. */
344
345static struct cmd_list_element *stop_command;
346
c906108c
SS
347/* Function inferior was in as of last step command. */
348
349static struct symbol *step_start_function;
350
c906108c
SS
351/* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
628fe4e4 353int stop_on_solib_events;
920d2a44
AC
354static void
355show_stop_on_solib_events (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c, const char *value)
357{
358 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
359 value);
360}
c906108c 361
c906108c
SS
362/* Nonzero means expecting a trace trap
363 and should stop the inferior and return silently when it happens. */
364
365int stop_after_trap;
366
642fd101
DE
367/* Save register contents here when executing a "finish" command or are
368 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
369 Thus this contains the return value from the called function (assuming
370 values are returned in a register). */
371
72cec141 372struct regcache *stop_registers;
c906108c 373
c906108c
SS
374/* Nonzero after stop if current stack frame should be printed. */
375
376static int stop_print_frame;
377
e02bc4cc 378/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
379 returned by target_wait()/deprecated_target_wait_hook(). This
380 information is returned by get_last_target_status(). */
39f77062 381static ptid_t target_last_wait_ptid;
e02bc4cc
DS
382static struct target_waitstatus target_last_waitstatus;
383
0d1e5fa7
PA
384static void context_switch (ptid_t ptid);
385
4e1c45ea 386void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
387
388void init_infwait_state (void);
a474d7c2 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
488f131b 393static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
e58b0e63
PA
411/* Tell the target to follow the fork we're stopped at. Returns true
412 if the inferior should be resumed; false, if the target for some
413 reason decided it's best not to resume. */
414
6604731b 415static int
4ef3f3be 416follow_fork (void)
c906108c 417{
ea1dd7bc 418 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
419 int should_resume = 1;
420 struct thread_info *tp;
421
422 /* Copy user stepping state to the new inferior thread. FIXME: the
423 followed fork child thread should have a copy of most of the
4e3990f4
DE
424 parent thread structure's run control related fields, not just these.
425 Initialized to avoid "may be used uninitialized" warnings from gcc. */
426 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 427 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
428 CORE_ADDR step_range_start = 0;
429 CORE_ADDR step_range_end = 0;
430 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
431
432 if (!non_stop)
433 {
434 ptid_t wait_ptid;
435 struct target_waitstatus wait_status;
436
437 /* Get the last target status returned by target_wait(). */
438 get_last_target_status (&wait_ptid, &wait_status);
439
440 /* If not stopped at a fork event, then there's nothing else to
441 do. */
442 if (wait_status.kind != TARGET_WAITKIND_FORKED
443 && wait_status.kind != TARGET_WAITKIND_VFORKED)
444 return 1;
445
446 /* Check if we switched over from WAIT_PTID, since the event was
447 reported. */
448 if (!ptid_equal (wait_ptid, minus_one_ptid)
449 && !ptid_equal (inferior_ptid, wait_ptid))
450 {
451 /* We did. Switch back to WAIT_PTID thread, to tell the
452 target to follow it (in either direction). We'll
453 afterwards refuse to resume, and inform the user what
454 happened. */
455 switch_to_thread (wait_ptid);
456 should_resume = 0;
457 }
458 }
459
460 tp = inferior_thread ();
461
462 /* If there were any forks/vforks that were caught and are now to be
463 followed, then do so now. */
464 switch (tp->pending_follow.kind)
465 {
466 case TARGET_WAITKIND_FORKED:
467 case TARGET_WAITKIND_VFORKED:
468 {
469 ptid_t parent, child;
470
471 /* If the user did a next/step, etc, over a fork call,
472 preserve the stepping state in the fork child. */
473 if (follow_child && should_resume)
474 {
8358c15c
JK
475 step_resume_breakpoint = clone_momentary_breakpoint
476 (tp->control.step_resume_breakpoint);
16c381f0
JK
477 step_range_start = tp->control.step_range_start;
478 step_range_end = tp->control.step_range_end;
479 step_frame_id = tp->control.step_frame_id;
186c406b
TT
480 exception_resume_breakpoint
481 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
482
483 /* For now, delete the parent's sr breakpoint, otherwise,
484 parent/child sr breakpoints are considered duplicates,
485 and the child version will not be installed. Remove
486 this when the breakpoints module becomes aware of
487 inferiors and address spaces. */
488 delete_step_resume_breakpoint (tp);
16c381f0
JK
489 tp->control.step_range_start = 0;
490 tp->control.step_range_end = 0;
491 tp->control.step_frame_id = null_frame_id;
186c406b 492 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
493 }
494
495 parent = inferior_ptid;
496 child = tp->pending_follow.value.related_pid;
497
498 /* Tell the target to do whatever is necessary to follow
499 either parent or child. */
500 if (target_follow_fork (follow_child))
501 {
502 /* Target refused to follow, or there's some other reason
503 we shouldn't resume. */
504 should_resume = 0;
505 }
506 else
507 {
508 /* This pending follow fork event is now handled, one way
509 or another. The previous selected thread may be gone
510 from the lists by now, but if it is still around, need
511 to clear the pending follow request. */
e09875d4 512 tp = find_thread_ptid (parent);
e58b0e63
PA
513 if (tp)
514 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
515
516 /* This makes sure we don't try to apply the "Switched
517 over from WAIT_PID" logic above. */
518 nullify_last_target_wait_ptid ();
519
1777feb0 520 /* If we followed the child, switch to it... */
e58b0e63
PA
521 if (follow_child)
522 {
523 switch_to_thread (child);
524
525 /* ... and preserve the stepping state, in case the
526 user was stepping over the fork call. */
527 if (should_resume)
528 {
529 tp = inferior_thread ();
8358c15c
JK
530 tp->control.step_resume_breakpoint
531 = step_resume_breakpoint;
16c381f0
JK
532 tp->control.step_range_start = step_range_start;
533 tp->control.step_range_end = step_range_end;
534 tp->control.step_frame_id = step_frame_id;
186c406b
TT
535 tp->control.exception_resume_breakpoint
536 = exception_resume_breakpoint;
e58b0e63
PA
537 }
538 else
539 {
540 /* If we get here, it was because we're trying to
541 resume from a fork catchpoint, but, the user
542 has switched threads away from the thread that
543 forked. In that case, the resume command
544 issued is most likely not applicable to the
545 child, so just warn, and refuse to resume. */
3e43a32a
MS
546 warning (_("Not resuming: switched threads "
547 "before following fork child.\n"));
e58b0e63
PA
548 }
549
550 /* Reset breakpoints in the child as appropriate. */
551 follow_inferior_reset_breakpoints ();
552 }
553 else
554 switch_to_thread (parent);
555 }
556 }
557 break;
558 case TARGET_WAITKIND_SPURIOUS:
559 /* Nothing to follow. */
560 break;
561 default:
562 internal_error (__FILE__, __LINE__,
563 "Unexpected pending_follow.kind %d\n",
564 tp->pending_follow.kind);
565 break;
566 }
c906108c 567
e58b0e63 568 return should_resume;
c906108c
SS
569}
570
6604731b
DJ
571void
572follow_inferior_reset_breakpoints (void)
c906108c 573{
4e1c45ea
PA
574 struct thread_info *tp = inferior_thread ();
575
6604731b
DJ
576 /* Was there a step_resume breakpoint? (There was if the user
577 did a "next" at the fork() call.) If so, explicitly reset its
578 thread number.
579
580 step_resumes are a form of bp that are made to be per-thread.
581 Since we created the step_resume bp when the parent process
582 was being debugged, and now are switching to the child process,
583 from the breakpoint package's viewpoint, that's a switch of
584 "threads". We must update the bp's notion of which thread
585 it is for, or it'll be ignored when it triggers. */
586
8358c15c
JK
587 if (tp->control.step_resume_breakpoint)
588 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 589
186c406b
TT
590 if (tp->control.exception_resume_breakpoint)
591 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
592
6604731b
DJ
593 /* Reinsert all breakpoints in the child. The user may have set
594 breakpoints after catching the fork, in which case those
595 were never set in the child, but only in the parent. This makes
596 sure the inserted breakpoints match the breakpoint list. */
597
598 breakpoint_re_set ();
599 insert_breakpoints ();
c906108c 600}
c906108c 601
6c95b8df
PA
602/* The child has exited or execed: resume threads of the parent the
603 user wanted to be executing. */
604
605static int
606proceed_after_vfork_done (struct thread_info *thread,
607 void *arg)
608{
609 int pid = * (int *) arg;
610
611 if (ptid_get_pid (thread->ptid) == pid
612 && is_running (thread->ptid)
613 && !is_executing (thread->ptid)
614 && !thread->stop_requested
16c381f0 615 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
616 {
617 if (debug_infrun)
618 fprintf_unfiltered (gdb_stdlog,
619 "infrun: resuming vfork parent thread %s\n",
620 target_pid_to_str (thread->ptid));
621
622 switch_to_thread (thread->ptid);
623 clear_proceed_status ();
624 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
625 }
626
627 return 0;
628}
629
630/* Called whenever we notice an exec or exit event, to handle
631 detaching or resuming a vfork parent. */
632
633static void
634handle_vfork_child_exec_or_exit (int exec)
635{
636 struct inferior *inf = current_inferior ();
637
638 if (inf->vfork_parent)
639 {
640 int resume_parent = -1;
641
642 /* This exec or exit marks the end of the shared memory region
643 between the parent and the child. If the user wanted to
644 detach from the parent, now is the time. */
645
646 if (inf->vfork_parent->pending_detach)
647 {
648 struct thread_info *tp;
649 struct cleanup *old_chain;
650 struct program_space *pspace;
651 struct address_space *aspace;
652
1777feb0 653 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
654
655 old_chain = make_cleanup_restore_current_thread ();
656
657 /* We're letting loose of the parent. */
658 tp = any_live_thread_of_process (inf->vfork_parent->pid);
659 switch_to_thread (tp->ptid);
660
661 /* We're about to detach from the parent, which implicitly
662 removes breakpoints from its address space. There's a
663 catch here: we want to reuse the spaces for the child,
664 but, parent/child are still sharing the pspace at this
665 point, although the exec in reality makes the kernel give
666 the child a fresh set of new pages. The problem here is
667 that the breakpoints module being unaware of this, would
668 likely chose the child process to write to the parent
669 address space. Swapping the child temporarily away from
670 the spaces has the desired effect. Yes, this is "sort
671 of" a hack. */
672
673 pspace = inf->pspace;
674 aspace = inf->aspace;
675 inf->aspace = NULL;
676 inf->pspace = NULL;
677
678 if (debug_infrun || info_verbose)
679 {
680 target_terminal_ours ();
681
682 if (exec)
683 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
684 "Detaching vfork parent process "
685 "%d after child exec.\n",
6c95b8df
PA
686 inf->vfork_parent->pid);
687 else
688 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
689 "Detaching vfork parent process "
690 "%d after child exit.\n",
6c95b8df
PA
691 inf->vfork_parent->pid);
692 }
693
694 target_detach (NULL, 0);
695
696 /* Put it back. */
697 inf->pspace = pspace;
698 inf->aspace = aspace;
699
700 do_cleanups (old_chain);
701 }
702 else if (exec)
703 {
704 /* We're staying attached to the parent, so, really give the
705 child a new address space. */
706 inf->pspace = add_program_space (maybe_new_address_space ());
707 inf->aspace = inf->pspace->aspace;
708 inf->removable = 1;
709 set_current_program_space (inf->pspace);
710
711 resume_parent = inf->vfork_parent->pid;
712
713 /* Break the bonds. */
714 inf->vfork_parent->vfork_child = NULL;
715 }
716 else
717 {
718 struct cleanup *old_chain;
719 struct program_space *pspace;
720
721 /* If this is a vfork child exiting, then the pspace and
722 aspaces were shared with the parent. Since we're
723 reporting the process exit, we'll be mourning all that is
724 found in the address space, and switching to null_ptid,
725 preparing to start a new inferior. But, since we don't
726 want to clobber the parent's address/program spaces, we
727 go ahead and create a new one for this exiting
728 inferior. */
729
730 /* Switch to null_ptid, so that clone_program_space doesn't want
731 to read the selected frame of a dead process. */
732 old_chain = save_inferior_ptid ();
733 inferior_ptid = null_ptid;
734
735 /* This inferior is dead, so avoid giving the breakpoints
736 module the option to write through to it (cloning a
737 program space resets breakpoints). */
738 inf->aspace = NULL;
739 inf->pspace = NULL;
740 pspace = add_program_space (maybe_new_address_space ());
741 set_current_program_space (pspace);
742 inf->removable = 1;
743 clone_program_space (pspace, inf->vfork_parent->pspace);
744 inf->pspace = pspace;
745 inf->aspace = pspace->aspace;
746
747 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 748 inferior. */
6c95b8df
PA
749 do_cleanups (old_chain);
750
751 resume_parent = inf->vfork_parent->pid;
752 /* Break the bonds. */
753 inf->vfork_parent->vfork_child = NULL;
754 }
755
756 inf->vfork_parent = NULL;
757
758 gdb_assert (current_program_space == inf->pspace);
759
760 if (non_stop && resume_parent != -1)
761 {
762 /* If the user wanted the parent to be running, let it go
763 free now. */
764 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
765
766 if (debug_infrun)
3e43a32a
MS
767 fprintf_unfiltered (gdb_stdlog,
768 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
769 resume_parent);
770
771 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
772
773 do_cleanups (old_chain);
774 }
775 }
776}
777
778/* Enum strings for "set|show displaced-stepping". */
779
780static const char follow_exec_mode_new[] = "new";
781static const char follow_exec_mode_same[] = "same";
782static const char *follow_exec_mode_names[] =
783{
784 follow_exec_mode_new,
785 follow_exec_mode_same,
786 NULL,
787};
788
789static const char *follow_exec_mode_string = follow_exec_mode_same;
790static void
791show_follow_exec_mode_string (struct ui_file *file, int from_tty,
792 struct cmd_list_element *c, const char *value)
793{
794 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
795}
796
1777feb0 797/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 798
c906108c 799static void
3a3e9ee3 800follow_exec (ptid_t pid, char *execd_pathname)
c906108c 801{
4e1c45ea 802 struct thread_info *th = inferior_thread ();
6c95b8df 803 struct inferior *inf = current_inferior ();
7a292a7a 804
c906108c
SS
805 /* This is an exec event that we actually wish to pay attention to.
806 Refresh our symbol table to the newly exec'd program, remove any
807 momentary bp's, etc.
808
809 If there are breakpoints, they aren't really inserted now,
810 since the exec() transformed our inferior into a fresh set
811 of instructions.
812
813 We want to preserve symbolic breakpoints on the list, since
814 we have hopes that they can be reset after the new a.out's
815 symbol table is read.
816
817 However, any "raw" breakpoints must be removed from the list
818 (e.g., the solib bp's), since their address is probably invalid
819 now.
820
821 And, we DON'T want to call delete_breakpoints() here, since
822 that may write the bp's "shadow contents" (the instruction
823 value that was overwritten witha TRAP instruction). Since
1777feb0 824 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
825
826 mark_breakpoints_out ();
827
c906108c
SS
828 update_breakpoints_after_exec ();
829
830 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 831 statement through an exec(). */
8358c15c 832 th->control.step_resume_breakpoint = NULL;
186c406b 833 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
834 th->control.step_range_start = 0;
835 th->control.step_range_end = 0;
c906108c 836
a75724bc
PA
837 /* The target reports the exec event to the main thread, even if
838 some other thread does the exec, and even if the main thread was
839 already stopped --- if debugging in non-stop mode, it's possible
840 the user had the main thread held stopped in the previous image
841 --- release it now. This is the same behavior as step-over-exec
842 with scheduler-locking on in all-stop mode. */
843 th->stop_requested = 0;
844
1777feb0 845 /* What is this a.out's name? */
6c95b8df
PA
846 printf_unfiltered (_("%s is executing new program: %s\n"),
847 target_pid_to_str (inferior_ptid),
848 execd_pathname);
c906108c
SS
849
850 /* We've followed the inferior through an exec. Therefore, the
1777feb0 851 inferior has essentially been killed & reborn. */
7a292a7a 852
c906108c 853 gdb_flush (gdb_stdout);
6ca15a4b
PA
854
855 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
856
857 if (gdb_sysroot && *gdb_sysroot)
858 {
859 char *name = alloca (strlen (gdb_sysroot)
860 + strlen (execd_pathname)
861 + 1);
abbb1732 862
e85a822c
DJ
863 strcpy (name, gdb_sysroot);
864 strcat (name, execd_pathname);
865 execd_pathname = name;
866 }
c906108c 867
cce9b6bf
PA
868 /* Reset the shared library package. This ensures that we get a
869 shlib event when the child reaches "_start", at which point the
870 dld will have had a chance to initialize the child. */
871 /* Also, loading a symbol file below may trigger symbol lookups, and
872 we don't want those to be satisfied by the libraries of the
873 previous incarnation of this process. */
874 no_shared_libraries (NULL, 0);
875
6c95b8df
PA
876 if (follow_exec_mode_string == follow_exec_mode_new)
877 {
878 struct program_space *pspace;
6c95b8df
PA
879
880 /* The user wants to keep the old inferior and program spaces
881 around. Create a new fresh one, and switch to it. */
882
883 inf = add_inferior (current_inferior ()->pid);
884 pspace = add_program_space (maybe_new_address_space ());
885 inf->pspace = pspace;
886 inf->aspace = pspace->aspace;
887
888 exit_inferior_num_silent (current_inferior ()->num);
889
890 set_current_inferior (inf);
891 set_current_program_space (pspace);
892 }
893
894 gdb_assert (current_program_space == inf->pspace);
895
1777feb0 896 /* That a.out is now the one to use. */
6c95b8df
PA
897 exec_file_attach (execd_pathname, 0);
898
c1e56572
JK
899 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
900 (Position Independent Executable) main symbol file will get applied by
901 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
902 the breakpoints with the zero displacement. */
903
904 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
905 NULL, 0);
906
907 set_initial_language ();
c906108c 908
7a292a7a 909#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 910 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 911#else
268a4a75 912 solib_create_inferior_hook (0);
7a292a7a 913#endif
c906108c 914
4efc6507
DE
915 jit_inferior_created_hook ();
916
c1e56572
JK
917 breakpoint_re_set ();
918
c906108c
SS
919 /* Reinsert all breakpoints. (Those which were symbolic have
920 been reset to the proper address in the new a.out, thanks
1777feb0 921 to symbol_file_command...). */
c906108c
SS
922 insert_breakpoints ();
923
924 /* The next resume of this inferior should bring it to the shlib
925 startup breakpoints. (If the user had also set bp's on
926 "main" from the old (parent) process, then they'll auto-
1777feb0 927 matically get reset there in the new process.). */
c906108c
SS
928}
929
930/* Non-zero if we just simulating a single-step. This is needed
931 because we cannot remove the breakpoints in the inferior process
932 until after the `wait' in `wait_for_inferior'. */
933static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
934
935/* The thread we inserted single-step breakpoints for. */
936static ptid_t singlestep_ptid;
937
fd48f117
DJ
938/* PC when we started this single-step. */
939static CORE_ADDR singlestep_pc;
940
9f976b41
DJ
941/* If another thread hit the singlestep breakpoint, we save the original
942 thread here so that we can resume single-stepping it later. */
943static ptid_t saved_singlestep_ptid;
944static int stepping_past_singlestep_breakpoint;
6a6b96b9 945
ca67fcb8
VP
946/* If not equal to null_ptid, this means that after stepping over breakpoint
947 is finished, we need to switch to deferred_step_ptid, and step it.
948
949 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 950 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
951 breakpoint in the thread which hit the breakpoint, but then continue
952 stepping the thread user has selected. */
953static ptid_t deferred_step_ptid;
c906108c 954\f
237fc4c9
PA
955/* Displaced stepping. */
956
957/* In non-stop debugging mode, we must take special care to manage
958 breakpoints properly; in particular, the traditional strategy for
959 stepping a thread past a breakpoint it has hit is unsuitable.
960 'Displaced stepping' is a tactic for stepping one thread past a
961 breakpoint it has hit while ensuring that other threads running
962 concurrently will hit the breakpoint as they should.
963
964 The traditional way to step a thread T off a breakpoint in a
965 multi-threaded program in all-stop mode is as follows:
966
967 a0) Initially, all threads are stopped, and breakpoints are not
968 inserted.
969 a1) We single-step T, leaving breakpoints uninserted.
970 a2) We insert breakpoints, and resume all threads.
971
972 In non-stop debugging, however, this strategy is unsuitable: we
973 don't want to have to stop all threads in the system in order to
974 continue or step T past a breakpoint. Instead, we use displaced
975 stepping:
976
977 n0) Initially, T is stopped, other threads are running, and
978 breakpoints are inserted.
979 n1) We copy the instruction "under" the breakpoint to a separate
980 location, outside the main code stream, making any adjustments
981 to the instruction, register, and memory state as directed by
982 T's architecture.
983 n2) We single-step T over the instruction at its new location.
984 n3) We adjust the resulting register and memory state as directed
985 by T's architecture. This includes resetting T's PC to point
986 back into the main instruction stream.
987 n4) We resume T.
988
989 This approach depends on the following gdbarch methods:
990
991 - gdbarch_max_insn_length and gdbarch_displaced_step_location
992 indicate where to copy the instruction, and how much space must
993 be reserved there. We use these in step n1.
994
995 - gdbarch_displaced_step_copy_insn copies a instruction to a new
996 address, and makes any necessary adjustments to the instruction,
997 register contents, and memory. We use this in step n1.
998
999 - gdbarch_displaced_step_fixup adjusts registers and memory after
1000 we have successfuly single-stepped the instruction, to yield the
1001 same effect the instruction would have had if we had executed it
1002 at its original address. We use this in step n3.
1003
1004 - gdbarch_displaced_step_free_closure provides cleanup.
1005
1006 The gdbarch_displaced_step_copy_insn and
1007 gdbarch_displaced_step_fixup functions must be written so that
1008 copying an instruction with gdbarch_displaced_step_copy_insn,
1009 single-stepping across the copied instruction, and then applying
1010 gdbarch_displaced_insn_fixup should have the same effects on the
1011 thread's memory and registers as stepping the instruction in place
1012 would have. Exactly which responsibilities fall to the copy and
1013 which fall to the fixup is up to the author of those functions.
1014
1015 See the comments in gdbarch.sh for details.
1016
1017 Note that displaced stepping and software single-step cannot
1018 currently be used in combination, although with some care I think
1019 they could be made to. Software single-step works by placing
1020 breakpoints on all possible subsequent instructions; if the
1021 displaced instruction is a PC-relative jump, those breakpoints
1022 could fall in very strange places --- on pages that aren't
1023 executable, or at addresses that are not proper instruction
1024 boundaries. (We do generally let other threads run while we wait
1025 to hit the software single-step breakpoint, and they might
1026 encounter such a corrupted instruction.) One way to work around
1027 this would be to have gdbarch_displaced_step_copy_insn fully
1028 simulate the effect of PC-relative instructions (and return NULL)
1029 on architectures that use software single-stepping.
1030
1031 In non-stop mode, we can have independent and simultaneous step
1032 requests, so more than one thread may need to simultaneously step
1033 over a breakpoint. The current implementation assumes there is
1034 only one scratch space per process. In this case, we have to
1035 serialize access to the scratch space. If thread A wants to step
1036 over a breakpoint, but we are currently waiting for some other
1037 thread to complete a displaced step, we leave thread A stopped and
1038 place it in the displaced_step_request_queue. Whenever a displaced
1039 step finishes, we pick the next thread in the queue and start a new
1040 displaced step operation on it. See displaced_step_prepare and
1041 displaced_step_fixup for details. */
1042
237fc4c9
PA
1043struct displaced_step_request
1044{
1045 ptid_t ptid;
1046 struct displaced_step_request *next;
1047};
1048
fc1cf338
PA
1049/* Per-inferior displaced stepping state. */
1050struct displaced_step_inferior_state
1051{
1052 /* Pointer to next in linked list. */
1053 struct displaced_step_inferior_state *next;
1054
1055 /* The process this displaced step state refers to. */
1056 int pid;
1057
1058 /* A queue of pending displaced stepping requests. One entry per
1059 thread that needs to do a displaced step. */
1060 struct displaced_step_request *step_request_queue;
1061
1062 /* If this is not null_ptid, this is the thread carrying out a
1063 displaced single-step in process PID. This thread's state will
1064 require fixing up once it has completed its step. */
1065 ptid_t step_ptid;
1066
1067 /* The architecture the thread had when we stepped it. */
1068 struct gdbarch *step_gdbarch;
1069
1070 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1071 for post-step cleanup. */
1072 struct displaced_step_closure *step_closure;
1073
1074 /* The address of the original instruction, and the copy we
1075 made. */
1076 CORE_ADDR step_original, step_copy;
1077
1078 /* Saved contents of copy area. */
1079 gdb_byte *step_saved_copy;
1080};
1081
1082/* The list of states of processes involved in displaced stepping
1083 presently. */
1084static struct displaced_step_inferior_state *displaced_step_inferior_states;
1085
1086/* Get the displaced stepping state of process PID. */
1087
1088static struct displaced_step_inferior_state *
1089get_displaced_stepping_state (int pid)
1090{
1091 struct displaced_step_inferior_state *state;
1092
1093 for (state = displaced_step_inferior_states;
1094 state != NULL;
1095 state = state->next)
1096 if (state->pid == pid)
1097 return state;
1098
1099 return NULL;
1100}
1101
1102/* Add a new displaced stepping state for process PID to the displaced
1103 stepping state list, or return a pointer to an already existing
1104 entry, if it already exists. Never returns NULL. */
1105
1106static struct displaced_step_inferior_state *
1107add_displaced_stepping_state (int pid)
1108{
1109 struct displaced_step_inferior_state *state;
1110
1111 for (state = displaced_step_inferior_states;
1112 state != NULL;
1113 state = state->next)
1114 if (state->pid == pid)
1115 return state;
237fc4c9 1116
fc1cf338
PA
1117 state = xcalloc (1, sizeof (*state));
1118 state->pid = pid;
1119 state->next = displaced_step_inferior_states;
1120 displaced_step_inferior_states = state;
237fc4c9 1121
fc1cf338
PA
1122 return state;
1123}
1124
a42244db
YQ
1125/* If inferior is in displaced stepping, and ADDR equals to starting address
1126 of copy area, return corresponding displaced_step_closure. Otherwise,
1127 return NULL. */
1128
1129struct displaced_step_closure*
1130get_displaced_step_closure_by_addr (CORE_ADDR addr)
1131{
1132 struct displaced_step_inferior_state *displaced
1133 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1134
1135 /* If checking the mode of displaced instruction in copy area. */
1136 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1137 && (displaced->step_copy == addr))
1138 return displaced->step_closure;
1139
1140 return NULL;
1141}
1142
fc1cf338 1143/* Remove the displaced stepping state of process PID. */
237fc4c9 1144
fc1cf338
PA
1145static void
1146remove_displaced_stepping_state (int pid)
1147{
1148 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1149
fc1cf338
PA
1150 gdb_assert (pid != 0);
1151
1152 it = displaced_step_inferior_states;
1153 prev_next_p = &displaced_step_inferior_states;
1154 while (it)
1155 {
1156 if (it->pid == pid)
1157 {
1158 *prev_next_p = it->next;
1159 xfree (it);
1160 return;
1161 }
1162
1163 prev_next_p = &it->next;
1164 it = *prev_next_p;
1165 }
1166}
1167
1168static void
1169infrun_inferior_exit (struct inferior *inf)
1170{
1171 remove_displaced_stepping_state (inf->pid);
1172}
237fc4c9 1173
fff08868
HZ
1174/* Enum strings for "set|show displaced-stepping". */
1175
1176static const char can_use_displaced_stepping_auto[] = "auto";
1177static const char can_use_displaced_stepping_on[] = "on";
1178static const char can_use_displaced_stepping_off[] = "off";
1179static const char *can_use_displaced_stepping_enum[] =
1180{
1181 can_use_displaced_stepping_auto,
1182 can_use_displaced_stepping_on,
1183 can_use_displaced_stepping_off,
1184 NULL,
1185};
1186
1187/* If ON, and the architecture supports it, GDB will use displaced
1188 stepping to step over breakpoints. If OFF, or if the architecture
1189 doesn't support it, GDB will instead use the traditional
1190 hold-and-step approach. If AUTO (which is the default), GDB will
1191 decide which technique to use to step over breakpoints depending on
1192 which of all-stop or non-stop mode is active --- displaced stepping
1193 in non-stop mode; hold-and-step in all-stop mode. */
1194
1195static const char *can_use_displaced_stepping =
1196 can_use_displaced_stepping_auto;
1197
237fc4c9
PA
1198static void
1199show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1200 struct cmd_list_element *c,
1201 const char *value)
1202{
fff08868 1203 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1204 fprintf_filtered (file,
1205 _("Debugger's willingness to use displaced stepping "
1206 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1207 value, non_stop ? "on" : "off");
1208 else
3e43a32a
MS
1209 fprintf_filtered (file,
1210 _("Debugger's willingness to use displaced stepping "
1211 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1212}
1213
fff08868
HZ
1214/* Return non-zero if displaced stepping can/should be used to step
1215 over breakpoints. */
1216
237fc4c9
PA
1217static int
1218use_displaced_stepping (struct gdbarch *gdbarch)
1219{
fff08868
HZ
1220 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1221 && non_stop)
1222 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1223 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1224 && !RECORD_IS_USED);
237fc4c9
PA
1225}
1226
1227/* Clean out any stray displaced stepping state. */
1228static void
fc1cf338 1229displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1230{
1231 /* Indicate that there is no cleanup pending. */
fc1cf338 1232 displaced->step_ptid = null_ptid;
237fc4c9 1233
fc1cf338 1234 if (displaced->step_closure)
237fc4c9 1235 {
fc1cf338
PA
1236 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1237 displaced->step_closure);
1238 displaced->step_closure = NULL;
237fc4c9
PA
1239 }
1240}
1241
1242static void
fc1cf338 1243displaced_step_clear_cleanup (void *arg)
237fc4c9 1244{
fc1cf338
PA
1245 struct displaced_step_inferior_state *state = arg;
1246
1247 displaced_step_clear (state);
237fc4c9
PA
1248}
1249
1250/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1251void
1252displaced_step_dump_bytes (struct ui_file *file,
1253 const gdb_byte *buf,
1254 size_t len)
1255{
1256 int i;
1257
1258 for (i = 0; i < len; i++)
1259 fprintf_unfiltered (file, "%02x ", buf[i]);
1260 fputs_unfiltered ("\n", file);
1261}
1262
1263/* Prepare to single-step, using displaced stepping.
1264
1265 Note that we cannot use displaced stepping when we have a signal to
1266 deliver. If we have a signal to deliver and an instruction to step
1267 over, then after the step, there will be no indication from the
1268 target whether the thread entered a signal handler or ignored the
1269 signal and stepped over the instruction successfully --- both cases
1270 result in a simple SIGTRAP. In the first case we mustn't do a
1271 fixup, and in the second case we must --- but we can't tell which.
1272 Comments in the code for 'random signals' in handle_inferior_event
1273 explain how we handle this case instead.
1274
1275 Returns 1 if preparing was successful -- this thread is going to be
1276 stepped now; or 0 if displaced stepping this thread got queued. */
1277static int
1278displaced_step_prepare (ptid_t ptid)
1279{
ad53cd71 1280 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1281 struct regcache *regcache = get_thread_regcache (ptid);
1282 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1283 CORE_ADDR original, copy;
1284 ULONGEST len;
1285 struct displaced_step_closure *closure;
fc1cf338 1286 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1287
1288 /* We should never reach this function if the architecture does not
1289 support displaced stepping. */
1290 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1291
fc1cf338
PA
1292 /* We have to displaced step one thread at a time, as we only have
1293 access to a single scratch space per inferior. */
237fc4c9 1294
fc1cf338
PA
1295 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1296
1297 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1298 {
1299 /* Already waiting for a displaced step to finish. Defer this
1300 request and place in queue. */
1301 struct displaced_step_request *req, *new_req;
1302
1303 if (debug_displaced)
1304 fprintf_unfiltered (gdb_stdlog,
1305 "displaced: defering step of %s\n",
1306 target_pid_to_str (ptid));
1307
1308 new_req = xmalloc (sizeof (*new_req));
1309 new_req->ptid = ptid;
1310 new_req->next = NULL;
1311
fc1cf338 1312 if (displaced->step_request_queue)
237fc4c9 1313 {
fc1cf338 1314 for (req = displaced->step_request_queue;
237fc4c9
PA
1315 req && req->next;
1316 req = req->next)
1317 ;
1318 req->next = new_req;
1319 }
1320 else
fc1cf338 1321 displaced->step_request_queue = new_req;
237fc4c9
PA
1322
1323 return 0;
1324 }
1325 else
1326 {
1327 if (debug_displaced)
1328 fprintf_unfiltered (gdb_stdlog,
1329 "displaced: stepping %s now\n",
1330 target_pid_to_str (ptid));
1331 }
1332
fc1cf338 1333 displaced_step_clear (displaced);
237fc4c9 1334
ad53cd71
PA
1335 old_cleanups = save_inferior_ptid ();
1336 inferior_ptid = ptid;
1337
515630c5 1338 original = regcache_read_pc (regcache);
237fc4c9
PA
1339
1340 copy = gdbarch_displaced_step_location (gdbarch);
1341 len = gdbarch_max_insn_length (gdbarch);
1342
1343 /* Save the original contents of the copy area. */
fc1cf338 1344 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1345 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1346 &displaced->step_saved_copy);
1347 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1348 if (debug_displaced)
1349 {
5af949e3
UW
1350 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1351 paddress (gdbarch, copy));
fc1cf338
PA
1352 displaced_step_dump_bytes (gdb_stdlog,
1353 displaced->step_saved_copy,
1354 len);
237fc4c9
PA
1355 };
1356
1357 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1358 original, copy, regcache);
237fc4c9
PA
1359
1360 /* We don't support the fully-simulated case at present. */
1361 gdb_assert (closure);
1362
9f5a595d
UW
1363 /* Save the information we need to fix things up if the step
1364 succeeds. */
fc1cf338
PA
1365 displaced->step_ptid = ptid;
1366 displaced->step_gdbarch = gdbarch;
1367 displaced->step_closure = closure;
1368 displaced->step_original = original;
1369 displaced->step_copy = copy;
9f5a595d 1370
fc1cf338 1371 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1372
1373 /* Resume execution at the copy. */
515630c5 1374 regcache_write_pc (regcache, copy);
237fc4c9 1375
ad53cd71
PA
1376 discard_cleanups (ignore_cleanups);
1377
1378 do_cleanups (old_cleanups);
237fc4c9
PA
1379
1380 if (debug_displaced)
5af949e3
UW
1381 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1382 paddress (gdbarch, copy));
237fc4c9 1383
237fc4c9
PA
1384 return 1;
1385}
1386
237fc4c9 1387static void
3e43a32a
MS
1388write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1389 const gdb_byte *myaddr, int len)
237fc4c9
PA
1390{
1391 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1392
237fc4c9
PA
1393 inferior_ptid = ptid;
1394 write_memory (memaddr, myaddr, len);
1395 do_cleanups (ptid_cleanup);
1396}
1397
e2d96639
YQ
1398/* Restore the contents of the copy area for thread PTID. */
1399
1400static void
1401displaced_step_restore (struct displaced_step_inferior_state *displaced,
1402 ptid_t ptid)
1403{
1404 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1405
1406 write_memory_ptid (ptid, displaced->step_copy,
1407 displaced->step_saved_copy, len);
1408 if (debug_displaced)
1409 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1410 target_pid_to_str (ptid),
1411 paddress (displaced->step_gdbarch,
1412 displaced->step_copy));
1413}
1414
237fc4c9
PA
1415static void
1416displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1417{
1418 struct cleanup *old_cleanups;
fc1cf338
PA
1419 struct displaced_step_inferior_state *displaced
1420 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1421
1422 /* Was any thread of this process doing a displaced step? */
1423 if (displaced == NULL)
1424 return;
237fc4c9
PA
1425
1426 /* Was this event for the pid we displaced? */
fc1cf338
PA
1427 if (ptid_equal (displaced->step_ptid, null_ptid)
1428 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1429 return;
1430
fc1cf338 1431 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1432
e2d96639 1433 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1434
1435 /* Did the instruction complete successfully? */
1436 if (signal == TARGET_SIGNAL_TRAP)
1437 {
1438 /* Fix up the resulting state. */
fc1cf338
PA
1439 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1440 displaced->step_closure,
1441 displaced->step_original,
1442 displaced->step_copy,
1443 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1444 }
1445 else
1446 {
1447 /* Since the instruction didn't complete, all we can do is
1448 relocate the PC. */
515630c5
UW
1449 struct regcache *regcache = get_thread_regcache (event_ptid);
1450 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1451
fc1cf338 1452 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1453 regcache_write_pc (regcache, pc);
237fc4c9
PA
1454 }
1455
1456 do_cleanups (old_cleanups);
1457
fc1cf338 1458 displaced->step_ptid = null_ptid;
1c5cfe86 1459
237fc4c9 1460 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1461 one now. Leave the state object around, since we're likely to
1462 need it again soon. */
1463 while (displaced->step_request_queue)
237fc4c9
PA
1464 {
1465 struct displaced_step_request *head;
1466 ptid_t ptid;
5af949e3 1467 struct regcache *regcache;
929dfd4f 1468 struct gdbarch *gdbarch;
1c5cfe86 1469 CORE_ADDR actual_pc;
6c95b8df 1470 struct address_space *aspace;
237fc4c9 1471
fc1cf338 1472 head = displaced->step_request_queue;
237fc4c9 1473 ptid = head->ptid;
fc1cf338 1474 displaced->step_request_queue = head->next;
237fc4c9
PA
1475 xfree (head);
1476
ad53cd71
PA
1477 context_switch (ptid);
1478
5af949e3
UW
1479 regcache = get_thread_regcache (ptid);
1480 actual_pc = regcache_read_pc (regcache);
6c95b8df 1481 aspace = get_regcache_aspace (regcache);
1c5cfe86 1482
6c95b8df 1483 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1484 {
1c5cfe86
PA
1485 if (debug_displaced)
1486 fprintf_unfiltered (gdb_stdlog,
1487 "displaced: stepping queued %s now\n",
1488 target_pid_to_str (ptid));
1489
1490 displaced_step_prepare (ptid);
1491
929dfd4f
JB
1492 gdbarch = get_regcache_arch (regcache);
1493
1c5cfe86
PA
1494 if (debug_displaced)
1495 {
929dfd4f 1496 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1497 gdb_byte buf[4];
1498
5af949e3
UW
1499 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1500 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1501 read_memory (actual_pc, buf, sizeof (buf));
1502 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1503 }
1504
fc1cf338
PA
1505 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1506 displaced->step_closure))
929dfd4f 1507 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1508 else
1509 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1510
1511 /* Done, we're stepping a thread. */
1512 break;
ad53cd71 1513 }
1c5cfe86
PA
1514 else
1515 {
1516 int step;
1517 struct thread_info *tp = inferior_thread ();
1518
1519 /* The breakpoint we were sitting under has since been
1520 removed. */
16c381f0 1521 tp->control.trap_expected = 0;
1c5cfe86
PA
1522
1523 /* Go back to what we were trying to do. */
1524 step = currently_stepping (tp);
ad53cd71 1525
1c5cfe86 1526 if (debug_displaced)
3e43a32a
MS
1527 fprintf_unfiltered (gdb_stdlog,
1528 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1529 target_pid_to_str (tp->ptid), step);
1530
1531 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1532 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1533
1534 /* This request was discarded. See if there's any other
1535 thread waiting for its turn. */
1536 }
237fc4c9
PA
1537 }
1538}
1539
5231c1fd
PA
1540/* Update global variables holding ptids to hold NEW_PTID if they were
1541 holding OLD_PTID. */
1542static void
1543infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1544{
1545 struct displaced_step_request *it;
fc1cf338 1546 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1547
1548 if (ptid_equal (inferior_ptid, old_ptid))
1549 inferior_ptid = new_ptid;
1550
1551 if (ptid_equal (singlestep_ptid, old_ptid))
1552 singlestep_ptid = new_ptid;
1553
5231c1fd
PA
1554 if (ptid_equal (deferred_step_ptid, old_ptid))
1555 deferred_step_ptid = new_ptid;
1556
fc1cf338
PA
1557 for (displaced = displaced_step_inferior_states;
1558 displaced;
1559 displaced = displaced->next)
1560 {
1561 if (ptid_equal (displaced->step_ptid, old_ptid))
1562 displaced->step_ptid = new_ptid;
1563
1564 for (it = displaced->step_request_queue; it; it = it->next)
1565 if (ptid_equal (it->ptid, old_ptid))
1566 it->ptid = new_ptid;
1567 }
5231c1fd
PA
1568}
1569
237fc4c9
PA
1570\f
1571/* Resuming. */
c906108c
SS
1572
1573/* Things to clean up if we QUIT out of resume (). */
c906108c 1574static void
74b7792f 1575resume_cleanups (void *ignore)
c906108c
SS
1576{
1577 normal_stop ();
1578}
1579
53904c9e
AC
1580static const char schedlock_off[] = "off";
1581static const char schedlock_on[] = "on";
1582static const char schedlock_step[] = "step";
488f131b 1583static const char *scheduler_enums[] = {
ef346e04
AC
1584 schedlock_off,
1585 schedlock_on,
1586 schedlock_step,
1587 NULL
1588};
920d2a44
AC
1589static const char *scheduler_mode = schedlock_off;
1590static void
1591show_scheduler_mode (struct ui_file *file, int from_tty,
1592 struct cmd_list_element *c, const char *value)
1593{
3e43a32a
MS
1594 fprintf_filtered (file,
1595 _("Mode for locking scheduler "
1596 "during execution is \"%s\".\n"),
920d2a44
AC
1597 value);
1598}
c906108c
SS
1599
1600static void
96baa820 1601set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1602{
eefe576e
AC
1603 if (!target_can_lock_scheduler)
1604 {
1605 scheduler_mode = schedlock_off;
1606 error (_("Target '%s' cannot support this command."), target_shortname);
1607 }
c906108c
SS
1608}
1609
d4db2f36
PA
1610/* True if execution commands resume all threads of all processes by
1611 default; otherwise, resume only threads of the current inferior
1612 process. */
1613int sched_multi = 0;
1614
2facfe5c
DD
1615/* Try to setup for software single stepping over the specified location.
1616 Return 1 if target_resume() should use hardware single step.
1617
1618 GDBARCH the current gdbarch.
1619 PC the location to step over. */
1620
1621static int
1622maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1623{
1624 int hw_step = 1;
1625
f02253f1
HZ
1626 if (execution_direction == EXEC_FORWARD
1627 && gdbarch_software_single_step_p (gdbarch)
99e40580 1628 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1629 {
99e40580
UW
1630 hw_step = 0;
1631 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1632 `wait_for_inferior'. */
99e40580
UW
1633 singlestep_breakpoints_inserted_p = 1;
1634 singlestep_ptid = inferior_ptid;
1635 singlestep_pc = pc;
2facfe5c
DD
1636 }
1637 return hw_step;
1638}
c906108c 1639
09cee04b
PA
1640/* Return a ptid representing the set of threads that we will proceed,
1641 in the perspective of the user/frontend. We may actually resume
1642 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1643 breakpoint that needs stepping-off, but that should not be visible
1644 to the user/frontend, and neither should the frontend/user be
1645 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1646 internal run control handling, if a previous command wanted them
1647 resumed. */
1648
1649ptid_t
1650user_visible_resume_ptid (int step)
1651{
1652 /* By default, resume all threads of all processes. */
1653 ptid_t resume_ptid = RESUME_ALL;
1654
1655 /* Maybe resume only all threads of the current process. */
1656 if (!sched_multi && target_supports_multi_process ())
1657 {
1658 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1659 }
1660
1661 /* Maybe resume a single thread after all. */
1662 if (non_stop)
1663 {
1664 /* With non-stop mode on, threads are always handled
1665 individually. */
1666 resume_ptid = inferior_ptid;
1667 }
1668 else if ((scheduler_mode == schedlock_on)
1669 || (scheduler_mode == schedlock_step
1670 && (step || singlestep_breakpoints_inserted_p)))
1671 {
1672 /* User-settable 'scheduler' mode requires solo thread resume. */
1673 resume_ptid = inferior_ptid;
1674 }
1675
1676 return resume_ptid;
1677}
1678
c906108c
SS
1679/* Resume the inferior, but allow a QUIT. This is useful if the user
1680 wants to interrupt some lengthy single-stepping operation
1681 (for child processes, the SIGINT goes to the inferior, and so
1682 we get a SIGINT random_signal, but for remote debugging and perhaps
1683 other targets, that's not true).
1684
1685 STEP nonzero if we should step (zero to continue instead).
1686 SIG is the signal to give the inferior (zero for none). */
1687void
96baa820 1688resume (int step, enum target_signal sig)
c906108c
SS
1689{
1690 int should_resume = 1;
74b7792f 1691 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1692 struct regcache *regcache = get_current_regcache ();
1693 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1694 struct thread_info *tp = inferior_thread ();
515630c5 1695 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1696 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1697
c906108c
SS
1698 QUIT;
1699
74609e71
YQ
1700 if (current_inferior ()->waiting_for_vfork_done)
1701 {
48f9886d
PA
1702 /* Don't try to single-step a vfork parent that is waiting for
1703 the child to get out of the shared memory region (by exec'ing
1704 or exiting). This is particularly important on software
1705 single-step archs, as the child process would trip on the
1706 software single step breakpoint inserted for the parent
1707 process. Since the parent will not actually execute any
1708 instruction until the child is out of the shared region (such
1709 are vfork's semantics), it is safe to simply continue it.
1710 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1711 the parent, and tell it to `keep_going', which automatically
1712 re-sets it stepping. */
74609e71
YQ
1713 if (debug_infrun)
1714 fprintf_unfiltered (gdb_stdlog,
1715 "infrun: resume : clear step\n");
1716 step = 0;
1717 }
1718
527159b7 1719 if (debug_infrun)
237fc4c9
PA
1720 fprintf_unfiltered (gdb_stdlog,
1721 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1722 "trap_expected=%d, current thread [%s] at %s\n",
1723 step, sig, tp->control.trap_expected,
1724 target_pid_to_str (inferior_ptid),
1725 paddress (gdbarch, pc));
c906108c 1726
c2c6d25f
JM
1727 /* Normally, by the time we reach `resume', the breakpoints are either
1728 removed or inserted, as appropriate. The exception is if we're sitting
1729 at a permanent breakpoint; we need to step over it, but permanent
1730 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1731 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1732 {
515630c5
UW
1733 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1734 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1735 else
ac74f770
MS
1736 error (_("\
1737The program is stopped at a permanent breakpoint, but GDB does not know\n\
1738how to step past a permanent breakpoint on this architecture. Try using\n\
1739a command like `return' or `jump' to continue execution."));
6d350bb5 1740 }
c2c6d25f 1741
237fc4c9
PA
1742 /* If enabled, step over breakpoints by executing a copy of the
1743 instruction at a different address.
1744
1745 We can't use displaced stepping when we have a signal to deliver;
1746 the comments for displaced_step_prepare explain why. The
1747 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1748 signals' explain what we do instead.
1749
1750 We can't use displaced stepping when we are waiting for vfork_done
1751 event, displaced stepping breaks the vfork child similarly as single
1752 step software breakpoint. */
515630c5 1753 if (use_displaced_stepping (gdbarch)
16c381f0 1754 && (tp->control.trap_expected
929dfd4f 1755 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1756 && sig == TARGET_SIGNAL_0
1757 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1758 {
fc1cf338
PA
1759 struct displaced_step_inferior_state *displaced;
1760
237fc4c9 1761 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1762 {
1763 /* Got placed in displaced stepping queue. Will be resumed
1764 later when all the currently queued displaced stepping
7f7efbd9
VP
1765 requests finish. The thread is not executing at this point,
1766 and the call to set_executing will be made later. But we
1767 need to call set_running here, since from frontend point of view,
1768 the thread is running. */
1769 set_running (inferior_ptid, 1);
d56b7306
VP
1770 discard_cleanups (old_cleanups);
1771 return;
1772 }
99e40580 1773
fc1cf338
PA
1774 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1775 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1776 displaced->step_closure);
237fc4c9
PA
1777 }
1778
2facfe5c 1779 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1780 else if (step)
2facfe5c 1781 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1782
30852783
UW
1783 /* Currently, our software single-step implementation leads to different
1784 results than hardware single-stepping in one situation: when stepping
1785 into delivering a signal which has an associated signal handler,
1786 hardware single-step will stop at the first instruction of the handler,
1787 while software single-step will simply skip execution of the handler.
1788
1789 For now, this difference in behavior is accepted since there is no
1790 easy way to actually implement single-stepping into a signal handler
1791 without kernel support.
1792
1793 However, there is one scenario where this difference leads to follow-on
1794 problems: if we're stepping off a breakpoint by removing all breakpoints
1795 and then single-stepping. In this case, the software single-step
1796 behavior means that even if there is a *breakpoint* in the signal
1797 handler, GDB still would not stop.
1798
1799 Fortunately, we can at least fix this particular issue. We detect
1800 here the case where we are about to deliver a signal while software
1801 single-stepping with breakpoints removed. In this situation, we
1802 revert the decisions to remove all breakpoints and insert single-
1803 step breakpoints, and instead we install a step-resume breakpoint
1804 at the current address, deliver the signal without stepping, and
1805 once we arrive back at the step-resume breakpoint, actually step
1806 over the breakpoint we originally wanted to step over. */
1807 if (singlestep_breakpoints_inserted_p
1808 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1809 {
1810 /* If we have nested signals or a pending signal is delivered
1811 immediately after a handler returns, might might already have
1812 a step-resume breakpoint set on the earlier handler. We cannot
1813 set another step-resume breakpoint; just continue on until the
1814 original breakpoint is hit. */
1815 if (tp->control.step_resume_breakpoint == NULL)
1816 {
2c03e5be 1817 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1818 tp->step_after_step_resume_breakpoint = 1;
1819 }
1820
1821 remove_single_step_breakpoints ();
1822 singlestep_breakpoints_inserted_p = 0;
1823
1824 insert_breakpoints ();
1825 tp->control.trap_expected = 0;
1826 }
1827
c906108c
SS
1828 if (should_resume)
1829 {
39f77062 1830 ptid_t resume_ptid;
dfcd3bfb 1831
cd76b0b7
VP
1832 /* If STEP is set, it's a request to use hardware stepping
1833 facilities. But in that case, we should never
1834 use singlestep breakpoint. */
1835 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1836
d4db2f36
PA
1837 /* Decide the set of threads to ask the target to resume. Start
1838 by assuming everything will be resumed, than narrow the set
1839 by applying increasingly restricting conditions. */
09cee04b 1840 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1841
1842 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1843 if (singlestep_breakpoints_inserted_p
1844 && stepping_past_singlestep_breakpoint)
c906108c 1845 {
cd76b0b7
VP
1846 /* The situation here is as follows. In thread T1 we wanted to
1847 single-step. Lacking hardware single-stepping we've
1848 set breakpoint at the PC of the next instruction -- call it
1849 P. After resuming, we've hit that breakpoint in thread T2.
1850 Now we've removed original breakpoint, inserted breakpoint
1851 at P+1, and try to step to advance T2 past breakpoint.
1852 We need to step only T2, as if T1 is allowed to freely run,
1853 it can run past P, and if other threads are allowed to run,
1854 they can hit breakpoint at P+1, and nested hits of single-step
1855 breakpoints is not something we'd want -- that's complicated
1856 to support, and has no value. */
1857 resume_ptid = inferior_ptid;
1858 }
d4db2f36 1859 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1860 && tp->control.trap_expected)
cd76b0b7 1861 {
74960c60
VP
1862 /* We're allowing a thread to run past a breakpoint it has
1863 hit, by single-stepping the thread with the breakpoint
1864 removed. In which case, we need to single-step only this
1865 thread, and keep others stopped, as they can miss this
1866 breakpoint if allowed to run.
1867
1868 The current code actually removes all breakpoints when
1869 doing this, not just the one being stepped over, so if we
1870 let other threads run, we can actually miss any
1871 breakpoint, not just the one at PC. */
ef5cf84e 1872 resume_ptid = inferior_ptid;
c906108c 1873 }
ef5cf84e 1874
515630c5 1875 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1876 {
1877 /* Most targets can step a breakpoint instruction, thus
1878 executing it normally. But if this one cannot, just
1879 continue and we will hit it anyway. */
6c95b8df 1880 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1881 step = 0;
1882 }
237fc4c9
PA
1883
1884 if (debug_displaced
515630c5 1885 && use_displaced_stepping (gdbarch)
16c381f0 1886 && tp->control.trap_expected)
237fc4c9 1887 {
515630c5 1888 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1889 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1890 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1891 gdb_byte buf[4];
1892
5af949e3
UW
1893 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1894 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1895 read_memory (actual_pc, buf, sizeof (buf));
1896 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1897 }
1898
e58b0e63
PA
1899 /* Install inferior's terminal modes. */
1900 target_terminal_inferior ();
1901
2020b7ab
PA
1902 /* Avoid confusing the next resume, if the next stop/resume
1903 happens to apply to another thread. */
16c381f0 1904 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1905
2455069d
UW
1906 /* Advise target which signals may be handled silently. If we have
1907 removed breakpoints because we are stepping over one (which can
1908 happen only if we are not using displaced stepping), we need to
1909 receive all signals to avoid accidentally skipping a breakpoint
1910 during execution of a signal handler. */
1911 if ((step || singlestep_breakpoints_inserted_p)
1912 && tp->control.trap_expected
1913 && !use_displaced_stepping (gdbarch))
1914 target_pass_signals (0, NULL);
1915 else
1916 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1917
607cecd2 1918 target_resume (resume_ptid, step, sig);
c906108c
SS
1919 }
1920
1921 discard_cleanups (old_cleanups);
1922}
1923\f
237fc4c9 1924/* Proceeding. */
c906108c
SS
1925
1926/* Clear out all variables saying what to do when inferior is continued.
1927 First do this, then set the ones you want, then call `proceed'. */
1928
a7212384
UW
1929static void
1930clear_proceed_status_thread (struct thread_info *tp)
c906108c 1931{
a7212384
UW
1932 if (debug_infrun)
1933 fprintf_unfiltered (gdb_stdlog,
1934 "infrun: clear_proceed_status_thread (%s)\n",
1935 target_pid_to_str (tp->ptid));
d6b48e9c 1936
16c381f0
JK
1937 tp->control.trap_expected = 0;
1938 tp->control.step_range_start = 0;
1939 tp->control.step_range_end = 0;
1940 tp->control.step_frame_id = null_frame_id;
1941 tp->control.step_stack_frame_id = null_frame_id;
1942 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1943 tp->stop_requested = 0;
4e1c45ea 1944
16c381f0 1945 tp->control.stop_step = 0;
32400beb 1946
16c381f0 1947 tp->control.proceed_to_finish = 0;
414c69f7 1948
a7212384 1949 /* Discard any remaining commands or status from previous stop. */
16c381f0 1950 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1951}
32400beb 1952
a7212384
UW
1953static int
1954clear_proceed_status_callback (struct thread_info *tp, void *data)
1955{
1956 if (is_exited (tp->ptid))
1957 return 0;
d6b48e9c 1958
a7212384
UW
1959 clear_proceed_status_thread (tp);
1960 return 0;
1961}
1962
1963void
1964clear_proceed_status (void)
1965{
6c95b8df
PA
1966 if (!non_stop)
1967 {
1968 /* In all-stop mode, delete the per-thread status of all
1969 threads, even if inferior_ptid is null_ptid, there may be
1970 threads on the list. E.g., we may be launching a new
1971 process, while selecting the executable. */
1972 iterate_over_threads (clear_proceed_status_callback, NULL);
1973 }
1974
a7212384
UW
1975 if (!ptid_equal (inferior_ptid, null_ptid))
1976 {
1977 struct inferior *inferior;
1978
1979 if (non_stop)
1980 {
6c95b8df
PA
1981 /* If in non-stop mode, only delete the per-thread status of
1982 the current thread. */
a7212384
UW
1983 clear_proceed_status_thread (inferior_thread ());
1984 }
6c95b8df 1985
d6b48e9c 1986 inferior = current_inferior ();
16c381f0 1987 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1988 }
1989
c906108c 1990 stop_after_trap = 0;
f3b1572e
PA
1991
1992 observer_notify_about_to_proceed ();
c906108c 1993
d5c31457
UW
1994 if (stop_registers)
1995 {
1996 regcache_xfree (stop_registers);
1997 stop_registers = NULL;
1998 }
c906108c
SS
1999}
2000
5a437975
DE
2001/* Check the current thread against the thread that reported the most recent
2002 event. If a step-over is required return TRUE and set the current thread
2003 to the old thread. Otherwise return FALSE.
2004
1777feb0 2005 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2006
2007static int
6a6b96b9 2008prepare_to_proceed (int step)
ea67f13b
DJ
2009{
2010 ptid_t wait_ptid;
2011 struct target_waitstatus wait_status;
5a437975
DE
2012 int schedlock_enabled;
2013
2014 /* With non-stop mode on, threads are always handled individually. */
2015 gdb_assert (! non_stop);
ea67f13b
DJ
2016
2017 /* Get the last target status returned by target_wait(). */
2018 get_last_target_status (&wait_ptid, &wait_status);
2019
6a6b96b9 2020 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2021 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2022 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2023 && wait_status.value.sig != TARGET_SIGNAL_ILL
2024 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2025 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2026 {
2027 return 0;
2028 }
2029
5a437975
DE
2030 schedlock_enabled = (scheduler_mode == schedlock_on
2031 || (scheduler_mode == schedlock_step
2032 && step));
2033
d4db2f36
PA
2034 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2035 if (schedlock_enabled)
2036 return 0;
2037
2038 /* Don't switch over if we're about to resume some other process
2039 other than WAIT_PTID's, and schedule-multiple is off. */
2040 if (!sched_multi
2041 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2042 return 0;
2043
6a6b96b9 2044 /* Switched over from WAIT_PID. */
ea67f13b 2045 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2046 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2047 {
515630c5
UW
2048 struct regcache *regcache = get_thread_regcache (wait_ptid);
2049
6c95b8df
PA
2050 if (breakpoint_here_p (get_regcache_aspace (regcache),
2051 regcache_read_pc (regcache)))
ea67f13b 2052 {
515630c5
UW
2053 /* If stepping, remember current thread to switch back to. */
2054 if (step)
2055 deferred_step_ptid = inferior_ptid;
ea67f13b 2056
515630c5
UW
2057 /* Switch back to WAIT_PID thread. */
2058 switch_to_thread (wait_ptid);
6a6b96b9 2059
0d9a9a5f
PA
2060 if (debug_infrun)
2061 fprintf_unfiltered (gdb_stdlog,
2062 "infrun: prepare_to_proceed (step=%d), "
2063 "switched to [%s]\n",
2064 step, target_pid_to_str (inferior_ptid));
2065
515630c5
UW
2066 /* We return 1 to indicate that there is a breakpoint here,
2067 so we need to step over it before continuing to avoid
1777feb0 2068 hitting it straight away. */
515630c5
UW
2069 return 1;
2070 }
ea67f13b
DJ
2071 }
2072
2073 return 0;
ea67f13b 2074}
e4846b08 2075
c906108c
SS
2076/* Basic routine for continuing the program in various fashions.
2077
2078 ADDR is the address to resume at, or -1 for resume where stopped.
2079 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2080 or -1 for act according to how it stopped.
c906108c 2081 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2082 -1 means return after that and print nothing.
2083 You should probably set various step_... variables
2084 before calling here, if you are stepping.
c906108c
SS
2085
2086 You should call clear_proceed_status before calling proceed. */
2087
2088void
96baa820 2089proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2090{
e58b0e63
PA
2091 struct regcache *regcache;
2092 struct gdbarch *gdbarch;
4e1c45ea 2093 struct thread_info *tp;
e58b0e63 2094 CORE_ADDR pc;
6c95b8df 2095 struct address_space *aspace;
c906108c
SS
2096 int oneproc = 0;
2097
e58b0e63
PA
2098 /* If we're stopped at a fork/vfork, follow the branch set by the
2099 "set follow-fork-mode" command; otherwise, we'll just proceed
2100 resuming the current thread. */
2101 if (!follow_fork ())
2102 {
2103 /* The target for some reason decided not to resume. */
2104 normal_stop ();
f148b27e
PA
2105 if (target_can_async_p ())
2106 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2107 return;
2108 }
2109
842951eb
PA
2110 /* We'll update this if & when we switch to a new thread. */
2111 previous_inferior_ptid = inferior_ptid;
2112
e58b0e63
PA
2113 regcache = get_current_regcache ();
2114 gdbarch = get_regcache_arch (regcache);
6c95b8df 2115 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2116 pc = regcache_read_pc (regcache);
2117
c906108c 2118 if (step > 0)
515630c5 2119 step_start_function = find_pc_function (pc);
c906108c
SS
2120 if (step < 0)
2121 stop_after_trap = 1;
2122
2acceee2 2123 if (addr == (CORE_ADDR) -1)
c906108c 2124 {
6c95b8df 2125 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2126 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2127 /* There is a breakpoint at the address we will resume at,
2128 step one instruction before inserting breakpoints so that
2129 we do not stop right away (and report a second hit at this
b2175913
MS
2130 breakpoint).
2131
2132 Note, we don't do this in reverse, because we won't
2133 actually be executing the breakpoint insn anyway.
2134 We'll be (un-)executing the previous instruction. */
2135
c906108c 2136 oneproc = 1;
515630c5
UW
2137 else if (gdbarch_single_step_through_delay_p (gdbarch)
2138 && gdbarch_single_step_through_delay (gdbarch,
2139 get_current_frame ()))
3352ef37
AC
2140 /* We stepped onto an instruction that needs to be stepped
2141 again before re-inserting the breakpoint, do so. */
c906108c
SS
2142 oneproc = 1;
2143 }
2144 else
2145 {
515630c5 2146 regcache_write_pc (regcache, addr);
c906108c
SS
2147 }
2148
527159b7 2149 if (debug_infrun)
8a9de0e4 2150 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2151 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2152 paddress (gdbarch, addr), siggnal, step);
527159b7 2153
94cc34af
PA
2154 if (non_stop)
2155 /* In non-stop, each thread is handled individually. The context
2156 must already be set to the right thread here. */
2157 ;
2158 else
2159 {
2160 /* In a multi-threaded task we may select another thread and
2161 then continue or step.
c906108c 2162
94cc34af
PA
2163 But if the old thread was stopped at a breakpoint, it will
2164 immediately cause another breakpoint stop without any
2165 execution (i.e. it will report a breakpoint hit incorrectly).
2166 So we must step over it first.
c906108c 2167
94cc34af
PA
2168 prepare_to_proceed checks the current thread against the
2169 thread that reported the most recent event. If a step-over
2170 is required it returns TRUE and sets the current thread to
1777feb0 2171 the old thread. */
94cc34af
PA
2172 if (prepare_to_proceed (step))
2173 oneproc = 1;
2174 }
c906108c 2175
4e1c45ea
PA
2176 /* prepare_to_proceed may change the current thread. */
2177 tp = inferior_thread ();
2178
30852783
UW
2179 if (oneproc)
2180 {
2181 tp->control.trap_expected = 1;
2182 /* If displaced stepping is enabled, we can step over the
2183 breakpoint without hitting it, so leave all breakpoints
2184 inserted. Otherwise we need to disable all breakpoints, step
2185 one instruction, and then re-add them when that step is
2186 finished. */
2187 if (!use_displaced_stepping (gdbarch))
2188 remove_breakpoints ();
2189 }
2190
2191 /* We can insert breakpoints if we're not trying to step over one,
2192 or if we are stepping over one but we're using displaced stepping
2193 to do so. */
2194 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2195 insert_breakpoints ();
2196
2020b7ab
PA
2197 if (!non_stop)
2198 {
2199 /* Pass the last stop signal to the thread we're resuming,
2200 irrespective of whether the current thread is the thread that
2201 got the last event or not. This was historically GDB's
2202 behaviour before keeping a stop_signal per thread. */
2203
2204 struct thread_info *last_thread;
2205 ptid_t last_ptid;
2206 struct target_waitstatus last_status;
2207
2208 get_last_target_status (&last_ptid, &last_status);
2209 if (!ptid_equal (inferior_ptid, last_ptid)
2210 && !ptid_equal (last_ptid, null_ptid)
2211 && !ptid_equal (last_ptid, minus_one_ptid))
2212 {
e09875d4 2213 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2214 if (last_thread)
2215 {
16c381f0
JK
2216 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2217 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2218 }
2219 }
2220 }
2221
c906108c 2222 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2223 tp->suspend.stop_signal = siggnal;
c906108c
SS
2224 /* If this signal should not be seen by program,
2225 give it zero. Used for debugging signals. */
16c381f0
JK
2226 else if (!signal_program[tp->suspend.stop_signal])
2227 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2228
2229 annotate_starting ();
2230
2231 /* Make sure that output from GDB appears before output from the
2232 inferior. */
2233 gdb_flush (gdb_stdout);
2234
e4846b08
JJ
2235 /* Refresh prev_pc value just prior to resuming. This used to be
2236 done in stop_stepping, however, setting prev_pc there did not handle
2237 scenarios such as inferior function calls or returning from
2238 a function via the return command. In those cases, the prev_pc
2239 value was not set properly for subsequent commands. The prev_pc value
2240 is used to initialize the starting line number in the ecs. With an
2241 invalid value, the gdb next command ends up stopping at the position
2242 represented by the next line table entry past our start position.
2243 On platforms that generate one line table entry per line, this
2244 is not a problem. However, on the ia64, the compiler generates
2245 extraneous line table entries that do not increase the line number.
2246 When we issue the gdb next command on the ia64 after an inferior call
2247 or a return command, we often end up a few instructions forward, still
2248 within the original line we started.
2249
d5cd6034
JB
2250 An attempt was made to refresh the prev_pc at the same time the
2251 execution_control_state is initialized (for instance, just before
2252 waiting for an inferior event). But this approach did not work
2253 because of platforms that use ptrace, where the pc register cannot
2254 be read unless the inferior is stopped. At that point, we are not
2255 guaranteed the inferior is stopped and so the regcache_read_pc() call
2256 can fail. Setting the prev_pc value here ensures the value is updated
2257 correctly when the inferior is stopped. */
4e1c45ea 2258 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2259
59f0d5d9 2260 /* Fill in with reasonable starting values. */
4e1c45ea 2261 init_thread_stepping_state (tp);
59f0d5d9 2262
59f0d5d9
PA
2263 /* Reset to normal state. */
2264 init_infwait_state ();
2265
c906108c 2266 /* Resume inferior. */
16c381f0 2267 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2268
2269 /* Wait for it to stop (if not standalone)
2270 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2271 /* Do this only if we are not using the event loop, or if the target
1777feb0 2272 does not support asynchronous execution. */
362646f5 2273 if (!target_can_async_p ())
43ff13b4 2274 {
e4c8541f 2275 wait_for_inferior ();
43ff13b4
JM
2276 normal_stop ();
2277 }
c906108c 2278}
c906108c
SS
2279\f
2280
2281/* Start remote-debugging of a machine over a serial link. */
96baa820 2282
c906108c 2283void
8621d6a9 2284start_remote (int from_tty)
c906108c 2285{
d6b48e9c 2286 struct inferior *inferior;
d6b48e9c
PA
2287
2288 inferior = current_inferior ();
16c381f0 2289 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2290
1777feb0 2291 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2292 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2293 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2294 nothing is returned (instead of just blocking). Because of this,
2295 targets expecting an immediate response need to, internally, set
2296 things up so that the target_wait() is forced to eventually
1777feb0 2297 timeout. */
6426a772
JM
2298 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2299 differentiate to its caller what the state of the target is after
2300 the initial open has been performed. Here we're assuming that
2301 the target has stopped. It should be possible to eventually have
2302 target_open() return to the caller an indication that the target
2303 is currently running and GDB state should be set to the same as
1777feb0 2304 for an async run. */
e4c8541f 2305 wait_for_inferior ();
8621d6a9
DJ
2306
2307 /* Now that the inferior has stopped, do any bookkeeping like
2308 loading shared libraries. We want to do this before normal_stop,
2309 so that the displayed frame is up to date. */
2310 post_create_inferior (&current_target, from_tty);
2311
6426a772 2312 normal_stop ();
c906108c
SS
2313}
2314
2315/* Initialize static vars when a new inferior begins. */
2316
2317void
96baa820 2318init_wait_for_inferior (void)
c906108c
SS
2319{
2320 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2321
c906108c
SS
2322 breakpoint_init_inferior (inf_starting);
2323
c906108c 2324 clear_proceed_status ();
9f976b41
DJ
2325
2326 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2327 deferred_step_ptid = null_ptid;
ca005067
DJ
2328
2329 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2330
842951eb 2331 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2332 init_infwait_state ();
2333
edb3359d
DJ
2334 /* Discard any skipped inlined frames. */
2335 clear_inline_frame_state (minus_one_ptid);
c906108c 2336}
237fc4c9 2337
c906108c 2338\f
b83266a0
SS
2339/* This enum encodes possible reasons for doing a target_wait, so that
2340 wfi can call target_wait in one place. (Ultimately the call will be
2341 moved out of the infinite loop entirely.) */
2342
c5aa993b
JM
2343enum infwait_states
2344{
cd0fc7c3
SS
2345 infwait_normal_state,
2346 infwait_thread_hop_state,
d983da9c 2347 infwait_step_watch_state,
cd0fc7c3 2348 infwait_nonstep_watch_state
b83266a0
SS
2349};
2350
0d1e5fa7
PA
2351/* The PTID we'll do a target_wait on.*/
2352ptid_t waiton_ptid;
2353
2354/* Current inferior wait state. */
2355enum infwait_states infwait_state;
cd0fc7c3 2356
0d1e5fa7
PA
2357/* Data to be passed around while handling an event. This data is
2358 discarded between events. */
c5aa993b 2359struct execution_control_state
488f131b 2360{
0d1e5fa7 2361 ptid_t ptid;
4e1c45ea
PA
2362 /* The thread that got the event, if this was a thread event; NULL
2363 otherwise. */
2364 struct thread_info *event_thread;
2365
488f131b 2366 struct target_waitstatus ws;
488f131b 2367 int random_signal;
7e324e48 2368 int stop_func_filled_in;
488f131b
JB
2369 CORE_ADDR stop_func_start;
2370 CORE_ADDR stop_func_end;
2371 char *stop_func_name;
488f131b 2372 int new_thread_event;
488f131b
JB
2373 int wait_some_more;
2374};
2375
ec9499be 2376static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2377
568d6575
UW
2378static void handle_step_into_function (struct gdbarch *gdbarch,
2379 struct execution_control_state *ecs);
2380static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2381 struct execution_control_state *ecs);
186c406b
TT
2382static void check_exception_resume (struct execution_control_state *,
2383 struct frame_info *, struct symbol *);
611c83ae 2384
104c1213
JM
2385static void stop_stepping (struct execution_control_state *ecs);
2386static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2387static void keep_going (struct execution_control_state *ecs);
104c1213 2388
252fbfc8
PA
2389/* Callback for iterate over threads. If the thread is stopped, but
2390 the user/frontend doesn't know about that yet, go through
2391 normal_stop, as if the thread had just stopped now. ARG points at
2392 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2393 ptid_is_pid(PTID) is true, applies to all threads of the process
2394 pointed at by PTID. Otherwise, apply only to the thread pointed by
2395 PTID. */
2396
2397static int
2398infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2399{
2400 ptid_t ptid = * (ptid_t *) arg;
2401
2402 if ((ptid_equal (info->ptid, ptid)
2403 || ptid_equal (minus_one_ptid, ptid)
2404 || (ptid_is_pid (ptid)
2405 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2406 && is_running (info->ptid)
2407 && !is_executing (info->ptid))
2408 {
2409 struct cleanup *old_chain;
2410 struct execution_control_state ecss;
2411 struct execution_control_state *ecs = &ecss;
2412
2413 memset (ecs, 0, sizeof (*ecs));
2414
2415 old_chain = make_cleanup_restore_current_thread ();
2416
2417 switch_to_thread (info->ptid);
2418
2419 /* Go through handle_inferior_event/normal_stop, so we always
2420 have consistent output as if the stop event had been
2421 reported. */
2422 ecs->ptid = info->ptid;
e09875d4 2423 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2424 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2425 ecs->ws.value.sig = TARGET_SIGNAL_0;
2426
2427 handle_inferior_event (ecs);
2428
2429 if (!ecs->wait_some_more)
2430 {
2431 struct thread_info *tp;
2432
2433 normal_stop ();
2434
fa4cd53f 2435 /* Finish off the continuations. */
252fbfc8 2436 tp = inferior_thread ();
fa4cd53f
PA
2437 do_all_intermediate_continuations_thread (tp, 1);
2438 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2439 }
2440
2441 do_cleanups (old_chain);
2442 }
2443
2444 return 0;
2445}
2446
2447/* This function is attached as a "thread_stop_requested" observer.
2448 Cleanup local state that assumed the PTID was to be resumed, and
2449 report the stop to the frontend. */
2450
2c0b251b 2451static void
252fbfc8
PA
2452infrun_thread_stop_requested (ptid_t ptid)
2453{
fc1cf338 2454 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2455
2456 /* PTID was requested to stop. Remove it from the displaced
2457 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2458
2459 for (displaced = displaced_step_inferior_states;
2460 displaced;
2461 displaced = displaced->next)
252fbfc8 2462 {
fc1cf338 2463 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2464
fc1cf338
PA
2465 it = displaced->step_request_queue;
2466 prev_next_p = &displaced->step_request_queue;
2467 while (it)
252fbfc8 2468 {
fc1cf338
PA
2469 if (ptid_match (it->ptid, ptid))
2470 {
2471 *prev_next_p = it->next;
2472 it->next = NULL;
2473 xfree (it);
2474 }
252fbfc8 2475 else
fc1cf338
PA
2476 {
2477 prev_next_p = &it->next;
2478 }
252fbfc8 2479
fc1cf338 2480 it = *prev_next_p;
252fbfc8 2481 }
252fbfc8
PA
2482 }
2483
2484 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2485}
2486
a07daef3
PA
2487static void
2488infrun_thread_thread_exit (struct thread_info *tp, int silent)
2489{
2490 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2491 nullify_last_target_wait_ptid ();
2492}
2493
4e1c45ea
PA
2494/* Callback for iterate_over_threads. */
2495
2496static int
2497delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2498{
2499 if (is_exited (info->ptid))
2500 return 0;
2501
2502 delete_step_resume_breakpoint (info);
186c406b 2503 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2504 return 0;
2505}
2506
2507/* In all-stop, delete the step resume breakpoint of any thread that
2508 had one. In non-stop, delete the step resume breakpoint of the
2509 thread that just stopped. */
2510
2511static void
2512delete_step_thread_step_resume_breakpoint (void)
2513{
2514 if (!target_has_execution
2515 || ptid_equal (inferior_ptid, null_ptid))
2516 /* If the inferior has exited, we have already deleted the step
2517 resume breakpoints out of GDB's lists. */
2518 return;
2519
2520 if (non_stop)
2521 {
2522 /* If in non-stop mode, only delete the step-resume or
2523 longjmp-resume breakpoint of the thread that just stopped
2524 stepping. */
2525 struct thread_info *tp = inferior_thread ();
abbb1732 2526
4e1c45ea 2527 delete_step_resume_breakpoint (tp);
186c406b 2528 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2529 }
2530 else
2531 /* In all-stop mode, delete all step-resume and longjmp-resume
2532 breakpoints of any thread that had them. */
2533 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2534}
2535
1777feb0 2536/* A cleanup wrapper. */
4e1c45ea
PA
2537
2538static void
2539delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2540{
2541 delete_step_thread_step_resume_breakpoint ();
2542}
2543
223698f8
DE
2544/* Pretty print the results of target_wait, for debugging purposes. */
2545
2546static void
2547print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2548 const struct target_waitstatus *ws)
2549{
2550 char *status_string = target_waitstatus_to_string (ws);
2551 struct ui_file *tmp_stream = mem_fileopen ();
2552 char *text;
223698f8
DE
2553
2554 /* The text is split over several lines because it was getting too long.
2555 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2556 output as a unit; we want only one timestamp printed if debug_timestamp
2557 is set. */
2558
2559 fprintf_unfiltered (tmp_stream,
2560 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2561 if (PIDGET (waiton_ptid) != -1)
2562 fprintf_unfiltered (tmp_stream,
2563 " [%s]", target_pid_to_str (waiton_ptid));
2564 fprintf_unfiltered (tmp_stream, ", status) =\n");
2565 fprintf_unfiltered (tmp_stream,
2566 "infrun: %d [%s],\n",
2567 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2568 fprintf_unfiltered (tmp_stream,
2569 "infrun: %s\n",
2570 status_string);
2571
759ef836 2572 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2573
2574 /* This uses %s in part to handle %'s in the text, but also to avoid
2575 a gcc error: the format attribute requires a string literal. */
2576 fprintf_unfiltered (gdb_stdlog, "%s", text);
2577
2578 xfree (status_string);
2579 xfree (text);
2580 ui_file_delete (tmp_stream);
2581}
2582
24291992
PA
2583/* Prepare and stabilize the inferior for detaching it. E.g.,
2584 detaching while a thread is displaced stepping is a recipe for
2585 crashing it, as nothing would readjust the PC out of the scratch
2586 pad. */
2587
2588void
2589prepare_for_detach (void)
2590{
2591 struct inferior *inf = current_inferior ();
2592 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2593 struct cleanup *old_chain_1;
2594 struct displaced_step_inferior_state *displaced;
2595
2596 displaced = get_displaced_stepping_state (inf->pid);
2597
2598 /* Is any thread of this process displaced stepping? If not,
2599 there's nothing else to do. */
2600 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2601 return;
2602
2603 if (debug_infrun)
2604 fprintf_unfiltered (gdb_stdlog,
2605 "displaced-stepping in-process while detaching");
2606
2607 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2608 inf->detaching = 1;
2609
2610 while (!ptid_equal (displaced->step_ptid, null_ptid))
2611 {
2612 struct cleanup *old_chain_2;
2613 struct execution_control_state ecss;
2614 struct execution_control_state *ecs;
2615
2616 ecs = &ecss;
2617 memset (ecs, 0, sizeof (*ecs));
2618
2619 overlay_cache_invalid = 1;
2620
24291992
PA
2621 if (deprecated_target_wait_hook)
2622 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2623 else
2624 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2625
2626 if (debug_infrun)
2627 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2628
2629 /* If an error happens while handling the event, propagate GDB's
2630 knowledge of the executing state to the frontend/user running
2631 state. */
3e43a32a
MS
2632 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2633 &minus_one_ptid);
24291992 2634
4d533103
PA
2635 /* In non-stop mode, each thread is handled individually.
2636 Switch early, so the global state is set correctly for this
2637 thread. */
2638 if (non_stop
2639 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2640 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2641 context_switch (ecs->ptid);
2642
24291992
PA
2643 /* Now figure out what to do with the result of the result. */
2644 handle_inferior_event (ecs);
2645
2646 /* No error, don't finish the state yet. */
2647 discard_cleanups (old_chain_2);
2648
2649 /* Breakpoints and watchpoints are not installed on the target
2650 at this point, and signals are passed directly to the
2651 inferior, so this must mean the process is gone. */
2652 if (!ecs->wait_some_more)
2653 {
2654 discard_cleanups (old_chain_1);
2655 error (_("Program exited while detaching"));
2656 }
2657 }
2658
2659 discard_cleanups (old_chain_1);
2660}
2661
cd0fc7c3 2662/* Wait for control to return from inferior to debugger.
ae123ec6 2663
cd0fc7c3
SS
2664 If inferior gets a signal, we may decide to start it up again
2665 instead of returning. That is why there is a loop in this function.
2666 When this function actually returns it means the inferior
2667 should be left stopped and GDB should read more commands. */
2668
2669void
e4c8541f 2670wait_for_inferior (void)
cd0fc7c3
SS
2671{
2672 struct cleanup *old_cleanups;
0d1e5fa7 2673 struct execution_control_state ecss;
cd0fc7c3 2674 struct execution_control_state *ecs;
c906108c 2675
527159b7 2676 if (debug_infrun)
ae123ec6 2677 fprintf_unfiltered
e4c8541f 2678 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2679
4e1c45ea
PA
2680 old_cleanups =
2681 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2682
cd0fc7c3 2683 ecs = &ecss;
0d1e5fa7
PA
2684 memset (ecs, 0, sizeof (*ecs));
2685
c906108c
SS
2686 while (1)
2687 {
29f49a6a
PA
2688 struct cleanup *old_chain;
2689
ec9499be 2690 overlay_cache_invalid = 1;
ec9499be 2691
9a4105ab 2692 if (deprecated_target_wait_hook)
47608cb1 2693 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2694 else
47608cb1 2695 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2696
f00150c9 2697 if (debug_infrun)
223698f8 2698 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2699
29f49a6a
PA
2700 /* If an error happens while handling the event, propagate GDB's
2701 knowledge of the executing state to the frontend/user running
2702 state. */
2703 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2704
a96d9b2e
SDJ
2705 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2706 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2707 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2708
cd0fc7c3
SS
2709 /* Now figure out what to do with the result of the result. */
2710 handle_inferior_event (ecs);
c906108c 2711
29f49a6a
PA
2712 /* No error, don't finish the state yet. */
2713 discard_cleanups (old_chain);
2714
cd0fc7c3
SS
2715 if (!ecs->wait_some_more)
2716 break;
2717 }
4e1c45ea 2718
cd0fc7c3
SS
2719 do_cleanups (old_cleanups);
2720}
c906108c 2721
1777feb0 2722/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2723 event loop whenever a change of state is detected on the file
1777feb0
MS
2724 descriptor corresponding to the target. It can be called more than
2725 once to complete a single execution command. In such cases we need
2726 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2727 that this function is called for a single execution command, then
2728 report to the user that the inferior has stopped, and do the
1777feb0 2729 necessary cleanups. */
43ff13b4
JM
2730
2731void
fba45db2 2732fetch_inferior_event (void *client_data)
43ff13b4 2733{
0d1e5fa7 2734 struct execution_control_state ecss;
a474d7c2 2735 struct execution_control_state *ecs = &ecss;
4f8d22e3 2736 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2737 struct cleanup *ts_old_chain;
4f8d22e3 2738 int was_sync = sync_execution;
0f641c01 2739 int cmd_done = 0;
43ff13b4 2740
0d1e5fa7
PA
2741 memset (ecs, 0, sizeof (*ecs));
2742
c5187ac6
PA
2743 /* We're handling a live event, so make sure we're doing live
2744 debugging. If we're looking at traceframes while the target is
2745 running, we're going to need to get back to that mode after
2746 handling the event. */
2747 if (non_stop)
2748 {
2749 make_cleanup_restore_current_traceframe ();
e6e4e701 2750 set_current_traceframe (-1);
c5187ac6
PA
2751 }
2752
4f8d22e3
PA
2753 if (non_stop)
2754 /* In non-stop mode, the user/frontend should not notice a thread
2755 switch due to internal events. Make sure we reverse to the
2756 user selected thread and frame after handling the event and
2757 running any breakpoint commands. */
2758 make_cleanup_restore_current_thread ();
2759
ec9499be 2760 overlay_cache_invalid = 1;
3dd5b83d 2761
32231432
PA
2762 make_cleanup_restore_integer (&execution_direction);
2763 execution_direction = target_execution_direction ();
2764
9a4105ab 2765 if (deprecated_target_wait_hook)
a474d7c2 2766 ecs->ptid =
47608cb1 2767 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2768 else
47608cb1 2769 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2770
f00150c9 2771 if (debug_infrun)
223698f8 2772 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2773
94cc34af
PA
2774 if (non_stop
2775 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
2776 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2777 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2778 /* In non-stop mode, each thread is handled individually. Switch
2779 early, so the global state is set correctly for this
2780 thread. */
2781 context_switch (ecs->ptid);
2782
29f49a6a
PA
2783 /* If an error happens while handling the event, propagate GDB's
2784 knowledge of the executing state to the frontend/user running
2785 state. */
2786 if (!non_stop)
2787 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2788 else
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2790
353d1d73
JK
2791 /* Get executed before make_cleanup_restore_current_thread above to apply
2792 still for the thread which has thrown the exception. */
2793 make_bpstat_clear_actions_cleanup ();
2794
43ff13b4 2795 /* Now figure out what to do with the result of the result. */
a474d7c2 2796 handle_inferior_event (ecs);
43ff13b4 2797
a474d7c2 2798 if (!ecs->wait_some_more)
43ff13b4 2799 {
d6b48e9c
PA
2800 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2801
4e1c45ea 2802 delete_step_thread_step_resume_breakpoint ();
f107f563 2803
d6b48e9c 2804 /* We may not find an inferior if this was a process exit. */
16c381f0 2805 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2806 normal_stop ();
2807
af679fd0
PA
2808 if (target_has_execution
2809 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2810 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2811 && ecs->event_thread->step_multi
16c381f0 2812 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2813 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2814 else
0f641c01
PA
2815 {
2816 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2817 cmd_done = 1;
2818 }
43ff13b4 2819 }
4f8d22e3 2820
29f49a6a
PA
2821 /* No error, don't finish the thread states yet. */
2822 discard_cleanups (ts_old_chain);
2823
4f8d22e3
PA
2824 /* Revert thread and frame. */
2825 do_cleanups (old_chain);
2826
2827 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2828 restore the prompt (a synchronous execution command has finished,
2829 and we're ready for input). */
b4a14fd0 2830 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2831 display_gdb_prompt (0);
0f641c01
PA
2832
2833 if (cmd_done
2834 && !was_sync
2835 && exec_done_display_p
2836 && (ptid_equal (inferior_ptid, null_ptid)
2837 || !is_running (inferior_ptid)))
2838 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2839}
2840
edb3359d
DJ
2841/* Record the frame and location we're currently stepping through. */
2842void
2843set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2844{
2845 struct thread_info *tp = inferior_thread ();
2846
16c381f0
JK
2847 tp->control.step_frame_id = get_frame_id (frame);
2848 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2849
2850 tp->current_symtab = sal.symtab;
2851 tp->current_line = sal.line;
2852}
2853
0d1e5fa7
PA
2854/* Clear context switchable stepping state. */
2855
2856void
4e1c45ea 2857init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2858{
2859 tss->stepping_over_breakpoint = 0;
2860 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2861}
2862
e02bc4cc 2863/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2864 target_wait()/deprecated_target_wait_hook(). The data is actually
2865 cached by handle_inferior_event(), which gets called immediately
2866 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2867
2868void
488f131b 2869get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2870{
39f77062 2871 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2872 *status = target_last_waitstatus;
2873}
2874
ac264b3b
MS
2875void
2876nullify_last_target_wait_ptid (void)
2877{
2878 target_last_wait_ptid = minus_one_ptid;
2879}
2880
dcf4fbde 2881/* Switch thread contexts. */
dd80620e
MS
2882
2883static void
0d1e5fa7 2884context_switch (ptid_t ptid)
dd80620e 2885{
4b51d87b 2886 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2887 {
2888 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2889 target_pid_to_str (inferior_ptid));
2890 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2891 target_pid_to_str (ptid));
fd48f117
DJ
2892 }
2893
0d1e5fa7 2894 switch_to_thread (ptid);
dd80620e
MS
2895}
2896
4fa8626c
DJ
2897static void
2898adjust_pc_after_break (struct execution_control_state *ecs)
2899{
24a73cce
UW
2900 struct regcache *regcache;
2901 struct gdbarch *gdbarch;
6c95b8df 2902 struct address_space *aspace;
8aad930b 2903 CORE_ADDR breakpoint_pc;
4fa8626c 2904
4fa8626c
DJ
2905 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2906 we aren't, just return.
9709f61c
DJ
2907
2908 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2909 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2910 implemented by software breakpoints should be handled through the normal
2911 breakpoint layer.
8fb3e588 2912
4fa8626c
DJ
2913 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2914 different signals (SIGILL or SIGEMT for instance), but it is less
2915 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2916 gdbarch_decr_pc_after_break. I don't know any specific target that
2917 generates these signals at breakpoints (the code has been in GDB since at
2918 least 1992) so I can not guess how to handle them here.
8fb3e588 2919
e6cf7916
UW
2920 In earlier versions of GDB, a target with
2921 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2922 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2923 target with both of these set in GDB history, and it seems unlikely to be
2924 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2925
2926 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2927 return;
2928
2929 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2930 return;
2931
4058b839
PA
2932 /* In reverse execution, when a breakpoint is hit, the instruction
2933 under it has already been de-executed. The reported PC always
2934 points at the breakpoint address, so adjusting it further would
2935 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2936 architecture:
2937
2938 B1 0x08000000 : INSN1
2939 B2 0x08000001 : INSN2
2940 0x08000002 : INSN3
2941 PC -> 0x08000003 : INSN4
2942
2943 Say you're stopped at 0x08000003 as above. Reverse continuing
2944 from that point should hit B2 as below. Reading the PC when the
2945 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2946 been de-executed already.
2947
2948 B1 0x08000000 : INSN1
2949 B2 PC -> 0x08000001 : INSN2
2950 0x08000002 : INSN3
2951 0x08000003 : INSN4
2952
2953 We can't apply the same logic as for forward execution, because
2954 we would wrongly adjust the PC to 0x08000000, since there's a
2955 breakpoint at PC - 1. We'd then report a hit on B1, although
2956 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2957 behaviour. */
2958 if (execution_direction == EXEC_REVERSE)
2959 return;
2960
24a73cce
UW
2961 /* If this target does not decrement the PC after breakpoints, then
2962 we have nothing to do. */
2963 regcache = get_thread_regcache (ecs->ptid);
2964 gdbarch = get_regcache_arch (regcache);
2965 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2966 return;
2967
6c95b8df
PA
2968 aspace = get_regcache_aspace (regcache);
2969
8aad930b
AC
2970 /* Find the location where (if we've hit a breakpoint) the
2971 breakpoint would be. */
515630c5
UW
2972 breakpoint_pc = regcache_read_pc (regcache)
2973 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2974
1c5cfe86
PA
2975 /* Check whether there actually is a software breakpoint inserted at
2976 that location.
2977
2978 If in non-stop mode, a race condition is possible where we've
2979 removed a breakpoint, but stop events for that breakpoint were
2980 already queued and arrive later. To suppress those spurious
2981 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2982 and retire them after a number of stop events are reported. */
6c95b8df
PA
2983 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2984 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2985 {
96429cc8 2986 struct cleanup *old_cleanups = NULL;
abbb1732 2987
96429cc8
HZ
2988 if (RECORD_IS_USED)
2989 old_cleanups = record_gdb_operation_disable_set ();
2990
1c0fdd0e
UW
2991 /* When using hardware single-step, a SIGTRAP is reported for both
2992 a completed single-step and a software breakpoint. Need to
2993 differentiate between the two, as the latter needs adjusting
2994 but the former does not.
2995
2996 The SIGTRAP can be due to a completed hardware single-step only if
2997 - we didn't insert software single-step breakpoints
2998 - the thread to be examined is still the current thread
2999 - this thread is currently being stepped
3000
3001 If any of these events did not occur, we must have stopped due
3002 to hitting a software breakpoint, and have to back up to the
3003 breakpoint address.
3004
3005 As a special case, we could have hardware single-stepped a
3006 software breakpoint. In this case (prev_pc == breakpoint_pc),
3007 we also need to back up to the breakpoint address. */
3008
3009 if (singlestep_breakpoints_inserted_p
3010 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3011 || !currently_stepping (ecs->event_thread)
3012 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3013 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3014
3015 if (RECORD_IS_USED)
3016 do_cleanups (old_cleanups);
8aad930b 3017 }
4fa8626c
DJ
3018}
3019
0d1e5fa7
PA
3020void
3021init_infwait_state (void)
3022{
3023 waiton_ptid = pid_to_ptid (-1);
3024 infwait_state = infwait_normal_state;
3025}
3026
94cc34af
PA
3027void
3028error_is_running (void)
3029{
3e43a32a
MS
3030 error (_("Cannot execute this command while "
3031 "the selected thread is running."));
94cc34af
PA
3032}
3033
3034void
3035ensure_not_running (void)
3036{
3037 if (is_running (inferior_ptid))
3038 error_is_running ();
3039}
3040
edb3359d
DJ
3041static int
3042stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3043{
3044 for (frame = get_prev_frame (frame);
3045 frame != NULL;
3046 frame = get_prev_frame (frame))
3047 {
3048 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3049 return 1;
3050 if (get_frame_type (frame) != INLINE_FRAME)
3051 break;
3052 }
3053
3054 return 0;
3055}
3056
a96d9b2e
SDJ
3057/* Auxiliary function that handles syscall entry/return events.
3058 It returns 1 if the inferior should keep going (and GDB
3059 should ignore the event), or 0 if the event deserves to be
3060 processed. */
ca2163eb 3061
a96d9b2e 3062static int
ca2163eb 3063handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3064{
ca2163eb
PA
3065 struct regcache *regcache;
3066 struct gdbarch *gdbarch;
3067 int syscall_number;
3068
3069 if (!ptid_equal (ecs->ptid, inferior_ptid))
3070 context_switch (ecs->ptid);
3071
3072 regcache = get_thread_regcache (ecs->ptid);
3073 gdbarch = get_regcache_arch (regcache);
3074 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3075 stop_pc = regcache_read_pc (regcache);
3076
a96d9b2e
SDJ
3077 target_last_waitstatus.value.syscall_number = syscall_number;
3078
3079 if (catch_syscall_enabled () > 0
3080 && catching_syscall_number (syscall_number) > 0)
3081 {
3082 if (debug_infrun)
3083 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3084 syscall_number);
a96d9b2e 3085
16c381f0 3086 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3087 = bpstat_stop_status (get_regcache_aspace (regcache),
3088 stop_pc, ecs->ptid);
16c381f0
JK
3089 ecs->random_signal
3090 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3091
ca2163eb
PA
3092 if (!ecs->random_signal)
3093 {
3094 /* Catchpoint hit. */
16c381f0 3095 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3096 return 0;
3097 }
a96d9b2e 3098 }
ca2163eb
PA
3099
3100 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3101 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3102 keep_going (ecs);
3103 return 1;
a96d9b2e
SDJ
3104}
3105
7e324e48
GB
3106/* Clear the supplied execution_control_state's stop_func_* fields. */
3107
3108static void
3109clear_stop_func (struct execution_control_state *ecs)
3110{
3111 ecs->stop_func_filled_in = 0;
3112 ecs->stop_func_start = 0;
3113 ecs->stop_func_end = 0;
3114 ecs->stop_func_name = NULL;
3115}
3116
3117/* Lazily fill in the execution_control_state's stop_func_* fields. */
3118
3119static void
3120fill_in_stop_func (struct gdbarch *gdbarch,
3121 struct execution_control_state *ecs)
3122{
3123 if (!ecs->stop_func_filled_in)
3124 {
3125 /* Don't care about return value; stop_func_start and stop_func_name
3126 will both be 0 if it doesn't work. */
3127 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3128 &ecs->stop_func_start, &ecs->stop_func_end);
3129 ecs->stop_func_start
3130 += gdbarch_deprecated_function_start_offset (gdbarch);
3131
3132 ecs->stop_func_filled_in = 1;
3133 }
3134}
3135
cd0fc7c3
SS
3136/* Given an execution control state that has been freshly filled in
3137 by an event from the inferior, figure out what it means and take
3138 appropriate action. */
c906108c 3139
ec9499be 3140static void
96baa820 3141handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3142{
568d6575
UW
3143 struct frame_info *frame;
3144 struct gdbarch *gdbarch;
d983da9c
DJ
3145 int stopped_by_watchpoint;
3146 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3147 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3148 enum stop_kind stop_soon;
3149
28736962
PA
3150 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3151 {
3152 /* We had an event in the inferior, but we are not interested in
3153 handling it at this level. The lower layers have already
3154 done what needs to be done, if anything.
3155
3156 One of the possible circumstances for this is when the
3157 inferior produces output for the console. The inferior has
3158 not stopped, and we are ignoring the event. Another possible
3159 circumstance is any event which the lower level knows will be
3160 reported multiple times without an intervening resume. */
3161 if (debug_infrun)
3162 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3163 prepare_to_wait (ecs);
3164 return;
3165 }
3166
d6b48e9c 3167 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
28736962 3168 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
d6b48e9c
PA
3169 {
3170 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3171
d6b48e9c 3172 gdb_assert (inf);
16c381f0 3173 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3174 }
3175 else
3176 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3177
1777feb0 3178 /* Cache the last pid/waitstatus. */
39f77062 3179 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3180 target_last_waitstatus = ecs->ws;
e02bc4cc 3181
ca005067 3182 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3183 stop_stack_dummy = STOP_NONE;
ca005067 3184
1777feb0 3185 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3186
3187 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3188 && !ptid_equal (ecs->ptid, minus_one_ptid)
3189 && !in_thread_list (ecs->ptid));
3190
3191 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3192 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3193 add_thread (ecs->ptid);
3194
e09875d4 3195 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3196
3197 /* Dependent on valid ECS->EVENT_THREAD. */
3198 adjust_pc_after_break (ecs);
3199
3200 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3201 reinit_frame_cache ();
3202
28736962
PA
3203 breakpoint_retire_moribund ();
3204
2b009048
DJ
3205 /* First, distinguish signals caused by the debugger from signals
3206 that have to do with the program's own actions. Note that
3207 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3208 on the operating system version. Here we detect when a SIGILL or
3209 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3210 something similar for SIGSEGV, since a SIGSEGV will be generated
3211 when we're trying to execute a breakpoint instruction on a
3212 non-executable stack. This happens for call dummy breakpoints
3213 for architectures like SPARC that place call dummies on the
3214 stack. */
2b009048
DJ
3215 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3216 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3217 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3218 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3219 {
de0a0249
UW
3220 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3221
3222 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3223 regcache_read_pc (regcache)))
3224 {
3225 if (debug_infrun)
3226 fprintf_unfiltered (gdb_stdlog,
3227 "infrun: Treating signal as SIGTRAP\n");
3228 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3229 }
2b009048
DJ
3230 }
3231
28736962
PA
3232 /* Mark the non-executing threads accordingly. In all-stop, all
3233 threads of all processes are stopped when we get any event
3234 reported. In non-stop mode, only the event thread stops. If
3235 we're handling a process exit in non-stop mode, there's nothing
3236 to do, as threads of the dead process are gone, and threads of
3237 any other process were left running. */
3238 if (!non_stop)
3239 set_executing (minus_one_ptid, 0);
3240 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3241 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3242 set_executing (ecs->ptid, 0);
8c90c137 3243
0d1e5fa7 3244 switch (infwait_state)
488f131b
JB
3245 {
3246 case infwait_thread_hop_state:
527159b7 3247 if (debug_infrun)
8a9de0e4 3248 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3249 break;
b83266a0 3250
488f131b 3251 case infwait_normal_state:
527159b7 3252 if (debug_infrun)
8a9de0e4 3253 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3254 break;
3255
3256 case infwait_step_watch_state:
3257 if (debug_infrun)
3258 fprintf_unfiltered (gdb_stdlog,
3259 "infrun: infwait_step_watch_state\n");
3260
3261 stepped_after_stopped_by_watchpoint = 1;
488f131b 3262 break;
b83266a0 3263
488f131b 3264 case infwait_nonstep_watch_state:
527159b7 3265 if (debug_infrun)
8a9de0e4
AC
3266 fprintf_unfiltered (gdb_stdlog,
3267 "infrun: infwait_nonstep_watch_state\n");
488f131b 3268 insert_breakpoints ();
c906108c 3269
488f131b
JB
3270 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3271 handle things like signals arriving and other things happening
3272 in combination correctly? */
3273 stepped_after_stopped_by_watchpoint = 1;
3274 break;
65e82032
AC
3275
3276 default:
e2e0b3e5 3277 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3278 }
ec9499be 3279
0d1e5fa7 3280 infwait_state = infwait_normal_state;
ec9499be 3281 waiton_ptid = pid_to_ptid (-1);
c906108c 3282
488f131b
JB
3283 switch (ecs->ws.kind)
3284 {
3285 case TARGET_WAITKIND_LOADED:
527159b7 3286 if (debug_infrun)
8a9de0e4 3287 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3288 /* Ignore gracefully during startup of the inferior, as it might
3289 be the shell which has just loaded some objects, otherwise
3290 add the symbols for the newly loaded objects. Also ignore at
3291 the beginning of an attach or remote session; we will query
3292 the full list of libraries once the connection is
3293 established. */
c0236d92 3294 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3295 {
488f131b
JB
3296 /* Check for any newly added shared libraries if we're
3297 supposed to be adding them automatically. Switch
3298 terminal for any messages produced by
3299 breakpoint_re_set. */
3300 target_terminal_ours_for_output ();
aff6338a 3301 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3302 stack's section table is kept up-to-date. Architectures,
3303 (e.g., PPC64), use the section table to perform
3304 operations such as address => section name and hence
3305 require the table to contain all sections (including
3306 those found in shared libraries). */
b0f4b84b 3307#ifdef SOLIB_ADD
aff6338a 3308 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3309#else
3310 solib_add (NULL, 0, &current_target, auto_solib_add);
3311#endif
488f131b
JB
3312 target_terminal_inferior ();
3313
b0f4b84b
DJ
3314 /* If requested, stop when the dynamic linker notifies
3315 gdb of events. This allows the user to get control
3316 and place breakpoints in initializer routines for
3317 dynamically loaded objects (among other things). */
3318 if (stop_on_solib_events)
3319 {
55409f9d
DJ
3320 /* Make sure we print "Stopped due to solib-event" in
3321 normal_stop. */
3322 stop_print_frame = 1;
3323
b0f4b84b
DJ
3324 stop_stepping (ecs);
3325 return;
3326 }
3327
3328 /* NOTE drow/2007-05-11: This might be a good place to check
3329 for "catch load". */
488f131b 3330 }
b0f4b84b
DJ
3331
3332 /* If we are skipping through a shell, or through shared library
3333 loading that we aren't interested in, resume the program. If
3334 we're running the program normally, also resume. But stop if
3335 we're attaching or setting up a remote connection. */
3336 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3337 {
74960c60
VP
3338 /* Loading of shared libraries might have changed breakpoint
3339 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3340 if (stop_soon == NO_STOP_QUIETLY
3341 && !breakpoints_always_inserted_mode ())
74960c60 3342 insert_breakpoints ();
b0f4b84b
DJ
3343 resume (0, TARGET_SIGNAL_0);
3344 prepare_to_wait (ecs);
3345 return;
3346 }
3347
3348 break;
c5aa993b 3349
488f131b 3350 case TARGET_WAITKIND_SPURIOUS:
527159b7 3351 if (debug_infrun)
8a9de0e4 3352 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3353 resume (0, TARGET_SIGNAL_0);
3354 prepare_to_wait (ecs);
3355 return;
c5aa993b 3356
488f131b 3357 case TARGET_WAITKIND_EXITED:
527159b7 3358 if (debug_infrun)
8a9de0e4 3359 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3360 inferior_ptid = ecs->ptid;
6c95b8df
PA
3361 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3362 set_current_program_space (current_inferior ()->pspace);
3363 handle_vfork_child_exec_or_exit (0);
1777feb0 3364 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3365 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3366
3367 /* Record the exit code in the convenience variable $_exitcode, so
3368 that the user can inspect this again later. */
4fa62494
UW
3369 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3370 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3371
3372 /* Also record this in the inferior itself. */
3373 current_inferior ()->has_exit_code = 1;
3374 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3375
488f131b
JB
3376 gdb_flush (gdb_stdout);
3377 target_mourn_inferior ();
1c0fdd0e 3378 singlestep_breakpoints_inserted_p = 0;
d03285ec 3379 cancel_single_step_breakpoints ();
488f131b
JB
3380 stop_print_frame = 0;
3381 stop_stepping (ecs);
3382 return;
c5aa993b 3383
488f131b 3384 case TARGET_WAITKIND_SIGNALLED:
527159b7 3385 if (debug_infrun)
8a9de0e4 3386 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3387 inferior_ptid = ecs->ptid;
6c95b8df
PA
3388 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3389 set_current_program_space (current_inferior ()->pspace);
3390 handle_vfork_child_exec_or_exit (0);
488f131b 3391 stop_print_frame = 0;
1777feb0 3392 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3393
488f131b
JB
3394 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3395 reach here unless the inferior is dead. However, for years
3396 target_kill() was called here, which hints that fatal signals aren't
3397 really fatal on some systems. If that's true, then some changes
1777feb0 3398 may be needed. */
488f131b 3399 target_mourn_inferior ();
c906108c 3400
33d62d64 3401 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3402 singlestep_breakpoints_inserted_p = 0;
d03285ec 3403 cancel_single_step_breakpoints ();
488f131b
JB
3404 stop_stepping (ecs);
3405 return;
c906108c 3406
488f131b 3407 /* The following are the only cases in which we keep going;
1777feb0 3408 the above cases end in a continue or goto. */
488f131b 3409 case TARGET_WAITKIND_FORKED:
deb3b17b 3410 case TARGET_WAITKIND_VFORKED:
527159b7 3411 if (debug_infrun)
8a9de0e4 3412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3413
e2d96639
YQ
3414 /* Check whether the inferior is displaced stepping. */
3415 {
3416 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3418 struct displaced_step_inferior_state *displaced
3419 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3420
3421 /* If checking displaced stepping is supported, and thread
3422 ecs->ptid is displaced stepping. */
3423 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3424 {
3425 struct inferior *parent_inf
3426 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3427 struct regcache *child_regcache;
3428 CORE_ADDR parent_pc;
3429
3430 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3431 indicating that the displaced stepping of syscall instruction
3432 has been done. Perform cleanup for parent process here. Note
3433 that this operation also cleans up the child process for vfork,
3434 because their pages are shared. */
3435 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3436
3437 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3438 {
3439 /* Restore scratch pad for child process. */
3440 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3441 }
3442
3443 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3444 the child's PC is also within the scratchpad. Set the child's PC
3445 to the parent's PC value, which has already been fixed up.
3446 FIXME: we use the parent's aspace here, although we're touching
3447 the child, because the child hasn't been added to the inferior
3448 list yet at this point. */
3449
3450 child_regcache
3451 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3452 gdbarch,
3453 parent_inf->aspace);
3454 /* Read PC value of parent process. */
3455 parent_pc = regcache_read_pc (regcache);
3456
3457 if (debug_displaced)
3458 fprintf_unfiltered (gdb_stdlog,
3459 "displaced: write child pc from %s to %s\n",
3460 paddress (gdbarch,
3461 regcache_read_pc (child_regcache)),
3462 paddress (gdbarch, parent_pc));
3463
3464 regcache_write_pc (child_regcache, parent_pc);
3465 }
3466 }
3467
5a2901d9
DJ
3468 if (!ptid_equal (ecs->ptid, inferior_ptid))
3469 {
0d1e5fa7 3470 context_switch (ecs->ptid);
35f196d9 3471 reinit_frame_cache ();
5a2901d9
DJ
3472 }
3473
b242c3c2
PA
3474 /* Immediately detach breakpoints from the child before there's
3475 any chance of letting the user delete breakpoints from the
3476 breakpoint lists. If we don't do this early, it's easy to
3477 leave left over traps in the child, vis: "break foo; catch
3478 fork; c; <fork>; del; c; <child calls foo>". We only follow
3479 the fork on the last `continue', and by that time the
3480 breakpoint at "foo" is long gone from the breakpoint table.
3481 If we vforked, then we don't need to unpatch here, since both
3482 parent and child are sharing the same memory pages; we'll
3483 need to unpatch at follow/detach time instead to be certain
3484 that new breakpoints added between catchpoint hit time and
3485 vfork follow are detached. */
3486 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3487 {
3488 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3489
3490 /* This won't actually modify the breakpoint list, but will
3491 physically remove the breakpoints from the child. */
3492 detach_breakpoints (child_pid);
3493 }
3494
d03285ec
UW
3495 if (singlestep_breakpoints_inserted_p)
3496 {
1777feb0 3497 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3498 remove_single_step_breakpoints ();
3499 singlestep_breakpoints_inserted_p = 0;
3500 }
3501
e58b0e63
PA
3502 /* In case the event is caught by a catchpoint, remember that
3503 the event is to be followed at the next resume of the thread,
3504 and not immediately. */
3505 ecs->event_thread->pending_follow = ecs->ws;
3506
fb14de7b 3507 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3508
16c381f0 3509 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3510 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3511 stop_pc, ecs->ptid);
675bf4cb 3512
67822962
PA
3513 /* Note that we're interested in knowing the bpstat actually
3514 causes a stop, not just if it may explain the signal.
3515 Software watchpoints, for example, always appear in the
3516 bpstat. */
16c381f0
JK
3517 ecs->random_signal
3518 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3519
3520 /* If no catchpoint triggered for this, then keep going. */
3521 if (ecs->random_signal)
3522 {
6c95b8df
PA
3523 ptid_t parent;
3524 ptid_t child;
e58b0e63 3525 int should_resume;
3e43a32a
MS
3526 int follow_child
3527 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3528
16c381f0 3529 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3530
3531 should_resume = follow_fork ();
3532
6c95b8df
PA
3533 parent = ecs->ptid;
3534 child = ecs->ws.value.related_pid;
3535
3536 /* In non-stop mode, also resume the other branch. */
3537 if (non_stop && !detach_fork)
3538 {
3539 if (follow_child)
3540 switch_to_thread (parent);
3541 else
3542 switch_to_thread (child);
3543
3544 ecs->event_thread = inferior_thread ();
3545 ecs->ptid = inferior_ptid;
3546 keep_going (ecs);
3547 }
3548
3549 if (follow_child)
3550 switch_to_thread (child);
3551 else
3552 switch_to_thread (parent);
3553
e58b0e63
PA
3554 ecs->event_thread = inferior_thread ();
3555 ecs->ptid = inferior_ptid;
3556
3557 if (should_resume)
3558 keep_going (ecs);
3559 else
3560 stop_stepping (ecs);
04e68871
DJ
3561 return;
3562 }
16c381f0 3563 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3564 goto process_event_stop_test;
3565
6c95b8df
PA
3566 case TARGET_WAITKIND_VFORK_DONE:
3567 /* Done with the shared memory region. Re-insert breakpoints in
3568 the parent, and keep going. */
3569
3570 if (debug_infrun)
3e43a32a
MS
3571 fprintf_unfiltered (gdb_stdlog,
3572 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3573
3574 if (!ptid_equal (ecs->ptid, inferior_ptid))
3575 context_switch (ecs->ptid);
3576
3577 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3578 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3579 /* This also takes care of reinserting breakpoints in the
3580 previously locked inferior. */
3581 keep_going (ecs);
3582 return;
3583
488f131b 3584 case TARGET_WAITKIND_EXECD:
527159b7 3585 if (debug_infrun)
fc5261f2 3586 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3587
5a2901d9
DJ
3588 if (!ptid_equal (ecs->ptid, inferior_ptid))
3589 {
0d1e5fa7 3590 context_switch (ecs->ptid);
35f196d9 3591 reinit_frame_cache ();
5a2901d9
DJ
3592 }
3593
d03285ec
UW
3594 singlestep_breakpoints_inserted_p = 0;
3595 cancel_single_step_breakpoints ();
3596
fb14de7b 3597 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3598
6c95b8df
PA
3599 /* Do whatever is necessary to the parent branch of the vfork. */
3600 handle_vfork_child_exec_or_exit (1);
3601
795e548f
PA
3602 /* This causes the eventpoints and symbol table to be reset.
3603 Must do this now, before trying to determine whether to
3604 stop. */
71b43ef8 3605 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3606
16c381f0 3607 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3608 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3609 stop_pc, ecs->ptid);
16c381f0
JK
3610 ecs->random_signal
3611 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3612
71b43ef8
PA
3613 /* Note that this may be referenced from inside
3614 bpstat_stop_status above, through inferior_has_execd. */
3615 xfree (ecs->ws.value.execd_pathname);
3616 ecs->ws.value.execd_pathname = NULL;
3617
04e68871
DJ
3618 /* If no catchpoint triggered for this, then keep going. */
3619 if (ecs->random_signal)
3620 {
16c381f0 3621 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3622 keep_going (ecs);
3623 return;
3624 }
16c381f0 3625 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3626 goto process_event_stop_test;
3627
b4dc5ffa
MK
3628 /* Be careful not to try to gather much state about a thread
3629 that's in a syscall. It's frequently a losing proposition. */
488f131b 3630 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3631 if (debug_infrun)
3e43a32a
MS
3632 fprintf_unfiltered (gdb_stdlog,
3633 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3634 /* Getting the current syscall number. */
ca2163eb 3635 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3636 return;
3637 goto process_event_stop_test;
c906108c 3638
488f131b
JB
3639 /* Before examining the threads further, step this thread to
3640 get it entirely out of the syscall. (We get notice of the
3641 event when the thread is just on the verge of exiting a
3642 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3643 into user code.) */
488f131b 3644 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3645 if (debug_infrun)
3e43a32a
MS
3646 fprintf_unfiltered (gdb_stdlog,
3647 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3648 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3649 return;
3650 goto process_event_stop_test;
c906108c 3651
488f131b 3652 case TARGET_WAITKIND_STOPPED:
527159b7 3653 if (debug_infrun)
8a9de0e4 3654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3655 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3656 break;
c906108c 3657
b2175913 3658 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3659 if (debug_infrun)
3660 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3661 /* Reverse execution: target ran out of history info. */
fb14de7b 3662 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3663 print_no_history_reason ();
b2175913
MS
3664 stop_stepping (ecs);
3665 return;
488f131b 3666 }
c906108c 3667
488f131b
JB
3668 if (ecs->new_thread_event)
3669 {
94cc34af
PA
3670 if (non_stop)
3671 /* Non-stop assumes that the target handles adding new threads
3672 to the thread list. */
3e43a32a
MS
3673 internal_error (__FILE__, __LINE__,
3674 "targets should add new threads to the thread "
3675 "list themselves in non-stop mode.");
94cc34af
PA
3676
3677 /* We may want to consider not doing a resume here in order to
3678 give the user a chance to play with the new thread. It might
3679 be good to make that a user-settable option. */
3680
3681 /* At this point, all threads are stopped (happens automatically
3682 in either the OS or the native code). Therefore we need to
3683 continue all threads in order to make progress. */
3684
173853dc
PA
3685 if (!ptid_equal (ecs->ptid, inferior_ptid))
3686 context_switch (ecs->ptid);
488f131b
JB
3687 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3688 prepare_to_wait (ecs);
3689 return;
3690 }
c906108c 3691
2020b7ab 3692 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3693 {
3694 /* Do we need to clean up the state of a thread that has
3695 completed a displaced single-step? (Doing so usually affects
3696 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3697 displaced_step_fixup (ecs->ptid,
3698 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3699
3700 /* If we either finished a single-step or hit a breakpoint, but
3701 the user wanted this thread to be stopped, pretend we got a
3702 SIG0 (generic unsignaled stop). */
3703
3704 if (ecs->event_thread->stop_requested
16c381f0
JK
3705 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3706 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3707 }
237fc4c9 3708
515630c5 3709 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3710
527159b7 3711 if (debug_infrun)
237fc4c9 3712 {
5af949e3
UW
3713 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3714 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3715 struct cleanup *old_chain = save_inferior_ptid ();
3716
3717 inferior_ptid = ecs->ptid;
5af949e3
UW
3718
3719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3720 paddress (gdbarch, stop_pc));
d92524f1 3721 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3722 {
3723 CORE_ADDR addr;
abbb1732 3724
237fc4c9
PA
3725 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3726
3727 if (target_stopped_data_address (&current_target, &addr))
3728 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3729 "infrun: stopped data address = %s\n",
3730 paddress (gdbarch, addr));
237fc4c9
PA
3731 else
3732 fprintf_unfiltered (gdb_stdlog,
3733 "infrun: (no data address available)\n");
3734 }
7f82dfc7
JK
3735
3736 do_cleanups (old_chain);
237fc4c9 3737 }
527159b7 3738
9f976b41
DJ
3739 if (stepping_past_singlestep_breakpoint)
3740 {
1c0fdd0e 3741 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3742 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3743 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3744
3745 stepping_past_singlestep_breakpoint = 0;
3746
3747 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3748 breakpoint, or stopped for some other reason. It would be nice if
3749 we could tell, but we can't reliably. */
16c381f0 3750 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3751 {
527159b7 3752 if (debug_infrun)
3e43a32a
MS
3753 fprintf_unfiltered (gdb_stdlog,
3754 "infrun: stepping_past_"
3755 "singlestep_breakpoint\n");
9f976b41 3756 /* Pull the single step breakpoints out of the target. */
e0cd558a 3757 remove_single_step_breakpoints ();
9f976b41
DJ
3758 singlestep_breakpoints_inserted_p = 0;
3759
3760 ecs->random_signal = 0;
16c381f0 3761 ecs->event_thread->control.trap_expected = 0;
9f976b41 3762
0d1e5fa7 3763 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3764 if (deprecated_context_hook)
3765 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3766
3767 resume (1, TARGET_SIGNAL_0);
3768 prepare_to_wait (ecs);
3769 return;
3770 }
3771 }
3772
ca67fcb8 3773 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3774 {
94cc34af
PA
3775 /* In non-stop mode, there's never a deferred_step_ptid set. */
3776 gdb_assert (!non_stop);
3777
6a6b96b9
UW
3778 /* If we stopped for some other reason than single-stepping, ignore
3779 the fact that we were supposed to switch back. */
16c381f0 3780 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3781 {
3782 if (debug_infrun)
3783 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3784 "infrun: handling deferred step\n");
6a6b96b9
UW
3785
3786 /* Pull the single step breakpoints out of the target. */
3787 if (singlestep_breakpoints_inserted_p)
3788 {
3789 remove_single_step_breakpoints ();
3790 singlestep_breakpoints_inserted_p = 0;
3791 }
3792
cd3da28e
PA
3793 ecs->event_thread->control.trap_expected = 0;
3794
6a6b96b9
UW
3795 /* Note: We do not call context_switch at this point, as the
3796 context is already set up for stepping the original thread. */
ca67fcb8
VP
3797 switch_to_thread (deferred_step_ptid);
3798 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3799 /* Suppress spurious "Switching to ..." message. */
3800 previous_inferior_ptid = inferior_ptid;
3801
3802 resume (1, TARGET_SIGNAL_0);
3803 prepare_to_wait (ecs);
3804 return;
3805 }
ca67fcb8
VP
3806
3807 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3808 }
3809
488f131b
JB
3810 /* See if a thread hit a thread-specific breakpoint that was meant for
3811 another thread. If so, then step that thread past the breakpoint,
3812 and continue it. */
3813
16c381f0 3814 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3815 {
9f976b41 3816 int thread_hop_needed = 0;
cf00dfa7
VP
3817 struct address_space *aspace =
3818 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3819
f8d40ec8 3820 /* Check if a regular breakpoint has been hit before checking
1777feb0 3821 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3822 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3823 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3824 {
c5aa993b 3825 ecs->random_signal = 0;
6c95b8df 3826 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3827 thread_hop_needed = 1;
3828 }
1c0fdd0e 3829 else if (singlestep_breakpoints_inserted_p)
9f976b41 3830 {
fd48f117
DJ
3831 /* We have not context switched yet, so this should be true
3832 no matter which thread hit the singlestep breakpoint. */
3833 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3834 if (debug_infrun)
3835 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3836 "trap for %s\n",
3837 target_pid_to_str (ecs->ptid));
3838
9f976b41
DJ
3839 ecs->random_signal = 0;
3840 /* The call to in_thread_list is necessary because PTIDs sometimes
3841 change when we go from single-threaded to multi-threaded. If
3842 the singlestep_ptid is still in the list, assume that it is
3843 really different from ecs->ptid. */
3844 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3845 && in_thread_list (singlestep_ptid))
3846 {
fd48f117
DJ
3847 /* If the PC of the thread we were trying to single-step
3848 has changed, discard this event (which we were going
3849 to ignore anyway), and pretend we saw that thread
3850 trap. This prevents us continuously moving the
3851 single-step breakpoint forward, one instruction at a
3852 time. If the PC has changed, then the thread we were
3853 trying to single-step has trapped or been signalled,
3854 but the event has not been reported to GDB yet.
3855
3856 There might be some cases where this loses signal
3857 information, if a signal has arrived at exactly the
3858 same time that the PC changed, but this is the best
3859 we can do with the information available. Perhaps we
3860 should arrange to report all events for all threads
3861 when they stop, or to re-poll the remote looking for
3862 this particular thread (i.e. temporarily enable
3863 schedlock). */
515630c5
UW
3864
3865 CORE_ADDR new_singlestep_pc
3866 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3867
3868 if (new_singlestep_pc != singlestep_pc)
fd48f117 3869 {
2020b7ab
PA
3870 enum target_signal stop_signal;
3871
fd48f117
DJ
3872 if (debug_infrun)
3873 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3874 " but expected thread advanced also\n");
3875
3876 /* The current context still belongs to
3877 singlestep_ptid. Don't swap here, since that's
3878 the context we want to use. Just fudge our
3879 state and continue. */
16c381f0
JK
3880 stop_signal = ecs->event_thread->suspend.stop_signal;
3881 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3882 ecs->ptid = singlestep_ptid;
e09875d4 3883 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3884 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3885 stop_pc = new_singlestep_pc;
fd48f117
DJ
3886 }
3887 else
3888 {
3889 if (debug_infrun)
3890 fprintf_unfiltered (gdb_stdlog,
3891 "infrun: unexpected thread\n");
3892
3893 thread_hop_needed = 1;
3894 stepping_past_singlestep_breakpoint = 1;
3895 saved_singlestep_ptid = singlestep_ptid;
3896 }
9f976b41
DJ
3897 }
3898 }
3899
3900 if (thread_hop_needed)
8fb3e588 3901 {
9f5a595d 3902 struct regcache *thread_regcache;
237fc4c9 3903 int remove_status = 0;
8fb3e588 3904
527159b7 3905 if (debug_infrun)
8a9de0e4 3906 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3907
b3444185
PA
3908 /* Switch context before touching inferior memory, the
3909 previous thread may have exited. */
3910 if (!ptid_equal (inferior_ptid, ecs->ptid))
3911 context_switch (ecs->ptid);
3912
8fb3e588 3913 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3914 Just continue. */
8fb3e588 3915
1c0fdd0e 3916 if (singlestep_breakpoints_inserted_p)
488f131b 3917 {
1777feb0 3918 /* Pull the single step breakpoints out of the target. */
e0cd558a 3919 remove_single_step_breakpoints ();
8fb3e588
AC
3920 singlestep_breakpoints_inserted_p = 0;
3921 }
3922
237fc4c9
PA
3923 /* If the arch can displace step, don't remove the
3924 breakpoints. */
9f5a595d
UW
3925 thread_regcache = get_thread_regcache (ecs->ptid);
3926 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3927 remove_status = remove_breakpoints ();
3928
8fb3e588
AC
3929 /* Did we fail to remove breakpoints? If so, try
3930 to set the PC past the bp. (There's at least
3931 one situation in which we can fail to remove
3932 the bp's: On HP-UX's that use ttrace, we can't
3933 change the address space of a vforking child
3934 process until the child exits (well, okay, not
1777feb0 3935 then either :-) or execs. */
8fb3e588 3936 if (remove_status != 0)
9d9cd7ac 3937 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3938 else
3939 { /* Single step */
94cc34af
PA
3940 if (!non_stop)
3941 {
3942 /* Only need to require the next event from this
3943 thread in all-stop mode. */
3944 waiton_ptid = ecs->ptid;
3945 infwait_state = infwait_thread_hop_state;
3946 }
8fb3e588 3947
4e1c45ea 3948 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3949 keep_going (ecs);
8fb3e588
AC
3950 return;
3951 }
488f131b 3952 }
1c0fdd0e 3953 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3954 {
8fb3e588
AC
3955 ecs->random_signal = 0;
3956 }
488f131b
JB
3957 }
3958 else
3959 ecs->random_signal = 1;
c906108c 3960
488f131b 3961 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3962 so, then switch to that thread. */
3963 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3964 {
527159b7 3965 if (debug_infrun)
8a9de0e4 3966 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3967
0d1e5fa7 3968 context_switch (ecs->ptid);
c5aa993b 3969
9a4105ab
AC
3970 if (deprecated_context_hook)
3971 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 3972 }
c906108c 3973
568d6575
UW
3974 /* At this point, get hold of the now-current thread's frame. */
3975 frame = get_current_frame ();
3976 gdbarch = get_frame_arch (frame);
3977
1c0fdd0e 3978 if (singlestep_breakpoints_inserted_p)
488f131b 3979 {
1777feb0 3980 /* Pull the single step breakpoints out of the target. */
e0cd558a 3981 remove_single_step_breakpoints ();
488f131b
JB
3982 singlestep_breakpoints_inserted_p = 0;
3983 }
c906108c 3984
d983da9c
DJ
3985 if (stepped_after_stopped_by_watchpoint)
3986 stopped_by_watchpoint = 0;
3987 else
3988 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
3989
3990 /* If necessary, step over this watchpoint. We'll be back to display
3991 it in a moment. */
3992 if (stopped_by_watchpoint
d92524f1 3993 && (target_have_steppable_watchpoint
568d6575 3994 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 3995 {
488f131b
JB
3996 /* At this point, we are stopped at an instruction which has
3997 attempted to write to a piece of memory under control of
3998 a watchpoint. The instruction hasn't actually executed
3999 yet. If we were to evaluate the watchpoint expression
4000 now, we would get the old value, and therefore no change
4001 would seem to have occurred.
4002
4003 In order to make watchpoints work `right', we really need
4004 to complete the memory write, and then evaluate the
d983da9c
DJ
4005 watchpoint expression. We do this by single-stepping the
4006 target.
4007
4008 It may not be necessary to disable the watchpoint to stop over
4009 it. For example, the PA can (with some kernel cooperation)
4010 single step over a watchpoint without disabling the watchpoint.
4011
4012 It is far more common to need to disable a watchpoint to step
4013 the inferior over it. If we have non-steppable watchpoints,
4014 we must disable the current watchpoint; it's simplest to
4015 disable all watchpoints and breakpoints. */
2facfe5c
DD
4016 int hw_step = 1;
4017
d92524f1 4018 if (!target_have_steppable_watchpoint)
2455069d
UW
4019 {
4020 remove_breakpoints ();
4021 /* See comment in resume why we need to stop bypassing signals
4022 while breakpoints have been removed. */
4023 target_pass_signals (0, NULL);
4024 }
2facfe5c 4025 /* Single step */
568d6575 4026 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4027 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4028 waiton_ptid = ecs->ptid;
d92524f1 4029 if (target_have_steppable_watchpoint)
0d1e5fa7 4030 infwait_state = infwait_step_watch_state;
d983da9c 4031 else
0d1e5fa7 4032 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4033 prepare_to_wait (ecs);
4034 return;
4035 }
4036
7e324e48 4037 clear_stop_func (ecs);
4e1c45ea 4038 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4039 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4040 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4041 stop_print_frame = 1;
4042 ecs->random_signal = 0;
4043 stopped_by_random_signal = 0;
488f131b 4044
edb3359d
DJ
4045 /* Hide inlined functions starting here, unless we just performed stepi or
4046 nexti. After stepi and nexti, always show the innermost frame (not any
4047 inline function call sites). */
16c381f0 4048 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4049 {
4050 struct address_space *aspace =
4051 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4052
4053 /* skip_inline_frames is expensive, so we avoid it if we can
4054 determine that the address is one where functions cannot have
4055 been inlined. This improves performance with inferiors that
4056 load a lot of shared libraries, because the solib event
4057 breakpoint is defined as the address of a function (i.e. not
4058 inline). Note that we have to check the previous PC as well
4059 as the current one to catch cases when we have just
4060 single-stepped off a breakpoint prior to reinstating it.
4061 Note that we're assuming that the code we single-step to is
4062 not inline, but that's not definitive: there's nothing
4063 preventing the event breakpoint function from containing
4064 inlined code, and the single-step ending up there. If the
4065 user had set a breakpoint on that inlined code, the missing
4066 skip_inline_frames call would break things. Fortunately
4067 that's an extremely unlikely scenario. */
4068 if (!pc_at_non_inline_function (aspace, stop_pc)
4069 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4070 && ecs->event_thread->control.trap_expected
4071 && pc_at_non_inline_function (aspace,
4072 ecs->event_thread->prev_pc)))
4073 skip_inline_frames (ecs->ptid);
4074 }
edb3359d 4075
16c381f0
JK
4076 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4077 && ecs->event_thread->control.trap_expected
568d6575 4078 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4079 && currently_stepping (ecs->event_thread))
3352ef37 4080 {
b50d7442 4081 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4082 also on an instruction that needs to be stepped multiple
1777feb0 4083 times before it's been fully executing. E.g., architectures
3352ef37
AC
4084 with a delay slot. It needs to be stepped twice, once for
4085 the instruction and once for the delay slot. */
4086 int step_through_delay
568d6575 4087 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4088
527159b7 4089 if (debug_infrun && step_through_delay)
8a9de0e4 4090 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4091 if (ecs->event_thread->control.step_range_end == 0
4092 && step_through_delay)
3352ef37
AC
4093 {
4094 /* The user issued a continue when stopped at a breakpoint.
4095 Set up for another trap and get out of here. */
4e1c45ea 4096 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4097 keep_going (ecs);
4098 return;
4099 }
4100 else if (step_through_delay)
4101 {
4102 /* The user issued a step when stopped at a breakpoint.
4103 Maybe we should stop, maybe we should not - the delay
4104 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4105 case, don't decide that here, just set
4106 ecs->stepping_over_breakpoint, making sure we
4107 single-step again before breakpoints are re-inserted. */
4e1c45ea 4108 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4109 }
4110 }
4111
488f131b
JB
4112 /* Look at the cause of the stop, and decide what to do.
4113 The alternatives are:
0d1e5fa7
PA
4114 1) stop_stepping and return; to really stop and return to the debugger,
4115 2) keep_going and return to start up again
4e1c45ea 4116 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4117 3) set ecs->random_signal to 1, and the decision between 1 and 2
4118 will be made according to the signal handling tables. */
4119
16c381f0 4120 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4121 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4122 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4123 {
16c381f0
JK
4124 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4125 && stop_after_trap)
488f131b 4126 {
527159b7 4127 if (debug_infrun)
8a9de0e4 4128 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4129 stop_print_frame = 0;
4130 stop_stepping (ecs);
4131 return;
4132 }
c54cfec8
EZ
4133
4134 /* This is originated from start_remote(), start_inferior() and
4135 shared libraries hook functions. */
b0f4b84b 4136 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4137 {
527159b7 4138 if (debug_infrun)
8a9de0e4 4139 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4140 stop_stepping (ecs);
4141 return;
4142 }
4143
c54cfec8 4144 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4145 the stop_signal here, because some kernels don't ignore a
4146 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4147 See more comments in inferior.h. On the other hand, if we
a0ef4274 4148 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4149 will handle the SIGSTOP if it should show up later.
4150
4151 Also consider that the attach is complete when we see a
4152 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4153 target extended-remote report it instead of a SIGSTOP
4154 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4155 signal, so this is no exception.
4156
4157 Also consider that the attach is complete when we see a
4158 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4159 the target to stop all threads of the inferior, in case the
4160 low level attach operation doesn't stop them implicitly. If
4161 they weren't stopped implicitly, then the stub will report a
4162 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4163 other than GDB's request. */
a0ef4274 4164 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4165 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4166 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4167 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4168 {
4169 stop_stepping (ecs);
16c381f0 4170 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4171 return;
4172 }
4173
fba57f8f 4174 /* See if there is a breakpoint at the current PC. */
16c381f0 4175 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4176 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4177 stop_pc, ecs->ptid);
4178
fba57f8f
VP
4179 /* Following in case break condition called a
4180 function. */
4181 stop_print_frame = 1;
488f131b 4182
db82e815
PA
4183 /* This is where we handle "moribund" watchpoints. Unlike
4184 software breakpoints traps, hardware watchpoint traps are
4185 always distinguishable from random traps. If no high-level
4186 watchpoint is associated with the reported stop data address
4187 anymore, then the bpstat does not explain the signal ---
4188 simply make sure to ignore it if `stopped_by_watchpoint' is
4189 set. */
4190
4191 if (debug_infrun
16c381f0
JK
4192 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4193 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4194 && stopped_by_watchpoint)
3e43a32a
MS
4195 fprintf_unfiltered (gdb_stdlog,
4196 "infrun: no user watchpoint explains "
4197 "watchpoint SIGTRAP, ignoring\n");
db82e815 4198
73dd234f 4199 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4200 at one stage in the past included checks for an inferior
4201 function call's call dummy's return breakpoint. The original
4202 comment, that went with the test, read:
73dd234f 4203
8fb3e588
AC
4204 ``End of a stack dummy. Some systems (e.g. Sony news) give
4205 another signal besides SIGTRAP, so check here as well as
4206 above.''
73dd234f 4207
8002d778 4208 If someone ever tries to get call dummys on a
73dd234f 4209 non-executable stack to work (where the target would stop
03cebad2
MK
4210 with something like a SIGSEGV), then those tests might need
4211 to be re-instated. Given, however, that the tests were only
73dd234f 4212 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4213 suspect that it won't be the case.
4214
8fb3e588
AC
4215 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4216 be necessary for call dummies on a non-executable stack on
4217 SPARC. */
73dd234f 4218
16c381f0 4219 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4220 ecs->random_signal
16c381f0 4221 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4222 || stopped_by_watchpoint
16c381f0
JK
4223 || ecs->event_thread->control.trap_expected
4224 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4225 && (ecs->event_thread->control.step_resume_breakpoint
4226 == NULL)));
488f131b
JB
4227 else
4228 {
16c381f0
JK
4229 ecs->random_signal = !bpstat_explains_signal
4230 (ecs->event_thread->control.stop_bpstat);
488f131b 4231 if (!ecs->random_signal)
16c381f0 4232 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4233 }
4234 }
4235
4236 /* When we reach this point, we've pretty much decided
4237 that the reason for stopping must've been a random
1777feb0 4238 (unexpected) signal. */
488f131b
JB
4239
4240 else
4241 ecs->random_signal = 1;
488f131b 4242
04e68871 4243process_event_stop_test:
568d6575
UW
4244
4245 /* Re-fetch current thread's frame in case we did a
4246 "goto process_event_stop_test" above. */
4247 frame = get_current_frame ();
4248 gdbarch = get_frame_arch (frame);
4249
488f131b
JB
4250 /* For the program's own signals, act according to
4251 the signal handling tables. */
4252
4253 if (ecs->random_signal)
4254 {
4255 /* Signal not for debugging purposes. */
4256 int printed = 0;
24291992 4257 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4258
527159b7 4259 if (debug_infrun)
2020b7ab 4260 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4261 ecs->event_thread->suspend.stop_signal);
527159b7 4262
488f131b
JB
4263 stopped_by_random_signal = 1;
4264
16c381f0 4265 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4266 {
4267 printed = 1;
4268 target_terminal_ours_for_output ();
16c381f0
JK
4269 print_signal_received_reason
4270 (ecs->event_thread->suspend.stop_signal);
488f131b 4271 }
252fbfc8
PA
4272 /* Always stop on signals if we're either just gaining control
4273 of the program, or the user explicitly requested this thread
4274 to remain stopped. */
d6b48e9c 4275 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4276 || ecs->event_thread->stop_requested
24291992 4277 || (!inf->detaching
16c381f0 4278 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4279 {
4280 stop_stepping (ecs);
4281 return;
4282 }
4283 /* If not going to stop, give terminal back
4284 if we took it away. */
4285 else if (printed)
4286 target_terminal_inferior ();
4287
4288 /* Clear the signal if it should not be passed. */
16c381f0
JK
4289 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4290 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4291
fb14de7b 4292 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4293 && ecs->event_thread->control.trap_expected
8358c15c 4294 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4295 {
4296 /* We were just starting a new sequence, attempting to
4297 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4298 Instead this signal arrives. This signal will take us out
68f53502
AC
4299 of the stepping range so GDB needs to remember to, when
4300 the signal handler returns, resume stepping off that
4301 breakpoint. */
4302 /* To simplify things, "continue" is forced to use the same
4303 code paths as single-step - set a breakpoint at the
4304 signal return address and then, once hit, step off that
4305 breakpoint. */
237fc4c9
PA
4306 if (debug_infrun)
4307 fprintf_unfiltered (gdb_stdlog,
4308 "infrun: signal arrived while stepping over "
4309 "breakpoint\n");
d3169d93 4310
2c03e5be 4311 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4312 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4313 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4314 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4315 keep_going (ecs);
4316 return;
68f53502 4317 }
9d799f85 4318
16c381f0
JK
4319 if (ecs->event_thread->control.step_range_end != 0
4320 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4321 && (ecs->event_thread->control.step_range_start <= stop_pc
4322 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4323 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4324 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4325 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4326 {
4327 /* The inferior is about to take a signal that will take it
4328 out of the single step range. Set a breakpoint at the
4329 current PC (which is presumably where the signal handler
4330 will eventually return) and then allow the inferior to
4331 run free.
4332
4333 Note that this is only needed for a signal delivered
4334 while in the single-step range. Nested signals aren't a
4335 problem as they eventually all return. */
237fc4c9
PA
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: signal may take us out of "
4339 "single-step range\n");
4340
2c03e5be 4341 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4342 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4343 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4344 keep_going (ecs);
4345 return;
d303a6c7 4346 }
9d799f85
AC
4347
4348 /* Note: step_resume_breakpoint may be non-NULL. This occures
4349 when either there's a nested signal, or when there's a
4350 pending signal enabled just as the signal handler returns
4351 (leaving the inferior at the step-resume-breakpoint without
4352 actually executing it). Either way continue until the
4353 breakpoint is really hit. */
488f131b
JB
4354 keep_going (ecs);
4355 return;
4356 }
4357
4358 /* Handle cases caused by hitting a breakpoint. */
4359 {
4360 CORE_ADDR jmp_buf_pc;
4361 struct bpstat_what what;
4362
16c381f0 4363 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4364
4365 if (what.call_dummy)
4366 {
aa7d318d 4367 stop_stack_dummy = what.call_dummy;
c5aa993b 4368 }
c906108c 4369
628fe4e4
JK
4370 /* If we hit an internal event that triggers symbol changes, the
4371 current frame will be invalidated within bpstat_what (e.g., if
4372 we hit an internal solib event). Re-fetch it. */
4373 frame = get_current_frame ();
4374 gdbarch = get_frame_arch (frame);
4375
488f131b 4376 switch (what.main_action)
c5aa993b 4377 {
488f131b 4378 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4379 /* If we hit the breakpoint at longjmp while stepping, we
4380 install a momentary breakpoint at the target of the
4381 jmp_buf. */
4382
4383 if (debug_infrun)
4384 fprintf_unfiltered (gdb_stdlog,
4385 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4386
4e1c45ea 4387 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4388
186c406b 4389 if (what.is_longjmp)
c5aa993b 4390 {
186c406b
TT
4391 if (!gdbarch_get_longjmp_target_p (gdbarch)
4392 || !gdbarch_get_longjmp_target (gdbarch,
4393 frame, &jmp_buf_pc))
4394 {
4395 if (debug_infrun)
3e43a32a
MS
4396 fprintf_unfiltered (gdb_stdlog,
4397 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4398 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4399 keep_going (ecs);
4400 return;
4401 }
488f131b 4402
186c406b
TT
4403 /* We're going to replace the current step-resume breakpoint
4404 with a longjmp-resume breakpoint. */
4405 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4406
186c406b
TT
4407 /* Insert a breakpoint at resume address. */
4408 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4409 }
4410 else
4411 {
4412 struct symbol *func = get_frame_function (frame);
c906108c 4413
186c406b
TT
4414 if (func)
4415 check_exception_resume (ecs, frame, func);
4416 }
488f131b
JB
4417 keep_going (ecs);
4418 return;
c906108c 4419
488f131b 4420 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4421 if (debug_infrun)
611c83ae
PA
4422 fprintf_unfiltered (gdb_stdlog,
4423 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4424
186c406b
TT
4425 if (what.is_longjmp)
4426 {
4427 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4428 != NULL);
4429 delete_step_resume_breakpoint (ecs->event_thread);
4430 }
4431 else
4432 {
4433 /* There are several cases to consider.
4434
4435 1. The initiating frame no longer exists. In this case
4436 we must stop, because the exception has gone too far.
4437
4438 2. The initiating frame exists, and is the same as the
4439 current frame. We stop, because the exception has been
4440 caught.
4441
4442 3. The initiating frame exists and is different from
4443 the current frame. This means the exception has been
4444 caught beneath the initiating frame, so keep going. */
4445 struct frame_info *init_frame
4446 = frame_find_by_id (ecs->event_thread->initiating_frame);
4447
4448 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4449 != NULL);
4450 delete_exception_resume_breakpoint (ecs->event_thread);
4451
4452 if (init_frame)
4453 {
4454 struct frame_id current_id
4455 = get_frame_id (get_current_frame ());
4456 if (frame_id_eq (current_id,
4457 ecs->event_thread->initiating_frame))
4458 {
4459 /* Case 2. Fall through. */
4460 }
4461 else
4462 {
4463 /* Case 3. */
4464 keep_going (ecs);
4465 return;
4466 }
4467 }
4468
4469 /* For Cases 1 and 2, remove the step-resume breakpoint,
4470 if it exists. */
4471 delete_step_resume_breakpoint (ecs->event_thread);
4472 }
611c83ae 4473
16c381f0 4474 ecs->event_thread->control.stop_step = 1;
33d62d64 4475 print_end_stepping_range_reason ();
611c83ae
PA
4476 stop_stepping (ecs);
4477 return;
488f131b
JB
4478
4479 case BPSTAT_WHAT_SINGLE:
527159b7 4480 if (debug_infrun)
8802d8ed 4481 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4482 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4483 /* Still need to check other stuff, at least the case
4484 where we are stepping and step out of the right range. */
4485 break;
c906108c 4486
2c03e5be
PA
4487 case BPSTAT_WHAT_STEP_RESUME:
4488 if (debug_infrun)
4489 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4490
4491 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4492 if (ecs->event_thread->control.proceed_to_finish
4493 && execution_direction == EXEC_REVERSE)
4494 {
4495 struct thread_info *tp = ecs->event_thread;
4496
4497 /* We are finishing a function in reverse, and just hit
4498 the step-resume breakpoint at the start address of the
4499 function, and we're almost there -- just need to back
4500 up by one more single-step, which should take us back
4501 to the function call. */
4502 tp->control.step_range_start = tp->control.step_range_end = 1;
4503 keep_going (ecs);
4504 return;
4505 }
7e324e48 4506 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4507 if (stop_pc == ecs->stop_func_start
4508 && execution_direction == EXEC_REVERSE)
4509 {
4510 /* We are stepping over a function call in reverse, and
4511 just hit the step-resume breakpoint at the start
4512 address of the function. Go back to single-stepping,
4513 which should take us back to the function call. */
4514 ecs->event_thread->stepping_over_breakpoint = 1;
4515 keep_going (ecs);
4516 return;
4517 }
4518 break;
4519
488f131b 4520 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4521 if (debug_infrun)
8802d8ed 4522 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4523 stop_print_frame = 1;
c906108c 4524
d303a6c7
AC
4525 /* We are about to nuke the step_resume_breakpointt via the
4526 cleanup chain, so no need to worry about it here. */
c5aa993b 4527
488f131b
JB
4528 stop_stepping (ecs);
4529 return;
c5aa993b 4530
488f131b 4531 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4532 if (debug_infrun)
8802d8ed 4533 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4534 stop_print_frame = 0;
c5aa993b 4535
d303a6c7
AC
4536 /* We are about to nuke the step_resume_breakpoin via the
4537 cleanup chain, so no need to worry about it here. */
c5aa993b 4538
488f131b 4539 stop_stepping (ecs);
e441088d 4540 return;
c5aa993b 4541
2c03e5be 4542 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4543 if (debug_infrun)
2c03e5be 4544 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4545
4e1c45ea
PA
4546 delete_step_resume_breakpoint (ecs->event_thread);
4547 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4548 {
4549 /* Back when the step-resume breakpoint was inserted, we
4550 were trying to single-step off a breakpoint. Go back
4551 to doing that. */
4e1c45ea
PA
4552 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4553 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4554 keep_going (ecs);
4555 return;
4556 }
488f131b
JB
4557 break;
4558
488f131b
JB
4559 case BPSTAT_WHAT_KEEP_CHECKING:
4560 break;
4561 }
4562 }
c906108c 4563
488f131b
JB
4564 /* We come here if we hit a breakpoint but should not
4565 stop for it. Possibly we also were stepping
4566 and should stop for that. So fall through and
4567 test for stepping. But, if not stepping,
4568 do not stop. */
c906108c 4569
a7212384
UW
4570 /* In all-stop mode, if we're currently stepping but have stopped in
4571 some other thread, we need to switch back to the stepped thread. */
4572 if (!non_stop)
4573 {
4574 struct thread_info *tp;
abbb1732 4575
b3444185 4576 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4577 ecs->event_thread);
4578 if (tp)
4579 {
4580 /* However, if the current thread is blocked on some internal
4581 breakpoint, and we simply need to step over that breakpoint
4582 to get it going again, do that first. */
16c381f0
JK
4583 if ((ecs->event_thread->control.trap_expected
4584 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4585 || ecs->event_thread->stepping_over_breakpoint)
4586 {
4587 keep_going (ecs);
4588 return;
4589 }
4590
66852e9c
PA
4591 /* If the stepping thread exited, then don't try to switch
4592 back and resume it, which could fail in several different
4593 ways depending on the target. Instead, just keep going.
4594
4595 We can find a stepping dead thread in the thread list in
4596 two cases:
4597
4598 - The target supports thread exit events, and when the
4599 target tries to delete the thread from the thread list,
4600 inferior_ptid pointed at the exiting thread. In such
4601 case, calling delete_thread does not really remove the
4602 thread from the list; instead, the thread is left listed,
4603 with 'exited' state.
4604
4605 - The target's debug interface does not support thread
4606 exit events, and so we have no idea whatsoever if the
4607 previously stepping thread is still alive. For that
4608 reason, we need to synchronously query the target
4609 now. */
b3444185
PA
4610 if (is_exited (tp->ptid)
4611 || !target_thread_alive (tp->ptid))
4612 {
4613 if (debug_infrun)
3e43a32a
MS
4614 fprintf_unfiltered (gdb_stdlog,
4615 "infrun: not switching back to "
4616 "stepped thread, it has vanished\n");
b3444185
PA
4617
4618 delete_thread (tp->ptid);
4619 keep_going (ecs);
4620 return;
4621 }
4622
a7212384
UW
4623 /* Otherwise, we no longer expect a trap in the current thread.
4624 Clear the trap_expected flag before switching back -- this is
4625 what keep_going would do as well, if we called it. */
16c381f0 4626 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4627
4628 if (debug_infrun)
4629 fprintf_unfiltered (gdb_stdlog,
4630 "infrun: switching back to stepped thread\n");
4631
4632 ecs->event_thread = tp;
4633 ecs->ptid = tp->ptid;
4634 context_switch (ecs->ptid);
4635 keep_going (ecs);
4636 return;
4637 }
4638 }
4639
8358c15c 4640 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4641 {
527159b7 4642 if (debug_infrun)
d3169d93
DJ
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: step-resume breakpoint is inserted\n");
527159b7 4645
488f131b
JB
4646 /* Having a step-resume breakpoint overrides anything
4647 else having to do with stepping commands until
4648 that breakpoint is reached. */
488f131b
JB
4649 keep_going (ecs);
4650 return;
4651 }
c5aa993b 4652
16c381f0 4653 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4654 {
527159b7 4655 if (debug_infrun)
8a9de0e4 4656 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4657 /* Likewise if we aren't even stepping. */
488f131b
JB
4658 keep_going (ecs);
4659 return;
4660 }
c5aa993b 4661
4b7703ad
JB
4662 /* Re-fetch current thread's frame in case the code above caused
4663 the frame cache to be re-initialized, making our FRAME variable
4664 a dangling pointer. */
4665 frame = get_current_frame ();
628fe4e4 4666 gdbarch = get_frame_arch (frame);
7e324e48 4667 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4668
488f131b 4669 /* If stepping through a line, keep going if still within it.
c906108c 4670
488f131b
JB
4671 Note that step_range_end is the address of the first instruction
4672 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4673 within it!
4674
4675 Note also that during reverse execution, we may be stepping
4676 through a function epilogue and therefore must detect when
4677 the current-frame changes in the middle of a line. */
4678
16c381f0
JK
4679 if (stop_pc >= ecs->event_thread->control.step_range_start
4680 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4681 && (execution_direction != EXEC_REVERSE
388a8562 4682 || frame_id_eq (get_frame_id (frame),
16c381f0 4683 ecs->event_thread->control.step_frame_id)))
488f131b 4684 {
527159b7 4685 if (debug_infrun)
5af949e3
UW
4686 fprintf_unfiltered
4687 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4688 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4689 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4690
4691 /* When stepping backward, stop at beginning of line range
4692 (unless it's the function entry point, in which case
4693 keep going back to the call point). */
16c381f0 4694 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4695 && stop_pc != ecs->stop_func_start
4696 && execution_direction == EXEC_REVERSE)
4697 {
16c381f0 4698 ecs->event_thread->control.stop_step = 1;
33d62d64 4699 print_end_stepping_range_reason ();
b2175913
MS
4700 stop_stepping (ecs);
4701 }
4702 else
4703 keep_going (ecs);
4704
488f131b
JB
4705 return;
4706 }
c5aa993b 4707
488f131b 4708 /* We stepped out of the stepping range. */
c906108c 4709
488f131b 4710 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4711 loader dynamic symbol resolution code...
4712
4713 EXEC_FORWARD: we keep on single stepping until we exit the run
4714 time loader code and reach the callee's address.
4715
4716 EXEC_REVERSE: we've already executed the callee (backward), and
4717 the runtime loader code is handled just like any other
4718 undebuggable function call. Now we need only keep stepping
4719 backward through the trampoline code, and that's handled further
4720 down, so there is nothing for us to do here. */
4721
4722 if (execution_direction != EXEC_REVERSE
16c381f0 4723 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4724 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4725 {
4c8c40e6 4726 CORE_ADDR pc_after_resolver =
568d6575 4727 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4728
527159b7 4729 if (debug_infrun)
3e43a32a
MS
4730 fprintf_unfiltered (gdb_stdlog,
4731 "infrun: stepped into dynsym resolve code\n");
527159b7 4732
488f131b
JB
4733 if (pc_after_resolver)
4734 {
4735 /* Set up a step-resume breakpoint at the address
4736 indicated by SKIP_SOLIB_RESOLVER. */
4737 struct symtab_and_line sr_sal;
abbb1732 4738
fe39c653 4739 init_sal (&sr_sal);
488f131b 4740 sr_sal.pc = pc_after_resolver;
6c95b8df 4741 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4742
a6d9a66e
UW
4743 insert_step_resume_breakpoint_at_sal (gdbarch,
4744 sr_sal, null_frame_id);
c5aa993b 4745 }
c906108c 4746
488f131b
JB
4747 keep_going (ecs);
4748 return;
4749 }
c906108c 4750
16c381f0
JK
4751 if (ecs->event_thread->control.step_range_end != 1
4752 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4753 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4754 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4755 {
527159b7 4756 if (debug_infrun)
3e43a32a
MS
4757 fprintf_unfiltered (gdb_stdlog,
4758 "infrun: stepped into signal trampoline\n");
42edda50 4759 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4760 a signal trampoline (either by a signal being delivered or by
4761 the signal handler returning). Just single-step until the
4762 inferior leaves the trampoline (either by calling the handler
4763 or returning). */
488f131b
JB
4764 keep_going (ecs);
4765 return;
4766 }
c906108c 4767
c17eaafe
DJ
4768 /* Check for subroutine calls. The check for the current frame
4769 equalling the step ID is not necessary - the check of the
4770 previous frame's ID is sufficient - but it is a common case and
4771 cheaper than checking the previous frame's ID.
14e60db5
DJ
4772
4773 NOTE: frame_id_eq will never report two invalid frame IDs as
4774 being equal, so to get into this block, both the current and
4775 previous frame must have valid frame IDs. */
005ca36a
JB
4776 /* The outer_frame_id check is a heuristic to detect stepping
4777 through startup code. If we step over an instruction which
4778 sets the stack pointer from an invalid value to a valid value,
4779 we may detect that as a subroutine call from the mythical
4780 "outermost" function. This could be fixed by marking
4781 outermost frames as !stack_p,code_p,special_p. Then the
4782 initial outermost frame, before sp was valid, would
ce6cca6d 4783 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4784 for more. */
edb3359d 4785 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4786 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4787 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4788 ecs->event_thread->control.step_stack_frame_id)
4789 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4790 outer_frame_id)
4791 || step_start_function != find_pc_function (stop_pc))))
488f131b 4792 {
95918acb 4793 CORE_ADDR real_stop_pc;
8fb3e588 4794
527159b7 4795 if (debug_infrun)
8a9de0e4 4796 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4797
16c381f0
JK
4798 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4799 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4800 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4801 ecs->stop_func_start)))
95918acb
AC
4802 {
4803 /* I presume that step_over_calls is only 0 when we're
4804 supposed to be stepping at the assembly language level
4805 ("stepi"). Just stop. */
4806 /* Also, maybe we just did a "nexti" inside a prolog, so we
4807 thought it was a subroutine call but it was not. Stop as
4808 well. FENN */
388a8562 4809 /* And this works the same backward as frontward. MVS */
16c381f0 4810 ecs->event_thread->control.stop_step = 1;
33d62d64 4811 print_end_stepping_range_reason ();
95918acb
AC
4812 stop_stepping (ecs);
4813 return;
4814 }
8fb3e588 4815
388a8562
MS
4816 /* Reverse stepping through solib trampolines. */
4817
4818 if (execution_direction == EXEC_REVERSE
16c381f0 4819 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4820 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4821 || (ecs->stop_func_start == 0
4822 && in_solib_dynsym_resolve_code (stop_pc))))
4823 {
4824 /* Any solib trampoline code can be handled in reverse
4825 by simply continuing to single-step. We have already
4826 executed the solib function (backwards), and a few
4827 steps will take us back through the trampoline to the
4828 caller. */
4829 keep_going (ecs);
4830 return;
4831 }
4832
16c381f0 4833 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4834 {
b2175913
MS
4835 /* We're doing a "next".
4836
4837 Normal (forward) execution: set a breakpoint at the
4838 callee's return address (the address at which the caller
4839 will resume).
4840
4841 Reverse (backward) execution. set the step-resume
4842 breakpoint at the start of the function that we just
4843 stepped into (backwards), and continue to there. When we
6130d0b7 4844 get there, we'll need to single-step back to the caller. */
b2175913
MS
4845
4846 if (execution_direction == EXEC_REVERSE)
4847 {
4848 struct symtab_and_line sr_sal;
3067f6e5 4849
388a8562
MS
4850 /* Normal function call return (static or dynamic). */
4851 init_sal (&sr_sal);
4852 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4853 sr_sal.pspace = get_frame_program_space (frame);
4854 insert_step_resume_breakpoint_at_sal (gdbarch,
4855 sr_sal, null_frame_id);
b2175913
MS
4856 }
4857 else
568d6575 4858 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4859
8567c30f
AC
4860 keep_going (ecs);
4861 return;
4862 }
a53c66de 4863
95918acb 4864 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4865 calling routine and the real function), locate the real
4866 function. That's what tells us (a) whether we want to step
4867 into it at all, and (b) what prologue we want to run to the
4868 end of, if we do step into it. */
568d6575 4869 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4870 if (real_stop_pc == 0)
568d6575 4871 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4872 if (real_stop_pc != 0)
4873 ecs->stop_func_start = real_stop_pc;
8fb3e588 4874
db5f024e 4875 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4876 {
4877 struct symtab_and_line sr_sal;
abbb1732 4878
1b2bfbb9
RC
4879 init_sal (&sr_sal);
4880 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4881 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4882
a6d9a66e
UW
4883 insert_step_resume_breakpoint_at_sal (gdbarch,
4884 sr_sal, null_frame_id);
8fb3e588
AC
4885 keep_going (ecs);
4886 return;
1b2bfbb9
RC
4887 }
4888
95918acb 4889 /* If we have line number information for the function we are
8fb3e588 4890 thinking of stepping into, step into it.
95918acb 4891
8fb3e588
AC
4892 If there are several symtabs at that PC (e.g. with include
4893 files), just want to know whether *any* of them have line
4894 numbers. find_pc_line handles this. */
95918acb
AC
4895 {
4896 struct symtab_and_line tmp_sal;
8fb3e588 4897
95918acb
AC
4898 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4899 if (tmp_sal.line != 0)
4900 {
b2175913 4901 if (execution_direction == EXEC_REVERSE)
568d6575 4902 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4903 else
568d6575 4904 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4905 return;
4906 }
4907 }
4908
4909 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4910 set, we stop the step so that the user has a chance to switch
4911 in assembly mode. */
16c381f0 4912 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4913 && step_stop_if_no_debug)
95918acb 4914 {
16c381f0 4915 ecs->event_thread->control.stop_step = 1;
33d62d64 4916 print_end_stepping_range_reason ();
95918acb
AC
4917 stop_stepping (ecs);
4918 return;
4919 }
4920
b2175913
MS
4921 if (execution_direction == EXEC_REVERSE)
4922 {
4923 /* Set a breakpoint at callee's start address.
4924 From there we can step once and be back in the caller. */
4925 struct symtab_and_line sr_sal;
abbb1732 4926
b2175913
MS
4927 init_sal (&sr_sal);
4928 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4929 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4930 insert_step_resume_breakpoint_at_sal (gdbarch,
4931 sr_sal, null_frame_id);
b2175913
MS
4932 }
4933 else
4934 /* Set a breakpoint at callee's return address (the address
4935 at which the caller will resume). */
568d6575 4936 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4937
95918acb 4938 keep_going (ecs);
488f131b 4939 return;
488f131b 4940 }
c906108c 4941
fdd654f3
MS
4942 /* Reverse stepping through solib trampolines. */
4943
4944 if (execution_direction == EXEC_REVERSE
16c381f0 4945 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4946 {
4947 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4948 || (ecs->stop_func_start == 0
4949 && in_solib_dynsym_resolve_code (stop_pc)))
4950 {
4951 /* Any solib trampoline code can be handled in reverse
4952 by simply continuing to single-step. We have already
4953 executed the solib function (backwards), and a few
4954 steps will take us back through the trampoline to the
4955 caller. */
4956 keep_going (ecs);
4957 return;
4958 }
4959 else if (in_solib_dynsym_resolve_code (stop_pc))
4960 {
4961 /* Stepped backward into the solib dynsym resolver.
4962 Set a breakpoint at its start and continue, then
4963 one more step will take us out. */
4964 struct symtab_and_line sr_sal;
abbb1732 4965
fdd654f3
MS
4966 init_sal (&sr_sal);
4967 sr_sal.pc = ecs->stop_func_start;
9d1807c3 4968 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
4969 insert_step_resume_breakpoint_at_sal (gdbarch,
4970 sr_sal, null_frame_id);
4971 keep_going (ecs);
4972 return;
4973 }
4974 }
4975
488f131b
JB
4976 /* If we're in the return path from a shared library trampoline,
4977 we want to proceed through the trampoline when stepping. */
568d6575 4978 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 4979 stop_pc, ecs->stop_func_name))
488f131b 4980 {
488f131b 4981 /* Determine where this trampoline returns. */
52f729a7 4982 CORE_ADDR real_stop_pc;
abbb1732 4983
568d6575 4984 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 4985
527159b7 4986 if (debug_infrun)
3e43a32a
MS
4987 fprintf_unfiltered (gdb_stdlog,
4988 "infrun: stepped into solib return tramp\n");
527159b7 4989
488f131b 4990 /* Only proceed through if we know where it's going. */
d764a824 4991 if (real_stop_pc)
488f131b 4992 {
1777feb0 4993 /* And put the step-breakpoint there and go until there. */
488f131b
JB
4994 struct symtab_and_line sr_sal;
4995
fe39c653 4996 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 4997 sr_sal.pc = real_stop_pc;
488f131b 4998 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 4999 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5000
5001 /* Do not specify what the fp should be when we stop since
5002 on some machines the prologue is where the new fp value
5003 is established. */
a6d9a66e
UW
5004 insert_step_resume_breakpoint_at_sal (gdbarch,
5005 sr_sal, null_frame_id);
c906108c 5006
488f131b
JB
5007 /* Restart without fiddling with the step ranges or
5008 other state. */
5009 keep_going (ecs);
5010 return;
5011 }
5012 }
c906108c 5013
2afb61aa 5014 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5015
1b2bfbb9
RC
5016 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5017 the trampoline processing logic, however, there are some trampolines
5018 that have no names, so we should do trampoline handling first. */
16c381f0 5019 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5020 && ecs->stop_func_name == NULL
2afb61aa 5021 && stop_pc_sal.line == 0)
1b2bfbb9 5022 {
527159b7 5023 if (debug_infrun)
3e43a32a
MS
5024 fprintf_unfiltered (gdb_stdlog,
5025 "infrun: stepped into undebuggable function\n");
527159b7 5026
1b2bfbb9 5027 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5028 undebuggable function (where there is no debugging information
5029 and no line number corresponding to the address where the
1b2bfbb9
RC
5030 inferior stopped). Since we want to skip this kind of code,
5031 we keep going until the inferior returns from this
14e60db5
DJ
5032 function - unless the user has asked us not to (via
5033 set step-mode) or we no longer know how to get back
5034 to the call site. */
5035 if (step_stop_if_no_debug
c7ce8faa 5036 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5037 {
5038 /* If we have no line number and the step-stop-if-no-debug
5039 is set, we stop the step so that the user has a chance to
5040 switch in assembly mode. */
16c381f0 5041 ecs->event_thread->control.stop_step = 1;
33d62d64 5042 print_end_stepping_range_reason ();
1b2bfbb9
RC
5043 stop_stepping (ecs);
5044 return;
5045 }
5046 else
5047 {
5048 /* Set a breakpoint at callee's return address (the address
5049 at which the caller will resume). */
568d6575 5050 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5051 keep_going (ecs);
5052 return;
5053 }
5054 }
5055
16c381f0 5056 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5057 {
5058 /* It is stepi or nexti. We always want to stop stepping after
5059 one instruction. */
527159b7 5060 if (debug_infrun)
8a9de0e4 5061 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5062 ecs->event_thread->control.stop_step = 1;
33d62d64 5063 print_end_stepping_range_reason ();
1b2bfbb9
RC
5064 stop_stepping (ecs);
5065 return;
5066 }
5067
2afb61aa 5068 if (stop_pc_sal.line == 0)
488f131b
JB
5069 {
5070 /* We have no line number information. That means to stop
5071 stepping (does this always happen right after one instruction,
5072 when we do "s" in a function with no line numbers,
5073 or can this happen as a result of a return or longjmp?). */
527159b7 5074 if (debug_infrun)
8a9de0e4 5075 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5076 ecs->event_thread->control.stop_step = 1;
33d62d64 5077 print_end_stepping_range_reason ();
488f131b
JB
5078 stop_stepping (ecs);
5079 return;
5080 }
c906108c 5081
edb3359d
DJ
5082 /* Look for "calls" to inlined functions, part one. If the inline
5083 frame machinery detected some skipped call sites, we have entered
5084 a new inline function. */
5085
5086 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5087 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5088 && inline_skipped_frames (ecs->ptid))
5089 {
5090 struct symtab_and_line call_sal;
5091
5092 if (debug_infrun)
5093 fprintf_unfiltered (gdb_stdlog,
5094 "infrun: stepped into inlined function\n");
5095
5096 find_frame_sal (get_current_frame (), &call_sal);
5097
16c381f0 5098 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5099 {
5100 /* For "step", we're going to stop. But if the call site
5101 for this inlined function is on the same source line as
5102 we were previously stepping, go down into the function
5103 first. Otherwise stop at the call site. */
5104
5105 if (call_sal.line == ecs->event_thread->current_line
5106 && call_sal.symtab == ecs->event_thread->current_symtab)
5107 step_into_inline_frame (ecs->ptid);
5108
16c381f0 5109 ecs->event_thread->control.stop_step = 1;
33d62d64 5110 print_end_stepping_range_reason ();
edb3359d
DJ
5111 stop_stepping (ecs);
5112 return;
5113 }
5114 else
5115 {
5116 /* For "next", we should stop at the call site if it is on a
5117 different source line. Otherwise continue through the
5118 inlined function. */
5119 if (call_sal.line == ecs->event_thread->current_line
5120 && call_sal.symtab == ecs->event_thread->current_symtab)
5121 keep_going (ecs);
5122 else
5123 {
16c381f0 5124 ecs->event_thread->control.stop_step = 1;
33d62d64 5125 print_end_stepping_range_reason ();
edb3359d
DJ
5126 stop_stepping (ecs);
5127 }
5128 return;
5129 }
5130 }
5131
5132 /* Look for "calls" to inlined functions, part two. If we are still
5133 in the same real function we were stepping through, but we have
5134 to go further up to find the exact frame ID, we are stepping
5135 through a more inlined call beyond its call site. */
5136
5137 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5138 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5139 ecs->event_thread->control.step_frame_id)
edb3359d 5140 && stepped_in_from (get_current_frame (),
16c381f0 5141 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5142 {
5143 if (debug_infrun)
5144 fprintf_unfiltered (gdb_stdlog,
5145 "infrun: stepping through inlined function\n");
5146
16c381f0 5147 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5148 keep_going (ecs);
5149 else
5150 {
16c381f0 5151 ecs->event_thread->control.stop_step = 1;
33d62d64 5152 print_end_stepping_range_reason ();
edb3359d
DJ
5153 stop_stepping (ecs);
5154 }
5155 return;
5156 }
5157
2afb61aa 5158 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5159 && (ecs->event_thread->current_line != stop_pc_sal.line
5160 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5161 {
5162 /* We are at the start of a different line. So stop. Note that
5163 we don't stop if we step into the middle of a different line.
5164 That is said to make things like for (;;) statements work
5165 better. */
527159b7 5166 if (debug_infrun)
3e43a32a
MS
5167 fprintf_unfiltered (gdb_stdlog,
5168 "infrun: stepped to a different line\n");
16c381f0 5169 ecs->event_thread->control.stop_step = 1;
33d62d64 5170 print_end_stepping_range_reason ();
488f131b
JB
5171 stop_stepping (ecs);
5172 return;
5173 }
c906108c 5174
488f131b 5175 /* We aren't done stepping.
c906108c 5176
488f131b
JB
5177 Optimize by setting the stepping range to the line.
5178 (We might not be in the original line, but if we entered a
5179 new line in mid-statement, we continue stepping. This makes
5180 things like for(;;) statements work better.) */
c906108c 5181
16c381f0
JK
5182 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5183 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5184 set_step_info (frame, stop_pc_sal);
488f131b 5185
527159b7 5186 if (debug_infrun)
8a9de0e4 5187 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5188 keep_going (ecs);
104c1213
JM
5189}
5190
b3444185 5191/* Is thread TP in the middle of single-stepping? */
104c1213 5192
a289b8f6 5193static int
b3444185 5194currently_stepping (struct thread_info *tp)
a7212384 5195{
8358c15c
JK
5196 return ((tp->control.step_range_end
5197 && tp->control.step_resume_breakpoint == NULL)
5198 || tp->control.trap_expected
8358c15c 5199 || bpstat_should_step ());
a7212384
UW
5200}
5201
b3444185
PA
5202/* Returns true if any thread *but* the one passed in "data" is in the
5203 middle of stepping or of handling a "next". */
a7212384 5204
104c1213 5205static int
b3444185 5206currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5207{
b3444185
PA
5208 if (tp == data)
5209 return 0;
5210
16c381f0 5211 return (tp->control.step_range_end
ede1849f 5212 || tp->control.trap_expected);
104c1213 5213}
c906108c 5214
b2175913
MS
5215/* Inferior has stepped into a subroutine call with source code that
5216 we should not step over. Do step to the first line of code in
5217 it. */
c2c6d25f
JM
5218
5219static void
568d6575
UW
5220handle_step_into_function (struct gdbarch *gdbarch,
5221 struct execution_control_state *ecs)
c2c6d25f
JM
5222{
5223 struct symtab *s;
2afb61aa 5224 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5225
7e324e48
GB
5226 fill_in_stop_func (gdbarch, ecs);
5227
c2c6d25f
JM
5228 s = find_pc_symtab (stop_pc);
5229 if (s && s->language != language_asm)
568d6575 5230 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5231 ecs->stop_func_start);
c2c6d25f 5232
2afb61aa 5233 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5234 /* Use the step_resume_break to step until the end of the prologue,
5235 even if that involves jumps (as it seems to on the vax under
5236 4.2). */
5237 /* If the prologue ends in the middle of a source line, continue to
5238 the end of that source line (if it is still within the function).
5239 Otherwise, just go to end of prologue. */
2afb61aa
PA
5240 if (stop_func_sal.end
5241 && stop_func_sal.pc != ecs->stop_func_start
5242 && stop_func_sal.end < ecs->stop_func_end)
5243 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5244
2dbd5e30
KB
5245 /* Architectures which require breakpoint adjustment might not be able
5246 to place a breakpoint at the computed address. If so, the test
5247 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5248 ecs->stop_func_start to an address at which a breakpoint may be
5249 legitimately placed.
8fb3e588 5250
2dbd5e30
KB
5251 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5252 made, GDB will enter an infinite loop when stepping through
5253 optimized code consisting of VLIW instructions which contain
5254 subinstructions corresponding to different source lines. On
5255 FR-V, it's not permitted to place a breakpoint on any but the
5256 first subinstruction of a VLIW instruction. When a breakpoint is
5257 set, GDB will adjust the breakpoint address to the beginning of
5258 the VLIW instruction. Thus, we need to make the corresponding
5259 adjustment here when computing the stop address. */
8fb3e588 5260
568d6575 5261 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5262 {
5263 ecs->stop_func_start
568d6575 5264 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5265 ecs->stop_func_start);
2dbd5e30
KB
5266 }
5267
c2c6d25f
JM
5268 if (ecs->stop_func_start == stop_pc)
5269 {
5270 /* We are already there: stop now. */
16c381f0 5271 ecs->event_thread->control.stop_step = 1;
33d62d64 5272 print_end_stepping_range_reason ();
c2c6d25f
JM
5273 stop_stepping (ecs);
5274 return;
5275 }
5276 else
5277 {
5278 /* Put the step-breakpoint there and go until there. */
fe39c653 5279 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5280 sr_sal.pc = ecs->stop_func_start;
5281 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5282 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5283
c2c6d25f 5284 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5285 some machines the prologue is where the new fp value is
5286 established. */
a6d9a66e 5287 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5288
5289 /* And make sure stepping stops right away then. */
16c381f0
JK
5290 ecs->event_thread->control.step_range_end
5291 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5292 }
5293 keep_going (ecs);
5294}
d4f3574e 5295
b2175913
MS
5296/* Inferior has stepped backward into a subroutine call with source
5297 code that we should not step over. Do step to the beginning of the
5298 last line of code in it. */
5299
5300static void
568d6575
UW
5301handle_step_into_function_backward (struct gdbarch *gdbarch,
5302 struct execution_control_state *ecs)
b2175913
MS
5303{
5304 struct symtab *s;
167e4384 5305 struct symtab_and_line stop_func_sal;
b2175913 5306
7e324e48
GB
5307 fill_in_stop_func (gdbarch, ecs);
5308
b2175913
MS
5309 s = find_pc_symtab (stop_pc);
5310 if (s && s->language != language_asm)
568d6575 5311 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5312 ecs->stop_func_start);
5313
5314 stop_func_sal = find_pc_line (stop_pc, 0);
5315
5316 /* OK, we're just going to keep stepping here. */
5317 if (stop_func_sal.pc == stop_pc)
5318 {
5319 /* We're there already. Just stop stepping now. */
16c381f0 5320 ecs->event_thread->control.stop_step = 1;
33d62d64 5321 print_end_stepping_range_reason ();
b2175913
MS
5322 stop_stepping (ecs);
5323 }
5324 else
5325 {
5326 /* Else just reset the step range and keep going.
5327 No step-resume breakpoint, they don't work for
5328 epilogues, which can have multiple entry paths. */
16c381f0
JK
5329 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5330 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5331 keep_going (ecs);
5332 }
5333 return;
5334}
5335
d3169d93 5336/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5337 This is used to both functions and to skip over code. */
5338
5339static void
2c03e5be
PA
5340insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5341 struct symtab_and_line sr_sal,
5342 struct frame_id sr_id,
5343 enum bptype sr_type)
44cbf7b5 5344{
611c83ae
PA
5345 /* There should never be more than one step-resume or longjmp-resume
5346 breakpoint per thread, so we should never be setting a new
44cbf7b5 5347 step_resume_breakpoint when one is already active. */
8358c15c 5348 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5349 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5350
5351 if (debug_infrun)
5352 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5353 "infrun: inserting step-resume breakpoint at %s\n",
5354 paddress (gdbarch, sr_sal.pc));
d3169d93 5355
8358c15c 5356 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5357 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5358}
5359
9da8c2a0 5360void
2c03e5be
PA
5361insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5362 struct symtab_and_line sr_sal,
5363 struct frame_id sr_id)
5364{
5365 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5366 sr_sal, sr_id,
5367 bp_step_resume);
44cbf7b5 5368}
7ce450bd 5369
2c03e5be
PA
5370/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5371 This is used to skip a potential signal handler.
7ce450bd 5372
14e60db5
DJ
5373 This is called with the interrupted function's frame. The signal
5374 handler, when it returns, will resume the interrupted function at
5375 RETURN_FRAME.pc. */
d303a6c7
AC
5376
5377static void
2c03e5be 5378insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5379{
5380 struct symtab_and_line sr_sal;
a6d9a66e 5381 struct gdbarch *gdbarch;
d303a6c7 5382
f4c1edd8 5383 gdb_assert (return_frame != NULL);
d303a6c7
AC
5384 init_sal (&sr_sal); /* initialize to zeros */
5385
a6d9a66e 5386 gdbarch = get_frame_arch (return_frame);
568d6575 5387 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5388 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5389 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5390
2c03e5be
PA
5391 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5392 get_stack_frame_id (return_frame),
5393 bp_hp_step_resume);
d303a6c7
AC
5394}
5395
2c03e5be
PA
5396/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5397 is used to skip a function after stepping into it (for "next" or if
5398 the called function has no debugging information).
14e60db5
DJ
5399
5400 The current function has almost always been reached by single
5401 stepping a call or return instruction. NEXT_FRAME belongs to the
5402 current function, and the breakpoint will be set at the caller's
5403 resume address.
5404
5405 This is a separate function rather than reusing
2c03e5be 5406 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5407 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5408 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5409
5410static void
5411insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5412{
5413 struct symtab_and_line sr_sal;
a6d9a66e 5414 struct gdbarch *gdbarch;
14e60db5
DJ
5415
5416 /* We shouldn't have gotten here if we don't know where the call site
5417 is. */
c7ce8faa 5418 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5419
5420 init_sal (&sr_sal); /* initialize to zeros */
5421
a6d9a66e 5422 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5423 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5424 frame_unwind_caller_pc (next_frame));
14e60db5 5425 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5426 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5427
a6d9a66e 5428 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5429 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5430}
5431
611c83ae
PA
5432/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5433 new breakpoint at the target of a jmp_buf. The handling of
5434 longjmp-resume uses the same mechanisms used for handling
5435 "step-resume" breakpoints. */
5436
5437static void
a6d9a66e 5438insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5439{
5440 /* There should never be more than one step-resume or longjmp-resume
5441 breakpoint per thread, so we should never be setting a new
5442 longjmp_resume_breakpoint when one is already active. */
8358c15c 5443 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5444
5445 if (debug_infrun)
5446 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5447 "infrun: inserting longjmp-resume breakpoint at %s\n",
5448 paddress (gdbarch, pc));
611c83ae 5449
8358c15c 5450 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5451 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5452}
5453
186c406b
TT
5454/* Insert an exception resume breakpoint. TP is the thread throwing
5455 the exception. The block B is the block of the unwinder debug hook
5456 function. FRAME is the frame corresponding to the call to this
5457 function. SYM is the symbol of the function argument holding the
5458 target PC of the exception. */
5459
5460static void
5461insert_exception_resume_breakpoint (struct thread_info *tp,
5462 struct block *b,
5463 struct frame_info *frame,
5464 struct symbol *sym)
5465{
5466 struct gdb_exception e;
5467
5468 /* We want to ignore errors here. */
5469 TRY_CATCH (e, RETURN_MASK_ERROR)
5470 {
5471 struct symbol *vsym;
5472 struct value *value;
5473 CORE_ADDR handler;
5474 struct breakpoint *bp;
5475
5476 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5477 value = read_var_value (vsym, frame);
5478 /* If the value was optimized out, revert to the old behavior. */
5479 if (! value_optimized_out (value))
5480 {
5481 handler = value_as_address (value);
5482
5483 if (debug_infrun)
5484 fprintf_unfiltered (gdb_stdlog,
5485 "infrun: exception resume at %lx\n",
5486 (unsigned long) handler);
5487
5488 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5489 handler, bp_exception_resume);
5490 bp->thread = tp->num;
5491 inferior_thread ()->control.exception_resume_breakpoint = bp;
5492 }
5493 }
5494}
5495
5496/* This is called when an exception has been intercepted. Check to
5497 see whether the exception's destination is of interest, and if so,
5498 set an exception resume breakpoint there. */
5499
5500static void
5501check_exception_resume (struct execution_control_state *ecs,
5502 struct frame_info *frame, struct symbol *func)
5503{
5504 struct gdb_exception e;
5505
5506 TRY_CATCH (e, RETURN_MASK_ERROR)
5507 {
5508 struct block *b;
5509 struct dict_iterator iter;
5510 struct symbol *sym;
5511 int argno = 0;
5512
5513 /* The exception breakpoint is a thread-specific breakpoint on
5514 the unwinder's debug hook, declared as:
5515
5516 void _Unwind_DebugHook (void *cfa, void *handler);
5517
5518 The CFA argument indicates the frame to which control is
5519 about to be transferred. HANDLER is the destination PC.
5520
5521 We ignore the CFA and set a temporary breakpoint at HANDLER.
5522 This is not extremely efficient but it avoids issues in gdb
5523 with computing the DWARF CFA, and it also works even in weird
5524 cases such as throwing an exception from inside a signal
5525 handler. */
5526
5527 b = SYMBOL_BLOCK_VALUE (func);
5528 ALL_BLOCK_SYMBOLS (b, iter, sym)
5529 {
5530 if (!SYMBOL_IS_ARGUMENT (sym))
5531 continue;
5532
5533 if (argno == 0)
5534 ++argno;
5535 else
5536 {
5537 insert_exception_resume_breakpoint (ecs->event_thread,
5538 b, frame, sym);
5539 break;
5540 }
5541 }
5542 }
5543}
5544
104c1213
JM
5545static void
5546stop_stepping (struct execution_control_state *ecs)
5547{
527159b7 5548 if (debug_infrun)
8a9de0e4 5549 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5550
cd0fc7c3
SS
5551 /* Let callers know we don't want to wait for the inferior anymore. */
5552 ecs->wait_some_more = 0;
5553}
5554
d4f3574e
SS
5555/* This function handles various cases where we need to continue
5556 waiting for the inferior. */
1777feb0 5557/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5558
5559static void
5560keep_going (struct execution_control_state *ecs)
5561{
c4dbc9af
PA
5562 /* Make sure normal_stop is called if we get a QUIT handled before
5563 reaching resume. */
5564 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5565
d4f3574e 5566 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5567 ecs->event_thread->prev_pc
5568 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5569
d4f3574e
SS
5570 /* If we did not do break;, it means we should keep running the
5571 inferior and not return to debugger. */
5572
16c381f0
JK
5573 if (ecs->event_thread->control.trap_expected
5574 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5575 {
5576 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5577 the inferior, else we'd not get here) and we haven't yet
5578 gotten our trap. Simply continue. */
c4dbc9af
PA
5579
5580 discard_cleanups (old_cleanups);
2020b7ab 5581 resume (currently_stepping (ecs->event_thread),
16c381f0 5582 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5583 }
5584 else
5585 {
5586 /* Either the trap was not expected, but we are continuing
488f131b
JB
5587 anyway (the user asked that this signal be passed to the
5588 child)
5589 -- or --
5590 The signal was SIGTRAP, e.g. it was our signal, but we
5591 decided we should resume from it.
d4f3574e 5592
c36b740a 5593 We're going to run this baby now!
d4f3574e 5594
c36b740a
VP
5595 Note that insert_breakpoints won't try to re-insert
5596 already inserted breakpoints. Therefore, we don't
5597 care if breakpoints were already inserted, or not. */
5598
4e1c45ea 5599 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5600 {
9f5a595d 5601 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5602
9f5a595d 5603 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5604 /* Since we can't do a displaced step, we have to remove
5605 the breakpoint while we step it. To keep things
5606 simple, we remove them all. */
5607 remove_breakpoints ();
45e8c884
VP
5608 }
5609 else
d4f3574e 5610 {
e236ba44 5611 struct gdb_exception e;
abbb1732 5612
569631c6
UW
5613 /* Stop stepping when inserting breakpoints
5614 has failed. */
e236ba44
VP
5615 TRY_CATCH (e, RETURN_MASK_ERROR)
5616 {
5617 insert_breakpoints ();
5618 }
5619 if (e.reason < 0)
d4f3574e 5620 {
97bd5475 5621 exception_print (gdb_stderr, e);
d4f3574e
SS
5622 stop_stepping (ecs);
5623 return;
5624 }
d4f3574e
SS
5625 }
5626
16c381f0
JK
5627 ecs->event_thread->control.trap_expected
5628 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5629
5630 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5631 specifies that such a signal should be delivered to the
5632 target program).
5633
5634 Typically, this would occure when a user is debugging a
5635 target monitor on a simulator: the target monitor sets a
5636 breakpoint; the simulator encounters this break-point and
5637 halts the simulation handing control to GDB; GDB, noteing
5638 that the break-point isn't valid, returns control back to the
5639 simulator; the simulator then delivers the hardware
1777feb0 5640 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5641
16c381f0
JK
5642 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5643 && !signal_program[ecs->event_thread->suspend.stop_signal])
5644 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5645
c4dbc9af 5646 discard_cleanups (old_cleanups);
2020b7ab 5647 resume (currently_stepping (ecs->event_thread),
16c381f0 5648 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5649 }
5650
488f131b 5651 prepare_to_wait (ecs);
d4f3574e
SS
5652}
5653
104c1213
JM
5654/* This function normally comes after a resume, before
5655 handle_inferior_event exits. It takes care of any last bits of
5656 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5657
104c1213
JM
5658static void
5659prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5660{
527159b7 5661 if (debug_infrun)
8a9de0e4 5662 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5663
104c1213
JM
5664 /* This is the old end of the while loop. Let everybody know we
5665 want to wait for the inferior some more and get called again
5666 soon. */
5667 ecs->wait_some_more = 1;
c906108c 5668}
11cf8741 5669
33d62d64
JK
5670/* Several print_*_reason functions to print why the inferior has stopped.
5671 We always print something when the inferior exits, or receives a signal.
5672 The rest of the cases are dealt with later on in normal_stop and
5673 print_it_typical. Ideally there should be a call to one of these
5674 print_*_reason functions functions from handle_inferior_event each time
5675 stop_stepping is called. */
5676
5677/* Print why the inferior has stopped.
5678 We are done with a step/next/si/ni command, print why the inferior has
5679 stopped. For now print nothing. Print a message only if not in the middle
5680 of doing a "step n" operation for n > 1. */
5681
5682static void
5683print_end_stepping_range_reason (void)
5684{
16c381f0
JK
5685 if ((!inferior_thread ()->step_multi
5686 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5687 && ui_out_is_mi_like_p (current_uiout))
5688 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5689 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5690}
5691
5692/* The inferior was terminated by a signal, print why it stopped. */
5693
11cf8741 5694static void
33d62d64 5695print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5696{
79a45e25
PA
5697 struct ui_out *uiout = current_uiout;
5698
33d62d64
JK
5699 annotate_signalled ();
5700 if (ui_out_is_mi_like_p (uiout))
5701 ui_out_field_string
5702 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5703 ui_out_text (uiout, "\nProgram terminated with signal ");
5704 annotate_signal_name ();
5705 ui_out_field_string (uiout, "signal-name",
5706 target_signal_to_name (siggnal));
5707 annotate_signal_name_end ();
5708 ui_out_text (uiout, ", ");
5709 annotate_signal_string ();
5710 ui_out_field_string (uiout, "signal-meaning",
5711 target_signal_to_string (siggnal));
5712 annotate_signal_string_end ();
5713 ui_out_text (uiout, ".\n");
5714 ui_out_text (uiout, "The program no longer exists.\n");
5715}
5716
5717/* The inferior program is finished, print why it stopped. */
5718
5719static void
5720print_exited_reason (int exitstatus)
5721{
fda326dd
TT
5722 struct inferior *inf = current_inferior ();
5723 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5724 struct ui_out *uiout = current_uiout;
fda326dd 5725
33d62d64
JK
5726 annotate_exited (exitstatus);
5727 if (exitstatus)
5728 {
5729 if (ui_out_is_mi_like_p (uiout))
5730 ui_out_field_string (uiout, "reason",
5731 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5732 ui_out_text (uiout, "[Inferior ");
5733 ui_out_text (uiout, plongest (inf->num));
5734 ui_out_text (uiout, " (");
5735 ui_out_text (uiout, pidstr);
5736 ui_out_text (uiout, ") exited with code ");
33d62d64 5737 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5738 ui_out_text (uiout, "]\n");
33d62d64
JK
5739 }
5740 else
11cf8741 5741 {
9dc5e2a9 5742 if (ui_out_is_mi_like_p (uiout))
034dad6f 5743 ui_out_field_string
33d62d64 5744 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5745 ui_out_text (uiout, "[Inferior ");
5746 ui_out_text (uiout, plongest (inf->num));
5747 ui_out_text (uiout, " (");
5748 ui_out_text (uiout, pidstr);
5749 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5750 }
5751 /* Support the --return-child-result option. */
5752 return_child_result_value = exitstatus;
5753}
5754
5755/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5756 tells us to print about it. */
33d62d64
JK
5757
5758static void
5759print_signal_received_reason (enum target_signal siggnal)
5760{
79a45e25
PA
5761 struct ui_out *uiout = current_uiout;
5762
33d62d64
JK
5763 annotate_signal ();
5764
5765 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5766 {
5767 struct thread_info *t = inferior_thread ();
5768
5769 ui_out_text (uiout, "\n[");
5770 ui_out_field_string (uiout, "thread-name",
5771 target_pid_to_str (t->ptid));
5772 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5773 ui_out_text (uiout, " stopped");
5774 }
5775 else
5776 {
5777 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5778 annotate_signal_name ();
33d62d64
JK
5779 if (ui_out_is_mi_like_p (uiout))
5780 ui_out_field_string
5781 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5782 ui_out_field_string (uiout, "signal-name",
33d62d64 5783 target_signal_to_name (siggnal));
8b93c638
JM
5784 annotate_signal_name_end ();
5785 ui_out_text (uiout, ", ");
5786 annotate_signal_string ();
488f131b 5787 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5788 target_signal_to_string (siggnal));
8b93c638 5789 annotate_signal_string_end ();
33d62d64
JK
5790 }
5791 ui_out_text (uiout, ".\n");
5792}
252fbfc8 5793
33d62d64
JK
5794/* Reverse execution: target ran out of history info, print why the inferior
5795 has stopped. */
252fbfc8 5796
33d62d64
JK
5797static void
5798print_no_history_reason (void)
5799{
79a45e25 5800 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5801}
43ff13b4 5802
c906108c
SS
5803/* Here to return control to GDB when the inferior stops for real.
5804 Print appropriate messages, remove breakpoints, give terminal our modes.
5805
5806 STOP_PRINT_FRAME nonzero means print the executing frame
5807 (pc, function, args, file, line number and line text).
5808 BREAKPOINTS_FAILED nonzero means stop was due to error
5809 attempting to insert breakpoints. */
5810
5811void
96baa820 5812normal_stop (void)
c906108c 5813{
73b65bb0
DJ
5814 struct target_waitstatus last;
5815 ptid_t last_ptid;
29f49a6a 5816 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5817
5818 get_last_target_status (&last_ptid, &last);
5819
29f49a6a
PA
5820 /* If an exception is thrown from this point on, make sure to
5821 propagate GDB's knowledge of the executing state to the
5822 frontend/user running state. A QUIT is an easy exception to see
5823 here, so do this before any filtered output. */
c35b1492
PA
5824 if (!non_stop)
5825 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5826 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5827 && last.kind != TARGET_WAITKIND_EXITED)
5828 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5829
4f8d22e3
PA
5830 /* In non-stop mode, we don't want GDB to switch threads behind the
5831 user's back, to avoid races where the user is typing a command to
5832 apply to thread x, but GDB switches to thread y before the user
5833 finishes entering the command. */
5834
c906108c
SS
5835 /* As with the notification of thread events, we want to delay
5836 notifying the user that we've switched thread context until
5837 the inferior actually stops.
5838
73b65bb0
DJ
5839 There's no point in saying anything if the inferior has exited.
5840 Note that SIGNALLED here means "exited with a signal", not
5841 "received a signal". */
4f8d22e3
PA
5842 if (!non_stop
5843 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5844 && target_has_execution
5845 && last.kind != TARGET_WAITKIND_SIGNALLED
5846 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
5847 {
5848 target_terminal_ours_for_output ();
a3f17187 5849 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5850 target_pid_to_str (inferior_ptid));
b8fa951a 5851 annotate_thread_changed ();
39f77062 5852 previous_inferior_ptid = inferior_ptid;
c906108c 5853 }
c906108c 5854
74960c60 5855 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5856 {
5857 if (remove_breakpoints ())
5858 {
5859 target_terminal_ours_for_output ();
3e43a32a
MS
5860 printf_filtered (_("Cannot remove breakpoints because "
5861 "program is no longer writable.\nFurther "
5862 "execution is probably impossible.\n"));
c906108c
SS
5863 }
5864 }
c906108c 5865
c906108c
SS
5866 /* If an auto-display called a function and that got a signal,
5867 delete that auto-display to avoid an infinite recursion. */
5868
5869 if (stopped_by_random_signal)
5870 disable_current_display ();
5871
5872 /* Don't print a message if in the middle of doing a "step n"
5873 operation for n > 1 */
af679fd0
PA
5874 if (target_has_execution
5875 && last.kind != TARGET_WAITKIND_SIGNALLED
5876 && last.kind != TARGET_WAITKIND_EXITED
5877 && inferior_thread ()->step_multi
16c381f0 5878 && inferior_thread ()->control.stop_step)
c906108c
SS
5879 goto done;
5880
5881 target_terminal_ours ();
0f641c01 5882 async_enable_stdin ();
c906108c 5883
7abfe014
DJ
5884 /* Set the current source location. This will also happen if we
5885 display the frame below, but the current SAL will be incorrect
5886 during a user hook-stop function. */
d729566a 5887 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5888 set_current_sal_from_frame (get_current_frame (), 1);
5889
dd7e2d2b
PA
5890 /* Let the user/frontend see the threads as stopped. */
5891 do_cleanups (old_chain);
5892
5893 /* Look up the hook_stop and run it (CLI internally handles problem
5894 of stop_command's pre-hook not existing). */
5895 if (stop_command)
5896 catch_errors (hook_stop_stub, stop_command,
5897 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5898
d729566a 5899 if (!has_stack_frames ())
d51fd4c8 5900 goto done;
c906108c 5901
32400beb
PA
5902 if (last.kind == TARGET_WAITKIND_SIGNALLED
5903 || last.kind == TARGET_WAITKIND_EXITED)
5904 goto done;
5905
c906108c
SS
5906 /* Select innermost stack frame - i.e., current frame is frame 0,
5907 and current location is based on that.
5908 Don't do this on return from a stack dummy routine,
1777feb0 5909 or if the program has exited. */
c906108c
SS
5910
5911 if (!stop_stack_dummy)
5912 {
0f7d239c 5913 select_frame (get_current_frame ());
c906108c
SS
5914
5915 /* Print current location without a level number, if
c5aa993b
JM
5916 we have changed functions or hit a breakpoint.
5917 Print source line if we have one.
5918 bpstat_print() contains the logic deciding in detail
1777feb0 5919 what to print, based on the event(s) that just occurred. */
c906108c 5920
d01a8610
AS
5921 /* If --batch-silent is enabled then there's no need to print the current
5922 source location, and to try risks causing an error message about
5923 missing source files. */
5924 if (stop_print_frame && !batch_silent)
c906108c
SS
5925 {
5926 int bpstat_ret;
5927 int source_flag;
917317f4 5928 int do_frame_printing = 1;
347bddb7 5929 struct thread_info *tp = inferior_thread ();
c906108c 5930
16c381f0 5931 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5932 switch (bpstat_ret)
5933 {
5934 case PRINT_UNKNOWN:
b0f4b84b
DJ
5935 /* If we had hit a shared library event breakpoint,
5936 bpstat_print would print out this message. If we hit
5937 an OS-level shared library event, do the same
5938 thing. */
5939 if (last.kind == TARGET_WAITKIND_LOADED)
5940 {
5941 printf_filtered (_("Stopped due to shared library event\n"));
5942 source_flag = SRC_LINE; /* something bogus */
5943 do_frame_printing = 0;
5944 break;
5945 }
5946
aa0cd9c1 5947 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5948 (or should) carry around the function and does (or
5949 should) use that when doing a frame comparison. */
16c381f0
JK
5950 if (tp->control.stop_step
5951 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5952 get_frame_id (get_current_frame ()))
917317f4 5953 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5954 source_flag = SRC_LINE; /* Finished step, just
5955 print source line. */
917317f4 5956 else
1777feb0
MS
5957 source_flag = SRC_AND_LOC; /* Print location and
5958 source line. */
917317f4
JM
5959 break;
5960 case PRINT_SRC_AND_LOC:
1777feb0
MS
5961 source_flag = SRC_AND_LOC; /* Print location and
5962 source line. */
917317f4
JM
5963 break;
5964 case PRINT_SRC_ONLY:
c5394b80 5965 source_flag = SRC_LINE;
917317f4
JM
5966 break;
5967 case PRINT_NOTHING:
488f131b 5968 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
5969 do_frame_printing = 0;
5970 break;
5971 default:
e2e0b3e5 5972 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 5973 }
c906108c
SS
5974
5975 /* The behavior of this routine with respect to the source
5976 flag is:
c5394b80
JM
5977 SRC_LINE: Print only source line
5978 LOCATION: Print only location
1777feb0 5979 SRC_AND_LOC: Print location and source line. */
917317f4 5980 if (do_frame_printing)
b04f3ab4 5981 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
5982
5983 /* Display the auto-display expressions. */
5984 do_displays ();
5985 }
5986 }
5987
5988 /* Save the function value return registers, if we care.
5989 We might be about to restore their previous contents. */
9da8c2a0
PA
5990 if (inferior_thread ()->control.proceed_to_finish
5991 && execution_direction != EXEC_REVERSE)
d5c31457
UW
5992 {
5993 /* This should not be necessary. */
5994 if (stop_registers)
5995 regcache_xfree (stop_registers);
5996
5997 /* NB: The copy goes through to the target picking up the value of
5998 all the registers. */
5999 stop_registers = regcache_dup (get_current_regcache ());
6000 }
c906108c 6001
aa7d318d 6002 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6003 {
b89667eb
DE
6004 /* Pop the empty frame that contains the stack dummy.
6005 This also restores inferior state prior to the call
16c381f0 6006 (struct infcall_suspend_state). */
b89667eb 6007 struct frame_info *frame = get_current_frame ();
abbb1732 6008
b89667eb
DE
6009 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6010 frame_pop (frame);
3e43a32a
MS
6011 /* frame_pop() calls reinit_frame_cache as the last thing it
6012 does which means there's currently no selected frame. We
6013 don't need to re-establish a selected frame if the dummy call
6014 returns normally, that will be done by
6015 restore_infcall_control_state. However, we do have to handle
6016 the case where the dummy call is returning after being
6017 stopped (e.g. the dummy call previously hit a breakpoint).
6018 We can't know which case we have so just always re-establish
6019 a selected frame here. */
0f7d239c 6020 select_frame (get_current_frame ());
c906108c
SS
6021 }
6022
c906108c
SS
6023done:
6024 annotate_stopped ();
41d2bdb4
PA
6025
6026 /* Suppress the stop observer if we're in the middle of:
6027
6028 - a step n (n > 1), as there still more steps to be done.
6029
6030 - a "finish" command, as the observer will be called in
6031 finish_command_continuation, so it can include the inferior
6032 function's return value.
6033
6034 - calling an inferior function, as we pretend we inferior didn't
6035 run at all. The return value of the call is handled by the
6036 expression evaluator, through call_function_by_hand. */
6037
6038 if (!target_has_execution
6039 || last.kind == TARGET_WAITKIND_SIGNALLED
6040 || last.kind == TARGET_WAITKIND_EXITED
6041 || (!inferior_thread ()->step_multi
16c381f0
JK
6042 && !(inferior_thread ()->control.stop_bpstat
6043 && inferior_thread ()->control.proceed_to_finish)
6044 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6045 {
6046 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6047 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6048 stop_print_frame);
347bddb7 6049 else
1d33d6ba 6050 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6051 }
347bddb7 6052
48844aa6
PA
6053 if (target_has_execution)
6054 {
6055 if (last.kind != TARGET_WAITKIND_SIGNALLED
6056 && last.kind != TARGET_WAITKIND_EXITED)
6057 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6058 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6059 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6060 }
6c95b8df
PA
6061
6062 /* Try to get rid of automatically added inferiors that are no
6063 longer needed. Keeping those around slows down things linearly.
6064 Note that this never removes the current inferior. */
6065 prune_inferiors ();
c906108c
SS
6066}
6067
6068static int
96baa820 6069hook_stop_stub (void *cmd)
c906108c 6070{
5913bcb0 6071 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6072 return (0);
6073}
6074\f
c5aa993b 6075int
96baa820 6076signal_stop_state (int signo)
c906108c 6077{
d6b48e9c 6078 return signal_stop[signo];
c906108c
SS
6079}
6080
c5aa993b 6081int
96baa820 6082signal_print_state (int signo)
c906108c
SS
6083{
6084 return signal_print[signo];
6085}
6086
c5aa993b 6087int
96baa820 6088signal_pass_state (int signo)
c906108c
SS
6089{
6090 return signal_program[signo];
6091}
6092
2455069d
UW
6093static void
6094signal_cache_update (int signo)
6095{
6096 if (signo == -1)
6097 {
6098 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6099 signal_cache_update (signo);
6100
6101 return;
6102 }
6103
6104 signal_pass[signo] = (signal_stop[signo] == 0
6105 && signal_print[signo] == 0
6106 && signal_program[signo] == 1);
6107}
6108
488f131b 6109int
7bda5e4a 6110signal_stop_update (int signo, int state)
d4f3574e
SS
6111{
6112 int ret = signal_stop[signo];
abbb1732 6113
d4f3574e 6114 signal_stop[signo] = state;
2455069d 6115 signal_cache_update (signo);
d4f3574e
SS
6116 return ret;
6117}
6118
488f131b 6119int
7bda5e4a 6120signal_print_update (int signo, int state)
d4f3574e
SS
6121{
6122 int ret = signal_print[signo];
abbb1732 6123
d4f3574e 6124 signal_print[signo] = state;
2455069d 6125 signal_cache_update (signo);
d4f3574e
SS
6126 return ret;
6127}
6128
488f131b 6129int
7bda5e4a 6130signal_pass_update (int signo, int state)
d4f3574e
SS
6131{
6132 int ret = signal_program[signo];
abbb1732 6133
d4f3574e 6134 signal_program[signo] = state;
2455069d 6135 signal_cache_update (signo);
d4f3574e
SS
6136 return ret;
6137}
6138
c906108c 6139static void
96baa820 6140sig_print_header (void)
c906108c 6141{
3e43a32a
MS
6142 printf_filtered (_("Signal Stop\tPrint\tPass "
6143 "to program\tDescription\n"));
c906108c
SS
6144}
6145
6146static void
96baa820 6147sig_print_info (enum target_signal oursig)
c906108c 6148{
54363045 6149 const char *name = target_signal_to_name (oursig);
c906108c 6150 int name_padding = 13 - strlen (name);
96baa820 6151
c906108c
SS
6152 if (name_padding <= 0)
6153 name_padding = 0;
6154
6155 printf_filtered ("%s", name);
488f131b 6156 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6157 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6158 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6159 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6160 printf_filtered ("%s\n", target_signal_to_string (oursig));
6161}
6162
6163/* Specify how various signals in the inferior should be handled. */
6164
6165static void
96baa820 6166handle_command (char *args, int from_tty)
c906108c
SS
6167{
6168 char **argv;
6169 int digits, wordlen;
6170 int sigfirst, signum, siglast;
6171 enum target_signal oursig;
6172 int allsigs;
6173 int nsigs;
6174 unsigned char *sigs;
6175 struct cleanup *old_chain;
6176
6177 if (args == NULL)
6178 {
e2e0b3e5 6179 error_no_arg (_("signal to handle"));
c906108c
SS
6180 }
6181
1777feb0 6182 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6183
6184 nsigs = (int) TARGET_SIGNAL_LAST;
6185 sigs = (unsigned char *) alloca (nsigs);
6186 memset (sigs, 0, nsigs);
6187
1777feb0 6188 /* Break the command line up into args. */
c906108c 6189
d1a41061 6190 argv = gdb_buildargv (args);
7a292a7a 6191 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6192
6193 /* Walk through the args, looking for signal oursigs, signal names, and
6194 actions. Signal numbers and signal names may be interspersed with
6195 actions, with the actions being performed for all signals cumulatively
1777feb0 6196 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6197
6198 while (*argv != NULL)
6199 {
6200 wordlen = strlen (*argv);
6201 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6202 {;
6203 }
6204 allsigs = 0;
6205 sigfirst = siglast = -1;
6206
6207 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6208 {
6209 /* Apply action to all signals except those used by the
1777feb0 6210 debugger. Silently skip those. */
c906108c
SS
6211 allsigs = 1;
6212 sigfirst = 0;
6213 siglast = nsigs - 1;
6214 }
6215 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6216 {
6217 SET_SIGS (nsigs, sigs, signal_stop);
6218 SET_SIGS (nsigs, sigs, signal_print);
6219 }
6220 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6221 {
6222 UNSET_SIGS (nsigs, sigs, signal_program);
6223 }
6224 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6225 {
6226 SET_SIGS (nsigs, sigs, signal_print);
6227 }
6228 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6229 {
6230 SET_SIGS (nsigs, sigs, signal_program);
6231 }
6232 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6233 {
6234 UNSET_SIGS (nsigs, sigs, signal_stop);
6235 }
6236 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6237 {
6238 SET_SIGS (nsigs, sigs, signal_program);
6239 }
6240 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6241 {
6242 UNSET_SIGS (nsigs, sigs, signal_print);
6243 UNSET_SIGS (nsigs, sigs, signal_stop);
6244 }
6245 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6246 {
6247 UNSET_SIGS (nsigs, sigs, signal_program);
6248 }
6249 else if (digits > 0)
6250 {
6251 /* It is numeric. The numeric signal refers to our own
6252 internal signal numbering from target.h, not to host/target
6253 signal number. This is a feature; users really should be
6254 using symbolic names anyway, and the common ones like
6255 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6256
6257 sigfirst = siglast = (int)
6258 target_signal_from_command (atoi (*argv));
6259 if ((*argv)[digits] == '-')
6260 {
6261 siglast = (int)
6262 target_signal_from_command (atoi ((*argv) + digits + 1));
6263 }
6264 if (sigfirst > siglast)
6265 {
1777feb0 6266 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6267 signum = sigfirst;
6268 sigfirst = siglast;
6269 siglast = signum;
6270 }
6271 }
6272 else
6273 {
6274 oursig = target_signal_from_name (*argv);
6275 if (oursig != TARGET_SIGNAL_UNKNOWN)
6276 {
6277 sigfirst = siglast = (int) oursig;
6278 }
6279 else
6280 {
6281 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6282 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6283 }
6284 }
6285
6286 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6287 which signals to apply actions to. */
c906108c
SS
6288
6289 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6290 {
6291 switch ((enum target_signal) signum)
6292 {
6293 case TARGET_SIGNAL_TRAP:
6294 case TARGET_SIGNAL_INT:
6295 if (!allsigs && !sigs[signum])
6296 {
9e2f0ad4 6297 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6298Are you sure you want to change it? "),
6299 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6300 {
6301 sigs[signum] = 1;
6302 }
6303 else
6304 {
a3f17187 6305 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6306 gdb_flush (gdb_stdout);
6307 }
6308 }
6309 break;
6310 case TARGET_SIGNAL_0:
6311 case TARGET_SIGNAL_DEFAULT:
6312 case TARGET_SIGNAL_UNKNOWN:
6313 /* Make sure that "all" doesn't print these. */
6314 break;
6315 default:
6316 sigs[signum] = 1;
6317 break;
6318 }
6319 }
6320
6321 argv++;
6322 }
6323
3a031f65
PA
6324 for (signum = 0; signum < nsigs; signum++)
6325 if (sigs[signum])
6326 {
2455069d
UW
6327 signal_cache_update (-1);
6328 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6329
3a031f65
PA
6330 if (from_tty)
6331 {
6332 /* Show the results. */
6333 sig_print_header ();
6334 for (; signum < nsigs; signum++)
6335 if (sigs[signum])
6336 sig_print_info (signum);
6337 }
6338
6339 break;
6340 }
c906108c
SS
6341
6342 do_cleanups (old_chain);
6343}
6344
6345static void
96baa820 6346xdb_handle_command (char *args, int from_tty)
c906108c
SS
6347{
6348 char **argv;
6349 struct cleanup *old_chain;
6350
d1a41061
PP
6351 if (args == NULL)
6352 error_no_arg (_("xdb command"));
6353
1777feb0 6354 /* Break the command line up into args. */
c906108c 6355
d1a41061 6356 argv = gdb_buildargv (args);
7a292a7a 6357 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6358 if (argv[1] != (char *) NULL)
6359 {
6360 char *argBuf;
6361 int bufLen;
6362
6363 bufLen = strlen (argv[0]) + 20;
6364 argBuf = (char *) xmalloc (bufLen);
6365 if (argBuf)
6366 {
6367 int validFlag = 1;
6368 enum target_signal oursig;
6369
6370 oursig = target_signal_from_name (argv[0]);
6371 memset (argBuf, 0, bufLen);
6372 if (strcmp (argv[1], "Q") == 0)
6373 sprintf (argBuf, "%s %s", argv[0], "noprint");
6374 else
6375 {
6376 if (strcmp (argv[1], "s") == 0)
6377 {
6378 if (!signal_stop[oursig])
6379 sprintf (argBuf, "%s %s", argv[0], "stop");
6380 else
6381 sprintf (argBuf, "%s %s", argv[0], "nostop");
6382 }
6383 else if (strcmp (argv[1], "i") == 0)
6384 {
6385 if (!signal_program[oursig])
6386 sprintf (argBuf, "%s %s", argv[0], "pass");
6387 else
6388 sprintf (argBuf, "%s %s", argv[0], "nopass");
6389 }
6390 else if (strcmp (argv[1], "r") == 0)
6391 {
6392 if (!signal_print[oursig])
6393 sprintf (argBuf, "%s %s", argv[0], "print");
6394 else
6395 sprintf (argBuf, "%s %s", argv[0], "noprint");
6396 }
6397 else
6398 validFlag = 0;
6399 }
6400 if (validFlag)
6401 handle_command (argBuf, from_tty);
6402 else
a3f17187 6403 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6404 if (argBuf)
b8c9b27d 6405 xfree (argBuf);
c906108c
SS
6406 }
6407 }
6408 do_cleanups (old_chain);
6409}
6410
6411/* Print current contents of the tables set by the handle command.
6412 It is possible we should just be printing signals actually used
6413 by the current target (but for things to work right when switching
6414 targets, all signals should be in the signal tables). */
6415
6416static void
96baa820 6417signals_info (char *signum_exp, int from_tty)
c906108c
SS
6418{
6419 enum target_signal oursig;
abbb1732 6420
c906108c
SS
6421 sig_print_header ();
6422
6423 if (signum_exp)
6424 {
6425 /* First see if this is a symbol name. */
6426 oursig = target_signal_from_name (signum_exp);
6427 if (oursig == TARGET_SIGNAL_UNKNOWN)
6428 {
6429 /* No, try numeric. */
6430 oursig =
bb518678 6431 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6432 }
6433 sig_print_info (oursig);
6434 return;
6435 }
6436
6437 printf_filtered ("\n");
6438 /* These ugly casts brought to you by the native VAX compiler. */
6439 for (oursig = TARGET_SIGNAL_FIRST;
6440 (int) oursig < (int) TARGET_SIGNAL_LAST;
6441 oursig = (enum target_signal) ((int) oursig + 1))
6442 {
6443 QUIT;
6444
6445 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6446 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6447 sig_print_info (oursig);
6448 }
6449
3e43a32a
MS
6450 printf_filtered (_("\nUse the \"handle\" command "
6451 "to change these tables.\n"));
c906108c 6452}
4aa995e1 6453
c709acd1
PA
6454/* Check if it makes sense to read $_siginfo from the current thread
6455 at this point. If not, throw an error. */
6456
6457static void
6458validate_siginfo_access (void)
6459{
6460 /* No current inferior, no siginfo. */
6461 if (ptid_equal (inferior_ptid, null_ptid))
6462 error (_("No thread selected."));
6463
6464 /* Don't try to read from a dead thread. */
6465 if (is_exited (inferior_ptid))
6466 error (_("The current thread has terminated"));
6467
6468 /* ... or from a spinning thread. */
6469 if (is_running (inferior_ptid))
6470 error (_("Selected thread is running."));
6471}
6472
4aa995e1
PA
6473/* The $_siginfo convenience variable is a bit special. We don't know
6474 for sure the type of the value until we actually have a chance to
7a9dd1b2 6475 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6476 also dependent on which thread you have selected.
6477
6478 1. making $_siginfo be an internalvar that creates a new value on
6479 access.
6480
6481 2. making the value of $_siginfo be an lval_computed value. */
6482
6483/* This function implements the lval_computed support for reading a
6484 $_siginfo value. */
6485
6486static void
6487siginfo_value_read (struct value *v)
6488{
6489 LONGEST transferred;
6490
c709acd1
PA
6491 validate_siginfo_access ();
6492
4aa995e1
PA
6493 transferred =
6494 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6495 NULL,
6496 value_contents_all_raw (v),
6497 value_offset (v),
6498 TYPE_LENGTH (value_type (v)));
6499
6500 if (transferred != TYPE_LENGTH (value_type (v)))
6501 error (_("Unable to read siginfo"));
6502}
6503
6504/* This function implements the lval_computed support for writing a
6505 $_siginfo value. */
6506
6507static void
6508siginfo_value_write (struct value *v, struct value *fromval)
6509{
6510 LONGEST transferred;
6511
c709acd1
PA
6512 validate_siginfo_access ();
6513
4aa995e1
PA
6514 transferred = target_write (&current_target,
6515 TARGET_OBJECT_SIGNAL_INFO,
6516 NULL,
6517 value_contents_all_raw (fromval),
6518 value_offset (v),
6519 TYPE_LENGTH (value_type (fromval)));
6520
6521 if (transferred != TYPE_LENGTH (value_type (fromval)))
6522 error (_("Unable to write siginfo"));
6523}
6524
c8f2448a 6525static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6526 {
6527 siginfo_value_read,
6528 siginfo_value_write
6529 };
6530
6531/* Return a new value with the correct type for the siginfo object of
78267919
UW
6532 the current thread using architecture GDBARCH. Return a void value
6533 if there's no object available. */
4aa995e1 6534
2c0b251b 6535static struct value *
78267919 6536siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6537{
4aa995e1 6538 if (target_has_stack
78267919
UW
6539 && !ptid_equal (inferior_ptid, null_ptid)
6540 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6541 {
78267919 6542 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6543
78267919 6544 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6545 }
6546
78267919 6547 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6548}
6549
c906108c 6550\f
16c381f0
JK
6551/* infcall_suspend_state contains state about the program itself like its
6552 registers and any signal it received when it last stopped.
6553 This state must be restored regardless of how the inferior function call
6554 ends (either successfully, or after it hits a breakpoint or signal)
6555 if the program is to properly continue where it left off. */
6556
6557struct infcall_suspend_state
7a292a7a 6558{
16c381f0
JK
6559 struct thread_suspend_state thread_suspend;
6560 struct inferior_suspend_state inferior_suspend;
6561
6562 /* Other fields: */
7a292a7a 6563 CORE_ADDR stop_pc;
b89667eb 6564 struct regcache *registers;
1736ad11 6565
35515841 6566 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6567 struct gdbarch *siginfo_gdbarch;
6568
6569 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6570 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6571 content would be invalid. */
6572 gdb_byte *siginfo_data;
b89667eb
DE
6573};
6574
16c381f0
JK
6575struct infcall_suspend_state *
6576save_infcall_suspend_state (void)
b89667eb 6577{
16c381f0 6578 struct infcall_suspend_state *inf_state;
b89667eb 6579 struct thread_info *tp = inferior_thread ();
16c381f0 6580 struct inferior *inf = current_inferior ();
1736ad11
JK
6581 struct regcache *regcache = get_current_regcache ();
6582 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6583 gdb_byte *siginfo_data = NULL;
6584
6585 if (gdbarch_get_siginfo_type_p (gdbarch))
6586 {
6587 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6588 size_t len = TYPE_LENGTH (type);
6589 struct cleanup *back_to;
6590
6591 siginfo_data = xmalloc (len);
6592 back_to = make_cleanup (xfree, siginfo_data);
6593
6594 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6595 siginfo_data, 0, len) == len)
6596 discard_cleanups (back_to);
6597 else
6598 {
6599 /* Errors ignored. */
6600 do_cleanups (back_to);
6601 siginfo_data = NULL;
6602 }
6603 }
6604
16c381f0 6605 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6606
6607 if (siginfo_data)
6608 {
6609 inf_state->siginfo_gdbarch = gdbarch;
6610 inf_state->siginfo_data = siginfo_data;
6611 }
b89667eb 6612
16c381f0
JK
6613 inf_state->thread_suspend = tp->suspend;
6614 inf_state->inferior_suspend = inf->suspend;
6615
35515841
JK
6616 /* run_inferior_call will not use the signal due to its `proceed' call with
6617 TARGET_SIGNAL_0 anyway. */
16c381f0 6618 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6619
b89667eb
DE
6620 inf_state->stop_pc = stop_pc;
6621
1736ad11 6622 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6623
6624 return inf_state;
6625}
6626
6627/* Restore inferior session state to INF_STATE. */
6628
6629void
16c381f0 6630restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6631{
6632 struct thread_info *tp = inferior_thread ();
16c381f0 6633 struct inferior *inf = current_inferior ();
1736ad11
JK
6634 struct regcache *regcache = get_current_regcache ();
6635 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6636
16c381f0
JK
6637 tp->suspend = inf_state->thread_suspend;
6638 inf->suspend = inf_state->inferior_suspend;
6639
b89667eb
DE
6640 stop_pc = inf_state->stop_pc;
6641
1736ad11
JK
6642 if (inf_state->siginfo_gdbarch == gdbarch)
6643 {
6644 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6645 size_t len = TYPE_LENGTH (type);
6646
6647 /* Errors ignored. */
6648 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6649 inf_state->siginfo_data, 0, len);
6650 }
6651
b89667eb
DE
6652 /* The inferior can be gone if the user types "print exit(0)"
6653 (and perhaps other times). */
6654 if (target_has_execution)
6655 /* NB: The register write goes through to the target. */
1736ad11 6656 regcache_cpy (regcache, inf_state->registers);
803b5f95 6657
16c381f0 6658 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6659}
6660
6661static void
16c381f0 6662do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6663{
16c381f0 6664 restore_infcall_suspend_state (state);
b89667eb
DE
6665}
6666
6667struct cleanup *
16c381f0
JK
6668make_cleanup_restore_infcall_suspend_state
6669 (struct infcall_suspend_state *inf_state)
b89667eb 6670{
16c381f0 6671 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6672}
6673
6674void
16c381f0 6675discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6676{
6677 regcache_xfree (inf_state->registers);
803b5f95 6678 xfree (inf_state->siginfo_data);
b89667eb
DE
6679 xfree (inf_state);
6680}
6681
6682struct regcache *
16c381f0 6683get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6684{
6685 return inf_state->registers;
6686}
6687
16c381f0
JK
6688/* infcall_control_state contains state regarding gdb's control of the
6689 inferior itself like stepping control. It also contains session state like
6690 the user's currently selected frame. */
b89667eb 6691
16c381f0 6692struct infcall_control_state
b89667eb 6693{
16c381f0
JK
6694 struct thread_control_state thread_control;
6695 struct inferior_control_state inferior_control;
d82142e2
JK
6696
6697 /* Other fields: */
6698 enum stop_stack_kind stop_stack_dummy;
6699 int stopped_by_random_signal;
7a292a7a 6700 int stop_after_trap;
7a292a7a 6701
b89667eb 6702 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6703 struct frame_id selected_frame_id;
7a292a7a
SS
6704};
6705
c906108c 6706/* Save all of the information associated with the inferior<==>gdb
b89667eb 6707 connection. */
c906108c 6708
16c381f0
JK
6709struct infcall_control_state *
6710save_infcall_control_state (void)
c906108c 6711{
16c381f0 6712 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6713 struct thread_info *tp = inferior_thread ();
d6b48e9c 6714 struct inferior *inf = current_inferior ();
7a292a7a 6715
16c381f0
JK
6716 inf_status->thread_control = tp->control;
6717 inf_status->inferior_control = inf->control;
d82142e2 6718
8358c15c 6719 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6720 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6721
16c381f0
JK
6722 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6723 chain. If caller's caller is walking the chain, they'll be happier if we
6724 hand them back the original chain when restore_infcall_control_state is
6725 called. */
6726 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6727
6728 /* Other fields: */
6729 inf_status->stop_stack_dummy = stop_stack_dummy;
6730 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6731 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6732
206415a3 6733 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6734
7a292a7a 6735 return inf_status;
c906108c
SS
6736}
6737
c906108c 6738static int
96baa820 6739restore_selected_frame (void *args)
c906108c 6740{
488f131b 6741 struct frame_id *fid = (struct frame_id *) args;
c906108c 6742 struct frame_info *frame;
c906108c 6743
101dcfbe 6744 frame = frame_find_by_id (*fid);
c906108c 6745
aa0cd9c1
AC
6746 /* If inf_status->selected_frame_id is NULL, there was no previously
6747 selected frame. */
101dcfbe 6748 if (frame == NULL)
c906108c 6749 {
8a3fe4f8 6750 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6751 return 0;
6752 }
6753
0f7d239c 6754 select_frame (frame);
c906108c
SS
6755
6756 return (1);
6757}
6758
b89667eb
DE
6759/* Restore inferior session state to INF_STATUS. */
6760
c906108c 6761void
16c381f0 6762restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6763{
4e1c45ea 6764 struct thread_info *tp = inferior_thread ();
d6b48e9c 6765 struct inferior *inf = current_inferior ();
4e1c45ea 6766
8358c15c
JK
6767 if (tp->control.step_resume_breakpoint)
6768 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6769
5b79abe7
TT
6770 if (tp->control.exception_resume_breakpoint)
6771 tp->control.exception_resume_breakpoint->disposition
6772 = disp_del_at_next_stop;
6773
d82142e2 6774 /* Handle the bpstat_copy of the chain. */
16c381f0 6775 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6776
16c381f0
JK
6777 tp->control = inf_status->thread_control;
6778 inf->control = inf_status->inferior_control;
d82142e2
JK
6779
6780 /* Other fields: */
6781 stop_stack_dummy = inf_status->stop_stack_dummy;
6782 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6783 stop_after_trap = inf_status->stop_after_trap;
c906108c 6784
b89667eb 6785 if (target_has_stack)
c906108c 6786 {
c906108c 6787 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6788 walking the stack might encounter a garbage pointer and
6789 error() trying to dereference it. */
488f131b
JB
6790 if (catch_errors
6791 (restore_selected_frame, &inf_status->selected_frame_id,
6792 "Unable to restore previously selected frame:\n",
6793 RETURN_MASK_ERROR) == 0)
c906108c
SS
6794 /* Error in restoring the selected frame. Select the innermost
6795 frame. */
0f7d239c 6796 select_frame (get_current_frame ());
c906108c 6797 }
c906108c 6798
72cec141 6799 xfree (inf_status);
7a292a7a 6800}
c906108c 6801
74b7792f 6802static void
16c381f0 6803do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6804{
16c381f0 6805 restore_infcall_control_state (sts);
74b7792f
AC
6806}
6807
6808struct cleanup *
16c381f0
JK
6809make_cleanup_restore_infcall_control_state
6810 (struct infcall_control_state *inf_status)
74b7792f 6811{
16c381f0 6812 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6813}
6814
c906108c 6815void
16c381f0 6816discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6817{
8358c15c
JK
6818 if (inf_status->thread_control.step_resume_breakpoint)
6819 inf_status->thread_control.step_resume_breakpoint->disposition
6820 = disp_del_at_next_stop;
6821
5b79abe7
TT
6822 if (inf_status->thread_control.exception_resume_breakpoint)
6823 inf_status->thread_control.exception_resume_breakpoint->disposition
6824 = disp_del_at_next_stop;
6825
1777feb0 6826 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6827 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6828
72cec141 6829 xfree (inf_status);
7a292a7a 6830}
b89667eb 6831\f
47932f85 6832int
3a3e9ee3 6833inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6834{
6835 struct target_waitstatus last;
6836 ptid_t last_ptid;
6837
6838 get_last_target_status (&last_ptid, &last);
6839
6840 if (last.kind != TARGET_WAITKIND_FORKED)
6841 return 0;
6842
3a3e9ee3 6843 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6844 return 0;
6845
6846 *child_pid = last.value.related_pid;
6847 return 1;
6848}
6849
6850int
3a3e9ee3 6851inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6852{
6853 struct target_waitstatus last;
6854 ptid_t last_ptid;
6855
6856 get_last_target_status (&last_ptid, &last);
6857
6858 if (last.kind != TARGET_WAITKIND_VFORKED)
6859 return 0;
6860
3a3e9ee3 6861 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6862 return 0;
6863
6864 *child_pid = last.value.related_pid;
6865 return 1;
6866}
6867
6868int
3a3e9ee3 6869inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6870{
6871 struct target_waitstatus last;
6872 ptid_t last_ptid;
6873
6874 get_last_target_status (&last_ptid, &last);
6875
6876 if (last.kind != TARGET_WAITKIND_EXECD)
6877 return 0;
6878
3a3e9ee3 6879 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6880 return 0;
6881
6882 *execd_pathname = xstrdup (last.value.execd_pathname);
6883 return 1;
6884}
6885
a96d9b2e
SDJ
6886int
6887inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6888{
6889 struct target_waitstatus last;
6890 ptid_t last_ptid;
6891
6892 get_last_target_status (&last_ptid, &last);
6893
6894 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6895 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6896 return 0;
6897
6898 if (!ptid_equal (last_ptid, pid))
6899 return 0;
6900
6901 *syscall_number = last.value.syscall_number;
6902 return 1;
6903}
6904
0723dbf5
PA
6905int
6906ptid_match (ptid_t ptid, ptid_t filter)
6907{
0723dbf5
PA
6908 if (ptid_equal (filter, minus_one_ptid))
6909 return 1;
6910 if (ptid_is_pid (filter)
6911 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6912 return 1;
6913 else if (ptid_equal (ptid, filter))
6914 return 1;
6915
6916 return 0;
6917}
6918
ca6724c1
KB
6919/* restore_inferior_ptid() will be used by the cleanup machinery
6920 to restore the inferior_ptid value saved in a call to
6921 save_inferior_ptid(). */
ce696e05
KB
6922
6923static void
6924restore_inferior_ptid (void *arg)
6925{
6926 ptid_t *saved_ptid_ptr = arg;
abbb1732 6927
ce696e05
KB
6928 inferior_ptid = *saved_ptid_ptr;
6929 xfree (arg);
6930}
6931
6932/* Save the value of inferior_ptid so that it may be restored by a
6933 later call to do_cleanups(). Returns the struct cleanup pointer
6934 needed for later doing the cleanup. */
6935
6936struct cleanup *
6937save_inferior_ptid (void)
6938{
6939 ptid_t *saved_ptid_ptr;
6940
6941 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6942 *saved_ptid_ptr = inferior_ptid;
6943 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6944}
c5aa993b 6945\f
488f131b 6946
b2175913
MS
6947/* User interface for reverse debugging:
6948 Set exec-direction / show exec-direction commands
6949 (returns error unless target implements to_set_exec_direction method). */
6950
32231432 6951int execution_direction = EXEC_FORWARD;
b2175913
MS
6952static const char exec_forward[] = "forward";
6953static const char exec_reverse[] = "reverse";
6954static const char *exec_direction = exec_forward;
6955static const char *exec_direction_names[] = {
6956 exec_forward,
6957 exec_reverse,
6958 NULL
6959};
6960
6961static void
6962set_exec_direction_func (char *args, int from_tty,
6963 struct cmd_list_element *cmd)
6964{
6965 if (target_can_execute_reverse)
6966 {
6967 if (!strcmp (exec_direction, exec_forward))
6968 execution_direction = EXEC_FORWARD;
6969 else if (!strcmp (exec_direction, exec_reverse))
6970 execution_direction = EXEC_REVERSE;
6971 }
8bbed405
MS
6972 else
6973 {
6974 exec_direction = exec_forward;
6975 error (_("Target does not support this operation."));
6976 }
b2175913
MS
6977}
6978
6979static void
6980show_exec_direction_func (struct ui_file *out, int from_tty,
6981 struct cmd_list_element *cmd, const char *value)
6982{
6983 switch (execution_direction) {
6984 case EXEC_FORWARD:
6985 fprintf_filtered (out, _("Forward.\n"));
6986 break;
6987 case EXEC_REVERSE:
6988 fprintf_filtered (out, _("Reverse.\n"));
6989 break;
b2175913 6990 default:
d8b34453
PA
6991 internal_error (__FILE__, __LINE__,
6992 _("bogus execution_direction value: %d"),
6993 (int) execution_direction);
b2175913
MS
6994 }
6995}
6996
6997/* User interface for non-stop mode. */
6998
ad52ddc6 6999int non_stop = 0;
ad52ddc6
PA
7000
7001static void
7002set_non_stop (char *args, int from_tty,
7003 struct cmd_list_element *c)
7004{
7005 if (target_has_execution)
7006 {
7007 non_stop_1 = non_stop;
7008 error (_("Cannot change this setting while the inferior is running."));
7009 }
7010
7011 non_stop = non_stop_1;
7012}
7013
7014static void
7015show_non_stop (struct ui_file *file, int from_tty,
7016 struct cmd_list_element *c, const char *value)
7017{
7018 fprintf_filtered (file,
7019 _("Controlling the inferior in non-stop mode is %s.\n"),
7020 value);
7021}
7022
d4db2f36
PA
7023static void
7024show_schedule_multiple (struct ui_file *file, int from_tty,
7025 struct cmd_list_element *c, const char *value)
7026{
3e43a32a
MS
7027 fprintf_filtered (file, _("Resuming the execution of threads "
7028 "of all processes is %s.\n"), value);
d4db2f36 7029}
ad52ddc6 7030
c906108c 7031void
96baa820 7032_initialize_infrun (void)
c906108c 7033{
52f0bd74
AC
7034 int i;
7035 int numsigs;
c906108c 7036
1bedd215
AC
7037 add_info ("signals", signals_info, _("\
7038What debugger does when program gets various signals.\n\
7039Specify a signal as argument to print info on that signal only."));
c906108c
SS
7040 add_info_alias ("handle", "signals", 0);
7041
1bedd215
AC
7042 add_com ("handle", class_run, handle_command, _("\
7043Specify how to handle a signal.\n\
c906108c
SS
7044Args are signals and actions to apply to those signals.\n\
7045Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7046from 1-15 are allowed for compatibility with old versions of GDB.\n\
7047Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7048The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7049used by the debugger, typically SIGTRAP and SIGINT.\n\
7050Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7051\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7052Stop means reenter debugger if this signal happens (implies print).\n\
7053Print means print a message if this signal happens.\n\
7054Pass means let program see this signal; otherwise program doesn't know.\n\
7055Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7056Pass and Stop may be combined."));
c906108c
SS
7057 if (xdb_commands)
7058 {
1bedd215
AC
7059 add_com ("lz", class_info, signals_info, _("\
7060What debugger does when program gets various signals.\n\
7061Specify a signal as argument to print info on that signal only."));
7062 add_com ("z", class_run, xdb_handle_command, _("\
7063Specify how to handle a signal.\n\
c906108c
SS
7064Args are signals and actions to apply to those signals.\n\
7065Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7066from 1-15 are allowed for compatibility with old versions of GDB.\n\
7067Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7068The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7069used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7070Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7071\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7072nopass), \"Q\" (noprint)\n\
7073Stop means reenter debugger if this signal happens (implies print).\n\
7074Print means print a message if this signal happens.\n\
7075Pass means let program see this signal; otherwise program doesn't know.\n\
7076Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7077Pass and Stop may be combined."));
c906108c
SS
7078 }
7079
7080 if (!dbx_commands)
1a966eab
AC
7081 stop_command = add_cmd ("stop", class_obscure,
7082 not_just_help_class_command, _("\
7083There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7084This allows you to set a list of commands to be run each time execution\n\
1a966eab 7085of the program stops."), &cmdlist);
c906108c 7086
85c07804
AC
7087 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7088Set inferior debugging."), _("\
7089Show inferior debugging."), _("\
7090When non-zero, inferior specific debugging is enabled."),
7091 NULL,
920d2a44 7092 show_debug_infrun,
85c07804 7093 &setdebuglist, &showdebuglist);
527159b7 7094
3e43a32a
MS
7095 add_setshow_boolean_cmd ("displaced", class_maintenance,
7096 &debug_displaced, _("\
237fc4c9
PA
7097Set displaced stepping debugging."), _("\
7098Show displaced stepping debugging."), _("\
7099When non-zero, displaced stepping specific debugging is enabled."),
7100 NULL,
7101 show_debug_displaced,
7102 &setdebuglist, &showdebuglist);
7103
ad52ddc6
PA
7104 add_setshow_boolean_cmd ("non-stop", no_class,
7105 &non_stop_1, _("\
7106Set whether gdb controls the inferior in non-stop mode."), _("\
7107Show whether gdb controls the inferior in non-stop mode."), _("\
7108When debugging a multi-threaded program and this setting is\n\
7109off (the default, also called all-stop mode), when one thread stops\n\
7110(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7111all other threads in the program while you interact with the thread of\n\
7112interest. When you continue or step a thread, you can allow the other\n\
7113threads to run, or have them remain stopped, but while you inspect any\n\
7114thread's state, all threads stop.\n\
7115\n\
7116In non-stop mode, when one thread stops, other threads can continue\n\
7117to run freely. You'll be able to step each thread independently,\n\
7118leave it stopped or free to run as needed."),
7119 set_non_stop,
7120 show_non_stop,
7121 &setlist,
7122 &showlist);
7123
c906108c 7124 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7125 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7126 signal_print = (unsigned char *)
7127 xmalloc (sizeof (signal_print[0]) * numsigs);
7128 signal_program = (unsigned char *)
7129 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7130 signal_pass = (unsigned char *)
7131 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7132 for (i = 0; i < numsigs; i++)
7133 {
7134 signal_stop[i] = 1;
7135 signal_print[i] = 1;
7136 signal_program[i] = 1;
7137 }
7138
7139 /* Signals caused by debugger's own actions
7140 should not be given to the program afterwards. */
7141 signal_program[TARGET_SIGNAL_TRAP] = 0;
7142 signal_program[TARGET_SIGNAL_INT] = 0;
7143
7144 /* Signals that are not errors should not normally enter the debugger. */
7145 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7146 signal_print[TARGET_SIGNAL_ALRM] = 0;
7147 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7148 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7149 signal_stop[TARGET_SIGNAL_PROF] = 0;
7150 signal_print[TARGET_SIGNAL_PROF] = 0;
7151 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7152 signal_print[TARGET_SIGNAL_CHLD] = 0;
7153 signal_stop[TARGET_SIGNAL_IO] = 0;
7154 signal_print[TARGET_SIGNAL_IO] = 0;
7155 signal_stop[TARGET_SIGNAL_POLL] = 0;
7156 signal_print[TARGET_SIGNAL_POLL] = 0;
7157 signal_stop[TARGET_SIGNAL_URG] = 0;
7158 signal_print[TARGET_SIGNAL_URG] = 0;
7159 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7160 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7161 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7162 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7163
cd0fc7c3
SS
7164 /* These signals are used internally by user-level thread
7165 implementations. (See signal(5) on Solaris.) Like the above
7166 signals, a healthy program receives and handles them as part of
7167 its normal operation. */
7168 signal_stop[TARGET_SIGNAL_LWP] = 0;
7169 signal_print[TARGET_SIGNAL_LWP] = 0;
7170 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7171 signal_print[TARGET_SIGNAL_WAITING] = 0;
7172 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7173 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7174
2455069d
UW
7175 /* Update cached state. */
7176 signal_cache_update (-1);
7177
85c07804
AC
7178 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7179 &stop_on_solib_events, _("\
7180Set stopping for shared library events."), _("\
7181Show stopping for shared library events."), _("\
c906108c
SS
7182If nonzero, gdb will give control to the user when the dynamic linker\n\
7183notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7184to the user would be loading/unloading of a new library."),
7185 NULL,
920d2a44 7186 show_stop_on_solib_events,
85c07804 7187 &setlist, &showlist);
c906108c 7188
7ab04401
AC
7189 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7190 follow_fork_mode_kind_names,
7191 &follow_fork_mode_string, _("\
7192Set debugger response to a program call of fork or vfork."), _("\
7193Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7194A fork or vfork creates a new process. follow-fork-mode can be:\n\
7195 parent - the original process is debugged after a fork\n\
7196 child - the new process is debugged after a fork\n\
ea1dd7bc 7197The unfollowed process will continue to run.\n\
7ab04401
AC
7198By default, the debugger will follow the parent process."),
7199 NULL,
920d2a44 7200 show_follow_fork_mode_string,
7ab04401
AC
7201 &setlist, &showlist);
7202
6c95b8df
PA
7203 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7204 follow_exec_mode_names,
7205 &follow_exec_mode_string, _("\
7206Set debugger response to a program call of exec."), _("\
7207Show debugger response to a program call of exec."), _("\
7208An exec call replaces the program image of a process.\n\
7209\n\
7210follow-exec-mode can be:\n\
7211\n\
cce7e648 7212 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7213to this new inferior. The program the process was running before\n\
7214the exec call can be restarted afterwards by restarting the original\n\
7215inferior.\n\
7216\n\
7217 same - the debugger keeps the process bound to the same inferior.\n\
7218The new executable image replaces the previous executable loaded in\n\
7219the inferior. Restarting the inferior after the exec call restarts\n\
7220the executable the process was running after the exec call.\n\
7221\n\
7222By default, the debugger will use the same inferior."),
7223 NULL,
7224 show_follow_exec_mode_string,
7225 &setlist, &showlist);
7226
7ab04401
AC
7227 add_setshow_enum_cmd ("scheduler-locking", class_run,
7228 scheduler_enums, &scheduler_mode, _("\
7229Set mode for locking scheduler during execution."), _("\
7230Show mode for locking scheduler during execution."), _("\
c906108c
SS
7231off == no locking (threads may preempt at any time)\n\
7232on == full locking (no thread except the current thread may run)\n\
7233step == scheduler locked during every single-step operation.\n\
7234 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7235 Other threads may run while stepping over a function call ('next')."),
7236 set_schedlock_func, /* traps on target vector */
920d2a44 7237 show_scheduler_mode,
7ab04401 7238 &setlist, &showlist);
5fbbeb29 7239
d4db2f36
PA
7240 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7241Set mode for resuming threads of all processes."), _("\
7242Show mode for resuming threads of all processes."), _("\
7243When on, execution commands (such as 'continue' or 'next') resume all\n\
7244threads of all processes. When off (which is the default), execution\n\
7245commands only resume the threads of the current process. The set of\n\
7246threads that are resumed is further refined by the scheduler-locking\n\
7247mode (see help set scheduler-locking)."),
7248 NULL,
7249 show_schedule_multiple,
7250 &setlist, &showlist);
7251
5bf193a2
AC
7252 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7253Set mode of the step operation."), _("\
7254Show mode of the step operation."), _("\
7255When set, doing a step over a function without debug line information\n\
7256will stop at the first instruction of that function. Otherwise, the\n\
7257function is skipped and the step command stops at a different source line."),
7258 NULL,
920d2a44 7259 show_step_stop_if_no_debug,
5bf193a2 7260 &setlist, &showlist);
ca6724c1 7261
fff08868
HZ
7262 add_setshow_enum_cmd ("displaced-stepping", class_run,
7263 can_use_displaced_stepping_enum,
7264 &can_use_displaced_stepping, _("\
237fc4c9
PA
7265Set debugger's willingness to use displaced stepping."), _("\
7266Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7267If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7268supported by the target architecture. If off, gdb will not use displaced\n\
7269stepping to step over breakpoints, even if such is supported by the target\n\
7270architecture. If auto (which is the default), gdb will use displaced stepping\n\
7271if the target architecture supports it and non-stop mode is active, but will not\n\
7272use it in all-stop mode (see help set non-stop)."),
7273 NULL,
7274 show_can_use_displaced_stepping,
7275 &setlist, &showlist);
237fc4c9 7276
b2175913
MS
7277 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7278 &exec_direction, _("Set direction of execution.\n\
7279Options are 'forward' or 'reverse'."),
7280 _("Show direction of execution (forward/reverse)."),
7281 _("Tells gdb whether to execute forward or backward."),
7282 set_exec_direction_func, show_exec_direction_func,
7283 &setlist, &showlist);
7284
6c95b8df
PA
7285 /* Set/show detach-on-fork: user-settable mode. */
7286
7287 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7288Set whether gdb will detach the child of a fork."), _("\
7289Show whether gdb will detach the child of a fork."), _("\
7290Tells gdb whether to detach the child of a fork."),
7291 NULL, NULL, &setlist, &showlist);
7292
03583c20
UW
7293 /* Set/show disable address space randomization mode. */
7294
7295 add_setshow_boolean_cmd ("disable-randomization", class_support,
7296 &disable_randomization, _("\
7297Set disabling of debuggee's virtual address space randomization."), _("\
7298Show disabling of debuggee's virtual address space randomization."), _("\
7299When this mode is on (which is the default), randomization of the virtual\n\
7300address space is disabled. Standalone programs run with the randomization\n\
7301enabled by default on some platforms."),
7302 &set_disable_randomization,
7303 &show_disable_randomization,
7304 &setlist, &showlist);
7305
ca6724c1 7306 /* ptid initializations */
ca6724c1
KB
7307 inferior_ptid = null_ptid;
7308 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7309
7310 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7311 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7312 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7313 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7314
7315 /* Explicitly create without lookup, since that tries to create a
7316 value with a void typed value, and when we get here, gdbarch
7317 isn't initialized yet. At this point, we're quite sure there
7318 isn't another convenience variable of the same name. */
7319 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7320
7321 add_setshow_boolean_cmd ("observer", no_class,
7322 &observer_mode_1, _("\
7323Set whether gdb controls the inferior in observer mode."), _("\
7324Show whether gdb controls the inferior in observer mode."), _("\
7325In observer mode, GDB can get data from the inferior, but not\n\
7326affect its execution. Registers and memory may not be changed,\n\
7327breakpoints may not be set, and the program cannot be interrupted\n\
7328or signalled."),
7329 set_observer_mode,
7330 show_observer_mode,
7331 &setlist,
7332 &showlist);
c906108c 7333}
This page took 1.754699 seconds and 4 git commands to generate.