* osabi.c (gdb_osabi_name): Add entry for GDB_OSABI_INTERIX.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002 Free Software
6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
c906108c
SS
45
46/* Prototypes for local functions */
47
96baa820 48static void signals_info (char *, int);
c906108c 49
96baa820 50static void handle_command (char *, int);
c906108c 51
96baa820 52static void sig_print_info (enum target_signal);
c906108c 53
96baa820 54static void sig_print_header (void);
c906108c 55
74b7792f 56static void resume_cleanups (void *);
c906108c 57
96baa820 58static int hook_stop_stub (void *);
c906108c 59
96baa820 60static void delete_breakpoint_current_contents (void *);
c906108c 61
96baa820 62static void set_follow_fork_mode_command (char *arg, int from_tty,
488f131b 63 struct cmd_list_element *c);
7a292a7a 64
96baa820
JM
65static int restore_selected_frame (void *);
66
67static void build_infrun (void);
68
69static void follow_inferior_fork (int parent_pid, int child_pid,
70 int has_forked, int has_vforked);
71
72static void follow_fork (int parent_pid, int child_pid);
73
74static void follow_vfork (int parent_pid, int child_pid);
75
76static void set_schedlock_func (char *args, int from_tty,
488f131b 77 struct cmd_list_element *c);
96baa820 78
96baa820
JM
79struct execution_control_state;
80
81static int currently_stepping (struct execution_control_state *ecs);
82
83static void xdb_handle_command (char *args, int from_tty);
84
85void _initialize_infrun (void);
43ff13b4 86
c906108c
SS
87int inferior_ignoring_startup_exec_events = 0;
88int inferior_ignoring_leading_exec_events = 0;
89
5fbbeb29
CF
90/* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93int step_stop_if_no_debug = 0;
94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a
SS
104
105/* This is true for configurations that may follow through execl() and
106 similar functions. At present this is only true for HP-UX native. */
107
108#ifndef MAY_FOLLOW_EXEC
109#define MAY_FOLLOW_EXEC (0)
c906108c
SS
110#endif
111
7a292a7a
SS
112static int may_follow_exec = MAY_FOLLOW_EXEC;
113
c906108c
SS
114/* Dynamic function trampolines are similar to solib trampolines in that they
115 are between the caller and the callee. The difference is that when you
116 enter a dynamic trampoline, you can't determine the callee's address. Some
117 (usually complex) code needs to run in the dynamic trampoline to figure out
118 the callee's address. This macro is usually called twice. First, when we
119 enter the trampoline (looks like a normal function call at that point). It
120 should return the PC of a point within the trampoline where the callee's
121 address is known. Second, when we hit the breakpoint, this routine returns
122 the callee's address. At that point, things proceed as per a step resume
123 breakpoint. */
124
125#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
126#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
127#endif
128
d4f3574e
SS
129/* If the program uses ELF-style shared libraries, then calls to
130 functions in shared libraries go through stubs, which live in a
131 table called the PLT (Procedure Linkage Table). The first time the
132 function is called, the stub sends control to the dynamic linker,
133 which looks up the function's real address, patches the stub so
134 that future calls will go directly to the function, and then passes
135 control to the function.
136
137 If we are stepping at the source level, we don't want to see any of
138 this --- we just want to skip over the stub and the dynamic linker.
139 The simple approach is to single-step until control leaves the
140 dynamic linker.
141
ca557f44
AC
142 However, on some systems (e.g., Red Hat's 5.2 distribution) the
143 dynamic linker calls functions in the shared C library, so you
144 can't tell from the PC alone whether the dynamic linker is still
145 running. In this case, we use a step-resume breakpoint to get us
146 past the dynamic linker, as if we were using "next" to step over a
147 function call.
d4f3574e
SS
148
149 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
150 linker code or not. Normally, this means we single-step. However,
151 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
152 address where we can place a step-resume breakpoint to get past the
153 linker's symbol resolution function.
154
155 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
156 pretty portable way, by comparing the PC against the address ranges
157 of the dynamic linker's sections.
158
159 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
160 it depends on internal details of the dynamic linker. It's usually
161 not too hard to figure out where to put a breakpoint, but it
162 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
163 sanity checking. If it can't figure things out, returning zero and
164 getting the (possibly confusing) stepping behavior is better than
165 signalling an error, which will obscure the change in the
166 inferior's state. */
c906108c
SS
167
168#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
169#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
170#endif
171
d4f3574e
SS
172#ifndef SKIP_SOLIB_RESOLVER
173#define SKIP_SOLIB_RESOLVER(pc) 0
174#endif
175
c906108c
SS
176/* This function returns TRUE if pc is the address of an instruction
177 that lies within the dynamic linker (such as the event hook, or the
178 dld itself).
179
180 This function must be used only when a dynamic linker event has
181 been caught, and the inferior is being stepped out of the hook, or
182 undefined results are guaranteed. */
183
184#ifndef SOLIB_IN_DYNAMIC_LINKER
185#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
186#endif
187
188/* On MIPS16, a function that returns a floating point value may call
189 a library helper function to copy the return value to a floating point
190 register. The IGNORE_HELPER_CALL macro returns non-zero if we
191 should ignore (i.e. step over) this function call. */
192#ifndef IGNORE_HELPER_CALL
193#define IGNORE_HELPER_CALL(pc) 0
194#endif
195
196/* On some systems, the PC may be left pointing at an instruction that won't
197 actually be executed. This is usually indicated by a bit in the PSW. If
198 we find ourselves in such a state, then we step the target beyond the
199 nullified instruction before returning control to the user so as to avoid
200 confusion. */
201
202#ifndef INSTRUCTION_NULLIFIED
203#define INSTRUCTION_NULLIFIED 0
204#endif
205
c2c6d25f
JM
206/* We can't step off a permanent breakpoint in the ordinary way, because we
207 can't remove it. Instead, we have to advance the PC to the next
208 instruction. This macro should expand to a pointer to a function that
209 does that, or zero if we have no such function. If we don't have a
210 definition for it, we have to report an error. */
488f131b 211#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
212#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
213static void
c2d11a7d 214default_skip_permanent_breakpoint (void)
c2c6d25f 215{
255e7dbf 216 error ("\
c2c6d25f
JM
217The program is stopped at a permanent breakpoint, but GDB does not know\n\
218how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 219a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
220}
221#endif
488f131b 222
c2c6d25f 223
7a292a7a
SS
224/* Convert the #defines into values. This is temporary until wfi control
225 flow is completely sorted out. */
226
227#ifndef HAVE_STEPPABLE_WATCHPOINT
228#define HAVE_STEPPABLE_WATCHPOINT 0
229#else
230#undef HAVE_STEPPABLE_WATCHPOINT
231#define HAVE_STEPPABLE_WATCHPOINT 1
232#endif
233
234#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
235#define HAVE_NONSTEPPABLE_WATCHPOINT 0
236#else
237#undef HAVE_NONSTEPPABLE_WATCHPOINT
238#define HAVE_NONSTEPPABLE_WATCHPOINT 1
239#endif
240
241#ifndef HAVE_CONTINUABLE_WATCHPOINT
242#define HAVE_CONTINUABLE_WATCHPOINT 0
243#else
244#undef HAVE_CONTINUABLE_WATCHPOINT
245#define HAVE_CONTINUABLE_WATCHPOINT 1
246#endif
247
692590c1
MS
248#ifndef CANNOT_STEP_HW_WATCHPOINTS
249#define CANNOT_STEP_HW_WATCHPOINTS 0
250#else
251#undef CANNOT_STEP_HW_WATCHPOINTS
252#define CANNOT_STEP_HW_WATCHPOINTS 1
253#endif
254
c906108c
SS
255/* Tables of how to react to signals; the user sets them. */
256
257static unsigned char *signal_stop;
258static unsigned char *signal_print;
259static unsigned char *signal_program;
260
261#define SET_SIGS(nsigs,sigs,flags) \
262 do { \
263 int signum = (nsigs); \
264 while (signum-- > 0) \
265 if ((sigs)[signum]) \
266 (flags)[signum] = 1; \
267 } while (0)
268
269#define UNSET_SIGS(nsigs,sigs,flags) \
270 do { \
271 int signum = (nsigs); \
272 while (signum-- > 0) \
273 if ((sigs)[signum]) \
274 (flags)[signum] = 0; \
275 } while (0)
276
39f77062
KB
277/* Value to pass to target_resume() to cause all threads to resume */
278
279#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
280
281/* Command list pointer for the "stop" placeholder. */
282
283static struct cmd_list_element *stop_command;
284
285/* Nonzero if breakpoints are now inserted in the inferior. */
286
287static int breakpoints_inserted;
288
289/* Function inferior was in as of last step command. */
290
291static struct symbol *step_start_function;
292
293/* Nonzero if we are expecting a trace trap and should proceed from it. */
294
295static int trap_expected;
296
297#ifdef SOLIB_ADD
298/* Nonzero if we want to give control to the user when we're notified
299 of shared library events by the dynamic linker. */
300static int stop_on_solib_events;
301#endif
302
303#ifdef HP_OS_BUG
304/* Nonzero if the next time we try to continue the inferior, it will
305 step one instruction and generate a spurious trace trap.
306 This is used to compensate for a bug in HP-UX. */
307
308static int trap_expected_after_continue;
309#endif
310
311/* Nonzero means expecting a trace trap
312 and should stop the inferior and return silently when it happens. */
313
314int stop_after_trap;
315
316/* Nonzero means expecting a trap and caller will handle it themselves.
317 It is used after attach, due to attaching to a process;
318 when running in the shell before the child program has been exec'd;
319 and when running some kinds of remote stuff (FIXME?). */
320
321int stop_soon_quietly;
322
323/* Nonzero if proceed is being used for a "finish" command or a similar
324 situation when stop_registers should be saved. */
325
326int proceed_to_finish;
327
328/* Save register contents here when about to pop a stack dummy frame,
329 if-and-only-if proceed_to_finish is set.
330 Thus this contains the return value from the called function (assuming
331 values are returned in a register). */
332
72cec141 333struct regcache *stop_registers;
c906108c
SS
334
335/* Nonzero if program stopped due to error trying to insert breakpoints. */
336
337static int breakpoints_failed;
338
339/* Nonzero after stop if current stack frame should be printed. */
340
341static int stop_print_frame;
342
343static struct breakpoint *step_resume_breakpoint = NULL;
344static struct breakpoint *through_sigtramp_breakpoint = NULL;
345
346/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
347 interactions with an inferior that is running a kernel function
348 (aka, a system call or "syscall"). wait_for_inferior therefore
349 may have a need to know when the inferior is in a syscall. This
350 is a count of the number of inferior threads which are known to
351 currently be running in a syscall. */
352static int number_of_threads_in_syscalls;
353
e02bc4cc
DS
354/* This is a cached copy of the pid/waitstatus of the last event
355 returned by target_wait()/target_wait_hook(). This information is
356 returned by get_last_target_status(). */
39f77062 357static ptid_t target_last_wait_ptid;
e02bc4cc
DS
358static struct target_waitstatus target_last_waitstatus;
359
c906108c
SS
360/* This is used to remember when a fork, vfork or exec event
361 was caught by a catchpoint, and thus the event is to be
362 followed at the next resume of the inferior, and not
363 immediately. */
364static struct
488f131b
JB
365{
366 enum target_waitkind kind;
367 struct
c906108c 368 {
488f131b
JB
369 int parent_pid;
370 int saw_parent_fork;
371 int child_pid;
372 int saw_child_fork;
373 int saw_child_exec;
c906108c 374 }
488f131b
JB
375 fork_event;
376 char *execd_pathname;
377}
c906108c
SS
378pending_follow;
379
380/* Some platforms don't allow us to do anything meaningful with a
381 vforked child until it has exec'd. Vforked processes on such
382 platforms can only be followed after they've exec'd.
383
384 When this is set to 0, a vfork can be immediately followed,
385 and an exec can be followed merely as an exec. When this is
386 set to 1, a vfork event has been seen, but cannot be followed
387 until the exec is seen.
388
39f77062 389 (In the latter case, inferior_ptid is still the parent of the
c906108c
SS
390 vfork, and pending_follow.fork_event.child_pid is the child. The
391 appropriate process is followed, according to the setting of
392 follow-fork-mode.) */
393static int follow_vfork_when_exec;
394
53904c9e
AC
395static const char follow_fork_mode_ask[] = "ask";
396static const char follow_fork_mode_both[] = "both";
397static const char follow_fork_mode_child[] = "child";
398static const char follow_fork_mode_parent[] = "parent";
399
488f131b 400static const char *follow_fork_mode_kind_names[] = {
53904c9e 401 follow_fork_mode_ask,
ef346e04
AC
402 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
403 kernel problem. It's also not terribly useful without a GUI to
404 help the user drive two debuggers. So for now, I'm disabling the
405 "both" option. */
53904c9e
AC
406 /* follow_fork_mode_both, */
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
413\f
414
c906108c 415static void
96baa820
JM
416follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
417 int has_vforked)
c906108c
SS
418{
419 int followed_parent = 0;
420 int followed_child = 0;
c906108c
SS
421
422 /* Which process did the user want us to follow? */
53904c9e 423 const char *follow_mode = follow_fork_mode_string;
c906108c
SS
424
425 /* Or, did the user not know, and want us to ask? */
e28d556f 426 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 427 {
8e65ff28
AC
428 internal_error (__FILE__, __LINE__,
429 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 430 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
431 }
432
433 /* If we're to be following the parent, then detach from child_pid.
434 We're already following the parent, so need do nothing explicit
435 for it. */
53904c9e 436 if (follow_mode == follow_fork_mode_parent)
c906108c
SS
437 {
438 followed_parent = 1;
439
440 /* We're already attached to the parent, by default. */
441
442 /* Before detaching from the child, remove all breakpoints from
443 it. (This won't actually modify the breakpoint list, but will
444 physically remove the breakpoints from the child.) */
445 if (!has_vforked || !follow_vfork_when_exec)
446 {
447 detach_breakpoints (child_pid);
7a292a7a 448#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 449 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 450#endif
c906108c
SS
451 }
452
453 /* Detach from the child. */
454 dont_repeat ();
455
456 target_require_detach (child_pid, "", 1);
457 }
458
459 /* If we're to be following the child, then attach to it, detach
39f77062 460 from inferior_ptid, and set inferior_ptid to child_pid. */
53904c9e 461 else if (follow_mode == follow_fork_mode_child)
c906108c
SS
462 {
463 char child_pid_spelling[100]; /* Arbitrary length. */
464
465 followed_child = 1;
466
467 /* Before detaching from the parent, detach all breakpoints from
468 the child. But only if we're forking, or if we follow vforks
469 as soon as they happen. (If we're following vforks only when
470 the child has exec'd, then it's very wrong to try to write
471 back the "shadow contents" of inserted breakpoints now -- they
472 belong to the child's pre-exec'd a.out.) */
473 if (!has_vforked || !follow_vfork_when_exec)
474 {
475 detach_breakpoints (child_pid);
476 }
477
478 /* Before detaching from the parent, remove all breakpoints from it. */
479 remove_breakpoints ();
480
481 /* Also reset the solib inferior hook from the parent. */
7a292a7a 482#ifdef SOLIB_REMOVE_INFERIOR_HOOK
39f77062 483 SOLIB_REMOVE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 484#endif
c906108c
SS
485
486 /* Detach from the parent. */
487 dont_repeat ();
488 target_detach (NULL, 1);
489
490 /* Attach to the child. */
39f77062 491 inferior_ptid = pid_to_ptid (child_pid);
c906108c
SS
492 sprintf (child_pid_spelling, "%d", child_pid);
493 dont_repeat ();
494
495 target_require_attach (child_pid_spelling, 1);
496
497 /* Was there a step_resume breakpoint? (There was if the user
498 did a "next" at the fork() call.) If so, explicitly reset its
499 thread number.
500
501 step_resumes are a form of bp that are made to be per-thread.
502 Since we created the step_resume bp when the parent process
503 was being debugged, and now are switching to the child process,
504 from the breakpoint package's viewpoint, that's a switch of
505 "threads". We must update the bp's notion of which thread
506 it is for, or it'll be ignored when it triggers... */
488f131b 507 if (step_resume_breakpoint && (!has_vforked || !follow_vfork_when_exec))
c906108c
SS
508 breakpoint_re_set_thread (step_resume_breakpoint);
509
510 /* Reinsert all breakpoints in the child. (The user may've set
511 breakpoints after catching the fork, in which case those
512 actually didn't get set in the child, but only in the parent.) */
513 if (!has_vforked || !follow_vfork_when_exec)
514 {
515 breakpoint_re_set ();
516 insert_breakpoints ();
517 }
518 }
519
520 /* If we're to be following both parent and child, then fork ourselves,
521 and attach the debugger clone to the child. */
53904c9e 522 else if (follow_mode == follow_fork_mode_both)
c906108c
SS
523 {
524 char pid_suffix[100]; /* Arbitrary length. */
525
526 /* Clone ourselves to follow the child. This is the end of our
c5aa993b 527 involvement with child_pid; our clone will take it from here... */
c906108c
SS
528 dont_repeat ();
529 target_clone_and_follow_inferior (child_pid, &followed_child);
530 followed_parent = !followed_child;
531
532 /* We continue to follow the parent. To help distinguish the two
533 debuggers, though, both we and our clone will reset our prompts. */
39f77062 534 sprintf (pid_suffix, "[%d] ", PIDGET (inferior_ptid));
c906108c
SS
535 set_prompt (strcat (get_prompt (), pid_suffix));
536 }
537
538 /* The parent and child of a vfork share the same address space.
539 Also, on some targets the order in which vfork and exec events
540 are received for parent in child requires some delicate handling
541 of the events.
542
543 For instance, on ptrace-based HPUX we receive the child's vfork
544 event first, at which time the parent has been suspended by the
545 OS and is essentially untouchable until the child's exit or second
546 exec event arrives. At that time, the parent's vfork event is
547 delivered to us, and that's when we see and decide how to follow
548 the vfork. But to get to that point, we must continue the child
549 until it execs or exits. To do that smoothly, all breakpoints
550 must be removed from the child, in case there are any set between
551 the vfork() and exec() calls. But removing them from the child
552 also removes them from the parent, due to the shared-address-space
553 nature of a vfork'd parent and child. On HPUX, therefore, we must
554 take care to restore the bp's to the parent before we continue it.
555 Else, it's likely that we may not stop in the expected place. (The
556 worst scenario is when the user tries to step over a vfork() call;
557 the step-resume bp must be restored for the step to properly stop
558 in the parent after the call completes!)
559
560 Sequence of events, as reported to gdb from HPUX:
561
c5aa993b
JM
562 Parent Child Action for gdb to take
563 -------------------------------------------------------
564 1 VFORK Continue child
565 2 EXEC
566 3 EXEC or EXIT
567 4 VFORK */
c906108c
SS
568 if (has_vforked)
569 {
570 target_post_follow_vfork (parent_pid,
488f131b 571 followed_parent, child_pid, followed_child);
c906108c
SS
572 }
573
574 pending_follow.fork_event.saw_parent_fork = 0;
575 pending_follow.fork_event.saw_child_fork = 0;
c906108c
SS
576}
577
578static void
96baa820 579follow_fork (int parent_pid, int child_pid)
c906108c
SS
580{
581 follow_inferior_fork (parent_pid, child_pid, 1, 0);
582}
583
584
585/* Forward declaration. */
96baa820 586static void follow_exec (int, char *);
c906108c
SS
587
588static void
96baa820 589follow_vfork (int parent_pid, int child_pid)
c906108c
SS
590{
591 follow_inferior_fork (parent_pid, child_pid, 0, 1);
592
593 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
39f77062
KB
594 if (pending_follow.fork_event.saw_child_exec
595 && (PIDGET (inferior_ptid) == child_pid))
c906108c
SS
596 {
597 pending_follow.fork_event.saw_child_exec = 0;
598 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 599 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
b8c9b27d 600 xfree (pending_follow.execd_pathname);
c906108c
SS
601 }
602}
c906108c 603
1adeb98a
FN
604/* EXECD_PATHNAME is assumed to be non-NULL. */
605
c906108c 606static void
96baa820 607follow_exec (int pid, char *execd_pathname)
c906108c 608{
c906108c 609 int saved_pid = pid;
7a292a7a
SS
610 struct target_ops *tgt;
611
612 if (!may_follow_exec)
613 return;
c906108c
SS
614
615 /* Did this exec() follow a vfork()? If so, we must follow the
616 vfork now too. Do it before following the exec. */
617 if (follow_vfork_when_exec &&
618 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
619 {
620 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 621 follow_vfork (PIDGET (inferior_ptid),
488f131b 622 pending_follow.fork_event.child_pid);
c906108c 623 follow_vfork_when_exec = 0;
39f77062 624 saved_pid = PIDGET (inferior_ptid);
c906108c
SS
625
626 /* Did we follow the parent? If so, we're done. If we followed
627 the child then we must also follow its exec(). */
39f77062 628 if (PIDGET (inferior_ptid) == pending_follow.fork_event.parent_pid)
c906108c
SS
629 return;
630 }
631
632 /* This is an exec event that we actually wish to pay attention to.
633 Refresh our symbol table to the newly exec'd program, remove any
634 momentary bp's, etc.
635
636 If there are breakpoints, they aren't really inserted now,
637 since the exec() transformed our inferior into a fresh set
638 of instructions.
639
640 We want to preserve symbolic breakpoints on the list, since
641 we have hopes that they can be reset after the new a.out's
642 symbol table is read.
643
644 However, any "raw" breakpoints must be removed from the list
645 (e.g., the solib bp's), since their address is probably invalid
646 now.
647
648 And, we DON'T want to call delete_breakpoints() here, since
649 that may write the bp's "shadow contents" (the instruction
650 value that was overwritten witha TRAP instruction). Since
651 we now have a new a.out, those shadow contents aren't valid. */
652 update_breakpoints_after_exec ();
653
654 /* If there was one, it's gone now. We cannot truly step-to-next
655 statement through an exec(). */
656 step_resume_breakpoint = NULL;
657 step_range_start = 0;
658 step_range_end = 0;
659
660 /* If there was one, it's gone now. */
661 through_sigtramp_breakpoint = NULL;
662
663 /* What is this a.out's name? */
664 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
665
666 /* We've followed the inferior through an exec. Therefore, the
667 inferior has essentially been killed & reborn. */
7a292a7a
SS
668
669 /* First collect the run target in effect. */
670 tgt = find_run_target ();
671 /* If we can't find one, things are in a very strange state... */
672 if (tgt == NULL)
673 error ("Could find run target to save before following exec");
674
c906108c
SS
675 gdb_flush (gdb_stdout);
676 target_mourn_inferior ();
39f77062 677 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 678 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 679 push_target (tgt);
c906108c
SS
680
681 /* That a.out is now the one to use. */
682 exec_file_attach (execd_pathname, 0);
683
684 /* And also is where symbols can be found. */
1adeb98a 685 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
686
687 /* Reset the shared library package. This ensures that we get
688 a shlib event when the child reaches "_start", at which point
689 the dld will have had a chance to initialize the child. */
7a292a7a 690#if defined(SOLIB_RESTART)
c906108c 691 SOLIB_RESTART ();
7a292a7a
SS
692#endif
693#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 694 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 695#endif
c906108c
SS
696
697 /* Reinsert all breakpoints. (Those which were symbolic have
698 been reset to the proper address in the new a.out, thanks
699 to symbol_file_command...) */
700 insert_breakpoints ();
701
702 /* The next resume of this inferior should bring it to the shlib
703 startup breakpoints. (If the user had also set bp's on
704 "main" from the old (parent) process, then they'll auto-
705 matically get reset there in the new process.) */
c906108c
SS
706}
707
708/* Non-zero if we just simulating a single-step. This is needed
709 because we cannot remove the breakpoints in the inferior process
710 until after the `wait' in `wait_for_inferior'. */
711static int singlestep_breakpoints_inserted_p = 0;
712\f
713
714/* Things to clean up if we QUIT out of resume (). */
715/* ARGSUSED */
716static void
74b7792f 717resume_cleanups (void *ignore)
c906108c
SS
718{
719 normal_stop ();
720}
721
53904c9e
AC
722static const char schedlock_off[] = "off";
723static const char schedlock_on[] = "on";
724static const char schedlock_step[] = "step";
725static const char *scheduler_mode = schedlock_off;
488f131b 726static const char *scheduler_enums[] = {
ef346e04
AC
727 schedlock_off,
728 schedlock_on,
729 schedlock_step,
730 NULL
731};
c906108c
SS
732
733static void
96baa820 734set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 735{
1868c04e
AC
736 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
737 the set command passed as a parameter. The clone operation will
738 include (BUG?) any ``set'' command callback, if present.
739 Commands like ``info set'' call all the ``show'' command
740 callbacks. Unfortunatly, for ``show'' commands cloned from
741 ``set'', this includes callbacks belonging to ``set'' commands.
742 Making this worse, this only occures if add_show_from_set() is
743 called after add_cmd_sfunc() (BUG?). */
744 if (cmd_type (c) == set_cmd)
c906108c
SS
745 if (!target_can_lock_scheduler)
746 {
747 scheduler_mode = schedlock_off;
488f131b 748 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
749 }
750}
751
752
753/* Resume the inferior, but allow a QUIT. This is useful if the user
754 wants to interrupt some lengthy single-stepping operation
755 (for child processes, the SIGINT goes to the inferior, and so
756 we get a SIGINT random_signal, but for remote debugging and perhaps
757 other targets, that's not true).
758
759 STEP nonzero if we should step (zero to continue instead).
760 SIG is the signal to give the inferior (zero for none). */
761void
96baa820 762resume (int step, enum target_signal sig)
c906108c
SS
763{
764 int should_resume = 1;
74b7792f 765 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
766 QUIT;
767
ef5cf84e
MS
768 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
769
c906108c 770
692590c1
MS
771 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
772 over an instruction that causes a page fault without triggering
773 a hardware watchpoint. The kernel properly notices that it shouldn't
774 stop, because the hardware watchpoint is not triggered, but it forgets
775 the step request and continues the program normally.
776 Work around the problem by removing hardware watchpoints if a step is
777 requested, GDB will check for a hardware watchpoint trigger after the
778 step anyway. */
779 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
780 remove_hw_watchpoints ();
488f131b 781
692590c1 782
c2c6d25f
JM
783 /* Normally, by the time we reach `resume', the breakpoints are either
784 removed or inserted, as appropriate. The exception is if we're sitting
785 at a permanent breakpoint; we need to step over it, but permanent
786 breakpoints can't be removed. So we have to test for it here. */
787 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
788 SKIP_PERMANENT_BREAKPOINT ();
789
b0ed3589 790 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
791 {
792 /* Do it the hard way, w/temp breakpoints */
c5aa993b 793 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
794 /* ...and don't ask hardware to do it. */
795 step = 0;
796 /* and do not pull these breakpoints until after a `wait' in
797 `wait_for_inferior' */
798 singlestep_breakpoints_inserted_p = 1;
799 }
800
801 /* Handle any optimized stores to the inferior NOW... */
802#ifdef DO_DEFERRED_STORES
803 DO_DEFERRED_STORES;
804#endif
805
c906108c
SS
806 /* If there were any forks/vforks/execs that were caught and are
807 now to be followed, then do so. */
808 switch (pending_follow.kind)
809 {
810 case (TARGET_WAITKIND_FORKED):
811 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 812 follow_fork (PIDGET (inferior_ptid),
488f131b 813 pending_follow.fork_event.child_pid);
c906108c
SS
814 break;
815
816 case (TARGET_WAITKIND_VFORKED):
817 {
818 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
819
820 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
39f77062 821 follow_vfork (PIDGET (inferior_ptid),
488f131b 822 pending_follow.fork_event.child_pid);
c906108c
SS
823
824 /* Did we follow the child, but not yet see the child's exec event?
c5aa993b
JM
825 If so, then it actually ought to be waiting for us; we respond to
826 parent vfork events. We don't actually want to resume the child
827 in this situation; we want to just get its exec event. */
c906108c 828 if (!saw_child_exec &&
39f77062 829 (PIDGET (inferior_ptid) == pending_follow.fork_event.child_pid))
c906108c
SS
830 should_resume = 0;
831 }
832 break;
833
834 case (TARGET_WAITKIND_EXECD):
835 /* If we saw a vfork event but couldn't follow it until we saw
c5aa993b 836 an exec, then now might be the time! */
c906108c
SS
837 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
838 /* follow_exec is called as soon as the exec event is seen. */
839 break;
840
841 default:
842 break;
843 }
c906108c
SS
844
845 /* Install inferior's terminal modes. */
846 target_terminal_inferior ();
847
848 if (should_resume)
849 {
39f77062 850 ptid_t resume_ptid;
dfcd3bfb 851
488f131b 852 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
853
854 if ((step || singlestep_breakpoints_inserted_p) &&
855 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 856 {
ef5cf84e
MS
857 /* Stepping past a breakpoint without inserting breakpoints.
858 Make sure only the current thread gets to step, so that
859 other threads don't sneak past breakpoints while they are
860 not inserted. */
c906108c 861
ef5cf84e 862 resume_ptid = inferior_ptid;
c906108c 863 }
ef5cf84e
MS
864
865 if ((scheduler_mode == schedlock_on) ||
488f131b 866 (scheduler_mode == schedlock_step &&
ef5cf84e 867 (step || singlestep_breakpoints_inserted_p)))
c906108c 868 {
ef5cf84e 869 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 870 resume_ptid = inferior_ptid;
c906108c 871 }
ef5cf84e
MS
872
873#ifdef CANNOT_STEP_BREAKPOINT
874 /* Most targets can step a breakpoint instruction, thus executing it
488f131b
JB
875 normally. But if this one cannot, just continue and we will hit
876 it anyway. */
ef5cf84e
MS
877 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
878 step = 0;
879#endif
39f77062 880 target_resume (resume_ptid, step, sig);
c906108c
SS
881 }
882
883 discard_cleanups (old_cleanups);
884}
885\f
886
887/* Clear out all variables saying what to do when inferior is continued.
888 First do this, then set the ones you want, then call `proceed'. */
889
890void
96baa820 891clear_proceed_status (void)
c906108c
SS
892{
893 trap_expected = 0;
894 step_range_start = 0;
895 step_range_end = 0;
896 step_frame_address = 0;
5fbbeb29 897 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
898 stop_after_trap = 0;
899 stop_soon_quietly = 0;
900 proceed_to_finish = 0;
901 breakpoint_proceeded = 1; /* We're about to proceed... */
902
903 /* Discard any remaining commands or status from previous stop. */
904 bpstat_clear (&stop_bpstat);
905}
906
907/* Basic routine for continuing the program in various fashions.
908
909 ADDR is the address to resume at, or -1 for resume where stopped.
910 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 911 or -1 for act according to how it stopped.
c906108c 912 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
913 -1 means return after that and print nothing.
914 You should probably set various step_... variables
915 before calling here, if you are stepping.
c906108c
SS
916
917 You should call clear_proceed_status before calling proceed. */
918
919void
96baa820 920proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
921{
922 int oneproc = 0;
923
924 if (step > 0)
925 step_start_function = find_pc_function (read_pc ());
926 if (step < 0)
927 stop_after_trap = 1;
928
2acceee2 929 if (addr == (CORE_ADDR) -1)
c906108c
SS
930 {
931 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
932 step one instruction before inserting breakpoints
933 so that we do not stop right away (and report a second
c906108c
SS
934 hit at this breakpoint). */
935
936 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
937 oneproc = 1;
938
939#ifndef STEP_SKIPS_DELAY
940#define STEP_SKIPS_DELAY(pc) (0)
941#define STEP_SKIPS_DELAY_P (0)
942#endif
943 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
944 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
945 is slow (it needs to read memory from the target). */
c906108c
SS
946 if (STEP_SKIPS_DELAY_P
947 && breakpoint_here_p (read_pc () + 4)
948 && STEP_SKIPS_DELAY (read_pc ()))
949 oneproc = 1;
950 }
951 else
952 {
953 write_pc (addr);
c906108c
SS
954 }
955
956#ifdef PREPARE_TO_PROCEED
957 /* In a multi-threaded task we may select another thread
958 and then continue or step.
959
960 But if the old thread was stopped at a breakpoint, it
961 will immediately cause another breakpoint stop without
962 any execution (i.e. it will report a breakpoint hit
963 incorrectly). So we must step over it first.
964
965 PREPARE_TO_PROCEED checks the current thread against the thread
966 that reported the most recent event. If a step-over is required
967 it returns TRUE and sets the current thread to the old thread. */
9e086581 968 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
969 {
970 oneproc = 1;
c906108c
SS
971 }
972
973#endif /* PREPARE_TO_PROCEED */
974
975#ifdef HP_OS_BUG
976 if (trap_expected_after_continue)
977 {
978 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
979 the first instruction is executed. Force step one
980 instruction to clear this condition. This should not occur
981 if step is nonzero, but it is harmless in that case. */
c906108c
SS
982 oneproc = 1;
983 trap_expected_after_continue = 0;
984 }
985#endif /* HP_OS_BUG */
986
987 if (oneproc)
988 /* We will get a trace trap after one instruction.
989 Continue it automatically and insert breakpoints then. */
990 trap_expected = 1;
991 else
992 {
81d0cc19
GS
993 insert_breakpoints ();
994 /* If we get here there was no call to error() in
995 insert breakpoints -- so they were inserted. */
c906108c
SS
996 breakpoints_inserted = 1;
997 }
998
999 if (siggnal != TARGET_SIGNAL_DEFAULT)
1000 stop_signal = siggnal;
1001 /* If this signal should not be seen by program,
1002 give it zero. Used for debugging signals. */
1003 else if (!signal_program[stop_signal])
1004 stop_signal = TARGET_SIGNAL_0;
1005
1006 annotate_starting ();
1007
1008 /* Make sure that output from GDB appears before output from the
1009 inferior. */
1010 gdb_flush (gdb_stdout);
1011
1012 /* Resume inferior. */
1013 resume (oneproc || step || bpstat_should_step (), stop_signal);
1014
1015 /* Wait for it to stop (if not standalone)
1016 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1017 /* Do this only if we are not using the event loop, or if the target
1018 does not support asynchronous execution. */
6426a772 1019 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
1020 {
1021 wait_for_inferior ();
1022 normal_stop ();
1023 }
c906108c
SS
1024}
1025
1026/* Record the pc and sp of the program the last time it stopped.
1027 These are just used internally by wait_for_inferior, but need
1028 to be preserved over calls to it and cleared when the inferior
1029 is started. */
1030static CORE_ADDR prev_pc;
1031static CORE_ADDR prev_func_start;
1032static char *prev_func_name;
1033\f
1034
1035/* Start remote-debugging of a machine over a serial link. */
96baa820 1036
c906108c 1037void
96baa820 1038start_remote (void)
c906108c
SS
1039{
1040 init_thread_list ();
1041 init_wait_for_inferior ();
1042 stop_soon_quietly = 1;
1043 trap_expected = 0;
43ff13b4 1044
6426a772
JM
1045 /* Always go on waiting for the target, regardless of the mode. */
1046 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1047 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1048 nothing is returned (instead of just blocking). Because of this,
1049 targets expecting an immediate response need to, internally, set
1050 things up so that the target_wait() is forced to eventually
1051 timeout. */
1052 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1053 differentiate to its caller what the state of the target is after
1054 the initial open has been performed. Here we're assuming that
1055 the target has stopped. It should be possible to eventually have
1056 target_open() return to the caller an indication that the target
1057 is currently running and GDB state should be set to the same as
1058 for an async run. */
1059 wait_for_inferior ();
1060 normal_stop ();
c906108c
SS
1061}
1062
1063/* Initialize static vars when a new inferior begins. */
1064
1065void
96baa820 1066init_wait_for_inferior (void)
c906108c
SS
1067{
1068 /* These are meaningless until the first time through wait_for_inferior. */
1069 prev_pc = 0;
1070 prev_func_start = 0;
1071 prev_func_name = NULL;
1072
1073#ifdef HP_OS_BUG
1074 trap_expected_after_continue = 0;
1075#endif
1076 breakpoints_inserted = 0;
1077 breakpoint_init_inferior (inf_starting);
1078
1079 /* Don't confuse first call to proceed(). */
1080 stop_signal = TARGET_SIGNAL_0;
1081
1082 /* The first resume is not following a fork/vfork/exec. */
1083 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1084 pending_follow.fork_event.saw_parent_fork = 0;
1085 pending_follow.fork_event.saw_child_fork = 0;
1086 pending_follow.fork_event.saw_child_exec = 0;
1087
1088 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1089 number_of_threads_in_syscalls = 0;
1090
1091 clear_proceed_status ();
1092}
1093
1094static void
96baa820 1095delete_breakpoint_current_contents (void *arg)
c906108c
SS
1096{
1097 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1098 if (*breakpointp != NULL)
1099 {
1100 delete_breakpoint (*breakpointp);
1101 *breakpointp = NULL;
1102 }
1103}
1104\f
b83266a0
SS
1105/* This enum encodes possible reasons for doing a target_wait, so that
1106 wfi can call target_wait in one place. (Ultimately the call will be
1107 moved out of the infinite loop entirely.) */
1108
c5aa993b
JM
1109enum infwait_states
1110{
cd0fc7c3
SS
1111 infwait_normal_state,
1112 infwait_thread_hop_state,
1113 infwait_nullified_state,
1114 infwait_nonstep_watch_state
b83266a0
SS
1115};
1116
11cf8741
JM
1117/* Why did the inferior stop? Used to print the appropriate messages
1118 to the interface from within handle_inferior_event(). */
1119enum inferior_stop_reason
1120{
1121 /* We don't know why. */
1122 STOP_UNKNOWN,
1123 /* Step, next, nexti, stepi finished. */
1124 END_STEPPING_RANGE,
1125 /* Found breakpoint. */
1126 BREAKPOINT_HIT,
1127 /* Inferior terminated by signal. */
1128 SIGNAL_EXITED,
1129 /* Inferior exited. */
1130 EXITED,
1131 /* Inferior received signal, and user asked to be notified. */
1132 SIGNAL_RECEIVED
1133};
1134
cd0fc7c3
SS
1135/* This structure contains what used to be local variables in
1136 wait_for_inferior. Probably many of them can return to being
1137 locals in handle_inferior_event. */
1138
c5aa993b 1139struct execution_control_state
488f131b
JB
1140{
1141 struct target_waitstatus ws;
1142 struct target_waitstatus *wp;
1143 int another_trap;
1144 int random_signal;
1145 CORE_ADDR stop_func_start;
1146 CORE_ADDR stop_func_end;
1147 char *stop_func_name;
1148 struct symtab_and_line sal;
1149 int remove_breakpoints_on_following_step;
1150 int current_line;
1151 struct symtab *current_symtab;
1152 int handling_longjmp; /* FIXME */
1153 ptid_t ptid;
1154 ptid_t saved_inferior_ptid;
1155 int update_step_sp;
1156 int stepping_through_solib_after_catch;
1157 bpstat stepping_through_solib_catchpoints;
1158 int enable_hw_watchpoints_after_wait;
1159 int stepping_through_sigtramp;
1160 int new_thread_event;
1161 struct target_waitstatus tmpstatus;
1162 enum infwait_states infwait_state;
1163 ptid_t waiton_ptid;
1164 int wait_some_more;
1165};
1166
1167void init_execution_control_state (struct execution_control_state *ecs);
1168
1169void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1170
104c1213 1171static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 1172static void step_into_function (struct execution_control_state *ecs);
d4f3574e 1173static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
1174static void stop_stepping (struct execution_control_state *ecs);
1175static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1176static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1177static void print_stop_reason (enum inferior_stop_reason stop_reason,
1178 int stop_info);
104c1213 1179
cd0fc7c3
SS
1180/* Wait for control to return from inferior to debugger.
1181 If inferior gets a signal, we may decide to start it up again
1182 instead of returning. That is why there is a loop in this function.
1183 When this function actually returns it means the inferior
1184 should be left stopped and GDB should read more commands. */
1185
1186void
96baa820 1187wait_for_inferior (void)
cd0fc7c3
SS
1188{
1189 struct cleanup *old_cleanups;
1190 struct execution_control_state ecss;
1191 struct execution_control_state *ecs;
c906108c 1192
8601f500 1193 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1194 &step_resume_breakpoint);
1195 make_cleanup (delete_breakpoint_current_contents,
1196 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1197
1198 /* wfi still stays in a loop, so it's OK just to take the address of
1199 a local to get the ecs pointer. */
1200 ecs = &ecss;
1201
1202 /* Fill in with reasonable starting values. */
1203 init_execution_control_state (ecs);
1204
c906108c 1205 /* We'll update this if & when we switch to a new thread. */
39f77062 1206 previous_inferior_ptid = inferior_ptid;
c906108c 1207
cd0fc7c3
SS
1208 overlay_cache_invalid = 1;
1209
1210 /* We have to invalidate the registers BEFORE calling target_wait
1211 because they can be loaded from the target while in target_wait.
1212 This makes remote debugging a bit more efficient for those
1213 targets that provide critical registers as part of their normal
1214 status mechanism. */
1215
1216 registers_changed ();
b83266a0 1217
c906108c
SS
1218 while (1)
1219 {
cd0fc7c3 1220 if (target_wait_hook)
39f77062 1221 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1222 else
39f77062 1223 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1224
cd0fc7c3
SS
1225 /* Now figure out what to do with the result of the result. */
1226 handle_inferior_event (ecs);
c906108c 1227
cd0fc7c3
SS
1228 if (!ecs->wait_some_more)
1229 break;
1230 }
1231 do_cleanups (old_cleanups);
1232}
c906108c 1233
43ff13b4
JM
1234/* Asynchronous version of wait_for_inferior. It is called by the
1235 event loop whenever a change of state is detected on the file
1236 descriptor corresponding to the target. It can be called more than
1237 once to complete a single execution command. In such cases we need
1238 to keep the state in a global variable ASYNC_ECSS. If it is the
1239 last time that this function is called for a single execution
1240 command, then report to the user that the inferior has stopped, and
1241 do the necessary cleanups. */
1242
1243struct execution_control_state async_ecss;
1244struct execution_control_state *async_ecs;
1245
1246void
fba45db2 1247fetch_inferior_event (void *client_data)
43ff13b4
JM
1248{
1249 static struct cleanup *old_cleanups;
1250
c5aa993b 1251 async_ecs = &async_ecss;
43ff13b4
JM
1252
1253 if (!async_ecs->wait_some_more)
1254 {
488f131b 1255 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1256 &step_resume_breakpoint);
43ff13b4 1257 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1258 &through_sigtramp_breakpoint);
43ff13b4
JM
1259
1260 /* Fill in with reasonable starting values. */
1261 init_execution_control_state (async_ecs);
1262
43ff13b4 1263 /* We'll update this if & when we switch to a new thread. */
39f77062 1264 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1265
1266 overlay_cache_invalid = 1;
1267
1268 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1269 because they can be loaded from the target while in target_wait.
1270 This makes remote debugging a bit more efficient for those
1271 targets that provide critical registers as part of their normal
1272 status mechanism. */
43ff13b4
JM
1273
1274 registers_changed ();
1275 }
1276
1277 if (target_wait_hook)
488f131b
JB
1278 async_ecs->ptid =
1279 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1280 else
39f77062 1281 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1282
1283 /* Now figure out what to do with the result of the result. */
1284 handle_inferior_event (async_ecs);
1285
1286 if (!async_ecs->wait_some_more)
1287 {
adf40b2e 1288 /* Do only the cleanups that have been added by this
488f131b
JB
1289 function. Let the continuations for the commands do the rest,
1290 if there are any. */
43ff13b4
JM
1291 do_exec_cleanups (old_cleanups);
1292 normal_stop ();
c2d11a7d
JM
1293 if (step_multi && stop_step)
1294 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1295 else
1296 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1297 }
1298}
1299
cd0fc7c3
SS
1300/* Prepare an execution control state for looping through a
1301 wait_for_inferior-type loop. */
1302
1303void
96baa820 1304init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1305{
c2d11a7d 1306 /* ecs->another_trap? */
cd0fc7c3
SS
1307 ecs->random_signal = 0;
1308 ecs->remove_breakpoints_on_following_step = 0;
1309 ecs->handling_longjmp = 0; /* FIXME */
1310 ecs->update_step_sp = 0;
1311 ecs->stepping_through_solib_after_catch = 0;
1312 ecs->stepping_through_solib_catchpoints = NULL;
1313 ecs->enable_hw_watchpoints_after_wait = 0;
1314 ecs->stepping_through_sigtramp = 0;
1315 ecs->sal = find_pc_line (prev_pc, 0);
1316 ecs->current_line = ecs->sal.line;
1317 ecs->current_symtab = ecs->sal.symtab;
1318 ecs->infwait_state = infwait_normal_state;
39f77062 1319 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1320 ecs->wp = &(ecs->ws);
1321}
1322
a0b3c4fd 1323/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1324 sanity check. There should never be more than one step-resume
1325 breakpoint per thread, so we should never be setting a new
1326 step_resume_breakpoint when one is already active. */
a0b3c4fd 1327static void
96baa820 1328check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1329{
1330 if (step_resume_breakpoint)
488f131b
JB
1331 warning
1332 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1333}
1334
e02bc4cc
DS
1335/* Return the cached copy of the last pid/waitstatus returned by
1336 target_wait()/target_wait_hook(). The data is actually cached by
1337 handle_inferior_event(), which gets called immediately after
1338 target_wait()/target_wait_hook(). */
1339
1340void
488f131b 1341get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1342{
39f77062 1343 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1344 *status = target_last_waitstatus;
1345}
1346
dd80620e
MS
1347/* Switch thread contexts, maintaining "infrun state". */
1348
1349static void
1350context_switch (struct execution_control_state *ecs)
1351{
1352 /* Caution: it may happen that the new thread (or the old one!)
1353 is not in the thread list. In this case we must not attempt
1354 to "switch context", or we run the risk that our context may
1355 be lost. This may happen as a result of the target module
1356 mishandling thread creation. */
1357
1358 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1359 { /* Perform infrun state context switch: */
dd80620e 1360 /* Save infrun state for the old thread. */
488f131b
JB
1361 save_infrun_state (inferior_ptid, prev_pc,
1362 prev_func_start, prev_func_name,
dd80620e 1363 trap_expected, step_resume_breakpoint,
488f131b
JB
1364 through_sigtramp_breakpoint, step_range_start,
1365 step_range_end, step_frame_address,
dd80620e
MS
1366 ecs->handling_longjmp, ecs->another_trap,
1367 ecs->stepping_through_solib_after_catch,
1368 ecs->stepping_through_solib_catchpoints,
1369 ecs->stepping_through_sigtramp,
488f131b 1370 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1371
1372 /* Load infrun state for the new thread. */
488f131b
JB
1373 load_infrun_state (ecs->ptid, &prev_pc,
1374 &prev_func_start, &prev_func_name,
dd80620e 1375 &trap_expected, &step_resume_breakpoint,
488f131b
JB
1376 &through_sigtramp_breakpoint, &step_range_start,
1377 &step_range_end, &step_frame_address,
dd80620e
MS
1378 &ecs->handling_longjmp, &ecs->another_trap,
1379 &ecs->stepping_through_solib_after_catch,
1380 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1381 &ecs->stepping_through_sigtramp,
1382 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1383 }
1384 inferior_ptid = ecs->ptid;
1385}
1386
1387
cd0fc7c3
SS
1388/* Given an execution control state that has been freshly filled in
1389 by an event from the inferior, figure out what it means and take
1390 appropriate action. */
c906108c 1391
cd0fc7c3 1392void
96baa820 1393handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3
SS
1394{
1395 CORE_ADDR tmp;
1396 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1397 int sw_single_step_trap_p = 0;
cd0fc7c3 1398
e02bc4cc 1399 /* Cache the last pid/waitstatus. */
39f77062 1400 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1401 target_last_waitstatus = *ecs->wp;
1402
488f131b
JB
1403 switch (ecs->infwait_state)
1404 {
1405 case infwait_thread_hop_state:
1406 /* Cancel the waiton_ptid. */
1407 ecs->waiton_ptid = pid_to_ptid (-1);
1408 /* Fall thru to the normal_state case. */
b83266a0 1409
488f131b
JB
1410 case infwait_normal_state:
1411 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1412 is serviced in this loop, below. */
1413 if (ecs->enable_hw_watchpoints_after_wait)
1414 {
1415 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1416 ecs->enable_hw_watchpoints_after_wait = 0;
1417 }
1418 stepped_after_stopped_by_watchpoint = 0;
1419 break;
b83266a0 1420
488f131b
JB
1421 case infwait_nullified_state:
1422 break;
b83266a0 1423
488f131b
JB
1424 case infwait_nonstep_watch_state:
1425 insert_breakpoints ();
c906108c 1426
488f131b
JB
1427 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1428 handle things like signals arriving and other things happening
1429 in combination correctly? */
1430 stepped_after_stopped_by_watchpoint = 1;
1431 break;
1432 }
1433 ecs->infwait_state = infwait_normal_state;
c906108c 1434
488f131b 1435 flush_cached_frames ();
c906108c 1436
488f131b 1437 /* If it's a new process, add it to the thread database */
c906108c 1438
488f131b
JB
1439 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1440 && !in_thread_list (ecs->ptid));
1441
1442 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1443 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1444 {
1445 add_thread (ecs->ptid);
c906108c 1446
488f131b
JB
1447 ui_out_text (uiout, "[New ");
1448 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1449 ui_out_text (uiout, "]\n");
c906108c
SS
1450
1451#if 0
488f131b
JB
1452 /* NOTE: This block is ONLY meant to be invoked in case of a
1453 "thread creation event"! If it is invoked for any other
1454 sort of event (such as a new thread landing on a breakpoint),
1455 the event will be discarded, which is almost certainly
1456 a bad thing!
1457
1458 To avoid this, the low-level module (eg. target_wait)
1459 should call in_thread_list and add_thread, so that the
1460 new thread is known by the time we get here. */
1461
1462 /* We may want to consider not doing a resume here in order
1463 to give the user a chance to play with the new thread.
1464 It might be good to make that a user-settable option. */
1465
1466 /* At this point, all threads are stopped (happens
1467 automatically in either the OS or the native code).
1468 Therefore we need to continue all threads in order to
1469 make progress. */
1470
1471 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1472 prepare_to_wait (ecs);
1473 return;
c906108c 1474#endif
488f131b 1475 }
c906108c 1476
488f131b
JB
1477 switch (ecs->ws.kind)
1478 {
1479 case TARGET_WAITKIND_LOADED:
1480 /* Ignore gracefully during startup of the inferior, as it
1481 might be the shell which has just loaded some objects,
1482 otherwise add the symbols for the newly loaded objects. */
c906108c 1483#ifdef SOLIB_ADD
488f131b
JB
1484 if (!stop_soon_quietly)
1485 {
1486 /* Remove breakpoints, SOLIB_ADD might adjust
1487 breakpoint addresses via breakpoint_re_set. */
1488 if (breakpoints_inserted)
1489 remove_breakpoints ();
c906108c 1490
488f131b
JB
1491 /* Check for any newly added shared libraries if we're
1492 supposed to be adding them automatically. Switch
1493 terminal for any messages produced by
1494 breakpoint_re_set. */
1495 target_terminal_ours_for_output ();
1496 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1497 target_terminal_inferior ();
1498
1499 /* Reinsert breakpoints and continue. */
1500 if (breakpoints_inserted)
1501 insert_breakpoints ();
1502 }
c906108c 1503#endif
488f131b
JB
1504 resume (0, TARGET_SIGNAL_0);
1505 prepare_to_wait (ecs);
1506 return;
c5aa993b 1507
488f131b
JB
1508 case TARGET_WAITKIND_SPURIOUS:
1509 resume (0, TARGET_SIGNAL_0);
1510 prepare_to_wait (ecs);
1511 return;
c5aa993b 1512
488f131b
JB
1513 case TARGET_WAITKIND_EXITED:
1514 target_terminal_ours (); /* Must do this before mourn anyway */
1515 print_stop_reason (EXITED, ecs->ws.value.integer);
1516
1517 /* Record the exit code in the convenience variable $_exitcode, so
1518 that the user can inspect this again later. */
1519 set_internalvar (lookup_internalvar ("_exitcode"),
1520 value_from_longest (builtin_type_int,
1521 (LONGEST) ecs->ws.value.integer));
1522 gdb_flush (gdb_stdout);
1523 target_mourn_inferior ();
1524 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1525 stop_print_frame = 0;
1526 stop_stepping (ecs);
1527 return;
c5aa993b 1528
488f131b
JB
1529 case TARGET_WAITKIND_SIGNALLED:
1530 stop_print_frame = 0;
1531 stop_signal = ecs->ws.value.sig;
1532 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1533
488f131b
JB
1534 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1535 reach here unless the inferior is dead. However, for years
1536 target_kill() was called here, which hints that fatal signals aren't
1537 really fatal on some systems. If that's true, then some changes
1538 may be needed. */
1539 target_mourn_inferior ();
c906108c 1540
488f131b
JB
1541 print_stop_reason (SIGNAL_EXITED, stop_signal);
1542 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1543 stop_stepping (ecs);
1544 return;
c906108c 1545
488f131b
JB
1546 /* The following are the only cases in which we keep going;
1547 the above cases end in a continue or goto. */
1548 case TARGET_WAITKIND_FORKED:
1549 stop_signal = TARGET_SIGNAL_TRAP;
1550 pending_follow.kind = ecs->ws.kind;
1551
1552 /* Ignore fork events reported for the parent; we're only
1553 interested in reacting to forks of the child. Note that
1554 we expect the child's fork event to be available if we
1555 waited for it now. */
1556 if (ptid_equal (inferior_ptid, ecs->ptid))
1557 {
1558 pending_follow.fork_event.saw_parent_fork = 1;
1559 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1560 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1561 prepare_to_wait (ecs);
1562 return;
1563 }
1564 else
1565 {
1566 pending_follow.fork_event.saw_child_fork = 1;
1567 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1568 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1569 }
c906108c 1570
488f131b
JB
1571 stop_pc = read_pc_pid (ecs->ptid);
1572 ecs->saved_inferior_ptid = inferior_ptid;
1573 inferior_ptid = ecs->ptid;
1574 /* The second argument of bpstat_stop_status is meant to help
1575 distinguish between a breakpoint trap and a singlestep trap.
1576 This is only important on targets where DECR_PC_AFTER_BREAK
1577 is non-zero. The prev_pc test is meant to distinguish between
1578 singlestepping a trap instruction, and singlestepping thru a
1579 jump to the instruction following a trap instruction. */
1580
1581 stop_bpstat = bpstat_stop_status (&stop_pc,
1582 currently_stepping (ecs) &&
1583 prev_pc !=
1584 stop_pc - DECR_PC_AFTER_BREAK);
1585 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1586 inferior_ptid = ecs->saved_inferior_ptid;
1587 goto process_event_stop_test;
1588
1589 /* If this a platform which doesn't allow a debugger to touch a
1590 vfork'd inferior until after it exec's, then we'd best keep
1591 our fingers entirely off the inferior, other than continuing
1592 it. This has the unfortunate side-effect that catchpoints
1593 of vforks will be ignored. But since the platform doesn't
1594 allow the inferior be touched at vfork time, there's really
1595 little choice. */
1596 case TARGET_WAITKIND_VFORKED:
1597 stop_signal = TARGET_SIGNAL_TRAP;
1598 pending_follow.kind = ecs->ws.kind;
1599
1600 /* Is this a vfork of the parent? If so, then give any
1601 vfork catchpoints a chance to trigger now. (It's
1602 dangerous to do so if the child canot be touched until
1603 it execs, and the child has not yet exec'd. We probably
1604 should warn the user to that effect when the catchpoint
1605 triggers...) */
1606 if (ptid_equal (ecs->ptid, inferior_ptid))
1607 {
1608 pending_follow.fork_event.saw_parent_fork = 1;
1609 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1610 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1611 }
c906108c 1612
488f131b
JB
1613 /* If we've seen the child's vfork event but cannot really touch
1614 the child until it execs, then we must continue the child now.
1615 Else, give any vfork catchpoints a chance to trigger now. */
1616 else
1617 {
1618 pending_follow.fork_event.saw_child_fork = 1;
1619 pending_follow.fork_event.child_pid = PIDGET (ecs->ptid);
1620 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1621 target_post_startup_inferior (pid_to_ptid
1622 (pending_follow.fork_event.
1623 child_pid));
1624 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1625 if (follow_vfork_when_exec)
1626 {
1627 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1628 prepare_to_wait (ecs);
1629 return;
1630 }
1631 }
c906108c 1632
488f131b
JB
1633 stop_pc = read_pc ();
1634 /* The second argument of bpstat_stop_status is meant to help
1635 distinguish between a breakpoint trap and a singlestep trap.
1636 This is only important on targets where DECR_PC_AFTER_BREAK
1637 is non-zero. The prev_pc test is meant to distinguish between
1638 singlestepping a trap instruction, and singlestepping thru a
1639 jump to the instruction following a trap instruction. */
1640
1641 stop_bpstat = bpstat_stop_status (&stop_pc,
1642 currently_stepping (ecs) &&
1643 prev_pc !=
1644 stop_pc - DECR_PC_AFTER_BREAK);
1645 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1646 goto process_event_stop_test;
1647
1648 case TARGET_WAITKIND_EXECD:
1649 stop_signal = TARGET_SIGNAL_TRAP;
1650
1651 /* Is this a target which reports multiple exec events per actual
1652 call to exec()? (HP-UX using ptrace does, for example.) If so,
1653 ignore all but the last one. Just resume the exec'r, and wait
1654 for the next exec event. */
1655 if (inferior_ignoring_leading_exec_events)
1656 {
1657 inferior_ignoring_leading_exec_events--;
1658 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1659 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1660 parent_pid);
1661 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1662 prepare_to_wait (ecs);
1663 return;
1664 }
1665 inferior_ignoring_leading_exec_events =
1666 target_reported_exec_events_per_exec_call () - 1;
1667
1668 pending_follow.execd_pathname =
1669 savestring (ecs->ws.value.execd_pathname,
1670 strlen (ecs->ws.value.execd_pathname));
1671
1672 /* Did inferior_ptid exec, or did a (possibly not-yet-followed)
1673 child of a vfork exec?
1674
1675 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1676 HP-UX, events associated with a vforking inferior come in
1677 threes: a vfork event for the child (always first), followed
1678 a vfork event for the parent and an exec event for the child.
1679 The latter two can come in either order.
1680
1681 If we get the parent vfork event first, life's good: We follow
1682 either the parent or child, and then the child's exec event is
1683 a "don't care".
1684
1685 But if we get the child's exec event first, then we delay
1686 responding to it until we handle the parent's vfork. Because,
1687 otherwise we can't satisfy a "catch vfork". */
1688 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1689 {
1690 pending_follow.fork_event.saw_child_exec = 1;
1691
1692 /* On some targets, the child must be resumed before
1693 the parent vfork event is delivered. A single-step
1694 suffices. */
1695 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
1696 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1697 /* We expect the parent vfork event to be available now. */
1698 prepare_to_wait (ecs);
1699 return;
1700 }
c906108c 1701
488f131b
JB
1702 /* This causes the eventpoints and symbol table to be reset. Must
1703 do this now, before trying to determine whether to stop. */
1704 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1705 xfree (pending_follow.execd_pathname);
c906108c 1706
488f131b
JB
1707 stop_pc = read_pc_pid (ecs->ptid);
1708 ecs->saved_inferior_ptid = inferior_ptid;
1709 inferior_ptid = ecs->ptid;
1710 /* The second argument of bpstat_stop_status is meant to help
1711 distinguish between a breakpoint trap and a singlestep trap.
1712 This is only important on targets where DECR_PC_AFTER_BREAK
1713 is non-zero. The prev_pc test is meant to distinguish between
1714 singlestepping a trap instruction, and singlestepping thru a
1715 jump to the instruction following a trap instruction. */
1716
1717 stop_bpstat = bpstat_stop_status (&stop_pc,
1718 currently_stepping (ecs) &&
1719 prev_pc !=
1720 stop_pc - DECR_PC_AFTER_BREAK);
1721 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1722 inferior_ptid = ecs->saved_inferior_ptid;
1723 goto process_event_stop_test;
1724
1725 /* These syscall events are returned on HP-UX, as part of its
1726 implementation of page-protection-based "hardware" watchpoints.
1727 HP-UX has unfortunate interactions between page-protections and
1728 some system calls. Our solution is to disable hardware watches
1729 when a system call is entered, and reenable them when the syscall
1730 completes. The downside of this is that we may miss the precise
1731 point at which a watched piece of memory is modified. "Oh well."
1732
1733 Note that we may have multiple threads running, which may each
1734 enter syscalls at roughly the same time. Since we don't have a
1735 good notion currently of whether a watched piece of memory is
1736 thread-private, we'd best not have any page-protections active
1737 when any thread is in a syscall. Thus, we only want to reenable
1738 hardware watches when no threads are in a syscall.
1739
1740 Also, be careful not to try to gather much state about a thread
1741 that's in a syscall. It's frequently a losing proposition. */
1742 case TARGET_WAITKIND_SYSCALL_ENTRY:
1743 number_of_threads_in_syscalls++;
1744 if (number_of_threads_in_syscalls == 1)
1745 {
1746 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1747 }
1748 resume (0, TARGET_SIGNAL_0);
1749 prepare_to_wait (ecs);
1750 return;
c906108c 1751
488f131b
JB
1752 /* Before examining the threads further, step this thread to
1753 get it entirely out of the syscall. (We get notice of the
1754 event when the thread is just on the verge of exiting a
1755 syscall. Stepping one instruction seems to get it back
1756 into user code.)
c906108c 1757
488f131b
JB
1758 Note that although the logical place to reenable h/w watches
1759 is here, we cannot. We cannot reenable them before stepping
1760 the thread (this causes the next wait on the thread to hang).
c4093a6a 1761
488f131b
JB
1762 Nor can we enable them after stepping until we've done a wait.
1763 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1764 here, which will be serviced immediately after the target
1765 is waited on. */
1766 case TARGET_WAITKIND_SYSCALL_RETURN:
1767 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1768
1769 if (number_of_threads_in_syscalls > 0)
1770 {
1771 number_of_threads_in_syscalls--;
1772 ecs->enable_hw_watchpoints_after_wait =
1773 (number_of_threads_in_syscalls == 0);
1774 }
1775 prepare_to_wait (ecs);
1776 return;
c906108c 1777
488f131b
JB
1778 case TARGET_WAITKIND_STOPPED:
1779 stop_signal = ecs->ws.value.sig;
1780 break;
c906108c 1781
488f131b
JB
1782 /* We had an event in the inferior, but we are not interested
1783 in handling it at this level. The lower layers have already
1784 done what needs to be done, if anything. This case can
1785 occur only when the target is async or extended-async. One
1786 of the circumstamces for this to happen is when the
1787 inferior produces output for the console. The inferior has
1788 not stopped, and we are ignoring the event. */
1789 case TARGET_WAITKIND_IGNORE:
1790 ecs->wait_some_more = 1;
1791 return;
1792 }
c906108c 1793
488f131b
JB
1794 /* We may want to consider not doing a resume here in order to give
1795 the user a chance to play with the new thread. It might be good
1796 to make that a user-settable option. */
c906108c 1797
488f131b
JB
1798 /* At this point, all threads are stopped (happens automatically in
1799 either the OS or the native code). Therefore we need to continue
1800 all threads in order to make progress. */
1801 if (ecs->new_thread_event)
1802 {
1803 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1804 prepare_to_wait (ecs);
1805 return;
1806 }
c906108c 1807
488f131b
JB
1808 stop_pc = read_pc_pid (ecs->ptid);
1809
1810 /* See if a thread hit a thread-specific breakpoint that was meant for
1811 another thread. If so, then step that thread past the breakpoint,
1812 and continue it. */
1813
1814 if (stop_signal == TARGET_SIGNAL_TRAP)
1815 {
f8d40ec8
JB
1816 /* Check if a regular breakpoint has been hit before checking
1817 for a potential single step breakpoint. Otherwise, GDB will
1818 not see this breakpoint hit when stepping onto breakpoints. */
1819 if (breakpoints_inserted
1820 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
488f131b 1821 {
c5aa993b 1822 ecs->random_signal = 0;
488f131b
JB
1823 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1824 ecs->ptid))
1825 {
1826 int remove_status;
1827
1828 /* Saw a breakpoint, but it was hit by the wrong thread.
1829 Just continue. */
1830 if (DECR_PC_AFTER_BREAK)
1831 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1832
1833 remove_status = remove_breakpoints ();
1834 /* Did we fail to remove breakpoints? If so, try
1835 to set the PC past the bp. (There's at least
1836 one situation in which we can fail to remove
1837 the bp's: On HP-UX's that use ttrace, we can't
1838 change the address space of a vforking child
1839 process until the child exits (well, okay, not
1840 then either :-) or execs. */
1841 if (remove_status != 0)
1842 {
1843 /* FIXME! This is obviously non-portable! */
1844 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1845 /* We need to restart all the threads now,
1846 * unles we're running in scheduler-locked mode.
1847 * Use currently_stepping to determine whether to
1848 * step or continue.
1849 */
1850 /* FIXME MVS: is there any reason not to call resume()? */
1851 if (scheduler_mode == schedlock_on)
1852 target_resume (ecs->ptid,
1853 currently_stepping (ecs), TARGET_SIGNAL_0);
1854 else
1855 target_resume (RESUME_ALL,
1856 currently_stepping (ecs), TARGET_SIGNAL_0);
1857 prepare_to_wait (ecs);
1858 return;
1859 }
1860 else
1861 { /* Single step */
1862 breakpoints_inserted = 0;
1863 if (!ptid_equal (inferior_ptid, ecs->ptid))
1864 context_switch (ecs);
1865 ecs->waiton_ptid = ecs->ptid;
1866 ecs->wp = &(ecs->ws);
1867 ecs->another_trap = 1;
1868
1869 ecs->infwait_state = infwait_thread_hop_state;
1870 keep_going (ecs);
1871 registers_changed ();
1872 return;
1873 }
1874 }
1875 }
f8d40ec8
JB
1876 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1877 {
c8edd8b4
JB
1878 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1879 compared to the value it would have if the system stepping
1880 capability was used. This allows the rest of the code in
1881 this function to use this address without having to worry
1882 whether software single step is in use or not. */
1883 if (DECR_PC_AFTER_BREAK)
1884 {
1885 stop_pc -= DECR_PC_AFTER_BREAK;
1886 write_pc_pid (stop_pc, ecs->ptid);
1887 }
1888
1889 sw_single_step_trap_p = 1;
f8d40ec8
JB
1890 ecs->random_signal = 0;
1891 }
488f131b
JB
1892 }
1893 else
1894 ecs->random_signal = 1;
c906108c 1895
488f131b
JB
1896 /* See if something interesting happened to the non-current thread. If
1897 so, then switch to that thread, and eventually give control back to
1898 the user.
1899
1900 Note that if there's any kind of pending follow (i.e., of a fork,
1901 vfork or exec), we don't want to do this now. Rather, we'll let
1902 the next resume handle it. */
1903 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1904 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1905 {
1906 int printed = 0;
1907
1908 /* If it's a random signal for a non-current thread, notify user
1909 if he's expressed an interest. */
1910 if (ecs->random_signal && signal_print[stop_signal])
1911 {
c906108c
SS
1912/* ??rehrauer: I don't understand the rationale for this code. If the
1913 inferior will stop as a result of this signal, then the act of handling
1914 the stop ought to print a message that's couches the stoppage in user
1915 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1916 won't stop as a result of the signal -- i.e., if the signal is merely
1917 a side-effect of something GDB's doing "under the covers" for the
1918 user, such as stepping threads over a breakpoint they shouldn't stop
1919 for -- then the message seems to be a serious annoyance at best.
1920
1921 For now, remove the message altogether. */
1922#if 0
488f131b
JB
1923 printed = 1;
1924 target_terminal_ours_for_output ();
1925 printf_filtered ("\nProgram received signal %s, %s.\n",
1926 target_signal_to_name (stop_signal),
1927 target_signal_to_string (stop_signal));
1928 gdb_flush (gdb_stdout);
c906108c 1929#endif
488f131b 1930 }
c906108c 1931
488f131b
JB
1932 /* If it's not SIGTRAP and not a signal we want to stop for, then
1933 continue the thread. */
c906108c 1934
488f131b
JB
1935 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1936 {
1937 if (printed)
1938 target_terminal_inferior ();
c906108c 1939
488f131b
JB
1940 /* Clear the signal if it should not be passed. */
1941 if (signal_program[stop_signal] == 0)
1942 stop_signal = TARGET_SIGNAL_0;
c906108c 1943
488f131b
JB
1944 target_resume (ecs->ptid, 0, stop_signal);
1945 prepare_to_wait (ecs);
1946 return;
1947 }
c906108c 1948
488f131b
JB
1949 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1950 and fall into the rest of wait_for_inferior(). */
c5aa993b 1951
488f131b 1952 context_switch (ecs);
c5aa993b 1953
488f131b
JB
1954 if (context_hook)
1955 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1956
488f131b
JB
1957 flush_cached_frames ();
1958 }
c906108c 1959
488f131b
JB
1960 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1961 {
1962 /* Pull the single step breakpoints out of the target. */
1963 SOFTWARE_SINGLE_STEP (0, 0);
1964 singlestep_breakpoints_inserted_p = 0;
1965 }
c906108c 1966
488f131b
JB
1967 /* If PC is pointing at a nullified instruction, then step beyond
1968 it so that the user won't be confused when GDB appears to be ready
1969 to execute it. */
c906108c 1970
488f131b
JB
1971 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1972 if (INSTRUCTION_NULLIFIED)
1973 {
1974 registers_changed ();
1975 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1976
488f131b
JB
1977 /* We may have received a signal that we want to pass to
1978 the inferior; therefore, we must not clobber the waitstatus
1979 in WS. */
c906108c 1980
488f131b
JB
1981 ecs->infwait_state = infwait_nullified_state;
1982 ecs->waiton_ptid = ecs->ptid;
1983 ecs->wp = &(ecs->tmpstatus);
1984 prepare_to_wait (ecs);
1985 return;
1986 }
c906108c 1987
488f131b
JB
1988 /* It may not be necessary to disable the watchpoint to stop over
1989 it. For example, the PA can (with some kernel cooperation)
1990 single step over a watchpoint without disabling the watchpoint. */
1991 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1992 {
1993 resume (1, 0);
1994 prepare_to_wait (ecs);
1995 return;
1996 }
c906108c 1997
488f131b
JB
1998 /* It is far more common to need to disable a watchpoint to step
1999 the inferior over it. FIXME. What else might a debug
2000 register or page protection watchpoint scheme need here? */
2001 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2002 {
2003 /* At this point, we are stopped at an instruction which has
2004 attempted to write to a piece of memory under control of
2005 a watchpoint. The instruction hasn't actually executed
2006 yet. If we were to evaluate the watchpoint expression
2007 now, we would get the old value, and therefore no change
2008 would seem to have occurred.
2009
2010 In order to make watchpoints work `right', we really need
2011 to complete the memory write, and then evaluate the
2012 watchpoint expression. The following code does that by
2013 removing the watchpoint (actually, all watchpoints and
2014 breakpoints), single-stepping the target, re-inserting
2015 watchpoints, and then falling through to let normal
2016 single-step processing handle proceed. Since this
2017 includes evaluating watchpoints, things will come to a
2018 stop in the correct manner. */
2019
2020 if (DECR_PC_AFTER_BREAK)
2021 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 2022
488f131b
JB
2023 remove_breakpoints ();
2024 registers_changed ();
2025 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 2026
488f131b
JB
2027 ecs->waiton_ptid = ecs->ptid;
2028 ecs->wp = &(ecs->ws);
2029 ecs->infwait_state = infwait_nonstep_watch_state;
2030 prepare_to_wait (ecs);
2031 return;
2032 }
2033
2034 /* It may be possible to simply continue after a watchpoint. */
2035 if (HAVE_CONTINUABLE_WATCHPOINT)
2036 STOPPED_BY_WATCHPOINT (ecs->ws);
2037
2038 ecs->stop_func_start = 0;
2039 ecs->stop_func_end = 0;
2040 ecs->stop_func_name = 0;
2041 /* Don't care about return value; stop_func_start and stop_func_name
2042 will both be 0 if it doesn't work. */
2043 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2044 &ecs->stop_func_start, &ecs->stop_func_end);
2045 ecs->stop_func_start += FUNCTION_START_OFFSET;
2046 ecs->another_trap = 0;
2047 bpstat_clear (&stop_bpstat);
2048 stop_step = 0;
2049 stop_stack_dummy = 0;
2050 stop_print_frame = 1;
2051 ecs->random_signal = 0;
2052 stopped_by_random_signal = 0;
2053 breakpoints_failed = 0;
2054
2055 /* Look at the cause of the stop, and decide what to do.
2056 The alternatives are:
2057 1) break; to really stop and return to the debugger,
2058 2) drop through to start up again
2059 (set ecs->another_trap to 1 to single step once)
2060 3) set ecs->random_signal to 1, and the decision between 1 and 2
2061 will be made according to the signal handling tables. */
2062
2063 /* First, distinguish signals caused by the debugger from signals
2064 that have to do with the program's own actions.
2065 Note that breakpoint insns may cause SIGTRAP or SIGILL
2066 or SIGEMT, depending on the operating system version.
2067 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2068 and change it to SIGTRAP. */
2069
2070 if (stop_signal == TARGET_SIGNAL_TRAP
2071 || (breakpoints_inserted &&
2072 (stop_signal == TARGET_SIGNAL_ILL
2073 || stop_signal == TARGET_SIGNAL_EMT)) || stop_soon_quietly)
2074 {
2075 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2076 {
2077 stop_print_frame = 0;
2078 stop_stepping (ecs);
2079 return;
2080 }
2081 if (stop_soon_quietly)
2082 {
2083 stop_stepping (ecs);
2084 return;
2085 }
2086
2087 /* Don't even think about breakpoints
2088 if just proceeded over a breakpoint.
2089
2090 However, if we are trying to proceed over a breakpoint
2091 and end up in sigtramp, then through_sigtramp_breakpoint
2092 will be set and we should check whether we've hit the
2093 step breakpoint. */
2094 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2095 && through_sigtramp_breakpoint == NULL)
2096 bpstat_clear (&stop_bpstat);
2097 else
2098 {
2099 /* See if there is a breakpoint at the current PC. */
2100
2101 /* The second argument of bpstat_stop_status is meant to help
2102 distinguish between a breakpoint trap and a singlestep trap.
2103 This is only important on targets where DECR_PC_AFTER_BREAK
2104 is non-zero. The prev_pc test is meant to distinguish between
2105 singlestepping a trap instruction, and singlestepping thru a
3e6564e1
JB
2106 jump to the instruction following a trap instruction.
2107
2108 Therefore, pass TRUE if our reason for stopping is
2109 something other than hitting a breakpoint. We do this by
2110 checking that either: we detected earlier a software single
2111 step trap or, 1) stepping is going on and 2) we didn't hit
2112 a breakpoint in a signal handler without an intervening stop
2113 in sigtramp, which is detected by a new stack pointer value
2114 below any usual function calling stack adjustments. */
238617f6
JB
2115 stop_bpstat =
2116 bpstat_stop_status
2117 (&stop_pc,
c8edd8b4
JB
2118 sw_single_step_trap_p
2119 || (currently_stepping (ecs)
2120 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
2121 && !(step_range_end
2122 && INNER_THAN (read_sp (), (step_sp - 16)))));
488f131b
JB
2123 /* Following in case break condition called a
2124 function. */
2125 stop_print_frame = 1;
2126 }
2127
2128 if (stop_signal == TARGET_SIGNAL_TRAP)
2129 ecs->random_signal
2130 = !(bpstat_explains_signal (stop_bpstat)
2131 || trap_expected
2132 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2133 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2134 FRAME_FP (get_current_frame ())))
2135 || (step_range_end && step_resume_breakpoint == NULL));
2136
2137 else
2138 {
2139 ecs->random_signal = !(bpstat_explains_signal (stop_bpstat)
2140 /* End of a stack dummy. Some systems (e.g. Sony
2141 news) give another signal besides SIGTRAP, so
2142 check here as well as above. */
2143 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2144 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2145 FRAME_FP
2146 (get_current_frame
2147 ()))));
2148 if (!ecs->random_signal)
2149 stop_signal = TARGET_SIGNAL_TRAP;
2150 }
2151 }
2152
2153 /* When we reach this point, we've pretty much decided
2154 that the reason for stopping must've been a random
2155 (unexpected) signal. */
2156
2157 else
2158 ecs->random_signal = 1;
2159 /* If a fork, vfork or exec event was seen, then there are two
2160 possible responses we can make:
2161
2162 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2163 then we must stop now and issue a prompt. We will resume
2164 the inferior when the user tells us to.
2165 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2166 then we must resume the inferior now and keep checking.
2167
2168 In either case, we must take appropriate steps to "follow" the
2169 the fork/vfork/exec when the inferior is resumed. For example,
2170 if follow-fork-mode is "child", then we must detach from the
2171 parent inferior and follow the new child inferior.
2172
2173 In either case, setting pending_follow causes the next resume()
2174 to take the appropriate following action. */
2175process_event_stop_test:
2176 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2177 {
2178 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2179 {
2180 trap_expected = 1;
2181 stop_signal = TARGET_SIGNAL_0;
2182 keep_going (ecs);
2183 return;
2184 }
2185 }
2186 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2187 {
2188 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2189 {
2190 stop_signal = TARGET_SIGNAL_0;
2191 keep_going (ecs);
2192 return;
2193 }
2194 }
2195 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2196 {
2197 pending_follow.kind = ecs->ws.kind;
2198 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2199 {
2200 trap_expected = 1;
2201 stop_signal = TARGET_SIGNAL_0;
2202 keep_going (ecs);
2203 return;
2204 }
2205 }
2206
2207 /* For the program's own signals, act according to
2208 the signal handling tables. */
2209
2210 if (ecs->random_signal)
2211 {
2212 /* Signal not for debugging purposes. */
2213 int printed = 0;
2214
2215 stopped_by_random_signal = 1;
2216
2217 if (signal_print[stop_signal])
2218 {
2219 printed = 1;
2220 target_terminal_ours_for_output ();
2221 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2222 }
2223 if (signal_stop[stop_signal])
2224 {
2225 stop_stepping (ecs);
2226 return;
2227 }
2228 /* If not going to stop, give terminal back
2229 if we took it away. */
2230 else if (printed)
2231 target_terminal_inferior ();
2232
2233 /* Clear the signal if it should not be passed. */
2234 if (signal_program[stop_signal] == 0)
2235 stop_signal = TARGET_SIGNAL_0;
2236
2237 /* I'm not sure whether this needs to be check_sigtramp2 or
2238 whether it could/should be keep_going.
2239
2240 This used to jump to step_over_function if we are stepping,
2241 which is wrong.
2242
2243 Suppose the user does a `next' over a function call, and while
2244 that call is in progress, the inferior receives a signal for
2245 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2246 that case, when we reach this point, there is already a
2247 step-resume breakpoint established, right where it should be:
2248 immediately after the function call the user is "next"-ing
2249 over. If we call step_over_function now, two bad things
2250 happen:
2251
2252 - we'll create a new breakpoint, at wherever the current
2253 frame's return address happens to be. That could be
2254 anywhere, depending on what function call happens to be on
2255 the top of the stack at that point. Point is, it's probably
2256 not where we need it.
2257
2258 - the existing step-resume breakpoint (which is at the correct
2259 address) will get orphaned: step_resume_breakpoint will point
2260 to the new breakpoint, and the old step-resume breakpoint
2261 will never be cleaned up.
2262
2263 The old behavior was meant to help HP-UX single-step out of
2264 sigtramps. It would place the new breakpoint at prev_pc, which
2265 was certainly wrong. I don't know the details there, so fixing
2266 this probably breaks that. As with anything else, it's up to
2267 the HP-UX maintainer to furnish a fix that doesn't break other
2268 platforms. --JimB, 20 May 1999 */
2269 check_sigtramp2 (ecs);
2270 keep_going (ecs);
2271 return;
2272 }
2273
2274 /* Handle cases caused by hitting a breakpoint. */
2275 {
2276 CORE_ADDR jmp_buf_pc;
2277 struct bpstat_what what;
2278
2279 what = bpstat_what (stop_bpstat);
2280
2281 if (what.call_dummy)
2282 {
2283 stop_stack_dummy = 1;
2284#ifdef HP_OS_BUG
2285 trap_expected_after_continue = 1;
2286#endif
c5aa993b 2287 }
c906108c 2288
488f131b 2289 switch (what.main_action)
c5aa993b 2290 {
488f131b
JB
2291 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2292 /* If we hit the breakpoint at longjmp, disable it for the
2293 duration of this command. Then, install a temporary
2294 breakpoint at the target of the jmp_buf. */
2295 disable_longjmp_breakpoint ();
2296 remove_breakpoints ();
2297 breakpoints_inserted = 0;
2298 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2299 {
488f131b 2300 keep_going (ecs);
104c1213 2301 return;
c5aa993b 2302 }
488f131b
JB
2303
2304 /* Need to blow away step-resume breakpoint, as it
2305 interferes with us */
2306 if (step_resume_breakpoint != NULL)
104c1213 2307 {
488f131b 2308 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2309 }
488f131b
JB
2310 /* Not sure whether we need to blow this away too, but probably
2311 it is like the step-resume breakpoint. */
2312 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2313 {
488f131b
JB
2314 delete_breakpoint (through_sigtramp_breakpoint);
2315 through_sigtramp_breakpoint = NULL;
c5aa993b 2316 }
c906108c 2317
488f131b
JB
2318#if 0
2319 /* FIXME - Need to implement nested temporary breakpoints */
2320 if (step_over_calls > 0)
2321 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2322 else
488f131b
JB
2323#endif /* 0 */
2324 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2325 ecs->handling_longjmp = 1; /* FIXME */
2326 keep_going (ecs);
2327 return;
c906108c 2328
488f131b
JB
2329 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2330 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2331 remove_breakpoints ();
2332 breakpoints_inserted = 0;
2333#if 0
2334 /* FIXME - Need to implement nested temporary breakpoints */
2335 if (step_over_calls
2336 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2337 step_frame_address)))
c5aa993b 2338 {
488f131b 2339 ecs->another_trap = 1;
d4f3574e
SS
2340 keep_going (ecs);
2341 return;
c5aa993b 2342 }
488f131b
JB
2343#endif /* 0 */
2344 disable_longjmp_breakpoint ();
2345 ecs->handling_longjmp = 0; /* FIXME */
2346 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2347 break;
2348 /* else fallthrough */
2349
2350 case BPSTAT_WHAT_SINGLE:
2351 if (breakpoints_inserted)
c5aa993b 2352 {
488f131b 2353 remove_breakpoints ();
c5aa993b 2354 }
488f131b
JB
2355 breakpoints_inserted = 0;
2356 ecs->another_trap = 1;
2357 /* Still need to check other stuff, at least the case
2358 where we are stepping and step out of the right range. */
2359 break;
c906108c 2360
488f131b
JB
2361 case BPSTAT_WHAT_STOP_NOISY:
2362 stop_print_frame = 1;
c906108c 2363
488f131b
JB
2364 /* We are about to nuke the step_resume_breakpoint and
2365 through_sigtramp_breakpoint via the cleanup chain, so
2366 no need to worry about it here. */
c5aa993b 2367
488f131b
JB
2368 stop_stepping (ecs);
2369 return;
c5aa993b 2370
488f131b
JB
2371 case BPSTAT_WHAT_STOP_SILENT:
2372 stop_print_frame = 0;
c5aa993b 2373
488f131b
JB
2374 /* We are about to nuke the step_resume_breakpoint and
2375 through_sigtramp_breakpoint via the cleanup chain, so
2376 no need to worry about it here. */
c5aa993b 2377
488f131b 2378 stop_stepping (ecs);
e441088d 2379 return;
c5aa993b 2380
488f131b
JB
2381 case BPSTAT_WHAT_STEP_RESUME:
2382 /* This proably demands a more elegant solution, but, yeah
2383 right...
c5aa993b 2384
488f131b
JB
2385 This function's use of the simple variable
2386 step_resume_breakpoint doesn't seem to accomodate
2387 simultaneously active step-resume bp's, although the
2388 breakpoint list certainly can.
c5aa993b 2389
488f131b
JB
2390 If we reach here and step_resume_breakpoint is already
2391 NULL, then apparently we have multiple active
2392 step-resume bp's. We'll just delete the breakpoint we
2393 stopped at, and carry on.
2394
2395 Correction: what the code currently does is delete a
2396 step-resume bp, but it makes no effort to ensure that
2397 the one deleted is the one currently stopped at. MVS */
c5aa993b 2398
488f131b
JB
2399 if (step_resume_breakpoint == NULL)
2400 {
2401 step_resume_breakpoint =
2402 bpstat_find_step_resume_breakpoint (stop_bpstat);
2403 }
2404 delete_step_resume_breakpoint (&step_resume_breakpoint);
2405 break;
2406
2407 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2408 if (through_sigtramp_breakpoint)
2409 delete_breakpoint (through_sigtramp_breakpoint);
2410 through_sigtramp_breakpoint = NULL;
2411
2412 /* If were waiting for a trap, hitting the step_resume_break
2413 doesn't count as getting it. */
2414 if (trap_expected)
2415 ecs->another_trap = 1;
2416 break;
2417
2418 case BPSTAT_WHAT_CHECK_SHLIBS:
2419 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2420#ifdef SOLIB_ADD
c906108c 2421 {
488f131b
JB
2422 /* Remove breakpoints, we eventually want to step over the
2423 shlib event breakpoint, and SOLIB_ADD might adjust
2424 breakpoint addresses via breakpoint_re_set. */
2425 if (breakpoints_inserted)
2426 remove_breakpoints ();
c5aa993b 2427 breakpoints_inserted = 0;
488f131b
JB
2428
2429 /* Check for any newly added shared libraries if we're
2430 supposed to be adding them automatically. Switch
2431 terminal for any messages produced by
2432 breakpoint_re_set. */
2433 target_terminal_ours_for_output ();
2434 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2435 target_terminal_inferior ();
2436
2437 /* Try to reenable shared library breakpoints, additional
2438 code segments in shared libraries might be mapped in now. */
2439 re_enable_breakpoints_in_shlibs ();
2440
2441 /* If requested, stop when the dynamic linker notifies
2442 gdb of events. This allows the user to get control
2443 and place breakpoints in initializer routines for
2444 dynamically loaded objects (among other things). */
2445 if (stop_on_solib_events)
d4f3574e 2446 {
488f131b 2447 stop_stepping (ecs);
d4f3574e
SS
2448 return;
2449 }
c5aa993b 2450
488f131b
JB
2451 /* If we stopped due to an explicit catchpoint, then the
2452 (see above) call to SOLIB_ADD pulled in any symbols
2453 from a newly-loaded library, if appropriate.
2454
2455 We do want the inferior to stop, but not where it is
2456 now, which is in the dynamic linker callback. Rather,
2457 we would like it stop in the user's program, just after
2458 the call that caused this catchpoint to trigger. That
2459 gives the user a more useful vantage from which to
2460 examine their program's state. */
2461 else if (what.main_action ==
2462 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2463 {
488f131b
JB
2464 /* ??rehrauer: If I could figure out how to get the
2465 right return PC from here, we could just set a temp
2466 breakpoint and resume. I'm not sure we can without
2467 cracking open the dld's shared libraries and sniffing
2468 their unwind tables and text/data ranges, and that's
2469 not a terribly portable notion.
2470
2471 Until that time, we must step the inferior out of the
2472 dld callback, and also out of the dld itself (and any
2473 code or stubs in libdld.sl, such as "shl_load" and
2474 friends) until we reach non-dld code. At that point,
2475 we can stop stepping. */
2476 bpstat_get_triggered_catchpoints (stop_bpstat,
2477 &ecs->
2478 stepping_through_solib_catchpoints);
2479 ecs->stepping_through_solib_after_catch = 1;
2480
2481 /* Be sure to lift all breakpoints, so the inferior does
2482 actually step past this point... */
2483 ecs->another_trap = 1;
2484 break;
c906108c 2485 }
c5aa993b 2486 else
c5aa993b 2487 {
488f131b 2488 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2489 ecs->another_trap = 1;
488f131b 2490 break;
c5aa993b 2491 }
488f131b
JB
2492 }
2493#endif
2494 break;
c906108c 2495
488f131b
JB
2496 case BPSTAT_WHAT_LAST:
2497 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2498
488f131b
JB
2499 case BPSTAT_WHAT_KEEP_CHECKING:
2500 break;
2501 }
2502 }
c906108c 2503
488f131b
JB
2504 /* We come here if we hit a breakpoint but should not
2505 stop for it. Possibly we also were stepping
2506 and should stop for that. So fall through and
2507 test for stepping. But, if not stepping,
2508 do not stop. */
c906108c 2509
488f131b
JB
2510 /* Are we stepping to get the inferior out of the dynamic
2511 linker's hook (and possibly the dld itself) after catching
2512 a shlib event? */
2513 if (ecs->stepping_through_solib_after_catch)
2514 {
2515#if defined(SOLIB_ADD)
2516 /* Have we reached our destination? If not, keep going. */
2517 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2518 {
2519 ecs->another_trap = 1;
2520 keep_going (ecs);
104c1213 2521 return;
488f131b
JB
2522 }
2523#endif
2524 /* Else, stop and report the catchpoint(s) whose triggering
2525 caused us to begin stepping. */
2526 ecs->stepping_through_solib_after_catch = 0;
2527 bpstat_clear (&stop_bpstat);
2528 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2529 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2530 stop_print_frame = 1;
2531 stop_stepping (ecs);
2532 return;
2533 }
c906108c 2534
488f131b
JB
2535 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2536 {
2537 /* This is the old way of detecting the end of the stack dummy.
2538 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2539 handled above. As soon as we can test it on all of them, all
2540 architectures should define it. */
2541
2542 /* If this is the breakpoint at the end of a stack dummy,
2543 just stop silently, unless the user was doing an si/ni, in which
2544 case she'd better know what she's doing. */
2545
2546 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2547 FRAME_FP (get_current_frame ()))
2548 && !step_range_end)
2549 {
c5aa993b 2550 stop_print_frame = 0;
488f131b
JB
2551 stop_stack_dummy = 1;
2552#ifdef HP_OS_BUG
2553 trap_expected_after_continue = 1;
2554#endif
104c1213
JM
2555 stop_stepping (ecs);
2556 return;
488f131b
JB
2557 }
2558 }
c906108c 2559
488f131b
JB
2560 if (step_resume_breakpoint)
2561 {
2562 /* Having a step-resume breakpoint overrides anything
2563 else having to do with stepping commands until
2564 that breakpoint is reached. */
2565 /* I'm not sure whether this needs to be check_sigtramp2 or
2566 whether it could/should be keep_going. */
2567 check_sigtramp2 (ecs);
2568 keep_going (ecs);
2569 return;
2570 }
c5aa993b 2571
488f131b
JB
2572 if (step_range_end == 0)
2573 {
2574 /* Likewise if we aren't even stepping. */
2575 /* I'm not sure whether this needs to be check_sigtramp2 or
2576 whether it could/should be keep_going. */
2577 check_sigtramp2 (ecs);
2578 keep_going (ecs);
2579 return;
2580 }
c5aa993b 2581
488f131b 2582 /* If stepping through a line, keep going if still within it.
c906108c 2583
488f131b
JB
2584 Note that step_range_end is the address of the first instruction
2585 beyond the step range, and NOT the address of the last instruction
2586 within it! */
2587 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2588 {
2589 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2590 So definately need to check for sigtramp here. */
2591 check_sigtramp2 (ecs);
2592 keep_going (ecs);
2593 return;
2594 }
c5aa993b 2595
488f131b 2596 /* We stepped out of the stepping range. */
c906108c 2597
488f131b
JB
2598 /* If we are stepping at the source level and entered the runtime
2599 loader dynamic symbol resolution code, we keep on single stepping
2600 until we exit the run time loader code and reach the callee's
2601 address. */
2602 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2603 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2604 {
2605 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
c906108c 2606
488f131b
JB
2607 if (pc_after_resolver)
2608 {
2609 /* Set up a step-resume breakpoint at the address
2610 indicated by SKIP_SOLIB_RESOLVER. */
2611 struct symtab_and_line sr_sal;
2612 INIT_SAL (&sr_sal);
2613 sr_sal.pc = pc_after_resolver;
2614
2615 check_for_old_step_resume_breakpoint ();
2616 step_resume_breakpoint =
2617 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2618 if (breakpoints_inserted)
2619 insert_breakpoints ();
c5aa993b 2620 }
c906108c 2621
488f131b
JB
2622 keep_going (ecs);
2623 return;
2624 }
c906108c 2625
488f131b
JB
2626 /* We can't update step_sp every time through the loop, because
2627 reading the stack pointer would slow down stepping too much.
2628 But we can update it every time we leave the step range. */
2629 ecs->update_step_sp = 1;
c906108c 2630
488f131b
JB
2631 /* Did we just take a signal? */
2632 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2633 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
2634 && INNER_THAN (read_sp (), step_sp))
2635 {
2636 /* We've just taken a signal; go until we are back to
2637 the point where we took it and one more. */
c906108c 2638
488f131b
JB
2639 /* Note: The test above succeeds not only when we stepped
2640 into a signal handler, but also when we step past the last
2641 statement of a signal handler and end up in the return stub
2642 of the signal handler trampoline. To distinguish between
2643 these two cases, check that the frame is INNER_THAN the
2644 previous one below. pai/1997-09-11 */
c5aa993b 2645
c5aa993b 2646
c5aa993b 2647 {
488f131b 2648 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
c906108c 2649
488f131b
JB
2650 if (INNER_THAN (current_frame, step_frame_address))
2651 {
2652 /* We have just taken a signal; go until we are back to
2653 the point where we took it and one more. */
c906108c 2654
488f131b
JB
2655 /* This code is needed at least in the following case:
2656 The user types "next" and then a signal arrives (before
2657 the "next" is done). */
d4f3574e 2658
488f131b
JB
2659 /* Note that if we are stopped at a breakpoint, then we need
2660 the step_resume breakpoint to override any breakpoints at
2661 the same location, so that we will still step over the
2662 breakpoint even though the signal happened. */
d4f3574e 2663 struct symtab_and_line sr_sal;
d4f3574e 2664
488f131b
JB
2665 INIT_SAL (&sr_sal);
2666 sr_sal.symtab = NULL;
2667 sr_sal.line = 0;
2668 sr_sal.pc = prev_pc;
2669 /* We could probably be setting the frame to
2670 step_frame_address; I don't think anyone thought to
2671 try it. */
d4f3574e
SS
2672 check_for_old_step_resume_breakpoint ();
2673 step_resume_breakpoint =
2674 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2675 if (breakpoints_inserted)
2676 insert_breakpoints ();
2677 }
488f131b
JB
2678 else
2679 {
2680 /* We just stepped out of a signal handler and into
2681 its calling trampoline.
2682
2683 Normally, we'd call step_over_function from
2684 here, but for some reason GDB can't unwind the
2685 stack correctly to find the real PC for the point
2686 user code where the signal trampoline will return
2687 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2688 But signal trampolines are pretty small stubs of
2689 code, anyway, so it's OK instead to just
2690 single-step out. Note: assuming such trampolines
2691 don't exhibit recursion on any platform... */
2692 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2693 &ecs->stop_func_start,
2694 &ecs->stop_func_end);
2695 /* Readjust stepping range */
2696 step_range_start = ecs->stop_func_start;
2697 step_range_end = ecs->stop_func_end;
2698 ecs->stepping_through_sigtramp = 1;
2699 }
d4f3574e 2700 }
c906108c 2701
c906108c 2702
488f131b
JB
2703 /* If this is stepi or nexti, make sure that the stepping range
2704 gets us past that instruction. */
2705 if (step_range_end == 1)
2706 /* FIXME: Does this run afoul of the code below which, if
2707 we step into the middle of a line, resets the stepping
2708 range? */
2709 step_range_end = (step_range_start = prev_pc) + 1;
2710
2711 ecs->remove_breakpoints_on_following_step = 1;
2712 keep_going (ecs);
2713 return;
2714 }
c906108c 2715
488f131b
JB
2716 if (stop_pc == ecs->stop_func_start /* Quick test */
2717 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2718 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2719 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2720 || ecs->stop_func_name == 0)
2721 {
2722 /* It's a subroutine call. */
c906108c 2723
488f131b
JB
2724 if ((step_over_calls == STEP_OVER_NONE)
2725 || ((step_range_end == 1)
2726 && in_prologue (prev_pc, ecs->stop_func_start)))
2727 {
2728 /* I presume that step_over_calls is only 0 when we're
2729 supposed to be stepping at the assembly language level
2730 ("stepi"). Just stop. */
2731 /* Also, maybe we just did a "nexti" inside a prolog,
2732 so we thought it was a subroutine call but it was not.
2733 Stop as well. FENN */
2734 stop_step = 1;
2735 print_stop_reason (END_STEPPING_RANGE, 0);
2736 stop_stepping (ecs);
2737 return;
2738 }
c906108c 2739
488f131b 2740 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
c5aa993b 2741 {
488f131b
JB
2742 /* We're doing a "next". */
2743
2744 if (PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2745 && INNER_THAN (step_frame_address, read_sp ()))
2746 /* We stepped out of a signal handler, and into its
2747 calling trampoline. This is misdetected as a
2748 subroutine call, but stepping over the signal
2749 trampoline isn't such a bad idea. In order to do
2750 that, we have to ignore the value in
2751 step_frame_address, since that doesn't represent the
2752 frame that'll reach when we return from the signal
2753 trampoline. Otherwise we'll probably continue to the
2754 end of the program. */
2755 step_frame_address = 0;
2756
2757 step_over_function (ecs);
2758 keep_going (ecs);
2759 return;
2760 }
c906108c 2761
488f131b
JB
2762 /* If we are in a function call trampoline (a stub between
2763 the calling routine and the real function), locate the real
2764 function. That's what tells us (a) whether we want to step
2765 into it at all, and (b) what prologue we want to run to
2766 the end of, if we do step into it. */
2767 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2768 if (tmp != 0)
2769 ecs->stop_func_start = tmp;
2770 else
2771 {
2772 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2773 if (tmp)
c5aa993b 2774 {
488f131b
JB
2775 struct symtab_and_line xxx;
2776 /* Why isn't this s_a_l called "sr_sal", like all of the
2777 other s_a_l's where this code is duplicated? */
2778 INIT_SAL (&xxx); /* initialize to zeroes */
2779 xxx.pc = tmp;
2780 xxx.section = find_pc_overlay (xxx.pc);
a0b3c4fd 2781 check_for_old_step_resume_breakpoint ();
c5aa993b 2782 step_resume_breakpoint =
488f131b
JB
2783 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2784 insert_breakpoints ();
2785 keep_going (ecs);
2786 return;
c906108c 2787 }
c906108c
SS
2788 }
2789
488f131b
JB
2790 /* If we have line number information for the function we
2791 are thinking of stepping into, step into it.
c906108c 2792
488f131b
JB
2793 If there are several symtabs at that PC (e.g. with include
2794 files), just want to know whether *any* of them have line
2795 numbers. find_pc_line handles this. */
c5aa993b 2796 {
488f131b 2797 struct symtab_and_line tmp_sal;
c906108c 2798
488f131b
JB
2799 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2800 if (tmp_sal.line != 0)
d4f3574e 2801 {
488f131b 2802 step_into_function (ecs);
d4f3574e
SS
2803 return;
2804 }
488f131b 2805 }
c5aa993b 2806
488f131b
JB
2807 /* If we have no line number and the step-stop-if-no-debug
2808 is set, we stop the step so that the user has a chance to
2809 switch in assembly mode. */
2810 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
c5aa993b 2811 {
488f131b
JB
2812 stop_step = 1;
2813 print_stop_reason (END_STEPPING_RANGE, 0);
2814 stop_stepping (ecs);
2815 return;
c906108c 2816 }
5fbbeb29 2817
488f131b
JB
2818 step_over_function (ecs);
2819 keep_going (ecs);
2820 return;
c906108c 2821
488f131b 2822 }
c906108c 2823
488f131b 2824 /* We've wandered out of the step range. */
c906108c 2825
488f131b 2826 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2827
488f131b
JB
2828 if (step_range_end == 1)
2829 {
2830 /* It is stepi or nexti. We always want to stop stepping after
2831 one instruction. */
2832 stop_step = 1;
2833 print_stop_reason (END_STEPPING_RANGE, 0);
2834 stop_stepping (ecs);
2835 return;
2836 }
c906108c 2837
488f131b
JB
2838 /* If we're in the return path from a shared library trampoline,
2839 we want to proceed through the trampoline when stepping. */
2840 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2841 {
2842 CORE_ADDR tmp;
c906108c 2843
488f131b
JB
2844 /* Determine where this trampoline returns. */
2845 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2846
488f131b
JB
2847 /* Only proceed through if we know where it's going. */
2848 if (tmp)
2849 {
2850 /* And put the step-breakpoint there and go until there. */
2851 struct symtab_and_line sr_sal;
2852
2853 INIT_SAL (&sr_sal); /* initialize to zeroes */
2854 sr_sal.pc = tmp;
2855 sr_sal.section = find_pc_overlay (sr_sal.pc);
2856 /* Do not specify what the fp should be when we stop
2857 since on some machines the prologue
2858 is where the new fp value is established. */
2859 check_for_old_step_resume_breakpoint ();
2860 step_resume_breakpoint =
2861 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2862 if (breakpoints_inserted)
2863 insert_breakpoints ();
c906108c 2864
488f131b
JB
2865 /* Restart without fiddling with the step ranges or
2866 other state. */
2867 keep_going (ecs);
2868 return;
2869 }
2870 }
c906108c 2871
488f131b
JB
2872 if (ecs->sal.line == 0)
2873 {
2874 /* We have no line number information. That means to stop
2875 stepping (does this always happen right after one instruction,
2876 when we do "s" in a function with no line numbers,
2877 or can this happen as a result of a return or longjmp?). */
2878 stop_step = 1;
2879 print_stop_reason (END_STEPPING_RANGE, 0);
2880 stop_stepping (ecs);
2881 return;
2882 }
c906108c 2883
488f131b
JB
2884 if ((stop_pc == ecs->sal.pc)
2885 && (ecs->current_line != ecs->sal.line
2886 || ecs->current_symtab != ecs->sal.symtab))
2887 {
2888 /* We are at the start of a different line. So stop. Note that
2889 we don't stop if we step into the middle of a different line.
2890 That is said to make things like for (;;) statements work
2891 better. */
2892 stop_step = 1;
2893 print_stop_reason (END_STEPPING_RANGE, 0);
2894 stop_stepping (ecs);
2895 return;
2896 }
c906108c 2897
488f131b 2898 /* We aren't done stepping.
c906108c 2899
488f131b
JB
2900 Optimize by setting the stepping range to the line.
2901 (We might not be in the original line, but if we entered a
2902 new line in mid-statement, we continue stepping. This makes
2903 things like for(;;) statements work better.) */
c906108c 2904
488f131b 2905 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2906 {
488f131b
JB
2907 /* If this is the last line of the function, don't keep stepping
2908 (it would probably step us out of the function).
2909 This is particularly necessary for a one-line function,
2910 in which after skipping the prologue we better stop even though
2911 we will be in mid-line. */
2912 stop_step = 1;
2913 print_stop_reason (END_STEPPING_RANGE, 0);
2914 stop_stepping (ecs);
2915 return;
c5aa993b 2916 }
488f131b
JB
2917 step_range_start = ecs->sal.pc;
2918 step_range_end = ecs->sal.end;
2919 step_frame_address = FRAME_FP (get_current_frame ());
2920 ecs->current_line = ecs->sal.line;
2921 ecs->current_symtab = ecs->sal.symtab;
2922
2923 /* In the case where we just stepped out of a function into the middle
2924 of a line of the caller, continue stepping, but step_frame_address
2925 must be modified to current frame */
2926 {
2927 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2928 if (!(INNER_THAN (current_frame, step_frame_address)))
2929 step_frame_address = current_frame;
2930 }
c906108c 2931
488f131b 2932 keep_going (ecs);
104c1213
JM
2933}
2934
2935/* Are we in the middle of stepping? */
2936
2937static int
2938currently_stepping (struct execution_control_state *ecs)
2939{
2940 return ((through_sigtramp_breakpoint == NULL
2941 && !ecs->handling_longjmp
2942 && ((step_range_end && step_resume_breakpoint == NULL)
2943 || trap_expected))
2944 || ecs->stepping_through_solib_after_catch
2945 || bpstat_should_step ());
2946}
c906108c 2947
104c1213
JM
2948static void
2949check_sigtramp2 (struct execution_control_state *ecs)
2950{
2951 if (trap_expected
d7bd68ca
AC
2952 && PC_IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2953 && !PC_IN_SIGTRAMP (prev_pc, prev_func_name)
104c1213
JM
2954 && INNER_THAN (read_sp (), step_sp))
2955 {
2956 /* What has happened here is that we have just stepped the
488f131b
JB
2957 inferior with a signal (because it is a signal which
2958 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2959
488f131b
JB
2960 So we need to set a step_resume_break_address breakpoint and
2961 continue until we hit it, and then step. FIXME: This should
2962 be more enduring than a step_resume breakpoint; we should
2963 know that we will later need to keep going rather than
2964 re-hitting the breakpoint here (see the testsuite,
2965 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2966
2967 struct symtab_and_line sr_sal;
2968
2969 INIT_SAL (&sr_sal); /* initialize to zeroes */
2970 sr_sal.pc = prev_pc;
2971 sr_sal.section = find_pc_overlay (sr_sal.pc);
2972 /* We perhaps could set the frame if we kept track of what the
488f131b 2973 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213
JM
2974 through_sigtramp_breakpoint =
2975 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2976 if (breakpoints_inserted)
2977 insert_breakpoints ();
cd0fc7c3 2978
104c1213
JM
2979 ecs->remove_breakpoints_on_following_step = 1;
2980 ecs->another_trap = 1;
2981 }
2982}
2983
c2c6d25f
JM
2984/* Subroutine call with source code we should not step over. Do step
2985 to the first line of code in it. */
2986
2987static void
2988step_into_function (struct execution_control_state *ecs)
2989{
2990 struct symtab *s;
2991 struct symtab_and_line sr_sal;
2992
2993 s = find_pc_symtab (stop_pc);
2994 if (s && s->language != language_asm)
2995 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2996
2997 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2998 /* Use the step_resume_break to step until the end of the prologue,
2999 even if that involves jumps (as it seems to on the vax under
3000 4.2). */
3001 /* If the prologue ends in the middle of a source line, continue to
3002 the end of that source line (if it is still within the function).
3003 Otherwise, just go to end of prologue. */
3004#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3005 /* no, don't either. It skips any code that's legitimately on the
3006 first line. */
3007#else
3008 if (ecs->sal.end
3009 && ecs->sal.pc != ecs->stop_func_start
3010 && ecs->sal.end < ecs->stop_func_end)
3011 ecs->stop_func_start = ecs->sal.end;
3012#endif
3013
3014 if (ecs->stop_func_start == stop_pc)
3015 {
3016 /* We are already there: stop now. */
3017 stop_step = 1;
488f131b 3018 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3019 stop_stepping (ecs);
3020 return;
3021 }
3022 else
3023 {
3024 /* Put the step-breakpoint there and go until there. */
3025 INIT_SAL (&sr_sal); /* initialize to zeroes */
3026 sr_sal.pc = ecs->stop_func_start;
3027 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3028 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3029 some machines the prologue is where the new fp value is
3030 established. */
c2c6d25f
JM
3031 check_for_old_step_resume_breakpoint ();
3032 step_resume_breakpoint =
3033 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3034 if (breakpoints_inserted)
3035 insert_breakpoints ();
3036
3037 /* And make sure stepping stops right away then. */
3038 step_range_end = step_range_start;
3039 }
3040 keep_going (ecs);
3041}
d4f3574e
SS
3042
3043/* We've just entered a callee, and we wish to resume until it returns
3044 to the caller. Setting a step_resume breakpoint on the return
3045 address will catch a return from the callee.
3046
3047 However, if the callee is recursing, we want to be careful not to
3048 catch returns of those recursive calls, but only of THIS instance
3049 of the call.
3050
3051 To do this, we set the step_resume bp's frame to our current
3052 caller's frame (step_frame_address, which is set by the "next" or
3053 "until" command, before execution begins). */
3054
3055static void
3056step_over_function (struct execution_control_state *ecs)
3057{
3058 struct symtab_and_line sr_sal;
3059
488f131b 3060 INIT_SAL (&sr_sal); /* initialize to zeros */
d4f3574e
SS
3061 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3062 sr_sal.section = find_pc_overlay (sr_sal.pc);
3063
3064 check_for_old_step_resume_breakpoint ();
3065 step_resume_breakpoint =
3066 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3067
d41707c8 3068 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
d4f3574e
SS
3069 step_resume_breakpoint->frame = step_frame_address;
3070
3071 if (breakpoints_inserted)
3072 insert_breakpoints ();
3073}
3074
104c1213
JM
3075static void
3076stop_stepping (struct execution_control_state *ecs)
3077{
c906108c
SS
3078 if (target_has_execution)
3079 {
3080 /* Are we stopping for a vfork event? We only stop when we see
3081 the child's event. However, we may not yet have seen the
39f77062 3082 parent's event. And, inferior_ptid is still set to the
104c1213
JM
3083 parent's pid, until we resume again and follow either the
3084 parent or child.
c906108c 3085
39f77062 3086 To ensure that we can really touch inferior_ptid (aka, the
c906108c
SS
3087 parent process) -- which calls to functions like read_pc
3088 implicitly do -- wait on the parent if necessary. */
3089 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3090 && !pending_follow.fork_event.saw_parent_fork)
3091 {
39f77062 3092 ptid_t parent_ptid;
c906108c
SS
3093
3094 do
3095 {
3096 if (target_wait_hook)
39f77062 3097 parent_ptid = target_wait_hook (pid_to_ptid (-1), &(ecs->ws));
c906108c 3098 else
39f77062 3099 parent_ptid = target_wait (pid_to_ptid (-1), &(ecs->ws));
c906108c 3100 }
488f131b 3101 while (!ptid_equal (parent_ptid, inferior_ptid));
c906108c
SS
3102 }
3103
c906108c 3104 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
3105 time, just like we did above if we didn't break out of the
3106 loop. */
c906108c 3107 prev_pc = read_pc ();
cd0fc7c3
SS
3108 prev_func_start = ecs->stop_func_start;
3109 prev_func_name = ecs->stop_func_name;
c906108c 3110 }
104c1213 3111
cd0fc7c3
SS
3112 /* Let callers know we don't want to wait for the inferior anymore. */
3113 ecs->wait_some_more = 0;
3114}
3115
d4f3574e
SS
3116/* This function handles various cases where we need to continue
3117 waiting for the inferior. */
3118/* (Used to be the keep_going: label in the old wait_for_inferior) */
3119
3120static void
3121keep_going (struct execution_control_state *ecs)
3122{
3123 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3124 vforked child between its creation and subsequent exit or call to
3125 exec(). However, I had big problems in this rather creaky exec
3126 engine, getting that to work. The fundamental problem is that
3127 I'm trying to debug two processes via an engine that only
3128 understands a single process with possibly multiple threads.
3129
3130 Hence, this spot is known to have problems when
3131 target_can_follow_vfork_prior_to_exec returns 1. */
3132
3133 /* Save the pc before execution, to compare with pc after stop. */
488f131b 3134 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
3135 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3136 BREAK is defined, the
3137 original pc would not have
3138 been at the start of a
3139 function. */
3140 prev_func_name = ecs->stop_func_name;
3141
3142 if (ecs->update_step_sp)
3143 step_sp = read_sp ();
3144 ecs->update_step_sp = 0;
3145
3146 /* If we did not do break;, it means we should keep running the
3147 inferior and not return to debugger. */
3148
3149 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3150 {
3151 /* We took a signal (which we are supposed to pass through to
488f131b
JB
3152 the inferior, else we'd have done a break above) and we
3153 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
3154 resume (currently_stepping (ecs), stop_signal);
3155 }
3156 else
3157 {
3158 /* Either the trap was not expected, but we are continuing
488f131b
JB
3159 anyway (the user asked that this signal be passed to the
3160 child)
3161 -- or --
3162 The signal was SIGTRAP, e.g. it was our signal, but we
3163 decided we should resume from it.
d4f3574e 3164
488f131b 3165 We're going to run this baby now!
d4f3574e 3166
488f131b
JB
3167 Insert breakpoints now, unless we are trying to one-proceed
3168 past a breakpoint. */
d4f3574e 3169 /* If we've just finished a special step resume and we don't
488f131b 3170 want to hit a breakpoint, pull em out. */
d4f3574e
SS
3171 if (step_resume_breakpoint == NULL
3172 && through_sigtramp_breakpoint == NULL
3173 && ecs->remove_breakpoints_on_following_step)
3174 {
3175 ecs->remove_breakpoints_on_following_step = 0;
3176 remove_breakpoints ();
3177 breakpoints_inserted = 0;
3178 }
3179 else if (!breakpoints_inserted &&
3180 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3181 {
3182 breakpoints_failed = insert_breakpoints ();
3183 if (breakpoints_failed)
3184 {
3185 stop_stepping (ecs);
3186 return;
3187 }
3188 breakpoints_inserted = 1;
3189 }
3190
3191 trap_expected = ecs->another_trap;
3192
3193 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3194 specifies that such a signal should be delivered to the
3195 target program).
3196
3197 Typically, this would occure when a user is debugging a
3198 target monitor on a simulator: the target monitor sets a
3199 breakpoint; the simulator encounters this break-point and
3200 halts the simulation handing control to GDB; GDB, noteing
3201 that the break-point isn't valid, returns control back to the
3202 simulator; the simulator then delivers the hardware
3203 equivalent of a SIGNAL_TRAP to the program being debugged. */
3204
3205 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
3206 stop_signal = TARGET_SIGNAL_0;
3207
3208#ifdef SHIFT_INST_REGS
3209 /* I'm not sure when this following segment applies. I do know,
488f131b
JB
3210 now, that we shouldn't rewrite the regs when we were stopped
3211 by a random signal from the inferior process. */
d4f3574e 3212 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
488f131b 3213 (this is only used on the 88k). */
d4f3574e
SS
3214
3215 if (!bpstat_explains_signal (stop_bpstat)
488f131b 3216 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
d4f3574e
SS
3217 SHIFT_INST_REGS ();
3218#endif /* SHIFT_INST_REGS */
3219
3220 resume (currently_stepping (ecs), stop_signal);
3221 }
3222
488f131b 3223 prepare_to_wait (ecs);
d4f3574e
SS
3224}
3225
104c1213
JM
3226/* This function normally comes after a resume, before
3227 handle_inferior_event exits. It takes care of any last bits of
3228 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3229
104c1213
JM
3230static void
3231prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3232{
104c1213
JM
3233 if (ecs->infwait_state == infwait_normal_state)
3234 {
3235 overlay_cache_invalid = 1;
3236
3237 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3238 target_wait because they can be loaded from the target while
3239 in target_wait. This makes remote debugging a bit more
3240 efficient for those targets that provide critical registers
3241 as part of their normal status mechanism. */
104c1213
JM
3242
3243 registers_changed ();
39f77062 3244 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3245 ecs->wp = &(ecs->ws);
3246 }
3247 /* This is the old end of the while loop. Let everybody know we
3248 want to wait for the inferior some more and get called again
3249 soon. */
3250 ecs->wait_some_more = 1;
c906108c 3251}
11cf8741
JM
3252
3253/* Print why the inferior has stopped. We always print something when
3254 the inferior exits, or receives a signal. The rest of the cases are
3255 dealt with later on in normal_stop() and print_it_typical(). Ideally
3256 there should be a call to this function from handle_inferior_event()
3257 each time stop_stepping() is called.*/
3258static void
3259print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3260{
3261 switch (stop_reason)
3262 {
3263 case STOP_UNKNOWN:
3264 /* We don't deal with these cases from handle_inferior_event()
3265 yet. */
3266 break;
3267 case END_STEPPING_RANGE:
3268 /* We are done with a step/next/si/ni command. */
3269 /* For now print nothing. */
fb40c209 3270 /* Print a message only if not in the middle of doing a "step n"
488f131b 3271 operation for n > 1 */
fb40c209 3272 if (!step_multi || !stop_step)
9dc5e2a9 3273 if (ui_out_is_mi_like_p (uiout))
fb40c209 3274 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
3275 break;
3276 case BREAKPOINT_HIT:
3277 /* We found a breakpoint. */
3278 /* For now print nothing. */
3279 break;
3280 case SIGNAL_EXITED:
3281 /* The inferior was terminated by a signal. */
8b93c638 3282 annotate_signalled ();
9dc5e2a9 3283 if (ui_out_is_mi_like_p (uiout))
fb40c209 3284 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3285 ui_out_text (uiout, "\nProgram terminated with signal ");
3286 annotate_signal_name ();
488f131b
JB
3287 ui_out_field_string (uiout, "signal-name",
3288 target_signal_to_name (stop_info));
8b93c638
JM
3289 annotate_signal_name_end ();
3290 ui_out_text (uiout, ", ");
3291 annotate_signal_string ();
488f131b
JB
3292 ui_out_field_string (uiout, "signal-meaning",
3293 target_signal_to_string (stop_info));
8b93c638
JM
3294 annotate_signal_string_end ();
3295 ui_out_text (uiout, ".\n");
3296 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3297 break;
3298 case EXITED:
3299 /* The inferior program is finished. */
8b93c638
JM
3300 annotate_exited (stop_info);
3301 if (stop_info)
3302 {
9dc5e2a9 3303 if (ui_out_is_mi_like_p (uiout))
fb40c209 3304 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3305 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3306 ui_out_field_fmt (uiout, "exit-code", "0%o",
3307 (unsigned int) stop_info);
8b93c638
JM
3308 ui_out_text (uiout, ".\n");
3309 }
3310 else
3311 {
9dc5e2a9 3312 if (ui_out_is_mi_like_p (uiout))
fb40c209 3313 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3314 ui_out_text (uiout, "\nProgram exited normally.\n");
3315 }
11cf8741
JM
3316 break;
3317 case SIGNAL_RECEIVED:
3318 /* Signal received. The signal table tells us to print about
3319 it. */
8b93c638
JM
3320 annotate_signal ();
3321 ui_out_text (uiout, "\nProgram received signal ");
3322 annotate_signal_name ();
84c6c83c
KS
3323 if (ui_out_is_mi_like_p (uiout))
3324 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3325 ui_out_field_string (uiout, "signal-name",
3326 target_signal_to_name (stop_info));
8b93c638
JM
3327 annotate_signal_name_end ();
3328 ui_out_text (uiout, ", ");
3329 annotate_signal_string ();
488f131b
JB
3330 ui_out_field_string (uiout, "signal-meaning",
3331 target_signal_to_string (stop_info));
8b93c638
JM
3332 annotate_signal_string_end ();
3333 ui_out_text (uiout, ".\n");
11cf8741
JM
3334 break;
3335 default:
8e65ff28
AC
3336 internal_error (__FILE__, __LINE__,
3337 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3338 break;
3339 }
3340}
c906108c 3341\f
43ff13b4 3342
c906108c
SS
3343/* Here to return control to GDB when the inferior stops for real.
3344 Print appropriate messages, remove breakpoints, give terminal our modes.
3345
3346 STOP_PRINT_FRAME nonzero means print the executing frame
3347 (pc, function, args, file, line number and line text).
3348 BREAKPOINTS_FAILED nonzero means stop was due to error
3349 attempting to insert breakpoints. */
3350
3351void
96baa820 3352normal_stop (void)
c906108c 3353{
c906108c
SS
3354 /* As with the notification of thread events, we want to delay
3355 notifying the user that we've switched thread context until
3356 the inferior actually stops.
3357
3358 (Note that there's no point in saying anything if the inferior
3359 has exited!) */
488f131b 3360 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
7a292a7a 3361 && target_has_execution)
c906108c
SS
3362 {
3363 target_terminal_ours_for_output ();
c3f6f71d 3364 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3365 target_pid_or_tid_to_str (inferior_ptid));
3366 previous_inferior_ptid = inferior_ptid;
c906108c 3367 }
c906108c
SS
3368
3369 /* Make sure that the current_frame's pc is correct. This
3370 is a correction for setting up the frame info before doing
3371 DECR_PC_AFTER_BREAK */
3372 if (target_has_execution && get_current_frame ())
3373 (get_current_frame ())->pc = read_pc ();
3374
c906108c
SS
3375 if (target_has_execution && breakpoints_inserted)
3376 {
3377 if (remove_breakpoints ())
3378 {
3379 target_terminal_ours_for_output ();
3380 printf_filtered ("Cannot remove breakpoints because ");
3381 printf_filtered ("program is no longer writable.\n");
3382 printf_filtered ("It might be running in another process.\n");
3383 printf_filtered ("Further execution is probably impossible.\n");
3384 }
3385 }
3386 breakpoints_inserted = 0;
3387
3388 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3389 Delete any breakpoint that is to be deleted at the next stop. */
3390
3391 breakpoint_auto_delete (stop_bpstat);
3392
3393 /* If an auto-display called a function and that got a signal,
3394 delete that auto-display to avoid an infinite recursion. */
3395
3396 if (stopped_by_random_signal)
3397 disable_current_display ();
3398
3399 /* Don't print a message if in the middle of doing a "step n"
3400 operation for n > 1 */
3401 if (step_multi && stop_step)
3402 goto done;
3403
3404 target_terminal_ours ();
3405
5913bcb0
AC
3406 /* Look up the hook_stop and run it (CLI internally handles problem
3407 of stop_command's pre-hook not existing). */
3408 if (stop_command)
3409 catch_errors (hook_stop_stub, stop_command,
3410 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3411
3412 if (!target_has_stack)
3413 {
3414
3415 goto done;
3416 }
3417
3418 /* Select innermost stack frame - i.e., current frame is frame 0,
3419 and current location is based on that.
3420 Don't do this on return from a stack dummy routine,
3421 or if the program has exited. */
3422
3423 if (!stop_stack_dummy)
3424 {
0f7d239c 3425 select_frame (get_current_frame ());
c906108c
SS
3426
3427 /* Print current location without a level number, if
c5aa993b
JM
3428 we have changed functions or hit a breakpoint.
3429 Print source line if we have one.
3430 bpstat_print() contains the logic deciding in detail
3431 what to print, based on the event(s) that just occurred. */
c906108c 3432
488f131b 3433 if (stop_print_frame && selected_frame)
c906108c
SS
3434 {
3435 int bpstat_ret;
3436 int source_flag;
917317f4 3437 int do_frame_printing = 1;
c906108c
SS
3438
3439 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3440 switch (bpstat_ret)
3441 {
3442 case PRINT_UNKNOWN:
3443 if (stop_step
3444 && step_frame_address == FRAME_FP (get_current_frame ())
3445 && step_start_function == find_pc_function (stop_pc))
488f131b 3446 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3447 else
488f131b 3448 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3449 break;
3450 case PRINT_SRC_AND_LOC:
488f131b 3451 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3452 break;
3453 case PRINT_SRC_ONLY:
c5394b80 3454 source_flag = SRC_LINE;
917317f4
JM
3455 break;
3456 case PRINT_NOTHING:
488f131b 3457 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3458 do_frame_printing = 0;
3459 break;
3460 default:
488f131b 3461 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3462 }
fb40c209 3463 /* For mi, have the same behavior every time we stop:
488f131b 3464 print everything but the source line. */
9dc5e2a9 3465 if (ui_out_is_mi_like_p (uiout))
fb40c209 3466 source_flag = LOC_AND_ADDRESS;
c906108c 3467
9dc5e2a9 3468 if (ui_out_is_mi_like_p (uiout))
39f77062 3469 ui_out_field_int (uiout, "thread-id",
488f131b 3470 pid_to_thread_id (inferior_ptid));
c906108c
SS
3471 /* The behavior of this routine with respect to the source
3472 flag is:
c5394b80
JM
3473 SRC_LINE: Print only source line
3474 LOCATION: Print only location
3475 SRC_AND_LOC: Print location and source line */
917317f4
JM
3476 if (do_frame_printing)
3477 show_and_print_stack_frame (selected_frame, -1, source_flag);
c906108c
SS
3478
3479 /* Display the auto-display expressions. */
3480 do_displays ();
3481 }
3482 }
3483
3484 /* Save the function value return registers, if we care.
3485 We might be about to restore their previous contents. */
3486 if (proceed_to_finish)
72cec141
AC
3487 /* NB: The copy goes through to the target picking up the value of
3488 all the registers. */
3489 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3490
3491 if (stop_stack_dummy)
3492 {
3493 /* Pop the empty frame that contains the stack dummy.
3494 POP_FRAME ends with a setting of the current frame, so we
c5aa993b 3495 can use that next. */
c906108c
SS
3496 POP_FRAME;
3497 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3498 Can't rely on restore_inferior_status because that only gets
3499 called if we don't stop in the called function. */
c906108c 3500 stop_pc = read_pc ();
0f7d239c 3501 select_frame (get_current_frame ());
c906108c
SS
3502 }
3503
c906108c
SS
3504done:
3505 annotate_stopped ();
3506}
3507
3508static int
96baa820 3509hook_stop_stub (void *cmd)
c906108c 3510{
5913bcb0 3511 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3512 return (0);
3513}
3514\f
c5aa993b 3515int
96baa820 3516signal_stop_state (int signo)
c906108c
SS
3517{
3518 return signal_stop[signo];
3519}
3520
c5aa993b 3521int
96baa820 3522signal_print_state (int signo)
c906108c
SS
3523{
3524 return signal_print[signo];
3525}
3526
c5aa993b 3527int
96baa820 3528signal_pass_state (int signo)
c906108c
SS
3529{
3530 return signal_program[signo];
3531}
3532
488f131b
JB
3533int
3534signal_stop_update (signo, state)
d4f3574e
SS
3535 int signo;
3536 int state;
3537{
3538 int ret = signal_stop[signo];
3539 signal_stop[signo] = state;
3540 return ret;
3541}
3542
488f131b
JB
3543int
3544signal_print_update (signo, state)
d4f3574e
SS
3545 int signo;
3546 int state;
3547{
3548 int ret = signal_print[signo];
3549 signal_print[signo] = state;
3550 return ret;
3551}
3552
488f131b
JB
3553int
3554signal_pass_update (signo, state)
d4f3574e
SS
3555 int signo;
3556 int state;
3557{
3558 int ret = signal_program[signo];
3559 signal_program[signo] = state;
3560 return ret;
3561}
3562
c906108c 3563static void
96baa820 3564sig_print_header (void)
c906108c
SS
3565{
3566 printf_filtered ("\
3567Signal Stop\tPrint\tPass to program\tDescription\n");
3568}
3569
3570static void
96baa820 3571sig_print_info (enum target_signal oursig)
c906108c
SS
3572{
3573 char *name = target_signal_to_name (oursig);
3574 int name_padding = 13 - strlen (name);
96baa820 3575
c906108c
SS
3576 if (name_padding <= 0)
3577 name_padding = 0;
3578
3579 printf_filtered ("%s", name);
488f131b 3580 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3581 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3582 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3583 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3584 printf_filtered ("%s\n", target_signal_to_string (oursig));
3585}
3586
3587/* Specify how various signals in the inferior should be handled. */
3588
3589static void
96baa820 3590handle_command (char *args, int from_tty)
c906108c
SS
3591{
3592 char **argv;
3593 int digits, wordlen;
3594 int sigfirst, signum, siglast;
3595 enum target_signal oursig;
3596 int allsigs;
3597 int nsigs;
3598 unsigned char *sigs;
3599 struct cleanup *old_chain;
3600
3601 if (args == NULL)
3602 {
3603 error_no_arg ("signal to handle");
3604 }
3605
3606 /* Allocate and zero an array of flags for which signals to handle. */
3607
3608 nsigs = (int) TARGET_SIGNAL_LAST;
3609 sigs = (unsigned char *) alloca (nsigs);
3610 memset (sigs, 0, nsigs);
3611
3612 /* Break the command line up into args. */
3613
3614 argv = buildargv (args);
3615 if (argv == NULL)
3616 {
3617 nomem (0);
3618 }
7a292a7a 3619 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3620
3621 /* Walk through the args, looking for signal oursigs, signal names, and
3622 actions. Signal numbers and signal names may be interspersed with
3623 actions, with the actions being performed for all signals cumulatively
3624 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3625
3626 while (*argv != NULL)
3627 {
3628 wordlen = strlen (*argv);
3629 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3630 {;
3631 }
3632 allsigs = 0;
3633 sigfirst = siglast = -1;
3634
3635 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3636 {
3637 /* Apply action to all signals except those used by the
3638 debugger. Silently skip those. */
3639 allsigs = 1;
3640 sigfirst = 0;
3641 siglast = nsigs - 1;
3642 }
3643 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3644 {
3645 SET_SIGS (nsigs, sigs, signal_stop);
3646 SET_SIGS (nsigs, sigs, signal_print);
3647 }
3648 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3649 {
3650 UNSET_SIGS (nsigs, sigs, signal_program);
3651 }
3652 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3653 {
3654 SET_SIGS (nsigs, sigs, signal_print);
3655 }
3656 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3657 {
3658 SET_SIGS (nsigs, sigs, signal_program);
3659 }
3660 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3661 {
3662 UNSET_SIGS (nsigs, sigs, signal_stop);
3663 }
3664 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3665 {
3666 SET_SIGS (nsigs, sigs, signal_program);
3667 }
3668 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3669 {
3670 UNSET_SIGS (nsigs, sigs, signal_print);
3671 UNSET_SIGS (nsigs, sigs, signal_stop);
3672 }
3673 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3674 {
3675 UNSET_SIGS (nsigs, sigs, signal_program);
3676 }
3677 else if (digits > 0)
3678 {
3679 /* It is numeric. The numeric signal refers to our own
3680 internal signal numbering from target.h, not to host/target
3681 signal number. This is a feature; users really should be
3682 using symbolic names anyway, and the common ones like
3683 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3684
3685 sigfirst = siglast = (int)
3686 target_signal_from_command (atoi (*argv));
3687 if ((*argv)[digits] == '-')
3688 {
3689 siglast = (int)
3690 target_signal_from_command (atoi ((*argv) + digits + 1));
3691 }
3692 if (sigfirst > siglast)
3693 {
3694 /* Bet he didn't figure we'd think of this case... */
3695 signum = sigfirst;
3696 sigfirst = siglast;
3697 siglast = signum;
3698 }
3699 }
3700 else
3701 {
3702 oursig = target_signal_from_name (*argv);
3703 if (oursig != TARGET_SIGNAL_UNKNOWN)
3704 {
3705 sigfirst = siglast = (int) oursig;
3706 }
3707 else
3708 {
3709 /* Not a number and not a recognized flag word => complain. */
3710 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3711 }
3712 }
3713
3714 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3715 which signals to apply actions to. */
c906108c
SS
3716
3717 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3718 {
3719 switch ((enum target_signal) signum)
3720 {
3721 case TARGET_SIGNAL_TRAP:
3722 case TARGET_SIGNAL_INT:
3723 if (!allsigs && !sigs[signum])
3724 {
3725 if (query ("%s is used by the debugger.\n\
488f131b 3726Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3727 {
3728 sigs[signum] = 1;
3729 }
3730 else
3731 {
3732 printf_unfiltered ("Not confirmed, unchanged.\n");
3733 gdb_flush (gdb_stdout);
3734 }
3735 }
3736 break;
3737 case TARGET_SIGNAL_0:
3738 case TARGET_SIGNAL_DEFAULT:
3739 case TARGET_SIGNAL_UNKNOWN:
3740 /* Make sure that "all" doesn't print these. */
3741 break;
3742 default:
3743 sigs[signum] = 1;
3744 break;
3745 }
3746 }
3747
3748 argv++;
3749 }
3750
39f77062 3751 target_notice_signals (inferior_ptid);
c906108c
SS
3752
3753 if (from_tty)
3754 {
3755 /* Show the results. */
3756 sig_print_header ();
3757 for (signum = 0; signum < nsigs; signum++)
3758 {
3759 if (sigs[signum])
3760 {
3761 sig_print_info (signum);
3762 }
3763 }
3764 }
3765
3766 do_cleanups (old_chain);
3767}
3768
3769static void
96baa820 3770xdb_handle_command (char *args, int from_tty)
c906108c
SS
3771{
3772 char **argv;
3773 struct cleanup *old_chain;
3774
3775 /* Break the command line up into args. */
3776
3777 argv = buildargv (args);
3778 if (argv == NULL)
3779 {
3780 nomem (0);
3781 }
7a292a7a 3782 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3783 if (argv[1] != (char *) NULL)
3784 {
3785 char *argBuf;
3786 int bufLen;
3787
3788 bufLen = strlen (argv[0]) + 20;
3789 argBuf = (char *) xmalloc (bufLen);
3790 if (argBuf)
3791 {
3792 int validFlag = 1;
3793 enum target_signal oursig;
3794
3795 oursig = target_signal_from_name (argv[0]);
3796 memset (argBuf, 0, bufLen);
3797 if (strcmp (argv[1], "Q") == 0)
3798 sprintf (argBuf, "%s %s", argv[0], "noprint");
3799 else
3800 {
3801 if (strcmp (argv[1], "s") == 0)
3802 {
3803 if (!signal_stop[oursig])
3804 sprintf (argBuf, "%s %s", argv[0], "stop");
3805 else
3806 sprintf (argBuf, "%s %s", argv[0], "nostop");
3807 }
3808 else if (strcmp (argv[1], "i") == 0)
3809 {
3810 if (!signal_program[oursig])
3811 sprintf (argBuf, "%s %s", argv[0], "pass");
3812 else
3813 sprintf (argBuf, "%s %s", argv[0], "nopass");
3814 }
3815 else if (strcmp (argv[1], "r") == 0)
3816 {
3817 if (!signal_print[oursig])
3818 sprintf (argBuf, "%s %s", argv[0], "print");
3819 else
3820 sprintf (argBuf, "%s %s", argv[0], "noprint");
3821 }
3822 else
3823 validFlag = 0;
3824 }
3825 if (validFlag)
3826 handle_command (argBuf, from_tty);
3827 else
3828 printf_filtered ("Invalid signal handling flag.\n");
3829 if (argBuf)
b8c9b27d 3830 xfree (argBuf);
c906108c
SS
3831 }
3832 }
3833 do_cleanups (old_chain);
3834}
3835
3836/* Print current contents of the tables set by the handle command.
3837 It is possible we should just be printing signals actually used
3838 by the current target (but for things to work right when switching
3839 targets, all signals should be in the signal tables). */
3840
3841static void
96baa820 3842signals_info (char *signum_exp, int from_tty)
c906108c
SS
3843{
3844 enum target_signal oursig;
3845 sig_print_header ();
3846
3847 if (signum_exp)
3848 {
3849 /* First see if this is a symbol name. */
3850 oursig = target_signal_from_name (signum_exp);
3851 if (oursig == TARGET_SIGNAL_UNKNOWN)
3852 {
3853 /* No, try numeric. */
3854 oursig =
bb518678 3855 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3856 }
3857 sig_print_info (oursig);
3858 return;
3859 }
3860
3861 printf_filtered ("\n");
3862 /* These ugly casts brought to you by the native VAX compiler. */
3863 for (oursig = TARGET_SIGNAL_FIRST;
3864 (int) oursig < (int) TARGET_SIGNAL_LAST;
3865 oursig = (enum target_signal) ((int) oursig + 1))
3866 {
3867 QUIT;
3868
3869 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3870 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3871 sig_print_info (oursig);
3872 }
3873
3874 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3875}
3876\f
7a292a7a
SS
3877struct inferior_status
3878{
3879 enum target_signal stop_signal;
3880 CORE_ADDR stop_pc;
3881 bpstat stop_bpstat;
3882 int stop_step;
3883 int stop_stack_dummy;
3884 int stopped_by_random_signal;
3885 int trap_expected;
3886 CORE_ADDR step_range_start;
3887 CORE_ADDR step_range_end;
3888 CORE_ADDR step_frame_address;
5fbbeb29 3889 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3890 CORE_ADDR step_resume_break_address;
3891 int stop_after_trap;
3892 int stop_soon_quietly;
72cec141 3893 struct regcache *stop_registers;
7a292a7a
SS
3894
3895 /* These are here because if call_function_by_hand has written some
3896 registers and then decides to call error(), we better not have changed
3897 any registers. */
72cec141 3898 struct regcache *registers;
7a292a7a 3899
101dcfbe
AC
3900 /* A frame unique identifier. */
3901 struct frame_id selected_frame_id;
3902
7a292a7a
SS
3903 int breakpoint_proceeded;
3904 int restore_stack_info;
3905 int proceed_to_finish;
3906};
3907
7a292a7a 3908void
96baa820
JM
3909write_inferior_status_register (struct inferior_status *inf_status, int regno,
3910 LONGEST val)
7a292a7a 3911{
c5aa993b 3912 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3913 void *buf = alloca (size);
3914 store_signed_integer (buf, size, val);
0818c12a 3915 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3916}
3917
c906108c
SS
3918/* Save all of the information associated with the inferior<==>gdb
3919 connection. INF_STATUS is a pointer to a "struct inferior_status"
3920 (defined in inferior.h). */
3921
7a292a7a 3922struct inferior_status *
96baa820 3923save_inferior_status (int restore_stack_info)
c906108c 3924{
72cec141 3925 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3926
c906108c
SS
3927 inf_status->stop_signal = stop_signal;
3928 inf_status->stop_pc = stop_pc;
3929 inf_status->stop_step = stop_step;
3930 inf_status->stop_stack_dummy = stop_stack_dummy;
3931 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3932 inf_status->trap_expected = trap_expected;
3933 inf_status->step_range_start = step_range_start;
3934 inf_status->step_range_end = step_range_end;
3935 inf_status->step_frame_address = step_frame_address;
3936 inf_status->step_over_calls = step_over_calls;
3937 inf_status->stop_after_trap = stop_after_trap;
3938 inf_status->stop_soon_quietly = stop_soon_quietly;
3939 /* Save original bpstat chain here; replace it with copy of chain.
3940 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3941 hand them back the original chain when restore_inferior_status is
3942 called. */
c906108c
SS
3943 inf_status->stop_bpstat = stop_bpstat;
3944 stop_bpstat = bpstat_copy (stop_bpstat);
3945 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3946 inf_status->restore_stack_info = restore_stack_info;
3947 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3948
72cec141 3949 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3950
72cec141 3951 inf_status->registers = regcache_dup (current_regcache);
c906108c 3952
101dcfbe 3953 get_frame_id (selected_frame, &inf_status->selected_frame_id);
7a292a7a 3954 return inf_status;
c906108c
SS
3955}
3956
c906108c 3957static int
96baa820 3958restore_selected_frame (void *args)
c906108c 3959{
488f131b 3960 struct frame_id *fid = (struct frame_id *) args;
c906108c 3961 struct frame_info *frame;
c906108c 3962
101dcfbe 3963 frame = frame_find_by_id (*fid);
c906108c
SS
3964
3965 /* If inf_status->selected_frame_address is NULL, there was no
3966 previously selected frame. */
101dcfbe 3967 if (frame == NULL)
c906108c
SS
3968 {
3969 warning ("Unable to restore previously selected frame.\n");
3970 return 0;
3971 }
3972
0f7d239c 3973 select_frame (frame);
c906108c
SS
3974
3975 return (1);
3976}
3977
3978void
96baa820 3979restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3980{
3981 stop_signal = inf_status->stop_signal;
3982 stop_pc = inf_status->stop_pc;
3983 stop_step = inf_status->stop_step;
3984 stop_stack_dummy = inf_status->stop_stack_dummy;
3985 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3986 trap_expected = inf_status->trap_expected;
3987 step_range_start = inf_status->step_range_start;
3988 step_range_end = inf_status->step_range_end;
3989 step_frame_address = inf_status->step_frame_address;
3990 step_over_calls = inf_status->step_over_calls;
3991 stop_after_trap = inf_status->stop_after_trap;
3992 stop_soon_quietly = inf_status->stop_soon_quietly;
3993 bpstat_clear (&stop_bpstat);
3994 stop_bpstat = inf_status->stop_bpstat;
3995 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3996 proceed_to_finish = inf_status->proceed_to_finish;
3997
72cec141
AC
3998 /* FIXME: Is the restore of stop_registers always needed. */
3999 regcache_xfree (stop_registers);
4000 stop_registers = inf_status->stop_registers;
c906108c
SS
4001
4002 /* The inferior can be gone if the user types "print exit(0)"
4003 (and perhaps other times). */
4004 if (target_has_execution)
72cec141
AC
4005 /* NB: The register write goes through to the target. */
4006 regcache_cpy (current_regcache, inf_status->registers);
4007 regcache_xfree (inf_status->registers);
c906108c 4008
c906108c
SS
4009 /* FIXME: If we are being called after stopping in a function which
4010 is called from gdb, we should not be trying to restore the
4011 selected frame; it just prints a spurious error message (The
4012 message is useful, however, in detecting bugs in gdb (like if gdb
4013 clobbers the stack)). In fact, should we be restoring the
4014 inferior status at all in that case? . */
4015
4016 if (target_has_stack && inf_status->restore_stack_info)
4017 {
c906108c 4018 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4019 walking the stack might encounter a garbage pointer and
4020 error() trying to dereference it. */
488f131b
JB
4021 if (catch_errors
4022 (restore_selected_frame, &inf_status->selected_frame_id,
4023 "Unable to restore previously selected frame:\n",
4024 RETURN_MASK_ERROR) == 0)
c906108c
SS
4025 /* Error in restoring the selected frame. Select the innermost
4026 frame. */
0f7d239c 4027 select_frame (get_current_frame ());
c906108c
SS
4028
4029 }
c906108c 4030
72cec141 4031 xfree (inf_status);
7a292a7a 4032}
c906108c 4033
74b7792f
AC
4034static void
4035do_restore_inferior_status_cleanup (void *sts)
4036{
4037 restore_inferior_status (sts);
4038}
4039
4040struct cleanup *
4041make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4042{
4043 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4044}
4045
c906108c 4046void
96baa820 4047discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4048{
4049 /* See save_inferior_status for info on stop_bpstat. */
4050 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
4051 regcache_xfree (inf_status->registers);
4052 regcache_xfree (inf_status->stop_registers);
4053 xfree (inf_status);
7a292a7a
SS
4054}
4055
ca6724c1
KB
4056/* Oft used ptids */
4057ptid_t null_ptid;
4058ptid_t minus_one_ptid;
4059
4060/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4061
ca6724c1
KB
4062ptid_t
4063ptid_build (int pid, long lwp, long tid)
4064{
4065 ptid_t ptid;
4066
4067 ptid.pid = pid;
4068 ptid.lwp = lwp;
4069 ptid.tid = tid;
4070 return ptid;
4071}
4072
4073/* Create a ptid from just a pid. */
4074
4075ptid_t
4076pid_to_ptid (int pid)
4077{
4078 return ptid_build (pid, 0, 0);
4079}
4080
4081/* Fetch the pid (process id) component from a ptid. */
4082
4083int
4084ptid_get_pid (ptid_t ptid)
4085{
4086 return ptid.pid;
4087}
4088
4089/* Fetch the lwp (lightweight process) component from a ptid. */
4090
4091long
4092ptid_get_lwp (ptid_t ptid)
4093{
4094 return ptid.lwp;
4095}
4096
4097/* Fetch the tid (thread id) component from a ptid. */
4098
4099long
4100ptid_get_tid (ptid_t ptid)
4101{
4102 return ptid.tid;
4103}
4104
4105/* ptid_equal() is used to test equality of two ptids. */
4106
4107int
4108ptid_equal (ptid_t ptid1, ptid_t ptid2)
4109{
4110 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4111 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4112}
4113
4114/* restore_inferior_ptid() will be used by the cleanup machinery
4115 to restore the inferior_ptid value saved in a call to
4116 save_inferior_ptid(). */
ce696e05
KB
4117
4118static void
4119restore_inferior_ptid (void *arg)
4120{
4121 ptid_t *saved_ptid_ptr = arg;
4122 inferior_ptid = *saved_ptid_ptr;
4123 xfree (arg);
4124}
4125
4126/* Save the value of inferior_ptid so that it may be restored by a
4127 later call to do_cleanups(). Returns the struct cleanup pointer
4128 needed for later doing the cleanup. */
4129
4130struct cleanup *
4131save_inferior_ptid (void)
4132{
4133 ptid_t *saved_ptid_ptr;
4134
4135 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4136 *saved_ptid_ptr = inferior_ptid;
4137 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4138}
c5aa993b 4139\f
488f131b 4140
7a292a7a 4141static void
96baa820 4142build_infrun (void)
7a292a7a 4143{
72cec141 4144 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 4145}
c906108c 4146
c906108c 4147void
96baa820 4148_initialize_infrun (void)
c906108c
SS
4149{
4150 register int i;
4151 register int numsigs;
4152 struct cmd_list_element *c;
4153
0f71a2f6
JM
4154 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4155 register_gdbarch_swap (NULL, 0, build_infrun);
4156
c906108c
SS
4157 add_info ("signals", signals_info,
4158 "What debugger does when program gets various signals.\n\
4159Specify a signal as argument to print info on that signal only.");
4160 add_info_alias ("handle", "signals", 0);
4161
4162 add_com ("handle", class_run, handle_command,
4163 concat ("Specify how to handle a signal.\n\
4164Args are signals and actions to apply to those signals.\n\
4165Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4166from 1-15 are allowed for compatibility with old versions of GDB.\n\
4167Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4168The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4169used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4170\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4171Stop means reenter debugger if this signal happens (implies print).\n\
4172Print means print a message if this signal happens.\n\
4173Pass means let program see this signal; otherwise program doesn't know.\n\
4174Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4175Pass and Stop may be combined.", NULL));
4176 if (xdb_commands)
4177 {
4178 add_com ("lz", class_info, signals_info,
4179 "What debugger does when program gets various signals.\n\
4180Specify a signal as argument to print info on that signal only.");
4181 add_com ("z", class_run, xdb_handle_command,
4182 concat ("Specify how to handle a signal.\n\
4183Args are signals and actions to apply to those signals.\n\
4184Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4185from 1-15 are allowed for compatibility with old versions of GDB.\n\
4186Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4187The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 4188used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4189\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4190nopass), \"Q\" (noprint)\n\
4191Stop means reenter debugger if this signal happens (implies print).\n\
4192Print means print a message if this signal happens.\n\
4193Pass means let program see this signal; otherwise program doesn't know.\n\
4194Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4195Pass and Stop may be combined.", NULL));
4196 }
4197
4198 if (!dbx_commands)
488f131b
JB
4199 stop_command =
4200 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
4201This allows you to set a list of commands to be run each time execution\n\
4202of the program stops.", &cmdlist);
4203
4204 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 4205 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
4206 signal_print = (unsigned char *)
4207 xmalloc (sizeof (signal_print[0]) * numsigs);
4208 signal_program = (unsigned char *)
4209 xmalloc (sizeof (signal_program[0]) * numsigs);
4210 for (i = 0; i < numsigs; i++)
4211 {
4212 signal_stop[i] = 1;
4213 signal_print[i] = 1;
4214 signal_program[i] = 1;
4215 }
4216
4217 /* Signals caused by debugger's own actions
4218 should not be given to the program afterwards. */
4219 signal_program[TARGET_SIGNAL_TRAP] = 0;
4220 signal_program[TARGET_SIGNAL_INT] = 0;
4221
4222 /* Signals that are not errors should not normally enter the debugger. */
4223 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4224 signal_print[TARGET_SIGNAL_ALRM] = 0;
4225 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4226 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4227 signal_stop[TARGET_SIGNAL_PROF] = 0;
4228 signal_print[TARGET_SIGNAL_PROF] = 0;
4229 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4230 signal_print[TARGET_SIGNAL_CHLD] = 0;
4231 signal_stop[TARGET_SIGNAL_IO] = 0;
4232 signal_print[TARGET_SIGNAL_IO] = 0;
4233 signal_stop[TARGET_SIGNAL_POLL] = 0;
4234 signal_print[TARGET_SIGNAL_POLL] = 0;
4235 signal_stop[TARGET_SIGNAL_URG] = 0;
4236 signal_print[TARGET_SIGNAL_URG] = 0;
4237 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4238 signal_print[TARGET_SIGNAL_WINCH] = 0;
4239
cd0fc7c3
SS
4240 /* These signals are used internally by user-level thread
4241 implementations. (See signal(5) on Solaris.) Like the above
4242 signals, a healthy program receives and handles them as part of
4243 its normal operation. */
4244 signal_stop[TARGET_SIGNAL_LWP] = 0;
4245 signal_print[TARGET_SIGNAL_LWP] = 0;
4246 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4247 signal_print[TARGET_SIGNAL_WAITING] = 0;
4248 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4249 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4250
c906108c
SS
4251#ifdef SOLIB_ADD
4252 add_show_from_set
4253 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4254 (char *) &stop_on_solib_events,
4255 "Set stopping for shared library events.\n\
4256If nonzero, gdb will give control to the user when the dynamic linker\n\
4257notifies gdb of shared library events. The most common event of interest\n\
488f131b 4258to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4259#endif
4260
4261 c = add_set_enum_cmd ("follow-fork-mode",
4262 class_run,
488f131b 4263 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4264/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4265 kernel problem. It's also not terribly useful without a GUI to
4266 help the user drive two debuggers. So for now, I'm disabling
4267 the "both" option. */
c5aa993b
JM
4268/* "Set debugger response to a program call of fork \
4269 or vfork.\n\
4270 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4271 parent - the original process is debugged after a fork\n\
4272 child - the new process is debugged after a fork\n\
4273 both - both the parent and child are debugged after a fork\n\
4274 ask - the debugger will ask for one of the above choices\n\
4275 For \"both\", another copy of the debugger will be started to follow\n\
4276 the new child process. The original debugger will continue to follow\n\
4277 the original parent process. To distinguish their prompts, the\n\
4278 debugger copy's prompt will be changed.\n\
4279 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4280 By default, the debugger will follow the parent process.",
4281 */
c906108c
SS
4282 "Set debugger response to a program call of fork \
4283or vfork.\n\
4284A fork or vfork creates a new process. follow-fork-mode can be:\n\
4285 parent - the original process is debugged after a fork\n\
4286 child - the new process is debugged after a fork\n\
4287 ask - the debugger will ask for one of the above choices\n\
4288For \"parent\" or \"child\", the unfollowed process will run free.\n\
488f131b 4289By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4290 add_show_from_set (c, &showlist);
4291
488f131b 4292 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4293 &scheduler_mode, /* current mode */
c906108c
SS
4294 "Set mode for locking scheduler during execution.\n\
4295off == no locking (threads may preempt at any time)\n\
4296on == full locking (no thread except the current thread may run)\n\
4297step == scheduler locked during every single-step operation.\n\
4298 In this mode, no other thread may run during a step command.\n\
488f131b 4299 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4300
9f60d481 4301 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4302 add_show_from_set (c, &showlist);
5fbbeb29
CF
4303
4304 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4305 var_boolean, (char *) &step_stop_if_no_debug,
4306 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4307function without debug line information will stop at the first\n\
4308instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4309the step command stops at a different source line.", &setlist);
5fbbeb29 4310 add_show_from_set (c, &showlist);
ca6724c1
KB
4311
4312 /* ptid initializations */
4313 null_ptid = ptid_build (0, 0, 0);
4314 minus_one_ptid = ptid_build (-1, 0, 0);
4315 inferior_ptid = null_ptid;
4316 target_last_wait_ptid = minus_one_ptid;
c906108c 4317}
This page took 0.430749 seconds and 4 git commands to generate.