Update an obsolete cleanup comment
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
c906108c
SS
71
72/* Prototypes for local functions */
73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
4ef3f3be 78static int follow_fork (void);
96baa820 79
d83ad864
DB
80static int follow_fork_inferior (int follow_child, int detach_fork);
81
82static void follow_inferior_reset_breakpoints (void);
83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
2c03e5be 88static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
89
90static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
2484c66b
UW
92static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
8550d3b3
YQ
94static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
aff4e175
AB
96static void resume (gdb_signal sig);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125}
126
0b333c5e
PA
127/* See infrun.h. */
128
129void
130mark_infrun_async_event_handler (void)
131{
132 mark_async_event_handler (infrun_async_inferior_event_token);
133}
134
5fbbeb29
CF
135/* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138int step_stop_if_no_debug = 0;
920d2a44
AC
139static void
140show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144}
5fbbeb29 145
b9f437de
PA
146/* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
96baa820 149
39f77062 150static ptid_t previous_inferior_ptid;
7a292a7a 151
07107ca6
LM
152/* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157static int detach_fork = 1;
6c95b8df 158
237fc4c9
PA
159int debug_displaced = 0;
160static void
161show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165}
166
ccce17b0 167unsigned int debug_infrun = 0;
920d2a44
AC
168static void
169show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173}
527159b7 174
03583c20
UW
175
176/* Support for disabling address space randomization. */
177
178int disable_randomization = 1;
179
180static void
181show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193}
194
195static void
eb4c3f4a 196set_disable_randomization (const char *args, int from_tty,
03583c20
UW
197 struct cmd_list_element *c)
198{
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203}
204
d32dc48e
PA
205/* User interface for non-stop mode. */
206
207int non_stop = 0;
208static int non_stop_1 = 0;
209
210static void
eb4c3f4a 211set_non_stop (const char *args, int from_tty,
d32dc48e
PA
212 struct cmd_list_element *c)
213{
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221}
222
223static void
224show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226{
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230}
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
d914c394
SS
236int observer_mode = 0;
237static int observer_mode_1 = 0;
238
239static void
eb4c3f4a 240set_observer_mode (const char *args, int from_tty,
d914c394
SS
241 struct cmd_list_element *c)
242{
d914c394
SS
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
d914c394
SS
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273}
274
275static void
276show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280}
281
282/* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288void
289update_observer_mode (void)
290{
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305}
c2c6d25f 306
c906108c
SS
307/* Tables of how to react to signals; the user sets them. */
308
309static unsigned char *signal_stop;
310static unsigned char *signal_print;
311static unsigned char *signal_program;
312
ab04a2af
TT
313/* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
315 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
316 signals. */
317static unsigned char *signal_catch;
318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322static unsigned char *signal_pass;
323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
9b224c5e
PA
340/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
341 this function is to avoid exporting `signal_program'. */
342
343void
344update_signals_program_target (void)
345{
a493e3e2 346 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
347}
348
1777feb0 349/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 350
edb3359d 351#define RESUME_ALL minus_one_ptid
c906108c
SS
352
353/* Command list pointer for the "stop" placeholder. */
354
355static struct cmd_list_element *stop_command;
356
c906108c
SS
357/* Nonzero if we want to give control to the user when we're notified
358 of shared library events by the dynamic linker. */
628fe4e4 359int stop_on_solib_events;
f9e14852
GB
360
361/* Enable or disable optional shared library event breakpoints
362 as appropriate when the above flag is changed. */
363
364static void
eb4c3f4a
TT
365set_stop_on_solib_events (const char *args,
366 int from_tty, struct cmd_list_element *c)
f9e14852
GB
367{
368 update_solib_breakpoints ();
369}
370
920d2a44
AC
371static void
372show_stop_on_solib_events (struct ui_file *file, int from_tty,
373 struct cmd_list_element *c, const char *value)
374{
375 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
376 value);
377}
c906108c 378
c906108c
SS
379/* Nonzero after stop if current stack frame should be printed. */
380
381static int stop_print_frame;
382
e02bc4cc 383/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
384 returned by target_wait()/deprecated_target_wait_hook(). This
385 information is returned by get_last_target_status(). */
39f77062 386static ptid_t target_last_wait_ptid;
e02bc4cc
DS
387static struct target_waitstatus target_last_waitstatus;
388
4e1c45ea 389void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
40478521 394static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
d83ad864
DB
412/* Handle changes to the inferior list based on the type of fork,
413 which process is being followed, and whether the other process
414 should be detached. On entry inferior_ptid must be the ptid of
415 the fork parent. At return inferior_ptid is the ptid of the
416 followed inferior. */
417
418static int
419follow_fork_inferior (int follow_child, int detach_fork)
420{
421 int has_vforked;
79639e11 422 ptid_t parent_ptid, child_ptid;
d83ad864
DB
423
424 has_vforked = (inferior_thread ()->pending_follow.kind
425 == TARGET_WAITKIND_VFORKED);
79639e11
PA
426 parent_ptid = inferior_ptid;
427 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
428
429 if (has_vforked
430 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 431 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
432 && !(follow_child || detach_fork || sched_multi))
433 {
434 /* The parent stays blocked inside the vfork syscall until the
435 child execs or exits. If we don't let the child run, then
436 the parent stays blocked. If we're telling the parent to run
437 in the foreground, the user will not be able to ctrl-c to get
438 back the terminal, effectively hanging the debug session. */
439 fprintf_filtered (gdb_stderr, _("\
440Can not resume the parent process over vfork in the foreground while\n\
441holding the child stopped. Try \"set detach-on-fork\" or \
442\"set schedule-multiple\".\n"));
443 /* FIXME output string > 80 columns. */
444 return 1;
445 }
446
447 if (!follow_child)
448 {
449 /* Detach new forked process? */
450 if (detach_fork)
451 {
d83ad864
DB
452 /* Before detaching from the child, remove all breakpoints
453 from it. If we forked, then this has already been taken
454 care of by infrun.c. If we vforked however, any
455 breakpoint inserted in the parent is visible in the
456 child, even those added while stopped in a vfork
457 catchpoint. This will remove the breakpoints from the
458 parent also, but they'll be reinserted below. */
459 if (has_vforked)
460 {
461 /* Keep breakpoints list in sync. */
00431a78 462 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
463 }
464
f67c0c91 465 if (print_inferior_events)
d83ad864 466 {
8dd06f7a 467 /* Ensure that we have a process ptid. */
e99b03dc 468 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 469
223ffa71 470 target_terminal::ours_for_output ();
d83ad864 471 fprintf_filtered (gdb_stdlog,
f67c0c91 472 _("[Detaching after %s from child %s]\n"),
6f259a23 473 has_vforked ? "vfork" : "fork",
8dd06f7a 474 target_pid_to_str (process_ptid));
d83ad864
DB
475 }
476 }
477 else
478 {
479 struct inferior *parent_inf, *child_inf;
d83ad864
DB
480
481 /* Add process to GDB's tables. */
e99b03dc 482 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
483
484 parent_inf = current_inferior ();
485 child_inf->attach_flag = parent_inf->attach_flag;
486 copy_terminal_info (child_inf, parent_inf);
487 child_inf->gdbarch = parent_inf->gdbarch;
488 copy_inferior_target_desc_info (child_inf, parent_inf);
489
5ed8105e 490 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 491
79639e11 492 inferior_ptid = child_ptid;
f67c0c91 493 add_thread_silent (inferior_ptid);
2a00d7ce 494 set_current_inferior (child_inf);
d83ad864
DB
495 child_inf->symfile_flags = SYMFILE_NO_READ;
496
497 /* If this is a vfork child, then the address-space is
498 shared with the parent. */
499 if (has_vforked)
500 {
501 child_inf->pspace = parent_inf->pspace;
502 child_inf->aspace = parent_inf->aspace;
503
504 /* The parent will be frozen until the child is done
505 with the shared region. Keep track of the
506 parent. */
507 child_inf->vfork_parent = parent_inf;
508 child_inf->pending_detach = 0;
509 parent_inf->vfork_child = child_inf;
510 parent_inf->pending_detach = 0;
511 }
512 else
513 {
514 child_inf->aspace = new_address_space ();
564b1e3f 515 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
516 child_inf->removable = 1;
517 set_current_program_space (child_inf->pspace);
518 clone_program_space (child_inf->pspace, parent_inf->pspace);
519
520 /* Let the shared library layer (e.g., solib-svr4) learn
521 about this new process, relocate the cloned exec, pull
522 in shared libraries, and install the solib event
523 breakpoint. If a "cloned-VM" event was propagated
524 better throughout the core, this wouldn't be
525 required. */
526 solib_create_inferior_hook (0);
527 }
d83ad864
DB
528 }
529
530 if (has_vforked)
531 {
532 struct inferior *parent_inf;
533
534 parent_inf = current_inferior ();
535
536 /* If we detached from the child, then we have to be careful
537 to not insert breakpoints in the parent until the child
538 is done with the shared memory region. However, if we're
539 staying attached to the child, then we can and should
540 insert breakpoints, so that we can debug it. A
541 subsequent child exec or exit is enough to know when does
542 the child stops using the parent's address space. */
543 parent_inf->waiting_for_vfork_done = detach_fork;
544 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
545 }
546 }
547 else
548 {
549 /* Follow the child. */
550 struct inferior *parent_inf, *child_inf;
551 struct program_space *parent_pspace;
552
f67c0c91 553 if (print_inferior_events)
d83ad864 554 {
f67c0c91
SDJ
555 std::string parent_pid = target_pid_to_str (parent_ptid);
556 std::string child_pid = target_pid_to_str (child_ptid);
557
223ffa71 558 target_terminal::ours_for_output ();
6f259a23 559 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
560 _("[Attaching after %s %s to child %s]\n"),
561 parent_pid.c_str (),
6f259a23 562 has_vforked ? "vfork" : "fork",
f67c0c91 563 child_pid.c_str ());
d83ad864
DB
564 }
565
566 /* Add the new inferior first, so that the target_detach below
567 doesn't unpush the target. */
568
e99b03dc 569 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
570
571 parent_inf = current_inferior ();
572 child_inf->attach_flag = parent_inf->attach_flag;
573 copy_terminal_info (child_inf, parent_inf);
574 child_inf->gdbarch = parent_inf->gdbarch;
575 copy_inferior_target_desc_info (child_inf, parent_inf);
576
577 parent_pspace = parent_inf->pspace;
578
579 /* If we're vforking, we want to hold on to the parent until the
580 child exits or execs. At child exec or exit time we can
581 remove the old breakpoints from the parent and detach or
582 resume debugging it. Otherwise, detach the parent now; we'll
583 want to reuse it's program/address spaces, but we can't set
584 them to the child before removing breakpoints from the
585 parent, otherwise, the breakpoints module could decide to
586 remove breakpoints from the wrong process (since they'd be
587 assigned to the same address space). */
588
589 if (has_vforked)
590 {
591 gdb_assert (child_inf->vfork_parent == NULL);
592 gdb_assert (parent_inf->vfork_child == NULL);
593 child_inf->vfork_parent = parent_inf;
594 child_inf->pending_detach = 0;
595 parent_inf->vfork_child = child_inf;
596 parent_inf->pending_detach = detach_fork;
597 parent_inf->waiting_for_vfork_done = 0;
598 }
599 else if (detach_fork)
6f259a23 600 {
f67c0c91 601 if (print_inferior_events)
6f259a23 602 {
8dd06f7a 603 /* Ensure that we have a process ptid. */
e99b03dc 604 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 605
223ffa71 606 target_terminal::ours_for_output ();
6f259a23 607 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
608 _("[Detaching after fork from "
609 "parent %s]\n"),
8dd06f7a 610 target_pid_to_str (process_ptid));
6f259a23
DB
611 }
612
6e1e1966 613 target_detach (parent_inf, 0);
6f259a23 614 }
d83ad864
DB
615
616 /* Note that the detach above makes PARENT_INF dangling. */
617
618 /* Add the child thread to the appropriate lists, and switch to
619 this new thread, before cloning the program space, and
620 informing the solib layer about this new process. */
621
79639e11 622 inferior_ptid = child_ptid;
f67c0c91 623 add_thread_silent (inferior_ptid);
2a00d7ce 624 set_current_inferior (child_inf);
d83ad864
DB
625
626 /* If this is a vfork child, then the address-space is shared
627 with the parent. If we detached from the parent, then we can
628 reuse the parent's program/address spaces. */
629 if (has_vforked || detach_fork)
630 {
631 child_inf->pspace = parent_pspace;
632 child_inf->aspace = child_inf->pspace->aspace;
633 }
634 else
635 {
636 child_inf->aspace = new_address_space ();
564b1e3f 637 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
638 child_inf->removable = 1;
639 child_inf->symfile_flags = SYMFILE_NO_READ;
640 set_current_program_space (child_inf->pspace);
641 clone_program_space (child_inf->pspace, parent_pspace);
642
643 /* Let the shared library layer (e.g., solib-svr4) learn
644 about this new process, relocate the cloned exec, pull in
645 shared libraries, and install the solib event breakpoint.
646 If a "cloned-VM" event was propagated better throughout
647 the core, this wouldn't be required. */
648 solib_create_inferior_hook (0);
649 }
650 }
651
652 return target_follow_fork (follow_child, detach_fork);
653}
654
e58b0e63
PA
655/* Tell the target to follow the fork we're stopped at. Returns true
656 if the inferior should be resumed; false, if the target for some
657 reason decided it's best not to resume. */
658
6604731b 659static int
4ef3f3be 660follow_fork (void)
c906108c 661{
ea1dd7bc 662 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
663 int should_resume = 1;
664 struct thread_info *tp;
665
666 /* Copy user stepping state to the new inferior thread. FIXME: the
667 followed fork child thread should have a copy of most of the
4e3990f4
DE
668 parent thread structure's run control related fields, not just these.
669 Initialized to avoid "may be used uninitialized" warnings from gcc. */
670 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 671 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
672 CORE_ADDR step_range_start = 0;
673 CORE_ADDR step_range_end = 0;
674 struct frame_id step_frame_id = { 0 };
8980e177 675 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
676
677 if (!non_stop)
678 {
679 ptid_t wait_ptid;
680 struct target_waitstatus wait_status;
681
682 /* Get the last target status returned by target_wait(). */
683 get_last_target_status (&wait_ptid, &wait_status);
684
685 /* If not stopped at a fork event, then there's nothing else to
686 do. */
687 if (wait_status.kind != TARGET_WAITKIND_FORKED
688 && wait_status.kind != TARGET_WAITKIND_VFORKED)
689 return 1;
690
691 /* Check if we switched over from WAIT_PTID, since the event was
692 reported. */
00431a78
PA
693 if (wait_ptid != minus_one_ptid
694 && inferior_ptid != wait_ptid)
e58b0e63
PA
695 {
696 /* We did. Switch back to WAIT_PTID thread, to tell the
697 target to follow it (in either direction). We'll
698 afterwards refuse to resume, and inform the user what
699 happened. */
00431a78
PA
700 thread_info *wait_thread
701 = find_thread_ptid (wait_ptid);
702 switch_to_thread (wait_thread);
e58b0e63
PA
703 should_resume = 0;
704 }
705 }
706
707 tp = inferior_thread ();
708
709 /* If there were any forks/vforks that were caught and are now to be
710 followed, then do so now. */
711 switch (tp->pending_follow.kind)
712 {
713 case TARGET_WAITKIND_FORKED:
714 case TARGET_WAITKIND_VFORKED:
715 {
716 ptid_t parent, child;
717
718 /* If the user did a next/step, etc, over a fork call,
719 preserve the stepping state in the fork child. */
720 if (follow_child && should_resume)
721 {
8358c15c
JK
722 step_resume_breakpoint = clone_momentary_breakpoint
723 (tp->control.step_resume_breakpoint);
16c381f0
JK
724 step_range_start = tp->control.step_range_start;
725 step_range_end = tp->control.step_range_end;
726 step_frame_id = tp->control.step_frame_id;
186c406b
TT
727 exception_resume_breakpoint
728 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 729 thread_fsm = tp->thread_fsm;
e58b0e63
PA
730
731 /* For now, delete the parent's sr breakpoint, otherwise,
732 parent/child sr breakpoints are considered duplicates,
733 and the child version will not be installed. Remove
734 this when the breakpoints module becomes aware of
735 inferiors and address spaces. */
736 delete_step_resume_breakpoint (tp);
16c381f0
JK
737 tp->control.step_range_start = 0;
738 tp->control.step_range_end = 0;
739 tp->control.step_frame_id = null_frame_id;
186c406b 740 delete_exception_resume_breakpoint (tp);
8980e177 741 tp->thread_fsm = NULL;
e58b0e63
PA
742 }
743
744 parent = inferior_ptid;
745 child = tp->pending_follow.value.related_pid;
746
d83ad864
DB
747 /* Set up inferior(s) as specified by the caller, and tell the
748 target to do whatever is necessary to follow either parent
749 or child. */
750 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
751 {
752 /* Target refused to follow, or there's some other reason
753 we shouldn't resume. */
754 should_resume = 0;
755 }
756 else
757 {
758 /* This pending follow fork event is now handled, one way
759 or another. The previous selected thread may be gone
760 from the lists by now, but if it is still around, need
761 to clear the pending follow request. */
e09875d4 762 tp = find_thread_ptid (parent);
e58b0e63
PA
763 if (tp)
764 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
765
766 /* This makes sure we don't try to apply the "Switched
767 over from WAIT_PID" logic above. */
768 nullify_last_target_wait_ptid ();
769
1777feb0 770 /* If we followed the child, switch to it... */
e58b0e63
PA
771 if (follow_child)
772 {
00431a78
PA
773 thread_info *child_thr = find_thread_ptid (child);
774 switch_to_thread (child_thr);
e58b0e63
PA
775
776 /* ... and preserve the stepping state, in case the
777 user was stepping over the fork call. */
778 if (should_resume)
779 {
780 tp = inferior_thread ();
8358c15c
JK
781 tp->control.step_resume_breakpoint
782 = step_resume_breakpoint;
16c381f0
JK
783 tp->control.step_range_start = step_range_start;
784 tp->control.step_range_end = step_range_end;
785 tp->control.step_frame_id = step_frame_id;
186c406b
TT
786 tp->control.exception_resume_breakpoint
787 = exception_resume_breakpoint;
8980e177 788 tp->thread_fsm = thread_fsm;
e58b0e63
PA
789 }
790 else
791 {
792 /* If we get here, it was because we're trying to
793 resume from a fork catchpoint, but, the user
794 has switched threads away from the thread that
795 forked. In that case, the resume command
796 issued is most likely not applicable to the
797 child, so just warn, and refuse to resume. */
3e43a32a 798 warning (_("Not resuming: switched threads "
fd7dcb94 799 "before following fork child."));
e58b0e63
PA
800 }
801
802 /* Reset breakpoints in the child as appropriate. */
803 follow_inferior_reset_breakpoints ();
804 }
e58b0e63
PA
805 }
806 }
807 break;
808 case TARGET_WAITKIND_SPURIOUS:
809 /* Nothing to follow. */
810 break;
811 default:
812 internal_error (__FILE__, __LINE__,
813 "Unexpected pending_follow.kind %d\n",
814 tp->pending_follow.kind);
815 break;
816 }
c906108c 817
e58b0e63 818 return should_resume;
c906108c
SS
819}
820
d83ad864 821static void
6604731b 822follow_inferior_reset_breakpoints (void)
c906108c 823{
4e1c45ea
PA
824 struct thread_info *tp = inferior_thread ();
825
6604731b
DJ
826 /* Was there a step_resume breakpoint? (There was if the user
827 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
828 thread number. Cloned step_resume breakpoints are disabled on
829 creation, so enable it here now that it is associated with the
830 correct thread.
6604731b
DJ
831
832 step_resumes are a form of bp that are made to be per-thread.
833 Since we created the step_resume bp when the parent process
834 was being debugged, and now are switching to the child process,
835 from the breakpoint package's viewpoint, that's a switch of
836 "threads". We must update the bp's notion of which thread
837 it is for, or it'll be ignored when it triggers. */
838
8358c15c 839 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
840 {
841 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
842 tp->control.step_resume_breakpoint->loc->enabled = 1;
843 }
6604731b 844
a1aa2221 845 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 846 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
847 {
848 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
849 tp->control.exception_resume_breakpoint->loc->enabled = 1;
850 }
186c406b 851
6604731b
DJ
852 /* Reinsert all breakpoints in the child. The user may have set
853 breakpoints after catching the fork, in which case those
854 were never set in the child, but only in the parent. This makes
855 sure the inserted breakpoints match the breakpoint list. */
856
857 breakpoint_re_set ();
858 insert_breakpoints ();
c906108c 859}
c906108c 860
6c95b8df
PA
861/* The child has exited or execed: resume threads of the parent the
862 user wanted to be executing. */
863
864static int
865proceed_after_vfork_done (struct thread_info *thread,
866 void *arg)
867{
868 int pid = * (int *) arg;
869
00431a78
PA
870 if (thread->ptid.pid () == pid
871 && thread->state == THREAD_RUNNING
872 && !thread->executing
6c95b8df 873 && !thread->stop_requested
a493e3e2 874 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
875 {
876 if (debug_infrun)
877 fprintf_unfiltered (gdb_stdlog,
878 "infrun: resuming vfork parent thread %s\n",
879 target_pid_to_str (thread->ptid));
880
00431a78 881 switch_to_thread (thread);
70509625 882 clear_proceed_status (0);
64ce06e4 883 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
884 }
885
886 return 0;
887}
888
5ed8105e
PA
889/* Save/restore inferior_ptid, current program space and current
890 inferior. Only use this if the current context points at an exited
891 inferior (and therefore there's no current thread to save). */
892class scoped_restore_exited_inferior
893{
894public:
895 scoped_restore_exited_inferior ()
896 : m_saved_ptid (&inferior_ptid)
897 {}
898
899private:
900 scoped_restore_tmpl<ptid_t> m_saved_ptid;
901 scoped_restore_current_program_space m_pspace;
902 scoped_restore_current_inferior m_inferior;
903};
904
6c95b8df
PA
905/* Called whenever we notice an exec or exit event, to handle
906 detaching or resuming a vfork parent. */
907
908static void
909handle_vfork_child_exec_or_exit (int exec)
910{
911 struct inferior *inf = current_inferior ();
912
913 if (inf->vfork_parent)
914 {
915 int resume_parent = -1;
916
917 /* This exec or exit marks the end of the shared memory region
918 between the parent and the child. If the user wanted to
919 detach from the parent, now is the time. */
920
921 if (inf->vfork_parent->pending_detach)
922 {
923 struct thread_info *tp;
6c95b8df
PA
924 struct program_space *pspace;
925 struct address_space *aspace;
926
1777feb0 927 /* follow-fork child, detach-on-fork on. */
6c95b8df 928
68c9da30
PA
929 inf->vfork_parent->pending_detach = 0;
930
5ed8105e
PA
931 gdb::optional<scoped_restore_exited_inferior>
932 maybe_restore_inferior;
933 gdb::optional<scoped_restore_current_pspace_and_thread>
934 maybe_restore_thread;
935
936 /* If we're handling a child exit, then inferior_ptid points
937 at the inferior's pid, not to a thread. */
f50f4e56 938 if (!exec)
5ed8105e 939 maybe_restore_inferior.emplace ();
f50f4e56 940 else
5ed8105e 941 maybe_restore_thread.emplace ();
6c95b8df
PA
942
943 /* We're letting loose of the parent. */
00431a78
PA
944 tp = any_live_thread_of_inferior (inf->vfork_parent);
945 switch_to_thread (tp);
6c95b8df
PA
946
947 /* We're about to detach from the parent, which implicitly
948 removes breakpoints from its address space. There's a
949 catch here: we want to reuse the spaces for the child,
950 but, parent/child are still sharing the pspace at this
951 point, although the exec in reality makes the kernel give
952 the child a fresh set of new pages. The problem here is
953 that the breakpoints module being unaware of this, would
954 likely chose the child process to write to the parent
955 address space. Swapping the child temporarily away from
956 the spaces has the desired effect. Yes, this is "sort
957 of" a hack. */
958
959 pspace = inf->pspace;
960 aspace = inf->aspace;
961 inf->aspace = NULL;
962 inf->pspace = NULL;
963
f67c0c91 964 if (print_inferior_events)
6c95b8df 965 {
f67c0c91 966 const char *pidstr
f2907e49 967 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 968
223ffa71 969 target_terminal::ours_for_output ();
6c95b8df
PA
970
971 if (exec)
6f259a23
DB
972 {
973 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
974 _("[Detaching vfork parent %s "
975 "after child exec]\n"), pidstr);
6f259a23 976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
980 _("[Detaching vfork parent %s "
981 "after child exit]\n"), pidstr);
6f259a23 982 }
6c95b8df
PA
983 }
984
6e1e1966 985 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
986
987 /* Put it back. */
988 inf->pspace = pspace;
989 inf->aspace = aspace;
6c95b8df
PA
990 }
991 else if (exec)
992 {
993 /* We're staying attached to the parent, so, really give the
994 child a new address space. */
564b1e3f 995 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
996 inf->aspace = inf->pspace->aspace;
997 inf->removable = 1;
998 set_current_program_space (inf->pspace);
999
1000 resume_parent = inf->vfork_parent->pid;
1001
1002 /* Break the bonds. */
1003 inf->vfork_parent->vfork_child = NULL;
1004 }
1005 else
1006 {
6c95b8df
PA
1007 struct program_space *pspace;
1008
1009 /* If this is a vfork child exiting, then the pspace and
1010 aspaces were shared with the parent. Since we're
1011 reporting the process exit, we'll be mourning all that is
1012 found in the address space, and switching to null_ptid,
1013 preparing to start a new inferior. But, since we don't
1014 want to clobber the parent's address/program spaces, we
1015 go ahead and create a new one for this exiting
1016 inferior. */
1017
5ed8105e
PA
1018 /* Switch to null_ptid while running clone_program_space, so
1019 that clone_program_space doesn't want to read the
1020 selected frame of a dead process. */
1021 scoped_restore restore_ptid
1022 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1023
1024 /* This inferior is dead, so avoid giving the breakpoints
1025 module the option to write through to it (cloning a
1026 program space resets breakpoints). */
1027 inf->aspace = NULL;
1028 inf->pspace = NULL;
564b1e3f 1029 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1030 set_current_program_space (pspace);
1031 inf->removable = 1;
7dcd53a0 1032 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1033 clone_program_space (pspace, inf->vfork_parent->pspace);
1034 inf->pspace = pspace;
1035 inf->aspace = pspace->aspace;
1036
6c95b8df
PA
1037 resume_parent = inf->vfork_parent->pid;
1038 /* Break the bonds. */
1039 inf->vfork_parent->vfork_child = NULL;
1040 }
1041
1042 inf->vfork_parent = NULL;
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
5ed8105e 1050 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1051
1052 if (debug_infrun)
3e43a32a
MS
1053 fprintf_unfiltered (gdb_stdlog,
1054 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1055 resume_parent);
1056
1057 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1058 }
1059 }
1060}
1061
eb6c553b 1062/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1063
1064static const char follow_exec_mode_new[] = "new";
1065static const char follow_exec_mode_same[] = "same";
40478521 1066static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1067{
1068 follow_exec_mode_new,
1069 follow_exec_mode_same,
1070 NULL,
1071};
1072
1073static const char *follow_exec_mode_string = follow_exec_mode_same;
1074static void
1075show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1076 struct cmd_list_element *c, const char *value)
1077{
1078 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1079}
1080
ecf45d2c 1081/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1082
c906108c 1083static void
ecf45d2c 1084follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1085{
6c95b8df 1086 struct inferior *inf = current_inferior ();
e99b03dc 1087 int pid = ptid.pid ();
94585166 1088 ptid_t process_ptid;
7a292a7a 1089
c906108c
SS
1090 /* This is an exec event that we actually wish to pay attention to.
1091 Refresh our symbol table to the newly exec'd program, remove any
1092 momentary bp's, etc.
1093
1094 If there are breakpoints, they aren't really inserted now,
1095 since the exec() transformed our inferior into a fresh set
1096 of instructions.
1097
1098 We want to preserve symbolic breakpoints on the list, since
1099 we have hopes that they can be reset after the new a.out's
1100 symbol table is read.
1101
1102 However, any "raw" breakpoints must be removed from the list
1103 (e.g., the solib bp's), since their address is probably invalid
1104 now.
1105
1106 And, we DON'T want to call delete_breakpoints() here, since
1107 that may write the bp's "shadow contents" (the instruction
1108 value that was overwritten witha TRAP instruction). Since
1777feb0 1109 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1110
1111 mark_breakpoints_out ();
1112
95e50b27
PA
1113 /* The target reports the exec event to the main thread, even if
1114 some other thread does the exec, and even if the main thread was
1115 stopped or already gone. We may still have non-leader threads of
1116 the process on our list. E.g., on targets that don't have thread
1117 exit events (like remote); or on native Linux in non-stop mode if
1118 there were only two threads in the inferior and the non-leader
1119 one is the one that execs (and nothing forces an update of the
1120 thread list up to here). When debugging remotely, it's best to
1121 avoid extra traffic, when possible, so avoid syncing the thread
1122 list with the target, and instead go ahead and delete all threads
1123 of the process but one that reported the event. Note this must
1124 be done before calling update_breakpoints_after_exec, as
1125 otherwise clearing the threads' resources would reference stale
1126 thread breakpoints -- it may have been one of these threads that
1127 stepped across the exec. We could just clear their stepping
1128 states, but as long as we're iterating, might as well delete
1129 them. Deleting them now rather than at the next user-visible
1130 stop provides a nicer sequence of events for user and MI
1131 notifications. */
08036331 1132 for (thread_info *th : all_threads_safe ())
d7e15655 1133 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1134 delete_thread (th);
95e50b27
PA
1135
1136 /* We also need to clear any left over stale state for the
1137 leader/event thread. E.g., if there was any step-resume
1138 breakpoint or similar, it's gone now. We cannot truly
1139 step-to-next statement through an exec(). */
08036331 1140 thread_info *th = inferior_thread ();
8358c15c 1141 th->control.step_resume_breakpoint = NULL;
186c406b 1142 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1143 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1144 th->control.step_range_start = 0;
1145 th->control.step_range_end = 0;
c906108c 1146
95e50b27
PA
1147 /* The user may have had the main thread held stopped in the
1148 previous image (e.g., schedlock on, or non-stop). Release
1149 it now. */
a75724bc
PA
1150 th->stop_requested = 0;
1151
95e50b27
PA
1152 update_breakpoints_after_exec ();
1153
1777feb0 1154 /* What is this a.out's name? */
f2907e49 1155 process_ptid = ptid_t (pid);
6c95b8df 1156 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1157 target_pid_to_str (process_ptid),
ecf45d2c 1158 exec_file_target);
c906108c
SS
1159
1160 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1161 inferior has essentially been killed & reborn. */
7a292a7a 1162
c906108c 1163 gdb_flush (gdb_stdout);
6ca15a4b
PA
1164
1165 breakpoint_init_inferior (inf_execd);
e85a822c 1166
797bc1cb
TT
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
ff862be4 1169
ecf45d2c
SL
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
c906108c 1178
cce9b6bf
PA
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
6c95b8df
PA
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
6c95b8df
PA
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
35ed81d4
SM
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
057302ce 1198 exit_inferior_silent (current_inferior ());
17d8546e 1199
94585166 1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166 1204 set_current_program_space (inf->pspace);
c4c17fb0 1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
797bc1cb 1225 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1226
9107fc8d
PA
1227 /* If the target can specify a description, read it. Must do this
1228 after flipping to the new executable (because the target supplied
1229 description must be compatible with the executable's
1230 architecture, and the old executable may e.g., be 32-bit, while
1231 the new one 64-bit), and before anything involving memory or
1232 registers. */
1233 target_find_description ();
1234
268a4a75 1235 solib_create_inferior_hook (0);
c906108c 1236
4efc6507
DE
1237 jit_inferior_created_hook ();
1238
c1e56572
JK
1239 breakpoint_re_set ();
1240
c906108c
SS
1241 /* Reinsert all breakpoints. (Those which were symbolic have
1242 been reset to the proper address in the new a.out, thanks
1777feb0 1243 to symbol_file_command...). */
c906108c
SS
1244 insert_breakpoints ();
1245
1246 /* The next resume of this inferior should bring it to the shlib
1247 startup breakpoints. (If the user had also set bp's on
1248 "main" from the old (parent) process, then they'll auto-
1777feb0 1249 matically get reset there in the new process.). */
c906108c
SS
1250}
1251
c2829269
PA
1252/* The queue of threads that need to do a step-over operation to get
1253 past e.g., a breakpoint. What technique is used to step over the
1254 breakpoint/watchpoint does not matter -- all threads end up in the
1255 same queue, to maintain rough temporal order of execution, in order
1256 to avoid starvation, otherwise, we could e.g., find ourselves
1257 constantly stepping the same couple threads past their breakpoints
1258 over and over, if the single-step finish fast enough. */
1259struct thread_info *step_over_queue_head;
1260
6c4cfb24
PA
1261/* Bit flags indicating what the thread needs to step over. */
1262
8d297bbf 1263enum step_over_what_flag
6c4cfb24
PA
1264 {
1265 /* Step over a breakpoint. */
1266 STEP_OVER_BREAKPOINT = 1,
1267
1268 /* Step past a non-continuable watchpoint, in order to let the
1269 instruction execute so we can evaluate the watchpoint
1270 expression. */
1271 STEP_OVER_WATCHPOINT = 2
1272 };
8d297bbf 1273DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1274
963f9c80 1275/* Info about an instruction that is being stepped over. */
31e77af2
PA
1276
1277struct step_over_info
1278{
963f9c80
PA
1279 /* If we're stepping past a breakpoint, this is the address space
1280 and address of the instruction the breakpoint is set at. We'll
1281 skip inserting all breakpoints here. Valid iff ASPACE is
1282 non-NULL. */
8b86c959 1283 const address_space *aspace;
31e77af2 1284 CORE_ADDR address;
963f9c80
PA
1285
1286 /* The instruction being stepped over triggers a nonsteppable
1287 watchpoint. If true, we'll skip inserting watchpoints. */
1288 int nonsteppable_watchpoint_p;
21edc42f
YQ
1289
1290 /* The thread's global number. */
1291 int thread;
31e77af2
PA
1292};
1293
1294/* The step-over info of the location that is being stepped over.
1295
1296 Note that with async/breakpoint always-inserted mode, a user might
1297 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1298 being stepped over. As setting a new breakpoint inserts all
1299 breakpoints, we need to make sure the breakpoint being stepped over
1300 isn't inserted then. We do that by only clearing the step-over
1301 info when the step-over is actually finished (or aborted).
1302
1303 Presently GDB can only step over one breakpoint at any given time.
1304 Given threads that can't run code in the same address space as the
1305 breakpoint's can't really miss the breakpoint, GDB could be taught
1306 to step-over at most one breakpoint per address space (so this info
1307 could move to the address space object if/when GDB is extended).
1308 The set of breakpoints being stepped over will normally be much
1309 smaller than the set of all breakpoints, so a flag in the
1310 breakpoint location structure would be wasteful. A separate list
1311 also saves complexity and run-time, as otherwise we'd have to go
1312 through all breakpoint locations clearing their flag whenever we
1313 start a new sequence. Similar considerations weigh against storing
1314 this info in the thread object. Plus, not all step overs actually
1315 have breakpoint locations -- e.g., stepping past a single-step
1316 breakpoint, or stepping to complete a non-continuable
1317 watchpoint. */
1318static struct step_over_info step_over_info;
1319
1320/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1321 stepping over.
1322 N.B. We record the aspace and address now, instead of say just the thread,
1323 because when we need the info later the thread may be running. */
31e77af2
PA
1324
1325static void
8b86c959 1326set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1327 int nonsteppable_watchpoint_p,
1328 int thread)
31e77af2
PA
1329{
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
963f9c80 1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1333 step_over_info.thread = thread;
31e77af2
PA
1334}
1335
1336/* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339static void
1340clear_step_over_info (void)
1341{
372316f1
PA
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
31e77af2
PA
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1348 step_over_info.thread = -1;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
21edc42f
YQ
1365int
1366thread_is_stepping_over_breakpoint (int thread)
1367{
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370}
1371
1372/* See infrun.h. */
1373
963f9c80
PA
1374int
1375stepping_past_nonsteppable_watchpoint (void)
1376{
1377 return step_over_info.nonsteppable_watchpoint_p;
1378}
1379
6cc83d2a
PA
1380/* Returns true if step-over info is valid. */
1381
1382static int
1383step_over_info_valid_p (void)
1384{
963f9c80
PA
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1387}
1388
c906108c 1389\f
237fc4c9
PA
1390/* Displaced stepping. */
1391
1392/* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
237fc4c9
PA
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
cfba9872
SM
1476/* Default destructor for displaced_step_closure. */
1477
1478displaced_step_closure::~displaced_step_closure () = default;
1479
fc1cf338
PA
1480/* Get the displaced stepping state of process PID. */
1481
39a36629 1482static displaced_step_inferior_state *
00431a78 1483get_displaced_stepping_state (inferior *inf)
fc1cf338 1484{
d20172fc 1485 return &inf->displaced_step_state;
fc1cf338
PA
1486}
1487
372316f1
PA
1488/* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
39a36629
SM
1491static bool
1492displaced_step_in_progress_any_inferior ()
372316f1 1493{
d20172fc 1494 for (inferior *i : all_inferiors ())
39a36629 1495 {
d20172fc 1496 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1497 return true;
1498 }
372316f1 1499
39a36629 1500 return false;
372316f1
PA
1501}
1502
c0987663
YQ
1503/* Return true if thread represented by PTID is doing a displaced
1504 step. */
1505
1506static int
00431a78 1507displaced_step_in_progress_thread (thread_info *thread)
c0987663 1508{
00431a78 1509 gdb_assert (thread != NULL);
c0987663 1510
d20172fc 1511 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1512}
1513
8f572e5c
PA
1514/* Return true if process PID has a thread doing a displaced step. */
1515
1516static int
00431a78 1517displaced_step_in_progress (inferior *inf)
8f572e5c 1518{
d20172fc 1519 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1520}
1521
a42244db
YQ
1522/* If inferior is in displaced stepping, and ADDR equals to starting address
1523 of copy area, return corresponding displaced_step_closure. Otherwise,
1524 return NULL. */
1525
1526struct displaced_step_closure*
1527get_displaced_step_closure_by_addr (CORE_ADDR addr)
1528{
d20172fc 1529 displaced_step_inferior_state *displaced
00431a78 1530 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1531
1532 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1533 if (displaced->step_thread != nullptr
00431a78 1534 && displaced->step_copy == addr)
a42244db
YQ
1535 return displaced->step_closure;
1536
1537 return NULL;
1538}
1539
fc1cf338
PA
1540static void
1541infrun_inferior_exit (struct inferior *inf)
1542{
d20172fc 1543 inf->displaced_step_state.reset ();
fc1cf338 1544}
237fc4c9 1545
fff08868
HZ
1546/* If ON, and the architecture supports it, GDB will use displaced
1547 stepping to step over breakpoints. If OFF, or if the architecture
1548 doesn't support it, GDB will instead use the traditional
1549 hold-and-step approach. If AUTO (which is the default), GDB will
1550 decide which technique to use to step over breakpoints depending on
1551 which of all-stop or non-stop mode is active --- displaced stepping
1552 in non-stop mode; hold-and-step in all-stop mode. */
1553
72d0e2c5 1554static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1555
237fc4c9
PA
1556static void
1557show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1558 struct cmd_list_element *c,
1559 const char *value)
1560{
72d0e2c5 1561 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1562 fprintf_filtered (file,
1563 _("Debugger's willingness to use displaced stepping "
1564 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1565 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1566 else
3e43a32a
MS
1567 fprintf_filtered (file,
1568 _("Debugger's willingness to use displaced stepping "
1569 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1570}
1571
fff08868 1572/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1573 over breakpoints of thread TP. */
fff08868 1574
237fc4c9 1575static int
3fc8eb30 1576use_displaced_stepping (struct thread_info *tp)
237fc4c9 1577{
00431a78 1578 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1579 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1580 displaced_step_inferior_state *displaced_state
1581 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1582
fbea99ea
PA
1583 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1584 && target_is_non_stop_p ())
72d0e2c5 1585 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1586 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1587 && find_record_target () == NULL
d20172fc 1588 && !displaced_state->failed_before);
237fc4c9
PA
1589}
1590
1591/* Clean out any stray displaced stepping state. */
1592static void
fc1cf338 1593displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1594{
1595 /* Indicate that there is no cleanup pending. */
00431a78 1596 displaced->step_thread = nullptr;
237fc4c9 1597
cfba9872 1598 delete displaced->step_closure;
6d45d4b4 1599 displaced->step_closure = NULL;
237fc4c9
PA
1600}
1601
1602static void
fc1cf338 1603displaced_step_clear_cleanup (void *arg)
237fc4c9 1604{
9a3c8263
SM
1605 struct displaced_step_inferior_state *state
1606 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1607
1608 displaced_step_clear (state);
237fc4c9
PA
1609}
1610
1611/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1612void
1613displaced_step_dump_bytes (struct ui_file *file,
1614 const gdb_byte *buf,
1615 size_t len)
1616{
1617 int i;
1618
1619 for (i = 0; i < len; i++)
1620 fprintf_unfiltered (file, "%02x ", buf[i]);
1621 fputs_unfiltered ("\n", file);
1622}
1623
1624/* Prepare to single-step, using displaced stepping.
1625
1626 Note that we cannot use displaced stepping when we have a signal to
1627 deliver. If we have a signal to deliver and an instruction to step
1628 over, then after the step, there will be no indication from the
1629 target whether the thread entered a signal handler or ignored the
1630 signal and stepped over the instruction successfully --- both cases
1631 result in a simple SIGTRAP. In the first case we mustn't do a
1632 fixup, and in the second case we must --- but we can't tell which.
1633 Comments in the code for 'random signals' in handle_inferior_event
1634 explain how we handle this case instead.
1635
1636 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1637 stepped now; 0 if displaced stepping this thread got queued; or -1
1638 if this instruction can't be displaced stepped. */
1639
237fc4c9 1640static int
00431a78 1641displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1642{
00431a78 1643 regcache *regcache = get_thread_regcache (tp);
ac7936df 1644 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1645 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1646 CORE_ADDR original, copy;
1647 ULONGEST len;
1648 struct displaced_step_closure *closure;
9e529e1d 1649 int status;
237fc4c9
PA
1650
1651 /* We should never reach this function if the architecture does not
1652 support displaced stepping. */
1653 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1654
c2829269
PA
1655 /* Nor if the thread isn't meant to step over a breakpoint. */
1656 gdb_assert (tp->control.trap_expected);
1657
c1e36e3e
PA
1658 /* Disable range stepping while executing in the scratch pad. We
1659 want a single-step even if executing the displaced instruction in
1660 the scratch buffer lands within the stepping range (e.g., a
1661 jump/branch). */
1662 tp->control.may_range_step = 0;
1663
fc1cf338
PA
1664 /* We have to displaced step one thread at a time, as we only have
1665 access to a single scratch space per inferior. */
237fc4c9 1666
d20172fc
SM
1667 displaced_step_inferior_state *displaced
1668 = get_displaced_stepping_state (tp->inf);
fc1cf338 1669
00431a78 1670 if (displaced->step_thread != nullptr)
237fc4c9
PA
1671 {
1672 /* Already waiting for a displaced step to finish. Defer this
1673 request and place in queue. */
237fc4c9
PA
1674
1675 if (debug_displaced)
1676 fprintf_unfiltered (gdb_stdlog,
c2829269 1677 "displaced: deferring step of %s\n",
00431a78 1678 target_pid_to_str (tp->ptid));
237fc4c9 1679
c2829269 1680 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1681 return 0;
1682 }
1683 else
1684 {
1685 if (debug_displaced)
1686 fprintf_unfiltered (gdb_stdlog,
1687 "displaced: stepping %s now\n",
00431a78 1688 target_pid_to_str (tp->ptid));
237fc4c9
PA
1689 }
1690
fc1cf338 1691 displaced_step_clear (displaced);
237fc4c9 1692
00431a78
PA
1693 scoped_restore_current_thread restore_thread;
1694
1695 switch_to_thread (tp);
ad53cd71 1696
515630c5 1697 original = regcache_read_pc (regcache);
237fc4c9
PA
1698
1699 copy = gdbarch_displaced_step_location (gdbarch);
1700 len = gdbarch_max_insn_length (gdbarch);
1701
d35ae833
PA
1702 if (breakpoint_in_range_p (aspace, copy, len))
1703 {
1704 /* There's a breakpoint set in the scratch pad location range
1705 (which is usually around the entry point). We'd either
1706 install it before resuming, which would overwrite/corrupt the
1707 scratch pad, or if it was already inserted, this displaced
1708 step would overwrite it. The latter is OK in the sense that
1709 we already assume that no thread is going to execute the code
1710 in the scratch pad range (after initial startup) anyway, but
1711 the former is unacceptable. Simply punt and fallback to
1712 stepping over this breakpoint in-line. */
1713 if (debug_displaced)
1714 {
1715 fprintf_unfiltered (gdb_stdlog,
1716 "displaced: breakpoint set in scratch pad. "
1717 "Stepping over breakpoint in-line instead.\n");
1718 }
1719
d35ae833
PA
1720 return -1;
1721 }
1722
237fc4c9 1723 /* Save the original contents of the copy area. */
d20172fc
SM
1724 displaced->step_saved_copy.resize (len);
1725 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1726 if (status != 0)
1727 throw_error (MEMORY_ERROR,
1728 _("Error accessing memory address %s (%s) for "
1729 "displaced-stepping scratch space."),
1730 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1731 if (debug_displaced)
1732 {
5af949e3
UW
1733 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1734 paddress (gdbarch, copy));
fc1cf338 1735 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1736 displaced->step_saved_copy.data (),
fc1cf338 1737 len);
237fc4c9
PA
1738 };
1739
1740 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1741 original, copy, regcache);
7f03bd92
PA
1742 if (closure == NULL)
1743 {
1744 /* The architecture doesn't know how or want to displaced step
1745 this instruction or instruction sequence. Fallback to
1746 stepping over the breakpoint in-line. */
7f03bd92
PA
1747 return -1;
1748 }
237fc4c9 1749
9f5a595d
UW
1750 /* Save the information we need to fix things up if the step
1751 succeeds. */
00431a78 1752 displaced->step_thread = tp;
fc1cf338
PA
1753 displaced->step_gdbarch = gdbarch;
1754 displaced->step_closure = closure;
1755 displaced->step_original = original;
1756 displaced->step_copy = copy;
9f5a595d 1757
d20172fc
SM
1758 cleanup *ignore_cleanups
1759 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1760
1761 /* Resume execution at the copy. */
515630c5 1762 regcache_write_pc (regcache, copy);
237fc4c9 1763
ad53cd71
PA
1764 discard_cleanups (ignore_cleanups);
1765
237fc4c9 1766 if (debug_displaced)
5af949e3
UW
1767 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1768 paddress (gdbarch, copy));
237fc4c9 1769
237fc4c9
PA
1770 return 1;
1771}
1772
3fc8eb30
PA
1773/* Wrapper for displaced_step_prepare_throw that disabled further
1774 attempts at displaced stepping if we get a memory error. */
1775
1776static int
00431a78 1777displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1778{
1779 int prepared = -1;
1780
1781 TRY
1782 {
00431a78 1783 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1784 }
1785 CATCH (ex, RETURN_MASK_ERROR)
1786 {
1787 struct displaced_step_inferior_state *displaced_state;
1788
16b41842
PA
1789 if (ex.error != MEMORY_ERROR
1790 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1791 throw_exception (ex);
1792
1793 if (debug_infrun)
1794 {
1795 fprintf_unfiltered (gdb_stdlog,
1796 "infrun: disabling displaced stepping: %s\n",
1797 ex.message);
1798 }
1799
1800 /* Be verbose if "set displaced-stepping" is "on", silent if
1801 "auto". */
1802 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1803 {
fd7dcb94 1804 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1805 ex.message);
1806 }
1807
1808 /* Disable further displaced stepping attempts. */
1809 displaced_state
00431a78 1810 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1811 displaced_state->failed_before = 1;
1812 }
1813 END_CATCH
1814
1815 return prepared;
1816}
1817
237fc4c9 1818static void
3e43a32a
MS
1819write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1820 const gdb_byte *myaddr, int len)
237fc4c9 1821{
2989a365 1822 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1823
237fc4c9
PA
1824 inferior_ptid = ptid;
1825 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1826}
1827
e2d96639
YQ
1828/* Restore the contents of the copy area for thread PTID. */
1829
1830static void
1831displaced_step_restore (struct displaced_step_inferior_state *displaced,
1832 ptid_t ptid)
1833{
1834 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1835
1836 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1837 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1838 if (debug_displaced)
1839 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1840 target_pid_to_str (ptid),
1841 paddress (displaced->step_gdbarch,
1842 displaced->step_copy));
1843}
1844
372316f1
PA
1845/* If we displaced stepped an instruction successfully, adjust
1846 registers and memory to yield the same effect the instruction would
1847 have had if we had executed it at its original address, and return
1848 1. If the instruction didn't complete, relocate the PC and return
1849 -1. If the thread wasn't displaced stepping, return 0. */
1850
1851static int
00431a78 1852displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1853{
1854 struct cleanup *old_cleanups;
fc1cf338 1855 struct displaced_step_inferior_state *displaced
00431a78 1856 = get_displaced_stepping_state (event_thread->inf);
372316f1 1857 int ret;
fc1cf338 1858
00431a78
PA
1859 /* Was this event for the thread we displaced? */
1860 if (displaced->step_thread != event_thread)
372316f1 1861 return 0;
237fc4c9 1862
fc1cf338 1863 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1864
00431a78 1865 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1866
cb71640d
PA
1867 /* Fixup may need to read memory/registers. Switch to the thread
1868 that we're fixing up. Also, target_stopped_by_watchpoint checks
1869 the current thread. */
00431a78 1870 switch_to_thread (event_thread);
cb71640d 1871
237fc4c9 1872 /* Did the instruction complete successfully? */
cb71640d
PA
1873 if (signal == GDB_SIGNAL_TRAP
1874 && !(target_stopped_by_watchpoint ()
1875 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1876 || target_have_steppable_watchpoint)))
237fc4c9
PA
1877 {
1878 /* Fix up the resulting state. */
fc1cf338
PA
1879 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1880 displaced->step_closure,
1881 displaced->step_original,
1882 displaced->step_copy,
00431a78 1883 get_thread_regcache (displaced->step_thread));
372316f1 1884 ret = 1;
237fc4c9
PA
1885 }
1886 else
1887 {
1888 /* Since the instruction didn't complete, all we can do is
1889 relocate the PC. */
00431a78 1890 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1891 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1892
fc1cf338 1893 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1894 regcache_write_pc (regcache, pc);
372316f1 1895 ret = -1;
237fc4c9
PA
1896 }
1897
1898 do_cleanups (old_cleanups);
1899
00431a78 1900 displaced->step_thread = nullptr;
372316f1
PA
1901
1902 return ret;
c2829269 1903}
1c5cfe86 1904
4d9d9d04
PA
1905/* Data to be passed around while handling an event. This data is
1906 discarded between events. */
1907struct execution_control_state
1908{
1909 ptid_t ptid;
1910 /* The thread that got the event, if this was a thread event; NULL
1911 otherwise. */
1912 struct thread_info *event_thread;
1913
1914 struct target_waitstatus ws;
1915 int stop_func_filled_in;
1916 CORE_ADDR stop_func_start;
1917 CORE_ADDR stop_func_end;
1918 const char *stop_func_name;
1919 int wait_some_more;
1920
1921 /* True if the event thread hit the single-step breakpoint of
1922 another thread. Thus the event doesn't cause a stop, the thread
1923 needs to be single-stepped past the single-step breakpoint before
1924 we can switch back to the original stepping thread. */
1925 int hit_singlestep_breakpoint;
1926};
1927
1928/* Clear ECS and set it to point at TP. */
c2829269
PA
1929
1930static void
4d9d9d04
PA
1931reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1932{
1933 memset (ecs, 0, sizeof (*ecs));
1934 ecs->event_thread = tp;
1935 ecs->ptid = tp->ptid;
1936}
1937
1938static void keep_going_pass_signal (struct execution_control_state *ecs);
1939static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1940static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1941static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1942
1943/* Are there any pending step-over requests? If so, run all we can
1944 now and return true. Otherwise, return false. */
1945
1946static int
c2829269
PA
1947start_step_over (void)
1948{
1949 struct thread_info *tp, *next;
1950
372316f1
PA
1951 /* Don't start a new step-over if we already have an in-line
1952 step-over operation ongoing. */
1953 if (step_over_info_valid_p ())
1954 return 0;
1955
c2829269 1956 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1957 {
4d9d9d04
PA
1958 struct execution_control_state ecss;
1959 struct execution_control_state *ecs = &ecss;
8d297bbf 1960 step_over_what step_what;
372316f1 1961 int must_be_in_line;
c2829269 1962
c65d6b55
PA
1963 gdb_assert (!tp->stop_requested);
1964
c2829269 1965 next = thread_step_over_chain_next (tp);
237fc4c9 1966
c2829269
PA
1967 /* If this inferior already has a displaced step in process,
1968 don't start a new one. */
00431a78 1969 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1970 continue;
1971
372316f1
PA
1972 step_what = thread_still_needs_step_over (tp);
1973 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1974 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1975 && !use_displaced_stepping (tp)));
372316f1
PA
1976
1977 /* We currently stop all threads of all processes to step-over
1978 in-line. If we need to start a new in-line step-over, let
1979 any pending displaced steps finish first. */
1980 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1981 return 0;
1982
c2829269
PA
1983 thread_step_over_chain_remove (tp);
1984
1985 if (step_over_queue_head == NULL)
1986 {
1987 if (debug_infrun)
1988 fprintf_unfiltered (gdb_stdlog,
1989 "infrun: step-over queue now empty\n");
1990 }
1991
372316f1
PA
1992 if (tp->control.trap_expected
1993 || tp->resumed
1994 || tp->executing)
ad53cd71 1995 {
4d9d9d04
PA
1996 internal_error (__FILE__, __LINE__,
1997 "[%s] has inconsistent state: "
372316f1 1998 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1999 target_pid_to_str (tp->ptid),
2000 tp->control.trap_expected,
372316f1 2001 tp->resumed,
4d9d9d04 2002 tp->executing);
ad53cd71 2003 }
1c5cfe86 2004
4d9d9d04
PA
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "infrun: resuming [%s] for step-over\n",
2008 target_pid_to_str (tp->ptid));
2009
2010 /* keep_going_pass_signal skips the step-over if the breakpoint
2011 is no longer inserted. In all-stop, we want to keep looking
2012 for a thread that needs a step-over instead of resuming TP,
2013 because we wouldn't be able to resume anything else until the
2014 target stops again. In non-stop, the resume always resumes
2015 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2016 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2017 continue;
8550d3b3 2018
00431a78 2019 switch_to_thread (tp);
4d9d9d04
PA
2020 reset_ecs (ecs, tp);
2021 keep_going_pass_signal (ecs);
1c5cfe86 2022
4d9d9d04
PA
2023 if (!ecs->wait_some_more)
2024 error (_("Command aborted."));
1c5cfe86 2025
372316f1
PA
2026 gdb_assert (tp->resumed);
2027
2028 /* If we started a new in-line step-over, we're done. */
2029 if (step_over_info_valid_p ())
2030 {
2031 gdb_assert (tp->control.trap_expected);
2032 return 1;
2033 }
2034
fbea99ea 2035 if (!target_is_non_stop_p ())
4d9d9d04
PA
2036 {
2037 /* On all-stop, shouldn't have resumed unless we needed a
2038 step over. */
2039 gdb_assert (tp->control.trap_expected
2040 || tp->step_after_step_resume_breakpoint);
2041
2042 /* With remote targets (at least), in all-stop, we can't
2043 issue any further remote commands until the program stops
2044 again. */
2045 return 1;
1c5cfe86 2046 }
c2829269 2047
4d9d9d04
PA
2048 /* Either the thread no longer needed a step-over, or a new
2049 displaced stepping sequence started. Even in the latter
2050 case, continue looking. Maybe we can also start another
2051 displaced step on a thread of other process. */
237fc4c9 2052 }
4d9d9d04
PA
2053
2054 return 0;
237fc4c9
PA
2055}
2056
5231c1fd
PA
2057/* Update global variables holding ptids to hold NEW_PTID if they were
2058 holding OLD_PTID. */
2059static void
2060infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2061{
d7e15655 2062 if (inferior_ptid == old_ptid)
5231c1fd 2063 inferior_ptid = new_ptid;
5231c1fd
PA
2064}
2065
237fc4c9 2066\f
c906108c 2067
53904c9e
AC
2068static const char schedlock_off[] = "off";
2069static const char schedlock_on[] = "on";
2070static const char schedlock_step[] = "step";
f2665db5 2071static const char schedlock_replay[] = "replay";
40478521 2072static const char *const scheduler_enums[] = {
ef346e04
AC
2073 schedlock_off,
2074 schedlock_on,
2075 schedlock_step,
f2665db5 2076 schedlock_replay,
ef346e04
AC
2077 NULL
2078};
f2665db5 2079static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2080static void
2081show_scheduler_mode (struct ui_file *file, int from_tty,
2082 struct cmd_list_element *c, const char *value)
2083{
3e43a32a
MS
2084 fprintf_filtered (file,
2085 _("Mode for locking scheduler "
2086 "during execution is \"%s\".\n"),
920d2a44
AC
2087 value);
2088}
c906108c
SS
2089
2090static void
eb4c3f4a 2091set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2092{
eefe576e
AC
2093 if (!target_can_lock_scheduler)
2094 {
2095 scheduler_mode = schedlock_off;
2096 error (_("Target '%s' cannot support this command."), target_shortname);
2097 }
c906108c
SS
2098}
2099
d4db2f36
PA
2100/* True if execution commands resume all threads of all processes by
2101 default; otherwise, resume only threads of the current inferior
2102 process. */
2103int sched_multi = 0;
2104
2facfe5c
DD
2105/* Try to setup for software single stepping over the specified location.
2106 Return 1 if target_resume() should use hardware single step.
2107
2108 GDBARCH the current gdbarch.
2109 PC the location to step over. */
2110
2111static int
2112maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2113{
2114 int hw_step = 1;
2115
f02253f1 2116 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2117 && gdbarch_software_single_step_p (gdbarch))
2118 hw_step = !insert_single_step_breakpoints (gdbarch);
2119
2facfe5c
DD
2120 return hw_step;
2121}
c906108c 2122
f3263aa4
PA
2123/* See infrun.h. */
2124
09cee04b
PA
2125ptid_t
2126user_visible_resume_ptid (int step)
2127{
f3263aa4 2128 ptid_t resume_ptid;
09cee04b 2129
09cee04b
PA
2130 if (non_stop)
2131 {
2132 /* With non-stop mode on, threads are always handled
2133 individually. */
2134 resume_ptid = inferior_ptid;
2135 }
2136 else if ((scheduler_mode == schedlock_on)
03d46957 2137 || (scheduler_mode == schedlock_step && step))
09cee04b 2138 {
f3263aa4
PA
2139 /* User-settable 'scheduler' mode requires solo thread
2140 resume. */
09cee04b
PA
2141 resume_ptid = inferior_ptid;
2142 }
f2665db5
MM
2143 else if ((scheduler_mode == schedlock_replay)
2144 && target_record_will_replay (minus_one_ptid, execution_direction))
2145 {
2146 /* User-settable 'scheduler' mode requires solo thread resume in replay
2147 mode. */
2148 resume_ptid = inferior_ptid;
2149 }
f3263aa4
PA
2150 else if (!sched_multi && target_supports_multi_process ())
2151 {
2152 /* Resume all threads of the current process (and none of other
2153 processes). */
e99b03dc 2154 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2155 }
2156 else
2157 {
2158 /* Resume all threads of all processes. */
2159 resume_ptid = RESUME_ALL;
2160 }
09cee04b
PA
2161
2162 return resume_ptid;
2163}
2164
fbea99ea
PA
2165/* Return a ptid representing the set of threads that we will resume,
2166 in the perspective of the target, assuming run control handling
2167 does not require leaving some threads stopped (e.g., stepping past
2168 breakpoint). USER_STEP indicates whether we're about to start the
2169 target for a stepping command. */
2170
2171static ptid_t
2172internal_resume_ptid (int user_step)
2173{
2174 /* In non-stop, we always control threads individually. Note that
2175 the target may always work in non-stop mode even with "set
2176 non-stop off", in which case user_visible_resume_ptid could
2177 return a wildcard ptid. */
2178 if (target_is_non_stop_p ())
2179 return inferior_ptid;
2180 else
2181 return user_visible_resume_ptid (user_step);
2182}
2183
64ce06e4
PA
2184/* Wrapper for target_resume, that handles infrun-specific
2185 bookkeeping. */
2186
2187static void
2188do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2189{
2190 struct thread_info *tp = inferior_thread ();
2191
c65d6b55
PA
2192 gdb_assert (!tp->stop_requested);
2193
64ce06e4 2194 /* Install inferior's terminal modes. */
223ffa71 2195 target_terminal::inferior ();
64ce06e4
PA
2196
2197 /* Avoid confusing the next resume, if the next stop/resume
2198 happens to apply to another thread. */
2199 tp->suspend.stop_signal = GDB_SIGNAL_0;
2200
8f572e5c
PA
2201 /* Advise target which signals may be handled silently.
2202
2203 If we have removed breakpoints because we are stepping over one
2204 in-line (in any thread), we need to receive all signals to avoid
2205 accidentally skipping a breakpoint during execution of a signal
2206 handler.
2207
2208 Likewise if we're displaced stepping, otherwise a trap for a
2209 breakpoint in a signal handler might be confused with the
2210 displaced step finishing. We don't make the displaced_step_fixup
2211 step distinguish the cases instead, because:
2212
2213 - a backtrace while stopped in the signal handler would show the
2214 scratch pad as frame older than the signal handler, instead of
2215 the real mainline code.
2216
2217 - when the thread is later resumed, the signal handler would
2218 return to the scratch pad area, which would no longer be
2219 valid. */
2220 if (step_over_info_valid_p ()
00431a78 2221 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2222 target_pass_signals (0, NULL);
2223 else
2224 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2225
2226 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2227
2228 target_commit_resume ();
64ce06e4
PA
2229}
2230
d930703d 2231/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2232 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2233 call 'resume', which handles exceptions. */
c906108c 2234
71d378ae
PA
2235static void
2236resume_1 (enum gdb_signal sig)
c906108c 2237{
515630c5 2238 struct regcache *regcache = get_current_regcache ();
ac7936df 2239 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2240 struct thread_info *tp = inferior_thread ();
515630c5 2241 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2242 const address_space *aspace = regcache->aspace ();
b0f16a3e 2243 ptid_t resume_ptid;
856e7dd6
PA
2244 /* This represents the user's step vs continue request. When
2245 deciding whether "set scheduler-locking step" applies, it's the
2246 user's intention that counts. */
2247 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2248 /* This represents what we'll actually request the target to do.
2249 This can decay from a step to a continue, if e.g., we need to
2250 implement single-stepping with breakpoints (software
2251 single-step). */
6b403daa 2252 int step;
c7e8a53c 2253
c65d6b55 2254 gdb_assert (!tp->stop_requested);
c2829269
PA
2255 gdb_assert (!thread_is_in_step_over_chain (tp));
2256
372316f1
PA
2257 if (tp->suspend.waitstatus_pending_p)
2258 {
2259 if (debug_infrun)
2260 {
23fdd69e
SM
2261 std::string statstr
2262 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2263
372316f1 2264 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2265 "infrun: resume: thread %s has pending wait "
2266 "status %s (currently_stepping=%d).\n",
2267 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2268 currently_stepping (tp));
372316f1
PA
2269 }
2270
2271 tp->resumed = 1;
2272
2273 /* FIXME: What should we do if we are supposed to resume this
2274 thread with a signal? Maybe we should maintain a queue of
2275 pending signals to deliver. */
2276 if (sig != GDB_SIGNAL_0)
2277 {
fd7dcb94 2278 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2279 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2280 }
2281
2282 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2283
2284 if (target_can_async_p ())
9516f85a
AB
2285 {
2286 target_async (1);
2287 /* Tell the event loop we have an event to process. */
2288 mark_async_event_handler (infrun_async_inferior_event_token);
2289 }
372316f1
PA
2290 return;
2291 }
2292
2293 tp->stepped_breakpoint = 0;
2294
6b403daa
PA
2295 /* Depends on stepped_breakpoint. */
2296 step = currently_stepping (tp);
2297
74609e71
YQ
2298 if (current_inferior ()->waiting_for_vfork_done)
2299 {
48f9886d
PA
2300 /* Don't try to single-step a vfork parent that is waiting for
2301 the child to get out of the shared memory region (by exec'ing
2302 or exiting). This is particularly important on software
2303 single-step archs, as the child process would trip on the
2304 software single step breakpoint inserted for the parent
2305 process. Since the parent will not actually execute any
2306 instruction until the child is out of the shared region (such
2307 are vfork's semantics), it is safe to simply continue it.
2308 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2309 the parent, and tell it to `keep_going', which automatically
2310 re-sets it stepping. */
74609e71
YQ
2311 if (debug_infrun)
2312 fprintf_unfiltered (gdb_stdlog,
2313 "infrun: resume : clear step\n");
a09dd441 2314 step = 0;
74609e71
YQ
2315 }
2316
527159b7 2317 if (debug_infrun)
237fc4c9 2318 fprintf_unfiltered (gdb_stdlog,
c9737c08 2319 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2320 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2321 step, gdb_signal_to_symbol_string (sig),
2322 tp->control.trap_expected,
0d9a9a5f
PA
2323 target_pid_to_str (inferior_ptid),
2324 paddress (gdbarch, pc));
c906108c 2325
c2c6d25f
JM
2326 /* Normally, by the time we reach `resume', the breakpoints are either
2327 removed or inserted, as appropriate. The exception is if we're sitting
2328 at a permanent breakpoint; we need to step over it, but permanent
2329 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2330 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2331 {
af48d08f
PA
2332 if (sig != GDB_SIGNAL_0)
2333 {
2334 /* We have a signal to pass to the inferior. The resume
2335 may, or may not take us to the signal handler. If this
2336 is a step, we'll need to stop in the signal handler, if
2337 there's one, (if the target supports stepping into
2338 handlers), or in the next mainline instruction, if
2339 there's no handler. If this is a continue, we need to be
2340 sure to run the handler with all breakpoints inserted.
2341 In all cases, set a breakpoint at the current address
2342 (where the handler returns to), and once that breakpoint
2343 is hit, resume skipping the permanent breakpoint. If
2344 that breakpoint isn't hit, then we've stepped into the
2345 signal handler (or hit some other event). We'll delete
2346 the step-resume breakpoint then. */
2347
2348 if (debug_infrun)
2349 fprintf_unfiltered (gdb_stdlog,
2350 "infrun: resume: skipping permanent breakpoint, "
2351 "deliver signal first\n");
2352
2353 clear_step_over_info ();
2354 tp->control.trap_expected = 0;
2355
2356 if (tp->control.step_resume_breakpoint == NULL)
2357 {
2358 /* Set a "high-priority" step-resume, as we don't want
2359 user breakpoints at PC to trigger (again) when this
2360 hits. */
2361 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2362 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2363
2364 tp->step_after_step_resume_breakpoint = step;
2365 }
2366
2367 insert_breakpoints ();
2368 }
2369 else
2370 {
2371 /* There's no signal to pass, we can go ahead and skip the
2372 permanent breakpoint manually. */
2373 if (debug_infrun)
2374 fprintf_unfiltered (gdb_stdlog,
2375 "infrun: resume: skipping permanent breakpoint\n");
2376 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2377 /* Update pc to reflect the new address from which we will
2378 execute instructions. */
2379 pc = regcache_read_pc (regcache);
2380
2381 if (step)
2382 {
2383 /* We've already advanced the PC, so the stepping part
2384 is done. Now we need to arrange for a trap to be
2385 reported to handle_inferior_event. Set a breakpoint
2386 at the current PC, and run to it. Don't update
2387 prev_pc, because if we end in
44a1ee51
PA
2388 switch_back_to_stepped_thread, we want the "expected
2389 thread advanced also" branch to be taken. IOW, we
2390 don't want this thread to step further from PC
af48d08f 2391 (overstep). */
1ac806b8 2392 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2393 insert_single_step_breakpoint (gdbarch, aspace, pc);
2394 insert_breakpoints ();
2395
fbea99ea 2396 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2397 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2398 tp->resumed = 1;
af48d08f
PA
2399 return;
2400 }
2401 }
6d350bb5 2402 }
c2c6d25f 2403
c1e36e3e
PA
2404 /* If we have a breakpoint to step over, make sure to do a single
2405 step only. Same if we have software watchpoints. */
2406 if (tp->control.trap_expected || bpstat_should_step ())
2407 tp->control.may_range_step = 0;
2408
237fc4c9
PA
2409 /* If enabled, step over breakpoints by executing a copy of the
2410 instruction at a different address.
2411
2412 We can't use displaced stepping when we have a signal to deliver;
2413 the comments for displaced_step_prepare explain why. The
2414 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2415 signals' explain what we do instead.
2416
2417 We can't use displaced stepping when we are waiting for vfork_done
2418 event, displaced stepping breaks the vfork child similarly as single
2419 step software breakpoint. */
3fc8eb30
PA
2420 if (tp->control.trap_expected
2421 && use_displaced_stepping (tp)
cb71640d 2422 && !step_over_info_valid_p ()
a493e3e2 2423 && sig == GDB_SIGNAL_0
74609e71 2424 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2425 {
00431a78 2426 int prepared = displaced_step_prepare (tp);
fc1cf338 2427
3fc8eb30 2428 if (prepared == 0)
d56b7306 2429 {
4d9d9d04
PA
2430 if (debug_infrun)
2431 fprintf_unfiltered (gdb_stdlog,
2432 "Got placed in step-over queue\n");
2433
2434 tp->control.trap_expected = 0;
d56b7306
VP
2435 return;
2436 }
3fc8eb30
PA
2437 else if (prepared < 0)
2438 {
2439 /* Fallback to stepping over the breakpoint in-line. */
2440
2441 if (target_is_non_stop_p ())
2442 stop_all_threads ();
2443
a01bda52 2444 set_step_over_info (regcache->aspace (),
21edc42f 2445 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2446
2447 step = maybe_software_singlestep (gdbarch, pc);
2448
2449 insert_breakpoints ();
2450 }
2451 else if (prepared > 0)
2452 {
2453 struct displaced_step_inferior_state *displaced;
99e40580 2454
3fc8eb30
PA
2455 /* Update pc to reflect the new address from which we will
2456 execute instructions due to displaced stepping. */
00431a78 2457 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2458
00431a78 2459 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2460 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2461 displaced->step_closure);
2462 }
237fc4c9
PA
2463 }
2464
2facfe5c 2465 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2466 else if (step)
2facfe5c 2467 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2468
30852783
UW
2469 /* Currently, our software single-step implementation leads to different
2470 results than hardware single-stepping in one situation: when stepping
2471 into delivering a signal which has an associated signal handler,
2472 hardware single-step will stop at the first instruction of the handler,
2473 while software single-step will simply skip execution of the handler.
2474
2475 For now, this difference in behavior is accepted since there is no
2476 easy way to actually implement single-stepping into a signal handler
2477 without kernel support.
2478
2479 However, there is one scenario where this difference leads to follow-on
2480 problems: if we're stepping off a breakpoint by removing all breakpoints
2481 and then single-stepping. In this case, the software single-step
2482 behavior means that even if there is a *breakpoint* in the signal
2483 handler, GDB still would not stop.
2484
2485 Fortunately, we can at least fix this particular issue. We detect
2486 here the case where we are about to deliver a signal while software
2487 single-stepping with breakpoints removed. In this situation, we
2488 revert the decisions to remove all breakpoints and insert single-
2489 step breakpoints, and instead we install a step-resume breakpoint
2490 at the current address, deliver the signal without stepping, and
2491 once we arrive back at the step-resume breakpoint, actually step
2492 over the breakpoint we originally wanted to step over. */
34b7e8a6 2493 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2494 && sig != GDB_SIGNAL_0
2495 && step_over_info_valid_p ())
30852783
UW
2496 {
2497 /* If we have nested signals or a pending signal is delivered
2498 immediately after a handler returns, might might already have
2499 a step-resume breakpoint set on the earlier handler. We cannot
2500 set another step-resume breakpoint; just continue on until the
2501 original breakpoint is hit. */
2502 if (tp->control.step_resume_breakpoint == NULL)
2503 {
2c03e5be 2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2505 tp->step_after_step_resume_breakpoint = 1;
2506 }
2507
34b7e8a6 2508 delete_single_step_breakpoints (tp);
30852783 2509
31e77af2 2510 clear_step_over_info ();
30852783 2511 tp->control.trap_expected = 0;
31e77af2
PA
2512
2513 insert_breakpoints ();
30852783
UW
2514 }
2515
b0f16a3e
SM
2516 /* If STEP is set, it's a request to use hardware stepping
2517 facilities. But in that case, we should never
2518 use singlestep breakpoint. */
34b7e8a6 2519 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2520
fbea99ea 2521 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2522 if (tp->control.trap_expected)
b0f16a3e
SM
2523 {
2524 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2525 hit, either by single-stepping the thread with the breakpoint
2526 removed, or by displaced stepping, with the breakpoint inserted.
2527 In the former case, we need to single-step only this thread,
2528 and keep others stopped, as they can miss this breakpoint if
2529 allowed to run. That's not really a problem for displaced
2530 stepping, but, we still keep other threads stopped, in case
2531 another thread is also stopped for a breakpoint waiting for
2532 its turn in the displaced stepping queue. */
b0f16a3e
SM
2533 resume_ptid = inferior_ptid;
2534 }
fbea99ea
PA
2535 else
2536 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2537
7f5ef605
PA
2538 if (execution_direction != EXEC_REVERSE
2539 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2540 {
372316f1
PA
2541 /* There are two cases where we currently need to step a
2542 breakpoint instruction when we have a signal to deliver:
2543
2544 - See handle_signal_stop where we handle random signals that
2545 could take out us out of the stepping range. Normally, in
2546 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2547 signal handler with a breakpoint at PC, but there are cases
2548 where we should _always_ single-step, even if we have a
2549 step-resume breakpoint, like when a software watchpoint is
2550 set. Assuming single-stepping and delivering a signal at the
2551 same time would takes us to the signal handler, then we could
2552 have removed the breakpoint at PC to step over it. However,
2553 some hardware step targets (like e.g., Mac OS) can't step
2554 into signal handlers, and for those, we need to leave the
2555 breakpoint at PC inserted, as otherwise if the handler
2556 recurses and executes PC again, it'll miss the breakpoint.
2557 So we leave the breakpoint inserted anyway, but we need to
2558 record that we tried to step a breakpoint instruction, so
372316f1
PA
2559 that adjust_pc_after_break doesn't end up confused.
2560
2561 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2562 in one thread after another thread that was stepping had been
2563 momentarily paused for a step-over. When we re-resume the
2564 stepping thread, it may be resumed from that address with a
2565 breakpoint that hasn't trapped yet. Seen with
2566 gdb.threads/non-stop-fair-events.exp, on targets that don't
2567 do displaced stepping. */
2568
2569 if (debug_infrun)
2570 fprintf_unfiltered (gdb_stdlog,
2571 "infrun: resume: [%s] stepped breakpoint\n",
2572 target_pid_to_str (tp->ptid));
7f5ef605
PA
2573
2574 tp->stepped_breakpoint = 1;
2575
b0f16a3e
SM
2576 /* Most targets can step a breakpoint instruction, thus
2577 executing it normally. But if this one cannot, just
2578 continue and we will hit it anyway. */
7f5ef605 2579 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2580 step = 0;
2581 }
ef5cf84e 2582
b0f16a3e 2583 if (debug_displaced
cb71640d 2584 && tp->control.trap_expected
3fc8eb30 2585 && use_displaced_stepping (tp)
cb71640d 2586 && !step_over_info_valid_p ())
b0f16a3e 2587 {
00431a78 2588 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2589 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2590 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2591 gdb_byte buf[4];
2592
2593 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2594 paddress (resume_gdbarch, actual_pc));
2595 read_memory (actual_pc, buf, sizeof (buf));
2596 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2597 }
237fc4c9 2598
b0f16a3e
SM
2599 if (tp->control.may_range_step)
2600 {
2601 /* If we're resuming a thread with the PC out of the step
2602 range, then we're doing some nested/finer run control
2603 operation, like stepping the thread out of the dynamic
2604 linker or the displaced stepping scratch pad. We
2605 shouldn't have allowed a range step then. */
2606 gdb_assert (pc_in_thread_step_range (pc, tp));
2607 }
c1e36e3e 2608
64ce06e4 2609 do_target_resume (resume_ptid, step, sig);
372316f1 2610 tp->resumed = 1;
c906108c 2611}
71d378ae
PA
2612
2613/* Resume the inferior. SIG is the signal to give the inferior
2614 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2615 rolls back state on error. */
2616
aff4e175 2617static void
71d378ae
PA
2618resume (gdb_signal sig)
2619{
2620 TRY
2621 {
2622 resume_1 (sig);
2623 }
2624 CATCH (ex, RETURN_MASK_ALL)
2625 {
2626 /* If resuming is being aborted for any reason, delete any
2627 single-step breakpoint resume_1 may have created, to avoid
2628 confusing the following resumption, and to avoid leaving
2629 single-step breakpoints perturbing other threads, in case
2630 we're running in non-stop mode. */
2631 if (inferior_ptid != null_ptid)
2632 delete_single_step_breakpoints (inferior_thread ());
2633 throw_exception (ex);
2634 }
2635 END_CATCH
2636}
2637
c906108c 2638\f
237fc4c9 2639/* Proceeding. */
c906108c 2640
4c2f2a79
PA
2641/* See infrun.h. */
2642
2643/* Counter that tracks number of user visible stops. This can be used
2644 to tell whether a command has proceeded the inferior past the
2645 current location. This allows e.g., inferior function calls in
2646 breakpoint commands to not interrupt the command list. When the
2647 call finishes successfully, the inferior is standing at the same
2648 breakpoint as if nothing happened (and so we don't call
2649 normal_stop). */
2650static ULONGEST current_stop_id;
2651
2652/* See infrun.h. */
2653
2654ULONGEST
2655get_stop_id (void)
2656{
2657 return current_stop_id;
2658}
2659
2660/* Called when we report a user visible stop. */
2661
2662static void
2663new_stop_id (void)
2664{
2665 current_stop_id++;
2666}
2667
c906108c
SS
2668/* Clear out all variables saying what to do when inferior is continued.
2669 First do this, then set the ones you want, then call `proceed'. */
2670
a7212384
UW
2671static void
2672clear_proceed_status_thread (struct thread_info *tp)
c906108c 2673{
a7212384
UW
2674 if (debug_infrun)
2675 fprintf_unfiltered (gdb_stdlog,
2676 "infrun: clear_proceed_status_thread (%s)\n",
2677 target_pid_to_str (tp->ptid));
d6b48e9c 2678
372316f1
PA
2679 /* If we're starting a new sequence, then the previous finished
2680 single-step is no longer relevant. */
2681 if (tp->suspend.waitstatus_pending_p)
2682 {
2683 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2684 {
2685 if (debug_infrun)
2686 fprintf_unfiltered (gdb_stdlog,
2687 "infrun: clear_proceed_status: pending "
2688 "event of %s was a finished step. "
2689 "Discarding.\n",
2690 target_pid_to_str (tp->ptid));
2691
2692 tp->suspend.waitstatus_pending_p = 0;
2693 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2694 }
2695 else if (debug_infrun)
2696 {
23fdd69e
SM
2697 std::string statstr
2698 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2699
372316f1
PA
2700 fprintf_unfiltered (gdb_stdlog,
2701 "infrun: clear_proceed_status_thread: thread %s "
2702 "has pending wait status %s "
2703 "(currently_stepping=%d).\n",
23fdd69e 2704 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2705 currently_stepping (tp));
372316f1
PA
2706 }
2707 }
2708
70509625
PA
2709 /* If this signal should not be seen by program, give it zero.
2710 Used for debugging signals. */
2711 if (!signal_pass_state (tp->suspend.stop_signal))
2712 tp->suspend.stop_signal = GDB_SIGNAL_0;
2713
243a9253
PA
2714 thread_fsm_delete (tp->thread_fsm);
2715 tp->thread_fsm = NULL;
2716
16c381f0
JK
2717 tp->control.trap_expected = 0;
2718 tp->control.step_range_start = 0;
2719 tp->control.step_range_end = 0;
c1e36e3e 2720 tp->control.may_range_step = 0;
16c381f0
JK
2721 tp->control.step_frame_id = null_frame_id;
2722 tp->control.step_stack_frame_id = null_frame_id;
2723 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2724 tp->control.step_start_function = NULL;
a7212384 2725 tp->stop_requested = 0;
4e1c45ea 2726
16c381f0 2727 tp->control.stop_step = 0;
32400beb 2728
16c381f0 2729 tp->control.proceed_to_finish = 0;
414c69f7 2730
856e7dd6 2731 tp->control.stepping_command = 0;
17b2616c 2732
a7212384 2733 /* Discard any remaining commands or status from previous stop. */
16c381f0 2734 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2735}
32400beb 2736
a7212384 2737void
70509625 2738clear_proceed_status (int step)
a7212384 2739{
f2665db5
MM
2740 /* With scheduler-locking replay, stop replaying other threads if we're
2741 not replaying the user-visible resume ptid.
2742
2743 This is a convenience feature to not require the user to explicitly
2744 stop replaying the other threads. We're assuming that the user's
2745 intent is to resume tracing the recorded process. */
2746 if (!non_stop && scheduler_mode == schedlock_replay
2747 && target_record_is_replaying (minus_one_ptid)
2748 && !target_record_will_replay (user_visible_resume_ptid (step),
2749 execution_direction))
2750 target_record_stop_replaying ();
2751
08036331 2752 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2753 {
08036331 2754 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2755
2756 /* In all-stop mode, delete the per-thread status of all threads
2757 we're about to resume, implicitly and explicitly. */
08036331
PA
2758 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2759 clear_proceed_status_thread (tp);
6c95b8df
PA
2760 }
2761
d7e15655 2762 if (inferior_ptid != null_ptid)
a7212384
UW
2763 {
2764 struct inferior *inferior;
2765
2766 if (non_stop)
2767 {
6c95b8df
PA
2768 /* If in non-stop mode, only delete the per-thread status of
2769 the current thread. */
a7212384
UW
2770 clear_proceed_status_thread (inferior_thread ());
2771 }
6c95b8df 2772
d6b48e9c 2773 inferior = current_inferior ();
16c381f0 2774 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2775 }
2776
76727919 2777 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2778}
2779
99619bea
PA
2780/* Returns true if TP is still stopped at a breakpoint that needs
2781 stepping-over in order to make progress. If the breakpoint is gone
2782 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2783
2784static int
6c4cfb24 2785thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2786{
2787 if (tp->stepping_over_breakpoint)
2788 {
00431a78 2789 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2790
a01bda52 2791 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2792 regcache_read_pc (regcache))
2793 == ordinary_breakpoint_here)
99619bea
PA
2794 return 1;
2795
2796 tp->stepping_over_breakpoint = 0;
2797 }
2798
2799 return 0;
2800}
2801
6c4cfb24
PA
2802/* Check whether thread TP still needs to start a step-over in order
2803 to make progress when resumed. Returns an bitwise or of enum
2804 step_over_what bits, indicating what needs to be stepped over. */
2805
8d297bbf 2806static step_over_what
6c4cfb24
PA
2807thread_still_needs_step_over (struct thread_info *tp)
2808{
8d297bbf 2809 step_over_what what = 0;
6c4cfb24
PA
2810
2811 if (thread_still_needs_step_over_bp (tp))
2812 what |= STEP_OVER_BREAKPOINT;
2813
2814 if (tp->stepping_over_watchpoint
2815 && !target_have_steppable_watchpoint)
2816 what |= STEP_OVER_WATCHPOINT;
2817
2818 return what;
2819}
2820
483805cf
PA
2821/* Returns true if scheduler locking applies. STEP indicates whether
2822 we're about to do a step/next-like command to a thread. */
2823
2824static int
856e7dd6 2825schedlock_applies (struct thread_info *tp)
483805cf
PA
2826{
2827 return (scheduler_mode == schedlock_on
2828 || (scheduler_mode == schedlock_step
f2665db5
MM
2829 && tp->control.stepping_command)
2830 || (scheduler_mode == schedlock_replay
2831 && target_record_will_replay (minus_one_ptid,
2832 execution_direction)));
483805cf
PA
2833}
2834
c906108c
SS
2835/* Basic routine for continuing the program in various fashions.
2836
2837 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2838 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2839 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2840
2841 You should call clear_proceed_status before calling proceed. */
2842
2843void
64ce06e4 2844proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2845{
e58b0e63
PA
2846 struct regcache *regcache;
2847 struct gdbarch *gdbarch;
e58b0e63 2848 CORE_ADDR pc;
4d9d9d04
PA
2849 ptid_t resume_ptid;
2850 struct execution_control_state ecss;
2851 struct execution_control_state *ecs = &ecss;
4d9d9d04 2852 int started;
c906108c 2853
e58b0e63
PA
2854 /* If we're stopped at a fork/vfork, follow the branch set by the
2855 "set follow-fork-mode" command; otherwise, we'll just proceed
2856 resuming the current thread. */
2857 if (!follow_fork ())
2858 {
2859 /* The target for some reason decided not to resume. */
2860 normal_stop ();
f148b27e
PA
2861 if (target_can_async_p ())
2862 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2863 return;
2864 }
2865
842951eb
PA
2866 /* We'll update this if & when we switch to a new thread. */
2867 previous_inferior_ptid = inferior_ptid;
2868
e58b0e63 2869 regcache = get_current_regcache ();
ac7936df 2870 gdbarch = regcache->arch ();
8b86c959
YQ
2871 const address_space *aspace = regcache->aspace ();
2872
e58b0e63 2873 pc = regcache_read_pc (regcache);
08036331 2874 thread_info *cur_thr = inferior_thread ();
e58b0e63 2875
99619bea 2876 /* Fill in with reasonable starting values. */
08036331 2877 init_thread_stepping_state (cur_thr);
99619bea 2878
08036331 2879 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2880
2acceee2 2881 if (addr == (CORE_ADDR) -1)
c906108c 2882 {
08036331 2883 if (pc == cur_thr->suspend.stop_pc
af48d08f 2884 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2885 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2886 /* There is a breakpoint at the address we will resume at,
2887 step one instruction before inserting breakpoints so that
2888 we do not stop right away (and report a second hit at this
b2175913
MS
2889 breakpoint).
2890
2891 Note, we don't do this in reverse, because we won't
2892 actually be executing the breakpoint insn anyway.
2893 We'll be (un-)executing the previous instruction. */
08036331 2894 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2895 else if (gdbarch_single_step_through_delay_p (gdbarch)
2896 && gdbarch_single_step_through_delay (gdbarch,
2897 get_current_frame ()))
3352ef37
AC
2898 /* We stepped onto an instruction that needs to be stepped
2899 again before re-inserting the breakpoint, do so. */
08036331 2900 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2901 }
2902 else
2903 {
515630c5 2904 regcache_write_pc (regcache, addr);
c906108c
SS
2905 }
2906
70509625 2907 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2908 cur_thr->suspend.stop_signal = siggnal;
70509625 2909
08036331 2910 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2911
2912 /* If an exception is thrown from this point on, make sure to
2913 propagate GDB's knowledge of the executing state to the
2914 frontend/user running state. */
731f534f 2915 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2916
2917 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2918 threads (e.g., we might need to set threads stepping over
2919 breakpoints first), from the user/frontend's point of view, all
2920 threads in RESUME_PTID are now running. Unless we're calling an
2921 inferior function, as in that case we pretend the inferior
2922 doesn't run at all. */
08036331 2923 if (!cur_thr->control.in_infcall)
4d9d9d04 2924 set_running (resume_ptid, 1);
17b2616c 2925
527159b7 2926 if (debug_infrun)
8a9de0e4 2927 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2928 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2929 paddress (gdbarch, addr),
64ce06e4 2930 gdb_signal_to_symbol_string (siggnal));
527159b7 2931
4d9d9d04
PA
2932 annotate_starting ();
2933
2934 /* Make sure that output from GDB appears before output from the
2935 inferior. */
2936 gdb_flush (gdb_stdout);
2937
d930703d
PA
2938 /* Since we've marked the inferior running, give it the terminal. A
2939 QUIT/Ctrl-C from here on is forwarded to the target (which can
2940 still detect attempts to unblock a stuck connection with repeated
2941 Ctrl-C from within target_pass_ctrlc). */
2942 target_terminal::inferior ();
2943
4d9d9d04
PA
2944 /* In a multi-threaded task we may select another thread and
2945 then continue or step.
2946
2947 But if a thread that we're resuming had stopped at a breakpoint,
2948 it will immediately cause another breakpoint stop without any
2949 execution (i.e. it will report a breakpoint hit incorrectly). So
2950 we must step over it first.
2951
2952 Look for threads other than the current (TP) that reported a
2953 breakpoint hit and haven't been resumed yet since. */
2954
2955 /* If scheduler locking applies, we can avoid iterating over all
2956 threads. */
08036331 2957 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2958 {
08036331
PA
2959 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2960 {
4d9d9d04
PA
2961 /* Ignore the current thread here. It's handled
2962 afterwards. */
08036331 2963 if (tp == cur_thr)
4d9d9d04 2964 continue;
c906108c 2965
4d9d9d04
PA
2966 if (!thread_still_needs_step_over (tp))
2967 continue;
2968
2969 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2970
99619bea
PA
2971 if (debug_infrun)
2972 fprintf_unfiltered (gdb_stdlog,
2973 "infrun: need to step-over [%s] first\n",
4d9d9d04 2974 target_pid_to_str (tp->ptid));
99619bea 2975
4d9d9d04 2976 thread_step_over_chain_enqueue (tp);
2adfaa28 2977 }
30852783
UW
2978 }
2979
4d9d9d04
PA
2980 /* Enqueue the current thread last, so that we move all other
2981 threads over their breakpoints first. */
08036331
PA
2982 if (cur_thr->stepping_over_breakpoint)
2983 thread_step_over_chain_enqueue (cur_thr);
30852783 2984
4d9d9d04
PA
2985 /* If the thread isn't started, we'll still need to set its prev_pc,
2986 so that switch_back_to_stepped_thread knows the thread hasn't
2987 advanced. Must do this before resuming any thread, as in
2988 all-stop/remote, once we resume we can't send any other packet
2989 until the target stops again. */
08036331 2990 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2991
a9bc57b9
TT
2992 {
2993 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2994
a9bc57b9 2995 started = start_step_over ();
c906108c 2996
a9bc57b9
TT
2997 if (step_over_info_valid_p ())
2998 {
2999 /* Either this thread started a new in-line step over, or some
3000 other thread was already doing one. In either case, don't
3001 resume anything else until the step-over is finished. */
3002 }
3003 else if (started && !target_is_non_stop_p ())
3004 {
3005 /* A new displaced stepping sequence was started. In all-stop,
3006 we can't talk to the target anymore until it next stops. */
3007 }
3008 else if (!non_stop && target_is_non_stop_p ())
3009 {
3010 /* In all-stop, but the target is always in non-stop mode.
3011 Start all other threads that are implicitly resumed too. */
08036331 3012 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3013 {
fbea99ea
PA
3014 if (tp->resumed)
3015 {
3016 if (debug_infrun)
3017 fprintf_unfiltered (gdb_stdlog,
3018 "infrun: proceed: [%s] resumed\n",
3019 target_pid_to_str (tp->ptid));
3020 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3021 continue;
3022 }
3023
3024 if (thread_is_in_step_over_chain (tp))
3025 {
3026 if (debug_infrun)
3027 fprintf_unfiltered (gdb_stdlog,
3028 "infrun: proceed: [%s] needs step-over\n",
3029 target_pid_to_str (tp->ptid));
3030 continue;
3031 }
3032
3033 if (debug_infrun)
3034 fprintf_unfiltered (gdb_stdlog,
3035 "infrun: proceed: resuming %s\n",
3036 target_pid_to_str (tp->ptid));
3037
3038 reset_ecs (ecs, tp);
00431a78 3039 switch_to_thread (tp);
fbea99ea
PA
3040 keep_going_pass_signal (ecs);
3041 if (!ecs->wait_some_more)
fd7dcb94 3042 error (_("Command aborted."));
fbea99ea 3043 }
a9bc57b9 3044 }
08036331 3045 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3046 {
3047 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3048 reset_ecs (ecs, cur_thr);
3049 switch_to_thread (cur_thr);
a9bc57b9
TT
3050 keep_going_pass_signal (ecs);
3051 if (!ecs->wait_some_more)
3052 error (_("Command aborted."));
3053 }
3054 }
c906108c 3055
85ad3aaf
PA
3056 target_commit_resume ();
3057
731f534f 3058 finish_state.release ();
c906108c 3059
0b333c5e
PA
3060 /* Tell the event loop to wait for it to stop. If the target
3061 supports asynchronous execution, it'll do this from within
3062 target_resume. */
362646f5 3063 if (!target_can_async_p ())
0b333c5e 3064 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3065}
c906108c
SS
3066\f
3067
3068/* Start remote-debugging of a machine over a serial link. */
96baa820 3069
c906108c 3070void
8621d6a9 3071start_remote (int from_tty)
c906108c 3072{
d6b48e9c 3073 struct inferior *inferior;
d6b48e9c
PA
3074
3075 inferior = current_inferior ();
16c381f0 3076 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3077
1777feb0 3078 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3079 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3080 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3081 nothing is returned (instead of just blocking). Because of this,
3082 targets expecting an immediate response need to, internally, set
3083 things up so that the target_wait() is forced to eventually
1777feb0 3084 timeout. */
6426a772
JM
3085 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3086 differentiate to its caller what the state of the target is after
3087 the initial open has been performed. Here we're assuming that
3088 the target has stopped. It should be possible to eventually have
3089 target_open() return to the caller an indication that the target
3090 is currently running and GDB state should be set to the same as
1777feb0 3091 for an async run. */
e4c8541f 3092 wait_for_inferior ();
8621d6a9
DJ
3093
3094 /* Now that the inferior has stopped, do any bookkeeping like
3095 loading shared libraries. We want to do this before normal_stop,
3096 so that the displayed frame is up to date. */
8b88a78e 3097 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3098
6426a772 3099 normal_stop ();
c906108c
SS
3100}
3101
3102/* Initialize static vars when a new inferior begins. */
3103
3104void
96baa820 3105init_wait_for_inferior (void)
c906108c
SS
3106{
3107 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3108
c906108c
SS
3109 breakpoint_init_inferior (inf_starting);
3110
70509625 3111 clear_proceed_status (0);
9f976b41 3112
ca005067 3113 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3114
842951eb 3115 previous_inferior_ptid = inferior_ptid;
c906108c 3116}
237fc4c9 3117
c906108c 3118\f
488f131b 3119
ec9499be 3120static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3121
568d6575
UW
3122static void handle_step_into_function (struct gdbarch *gdbarch,
3123 struct execution_control_state *ecs);
3124static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3125 struct execution_control_state *ecs);
4f5d7f63 3126static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3127static void check_exception_resume (struct execution_control_state *,
28106bc2 3128 struct frame_info *);
611c83ae 3129
bdc36728 3130static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3131static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3132static void keep_going (struct execution_control_state *ecs);
94c57d6a 3133static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3134static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3135
252fbfc8
PA
3136/* This function is attached as a "thread_stop_requested" observer.
3137 Cleanup local state that assumed the PTID was to be resumed, and
3138 report the stop to the frontend. */
3139
2c0b251b 3140static void
252fbfc8
PA
3141infrun_thread_stop_requested (ptid_t ptid)
3142{
c65d6b55
PA
3143 /* PTID was requested to stop. If the thread was already stopped,
3144 but the user/frontend doesn't know about that yet (e.g., the
3145 thread had been temporarily paused for some step-over), set up
3146 for reporting the stop now. */
08036331
PA
3147 for (thread_info *tp : all_threads (ptid))
3148 {
3149 if (tp->state != THREAD_RUNNING)
3150 continue;
3151 if (tp->executing)
3152 continue;
c65d6b55 3153
08036331
PA
3154 /* Remove matching threads from the step-over queue, so
3155 start_step_over doesn't try to resume them
3156 automatically. */
3157 if (thread_is_in_step_over_chain (tp))
3158 thread_step_over_chain_remove (tp);
c65d6b55 3159
08036331
PA
3160 /* If the thread is stopped, but the user/frontend doesn't
3161 know about that yet, queue a pending event, as if the
3162 thread had just stopped now. Unless the thread already had
3163 a pending event. */
3164 if (!tp->suspend.waitstatus_pending_p)
3165 {
3166 tp->suspend.waitstatus_pending_p = 1;
3167 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3168 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3169 }
c65d6b55 3170
08036331
PA
3171 /* Clear the inline-frame state, since we're re-processing the
3172 stop. */
3173 clear_inline_frame_state (tp->ptid);
c65d6b55 3174
08036331
PA
3175 /* If this thread was paused because some other thread was
3176 doing an inline-step over, let that finish first. Once
3177 that happens, we'll restart all threads and consume pending
3178 stop events then. */
3179 if (step_over_info_valid_p ())
3180 continue;
3181
3182 /* Otherwise we can process the (new) pending event now. Set
3183 it so this pending event is considered by
3184 do_target_wait. */
3185 tp->resumed = 1;
3186 }
252fbfc8
PA
3187}
3188
a07daef3
PA
3189static void
3190infrun_thread_thread_exit (struct thread_info *tp, int silent)
3191{
d7e15655 3192 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3193 nullify_last_target_wait_ptid ();
3194}
3195
0cbcdb96
PA
3196/* Delete the step resume, single-step and longjmp/exception resume
3197 breakpoints of TP. */
4e1c45ea 3198
0cbcdb96
PA
3199static void
3200delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3201{
0cbcdb96
PA
3202 delete_step_resume_breakpoint (tp);
3203 delete_exception_resume_breakpoint (tp);
34b7e8a6 3204 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3205}
3206
0cbcdb96
PA
3207/* If the target still has execution, call FUNC for each thread that
3208 just stopped. In all-stop, that's all the non-exited threads; in
3209 non-stop, that's the current thread, only. */
3210
3211typedef void (*for_each_just_stopped_thread_callback_func)
3212 (struct thread_info *tp);
4e1c45ea
PA
3213
3214static void
0cbcdb96 3215for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3216{
d7e15655 3217 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3218 return;
3219
fbea99ea 3220 if (target_is_non_stop_p ())
4e1c45ea 3221 {
0cbcdb96
PA
3222 /* If in non-stop mode, only the current thread stopped. */
3223 func (inferior_thread ());
4e1c45ea
PA
3224 }
3225 else
0cbcdb96 3226 {
0cbcdb96 3227 /* In all-stop mode, all threads have stopped. */
08036331
PA
3228 for (thread_info *tp : all_non_exited_threads ())
3229 func (tp);
0cbcdb96
PA
3230 }
3231}
3232
3233/* Delete the step resume and longjmp/exception resume breakpoints of
3234 the threads that just stopped. */
3235
3236static void
3237delete_just_stopped_threads_infrun_breakpoints (void)
3238{
3239 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3240}
3241
3242/* Delete the single-step breakpoints of the threads that just
3243 stopped. */
7c16b83e 3244
34b7e8a6
PA
3245static void
3246delete_just_stopped_threads_single_step_breakpoints (void)
3247{
3248 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3249}
3250
221e1a37 3251/* See infrun.h. */
223698f8 3252
221e1a37 3253void
223698f8
DE
3254print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3255 const struct target_waitstatus *ws)
3256{
23fdd69e 3257 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3258 string_file stb;
223698f8
DE
3259
3260 /* The text is split over several lines because it was getting too long.
3261 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3262 output as a unit; we want only one timestamp printed if debug_timestamp
3263 is set. */
3264
d7e74731 3265 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3266 waiton_ptid.pid (),
e38504b3 3267 waiton_ptid.lwp (),
cc6bcb54 3268 waiton_ptid.tid ());
e99b03dc 3269 if (waiton_ptid.pid () != -1)
d7e74731
PA
3270 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3271 stb.printf (", status) =\n");
3272 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3273 result_ptid.pid (),
e38504b3 3274 result_ptid.lwp (),
cc6bcb54 3275 result_ptid.tid (),
d7e74731 3276 target_pid_to_str (result_ptid));
23fdd69e 3277 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3278
3279 /* This uses %s in part to handle %'s in the text, but also to avoid
3280 a gcc error: the format attribute requires a string literal. */
d7e74731 3281 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3282}
3283
372316f1
PA
3284/* Select a thread at random, out of those which are resumed and have
3285 had events. */
3286
3287static struct thread_info *
3288random_pending_event_thread (ptid_t waiton_ptid)
3289{
372316f1 3290 int num_events = 0;
08036331
PA
3291
3292 auto has_event = [] (thread_info *tp)
3293 {
3294 return (tp->resumed
3295 && tp->suspend.waitstatus_pending_p);
3296 };
372316f1
PA
3297
3298 /* First see how many events we have. Count only resumed threads
3299 that have an event pending. */
08036331
PA
3300 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3301 if (has_event (tp))
372316f1
PA
3302 num_events++;
3303
3304 if (num_events == 0)
3305 return NULL;
3306
3307 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3308 int random_selector = (int) ((num_events * (double) rand ())
3309 / (RAND_MAX + 1.0));
372316f1
PA
3310
3311 if (debug_infrun && num_events > 1)
3312 fprintf_unfiltered (gdb_stdlog,
3313 "infrun: Found %d events, selecting #%d\n",
3314 num_events, random_selector);
3315
3316 /* Select the Nth thread that has had an event. */
08036331
PA
3317 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3318 if (has_event (tp))
372316f1 3319 if (random_selector-- == 0)
08036331 3320 return tp;
372316f1 3321
08036331 3322 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3323}
3324
3325/* Wrapper for target_wait that first checks whether threads have
3326 pending statuses to report before actually asking the target for
3327 more events. */
3328
3329static ptid_t
3330do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3331{
3332 ptid_t event_ptid;
3333 struct thread_info *tp;
3334
3335 /* First check if there is a resumed thread with a wait status
3336 pending. */
d7e15655 3337 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3338 {
3339 tp = random_pending_event_thread (ptid);
3340 }
3341 else
3342 {
3343 if (debug_infrun)
3344 fprintf_unfiltered (gdb_stdlog,
3345 "infrun: Waiting for specific thread %s.\n",
3346 target_pid_to_str (ptid));
3347
3348 /* We have a specific thread to check. */
3349 tp = find_thread_ptid (ptid);
3350 gdb_assert (tp != NULL);
3351 if (!tp->suspend.waitstatus_pending_p)
3352 tp = NULL;
3353 }
3354
3355 if (tp != NULL
3356 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3357 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3358 {
00431a78 3359 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3360 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3361 CORE_ADDR pc;
3362 int discard = 0;
3363
3364 pc = regcache_read_pc (regcache);
3365
3366 if (pc != tp->suspend.stop_pc)
3367 {
3368 if (debug_infrun)
3369 fprintf_unfiltered (gdb_stdlog,
3370 "infrun: PC of %s changed. was=%s, now=%s\n",
3371 target_pid_to_str (tp->ptid),
defd2172 3372 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3373 paddress (gdbarch, pc));
3374 discard = 1;
3375 }
a01bda52 3376 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3377 {
3378 if (debug_infrun)
3379 fprintf_unfiltered (gdb_stdlog,
3380 "infrun: previous breakpoint of %s, at %s gone\n",
3381 target_pid_to_str (tp->ptid),
3382 paddress (gdbarch, pc));
3383
3384 discard = 1;
3385 }
3386
3387 if (discard)
3388 {
3389 if (debug_infrun)
3390 fprintf_unfiltered (gdb_stdlog,
3391 "infrun: pending event of %s cancelled.\n",
3392 target_pid_to_str (tp->ptid));
3393
3394 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3395 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3396 }
3397 }
3398
3399 if (tp != NULL)
3400 {
3401 if (debug_infrun)
3402 {
23fdd69e
SM
3403 std::string statstr
3404 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3405
372316f1
PA
3406 fprintf_unfiltered (gdb_stdlog,
3407 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3408 statstr.c_str (),
372316f1 3409 target_pid_to_str (tp->ptid));
372316f1
PA
3410 }
3411
3412 /* Now that we've selected our final event LWP, un-adjust its PC
3413 if it was a software breakpoint (and the target doesn't
3414 always adjust the PC itself). */
3415 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3416 && !target_supports_stopped_by_sw_breakpoint ())
3417 {
3418 struct regcache *regcache;
3419 struct gdbarch *gdbarch;
3420 int decr_pc;
3421
00431a78 3422 regcache = get_thread_regcache (tp);
ac7936df 3423 gdbarch = regcache->arch ();
372316f1
PA
3424
3425 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3426 if (decr_pc != 0)
3427 {
3428 CORE_ADDR pc;
3429
3430 pc = regcache_read_pc (regcache);
3431 regcache_write_pc (regcache, pc + decr_pc);
3432 }
3433 }
3434
3435 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3436 *status = tp->suspend.waitstatus;
3437 tp->suspend.waitstatus_pending_p = 0;
3438
3439 /* Wake up the event loop again, until all pending events are
3440 processed. */
3441 if (target_is_async_p ())
3442 mark_async_event_handler (infrun_async_inferior_event_token);
3443 return tp->ptid;
3444 }
3445
3446 /* But if we don't find one, we'll have to wait. */
3447
3448 if (deprecated_target_wait_hook)
3449 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3450 else
3451 event_ptid = target_wait (ptid, status, options);
3452
3453 return event_ptid;
3454}
3455
24291992
PA
3456/* Prepare and stabilize the inferior for detaching it. E.g.,
3457 detaching while a thread is displaced stepping is a recipe for
3458 crashing it, as nothing would readjust the PC out of the scratch
3459 pad. */
3460
3461void
3462prepare_for_detach (void)
3463{
3464 struct inferior *inf = current_inferior ();
f2907e49 3465 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3466
00431a78 3467 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3468
3469 /* Is any thread of this process displaced stepping? If not,
3470 there's nothing else to do. */
d20172fc 3471 if (displaced->step_thread == nullptr)
24291992
PA
3472 return;
3473
3474 if (debug_infrun)
3475 fprintf_unfiltered (gdb_stdlog,
3476 "displaced-stepping in-process while detaching");
3477
9bcb1f16 3478 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3479
00431a78 3480 while (displaced->step_thread != nullptr)
24291992 3481 {
24291992
PA
3482 struct execution_control_state ecss;
3483 struct execution_control_state *ecs;
3484
3485 ecs = &ecss;
3486 memset (ecs, 0, sizeof (*ecs));
3487
3488 overlay_cache_invalid = 1;
f15cb84a
YQ
3489 /* Flush target cache before starting to handle each event.
3490 Target was running and cache could be stale. This is just a
3491 heuristic. Running threads may modify target memory, but we
3492 don't get any event. */
3493 target_dcache_invalidate ();
24291992 3494
372316f1 3495 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3496
3497 if (debug_infrun)
3498 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3499
3500 /* If an error happens while handling the event, propagate GDB's
3501 knowledge of the executing state to the frontend/user running
3502 state. */
731f534f 3503 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3504
3505 /* Now figure out what to do with the result of the result. */
3506 handle_inferior_event (ecs);
3507
3508 /* No error, don't finish the state yet. */
731f534f 3509 finish_state.release ();
24291992
PA
3510
3511 /* Breakpoints and watchpoints are not installed on the target
3512 at this point, and signals are passed directly to the
3513 inferior, so this must mean the process is gone. */
3514 if (!ecs->wait_some_more)
3515 {
9bcb1f16 3516 restore_detaching.release ();
24291992
PA
3517 error (_("Program exited while detaching"));
3518 }
3519 }
3520
9bcb1f16 3521 restore_detaching.release ();
24291992
PA
3522}
3523
cd0fc7c3 3524/* Wait for control to return from inferior to debugger.
ae123ec6 3525
cd0fc7c3
SS
3526 If inferior gets a signal, we may decide to start it up again
3527 instead of returning. That is why there is a loop in this function.
3528 When this function actually returns it means the inferior
3529 should be left stopped and GDB should read more commands. */
3530
3531void
e4c8541f 3532wait_for_inferior (void)
cd0fc7c3 3533{
527159b7 3534 if (debug_infrun)
ae123ec6 3535 fprintf_unfiltered
e4c8541f 3536 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3537
4c41382a 3538 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3539
e6f5c25b
PA
3540 /* If an error happens while handling the event, propagate GDB's
3541 knowledge of the executing state to the frontend/user running
3542 state. */
731f534f 3543 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3544
c906108c
SS
3545 while (1)
3546 {
ae25568b
PA
3547 struct execution_control_state ecss;
3548 struct execution_control_state *ecs = &ecss;
963f9c80 3549 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3550
ae25568b
PA
3551 memset (ecs, 0, sizeof (*ecs));
3552
ec9499be 3553 overlay_cache_invalid = 1;
ec9499be 3554
f15cb84a
YQ
3555 /* Flush target cache before starting to handle each event.
3556 Target was running and cache could be stale. This is just a
3557 heuristic. Running threads may modify target memory, but we
3558 don't get any event. */
3559 target_dcache_invalidate ();
3560
372316f1 3561 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3562
f00150c9 3563 if (debug_infrun)
223698f8 3564 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3565
cd0fc7c3
SS
3566 /* Now figure out what to do with the result of the result. */
3567 handle_inferior_event (ecs);
c906108c 3568
cd0fc7c3
SS
3569 if (!ecs->wait_some_more)
3570 break;
3571 }
4e1c45ea 3572
e6f5c25b 3573 /* No error, don't finish the state yet. */
731f534f 3574 finish_state.release ();
cd0fc7c3 3575}
c906108c 3576
d3d4baed
PA
3577/* Cleanup that reinstalls the readline callback handler, if the
3578 target is running in the background. If while handling the target
3579 event something triggered a secondary prompt, like e.g., a
3580 pagination prompt, we'll have removed the callback handler (see
3581 gdb_readline_wrapper_line). Need to do this as we go back to the
3582 event loop, ready to process further input. Note this has no
3583 effect if the handler hasn't actually been removed, because calling
3584 rl_callback_handler_install resets the line buffer, thus losing
3585 input. */
3586
3587static void
d238133d 3588reinstall_readline_callback_handler_cleanup ()
d3d4baed 3589{
3b12939d
PA
3590 struct ui *ui = current_ui;
3591
3592 if (!ui->async)
6c400b59
PA
3593 {
3594 /* We're not going back to the top level event loop yet. Don't
3595 install the readline callback, as it'd prep the terminal,
3596 readline-style (raw, noecho) (e.g., --batch). We'll install
3597 it the next time the prompt is displayed, when we're ready
3598 for input. */
3599 return;
3600 }
3601
3b12939d 3602 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3603 gdb_rl_callback_handler_reinstall ();
3604}
3605
243a9253
PA
3606/* Clean up the FSMs of threads that are now stopped. In non-stop,
3607 that's just the event thread. In all-stop, that's all threads. */
3608
3609static void
3610clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3611{
08036331
PA
3612 if (ecs->event_thread != NULL
3613 && ecs->event_thread->thread_fsm != NULL)
3614 thread_fsm_clean_up (ecs->event_thread->thread_fsm,
3615 ecs->event_thread);
243a9253
PA
3616
3617 if (!non_stop)
3618 {
08036331 3619 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3620 {
3621 if (thr->thread_fsm == NULL)
3622 continue;
3623 if (thr == ecs->event_thread)
3624 continue;
3625
00431a78 3626 switch_to_thread (thr);
8980e177 3627 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3628 }
3629
3630 if (ecs->event_thread != NULL)
00431a78 3631 switch_to_thread (ecs->event_thread);
243a9253
PA
3632 }
3633}
3634
3b12939d
PA
3635/* Helper for all_uis_check_sync_execution_done that works on the
3636 current UI. */
3637
3638static void
3639check_curr_ui_sync_execution_done (void)
3640{
3641 struct ui *ui = current_ui;
3642
3643 if (ui->prompt_state == PROMPT_NEEDED
3644 && ui->async
3645 && !gdb_in_secondary_prompt_p (ui))
3646 {
223ffa71 3647 target_terminal::ours ();
76727919 3648 gdb::observers::sync_execution_done.notify ();
3eb7562a 3649 ui_register_input_event_handler (ui);
3b12939d
PA
3650 }
3651}
3652
3653/* See infrun.h. */
3654
3655void
3656all_uis_check_sync_execution_done (void)
3657{
0e454242 3658 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3659 {
3660 check_curr_ui_sync_execution_done ();
3661 }
3662}
3663
a8836c93
PA
3664/* See infrun.h. */
3665
3666void
3667all_uis_on_sync_execution_starting (void)
3668{
0e454242 3669 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3670 {
3671 if (current_ui->prompt_state == PROMPT_NEEDED)
3672 async_disable_stdin ();
3673 }
3674}
3675
1777feb0 3676/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3677 event loop whenever a change of state is detected on the file
1777feb0
MS
3678 descriptor corresponding to the target. It can be called more than
3679 once to complete a single execution command. In such cases we need
3680 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3681 that this function is called for a single execution command, then
3682 report to the user that the inferior has stopped, and do the
1777feb0 3683 necessary cleanups. */
43ff13b4
JM
3684
3685void
fba45db2 3686fetch_inferior_event (void *client_data)
43ff13b4 3687{
0d1e5fa7 3688 struct execution_control_state ecss;
a474d7c2 3689 struct execution_control_state *ecs = &ecss;
0f641c01 3690 int cmd_done = 0;
963f9c80 3691 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3692
0d1e5fa7
PA
3693 memset (ecs, 0, sizeof (*ecs));
3694
c61db772
PA
3695 /* Events are always processed with the main UI as current UI. This
3696 way, warnings, debug output, etc. are always consistently sent to
3697 the main console. */
4b6749b9 3698 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3699
d3d4baed 3700 /* End up with readline processing input, if necessary. */
d238133d
TT
3701 {
3702 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3703
3704 /* We're handling a live event, so make sure we're doing live
3705 debugging. If we're looking at traceframes while the target is
3706 running, we're going to need to get back to that mode after
3707 handling the event. */
3708 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3709 if (non_stop)
3710 {
3711 maybe_restore_traceframe.emplace ();
3712 set_current_traceframe (-1);
3713 }
43ff13b4 3714
d238133d
TT
3715 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3716
3717 if (non_stop)
3718 /* In non-stop mode, the user/frontend should not notice a thread
3719 switch due to internal events. Make sure we reverse to the
3720 user selected thread and frame after handling the event and
3721 running any breakpoint commands. */
3722 maybe_restore_thread.emplace ();
3723
3724 overlay_cache_invalid = 1;
3725 /* Flush target cache before starting to handle each event. Target
3726 was running and cache could be stale. This is just a heuristic.
3727 Running threads may modify target memory, but we don't get any
3728 event. */
3729 target_dcache_invalidate ();
3730
3731 scoped_restore save_exec_dir
3732 = make_scoped_restore (&execution_direction,
3733 target_execution_direction ());
3734
3735 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3736 target_can_async_p () ? TARGET_WNOHANG : 0);
3737
3738 if (debug_infrun)
3739 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3740
3741 /* If an error happens while handling the event, propagate GDB's
3742 knowledge of the executing state to the frontend/user running
3743 state. */
3744 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3745 scoped_finish_thread_state finish_state (finish_ptid);
3746
979a0d13 3747 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3748 still for the thread which has thrown the exception. */
3749 auto defer_bpstat_clear
3750 = make_scope_exit (bpstat_clear_actions);
3751 auto defer_delete_threads
3752 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3753
3754 /* Now figure out what to do with the result of the result. */
3755 handle_inferior_event (ecs);
3756
3757 if (!ecs->wait_some_more)
3758 {
3759 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3760 int should_stop = 1;
3761 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3762
d238133d 3763 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3764
d238133d
TT
3765 if (thr != NULL)
3766 {
3767 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3768
d238133d
TT
3769 if (thread_fsm != NULL)
3770 should_stop = thread_fsm_should_stop (thread_fsm, thr);
3771 }
243a9253 3772
d238133d
TT
3773 if (!should_stop)
3774 {
3775 keep_going (ecs);
3776 }
3777 else
3778 {
3779 int should_notify_stop = 1;
3780 int proceeded = 0;
1840d81a 3781
d238133d 3782 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3783
d238133d
TT
3784 if (thr != NULL && thr->thread_fsm != NULL)
3785 {
3786 should_notify_stop
3787 = thread_fsm_should_notify_stop (thr->thread_fsm);
3788 }
388a7084 3789
d238133d
TT
3790 if (should_notify_stop)
3791 {
3792 /* We may not find an inferior if this was a process exit. */
3793 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3794 proceeded = normal_stop ();
3795 }
243a9253 3796
d238133d
TT
3797 if (!proceeded)
3798 {
3799 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3800 cmd_done = 1;
3801 }
3802 }
3803 }
4f8d22e3 3804
d238133d
TT
3805 defer_delete_threads.release ();
3806 defer_bpstat_clear.release ();
29f49a6a 3807
d238133d
TT
3808 /* No error, don't finish the thread states yet. */
3809 finish_state.release ();
731f534f 3810
d238133d
TT
3811 /* This scope is used to ensure that readline callbacks are
3812 reinstalled here. */
3813 }
4f8d22e3 3814
3b12939d
PA
3815 /* If a UI was in sync execution mode, and now isn't, restore its
3816 prompt (a synchronous execution command has finished, and we're
3817 ready for input). */
3818 all_uis_check_sync_execution_done ();
0f641c01
PA
3819
3820 if (cmd_done
0f641c01 3821 && exec_done_display_p
00431a78
PA
3822 && (inferior_ptid == null_ptid
3823 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3824 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3825}
3826
edb3359d
DJ
3827/* Record the frame and location we're currently stepping through. */
3828void
3829set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3830{
3831 struct thread_info *tp = inferior_thread ();
3832
16c381f0
JK
3833 tp->control.step_frame_id = get_frame_id (frame);
3834 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3835
3836 tp->current_symtab = sal.symtab;
3837 tp->current_line = sal.line;
3838}
3839
0d1e5fa7
PA
3840/* Clear context switchable stepping state. */
3841
3842void
4e1c45ea 3843init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3844{
7f5ef605 3845 tss->stepped_breakpoint = 0;
0d1e5fa7 3846 tss->stepping_over_breakpoint = 0;
963f9c80 3847 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3848 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3849}
3850
c32c64b7
DE
3851/* Set the cached copy of the last ptid/waitstatus. */
3852
6efcd9a8 3853void
c32c64b7
DE
3854set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3855{
3856 target_last_wait_ptid = ptid;
3857 target_last_waitstatus = status;
3858}
3859
e02bc4cc 3860/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3861 target_wait()/deprecated_target_wait_hook(). The data is actually
3862 cached by handle_inferior_event(), which gets called immediately
3863 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3864
3865void
488f131b 3866get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3867{
39f77062 3868 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3869 *status = target_last_waitstatus;
3870}
3871
ac264b3b
MS
3872void
3873nullify_last_target_wait_ptid (void)
3874{
3875 target_last_wait_ptid = minus_one_ptid;
3876}
3877
dcf4fbde 3878/* Switch thread contexts. */
dd80620e
MS
3879
3880static void
00431a78 3881context_switch (execution_control_state *ecs)
dd80620e 3882{
00431a78
PA
3883 if (debug_infrun
3884 && ecs->ptid != inferior_ptid
3885 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3886 {
3887 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3888 target_pid_to_str (inferior_ptid));
3889 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3890 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3891 }
3892
00431a78 3893 switch_to_thread (ecs->event_thread);
dd80620e
MS
3894}
3895
d8dd4d5f
PA
3896/* If the target can't tell whether we've hit breakpoints
3897 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3898 check whether that could have been caused by a breakpoint. If so,
3899 adjust the PC, per gdbarch_decr_pc_after_break. */
3900
4fa8626c 3901static void
d8dd4d5f
PA
3902adjust_pc_after_break (struct thread_info *thread,
3903 struct target_waitstatus *ws)
4fa8626c 3904{
24a73cce
UW
3905 struct regcache *regcache;
3906 struct gdbarch *gdbarch;
118e6252 3907 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3908
4fa8626c
DJ
3909 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3910 we aren't, just return.
9709f61c
DJ
3911
3912 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3913 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3914 implemented by software breakpoints should be handled through the normal
3915 breakpoint layer.
8fb3e588 3916
4fa8626c
DJ
3917 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3918 different signals (SIGILL or SIGEMT for instance), but it is less
3919 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3920 gdbarch_decr_pc_after_break. I don't know any specific target that
3921 generates these signals at breakpoints (the code has been in GDB since at
3922 least 1992) so I can not guess how to handle them here.
8fb3e588 3923
e6cf7916
UW
3924 In earlier versions of GDB, a target with
3925 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3926 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3927 target with both of these set in GDB history, and it seems unlikely to be
3928 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3929
d8dd4d5f 3930 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3931 return;
3932
d8dd4d5f 3933 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3934 return;
3935
4058b839
PA
3936 /* In reverse execution, when a breakpoint is hit, the instruction
3937 under it has already been de-executed. The reported PC always
3938 points at the breakpoint address, so adjusting it further would
3939 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3940 architecture:
3941
3942 B1 0x08000000 : INSN1
3943 B2 0x08000001 : INSN2
3944 0x08000002 : INSN3
3945 PC -> 0x08000003 : INSN4
3946
3947 Say you're stopped at 0x08000003 as above. Reverse continuing
3948 from that point should hit B2 as below. Reading the PC when the
3949 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3950 been de-executed already.
3951
3952 B1 0x08000000 : INSN1
3953 B2 PC -> 0x08000001 : INSN2
3954 0x08000002 : INSN3
3955 0x08000003 : INSN4
3956
3957 We can't apply the same logic as for forward execution, because
3958 we would wrongly adjust the PC to 0x08000000, since there's a
3959 breakpoint at PC - 1. We'd then report a hit on B1, although
3960 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3961 behaviour. */
3962 if (execution_direction == EXEC_REVERSE)
3963 return;
3964
1cf4d951
PA
3965 /* If the target can tell whether the thread hit a SW breakpoint,
3966 trust it. Targets that can tell also adjust the PC
3967 themselves. */
3968 if (target_supports_stopped_by_sw_breakpoint ())
3969 return;
3970
3971 /* Note that relying on whether a breakpoint is planted in memory to
3972 determine this can fail. E.g,. the breakpoint could have been
3973 removed since. Or the thread could have been told to step an
3974 instruction the size of a breakpoint instruction, and only
3975 _after_ was a breakpoint inserted at its address. */
3976
24a73cce
UW
3977 /* If this target does not decrement the PC after breakpoints, then
3978 we have nothing to do. */
00431a78 3979 regcache = get_thread_regcache (thread);
ac7936df 3980 gdbarch = regcache->arch ();
118e6252 3981
527a273a 3982 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3983 if (decr_pc == 0)
24a73cce
UW
3984 return;
3985
8b86c959 3986 const address_space *aspace = regcache->aspace ();
6c95b8df 3987
8aad930b
AC
3988 /* Find the location where (if we've hit a breakpoint) the
3989 breakpoint would be. */
118e6252 3990 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3991
1cf4d951
PA
3992 /* If the target can't tell whether a software breakpoint triggered,
3993 fallback to figuring it out based on breakpoints we think were
3994 inserted in the target, and on whether the thread was stepped or
3995 continued. */
3996
1c5cfe86
PA
3997 /* Check whether there actually is a software breakpoint inserted at
3998 that location.
3999
4000 If in non-stop mode, a race condition is possible where we've
4001 removed a breakpoint, but stop events for that breakpoint were
4002 already queued and arrive later. To suppress those spurious
4003 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4004 and retire them after a number of stop events are reported. Note
4005 this is an heuristic and can thus get confused. The real fix is
4006 to get the "stopped by SW BP and needs adjustment" info out of
4007 the target/kernel (and thus never reach here; see above). */
6c95b8df 4008 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4009 || (target_is_non_stop_p ()
4010 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4011 {
07036511 4012 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4013
8213266a 4014 if (record_full_is_used ())
07036511
TT
4015 restore_operation_disable.emplace
4016 (record_full_gdb_operation_disable_set ());
96429cc8 4017
1c0fdd0e
UW
4018 /* When using hardware single-step, a SIGTRAP is reported for both
4019 a completed single-step and a software breakpoint. Need to
4020 differentiate between the two, as the latter needs adjusting
4021 but the former does not.
4022
4023 The SIGTRAP can be due to a completed hardware single-step only if
4024 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4025 - this thread is currently being stepped
4026
4027 If any of these events did not occur, we must have stopped due
4028 to hitting a software breakpoint, and have to back up to the
4029 breakpoint address.
4030
4031 As a special case, we could have hardware single-stepped a
4032 software breakpoint. In this case (prev_pc == breakpoint_pc),
4033 we also need to back up to the breakpoint address. */
4034
d8dd4d5f
PA
4035 if (thread_has_single_step_breakpoints_set (thread)
4036 || !currently_stepping (thread)
4037 || (thread->stepped_breakpoint
4038 && thread->prev_pc == breakpoint_pc))
515630c5 4039 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4040 }
4fa8626c
DJ
4041}
4042
edb3359d
DJ
4043static int
4044stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4045{
4046 for (frame = get_prev_frame (frame);
4047 frame != NULL;
4048 frame = get_prev_frame (frame))
4049 {
4050 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4051 return 1;
4052 if (get_frame_type (frame) != INLINE_FRAME)
4053 break;
4054 }
4055
4056 return 0;
4057}
4058
c65d6b55
PA
4059/* If the event thread has the stop requested flag set, pretend it
4060 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4061 target_stop). */
4062
4063static bool
4064handle_stop_requested (struct execution_control_state *ecs)
4065{
4066 if (ecs->event_thread->stop_requested)
4067 {
4068 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4069 ecs->ws.value.sig = GDB_SIGNAL_0;
4070 handle_signal_stop (ecs);
4071 return true;
4072 }
4073 return false;
4074}
4075
a96d9b2e
SDJ
4076/* Auxiliary function that handles syscall entry/return events.
4077 It returns 1 if the inferior should keep going (and GDB
4078 should ignore the event), or 0 if the event deserves to be
4079 processed. */
ca2163eb 4080
a96d9b2e 4081static int
ca2163eb 4082handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4083{
ca2163eb 4084 struct regcache *regcache;
ca2163eb
PA
4085 int syscall_number;
4086
00431a78 4087 context_switch (ecs);
ca2163eb 4088
00431a78 4089 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4090 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4091 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4092
a96d9b2e
SDJ
4093 if (catch_syscall_enabled () > 0
4094 && catching_syscall_number (syscall_number) > 0)
4095 {
4096 if (debug_infrun)
4097 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4098 syscall_number);
a96d9b2e 4099
16c381f0 4100 ecs->event_thread->control.stop_bpstat
a01bda52 4101 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4102 ecs->event_thread->suspend.stop_pc,
4103 ecs->event_thread, &ecs->ws);
ab04a2af 4104
c65d6b55
PA
4105 if (handle_stop_requested (ecs))
4106 return 0;
4107
ce12b012 4108 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4109 {
4110 /* Catchpoint hit. */
ca2163eb
PA
4111 return 0;
4112 }
a96d9b2e 4113 }
ca2163eb 4114
c65d6b55
PA
4115 if (handle_stop_requested (ecs))
4116 return 0;
4117
ca2163eb 4118 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4119 keep_going (ecs);
4120 return 1;
a96d9b2e
SDJ
4121}
4122
7e324e48
GB
4123/* Lazily fill in the execution_control_state's stop_func_* fields. */
4124
4125static void
4126fill_in_stop_func (struct gdbarch *gdbarch,
4127 struct execution_control_state *ecs)
4128{
4129 if (!ecs->stop_func_filled_in)
4130 {
4131 /* Don't care about return value; stop_func_start and stop_func_name
4132 will both be 0 if it doesn't work. */
59adbf5d
KB
4133 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4134 &ecs->stop_func_name,
4135 &ecs->stop_func_start,
4136 &ecs->stop_func_end);
7e324e48
GB
4137 ecs->stop_func_start
4138 += gdbarch_deprecated_function_start_offset (gdbarch);
4139
591a12a1
UW
4140 if (gdbarch_skip_entrypoint_p (gdbarch))
4141 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4142 ecs->stop_func_start);
4143
7e324e48
GB
4144 ecs->stop_func_filled_in = 1;
4145 }
4146}
4147
4f5d7f63 4148
00431a78 4149/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4150
4151static enum stop_kind
00431a78 4152get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4153{
00431a78 4154 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4155
4156 gdb_assert (inf != NULL);
4157 return inf->control.stop_soon;
4158}
4159
372316f1
PA
4160/* Wait for one event. Store the resulting waitstatus in WS, and
4161 return the event ptid. */
4162
4163static ptid_t
4164wait_one (struct target_waitstatus *ws)
4165{
4166 ptid_t event_ptid;
4167 ptid_t wait_ptid = minus_one_ptid;
4168
4169 overlay_cache_invalid = 1;
4170
4171 /* Flush target cache before starting to handle each event.
4172 Target was running and cache could be stale. This is just a
4173 heuristic. Running threads may modify target memory, but we
4174 don't get any event. */
4175 target_dcache_invalidate ();
4176
4177 if (deprecated_target_wait_hook)
4178 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4179 else
4180 event_ptid = target_wait (wait_ptid, ws, 0);
4181
4182 if (debug_infrun)
4183 print_target_wait_results (wait_ptid, event_ptid, ws);
4184
4185 return event_ptid;
4186}
4187
4188/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4189 instead of the current thread. */
4190#define THREAD_STOPPED_BY(REASON) \
4191static int \
4192thread_stopped_by_ ## REASON (ptid_t ptid) \
4193{ \
2989a365 4194 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4195 inferior_ptid = ptid; \
4196 \
2989a365 4197 return target_stopped_by_ ## REASON (); \
372316f1
PA
4198}
4199
4200/* Generate thread_stopped_by_watchpoint. */
4201THREAD_STOPPED_BY (watchpoint)
4202/* Generate thread_stopped_by_sw_breakpoint. */
4203THREAD_STOPPED_BY (sw_breakpoint)
4204/* Generate thread_stopped_by_hw_breakpoint. */
4205THREAD_STOPPED_BY (hw_breakpoint)
4206
372316f1
PA
4207/* Save the thread's event and stop reason to process it later. */
4208
4209static void
4210save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4211{
372316f1
PA
4212 if (debug_infrun)
4213 {
23fdd69e 4214 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4215
372316f1
PA
4216 fprintf_unfiltered (gdb_stdlog,
4217 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4218 statstr.c_str (),
e99b03dc 4219 tp->ptid.pid (),
e38504b3 4220 tp->ptid.lwp (),
cc6bcb54 4221 tp->ptid.tid ());
372316f1
PA
4222 }
4223
4224 /* Record for later. */
4225 tp->suspend.waitstatus = *ws;
4226 tp->suspend.waitstatus_pending_p = 1;
4227
00431a78 4228 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4229 const address_space *aspace = regcache->aspace ();
372316f1
PA
4230
4231 if (ws->kind == TARGET_WAITKIND_STOPPED
4232 && ws->value.sig == GDB_SIGNAL_TRAP)
4233 {
4234 CORE_ADDR pc = regcache_read_pc (regcache);
4235
4236 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4237
4238 if (thread_stopped_by_watchpoint (tp->ptid))
4239 {
4240 tp->suspend.stop_reason
4241 = TARGET_STOPPED_BY_WATCHPOINT;
4242 }
4243 else if (target_supports_stopped_by_sw_breakpoint ()
4244 && thread_stopped_by_sw_breakpoint (tp->ptid))
4245 {
4246 tp->suspend.stop_reason
4247 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4248 }
4249 else if (target_supports_stopped_by_hw_breakpoint ()
4250 && thread_stopped_by_hw_breakpoint (tp->ptid))
4251 {
4252 tp->suspend.stop_reason
4253 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4254 }
4255 else if (!target_supports_stopped_by_hw_breakpoint ()
4256 && hardware_breakpoint_inserted_here_p (aspace,
4257 pc))
4258 {
4259 tp->suspend.stop_reason
4260 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4261 }
4262 else if (!target_supports_stopped_by_sw_breakpoint ()
4263 && software_breakpoint_inserted_here_p (aspace,
4264 pc))
4265 {
4266 tp->suspend.stop_reason
4267 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4268 }
4269 else if (!thread_has_single_step_breakpoints_set (tp)
4270 && currently_stepping (tp))
4271 {
4272 tp->suspend.stop_reason
4273 = TARGET_STOPPED_BY_SINGLE_STEP;
4274 }
4275 }
4276}
4277
6efcd9a8 4278/* See infrun.h. */
372316f1 4279
6efcd9a8 4280void
372316f1
PA
4281stop_all_threads (void)
4282{
4283 /* We may need multiple passes to discover all threads. */
4284 int pass;
4285 int iterations = 0;
372316f1 4286
fbea99ea 4287 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4288
4289 if (debug_infrun)
4290 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4291
00431a78 4292 scoped_restore_current_thread restore_thread;
372316f1 4293
65706a29 4294 target_thread_events (1);
9885e6bb 4295 SCOPE_EXIT { target_thread_events (0); };
65706a29 4296
372316f1
PA
4297 /* Request threads to stop, and then wait for the stops. Because
4298 threads we already know about can spawn more threads while we're
4299 trying to stop them, and we only learn about new threads when we
4300 update the thread list, do this in a loop, and keep iterating
4301 until two passes find no threads that need to be stopped. */
4302 for (pass = 0; pass < 2; pass++, iterations++)
4303 {
4304 if (debug_infrun)
4305 fprintf_unfiltered (gdb_stdlog,
4306 "infrun: stop_all_threads, pass=%d, "
4307 "iterations=%d\n", pass, iterations);
4308 while (1)
4309 {
4310 ptid_t event_ptid;
4311 struct target_waitstatus ws;
4312 int need_wait = 0;
372316f1
PA
4313
4314 update_thread_list ();
4315
4316 /* Go through all threads looking for threads that we need
4317 to tell the target to stop. */
08036331 4318 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4319 {
4320 if (t->executing)
4321 {
4322 /* If already stopping, don't request a stop again.
4323 We just haven't seen the notification yet. */
4324 if (!t->stop_requested)
4325 {
4326 if (debug_infrun)
4327 fprintf_unfiltered (gdb_stdlog,
4328 "infrun: %s executing, "
4329 "need stop\n",
4330 target_pid_to_str (t->ptid));
4331 target_stop (t->ptid);
4332 t->stop_requested = 1;
4333 }
4334 else
4335 {
4336 if (debug_infrun)
4337 fprintf_unfiltered (gdb_stdlog,
4338 "infrun: %s executing, "
4339 "already stopping\n",
4340 target_pid_to_str (t->ptid));
4341 }
4342
4343 if (t->stop_requested)
4344 need_wait = 1;
4345 }
4346 else
4347 {
4348 if (debug_infrun)
4349 fprintf_unfiltered (gdb_stdlog,
4350 "infrun: %s not executing\n",
4351 target_pid_to_str (t->ptid));
4352
4353 /* The thread may be not executing, but still be
4354 resumed with a pending status to process. */
4355 t->resumed = 0;
4356 }
4357 }
4358
4359 if (!need_wait)
4360 break;
4361
4362 /* If we find new threads on the second iteration, restart
4363 over. We want to see two iterations in a row with all
4364 threads stopped. */
4365 if (pass > 0)
4366 pass = -1;
4367
4368 event_ptid = wait_one (&ws);
00431a78 4369
372316f1
PA
4370 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4371 {
4372 /* All resumed threads exited. */
4373 }
65706a29
PA
4374 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4375 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4376 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4377 {
4378 if (debug_infrun)
4379 {
f2907e49 4380 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4381
4382 fprintf_unfiltered (gdb_stdlog,
4383 "infrun: %s exited while "
4384 "stopping threads\n",
4385 target_pid_to_str (ptid));
4386 }
4387 }
4388 else
4389 {
08036331 4390 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4391 if (t == NULL)
4392 t = add_thread (event_ptid);
4393
4394 t->stop_requested = 0;
4395 t->executing = 0;
4396 t->resumed = 0;
4397 t->control.may_range_step = 0;
4398
6efcd9a8
PA
4399 /* This may be the first time we see the inferior report
4400 a stop. */
08036331 4401 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4402 if (inf->needs_setup)
4403 {
4404 switch_to_thread_no_regs (t);
4405 setup_inferior (0);
4406 }
4407
372316f1
PA
4408 if (ws.kind == TARGET_WAITKIND_STOPPED
4409 && ws.value.sig == GDB_SIGNAL_0)
4410 {
4411 /* We caught the event that we intended to catch, so
4412 there's no event pending. */
4413 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4414 t->suspend.waitstatus_pending_p = 0;
4415
00431a78 4416 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4417 {
4418 /* Add it back to the step-over queue. */
4419 if (debug_infrun)
4420 {
4421 fprintf_unfiltered (gdb_stdlog,
4422 "infrun: displaced-step of %s "
4423 "canceled: adding back to the "
4424 "step-over queue\n",
4425 target_pid_to_str (t->ptid));
4426 }
4427 t->control.trap_expected = 0;
4428 thread_step_over_chain_enqueue (t);
4429 }
4430 }
4431 else
4432 {
4433 enum gdb_signal sig;
4434 struct regcache *regcache;
372316f1
PA
4435
4436 if (debug_infrun)
4437 {
23fdd69e 4438 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4439
372316f1
PA
4440 fprintf_unfiltered (gdb_stdlog,
4441 "infrun: target_wait %s, saving "
4442 "status for %d.%ld.%ld\n",
23fdd69e 4443 statstr.c_str (),
e99b03dc 4444 t->ptid.pid (),
e38504b3 4445 t->ptid.lwp (),
cc6bcb54 4446 t->ptid.tid ());
372316f1
PA
4447 }
4448
4449 /* Record for later. */
4450 save_waitstatus (t, &ws);
4451
4452 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4453 ? ws.value.sig : GDB_SIGNAL_0);
4454
00431a78 4455 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4456 {
4457 /* Add it back to the step-over queue. */
4458 t->control.trap_expected = 0;
4459 thread_step_over_chain_enqueue (t);
4460 }
4461
00431a78 4462 regcache = get_thread_regcache (t);
372316f1
PA
4463 t->suspend.stop_pc = regcache_read_pc (regcache);
4464
4465 if (debug_infrun)
4466 {
4467 fprintf_unfiltered (gdb_stdlog,
4468 "infrun: saved stop_pc=%s for %s "
4469 "(currently_stepping=%d)\n",
4470 paddress (target_gdbarch (),
4471 t->suspend.stop_pc),
4472 target_pid_to_str (t->ptid),
4473 currently_stepping (t));
4474 }
4475 }
4476 }
4477 }
4478 }
4479
372316f1
PA
4480 if (debug_infrun)
4481 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4482}
4483
f4836ba9
PA
4484/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4485
4486static int
4487handle_no_resumed (struct execution_control_state *ecs)
4488{
3b12939d 4489 if (target_can_async_p ())
f4836ba9 4490 {
3b12939d
PA
4491 struct ui *ui;
4492 int any_sync = 0;
f4836ba9 4493
3b12939d
PA
4494 ALL_UIS (ui)
4495 {
4496 if (ui->prompt_state == PROMPT_BLOCKED)
4497 {
4498 any_sync = 1;
4499 break;
4500 }
4501 }
4502 if (!any_sync)
4503 {
4504 /* There were no unwaited-for children left in the target, but,
4505 we're not synchronously waiting for events either. Just
4506 ignore. */
4507
4508 if (debug_infrun)
4509 fprintf_unfiltered (gdb_stdlog,
4510 "infrun: TARGET_WAITKIND_NO_RESUMED "
4511 "(ignoring: bg)\n");
4512 prepare_to_wait (ecs);
4513 return 1;
4514 }
f4836ba9
PA
4515 }
4516
4517 /* Otherwise, if we were running a synchronous execution command, we
4518 may need to cancel it and give the user back the terminal.
4519
4520 In non-stop mode, the target can't tell whether we've already
4521 consumed previous stop events, so it can end up sending us a
4522 no-resumed event like so:
4523
4524 #0 - thread 1 is left stopped
4525
4526 #1 - thread 2 is resumed and hits breakpoint
4527 -> TARGET_WAITKIND_STOPPED
4528
4529 #2 - thread 3 is resumed and exits
4530 this is the last resumed thread, so
4531 -> TARGET_WAITKIND_NO_RESUMED
4532
4533 #3 - gdb processes stop for thread 2 and decides to re-resume
4534 it.
4535
4536 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4537 thread 2 is now resumed, so the event should be ignored.
4538
4539 IOW, if the stop for thread 2 doesn't end a foreground command,
4540 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4541 event. But it could be that the event meant that thread 2 itself
4542 (or whatever other thread was the last resumed thread) exited.
4543
4544 To address this we refresh the thread list and check whether we
4545 have resumed threads _now_. In the example above, this removes
4546 thread 3 from the thread list. If thread 2 was re-resumed, we
4547 ignore this event. If we find no thread resumed, then we cancel
4548 the synchronous command show "no unwaited-for " to the user. */
4549 update_thread_list ();
4550
08036331 4551 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4552 {
4553 if (thread->executing
4554 || thread->suspend.waitstatus_pending_p)
4555 {
4556 /* There were no unwaited-for children left in the target at
4557 some point, but there are now. Just ignore. */
4558 if (debug_infrun)
4559 fprintf_unfiltered (gdb_stdlog,
4560 "infrun: TARGET_WAITKIND_NO_RESUMED "
4561 "(ignoring: found resumed)\n");
4562 prepare_to_wait (ecs);
4563 return 1;
4564 }
4565 }
4566
4567 /* Note however that we may find no resumed thread because the whole
4568 process exited meanwhile (thus updating the thread list results
4569 in an empty thread list). In this case we know we'll be getting
4570 a process exit event shortly. */
08036331 4571 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4572 {
4573 if (inf->pid == 0)
4574 continue;
4575
08036331 4576 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4577 if (thread == NULL)
4578 {
4579 if (debug_infrun)
4580 fprintf_unfiltered (gdb_stdlog,
4581 "infrun: TARGET_WAITKIND_NO_RESUMED "
4582 "(expect process exit)\n");
4583 prepare_to_wait (ecs);
4584 return 1;
4585 }
4586 }
4587
4588 /* Go ahead and report the event. */
4589 return 0;
4590}
4591
05ba8510
PA
4592/* Given an execution control state that has been freshly filled in by
4593 an event from the inferior, figure out what it means and take
4594 appropriate action.
4595
4596 The alternatives are:
4597
22bcd14b 4598 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4599 debugger.
4600
4601 2) keep_going and return; to wait for the next event (set
4602 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4603 once). */
c906108c 4604
ec9499be 4605static void
0b6e5e10 4606handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4607{
d6b48e9c
PA
4608 enum stop_kind stop_soon;
4609
28736962
PA
4610 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4611 {
4612 /* We had an event in the inferior, but we are not interested in
4613 handling it at this level. The lower layers have already
4614 done what needs to be done, if anything.
4615
4616 One of the possible circumstances for this is when the
4617 inferior produces output for the console. The inferior has
4618 not stopped, and we are ignoring the event. Another possible
4619 circumstance is any event which the lower level knows will be
4620 reported multiple times without an intervening resume. */
4621 if (debug_infrun)
4622 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4623 prepare_to_wait (ecs);
4624 return;
4625 }
4626
65706a29
PA
4627 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4628 {
4629 if (debug_infrun)
4630 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4631 prepare_to_wait (ecs);
4632 return;
4633 }
4634
0e5bf2a8 4635 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4636 && handle_no_resumed (ecs))
4637 return;
0e5bf2a8 4638
1777feb0 4639 /* Cache the last pid/waitstatus. */
c32c64b7 4640 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4641
ca005067 4642 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4643 stop_stack_dummy = STOP_NONE;
ca005067 4644
0e5bf2a8
PA
4645 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4646 {
4647 /* No unwaited-for children left. IOW, all resumed children
4648 have exited. */
4649 if (debug_infrun)
4650 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4651
4652 stop_print_frame = 0;
22bcd14b 4653 stop_waiting (ecs);
0e5bf2a8
PA
4654 return;
4655 }
4656
8c90c137 4657 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4658 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4659 {
4660 ecs->event_thread = find_thread_ptid (ecs->ptid);
4661 /* If it's a new thread, add it to the thread database. */
4662 if (ecs->event_thread == NULL)
4663 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4664
4665 /* Disable range stepping. If the next step request could use a
4666 range, this will be end up re-enabled then. */
4667 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4668 }
88ed393a
JK
4669
4670 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4671 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4672
4673 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4674 reinit_frame_cache ();
4675
28736962
PA
4676 breakpoint_retire_moribund ();
4677
2b009048
DJ
4678 /* First, distinguish signals caused by the debugger from signals
4679 that have to do with the program's own actions. Note that
4680 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4681 on the operating system version. Here we detect when a SIGILL or
4682 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4683 something similar for SIGSEGV, since a SIGSEGV will be generated
4684 when we're trying to execute a breakpoint instruction on a
4685 non-executable stack. This happens for call dummy breakpoints
4686 for architectures like SPARC that place call dummies on the
4687 stack. */
2b009048 4688 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4689 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4690 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4691 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4692 {
00431a78 4693 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4694
a01bda52 4695 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4696 regcache_read_pc (regcache)))
4697 {
4698 if (debug_infrun)
4699 fprintf_unfiltered (gdb_stdlog,
4700 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4701 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4702 }
2b009048
DJ
4703 }
4704
28736962
PA
4705 /* Mark the non-executing threads accordingly. In all-stop, all
4706 threads of all processes are stopped when we get any event
e1316e60 4707 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4708 {
4709 ptid_t mark_ptid;
4710
fbea99ea 4711 if (!target_is_non_stop_p ())
372316f1
PA
4712 mark_ptid = minus_one_ptid;
4713 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4714 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4715 {
4716 /* If we're handling a process exit in non-stop mode, even
4717 though threads haven't been deleted yet, one would think
4718 that there is nothing to do, as threads of the dead process
4719 will be soon deleted, and threads of any other process were
4720 left running. However, on some targets, threads survive a
4721 process exit event. E.g., for the "checkpoint" command,
4722 when the current checkpoint/fork exits, linux-fork.c
4723 automatically switches to another fork from within
4724 target_mourn_inferior, by associating the same
4725 inferior/thread to another fork. We haven't mourned yet at
4726 this point, but we must mark any threads left in the
4727 process as not-executing so that finish_thread_state marks
4728 them stopped (in the user's perspective) if/when we present
4729 the stop to the user. */
e99b03dc 4730 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4731 }
4732 else
4733 mark_ptid = ecs->ptid;
4734
4735 set_executing (mark_ptid, 0);
4736
4737 /* Likewise the resumed flag. */
4738 set_resumed (mark_ptid, 0);
4739 }
8c90c137 4740
488f131b
JB
4741 switch (ecs->ws.kind)
4742 {
4743 case TARGET_WAITKIND_LOADED:
527159b7 4744 if (debug_infrun)
8a9de0e4 4745 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4746 context_switch (ecs);
b0f4b84b
DJ
4747 /* Ignore gracefully during startup of the inferior, as it might
4748 be the shell which has just loaded some objects, otherwise
4749 add the symbols for the newly loaded objects. Also ignore at
4750 the beginning of an attach or remote session; we will query
4751 the full list of libraries once the connection is
4752 established. */
4f5d7f63 4753
00431a78 4754 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4755 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4756 {
edcc5120
TT
4757 struct regcache *regcache;
4758
00431a78 4759 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4760
4761 handle_solib_event ();
4762
4763 ecs->event_thread->control.stop_bpstat
a01bda52 4764 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4765 ecs->event_thread->suspend.stop_pc,
4766 ecs->event_thread, &ecs->ws);
ab04a2af 4767
c65d6b55
PA
4768 if (handle_stop_requested (ecs))
4769 return;
4770
ce12b012 4771 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4772 {
4773 /* A catchpoint triggered. */
94c57d6a
PA
4774 process_event_stop_test (ecs);
4775 return;
edcc5120 4776 }
488f131b 4777
b0f4b84b
DJ
4778 /* If requested, stop when the dynamic linker notifies
4779 gdb of events. This allows the user to get control
4780 and place breakpoints in initializer routines for
4781 dynamically loaded objects (among other things). */
a493e3e2 4782 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4783 if (stop_on_solib_events)
4784 {
55409f9d
DJ
4785 /* Make sure we print "Stopped due to solib-event" in
4786 normal_stop. */
4787 stop_print_frame = 1;
4788
22bcd14b 4789 stop_waiting (ecs);
b0f4b84b
DJ
4790 return;
4791 }
488f131b 4792 }
b0f4b84b
DJ
4793
4794 /* If we are skipping through a shell, or through shared library
4795 loading that we aren't interested in, resume the program. If
5c09a2c5 4796 we're running the program normally, also resume. */
b0f4b84b
DJ
4797 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4798 {
74960c60
VP
4799 /* Loading of shared libraries might have changed breakpoint
4800 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4801 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4802 insert_breakpoints ();
64ce06e4 4803 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4804 prepare_to_wait (ecs);
4805 return;
4806 }
4807
5c09a2c5
PA
4808 /* But stop if we're attaching or setting up a remote
4809 connection. */
4810 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4811 || stop_soon == STOP_QUIETLY_REMOTE)
4812 {
4813 if (debug_infrun)
4814 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4815 stop_waiting (ecs);
5c09a2c5
PA
4816 return;
4817 }
4818
4819 internal_error (__FILE__, __LINE__,
4820 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4821
488f131b 4822 case TARGET_WAITKIND_SPURIOUS:
527159b7 4823 if (debug_infrun)
8a9de0e4 4824 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4825 if (handle_stop_requested (ecs))
4826 return;
00431a78 4827 context_switch (ecs);
64ce06e4 4828 resume (GDB_SIGNAL_0);
488f131b
JB
4829 prepare_to_wait (ecs);
4830 return;
c5aa993b 4831
65706a29
PA
4832 case TARGET_WAITKIND_THREAD_CREATED:
4833 if (debug_infrun)
4834 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4835 if (handle_stop_requested (ecs))
4836 return;
00431a78 4837 context_switch (ecs);
65706a29
PA
4838 if (!switch_back_to_stepped_thread (ecs))
4839 keep_going (ecs);
4840 return;
4841
488f131b 4842 case TARGET_WAITKIND_EXITED:
940c3c06 4843 case TARGET_WAITKIND_SIGNALLED:
527159b7 4844 if (debug_infrun)
940c3c06
PA
4845 {
4846 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4847 fprintf_unfiltered (gdb_stdlog,
4848 "infrun: TARGET_WAITKIND_EXITED\n");
4849 else
4850 fprintf_unfiltered (gdb_stdlog,
4851 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4852 }
4853
fb66883a 4854 inferior_ptid = ecs->ptid;
c9657e70 4855 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4856 set_current_program_space (current_inferior ()->pspace);
4857 handle_vfork_child_exec_or_exit (0);
223ffa71 4858 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4859
0c557179
SDJ
4860 /* Clearing any previous state of convenience variables. */
4861 clear_exit_convenience_vars ();
4862
940c3c06
PA
4863 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4864 {
4865 /* Record the exit code in the convenience variable $_exitcode, so
4866 that the user can inspect this again later. */
4867 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4868 (LONGEST) ecs->ws.value.integer);
4869
4870 /* Also record this in the inferior itself. */
4871 current_inferior ()->has_exit_code = 1;
4872 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4873
98eb56a4
PA
4874 /* Support the --return-child-result option. */
4875 return_child_result_value = ecs->ws.value.integer;
4876
76727919 4877 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4878 }
4879 else
0c557179 4880 {
00431a78 4881 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4882
4883 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4884 {
4885 /* Set the value of the internal variable $_exitsignal,
4886 which holds the signal uncaught by the inferior. */
4887 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4888 gdbarch_gdb_signal_to_target (gdbarch,
4889 ecs->ws.value.sig));
4890 }
4891 else
4892 {
4893 /* We don't have access to the target's method used for
4894 converting between signal numbers (GDB's internal
4895 representation <-> target's representation).
4896 Therefore, we cannot do a good job at displaying this
4897 information to the user. It's better to just warn
4898 her about it (if infrun debugging is enabled), and
4899 give up. */
4900 if (debug_infrun)
4901 fprintf_filtered (gdb_stdlog, _("\
4902Cannot fill $_exitsignal with the correct signal number.\n"));
4903 }
4904
76727919 4905 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4906 }
8cf64490 4907
488f131b 4908 gdb_flush (gdb_stdout);
bc1e6c81 4909 target_mourn_inferior (inferior_ptid);
488f131b 4910 stop_print_frame = 0;
22bcd14b 4911 stop_waiting (ecs);
488f131b 4912 return;
c5aa993b 4913
488f131b 4914 /* The following are the only cases in which we keep going;
1777feb0 4915 the above cases end in a continue or goto. */
488f131b 4916 case TARGET_WAITKIND_FORKED:
deb3b17b 4917 case TARGET_WAITKIND_VFORKED:
527159b7 4918 if (debug_infrun)
fed708ed
PA
4919 {
4920 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4921 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4922 else
4923 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4924 }
c906108c 4925
e2d96639
YQ
4926 /* Check whether the inferior is displaced stepping. */
4927 {
00431a78 4928 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4929 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4930
4931 /* If checking displaced stepping is supported, and thread
4932 ecs->ptid is displaced stepping. */
00431a78 4933 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4934 {
4935 struct inferior *parent_inf
c9657e70 4936 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4937 struct regcache *child_regcache;
4938 CORE_ADDR parent_pc;
4939
4940 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4941 indicating that the displaced stepping of syscall instruction
4942 has been done. Perform cleanup for parent process here. Note
4943 that this operation also cleans up the child process for vfork,
4944 because their pages are shared. */
00431a78 4945 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4946 /* Start a new step-over in another thread if there's one
4947 that needs it. */
4948 start_step_over ();
e2d96639
YQ
4949
4950 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4951 {
c0987663 4952 struct displaced_step_inferior_state *displaced
00431a78 4953 = get_displaced_stepping_state (parent_inf);
c0987663 4954
e2d96639
YQ
4955 /* Restore scratch pad for child process. */
4956 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4957 }
4958
4959 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4960 the child's PC is also within the scratchpad. Set the child's PC
4961 to the parent's PC value, which has already been fixed up.
4962 FIXME: we use the parent's aspace here, although we're touching
4963 the child, because the child hasn't been added to the inferior
4964 list yet at this point. */
4965
4966 child_regcache
4967 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4968 gdbarch,
4969 parent_inf->aspace);
4970 /* Read PC value of parent process. */
4971 parent_pc = regcache_read_pc (regcache);
4972
4973 if (debug_displaced)
4974 fprintf_unfiltered (gdb_stdlog,
4975 "displaced: write child pc from %s to %s\n",
4976 paddress (gdbarch,
4977 regcache_read_pc (child_regcache)),
4978 paddress (gdbarch, parent_pc));
4979
4980 regcache_write_pc (child_regcache, parent_pc);
4981 }
4982 }
4983
00431a78 4984 context_switch (ecs);
5a2901d9 4985
b242c3c2
PA
4986 /* Immediately detach breakpoints from the child before there's
4987 any chance of letting the user delete breakpoints from the
4988 breakpoint lists. If we don't do this early, it's easy to
4989 leave left over traps in the child, vis: "break foo; catch
4990 fork; c; <fork>; del; c; <child calls foo>". We only follow
4991 the fork on the last `continue', and by that time the
4992 breakpoint at "foo" is long gone from the breakpoint table.
4993 If we vforked, then we don't need to unpatch here, since both
4994 parent and child are sharing the same memory pages; we'll
4995 need to unpatch at follow/detach time instead to be certain
4996 that new breakpoints added between catchpoint hit time and
4997 vfork follow are detached. */
4998 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4999 {
b242c3c2
PA
5000 /* This won't actually modify the breakpoint list, but will
5001 physically remove the breakpoints from the child. */
d80ee84f 5002 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5003 }
5004
34b7e8a6 5005 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5006
e58b0e63
PA
5007 /* In case the event is caught by a catchpoint, remember that
5008 the event is to be followed at the next resume of the thread,
5009 and not immediately. */
5010 ecs->event_thread->pending_follow = ecs->ws;
5011
f2ffa92b
PA
5012 ecs->event_thread->suspend.stop_pc
5013 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5014
16c381f0 5015 ecs->event_thread->control.stop_bpstat
a01bda52 5016 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5017 ecs->event_thread->suspend.stop_pc,
5018 ecs->event_thread, &ecs->ws);
675bf4cb 5019
c65d6b55
PA
5020 if (handle_stop_requested (ecs))
5021 return;
5022
ce12b012
PA
5023 /* If no catchpoint triggered for this, then keep going. Note
5024 that we're interested in knowing the bpstat actually causes a
5025 stop, not just if it may explain the signal. Software
5026 watchpoints, for example, always appear in the bpstat. */
5027 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5028 {
e58b0e63 5029 int should_resume;
3e43a32a
MS
5030 int follow_child
5031 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5032
a493e3e2 5033 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5034
5035 should_resume = follow_fork ();
5036
00431a78
PA
5037 thread_info *parent = ecs->event_thread;
5038 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5039
a2077e25
PA
5040 /* At this point, the parent is marked running, and the
5041 child is marked stopped. */
5042
5043 /* If not resuming the parent, mark it stopped. */
5044 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5045 parent->set_running (false);
a2077e25
PA
5046
5047 /* If resuming the child, mark it running. */
5048 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5049 child->set_running (true);
a2077e25 5050
6c95b8df 5051 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5052 if (!detach_fork && (non_stop
5053 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5054 {
5055 if (follow_child)
5056 switch_to_thread (parent);
5057 else
5058 switch_to_thread (child);
5059
5060 ecs->event_thread = inferior_thread ();
5061 ecs->ptid = inferior_ptid;
5062 keep_going (ecs);
5063 }
5064
5065 if (follow_child)
5066 switch_to_thread (child);
5067 else
5068 switch_to_thread (parent);
5069
e58b0e63
PA
5070 ecs->event_thread = inferior_thread ();
5071 ecs->ptid = inferior_ptid;
5072
5073 if (should_resume)
5074 keep_going (ecs);
5075 else
22bcd14b 5076 stop_waiting (ecs);
04e68871
DJ
5077 return;
5078 }
94c57d6a
PA
5079 process_event_stop_test (ecs);
5080 return;
488f131b 5081
6c95b8df
PA
5082 case TARGET_WAITKIND_VFORK_DONE:
5083 /* Done with the shared memory region. Re-insert breakpoints in
5084 the parent, and keep going. */
5085
5086 if (debug_infrun)
3e43a32a
MS
5087 fprintf_unfiltered (gdb_stdlog,
5088 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5089
00431a78 5090 context_switch (ecs);
6c95b8df
PA
5091
5092 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5093 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5094
5095 if (handle_stop_requested (ecs))
5096 return;
5097
6c95b8df
PA
5098 /* This also takes care of reinserting breakpoints in the
5099 previously locked inferior. */
5100 keep_going (ecs);
5101 return;
5102
488f131b 5103 case TARGET_WAITKIND_EXECD:
527159b7 5104 if (debug_infrun)
fc5261f2 5105 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5106
cbd2b4e3
PA
5107 /* Note we can't read registers yet (the stop_pc), because we
5108 don't yet know the inferior's post-exec architecture.
5109 'stop_pc' is explicitly read below instead. */
00431a78 5110 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5111
6c95b8df
PA
5112 /* Do whatever is necessary to the parent branch of the vfork. */
5113 handle_vfork_child_exec_or_exit (1);
5114
795e548f
PA
5115 /* This causes the eventpoints and symbol table to be reset.
5116 Must do this now, before trying to determine whether to
5117 stop. */
71b43ef8 5118 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5119
17d8546e
DB
5120 /* In follow_exec we may have deleted the original thread and
5121 created a new one. Make sure that the event thread is the
5122 execd thread for that case (this is a nop otherwise). */
5123 ecs->event_thread = inferior_thread ();
5124
f2ffa92b
PA
5125 ecs->event_thread->suspend.stop_pc
5126 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5127
16c381f0 5128 ecs->event_thread->control.stop_bpstat
a01bda52 5129 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5130 ecs->event_thread->suspend.stop_pc,
5131 ecs->event_thread, &ecs->ws);
795e548f 5132
71b43ef8
PA
5133 /* Note that this may be referenced from inside
5134 bpstat_stop_status above, through inferior_has_execd. */
5135 xfree (ecs->ws.value.execd_pathname);
5136 ecs->ws.value.execd_pathname = NULL;
5137
c65d6b55
PA
5138 if (handle_stop_requested (ecs))
5139 return;
5140
04e68871 5141 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5142 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5143 {
a493e3e2 5144 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5145 keep_going (ecs);
5146 return;
5147 }
94c57d6a
PA
5148 process_event_stop_test (ecs);
5149 return;
488f131b 5150
b4dc5ffa
MK
5151 /* Be careful not to try to gather much state about a thread
5152 that's in a syscall. It's frequently a losing proposition. */
488f131b 5153 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5154 if (debug_infrun)
3e43a32a
MS
5155 fprintf_unfiltered (gdb_stdlog,
5156 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5157 /* Getting the current syscall number. */
94c57d6a
PA
5158 if (handle_syscall_event (ecs) == 0)
5159 process_event_stop_test (ecs);
5160 return;
c906108c 5161
488f131b
JB
5162 /* Before examining the threads further, step this thread to
5163 get it entirely out of the syscall. (We get notice of the
5164 event when the thread is just on the verge of exiting a
5165 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5166 into user code.) */
488f131b 5167 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5168 if (debug_infrun)
3e43a32a
MS
5169 fprintf_unfiltered (gdb_stdlog,
5170 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5171 if (handle_syscall_event (ecs) == 0)
5172 process_event_stop_test (ecs);
5173 return;
c906108c 5174
488f131b 5175 case TARGET_WAITKIND_STOPPED:
527159b7 5176 if (debug_infrun)
8a9de0e4 5177 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5178 handle_signal_stop (ecs);
5179 return;
c906108c 5180
b2175913 5181 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5182 if (debug_infrun)
5183 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5184 /* Reverse execution: target ran out of history info. */
eab402df 5185
d1988021 5186 /* Switch to the stopped thread. */
00431a78 5187 context_switch (ecs);
d1988021
MM
5188 if (debug_infrun)
5189 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5190
34b7e8a6 5191 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5192 ecs->event_thread->suspend.stop_pc
5193 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5194
5195 if (handle_stop_requested (ecs))
5196 return;
5197
76727919 5198 gdb::observers::no_history.notify ();
22bcd14b 5199 stop_waiting (ecs);
b2175913 5200 return;
488f131b 5201 }
4f5d7f63
PA
5202}
5203
0b6e5e10
JB
5204/* A wrapper around handle_inferior_event_1, which also makes sure
5205 that all temporary struct value objects that were created during
5206 the handling of the event get deleted at the end. */
5207
5208static void
5209handle_inferior_event (struct execution_control_state *ecs)
5210{
5211 struct value *mark = value_mark ();
5212
5213 handle_inferior_event_1 (ecs);
5214 /* Purge all temporary values created during the event handling,
5215 as it could be a long time before we return to the command level
5216 where such values would otherwise be purged. */
5217 value_free_to_mark (mark);
5218}
5219
372316f1
PA
5220/* Restart threads back to what they were trying to do back when we
5221 paused them for an in-line step-over. The EVENT_THREAD thread is
5222 ignored. */
4d9d9d04
PA
5223
5224static void
372316f1
PA
5225restart_threads (struct thread_info *event_thread)
5226{
372316f1
PA
5227 /* In case the instruction just stepped spawned a new thread. */
5228 update_thread_list ();
5229
08036331 5230 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5231 {
5232 if (tp == event_thread)
5233 {
5234 if (debug_infrun)
5235 fprintf_unfiltered (gdb_stdlog,
5236 "infrun: restart threads: "
5237 "[%s] is event thread\n",
5238 target_pid_to_str (tp->ptid));
5239 continue;
5240 }
5241
5242 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5243 {
5244 if (debug_infrun)
5245 fprintf_unfiltered (gdb_stdlog,
5246 "infrun: restart threads: "
5247 "[%s] not meant to be running\n",
5248 target_pid_to_str (tp->ptid));
5249 continue;
5250 }
5251
5252 if (tp->resumed)
5253 {
5254 if (debug_infrun)
5255 fprintf_unfiltered (gdb_stdlog,
5256 "infrun: restart threads: [%s] resumed\n",
5257 target_pid_to_str (tp->ptid));
5258 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5259 continue;
5260 }
5261
5262 if (thread_is_in_step_over_chain (tp))
5263 {
5264 if (debug_infrun)
5265 fprintf_unfiltered (gdb_stdlog,
5266 "infrun: restart threads: "
5267 "[%s] needs step-over\n",
5268 target_pid_to_str (tp->ptid));
5269 gdb_assert (!tp->resumed);
5270 continue;
5271 }
5272
5273
5274 if (tp->suspend.waitstatus_pending_p)
5275 {
5276 if (debug_infrun)
5277 fprintf_unfiltered (gdb_stdlog,
5278 "infrun: restart threads: "
5279 "[%s] has pending status\n",
5280 target_pid_to_str (tp->ptid));
5281 tp->resumed = 1;
5282 continue;
5283 }
5284
c65d6b55
PA
5285 gdb_assert (!tp->stop_requested);
5286
372316f1
PA
5287 /* If some thread needs to start a step-over at this point, it
5288 should still be in the step-over queue, and thus skipped
5289 above. */
5290 if (thread_still_needs_step_over (tp))
5291 {
5292 internal_error (__FILE__, __LINE__,
5293 "thread [%s] needs a step-over, but not in "
5294 "step-over queue\n",
5295 target_pid_to_str (tp->ptid));
5296 }
5297
5298 if (currently_stepping (tp))
5299 {
5300 if (debug_infrun)
5301 fprintf_unfiltered (gdb_stdlog,
5302 "infrun: restart threads: [%s] was stepping\n",
5303 target_pid_to_str (tp->ptid));
5304 keep_going_stepped_thread (tp);
5305 }
5306 else
5307 {
5308 struct execution_control_state ecss;
5309 struct execution_control_state *ecs = &ecss;
5310
5311 if (debug_infrun)
5312 fprintf_unfiltered (gdb_stdlog,
5313 "infrun: restart threads: [%s] continuing\n",
5314 target_pid_to_str (tp->ptid));
5315 reset_ecs (ecs, tp);
00431a78 5316 switch_to_thread (tp);
372316f1
PA
5317 keep_going_pass_signal (ecs);
5318 }
5319 }
5320}
5321
5322/* Callback for iterate_over_threads. Find a resumed thread that has
5323 a pending waitstatus. */
5324
5325static int
5326resumed_thread_with_pending_status (struct thread_info *tp,
5327 void *arg)
5328{
5329 return (tp->resumed
5330 && tp->suspend.waitstatus_pending_p);
5331}
5332
5333/* Called when we get an event that may finish an in-line or
5334 out-of-line (displaced stepping) step-over started previously.
5335 Return true if the event is processed and we should go back to the
5336 event loop; false if the caller should continue processing the
5337 event. */
5338
5339static int
4d9d9d04
PA
5340finish_step_over (struct execution_control_state *ecs)
5341{
372316f1
PA
5342 int had_step_over_info;
5343
00431a78 5344 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5345 ecs->event_thread->suspend.stop_signal);
5346
372316f1
PA
5347 had_step_over_info = step_over_info_valid_p ();
5348
5349 if (had_step_over_info)
4d9d9d04
PA
5350 {
5351 /* If we're stepping over a breakpoint with all threads locked,
5352 then only the thread that was stepped should be reporting
5353 back an event. */
5354 gdb_assert (ecs->event_thread->control.trap_expected);
5355
c65d6b55 5356 clear_step_over_info ();
4d9d9d04
PA
5357 }
5358
fbea99ea 5359 if (!target_is_non_stop_p ())
372316f1 5360 return 0;
4d9d9d04
PA
5361
5362 /* Start a new step-over in another thread if there's one that
5363 needs it. */
5364 start_step_over ();
372316f1
PA
5365
5366 /* If we were stepping over a breakpoint before, and haven't started
5367 a new in-line step-over sequence, then restart all other threads
5368 (except the event thread). We can't do this in all-stop, as then
5369 e.g., we wouldn't be able to issue any other remote packet until
5370 these other threads stop. */
5371 if (had_step_over_info && !step_over_info_valid_p ())
5372 {
5373 struct thread_info *pending;
5374
5375 /* If we only have threads with pending statuses, the restart
5376 below won't restart any thread and so nothing re-inserts the
5377 breakpoint we just stepped over. But we need it inserted
5378 when we later process the pending events, otherwise if
5379 another thread has a pending event for this breakpoint too,
5380 we'd discard its event (because the breakpoint that
5381 originally caused the event was no longer inserted). */
00431a78 5382 context_switch (ecs);
372316f1
PA
5383 insert_breakpoints ();
5384
5385 restart_threads (ecs->event_thread);
5386
5387 /* If we have events pending, go through handle_inferior_event
5388 again, picking up a pending event at random. This avoids
5389 thread starvation. */
5390
5391 /* But not if we just stepped over a watchpoint in order to let
5392 the instruction execute so we can evaluate its expression.
5393 The set of watchpoints that triggered is recorded in the
5394 breakpoint objects themselves (see bp->watchpoint_triggered).
5395 If we processed another event first, that other event could
5396 clobber this info. */
5397 if (ecs->event_thread->stepping_over_watchpoint)
5398 return 0;
5399
5400 pending = iterate_over_threads (resumed_thread_with_pending_status,
5401 NULL);
5402 if (pending != NULL)
5403 {
5404 struct thread_info *tp = ecs->event_thread;
5405 struct regcache *regcache;
5406
5407 if (debug_infrun)
5408 {
5409 fprintf_unfiltered (gdb_stdlog,
5410 "infrun: found resumed threads with "
5411 "pending events, saving status\n");
5412 }
5413
5414 gdb_assert (pending != tp);
5415
5416 /* Record the event thread's event for later. */
5417 save_waitstatus (tp, &ecs->ws);
5418 /* This was cleared early, by handle_inferior_event. Set it
5419 so this pending event is considered by
5420 do_target_wait. */
5421 tp->resumed = 1;
5422
5423 gdb_assert (!tp->executing);
5424
00431a78 5425 regcache = get_thread_regcache (tp);
372316f1
PA
5426 tp->suspend.stop_pc = regcache_read_pc (regcache);
5427
5428 if (debug_infrun)
5429 {
5430 fprintf_unfiltered (gdb_stdlog,
5431 "infrun: saved stop_pc=%s for %s "
5432 "(currently_stepping=%d)\n",
5433 paddress (target_gdbarch (),
5434 tp->suspend.stop_pc),
5435 target_pid_to_str (tp->ptid),
5436 currently_stepping (tp));
5437 }
5438
5439 /* This in-line step-over finished; clear this so we won't
5440 start a new one. This is what handle_signal_stop would
5441 do, if we returned false. */
5442 tp->stepping_over_breakpoint = 0;
5443
5444 /* Wake up the event loop again. */
5445 mark_async_event_handler (infrun_async_inferior_event_token);
5446
5447 prepare_to_wait (ecs);
5448 return 1;
5449 }
5450 }
5451
5452 return 0;
4d9d9d04
PA
5453}
5454
4f5d7f63
PA
5455/* Come here when the program has stopped with a signal. */
5456
5457static void
5458handle_signal_stop (struct execution_control_state *ecs)
5459{
5460 struct frame_info *frame;
5461 struct gdbarch *gdbarch;
5462 int stopped_by_watchpoint;
5463 enum stop_kind stop_soon;
5464 int random_signal;
c906108c 5465
f0407826
DE
5466 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5467
c65d6b55
PA
5468 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5469
f0407826
DE
5470 /* Do we need to clean up the state of a thread that has
5471 completed a displaced single-step? (Doing so usually affects
5472 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5473 if (finish_step_over (ecs))
5474 return;
f0407826
DE
5475
5476 /* If we either finished a single-step or hit a breakpoint, but
5477 the user wanted this thread to be stopped, pretend we got a
5478 SIG0 (generic unsignaled stop). */
5479 if (ecs->event_thread->stop_requested
5480 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5481 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5482
f2ffa92b
PA
5483 ecs->event_thread->suspend.stop_pc
5484 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5485
527159b7 5486 if (debug_infrun)
237fc4c9 5487 {
00431a78 5488 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5489 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5490 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5491
5492 inferior_ptid = ecs->ptid;
5af949e3
UW
5493
5494 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5495 paddress (reg_gdbarch,
f2ffa92b 5496 ecs->event_thread->suspend.stop_pc));
d92524f1 5497 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5498 {
5499 CORE_ADDR addr;
abbb1732 5500
237fc4c9
PA
5501 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5502
8b88a78e 5503 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5504 fprintf_unfiltered (gdb_stdlog,
5af949e3 5505 "infrun: stopped data address = %s\n",
b926417a 5506 paddress (reg_gdbarch, addr));
237fc4c9
PA
5507 else
5508 fprintf_unfiltered (gdb_stdlog,
5509 "infrun: (no data address available)\n");
5510 }
5511 }
527159b7 5512
36fa8042
PA
5513 /* This is originated from start_remote(), start_inferior() and
5514 shared libraries hook functions. */
00431a78 5515 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5516 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5517 {
00431a78 5518 context_switch (ecs);
36fa8042
PA
5519 if (debug_infrun)
5520 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5521 stop_print_frame = 1;
22bcd14b 5522 stop_waiting (ecs);
36fa8042
PA
5523 return;
5524 }
5525
36fa8042
PA
5526 /* This originates from attach_command(). We need to overwrite
5527 the stop_signal here, because some kernels don't ignore a
5528 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5529 See more comments in inferior.h. On the other hand, if we
5530 get a non-SIGSTOP, report it to the user - assume the backend
5531 will handle the SIGSTOP if it should show up later.
5532
5533 Also consider that the attach is complete when we see a
5534 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5535 target extended-remote report it instead of a SIGSTOP
5536 (e.g. gdbserver). We already rely on SIGTRAP being our
5537 signal, so this is no exception.
5538
5539 Also consider that the attach is complete when we see a
5540 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5541 the target to stop all threads of the inferior, in case the
5542 low level attach operation doesn't stop them implicitly. If
5543 they weren't stopped implicitly, then the stub will report a
5544 GDB_SIGNAL_0, meaning: stopped for no particular reason
5545 other than GDB's request. */
5546 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5547 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5548 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5549 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5550 {
5551 stop_print_frame = 1;
22bcd14b 5552 stop_waiting (ecs);
36fa8042
PA
5553 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5554 return;
5555 }
5556
488f131b 5557 /* See if something interesting happened to the non-current thread. If
b40c7d58 5558 so, then switch to that thread. */
d7e15655 5559 if (ecs->ptid != inferior_ptid)
488f131b 5560 {
527159b7 5561 if (debug_infrun)
8a9de0e4 5562 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5563
00431a78 5564 context_switch (ecs);
c5aa993b 5565
9a4105ab 5566 if (deprecated_context_hook)
00431a78 5567 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5568 }
c906108c 5569
568d6575
UW
5570 /* At this point, get hold of the now-current thread's frame. */
5571 frame = get_current_frame ();
5572 gdbarch = get_frame_arch (frame);
5573
2adfaa28 5574 /* Pull the single step breakpoints out of the target. */
af48d08f 5575 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5576 {
af48d08f 5577 struct regcache *regcache;
af48d08f 5578 CORE_ADDR pc;
2adfaa28 5579
00431a78 5580 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5581 const address_space *aspace = regcache->aspace ();
5582
af48d08f 5583 pc = regcache_read_pc (regcache);
34b7e8a6 5584
af48d08f
PA
5585 /* However, before doing so, if this single-step breakpoint was
5586 actually for another thread, set this thread up for moving
5587 past it. */
5588 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5589 aspace, pc))
5590 {
5591 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5592 {
5593 if (debug_infrun)
5594 {
5595 fprintf_unfiltered (gdb_stdlog,
af48d08f 5596 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5597 "single-step breakpoint\n",
5598 target_pid_to_str (ecs->ptid));
2adfaa28 5599 }
af48d08f
PA
5600 ecs->hit_singlestep_breakpoint = 1;
5601 }
5602 }
5603 else
5604 {
5605 if (debug_infrun)
5606 {
5607 fprintf_unfiltered (gdb_stdlog,
5608 "infrun: [%s] hit its "
5609 "single-step breakpoint\n",
5610 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5611 }
5612 }
488f131b 5613 }
af48d08f 5614 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5615
963f9c80
PA
5616 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5617 && ecs->event_thread->control.trap_expected
5618 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5619 stopped_by_watchpoint = 0;
5620 else
5621 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5622
5623 /* If necessary, step over this watchpoint. We'll be back to display
5624 it in a moment. */
5625 if (stopped_by_watchpoint
d92524f1 5626 && (target_have_steppable_watchpoint
568d6575 5627 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5628 {
488f131b
JB
5629 /* At this point, we are stopped at an instruction which has
5630 attempted to write to a piece of memory under control of
5631 a watchpoint. The instruction hasn't actually executed
5632 yet. If we were to evaluate the watchpoint expression
5633 now, we would get the old value, and therefore no change
5634 would seem to have occurred.
5635
5636 In order to make watchpoints work `right', we really need
5637 to complete the memory write, and then evaluate the
d983da9c
DJ
5638 watchpoint expression. We do this by single-stepping the
5639 target.
5640
7f89fd65 5641 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5642 it. For example, the PA can (with some kernel cooperation)
5643 single step over a watchpoint without disabling the watchpoint.
5644
5645 It is far more common to need to disable a watchpoint to step
5646 the inferior over it. If we have non-steppable watchpoints,
5647 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5648 disable all watchpoints.
5649
5650 Any breakpoint at PC must also be stepped over -- if there's
5651 one, it will have already triggered before the watchpoint
5652 triggered, and we either already reported it to the user, or
5653 it didn't cause a stop and we called keep_going. In either
5654 case, if there was a breakpoint at PC, we must be trying to
5655 step past it. */
5656 ecs->event_thread->stepping_over_watchpoint = 1;
5657 keep_going (ecs);
488f131b
JB
5658 return;
5659 }
5660
4e1c45ea 5661 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5662 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5663 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5664 ecs->event_thread->control.stop_step = 0;
488f131b 5665 stop_print_frame = 1;
488f131b 5666 stopped_by_random_signal = 0;
ddfe970e 5667 bpstat stop_chain = NULL;
488f131b 5668
edb3359d
DJ
5669 /* Hide inlined functions starting here, unless we just performed stepi or
5670 nexti. After stepi and nexti, always show the innermost frame (not any
5671 inline function call sites). */
16c381f0 5672 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5673 {
00431a78
PA
5674 const address_space *aspace
5675 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5676
5677 /* skip_inline_frames is expensive, so we avoid it if we can
5678 determine that the address is one where functions cannot have
5679 been inlined. This improves performance with inferiors that
5680 load a lot of shared libraries, because the solib event
5681 breakpoint is defined as the address of a function (i.e. not
5682 inline). Note that we have to check the previous PC as well
5683 as the current one to catch cases when we have just
5684 single-stepped off a breakpoint prior to reinstating it.
5685 Note that we're assuming that the code we single-step to is
5686 not inline, but that's not definitive: there's nothing
5687 preventing the event breakpoint function from containing
5688 inlined code, and the single-step ending up there. If the
5689 user had set a breakpoint on that inlined code, the missing
5690 skip_inline_frames call would break things. Fortunately
5691 that's an extremely unlikely scenario. */
f2ffa92b
PA
5692 if (!pc_at_non_inline_function (aspace,
5693 ecs->event_thread->suspend.stop_pc,
5694 &ecs->ws)
a210c238
MR
5695 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5696 && ecs->event_thread->control.trap_expected
5697 && pc_at_non_inline_function (aspace,
5698 ecs->event_thread->prev_pc,
09ac7c10 5699 &ecs->ws)))
1c5a993e 5700 {
f2ffa92b
PA
5701 stop_chain = build_bpstat_chain (aspace,
5702 ecs->event_thread->suspend.stop_pc,
5703 &ecs->ws);
00431a78 5704 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5705
5706 /* Re-fetch current thread's frame in case that invalidated
5707 the frame cache. */
5708 frame = get_current_frame ();
5709 gdbarch = get_frame_arch (frame);
5710 }
0574c78f 5711 }
edb3359d 5712
a493e3e2 5713 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5714 && ecs->event_thread->control.trap_expected
568d6575 5715 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5716 && currently_stepping (ecs->event_thread))
3352ef37 5717 {
b50d7442 5718 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5719 also on an instruction that needs to be stepped multiple
1777feb0 5720 times before it's been fully executing. E.g., architectures
3352ef37
AC
5721 with a delay slot. It needs to be stepped twice, once for
5722 the instruction and once for the delay slot. */
5723 int step_through_delay
568d6575 5724 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5725
527159b7 5726 if (debug_infrun && step_through_delay)
8a9de0e4 5727 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5728 if (ecs->event_thread->control.step_range_end == 0
5729 && step_through_delay)
3352ef37
AC
5730 {
5731 /* The user issued a continue when stopped at a breakpoint.
5732 Set up for another trap and get out of here. */
4e1c45ea 5733 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5734 keep_going (ecs);
5735 return;
5736 }
5737 else if (step_through_delay)
5738 {
5739 /* The user issued a step when stopped at a breakpoint.
5740 Maybe we should stop, maybe we should not - the delay
5741 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5742 case, don't decide that here, just set
5743 ecs->stepping_over_breakpoint, making sure we
5744 single-step again before breakpoints are re-inserted. */
4e1c45ea 5745 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5746 }
5747 }
5748
ab04a2af
TT
5749 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5750 handles this event. */
5751 ecs->event_thread->control.stop_bpstat
a01bda52 5752 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5753 ecs->event_thread->suspend.stop_pc,
5754 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5755
ab04a2af
TT
5756 /* Following in case break condition called a
5757 function. */
5758 stop_print_frame = 1;
73dd234f 5759
ab04a2af
TT
5760 /* This is where we handle "moribund" watchpoints. Unlike
5761 software breakpoints traps, hardware watchpoint traps are
5762 always distinguishable from random traps. If no high-level
5763 watchpoint is associated with the reported stop data address
5764 anymore, then the bpstat does not explain the signal ---
5765 simply make sure to ignore it if `stopped_by_watchpoint' is
5766 set. */
5767
5768 if (debug_infrun
5769 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5770 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5771 GDB_SIGNAL_TRAP)
ab04a2af
TT
5772 && stopped_by_watchpoint)
5773 fprintf_unfiltered (gdb_stdlog,
5774 "infrun: no user watchpoint explains "
5775 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5776
bac7d97b 5777 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5778 at one stage in the past included checks for an inferior
5779 function call's call dummy's return breakpoint. The original
5780 comment, that went with the test, read:
03cebad2 5781
ab04a2af
TT
5782 ``End of a stack dummy. Some systems (e.g. Sony news) give
5783 another signal besides SIGTRAP, so check here as well as
5784 above.''
73dd234f 5785
ab04a2af
TT
5786 If someone ever tries to get call dummys on a
5787 non-executable stack to work (where the target would stop
5788 with something like a SIGSEGV), then those tests might need
5789 to be re-instated. Given, however, that the tests were only
5790 enabled when momentary breakpoints were not being used, I
5791 suspect that it won't be the case.
488f131b 5792
ab04a2af
TT
5793 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5794 be necessary for call dummies on a non-executable stack on
5795 SPARC. */
488f131b 5796
bac7d97b 5797 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5798 random_signal
5799 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5800 ecs->event_thread->suspend.stop_signal);
bac7d97b 5801
1cf4d951
PA
5802 /* Maybe this was a trap for a software breakpoint that has since
5803 been removed. */
5804 if (random_signal && target_stopped_by_sw_breakpoint ())
5805 {
f2ffa92b
PA
5806 if (program_breakpoint_here_p (gdbarch,
5807 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5808 {
5809 struct regcache *regcache;
5810 int decr_pc;
5811
5812 /* Re-adjust PC to what the program would see if GDB was not
5813 debugging it. */
00431a78 5814 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5815 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5816 if (decr_pc != 0)
5817 {
07036511
TT
5818 gdb::optional<scoped_restore_tmpl<int>>
5819 restore_operation_disable;
1cf4d951
PA
5820
5821 if (record_full_is_used ())
07036511
TT
5822 restore_operation_disable.emplace
5823 (record_full_gdb_operation_disable_set ());
1cf4d951 5824
f2ffa92b
PA
5825 regcache_write_pc (regcache,
5826 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5827 }
5828 }
5829 else
5830 {
5831 /* A delayed software breakpoint event. Ignore the trap. */
5832 if (debug_infrun)
5833 fprintf_unfiltered (gdb_stdlog,
5834 "infrun: delayed software breakpoint "
5835 "trap, ignoring\n");
5836 random_signal = 0;
5837 }
5838 }
5839
5840 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5841 has since been removed. */
5842 if (random_signal && target_stopped_by_hw_breakpoint ())
5843 {
5844 /* A delayed hardware breakpoint event. Ignore the trap. */
5845 if (debug_infrun)
5846 fprintf_unfiltered (gdb_stdlog,
5847 "infrun: delayed hardware breakpoint/watchpoint "
5848 "trap, ignoring\n");
5849 random_signal = 0;
5850 }
5851
bac7d97b
PA
5852 /* If not, perhaps stepping/nexting can. */
5853 if (random_signal)
5854 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5855 && currently_stepping (ecs->event_thread));
ab04a2af 5856
2adfaa28
PA
5857 /* Perhaps the thread hit a single-step breakpoint of _another_
5858 thread. Single-step breakpoints are transparent to the
5859 breakpoints module. */
5860 if (random_signal)
5861 random_signal = !ecs->hit_singlestep_breakpoint;
5862
bac7d97b
PA
5863 /* No? Perhaps we got a moribund watchpoint. */
5864 if (random_signal)
5865 random_signal = !stopped_by_watchpoint;
ab04a2af 5866
c65d6b55
PA
5867 /* Always stop if the user explicitly requested this thread to
5868 remain stopped. */
5869 if (ecs->event_thread->stop_requested)
5870 {
5871 random_signal = 1;
5872 if (debug_infrun)
5873 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5874 }
5875
488f131b
JB
5876 /* For the program's own signals, act according to
5877 the signal handling tables. */
5878
ce12b012 5879 if (random_signal)
488f131b
JB
5880 {
5881 /* Signal not for debugging purposes. */
c9657e70 5882 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5883 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5884
527159b7 5885 if (debug_infrun)
c9737c08
PA
5886 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5887 gdb_signal_to_symbol_string (stop_signal));
527159b7 5888
488f131b
JB
5889 stopped_by_random_signal = 1;
5890
252fbfc8
PA
5891 /* Always stop on signals if we're either just gaining control
5892 of the program, or the user explicitly requested this thread
5893 to remain stopped. */
d6b48e9c 5894 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5895 || ecs->event_thread->stop_requested
24291992 5896 || (!inf->detaching
16c381f0 5897 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5898 {
22bcd14b 5899 stop_waiting (ecs);
488f131b
JB
5900 return;
5901 }
b57bacec
PA
5902
5903 /* Notify observers the signal has "handle print" set. Note we
5904 returned early above if stopping; normal_stop handles the
5905 printing in that case. */
5906 if (signal_print[ecs->event_thread->suspend.stop_signal])
5907 {
5908 /* The signal table tells us to print about this signal. */
223ffa71 5909 target_terminal::ours_for_output ();
76727919 5910 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5911 target_terminal::inferior ();
b57bacec 5912 }
488f131b
JB
5913
5914 /* Clear the signal if it should not be passed. */
16c381f0 5915 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5916 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5917
f2ffa92b 5918 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5919 && ecs->event_thread->control.trap_expected
8358c15c 5920 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5921 {
5922 /* We were just starting a new sequence, attempting to
5923 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5924 Instead this signal arrives. This signal will take us out
68f53502
AC
5925 of the stepping range so GDB needs to remember to, when
5926 the signal handler returns, resume stepping off that
5927 breakpoint. */
5928 /* To simplify things, "continue" is forced to use the same
5929 code paths as single-step - set a breakpoint at the
5930 signal return address and then, once hit, step off that
5931 breakpoint. */
237fc4c9
PA
5932 if (debug_infrun)
5933 fprintf_unfiltered (gdb_stdlog,
5934 "infrun: signal arrived while stepping over "
5935 "breakpoint\n");
d3169d93 5936
2c03e5be 5937 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5938 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5939 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5940 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5941
5942 /* If we were nexting/stepping some other thread, switch to
5943 it, so that we don't continue it, losing control. */
5944 if (!switch_back_to_stepped_thread (ecs))
5945 keep_going (ecs);
9d799f85 5946 return;
68f53502 5947 }
9d799f85 5948
e5f8a7cc 5949 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5950 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5951 ecs->event_thread)
e5f8a7cc 5952 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5953 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5954 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5955 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5956 {
5957 /* The inferior is about to take a signal that will take it
5958 out of the single step range. Set a breakpoint at the
5959 current PC (which is presumably where the signal handler
5960 will eventually return) and then allow the inferior to
5961 run free.
5962
5963 Note that this is only needed for a signal delivered
5964 while in the single-step range. Nested signals aren't a
5965 problem as they eventually all return. */
237fc4c9
PA
5966 if (debug_infrun)
5967 fprintf_unfiltered (gdb_stdlog,
5968 "infrun: signal may take us out of "
5969 "single-step range\n");
5970
372316f1 5971 clear_step_over_info ();
2c03e5be 5972 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5973 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5974 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5975 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5976 keep_going (ecs);
5977 return;
d303a6c7 5978 }
9d799f85
AC
5979
5980 /* Note: step_resume_breakpoint may be non-NULL. This occures
5981 when either there's a nested signal, or when there's a
5982 pending signal enabled just as the signal handler returns
5983 (leaving the inferior at the step-resume-breakpoint without
5984 actually executing it). Either way continue until the
5985 breakpoint is really hit. */
c447ac0b
PA
5986
5987 if (!switch_back_to_stepped_thread (ecs))
5988 {
5989 if (debug_infrun)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: random signal, keep going\n");
5992
5993 keep_going (ecs);
5994 }
5995 return;
488f131b 5996 }
94c57d6a
PA
5997
5998 process_event_stop_test (ecs);
5999}
6000
6001/* Come here when we've got some debug event / signal we can explain
6002 (IOW, not a random signal), and test whether it should cause a
6003 stop, or whether we should resume the inferior (transparently).
6004 E.g., could be a breakpoint whose condition evaluates false; we
6005 could be still stepping within the line; etc. */
6006
6007static void
6008process_event_stop_test (struct execution_control_state *ecs)
6009{
6010 struct symtab_and_line stop_pc_sal;
6011 struct frame_info *frame;
6012 struct gdbarch *gdbarch;
cdaa5b73
PA
6013 CORE_ADDR jmp_buf_pc;
6014 struct bpstat_what what;
94c57d6a 6015
cdaa5b73 6016 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6017
cdaa5b73
PA
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
fcf3daef 6020
cdaa5b73 6021 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6022
cdaa5b73
PA
6023 if (what.call_dummy)
6024 {
6025 stop_stack_dummy = what.call_dummy;
6026 }
186c406b 6027
243a9253
PA
6028 /* A few breakpoint types have callbacks associated (e.g.,
6029 bp_jit_event). Run them now. */
6030 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6031
cdaa5b73
PA
6032 /* If we hit an internal event that triggers symbol changes, the
6033 current frame will be invalidated within bpstat_what (e.g., if we
6034 hit an internal solib event). Re-fetch it. */
6035 frame = get_current_frame ();
6036 gdbarch = get_frame_arch (frame);
e2e4d78b 6037
cdaa5b73
PA
6038 switch (what.main_action)
6039 {
6040 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6041 /* If we hit the breakpoint at longjmp while stepping, we
6042 install a momentary breakpoint at the target of the
6043 jmp_buf. */
186c406b 6044
cdaa5b73
PA
6045 if (debug_infrun)
6046 fprintf_unfiltered (gdb_stdlog,
6047 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6048
cdaa5b73 6049 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6050
cdaa5b73
PA
6051 if (what.is_longjmp)
6052 {
6053 struct value *arg_value;
6054
6055 /* If we set the longjmp breakpoint via a SystemTap probe,
6056 then use it to extract the arguments. The destination PC
6057 is the third argument to the probe. */
6058 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6059 if (arg_value)
8fa0c4f8
AA
6060 {
6061 jmp_buf_pc = value_as_address (arg_value);
6062 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6063 }
cdaa5b73
PA
6064 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6065 || !gdbarch_get_longjmp_target (gdbarch,
6066 frame, &jmp_buf_pc))
e2e4d78b 6067 {
cdaa5b73
PA
6068 if (debug_infrun)
6069 fprintf_unfiltered (gdb_stdlog,
6070 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6071 "(!gdbarch_get_longjmp_target)\n");
6072 keep_going (ecs);
6073 return;
e2e4d78b 6074 }
e2e4d78b 6075
cdaa5b73
PA
6076 /* Insert a breakpoint at resume address. */
6077 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6078 }
6079 else
6080 check_exception_resume (ecs, frame);
6081 keep_going (ecs);
6082 return;
e81a37f7 6083
cdaa5b73
PA
6084 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6085 {
6086 struct frame_info *init_frame;
e81a37f7 6087
cdaa5b73 6088 /* There are several cases to consider.
c906108c 6089
cdaa5b73
PA
6090 1. The initiating frame no longer exists. In this case we
6091 must stop, because the exception or longjmp has gone too
6092 far.
2c03e5be 6093
cdaa5b73
PA
6094 2. The initiating frame exists, and is the same as the
6095 current frame. We stop, because the exception or longjmp
6096 has been caught.
2c03e5be 6097
cdaa5b73
PA
6098 3. The initiating frame exists and is different from the
6099 current frame. This means the exception or longjmp has
6100 been caught beneath the initiating frame, so keep going.
c906108c 6101
cdaa5b73
PA
6102 4. longjmp breakpoint has been placed just to protect
6103 against stale dummy frames and user is not interested in
6104 stopping around longjmps. */
c5aa993b 6105
cdaa5b73
PA
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog,
6108 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6109
cdaa5b73
PA
6110 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6111 != NULL);
6112 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6113
cdaa5b73
PA
6114 if (what.is_longjmp)
6115 {
b67a2c6f 6116 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6117
cdaa5b73 6118 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6119 {
cdaa5b73
PA
6120 /* Case 4. */
6121 keep_going (ecs);
6122 return;
e5ef252a 6123 }
cdaa5b73 6124 }
c5aa993b 6125
cdaa5b73 6126 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6127
cdaa5b73
PA
6128 if (init_frame)
6129 {
6130 struct frame_id current_id
6131 = get_frame_id (get_current_frame ());
6132 if (frame_id_eq (current_id,
6133 ecs->event_thread->initiating_frame))
6134 {
6135 /* Case 2. Fall through. */
6136 }
6137 else
6138 {
6139 /* Case 3. */
6140 keep_going (ecs);
6141 return;
6142 }
68f53502 6143 }
488f131b 6144
cdaa5b73
PA
6145 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6146 exists. */
6147 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6148
bdc36728 6149 end_stepping_range (ecs);
cdaa5b73
PA
6150 }
6151 return;
e5ef252a 6152
cdaa5b73
PA
6153 case BPSTAT_WHAT_SINGLE:
6154 if (debug_infrun)
6155 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6156 ecs->event_thread->stepping_over_breakpoint = 1;
6157 /* Still need to check other stuff, at least the case where we
6158 are stepping and step out of the right range. */
6159 break;
e5ef252a 6160
cdaa5b73
PA
6161 case BPSTAT_WHAT_STEP_RESUME:
6162 if (debug_infrun)
6163 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6164
cdaa5b73
PA
6165 delete_step_resume_breakpoint (ecs->event_thread);
6166 if (ecs->event_thread->control.proceed_to_finish
6167 && execution_direction == EXEC_REVERSE)
6168 {
6169 struct thread_info *tp = ecs->event_thread;
6170
6171 /* We are finishing a function in reverse, and just hit the
6172 step-resume breakpoint at the start address of the
6173 function, and we're almost there -- just need to back up
6174 by one more single-step, which should take us back to the
6175 function call. */
6176 tp->control.step_range_start = tp->control.step_range_end = 1;
6177 keep_going (ecs);
e5ef252a 6178 return;
cdaa5b73
PA
6179 }
6180 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6181 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6182 && execution_direction == EXEC_REVERSE)
6183 {
6184 /* We are stepping over a function call in reverse, and just
6185 hit the step-resume breakpoint at the start address of
6186 the function. Go back to single-stepping, which should
6187 take us back to the function call. */
6188 ecs->event_thread->stepping_over_breakpoint = 1;
6189 keep_going (ecs);
6190 return;
6191 }
6192 break;
e5ef252a 6193
cdaa5b73
PA
6194 case BPSTAT_WHAT_STOP_NOISY:
6195 if (debug_infrun)
6196 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6197 stop_print_frame = 1;
e5ef252a 6198
99619bea
PA
6199 /* Assume the thread stopped for a breapoint. We'll still check
6200 whether a/the breakpoint is there when the thread is next
6201 resumed. */
6202 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6203
22bcd14b 6204 stop_waiting (ecs);
cdaa5b73 6205 return;
e5ef252a 6206
cdaa5b73
PA
6207 case BPSTAT_WHAT_STOP_SILENT:
6208 if (debug_infrun)
6209 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6210 stop_print_frame = 0;
e5ef252a 6211
99619bea
PA
6212 /* Assume the thread stopped for a breapoint. We'll still check
6213 whether a/the breakpoint is there when the thread is next
6214 resumed. */
6215 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6216 stop_waiting (ecs);
cdaa5b73
PA
6217 return;
6218
6219 case BPSTAT_WHAT_HP_STEP_RESUME:
6220 if (debug_infrun)
6221 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6222
6223 delete_step_resume_breakpoint (ecs->event_thread);
6224 if (ecs->event_thread->step_after_step_resume_breakpoint)
6225 {
6226 /* Back when the step-resume breakpoint was inserted, we
6227 were trying to single-step off a breakpoint. Go back to
6228 doing that. */
6229 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6230 ecs->event_thread->stepping_over_breakpoint = 1;
6231 keep_going (ecs);
6232 return;
e5ef252a 6233 }
cdaa5b73
PA
6234 break;
6235
6236 case BPSTAT_WHAT_KEEP_CHECKING:
6237 break;
e5ef252a 6238 }
c906108c 6239
af48d08f
PA
6240 /* If we stepped a permanent breakpoint and we had a high priority
6241 step-resume breakpoint for the address we stepped, but we didn't
6242 hit it, then we must have stepped into the signal handler. The
6243 step-resume was only necessary to catch the case of _not_
6244 stepping into the handler, so delete it, and fall through to
6245 checking whether the step finished. */
6246 if (ecs->event_thread->stepped_breakpoint)
6247 {
6248 struct breakpoint *sr_bp
6249 = ecs->event_thread->control.step_resume_breakpoint;
6250
8d707a12
PA
6251 if (sr_bp != NULL
6252 && sr_bp->loc->permanent
af48d08f
PA
6253 && sr_bp->type == bp_hp_step_resume
6254 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6255 {
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog,
6258 "infrun: stepped permanent breakpoint, stopped in "
6259 "handler\n");
6260 delete_step_resume_breakpoint (ecs->event_thread);
6261 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6262 }
6263 }
6264
cdaa5b73
PA
6265 /* We come here if we hit a breakpoint but should not stop for it.
6266 Possibly we also were stepping and should stop for that. So fall
6267 through and test for stepping. But, if not stepping, do not
6268 stop. */
c906108c 6269
a7212384
UW
6270 /* In all-stop mode, if we're currently stepping but have stopped in
6271 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6272 if (switch_back_to_stepped_thread (ecs))
6273 return;
776f04fa 6274
8358c15c 6275 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6276 {
527159b7 6277 if (debug_infrun)
d3169d93
DJ
6278 fprintf_unfiltered (gdb_stdlog,
6279 "infrun: step-resume breakpoint is inserted\n");
527159b7 6280
488f131b
JB
6281 /* Having a step-resume breakpoint overrides anything
6282 else having to do with stepping commands until
6283 that breakpoint is reached. */
488f131b
JB
6284 keep_going (ecs);
6285 return;
6286 }
c5aa993b 6287
16c381f0 6288 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6289 {
527159b7 6290 if (debug_infrun)
8a9de0e4 6291 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6292 /* Likewise if we aren't even stepping. */
488f131b
JB
6293 keep_going (ecs);
6294 return;
6295 }
c5aa993b 6296
4b7703ad
JB
6297 /* Re-fetch current thread's frame in case the code above caused
6298 the frame cache to be re-initialized, making our FRAME variable
6299 a dangling pointer. */
6300 frame = get_current_frame ();
628fe4e4 6301 gdbarch = get_frame_arch (frame);
7e324e48 6302 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6303
488f131b 6304 /* If stepping through a line, keep going if still within it.
c906108c 6305
488f131b
JB
6306 Note that step_range_end is the address of the first instruction
6307 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6308 within it!
6309
6310 Note also that during reverse execution, we may be stepping
6311 through a function epilogue and therefore must detect when
6312 the current-frame changes in the middle of a line. */
6313
f2ffa92b
PA
6314 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6315 ecs->event_thread)
31410e84 6316 && (execution_direction != EXEC_REVERSE
388a8562 6317 || frame_id_eq (get_frame_id (frame),
16c381f0 6318 ecs->event_thread->control.step_frame_id)))
488f131b 6319 {
527159b7 6320 if (debug_infrun)
5af949e3
UW
6321 fprintf_unfiltered
6322 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6323 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6324 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6325
c1e36e3e
PA
6326 /* Tentatively re-enable range stepping; `resume' disables it if
6327 necessary (e.g., if we're stepping over a breakpoint or we
6328 have software watchpoints). */
6329 ecs->event_thread->control.may_range_step = 1;
6330
b2175913
MS
6331 /* When stepping backward, stop at beginning of line range
6332 (unless it's the function entry point, in which case
6333 keep going back to the call point). */
f2ffa92b 6334 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6335 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6336 && stop_pc != ecs->stop_func_start
6337 && execution_direction == EXEC_REVERSE)
bdc36728 6338 end_stepping_range (ecs);
b2175913
MS
6339 else
6340 keep_going (ecs);
6341
488f131b
JB
6342 return;
6343 }
c5aa993b 6344
488f131b 6345 /* We stepped out of the stepping range. */
c906108c 6346
488f131b 6347 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6348 loader dynamic symbol resolution code...
6349
6350 EXEC_FORWARD: we keep on single stepping until we exit the run
6351 time loader code and reach the callee's address.
6352
6353 EXEC_REVERSE: we've already executed the callee (backward), and
6354 the runtime loader code is handled just like any other
6355 undebuggable function call. Now we need only keep stepping
6356 backward through the trampoline code, and that's handled further
6357 down, so there is nothing for us to do here. */
6358
6359 if (execution_direction != EXEC_REVERSE
16c381f0 6360 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6361 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6362 {
4c8c40e6 6363 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6364 gdbarch_skip_solib_resolver (gdbarch,
6365 ecs->event_thread->suspend.stop_pc);
c906108c 6366
527159b7 6367 if (debug_infrun)
3e43a32a
MS
6368 fprintf_unfiltered (gdb_stdlog,
6369 "infrun: stepped into dynsym resolve code\n");
527159b7 6370
488f131b
JB
6371 if (pc_after_resolver)
6372 {
6373 /* Set up a step-resume breakpoint at the address
6374 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6375 symtab_and_line sr_sal;
488f131b 6376 sr_sal.pc = pc_after_resolver;
6c95b8df 6377 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6378
a6d9a66e
UW
6379 insert_step_resume_breakpoint_at_sal (gdbarch,
6380 sr_sal, null_frame_id);
c5aa993b 6381 }
c906108c 6382
488f131b
JB
6383 keep_going (ecs);
6384 return;
6385 }
c906108c 6386
1d509aa6
MM
6387 /* Step through an indirect branch thunk. */
6388 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6389 && gdbarch_in_indirect_branch_thunk (gdbarch,
6390 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6391 {
6392 if (debug_infrun)
6393 fprintf_unfiltered (gdb_stdlog,
6394 "infrun: stepped into indirect branch thunk\n");
6395 keep_going (ecs);
6396 return;
6397 }
6398
16c381f0
JK
6399 if (ecs->event_thread->control.step_range_end != 1
6400 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6401 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6402 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6403 {
527159b7 6404 if (debug_infrun)
3e43a32a
MS
6405 fprintf_unfiltered (gdb_stdlog,
6406 "infrun: stepped into signal trampoline\n");
42edda50 6407 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6408 a signal trampoline (either by a signal being delivered or by
6409 the signal handler returning). Just single-step until the
6410 inferior leaves the trampoline (either by calling the handler
6411 or returning). */
488f131b
JB
6412 keep_going (ecs);
6413 return;
6414 }
c906108c 6415
14132e89
MR
6416 /* If we're in the return path from a shared library trampoline,
6417 we want to proceed through the trampoline when stepping. */
6418 /* macro/2012-04-25: This needs to come before the subroutine
6419 call check below as on some targets return trampolines look
6420 like subroutine calls (MIPS16 return thunks). */
6421 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6422 ecs->event_thread->suspend.stop_pc,
6423 ecs->stop_func_name)
14132e89
MR
6424 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6425 {
6426 /* Determine where this trampoline returns. */
f2ffa92b
PA
6427 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6428 CORE_ADDR real_stop_pc
6429 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6430
6431 if (debug_infrun)
6432 fprintf_unfiltered (gdb_stdlog,
6433 "infrun: stepped into solib return tramp\n");
6434
6435 /* Only proceed through if we know where it's going. */
6436 if (real_stop_pc)
6437 {
6438 /* And put the step-breakpoint there and go until there. */
51abb421 6439 symtab_and_line sr_sal;
14132e89
MR
6440 sr_sal.pc = real_stop_pc;
6441 sr_sal.section = find_pc_overlay (sr_sal.pc);
6442 sr_sal.pspace = get_frame_program_space (frame);
6443
6444 /* Do not specify what the fp should be when we stop since
6445 on some machines the prologue is where the new fp value
6446 is established. */
6447 insert_step_resume_breakpoint_at_sal (gdbarch,
6448 sr_sal, null_frame_id);
6449
6450 /* Restart without fiddling with the step ranges or
6451 other state. */
6452 keep_going (ecs);
6453 return;
6454 }
6455 }
6456
c17eaafe
DJ
6457 /* Check for subroutine calls. The check for the current frame
6458 equalling the step ID is not necessary - the check of the
6459 previous frame's ID is sufficient - but it is a common case and
6460 cheaper than checking the previous frame's ID.
14e60db5
DJ
6461
6462 NOTE: frame_id_eq will never report two invalid frame IDs as
6463 being equal, so to get into this block, both the current and
6464 previous frame must have valid frame IDs. */
005ca36a
JB
6465 /* The outer_frame_id check is a heuristic to detect stepping
6466 through startup code. If we step over an instruction which
6467 sets the stack pointer from an invalid value to a valid value,
6468 we may detect that as a subroutine call from the mythical
6469 "outermost" function. This could be fixed by marking
6470 outermost frames as !stack_p,code_p,special_p. Then the
6471 initial outermost frame, before sp was valid, would
ce6cca6d 6472 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6473 for more. */
edb3359d 6474 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6475 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6476 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6477 ecs->event_thread->control.step_stack_frame_id)
6478 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6479 outer_frame_id)
885eeb5b 6480 || (ecs->event_thread->control.step_start_function
f2ffa92b 6481 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6482 {
f2ffa92b 6483 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6484 CORE_ADDR real_stop_pc;
8fb3e588 6485
527159b7 6486 if (debug_infrun)
8a9de0e4 6487 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6488
b7a084be 6489 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6490 {
6491 /* I presume that step_over_calls is only 0 when we're
6492 supposed to be stepping at the assembly language level
6493 ("stepi"). Just stop. */
388a8562 6494 /* And this works the same backward as frontward. MVS */
bdc36728 6495 end_stepping_range (ecs);
95918acb
AC
6496 return;
6497 }
8fb3e588 6498
388a8562
MS
6499 /* Reverse stepping through solib trampolines. */
6500
6501 if (execution_direction == EXEC_REVERSE
16c381f0 6502 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6503 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6504 || (ecs->stop_func_start == 0
6505 && in_solib_dynsym_resolve_code (stop_pc))))
6506 {
6507 /* Any solib trampoline code can be handled in reverse
6508 by simply continuing to single-step. We have already
6509 executed the solib function (backwards), and a few
6510 steps will take us back through the trampoline to the
6511 caller. */
6512 keep_going (ecs);
6513 return;
6514 }
6515
16c381f0 6516 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6517 {
b2175913
MS
6518 /* We're doing a "next".
6519
6520 Normal (forward) execution: set a breakpoint at the
6521 callee's return address (the address at which the caller
6522 will resume).
6523
6524 Reverse (backward) execution. set the step-resume
6525 breakpoint at the start of the function that we just
6526 stepped into (backwards), and continue to there. When we
6130d0b7 6527 get there, we'll need to single-step back to the caller. */
b2175913
MS
6528
6529 if (execution_direction == EXEC_REVERSE)
6530 {
acf9414f
JK
6531 /* If we're already at the start of the function, we've either
6532 just stepped backward into a single instruction function,
6533 or stepped back out of a signal handler to the first instruction
6534 of the function. Just keep going, which will single-step back
6535 to the caller. */
58c48e72 6536 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6537 {
acf9414f 6538 /* Normal function call return (static or dynamic). */
51abb421 6539 symtab_and_line sr_sal;
acf9414f
JK
6540 sr_sal.pc = ecs->stop_func_start;
6541 sr_sal.pspace = get_frame_program_space (frame);
6542 insert_step_resume_breakpoint_at_sal (gdbarch,
6543 sr_sal, null_frame_id);
6544 }
b2175913
MS
6545 }
6546 else
568d6575 6547 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6548
8567c30f
AC
6549 keep_going (ecs);
6550 return;
6551 }
a53c66de 6552
95918acb 6553 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6554 calling routine and the real function), locate the real
6555 function. That's what tells us (a) whether we want to step
6556 into it at all, and (b) what prologue we want to run to the
6557 end of, if we do step into it. */
568d6575 6558 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6559 if (real_stop_pc == 0)
568d6575 6560 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6561 if (real_stop_pc != 0)
6562 ecs->stop_func_start = real_stop_pc;
8fb3e588 6563
db5f024e 6564 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6565 {
51abb421 6566 symtab_and_line sr_sal;
1b2bfbb9 6567 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6568 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6569
a6d9a66e
UW
6570 insert_step_resume_breakpoint_at_sal (gdbarch,
6571 sr_sal, null_frame_id);
8fb3e588
AC
6572 keep_going (ecs);
6573 return;
1b2bfbb9
RC
6574 }
6575
95918acb 6576 /* If we have line number information for the function we are
1bfeeb0f
JL
6577 thinking of stepping into and the function isn't on the skip
6578 list, step into it.
95918acb 6579
8fb3e588
AC
6580 If there are several symtabs at that PC (e.g. with include
6581 files), just want to know whether *any* of them have line
6582 numbers. find_pc_line handles this. */
95918acb
AC
6583 {
6584 struct symtab_and_line tmp_sal;
8fb3e588 6585
95918acb 6586 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6587 if (tmp_sal.line != 0
85817405 6588 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6589 tmp_sal))
95918acb 6590 {
b2175913 6591 if (execution_direction == EXEC_REVERSE)
568d6575 6592 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6593 else
568d6575 6594 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6595 return;
6596 }
6597 }
6598
6599 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6600 set, we stop the step so that the user has a chance to switch
6601 in assembly mode. */
16c381f0 6602 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6603 && step_stop_if_no_debug)
95918acb 6604 {
bdc36728 6605 end_stepping_range (ecs);
95918acb
AC
6606 return;
6607 }
6608
b2175913
MS
6609 if (execution_direction == EXEC_REVERSE)
6610 {
acf9414f
JK
6611 /* If we're already at the start of the function, we've either just
6612 stepped backward into a single instruction function without line
6613 number info, or stepped back out of a signal handler to the first
6614 instruction of the function without line number info. Just keep
6615 going, which will single-step back to the caller. */
6616 if (ecs->stop_func_start != stop_pc)
6617 {
6618 /* Set a breakpoint at callee's start address.
6619 From there we can step once and be back in the caller. */
51abb421 6620 symtab_and_line sr_sal;
acf9414f
JK
6621 sr_sal.pc = ecs->stop_func_start;
6622 sr_sal.pspace = get_frame_program_space (frame);
6623 insert_step_resume_breakpoint_at_sal (gdbarch,
6624 sr_sal, null_frame_id);
6625 }
b2175913
MS
6626 }
6627 else
6628 /* Set a breakpoint at callee's return address (the address
6629 at which the caller will resume). */
568d6575 6630 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6631
95918acb 6632 keep_going (ecs);
488f131b 6633 return;
488f131b 6634 }
c906108c 6635
fdd654f3
MS
6636 /* Reverse stepping through solib trampolines. */
6637
6638 if (execution_direction == EXEC_REVERSE
16c381f0 6639 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6640 {
f2ffa92b
PA
6641 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6642
fdd654f3
MS
6643 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6644 || (ecs->stop_func_start == 0
6645 && in_solib_dynsym_resolve_code (stop_pc)))
6646 {
6647 /* Any solib trampoline code can be handled in reverse
6648 by simply continuing to single-step. We have already
6649 executed the solib function (backwards), and a few
6650 steps will take us back through the trampoline to the
6651 caller. */
6652 keep_going (ecs);
6653 return;
6654 }
6655 else if (in_solib_dynsym_resolve_code (stop_pc))
6656 {
6657 /* Stepped backward into the solib dynsym resolver.
6658 Set a breakpoint at its start and continue, then
6659 one more step will take us out. */
51abb421 6660 symtab_and_line sr_sal;
fdd654f3 6661 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6662 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6663 insert_step_resume_breakpoint_at_sal (gdbarch,
6664 sr_sal, null_frame_id);
6665 keep_going (ecs);
6666 return;
6667 }
6668 }
6669
f2ffa92b 6670 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6671
1b2bfbb9
RC
6672 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6673 the trampoline processing logic, however, there are some trampolines
6674 that have no names, so we should do trampoline handling first. */
16c381f0 6675 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6676 && ecs->stop_func_name == NULL
2afb61aa 6677 && stop_pc_sal.line == 0)
1b2bfbb9 6678 {
527159b7 6679 if (debug_infrun)
3e43a32a
MS
6680 fprintf_unfiltered (gdb_stdlog,
6681 "infrun: stepped into undebuggable function\n");
527159b7 6682
1b2bfbb9 6683 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6684 undebuggable function (where there is no debugging information
6685 and no line number corresponding to the address where the
1b2bfbb9
RC
6686 inferior stopped). Since we want to skip this kind of code,
6687 we keep going until the inferior returns from this
14e60db5
DJ
6688 function - unless the user has asked us not to (via
6689 set step-mode) or we no longer know how to get back
6690 to the call site. */
6691 if (step_stop_if_no_debug
c7ce8faa 6692 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6693 {
6694 /* If we have no line number and the step-stop-if-no-debug
6695 is set, we stop the step so that the user has a chance to
6696 switch in assembly mode. */
bdc36728 6697 end_stepping_range (ecs);
1b2bfbb9
RC
6698 return;
6699 }
6700 else
6701 {
6702 /* Set a breakpoint at callee's return address (the address
6703 at which the caller will resume). */
568d6575 6704 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6705 keep_going (ecs);
6706 return;
6707 }
6708 }
6709
16c381f0 6710 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6711 {
6712 /* It is stepi or nexti. We always want to stop stepping after
6713 one instruction. */
527159b7 6714 if (debug_infrun)
8a9de0e4 6715 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6716 end_stepping_range (ecs);
1b2bfbb9
RC
6717 return;
6718 }
6719
2afb61aa 6720 if (stop_pc_sal.line == 0)
488f131b
JB
6721 {
6722 /* We have no line number information. That means to stop
6723 stepping (does this always happen right after one instruction,
6724 when we do "s" in a function with no line numbers,
6725 or can this happen as a result of a return or longjmp?). */
527159b7 6726 if (debug_infrun)
8a9de0e4 6727 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6728 end_stepping_range (ecs);
488f131b
JB
6729 return;
6730 }
c906108c 6731
edb3359d
DJ
6732 /* Look for "calls" to inlined functions, part one. If the inline
6733 frame machinery detected some skipped call sites, we have entered
6734 a new inline function. */
6735
6736 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6737 ecs->event_thread->control.step_frame_id)
00431a78 6738 && inline_skipped_frames (ecs->event_thread))
edb3359d 6739 {
edb3359d
DJ
6740 if (debug_infrun)
6741 fprintf_unfiltered (gdb_stdlog,
6742 "infrun: stepped into inlined function\n");
6743
51abb421 6744 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6745
16c381f0 6746 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6747 {
6748 /* For "step", we're going to stop. But if the call site
6749 for this inlined function is on the same source line as
6750 we were previously stepping, go down into the function
6751 first. Otherwise stop at the call site. */
6752
6753 if (call_sal.line == ecs->event_thread->current_line
6754 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6755 step_into_inline_frame (ecs->event_thread);
edb3359d 6756
bdc36728 6757 end_stepping_range (ecs);
edb3359d
DJ
6758 return;
6759 }
6760 else
6761 {
6762 /* For "next", we should stop at the call site if it is on a
6763 different source line. Otherwise continue through the
6764 inlined function. */
6765 if (call_sal.line == ecs->event_thread->current_line
6766 && call_sal.symtab == ecs->event_thread->current_symtab)
6767 keep_going (ecs);
6768 else
bdc36728 6769 end_stepping_range (ecs);
edb3359d
DJ
6770 return;
6771 }
6772 }
6773
6774 /* Look for "calls" to inlined functions, part two. If we are still
6775 in the same real function we were stepping through, but we have
6776 to go further up to find the exact frame ID, we are stepping
6777 through a more inlined call beyond its call site. */
6778
6779 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6780 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6781 ecs->event_thread->control.step_frame_id)
edb3359d 6782 && stepped_in_from (get_current_frame (),
16c381f0 6783 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6784 {
6785 if (debug_infrun)
6786 fprintf_unfiltered (gdb_stdlog,
6787 "infrun: stepping through inlined function\n");
6788
16c381f0 6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6790 keep_going (ecs);
6791 else
bdc36728 6792 end_stepping_range (ecs);
edb3359d
DJ
6793 return;
6794 }
6795
f2ffa92b 6796 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6797 && (ecs->event_thread->current_line != stop_pc_sal.line
6798 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6799 {
6800 /* We are at the start of a different line. So stop. Note that
6801 we don't stop if we step into the middle of a different line.
6802 That is said to make things like for (;;) statements work
6803 better. */
527159b7 6804 if (debug_infrun)
3e43a32a
MS
6805 fprintf_unfiltered (gdb_stdlog,
6806 "infrun: stepped to a different line\n");
bdc36728 6807 end_stepping_range (ecs);
488f131b
JB
6808 return;
6809 }
c906108c 6810
488f131b 6811 /* We aren't done stepping.
c906108c 6812
488f131b
JB
6813 Optimize by setting the stepping range to the line.
6814 (We might not be in the original line, but if we entered a
6815 new line in mid-statement, we continue stepping. This makes
6816 things like for(;;) statements work better.) */
c906108c 6817
16c381f0
JK
6818 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6819 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6820 ecs->event_thread->control.may_range_step = 1;
edb3359d 6821 set_step_info (frame, stop_pc_sal);
488f131b 6822
527159b7 6823 if (debug_infrun)
8a9de0e4 6824 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6825 keep_going (ecs);
104c1213
JM
6826}
6827
c447ac0b
PA
6828/* In all-stop mode, if we're currently stepping but have stopped in
6829 some other thread, we may need to switch back to the stepped
6830 thread. Returns true we set the inferior running, false if we left
6831 it stopped (and the event needs further processing). */
6832
6833static int
6834switch_back_to_stepped_thread (struct execution_control_state *ecs)
6835{
fbea99ea 6836 if (!target_is_non_stop_p ())
c447ac0b 6837 {
99619bea
PA
6838 struct thread_info *stepping_thread;
6839
6840 /* If any thread is blocked on some internal breakpoint, and we
6841 simply need to step over that breakpoint to get it going
6842 again, do that first. */
6843
6844 /* However, if we see an event for the stepping thread, then we
6845 know all other threads have been moved past their breakpoints
6846 already. Let the caller check whether the step is finished,
6847 etc., before deciding to move it past a breakpoint. */
6848 if (ecs->event_thread->control.step_range_end != 0)
6849 return 0;
6850
6851 /* Check if the current thread is blocked on an incomplete
6852 step-over, interrupted by a random signal. */
6853 if (ecs->event_thread->control.trap_expected
6854 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6855 {
99619bea
PA
6856 if (debug_infrun)
6857 {
6858 fprintf_unfiltered (gdb_stdlog,
6859 "infrun: need to finish step-over of [%s]\n",
6860 target_pid_to_str (ecs->event_thread->ptid));
6861 }
6862 keep_going (ecs);
6863 return 1;
6864 }
2adfaa28 6865
99619bea
PA
6866 /* Check if the current thread is blocked by a single-step
6867 breakpoint of another thread. */
6868 if (ecs->hit_singlestep_breakpoint)
6869 {
6870 if (debug_infrun)
6871 {
6872 fprintf_unfiltered (gdb_stdlog,
6873 "infrun: need to step [%s] over single-step "
6874 "breakpoint\n",
6875 target_pid_to_str (ecs->ptid));
6876 }
6877 keep_going (ecs);
6878 return 1;
6879 }
6880
4d9d9d04
PA
6881 /* If this thread needs yet another step-over (e.g., stepping
6882 through a delay slot), do it first before moving on to
6883 another thread. */
6884 if (thread_still_needs_step_over (ecs->event_thread))
6885 {
6886 if (debug_infrun)
6887 {
6888 fprintf_unfiltered (gdb_stdlog,
6889 "infrun: thread [%s] still needs step-over\n",
6890 target_pid_to_str (ecs->event_thread->ptid));
6891 }
6892 keep_going (ecs);
6893 return 1;
6894 }
70509625 6895
483805cf
PA
6896 /* If scheduler locking applies even if not stepping, there's no
6897 need to walk over threads. Above we've checked whether the
6898 current thread is stepping. If some other thread not the
6899 event thread is stepping, then it must be that scheduler
6900 locking is not in effect. */
856e7dd6 6901 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6902 return 0;
6903
4d9d9d04
PA
6904 /* Otherwise, we no longer expect a trap in the current thread.
6905 Clear the trap_expected flag before switching back -- this is
6906 what keep_going does as well, if we call it. */
6907 ecs->event_thread->control.trap_expected = 0;
6908
6909 /* Likewise, clear the signal if it should not be passed. */
6910 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6911 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6912
6913 /* Do all pending step-overs before actually proceeding with
483805cf 6914 step/next/etc. */
4d9d9d04
PA
6915 if (start_step_over ())
6916 {
6917 prepare_to_wait (ecs);
6918 return 1;
6919 }
6920
6921 /* Look for the stepping/nexting thread. */
483805cf 6922 stepping_thread = NULL;
4d9d9d04 6923
08036331 6924 for (thread_info *tp : all_non_exited_threads ())
483805cf 6925 {
fbea99ea
PA
6926 /* Ignore threads of processes the caller is not
6927 resuming. */
483805cf 6928 if (!sched_multi
e99b03dc 6929 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6930 continue;
6931
6932 /* When stepping over a breakpoint, we lock all threads
6933 except the one that needs to move past the breakpoint.
6934 If a non-event thread has this set, the "incomplete
6935 step-over" check above should have caught it earlier. */
372316f1
PA
6936 if (tp->control.trap_expected)
6937 {
6938 internal_error (__FILE__, __LINE__,
6939 "[%s] has inconsistent state: "
6940 "trap_expected=%d\n",
6941 target_pid_to_str (tp->ptid),
6942 tp->control.trap_expected);
6943 }
483805cf
PA
6944
6945 /* Did we find the stepping thread? */
6946 if (tp->control.step_range_end)
6947 {
6948 /* Yep. There should only one though. */
6949 gdb_assert (stepping_thread == NULL);
6950
6951 /* The event thread is handled at the top, before we
6952 enter this loop. */
6953 gdb_assert (tp != ecs->event_thread);
6954
6955 /* If some thread other than the event thread is
6956 stepping, then scheduler locking can't be in effect,
6957 otherwise we wouldn't have resumed the current event
6958 thread in the first place. */
856e7dd6 6959 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6960
6961 stepping_thread = tp;
6962 }
99619bea
PA
6963 }
6964
483805cf 6965 if (stepping_thread != NULL)
99619bea 6966 {
c447ac0b
PA
6967 if (debug_infrun)
6968 fprintf_unfiltered (gdb_stdlog,
6969 "infrun: switching back to stepped thread\n");
6970
2ac7589c
PA
6971 if (keep_going_stepped_thread (stepping_thread))
6972 {
6973 prepare_to_wait (ecs);
6974 return 1;
6975 }
6976 }
6977 }
2adfaa28 6978
2ac7589c
PA
6979 return 0;
6980}
2adfaa28 6981
2ac7589c
PA
6982/* Set a previously stepped thread back to stepping. Returns true on
6983 success, false if the resume is not possible (e.g., the thread
6984 vanished). */
6985
6986static int
6987keep_going_stepped_thread (struct thread_info *tp)
6988{
6989 struct frame_info *frame;
2ac7589c
PA
6990 struct execution_control_state ecss;
6991 struct execution_control_state *ecs = &ecss;
2adfaa28 6992
2ac7589c
PA
6993 /* If the stepping thread exited, then don't try to switch back and
6994 resume it, which could fail in several different ways depending
6995 on the target. Instead, just keep going.
2adfaa28 6996
2ac7589c
PA
6997 We can find a stepping dead thread in the thread list in two
6998 cases:
2adfaa28 6999
2ac7589c
PA
7000 - The target supports thread exit events, and when the target
7001 tries to delete the thread from the thread list, inferior_ptid
7002 pointed at the exiting thread. In such case, calling
7003 delete_thread does not really remove the thread from the list;
7004 instead, the thread is left listed, with 'exited' state.
64ce06e4 7005
2ac7589c
PA
7006 - The target's debug interface does not support thread exit
7007 events, and so we have no idea whatsoever if the previously
7008 stepping thread is still alive. For that reason, we need to
7009 synchronously query the target now. */
2adfaa28 7010
00431a78 7011 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7012 {
7013 if (debug_infrun)
7014 fprintf_unfiltered (gdb_stdlog,
7015 "infrun: not resuming previously "
7016 "stepped thread, it has vanished\n");
7017
00431a78 7018 delete_thread (tp);
2ac7589c 7019 return 0;
c447ac0b 7020 }
2ac7589c
PA
7021
7022 if (debug_infrun)
7023 fprintf_unfiltered (gdb_stdlog,
7024 "infrun: resuming previously stepped thread\n");
7025
7026 reset_ecs (ecs, tp);
00431a78 7027 switch_to_thread (tp);
2ac7589c 7028
f2ffa92b 7029 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7030 frame = get_current_frame ();
2ac7589c
PA
7031
7032 /* If the PC of the thread we were trying to single-step has
7033 changed, then that thread has trapped or been signaled, but the
7034 event has not been reported to GDB yet. Re-poll the target
7035 looking for this particular thread's event (i.e. temporarily
7036 enable schedlock) by:
7037
7038 - setting a break at the current PC
7039 - resuming that particular thread, only (by setting trap
7040 expected)
7041
7042 This prevents us continuously moving the single-step breakpoint
7043 forward, one instruction at a time, overstepping. */
7044
f2ffa92b 7045 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7046 {
7047 ptid_t resume_ptid;
7048
7049 if (debug_infrun)
7050 fprintf_unfiltered (gdb_stdlog,
7051 "infrun: expected thread advanced also (%s -> %s)\n",
7052 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7053 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7054
7055 /* Clear the info of the previous step-over, as it's no longer
7056 valid (if the thread was trying to step over a breakpoint, it
7057 has already succeeded). It's what keep_going would do too,
7058 if we called it. Do this before trying to insert the sss
7059 breakpoint, otherwise if we were previously trying to step
7060 over this exact address in another thread, the breakpoint is
7061 skipped. */
7062 clear_step_over_info ();
7063 tp->control.trap_expected = 0;
7064
7065 insert_single_step_breakpoint (get_frame_arch (frame),
7066 get_frame_address_space (frame),
f2ffa92b 7067 tp->suspend.stop_pc);
2ac7589c 7068
372316f1 7069 tp->resumed = 1;
fbea99ea 7070 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7071 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7072 }
7073 else
7074 {
7075 if (debug_infrun)
7076 fprintf_unfiltered (gdb_stdlog,
7077 "infrun: expected thread still hasn't advanced\n");
7078
7079 keep_going_pass_signal (ecs);
7080 }
7081 return 1;
c447ac0b
PA
7082}
7083
8b061563
PA
7084/* Is thread TP in the middle of (software or hardware)
7085 single-stepping? (Note the result of this function must never be
7086 passed directly as target_resume's STEP parameter.) */
104c1213 7087
a289b8f6 7088static int
b3444185 7089currently_stepping (struct thread_info *tp)
a7212384 7090{
8358c15c
JK
7091 return ((tp->control.step_range_end
7092 && tp->control.step_resume_breakpoint == NULL)
7093 || tp->control.trap_expected
af48d08f 7094 || tp->stepped_breakpoint
8358c15c 7095 || bpstat_should_step ());
a7212384
UW
7096}
7097
b2175913
MS
7098/* Inferior has stepped into a subroutine call with source code that
7099 we should not step over. Do step to the first line of code in
7100 it. */
c2c6d25f
JM
7101
7102static void
568d6575
UW
7103handle_step_into_function (struct gdbarch *gdbarch,
7104 struct execution_control_state *ecs)
c2c6d25f 7105{
7e324e48
GB
7106 fill_in_stop_func (gdbarch, ecs);
7107
f2ffa92b
PA
7108 compunit_symtab *cust
7109 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7110 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7111 ecs->stop_func_start
7112 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7113
51abb421 7114 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7115 /* Use the step_resume_break to step until the end of the prologue,
7116 even if that involves jumps (as it seems to on the vax under
7117 4.2). */
7118 /* If the prologue ends in the middle of a source line, continue to
7119 the end of that source line (if it is still within the function).
7120 Otherwise, just go to end of prologue. */
2afb61aa
PA
7121 if (stop_func_sal.end
7122 && stop_func_sal.pc != ecs->stop_func_start
7123 && stop_func_sal.end < ecs->stop_func_end)
7124 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7125
2dbd5e30
KB
7126 /* Architectures which require breakpoint adjustment might not be able
7127 to place a breakpoint at the computed address. If so, the test
7128 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7129 ecs->stop_func_start to an address at which a breakpoint may be
7130 legitimately placed.
8fb3e588 7131
2dbd5e30
KB
7132 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7133 made, GDB will enter an infinite loop when stepping through
7134 optimized code consisting of VLIW instructions which contain
7135 subinstructions corresponding to different source lines. On
7136 FR-V, it's not permitted to place a breakpoint on any but the
7137 first subinstruction of a VLIW instruction. When a breakpoint is
7138 set, GDB will adjust the breakpoint address to the beginning of
7139 the VLIW instruction. Thus, we need to make the corresponding
7140 adjustment here when computing the stop address. */
8fb3e588 7141
568d6575 7142 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7143 {
7144 ecs->stop_func_start
568d6575 7145 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7146 ecs->stop_func_start);
2dbd5e30
KB
7147 }
7148
f2ffa92b 7149 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7150 {
7151 /* We are already there: stop now. */
bdc36728 7152 end_stepping_range (ecs);
c2c6d25f
JM
7153 return;
7154 }
7155 else
7156 {
7157 /* Put the step-breakpoint there and go until there. */
51abb421 7158 symtab_and_line sr_sal;
c2c6d25f
JM
7159 sr_sal.pc = ecs->stop_func_start;
7160 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7161 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7162
c2c6d25f 7163 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7164 some machines the prologue is where the new fp value is
7165 established. */
a6d9a66e 7166 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7167
7168 /* And make sure stepping stops right away then. */
16c381f0
JK
7169 ecs->event_thread->control.step_range_end
7170 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7171 }
7172 keep_going (ecs);
7173}
d4f3574e 7174
b2175913
MS
7175/* Inferior has stepped backward into a subroutine call with source
7176 code that we should not step over. Do step to the beginning of the
7177 last line of code in it. */
7178
7179static void
568d6575
UW
7180handle_step_into_function_backward (struct gdbarch *gdbarch,
7181 struct execution_control_state *ecs)
b2175913 7182{
43f3e411 7183 struct compunit_symtab *cust;
167e4384 7184 struct symtab_and_line stop_func_sal;
b2175913 7185
7e324e48
GB
7186 fill_in_stop_func (gdbarch, ecs);
7187
f2ffa92b 7188 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7189 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7190 ecs->stop_func_start
7191 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7192
f2ffa92b 7193 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7194
7195 /* OK, we're just going to keep stepping here. */
f2ffa92b 7196 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7197 {
7198 /* We're there already. Just stop stepping now. */
bdc36728 7199 end_stepping_range (ecs);
b2175913
MS
7200 }
7201 else
7202 {
7203 /* Else just reset the step range and keep going.
7204 No step-resume breakpoint, they don't work for
7205 epilogues, which can have multiple entry paths. */
16c381f0
JK
7206 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7207 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7208 keep_going (ecs);
7209 }
7210 return;
7211}
7212
d3169d93 7213/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7214 This is used to both functions and to skip over code. */
7215
7216static void
2c03e5be
PA
7217insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7218 struct symtab_and_line sr_sal,
7219 struct frame_id sr_id,
7220 enum bptype sr_type)
44cbf7b5 7221{
611c83ae
PA
7222 /* There should never be more than one step-resume or longjmp-resume
7223 breakpoint per thread, so we should never be setting a new
44cbf7b5 7224 step_resume_breakpoint when one is already active. */
8358c15c 7225 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7226 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7227
7228 if (debug_infrun)
7229 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7230 "infrun: inserting step-resume breakpoint at %s\n",
7231 paddress (gdbarch, sr_sal.pc));
d3169d93 7232
8358c15c 7233 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7234 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7235}
7236
9da8c2a0 7237void
2c03e5be
PA
7238insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7239 struct symtab_and_line sr_sal,
7240 struct frame_id sr_id)
7241{
7242 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7243 sr_sal, sr_id,
7244 bp_step_resume);
44cbf7b5 7245}
7ce450bd 7246
2c03e5be
PA
7247/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7248 This is used to skip a potential signal handler.
7ce450bd 7249
14e60db5
DJ
7250 This is called with the interrupted function's frame. The signal
7251 handler, when it returns, will resume the interrupted function at
7252 RETURN_FRAME.pc. */
d303a6c7
AC
7253
7254static void
2c03e5be 7255insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7256{
f4c1edd8 7257 gdb_assert (return_frame != NULL);
d303a6c7 7258
51abb421
PA
7259 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7260
7261 symtab_and_line sr_sal;
568d6575 7262 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7263 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7264 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7265
2c03e5be
PA
7266 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7267 get_stack_frame_id (return_frame),
7268 bp_hp_step_resume);
d303a6c7
AC
7269}
7270
2c03e5be
PA
7271/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7272 is used to skip a function after stepping into it (for "next" or if
7273 the called function has no debugging information).
14e60db5
DJ
7274
7275 The current function has almost always been reached by single
7276 stepping a call or return instruction. NEXT_FRAME belongs to the
7277 current function, and the breakpoint will be set at the caller's
7278 resume address.
7279
7280 This is a separate function rather than reusing
2c03e5be 7281 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7282 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7283 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7284
7285static void
7286insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7287{
14e60db5
DJ
7288 /* We shouldn't have gotten here if we don't know where the call site
7289 is. */
c7ce8faa 7290 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7291
51abb421 7292 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7293
51abb421 7294 symtab_and_line sr_sal;
c7ce8faa
DJ
7295 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7296 frame_unwind_caller_pc (next_frame));
14e60db5 7297 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7298 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7299
a6d9a66e 7300 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7301 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7302}
7303
611c83ae
PA
7304/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7305 new breakpoint at the target of a jmp_buf. The handling of
7306 longjmp-resume uses the same mechanisms used for handling
7307 "step-resume" breakpoints. */
7308
7309static void
a6d9a66e 7310insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7311{
e81a37f7
TT
7312 /* There should never be more than one longjmp-resume breakpoint per
7313 thread, so we should never be setting a new
611c83ae 7314 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7315 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7316
7317 if (debug_infrun)
7318 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7319 "infrun: inserting longjmp-resume breakpoint at %s\n",
7320 paddress (gdbarch, pc));
611c83ae 7321
e81a37f7 7322 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7323 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7324}
7325
186c406b
TT
7326/* Insert an exception resume breakpoint. TP is the thread throwing
7327 the exception. The block B is the block of the unwinder debug hook
7328 function. FRAME is the frame corresponding to the call to this
7329 function. SYM is the symbol of the function argument holding the
7330 target PC of the exception. */
7331
7332static void
7333insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7334 const struct block *b,
186c406b
TT
7335 struct frame_info *frame,
7336 struct symbol *sym)
7337{
492d29ea 7338 TRY
186c406b 7339 {
63e43d3a 7340 struct block_symbol vsym;
186c406b
TT
7341 struct value *value;
7342 CORE_ADDR handler;
7343 struct breakpoint *bp;
7344
de63c46b
PA
7345 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7346 b, VAR_DOMAIN);
63e43d3a 7347 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7348 /* If the value was optimized out, revert to the old behavior. */
7349 if (! value_optimized_out (value))
7350 {
7351 handler = value_as_address (value);
7352
7353 if (debug_infrun)
7354 fprintf_unfiltered (gdb_stdlog,
7355 "infrun: exception resume at %lx\n",
7356 (unsigned long) handler);
7357
7358 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7359 handler,
7360 bp_exception_resume).release ();
c70a6932
JK
7361
7362 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7363 frame = NULL;
7364
5d5658a1 7365 bp->thread = tp->global_num;
186c406b
TT
7366 inferior_thread ()->control.exception_resume_breakpoint = bp;
7367 }
7368 }
492d29ea
PA
7369 CATCH (e, RETURN_MASK_ERROR)
7370 {
7371 /* We want to ignore errors here. */
7372 }
7373 END_CATCH
186c406b
TT
7374}
7375
28106bc2
SDJ
7376/* A helper for check_exception_resume that sets an
7377 exception-breakpoint based on a SystemTap probe. */
7378
7379static void
7380insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7381 const struct bound_probe *probe,
28106bc2
SDJ
7382 struct frame_info *frame)
7383{
7384 struct value *arg_value;
7385 CORE_ADDR handler;
7386 struct breakpoint *bp;
7387
7388 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7389 if (!arg_value)
7390 return;
7391
7392 handler = value_as_address (arg_value);
7393
7394 if (debug_infrun)
7395 fprintf_unfiltered (gdb_stdlog,
7396 "infrun: exception resume at %s\n",
6bac7473 7397 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7398 handler));
7399
7400 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7401 handler, bp_exception_resume).release ();
5d5658a1 7402 bp->thread = tp->global_num;
28106bc2
SDJ
7403 inferior_thread ()->control.exception_resume_breakpoint = bp;
7404}
7405
186c406b
TT
7406/* This is called when an exception has been intercepted. Check to
7407 see whether the exception's destination is of interest, and if so,
7408 set an exception resume breakpoint there. */
7409
7410static void
7411check_exception_resume (struct execution_control_state *ecs,
28106bc2 7412 struct frame_info *frame)
186c406b 7413{
729662a5 7414 struct bound_probe probe;
28106bc2
SDJ
7415 struct symbol *func;
7416
7417 /* First see if this exception unwinding breakpoint was set via a
7418 SystemTap probe point. If so, the probe has two arguments: the
7419 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7420 set a breakpoint there. */
6bac7473 7421 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7422 if (probe.prob)
28106bc2 7423 {
729662a5 7424 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7425 return;
7426 }
7427
7428 func = get_frame_function (frame);
7429 if (!func)
7430 return;
186c406b 7431
492d29ea 7432 TRY
186c406b 7433 {
3977b71f 7434 const struct block *b;
8157b174 7435 struct block_iterator iter;
186c406b
TT
7436 struct symbol *sym;
7437 int argno = 0;
7438
7439 /* The exception breakpoint is a thread-specific breakpoint on
7440 the unwinder's debug hook, declared as:
7441
7442 void _Unwind_DebugHook (void *cfa, void *handler);
7443
7444 The CFA argument indicates the frame to which control is
7445 about to be transferred. HANDLER is the destination PC.
7446
7447 We ignore the CFA and set a temporary breakpoint at HANDLER.
7448 This is not extremely efficient but it avoids issues in gdb
7449 with computing the DWARF CFA, and it also works even in weird
7450 cases such as throwing an exception from inside a signal
7451 handler. */
7452
7453 b = SYMBOL_BLOCK_VALUE (func);
7454 ALL_BLOCK_SYMBOLS (b, iter, sym)
7455 {
7456 if (!SYMBOL_IS_ARGUMENT (sym))
7457 continue;
7458
7459 if (argno == 0)
7460 ++argno;
7461 else
7462 {
7463 insert_exception_resume_breakpoint (ecs->event_thread,
7464 b, frame, sym);
7465 break;
7466 }
7467 }
7468 }
492d29ea
PA
7469 CATCH (e, RETURN_MASK_ERROR)
7470 {
7471 }
7472 END_CATCH
186c406b
TT
7473}
7474
104c1213 7475static void
22bcd14b 7476stop_waiting (struct execution_control_state *ecs)
104c1213 7477{
527159b7 7478 if (debug_infrun)
22bcd14b 7479 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7480
cd0fc7c3
SS
7481 /* Let callers know we don't want to wait for the inferior anymore. */
7482 ecs->wait_some_more = 0;
fbea99ea
PA
7483
7484 /* If all-stop, but the target is always in non-stop mode, stop all
7485 threads now that we're presenting the stop to the user. */
7486 if (!non_stop && target_is_non_stop_p ())
7487 stop_all_threads ();
cd0fc7c3
SS
7488}
7489
4d9d9d04
PA
7490/* Like keep_going, but passes the signal to the inferior, even if the
7491 signal is set to nopass. */
d4f3574e
SS
7492
7493static void
4d9d9d04 7494keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7495{
d7e15655 7496 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7497 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7498
d4f3574e 7499 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7500 ecs->event_thread->prev_pc
00431a78 7501 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7502
4d9d9d04 7503 if (ecs->event_thread->control.trap_expected)
d4f3574e 7504 {
4d9d9d04
PA
7505 struct thread_info *tp = ecs->event_thread;
7506
7507 if (debug_infrun)
7508 fprintf_unfiltered (gdb_stdlog,
7509 "infrun: %s has trap_expected set, "
7510 "resuming to collect trap\n",
7511 target_pid_to_str (tp->ptid));
7512
a9ba6bae
PA
7513 /* We haven't yet gotten our trap, and either: intercepted a
7514 non-signal event (e.g., a fork); or took a signal which we
7515 are supposed to pass through to the inferior. Simply
7516 continue. */
64ce06e4 7517 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7518 }
372316f1
PA
7519 else if (step_over_info_valid_p ())
7520 {
7521 /* Another thread is stepping over a breakpoint in-line. If
7522 this thread needs a step-over too, queue the request. In
7523 either case, this resume must be deferred for later. */
7524 struct thread_info *tp = ecs->event_thread;
7525
7526 if (ecs->hit_singlestep_breakpoint
7527 || thread_still_needs_step_over (tp))
7528 {
7529 if (debug_infrun)
7530 fprintf_unfiltered (gdb_stdlog,
7531 "infrun: step-over already in progress: "
7532 "step-over for %s deferred\n",
7533 target_pid_to_str (tp->ptid));
7534 thread_step_over_chain_enqueue (tp);
7535 }
7536 else
7537 {
7538 if (debug_infrun)
7539 fprintf_unfiltered (gdb_stdlog,
7540 "infrun: step-over in progress: "
7541 "resume of %s deferred\n",
7542 target_pid_to_str (tp->ptid));
7543 }
372316f1 7544 }
d4f3574e
SS
7545 else
7546 {
31e77af2 7547 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7548 int remove_bp;
7549 int remove_wps;
8d297bbf 7550 step_over_what step_what;
31e77af2 7551
d4f3574e 7552 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7553 anyway (if we got a signal, the user asked it be passed to
7554 the child)
7555 -- or --
7556 We got our expected trap, but decided we should resume from
7557 it.
d4f3574e 7558
a9ba6bae 7559 We're going to run this baby now!
d4f3574e 7560
c36b740a
VP
7561 Note that insert_breakpoints won't try to re-insert
7562 already inserted breakpoints. Therefore, we don't
7563 care if breakpoints were already inserted, or not. */
a9ba6bae 7564
31e77af2
PA
7565 /* If we need to step over a breakpoint, and we're not using
7566 displaced stepping to do so, insert all breakpoints
7567 (watchpoints, etc.) but the one we're stepping over, step one
7568 instruction, and then re-insert the breakpoint when that step
7569 is finished. */
963f9c80 7570
6c4cfb24
PA
7571 step_what = thread_still_needs_step_over (ecs->event_thread);
7572
963f9c80 7573 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7574 || (step_what & STEP_OVER_BREAKPOINT));
7575 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7576
cb71640d
PA
7577 /* We can't use displaced stepping if we need to step past a
7578 watchpoint. The instruction copied to the scratch pad would
7579 still trigger the watchpoint. */
7580 if (remove_bp
3fc8eb30 7581 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7582 {
a01bda52 7583 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7584 regcache_read_pc (regcache), remove_wps,
7585 ecs->event_thread->global_num);
45e8c884 7586 }
963f9c80 7587 else if (remove_wps)
21edc42f 7588 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7589
7590 /* If we now need to do an in-line step-over, we need to stop
7591 all other threads. Note this must be done before
7592 insert_breakpoints below, because that removes the breakpoint
7593 we're about to step over, otherwise other threads could miss
7594 it. */
fbea99ea 7595 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7596 stop_all_threads ();
abbb1732 7597
31e77af2 7598 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7599 TRY
31e77af2
PA
7600 {
7601 insert_breakpoints ();
7602 }
492d29ea 7603 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7604 {
7605 exception_print (gdb_stderr, e);
22bcd14b 7606 stop_waiting (ecs);
bdf2a94a 7607 clear_step_over_info ();
31e77af2 7608 return;
d4f3574e 7609 }
492d29ea 7610 END_CATCH
d4f3574e 7611
963f9c80 7612 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7613
64ce06e4 7614 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7615 }
7616
488f131b 7617 prepare_to_wait (ecs);
d4f3574e
SS
7618}
7619
4d9d9d04
PA
7620/* Called when we should continue running the inferior, because the
7621 current event doesn't cause a user visible stop. This does the
7622 resuming part; waiting for the next event is done elsewhere. */
7623
7624static void
7625keep_going (struct execution_control_state *ecs)
7626{
7627 if (ecs->event_thread->control.trap_expected
7628 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7629 ecs->event_thread->control.trap_expected = 0;
7630
7631 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7632 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7633 keep_going_pass_signal (ecs);
7634}
7635
104c1213
JM
7636/* This function normally comes after a resume, before
7637 handle_inferior_event exits. It takes care of any last bits of
7638 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7639
104c1213
JM
7640static void
7641prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7642{
527159b7 7643 if (debug_infrun)
8a9de0e4 7644 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7645
104c1213 7646 ecs->wait_some_more = 1;
0b333c5e
PA
7647
7648 if (!target_is_async_p ())
7649 mark_infrun_async_event_handler ();
c906108c 7650}
11cf8741 7651
fd664c91 7652/* We are done with the step range of a step/next/si/ni command.
b57bacec 7653 Called once for each n of a "step n" operation. */
fd664c91
PA
7654
7655static void
bdc36728 7656end_stepping_range (struct execution_control_state *ecs)
fd664c91 7657{
bdc36728 7658 ecs->event_thread->control.stop_step = 1;
bdc36728 7659 stop_waiting (ecs);
fd664c91
PA
7660}
7661
33d62d64
JK
7662/* Several print_*_reason functions to print why the inferior has stopped.
7663 We always print something when the inferior exits, or receives a signal.
7664 The rest of the cases are dealt with later on in normal_stop and
7665 print_it_typical. Ideally there should be a call to one of these
7666 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7667 stop_waiting is called.
33d62d64 7668
fd664c91
PA
7669 Note that we don't call these directly, instead we delegate that to
7670 the interpreters, through observers. Interpreters then call these
7671 with whatever uiout is right. */
33d62d64 7672
fd664c91
PA
7673void
7674print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7675{
fd664c91 7676 /* For CLI-like interpreters, print nothing. */
33d62d64 7677
112e8700 7678 if (uiout->is_mi_like_p ())
fd664c91 7679 {
112e8700 7680 uiout->field_string ("reason",
fd664c91
PA
7681 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7682 }
7683}
33d62d64 7684
fd664c91
PA
7685void
7686print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7687{
33d62d64 7688 annotate_signalled ();
112e8700
SM
7689 if (uiout->is_mi_like_p ())
7690 uiout->field_string
7691 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7692 uiout->text ("\nProgram terminated with signal ");
33d62d64 7693 annotate_signal_name ();
112e8700 7694 uiout->field_string ("signal-name",
2ea28649 7695 gdb_signal_to_name (siggnal));
33d62d64 7696 annotate_signal_name_end ();
112e8700 7697 uiout->text (", ");
33d62d64 7698 annotate_signal_string ();
112e8700 7699 uiout->field_string ("signal-meaning",
2ea28649 7700 gdb_signal_to_string (siggnal));
33d62d64 7701 annotate_signal_string_end ();
112e8700
SM
7702 uiout->text (".\n");
7703 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7704}
7705
fd664c91
PA
7706void
7707print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7708{
fda326dd 7709 struct inferior *inf = current_inferior ();
f2907e49 7710 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7711
33d62d64
JK
7712 annotate_exited (exitstatus);
7713 if (exitstatus)
7714 {
112e8700
SM
7715 if (uiout->is_mi_like_p ())
7716 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7717 uiout->text ("[Inferior ");
7718 uiout->text (plongest (inf->num));
7719 uiout->text (" (");
7720 uiout->text (pidstr);
7721 uiout->text (") exited with code ");
7722 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7723 uiout->text ("]\n");
33d62d64
JK
7724 }
7725 else
11cf8741 7726 {
112e8700
SM
7727 if (uiout->is_mi_like_p ())
7728 uiout->field_string
7729 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7730 uiout->text ("[Inferior ");
7731 uiout->text (plongest (inf->num));
7732 uiout->text (" (");
7733 uiout->text (pidstr);
7734 uiout->text (") exited normally]\n");
33d62d64 7735 }
33d62d64
JK
7736}
7737
012b3a21
WT
7738/* Some targets/architectures can do extra processing/display of
7739 segmentation faults. E.g., Intel MPX boundary faults.
7740 Call the architecture dependent function to handle the fault. */
7741
7742static void
7743handle_segmentation_fault (struct ui_out *uiout)
7744{
7745 struct regcache *regcache = get_current_regcache ();
ac7936df 7746 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7747
7748 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7749 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7750}
7751
fd664c91
PA
7752void
7753print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7754{
f303dbd6
PA
7755 struct thread_info *thr = inferior_thread ();
7756
33d62d64
JK
7757 annotate_signal ();
7758
112e8700 7759 if (uiout->is_mi_like_p ())
f303dbd6
PA
7760 ;
7761 else if (show_thread_that_caused_stop ())
33d62d64 7762 {
f303dbd6 7763 const char *name;
33d62d64 7764
112e8700
SM
7765 uiout->text ("\nThread ");
7766 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7767
7768 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7769 if (name != NULL)
7770 {
112e8700
SM
7771 uiout->text (" \"");
7772 uiout->field_fmt ("name", "%s", name);
7773 uiout->text ("\"");
f303dbd6 7774 }
33d62d64 7775 }
f303dbd6 7776 else
112e8700 7777 uiout->text ("\nProgram");
f303dbd6 7778
112e8700
SM
7779 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7780 uiout->text (" stopped");
33d62d64
JK
7781 else
7782 {
112e8700 7783 uiout->text (" received signal ");
8b93c638 7784 annotate_signal_name ();
112e8700
SM
7785 if (uiout->is_mi_like_p ())
7786 uiout->field_string
7787 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7788 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7789 annotate_signal_name_end ();
112e8700 7790 uiout->text (", ");
8b93c638 7791 annotate_signal_string ();
112e8700 7792 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7793
7794 if (siggnal == GDB_SIGNAL_SEGV)
7795 handle_segmentation_fault (uiout);
7796
8b93c638 7797 annotate_signal_string_end ();
33d62d64 7798 }
112e8700 7799 uiout->text (".\n");
33d62d64 7800}
252fbfc8 7801
fd664c91
PA
7802void
7803print_no_history_reason (struct ui_out *uiout)
33d62d64 7804{
112e8700 7805 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7806}
43ff13b4 7807
0c7e1a46
PA
7808/* Print current location without a level number, if we have changed
7809 functions or hit a breakpoint. Print source line if we have one.
7810 bpstat_print contains the logic deciding in detail what to print,
7811 based on the event(s) that just occurred. */
7812
243a9253
PA
7813static void
7814print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7815{
7816 int bpstat_ret;
f486487f 7817 enum print_what source_flag;
0c7e1a46
PA
7818 int do_frame_printing = 1;
7819 struct thread_info *tp = inferior_thread ();
7820
7821 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7822 switch (bpstat_ret)
7823 {
7824 case PRINT_UNKNOWN:
7825 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7826 should) carry around the function and does (or should) use
7827 that when doing a frame comparison. */
7828 if (tp->control.stop_step
7829 && frame_id_eq (tp->control.step_frame_id,
7830 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7831 && (tp->control.step_start_function
7832 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7833 {
7834 /* Finished step, just print source line. */
7835 source_flag = SRC_LINE;
7836 }
7837 else
7838 {
7839 /* Print location and source line. */
7840 source_flag = SRC_AND_LOC;
7841 }
7842 break;
7843 case PRINT_SRC_AND_LOC:
7844 /* Print location and source line. */
7845 source_flag = SRC_AND_LOC;
7846 break;
7847 case PRINT_SRC_ONLY:
7848 source_flag = SRC_LINE;
7849 break;
7850 case PRINT_NOTHING:
7851 /* Something bogus. */
7852 source_flag = SRC_LINE;
7853 do_frame_printing = 0;
7854 break;
7855 default:
7856 internal_error (__FILE__, __LINE__, _("Unknown value."));
7857 }
7858
7859 /* The behavior of this routine with respect to the source
7860 flag is:
7861 SRC_LINE: Print only source line
7862 LOCATION: Print only location
7863 SRC_AND_LOC: Print location and source line. */
7864 if (do_frame_printing)
7865 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7866}
7867
243a9253
PA
7868/* See infrun.h. */
7869
7870void
7871print_stop_event (struct ui_out *uiout)
7872{
243a9253
PA
7873 struct target_waitstatus last;
7874 ptid_t last_ptid;
7875 struct thread_info *tp;
7876
7877 get_last_target_status (&last_ptid, &last);
7878
67ad9399
TT
7879 {
7880 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7881
67ad9399 7882 print_stop_location (&last);
243a9253 7883
67ad9399
TT
7884 /* Display the auto-display expressions. */
7885 do_displays ();
7886 }
243a9253
PA
7887
7888 tp = inferior_thread ();
7889 if (tp->thread_fsm != NULL
7890 && thread_fsm_finished_p (tp->thread_fsm))
7891 {
7892 struct return_value_info *rv;
7893
7894 rv = thread_fsm_return_value (tp->thread_fsm);
7895 if (rv != NULL)
7896 print_return_value (uiout, rv);
7897 }
0c7e1a46
PA
7898}
7899
388a7084
PA
7900/* See infrun.h. */
7901
7902void
7903maybe_remove_breakpoints (void)
7904{
7905 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7906 {
7907 if (remove_breakpoints ())
7908 {
223ffa71 7909 target_terminal::ours_for_output ();
388a7084
PA
7910 printf_filtered (_("Cannot remove breakpoints because "
7911 "program is no longer writable.\nFurther "
7912 "execution is probably impossible.\n"));
7913 }
7914 }
7915}
7916
4c2f2a79
PA
7917/* The execution context that just caused a normal stop. */
7918
7919struct stop_context
7920{
2d844eaf
TT
7921 stop_context ();
7922 ~stop_context ();
7923
7924 DISABLE_COPY_AND_ASSIGN (stop_context);
7925
7926 bool changed () const;
7927
4c2f2a79
PA
7928 /* The stop ID. */
7929 ULONGEST stop_id;
c906108c 7930
4c2f2a79 7931 /* The event PTID. */
c906108c 7932
4c2f2a79
PA
7933 ptid_t ptid;
7934
7935 /* If stopp for a thread event, this is the thread that caused the
7936 stop. */
7937 struct thread_info *thread;
7938
7939 /* The inferior that caused the stop. */
7940 int inf_num;
7941};
7942
2d844eaf 7943/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7944 takes a strong reference to the thread. */
7945
2d844eaf 7946stop_context::stop_context ()
4c2f2a79 7947{
2d844eaf
TT
7948 stop_id = get_stop_id ();
7949 ptid = inferior_ptid;
7950 inf_num = current_inferior ()->num;
4c2f2a79 7951
d7e15655 7952 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7953 {
7954 /* Take a strong reference so that the thread can't be deleted
7955 yet. */
2d844eaf
TT
7956 thread = inferior_thread ();
7957 thread->incref ();
4c2f2a79
PA
7958 }
7959 else
2d844eaf 7960 thread = NULL;
4c2f2a79
PA
7961}
7962
7963/* Release a stop context previously created with save_stop_context.
7964 Releases the strong reference to the thread as well. */
7965
2d844eaf 7966stop_context::~stop_context ()
4c2f2a79 7967{
2d844eaf
TT
7968 if (thread != NULL)
7969 thread->decref ();
4c2f2a79
PA
7970}
7971
7972/* Return true if the current context no longer matches the saved stop
7973 context. */
7974
2d844eaf
TT
7975bool
7976stop_context::changed () const
7977{
7978 if (ptid != inferior_ptid)
7979 return true;
7980 if (inf_num != current_inferior ()->num)
7981 return true;
7982 if (thread != NULL && thread->state != THREAD_STOPPED)
7983 return true;
7984 if (get_stop_id () != stop_id)
7985 return true;
7986 return false;
4c2f2a79
PA
7987}
7988
7989/* See infrun.h. */
7990
7991int
96baa820 7992normal_stop (void)
c906108c 7993{
73b65bb0
DJ
7994 struct target_waitstatus last;
7995 ptid_t last_ptid;
7996
7997 get_last_target_status (&last_ptid, &last);
7998
4c2f2a79
PA
7999 new_stop_id ();
8000
29f49a6a
PA
8001 /* If an exception is thrown from this point on, make sure to
8002 propagate GDB's knowledge of the executing state to the
8003 frontend/user running state. A QUIT is an easy exception to see
8004 here, so do this before any filtered output. */
731f534f
PA
8005
8006 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8007
c35b1492 8008 if (!non_stop)
731f534f 8009 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8010 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8011 || last.kind == TARGET_WAITKIND_EXITED)
8012 {
8013 /* On some targets, we may still have live threads in the
8014 inferior when we get a process exit event. E.g., for
8015 "checkpoint", when the current checkpoint/fork exits,
8016 linux-fork.c automatically switches to another fork from
8017 within target_mourn_inferior. */
731f534f
PA
8018 if (inferior_ptid != null_ptid)
8019 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8020 }
8021 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8022 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8023
b57bacec
PA
8024 /* As we're presenting a stop, and potentially removing breakpoints,
8025 update the thread list so we can tell whether there are threads
8026 running on the target. With target remote, for example, we can
8027 only learn about new threads when we explicitly update the thread
8028 list. Do this before notifying the interpreters about signal
8029 stops, end of stepping ranges, etc., so that the "new thread"
8030 output is emitted before e.g., "Program received signal FOO",
8031 instead of after. */
8032 update_thread_list ();
8033
8034 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8035 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8036
c906108c
SS
8037 /* As with the notification of thread events, we want to delay
8038 notifying the user that we've switched thread context until
8039 the inferior actually stops.
8040
73b65bb0
DJ
8041 There's no point in saying anything if the inferior has exited.
8042 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8043 "received a signal".
8044
8045 Also skip saying anything in non-stop mode. In that mode, as we
8046 don't want GDB to switch threads behind the user's back, to avoid
8047 races where the user is typing a command to apply to thread x,
8048 but GDB switches to thread y before the user finishes entering
8049 the command, fetch_inferior_event installs a cleanup to restore
8050 the current thread back to the thread the user had selected right
8051 after this event is handled, so we're not really switching, only
8052 informing of a stop. */
4f8d22e3 8053 if (!non_stop
731f534f 8054 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8055 && target_has_execution
8056 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8057 && last.kind != TARGET_WAITKIND_EXITED
8058 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8059 {
0e454242 8060 SWITCH_THRU_ALL_UIS ()
3b12939d 8061 {
223ffa71 8062 target_terminal::ours_for_output ();
3b12939d
PA
8063 printf_filtered (_("[Switching to %s]\n"),
8064 target_pid_to_str (inferior_ptid));
8065 annotate_thread_changed ();
8066 }
39f77062 8067 previous_inferior_ptid = inferior_ptid;
c906108c 8068 }
c906108c 8069
0e5bf2a8
PA
8070 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8071 {
0e454242 8072 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8073 if (current_ui->prompt_state == PROMPT_BLOCKED)
8074 {
223ffa71 8075 target_terminal::ours_for_output ();
3b12939d
PA
8076 printf_filtered (_("No unwaited-for children left.\n"));
8077 }
0e5bf2a8
PA
8078 }
8079
b57bacec 8080 /* Note: this depends on the update_thread_list call above. */
388a7084 8081 maybe_remove_breakpoints ();
c906108c 8082
c906108c
SS
8083 /* If an auto-display called a function and that got a signal,
8084 delete that auto-display to avoid an infinite recursion. */
8085
8086 if (stopped_by_random_signal)
8087 disable_current_display ();
8088
0e454242 8089 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8090 {
8091 async_enable_stdin ();
8092 }
c906108c 8093
388a7084 8094 /* Let the user/frontend see the threads as stopped. */
731f534f 8095 maybe_finish_thread_state.reset ();
388a7084
PA
8096
8097 /* Select innermost stack frame - i.e., current frame is frame 0,
8098 and current location is based on that. Handle the case where the
8099 dummy call is returning after being stopped. E.g. the dummy call
8100 previously hit a breakpoint. (If the dummy call returns
8101 normally, we won't reach here.) Do this before the stop hook is
8102 run, so that it doesn't get to see the temporary dummy frame,
8103 which is not where we'll present the stop. */
8104 if (has_stack_frames ())
8105 {
8106 if (stop_stack_dummy == STOP_STACK_DUMMY)
8107 {
8108 /* Pop the empty frame that contains the stack dummy. This
8109 also restores inferior state prior to the call (struct
8110 infcall_suspend_state). */
8111 struct frame_info *frame = get_current_frame ();
8112
8113 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8114 frame_pop (frame);
8115 /* frame_pop calls reinit_frame_cache as the last thing it
8116 does which means there's now no selected frame. */
8117 }
8118
8119 select_frame (get_current_frame ());
8120
8121 /* Set the current source location. */
8122 set_current_sal_from_frame (get_current_frame ());
8123 }
dd7e2d2b
PA
8124
8125 /* Look up the hook_stop and run it (CLI internally handles problem
8126 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8127 if (stop_command != NULL)
8128 {
2d844eaf 8129 stop_context saved_context;
4c2f2a79 8130
bf469271
PA
8131 TRY
8132 {
8133 execute_cmd_pre_hook (stop_command);
8134 }
8135 CATCH (ex, RETURN_MASK_ALL)
8136 {
8137 exception_fprintf (gdb_stderr, ex,
8138 "Error while running hook_stop:\n");
8139 }
8140 END_CATCH
4c2f2a79
PA
8141
8142 /* If the stop hook resumes the target, then there's no point in
8143 trying to notify about the previous stop; its context is
8144 gone. Likewise if the command switches thread or inferior --
8145 the observers would print a stop for the wrong
8146 thread/inferior. */
2d844eaf
TT
8147 if (saved_context.changed ())
8148 return 1;
4c2f2a79 8149 }
dd7e2d2b 8150
388a7084
PA
8151 /* Notify observers about the stop. This is where the interpreters
8152 print the stop event. */
d7e15655 8153 if (inferior_ptid != null_ptid)
76727919 8154 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8155 stop_print_frame);
8156 else
76727919 8157 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8158
243a9253
PA
8159 annotate_stopped ();
8160
48844aa6
PA
8161 if (target_has_execution)
8162 {
8163 if (last.kind != TARGET_WAITKIND_SIGNALLED
8164 && last.kind != TARGET_WAITKIND_EXITED)
8165 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8166 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8167 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8168 }
6c95b8df
PA
8169
8170 /* Try to get rid of automatically added inferiors that are no
8171 longer needed. Keeping those around slows down things linearly.
8172 Note that this never removes the current inferior. */
8173 prune_inferiors ();
4c2f2a79
PA
8174
8175 return 0;
c906108c 8176}
c906108c 8177\f
c5aa993b 8178int
96baa820 8179signal_stop_state (int signo)
c906108c 8180{
d6b48e9c 8181 return signal_stop[signo];
c906108c
SS
8182}
8183
c5aa993b 8184int
96baa820 8185signal_print_state (int signo)
c906108c
SS
8186{
8187 return signal_print[signo];
8188}
8189
c5aa993b 8190int
96baa820 8191signal_pass_state (int signo)
c906108c
SS
8192{
8193 return signal_program[signo];
8194}
8195
2455069d
UW
8196static void
8197signal_cache_update (int signo)
8198{
8199 if (signo == -1)
8200 {
a493e3e2 8201 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8202 signal_cache_update (signo);
8203
8204 return;
8205 }
8206
8207 signal_pass[signo] = (signal_stop[signo] == 0
8208 && signal_print[signo] == 0
ab04a2af
TT
8209 && signal_program[signo] == 1
8210 && signal_catch[signo] == 0);
2455069d
UW
8211}
8212
488f131b 8213int
7bda5e4a 8214signal_stop_update (int signo, int state)
d4f3574e
SS
8215{
8216 int ret = signal_stop[signo];
abbb1732 8217
d4f3574e 8218 signal_stop[signo] = state;
2455069d 8219 signal_cache_update (signo);
d4f3574e
SS
8220 return ret;
8221}
8222
488f131b 8223int
7bda5e4a 8224signal_print_update (int signo, int state)
d4f3574e
SS
8225{
8226 int ret = signal_print[signo];
abbb1732 8227
d4f3574e 8228 signal_print[signo] = state;
2455069d 8229 signal_cache_update (signo);
d4f3574e
SS
8230 return ret;
8231}
8232
488f131b 8233int
7bda5e4a 8234signal_pass_update (int signo, int state)
d4f3574e
SS
8235{
8236 int ret = signal_program[signo];
abbb1732 8237
d4f3574e 8238 signal_program[signo] = state;
2455069d 8239 signal_cache_update (signo);
d4f3574e
SS
8240 return ret;
8241}
8242
ab04a2af
TT
8243/* Update the global 'signal_catch' from INFO and notify the
8244 target. */
8245
8246void
8247signal_catch_update (const unsigned int *info)
8248{
8249 int i;
8250
8251 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8252 signal_catch[i] = info[i] > 0;
8253 signal_cache_update (-1);
8254 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8255}
8256
c906108c 8257static void
96baa820 8258sig_print_header (void)
c906108c 8259{
3e43a32a
MS
8260 printf_filtered (_("Signal Stop\tPrint\tPass "
8261 "to program\tDescription\n"));
c906108c
SS
8262}
8263
8264static void
2ea28649 8265sig_print_info (enum gdb_signal oursig)
c906108c 8266{
2ea28649 8267 const char *name = gdb_signal_to_name (oursig);
c906108c 8268 int name_padding = 13 - strlen (name);
96baa820 8269
c906108c
SS
8270 if (name_padding <= 0)
8271 name_padding = 0;
8272
8273 printf_filtered ("%s", name);
488f131b 8274 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8275 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8276 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8277 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8278 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8279}
8280
8281/* Specify how various signals in the inferior should be handled. */
8282
8283static void
0b39b52e 8284handle_command (const char *args, int from_tty)
c906108c 8285{
c906108c 8286 int digits, wordlen;
b926417a 8287 int sigfirst, siglast;
2ea28649 8288 enum gdb_signal oursig;
c906108c
SS
8289 int allsigs;
8290 int nsigs;
8291 unsigned char *sigs;
c906108c
SS
8292
8293 if (args == NULL)
8294 {
e2e0b3e5 8295 error_no_arg (_("signal to handle"));
c906108c
SS
8296 }
8297
1777feb0 8298 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8299
a493e3e2 8300 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8301 sigs = (unsigned char *) alloca (nsigs);
8302 memset (sigs, 0, nsigs);
8303
1777feb0 8304 /* Break the command line up into args. */
c906108c 8305
773a1edc 8306 gdb_argv built_argv (args);
c906108c
SS
8307
8308 /* Walk through the args, looking for signal oursigs, signal names, and
8309 actions. Signal numbers and signal names may be interspersed with
8310 actions, with the actions being performed for all signals cumulatively
1777feb0 8311 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8312
773a1edc 8313 for (char *arg : built_argv)
c906108c 8314 {
773a1edc
TT
8315 wordlen = strlen (arg);
8316 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8317 {;
8318 }
8319 allsigs = 0;
8320 sigfirst = siglast = -1;
8321
773a1edc 8322 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8323 {
8324 /* Apply action to all signals except those used by the
1777feb0 8325 debugger. Silently skip those. */
c906108c
SS
8326 allsigs = 1;
8327 sigfirst = 0;
8328 siglast = nsigs - 1;
8329 }
773a1edc 8330 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8331 {
8332 SET_SIGS (nsigs, sigs, signal_stop);
8333 SET_SIGS (nsigs, sigs, signal_print);
8334 }
773a1edc 8335 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8336 {
8337 UNSET_SIGS (nsigs, sigs, signal_program);
8338 }
773a1edc 8339 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8340 {
8341 SET_SIGS (nsigs, sigs, signal_print);
8342 }
773a1edc 8343 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8344 {
8345 SET_SIGS (nsigs, sigs, signal_program);
8346 }
773a1edc 8347 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8348 {
8349 UNSET_SIGS (nsigs, sigs, signal_stop);
8350 }
773a1edc 8351 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8352 {
8353 SET_SIGS (nsigs, sigs, signal_program);
8354 }
773a1edc 8355 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8356 {
8357 UNSET_SIGS (nsigs, sigs, signal_print);
8358 UNSET_SIGS (nsigs, sigs, signal_stop);
8359 }
773a1edc 8360 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8361 {
8362 UNSET_SIGS (nsigs, sigs, signal_program);
8363 }
8364 else if (digits > 0)
8365 {
8366 /* It is numeric. The numeric signal refers to our own
8367 internal signal numbering from target.h, not to host/target
8368 signal number. This is a feature; users really should be
8369 using symbolic names anyway, and the common ones like
8370 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8371
8372 sigfirst = siglast = (int)
773a1edc
TT
8373 gdb_signal_from_command (atoi (arg));
8374 if (arg[digits] == '-')
c906108c
SS
8375 {
8376 siglast = (int)
773a1edc 8377 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8378 }
8379 if (sigfirst > siglast)
8380 {
1777feb0 8381 /* Bet he didn't figure we'd think of this case... */
b926417a 8382 std::swap (sigfirst, siglast);
c906108c
SS
8383 }
8384 }
8385 else
8386 {
773a1edc 8387 oursig = gdb_signal_from_name (arg);
a493e3e2 8388 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8389 {
8390 sigfirst = siglast = (int) oursig;
8391 }
8392 else
8393 {
8394 /* Not a number and not a recognized flag word => complain. */
773a1edc 8395 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8396 }
8397 }
8398
8399 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8400 which signals to apply actions to. */
c906108c 8401
b926417a 8402 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8403 {
2ea28649 8404 switch ((enum gdb_signal) signum)
c906108c 8405 {
a493e3e2
PA
8406 case GDB_SIGNAL_TRAP:
8407 case GDB_SIGNAL_INT:
c906108c
SS
8408 if (!allsigs && !sigs[signum])
8409 {
9e2f0ad4 8410 if (query (_("%s is used by the debugger.\n\
3e43a32a 8411Are you sure you want to change it? "),
2ea28649 8412 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8413 {
8414 sigs[signum] = 1;
8415 }
8416 else
8417 {
a3f17187 8418 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8419 gdb_flush (gdb_stdout);
8420 }
8421 }
8422 break;
a493e3e2
PA
8423 case GDB_SIGNAL_0:
8424 case GDB_SIGNAL_DEFAULT:
8425 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8426 /* Make sure that "all" doesn't print these. */
8427 break;
8428 default:
8429 sigs[signum] = 1;
8430 break;
8431 }
8432 }
c906108c
SS
8433 }
8434
b926417a 8435 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8436 if (sigs[signum])
8437 {
2455069d 8438 signal_cache_update (-1);
a493e3e2
PA
8439 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8440 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8441
3a031f65
PA
8442 if (from_tty)
8443 {
8444 /* Show the results. */
8445 sig_print_header ();
8446 for (; signum < nsigs; signum++)
8447 if (sigs[signum])
aead7601 8448 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8449 }
8450
8451 break;
8452 }
c906108c
SS
8453}
8454
de0bea00
MF
8455/* Complete the "handle" command. */
8456
eb3ff9a5 8457static void
de0bea00 8458handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8459 completion_tracker &tracker,
6f937416 8460 const char *text, const char *word)
de0bea00 8461{
de0bea00
MF
8462 static const char * const keywords[] =
8463 {
8464 "all",
8465 "stop",
8466 "ignore",
8467 "print",
8468 "pass",
8469 "nostop",
8470 "noignore",
8471 "noprint",
8472 "nopass",
8473 NULL,
8474 };
8475
eb3ff9a5
PA
8476 signal_completer (ignore, tracker, text, word);
8477 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8478}
8479
2ea28649
PA
8480enum gdb_signal
8481gdb_signal_from_command (int num)
ed01b82c
PA
8482{
8483 if (num >= 1 && num <= 15)
2ea28649 8484 return (enum gdb_signal) num;
ed01b82c
PA
8485 error (_("Only signals 1-15 are valid as numeric signals.\n\
8486Use \"info signals\" for a list of symbolic signals."));
8487}
8488
c906108c
SS
8489/* Print current contents of the tables set by the handle command.
8490 It is possible we should just be printing signals actually used
8491 by the current target (but for things to work right when switching
8492 targets, all signals should be in the signal tables). */
8493
8494static void
1d12d88f 8495info_signals_command (const char *signum_exp, int from_tty)
c906108c 8496{
2ea28649 8497 enum gdb_signal oursig;
abbb1732 8498
c906108c
SS
8499 sig_print_header ();
8500
8501 if (signum_exp)
8502 {
8503 /* First see if this is a symbol name. */
2ea28649 8504 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8505 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8506 {
8507 /* No, try numeric. */
8508 oursig =
2ea28649 8509 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8510 }
8511 sig_print_info (oursig);
8512 return;
8513 }
8514
8515 printf_filtered ("\n");
8516 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8517 for (oursig = GDB_SIGNAL_FIRST;
8518 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8519 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8520 {
8521 QUIT;
8522
a493e3e2
PA
8523 if (oursig != GDB_SIGNAL_UNKNOWN
8524 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8525 sig_print_info (oursig);
8526 }
8527
3e43a32a
MS
8528 printf_filtered (_("\nUse the \"handle\" command "
8529 "to change these tables.\n"));
c906108c 8530}
4aa995e1
PA
8531
8532/* The $_siginfo convenience variable is a bit special. We don't know
8533 for sure the type of the value until we actually have a chance to
7a9dd1b2 8534 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8535 also dependent on which thread you have selected.
8536
8537 1. making $_siginfo be an internalvar that creates a new value on
8538 access.
8539
8540 2. making the value of $_siginfo be an lval_computed value. */
8541
8542/* This function implements the lval_computed support for reading a
8543 $_siginfo value. */
8544
8545static void
8546siginfo_value_read (struct value *v)
8547{
8548 LONGEST transferred;
8549
a911d87a
PA
8550 /* If we can access registers, so can we access $_siginfo. Likewise
8551 vice versa. */
8552 validate_registers_access ();
c709acd1 8553
4aa995e1 8554 transferred =
8b88a78e 8555 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8556 NULL,
8557 value_contents_all_raw (v),
8558 value_offset (v),
8559 TYPE_LENGTH (value_type (v)));
8560
8561 if (transferred != TYPE_LENGTH (value_type (v)))
8562 error (_("Unable to read siginfo"));
8563}
8564
8565/* This function implements the lval_computed support for writing a
8566 $_siginfo value. */
8567
8568static void
8569siginfo_value_write (struct value *v, struct value *fromval)
8570{
8571 LONGEST transferred;
8572
a911d87a
PA
8573 /* If we can access registers, so can we access $_siginfo. Likewise
8574 vice versa. */
8575 validate_registers_access ();
c709acd1 8576
8b88a78e 8577 transferred = target_write (current_top_target (),
4aa995e1
PA
8578 TARGET_OBJECT_SIGNAL_INFO,
8579 NULL,
8580 value_contents_all_raw (fromval),
8581 value_offset (v),
8582 TYPE_LENGTH (value_type (fromval)));
8583
8584 if (transferred != TYPE_LENGTH (value_type (fromval)))
8585 error (_("Unable to write siginfo"));
8586}
8587
c8f2448a 8588static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8589 {
8590 siginfo_value_read,
8591 siginfo_value_write
8592 };
8593
8594/* Return a new value with the correct type for the siginfo object of
78267919
UW
8595 the current thread using architecture GDBARCH. Return a void value
8596 if there's no object available. */
4aa995e1 8597
2c0b251b 8598static struct value *
22d2b532
SDJ
8599siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8600 void *ignore)
4aa995e1 8601{
4aa995e1 8602 if (target_has_stack
d7e15655 8603 && inferior_ptid != null_ptid
78267919 8604 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8605 {
78267919 8606 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8607
78267919 8608 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8609 }
8610
78267919 8611 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8612}
8613
c906108c 8614\f
16c381f0
JK
8615/* infcall_suspend_state contains state about the program itself like its
8616 registers and any signal it received when it last stopped.
8617 This state must be restored regardless of how the inferior function call
8618 ends (either successfully, or after it hits a breakpoint or signal)
8619 if the program is to properly continue where it left off. */
8620
6bf78e29 8621class infcall_suspend_state
7a292a7a 8622{
6bf78e29
AB
8623public:
8624 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8625 once the inferior function call has finished. */
8626 infcall_suspend_state (struct gdbarch *gdbarch,
8627 const struct thread_info *tp,
8628 struct regcache *regcache)
8629 : m_thread_suspend (tp->suspend),
8630 m_registers (new readonly_detached_regcache (*regcache))
8631 {
8632 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8633
8634 if (gdbarch_get_siginfo_type_p (gdbarch))
8635 {
8636 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8637 size_t len = TYPE_LENGTH (type);
8638
8639 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8640
8641 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8642 siginfo_data.get (), 0, len) != len)
8643 {
8644 /* Errors ignored. */
8645 siginfo_data.reset (nullptr);
8646 }
8647 }
8648
8649 if (siginfo_data)
8650 {
8651 m_siginfo_gdbarch = gdbarch;
8652 m_siginfo_data = std::move (siginfo_data);
8653 }
8654 }
8655
8656 /* Return a pointer to the stored register state. */
16c381f0 8657
6bf78e29
AB
8658 readonly_detached_regcache *registers () const
8659 {
8660 return m_registers.get ();
8661 }
8662
8663 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8664
8665 void restore (struct gdbarch *gdbarch,
8666 struct thread_info *tp,
8667 struct regcache *regcache) const
8668 {
8669 tp->suspend = m_thread_suspend;
8670
8671 if (m_siginfo_gdbarch == gdbarch)
8672 {
8673 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8674
8675 /* Errors ignored. */
8676 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8677 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8678 }
8679
8680 /* The inferior can be gone if the user types "print exit(0)"
8681 (and perhaps other times). */
8682 if (target_has_execution)
8683 /* NB: The register write goes through to the target. */
8684 regcache->restore (registers ());
8685 }
8686
8687private:
8688 /* How the current thread stopped before the inferior function call was
8689 executed. */
8690 struct thread_suspend_state m_thread_suspend;
8691
8692 /* The registers before the inferior function call was executed. */
8693 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8694
35515841 8695 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8696 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8697
8698 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8699 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8700 content would be invalid. */
6bf78e29 8701 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8702};
8703
cb524840
TT
8704infcall_suspend_state_up
8705save_infcall_suspend_state ()
b89667eb 8706{
b89667eb 8707 struct thread_info *tp = inferior_thread ();
1736ad11 8708 struct regcache *regcache = get_current_regcache ();
ac7936df 8709 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8710
6bf78e29
AB
8711 infcall_suspend_state_up inf_state
8712 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8713
6bf78e29
AB
8714 /* Having saved the current state, adjust the thread state, discarding
8715 any stop signal information. The stop signal is not useful when
8716 starting an inferior function call, and run_inferior_call will not use
8717 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8718 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8719
b89667eb
DE
8720 return inf_state;
8721}
8722
8723/* Restore inferior session state to INF_STATE. */
8724
8725void
16c381f0 8726restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8727{
8728 struct thread_info *tp = inferior_thread ();
1736ad11 8729 struct regcache *regcache = get_current_regcache ();
ac7936df 8730 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8731
6bf78e29 8732 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8733 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8734}
8735
b89667eb 8736void
16c381f0 8737discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8738{
dd848631 8739 delete inf_state;
b89667eb
DE
8740}
8741
daf6667d 8742readonly_detached_regcache *
16c381f0 8743get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8744{
6bf78e29 8745 return inf_state->registers ();
b89667eb
DE
8746}
8747
16c381f0
JK
8748/* infcall_control_state contains state regarding gdb's control of the
8749 inferior itself like stepping control. It also contains session state like
8750 the user's currently selected frame. */
b89667eb 8751
16c381f0 8752struct infcall_control_state
b89667eb 8753{
16c381f0
JK
8754 struct thread_control_state thread_control;
8755 struct inferior_control_state inferior_control;
d82142e2
JK
8756
8757 /* Other fields: */
ee841dd8
TT
8758 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8759 int stopped_by_random_signal = 0;
7a292a7a 8760
b89667eb 8761 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8762 struct frame_id selected_frame_id {};
7a292a7a
SS
8763};
8764
c906108c 8765/* Save all of the information associated with the inferior<==>gdb
b89667eb 8766 connection. */
c906108c 8767
cb524840
TT
8768infcall_control_state_up
8769save_infcall_control_state ()
c906108c 8770{
cb524840 8771 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8772 struct thread_info *tp = inferior_thread ();
d6b48e9c 8773 struct inferior *inf = current_inferior ();
7a292a7a 8774
16c381f0
JK
8775 inf_status->thread_control = tp->control;
8776 inf_status->inferior_control = inf->control;
d82142e2 8777
8358c15c 8778 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8779 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8780
16c381f0
JK
8781 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8782 chain. If caller's caller is walking the chain, they'll be happier if we
8783 hand them back the original chain when restore_infcall_control_state is
8784 called. */
8785 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8786
8787 /* Other fields: */
8788 inf_status->stop_stack_dummy = stop_stack_dummy;
8789 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8790
206415a3 8791 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8792
7a292a7a 8793 return inf_status;
c906108c
SS
8794}
8795
bf469271
PA
8796static void
8797restore_selected_frame (const frame_id &fid)
c906108c 8798{
bf469271 8799 frame_info *frame = frame_find_by_id (fid);
c906108c 8800
aa0cd9c1
AC
8801 /* If inf_status->selected_frame_id is NULL, there was no previously
8802 selected frame. */
101dcfbe 8803 if (frame == NULL)
c906108c 8804 {
8a3fe4f8 8805 warning (_("Unable to restore previously selected frame."));
bf469271 8806 return;
c906108c
SS
8807 }
8808
0f7d239c 8809 select_frame (frame);
c906108c
SS
8810}
8811
b89667eb
DE
8812/* Restore inferior session state to INF_STATUS. */
8813
c906108c 8814void
16c381f0 8815restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8816{
4e1c45ea 8817 struct thread_info *tp = inferior_thread ();
d6b48e9c 8818 struct inferior *inf = current_inferior ();
4e1c45ea 8819
8358c15c
JK
8820 if (tp->control.step_resume_breakpoint)
8821 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8822
5b79abe7
TT
8823 if (tp->control.exception_resume_breakpoint)
8824 tp->control.exception_resume_breakpoint->disposition
8825 = disp_del_at_next_stop;
8826
d82142e2 8827 /* Handle the bpstat_copy of the chain. */
16c381f0 8828 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8829
16c381f0
JK
8830 tp->control = inf_status->thread_control;
8831 inf->control = inf_status->inferior_control;
d82142e2
JK
8832
8833 /* Other fields: */
8834 stop_stack_dummy = inf_status->stop_stack_dummy;
8835 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8836
b89667eb 8837 if (target_has_stack)
c906108c 8838 {
bf469271 8839 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8840 walking the stack might encounter a garbage pointer and
8841 error() trying to dereference it. */
bf469271
PA
8842 TRY
8843 {
8844 restore_selected_frame (inf_status->selected_frame_id);
8845 }
8846 CATCH (ex, RETURN_MASK_ERROR)
8847 {
8848 exception_fprintf (gdb_stderr, ex,
8849 "Unable to restore previously selected frame:\n");
8850 /* Error in restoring the selected frame. Select the
8851 innermost frame. */
8852 select_frame (get_current_frame ());
8853 }
8854 END_CATCH
c906108c 8855 }
c906108c 8856
ee841dd8 8857 delete inf_status;
7a292a7a 8858}
c906108c
SS
8859
8860void
16c381f0 8861discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8862{
8358c15c
JK
8863 if (inf_status->thread_control.step_resume_breakpoint)
8864 inf_status->thread_control.step_resume_breakpoint->disposition
8865 = disp_del_at_next_stop;
8866
5b79abe7
TT
8867 if (inf_status->thread_control.exception_resume_breakpoint)
8868 inf_status->thread_control.exception_resume_breakpoint->disposition
8869 = disp_del_at_next_stop;
8870
1777feb0 8871 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8872 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8873
ee841dd8 8874 delete inf_status;
7a292a7a 8875}
b89667eb 8876\f
7f89fd65 8877/* See infrun.h. */
0c557179
SDJ
8878
8879void
8880clear_exit_convenience_vars (void)
8881{
8882 clear_internalvar (lookup_internalvar ("_exitsignal"));
8883 clear_internalvar (lookup_internalvar ("_exitcode"));
8884}
c5aa993b 8885\f
488f131b 8886
b2175913
MS
8887/* User interface for reverse debugging:
8888 Set exec-direction / show exec-direction commands
8889 (returns error unless target implements to_set_exec_direction method). */
8890
170742de 8891enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8892static const char exec_forward[] = "forward";
8893static const char exec_reverse[] = "reverse";
8894static const char *exec_direction = exec_forward;
40478521 8895static const char *const exec_direction_names[] = {
b2175913
MS
8896 exec_forward,
8897 exec_reverse,
8898 NULL
8899};
8900
8901static void
eb4c3f4a 8902set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8903 struct cmd_list_element *cmd)
8904{
8905 if (target_can_execute_reverse)
8906 {
8907 if (!strcmp (exec_direction, exec_forward))
8908 execution_direction = EXEC_FORWARD;
8909 else if (!strcmp (exec_direction, exec_reverse))
8910 execution_direction = EXEC_REVERSE;
8911 }
8bbed405
MS
8912 else
8913 {
8914 exec_direction = exec_forward;
8915 error (_("Target does not support this operation."));
8916 }
b2175913
MS
8917}
8918
8919static void
8920show_exec_direction_func (struct ui_file *out, int from_tty,
8921 struct cmd_list_element *cmd, const char *value)
8922{
8923 switch (execution_direction) {
8924 case EXEC_FORWARD:
8925 fprintf_filtered (out, _("Forward.\n"));
8926 break;
8927 case EXEC_REVERSE:
8928 fprintf_filtered (out, _("Reverse.\n"));
8929 break;
b2175913 8930 default:
d8b34453
PA
8931 internal_error (__FILE__, __LINE__,
8932 _("bogus execution_direction value: %d"),
8933 (int) execution_direction);
b2175913
MS
8934 }
8935}
8936
d4db2f36
PA
8937static void
8938show_schedule_multiple (struct ui_file *file, int from_tty,
8939 struct cmd_list_element *c, const char *value)
8940{
3e43a32a
MS
8941 fprintf_filtered (file, _("Resuming the execution of threads "
8942 "of all processes is %s.\n"), value);
d4db2f36 8943}
ad52ddc6 8944
22d2b532
SDJ
8945/* Implementation of `siginfo' variable. */
8946
8947static const struct internalvar_funcs siginfo_funcs =
8948{
8949 siginfo_make_value,
8950 NULL,
8951 NULL
8952};
8953
372316f1
PA
8954/* Callback for infrun's target events source. This is marked when a
8955 thread has a pending status to process. */
8956
8957static void
8958infrun_async_inferior_event_handler (gdb_client_data data)
8959{
372316f1
PA
8960 inferior_event_handler (INF_REG_EVENT, NULL);
8961}
8962
c906108c 8963void
96baa820 8964_initialize_infrun (void)
c906108c 8965{
52f0bd74
AC
8966 int i;
8967 int numsigs;
de0bea00 8968 struct cmd_list_element *c;
c906108c 8969
372316f1
PA
8970 /* Register extra event sources in the event loop. */
8971 infrun_async_inferior_event_token
8972 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8973
11db9430 8974 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8975What debugger does when program gets various signals.\n\
8976Specify a signal as argument to print info on that signal only."));
c906108c
SS
8977 add_info_alias ("handle", "signals", 0);
8978
de0bea00 8979 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8980Specify how to handle signals.\n\
486c7739 8981Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8982Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8983If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8984will be displayed instead.\n\
8985\n\
c906108c
SS
8986Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8987from 1-15 are allowed for compatibility with old versions of GDB.\n\
8988Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8989The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8990used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8991\n\
1bedd215 8992Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8993\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8994Stop means reenter debugger if this signal happens (implies print).\n\
8995Print means print a message if this signal happens.\n\
8996Pass means let program see this signal; otherwise program doesn't know.\n\
8997Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8998Pass and Stop may be combined.\n\
8999\n\
9000Multiple signals may be specified. Signal numbers and signal names\n\
9001may be interspersed with actions, with the actions being performed for\n\
9002all signals cumulatively specified."));
de0bea00 9003 set_cmd_completer (c, handle_completer);
486c7739 9004
c906108c 9005 if (!dbx_commands)
1a966eab
AC
9006 stop_command = add_cmd ("stop", class_obscure,
9007 not_just_help_class_command, _("\
9008There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9009This allows you to set a list of commands to be run each time execution\n\
1a966eab 9010of the program stops."), &cmdlist);
c906108c 9011
ccce17b0 9012 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9013Set inferior debugging."), _("\
9014Show inferior debugging."), _("\
9015When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9016 NULL,
9017 show_debug_infrun,
9018 &setdebuglist, &showdebuglist);
527159b7 9019
3e43a32a
MS
9020 add_setshow_boolean_cmd ("displaced", class_maintenance,
9021 &debug_displaced, _("\
237fc4c9
PA
9022Set displaced stepping debugging."), _("\
9023Show displaced stepping debugging."), _("\
9024When non-zero, displaced stepping specific debugging is enabled."),
9025 NULL,
9026 show_debug_displaced,
9027 &setdebuglist, &showdebuglist);
9028
ad52ddc6
PA
9029 add_setshow_boolean_cmd ("non-stop", no_class,
9030 &non_stop_1, _("\
9031Set whether gdb controls the inferior in non-stop mode."), _("\
9032Show whether gdb controls the inferior in non-stop mode."), _("\
9033When debugging a multi-threaded program and this setting is\n\
9034off (the default, also called all-stop mode), when one thread stops\n\
9035(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9036all other threads in the program while you interact with the thread of\n\
9037interest. When you continue or step a thread, you can allow the other\n\
9038threads to run, or have them remain stopped, but while you inspect any\n\
9039thread's state, all threads stop.\n\
9040\n\
9041In non-stop mode, when one thread stops, other threads can continue\n\
9042to run freely. You'll be able to step each thread independently,\n\
9043leave it stopped or free to run as needed."),
9044 set_non_stop,
9045 show_non_stop,
9046 &setlist,
9047 &showlist);
9048
a493e3e2 9049 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9050 signal_stop = XNEWVEC (unsigned char, numsigs);
9051 signal_print = XNEWVEC (unsigned char, numsigs);
9052 signal_program = XNEWVEC (unsigned char, numsigs);
9053 signal_catch = XNEWVEC (unsigned char, numsigs);
9054 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9055 for (i = 0; i < numsigs; i++)
9056 {
9057 signal_stop[i] = 1;
9058 signal_print[i] = 1;
9059 signal_program[i] = 1;
ab04a2af 9060 signal_catch[i] = 0;
c906108c
SS
9061 }
9062
4d9d9d04
PA
9063 /* Signals caused by debugger's own actions should not be given to
9064 the program afterwards.
9065
9066 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9067 explicitly specifies that it should be delivered to the target
9068 program. Typically, that would occur when a user is debugging a
9069 target monitor on a simulator: the target monitor sets a
9070 breakpoint; the simulator encounters this breakpoint and halts
9071 the simulation handing control to GDB; GDB, noting that the stop
9072 address doesn't map to any known breakpoint, returns control back
9073 to the simulator; the simulator then delivers the hardware
9074 equivalent of a GDB_SIGNAL_TRAP to the program being
9075 debugged. */
a493e3e2
PA
9076 signal_program[GDB_SIGNAL_TRAP] = 0;
9077 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9078
9079 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9080 signal_stop[GDB_SIGNAL_ALRM] = 0;
9081 signal_print[GDB_SIGNAL_ALRM] = 0;
9082 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9083 signal_print[GDB_SIGNAL_VTALRM] = 0;
9084 signal_stop[GDB_SIGNAL_PROF] = 0;
9085 signal_print[GDB_SIGNAL_PROF] = 0;
9086 signal_stop[GDB_SIGNAL_CHLD] = 0;
9087 signal_print[GDB_SIGNAL_CHLD] = 0;
9088 signal_stop[GDB_SIGNAL_IO] = 0;
9089 signal_print[GDB_SIGNAL_IO] = 0;
9090 signal_stop[GDB_SIGNAL_POLL] = 0;
9091 signal_print[GDB_SIGNAL_POLL] = 0;
9092 signal_stop[GDB_SIGNAL_URG] = 0;
9093 signal_print[GDB_SIGNAL_URG] = 0;
9094 signal_stop[GDB_SIGNAL_WINCH] = 0;
9095 signal_print[GDB_SIGNAL_WINCH] = 0;
9096 signal_stop[GDB_SIGNAL_PRIO] = 0;
9097 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9098
cd0fc7c3
SS
9099 /* These signals are used internally by user-level thread
9100 implementations. (See signal(5) on Solaris.) Like the above
9101 signals, a healthy program receives and handles them as part of
9102 its normal operation. */
a493e3e2
PA
9103 signal_stop[GDB_SIGNAL_LWP] = 0;
9104 signal_print[GDB_SIGNAL_LWP] = 0;
9105 signal_stop[GDB_SIGNAL_WAITING] = 0;
9106 signal_print[GDB_SIGNAL_WAITING] = 0;
9107 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9108 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9109 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9110 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9111
2455069d
UW
9112 /* Update cached state. */
9113 signal_cache_update (-1);
9114
85c07804
AC
9115 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9116 &stop_on_solib_events, _("\
9117Set stopping for shared library events."), _("\
9118Show stopping for shared library events."), _("\
c906108c
SS
9119If nonzero, gdb will give control to the user when the dynamic linker\n\
9120notifies gdb of shared library events. The most common event of interest\n\
85c07804 9121to the user would be loading/unloading of a new library."),
f9e14852 9122 set_stop_on_solib_events,
920d2a44 9123 show_stop_on_solib_events,
85c07804 9124 &setlist, &showlist);
c906108c 9125
7ab04401
AC
9126 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9127 follow_fork_mode_kind_names,
9128 &follow_fork_mode_string, _("\
9129Set debugger response to a program call of fork or vfork."), _("\
9130Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9131A fork or vfork creates a new process. follow-fork-mode can be:\n\
9132 parent - the original process is debugged after a fork\n\
9133 child - the new process is debugged after a fork\n\
ea1dd7bc 9134The unfollowed process will continue to run.\n\
7ab04401
AC
9135By default, the debugger will follow the parent process."),
9136 NULL,
920d2a44 9137 show_follow_fork_mode_string,
7ab04401
AC
9138 &setlist, &showlist);
9139
6c95b8df
PA
9140 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9141 follow_exec_mode_names,
9142 &follow_exec_mode_string, _("\
9143Set debugger response to a program call of exec."), _("\
9144Show debugger response to a program call of exec."), _("\
9145An exec call replaces the program image of a process.\n\
9146\n\
9147follow-exec-mode can be:\n\
9148\n\
cce7e648 9149 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9150to this new inferior. The program the process was running before\n\
9151the exec call can be restarted afterwards by restarting the original\n\
9152inferior.\n\
9153\n\
9154 same - the debugger keeps the process bound to the same inferior.\n\
9155The new executable image replaces the previous executable loaded in\n\
9156the inferior. Restarting the inferior after the exec call restarts\n\
9157the executable the process was running after the exec call.\n\
9158\n\
9159By default, the debugger will use the same inferior."),
9160 NULL,
9161 show_follow_exec_mode_string,
9162 &setlist, &showlist);
9163
7ab04401
AC
9164 add_setshow_enum_cmd ("scheduler-locking", class_run,
9165 scheduler_enums, &scheduler_mode, _("\
9166Set mode for locking scheduler during execution."), _("\
9167Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9168off == no locking (threads may preempt at any time)\n\
9169on == full locking (no thread except the current thread may run)\n\
9170 This applies to both normal execution and replay mode.\n\
9171step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9172 In this mode, other threads may run during other commands.\n\
9173 This applies to both normal execution and replay mode.\n\
9174replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9175 set_schedlock_func, /* traps on target vector */
920d2a44 9176 show_scheduler_mode,
7ab04401 9177 &setlist, &showlist);
5fbbeb29 9178
d4db2f36
PA
9179 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9180Set mode for resuming threads of all processes."), _("\
9181Show mode for resuming threads of all processes."), _("\
9182When on, execution commands (such as 'continue' or 'next') resume all\n\
9183threads of all processes. When off (which is the default), execution\n\
9184commands only resume the threads of the current process. The set of\n\
9185threads that are resumed is further refined by the scheduler-locking\n\
9186mode (see help set scheduler-locking)."),
9187 NULL,
9188 show_schedule_multiple,
9189 &setlist, &showlist);
9190
5bf193a2
AC
9191 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9192Set mode of the step operation."), _("\
9193Show mode of the step operation."), _("\
9194When set, doing a step over a function without debug line information\n\
9195will stop at the first instruction of that function. Otherwise, the\n\
9196function is skipped and the step command stops at a different source line."),
9197 NULL,
920d2a44 9198 show_step_stop_if_no_debug,
5bf193a2 9199 &setlist, &showlist);
ca6724c1 9200
72d0e2c5
YQ
9201 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9202 &can_use_displaced_stepping, _("\
237fc4c9
PA
9203Set debugger's willingness to use displaced stepping."), _("\
9204Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9205If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9206supported by the target architecture. If off, gdb will not use displaced\n\
9207stepping to step over breakpoints, even if such is supported by the target\n\
9208architecture. If auto (which is the default), gdb will use displaced stepping\n\
9209if the target architecture supports it and non-stop mode is active, but will not\n\
9210use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9211 NULL,
9212 show_can_use_displaced_stepping,
9213 &setlist, &showlist);
237fc4c9 9214
b2175913
MS
9215 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9216 &exec_direction, _("Set direction of execution.\n\
9217Options are 'forward' or 'reverse'."),
9218 _("Show direction of execution (forward/reverse)."),
9219 _("Tells gdb whether to execute forward or backward."),
9220 set_exec_direction_func, show_exec_direction_func,
9221 &setlist, &showlist);
9222
6c95b8df
PA
9223 /* Set/show detach-on-fork: user-settable mode. */
9224
9225 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9226Set whether gdb will detach the child of a fork."), _("\
9227Show whether gdb will detach the child of a fork."), _("\
9228Tells gdb whether to detach the child of a fork."),
9229 NULL, NULL, &setlist, &showlist);
9230
03583c20
UW
9231 /* Set/show disable address space randomization mode. */
9232
9233 add_setshow_boolean_cmd ("disable-randomization", class_support,
9234 &disable_randomization, _("\
9235Set disabling of debuggee's virtual address space randomization."), _("\
9236Show disabling of debuggee's virtual address space randomization."), _("\
9237When this mode is on (which is the default), randomization of the virtual\n\
9238address space is disabled. Standalone programs run with the randomization\n\
9239enabled by default on some platforms."),
9240 &set_disable_randomization,
9241 &show_disable_randomization,
9242 &setlist, &showlist);
9243
ca6724c1 9244 /* ptid initializations */
ca6724c1
KB
9245 inferior_ptid = null_ptid;
9246 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9247
76727919
TT
9248 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9249 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9250 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9251 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9252
9253 /* Explicitly create without lookup, since that tries to create a
9254 value with a void typed value, and when we get here, gdbarch
9255 isn't initialized yet. At this point, we're quite sure there
9256 isn't another convenience variable of the same name. */
22d2b532 9257 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9258
9259 add_setshow_boolean_cmd ("observer", no_class,
9260 &observer_mode_1, _("\
9261Set whether gdb controls the inferior in observer mode."), _("\
9262Show whether gdb controls the inferior in observer mode."), _("\
9263In observer mode, GDB can get data from the inferior, but not\n\
9264affect its execution. Registers and memory may not be changed,\n\
9265breakpoints may not be set, and the program cannot be interrupted\n\
9266or signalled."),
9267 set_observer_mode,
9268 show_observer_mode,
9269 &setlist,
9270 &showlist);
c906108c 9271}
This page took 2.467234 seconds and 4 git commands to generate.