sim: ft32: correct simulation of MEMCPY and MEMSET
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
c906108c
SS
66
67/* Prototypes for local functions */
68
96baa820 69static void signals_info (char *, int);
c906108c 70
96baa820 71static void handle_command (char *, int);
c906108c 72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
74b7792f 77static void resume_cleanups (void *);
c906108c 78
96baa820 79static int hook_stop_stub (void *);
c906108c 80
96baa820
JM
81static int restore_selected_frame (void *);
82
4ef3f3be 83static int follow_fork (void);
96baa820 84
d83ad864
DB
85static int follow_fork_inferior (int follow_child, int detach_fork);
86
87static void follow_inferior_reset_breakpoints (void);
88
96baa820 89static void set_schedlock_func (char *args, int from_tty,
488f131b 90 struct cmd_list_element *c);
96baa820 91
a289b8f6
JK
92static int currently_stepping (struct thread_info *tp);
93
96baa820 94void _initialize_infrun (void);
43ff13b4 95
e58b0e63
PA
96void nullify_last_target_wait_ptid (void);
97
2c03e5be 98static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
99
100static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
101
2484c66b
UW
102static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
103
8550d3b3
YQ
104static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
105
372316f1
PA
106/* Asynchronous signal handler registered as event loop source for
107 when we have pending events ready to be passed to the core. */
108static struct async_event_handler *infrun_async_inferior_event_token;
109
110/* Stores whether infrun_async was previously enabled or disabled.
111 Starts off as -1, indicating "never enabled/disabled". */
112static int infrun_is_async = -1;
113
114/* See infrun.h. */
115
116void
117infrun_async (int enable)
118{
119 if (infrun_is_async != enable)
120 {
121 infrun_is_async = enable;
122
123 if (debug_infrun)
124 fprintf_unfiltered (gdb_stdlog,
125 "infrun: infrun_async(%d)\n",
126 enable);
127
128 if (enable)
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 else
131 clear_async_event_handler (infrun_async_inferior_event_token);
132 }
133}
134
0b333c5e
PA
135/* See infrun.h. */
136
137void
138mark_infrun_async_event_handler (void)
139{
140 mark_async_event_handler (infrun_async_inferior_event_token);
141}
142
5fbbeb29
CF
143/* When set, stop the 'step' command if we enter a function which has
144 no line number information. The normal behavior is that we step
145 over such function. */
146int step_stop_if_no_debug = 0;
920d2a44
AC
147static void
148show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
149 struct cmd_list_element *c, const char *value)
150{
151 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
152}
5fbbeb29 153
1777feb0 154/* In asynchronous mode, but simulating synchronous execution. */
96baa820 155
43ff13b4
JM
156int sync_execution = 0;
157
b9f437de
PA
158/* proceed and normal_stop use this to notify the user when the
159 inferior stopped in a different thread than it had been running
160 in. */
96baa820 161
39f77062 162static ptid_t previous_inferior_ptid;
7a292a7a 163
07107ca6
LM
164/* If set (default for legacy reasons), when following a fork, GDB
165 will detach from one of the fork branches, child or parent.
166 Exactly which branch is detached depends on 'set follow-fork-mode'
167 setting. */
168
169static int detach_fork = 1;
6c95b8df 170
237fc4c9
PA
171int debug_displaced = 0;
172static void
173show_debug_displaced (struct ui_file *file, int from_tty,
174 struct cmd_list_element *c, const char *value)
175{
176 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
177}
178
ccce17b0 179unsigned int debug_infrun = 0;
920d2a44
AC
180static void
181show_debug_infrun (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
185}
527159b7 186
03583c20
UW
187
188/* Support for disabling address space randomization. */
189
190int disable_randomization = 1;
191
192static void
193show_disable_randomization (struct ui_file *file, int from_tty,
194 struct cmd_list_element *c, const char *value)
195{
196 if (target_supports_disable_randomization ())
197 fprintf_filtered (file,
198 _("Disabling randomization of debuggee's "
199 "virtual address space is %s.\n"),
200 value);
201 else
202 fputs_filtered (_("Disabling randomization of debuggee's "
203 "virtual address space is unsupported on\n"
204 "this platform.\n"), file);
205}
206
207static void
208set_disable_randomization (char *args, int from_tty,
209 struct cmd_list_element *c)
210{
211 if (!target_supports_disable_randomization ())
212 error (_("Disabling randomization of debuggee's "
213 "virtual address space is unsupported on\n"
214 "this platform."));
215}
216
d32dc48e
PA
217/* User interface for non-stop mode. */
218
219int non_stop = 0;
220static int non_stop_1 = 0;
221
222static void
223set_non_stop (char *args, int from_tty,
224 struct cmd_list_element *c)
225{
226 if (target_has_execution)
227 {
228 non_stop_1 = non_stop;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 non_stop = non_stop_1;
233}
234
235static void
236show_non_stop (struct ui_file *file, int from_tty,
237 struct cmd_list_element *c, const char *value)
238{
239 fprintf_filtered (file,
240 _("Controlling the inferior in non-stop mode is %s.\n"),
241 value);
242}
243
d914c394
SS
244/* "Observer mode" is somewhat like a more extreme version of
245 non-stop, in which all GDB operations that might affect the
246 target's execution have been disabled. */
247
d914c394
SS
248int observer_mode = 0;
249static int observer_mode_1 = 0;
250
251static void
252set_observer_mode (char *args, int from_tty,
253 struct cmd_list_element *c)
254{
d914c394
SS
255 if (target_has_execution)
256 {
257 observer_mode_1 = observer_mode;
258 error (_("Cannot change this setting while the inferior is running."));
259 }
260
261 observer_mode = observer_mode_1;
262
263 may_write_registers = !observer_mode;
264 may_write_memory = !observer_mode;
265 may_insert_breakpoints = !observer_mode;
266 may_insert_tracepoints = !observer_mode;
267 /* We can insert fast tracepoints in or out of observer mode,
268 but enable them if we're going into this mode. */
269 if (observer_mode)
270 may_insert_fast_tracepoints = 1;
271 may_stop = !observer_mode;
272 update_target_permissions ();
273
274 /* Going *into* observer mode we must force non-stop, then
275 going out we leave it that way. */
276 if (observer_mode)
277 {
d914c394
SS
278 pagination_enabled = 0;
279 non_stop = non_stop_1 = 1;
280 }
281
282 if (from_tty)
283 printf_filtered (_("Observer mode is now %s.\n"),
284 (observer_mode ? "on" : "off"));
285}
286
287static void
288show_observer_mode (struct ui_file *file, int from_tty,
289 struct cmd_list_element *c, const char *value)
290{
291 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
292}
293
294/* This updates the value of observer mode based on changes in
295 permissions. Note that we are deliberately ignoring the values of
296 may-write-registers and may-write-memory, since the user may have
297 reason to enable these during a session, for instance to turn on a
298 debugging-related global. */
299
300void
301update_observer_mode (void)
302{
303 int newval;
304
305 newval = (!may_insert_breakpoints
306 && !may_insert_tracepoints
307 && may_insert_fast_tracepoints
308 && !may_stop
309 && non_stop);
310
311 /* Let the user know if things change. */
312 if (newval != observer_mode)
313 printf_filtered (_("Observer mode is now %s.\n"),
314 (newval ? "on" : "off"));
315
316 observer_mode = observer_mode_1 = newval;
317}
c2c6d25f 318
c906108c
SS
319/* Tables of how to react to signals; the user sets them. */
320
321static unsigned char *signal_stop;
322static unsigned char *signal_print;
323static unsigned char *signal_program;
324
ab04a2af
TT
325/* Table of signals that are registered with "catch signal". A
326 non-zero entry indicates that the signal is caught by some "catch
327 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
328 signals. */
329static unsigned char *signal_catch;
330
2455069d
UW
331/* Table of signals that the target may silently handle.
332 This is automatically determined from the flags above,
333 and simply cached here. */
334static unsigned char *signal_pass;
335
c906108c
SS
336#define SET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 1; \
342 } while (0)
343
344#define UNSET_SIGS(nsigs,sigs,flags) \
345 do { \
346 int signum = (nsigs); \
347 while (signum-- > 0) \
348 if ((sigs)[signum]) \
349 (flags)[signum] = 0; \
350 } while (0)
351
9b224c5e
PA
352/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
353 this function is to avoid exporting `signal_program'. */
354
355void
356update_signals_program_target (void)
357{
a493e3e2 358 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
359}
360
1777feb0 361/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 362
edb3359d 363#define RESUME_ALL minus_one_ptid
c906108c
SS
364
365/* Command list pointer for the "stop" placeholder. */
366
367static struct cmd_list_element *stop_command;
368
c906108c
SS
369/* Nonzero if we want to give control to the user when we're notified
370 of shared library events by the dynamic linker. */
628fe4e4 371int stop_on_solib_events;
f9e14852
GB
372
373/* Enable or disable optional shared library event breakpoints
374 as appropriate when the above flag is changed. */
375
376static void
377set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
378{
379 update_solib_breakpoints ();
380}
381
920d2a44
AC
382static void
383show_stop_on_solib_events (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c, const char *value)
385{
386 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
387 value);
388}
c906108c 389
c906108c
SS
390/* Nonzero means expecting a trace trap
391 and should stop the inferior and return silently when it happens. */
392
393int stop_after_trap;
394
c906108c
SS
395/* Nonzero after stop if current stack frame should be printed. */
396
397static int stop_print_frame;
398
e02bc4cc 399/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
400 returned by target_wait()/deprecated_target_wait_hook(). This
401 information is returned by get_last_target_status(). */
39f77062 402static ptid_t target_last_wait_ptid;
e02bc4cc
DS
403static struct target_waitstatus target_last_waitstatus;
404
0d1e5fa7
PA
405static void context_switch (ptid_t ptid);
406
4e1c45ea 407void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 408
53904c9e
AC
409static const char follow_fork_mode_child[] = "child";
410static const char follow_fork_mode_parent[] = "parent";
411
40478521 412static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
413 follow_fork_mode_child,
414 follow_fork_mode_parent,
415 NULL
ef346e04 416};
c906108c 417
53904c9e 418static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
419static void
420show_follow_fork_mode_string (struct ui_file *file, int from_tty,
421 struct cmd_list_element *c, const char *value)
422{
3e43a32a
MS
423 fprintf_filtered (file,
424 _("Debugger response to a program "
425 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
426 value);
427}
c906108c
SS
428\f
429
d83ad864
DB
430/* Handle changes to the inferior list based on the type of fork,
431 which process is being followed, and whether the other process
432 should be detached. On entry inferior_ptid must be the ptid of
433 the fork parent. At return inferior_ptid is the ptid of the
434 followed inferior. */
435
436static int
437follow_fork_inferior (int follow_child, int detach_fork)
438{
439 int has_vforked;
79639e11 440 ptid_t parent_ptid, child_ptid;
d83ad864
DB
441
442 has_vforked = (inferior_thread ()->pending_follow.kind
443 == TARGET_WAITKIND_VFORKED);
79639e11
PA
444 parent_ptid = inferior_ptid;
445 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
446
447 if (has_vforked
448 && !non_stop /* Non-stop always resumes both branches. */
449 && (!target_is_async_p () || sync_execution)
450 && !(follow_child || detach_fork || sched_multi))
451 {
452 /* The parent stays blocked inside the vfork syscall until the
453 child execs or exits. If we don't let the child run, then
454 the parent stays blocked. If we're telling the parent to run
455 in the foreground, the user will not be able to ctrl-c to get
456 back the terminal, effectively hanging the debug session. */
457 fprintf_filtered (gdb_stderr, _("\
458Can not resume the parent process over vfork in the foreground while\n\
459holding the child stopped. Try \"set detach-on-fork\" or \
460\"set schedule-multiple\".\n"));
461 /* FIXME output string > 80 columns. */
462 return 1;
463 }
464
465 if (!follow_child)
466 {
467 /* Detach new forked process? */
468 if (detach_fork)
469 {
470 struct cleanup *old_chain;
471
472 /* Before detaching from the child, remove all breakpoints
473 from it. If we forked, then this has already been taken
474 care of by infrun.c. If we vforked however, any
475 breakpoint inserted in the parent is visible in the
476 child, even those added while stopped in a vfork
477 catchpoint. This will remove the breakpoints from the
478 parent also, but they'll be reinserted below. */
479 if (has_vforked)
480 {
481 /* Keep breakpoints list in sync. */
482 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
483 }
484
485 if (info_verbose || debug_infrun)
486 {
8dd06f7a
DB
487 /* Ensure that we have a process ptid. */
488 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
489
6f259a23 490 target_terminal_ours_for_output ();
d83ad864 491 fprintf_filtered (gdb_stdlog,
79639e11 492 _("Detaching after %s from child %s.\n"),
6f259a23 493 has_vforked ? "vfork" : "fork",
8dd06f7a 494 target_pid_to_str (process_ptid));
d83ad864
DB
495 }
496 }
497 else
498 {
499 struct inferior *parent_inf, *child_inf;
500 struct cleanup *old_chain;
501
502 /* Add process to GDB's tables. */
79639e11 503 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
504
505 parent_inf = current_inferior ();
506 child_inf->attach_flag = parent_inf->attach_flag;
507 copy_terminal_info (child_inf, parent_inf);
508 child_inf->gdbarch = parent_inf->gdbarch;
509 copy_inferior_target_desc_info (child_inf, parent_inf);
510
511 old_chain = save_inferior_ptid ();
512 save_current_program_space ();
513
79639e11 514 inferior_ptid = child_ptid;
d83ad864
DB
515 add_thread (inferior_ptid);
516 child_inf->symfile_flags = SYMFILE_NO_READ;
517
518 /* If this is a vfork child, then the address-space is
519 shared with the parent. */
520 if (has_vforked)
521 {
522 child_inf->pspace = parent_inf->pspace;
523 child_inf->aspace = parent_inf->aspace;
524
525 /* The parent will be frozen until the child is done
526 with the shared region. Keep track of the
527 parent. */
528 child_inf->vfork_parent = parent_inf;
529 child_inf->pending_detach = 0;
530 parent_inf->vfork_child = child_inf;
531 parent_inf->pending_detach = 0;
532 }
533 else
534 {
535 child_inf->aspace = new_address_space ();
536 child_inf->pspace = add_program_space (child_inf->aspace);
537 child_inf->removable = 1;
538 set_current_program_space (child_inf->pspace);
539 clone_program_space (child_inf->pspace, parent_inf->pspace);
540
541 /* Let the shared library layer (e.g., solib-svr4) learn
542 about this new process, relocate the cloned exec, pull
543 in shared libraries, and install the solib event
544 breakpoint. If a "cloned-VM" event was propagated
545 better throughout the core, this wouldn't be
546 required. */
547 solib_create_inferior_hook (0);
548 }
549
550 do_cleanups (old_chain);
551 }
552
553 if (has_vforked)
554 {
555 struct inferior *parent_inf;
556
557 parent_inf = current_inferior ();
558
559 /* If we detached from the child, then we have to be careful
560 to not insert breakpoints in the parent until the child
561 is done with the shared memory region. However, if we're
562 staying attached to the child, then we can and should
563 insert breakpoints, so that we can debug it. A
564 subsequent child exec or exit is enough to know when does
565 the child stops using the parent's address space. */
566 parent_inf->waiting_for_vfork_done = detach_fork;
567 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
568 }
569 }
570 else
571 {
572 /* Follow the child. */
573 struct inferior *parent_inf, *child_inf;
574 struct program_space *parent_pspace;
575
576 if (info_verbose || debug_infrun)
577 {
6f259a23
DB
578 target_terminal_ours_for_output ();
579 fprintf_filtered (gdb_stdlog,
79639e11
PA
580 _("Attaching after %s %s to child %s.\n"),
581 target_pid_to_str (parent_ptid),
6f259a23 582 has_vforked ? "vfork" : "fork",
79639e11 583 target_pid_to_str (child_ptid));
d83ad864
DB
584 }
585
586 /* Add the new inferior first, so that the target_detach below
587 doesn't unpush the target. */
588
79639e11 589 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
590
591 parent_inf = current_inferior ();
592 child_inf->attach_flag = parent_inf->attach_flag;
593 copy_terminal_info (child_inf, parent_inf);
594 child_inf->gdbarch = parent_inf->gdbarch;
595 copy_inferior_target_desc_info (child_inf, parent_inf);
596
597 parent_pspace = parent_inf->pspace;
598
599 /* If we're vforking, we want to hold on to the parent until the
600 child exits or execs. At child exec or exit time we can
601 remove the old breakpoints from the parent and detach or
602 resume debugging it. Otherwise, detach the parent now; we'll
603 want to reuse it's program/address spaces, but we can't set
604 them to the child before removing breakpoints from the
605 parent, otherwise, the breakpoints module could decide to
606 remove breakpoints from the wrong process (since they'd be
607 assigned to the same address space). */
608
609 if (has_vforked)
610 {
611 gdb_assert (child_inf->vfork_parent == NULL);
612 gdb_assert (parent_inf->vfork_child == NULL);
613 child_inf->vfork_parent = parent_inf;
614 child_inf->pending_detach = 0;
615 parent_inf->vfork_child = child_inf;
616 parent_inf->pending_detach = detach_fork;
617 parent_inf->waiting_for_vfork_done = 0;
618 }
619 else if (detach_fork)
6f259a23
DB
620 {
621 if (info_verbose || debug_infrun)
622 {
8dd06f7a
DB
623 /* Ensure that we have a process ptid. */
624 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
625
6f259a23
DB
626 target_terminal_ours_for_output ();
627 fprintf_filtered (gdb_stdlog,
628 _("Detaching after fork from "
79639e11 629 "child %s.\n"),
8dd06f7a 630 target_pid_to_str (process_ptid));
6f259a23
DB
631 }
632
633 target_detach (NULL, 0);
634 }
d83ad864
DB
635
636 /* Note that the detach above makes PARENT_INF dangling. */
637
638 /* Add the child thread to the appropriate lists, and switch to
639 this new thread, before cloning the program space, and
640 informing the solib layer about this new process. */
641
79639e11 642 inferior_ptid = child_ptid;
d83ad864
DB
643 add_thread (inferior_ptid);
644
645 /* If this is a vfork child, then the address-space is shared
646 with the parent. If we detached from the parent, then we can
647 reuse the parent's program/address spaces. */
648 if (has_vforked || detach_fork)
649 {
650 child_inf->pspace = parent_pspace;
651 child_inf->aspace = child_inf->pspace->aspace;
652 }
653 else
654 {
655 child_inf->aspace = new_address_space ();
656 child_inf->pspace = add_program_space (child_inf->aspace);
657 child_inf->removable = 1;
658 child_inf->symfile_flags = SYMFILE_NO_READ;
659 set_current_program_space (child_inf->pspace);
660 clone_program_space (child_inf->pspace, parent_pspace);
661
662 /* Let the shared library layer (e.g., solib-svr4) learn
663 about this new process, relocate the cloned exec, pull in
664 shared libraries, and install the solib event breakpoint.
665 If a "cloned-VM" event was propagated better throughout
666 the core, this wouldn't be required. */
667 solib_create_inferior_hook (0);
668 }
669 }
670
671 return target_follow_fork (follow_child, detach_fork);
672}
673
e58b0e63
PA
674/* Tell the target to follow the fork we're stopped at. Returns true
675 if the inferior should be resumed; false, if the target for some
676 reason decided it's best not to resume. */
677
6604731b 678static int
4ef3f3be 679follow_fork (void)
c906108c 680{
ea1dd7bc 681 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
682 int should_resume = 1;
683 struct thread_info *tp;
684
685 /* Copy user stepping state to the new inferior thread. FIXME: the
686 followed fork child thread should have a copy of most of the
4e3990f4
DE
687 parent thread structure's run control related fields, not just these.
688 Initialized to avoid "may be used uninitialized" warnings from gcc. */
689 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 690 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
691 CORE_ADDR step_range_start = 0;
692 CORE_ADDR step_range_end = 0;
693 struct frame_id step_frame_id = { 0 };
17b2616c 694 struct interp *command_interp = NULL;
e58b0e63
PA
695
696 if (!non_stop)
697 {
698 ptid_t wait_ptid;
699 struct target_waitstatus wait_status;
700
701 /* Get the last target status returned by target_wait(). */
702 get_last_target_status (&wait_ptid, &wait_status);
703
704 /* If not stopped at a fork event, then there's nothing else to
705 do. */
706 if (wait_status.kind != TARGET_WAITKIND_FORKED
707 && wait_status.kind != TARGET_WAITKIND_VFORKED)
708 return 1;
709
710 /* Check if we switched over from WAIT_PTID, since the event was
711 reported. */
712 if (!ptid_equal (wait_ptid, minus_one_ptid)
713 && !ptid_equal (inferior_ptid, wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 switch_to_thread (wait_ptid);
720 should_resume = 0;
721 }
722 }
723
724 tp = inferior_thread ();
725
726 /* If there were any forks/vforks that were caught and are now to be
727 followed, then do so now. */
728 switch (tp->pending_follow.kind)
729 {
730 case TARGET_WAITKIND_FORKED:
731 case TARGET_WAITKIND_VFORKED:
732 {
733 ptid_t parent, child;
734
735 /* If the user did a next/step, etc, over a fork call,
736 preserve the stepping state in the fork child. */
737 if (follow_child && should_resume)
738 {
8358c15c
JK
739 step_resume_breakpoint = clone_momentary_breakpoint
740 (tp->control.step_resume_breakpoint);
16c381f0
JK
741 step_range_start = tp->control.step_range_start;
742 step_range_end = tp->control.step_range_end;
743 step_frame_id = tp->control.step_frame_id;
186c406b
TT
744 exception_resume_breakpoint
745 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 746 command_interp = tp->control.command_interp;
e58b0e63
PA
747
748 /* For now, delete the parent's sr breakpoint, otherwise,
749 parent/child sr breakpoints are considered duplicates,
750 and the child version will not be installed. Remove
751 this when the breakpoints module becomes aware of
752 inferiors and address spaces. */
753 delete_step_resume_breakpoint (tp);
16c381f0
JK
754 tp->control.step_range_start = 0;
755 tp->control.step_range_end = 0;
756 tp->control.step_frame_id = null_frame_id;
186c406b 757 delete_exception_resume_breakpoint (tp);
17b2616c 758 tp->control.command_interp = NULL;
e58b0e63
PA
759 }
760
761 parent = inferior_ptid;
762 child = tp->pending_follow.value.related_pid;
763
d83ad864
DB
764 /* Set up inferior(s) as specified by the caller, and tell the
765 target to do whatever is necessary to follow either parent
766 or child. */
767 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
768 {
769 /* Target refused to follow, or there's some other reason
770 we shouldn't resume. */
771 should_resume = 0;
772 }
773 else
774 {
775 /* This pending follow fork event is now handled, one way
776 or another. The previous selected thread may be gone
777 from the lists by now, but if it is still around, need
778 to clear the pending follow request. */
e09875d4 779 tp = find_thread_ptid (parent);
e58b0e63
PA
780 if (tp)
781 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
782
783 /* This makes sure we don't try to apply the "Switched
784 over from WAIT_PID" logic above. */
785 nullify_last_target_wait_ptid ();
786
1777feb0 787 /* If we followed the child, switch to it... */
e58b0e63
PA
788 if (follow_child)
789 {
790 switch_to_thread (child);
791
792 /* ... and preserve the stepping state, in case the
793 user was stepping over the fork call. */
794 if (should_resume)
795 {
796 tp = inferior_thread ();
8358c15c
JK
797 tp->control.step_resume_breakpoint
798 = step_resume_breakpoint;
16c381f0
JK
799 tp->control.step_range_start = step_range_start;
800 tp->control.step_range_end = step_range_end;
801 tp->control.step_frame_id = step_frame_id;
186c406b
TT
802 tp->control.exception_resume_breakpoint
803 = exception_resume_breakpoint;
17b2616c 804 tp->control.command_interp = command_interp;
e58b0e63
PA
805 }
806 else
807 {
808 /* If we get here, it was because we're trying to
809 resume from a fork catchpoint, but, the user
810 has switched threads away from the thread that
811 forked. In that case, the resume command
812 issued is most likely not applicable to the
813 child, so just warn, and refuse to resume. */
3e43a32a 814 warning (_("Not resuming: switched threads "
fd7dcb94 815 "before following fork child."));
e58b0e63
PA
816 }
817
818 /* Reset breakpoints in the child as appropriate. */
819 follow_inferior_reset_breakpoints ();
820 }
821 else
822 switch_to_thread (parent);
823 }
824 }
825 break;
826 case TARGET_WAITKIND_SPURIOUS:
827 /* Nothing to follow. */
828 break;
829 default:
830 internal_error (__FILE__, __LINE__,
831 "Unexpected pending_follow.kind %d\n",
832 tp->pending_follow.kind);
833 break;
834 }
c906108c 835
e58b0e63 836 return should_resume;
c906108c
SS
837}
838
d83ad864 839static void
6604731b 840follow_inferior_reset_breakpoints (void)
c906108c 841{
4e1c45ea
PA
842 struct thread_info *tp = inferior_thread ();
843
6604731b
DJ
844 /* Was there a step_resume breakpoint? (There was if the user
845 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
846 thread number. Cloned step_resume breakpoints are disabled on
847 creation, so enable it here now that it is associated with the
848 correct thread.
6604731b
DJ
849
850 step_resumes are a form of bp that are made to be per-thread.
851 Since we created the step_resume bp when the parent process
852 was being debugged, and now are switching to the child process,
853 from the breakpoint package's viewpoint, that's a switch of
854 "threads". We must update the bp's notion of which thread
855 it is for, or it'll be ignored when it triggers. */
856
8358c15c 857 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
858 {
859 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
860 tp->control.step_resume_breakpoint->loc->enabled = 1;
861 }
6604731b 862
a1aa2221 863 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 864 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
865 {
866 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
867 tp->control.exception_resume_breakpoint->loc->enabled = 1;
868 }
186c406b 869
6604731b
DJ
870 /* Reinsert all breakpoints in the child. The user may have set
871 breakpoints after catching the fork, in which case those
872 were never set in the child, but only in the parent. This makes
873 sure the inserted breakpoints match the breakpoint list. */
874
875 breakpoint_re_set ();
876 insert_breakpoints ();
c906108c 877}
c906108c 878
6c95b8df
PA
879/* The child has exited or execed: resume threads of the parent the
880 user wanted to be executing. */
881
882static int
883proceed_after_vfork_done (struct thread_info *thread,
884 void *arg)
885{
886 int pid = * (int *) arg;
887
888 if (ptid_get_pid (thread->ptid) == pid
889 && is_running (thread->ptid)
890 && !is_executing (thread->ptid)
891 && !thread->stop_requested
a493e3e2 892 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
893 {
894 if (debug_infrun)
895 fprintf_unfiltered (gdb_stdlog,
896 "infrun: resuming vfork parent thread %s\n",
897 target_pid_to_str (thread->ptid));
898
899 switch_to_thread (thread->ptid);
70509625 900 clear_proceed_status (0);
64ce06e4 901 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
902 }
903
904 return 0;
905}
906
907/* Called whenever we notice an exec or exit event, to handle
908 detaching or resuming a vfork parent. */
909
910static void
911handle_vfork_child_exec_or_exit (int exec)
912{
913 struct inferior *inf = current_inferior ();
914
915 if (inf->vfork_parent)
916 {
917 int resume_parent = -1;
918
919 /* This exec or exit marks the end of the shared memory region
920 between the parent and the child. If the user wanted to
921 detach from the parent, now is the time. */
922
923 if (inf->vfork_parent->pending_detach)
924 {
925 struct thread_info *tp;
926 struct cleanup *old_chain;
927 struct program_space *pspace;
928 struct address_space *aspace;
929
1777feb0 930 /* follow-fork child, detach-on-fork on. */
6c95b8df 931
68c9da30
PA
932 inf->vfork_parent->pending_detach = 0;
933
f50f4e56
PA
934 if (!exec)
935 {
936 /* If we're handling a child exit, then inferior_ptid
937 points at the inferior's pid, not to a thread. */
938 old_chain = save_inferior_ptid ();
939 save_current_program_space ();
940 save_current_inferior ();
941 }
942 else
943 old_chain = save_current_space_and_thread ();
6c95b8df
PA
944
945 /* We're letting loose of the parent. */
946 tp = any_live_thread_of_process (inf->vfork_parent->pid);
947 switch_to_thread (tp->ptid);
948
949 /* We're about to detach from the parent, which implicitly
950 removes breakpoints from its address space. There's a
951 catch here: we want to reuse the spaces for the child,
952 but, parent/child are still sharing the pspace at this
953 point, although the exec in reality makes the kernel give
954 the child a fresh set of new pages. The problem here is
955 that the breakpoints module being unaware of this, would
956 likely chose the child process to write to the parent
957 address space. Swapping the child temporarily away from
958 the spaces has the desired effect. Yes, this is "sort
959 of" a hack. */
960
961 pspace = inf->pspace;
962 aspace = inf->aspace;
963 inf->aspace = NULL;
964 inf->pspace = NULL;
965
966 if (debug_infrun || info_verbose)
967 {
6f259a23 968 target_terminal_ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
973 _("Detaching vfork parent process "
974 "%d after child exec.\n"),
975 inf->vfork_parent->pid);
976 }
6c95b8df 977 else
6f259a23
DB
978 {
979 fprintf_filtered (gdb_stdlog,
980 _("Detaching vfork parent process "
981 "%d after child exit.\n"),
982 inf->vfork_parent->pid);
983 }
6c95b8df
PA
984 }
985
986 target_detach (NULL, 0);
987
988 /* Put it back. */
989 inf->pspace = pspace;
990 inf->aspace = aspace;
991
992 do_cleanups (old_chain);
993 }
994 else if (exec)
995 {
996 /* We're staying attached to the parent, so, really give the
997 child a new address space. */
998 inf->pspace = add_program_space (maybe_new_address_space ());
999 inf->aspace = inf->pspace->aspace;
1000 inf->removable = 1;
1001 set_current_program_space (inf->pspace);
1002
1003 resume_parent = inf->vfork_parent->pid;
1004
1005 /* Break the bonds. */
1006 inf->vfork_parent->vfork_child = NULL;
1007 }
1008 else
1009 {
1010 struct cleanup *old_chain;
1011 struct program_space *pspace;
1012
1013 /* If this is a vfork child exiting, then the pspace and
1014 aspaces were shared with the parent. Since we're
1015 reporting the process exit, we'll be mourning all that is
1016 found in the address space, and switching to null_ptid,
1017 preparing to start a new inferior. But, since we don't
1018 want to clobber the parent's address/program spaces, we
1019 go ahead and create a new one for this exiting
1020 inferior. */
1021
1022 /* Switch to null_ptid, so that clone_program_space doesn't want
1023 to read the selected frame of a dead process. */
1024 old_chain = save_inferior_ptid ();
1025 inferior_ptid = null_ptid;
1026
1027 /* This inferior is dead, so avoid giving the breakpoints
1028 module the option to write through to it (cloning a
1029 program space resets breakpoints). */
1030 inf->aspace = NULL;
1031 inf->pspace = NULL;
1032 pspace = add_program_space (maybe_new_address_space ());
1033 set_current_program_space (pspace);
1034 inf->removable = 1;
7dcd53a0 1035 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1036 clone_program_space (pspace, inf->vfork_parent->pspace);
1037 inf->pspace = pspace;
1038 inf->aspace = pspace->aspace;
1039
1040 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1041 inferior. */
6c95b8df
PA
1042 do_cleanups (old_chain);
1043
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
1057 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1065
1066 do_cleanups (old_chain);
1067 }
1068 }
1069}
1070
eb6c553b 1071/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1072
1073static const char follow_exec_mode_new[] = "new";
1074static const char follow_exec_mode_same[] = "same";
40478521 1075static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1076{
1077 follow_exec_mode_new,
1078 follow_exec_mode_same,
1079 NULL,
1080};
1081
1082static const char *follow_exec_mode_string = follow_exec_mode_same;
1083static void
1084show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1085 struct cmd_list_element *c, const char *value)
1086{
1087 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1088}
1089
1777feb0 1090/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1091
c906108c 1092static void
95e50b27 1093follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1094{
95e50b27 1095 struct thread_info *th, *tmp;
6c95b8df 1096 struct inferior *inf = current_inferior ();
95e50b27 1097 int pid = ptid_get_pid (ptid);
94585166 1098 ptid_t process_ptid;
7a292a7a 1099
c906108c
SS
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1777feb0 1119 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1120
1121 mark_breakpoints_out ();
1122
95e50b27
PA
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
8a06aea7 1142 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
8358c15c 1151 th->control.step_resume_breakpoint = NULL;
186c406b 1152 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1153 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
c906108c 1156
95e50b27
PA
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
a75724bc
PA
1160 th->stop_requested = 0;
1161
95e50b27
PA
1162 update_breakpoints_after_exec ();
1163
1777feb0 1164 /* What is this a.out's name? */
94585166 1165 process_ptid = pid_to_ptid (pid);
6c95b8df 1166 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1167 target_pid_to_str (process_ptid),
6c95b8df 1168 execd_pathname);
c906108c
SS
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1171 inferior has essentially been killed & reborn. */
7a292a7a 1172
c906108c 1173 gdb_flush (gdb_stdout);
6ca15a4b
PA
1174
1175 breakpoint_init_inferior (inf_execd);
e85a822c 1176
a3be80c3 1177 if (*gdb_sysroot != '\0')
e85a822c 1178 {
998d2a3e 1179 char *name = exec_file_find (execd_pathname, NULL);
ff862be4 1180
224c3ddb 1181 execd_pathname = (char *) alloca (strlen (name) + 1);
ff862be4
GB
1182 strcpy (execd_pathname, name);
1183 xfree (name);
e85a822c 1184 }
c906108c 1185
cce9b6bf
PA
1186 /* Reset the shared library package. This ensures that we get a
1187 shlib event when the child reaches "_start", at which point the
1188 dld will have had a chance to initialize the child. */
1189 /* Also, loading a symbol file below may trigger symbol lookups, and
1190 we don't want those to be satisfied by the libraries of the
1191 previous incarnation of this process. */
1192 no_shared_libraries (NULL, 0);
1193
6c95b8df
PA
1194 if (follow_exec_mode_string == follow_exec_mode_new)
1195 {
6c95b8df
PA
1196 /* The user wants to keep the old inferior and program spaces
1197 around. Create a new fresh one, and switch to it. */
1198
17d8546e
DB
1199 /* Do exit processing for the original inferior before adding
1200 the new inferior so we don't have two active inferiors with
1201 the same ptid, which can confuse find_inferior_ptid. */
1202 exit_inferior_num_silent (current_inferior ()->num);
1203
94585166
DB
1204 inf = add_inferior_with_spaces ();
1205 inf->pid = pid;
1206 target_follow_exec (inf, execd_pathname);
6c95b8df
PA
1207
1208 set_current_inferior (inf);
94585166
DB
1209 set_current_program_space (inf->pspace);
1210 add_thread (ptid);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
1777feb0 1225 /* That a.out is now the one to use. */
6c95b8df
PA
1226 exec_file_attach (execd_pathname, 0);
1227
c1e56572
JK
1228 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1229 (Position Independent Executable) main symbol file will get applied by
1230 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1231 the breakpoints with the zero displacement. */
1232
7dcd53a0
TT
1233 symbol_file_add (execd_pathname,
1234 (inf->symfile_flags
1235 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1236 NULL, 0);
1237
7dcd53a0
TT
1238 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1239 set_initial_language ();
c906108c 1240
9107fc8d
PA
1241 /* If the target can specify a description, read it. Must do this
1242 after flipping to the new executable (because the target supplied
1243 description must be compatible with the executable's
1244 architecture, and the old executable may e.g., be 32-bit, while
1245 the new one 64-bit), and before anything involving memory or
1246 registers. */
1247 target_find_description ();
1248
268a4a75 1249 solib_create_inferior_hook (0);
c906108c 1250
4efc6507
DE
1251 jit_inferior_created_hook ();
1252
c1e56572
JK
1253 breakpoint_re_set ();
1254
c906108c
SS
1255 /* Reinsert all breakpoints. (Those which were symbolic have
1256 been reset to the proper address in the new a.out, thanks
1777feb0 1257 to symbol_file_command...). */
c906108c
SS
1258 insert_breakpoints ();
1259
1260 /* The next resume of this inferior should bring it to the shlib
1261 startup breakpoints. (If the user had also set bp's on
1262 "main" from the old (parent) process, then they'll auto-
1777feb0 1263 matically get reset there in the new process.). */
c906108c
SS
1264}
1265
c2829269
PA
1266/* The queue of threads that need to do a step-over operation to get
1267 past e.g., a breakpoint. What technique is used to step over the
1268 breakpoint/watchpoint does not matter -- all threads end up in the
1269 same queue, to maintain rough temporal order of execution, in order
1270 to avoid starvation, otherwise, we could e.g., find ourselves
1271 constantly stepping the same couple threads past their breakpoints
1272 over and over, if the single-step finish fast enough. */
1273struct thread_info *step_over_queue_head;
1274
6c4cfb24
PA
1275/* Bit flags indicating what the thread needs to step over. */
1276
1277enum step_over_what
1278 {
1279 /* Step over a breakpoint. */
1280 STEP_OVER_BREAKPOINT = 1,
1281
1282 /* Step past a non-continuable watchpoint, in order to let the
1283 instruction execute so we can evaluate the watchpoint
1284 expression. */
1285 STEP_OVER_WATCHPOINT = 2
1286 };
1287
963f9c80 1288/* Info about an instruction that is being stepped over. */
31e77af2
PA
1289
1290struct step_over_info
1291{
963f9c80
PA
1292 /* If we're stepping past a breakpoint, this is the address space
1293 and address of the instruction the breakpoint is set at. We'll
1294 skip inserting all breakpoints here. Valid iff ASPACE is
1295 non-NULL. */
31e77af2 1296 struct address_space *aspace;
31e77af2 1297 CORE_ADDR address;
963f9c80
PA
1298
1299 /* The instruction being stepped over triggers a nonsteppable
1300 watchpoint. If true, we'll skip inserting watchpoints. */
1301 int nonsteppable_watchpoint_p;
31e77af2
PA
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
1331 stepping over. */
1332
1333static void
963f9c80
PA
1334set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1335 int nonsteppable_watchpoint_p)
31e77af2
PA
1336{
1337 step_over_info.aspace = aspace;
1338 step_over_info.address = address;
963f9c80 1339 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1340}
1341
1342/* Called when we're not longer stepping over a breakpoint / an
1343 instruction, so all breakpoints are free to be (re)inserted. */
1344
1345static void
1346clear_step_over_info (void)
1347{
372316f1
PA
1348 if (debug_infrun)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "infrun: clear_step_over_info\n");
31e77af2
PA
1351 step_over_info.aspace = NULL;
1352 step_over_info.address = 0;
963f9c80 1353 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
1370int
1371stepping_past_nonsteppable_watchpoint (void)
1372{
1373 return step_over_info.nonsteppable_watchpoint_p;
1374}
1375
6cc83d2a
PA
1376/* Returns true if step-over info is valid. */
1377
1378static int
1379step_over_info_valid_p (void)
1380{
963f9c80
PA
1381 return (step_over_info.aspace != NULL
1382 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1383}
1384
c906108c 1385\f
237fc4c9
PA
1386/* Displaced stepping. */
1387
1388/* In non-stop debugging mode, we must take special care to manage
1389 breakpoints properly; in particular, the traditional strategy for
1390 stepping a thread past a breakpoint it has hit is unsuitable.
1391 'Displaced stepping' is a tactic for stepping one thread past a
1392 breakpoint it has hit while ensuring that other threads running
1393 concurrently will hit the breakpoint as they should.
1394
1395 The traditional way to step a thread T off a breakpoint in a
1396 multi-threaded program in all-stop mode is as follows:
1397
1398 a0) Initially, all threads are stopped, and breakpoints are not
1399 inserted.
1400 a1) We single-step T, leaving breakpoints uninserted.
1401 a2) We insert breakpoints, and resume all threads.
1402
1403 In non-stop debugging, however, this strategy is unsuitable: we
1404 don't want to have to stop all threads in the system in order to
1405 continue or step T past a breakpoint. Instead, we use displaced
1406 stepping:
1407
1408 n0) Initially, T is stopped, other threads are running, and
1409 breakpoints are inserted.
1410 n1) We copy the instruction "under" the breakpoint to a separate
1411 location, outside the main code stream, making any adjustments
1412 to the instruction, register, and memory state as directed by
1413 T's architecture.
1414 n2) We single-step T over the instruction at its new location.
1415 n3) We adjust the resulting register and memory state as directed
1416 by T's architecture. This includes resetting T's PC to point
1417 back into the main instruction stream.
1418 n4) We resume T.
1419
1420 This approach depends on the following gdbarch methods:
1421
1422 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1423 indicate where to copy the instruction, and how much space must
1424 be reserved there. We use these in step n1.
1425
1426 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1427 address, and makes any necessary adjustments to the instruction,
1428 register contents, and memory. We use this in step n1.
1429
1430 - gdbarch_displaced_step_fixup adjusts registers and memory after
1431 we have successfuly single-stepped the instruction, to yield the
1432 same effect the instruction would have had if we had executed it
1433 at its original address. We use this in step n3.
1434
1435 - gdbarch_displaced_step_free_closure provides cleanup.
1436
1437 The gdbarch_displaced_step_copy_insn and
1438 gdbarch_displaced_step_fixup functions must be written so that
1439 copying an instruction with gdbarch_displaced_step_copy_insn,
1440 single-stepping across the copied instruction, and then applying
1441 gdbarch_displaced_insn_fixup should have the same effects on the
1442 thread's memory and registers as stepping the instruction in place
1443 would have. Exactly which responsibilities fall to the copy and
1444 which fall to the fixup is up to the author of those functions.
1445
1446 See the comments in gdbarch.sh for details.
1447
1448 Note that displaced stepping and software single-step cannot
1449 currently be used in combination, although with some care I think
1450 they could be made to. Software single-step works by placing
1451 breakpoints on all possible subsequent instructions; if the
1452 displaced instruction is a PC-relative jump, those breakpoints
1453 could fall in very strange places --- on pages that aren't
1454 executable, or at addresses that are not proper instruction
1455 boundaries. (We do generally let other threads run while we wait
1456 to hit the software single-step breakpoint, and they might
1457 encounter such a corrupted instruction.) One way to work around
1458 this would be to have gdbarch_displaced_step_copy_insn fully
1459 simulate the effect of PC-relative instructions (and return NULL)
1460 on architectures that use software single-stepping.
1461
1462 In non-stop mode, we can have independent and simultaneous step
1463 requests, so more than one thread may need to simultaneously step
1464 over a breakpoint. The current implementation assumes there is
1465 only one scratch space per process. In this case, we have to
1466 serialize access to the scratch space. If thread A wants to step
1467 over a breakpoint, but we are currently waiting for some other
1468 thread to complete a displaced step, we leave thread A stopped and
1469 place it in the displaced_step_request_queue. Whenever a displaced
1470 step finishes, we pick the next thread in the queue and start a new
1471 displaced step operation on it. See displaced_step_prepare and
1472 displaced_step_fixup for details. */
1473
fc1cf338
PA
1474/* Per-inferior displaced stepping state. */
1475struct displaced_step_inferior_state
1476{
1477 /* Pointer to next in linked list. */
1478 struct displaced_step_inferior_state *next;
1479
1480 /* The process this displaced step state refers to. */
1481 int pid;
1482
3fc8eb30
PA
1483 /* True if preparing a displaced step ever failed. If so, we won't
1484 try displaced stepping for this inferior again. */
1485 int failed_before;
1486
fc1cf338
PA
1487 /* If this is not null_ptid, this is the thread carrying out a
1488 displaced single-step in process PID. This thread's state will
1489 require fixing up once it has completed its step. */
1490 ptid_t step_ptid;
1491
1492 /* The architecture the thread had when we stepped it. */
1493 struct gdbarch *step_gdbarch;
1494
1495 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1496 for post-step cleanup. */
1497 struct displaced_step_closure *step_closure;
1498
1499 /* The address of the original instruction, and the copy we
1500 made. */
1501 CORE_ADDR step_original, step_copy;
1502
1503 /* Saved contents of copy area. */
1504 gdb_byte *step_saved_copy;
1505};
1506
1507/* The list of states of processes involved in displaced stepping
1508 presently. */
1509static struct displaced_step_inferior_state *displaced_step_inferior_states;
1510
1511/* Get the displaced stepping state of process PID. */
1512
1513static struct displaced_step_inferior_state *
1514get_displaced_stepping_state (int pid)
1515{
1516 struct displaced_step_inferior_state *state;
1517
1518 for (state = displaced_step_inferior_states;
1519 state != NULL;
1520 state = state->next)
1521 if (state->pid == pid)
1522 return state;
1523
1524 return NULL;
1525}
1526
372316f1
PA
1527/* Returns true if any inferior has a thread doing a displaced
1528 step. */
1529
1530static int
1531displaced_step_in_progress_any_inferior (void)
1532{
1533 struct displaced_step_inferior_state *state;
1534
1535 for (state = displaced_step_inferior_states;
1536 state != NULL;
1537 state = state->next)
1538 if (!ptid_equal (state->step_ptid, null_ptid))
1539 return 1;
1540
1541 return 0;
1542}
1543
8f572e5c
PA
1544/* Return true if process PID has a thread doing a displaced step. */
1545
1546static int
1547displaced_step_in_progress (int pid)
1548{
1549 struct displaced_step_inferior_state *displaced;
1550
1551 displaced = get_displaced_stepping_state (pid);
1552 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
fc1cf338
PA
1558/* Add a new displaced stepping state for process PID to the displaced
1559 stepping state list, or return a pointer to an already existing
1560 entry, if it already exists. Never returns NULL. */
1561
1562static struct displaced_step_inferior_state *
1563add_displaced_stepping_state (int pid)
1564{
1565 struct displaced_step_inferior_state *state;
1566
1567 for (state = displaced_step_inferior_states;
1568 state != NULL;
1569 state = state->next)
1570 if (state->pid == pid)
1571 return state;
237fc4c9 1572
8d749320 1573 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1574 state->pid = pid;
1575 state->next = displaced_step_inferior_states;
1576 displaced_step_inferior_states = state;
237fc4c9 1577
fc1cf338
PA
1578 return state;
1579}
1580
a42244db
YQ
1581/* If inferior is in displaced stepping, and ADDR equals to starting address
1582 of copy area, return corresponding displaced_step_closure. Otherwise,
1583 return NULL. */
1584
1585struct displaced_step_closure*
1586get_displaced_step_closure_by_addr (CORE_ADDR addr)
1587{
1588 struct displaced_step_inferior_state *displaced
1589 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1590
1591 /* If checking the mode of displaced instruction in copy area. */
1592 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1593 && (displaced->step_copy == addr))
1594 return displaced->step_closure;
1595
1596 return NULL;
1597}
1598
fc1cf338 1599/* Remove the displaced stepping state of process PID. */
237fc4c9 1600
fc1cf338
PA
1601static void
1602remove_displaced_stepping_state (int pid)
1603{
1604 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1605
fc1cf338
PA
1606 gdb_assert (pid != 0);
1607
1608 it = displaced_step_inferior_states;
1609 prev_next_p = &displaced_step_inferior_states;
1610 while (it)
1611 {
1612 if (it->pid == pid)
1613 {
1614 *prev_next_p = it->next;
1615 xfree (it);
1616 return;
1617 }
1618
1619 prev_next_p = &it->next;
1620 it = *prev_next_p;
1621 }
1622}
1623
1624static void
1625infrun_inferior_exit (struct inferior *inf)
1626{
1627 remove_displaced_stepping_state (inf->pid);
1628}
237fc4c9 1629
fff08868
HZ
1630/* If ON, and the architecture supports it, GDB will use displaced
1631 stepping to step over breakpoints. If OFF, or if the architecture
1632 doesn't support it, GDB will instead use the traditional
1633 hold-and-step approach. If AUTO (which is the default), GDB will
1634 decide which technique to use to step over breakpoints depending on
1635 which of all-stop or non-stop mode is active --- displaced stepping
1636 in non-stop mode; hold-and-step in all-stop mode. */
1637
72d0e2c5 1638static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1639
237fc4c9
PA
1640static void
1641show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1642 struct cmd_list_element *c,
1643 const char *value)
1644{
72d0e2c5 1645 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1646 fprintf_filtered (file,
1647 _("Debugger's willingness to use displaced stepping "
1648 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1649 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1650 else
3e43a32a
MS
1651 fprintf_filtered (file,
1652 _("Debugger's willingness to use displaced stepping "
1653 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1654}
1655
fff08868 1656/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1657 over breakpoints of thread TP. */
fff08868 1658
237fc4c9 1659static int
3fc8eb30 1660use_displaced_stepping (struct thread_info *tp)
237fc4c9 1661{
3fc8eb30
PA
1662 struct regcache *regcache = get_thread_regcache (tp->ptid);
1663 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1664 struct displaced_step_inferior_state *displaced_state;
1665
1666 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1667
fbea99ea
PA
1668 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1669 && target_is_non_stop_p ())
72d0e2c5 1670 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1671 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1672 && find_record_target () == NULL
1673 && (displaced_state == NULL
1674 || !displaced_state->failed_before));
237fc4c9
PA
1675}
1676
1677/* Clean out any stray displaced stepping state. */
1678static void
fc1cf338 1679displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1680{
1681 /* Indicate that there is no cleanup pending. */
fc1cf338 1682 displaced->step_ptid = null_ptid;
237fc4c9 1683
fc1cf338 1684 if (displaced->step_closure)
237fc4c9 1685 {
fc1cf338
PA
1686 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1687 displaced->step_closure);
1688 displaced->step_closure = NULL;
237fc4c9
PA
1689 }
1690}
1691
1692static void
fc1cf338 1693displaced_step_clear_cleanup (void *arg)
237fc4c9 1694{
9a3c8263
SM
1695 struct displaced_step_inferior_state *state
1696 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1697
1698 displaced_step_clear (state);
237fc4c9
PA
1699}
1700
1701/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1702void
1703displaced_step_dump_bytes (struct ui_file *file,
1704 const gdb_byte *buf,
1705 size_t len)
1706{
1707 int i;
1708
1709 for (i = 0; i < len; i++)
1710 fprintf_unfiltered (file, "%02x ", buf[i]);
1711 fputs_unfiltered ("\n", file);
1712}
1713
1714/* Prepare to single-step, using displaced stepping.
1715
1716 Note that we cannot use displaced stepping when we have a signal to
1717 deliver. If we have a signal to deliver and an instruction to step
1718 over, then after the step, there will be no indication from the
1719 target whether the thread entered a signal handler or ignored the
1720 signal and stepped over the instruction successfully --- both cases
1721 result in a simple SIGTRAP. In the first case we mustn't do a
1722 fixup, and in the second case we must --- but we can't tell which.
1723 Comments in the code for 'random signals' in handle_inferior_event
1724 explain how we handle this case instead.
1725
1726 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1727 stepped now; 0 if displaced stepping this thread got queued; or -1
1728 if this instruction can't be displaced stepped. */
1729
237fc4c9 1730static int
3fc8eb30 1731displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1732{
ad53cd71 1733 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1734 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1735 struct regcache *regcache = get_thread_regcache (ptid);
1736 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1737 CORE_ADDR original, copy;
1738 ULONGEST len;
1739 struct displaced_step_closure *closure;
fc1cf338 1740 struct displaced_step_inferior_state *displaced;
9e529e1d 1741 int status;
237fc4c9
PA
1742
1743 /* We should never reach this function if the architecture does not
1744 support displaced stepping. */
1745 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1746
c2829269
PA
1747 /* Nor if the thread isn't meant to step over a breakpoint. */
1748 gdb_assert (tp->control.trap_expected);
1749
c1e36e3e
PA
1750 /* Disable range stepping while executing in the scratch pad. We
1751 want a single-step even if executing the displaced instruction in
1752 the scratch buffer lands within the stepping range (e.g., a
1753 jump/branch). */
1754 tp->control.may_range_step = 0;
1755
fc1cf338
PA
1756 /* We have to displaced step one thread at a time, as we only have
1757 access to a single scratch space per inferior. */
237fc4c9 1758
fc1cf338
PA
1759 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1760
1761 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1762 {
1763 /* Already waiting for a displaced step to finish. Defer this
1764 request and place in queue. */
237fc4c9
PA
1765
1766 if (debug_displaced)
1767 fprintf_unfiltered (gdb_stdlog,
c2829269 1768 "displaced: deferring step of %s\n",
237fc4c9
PA
1769 target_pid_to_str (ptid));
1770
c2829269 1771 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1772 return 0;
1773 }
1774 else
1775 {
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog,
1778 "displaced: stepping %s now\n",
1779 target_pid_to_str (ptid));
1780 }
1781
fc1cf338 1782 displaced_step_clear (displaced);
237fc4c9 1783
ad53cd71
PA
1784 old_cleanups = save_inferior_ptid ();
1785 inferior_ptid = ptid;
1786
515630c5 1787 original = regcache_read_pc (regcache);
237fc4c9
PA
1788
1789 copy = gdbarch_displaced_step_location (gdbarch);
1790 len = gdbarch_max_insn_length (gdbarch);
1791
1792 /* Save the original contents of the copy area. */
224c3ddb 1793 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1794 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1795 &displaced->step_saved_copy);
9e529e1d
JK
1796 status = target_read_memory (copy, displaced->step_saved_copy, len);
1797 if (status != 0)
1798 throw_error (MEMORY_ERROR,
1799 _("Error accessing memory address %s (%s) for "
1800 "displaced-stepping scratch space."),
1801 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1802 if (debug_displaced)
1803 {
5af949e3
UW
1804 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1805 paddress (gdbarch, copy));
fc1cf338
PA
1806 displaced_step_dump_bytes (gdb_stdlog,
1807 displaced->step_saved_copy,
1808 len);
237fc4c9
PA
1809 };
1810
1811 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1812 original, copy, regcache);
7f03bd92
PA
1813 if (closure == NULL)
1814 {
1815 /* The architecture doesn't know how or want to displaced step
1816 this instruction or instruction sequence. Fallback to
1817 stepping over the breakpoint in-line. */
1818 do_cleanups (old_cleanups);
1819 return -1;
1820 }
237fc4c9 1821
9f5a595d
UW
1822 /* Save the information we need to fix things up if the step
1823 succeeds. */
fc1cf338
PA
1824 displaced->step_ptid = ptid;
1825 displaced->step_gdbarch = gdbarch;
1826 displaced->step_closure = closure;
1827 displaced->step_original = original;
1828 displaced->step_copy = copy;
9f5a595d 1829
fc1cf338 1830 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1831
1832 /* Resume execution at the copy. */
515630c5 1833 regcache_write_pc (regcache, copy);
237fc4c9 1834
ad53cd71
PA
1835 discard_cleanups (ignore_cleanups);
1836
1837 do_cleanups (old_cleanups);
237fc4c9
PA
1838
1839 if (debug_displaced)
5af949e3
UW
1840 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1841 paddress (gdbarch, copy));
237fc4c9 1842
237fc4c9
PA
1843 return 1;
1844}
1845
3fc8eb30
PA
1846/* Wrapper for displaced_step_prepare_throw that disabled further
1847 attempts at displaced stepping if we get a memory error. */
1848
1849static int
1850displaced_step_prepare (ptid_t ptid)
1851{
1852 int prepared = -1;
1853
1854 TRY
1855 {
1856 prepared = displaced_step_prepare_throw (ptid);
1857 }
1858 CATCH (ex, RETURN_MASK_ERROR)
1859 {
1860 struct displaced_step_inferior_state *displaced_state;
1861
1862 if (ex.error != MEMORY_ERROR)
1863 throw_exception (ex);
1864
1865 if (debug_infrun)
1866 {
1867 fprintf_unfiltered (gdb_stdlog,
1868 "infrun: disabling displaced stepping: %s\n",
1869 ex.message);
1870 }
1871
1872 /* Be verbose if "set displaced-stepping" is "on", silent if
1873 "auto". */
1874 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1875 {
fd7dcb94 1876 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1877 ex.message);
1878 }
1879
1880 /* Disable further displaced stepping attempts. */
1881 displaced_state
1882 = get_displaced_stepping_state (ptid_get_pid (ptid));
1883 displaced_state->failed_before = 1;
1884 }
1885 END_CATCH
1886
1887 return prepared;
1888}
1889
237fc4c9 1890static void
3e43a32a
MS
1891write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1892 const gdb_byte *myaddr, int len)
237fc4c9
PA
1893{
1894 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1895
237fc4c9
PA
1896 inferior_ptid = ptid;
1897 write_memory (memaddr, myaddr, len);
1898 do_cleanups (ptid_cleanup);
1899}
1900
e2d96639
YQ
1901/* Restore the contents of the copy area for thread PTID. */
1902
1903static void
1904displaced_step_restore (struct displaced_step_inferior_state *displaced,
1905 ptid_t ptid)
1906{
1907 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1908
1909 write_memory_ptid (ptid, displaced->step_copy,
1910 displaced->step_saved_copy, len);
1911 if (debug_displaced)
1912 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1913 target_pid_to_str (ptid),
1914 paddress (displaced->step_gdbarch,
1915 displaced->step_copy));
1916}
1917
372316f1
PA
1918/* If we displaced stepped an instruction successfully, adjust
1919 registers and memory to yield the same effect the instruction would
1920 have had if we had executed it at its original address, and return
1921 1. If the instruction didn't complete, relocate the PC and return
1922 -1. If the thread wasn't displaced stepping, return 0. */
1923
1924static int
2ea28649 1925displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1926{
1927 struct cleanup *old_cleanups;
fc1cf338
PA
1928 struct displaced_step_inferior_state *displaced
1929 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1930 int ret;
fc1cf338
PA
1931
1932 /* Was any thread of this process doing a displaced step? */
1933 if (displaced == NULL)
372316f1 1934 return 0;
237fc4c9
PA
1935
1936 /* Was this event for the pid we displaced? */
fc1cf338
PA
1937 if (ptid_equal (displaced->step_ptid, null_ptid)
1938 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1939 return 0;
237fc4c9 1940
fc1cf338 1941 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1942
e2d96639 1943 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1944
cb71640d
PA
1945 /* Fixup may need to read memory/registers. Switch to the thread
1946 that we're fixing up. Also, target_stopped_by_watchpoint checks
1947 the current thread. */
1948 switch_to_thread (event_ptid);
1949
237fc4c9 1950 /* Did the instruction complete successfully? */
cb71640d
PA
1951 if (signal == GDB_SIGNAL_TRAP
1952 && !(target_stopped_by_watchpoint ()
1953 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1954 || target_have_steppable_watchpoint)))
237fc4c9
PA
1955 {
1956 /* Fix up the resulting state. */
fc1cf338
PA
1957 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1958 displaced->step_closure,
1959 displaced->step_original,
1960 displaced->step_copy,
1961 get_thread_regcache (displaced->step_ptid));
372316f1 1962 ret = 1;
237fc4c9
PA
1963 }
1964 else
1965 {
1966 /* Since the instruction didn't complete, all we can do is
1967 relocate the PC. */
515630c5
UW
1968 struct regcache *regcache = get_thread_regcache (event_ptid);
1969 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1970
fc1cf338 1971 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1972 regcache_write_pc (regcache, pc);
372316f1 1973 ret = -1;
237fc4c9
PA
1974 }
1975
1976 do_cleanups (old_cleanups);
1977
fc1cf338 1978 displaced->step_ptid = null_ptid;
372316f1
PA
1979
1980 return ret;
c2829269 1981}
1c5cfe86 1982
4d9d9d04
PA
1983/* Data to be passed around while handling an event. This data is
1984 discarded between events. */
1985struct execution_control_state
1986{
1987 ptid_t ptid;
1988 /* The thread that got the event, if this was a thread event; NULL
1989 otherwise. */
1990 struct thread_info *event_thread;
1991
1992 struct target_waitstatus ws;
1993 int stop_func_filled_in;
1994 CORE_ADDR stop_func_start;
1995 CORE_ADDR stop_func_end;
1996 const char *stop_func_name;
1997 int wait_some_more;
1998
1999 /* True if the event thread hit the single-step breakpoint of
2000 another thread. Thus the event doesn't cause a stop, the thread
2001 needs to be single-stepped past the single-step breakpoint before
2002 we can switch back to the original stepping thread. */
2003 int hit_singlestep_breakpoint;
2004};
2005
2006/* Clear ECS and set it to point at TP. */
c2829269
PA
2007
2008static void
4d9d9d04
PA
2009reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2010{
2011 memset (ecs, 0, sizeof (*ecs));
2012 ecs->event_thread = tp;
2013 ecs->ptid = tp->ptid;
2014}
2015
2016static void keep_going_pass_signal (struct execution_control_state *ecs);
2017static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2018static int keep_going_stepped_thread (struct thread_info *tp);
4d9d9d04 2019static int thread_still_needs_step_over (struct thread_info *tp);
3fc8eb30 2020static void stop_all_threads (void);
4d9d9d04
PA
2021
2022/* Are there any pending step-over requests? If so, run all we can
2023 now and return true. Otherwise, return false. */
2024
2025static int
c2829269
PA
2026start_step_over (void)
2027{
2028 struct thread_info *tp, *next;
2029
372316f1
PA
2030 /* Don't start a new step-over if we already have an in-line
2031 step-over operation ongoing. */
2032 if (step_over_info_valid_p ())
2033 return 0;
2034
c2829269 2035 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2036 {
4d9d9d04
PA
2037 struct execution_control_state ecss;
2038 struct execution_control_state *ecs = &ecss;
372316f1
PA
2039 enum step_over_what step_what;
2040 int must_be_in_line;
c2829269
PA
2041
2042 next = thread_step_over_chain_next (tp);
237fc4c9 2043
c2829269
PA
2044 /* If this inferior already has a displaced step in process,
2045 don't start a new one. */
4d9d9d04 2046 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2047 continue;
2048
372316f1
PA
2049 step_what = thread_still_needs_step_over (tp);
2050 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2051 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2052 && !use_displaced_stepping (tp)));
372316f1
PA
2053
2054 /* We currently stop all threads of all processes to step-over
2055 in-line. If we need to start a new in-line step-over, let
2056 any pending displaced steps finish first. */
2057 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2058 return 0;
2059
c2829269
PA
2060 thread_step_over_chain_remove (tp);
2061
2062 if (step_over_queue_head == NULL)
2063 {
2064 if (debug_infrun)
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: step-over queue now empty\n");
2067 }
2068
372316f1
PA
2069 if (tp->control.trap_expected
2070 || tp->resumed
2071 || tp->executing)
ad53cd71 2072 {
4d9d9d04
PA
2073 internal_error (__FILE__, __LINE__,
2074 "[%s] has inconsistent state: "
372316f1 2075 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2076 target_pid_to_str (tp->ptid),
2077 tp->control.trap_expected,
372316f1 2078 tp->resumed,
4d9d9d04 2079 tp->executing);
ad53cd71 2080 }
1c5cfe86 2081
4d9d9d04
PA
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resuming [%s] for step-over\n",
2085 target_pid_to_str (tp->ptid));
2086
2087 /* keep_going_pass_signal skips the step-over if the breakpoint
2088 is no longer inserted. In all-stop, we want to keep looking
2089 for a thread that needs a step-over instead of resuming TP,
2090 because we wouldn't be able to resume anything else until the
2091 target stops again. In non-stop, the resume always resumes
2092 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2093 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2094 continue;
8550d3b3 2095
4d9d9d04
PA
2096 switch_to_thread (tp->ptid);
2097 reset_ecs (ecs, tp);
2098 keep_going_pass_signal (ecs);
1c5cfe86 2099
4d9d9d04
PA
2100 if (!ecs->wait_some_more)
2101 error (_("Command aborted."));
1c5cfe86 2102
372316f1
PA
2103 gdb_assert (tp->resumed);
2104
2105 /* If we started a new in-line step-over, we're done. */
2106 if (step_over_info_valid_p ())
2107 {
2108 gdb_assert (tp->control.trap_expected);
2109 return 1;
2110 }
2111
fbea99ea 2112 if (!target_is_non_stop_p ())
4d9d9d04
PA
2113 {
2114 /* On all-stop, shouldn't have resumed unless we needed a
2115 step over. */
2116 gdb_assert (tp->control.trap_expected
2117 || tp->step_after_step_resume_breakpoint);
2118
2119 /* With remote targets (at least), in all-stop, we can't
2120 issue any further remote commands until the program stops
2121 again. */
2122 return 1;
1c5cfe86 2123 }
c2829269 2124
4d9d9d04
PA
2125 /* Either the thread no longer needed a step-over, or a new
2126 displaced stepping sequence started. Even in the latter
2127 case, continue looking. Maybe we can also start another
2128 displaced step on a thread of other process. */
237fc4c9 2129 }
4d9d9d04
PA
2130
2131 return 0;
237fc4c9
PA
2132}
2133
5231c1fd
PA
2134/* Update global variables holding ptids to hold NEW_PTID if they were
2135 holding OLD_PTID. */
2136static void
2137infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2138{
2139 struct displaced_step_request *it;
fc1cf338 2140 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2141
2142 if (ptid_equal (inferior_ptid, old_ptid))
2143 inferior_ptid = new_ptid;
2144
fc1cf338
PA
2145 for (displaced = displaced_step_inferior_states;
2146 displaced;
2147 displaced = displaced->next)
2148 {
2149 if (ptid_equal (displaced->step_ptid, old_ptid))
2150 displaced->step_ptid = new_ptid;
fc1cf338 2151 }
5231c1fd
PA
2152}
2153
237fc4c9
PA
2154\f
2155/* Resuming. */
c906108c
SS
2156
2157/* Things to clean up if we QUIT out of resume (). */
c906108c 2158static void
74b7792f 2159resume_cleanups (void *ignore)
c906108c 2160{
34b7e8a6
PA
2161 if (!ptid_equal (inferior_ptid, null_ptid))
2162 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2163
c906108c
SS
2164 normal_stop ();
2165}
2166
53904c9e
AC
2167static const char schedlock_off[] = "off";
2168static const char schedlock_on[] = "on";
2169static const char schedlock_step[] = "step";
f2665db5 2170static const char schedlock_replay[] = "replay";
40478521 2171static const char *const scheduler_enums[] = {
ef346e04
AC
2172 schedlock_off,
2173 schedlock_on,
2174 schedlock_step,
f2665db5 2175 schedlock_replay,
ef346e04
AC
2176 NULL
2177};
f2665db5 2178static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2179static void
2180show_scheduler_mode (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c, const char *value)
2182{
3e43a32a
MS
2183 fprintf_filtered (file,
2184 _("Mode for locking scheduler "
2185 "during execution is \"%s\".\n"),
920d2a44
AC
2186 value);
2187}
c906108c
SS
2188
2189static void
96baa820 2190set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2191{
eefe576e
AC
2192 if (!target_can_lock_scheduler)
2193 {
2194 scheduler_mode = schedlock_off;
2195 error (_("Target '%s' cannot support this command."), target_shortname);
2196 }
c906108c
SS
2197}
2198
d4db2f36
PA
2199/* True if execution commands resume all threads of all processes by
2200 default; otherwise, resume only threads of the current inferior
2201 process. */
2202int sched_multi = 0;
2203
2facfe5c
DD
2204/* Try to setup for software single stepping over the specified location.
2205 Return 1 if target_resume() should use hardware single step.
2206
2207 GDBARCH the current gdbarch.
2208 PC the location to step over. */
2209
2210static int
2211maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2212{
2213 int hw_step = 1;
2214
f02253f1
HZ
2215 if (execution_direction == EXEC_FORWARD
2216 && gdbarch_software_single_step_p (gdbarch)
99e40580 2217 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 2218 {
99e40580 2219 hw_step = 0;
2facfe5c
DD
2220 }
2221 return hw_step;
2222}
c906108c 2223
f3263aa4
PA
2224/* See infrun.h. */
2225
09cee04b
PA
2226ptid_t
2227user_visible_resume_ptid (int step)
2228{
f3263aa4 2229 ptid_t resume_ptid;
09cee04b 2230
09cee04b
PA
2231 if (non_stop)
2232 {
2233 /* With non-stop mode on, threads are always handled
2234 individually. */
2235 resume_ptid = inferior_ptid;
2236 }
2237 else if ((scheduler_mode == schedlock_on)
03d46957 2238 || (scheduler_mode == schedlock_step && step))
09cee04b 2239 {
f3263aa4
PA
2240 /* User-settable 'scheduler' mode requires solo thread
2241 resume. */
09cee04b
PA
2242 resume_ptid = inferior_ptid;
2243 }
f2665db5
MM
2244 else if ((scheduler_mode == schedlock_replay)
2245 && target_record_will_replay (minus_one_ptid, execution_direction))
2246 {
2247 /* User-settable 'scheduler' mode requires solo thread resume in replay
2248 mode. */
2249 resume_ptid = inferior_ptid;
2250 }
f3263aa4
PA
2251 else if (!sched_multi && target_supports_multi_process ())
2252 {
2253 /* Resume all threads of the current process (and none of other
2254 processes). */
2255 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2256 }
2257 else
2258 {
2259 /* Resume all threads of all processes. */
2260 resume_ptid = RESUME_ALL;
2261 }
09cee04b
PA
2262
2263 return resume_ptid;
2264}
2265
fbea99ea
PA
2266/* Return a ptid representing the set of threads that we will resume,
2267 in the perspective of the target, assuming run control handling
2268 does not require leaving some threads stopped (e.g., stepping past
2269 breakpoint). USER_STEP indicates whether we're about to start the
2270 target for a stepping command. */
2271
2272static ptid_t
2273internal_resume_ptid (int user_step)
2274{
2275 /* In non-stop, we always control threads individually. Note that
2276 the target may always work in non-stop mode even with "set
2277 non-stop off", in which case user_visible_resume_ptid could
2278 return a wildcard ptid. */
2279 if (target_is_non_stop_p ())
2280 return inferior_ptid;
2281 else
2282 return user_visible_resume_ptid (user_step);
2283}
2284
64ce06e4
PA
2285/* Wrapper for target_resume, that handles infrun-specific
2286 bookkeeping. */
2287
2288static void
2289do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2290{
2291 struct thread_info *tp = inferior_thread ();
2292
2293 /* Install inferior's terminal modes. */
2294 target_terminal_inferior ();
2295
2296 /* Avoid confusing the next resume, if the next stop/resume
2297 happens to apply to another thread. */
2298 tp->suspend.stop_signal = GDB_SIGNAL_0;
2299
8f572e5c
PA
2300 /* Advise target which signals may be handled silently.
2301
2302 If we have removed breakpoints because we are stepping over one
2303 in-line (in any thread), we need to receive all signals to avoid
2304 accidentally skipping a breakpoint during execution of a signal
2305 handler.
2306
2307 Likewise if we're displaced stepping, otherwise a trap for a
2308 breakpoint in a signal handler might be confused with the
2309 displaced step finishing. We don't make the displaced_step_fixup
2310 step distinguish the cases instead, because:
2311
2312 - a backtrace while stopped in the signal handler would show the
2313 scratch pad as frame older than the signal handler, instead of
2314 the real mainline code.
2315
2316 - when the thread is later resumed, the signal handler would
2317 return to the scratch pad area, which would no longer be
2318 valid. */
2319 if (step_over_info_valid_p ()
2320 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2321 target_pass_signals (0, NULL);
2322 else
2323 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2324
2325 target_resume (resume_ptid, step, sig);
2326}
2327
c906108c
SS
2328/* Resume the inferior, but allow a QUIT. This is useful if the user
2329 wants to interrupt some lengthy single-stepping operation
2330 (for child processes, the SIGINT goes to the inferior, and so
2331 we get a SIGINT random_signal, but for remote debugging and perhaps
2332 other targets, that's not true).
2333
c906108c
SS
2334 SIG is the signal to give the inferior (zero for none). */
2335void
64ce06e4 2336resume (enum gdb_signal sig)
c906108c 2337{
74b7792f 2338 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2339 struct regcache *regcache = get_current_regcache ();
2340 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2341 struct thread_info *tp = inferior_thread ();
515630c5 2342 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2343 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2344 ptid_t resume_ptid;
856e7dd6
PA
2345 /* This represents the user's step vs continue request. When
2346 deciding whether "set scheduler-locking step" applies, it's the
2347 user's intention that counts. */
2348 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2349 /* This represents what we'll actually request the target to do.
2350 This can decay from a step to a continue, if e.g., we need to
2351 implement single-stepping with breakpoints (software
2352 single-step). */
6b403daa 2353 int step;
c7e8a53c 2354
c2829269
PA
2355 gdb_assert (!thread_is_in_step_over_chain (tp));
2356
c906108c
SS
2357 QUIT;
2358
372316f1
PA
2359 if (tp->suspend.waitstatus_pending_p)
2360 {
2361 if (debug_infrun)
2362 {
2363 char *statstr;
2364
2365 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2366 fprintf_unfiltered (gdb_stdlog,
2367 "infrun: resume: thread %s has pending wait status %s "
2368 "(currently_stepping=%d).\n",
2369 target_pid_to_str (tp->ptid), statstr,
2370 currently_stepping (tp));
2371 xfree (statstr);
2372 }
2373
2374 tp->resumed = 1;
2375
2376 /* FIXME: What should we do if we are supposed to resume this
2377 thread with a signal? Maybe we should maintain a queue of
2378 pending signals to deliver. */
2379 if (sig != GDB_SIGNAL_0)
2380 {
fd7dcb94 2381 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2382 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2383 }
2384
2385 tp->suspend.stop_signal = GDB_SIGNAL_0;
2386 discard_cleanups (old_cleanups);
2387
2388 if (target_can_async_p ())
2389 target_async (1);
2390 return;
2391 }
2392
2393 tp->stepped_breakpoint = 0;
2394
6b403daa
PA
2395 /* Depends on stepped_breakpoint. */
2396 step = currently_stepping (tp);
2397
74609e71
YQ
2398 if (current_inferior ()->waiting_for_vfork_done)
2399 {
48f9886d
PA
2400 /* Don't try to single-step a vfork parent that is waiting for
2401 the child to get out of the shared memory region (by exec'ing
2402 or exiting). This is particularly important on software
2403 single-step archs, as the child process would trip on the
2404 software single step breakpoint inserted for the parent
2405 process. Since the parent will not actually execute any
2406 instruction until the child is out of the shared region (such
2407 are vfork's semantics), it is safe to simply continue it.
2408 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2409 the parent, and tell it to `keep_going', which automatically
2410 re-sets it stepping. */
74609e71
YQ
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: resume : clear step\n");
a09dd441 2414 step = 0;
74609e71
YQ
2415 }
2416
527159b7 2417 if (debug_infrun)
237fc4c9 2418 fprintf_unfiltered (gdb_stdlog,
c9737c08 2419 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2420 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2421 step, gdb_signal_to_symbol_string (sig),
2422 tp->control.trap_expected,
0d9a9a5f
PA
2423 target_pid_to_str (inferior_ptid),
2424 paddress (gdbarch, pc));
c906108c 2425
c2c6d25f
JM
2426 /* Normally, by the time we reach `resume', the breakpoints are either
2427 removed or inserted, as appropriate. The exception is if we're sitting
2428 at a permanent breakpoint; we need to step over it, but permanent
2429 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2430 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2431 {
af48d08f
PA
2432 if (sig != GDB_SIGNAL_0)
2433 {
2434 /* We have a signal to pass to the inferior. The resume
2435 may, or may not take us to the signal handler. If this
2436 is a step, we'll need to stop in the signal handler, if
2437 there's one, (if the target supports stepping into
2438 handlers), or in the next mainline instruction, if
2439 there's no handler. If this is a continue, we need to be
2440 sure to run the handler with all breakpoints inserted.
2441 In all cases, set a breakpoint at the current address
2442 (where the handler returns to), and once that breakpoint
2443 is hit, resume skipping the permanent breakpoint. If
2444 that breakpoint isn't hit, then we've stepped into the
2445 signal handler (or hit some other event). We'll delete
2446 the step-resume breakpoint then. */
2447
2448 if (debug_infrun)
2449 fprintf_unfiltered (gdb_stdlog,
2450 "infrun: resume: skipping permanent breakpoint, "
2451 "deliver signal first\n");
2452
2453 clear_step_over_info ();
2454 tp->control.trap_expected = 0;
2455
2456 if (tp->control.step_resume_breakpoint == NULL)
2457 {
2458 /* Set a "high-priority" step-resume, as we don't want
2459 user breakpoints at PC to trigger (again) when this
2460 hits. */
2461 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2462 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2463
2464 tp->step_after_step_resume_breakpoint = step;
2465 }
2466
2467 insert_breakpoints ();
2468 }
2469 else
2470 {
2471 /* There's no signal to pass, we can go ahead and skip the
2472 permanent breakpoint manually. */
2473 if (debug_infrun)
2474 fprintf_unfiltered (gdb_stdlog,
2475 "infrun: resume: skipping permanent breakpoint\n");
2476 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2477 /* Update pc to reflect the new address from which we will
2478 execute instructions. */
2479 pc = regcache_read_pc (regcache);
2480
2481 if (step)
2482 {
2483 /* We've already advanced the PC, so the stepping part
2484 is done. Now we need to arrange for a trap to be
2485 reported to handle_inferior_event. Set a breakpoint
2486 at the current PC, and run to it. Don't update
2487 prev_pc, because if we end in
44a1ee51
PA
2488 switch_back_to_stepped_thread, we want the "expected
2489 thread advanced also" branch to be taken. IOW, we
2490 don't want this thread to step further from PC
af48d08f 2491 (overstep). */
1ac806b8 2492 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2493 insert_single_step_breakpoint (gdbarch, aspace, pc);
2494 insert_breakpoints ();
2495
fbea99ea 2496 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2497 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2498 discard_cleanups (old_cleanups);
372316f1 2499 tp->resumed = 1;
af48d08f
PA
2500 return;
2501 }
2502 }
6d350bb5 2503 }
c2c6d25f 2504
c1e36e3e
PA
2505 /* If we have a breakpoint to step over, make sure to do a single
2506 step only. Same if we have software watchpoints. */
2507 if (tp->control.trap_expected || bpstat_should_step ())
2508 tp->control.may_range_step = 0;
2509
237fc4c9
PA
2510 /* If enabled, step over breakpoints by executing a copy of the
2511 instruction at a different address.
2512
2513 We can't use displaced stepping when we have a signal to deliver;
2514 the comments for displaced_step_prepare explain why. The
2515 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2516 signals' explain what we do instead.
2517
2518 We can't use displaced stepping when we are waiting for vfork_done
2519 event, displaced stepping breaks the vfork child similarly as single
2520 step software breakpoint. */
3fc8eb30
PA
2521 if (tp->control.trap_expected
2522 && use_displaced_stepping (tp)
cb71640d 2523 && !step_over_info_valid_p ()
a493e3e2 2524 && sig == GDB_SIGNAL_0
74609e71 2525 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2526 {
3fc8eb30 2527 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2528
3fc8eb30 2529 if (prepared == 0)
d56b7306 2530 {
4d9d9d04
PA
2531 if (debug_infrun)
2532 fprintf_unfiltered (gdb_stdlog,
2533 "Got placed in step-over queue\n");
2534
2535 tp->control.trap_expected = 0;
d56b7306
VP
2536 discard_cleanups (old_cleanups);
2537 return;
2538 }
3fc8eb30
PA
2539 else if (prepared < 0)
2540 {
2541 /* Fallback to stepping over the breakpoint in-line. */
2542
2543 if (target_is_non_stop_p ())
2544 stop_all_threads ();
2545
2546 set_step_over_info (get_regcache_aspace (regcache),
2547 regcache_read_pc (regcache), 0);
2548
2549 step = maybe_software_singlestep (gdbarch, pc);
2550
2551 insert_breakpoints ();
2552 }
2553 else if (prepared > 0)
2554 {
2555 struct displaced_step_inferior_state *displaced;
99e40580 2556
3fc8eb30
PA
2557 /* Update pc to reflect the new address from which we will
2558 execute instructions due to displaced stepping. */
2559 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2560
3fc8eb30
PA
2561 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2562 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2563 displaced->step_closure);
2564 }
237fc4c9
PA
2565 }
2566
2facfe5c 2567 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2568 else if (step)
2facfe5c 2569 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2570
30852783
UW
2571 /* Currently, our software single-step implementation leads to different
2572 results than hardware single-stepping in one situation: when stepping
2573 into delivering a signal which has an associated signal handler,
2574 hardware single-step will stop at the first instruction of the handler,
2575 while software single-step will simply skip execution of the handler.
2576
2577 For now, this difference in behavior is accepted since there is no
2578 easy way to actually implement single-stepping into a signal handler
2579 without kernel support.
2580
2581 However, there is one scenario where this difference leads to follow-on
2582 problems: if we're stepping off a breakpoint by removing all breakpoints
2583 and then single-stepping. In this case, the software single-step
2584 behavior means that even if there is a *breakpoint* in the signal
2585 handler, GDB still would not stop.
2586
2587 Fortunately, we can at least fix this particular issue. We detect
2588 here the case where we are about to deliver a signal while software
2589 single-stepping with breakpoints removed. In this situation, we
2590 revert the decisions to remove all breakpoints and insert single-
2591 step breakpoints, and instead we install a step-resume breakpoint
2592 at the current address, deliver the signal without stepping, and
2593 once we arrive back at the step-resume breakpoint, actually step
2594 over the breakpoint we originally wanted to step over. */
34b7e8a6 2595 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2596 && sig != GDB_SIGNAL_0
2597 && step_over_info_valid_p ())
30852783
UW
2598 {
2599 /* If we have nested signals or a pending signal is delivered
2600 immediately after a handler returns, might might already have
2601 a step-resume breakpoint set on the earlier handler. We cannot
2602 set another step-resume breakpoint; just continue on until the
2603 original breakpoint is hit. */
2604 if (tp->control.step_resume_breakpoint == NULL)
2605 {
2c03e5be 2606 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2607 tp->step_after_step_resume_breakpoint = 1;
2608 }
2609
34b7e8a6 2610 delete_single_step_breakpoints (tp);
30852783 2611
31e77af2 2612 clear_step_over_info ();
30852783 2613 tp->control.trap_expected = 0;
31e77af2
PA
2614
2615 insert_breakpoints ();
30852783
UW
2616 }
2617
b0f16a3e
SM
2618 /* If STEP is set, it's a request to use hardware stepping
2619 facilities. But in that case, we should never
2620 use singlestep breakpoint. */
34b7e8a6 2621 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2622
fbea99ea 2623 /* Decide the set of threads to ask the target to resume. */
34b7e8a6 2624 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2625 && tp->control.trap_expected)
2626 {
2627 /* We're allowing a thread to run past a breakpoint it has
2628 hit, by single-stepping the thread with the breakpoint
2629 removed. In which case, we need to single-step only this
2630 thread, and keep others stopped, as they can miss this
2631 breakpoint if allowed to run. */
2632 resume_ptid = inferior_ptid;
2633 }
fbea99ea
PA
2634 else
2635 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2636
7f5ef605
PA
2637 if (execution_direction != EXEC_REVERSE
2638 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2639 {
372316f1
PA
2640 /* There are two cases where we currently need to step a
2641 breakpoint instruction when we have a signal to deliver:
2642
2643 - See handle_signal_stop where we handle random signals that
2644 could take out us out of the stepping range. Normally, in
2645 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2646 signal handler with a breakpoint at PC, but there are cases
2647 where we should _always_ single-step, even if we have a
2648 step-resume breakpoint, like when a software watchpoint is
2649 set. Assuming single-stepping and delivering a signal at the
2650 same time would takes us to the signal handler, then we could
2651 have removed the breakpoint at PC to step over it. However,
2652 some hardware step targets (like e.g., Mac OS) can't step
2653 into signal handlers, and for those, we need to leave the
2654 breakpoint at PC inserted, as otherwise if the handler
2655 recurses and executes PC again, it'll miss the breakpoint.
2656 So we leave the breakpoint inserted anyway, but we need to
2657 record that we tried to step a breakpoint instruction, so
372316f1
PA
2658 that adjust_pc_after_break doesn't end up confused.
2659
2660 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2661 in one thread after another thread that was stepping had been
2662 momentarily paused for a step-over. When we re-resume the
2663 stepping thread, it may be resumed from that address with a
2664 breakpoint that hasn't trapped yet. Seen with
2665 gdb.threads/non-stop-fair-events.exp, on targets that don't
2666 do displaced stepping. */
2667
2668 if (debug_infrun)
2669 fprintf_unfiltered (gdb_stdlog,
2670 "infrun: resume: [%s] stepped breakpoint\n",
2671 target_pid_to_str (tp->ptid));
7f5ef605
PA
2672
2673 tp->stepped_breakpoint = 1;
2674
b0f16a3e
SM
2675 /* Most targets can step a breakpoint instruction, thus
2676 executing it normally. But if this one cannot, just
2677 continue and we will hit it anyway. */
7f5ef605 2678 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2679 step = 0;
2680 }
ef5cf84e 2681
b0f16a3e 2682 if (debug_displaced
cb71640d 2683 && tp->control.trap_expected
3fc8eb30 2684 && use_displaced_stepping (tp)
cb71640d 2685 && !step_over_info_valid_p ())
b0f16a3e 2686 {
d9b67d9f 2687 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2688 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2689 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2690 gdb_byte buf[4];
2691
2692 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2693 paddress (resume_gdbarch, actual_pc));
2694 read_memory (actual_pc, buf, sizeof (buf));
2695 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2696 }
237fc4c9 2697
b0f16a3e
SM
2698 if (tp->control.may_range_step)
2699 {
2700 /* If we're resuming a thread with the PC out of the step
2701 range, then we're doing some nested/finer run control
2702 operation, like stepping the thread out of the dynamic
2703 linker or the displaced stepping scratch pad. We
2704 shouldn't have allowed a range step then. */
2705 gdb_assert (pc_in_thread_step_range (pc, tp));
2706 }
c1e36e3e 2707
64ce06e4 2708 do_target_resume (resume_ptid, step, sig);
372316f1 2709 tp->resumed = 1;
c906108c
SS
2710 discard_cleanups (old_cleanups);
2711}
2712\f
237fc4c9 2713/* Proceeding. */
c906108c 2714
4c2f2a79
PA
2715/* See infrun.h. */
2716
2717/* Counter that tracks number of user visible stops. This can be used
2718 to tell whether a command has proceeded the inferior past the
2719 current location. This allows e.g., inferior function calls in
2720 breakpoint commands to not interrupt the command list. When the
2721 call finishes successfully, the inferior is standing at the same
2722 breakpoint as if nothing happened (and so we don't call
2723 normal_stop). */
2724static ULONGEST current_stop_id;
2725
2726/* See infrun.h. */
2727
2728ULONGEST
2729get_stop_id (void)
2730{
2731 return current_stop_id;
2732}
2733
2734/* Called when we report a user visible stop. */
2735
2736static void
2737new_stop_id (void)
2738{
2739 current_stop_id++;
2740}
2741
c906108c
SS
2742/* Clear out all variables saying what to do when inferior is continued.
2743 First do this, then set the ones you want, then call `proceed'. */
2744
a7212384
UW
2745static void
2746clear_proceed_status_thread (struct thread_info *tp)
c906108c 2747{
a7212384
UW
2748 if (debug_infrun)
2749 fprintf_unfiltered (gdb_stdlog,
2750 "infrun: clear_proceed_status_thread (%s)\n",
2751 target_pid_to_str (tp->ptid));
d6b48e9c 2752
372316f1
PA
2753 /* If we're starting a new sequence, then the previous finished
2754 single-step is no longer relevant. */
2755 if (tp->suspend.waitstatus_pending_p)
2756 {
2757 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2758 {
2759 if (debug_infrun)
2760 fprintf_unfiltered (gdb_stdlog,
2761 "infrun: clear_proceed_status: pending "
2762 "event of %s was a finished step. "
2763 "Discarding.\n",
2764 target_pid_to_str (tp->ptid));
2765
2766 tp->suspend.waitstatus_pending_p = 0;
2767 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2768 }
2769 else if (debug_infrun)
2770 {
2771 char *statstr;
2772
2773 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2774 fprintf_unfiltered (gdb_stdlog,
2775 "infrun: clear_proceed_status_thread: thread %s "
2776 "has pending wait status %s "
2777 "(currently_stepping=%d).\n",
2778 target_pid_to_str (tp->ptid), statstr,
2779 currently_stepping (tp));
2780 xfree (statstr);
2781 }
2782 }
2783
70509625
PA
2784 /* If this signal should not be seen by program, give it zero.
2785 Used for debugging signals. */
2786 if (!signal_pass_state (tp->suspend.stop_signal))
2787 tp->suspend.stop_signal = GDB_SIGNAL_0;
2788
243a9253
PA
2789 thread_fsm_delete (tp->thread_fsm);
2790 tp->thread_fsm = NULL;
2791
16c381f0
JK
2792 tp->control.trap_expected = 0;
2793 tp->control.step_range_start = 0;
2794 tp->control.step_range_end = 0;
c1e36e3e 2795 tp->control.may_range_step = 0;
16c381f0
JK
2796 tp->control.step_frame_id = null_frame_id;
2797 tp->control.step_stack_frame_id = null_frame_id;
2798 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2799 tp->control.step_start_function = NULL;
a7212384 2800 tp->stop_requested = 0;
4e1c45ea 2801
16c381f0 2802 tp->control.stop_step = 0;
32400beb 2803
16c381f0 2804 tp->control.proceed_to_finish = 0;
414c69f7 2805
17b2616c 2806 tp->control.command_interp = NULL;
856e7dd6 2807 tp->control.stepping_command = 0;
17b2616c 2808
a7212384 2809 /* Discard any remaining commands or status from previous stop. */
16c381f0 2810 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2811}
32400beb 2812
a7212384 2813void
70509625 2814clear_proceed_status (int step)
a7212384 2815{
f2665db5
MM
2816 /* With scheduler-locking replay, stop replaying other threads if we're
2817 not replaying the user-visible resume ptid.
2818
2819 This is a convenience feature to not require the user to explicitly
2820 stop replaying the other threads. We're assuming that the user's
2821 intent is to resume tracing the recorded process. */
2822 if (!non_stop && scheduler_mode == schedlock_replay
2823 && target_record_is_replaying (minus_one_ptid)
2824 && !target_record_will_replay (user_visible_resume_ptid (step),
2825 execution_direction))
2826 target_record_stop_replaying ();
2827
6c95b8df
PA
2828 if (!non_stop)
2829 {
70509625
PA
2830 struct thread_info *tp;
2831 ptid_t resume_ptid;
2832
2833 resume_ptid = user_visible_resume_ptid (step);
2834
2835 /* In all-stop mode, delete the per-thread status of all threads
2836 we're about to resume, implicitly and explicitly. */
2837 ALL_NON_EXITED_THREADS (tp)
2838 {
2839 if (!ptid_match (tp->ptid, resume_ptid))
2840 continue;
2841 clear_proceed_status_thread (tp);
2842 }
6c95b8df
PA
2843 }
2844
a7212384
UW
2845 if (!ptid_equal (inferior_ptid, null_ptid))
2846 {
2847 struct inferior *inferior;
2848
2849 if (non_stop)
2850 {
6c95b8df
PA
2851 /* If in non-stop mode, only delete the per-thread status of
2852 the current thread. */
a7212384
UW
2853 clear_proceed_status_thread (inferior_thread ());
2854 }
6c95b8df 2855
d6b48e9c 2856 inferior = current_inferior ();
16c381f0 2857 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2858 }
2859
c906108c 2860 stop_after_trap = 0;
f3b1572e
PA
2861
2862 observer_notify_about_to_proceed ();
c906108c
SS
2863}
2864
99619bea
PA
2865/* Returns true if TP is still stopped at a breakpoint that needs
2866 stepping-over in order to make progress. If the breakpoint is gone
2867 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2868
2869static int
6c4cfb24 2870thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2871{
2872 if (tp->stepping_over_breakpoint)
2873 {
2874 struct regcache *regcache = get_thread_regcache (tp->ptid);
2875
2876 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2877 regcache_read_pc (regcache))
2878 == ordinary_breakpoint_here)
99619bea
PA
2879 return 1;
2880
2881 tp->stepping_over_breakpoint = 0;
2882 }
2883
2884 return 0;
2885}
2886
6c4cfb24
PA
2887/* Check whether thread TP still needs to start a step-over in order
2888 to make progress when resumed. Returns an bitwise or of enum
2889 step_over_what bits, indicating what needs to be stepped over. */
2890
2891static int
2892thread_still_needs_step_over (struct thread_info *tp)
2893{
2894 struct inferior *inf = find_inferior_ptid (tp->ptid);
2895 int what = 0;
2896
2897 if (thread_still_needs_step_over_bp (tp))
2898 what |= STEP_OVER_BREAKPOINT;
2899
2900 if (tp->stepping_over_watchpoint
2901 && !target_have_steppable_watchpoint)
2902 what |= STEP_OVER_WATCHPOINT;
2903
2904 return what;
2905}
2906
483805cf
PA
2907/* Returns true if scheduler locking applies. STEP indicates whether
2908 we're about to do a step/next-like command to a thread. */
2909
2910static int
856e7dd6 2911schedlock_applies (struct thread_info *tp)
483805cf
PA
2912{
2913 return (scheduler_mode == schedlock_on
2914 || (scheduler_mode == schedlock_step
f2665db5
MM
2915 && tp->control.stepping_command)
2916 || (scheduler_mode == schedlock_replay
2917 && target_record_will_replay (minus_one_ptid,
2918 execution_direction)));
483805cf
PA
2919}
2920
c906108c
SS
2921/* Basic routine for continuing the program in various fashions.
2922
2923 ADDR is the address to resume at, or -1 for resume where stopped.
2924 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2925 or -1 for act according to how it stopped.
c906108c 2926 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2927 -1 means return after that and print nothing.
2928 You should probably set various step_... variables
2929 before calling here, if you are stepping.
c906108c
SS
2930
2931 You should call clear_proceed_status before calling proceed. */
2932
2933void
64ce06e4 2934proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2935{
e58b0e63
PA
2936 struct regcache *regcache;
2937 struct gdbarch *gdbarch;
4e1c45ea 2938 struct thread_info *tp;
e58b0e63 2939 CORE_ADDR pc;
6c95b8df 2940 struct address_space *aspace;
4d9d9d04
PA
2941 ptid_t resume_ptid;
2942 struct execution_control_state ecss;
2943 struct execution_control_state *ecs = &ecss;
2944 struct cleanup *old_chain;
2945 int started;
c906108c 2946
e58b0e63
PA
2947 /* If we're stopped at a fork/vfork, follow the branch set by the
2948 "set follow-fork-mode" command; otherwise, we'll just proceed
2949 resuming the current thread. */
2950 if (!follow_fork ())
2951 {
2952 /* The target for some reason decided not to resume. */
2953 normal_stop ();
f148b27e
PA
2954 if (target_can_async_p ())
2955 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2956 return;
2957 }
2958
842951eb
PA
2959 /* We'll update this if & when we switch to a new thread. */
2960 previous_inferior_ptid = inferior_ptid;
2961
e58b0e63
PA
2962 regcache = get_current_regcache ();
2963 gdbarch = get_regcache_arch (regcache);
6c95b8df 2964 aspace = get_regcache_aspace (regcache);
e58b0e63 2965 pc = regcache_read_pc (regcache);
2adfaa28 2966 tp = inferior_thread ();
e58b0e63 2967
99619bea
PA
2968 /* Fill in with reasonable starting values. */
2969 init_thread_stepping_state (tp);
2970
c2829269
PA
2971 gdb_assert (!thread_is_in_step_over_chain (tp));
2972
2acceee2 2973 if (addr == (CORE_ADDR) -1)
c906108c 2974 {
af48d08f
PA
2975 if (pc == stop_pc
2976 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2977 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2978 /* There is a breakpoint at the address we will resume at,
2979 step one instruction before inserting breakpoints so that
2980 we do not stop right away (and report a second hit at this
b2175913
MS
2981 breakpoint).
2982
2983 Note, we don't do this in reverse, because we won't
2984 actually be executing the breakpoint insn anyway.
2985 We'll be (un-)executing the previous instruction. */
99619bea 2986 tp->stepping_over_breakpoint = 1;
515630c5
UW
2987 else if (gdbarch_single_step_through_delay_p (gdbarch)
2988 && gdbarch_single_step_through_delay (gdbarch,
2989 get_current_frame ()))
3352ef37
AC
2990 /* We stepped onto an instruction that needs to be stepped
2991 again before re-inserting the breakpoint, do so. */
99619bea 2992 tp->stepping_over_breakpoint = 1;
c906108c
SS
2993 }
2994 else
2995 {
515630c5 2996 regcache_write_pc (regcache, addr);
c906108c
SS
2997 }
2998
70509625
PA
2999 if (siggnal != GDB_SIGNAL_DEFAULT)
3000 tp->suspend.stop_signal = siggnal;
3001
17b2616c
PA
3002 /* Record the interpreter that issued the execution command that
3003 caused this thread to resume. If the top level interpreter is
3004 MI/async, and the execution command was a CLI command
3005 (next/step/etc.), we'll want to print stop event output to the MI
3006 console channel (the stepped-to line, etc.), as if the user
3007 entered the execution command on a real GDB console. */
4d9d9d04
PA
3008 tp->control.command_interp = command_interp ();
3009
3010 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3011
3012 /* If an exception is thrown from this point on, make sure to
3013 propagate GDB's knowledge of the executing state to the
3014 frontend/user running state. */
3015 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3016
3017 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3018 threads (e.g., we might need to set threads stepping over
3019 breakpoints first), from the user/frontend's point of view, all
3020 threads in RESUME_PTID are now running. Unless we're calling an
3021 inferior function, as in that case we pretend the inferior
3022 doesn't run at all. */
3023 if (!tp->control.in_infcall)
3024 set_running (resume_ptid, 1);
17b2616c 3025
527159b7 3026 if (debug_infrun)
8a9de0e4 3027 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3028 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3029 paddress (gdbarch, addr),
64ce06e4 3030 gdb_signal_to_symbol_string (siggnal));
527159b7 3031
4d9d9d04
PA
3032 annotate_starting ();
3033
3034 /* Make sure that output from GDB appears before output from the
3035 inferior. */
3036 gdb_flush (gdb_stdout);
3037
3038 /* In a multi-threaded task we may select another thread and
3039 then continue or step.
3040
3041 But if a thread that we're resuming had stopped at a breakpoint,
3042 it will immediately cause another breakpoint stop without any
3043 execution (i.e. it will report a breakpoint hit incorrectly). So
3044 we must step over it first.
3045
3046 Look for threads other than the current (TP) that reported a
3047 breakpoint hit and haven't been resumed yet since. */
3048
3049 /* If scheduler locking applies, we can avoid iterating over all
3050 threads. */
3051 if (!non_stop && !schedlock_applies (tp))
94cc34af 3052 {
4d9d9d04
PA
3053 struct thread_info *current = tp;
3054
3055 ALL_NON_EXITED_THREADS (tp)
3056 {
3057 /* Ignore the current thread here. It's handled
3058 afterwards. */
3059 if (tp == current)
3060 continue;
99619bea 3061
4d9d9d04
PA
3062 /* Ignore threads of processes we're not resuming. */
3063 if (!ptid_match (tp->ptid, resume_ptid))
3064 continue;
c906108c 3065
4d9d9d04
PA
3066 if (!thread_still_needs_step_over (tp))
3067 continue;
3068
3069 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3070
99619bea
PA
3071 if (debug_infrun)
3072 fprintf_unfiltered (gdb_stdlog,
3073 "infrun: need to step-over [%s] first\n",
4d9d9d04 3074 target_pid_to_str (tp->ptid));
99619bea 3075
4d9d9d04 3076 thread_step_over_chain_enqueue (tp);
2adfaa28 3077 }
31e77af2 3078
4d9d9d04 3079 tp = current;
30852783
UW
3080 }
3081
4d9d9d04
PA
3082 /* Enqueue the current thread last, so that we move all other
3083 threads over their breakpoints first. */
3084 if (tp->stepping_over_breakpoint)
3085 thread_step_over_chain_enqueue (tp);
30852783 3086
4d9d9d04
PA
3087 /* If the thread isn't started, we'll still need to set its prev_pc,
3088 so that switch_back_to_stepped_thread knows the thread hasn't
3089 advanced. Must do this before resuming any thread, as in
3090 all-stop/remote, once we resume we can't send any other packet
3091 until the target stops again. */
3092 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3093
4d9d9d04 3094 started = start_step_over ();
c906108c 3095
4d9d9d04
PA
3096 if (step_over_info_valid_p ())
3097 {
3098 /* Either this thread started a new in-line step over, or some
3099 other thread was already doing one. In either case, don't
3100 resume anything else until the step-over is finished. */
3101 }
fbea99ea 3102 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3103 {
3104 /* A new displaced stepping sequence was started. In all-stop,
3105 we can't talk to the target anymore until it next stops. */
3106 }
fbea99ea
PA
3107 else if (!non_stop && target_is_non_stop_p ())
3108 {
3109 /* In all-stop, but the target is always in non-stop mode.
3110 Start all other threads that are implicitly resumed too. */
3111 ALL_NON_EXITED_THREADS (tp)
3112 {
3113 /* Ignore threads of processes we're not resuming. */
3114 if (!ptid_match (tp->ptid, resume_ptid))
3115 continue;
3116
3117 if (tp->resumed)
3118 {
3119 if (debug_infrun)
3120 fprintf_unfiltered (gdb_stdlog,
3121 "infrun: proceed: [%s] resumed\n",
3122 target_pid_to_str (tp->ptid));
3123 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3124 continue;
3125 }
3126
3127 if (thread_is_in_step_over_chain (tp))
3128 {
3129 if (debug_infrun)
3130 fprintf_unfiltered (gdb_stdlog,
3131 "infrun: proceed: [%s] needs step-over\n",
3132 target_pid_to_str (tp->ptid));
3133 continue;
3134 }
3135
3136 if (debug_infrun)
3137 fprintf_unfiltered (gdb_stdlog,
3138 "infrun: proceed: resuming %s\n",
3139 target_pid_to_str (tp->ptid));
3140
3141 reset_ecs (ecs, tp);
3142 switch_to_thread (tp->ptid);
3143 keep_going_pass_signal (ecs);
3144 if (!ecs->wait_some_more)
fd7dcb94 3145 error (_("Command aborted."));
fbea99ea
PA
3146 }
3147 }
372316f1 3148 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3149 {
3150 /* The thread wasn't started, and isn't queued, run it now. */
3151 reset_ecs (ecs, tp);
3152 switch_to_thread (tp->ptid);
3153 keep_going_pass_signal (ecs);
3154 if (!ecs->wait_some_more)
fd7dcb94 3155 error (_("Command aborted."));
4d9d9d04 3156 }
c906108c 3157
4d9d9d04 3158 discard_cleanups (old_chain);
c906108c 3159
0b333c5e
PA
3160 /* Tell the event loop to wait for it to stop. If the target
3161 supports asynchronous execution, it'll do this from within
3162 target_resume. */
362646f5 3163 if (!target_can_async_p ())
0b333c5e 3164 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3165}
c906108c
SS
3166\f
3167
3168/* Start remote-debugging of a machine over a serial link. */
96baa820 3169
c906108c 3170void
8621d6a9 3171start_remote (int from_tty)
c906108c 3172{
d6b48e9c 3173 struct inferior *inferior;
d6b48e9c
PA
3174
3175 inferior = current_inferior ();
16c381f0 3176 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3177
1777feb0 3178 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3179 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3180 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3181 nothing is returned (instead of just blocking). Because of this,
3182 targets expecting an immediate response need to, internally, set
3183 things up so that the target_wait() is forced to eventually
1777feb0 3184 timeout. */
6426a772
JM
3185 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3186 differentiate to its caller what the state of the target is after
3187 the initial open has been performed. Here we're assuming that
3188 the target has stopped. It should be possible to eventually have
3189 target_open() return to the caller an indication that the target
3190 is currently running and GDB state should be set to the same as
1777feb0 3191 for an async run. */
e4c8541f 3192 wait_for_inferior ();
8621d6a9
DJ
3193
3194 /* Now that the inferior has stopped, do any bookkeeping like
3195 loading shared libraries. We want to do this before normal_stop,
3196 so that the displayed frame is up to date. */
3197 post_create_inferior (&current_target, from_tty);
3198
6426a772 3199 normal_stop ();
c906108c
SS
3200}
3201
3202/* Initialize static vars when a new inferior begins. */
3203
3204void
96baa820 3205init_wait_for_inferior (void)
c906108c
SS
3206{
3207 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3208
c906108c
SS
3209 breakpoint_init_inferior (inf_starting);
3210
70509625 3211 clear_proceed_status (0);
9f976b41 3212
ca005067 3213 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3214
842951eb 3215 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3216
edb3359d
DJ
3217 /* Discard any skipped inlined frames. */
3218 clear_inline_frame_state (minus_one_ptid);
c906108c 3219}
237fc4c9 3220
c906108c 3221\f
488f131b 3222
ec9499be 3223static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3224
568d6575
UW
3225static void handle_step_into_function (struct gdbarch *gdbarch,
3226 struct execution_control_state *ecs);
3227static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3228 struct execution_control_state *ecs);
4f5d7f63 3229static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3230static void check_exception_resume (struct execution_control_state *,
28106bc2 3231 struct frame_info *);
611c83ae 3232
bdc36728 3233static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3234static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3235static void keep_going (struct execution_control_state *ecs);
94c57d6a 3236static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3237static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3238
252fbfc8
PA
3239/* Callback for iterate over threads. If the thread is stopped, but
3240 the user/frontend doesn't know about that yet, go through
3241 normal_stop, as if the thread had just stopped now. ARG points at
3242 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3243 ptid_is_pid(PTID) is true, applies to all threads of the process
3244 pointed at by PTID. Otherwise, apply only to the thread pointed by
3245 PTID. */
3246
3247static int
3248infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3249{
3250 ptid_t ptid = * (ptid_t *) arg;
3251
3252 if ((ptid_equal (info->ptid, ptid)
3253 || ptid_equal (minus_one_ptid, ptid)
3254 || (ptid_is_pid (ptid)
3255 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3256 && is_running (info->ptid)
3257 && !is_executing (info->ptid))
3258 {
3259 struct cleanup *old_chain;
3260 struct execution_control_state ecss;
3261 struct execution_control_state *ecs = &ecss;
3262
3263 memset (ecs, 0, sizeof (*ecs));
3264
3265 old_chain = make_cleanup_restore_current_thread ();
3266
f15cb84a
YQ
3267 overlay_cache_invalid = 1;
3268 /* Flush target cache before starting to handle each event.
3269 Target was running and cache could be stale. This is just a
3270 heuristic. Running threads may modify target memory, but we
3271 don't get any event. */
3272 target_dcache_invalidate ();
3273
252fbfc8
PA
3274 /* Go through handle_inferior_event/normal_stop, so we always
3275 have consistent output as if the stop event had been
3276 reported. */
3277 ecs->ptid = info->ptid;
243a9253 3278 ecs->event_thread = info;
252fbfc8 3279 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3280 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3281
3282 handle_inferior_event (ecs);
3283
3284 if (!ecs->wait_some_more)
3285 {
243a9253
PA
3286 /* Cancel any running execution command. */
3287 thread_cancel_execution_command (info);
3288
252fbfc8 3289 normal_stop ();
252fbfc8
PA
3290 }
3291
3292 do_cleanups (old_chain);
3293 }
3294
3295 return 0;
3296}
3297
3298/* This function is attached as a "thread_stop_requested" observer.
3299 Cleanup local state that assumed the PTID was to be resumed, and
3300 report the stop to the frontend. */
3301
2c0b251b 3302static void
252fbfc8
PA
3303infrun_thread_stop_requested (ptid_t ptid)
3304{
c2829269 3305 struct thread_info *tp;
252fbfc8 3306
c2829269
PA
3307 /* PTID was requested to stop. Remove matching threads from the
3308 step-over queue, so we don't try to resume them
3309 automatically. */
3310 ALL_NON_EXITED_THREADS (tp)
3311 if (ptid_match (tp->ptid, ptid))
3312 {
3313 if (thread_is_in_step_over_chain (tp))
3314 thread_step_over_chain_remove (tp);
3315 }
252fbfc8
PA
3316
3317 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3318}
3319
a07daef3
PA
3320static void
3321infrun_thread_thread_exit (struct thread_info *tp, int silent)
3322{
3323 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3324 nullify_last_target_wait_ptid ();
3325}
3326
0cbcdb96
PA
3327/* Delete the step resume, single-step and longjmp/exception resume
3328 breakpoints of TP. */
4e1c45ea 3329
0cbcdb96
PA
3330static void
3331delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3332{
0cbcdb96
PA
3333 delete_step_resume_breakpoint (tp);
3334 delete_exception_resume_breakpoint (tp);
34b7e8a6 3335 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3336}
3337
0cbcdb96
PA
3338/* If the target still has execution, call FUNC for each thread that
3339 just stopped. In all-stop, that's all the non-exited threads; in
3340 non-stop, that's the current thread, only. */
3341
3342typedef void (*for_each_just_stopped_thread_callback_func)
3343 (struct thread_info *tp);
4e1c45ea
PA
3344
3345static void
0cbcdb96 3346for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3347{
0cbcdb96 3348 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3349 return;
3350
fbea99ea 3351 if (target_is_non_stop_p ())
4e1c45ea 3352 {
0cbcdb96
PA
3353 /* If in non-stop mode, only the current thread stopped. */
3354 func (inferior_thread ());
4e1c45ea
PA
3355 }
3356 else
0cbcdb96
PA
3357 {
3358 struct thread_info *tp;
3359
3360 /* In all-stop mode, all threads have stopped. */
3361 ALL_NON_EXITED_THREADS (tp)
3362 {
3363 func (tp);
3364 }
3365 }
3366}
3367
3368/* Delete the step resume and longjmp/exception resume breakpoints of
3369 the threads that just stopped. */
3370
3371static void
3372delete_just_stopped_threads_infrun_breakpoints (void)
3373{
3374 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3375}
3376
3377/* Delete the single-step breakpoints of the threads that just
3378 stopped. */
7c16b83e 3379
34b7e8a6
PA
3380static void
3381delete_just_stopped_threads_single_step_breakpoints (void)
3382{
3383 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3384}
3385
1777feb0 3386/* A cleanup wrapper. */
4e1c45ea
PA
3387
3388static void
0cbcdb96 3389delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3390{
0cbcdb96 3391 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3392}
3393
221e1a37 3394/* See infrun.h. */
223698f8 3395
221e1a37 3396void
223698f8
DE
3397print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3398 const struct target_waitstatus *ws)
3399{
3400 char *status_string = target_waitstatus_to_string (ws);
3401 struct ui_file *tmp_stream = mem_fileopen ();
3402 char *text;
223698f8
DE
3403
3404 /* The text is split over several lines because it was getting too long.
3405 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3406 output as a unit; we want only one timestamp printed if debug_timestamp
3407 is set. */
3408
3409 fprintf_unfiltered (tmp_stream,
1176ecec
PA
3410 "infrun: target_wait (%d.%ld.%ld",
3411 ptid_get_pid (waiton_ptid),
3412 ptid_get_lwp (waiton_ptid),
3413 ptid_get_tid (waiton_ptid));
dfd4cc63 3414 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3415 fprintf_unfiltered (tmp_stream,
3416 " [%s]", target_pid_to_str (waiton_ptid));
3417 fprintf_unfiltered (tmp_stream, ", status) =\n");
3418 fprintf_unfiltered (tmp_stream,
1176ecec 3419 "infrun: %d.%ld.%ld [%s],\n",
dfd4cc63 3420 ptid_get_pid (result_ptid),
1176ecec
PA
3421 ptid_get_lwp (result_ptid),
3422 ptid_get_tid (result_ptid),
dfd4cc63 3423 target_pid_to_str (result_ptid));
223698f8
DE
3424 fprintf_unfiltered (tmp_stream,
3425 "infrun: %s\n",
3426 status_string);
3427
759ef836 3428 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3429
3430 /* This uses %s in part to handle %'s in the text, but also to avoid
3431 a gcc error: the format attribute requires a string literal. */
3432 fprintf_unfiltered (gdb_stdlog, "%s", text);
3433
3434 xfree (status_string);
3435 xfree (text);
3436 ui_file_delete (tmp_stream);
3437}
3438
372316f1
PA
3439/* Select a thread at random, out of those which are resumed and have
3440 had events. */
3441
3442static struct thread_info *
3443random_pending_event_thread (ptid_t waiton_ptid)
3444{
3445 struct thread_info *event_tp;
3446 int num_events = 0;
3447 int random_selector;
3448
3449 /* First see how many events we have. Count only resumed threads
3450 that have an event pending. */
3451 ALL_NON_EXITED_THREADS (event_tp)
3452 if (ptid_match (event_tp->ptid, waiton_ptid)
3453 && event_tp->resumed
3454 && event_tp->suspend.waitstatus_pending_p)
3455 num_events++;
3456
3457 if (num_events == 0)
3458 return NULL;
3459
3460 /* Now randomly pick a thread out of those that have had events. */
3461 random_selector = (int)
3462 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3463
3464 if (debug_infrun && num_events > 1)
3465 fprintf_unfiltered (gdb_stdlog,
3466 "infrun: Found %d events, selecting #%d\n",
3467 num_events, random_selector);
3468
3469 /* Select the Nth thread that has had an event. */
3470 ALL_NON_EXITED_THREADS (event_tp)
3471 if (ptid_match (event_tp->ptid, waiton_ptid)
3472 && event_tp->resumed
3473 && event_tp->suspend.waitstatus_pending_p)
3474 if (random_selector-- == 0)
3475 break;
3476
3477 return event_tp;
3478}
3479
3480/* Wrapper for target_wait that first checks whether threads have
3481 pending statuses to report before actually asking the target for
3482 more events. */
3483
3484static ptid_t
3485do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3486{
3487 ptid_t event_ptid;
3488 struct thread_info *tp;
3489
3490 /* First check if there is a resumed thread with a wait status
3491 pending. */
3492 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3493 {
3494 tp = random_pending_event_thread (ptid);
3495 }
3496 else
3497 {
3498 if (debug_infrun)
3499 fprintf_unfiltered (gdb_stdlog,
3500 "infrun: Waiting for specific thread %s.\n",
3501 target_pid_to_str (ptid));
3502
3503 /* We have a specific thread to check. */
3504 tp = find_thread_ptid (ptid);
3505 gdb_assert (tp != NULL);
3506 if (!tp->suspend.waitstatus_pending_p)
3507 tp = NULL;
3508 }
3509
3510 if (tp != NULL
3511 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3512 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3513 {
3514 struct regcache *regcache = get_thread_regcache (tp->ptid);
3515 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3516 CORE_ADDR pc;
3517 int discard = 0;
3518
3519 pc = regcache_read_pc (regcache);
3520
3521 if (pc != tp->suspend.stop_pc)
3522 {
3523 if (debug_infrun)
3524 fprintf_unfiltered (gdb_stdlog,
3525 "infrun: PC of %s changed. was=%s, now=%s\n",
3526 target_pid_to_str (tp->ptid),
3527 paddress (gdbarch, tp->prev_pc),
3528 paddress (gdbarch, pc));
3529 discard = 1;
3530 }
3531 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3532 {
3533 if (debug_infrun)
3534 fprintf_unfiltered (gdb_stdlog,
3535 "infrun: previous breakpoint of %s, at %s gone\n",
3536 target_pid_to_str (tp->ptid),
3537 paddress (gdbarch, pc));
3538
3539 discard = 1;
3540 }
3541
3542 if (discard)
3543 {
3544 if (debug_infrun)
3545 fprintf_unfiltered (gdb_stdlog,
3546 "infrun: pending event of %s cancelled.\n",
3547 target_pid_to_str (tp->ptid));
3548
3549 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3550 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3551 }
3552 }
3553
3554 if (tp != NULL)
3555 {
3556 if (debug_infrun)
3557 {
3558 char *statstr;
3559
3560 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3561 fprintf_unfiltered (gdb_stdlog,
3562 "infrun: Using pending wait status %s for %s.\n",
3563 statstr,
3564 target_pid_to_str (tp->ptid));
3565 xfree (statstr);
3566 }
3567
3568 /* Now that we've selected our final event LWP, un-adjust its PC
3569 if it was a software breakpoint (and the target doesn't
3570 always adjust the PC itself). */
3571 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3572 && !target_supports_stopped_by_sw_breakpoint ())
3573 {
3574 struct regcache *regcache;
3575 struct gdbarch *gdbarch;
3576 int decr_pc;
3577
3578 regcache = get_thread_regcache (tp->ptid);
3579 gdbarch = get_regcache_arch (regcache);
3580
3581 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3582 if (decr_pc != 0)
3583 {
3584 CORE_ADDR pc;
3585
3586 pc = regcache_read_pc (regcache);
3587 regcache_write_pc (regcache, pc + decr_pc);
3588 }
3589 }
3590
3591 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3592 *status = tp->suspend.waitstatus;
3593 tp->suspend.waitstatus_pending_p = 0;
3594
3595 /* Wake up the event loop again, until all pending events are
3596 processed. */
3597 if (target_is_async_p ())
3598 mark_async_event_handler (infrun_async_inferior_event_token);
3599 return tp->ptid;
3600 }
3601
3602 /* But if we don't find one, we'll have to wait. */
3603
3604 if (deprecated_target_wait_hook)
3605 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3606 else
3607 event_ptid = target_wait (ptid, status, options);
3608
3609 return event_ptid;
3610}
3611
24291992
PA
3612/* Prepare and stabilize the inferior for detaching it. E.g.,
3613 detaching while a thread is displaced stepping is a recipe for
3614 crashing it, as nothing would readjust the PC out of the scratch
3615 pad. */
3616
3617void
3618prepare_for_detach (void)
3619{
3620 struct inferior *inf = current_inferior ();
3621 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3622 struct cleanup *old_chain_1;
3623 struct displaced_step_inferior_state *displaced;
3624
3625 displaced = get_displaced_stepping_state (inf->pid);
3626
3627 /* Is any thread of this process displaced stepping? If not,
3628 there's nothing else to do. */
3629 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3630 return;
3631
3632 if (debug_infrun)
3633 fprintf_unfiltered (gdb_stdlog,
3634 "displaced-stepping in-process while detaching");
3635
3636 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3637 inf->detaching = 1;
3638
3639 while (!ptid_equal (displaced->step_ptid, null_ptid))
3640 {
3641 struct cleanup *old_chain_2;
3642 struct execution_control_state ecss;
3643 struct execution_control_state *ecs;
3644
3645 ecs = &ecss;
3646 memset (ecs, 0, sizeof (*ecs));
3647
3648 overlay_cache_invalid = 1;
f15cb84a
YQ
3649 /* Flush target cache before starting to handle each event.
3650 Target was running and cache could be stale. This is just a
3651 heuristic. Running threads may modify target memory, but we
3652 don't get any event. */
3653 target_dcache_invalidate ();
24291992 3654
372316f1 3655 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3656
3657 if (debug_infrun)
3658 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3659
3660 /* If an error happens while handling the event, propagate GDB's
3661 knowledge of the executing state to the frontend/user running
3662 state. */
3e43a32a
MS
3663 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3664 &minus_one_ptid);
24291992
PA
3665
3666 /* Now figure out what to do with the result of the result. */
3667 handle_inferior_event (ecs);
3668
3669 /* No error, don't finish the state yet. */
3670 discard_cleanups (old_chain_2);
3671
3672 /* Breakpoints and watchpoints are not installed on the target
3673 at this point, and signals are passed directly to the
3674 inferior, so this must mean the process is gone. */
3675 if (!ecs->wait_some_more)
3676 {
3677 discard_cleanups (old_chain_1);
3678 error (_("Program exited while detaching"));
3679 }
3680 }
3681
3682 discard_cleanups (old_chain_1);
3683}
3684
cd0fc7c3 3685/* Wait for control to return from inferior to debugger.
ae123ec6 3686
cd0fc7c3
SS
3687 If inferior gets a signal, we may decide to start it up again
3688 instead of returning. That is why there is a loop in this function.
3689 When this function actually returns it means the inferior
3690 should be left stopped and GDB should read more commands. */
3691
3692void
e4c8541f 3693wait_for_inferior (void)
cd0fc7c3
SS
3694{
3695 struct cleanup *old_cleanups;
e6f5c25b 3696 struct cleanup *thread_state_chain;
c906108c 3697
527159b7 3698 if (debug_infrun)
ae123ec6 3699 fprintf_unfiltered
e4c8541f 3700 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3701
0cbcdb96
PA
3702 old_cleanups
3703 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3704 NULL);
cd0fc7c3 3705
e6f5c25b
PA
3706 /* If an error happens while handling the event, propagate GDB's
3707 knowledge of the executing state to the frontend/user running
3708 state. */
3709 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3710
c906108c
SS
3711 while (1)
3712 {
ae25568b
PA
3713 struct execution_control_state ecss;
3714 struct execution_control_state *ecs = &ecss;
963f9c80 3715 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3716
ae25568b
PA
3717 memset (ecs, 0, sizeof (*ecs));
3718
ec9499be 3719 overlay_cache_invalid = 1;
ec9499be 3720
f15cb84a
YQ
3721 /* Flush target cache before starting to handle each event.
3722 Target was running and cache could be stale. This is just a
3723 heuristic. Running threads may modify target memory, but we
3724 don't get any event. */
3725 target_dcache_invalidate ();
3726
372316f1 3727 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3728
f00150c9 3729 if (debug_infrun)
223698f8 3730 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3731
cd0fc7c3
SS
3732 /* Now figure out what to do with the result of the result. */
3733 handle_inferior_event (ecs);
c906108c 3734
cd0fc7c3
SS
3735 if (!ecs->wait_some_more)
3736 break;
3737 }
4e1c45ea 3738
e6f5c25b
PA
3739 /* No error, don't finish the state yet. */
3740 discard_cleanups (thread_state_chain);
3741
cd0fc7c3
SS
3742 do_cleanups (old_cleanups);
3743}
c906108c 3744
d3d4baed
PA
3745/* Cleanup that reinstalls the readline callback handler, if the
3746 target is running in the background. If while handling the target
3747 event something triggered a secondary prompt, like e.g., a
3748 pagination prompt, we'll have removed the callback handler (see
3749 gdb_readline_wrapper_line). Need to do this as we go back to the
3750 event loop, ready to process further input. Note this has no
3751 effect if the handler hasn't actually been removed, because calling
3752 rl_callback_handler_install resets the line buffer, thus losing
3753 input. */
3754
3755static void
3756reinstall_readline_callback_handler_cleanup (void *arg)
3757{
6c400b59
PA
3758 if (!interpreter_async)
3759 {
3760 /* We're not going back to the top level event loop yet. Don't
3761 install the readline callback, as it'd prep the terminal,
3762 readline-style (raw, noecho) (e.g., --batch). We'll install
3763 it the next time the prompt is displayed, when we're ready
3764 for input. */
3765 return;
3766 }
3767
d3d4baed
PA
3768 if (async_command_editing_p && !sync_execution)
3769 gdb_rl_callback_handler_reinstall ();
3770}
3771
243a9253
PA
3772/* Clean up the FSMs of threads that are now stopped. In non-stop,
3773 that's just the event thread. In all-stop, that's all threads. */
3774
3775static void
3776clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3777{
3778 struct thread_info *thr = ecs->event_thread;
3779
3780 if (thr != NULL && thr->thread_fsm != NULL)
3781 thread_fsm_clean_up (thr->thread_fsm);
3782
3783 if (!non_stop)
3784 {
3785 ALL_NON_EXITED_THREADS (thr)
3786 {
3787 if (thr->thread_fsm == NULL)
3788 continue;
3789 if (thr == ecs->event_thread)
3790 continue;
3791
3792 switch_to_thread (thr->ptid);
3793 thread_fsm_clean_up (thr->thread_fsm);
3794 }
3795
3796 if (ecs->event_thread != NULL)
3797 switch_to_thread (ecs->event_thread->ptid);
3798 }
3799}
3800
1777feb0 3801/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3802 event loop whenever a change of state is detected on the file
1777feb0
MS
3803 descriptor corresponding to the target. It can be called more than
3804 once to complete a single execution command. In such cases we need
3805 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3806 that this function is called for a single execution command, then
3807 report to the user that the inferior has stopped, and do the
1777feb0 3808 necessary cleanups. */
43ff13b4
JM
3809
3810void
fba45db2 3811fetch_inferior_event (void *client_data)
43ff13b4 3812{
0d1e5fa7 3813 struct execution_control_state ecss;
a474d7c2 3814 struct execution_control_state *ecs = &ecss;
4f8d22e3 3815 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3816 struct cleanup *ts_old_chain;
4f8d22e3 3817 int was_sync = sync_execution;
0f641c01 3818 int cmd_done = 0;
963f9c80 3819 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3820
0d1e5fa7
PA
3821 memset (ecs, 0, sizeof (*ecs));
3822
d3d4baed
PA
3823 /* End up with readline processing input, if necessary. */
3824 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3825
c5187ac6
PA
3826 /* We're handling a live event, so make sure we're doing live
3827 debugging. If we're looking at traceframes while the target is
3828 running, we're going to need to get back to that mode after
3829 handling the event. */
3830 if (non_stop)
3831 {
3832 make_cleanup_restore_current_traceframe ();
e6e4e701 3833 set_current_traceframe (-1);
c5187ac6
PA
3834 }
3835
4f8d22e3
PA
3836 if (non_stop)
3837 /* In non-stop mode, the user/frontend should not notice a thread
3838 switch due to internal events. Make sure we reverse to the
3839 user selected thread and frame after handling the event and
3840 running any breakpoint commands. */
3841 make_cleanup_restore_current_thread ();
3842
ec9499be 3843 overlay_cache_invalid = 1;
f15cb84a
YQ
3844 /* Flush target cache before starting to handle each event. Target
3845 was running and cache could be stale. This is just a heuristic.
3846 Running threads may modify target memory, but we don't get any
3847 event. */
3848 target_dcache_invalidate ();
3dd5b83d 3849
32231432
PA
3850 make_cleanup_restore_integer (&execution_direction);
3851 execution_direction = target_execution_direction ();
3852
0b333c5e
PA
3853 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3854 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3855
f00150c9 3856 if (debug_infrun)
223698f8 3857 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3858
29f49a6a
PA
3859 /* If an error happens while handling the event, propagate GDB's
3860 knowledge of the executing state to the frontend/user running
3861 state. */
fbea99ea 3862 if (!target_is_non_stop_p ())
29f49a6a
PA
3863 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3864 else
3865 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3866
353d1d73
JK
3867 /* Get executed before make_cleanup_restore_current_thread above to apply
3868 still for the thread which has thrown the exception. */
3869 make_bpstat_clear_actions_cleanup ();
3870
7c16b83e
PA
3871 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3872
43ff13b4 3873 /* Now figure out what to do with the result of the result. */
a474d7c2 3874 handle_inferior_event (ecs);
43ff13b4 3875
a474d7c2 3876 if (!ecs->wait_some_more)
43ff13b4 3877 {
c9657e70 3878 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3879 int should_stop = 1;
3880 struct thread_info *thr = ecs->event_thread;
388a7084 3881 int should_notify_stop = 1;
d6b48e9c 3882
0cbcdb96 3883 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3884
243a9253
PA
3885 if (thr != NULL)
3886 {
3887 struct thread_fsm *thread_fsm = thr->thread_fsm;
3888
3889 if (thread_fsm != NULL)
3890 should_stop = thread_fsm_should_stop (thread_fsm);
3891 }
3892
3893 if (!should_stop)
3894 {
3895 keep_going (ecs);
3896 }
c2d11a7d 3897 else
0f641c01 3898 {
243a9253
PA
3899 clean_up_just_stopped_threads_fsms (ecs);
3900
388a7084
PA
3901 if (thr != NULL && thr->thread_fsm != NULL)
3902 {
3903 should_notify_stop
3904 = thread_fsm_should_notify_stop (thr->thread_fsm);
3905 }
3906
3907 if (should_notify_stop)
3908 {
4c2f2a79
PA
3909 int proceeded = 0;
3910
388a7084
PA
3911 /* We may not find an inferior if this was a process exit. */
3912 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3913 proceeded = normal_stop ();
243a9253 3914
4c2f2a79
PA
3915 if (!proceeded)
3916 {
3917 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3918 cmd_done = 1;
3919 }
388a7084 3920 }
0f641c01 3921 }
43ff13b4 3922 }
4f8d22e3 3923
29f49a6a
PA
3924 /* No error, don't finish the thread states yet. */
3925 discard_cleanups (ts_old_chain);
3926
4f8d22e3
PA
3927 /* Revert thread and frame. */
3928 do_cleanups (old_chain);
3929
3930 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3931 restore the prompt (a synchronous execution command has finished,
3932 and we're ready for input). */
b4a14fd0 3933 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3934 observer_notify_sync_execution_done ();
0f641c01
PA
3935
3936 if (cmd_done
3937 && !was_sync
3938 && exec_done_display_p
3939 && (ptid_equal (inferior_ptid, null_ptid)
3940 || !is_running (inferior_ptid)))
3941 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3942}
3943
edb3359d
DJ
3944/* Record the frame and location we're currently stepping through. */
3945void
3946set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3947{
3948 struct thread_info *tp = inferior_thread ();
3949
16c381f0
JK
3950 tp->control.step_frame_id = get_frame_id (frame);
3951 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3952
3953 tp->current_symtab = sal.symtab;
3954 tp->current_line = sal.line;
3955}
3956
0d1e5fa7
PA
3957/* Clear context switchable stepping state. */
3958
3959void
4e1c45ea 3960init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3961{
7f5ef605 3962 tss->stepped_breakpoint = 0;
0d1e5fa7 3963 tss->stepping_over_breakpoint = 0;
963f9c80 3964 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3965 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3966}
3967
c32c64b7
DE
3968/* Set the cached copy of the last ptid/waitstatus. */
3969
3970static void
3971set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3972{
3973 target_last_wait_ptid = ptid;
3974 target_last_waitstatus = status;
3975}
3976
e02bc4cc 3977/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3978 target_wait()/deprecated_target_wait_hook(). The data is actually
3979 cached by handle_inferior_event(), which gets called immediately
3980 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3981
3982void
488f131b 3983get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3984{
39f77062 3985 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3986 *status = target_last_waitstatus;
3987}
3988
ac264b3b
MS
3989void
3990nullify_last_target_wait_ptid (void)
3991{
3992 target_last_wait_ptid = minus_one_ptid;
3993}
3994
dcf4fbde 3995/* Switch thread contexts. */
dd80620e
MS
3996
3997static void
0d1e5fa7 3998context_switch (ptid_t ptid)
dd80620e 3999{
4b51d87b 4000 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4001 {
4002 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4003 target_pid_to_str (inferior_ptid));
4004 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4005 target_pid_to_str (ptid));
fd48f117
DJ
4006 }
4007
0d1e5fa7 4008 switch_to_thread (ptid);
dd80620e
MS
4009}
4010
d8dd4d5f
PA
4011/* If the target can't tell whether we've hit breakpoints
4012 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4013 check whether that could have been caused by a breakpoint. If so,
4014 adjust the PC, per gdbarch_decr_pc_after_break. */
4015
4fa8626c 4016static void
d8dd4d5f
PA
4017adjust_pc_after_break (struct thread_info *thread,
4018 struct target_waitstatus *ws)
4fa8626c 4019{
24a73cce
UW
4020 struct regcache *regcache;
4021 struct gdbarch *gdbarch;
6c95b8df 4022 struct address_space *aspace;
118e6252 4023 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4024
4fa8626c
DJ
4025 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4026 we aren't, just return.
9709f61c
DJ
4027
4028 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4029 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4030 implemented by software breakpoints should be handled through the normal
4031 breakpoint layer.
8fb3e588 4032
4fa8626c
DJ
4033 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4034 different signals (SIGILL or SIGEMT for instance), but it is less
4035 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4036 gdbarch_decr_pc_after_break. I don't know any specific target that
4037 generates these signals at breakpoints (the code has been in GDB since at
4038 least 1992) so I can not guess how to handle them here.
8fb3e588 4039
e6cf7916
UW
4040 In earlier versions of GDB, a target with
4041 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4042 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4043 target with both of these set in GDB history, and it seems unlikely to be
4044 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4045
d8dd4d5f 4046 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4047 return;
4048
d8dd4d5f 4049 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4050 return;
4051
4058b839
PA
4052 /* In reverse execution, when a breakpoint is hit, the instruction
4053 under it has already been de-executed. The reported PC always
4054 points at the breakpoint address, so adjusting it further would
4055 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4056 architecture:
4057
4058 B1 0x08000000 : INSN1
4059 B2 0x08000001 : INSN2
4060 0x08000002 : INSN3
4061 PC -> 0x08000003 : INSN4
4062
4063 Say you're stopped at 0x08000003 as above. Reverse continuing
4064 from that point should hit B2 as below. Reading the PC when the
4065 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4066 been de-executed already.
4067
4068 B1 0x08000000 : INSN1
4069 B2 PC -> 0x08000001 : INSN2
4070 0x08000002 : INSN3
4071 0x08000003 : INSN4
4072
4073 We can't apply the same logic as for forward execution, because
4074 we would wrongly adjust the PC to 0x08000000, since there's a
4075 breakpoint at PC - 1. We'd then report a hit on B1, although
4076 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4077 behaviour. */
4078 if (execution_direction == EXEC_REVERSE)
4079 return;
4080
1cf4d951
PA
4081 /* If the target can tell whether the thread hit a SW breakpoint,
4082 trust it. Targets that can tell also adjust the PC
4083 themselves. */
4084 if (target_supports_stopped_by_sw_breakpoint ())
4085 return;
4086
4087 /* Note that relying on whether a breakpoint is planted in memory to
4088 determine this can fail. E.g,. the breakpoint could have been
4089 removed since. Or the thread could have been told to step an
4090 instruction the size of a breakpoint instruction, and only
4091 _after_ was a breakpoint inserted at its address. */
4092
24a73cce
UW
4093 /* If this target does not decrement the PC after breakpoints, then
4094 we have nothing to do. */
d8dd4d5f 4095 regcache = get_thread_regcache (thread->ptid);
24a73cce 4096 gdbarch = get_regcache_arch (regcache);
118e6252 4097
527a273a 4098 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4099 if (decr_pc == 0)
24a73cce
UW
4100 return;
4101
6c95b8df
PA
4102 aspace = get_regcache_aspace (regcache);
4103
8aad930b
AC
4104 /* Find the location where (if we've hit a breakpoint) the
4105 breakpoint would be. */
118e6252 4106 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4107
1cf4d951
PA
4108 /* If the target can't tell whether a software breakpoint triggered,
4109 fallback to figuring it out based on breakpoints we think were
4110 inserted in the target, and on whether the thread was stepped or
4111 continued. */
4112
1c5cfe86
PA
4113 /* Check whether there actually is a software breakpoint inserted at
4114 that location.
4115
4116 If in non-stop mode, a race condition is possible where we've
4117 removed a breakpoint, but stop events for that breakpoint were
4118 already queued and arrive later. To suppress those spurious
4119 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4120 and retire them after a number of stop events are reported. Note
4121 this is an heuristic and can thus get confused. The real fix is
4122 to get the "stopped by SW BP and needs adjustment" info out of
4123 the target/kernel (and thus never reach here; see above). */
6c95b8df 4124 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4125 || (target_is_non_stop_p ()
4126 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4127 {
77f9e713 4128 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4129
8213266a 4130 if (record_full_is_used ())
77f9e713 4131 record_full_gdb_operation_disable_set ();
96429cc8 4132
1c0fdd0e
UW
4133 /* When using hardware single-step, a SIGTRAP is reported for both
4134 a completed single-step and a software breakpoint. Need to
4135 differentiate between the two, as the latter needs adjusting
4136 but the former does not.
4137
4138 The SIGTRAP can be due to a completed hardware single-step only if
4139 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4140 - this thread is currently being stepped
4141
4142 If any of these events did not occur, we must have stopped due
4143 to hitting a software breakpoint, and have to back up to the
4144 breakpoint address.
4145
4146 As a special case, we could have hardware single-stepped a
4147 software breakpoint. In this case (prev_pc == breakpoint_pc),
4148 we also need to back up to the breakpoint address. */
4149
d8dd4d5f
PA
4150 if (thread_has_single_step_breakpoints_set (thread)
4151 || !currently_stepping (thread)
4152 || (thread->stepped_breakpoint
4153 && thread->prev_pc == breakpoint_pc))
515630c5 4154 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4155
77f9e713 4156 do_cleanups (old_cleanups);
8aad930b 4157 }
4fa8626c
DJ
4158}
4159
edb3359d
DJ
4160static int
4161stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4162{
4163 for (frame = get_prev_frame (frame);
4164 frame != NULL;
4165 frame = get_prev_frame (frame))
4166 {
4167 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4168 return 1;
4169 if (get_frame_type (frame) != INLINE_FRAME)
4170 break;
4171 }
4172
4173 return 0;
4174}
4175
a96d9b2e
SDJ
4176/* Auxiliary function that handles syscall entry/return events.
4177 It returns 1 if the inferior should keep going (and GDB
4178 should ignore the event), or 0 if the event deserves to be
4179 processed. */
ca2163eb 4180
a96d9b2e 4181static int
ca2163eb 4182handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4183{
ca2163eb 4184 struct regcache *regcache;
ca2163eb
PA
4185 int syscall_number;
4186
4187 if (!ptid_equal (ecs->ptid, inferior_ptid))
4188 context_switch (ecs->ptid);
4189
4190 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4191 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4192 stop_pc = regcache_read_pc (regcache);
4193
a96d9b2e
SDJ
4194 if (catch_syscall_enabled () > 0
4195 && catching_syscall_number (syscall_number) > 0)
4196 {
4197 if (debug_infrun)
4198 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4199 syscall_number);
a96d9b2e 4200
16c381f0 4201 ecs->event_thread->control.stop_bpstat
6c95b8df 4202 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4203 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4204
ce12b012 4205 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4206 {
4207 /* Catchpoint hit. */
ca2163eb
PA
4208 return 0;
4209 }
a96d9b2e 4210 }
ca2163eb
PA
4211
4212 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4213 keep_going (ecs);
4214 return 1;
a96d9b2e
SDJ
4215}
4216
7e324e48
GB
4217/* Lazily fill in the execution_control_state's stop_func_* fields. */
4218
4219static void
4220fill_in_stop_func (struct gdbarch *gdbarch,
4221 struct execution_control_state *ecs)
4222{
4223 if (!ecs->stop_func_filled_in)
4224 {
4225 /* Don't care about return value; stop_func_start and stop_func_name
4226 will both be 0 if it doesn't work. */
4227 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4228 &ecs->stop_func_start, &ecs->stop_func_end);
4229 ecs->stop_func_start
4230 += gdbarch_deprecated_function_start_offset (gdbarch);
4231
591a12a1
UW
4232 if (gdbarch_skip_entrypoint_p (gdbarch))
4233 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4234 ecs->stop_func_start);
4235
7e324e48
GB
4236 ecs->stop_func_filled_in = 1;
4237 }
4238}
4239
4f5d7f63
PA
4240
4241/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4242
4243static enum stop_kind
4244get_inferior_stop_soon (ptid_t ptid)
4245{
c9657e70 4246 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4247
4248 gdb_assert (inf != NULL);
4249 return inf->control.stop_soon;
4250}
4251
372316f1
PA
4252/* Wait for one event. Store the resulting waitstatus in WS, and
4253 return the event ptid. */
4254
4255static ptid_t
4256wait_one (struct target_waitstatus *ws)
4257{
4258 ptid_t event_ptid;
4259 ptid_t wait_ptid = minus_one_ptid;
4260
4261 overlay_cache_invalid = 1;
4262
4263 /* Flush target cache before starting to handle each event.
4264 Target was running and cache could be stale. This is just a
4265 heuristic. Running threads may modify target memory, but we
4266 don't get any event. */
4267 target_dcache_invalidate ();
4268
4269 if (deprecated_target_wait_hook)
4270 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4271 else
4272 event_ptid = target_wait (wait_ptid, ws, 0);
4273
4274 if (debug_infrun)
4275 print_target_wait_results (wait_ptid, event_ptid, ws);
4276
4277 return event_ptid;
4278}
4279
4280/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4281 instead of the current thread. */
4282#define THREAD_STOPPED_BY(REASON) \
4283static int \
4284thread_stopped_by_ ## REASON (ptid_t ptid) \
4285{ \
4286 struct cleanup *old_chain; \
4287 int res; \
4288 \
4289 old_chain = save_inferior_ptid (); \
4290 inferior_ptid = ptid; \
4291 \
4292 res = target_stopped_by_ ## REASON (); \
4293 \
4294 do_cleanups (old_chain); \
4295 \
4296 return res; \
4297}
4298
4299/* Generate thread_stopped_by_watchpoint. */
4300THREAD_STOPPED_BY (watchpoint)
4301/* Generate thread_stopped_by_sw_breakpoint. */
4302THREAD_STOPPED_BY (sw_breakpoint)
4303/* Generate thread_stopped_by_hw_breakpoint. */
4304THREAD_STOPPED_BY (hw_breakpoint)
4305
4306/* Cleanups that switches to the PTID pointed at by PTID_P. */
4307
4308static void
4309switch_to_thread_cleanup (void *ptid_p)
4310{
4311 ptid_t ptid = *(ptid_t *) ptid_p;
4312
4313 switch_to_thread (ptid);
4314}
4315
4316/* Save the thread's event and stop reason to process it later. */
4317
4318static void
4319save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4320{
4321 struct regcache *regcache;
4322 struct address_space *aspace;
4323
4324 if (debug_infrun)
4325 {
4326 char *statstr;
4327
4328 statstr = target_waitstatus_to_string (ws);
4329 fprintf_unfiltered (gdb_stdlog,
4330 "infrun: saving status %s for %d.%ld.%ld\n",
4331 statstr,
4332 ptid_get_pid (tp->ptid),
4333 ptid_get_lwp (tp->ptid),
4334 ptid_get_tid (tp->ptid));
4335 xfree (statstr);
4336 }
4337
4338 /* Record for later. */
4339 tp->suspend.waitstatus = *ws;
4340 tp->suspend.waitstatus_pending_p = 1;
4341
4342 regcache = get_thread_regcache (tp->ptid);
4343 aspace = get_regcache_aspace (regcache);
4344
4345 if (ws->kind == TARGET_WAITKIND_STOPPED
4346 && ws->value.sig == GDB_SIGNAL_TRAP)
4347 {
4348 CORE_ADDR pc = regcache_read_pc (regcache);
4349
4350 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4351
4352 if (thread_stopped_by_watchpoint (tp->ptid))
4353 {
4354 tp->suspend.stop_reason
4355 = TARGET_STOPPED_BY_WATCHPOINT;
4356 }
4357 else if (target_supports_stopped_by_sw_breakpoint ()
4358 && thread_stopped_by_sw_breakpoint (tp->ptid))
4359 {
4360 tp->suspend.stop_reason
4361 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4362 }
4363 else if (target_supports_stopped_by_hw_breakpoint ()
4364 && thread_stopped_by_hw_breakpoint (tp->ptid))
4365 {
4366 tp->suspend.stop_reason
4367 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4368 }
4369 else if (!target_supports_stopped_by_hw_breakpoint ()
4370 && hardware_breakpoint_inserted_here_p (aspace,
4371 pc))
4372 {
4373 tp->suspend.stop_reason
4374 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4375 }
4376 else if (!target_supports_stopped_by_sw_breakpoint ()
4377 && software_breakpoint_inserted_here_p (aspace,
4378 pc))
4379 {
4380 tp->suspend.stop_reason
4381 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4382 }
4383 else if (!thread_has_single_step_breakpoints_set (tp)
4384 && currently_stepping (tp))
4385 {
4386 tp->suspend.stop_reason
4387 = TARGET_STOPPED_BY_SINGLE_STEP;
4388 }
4389 }
4390}
4391
4392/* Stop all threads. */
4393
4394static void
4395stop_all_threads (void)
4396{
4397 /* We may need multiple passes to discover all threads. */
4398 int pass;
4399 int iterations = 0;
4400 ptid_t entry_ptid;
4401 struct cleanup *old_chain;
4402
fbea99ea 4403 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4404
4405 if (debug_infrun)
4406 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4407
4408 entry_ptid = inferior_ptid;
4409 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4410
4411 /* Request threads to stop, and then wait for the stops. Because
4412 threads we already know about can spawn more threads while we're
4413 trying to stop them, and we only learn about new threads when we
4414 update the thread list, do this in a loop, and keep iterating
4415 until two passes find no threads that need to be stopped. */
4416 for (pass = 0; pass < 2; pass++, iterations++)
4417 {
4418 if (debug_infrun)
4419 fprintf_unfiltered (gdb_stdlog,
4420 "infrun: stop_all_threads, pass=%d, "
4421 "iterations=%d\n", pass, iterations);
4422 while (1)
4423 {
4424 ptid_t event_ptid;
4425 struct target_waitstatus ws;
4426 int need_wait = 0;
4427 struct thread_info *t;
4428
4429 update_thread_list ();
4430
4431 /* Go through all threads looking for threads that we need
4432 to tell the target to stop. */
4433 ALL_NON_EXITED_THREADS (t)
4434 {
4435 if (t->executing)
4436 {
4437 /* If already stopping, don't request a stop again.
4438 We just haven't seen the notification yet. */
4439 if (!t->stop_requested)
4440 {
4441 if (debug_infrun)
4442 fprintf_unfiltered (gdb_stdlog,
4443 "infrun: %s executing, "
4444 "need stop\n",
4445 target_pid_to_str (t->ptid));
4446 target_stop (t->ptid);
4447 t->stop_requested = 1;
4448 }
4449 else
4450 {
4451 if (debug_infrun)
4452 fprintf_unfiltered (gdb_stdlog,
4453 "infrun: %s executing, "
4454 "already stopping\n",
4455 target_pid_to_str (t->ptid));
4456 }
4457
4458 if (t->stop_requested)
4459 need_wait = 1;
4460 }
4461 else
4462 {
4463 if (debug_infrun)
4464 fprintf_unfiltered (gdb_stdlog,
4465 "infrun: %s not executing\n",
4466 target_pid_to_str (t->ptid));
4467
4468 /* The thread may be not executing, but still be
4469 resumed with a pending status to process. */
4470 t->resumed = 0;
4471 }
4472 }
4473
4474 if (!need_wait)
4475 break;
4476
4477 /* If we find new threads on the second iteration, restart
4478 over. We want to see two iterations in a row with all
4479 threads stopped. */
4480 if (pass > 0)
4481 pass = -1;
4482
4483 event_ptid = wait_one (&ws);
4484 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4485 {
4486 /* All resumed threads exited. */
4487 }
4488 else if (ws.kind == TARGET_WAITKIND_EXITED
4489 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4490 {
4491 if (debug_infrun)
4492 {
4493 ptid_t ptid = pid_to_ptid (ws.value.integer);
4494
4495 fprintf_unfiltered (gdb_stdlog,
4496 "infrun: %s exited while "
4497 "stopping threads\n",
4498 target_pid_to_str (ptid));
4499 }
4500 }
4501 else
4502 {
4503 t = find_thread_ptid (event_ptid);
4504 if (t == NULL)
4505 t = add_thread (event_ptid);
4506
4507 t->stop_requested = 0;
4508 t->executing = 0;
4509 t->resumed = 0;
4510 t->control.may_range_step = 0;
4511
4512 if (ws.kind == TARGET_WAITKIND_STOPPED
4513 && ws.value.sig == GDB_SIGNAL_0)
4514 {
4515 /* We caught the event that we intended to catch, so
4516 there's no event pending. */
4517 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4518 t->suspend.waitstatus_pending_p = 0;
4519
4520 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4521 {
4522 /* Add it back to the step-over queue. */
4523 if (debug_infrun)
4524 {
4525 fprintf_unfiltered (gdb_stdlog,
4526 "infrun: displaced-step of %s "
4527 "canceled: adding back to the "
4528 "step-over queue\n",
4529 target_pid_to_str (t->ptid));
4530 }
4531 t->control.trap_expected = 0;
4532 thread_step_over_chain_enqueue (t);
4533 }
4534 }
4535 else
4536 {
4537 enum gdb_signal sig;
4538 struct regcache *regcache;
4539 struct address_space *aspace;
4540
4541 if (debug_infrun)
4542 {
4543 char *statstr;
4544
4545 statstr = target_waitstatus_to_string (&ws);
4546 fprintf_unfiltered (gdb_stdlog,
4547 "infrun: target_wait %s, saving "
4548 "status for %d.%ld.%ld\n",
4549 statstr,
4550 ptid_get_pid (t->ptid),
4551 ptid_get_lwp (t->ptid),
4552 ptid_get_tid (t->ptid));
4553 xfree (statstr);
4554 }
4555
4556 /* Record for later. */
4557 save_waitstatus (t, &ws);
4558
4559 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4560 ? ws.value.sig : GDB_SIGNAL_0);
4561
4562 if (displaced_step_fixup (t->ptid, sig) < 0)
4563 {
4564 /* Add it back to the step-over queue. */
4565 t->control.trap_expected = 0;
4566 thread_step_over_chain_enqueue (t);
4567 }
4568
4569 regcache = get_thread_regcache (t->ptid);
4570 t->suspend.stop_pc = regcache_read_pc (regcache);
4571
4572 if (debug_infrun)
4573 {
4574 fprintf_unfiltered (gdb_stdlog,
4575 "infrun: saved stop_pc=%s for %s "
4576 "(currently_stepping=%d)\n",
4577 paddress (target_gdbarch (),
4578 t->suspend.stop_pc),
4579 target_pid_to_str (t->ptid),
4580 currently_stepping (t));
4581 }
4582 }
4583 }
4584 }
4585 }
4586
4587 do_cleanups (old_chain);
4588
4589 if (debug_infrun)
4590 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4591}
4592
05ba8510
PA
4593/* Given an execution control state that has been freshly filled in by
4594 an event from the inferior, figure out what it means and take
4595 appropriate action.
4596
4597 The alternatives are:
4598
22bcd14b 4599 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4600 debugger.
4601
4602 2) keep_going and return; to wait for the next event (set
4603 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4604 once). */
c906108c 4605
ec9499be 4606static void
0b6e5e10 4607handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4608{
d6b48e9c
PA
4609 enum stop_kind stop_soon;
4610
28736962
PA
4611 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4612 {
4613 /* We had an event in the inferior, but we are not interested in
4614 handling it at this level. The lower layers have already
4615 done what needs to be done, if anything.
4616
4617 One of the possible circumstances for this is when the
4618 inferior produces output for the console. The inferior has
4619 not stopped, and we are ignoring the event. Another possible
4620 circumstance is any event which the lower level knows will be
4621 reported multiple times without an intervening resume. */
4622 if (debug_infrun)
4623 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4624 prepare_to_wait (ecs);
4625 return;
4626 }
4627
0e5bf2a8
PA
4628 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
4629 && target_can_async_p () && !sync_execution)
4630 {
4631 /* There were no unwaited-for children left in the target, but,
4632 we're not synchronously waiting for events either. Just
4633 ignore. Otherwise, if we were running a synchronous
4634 execution command, we need to cancel it and give the user
4635 back the terminal. */
4636 if (debug_infrun)
4637 fprintf_unfiltered (gdb_stdlog,
4638 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
4639 prepare_to_wait (ecs);
4640 return;
4641 }
4642
1777feb0 4643 /* Cache the last pid/waitstatus. */
c32c64b7 4644 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4645
ca005067 4646 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4647 stop_stack_dummy = STOP_NONE;
ca005067 4648
0e5bf2a8
PA
4649 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4650 {
4651 /* No unwaited-for children left. IOW, all resumed children
4652 have exited. */
4653 if (debug_infrun)
4654 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4655
4656 stop_print_frame = 0;
22bcd14b 4657 stop_waiting (ecs);
0e5bf2a8
PA
4658 return;
4659 }
4660
8c90c137 4661 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4662 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4663 {
4664 ecs->event_thread = find_thread_ptid (ecs->ptid);
4665 /* If it's a new thread, add it to the thread database. */
4666 if (ecs->event_thread == NULL)
4667 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4668
4669 /* Disable range stepping. If the next step request could use a
4670 range, this will be end up re-enabled then. */
4671 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4672 }
88ed393a
JK
4673
4674 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4675 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4676
4677 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4678 reinit_frame_cache ();
4679
28736962
PA
4680 breakpoint_retire_moribund ();
4681
2b009048
DJ
4682 /* First, distinguish signals caused by the debugger from signals
4683 that have to do with the program's own actions. Note that
4684 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4685 on the operating system version. Here we detect when a SIGILL or
4686 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4687 something similar for SIGSEGV, since a SIGSEGV will be generated
4688 when we're trying to execute a breakpoint instruction on a
4689 non-executable stack. This happens for call dummy breakpoints
4690 for architectures like SPARC that place call dummies on the
4691 stack. */
2b009048 4692 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4693 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4694 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4695 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4696 {
de0a0249
UW
4697 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4698
4699 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4700 regcache_read_pc (regcache)))
4701 {
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4705 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4706 }
2b009048
DJ
4707 }
4708
28736962
PA
4709 /* Mark the non-executing threads accordingly. In all-stop, all
4710 threads of all processes are stopped when we get any event
e1316e60 4711 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4712 {
4713 ptid_t mark_ptid;
4714
fbea99ea 4715 if (!target_is_non_stop_p ())
372316f1
PA
4716 mark_ptid = minus_one_ptid;
4717 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4718 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4719 {
4720 /* If we're handling a process exit in non-stop mode, even
4721 though threads haven't been deleted yet, one would think
4722 that there is nothing to do, as threads of the dead process
4723 will be soon deleted, and threads of any other process were
4724 left running. However, on some targets, threads survive a
4725 process exit event. E.g., for the "checkpoint" command,
4726 when the current checkpoint/fork exits, linux-fork.c
4727 automatically switches to another fork from within
4728 target_mourn_inferior, by associating the same
4729 inferior/thread to another fork. We haven't mourned yet at
4730 this point, but we must mark any threads left in the
4731 process as not-executing so that finish_thread_state marks
4732 them stopped (in the user's perspective) if/when we present
4733 the stop to the user. */
4734 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4735 }
4736 else
4737 mark_ptid = ecs->ptid;
4738
4739 set_executing (mark_ptid, 0);
4740
4741 /* Likewise the resumed flag. */
4742 set_resumed (mark_ptid, 0);
4743 }
8c90c137 4744
488f131b
JB
4745 switch (ecs->ws.kind)
4746 {
4747 case TARGET_WAITKIND_LOADED:
527159b7 4748 if (debug_infrun)
8a9de0e4 4749 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4750 if (!ptid_equal (ecs->ptid, inferior_ptid))
4751 context_switch (ecs->ptid);
b0f4b84b
DJ
4752 /* Ignore gracefully during startup of the inferior, as it might
4753 be the shell which has just loaded some objects, otherwise
4754 add the symbols for the newly loaded objects. Also ignore at
4755 the beginning of an attach or remote session; we will query
4756 the full list of libraries once the connection is
4757 established. */
4f5d7f63
PA
4758
4759 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4760 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4761 {
edcc5120
TT
4762 struct regcache *regcache;
4763
edcc5120
TT
4764 regcache = get_thread_regcache (ecs->ptid);
4765
4766 handle_solib_event ();
4767
4768 ecs->event_thread->control.stop_bpstat
4769 = bpstat_stop_status (get_regcache_aspace (regcache),
4770 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4771
ce12b012 4772 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4773 {
4774 /* A catchpoint triggered. */
94c57d6a
PA
4775 process_event_stop_test (ecs);
4776 return;
edcc5120 4777 }
488f131b 4778
b0f4b84b
DJ
4779 /* If requested, stop when the dynamic linker notifies
4780 gdb of events. This allows the user to get control
4781 and place breakpoints in initializer routines for
4782 dynamically loaded objects (among other things). */
a493e3e2 4783 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4784 if (stop_on_solib_events)
4785 {
55409f9d
DJ
4786 /* Make sure we print "Stopped due to solib-event" in
4787 normal_stop. */
4788 stop_print_frame = 1;
4789
22bcd14b 4790 stop_waiting (ecs);
b0f4b84b
DJ
4791 return;
4792 }
488f131b 4793 }
b0f4b84b
DJ
4794
4795 /* If we are skipping through a shell, or through shared library
4796 loading that we aren't interested in, resume the program. If
5c09a2c5 4797 we're running the program normally, also resume. */
b0f4b84b
DJ
4798 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4799 {
74960c60
VP
4800 /* Loading of shared libraries might have changed breakpoint
4801 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4802 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4803 insert_breakpoints ();
64ce06e4 4804 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4805 prepare_to_wait (ecs);
4806 return;
4807 }
4808
5c09a2c5
PA
4809 /* But stop if we're attaching or setting up a remote
4810 connection. */
4811 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4812 || stop_soon == STOP_QUIETLY_REMOTE)
4813 {
4814 if (debug_infrun)
4815 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4816 stop_waiting (ecs);
5c09a2c5
PA
4817 return;
4818 }
4819
4820 internal_error (__FILE__, __LINE__,
4821 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4822
488f131b 4823 case TARGET_WAITKIND_SPURIOUS:
527159b7 4824 if (debug_infrun)
8a9de0e4 4825 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 4826 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 4827 context_switch (ecs->ptid);
64ce06e4 4828 resume (GDB_SIGNAL_0);
488f131b
JB
4829 prepare_to_wait (ecs);
4830 return;
c5aa993b 4831
488f131b 4832 case TARGET_WAITKIND_EXITED:
940c3c06 4833 case TARGET_WAITKIND_SIGNALLED:
527159b7 4834 if (debug_infrun)
940c3c06
PA
4835 {
4836 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4837 fprintf_unfiltered (gdb_stdlog,
4838 "infrun: TARGET_WAITKIND_EXITED\n");
4839 else
4840 fprintf_unfiltered (gdb_stdlog,
4841 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4842 }
4843
fb66883a 4844 inferior_ptid = ecs->ptid;
c9657e70 4845 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4846 set_current_program_space (current_inferior ()->pspace);
4847 handle_vfork_child_exec_or_exit (0);
1777feb0 4848 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 4849
0c557179
SDJ
4850 /* Clearing any previous state of convenience variables. */
4851 clear_exit_convenience_vars ();
4852
940c3c06
PA
4853 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4854 {
4855 /* Record the exit code in the convenience variable $_exitcode, so
4856 that the user can inspect this again later. */
4857 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4858 (LONGEST) ecs->ws.value.integer);
4859
4860 /* Also record this in the inferior itself. */
4861 current_inferior ()->has_exit_code = 1;
4862 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4863
98eb56a4
PA
4864 /* Support the --return-child-result option. */
4865 return_child_result_value = ecs->ws.value.integer;
4866
fd664c91 4867 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
4868 }
4869 else
0c557179
SDJ
4870 {
4871 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4872 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4873
4874 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4875 {
4876 /* Set the value of the internal variable $_exitsignal,
4877 which holds the signal uncaught by the inferior. */
4878 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4879 gdbarch_gdb_signal_to_target (gdbarch,
4880 ecs->ws.value.sig));
4881 }
4882 else
4883 {
4884 /* We don't have access to the target's method used for
4885 converting between signal numbers (GDB's internal
4886 representation <-> target's representation).
4887 Therefore, we cannot do a good job at displaying this
4888 information to the user. It's better to just warn
4889 her about it (if infrun debugging is enabled), and
4890 give up. */
4891 if (debug_infrun)
4892 fprintf_filtered (gdb_stdlog, _("\
4893Cannot fill $_exitsignal with the correct signal number.\n"));
4894 }
4895
fd664c91 4896 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 4897 }
8cf64490 4898
488f131b
JB
4899 gdb_flush (gdb_stdout);
4900 target_mourn_inferior ();
488f131b 4901 stop_print_frame = 0;
22bcd14b 4902 stop_waiting (ecs);
488f131b 4903 return;
c5aa993b 4904
488f131b 4905 /* The following are the only cases in which we keep going;
1777feb0 4906 the above cases end in a continue or goto. */
488f131b 4907 case TARGET_WAITKIND_FORKED:
deb3b17b 4908 case TARGET_WAITKIND_VFORKED:
527159b7 4909 if (debug_infrun)
fed708ed
PA
4910 {
4911 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4912 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4913 else
4914 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4915 }
c906108c 4916
e2d96639
YQ
4917 /* Check whether the inferior is displaced stepping. */
4918 {
4919 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4920 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4921 struct displaced_step_inferior_state *displaced
4922 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
4923
4924 /* If checking displaced stepping is supported, and thread
4925 ecs->ptid is displaced stepping. */
4926 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
4927 {
4928 struct inferior *parent_inf
c9657e70 4929 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4930 struct regcache *child_regcache;
4931 CORE_ADDR parent_pc;
4932
4933 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4934 indicating that the displaced stepping of syscall instruction
4935 has been done. Perform cleanup for parent process here. Note
4936 that this operation also cleans up the child process for vfork,
4937 because their pages are shared. */
a493e3e2 4938 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
4939 /* Start a new step-over in another thread if there's one
4940 that needs it. */
4941 start_step_over ();
e2d96639
YQ
4942
4943 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4944 {
4945 /* Restore scratch pad for child process. */
4946 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4947 }
4948
4949 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4950 the child's PC is also within the scratchpad. Set the child's PC
4951 to the parent's PC value, which has already been fixed up.
4952 FIXME: we use the parent's aspace here, although we're touching
4953 the child, because the child hasn't been added to the inferior
4954 list yet at this point. */
4955
4956 child_regcache
4957 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4958 gdbarch,
4959 parent_inf->aspace);
4960 /* Read PC value of parent process. */
4961 parent_pc = regcache_read_pc (regcache);
4962
4963 if (debug_displaced)
4964 fprintf_unfiltered (gdb_stdlog,
4965 "displaced: write child pc from %s to %s\n",
4966 paddress (gdbarch,
4967 regcache_read_pc (child_regcache)),
4968 paddress (gdbarch, parent_pc));
4969
4970 regcache_write_pc (child_regcache, parent_pc);
4971 }
4972 }
4973
5a2901d9 4974 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4975 context_switch (ecs->ptid);
5a2901d9 4976
b242c3c2
PA
4977 /* Immediately detach breakpoints from the child before there's
4978 any chance of letting the user delete breakpoints from the
4979 breakpoint lists. If we don't do this early, it's easy to
4980 leave left over traps in the child, vis: "break foo; catch
4981 fork; c; <fork>; del; c; <child calls foo>". We only follow
4982 the fork on the last `continue', and by that time the
4983 breakpoint at "foo" is long gone from the breakpoint table.
4984 If we vforked, then we don't need to unpatch here, since both
4985 parent and child are sharing the same memory pages; we'll
4986 need to unpatch at follow/detach time instead to be certain
4987 that new breakpoints added between catchpoint hit time and
4988 vfork follow are detached. */
4989 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4990 {
b242c3c2
PA
4991 /* This won't actually modify the breakpoint list, but will
4992 physically remove the breakpoints from the child. */
d80ee84f 4993 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4994 }
4995
34b7e8a6 4996 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4997
e58b0e63
PA
4998 /* In case the event is caught by a catchpoint, remember that
4999 the event is to be followed at the next resume of the thread,
5000 and not immediately. */
5001 ecs->event_thread->pending_follow = ecs->ws;
5002
fb14de7b 5003 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5004
16c381f0 5005 ecs->event_thread->control.stop_bpstat
6c95b8df 5006 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5007 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5008
ce12b012
PA
5009 /* If no catchpoint triggered for this, then keep going. Note
5010 that we're interested in knowing the bpstat actually causes a
5011 stop, not just if it may explain the signal. Software
5012 watchpoints, for example, always appear in the bpstat. */
5013 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5014 {
6c95b8df
PA
5015 ptid_t parent;
5016 ptid_t child;
e58b0e63 5017 int should_resume;
3e43a32a
MS
5018 int follow_child
5019 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5020
a493e3e2 5021 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5022
5023 should_resume = follow_fork ();
5024
6c95b8df
PA
5025 parent = ecs->ptid;
5026 child = ecs->ws.value.related_pid;
5027
5028 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5029 if (!detach_fork && (non_stop
5030 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5031 {
5032 if (follow_child)
5033 switch_to_thread (parent);
5034 else
5035 switch_to_thread (child);
5036
5037 ecs->event_thread = inferior_thread ();
5038 ecs->ptid = inferior_ptid;
5039 keep_going (ecs);
5040 }
5041
5042 if (follow_child)
5043 switch_to_thread (child);
5044 else
5045 switch_to_thread (parent);
5046
e58b0e63
PA
5047 ecs->event_thread = inferior_thread ();
5048 ecs->ptid = inferior_ptid;
5049
5050 if (should_resume)
5051 keep_going (ecs);
5052 else
22bcd14b 5053 stop_waiting (ecs);
04e68871
DJ
5054 return;
5055 }
94c57d6a
PA
5056 process_event_stop_test (ecs);
5057 return;
488f131b 5058
6c95b8df
PA
5059 case TARGET_WAITKIND_VFORK_DONE:
5060 /* Done with the shared memory region. Re-insert breakpoints in
5061 the parent, and keep going. */
5062
5063 if (debug_infrun)
3e43a32a
MS
5064 fprintf_unfiltered (gdb_stdlog,
5065 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5066
5067 if (!ptid_equal (ecs->ptid, inferior_ptid))
5068 context_switch (ecs->ptid);
5069
5070 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5071 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5072 /* This also takes care of reinserting breakpoints in the
5073 previously locked inferior. */
5074 keep_going (ecs);
5075 return;
5076
488f131b 5077 case TARGET_WAITKIND_EXECD:
527159b7 5078 if (debug_infrun)
fc5261f2 5079 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5080
5a2901d9 5081 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5082 context_switch (ecs->ptid);
5a2901d9 5083
fb14de7b 5084 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5085
6c95b8df
PA
5086 /* Do whatever is necessary to the parent branch of the vfork. */
5087 handle_vfork_child_exec_or_exit (1);
5088
795e548f
PA
5089 /* This causes the eventpoints and symbol table to be reset.
5090 Must do this now, before trying to determine whether to
5091 stop. */
71b43ef8 5092 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5093
17d8546e
DB
5094 /* In follow_exec we may have deleted the original thread and
5095 created a new one. Make sure that the event thread is the
5096 execd thread for that case (this is a nop otherwise). */
5097 ecs->event_thread = inferior_thread ();
5098
16c381f0 5099 ecs->event_thread->control.stop_bpstat
6c95b8df 5100 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5101 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5102
71b43ef8
PA
5103 /* Note that this may be referenced from inside
5104 bpstat_stop_status above, through inferior_has_execd. */
5105 xfree (ecs->ws.value.execd_pathname);
5106 ecs->ws.value.execd_pathname = NULL;
5107
04e68871 5108 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5109 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5110 {
a493e3e2 5111 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5112 keep_going (ecs);
5113 return;
5114 }
94c57d6a
PA
5115 process_event_stop_test (ecs);
5116 return;
488f131b 5117
b4dc5ffa
MK
5118 /* Be careful not to try to gather much state about a thread
5119 that's in a syscall. It's frequently a losing proposition. */
488f131b 5120 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5121 if (debug_infrun)
3e43a32a
MS
5122 fprintf_unfiltered (gdb_stdlog,
5123 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5124 /* Getting the current syscall number. */
94c57d6a
PA
5125 if (handle_syscall_event (ecs) == 0)
5126 process_event_stop_test (ecs);
5127 return;
c906108c 5128
488f131b
JB
5129 /* Before examining the threads further, step this thread to
5130 get it entirely out of the syscall. (We get notice of the
5131 event when the thread is just on the verge of exiting a
5132 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5133 into user code.) */
488f131b 5134 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5135 if (debug_infrun)
3e43a32a
MS
5136 fprintf_unfiltered (gdb_stdlog,
5137 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5138 if (handle_syscall_event (ecs) == 0)
5139 process_event_stop_test (ecs);
5140 return;
c906108c 5141
488f131b 5142 case TARGET_WAITKIND_STOPPED:
527159b7 5143 if (debug_infrun)
8a9de0e4 5144 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5145 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5146 handle_signal_stop (ecs);
5147 return;
c906108c 5148
b2175913 5149 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5150 if (debug_infrun)
5151 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5152 /* Reverse execution: target ran out of history info. */
eab402df 5153
d1988021
MM
5154 /* Switch to the stopped thread. */
5155 if (!ptid_equal (ecs->ptid, inferior_ptid))
5156 context_switch (ecs->ptid);
5157 if (debug_infrun)
5158 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5159
34b7e8a6 5160 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5161 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5162 observer_notify_no_history ();
22bcd14b 5163 stop_waiting (ecs);
b2175913 5164 return;
488f131b 5165 }
4f5d7f63
PA
5166}
5167
0b6e5e10
JB
5168/* A wrapper around handle_inferior_event_1, which also makes sure
5169 that all temporary struct value objects that were created during
5170 the handling of the event get deleted at the end. */
5171
5172static void
5173handle_inferior_event (struct execution_control_state *ecs)
5174{
5175 struct value *mark = value_mark ();
5176
5177 handle_inferior_event_1 (ecs);
5178 /* Purge all temporary values created during the event handling,
5179 as it could be a long time before we return to the command level
5180 where such values would otherwise be purged. */
5181 value_free_to_mark (mark);
5182}
5183
372316f1
PA
5184/* Restart threads back to what they were trying to do back when we
5185 paused them for an in-line step-over. The EVENT_THREAD thread is
5186 ignored. */
4d9d9d04
PA
5187
5188static void
372316f1
PA
5189restart_threads (struct thread_info *event_thread)
5190{
5191 struct thread_info *tp;
5192 struct thread_info *step_over = NULL;
5193
5194 /* In case the instruction just stepped spawned a new thread. */
5195 update_thread_list ();
5196
5197 ALL_NON_EXITED_THREADS (tp)
5198 {
5199 if (tp == event_thread)
5200 {
5201 if (debug_infrun)
5202 fprintf_unfiltered (gdb_stdlog,
5203 "infrun: restart threads: "
5204 "[%s] is event thread\n",
5205 target_pid_to_str (tp->ptid));
5206 continue;
5207 }
5208
5209 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5210 {
5211 if (debug_infrun)
5212 fprintf_unfiltered (gdb_stdlog,
5213 "infrun: restart threads: "
5214 "[%s] not meant to be running\n",
5215 target_pid_to_str (tp->ptid));
5216 continue;
5217 }
5218
5219 if (tp->resumed)
5220 {
5221 if (debug_infrun)
5222 fprintf_unfiltered (gdb_stdlog,
5223 "infrun: restart threads: [%s] resumed\n",
5224 target_pid_to_str (tp->ptid));
5225 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5226 continue;
5227 }
5228
5229 if (thread_is_in_step_over_chain (tp))
5230 {
5231 if (debug_infrun)
5232 fprintf_unfiltered (gdb_stdlog,
5233 "infrun: restart threads: "
5234 "[%s] needs step-over\n",
5235 target_pid_to_str (tp->ptid));
5236 gdb_assert (!tp->resumed);
5237 continue;
5238 }
5239
5240
5241 if (tp->suspend.waitstatus_pending_p)
5242 {
5243 if (debug_infrun)
5244 fprintf_unfiltered (gdb_stdlog,
5245 "infrun: restart threads: "
5246 "[%s] has pending status\n",
5247 target_pid_to_str (tp->ptid));
5248 tp->resumed = 1;
5249 continue;
5250 }
5251
5252 /* If some thread needs to start a step-over at this point, it
5253 should still be in the step-over queue, and thus skipped
5254 above. */
5255 if (thread_still_needs_step_over (tp))
5256 {
5257 internal_error (__FILE__, __LINE__,
5258 "thread [%s] needs a step-over, but not in "
5259 "step-over queue\n",
5260 target_pid_to_str (tp->ptid));
5261 }
5262
5263 if (currently_stepping (tp))
5264 {
5265 if (debug_infrun)
5266 fprintf_unfiltered (gdb_stdlog,
5267 "infrun: restart threads: [%s] was stepping\n",
5268 target_pid_to_str (tp->ptid));
5269 keep_going_stepped_thread (tp);
5270 }
5271 else
5272 {
5273 struct execution_control_state ecss;
5274 struct execution_control_state *ecs = &ecss;
5275
5276 if (debug_infrun)
5277 fprintf_unfiltered (gdb_stdlog,
5278 "infrun: restart threads: [%s] continuing\n",
5279 target_pid_to_str (tp->ptid));
5280 reset_ecs (ecs, tp);
5281 switch_to_thread (tp->ptid);
5282 keep_going_pass_signal (ecs);
5283 }
5284 }
5285}
5286
5287/* Callback for iterate_over_threads. Find a resumed thread that has
5288 a pending waitstatus. */
5289
5290static int
5291resumed_thread_with_pending_status (struct thread_info *tp,
5292 void *arg)
5293{
5294 return (tp->resumed
5295 && tp->suspend.waitstatus_pending_p);
5296}
5297
5298/* Called when we get an event that may finish an in-line or
5299 out-of-line (displaced stepping) step-over started previously.
5300 Return true if the event is processed and we should go back to the
5301 event loop; false if the caller should continue processing the
5302 event. */
5303
5304static int
4d9d9d04
PA
5305finish_step_over (struct execution_control_state *ecs)
5306{
372316f1
PA
5307 int had_step_over_info;
5308
4d9d9d04
PA
5309 displaced_step_fixup (ecs->ptid,
5310 ecs->event_thread->suspend.stop_signal);
5311
372316f1
PA
5312 had_step_over_info = step_over_info_valid_p ();
5313
5314 if (had_step_over_info)
4d9d9d04
PA
5315 {
5316 /* If we're stepping over a breakpoint with all threads locked,
5317 then only the thread that was stepped should be reporting
5318 back an event. */
5319 gdb_assert (ecs->event_thread->control.trap_expected);
5320
5321 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5322 clear_step_over_info ();
5323 }
5324
fbea99ea 5325 if (!target_is_non_stop_p ())
372316f1 5326 return 0;
4d9d9d04
PA
5327
5328 /* Start a new step-over in another thread if there's one that
5329 needs it. */
5330 start_step_over ();
372316f1
PA
5331
5332 /* If we were stepping over a breakpoint before, and haven't started
5333 a new in-line step-over sequence, then restart all other threads
5334 (except the event thread). We can't do this in all-stop, as then
5335 e.g., we wouldn't be able to issue any other remote packet until
5336 these other threads stop. */
5337 if (had_step_over_info && !step_over_info_valid_p ())
5338 {
5339 struct thread_info *pending;
5340
5341 /* If we only have threads with pending statuses, the restart
5342 below won't restart any thread and so nothing re-inserts the
5343 breakpoint we just stepped over. But we need it inserted
5344 when we later process the pending events, otherwise if
5345 another thread has a pending event for this breakpoint too,
5346 we'd discard its event (because the breakpoint that
5347 originally caused the event was no longer inserted). */
5348 context_switch (ecs->ptid);
5349 insert_breakpoints ();
5350
5351 restart_threads (ecs->event_thread);
5352
5353 /* If we have events pending, go through handle_inferior_event
5354 again, picking up a pending event at random. This avoids
5355 thread starvation. */
5356
5357 /* But not if we just stepped over a watchpoint in order to let
5358 the instruction execute so we can evaluate its expression.
5359 The set of watchpoints that triggered is recorded in the
5360 breakpoint objects themselves (see bp->watchpoint_triggered).
5361 If we processed another event first, that other event could
5362 clobber this info. */
5363 if (ecs->event_thread->stepping_over_watchpoint)
5364 return 0;
5365
5366 pending = iterate_over_threads (resumed_thread_with_pending_status,
5367 NULL);
5368 if (pending != NULL)
5369 {
5370 struct thread_info *tp = ecs->event_thread;
5371 struct regcache *regcache;
5372
5373 if (debug_infrun)
5374 {
5375 fprintf_unfiltered (gdb_stdlog,
5376 "infrun: found resumed threads with "
5377 "pending events, saving status\n");
5378 }
5379
5380 gdb_assert (pending != tp);
5381
5382 /* Record the event thread's event for later. */
5383 save_waitstatus (tp, &ecs->ws);
5384 /* This was cleared early, by handle_inferior_event. Set it
5385 so this pending event is considered by
5386 do_target_wait. */
5387 tp->resumed = 1;
5388
5389 gdb_assert (!tp->executing);
5390
5391 regcache = get_thread_regcache (tp->ptid);
5392 tp->suspend.stop_pc = regcache_read_pc (regcache);
5393
5394 if (debug_infrun)
5395 {
5396 fprintf_unfiltered (gdb_stdlog,
5397 "infrun: saved stop_pc=%s for %s "
5398 "(currently_stepping=%d)\n",
5399 paddress (target_gdbarch (),
5400 tp->suspend.stop_pc),
5401 target_pid_to_str (tp->ptid),
5402 currently_stepping (tp));
5403 }
5404
5405 /* This in-line step-over finished; clear this so we won't
5406 start a new one. This is what handle_signal_stop would
5407 do, if we returned false. */
5408 tp->stepping_over_breakpoint = 0;
5409
5410 /* Wake up the event loop again. */
5411 mark_async_event_handler (infrun_async_inferior_event_token);
5412
5413 prepare_to_wait (ecs);
5414 return 1;
5415 }
5416 }
5417
5418 return 0;
4d9d9d04
PA
5419}
5420
4f5d7f63
PA
5421/* Come here when the program has stopped with a signal. */
5422
5423static void
5424handle_signal_stop (struct execution_control_state *ecs)
5425{
5426 struct frame_info *frame;
5427 struct gdbarch *gdbarch;
5428 int stopped_by_watchpoint;
5429 enum stop_kind stop_soon;
5430 int random_signal;
c906108c 5431
f0407826
DE
5432 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5433
5434 /* Do we need to clean up the state of a thread that has
5435 completed a displaced single-step? (Doing so usually affects
5436 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5437 if (finish_step_over (ecs))
5438 return;
f0407826
DE
5439
5440 /* If we either finished a single-step or hit a breakpoint, but
5441 the user wanted this thread to be stopped, pretend we got a
5442 SIG0 (generic unsignaled stop). */
5443 if (ecs->event_thread->stop_requested
5444 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5445 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5446
515630c5 5447 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5448
527159b7 5449 if (debug_infrun)
237fc4c9 5450 {
5af949e3
UW
5451 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5452 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5453 struct cleanup *old_chain = save_inferior_ptid ();
5454
5455 inferior_ptid = ecs->ptid;
5af949e3
UW
5456
5457 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5458 paddress (gdbarch, stop_pc));
d92524f1 5459 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5460 {
5461 CORE_ADDR addr;
abbb1732 5462
237fc4c9
PA
5463 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5464
5465 if (target_stopped_data_address (&current_target, &addr))
5466 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5467 "infrun: stopped data address = %s\n",
5468 paddress (gdbarch, addr));
237fc4c9
PA
5469 else
5470 fprintf_unfiltered (gdb_stdlog,
5471 "infrun: (no data address available)\n");
5472 }
7f82dfc7
JK
5473
5474 do_cleanups (old_chain);
237fc4c9 5475 }
527159b7 5476
36fa8042
PA
5477 /* This is originated from start_remote(), start_inferior() and
5478 shared libraries hook functions. */
5479 stop_soon = get_inferior_stop_soon (ecs->ptid);
5480 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5481 {
5482 if (!ptid_equal (ecs->ptid, inferior_ptid))
5483 context_switch (ecs->ptid);
5484 if (debug_infrun)
5485 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5486 stop_print_frame = 1;
22bcd14b 5487 stop_waiting (ecs);
36fa8042
PA
5488 return;
5489 }
5490
5491 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5492 && stop_after_trap)
5493 {
5494 if (!ptid_equal (ecs->ptid, inferior_ptid))
5495 context_switch (ecs->ptid);
5496 if (debug_infrun)
5497 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5498 stop_print_frame = 0;
22bcd14b 5499 stop_waiting (ecs);
36fa8042
PA
5500 return;
5501 }
5502
5503 /* This originates from attach_command(). We need to overwrite
5504 the stop_signal here, because some kernels don't ignore a
5505 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5506 See more comments in inferior.h. On the other hand, if we
5507 get a non-SIGSTOP, report it to the user - assume the backend
5508 will handle the SIGSTOP if it should show up later.
5509
5510 Also consider that the attach is complete when we see a
5511 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5512 target extended-remote report it instead of a SIGSTOP
5513 (e.g. gdbserver). We already rely on SIGTRAP being our
5514 signal, so this is no exception.
5515
5516 Also consider that the attach is complete when we see a
5517 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5518 the target to stop all threads of the inferior, in case the
5519 low level attach operation doesn't stop them implicitly. If
5520 they weren't stopped implicitly, then the stub will report a
5521 GDB_SIGNAL_0, meaning: stopped for no particular reason
5522 other than GDB's request. */
5523 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5524 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5525 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5526 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5527 {
5528 stop_print_frame = 1;
22bcd14b 5529 stop_waiting (ecs);
36fa8042
PA
5530 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5531 return;
5532 }
5533
488f131b 5534 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5535 so, then switch to that thread. */
5536 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5537 {
527159b7 5538 if (debug_infrun)
8a9de0e4 5539 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5540
0d1e5fa7 5541 context_switch (ecs->ptid);
c5aa993b 5542
9a4105ab
AC
5543 if (deprecated_context_hook)
5544 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 5545 }
c906108c 5546
568d6575
UW
5547 /* At this point, get hold of the now-current thread's frame. */
5548 frame = get_current_frame ();
5549 gdbarch = get_frame_arch (frame);
5550
2adfaa28 5551 /* Pull the single step breakpoints out of the target. */
af48d08f 5552 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5553 {
af48d08f
PA
5554 struct regcache *regcache;
5555 struct address_space *aspace;
5556 CORE_ADDR pc;
2adfaa28 5557
af48d08f
PA
5558 regcache = get_thread_regcache (ecs->ptid);
5559 aspace = get_regcache_aspace (regcache);
5560 pc = regcache_read_pc (regcache);
34b7e8a6 5561
af48d08f
PA
5562 /* However, before doing so, if this single-step breakpoint was
5563 actually for another thread, set this thread up for moving
5564 past it. */
5565 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5566 aspace, pc))
5567 {
5568 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5569 {
5570 if (debug_infrun)
5571 {
5572 fprintf_unfiltered (gdb_stdlog,
af48d08f 5573 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5574 "single-step breakpoint\n",
5575 target_pid_to_str (ecs->ptid));
2adfaa28 5576 }
af48d08f
PA
5577 ecs->hit_singlestep_breakpoint = 1;
5578 }
5579 }
5580 else
5581 {
5582 if (debug_infrun)
5583 {
5584 fprintf_unfiltered (gdb_stdlog,
5585 "infrun: [%s] hit its "
5586 "single-step breakpoint\n",
5587 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5588 }
5589 }
488f131b 5590 }
af48d08f 5591 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5592
963f9c80
PA
5593 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5594 && ecs->event_thread->control.trap_expected
5595 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5596 stopped_by_watchpoint = 0;
5597 else
5598 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5599
5600 /* If necessary, step over this watchpoint. We'll be back to display
5601 it in a moment. */
5602 if (stopped_by_watchpoint
d92524f1 5603 && (target_have_steppable_watchpoint
568d6575 5604 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5605 {
488f131b
JB
5606 /* At this point, we are stopped at an instruction which has
5607 attempted to write to a piece of memory under control of
5608 a watchpoint. The instruction hasn't actually executed
5609 yet. If we were to evaluate the watchpoint expression
5610 now, we would get the old value, and therefore no change
5611 would seem to have occurred.
5612
5613 In order to make watchpoints work `right', we really need
5614 to complete the memory write, and then evaluate the
d983da9c
DJ
5615 watchpoint expression. We do this by single-stepping the
5616 target.
5617
7f89fd65 5618 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5619 it. For example, the PA can (with some kernel cooperation)
5620 single step over a watchpoint without disabling the watchpoint.
5621
5622 It is far more common to need to disable a watchpoint to step
5623 the inferior over it. If we have non-steppable watchpoints,
5624 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5625 disable all watchpoints.
5626
5627 Any breakpoint at PC must also be stepped over -- if there's
5628 one, it will have already triggered before the watchpoint
5629 triggered, and we either already reported it to the user, or
5630 it didn't cause a stop and we called keep_going. In either
5631 case, if there was a breakpoint at PC, we must be trying to
5632 step past it. */
5633 ecs->event_thread->stepping_over_watchpoint = 1;
5634 keep_going (ecs);
488f131b
JB
5635 return;
5636 }
5637
4e1c45ea 5638 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5639 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5640 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5641 ecs->event_thread->control.stop_step = 0;
488f131b 5642 stop_print_frame = 1;
488f131b 5643 stopped_by_random_signal = 0;
488f131b 5644
edb3359d
DJ
5645 /* Hide inlined functions starting here, unless we just performed stepi or
5646 nexti. After stepi and nexti, always show the innermost frame (not any
5647 inline function call sites). */
16c381f0 5648 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5649 {
5650 struct address_space *aspace =
5651 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5652
5653 /* skip_inline_frames is expensive, so we avoid it if we can
5654 determine that the address is one where functions cannot have
5655 been inlined. This improves performance with inferiors that
5656 load a lot of shared libraries, because the solib event
5657 breakpoint is defined as the address of a function (i.e. not
5658 inline). Note that we have to check the previous PC as well
5659 as the current one to catch cases when we have just
5660 single-stepped off a breakpoint prior to reinstating it.
5661 Note that we're assuming that the code we single-step to is
5662 not inline, but that's not definitive: there's nothing
5663 preventing the event breakpoint function from containing
5664 inlined code, and the single-step ending up there. If the
5665 user had set a breakpoint on that inlined code, the missing
5666 skip_inline_frames call would break things. Fortunately
5667 that's an extremely unlikely scenario. */
09ac7c10 5668 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5669 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5670 && ecs->event_thread->control.trap_expected
5671 && pc_at_non_inline_function (aspace,
5672 ecs->event_thread->prev_pc,
09ac7c10 5673 &ecs->ws)))
1c5a993e
MR
5674 {
5675 skip_inline_frames (ecs->ptid);
5676
5677 /* Re-fetch current thread's frame in case that invalidated
5678 the frame cache. */
5679 frame = get_current_frame ();
5680 gdbarch = get_frame_arch (frame);
5681 }
0574c78f 5682 }
edb3359d 5683
a493e3e2 5684 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5685 && ecs->event_thread->control.trap_expected
568d6575 5686 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5687 && currently_stepping (ecs->event_thread))
3352ef37 5688 {
b50d7442 5689 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5690 also on an instruction that needs to be stepped multiple
1777feb0 5691 times before it's been fully executing. E.g., architectures
3352ef37
AC
5692 with a delay slot. It needs to be stepped twice, once for
5693 the instruction and once for the delay slot. */
5694 int step_through_delay
568d6575 5695 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5696
527159b7 5697 if (debug_infrun && step_through_delay)
8a9de0e4 5698 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5699 if (ecs->event_thread->control.step_range_end == 0
5700 && step_through_delay)
3352ef37
AC
5701 {
5702 /* The user issued a continue when stopped at a breakpoint.
5703 Set up for another trap and get out of here. */
4e1c45ea 5704 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5705 keep_going (ecs);
5706 return;
5707 }
5708 else if (step_through_delay)
5709 {
5710 /* The user issued a step when stopped at a breakpoint.
5711 Maybe we should stop, maybe we should not - the delay
5712 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5713 case, don't decide that here, just set
5714 ecs->stepping_over_breakpoint, making sure we
5715 single-step again before breakpoints are re-inserted. */
4e1c45ea 5716 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5717 }
5718 }
5719
ab04a2af
TT
5720 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5721 handles this event. */
5722 ecs->event_thread->control.stop_bpstat
5723 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5724 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5725
ab04a2af
TT
5726 /* Following in case break condition called a
5727 function. */
5728 stop_print_frame = 1;
73dd234f 5729
ab04a2af
TT
5730 /* This is where we handle "moribund" watchpoints. Unlike
5731 software breakpoints traps, hardware watchpoint traps are
5732 always distinguishable from random traps. If no high-level
5733 watchpoint is associated with the reported stop data address
5734 anymore, then the bpstat does not explain the signal ---
5735 simply make sure to ignore it if `stopped_by_watchpoint' is
5736 set. */
5737
5738 if (debug_infrun
5739 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5740 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5741 GDB_SIGNAL_TRAP)
ab04a2af
TT
5742 && stopped_by_watchpoint)
5743 fprintf_unfiltered (gdb_stdlog,
5744 "infrun: no user watchpoint explains "
5745 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5746
bac7d97b 5747 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5748 at one stage in the past included checks for an inferior
5749 function call's call dummy's return breakpoint. The original
5750 comment, that went with the test, read:
03cebad2 5751
ab04a2af
TT
5752 ``End of a stack dummy. Some systems (e.g. Sony news) give
5753 another signal besides SIGTRAP, so check here as well as
5754 above.''
73dd234f 5755
ab04a2af
TT
5756 If someone ever tries to get call dummys on a
5757 non-executable stack to work (where the target would stop
5758 with something like a SIGSEGV), then those tests might need
5759 to be re-instated. Given, however, that the tests were only
5760 enabled when momentary breakpoints were not being used, I
5761 suspect that it won't be the case.
488f131b 5762
ab04a2af
TT
5763 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5764 be necessary for call dummies on a non-executable stack on
5765 SPARC. */
488f131b 5766
bac7d97b 5767 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5768 random_signal
5769 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5770 ecs->event_thread->suspend.stop_signal);
bac7d97b 5771
1cf4d951
PA
5772 /* Maybe this was a trap for a software breakpoint that has since
5773 been removed. */
5774 if (random_signal && target_stopped_by_sw_breakpoint ())
5775 {
5776 if (program_breakpoint_here_p (gdbarch, stop_pc))
5777 {
5778 struct regcache *regcache;
5779 int decr_pc;
5780
5781 /* Re-adjust PC to what the program would see if GDB was not
5782 debugging it. */
5783 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5784 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5785 if (decr_pc != 0)
5786 {
5787 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
5788
5789 if (record_full_is_used ())
5790 record_full_gdb_operation_disable_set ();
5791
5792 regcache_write_pc (regcache, stop_pc + decr_pc);
5793
5794 do_cleanups (old_cleanups);
5795 }
5796 }
5797 else
5798 {
5799 /* A delayed software breakpoint event. Ignore the trap. */
5800 if (debug_infrun)
5801 fprintf_unfiltered (gdb_stdlog,
5802 "infrun: delayed software breakpoint "
5803 "trap, ignoring\n");
5804 random_signal = 0;
5805 }
5806 }
5807
5808 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5809 has since been removed. */
5810 if (random_signal && target_stopped_by_hw_breakpoint ())
5811 {
5812 /* A delayed hardware breakpoint event. Ignore the trap. */
5813 if (debug_infrun)
5814 fprintf_unfiltered (gdb_stdlog,
5815 "infrun: delayed hardware breakpoint/watchpoint "
5816 "trap, ignoring\n");
5817 random_signal = 0;
5818 }
5819
bac7d97b
PA
5820 /* If not, perhaps stepping/nexting can. */
5821 if (random_signal)
5822 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5823 && currently_stepping (ecs->event_thread));
ab04a2af 5824
2adfaa28
PA
5825 /* Perhaps the thread hit a single-step breakpoint of _another_
5826 thread. Single-step breakpoints are transparent to the
5827 breakpoints module. */
5828 if (random_signal)
5829 random_signal = !ecs->hit_singlestep_breakpoint;
5830
bac7d97b
PA
5831 /* No? Perhaps we got a moribund watchpoint. */
5832 if (random_signal)
5833 random_signal = !stopped_by_watchpoint;
ab04a2af 5834
488f131b
JB
5835 /* For the program's own signals, act according to
5836 the signal handling tables. */
5837
ce12b012 5838 if (random_signal)
488f131b
JB
5839 {
5840 /* Signal not for debugging purposes. */
c9657e70 5841 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5842 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5843
527159b7 5844 if (debug_infrun)
c9737c08
PA
5845 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5846 gdb_signal_to_symbol_string (stop_signal));
527159b7 5847
488f131b
JB
5848 stopped_by_random_signal = 1;
5849
252fbfc8
PA
5850 /* Always stop on signals if we're either just gaining control
5851 of the program, or the user explicitly requested this thread
5852 to remain stopped. */
d6b48e9c 5853 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5854 || ecs->event_thread->stop_requested
24291992 5855 || (!inf->detaching
16c381f0 5856 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5857 {
22bcd14b 5858 stop_waiting (ecs);
488f131b
JB
5859 return;
5860 }
b57bacec
PA
5861
5862 /* Notify observers the signal has "handle print" set. Note we
5863 returned early above if stopping; normal_stop handles the
5864 printing in that case. */
5865 if (signal_print[ecs->event_thread->suspend.stop_signal])
5866 {
5867 /* The signal table tells us to print about this signal. */
5868 target_terminal_ours_for_output ();
5869 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
5870 target_terminal_inferior ();
5871 }
488f131b
JB
5872
5873 /* Clear the signal if it should not be passed. */
16c381f0 5874 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5875 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5876
fb14de7b 5877 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 5878 && ecs->event_thread->control.trap_expected
8358c15c 5879 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 5880 {
372316f1
PA
5881 int was_in_line;
5882
68f53502
AC
5883 /* We were just starting a new sequence, attempting to
5884 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5885 Instead this signal arrives. This signal will take us out
68f53502
AC
5886 of the stepping range so GDB needs to remember to, when
5887 the signal handler returns, resume stepping off that
5888 breakpoint. */
5889 /* To simplify things, "continue" is forced to use the same
5890 code paths as single-step - set a breakpoint at the
5891 signal return address and then, once hit, step off that
5892 breakpoint. */
237fc4c9
PA
5893 if (debug_infrun)
5894 fprintf_unfiltered (gdb_stdlog,
5895 "infrun: signal arrived while stepping over "
5896 "breakpoint\n");
d3169d93 5897
372316f1
PA
5898 was_in_line = step_over_info_valid_p ();
5899 clear_step_over_info ();
2c03e5be 5900 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5901 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5902 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5903 ecs->event_thread->control.trap_expected = 0;
d137e6dc 5904
fbea99ea 5905 if (target_is_non_stop_p ())
372316f1 5906 {
fbea99ea
PA
5907 /* Either "set non-stop" is "on", or the target is
5908 always in non-stop mode. In this case, we have a bit
5909 more work to do. Resume the current thread, and if
5910 we had paused all threads, restart them while the
5911 signal handler runs. */
372316f1
PA
5912 keep_going (ecs);
5913
372316f1
PA
5914 if (was_in_line)
5915 {
372316f1
PA
5916 restart_threads (ecs->event_thread);
5917 }
5918 else if (debug_infrun)
5919 {
5920 fprintf_unfiltered (gdb_stdlog,
5921 "infrun: no need to restart threads\n");
5922 }
5923 return;
5924 }
5925
d137e6dc
PA
5926 /* If we were nexting/stepping some other thread, switch to
5927 it, so that we don't continue it, losing control. */
5928 if (!switch_back_to_stepped_thread (ecs))
5929 keep_going (ecs);
9d799f85 5930 return;
68f53502 5931 }
9d799f85 5932
e5f8a7cc
PA
5933 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
5934 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
5935 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5936 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5937 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5938 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5939 {
5940 /* The inferior is about to take a signal that will take it
5941 out of the single step range. Set a breakpoint at the
5942 current PC (which is presumably where the signal handler
5943 will eventually return) and then allow the inferior to
5944 run free.
5945
5946 Note that this is only needed for a signal delivered
5947 while in the single-step range. Nested signals aren't a
5948 problem as they eventually all return. */
237fc4c9
PA
5949 if (debug_infrun)
5950 fprintf_unfiltered (gdb_stdlog,
5951 "infrun: signal may take us out of "
5952 "single-step range\n");
5953
372316f1 5954 clear_step_over_info ();
2c03e5be 5955 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5956 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5957 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5958 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5959 keep_going (ecs);
5960 return;
d303a6c7 5961 }
9d799f85
AC
5962
5963 /* Note: step_resume_breakpoint may be non-NULL. This occures
5964 when either there's a nested signal, or when there's a
5965 pending signal enabled just as the signal handler returns
5966 (leaving the inferior at the step-resume-breakpoint without
5967 actually executing it). Either way continue until the
5968 breakpoint is really hit. */
c447ac0b
PA
5969
5970 if (!switch_back_to_stepped_thread (ecs))
5971 {
5972 if (debug_infrun)
5973 fprintf_unfiltered (gdb_stdlog,
5974 "infrun: random signal, keep going\n");
5975
5976 keep_going (ecs);
5977 }
5978 return;
488f131b 5979 }
94c57d6a
PA
5980
5981 process_event_stop_test (ecs);
5982}
5983
5984/* Come here when we've got some debug event / signal we can explain
5985 (IOW, not a random signal), and test whether it should cause a
5986 stop, or whether we should resume the inferior (transparently).
5987 E.g., could be a breakpoint whose condition evaluates false; we
5988 could be still stepping within the line; etc. */
5989
5990static void
5991process_event_stop_test (struct execution_control_state *ecs)
5992{
5993 struct symtab_and_line stop_pc_sal;
5994 struct frame_info *frame;
5995 struct gdbarch *gdbarch;
cdaa5b73
PA
5996 CORE_ADDR jmp_buf_pc;
5997 struct bpstat_what what;
94c57d6a 5998
cdaa5b73 5999 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6000
cdaa5b73
PA
6001 frame = get_current_frame ();
6002 gdbarch = get_frame_arch (frame);
fcf3daef 6003
cdaa5b73 6004 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6005
cdaa5b73
PA
6006 if (what.call_dummy)
6007 {
6008 stop_stack_dummy = what.call_dummy;
6009 }
186c406b 6010
243a9253
PA
6011 /* A few breakpoint types have callbacks associated (e.g.,
6012 bp_jit_event). Run them now. */
6013 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6014
cdaa5b73
PA
6015 /* If we hit an internal event that triggers symbol changes, the
6016 current frame will be invalidated within bpstat_what (e.g., if we
6017 hit an internal solib event). Re-fetch it. */
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
e2e4d78b 6020
cdaa5b73
PA
6021 switch (what.main_action)
6022 {
6023 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6024 /* If we hit the breakpoint at longjmp while stepping, we
6025 install a momentary breakpoint at the target of the
6026 jmp_buf. */
186c406b 6027
cdaa5b73
PA
6028 if (debug_infrun)
6029 fprintf_unfiltered (gdb_stdlog,
6030 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6031
cdaa5b73 6032 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6033
cdaa5b73
PA
6034 if (what.is_longjmp)
6035 {
6036 struct value *arg_value;
6037
6038 /* If we set the longjmp breakpoint via a SystemTap probe,
6039 then use it to extract the arguments. The destination PC
6040 is the third argument to the probe. */
6041 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6042 if (arg_value)
8fa0c4f8
AA
6043 {
6044 jmp_buf_pc = value_as_address (arg_value);
6045 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6046 }
cdaa5b73
PA
6047 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6048 || !gdbarch_get_longjmp_target (gdbarch,
6049 frame, &jmp_buf_pc))
e2e4d78b 6050 {
cdaa5b73
PA
6051 if (debug_infrun)
6052 fprintf_unfiltered (gdb_stdlog,
6053 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6054 "(!gdbarch_get_longjmp_target)\n");
6055 keep_going (ecs);
6056 return;
e2e4d78b 6057 }
e2e4d78b 6058
cdaa5b73
PA
6059 /* Insert a breakpoint at resume address. */
6060 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6061 }
6062 else
6063 check_exception_resume (ecs, frame);
6064 keep_going (ecs);
6065 return;
e81a37f7 6066
cdaa5b73
PA
6067 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6068 {
6069 struct frame_info *init_frame;
e81a37f7 6070
cdaa5b73 6071 /* There are several cases to consider.
c906108c 6072
cdaa5b73
PA
6073 1. The initiating frame no longer exists. In this case we
6074 must stop, because the exception or longjmp has gone too
6075 far.
2c03e5be 6076
cdaa5b73
PA
6077 2. The initiating frame exists, and is the same as the
6078 current frame. We stop, because the exception or longjmp
6079 has been caught.
2c03e5be 6080
cdaa5b73
PA
6081 3. The initiating frame exists and is different from the
6082 current frame. This means the exception or longjmp has
6083 been caught beneath the initiating frame, so keep going.
c906108c 6084
cdaa5b73
PA
6085 4. longjmp breakpoint has been placed just to protect
6086 against stale dummy frames and user is not interested in
6087 stopping around longjmps. */
c5aa993b 6088
cdaa5b73
PA
6089 if (debug_infrun)
6090 fprintf_unfiltered (gdb_stdlog,
6091 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6092
cdaa5b73
PA
6093 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6094 != NULL);
6095 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6096
cdaa5b73
PA
6097 if (what.is_longjmp)
6098 {
b67a2c6f 6099 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6100
cdaa5b73 6101 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6102 {
cdaa5b73
PA
6103 /* Case 4. */
6104 keep_going (ecs);
6105 return;
e5ef252a 6106 }
cdaa5b73 6107 }
c5aa993b 6108
cdaa5b73 6109 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6110
cdaa5b73
PA
6111 if (init_frame)
6112 {
6113 struct frame_id current_id
6114 = get_frame_id (get_current_frame ());
6115 if (frame_id_eq (current_id,
6116 ecs->event_thread->initiating_frame))
6117 {
6118 /* Case 2. Fall through. */
6119 }
6120 else
6121 {
6122 /* Case 3. */
6123 keep_going (ecs);
6124 return;
6125 }
68f53502 6126 }
488f131b 6127
cdaa5b73
PA
6128 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6129 exists. */
6130 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6131
bdc36728 6132 end_stepping_range (ecs);
cdaa5b73
PA
6133 }
6134 return;
e5ef252a 6135
cdaa5b73
PA
6136 case BPSTAT_WHAT_SINGLE:
6137 if (debug_infrun)
6138 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6139 ecs->event_thread->stepping_over_breakpoint = 1;
6140 /* Still need to check other stuff, at least the case where we
6141 are stepping and step out of the right range. */
6142 break;
e5ef252a 6143
cdaa5b73
PA
6144 case BPSTAT_WHAT_STEP_RESUME:
6145 if (debug_infrun)
6146 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6147
cdaa5b73
PA
6148 delete_step_resume_breakpoint (ecs->event_thread);
6149 if (ecs->event_thread->control.proceed_to_finish
6150 && execution_direction == EXEC_REVERSE)
6151 {
6152 struct thread_info *tp = ecs->event_thread;
6153
6154 /* We are finishing a function in reverse, and just hit the
6155 step-resume breakpoint at the start address of the
6156 function, and we're almost there -- just need to back up
6157 by one more single-step, which should take us back to the
6158 function call. */
6159 tp->control.step_range_start = tp->control.step_range_end = 1;
6160 keep_going (ecs);
e5ef252a 6161 return;
cdaa5b73
PA
6162 }
6163 fill_in_stop_func (gdbarch, ecs);
6164 if (stop_pc == ecs->stop_func_start
6165 && execution_direction == EXEC_REVERSE)
6166 {
6167 /* We are stepping over a function call in reverse, and just
6168 hit the step-resume breakpoint at the start address of
6169 the function. Go back to single-stepping, which should
6170 take us back to the function call. */
6171 ecs->event_thread->stepping_over_breakpoint = 1;
6172 keep_going (ecs);
6173 return;
6174 }
6175 break;
e5ef252a 6176
cdaa5b73
PA
6177 case BPSTAT_WHAT_STOP_NOISY:
6178 if (debug_infrun)
6179 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6180 stop_print_frame = 1;
e5ef252a 6181
99619bea
PA
6182 /* Assume the thread stopped for a breapoint. We'll still check
6183 whether a/the breakpoint is there when the thread is next
6184 resumed. */
6185 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6186
22bcd14b 6187 stop_waiting (ecs);
cdaa5b73 6188 return;
e5ef252a 6189
cdaa5b73
PA
6190 case BPSTAT_WHAT_STOP_SILENT:
6191 if (debug_infrun)
6192 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6193 stop_print_frame = 0;
e5ef252a 6194
99619bea
PA
6195 /* Assume the thread stopped for a breapoint. We'll still check
6196 whether a/the breakpoint is there when the thread is next
6197 resumed. */
6198 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6199 stop_waiting (ecs);
cdaa5b73
PA
6200 return;
6201
6202 case BPSTAT_WHAT_HP_STEP_RESUME:
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6205
6206 delete_step_resume_breakpoint (ecs->event_thread);
6207 if (ecs->event_thread->step_after_step_resume_breakpoint)
6208 {
6209 /* Back when the step-resume breakpoint was inserted, we
6210 were trying to single-step off a breakpoint. Go back to
6211 doing that. */
6212 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6213 ecs->event_thread->stepping_over_breakpoint = 1;
6214 keep_going (ecs);
6215 return;
e5ef252a 6216 }
cdaa5b73
PA
6217 break;
6218
6219 case BPSTAT_WHAT_KEEP_CHECKING:
6220 break;
e5ef252a 6221 }
c906108c 6222
af48d08f
PA
6223 /* If we stepped a permanent breakpoint and we had a high priority
6224 step-resume breakpoint for the address we stepped, but we didn't
6225 hit it, then we must have stepped into the signal handler. The
6226 step-resume was only necessary to catch the case of _not_
6227 stepping into the handler, so delete it, and fall through to
6228 checking whether the step finished. */
6229 if (ecs->event_thread->stepped_breakpoint)
6230 {
6231 struct breakpoint *sr_bp
6232 = ecs->event_thread->control.step_resume_breakpoint;
6233
8d707a12
PA
6234 if (sr_bp != NULL
6235 && sr_bp->loc->permanent
af48d08f
PA
6236 && sr_bp->type == bp_hp_step_resume
6237 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6238 {
6239 if (debug_infrun)
6240 fprintf_unfiltered (gdb_stdlog,
6241 "infrun: stepped permanent breakpoint, stopped in "
6242 "handler\n");
6243 delete_step_resume_breakpoint (ecs->event_thread);
6244 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6245 }
6246 }
6247
cdaa5b73
PA
6248 /* We come here if we hit a breakpoint but should not stop for it.
6249 Possibly we also were stepping and should stop for that. So fall
6250 through and test for stepping. But, if not stepping, do not
6251 stop. */
c906108c 6252
a7212384
UW
6253 /* In all-stop mode, if we're currently stepping but have stopped in
6254 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6255 if (switch_back_to_stepped_thread (ecs))
6256 return;
776f04fa 6257
8358c15c 6258 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6259 {
527159b7 6260 if (debug_infrun)
d3169d93
DJ
6261 fprintf_unfiltered (gdb_stdlog,
6262 "infrun: step-resume breakpoint is inserted\n");
527159b7 6263
488f131b
JB
6264 /* Having a step-resume breakpoint overrides anything
6265 else having to do with stepping commands until
6266 that breakpoint is reached. */
488f131b
JB
6267 keep_going (ecs);
6268 return;
6269 }
c5aa993b 6270
16c381f0 6271 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6272 {
527159b7 6273 if (debug_infrun)
8a9de0e4 6274 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6275 /* Likewise if we aren't even stepping. */
488f131b
JB
6276 keep_going (ecs);
6277 return;
6278 }
c5aa993b 6279
4b7703ad
JB
6280 /* Re-fetch current thread's frame in case the code above caused
6281 the frame cache to be re-initialized, making our FRAME variable
6282 a dangling pointer. */
6283 frame = get_current_frame ();
628fe4e4 6284 gdbarch = get_frame_arch (frame);
7e324e48 6285 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6286
488f131b 6287 /* If stepping through a line, keep going if still within it.
c906108c 6288
488f131b
JB
6289 Note that step_range_end is the address of the first instruction
6290 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6291 within it!
6292
6293 Note also that during reverse execution, we may be stepping
6294 through a function epilogue and therefore must detect when
6295 the current-frame changes in the middle of a line. */
6296
ce4c476a 6297 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6298 && (execution_direction != EXEC_REVERSE
388a8562 6299 || frame_id_eq (get_frame_id (frame),
16c381f0 6300 ecs->event_thread->control.step_frame_id)))
488f131b 6301 {
527159b7 6302 if (debug_infrun)
5af949e3
UW
6303 fprintf_unfiltered
6304 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6305 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6306 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6307
c1e36e3e
PA
6308 /* Tentatively re-enable range stepping; `resume' disables it if
6309 necessary (e.g., if we're stepping over a breakpoint or we
6310 have software watchpoints). */
6311 ecs->event_thread->control.may_range_step = 1;
6312
b2175913
MS
6313 /* When stepping backward, stop at beginning of line range
6314 (unless it's the function entry point, in which case
6315 keep going back to the call point). */
16c381f0 6316 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6317 && stop_pc != ecs->stop_func_start
6318 && execution_direction == EXEC_REVERSE)
bdc36728 6319 end_stepping_range (ecs);
b2175913
MS
6320 else
6321 keep_going (ecs);
6322
488f131b
JB
6323 return;
6324 }
c5aa993b 6325
488f131b 6326 /* We stepped out of the stepping range. */
c906108c 6327
488f131b 6328 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6329 loader dynamic symbol resolution code...
6330
6331 EXEC_FORWARD: we keep on single stepping until we exit the run
6332 time loader code and reach the callee's address.
6333
6334 EXEC_REVERSE: we've already executed the callee (backward), and
6335 the runtime loader code is handled just like any other
6336 undebuggable function call. Now we need only keep stepping
6337 backward through the trampoline code, and that's handled further
6338 down, so there is nothing for us to do here. */
6339
6340 if (execution_direction != EXEC_REVERSE
16c381f0 6341 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6342 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6343 {
4c8c40e6 6344 CORE_ADDR pc_after_resolver =
568d6575 6345 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6346
527159b7 6347 if (debug_infrun)
3e43a32a
MS
6348 fprintf_unfiltered (gdb_stdlog,
6349 "infrun: stepped into dynsym resolve code\n");
527159b7 6350
488f131b
JB
6351 if (pc_after_resolver)
6352 {
6353 /* Set up a step-resume breakpoint at the address
6354 indicated by SKIP_SOLIB_RESOLVER. */
6355 struct symtab_and_line sr_sal;
abbb1732 6356
fe39c653 6357 init_sal (&sr_sal);
488f131b 6358 sr_sal.pc = pc_after_resolver;
6c95b8df 6359 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6360
a6d9a66e
UW
6361 insert_step_resume_breakpoint_at_sal (gdbarch,
6362 sr_sal, null_frame_id);
c5aa993b 6363 }
c906108c 6364
488f131b
JB
6365 keep_going (ecs);
6366 return;
6367 }
c906108c 6368
16c381f0
JK
6369 if (ecs->event_thread->control.step_range_end != 1
6370 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6371 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6372 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6373 {
527159b7 6374 if (debug_infrun)
3e43a32a
MS
6375 fprintf_unfiltered (gdb_stdlog,
6376 "infrun: stepped into signal trampoline\n");
42edda50 6377 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6378 a signal trampoline (either by a signal being delivered or by
6379 the signal handler returning). Just single-step until the
6380 inferior leaves the trampoline (either by calling the handler
6381 or returning). */
488f131b
JB
6382 keep_going (ecs);
6383 return;
6384 }
c906108c 6385
14132e89
MR
6386 /* If we're in the return path from a shared library trampoline,
6387 we want to proceed through the trampoline when stepping. */
6388 /* macro/2012-04-25: This needs to come before the subroutine
6389 call check below as on some targets return trampolines look
6390 like subroutine calls (MIPS16 return thunks). */
6391 if (gdbarch_in_solib_return_trampoline (gdbarch,
6392 stop_pc, ecs->stop_func_name)
6393 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6394 {
6395 /* Determine where this trampoline returns. */
6396 CORE_ADDR real_stop_pc;
6397
6398 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6399
6400 if (debug_infrun)
6401 fprintf_unfiltered (gdb_stdlog,
6402 "infrun: stepped into solib return tramp\n");
6403
6404 /* Only proceed through if we know where it's going. */
6405 if (real_stop_pc)
6406 {
6407 /* And put the step-breakpoint there and go until there. */
6408 struct symtab_and_line sr_sal;
6409
6410 init_sal (&sr_sal); /* initialize to zeroes */
6411 sr_sal.pc = real_stop_pc;
6412 sr_sal.section = find_pc_overlay (sr_sal.pc);
6413 sr_sal.pspace = get_frame_program_space (frame);
6414
6415 /* Do not specify what the fp should be when we stop since
6416 on some machines the prologue is where the new fp value
6417 is established. */
6418 insert_step_resume_breakpoint_at_sal (gdbarch,
6419 sr_sal, null_frame_id);
6420
6421 /* Restart without fiddling with the step ranges or
6422 other state. */
6423 keep_going (ecs);
6424 return;
6425 }
6426 }
6427
c17eaafe
DJ
6428 /* Check for subroutine calls. The check for the current frame
6429 equalling the step ID is not necessary - the check of the
6430 previous frame's ID is sufficient - but it is a common case and
6431 cheaper than checking the previous frame's ID.
14e60db5
DJ
6432
6433 NOTE: frame_id_eq will never report two invalid frame IDs as
6434 being equal, so to get into this block, both the current and
6435 previous frame must have valid frame IDs. */
005ca36a
JB
6436 /* The outer_frame_id check is a heuristic to detect stepping
6437 through startup code. If we step over an instruction which
6438 sets the stack pointer from an invalid value to a valid value,
6439 we may detect that as a subroutine call from the mythical
6440 "outermost" function. This could be fixed by marking
6441 outermost frames as !stack_p,code_p,special_p. Then the
6442 initial outermost frame, before sp was valid, would
ce6cca6d 6443 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6444 for more. */
edb3359d 6445 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6446 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6447 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6448 ecs->event_thread->control.step_stack_frame_id)
6449 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6450 outer_frame_id)
885eeb5b
PA
6451 || (ecs->event_thread->control.step_start_function
6452 != find_pc_function (stop_pc)))))
488f131b 6453 {
95918acb 6454 CORE_ADDR real_stop_pc;
8fb3e588 6455
527159b7 6456 if (debug_infrun)
8a9de0e4 6457 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6458
b7a084be 6459 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6460 {
6461 /* I presume that step_over_calls is only 0 when we're
6462 supposed to be stepping at the assembly language level
6463 ("stepi"). Just stop. */
388a8562 6464 /* And this works the same backward as frontward. MVS */
bdc36728 6465 end_stepping_range (ecs);
95918acb
AC
6466 return;
6467 }
8fb3e588 6468
388a8562
MS
6469 /* Reverse stepping through solib trampolines. */
6470
6471 if (execution_direction == EXEC_REVERSE
16c381f0 6472 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6473 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6474 || (ecs->stop_func_start == 0
6475 && in_solib_dynsym_resolve_code (stop_pc))))
6476 {
6477 /* Any solib trampoline code can be handled in reverse
6478 by simply continuing to single-step. We have already
6479 executed the solib function (backwards), and a few
6480 steps will take us back through the trampoline to the
6481 caller. */
6482 keep_going (ecs);
6483 return;
6484 }
6485
16c381f0 6486 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6487 {
b2175913
MS
6488 /* We're doing a "next".
6489
6490 Normal (forward) execution: set a breakpoint at the
6491 callee's return address (the address at which the caller
6492 will resume).
6493
6494 Reverse (backward) execution. set the step-resume
6495 breakpoint at the start of the function that we just
6496 stepped into (backwards), and continue to there. When we
6130d0b7 6497 get there, we'll need to single-step back to the caller. */
b2175913
MS
6498
6499 if (execution_direction == EXEC_REVERSE)
6500 {
acf9414f
JK
6501 /* If we're already at the start of the function, we've either
6502 just stepped backward into a single instruction function,
6503 or stepped back out of a signal handler to the first instruction
6504 of the function. Just keep going, which will single-step back
6505 to the caller. */
58c48e72 6506 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6507 {
6508 struct symtab_and_line sr_sal;
6509
6510 /* Normal function call return (static or dynamic). */
6511 init_sal (&sr_sal);
6512 sr_sal.pc = ecs->stop_func_start;
6513 sr_sal.pspace = get_frame_program_space (frame);
6514 insert_step_resume_breakpoint_at_sal (gdbarch,
6515 sr_sal, null_frame_id);
6516 }
b2175913
MS
6517 }
6518 else
568d6575 6519 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6520
8567c30f
AC
6521 keep_going (ecs);
6522 return;
6523 }
a53c66de 6524
95918acb 6525 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6526 calling routine and the real function), locate the real
6527 function. That's what tells us (a) whether we want to step
6528 into it at all, and (b) what prologue we want to run to the
6529 end of, if we do step into it. */
568d6575 6530 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6531 if (real_stop_pc == 0)
568d6575 6532 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6533 if (real_stop_pc != 0)
6534 ecs->stop_func_start = real_stop_pc;
8fb3e588 6535
db5f024e 6536 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6537 {
6538 struct symtab_and_line sr_sal;
abbb1732 6539
1b2bfbb9
RC
6540 init_sal (&sr_sal);
6541 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6542 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6543
a6d9a66e
UW
6544 insert_step_resume_breakpoint_at_sal (gdbarch,
6545 sr_sal, null_frame_id);
8fb3e588
AC
6546 keep_going (ecs);
6547 return;
1b2bfbb9
RC
6548 }
6549
95918acb 6550 /* If we have line number information for the function we are
1bfeeb0f
JL
6551 thinking of stepping into and the function isn't on the skip
6552 list, step into it.
95918acb 6553
8fb3e588
AC
6554 If there are several symtabs at that PC (e.g. with include
6555 files), just want to know whether *any* of them have line
6556 numbers. find_pc_line handles this. */
95918acb
AC
6557 {
6558 struct symtab_and_line tmp_sal;
8fb3e588 6559
95918acb 6560 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6561 if (tmp_sal.line != 0
85817405
JK
6562 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6563 &tmp_sal))
95918acb 6564 {
b2175913 6565 if (execution_direction == EXEC_REVERSE)
568d6575 6566 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6567 else
568d6575 6568 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6569 return;
6570 }
6571 }
6572
6573 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6574 set, we stop the step so that the user has a chance to switch
6575 in assembly mode. */
16c381f0 6576 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6577 && step_stop_if_no_debug)
95918acb 6578 {
bdc36728 6579 end_stepping_range (ecs);
95918acb
AC
6580 return;
6581 }
6582
b2175913
MS
6583 if (execution_direction == EXEC_REVERSE)
6584 {
acf9414f
JK
6585 /* If we're already at the start of the function, we've either just
6586 stepped backward into a single instruction function without line
6587 number info, or stepped back out of a signal handler to the first
6588 instruction of the function without line number info. Just keep
6589 going, which will single-step back to the caller. */
6590 if (ecs->stop_func_start != stop_pc)
6591 {
6592 /* Set a breakpoint at callee's start address.
6593 From there we can step once and be back in the caller. */
6594 struct symtab_and_line sr_sal;
abbb1732 6595
acf9414f
JK
6596 init_sal (&sr_sal);
6597 sr_sal.pc = ecs->stop_func_start;
6598 sr_sal.pspace = get_frame_program_space (frame);
6599 insert_step_resume_breakpoint_at_sal (gdbarch,
6600 sr_sal, null_frame_id);
6601 }
b2175913
MS
6602 }
6603 else
6604 /* Set a breakpoint at callee's return address (the address
6605 at which the caller will resume). */
568d6575 6606 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6607
95918acb 6608 keep_going (ecs);
488f131b 6609 return;
488f131b 6610 }
c906108c 6611
fdd654f3
MS
6612 /* Reverse stepping through solib trampolines. */
6613
6614 if (execution_direction == EXEC_REVERSE
16c381f0 6615 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6616 {
6617 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6618 || (ecs->stop_func_start == 0
6619 && in_solib_dynsym_resolve_code (stop_pc)))
6620 {
6621 /* Any solib trampoline code can be handled in reverse
6622 by simply continuing to single-step. We have already
6623 executed the solib function (backwards), and a few
6624 steps will take us back through the trampoline to the
6625 caller. */
6626 keep_going (ecs);
6627 return;
6628 }
6629 else if (in_solib_dynsym_resolve_code (stop_pc))
6630 {
6631 /* Stepped backward into the solib dynsym resolver.
6632 Set a breakpoint at its start and continue, then
6633 one more step will take us out. */
6634 struct symtab_and_line sr_sal;
abbb1732 6635
fdd654f3
MS
6636 init_sal (&sr_sal);
6637 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6638 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6639 insert_step_resume_breakpoint_at_sal (gdbarch,
6640 sr_sal, null_frame_id);
6641 keep_going (ecs);
6642 return;
6643 }
6644 }
6645
2afb61aa 6646 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6647
1b2bfbb9
RC
6648 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6649 the trampoline processing logic, however, there are some trampolines
6650 that have no names, so we should do trampoline handling first. */
16c381f0 6651 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6652 && ecs->stop_func_name == NULL
2afb61aa 6653 && stop_pc_sal.line == 0)
1b2bfbb9 6654 {
527159b7 6655 if (debug_infrun)
3e43a32a
MS
6656 fprintf_unfiltered (gdb_stdlog,
6657 "infrun: stepped into undebuggable function\n");
527159b7 6658
1b2bfbb9 6659 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6660 undebuggable function (where there is no debugging information
6661 and no line number corresponding to the address where the
1b2bfbb9
RC
6662 inferior stopped). Since we want to skip this kind of code,
6663 we keep going until the inferior returns from this
14e60db5
DJ
6664 function - unless the user has asked us not to (via
6665 set step-mode) or we no longer know how to get back
6666 to the call site. */
6667 if (step_stop_if_no_debug
c7ce8faa 6668 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6669 {
6670 /* If we have no line number and the step-stop-if-no-debug
6671 is set, we stop the step so that the user has a chance to
6672 switch in assembly mode. */
bdc36728 6673 end_stepping_range (ecs);
1b2bfbb9
RC
6674 return;
6675 }
6676 else
6677 {
6678 /* Set a breakpoint at callee's return address (the address
6679 at which the caller will resume). */
568d6575 6680 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6681 keep_going (ecs);
6682 return;
6683 }
6684 }
6685
16c381f0 6686 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6687 {
6688 /* It is stepi or nexti. We always want to stop stepping after
6689 one instruction. */
527159b7 6690 if (debug_infrun)
8a9de0e4 6691 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6692 end_stepping_range (ecs);
1b2bfbb9
RC
6693 return;
6694 }
6695
2afb61aa 6696 if (stop_pc_sal.line == 0)
488f131b
JB
6697 {
6698 /* We have no line number information. That means to stop
6699 stepping (does this always happen right after one instruction,
6700 when we do "s" in a function with no line numbers,
6701 or can this happen as a result of a return or longjmp?). */
527159b7 6702 if (debug_infrun)
8a9de0e4 6703 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6704 end_stepping_range (ecs);
488f131b
JB
6705 return;
6706 }
c906108c 6707
edb3359d
DJ
6708 /* Look for "calls" to inlined functions, part one. If the inline
6709 frame machinery detected some skipped call sites, we have entered
6710 a new inline function. */
6711
6712 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6713 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6714 && inline_skipped_frames (ecs->ptid))
6715 {
6716 struct symtab_and_line call_sal;
6717
6718 if (debug_infrun)
6719 fprintf_unfiltered (gdb_stdlog,
6720 "infrun: stepped into inlined function\n");
6721
6722 find_frame_sal (get_current_frame (), &call_sal);
6723
16c381f0 6724 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6725 {
6726 /* For "step", we're going to stop. But if the call site
6727 for this inlined function is on the same source line as
6728 we were previously stepping, go down into the function
6729 first. Otherwise stop at the call site. */
6730
6731 if (call_sal.line == ecs->event_thread->current_line
6732 && call_sal.symtab == ecs->event_thread->current_symtab)
6733 step_into_inline_frame (ecs->ptid);
6734
bdc36728 6735 end_stepping_range (ecs);
edb3359d
DJ
6736 return;
6737 }
6738 else
6739 {
6740 /* For "next", we should stop at the call site if it is on a
6741 different source line. Otherwise continue through the
6742 inlined function. */
6743 if (call_sal.line == ecs->event_thread->current_line
6744 && call_sal.symtab == ecs->event_thread->current_symtab)
6745 keep_going (ecs);
6746 else
bdc36728 6747 end_stepping_range (ecs);
edb3359d
DJ
6748 return;
6749 }
6750 }
6751
6752 /* Look for "calls" to inlined functions, part two. If we are still
6753 in the same real function we were stepping through, but we have
6754 to go further up to find the exact frame ID, we are stepping
6755 through a more inlined call beyond its call site. */
6756
6757 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6758 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6759 ecs->event_thread->control.step_frame_id)
edb3359d 6760 && stepped_in_from (get_current_frame (),
16c381f0 6761 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6762 {
6763 if (debug_infrun)
6764 fprintf_unfiltered (gdb_stdlog,
6765 "infrun: stepping through inlined function\n");
6766
16c381f0 6767 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6768 keep_going (ecs);
6769 else
bdc36728 6770 end_stepping_range (ecs);
edb3359d
DJ
6771 return;
6772 }
6773
2afb61aa 6774 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6775 && (ecs->event_thread->current_line != stop_pc_sal.line
6776 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6777 {
6778 /* We are at the start of a different line. So stop. Note that
6779 we don't stop if we step into the middle of a different line.
6780 That is said to make things like for (;;) statements work
6781 better. */
527159b7 6782 if (debug_infrun)
3e43a32a
MS
6783 fprintf_unfiltered (gdb_stdlog,
6784 "infrun: stepped to a different line\n");
bdc36728 6785 end_stepping_range (ecs);
488f131b
JB
6786 return;
6787 }
c906108c 6788
488f131b 6789 /* We aren't done stepping.
c906108c 6790
488f131b
JB
6791 Optimize by setting the stepping range to the line.
6792 (We might not be in the original line, but if we entered a
6793 new line in mid-statement, we continue stepping. This makes
6794 things like for(;;) statements work better.) */
c906108c 6795
16c381f0
JK
6796 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6797 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6798 ecs->event_thread->control.may_range_step = 1;
edb3359d 6799 set_step_info (frame, stop_pc_sal);
488f131b 6800
527159b7 6801 if (debug_infrun)
8a9de0e4 6802 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6803 keep_going (ecs);
104c1213
JM
6804}
6805
c447ac0b
PA
6806/* In all-stop mode, if we're currently stepping but have stopped in
6807 some other thread, we may need to switch back to the stepped
6808 thread. Returns true we set the inferior running, false if we left
6809 it stopped (and the event needs further processing). */
6810
6811static int
6812switch_back_to_stepped_thread (struct execution_control_state *ecs)
6813{
fbea99ea 6814 if (!target_is_non_stop_p ())
c447ac0b
PA
6815 {
6816 struct thread_info *tp;
99619bea
PA
6817 struct thread_info *stepping_thread;
6818
6819 /* If any thread is blocked on some internal breakpoint, and we
6820 simply need to step over that breakpoint to get it going
6821 again, do that first. */
6822
6823 /* However, if we see an event for the stepping thread, then we
6824 know all other threads have been moved past their breakpoints
6825 already. Let the caller check whether the step is finished,
6826 etc., before deciding to move it past a breakpoint. */
6827 if (ecs->event_thread->control.step_range_end != 0)
6828 return 0;
6829
6830 /* Check if the current thread is blocked on an incomplete
6831 step-over, interrupted by a random signal. */
6832 if (ecs->event_thread->control.trap_expected
6833 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6834 {
99619bea
PA
6835 if (debug_infrun)
6836 {
6837 fprintf_unfiltered (gdb_stdlog,
6838 "infrun: need to finish step-over of [%s]\n",
6839 target_pid_to_str (ecs->event_thread->ptid));
6840 }
6841 keep_going (ecs);
6842 return 1;
6843 }
2adfaa28 6844
99619bea
PA
6845 /* Check if the current thread is blocked by a single-step
6846 breakpoint of another thread. */
6847 if (ecs->hit_singlestep_breakpoint)
6848 {
6849 if (debug_infrun)
6850 {
6851 fprintf_unfiltered (gdb_stdlog,
6852 "infrun: need to step [%s] over single-step "
6853 "breakpoint\n",
6854 target_pid_to_str (ecs->ptid));
6855 }
6856 keep_going (ecs);
6857 return 1;
6858 }
6859
4d9d9d04
PA
6860 /* If this thread needs yet another step-over (e.g., stepping
6861 through a delay slot), do it first before moving on to
6862 another thread. */
6863 if (thread_still_needs_step_over (ecs->event_thread))
6864 {
6865 if (debug_infrun)
6866 {
6867 fprintf_unfiltered (gdb_stdlog,
6868 "infrun: thread [%s] still needs step-over\n",
6869 target_pid_to_str (ecs->event_thread->ptid));
6870 }
6871 keep_going (ecs);
6872 return 1;
6873 }
70509625 6874
483805cf
PA
6875 /* If scheduler locking applies even if not stepping, there's no
6876 need to walk over threads. Above we've checked whether the
6877 current thread is stepping. If some other thread not the
6878 event thread is stepping, then it must be that scheduler
6879 locking is not in effect. */
856e7dd6 6880 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6881 return 0;
6882
4d9d9d04
PA
6883 /* Otherwise, we no longer expect a trap in the current thread.
6884 Clear the trap_expected flag before switching back -- this is
6885 what keep_going does as well, if we call it. */
6886 ecs->event_thread->control.trap_expected = 0;
6887
6888 /* Likewise, clear the signal if it should not be passed. */
6889 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6890 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6891
6892 /* Do all pending step-overs before actually proceeding with
483805cf 6893 step/next/etc. */
4d9d9d04
PA
6894 if (start_step_over ())
6895 {
6896 prepare_to_wait (ecs);
6897 return 1;
6898 }
6899
6900 /* Look for the stepping/nexting thread. */
483805cf 6901 stepping_thread = NULL;
4d9d9d04 6902
034f788c 6903 ALL_NON_EXITED_THREADS (tp)
483805cf 6904 {
fbea99ea
PA
6905 /* Ignore threads of processes the caller is not
6906 resuming. */
483805cf 6907 if (!sched_multi
1afd5965 6908 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
6909 continue;
6910
6911 /* When stepping over a breakpoint, we lock all threads
6912 except the one that needs to move past the breakpoint.
6913 If a non-event thread has this set, the "incomplete
6914 step-over" check above should have caught it earlier. */
372316f1
PA
6915 if (tp->control.trap_expected)
6916 {
6917 internal_error (__FILE__, __LINE__,
6918 "[%s] has inconsistent state: "
6919 "trap_expected=%d\n",
6920 target_pid_to_str (tp->ptid),
6921 tp->control.trap_expected);
6922 }
483805cf
PA
6923
6924 /* Did we find the stepping thread? */
6925 if (tp->control.step_range_end)
6926 {
6927 /* Yep. There should only one though. */
6928 gdb_assert (stepping_thread == NULL);
6929
6930 /* The event thread is handled at the top, before we
6931 enter this loop. */
6932 gdb_assert (tp != ecs->event_thread);
6933
6934 /* If some thread other than the event thread is
6935 stepping, then scheduler locking can't be in effect,
6936 otherwise we wouldn't have resumed the current event
6937 thread in the first place. */
856e7dd6 6938 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6939
6940 stepping_thread = tp;
6941 }
99619bea
PA
6942 }
6943
483805cf 6944 if (stepping_thread != NULL)
99619bea 6945 {
c447ac0b
PA
6946 if (debug_infrun)
6947 fprintf_unfiltered (gdb_stdlog,
6948 "infrun: switching back to stepped thread\n");
6949
2ac7589c
PA
6950 if (keep_going_stepped_thread (stepping_thread))
6951 {
6952 prepare_to_wait (ecs);
6953 return 1;
6954 }
6955 }
6956 }
2adfaa28 6957
2ac7589c
PA
6958 return 0;
6959}
2adfaa28 6960
2ac7589c
PA
6961/* Set a previously stepped thread back to stepping. Returns true on
6962 success, false if the resume is not possible (e.g., the thread
6963 vanished). */
6964
6965static int
6966keep_going_stepped_thread (struct thread_info *tp)
6967{
6968 struct frame_info *frame;
6969 struct gdbarch *gdbarch;
6970 struct execution_control_state ecss;
6971 struct execution_control_state *ecs = &ecss;
2adfaa28 6972
2ac7589c
PA
6973 /* If the stepping thread exited, then don't try to switch back and
6974 resume it, which could fail in several different ways depending
6975 on the target. Instead, just keep going.
2adfaa28 6976
2ac7589c
PA
6977 We can find a stepping dead thread in the thread list in two
6978 cases:
2adfaa28 6979
2ac7589c
PA
6980 - The target supports thread exit events, and when the target
6981 tries to delete the thread from the thread list, inferior_ptid
6982 pointed at the exiting thread. In such case, calling
6983 delete_thread does not really remove the thread from the list;
6984 instead, the thread is left listed, with 'exited' state.
64ce06e4 6985
2ac7589c
PA
6986 - The target's debug interface does not support thread exit
6987 events, and so we have no idea whatsoever if the previously
6988 stepping thread is still alive. For that reason, we need to
6989 synchronously query the target now. */
2adfaa28 6990
2ac7589c
PA
6991 if (is_exited (tp->ptid)
6992 || !target_thread_alive (tp->ptid))
6993 {
6994 if (debug_infrun)
6995 fprintf_unfiltered (gdb_stdlog,
6996 "infrun: not resuming previously "
6997 "stepped thread, it has vanished\n");
6998
6999 delete_thread (tp->ptid);
7000 return 0;
c447ac0b 7001 }
2ac7589c
PA
7002
7003 if (debug_infrun)
7004 fprintf_unfiltered (gdb_stdlog,
7005 "infrun: resuming previously stepped thread\n");
7006
7007 reset_ecs (ecs, tp);
7008 switch_to_thread (tp->ptid);
7009
7010 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7011 frame = get_current_frame ();
7012 gdbarch = get_frame_arch (frame);
7013
7014 /* If the PC of the thread we were trying to single-step has
7015 changed, then that thread has trapped or been signaled, but the
7016 event has not been reported to GDB yet. Re-poll the target
7017 looking for this particular thread's event (i.e. temporarily
7018 enable schedlock) by:
7019
7020 - setting a break at the current PC
7021 - resuming that particular thread, only (by setting trap
7022 expected)
7023
7024 This prevents us continuously moving the single-step breakpoint
7025 forward, one instruction at a time, overstepping. */
7026
7027 if (stop_pc != tp->prev_pc)
7028 {
7029 ptid_t resume_ptid;
7030
7031 if (debug_infrun)
7032 fprintf_unfiltered (gdb_stdlog,
7033 "infrun: expected thread advanced also (%s -> %s)\n",
7034 paddress (target_gdbarch (), tp->prev_pc),
7035 paddress (target_gdbarch (), stop_pc));
7036
7037 /* Clear the info of the previous step-over, as it's no longer
7038 valid (if the thread was trying to step over a breakpoint, it
7039 has already succeeded). It's what keep_going would do too,
7040 if we called it. Do this before trying to insert the sss
7041 breakpoint, otherwise if we were previously trying to step
7042 over this exact address in another thread, the breakpoint is
7043 skipped. */
7044 clear_step_over_info ();
7045 tp->control.trap_expected = 0;
7046
7047 insert_single_step_breakpoint (get_frame_arch (frame),
7048 get_frame_address_space (frame),
7049 stop_pc);
7050
372316f1 7051 tp->resumed = 1;
fbea99ea 7052 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7053 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7054 }
7055 else
7056 {
7057 if (debug_infrun)
7058 fprintf_unfiltered (gdb_stdlog,
7059 "infrun: expected thread still hasn't advanced\n");
7060
7061 keep_going_pass_signal (ecs);
7062 }
7063 return 1;
c447ac0b
PA
7064}
7065
8b061563
PA
7066/* Is thread TP in the middle of (software or hardware)
7067 single-stepping? (Note the result of this function must never be
7068 passed directly as target_resume's STEP parameter.) */
104c1213 7069
a289b8f6 7070static int
b3444185 7071currently_stepping (struct thread_info *tp)
a7212384 7072{
8358c15c
JK
7073 return ((tp->control.step_range_end
7074 && tp->control.step_resume_breakpoint == NULL)
7075 || tp->control.trap_expected
af48d08f 7076 || tp->stepped_breakpoint
8358c15c 7077 || bpstat_should_step ());
a7212384
UW
7078}
7079
b2175913
MS
7080/* Inferior has stepped into a subroutine call with source code that
7081 we should not step over. Do step to the first line of code in
7082 it. */
c2c6d25f
JM
7083
7084static void
568d6575
UW
7085handle_step_into_function (struct gdbarch *gdbarch,
7086 struct execution_control_state *ecs)
c2c6d25f 7087{
43f3e411 7088 struct compunit_symtab *cust;
2afb61aa 7089 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7090
7e324e48
GB
7091 fill_in_stop_func (gdbarch, ecs);
7092
43f3e411
DE
7093 cust = find_pc_compunit_symtab (stop_pc);
7094 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7095 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7096 ecs->stop_func_start);
c2c6d25f 7097
2afb61aa 7098 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7099 /* Use the step_resume_break to step until the end of the prologue,
7100 even if that involves jumps (as it seems to on the vax under
7101 4.2). */
7102 /* If the prologue ends in the middle of a source line, continue to
7103 the end of that source line (if it is still within the function).
7104 Otherwise, just go to end of prologue. */
2afb61aa
PA
7105 if (stop_func_sal.end
7106 && stop_func_sal.pc != ecs->stop_func_start
7107 && stop_func_sal.end < ecs->stop_func_end)
7108 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7109
2dbd5e30
KB
7110 /* Architectures which require breakpoint adjustment might not be able
7111 to place a breakpoint at the computed address. If so, the test
7112 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7113 ecs->stop_func_start to an address at which a breakpoint may be
7114 legitimately placed.
8fb3e588 7115
2dbd5e30
KB
7116 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7117 made, GDB will enter an infinite loop when stepping through
7118 optimized code consisting of VLIW instructions which contain
7119 subinstructions corresponding to different source lines. On
7120 FR-V, it's not permitted to place a breakpoint on any but the
7121 first subinstruction of a VLIW instruction. When a breakpoint is
7122 set, GDB will adjust the breakpoint address to the beginning of
7123 the VLIW instruction. Thus, we need to make the corresponding
7124 adjustment here when computing the stop address. */
8fb3e588 7125
568d6575 7126 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7127 {
7128 ecs->stop_func_start
568d6575 7129 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7130 ecs->stop_func_start);
2dbd5e30
KB
7131 }
7132
c2c6d25f
JM
7133 if (ecs->stop_func_start == stop_pc)
7134 {
7135 /* We are already there: stop now. */
bdc36728 7136 end_stepping_range (ecs);
c2c6d25f
JM
7137 return;
7138 }
7139 else
7140 {
7141 /* Put the step-breakpoint there and go until there. */
fe39c653 7142 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7143 sr_sal.pc = ecs->stop_func_start;
7144 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7145 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7146
c2c6d25f 7147 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7148 some machines the prologue is where the new fp value is
7149 established. */
a6d9a66e 7150 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7151
7152 /* And make sure stepping stops right away then. */
16c381f0
JK
7153 ecs->event_thread->control.step_range_end
7154 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7155 }
7156 keep_going (ecs);
7157}
d4f3574e 7158
b2175913
MS
7159/* Inferior has stepped backward into a subroutine call with source
7160 code that we should not step over. Do step to the beginning of the
7161 last line of code in it. */
7162
7163static void
568d6575
UW
7164handle_step_into_function_backward (struct gdbarch *gdbarch,
7165 struct execution_control_state *ecs)
b2175913 7166{
43f3e411 7167 struct compunit_symtab *cust;
167e4384 7168 struct symtab_and_line stop_func_sal;
b2175913 7169
7e324e48
GB
7170 fill_in_stop_func (gdbarch, ecs);
7171
43f3e411
DE
7172 cust = find_pc_compunit_symtab (stop_pc);
7173 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7174 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7175 ecs->stop_func_start);
7176
7177 stop_func_sal = find_pc_line (stop_pc, 0);
7178
7179 /* OK, we're just going to keep stepping here. */
7180 if (stop_func_sal.pc == stop_pc)
7181 {
7182 /* We're there already. Just stop stepping now. */
bdc36728 7183 end_stepping_range (ecs);
b2175913
MS
7184 }
7185 else
7186 {
7187 /* Else just reset the step range and keep going.
7188 No step-resume breakpoint, they don't work for
7189 epilogues, which can have multiple entry paths. */
16c381f0
JK
7190 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7191 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7192 keep_going (ecs);
7193 }
7194 return;
7195}
7196
d3169d93 7197/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7198 This is used to both functions and to skip over code. */
7199
7200static void
2c03e5be
PA
7201insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7202 struct symtab_and_line sr_sal,
7203 struct frame_id sr_id,
7204 enum bptype sr_type)
44cbf7b5 7205{
611c83ae
PA
7206 /* There should never be more than one step-resume or longjmp-resume
7207 breakpoint per thread, so we should never be setting a new
44cbf7b5 7208 step_resume_breakpoint when one is already active. */
8358c15c 7209 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7210 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7211
7212 if (debug_infrun)
7213 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7214 "infrun: inserting step-resume breakpoint at %s\n",
7215 paddress (gdbarch, sr_sal.pc));
d3169d93 7216
8358c15c 7217 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7218 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7219}
7220
9da8c2a0 7221void
2c03e5be
PA
7222insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7223 struct symtab_and_line sr_sal,
7224 struct frame_id sr_id)
7225{
7226 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7227 sr_sal, sr_id,
7228 bp_step_resume);
44cbf7b5 7229}
7ce450bd 7230
2c03e5be
PA
7231/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7232 This is used to skip a potential signal handler.
7ce450bd 7233
14e60db5
DJ
7234 This is called with the interrupted function's frame. The signal
7235 handler, when it returns, will resume the interrupted function at
7236 RETURN_FRAME.pc. */
d303a6c7
AC
7237
7238static void
2c03e5be 7239insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7240{
7241 struct symtab_and_line sr_sal;
a6d9a66e 7242 struct gdbarch *gdbarch;
d303a6c7 7243
f4c1edd8 7244 gdb_assert (return_frame != NULL);
d303a6c7
AC
7245 init_sal (&sr_sal); /* initialize to zeros */
7246
a6d9a66e 7247 gdbarch = get_frame_arch (return_frame);
568d6575 7248 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7249 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7250 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7251
2c03e5be
PA
7252 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7253 get_stack_frame_id (return_frame),
7254 bp_hp_step_resume);
d303a6c7
AC
7255}
7256
2c03e5be
PA
7257/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7258 is used to skip a function after stepping into it (for "next" or if
7259 the called function has no debugging information).
14e60db5
DJ
7260
7261 The current function has almost always been reached by single
7262 stepping a call or return instruction. NEXT_FRAME belongs to the
7263 current function, and the breakpoint will be set at the caller's
7264 resume address.
7265
7266 This is a separate function rather than reusing
2c03e5be 7267 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7268 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7269 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7270
7271static void
7272insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7273{
7274 struct symtab_and_line sr_sal;
a6d9a66e 7275 struct gdbarch *gdbarch;
14e60db5
DJ
7276
7277 /* We shouldn't have gotten here if we don't know where the call site
7278 is. */
c7ce8faa 7279 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7280
7281 init_sal (&sr_sal); /* initialize to zeros */
7282
a6d9a66e 7283 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7284 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7285 frame_unwind_caller_pc (next_frame));
14e60db5 7286 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7287 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7288
a6d9a66e 7289 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7290 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7291}
7292
611c83ae
PA
7293/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7294 new breakpoint at the target of a jmp_buf. The handling of
7295 longjmp-resume uses the same mechanisms used for handling
7296 "step-resume" breakpoints. */
7297
7298static void
a6d9a66e 7299insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7300{
e81a37f7
TT
7301 /* There should never be more than one longjmp-resume breakpoint per
7302 thread, so we should never be setting a new
611c83ae 7303 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7304 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7305
7306 if (debug_infrun)
7307 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7308 "infrun: inserting longjmp-resume breakpoint at %s\n",
7309 paddress (gdbarch, pc));
611c83ae 7310
e81a37f7 7311 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7312 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7313}
7314
186c406b
TT
7315/* Insert an exception resume breakpoint. TP is the thread throwing
7316 the exception. The block B is the block of the unwinder debug hook
7317 function. FRAME is the frame corresponding to the call to this
7318 function. SYM is the symbol of the function argument holding the
7319 target PC of the exception. */
7320
7321static void
7322insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7323 const struct block *b,
186c406b
TT
7324 struct frame_info *frame,
7325 struct symbol *sym)
7326{
492d29ea 7327 TRY
186c406b 7328 {
63e43d3a 7329 struct block_symbol vsym;
186c406b
TT
7330 struct value *value;
7331 CORE_ADDR handler;
7332 struct breakpoint *bp;
7333
63e43d3a
PMR
7334 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7335 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7336 /* If the value was optimized out, revert to the old behavior. */
7337 if (! value_optimized_out (value))
7338 {
7339 handler = value_as_address (value);
7340
7341 if (debug_infrun)
7342 fprintf_unfiltered (gdb_stdlog,
7343 "infrun: exception resume at %lx\n",
7344 (unsigned long) handler);
7345
7346 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7347 handler, bp_exception_resume);
c70a6932
JK
7348
7349 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7350 frame = NULL;
7351
186c406b
TT
7352 bp->thread = tp->num;
7353 inferior_thread ()->control.exception_resume_breakpoint = bp;
7354 }
7355 }
492d29ea
PA
7356 CATCH (e, RETURN_MASK_ERROR)
7357 {
7358 /* We want to ignore errors here. */
7359 }
7360 END_CATCH
186c406b
TT
7361}
7362
28106bc2
SDJ
7363/* A helper for check_exception_resume that sets an
7364 exception-breakpoint based on a SystemTap probe. */
7365
7366static void
7367insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7368 const struct bound_probe *probe,
28106bc2
SDJ
7369 struct frame_info *frame)
7370{
7371 struct value *arg_value;
7372 CORE_ADDR handler;
7373 struct breakpoint *bp;
7374
7375 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7376 if (!arg_value)
7377 return;
7378
7379 handler = value_as_address (arg_value);
7380
7381 if (debug_infrun)
7382 fprintf_unfiltered (gdb_stdlog,
7383 "infrun: exception resume at %s\n",
6bac7473 7384 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7385 handler));
7386
7387 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7388 handler, bp_exception_resume);
7389 bp->thread = tp->num;
7390 inferior_thread ()->control.exception_resume_breakpoint = bp;
7391}
7392
186c406b
TT
7393/* This is called when an exception has been intercepted. Check to
7394 see whether the exception's destination is of interest, and if so,
7395 set an exception resume breakpoint there. */
7396
7397static void
7398check_exception_resume (struct execution_control_state *ecs,
28106bc2 7399 struct frame_info *frame)
186c406b 7400{
729662a5 7401 struct bound_probe probe;
28106bc2
SDJ
7402 struct symbol *func;
7403
7404 /* First see if this exception unwinding breakpoint was set via a
7405 SystemTap probe point. If so, the probe has two arguments: the
7406 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7407 set a breakpoint there. */
6bac7473 7408 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7409 if (probe.probe)
28106bc2 7410 {
729662a5 7411 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7412 return;
7413 }
7414
7415 func = get_frame_function (frame);
7416 if (!func)
7417 return;
186c406b 7418
492d29ea 7419 TRY
186c406b 7420 {
3977b71f 7421 const struct block *b;
8157b174 7422 struct block_iterator iter;
186c406b
TT
7423 struct symbol *sym;
7424 int argno = 0;
7425
7426 /* The exception breakpoint is a thread-specific breakpoint on
7427 the unwinder's debug hook, declared as:
7428
7429 void _Unwind_DebugHook (void *cfa, void *handler);
7430
7431 The CFA argument indicates the frame to which control is
7432 about to be transferred. HANDLER is the destination PC.
7433
7434 We ignore the CFA and set a temporary breakpoint at HANDLER.
7435 This is not extremely efficient but it avoids issues in gdb
7436 with computing the DWARF CFA, and it also works even in weird
7437 cases such as throwing an exception from inside a signal
7438 handler. */
7439
7440 b = SYMBOL_BLOCK_VALUE (func);
7441 ALL_BLOCK_SYMBOLS (b, iter, sym)
7442 {
7443 if (!SYMBOL_IS_ARGUMENT (sym))
7444 continue;
7445
7446 if (argno == 0)
7447 ++argno;
7448 else
7449 {
7450 insert_exception_resume_breakpoint (ecs->event_thread,
7451 b, frame, sym);
7452 break;
7453 }
7454 }
7455 }
492d29ea
PA
7456 CATCH (e, RETURN_MASK_ERROR)
7457 {
7458 }
7459 END_CATCH
186c406b
TT
7460}
7461
104c1213 7462static void
22bcd14b 7463stop_waiting (struct execution_control_state *ecs)
104c1213 7464{
527159b7 7465 if (debug_infrun)
22bcd14b 7466 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7467
31e77af2
PA
7468 clear_step_over_info ();
7469
cd0fc7c3
SS
7470 /* Let callers know we don't want to wait for the inferior anymore. */
7471 ecs->wait_some_more = 0;
fbea99ea
PA
7472
7473 /* If all-stop, but the target is always in non-stop mode, stop all
7474 threads now that we're presenting the stop to the user. */
7475 if (!non_stop && target_is_non_stop_p ())
7476 stop_all_threads ();
cd0fc7c3
SS
7477}
7478
4d9d9d04
PA
7479/* Like keep_going, but passes the signal to the inferior, even if the
7480 signal is set to nopass. */
d4f3574e
SS
7481
7482static void
4d9d9d04 7483keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7484{
c4dbc9af
PA
7485 /* Make sure normal_stop is called if we get a QUIT handled before
7486 reaching resume. */
7487 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7488
4d9d9d04 7489 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7490 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7491
d4f3574e 7492 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7493 ecs->event_thread->prev_pc
7494 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7495
4d9d9d04 7496 if (ecs->event_thread->control.trap_expected)
d4f3574e 7497 {
4d9d9d04
PA
7498 struct thread_info *tp = ecs->event_thread;
7499
7500 if (debug_infrun)
7501 fprintf_unfiltered (gdb_stdlog,
7502 "infrun: %s has trap_expected set, "
7503 "resuming to collect trap\n",
7504 target_pid_to_str (tp->ptid));
7505
a9ba6bae
PA
7506 /* We haven't yet gotten our trap, and either: intercepted a
7507 non-signal event (e.g., a fork); or took a signal which we
7508 are supposed to pass through to the inferior. Simply
7509 continue. */
c4dbc9af 7510 discard_cleanups (old_cleanups);
64ce06e4 7511 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7512 }
372316f1
PA
7513 else if (step_over_info_valid_p ())
7514 {
7515 /* Another thread is stepping over a breakpoint in-line. If
7516 this thread needs a step-over too, queue the request. In
7517 either case, this resume must be deferred for later. */
7518 struct thread_info *tp = ecs->event_thread;
7519
7520 if (ecs->hit_singlestep_breakpoint
7521 || thread_still_needs_step_over (tp))
7522 {
7523 if (debug_infrun)
7524 fprintf_unfiltered (gdb_stdlog,
7525 "infrun: step-over already in progress: "
7526 "step-over for %s deferred\n",
7527 target_pid_to_str (tp->ptid));
7528 thread_step_over_chain_enqueue (tp);
7529 }
7530 else
7531 {
7532 if (debug_infrun)
7533 fprintf_unfiltered (gdb_stdlog,
7534 "infrun: step-over in progress: "
7535 "resume of %s deferred\n",
7536 target_pid_to_str (tp->ptid));
7537 }
7538
7539 discard_cleanups (old_cleanups);
7540 }
d4f3574e
SS
7541 else
7542 {
31e77af2 7543 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7544 int remove_bp;
7545 int remove_wps;
6c4cfb24 7546 enum step_over_what step_what;
31e77af2 7547
d4f3574e 7548 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7549 anyway (if we got a signal, the user asked it be passed to
7550 the child)
7551 -- or --
7552 We got our expected trap, but decided we should resume from
7553 it.
d4f3574e 7554
a9ba6bae 7555 We're going to run this baby now!
d4f3574e 7556
c36b740a
VP
7557 Note that insert_breakpoints won't try to re-insert
7558 already inserted breakpoints. Therefore, we don't
7559 care if breakpoints were already inserted, or not. */
a9ba6bae 7560
31e77af2
PA
7561 /* If we need to step over a breakpoint, and we're not using
7562 displaced stepping to do so, insert all breakpoints
7563 (watchpoints, etc.) but the one we're stepping over, step one
7564 instruction, and then re-insert the breakpoint when that step
7565 is finished. */
963f9c80 7566
6c4cfb24
PA
7567 step_what = thread_still_needs_step_over (ecs->event_thread);
7568
963f9c80 7569 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7570 || (step_what & STEP_OVER_BREAKPOINT));
7571 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7572
cb71640d
PA
7573 /* We can't use displaced stepping if we need to step past a
7574 watchpoint. The instruction copied to the scratch pad would
7575 still trigger the watchpoint. */
7576 if (remove_bp
3fc8eb30 7577 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7578 {
31e77af2 7579 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 7580 regcache_read_pc (regcache), remove_wps);
45e8c884 7581 }
963f9c80
PA
7582 else if (remove_wps)
7583 set_step_over_info (NULL, 0, remove_wps);
372316f1
PA
7584
7585 /* If we now need to do an in-line step-over, we need to stop
7586 all other threads. Note this must be done before
7587 insert_breakpoints below, because that removes the breakpoint
7588 we're about to step over, otherwise other threads could miss
7589 it. */
fbea99ea 7590 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7591 stop_all_threads ();
abbb1732 7592
31e77af2 7593 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7594 TRY
31e77af2
PA
7595 {
7596 insert_breakpoints ();
7597 }
492d29ea 7598 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7599 {
7600 exception_print (gdb_stderr, e);
22bcd14b 7601 stop_waiting (ecs);
de1fe8c8 7602 discard_cleanups (old_cleanups);
31e77af2 7603 return;
d4f3574e 7604 }
492d29ea 7605 END_CATCH
d4f3574e 7606
963f9c80 7607 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7608
c4dbc9af 7609 discard_cleanups (old_cleanups);
64ce06e4 7610 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7611 }
7612
488f131b 7613 prepare_to_wait (ecs);
d4f3574e
SS
7614}
7615
4d9d9d04
PA
7616/* Called when we should continue running the inferior, because the
7617 current event doesn't cause a user visible stop. This does the
7618 resuming part; waiting for the next event is done elsewhere. */
7619
7620static void
7621keep_going (struct execution_control_state *ecs)
7622{
7623 if (ecs->event_thread->control.trap_expected
7624 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7625 ecs->event_thread->control.trap_expected = 0;
7626
7627 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7628 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7629 keep_going_pass_signal (ecs);
7630}
7631
104c1213
JM
7632/* This function normally comes after a resume, before
7633 handle_inferior_event exits. It takes care of any last bits of
7634 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7635
104c1213
JM
7636static void
7637prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7638{
527159b7 7639 if (debug_infrun)
8a9de0e4 7640 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7641
104c1213 7642 ecs->wait_some_more = 1;
0b333c5e
PA
7643
7644 if (!target_is_async_p ())
7645 mark_infrun_async_event_handler ();
c906108c 7646}
11cf8741 7647
fd664c91 7648/* We are done with the step range of a step/next/si/ni command.
b57bacec 7649 Called once for each n of a "step n" operation. */
fd664c91
PA
7650
7651static void
bdc36728 7652end_stepping_range (struct execution_control_state *ecs)
fd664c91 7653{
bdc36728 7654 ecs->event_thread->control.stop_step = 1;
bdc36728 7655 stop_waiting (ecs);
fd664c91
PA
7656}
7657
33d62d64
JK
7658/* Several print_*_reason functions to print why the inferior has stopped.
7659 We always print something when the inferior exits, or receives a signal.
7660 The rest of the cases are dealt with later on in normal_stop and
7661 print_it_typical. Ideally there should be a call to one of these
7662 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7663 stop_waiting is called.
33d62d64 7664
fd664c91
PA
7665 Note that we don't call these directly, instead we delegate that to
7666 the interpreters, through observers. Interpreters then call these
7667 with whatever uiout is right. */
33d62d64 7668
fd664c91
PA
7669void
7670print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7671{
fd664c91 7672 /* For CLI-like interpreters, print nothing. */
33d62d64 7673
fd664c91
PA
7674 if (ui_out_is_mi_like_p (uiout))
7675 {
7676 ui_out_field_string (uiout, "reason",
7677 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7678 }
7679}
33d62d64 7680
fd664c91
PA
7681void
7682print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7683{
33d62d64
JK
7684 annotate_signalled ();
7685 if (ui_out_is_mi_like_p (uiout))
7686 ui_out_field_string
7687 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7688 ui_out_text (uiout, "\nProgram terminated with signal ");
7689 annotate_signal_name ();
7690 ui_out_field_string (uiout, "signal-name",
2ea28649 7691 gdb_signal_to_name (siggnal));
33d62d64
JK
7692 annotate_signal_name_end ();
7693 ui_out_text (uiout, ", ");
7694 annotate_signal_string ();
7695 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7696 gdb_signal_to_string (siggnal));
33d62d64
JK
7697 annotate_signal_string_end ();
7698 ui_out_text (uiout, ".\n");
7699 ui_out_text (uiout, "The program no longer exists.\n");
7700}
7701
fd664c91
PA
7702void
7703print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7704{
fda326dd
TT
7705 struct inferior *inf = current_inferior ();
7706 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7707
33d62d64
JK
7708 annotate_exited (exitstatus);
7709 if (exitstatus)
7710 {
7711 if (ui_out_is_mi_like_p (uiout))
7712 ui_out_field_string (uiout, "reason",
7713 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
7714 ui_out_text (uiout, "[Inferior ");
7715 ui_out_text (uiout, plongest (inf->num));
7716 ui_out_text (uiout, " (");
7717 ui_out_text (uiout, pidstr);
7718 ui_out_text (uiout, ") exited with code ");
33d62d64 7719 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 7720 ui_out_text (uiout, "]\n");
33d62d64
JK
7721 }
7722 else
11cf8741 7723 {
9dc5e2a9 7724 if (ui_out_is_mi_like_p (uiout))
034dad6f 7725 ui_out_field_string
33d62d64 7726 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
7727 ui_out_text (uiout, "[Inferior ");
7728 ui_out_text (uiout, plongest (inf->num));
7729 ui_out_text (uiout, " (");
7730 ui_out_text (uiout, pidstr);
7731 ui_out_text (uiout, ") exited normally]\n");
33d62d64 7732 }
33d62d64
JK
7733}
7734
fd664c91
PA
7735void
7736print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
7737{
7738 annotate_signal ();
7739
a493e3e2 7740 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
7741 {
7742 struct thread_info *t = inferior_thread ();
7743
7744 ui_out_text (uiout, "\n[");
7745 ui_out_field_string (uiout, "thread-name",
7746 target_pid_to_str (t->ptid));
7747 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
7748 ui_out_text (uiout, " stopped");
7749 }
7750 else
7751 {
7752 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 7753 annotate_signal_name ();
33d62d64
JK
7754 if (ui_out_is_mi_like_p (uiout))
7755 ui_out_field_string
7756 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 7757 ui_out_field_string (uiout, "signal-name",
2ea28649 7758 gdb_signal_to_name (siggnal));
8b93c638
JM
7759 annotate_signal_name_end ();
7760 ui_out_text (uiout, ", ");
7761 annotate_signal_string ();
488f131b 7762 ui_out_field_string (uiout, "signal-meaning",
2ea28649 7763 gdb_signal_to_string (siggnal));
8b93c638 7764 annotate_signal_string_end ();
33d62d64
JK
7765 }
7766 ui_out_text (uiout, ".\n");
7767}
252fbfc8 7768
fd664c91
PA
7769void
7770print_no_history_reason (struct ui_out *uiout)
33d62d64 7771{
fd664c91 7772 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 7773}
43ff13b4 7774
0c7e1a46
PA
7775/* Print current location without a level number, if we have changed
7776 functions or hit a breakpoint. Print source line if we have one.
7777 bpstat_print contains the logic deciding in detail what to print,
7778 based on the event(s) that just occurred. */
7779
243a9253
PA
7780static void
7781print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7782{
7783 int bpstat_ret;
f486487f 7784 enum print_what source_flag;
0c7e1a46
PA
7785 int do_frame_printing = 1;
7786 struct thread_info *tp = inferior_thread ();
7787
7788 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7789 switch (bpstat_ret)
7790 {
7791 case PRINT_UNKNOWN:
7792 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7793 should) carry around the function and does (or should) use
7794 that when doing a frame comparison. */
7795 if (tp->control.stop_step
7796 && frame_id_eq (tp->control.step_frame_id,
7797 get_frame_id (get_current_frame ()))
885eeb5b 7798 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
7799 {
7800 /* Finished step, just print source line. */
7801 source_flag = SRC_LINE;
7802 }
7803 else
7804 {
7805 /* Print location and source line. */
7806 source_flag = SRC_AND_LOC;
7807 }
7808 break;
7809 case PRINT_SRC_AND_LOC:
7810 /* Print location and source line. */
7811 source_flag = SRC_AND_LOC;
7812 break;
7813 case PRINT_SRC_ONLY:
7814 source_flag = SRC_LINE;
7815 break;
7816 case PRINT_NOTHING:
7817 /* Something bogus. */
7818 source_flag = SRC_LINE;
7819 do_frame_printing = 0;
7820 break;
7821 default:
7822 internal_error (__FILE__, __LINE__, _("Unknown value."));
7823 }
7824
7825 /* The behavior of this routine with respect to the source
7826 flag is:
7827 SRC_LINE: Print only source line
7828 LOCATION: Print only location
7829 SRC_AND_LOC: Print location and source line. */
7830 if (do_frame_printing)
7831 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7832}
7833
7834/* Cleanup that restores a previous current uiout. */
7835
7836static void
7837restore_current_uiout_cleanup (void *arg)
7838{
9a3c8263 7839 struct ui_out *saved_uiout = (struct ui_out *) arg;
243a9253
PA
7840
7841 current_uiout = saved_uiout;
7842}
7843
7844/* See infrun.h. */
7845
7846void
7847print_stop_event (struct ui_out *uiout)
7848{
7849 struct cleanup *old_chain;
7850 struct target_waitstatus last;
7851 ptid_t last_ptid;
7852 struct thread_info *tp;
7853
7854 get_last_target_status (&last_ptid, &last);
7855
7856 old_chain = make_cleanup (restore_current_uiout_cleanup, current_uiout);
7857 current_uiout = uiout;
7858
7859 print_stop_location (&last);
0c7e1a46
PA
7860
7861 /* Display the auto-display expressions. */
7862 do_displays ();
243a9253
PA
7863
7864 do_cleanups (old_chain);
7865
7866 tp = inferior_thread ();
7867 if (tp->thread_fsm != NULL
7868 && thread_fsm_finished_p (tp->thread_fsm))
7869 {
7870 struct return_value_info *rv;
7871
7872 rv = thread_fsm_return_value (tp->thread_fsm);
7873 if (rv != NULL)
7874 print_return_value (uiout, rv);
7875 }
0c7e1a46
PA
7876}
7877
388a7084
PA
7878/* See infrun.h. */
7879
7880void
7881maybe_remove_breakpoints (void)
7882{
7883 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7884 {
7885 if (remove_breakpoints ())
7886 {
7887 target_terminal_ours_for_output ();
7888 printf_filtered (_("Cannot remove breakpoints because "
7889 "program is no longer writable.\nFurther "
7890 "execution is probably impossible.\n"));
7891 }
7892 }
7893}
7894
4c2f2a79
PA
7895/* The execution context that just caused a normal stop. */
7896
7897struct stop_context
7898{
7899 /* The stop ID. */
7900 ULONGEST stop_id;
c906108c 7901
4c2f2a79 7902 /* The event PTID. */
c906108c 7903
4c2f2a79
PA
7904 ptid_t ptid;
7905
7906 /* If stopp for a thread event, this is the thread that caused the
7907 stop. */
7908 struct thread_info *thread;
7909
7910 /* The inferior that caused the stop. */
7911 int inf_num;
7912};
7913
7914/* Returns a new stop context. If stopped for a thread event, this
7915 takes a strong reference to the thread. */
7916
7917static struct stop_context *
7918save_stop_context (void)
7919{
224c3ddb 7920 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
7921
7922 sc->stop_id = get_stop_id ();
7923 sc->ptid = inferior_ptid;
7924 sc->inf_num = current_inferior ()->num;
7925
7926 if (!ptid_equal (inferior_ptid, null_ptid))
7927 {
7928 /* Take a strong reference so that the thread can't be deleted
7929 yet. */
7930 sc->thread = inferior_thread ();
7931 sc->thread->refcount++;
7932 }
7933 else
7934 sc->thread = NULL;
7935
7936 return sc;
7937}
7938
7939/* Release a stop context previously created with save_stop_context.
7940 Releases the strong reference to the thread as well. */
7941
7942static void
7943release_stop_context_cleanup (void *arg)
7944{
9a3c8263 7945 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
7946
7947 if (sc->thread != NULL)
7948 sc->thread->refcount--;
7949 xfree (sc);
7950}
7951
7952/* Return true if the current context no longer matches the saved stop
7953 context. */
7954
7955static int
7956stop_context_changed (struct stop_context *prev)
7957{
7958 if (!ptid_equal (prev->ptid, inferior_ptid))
7959 return 1;
7960 if (prev->inf_num != current_inferior ()->num)
7961 return 1;
7962 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
7963 return 1;
7964 if (get_stop_id () != prev->stop_id)
7965 return 1;
7966 return 0;
7967}
7968
7969/* See infrun.h. */
7970
7971int
96baa820 7972normal_stop (void)
c906108c 7973{
73b65bb0
DJ
7974 struct target_waitstatus last;
7975 ptid_t last_ptid;
29f49a6a 7976 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 7977 ptid_t pid_ptid;
73b65bb0
DJ
7978
7979 get_last_target_status (&last_ptid, &last);
7980
4c2f2a79
PA
7981 new_stop_id ();
7982
29f49a6a
PA
7983 /* If an exception is thrown from this point on, make sure to
7984 propagate GDB's knowledge of the executing state to the
7985 frontend/user running state. A QUIT is an easy exception to see
7986 here, so do this before any filtered output. */
c35b1492
PA
7987 if (!non_stop)
7988 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
7989 else if (last.kind == TARGET_WAITKIND_SIGNALLED
7990 || last.kind == TARGET_WAITKIND_EXITED)
7991 {
7992 /* On some targets, we may still have live threads in the
7993 inferior when we get a process exit event. E.g., for
7994 "checkpoint", when the current checkpoint/fork exits,
7995 linux-fork.c automatically switches to another fork from
7996 within target_mourn_inferior. */
7997 if (!ptid_equal (inferior_ptid, null_ptid))
7998 {
7999 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8000 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8001 }
8002 }
8003 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8004 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8005
b57bacec
PA
8006 /* As we're presenting a stop, and potentially removing breakpoints,
8007 update the thread list so we can tell whether there are threads
8008 running on the target. With target remote, for example, we can
8009 only learn about new threads when we explicitly update the thread
8010 list. Do this before notifying the interpreters about signal
8011 stops, end of stepping ranges, etc., so that the "new thread"
8012 output is emitted before e.g., "Program received signal FOO",
8013 instead of after. */
8014 update_thread_list ();
8015
8016 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8017 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8018
c906108c
SS
8019 /* As with the notification of thread events, we want to delay
8020 notifying the user that we've switched thread context until
8021 the inferior actually stops.
8022
73b65bb0
DJ
8023 There's no point in saying anything if the inferior has exited.
8024 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8025 "received a signal".
8026
8027 Also skip saying anything in non-stop mode. In that mode, as we
8028 don't want GDB to switch threads behind the user's back, to avoid
8029 races where the user is typing a command to apply to thread x,
8030 but GDB switches to thread y before the user finishes entering
8031 the command, fetch_inferior_event installs a cleanup to restore
8032 the current thread back to the thread the user had selected right
8033 after this event is handled, so we're not really switching, only
8034 informing of a stop. */
4f8d22e3
PA
8035 if (!non_stop
8036 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8037 && target_has_execution
8038 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8039 && last.kind != TARGET_WAITKIND_EXITED
8040 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
8041 {
8042 target_terminal_ours_for_output ();
a3f17187 8043 printf_filtered (_("[Switching to %s]\n"),
c95310c6 8044 target_pid_to_str (inferior_ptid));
b8fa951a 8045 annotate_thread_changed ();
39f77062 8046 previous_inferior_ptid = inferior_ptid;
c906108c 8047 }
c906108c 8048
0e5bf2a8
PA
8049 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8050 {
8051 gdb_assert (sync_execution || !target_can_async_p ());
8052
8053 target_terminal_ours_for_output ();
8054 printf_filtered (_("No unwaited-for children left.\n"));
8055 }
8056
b57bacec 8057 /* Note: this depends on the update_thread_list call above. */
388a7084 8058 maybe_remove_breakpoints ();
c906108c 8059
c906108c
SS
8060 /* If an auto-display called a function and that got a signal,
8061 delete that auto-display to avoid an infinite recursion. */
8062
8063 if (stopped_by_random_signal)
8064 disable_current_display ();
8065
c906108c 8066 target_terminal_ours ();
0f641c01 8067 async_enable_stdin ();
c906108c 8068
388a7084
PA
8069 /* Let the user/frontend see the threads as stopped. */
8070 do_cleanups (old_chain);
8071
8072 /* Select innermost stack frame - i.e., current frame is frame 0,
8073 and current location is based on that. Handle the case where the
8074 dummy call is returning after being stopped. E.g. the dummy call
8075 previously hit a breakpoint. (If the dummy call returns
8076 normally, we won't reach here.) Do this before the stop hook is
8077 run, so that it doesn't get to see the temporary dummy frame,
8078 which is not where we'll present the stop. */
8079 if (has_stack_frames ())
8080 {
8081 if (stop_stack_dummy == STOP_STACK_DUMMY)
8082 {
8083 /* Pop the empty frame that contains the stack dummy. This
8084 also restores inferior state prior to the call (struct
8085 infcall_suspend_state). */
8086 struct frame_info *frame = get_current_frame ();
8087
8088 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8089 frame_pop (frame);
8090 /* frame_pop calls reinit_frame_cache as the last thing it
8091 does which means there's now no selected frame. */
8092 }
8093
8094 select_frame (get_current_frame ());
8095
8096 /* Set the current source location. */
8097 set_current_sal_from_frame (get_current_frame ());
8098 }
dd7e2d2b
PA
8099
8100 /* Look up the hook_stop and run it (CLI internally handles problem
8101 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8102 if (stop_command != NULL)
8103 {
8104 struct stop_context *saved_context = save_stop_context ();
8105 struct cleanup *old_chain
8106 = make_cleanup (release_stop_context_cleanup, saved_context);
8107
8108 catch_errors (hook_stop_stub, stop_command,
8109 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8110
8111 /* If the stop hook resumes the target, then there's no point in
8112 trying to notify about the previous stop; its context is
8113 gone. Likewise if the command switches thread or inferior --
8114 the observers would print a stop for the wrong
8115 thread/inferior. */
8116 if (stop_context_changed (saved_context))
8117 {
8118 do_cleanups (old_chain);
8119 return 1;
8120 }
8121 do_cleanups (old_chain);
8122 }
dd7e2d2b 8123
388a7084
PA
8124 /* Notify observers about the stop. This is where the interpreters
8125 print the stop event. */
8126 if (!ptid_equal (inferior_ptid, null_ptid))
8127 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8128 stop_print_frame);
8129 else
8130 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8131
243a9253
PA
8132 annotate_stopped ();
8133
48844aa6
PA
8134 if (target_has_execution)
8135 {
8136 if (last.kind != TARGET_WAITKIND_SIGNALLED
8137 && last.kind != TARGET_WAITKIND_EXITED)
8138 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8139 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8140 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8141 }
6c95b8df
PA
8142
8143 /* Try to get rid of automatically added inferiors that are no
8144 longer needed. Keeping those around slows down things linearly.
8145 Note that this never removes the current inferior. */
8146 prune_inferiors ();
4c2f2a79
PA
8147
8148 return 0;
c906108c
SS
8149}
8150
8151static int
96baa820 8152hook_stop_stub (void *cmd)
c906108c 8153{
5913bcb0 8154 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8155 return (0);
8156}
8157\f
c5aa993b 8158int
96baa820 8159signal_stop_state (int signo)
c906108c 8160{
d6b48e9c 8161 return signal_stop[signo];
c906108c
SS
8162}
8163
c5aa993b 8164int
96baa820 8165signal_print_state (int signo)
c906108c
SS
8166{
8167 return signal_print[signo];
8168}
8169
c5aa993b 8170int
96baa820 8171signal_pass_state (int signo)
c906108c
SS
8172{
8173 return signal_program[signo];
8174}
8175
2455069d
UW
8176static void
8177signal_cache_update (int signo)
8178{
8179 if (signo == -1)
8180 {
a493e3e2 8181 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8182 signal_cache_update (signo);
8183
8184 return;
8185 }
8186
8187 signal_pass[signo] = (signal_stop[signo] == 0
8188 && signal_print[signo] == 0
ab04a2af
TT
8189 && signal_program[signo] == 1
8190 && signal_catch[signo] == 0);
2455069d
UW
8191}
8192
488f131b 8193int
7bda5e4a 8194signal_stop_update (int signo, int state)
d4f3574e
SS
8195{
8196 int ret = signal_stop[signo];
abbb1732 8197
d4f3574e 8198 signal_stop[signo] = state;
2455069d 8199 signal_cache_update (signo);
d4f3574e
SS
8200 return ret;
8201}
8202
488f131b 8203int
7bda5e4a 8204signal_print_update (int signo, int state)
d4f3574e
SS
8205{
8206 int ret = signal_print[signo];
abbb1732 8207
d4f3574e 8208 signal_print[signo] = state;
2455069d 8209 signal_cache_update (signo);
d4f3574e
SS
8210 return ret;
8211}
8212
488f131b 8213int
7bda5e4a 8214signal_pass_update (int signo, int state)
d4f3574e
SS
8215{
8216 int ret = signal_program[signo];
abbb1732 8217
d4f3574e 8218 signal_program[signo] = state;
2455069d 8219 signal_cache_update (signo);
d4f3574e
SS
8220 return ret;
8221}
8222
ab04a2af
TT
8223/* Update the global 'signal_catch' from INFO and notify the
8224 target. */
8225
8226void
8227signal_catch_update (const unsigned int *info)
8228{
8229 int i;
8230
8231 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8232 signal_catch[i] = info[i] > 0;
8233 signal_cache_update (-1);
8234 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8235}
8236
c906108c 8237static void
96baa820 8238sig_print_header (void)
c906108c 8239{
3e43a32a
MS
8240 printf_filtered (_("Signal Stop\tPrint\tPass "
8241 "to program\tDescription\n"));
c906108c
SS
8242}
8243
8244static void
2ea28649 8245sig_print_info (enum gdb_signal oursig)
c906108c 8246{
2ea28649 8247 const char *name = gdb_signal_to_name (oursig);
c906108c 8248 int name_padding = 13 - strlen (name);
96baa820 8249
c906108c
SS
8250 if (name_padding <= 0)
8251 name_padding = 0;
8252
8253 printf_filtered ("%s", name);
488f131b 8254 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8255 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8256 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8257 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8258 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8259}
8260
8261/* Specify how various signals in the inferior should be handled. */
8262
8263static void
96baa820 8264handle_command (char *args, int from_tty)
c906108c
SS
8265{
8266 char **argv;
8267 int digits, wordlen;
8268 int sigfirst, signum, siglast;
2ea28649 8269 enum gdb_signal oursig;
c906108c
SS
8270 int allsigs;
8271 int nsigs;
8272 unsigned char *sigs;
8273 struct cleanup *old_chain;
8274
8275 if (args == NULL)
8276 {
e2e0b3e5 8277 error_no_arg (_("signal to handle"));
c906108c
SS
8278 }
8279
1777feb0 8280 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8281
a493e3e2 8282 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8283 sigs = (unsigned char *) alloca (nsigs);
8284 memset (sigs, 0, nsigs);
8285
1777feb0 8286 /* Break the command line up into args. */
c906108c 8287
d1a41061 8288 argv = gdb_buildargv (args);
7a292a7a 8289 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8290
8291 /* Walk through the args, looking for signal oursigs, signal names, and
8292 actions. Signal numbers and signal names may be interspersed with
8293 actions, with the actions being performed for all signals cumulatively
1777feb0 8294 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8295
8296 while (*argv != NULL)
8297 {
8298 wordlen = strlen (*argv);
8299 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8300 {;
8301 }
8302 allsigs = 0;
8303 sigfirst = siglast = -1;
8304
8305 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8306 {
8307 /* Apply action to all signals except those used by the
1777feb0 8308 debugger. Silently skip those. */
c906108c
SS
8309 allsigs = 1;
8310 sigfirst = 0;
8311 siglast = nsigs - 1;
8312 }
8313 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8314 {
8315 SET_SIGS (nsigs, sigs, signal_stop);
8316 SET_SIGS (nsigs, sigs, signal_print);
8317 }
8318 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8319 {
8320 UNSET_SIGS (nsigs, sigs, signal_program);
8321 }
8322 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8323 {
8324 SET_SIGS (nsigs, sigs, signal_print);
8325 }
8326 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8327 {
8328 SET_SIGS (nsigs, sigs, signal_program);
8329 }
8330 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8331 {
8332 UNSET_SIGS (nsigs, sigs, signal_stop);
8333 }
8334 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8335 {
8336 SET_SIGS (nsigs, sigs, signal_program);
8337 }
8338 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8339 {
8340 UNSET_SIGS (nsigs, sigs, signal_print);
8341 UNSET_SIGS (nsigs, sigs, signal_stop);
8342 }
8343 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8344 {
8345 UNSET_SIGS (nsigs, sigs, signal_program);
8346 }
8347 else if (digits > 0)
8348 {
8349 /* It is numeric. The numeric signal refers to our own
8350 internal signal numbering from target.h, not to host/target
8351 signal number. This is a feature; users really should be
8352 using symbolic names anyway, and the common ones like
8353 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8354
8355 sigfirst = siglast = (int)
2ea28649 8356 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8357 if ((*argv)[digits] == '-')
8358 {
8359 siglast = (int)
2ea28649 8360 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8361 }
8362 if (sigfirst > siglast)
8363 {
1777feb0 8364 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8365 signum = sigfirst;
8366 sigfirst = siglast;
8367 siglast = signum;
8368 }
8369 }
8370 else
8371 {
2ea28649 8372 oursig = gdb_signal_from_name (*argv);
a493e3e2 8373 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8374 {
8375 sigfirst = siglast = (int) oursig;
8376 }
8377 else
8378 {
8379 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8380 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8381 }
8382 }
8383
8384 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8385 which signals to apply actions to. */
c906108c
SS
8386
8387 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8388 {
2ea28649 8389 switch ((enum gdb_signal) signum)
c906108c 8390 {
a493e3e2
PA
8391 case GDB_SIGNAL_TRAP:
8392 case GDB_SIGNAL_INT:
c906108c
SS
8393 if (!allsigs && !sigs[signum])
8394 {
9e2f0ad4 8395 if (query (_("%s is used by the debugger.\n\
3e43a32a 8396Are you sure you want to change it? "),
2ea28649 8397 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8398 {
8399 sigs[signum] = 1;
8400 }
8401 else
8402 {
a3f17187 8403 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8404 gdb_flush (gdb_stdout);
8405 }
8406 }
8407 break;
a493e3e2
PA
8408 case GDB_SIGNAL_0:
8409 case GDB_SIGNAL_DEFAULT:
8410 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8411 /* Make sure that "all" doesn't print these. */
8412 break;
8413 default:
8414 sigs[signum] = 1;
8415 break;
8416 }
8417 }
8418
8419 argv++;
8420 }
8421
3a031f65
PA
8422 for (signum = 0; signum < nsigs; signum++)
8423 if (sigs[signum])
8424 {
2455069d 8425 signal_cache_update (-1);
a493e3e2
PA
8426 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8427 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8428
3a031f65
PA
8429 if (from_tty)
8430 {
8431 /* Show the results. */
8432 sig_print_header ();
8433 for (; signum < nsigs; signum++)
8434 if (sigs[signum])
aead7601 8435 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8436 }
8437
8438 break;
8439 }
c906108c
SS
8440
8441 do_cleanups (old_chain);
8442}
8443
de0bea00
MF
8444/* Complete the "handle" command. */
8445
8446static VEC (char_ptr) *
8447handle_completer (struct cmd_list_element *ignore,
6f937416 8448 const char *text, const char *word)
de0bea00
MF
8449{
8450 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8451 static const char * const keywords[] =
8452 {
8453 "all",
8454 "stop",
8455 "ignore",
8456 "print",
8457 "pass",
8458 "nostop",
8459 "noignore",
8460 "noprint",
8461 "nopass",
8462 NULL,
8463 };
8464
8465 vec_signals = signal_completer (ignore, text, word);
8466 vec_keywords = complete_on_enum (keywords, word, word);
8467
8468 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8469 VEC_free (char_ptr, vec_signals);
8470 VEC_free (char_ptr, vec_keywords);
8471 return return_val;
8472}
8473
2ea28649
PA
8474enum gdb_signal
8475gdb_signal_from_command (int num)
ed01b82c
PA
8476{
8477 if (num >= 1 && num <= 15)
2ea28649 8478 return (enum gdb_signal) num;
ed01b82c
PA
8479 error (_("Only signals 1-15 are valid as numeric signals.\n\
8480Use \"info signals\" for a list of symbolic signals."));
8481}
8482
c906108c
SS
8483/* Print current contents of the tables set by the handle command.
8484 It is possible we should just be printing signals actually used
8485 by the current target (but for things to work right when switching
8486 targets, all signals should be in the signal tables). */
8487
8488static void
96baa820 8489signals_info (char *signum_exp, int from_tty)
c906108c 8490{
2ea28649 8491 enum gdb_signal oursig;
abbb1732 8492
c906108c
SS
8493 sig_print_header ();
8494
8495 if (signum_exp)
8496 {
8497 /* First see if this is a symbol name. */
2ea28649 8498 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8499 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8500 {
8501 /* No, try numeric. */
8502 oursig =
2ea28649 8503 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8504 }
8505 sig_print_info (oursig);
8506 return;
8507 }
8508
8509 printf_filtered ("\n");
8510 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8511 for (oursig = GDB_SIGNAL_FIRST;
8512 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8513 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8514 {
8515 QUIT;
8516
a493e3e2
PA
8517 if (oursig != GDB_SIGNAL_UNKNOWN
8518 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8519 sig_print_info (oursig);
8520 }
8521
3e43a32a
MS
8522 printf_filtered (_("\nUse the \"handle\" command "
8523 "to change these tables.\n"));
c906108c 8524}
4aa995e1 8525
c709acd1
PA
8526/* Check if it makes sense to read $_siginfo from the current thread
8527 at this point. If not, throw an error. */
8528
8529static void
8530validate_siginfo_access (void)
8531{
8532 /* No current inferior, no siginfo. */
8533 if (ptid_equal (inferior_ptid, null_ptid))
8534 error (_("No thread selected."));
8535
8536 /* Don't try to read from a dead thread. */
8537 if (is_exited (inferior_ptid))
8538 error (_("The current thread has terminated"));
8539
8540 /* ... or from a spinning thread. */
8541 if (is_running (inferior_ptid))
8542 error (_("Selected thread is running."));
8543}
8544
4aa995e1
PA
8545/* The $_siginfo convenience variable is a bit special. We don't know
8546 for sure the type of the value until we actually have a chance to
7a9dd1b2 8547 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8548 also dependent on which thread you have selected.
8549
8550 1. making $_siginfo be an internalvar that creates a new value on
8551 access.
8552
8553 2. making the value of $_siginfo be an lval_computed value. */
8554
8555/* This function implements the lval_computed support for reading a
8556 $_siginfo value. */
8557
8558static void
8559siginfo_value_read (struct value *v)
8560{
8561 LONGEST transferred;
8562
c709acd1
PA
8563 validate_siginfo_access ();
8564
4aa995e1
PA
8565 transferred =
8566 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8567 NULL,
8568 value_contents_all_raw (v),
8569 value_offset (v),
8570 TYPE_LENGTH (value_type (v)));
8571
8572 if (transferred != TYPE_LENGTH (value_type (v)))
8573 error (_("Unable to read siginfo"));
8574}
8575
8576/* This function implements the lval_computed support for writing a
8577 $_siginfo value. */
8578
8579static void
8580siginfo_value_write (struct value *v, struct value *fromval)
8581{
8582 LONGEST transferred;
8583
c709acd1
PA
8584 validate_siginfo_access ();
8585
4aa995e1
PA
8586 transferred = target_write (&current_target,
8587 TARGET_OBJECT_SIGNAL_INFO,
8588 NULL,
8589 value_contents_all_raw (fromval),
8590 value_offset (v),
8591 TYPE_LENGTH (value_type (fromval)));
8592
8593 if (transferred != TYPE_LENGTH (value_type (fromval)))
8594 error (_("Unable to write siginfo"));
8595}
8596
c8f2448a 8597static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8598 {
8599 siginfo_value_read,
8600 siginfo_value_write
8601 };
8602
8603/* Return a new value with the correct type for the siginfo object of
78267919
UW
8604 the current thread using architecture GDBARCH. Return a void value
8605 if there's no object available. */
4aa995e1 8606
2c0b251b 8607static struct value *
22d2b532
SDJ
8608siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8609 void *ignore)
4aa995e1 8610{
4aa995e1 8611 if (target_has_stack
78267919
UW
8612 && !ptid_equal (inferior_ptid, null_ptid)
8613 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8614 {
78267919 8615 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8616
78267919 8617 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8618 }
8619
78267919 8620 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8621}
8622
c906108c 8623\f
16c381f0
JK
8624/* infcall_suspend_state contains state about the program itself like its
8625 registers and any signal it received when it last stopped.
8626 This state must be restored regardless of how the inferior function call
8627 ends (either successfully, or after it hits a breakpoint or signal)
8628 if the program is to properly continue where it left off. */
8629
8630struct infcall_suspend_state
7a292a7a 8631{
16c381f0 8632 struct thread_suspend_state thread_suspend;
16c381f0
JK
8633
8634 /* Other fields: */
7a292a7a 8635 CORE_ADDR stop_pc;
b89667eb 8636 struct regcache *registers;
1736ad11 8637
35515841 8638 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8639 struct gdbarch *siginfo_gdbarch;
8640
8641 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8642 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8643 content would be invalid. */
8644 gdb_byte *siginfo_data;
b89667eb
DE
8645};
8646
16c381f0
JK
8647struct infcall_suspend_state *
8648save_infcall_suspend_state (void)
b89667eb 8649{
16c381f0 8650 struct infcall_suspend_state *inf_state;
b89667eb 8651 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8652 struct regcache *regcache = get_current_regcache ();
8653 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8654 gdb_byte *siginfo_data = NULL;
8655
8656 if (gdbarch_get_siginfo_type_p (gdbarch))
8657 {
8658 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8659 size_t len = TYPE_LENGTH (type);
8660 struct cleanup *back_to;
8661
224c3ddb 8662 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8663 back_to = make_cleanup (xfree, siginfo_data);
8664
8665 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8666 siginfo_data, 0, len) == len)
8667 discard_cleanups (back_to);
8668 else
8669 {
8670 /* Errors ignored. */
8671 do_cleanups (back_to);
8672 siginfo_data = NULL;
8673 }
8674 }
8675
41bf6aca 8676 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8677
8678 if (siginfo_data)
8679 {
8680 inf_state->siginfo_gdbarch = gdbarch;
8681 inf_state->siginfo_data = siginfo_data;
8682 }
b89667eb 8683
16c381f0 8684 inf_state->thread_suspend = tp->suspend;
16c381f0 8685
35515841 8686 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8687 GDB_SIGNAL_0 anyway. */
8688 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8689
b89667eb
DE
8690 inf_state->stop_pc = stop_pc;
8691
1736ad11 8692 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8693
8694 return inf_state;
8695}
8696
8697/* Restore inferior session state to INF_STATE. */
8698
8699void
16c381f0 8700restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8701{
8702 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8703 struct regcache *regcache = get_current_regcache ();
8704 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8705
16c381f0 8706 tp->suspend = inf_state->thread_suspend;
16c381f0 8707
b89667eb
DE
8708 stop_pc = inf_state->stop_pc;
8709
1736ad11
JK
8710 if (inf_state->siginfo_gdbarch == gdbarch)
8711 {
8712 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8713
8714 /* Errors ignored. */
8715 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8716 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8717 }
8718
b89667eb
DE
8719 /* The inferior can be gone if the user types "print exit(0)"
8720 (and perhaps other times). */
8721 if (target_has_execution)
8722 /* NB: The register write goes through to the target. */
1736ad11 8723 regcache_cpy (regcache, inf_state->registers);
803b5f95 8724
16c381f0 8725 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8726}
8727
8728static void
16c381f0 8729do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8730{
9a3c8263 8731 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8732}
8733
8734struct cleanup *
16c381f0
JK
8735make_cleanup_restore_infcall_suspend_state
8736 (struct infcall_suspend_state *inf_state)
b89667eb 8737{
16c381f0 8738 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8739}
8740
8741void
16c381f0 8742discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8743{
8744 regcache_xfree (inf_state->registers);
803b5f95 8745 xfree (inf_state->siginfo_data);
b89667eb
DE
8746 xfree (inf_state);
8747}
8748
8749struct regcache *
16c381f0 8750get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8751{
8752 return inf_state->registers;
8753}
8754
16c381f0
JK
8755/* infcall_control_state contains state regarding gdb's control of the
8756 inferior itself like stepping control. It also contains session state like
8757 the user's currently selected frame. */
b89667eb 8758
16c381f0 8759struct infcall_control_state
b89667eb 8760{
16c381f0
JK
8761 struct thread_control_state thread_control;
8762 struct inferior_control_state inferior_control;
d82142e2
JK
8763
8764 /* Other fields: */
8765 enum stop_stack_kind stop_stack_dummy;
8766 int stopped_by_random_signal;
7a292a7a 8767 int stop_after_trap;
7a292a7a 8768
b89667eb 8769 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8770 struct frame_id selected_frame_id;
7a292a7a
SS
8771};
8772
c906108c 8773/* Save all of the information associated with the inferior<==>gdb
b89667eb 8774 connection. */
c906108c 8775
16c381f0
JK
8776struct infcall_control_state *
8777save_infcall_control_state (void)
c906108c 8778{
8d749320
SM
8779 struct infcall_control_state *inf_status =
8780 XNEW (struct infcall_control_state);
4e1c45ea 8781 struct thread_info *tp = inferior_thread ();
d6b48e9c 8782 struct inferior *inf = current_inferior ();
7a292a7a 8783
16c381f0
JK
8784 inf_status->thread_control = tp->control;
8785 inf_status->inferior_control = inf->control;
d82142e2 8786
8358c15c 8787 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8788 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8789
16c381f0
JK
8790 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8791 chain. If caller's caller is walking the chain, they'll be happier if we
8792 hand them back the original chain when restore_infcall_control_state is
8793 called. */
8794 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8795
8796 /* Other fields: */
8797 inf_status->stop_stack_dummy = stop_stack_dummy;
8798 inf_status->stopped_by_random_signal = stopped_by_random_signal;
8799 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 8800
206415a3 8801 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8802
7a292a7a 8803 return inf_status;
c906108c
SS
8804}
8805
c906108c 8806static int
96baa820 8807restore_selected_frame (void *args)
c906108c 8808{
488f131b 8809 struct frame_id *fid = (struct frame_id *) args;
c906108c 8810 struct frame_info *frame;
c906108c 8811
101dcfbe 8812 frame = frame_find_by_id (*fid);
c906108c 8813
aa0cd9c1
AC
8814 /* If inf_status->selected_frame_id is NULL, there was no previously
8815 selected frame. */
101dcfbe 8816 if (frame == NULL)
c906108c 8817 {
8a3fe4f8 8818 warning (_("Unable to restore previously selected frame."));
c906108c
SS
8819 return 0;
8820 }
8821
0f7d239c 8822 select_frame (frame);
c906108c
SS
8823
8824 return (1);
8825}
8826
b89667eb
DE
8827/* Restore inferior session state to INF_STATUS. */
8828
c906108c 8829void
16c381f0 8830restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8831{
4e1c45ea 8832 struct thread_info *tp = inferior_thread ();
d6b48e9c 8833 struct inferior *inf = current_inferior ();
4e1c45ea 8834
8358c15c
JK
8835 if (tp->control.step_resume_breakpoint)
8836 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8837
5b79abe7
TT
8838 if (tp->control.exception_resume_breakpoint)
8839 tp->control.exception_resume_breakpoint->disposition
8840 = disp_del_at_next_stop;
8841
d82142e2 8842 /* Handle the bpstat_copy of the chain. */
16c381f0 8843 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8844
16c381f0
JK
8845 tp->control = inf_status->thread_control;
8846 inf->control = inf_status->inferior_control;
d82142e2
JK
8847
8848 /* Other fields: */
8849 stop_stack_dummy = inf_status->stop_stack_dummy;
8850 stopped_by_random_signal = inf_status->stopped_by_random_signal;
8851 stop_after_trap = inf_status->stop_after_trap;
c906108c 8852
b89667eb 8853 if (target_has_stack)
c906108c 8854 {
c906108c 8855 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
8856 walking the stack might encounter a garbage pointer and
8857 error() trying to dereference it. */
488f131b
JB
8858 if (catch_errors
8859 (restore_selected_frame, &inf_status->selected_frame_id,
8860 "Unable to restore previously selected frame:\n",
8861 RETURN_MASK_ERROR) == 0)
c906108c
SS
8862 /* Error in restoring the selected frame. Select the innermost
8863 frame. */
0f7d239c 8864 select_frame (get_current_frame ());
c906108c 8865 }
c906108c 8866
72cec141 8867 xfree (inf_status);
7a292a7a 8868}
c906108c 8869
74b7792f 8870static void
16c381f0 8871do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 8872{
9a3c8263 8873 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
8874}
8875
8876struct cleanup *
16c381f0
JK
8877make_cleanup_restore_infcall_control_state
8878 (struct infcall_control_state *inf_status)
74b7792f 8879{
16c381f0 8880 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
8881}
8882
c906108c 8883void
16c381f0 8884discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8885{
8358c15c
JK
8886 if (inf_status->thread_control.step_resume_breakpoint)
8887 inf_status->thread_control.step_resume_breakpoint->disposition
8888 = disp_del_at_next_stop;
8889
5b79abe7
TT
8890 if (inf_status->thread_control.exception_resume_breakpoint)
8891 inf_status->thread_control.exception_resume_breakpoint->disposition
8892 = disp_del_at_next_stop;
8893
1777feb0 8894 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8895 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8896
72cec141 8897 xfree (inf_status);
7a292a7a 8898}
b89667eb 8899\f
ca6724c1
KB
8900/* restore_inferior_ptid() will be used by the cleanup machinery
8901 to restore the inferior_ptid value saved in a call to
8902 save_inferior_ptid(). */
ce696e05
KB
8903
8904static void
8905restore_inferior_ptid (void *arg)
8906{
9a3c8263 8907 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 8908
ce696e05
KB
8909 inferior_ptid = *saved_ptid_ptr;
8910 xfree (arg);
8911}
8912
8913/* Save the value of inferior_ptid so that it may be restored by a
8914 later call to do_cleanups(). Returns the struct cleanup pointer
8915 needed for later doing the cleanup. */
8916
8917struct cleanup *
8918save_inferior_ptid (void)
8919{
8d749320 8920 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 8921
ce696e05
KB
8922 *saved_ptid_ptr = inferior_ptid;
8923 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
8924}
0c557179 8925
7f89fd65 8926/* See infrun.h. */
0c557179
SDJ
8927
8928void
8929clear_exit_convenience_vars (void)
8930{
8931 clear_internalvar (lookup_internalvar ("_exitsignal"));
8932 clear_internalvar (lookup_internalvar ("_exitcode"));
8933}
c5aa993b 8934\f
488f131b 8935
b2175913
MS
8936/* User interface for reverse debugging:
8937 Set exec-direction / show exec-direction commands
8938 (returns error unless target implements to_set_exec_direction method). */
8939
32231432 8940int execution_direction = EXEC_FORWARD;
b2175913
MS
8941static const char exec_forward[] = "forward";
8942static const char exec_reverse[] = "reverse";
8943static const char *exec_direction = exec_forward;
40478521 8944static const char *const exec_direction_names[] = {
b2175913
MS
8945 exec_forward,
8946 exec_reverse,
8947 NULL
8948};
8949
8950static void
8951set_exec_direction_func (char *args, int from_tty,
8952 struct cmd_list_element *cmd)
8953{
8954 if (target_can_execute_reverse)
8955 {
8956 if (!strcmp (exec_direction, exec_forward))
8957 execution_direction = EXEC_FORWARD;
8958 else if (!strcmp (exec_direction, exec_reverse))
8959 execution_direction = EXEC_REVERSE;
8960 }
8bbed405
MS
8961 else
8962 {
8963 exec_direction = exec_forward;
8964 error (_("Target does not support this operation."));
8965 }
b2175913
MS
8966}
8967
8968static void
8969show_exec_direction_func (struct ui_file *out, int from_tty,
8970 struct cmd_list_element *cmd, const char *value)
8971{
8972 switch (execution_direction) {
8973 case EXEC_FORWARD:
8974 fprintf_filtered (out, _("Forward.\n"));
8975 break;
8976 case EXEC_REVERSE:
8977 fprintf_filtered (out, _("Reverse.\n"));
8978 break;
b2175913 8979 default:
d8b34453
PA
8980 internal_error (__FILE__, __LINE__,
8981 _("bogus execution_direction value: %d"),
8982 (int) execution_direction);
b2175913
MS
8983 }
8984}
8985
d4db2f36
PA
8986static void
8987show_schedule_multiple (struct ui_file *file, int from_tty,
8988 struct cmd_list_element *c, const char *value)
8989{
3e43a32a
MS
8990 fprintf_filtered (file, _("Resuming the execution of threads "
8991 "of all processes is %s.\n"), value);
d4db2f36 8992}
ad52ddc6 8993
22d2b532
SDJ
8994/* Implementation of `siginfo' variable. */
8995
8996static const struct internalvar_funcs siginfo_funcs =
8997{
8998 siginfo_make_value,
8999 NULL,
9000 NULL
9001};
9002
372316f1
PA
9003/* Callback for infrun's target events source. This is marked when a
9004 thread has a pending status to process. */
9005
9006static void
9007infrun_async_inferior_event_handler (gdb_client_data data)
9008{
372316f1
PA
9009 inferior_event_handler (INF_REG_EVENT, NULL);
9010}
9011
c906108c 9012void
96baa820 9013_initialize_infrun (void)
c906108c 9014{
52f0bd74
AC
9015 int i;
9016 int numsigs;
de0bea00 9017 struct cmd_list_element *c;
c906108c 9018
372316f1
PA
9019 /* Register extra event sources in the event loop. */
9020 infrun_async_inferior_event_token
9021 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9022
1bedd215
AC
9023 add_info ("signals", signals_info, _("\
9024What debugger does when program gets various signals.\n\
9025Specify a signal as argument to print info on that signal only."));
c906108c
SS
9026 add_info_alias ("handle", "signals", 0);
9027
de0bea00 9028 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9029Specify how to handle signals.\n\
486c7739 9030Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9031Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9032If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9033will be displayed instead.\n\
9034\n\
c906108c
SS
9035Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9036from 1-15 are allowed for compatibility with old versions of GDB.\n\
9037Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9038The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9039used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9040\n\
1bedd215 9041Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9042\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9043Stop means reenter debugger if this signal happens (implies print).\n\
9044Print means print a message if this signal happens.\n\
9045Pass means let program see this signal; otherwise program doesn't know.\n\
9046Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9047Pass and Stop may be combined.\n\
9048\n\
9049Multiple signals may be specified. Signal numbers and signal names\n\
9050may be interspersed with actions, with the actions being performed for\n\
9051all signals cumulatively specified."));
de0bea00 9052 set_cmd_completer (c, handle_completer);
486c7739 9053
c906108c 9054 if (!dbx_commands)
1a966eab
AC
9055 stop_command = add_cmd ("stop", class_obscure,
9056 not_just_help_class_command, _("\
9057There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9058This allows you to set a list of commands to be run each time execution\n\
1a966eab 9059of the program stops."), &cmdlist);
c906108c 9060
ccce17b0 9061 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9062Set inferior debugging."), _("\
9063Show inferior debugging."), _("\
9064When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9065 NULL,
9066 show_debug_infrun,
9067 &setdebuglist, &showdebuglist);
527159b7 9068
3e43a32a
MS
9069 add_setshow_boolean_cmd ("displaced", class_maintenance,
9070 &debug_displaced, _("\
237fc4c9
PA
9071Set displaced stepping debugging."), _("\
9072Show displaced stepping debugging."), _("\
9073When non-zero, displaced stepping specific debugging is enabled."),
9074 NULL,
9075 show_debug_displaced,
9076 &setdebuglist, &showdebuglist);
9077
ad52ddc6
PA
9078 add_setshow_boolean_cmd ("non-stop", no_class,
9079 &non_stop_1, _("\
9080Set whether gdb controls the inferior in non-stop mode."), _("\
9081Show whether gdb controls the inferior in non-stop mode."), _("\
9082When debugging a multi-threaded program and this setting is\n\
9083off (the default, also called all-stop mode), when one thread stops\n\
9084(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9085all other threads in the program while you interact with the thread of\n\
9086interest. When you continue or step a thread, you can allow the other\n\
9087threads to run, or have them remain stopped, but while you inspect any\n\
9088thread's state, all threads stop.\n\
9089\n\
9090In non-stop mode, when one thread stops, other threads can continue\n\
9091to run freely. You'll be able to step each thread independently,\n\
9092leave it stopped or free to run as needed."),
9093 set_non_stop,
9094 show_non_stop,
9095 &setlist,
9096 &showlist);
9097
a493e3e2 9098 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9099 signal_stop = XNEWVEC (unsigned char, numsigs);
9100 signal_print = XNEWVEC (unsigned char, numsigs);
9101 signal_program = XNEWVEC (unsigned char, numsigs);
9102 signal_catch = XNEWVEC (unsigned char, numsigs);
9103 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9104 for (i = 0; i < numsigs; i++)
9105 {
9106 signal_stop[i] = 1;
9107 signal_print[i] = 1;
9108 signal_program[i] = 1;
ab04a2af 9109 signal_catch[i] = 0;
c906108c
SS
9110 }
9111
4d9d9d04
PA
9112 /* Signals caused by debugger's own actions should not be given to
9113 the program afterwards.
9114
9115 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9116 explicitly specifies that it should be delivered to the target
9117 program. Typically, that would occur when a user is debugging a
9118 target monitor on a simulator: the target monitor sets a
9119 breakpoint; the simulator encounters this breakpoint and halts
9120 the simulation handing control to GDB; GDB, noting that the stop
9121 address doesn't map to any known breakpoint, returns control back
9122 to the simulator; the simulator then delivers the hardware
9123 equivalent of a GDB_SIGNAL_TRAP to the program being
9124 debugged. */
a493e3e2
PA
9125 signal_program[GDB_SIGNAL_TRAP] = 0;
9126 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9127
9128 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9129 signal_stop[GDB_SIGNAL_ALRM] = 0;
9130 signal_print[GDB_SIGNAL_ALRM] = 0;
9131 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9132 signal_print[GDB_SIGNAL_VTALRM] = 0;
9133 signal_stop[GDB_SIGNAL_PROF] = 0;
9134 signal_print[GDB_SIGNAL_PROF] = 0;
9135 signal_stop[GDB_SIGNAL_CHLD] = 0;
9136 signal_print[GDB_SIGNAL_CHLD] = 0;
9137 signal_stop[GDB_SIGNAL_IO] = 0;
9138 signal_print[GDB_SIGNAL_IO] = 0;
9139 signal_stop[GDB_SIGNAL_POLL] = 0;
9140 signal_print[GDB_SIGNAL_POLL] = 0;
9141 signal_stop[GDB_SIGNAL_URG] = 0;
9142 signal_print[GDB_SIGNAL_URG] = 0;
9143 signal_stop[GDB_SIGNAL_WINCH] = 0;
9144 signal_print[GDB_SIGNAL_WINCH] = 0;
9145 signal_stop[GDB_SIGNAL_PRIO] = 0;
9146 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9147
cd0fc7c3
SS
9148 /* These signals are used internally by user-level thread
9149 implementations. (See signal(5) on Solaris.) Like the above
9150 signals, a healthy program receives and handles them as part of
9151 its normal operation. */
a493e3e2
PA
9152 signal_stop[GDB_SIGNAL_LWP] = 0;
9153 signal_print[GDB_SIGNAL_LWP] = 0;
9154 signal_stop[GDB_SIGNAL_WAITING] = 0;
9155 signal_print[GDB_SIGNAL_WAITING] = 0;
9156 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9157 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 9158
2455069d
UW
9159 /* Update cached state. */
9160 signal_cache_update (-1);
9161
85c07804
AC
9162 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9163 &stop_on_solib_events, _("\
9164Set stopping for shared library events."), _("\
9165Show stopping for shared library events."), _("\
c906108c
SS
9166If nonzero, gdb will give control to the user when the dynamic linker\n\
9167notifies gdb of shared library events. The most common event of interest\n\
85c07804 9168to the user would be loading/unloading of a new library."),
f9e14852 9169 set_stop_on_solib_events,
920d2a44 9170 show_stop_on_solib_events,
85c07804 9171 &setlist, &showlist);
c906108c 9172
7ab04401
AC
9173 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9174 follow_fork_mode_kind_names,
9175 &follow_fork_mode_string, _("\
9176Set debugger response to a program call of fork or vfork."), _("\
9177Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9178A fork or vfork creates a new process. follow-fork-mode can be:\n\
9179 parent - the original process is debugged after a fork\n\
9180 child - the new process is debugged after a fork\n\
ea1dd7bc 9181The unfollowed process will continue to run.\n\
7ab04401
AC
9182By default, the debugger will follow the parent process."),
9183 NULL,
920d2a44 9184 show_follow_fork_mode_string,
7ab04401
AC
9185 &setlist, &showlist);
9186
6c95b8df
PA
9187 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9188 follow_exec_mode_names,
9189 &follow_exec_mode_string, _("\
9190Set debugger response to a program call of exec."), _("\
9191Show debugger response to a program call of exec."), _("\
9192An exec call replaces the program image of a process.\n\
9193\n\
9194follow-exec-mode can be:\n\
9195\n\
cce7e648 9196 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9197to this new inferior. The program the process was running before\n\
9198the exec call can be restarted afterwards by restarting the original\n\
9199inferior.\n\
9200\n\
9201 same - the debugger keeps the process bound to the same inferior.\n\
9202The new executable image replaces the previous executable loaded in\n\
9203the inferior. Restarting the inferior after the exec call restarts\n\
9204the executable the process was running after the exec call.\n\
9205\n\
9206By default, the debugger will use the same inferior."),
9207 NULL,
9208 show_follow_exec_mode_string,
9209 &setlist, &showlist);
9210
7ab04401
AC
9211 add_setshow_enum_cmd ("scheduler-locking", class_run,
9212 scheduler_enums, &scheduler_mode, _("\
9213Set mode for locking scheduler during execution."), _("\
9214Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9215off == no locking (threads may preempt at any time)\n\
9216on == full locking (no thread except the current thread may run)\n\
9217 This applies to both normal execution and replay mode.\n\
9218step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9219 In this mode, other threads may run during other commands.\n\
9220 This applies to both normal execution and replay mode.\n\
9221replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9222 set_schedlock_func, /* traps on target vector */
920d2a44 9223 show_scheduler_mode,
7ab04401 9224 &setlist, &showlist);
5fbbeb29 9225
d4db2f36
PA
9226 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9227Set mode for resuming threads of all processes."), _("\
9228Show mode for resuming threads of all processes."), _("\
9229When on, execution commands (such as 'continue' or 'next') resume all\n\
9230threads of all processes. When off (which is the default), execution\n\
9231commands only resume the threads of the current process. The set of\n\
9232threads that are resumed is further refined by the scheduler-locking\n\
9233mode (see help set scheduler-locking)."),
9234 NULL,
9235 show_schedule_multiple,
9236 &setlist, &showlist);
9237
5bf193a2
AC
9238 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9239Set mode of the step operation."), _("\
9240Show mode of the step operation."), _("\
9241When set, doing a step over a function without debug line information\n\
9242will stop at the first instruction of that function. Otherwise, the\n\
9243function is skipped and the step command stops at a different source line."),
9244 NULL,
920d2a44 9245 show_step_stop_if_no_debug,
5bf193a2 9246 &setlist, &showlist);
ca6724c1 9247
72d0e2c5
YQ
9248 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9249 &can_use_displaced_stepping, _("\
237fc4c9
PA
9250Set debugger's willingness to use displaced stepping."), _("\
9251Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9252If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9253supported by the target architecture. If off, gdb will not use displaced\n\
9254stepping to step over breakpoints, even if such is supported by the target\n\
9255architecture. If auto (which is the default), gdb will use displaced stepping\n\
9256if the target architecture supports it and non-stop mode is active, but will not\n\
9257use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9258 NULL,
9259 show_can_use_displaced_stepping,
9260 &setlist, &showlist);
237fc4c9 9261
b2175913
MS
9262 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9263 &exec_direction, _("Set direction of execution.\n\
9264Options are 'forward' or 'reverse'."),
9265 _("Show direction of execution (forward/reverse)."),
9266 _("Tells gdb whether to execute forward or backward."),
9267 set_exec_direction_func, show_exec_direction_func,
9268 &setlist, &showlist);
9269
6c95b8df
PA
9270 /* Set/show detach-on-fork: user-settable mode. */
9271
9272 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9273Set whether gdb will detach the child of a fork."), _("\
9274Show whether gdb will detach the child of a fork."), _("\
9275Tells gdb whether to detach the child of a fork."),
9276 NULL, NULL, &setlist, &showlist);
9277
03583c20
UW
9278 /* Set/show disable address space randomization mode. */
9279
9280 add_setshow_boolean_cmd ("disable-randomization", class_support,
9281 &disable_randomization, _("\
9282Set disabling of debuggee's virtual address space randomization."), _("\
9283Show disabling of debuggee's virtual address space randomization."), _("\
9284When this mode is on (which is the default), randomization of the virtual\n\
9285address space is disabled. Standalone programs run with the randomization\n\
9286enabled by default on some platforms."),
9287 &set_disable_randomization,
9288 &show_disable_randomization,
9289 &setlist, &showlist);
9290
ca6724c1 9291 /* ptid initializations */
ca6724c1
KB
9292 inferior_ptid = null_ptid;
9293 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9294
9295 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9296 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9297 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9298 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9299
9300 /* Explicitly create without lookup, since that tries to create a
9301 value with a void typed value, and when we get here, gdbarch
9302 isn't initialized yet. At this point, we're quite sure there
9303 isn't another convenience variable of the same name. */
22d2b532 9304 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9305
9306 add_setshow_boolean_cmd ("observer", no_class,
9307 &observer_mode_1, _("\
9308Set whether gdb controls the inferior in observer mode."), _("\
9309Show whether gdb controls the inferior in observer mode."), _("\
9310In observer mode, GDB can get data from the inferior, but not\n\
9311affect its execution. Registers and memory may not be changed,\n\
9312breakpoints may not be set, and the program cannot be interrupted\n\
9313or signalled."),
9314 set_observer_mode,
9315 show_observer_mode,
9316 &setlist,
9317 &showlist);
c906108c 9318}
This page took 2.149903 seconds and 4 git commands to generate.