[ARC] Object attributes.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
c906108c
SS
69
70/* Prototypes for local functions */
71
96baa820 72static void signals_info (char *, int);
c906108c 73
96baa820 74static void handle_command (char *, int);
c906108c 75
2ea28649 76static void sig_print_info (enum gdb_signal);
c906108c 77
96baa820 78static void sig_print_header (void);
c906108c 79
74b7792f 80static void resume_cleanups (void *);
c906108c 81
96baa820 82static int hook_stop_stub (void *);
c906108c 83
96baa820
JM
84static int restore_selected_frame (void *);
85
4ef3f3be 86static int follow_fork (void);
96baa820 87
d83ad864
DB
88static int follow_fork_inferior (int follow_child, int detach_fork);
89
90static void follow_inferior_reset_breakpoints (void);
91
96baa820 92static void set_schedlock_func (char *args, int from_tty,
488f131b 93 struct cmd_list_element *c);
96baa820 94
a289b8f6
JK
95static int currently_stepping (struct thread_info *tp);
96
96baa820 97void _initialize_infrun (void);
43ff13b4 98
e58b0e63
PA
99void nullify_last_target_wait_ptid (void);
100
2c03e5be 101static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
102
103static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
104
2484c66b
UW
105static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
106
8550d3b3
YQ
107static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
108
372316f1
PA
109/* Asynchronous signal handler registered as event loop source for
110 when we have pending events ready to be passed to the core. */
111static struct async_event_handler *infrun_async_inferior_event_token;
112
113/* Stores whether infrun_async was previously enabled or disabled.
114 Starts off as -1, indicating "never enabled/disabled". */
115static int infrun_is_async = -1;
116
117/* See infrun.h. */
118
119void
120infrun_async (int enable)
121{
122 if (infrun_is_async != enable)
123 {
124 infrun_is_async = enable;
125
126 if (debug_infrun)
127 fprintf_unfiltered (gdb_stdlog,
128 "infrun: infrun_async(%d)\n",
129 enable);
130
131 if (enable)
132 mark_async_event_handler (infrun_async_inferior_event_token);
133 else
134 clear_async_event_handler (infrun_async_inferior_event_token);
135 }
136}
137
0b333c5e
PA
138/* See infrun.h. */
139
140void
141mark_infrun_async_event_handler (void)
142{
143 mark_async_event_handler (infrun_async_inferior_event_token);
144}
145
5fbbeb29
CF
146/* When set, stop the 'step' command if we enter a function which has
147 no line number information. The normal behavior is that we step
148 over such function. */
149int step_stop_if_no_debug = 0;
920d2a44
AC
150static void
151show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
152 struct cmd_list_element *c, const char *value)
153{
154 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
155}
5fbbeb29 156
b9f437de
PA
157/* proceed and normal_stop use this to notify the user when the
158 inferior stopped in a different thread than it had been running
159 in. */
96baa820 160
39f77062 161static ptid_t previous_inferior_ptid;
7a292a7a 162
07107ca6
LM
163/* If set (default for legacy reasons), when following a fork, GDB
164 will detach from one of the fork branches, child or parent.
165 Exactly which branch is detached depends on 'set follow-fork-mode'
166 setting. */
167
168static int detach_fork = 1;
6c95b8df 169
237fc4c9
PA
170int debug_displaced = 0;
171static void
172show_debug_displaced (struct ui_file *file, int from_tty,
173 struct cmd_list_element *c, const char *value)
174{
175 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
176}
177
ccce17b0 178unsigned int debug_infrun = 0;
920d2a44
AC
179static void
180show_debug_infrun (struct ui_file *file, int from_tty,
181 struct cmd_list_element *c, const char *value)
182{
183 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
184}
527159b7 185
03583c20
UW
186
187/* Support for disabling address space randomization. */
188
189int disable_randomization = 1;
190
191static void
192show_disable_randomization (struct ui_file *file, int from_tty,
193 struct cmd_list_element *c, const char *value)
194{
195 if (target_supports_disable_randomization ())
196 fprintf_filtered (file,
197 _("Disabling randomization of debuggee's "
198 "virtual address space is %s.\n"),
199 value);
200 else
201 fputs_filtered (_("Disabling randomization of debuggee's "
202 "virtual address space is unsupported on\n"
203 "this platform.\n"), file);
204}
205
206static void
207set_disable_randomization (char *args, int from_tty,
208 struct cmd_list_element *c)
209{
210 if (!target_supports_disable_randomization ())
211 error (_("Disabling randomization of debuggee's "
212 "virtual address space is unsupported on\n"
213 "this platform."));
214}
215
d32dc48e
PA
216/* User interface for non-stop mode. */
217
218int non_stop = 0;
219static int non_stop_1 = 0;
220
221static void
222set_non_stop (char *args, int from_tty,
223 struct cmd_list_element *c)
224{
225 if (target_has_execution)
226 {
227 non_stop_1 = non_stop;
228 error (_("Cannot change this setting while the inferior is running."));
229 }
230
231 non_stop = non_stop_1;
232}
233
234static void
235show_non_stop (struct ui_file *file, int from_tty,
236 struct cmd_list_element *c, const char *value)
237{
238 fprintf_filtered (file,
239 _("Controlling the inferior in non-stop mode is %s.\n"),
240 value);
241}
242
d914c394
SS
243/* "Observer mode" is somewhat like a more extreme version of
244 non-stop, in which all GDB operations that might affect the
245 target's execution have been disabled. */
246
d914c394
SS
247int observer_mode = 0;
248static int observer_mode_1 = 0;
249
250static void
251set_observer_mode (char *args, int from_tty,
252 struct cmd_list_element *c)
253{
d914c394
SS
254 if (target_has_execution)
255 {
256 observer_mode_1 = observer_mode;
257 error (_("Cannot change this setting while the inferior is running."));
258 }
259
260 observer_mode = observer_mode_1;
261
262 may_write_registers = !observer_mode;
263 may_write_memory = !observer_mode;
264 may_insert_breakpoints = !observer_mode;
265 may_insert_tracepoints = !observer_mode;
266 /* We can insert fast tracepoints in or out of observer mode,
267 but enable them if we're going into this mode. */
268 if (observer_mode)
269 may_insert_fast_tracepoints = 1;
270 may_stop = !observer_mode;
271 update_target_permissions ();
272
273 /* Going *into* observer mode we must force non-stop, then
274 going out we leave it that way. */
275 if (observer_mode)
276 {
d914c394
SS
277 pagination_enabled = 0;
278 non_stop = non_stop_1 = 1;
279 }
280
281 if (from_tty)
282 printf_filtered (_("Observer mode is now %s.\n"),
283 (observer_mode ? "on" : "off"));
284}
285
286static void
287show_observer_mode (struct ui_file *file, int from_tty,
288 struct cmd_list_element *c, const char *value)
289{
290 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
291}
292
293/* This updates the value of observer mode based on changes in
294 permissions. Note that we are deliberately ignoring the values of
295 may-write-registers and may-write-memory, since the user may have
296 reason to enable these during a session, for instance to turn on a
297 debugging-related global. */
298
299void
300update_observer_mode (void)
301{
302 int newval;
303
304 newval = (!may_insert_breakpoints
305 && !may_insert_tracepoints
306 && may_insert_fast_tracepoints
307 && !may_stop
308 && non_stop);
309
310 /* Let the user know if things change. */
311 if (newval != observer_mode)
312 printf_filtered (_("Observer mode is now %s.\n"),
313 (newval ? "on" : "off"));
314
315 observer_mode = observer_mode_1 = newval;
316}
c2c6d25f 317
c906108c
SS
318/* Tables of how to react to signals; the user sets them. */
319
320static unsigned char *signal_stop;
321static unsigned char *signal_print;
322static unsigned char *signal_program;
323
ab04a2af
TT
324/* Table of signals that are registered with "catch signal". A
325 non-zero entry indicates that the signal is caught by some "catch
326 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
327 signals. */
328static unsigned char *signal_catch;
329
2455069d
UW
330/* Table of signals that the target may silently handle.
331 This is automatically determined from the flags above,
332 and simply cached here. */
333static unsigned char *signal_pass;
334
c906108c
SS
335#define SET_SIGS(nsigs,sigs,flags) \
336 do { \
337 int signum = (nsigs); \
338 while (signum-- > 0) \
339 if ((sigs)[signum]) \
340 (flags)[signum] = 1; \
341 } while (0)
342
343#define UNSET_SIGS(nsigs,sigs,flags) \
344 do { \
345 int signum = (nsigs); \
346 while (signum-- > 0) \
347 if ((sigs)[signum]) \
348 (flags)[signum] = 0; \
349 } while (0)
350
9b224c5e
PA
351/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
352 this function is to avoid exporting `signal_program'. */
353
354void
355update_signals_program_target (void)
356{
a493e3e2 357 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
358}
359
1777feb0 360/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 361
edb3359d 362#define RESUME_ALL minus_one_ptid
c906108c
SS
363
364/* Command list pointer for the "stop" placeholder. */
365
366static struct cmd_list_element *stop_command;
367
c906108c
SS
368/* Nonzero if we want to give control to the user when we're notified
369 of shared library events by the dynamic linker. */
628fe4e4 370int stop_on_solib_events;
f9e14852
GB
371
372/* Enable or disable optional shared library event breakpoints
373 as appropriate when the above flag is changed. */
374
375static void
376set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
377{
378 update_solib_breakpoints ();
379}
380
920d2a44
AC
381static void
382show_stop_on_solib_events (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384{
385 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
386 value);
387}
c906108c 388
c906108c
SS
389/* Nonzero after stop if current stack frame should be printed. */
390
391static int stop_print_frame;
392
e02bc4cc 393/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
394 returned by target_wait()/deprecated_target_wait_hook(). This
395 information is returned by get_last_target_status(). */
39f77062 396static ptid_t target_last_wait_ptid;
e02bc4cc
DS
397static struct target_waitstatus target_last_waitstatus;
398
0d1e5fa7
PA
399static void context_switch (ptid_t ptid);
400
4e1c45ea 401void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 402
53904c9e
AC
403static const char follow_fork_mode_child[] = "child";
404static const char follow_fork_mode_parent[] = "parent";
405
40478521 406static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
407 follow_fork_mode_child,
408 follow_fork_mode_parent,
409 NULL
ef346e04 410};
c906108c 411
53904c9e 412static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
413static void
414show_follow_fork_mode_string (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c, const char *value)
416{
3e43a32a
MS
417 fprintf_filtered (file,
418 _("Debugger response to a program "
419 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
420 value);
421}
c906108c
SS
422\f
423
d83ad864
DB
424/* Handle changes to the inferior list based on the type of fork,
425 which process is being followed, and whether the other process
426 should be detached. On entry inferior_ptid must be the ptid of
427 the fork parent. At return inferior_ptid is the ptid of the
428 followed inferior. */
429
430static int
431follow_fork_inferior (int follow_child, int detach_fork)
432{
433 int has_vforked;
79639e11 434 ptid_t parent_ptid, child_ptid;
d83ad864
DB
435
436 has_vforked = (inferior_thread ()->pending_follow.kind
437 == TARGET_WAITKIND_VFORKED);
79639e11
PA
438 parent_ptid = inferior_ptid;
439 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
440
441 if (has_vforked
442 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 443 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
444 && !(follow_child || detach_fork || sched_multi))
445 {
446 /* The parent stays blocked inside the vfork syscall until the
447 child execs or exits. If we don't let the child run, then
448 the parent stays blocked. If we're telling the parent to run
449 in the foreground, the user will not be able to ctrl-c to get
450 back the terminal, effectively hanging the debug session. */
451 fprintf_filtered (gdb_stderr, _("\
452Can not resume the parent process over vfork in the foreground while\n\
453holding the child stopped. Try \"set detach-on-fork\" or \
454\"set schedule-multiple\".\n"));
455 /* FIXME output string > 80 columns. */
456 return 1;
457 }
458
459 if (!follow_child)
460 {
461 /* Detach new forked process? */
462 if (detach_fork)
463 {
d83ad864
DB
464 /* Before detaching from the child, remove all breakpoints
465 from it. If we forked, then this has already been taken
466 care of by infrun.c. If we vforked however, any
467 breakpoint inserted in the parent is visible in the
468 child, even those added while stopped in a vfork
469 catchpoint. This will remove the breakpoints from the
470 parent also, but they'll be reinserted below. */
471 if (has_vforked)
472 {
473 /* Keep breakpoints list in sync. */
474 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
475 }
476
477 if (info_verbose || debug_infrun)
478 {
8dd06f7a
DB
479 /* Ensure that we have a process ptid. */
480 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
481
6f259a23 482 target_terminal_ours_for_output ();
d83ad864 483 fprintf_filtered (gdb_stdlog,
79639e11 484 _("Detaching after %s from child %s.\n"),
6f259a23 485 has_vforked ? "vfork" : "fork",
8dd06f7a 486 target_pid_to_str (process_ptid));
d83ad864
DB
487 }
488 }
489 else
490 {
491 struct inferior *parent_inf, *child_inf;
d83ad864
DB
492
493 /* Add process to GDB's tables. */
79639e11 494 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
495
496 parent_inf = current_inferior ();
497 child_inf->attach_flag = parent_inf->attach_flag;
498 copy_terminal_info (child_inf, parent_inf);
499 child_inf->gdbarch = parent_inf->gdbarch;
500 copy_inferior_target_desc_info (child_inf, parent_inf);
501
5ed8105e 502 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 503
79639e11 504 inferior_ptid = child_ptid;
d83ad864 505 add_thread (inferior_ptid);
2a00d7ce 506 set_current_inferior (child_inf);
d83ad864
DB
507 child_inf->symfile_flags = SYMFILE_NO_READ;
508
509 /* If this is a vfork child, then the address-space is
510 shared with the parent. */
511 if (has_vforked)
512 {
513 child_inf->pspace = parent_inf->pspace;
514 child_inf->aspace = parent_inf->aspace;
515
516 /* The parent will be frozen until the child is done
517 with the shared region. Keep track of the
518 parent. */
519 child_inf->vfork_parent = parent_inf;
520 child_inf->pending_detach = 0;
521 parent_inf->vfork_child = child_inf;
522 parent_inf->pending_detach = 0;
523 }
524 else
525 {
526 child_inf->aspace = new_address_space ();
527 child_inf->pspace = add_program_space (child_inf->aspace);
528 child_inf->removable = 1;
529 set_current_program_space (child_inf->pspace);
530 clone_program_space (child_inf->pspace, parent_inf->pspace);
531
532 /* Let the shared library layer (e.g., solib-svr4) learn
533 about this new process, relocate the cloned exec, pull
534 in shared libraries, and install the solib event
535 breakpoint. If a "cloned-VM" event was propagated
536 better throughout the core, this wouldn't be
537 required. */
538 solib_create_inferior_hook (0);
539 }
d83ad864
DB
540 }
541
542 if (has_vforked)
543 {
544 struct inferior *parent_inf;
545
546 parent_inf = current_inferior ();
547
548 /* If we detached from the child, then we have to be careful
549 to not insert breakpoints in the parent until the child
550 is done with the shared memory region. However, if we're
551 staying attached to the child, then we can and should
552 insert breakpoints, so that we can debug it. A
553 subsequent child exec or exit is enough to know when does
554 the child stops using the parent's address space. */
555 parent_inf->waiting_for_vfork_done = detach_fork;
556 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
557 }
558 }
559 else
560 {
561 /* Follow the child. */
562 struct inferior *parent_inf, *child_inf;
563 struct program_space *parent_pspace;
564
565 if (info_verbose || debug_infrun)
566 {
6f259a23
DB
567 target_terminal_ours_for_output ();
568 fprintf_filtered (gdb_stdlog,
79639e11
PA
569 _("Attaching after %s %s to child %s.\n"),
570 target_pid_to_str (parent_ptid),
6f259a23 571 has_vforked ? "vfork" : "fork",
79639e11 572 target_pid_to_str (child_ptid));
d83ad864
DB
573 }
574
575 /* Add the new inferior first, so that the target_detach below
576 doesn't unpush the target. */
577
79639e11 578 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
579
580 parent_inf = current_inferior ();
581 child_inf->attach_flag = parent_inf->attach_flag;
582 copy_terminal_info (child_inf, parent_inf);
583 child_inf->gdbarch = parent_inf->gdbarch;
584 copy_inferior_target_desc_info (child_inf, parent_inf);
585
586 parent_pspace = parent_inf->pspace;
587
588 /* If we're vforking, we want to hold on to the parent until the
589 child exits or execs. At child exec or exit time we can
590 remove the old breakpoints from the parent and detach or
591 resume debugging it. Otherwise, detach the parent now; we'll
592 want to reuse it's program/address spaces, but we can't set
593 them to the child before removing breakpoints from the
594 parent, otherwise, the breakpoints module could decide to
595 remove breakpoints from the wrong process (since they'd be
596 assigned to the same address space). */
597
598 if (has_vforked)
599 {
600 gdb_assert (child_inf->vfork_parent == NULL);
601 gdb_assert (parent_inf->vfork_child == NULL);
602 child_inf->vfork_parent = parent_inf;
603 child_inf->pending_detach = 0;
604 parent_inf->vfork_child = child_inf;
605 parent_inf->pending_detach = detach_fork;
606 parent_inf->waiting_for_vfork_done = 0;
607 }
608 else if (detach_fork)
6f259a23
DB
609 {
610 if (info_verbose || debug_infrun)
611 {
8dd06f7a
DB
612 /* Ensure that we have a process ptid. */
613 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
614
6f259a23
DB
615 target_terminal_ours_for_output ();
616 fprintf_filtered (gdb_stdlog,
617 _("Detaching after fork from "
79639e11 618 "child %s.\n"),
8dd06f7a 619 target_pid_to_str (process_ptid));
6f259a23
DB
620 }
621
622 target_detach (NULL, 0);
623 }
d83ad864
DB
624
625 /* Note that the detach above makes PARENT_INF dangling. */
626
627 /* Add the child thread to the appropriate lists, and switch to
628 this new thread, before cloning the program space, and
629 informing the solib layer about this new process. */
630
79639e11 631 inferior_ptid = child_ptid;
d83ad864 632 add_thread (inferior_ptid);
2a00d7ce 633 set_current_inferior (child_inf);
d83ad864
DB
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
5ed8105e
PA
897/* Save/restore inferior_ptid, current program space and current
898 inferior. Only use this if the current context points at an exited
899 inferior (and therefore there's no current thread to save). */
900class scoped_restore_exited_inferior
901{
902public:
903 scoped_restore_exited_inferior ()
904 : m_saved_ptid (&inferior_ptid)
905 {}
906
907private:
908 scoped_restore_tmpl<ptid_t> m_saved_ptid;
909 scoped_restore_current_program_space m_pspace;
910 scoped_restore_current_inferior m_inferior;
911};
912
6c95b8df
PA
913/* Called whenever we notice an exec or exit event, to handle
914 detaching or resuming a vfork parent. */
915
916static void
917handle_vfork_child_exec_or_exit (int exec)
918{
919 struct inferior *inf = current_inferior ();
920
921 if (inf->vfork_parent)
922 {
923 int resume_parent = -1;
924
925 /* This exec or exit marks the end of the shared memory region
926 between the parent and the child. If the user wanted to
927 detach from the parent, now is the time. */
928
929 if (inf->vfork_parent->pending_detach)
930 {
931 struct thread_info *tp;
6c95b8df
PA
932 struct program_space *pspace;
933 struct address_space *aspace;
934
1777feb0 935 /* follow-fork child, detach-on-fork on. */
6c95b8df 936
68c9da30
PA
937 inf->vfork_parent->pending_detach = 0;
938
5ed8105e
PA
939 gdb::optional<scoped_restore_exited_inferior>
940 maybe_restore_inferior;
941 gdb::optional<scoped_restore_current_pspace_and_thread>
942 maybe_restore_thread;
943
944 /* If we're handling a child exit, then inferior_ptid points
945 at the inferior's pid, not to a thread. */
f50f4e56 946 if (!exec)
5ed8105e 947 maybe_restore_inferior.emplace ();
f50f4e56 948 else
5ed8105e 949 maybe_restore_thread.emplace ();
6c95b8df
PA
950
951 /* We're letting loose of the parent. */
952 tp = any_live_thread_of_process (inf->vfork_parent->pid);
953 switch_to_thread (tp->ptid);
954
955 /* We're about to detach from the parent, which implicitly
956 removes breakpoints from its address space. There's a
957 catch here: we want to reuse the spaces for the child,
958 but, parent/child are still sharing the pspace at this
959 point, although the exec in reality makes the kernel give
960 the child a fresh set of new pages. The problem here is
961 that the breakpoints module being unaware of this, would
962 likely chose the child process to write to the parent
963 address space. Swapping the child temporarily away from
964 the spaces has the desired effect. Yes, this is "sort
965 of" a hack. */
966
967 pspace = inf->pspace;
968 aspace = inf->aspace;
969 inf->aspace = NULL;
970 inf->pspace = NULL;
971
972 if (debug_infrun || info_verbose)
973 {
6f259a23 974 target_terminal_ours_for_output ();
6c95b8df
PA
975
976 if (exec)
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
979 _("Detaching vfork parent process "
980 "%d after child exec.\n"),
981 inf->vfork_parent->pid);
982 }
6c95b8df 983 else
6f259a23
DB
984 {
985 fprintf_filtered (gdb_stdlog,
986 _("Detaching vfork parent process "
987 "%d after child exit.\n"),
988 inf->vfork_parent->pid);
989 }
6c95b8df
PA
990 }
991
992 target_detach (NULL, 0);
993
994 /* Put it back. */
995 inf->pspace = pspace;
996 inf->aspace = aspace;
6c95b8df
PA
997 }
998 else if (exec)
999 {
1000 /* We're staying attached to the parent, so, really give the
1001 child a new address space. */
1002 inf->pspace = add_program_space (maybe_new_address_space ());
1003 inf->aspace = inf->pspace->aspace;
1004 inf->removable = 1;
1005 set_current_program_space (inf->pspace);
1006
1007 resume_parent = inf->vfork_parent->pid;
1008
1009 /* Break the bonds. */
1010 inf->vfork_parent->vfork_child = NULL;
1011 }
1012 else
1013 {
6c95b8df
PA
1014 struct program_space *pspace;
1015
1016 /* If this is a vfork child exiting, then the pspace and
1017 aspaces were shared with the parent. Since we're
1018 reporting the process exit, we'll be mourning all that is
1019 found in the address space, and switching to null_ptid,
1020 preparing to start a new inferior. But, since we don't
1021 want to clobber the parent's address/program spaces, we
1022 go ahead and create a new one for this exiting
1023 inferior. */
1024
5ed8105e
PA
1025 /* Switch to null_ptid while running clone_program_space, so
1026 that clone_program_space doesn't want to read the
1027 selected frame of a dead process. */
1028 scoped_restore restore_ptid
1029 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1030
1031 /* This inferior is dead, so avoid giving the breakpoints
1032 module the option to write through to it (cloning a
1033 program space resets breakpoints). */
1034 inf->aspace = NULL;
1035 inf->pspace = NULL;
1036 pspace = add_program_space (maybe_new_address_space ());
1037 set_current_program_space (pspace);
1038 inf->removable = 1;
7dcd53a0 1039 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1040 clone_program_space (pspace, inf->vfork_parent->pspace);
1041 inf->pspace = pspace;
1042 inf->aspace = pspace->aspace;
1043
6c95b8df
PA
1044 resume_parent = inf->vfork_parent->pid;
1045 /* Break the bonds. */
1046 inf->vfork_parent->vfork_child = NULL;
1047 }
1048
1049 inf->vfork_parent = NULL;
1050
1051 gdb_assert (current_program_space == inf->pspace);
1052
1053 if (non_stop && resume_parent != -1)
1054 {
1055 /* If the user wanted the parent to be running, let it go
1056 free now. */
5ed8105e 1057 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1058
1059 if (debug_infrun)
3e43a32a
MS
1060 fprintf_unfiltered (gdb_stdlog,
1061 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1062 resume_parent);
1063
1064 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1065 }
1066 }
1067}
1068
eb6c553b 1069/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1070
1071static const char follow_exec_mode_new[] = "new";
1072static const char follow_exec_mode_same[] = "same";
40478521 1073static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1074{
1075 follow_exec_mode_new,
1076 follow_exec_mode_same,
1077 NULL,
1078};
1079
1080static const char *follow_exec_mode_string = follow_exec_mode_same;
1081static void
1082show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1083 struct cmd_list_element *c, const char *value)
1084{
1085 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1086}
1087
ecf45d2c 1088/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1089
c906108c 1090static void
ecf45d2c 1091follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1092{
95e50b27 1093 struct thread_info *th, *tmp;
6c95b8df 1094 struct inferior *inf = current_inferior ();
95e50b27 1095 int pid = ptid_get_pid (ptid);
94585166 1096 ptid_t process_ptid;
ecf45d2c
SL
1097 char *exec_file_host;
1098 struct cleanup *old_chain;
7a292a7a 1099
c906108c
SS
1100 /* This is an exec event that we actually wish to pay attention to.
1101 Refresh our symbol table to the newly exec'd program, remove any
1102 momentary bp's, etc.
1103
1104 If there are breakpoints, they aren't really inserted now,
1105 since the exec() transformed our inferior into a fresh set
1106 of instructions.
1107
1108 We want to preserve symbolic breakpoints on the list, since
1109 we have hopes that they can be reset after the new a.out's
1110 symbol table is read.
1111
1112 However, any "raw" breakpoints must be removed from the list
1113 (e.g., the solib bp's), since their address is probably invalid
1114 now.
1115
1116 And, we DON'T want to call delete_breakpoints() here, since
1117 that may write the bp's "shadow contents" (the instruction
1118 value that was overwritten witha TRAP instruction). Since
1777feb0 1119 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1120
1121 mark_breakpoints_out ();
1122
95e50b27
PA
1123 /* The target reports the exec event to the main thread, even if
1124 some other thread does the exec, and even if the main thread was
1125 stopped or already gone. We may still have non-leader threads of
1126 the process on our list. E.g., on targets that don't have thread
1127 exit events (like remote); or on native Linux in non-stop mode if
1128 there were only two threads in the inferior and the non-leader
1129 one is the one that execs (and nothing forces an update of the
1130 thread list up to here). When debugging remotely, it's best to
1131 avoid extra traffic, when possible, so avoid syncing the thread
1132 list with the target, and instead go ahead and delete all threads
1133 of the process but one that reported the event. Note this must
1134 be done before calling update_breakpoints_after_exec, as
1135 otherwise clearing the threads' resources would reference stale
1136 thread breakpoints -- it may have been one of these threads that
1137 stepped across the exec. We could just clear their stepping
1138 states, but as long as we're iterating, might as well delete
1139 them. Deleting them now rather than at the next user-visible
1140 stop provides a nicer sequence of events for user and MI
1141 notifications. */
8a06aea7 1142 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1143 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1144 delete_thread (th->ptid);
1145
1146 /* We also need to clear any left over stale state for the
1147 leader/event thread. E.g., if there was any step-resume
1148 breakpoint or similar, it's gone now. We cannot truly
1149 step-to-next statement through an exec(). */
1150 th = inferior_thread ();
8358c15c 1151 th->control.step_resume_breakpoint = NULL;
186c406b 1152 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1153 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1154 th->control.step_range_start = 0;
1155 th->control.step_range_end = 0;
c906108c 1156
95e50b27
PA
1157 /* The user may have had the main thread held stopped in the
1158 previous image (e.g., schedlock on, or non-stop). Release
1159 it now. */
a75724bc
PA
1160 th->stop_requested = 0;
1161
95e50b27
PA
1162 update_breakpoints_after_exec ();
1163
1777feb0 1164 /* What is this a.out's name? */
94585166 1165 process_ptid = pid_to_ptid (pid);
6c95b8df 1166 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1167 target_pid_to_str (process_ptid),
ecf45d2c 1168 exec_file_target);
c906108c
SS
1169
1170 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1171 inferior has essentially been killed & reborn. */
7a292a7a 1172
c906108c 1173 gdb_flush (gdb_stdout);
6ca15a4b
PA
1174
1175 breakpoint_init_inferior (inf_execd);
e85a822c 1176
ecf45d2c
SL
1177 exec_file_host = exec_file_find (exec_file_target, NULL);
1178 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1179
ecf45d2c
SL
1180 /* If we were unable to map the executable target pathname onto a host
1181 pathname, tell the user that. Otherwise GDB's subsequent behavior
1182 is confusing. Maybe it would even be better to stop at this point
1183 so that the user can specify a file manually before continuing. */
1184 if (exec_file_host == NULL)
1185 warning (_("Could not load symbols for executable %s.\n"
1186 "Do you need \"set sysroot\"?"),
1187 exec_file_target);
c906108c 1188
cce9b6bf
PA
1189 /* Reset the shared library package. This ensures that we get a
1190 shlib event when the child reaches "_start", at which point the
1191 dld will have had a chance to initialize the child. */
1192 /* Also, loading a symbol file below may trigger symbol lookups, and
1193 we don't want those to be satisfied by the libraries of the
1194 previous incarnation of this process. */
1195 no_shared_libraries (NULL, 0);
1196
6c95b8df
PA
1197 if (follow_exec_mode_string == follow_exec_mode_new)
1198 {
6c95b8df
PA
1199 /* The user wants to keep the old inferior and program spaces
1200 around. Create a new fresh one, and switch to it. */
1201
17d8546e
DB
1202 /* Do exit processing for the original inferior before adding
1203 the new inferior so we don't have two active inferiors with
1204 the same ptid, which can confuse find_inferior_ptid. */
1205 exit_inferior_num_silent (current_inferior ()->num);
1206
94585166
DB
1207 inf = add_inferior_with_spaces ();
1208 inf->pid = pid;
ecf45d2c 1209 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1210
1211 set_current_inferior (inf);
94585166
DB
1212 set_current_program_space (inf->pspace);
1213 add_thread (ptid);
6c95b8df 1214 }
9107fc8d
PA
1215 else
1216 {
1217 /* The old description may no longer be fit for the new image.
1218 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1219 old description; we'll read a new one below. No need to do
1220 this on "follow-exec-mode new", as the old inferior stays
1221 around (its description is later cleared/refetched on
1222 restart). */
1223 target_clear_description ();
1224 }
6c95b8df
PA
1225
1226 gdb_assert (current_program_space == inf->pspace);
1227
ecf45d2c
SL
1228 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1229 because the proper displacement for a PIE (Position Independent
1230 Executable) main symbol file will only be computed by
1231 solib_create_inferior_hook below. breakpoint_re_set would fail
1232 to insert the breakpoints with the zero displacement. */
1233 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1234
ecf45d2c 1235 do_cleanups (old_chain);
c906108c 1236
9107fc8d
PA
1237 /* If the target can specify a description, read it. Must do this
1238 after flipping to the new executable (because the target supplied
1239 description must be compatible with the executable's
1240 architecture, and the old executable may e.g., be 32-bit, while
1241 the new one 64-bit), and before anything involving memory or
1242 registers. */
1243 target_find_description ();
1244
268a4a75 1245 solib_create_inferior_hook (0);
c906108c 1246
4efc6507
DE
1247 jit_inferior_created_hook ();
1248
c1e56572
JK
1249 breakpoint_re_set ();
1250
c906108c
SS
1251 /* Reinsert all breakpoints. (Those which were symbolic have
1252 been reset to the proper address in the new a.out, thanks
1777feb0 1253 to symbol_file_command...). */
c906108c
SS
1254 insert_breakpoints ();
1255
1256 /* The next resume of this inferior should bring it to the shlib
1257 startup breakpoints. (If the user had also set bp's on
1258 "main" from the old (parent) process, then they'll auto-
1777feb0 1259 matically get reset there in the new process.). */
c906108c
SS
1260}
1261
c2829269
PA
1262/* The queue of threads that need to do a step-over operation to get
1263 past e.g., a breakpoint. What technique is used to step over the
1264 breakpoint/watchpoint does not matter -- all threads end up in the
1265 same queue, to maintain rough temporal order of execution, in order
1266 to avoid starvation, otherwise, we could e.g., find ourselves
1267 constantly stepping the same couple threads past their breakpoints
1268 over and over, if the single-step finish fast enough. */
1269struct thread_info *step_over_queue_head;
1270
6c4cfb24
PA
1271/* Bit flags indicating what the thread needs to step over. */
1272
8d297bbf 1273enum step_over_what_flag
6c4cfb24
PA
1274 {
1275 /* Step over a breakpoint. */
1276 STEP_OVER_BREAKPOINT = 1,
1277
1278 /* Step past a non-continuable watchpoint, in order to let the
1279 instruction execute so we can evaluate the watchpoint
1280 expression. */
1281 STEP_OVER_WATCHPOINT = 2
1282 };
8d297bbf 1283DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1284
963f9c80 1285/* Info about an instruction that is being stepped over. */
31e77af2
PA
1286
1287struct step_over_info
1288{
963f9c80
PA
1289 /* If we're stepping past a breakpoint, this is the address space
1290 and address of the instruction the breakpoint is set at. We'll
1291 skip inserting all breakpoints here. Valid iff ASPACE is
1292 non-NULL. */
31e77af2 1293 struct address_space *aspace;
31e77af2 1294 CORE_ADDR address;
963f9c80
PA
1295
1296 /* The instruction being stepped over triggers a nonsteppable
1297 watchpoint. If true, we'll skip inserting watchpoints. */
1298 int nonsteppable_watchpoint_p;
21edc42f
YQ
1299
1300 /* The thread's global number. */
1301 int thread;
31e77af2
PA
1302};
1303
1304/* The step-over info of the location that is being stepped over.
1305
1306 Note that with async/breakpoint always-inserted mode, a user might
1307 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1308 being stepped over. As setting a new breakpoint inserts all
1309 breakpoints, we need to make sure the breakpoint being stepped over
1310 isn't inserted then. We do that by only clearing the step-over
1311 info when the step-over is actually finished (or aborted).
1312
1313 Presently GDB can only step over one breakpoint at any given time.
1314 Given threads that can't run code in the same address space as the
1315 breakpoint's can't really miss the breakpoint, GDB could be taught
1316 to step-over at most one breakpoint per address space (so this info
1317 could move to the address space object if/when GDB is extended).
1318 The set of breakpoints being stepped over will normally be much
1319 smaller than the set of all breakpoints, so a flag in the
1320 breakpoint location structure would be wasteful. A separate list
1321 also saves complexity and run-time, as otherwise we'd have to go
1322 through all breakpoint locations clearing their flag whenever we
1323 start a new sequence. Similar considerations weigh against storing
1324 this info in the thread object. Plus, not all step overs actually
1325 have breakpoint locations -- e.g., stepping past a single-step
1326 breakpoint, or stepping to complete a non-continuable
1327 watchpoint. */
1328static struct step_over_info step_over_info;
1329
1330/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1331 stepping over.
1332 N.B. We record the aspace and address now, instead of say just the thread,
1333 because when we need the info later the thread may be running. */
31e77af2
PA
1334
1335static void
963f9c80 1336set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1337 int nonsteppable_watchpoint_p,
1338 int thread)
31e77af2
PA
1339{
1340 step_over_info.aspace = aspace;
1341 step_over_info.address = address;
963f9c80 1342 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1343 step_over_info.thread = thread;
31e77af2
PA
1344}
1345
1346/* Called when we're not longer stepping over a breakpoint / an
1347 instruction, so all breakpoints are free to be (re)inserted. */
1348
1349static void
1350clear_step_over_info (void)
1351{
372316f1
PA
1352 if (debug_infrun)
1353 fprintf_unfiltered (gdb_stdlog,
1354 "infrun: clear_step_over_info\n");
31e77af2
PA
1355 step_over_info.aspace = NULL;
1356 step_over_info.address = 0;
963f9c80 1357 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1358 step_over_info.thread = -1;
31e77af2
PA
1359}
1360
7f89fd65 1361/* See infrun.h. */
31e77af2
PA
1362
1363int
1364stepping_past_instruction_at (struct address_space *aspace,
1365 CORE_ADDR address)
1366{
1367 return (step_over_info.aspace != NULL
1368 && breakpoint_address_match (aspace, address,
1369 step_over_info.aspace,
1370 step_over_info.address));
1371}
1372
963f9c80
PA
1373/* See infrun.h. */
1374
21edc42f
YQ
1375int
1376thread_is_stepping_over_breakpoint (int thread)
1377{
1378 return (step_over_info.thread != -1
1379 && thread == step_over_info.thread);
1380}
1381
1382/* See infrun.h. */
1383
963f9c80
PA
1384int
1385stepping_past_nonsteppable_watchpoint (void)
1386{
1387 return step_over_info.nonsteppable_watchpoint_p;
1388}
1389
6cc83d2a
PA
1390/* Returns true if step-over info is valid. */
1391
1392static int
1393step_over_info_valid_p (void)
1394{
963f9c80
PA
1395 return (step_over_info.aspace != NULL
1396 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1397}
1398
c906108c 1399\f
237fc4c9
PA
1400/* Displaced stepping. */
1401
1402/* In non-stop debugging mode, we must take special care to manage
1403 breakpoints properly; in particular, the traditional strategy for
1404 stepping a thread past a breakpoint it has hit is unsuitable.
1405 'Displaced stepping' is a tactic for stepping one thread past a
1406 breakpoint it has hit while ensuring that other threads running
1407 concurrently will hit the breakpoint as they should.
1408
1409 The traditional way to step a thread T off a breakpoint in a
1410 multi-threaded program in all-stop mode is as follows:
1411
1412 a0) Initially, all threads are stopped, and breakpoints are not
1413 inserted.
1414 a1) We single-step T, leaving breakpoints uninserted.
1415 a2) We insert breakpoints, and resume all threads.
1416
1417 In non-stop debugging, however, this strategy is unsuitable: we
1418 don't want to have to stop all threads in the system in order to
1419 continue or step T past a breakpoint. Instead, we use displaced
1420 stepping:
1421
1422 n0) Initially, T is stopped, other threads are running, and
1423 breakpoints are inserted.
1424 n1) We copy the instruction "under" the breakpoint to a separate
1425 location, outside the main code stream, making any adjustments
1426 to the instruction, register, and memory state as directed by
1427 T's architecture.
1428 n2) We single-step T over the instruction at its new location.
1429 n3) We adjust the resulting register and memory state as directed
1430 by T's architecture. This includes resetting T's PC to point
1431 back into the main instruction stream.
1432 n4) We resume T.
1433
1434 This approach depends on the following gdbarch methods:
1435
1436 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1437 indicate where to copy the instruction, and how much space must
1438 be reserved there. We use these in step n1.
1439
1440 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1441 address, and makes any necessary adjustments to the instruction,
1442 register contents, and memory. We use this in step n1.
1443
1444 - gdbarch_displaced_step_fixup adjusts registers and memory after
1445 we have successfuly single-stepped the instruction, to yield the
1446 same effect the instruction would have had if we had executed it
1447 at its original address. We use this in step n3.
1448
1449 - gdbarch_displaced_step_free_closure provides cleanup.
1450
1451 The gdbarch_displaced_step_copy_insn and
1452 gdbarch_displaced_step_fixup functions must be written so that
1453 copying an instruction with gdbarch_displaced_step_copy_insn,
1454 single-stepping across the copied instruction, and then applying
1455 gdbarch_displaced_insn_fixup should have the same effects on the
1456 thread's memory and registers as stepping the instruction in place
1457 would have. Exactly which responsibilities fall to the copy and
1458 which fall to the fixup is up to the author of those functions.
1459
1460 See the comments in gdbarch.sh for details.
1461
1462 Note that displaced stepping and software single-step cannot
1463 currently be used in combination, although with some care I think
1464 they could be made to. Software single-step works by placing
1465 breakpoints on all possible subsequent instructions; if the
1466 displaced instruction is a PC-relative jump, those breakpoints
1467 could fall in very strange places --- on pages that aren't
1468 executable, or at addresses that are not proper instruction
1469 boundaries. (We do generally let other threads run while we wait
1470 to hit the software single-step breakpoint, and they might
1471 encounter such a corrupted instruction.) One way to work around
1472 this would be to have gdbarch_displaced_step_copy_insn fully
1473 simulate the effect of PC-relative instructions (and return NULL)
1474 on architectures that use software single-stepping.
1475
1476 In non-stop mode, we can have independent and simultaneous step
1477 requests, so more than one thread may need to simultaneously step
1478 over a breakpoint. The current implementation assumes there is
1479 only one scratch space per process. In this case, we have to
1480 serialize access to the scratch space. If thread A wants to step
1481 over a breakpoint, but we are currently waiting for some other
1482 thread to complete a displaced step, we leave thread A stopped and
1483 place it in the displaced_step_request_queue. Whenever a displaced
1484 step finishes, we pick the next thread in the queue and start a new
1485 displaced step operation on it. See displaced_step_prepare and
1486 displaced_step_fixup for details. */
1487
fc1cf338
PA
1488/* Per-inferior displaced stepping state. */
1489struct displaced_step_inferior_state
1490{
1491 /* Pointer to next in linked list. */
1492 struct displaced_step_inferior_state *next;
1493
1494 /* The process this displaced step state refers to. */
1495 int pid;
1496
3fc8eb30
PA
1497 /* True if preparing a displaced step ever failed. If so, we won't
1498 try displaced stepping for this inferior again. */
1499 int failed_before;
1500
fc1cf338
PA
1501 /* If this is not null_ptid, this is the thread carrying out a
1502 displaced single-step in process PID. This thread's state will
1503 require fixing up once it has completed its step. */
1504 ptid_t step_ptid;
1505
1506 /* The architecture the thread had when we stepped it. */
1507 struct gdbarch *step_gdbarch;
1508
1509 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1510 for post-step cleanup. */
1511 struct displaced_step_closure *step_closure;
1512
1513 /* The address of the original instruction, and the copy we
1514 made. */
1515 CORE_ADDR step_original, step_copy;
1516
1517 /* Saved contents of copy area. */
1518 gdb_byte *step_saved_copy;
1519};
1520
1521/* The list of states of processes involved in displaced stepping
1522 presently. */
1523static struct displaced_step_inferior_state *displaced_step_inferior_states;
1524
1525/* Get the displaced stepping state of process PID. */
1526
1527static struct displaced_step_inferior_state *
1528get_displaced_stepping_state (int pid)
1529{
1530 struct displaced_step_inferior_state *state;
1531
1532 for (state = displaced_step_inferior_states;
1533 state != NULL;
1534 state = state->next)
1535 if (state->pid == pid)
1536 return state;
1537
1538 return NULL;
1539}
1540
372316f1
PA
1541/* Returns true if any inferior has a thread doing a displaced
1542 step. */
1543
1544static int
1545displaced_step_in_progress_any_inferior (void)
1546{
1547 struct displaced_step_inferior_state *state;
1548
1549 for (state = displaced_step_inferior_states;
1550 state != NULL;
1551 state = state->next)
1552 if (!ptid_equal (state->step_ptid, null_ptid))
1553 return 1;
1554
1555 return 0;
1556}
1557
c0987663
YQ
1558/* Return true if thread represented by PTID is doing a displaced
1559 step. */
1560
1561static int
1562displaced_step_in_progress_thread (ptid_t ptid)
1563{
1564 struct displaced_step_inferior_state *displaced;
1565
1566 gdb_assert (!ptid_equal (ptid, null_ptid));
1567
1568 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1569
1570 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1571}
1572
8f572e5c
PA
1573/* Return true if process PID has a thread doing a displaced step. */
1574
1575static int
1576displaced_step_in_progress (int pid)
1577{
1578 struct displaced_step_inferior_state *displaced;
1579
1580 displaced = get_displaced_stepping_state (pid);
1581 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1582 return 1;
1583
1584 return 0;
1585}
1586
fc1cf338
PA
1587/* Add a new displaced stepping state for process PID to the displaced
1588 stepping state list, or return a pointer to an already existing
1589 entry, if it already exists. Never returns NULL. */
1590
1591static struct displaced_step_inferior_state *
1592add_displaced_stepping_state (int pid)
1593{
1594 struct displaced_step_inferior_state *state;
1595
1596 for (state = displaced_step_inferior_states;
1597 state != NULL;
1598 state = state->next)
1599 if (state->pid == pid)
1600 return state;
237fc4c9 1601
8d749320 1602 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1603 state->pid = pid;
1604 state->next = displaced_step_inferior_states;
1605 displaced_step_inferior_states = state;
237fc4c9 1606
fc1cf338
PA
1607 return state;
1608}
1609
a42244db
YQ
1610/* If inferior is in displaced stepping, and ADDR equals to starting address
1611 of copy area, return corresponding displaced_step_closure. Otherwise,
1612 return NULL. */
1613
1614struct displaced_step_closure*
1615get_displaced_step_closure_by_addr (CORE_ADDR addr)
1616{
1617 struct displaced_step_inferior_state *displaced
1618 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1619
1620 /* If checking the mode of displaced instruction in copy area. */
1621 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1622 && (displaced->step_copy == addr))
1623 return displaced->step_closure;
1624
1625 return NULL;
1626}
1627
fc1cf338 1628/* Remove the displaced stepping state of process PID. */
237fc4c9 1629
fc1cf338
PA
1630static void
1631remove_displaced_stepping_state (int pid)
1632{
1633 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1634
fc1cf338
PA
1635 gdb_assert (pid != 0);
1636
1637 it = displaced_step_inferior_states;
1638 prev_next_p = &displaced_step_inferior_states;
1639 while (it)
1640 {
1641 if (it->pid == pid)
1642 {
1643 *prev_next_p = it->next;
1644 xfree (it);
1645 return;
1646 }
1647
1648 prev_next_p = &it->next;
1649 it = *prev_next_p;
1650 }
1651}
1652
1653static void
1654infrun_inferior_exit (struct inferior *inf)
1655{
1656 remove_displaced_stepping_state (inf->pid);
1657}
237fc4c9 1658
fff08868
HZ
1659/* If ON, and the architecture supports it, GDB will use displaced
1660 stepping to step over breakpoints. If OFF, or if the architecture
1661 doesn't support it, GDB will instead use the traditional
1662 hold-and-step approach. If AUTO (which is the default), GDB will
1663 decide which technique to use to step over breakpoints depending on
1664 which of all-stop or non-stop mode is active --- displaced stepping
1665 in non-stop mode; hold-and-step in all-stop mode. */
1666
72d0e2c5 1667static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1668
237fc4c9
PA
1669static void
1670show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1671 struct cmd_list_element *c,
1672 const char *value)
1673{
72d0e2c5 1674 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1675 fprintf_filtered (file,
1676 _("Debugger's willingness to use displaced stepping "
1677 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1678 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1679 else
3e43a32a
MS
1680 fprintf_filtered (file,
1681 _("Debugger's willingness to use displaced stepping "
1682 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1683}
1684
fff08868 1685/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1686 over breakpoints of thread TP. */
fff08868 1687
237fc4c9 1688static int
3fc8eb30 1689use_displaced_stepping (struct thread_info *tp)
237fc4c9 1690{
3fc8eb30
PA
1691 struct regcache *regcache = get_thread_regcache (tp->ptid);
1692 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1693 struct displaced_step_inferior_state *displaced_state;
1694
1695 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1696
fbea99ea
PA
1697 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1698 && target_is_non_stop_p ())
72d0e2c5 1699 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1700 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1701 && find_record_target () == NULL
1702 && (displaced_state == NULL
1703 || !displaced_state->failed_before));
237fc4c9
PA
1704}
1705
1706/* Clean out any stray displaced stepping state. */
1707static void
fc1cf338 1708displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1709{
1710 /* Indicate that there is no cleanup pending. */
fc1cf338 1711 displaced->step_ptid = null_ptid;
237fc4c9 1712
fc1cf338 1713 if (displaced->step_closure)
237fc4c9 1714 {
fc1cf338
PA
1715 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1716 displaced->step_closure);
1717 displaced->step_closure = NULL;
237fc4c9
PA
1718 }
1719}
1720
1721static void
fc1cf338 1722displaced_step_clear_cleanup (void *arg)
237fc4c9 1723{
9a3c8263
SM
1724 struct displaced_step_inferior_state *state
1725 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1726
1727 displaced_step_clear (state);
237fc4c9
PA
1728}
1729
1730/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1731void
1732displaced_step_dump_bytes (struct ui_file *file,
1733 const gdb_byte *buf,
1734 size_t len)
1735{
1736 int i;
1737
1738 for (i = 0; i < len; i++)
1739 fprintf_unfiltered (file, "%02x ", buf[i]);
1740 fputs_unfiltered ("\n", file);
1741}
1742
1743/* Prepare to single-step, using displaced stepping.
1744
1745 Note that we cannot use displaced stepping when we have a signal to
1746 deliver. If we have a signal to deliver and an instruction to step
1747 over, then after the step, there will be no indication from the
1748 target whether the thread entered a signal handler or ignored the
1749 signal and stepped over the instruction successfully --- both cases
1750 result in a simple SIGTRAP. In the first case we mustn't do a
1751 fixup, and in the second case we must --- but we can't tell which.
1752 Comments in the code for 'random signals' in handle_inferior_event
1753 explain how we handle this case instead.
1754
1755 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1756 stepped now; 0 if displaced stepping this thread got queued; or -1
1757 if this instruction can't be displaced stepped. */
1758
237fc4c9 1759static int
3fc8eb30 1760displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1761{
ad53cd71 1762 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1763 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1764 struct regcache *regcache = get_thread_regcache (ptid);
1765 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1766 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1767 CORE_ADDR original, copy;
1768 ULONGEST len;
1769 struct displaced_step_closure *closure;
fc1cf338 1770 struct displaced_step_inferior_state *displaced;
9e529e1d 1771 int status;
237fc4c9
PA
1772
1773 /* We should never reach this function if the architecture does not
1774 support displaced stepping. */
1775 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1776
c2829269
PA
1777 /* Nor if the thread isn't meant to step over a breakpoint. */
1778 gdb_assert (tp->control.trap_expected);
1779
c1e36e3e
PA
1780 /* Disable range stepping while executing in the scratch pad. We
1781 want a single-step even if executing the displaced instruction in
1782 the scratch buffer lands within the stepping range (e.g., a
1783 jump/branch). */
1784 tp->control.may_range_step = 0;
1785
fc1cf338
PA
1786 /* We have to displaced step one thread at a time, as we only have
1787 access to a single scratch space per inferior. */
237fc4c9 1788
fc1cf338
PA
1789 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1790
1791 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1792 {
1793 /* Already waiting for a displaced step to finish. Defer this
1794 request and place in queue. */
237fc4c9
PA
1795
1796 if (debug_displaced)
1797 fprintf_unfiltered (gdb_stdlog,
c2829269 1798 "displaced: deferring step of %s\n",
237fc4c9
PA
1799 target_pid_to_str (ptid));
1800
c2829269 1801 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1802 return 0;
1803 }
1804 else
1805 {
1806 if (debug_displaced)
1807 fprintf_unfiltered (gdb_stdlog,
1808 "displaced: stepping %s now\n",
1809 target_pid_to_str (ptid));
1810 }
1811
fc1cf338 1812 displaced_step_clear (displaced);
237fc4c9 1813
ad53cd71
PA
1814 old_cleanups = save_inferior_ptid ();
1815 inferior_ptid = ptid;
1816
515630c5 1817 original = regcache_read_pc (regcache);
237fc4c9
PA
1818
1819 copy = gdbarch_displaced_step_location (gdbarch);
1820 len = gdbarch_max_insn_length (gdbarch);
1821
d35ae833
PA
1822 if (breakpoint_in_range_p (aspace, copy, len))
1823 {
1824 /* There's a breakpoint set in the scratch pad location range
1825 (which is usually around the entry point). We'd either
1826 install it before resuming, which would overwrite/corrupt the
1827 scratch pad, or if it was already inserted, this displaced
1828 step would overwrite it. The latter is OK in the sense that
1829 we already assume that no thread is going to execute the code
1830 in the scratch pad range (after initial startup) anyway, but
1831 the former is unacceptable. Simply punt and fallback to
1832 stepping over this breakpoint in-line. */
1833 if (debug_displaced)
1834 {
1835 fprintf_unfiltered (gdb_stdlog,
1836 "displaced: breakpoint set in scratch pad. "
1837 "Stepping over breakpoint in-line instead.\n");
1838 }
1839
1840 do_cleanups (old_cleanups);
1841 return -1;
1842 }
1843
237fc4c9 1844 /* Save the original contents of the copy area. */
224c3ddb 1845 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1846 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1847 &displaced->step_saved_copy);
9e529e1d
JK
1848 status = target_read_memory (copy, displaced->step_saved_copy, len);
1849 if (status != 0)
1850 throw_error (MEMORY_ERROR,
1851 _("Error accessing memory address %s (%s) for "
1852 "displaced-stepping scratch space."),
1853 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1854 if (debug_displaced)
1855 {
5af949e3
UW
1856 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1857 paddress (gdbarch, copy));
fc1cf338
PA
1858 displaced_step_dump_bytes (gdb_stdlog,
1859 displaced->step_saved_copy,
1860 len);
237fc4c9
PA
1861 };
1862
1863 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1864 original, copy, regcache);
7f03bd92
PA
1865 if (closure == NULL)
1866 {
1867 /* The architecture doesn't know how or want to displaced step
1868 this instruction or instruction sequence. Fallback to
1869 stepping over the breakpoint in-line. */
1870 do_cleanups (old_cleanups);
1871 return -1;
1872 }
237fc4c9 1873
9f5a595d
UW
1874 /* Save the information we need to fix things up if the step
1875 succeeds. */
fc1cf338
PA
1876 displaced->step_ptid = ptid;
1877 displaced->step_gdbarch = gdbarch;
1878 displaced->step_closure = closure;
1879 displaced->step_original = original;
1880 displaced->step_copy = copy;
9f5a595d 1881
fc1cf338 1882 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1883
1884 /* Resume execution at the copy. */
515630c5 1885 regcache_write_pc (regcache, copy);
237fc4c9 1886
ad53cd71
PA
1887 discard_cleanups (ignore_cleanups);
1888
1889 do_cleanups (old_cleanups);
237fc4c9
PA
1890
1891 if (debug_displaced)
5af949e3
UW
1892 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1893 paddress (gdbarch, copy));
237fc4c9 1894
237fc4c9
PA
1895 return 1;
1896}
1897
3fc8eb30
PA
1898/* Wrapper for displaced_step_prepare_throw that disabled further
1899 attempts at displaced stepping if we get a memory error. */
1900
1901static int
1902displaced_step_prepare (ptid_t ptid)
1903{
1904 int prepared = -1;
1905
1906 TRY
1907 {
1908 prepared = displaced_step_prepare_throw (ptid);
1909 }
1910 CATCH (ex, RETURN_MASK_ERROR)
1911 {
1912 struct displaced_step_inferior_state *displaced_state;
1913
16b41842
PA
1914 if (ex.error != MEMORY_ERROR
1915 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1916 throw_exception (ex);
1917
1918 if (debug_infrun)
1919 {
1920 fprintf_unfiltered (gdb_stdlog,
1921 "infrun: disabling displaced stepping: %s\n",
1922 ex.message);
1923 }
1924
1925 /* Be verbose if "set displaced-stepping" is "on", silent if
1926 "auto". */
1927 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1928 {
fd7dcb94 1929 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1930 ex.message);
1931 }
1932
1933 /* Disable further displaced stepping attempts. */
1934 displaced_state
1935 = get_displaced_stepping_state (ptid_get_pid (ptid));
1936 displaced_state->failed_before = 1;
1937 }
1938 END_CATCH
1939
1940 return prepared;
1941}
1942
237fc4c9 1943static void
3e43a32a
MS
1944write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1945 const gdb_byte *myaddr, int len)
237fc4c9
PA
1946{
1947 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1948
237fc4c9
PA
1949 inferior_ptid = ptid;
1950 write_memory (memaddr, myaddr, len);
1951 do_cleanups (ptid_cleanup);
1952}
1953
e2d96639
YQ
1954/* Restore the contents of the copy area for thread PTID. */
1955
1956static void
1957displaced_step_restore (struct displaced_step_inferior_state *displaced,
1958 ptid_t ptid)
1959{
1960 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1961
1962 write_memory_ptid (ptid, displaced->step_copy,
1963 displaced->step_saved_copy, len);
1964 if (debug_displaced)
1965 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1966 target_pid_to_str (ptid),
1967 paddress (displaced->step_gdbarch,
1968 displaced->step_copy));
1969}
1970
372316f1
PA
1971/* If we displaced stepped an instruction successfully, adjust
1972 registers and memory to yield the same effect the instruction would
1973 have had if we had executed it at its original address, and return
1974 1. If the instruction didn't complete, relocate the PC and return
1975 -1. If the thread wasn't displaced stepping, return 0. */
1976
1977static int
2ea28649 1978displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1979{
1980 struct cleanup *old_cleanups;
fc1cf338
PA
1981 struct displaced_step_inferior_state *displaced
1982 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1983 int ret;
fc1cf338
PA
1984
1985 /* Was any thread of this process doing a displaced step? */
1986 if (displaced == NULL)
372316f1 1987 return 0;
237fc4c9
PA
1988
1989 /* Was this event for the pid we displaced? */
fc1cf338
PA
1990 if (ptid_equal (displaced->step_ptid, null_ptid)
1991 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1992 return 0;
237fc4c9 1993
fc1cf338 1994 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1995
e2d96639 1996 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1997
cb71640d
PA
1998 /* Fixup may need to read memory/registers. Switch to the thread
1999 that we're fixing up. Also, target_stopped_by_watchpoint checks
2000 the current thread. */
2001 switch_to_thread (event_ptid);
2002
237fc4c9 2003 /* Did the instruction complete successfully? */
cb71640d
PA
2004 if (signal == GDB_SIGNAL_TRAP
2005 && !(target_stopped_by_watchpoint ()
2006 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
2007 || target_have_steppable_watchpoint)))
237fc4c9
PA
2008 {
2009 /* Fix up the resulting state. */
fc1cf338
PA
2010 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2011 displaced->step_closure,
2012 displaced->step_original,
2013 displaced->step_copy,
2014 get_thread_regcache (displaced->step_ptid));
372316f1 2015 ret = 1;
237fc4c9
PA
2016 }
2017 else
2018 {
2019 /* Since the instruction didn't complete, all we can do is
2020 relocate the PC. */
515630c5
UW
2021 struct regcache *regcache = get_thread_regcache (event_ptid);
2022 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2023
fc1cf338 2024 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2025 regcache_write_pc (regcache, pc);
372316f1 2026 ret = -1;
237fc4c9
PA
2027 }
2028
2029 do_cleanups (old_cleanups);
2030
fc1cf338 2031 displaced->step_ptid = null_ptid;
372316f1
PA
2032
2033 return ret;
c2829269 2034}
1c5cfe86 2035
4d9d9d04
PA
2036/* Data to be passed around while handling an event. This data is
2037 discarded between events. */
2038struct execution_control_state
2039{
2040 ptid_t ptid;
2041 /* The thread that got the event, if this was a thread event; NULL
2042 otherwise. */
2043 struct thread_info *event_thread;
2044
2045 struct target_waitstatus ws;
2046 int stop_func_filled_in;
2047 CORE_ADDR stop_func_start;
2048 CORE_ADDR stop_func_end;
2049 const char *stop_func_name;
2050 int wait_some_more;
2051
2052 /* True if the event thread hit the single-step breakpoint of
2053 another thread. Thus the event doesn't cause a stop, the thread
2054 needs to be single-stepped past the single-step breakpoint before
2055 we can switch back to the original stepping thread. */
2056 int hit_singlestep_breakpoint;
2057};
2058
2059/* Clear ECS and set it to point at TP. */
c2829269
PA
2060
2061static void
4d9d9d04
PA
2062reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2063{
2064 memset (ecs, 0, sizeof (*ecs));
2065 ecs->event_thread = tp;
2066 ecs->ptid = tp->ptid;
2067}
2068
2069static void keep_going_pass_signal (struct execution_control_state *ecs);
2070static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2071static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2072static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2073
2074/* Are there any pending step-over requests? If so, run all we can
2075 now and return true. Otherwise, return false. */
2076
2077static int
c2829269
PA
2078start_step_over (void)
2079{
2080 struct thread_info *tp, *next;
2081
372316f1
PA
2082 /* Don't start a new step-over if we already have an in-line
2083 step-over operation ongoing. */
2084 if (step_over_info_valid_p ())
2085 return 0;
2086
c2829269 2087 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2088 {
4d9d9d04
PA
2089 struct execution_control_state ecss;
2090 struct execution_control_state *ecs = &ecss;
8d297bbf 2091 step_over_what step_what;
372316f1 2092 int must_be_in_line;
c2829269 2093
c65d6b55
PA
2094 gdb_assert (!tp->stop_requested);
2095
c2829269 2096 next = thread_step_over_chain_next (tp);
237fc4c9 2097
c2829269
PA
2098 /* If this inferior already has a displaced step in process,
2099 don't start a new one. */
4d9d9d04 2100 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2101 continue;
2102
372316f1
PA
2103 step_what = thread_still_needs_step_over (tp);
2104 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2105 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2106 && !use_displaced_stepping (tp)));
372316f1
PA
2107
2108 /* We currently stop all threads of all processes to step-over
2109 in-line. If we need to start a new in-line step-over, let
2110 any pending displaced steps finish first. */
2111 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2112 return 0;
2113
c2829269
PA
2114 thread_step_over_chain_remove (tp);
2115
2116 if (step_over_queue_head == NULL)
2117 {
2118 if (debug_infrun)
2119 fprintf_unfiltered (gdb_stdlog,
2120 "infrun: step-over queue now empty\n");
2121 }
2122
372316f1
PA
2123 if (tp->control.trap_expected
2124 || tp->resumed
2125 || tp->executing)
ad53cd71 2126 {
4d9d9d04
PA
2127 internal_error (__FILE__, __LINE__,
2128 "[%s] has inconsistent state: "
372316f1 2129 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2130 target_pid_to_str (tp->ptid),
2131 tp->control.trap_expected,
372316f1 2132 tp->resumed,
4d9d9d04 2133 tp->executing);
ad53cd71 2134 }
1c5cfe86 2135
4d9d9d04
PA
2136 if (debug_infrun)
2137 fprintf_unfiltered (gdb_stdlog,
2138 "infrun: resuming [%s] for step-over\n",
2139 target_pid_to_str (tp->ptid));
2140
2141 /* keep_going_pass_signal skips the step-over if the breakpoint
2142 is no longer inserted. In all-stop, we want to keep looking
2143 for a thread that needs a step-over instead of resuming TP,
2144 because we wouldn't be able to resume anything else until the
2145 target stops again. In non-stop, the resume always resumes
2146 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2147 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2148 continue;
8550d3b3 2149
4d9d9d04
PA
2150 switch_to_thread (tp->ptid);
2151 reset_ecs (ecs, tp);
2152 keep_going_pass_signal (ecs);
1c5cfe86 2153
4d9d9d04
PA
2154 if (!ecs->wait_some_more)
2155 error (_("Command aborted."));
1c5cfe86 2156
372316f1
PA
2157 gdb_assert (tp->resumed);
2158
2159 /* If we started a new in-line step-over, we're done. */
2160 if (step_over_info_valid_p ())
2161 {
2162 gdb_assert (tp->control.trap_expected);
2163 return 1;
2164 }
2165
fbea99ea 2166 if (!target_is_non_stop_p ())
4d9d9d04
PA
2167 {
2168 /* On all-stop, shouldn't have resumed unless we needed a
2169 step over. */
2170 gdb_assert (tp->control.trap_expected
2171 || tp->step_after_step_resume_breakpoint);
2172
2173 /* With remote targets (at least), in all-stop, we can't
2174 issue any further remote commands until the program stops
2175 again. */
2176 return 1;
1c5cfe86 2177 }
c2829269 2178
4d9d9d04
PA
2179 /* Either the thread no longer needed a step-over, or a new
2180 displaced stepping sequence started. Even in the latter
2181 case, continue looking. Maybe we can also start another
2182 displaced step on a thread of other process. */
237fc4c9 2183 }
4d9d9d04
PA
2184
2185 return 0;
237fc4c9
PA
2186}
2187
5231c1fd
PA
2188/* Update global variables holding ptids to hold NEW_PTID if they were
2189 holding OLD_PTID. */
2190static void
2191infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2192{
fc1cf338 2193 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2194
2195 if (ptid_equal (inferior_ptid, old_ptid))
2196 inferior_ptid = new_ptid;
2197
fc1cf338
PA
2198 for (displaced = displaced_step_inferior_states;
2199 displaced;
2200 displaced = displaced->next)
2201 {
2202 if (ptid_equal (displaced->step_ptid, old_ptid))
2203 displaced->step_ptid = new_ptid;
fc1cf338 2204 }
5231c1fd
PA
2205}
2206
237fc4c9
PA
2207\f
2208/* Resuming. */
c906108c
SS
2209
2210/* Things to clean up if we QUIT out of resume (). */
c906108c 2211static void
74b7792f 2212resume_cleanups (void *ignore)
c906108c 2213{
34b7e8a6
PA
2214 if (!ptid_equal (inferior_ptid, null_ptid))
2215 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2216
c906108c
SS
2217 normal_stop ();
2218}
2219
53904c9e
AC
2220static const char schedlock_off[] = "off";
2221static const char schedlock_on[] = "on";
2222static const char schedlock_step[] = "step";
f2665db5 2223static const char schedlock_replay[] = "replay";
40478521 2224static const char *const scheduler_enums[] = {
ef346e04
AC
2225 schedlock_off,
2226 schedlock_on,
2227 schedlock_step,
f2665db5 2228 schedlock_replay,
ef346e04
AC
2229 NULL
2230};
f2665db5 2231static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2232static void
2233show_scheduler_mode (struct ui_file *file, int from_tty,
2234 struct cmd_list_element *c, const char *value)
2235{
3e43a32a
MS
2236 fprintf_filtered (file,
2237 _("Mode for locking scheduler "
2238 "during execution is \"%s\".\n"),
920d2a44
AC
2239 value);
2240}
c906108c
SS
2241
2242static void
96baa820 2243set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2244{
eefe576e
AC
2245 if (!target_can_lock_scheduler)
2246 {
2247 scheduler_mode = schedlock_off;
2248 error (_("Target '%s' cannot support this command."), target_shortname);
2249 }
c906108c
SS
2250}
2251
d4db2f36
PA
2252/* True if execution commands resume all threads of all processes by
2253 default; otherwise, resume only threads of the current inferior
2254 process. */
2255int sched_multi = 0;
2256
2facfe5c
DD
2257/* Try to setup for software single stepping over the specified location.
2258 Return 1 if target_resume() should use hardware single step.
2259
2260 GDBARCH the current gdbarch.
2261 PC the location to step over. */
2262
2263static int
2264maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2265{
2266 int hw_step = 1;
2267
f02253f1 2268 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2269 && gdbarch_software_single_step_p (gdbarch))
2270 hw_step = !insert_single_step_breakpoints (gdbarch);
2271
2facfe5c
DD
2272 return hw_step;
2273}
c906108c 2274
f3263aa4
PA
2275/* See infrun.h. */
2276
09cee04b
PA
2277ptid_t
2278user_visible_resume_ptid (int step)
2279{
f3263aa4 2280 ptid_t resume_ptid;
09cee04b 2281
09cee04b
PA
2282 if (non_stop)
2283 {
2284 /* With non-stop mode on, threads are always handled
2285 individually. */
2286 resume_ptid = inferior_ptid;
2287 }
2288 else if ((scheduler_mode == schedlock_on)
03d46957 2289 || (scheduler_mode == schedlock_step && step))
09cee04b 2290 {
f3263aa4
PA
2291 /* User-settable 'scheduler' mode requires solo thread
2292 resume. */
09cee04b
PA
2293 resume_ptid = inferior_ptid;
2294 }
f2665db5
MM
2295 else if ((scheduler_mode == schedlock_replay)
2296 && target_record_will_replay (minus_one_ptid, execution_direction))
2297 {
2298 /* User-settable 'scheduler' mode requires solo thread resume in replay
2299 mode. */
2300 resume_ptid = inferior_ptid;
2301 }
f3263aa4
PA
2302 else if (!sched_multi && target_supports_multi_process ())
2303 {
2304 /* Resume all threads of the current process (and none of other
2305 processes). */
2306 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2307 }
2308 else
2309 {
2310 /* Resume all threads of all processes. */
2311 resume_ptid = RESUME_ALL;
2312 }
09cee04b
PA
2313
2314 return resume_ptid;
2315}
2316
fbea99ea
PA
2317/* Return a ptid representing the set of threads that we will resume,
2318 in the perspective of the target, assuming run control handling
2319 does not require leaving some threads stopped (e.g., stepping past
2320 breakpoint). USER_STEP indicates whether we're about to start the
2321 target for a stepping command. */
2322
2323static ptid_t
2324internal_resume_ptid (int user_step)
2325{
2326 /* In non-stop, we always control threads individually. Note that
2327 the target may always work in non-stop mode even with "set
2328 non-stop off", in which case user_visible_resume_ptid could
2329 return a wildcard ptid. */
2330 if (target_is_non_stop_p ())
2331 return inferior_ptid;
2332 else
2333 return user_visible_resume_ptid (user_step);
2334}
2335
64ce06e4
PA
2336/* Wrapper for target_resume, that handles infrun-specific
2337 bookkeeping. */
2338
2339static void
2340do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2341{
2342 struct thread_info *tp = inferior_thread ();
2343
c65d6b55
PA
2344 gdb_assert (!tp->stop_requested);
2345
64ce06e4
PA
2346 /* Install inferior's terminal modes. */
2347 target_terminal_inferior ();
2348
2349 /* Avoid confusing the next resume, if the next stop/resume
2350 happens to apply to another thread. */
2351 tp->suspend.stop_signal = GDB_SIGNAL_0;
2352
8f572e5c
PA
2353 /* Advise target which signals may be handled silently.
2354
2355 If we have removed breakpoints because we are stepping over one
2356 in-line (in any thread), we need to receive all signals to avoid
2357 accidentally skipping a breakpoint during execution of a signal
2358 handler.
2359
2360 Likewise if we're displaced stepping, otherwise a trap for a
2361 breakpoint in a signal handler might be confused with the
2362 displaced step finishing. We don't make the displaced_step_fixup
2363 step distinguish the cases instead, because:
2364
2365 - a backtrace while stopped in the signal handler would show the
2366 scratch pad as frame older than the signal handler, instead of
2367 the real mainline code.
2368
2369 - when the thread is later resumed, the signal handler would
2370 return to the scratch pad area, which would no longer be
2371 valid. */
2372 if (step_over_info_valid_p ()
2373 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2374 target_pass_signals (0, NULL);
2375 else
2376 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2377
2378 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2379
2380 target_commit_resume ();
64ce06e4
PA
2381}
2382
c906108c
SS
2383/* Resume the inferior, but allow a QUIT. This is useful if the user
2384 wants to interrupt some lengthy single-stepping operation
2385 (for child processes, the SIGINT goes to the inferior, and so
2386 we get a SIGINT random_signal, but for remote debugging and perhaps
2387 other targets, that's not true).
2388
c906108c
SS
2389 SIG is the signal to give the inferior (zero for none). */
2390void
64ce06e4 2391resume (enum gdb_signal sig)
c906108c 2392{
74b7792f 2393 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2394 struct regcache *regcache = get_current_regcache ();
2395 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2396 struct thread_info *tp = inferior_thread ();
515630c5 2397 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2398 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2399 ptid_t resume_ptid;
856e7dd6
PA
2400 /* This represents the user's step vs continue request. When
2401 deciding whether "set scheduler-locking step" applies, it's the
2402 user's intention that counts. */
2403 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2404 /* This represents what we'll actually request the target to do.
2405 This can decay from a step to a continue, if e.g., we need to
2406 implement single-stepping with breakpoints (software
2407 single-step). */
6b403daa 2408 int step;
c7e8a53c 2409
c65d6b55 2410 gdb_assert (!tp->stop_requested);
c2829269
PA
2411 gdb_assert (!thread_is_in_step_over_chain (tp));
2412
c906108c
SS
2413 QUIT;
2414
372316f1
PA
2415 if (tp->suspend.waitstatus_pending_p)
2416 {
2417 if (debug_infrun)
2418 {
2419 char *statstr;
2420
2421 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2422 fprintf_unfiltered (gdb_stdlog,
2423 "infrun: resume: thread %s has pending wait status %s "
2424 "(currently_stepping=%d).\n",
2425 target_pid_to_str (tp->ptid), statstr,
2426 currently_stepping (tp));
2427 xfree (statstr);
2428 }
2429
2430 tp->resumed = 1;
2431
2432 /* FIXME: What should we do if we are supposed to resume this
2433 thread with a signal? Maybe we should maintain a queue of
2434 pending signals to deliver. */
2435 if (sig != GDB_SIGNAL_0)
2436 {
fd7dcb94 2437 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2438 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2439 }
2440
2441 tp->suspend.stop_signal = GDB_SIGNAL_0;
2442 discard_cleanups (old_cleanups);
2443
2444 if (target_can_async_p ())
2445 target_async (1);
2446 return;
2447 }
2448
2449 tp->stepped_breakpoint = 0;
2450
6b403daa
PA
2451 /* Depends on stepped_breakpoint. */
2452 step = currently_stepping (tp);
2453
74609e71
YQ
2454 if (current_inferior ()->waiting_for_vfork_done)
2455 {
48f9886d
PA
2456 /* Don't try to single-step a vfork parent that is waiting for
2457 the child to get out of the shared memory region (by exec'ing
2458 or exiting). This is particularly important on software
2459 single-step archs, as the child process would trip on the
2460 software single step breakpoint inserted for the parent
2461 process. Since the parent will not actually execute any
2462 instruction until the child is out of the shared region (such
2463 are vfork's semantics), it is safe to simply continue it.
2464 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2465 the parent, and tell it to `keep_going', which automatically
2466 re-sets it stepping. */
74609e71
YQ
2467 if (debug_infrun)
2468 fprintf_unfiltered (gdb_stdlog,
2469 "infrun: resume : clear step\n");
a09dd441 2470 step = 0;
74609e71
YQ
2471 }
2472
527159b7 2473 if (debug_infrun)
237fc4c9 2474 fprintf_unfiltered (gdb_stdlog,
c9737c08 2475 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2476 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2477 step, gdb_signal_to_symbol_string (sig),
2478 tp->control.trap_expected,
0d9a9a5f
PA
2479 target_pid_to_str (inferior_ptid),
2480 paddress (gdbarch, pc));
c906108c 2481
c2c6d25f
JM
2482 /* Normally, by the time we reach `resume', the breakpoints are either
2483 removed or inserted, as appropriate. The exception is if we're sitting
2484 at a permanent breakpoint; we need to step over it, but permanent
2485 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2486 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2487 {
af48d08f
PA
2488 if (sig != GDB_SIGNAL_0)
2489 {
2490 /* We have a signal to pass to the inferior. The resume
2491 may, or may not take us to the signal handler. If this
2492 is a step, we'll need to stop in the signal handler, if
2493 there's one, (if the target supports stepping into
2494 handlers), or in the next mainline instruction, if
2495 there's no handler. If this is a continue, we need to be
2496 sure to run the handler with all breakpoints inserted.
2497 In all cases, set a breakpoint at the current address
2498 (where the handler returns to), and once that breakpoint
2499 is hit, resume skipping the permanent breakpoint. If
2500 that breakpoint isn't hit, then we've stepped into the
2501 signal handler (or hit some other event). We'll delete
2502 the step-resume breakpoint then. */
2503
2504 if (debug_infrun)
2505 fprintf_unfiltered (gdb_stdlog,
2506 "infrun: resume: skipping permanent breakpoint, "
2507 "deliver signal first\n");
2508
2509 clear_step_over_info ();
2510 tp->control.trap_expected = 0;
2511
2512 if (tp->control.step_resume_breakpoint == NULL)
2513 {
2514 /* Set a "high-priority" step-resume, as we don't want
2515 user breakpoints at PC to trigger (again) when this
2516 hits. */
2517 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2518 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2519
2520 tp->step_after_step_resume_breakpoint = step;
2521 }
2522
2523 insert_breakpoints ();
2524 }
2525 else
2526 {
2527 /* There's no signal to pass, we can go ahead and skip the
2528 permanent breakpoint manually. */
2529 if (debug_infrun)
2530 fprintf_unfiltered (gdb_stdlog,
2531 "infrun: resume: skipping permanent breakpoint\n");
2532 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2533 /* Update pc to reflect the new address from which we will
2534 execute instructions. */
2535 pc = regcache_read_pc (regcache);
2536
2537 if (step)
2538 {
2539 /* We've already advanced the PC, so the stepping part
2540 is done. Now we need to arrange for a trap to be
2541 reported to handle_inferior_event. Set a breakpoint
2542 at the current PC, and run to it. Don't update
2543 prev_pc, because if we end in
44a1ee51
PA
2544 switch_back_to_stepped_thread, we want the "expected
2545 thread advanced also" branch to be taken. IOW, we
2546 don't want this thread to step further from PC
af48d08f 2547 (overstep). */
1ac806b8 2548 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2549 insert_single_step_breakpoint (gdbarch, aspace, pc);
2550 insert_breakpoints ();
2551
fbea99ea 2552 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2553 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2554 discard_cleanups (old_cleanups);
372316f1 2555 tp->resumed = 1;
af48d08f
PA
2556 return;
2557 }
2558 }
6d350bb5 2559 }
c2c6d25f 2560
c1e36e3e
PA
2561 /* If we have a breakpoint to step over, make sure to do a single
2562 step only. Same if we have software watchpoints. */
2563 if (tp->control.trap_expected || bpstat_should_step ())
2564 tp->control.may_range_step = 0;
2565
237fc4c9
PA
2566 /* If enabled, step over breakpoints by executing a copy of the
2567 instruction at a different address.
2568
2569 We can't use displaced stepping when we have a signal to deliver;
2570 the comments for displaced_step_prepare explain why. The
2571 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2572 signals' explain what we do instead.
2573
2574 We can't use displaced stepping when we are waiting for vfork_done
2575 event, displaced stepping breaks the vfork child similarly as single
2576 step software breakpoint. */
3fc8eb30
PA
2577 if (tp->control.trap_expected
2578 && use_displaced_stepping (tp)
cb71640d 2579 && !step_over_info_valid_p ()
a493e3e2 2580 && sig == GDB_SIGNAL_0
74609e71 2581 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2582 {
3fc8eb30 2583 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2584
3fc8eb30 2585 if (prepared == 0)
d56b7306 2586 {
4d9d9d04
PA
2587 if (debug_infrun)
2588 fprintf_unfiltered (gdb_stdlog,
2589 "Got placed in step-over queue\n");
2590
2591 tp->control.trap_expected = 0;
d56b7306
VP
2592 discard_cleanups (old_cleanups);
2593 return;
2594 }
3fc8eb30
PA
2595 else if (prepared < 0)
2596 {
2597 /* Fallback to stepping over the breakpoint in-line. */
2598
2599 if (target_is_non_stop_p ())
2600 stop_all_threads ();
2601
2602 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2603 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2604
2605 step = maybe_software_singlestep (gdbarch, pc);
2606
2607 insert_breakpoints ();
2608 }
2609 else if (prepared > 0)
2610 {
2611 struct displaced_step_inferior_state *displaced;
99e40580 2612
3fc8eb30
PA
2613 /* Update pc to reflect the new address from which we will
2614 execute instructions due to displaced stepping. */
2615 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2616
3fc8eb30
PA
2617 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2618 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2619 displaced->step_closure);
2620 }
237fc4c9
PA
2621 }
2622
2facfe5c 2623 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2624 else if (step)
2facfe5c 2625 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2626
30852783
UW
2627 /* Currently, our software single-step implementation leads to different
2628 results than hardware single-stepping in one situation: when stepping
2629 into delivering a signal which has an associated signal handler,
2630 hardware single-step will stop at the first instruction of the handler,
2631 while software single-step will simply skip execution of the handler.
2632
2633 For now, this difference in behavior is accepted since there is no
2634 easy way to actually implement single-stepping into a signal handler
2635 without kernel support.
2636
2637 However, there is one scenario where this difference leads to follow-on
2638 problems: if we're stepping off a breakpoint by removing all breakpoints
2639 and then single-stepping. In this case, the software single-step
2640 behavior means that even if there is a *breakpoint* in the signal
2641 handler, GDB still would not stop.
2642
2643 Fortunately, we can at least fix this particular issue. We detect
2644 here the case where we are about to deliver a signal while software
2645 single-stepping with breakpoints removed. In this situation, we
2646 revert the decisions to remove all breakpoints and insert single-
2647 step breakpoints, and instead we install a step-resume breakpoint
2648 at the current address, deliver the signal without stepping, and
2649 once we arrive back at the step-resume breakpoint, actually step
2650 over the breakpoint we originally wanted to step over. */
34b7e8a6 2651 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2652 && sig != GDB_SIGNAL_0
2653 && step_over_info_valid_p ())
30852783
UW
2654 {
2655 /* If we have nested signals or a pending signal is delivered
2656 immediately after a handler returns, might might already have
2657 a step-resume breakpoint set on the earlier handler. We cannot
2658 set another step-resume breakpoint; just continue on until the
2659 original breakpoint is hit. */
2660 if (tp->control.step_resume_breakpoint == NULL)
2661 {
2c03e5be 2662 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2663 tp->step_after_step_resume_breakpoint = 1;
2664 }
2665
34b7e8a6 2666 delete_single_step_breakpoints (tp);
30852783 2667
31e77af2 2668 clear_step_over_info ();
30852783 2669 tp->control.trap_expected = 0;
31e77af2
PA
2670
2671 insert_breakpoints ();
30852783
UW
2672 }
2673
b0f16a3e
SM
2674 /* If STEP is set, it's a request to use hardware stepping
2675 facilities. But in that case, we should never
2676 use singlestep breakpoint. */
34b7e8a6 2677 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2678
fbea99ea 2679 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2680 if (tp->control.trap_expected)
b0f16a3e
SM
2681 {
2682 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2683 hit, either by single-stepping the thread with the breakpoint
2684 removed, or by displaced stepping, with the breakpoint inserted.
2685 In the former case, we need to single-step only this thread,
2686 and keep others stopped, as they can miss this breakpoint if
2687 allowed to run. That's not really a problem for displaced
2688 stepping, but, we still keep other threads stopped, in case
2689 another thread is also stopped for a breakpoint waiting for
2690 its turn in the displaced stepping queue. */
b0f16a3e
SM
2691 resume_ptid = inferior_ptid;
2692 }
fbea99ea
PA
2693 else
2694 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2695
7f5ef605
PA
2696 if (execution_direction != EXEC_REVERSE
2697 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2698 {
372316f1
PA
2699 /* There are two cases where we currently need to step a
2700 breakpoint instruction when we have a signal to deliver:
2701
2702 - See handle_signal_stop where we handle random signals that
2703 could take out us out of the stepping range. Normally, in
2704 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2705 signal handler with a breakpoint at PC, but there are cases
2706 where we should _always_ single-step, even if we have a
2707 step-resume breakpoint, like when a software watchpoint is
2708 set. Assuming single-stepping and delivering a signal at the
2709 same time would takes us to the signal handler, then we could
2710 have removed the breakpoint at PC to step over it. However,
2711 some hardware step targets (like e.g., Mac OS) can't step
2712 into signal handlers, and for those, we need to leave the
2713 breakpoint at PC inserted, as otherwise if the handler
2714 recurses and executes PC again, it'll miss the breakpoint.
2715 So we leave the breakpoint inserted anyway, but we need to
2716 record that we tried to step a breakpoint instruction, so
372316f1
PA
2717 that adjust_pc_after_break doesn't end up confused.
2718
2719 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2720 in one thread after another thread that was stepping had been
2721 momentarily paused for a step-over. When we re-resume the
2722 stepping thread, it may be resumed from that address with a
2723 breakpoint that hasn't trapped yet. Seen with
2724 gdb.threads/non-stop-fair-events.exp, on targets that don't
2725 do displaced stepping. */
2726
2727 if (debug_infrun)
2728 fprintf_unfiltered (gdb_stdlog,
2729 "infrun: resume: [%s] stepped breakpoint\n",
2730 target_pid_to_str (tp->ptid));
7f5ef605
PA
2731
2732 tp->stepped_breakpoint = 1;
2733
b0f16a3e
SM
2734 /* Most targets can step a breakpoint instruction, thus
2735 executing it normally. But if this one cannot, just
2736 continue and we will hit it anyway. */
7f5ef605 2737 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2738 step = 0;
2739 }
ef5cf84e 2740
b0f16a3e 2741 if (debug_displaced
cb71640d 2742 && tp->control.trap_expected
3fc8eb30 2743 && use_displaced_stepping (tp)
cb71640d 2744 && !step_over_info_valid_p ())
b0f16a3e 2745 {
d9b67d9f 2746 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2747 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2748 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2749 gdb_byte buf[4];
2750
2751 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2752 paddress (resume_gdbarch, actual_pc));
2753 read_memory (actual_pc, buf, sizeof (buf));
2754 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2755 }
237fc4c9 2756
b0f16a3e
SM
2757 if (tp->control.may_range_step)
2758 {
2759 /* If we're resuming a thread with the PC out of the step
2760 range, then we're doing some nested/finer run control
2761 operation, like stepping the thread out of the dynamic
2762 linker or the displaced stepping scratch pad. We
2763 shouldn't have allowed a range step then. */
2764 gdb_assert (pc_in_thread_step_range (pc, tp));
2765 }
c1e36e3e 2766
64ce06e4 2767 do_target_resume (resume_ptid, step, sig);
372316f1 2768 tp->resumed = 1;
c906108c
SS
2769 discard_cleanups (old_cleanups);
2770}
2771\f
237fc4c9 2772/* Proceeding. */
c906108c 2773
4c2f2a79
PA
2774/* See infrun.h. */
2775
2776/* Counter that tracks number of user visible stops. This can be used
2777 to tell whether a command has proceeded the inferior past the
2778 current location. This allows e.g., inferior function calls in
2779 breakpoint commands to not interrupt the command list. When the
2780 call finishes successfully, the inferior is standing at the same
2781 breakpoint as if nothing happened (and so we don't call
2782 normal_stop). */
2783static ULONGEST current_stop_id;
2784
2785/* See infrun.h. */
2786
2787ULONGEST
2788get_stop_id (void)
2789{
2790 return current_stop_id;
2791}
2792
2793/* Called when we report a user visible stop. */
2794
2795static void
2796new_stop_id (void)
2797{
2798 current_stop_id++;
2799}
2800
c906108c
SS
2801/* Clear out all variables saying what to do when inferior is continued.
2802 First do this, then set the ones you want, then call `proceed'. */
2803
a7212384
UW
2804static void
2805clear_proceed_status_thread (struct thread_info *tp)
c906108c 2806{
a7212384
UW
2807 if (debug_infrun)
2808 fprintf_unfiltered (gdb_stdlog,
2809 "infrun: clear_proceed_status_thread (%s)\n",
2810 target_pid_to_str (tp->ptid));
d6b48e9c 2811
372316f1
PA
2812 /* If we're starting a new sequence, then the previous finished
2813 single-step is no longer relevant. */
2814 if (tp->suspend.waitstatus_pending_p)
2815 {
2816 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2817 {
2818 if (debug_infrun)
2819 fprintf_unfiltered (gdb_stdlog,
2820 "infrun: clear_proceed_status: pending "
2821 "event of %s was a finished step. "
2822 "Discarding.\n",
2823 target_pid_to_str (tp->ptid));
2824
2825 tp->suspend.waitstatus_pending_p = 0;
2826 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2827 }
2828 else if (debug_infrun)
2829 {
2830 char *statstr;
2831
2832 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2833 fprintf_unfiltered (gdb_stdlog,
2834 "infrun: clear_proceed_status_thread: thread %s "
2835 "has pending wait status %s "
2836 "(currently_stepping=%d).\n",
2837 target_pid_to_str (tp->ptid), statstr,
2838 currently_stepping (tp));
2839 xfree (statstr);
2840 }
2841 }
2842
70509625
PA
2843 /* If this signal should not be seen by program, give it zero.
2844 Used for debugging signals. */
2845 if (!signal_pass_state (tp->suspend.stop_signal))
2846 tp->suspend.stop_signal = GDB_SIGNAL_0;
2847
243a9253
PA
2848 thread_fsm_delete (tp->thread_fsm);
2849 tp->thread_fsm = NULL;
2850
16c381f0
JK
2851 tp->control.trap_expected = 0;
2852 tp->control.step_range_start = 0;
2853 tp->control.step_range_end = 0;
c1e36e3e 2854 tp->control.may_range_step = 0;
16c381f0
JK
2855 tp->control.step_frame_id = null_frame_id;
2856 tp->control.step_stack_frame_id = null_frame_id;
2857 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2858 tp->control.step_start_function = NULL;
a7212384 2859 tp->stop_requested = 0;
4e1c45ea 2860
16c381f0 2861 tp->control.stop_step = 0;
32400beb 2862
16c381f0 2863 tp->control.proceed_to_finish = 0;
414c69f7 2864
856e7dd6 2865 tp->control.stepping_command = 0;
17b2616c 2866
a7212384 2867 /* Discard any remaining commands or status from previous stop. */
16c381f0 2868 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2869}
32400beb 2870
a7212384 2871void
70509625 2872clear_proceed_status (int step)
a7212384 2873{
f2665db5
MM
2874 /* With scheduler-locking replay, stop replaying other threads if we're
2875 not replaying the user-visible resume ptid.
2876
2877 This is a convenience feature to not require the user to explicitly
2878 stop replaying the other threads. We're assuming that the user's
2879 intent is to resume tracing the recorded process. */
2880 if (!non_stop && scheduler_mode == schedlock_replay
2881 && target_record_is_replaying (minus_one_ptid)
2882 && !target_record_will_replay (user_visible_resume_ptid (step),
2883 execution_direction))
2884 target_record_stop_replaying ();
2885
6c95b8df
PA
2886 if (!non_stop)
2887 {
70509625
PA
2888 struct thread_info *tp;
2889 ptid_t resume_ptid;
2890
2891 resume_ptid = user_visible_resume_ptid (step);
2892
2893 /* In all-stop mode, delete the per-thread status of all threads
2894 we're about to resume, implicitly and explicitly. */
2895 ALL_NON_EXITED_THREADS (tp)
2896 {
2897 if (!ptid_match (tp->ptid, resume_ptid))
2898 continue;
2899 clear_proceed_status_thread (tp);
2900 }
6c95b8df
PA
2901 }
2902
a7212384
UW
2903 if (!ptid_equal (inferior_ptid, null_ptid))
2904 {
2905 struct inferior *inferior;
2906
2907 if (non_stop)
2908 {
6c95b8df
PA
2909 /* If in non-stop mode, only delete the per-thread status of
2910 the current thread. */
a7212384
UW
2911 clear_proceed_status_thread (inferior_thread ());
2912 }
6c95b8df 2913
d6b48e9c 2914 inferior = current_inferior ();
16c381f0 2915 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2916 }
2917
f3b1572e 2918 observer_notify_about_to_proceed ();
c906108c
SS
2919}
2920
99619bea
PA
2921/* Returns true if TP is still stopped at a breakpoint that needs
2922 stepping-over in order to make progress. If the breakpoint is gone
2923 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2924
2925static int
6c4cfb24 2926thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2927{
2928 if (tp->stepping_over_breakpoint)
2929 {
2930 struct regcache *regcache = get_thread_regcache (tp->ptid);
2931
2932 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2933 regcache_read_pc (regcache))
2934 == ordinary_breakpoint_here)
99619bea
PA
2935 return 1;
2936
2937 tp->stepping_over_breakpoint = 0;
2938 }
2939
2940 return 0;
2941}
2942
6c4cfb24
PA
2943/* Check whether thread TP still needs to start a step-over in order
2944 to make progress when resumed. Returns an bitwise or of enum
2945 step_over_what bits, indicating what needs to be stepped over. */
2946
8d297bbf 2947static step_over_what
6c4cfb24
PA
2948thread_still_needs_step_over (struct thread_info *tp)
2949{
8d297bbf 2950 step_over_what what = 0;
6c4cfb24
PA
2951
2952 if (thread_still_needs_step_over_bp (tp))
2953 what |= STEP_OVER_BREAKPOINT;
2954
2955 if (tp->stepping_over_watchpoint
2956 && !target_have_steppable_watchpoint)
2957 what |= STEP_OVER_WATCHPOINT;
2958
2959 return what;
2960}
2961
483805cf
PA
2962/* Returns true if scheduler locking applies. STEP indicates whether
2963 we're about to do a step/next-like command to a thread. */
2964
2965static int
856e7dd6 2966schedlock_applies (struct thread_info *tp)
483805cf
PA
2967{
2968 return (scheduler_mode == schedlock_on
2969 || (scheduler_mode == schedlock_step
f2665db5
MM
2970 && tp->control.stepping_command)
2971 || (scheduler_mode == schedlock_replay
2972 && target_record_will_replay (minus_one_ptid,
2973 execution_direction)));
483805cf
PA
2974}
2975
c906108c
SS
2976/* Basic routine for continuing the program in various fashions.
2977
2978 ADDR is the address to resume at, or -1 for resume where stopped.
2979 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2980 or -1 for act according to how it stopped.
c906108c 2981 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2982 -1 means return after that and print nothing.
2983 You should probably set various step_... variables
2984 before calling here, if you are stepping.
c906108c
SS
2985
2986 You should call clear_proceed_status before calling proceed. */
2987
2988void
64ce06e4 2989proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2990{
e58b0e63
PA
2991 struct regcache *regcache;
2992 struct gdbarch *gdbarch;
4e1c45ea 2993 struct thread_info *tp;
e58b0e63 2994 CORE_ADDR pc;
6c95b8df 2995 struct address_space *aspace;
4d9d9d04
PA
2996 ptid_t resume_ptid;
2997 struct execution_control_state ecss;
2998 struct execution_control_state *ecs = &ecss;
2999 struct cleanup *old_chain;
85ad3aaf 3000 struct cleanup *defer_resume_cleanup;
4d9d9d04 3001 int started;
c906108c 3002
e58b0e63
PA
3003 /* If we're stopped at a fork/vfork, follow the branch set by the
3004 "set follow-fork-mode" command; otherwise, we'll just proceed
3005 resuming the current thread. */
3006 if (!follow_fork ())
3007 {
3008 /* The target for some reason decided not to resume. */
3009 normal_stop ();
f148b27e
PA
3010 if (target_can_async_p ())
3011 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
3012 return;
3013 }
3014
842951eb
PA
3015 /* We'll update this if & when we switch to a new thread. */
3016 previous_inferior_ptid = inferior_ptid;
3017
e58b0e63
PA
3018 regcache = get_current_regcache ();
3019 gdbarch = get_regcache_arch (regcache);
6c95b8df 3020 aspace = get_regcache_aspace (regcache);
e58b0e63 3021 pc = regcache_read_pc (regcache);
2adfaa28 3022 tp = inferior_thread ();
e58b0e63 3023
99619bea
PA
3024 /* Fill in with reasonable starting values. */
3025 init_thread_stepping_state (tp);
3026
c2829269
PA
3027 gdb_assert (!thread_is_in_step_over_chain (tp));
3028
2acceee2 3029 if (addr == (CORE_ADDR) -1)
c906108c 3030 {
af48d08f
PA
3031 if (pc == stop_pc
3032 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3033 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3034 /* There is a breakpoint at the address we will resume at,
3035 step one instruction before inserting breakpoints so that
3036 we do not stop right away (and report a second hit at this
b2175913
MS
3037 breakpoint).
3038
3039 Note, we don't do this in reverse, because we won't
3040 actually be executing the breakpoint insn anyway.
3041 We'll be (un-)executing the previous instruction. */
99619bea 3042 tp->stepping_over_breakpoint = 1;
515630c5
UW
3043 else if (gdbarch_single_step_through_delay_p (gdbarch)
3044 && gdbarch_single_step_through_delay (gdbarch,
3045 get_current_frame ()))
3352ef37
AC
3046 /* We stepped onto an instruction that needs to be stepped
3047 again before re-inserting the breakpoint, do so. */
99619bea 3048 tp->stepping_over_breakpoint = 1;
c906108c
SS
3049 }
3050 else
3051 {
515630c5 3052 regcache_write_pc (regcache, addr);
c906108c
SS
3053 }
3054
70509625
PA
3055 if (siggnal != GDB_SIGNAL_DEFAULT)
3056 tp->suspend.stop_signal = siggnal;
3057
4d9d9d04
PA
3058 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3059
3060 /* If an exception is thrown from this point on, make sure to
3061 propagate GDB's knowledge of the executing state to the
3062 frontend/user running state. */
3063 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3064
3065 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3066 threads (e.g., we might need to set threads stepping over
3067 breakpoints first), from the user/frontend's point of view, all
3068 threads in RESUME_PTID are now running. Unless we're calling an
3069 inferior function, as in that case we pretend the inferior
3070 doesn't run at all. */
3071 if (!tp->control.in_infcall)
3072 set_running (resume_ptid, 1);
17b2616c 3073
527159b7 3074 if (debug_infrun)
8a9de0e4 3075 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3076 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3077 paddress (gdbarch, addr),
64ce06e4 3078 gdb_signal_to_symbol_string (siggnal));
527159b7 3079
4d9d9d04
PA
3080 annotate_starting ();
3081
3082 /* Make sure that output from GDB appears before output from the
3083 inferior. */
3084 gdb_flush (gdb_stdout);
3085
3086 /* In a multi-threaded task we may select another thread and
3087 then continue or step.
3088
3089 But if a thread that we're resuming had stopped at a breakpoint,
3090 it will immediately cause another breakpoint stop without any
3091 execution (i.e. it will report a breakpoint hit incorrectly). So
3092 we must step over it first.
3093
3094 Look for threads other than the current (TP) that reported a
3095 breakpoint hit and haven't been resumed yet since. */
3096
3097 /* If scheduler locking applies, we can avoid iterating over all
3098 threads. */
3099 if (!non_stop && !schedlock_applies (tp))
94cc34af 3100 {
4d9d9d04
PA
3101 struct thread_info *current = tp;
3102
3103 ALL_NON_EXITED_THREADS (tp)
3104 {
3105 /* Ignore the current thread here. It's handled
3106 afterwards. */
3107 if (tp == current)
3108 continue;
99619bea 3109
4d9d9d04
PA
3110 /* Ignore threads of processes we're not resuming. */
3111 if (!ptid_match (tp->ptid, resume_ptid))
3112 continue;
c906108c 3113
4d9d9d04
PA
3114 if (!thread_still_needs_step_over (tp))
3115 continue;
3116
3117 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3118
99619bea
PA
3119 if (debug_infrun)
3120 fprintf_unfiltered (gdb_stdlog,
3121 "infrun: need to step-over [%s] first\n",
4d9d9d04 3122 target_pid_to_str (tp->ptid));
99619bea 3123
4d9d9d04 3124 thread_step_over_chain_enqueue (tp);
2adfaa28 3125 }
31e77af2 3126
4d9d9d04 3127 tp = current;
30852783
UW
3128 }
3129
4d9d9d04
PA
3130 /* Enqueue the current thread last, so that we move all other
3131 threads over their breakpoints first. */
3132 if (tp->stepping_over_breakpoint)
3133 thread_step_over_chain_enqueue (tp);
30852783 3134
4d9d9d04
PA
3135 /* If the thread isn't started, we'll still need to set its prev_pc,
3136 so that switch_back_to_stepped_thread knows the thread hasn't
3137 advanced. Must do this before resuming any thread, as in
3138 all-stop/remote, once we resume we can't send any other packet
3139 until the target stops again. */
3140 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3141
85ad3aaf
PA
3142 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3143
4d9d9d04 3144 started = start_step_over ();
c906108c 3145
4d9d9d04
PA
3146 if (step_over_info_valid_p ())
3147 {
3148 /* Either this thread started a new in-line step over, or some
3149 other thread was already doing one. In either case, don't
3150 resume anything else until the step-over is finished. */
3151 }
fbea99ea 3152 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3153 {
3154 /* A new displaced stepping sequence was started. In all-stop,
3155 we can't talk to the target anymore until it next stops. */
3156 }
fbea99ea
PA
3157 else if (!non_stop && target_is_non_stop_p ())
3158 {
3159 /* In all-stop, but the target is always in non-stop mode.
3160 Start all other threads that are implicitly resumed too. */
3161 ALL_NON_EXITED_THREADS (tp)
3162 {
3163 /* Ignore threads of processes we're not resuming. */
3164 if (!ptid_match (tp->ptid, resume_ptid))
3165 continue;
3166
3167 if (tp->resumed)
3168 {
3169 if (debug_infrun)
3170 fprintf_unfiltered (gdb_stdlog,
3171 "infrun: proceed: [%s] resumed\n",
3172 target_pid_to_str (tp->ptid));
3173 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3174 continue;
3175 }
3176
3177 if (thread_is_in_step_over_chain (tp))
3178 {
3179 if (debug_infrun)
3180 fprintf_unfiltered (gdb_stdlog,
3181 "infrun: proceed: [%s] needs step-over\n",
3182 target_pid_to_str (tp->ptid));
3183 continue;
3184 }
3185
3186 if (debug_infrun)
3187 fprintf_unfiltered (gdb_stdlog,
3188 "infrun: proceed: resuming %s\n",
3189 target_pid_to_str (tp->ptid));
3190
3191 reset_ecs (ecs, tp);
3192 switch_to_thread (tp->ptid);
3193 keep_going_pass_signal (ecs);
3194 if (!ecs->wait_some_more)
fd7dcb94 3195 error (_("Command aborted."));
fbea99ea
PA
3196 }
3197 }
372316f1 3198 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3199 {
3200 /* The thread wasn't started, and isn't queued, run it now. */
3201 reset_ecs (ecs, tp);
3202 switch_to_thread (tp->ptid);
3203 keep_going_pass_signal (ecs);
3204 if (!ecs->wait_some_more)
fd7dcb94 3205 error (_("Command aborted."));
4d9d9d04 3206 }
c906108c 3207
85ad3aaf
PA
3208 do_cleanups (defer_resume_cleanup);
3209 target_commit_resume ();
3210
4d9d9d04 3211 discard_cleanups (old_chain);
c906108c 3212
0b333c5e
PA
3213 /* Tell the event loop to wait for it to stop. If the target
3214 supports asynchronous execution, it'll do this from within
3215 target_resume. */
362646f5 3216 if (!target_can_async_p ())
0b333c5e 3217 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3218}
c906108c
SS
3219\f
3220
3221/* Start remote-debugging of a machine over a serial link. */
96baa820 3222
c906108c 3223void
8621d6a9 3224start_remote (int from_tty)
c906108c 3225{
d6b48e9c 3226 struct inferior *inferior;
d6b48e9c
PA
3227
3228 inferior = current_inferior ();
16c381f0 3229 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3230
1777feb0 3231 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3232 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3233 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3234 nothing is returned (instead of just blocking). Because of this,
3235 targets expecting an immediate response need to, internally, set
3236 things up so that the target_wait() is forced to eventually
1777feb0 3237 timeout. */
6426a772
JM
3238 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3239 differentiate to its caller what the state of the target is after
3240 the initial open has been performed. Here we're assuming that
3241 the target has stopped. It should be possible to eventually have
3242 target_open() return to the caller an indication that the target
3243 is currently running and GDB state should be set to the same as
1777feb0 3244 for an async run. */
e4c8541f 3245 wait_for_inferior ();
8621d6a9
DJ
3246
3247 /* Now that the inferior has stopped, do any bookkeeping like
3248 loading shared libraries. We want to do this before normal_stop,
3249 so that the displayed frame is up to date. */
3250 post_create_inferior (&current_target, from_tty);
3251
6426a772 3252 normal_stop ();
c906108c
SS
3253}
3254
3255/* Initialize static vars when a new inferior begins. */
3256
3257void
96baa820 3258init_wait_for_inferior (void)
c906108c
SS
3259{
3260 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3261
c906108c
SS
3262 breakpoint_init_inferior (inf_starting);
3263
70509625 3264 clear_proceed_status (0);
9f976b41 3265
ca005067 3266 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3267
842951eb 3268 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3269
edb3359d
DJ
3270 /* Discard any skipped inlined frames. */
3271 clear_inline_frame_state (minus_one_ptid);
c906108c 3272}
237fc4c9 3273
c906108c 3274\f
488f131b 3275
ec9499be 3276static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3277
568d6575
UW
3278static void handle_step_into_function (struct gdbarch *gdbarch,
3279 struct execution_control_state *ecs);
3280static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3281 struct execution_control_state *ecs);
4f5d7f63 3282static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3283static void check_exception_resume (struct execution_control_state *,
28106bc2 3284 struct frame_info *);
611c83ae 3285
bdc36728 3286static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3287static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3288static void keep_going (struct execution_control_state *ecs);
94c57d6a 3289static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3290static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3291
252fbfc8
PA
3292/* This function is attached as a "thread_stop_requested" observer.
3293 Cleanup local state that assumed the PTID was to be resumed, and
3294 report the stop to the frontend. */
3295
2c0b251b 3296static void
252fbfc8
PA
3297infrun_thread_stop_requested (ptid_t ptid)
3298{
c2829269 3299 struct thread_info *tp;
252fbfc8 3300
c65d6b55
PA
3301 /* PTID was requested to stop. If the thread was already stopped,
3302 but the user/frontend doesn't know about that yet (e.g., the
3303 thread had been temporarily paused for some step-over), set up
3304 for reporting the stop now. */
c2829269
PA
3305 ALL_NON_EXITED_THREADS (tp)
3306 if (ptid_match (tp->ptid, ptid))
3307 {
c65d6b55
PA
3308 if (tp->state != THREAD_RUNNING)
3309 continue;
3310 if (tp->executing)
3311 continue;
3312
3313 /* Remove matching threads from the step-over queue, so
3314 start_step_over doesn't try to resume them
3315 automatically. */
c2829269
PA
3316 if (thread_is_in_step_over_chain (tp))
3317 thread_step_over_chain_remove (tp);
252fbfc8 3318
c65d6b55
PA
3319 /* If the thread is stopped, but the user/frontend doesn't
3320 know about that yet, queue a pending event, as if the
3321 thread had just stopped now. Unless the thread already had
3322 a pending event. */
3323 if (!tp->suspend.waitstatus_pending_p)
3324 {
3325 tp->suspend.waitstatus_pending_p = 1;
3326 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3327 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3328 }
3329
3330 /* Clear the inline-frame state, since we're re-processing the
3331 stop. */
3332 clear_inline_frame_state (tp->ptid);
3333
3334 /* If this thread was paused because some other thread was
3335 doing an inline-step over, let that finish first. Once
3336 that happens, we'll restart all threads and consume pending
3337 stop events then. */
3338 if (step_over_info_valid_p ())
3339 continue;
3340
3341 /* Otherwise we can process the (new) pending event now. Set
3342 it so this pending event is considered by
3343 do_target_wait. */
3344 tp->resumed = 1;
3345 }
252fbfc8
PA
3346}
3347
a07daef3
PA
3348static void
3349infrun_thread_thread_exit (struct thread_info *tp, int silent)
3350{
3351 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3352 nullify_last_target_wait_ptid ();
3353}
3354
0cbcdb96
PA
3355/* Delete the step resume, single-step and longjmp/exception resume
3356 breakpoints of TP. */
4e1c45ea 3357
0cbcdb96
PA
3358static void
3359delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3360{
0cbcdb96
PA
3361 delete_step_resume_breakpoint (tp);
3362 delete_exception_resume_breakpoint (tp);
34b7e8a6 3363 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3364}
3365
0cbcdb96
PA
3366/* If the target still has execution, call FUNC for each thread that
3367 just stopped. In all-stop, that's all the non-exited threads; in
3368 non-stop, that's the current thread, only. */
3369
3370typedef void (*for_each_just_stopped_thread_callback_func)
3371 (struct thread_info *tp);
4e1c45ea
PA
3372
3373static void
0cbcdb96 3374for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3375{
0cbcdb96 3376 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3377 return;
3378
fbea99ea 3379 if (target_is_non_stop_p ())
4e1c45ea 3380 {
0cbcdb96
PA
3381 /* If in non-stop mode, only the current thread stopped. */
3382 func (inferior_thread ());
4e1c45ea
PA
3383 }
3384 else
0cbcdb96
PA
3385 {
3386 struct thread_info *tp;
3387
3388 /* In all-stop mode, all threads have stopped. */
3389 ALL_NON_EXITED_THREADS (tp)
3390 {
3391 func (tp);
3392 }
3393 }
3394}
3395
3396/* Delete the step resume and longjmp/exception resume breakpoints of
3397 the threads that just stopped. */
3398
3399static void
3400delete_just_stopped_threads_infrun_breakpoints (void)
3401{
3402 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3403}
3404
3405/* Delete the single-step breakpoints of the threads that just
3406 stopped. */
7c16b83e 3407
34b7e8a6
PA
3408static void
3409delete_just_stopped_threads_single_step_breakpoints (void)
3410{
3411 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3412}
3413
1777feb0 3414/* A cleanup wrapper. */
4e1c45ea
PA
3415
3416static void
0cbcdb96 3417delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3418{
0cbcdb96 3419 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3420}
3421
221e1a37 3422/* See infrun.h. */
223698f8 3423
221e1a37 3424void
223698f8
DE
3425print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3426 const struct target_waitstatus *ws)
3427{
3428 char *status_string = target_waitstatus_to_string (ws);
d7e74731 3429 string_file stb;
223698f8
DE
3430
3431 /* The text is split over several lines because it was getting too long.
3432 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3433 output as a unit; we want only one timestamp printed if debug_timestamp
3434 is set. */
3435
d7e74731
PA
3436 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3437 ptid_get_pid (waiton_ptid),
3438 ptid_get_lwp (waiton_ptid),
3439 ptid_get_tid (waiton_ptid));
dfd4cc63 3440 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3441 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3442 stb.printf (", status) =\n");
3443 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3444 ptid_get_pid (result_ptid),
3445 ptid_get_lwp (result_ptid),
3446 ptid_get_tid (result_ptid),
3447 target_pid_to_str (result_ptid));
3448 stb.printf ("infrun: %s\n", status_string);
223698f8
DE
3449
3450 /* This uses %s in part to handle %'s in the text, but also to avoid
3451 a gcc error: the format attribute requires a string literal. */
d7e74731 3452 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3453
3454 xfree (status_string);
223698f8
DE
3455}
3456
372316f1
PA
3457/* Select a thread at random, out of those which are resumed and have
3458 had events. */
3459
3460static struct thread_info *
3461random_pending_event_thread (ptid_t waiton_ptid)
3462{
3463 struct thread_info *event_tp;
3464 int num_events = 0;
3465 int random_selector;
3466
3467 /* First see how many events we have. Count only resumed threads
3468 that have an event pending. */
3469 ALL_NON_EXITED_THREADS (event_tp)
3470 if (ptid_match (event_tp->ptid, waiton_ptid)
3471 && event_tp->resumed
3472 && event_tp->suspend.waitstatus_pending_p)
3473 num_events++;
3474
3475 if (num_events == 0)
3476 return NULL;
3477
3478 /* Now randomly pick a thread out of those that have had events. */
3479 random_selector = (int)
3480 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3481
3482 if (debug_infrun && num_events > 1)
3483 fprintf_unfiltered (gdb_stdlog,
3484 "infrun: Found %d events, selecting #%d\n",
3485 num_events, random_selector);
3486
3487 /* Select the Nth thread that has had an event. */
3488 ALL_NON_EXITED_THREADS (event_tp)
3489 if (ptid_match (event_tp->ptid, waiton_ptid)
3490 && event_tp->resumed
3491 && event_tp->suspend.waitstatus_pending_p)
3492 if (random_selector-- == 0)
3493 break;
3494
3495 return event_tp;
3496}
3497
3498/* Wrapper for target_wait that first checks whether threads have
3499 pending statuses to report before actually asking the target for
3500 more events. */
3501
3502static ptid_t
3503do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3504{
3505 ptid_t event_ptid;
3506 struct thread_info *tp;
3507
3508 /* First check if there is a resumed thread with a wait status
3509 pending. */
3510 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3511 {
3512 tp = random_pending_event_thread (ptid);
3513 }
3514 else
3515 {
3516 if (debug_infrun)
3517 fprintf_unfiltered (gdb_stdlog,
3518 "infrun: Waiting for specific thread %s.\n",
3519 target_pid_to_str (ptid));
3520
3521 /* We have a specific thread to check. */
3522 tp = find_thread_ptid (ptid);
3523 gdb_assert (tp != NULL);
3524 if (!tp->suspend.waitstatus_pending_p)
3525 tp = NULL;
3526 }
3527
3528 if (tp != NULL
3529 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3530 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3531 {
3532 struct regcache *regcache = get_thread_regcache (tp->ptid);
3533 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3534 CORE_ADDR pc;
3535 int discard = 0;
3536
3537 pc = regcache_read_pc (regcache);
3538
3539 if (pc != tp->suspend.stop_pc)
3540 {
3541 if (debug_infrun)
3542 fprintf_unfiltered (gdb_stdlog,
3543 "infrun: PC of %s changed. was=%s, now=%s\n",
3544 target_pid_to_str (tp->ptid),
3545 paddress (gdbarch, tp->prev_pc),
3546 paddress (gdbarch, pc));
3547 discard = 1;
3548 }
3549 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3550 {
3551 if (debug_infrun)
3552 fprintf_unfiltered (gdb_stdlog,
3553 "infrun: previous breakpoint of %s, at %s gone\n",
3554 target_pid_to_str (tp->ptid),
3555 paddress (gdbarch, pc));
3556
3557 discard = 1;
3558 }
3559
3560 if (discard)
3561 {
3562 if (debug_infrun)
3563 fprintf_unfiltered (gdb_stdlog,
3564 "infrun: pending event of %s cancelled.\n",
3565 target_pid_to_str (tp->ptid));
3566
3567 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3568 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3569 }
3570 }
3571
3572 if (tp != NULL)
3573 {
3574 if (debug_infrun)
3575 {
3576 char *statstr;
3577
3578 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3579 fprintf_unfiltered (gdb_stdlog,
3580 "infrun: Using pending wait status %s for %s.\n",
3581 statstr,
3582 target_pid_to_str (tp->ptid));
3583 xfree (statstr);
3584 }
3585
3586 /* Now that we've selected our final event LWP, un-adjust its PC
3587 if it was a software breakpoint (and the target doesn't
3588 always adjust the PC itself). */
3589 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3590 && !target_supports_stopped_by_sw_breakpoint ())
3591 {
3592 struct regcache *regcache;
3593 struct gdbarch *gdbarch;
3594 int decr_pc;
3595
3596 regcache = get_thread_regcache (tp->ptid);
3597 gdbarch = get_regcache_arch (regcache);
3598
3599 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3600 if (decr_pc != 0)
3601 {
3602 CORE_ADDR pc;
3603
3604 pc = regcache_read_pc (regcache);
3605 regcache_write_pc (regcache, pc + decr_pc);
3606 }
3607 }
3608
3609 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3610 *status = tp->suspend.waitstatus;
3611 tp->suspend.waitstatus_pending_p = 0;
3612
3613 /* Wake up the event loop again, until all pending events are
3614 processed. */
3615 if (target_is_async_p ())
3616 mark_async_event_handler (infrun_async_inferior_event_token);
3617 return tp->ptid;
3618 }
3619
3620 /* But if we don't find one, we'll have to wait. */
3621
3622 if (deprecated_target_wait_hook)
3623 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3624 else
3625 event_ptid = target_wait (ptid, status, options);
3626
3627 return event_ptid;
3628}
3629
24291992
PA
3630/* Prepare and stabilize the inferior for detaching it. E.g.,
3631 detaching while a thread is displaced stepping is a recipe for
3632 crashing it, as nothing would readjust the PC out of the scratch
3633 pad. */
3634
3635void
3636prepare_for_detach (void)
3637{
3638 struct inferior *inf = current_inferior ();
3639 ptid_t pid_ptid = pid_to_ptid (inf->pid);
24291992
PA
3640 struct displaced_step_inferior_state *displaced;
3641
3642 displaced = get_displaced_stepping_state (inf->pid);
3643
3644 /* Is any thread of this process displaced stepping? If not,
3645 there's nothing else to do. */
3646 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3647 return;
3648
3649 if (debug_infrun)
3650 fprintf_unfiltered (gdb_stdlog,
3651 "displaced-stepping in-process while detaching");
3652
9bcb1f16 3653 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992
PA
3654
3655 while (!ptid_equal (displaced->step_ptid, null_ptid))
3656 {
3657 struct cleanup *old_chain_2;
3658 struct execution_control_state ecss;
3659 struct execution_control_state *ecs;
3660
3661 ecs = &ecss;
3662 memset (ecs, 0, sizeof (*ecs));
3663
3664 overlay_cache_invalid = 1;
f15cb84a
YQ
3665 /* Flush target cache before starting to handle each event.
3666 Target was running and cache could be stale. This is just a
3667 heuristic. Running threads may modify target memory, but we
3668 don't get any event. */
3669 target_dcache_invalidate ();
24291992 3670
372316f1 3671 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3672
3673 if (debug_infrun)
3674 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3675
3676 /* If an error happens while handling the event, propagate GDB's
3677 knowledge of the executing state to the frontend/user running
3678 state. */
3e43a32a
MS
3679 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3680 &minus_one_ptid);
24291992
PA
3681
3682 /* Now figure out what to do with the result of the result. */
3683 handle_inferior_event (ecs);
3684
3685 /* No error, don't finish the state yet. */
3686 discard_cleanups (old_chain_2);
3687
3688 /* Breakpoints and watchpoints are not installed on the target
3689 at this point, and signals are passed directly to the
3690 inferior, so this must mean the process is gone. */
3691 if (!ecs->wait_some_more)
3692 {
9bcb1f16 3693 restore_detaching.release ();
24291992
PA
3694 error (_("Program exited while detaching"));
3695 }
3696 }
3697
9bcb1f16 3698 restore_detaching.release ();
24291992
PA
3699}
3700
cd0fc7c3 3701/* Wait for control to return from inferior to debugger.
ae123ec6 3702
cd0fc7c3
SS
3703 If inferior gets a signal, we may decide to start it up again
3704 instead of returning. That is why there is a loop in this function.
3705 When this function actually returns it means the inferior
3706 should be left stopped and GDB should read more commands. */
3707
3708void
e4c8541f 3709wait_for_inferior (void)
cd0fc7c3
SS
3710{
3711 struct cleanup *old_cleanups;
e6f5c25b 3712 struct cleanup *thread_state_chain;
c906108c 3713
527159b7 3714 if (debug_infrun)
ae123ec6 3715 fprintf_unfiltered
e4c8541f 3716 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3717
0cbcdb96
PA
3718 old_cleanups
3719 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3720 NULL);
cd0fc7c3 3721
e6f5c25b
PA
3722 /* If an error happens while handling the event, propagate GDB's
3723 knowledge of the executing state to the frontend/user running
3724 state. */
3725 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3726
c906108c
SS
3727 while (1)
3728 {
ae25568b
PA
3729 struct execution_control_state ecss;
3730 struct execution_control_state *ecs = &ecss;
963f9c80 3731 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3732
ae25568b
PA
3733 memset (ecs, 0, sizeof (*ecs));
3734
ec9499be 3735 overlay_cache_invalid = 1;
ec9499be 3736
f15cb84a
YQ
3737 /* Flush target cache before starting to handle each event.
3738 Target was running and cache could be stale. This is just a
3739 heuristic. Running threads may modify target memory, but we
3740 don't get any event. */
3741 target_dcache_invalidate ();
3742
372316f1 3743 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3744
f00150c9 3745 if (debug_infrun)
223698f8 3746 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3747
cd0fc7c3
SS
3748 /* Now figure out what to do with the result of the result. */
3749 handle_inferior_event (ecs);
c906108c 3750
cd0fc7c3
SS
3751 if (!ecs->wait_some_more)
3752 break;
3753 }
4e1c45ea 3754
e6f5c25b
PA
3755 /* No error, don't finish the state yet. */
3756 discard_cleanups (thread_state_chain);
3757
cd0fc7c3
SS
3758 do_cleanups (old_cleanups);
3759}
c906108c 3760
d3d4baed
PA
3761/* Cleanup that reinstalls the readline callback handler, if the
3762 target is running in the background. If while handling the target
3763 event something triggered a secondary prompt, like e.g., a
3764 pagination prompt, we'll have removed the callback handler (see
3765 gdb_readline_wrapper_line). Need to do this as we go back to the
3766 event loop, ready to process further input. Note this has no
3767 effect if the handler hasn't actually been removed, because calling
3768 rl_callback_handler_install resets the line buffer, thus losing
3769 input. */
3770
3771static void
3772reinstall_readline_callback_handler_cleanup (void *arg)
3773{
3b12939d
PA
3774 struct ui *ui = current_ui;
3775
3776 if (!ui->async)
6c400b59
PA
3777 {
3778 /* We're not going back to the top level event loop yet. Don't
3779 install the readline callback, as it'd prep the terminal,
3780 readline-style (raw, noecho) (e.g., --batch). We'll install
3781 it the next time the prompt is displayed, when we're ready
3782 for input. */
3783 return;
3784 }
3785
3b12939d 3786 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3787 gdb_rl_callback_handler_reinstall ();
3788}
3789
243a9253
PA
3790/* Clean up the FSMs of threads that are now stopped. In non-stop,
3791 that's just the event thread. In all-stop, that's all threads. */
3792
3793static void
3794clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3795{
3796 struct thread_info *thr = ecs->event_thread;
3797
3798 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3799 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3800
3801 if (!non_stop)
3802 {
3803 ALL_NON_EXITED_THREADS (thr)
3804 {
3805 if (thr->thread_fsm == NULL)
3806 continue;
3807 if (thr == ecs->event_thread)
3808 continue;
3809
3810 switch_to_thread (thr->ptid);
8980e177 3811 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3812 }
3813
3814 if (ecs->event_thread != NULL)
3815 switch_to_thread (ecs->event_thread->ptid);
3816 }
3817}
3818
3b12939d
PA
3819/* Helper for all_uis_check_sync_execution_done that works on the
3820 current UI. */
3821
3822static void
3823check_curr_ui_sync_execution_done (void)
3824{
3825 struct ui *ui = current_ui;
3826
3827 if (ui->prompt_state == PROMPT_NEEDED
3828 && ui->async
3829 && !gdb_in_secondary_prompt_p (ui))
3830 {
3831 target_terminal_ours ();
3832 observer_notify_sync_execution_done ();
3eb7562a 3833 ui_register_input_event_handler (ui);
3b12939d
PA
3834 }
3835}
3836
3837/* See infrun.h. */
3838
3839void
3840all_uis_check_sync_execution_done (void)
3841{
0e454242 3842 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3843 {
3844 check_curr_ui_sync_execution_done ();
3845 }
3846}
3847
a8836c93
PA
3848/* See infrun.h. */
3849
3850void
3851all_uis_on_sync_execution_starting (void)
3852{
0e454242 3853 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3854 {
3855 if (current_ui->prompt_state == PROMPT_NEEDED)
3856 async_disable_stdin ();
3857 }
3858}
3859
1777feb0 3860/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3861 event loop whenever a change of state is detected on the file
1777feb0
MS
3862 descriptor corresponding to the target. It can be called more than
3863 once to complete a single execution command. In such cases we need
3864 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3865 that this function is called for a single execution command, then
3866 report to the user that the inferior has stopped, and do the
1777feb0 3867 necessary cleanups. */
43ff13b4
JM
3868
3869void
fba45db2 3870fetch_inferior_event (void *client_data)
43ff13b4 3871{
0d1e5fa7 3872 struct execution_control_state ecss;
a474d7c2 3873 struct execution_control_state *ecs = &ecss;
4f8d22e3 3874 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3875 struct cleanup *ts_old_chain;
0f641c01 3876 int cmd_done = 0;
963f9c80 3877 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3878
0d1e5fa7
PA
3879 memset (ecs, 0, sizeof (*ecs));
3880
c61db772
PA
3881 /* Events are always processed with the main UI as current UI. This
3882 way, warnings, debug output, etc. are always consistently sent to
3883 the main console. */
4b6749b9 3884 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3885
d3d4baed
PA
3886 /* End up with readline processing input, if necessary. */
3887 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3888
c5187ac6
PA
3889 /* We're handling a live event, so make sure we're doing live
3890 debugging. If we're looking at traceframes while the target is
3891 running, we're going to need to get back to that mode after
3892 handling the event. */
3893 if (non_stop)
3894 {
3895 make_cleanup_restore_current_traceframe ();
e6e4e701 3896 set_current_traceframe (-1);
c5187ac6
PA
3897 }
3898
5ed8105e
PA
3899 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3900
4f8d22e3
PA
3901 if (non_stop)
3902 /* In non-stop mode, the user/frontend should not notice a thread
3903 switch due to internal events. Make sure we reverse to the
3904 user selected thread and frame after handling the event and
3905 running any breakpoint commands. */
5ed8105e 3906 maybe_restore_thread.emplace ();
4f8d22e3 3907
ec9499be 3908 overlay_cache_invalid = 1;
f15cb84a
YQ
3909 /* Flush target cache before starting to handle each event. Target
3910 was running and cache could be stale. This is just a heuristic.
3911 Running threads may modify target memory, but we don't get any
3912 event. */
3913 target_dcache_invalidate ();
3dd5b83d 3914
b7b633e9
TT
3915 scoped_restore save_exec_dir
3916 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3917
0b333c5e
PA
3918 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3919 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3920
f00150c9 3921 if (debug_infrun)
223698f8 3922 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3923
29f49a6a
PA
3924 /* If an error happens while handling the event, propagate GDB's
3925 knowledge of the executing state to the frontend/user running
3926 state. */
fbea99ea 3927 if (!target_is_non_stop_p ())
29f49a6a
PA
3928 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3929 else
3930 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3931
353d1d73
JK
3932 /* Get executed before make_cleanup_restore_current_thread above to apply
3933 still for the thread which has thrown the exception. */
3934 make_bpstat_clear_actions_cleanup ();
3935
7c16b83e
PA
3936 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3937
43ff13b4 3938 /* Now figure out what to do with the result of the result. */
a474d7c2 3939 handle_inferior_event (ecs);
43ff13b4 3940
a474d7c2 3941 if (!ecs->wait_some_more)
43ff13b4 3942 {
c9657e70 3943 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3944 int should_stop = 1;
3945 struct thread_info *thr = ecs->event_thread;
388a7084 3946 int should_notify_stop = 1;
d6b48e9c 3947
0cbcdb96 3948 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3949
243a9253
PA
3950 if (thr != NULL)
3951 {
3952 struct thread_fsm *thread_fsm = thr->thread_fsm;
3953
3954 if (thread_fsm != NULL)
8980e177 3955 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3956 }
3957
3958 if (!should_stop)
3959 {
3960 keep_going (ecs);
3961 }
c2d11a7d 3962 else
0f641c01 3963 {
243a9253
PA
3964 clean_up_just_stopped_threads_fsms (ecs);
3965
388a7084
PA
3966 if (thr != NULL && thr->thread_fsm != NULL)
3967 {
3968 should_notify_stop
3969 = thread_fsm_should_notify_stop (thr->thread_fsm);
3970 }
3971
3972 if (should_notify_stop)
3973 {
4c2f2a79
PA
3974 int proceeded = 0;
3975
388a7084
PA
3976 /* We may not find an inferior if this was a process exit. */
3977 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3978 proceeded = normal_stop ();
243a9253 3979
4c2f2a79
PA
3980 if (!proceeded)
3981 {
3982 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3983 cmd_done = 1;
3984 }
388a7084 3985 }
0f641c01 3986 }
43ff13b4 3987 }
4f8d22e3 3988
29f49a6a
PA
3989 /* No error, don't finish the thread states yet. */
3990 discard_cleanups (ts_old_chain);
3991
4f8d22e3
PA
3992 /* Revert thread and frame. */
3993 do_cleanups (old_chain);
3994
3b12939d
PA
3995 /* If a UI was in sync execution mode, and now isn't, restore its
3996 prompt (a synchronous execution command has finished, and we're
3997 ready for input). */
3998 all_uis_check_sync_execution_done ();
0f641c01
PA
3999
4000 if (cmd_done
0f641c01
PA
4001 && exec_done_display_p
4002 && (ptid_equal (inferior_ptid, null_ptid)
4003 || !is_running (inferior_ptid)))
4004 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4005}
4006
edb3359d
DJ
4007/* Record the frame and location we're currently stepping through. */
4008void
4009set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4010{
4011 struct thread_info *tp = inferior_thread ();
4012
16c381f0
JK
4013 tp->control.step_frame_id = get_frame_id (frame);
4014 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4015
4016 tp->current_symtab = sal.symtab;
4017 tp->current_line = sal.line;
4018}
4019
0d1e5fa7
PA
4020/* Clear context switchable stepping state. */
4021
4022void
4e1c45ea 4023init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4024{
7f5ef605 4025 tss->stepped_breakpoint = 0;
0d1e5fa7 4026 tss->stepping_over_breakpoint = 0;
963f9c80 4027 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4028 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4029}
4030
c32c64b7
DE
4031/* Set the cached copy of the last ptid/waitstatus. */
4032
6efcd9a8 4033void
c32c64b7
DE
4034set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4035{
4036 target_last_wait_ptid = ptid;
4037 target_last_waitstatus = status;
4038}
4039
e02bc4cc 4040/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4041 target_wait()/deprecated_target_wait_hook(). The data is actually
4042 cached by handle_inferior_event(), which gets called immediately
4043 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4044
4045void
488f131b 4046get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4047{
39f77062 4048 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4049 *status = target_last_waitstatus;
4050}
4051
ac264b3b
MS
4052void
4053nullify_last_target_wait_ptid (void)
4054{
4055 target_last_wait_ptid = minus_one_ptid;
4056}
4057
dcf4fbde 4058/* Switch thread contexts. */
dd80620e
MS
4059
4060static void
0d1e5fa7 4061context_switch (ptid_t ptid)
dd80620e 4062{
4b51d87b 4063 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4064 {
4065 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4066 target_pid_to_str (inferior_ptid));
4067 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4068 target_pid_to_str (ptid));
fd48f117
DJ
4069 }
4070
0d1e5fa7 4071 switch_to_thread (ptid);
dd80620e
MS
4072}
4073
d8dd4d5f
PA
4074/* If the target can't tell whether we've hit breakpoints
4075 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4076 check whether that could have been caused by a breakpoint. If so,
4077 adjust the PC, per gdbarch_decr_pc_after_break. */
4078
4fa8626c 4079static void
d8dd4d5f
PA
4080adjust_pc_after_break (struct thread_info *thread,
4081 struct target_waitstatus *ws)
4fa8626c 4082{
24a73cce
UW
4083 struct regcache *regcache;
4084 struct gdbarch *gdbarch;
6c95b8df 4085 struct address_space *aspace;
118e6252 4086 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4087
4fa8626c
DJ
4088 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4089 we aren't, just return.
9709f61c
DJ
4090
4091 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4092 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4093 implemented by software breakpoints should be handled through the normal
4094 breakpoint layer.
8fb3e588 4095
4fa8626c
DJ
4096 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4097 different signals (SIGILL or SIGEMT for instance), but it is less
4098 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4099 gdbarch_decr_pc_after_break. I don't know any specific target that
4100 generates these signals at breakpoints (the code has been in GDB since at
4101 least 1992) so I can not guess how to handle them here.
8fb3e588 4102
e6cf7916
UW
4103 In earlier versions of GDB, a target with
4104 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4105 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4106 target with both of these set in GDB history, and it seems unlikely to be
4107 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4108
d8dd4d5f 4109 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4110 return;
4111
d8dd4d5f 4112 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4113 return;
4114
4058b839
PA
4115 /* In reverse execution, when a breakpoint is hit, the instruction
4116 under it has already been de-executed. The reported PC always
4117 points at the breakpoint address, so adjusting it further would
4118 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4119 architecture:
4120
4121 B1 0x08000000 : INSN1
4122 B2 0x08000001 : INSN2
4123 0x08000002 : INSN3
4124 PC -> 0x08000003 : INSN4
4125
4126 Say you're stopped at 0x08000003 as above. Reverse continuing
4127 from that point should hit B2 as below. Reading the PC when the
4128 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4129 been de-executed already.
4130
4131 B1 0x08000000 : INSN1
4132 B2 PC -> 0x08000001 : INSN2
4133 0x08000002 : INSN3
4134 0x08000003 : INSN4
4135
4136 We can't apply the same logic as for forward execution, because
4137 we would wrongly adjust the PC to 0x08000000, since there's a
4138 breakpoint at PC - 1. We'd then report a hit on B1, although
4139 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4140 behaviour. */
4141 if (execution_direction == EXEC_REVERSE)
4142 return;
4143
1cf4d951
PA
4144 /* If the target can tell whether the thread hit a SW breakpoint,
4145 trust it. Targets that can tell also adjust the PC
4146 themselves. */
4147 if (target_supports_stopped_by_sw_breakpoint ())
4148 return;
4149
4150 /* Note that relying on whether a breakpoint is planted in memory to
4151 determine this can fail. E.g,. the breakpoint could have been
4152 removed since. Or the thread could have been told to step an
4153 instruction the size of a breakpoint instruction, and only
4154 _after_ was a breakpoint inserted at its address. */
4155
24a73cce
UW
4156 /* If this target does not decrement the PC after breakpoints, then
4157 we have nothing to do. */
d8dd4d5f 4158 regcache = get_thread_regcache (thread->ptid);
24a73cce 4159 gdbarch = get_regcache_arch (regcache);
118e6252 4160
527a273a 4161 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4162 if (decr_pc == 0)
24a73cce
UW
4163 return;
4164
6c95b8df
PA
4165 aspace = get_regcache_aspace (regcache);
4166
8aad930b
AC
4167 /* Find the location where (if we've hit a breakpoint) the
4168 breakpoint would be. */
118e6252 4169 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4170
1cf4d951
PA
4171 /* If the target can't tell whether a software breakpoint triggered,
4172 fallback to figuring it out based on breakpoints we think were
4173 inserted in the target, and on whether the thread was stepped or
4174 continued. */
4175
1c5cfe86
PA
4176 /* Check whether there actually is a software breakpoint inserted at
4177 that location.
4178
4179 If in non-stop mode, a race condition is possible where we've
4180 removed a breakpoint, but stop events for that breakpoint were
4181 already queued and arrive later. To suppress those spurious
4182 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4183 and retire them after a number of stop events are reported. Note
4184 this is an heuristic and can thus get confused. The real fix is
4185 to get the "stopped by SW BP and needs adjustment" info out of
4186 the target/kernel (and thus never reach here; see above). */
6c95b8df 4187 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4188 || (target_is_non_stop_p ()
4189 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4190 {
77f9e713 4191 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4192
8213266a 4193 if (record_full_is_used ())
77f9e713 4194 record_full_gdb_operation_disable_set ();
96429cc8 4195
1c0fdd0e
UW
4196 /* When using hardware single-step, a SIGTRAP is reported for both
4197 a completed single-step and a software breakpoint. Need to
4198 differentiate between the two, as the latter needs adjusting
4199 but the former does not.
4200
4201 The SIGTRAP can be due to a completed hardware single-step only if
4202 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4203 - this thread is currently being stepped
4204
4205 If any of these events did not occur, we must have stopped due
4206 to hitting a software breakpoint, and have to back up to the
4207 breakpoint address.
4208
4209 As a special case, we could have hardware single-stepped a
4210 software breakpoint. In this case (prev_pc == breakpoint_pc),
4211 we also need to back up to the breakpoint address. */
4212
d8dd4d5f
PA
4213 if (thread_has_single_step_breakpoints_set (thread)
4214 || !currently_stepping (thread)
4215 || (thread->stepped_breakpoint
4216 && thread->prev_pc == breakpoint_pc))
515630c5 4217 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4218
77f9e713 4219 do_cleanups (old_cleanups);
8aad930b 4220 }
4fa8626c
DJ
4221}
4222
edb3359d
DJ
4223static int
4224stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4225{
4226 for (frame = get_prev_frame (frame);
4227 frame != NULL;
4228 frame = get_prev_frame (frame))
4229 {
4230 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4231 return 1;
4232 if (get_frame_type (frame) != INLINE_FRAME)
4233 break;
4234 }
4235
4236 return 0;
4237}
4238
c65d6b55
PA
4239/* If the event thread has the stop requested flag set, pretend it
4240 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4241 target_stop). */
4242
4243static bool
4244handle_stop_requested (struct execution_control_state *ecs)
4245{
4246 if (ecs->event_thread->stop_requested)
4247 {
4248 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4249 ecs->ws.value.sig = GDB_SIGNAL_0;
4250 handle_signal_stop (ecs);
4251 return true;
4252 }
4253 return false;
4254}
4255
a96d9b2e
SDJ
4256/* Auxiliary function that handles syscall entry/return events.
4257 It returns 1 if the inferior should keep going (and GDB
4258 should ignore the event), or 0 if the event deserves to be
4259 processed. */
ca2163eb 4260
a96d9b2e 4261static int
ca2163eb 4262handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4263{
ca2163eb 4264 struct regcache *regcache;
ca2163eb
PA
4265 int syscall_number;
4266
4267 if (!ptid_equal (ecs->ptid, inferior_ptid))
4268 context_switch (ecs->ptid);
4269
4270 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4271 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4272 stop_pc = regcache_read_pc (regcache);
4273
a96d9b2e
SDJ
4274 if (catch_syscall_enabled () > 0
4275 && catching_syscall_number (syscall_number) > 0)
4276 {
4277 if (debug_infrun)
4278 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4279 syscall_number);
a96d9b2e 4280
16c381f0 4281 ecs->event_thread->control.stop_bpstat
6c95b8df 4282 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4283 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4284
c65d6b55
PA
4285 if (handle_stop_requested (ecs))
4286 return 0;
4287
ce12b012 4288 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4289 {
4290 /* Catchpoint hit. */
ca2163eb
PA
4291 return 0;
4292 }
a96d9b2e 4293 }
ca2163eb 4294
c65d6b55
PA
4295 if (handle_stop_requested (ecs))
4296 return 0;
4297
ca2163eb 4298 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4299 keep_going (ecs);
4300 return 1;
a96d9b2e
SDJ
4301}
4302
7e324e48
GB
4303/* Lazily fill in the execution_control_state's stop_func_* fields. */
4304
4305static void
4306fill_in_stop_func (struct gdbarch *gdbarch,
4307 struct execution_control_state *ecs)
4308{
4309 if (!ecs->stop_func_filled_in)
4310 {
4311 /* Don't care about return value; stop_func_start and stop_func_name
4312 will both be 0 if it doesn't work. */
4313 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4314 &ecs->stop_func_start, &ecs->stop_func_end);
4315 ecs->stop_func_start
4316 += gdbarch_deprecated_function_start_offset (gdbarch);
4317
591a12a1
UW
4318 if (gdbarch_skip_entrypoint_p (gdbarch))
4319 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4320 ecs->stop_func_start);
4321
7e324e48
GB
4322 ecs->stop_func_filled_in = 1;
4323 }
4324}
4325
4f5d7f63
PA
4326
4327/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4328
4329static enum stop_kind
4330get_inferior_stop_soon (ptid_t ptid)
4331{
c9657e70 4332 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4333
4334 gdb_assert (inf != NULL);
4335 return inf->control.stop_soon;
4336}
4337
372316f1
PA
4338/* Wait for one event. Store the resulting waitstatus in WS, and
4339 return the event ptid. */
4340
4341static ptid_t
4342wait_one (struct target_waitstatus *ws)
4343{
4344 ptid_t event_ptid;
4345 ptid_t wait_ptid = minus_one_ptid;
4346
4347 overlay_cache_invalid = 1;
4348
4349 /* Flush target cache before starting to handle each event.
4350 Target was running and cache could be stale. This is just a
4351 heuristic. Running threads may modify target memory, but we
4352 don't get any event. */
4353 target_dcache_invalidate ();
4354
4355 if (deprecated_target_wait_hook)
4356 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4357 else
4358 event_ptid = target_wait (wait_ptid, ws, 0);
4359
4360 if (debug_infrun)
4361 print_target_wait_results (wait_ptid, event_ptid, ws);
4362
4363 return event_ptid;
4364}
4365
4366/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4367 instead of the current thread. */
4368#define THREAD_STOPPED_BY(REASON) \
4369static int \
4370thread_stopped_by_ ## REASON (ptid_t ptid) \
4371{ \
4372 struct cleanup *old_chain; \
4373 int res; \
4374 \
4375 old_chain = save_inferior_ptid (); \
4376 inferior_ptid = ptid; \
4377 \
4378 res = target_stopped_by_ ## REASON (); \
4379 \
4380 do_cleanups (old_chain); \
4381 \
4382 return res; \
4383}
4384
4385/* Generate thread_stopped_by_watchpoint. */
4386THREAD_STOPPED_BY (watchpoint)
4387/* Generate thread_stopped_by_sw_breakpoint. */
4388THREAD_STOPPED_BY (sw_breakpoint)
4389/* Generate thread_stopped_by_hw_breakpoint. */
4390THREAD_STOPPED_BY (hw_breakpoint)
4391
4392/* Cleanups that switches to the PTID pointed at by PTID_P. */
4393
4394static void
4395switch_to_thread_cleanup (void *ptid_p)
4396{
4397 ptid_t ptid = *(ptid_t *) ptid_p;
4398
4399 switch_to_thread (ptid);
4400}
4401
4402/* Save the thread's event and stop reason to process it later. */
4403
4404static void
4405save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4406{
4407 struct regcache *regcache;
4408 struct address_space *aspace;
4409
4410 if (debug_infrun)
4411 {
4412 char *statstr;
4413
4414 statstr = target_waitstatus_to_string (ws);
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: saving status %s for %d.%ld.%ld\n",
4417 statstr,
4418 ptid_get_pid (tp->ptid),
4419 ptid_get_lwp (tp->ptid),
4420 ptid_get_tid (tp->ptid));
4421 xfree (statstr);
4422 }
4423
4424 /* Record for later. */
4425 tp->suspend.waitstatus = *ws;
4426 tp->suspend.waitstatus_pending_p = 1;
4427
4428 regcache = get_thread_regcache (tp->ptid);
4429 aspace = get_regcache_aspace (regcache);
4430
4431 if (ws->kind == TARGET_WAITKIND_STOPPED
4432 && ws->value.sig == GDB_SIGNAL_TRAP)
4433 {
4434 CORE_ADDR pc = regcache_read_pc (regcache);
4435
4436 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4437
4438 if (thread_stopped_by_watchpoint (tp->ptid))
4439 {
4440 tp->suspend.stop_reason
4441 = TARGET_STOPPED_BY_WATCHPOINT;
4442 }
4443 else if (target_supports_stopped_by_sw_breakpoint ()
4444 && thread_stopped_by_sw_breakpoint (tp->ptid))
4445 {
4446 tp->suspend.stop_reason
4447 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4448 }
4449 else if (target_supports_stopped_by_hw_breakpoint ()
4450 && thread_stopped_by_hw_breakpoint (tp->ptid))
4451 {
4452 tp->suspend.stop_reason
4453 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4454 }
4455 else if (!target_supports_stopped_by_hw_breakpoint ()
4456 && hardware_breakpoint_inserted_here_p (aspace,
4457 pc))
4458 {
4459 tp->suspend.stop_reason
4460 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4461 }
4462 else if (!target_supports_stopped_by_sw_breakpoint ()
4463 && software_breakpoint_inserted_here_p (aspace,
4464 pc))
4465 {
4466 tp->suspend.stop_reason
4467 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4468 }
4469 else if (!thread_has_single_step_breakpoints_set (tp)
4470 && currently_stepping (tp))
4471 {
4472 tp->suspend.stop_reason
4473 = TARGET_STOPPED_BY_SINGLE_STEP;
4474 }
4475 }
4476}
4477
65706a29
PA
4478/* A cleanup that disables thread create/exit events. */
4479
4480static void
4481disable_thread_events (void *arg)
4482{
4483 target_thread_events (0);
4484}
4485
6efcd9a8 4486/* See infrun.h. */
372316f1 4487
6efcd9a8 4488void
372316f1
PA
4489stop_all_threads (void)
4490{
4491 /* We may need multiple passes to discover all threads. */
4492 int pass;
4493 int iterations = 0;
4494 ptid_t entry_ptid;
4495 struct cleanup *old_chain;
4496
fbea99ea 4497 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4498
4499 if (debug_infrun)
4500 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4501
4502 entry_ptid = inferior_ptid;
4503 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4504
65706a29
PA
4505 target_thread_events (1);
4506 make_cleanup (disable_thread_events, NULL);
4507
372316f1
PA
4508 /* Request threads to stop, and then wait for the stops. Because
4509 threads we already know about can spawn more threads while we're
4510 trying to stop them, and we only learn about new threads when we
4511 update the thread list, do this in a loop, and keep iterating
4512 until two passes find no threads that need to be stopped. */
4513 for (pass = 0; pass < 2; pass++, iterations++)
4514 {
4515 if (debug_infrun)
4516 fprintf_unfiltered (gdb_stdlog,
4517 "infrun: stop_all_threads, pass=%d, "
4518 "iterations=%d\n", pass, iterations);
4519 while (1)
4520 {
4521 ptid_t event_ptid;
4522 struct target_waitstatus ws;
4523 int need_wait = 0;
4524 struct thread_info *t;
4525
4526 update_thread_list ();
4527
4528 /* Go through all threads looking for threads that we need
4529 to tell the target to stop. */
4530 ALL_NON_EXITED_THREADS (t)
4531 {
4532 if (t->executing)
4533 {
4534 /* If already stopping, don't request a stop again.
4535 We just haven't seen the notification yet. */
4536 if (!t->stop_requested)
4537 {
4538 if (debug_infrun)
4539 fprintf_unfiltered (gdb_stdlog,
4540 "infrun: %s executing, "
4541 "need stop\n",
4542 target_pid_to_str (t->ptid));
4543 target_stop (t->ptid);
4544 t->stop_requested = 1;
4545 }
4546 else
4547 {
4548 if (debug_infrun)
4549 fprintf_unfiltered (gdb_stdlog,
4550 "infrun: %s executing, "
4551 "already stopping\n",
4552 target_pid_to_str (t->ptid));
4553 }
4554
4555 if (t->stop_requested)
4556 need_wait = 1;
4557 }
4558 else
4559 {
4560 if (debug_infrun)
4561 fprintf_unfiltered (gdb_stdlog,
4562 "infrun: %s not executing\n",
4563 target_pid_to_str (t->ptid));
4564
4565 /* The thread may be not executing, but still be
4566 resumed with a pending status to process. */
4567 t->resumed = 0;
4568 }
4569 }
4570
4571 if (!need_wait)
4572 break;
4573
4574 /* If we find new threads on the second iteration, restart
4575 over. We want to see two iterations in a row with all
4576 threads stopped. */
4577 if (pass > 0)
4578 pass = -1;
4579
4580 event_ptid = wait_one (&ws);
4581 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4582 {
4583 /* All resumed threads exited. */
4584 }
65706a29
PA
4585 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4586 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4587 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4588 {
4589 if (debug_infrun)
4590 {
4591 ptid_t ptid = pid_to_ptid (ws.value.integer);
4592
4593 fprintf_unfiltered (gdb_stdlog,
4594 "infrun: %s exited while "
4595 "stopping threads\n",
4596 target_pid_to_str (ptid));
4597 }
4598 }
4599 else
4600 {
6efcd9a8
PA
4601 struct inferior *inf;
4602
372316f1
PA
4603 t = find_thread_ptid (event_ptid);
4604 if (t == NULL)
4605 t = add_thread (event_ptid);
4606
4607 t->stop_requested = 0;
4608 t->executing = 0;
4609 t->resumed = 0;
4610 t->control.may_range_step = 0;
4611
6efcd9a8
PA
4612 /* This may be the first time we see the inferior report
4613 a stop. */
4614 inf = find_inferior_ptid (event_ptid);
4615 if (inf->needs_setup)
4616 {
4617 switch_to_thread_no_regs (t);
4618 setup_inferior (0);
4619 }
4620
372316f1
PA
4621 if (ws.kind == TARGET_WAITKIND_STOPPED
4622 && ws.value.sig == GDB_SIGNAL_0)
4623 {
4624 /* We caught the event that we intended to catch, so
4625 there's no event pending. */
4626 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4627 t->suspend.waitstatus_pending_p = 0;
4628
4629 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4630 {
4631 /* Add it back to the step-over queue. */
4632 if (debug_infrun)
4633 {
4634 fprintf_unfiltered (gdb_stdlog,
4635 "infrun: displaced-step of %s "
4636 "canceled: adding back to the "
4637 "step-over queue\n",
4638 target_pid_to_str (t->ptid));
4639 }
4640 t->control.trap_expected = 0;
4641 thread_step_over_chain_enqueue (t);
4642 }
4643 }
4644 else
4645 {
4646 enum gdb_signal sig;
4647 struct regcache *regcache;
372316f1
PA
4648
4649 if (debug_infrun)
4650 {
4651 char *statstr;
4652
4653 statstr = target_waitstatus_to_string (&ws);
4654 fprintf_unfiltered (gdb_stdlog,
4655 "infrun: target_wait %s, saving "
4656 "status for %d.%ld.%ld\n",
4657 statstr,
4658 ptid_get_pid (t->ptid),
4659 ptid_get_lwp (t->ptid),
4660 ptid_get_tid (t->ptid));
4661 xfree (statstr);
4662 }
4663
4664 /* Record for later. */
4665 save_waitstatus (t, &ws);
4666
4667 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4668 ? ws.value.sig : GDB_SIGNAL_0);
4669
4670 if (displaced_step_fixup (t->ptid, sig) < 0)
4671 {
4672 /* Add it back to the step-over queue. */
4673 t->control.trap_expected = 0;
4674 thread_step_over_chain_enqueue (t);
4675 }
4676
4677 regcache = get_thread_regcache (t->ptid);
4678 t->suspend.stop_pc = regcache_read_pc (regcache);
4679
4680 if (debug_infrun)
4681 {
4682 fprintf_unfiltered (gdb_stdlog,
4683 "infrun: saved stop_pc=%s for %s "
4684 "(currently_stepping=%d)\n",
4685 paddress (target_gdbarch (),
4686 t->suspend.stop_pc),
4687 target_pid_to_str (t->ptid),
4688 currently_stepping (t));
4689 }
4690 }
4691 }
4692 }
4693 }
4694
4695 do_cleanups (old_chain);
4696
4697 if (debug_infrun)
4698 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4699}
4700
f4836ba9
PA
4701/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4702
4703static int
4704handle_no_resumed (struct execution_control_state *ecs)
4705{
4706 struct inferior *inf;
4707 struct thread_info *thread;
4708
3b12939d 4709 if (target_can_async_p ())
f4836ba9 4710 {
3b12939d
PA
4711 struct ui *ui;
4712 int any_sync = 0;
f4836ba9 4713
3b12939d
PA
4714 ALL_UIS (ui)
4715 {
4716 if (ui->prompt_state == PROMPT_BLOCKED)
4717 {
4718 any_sync = 1;
4719 break;
4720 }
4721 }
4722 if (!any_sync)
4723 {
4724 /* There were no unwaited-for children left in the target, but,
4725 we're not synchronously waiting for events either. Just
4726 ignore. */
4727
4728 if (debug_infrun)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "infrun: TARGET_WAITKIND_NO_RESUMED "
4731 "(ignoring: bg)\n");
4732 prepare_to_wait (ecs);
4733 return 1;
4734 }
f4836ba9
PA
4735 }
4736
4737 /* Otherwise, if we were running a synchronous execution command, we
4738 may need to cancel it and give the user back the terminal.
4739
4740 In non-stop mode, the target can't tell whether we've already
4741 consumed previous stop events, so it can end up sending us a
4742 no-resumed event like so:
4743
4744 #0 - thread 1 is left stopped
4745
4746 #1 - thread 2 is resumed and hits breakpoint
4747 -> TARGET_WAITKIND_STOPPED
4748
4749 #2 - thread 3 is resumed and exits
4750 this is the last resumed thread, so
4751 -> TARGET_WAITKIND_NO_RESUMED
4752
4753 #3 - gdb processes stop for thread 2 and decides to re-resume
4754 it.
4755
4756 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4757 thread 2 is now resumed, so the event should be ignored.
4758
4759 IOW, if the stop for thread 2 doesn't end a foreground command,
4760 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4761 event. But it could be that the event meant that thread 2 itself
4762 (or whatever other thread was the last resumed thread) exited.
4763
4764 To address this we refresh the thread list and check whether we
4765 have resumed threads _now_. In the example above, this removes
4766 thread 3 from the thread list. If thread 2 was re-resumed, we
4767 ignore this event. If we find no thread resumed, then we cancel
4768 the synchronous command show "no unwaited-for " to the user. */
4769 update_thread_list ();
4770
4771 ALL_NON_EXITED_THREADS (thread)
4772 {
4773 if (thread->executing
4774 || thread->suspend.waitstatus_pending_p)
4775 {
4776 /* There were no unwaited-for children left in the target at
4777 some point, but there are now. Just ignore. */
4778 if (debug_infrun)
4779 fprintf_unfiltered (gdb_stdlog,
4780 "infrun: TARGET_WAITKIND_NO_RESUMED "
4781 "(ignoring: found resumed)\n");
4782 prepare_to_wait (ecs);
4783 return 1;
4784 }
4785 }
4786
4787 /* Note however that we may find no resumed thread because the whole
4788 process exited meanwhile (thus updating the thread list results
4789 in an empty thread list). In this case we know we'll be getting
4790 a process exit event shortly. */
4791 ALL_INFERIORS (inf)
4792 {
4793 if (inf->pid == 0)
4794 continue;
4795
4796 thread = any_live_thread_of_process (inf->pid);
4797 if (thread == NULL)
4798 {
4799 if (debug_infrun)
4800 fprintf_unfiltered (gdb_stdlog,
4801 "infrun: TARGET_WAITKIND_NO_RESUMED "
4802 "(expect process exit)\n");
4803 prepare_to_wait (ecs);
4804 return 1;
4805 }
4806 }
4807
4808 /* Go ahead and report the event. */
4809 return 0;
4810}
4811
05ba8510
PA
4812/* Given an execution control state that has been freshly filled in by
4813 an event from the inferior, figure out what it means and take
4814 appropriate action.
4815
4816 The alternatives are:
4817
22bcd14b 4818 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4819 debugger.
4820
4821 2) keep_going and return; to wait for the next event (set
4822 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4823 once). */
c906108c 4824
ec9499be 4825static void
0b6e5e10 4826handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4827{
d6b48e9c
PA
4828 enum stop_kind stop_soon;
4829
28736962
PA
4830 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4831 {
4832 /* We had an event in the inferior, but we are not interested in
4833 handling it at this level. The lower layers have already
4834 done what needs to be done, if anything.
4835
4836 One of the possible circumstances for this is when the
4837 inferior produces output for the console. The inferior has
4838 not stopped, and we are ignoring the event. Another possible
4839 circumstance is any event which the lower level knows will be
4840 reported multiple times without an intervening resume. */
4841 if (debug_infrun)
4842 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4843 prepare_to_wait (ecs);
4844 return;
4845 }
4846
65706a29
PA
4847 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4848 {
4849 if (debug_infrun)
4850 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4851 prepare_to_wait (ecs);
4852 return;
4853 }
4854
0e5bf2a8 4855 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4856 && handle_no_resumed (ecs))
4857 return;
0e5bf2a8 4858
1777feb0 4859 /* Cache the last pid/waitstatus. */
c32c64b7 4860 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4861
ca005067 4862 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4863 stop_stack_dummy = STOP_NONE;
ca005067 4864
0e5bf2a8
PA
4865 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4866 {
4867 /* No unwaited-for children left. IOW, all resumed children
4868 have exited. */
4869 if (debug_infrun)
4870 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4871
4872 stop_print_frame = 0;
22bcd14b 4873 stop_waiting (ecs);
0e5bf2a8
PA
4874 return;
4875 }
4876
8c90c137 4877 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4878 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4879 {
4880 ecs->event_thread = find_thread_ptid (ecs->ptid);
4881 /* If it's a new thread, add it to the thread database. */
4882 if (ecs->event_thread == NULL)
4883 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4884
4885 /* Disable range stepping. If the next step request could use a
4886 range, this will be end up re-enabled then. */
4887 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4888 }
88ed393a
JK
4889
4890 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4891 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4892
4893 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4894 reinit_frame_cache ();
4895
28736962
PA
4896 breakpoint_retire_moribund ();
4897
2b009048
DJ
4898 /* First, distinguish signals caused by the debugger from signals
4899 that have to do with the program's own actions. Note that
4900 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4901 on the operating system version. Here we detect when a SIGILL or
4902 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4903 something similar for SIGSEGV, since a SIGSEGV will be generated
4904 when we're trying to execute a breakpoint instruction on a
4905 non-executable stack. This happens for call dummy breakpoints
4906 for architectures like SPARC that place call dummies on the
4907 stack. */
2b009048 4908 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4909 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4910 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4911 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4912 {
de0a0249
UW
4913 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4914
4915 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4916 regcache_read_pc (regcache)))
4917 {
4918 if (debug_infrun)
4919 fprintf_unfiltered (gdb_stdlog,
4920 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4921 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4922 }
2b009048
DJ
4923 }
4924
28736962
PA
4925 /* Mark the non-executing threads accordingly. In all-stop, all
4926 threads of all processes are stopped when we get any event
e1316e60 4927 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4928 {
4929 ptid_t mark_ptid;
4930
fbea99ea 4931 if (!target_is_non_stop_p ())
372316f1
PA
4932 mark_ptid = minus_one_ptid;
4933 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4934 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4935 {
4936 /* If we're handling a process exit in non-stop mode, even
4937 though threads haven't been deleted yet, one would think
4938 that there is nothing to do, as threads of the dead process
4939 will be soon deleted, and threads of any other process were
4940 left running. However, on some targets, threads survive a
4941 process exit event. E.g., for the "checkpoint" command,
4942 when the current checkpoint/fork exits, linux-fork.c
4943 automatically switches to another fork from within
4944 target_mourn_inferior, by associating the same
4945 inferior/thread to another fork. We haven't mourned yet at
4946 this point, but we must mark any threads left in the
4947 process as not-executing so that finish_thread_state marks
4948 them stopped (in the user's perspective) if/when we present
4949 the stop to the user. */
4950 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4951 }
4952 else
4953 mark_ptid = ecs->ptid;
4954
4955 set_executing (mark_ptid, 0);
4956
4957 /* Likewise the resumed flag. */
4958 set_resumed (mark_ptid, 0);
4959 }
8c90c137 4960
488f131b
JB
4961 switch (ecs->ws.kind)
4962 {
4963 case TARGET_WAITKIND_LOADED:
527159b7 4964 if (debug_infrun)
8a9de0e4 4965 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4966 if (!ptid_equal (ecs->ptid, inferior_ptid))
4967 context_switch (ecs->ptid);
b0f4b84b
DJ
4968 /* Ignore gracefully during startup of the inferior, as it might
4969 be the shell which has just loaded some objects, otherwise
4970 add the symbols for the newly loaded objects. Also ignore at
4971 the beginning of an attach or remote session; we will query
4972 the full list of libraries once the connection is
4973 established. */
4f5d7f63
PA
4974
4975 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4976 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4977 {
edcc5120
TT
4978 struct regcache *regcache;
4979
edcc5120
TT
4980 regcache = get_thread_regcache (ecs->ptid);
4981
4982 handle_solib_event ();
4983
4984 ecs->event_thread->control.stop_bpstat
4985 = bpstat_stop_status (get_regcache_aspace (regcache),
4986 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4987
c65d6b55
PA
4988 if (handle_stop_requested (ecs))
4989 return;
4990
ce12b012 4991 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4992 {
4993 /* A catchpoint triggered. */
94c57d6a
PA
4994 process_event_stop_test (ecs);
4995 return;
edcc5120 4996 }
488f131b 4997
b0f4b84b
DJ
4998 /* If requested, stop when the dynamic linker notifies
4999 gdb of events. This allows the user to get control
5000 and place breakpoints in initializer routines for
5001 dynamically loaded objects (among other things). */
a493e3e2 5002 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5003 if (stop_on_solib_events)
5004 {
55409f9d
DJ
5005 /* Make sure we print "Stopped due to solib-event" in
5006 normal_stop. */
5007 stop_print_frame = 1;
5008
22bcd14b 5009 stop_waiting (ecs);
b0f4b84b
DJ
5010 return;
5011 }
488f131b 5012 }
b0f4b84b
DJ
5013
5014 /* If we are skipping through a shell, or through shared library
5015 loading that we aren't interested in, resume the program. If
5c09a2c5 5016 we're running the program normally, also resume. */
b0f4b84b
DJ
5017 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5018 {
74960c60
VP
5019 /* Loading of shared libraries might have changed breakpoint
5020 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5021 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5022 insert_breakpoints ();
64ce06e4 5023 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5024 prepare_to_wait (ecs);
5025 return;
5026 }
5027
5c09a2c5
PA
5028 /* But stop if we're attaching or setting up a remote
5029 connection. */
5030 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5031 || stop_soon == STOP_QUIETLY_REMOTE)
5032 {
5033 if (debug_infrun)
5034 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5035 stop_waiting (ecs);
5c09a2c5
PA
5036 return;
5037 }
5038
5039 internal_error (__FILE__, __LINE__,
5040 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5041
488f131b 5042 case TARGET_WAITKIND_SPURIOUS:
527159b7 5043 if (debug_infrun)
8a9de0e4 5044 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5045 if (handle_stop_requested (ecs))
5046 return;
64776a0b 5047 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5048 context_switch (ecs->ptid);
64ce06e4 5049 resume (GDB_SIGNAL_0);
488f131b
JB
5050 prepare_to_wait (ecs);
5051 return;
c5aa993b 5052
65706a29
PA
5053 case TARGET_WAITKIND_THREAD_CREATED:
5054 if (debug_infrun)
5055 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5056 if (handle_stop_requested (ecs))
5057 return;
65706a29
PA
5058 if (!ptid_equal (ecs->ptid, inferior_ptid))
5059 context_switch (ecs->ptid);
5060 if (!switch_back_to_stepped_thread (ecs))
5061 keep_going (ecs);
5062 return;
5063
488f131b 5064 case TARGET_WAITKIND_EXITED:
940c3c06 5065 case TARGET_WAITKIND_SIGNALLED:
527159b7 5066 if (debug_infrun)
940c3c06
PA
5067 {
5068 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5069 fprintf_unfiltered (gdb_stdlog,
5070 "infrun: TARGET_WAITKIND_EXITED\n");
5071 else
5072 fprintf_unfiltered (gdb_stdlog,
5073 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5074 }
5075
fb66883a 5076 inferior_ptid = ecs->ptid;
c9657e70 5077 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5078 set_current_program_space (current_inferior ()->pspace);
5079 handle_vfork_child_exec_or_exit (0);
1777feb0 5080 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5081
0c557179
SDJ
5082 /* Clearing any previous state of convenience variables. */
5083 clear_exit_convenience_vars ();
5084
940c3c06
PA
5085 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5086 {
5087 /* Record the exit code in the convenience variable $_exitcode, so
5088 that the user can inspect this again later. */
5089 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5090 (LONGEST) ecs->ws.value.integer);
5091
5092 /* Also record this in the inferior itself. */
5093 current_inferior ()->has_exit_code = 1;
5094 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5095
98eb56a4
PA
5096 /* Support the --return-child-result option. */
5097 return_child_result_value = ecs->ws.value.integer;
5098
fd664c91 5099 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5100 }
5101 else
0c557179
SDJ
5102 {
5103 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5104 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5105
5106 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5107 {
5108 /* Set the value of the internal variable $_exitsignal,
5109 which holds the signal uncaught by the inferior. */
5110 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5111 gdbarch_gdb_signal_to_target (gdbarch,
5112 ecs->ws.value.sig));
5113 }
5114 else
5115 {
5116 /* We don't have access to the target's method used for
5117 converting between signal numbers (GDB's internal
5118 representation <-> target's representation).
5119 Therefore, we cannot do a good job at displaying this
5120 information to the user. It's better to just warn
5121 her about it (if infrun debugging is enabled), and
5122 give up. */
5123 if (debug_infrun)
5124 fprintf_filtered (gdb_stdlog, _("\
5125Cannot fill $_exitsignal with the correct signal number.\n"));
5126 }
5127
fd664c91 5128 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5129 }
8cf64490 5130
488f131b 5131 gdb_flush (gdb_stdout);
bc1e6c81 5132 target_mourn_inferior (inferior_ptid);
488f131b 5133 stop_print_frame = 0;
22bcd14b 5134 stop_waiting (ecs);
488f131b 5135 return;
c5aa993b 5136
488f131b 5137 /* The following are the only cases in which we keep going;
1777feb0 5138 the above cases end in a continue or goto. */
488f131b 5139 case TARGET_WAITKIND_FORKED:
deb3b17b 5140 case TARGET_WAITKIND_VFORKED:
527159b7 5141 if (debug_infrun)
fed708ed
PA
5142 {
5143 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5144 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5145 else
5146 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5147 }
c906108c 5148
e2d96639
YQ
5149 /* Check whether the inferior is displaced stepping. */
5150 {
5151 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5153
5154 /* If checking displaced stepping is supported, and thread
5155 ecs->ptid is displaced stepping. */
c0987663 5156 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5157 {
5158 struct inferior *parent_inf
c9657e70 5159 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5160 struct regcache *child_regcache;
5161 CORE_ADDR parent_pc;
5162
5163 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5164 indicating that the displaced stepping of syscall instruction
5165 has been done. Perform cleanup for parent process here. Note
5166 that this operation also cleans up the child process for vfork,
5167 because their pages are shared. */
a493e3e2 5168 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5169 /* Start a new step-over in another thread if there's one
5170 that needs it. */
5171 start_step_over ();
e2d96639
YQ
5172
5173 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5174 {
c0987663
YQ
5175 struct displaced_step_inferior_state *displaced
5176 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5177
e2d96639
YQ
5178 /* Restore scratch pad for child process. */
5179 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5180 }
5181
5182 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5183 the child's PC is also within the scratchpad. Set the child's PC
5184 to the parent's PC value, which has already been fixed up.
5185 FIXME: we use the parent's aspace here, although we're touching
5186 the child, because the child hasn't been added to the inferior
5187 list yet at this point. */
5188
5189 child_regcache
5190 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5191 gdbarch,
5192 parent_inf->aspace);
5193 /* Read PC value of parent process. */
5194 parent_pc = regcache_read_pc (regcache);
5195
5196 if (debug_displaced)
5197 fprintf_unfiltered (gdb_stdlog,
5198 "displaced: write child pc from %s to %s\n",
5199 paddress (gdbarch,
5200 regcache_read_pc (child_regcache)),
5201 paddress (gdbarch, parent_pc));
5202
5203 regcache_write_pc (child_regcache, parent_pc);
5204 }
5205 }
5206
5a2901d9 5207 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5208 context_switch (ecs->ptid);
5a2901d9 5209
b242c3c2
PA
5210 /* Immediately detach breakpoints from the child before there's
5211 any chance of letting the user delete breakpoints from the
5212 breakpoint lists. If we don't do this early, it's easy to
5213 leave left over traps in the child, vis: "break foo; catch
5214 fork; c; <fork>; del; c; <child calls foo>". We only follow
5215 the fork on the last `continue', and by that time the
5216 breakpoint at "foo" is long gone from the breakpoint table.
5217 If we vforked, then we don't need to unpatch here, since both
5218 parent and child are sharing the same memory pages; we'll
5219 need to unpatch at follow/detach time instead to be certain
5220 that new breakpoints added between catchpoint hit time and
5221 vfork follow are detached. */
5222 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5223 {
b242c3c2
PA
5224 /* This won't actually modify the breakpoint list, but will
5225 physically remove the breakpoints from the child. */
d80ee84f 5226 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5227 }
5228
34b7e8a6 5229 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5230
e58b0e63
PA
5231 /* In case the event is caught by a catchpoint, remember that
5232 the event is to be followed at the next resume of the thread,
5233 and not immediately. */
5234 ecs->event_thread->pending_follow = ecs->ws;
5235
fb14de7b 5236 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5237
16c381f0 5238 ecs->event_thread->control.stop_bpstat
6c95b8df 5239 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5240 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5241
c65d6b55
PA
5242 if (handle_stop_requested (ecs))
5243 return;
5244
ce12b012
PA
5245 /* If no catchpoint triggered for this, then keep going. Note
5246 that we're interested in knowing the bpstat actually causes a
5247 stop, not just if it may explain the signal. Software
5248 watchpoints, for example, always appear in the bpstat. */
5249 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5250 {
6c95b8df
PA
5251 ptid_t parent;
5252 ptid_t child;
e58b0e63 5253 int should_resume;
3e43a32a
MS
5254 int follow_child
5255 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5256
a493e3e2 5257 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5258
5259 should_resume = follow_fork ();
5260
6c95b8df
PA
5261 parent = ecs->ptid;
5262 child = ecs->ws.value.related_pid;
5263
a2077e25
PA
5264 /* At this point, the parent is marked running, and the
5265 child is marked stopped. */
5266
5267 /* If not resuming the parent, mark it stopped. */
5268 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5269 set_running (parent, 0);
5270
5271 /* If resuming the child, mark it running. */
5272 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5273 set_running (child, 1);
5274
6c95b8df 5275 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5276 if (!detach_fork && (non_stop
5277 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5278 {
5279 if (follow_child)
5280 switch_to_thread (parent);
5281 else
5282 switch_to_thread (child);
5283
5284 ecs->event_thread = inferior_thread ();
5285 ecs->ptid = inferior_ptid;
5286 keep_going (ecs);
5287 }
5288
5289 if (follow_child)
5290 switch_to_thread (child);
5291 else
5292 switch_to_thread (parent);
5293
e58b0e63
PA
5294 ecs->event_thread = inferior_thread ();
5295 ecs->ptid = inferior_ptid;
5296
5297 if (should_resume)
5298 keep_going (ecs);
5299 else
22bcd14b 5300 stop_waiting (ecs);
04e68871
DJ
5301 return;
5302 }
94c57d6a
PA
5303 process_event_stop_test (ecs);
5304 return;
488f131b 5305
6c95b8df
PA
5306 case TARGET_WAITKIND_VFORK_DONE:
5307 /* Done with the shared memory region. Re-insert breakpoints in
5308 the parent, and keep going. */
5309
5310 if (debug_infrun)
3e43a32a
MS
5311 fprintf_unfiltered (gdb_stdlog,
5312 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5313
5314 if (!ptid_equal (ecs->ptid, inferior_ptid))
5315 context_switch (ecs->ptid);
5316
5317 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5318 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5319
5320 if (handle_stop_requested (ecs))
5321 return;
5322
6c95b8df
PA
5323 /* This also takes care of reinserting breakpoints in the
5324 previously locked inferior. */
5325 keep_going (ecs);
5326 return;
5327
488f131b 5328 case TARGET_WAITKIND_EXECD:
527159b7 5329 if (debug_infrun)
fc5261f2 5330 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5331
5a2901d9 5332 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5333 context_switch (ecs->ptid);
5a2901d9 5334
fb14de7b 5335 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5336
6c95b8df
PA
5337 /* Do whatever is necessary to the parent branch of the vfork. */
5338 handle_vfork_child_exec_or_exit (1);
5339
795e548f
PA
5340 /* This causes the eventpoints and symbol table to be reset.
5341 Must do this now, before trying to determine whether to
5342 stop. */
71b43ef8 5343 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5344
17d8546e
DB
5345 /* In follow_exec we may have deleted the original thread and
5346 created a new one. Make sure that the event thread is the
5347 execd thread for that case (this is a nop otherwise). */
5348 ecs->event_thread = inferior_thread ();
5349
16c381f0 5350 ecs->event_thread->control.stop_bpstat
6c95b8df 5351 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5352 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5353
71b43ef8
PA
5354 /* Note that this may be referenced from inside
5355 bpstat_stop_status above, through inferior_has_execd. */
5356 xfree (ecs->ws.value.execd_pathname);
5357 ecs->ws.value.execd_pathname = NULL;
5358
c65d6b55
PA
5359 if (handle_stop_requested (ecs))
5360 return;
5361
04e68871 5362 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5363 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5364 {
a493e3e2 5365 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5366 keep_going (ecs);
5367 return;
5368 }
94c57d6a
PA
5369 process_event_stop_test (ecs);
5370 return;
488f131b 5371
b4dc5ffa
MK
5372 /* Be careful not to try to gather much state about a thread
5373 that's in a syscall. It's frequently a losing proposition. */
488f131b 5374 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5375 if (debug_infrun)
3e43a32a
MS
5376 fprintf_unfiltered (gdb_stdlog,
5377 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5378 /* Getting the current syscall number. */
94c57d6a
PA
5379 if (handle_syscall_event (ecs) == 0)
5380 process_event_stop_test (ecs);
5381 return;
c906108c 5382
488f131b
JB
5383 /* Before examining the threads further, step this thread to
5384 get it entirely out of the syscall. (We get notice of the
5385 event when the thread is just on the verge of exiting a
5386 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5387 into user code.) */
488f131b 5388 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5389 if (debug_infrun)
3e43a32a
MS
5390 fprintf_unfiltered (gdb_stdlog,
5391 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5392 if (handle_syscall_event (ecs) == 0)
5393 process_event_stop_test (ecs);
5394 return;
c906108c 5395
488f131b 5396 case TARGET_WAITKIND_STOPPED:
527159b7 5397 if (debug_infrun)
8a9de0e4 5398 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5399 handle_signal_stop (ecs);
5400 return;
c906108c 5401
b2175913 5402 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5403 if (debug_infrun)
5404 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5405 /* Reverse execution: target ran out of history info. */
eab402df 5406
d1988021
MM
5407 /* Switch to the stopped thread. */
5408 if (!ptid_equal (ecs->ptid, inferior_ptid))
5409 context_switch (ecs->ptid);
5410 if (debug_infrun)
5411 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5412
34b7e8a6 5413 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5414 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
c65d6b55
PA
5415
5416 if (handle_stop_requested (ecs))
5417 return;
5418
fd664c91 5419 observer_notify_no_history ();
22bcd14b 5420 stop_waiting (ecs);
b2175913 5421 return;
488f131b 5422 }
4f5d7f63
PA
5423}
5424
0b6e5e10
JB
5425/* A wrapper around handle_inferior_event_1, which also makes sure
5426 that all temporary struct value objects that were created during
5427 the handling of the event get deleted at the end. */
5428
5429static void
5430handle_inferior_event (struct execution_control_state *ecs)
5431{
5432 struct value *mark = value_mark ();
5433
5434 handle_inferior_event_1 (ecs);
5435 /* Purge all temporary values created during the event handling,
5436 as it could be a long time before we return to the command level
5437 where such values would otherwise be purged. */
5438 value_free_to_mark (mark);
5439}
5440
372316f1
PA
5441/* Restart threads back to what they were trying to do back when we
5442 paused them for an in-line step-over. The EVENT_THREAD thread is
5443 ignored. */
4d9d9d04
PA
5444
5445static void
372316f1
PA
5446restart_threads (struct thread_info *event_thread)
5447{
5448 struct thread_info *tp;
372316f1
PA
5449
5450 /* In case the instruction just stepped spawned a new thread. */
5451 update_thread_list ();
5452
5453 ALL_NON_EXITED_THREADS (tp)
5454 {
5455 if (tp == event_thread)
5456 {
5457 if (debug_infrun)
5458 fprintf_unfiltered (gdb_stdlog,
5459 "infrun: restart threads: "
5460 "[%s] is event thread\n",
5461 target_pid_to_str (tp->ptid));
5462 continue;
5463 }
5464
5465 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5466 {
5467 if (debug_infrun)
5468 fprintf_unfiltered (gdb_stdlog,
5469 "infrun: restart threads: "
5470 "[%s] not meant to be running\n",
5471 target_pid_to_str (tp->ptid));
5472 continue;
5473 }
5474
5475 if (tp->resumed)
5476 {
5477 if (debug_infrun)
5478 fprintf_unfiltered (gdb_stdlog,
5479 "infrun: restart threads: [%s] resumed\n",
5480 target_pid_to_str (tp->ptid));
5481 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5482 continue;
5483 }
5484
5485 if (thread_is_in_step_over_chain (tp))
5486 {
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: restart threads: "
5490 "[%s] needs step-over\n",
5491 target_pid_to_str (tp->ptid));
5492 gdb_assert (!tp->resumed);
5493 continue;
5494 }
5495
5496
5497 if (tp->suspend.waitstatus_pending_p)
5498 {
5499 if (debug_infrun)
5500 fprintf_unfiltered (gdb_stdlog,
5501 "infrun: restart threads: "
5502 "[%s] has pending status\n",
5503 target_pid_to_str (tp->ptid));
5504 tp->resumed = 1;
5505 continue;
5506 }
5507
c65d6b55
PA
5508 gdb_assert (!tp->stop_requested);
5509
372316f1
PA
5510 /* If some thread needs to start a step-over at this point, it
5511 should still be in the step-over queue, and thus skipped
5512 above. */
5513 if (thread_still_needs_step_over (tp))
5514 {
5515 internal_error (__FILE__, __LINE__,
5516 "thread [%s] needs a step-over, but not in "
5517 "step-over queue\n",
5518 target_pid_to_str (tp->ptid));
5519 }
5520
5521 if (currently_stepping (tp))
5522 {
5523 if (debug_infrun)
5524 fprintf_unfiltered (gdb_stdlog,
5525 "infrun: restart threads: [%s] was stepping\n",
5526 target_pid_to_str (tp->ptid));
5527 keep_going_stepped_thread (tp);
5528 }
5529 else
5530 {
5531 struct execution_control_state ecss;
5532 struct execution_control_state *ecs = &ecss;
5533
5534 if (debug_infrun)
5535 fprintf_unfiltered (gdb_stdlog,
5536 "infrun: restart threads: [%s] continuing\n",
5537 target_pid_to_str (tp->ptid));
5538 reset_ecs (ecs, tp);
5539 switch_to_thread (tp->ptid);
5540 keep_going_pass_signal (ecs);
5541 }
5542 }
5543}
5544
5545/* Callback for iterate_over_threads. Find a resumed thread that has
5546 a pending waitstatus. */
5547
5548static int
5549resumed_thread_with_pending_status (struct thread_info *tp,
5550 void *arg)
5551{
5552 return (tp->resumed
5553 && tp->suspend.waitstatus_pending_p);
5554}
5555
5556/* Called when we get an event that may finish an in-line or
5557 out-of-line (displaced stepping) step-over started previously.
5558 Return true if the event is processed and we should go back to the
5559 event loop; false if the caller should continue processing the
5560 event. */
5561
5562static int
4d9d9d04
PA
5563finish_step_over (struct execution_control_state *ecs)
5564{
372316f1
PA
5565 int had_step_over_info;
5566
4d9d9d04
PA
5567 displaced_step_fixup (ecs->ptid,
5568 ecs->event_thread->suspend.stop_signal);
5569
372316f1
PA
5570 had_step_over_info = step_over_info_valid_p ();
5571
5572 if (had_step_over_info)
4d9d9d04
PA
5573 {
5574 /* If we're stepping over a breakpoint with all threads locked,
5575 then only the thread that was stepped should be reporting
5576 back an event. */
5577 gdb_assert (ecs->event_thread->control.trap_expected);
5578
c65d6b55 5579 clear_step_over_info ();
4d9d9d04
PA
5580 }
5581
fbea99ea 5582 if (!target_is_non_stop_p ())
372316f1 5583 return 0;
4d9d9d04
PA
5584
5585 /* Start a new step-over in another thread if there's one that
5586 needs it. */
5587 start_step_over ();
372316f1
PA
5588
5589 /* If we were stepping over a breakpoint before, and haven't started
5590 a new in-line step-over sequence, then restart all other threads
5591 (except the event thread). We can't do this in all-stop, as then
5592 e.g., we wouldn't be able to issue any other remote packet until
5593 these other threads stop. */
5594 if (had_step_over_info && !step_over_info_valid_p ())
5595 {
5596 struct thread_info *pending;
5597
5598 /* If we only have threads with pending statuses, the restart
5599 below won't restart any thread and so nothing re-inserts the
5600 breakpoint we just stepped over. But we need it inserted
5601 when we later process the pending events, otherwise if
5602 another thread has a pending event for this breakpoint too,
5603 we'd discard its event (because the breakpoint that
5604 originally caused the event was no longer inserted). */
5605 context_switch (ecs->ptid);
5606 insert_breakpoints ();
5607
5608 restart_threads (ecs->event_thread);
5609
5610 /* If we have events pending, go through handle_inferior_event
5611 again, picking up a pending event at random. This avoids
5612 thread starvation. */
5613
5614 /* But not if we just stepped over a watchpoint in order to let
5615 the instruction execute so we can evaluate its expression.
5616 The set of watchpoints that triggered is recorded in the
5617 breakpoint objects themselves (see bp->watchpoint_triggered).
5618 If we processed another event first, that other event could
5619 clobber this info. */
5620 if (ecs->event_thread->stepping_over_watchpoint)
5621 return 0;
5622
5623 pending = iterate_over_threads (resumed_thread_with_pending_status,
5624 NULL);
5625 if (pending != NULL)
5626 {
5627 struct thread_info *tp = ecs->event_thread;
5628 struct regcache *regcache;
5629
5630 if (debug_infrun)
5631 {
5632 fprintf_unfiltered (gdb_stdlog,
5633 "infrun: found resumed threads with "
5634 "pending events, saving status\n");
5635 }
5636
5637 gdb_assert (pending != tp);
5638
5639 /* Record the event thread's event for later. */
5640 save_waitstatus (tp, &ecs->ws);
5641 /* This was cleared early, by handle_inferior_event. Set it
5642 so this pending event is considered by
5643 do_target_wait. */
5644 tp->resumed = 1;
5645
5646 gdb_assert (!tp->executing);
5647
5648 regcache = get_thread_regcache (tp->ptid);
5649 tp->suspend.stop_pc = regcache_read_pc (regcache);
5650
5651 if (debug_infrun)
5652 {
5653 fprintf_unfiltered (gdb_stdlog,
5654 "infrun: saved stop_pc=%s for %s "
5655 "(currently_stepping=%d)\n",
5656 paddress (target_gdbarch (),
5657 tp->suspend.stop_pc),
5658 target_pid_to_str (tp->ptid),
5659 currently_stepping (tp));
5660 }
5661
5662 /* This in-line step-over finished; clear this so we won't
5663 start a new one. This is what handle_signal_stop would
5664 do, if we returned false. */
5665 tp->stepping_over_breakpoint = 0;
5666
5667 /* Wake up the event loop again. */
5668 mark_async_event_handler (infrun_async_inferior_event_token);
5669
5670 prepare_to_wait (ecs);
5671 return 1;
5672 }
5673 }
5674
5675 return 0;
4d9d9d04
PA
5676}
5677
4f5d7f63
PA
5678/* Come here when the program has stopped with a signal. */
5679
5680static void
5681handle_signal_stop (struct execution_control_state *ecs)
5682{
5683 struct frame_info *frame;
5684 struct gdbarch *gdbarch;
5685 int stopped_by_watchpoint;
5686 enum stop_kind stop_soon;
5687 int random_signal;
c906108c 5688
f0407826
DE
5689 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5690
c65d6b55
PA
5691 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5692
f0407826
DE
5693 /* Do we need to clean up the state of a thread that has
5694 completed a displaced single-step? (Doing so usually affects
5695 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5696 if (finish_step_over (ecs))
5697 return;
f0407826
DE
5698
5699 /* If we either finished a single-step or hit a breakpoint, but
5700 the user wanted this thread to be stopped, pretend we got a
5701 SIG0 (generic unsignaled stop). */
5702 if (ecs->event_thread->stop_requested
5703 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5704 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5705
515630c5 5706 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5707
527159b7 5708 if (debug_infrun)
237fc4c9 5709 {
5af949e3
UW
5710 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5711 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5712 struct cleanup *old_chain = save_inferior_ptid ();
5713
5714 inferior_ptid = ecs->ptid;
5af949e3
UW
5715
5716 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5717 paddress (gdbarch, stop_pc));
d92524f1 5718 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5719 {
5720 CORE_ADDR addr;
abbb1732 5721
237fc4c9
PA
5722 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5723
5724 if (target_stopped_data_address (&current_target, &addr))
5725 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5726 "infrun: stopped data address = %s\n",
5727 paddress (gdbarch, addr));
237fc4c9
PA
5728 else
5729 fprintf_unfiltered (gdb_stdlog,
5730 "infrun: (no data address available)\n");
5731 }
7f82dfc7
JK
5732
5733 do_cleanups (old_chain);
237fc4c9 5734 }
527159b7 5735
36fa8042
PA
5736 /* This is originated from start_remote(), start_inferior() and
5737 shared libraries hook functions. */
5738 stop_soon = get_inferior_stop_soon (ecs->ptid);
5739 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5740 {
5741 if (!ptid_equal (ecs->ptid, inferior_ptid))
5742 context_switch (ecs->ptid);
5743 if (debug_infrun)
5744 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5745 stop_print_frame = 1;
22bcd14b 5746 stop_waiting (ecs);
36fa8042
PA
5747 return;
5748 }
5749
36fa8042
PA
5750 /* This originates from attach_command(). We need to overwrite
5751 the stop_signal here, because some kernels don't ignore a
5752 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5753 See more comments in inferior.h. On the other hand, if we
5754 get a non-SIGSTOP, report it to the user - assume the backend
5755 will handle the SIGSTOP if it should show up later.
5756
5757 Also consider that the attach is complete when we see a
5758 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5759 target extended-remote report it instead of a SIGSTOP
5760 (e.g. gdbserver). We already rely on SIGTRAP being our
5761 signal, so this is no exception.
5762
5763 Also consider that the attach is complete when we see a
5764 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5765 the target to stop all threads of the inferior, in case the
5766 low level attach operation doesn't stop them implicitly. If
5767 they weren't stopped implicitly, then the stub will report a
5768 GDB_SIGNAL_0, meaning: stopped for no particular reason
5769 other than GDB's request. */
5770 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5771 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5772 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5773 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5774 {
5775 stop_print_frame = 1;
22bcd14b 5776 stop_waiting (ecs);
36fa8042
PA
5777 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5778 return;
5779 }
5780
488f131b 5781 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5782 so, then switch to that thread. */
5783 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5784 {
527159b7 5785 if (debug_infrun)
8a9de0e4 5786 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5787
0d1e5fa7 5788 context_switch (ecs->ptid);
c5aa993b 5789
9a4105ab 5790 if (deprecated_context_hook)
5d5658a1 5791 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5792 }
c906108c 5793
568d6575
UW
5794 /* At this point, get hold of the now-current thread's frame. */
5795 frame = get_current_frame ();
5796 gdbarch = get_frame_arch (frame);
5797
2adfaa28 5798 /* Pull the single step breakpoints out of the target. */
af48d08f 5799 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5800 {
af48d08f
PA
5801 struct regcache *regcache;
5802 struct address_space *aspace;
5803 CORE_ADDR pc;
2adfaa28 5804
af48d08f
PA
5805 regcache = get_thread_regcache (ecs->ptid);
5806 aspace = get_regcache_aspace (regcache);
5807 pc = regcache_read_pc (regcache);
34b7e8a6 5808
af48d08f
PA
5809 /* However, before doing so, if this single-step breakpoint was
5810 actually for another thread, set this thread up for moving
5811 past it. */
5812 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5813 aspace, pc))
5814 {
5815 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5816 {
5817 if (debug_infrun)
5818 {
5819 fprintf_unfiltered (gdb_stdlog,
af48d08f 5820 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5821 "single-step breakpoint\n",
5822 target_pid_to_str (ecs->ptid));
2adfaa28 5823 }
af48d08f
PA
5824 ecs->hit_singlestep_breakpoint = 1;
5825 }
5826 }
5827 else
5828 {
5829 if (debug_infrun)
5830 {
5831 fprintf_unfiltered (gdb_stdlog,
5832 "infrun: [%s] hit its "
5833 "single-step breakpoint\n",
5834 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5835 }
5836 }
488f131b 5837 }
af48d08f 5838 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5839
963f9c80
PA
5840 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5841 && ecs->event_thread->control.trap_expected
5842 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5843 stopped_by_watchpoint = 0;
5844 else
5845 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5846
5847 /* If necessary, step over this watchpoint. We'll be back to display
5848 it in a moment. */
5849 if (stopped_by_watchpoint
d92524f1 5850 && (target_have_steppable_watchpoint
568d6575 5851 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5852 {
488f131b
JB
5853 /* At this point, we are stopped at an instruction which has
5854 attempted to write to a piece of memory under control of
5855 a watchpoint. The instruction hasn't actually executed
5856 yet. If we were to evaluate the watchpoint expression
5857 now, we would get the old value, and therefore no change
5858 would seem to have occurred.
5859
5860 In order to make watchpoints work `right', we really need
5861 to complete the memory write, and then evaluate the
d983da9c
DJ
5862 watchpoint expression. We do this by single-stepping the
5863 target.
5864
7f89fd65 5865 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5866 it. For example, the PA can (with some kernel cooperation)
5867 single step over a watchpoint without disabling the watchpoint.
5868
5869 It is far more common to need to disable a watchpoint to step
5870 the inferior over it. If we have non-steppable watchpoints,
5871 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5872 disable all watchpoints.
5873
5874 Any breakpoint at PC must also be stepped over -- if there's
5875 one, it will have already triggered before the watchpoint
5876 triggered, and we either already reported it to the user, or
5877 it didn't cause a stop and we called keep_going. In either
5878 case, if there was a breakpoint at PC, we must be trying to
5879 step past it. */
5880 ecs->event_thread->stepping_over_watchpoint = 1;
5881 keep_going (ecs);
488f131b
JB
5882 return;
5883 }
5884
4e1c45ea 5885 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5886 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5887 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5888 ecs->event_thread->control.stop_step = 0;
488f131b 5889 stop_print_frame = 1;
488f131b 5890 stopped_by_random_signal = 0;
488f131b 5891
edb3359d
DJ
5892 /* Hide inlined functions starting here, unless we just performed stepi or
5893 nexti. After stepi and nexti, always show the innermost frame (not any
5894 inline function call sites). */
16c381f0 5895 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5896 {
5897 struct address_space *aspace =
5898 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5899
5900 /* skip_inline_frames is expensive, so we avoid it if we can
5901 determine that the address is one where functions cannot have
5902 been inlined. This improves performance with inferiors that
5903 load a lot of shared libraries, because the solib event
5904 breakpoint is defined as the address of a function (i.e. not
5905 inline). Note that we have to check the previous PC as well
5906 as the current one to catch cases when we have just
5907 single-stepped off a breakpoint prior to reinstating it.
5908 Note that we're assuming that the code we single-step to is
5909 not inline, but that's not definitive: there's nothing
5910 preventing the event breakpoint function from containing
5911 inlined code, and the single-step ending up there. If the
5912 user had set a breakpoint on that inlined code, the missing
5913 skip_inline_frames call would break things. Fortunately
5914 that's an extremely unlikely scenario. */
09ac7c10 5915 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5916 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5917 && ecs->event_thread->control.trap_expected
5918 && pc_at_non_inline_function (aspace,
5919 ecs->event_thread->prev_pc,
09ac7c10 5920 &ecs->ws)))
1c5a993e
MR
5921 {
5922 skip_inline_frames (ecs->ptid);
5923
5924 /* Re-fetch current thread's frame in case that invalidated
5925 the frame cache. */
5926 frame = get_current_frame ();
5927 gdbarch = get_frame_arch (frame);
5928 }
0574c78f 5929 }
edb3359d 5930
a493e3e2 5931 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5932 && ecs->event_thread->control.trap_expected
568d6575 5933 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5934 && currently_stepping (ecs->event_thread))
3352ef37 5935 {
b50d7442 5936 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5937 also on an instruction that needs to be stepped multiple
1777feb0 5938 times before it's been fully executing. E.g., architectures
3352ef37
AC
5939 with a delay slot. It needs to be stepped twice, once for
5940 the instruction and once for the delay slot. */
5941 int step_through_delay
568d6575 5942 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5943
527159b7 5944 if (debug_infrun && step_through_delay)
8a9de0e4 5945 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5946 if (ecs->event_thread->control.step_range_end == 0
5947 && step_through_delay)
3352ef37
AC
5948 {
5949 /* The user issued a continue when stopped at a breakpoint.
5950 Set up for another trap and get out of here. */
4e1c45ea 5951 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5952 keep_going (ecs);
5953 return;
5954 }
5955 else if (step_through_delay)
5956 {
5957 /* The user issued a step when stopped at a breakpoint.
5958 Maybe we should stop, maybe we should not - the delay
5959 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5960 case, don't decide that here, just set
5961 ecs->stepping_over_breakpoint, making sure we
5962 single-step again before breakpoints are re-inserted. */
4e1c45ea 5963 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5964 }
5965 }
5966
ab04a2af
TT
5967 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5968 handles this event. */
5969 ecs->event_thread->control.stop_bpstat
5970 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5971 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5972
ab04a2af
TT
5973 /* Following in case break condition called a
5974 function. */
5975 stop_print_frame = 1;
73dd234f 5976
ab04a2af
TT
5977 /* This is where we handle "moribund" watchpoints. Unlike
5978 software breakpoints traps, hardware watchpoint traps are
5979 always distinguishable from random traps. If no high-level
5980 watchpoint is associated with the reported stop data address
5981 anymore, then the bpstat does not explain the signal ---
5982 simply make sure to ignore it if `stopped_by_watchpoint' is
5983 set. */
5984
5985 if (debug_infrun
5986 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5987 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5988 GDB_SIGNAL_TRAP)
ab04a2af
TT
5989 && stopped_by_watchpoint)
5990 fprintf_unfiltered (gdb_stdlog,
5991 "infrun: no user watchpoint explains "
5992 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5993
bac7d97b 5994 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5995 at one stage in the past included checks for an inferior
5996 function call's call dummy's return breakpoint. The original
5997 comment, that went with the test, read:
03cebad2 5998
ab04a2af
TT
5999 ``End of a stack dummy. Some systems (e.g. Sony news) give
6000 another signal besides SIGTRAP, so check here as well as
6001 above.''
73dd234f 6002
ab04a2af
TT
6003 If someone ever tries to get call dummys on a
6004 non-executable stack to work (where the target would stop
6005 with something like a SIGSEGV), then those tests might need
6006 to be re-instated. Given, however, that the tests were only
6007 enabled when momentary breakpoints were not being used, I
6008 suspect that it won't be the case.
488f131b 6009
ab04a2af
TT
6010 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6011 be necessary for call dummies on a non-executable stack on
6012 SPARC. */
488f131b 6013
bac7d97b 6014 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6015 random_signal
6016 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6017 ecs->event_thread->suspend.stop_signal);
bac7d97b 6018
1cf4d951
PA
6019 /* Maybe this was a trap for a software breakpoint that has since
6020 been removed. */
6021 if (random_signal && target_stopped_by_sw_breakpoint ())
6022 {
6023 if (program_breakpoint_here_p (gdbarch, stop_pc))
6024 {
6025 struct regcache *regcache;
6026 int decr_pc;
6027
6028 /* Re-adjust PC to what the program would see if GDB was not
6029 debugging it. */
6030 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 6031 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6032 if (decr_pc != 0)
6033 {
6034 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6035
6036 if (record_full_is_used ())
6037 record_full_gdb_operation_disable_set ();
6038
6039 regcache_write_pc (regcache, stop_pc + decr_pc);
6040
6041 do_cleanups (old_cleanups);
6042 }
6043 }
6044 else
6045 {
6046 /* A delayed software breakpoint event. Ignore the trap. */
6047 if (debug_infrun)
6048 fprintf_unfiltered (gdb_stdlog,
6049 "infrun: delayed software breakpoint "
6050 "trap, ignoring\n");
6051 random_signal = 0;
6052 }
6053 }
6054
6055 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6056 has since been removed. */
6057 if (random_signal && target_stopped_by_hw_breakpoint ())
6058 {
6059 /* A delayed hardware breakpoint event. Ignore the trap. */
6060 if (debug_infrun)
6061 fprintf_unfiltered (gdb_stdlog,
6062 "infrun: delayed hardware breakpoint/watchpoint "
6063 "trap, ignoring\n");
6064 random_signal = 0;
6065 }
6066
bac7d97b
PA
6067 /* If not, perhaps stepping/nexting can. */
6068 if (random_signal)
6069 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6070 && currently_stepping (ecs->event_thread));
ab04a2af 6071
2adfaa28
PA
6072 /* Perhaps the thread hit a single-step breakpoint of _another_
6073 thread. Single-step breakpoints are transparent to the
6074 breakpoints module. */
6075 if (random_signal)
6076 random_signal = !ecs->hit_singlestep_breakpoint;
6077
bac7d97b
PA
6078 /* No? Perhaps we got a moribund watchpoint. */
6079 if (random_signal)
6080 random_signal = !stopped_by_watchpoint;
ab04a2af 6081
c65d6b55
PA
6082 /* Always stop if the user explicitly requested this thread to
6083 remain stopped. */
6084 if (ecs->event_thread->stop_requested)
6085 {
6086 random_signal = 1;
6087 if (debug_infrun)
6088 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6089 }
6090
488f131b
JB
6091 /* For the program's own signals, act according to
6092 the signal handling tables. */
6093
ce12b012 6094 if (random_signal)
488f131b
JB
6095 {
6096 /* Signal not for debugging purposes. */
c9657e70 6097 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6098 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6099
527159b7 6100 if (debug_infrun)
c9737c08
PA
6101 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6102 gdb_signal_to_symbol_string (stop_signal));
527159b7 6103
488f131b
JB
6104 stopped_by_random_signal = 1;
6105
252fbfc8
PA
6106 /* Always stop on signals if we're either just gaining control
6107 of the program, or the user explicitly requested this thread
6108 to remain stopped. */
d6b48e9c 6109 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6110 || ecs->event_thread->stop_requested
24291992 6111 || (!inf->detaching
16c381f0 6112 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6113 {
22bcd14b 6114 stop_waiting (ecs);
488f131b
JB
6115 return;
6116 }
b57bacec
PA
6117
6118 /* Notify observers the signal has "handle print" set. Note we
6119 returned early above if stopping; normal_stop handles the
6120 printing in that case. */
6121 if (signal_print[ecs->event_thread->suspend.stop_signal])
6122 {
6123 /* The signal table tells us to print about this signal. */
6124 target_terminal_ours_for_output ();
6125 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6126 target_terminal_inferior ();
6127 }
488f131b
JB
6128
6129 /* Clear the signal if it should not be passed. */
16c381f0 6130 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6131 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6132
fb14de7b 6133 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6134 && ecs->event_thread->control.trap_expected
8358c15c 6135 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6136 {
6137 /* We were just starting a new sequence, attempting to
6138 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6139 Instead this signal arrives. This signal will take us out
68f53502
AC
6140 of the stepping range so GDB needs to remember to, when
6141 the signal handler returns, resume stepping off that
6142 breakpoint. */
6143 /* To simplify things, "continue" is forced to use the same
6144 code paths as single-step - set a breakpoint at the
6145 signal return address and then, once hit, step off that
6146 breakpoint. */
237fc4c9
PA
6147 if (debug_infrun)
6148 fprintf_unfiltered (gdb_stdlog,
6149 "infrun: signal arrived while stepping over "
6150 "breakpoint\n");
d3169d93 6151
2c03e5be 6152 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6153 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6154 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6155 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6156
6157 /* If we were nexting/stepping some other thread, switch to
6158 it, so that we don't continue it, losing control. */
6159 if (!switch_back_to_stepped_thread (ecs))
6160 keep_going (ecs);
9d799f85 6161 return;
68f53502 6162 }
9d799f85 6163
e5f8a7cc
PA
6164 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6165 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6166 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6167 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6168 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6169 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6170 {
6171 /* The inferior is about to take a signal that will take it
6172 out of the single step range. Set a breakpoint at the
6173 current PC (which is presumably where the signal handler
6174 will eventually return) and then allow the inferior to
6175 run free.
6176
6177 Note that this is only needed for a signal delivered
6178 while in the single-step range. Nested signals aren't a
6179 problem as they eventually all return. */
237fc4c9
PA
6180 if (debug_infrun)
6181 fprintf_unfiltered (gdb_stdlog,
6182 "infrun: signal may take us out of "
6183 "single-step range\n");
6184
372316f1 6185 clear_step_over_info ();
2c03e5be 6186 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6187 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6188 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6189 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6190 keep_going (ecs);
6191 return;
d303a6c7 6192 }
9d799f85
AC
6193
6194 /* Note: step_resume_breakpoint may be non-NULL. This occures
6195 when either there's a nested signal, or when there's a
6196 pending signal enabled just as the signal handler returns
6197 (leaving the inferior at the step-resume-breakpoint without
6198 actually executing it). Either way continue until the
6199 breakpoint is really hit. */
c447ac0b
PA
6200
6201 if (!switch_back_to_stepped_thread (ecs))
6202 {
6203 if (debug_infrun)
6204 fprintf_unfiltered (gdb_stdlog,
6205 "infrun: random signal, keep going\n");
6206
6207 keep_going (ecs);
6208 }
6209 return;
488f131b 6210 }
94c57d6a
PA
6211
6212 process_event_stop_test (ecs);
6213}
6214
6215/* Come here when we've got some debug event / signal we can explain
6216 (IOW, not a random signal), and test whether it should cause a
6217 stop, or whether we should resume the inferior (transparently).
6218 E.g., could be a breakpoint whose condition evaluates false; we
6219 could be still stepping within the line; etc. */
6220
6221static void
6222process_event_stop_test (struct execution_control_state *ecs)
6223{
6224 struct symtab_and_line stop_pc_sal;
6225 struct frame_info *frame;
6226 struct gdbarch *gdbarch;
cdaa5b73
PA
6227 CORE_ADDR jmp_buf_pc;
6228 struct bpstat_what what;
94c57d6a 6229
cdaa5b73 6230 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6231
cdaa5b73
PA
6232 frame = get_current_frame ();
6233 gdbarch = get_frame_arch (frame);
fcf3daef 6234
cdaa5b73 6235 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6236
cdaa5b73
PA
6237 if (what.call_dummy)
6238 {
6239 stop_stack_dummy = what.call_dummy;
6240 }
186c406b 6241
243a9253
PA
6242 /* A few breakpoint types have callbacks associated (e.g.,
6243 bp_jit_event). Run them now. */
6244 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6245
cdaa5b73
PA
6246 /* If we hit an internal event that triggers symbol changes, the
6247 current frame will be invalidated within bpstat_what (e.g., if we
6248 hit an internal solib event). Re-fetch it. */
6249 frame = get_current_frame ();
6250 gdbarch = get_frame_arch (frame);
e2e4d78b 6251
cdaa5b73
PA
6252 switch (what.main_action)
6253 {
6254 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6255 /* If we hit the breakpoint at longjmp while stepping, we
6256 install a momentary breakpoint at the target of the
6257 jmp_buf. */
186c406b 6258
cdaa5b73
PA
6259 if (debug_infrun)
6260 fprintf_unfiltered (gdb_stdlog,
6261 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6262
cdaa5b73 6263 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6264
cdaa5b73
PA
6265 if (what.is_longjmp)
6266 {
6267 struct value *arg_value;
6268
6269 /* If we set the longjmp breakpoint via a SystemTap probe,
6270 then use it to extract the arguments. The destination PC
6271 is the third argument to the probe. */
6272 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6273 if (arg_value)
8fa0c4f8
AA
6274 {
6275 jmp_buf_pc = value_as_address (arg_value);
6276 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6277 }
cdaa5b73
PA
6278 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6279 || !gdbarch_get_longjmp_target (gdbarch,
6280 frame, &jmp_buf_pc))
e2e4d78b 6281 {
cdaa5b73
PA
6282 if (debug_infrun)
6283 fprintf_unfiltered (gdb_stdlog,
6284 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6285 "(!gdbarch_get_longjmp_target)\n");
6286 keep_going (ecs);
6287 return;
e2e4d78b 6288 }
e2e4d78b 6289
cdaa5b73
PA
6290 /* Insert a breakpoint at resume address. */
6291 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6292 }
6293 else
6294 check_exception_resume (ecs, frame);
6295 keep_going (ecs);
6296 return;
e81a37f7 6297
cdaa5b73
PA
6298 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6299 {
6300 struct frame_info *init_frame;
e81a37f7 6301
cdaa5b73 6302 /* There are several cases to consider.
c906108c 6303
cdaa5b73
PA
6304 1. The initiating frame no longer exists. In this case we
6305 must stop, because the exception or longjmp has gone too
6306 far.
2c03e5be 6307
cdaa5b73
PA
6308 2. The initiating frame exists, and is the same as the
6309 current frame. We stop, because the exception or longjmp
6310 has been caught.
2c03e5be 6311
cdaa5b73
PA
6312 3. The initiating frame exists and is different from the
6313 current frame. This means the exception or longjmp has
6314 been caught beneath the initiating frame, so keep going.
c906108c 6315
cdaa5b73
PA
6316 4. longjmp breakpoint has been placed just to protect
6317 against stale dummy frames and user is not interested in
6318 stopping around longjmps. */
c5aa993b 6319
cdaa5b73
PA
6320 if (debug_infrun)
6321 fprintf_unfiltered (gdb_stdlog,
6322 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6323
cdaa5b73
PA
6324 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6325 != NULL);
6326 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6327
cdaa5b73
PA
6328 if (what.is_longjmp)
6329 {
b67a2c6f 6330 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6331
cdaa5b73 6332 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6333 {
cdaa5b73
PA
6334 /* Case 4. */
6335 keep_going (ecs);
6336 return;
e5ef252a 6337 }
cdaa5b73 6338 }
c5aa993b 6339
cdaa5b73 6340 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6341
cdaa5b73
PA
6342 if (init_frame)
6343 {
6344 struct frame_id current_id
6345 = get_frame_id (get_current_frame ());
6346 if (frame_id_eq (current_id,
6347 ecs->event_thread->initiating_frame))
6348 {
6349 /* Case 2. Fall through. */
6350 }
6351 else
6352 {
6353 /* Case 3. */
6354 keep_going (ecs);
6355 return;
6356 }
68f53502 6357 }
488f131b 6358
cdaa5b73
PA
6359 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6360 exists. */
6361 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6362
bdc36728 6363 end_stepping_range (ecs);
cdaa5b73
PA
6364 }
6365 return;
e5ef252a 6366
cdaa5b73
PA
6367 case BPSTAT_WHAT_SINGLE:
6368 if (debug_infrun)
6369 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6370 ecs->event_thread->stepping_over_breakpoint = 1;
6371 /* Still need to check other stuff, at least the case where we
6372 are stepping and step out of the right range. */
6373 break;
e5ef252a 6374
cdaa5b73
PA
6375 case BPSTAT_WHAT_STEP_RESUME:
6376 if (debug_infrun)
6377 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6378
cdaa5b73
PA
6379 delete_step_resume_breakpoint (ecs->event_thread);
6380 if (ecs->event_thread->control.proceed_to_finish
6381 && execution_direction == EXEC_REVERSE)
6382 {
6383 struct thread_info *tp = ecs->event_thread;
6384
6385 /* We are finishing a function in reverse, and just hit the
6386 step-resume breakpoint at the start address of the
6387 function, and we're almost there -- just need to back up
6388 by one more single-step, which should take us back to the
6389 function call. */
6390 tp->control.step_range_start = tp->control.step_range_end = 1;
6391 keep_going (ecs);
e5ef252a 6392 return;
cdaa5b73
PA
6393 }
6394 fill_in_stop_func (gdbarch, ecs);
6395 if (stop_pc == ecs->stop_func_start
6396 && execution_direction == EXEC_REVERSE)
6397 {
6398 /* We are stepping over a function call in reverse, and just
6399 hit the step-resume breakpoint at the start address of
6400 the function. Go back to single-stepping, which should
6401 take us back to the function call. */
6402 ecs->event_thread->stepping_over_breakpoint = 1;
6403 keep_going (ecs);
6404 return;
6405 }
6406 break;
e5ef252a 6407
cdaa5b73
PA
6408 case BPSTAT_WHAT_STOP_NOISY:
6409 if (debug_infrun)
6410 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6411 stop_print_frame = 1;
e5ef252a 6412
99619bea
PA
6413 /* Assume the thread stopped for a breapoint. We'll still check
6414 whether a/the breakpoint is there when the thread is next
6415 resumed. */
6416 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6417
22bcd14b 6418 stop_waiting (ecs);
cdaa5b73 6419 return;
e5ef252a 6420
cdaa5b73
PA
6421 case BPSTAT_WHAT_STOP_SILENT:
6422 if (debug_infrun)
6423 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6424 stop_print_frame = 0;
e5ef252a 6425
99619bea
PA
6426 /* Assume the thread stopped for a breapoint. We'll still check
6427 whether a/the breakpoint is there when the thread is next
6428 resumed. */
6429 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6430 stop_waiting (ecs);
cdaa5b73
PA
6431 return;
6432
6433 case BPSTAT_WHAT_HP_STEP_RESUME:
6434 if (debug_infrun)
6435 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6436
6437 delete_step_resume_breakpoint (ecs->event_thread);
6438 if (ecs->event_thread->step_after_step_resume_breakpoint)
6439 {
6440 /* Back when the step-resume breakpoint was inserted, we
6441 were trying to single-step off a breakpoint. Go back to
6442 doing that. */
6443 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6444 ecs->event_thread->stepping_over_breakpoint = 1;
6445 keep_going (ecs);
6446 return;
e5ef252a 6447 }
cdaa5b73
PA
6448 break;
6449
6450 case BPSTAT_WHAT_KEEP_CHECKING:
6451 break;
e5ef252a 6452 }
c906108c 6453
af48d08f
PA
6454 /* If we stepped a permanent breakpoint and we had a high priority
6455 step-resume breakpoint for the address we stepped, but we didn't
6456 hit it, then we must have stepped into the signal handler. The
6457 step-resume was only necessary to catch the case of _not_
6458 stepping into the handler, so delete it, and fall through to
6459 checking whether the step finished. */
6460 if (ecs->event_thread->stepped_breakpoint)
6461 {
6462 struct breakpoint *sr_bp
6463 = ecs->event_thread->control.step_resume_breakpoint;
6464
8d707a12
PA
6465 if (sr_bp != NULL
6466 && sr_bp->loc->permanent
af48d08f
PA
6467 && sr_bp->type == bp_hp_step_resume
6468 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6469 {
6470 if (debug_infrun)
6471 fprintf_unfiltered (gdb_stdlog,
6472 "infrun: stepped permanent breakpoint, stopped in "
6473 "handler\n");
6474 delete_step_resume_breakpoint (ecs->event_thread);
6475 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6476 }
6477 }
6478
cdaa5b73
PA
6479 /* We come here if we hit a breakpoint but should not stop for it.
6480 Possibly we also were stepping and should stop for that. So fall
6481 through and test for stepping. But, if not stepping, do not
6482 stop. */
c906108c 6483
a7212384
UW
6484 /* In all-stop mode, if we're currently stepping but have stopped in
6485 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6486 if (switch_back_to_stepped_thread (ecs))
6487 return;
776f04fa 6488
8358c15c 6489 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6490 {
527159b7 6491 if (debug_infrun)
d3169d93
DJ
6492 fprintf_unfiltered (gdb_stdlog,
6493 "infrun: step-resume breakpoint is inserted\n");
527159b7 6494
488f131b
JB
6495 /* Having a step-resume breakpoint overrides anything
6496 else having to do with stepping commands until
6497 that breakpoint is reached. */
488f131b
JB
6498 keep_going (ecs);
6499 return;
6500 }
c5aa993b 6501
16c381f0 6502 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6503 {
527159b7 6504 if (debug_infrun)
8a9de0e4 6505 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6506 /* Likewise if we aren't even stepping. */
488f131b
JB
6507 keep_going (ecs);
6508 return;
6509 }
c5aa993b 6510
4b7703ad
JB
6511 /* Re-fetch current thread's frame in case the code above caused
6512 the frame cache to be re-initialized, making our FRAME variable
6513 a dangling pointer. */
6514 frame = get_current_frame ();
628fe4e4 6515 gdbarch = get_frame_arch (frame);
7e324e48 6516 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6517
488f131b 6518 /* If stepping through a line, keep going if still within it.
c906108c 6519
488f131b
JB
6520 Note that step_range_end is the address of the first instruction
6521 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6522 within it!
6523
6524 Note also that during reverse execution, we may be stepping
6525 through a function epilogue and therefore must detect when
6526 the current-frame changes in the middle of a line. */
6527
ce4c476a 6528 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6529 && (execution_direction != EXEC_REVERSE
388a8562 6530 || frame_id_eq (get_frame_id (frame),
16c381f0 6531 ecs->event_thread->control.step_frame_id)))
488f131b 6532 {
527159b7 6533 if (debug_infrun)
5af949e3
UW
6534 fprintf_unfiltered
6535 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6536 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6537 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6538
c1e36e3e
PA
6539 /* Tentatively re-enable range stepping; `resume' disables it if
6540 necessary (e.g., if we're stepping over a breakpoint or we
6541 have software watchpoints). */
6542 ecs->event_thread->control.may_range_step = 1;
6543
b2175913
MS
6544 /* When stepping backward, stop at beginning of line range
6545 (unless it's the function entry point, in which case
6546 keep going back to the call point). */
16c381f0 6547 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6548 && stop_pc != ecs->stop_func_start
6549 && execution_direction == EXEC_REVERSE)
bdc36728 6550 end_stepping_range (ecs);
b2175913
MS
6551 else
6552 keep_going (ecs);
6553
488f131b
JB
6554 return;
6555 }
c5aa993b 6556
488f131b 6557 /* We stepped out of the stepping range. */
c906108c 6558
488f131b 6559 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6560 loader dynamic symbol resolution code...
6561
6562 EXEC_FORWARD: we keep on single stepping until we exit the run
6563 time loader code and reach the callee's address.
6564
6565 EXEC_REVERSE: we've already executed the callee (backward), and
6566 the runtime loader code is handled just like any other
6567 undebuggable function call. Now we need only keep stepping
6568 backward through the trampoline code, and that's handled further
6569 down, so there is nothing for us to do here. */
6570
6571 if (execution_direction != EXEC_REVERSE
16c381f0 6572 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6573 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6574 {
4c8c40e6 6575 CORE_ADDR pc_after_resolver =
568d6575 6576 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6577
527159b7 6578 if (debug_infrun)
3e43a32a
MS
6579 fprintf_unfiltered (gdb_stdlog,
6580 "infrun: stepped into dynsym resolve code\n");
527159b7 6581
488f131b
JB
6582 if (pc_after_resolver)
6583 {
6584 /* Set up a step-resume breakpoint at the address
6585 indicated by SKIP_SOLIB_RESOLVER. */
6586 struct symtab_and_line sr_sal;
abbb1732 6587
fe39c653 6588 init_sal (&sr_sal);
488f131b 6589 sr_sal.pc = pc_after_resolver;
6c95b8df 6590 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6591
a6d9a66e
UW
6592 insert_step_resume_breakpoint_at_sal (gdbarch,
6593 sr_sal, null_frame_id);
c5aa993b 6594 }
c906108c 6595
488f131b
JB
6596 keep_going (ecs);
6597 return;
6598 }
c906108c 6599
16c381f0
JK
6600 if (ecs->event_thread->control.step_range_end != 1
6601 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6602 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6603 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6604 {
527159b7 6605 if (debug_infrun)
3e43a32a
MS
6606 fprintf_unfiltered (gdb_stdlog,
6607 "infrun: stepped into signal trampoline\n");
42edda50 6608 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6609 a signal trampoline (either by a signal being delivered or by
6610 the signal handler returning). Just single-step until the
6611 inferior leaves the trampoline (either by calling the handler
6612 or returning). */
488f131b
JB
6613 keep_going (ecs);
6614 return;
6615 }
c906108c 6616
14132e89
MR
6617 /* If we're in the return path from a shared library trampoline,
6618 we want to proceed through the trampoline when stepping. */
6619 /* macro/2012-04-25: This needs to come before the subroutine
6620 call check below as on some targets return trampolines look
6621 like subroutine calls (MIPS16 return thunks). */
6622 if (gdbarch_in_solib_return_trampoline (gdbarch,
6623 stop_pc, ecs->stop_func_name)
6624 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6625 {
6626 /* Determine where this trampoline returns. */
6627 CORE_ADDR real_stop_pc;
6628
6629 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6630
6631 if (debug_infrun)
6632 fprintf_unfiltered (gdb_stdlog,
6633 "infrun: stepped into solib return tramp\n");
6634
6635 /* Only proceed through if we know where it's going. */
6636 if (real_stop_pc)
6637 {
6638 /* And put the step-breakpoint there and go until there. */
6639 struct symtab_and_line sr_sal;
6640
6641 init_sal (&sr_sal); /* initialize to zeroes */
6642 sr_sal.pc = real_stop_pc;
6643 sr_sal.section = find_pc_overlay (sr_sal.pc);
6644 sr_sal.pspace = get_frame_program_space (frame);
6645
6646 /* Do not specify what the fp should be when we stop since
6647 on some machines the prologue is where the new fp value
6648 is established. */
6649 insert_step_resume_breakpoint_at_sal (gdbarch,
6650 sr_sal, null_frame_id);
6651
6652 /* Restart without fiddling with the step ranges or
6653 other state. */
6654 keep_going (ecs);
6655 return;
6656 }
6657 }
6658
c17eaafe
DJ
6659 /* Check for subroutine calls. The check for the current frame
6660 equalling the step ID is not necessary - the check of the
6661 previous frame's ID is sufficient - but it is a common case and
6662 cheaper than checking the previous frame's ID.
14e60db5
DJ
6663
6664 NOTE: frame_id_eq will never report two invalid frame IDs as
6665 being equal, so to get into this block, both the current and
6666 previous frame must have valid frame IDs. */
005ca36a
JB
6667 /* The outer_frame_id check is a heuristic to detect stepping
6668 through startup code. If we step over an instruction which
6669 sets the stack pointer from an invalid value to a valid value,
6670 we may detect that as a subroutine call from the mythical
6671 "outermost" function. This could be fixed by marking
6672 outermost frames as !stack_p,code_p,special_p. Then the
6673 initial outermost frame, before sp was valid, would
ce6cca6d 6674 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6675 for more. */
edb3359d 6676 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6677 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6678 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6679 ecs->event_thread->control.step_stack_frame_id)
6680 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6681 outer_frame_id)
885eeb5b
PA
6682 || (ecs->event_thread->control.step_start_function
6683 != find_pc_function (stop_pc)))))
488f131b 6684 {
95918acb 6685 CORE_ADDR real_stop_pc;
8fb3e588 6686
527159b7 6687 if (debug_infrun)
8a9de0e4 6688 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6689
b7a084be 6690 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6691 {
6692 /* I presume that step_over_calls is only 0 when we're
6693 supposed to be stepping at the assembly language level
6694 ("stepi"). Just stop. */
388a8562 6695 /* And this works the same backward as frontward. MVS */
bdc36728 6696 end_stepping_range (ecs);
95918acb
AC
6697 return;
6698 }
8fb3e588 6699
388a8562
MS
6700 /* Reverse stepping through solib trampolines. */
6701
6702 if (execution_direction == EXEC_REVERSE
16c381f0 6703 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6704 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6705 || (ecs->stop_func_start == 0
6706 && in_solib_dynsym_resolve_code (stop_pc))))
6707 {
6708 /* Any solib trampoline code can be handled in reverse
6709 by simply continuing to single-step. We have already
6710 executed the solib function (backwards), and a few
6711 steps will take us back through the trampoline to the
6712 caller. */
6713 keep_going (ecs);
6714 return;
6715 }
6716
16c381f0 6717 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6718 {
b2175913
MS
6719 /* We're doing a "next".
6720
6721 Normal (forward) execution: set a breakpoint at the
6722 callee's return address (the address at which the caller
6723 will resume).
6724
6725 Reverse (backward) execution. set the step-resume
6726 breakpoint at the start of the function that we just
6727 stepped into (backwards), and continue to there. When we
6130d0b7 6728 get there, we'll need to single-step back to the caller. */
b2175913
MS
6729
6730 if (execution_direction == EXEC_REVERSE)
6731 {
acf9414f
JK
6732 /* If we're already at the start of the function, we've either
6733 just stepped backward into a single instruction function,
6734 or stepped back out of a signal handler to the first instruction
6735 of the function. Just keep going, which will single-step back
6736 to the caller. */
58c48e72 6737 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6738 {
6739 struct symtab_and_line sr_sal;
6740
6741 /* Normal function call return (static or dynamic). */
6742 init_sal (&sr_sal);
6743 sr_sal.pc = ecs->stop_func_start;
6744 sr_sal.pspace = get_frame_program_space (frame);
6745 insert_step_resume_breakpoint_at_sal (gdbarch,
6746 sr_sal, null_frame_id);
6747 }
b2175913
MS
6748 }
6749 else
568d6575 6750 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6751
8567c30f
AC
6752 keep_going (ecs);
6753 return;
6754 }
a53c66de 6755
95918acb 6756 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6757 calling routine and the real function), locate the real
6758 function. That's what tells us (a) whether we want to step
6759 into it at all, and (b) what prologue we want to run to the
6760 end of, if we do step into it. */
568d6575 6761 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6762 if (real_stop_pc == 0)
568d6575 6763 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6764 if (real_stop_pc != 0)
6765 ecs->stop_func_start = real_stop_pc;
8fb3e588 6766
db5f024e 6767 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6768 {
6769 struct symtab_and_line sr_sal;
abbb1732 6770
1b2bfbb9
RC
6771 init_sal (&sr_sal);
6772 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6773 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6774
a6d9a66e
UW
6775 insert_step_resume_breakpoint_at_sal (gdbarch,
6776 sr_sal, null_frame_id);
8fb3e588
AC
6777 keep_going (ecs);
6778 return;
1b2bfbb9
RC
6779 }
6780
95918acb 6781 /* If we have line number information for the function we are
1bfeeb0f
JL
6782 thinking of stepping into and the function isn't on the skip
6783 list, step into it.
95918acb 6784
8fb3e588
AC
6785 If there are several symtabs at that PC (e.g. with include
6786 files), just want to know whether *any* of them have line
6787 numbers. find_pc_line handles this. */
95918acb
AC
6788 {
6789 struct symtab_and_line tmp_sal;
8fb3e588 6790
95918acb 6791 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6792 if (tmp_sal.line != 0
85817405
JK
6793 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6794 &tmp_sal))
95918acb 6795 {
b2175913 6796 if (execution_direction == EXEC_REVERSE)
568d6575 6797 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6798 else
568d6575 6799 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6800 return;
6801 }
6802 }
6803
6804 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6805 set, we stop the step so that the user has a chance to switch
6806 in assembly mode. */
16c381f0 6807 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6808 && step_stop_if_no_debug)
95918acb 6809 {
bdc36728 6810 end_stepping_range (ecs);
95918acb
AC
6811 return;
6812 }
6813
b2175913
MS
6814 if (execution_direction == EXEC_REVERSE)
6815 {
acf9414f
JK
6816 /* If we're already at the start of the function, we've either just
6817 stepped backward into a single instruction function without line
6818 number info, or stepped back out of a signal handler to the first
6819 instruction of the function without line number info. Just keep
6820 going, which will single-step back to the caller. */
6821 if (ecs->stop_func_start != stop_pc)
6822 {
6823 /* Set a breakpoint at callee's start address.
6824 From there we can step once and be back in the caller. */
6825 struct symtab_and_line sr_sal;
abbb1732 6826
acf9414f
JK
6827 init_sal (&sr_sal);
6828 sr_sal.pc = ecs->stop_func_start;
6829 sr_sal.pspace = get_frame_program_space (frame);
6830 insert_step_resume_breakpoint_at_sal (gdbarch,
6831 sr_sal, null_frame_id);
6832 }
b2175913
MS
6833 }
6834 else
6835 /* Set a breakpoint at callee's return address (the address
6836 at which the caller will resume). */
568d6575 6837 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6838
95918acb 6839 keep_going (ecs);
488f131b 6840 return;
488f131b 6841 }
c906108c 6842
fdd654f3
MS
6843 /* Reverse stepping through solib trampolines. */
6844
6845 if (execution_direction == EXEC_REVERSE
16c381f0 6846 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6847 {
6848 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6849 || (ecs->stop_func_start == 0
6850 && in_solib_dynsym_resolve_code (stop_pc)))
6851 {
6852 /* Any solib trampoline code can be handled in reverse
6853 by simply continuing to single-step. We have already
6854 executed the solib function (backwards), and a few
6855 steps will take us back through the trampoline to the
6856 caller. */
6857 keep_going (ecs);
6858 return;
6859 }
6860 else if (in_solib_dynsym_resolve_code (stop_pc))
6861 {
6862 /* Stepped backward into the solib dynsym resolver.
6863 Set a breakpoint at its start and continue, then
6864 one more step will take us out. */
6865 struct symtab_and_line sr_sal;
abbb1732 6866
fdd654f3
MS
6867 init_sal (&sr_sal);
6868 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6869 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6870 insert_step_resume_breakpoint_at_sal (gdbarch,
6871 sr_sal, null_frame_id);
6872 keep_going (ecs);
6873 return;
6874 }
6875 }
6876
2afb61aa 6877 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6878
1b2bfbb9
RC
6879 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6880 the trampoline processing logic, however, there are some trampolines
6881 that have no names, so we should do trampoline handling first. */
16c381f0 6882 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6883 && ecs->stop_func_name == NULL
2afb61aa 6884 && stop_pc_sal.line == 0)
1b2bfbb9 6885 {
527159b7 6886 if (debug_infrun)
3e43a32a
MS
6887 fprintf_unfiltered (gdb_stdlog,
6888 "infrun: stepped into undebuggable function\n");
527159b7 6889
1b2bfbb9 6890 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6891 undebuggable function (where there is no debugging information
6892 and no line number corresponding to the address where the
1b2bfbb9
RC
6893 inferior stopped). Since we want to skip this kind of code,
6894 we keep going until the inferior returns from this
14e60db5
DJ
6895 function - unless the user has asked us not to (via
6896 set step-mode) or we no longer know how to get back
6897 to the call site. */
6898 if (step_stop_if_no_debug
c7ce8faa 6899 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6900 {
6901 /* If we have no line number and the step-stop-if-no-debug
6902 is set, we stop the step so that the user has a chance to
6903 switch in assembly mode. */
bdc36728 6904 end_stepping_range (ecs);
1b2bfbb9
RC
6905 return;
6906 }
6907 else
6908 {
6909 /* Set a breakpoint at callee's return address (the address
6910 at which the caller will resume). */
568d6575 6911 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6912 keep_going (ecs);
6913 return;
6914 }
6915 }
6916
16c381f0 6917 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6918 {
6919 /* It is stepi or nexti. We always want to stop stepping after
6920 one instruction. */
527159b7 6921 if (debug_infrun)
8a9de0e4 6922 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6923 end_stepping_range (ecs);
1b2bfbb9
RC
6924 return;
6925 }
6926
2afb61aa 6927 if (stop_pc_sal.line == 0)
488f131b
JB
6928 {
6929 /* We have no line number information. That means to stop
6930 stepping (does this always happen right after one instruction,
6931 when we do "s" in a function with no line numbers,
6932 or can this happen as a result of a return or longjmp?). */
527159b7 6933 if (debug_infrun)
8a9de0e4 6934 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6935 end_stepping_range (ecs);
488f131b
JB
6936 return;
6937 }
c906108c 6938
edb3359d
DJ
6939 /* Look for "calls" to inlined functions, part one. If the inline
6940 frame machinery detected some skipped call sites, we have entered
6941 a new inline function. */
6942
6943 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6944 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6945 && inline_skipped_frames (ecs->ptid))
6946 {
6947 struct symtab_and_line call_sal;
6948
6949 if (debug_infrun)
6950 fprintf_unfiltered (gdb_stdlog,
6951 "infrun: stepped into inlined function\n");
6952
6953 find_frame_sal (get_current_frame (), &call_sal);
6954
16c381f0 6955 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6956 {
6957 /* For "step", we're going to stop. But if the call site
6958 for this inlined function is on the same source line as
6959 we were previously stepping, go down into the function
6960 first. Otherwise stop at the call site. */
6961
6962 if (call_sal.line == ecs->event_thread->current_line
6963 && call_sal.symtab == ecs->event_thread->current_symtab)
6964 step_into_inline_frame (ecs->ptid);
6965
bdc36728 6966 end_stepping_range (ecs);
edb3359d
DJ
6967 return;
6968 }
6969 else
6970 {
6971 /* For "next", we should stop at the call site if it is on a
6972 different source line. Otherwise continue through the
6973 inlined function. */
6974 if (call_sal.line == ecs->event_thread->current_line
6975 && call_sal.symtab == ecs->event_thread->current_symtab)
6976 keep_going (ecs);
6977 else
bdc36728 6978 end_stepping_range (ecs);
edb3359d
DJ
6979 return;
6980 }
6981 }
6982
6983 /* Look for "calls" to inlined functions, part two. If we are still
6984 in the same real function we were stepping through, but we have
6985 to go further up to find the exact frame ID, we are stepping
6986 through a more inlined call beyond its call site. */
6987
6988 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6989 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6990 ecs->event_thread->control.step_frame_id)
edb3359d 6991 && stepped_in_from (get_current_frame (),
16c381f0 6992 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6993 {
6994 if (debug_infrun)
6995 fprintf_unfiltered (gdb_stdlog,
6996 "infrun: stepping through inlined function\n");
6997
16c381f0 6998 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6999 keep_going (ecs);
7000 else
bdc36728 7001 end_stepping_range (ecs);
edb3359d
DJ
7002 return;
7003 }
7004
2afb61aa 7005 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7006 && (ecs->event_thread->current_line != stop_pc_sal.line
7007 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
7008 {
7009 /* We are at the start of a different line. So stop. Note that
7010 we don't stop if we step into the middle of a different line.
7011 That is said to make things like for (;;) statements work
7012 better. */
527159b7 7013 if (debug_infrun)
3e43a32a
MS
7014 fprintf_unfiltered (gdb_stdlog,
7015 "infrun: stepped to a different line\n");
bdc36728 7016 end_stepping_range (ecs);
488f131b
JB
7017 return;
7018 }
c906108c 7019
488f131b 7020 /* We aren't done stepping.
c906108c 7021
488f131b
JB
7022 Optimize by setting the stepping range to the line.
7023 (We might not be in the original line, but if we entered a
7024 new line in mid-statement, we continue stepping. This makes
7025 things like for(;;) statements work better.) */
c906108c 7026
16c381f0
JK
7027 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7028 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7029 ecs->event_thread->control.may_range_step = 1;
edb3359d 7030 set_step_info (frame, stop_pc_sal);
488f131b 7031
527159b7 7032 if (debug_infrun)
8a9de0e4 7033 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7034 keep_going (ecs);
104c1213
JM
7035}
7036
c447ac0b
PA
7037/* In all-stop mode, if we're currently stepping but have stopped in
7038 some other thread, we may need to switch back to the stepped
7039 thread. Returns true we set the inferior running, false if we left
7040 it stopped (and the event needs further processing). */
7041
7042static int
7043switch_back_to_stepped_thread (struct execution_control_state *ecs)
7044{
fbea99ea 7045 if (!target_is_non_stop_p ())
c447ac0b
PA
7046 {
7047 struct thread_info *tp;
99619bea
PA
7048 struct thread_info *stepping_thread;
7049
7050 /* If any thread is blocked on some internal breakpoint, and we
7051 simply need to step over that breakpoint to get it going
7052 again, do that first. */
7053
7054 /* However, if we see an event for the stepping thread, then we
7055 know all other threads have been moved past their breakpoints
7056 already. Let the caller check whether the step is finished,
7057 etc., before deciding to move it past a breakpoint. */
7058 if (ecs->event_thread->control.step_range_end != 0)
7059 return 0;
7060
7061 /* Check if the current thread is blocked on an incomplete
7062 step-over, interrupted by a random signal. */
7063 if (ecs->event_thread->control.trap_expected
7064 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7065 {
99619bea
PA
7066 if (debug_infrun)
7067 {
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: need to finish step-over of [%s]\n",
7070 target_pid_to_str (ecs->event_thread->ptid));
7071 }
7072 keep_going (ecs);
7073 return 1;
7074 }
2adfaa28 7075
99619bea
PA
7076 /* Check if the current thread is blocked by a single-step
7077 breakpoint of another thread. */
7078 if (ecs->hit_singlestep_breakpoint)
7079 {
7080 if (debug_infrun)
7081 {
7082 fprintf_unfiltered (gdb_stdlog,
7083 "infrun: need to step [%s] over single-step "
7084 "breakpoint\n",
7085 target_pid_to_str (ecs->ptid));
7086 }
7087 keep_going (ecs);
7088 return 1;
7089 }
7090
4d9d9d04
PA
7091 /* If this thread needs yet another step-over (e.g., stepping
7092 through a delay slot), do it first before moving on to
7093 another thread. */
7094 if (thread_still_needs_step_over (ecs->event_thread))
7095 {
7096 if (debug_infrun)
7097 {
7098 fprintf_unfiltered (gdb_stdlog,
7099 "infrun: thread [%s] still needs step-over\n",
7100 target_pid_to_str (ecs->event_thread->ptid));
7101 }
7102 keep_going (ecs);
7103 return 1;
7104 }
70509625 7105
483805cf
PA
7106 /* If scheduler locking applies even if not stepping, there's no
7107 need to walk over threads. Above we've checked whether the
7108 current thread is stepping. If some other thread not the
7109 event thread is stepping, then it must be that scheduler
7110 locking is not in effect. */
856e7dd6 7111 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7112 return 0;
7113
4d9d9d04
PA
7114 /* Otherwise, we no longer expect a trap in the current thread.
7115 Clear the trap_expected flag before switching back -- this is
7116 what keep_going does as well, if we call it. */
7117 ecs->event_thread->control.trap_expected = 0;
7118
7119 /* Likewise, clear the signal if it should not be passed. */
7120 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7121 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7122
7123 /* Do all pending step-overs before actually proceeding with
483805cf 7124 step/next/etc. */
4d9d9d04
PA
7125 if (start_step_over ())
7126 {
7127 prepare_to_wait (ecs);
7128 return 1;
7129 }
7130
7131 /* Look for the stepping/nexting thread. */
483805cf 7132 stepping_thread = NULL;
4d9d9d04 7133
034f788c 7134 ALL_NON_EXITED_THREADS (tp)
483805cf 7135 {
fbea99ea
PA
7136 /* Ignore threads of processes the caller is not
7137 resuming. */
483805cf 7138 if (!sched_multi
1afd5965 7139 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7140 continue;
7141
7142 /* When stepping over a breakpoint, we lock all threads
7143 except the one that needs to move past the breakpoint.
7144 If a non-event thread has this set, the "incomplete
7145 step-over" check above should have caught it earlier. */
372316f1
PA
7146 if (tp->control.trap_expected)
7147 {
7148 internal_error (__FILE__, __LINE__,
7149 "[%s] has inconsistent state: "
7150 "trap_expected=%d\n",
7151 target_pid_to_str (tp->ptid),
7152 tp->control.trap_expected);
7153 }
483805cf
PA
7154
7155 /* Did we find the stepping thread? */
7156 if (tp->control.step_range_end)
7157 {
7158 /* Yep. There should only one though. */
7159 gdb_assert (stepping_thread == NULL);
7160
7161 /* The event thread is handled at the top, before we
7162 enter this loop. */
7163 gdb_assert (tp != ecs->event_thread);
7164
7165 /* If some thread other than the event thread is
7166 stepping, then scheduler locking can't be in effect,
7167 otherwise we wouldn't have resumed the current event
7168 thread in the first place. */
856e7dd6 7169 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7170
7171 stepping_thread = tp;
7172 }
99619bea
PA
7173 }
7174
483805cf 7175 if (stepping_thread != NULL)
99619bea 7176 {
c447ac0b
PA
7177 if (debug_infrun)
7178 fprintf_unfiltered (gdb_stdlog,
7179 "infrun: switching back to stepped thread\n");
7180
2ac7589c
PA
7181 if (keep_going_stepped_thread (stepping_thread))
7182 {
7183 prepare_to_wait (ecs);
7184 return 1;
7185 }
7186 }
7187 }
2adfaa28 7188
2ac7589c
PA
7189 return 0;
7190}
2adfaa28 7191
2ac7589c
PA
7192/* Set a previously stepped thread back to stepping. Returns true on
7193 success, false if the resume is not possible (e.g., the thread
7194 vanished). */
7195
7196static int
7197keep_going_stepped_thread (struct thread_info *tp)
7198{
7199 struct frame_info *frame;
2ac7589c
PA
7200 struct execution_control_state ecss;
7201 struct execution_control_state *ecs = &ecss;
2adfaa28 7202
2ac7589c
PA
7203 /* If the stepping thread exited, then don't try to switch back and
7204 resume it, which could fail in several different ways depending
7205 on the target. Instead, just keep going.
2adfaa28 7206
2ac7589c
PA
7207 We can find a stepping dead thread in the thread list in two
7208 cases:
2adfaa28 7209
2ac7589c
PA
7210 - The target supports thread exit events, and when the target
7211 tries to delete the thread from the thread list, inferior_ptid
7212 pointed at the exiting thread. In such case, calling
7213 delete_thread does not really remove the thread from the list;
7214 instead, the thread is left listed, with 'exited' state.
64ce06e4 7215
2ac7589c
PA
7216 - The target's debug interface does not support thread exit
7217 events, and so we have no idea whatsoever if the previously
7218 stepping thread is still alive. For that reason, we need to
7219 synchronously query the target now. */
2adfaa28 7220
2ac7589c
PA
7221 if (is_exited (tp->ptid)
7222 || !target_thread_alive (tp->ptid))
7223 {
7224 if (debug_infrun)
7225 fprintf_unfiltered (gdb_stdlog,
7226 "infrun: not resuming previously "
7227 "stepped thread, it has vanished\n");
7228
7229 delete_thread (tp->ptid);
7230 return 0;
c447ac0b 7231 }
2ac7589c
PA
7232
7233 if (debug_infrun)
7234 fprintf_unfiltered (gdb_stdlog,
7235 "infrun: resuming previously stepped thread\n");
7236
7237 reset_ecs (ecs, tp);
7238 switch_to_thread (tp->ptid);
7239
7240 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7241 frame = get_current_frame ();
2ac7589c
PA
7242
7243 /* If the PC of the thread we were trying to single-step has
7244 changed, then that thread has trapped or been signaled, but the
7245 event has not been reported to GDB yet. Re-poll the target
7246 looking for this particular thread's event (i.e. temporarily
7247 enable schedlock) by:
7248
7249 - setting a break at the current PC
7250 - resuming that particular thread, only (by setting trap
7251 expected)
7252
7253 This prevents us continuously moving the single-step breakpoint
7254 forward, one instruction at a time, overstepping. */
7255
7256 if (stop_pc != tp->prev_pc)
7257 {
7258 ptid_t resume_ptid;
7259
7260 if (debug_infrun)
7261 fprintf_unfiltered (gdb_stdlog,
7262 "infrun: expected thread advanced also (%s -> %s)\n",
7263 paddress (target_gdbarch (), tp->prev_pc),
7264 paddress (target_gdbarch (), stop_pc));
7265
7266 /* Clear the info of the previous step-over, as it's no longer
7267 valid (if the thread was trying to step over a breakpoint, it
7268 has already succeeded). It's what keep_going would do too,
7269 if we called it. Do this before trying to insert the sss
7270 breakpoint, otherwise if we were previously trying to step
7271 over this exact address in another thread, the breakpoint is
7272 skipped. */
7273 clear_step_over_info ();
7274 tp->control.trap_expected = 0;
7275
7276 insert_single_step_breakpoint (get_frame_arch (frame),
7277 get_frame_address_space (frame),
7278 stop_pc);
7279
372316f1 7280 tp->resumed = 1;
fbea99ea 7281 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7282 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7283 }
7284 else
7285 {
7286 if (debug_infrun)
7287 fprintf_unfiltered (gdb_stdlog,
7288 "infrun: expected thread still hasn't advanced\n");
7289
7290 keep_going_pass_signal (ecs);
7291 }
7292 return 1;
c447ac0b
PA
7293}
7294
8b061563
PA
7295/* Is thread TP in the middle of (software or hardware)
7296 single-stepping? (Note the result of this function must never be
7297 passed directly as target_resume's STEP parameter.) */
104c1213 7298
a289b8f6 7299static int
b3444185 7300currently_stepping (struct thread_info *tp)
a7212384 7301{
8358c15c
JK
7302 return ((tp->control.step_range_end
7303 && tp->control.step_resume_breakpoint == NULL)
7304 || tp->control.trap_expected
af48d08f 7305 || tp->stepped_breakpoint
8358c15c 7306 || bpstat_should_step ());
a7212384
UW
7307}
7308
b2175913
MS
7309/* Inferior has stepped into a subroutine call with source code that
7310 we should not step over. Do step to the first line of code in
7311 it. */
c2c6d25f
JM
7312
7313static void
568d6575
UW
7314handle_step_into_function (struct gdbarch *gdbarch,
7315 struct execution_control_state *ecs)
c2c6d25f 7316{
43f3e411 7317 struct compunit_symtab *cust;
2afb61aa 7318 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7319
7e324e48
GB
7320 fill_in_stop_func (gdbarch, ecs);
7321
43f3e411
DE
7322 cust = find_pc_compunit_symtab (stop_pc);
7323 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7324 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7325 ecs->stop_func_start);
c2c6d25f 7326
2afb61aa 7327 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7328 /* Use the step_resume_break to step until the end of the prologue,
7329 even if that involves jumps (as it seems to on the vax under
7330 4.2). */
7331 /* If the prologue ends in the middle of a source line, continue to
7332 the end of that source line (if it is still within the function).
7333 Otherwise, just go to end of prologue. */
2afb61aa
PA
7334 if (stop_func_sal.end
7335 && stop_func_sal.pc != ecs->stop_func_start
7336 && stop_func_sal.end < ecs->stop_func_end)
7337 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7338
2dbd5e30
KB
7339 /* Architectures which require breakpoint adjustment might not be able
7340 to place a breakpoint at the computed address. If so, the test
7341 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7342 ecs->stop_func_start to an address at which a breakpoint may be
7343 legitimately placed.
8fb3e588 7344
2dbd5e30
KB
7345 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7346 made, GDB will enter an infinite loop when stepping through
7347 optimized code consisting of VLIW instructions which contain
7348 subinstructions corresponding to different source lines. On
7349 FR-V, it's not permitted to place a breakpoint on any but the
7350 first subinstruction of a VLIW instruction. When a breakpoint is
7351 set, GDB will adjust the breakpoint address to the beginning of
7352 the VLIW instruction. Thus, we need to make the corresponding
7353 adjustment here when computing the stop address. */
8fb3e588 7354
568d6575 7355 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7356 {
7357 ecs->stop_func_start
568d6575 7358 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7359 ecs->stop_func_start);
2dbd5e30
KB
7360 }
7361
c2c6d25f
JM
7362 if (ecs->stop_func_start == stop_pc)
7363 {
7364 /* We are already there: stop now. */
bdc36728 7365 end_stepping_range (ecs);
c2c6d25f
JM
7366 return;
7367 }
7368 else
7369 {
7370 /* Put the step-breakpoint there and go until there. */
fe39c653 7371 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7372 sr_sal.pc = ecs->stop_func_start;
7373 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7374 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7375
c2c6d25f 7376 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7377 some machines the prologue is where the new fp value is
7378 established. */
a6d9a66e 7379 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7380
7381 /* And make sure stepping stops right away then. */
16c381f0
JK
7382 ecs->event_thread->control.step_range_end
7383 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7384 }
7385 keep_going (ecs);
7386}
d4f3574e 7387
b2175913
MS
7388/* Inferior has stepped backward into a subroutine call with source
7389 code that we should not step over. Do step to the beginning of the
7390 last line of code in it. */
7391
7392static void
568d6575
UW
7393handle_step_into_function_backward (struct gdbarch *gdbarch,
7394 struct execution_control_state *ecs)
b2175913 7395{
43f3e411 7396 struct compunit_symtab *cust;
167e4384 7397 struct symtab_and_line stop_func_sal;
b2175913 7398
7e324e48
GB
7399 fill_in_stop_func (gdbarch, ecs);
7400
43f3e411
DE
7401 cust = find_pc_compunit_symtab (stop_pc);
7402 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7403 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7404 ecs->stop_func_start);
7405
7406 stop_func_sal = find_pc_line (stop_pc, 0);
7407
7408 /* OK, we're just going to keep stepping here. */
7409 if (stop_func_sal.pc == stop_pc)
7410 {
7411 /* We're there already. Just stop stepping now. */
bdc36728 7412 end_stepping_range (ecs);
b2175913
MS
7413 }
7414 else
7415 {
7416 /* Else just reset the step range and keep going.
7417 No step-resume breakpoint, they don't work for
7418 epilogues, which can have multiple entry paths. */
16c381f0
JK
7419 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7420 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7421 keep_going (ecs);
7422 }
7423 return;
7424}
7425
d3169d93 7426/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7427 This is used to both functions and to skip over code. */
7428
7429static void
2c03e5be
PA
7430insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7431 struct symtab_and_line sr_sal,
7432 struct frame_id sr_id,
7433 enum bptype sr_type)
44cbf7b5 7434{
611c83ae
PA
7435 /* There should never be more than one step-resume or longjmp-resume
7436 breakpoint per thread, so we should never be setting a new
44cbf7b5 7437 step_resume_breakpoint when one is already active. */
8358c15c 7438 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7439 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7440
7441 if (debug_infrun)
7442 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7443 "infrun: inserting step-resume breakpoint at %s\n",
7444 paddress (gdbarch, sr_sal.pc));
d3169d93 7445
8358c15c 7446 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7447 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7448}
7449
9da8c2a0 7450void
2c03e5be
PA
7451insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7452 struct symtab_and_line sr_sal,
7453 struct frame_id sr_id)
7454{
7455 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7456 sr_sal, sr_id,
7457 bp_step_resume);
44cbf7b5 7458}
7ce450bd 7459
2c03e5be
PA
7460/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7461 This is used to skip a potential signal handler.
7ce450bd 7462
14e60db5
DJ
7463 This is called with the interrupted function's frame. The signal
7464 handler, when it returns, will resume the interrupted function at
7465 RETURN_FRAME.pc. */
d303a6c7
AC
7466
7467static void
2c03e5be 7468insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7469{
7470 struct symtab_and_line sr_sal;
a6d9a66e 7471 struct gdbarch *gdbarch;
d303a6c7 7472
f4c1edd8 7473 gdb_assert (return_frame != NULL);
d303a6c7
AC
7474 init_sal (&sr_sal); /* initialize to zeros */
7475
a6d9a66e 7476 gdbarch = get_frame_arch (return_frame);
568d6575 7477 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7478 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7479 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7480
2c03e5be
PA
7481 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7482 get_stack_frame_id (return_frame),
7483 bp_hp_step_resume);
d303a6c7
AC
7484}
7485
2c03e5be
PA
7486/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7487 is used to skip a function after stepping into it (for "next" or if
7488 the called function has no debugging information).
14e60db5
DJ
7489
7490 The current function has almost always been reached by single
7491 stepping a call or return instruction. NEXT_FRAME belongs to the
7492 current function, and the breakpoint will be set at the caller's
7493 resume address.
7494
7495 This is a separate function rather than reusing
2c03e5be 7496 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7497 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7498 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7499
7500static void
7501insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7502{
7503 struct symtab_and_line sr_sal;
a6d9a66e 7504 struct gdbarch *gdbarch;
14e60db5
DJ
7505
7506 /* We shouldn't have gotten here if we don't know where the call site
7507 is. */
c7ce8faa 7508 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7509
7510 init_sal (&sr_sal); /* initialize to zeros */
7511
a6d9a66e 7512 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7513 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7514 frame_unwind_caller_pc (next_frame));
14e60db5 7515 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7516 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7517
a6d9a66e 7518 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7519 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7520}
7521
611c83ae
PA
7522/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7523 new breakpoint at the target of a jmp_buf. The handling of
7524 longjmp-resume uses the same mechanisms used for handling
7525 "step-resume" breakpoints. */
7526
7527static void
a6d9a66e 7528insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7529{
e81a37f7
TT
7530 /* There should never be more than one longjmp-resume breakpoint per
7531 thread, so we should never be setting a new
611c83ae 7532 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7533 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7534
7535 if (debug_infrun)
7536 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7537 "infrun: inserting longjmp-resume breakpoint at %s\n",
7538 paddress (gdbarch, pc));
611c83ae 7539
e81a37f7 7540 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7541 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7542}
7543
186c406b
TT
7544/* Insert an exception resume breakpoint. TP is the thread throwing
7545 the exception. The block B is the block of the unwinder debug hook
7546 function. FRAME is the frame corresponding to the call to this
7547 function. SYM is the symbol of the function argument holding the
7548 target PC of the exception. */
7549
7550static void
7551insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7552 const struct block *b,
186c406b
TT
7553 struct frame_info *frame,
7554 struct symbol *sym)
7555{
492d29ea 7556 TRY
186c406b 7557 {
63e43d3a 7558 struct block_symbol vsym;
186c406b
TT
7559 struct value *value;
7560 CORE_ADDR handler;
7561 struct breakpoint *bp;
7562
63e43d3a
PMR
7563 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7564 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7565 /* If the value was optimized out, revert to the old behavior. */
7566 if (! value_optimized_out (value))
7567 {
7568 handler = value_as_address (value);
7569
7570 if (debug_infrun)
7571 fprintf_unfiltered (gdb_stdlog,
7572 "infrun: exception resume at %lx\n",
7573 (unsigned long) handler);
7574
7575 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7576 handler, bp_exception_resume);
c70a6932
JK
7577
7578 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7579 frame = NULL;
7580
5d5658a1 7581 bp->thread = tp->global_num;
186c406b
TT
7582 inferior_thread ()->control.exception_resume_breakpoint = bp;
7583 }
7584 }
492d29ea
PA
7585 CATCH (e, RETURN_MASK_ERROR)
7586 {
7587 /* We want to ignore errors here. */
7588 }
7589 END_CATCH
186c406b
TT
7590}
7591
28106bc2
SDJ
7592/* A helper for check_exception_resume that sets an
7593 exception-breakpoint based on a SystemTap probe. */
7594
7595static void
7596insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7597 const struct bound_probe *probe,
28106bc2
SDJ
7598 struct frame_info *frame)
7599{
7600 struct value *arg_value;
7601 CORE_ADDR handler;
7602 struct breakpoint *bp;
7603
7604 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7605 if (!arg_value)
7606 return;
7607
7608 handler = value_as_address (arg_value);
7609
7610 if (debug_infrun)
7611 fprintf_unfiltered (gdb_stdlog,
7612 "infrun: exception resume at %s\n",
6bac7473 7613 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7614 handler));
7615
7616 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7617 handler, bp_exception_resume);
5d5658a1 7618 bp->thread = tp->global_num;
28106bc2
SDJ
7619 inferior_thread ()->control.exception_resume_breakpoint = bp;
7620}
7621
186c406b
TT
7622/* This is called when an exception has been intercepted. Check to
7623 see whether the exception's destination is of interest, and if so,
7624 set an exception resume breakpoint there. */
7625
7626static void
7627check_exception_resume (struct execution_control_state *ecs,
28106bc2 7628 struct frame_info *frame)
186c406b 7629{
729662a5 7630 struct bound_probe probe;
28106bc2
SDJ
7631 struct symbol *func;
7632
7633 /* First see if this exception unwinding breakpoint was set via a
7634 SystemTap probe point. If so, the probe has two arguments: the
7635 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7636 set a breakpoint there. */
6bac7473 7637 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7638 if (probe.probe)
28106bc2 7639 {
729662a5 7640 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7641 return;
7642 }
7643
7644 func = get_frame_function (frame);
7645 if (!func)
7646 return;
186c406b 7647
492d29ea 7648 TRY
186c406b 7649 {
3977b71f 7650 const struct block *b;
8157b174 7651 struct block_iterator iter;
186c406b
TT
7652 struct symbol *sym;
7653 int argno = 0;
7654
7655 /* The exception breakpoint is a thread-specific breakpoint on
7656 the unwinder's debug hook, declared as:
7657
7658 void _Unwind_DebugHook (void *cfa, void *handler);
7659
7660 The CFA argument indicates the frame to which control is
7661 about to be transferred. HANDLER is the destination PC.
7662
7663 We ignore the CFA and set a temporary breakpoint at HANDLER.
7664 This is not extremely efficient but it avoids issues in gdb
7665 with computing the DWARF CFA, and it also works even in weird
7666 cases such as throwing an exception from inside a signal
7667 handler. */
7668
7669 b = SYMBOL_BLOCK_VALUE (func);
7670 ALL_BLOCK_SYMBOLS (b, iter, sym)
7671 {
7672 if (!SYMBOL_IS_ARGUMENT (sym))
7673 continue;
7674
7675 if (argno == 0)
7676 ++argno;
7677 else
7678 {
7679 insert_exception_resume_breakpoint (ecs->event_thread,
7680 b, frame, sym);
7681 break;
7682 }
7683 }
7684 }
492d29ea
PA
7685 CATCH (e, RETURN_MASK_ERROR)
7686 {
7687 }
7688 END_CATCH
186c406b
TT
7689}
7690
104c1213 7691static void
22bcd14b 7692stop_waiting (struct execution_control_state *ecs)
104c1213 7693{
527159b7 7694 if (debug_infrun)
22bcd14b 7695 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7696
cd0fc7c3
SS
7697 /* Let callers know we don't want to wait for the inferior anymore. */
7698 ecs->wait_some_more = 0;
fbea99ea
PA
7699
7700 /* If all-stop, but the target is always in non-stop mode, stop all
7701 threads now that we're presenting the stop to the user. */
7702 if (!non_stop && target_is_non_stop_p ())
7703 stop_all_threads ();
cd0fc7c3
SS
7704}
7705
4d9d9d04
PA
7706/* Like keep_going, but passes the signal to the inferior, even if the
7707 signal is set to nopass. */
d4f3574e
SS
7708
7709static void
4d9d9d04 7710keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7711{
c4dbc9af
PA
7712 /* Make sure normal_stop is called if we get a QUIT handled before
7713 reaching resume. */
7714 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7715
4d9d9d04 7716 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7717 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7718
d4f3574e 7719 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7720 ecs->event_thread->prev_pc
7721 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7722
4d9d9d04 7723 if (ecs->event_thread->control.trap_expected)
d4f3574e 7724 {
4d9d9d04
PA
7725 struct thread_info *tp = ecs->event_thread;
7726
7727 if (debug_infrun)
7728 fprintf_unfiltered (gdb_stdlog,
7729 "infrun: %s has trap_expected set, "
7730 "resuming to collect trap\n",
7731 target_pid_to_str (tp->ptid));
7732
a9ba6bae
PA
7733 /* We haven't yet gotten our trap, and either: intercepted a
7734 non-signal event (e.g., a fork); or took a signal which we
7735 are supposed to pass through to the inferior. Simply
7736 continue. */
c4dbc9af 7737 discard_cleanups (old_cleanups);
64ce06e4 7738 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7739 }
372316f1
PA
7740 else if (step_over_info_valid_p ())
7741 {
7742 /* Another thread is stepping over a breakpoint in-line. If
7743 this thread needs a step-over too, queue the request. In
7744 either case, this resume must be deferred for later. */
7745 struct thread_info *tp = ecs->event_thread;
7746
7747 if (ecs->hit_singlestep_breakpoint
7748 || thread_still_needs_step_over (tp))
7749 {
7750 if (debug_infrun)
7751 fprintf_unfiltered (gdb_stdlog,
7752 "infrun: step-over already in progress: "
7753 "step-over for %s deferred\n",
7754 target_pid_to_str (tp->ptid));
7755 thread_step_over_chain_enqueue (tp);
7756 }
7757 else
7758 {
7759 if (debug_infrun)
7760 fprintf_unfiltered (gdb_stdlog,
7761 "infrun: step-over in progress: "
7762 "resume of %s deferred\n",
7763 target_pid_to_str (tp->ptid));
7764 }
7765
7766 discard_cleanups (old_cleanups);
7767 }
d4f3574e
SS
7768 else
7769 {
31e77af2 7770 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7771 int remove_bp;
7772 int remove_wps;
8d297bbf 7773 step_over_what step_what;
31e77af2 7774
d4f3574e 7775 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7776 anyway (if we got a signal, the user asked it be passed to
7777 the child)
7778 -- or --
7779 We got our expected trap, but decided we should resume from
7780 it.
d4f3574e 7781
a9ba6bae 7782 We're going to run this baby now!
d4f3574e 7783
c36b740a
VP
7784 Note that insert_breakpoints won't try to re-insert
7785 already inserted breakpoints. Therefore, we don't
7786 care if breakpoints were already inserted, or not. */
a9ba6bae 7787
31e77af2
PA
7788 /* If we need to step over a breakpoint, and we're not using
7789 displaced stepping to do so, insert all breakpoints
7790 (watchpoints, etc.) but the one we're stepping over, step one
7791 instruction, and then re-insert the breakpoint when that step
7792 is finished. */
963f9c80 7793
6c4cfb24
PA
7794 step_what = thread_still_needs_step_over (ecs->event_thread);
7795
963f9c80 7796 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7797 || (step_what & STEP_OVER_BREAKPOINT));
7798 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7799
cb71640d
PA
7800 /* We can't use displaced stepping if we need to step past a
7801 watchpoint. The instruction copied to the scratch pad would
7802 still trigger the watchpoint. */
7803 if (remove_bp
3fc8eb30 7804 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7805 {
31e77af2 7806 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7807 regcache_read_pc (regcache), remove_wps,
7808 ecs->event_thread->global_num);
45e8c884 7809 }
963f9c80 7810 else if (remove_wps)
21edc42f 7811 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7812
7813 /* If we now need to do an in-line step-over, we need to stop
7814 all other threads. Note this must be done before
7815 insert_breakpoints below, because that removes the breakpoint
7816 we're about to step over, otherwise other threads could miss
7817 it. */
fbea99ea 7818 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7819 stop_all_threads ();
abbb1732 7820
31e77af2 7821 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7822 TRY
31e77af2
PA
7823 {
7824 insert_breakpoints ();
7825 }
492d29ea 7826 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7827 {
7828 exception_print (gdb_stderr, e);
22bcd14b 7829 stop_waiting (ecs);
de1fe8c8 7830 discard_cleanups (old_cleanups);
31e77af2 7831 return;
d4f3574e 7832 }
492d29ea 7833 END_CATCH
d4f3574e 7834
963f9c80 7835 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7836
c4dbc9af 7837 discard_cleanups (old_cleanups);
64ce06e4 7838 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7839 }
7840
488f131b 7841 prepare_to_wait (ecs);
d4f3574e
SS
7842}
7843
4d9d9d04
PA
7844/* Called when we should continue running the inferior, because the
7845 current event doesn't cause a user visible stop. This does the
7846 resuming part; waiting for the next event is done elsewhere. */
7847
7848static void
7849keep_going (struct execution_control_state *ecs)
7850{
7851 if (ecs->event_thread->control.trap_expected
7852 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7853 ecs->event_thread->control.trap_expected = 0;
7854
7855 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7856 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7857 keep_going_pass_signal (ecs);
7858}
7859
104c1213
JM
7860/* This function normally comes after a resume, before
7861 handle_inferior_event exits. It takes care of any last bits of
7862 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7863
104c1213
JM
7864static void
7865prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7866{
527159b7 7867 if (debug_infrun)
8a9de0e4 7868 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7869
104c1213 7870 ecs->wait_some_more = 1;
0b333c5e
PA
7871
7872 if (!target_is_async_p ())
7873 mark_infrun_async_event_handler ();
c906108c 7874}
11cf8741 7875
fd664c91 7876/* We are done with the step range of a step/next/si/ni command.
b57bacec 7877 Called once for each n of a "step n" operation. */
fd664c91
PA
7878
7879static void
bdc36728 7880end_stepping_range (struct execution_control_state *ecs)
fd664c91 7881{
bdc36728 7882 ecs->event_thread->control.stop_step = 1;
bdc36728 7883 stop_waiting (ecs);
fd664c91
PA
7884}
7885
33d62d64
JK
7886/* Several print_*_reason functions to print why the inferior has stopped.
7887 We always print something when the inferior exits, or receives a signal.
7888 The rest of the cases are dealt with later on in normal_stop and
7889 print_it_typical. Ideally there should be a call to one of these
7890 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7891 stop_waiting is called.
33d62d64 7892
fd664c91
PA
7893 Note that we don't call these directly, instead we delegate that to
7894 the interpreters, through observers. Interpreters then call these
7895 with whatever uiout is right. */
33d62d64 7896
fd664c91
PA
7897void
7898print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7899{
fd664c91 7900 /* For CLI-like interpreters, print nothing. */
33d62d64 7901
112e8700 7902 if (uiout->is_mi_like_p ())
fd664c91 7903 {
112e8700 7904 uiout->field_string ("reason",
fd664c91
PA
7905 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7906 }
7907}
33d62d64 7908
fd664c91
PA
7909void
7910print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7911{
33d62d64 7912 annotate_signalled ();
112e8700
SM
7913 if (uiout->is_mi_like_p ())
7914 uiout->field_string
7915 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7916 uiout->text ("\nProgram terminated with signal ");
33d62d64 7917 annotate_signal_name ();
112e8700 7918 uiout->field_string ("signal-name",
2ea28649 7919 gdb_signal_to_name (siggnal));
33d62d64 7920 annotate_signal_name_end ();
112e8700 7921 uiout->text (", ");
33d62d64 7922 annotate_signal_string ();
112e8700 7923 uiout->field_string ("signal-meaning",
2ea28649 7924 gdb_signal_to_string (siggnal));
33d62d64 7925 annotate_signal_string_end ();
112e8700
SM
7926 uiout->text (".\n");
7927 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7928}
7929
fd664c91
PA
7930void
7931print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7932{
fda326dd
TT
7933 struct inferior *inf = current_inferior ();
7934 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7935
33d62d64
JK
7936 annotate_exited (exitstatus);
7937 if (exitstatus)
7938 {
112e8700
SM
7939 if (uiout->is_mi_like_p ())
7940 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7941 uiout->text ("[Inferior ");
7942 uiout->text (plongest (inf->num));
7943 uiout->text (" (");
7944 uiout->text (pidstr);
7945 uiout->text (") exited with code ");
7946 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7947 uiout->text ("]\n");
33d62d64
JK
7948 }
7949 else
11cf8741 7950 {
112e8700
SM
7951 if (uiout->is_mi_like_p ())
7952 uiout->field_string
7953 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7954 uiout->text ("[Inferior ");
7955 uiout->text (plongest (inf->num));
7956 uiout->text (" (");
7957 uiout->text (pidstr);
7958 uiout->text (") exited normally]\n");
33d62d64 7959 }
33d62d64
JK
7960}
7961
012b3a21
WT
7962/* Some targets/architectures can do extra processing/display of
7963 segmentation faults. E.g., Intel MPX boundary faults.
7964 Call the architecture dependent function to handle the fault. */
7965
7966static void
7967handle_segmentation_fault (struct ui_out *uiout)
7968{
7969 struct regcache *regcache = get_current_regcache ();
7970 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7971
7972 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7973 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7974}
7975
fd664c91
PA
7976void
7977print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7978{
f303dbd6
PA
7979 struct thread_info *thr = inferior_thread ();
7980
33d62d64
JK
7981 annotate_signal ();
7982
112e8700 7983 if (uiout->is_mi_like_p ())
f303dbd6
PA
7984 ;
7985 else if (show_thread_that_caused_stop ())
33d62d64 7986 {
f303dbd6 7987 const char *name;
33d62d64 7988
112e8700
SM
7989 uiout->text ("\nThread ");
7990 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7991
7992 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7993 if (name != NULL)
7994 {
112e8700
SM
7995 uiout->text (" \"");
7996 uiout->field_fmt ("name", "%s", name);
7997 uiout->text ("\"");
f303dbd6 7998 }
33d62d64 7999 }
f303dbd6 8000 else
112e8700 8001 uiout->text ("\nProgram");
f303dbd6 8002
112e8700
SM
8003 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8004 uiout->text (" stopped");
33d62d64
JK
8005 else
8006 {
112e8700 8007 uiout->text (" received signal ");
8b93c638 8008 annotate_signal_name ();
112e8700
SM
8009 if (uiout->is_mi_like_p ())
8010 uiout->field_string
8011 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8012 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8013 annotate_signal_name_end ();
112e8700 8014 uiout->text (", ");
8b93c638 8015 annotate_signal_string ();
112e8700 8016 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8017
8018 if (siggnal == GDB_SIGNAL_SEGV)
8019 handle_segmentation_fault (uiout);
8020
8b93c638 8021 annotate_signal_string_end ();
33d62d64 8022 }
112e8700 8023 uiout->text (".\n");
33d62d64 8024}
252fbfc8 8025
fd664c91
PA
8026void
8027print_no_history_reason (struct ui_out *uiout)
33d62d64 8028{
112e8700 8029 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8030}
43ff13b4 8031
0c7e1a46
PA
8032/* Print current location without a level number, if we have changed
8033 functions or hit a breakpoint. Print source line if we have one.
8034 bpstat_print contains the logic deciding in detail what to print,
8035 based on the event(s) that just occurred. */
8036
243a9253
PA
8037static void
8038print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8039{
8040 int bpstat_ret;
f486487f 8041 enum print_what source_flag;
0c7e1a46
PA
8042 int do_frame_printing = 1;
8043 struct thread_info *tp = inferior_thread ();
8044
8045 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8046 switch (bpstat_ret)
8047 {
8048 case PRINT_UNKNOWN:
8049 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8050 should) carry around the function and does (or should) use
8051 that when doing a frame comparison. */
8052 if (tp->control.stop_step
8053 && frame_id_eq (tp->control.step_frame_id,
8054 get_frame_id (get_current_frame ()))
885eeb5b 8055 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8056 {
8057 /* Finished step, just print source line. */
8058 source_flag = SRC_LINE;
8059 }
8060 else
8061 {
8062 /* Print location and source line. */
8063 source_flag = SRC_AND_LOC;
8064 }
8065 break;
8066 case PRINT_SRC_AND_LOC:
8067 /* Print location and source line. */
8068 source_flag = SRC_AND_LOC;
8069 break;
8070 case PRINT_SRC_ONLY:
8071 source_flag = SRC_LINE;
8072 break;
8073 case PRINT_NOTHING:
8074 /* Something bogus. */
8075 source_flag = SRC_LINE;
8076 do_frame_printing = 0;
8077 break;
8078 default:
8079 internal_error (__FILE__, __LINE__, _("Unknown value."));
8080 }
8081
8082 /* The behavior of this routine with respect to the source
8083 flag is:
8084 SRC_LINE: Print only source line
8085 LOCATION: Print only location
8086 SRC_AND_LOC: Print location and source line. */
8087 if (do_frame_printing)
8088 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8089}
8090
243a9253
PA
8091/* See infrun.h. */
8092
8093void
8094print_stop_event (struct ui_out *uiout)
8095{
243a9253
PA
8096 struct target_waitstatus last;
8097 ptid_t last_ptid;
8098 struct thread_info *tp;
8099
8100 get_last_target_status (&last_ptid, &last);
8101
67ad9399
TT
8102 {
8103 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8104
67ad9399 8105 print_stop_location (&last);
243a9253 8106
67ad9399
TT
8107 /* Display the auto-display expressions. */
8108 do_displays ();
8109 }
243a9253
PA
8110
8111 tp = inferior_thread ();
8112 if (tp->thread_fsm != NULL
8113 && thread_fsm_finished_p (tp->thread_fsm))
8114 {
8115 struct return_value_info *rv;
8116
8117 rv = thread_fsm_return_value (tp->thread_fsm);
8118 if (rv != NULL)
8119 print_return_value (uiout, rv);
8120 }
0c7e1a46
PA
8121}
8122
388a7084
PA
8123/* See infrun.h. */
8124
8125void
8126maybe_remove_breakpoints (void)
8127{
8128 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8129 {
8130 if (remove_breakpoints ())
8131 {
8132 target_terminal_ours_for_output ();
8133 printf_filtered (_("Cannot remove breakpoints because "
8134 "program is no longer writable.\nFurther "
8135 "execution is probably impossible.\n"));
8136 }
8137 }
8138}
8139
4c2f2a79
PA
8140/* The execution context that just caused a normal stop. */
8141
8142struct stop_context
8143{
8144 /* The stop ID. */
8145 ULONGEST stop_id;
c906108c 8146
4c2f2a79 8147 /* The event PTID. */
c906108c 8148
4c2f2a79
PA
8149 ptid_t ptid;
8150
8151 /* If stopp for a thread event, this is the thread that caused the
8152 stop. */
8153 struct thread_info *thread;
8154
8155 /* The inferior that caused the stop. */
8156 int inf_num;
8157};
8158
8159/* Returns a new stop context. If stopped for a thread event, this
8160 takes a strong reference to the thread. */
8161
8162static struct stop_context *
8163save_stop_context (void)
8164{
224c3ddb 8165 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8166
8167 sc->stop_id = get_stop_id ();
8168 sc->ptid = inferior_ptid;
8169 sc->inf_num = current_inferior ()->num;
8170
8171 if (!ptid_equal (inferior_ptid, null_ptid))
8172 {
8173 /* Take a strong reference so that the thread can't be deleted
8174 yet. */
8175 sc->thread = inferior_thread ();
803bdfe4 8176 sc->thread->incref ();
4c2f2a79
PA
8177 }
8178 else
8179 sc->thread = NULL;
8180
8181 return sc;
8182}
8183
8184/* Release a stop context previously created with save_stop_context.
8185 Releases the strong reference to the thread as well. */
8186
8187static void
8188release_stop_context_cleanup (void *arg)
8189{
9a3c8263 8190 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8191
8192 if (sc->thread != NULL)
803bdfe4 8193 sc->thread->decref ();
4c2f2a79
PA
8194 xfree (sc);
8195}
8196
8197/* Return true if the current context no longer matches the saved stop
8198 context. */
8199
8200static int
8201stop_context_changed (struct stop_context *prev)
8202{
8203 if (!ptid_equal (prev->ptid, inferior_ptid))
8204 return 1;
8205 if (prev->inf_num != current_inferior ()->num)
8206 return 1;
8207 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8208 return 1;
8209 if (get_stop_id () != prev->stop_id)
8210 return 1;
8211 return 0;
8212}
8213
8214/* See infrun.h. */
8215
8216int
96baa820 8217normal_stop (void)
c906108c 8218{
73b65bb0
DJ
8219 struct target_waitstatus last;
8220 ptid_t last_ptid;
29f49a6a 8221 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8222 ptid_t pid_ptid;
73b65bb0
DJ
8223
8224 get_last_target_status (&last_ptid, &last);
8225
4c2f2a79
PA
8226 new_stop_id ();
8227
29f49a6a
PA
8228 /* If an exception is thrown from this point on, make sure to
8229 propagate GDB's knowledge of the executing state to the
8230 frontend/user running state. A QUIT is an easy exception to see
8231 here, so do this before any filtered output. */
c35b1492
PA
8232 if (!non_stop)
8233 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8234 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8235 || last.kind == TARGET_WAITKIND_EXITED)
8236 {
8237 /* On some targets, we may still have live threads in the
8238 inferior when we get a process exit event. E.g., for
8239 "checkpoint", when the current checkpoint/fork exits,
8240 linux-fork.c automatically switches to another fork from
8241 within target_mourn_inferior. */
8242 if (!ptid_equal (inferior_ptid, null_ptid))
8243 {
8244 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8245 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8246 }
8247 }
8248 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8249 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8250
b57bacec
PA
8251 /* As we're presenting a stop, and potentially removing breakpoints,
8252 update the thread list so we can tell whether there are threads
8253 running on the target. With target remote, for example, we can
8254 only learn about new threads when we explicitly update the thread
8255 list. Do this before notifying the interpreters about signal
8256 stops, end of stepping ranges, etc., so that the "new thread"
8257 output is emitted before e.g., "Program received signal FOO",
8258 instead of after. */
8259 update_thread_list ();
8260
8261 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8262 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8263
c906108c
SS
8264 /* As with the notification of thread events, we want to delay
8265 notifying the user that we've switched thread context until
8266 the inferior actually stops.
8267
73b65bb0
DJ
8268 There's no point in saying anything if the inferior has exited.
8269 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8270 "received a signal".
8271
8272 Also skip saying anything in non-stop mode. In that mode, as we
8273 don't want GDB to switch threads behind the user's back, to avoid
8274 races where the user is typing a command to apply to thread x,
8275 but GDB switches to thread y before the user finishes entering
8276 the command, fetch_inferior_event installs a cleanup to restore
8277 the current thread back to the thread the user had selected right
8278 after this event is handled, so we're not really switching, only
8279 informing of a stop. */
4f8d22e3
PA
8280 if (!non_stop
8281 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8282 && target_has_execution
8283 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8284 && last.kind != TARGET_WAITKIND_EXITED
8285 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8286 {
0e454242 8287 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8288 {
8289 target_terminal_ours_for_output ();
8290 printf_filtered (_("[Switching to %s]\n"),
8291 target_pid_to_str (inferior_ptid));
8292 annotate_thread_changed ();
8293 }
39f77062 8294 previous_inferior_ptid = inferior_ptid;
c906108c 8295 }
c906108c 8296
0e5bf2a8
PA
8297 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8298 {
0e454242 8299 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8300 if (current_ui->prompt_state == PROMPT_BLOCKED)
8301 {
8302 target_terminal_ours_for_output ();
8303 printf_filtered (_("No unwaited-for children left.\n"));
8304 }
0e5bf2a8
PA
8305 }
8306
b57bacec 8307 /* Note: this depends on the update_thread_list call above. */
388a7084 8308 maybe_remove_breakpoints ();
c906108c 8309
c906108c
SS
8310 /* If an auto-display called a function and that got a signal,
8311 delete that auto-display to avoid an infinite recursion. */
8312
8313 if (stopped_by_random_signal)
8314 disable_current_display ();
8315
0e454242 8316 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8317 {
8318 async_enable_stdin ();
8319 }
c906108c 8320
388a7084
PA
8321 /* Let the user/frontend see the threads as stopped. */
8322 do_cleanups (old_chain);
8323
8324 /* Select innermost stack frame - i.e., current frame is frame 0,
8325 and current location is based on that. Handle the case where the
8326 dummy call is returning after being stopped. E.g. the dummy call
8327 previously hit a breakpoint. (If the dummy call returns
8328 normally, we won't reach here.) Do this before the stop hook is
8329 run, so that it doesn't get to see the temporary dummy frame,
8330 which is not where we'll present the stop. */
8331 if (has_stack_frames ())
8332 {
8333 if (stop_stack_dummy == STOP_STACK_DUMMY)
8334 {
8335 /* Pop the empty frame that contains the stack dummy. This
8336 also restores inferior state prior to the call (struct
8337 infcall_suspend_state). */
8338 struct frame_info *frame = get_current_frame ();
8339
8340 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8341 frame_pop (frame);
8342 /* frame_pop calls reinit_frame_cache as the last thing it
8343 does which means there's now no selected frame. */
8344 }
8345
8346 select_frame (get_current_frame ());
8347
8348 /* Set the current source location. */
8349 set_current_sal_from_frame (get_current_frame ());
8350 }
dd7e2d2b
PA
8351
8352 /* Look up the hook_stop and run it (CLI internally handles problem
8353 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8354 if (stop_command != NULL)
8355 {
8356 struct stop_context *saved_context = save_stop_context ();
8357 struct cleanup *old_chain
8358 = make_cleanup (release_stop_context_cleanup, saved_context);
8359
8360 catch_errors (hook_stop_stub, stop_command,
8361 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8362
8363 /* If the stop hook resumes the target, then there's no point in
8364 trying to notify about the previous stop; its context is
8365 gone. Likewise if the command switches thread or inferior --
8366 the observers would print a stop for the wrong
8367 thread/inferior. */
8368 if (stop_context_changed (saved_context))
8369 {
8370 do_cleanups (old_chain);
8371 return 1;
8372 }
8373 do_cleanups (old_chain);
8374 }
dd7e2d2b 8375
388a7084
PA
8376 /* Notify observers about the stop. This is where the interpreters
8377 print the stop event. */
8378 if (!ptid_equal (inferior_ptid, null_ptid))
8379 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8380 stop_print_frame);
8381 else
8382 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8383
243a9253
PA
8384 annotate_stopped ();
8385
48844aa6
PA
8386 if (target_has_execution)
8387 {
8388 if (last.kind != TARGET_WAITKIND_SIGNALLED
8389 && last.kind != TARGET_WAITKIND_EXITED)
8390 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8391 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8392 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8393 }
6c95b8df
PA
8394
8395 /* Try to get rid of automatically added inferiors that are no
8396 longer needed. Keeping those around slows down things linearly.
8397 Note that this never removes the current inferior. */
8398 prune_inferiors ();
4c2f2a79
PA
8399
8400 return 0;
c906108c
SS
8401}
8402
8403static int
96baa820 8404hook_stop_stub (void *cmd)
c906108c 8405{
5913bcb0 8406 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8407 return (0);
8408}
8409\f
c5aa993b 8410int
96baa820 8411signal_stop_state (int signo)
c906108c 8412{
d6b48e9c 8413 return signal_stop[signo];
c906108c
SS
8414}
8415
c5aa993b 8416int
96baa820 8417signal_print_state (int signo)
c906108c
SS
8418{
8419 return signal_print[signo];
8420}
8421
c5aa993b 8422int
96baa820 8423signal_pass_state (int signo)
c906108c
SS
8424{
8425 return signal_program[signo];
8426}
8427
2455069d
UW
8428static void
8429signal_cache_update (int signo)
8430{
8431 if (signo == -1)
8432 {
a493e3e2 8433 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8434 signal_cache_update (signo);
8435
8436 return;
8437 }
8438
8439 signal_pass[signo] = (signal_stop[signo] == 0
8440 && signal_print[signo] == 0
ab04a2af
TT
8441 && signal_program[signo] == 1
8442 && signal_catch[signo] == 0);
2455069d
UW
8443}
8444
488f131b 8445int
7bda5e4a 8446signal_stop_update (int signo, int state)
d4f3574e
SS
8447{
8448 int ret = signal_stop[signo];
abbb1732 8449
d4f3574e 8450 signal_stop[signo] = state;
2455069d 8451 signal_cache_update (signo);
d4f3574e
SS
8452 return ret;
8453}
8454
488f131b 8455int
7bda5e4a 8456signal_print_update (int signo, int state)
d4f3574e
SS
8457{
8458 int ret = signal_print[signo];
abbb1732 8459
d4f3574e 8460 signal_print[signo] = state;
2455069d 8461 signal_cache_update (signo);
d4f3574e
SS
8462 return ret;
8463}
8464
488f131b 8465int
7bda5e4a 8466signal_pass_update (int signo, int state)
d4f3574e
SS
8467{
8468 int ret = signal_program[signo];
abbb1732 8469
d4f3574e 8470 signal_program[signo] = state;
2455069d 8471 signal_cache_update (signo);
d4f3574e
SS
8472 return ret;
8473}
8474
ab04a2af
TT
8475/* Update the global 'signal_catch' from INFO and notify the
8476 target. */
8477
8478void
8479signal_catch_update (const unsigned int *info)
8480{
8481 int i;
8482
8483 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8484 signal_catch[i] = info[i] > 0;
8485 signal_cache_update (-1);
8486 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8487}
8488
c906108c 8489static void
96baa820 8490sig_print_header (void)
c906108c 8491{
3e43a32a
MS
8492 printf_filtered (_("Signal Stop\tPrint\tPass "
8493 "to program\tDescription\n"));
c906108c
SS
8494}
8495
8496static void
2ea28649 8497sig_print_info (enum gdb_signal oursig)
c906108c 8498{
2ea28649 8499 const char *name = gdb_signal_to_name (oursig);
c906108c 8500 int name_padding = 13 - strlen (name);
96baa820 8501
c906108c
SS
8502 if (name_padding <= 0)
8503 name_padding = 0;
8504
8505 printf_filtered ("%s", name);
488f131b 8506 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8507 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8508 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8509 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8510 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8511}
8512
8513/* Specify how various signals in the inferior should be handled. */
8514
8515static void
96baa820 8516handle_command (char *args, int from_tty)
c906108c
SS
8517{
8518 char **argv;
8519 int digits, wordlen;
8520 int sigfirst, signum, siglast;
2ea28649 8521 enum gdb_signal oursig;
c906108c
SS
8522 int allsigs;
8523 int nsigs;
8524 unsigned char *sigs;
8525 struct cleanup *old_chain;
8526
8527 if (args == NULL)
8528 {
e2e0b3e5 8529 error_no_arg (_("signal to handle"));
c906108c
SS
8530 }
8531
1777feb0 8532 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8533
a493e3e2 8534 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8535 sigs = (unsigned char *) alloca (nsigs);
8536 memset (sigs, 0, nsigs);
8537
1777feb0 8538 /* Break the command line up into args. */
c906108c 8539
d1a41061 8540 argv = gdb_buildargv (args);
7a292a7a 8541 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8542
8543 /* Walk through the args, looking for signal oursigs, signal names, and
8544 actions. Signal numbers and signal names may be interspersed with
8545 actions, with the actions being performed for all signals cumulatively
1777feb0 8546 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8547
8548 while (*argv != NULL)
8549 {
8550 wordlen = strlen (*argv);
8551 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8552 {;
8553 }
8554 allsigs = 0;
8555 sigfirst = siglast = -1;
8556
8557 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8558 {
8559 /* Apply action to all signals except those used by the
1777feb0 8560 debugger. Silently skip those. */
c906108c
SS
8561 allsigs = 1;
8562 sigfirst = 0;
8563 siglast = nsigs - 1;
8564 }
8565 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8566 {
8567 SET_SIGS (nsigs, sigs, signal_stop);
8568 SET_SIGS (nsigs, sigs, signal_print);
8569 }
8570 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8571 {
8572 UNSET_SIGS (nsigs, sigs, signal_program);
8573 }
8574 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8575 {
8576 SET_SIGS (nsigs, sigs, signal_print);
8577 }
8578 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8579 {
8580 SET_SIGS (nsigs, sigs, signal_program);
8581 }
8582 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8583 {
8584 UNSET_SIGS (nsigs, sigs, signal_stop);
8585 }
8586 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8587 {
8588 SET_SIGS (nsigs, sigs, signal_program);
8589 }
8590 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8591 {
8592 UNSET_SIGS (nsigs, sigs, signal_print);
8593 UNSET_SIGS (nsigs, sigs, signal_stop);
8594 }
8595 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8596 {
8597 UNSET_SIGS (nsigs, sigs, signal_program);
8598 }
8599 else if (digits > 0)
8600 {
8601 /* It is numeric. The numeric signal refers to our own
8602 internal signal numbering from target.h, not to host/target
8603 signal number. This is a feature; users really should be
8604 using symbolic names anyway, and the common ones like
8605 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8606
8607 sigfirst = siglast = (int)
2ea28649 8608 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8609 if ((*argv)[digits] == '-')
8610 {
8611 siglast = (int)
2ea28649 8612 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8613 }
8614 if (sigfirst > siglast)
8615 {
1777feb0 8616 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8617 signum = sigfirst;
8618 sigfirst = siglast;
8619 siglast = signum;
8620 }
8621 }
8622 else
8623 {
2ea28649 8624 oursig = gdb_signal_from_name (*argv);
a493e3e2 8625 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8626 {
8627 sigfirst = siglast = (int) oursig;
8628 }
8629 else
8630 {
8631 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8632 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8633 }
8634 }
8635
8636 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8637 which signals to apply actions to. */
c906108c
SS
8638
8639 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8640 {
2ea28649 8641 switch ((enum gdb_signal) signum)
c906108c 8642 {
a493e3e2
PA
8643 case GDB_SIGNAL_TRAP:
8644 case GDB_SIGNAL_INT:
c906108c
SS
8645 if (!allsigs && !sigs[signum])
8646 {
9e2f0ad4 8647 if (query (_("%s is used by the debugger.\n\
3e43a32a 8648Are you sure you want to change it? "),
2ea28649 8649 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8650 {
8651 sigs[signum] = 1;
8652 }
8653 else
8654 {
a3f17187 8655 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8656 gdb_flush (gdb_stdout);
8657 }
8658 }
8659 break;
a493e3e2
PA
8660 case GDB_SIGNAL_0:
8661 case GDB_SIGNAL_DEFAULT:
8662 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8663 /* Make sure that "all" doesn't print these. */
8664 break;
8665 default:
8666 sigs[signum] = 1;
8667 break;
8668 }
8669 }
8670
8671 argv++;
8672 }
8673
3a031f65
PA
8674 for (signum = 0; signum < nsigs; signum++)
8675 if (sigs[signum])
8676 {
2455069d 8677 signal_cache_update (-1);
a493e3e2
PA
8678 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8679 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8680
3a031f65
PA
8681 if (from_tty)
8682 {
8683 /* Show the results. */
8684 sig_print_header ();
8685 for (; signum < nsigs; signum++)
8686 if (sigs[signum])
aead7601 8687 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8688 }
8689
8690 break;
8691 }
c906108c
SS
8692
8693 do_cleanups (old_chain);
8694}
8695
de0bea00
MF
8696/* Complete the "handle" command. */
8697
8698static VEC (char_ptr) *
8699handle_completer (struct cmd_list_element *ignore,
6f937416 8700 const char *text, const char *word)
de0bea00
MF
8701{
8702 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8703 static const char * const keywords[] =
8704 {
8705 "all",
8706 "stop",
8707 "ignore",
8708 "print",
8709 "pass",
8710 "nostop",
8711 "noignore",
8712 "noprint",
8713 "nopass",
8714 NULL,
8715 };
8716
8717 vec_signals = signal_completer (ignore, text, word);
8718 vec_keywords = complete_on_enum (keywords, word, word);
8719
8720 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8721 VEC_free (char_ptr, vec_signals);
8722 VEC_free (char_ptr, vec_keywords);
8723 return return_val;
8724}
8725
2ea28649
PA
8726enum gdb_signal
8727gdb_signal_from_command (int num)
ed01b82c
PA
8728{
8729 if (num >= 1 && num <= 15)
2ea28649 8730 return (enum gdb_signal) num;
ed01b82c
PA
8731 error (_("Only signals 1-15 are valid as numeric signals.\n\
8732Use \"info signals\" for a list of symbolic signals."));
8733}
8734
c906108c
SS
8735/* Print current contents of the tables set by the handle command.
8736 It is possible we should just be printing signals actually used
8737 by the current target (but for things to work right when switching
8738 targets, all signals should be in the signal tables). */
8739
8740static void
96baa820 8741signals_info (char *signum_exp, int from_tty)
c906108c 8742{
2ea28649 8743 enum gdb_signal oursig;
abbb1732 8744
c906108c
SS
8745 sig_print_header ();
8746
8747 if (signum_exp)
8748 {
8749 /* First see if this is a symbol name. */
2ea28649 8750 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8751 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8752 {
8753 /* No, try numeric. */
8754 oursig =
2ea28649 8755 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8756 }
8757 sig_print_info (oursig);
8758 return;
8759 }
8760
8761 printf_filtered ("\n");
8762 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8763 for (oursig = GDB_SIGNAL_FIRST;
8764 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8765 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8766 {
8767 QUIT;
8768
a493e3e2
PA
8769 if (oursig != GDB_SIGNAL_UNKNOWN
8770 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8771 sig_print_info (oursig);
8772 }
8773
3e43a32a
MS
8774 printf_filtered (_("\nUse the \"handle\" command "
8775 "to change these tables.\n"));
c906108c 8776}
4aa995e1
PA
8777
8778/* The $_siginfo convenience variable is a bit special. We don't know
8779 for sure the type of the value until we actually have a chance to
7a9dd1b2 8780 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8781 also dependent on which thread you have selected.
8782
8783 1. making $_siginfo be an internalvar that creates a new value on
8784 access.
8785
8786 2. making the value of $_siginfo be an lval_computed value. */
8787
8788/* This function implements the lval_computed support for reading a
8789 $_siginfo value. */
8790
8791static void
8792siginfo_value_read (struct value *v)
8793{
8794 LONGEST transferred;
8795
a911d87a
PA
8796 /* If we can access registers, so can we access $_siginfo. Likewise
8797 vice versa. */
8798 validate_registers_access ();
c709acd1 8799
4aa995e1
PA
8800 transferred =
8801 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8802 NULL,
8803 value_contents_all_raw (v),
8804 value_offset (v),
8805 TYPE_LENGTH (value_type (v)));
8806
8807 if (transferred != TYPE_LENGTH (value_type (v)))
8808 error (_("Unable to read siginfo"));
8809}
8810
8811/* This function implements the lval_computed support for writing a
8812 $_siginfo value. */
8813
8814static void
8815siginfo_value_write (struct value *v, struct value *fromval)
8816{
8817 LONGEST transferred;
8818
a911d87a
PA
8819 /* If we can access registers, so can we access $_siginfo. Likewise
8820 vice versa. */
8821 validate_registers_access ();
c709acd1 8822
4aa995e1
PA
8823 transferred = target_write (&current_target,
8824 TARGET_OBJECT_SIGNAL_INFO,
8825 NULL,
8826 value_contents_all_raw (fromval),
8827 value_offset (v),
8828 TYPE_LENGTH (value_type (fromval)));
8829
8830 if (transferred != TYPE_LENGTH (value_type (fromval)))
8831 error (_("Unable to write siginfo"));
8832}
8833
c8f2448a 8834static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8835 {
8836 siginfo_value_read,
8837 siginfo_value_write
8838 };
8839
8840/* Return a new value with the correct type for the siginfo object of
78267919
UW
8841 the current thread using architecture GDBARCH. Return a void value
8842 if there's no object available. */
4aa995e1 8843
2c0b251b 8844static struct value *
22d2b532
SDJ
8845siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8846 void *ignore)
4aa995e1 8847{
4aa995e1 8848 if (target_has_stack
78267919
UW
8849 && !ptid_equal (inferior_ptid, null_ptid)
8850 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8851 {
78267919 8852 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8853
78267919 8854 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8855 }
8856
78267919 8857 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8858}
8859
c906108c 8860\f
16c381f0
JK
8861/* infcall_suspend_state contains state about the program itself like its
8862 registers and any signal it received when it last stopped.
8863 This state must be restored regardless of how the inferior function call
8864 ends (either successfully, or after it hits a breakpoint or signal)
8865 if the program is to properly continue where it left off. */
8866
8867struct infcall_suspend_state
7a292a7a 8868{
16c381f0 8869 struct thread_suspend_state thread_suspend;
16c381f0
JK
8870
8871 /* Other fields: */
7a292a7a 8872 CORE_ADDR stop_pc;
b89667eb 8873 struct regcache *registers;
1736ad11 8874
35515841 8875 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8876 struct gdbarch *siginfo_gdbarch;
8877
8878 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8879 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8880 content would be invalid. */
8881 gdb_byte *siginfo_data;
b89667eb
DE
8882};
8883
16c381f0
JK
8884struct infcall_suspend_state *
8885save_infcall_suspend_state (void)
b89667eb 8886{
16c381f0 8887 struct infcall_suspend_state *inf_state;
b89667eb 8888 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8889 struct regcache *regcache = get_current_regcache ();
8890 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8891 gdb_byte *siginfo_data = NULL;
8892
8893 if (gdbarch_get_siginfo_type_p (gdbarch))
8894 {
8895 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8896 size_t len = TYPE_LENGTH (type);
8897 struct cleanup *back_to;
8898
224c3ddb 8899 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8900 back_to = make_cleanup (xfree, siginfo_data);
8901
8902 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8903 siginfo_data, 0, len) == len)
8904 discard_cleanups (back_to);
8905 else
8906 {
8907 /* Errors ignored. */
8908 do_cleanups (back_to);
8909 siginfo_data = NULL;
8910 }
8911 }
8912
41bf6aca 8913 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8914
8915 if (siginfo_data)
8916 {
8917 inf_state->siginfo_gdbarch = gdbarch;
8918 inf_state->siginfo_data = siginfo_data;
8919 }
b89667eb 8920
16c381f0 8921 inf_state->thread_suspend = tp->suspend;
16c381f0 8922
35515841 8923 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8924 GDB_SIGNAL_0 anyway. */
8925 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8926
b89667eb
DE
8927 inf_state->stop_pc = stop_pc;
8928
1736ad11 8929 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8930
8931 return inf_state;
8932}
8933
8934/* Restore inferior session state to INF_STATE. */
8935
8936void
16c381f0 8937restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8938{
8939 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8940 struct regcache *regcache = get_current_regcache ();
8941 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8942
16c381f0 8943 tp->suspend = inf_state->thread_suspend;
16c381f0 8944
b89667eb
DE
8945 stop_pc = inf_state->stop_pc;
8946
1736ad11
JK
8947 if (inf_state->siginfo_gdbarch == gdbarch)
8948 {
8949 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8950
8951 /* Errors ignored. */
8952 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8953 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8954 }
8955
b89667eb
DE
8956 /* The inferior can be gone if the user types "print exit(0)"
8957 (and perhaps other times). */
8958 if (target_has_execution)
8959 /* NB: The register write goes through to the target. */
1736ad11 8960 regcache_cpy (regcache, inf_state->registers);
803b5f95 8961
16c381f0 8962 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8963}
8964
8965static void
16c381f0 8966do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8967{
9a3c8263 8968 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8969}
8970
8971struct cleanup *
16c381f0
JK
8972make_cleanup_restore_infcall_suspend_state
8973 (struct infcall_suspend_state *inf_state)
b89667eb 8974{
16c381f0 8975 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8976}
8977
8978void
16c381f0 8979discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8980{
8981 regcache_xfree (inf_state->registers);
803b5f95 8982 xfree (inf_state->siginfo_data);
b89667eb
DE
8983 xfree (inf_state);
8984}
8985
8986struct regcache *
16c381f0 8987get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8988{
8989 return inf_state->registers;
8990}
8991
16c381f0
JK
8992/* infcall_control_state contains state regarding gdb's control of the
8993 inferior itself like stepping control. It also contains session state like
8994 the user's currently selected frame. */
b89667eb 8995
16c381f0 8996struct infcall_control_state
b89667eb 8997{
16c381f0
JK
8998 struct thread_control_state thread_control;
8999 struct inferior_control_state inferior_control;
d82142e2
JK
9000
9001 /* Other fields: */
9002 enum stop_stack_kind stop_stack_dummy;
9003 int stopped_by_random_signal;
7a292a7a 9004
b89667eb 9005 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 9006 struct frame_id selected_frame_id;
7a292a7a
SS
9007};
9008
c906108c 9009/* Save all of the information associated with the inferior<==>gdb
b89667eb 9010 connection. */
c906108c 9011
16c381f0
JK
9012struct infcall_control_state *
9013save_infcall_control_state (void)
c906108c 9014{
8d749320
SM
9015 struct infcall_control_state *inf_status =
9016 XNEW (struct infcall_control_state);
4e1c45ea 9017 struct thread_info *tp = inferior_thread ();
d6b48e9c 9018 struct inferior *inf = current_inferior ();
7a292a7a 9019
16c381f0
JK
9020 inf_status->thread_control = tp->control;
9021 inf_status->inferior_control = inf->control;
d82142e2 9022
8358c15c 9023 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9024 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9025
16c381f0
JK
9026 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9027 chain. If caller's caller is walking the chain, they'll be happier if we
9028 hand them back the original chain when restore_infcall_control_state is
9029 called. */
9030 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9031
9032 /* Other fields: */
9033 inf_status->stop_stack_dummy = stop_stack_dummy;
9034 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9035
206415a3 9036 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9037
7a292a7a 9038 return inf_status;
c906108c
SS
9039}
9040
c906108c 9041static int
96baa820 9042restore_selected_frame (void *args)
c906108c 9043{
488f131b 9044 struct frame_id *fid = (struct frame_id *) args;
c906108c 9045 struct frame_info *frame;
c906108c 9046
101dcfbe 9047 frame = frame_find_by_id (*fid);
c906108c 9048
aa0cd9c1
AC
9049 /* If inf_status->selected_frame_id is NULL, there was no previously
9050 selected frame. */
101dcfbe 9051 if (frame == NULL)
c906108c 9052 {
8a3fe4f8 9053 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9054 return 0;
9055 }
9056
0f7d239c 9057 select_frame (frame);
c906108c
SS
9058
9059 return (1);
9060}
9061
b89667eb
DE
9062/* Restore inferior session state to INF_STATUS. */
9063
c906108c 9064void
16c381f0 9065restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9066{
4e1c45ea 9067 struct thread_info *tp = inferior_thread ();
d6b48e9c 9068 struct inferior *inf = current_inferior ();
4e1c45ea 9069
8358c15c
JK
9070 if (tp->control.step_resume_breakpoint)
9071 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9072
5b79abe7
TT
9073 if (tp->control.exception_resume_breakpoint)
9074 tp->control.exception_resume_breakpoint->disposition
9075 = disp_del_at_next_stop;
9076
d82142e2 9077 /* Handle the bpstat_copy of the chain. */
16c381f0 9078 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9079
16c381f0
JK
9080 tp->control = inf_status->thread_control;
9081 inf->control = inf_status->inferior_control;
d82142e2
JK
9082
9083 /* Other fields: */
9084 stop_stack_dummy = inf_status->stop_stack_dummy;
9085 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9086
b89667eb 9087 if (target_has_stack)
c906108c 9088 {
c906108c 9089 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9090 walking the stack might encounter a garbage pointer and
9091 error() trying to dereference it. */
488f131b
JB
9092 if (catch_errors
9093 (restore_selected_frame, &inf_status->selected_frame_id,
9094 "Unable to restore previously selected frame:\n",
9095 RETURN_MASK_ERROR) == 0)
c906108c
SS
9096 /* Error in restoring the selected frame. Select the innermost
9097 frame. */
0f7d239c 9098 select_frame (get_current_frame ());
c906108c 9099 }
c906108c 9100
72cec141 9101 xfree (inf_status);
7a292a7a 9102}
c906108c 9103
74b7792f 9104static void
16c381f0 9105do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9106{
9a3c8263 9107 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9108}
9109
9110struct cleanup *
16c381f0
JK
9111make_cleanup_restore_infcall_control_state
9112 (struct infcall_control_state *inf_status)
74b7792f 9113{
16c381f0 9114 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9115}
9116
c906108c 9117void
16c381f0 9118discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9119{
8358c15c
JK
9120 if (inf_status->thread_control.step_resume_breakpoint)
9121 inf_status->thread_control.step_resume_breakpoint->disposition
9122 = disp_del_at_next_stop;
9123
5b79abe7
TT
9124 if (inf_status->thread_control.exception_resume_breakpoint)
9125 inf_status->thread_control.exception_resume_breakpoint->disposition
9126 = disp_del_at_next_stop;
9127
1777feb0 9128 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9129 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9130
72cec141 9131 xfree (inf_status);
7a292a7a 9132}
b89667eb 9133\f
ca6724c1
KB
9134/* restore_inferior_ptid() will be used by the cleanup machinery
9135 to restore the inferior_ptid value saved in a call to
9136 save_inferior_ptid(). */
ce696e05
KB
9137
9138static void
9139restore_inferior_ptid (void *arg)
9140{
9a3c8263 9141 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9142
ce696e05
KB
9143 inferior_ptid = *saved_ptid_ptr;
9144 xfree (arg);
9145}
9146
9147/* Save the value of inferior_ptid so that it may be restored by a
9148 later call to do_cleanups(). Returns the struct cleanup pointer
9149 needed for later doing the cleanup. */
9150
9151struct cleanup *
9152save_inferior_ptid (void)
9153{
8d749320 9154 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9155
ce696e05
KB
9156 *saved_ptid_ptr = inferior_ptid;
9157 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9158}
0c557179 9159
7f89fd65 9160/* See infrun.h. */
0c557179
SDJ
9161
9162void
9163clear_exit_convenience_vars (void)
9164{
9165 clear_internalvar (lookup_internalvar ("_exitsignal"));
9166 clear_internalvar (lookup_internalvar ("_exitcode"));
9167}
c5aa993b 9168\f
488f131b 9169
b2175913
MS
9170/* User interface for reverse debugging:
9171 Set exec-direction / show exec-direction commands
9172 (returns error unless target implements to_set_exec_direction method). */
9173
170742de 9174enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9175static const char exec_forward[] = "forward";
9176static const char exec_reverse[] = "reverse";
9177static const char *exec_direction = exec_forward;
40478521 9178static const char *const exec_direction_names[] = {
b2175913
MS
9179 exec_forward,
9180 exec_reverse,
9181 NULL
9182};
9183
9184static void
9185set_exec_direction_func (char *args, int from_tty,
9186 struct cmd_list_element *cmd)
9187{
9188 if (target_can_execute_reverse)
9189 {
9190 if (!strcmp (exec_direction, exec_forward))
9191 execution_direction = EXEC_FORWARD;
9192 else if (!strcmp (exec_direction, exec_reverse))
9193 execution_direction = EXEC_REVERSE;
9194 }
8bbed405
MS
9195 else
9196 {
9197 exec_direction = exec_forward;
9198 error (_("Target does not support this operation."));
9199 }
b2175913
MS
9200}
9201
9202static void
9203show_exec_direction_func (struct ui_file *out, int from_tty,
9204 struct cmd_list_element *cmd, const char *value)
9205{
9206 switch (execution_direction) {
9207 case EXEC_FORWARD:
9208 fprintf_filtered (out, _("Forward.\n"));
9209 break;
9210 case EXEC_REVERSE:
9211 fprintf_filtered (out, _("Reverse.\n"));
9212 break;
b2175913 9213 default:
d8b34453
PA
9214 internal_error (__FILE__, __LINE__,
9215 _("bogus execution_direction value: %d"),
9216 (int) execution_direction);
b2175913
MS
9217 }
9218}
9219
d4db2f36
PA
9220static void
9221show_schedule_multiple (struct ui_file *file, int from_tty,
9222 struct cmd_list_element *c, const char *value)
9223{
3e43a32a
MS
9224 fprintf_filtered (file, _("Resuming the execution of threads "
9225 "of all processes is %s.\n"), value);
d4db2f36 9226}
ad52ddc6 9227
22d2b532
SDJ
9228/* Implementation of `siginfo' variable. */
9229
9230static const struct internalvar_funcs siginfo_funcs =
9231{
9232 siginfo_make_value,
9233 NULL,
9234 NULL
9235};
9236
372316f1
PA
9237/* Callback for infrun's target events source. This is marked when a
9238 thread has a pending status to process. */
9239
9240static void
9241infrun_async_inferior_event_handler (gdb_client_data data)
9242{
372316f1
PA
9243 inferior_event_handler (INF_REG_EVENT, NULL);
9244}
9245
c906108c 9246void
96baa820 9247_initialize_infrun (void)
c906108c 9248{
52f0bd74
AC
9249 int i;
9250 int numsigs;
de0bea00 9251 struct cmd_list_element *c;
c906108c 9252
372316f1
PA
9253 /* Register extra event sources in the event loop. */
9254 infrun_async_inferior_event_token
9255 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9256
1bedd215
AC
9257 add_info ("signals", signals_info, _("\
9258What debugger does when program gets various signals.\n\
9259Specify a signal as argument to print info on that signal only."));
c906108c
SS
9260 add_info_alias ("handle", "signals", 0);
9261
de0bea00 9262 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9263Specify how to handle signals.\n\
486c7739 9264Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9265Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9266If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9267will be displayed instead.\n\
9268\n\
c906108c
SS
9269Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9270from 1-15 are allowed for compatibility with old versions of GDB.\n\
9271Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9272The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9273used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9274\n\
1bedd215 9275Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9276\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9277Stop means reenter debugger if this signal happens (implies print).\n\
9278Print means print a message if this signal happens.\n\
9279Pass means let program see this signal; otherwise program doesn't know.\n\
9280Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9281Pass and Stop may be combined.\n\
9282\n\
9283Multiple signals may be specified. Signal numbers and signal names\n\
9284may be interspersed with actions, with the actions being performed for\n\
9285all signals cumulatively specified."));
de0bea00 9286 set_cmd_completer (c, handle_completer);
486c7739 9287
c906108c 9288 if (!dbx_commands)
1a966eab
AC
9289 stop_command = add_cmd ("stop", class_obscure,
9290 not_just_help_class_command, _("\
9291There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9292This allows you to set a list of commands to be run each time execution\n\
1a966eab 9293of the program stops."), &cmdlist);
c906108c 9294
ccce17b0 9295 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9296Set inferior debugging."), _("\
9297Show inferior debugging."), _("\
9298When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9299 NULL,
9300 show_debug_infrun,
9301 &setdebuglist, &showdebuglist);
527159b7 9302
3e43a32a
MS
9303 add_setshow_boolean_cmd ("displaced", class_maintenance,
9304 &debug_displaced, _("\
237fc4c9
PA
9305Set displaced stepping debugging."), _("\
9306Show displaced stepping debugging."), _("\
9307When non-zero, displaced stepping specific debugging is enabled."),
9308 NULL,
9309 show_debug_displaced,
9310 &setdebuglist, &showdebuglist);
9311
ad52ddc6
PA
9312 add_setshow_boolean_cmd ("non-stop", no_class,
9313 &non_stop_1, _("\
9314Set whether gdb controls the inferior in non-stop mode."), _("\
9315Show whether gdb controls the inferior in non-stop mode."), _("\
9316When debugging a multi-threaded program and this setting is\n\
9317off (the default, also called all-stop mode), when one thread stops\n\
9318(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9319all other threads in the program while you interact with the thread of\n\
9320interest. When you continue or step a thread, you can allow the other\n\
9321threads to run, or have them remain stopped, but while you inspect any\n\
9322thread's state, all threads stop.\n\
9323\n\
9324In non-stop mode, when one thread stops, other threads can continue\n\
9325to run freely. You'll be able to step each thread independently,\n\
9326leave it stopped or free to run as needed."),
9327 set_non_stop,
9328 show_non_stop,
9329 &setlist,
9330 &showlist);
9331
a493e3e2 9332 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9333 signal_stop = XNEWVEC (unsigned char, numsigs);
9334 signal_print = XNEWVEC (unsigned char, numsigs);
9335 signal_program = XNEWVEC (unsigned char, numsigs);
9336 signal_catch = XNEWVEC (unsigned char, numsigs);
9337 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9338 for (i = 0; i < numsigs; i++)
9339 {
9340 signal_stop[i] = 1;
9341 signal_print[i] = 1;
9342 signal_program[i] = 1;
ab04a2af 9343 signal_catch[i] = 0;
c906108c
SS
9344 }
9345
4d9d9d04
PA
9346 /* Signals caused by debugger's own actions should not be given to
9347 the program afterwards.
9348
9349 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9350 explicitly specifies that it should be delivered to the target
9351 program. Typically, that would occur when a user is debugging a
9352 target monitor on a simulator: the target monitor sets a
9353 breakpoint; the simulator encounters this breakpoint and halts
9354 the simulation handing control to GDB; GDB, noting that the stop
9355 address doesn't map to any known breakpoint, returns control back
9356 to the simulator; the simulator then delivers the hardware
9357 equivalent of a GDB_SIGNAL_TRAP to the program being
9358 debugged. */
a493e3e2
PA
9359 signal_program[GDB_SIGNAL_TRAP] = 0;
9360 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9361
9362 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9363 signal_stop[GDB_SIGNAL_ALRM] = 0;
9364 signal_print[GDB_SIGNAL_ALRM] = 0;
9365 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9366 signal_print[GDB_SIGNAL_VTALRM] = 0;
9367 signal_stop[GDB_SIGNAL_PROF] = 0;
9368 signal_print[GDB_SIGNAL_PROF] = 0;
9369 signal_stop[GDB_SIGNAL_CHLD] = 0;
9370 signal_print[GDB_SIGNAL_CHLD] = 0;
9371 signal_stop[GDB_SIGNAL_IO] = 0;
9372 signal_print[GDB_SIGNAL_IO] = 0;
9373 signal_stop[GDB_SIGNAL_POLL] = 0;
9374 signal_print[GDB_SIGNAL_POLL] = 0;
9375 signal_stop[GDB_SIGNAL_URG] = 0;
9376 signal_print[GDB_SIGNAL_URG] = 0;
9377 signal_stop[GDB_SIGNAL_WINCH] = 0;
9378 signal_print[GDB_SIGNAL_WINCH] = 0;
9379 signal_stop[GDB_SIGNAL_PRIO] = 0;
9380 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9381
cd0fc7c3
SS
9382 /* These signals are used internally by user-level thread
9383 implementations. (See signal(5) on Solaris.) Like the above
9384 signals, a healthy program receives and handles them as part of
9385 its normal operation. */
a493e3e2
PA
9386 signal_stop[GDB_SIGNAL_LWP] = 0;
9387 signal_print[GDB_SIGNAL_LWP] = 0;
9388 signal_stop[GDB_SIGNAL_WAITING] = 0;
9389 signal_print[GDB_SIGNAL_WAITING] = 0;
9390 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9391 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9392 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9393 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9394
2455069d
UW
9395 /* Update cached state. */
9396 signal_cache_update (-1);
9397
85c07804
AC
9398 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9399 &stop_on_solib_events, _("\
9400Set stopping for shared library events."), _("\
9401Show stopping for shared library events."), _("\
c906108c
SS
9402If nonzero, gdb will give control to the user when the dynamic linker\n\
9403notifies gdb of shared library events. The most common event of interest\n\
85c07804 9404to the user would be loading/unloading of a new library."),
f9e14852 9405 set_stop_on_solib_events,
920d2a44 9406 show_stop_on_solib_events,
85c07804 9407 &setlist, &showlist);
c906108c 9408
7ab04401
AC
9409 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9410 follow_fork_mode_kind_names,
9411 &follow_fork_mode_string, _("\
9412Set debugger response to a program call of fork or vfork."), _("\
9413Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9414A fork or vfork creates a new process. follow-fork-mode can be:\n\
9415 parent - the original process is debugged after a fork\n\
9416 child - the new process is debugged after a fork\n\
ea1dd7bc 9417The unfollowed process will continue to run.\n\
7ab04401
AC
9418By default, the debugger will follow the parent process."),
9419 NULL,
920d2a44 9420 show_follow_fork_mode_string,
7ab04401
AC
9421 &setlist, &showlist);
9422
6c95b8df
PA
9423 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9424 follow_exec_mode_names,
9425 &follow_exec_mode_string, _("\
9426Set debugger response to a program call of exec."), _("\
9427Show debugger response to a program call of exec."), _("\
9428An exec call replaces the program image of a process.\n\
9429\n\
9430follow-exec-mode can be:\n\
9431\n\
cce7e648 9432 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9433to this new inferior. The program the process was running before\n\
9434the exec call can be restarted afterwards by restarting the original\n\
9435inferior.\n\
9436\n\
9437 same - the debugger keeps the process bound to the same inferior.\n\
9438The new executable image replaces the previous executable loaded in\n\
9439the inferior. Restarting the inferior after the exec call restarts\n\
9440the executable the process was running after the exec call.\n\
9441\n\
9442By default, the debugger will use the same inferior."),
9443 NULL,
9444 show_follow_exec_mode_string,
9445 &setlist, &showlist);
9446
7ab04401
AC
9447 add_setshow_enum_cmd ("scheduler-locking", class_run,
9448 scheduler_enums, &scheduler_mode, _("\
9449Set mode for locking scheduler during execution."), _("\
9450Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9451off == no locking (threads may preempt at any time)\n\
9452on == full locking (no thread except the current thread may run)\n\
9453 This applies to both normal execution and replay mode.\n\
9454step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9455 In this mode, other threads may run during other commands.\n\
9456 This applies to both normal execution and replay mode.\n\
9457replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9458 set_schedlock_func, /* traps on target vector */
920d2a44 9459 show_scheduler_mode,
7ab04401 9460 &setlist, &showlist);
5fbbeb29 9461
d4db2f36
PA
9462 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9463Set mode for resuming threads of all processes."), _("\
9464Show mode for resuming threads of all processes."), _("\
9465When on, execution commands (such as 'continue' or 'next') resume all\n\
9466threads of all processes. When off (which is the default), execution\n\
9467commands only resume the threads of the current process. The set of\n\
9468threads that are resumed is further refined by the scheduler-locking\n\
9469mode (see help set scheduler-locking)."),
9470 NULL,
9471 show_schedule_multiple,
9472 &setlist, &showlist);
9473
5bf193a2
AC
9474 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9475Set mode of the step operation."), _("\
9476Show mode of the step operation."), _("\
9477When set, doing a step over a function without debug line information\n\
9478will stop at the first instruction of that function. Otherwise, the\n\
9479function is skipped and the step command stops at a different source line."),
9480 NULL,
920d2a44 9481 show_step_stop_if_no_debug,
5bf193a2 9482 &setlist, &showlist);
ca6724c1 9483
72d0e2c5
YQ
9484 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9485 &can_use_displaced_stepping, _("\
237fc4c9
PA
9486Set debugger's willingness to use displaced stepping."), _("\
9487Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9488If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9489supported by the target architecture. If off, gdb will not use displaced\n\
9490stepping to step over breakpoints, even if such is supported by the target\n\
9491architecture. If auto (which is the default), gdb will use displaced stepping\n\
9492if the target architecture supports it and non-stop mode is active, but will not\n\
9493use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9494 NULL,
9495 show_can_use_displaced_stepping,
9496 &setlist, &showlist);
237fc4c9 9497
b2175913
MS
9498 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9499 &exec_direction, _("Set direction of execution.\n\
9500Options are 'forward' or 'reverse'."),
9501 _("Show direction of execution (forward/reverse)."),
9502 _("Tells gdb whether to execute forward or backward."),
9503 set_exec_direction_func, show_exec_direction_func,
9504 &setlist, &showlist);
9505
6c95b8df
PA
9506 /* Set/show detach-on-fork: user-settable mode. */
9507
9508 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9509Set whether gdb will detach the child of a fork."), _("\
9510Show whether gdb will detach the child of a fork."), _("\
9511Tells gdb whether to detach the child of a fork."),
9512 NULL, NULL, &setlist, &showlist);
9513
03583c20
UW
9514 /* Set/show disable address space randomization mode. */
9515
9516 add_setshow_boolean_cmd ("disable-randomization", class_support,
9517 &disable_randomization, _("\
9518Set disabling of debuggee's virtual address space randomization."), _("\
9519Show disabling of debuggee's virtual address space randomization."), _("\
9520When this mode is on (which is the default), randomization of the virtual\n\
9521address space is disabled. Standalone programs run with the randomization\n\
9522enabled by default on some platforms."),
9523 &set_disable_randomization,
9524 &show_disable_randomization,
9525 &setlist, &showlist);
9526
ca6724c1 9527 /* ptid initializations */
ca6724c1
KB
9528 inferior_ptid = null_ptid;
9529 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9530
9531 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9532 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9533 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9534 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9535
9536 /* Explicitly create without lookup, since that tries to create a
9537 value with a void typed value, and when we get here, gdbarch
9538 isn't initialized yet. At this point, we're quite sure there
9539 isn't another convenience variable of the same name. */
22d2b532 9540 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9541
9542 add_setshow_boolean_cmd ("observer", no_class,
9543 &observer_mode_1, _("\
9544Set whether gdb controls the inferior in observer mode."), _("\
9545Show whether gdb controls the inferior in observer mode."), _("\
9546In observer mode, GDB can get data from the inferior, but not\n\
9547affect its execution. Registers and memory may not be changed,\n\
9548breakpoints may not be set, and the program cannot be interrupted\n\
9549or signalled."),
9550 set_observer_mode,
9551 show_observer_mode,
9552 &setlist,
9553 &showlist);
c906108c 9554}
This page took 2.299745 seconds and 4 git commands to generate.