Commit | Line | Data |
---|---|---|
ca557f44 AC |
1 | /* Target-struct-independent code to start (run) and stop an inferior |
2 | process. | |
8926118c | 3 | |
197e01b6 | 4 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, |
c6f0559b AC |
5 | 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free |
6 | Software Foundation, Inc. | |
c906108c | 7 | |
c5aa993b | 8 | This file is part of GDB. |
c906108c | 9 | |
c5aa993b JM |
10 | This program is free software; you can redistribute it and/or modify |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
c906108c | 14 | |
c5aa993b JM |
15 | This program is distributed in the hope that it will be useful, |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
c906108c | 19 | |
c5aa993b JM |
20 | You should have received a copy of the GNU General Public License |
21 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
22 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
23 | Boston, MA 02110-1301, USA. */ | |
c906108c SS |
24 | |
25 | #include "defs.h" | |
26 | #include "gdb_string.h" | |
27 | #include <ctype.h> | |
28 | #include "symtab.h" | |
29 | #include "frame.h" | |
30 | #include "inferior.h" | |
60250e8b | 31 | #include "exceptions.h" |
c906108c | 32 | #include "breakpoint.h" |
03f2053f | 33 | #include "gdb_wait.h" |
c906108c SS |
34 | #include "gdbcore.h" |
35 | #include "gdbcmd.h" | |
210661e7 | 36 | #include "cli/cli-script.h" |
c906108c SS |
37 | #include "target.h" |
38 | #include "gdbthread.h" | |
39 | #include "annotate.h" | |
1adeb98a | 40 | #include "symfile.h" |
7a292a7a | 41 | #include "top.h" |
c906108c | 42 | #include <signal.h> |
2acceee2 | 43 | #include "inf-loop.h" |
4e052eda | 44 | #include "regcache.h" |
fd0407d6 | 45 | #include "value.h" |
06600e06 | 46 | #include "observer.h" |
f636b87d | 47 | #include "language.h" |
a77053c2 | 48 | #include "solib.h" |
f17517ea | 49 | #include "main.h" |
a77053c2 | 50 | |
9f976b41 | 51 | #include "gdb_assert.h" |
034dad6f | 52 | #include "mi/mi-common.h" |
c906108c SS |
53 | |
54 | /* Prototypes for local functions */ | |
55 | ||
96baa820 | 56 | static void signals_info (char *, int); |
c906108c | 57 | |
96baa820 | 58 | static void handle_command (char *, int); |
c906108c | 59 | |
96baa820 | 60 | static void sig_print_info (enum target_signal); |
c906108c | 61 | |
96baa820 | 62 | static void sig_print_header (void); |
c906108c | 63 | |
74b7792f | 64 | static void resume_cleanups (void *); |
c906108c | 65 | |
96baa820 | 66 | static int hook_stop_stub (void *); |
c906108c | 67 | |
96baa820 JM |
68 | static int restore_selected_frame (void *); |
69 | ||
70 | static void build_infrun (void); | |
71 | ||
4ef3f3be | 72 | static int follow_fork (void); |
96baa820 JM |
73 | |
74 | static void set_schedlock_func (char *args, int from_tty, | |
488f131b | 75 | struct cmd_list_element *c); |
96baa820 | 76 | |
96baa820 JM |
77 | struct execution_control_state; |
78 | ||
79 | static int currently_stepping (struct execution_control_state *ecs); | |
80 | ||
81 | static void xdb_handle_command (char *args, int from_tty); | |
82 | ||
ea67f13b DJ |
83 | static int prepare_to_proceed (void); |
84 | ||
96baa820 | 85 | void _initialize_infrun (void); |
43ff13b4 | 86 | |
c906108c SS |
87 | int inferior_ignoring_startup_exec_events = 0; |
88 | int inferior_ignoring_leading_exec_events = 0; | |
89 | ||
5fbbeb29 CF |
90 | /* When set, stop the 'step' command if we enter a function which has |
91 | no line number information. The normal behavior is that we step | |
92 | over such function. */ | |
93 | int step_stop_if_no_debug = 0; | |
920d2a44 AC |
94 | static void |
95 | show_step_stop_if_no_debug (struct ui_file *file, int from_tty, | |
96 | struct cmd_list_element *c, const char *value) | |
97 | { | |
98 | fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value); | |
99 | } | |
5fbbeb29 | 100 | |
43ff13b4 | 101 | /* In asynchronous mode, but simulating synchronous execution. */ |
96baa820 | 102 | |
43ff13b4 JM |
103 | int sync_execution = 0; |
104 | ||
c906108c SS |
105 | /* wait_for_inferior and normal_stop use this to notify the user |
106 | when the inferior stopped in a different thread than it had been | |
96baa820 JM |
107 | running in. */ |
108 | ||
39f77062 | 109 | static ptid_t previous_inferior_ptid; |
7a292a7a SS |
110 | |
111 | /* This is true for configurations that may follow through execl() and | |
112 | similar functions. At present this is only true for HP-UX native. */ | |
113 | ||
114 | #ifndef MAY_FOLLOW_EXEC | |
115 | #define MAY_FOLLOW_EXEC (0) | |
c906108c SS |
116 | #endif |
117 | ||
7a292a7a SS |
118 | static int may_follow_exec = MAY_FOLLOW_EXEC; |
119 | ||
527159b7 | 120 | static int debug_infrun = 0; |
920d2a44 AC |
121 | static void |
122 | show_debug_infrun (struct ui_file *file, int from_tty, | |
123 | struct cmd_list_element *c, const char *value) | |
124 | { | |
125 | fprintf_filtered (file, _("Inferior debugging is %s.\n"), value); | |
126 | } | |
527159b7 | 127 | |
d4f3574e SS |
128 | /* If the program uses ELF-style shared libraries, then calls to |
129 | functions in shared libraries go through stubs, which live in a | |
130 | table called the PLT (Procedure Linkage Table). The first time the | |
131 | function is called, the stub sends control to the dynamic linker, | |
132 | which looks up the function's real address, patches the stub so | |
133 | that future calls will go directly to the function, and then passes | |
134 | control to the function. | |
135 | ||
136 | If we are stepping at the source level, we don't want to see any of | |
137 | this --- we just want to skip over the stub and the dynamic linker. | |
138 | The simple approach is to single-step until control leaves the | |
139 | dynamic linker. | |
140 | ||
ca557f44 AC |
141 | However, on some systems (e.g., Red Hat's 5.2 distribution) the |
142 | dynamic linker calls functions in the shared C library, so you | |
143 | can't tell from the PC alone whether the dynamic linker is still | |
144 | running. In this case, we use a step-resume breakpoint to get us | |
145 | past the dynamic linker, as if we were using "next" to step over a | |
146 | function call. | |
d4f3574e SS |
147 | |
148 | IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic | |
149 | linker code or not. Normally, this means we single-step. However, | |
150 | if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an | |
151 | address where we can place a step-resume breakpoint to get past the | |
152 | linker's symbol resolution function. | |
153 | ||
154 | IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a | |
155 | pretty portable way, by comparing the PC against the address ranges | |
156 | of the dynamic linker's sections. | |
157 | ||
158 | SKIP_SOLIB_RESOLVER is generally going to be system-specific, since | |
159 | it depends on internal details of the dynamic linker. It's usually | |
160 | not too hard to figure out where to put a breakpoint, but it | |
161 | certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of | |
162 | sanity checking. If it can't figure things out, returning zero and | |
163 | getting the (possibly confusing) stepping behavior is better than | |
164 | signalling an error, which will obscure the change in the | |
165 | inferior's state. */ | |
c906108c | 166 | |
c906108c SS |
167 | /* This function returns TRUE if pc is the address of an instruction |
168 | that lies within the dynamic linker (such as the event hook, or the | |
169 | dld itself). | |
170 | ||
171 | This function must be used only when a dynamic linker event has | |
172 | been caught, and the inferior is being stepped out of the hook, or | |
173 | undefined results are guaranteed. */ | |
174 | ||
175 | #ifndef SOLIB_IN_DYNAMIC_LINKER | |
176 | #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0 | |
177 | #endif | |
178 | ||
c2c6d25f JM |
179 | /* We can't step off a permanent breakpoint in the ordinary way, because we |
180 | can't remove it. Instead, we have to advance the PC to the next | |
181 | instruction. This macro should expand to a pointer to a function that | |
182 | does that, or zero if we have no such function. If we don't have a | |
183 | definition for it, we have to report an error. */ | |
488f131b | 184 | #ifndef SKIP_PERMANENT_BREAKPOINT |
c2c6d25f JM |
185 | #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint) |
186 | static void | |
c2d11a7d | 187 | default_skip_permanent_breakpoint (void) |
c2c6d25f | 188 | { |
8a3fe4f8 | 189 | error (_("\ |
c2c6d25f JM |
190 | The program is stopped at a permanent breakpoint, but GDB does not know\n\ |
191 | how to step past a permanent breakpoint on this architecture. Try using\n\ | |
8a3fe4f8 | 192 | a command like `return' or `jump' to continue execution.")); |
c2c6d25f JM |
193 | } |
194 | #endif | |
488f131b | 195 | |
c2c6d25f | 196 | |
7a292a7a SS |
197 | /* Convert the #defines into values. This is temporary until wfi control |
198 | flow is completely sorted out. */ | |
199 | ||
200 | #ifndef HAVE_STEPPABLE_WATCHPOINT | |
201 | #define HAVE_STEPPABLE_WATCHPOINT 0 | |
202 | #else | |
203 | #undef HAVE_STEPPABLE_WATCHPOINT | |
204 | #define HAVE_STEPPABLE_WATCHPOINT 1 | |
205 | #endif | |
206 | ||
692590c1 MS |
207 | #ifndef CANNOT_STEP_HW_WATCHPOINTS |
208 | #define CANNOT_STEP_HW_WATCHPOINTS 0 | |
209 | #else | |
210 | #undef CANNOT_STEP_HW_WATCHPOINTS | |
211 | #define CANNOT_STEP_HW_WATCHPOINTS 1 | |
212 | #endif | |
213 | ||
c906108c SS |
214 | /* Tables of how to react to signals; the user sets them. */ |
215 | ||
216 | static unsigned char *signal_stop; | |
217 | static unsigned char *signal_print; | |
218 | static unsigned char *signal_program; | |
219 | ||
220 | #define SET_SIGS(nsigs,sigs,flags) \ | |
221 | do { \ | |
222 | int signum = (nsigs); \ | |
223 | while (signum-- > 0) \ | |
224 | if ((sigs)[signum]) \ | |
225 | (flags)[signum] = 1; \ | |
226 | } while (0) | |
227 | ||
228 | #define UNSET_SIGS(nsigs,sigs,flags) \ | |
229 | do { \ | |
230 | int signum = (nsigs); \ | |
231 | while (signum-- > 0) \ | |
232 | if ((sigs)[signum]) \ | |
233 | (flags)[signum] = 0; \ | |
234 | } while (0) | |
235 | ||
39f77062 KB |
236 | /* Value to pass to target_resume() to cause all threads to resume */ |
237 | ||
238 | #define RESUME_ALL (pid_to_ptid (-1)) | |
c906108c SS |
239 | |
240 | /* Command list pointer for the "stop" placeholder. */ | |
241 | ||
242 | static struct cmd_list_element *stop_command; | |
243 | ||
244 | /* Nonzero if breakpoints are now inserted in the inferior. */ | |
245 | ||
246 | static int breakpoints_inserted; | |
247 | ||
248 | /* Function inferior was in as of last step command. */ | |
249 | ||
250 | static struct symbol *step_start_function; | |
251 | ||
252 | /* Nonzero if we are expecting a trace trap and should proceed from it. */ | |
253 | ||
254 | static int trap_expected; | |
255 | ||
c906108c SS |
256 | /* Nonzero if we want to give control to the user when we're notified |
257 | of shared library events by the dynamic linker. */ | |
258 | static int stop_on_solib_events; | |
920d2a44 AC |
259 | static void |
260 | show_stop_on_solib_events (struct ui_file *file, int from_tty, | |
261 | struct cmd_list_element *c, const char *value) | |
262 | { | |
263 | fprintf_filtered (file, _("Stopping for shared library events is %s.\n"), | |
264 | value); | |
265 | } | |
c906108c | 266 | |
c906108c SS |
267 | /* Nonzero means expecting a trace trap |
268 | and should stop the inferior and return silently when it happens. */ | |
269 | ||
270 | int stop_after_trap; | |
271 | ||
272 | /* Nonzero means expecting a trap and caller will handle it themselves. | |
273 | It is used after attach, due to attaching to a process; | |
274 | when running in the shell before the child program has been exec'd; | |
275 | and when running some kinds of remote stuff (FIXME?). */ | |
276 | ||
c0236d92 | 277 | enum stop_kind stop_soon; |
c906108c SS |
278 | |
279 | /* Nonzero if proceed is being used for a "finish" command or a similar | |
280 | situation when stop_registers should be saved. */ | |
281 | ||
282 | int proceed_to_finish; | |
283 | ||
284 | /* Save register contents here when about to pop a stack dummy frame, | |
285 | if-and-only-if proceed_to_finish is set. | |
286 | Thus this contains the return value from the called function (assuming | |
287 | values are returned in a register). */ | |
288 | ||
72cec141 | 289 | struct regcache *stop_registers; |
c906108c SS |
290 | |
291 | /* Nonzero if program stopped due to error trying to insert breakpoints. */ | |
292 | ||
293 | static int breakpoints_failed; | |
294 | ||
295 | /* Nonzero after stop if current stack frame should be printed. */ | |
296 | ||
297 | static int stop_print_frame; | |
298 | ||
299 | static struct breakpoint *step_resume_breakpoint = NULL; | |
c906108c | 300 | |
e02bc4cc | 301 | /* This is a cached copy of the pid/waitstatus of the last event |
9a4105ab AC |
302 | returned by target_wait()/deprecated_target_wait_hook(). This |
303 | information is returned by get_last_target_status(). */ | |
39f77062 | 304 | static ptid_t target_last_wait_ptid; |
e02bc4cc DS |
305 | static struct target_waitstatus target_last_waitstatus; |
306 | ||
c906108c SS |
307 | /* This is used to remember when a fork, vfork or exec event |
308 | was caught by a catchpoint, and thus the event is to be | |
309 | followed at the next resume of the inferior, and not | |
310 | immediately. */ | |
311 | static struct | |
488f131b JB |
312 | { |
313 | enum target_waitkind kind; | |
314 | struct | |
c906108c | 315 | { |
488f131b | 316 | int parent_pid; |
488f131b | 317 | int child_pid; |
c906108c | 318 | } |
488f131b JB |
319 | fork_event; |
320 | char *execd_pathname; | |
321 | } | |
c906108c SS |
322 | pending_follow; |
323 | ||
53904c9e AC |
324 | static const char follow_fork_mode_child[] = "child"; |
325 | static const char follow_fork_mode_parent[] = "parent"; | |
326 | ||
488f131b | 327 | static const char *follow_fork_mode_kind_names[] = { |
53904c9e AC |
328 | follow_fork_mode_child, |
329 | follow_fork_mode_parent, | |
330 | NULL | |
ef346e04 | 331 | }; |
c906108c | 332 | |
53904c9e | 333 | static const char *follow_fork_mode_string = follow_fork_mode_parent; |
920d2a44 AC |
334 | static void |
335 | show_follow_fork_mode_string (struct ui_file *file, int from_tty, | |
336 | struct cmd_list_element *c, const char *value) | |
337 | { | |
338 | fprintf_filtered (file, _("\ | |
339 | Debugger response to a program call of fork or vfork is \"%s\".\n"), | |
340 | value); | |
341 | } | |
c906108c SS |
342 | \f |
343 | ||
6604731b | 344 | static int |
4ef3f3be | 345 | follow_fork (void) |
c906108c | 346 | { |
ea1dd7bc | 347 | int follow_child = (follow_fork_mode_string == follow_fork_mode_child); |
c906108c | 348 | |
6604731b | 349 | return target_follow_fork (follow_child); |
c906108c SS |
350 | } |
351 | ||
6604731b DJ |
352 | void |
353 | follow_inferior_reset_breakpoints (void) | |
c906108c | 354 | { |
6604731b DJ |
355 | /* Was there a step_resume breakpoint? (There was if the user |
356 | did a "next" at the fork() call.) If so, explicitly reset its | |
357 | thread number. | |
358 | ||
359 | step_resumes are a form of bp that are made to be per-thread. | |
360 | Since we created the step_resume bp when the parent process | |
361 | was being debugged, and now are switching to the child process, | |
362 | from the breakpoint package's viewpoint, that's a switch of | |
363 | "threads". We must update the bp's notion of which thread | |
364 | it is for, or it'll be ignored when it triggers. */ | |
365 | ||
366 | if (step_resume_breakpoint) | |
367 | breakpoint_re_set_thread (step_resume_breakpoint); | |
368 | ||
369 | /* Reinsert all breakpoints in the child. The user may have set | |
370 | breakpoints after catching the fork, in which case those | |
371 | were never set in the child, but only in the parent. This makes | |
372 | sure the inserted breakpoints match the breakpoint list. */ | |
373 | ||
374 | breakpoint_re_set (); | |
375 | insert_breakpoints (); | |
c906108c | 376 | } |
c906108c | 377 | |
1adeb98a FN |
378 | /* EXECD_PATHNAME is assumed to be non-NULL. */ |
379 | ||
c906108c | 380 | static void |
96baa820 | 381 | follow_exec (int pid, char *execd_pathname) |
c906108c | 382 | { |
c906108c | 383 | int saved_pid = pid; |
7a292a7a SS |
384 | struct target_ops *tgt; |
385 | ||
386 | if (!may_follow_exec) | |
387 | return; | |
c906108c | 388 | |
c906108c SS |
389 | /* This is an exec event that we actually wish to pay attention to. |
390 | Refresh our symbol table to the newly exec'd program, remove any | |
391 | momentary bp's, etc. | |
392 | ||
393 | If there are breakpoints, they aren't really inserted now, | |
394 | since the exec() transformed our inferior into a fresh set | |
395 | of instructions. | |
396 | ||
397 | We want to preserve symbolic breakpoints on the list, since | |
398 | we have hopes that they can be reset after the new a.out's | |
399 | symbol table is read. | |
400 | ||
401 | However, any "raw" breakpoints must be removed from the list | |
402 | (e.g., the solib bp's), since their address is probably invalid | |
403 | now. | |
404 | ||
405 | And, we DON'T want to call delete_breakpoints() here, since | |
406 | that may write the bp's "shadow contents" (the instruction | |
407 | value that was overwritten witha TRAP instruction). Since | |
408 | we now have a new a.out, those shadow contents aren't valid. */ | |
409 | update_breakpoints_after_exec (); | |
410 | ||
411 | /* If there was one, it's gone now. We cannot truly step-to-next | |
412 | statement through an exec(). */ | |
413 | step_resume_breakpoint = NULL; | |
414 | step_range_start = 0; | |
415 | step_range_end = 0; | |
416 | ||
c906108c | 417 | /* What is this a.out's name? */ |
a3f17187 | 418 | printf_unfiltered (_("Executing new program: %s\n"), execd_pathname); |
c906108c SS |
419 | |
420 | /* We've followed the inferior through an exec. Therefore, the | |
421 | inferior has essentially been killed & reborn. */ | |
7a292a7a SS |
422 | |
423 | /* First collect the run target in effect. */ | |
424 | tgt = find_run_target (); | |
425 | /* If we can't find one, things are in a very strange state... */ | |
426 | if (tgt == NULL) | |
8a3fe4f8 | 427 | error (_("Could find run target to save before following exec")); |
7a292a7a | 428 | |
c906108c SS |
429 | gdb_flush (gdb_stdout); |
430 | target_mourn_inferior (); | |
39f77062 | 431 | inferior_ptid = pid_to_ptid (saved_pid); |
488f131b | 432 | /* Because mourn_inferior resets inferior_ptid. */ |
7a292a7a | 433 | push_target (tgt); |
c906108c SS |
434 | |
435 | /* That a.out is now the one to use. */ | |
436 | exec_file_attach (execd_pathname, 0); | |
437 | ||
438 | /* And also is where symbols can be found. */ | |
1adeb98a | 439 | symbol_file_add_main (execd_pathname, 0); |
c906108c SS |
440 | |
441 | /* Reset the shared library package. This ensures that we get | |
442 | a shlib event when the child reaches "_start", at which point | |
443 | the dld will have had a chance to initialize the child. */ | |
7a292a7a | 444 | #if defined(SOLIB_RESTART) |
c906108c | 445 | SOLIB_RESTART (); |
7a292a7a SS |
446 | #endif |
447 | #ifdef SOLIB_CREATE_INFERIOR_HOOK | |
39f77062 | 448 | SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid)); |
a77053c2 MK |
449 | #else |
450 | solib_create_inferior_hook (); | |
7a292a7a | 451 | #endif |
c906108c SS |
452 | |
453 | /* Reinsert all breakpoints. (Those which were symbolic have | |
454 | been reset to the proper address in the new a.out, thanks | |
455 | to symbol_file_command...) */ | |
456 | insert_breakpoints (); | |
457 | ||
458 | /* The next resume of this inferior should bring it to the shlib | |
459 | startup breakpoints. (If the user had also set bp's on | |
460 | "main" from the old (parent) process, then they'll auto- | |
461 | matically get reset there in the new process.) */ | |
c906108c SS |
462 | } |
463 | ||
464 | /* Non-zero if we just simulating a single-step. This is needed | |
465 | because we cannot remove the breakpoints in the inferior process | |
466 | until after the `wait' in `wait_for_inferior'. */ | |
467 | static int singlestep_breakpoints_inserted_p = 0; | |
9f976b41 DJ |
468 | |
469 | /* The thread we inserted single-step breakpoints for. */ | |
470 | static ptid_t singlestep_ptid; | |
471 | ||
472 | /* If another thread hit the singlestep breakpoint, we save the original | |
473 | thread here so that we can resume single-stepping it later. */ | |
474 | static ptid_t saved_singlestep_ptid; | |
475 | static int stepping_past_singlestep_breakpoint; | |
c906108c SS |
476 | \f |
477 | ||
478 | /* Things to clean up if we QUIT out of resume (). */ | |
c906108c | 479 | static void |
74b7792f | 480 | resume_cleanups (void *ignore) |
c906108c SS |
481 | { |
482 | normal_stop (); | |
483 | } | |
484 | ||
53904c9e AC |
485 | static const char schedlock_off[] = "off"; |
486 | static const char schedlock_on[] = "on"; | |
487 | static const char schedlock_step[] = "step"; | |
488f131b | 488 | static const char *scheduler_enums[] = { |
ef346e04 AC |
489 | schedlock_off, |
490 | schedlock_on, | |
491 | schedlock_step, | |
492 | NULL | |
493 | }; | |
920d2a44 AC |
494 | static const char *scheduler_mode = schedlock_off; |
495 | static void | |
496 | show_scheduler_mode (struct ui_file *file, int from_tty, | |
497 | struct cmd_list_element *c, const char *value) | |
498 | { | |
499 | fprintf_filtered (file, _("\ | |
500 | Mode for locking scheduler during execution is \"%s\".\n"), | |
501 | value); | |
502 | } | |
c906108c SS |
503 | |
504 | static void | |
96baa820 | 505 | set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c) |
c906108c | 506 | { |
eefe576e AC |
507 | if (!target_can_lock_scheduler) |
508 | { | |
509 | scheduler_mode = schedlock_off; | |
510 | error (_("Target '%s' cannot support this command."), target_shortname); | |
511 | } | |
c906108c SS |
512 | } |
513 | ||
514 | ||
515 | /* Resume the inferior, but allow a QUIT. This is useful if the user | |
516 | wants to interrupt some lengthy single-stepping operation | |
517 | (for child processes, the SIGINT goes to the inferior, and so | |
518 | we get a SIGINT random_signal, but for remote debugging and perhaps | |
519 | other targets, that's not true). | |
520 | ||
521 | STEP nonzero if we should step (zero to continue instead). | |
522 | SIG is the signal to give the inferior (zero for none). */ | |
523 | void | |
96baa820 | 524 | resume (int step, enum target_signal sig) |
c906108c SS |
525 | { |
526 | int should_resume = 1; | |
74b7792f | 527 | struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0); |
c906108c SS |
528 | QUIT; |
529 | ||
527159b7 | 530 | if (debug_infrun) |
8a9de0e4 AC |
531 | fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n", |
532 | step, sig); | |
527159b7 | 533 | |
ef5cf84e MS |
534 | /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */ |
535 | ||
c906108c | 536 | |
692590c1 MS |
537 | /* Some targets (e.g. Solaris x86) have a kernel bug when stepping |
538 | over an instruction that causes a page fault without triggering | |
539 | a hardware watchpoint. The kernel properly notices that it shouldn't | |
540 | stop, because the hardware watchpoint is not triggered, but it forgets | |
541 | the step request and continues the program normally. | |
542 | Work around the problem by removing hardware watchpoints if a step is | |
543 | requested, GDB will check for a hardware watchpoint trigger after the | |
544 | step anyway. */ | |
545 | if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted) | |
546 | remove_hw_watchpoints (); | |
488f131b | 547 | |
692590c1 | 548 | |
c2c6d25f JM |
549 | /* Normally, by the time we reach `resume', the breakpoints are either |
550 | removed or inserted, as appropriate. The exception is if we're sitting | |
551 | at a permanent breakpoint; we need to step over it, but permanent | |
552 | breakpoints can't be removed. So we have to test for it here. */ | |
553 | if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here) | |
554 | SKIP_PERMANENT_BREAKPOINT (); | |
555 | ||
b0ed3589 | 556 | if (SOFTWARE_SINGLE_STEP_P () && step) |
c906108c SS |
557 | { |
558 | /* Do it the hard way, w/temp breakpoints */ | |
c5aa993b | 559 | SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ ); |
c906108c SS |
560 | /* ...and don't ask hardware to do it. */ |
561 | step = 0; | |
562 | /* and do not pull these breakpoints until after a `wait' in | |
563 | `wait_for_inferior' */ | |
564 | singlestep_breakpoints_inserted_p = 1; | |
9f976b41 | 565 | singlestep_ptid = inferior_ptid; |
c906108c SS |
566 | } |
567 | ||
c906108c | 568 | /* If there were any forks/vforks/execs that were caught and are |
6604731b | 569 | now to be followed, then do so. */ |
c906108c SS |
570 | switch (pending_follow.kind) |
571 | { | |
6604731b DJ |
572 | case TARGET_WAITKIND_FORKED: |
573 | case TARGET_WAITKIND_VFORKED: | |
c906108c | 574 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
6604731b DJ |
575 | if (follow_fork ()) |
576 | should_resume = 0; | |
c906108c SS |
577 | break; |
578 | ||
6604731b | 579 | case TARGET_WAITKIND_EXECD: |
c906108c | 580 | /* follow_exec is called as soon as the exec event is seen. */ |
6604731b | 581 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; |
c906108c SS |
582 | break; |
583 | ||
584 | default: | |
585 | break; | |
586 | } | |
c906108c SS |
587 | |
588 | /* Install inferior's terminal modes. */ | |
589 | target_terminal_inferior (); | |
590 | ||
591 | if (should_resume) | |
592 | { | |
39f77062 | 593 | ptid_t resume_ptid; |
dfcd3bfb | 594 | |
488f131b | 595 | resume_ptid = RESUME_ALL; /* Default */ |
ef5cf84e | 596 | |
8fb3e588 AC |
597 | if ((step || singlestep_breakpoints_inserted_p) |
598 | && (stepping_past_singlestep_breakpoint | |
599 | || (!breakpoints_inserted && breakpoint_here_p (read_pc ())))) | |
c906108c | 600 | { |
ef5cf84e MS |
601 | /* Stepping past a breakpoint without inserting breakpoints. |
602 | Make sure only the current thread gets to step, so that | |
603 | other threads don't sneak past breakpoints while they are | |
604 | not inserted. */ | |
c906108c | 605 | |
ef5cf84e | 606 | resume_ptid = inferior_ptid; |
c906108c | 607 | } |
ef5cf84e | 608 | |
8fb3e588 AC |
609 | if ((scheduler_mode == schedlock_on) |
610 | || (scheduler_mode == schedlock_step | |
611 | && (step || singlestep_breakpoints_inserted_p))) | |
c906108c | 612 | { |
ef5cf84e | 613 | /* User-settable 'scheduler' mode requires solo thread resume. */ |
488f131b | 614 | resume_ptid = inferior_ptid; |
c906108c | 615 | } |
ef5cf84e | 616 | |
c4ed33b9 AC |
617 | if (CANNOT_STEP_BREAKPOINT) |
618 | { | |
619 | /* Most targets can step a breakpoint instruction, thus | |
620 | executing it normally. But if this one cannot, just | |
621 | continue and we will hit it anyway. */ | |
622 | if (step && breakpoints_inserted && breakpoint_here_p (read_pc ())) | |
623 | step = 0; | |
624 | } | |
39f77062 | 625 | target_resume (resume_ptid, step, sig); |
c906108c SS |
626 | } |
627 | ||
628 | discard_cleanups (old_cleanups); | |
629 | } | |
630 | \f | |
631 | ||
632 | /* Clear out all variables saying what to do when inferior is continued. | |
633 | First do this, then set the ones you want, then call `proceed'. */ | |
634 | ||
635 | void | |
96baa820 | 636 | clear_proceed_status (void) |
c906108c SS |
637 | { |
638 | trap_expected = 0; | |
639 | step_range_start = 0; | |
640 | step_range_end = 0; | |
aa0cd9c1 | 641 | step_frame_id = null_frame_id; |
5fbbeb29 | 642 | step_over_calls = STEP_OVER_UNDEBUGGABLE; |
c906108c | 643 | stop_after_trap = 0; |
c0236d92 | 644 | stop_soon = NO_STOP_QUIETLY; |
c906108c SS |
645 | proceed_to_finish = 0; |
646 | breakpoint_proceeded = 1; /* We're about to proceed... */ | |
647 | ||
648 | /* Discard any remaining commands or status from previous stop. */ | |
649 | bpstat_clear (&stop_bpstat); | |
650 | } | |
651 | ||
ea67f13b DJ |
652 | /* This should be suitable for any targets that support threads. */ |
653 | ||
654 | static int | |
655 | prepare_to_proceed (void) | |
656 | { | |
657 | ptid_t wait_ptid; | |
658 | struct target_waitstatus wait_status; | |
659 | ||
660 | /* Get the last target status returned by target_wait(). */ | |
661 | get_last_target_status (&wait_ptid, &wait_status); | |
662 | ||
663 | /* Make sure we were stopped either at a breakpoint, or because | |
664 | of a Ctrl-C. */ | |
665 | if (wait_status.kind != TARGET_WAITKIND_STOPPED | |
8fb3e588 AC |
666 | || (wait_status.value.sig != TARGET_SIGNAL_TRAP |
667 | && wait_status.value.sig != TARGET_SIGNAL_INT)) | |
ea67f13b DJ |
668 | { |
669 | return 0; | |
670 | } | |
671 | ||
672 | if (!ptid_equal (wait_ptid, minus_one_ptid) | |
673 | && !ptid_equal (inferior_ptid, wait_ptid)) | |
674 | { | |
675 | /* Switched over from WAIT_PID. */ | |
676 | CORE_ADDR wait_pc = read_pc_pid (wait_ptid); | |
677 | ||
678 | if (wait_pc != read_pc ()) | |
679 | { | |
680 | /* Switch back to WAIT_PID thread. */ | |
681 | inferior_ptid = wait_ptid; | |
682 | ||
683 | /* FIXME: This stuff came from switch_to_thread() in | |
684 | thread.c (which should probably be a public function). */ | |
685 | flush_cached_frames (); | |
686 | registers_changed (); | |
687 | stop_pc = wait_pc; | |
688 | select_frame (get_current_frame ()); | |
689 | } | |
690 | ||
8fb3e588 AC |
691 | /* We return 1 to indicate that there is a breakpoint here, |
692 | so we need to step over it before continuing to avoid | |
693 | hitting it straight away. */ | |
694 | if (breakpoint_here_p (wait_pc)) | |
695 | return 1; | |
ea67f13b DJ |
696 | } |
697 | ||
698 | return 0; | |
8fb3e588 | 699 | |
ea67f13b | 700 | } |
e4846b08 JJ |
701 | |
702 | /* Record the pc of the program the last time it stopped. This is | |
703 | just used internally by wait_for_inferior, but need to be preserved | |
704 | over calls to it and cleared when the inferior is started. */ | |
705 | static CORE_ADDR prev_pc; | |
706 | ||
c906108c SS |
707 | /* Basic routine for continuing the program in various fashions. |
708 | ||
709 | ADDR is the address to resume at, or -1 for resume where stopped. | |
710 | SIGGNAL is the signal to give it, or 0 for none, | |
c5aa993b | 711 | or -1 for act according to how it stopped. |
c906108c | 712 | STEP is nonzero if should trap after one instruction. |
c5aa993b JM |
713 | -1 means return after that and print nothing. |
714 | You should probably set various step_... variables | |
715 | before calling here, if you are stepping. | |
c906108c SS |
716 | |
717 | You should call clear_proceed_status before calling proceed. */ | |
718 | ||
719 | void | |
96baa820 | 720 | proceed (CORE_ADDR addr, enum target_signal siggnal, int step) |
c906108c SS |
721 | { |
722 | int oneproc = 0; | |
723 | ||
724 | if (step > 0) | |
725 | step_start_function = find_pc_function (read_pc ()); | |
726 | if (step < 0) | |
727 | stop_after_trap = 1; | |
728 | ||
2acceee2 | 729 | if (addr == (CORE_ADDR) -1) |
c906108c | 730 | { |
c906108c | 731 | if (read_pc () == stop_pc && breakpoint_here_p (read_pc ())) |
3352ef37 AC |
732 | /* There is a breakpoint at the address we will resume at, |
733 | step one instruction before inserting breakpoints so that | |
734 | we do not stop right away (and report a second hit at this | |
735 | breakpoint). */ | |
c906108c | 736 | oneproc = 1; |
3352ef37 AC |
737 | else if (gdbarch_single_step_through_delay_p (current_gdbarch) |
738 | && gdbarch_single_step_through_delay (current_gdbarch, | |
739 | get_current_frame ())) | |
740 | /* We stepped onto an instruction that needs to be stepped | |
741 | again before re-inserting the breakpoint, do so. */ | |
c906108c SS |
742 | oneproc = 1; |
743 | } | |
744 | else | |
745 | { | |
746 | write_pc (addr); | |
c906108c SS |
747 | } |
748 | ||
527159b7 | 749 | if (debug_infrun) |
8a9de0e4 AC |
750 | fprintf_unfiltered (gdb_stdlog, |
751 | "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n", | |
752 | paddr_nz (addr), siggnal, step); | |
527159b7 | 753 | |
c906108c SS |
754 | /* In a multi-threaded task we may select another thread |
755 | and then continue or step. | |
756 | ||
757 | But if the old thread was stopped at a breakpoint, it | |
758 | will immediately cause another breakpoint stop without | |
759 | any execution (i.e. it will report a breakpoint hit | |
760 | incorrectly). So we must step over it first. | |
761 | ||
ea67f13b | 762 | prepare_to_proceed checks the current thread against the thread |
c906108c SS |
763 | that reported the most recent event. If a step-over is required |
764 | it returns TRUE and sets the current thread to the old thread. */ | |
ea67f13b DJ |
765 | if (prepare_to_proceed () && breakpoint_here_p (read_pc ())) |
766 | oneproc = 1; | |
c906108c | 767 | |
c906108c SS |
768 | if (oneproc) |
769 | /* We will get a trace trap after one instruction. | |
770 | Continue it automatically and insert breakpoints then. */ | |
771 | trap_expected = 1; | |
772 | else | |
773 | { | |
81d0cc19 GS |
774 | insert_breakpoints (); |
775 | /* If we get here there was no call to error() in | |
8fb3e588 | 776 | insert breakpoints -- so they were inserted. */ |
c906108c SS |
777 | breakpoints_inserted = 1; |
778 | } | |
779 | ||
780 | if (siggnal != TARGET_SIGNAL_DEFAULT) | |
781 | stop_signal = siggnal; | |
782 | /* If this signal should not be seen by program, | |
783 | give it zero. Used for debugging signals. */ | |
784 | else if (!signal_program[stop_signal]) | |
785 | stop_signal = TARGET_SIGNAL_0; | |
786 | ||
787 | annotate_starting (); | |
788 | ||
789 | /* Make sure that output from GDB appears before output from the | |
790 | inferior. */ | |
791 | gdb_flush (gdb_stdout); | |
792 | ||
e4846b08 JJ |
793 | /* Refresh prev_pc value just prior to resuming. This used to be |
794 | done in stop_stepping, however, setting prev_pc there did not handle | |
795 | scenarios such as inferior function calls or returning from | |
796 | a function via the return command. In those cases, the prev_pc | |
797 | value was not set properly for subsequent commands. The prev_pc value | |
798 | is used to initialize the starting line number in the ecs. With an | |
799 | invalid value, the gdb next command ends up stopping at the position | |
800 | represented by the next line table entry past our start position. | |
801 | On platforms that generate one line table entry per line, this | |
802 | is not a problem. However, on the ia64, the compiler generates | |
803 | extraneous line table entries that do not increase the line number. | |
804 | When we issue the gdb next command on the ia64 after an inferior call | |
805 | or a return command, we often end up a few instructions forward, still | |
806 | within the original line we started. | |
807 | ||
808 | An attempt was made to have init_execution_control_state () refresh | |
809 | the prev_pc value before calculating the line number. This approach | |
810 | did not work because on platforms that use ptrace, the pc register | |
811 | cannot be read unless the inferior is stopped. At that point, we | |
812 | are not guaranteed the inferior is stopped and so the read_pc () | |
813 | call can fail. Setting the prev_pc value here ensures the value is | |
8fb3e588 | 814 | updated correctly when the inferior is stopped. */ |
e4846b08 JJ |
815 | prev_pc = read_pc (); |
816 | ||
c906108c SS |
817 | /* Resume inferior. */ |
818 | resume (oneproc || step || bpstat_should_step (), stop_signal); | |
819 | ||
820 | /* Wait for it to stop (if not standalone) | |
821 | and in any case decode why it stopped, and act accordingly. */ | |
43ff13b4 JM |
822 | /* Do this only if we are not using the event loop, or if the target |
823 | does not support asynchronous execution. */ | |
362646f5 | 824 | if (!target_can_async_p ()) |
43ff13b4 JM |
825 | { |
826 | wait_for_inferior (); | |
827 | normal_stop (); | |
828 | } | |
c906108c | 829 | } |
c906108c SS |
830 | \f |
831 | ||
832 | /* Start remote-debugging of a machine over a serial link. */ | |
96baa820 | 833 | |
c906108c | 834 | void |
96baa820 | 835 | start_remote (void) |
c906108c SS |
836 | { |
837 | init_thread_list (); | |
838 | init_wait_for_inferior (); | |
c0236d92 | 839 | stop_soon = STOP_QUIETLY; |
c906108c | 840 | trap_expected = 0; |
43ff13b4 | 841 | |
6426a772 JM |
842 | /* Always go on waiting for the target, regardless of the mode. */ |
843 | /* FIXME: cagney/1999-09-23: At present it isn't possible to | |
7e73cedf | 844 | indicate to wait_for_inferior that a target should timeout if |
6426a772 JM |
845 | nothing is returned (instead of just blocking). Because of this, |
846 | targets expecting an immediate response need to, internally, set | |
847 | things up so that the target_wait() is forced to eventually | |
848 | timeout. */ | |
849 | /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to | |
850 | differentiate to its caller what the state of the target is after | |
851 | the initial open has been performed. Here we're assuming that | |
852 | the target has stopped. It should be possible to eventually have | |
853 | target_open() return to the caller an indication that the target | |
854 | is currently running and GDB state should be set to the same as | |
855 | for an async run. */ | |
856 | wait_for_inferior (); | |
857 | normal_stop (); | |
c906108c SS |
858 | } |
859 | ||
860 | /* Initialize static vars when a new inferior begins. */ | |
861 | ||
862 | void | |
96baa820 | 863 | init_wait_for_inferior (void) |
c906108c SS |
864 | { |
865 | /* These are meaningless until the first time through wait_for_inferior. */ | |
866 | prev_pc = 0; | |
c906108c | 867 | |
c906108c SS |
868 | breakpoints_inserted = 0; |
869 | breakpoint_init_inferior (inf_starting); | |
870 | ||
871 | /* Don't confuse first call to proceed(). */ | |
872 | stop_signal = TARGET_SIGNAL_0; | |
873 | ||
874 | /* The first resume is not following a fork/vfork/exec. */ | |
875 | pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */ | |
c906108c | 876 | |
c906108c | 877 | clear_proceed_status (); |
9f976b41 DJ |
878 | |
879 | stepping_past_singlestep_breakpoint = 0; | |
c906108c | 880 | } |
c906108c | 881 | \f |
b83266a0 SS |
882 | /* This enum encodes possible reasons for doing a target_wait, so that |
883 | wfi can call target_wait in one place. (Ultimately the call will be | |
884 | moved out of the infinite loop entirely.) */ | |
885 | ||
c5aa993b JM |
886 | enum infwait_states |
887 | { | |
cd0fc7c3 SS |
888 | infwait_normal_state, |
889 | infwait_thread_hop_state, | |
cd0fc7c3 | 890 | infwait_nonstep_watch_state |
b83266a0 SS |
891 | }; |
892 | ||
11cf8741 JM |
893 | /* Why did the inferior stop? Used to print the appropriate messages |
894 | to the interface from within handle_inferior_event(). */ | |
895 | enum inferior_stop_reason | |
896 | { | |
897 | /* We don't know why. */ | |
898 | STOP_UNKNOWN, | |
899 | /* Step, next, nexti, stepi finished. */ | |
900 | END_STEPPING_RANGE, | |
901 | /* Found breakpoint. */ | |
902 | BREAKPOINT_HIT, | |
903 | /* Inferior terminated by signal. */ | |
904 | SIGNAL_EXITED, | |
905 | /* Inferior exited. */ | |
906 | EXITED, | |
907 | /* Inferior received signal, and user asked to be notified. */ | |
908 | SIGNAL_RECEIVED | |
909 | }; | |
910 | ||
cd0fc7c3 SS |
911 | /* This structure contains what used to be local variables in |
912 | wait_for_inferior. Probably many of them can return to being | |
913 | locals in handle_inferior_event. */ | |
914 | ||
c5aa993b | 915 | struct execution_control_state |
488f131b JB |
916 | { |
917 | struct target_waitstatus ws; | |
918 | struct target_waitstatus *wp; | |
919 | int another_trap; | |
920 | int random_signal; | |
921 | CORE_ADDR stop_func_start; | |
922 | CORE_ADDR stop_func_end; | |
923 | char *stop_func_name; | |
924 | struct symtab_and_line sal; | |
488f131b JB |
925 | int current_line; |
926 | struct symtab *current_symtab; | |
927 | int handling_longjmp; /* FIXME */ | |
928 | ptid_t ptid; | |
929 | ptid_t saved_inferior_ptid; | |
68f53502 | 930 | int step_after_step_resume_breakpoint; |
488f131b JB |
931 | int stepping_through_solib_after_catch; |
932 | bpstat stepping_through_solib_catchpoints; | |
488f131b JB |
933 | int new_thread_event; |
934 | struct target_waitstatus tmpstatus; | |
935 | enum infwait_states infwait_state; | |
936 | ptid_t waiton_ptid; | |
937 | int wait_some_more; | |
938 | }; | |
939 | ||
940 | void init_execution_control_state (struct execution_control_state *ecs); | |
941 | ||
942 | void handle_inferior_event (struct execution_control_state *ecs); | |
cd0fc7c3 | 943 | |
c2c6d25f | 944 | static void step_into_function (struct execution_control_state *ecs); |
44cbf7b5 | 945 | static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame); |
14e60db5 | 946 | static void insert_step_resume_breakpoint_at_caller (struct frame_info *); |
44cbf7b5 AC |
947 | static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, |
948 | struct frame_id sr_id); | |
104c1213 JM |
949 | static void stop_stepping (struct execution_control_state *ecs); |
950 | static void prepare_to_wait (struct execution_control_state *ecs); | |
d4f3574e | 951 | static void keep_going (struct execution_control_state *ecs); |
488f131b JB |
952 | static void print_stop_reason (enum inferior_stop_reason stop_reason, |
953 | int stop_info); | |
104c1213 | 954 | |
cd0fc7c3 SS |
955 | /* Wait for control to return from inferior to debugger. |
956 | If inferior gets a signal, we may decide to start it up again | |
957 | instead of returning. That is why there is a loop in this function. | |
958 | When this function actually returns it means the inferior | |
959 | should be left stopped and GDB should read more commands. */ | |
960 | ||
961 | void | |
96baa820 | 962 | wait_for_inferior (void) |
cd0fc7c3 SS |
963 | { |
964 | struct cleanup *old_cleanups; | |
965 | struct execution_control_state ecss; | |
966 | struct execution_control_state *ecs; | |
c906108c | 967 | |
527159b7 | 968 | if (debug_infrun) |
8a9de0e4 | 969 | fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n"); |
527159b7 | 970 | |
8601f500 | 971 | old_cleanups = make_cleanup (delete_step_resume_breakpoint, |
c906108c | 972 | &step_resume_breakpoint); |
cd0fc7c3 SS |
973 | |
974 | /* wfi still stays in a loop, so it's OK just to take the address of | |
975 | a local to get the ecs pointer. */ | |
976 | ecs = &ecss; | |
977 | ||
978 | /* Fill in with reasonable starting values. */ | |
979 | init_execution_control_state (ecs); | |
980 | ||
c906108c | 981 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 982 | previous_inferior_ptid = inferior_ptid; |
c906108c | 983 | |
cd0fc7c3 SS |
984 | overlay_cache_invalid = 1; |
985 | ||
986 | /* We have to invalidate the registers BEFORE calling target_wait | |
987 | because they can be loaded from the target while in target_wait. | |
988 | This makes remote debugging a bit more efficient for those | |
989 | targets that provide critical registers as part of their normal | |
990 | status mechanism. */ | |
991 | ||
992 | registers_changed (); | |
b83266a0 | 993 | |
c906108c SS |
994 | while (1) |
995 | { | |
9a4105ab AC |
996 | if (deprecated_target_wait_hook) |
997 | ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp); | |
cd0fc7c3 | 998 | else |
39f77062 | 999 | ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp); |
c906108c | 1000 | |
cd0fc7c3 SS |
1001 | /* Now figure out what to do with the result of the result. */ |
1002 | handle_inferior_event (ecs); | |
c906108c | 1003 | |
cd0fc7c3 SS |
1004 | if (!ecs->wait_some_more) |
1005 | break; | |
1006 | } | |
1007 | do_cleanups (old_cleanups); | |
1008 | } | |
c906108c | 1009 | |
43ff13b4 JM |
1010 | /* Asynchronous version of wait_for_inferior. It is called by the |
1011 | event loop whenever a change of state is detected on the file | |
1012 | descriptor corresponding to the target. It can be called more than | |
1013 | once to complete a single execution command. In such cases we need | |
1014 | to keep the state in a global variable ASYNC_ECSS. If it is the | |
1015 | last time that this function is called for a single execution | |
1016 | command, then report to the user that the inferior has stopped, and | |
1017 | do the necessary cleanups. */ | |
1018 | ||
1019 | struct execution_control_state async_ecss; | |
1020 | struct execution_control_state *async_ecs; | |
1021 | ||
1022 | void | |
fba45db2 | 1023 | fetch_inferior_event (void *client_data) |
43ff13b4 JM |
1024 | { |
1025 | static struct cleanup *old_cleanups; | |
1026 | ||
c5aa993b | 1027 | async_ecs = &async_ecss; |
43ff13b4 JM |
1028 | |
1029 | if (!async_ecs->wait_some_more) | |
1030 | { | |
488f131b | 1031 | old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint, |
c5aa993b | 1032 | &step_resume_breakpoint); |
43ff13b4 JM |
1033 | |
1034 | /* Fill in with reasonable starting values. */ | |
1035 | init_execution_control_state (async_ecs); | |
1036 | ||
43ff13b4 | 1037 | /* We'll update this if & when we switch to a new thread. */ |
39f77062 | 1038 | previous_inferior_ptid = inferior_ptid; |
43ff13b4 JM |
1039 | |
1040 | overlay_cache_invalid = 1; | |
1041 | ||
1042 | /* We have to invalidate the registers BEFORE calling target_wait | |
c5aa993b JM |
1043 | because they can be loaded from the target while in target_wait. |
1044 | This makes remote debugging a bit more efficient for those | |
1045 | targets that provide critical registers as part of their normal | |
1046 | status mechanism. */ | |
43ff13b4 JM |
1047 | |
1048 | registers_changed (); | |
1049 | } | |
1050 | ||
9a4105ab | 1051 | if (deprecated_target_wait_hook) |
488f131b | 1052 | async_ecs->ptid = |
9a4105ab | 1053 | deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 | 1054 | else |
39f77062 | 1055 | async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp); |
43ff13b4 JM |
1056 | |
1057 | /* Now figure out what to do with the result of the result. */ | |
1058 | handle_inferior_event (async_ecs); | |
1059 | ||
1060 | if (!async_ecs->wait_some_more) | |
1061 | { | |
adf40b2e | 1062 | /* Do only the cleanups that have been added by this |
488f131b JB |
1063 | function. Let the continuations for the commands do the rest, |
1064 | if there are any. */ | |
43ff13b4 JM |
1065 | do_exec_cleanups (old_cleanups); |
1066 | normal_stop (); | |
c2d11a7d JM |
1067 | if (step_multi && stop_step) |
1068 | inferior_event_handler (INF_EXEC_CONTINUE, NULL); | |
1069 | else | |
1070 | inferior_event_handler (INF_EXEC_COMPLETE, NULL); | |
43ff13b4 JM |
1071 | } |
1072 | } | |
1073 | ||
cd0fc7c3 SS |
1074 | /* Prepare an execution control state for looping through a |
1075 | wait_for_inferior-type loop. */ | |
1076 | ||
1077 | void | |
96baa820 | 1078 | init_execution_control_state (struct execution_control_state *ecs) |
cd0fc7c3 | 1079 | { |
6ad80df0 | 1080 | ecs->another_trap = 0; |
cd0fc7c3 | 1081 | ecs->random_signal = 0; |
68f53502 | 1082 | ecs->step_after_step_resume_breakpoint = 0; |
cd0fc7c3 | 1083 | ecs->handling_longjmp = 0; /* FIXME */ |
cd0fc7c3 SS |
1084 | ecs->stepping_through_solib_after_catch = 0; |
1085 | ecs->stepping_through_solib_catchpoints = NULL; | |
cd0fc7c3 SS |
1086 | ecs->sal = find_pc_line (prev_pc, 0); |
1087 | ecs->current_line = ecs->sal.line; | |
1088 | ecs->current_symtab = ecs->sal.symtab; | |
1089 | ecs->infwait_state = infwait_normal_state; | |
39f77062 | 1090 | ecs->waiton_ptid = pid_to_ptid (-1); |
cd0fc7c3 SS |
1091 | ecs->wp = &(ecs->ws); |
1092 | } | |
1093 | ||
e02bc4cc | 1094 | /* Return the cached copy of the last pid/waitstatus returned by |
9a4105ab AC |
1095 | target_wait()/deprecated_target_wait_hook(). The data is actually |
1096 | cached by handle_inferior_event(), which gets called immediately | |
1097 | after target_wait()/deprecated_target_wait_hook(). */ | |
e02bc4cc DS |
1098 | |
1099 | void | |
488f131b | 1100 | get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status) |
e02bc4cc | 1101 | { |
39f77062 | 1102 | *ptidp = target_last_wait_ptid; |
e02bc4cc DS |
1103 | *status = target_last_waitstatus; |
1104 | } | |
1105 | ||
ac264b3b MS |
1106 | void |
1107 | nullify_last_target_wait_ptid (void) | |
1108 | { | |
1109 | target_last_wait_ptid = minus_one_ptid; | |
1110 | } | |
1111 | ||
dd80620e MS |
1112 | /* Switch thread contexts, maintaining "infrun state". */ |
1113 | ||
1114 | static void | |
1115 | context_switch (struct execution_control_state *ecs) | |
1116 | { | |
1117 | /* Caution: it may happen that the new thread (or the old one!) | |
1118 | is not in the thread list. In this case we must not attempt | |
1119 | to "switch context", or we run the risk that our context may | |
1120 | be lost. This may happen as a result of the target module | |
1121 | mishandling thread creation. */ | |
1122 | ||
1123 | if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid)) | |
488f131b | 1124 | { /* Perform infrun state context switch: */ |
dd80620e | 1125 | /* Save infrun state for the old thread. */ |
0ce3d317 | 1126 | save_infrun_state (inferior_ptid, prev_pc, |
dd80620e | 1127 | trap_expected, step_resume_breakpoint, |
15960608 | 1128 | step_range_start, |
aa0cd9c1 | 1129 | step_range_end, &step_frame_id, |
dd80620e MS |
1130 | ecs->handling_longjmp, ecs->another_trap, |
1131 | ecs->stepping_through_solib_after_catch, | |
1132 | ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1133 | ecs->current_line, ecs->current_symtab); |
dd80620e MS |
1134 | |
1135 | /* Load infrun state for the new thread. */ | |
0ce3d317 | 1136 | load_infrun_state (ecs->ptid, &prev_pc, |
dd80620e | 1137 | &trap_expected, &step_resume_breakpoint, |
15960608 | 1138 | &step_range_start, |
aa0cd9c1 | 1139 | &step_range_end, &step_frame_id, |
dd80620e MS |
1140 | &ecs->handling_longjmp, &ecs->another_trap, |
1141 | &ecs->stepping_through_solib_after_catch, | |
1142 | &ecs->stepping_through_solib_catchpoints, | |
f2c9ca08 | 1143 | &ecs->current_line, &ecs->current_symtab); |
dd80620e MS |
1144 | } |
1145 | inferior_ptid = ecs->ptid; | |
1146 | } | |
1147 | ||
4fa8626c DJ |
1148 | static void |
1149 | adjust_pc_after_break (struct execution_control_state *ecs) | |
1150 | { | |
8aad930b | 1151 | CORE_ADDR breakpoint_pc; |
4fa8626c DJ |
1152 | |
1153 | /* If this target does not decrement the PC after breakpoints, then | |
1154 | we have nothing to do. */ | |
1155 | if (DECR_PC_AFTER_BREAK == 0) | |
1156 | return; | |
1157 | ||
1158 | /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If | |
1159 | we aren't, just return. | |
9709f61c DJ |
1160 | |
1161 | We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not | |
1162 | affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented | |
1163 | by software breakpoints should be handled through the normal breakpoint | |
1164 | layer. | |
8fb3e588 | 1165 | |
4fa8626c DJ |
1166 | NOTE drow/2004-01-31: On some targets, breakpoints may generate |
1167 | different signals (SIGILL or SIGEMT for instance), but it is less | |
1168 | clear where the PC is pointing afterwards. It may not match | |
1169 | DECR_PC_AFTER_BREAK. I don't know any specific target that generates | |
1170 | these signals at breakpoints (the code has been in GDB since at least | |
1171 | 1992) so I can not guess how to handle them here. | |
8fb3e588 | 1172 | |
4fa8626c DJ |
1173 | In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS |
1174 | would have the PC after hitting a watchpoint affected by | |
1175 | DECR_PC_AFTER_BREAK. I haven't found any target with both of these set | |
1176 | in GDB history, and it seems unlikely to be correct, so | |
1177 | HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */ | |
1178 | ||
1179 | if (ecs->ws.kind != TARGET_WAITKIND_STOPPED) | |
1180 | return; | |
1181 | ||
1182 | if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP) | |
1183 | return; | |
1184 | ||
8aad930b AC |
1185 | /* Find the location where (if we've hit a breakpoint) the |
1186 | breakpoint would be. */ | |
1187 | breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK; | |
1188 | ||
1189 | if (SOFTWARE_SINGLE_STEP_P ()) | |
1190 | { | |
1191 | /* When using software single-step, a SIGTRAP can only indicate | |
8fb3e588 AC |
1192 | an inserted breakpoint. This actually makes things |
1193 | easier. */ | |
8aad930b AC |
1194 | if (singlestep_breakpoints_inserted_p) |
1195 | /* When software single stepping, the instruction at [prev_pc] | |
1196 | is never a breakpoint, but the instruction following | |
1197 | [prev_pc] (in program execution order) always is. Assume | |
1198 | that following instruction was reached and hence a software | |
1199 | breakpoint was hit. */ | |
1200 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1201 | else if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1202 | /* The inferior was free running (i.e., no single-step | |
1203 | breakpoints inserted) and it hit a software breakpoint. */ | |
1204 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1205 | } | |
1206 | else | |
1207 | { | |
1208 | /* When using hardware single-step, a SIGTRAP is reported for | |
8fb3e588 AC |
1209 | both a completed single-step and a software breakpoint. Need |
1210 | to differentiate between the two as the latter needs | |
90225438 AS |
1211 | adjusting but the former does not. |
1212 | ||
1213 | When the thread to be examined does not match the current thread | |
1214 | context we can't use currently_stepping, so assume no | |
1215 | single-stepping in this case. */ | |
1216 | if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs)) | |
8aad930b AC |
1217 | { |
1218 | if (prev_pc == breakpoint_pc | |
1219 | && software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1220 | /* Hardware single-stepped a software breakpoint (as | |
1221 | occures when the inferior is resumed with PC pointing | |
1222 | at not-yet-hit software breakpoint). Since the | |
1223 | breakpoint really is executed, the inferior needs to be | |
1224 | backed up to the breakpoint address. */ | |
1225 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1226 | } | |
1227 | else | |
1228 | { | |
1229 | if (software_breakpoint_inserted_here_p (breakpoint_pc)) | |
1230 | /* The inferior was free running (i.e., no hardware | |
1231 | single-step and no possibility of a false SIGTRAP) and | |
1232 | hit a software breakpoint. */ | |
1233 | write_pc_pid (breakpoint_pc, ecs->ptid); | |
1234 | } | |
1235 | } | |
4fa8626c DJ |
1236 | } |
1237 | ||
cd0fc7c3 SS |
1238 | /* Given an execution control state that has been freshly filled in |
1239 | by an event from the inferior, figure out what it means and take | |
1240 | appropriate action. */ | |
c906108c | 1241 | |
7270d8f2 OF |
1242 | int stepped_after_stopped_by_watchpoint; |
1243 | ||
cd0fc7c3 | 1244 | void |
96baa820 | 1245 | handle_inferior_event (struct execution_control_state *ecs) |
cd0fc7c3 | 1246 | { |
8bbde302 BE |
1247 | /* NOTE: bje/2005-05-02: If you're looking at this code and thinking |
1248 | that the variable stepped_after_stopped_by_watchpoint isn't used, | |
1249 | then you're wrong! See remote.c:remote_stopped_data_address. */ | |
1250 | ||
c8edd8b4 | 1251 | int sw_single_step_trap_p = 0; |
8fb3e588 | 1252 | int stopped_by_watchpoint = -1; /* Mark as unknown. */ |
cd0fc7c3 | 1253 | |
e02bc4cc | 1254 | /* Cache the last pid/waitstatus. */ |
39f77062 | 1255 | target_last_wait_ptid = ecs->ptid; |
e02bc4cc DS |
1256 | target_last_waitstatus = *ecs->wp; |
1257 | ||
4fa8626c DJ |
1258 | adjust_pc_after_break (ecs); |
1259 | ||
488f131b JB |
1260 | switch (ecs->infwait_state) |
1261 | { | |
1262 | case infwait_thread_hop_state: | |
527159b7 | 1263 | if (debug_infrun) |
8a9de0e4 | 1264 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n"); |
488f131b JB |
1265 | /* Cancel the waiton_ptid. */ |
1266 | ecs->waiton_ptid = pid_to_ptid (-1); | |
65e82032 | 1267 | break; |
b83266a0 | 1268 | |
488f131b | 1269 | case infwait_normal_state: |
527159b7 | 1270 | if (debug_infrun) |
8a9de0e4 | 1271 | fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n"); |
488f131b JB |
1272 | stepped_after_stopped_by_watchpoint = 0; |
1273 | break; | |
b83266a0 | 1274 | |
488f131b | 1275 | case infwait_nonstep_watch_state: |
527159b7 | 1276 | if (debug_infrun) |
8a9de0e4 AC |
1277 | fprintf_unfiltered (gdb_stdlog, |
1278 | "infrun: infwait_nonstep_watch_state\n"); | |
488f131b | 1279 | insert_breakpoints (); |
c906108c | 1280 | |
488f131b JB |
1281 | /* FIXME-maybe: is this cleaner than setting a flag? Does it |
1282 | handle things like signals arriving and other things happening | |
1283 | in combination correctly? */ | |
1284 | stepped_after_stopped_by_watchpoint = 1; | |
1285 | break; | |
65e82032 AC |
1286 | |
1287 | default: | |
e2e0b3e5 | 1288 | internal_error (__FILE__, __LINE__, _("bad switch")); |
488f131b JB |
1289 | } |
1290 | ecs->infwait_state = infwait_normal_state; | |
c906108c | 1291 | |
488f131b | 1292 | flush_cached_frames (); |
c906108c | 1293 | |
488f131b | 1294 | /* If it's a new process, add it to the thread database */ |
c906108c | 1295 | |
488f131b | 1296 | ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid) |
b9b5d7ea | 1297 | && !ptid_equal (ecs->ptid, minus_one_ptid) |
488f131b JB |
1298 | && !in_thread_list (ecs->ptid)); |
1299 | ||
1300 | if (ecs->ws.kind != TARGET_WAITKIND_EXITED | |
1301 | && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event) | |
1302 | { | |
1303 | add_thread (ecs->ptid); | |
c906108c | 1304 | |
488f131b JB |
1305 | ui_out_text (uiout, "[New "); |
1306 | ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid)); | |
1307 | ui_out_text (uiout, "]\n"); | |
488f131b | 1308 | } |
c906108c | 1309 | |
488f131b JB |
1310 | switch (ecs->ws.kind) |
1311 | { | |
1312 | case TARGET_WAITKIND_LOADED: | |
527159b7 | 1313 | if (debug_infrun) |
8a9de0e4 | 1314 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n"); |
488f131b JB |
1315 | /* Ignore gracefully during startup of the inferior, as it |
1316 | might be the shell which has just loaded some objects, | |
1317 | otherwise add the symbols for the newly loaded objects. */ | |
c906108c | 1318 | #ifdef SOLIB_ADD |
c0236d92 | 1319 | if (stop_soon == NO_STOP_QUIETLY) |
488f131b JB |
1320 | { |
1321 | /* Remove breakpoints, SOLIB_ADD might adjust | |
1322 | breakpoint addresses via breakpoint_re_set. */ | |
1323 | if (breakpoints_inserted) | |
1324 | remove_breakpoints (); | |
c906108c | 1325 | |
488f131b JB |
1326 | /* Check for any newly added shared libraries if we're |
1327 | supposed to be adding them automatically. Switch | |
1328 | terminal for any messages produced by | |
1329 | breakpoint_re_set. */ | |
1330 | target_terminal_ours_for_output (); | |
aff6338a | 1331 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
1332 | stack's section table is kept up-to-date. Architectures, |
1333 | (e.g., PPC64), use the section table to perform | |
1334 | operations such as address => section name and hence | |
1335 | require the table to contain all sections (including | |
1336 | those found in shared libraries). */ | |
aff6338a | 1337 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
1338 | exec_ops to SOLIB_ADD. This is because current GDB is |
1339 | only tooled to propagate section_table changes out from | |
1340 | the "current_target" (see target_resize_to_sections), and | |
1341 | not up from the exec stratum. This, of course, isn't | |
1342 | right. "infrun.c" should only interact with the | |
1343 | exec/process stratum, instead relying on the target stack | |
1344 | to propagate relevant changes (stop, section table | |
1345 | changed, ...) up to other layers. */ | |
aff6338a | 1346 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
488f131b JB |
1347 | target_terminal_inferior (); |
1348 | ||
1349 | /* Reinsert breakpoints and continue. */ | |
1350 | if (breakpoints_inserted) | |
1351 | insert_breakpoints (); | |
1352 | } | |
c906108c | 1353 | #endif |
488f131b JB |
1354 | resume (0, TARGET_SIGNAL_0); |
1355 | prepare_to_wait (ecs); | |
1356 | return; | |
c5aa993b | 1357 | |
488f131b | 1358 | case TARGET_WAITKIND_SPURIOUS: |
527159b7 | 1359 | if (debug_infrun) |
8a9de0e4 | 1360 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n"); |
488f131b JB |
1361 | resume (0, TARGET_SIGNAL_0); |
1362 | prepare_to_wait (ecs); | |
1363 | return; | |
c5aa993b | 1364 | |
488f131b | 1365 | case TARGET_WAITKIND_EXITED: |
527159b7 | 1366 | if (debug_infrun) |
8a9de0e4 | 1367 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n"); |
488f131b JB |
1368 | target_terminal_ours (); /* Must do this before mourn anyway */ |
1369 | print_stop_reason (EXITED, ecs->ws.value.integer); | |
1370 | ||
1371 | /* Record the exit code in the convenience variable $_exitcode, so | |
1372 | that the user can inspect this again later. */ | |
1373 | set_internalvar (lookup_internalvar ("_exitcode"), | |
1374 | value_from_longest (builtin_type_int, | |
1375 | (LONGEST) ecs->ws.value.integer)); | |
1376 | gdb_flush (gdb_stdout); | |
1377 | target_mourn_inferior (); | |
1378 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1379 | stop_print_frame = 0; | |
1380 | stop_stepping (ecs); | |
1381 | return; | |
c5aa993b | 1382 | |
488f131b | 1383 | case TARGET_WAITKIND_SIGNALLED: |
527159b7 | 1384 | if (debug_infrun) |
8a9de0e4 | 1385 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n"); |
488f131b JB |
1386 | stop_print_frame = 0; |
1387 | stop_signal = ecs->ws.value.sig; | |
1388 | target_terminal_ours (); /* Must do this before mourn anyway */ | |
c5aa993b | 1389 | |
488f131b JB |
1390 | /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't |
1391 | reach here unless the inferior is dead. However, for years | |
1392 | target_kill() was called here, which hints that fatal signals aren't | |
1393 | really fatal on some systems. If that's true, then some changes | |
1394 | may be needed. */ | |
1395 | target_mourn_inferior (); | |
c906108c | 1396 | |
488f131b JB |
1397 | print_stop_reason (SIGNAL_EXITED, stop_signal); |
1398 | singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */ | |
1399 | stop_stepping (ecs); | |
1400 | return; | |
c906108c | 1401 | |
488f131b JB |
1402 | /* The following are the only cases in which we keep going; |
1403 | the above cases end in a continue or goto. */ | |
1404 | case TARGET_WAITKIND_FORKED: | |
deb3b17b | 1405 | case TARGET_WAITKIND_VFORKED: |
527159b7 | 1406 | if (debug_infrun) |
8a9de0e4 | 1407 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n"); |
488f131b JB |
1408 | stop_signal = TARGET_SIGNAL_TRAP; |
1409 | pending_follow.kind = ecs->ws.kind; | |
1410 | ||
8e7d2c16 DJ |
1411 | pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid); |
1412 | pending_follow.fork_event.child_pid = ecs->ws.value.related_pid; | |
c906108c | 1413 | |
488f131b | 1414 | stop_pc = read_pc (); |
675bf4cb | 1415 | |
00d4360e | 1416 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1417 | |
488f131b | 1418 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
04e68871 DJ |
1419 | |
1420 | /* If no catchpoint triggered for this, then keep going. */ | |
1421 | if (ecs->random_signal) | |
1422 | { | |
1423 | stop_signal = TARGET_SIGNAL_0; | |
1424 | keep_going (ecs); | |
1425 | return; | |
1426 | } | |
488f131b JB |
1427 | goto process_event_stop_test; |
1428 | ||
1429 | case TARGET_WAITKIND_EXECD: | |
527159b7 | 1430 | if (debug_infrun) |
fc5261f2 | 1431 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n"); |
488f131b JB |
1432 | stop_signal = TARGET_SIGNAL_TRAP; |
1433 | ||
7d2830a3 | 1434 | /* NOTE drow/2002-12-05: This code should be pushed down into the |
8fb3e588 AC |
1435 | target_wait function. Until then following vfork on HP/UX 10.20 |
1436 | is probably broken by this. Of course, it's broken anyway. */ | |
488f131b JB |
1437 | /* Is this a target which reports multiple exec events per actual |
1438 | call to exec()? (HP-UX using ptrace does, for example.) If so, | |
1439 | ignore all but the last one. Just resume the exec'r, and wait | |
1440 | for the next exec event. */ | |
1441 | if (inferior_ignoring_leading_exec_events) | |
1442 | { | |
1443 | inferior_ignoring_leading_exec_events--; | |
1444 | if (pending_follow.kind == TARGET_WAITKIND_VFORKED) | |
1445 | ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event. | |
1446 | parent_pid); | |
1447 | target_resume (ecs->ptid, 0, TARGET_SIGNAL_0); | |
1448 | prepare_to_wait (ecs); | |
1449 | return; | |
1450 | } | |
1451 | inferior_ignoring_leading_exec_events = | |
1452 | target_reported_exec_events_per_exec_call () - 1; | |
1453 | ||
1454 | pending_follow.execd_pathname = | |
1455 | savestring (ecs->ws.value.execd_pathname, | |
1456 | strlen (ecs->ws.value.execd_pathname)); | |
1457 | ||
488f131b JB |
1458 | /* This causes the eventpoints and symbol table to be reset. Must |
1459 | do this now, before trying to determine whether to stop. */ | |
1460 | follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname); | |
1461 | xfree (pending_follow.execd_pathname); | |
c906108c | 1462 | |
488f131b JB |
1463 | stop_pc = read_pc_pid (ecs->ptid); |
1464 | ecs->saved_inferior_ptid = inferior_ptid; | |
1465 | inferior_ptid = ecs->ptid; | |
675bf4cb | 1466 | |
00d4360e | 1467 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0); |
675bf4cb | 1468 | |
488f131b JB |
1469 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
1470 | inferior_ptid = ecs->saved_inferior_ptid; | |
04e68871 DJ |
1471 | |
1472 | /* If no catchpoint triggered for this, then keep going. */ | |
1473 | if (ecs->random_signal) | |
1474 | { | |
1475 | stop_signal = TARGET_SIGNAL_0; | |
1476 | keep_going (ecs); | |
1477 | return; | |
1478 | } | |
488f131b JB |
1479 | goto process_event_stop_test; |
1480 | ||
b4dc5ffa MK |
1481 | /* Be careful not to try to gather much state about a thread |
1482 | that's in a syscall. It's frequently a losing proposition. */ | |
488f131b | 1483 | case TARGET_WAITKIND_SYSCALL_ENTRY: |
527159b7 | 1484 | if (debug_infrun) |
8a9de0e4 | 1485 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n"); |
488f131b JB |
1486 | resume (0, TARGET_SIGNAL_0); |
1487 | prepare_to_wait (ecs); | |
1488 | return; | |
c906108c | 1489 | |
488f131b JB |
1490 | /* Before examining the threads further, step this thread to |
1491 | get it entirely out of the syscall. (We get notice of the | |
1492 | event when the thread is just on the verge of exiting a | |
1493 | syscall. Stepping one instruction seems to get it back | |
b4dc5ffa | 1494 | into user code.) */ |
488f131b | 1495 | case TARGET_WAITKIND_SYSCALL_RETURN: |
527159b7 | 1496 | if (debug_infrun) |
8a9de0e4 | 1497 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n"); |
488f131b | 1498 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); |
488f131b JB |
1499 | prepare_to_wait (ecs); |
1500 | return; | |
c906108c | 1501 | |
488f131b | 1502 | case TARGET_WAITKIND_STOPPED: |
527159b7 | 1503 | if (debug_infrun) |
8a9de0e4 | 1504 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n"); |
488f131b JB |
1505 | stop_signal = ecs->ws.value.sig; |
1506 | break; | |
c906108c | 1507 | |
488f131b JB |
1508 | /* We had an event in the inferior, but we are not interested |
1509 | in handling it at this level. The lower layers have already | |
8e7d2c16 | 1510 | done what needs to be done, if anything. |
8fb3e588 AC |
1511 | |
1512 | One of the possible circumstances for this is when the | |
1513 | inferior produces output for the console. The inferior has | |
1514 | not stopped, and we are ignoring the event. Another possible | |
1515 | circumstance is any event which the lower level knows will be | |
1516 | reported multiple times without an intervening resume. */ | |
488f131b | 1517 | case TARGET_WAITKIND_IGNORE: |
527159b7 | 1518 | if (debug_infrun) |
8a9de0e4 | 1519 | fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n"); |
8e7d2c16 | 1520 | prepare_to_wait (ecs); |
488f131b JB |
1521 | return; |
1522 | } | |
c906108c | 1523 | |
488f131b JB |
1524 | /* We may want to consider not doing a resume here in order to give |
1525 | the user a chance to play with the new thread. It might be good | |
1526 | to make that a user-settable option. */ | |
c906108c | 1527 | |
488f131b JB |
1528 | /* At this point, all threads are stopped (happens automatically in |
1529 | either the OS or the native code). Therefore we need to continue | |
1530 | all threads in order to make progress. */ | |
1531 | if (ecs->new_thread_event) | |
1532 | { | |
1533 | target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0); | |
1534 | prepare_to_wait (ecs); | |
1535 | return; | |
1536 | } | |
c906108c | 1537 | |
488f131b JB |
1538 | stop_pc = read_pc_pid (ecs->ptid); |
1539 | ||
527159b7 | 1540 | if (debug_infrun) |
8a9de0e4 | 1541 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc)); |
527159b7 | 1542 | |
9f976b41 DJ |
1543 | if (stepping_past_singlestep_breakpoint) |
1544 | { | |
8fb3e588 AC |
1545 | gdb_assert (SOFTWARE_SINGLE_STEP_P () |
1546 | && singlestep_breakpoints_inserted_p); | |
9f976b41 DJ |
1547 | gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid)); |
1548 | gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid)); | |
1549 | ||
1550 | stepping_past_singlestep_breakpoint = 0; | |
1551 | ||
1552 | /* We've either finished single-stepping past the single-step | |
8fb3e588 AC |
1553 | breakpoint, or stopped for some other reason. It would be nice if |
1554 | we could tell, but we can't reliably. */ | |
9f976b41 | 1555 | if (stop_signal == TARGET_SIGNAL_TRAP) |
8fb3e588 | 1556 | { |
527159b7 | 1557 | if (debug_infrun) |
8a9de0e4 | 1558 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n"); |
9f976b41 DJ |
1559 | /* Pull the single step breakpoints out of the target. */ |
1560 | SOFTWARE_SINGLE_STEP (0, 0); | |
1561 | singlestep_breakpoints_inserted_p = 0; | |
1562 | ||
1563 | ecs->random_signal = 0; | |
1564 | ||
1565 | ecs->ptid = saved_singlestep_ptid; | |
1566 | context_switch (ecs); | |
9a4105ab AC |
1567 | if (deprecated_context_hook) |
1568 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
9f976b41 DJ |
1569 | |
1570 | resume (1, TARGET_SIGNAL_0); | |
1571 | prepare_to_wait (ecs); | |
1572 | return; | |
1573 | } | |
1574 | } | |
1575 | ||
1576 | stepping_past_singlestep_breakpoint = 0; | |
1577 | ||
488f131b JB |
1578 | /* See if a thread hit a thread-specific breakpoint that was meant for |
1579 | another thread. If so, then step that thread past the breakpoint, | |
1580 | and continue it. */ | |
1581 | ||
1582 | if (stop_signal == TARGET_SIGNAL_TRAP) | |
1583 | { | |
9f976b41 DJ |
1584 | int thread_hop_needed = 0; |
1585 | ||
f8d40ec8 JB |
1586 | /* Check if a regular breakpoint has been hit before checking |
1587 | for a potential single step breakpoint. Otherwise, GDB will | |
1588 | not see this breakpoint hit when stepping onto breakpoints. */ | |
4fa8626c | 1589 | if (breakpoints_inserted && breakpoint_here_p (stop_pc)) |
488f131b | 1590 | { |
c5aa993b | 1591 | ecs->random_signal = 0; |
4fa8626c | 1592 | if (!breakpoint_thread_match (stop_pc, ecs->ptid)) |
9f976b41 DJ |
1593 | thread_hop_needed = 1; |
1594 | } | |
1595 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
1596 | { | |
1597 | ecs->random_signal = 0; | |
1598 | /* The call to in_thread_list is necessary because PTIDs sometimes | |
1599 | change when we go from single-threaded to multi-threaded. If | |
1600 | the singlestep_ptid is still in the list, assume that it is | |
1601 | really different from ecs->ptid. */ | |
1602 | if (!ptid_equal (singlestep_ptid, ecs->ptid) | |
1603 | && in_thread_list (singlestep_ptid)) | |
1604 | { | |
1605 | thread_hop_needed = 1; | |
1606 | stepping_past_singlestep_breakpoint = 1; | |
1607 | saved_singlestep_ptid = singlestep_ptid; | |
1608 | } | |
1609 | } | |
1610 | ||
1611 | if (thread_hop_needed) | |
8fb3e588 AC |
1612 | { |
1613 | int remove_status; | |
1614 | ||
527159b7 | 1615 | if (debug_infrun) |
8a9de0e4 | 1616 | fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n"); |
527159b7 | 1617 | |
8fb3e588 AC |
1618 | /* Saw a breakpoint, but it was hit by the wrong thread. |
1619 | Just continue. */ | |
1620 | ||
1621 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) | |
488f131b | 1622 | { |
8fb3e588 AC |
1623 | /* Pull the single step breakpoints out of the target. */ |
1624 | SOFTWARE_SINGLE_STEP (0, 0); | |
1625 | singlestep_breakpoints_inserted_p = 0; | |
1626 | } | |
1627 | ||
1628 | remove_status = remove_breakpoints (); | |
1629 | /* Did we fail to remove breakpoints? If so, try | |
1630 | to set the PC past the bp. (There's at least | |
1631 | one situation in which we can fail to remove | |
1632 | the bp's: On HP-UX's that use ttrace, we can't | |
1633 | change the address space of a vforking child | |
1634 | process until the child exits (well, okay, not | |
1635 | then either :-) or execs. */ | |
1636 | if (remove_status != 0) | |
1637 | { | |
1638 | /* FIXME! This is obviously non-portable! */ | |
1639 | write_pc_pid (stop_pc + 4, ecs->ptid); | |
1640 | /* We need to restart all the threads now, | |
1641 | * unles we're running in scheduler-locked mode. | |
1642 | * Use currently_stepping to determine whether to | |
1643 | * step or continue. | |
1644 | */ | |
1645 | /* FIXME MVS: is there any reason not to call resume()? */ | |
1646 | if (scheduler_mode == schedlock_on) | |
1647 | target_resume (ecs->ptid, | |
1648 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
488f131b | 1649 | else |
8fb3e588 AC |
1650 | target_resume (RESUME_ALL, |
1651 | currently_stepping (ecs), TARGET_SIGNAL_0); | |
1652 | prepare_to_wait (ecs); | |
1653 | return; | |
1654 | } | |
1655 | else | |
1656 | { /* Single step */ | |
1657 | breakpoints_inserted = 0; | |
1658 | if (!ptid_equal (inferior_ptid, ecs->ptid)) | |
1659 | context_switch (ecs); | |
1660 | ecs->waiton_ptid = ecs->ptid; | |
1661 | ecs->wp = &(ecs->ws); | |
1662 | ecs->another_trap = 1; | |
1663 | ||
1664 | ecs->infwait_state = infwait_thread_hop_state; | |
1665 | keep_going (ecs); | |
1666 | registers_changed (); | |
1667 | return; | |
1668 | } | |
488f131b | 1669 | } |
f8d40ec8 | 1670 | else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
8fb3e588 AC |
1671 | { |
1672 | sw_single_step_trap_p = 1; | |
1673 | ecs->random_signal = 0; | |
1674 | } | |
488f131b JB |
1675 | } |
1676 | else | |
1677 | ecs->random_signal = 1; | |
c906108c | 1678 | |
488f131b | 1679 | /* See if something interesting happened to the non-current thread. If |
b40c7d58 DJ |
1680 | so, then switch to that thread. */ |
1681 | if (!ptid_equal (ecs->ptid, inferior_ptid)) | |
488f131b | 1682 | { |
527159b7 | 1683 | if (debug_infrun) |
8a9de0e4 | 1684 | fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n"); |
527159b7 | 1685 | |
488f131b | 1686 | context_switch (ecs); |
c5aa993b | 1687 | |
9a4105ab AC |
1688 | if (deprecated_context_hook) |
1689 | deprecated_context_hook (pid_to_thread_id (ecs->ptid)); | |
c5aa993b | 1690 | |
488f131b JB |
1691 | flush_cached_frames (); |
1692 | } | |
c906108c | 1693 | |
488f131b JB |
1694 | if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p) |
1695 | { | |
1696 | /* Pull the single step breakpoints out of the target. */ | |
1697 | SOFTWARE_SINGLE_STEP (0, 0); | |
1698 | singlestep_breakpoints_inserted_p = 0; | |
1699 | } | |
c906108c | 1700 | |
488f131b JB |
1701 | /* It may not be necessary to disable the watchpoint to stop over |
1702 | it. For example, the PA can (with some kernel cooperation) | |
1703 | single step over a watchpoint without disabling the watchpoint. */ | |
1704 | if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1705 | { | |
527159b7 | 1706 | if (debug_infrun) |
8a9de0e4 | 1707 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1708 | resume (1, 0); |
1709 | prepare_to_wait (ecs); | |
1710 | return; | |
1711 | } | |
c906108c | 1712 | |
488f131b JB |
1713 | /* It is far more common to need to disable a watchpoint to step |
1714 | the inferior over it. FIXME. What else might a debug | |
1715 | register or page protection watchpoint scheme need here? */ | |
1716 | if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws)) | |
1717 | { | |
1718 | /* At this point, we are stopped at an instruction which has | |
1719 | attempted to write to a piece of memory under control of | |
1720 | a watchpoint. The instruction hasn't actually executed | |
1721 | yet. If we were to evaluate the watchpoint expression | |
1722 | now, we would get the old value, and therefore no change | |
1723 | would seem to have occurred. | |
1724 | ||
1725 | In order to make watchpoints work `right', we really need | |
1726 | to complete the memory write, and then evaluate the | |
1727 | watchpoint expression. The following code does that by | |
1728 | removing the watchpoint (actually, all watchpoints and | |
1729 | breakpoints), single-stepping the target, re-inserting | |
1730 | watchpoints, and then falling through to let normal | |
1731 | single-step processing handle proceed. Since this | |
1732 | includes evaluating watchpoints, things will come to a | |
1733 | stop in the correct manner. */ | |
1734 | ||
527159b7 | 1735 | if (debug_infrun) |
8a9de0e4 | 1736 | fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n"); |
488f131b JB |
1737 | remove_breakpoints (); |
1738 | registers_changed (); | |
1739 | target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */ | |
c5aa993b | 1740 | |
488f131b JB |
1741 | ecs->waiton_ptid = ecs->ptid; |
1742 | ecs->wp = &(ecs->ws); | |
1743 | ecs->infwait_state = infwait_nonstep_watch_state; | |
1744 | prepare_to_wait (ecs); | |
1745 | return; | |
1746 | } | |
1747 | ||
1748 | /* It may be possible to simply continue after a watchpoint. */ | |
1749 | if (HAVE_CONTINUABLE_WATCHPOINT) | |
00d4360e | 1750 | stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws); |
488f131b JB |
1751 | |
1752 | ecs->stop_func_start = 0; | |
1753 | ecs->stop_func_end = 0; | |
1754 | ecs->stop_func_name = 0; | |
1755 | /* Don't care about return value; stop_func_start and stop_func_name | |
1756 | will both be 0 if it doesn't work. */ | |
1757 | find_pc_partial_function (stop_pc, &ecs->stop_func_name, | |
1758 | &ecs->stop_func_start, &ecs->stop_func_end); | |
782263ab | 1759 | ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET; |
488f131b JB |
1760 | ecs->another_trap = 0; |
1761 | bpstat_clear (&stop_bpstat); | |
1762 | stop_step = 0; | |
1763 | stop_stack_dummy = 0; | |
1764 | stop_print_frame = 1; | |
1765 | ecs->random_signal = 0; | |
1766 | stopped_by_random_signal = 0; | |
1767 | breakpoints_failed = 0; | |
1768 | ||
3352ef37 AC |
1769 | if (stop_signal == TARGET_SIGNAL_TRAP |
1770 | && trap_expected | |
1771 | && gdbarch_single_step_through_delay_p (current_gdbarch) | |
1772 | && currently_stepping (ecs)) | |
1773 | { | |
1774 | /* We're trying to step of a breakpoint. Turns out that we're | |
1775 | also on an instruction that needs to be stepped multiple | |
1776 | times before it's been fully executing. E.g., architectures | |
1777 | with a delay slot. It needs to be stepped twice, once for | |
1778 | the instruction and once for the delay slot. */ | |
1779 | int step_through_delay | |
1780 | = gdbarch_single_step_through_delay (current_gdbarch, | |
1781 | get_current_frame ()); | |
527159b7 | 1782 | if (debug_infrun && step_through_delay) |
8a9de0e4 | 1783 | fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n"); |
3352ef37 AC |
1784 | if (step_range_end == 0 && step_through_delay) |
1785 | { | |
1786 | /* The user issued a continue when stopped at a breakpoint. | |
1787 | Set up for another trap and get out of here. */ | |
1788 | ecs->another_trap = 1; | |
1789 | keep_going (ecs); | |
1790 | return; | |
1791 | } | |
1792 | else if (step_through_delay) | |
1793 | { | |
1794 | /* The user issued a step when stopped at a breakpoint. | |
1795 | Maybe we should stop, maybe we should not - the delay | |
1796 | slot *might* correspond to a line of source. In any | |
1797 | case, don't decide that here, just set ecs->another_trap, | |
1798 | making sure we single-step again before breakpoints are | |
1799 | re-inserted. */ | |
1800 | ecs->another_trap = 1; | |
1801 | } | |
1802 | } | |
1803 | ||
488f131b JB |
1804 | /* Look at the cause of the stop, and decide what to do. |
1805 | The alternatives are: | |
1806 | 1) break; to really stop and return to the debugger, | |
1807 | 2) drop through to start up again | |
1808 | (set ecs->another_trap to 1 to single step once) | |
1809 | 3) set ecs->random_signal to 1, and the decision between 1 and 2 | |
1810 | will be made according to the signal handling tables. */ | |
1811 | ||
1812 | /* First, distinguish signals caused by the debugger from signals | |
03cebad2 MK |
1813 | that have to do with the program's own actions. Note that |
1814 | breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending | |
1815 | on the operating system version. Here we detect when a SIGILL or | |
1816 | SIGEMT is really a breakpoint and change it to SIGTRAP. We do | |
1817 | something similar for SIGSEGV, since a SIGSEGV will be generated | |
1818 | when we're trying to execute a breakpoint instruction on a | |
1819 | non-executable stack. This happens for call dummy breakpoints | |
1820 | for architectures like SPARC that place call dummies on the | |
1821 | stack. */ | |
488f131b JB |
1822 | |
1823 | if (stop_signal == TARGET_SIGNAL_TRAP | |
8fb3e588 AC |
1824 | || (breakpoints_inserted |
1825 | && (stop_signal == TARGET_SIGNAL_ILL | |
1826 | || stop_signal == TARGET_SIGNAL_SEGV | |
1827 | || stop_signal == TARGET_SIGNAL_EMT)) | |
1828 | || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP) | |
488f131b JB |
1829 | { |
1830 | if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap) | |
1831 | { | |
527159b7 | 1832 | if (debug_infrun) |
8a9de0e4 | 1833 | fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n"); |
488f131b JB |
1834 | stop_print_frame = 0; |
1835 | stop_stepping (ecs); | |
1836 | return; | |
1837 | } | |
c54cfec8 EZ |
1838 | |
1839 | /* This is originated from start_remote(), start_inferior() and | |
1840 | shared libraries hook functions. */ | |
c0236d92 | 1841 | if (stop_soon == STOP_QUIETLY) |
488f131b | 1842 | { |
527159b7 | 1843 | if (debug_infrun) |
8a9de0e4 | 1844 | fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n"); |
488f131b JB |
1845 | stop_stepping (ecs); |
1846 | return; | |
1847 | } | |
1848 | ||
c54cfec8 EZ |
1849 | /* This originates from attach_command(). We need to overwrite |
1850 | the stop_signal here, because some kernels don't ignore a | |
1851 | SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call. | |
1852 | See more comments in inferior.h. */ | |
c0236d92 | 1853 | if (stop_soon == STOP_QUIETLY_NO_SIGSTOP) |
c54cfec8 EZ |
1854 | { |
1855 | stop_stepping (ecs); | |
1856 | if (stop_signal == TARGET_SIGNAL_STOP) | |
1857 | stop_signal = TARGET_SIGNAL_0; | |
1858 | return; | |
1859 | } | |
1860 | ||
d303a6c7 AC |
1861 | /* Don't even think about breakpoints if just proceeded over a |
1862 | breakpoint. */ | |
1863 | if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected) | |
527159b7 RC |
1864 | { |
1865 | if (debug_infrun) | |
8a9de0e4 | 1866 | fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n"); |
527159b7 RC |
1867 | bpstat_clear (&stop_bpstat); |
1868 | } | |
488f131b JB |
1869 | else |
1870 | { | |
1871 | /* See if there is a breakpoint at the current PC. */ | |
8fb3e588 | 1872 | stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, |
00d4360e | 1873 | stopped_by_watchpoint); |
488f131b | 1874 | |
488f131b JB |
1875 | /* Following in case break condition called a |
1876 | function. */ | |
1877 | stop_print_frame = 1; | |
1878 | } | |
1879 | ||
73dd234f | 1880 | /* NOTE: cagney/2003-03-29: These two checks for a random signal |
8fb3e588 AC |
1881 | at one stage in the past included checks for an inferior |
1882 | function call's call dummy's return breakpoint. The original | |
1883 | comment, that went with the test, read: | |
73dd234f | 1884 | |
8fb3e588 AC |
1885 | ``End of a stack dummy. Some systems (e.g. Sony news) give |
1886 | another signal besides SIGTRAP, so check here as well as | |
1887 | above.'' | |
73dd234f AC |
1888 | |
1889 | If someone ever tries to get get call dummys on a | |
1890 | non-executable stack to work (where the target would stop | |
03cebad2 MK |
1891 | with something like a SIGSEGV), then those tests might need |
1892 | to be re-instated. Given, however, that the tests were only | |
73dd234f | 1893 | enabled when momentary breakpoints were not being used, I |
03cebad2 MK |
1894 | suspect that it won't be the case. |
1895 | ||
8fb3e588 AC |
1896 | NOTE: kettenis/2004-02-05: Indeed such checks don't seem to |
1897 | be necessary for call dummies on a non-executable stack on | |
1898 | SPARC. */ | |
73dd234f | 1899 | |
488f131b JB |
1900 | if (stop_signal == TARGET_SIGNAL_TRAP) |
1901 | ecs->random_signal | |
1902 | = !(bpstat_explains_signal (stop_bpstat) | |
1903 | || trap_expected | |
488f131b | 1904 | || (step_range_end && step_resume_breakpoint == NULL)); |
488f131b JB |
1905 | else |
1906 | { | |
73dd234f | 1907 | ecs->random_signal = !bpstat_explains_signal (stop_bpstat); |
488f131b JB |
1908 | if (!ecs->random_signal) |
1909 | stop_signal = TARGET_SIGNAL_TRAP; | |
1910 | } | |
1911 | } | |
1912 | ||
1913 | /* When we reach this point, we've pretty much decided | |
1914 | that the reason for stopping must've been a random | |
1915 | (unexpected) signal. */ | |
1916 | ||
1917 | else | |
1918 | ecs->random_signal = 1; | |
488f131b | 1919 | |
04e68871 | 1920 | process_event_stop_test: |
488f131b JB |
1921 | /* For the program's own signals, act according to |
1922 | the signal handling tables. */ | |
1923 | ||
1924 | if (ecs->random_signal) | |
1925 | { | |
1926 | /* Signal not for debugging purposes. */ | |
1927 | int printed = 0; | |
1928 | ||
527159b7 | 1929 | if (debug_infrun) |
8a9de0e4 | 1930 | fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal); |
527159b7 | 1931 | |
488f131b JB |
1932 | stopped_by_random_signal = 1; |
1933 | ||
1934 | if (signal_print[stop_signal]) | |
1935 | { | |
1936 | printed = 1; | |
1937 | target_terminal_ours_for_output (); | |
1938 | print_stop_reason (SIGNAL_RECEIVED, stop_signal); | |
1939 | } | |
1940 | if (signal_stop[stop_signal]) | |
1941 | { | |
1942 | stop_stepping (ecs); | |
1943 | return; | |
1944 | } | |
1945 | /* If not going to stop, give terminal back | |
1946 | if we took it away. */ | |
1947 | else if (printed) | |
1948 | target_terminal_inferior (); | |
1949 | ||
1950 | /* Clear the signal if it should not be passed. */ | |
1951 | if (signal_program[stop_signal] == 0) | |
1952 | stop_signal = TARGET_SIGNAL_0; | |
1953 | ||
68f53502 AC |
1954 | if (prev_pc == read_pc () |
1955 | && !breakpoints_inserted | |
1956 | && breakpoint_here_p (read_pc ()) | |
1957 | && step_resume_breakpoint == NULL) | |
1958 | { | |
1959 | /* We were just starting a new sequence, attempting to | |
1960 | single-step off of a breakpoint and expecting a SIGTRAP. | |
1961 | Intead this signal arrives. This signal will take us out | |
1962 | of the stepping range so GDB needs to remember to, when | |
1963 | the signal handler returns, resume stepping off that | |
1964 | breakpoint. */ | |
1965 | /* To simplify things, "continue" is forced to use the same | |
1966 | code paths as single-step - set a breakpoint at the | |
1967 | signal return address and then, once hit, step off that | |
1968 | breakpoint. */ | |
44cbf7b5 | 1969 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
68f53502 | 1970 | ecs->step_after_step_resume_breakpoint = 1; |
9d799f85 AC |
1971 | keep_going (ecs); |
1972 | return; | |
68f53502 | 1973 | } |
9d799f85 AC |
1974 | |
1975 | if (step_range_end != 0 | |
1976 | && stop_signal != TARGET_SIGNAL_0 | |
1977 | && stop_pc >= step_range_start && stop_pc < step_range_end | |
1978 | && frame_id_eq (get_frame_id (get_current_frame ()), | |
1979 | step_frame_id) | |
1980 | && step_resume_breakpoint == NULL) | |
d303a6c7 AC |
1981 | { |
1982 | /* The inferior is about to take a signal that will take it | |
1983 | out of the single step range. Set a breakpoint at the | |
1984 | current PC (which is presumably where the signal handler | |
1985 | will eventually return) and then allow the inferior to | |
1986 | run free. | |
1987 | ||
1988 | Note that this is only needed for a signal delivered | |
1989 | while in the single-step range. Nested signals aren't a | |
1990 | problem as they eventually all return. */ | |
44cbf7b5 | 1991 | insert_step_resume_breakpoint_at_frame (get_current_frame ()); |
9d799f85 AC |
1992 | keep_going (ecs); |
1993 | return; | |
d303a6c7 | 1994 | } |
9d799f85 AC |
1995 | |
1996 | /* Note: step_resume_breakpoint may be non-NULL. This occures | |
1997 | when either there's a nested signal, or when there's a | |
1998 | pending signal enabled just as the signal handler returns | |
1999 | (leaving the inferior at the step-resume-breakpoint without | |
2000 | actually executing it). Either way continue until the | |
2001 | breakpoint is really hit. */ | |
488f131b JB |
2002 | keep_going (ecs); |
2003 | return; | |
2004 | } | |
2005 | ||
2006 | /* Handle cases caused by hitting a breakpoint. */ | |
2007 | { | |
2008 | CORE_ADDR jmp_buf_pc; | |
2009 | struct bpstat_what what; | |
2010 | ||
2011 | what = bpstat_what (stop_bpstat); | |
2012 | ||
2013 | if (what.call_dummy) | |
2014 | { | |
2015 | stop_stack_dummy = 1; | |
c5aa993b | 2016 | } |
c906108c | 2017 | |
488f131b | 2018 | switch (what.main_action) |
c5aa993b | 2019 | { |
488f131b JB |
2020 | case BPSTAT_WHAT_SET_LONGJMP_RESUME: |
2021 | /* If we hit the breakpoint at longjmp, disable it for the | |
2022 | duration of this command. Then, install a temporary | |
2023 | breakpoint at the target of the jmp_buf. */ | |
527159b7 | 2024 | if (debug_infrun) |
8802d8ed | 2025 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n"); |
488f131b JB |
2026 | disable_longjmp_breakpoint (); |
2027 | remove_breakpoints (); | |
2028 | breakpoints_inserted = 0; | |
2029 | if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc)) | |
c5aa993b | 2030 | { |
488f131b | 2031 | keep_going (ecs); |
104c1213 | 2032 | return; |
c5aa993b | 2033 | } |
488f131b JB |
2034 | |
2035 | /* Need to blow away step-resume breakpoint, as it | |
2036 | interferes with us */ | |
2037 | if (step_resume_breakpoint != NULL) | |
104c1213 | 2038 | { |
488f131b | 2039 | delete_step_resume_breakpoint (&step_resume_breakpoint); |
104c1213 | 2040 | } |
c906108c | 2041 | |
8fb3e588 | 2042 | set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id); |
488f131b JB |
2043 | ecs->handling_longjmp = 1; /* FIXME */ |
2044 | keep_going (ecs); | |
2045 | return; | |
c906108c | 2046 | |
488f131b JB |
2047 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME: |
2048 | case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE: | |
527159b7 | 2049 | if (debug_infrun) |
8802d8ed | 2050 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n"); |
488f131b JB |
2051 | remove_breakpoints (); |
2052 | breakpoints_inserted = 0; | |
488f131b JB |
2053 | disable_longjmp_breakpoint (); |
2054 | ecs->handling_longjmp = 0; /* FIXME */ | |
2055 | if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME) | |
2056 | break; | |
2057 | /* else fallthrough */ | |
2058 | ||
2059 | case BPSTAT_WHAT_SINGLE: | |
527159b7 | 2060 | if (debug_infrun) |
8802d8ed | 2061 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n"); |
488f131b | 2062 | if (breakpoints_inserted) |
c5aa993b | 2063 | { |
488f131b | 2064 | remove_breakpoints (); |
c5aa993b | 2065 | } |
488f131b JB |
2066 | breakpoints_inserted = 0; |
2067 | ecs->another_trap = 1; | |
2068 | /* Still need to check other stuff, at least the case | |
2069 | where we are stepping and step out of the right range. */ | |
2070 | break; | |
c906108c | 2071 | |
488f131b | 2072 | case BPSTAT_WHAT_STOP_NOISY: |
527159b7 | 2073 | if (debug_infrun) |
8802d8ed | 2074 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n"); |
488f131b | 2075 | stop_print_frame = 1; |
c906108c | 2076 | |
d303a6c7 AC |
2077 | /* We are about to nuke the step_resume_breakpointt via the |
2078 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2079 | |
488f131b JB |
2080 | stop_stepping (ecs); |
2081 | return; | |
c5aa993b | 2082 | |
488f131b | 2083 | case BPSTAT_WHAT_STOP_SILENT: |
527159b7 | 2084 | if (debug_infrun) |
8802d8ed | 2085 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n"); |
488f131b | 2086 | stop_print_frame = 0; |
c5aa993b | 2087 | |
d303a6c7 AC |
2088 | /* We are about to nuke the step_resume_breakpoin via the |
2089 | cleanup chain, so no need to worry about it here. */ | |
c5aa993b | 2090 | |
488f131b | 2091 | stop_stepping (ecs); |
e441088d | 2092 | return; |
c5aa993b | 2093 | |
488f131b JB |
2094 | case BPSTAT_WHAT_STEP_RESUME: |
2095 | /* This proably demands a more elegant solution, but, yeah | |
2096 | right... | |
c5aa993b | 2097 | |
488f131b JB |
2098 | This function's use of the simple variable |
2099 | step_resume_breakpoint doesn't seem to accomodate | |
2100 | simultaneously active step-resume bp's, although the | |
2101 | breakpoint list certainly can. | |
c5aa993b | 2102 | |
488f131b JB |
2103 | If we reach here and step_resume_breakpoint is already |
2104 | NULL, then apparently we have multiple active | |
2105 | step-resume bp's. We'll just delete the breakpoint we | |
2106 | stopped at, and carry on. | |
2107 | ||
2108 | Correction: what the code currently does is delete a | |
2109 | step-resume bp, but it makes no effort to ensure that | |
2110 | the one deleted is the one currently stopped at. MVS */ | |
c5aa993b | 2111 | |
527159b7 | 2112 | if (debug_infrun) |
8802d8ed | 2113 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n"); |
527159b7 | 2114 | |
488f131b JB |
2115 | if (step_resume_breakpoint == NULL) |
2116 | { | |
2117 | step_resume_breakpoint = | |
2118 | bpstat_find_step_resume_breakpoint (stop_bpstat); | |
2119 | } | |
2120 | delete_step_resume_breakpoint (&step_resume_breakpoint); | |
68f53502 AC |
2121 | if (ecs->step_after_step_resume_breakpoint) |
2122 | { | |
2123 | /* Back when the step-resume breakpoint was inserted, we | |
2124 | were trying to single-step off a breakpoint. Go back | |
2125 | to doing that. */ | |
2126 | ecs->step_after_step_resume_breakpoint = 0; | |
2127 | remove_breakpoints (); | |
2128 | breakpoints_inserted = 0; | |
2129 | ecs->another_trap = 1; | |
2130 | keep_going (ecs); | |
2131 | return; | |
2132 | } | |
488f131b JB |
2133 | break; |
2134 | ||
2135 | case BPSTAT_WHAT_THROUGH_SIGTRAMP: | |
527159b7 | 2136 | if (debug_infrun) |
8802d8ed | 2137 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n"); |
488f131b JB |
2138 | /* If were waiting for a trap, hitting the step_resume_break |
2139 | doesn't count as getting it. */ | |
2140 | if (trap_expected) | |
2141 | ecs->another_trap = 1; | |
2142 | break; | |
2143 | ||
2144 | case BPSTAT_WHAT_CHECK_SHLIBS: | |
2145 | case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK: | |
c906108c | 2146 | { |
527159b7 | 2147 | if (debug_infrun) |
8802d8ed | 2148 | fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n"); |
488f131b JB |
2149 | /* Remove breakpoints, we eventually want to step over the |
2150 | shlib event breakpoint, and SOLIB_ADD might adjust | |
2151 | breakpoint addresses via breakpoint_re_set. */ | |
2152 | if (breakpoints_inserted) | |
2153 | remove_breakpoints (); | |
c5aa993b | 2154 | breakpoints_inserted = 0; |
488f131b JB |
2155 | |
2156 | /* Check for any newly added shared libraries if we're | |
2157 | supposed to be adding them automatically. Switch | |
2158 | terminal for any messages produced by | |
2159 | breakpoint_re_set. */ | |
2160 | target_terminal_ours_for_output (); | |
aff6338a | 2161 | /* NOTE: cagney/2003-11-25: Make certain that the target |
8fb3e588 AC |
2162 | stack's section table is kept up-to-date. Architectures, |
2163 | (e.g., PPC64), use the section table to perform | |
2164 | operations such as address => section name and hence | |
2165 | require the table to contain all sections (including | |
2166 | those found in shared libraries). */ | |
aff6338a | 2167 | /* NOTE: cagney/2003-11-25: Pass current_target and not |
8fb3e588 AC |
2168 | exec_ops to SOLIB_ADD. This is because current GDB is |
2169 | only tooled to propagate section_table changes out from | |
2170 | the "current_target" (see target_resize_to_sections), and | |
2171 | not up from the exec stratum. This, of course, isn't | |
2172 | right. "infrun.c" should only interact with the | |
2173 | exec/process stratum, instead relying on the target stack | |
2174 | to propagate relevant changes (stop, section table | |
2175 | changed, ...) up to other layers. */ | |
a77053c2 | 2176 | #ifdef SOLIB_ADD |
aff6338a | 2177 | SOLIB_ADD (NULL, 0, ¤t_target, auto_solib_add); |
a77053c2 MK |
2178 | #else |
2179 | solib_add (NULL, 0, ¤t_target, auto_solib_add); | |
2180 | #endif | |
488f131b JB |
2181 | target_terminal_inferior (); |
2182 | ||
2183 | /* Try to reenable shared library breakpoints, additional | |
2184 | code segments in shared libraries might be mapped in now. */ | |
2185 | re_enable_breakpoints_in_shlibs (); | |
2186 | ||
2187 | /* If requested, stop when the dynamic linker notifies | |
2188 | gdb of events. This allows the user to get control | |
2189 | and place breakpoints in initializer routines for | |
2190 | dynamically loaded objects (among other things). */ | |
877522db | 2191 | if (stop_on_solib_events || stop_stack_dummy) |
d4f3574e | 2192 | { |
488f131b | 2193 | stop_stepping (ecs); |
d4f3574e SS |
2194 | return; |
2195 | } | |
c5aa993b | 2196 | |
488f131b JB |
2197 | /* If we stopped due to an explicit catchpoint, then the |
2198 | (see above) call to SOLIB_ADD pulled in any symbols | |
2199 | from a newly-loaded library, if appropriate. | |
2200 | ||
2201 | We do want the inferior to stop, but not where it is | |
2202 | now, which is in the dynamic linker callback. Rather, | |
2203 | we would like it stop in the user's program, just after | |
2204 | the call that caused this catchpoint to trigger. That | |
2205 | gives the user a more useful vantage from which to | |
2206 | examine their program's state. */ | |
8fb3e588 AC |
2207 | else if (what.main_action |
2208 | == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK) | |
c906108c | 2209 | { |
488f131b JB |
2210 | /* ??rehrauer: If I could figure out how to get the |
2211 | right return PC from here, we could just set a temp | |
2212 | breakpoint and resume. I'm not sure we can without | |
2213 | cracking open the dld's shared libraries and sniffing | |
2214 | their unwind tables and text/data ranges, and that's | |
2215 | not a terribly portable notion. | |
2216 | ||
2217 | Until that time, we must step the inferior out of the | |
2218 | dld callback, and also out of the dld itself (and any | |
2219 | code or stubs in libdld.sl, such as "shl_load" and | |
2220 | friends) until we reach non-dld code. At that point, | |
2221 | we can stop stepping. */ | |
2222 | bpstat_get_triggered_catchpoints (stop_bpstat, | |
2223 | &ecs-> | |
2224 | stepping_through_solib_catchpoints); | |
2225 | ecs->stepping_through_solib_after_catch = 1; | |
2226 | ||
2227 | /* Be sure to lift all breakpoints, so the inferior does | |
2228 | actually step past this point... */ | |
2229 | ecs->another_trap = 1; | |
2230 | break; | |
c906108c | 2231 | } |
c5aa993b | 2232 | else |
c5aa993b | 2233 | { |
488f131b | 2234 | /* We want to step over this breakpoint, then keep going. */ |
c5aa993b | 2235 | ecs->another_trap = 1; |
488f131b | 2236 | break; |
c5aa993b | 2237 | } |
488f131b | 2238 | } |
488f131b | 2239 | break; |
c906108c | 2240 | |
488f131b JB |
2241 | case BPSTAT_WHAT_LAST: |
2242 | /* Not a real code, but listed here to shut up gcc -Wall. */ | |
c906108c | 2243 | |
488f131b JB |
2244 | case BPSTAT_WHAT_KEEP_CHECKING: |
2245 | break; | |
2246 | } | |
2247 | } | |
c906108c | 2248 | |
488f131b JB |
2249 | /* We come here if we hit a breakpoint but should not |
2250 | stop for it. Possibly we also were stepping | |
2251 | and should stop for that. So fall through and | |
2252 | test for stepping. But, if not stepping, | |
2253 | do not stop. */ | |
c906108c | 2254 | |
9d1ff73f MS |
2255 | /* Are we stepping to get the inferior out of the dynamic linker's |
2256 | hook (and possibly the dld itself) after catching a shlib | |
2257 | event? */ | |
488f131b JB |
2258 | if (ecs->stepping_through_solib_after_catch) |
2259 | { | |
2260 | #if defined(SOLIB_ADD) | |
2261 | /* Have we reached our destination? If not, keep going. */ | |
2262 | if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc)) | |
2263 | { | |
527159b7 | 2264 | if (debug_infrun) |
8a9de0e4 | 2265 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n"); |
488f131b JB |
2266 | ecs->another_trap = 1; |
2267 | keep_going (ecs); | |
104c1213 | 2268 | return; |
488f131b JB |
2269 | } |
2270 | #endif | |
527159b7 | 2271 | if (debug_infrun) |
8a9de0e4 | 2272 | fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n"); |
488f131b JB |
2273 | /* Else, stop and report the catchpoint(s) whose triggering |
2274 | caused us to begin stepping. */ | |
2275 | ecs->stepping_through_solib_after_catch = 0; | |
2276 | bpstat_clear (&stop_bpstat); | |
2277 | stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints); | |
2278 | bpstat_clear (&ecs->stepping_through_solib_catchpoints); | |
2279 | stop_print_frame = 1; | |
2280 | stop_stepping (ecs); | |
2281 | return; | |
2282 | } | |
c906108c | 2283 | |
488f131b JB |
2284 | if (step_resume_breakpoint) |
2285 | { | |
527159b7 | 2286 | if (debug_infrun) |
8a9de0e4 | 2287 | fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n"); |
527159b7 | 2288 | |
488f131b JB |
2289 | /* Having a step-resume breakpoint overrides anything |
2290 | else having to do with stepping commands until | |
2291 | that breakpoint is reached. */ | |
488f131b JB |
2292 | keep_going (ecs); |
2293 | return; | |
2294 | } | |
c5aa993b | 2295 | |
488f131b JB |
2296 | if (step_range_end == 0) |
2297 | { | |
527159b7 | 2298 | if (debug_infrun) |
8a9de0e4 | 2299 | fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n"); |
488f131b | 2300 | /* Likewise if we aren't even stepping. */ |
488f131b JB |
2301 | keep_going (ecs); |
2302 | return; | |
2303 | } | |
c5aa993b | 2304 | |
488f131b | 2305 | /* If stepping through a line, keep going if still within it. |
c906108c | 2306 | |
488f131b JB |
2307 | Note that step_range_end is the address of the first instruction |
2308 | beyond the step range, and NOT the address of the last instruction | |
2309 | within it! */ | |
2310 | if (stop_pc >= step_range_start && stop_pc < step_range_end) | |
2311 | { | |
527159b7 | 2312 | if (debug_infrun) |
8a9de0e4 | 2313 | fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n", |
527159b7 RC |
2314 | paddr_nz (step_range_start), |
2315 | paddr_nz (step_range_end)); | |
488f131b JB |
2316 | keep_going (ecs); |
2317 | return; | |
2318 | } | |
c5aa993b | 2319 | |
488f131b | 2320 | /* We stepped out of the stepping range. */ |
c906108c | 2321 | |
488f131b JB |
2322 | /* If we are stepping at the source level and entered the runtime |
2323 | loader dynamic symbol resolution code, we keep on single stepping | |
2324 | until we exit the run time loader code and reach the callee's | |
2325 | address. */ | |
2326 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
a77053c2 MK |
2327 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE |
2328 | && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc) | |
2329 | #else | |
2330 | && in_solib_dynsym_resolve_code (stop_pc) | |
2331 | #endif | |
2332 | ) | |
488f131b | 2333 | { |
4c8c40e6 MK |
2334 | CORE_ADDR pc_after_resolver = |
2335 | gdbarch_skip_solib_resolver (current_gdbarch, stop_pc); | |
c906108c | 2336 | |
527159b7 | 2337 | if (debug_infrun) |
8a9de0e4 | 2338 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n"); |
527159b7 | 2339 | |
488f131b JB |
2340 | if (pc_after_resolver) |
2341 | { | |
2342 | /* Set up a step-resume breakpoint at the address | |
2343 | indicated by SKIP_SOLIB_RESOLVER. */ | |
2344 | struct symtab_and_line sr_sal; | |
fe39c653 | 2345 | init_sal (&sr_sal); |
488f131b JB |
2346 | sr_sal.pc = pc_after_resolver; |
2347 | ||
44cbf7b5 | 2348 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c5aa993b | 2349 | } |
c906108c | 2350 | |
488f131b JB |
2351 | keep_going (ecs); |
2352 | return; | |
2353 | } | |
c906108c | 2354 | |
42edda50 AC |
2355 | if (step_range_end != 1 |
2356 | && (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
2357 | || step_over_calls == STEP_OVER_ALL) | |
2358 | && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME) | |
488f131b | 2359 | { |
527159b7 | 2360 | if (debug_infrun) |
8a9de0e4 | 2361 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n"); |
42edda50 | 2362 | /* The inferior, while doing a "step" or "next", has ended up in |
8fb3e588 AC |
2363 | a signal trampoline (either by a signal being delivered or by |
2364 | the signal handler returning). Just single-step until the | |
2365 | inferior leaves the trampoline (either by calling the handler | |
2366 | or returning). */ | |
488f131b JB |
2367 | keep_going (ecs); |
2368 | return; | |
2369 | } | |
c906108c | 2370 | |
14e60db5 DJ |
2371 | /* Check for subroutine calls. |
2372 | ||
2373 | NOTE: frame_id_eq will never report two invalid frame IDs as | |
2374 | being equal, so to get into this block, both the current and | |
2375 | previous frame must have valid frame IDs. */ | |
8fb3e588 | 2376 | if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id)) |
488f131b | 2377 | { |
95918acb | 2378 | CORE_ADDR real_stop_pc; |
8fb3e588 | 2379 | |
527159b7 | 2380 | if (debug_infrun) |
8a9de0e4 | 2381 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n"); |
527159b7 | 2382 | |
95918acb AC |
2383 | if ((step_over_calls == STEP_OVER_NONE) |
2384 | || ((step_range_end == 1) | |
2385 | && in_prologue (prev_pc, ecs->stop_func_start))) | |
2386 | { | |
2387 | /* I presume that step_over_calls is only 0 when we're | |
2388 | supposed to be stepping at the assembly language level | |
2389 | ("stepi"). Just stop. */ | |
2390 | /* Also, maybe we just did a "nexti" inside a prolog, so we | |
2391 | thought it was a subroutine call but it was not. Stop as | |
2392 | well. FENN */ | |
2393 | stop_step = 1; | |
2394 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2395 | stop_stepping (ecs); | |
2396 | return; | |
2397 | } | |
8fb3e588 | 2398 | |
8567c30f AC |
2399 | if (step_over_calls == STEP_OVER_ALL) |
2400 | { | |
2401 | /* We're doing a "next", set a breakpoint at callee's return | |
2402 | address (the address at which the caller will | |
2403 | resume). */ | |
14e60db5 | 2404 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
8567c30f AC |
2405 | keep_going (ecs); |
2406 | return; | |
2407 | } | |
a53c66de | 2408 | |
95918acb | 2409 | /* If we are in a function call trampoline (a stub between the |
8fb3e588 AC |
2410 | calling routine and the real function), locate the real |
2411 | function. That's what tells us (a) whether we want to step | |
2412 | into it at all, and (b) what prologue we want to run to the | |
2413 | end of, if we do step into it. */ | |
95918acb AC |
2414 | real_stop_pc = skip_language_trampoline (stop_pc); |
2415 | if (real_stop_pc == 0) | |
2416 | real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); | |
2417 | if (real_stop_pc != 0) | |
2418 | ecs->stop_func_start = real_stop_pc; | |
8fb3e588 | 2419 | |
a77053c2 MK |
2420 | if ( |
2421 | #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE | |
2422 | IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start) | |
2423 | #else | |
2424 | in_solib_dynsym_resolve_code (ecs->stop_func_start) | |
2425 | #endif | |
2426 | ) | |
1b2bfbb9 RC |
2427 | { |
2428 | struct symtab_and_line sr_sal; | |
2429 | init_sal (&sr_sal); | |
2430 | sr_sal.pc = ecs->stop_func_start; | |
2431 | ||
44cbf7b5 | 2432 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
8fb3e588 AC |
2433 | keep_going (ecs); |
2434 | return; | |
1b2bfbb9 RC |
2435 | } |
2436 | ||
95918acb | 2437 | /* If we have line number information for the function we are |
8fb3e588 | 2438 | thinking of stepping into, step into it. |
95918acb | 2439 | |
8fb3e588 AC |
2440 | If there are several symtabs at that PC (e.g. with include |
2441 | files), just want to know whether *any* of them have line | |
2442 | numbers. find_pc_line handles this. */ | |
95918acb AC |
2443 | { |
2444 | struct symtab_and_line tmp_sal; | |
8fb3e588 | 2445 | |
95918acb AC |
2446 | tmp_sal = find_pc_line (ecs->stop_func_start, 0); |
2447 | if (tmp_sal.line != 0) | |
2448 | { | |
2449 | step_into_function (ecs); | |
2450 | return; | |
2451 | } | |
2452 | } | |
2453 | ||
2454 | /* If we have no line number and the step-stop-if-no-debug is | |
8fb3e588 AC |
2455 | set, we stop the step so that the user has a chance to switch |
2456 | in assembly mode. */ | |
95918acb AC |
2457 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug) |
2458 | { | |
2459 | stop_step = 1; | |
2460 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2461 | stop_stepping (ecs); | |
2462 | return; | |
2463 | } | |
2464 | ||
2465 | /* Set a breakpoint at callee's return address (the address at | |
8fb3e588 | 2466 | which the caller will resume). */ |
14e60db5 | 2467 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
95918acb | 2468 | keep_going (ecs); |
488f131b | 2469 | return; |
488f131b | 2470 | } |
c906108c | 2471 | |
488f131b JB |
2472 | /* If we're in the return path from a shared library trampoline, |
2473 | we want to proceed through the trampoline when stepping. */ | |
2474 | if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name)) | |
2475 | { | |
488f131b | 2476 | /* Determine where this trampoline returns. */ |
5cf4d23a | 2477 | CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc); |
c906108c | 2478 | |
527159b7 | 2479 | if (debug_infrun) |
8a9de0e4 | 2480 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n"); |
527159b7 | 2481 | |
488f131b | 2482 | /* Only proceed through if we know where it's going. */ |
d764a824 | 2483 | if (real_stop_pc) |
488f131b JB |
2484 | { |
2485 | /* And put the step-breakpoint there and go until there. */ | |
2486 | struct symtab_and_line sr_sal; | |
2487 | ||
fe39c653 | 2488 | init_sal (&sr_sal); /* initialize to zeroes */ |
d764a824 | 2489 | sr_sal.pc = real_stop_pc; |
488f131b | 2490 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
44cbf7b5 AC |
2491 | |
2492 | /* Do not specify what the fp should be when we stop since | |
2493 | on some machines the prologue is where the new fp value | |
2494 | is established. */ | |
2495 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); | |
c906108c | 2496 | |
488f131b JB |
2497 | /* Restart without fiddling with the step ranges or |
2498 | other state. */ | |
2499 | keep_going (ecs); | |
2500 | return; | |
2501 | } | |
2502 | } | |
c906108c | 2503 | |
7ed0fe66 DJ |
2504 | ecs->sal = find_pc_line (stop_pc, 0); |
2505 | ||
1b2bfbb9 RC |
2506 | /* NOTE: tausq/2004-05-24: This if block used to be done before all |
2507 | the trampoline processing logic, however, there are some trampolines | |
2508 | that have no names, so we should do trampoline handling first. */ | |
2509 | if (step_over_calls == STEP_OVER_UNDEBUGGABLE | |
7ed0fe66 DJ |
2510 | && ecs->stop_func_name == NULL |
2511 | && ecs->sal.line == 0) | |
1b2bfbb9 | 2512 | { |
527159b7 | 2513 | if (debug_infrun) |
8a9de0e4 | 2514 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n"); |
527159b7 | 2515 | |
1b2bfbb9 | 2516 | /* The inferior just stepped into, or returned to, an |
7ed0fe66 DJ |
2517 | undebuggable function (where there is no debugging information |
2518 | and no line number corresponding to the address where the | |
1b2bfbb9 RC |
2519 | inferior stopped). Since we want to skip this kind of code, |
2520 | we keep going until the inferior returns from this | |
14e60db5 DJ |
2521 | function - unless the user has asked us not to (via |
2522 | set step-mode) or we no longer know how to get back | |
2523 | to the call site. */ | |
2524 | if (step_stop_if_no_debug | |
2525 | || !frame_id_p (frame_unwind_id (get_current_frame ()))) | |
1b2bfbb9 RC |
2526 | { |
2527 | /* If we have no line number and the step-stop-if-no-debug | |
2528 | is set, we stop the step so that the user has a chance to | |
2529 | switch in assembly mode. */ | |
2530 | stop_step = 1; | |
2531 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2532 | stop_stepping (ecs); | |
2533 | return; | |
2534 | } | |
2535 | else | |
2536 | { | |
2537 | /* Set a breakpoint at callee's return address (the address | |
2538 | at which the caller will resume). */ | |
14e60db5 | 2539 | insert_step_resume_breakpoint_at_caller (get_current_frame ()); |
1b2bfbb9 RC |
2540 | keep_going (ecs); |
2541 | return; | |
2542 | } | |
2543 | } | |
2544 | ||
2545 | if (step_range_end == 1) | |
2546 | { | |
2547 | /* It is stepi or nexti. We always want to stop stepping after | |
2548 | one instruction. */ | |
527159b7 | 2549 | if (debug_infrun) |
8a9de0e4 | 2550 | fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n"); |
1b2bfbb9 RC |
2551 | stop_step = 1; |
2552 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2553 | stop_stepping (ecs); | |
2554 | return; | |
2555 | } | |
2556 | ||
488f131b JB |
2557 | if (ecs->sal.line == 0) |
2558 | { | |
2559 | /* We have no line number information. That means to stop | |
2560 | stepping (does this always happen right after one instruction, | |
2561 | when we do "s" in a function with no line numbers, | |
2562 | or can this happen as a result of a return or longjmp?). */ | |
527159b7 | 2563 | if (debug_infrun) |
8a9de0e4 | 2564 | fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n"); |
488f131b JB |
2565 | stop_step = 1; |
2566 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2567 | stop_stepping (ecs); | |
2568 | return; | |
2569 | } | |
c906108c | 2570 | |
488f131b JB |
2571 | if ((stop_pc == ecs->sal.pc) |
2572 | && (ecs->current_line != ecs->sal.line | |
2573 | || ecs->current_symtab != ecs->sal.symtab)) | |
2574 | { | |
2575 | /* We are at the start of a different line. So stop. Note that | |
2576 | we don't stop if we step into the middle of a different line. | |
2577 | That is said to make things like for (;;) statements work | |
2578 | better. */ | |
527159b7 | 2579 | if (debug_infrun) |
8a9de0e4 | 2580 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n"); |
488f131b JB |
2581 | stop_step = 1; |
2582 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2583 | stop_stepping (ecs); | |
2584 | return; | |
2585 | } | |
c906108c | 2586 | |
488f131b | 2587 | /* We aren't done stepping. |
c906108c | 2588 | |
488f131b JB |
2589 | Optimize by setting the stepping range to the line. |
2590 | (We might not be in the original line, but if we entered a | |
2591 | new line in mid-statement, we continue stepping. This makes | |
2592 | things like for(;;) statements work better.) */ | |
c906108c | 2593 | |
488f131b | 2594 | if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end) |
c5aa993b | 2595 | { |
488f131b JB |
2596 | /* If this is the last line of the function, don't keep stepping |
2597 | (it would probably step us out of the function). | |
2598 | This is particularly necessary for a one-line function, | |
2599 | in which after skipping the prologue we better stop even though | |
2600 | we will be in mid-line. */ | |
527159b7 | 2601 | if (debug_infrun) |
8a9de0e4 | 2602 | fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n"); |
488f131b JB |
2603 | stop_step = 1; |
2604 | print_stop_reason (END_STEPPING_RANGE, 0); | |
2605 | stop_stepping (ecs); | |
2606 | return; | |
c5aa993b | 2607 | } |
488f131b JB |
2608 | step_range_start = ecs->sal.pc; |
2609 | step_range_end = ecs->sal.end; | |
aa0cd9c1 | 2610 | step_frame_id = get_frame_id (get_current_frame ()); |
488f131b JB |
2611 | ecs->current_line = ecs->sal.line; |
2612 | ecs->current_symtab = ecs->sal.symtab; | |
2613 | ||
aa0cd9c1 AC |
2614 | /* In the case where we just stepped out of a function into the |
2615 | middle of a line of the caller, continue stepping, but | |
2616 | step_frame_id must be modified to current frame */ | |
65815ea1 AC |
2617 | #if 0 |
2618 | /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too | |
2619 | generous. It will trigger on things like a step into a frameless | |
2620 | stackless leaf function. I think the logic should instead look | |
2621 | at the unwound frame ID has that should give a more robust | |
2622 | indication of what happened. */ | |
8fb3e588 AC |
2623 | if (step - ID == current - ID) |
2624 | still stepping in same function; | |
2625 | else if (step - ID == unwind (current - ID)) | |
2626 | stepped into a function; | |
2627 | else | |
2628 | stepped out of a function; | |
2629 | /* Of course this assumes that the frame ID unwind code is robust | |
2630 | and we're willing to introduce frame unwind logic into this | |
2631 | function. Fortunately, those days are nearly upon us. */ | |
65815ea1 | 2632 | #endif |
488f131b | 2633 | { |
aa0cd9c1 AC |
2634 | struct frame_id current_frame = get_frame_id (get_current_frame ()); |
2635 | if (!(frame_id_inner (current_frame, step_frame_id))) | |
2636 | step_frame_id = current_frame; | |
488f131b | 2637 | } |
c906108c | 2638 | |
527159b7 | 2639 | if (debug_infrun) |
8a9de0e4 | 2640 | fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n"); |
488f131b | 2641 | keep_going (ecs); |
104c1213 JM |
2642 | } |
2643 | ||
2644 | /* Are we in the middle of stepping? */ | |
2645 | ||
2646 | static int | |
2647 | currently_stepping (struct execution_control_state *ecs) | |
2648 | { | |
d303a6c7 | 2649 | return ((!ecs->handling_longjmp |
104c1213 JM |
2650 | && ((step_range_end && step_resume_breakpoint == NULL) |
2651 | || trap_expected)) | |
2652 | || ecs->stepping_through_solib_after_catch | |
2653 | || bpstat_should_step ()); | |
2654 | } | |
c906108c | 2655 | |
c2c6d25f JM |
2656 | /* Subroutine call with source code we should not step over. Do step |
2657 | to the first line of code in it. */ | |
2658 | ||
2659 | static void | |
2660 | step_into_function (struct execution_control_state *ecs) | |
2661 | { | |
2662 | struct symtab *s; | |
2663 | struct symtab_and_line sr_sal; | |
2664 | ||
2665 | s = find_pc_symtab (stop_pc); | |
2666 | if (s && s->language != language_asm) | |
2667 | ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start); | |
2668 | ||
2669 | ecs->sal = find_pc_line (ecs->stop_func_start, 0); | |
2670 | /* Use the step_resume_break to step until the end of the prologue, | |
2671 | even if that involves jumps (as it seems to on the vax under | |
2672 | 4.2). */ | |
2673 | /* If the prologue ends in the middle of a source line, continue to | |
2674 | the end of that source line (if it is still within the function). | |
2675 | Otherwise, just go to end of prologue. */ | |
c2c6d25f JM |
2676 | if (ecs->sal.end |
2677 | && ecs->sal.pc != ecs->stop_func_start | |
2678 | && ecs->sal.end < ecs->stop_func_end) | |
2679 | ecs->stop_func_start = ecs->sal.end; | |
c2c6d25f | 2680 | |
2dbd5e30 KB |
2681 | /* Architectures which require breakpoint adjustment might not be able |
2682 | to place a breakpoint at the computed address. If so, the test | |
2683 | ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust | |
2684 | ecs->stop_func_start to an address at which a breakpoint may be | |
2685 | legitimately placed. | |
8fb3e588 | 2686 | |
2dbd5e30 KB |
2687 | Note: kevinb/2004-01-19: On FR-V, if this adjustment is not |
2688 | made, GDB will enter an infinite loop when stepping through | |
2689 | optimized code consisting of VLIW instructions which contain | |
2690 | subinstructions corresponding to different source lines. On | |
2691 | FR-V, it's not permitted to place a breakpoint on any but the | |
2692 | first subinstruction of a VLIW instruction. When a breakpoint is | |
2693 | set, GDB will adjust the breakpoint address to the beginning of | |
2694 | the VLIW instruction. Thus, we need to make the corresponding | |
2695 | adjustment here when computing the stop address. */ | |
8fb3e588 | 2696 | |
2dbd5e30 KB |
2697 | if (gdbarch_adjust_breakpoint_address_p (current_gdbarch)) |
2698 | { | |
2699 | ecs->stop_func_start | |
2700 | = gdbarch_adjust_breakpoint_address (current_gdbarch, | |
8fb3e588 | 2701 | ecs->stop_func_start); |
2dbd5e30 KB |
2702 | } |
2703 | ||
c2c6d25f JM |
2704 | if (ecs->stop_func_start == stop_pc) |
2705 | { | |
2706 | /* We are already there: stop now. */ | |
2707 | stop_step = 1; | |
488f131b | 2708 | print_stop_reason (END_STEPPING_RANGE, 0); |
c2c6d25f JM |
2709 | stop_stepping (ecs); |
2710 | return; | |
2711 | } | |
2712 | else | |
2713 | { | |
2714 | /* Put the step-breakpoint there and go until there. */ | |
fe39c653 | 2715 | init_sal (&sr_sal); /* initialize to zeroes */ |
c2c6d25f JM |
2716 | sr_sal.pc = ecs->stop_func_start; |
2717 | sr_sal.section = find_pc_overlay (ecs->stop_func_start); | |
44cbf7b5 | 2718 | |
c2c6d25f | 2719 | /* Do not specify what the fp should be when we stop since on |
488f131b JB |
2720 | some machines the prologue is where the new fp value is |
2721 | established. */ | |
44cbf7b5 | 2722 | insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id); |
c2c6d25f JM |
2723 | |
2724 | /* And make sure stepping stops right away then. */ | |
2725 | step_range_end = step_range_start; | |
2726 | } | |
2727 | keep_going (ecs); | |
2728 | } | |
d4f3574e | 2729 | |
44cbf7b5 AC |
2730 | /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID. |
2731 | This is used to both functions and to skip over code. */ | |
2732 | ||
2733 | static void | |
2734 | insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal, | |
2735 | struct frame_id sr_id) | |
2736 | { | |
2737 | /* There should never be more than one step-resume breakpoint per | |
2738 | thread, so we should never be setting a new | |
2739 | step_resume_breakpoint when one is already active. */ | |
2740 | gdb_assert (step_resume_breakpoint == NULL); | |
2741 | step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id, | |
2742 | bp_step_resume); | |
2743 | if (breakpoints_inserted) | |
2744 | insert_breakpoints (); | |
2745 | } | |
7ce450bd | 2746 | |
14e60db5 DJ |
2747 | /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used |
2748 | to skip a potential signal handler. | |
7ce450bd | 2749 | |
14e60db5 DJ |
2750 | This is called with the interrupted function's frame. The signal |
2751 | handler, when it returns, will resume the interrupted function at | |
2752 | RETURN_FRAME.pc. */ | |
d303a6c7 AC |
2753 | |
2754 | static void | |
44cbf7b5 | 2755 | insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame) |
d303a6c7 AC |
2756 | { |
2757 | struct symtab_and_line sr_sal; | |
2758 | ||
d303a6c7 AC |
2759 | init_sal (&sr_sal); /* initialize to zeros */ |
2760 | ||
7ce450bd | 2761 | sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame)); |
d303a6c7 AC |
2762 | sr_sal.section = find_pc_overlay (sr_sal.pc); |
2763 | ||
44cbf7b5 | 2764 | insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame)); |
d303a6c7 AC |
2765 | } |
2766 | ||
14e60db5 DJ |
2767 | /* Similar to insert_step_resume_breakpoint_at_frame, except |
2768 | but a breakpoint at the previous frame's PC. This is used to | |
2769 | skip a function after stepping into it (for "next" or if the called | |
2770 | function has no debugging information). | |
2771 | ||
2772 | The current function has almost always been reached by single | |
2773 | stepping a call or return instruction. NEXT_FRAME belongs to the | |
2774 | current function, and the breakpoint will be set at the caller's | |
2775 | resume address. | |
2776 | ||
2777 | This is a separate function rather than reusing | |
2778 | insert_step_resume_breakpoint_at_frame in order to avoid | |
2779 | get_prev_frame, which may stop prematurely (see the implementation | |
2780 | of frame_unwind_id for an example). */ | |
2781 | ||
2782 | static void | |
2783 | insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame) | |
2784 | { | |
2785 | struct symtab_and_line sr_sal; | |
2786 | ||
2787 | /* We shouldn't have gotten here if we don't know where the call site | |
2788 | is. */ | |
2789 | gdb_assert (frame_id_p (frame_unwind_id (next_frame))); | |
2790 | ||
2791 | init_sal (&sr_sal); /* initialize to zeros */ | |
2792 | ||
2793 | sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame)); | |
2794 | sr_sal.section = find_pc_overlay (sr_sal.pc); | |
2795 | ||
2796 | insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame)); | |
2797 | } | |
2798 | ||
104c1213 JM |
2799 | static void |
2800 | stop_stepping (struct execution_control_state *ecs) | |
2801 | { | |
527159b7 | 2802 | if (debug_infrun) |
8a9de0e4 | 2803 | fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n"); |
527159b7 | 2804 | |
cd0fc7c3 SS |
2805 | /* Let callers know we don't want to wait for the inferior anymore. */ |
2806 | ecs->wait_some_more = 0; | |
2807 | } | |
2808 | ||
d4f3574e SS |
2809 | /* This function handles various cases where we need to continue |
2810 | waiting for the inferior. */ | |
2811 | /* (Used to be the keep_going: label in the old wait_for_inferior) */ | |
2812 | ||
2813 | static void | |
2814 | keep_going (struct execution_control_state *ecs) | |
2815 | { | |
d4f3574e | 2816 | /* Save the pc before execution, to compare with pc after stop. */ |
488f131b | 2817 | prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */ |
d4f3574e | 2818 | |
d4f3574e SS |
2819 | /* If we did not do break;, it means we should keep running the |
2820 | inferior and not return to debugger. */ | |
2821 | ||
2822 | if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP) | |
2823 | { | |
2824 | /* We took a signal (which we are supposed to pass through to | |
488f131b JB |
2825 | the inferior, else we'd have done a break above) and we |
2826 | haven't yet gotten our trap. Simply continue. */ | |
d4f3574e SS |
2827 | resume (currently_stepping (ecs), stop_signal); |
2828 | } | |
2829 | else | |
2830 | { | |
2831 | /* Either the trap was not expected, but we are continuing | |
488f131b JB |
2832 | anyway (the user asked that this signal be passed to the |
2833 | child) | |
2834 | -- or -- | |
2835 | The signal was SIGTRAP, e.g. it was our signal, but we | |
2836 | decided we should resume from it. | |
d4f3574e | 2837 | |
68f53502 | 2838 | We're going to run this baby now! */ |
d4f3574e | 2839 | |
68f53502 | 2840 | if (!breakpoints_inserted && !ecs->another_trap) |
d4f3574e SS |
2841 | { |
2842 | breakpoints_failed = insert_breakpoints (); | |
2843 | if (breakpoints_failed) | |
2844 | { | |
2845 | stop_stepping (ecs); | |
2846 | return; | |
2847 | } | |
2848 | breakpoints_inserted = 1; | |
2849 | } | |
2850 | ||
2851 | trap_expected = ecs->another_trap; | |
2852 | ||
2853 | /* Do not deliver SIGNAL_TRAP (except when the user explicitly | |
488f131b JB |
2854 | specifies that such a signal should be delivered to the |
2855 | target program). | |
2856 | ||
2857 | Typically, this would occure when a user is debugging a | |
2858 | target monitor on a simulator: the target monitor sets a | |
2859 | breakpoint; the simulator encounters this break-point and | |
2860 | halts the simulation handing control to GDB; GDB, noteing | |
2861 | that the break-point isn't valid, returns control back to the | |
2862 | simulator; the simulator then delivers the hardware | |
2863 | equivalent of a SIGNAL_TRAP to the program being debugged. */ | |
2864 | ||
2865 | if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal]) | |
d4f3574e SS |
2866 | stop_signal = TARGET_SIGNAL_0; |
2867 | ||
d4f3574e SS |
2868 | |
2869 | resume (currently_stepping (ecs), stop_signal); | |
2870 | } | |
2871 | ||
488f131b | 2872 | prepare_to_wait (ecs); |
d4f3574e SS |
2873 | } |
2874 | ||
104c1213 JM |
2875 | /* This function normally comes after a resume, before |
2876 | handle_inferior_event exits. It takes care of any last bits of | |
2877 | housekeeping, and sets the all-important wait_some_more flag. */ | |
cd0fc7c3 | 2878 | |
104c1213 JM |
2879 | static void |
2880 | prepare_to_wait (struct execution_control_state *ecs) | |
cd0fc7c3 | 2881 | { |
527159b7 | 2882 | if (debug_infrun) |
8a9de0e4 | 2883 | fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n"); |
104c1213 JM |
2884 | if (ecs->infwait_state == infwait_normal_state) |
2885 | { | |
2886 | overlay_cache_invalid = 1; | |
2887 | ||
2888 | /* We have to invalidate the registers BEFORE calling | |
488f131b JB |
2889 | target_wait because they can be loaded from the target while |
2890 | in target_wait. This makes remote debugging a bit more | |
2891 | efficient for those targets that provide critical registers | |
2892 | as part of their normal status mechanism. */ | |
104c1213 JM |
2893 | |
2894 | registers_changed (); | |
39f77062 | 2895 | ecs->waiton_ptid = pid_to_ptid (-1); |
104c1213 JM |
2896 | ecs->wp = &(ecs->ws); |
2897 | } | |
2898 | /* This is the old end of the while loop. Let everybody know we | |
2899 | want to wait for the inferior some more and get called again | |
2900 | soon. */ | |
2901 | ecs->wait_some_more = 1; | |
c906108c | 2902 | } |
11cf8741 JM |
2903 | |
2904 | /* Print why the inferior has stopped. We always print something when | |
2905 | the inferior exits, or receives a signal. The rest of the cases are | |
2906 | dealt with later on in normal_stop() and print_it_typical(). Ideally | |
2907 | there should be a call to this function from handle_inferior_event() | |
2908 | each time stop_stepping() is called.*/ | |
2909 | static void | |
2910 | print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info) | |
2911 | { | |
2912 | switch (stop_reason) | |
2913 | { | |
2914 | case STOP_UNKNOWN: | |
2915 | /* We don't deal with these cases from handle_inferior_event() | |
2916 | yet. */ | |
2917 | break; | |
2918 | case END_STEPPING_RANGE: | |
2919 | /* We are done with a step/next/si/ni command. */ | |
2920 | /* For now print nothing. */ | |
fb40c209 | 2921 | /* Print a message only if not in the middle of doing a "step n" |
488f131b | 2922 | operation for n > 1 */ |
fb40c209 | 2923 | if (!step_multi || !stop_step) |
9dc5e2a9 | 2924 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2925 | ui_out_field_string |
2926 | (uiout, "reason", | |
2927 | async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE)); | |
11cf8741 JM |
2928 | break; |
2929 | case BREAKPOINT_HIT: | |
2930 | /* We found a breakpoint. */ | |
2931 | /* For now print nothing. */ | |
2932 | break; | |
2933 | case SIGNAL_EXITED: | |
2934 | /* The inferior was terminated by a signal. */ | |
8b93c638 | 2935 | annotate_signalled (); |
9dc5e2a9 | 2936 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2937 | ui_out_field_string |
2938 | (uiout, "reason", | |
2939 | async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED)); | |
8b93c638 JM |
2940 | ui_out_text (uiout, "\nProgram terminated with signal "); |
2941 | annotate_signal_name (); | |
488f131b JB |
2942 | ui_out_field_string (uiout, "signal-name", |
2943 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2944 | annotate_signal_name_end (); |
2945 | ui_out_text (uiout, ", "); | |
2946 | annotate_signal_string (); | |
488f131b JB |
2947 | ui_out_field_string (uiout, "signal-meaning", |
2948 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2949 | annotate_signal_string_end (); |
2950 | ui_out_text (uiout, ".\n"); | |
2951 | ui_out_text (uiout, "The program no longer exists.\n"); | |
11cf8741 JM |
2952 | break; |
2953 | case EXITED: | |
2954 | /* The inferior program is finished. */ | |
8b93c638 JM |
2955 | annotate_exited (stop_info); |
2956 | if (stop_info) | |
2957 | { | |
9dc5e2a9 | 2958 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2959 | ui_out_field_string (uiout, "reason", |
2960 | async_reason_lookup (EXEC_ASYNC_EXITED)); | |
8b93c638 | 2961 | ui_out_text (uiout, "\nProgram exited with code "); |
488f131b JB |
2962 | ui_out_field_fmt (uiout, "exit-code", "0%o", |
2963 | (unsigned int) stop_info); | |
8b93c638 JM |
2964 | ui_out_text (uiout, ".\n"); |
2965 | } | |
2966 | else | |
2967 | { | |
9dc5e2a9 | 2968 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2969 | ui_out_field_string |
2970 | (uiout, "reason", | |
2971 | async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY)); | |
8b93c638 JM |
2972 | ui_out_text (uiout, "\nProgram exited normally.\n"); |
2973 | } | |
f17517ea AS |
2974 | /* Support the --return-child-result option. */ |
2975 | return_child_result_value = stop_info; | |
11cf8741 JM |
2976 | break; |
2977 | case SIGNAL_RECEIVED: | |
2978 | /* Signal received. The signal table tells us to print about | |
2979 | it. */ | |
8b93c638 JM |
2980 | annotate_signal (); |
2981 | ui_out_text (uiout, "\nProgram received signal "); | |
2982 | annotate_signal_name (); | |
84c6c83c | 2983 | if (ui_out_is_mi_like_p (uiout)) |
034dad6f BR |
2984 | ui_out_field_string |
2985 | (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED)); | |
488f131b JB |
2986 | ui_out_field_string (uiout, "signal-name", |
2987 | target_signal_to_name (stop_info)); | |
8b93c638 JM |
2988 | annotate_signal_name_end (); |
2989 | ui_out_text (uiout, ", "); | |
2990 | annotate_signal_string (); | |
488f131b JB |
2991 | ui_out_field_string (uiout, "signal-meaning", |
2992 | target_signal_to_string (stop_info)); | |
8b93c638 JM |
2993 | annotate_signal_string_end (); |
2994 | ui_out_text (uiout, ".\n"); | |
11cf8741 JM |
2995 | break; |
2996 | default: | |
8e65ff28 | 2997 | internal_error (__FILE__, __LINE__, |
e2e0b3e5 | 2998 | _("print_stop_reason: unrecognized enum value")); |
11cf8741 JM |
2999 | break; |
3000 | } | |
3001 | } | |
c906108c | 3002 | \f |
43ff13b4 | 3003 | |
c906108c SS |
3004 | /* Here to return control to GDB when the inferior stops for real. |
3005 | Print appropriate messages, remove breakpoints, give terminal our modes. | |
3006 | ||
3007 | STOP_PRINT_FRAME nonzero means print the executing frame | |
3008 | (pc, function, args, file, line number and line text). | |
3009 | BREAKPOINTS_FAILED nonzero means stop was due to error | |
3010 | attempting to insert breakpoints. */ | |
3011 | ||
3012 | void | |
96baa820 | 3013 | normal_stop (void) |
c906108c | 3014 | { |
73b65bb0 DJ |
3015 | struct target_waitstatus last; |
3016 | ptid_t last_ptid; | |
3017 | ||
3018 | get_last_target_status (&last_ptid, &last); | |
3019 | ||
c906108c SS |
3020 | /* As with the notification of thread events, we want to delay |
3021 | notifying the user that we've switched thread context until | |
3022 | the inferior actually stops. | |
3023 | ||
73b65bb0 DJ |
3024 | There's no point in saying anything if the inferior has exited. |
3025 | Note that SIGNALLED here means "exited with a signal", not | |
3026 | "received a signal". */ | |
488f131b | 3027 | if (!ptid_equal (previous_inferior_ptid, inferior_ptid) |
73b65bb0 DJ |
3028 | && target_has_execution |
3029 | && last.kind != TARGET_WAITKIND_SIGNALLED | |
3030 | && last.kind != TARGET_WAITKIND_EXITED) | |
c906108c SS |
3031 | { |
3032 | target_terminal_ours_for_output (); | |
a3f17187 | 3033 | printf_filtered (_("[Switching to %s]\n"), |
39f77062 KB |
3034 | target_pid_or_tid_to_str (inferior_ptid)); |
3035 | previous_inferior_ptid = inferior_ptid; | |
c906108c | 3036 | } |
c906108c | 3037 | |
4fa8626c | 3038 | /* NOTE drow/2004-01-17: Is this still necessary? */ |
c906108c SS |
3039 | /* Make sure that the current_frame's pc is correct. This |
3040 | is a correction for setting up the frame info before doing | |
3041 | DECR_PC_AFTER_BREAK */ | |
b87efeee AC |
3042 | if (target_has_execution) |
3043 | /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to | |
3044 | DECR_PC_AFTER_BREAK, the program counter can change. Ask the | |
3045 | frame code to check for this and sort out any resultant mess. | |
3046 | DECR_PC_AFTER_BREAK needs to just go away. */ | |
2f107107 | 3047 | deprecated_update_frame_pc_hack (get_current_frame (), read_pc ()); |
c906108c | 3048 | |
c906108c SS |
3049 | if (target_has_execution && breakpoints_inserted) |
3050 | { | |
3051 | if (remove_breakpoints ()) | |
3052 | { | |
3053 | target_terminal_ours_for_output (); | |
a3f17187 AC |
3054 | printf_filtered (_("\ |
3055 | Cannot remove breakpoints because program is no longer writable.\n\ | |
3056 | It might be running in another process.\n\ | |
3057 | Further execution is probably impossible.\n")); | |
c906108c SS |
3058 | } |
3059 | } | |
3060 | breakpoints_inserted = 0; | |
3061 | ||
3062 | /* Delete the breakpoint we stopped at, if it wants to be deleted. | |
3063 | Delete any breakpoint that is to be deleted at the next stop. */ | |
3064 | ||
3065 | breakpoint_auto_delete (stop_bpstat); | |
3066 | ||
3067 | /* If an auto-display called a function and that got a signal, | |
3068 | delete that auto-display to avoid an infinite recursion. */ | |
3069 | ||
3070 | if (stopped_by_random_signal) | |
3071 | disable_current_display (); | |
3072 | ||
3073 | /* Don't print a message if in the middle of doing a "step n" | |
3074 | operation for n > 1 */ | |
3075 | if (step_multi && stop_step) | |
3076 | goto done; | |
3077 | ||
3078 | target_terminal_ours (); | |
3079 | ||
7abfe014 DJ |
3080 | /* Set the current source location. This will also happen if we |
3081 | display the frame below, but the current SAL will be incorrect | |
3082 | during a user hook-stop function. */ | |
3083 | if (target_has_stack && !stop_stack_dummy) | |
3084 | set_current_sal_from_frame (get_current_frame (), 1); | |
3085 | ||
5913bcb0 AC |
3086 | /* Look up the hook_stop and run it (CLI internally handles problem |
3087 | of stop_command's pre-hook not existing). */ | |
3088 | if (stop_command) | |
3089 | catch_errors (hook_stop_stub, stop_command, | |
3090 | "Error while running hook_stop:\n", RETURN_MASK_ALL); | |
c906108c SS |
3091 | |
3092 | if (!target_has_stack) | |
3093 | { | |
3094 | ||
3095 | goto done; | |
3096 | } | |
3097 | ||
3098 | /* Select innermost stack frame - i.e., current frame is frame 0, | |
3099 | and current location is based on that. | |
3100 | Don't do this on return from a stack dummy routine, | |
3101 | or if the program has exited. */ | |
3102 | ||
3103 | if (!stop_stack_dummy) | |
3104 | { | |
0f7d239c | 3105 | select_frame (get_current_frame ()); |
c906108c SS |
3106 | |
3107 | /* Print current location without a level number, if | |
c5aa993b JM |
3108 | we have changed functions or hit a breakpoint. |
3109 | Print source line if we have one. | |
3110 | bpstat_print() contains the logic deciding in detail | |
3111 | what to print, based on the event(s) that just occurred. */ | |
c906108c | 3112 | |
6e7f8b9c | 3113 | if (stop_print_frame && deprecated_selected_frame) |
c906108c SS |
3114 | { |
3115 | int bpstat_ret; | |
3116 | int source_flag; | |
917317f4 | 3117 | int do_frame_printing = 1; |
c906108c SS |
3118 | |
3119 | bpstat_ret = bpstat_print (stop_bpstat); | |
917317f4 JM |
3120 | switch (bpstat_ret) |
3121 | { | |
3122 | case PRINT_UNKNOWN: | |
aa0cd9c1 | 3123 | /* FIXME: cagney/2002-12-01: Given that a frame ID does |
8fb3e588 AC |
3124 | (or should) carry around the function and does (or |
3125 | should) use that when doing a frame comparison. */ | |
917317f4 | 3126 | if (stop_step |
aa0cd9c1 AC |
3127 | && frame_id_eq (step_frame_id, |
3128 | get_frame_id (get_current_frame ())) | |
917317f4 | 3129 | && step_start_function == find_pc_function (stop_pc)) |
488f131b | 3130 | source_flag = SRC_LINE; /* finished step, just print source line */ |
917317f4 | 3131 | else |
488f131b | 3132 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3133 | break; |
3134 | case PRINT_SRC_AND_LOC: | |
488f131b | 3135 | source_flag = SRC_AND_LOC; /* print location and source line */ |
917317f4 JM |
3136 | break; |
3137 | case PRINT_SRC_ONLY: | |
c5394b80 | 3138 | source_flag = SRC_LINE; |
917317f4 JM |
3139 | break; |
3140 | case PRINT_NOTHING: | |
488f131b | 3141 | source_flag = SRC_LINE; /* something bogus */ |
917317f4 JM |
3142 | do_frame_printing = 0; |
3143 | break; | |
3144 | default: | |
e2e0b3e5 | 3145 | internal_error (__FILE__, __LINE__, _("Unknown value.")); |
917317f4 | 3146 | } |
fb40c209 | 3147 | /* For mi, have the same behavior every time we stop: |
488f131b | 3148 | print everything but the source line. */ |
9dc5e2a9 | 3149 | if (ui_out_is_mi_like_p (uiout)) |
fb40c209 | 3150 | source_flag = LOC_AND_ADDRESS; |
c906108c | 3151 | |
9dc5e2a9 | 3152 | if (ui_out_is_mi_like_p (uiout)) |
39f77062 | 3153 | ui_out_field_int (uiout, "thread-id", |
488f131b | 3154 | pid_to_thread_id (inferior_ptid)); |
c906108c SS |
3155 | /* The behavior of this routine with respect to the source |
3156 | flag is: | |
c5394b80 JM |
3157 | SRC_LINE: Print only source line |
3158 | LOCATION: Print only location | |
3159 | SRC_AND_LOC: Print location and source line */ | |
917317f4 | 3160 | if (do_frame_printing) |
b04f3ab4 | 3161 | print_stack_frame (get_selected_frame (NULL), 0, source_flag); |
c906108c SS |
3162 | |
3163 | /* Display the auto-display expressions. */ | |
3164 | do_displays (); | |
3165 | } | |
3166 | } | |
3167 | ||
3168 | /* Save the function value return registers, if we care. | |
3169 | We might be about to restore their previous contents. */ | |
3170 | if (proceed_to_finish) | |
72cec141 AC |
3171 | /* NB: The copy goes through to the target picking up the value of |
3172 | all the registers. */ | |
3173 | regcache_cpy (stop_registers, current_regcache); | |
c906108c SS |
3174 | |
3175 | if (stop_stack_dummy) | |
3176 | { | |
dbe9fe58 AC |
3177 | /* Pop the empty frame that contains the stack dummy. POP_FRAME |
3178 | ends with a setting of the current frame, so we can use that | |
3179 | next. */ | |
3180 | frame_pop (get_current_frame ()); | |
c906108c | 3181 | /* Set stop_pc to what it was before we called the function. |
c5aa993b JM |
3182 | Can't rely on restore_inferior_status because that only gets |
3183 | called if we don't stop in the called function. */ | |
c906108c | 3184 | stop_pc = read_pc (); |
0f7d239c | 3185 | select_frame (get_current_frame ()); |
c906108c SS |
3186 | } |
3187 | ||
c906108c SS |
3188 | done: |
3189 | annotate_stopped (); | |
7a464420 | 3190 | observer_notify_normal_stop (stop_bpstat); |
c906108c SS |
3191 | } |
3192 | ||
3193 | static int | |
96baa820 | 3194 | hook_stop_stub (void *cmd) |
c906108c | 3195 | { |
5913bcb0 | 3196 | execute_cmd_pre_hook ((struct cmd_list_element *) cmd); |
c906108c SS |
3197 | return (0); |
3198 | } | |
3199 | \f | |
c5aa993b | 3200 | int |
96baa820 | 3201 | signal_stop_state (int signo) |
c906108c SS |
3202 | { |
3203 | return signal_stop[signo]; | |
3204 | } | |
3205 | ||
c5aa993b | 3206 | int |
96baa820 | 3207 | signal_print_state (int signo) |
c906108c SS |
3208 | { |
3209 | return signal_print[signo]; | |
3210 | } | |
3211 | ||
c5aa993b | 3212 | int |
96baa820 | 3213 | signal_pass_state (int signo) |
c906108c SS |
3214 | { |
3215 | return signal_program[signo]; | |
3216 | } | |
3217 | ||
488f131b | 3218 | int |
7bda5e4a | 3219 | signal_stop_update (int signo, int state) |
d4f3574e SS |
3220 | { |
3221 | int ret = signal_stop[signo]; | |
3222 | signal_stop[signo] = state; | |
3223 | return ret; | |
3224 | } | |
3225 | ||
488f131b | 3226 | int |
7bda5e4a | 3227 | signal_print_update (int signo, int state) |
d4f3574e SS |
3228 | { |
3229 | int ret = signal_print[signo]; | |
3230 | signal_print[signo] = state; | |
3231 | return ret; | |
3232 | } | |
3233 | ||
488f131b | 3234 | int |
7bda5e4a | 3235 | signal_pass_update (int signo, int state) |
d4f3574e SS |
3236 | { |
3237 | int ret = signal_program[signo]; | |
3238 | signal_program[signo] = state; | |
3239 | return ret; | |
3240 | } | |
3241 | ||
c906108c | 3242 | static void |
96baa820 | 3243 | sig_print_header (void) |
c906108c | 3244 | { |
a3f17187 AC |
3245 | printf_filtered (_("\ |
3246 | Signal Stop\tPrint\tPass to program\tDescription\n")); | |
c906108c SS |
3247 | } |
3248 | ||
3249 | static void | |
96baa820 | 3250 | sig_print_info (enum target_signal oursig) |
c906108c SS |
3251 | { |
3252 | char *name = target_signal_to_name (oursig); | |
3253 | int name_padding = 13 - strlen (name); | |
96baa820 | 3254 | |
c906108c SS |
3255 | if (name_padding <= 0) |
3256 | name_padding = 0; | |
3257 | ||
3258 | printf_filtered ("%s", name); | |
488f131b | 3259 | printf_filtered ("%*.*s ", name_padding, name_padding, " "); |
c906108c SS |
3260 | printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No"); |
3261 | printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No"); | |
3262 | printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No"); | |
3263 | printf_filtered ("%s\n", target_signal_to_string (oursig)); | |
3264 | } | |
3265 | ||
3266 | /* Specify how various signals in the inferior should be handled. */ | |
3267 | ||
3268 | static void | |
96baa820 | 3269 | handle_command (char *args, int from_tty) |
c906108c SS |
3270 | { |
3271 | char **argv; | |
3272 | int digits, wordlen; | |
3273 | int sigfirst, signum, siglast; | |
3274 | enum target_signal oursig; | |
3275 | int allsigs; | |
3276 | int nsigs; | |
3277 | unsigned char *sigs; | |
3278 | struct cleanup *old_chain; | |
3279 | ||
3280 | if (args == NULL) | |
3281 | { | |
e2e0b3e5 | 3282 | error_no_arg (_("signal to handle")); |
c906108c SS |
3283 | } |
3284 | ||
3285 | /* Allocate and zero an array of flags for which signals to handle. */ | |
3286 | ||
3287 | nsigs = (int) TARGET_SIGNAL_LAST; | |
3288 | sigs = (unsigned char *) alloca (nsigs); | |
3289 | memset (sigs, 0, nsigs); | |
3290 | ||
3291 | /* Break the command line up into args. */ | |
3292 | ||
3293 | argv = buildargv (args); | |
3294 | if (argv == NULL) | |
3295 | { | |
3296 | nomem (0); | |
3297 | } | |
7a292a7a | 3298 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3299 | |
3300 | /* Walk through the args, looking for signal oursigs, signal names, and | |
3301 | actions. Signal numbers and signal names may be interspersed with | |
3302 | actions, with the actions being performed for all signals cumulatively | |
3303 | specified. Signal ranges can be specified as <LOW>-<HIGH>. */ | |
3304 | ||
3305 | while (*argv != NULL) | |
3306 | { | |
3307 | wordlen = strlen (*argv); | |
3308 | for (digits = 0; isdigit ((*argv)[digits]); digits++) | |
3309 | {; | |
3310 | } | |
3311 | allsigs = 0; | |
3312 | sigfirst = siglast = -1; | |
3313 | ||
3314 | if (wordlen >= 1 && !strncmp (*argv, "all", wordlen)) | |
3315 | { | |
3316 | /* Apply action to all signals except those used by the | |
3317 | debugger. Silently skip those. */ | |
3318 | allsigs = 1; | |
3319 | sigfirst = 0; | |
3320 | siglast = nsigs - 1; | |
3321 | } | |
3322 | else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen)) | |
3323 | { | |
3324 | SET_SIGS (nsigs, sigs, signal_stop); | |
3325 | SET_SIGS (nsigs, sigs, signal_print); | |
3326 | } | |
3327 | else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen)) | |
3328 | { | |
3329 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3330 | } | |
3331 | else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen)) | |
3332 | { | |
3333 | SET_SIGS (nsigs, sigs, signal_print); | |
3334 | } | |
3335 | else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen)) | |
3336 | { | |
3337 | SET_SIGS (nsigs, sigs, signal_program); | |
3338 | } | |
3339 | else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen)) | |
3340 | { | |
3341 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3342 | } | |
3343 | else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen)) | |
3344 | { | |
3345 | SET_SIGS (nsigs, sigs, signal_program); | |
3346 | } | |
3347 | else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen)) | |
3348 | { | |
3349 | UNSET_SIGS (nsigs, sigs, signal_print); | |
3350 | UNSET_SIGS (nsigs, sigs, signal_stop); | |
3351 | } | |
3352 | else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen)) | |
3353 | { | |
3354 | UNSET_SIGS (nsigs, sigs, signal_program); | |
3355 | } | |
3356 | else if (digits > 0) | |
3357 | { | |
3358 | /* It is numeric. The numeric signal refers to our own | |
3359 | internal signal numbering from target.h, not to host/target | |
3360 | signal number. This is a feature; users really should be | |
3361 | using symbolic names anyway, and the common ones like | |
3362 | SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */ | |
3363 | ||
3364 | sigfirst = siglast = (int) | |
3365 | target_signal_from_command (atoi (*argv)); | |
3366 | if ((*argv)[digits] == '-') | |
3367 | { | |
3368 | siglast = (int) | |
3369 | target_signal_from_command (atoi ((*argv) + digits + 1)); | |
3370 | } | |
3371 | if (sigfirst > siglast) | |
3372 | { | |
3373 | /* Bet he didn't figure we'd think of this case... */ | |
3374 | signum = sigfirst; | |
3375 | sigfirst = siglast; | |
3376 | siglast = signum; | |
3377 | } | |
3378 | } | |
3379 | else | |
3380 | { | |
3381 | oursig = target_signal_from_name (*argv); | |
3382 | if (oursig != TARGET_SIGNAL_UNKNOWN) | |
3383 | { | |
3384 | sigfirst = siglast = (int) oursig; | |
3385 | } | |
3386 | else | |
3387 | { | |
3388 | /* Not a number and not a recognized flag word => complain. */ | |
8a3fe4f8 | 3389 | error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv); |
c906108c SS |
3390 | } |
3391 | } | |
3392 | ||
3393 | /* If any signal numbers or symbol names were found, set flags for | |
c5aa993b | 3394 | which signals to apply actions to. */ |
c906108c SS |
3395 | |
3396 | for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++) | |
3397 | { | |
3398 | switch ((enum target_signal) signum) | |
3399 | { | |
3400 | case TARGET_SIGNAL_TRAP: | |
3401 | case TARGET_SIGNAL_INT: | |
3402 | if (!allsigs && !sigs[signum]) | |
3403 | { | |
3404 | if (query ("%s is used by the debugger.\n\ | |
488f131b | 3405 | Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum))) |
c906108c SS |
3406 | { |
3407 | sigs[signum] = 1; | |
3408 | } | |
3409 | else | |
3410 | { | |
a3f17187 | 3411 | printf_unfiltered (_("Not confirmed, unchanged.\n")); |
c906108c SS |
3412 | gdb_flush (gdb_stdout); |
3413 | } | |
3414 | } | |
3415 | break; | |
3416 | case TARGET_SIGNAL_0: | |
3417 | case TARGET_SIGNAL_DEFAULT: | |
3418 | case TARGET_SIGNAL_UNKNOWN: | |
3419 | /* Make sure that "all" doesn't print these. */ | |
3420 | break; | |
3421 | default: | |
3422 | sigs[signum] = 1; | |
3423 | break; | |
3424 | } | |
3425 | } | |
3426 | ||
3427 | argv++; | |
3428 | } | |
3429 | ||
39f77062 | 3430 | target_notice_signals (inferior_ptid); |
c906108c SS |
3431 | |
3432 | if (from_tty) | |
3433 | { | |
3434 | /* Show the results. */ | |
3435 | sig_print_header (); | |
3436 | for (signum = 0; signum < nsigs; signum++) | |
3437 | { | |
3438 | if (sigs[signum]) | |
3439 | { | |
3440 | sig_print_info (signum); | |
3441 | } | |
3442 | } | |
3443 | } | |
3444 | ||
3445 | do_cleanups (old_chain); | |
3446 | } | |
3447 | ||
3448 | static void | |
96baa820 | 3449 | xdb_handle_command (char *args, int from_tty) |
c906108c SS |
3450 | { |
3451 | char **argv; | |
3452 | struct cleanup *old_chain; | |
3453 | ||
3454 | /* Break the command line up into args. */ | |
3455 | ||
3456 | argv = buildargv (args); | |
3457 | if (argv == NULL) | |
3458 | { | |
3459 | nomem (0); | |
3460 | } | |
7a292a7a | 3461 | old_chain = make_cleanup_freeargv (argv); |
c906108c SS |
3462 | if (argv[1] != (char *) NULL) |
3463 | { | |
3464 | char *argBuf; | |
3465 | int bufLen; | |
3466 | ||
3467 | bufLen = strlen (argv[0]) + 20; | |
3468 | argBuf = (char *) xmalloc (bufLen); | |
3469 | if (argBuf) | |
3470 | { | |
3471 | int validFlag = 1; | |
3472 | enum target_signal oursig; | |
3473 | ||
3474 | oursig = target_signal_from_name (argv[0]); | |
3475 | memset (argBuf, 0, bufLen); | |
3476 | if (strcmp (argv[1], "Q") == 0) | |
3477 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3478 | else | |
3479 | { | |
3480 | if (strcmp (argv[1], "s") == 0) | |
3481 | { | |
3482 | if (!signal_stop[oursig]) | |
3483 | sprintf (argBuf, "%s %s", argv[0], "stop"); | |
3484 | else | |
3485 | sprintf (argBuf, "%s %s", argv[0], "nostop"); | |
3486 | } | |
3487 | else if (strcmp (argv[1], "i") == 0) | |
3488 | { | |
3489 | if (!signal_program[oursig]) | |
3490 | sprintf (argBuf, "%s %s", argv[0], "pass"); | |
3491 | else | |
3492 | sprintf (argBuf, "%s %s", argv[0], "nopass"); | |
3493 | } | |
3494 | else if (strcmp (argv[1], "r") == 0) | |
3495 | { | |
3496 | if (!signal_print[oursig]) | |
3497 | sprintf (argBuf, "%s %s", argv[0], "print"); | |
3498 | else | |
3499 | sprintf (argBuf, "%s %s", argv[0], "noprint"); | |
3500 | } | |
3501 | else | |
3502 | validFlag = 0; | |
3503 | } | |
3504 | if (validFlag) | |
3505 | handle_command (argBuf, from_tty); | |
3506 | else | |
a3f17187 | 3507 | printf_filtered (_("Invalid signal handling flag.\n")); |
c906108c | 3508 | if (argBuf) |
b8c9b27d | 3509 | xfree (argBuf); |
c906108c SS |
3510 | } |
3511 | } | |
3512 | do_cleanups (old_chain); | |
3513 | } | |
3514 | ||
3515 | /* Print current contents of the tables set by the handle command. | |
3516 | It is possible we should just be printing signals actually used | |
3517 | by the current target (but for things to work right when switching | |
3518 | targets, all signals should be in the signal tables). */ | |
3519 | ||
3520 | static void | |
96baa820 | 3521 | signals_info (char *signum_exp, int from_tty) |
c906108c SS |
3522 | { |
3523 | enum target_signal oursig; | |
3524 | sig_print_header (); | |
3525 | ||
3526 | if (signum_exp) | |
3527 | { | |
3528 | /* First see if this is a symbol name. */ | |
3529 | oursig = target_signal_from_name (signum_exp); | |
3530 | if (oursig == TARGET_SIGNAL_UNKNOWN) | |
3531 | { | |
3532 | /* No, try numeric. */ | |
3533 | oursig = | |
bb518678 | 3534 | target_signal_from_command (parse_and_eval_long (signum_exp)); |
c906108c SS |
3535 | } |
3536 | sig_print_info (oursig); | |
3537 | return; | |
3538 | } | |
3539 | ||
3540 | printf_filtered ("\n"); | |
3541 | /* These ugly casts brought to you by the native VAX compiler. */ | |
3542 | for (oursig = TARGET_SIGNAL_FIRST; | |
3543 | (int) oursig < (int) TARGET_SIGNAL_LAST; | |
3544 | oursig = (enum target_signal) ((int) oursig + 1)) | |
3545 | { | |
3546 | QUIT; | |
3547 | ||
3548 | if (oursig != TARGET_SIGNAL_UNKNOWN | |
488f131b | 3549 | && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0) |
c906108c SS |
3550 | sig_print_info (oursig); |
3551 | } | |
3552 | ||
a3f17187 | 3553 | printf_filtered (_("\nUse the \"handle\" command to change these tables.\n")); |
c906108c SS |
3554 | } |
3555 | \f | |
7a292a7a SS |
3556 | struct inferior_status |
3557 | { | |
3558 | enum target_signal stop_signal; | |
3559 | CORE_ADDR stop_pc; | |
3560 | bpstat stop_bpstat; | |
3561 | int stop_step; | |
3562 | int stop_stack_dummy; | |
3563 | int stopped_by_random_signal; | |
3564 | int trap_expected; | |
3565 | CORE_ADDR step_range_start; | |
3566 | CORE_ADDR step_range_end; | |
aa0cd9c1 | 3567 | struct frame_id step_frame_id; |
5fbbeb29 | 3568 | enum step_over_calls_kind step_over_calls; |
7a292a7a SS |
3569 | CORE_ADDR step_resume_break_address; |
3570 | int stop_after_trap; | |
c0236d92 | 3571 | int stop_soon; |
72cec141 | 3572 | struct regcache *stop_registers; |
7a292a7a SS |
3573 | |
3574 | /* These are here because if call_function_by_hand has written some | |
3575 | registers and then decides to call error(), we better not have changed | |
3576 | any registers. */ | |
72cec141 | 3577 | struct regcache *registers; |
7a292a7a | 3578 | |
101dcfbe AC |
3579 | /* A frame unique identifier. */ |
3580 | struct frame_id selected_frame_id; | |
3581 | ||
7a292a7a SS |
3582 | int breakpoint_proceeded; |
3583 | int restore_stack_info; | |
3584 | int proceed_to_finish; | |
3585 | }; | |
3586 | ||
7a292a7a | 3587 | void |
96baa820 JM |
3588 | write_inferior_status_register (struct inferior_status *inf_status, int regno, |
3589 | LONGEST val) | |
7a292a7a | 3590 | { |
3acba339 | 3591 | int size = register_size (current_gdbarch, regno); |
7a292a7a SS |
3592 | void *buf = alloca (size); |
3593 | store_signed_integer (buf, size, val); | |
0818c12a | 3594 | regcache_raw_write (inf_status->registers, regno, buf); |
7a292a7a SS |
3595 | } |
3596 | ||
c906108c SS |
3597 | /* Save all of the information associated with the inferior<==>gdb |
3598 | connection. INF_STATUS is a pointer to a "struct inferior_status" | |
3599 | (defined in inferior.h). */ | |
3600 | ||
7a292a7a | 3601 | struct inferior_status * |
96baa820 | 3602 | save_inferior_status (int restore_stack_info) |
c906108c | 3603 | { |
72cec141 | 3604 | struct inferior_status *inf_status = XMALLOC (struct inferior_status); |
7a292a7a | 3605 | |
c906108c SS |
3606 | inf_status->stop_signal = stop_signal; |
3607 | inf_status->stop_pc = stop_pc; | |
3608 | inf_status->stop_step = stop_step; | |
3609 | inf_status->stop_stack_dummy = stop_stack_dummy; | |
3610 | inf_status->stopped_by_random_signal = stopped_by_random_signal; | |
3611 | inf_status->trap_expected = trap_expected; | |
3612 | inf_status->step_range_start = step_range_start; | |
3613 | inf_status->step_range_end = step_range_end; | |
aa0cd9c1 | 3614 | inf_status->step_frame_id = step_frame_id; |
c906108c SS |
3615 | inf_status->step_over_calls = step_over_calls; |
3616 | inf_status->stop_after_trap = stop_after_trap; | |
c0236d92 | 3617 | inf_status->stop_soon = stop_soon; |
c906108c SS |
3618 | /* Save original bpstat chain here; replace it with copy of chain. |
3619 | If caller's caller is walking the chain, they'll be happier if we | |
7a292a7a SS |
3620 | hand them back the original chain when restore_inferior_status is |
3621 | called. */ | |
c906108c SS |
3622 | inf_status->stop_bpstat = stop_bpstat; |
3623 | stop_bpstat = bpstat_copy (stop_bpstat); | |
3624 | inf_status->breakpoint_proceeded = breakpoint_proceeded; | |
3625 | inf_status->restore_stack_info = restore_stack_info; | |
3626 | inf_status->proceed_to_finish = proceed_to_finish; | |
c5aa993b | 3627 | |
72cec141 | 3628 | inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers); |
c906108c | 3629 | |
72cec141 | 3630 | inf_status->registers = regcache_dup (current_regcache); |
c906108c | 3631 | |
7a424e99 | 3632 | inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame); |
7a292a7a | 3633 | return inf_status; |
c906108c SS |
3634 | } |
3635 | ||
c906108c | 3636 | static int |
96baa820 | 3637 | restore_selected_frame (void *args) |
c906108c | 3638 | { |
488f131b | 3639 | struct frame_id *fid = (struct frame_id *) args; |
c906108c | 3640 | struct frame_info *frame; |
c906108c | 3641 | |
101dcfbe | 3642 | frame = frame_find_by_id (*fid); |
c906108c | 3643 | |
aa0cd9c1 AC |
3644 | /* If inf_status->selected_frame_id is NULL, there was no previously |
3645 | selected frame. */ | |
101dcfbe | 3646 | if (frame == NULL) |
c906108c | 3647 | { |
8a3fe4f8 | 3648 | warning (_("Unable to restore previously selected frame.")); |
c906108c SS |
3649 | return 0; |
3650 | } | |
3651 | ||
0f7d239c | 3652 | select_frame (frame); |
c906108c SS |
3653 | |
3654 | return (1); | |
3655 | } | |
3656 | ||
3657 | void | |
96baa820 | 3658 | restore_inferior_status (struct inferior_status *inf_status) |
c906108c SS |
3659 | { |
3660 | stop_signal = inf_status->stop_signal; | |
3661 | stop_pc = inf_status->stop_pc; | |
3662 | stop_step = inf_status->stop_step; | |
3663 | stop_stack_dummy = inf_status->stop_stack_dummy; | |
3664 | stopped_by_random_signal = inf_status->stopped_by_random_signal; | |
3665 | trap_expected = inf_status->trap_expected; | |
3666 | step_range_start = inf_status->step_range_start; | |
3667 | step_range_end = inf_status->step_range_end; | |
aa0cd9c1 | 3668 | step_frame_id = inf_status->step_frame_id; |
c906108c SS |
3669 | step_over_calls = inf_status->step_over_calls; |
3670 | stop_after_trap = inf_status->stop_after_trap; | |
c0236d92 | 3671 | stop_soon = inf_status->stop_soon; |
c906108c SS |
3672 | bpstat_clear (&stop_bpstat); |
3673 | stop_bpstat = inf_status->stop_bpstat; | |
3674 | breakpoint_proceeded = inf_status->breakpoint_proceeded; | |
3675 | proceed_to_finish = inf_status->proceed_to_finish; | |
3676 | ||
72cec141 AC |
3677 | /* FIXME: Is the restore of stop_registers always needed. */ |
3678 | regcache_xfree (stop_registers); | |
3679 | stop_registers = inf_status->stop_registers; | |
c906108c SS |
3680 | |
3681 | /* The inferior can be gone if the user types "print exit(0)" | |
3682 | (and perhaps other times). */ | |
3683 | if (target_has_execution) | |
72cec141 AC |
3684 | /* NB: The register write goes through to the target. */ |
3685 | regcache_cpy (current_regcache, inf_status->registers); | |
3686 | regcache_xfree (inf_status->registers); | |
c906108c | 3687 | |
c906108c SS |
3688 | /* FIXME: If we are being called after stopping in a function which |
3689 | is called from gdb, we should not be trying to restore the | |
3690 | selected frame; it just prints a spurious error message (The | |
3691 | message is useful, however, in detecting bugs in gdb (like if gdb | |
3692 | clobbers the stack)). In fact, should we be restoring the | |
3693 | inferior status at all in that case? . */ | |
3694 | ||
3695 | if (target_has_stack && inf_status->restore_stack_info) | |
3696 | { | |
c906108c | 3697 | /* The point of catch_errors is that if the stack is clobbered, |
101dcfbe AC |
3698 | walking the stack might encounter a garbage pointer and |
3699 | error() trying to dereference it. */ | |
488f131b JB |
3700 | if (catch_errors |
3701 | (restore_selected_frame, &inf_status->selected_frame_id, | |
3702 | "Unable to restore previously selected frame:\n", | |
3703 | RETURN_MASK_ERROR) == 0) | |
c906108c SS |
3704 | /* Error in restoring the selected frame. Select the innermost |
3705 | frame. */ | |
0f7d239c | 3706 | select_frame (get_current_frame ()); |
c906108c SS |
3707 | |
3708 | } | |
c906108c | 3709 | |
72cec141 | 3710 | xfree (inf_status); |
7a292a7a | 3711 | } |
c906108c | 3712 | |
74b7792f AC |
3713 | static void |
3714 | do_restore_inferior_status_cleanup (void *sts) | |
3715 | { | |
3716 | restore_inferior_status (sts); | |
3717 | } | |
3718 | ||
3719 | struct cleanup * | |
3720 | make_cleanup_restore_inferior_status (struct inferior_status *inf_status) | |
3721 | { | |
3722 | return make_cleanup (do_restore_inferior_status_cleanup, inf_status); | |
3723 | } | |
3724 | ||
c906108c | 3725 | void |
96baa820 | 3726 | discard_inferior_status (struct inferior_status *inf_status) |
7a292a7a SS |
3727 | { |
3728 | /* See save_inferior_status for info on stop_bpstat. */ | |
3729 | bpstat_clear (&inf_status->stop_bpstat); | |
72cec141 AC |
3730 | regcache_xfree (inf_status->registers); |
3731 | regcache_xfree (inf_status->stop_registers); | |
3732 | xfree (inf_status); | |
7a292a7a SS |
3733 | } |
3734 | ||
47932f85 DJ |
3735 | int |
3736 | inferior_has_forked (int pid, int *child_pid) | |
3737 | { | |
3738 | struct target_waitstatus last; | |
3739 | ptid_t last_ptid; | |
3740 | ||
3741 | get_last_target_status (&last_ptid, &last); | |
3742 | ||
3743 | if (last.kind != TARGET_WAITKIND_FORKED) | |
3744 | return 0; | |
3745 | ||
3746 | if (ptid_get_pid (last_ptid) != pid) | |
3747 | return 0; | |
3748 | ||
3749 | *child_pid = last.value.related_pid; | |
3750 | return 1; | |
3751 | } | |
3752 | ||
3753 | int | |
3754 | inferior_has_vforked (int pid, int *child_pid) | |
3755 | { | |
3756 | struct target_waitstatus last; | |
3757 | ptid_t last_ptid; | |
3758 | ||
3759 | get_last_target_status (&last_ptid, &last); | |
3760 | ||
3761 | if (last.kind != TARGET_WAITKIND_VFORKED) | |
3762 | return 0; | |
3763 | ||
3764 | if (ptid_get_pid (last_ptid) != pid) | |
3765 | return 0; | |
3766 | ||
3767 | *child_pid = last.value.related_pid; | |
3768 | return 1; | |
3769 | } | |
3770 | ||
3771 | int | |
3772 | inferior_has_execd (int pid, char **execd_pathname) | |
3773 | { | |
3774 | struct target_waitstatus last; | |
3775 | ptid_t last_ptid; | |
3776 | ||
3777 | get_last_target_status (&last_ptid, &last); | |
3778 | ||
3779 | if (last.kind != TARGET_WAITKIND_EXECD) | |
3780 | return 0; | |
3781 | ||
3782 | if (ptid_get_pid (last_ptid) != pid) | |
3783 | return 0; | |
3784 | ||
3785 | *execd_pathname = xstrdup (last.value.execd_pathname); | |
3786 | return 1; | |
3787 | } | |
3788 | ||
ca6724c1 KB |
3789 | /* Oft used ptids */ |
3790 | ptid_t null_ptid; | |
3791 | ptid_t minus_one_ptid; | |
3792 | ||
3793 | /* Create a ptid given the necessary PID, LWP, and TID components. */ | |
488f131b | 3794 | |
ca6724c1 KB |
3795 | ptid_t |
3796 | ptid_build (int pid, long lwp, long tid) | |
3797 | { | |
3798 | ptid_t ptid; | |
3799 | ||
3800 | ptid.pid = pid; | |
3801 | ptid.lwp = lwp; | |
3802 | ptid.tid = tid; | |
3803 | return ptid; | |
3804 | } | |
3805 | ||
3806 | /* Create a ptid from just a pid. */ | |
3807 | ||
3808 | ptid_t | |
3809 | pid_to_ptid (int pid) | |
3810 | { | |
3811 | return ptid_build (pid, 0, 0); | |
3812 | } | |
3813 | ||
3814 | /* Fetch the pid (process id) component from a ptid. */ | |
3815 | ||
3816 | int | |
3817 | ptid_get_pid (ptid_t ptid) | |
3818 | { | |
3819 | return ptid.pid; | |
3820 | } | |
3821 | ||
3822 | /* Fetch the lwp (lightweight process) component from a ptid. */ | |
3823 | ||
3824 | long | |
3825 | ptid_get_lwp (ptid_t ptid) | |
3826 | { | |
3827 | return ptid.lwp; | |
3828 | } | |
3829 | ||
3830 | /* Fetch the tid (thread id) component from a ptid. */ | |
3831 | ||
3832 | long | |
3833 | ptid_get_tid (ptid_t ptid) | |
3834 | { | |
3835 | return ptid.tid; | |
3836 | } | |
3837 | ||
3838 | /* ptid_equal() is used to test equality of two ptids. */ | |
3839 | ||
3840 | int | |
3841 | ptid_equal (ptid_t ptid1, ptid_t ptid2) | |
3842 | { | |
3843 | return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp | |
488f131b | 3844 | && ptid1.tid == ptid2.tid); |
ca6724c1 KB |
3845 | } |
3846 | ||
3847 | /* restore_inferior_ptid() will be used by the cleanup machinery | |
3848 | to restore the inferior_ptid value saved in a call to | |
3849 | save_inferior_ptid(). */ | |
ce696e05 KB |
3850 | |
3851 | static void | |
3852 | restore_inferior_ptid (void *arg) | |
3853 | { | |
3854 | ptid_t *saved_ptid_ptr = arg; | |
3855 | inferior_ptid = *saved_ptid_ptr; | |
3856 | xfree (arg); | |
3857 | } | |
3858 | ||
3859 | /* Save the value of inferior_ptid so that it may be restored by a | |
3860 | later call to do_cleanups(). Returns the struct cleanup pointer | |
3861 | needed for later doing the cleanup. */ | |
3862 | ||
3863 | struct cleanup * | |
3864 | save_inferior_ptid (void) | |
3865 | { | |
3866 | ptid_t *saved_ptid_ptr; | |
3867 | ||
3868 | saved_ptid_ptr = xmalloc (sizeof (ptid_t)); | |
3869 | *saved_ptid_ptr = inferior_ptid; | |
3870 | return make_cleanup (restore_inferior_ptid, saved_ptid_ptr); | |
3871 | } | |
c5aa993b | 3872 | \f |
488f131b | 3873 | |
7a292a7a | 3874 | static void |
96baa820 | 3875 | build_infrun (void) |
7a292a7a | 3876 | { |
72cec141 | 3877 | stop_registers = regcache_xmalloc (current_gdbarch); |
7a292a7a | 3878 | } |
c906108c | 3879 | |
c906108c | 3880 | void |
96baa820 | 3881 | _initialize_infrun (void) |
c906108c | 3882 | { |
52f0bd74 AC |
3883 | int i; |
3884 | int numsigs; | |
c906108c SS |
3885 | struct cmd_list_element *c; |
3886 | ||
046a4708 AC |
3887 | DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers); |
3888 | deprecated_register_gdbarch_swap (NULL, 0, build_infrun); | |
0f71a2f6 | 3889 | |
1bedd215 AC |
3890 | add_info ("signals", signals_info, _("\ |
3891 | What debugger does when program gets various signals.\n\ | |
3892 | Specify a signal as argument to print info on that signal only.")); | |
c906108c SS |
3893 | add_info_alias ("handle", "signals", 0); |
3894 | ||
1bedd215 AC |
3895 | add_com ("handle", class_run, handle_command, _("\ |
3896 | Specify how to handle a signal.\n\ | |
c906108c SS |
3897 | Args are signals and actions to apply to those signals.\n\ |
3898 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3899 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3900 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3901 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3902 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3903 | Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\ | |
c906108c SS |
3904 | \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\ |
3905 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3906 | Print means print a message if this signal happens.\n\ | |
3907 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3908 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3909 | Pass and Stop may be combined.")); |
c906108c SS |
3910 | if (xdb_commands) |
3911 | { | |
1bedd215 AC |
3912 | add_com ("lz", class_info, signals_info, _("\ |
3913 | What debugger does when program gets various signals.\n\ | |
3914 | Specify a signal as argument to print info on that signal only.")); | |
3915 | add_com ("z", class_run, xdb_handle_command, _("\ | |
3916 | Specify how to handle a signal.\n\ | |
c906108c SS |
3917 | Args are signals and actions to apply to those signals.\n\ |
3918 | Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\ | |
3919 | from 1-15 are allowed for compatibility with old versions of GDB.\n\ | |
3920 | Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\ | |
3921 | The special arg \"all\" is recognized to mean all signals except those\n\ | |
1bedd215 AC |
3922 | used by the debugger, typically SIGTRAP and SIGINT.\n\ |
3923 | Recognized actions include \"s\" (toggles between stop and nostop), \n\ | |
c906108c SS |
3924 | \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \ |
3925 | nopass), \"Q\" (noprint)\n\ | |
3926 | Stop means reenter debugger if this signal happens (implies print).\n\ | |
3927 | Print means print a message if this signal happens.\n\ | |
3928 | Pass means let program see this signal; otherwise program doesn't know.\n\ | |
3929 | Ignore is a synonym for nopass and noignore is a synonym for pass.\n\ | |
1bedd215 | 3930 | Pass and Stop may be combined.")); |
c906108c SS |
3931 | } |
3932 | ||
3933 | if (!dbx_commands) | |
1a966eab AC |
3934 | stop_command = add_cmd ("stop", class_obscure, |
3935 | not_just_help_class_command, _("\ | |
3936 | There is no `stop' command, but you can set a hook on `stop'.\n\ | |
c906108c | 3937 | This allows you to set a list of commands to be run each time execution\n\ |
1a966eab | 3938 | of the program stops."), &cmdlist); |
c906108c | 3939 | |
85c07804 AC |
3940 | add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\ |
3941 | Set inferior debugging."), _("\ | |
3942 | Show inferior debugging."), _("\ | |
3943 | When non-zero, inferior specific debugging is enabled."), | |
3944 | NULL, | |
920d2a44 | 3945 | show_debug_infrun, |
85c07804 | 3946 | &setdebuglist, &showdebuglist); |
527159b7 | 3947 | |
c906108c | 3948 | numsigs = (int) TARGET_SIGNAL_LAST; |
488f131b | 3949 | signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs); |
c906108c SS |
3950 | signal_print = (unsigned char *) |
3951 | xmalloc (sizeof (signal_print[0]) * numsigs); | |
3952 | signal_program = (unsigned char *) | |
3953 | xmalloc (sizeof (signal_program[0]) * numsigs); | |
3954 | for (i = 0; i < numsigs; i++) | |
3955 | { | |
3956 | signal_stop[i] = 1; | |
3957 | signal_print[i] = 1; | |
3958 | signal_program[i] = 1; | |
3959 | } | |
3960 | ||
3961 | /* Signals caused by debugger's own actions | |
3962 | should not be given to the program afterwards. */ | |
3963 | signal_program[TARGET_SIGNAL_TRAP] = 0; | |
3964 | signal_program[TARGET_SIGNAL_INT] = 0; | |
3965 | ||
3966 | /* Signals that are not errors should not normally enter the debugger. */ | |
3967 | signal_stop[TARGET_SIGNAL_ALRM] = 0; | |
3968 | signal_print[TARGET_SIGNAL_ALRM] = 0; | |
3969 | signal_stop[TARGET_SIGNAL_VTALRM] = 0; | |
3970 | signal_print[TARGET_SIGNAL_VTALRM] = 0; | |
3971 | signal_stop[TARGET_SIGNAL_PROF] = 0; | |
3972 | signal_print[TARGET_SIGNAL_PROF] = 0; | |
3973 | signal_stop[TARGET_SIGNAL_CHLD] = 0; | |
3974 | signal_print[TARGET_SIGNAL_CHLD] = 0; | |
3975 | signal_stop[TARGET_SIGNAL_IO] = 0; | |
3976 | signal_print[TARGET_SIGNAL_IO] = 0; | |
3977 | signal_stop[TARGET_SIGNAL_POLL] = 0; | |
3978 | signal_print[TARGET_SIGNAL_POLL] = 0; | |
3979 | signal_stop[TARGET_SIGNAL_URG] = 0; | |
3980 | signal_print[TARGET_SIGNAL_URG] = 0; | |
3981 | signal_stop[TARGET_SIGNAL_WINCH] = 0; | |
3982 | signal_print[TARGET_SIGNAL_WINCH] = 0; | |
3983 | ||
cd0fc7c3 SS |
3984 | /* These signals are used internally by user-level thread |
3985 | implementations. (See signal(5) on Solaris.) Like the above | |
3986 | signals, a healthy program receives and handles them as part of | |
3987 | its normal operation. */ | |
3988 | signal_stop[TARGET_SIGNAL_LWP] = 0; | |
3989 | signal_print[TARGET_SIGNAL_LWP] = 0; | |
3990 | signal_stop[TARGET_SIGNAL_WAITING] = 0; | |
3991 | signal_print[TARGET_SIGNAL_WAITING] = 0; | |
3992 | signal_stop[TARGET_SIGNAL_CANCEL] = 0; | |
3993 | signal_print[TARGET_SIGNAL_CANCEL] = 0; | |
3994 | ||
85c07804 AC |
3995 | add_setshow_zinteger_cmd ("stop-on-solib-events", class_support, |
3996 | &stop_on_solib_events, _("\ | |
3997 | Set stopping for shared library events."), _("\ | |
3998 | Show stopping for shared library events."), _("\ | |
c906108c SS |
3999 | If nonzero, gdb will give control to the user when the dynamic linker\n\ |
4000 | notifies gdb of shared library events. The most common event of interest\n\ | |
85c07804 AC |
4001 | to the user would be loading/unloading of a new library."), |
4002 | NULL, | |
920d2a44 | 4003 | show_stop_on_solib_events, |
85c07804 | 4004 | &setlist, &showlist); |
c906108c | 4005 | |
7ab04401 AC |
4006 | add_setshow_enum_cmd ("follow-fork-mode", class_run, |
4007 | follow_fork_mode_kind_names, | |
4008 | &follow_fork_mode_string, _("\ | |
4009 | Set debugger response to a program call of fork or vfork."), _("\ | |
4010 | Show debugger response to a program call of fork or vfork."), _("\ | |
c906108c SS |
4011 | A fork or vfork creates a new process. follow-fork-mode can be:\n\ |
4012 | parent - the original process is debugged after a fork\n\ | |
4013 | child - the new process is debugged after a fork\n\ | |
ea1dd7bc | 4014 | The unfollowed process will continue to run.\n\ |
7ab04401 AC |
4015 | By default, the debugger will follow the parent process."), |
4016 | NULL, | |
920d2a44 | 4017 | show_follow_fork_mode_string, |
7ab04401 AC |
4018 | &setlist, &showlist); |
4019 | ||
4020 | add_setshow_enum_cmd ("scheduler-locking", class_run, | |
4021 | scheduler_enums, &scheduler_mode, _("\ | |
4022 | Set mode for locking scheduler during execution."), _("\ | |
4023 | Show mode for locking scheduler during execution."), _("\ | |
c906108c SS |
4024 | off == no locking (threads may preempt at any time)\n\ |
4025 | on == full locking (no thread except the current thread may run)\n\ | |
4026 | step == scheduler locked during every single-step operation.\n\ | |
4027 | In this mode, no other thread may run during a step command.\n\ | |
7ab04401 AC |
4028 | Other threads may run while stepping over a function call ('next')."), |
4029 | set_schedlock_func, /* traps on target vector */ | |
920d2a44 | 4030 | show_scheduler_mode, |
7ab04401 | 4031 | &setlist, &showlist); |
5fbbeb29 | 4032 | |
5bf193a2 AC |
4033 | add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\ |
4034 | Set mode of the step operation."), _("\ | |
4035 | Show mode of the step operation."), _("\ | |
4036 | When set, doing a step over a function without debug line information\n\ | |
4037 | will stop at the first instruction of that function. Otherwise, the\n\ | |
4038 | function is skipped and the step command stops at a different source line."), | |
4039 | NULL, | |
920d2a44 | 4040 | show_step_stop_if_no_debug, |
5bf193a2 | 4041 | &setlist, &showlist); |
ca6724c1 KB |
4042 | |
4043 | /* ptid initializations */ | |
4044 | null_ptid = ptid_build (0, 0, 0); | |
4045 | minus_one_ptid = ptid_build (-1, 0, 0); | |
4046 | inferior_ptid = null_ptid; | |
4047 | target_last_wait_ptid = minus_one_ptid; | |
c906108c | 4048 | } |