*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1
DJ
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
6 2008 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
a77053c2 48
9f976b41 49#include "gdb_assert.h"
034dad6f 50#include "mi/mi-common.h"
4f8d22e3 51#include "event-top.h"
c906108c
SS
52
53/* Prototypes for local functions */
54
96baa820 55static void signals_info (char *, int);
c906108c 56
96baa820 57static void handle_command (char *, int);
c906108c 58
96baa820 59static void sig_print_info (enum target_signal);
c906108c 60
96baa820 61static void sig_print_header (void);
c906108c 62
74b7792f 63static void resume_cleanups (void *);
c906108c 64
96baa820 65static int hook_stop_stub (void *);
c906108c 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
4e1c45ea 76static int currently_stepping (struct thread_info *tp);
96baa820
JM
77
78static void xdb_handle_command (char *args, int from_tty);
79
6a6b96b9 80static int prepare_to_proceed (int);
ea67f13b 81
96baa820 82void _initialize_infrun (void);
43ff13b4 83
5fbbeb29
CF
84/* When set, stop the 'step' command if we enter a function which has
85 no line number information. The normal behavior is that we step
86 over such function. */
87int step_stop_if_no_debug = 0;
920d2a44
AC
88static void
89show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
90 struct cmd_list_element *c, const char *value)
91{
92 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
93}
5fbbeb29 94
43ff13b4 95/* In asynchronous mode, but simulating synchronous execution. */
96baa820 96
43ff13b4
JM
97int sync_execution = 0;
98
c906108c
SS
99/* wait_for_inferior and normal_stop use this to notify the user
100 when the inferior stopped in a different thread than it had been
96baa820
JM
101 running in. */
102
39f77062 103static ptid_t previous_inferior_ptid;
7a292a7a 104
237fc4c9
PA
105int debug_displaced = 0;
106static void
107show_debug_displaced (struct ui_file *file, int from_tty,
108 struct cmd_list_element *c, const char *value)
109{
110 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
111}
112
527159b7 113static int debug_infrun = 0;
920d2a44
AC
114static void
115show_debug_infrun (struct ui_file *file, int from_tty,
116 struct cmd_list_element *c, const char *value)
117{
118 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
119}
527159b7 120
d4f3574e
SS
121/* If the program uses ELF-style shared libraries, then calls to
122 functions in shared libraries go through stubs, which live in a
123 table called the PLT (Procedure Linkage Table). The first time the
124 function is called, the stub sends control to the dynamic linker,
125 which looks up the function's real address, patches the stub so
126 that future calls will go directly to the function, and then passes
127 control to the function.
128
129 If we are stepping at the source level, we don't want to see any of
130 this --- we just want to skip over the stub and the dynamic linker.
131 The simple approach is to single-step until control leaves the
132 dynamic linker.
133
ca557f44
AC
134 However, on some systems (e.g., Red Hat's 5.2 distribution) the
135 dynamic linker calls functions in the shared C library, so you
136 can't tell from the PC alone whether the dynamic linker is still
137 running. In this case, we use a step-resume breakpoint to get us
138 past the dynamic linker, as if we were using "next" to step over a
139 function call.
d4f3574e 140
cfd8ab24 141 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
142 linker code or not. Normally, this means we single-step. However,
143 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
144 address where we can place a step-resume breakpoint to get past the
145 linker's symbol resolution function.
146
cfd8ab24 147 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
148 pretty portable way, by comparing the PC against the address ranges
149 of the dynamic linker's sections.
150
151 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
152 it depends on internal details of the dynamic linker. It's usually
153 not too hard to figure out where to put a breakpoint, but it
154 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
155 sanity checking. If it can't figure things out, returning zero and
156 getting the (possibly confusing) stepping behavior is better than
157 signalling an error, which will obscure the change in the
158 inferior's state. */
c906108c 159
c906108c
SS
160/* This function returns TRUE if pc is the address of an instruction
161 that lies within the dynamic linker (such as the event hook, or the
162 dld itself).
163
164 This function must be used only when a dynamic linker event has
165 been caught, and the inferior is being stepped out of the hook, or
166 undefined results are guaranteed. */
167
168#ifndef SOLIB_IN_DYNAMIC_LINKER
169#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
170#endif
171
c2c6d25f 172
7a292a7a
SS
173/* Convert the #defines into values. This is temporary until wfi control
174 flow is completely sorted out. */
175
692590c1
MS
176#ifndef CANNOT_STEP_HW_WATCHPOINTS
177#define CANNOT_STEP_HW_WATCHPOINTS 0
178#else
179#undef CANNOT_STEP_HW_WATCHPOINTS
180#define CANNOT_STEP_HW_WATCHPOINTS 1
181#endif
182
c906108c
SS
183/* Tables of how to react to signals; the user sets them. */
184
185static unsigned char *signal_stop;
186static unsigned char *signal_print;
187static unsigned char *signal_program;
188
189#define SET_SIGS(nsigs,sigs,flags) \
190 do { \
191 int signum = (nsigs); \
192 while (signum-- > 0) \
193 if ((sigs)[signum]) \
194 (flags)[signum] = 1; \
195 } while (0)
196
197#define UNSET_SIGS(nsigs,sigs,flags) \
198 do { \
199 int signum = (nsigs); \
200 while (signum-- > 0) \
201 if ((sigs)[signum]) \
202 (flags)[signum] = 0; \
203 } while (0)
204
39f77062
KB
205/* Value to pass to target_resume() to cause all threads to resume */
206
207#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
208
209/* Command list pointer for the "stop" placeholder. */
210
211static struct cmd_list_element *stop_command;
212
c906108c
SS
213/* Function inferior was in as of last step command. */
214
215static struct symbol *step_start_function;
216
c906108c
SS
217/* Nonzero if we want to give control to the user when we're notified
218 of shared library events by the dynamic linker. */
219static int stop_on_solib_events;
920d2a44
AC
220static void
221show_stop_on_solib_events (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
225 value);
226}
c906108c 227
c906108c
SS
228/* Nonzero means expecting a trace trap
229 and should stop the inferior and return silently when it happens. */
230
231int stop_after_trap;
232
c906108c
SS
233/* Save register contents here when about to pop a stack dummy frame,
234 if-and-only-if proceed_to_finish is set.
235 Thus this contains the return value from the called function (assuming
236 values are returned in a register). */
237
72cec141 238struct regcache *stop_registers;
c906108c 239
c906108c
SS
240/* Nonzero after stop if current stack frame should be printed. */
241
242static int stop_print_frame;
243
e02bc4cc 244/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
245 returned by target_wait()/deprecated_target_wait_hook(). This
246 information is returned by get_last_target_status(). */
39f77062 247static ptid_t target_last_wait_ptid;
e02bc4cc
DS
248static struct target_waitstatus target_last_waitstatus;
249
0d1e5fa7
PA
250static void context_switch (ptid_t ptid);
251
4e1c45ea 252void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
253
254void init_infwait_state (void);
a474d7c2 255
c906108c
SS
256/* This is used to remember when a fork, vfork or exec event
257 was caught by a catchpoint, and thus the event is to be
258 followed at the next resume of the inferior, and not
259 immediately. */
260static struct
488f131b
JB
261{
262 enum target_waitkind kind;
263 struct
c906108c 264 {
3a3e9ee3
PA
265 ptid_t parent_pid;
266 ptid_t child_pid;
c906108c 267 }
488f131b
JB
268 fork_event;
269 char *execd_pathname;
270}
c906108c
SS
271pending_follow;
272
53904c9e
AC
273static const char follow_fork_mode_child[] = "child";
274static const char follow_fork_mode_parent[] = "parent";
275
488f131b 276static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
277 follow_fork_mode_child,
278 follow_fork_mode_parent,
279 NULL
ef346e04 280};
c906108c 281
53904c9e 282static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
283static void
284show_follow_fork_mode_string (struct ui_file *file, int from_tty,
285 struct cmd_list_element *c, const char *value)
286{
287 fprintf_filtered (file, _("\
288Debugger response to a program call of fork or vfork is \"%s\".\n"),
289 value);
290}
c906108c
SS
291\f
292
6604731b 293static int
4ef3f3be 294follow_fork (void)
c906108c 295{
ea1dd7bc 296 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 297
6604731b 298 return target_follow_fork (follow_child);
c906108c
SS
299}
300
6604731b
DJ
301void
302follow_inferior_reset_breakpoints (void)
c906108c 303{
4e1c45ea
PA
304 struct thread_info *tp = inferior_thread ();
305
6604731b
DJ
306 /* Was there a step_resume breakpoint? (There was if the user
307 did a "next" at the fork() call.) If so, explicitly reset its
308 thread number.
309
310 step_resumes are a form of bp that are made to be per-thread.
311 Since we created the step_resume bp when the parent process
312 was being debugged, and now are switching to the child process,
313 from the breakpoint package's viewpoint, that's a switch of
314 "threads". We must update the bp's notion of which thread
315 it is for, or it'll be ignored when it triggers. */
316
4e1c45ea
PA
317 if (tp->step_resume_breakpoint)
318 breakpoint_re_set_thread (tp->step_resume_breakpoint);
6604731b
DJ
319
320 /* Reinsert all breakpoints in the child. The user may have set
321 breakpoints after catching the fork, in which case those
322 were never set in the child, but only in the parent. This makes
323 sure the inserted breakpoints match the breakpoint list. */
324
325 breakpoint_re_set ();
326 insert_breakpoints ();
c906108c 327}
c906108c 328
1adeb98a
FN
329/* EXECD_PATHNAME is assumed to be non-NULL. */
330
c906108c 331static void
3a3e9ee3 332follow_exec (ptid_t pid, char *execd_pathname)
c906108c 333{
7a292a7a 334 struct target_ops *tgt;
4e1c45ea 335 struct thread_info *th = inferior_thread ();
7a292a7a 336
c906108c
SS
337 /* This is an exec event that we actually wish to pay attention to.
338 Refresh our symbol table to the newly exec'd program, remove any
339 momentary bp's, etc.
340
341 If there are breakpoints, they aren't really inserted now,
342 since the exec() transformed our inferior into a fresh set
343 of instructions.
344
345 We want to preserve symbolic breakpoints on the list, since
346 we have hopes that they can be reset after the new a.out's
347 symbol table is read.
348
349 However, any "raw" breakpoints must be removed from the list
350 (e.g., the solib bp's), since their address is probably invalid
351 now.
352
353 And, we DON'T want to call delete_breakpoints() here, since
354 that may write the bp's "shadow contents" (the instruction
355 value that was overwritten witha TRAP instruction). Since
356 we now have a new a.out, those shadow contents aren't valid. */
357 update_breakpoints_after_exec ();
358
359 /* If there was one, it's gone now. We cannot truly step-to-next
360 statement through an exec(). */
4e1c45ea
PA
361 th->step_resume_breakpoint = NULL;
362 th->step_range_start = 0;
363 th->step_range_end = 0;
c906108c 364
c906108c 365 /* What is this a.out's name? */
a3f17187 366 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
c906108c
SS
367
368 /* We've followed the inferior through an exec. Therefore, the
369 inferior has essentially been killed & reborn. */
7a292a7a 370
c906108c 371 gdb_flush (gdb_stdout);
6ca15a4b
PA
372
373 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
374
375 if (gdb_sysroot && *gdb_sysroot)
376 {
377 char *name = alloca (strlen (gdb_sysroot)
378 + strlen (execd_pathname)
379 + 1);
380 strcpy (name, gdb_sysroot);
381 strcat (name, execd_pathname);
382 execd_pathname = name;
383 }
c906108c
SS
384
385 /* That a.out is now the one to use. */
386 exec_file_attach (execd_pathname, 0);
387
cce9b6bf
PA
388 /* Reset the shared library package. This ensures that we get a
389 shlib event when the child reaches "_start", at which point the
390 dld will have had a chance to initialize the child. */
391 /* Also, loading a symbol file below may trigger symbol lookups, and
392 we don't want those to be satisfied by the libraries of the
393 previous incarnation of this process. */
394 no_shared_libraries (NULL, 0);
395
396 /* Load the main file's symbols. */
1adeb98a 397 symbol_file_add_main (execd_pathname, 0);
c906108c 398
7a292a7a 399#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 400 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2
MK
401#else
402 solib_create_inferior_hook ();
7a292a7a 403#endif
c906108c
SS
404
405 /* Reinsert all breakpoints. (Those which were symbolic have
406 been reset to the proper address in the new a.out, thanks
407 to symbol_file_command...) */
408 insert_breakpoints ();
409
410 /* The next resume of this inferior should bring it to the shlib
411 startup breakpoints. (If the user had also set bp's on
412 "main" from the old (parent) process, then they'll auto-
413 matically get reset there in the new process.) */
c906108c
SS
414}
415
416/* Non-zero if we just simulating a single-step. This is needed
417 because we cannot remove the breakpoints in the inferior process
418 until after the `wait' in `wait_for_inferior'. */
419static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
420
421/* The thread we inserted single-step breakpoints for. */
422static ptid_t singlestep_ptid;
423
fd48f117
DJ
424/* PC when we started this single-step. */
425static CORE_ADDR singlestep_pc;
426
9f976b41
DJ
427/* If another thread hit the singlestep breakpoint, we save the original
428 thread here so that we can resume single-stepping it later. */
429static ptid_t saved_singlestep_ptid;
430static int stepping_past_singlestep_breakpoint;
6a6b96b9 431
ca67fcb8
VP
432/* If not equal to null_ptid, this means that after stepping over breakpoint
433 is finished, we need to switch to deferred_step_ptid, and step it.
434
435 The use case is when one thread has hit a breakpoint, and then the user
436 has switched to another thread and issued 'step'. We need to step over
437 breakpoint in the thread which hit the breakpoint, but then continue
438 stepping the thread user has selected. */
439static ptid_t deferred_step_ptid;
c906108c 440\f
237fc4c9
PA
441/* Displaced stepping. */
442
443/* In non-stop debugging mode, we must take special care to manage
444 breakpoints properly; in particular, the traditional strategy for
445 stepping a thread past a breakpoint it has hit is unsuitable.
446 'Displaced stepping' is a tactic for stepping one thread past a
447 breakpoint it has hit while ensuring that other threads running
448 concurrently will hit the breakpoint as they should.
449
450 The traditional way to step a thread T off a breakpoint in a
451 multi-threaded program in all-stop mode is as follows:
452
453 a0) Initially, all threads are stopped, and breakpoints are not
454 inserted.
455 a1) We single-step T, leaving breakpoints uninserted.
456 a2) We insert breakpoints, and resume all threads.
457
458 In non-stop debugging, however, this strategy is unsuitable: we
459 don't want to have to stop all threads in the system in order to
460 continue or step T past a breakpoint. Instead, we use displaced
461 stepping:
462
463 n0) Initially, T is stopped, other threads are running, and
464 breakpoints are inserted.
465 n1) We copy the instruction "under" the breakpoint to a separate
466 location, outside the main code stream, making any adjustments
467 to the instruction, register, and memory state as directed by
468 T's architecture.
469 n2) We single-step T over the instruction at its new location.
470 n3) We adjust the resulting register and memory state as directed
471 by T's architecture. This includes resetting T's PC to point
472 back into the main instruction stream.
473 n4) We resume T.
474
475 This approach depends on the following gdbarch methods:
476
477 - gdbarch_max_insn_length and gdbarch_displaced_step_location
478 indicate where to copy the instruction, and how much space must
479 be reserved there. We use these in step n1.
480
481 - gdbarch_displaced_step_copy_insn copies a instruction to a new
482 address, and makes any necessary adjustments to the instruction,
483 register contents, and memory. We use this in step n1.
484
485 - gdbarch_displaced_step_fixup adjusts registers and memory after
486 we have successfuly single-stepped the instruction, to yield the
487 same effect the instruction would have had if we had executed it
488 at its original address. We use this in step n3.
489
490 - gdbarch_displaced_step_free_closure provides cleanup.
491
492 The gdbarch_displaced_step_copy_insn and
493 gdbarch_displaced_step_fixup functions must be written so that
494 copying an instruction with gdbarch_displaced_step_copy_insn,
495 single-stepping across the copied instruction, and then applying
496 gdbarch_displaced_insn_fixup should have the same effects on the
497 thread's memory and registers as stepping the instruction in place
498 would have. Exactly which responsibilities fall to the copy and
499 which fall to the fixup is up to the author of those functions.
500
501 See the comments in gdbarch.sh for details.
502
503 Note that displaced stepping and software single-step cannot
504 currently be used in combination, although with some care I think
505 they could be made to. Software single-step works by placing
506 breakpoints on all possible subsequent instructions; if the
507 displaced instruction is a PC-relative jump, those breakpoints
508 could fall in very strange places --- on pages that aren't
509 executable, or at addresses that are not proper instruction
510 boundaries. (We do generally let other threads run while we wait
511 to hit the software single-step breakpoint, and they might
512 encounter such a corrupted instruction.) One way to work around
513 this would be to have gdbarch_displaced_step_copy_insn fully
514 simulate the effect of PC-relative instructions (and return NULL)
515 on architectures that use software single-stepping.
516
517 In non-stop mode, we can have independent and simultaneous step
518 requests, so more than one thread may need to simultaneously step
519 over a breakpoint. The current implementation assumes there is
520 only one scratch space per process. In this case, we have to
521 serialize access to the scratch space. If thread A wants to step
522 over a breakpoint, but we are currently waiting for some other
523 thread to complete a displaced step, we leave thread A stopped and
524 place it in the displaced_step_request_queue. Whenever a displaced
525 step finishes, we pick the next thread in the queue and start a new
526 displaced step operation on it. See displaced_step_prepare and
527 displaced_step_fixup for details. */
528
529/* If this is not null_ptid, this is the thread carrying out a
530 displaced single-step. This thread's state will require fixing up
531 once it has completed its step. */
532static ptid_t displaced_step_ptid;
533
534struct displaced_step_request
535{
536 ptid_t ptid;
537 struct displaced_step_request *next;
538};
539
540/* A queue of pending displaced stepping requests. */
541struct displaced_step_request *displaced_step_request_queue;
542
543/* The architecture the thread had when we stepped it. */
544static struct gdbarch *displaced_step_gdbarch;
545
546/* The closure provided gdbarch_displaced_step_copy_insn, to be used
547 for post-step cleanup. */
548static struct displaced_step_closure *displaced_step_closure;
549
550/* The address of the original instruction, and the copy we made. */
551static CORE_ADDR displaced_step_original, displaced_step_copy;
552
553/* Saved contents of copy area. */
554static gdb_byte *displaced_step_saved_copy;
555
556/* When this is non-zero, we are allowed to use displaced stepping, if
557 the architecture supports it. When this is zero, we use
558 traditional the hold-and-step approach. */
559int can_use_displaced_stepping = 1;
560static void
561show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
562 struct cmd_list_element *c,
563 const char *value)
564{
565 fprintf_filtered (file, _("\
566Debugger's willingness to use displaced stepping to step over "
567"breakpoints is %s.\n"), value);
568}
569
570/* Return non-zero if displaced stepping is enabled, and can be used
571 with GDBARCH. */
572static int
573use_displaced_stepping (struct gdbarch *gdbarch)
574{
575 return (can_use_displaced_stepping
576 && gdbarch_displaced_step_copy_insn_p (gdbarch));
577}
578
579/* Clean out any stray displaced stepping state. */
580static void
581displaced_step_clear (void)
582{
583 /* Indicate that there is no cleanup pending. */
584 displaced_step_ptid = null_ptid;
585
586 if (displaced_step_closure)
587 {
588 gdbarch_displaced_step_free_closure (displaced_step_gdbarch,
589 displaced_step_closure);
590 displaced_step_closure = NULL;
591 }
592}
593
594static void
595cleanup_displaced_step_closure (void *ptr)
596{
597 struct displaced_step_closure *closure = ptr;
598
599 gdbarch_displaced_step_free_closure (current_gdbarch, closure);
600}
601
602/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
603void
604displaced_step_dump_bytes (struct ui_file *file,
605 const gdb_byte *buf,
606 size_t len)
607{
608 int i;
609
610 for (i = 0; i < len; i++)
611 fprintf_unfiltered (file, "%02x ", buf[i]);
612 fputs_unfiltered ("\n", file);
613}
614
615/* Prepare to single-step, using displaced stepping.
616
617 Note that we cannot use displaced stepping when we have a signal to
618 deliver. If we have a signal to deliver and an instruction to step
619 over, then after the step, there will be no indication from the
620 target whether the thread entered a signal handler or ignored the
621 signal and stepped over the instruction successfully --- both cases
622 result in a simple SIGTRAP. In the first case we mustn't do a
623 fixup, and in the second case we must --- but we can't tell which.
624 Comments in the code for 'random signals' in handle_inferior_event
625 explain how we handle this case instead.
626
627 Returns 1 if preparing was successful -- this thread is going to be
628 stepped now; or 0 if displaced stepping this thread got queued. */
629static int
630displaced_step_prepare (ptid_t ptid)
631{
ad53cd71 632 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
633 struct regcache *regcache = get_thread_regcache (ptid);
634 struct gdbarch *gdbarch = get_regcache_arch (regcache);
635 CORE_ADDR original, copy;
636 ULONGEST len;
637 struct displaced_step_closure *closure;
638
639 /* We should never reach this function if the architecture does not
640 support displaced stepping. */
641 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
642
643 /* For the first cut, we're displaced stepping one thread at a
644 time. */
645
646 if (!ptid_equal (displaced_step_ptid, null_ptid))
647 {
648 /* Already waiting for a displaced step to finish. Defer this
649 request and place in queue. */
650 struct displaced_step_request *req, *new_req;
651
652 if (debug_displaced)
653 fprintf_unfiltered (gdb_stdlog,
654 "displaced: defering step of %s\n",
655 target_pid_to_str (ptid));
656
657 new_req = xmalloc (sizeof (*new_req));
658 new_req->ptid = ptid;
659 new_req->next = NULL;
660
661 if (displaced_step_request_queue)
662 {
663 for (req = displaced_step_request_queue;
664 req && req->next;
665 req = req->next)
666 ;
667 req->next = new_req;
668 }
669 else
670 displaced_step_request_queue = new_req;
671
672 return 0;
673 }
674 else
675 {
676 if (debug_displaced)
677 fprintf_unfiltered (gdb_stdlog,
678 "displaced: stepping %s now\n",
679 target_pid_to_str (ptid));
680 }
681
682 displaced_step_clear ();
683
ad53cd71
PA
684 old_cleanups = save_inferior_ptid ();
685 inferior_ptid = ptid;
686
515630c5 687 original = regcache_read_pc (regcache);
237fc4c9
PA
688
689 copy = gdbarch_displaced_step_location (gdbarch);
690 len = gdbarch_max_insn_length (gdbarch);
691
692 /* Save the original contents of the copy area. */
693 displaced_step_saved_copy = xmalloc (len);
ad53cd71
PA
694 ignore_cleanups = make_cleanup (free_current_contents,
695 &displaced_step_saved_copy);
237fc4c9
PA
696 read_memory (copy, displaced_step_saved_copy, len);
697 if (debug_displaced)
698 {
699 fprintf_unfiltered (gdb_stdlog, "displaced: saved 0x%s: ",
700 paddr_nz (copy));
701 displaced_step_dump_bytes (gdb_stdlog, displaced_step_saved_copy, len);
702 };
703
704 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 705 original, copy, regcache);
237fc4c9
PA
706
707 /* We don't support the fully-simulated case at present. */
708 gdb_assert (closure);
709
710 make_cleanup (cleanup_displaced_step_closure, closure);
711
712 /* Resume execution at the copy. */
515630c5 713 regcache_write_pc (regcache, copy);
237fc4c9 714
ad53cd71
PA
715 discard_cleanups (ignore_cleanups);
716
717 do_cleanups (old_cleanups);
237fc4c9
PA
718
719 if (debug_displaced)
720 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to 0x%s\n",
ad53cd71 721 paddr_nz (copy));
237fc4c9
PA
722
723 /* Save the information we need to fix things up if the step
724 succeeds. */
725 displaced_step_ptid = ptid;
726 displaced_step_gdbarch = gdbarch;
727 displaced_step_closure = closure;
728 displaced_step_original = original;
729 displaced_step_copy = copy;
730 return 1;
731}
732
733static void
734displaced_step_clear_cleanup (void *ignore)
735{
736 displaced_step_clear ();
737}
738
739static void
740write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr, const gdb_byte *myaddr, int len)
741{
742 struct cleanup *ptid_cleanup = save_inferior_ptid ();
743 inferior_ptid = ptid;
744 write_memory (memaddr, myaddr, len);
745 do_cleanups (ptid_cleanup);
746}
747
748static void
749displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
750{
751 struct cleanup *old_cleanups;
752
753 /* Was this event for the pid we displaced? */
754 if (ptid_equal (displaced_step_ptid, null_ptid)
755 || ! ptid_equal (displaced_step_ptid, event_ptid))
756 return;
757
758 old_cleanups = make_cleanup (displaced_step_clear_cleanup, 0);
759
760 /* Restore the contents of the copy area. */
761 {
762 ULONGEST len = gdbarch_max_insn_length (displaced_step_gdbarch);
763 write_memory_ptid (displaced_step_ptid, displaced_step_copy,
764 displaced_step_saved_copy, len);
765 if (debug_displaced)
766 fprintf_unfiltered (gdb_stdlog, "displaced: restored 0x%s\n",
767 paddr_nz (displaced_step_copy));
768 }
769
770 /* Did the instruction complete successfully? */
771 if (signal == TARGET_SIGNAL_TRAP)
772 {
773 /* Fix up the resulting state. */
774 gdbarch_displaced_step_fixup (displaced_step_gdbarch,
775 displaced_step_closure,
776 displaced_step_original,
777 displaced_step_copy,
778 get_thread_regcache (displaced_step_ptid));
779 }
780 else
781 {
782 /* Since the instruction didn't complete, all we can do is
783 relocate the PC. */
515630c5
UW
784 struct regcache *regcache = get_thread_regcache (event_ptid);
785 CORE_ADDR pc = regcache_read_pc (regcache);
237fc4c9 786 pc = displaced_step_original + (pc - displaced_step_copy);
515630c5 787 regcache_write_pc (regcache, pc);
237fc4c9
PA
788 }
789
790 do_cleanups (old_cleanups);
791
1c5cfe86
PA
792 displaced_step_ptid = null_ptid;
793
237fc4c9
PA
794 /* Are there any pending displaced stepping requests? If so, run
795 one now. */
1c5cfe86 796 while (displaced_step_request_queue)
237fc4c9
PA
797 {
798 struct displaced_step_request *head;
799 ptid_t ptid;
1c5cfe86 800 CORE_ADDR actual_pc;
237fc4c9
PA
801
802 head = displaced_step_request_queue;
803 ptid = head->ptid;
804 displaced_step_request_queue = head->next;
805 xfree (head);
806
ad53cd71
PA
807 context_switch (ptid);
808
1c5cfe86
PA
809 actual_pc = read_pc ();
810
811 if (breakpoint_here_p (actual_pc))
ad53cd71 812 {
1c5cfe86
PA
813 if (debug_displaced)
814 fprintf_unfiltered (gdb_stdlog,
815 "displaced: stepping queued %s now\n",
816 target_pid_to_str (ptid));
817
818 displaced_step_prepare (ptid);
819
820 if (debug_displaced)
821 {
822 gdb_byte buf[4];
823
824 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
825 paddr_nz (actual_pc));
826 read_memory (actual_pc, buf, sizeof (buf));
827 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
828 }
829
830 target_resume (ptid, 1, TARGET_SIGNAL_0);
831
832 /* Done, we're stepping a thread. */
833 break;
ad53cd71 834 }
1c5cfe86
PA
835 else
836 {
837 int step;
838 struct thread_info *tp = inferior_thread ();
839
840 /* The breakpoint we were sitting under has since been
841 removed. */
842 tp->trap_expected = 0;
843
844 /* Go back to what we were trying to do. */
845 step = currently_stepping (tp);
ad53cd71 846
1c5cfe86
PA
847 if (debug_displaced)
848 fprintf_unfiltered (gdb_stdlog, "breakpoint is gone %s: step(%d)\n",
849 target_pid_to_str (tp->ptid), step);
850
851 target_resume (ptid, step, TARGET_SIGNAL_0);
852 tp->stop_signal = TARGET_SIGNAL_0;
853
854 /* This request was discarded. See if there's any other
855 thread waiting for its turn. */
856 }
237fc4c9
PA
857 }
858}
859
5231c1fd
PA
860/* Update global variables holding ptids to hold NEW_PTID if they were
861 holding OLD_PTID. */
862static void
863infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
864{
865 struct displaced_step_request *it;
866
867 if (ptid_equal (inferior_ptid, old_ptid))
868 inferior_ptid = new_ptid;
869
870 if (ptid_equal (singlestep_ptid, old_ptid))
871 singlestep_ptid = new_ptid;
872
873 if (ptid_equal (displaced_step_ptid, old_ptid))
874 displaced_step_ptid = new_ptid;
875
876 if (ptid_equal (deferred_step_ptid, old_ptid))
877 deferred_step_ptid = new_ptid;
878
879 for (it = displaced_step_request_queue; it; it = it->next)
880 if (ptid_equal (it->ptid, old_ptid))
881 it->ptid = new_ptid;
882}
883
237fc4c9
PA
884\f
885/* Resuming. */
c906108c
SS
886
887/* Things to clean up if we QUIT out of resume (). */
c906108c 888static void
74b7792f 889resume_cleanups (void *ignore)
c906108c
SS
890{
891 normal_stop ();
892}
893
53904c9e
AC
894static const char schedlock_off[] = "off";
895static const char schedlock_on[] = "on";
896static const char schedlock_step[] = "step";
488f131b 897static const char *scheduler_enums[] = {
ef346e04
AC
898 schedlock_off,
899 schedlock_on,
900 schedlock_step,
901 NULL
902};
920d2a44
AC
903static const char *scheduler_mode = schedlock_off;
904static void
905show_scheduler_mode (struct ui_file *file, int from_tty,
906 struct cmd_list_element *c, const char *value)
907{
908 fprintf_filtered (file, _("\
909Mode for locking scheduler during execution is \"%s\".\n"),
910 value);
911}
c906108c
SS
912
913static void
96baa820 914set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 915{
eefe576e
AC
916 if (!target_can_lock_scheduler)
917 {
918 scheduler_mode = schedlock_off;
919 error (_("Target '%s' cannot support this command."), target_shortname);
920 }
c906108c
SS
921}
922
923
924/* Resume the inferior, but allow a QUIT. This is useful if the user
925 wants to interrupt some lengthy single-stepping operation
926 (for child processes, the SIGINT goes to the inferior, and so
927 we get a SIGINT random_signal, but for remote debugging and perhaps
928 other targets, that's not true).
929
930 STEP nonzero if we should step (zero to continue instead).
931 SIG is the signal to give the inferior (zero for none). */
932void
96baa820 933resume (int step, enum target_signal sig)
c906108c
SS
934{
935 int should_resume = 1;
74b7792f 936 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
937 struct regcache *regcache = get_current_regcache ();
938 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 939 struct thread_info *tp = inferior_thread ();
515630c5 940 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c
SS
941 QUIT;
942
527159b7 943 if (debug_infrun)
237fc4c9
PA
944 fprintf_unfiltered (gdb_stdlog,
945 "infrun: resume (step=%d, signal=%d), "
4e1c45ea
PA
946 "trap_expected=%d\n",
947 step, sig, tp->trap_expected);
c906108c 948
692590c1
MS
949 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
950 over an instruction that causes a page fault without triggering
951 a hardware watchpoint. The kernel properly notices that it shouldn't
952 stop, because the hardware watchpoint is not triggered, but it forgets
953 the step request and continues the program normally.
954 Work around the problem by removing hardware watchpoints if a step is
955 requested, GDB will check for a hardware watchpoint trigger after the
956 step anyway. */
c36b740a 957 if (CANNOT_STEP_HW_WATCHPOINTS && step)
692590c1 958 remove_hw_watchpoints ();
488f131b 959
692590c1 960
c2c6d25f
JM
961 /* Normally, by the time we reach `resume', the breakpoints are either
962 removed or inserted, as appropriate. The exception is if we're sitting
963 at a permanent breakpoint; we need to step over it, but permanent
964 breakpoints can't be removed. So we have to test for it here. */
237fc4c9 965 if (breakpoint_here_p (pc) == permanent_breakpoint_here)
6d350bb5 966 {
515630c5
UW
967 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
968 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5
UW
969 else
970 error (_("\
971The program is stopped at a permanent breakpoint, but GDB does not know\n\
972how to step past a permanent breakpoint on this architecture. Try using\n\
973a command like `return' or `jump' to continue execution."));
974 }
c2c6d25f 975
237fc4c9
PA
976 /* If enabled, step over breakpoints by executing a copy of the
977 instruction at a different address.
978
979 We can't use displaced stepping when we have a signal to deliver;
980 the comments for displaced_step_prepare explain why. The
981 comments in the handle_inferior event for dealing with 'random
982 signals' explain what we do instead. */
515630c5 983 if (use_displaced_stepping (gdbarch)
4e1c45ea 984 && tp->trap_expected
237fc4c9
PA
985 && sig == TARGET_SIGNAL_0)
986 {
987 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
988 {
989 /* Got placed in displaced stepping queue. Will be resumed
990 later when all the currently queued displaced stepping
7f7efbd9
VP
991 requests finish. The thread is not executing at this point,
992 and the call to set_executing will be made later. But we
993 need to call set_running here, since from frontend point of view,
994 the thread is running. */
995 set_running (inferior_ptid, 1);
d56b7306
VP
996 discard_cleanups (old_cleanups);
997 return;
998 }
237fc4c9
PA
999 }
1000
515630c5 1001 if (step && gdbarch_software_single_step_p (gdbarch))
c906108c
SS
1002 {
1003 /* Do it the hard way, w/temp breakpoints */
515630c5 1004 if (gdbarch_software_single_step (gdbarch, get_current_frame ()))
e6590a1b
UW
1005 {
1006 /* ...and don't ask hardware to do it. */
1007 step = 0;
1008 /* and do not pull these breakpoints until after a `wait' in
1009 `wait_for_inferior' */
1010 singlestep_breakpoints_inserted_p = 1;
1011 singlestep_ptid = inferior_ptid;
237fc4c9 1012 singlestep_pc = pc;
e6590a1b 1013 }
c906108c
SS
1014 }
1015
c906108c 1016 /* If there were any forks/vforks/execs that were caught and are
6604731b 1017 now to be followed, then do so. */
c906108c
SS
1018 switch (pending_follow.kind)
1019 {
6604731b
DJ
1020 case TARGET_WAITKIND_FORKED:
1021 case TARGET_WAITKIND_VFORKED:
c906108c 1022 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
1023 if (follow_fork ())
1024 should_resume = 0;
c906108c
SS
1025 break;
1026
6604731b 1027 case TARGET_WAITKIND_EXECD:
c906108c 1028 /* follow_exec is called as soon as the exec event is seen. */
6604731b 1029 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
1030 break;
1031
1032 default:
1033 break;
1034 }
c906108c
SS
1035
1036 /* Install inferior's terminal modes. */
1037 target_terminal_inferior ();
1038
1039 if (should_resume)
1040 {
39f77062 1041 ptid_t resume_ptid;
dfcd3bfb 1042
488f131b 1043 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e 1044
cd76b0b7
VP
1045 /* If STEP is set, it's a request to use hardware stepping
1046 facilities. But in that case, we should never
1047 use singlestep breakpoint. */
1048 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1049
1050 if (singlestep_breakpoints_inserted_p
1051 && stepping_past_singlestep_breakpoint)
c906108c 1052 {
cd76b0b7
VP
1053 /* The situation here is as follows. In thread T1 we wanted to
1054 single-step. Lacking hardware single-stepping we've
1055 set breakpoint at the PC of the next instruction -- call it
1056 P. After resuming, we've hit that breakpoint in thread T2.
1057 Now we've removed original breakpoint, inserted breakpoint
1058 at P+1, and try to step to advance T2 past breakpoint.
1059 We need to step only T2, as if T1 is allowed to freely run,
1060 it can run past P, and if other threads are allowed to run,
1061 they can hit breakpoint at P+1, and nested hits of single-step
1062 breakpoints is not something we'd want -- that's complicated
1063 to support, and has no value. */
1064 resume_ptid = inferior_ptid;
1065 }
c906108c 1066
e842223a 1067 if ((step || singlestep_breakpoints_inserted_p)
4e1c45ea 1068 && tp->trap_expected)
cd76b0b7 1069 {
74960c60
VP
1070 /* We're allowing a thread to run past a breakpoint it has
1071 hit, by single-stepping the thread with the breakpoint
1072 removed. In which case, we need to single-step only this
1073 thread, and keep others stopped, as they can miss this
1074 breakpoint if allowed to run.
1075
1076 The current code actually removes all breakpoints when
1077 doing this, not just the one being stepped over, so if we
1078 let other threads run, we can actually miss any
1079 breakpoint, not just the one at PC. */
ef5cf84e 1080 resume_ptid = inferior_ptid;
c906108c 1081 }
ef5cf84e 1082
94cc34af
PA
1083 if (non_stop)
1084 {
1085 /* With non-stop mode on, threads are always handled
1086 individually. */
1087 resume_ptid = inferior_ptid;
1088 }
1089 else if ((scheduler_mode == schedlock_on)
1090 || (scheduler_mode == schedlock_step
1091 && (step || singlestep_breakpoints_inserted_p)))
c906108c 1092 {
ef5cf84e 1093 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 1094 resume_ptid = inferior_ptid;
c906108c 1095 }
ef5cf84e 1096
515630c5 1097 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1098 {
1099 /* Most targets can step a breakpoint instruction, thus
1100 executing it normally. But if this one cannot, just
1101 continue and we will hit it anyway. */
237fc4c9 1102 if (step && breakpoint_inserted_here_p (pc))
c4ed33b9
AC
1103 step = 0;
1104 }
237fc4c9
PA
1105
1106 if (debug_displaced
515630c5 1107 && use_displaced_stepping (gdbarch)
4e1c45ea 1108 && tp->trap_expected)
237fc4c9 1109 {
515630c5
UW
1110 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1111 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1112 gdb_byte buf[4];
1113
1114 fprintf_unfiltered (gdb_stdlog, "displaced: run 0x%s: ",
1115 paddr_nz (actual_pc));
1116 read_memory (actual_pc, buf, sizeof (buf));
1117 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1118 }
1119
39f77062 1120 target_resume (resume_ptid, step, sig);
2020b7ab
PA
1121
1122 /* Avoid confusing the next resume, if the next stop/resume
1123 happens to apply to another thread. */
1124 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1125 }
1126
1127 discard_cleanups (old_cleanups);
1128}
1129\f
237fc4c9 1130/* Proceeding. */
c906108c
SS
1131
1132/* Clear out all variables saying what to do when inferior is continued.
1133 First do this, then set the ones you want, then call `proceed'. */
1134
1135void
96baa820 1136clear_proceed_status (void)
c906108c 1137{
4e1c45ea
PA
1138 if (!ptid_equal (inferior_ptid, null_ptid))
1139 {
d6b48e9c
PA
1140 struct thread_info *tp;
1141 struct inferior *inferior;
1142
1143 tp = inferior_thread ();
4e1c45ea
PA
1144
1145 tp->trap_expected = 0;
1146 tp->step_range_start = 0;
1147 tp->step_range_end = 0;
1148 tp->step_frame_id = null_frame_id;
078130d0 1149 tp->step_over_calls = STEP_OVER_UNDEBUGGABLE;
32400beb 1150
414c69f7
PA
1151 tp->stop_step = 0;
1152
32400beb
PA
1153 tp->proceed_to_finish = 0;
1154
347bddb7
PA
1155 /* Discard any remaining commands or status from previous
1156 stop. */
1157 bpstat_clear (&tp->stop_bpstat);
d6b48e9c
PA
1158
1159 inferior = current_inferior ();
1160 inferior->stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1161 }
1162
c906108c 1163 stop_after_trap = 0;
c906108c
SS
1164 breakpoint_proceeded = 1; /* We're about to proceed... */
1165
d5c31457
UW
1166 if (stop_registers)
1167 {
1168 regcache_xfree (stop_registers);
1169 stop_registers = NULL;
1170 }
c906108c
SS
1171}
1172
ea67f13b
DJ
1173/* This should be suitable for any targets that support threads. */
1174
1175static int
6a6b96b9 1176prepare_to_proceed (int step)
ea67f13b
DJ
1177{
1178 ptid_t wait_ptid;
1179 struct target_waitstatus wait_status;
1180
1181 /* Get the last target status returned by target_wait(). */
1182 get_last_target_status (&wait_ptid, &wait_status);
1183
6a6b96b9 1184 /* Make sure we were stopped at a breakpoint. */
ea67f13b 1185 if (wait_status.kind != TARGET_WAITKIND_STOPPED
6a6b96b9 1186 || wait_status.value.sig != TARGET_SIGNAL_TRAP)
ea67f13b
DJ
1187 {
1188 return 0;
1189 }
1190
6a6b96b9 1191 /* Switched over from WAIT_PID. */
ea67f13b 1192 if (!ptid_equal (wait_ptid, minus_one_ptid)
515630c5 1193 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 1194 {
515630c5
UW
1195 struct regcache *regcache = get_thread_regcache (wait_ptid);
1196
1197 if (breakpoint_here_p (regcache_read_pc (regcache)))
ea67f13b 1198 {
515630c5
UW
1199 /* If stepping, remember current thread to switch back to. */
1200 if (step)
1201 deferred_step_ptid = inferior_ptid;
ea67f13b 1202
515630c5
UW
1203 /* Switch back to WAIT_PID thread. */
1204 switch_to_thread (wait_ptid);
6a6b96b9 1205
515630c5
UW
1206 /* We return 1 to indicate that there is a breakpoint here,
1207 so we need to step over it before continuing to avoid
1208 hitting it straight away. */
1209 return 1;
1210 }
ea67f13b
DJ
1211 }
1212
1213 return 0;
ea67f13b 1214}
e4846b08 1215
c906108c
SS
1216/* Basic routine for continuing the program in various fashions.
1217
1218 ADDR is the address to resume at, or -1 for resume where stopped.
1219 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 1220 or -1 for act according to how it stopped.
c906108c 1221 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
1222 -1 means return after that and print nothing.
1223 You should probably set various step_... variables
1224 before calling here, if you are stepping.
c906108c
SS
1225
1226 You should call clear_proceed_status before calling proceed. */
1227
1228void
96baa820 1229proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 1230{
515630c5
UW
1231 struct regcache *regcache = get_current_regcache ();
1232 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1233 struct thread_info *tp;
515630c5 1234 CORE_ADDR pc = regcache_read_pc (regcache);
c906108c 1235 int oneproc = 0;
2020b7ab 1236 enum target_signal stop_signal;
c906108c
SS
1237
1238 if (step > 0)
515630c5 1239 step_start_function = find_pc_function (pc);
c906108c
SS
1240 if (step < 0)
1241 stop_after_trap = 1;
1242
2acceee2 1243 if (addr == (CORE_ADDR) -1)
c906108c 1244 {
b2175913
MS
1245 if (pc == stop_pc && breakpoint_here_p (pc)
1246 && execution_direction != EXEC_REVERSE)
3352ef37
AC
1247 /* There is a breakpoint at the address we will resume at,
1248 step one instruction before inserting breakpoints so that
1249 we do not stop right away (and report a second hit at this
b2175913
MS
1250 breakpoint).
1251
1252 Note, we don't do this in reverse, because we won't
1253 actually be executing the breakpoint insn anyway.
1254 We'll be (un-)executing the previous instruction. */
1255
c906108c 1256 oneproc = 1;
515630c5
UW
1257 else if (gdbarch_single_step_through_delay_p (gdbarch)
1258 && gdbarch_single_step_through_delay (gdbarch,
1259 get_current_frame ()))
3352ef37
AC
1260 /* We stepped onto an instruction that needs to be stepped
1261 again before re-inserting the breakpoint, do so. */
c906108c
SS
1262 oneproc = 1;
1263 }
1264 else
1265 {
515630c5 1266 regcache_write_pc (regcache, addr);
c906108c
SS
1267 }
1268
527159b7 1269 if (debug_infrun)
8a9de0e4
AC
1270 fprintf_unfiltered (gdb_stdlog,
1271 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
1272 paddr_nz (addr), siggnal, step);
527159b7 1273
94cc34af
PA
1274 if (non_stop)
1275 /* In non-stop, each thread is handled individually. The context
1276 must already be set to the right thread here. */
1277 ;
1278 else
1279 {
1280 /* In a multi-threaded task we may select another thread and
1281 then continue or step.
c906108c 1282
94cc34af
PA
1283 But if the old thread was stopped at a breakpoint, it will
1284 immediately cause another breakpoint stop without any
1285 execution (i.e. it will report a breakpoint hit incorrectly).
1286 So we must step over it first.
c906108c 1287
94cc34af
PA
1288 prepare_to_proceed checks the current thread against the
1289 thread that reported the most recent event. If a step-over
1290 is required it returns TRUE and sets the current thread to
1291 the old thread. */
1292 if (prepare_to_proceed (step))
1293 oneproc = 1;
1294 }
c906108c 1295
4e1c45ea
PA
1296 /* prepare_to_proceed may change the current thread. */
1297 tp = inferior_thread ();
1298
c906108c 1299 if (oneproc)
74960c60 1300 {
4e1c45ea 1301 tp->trap_expected = 1;
237fc4c9
PA
1302 /* If displaced stepping is enabled, we can step over the
1303 breakpoint without hitting it, so leave all breakpoints
1304 inserted. Otherwise we need to disable all breakpoints, step
1305 one instruction, and then re-add them when that step is
1306 finished. */
515630c5 1307 if (!use_displaced_stepping (gdbarch))
237fc4c9 1308 remove_breakpoints ();
74960c60 1309 }
237fc4c9
PA
1310
1311 /* We can insert breakpoints if we're not trying to step over one,
1312 or if we are stepping over one but we're using displaced stepping
1313 to do so. */
4e1c45ea 1314 if (! tp->trap_expected || use_displaced_stepping (gdbarch))
c36b740a 1315 insert_breakpoints ();
c906108c 1316
2020b7ab
PA
1317 if (!non_stop)
1318 {
1319 /* Pass the last stop signal to the thread we're resuming,
1320 irrespective of whether the current thread is the thread that
1321 got the last event or not. This was historically GDB's
1322 behaviour before keeping a stop_signal per thread. */
1323
1324 struct thread_info *last_thread;
1325 ptid_t last_ptid;
1326 struct target_waitstatus last_status;
1327
1328 get_last_target_status (&last_ptid, &last_status);
1329 if (!ptid_equal (inferior_ptid, last_ptid)
1330 && !ptid_equal (last_ptid, null_ptid)
1331 && !ptid_equal (last_ptid, minus_one_ptid))
1332 {
1333 last_thread = find_thread_pid (last_ptid);
1334 if (last_thread)
1335 {
1336 tp->stop_signal = last_thread->stop_signal;
1337 last_thread->stop_signal = TARGET_SIGNAL_0;
1338 }
1339 }
1340 }
1341
c906108c 1342 if (siggnal != TARGET_SIGNAL_DEFAULT)
2020b7ab 1343 tp->stop_signal = siggnal;
c906108c
SS
1344 /* If this signal should not be seen by program,
1345 give it zero. Used for debugging signals. */
2020b7ab
PA
1346 else if (!signal_program[tp->stop_signal])
1347 tp->stop_signal = TARGET_SIGNAL_0;
c906108c
SS
1348
1349 annotate_starting ();
1350
1351 /* Make sure that output from GDB appears before output from the
1352 inferior. */
1353 gdb_flush (gdb_stdout);
1354
e4846b08
JJ
1355 /* Refresh prev_pc value just prior to resuming. This used to be
1356 done in stop_stepping, however, setting prev_pc there did not handle
1357 scenarios such as inferior function calls or returning from
1358 a function via the return command. In those cases, the prev_pc
1359 value was not set properly for subsequent commands. The prev_pc value
1360 is used to initialize the starting line number in the ecs. With an
1361 invalid value, the gdb next command ends up stopping at the position
1362 represented by the next line table entry past our start position.
1363 On platforms that generate one line table entry per line, this
1364 is not a problem. However, on the ia64, the compiler generates
1365 extraneous line table entries that do not increase the line number.
1366 When we issue the gdb next command on the ia64 after an inferior call
1367 or a return command, we often end up a few instructions forward, still
1368 within the original line we started.
1369
1370 An attempt was made to have init_execution_control_state () refresh
1371 the prev_pc value before calculating the line number. This approach
1372 did not work because on platforms that use ptrace, the pc register
1373 cannot be read unless the inferior is stopped. At that point, we
515630c5 1374 are not guaranteed the inferior is stopped and so the regcache_read_pc ()
e4846b08 1375 call can fail. Setting the prev_pc value here ensures the value is
8fb3e588 1376 updated correctly when the inferior is stopped. */
4e1c45ea 1377 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 1378
59f0d5d9 1379 /* Fill in with reasonable starting values. */
4e1c45ea 1380 init_thread_stepping_state (tp);
59f0d5d9 1381
59f0d5d9
PA
1382 /* Reset to normal state. */
1383 init_infwait_state ();
1384
c906108c 1385 /* Resume inferior. */
2020b7ab 1386 resume (oneproc || step || bpstat_should_step (), tp->stop_signal);
c906108c
SS
1387
1388 /* Wait for it to stop (if not standalone)
1389 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1390 /* Do this only if we are not using the event loop, or if the target
1391 does not support asynchronous execution. */
362646f5 1392 if (!target_can_async_p ())
43ff13b4 1393 {
ae123ec6 1394 wait_for_inferior (0);
43ff13b4
JM
1395 normal_stop ();
1396 }
c906108c 1397}
c906108c
SS
1398\f
1399
1400/* Start remote-debugging of a machine over a serial link. */
96baa820 1401
c906108c 1402void
8621d6a9 1403start_remote (int from_tty)
c906108c 1404{
d6b48e9c 1405 struct inferior *inferior;
c906108c 1406 init_wait_for_inferior ();
d6b48e9c
PA
1407
1408 inferior = current_inferior ();
1409 inferior->stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 1410
6426a772
JM
1411 /* Always go on waiting for the target, regardless of the mode. */
1412 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1413 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1414 nothing is returned (instead of just blocking). Because of this,
1415 targets expecting an immediate response need to, internally, set
1416 things up so that the target_wait() is forced to eventually
1417 timeout. */
1418 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1419 differentiate to its caller what the state of the target is after
1420 the initial open has been performed. Here we're assuming that
1421 the target has stopped. It should be possible to eventually have
1422 target_open() return to the caller an indication that the target
1423 is currently running and GDB state should be set to the same as
1424 for an async run. */
ae123ec6 1425 wait_for_inferior (0);
8621d6a9
DJ
1426
1427 /* Now that the inferior has stopped, do any bookkeeping like
1428 loading shared libraries. We want to do this before normal_stop,
1429 so that the displayed frame is up to date. */
1430 post_create_inferior (&current_target, from_tty);
1431
6426a772 1432 normal_stop ();
c906108c
SS
1433}
1434
1435/* Initialize static vars when a new inferior begins. */
1436
1437void
96baa820 1438init_wait_for_inferior (void)
c906108c
SS
1439{
1440 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 1441
c906108c
SS
1442 breakpoint_init_inferior (inf_starting);
1443
c906108c
SS
1444 /* The first resume is not following a fork/vfork/exec. */
1445 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c 1446
c906108c 1447 clear_proceed_status ();
9f976b41
DJ
1448
1449 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 1450 deferred_step_ptid = null_ptid;
ca005067
DJ
1451
1452 target_last_wait_ptid = minus_one_ptid;
237fc4c9 1453
0d1e5fa7
PA
1454 previous_inferior_ptid = null_ptid;
1455 init_infwait_state ();
1456
237fc4c9 1457 displaced_step_clear ();
c906108c 1458}
237fc4c9 1459
c906108c 1460\f
b83266a0
SS
1461/* This enum encodes possible reasons for doing a target_wait, so that
1462 wfi can call target_wait in one place. (Ultimately the call will be
1463 moved out of the infinite loop entirely.) */
1464
c5aa993b
JM
1465enum infwait_states
1466{
cd0fc7c3
SS
1467 infwait_normal_state,
1468 infwait_thread_hop_state,
d983da9c 1469 infwait_step_watch_state,
cd0fc7c3 1470 infwait_nonstep_watch_state
b83266a0
SS
1471};
1472
11cf8741
JM
1473/* Why did the inferior stop? Used to print the appropriate messages
1474 to the interface from within handle_inferior_event(). */
1475enum inferior_stop_reason
1476{
11cf8741
JM
1477 /* Step, next, nexti, stepi finished. */
1478 END_STEPPING_RANGE,
11cf8741
JM
1479 /* Inferior terminated by signal. */
1480 SIGNAL_EXITED,
1481 /* Inferior exited. */
1482 EXITED,
1483 /* Inferior received signal, and user asked to be notified. */
b2175913
MS
1484 SIGNAL_RECEIVED,
1485 /* Reverse execution -- target ran out of history info. */
1486 NO_HISTORY
11cf8741
JM
1487};
1488
0d1e5fa7
PA
1489/* The PTID we'll do a target_wait on.*/
1490ptid_t waiton_ptid;
1491
1492/* Current inferior wait state. */
1493enum infwait_states infwait_state;
cd0fc7c3 1494
0d1e5fa7
PA
1495/* Data to be passed around while handling an event. This data is
1496 discarded between events. */
c5aa993b 1497struct execution_control_state
488f131b 1498{
0d1e5fa7 1499 ptid_t ptid;
4e1c45ea
PA
1500 /* The thread that got the event, if this was a thread event; NULL
1501 otherwise. */
1502 struct thread_info *event_thread;
1503
488f131b 1504 struct target_waitstatus ws;
488f131b
JB
1505 int random_signal;
1506 CORE_ADDR stop_func_start;
1507 CORE_ADDR stop_func_end;
1508 char *stop_func_name;
488f131b 1509 int new_thread_event;
488f131b
JB
1510 int wait_some_more;
1511};
1512
1513void init_execution_control_state (struct execution_control_state *ecs);
1514
1515void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 1516
b2175913
MS
1517static void handle_step_into_function (struct execution_control_state *ecs);
1518static void handle_step_into_function_backward (struct execution_control_state *ecs);
44cbf7b5 1519static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
14e60db5 1520static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
44cbf7b5
AC
1521static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
1522 struct frame_id sr_id);
611c83ae
PA
1523static void insert_longjmp_resume_breakpoint (CORE_ADDR);
1524
104c1213
JM
1525static void stop_stepping (struct execution_control_state *ecs);
1526static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1527static void keep_going (struct execution_control_state *ecs);
488f131b
JB
1528static void print_stop_reason (enum inferior_stop_reason stop_reason,
1529 int stop_info);
104c1213 1530
4e1c45ea
PA
1531/* Callback for iterate_over_threads. */
1532
1533static int
1534delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
1535{
1536 if (is_exited (info->ptid))
1537 return 0;
1538
1539 delete_step_resume_breakpoint (info);
1540 return 0;
1541}
1542
1543/* In all-stop, delete the step resume breakpoint of any thread that
1544 had one. In non-stop, delete the step resume breakpoint of the
1545 thread that just stopped. */
1546
1547static void
1548delete_step_thread_step_resume_breakpoint (void)
1549{
1550 if (!target_has_execution
1551 || ptid_equal (inferior_ptid, null_ptid))
1552 /* If the inferior has exited, we have already deleted the step
1553 resume breakpoints out of GDB's lists. */
1554 return;
1555
1556 if (non_stop)
1557 {
1558 /* If in non-stop mode, only delete the step-resume or
1559 longjmp-resume breakpoint of the thread that just stopped
1560 stepping. */
1561 struct thread_info *tp = inferior_thread ();
1562 delete_step_resume_breakpoint (tp);
1563 }
1564 else
1565 /* In all-stop mode, delete all step-resume and longjmp-resume
1566 breakpoints of any thread that had them. */
1567 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
1568}
1569
1570/* A cleanup wrapper. */
1571
1572static void
1573delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
1574{
1575 delete_step_thread_step_resume_breakpoint ();
1576}
1577
cd0fc7c3 1578/* Wait for control to return from inferior to debugger.
ae123ec6
JB
1579
1580 If TREAT_EXEC_AS_SIGTRAP is non-zero, then handle EXEC signals
1581 as if they were SIGTRAP signals. This can be useful during
1582 the startup sequence on some targets such as HP/UX, where
1583 we receive an EXEC event instead of the expected SIGTRAP.
1584
cd0fc7c3
SS
1585 If inferior gets a signal, we may decide to start it up again
1586 instead of returning. That is why there is a loop in this function.
1587 When this function actually returns it means the inferior
1588 should be left stopped and GDB should read more commands. */
1589
1590void
ae123ec6 1591wait_for_inferior (int treat_exec_as_sigtrap)
cd0fc7c3
SS
1592{
1593 struct cleanup *old_cleanups;
0d1e5fa7 1594 struct execution_control_state ecss;
cd0fc7c3 1595 struct execution_control_state *ecs;
c906108c 1596
527159b7 1597 if (debug_infrun)
ae123ec6
JB
1598 fprintf_unfiltered
1599 (gdb_stdlog, "infrun: wait_for_inferior (treat_exec_as_sigtrap=%d)\n",
1600 treat_exec_as_sigtrap);
527159b7 1601
4e1c45ea
PA
1602 old_cleanups =
1603 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 1604
cd0fc7c3 1605 ecs = &ecss;
0d1e5fa7
PA
1606 memset (ecs, 0, sizeof (*ecs));
1607
cd0fc7c3
SS
1608 overlay_cache_invalid = 1;
1609
e0bb1c1c
PA
1610 /* We'll update this if & when we switch to a new thread. */
1611 previous_inferior_ptid = inferior_ptid;
1612
cd0fc7c3
SS
1613 /* We have to invalidate the registers BEFORE calling target_wait
1614 because they can be loaded from the target while in target_wait.
1615 This makes remote debugging a bit more efficient for those
1616 targets that provide critical registers as part of their normal
1617 status mechanism. */
1618
1619 registers_changed ();
b83266a0 1620
c906108c
SS
1621 while (1)
1622 {
9a4105ab 1623 if (deprecated_target_wait_hook)
0d1e5fa7 1624 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
cd0fc7c3 1625 else
0d1e5fa7 1626 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
c906108c 1627
ae123ec6
JB
1628 if (treat_exec_as_sigtrap && ecs->ws.kind == TARGET_WAITKIND_EXECD)
1629 {
1630 xfree (ecs->ws.value.execd_pathname);
1631 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
1632 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
1633 }
1634
cd0fc7c3
SS
1635 /* Now figure out what to do with the result of the result. */
1636 handle_inferior_event (ecs);
c906108c 1637
cd0fc7c3
SS
1638 if (!ecs->wait_some_more)
1639 break;
1640 }
4e1c45ea 1641
cd0fc7c3
SS
1642 do_cleanups (old_cleanups);
1643}
c906108c 1644
43ff13b4
JM
1645/* Asynchronous version of wait_for_inferior. It is called by the
1646 event loop whenever a change of state is detected on the file
1647 descriptor corresponding to the target. It can be called more than
1648 once to complete a single execution command. In such cases we need
a474d7c2
PA
1649 to keep the state in a global variable ECSS. If it is the last time
1650 that this function is called for a single execution command, then
1651 report to the user that the inferior has stopped, and do the
1652 necessary cleanups. */
43ff13b4
JM
1653
1654void
fba45db2 1655fetch_inferior_event (void *client_data)
43ff13b4 1656{
0d1e5fa7 1657 struct execution_control_state ecss;
a474d7c2 1658 struct execution_control_state *ecs = &ecss;
4f8d22e3
PA
1659 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
1660 int was_sync = sync_execution;
43ff13b4 1661
0d1e5fa7
PA
1662 memset (ecs, 0, sizeof (*ecs));
1663
59f0d5d9 1664 overlay_cache_invalid = 1;
43ff13b4 1665
e0bb1c1c
PA
1666 /* We can only rely on wait_for_more being correct before handling
1667 the event in all-stop, but previous_inferior_ptid isn't used in
1668 non-stop. */
1669 if (!ecs->wait_some_more)
1670 /* We'll update this if & when we switch to a new thread. */
1671 previous_inferior_ptid = inferior_ptid;
1672
4f8d22e3
PA
1673 if (non_stop)
1674 /* In non-stop mode, the user/frontend should not notice a thread
1675 switch due to internal events. Make sure we reverse to the
1676 user selected thread and frame after handling the event and
1677 running any breakpoint commands. */
1678 make_cleanup_restore_current_thread ();
1679
59f0d5d9
PA
1680 /* We have to invalidate the registers BEFORE calling target_wait
1681 because they can be loaded from the target while in target_wait.
1682 This makes remote debugging a bit more efficient for those
1683 targets that provide critical registers as part of their normal
1684 status mechanism. */
43ff13b4 1685
59f0d5d9 1686 registers_changed ();
43ff13b4 1687
9a4105ab 1688 if (deprecated_target_wait_hook)
a474d7c2 1689 ecs->ptid =
0d1e5fa7 1690 deprecated_target_wait_hook (waiton_ptid, &ecs->ws);
43ff13b4 1691 else
0d1e5fa7 1692 ecs->ptid = target_wait (waiton_ptid, &ecs->ws);
43ff13b4 1693
94cc34af
PA
1694 if (non_stop
1695 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
1696 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1697 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
1698 /* In non-stop mode, each thread is handled individually. Switch
1699 early, so the global state is set correctly for this
1700 thread. */
1701 context_switch (ecs->ptid);
1702
43ff13b4 1703 /* Now figure out what to do with the result of the result. */
a474d7c2 1704 handle_inferior_event (ecs);
43ff13b4 1705
a474d7c2 1706 if (!ecs->wait_some_more)
43ff13b4 1707 {
d6b48e9c
PA
1708 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1709
4e1c45ea 1710 delete_step_thread_step_resume_breakpoint ();
f107f563 1711
d6b48e9c
PA
1712 /* We may not find an inferior if this was a process exit. */
1713 if (inf == NULL || inf->stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
1714 normal_stop ();
1715
af679fd0
PA
1716 if (target_has_execution
1717 && ecs->ws.kind != TARGET_WAITKIND_EXITED
1718 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1719 && ecs->event_thread->step_multi
414c69f7 1720 && ecs->event_thread->stop_step)
c2d11a7d
JM
1721 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1722 else
1723 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4 1724 }
4f8d22e3
PA
1725
1726 /* Revert thread and frame. */
1727 do_cleanups (old_chain);
1728
1729 /* If the inferior was in sync execution mode, and now isn't,
1730 restore the prompt. */
1731 if (was_sync && !sync_execution)
1732 display_gdb_prompt (0);
43ff13b4
JM
1733}
1734
cd0fc7c3
SS
1735/* Prepare an execution control state for looping through a
1736 wait_for_inferior-type loop. */
1737
1738void
96baa820 1739init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3
SS
1740{
1741 ecs->random_signal = 0;
0d1e5fa7
PA
1742}
1743
1744/* Clear context switchable stepping state. */
1745
1746void
4e1c45ea 1747init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 1748{
2afb61aa
PA
1749 struct symtab_and_line sal;
1750
0d1e5fa7
PA
1751 tss->stepping_over_breakpoint = 0;
1752 tss->step_after_step_resume_breakpoint = 0;
1753 tss->stepping_through_solib_after_catch = 0;
1754 tss->stepping_through_solib_catchpoints = NULL;
2afb61aa 1755
4e1c45ea 1756 sal = find_pc_line (tss->prev_pc, 0);
2afb61aa
PA
1757 tss->current_line = sal.line;
1758 tss->current_symtab = sal.symtab;
cd0fc7c3
SS
1759}
1760
e02bc4cc 1761/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1762 target_wait()/deprecated_target_wait_hook(). The data is actually
1763 cached by handle_inferior_event(), which gets called immediately
1764 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1765
1766void
488f131b 1767get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1768{
39f77062 1769 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1770 *status = target_last_waitstatus;
1771}
1772
ac264b3b
MS
1773void
1774nullify_last_target_wait_ptid (void)
1775{
1776 target_last_wait_ptid = minus_one_ptid;
1777}
1778
dcf4fbde 1779/* Switch thread contexts. */
dd80620e
MS
1780
1781static void
0d1e5fa7 1782context_switch (ptid_t ptid)
dd80620e 1783{
fd48f117
DJ
1784 if (debug_infrun)
1785 {
1786 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1787 target_pid_to_str (inferior_ptid));
1788 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 1789 target_pid_to_str (ptid));
fd48f117
DJ
1790 }
1791
0d1e5fa7 1792 switch_to_thread (ptid);
dd80620e
MS
1793}
1794
4fa8626c
DJ
1795static void
1796adjust_pc_after_break (struct execution_control_state *ecs)
1797{
24a73cce
UW
1798 struct regcache *regcache;
1799 struct gdbarch *gdbarch;
8aad930b 1800 CORE_ADDR breakpoint_pc;
4fa8626c 1801
4fa8626c
DJ
1802 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1803 we aren't, just return.
9709f61c
DJ
1804
1805 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
1806 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
1807 implemented by software breakpoints should be handled through the normal
1808 breakpoint layer.
8fb3e588 1809
4fa8626c
DJ
1810 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1811 different signals (SIGILL or SIGEMT for instance), but it is less
1812 clear where the PC is pointing afterwards. It may not match
b798847d
UW
1813 gdbarch_decr_pc_after_break. I don't know any specific target that
1814 generates these signals at breakpoints (the code has been in GDB since at
1815 least 1992) so I can not guess how to handle them here.
8fb3e588 1816
e6cf7916
UW
1817 In earlier versions of GDB, a target with
1818 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
1819 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
1820 target with both of these set in GDB history, and it seems unlikely to be
1821 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
1822
1823 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1824 return;
1825
1826 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1827 return;
1828
4058b839
PA
1829 /* In reverse execution, when a breakpoint is hit, the instruction
1830 under it has already been de-executed. The reported PC always
1831 points at the breakpoint address, so adjusting it further would
1832 be wrong. E.g., consider this case on a decr_pc_after_break == 1
1833 architecture:
1834
1835 B1 0x08000000 : INSN1
1836 B2 0x08000001 : INSN2
1837 0x08000002 : INSN3
1838 PC -> 0x08000003 : INSN4
1839
1840 Say you're stopped at 0x08000003 as above. Reverse continuing
1841 from that point should hit B2 as below. Reading the PC when the
1842 SIGTRAP is reported should read 0x08000001 and INSN2 should have
1843 been de-executed already.
1844
1845 B1 0x08000000 : INSN1
1846 B2 PC -> 0x08000001 : INSN2
1847 0x08000002 : INSN3
1848 0x08000003 : INSN4
1849
1850 We can't apply the same logic as for forward execution, because
1851 we would wrongly adjust the PC to 0x08000000, since there's a
1852 breakpoint at PC - 1. We'd then report a hit on B1, although
1853 INSN1 hadn't been de-executed yet. Doing nothing is the correct
1854 behaviour. */
1855 if (execution_direction == EXEC_REVERSE)
1856 return;
1857
24a73cce
UW
1858 /* If this target does not decrement the PC after breakpoints, then
1859 we have nothing to do. */
1860 regcache = get_thread_regcache (ecs->ptid);
1861 gdbarch = get_regcache_arch (regcache);
1862 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
1863 return;
1864
8aad930b
AC
1865 /* Find the location where (if we've hit a breakpoint) the
1866 breakpoint would be. */
515630c5
UW
1867 breakpoint_pc = regcache_read_pc (regcache)
1868 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 1869
1c5cfe86
PA
1870 /* Check whether there actually is a software breakpoint inserted at
1871 that location.
1872
1873 If in non-stop mode, a race condition is possible where we've
1874 removed a breakpoint, but stop events for that breakpoint were
1875 already queued and arrive later. To suppress those spurious
1876 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1877 and retire them after a number of stop events are reported. */
1878 if (software_breakpoint_inserted_here_p (breakpoint_pc)
1879 || (non_stop && moribund_breakpoint_here_p (breakpoint_pc)))
8aad930b 1880 {
1c0fdd0e
UW
1881 /* When using hardware single-step, a SIGTRAP is reported for both
1882 a completed single-step and a software breakpoint. Need to
1883 differentiate between the two, as the latter needs adjusting
1884 but the former does not.
1885
1886 The SIGTRAP can be due to a completed hardware single-step only if
1887 - we didn't insert software single-step breakpoints
1888 - the thread to be examined is still the current thread
1889 - this thread is currently being stepped
1890
1891 If any of these events did not occur, we must have stopped due
1892 to hitting a software breakpoint, and have to back up to the
1893 breakpoint address.
1894
1895 As a special case, we could have hardware single-stepped a
1896 software breakpoint. In this case (prev_pc == breakpoint_pc),
1897 we also need to back up to the breakpoint address. */
1898
1899 if (singlestep_breakpoints_inserted_p
1900 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
1901 || !currently_stepping (ecs->event_thread)
1902 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 1903 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 1904 }
4fa8626c
DJ
1905}
1906
0d1e5fa7
PA
1907void
1908init_infwait_state (void)
1909{
1910 waiton_ptid = pid_to_ptid (-1);
1911 infwait_state = infwait_normal_state;
1912}
1913
94cc34af
PA
1914void
1915error_is_running (void)
1916{
1917 error (_("\
1918Cannot execute this command while the selected thread is running."));
1919}
1920
1921void
1922ensure_not_running (void)
1923{
1924 if (is_running (inferior_ptid))
1925 error_is_running ();
1926}
1927
cd0fc7c3
SS
1928/* Given an execution control state that has been freshly filled in
1929 by an event from the inferior, figure out what it means and take
1930 appropriate action. */
c906108c 1931
cd0fc7c3 1932void
96baa820 1933handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1934{
c8edd8b4 1935 int sw_single_step_trap_p = 0;
d983da9c
DJ
1936 int stopped_by_watchpoint;
1937 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 1938 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
1939 enum stop_kind stop_soon;
1940
1941 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1942 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1943 && ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1944 {
1945 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
1946 gdb_assert (inf);
1947 stop_soon = inf->stop_soon;
1948 }
1949 else
1950 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 1951
e02bc4cc 1952 /* Cache the last pid/waitstatus. */
39f77062 1953 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 1954 target_last_waitstatus = ecs->ws;
e02bc4cc 1955
ca005067
DJ
1956 /* Always clear state belonging to the previous time we stopped. */
1957 stop_stack_dummy = 0;
1958
8c90c137
LM
1959 /* If it's a new process, add it to the thread database */
1960
1961 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1962 && !ptid_equal (ecs->ptid, minus_one_ptid)
1963 && !in_thread_list (ecs->ptid));
1964
1965 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1966 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1967 add_thread (ecs->ptid);
1968
88ed393a
JK
1969 ecs->event_thread = find_thread_pid (ecs->ptid);
1970
1971 /* Dependent on valid ECS->EVENT_THREAD. */
1972 adjust_pc_after_break (ecs);
1973
1974 /* Dependent on the current PC value modified by adjust_pc_after_break. */
1975 reinit_frame_cache ();
1976
8c90c137
LM
1977 if (ecs->ws.kind != TARGET_WAITKIND_IGNORE)
1978 {
1c5cfe86
PA
1979 breakpoint_retire_moribund ();
1980
8c90c137
LM
1981 /* Mark the non-executing threads accordingly. */
1982 if (!non_stop
1983 || ecs->ws.kind == TARGET_WAITKIND_EXITED
1984 || ecs->ws.kind == TARGET_WAITKIND_SIGNALLED)
1985 set_executing (pid_to_ptid (-1), 0);
1986 else
1987 set_executing (ecs->ptid, 0);
1988 }
1989
0d1e5fa7 1990 switch (infwait_state)
488f131b
JB
1991 {
1992 case infwait_thread_hop_state:
527159b7 1993 if (debug_infrun)
8a9de0e4 1994 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
488f131b 1995 /* Cancel the waiton_ptid. */
0d1e5fa7 1996 waiton_ptid = pid_to_ptid (-1);
65e82032 1997 break;
b83266a0 1998
488f131b 1999 case infwait_normal_state:
527159b7 2000 if (debug_infrun)
8a9de0e4 2001 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
2002 break;
2003
2004 case infwait_step_watch_state:
2005 if (debug_infrun)
2006 fprintf_unfiltered (gdb_stdlog,
2007 "infrun: infwait_step_watch_state\n");
2008
2009 stepped_after_stopped_by_watchpoint = 1;
488f131b 2010 break;
b83266a0 2011
488f131b 2012 case infwait_nonstep_watch_state:
527159b7 2013 if (debug_infrun)
8a9de0e4
AC
2014 fprintf_unfiltered (gdb_stdlog,
2015 "infrun: infwait_nonstep_watch_state\n");
488f131b 2016 insert_breakpoints ();
c906108c 2017
488f131b
JB
2018 /* FIXME-maybe: is this cleaner than setting a flag? Does it
2019 handle things like signals arriving and other things happening
2020 in combination correctly? */
2021 stepped_after_stopped_by_watchpoint = 1;
2022 break;
65e82032
AC
2023
2024 default:
e2e0b3e5 2025 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 2026 }
0d1e5fa7 2027 infwait_state = infwait_normal_state;
c906108c 2028
488f131b
JB
2029 switch (ecs->ws.kind)
2030 {
2031 case TARGET_WAITKIND_LOADED:
527159b7 2032 if (debug_infrun)
8a9de0e4 2033 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
2034 /* Ignore gracefully during startup of the inferior, as it might
2035 be the shell which has just loaded some objects, otherwise
2036 add the symbols for the newly loaded objects. Also ignore at
2037 the beginning of an attach or remote session; we will query
2038 the full list of libraries once the connection is
2039 established. */
c0236d92 2040 if (stop_soon == NO_STOP_QUIETLY)
488f131b 2041 {
488f131b
JB
2042 /* Check for any newly added shared libraries if we're
2043 supposed to be adding them automatically. Switch
2044 terminal for any messages produced by
2045 breakpoint_re_set. */
2046 target_terminal_ours_for_output ();
aff6338a 2047 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2048 stack's section table is kept up-to-date. Architectures,
2049 (e.g., PPC64), use the section table to perform
2050 operations such as address => section name and hence
2051 require the table to contain all sections (including
2052 those found in shared libraries). */
aff6338a 2053 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2054 exec_ops to SOLIB_ADD. This is because current GDB is
2055 only tooled to propagate section_table changes out from
2056 the "current_target" (see target_resize_to_sections), and
2057 not up from the exec stratum. This, of course, isn't
2058 right. "infrun.c" should only interact with the
2059 exec/process stratum, instead relying on the target stack
2060 to propagate relevant changes (stop, section table
2061 changed, ...) up to other layers. */
b0f4b84b 2062#ifdef SOLIB_ADD
aff6338a 2063 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
2064#else
2065 solib_add (NULL, 0, &current_target, auto_solib_add);
2066#endif
488f131b
JB
2067 target_terminal_inferior ();
2068
b0f4b84b
DJ
2069 /* If requested, stop when the dynamic linker notifies
2070 gdb of events. This allows the user to get control
2071 and place breakpoints in initializer routines for
2072 dynamically loaded objects (among other things). */
2073 if (stop_on_solib_events)
2074 {
2075 stop_stepping (ecs);
2076 return;
2077 }
2078
2079 /* NOTE drow/2007-05-11: This might be a good place to check
2080 for "catch load". */
488f131b 2081 }
b0f4b84b
DJ
2082
2083 /* If we are skipping through a shell, or through shared library
2084 loading that we aren't interested in, resume the program. If
2085 we're running the program normally, also resume. But stop if
2086 we're attaching or setting up a remote connection. */
2087 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
2088 {
74960c60
VP
2089 /* Loading of shared libraries might have changed breakpoint
2090 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
2091 if (stop_soon == NO_STOP_QUIETLY
2092 && !breakpoints_always_inserted_mode ())
74960c60 2093 insert_breakpoints ();
b0f4b84b
DJ
2094 resume (0, TARGET_SIGNAL_0);
2095 prepare_to_wait (ecs);
2096 return;
2097 }
2098
2099 break;
c5aa993b 2100
488f131b 2101 case TARGET_WAITKIND_SPURIOUS:
527159b7 2102 if (debug_infrun)
8a9de0e4 2103 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
2104 resume (0, TARGET_SIGNAL_0);
2105 prepare_to_wait (ecs);
2106 return;
c5aa993b 2107
488f131b 2108 case TARGET_WAITKIND_EXITED:
527159b7 2109 if (debug_infrun)
8a9de0e4 2110 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
488f131b
JB
2111 target_terminal_ours (); /* Must do this before mourn anyway */
2112 print_stop_reason (EXITED, ecs->ws.value.integer);
2113
2114 /* Record the exit code in the convenience variable $_exitcode, so
2115 that the user can inspect this again later. */
2116 set_internalvar (lookup_internalvar ("_exitcode"),
8b9b9e1a 2117 value_from_longest (builtin_type_int32,
488f131b
JB
2118 (LONGEST) ecs->ws.value.integer));
2119 gdb_flush (gdb_stdout);
2120 target_mourn_inferior ();
1c0fdd0e 2121 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2122 stop_print_frame = 0;
2123 stop_stepping (ecs);
2124 return;
c5aa993b 2125
488f131b 2126 case TARGET_WAITKIND_SIGNALLED:
527159b7 2127 if (debug_infrun)
8a9de0e4 2128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
488f131b 2129 stop_print_frame = 0;
488f131b 2130 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 2131
488f131b
JB
2132 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
2133 reach here unless the inferior is dead. However, for years
2134 target_kill() was called here, which hints that fatal signals aren't
2135 really fatal on some systems. If that's true, then some changes
2136 may be needed. */
2137 target_mourn_inferior ();
c906108c 2138
2020b7ab 2139 print_stop_reason (SIGNAL_EXITED, ecs->ws.value.sig);
1c0fdd0e 2140 singlestep_breakpoints_inserted_p = 0;
488f131b
JB
2141 stop_stepping (ecs);
2142 return;
c906108c 2143
488f131b
JB
2144 /* The following are the only cases in which we keep going;
2145 the above cases end in a continue or goto. */
2146 case TARGET_WAITKIND_FORKED:
deb3b17b 2147 case TARGET_WAITKIND_VFORKED:
527159b7 2148 if (debug_infrun)
8a9de0e4 2149 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
488f131b
JB
2150 pending_follow.kind = ecs->ws.kind;
2151
3a3e9ee3 2152 pending_follow.fork_event.parent_pid = ecs->ptid;
8e7d2c16 2153 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 2154
5a2901d9
DJ
2155 if (!ptid_equal (ecs->ptid, inferior_ptid))
2156 {
0d1e5fa7 2157 context_switch (ecs->ptid);
35f196d9 2158 reinit_frame_cache ();
5a2901d9
DJ
2159 }
2160
488f131b 2161 stop_pc = read_pc ();
675bf4cb 2162
347bddb7 2163 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 2164
347bddb7 2165 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
04e68871
DJ
2166
2167 /* If no catchpoint triggered for this, then keep going. */
2168 if (ecs->random_signal)
2169 {
2020b7ab 2170 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2171 keep_going (ecs);
2172 return;
2173 }
2020b7ab 2174 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2175 goto process_event_stop_test;
2176
2177 case TARGET_WAITKIND_EXECD:
527159b7 2178 if (debug_infrun)
fc5261f2 2179 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b
JB
2180 pending_follow.execd_pathname =
2181 savestring (ecs->ws.value.execd_pathname,
2182 strlen (ecs->ws.value.execd_pathname));
2183
5a2901d9
DJ
2184 if (!ptid_equal (ecs->ptid, inferior_ptid))
2185 {
0d1e5fa7 2186 context_switch (ecs->ptid);
35f196d9 2187 reinit_frame_cache ();
5a2901d9
DJ
2188 }
2189
795e548f
PA
2190 stop_pc = read_pc ();
2191
2192 /* This causes the eventpoints and symbol table to be reset.
2193 Must do this now, before trying to determine whether to
2194 stop. */
2195 follow_exec (inferior_ptid, pending_follow.execd_pathname);
2196 xfree (pending_follow.execd_pathname);
2197
2198 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
2199 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
2200
04e68871
DJ
2201 /* If no catchpoint triggered for this, then keep going. */
2202 if (ecs->random_signal)
2203 {
2020b7ab 2204 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
2205 keep_going (ecs);
2206 return;
2207 }
2020b7ab 2208 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2209 goto process_event_stop_test;
2210
b4dc5ffa
MK
2211 /* Be careful not to try to gather much state about a thread
2212 that's in a syscall. It's frequently a losing proposition. */
488f131b 2213 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 2214 if (debug_infrun)
8a9de0e4 2215 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
488f131b
JB
2216 resume (0, TARGET_SIGNAL_0);
2217 prepare_to_wait (ecs);
2218 return;
c906108c 2219
488f131b
JB
2220 /* Before examining the threads further, step this thread to
2221 get it entirely out of the syscall. (We get notice of the
2222 event when the thread is just on the verge of exiting a
2223 syscall. Stepping one instruction seems to get it back
b4dc5ffa 2224 into user code.) */
488f131b 2225 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 2226 if (debug_infrun)
8a9de0e4 2227 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
488f131b 2228 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
488f131b
JB
2229 prepare_to_wait (ecs);
2230 return;
c906108c 2231
488f131b 2232 case TARGET_WAITKIND_STOPPED:
527159b7 2233 if (debug_infrun)
8a9de0e4 2234 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
2020b7ab 2235 ecs->event_thread->stop_signal = ecs->ws.value.sig;
488f131b 2236 break;
c906108c 2237
b2175913
MS
2238 case TARGET_WAITKIND_NO_HISTORY:
2239 /* Reverse execution: target ran out of history info. */
40e12b06 2240 stop_pc = read_pc ();
b2175913
MS
2241 print_stop_reason (NO_HISTORY, 0);
2242 stop_stepping (ecs);
2243 return;
2244
488f131b
JB
2245 /* We had an event in the inferior, but we are not interested
2246 in handling it at this level. The lower layers have already
8e7d2c16 2247 done what needs to be done, if anything.
8fb3e588
AC
2248
2249 One of the possible circumstances for this is when the
2250 inferior produces output for the console. The inferior has
2251 not stopped, and we are ignoring the event. Another possible
2252 circumstance is any event which the lower level knows will be
2253 reported multiple times without an intervening resume. */
488f131b 2254 case TARGET_WAITKIND_IGNORE:
527159b7 2255 if (debug_infrun)
8a9de0e4 2256 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
8e7d2c16 2257 prepare_to_wait (ecs);
488f131b
JB
2258 return;
2259 }
c906108c 2260
488f131b
JB
2261 if (ecs->new_thread_event)
2262 {
94cc34af
PA
2263 if (non_stop)
2264 /* Non-stop assumes that the target handles adding new threads
2265 to the thread list. */
2266 internal_error (__FILE__, __LINE__, "\
2267targets should add new threads to the thread list themselves in non-stop mode.");
2268
2269 /* We may want to consider not doing a resume here in order to
2270 give the user a chance to play with the new thread. It might
2271 be good to make that a user-settable option. */
2272
2273 /* At this point, all threads are stopped (happens automatically
2274 in either the OS or the native code). Therefore we need to
2275 continue all threads in order to make progress. */
2276
488f131b
JB
2277 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
2278 prepare_to_wait (ecs);
2279 return;
2280 }
c906108c 2281
237fc4c9
PA
2282 /* Do we need to clean up the state of a thread that has completed a
2283 displaced single-step? (Doing so usually affects the PC, so do
2284 it here, before we set stop_pc.) */
2020b7ab
PA
2285 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
2286 displaced_step_fixup (ecs->ptid, ecs->event_thread->stop_signal);
237fc4c9 2287
515630c5 2288 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 2289
527159b7 2290 if (debug_infrun)
237fc4c9
PA
2291 {
2292 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n",
2293 paddr_nz (stop_pc));
2294 if (STOPPED_BY_WATCHPOINT (&ecs->ws))
2295 {
2296 CORE_ADDR addr;
2297 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
2298
2299 if (target_stopped_data_address (&current_target, &addr))
2300 fprintf_unfiltered (gdb_stdlog,
2301 "infrun: stopped data address = 0x%s\n",
2302 paddr_nz (addr));
2303 else
2304 fprintf_unfiltered (gdb_stdlog,
2305 "infrun: (no data address available)\n");
2306 }
2307 }
527159b7 2308
9f976b41
DJ
2309 if (stepping_past_singlestep_breakpoint)
2310 {
1c0fdd0e 2311 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
2312 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
2313 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
2314
2315 stepping_past_singlestep_breakpoint = 0;
2316
2317 /* We've either finished single-stepping past the single-step
8fb3e588
AC
2318 breakpoint, or stopped for some other reason. It would be nice if
2319 we could tell, but we can't reliably. */
2020b7ab 2320 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 2321 {
527159b7 2322 if (debug_infrun)
8a9de0e4 2323 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
9f976b41 2324 /* Pull the single step breakpoints out of the target. */
e0cd558a 2325 remove_single_step_breakpoints ();
9f976b41
DJ
2326 singlestep_breakpoints_inserted_p = 0;
2327
2328 ecs->random_signal = 0;
2329
0d1e5fa7 2330 context_switch (saved_singlestep_ptid);
9a4105ab
AC
2331 if (deprecated_context_hook)
2332 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
2333
2334 resume (1, TARGET_SIGNAL_0);
2335 prepare_to_wait (ecs);
2336 return;
2337 }
2338 }
2339
2340 stepping_past_singlestep_breakpoint = 0;
2341
ca67fcb8 2342 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 2343 {
94cc34af
PA
2344 /* In non-stop mode, there's never a deferred_step_ptid set. */
2345 gdb_assert (!non_stop);
2346
6a6b96b9
UW
2347 /* If we stopped for some other reason than single-stepping, ignore
2348 the fact that we were supposed to switch back. */
2020b7ab 2349 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9 2350 {
4e1c45ea
PA
2351 struct thread_info *tp;
2352
6a6b96b9
UW
2353 if (debug_infrun)
2354 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 2355 "infrun: handling deferred step\n");
6a6b96b9
UW
2356
2357 /* Pull the single step breakpoints out of the target. */
2358 if (singlestep_breakpoints_inserted_p)
2359 {
2360 remove_single_step_breakpoints ();
2361 singlestep_breakpoints_inserted_p = 0;
2362 }
2363
2364 /* Note: We do not call context_switch at this point, as the
2365 context is already set up for stepping the original thread. */
ca67fcb8
VP
2366 switch_to_thread (deferred_step_ptid);
2367 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2368 /* Suppress spurious "Switching to ..." message. */
2369 previous_inferior_ptid = inferior_ptid;
2370
2371 resume (1, TARGET_SIGNAL_0);
2372 prepare_to_wait (ecs);
2373 return;
2374 }
ca67fcb8
VP
2375
2376 deferred_step_ptid = null_ptid;
6a6b96b9
UW
2377 }
2378
488f131b
JB
2379 /* See if a thread hit a thread-specific breakpoint that was meant for
2380 another thread. If so, then step that thread past the breakpoint,
2381 and continue it. */
2382
2020b7ab 2383 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2384 {
9f976b41
DJ
2385 int thread_hop_needed = 0;
2386
f8d40ec8
JB
2387 /* Check if a regular breakpoint has been hit before checking
2388 for a potential single step breakpoint. Otherwise, GDB will
2389 not see this breakpoint hit when stepping onto breakpoints. */
c36b740a 2390 if (regular_breakpoint_inserted_here_p (stop_pc))
488f131b 2391 {
c5aa993b 2392 ecs->random_signal = 0;
4fa8626c 2393 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
2394 thread_hop_needed = 1;
2395 }
1c0fdd0e 2396 else if (singlestep_breakpoints_inserted_p)
9f976b41 2397 {
fd48f117
DJ
2398 /* We have not context switched yet, so this should be true
2399 no matter which thread hit the singlestep breakpoint. */
2400 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
2401 if (debug_infrun)
2402 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
2403 "trap for %s\n",
2404 target_pid_to_str (ecs->ptid));
2405
9f976b41
DJ
2406 ecs->random_signal = 0;
2407 /* The call to in_thread_list is necessary because PTIDs sometimes
2408 change when we go from single-threaded to multi-threaded. If
2409 the singlestep_ptid is still in the list, assume that it is
2410 really different from ecs->ptid. */
2411 if (!ptid_equal (singlestep_ptid, ecs->ptid)
2412 && in_thread_list (singlestep_ptid))
2413 {
fd48f117
DJ
2414 /* If the PC of the thread we were trying to single-step
2415 has changed, discard this event (which we were going
2416 to ignore anyway), and pretend we saw that thread
2417 trap. This prevents us continuously moving the
2418 single-step breakpoint forward, one instruction at a
2419 time. If the PC has changed, then the thread we were
2420 trying to single-step has trapped or been signalled,
2421 but the event has not been reported to GDB yet.
2422
2423 There might be some cases where this loses signal
2424 information, if a signal has arrived at exactly the
2425 same time that the PC changed, but this is the best
2426 we can do with the information available. Perhaps we
2427 should arrange to report all events for all threads
2428 when they stop, or to re-poll the remote looking for
2429 this particular thread (i.e. temporarily enable
2430 schedlock). */
515630c5
UW
2431
2432 CORE_ADDR new_singlestep_pc
2433 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
2434
2435 if (new_singlestep_pc != singlestep_pc)
fd48f117 2436 {
2020b7ab
PA
2437 enum target_signal stop_signal;
2438
fd48f117
DJ
2439 if (debug_infrun)
2440 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
2441 " but expected thread advanced also\n");
2442
2443 /* The current context still belongs to
2444 singlestep_ptid. Don't swap here, since that's
2445 the context we want to use. Just fudge our
2446 state and continue. */
2020b7ab
PA
2447 stop_signal = ecs->event_thread->stop_signal;
2448 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
fd48f117 2449 ecs->ptid = singlestep_ptid;
4e1c45ea 2450 ecs->event_thread = find_thread_pid (ecs->ptid);
2020b7ab 2451 ecs->event_thread->stop_signal = stop_signal;
515630c5 2452 stop_pc = new_singlestep_pc;
fd48f117
DJ
2453 }
2454 else
2455 {
2456 if (debug_infrun)
2457 fprintf_unfiltered (gdb_stdlog,
2458 "infrun: unexpected thread\n");
2459
2460 thread_hop_needed = 1;
2461 stepping_past_singlestep_breakpoint = 1;
2462 saved_singlestep_ptid = singlestep_ptid;
2463 }
9f976b41
DJ
2464 }
2465 }
2466
2467 if (thread_hop_needed)
8fb3e588 2468 {
237fc4c9 2469 int remove_status = 0;
8fb3e588 2470
527159b7 2471 if (debug_infrun)
8a9de0e4 2472 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 2473
8fb3e588
AC
2474 /* Saw a breakpoint, but it was hit by the wrong thread.
2475 Just continue. */
2476
1c0fdd0e 2477 if (singlestep_breakpoints_inserted_p)
488f131b 2478 {
8fb3e588 2479 /* Pull the single step breakpoints out of the target. */
e0cd558a 2480 remove_single_step_breakpoints ();
8fb3e588
AC
2481 singlestep_breakpoints_inserted_p = 0;
2482 }
2483
237fc4c9
PA
2484 /* If the arch can displace step, don't remove the
2485 breakpoints. */
2486 if (!use_displaced_stepping (current_gdbarch))
2487 remove_status = remove_breakpoints ();
2488
8fb3e588
AC
2489 /* Did we fail to remove breakpoints? If so, try
2490 to set the PC past the bp. (There's at least
2491 one situation in which we can fail to remove
2492 the bp's: On HP-UX's that use ttrace, we can't
2493 change the address space of a vforking child
2494 process until the child exits (well, okay, not
2495 then either :-) or execs. */
2496 if (remove_status != 0)
9d9cd7ac 2497 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
2498 else
2499 { /* Single step */
8fb3e588 2500 if (!ptid_equal (inferior_ptid, ecs->ptid))
0d1e5fa7
PA
2501 context_switch (ecs->ptid);
2502
94cc34af
PA
2503 if (!non_stop)
2504 {
2505 /* Only need to require the next event from this
2506 thread in all-stop mode. */
2507 waiton_ptid = ecs->ptid;
2508 infwait_state = infwait_thread_hop_state;
2509 }
8fb3e588 2510
4e1c45ea 2511 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588
AC
2512 keep_going (ecs);
2513 registers_changed ();
2514 return;
2515 }
488f131b 2516 }
1c0fdd0e 2517 else if (singlestep_breakpoints_inserted_p)
8fb3e588
AC
2518 {
2519 sw_single_step_trap_p = 1;
2520 ecs->random_signal = 0;
2521 }
488f131b
JB
2522 }
2523 else
2524 ecs->random_signal = 1;
c906108c 2525
488f131b 2526 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
2527 so, then switch to that thread. */
2528 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 2529 {
527159b7 2530 if (debug_infrun)
8a9de0e4 2531 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 2532
0d1e5fa7 2533 context_switch (ecs->ptid);
c5aa993b 2534
9a4105ab
AC
2535 if (deprecated_context_hook)
2536 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 2537 }
c906108c 2538
1c0fdd0e 2539 if (singlestep_breakpoints_inserted_p)
488f131b
JB
2540 {
2541 /* Pull the single step breakpoints out of the target. */
e0cd558a 2542 remove_single_step_breakpoints ();
488f131b
JB
2543 singlestep_breakpoints_inserted_p = 0;
2544 }
c906108c 2545
d983da9c
DJ
2546 if (stepped_after_stopped_by_watchpoint)
2547 stopped_by_watchpoint = 0;
2548 else
2549 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
2550
2551 /* If necessary, step over this watchpoint. We'll be back to display
2552 it in a moment. */
2553 if (stopped_by_watchpoint
2554 && (HAVE_STEPPABLE_WATCHPOINT
2555 || gdbarch_have_nonsteppable_watchpoint (current_gdbarch)))
488f131b 2556 {
488f131b
JB
2557 /* At this point, we are stopped at an instruction which has
2558 attempted to write to a piece of memory under control of
2559 a watchpoint. The instruction hasn't actually executed
2560 yet. If we were to evaluate the watchpoint expression
2561 now, we would get the old value, and therefore no change
2562 would seem to have occurred.
2563
2564 In order to make watchpoints work `right', we really need
2565 to complete the memory write, and then evaluate the
d983da9c
DJ
2566 watchpoint expression. We do this by single-stepping the
2567 target.
2568
2569 It may not be necessary to disable the watchpoint to stop over
2570 it. For example, the PA can (with some kernel cooperation)
2571 single step over a watchpoint without disabling the watchpoint.
2572
2573 It is far more common to need to disable a watchpoint to step
2574 the inferior over it. If we have non-steppable watchpoints,
2575 we must disable the current watchpoint; it's simplest to
2576 disable all watchpoints and breakpoints. */
2577
2578 if (!HAVE_STEPPABLE_WATCHPOINT)
2579 remove_breakpoints ();
488f131b
JB
2580 registers_changed ();
2581 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
0d1e5fa7 2582 waiton_ptid = ecs->ptid;
d983da9c 2583 if (HAVE_STEPPABLE_WATCHPOINT)
0d1e5fa7 2584 infwait_state = infwait_step_watch_state;
d983da9c 2585 else
0d1e5fa7 2586 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
2587 prepare_to_wait (ecs);
2588 return;
2589 }
2590
488f131b
JB
2591 ecs->stop_func_start = 0;
2592 ecs->stop_func_end = 0;
2593 ecs->stop_func_name = 0;
2594 /* Don't care about return value; stop_func_start and stop_func_name
2595 will both be 0 if it doesn't work. */
2596 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2597 &ecs->stop_func_start, &ecs->stop_func_end);
cbf3b44a
UW
2598 ecs->stop_func_start
2599 += gdbarch_deprecated_function_start_offset (current_gdbarch);
4e1c45ea 2600 ecs->event_thread->stepping_over_breakpoint = 0;
347bddb7 2601 bpstat_clear (&ecs->event_thread->stop_bpstat);
414c69f7 2602 ecs->event_thread->stop_step = 0;
488f131b
JB
2603 stop_print_frame = 1;
2604 ecs->random_signal = 0;
2605 stopped_by_random_signal = 0;
488f131b 2606
2020b7ab 2607 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2608 && ecs->event_thread->trap_expected
3352ef37 2609 && gdbarch_single_step_through_delay_p (current_gdbarch)
4e1c45ea 2610 && currently_stepping (ecs->event_thread))
3352ef37 2611 {
b50d7442 2612 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37
AC
2613 also on an instruction that needs to be stepped multiple
2614 times before it's been fully executing. E.g., architectures
2615 with a delay slot. It needs to be stepped twice, once for
2616 the instruction and once for the delay slot. */
2617 int step_through_delay
2618 = gdbarch_single_step_through_delay (current_gdbarch,
2619 get_current_frame ());
527159b7 2620 if (debug_infrun && step_through_delay)
8a9de0e4 2621 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4e1c45ea 2622 if (ecs->event_thread->step_range_end == 0 && step_through_delay)
3352ef37
AC
2623 {
2624 /* The user issued a continue when stopped at a breakpoint.
2625 Set up for another trap and get out of here. */
4e1c45ea 2626 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2627 keep_going (ecs);
2628 return;
2629 }
2630 else if (step_through_delay)
2631 {
2632 /* The user issued a step when stopped at a breakpoint.
2633 Maybe we should stop, maybe we should not - the delay
2634 slot *might* correspond to a line of source. In any
ca67fcb8
VP
2635 case, don't decide that here, just set
2636 ecs->stepping_over_breakpoint, making sure we
2637 single-step again before breakpoints are re-inserted. */
4e1c45ea 2638 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
2639 }
2640 }
2641
488f131b
JB
2642 /* Look at the cause of the stop, and decide what to do.
2643 The alternatives are:
0d1e5fa7
PA
2644 1) stop_stepping and return; to really stop and return to the debugger,
2645 2) keep_going and return to start up again
4e1c45ea 2646 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
2647 3) set ecs->random_signal to 1, and the decision between 1 and 2
2648 will be made according to the signal handling tables. */
2649
2650 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
2651 that have to do with the program's own actions. Note that
2652 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
2653 on the operating system version. Here we detect when a SIGILL or
2654 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
2655 something similar for SIGSEGV, since a SIGSEGV will be generated
2656 when we're trying to execute a breakpoint instruction on a
2657 non-executable stack. This happens for call dummy breakpoints
2658 for architectures like SPARC that place call dummies on the
237fc4c9 2659 stack.
488f131b 2660
237fc4c9
PA
2661 If we're doing a displaced step past a breakpoint, then the
2662 breakpoint is always inserted at the original instruction;
2663 non-standard signals can't be explained by the breakpoint. */
2020b7ab 2664 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
4e1c45ea 2665 || (! ecs->event_thread->trap_expected
237fc4c9 2666 && breakpoint_inserted_here_p (stop_pc)
2020b7ab
PA
2667 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_ILL
2668 || ecs->event_thread->stop_signal == TARGET_SIGNAL_SEGV
2669 || ecs->event_thread->stop_signal == TARGET_SIGNAL_EMT))
b0f4b84b
DJ
2670 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
2671 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2672 {
2020b7ab 2673 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
488f131b 2674 {
527159b7 2675 if (debug_infrun)
8a9de0e4 2676 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
2677 stop_print_frame = 0;
2678 stop_stepping (ecs);
2679 return;
2680 }
c54cfec8
EZ
2681
2682 /* This is originated from start_remote(), start_inferior() and
2683 shared libraries hook functions. */
b0f4b84b 2684 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 2685 {
527159b7 2686 if (debug_infrun)
8a9de0e4 2687 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
2688 stop_stepping (ecs);
2689 return;
2690 }
2691
c54cfec8 2692 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
2693 the stop_signal here, because some kernels don't ignore a
2694 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
2695 See more comments in inferior.h. On the other hand, if we
a0ef4274 2696 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
2697 will handle the SIGSTOP if it should show up later.
2698
2699 Also consider that the attach is complete when we see a
2700 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
2701 target extended-remote report it instead of a SIGSTOP
2702 (e.g. gdbserver). We already rely on SIGTRAP being our
2703 signal, so this is no exception. */
a0ef4274 2704 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
2020b7ab
PA
2705 && (ecs->event_thread->stop_signal == TARGET_SIGNAL_STOP
2706 || ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP))
c54cfec8
EZ
2707 {
2708 stop_stepping (ecs);
2020b7ab 2709 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
2710 return;
2711 }
2712
fba57f8f 2713 /* See if there is a breakpoint at the current PC. */
347bddb7 2714 ecs->event_thread->stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
fba57f8f
VP
2715
2716 /* Following in case break condition called a
2717 function. */
2718 stop_print_frame = 1;
488f131b 2719
73dd234f 2720 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
2721 at one stage in the past included checks for an inferior
2722 function call's call dummy's return breakpoint. The original
2723 comment, that went with the test, read:
73dd234f 2724
8fb3e588
AC
2725 ``End of a stack dummy. Some systems (e.g. Sony news) give
2726 another signal besides SIGTRAP, so check here as well as
2727 above.''
73dd234f 2728
8002d778 2729 If someone ever tries to get call dummys on a
73dd234f 2730 non-executable stack to work (where the target would stop
03cebad2
MK
2731 with something like a SIGSEGV), then those tests might need
2732 to be re-instated. Given, however, that the tests were only
73dd234f 2733 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2734 suspect that it won't be the case.
2735
8fb3e588
AC
2736 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2737 be necessary for call dummies on a non-executable stack on
2738 SPARC. */
73dd234f 2739
2020b7ab 2740 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP)
488f131b 2741 ecs->random_signal
347bddb7 2742 = !(bpstat_explains_signal (ecs->event_thread->stop_bpstat)
4e1c45ea
PA
2743 || ecs->event_thread->trap_expected
2744 || (ecs->event_thread->step_range_end
2745 && ecs->event_thread->step_resume_breakpoint == NULL));
488f131b
JB
2746 else
2747 {
347bddb7 2748 ecs->random_signal = !bpstat_explains_signal (ecs->event_thread->stop_bpstat);
488f131b 2749 if (!ecs->random_signal)
2020b7ab 2750 ecs->event_thread->stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
2751 }
2752 }
2753
2754 /* When we reach this point, we've pretty much decided
2755 that the reason for stopping must've been a random
2756 (unexpected) signal. */
2757
2758 else
2759 ecs->random_signal = 1;
488f131b 2760
04e68871 2761process_event_stop_test:
488f131b
JB
2762 /* For the program's own signals, act according to
2763 the signal handling tables. */
2764
2765 if (ecs->random_signal)
2766 {
2767 /* Signal not for debugging purposes. */
2768 int printed = 0;
2769
527159b7 2770 if (debug_infrun)
2020b7ab
PA
2771 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
2772 ecs->event_thread->stop_signal);
527159b7 2773
488f131b
JB
2774 stopped_by_random_signal = 1;
2775
2020b7ab 2776 if (signal_print[ecs->event_thread->stop_signal])
488f131b
JB
2777 {
2778 printed = 1;
2779 target_terminal_ours_for_output ();
2020b7ab 2780 print_stop_reason (SIGNAL_RECEIVED, ecs->event_thread->stop_signal);
488f131b 2781 }
d6b48e9c
PA
2782 /* Always stop on signals if we're just gaining control of the
2783 program. */
2784 if (stop_soon != NO_STOP_QUIETLY
2785 || signal_stop_state (ecs->event_thread->stop_signal))
488f131b
JB
2786 {
2787 stop_stepping (ecs);
2788 return;
2789 }
2790 /* If not going to stop, give terminal back
2791 if we took it away. */
2792 else if (printed)
2793 target_terminal_inferior ();
2794
2795 /* Clear the signal if it should not be passed. */
2020b7ab
PA
2796 if (signal_program[ecs->event_thread->stop_signal] == 0)
2797 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
488f131b 2798
4e1c45ea
PA
2799 if (ecs->event_thread->prev_pc == read_pc ()
2800 && ecs->event_thread->trap_expected
2801 && ecs->event_thread->step_resume_breakpoint == NULL)
68f53502
AC
2802 {
2803 /* We were just starting a new sequence, attempting to
2804 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 2805 Instead this signal arrives. This signal will take us out
68f53502
AC
2806 of the stepping range so GDB needs to remember to, when
2807 the signal handler returns, resume stepping off that
2808 breakpoint. */
2809 /* To simplify things, "continue" is forced to use the same
2810 code paths as single-step - set a breakpoint at the
2811 signal return address and then, once hit, step off that
2812 breakpoint. */
237fc4c9
PA
2813 if (debug_infrun)
2814 fprintf_unfiltered (gdb_stdlog,
2815 "infrun: signal arrived while stepping over "
2816 "breakpoint\n");
d3169d93 2817
44cbf7b5 2818 insert_step_resume_breakpoint_at_frame (get_current_frame ());
4e1c45ea 2819 ecs->event_thread->step_after_step_resume_breakpoint = 1;
9d799f85
AC
2820 keep_going (ecs);
2821 return;
68f53502 2822 }
9d799f85 2823
4e1c45ea 2824 if (ecs->event_thread->step_range_end != 0
2020b7ab 2825 && ecs->event_thread->stop_signal != TARGET_SIGNAL_0
4e1c45ea
PA
2826 && (ecs->event_thread->step_range_start <= stop_pc
2827 && stop_pc < ecs->event_thread->step_range_end)
9d799f85 2828 && frame_id_eq (get_frame_id (get_current_frame ()),
4e1c45ea
PA
2829 ecs->event_thread->step_frame_id)
2830 && ecs->event_thread->step_resume_breakpoint == NULL)
d303a6c7
AC
2831 {
2832 /* The inferior is about to take a signal that will take it
2833 out of the single step range. Set a breakpoint at the
2834 current PC (which is presumably where the signal handler
2835 will eventually return) and then allow the inferior to
2836 run free.
2837
2838 Note that this is only needed for a signal delivered
2839 while in the single-step range. Nested signals aren't a
2840 problem as they eventually all return. */
237fc4c9
PA
2841 if (debug_infrun)
2842 fprintf_unfiltered (gdb_stdlog,
2843 "infrun: signal may take us out of "
2844 "single-step range\n");
2845
44cbf7b5 2846 insert_step_resume_breakpoint_at_frame (get_current_frame ());
9d799f85
AC
2847 keep_going (ecs);
2848 return;
d303a6c7 2849 }
9d799f85
AC
2850
2851 /* Note: step_resume_breakpoint may be non-NULL. This occures
2852 when either there's a nested signal, or when there's a
2853 pending signal enabled just as the signal handler returns
2854 (leaving the inferior at the step-resume-breakpoint without
2855 actually executing it). Either way continue until the
2856 breakpoint is really hit. */
488f131b
JB
2857 keep_going (ecs);
2858 return;
2859 }
2860
2861 /* Handle cases caused by hitting a breakpoint. */
2862 {
2863 CORE_ADDR jmp_buf_pc;
2864 struct bpstat_what what;
2865
347bddb7 2866 what = bpstat_what (ecs->event_thread->stop_bpstat);
488f131b
JB
2867
2868 if (what.call_dummy)
2869 {
2870 stop_stack_dummy = 1;
c5aa993b 2871 }
c906108c 2872
488f131b 2873 switch (what.main_action)
c5aa993b 2874 {
488f131b 2875 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
2876 /* If we hit the breakpoint at longjmp while stepping, we
2877 install a momentary breakpoint at the target of the
2878 jmp_buf. */
2879
2880 if (debug_infrun)
2881 fprintf_unfiltered (gdb_stdlog,
2882 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2883
4e1c45ea 2884 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 2885
91104499 2886 if (!gdbarch_get_longjmp_target_p (current_gdbarch)
60ade65d
UW
2887 || !gdbarch_get_longjmp_target (current_gdbarch,
2888 get_current_frame (), &jmp_buf_pc))
c5aa993b 2889 {
611c83ae
PA
2890 if (debug_infrun)
2891 fprintf_unfiltered (gdb_stdlog, "\
2892infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME (!gdbarch_get_longjmp_target)\n");
488f131b 2893 keep_going (ecs);
104c1213 2894 return;
c5aa993b 2895 }
488f131b 2896
611c83ae
PA
2897 /* We're going to replace the current step-resume breakpoint
2898 with a longjmp-resume breakpoint. */
4e1c45ea 2899 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae
PA
2900
2901 /* Insert a breakpoint at resume address. */
2902 insert_longjmp_resume_breakpoint (jmp_buf_pc);
c906108c 2903
488f131b
JB
2904 keep_going (ecs);
2905 return;
c906108c 2906
488f131b 2907 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 2908 if (debug_infrun)
611c83ae
PA
2909 fprintf_unfiltered (gdb_stdlog,
2910 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2911
4e1c45ea
PA
2912 gdb_assert (ecs->event_thread->step_resume_breakpoint != NULL);
2913 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 2914
414c69f7 2915 ecs->event_thread->stop_step = 1;
611c83ae
PA
2916 print_stop_reason (END_STEPPING_RANGE, 0);
2917 stop_stepping (ecs);
2918 return;
488f131b
JB
2919
2920 case BPSTAT_WHAT_SINGLE:
527159b7 2921 if (debug_infrun)
8802d8ed 2922 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 2923 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
2924 /* Still need to check other stuff, at least the case
2925 where we are stepping and step out of the right range. */
2926 break;
c906108c 2927
488f131b 2928 case BPSTAT_WHAT_STOP_NOISY:
527159b7 2929 if (debug_infrun)
8802d8ed 2930 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 2931 stop_print_frame = 1;
c906108c 2932
d303a6c7
AC
2933 /* We are about to nuke the step_resume_breakpointt via the
2934 cleanup chain, so no need to worry about it here. */
c5aa993b 2935
488f131b
JB
2936 stop_stepping (ecs);
2937 return;
c5aa993b 2938
488f131b 2939 case BPSTAT_WHAT_STOP_SILENT:
527159b7 2940 if (debug_infrun)
8802d8ed 2941 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 2942 stop_print_frame = 0;
c5aa993b 2943
d303a6c7
AC
2944 /* We are about to nuke the step_resume_breakpoin via the
2945 cleanup chain, so no need to worry about it here. */
c5aa993b 2946
488f131b 2947 stop_stepping (ecs);
e441088d 2948 return;
c5aa993b 2949
488f131b 2950 case BPSTAT_WHAT_STEP_RESUME:
527159b7 2951 if (debug_infrun)
8802d8ed 2952 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
527159b7 2953
4e1c45ea
PA
2954 delete_step_resume_breakpoint (ecs->event_thread);
2955 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
2956 {
2957 /* Back when the step-resume breakpoint was inserted, we
2958 were trying to single-step off a breakpoint. Go back
2959 to doing that. */
4e1c45ea
PA
2960 ecs->event_thread->step_after_step_resume_breakpoint = 0;
2961 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
2962 keep_going (ecs);
2963 return;
2964 }
b2175913
MS
2965 if (stop_pc == ecs->stop_func_start
2966 && execution_direction == EXEC_REVERSE)
2967 {
2968 /* We are stepping over a function call in reverse, and
2969 just hit the step-resume breakpoint at the start
2970 address of the function. Go back to single-stepping,
2971 which should take us back to the function call. */
2972 ecs->event_thread->stepping_over_breakpoint = 1;
2973 keep_going (ecs);
2974 return;
2975 }
488f131b
JB
2976 break;
2977
488f131b
JB
2978 case BPSTAT_WHAT_CHECK_SHLIBS:
2979 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
c906108c 2980 {
527159b7 2981 if (debug_infrun)
8802d8ed 2982 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
488f131b
JB
2983
2984 /* Check for any newly added shared libraries if we're
2985 supposed to be adding them automatically. Switch
2986 terminal for any messages produced by
2987 breakpoint_re_set. */
2988 target_terminal_ours_for_output ();
aff6338a 2989 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
2990 stack's section table is kept up-to-date. Architectures,
2991 (e.g., PPC64), use the section table to perform
2992 operations such as address => section name and hence
2993 require the table to contain all sections (including
2994 those found in shared libraries). */
aff6338a 2995 /* NOTE: cagney/2003-11-25: Pass current_target and not
8fb3e588
AC
2996 exec_ops to SOLIB_ADD. This is because current GDB is
2997 only tooled to propagate section_table changes out from
2998 the "current_target" (see target_resize_to_sections), and
2999 not up from the exec stratum. This, of course, isn't
3000 right. "infrun.c" should only interact with the
3001 exec/process stratum, instead relying on the target stack
3002 to propagate relevant changes (stop, section table
3003 changed, ...) up to other layers. */
a77053c2 3004#ifdef SOLIB_ADD
aff6338a 3005 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
a77053c2
MK
3006#else
3007 solib_add (NULL, 0, &current_target, auto_solib_add);
3008#endif
488f131b
JB
3009 target_terminal_inferior ();
3010
488f131b
JB
3011 /* If requested, stop when the dynamic linker notifies
3012 gdb of events. This allows the user to get control
3013 and place breakpoints in initializer routines for
3014 dynamically loaded objects (among other things). */
877522db 3015 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 3016 {
488f131b 3017 stop_stepping (ecs);
d4f3574e
SS
3018 return;
3019 }
c5aa993b 3020
488f131b
JB
3021 /* If we stopped due to an explicit catchpoint, then the
3022 (see above) call to SOLIB_ADD pulled in any symbols
3023 from a newly-loaded library, if appropriate.
3024
3025 We do want the inferior to stop, but not where it is
3026 now, which is in the dynamic linker callback. Rather,
3027 we would like it stop in the user's program, just after
3028 the call that caused this catchpoint to trigger. That
3029 gives the user a more useful vantage from which to
3030 examine their program's state. */
8fb3e588
AC
3031 else if (what.main_action
3032 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 3033 {
488f131b
JB
3034 /* ??rehrauer: If I could figure out how to get the
3035 right return PC from here, we could just set a temp
3036 breakpoint and resume. I'm not sure we can without
3037 cracking open the dld's shared libraries and sniffing
3038 their unwind tables and text/data ranges, and that's
3039 not a terribly portable notion.
3040
3041 Until that time, we must step the inferior out of the
3042 dld callback, and also out of the dld itself (and any
3043 code or stubs in libdld.sl, such as "shl_load" and
3044 friends) until we reach non-dld code. At that point,
3045 we can stop stepping. */
347bddb7 3046 bpstat_get_triggered_catchpoints (ecs->event_thread->stop_bpstat,
4e1c45ea
PA
3047 &ecs->
3048 event_thread->
488f131b 3049 stepping_through_solib_catchpoints);
4e1c45ea 3050 ecs->event_thread->stepping_through_solib_after_catch = 1;
488f131b
JB
3051
3052 /* Be sure to lift all breakpoints, so the inferior does
3053 actually step past this point... */
4e1c45ea 3054 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3055 break;
c906108c 3056 }
c5aa993b 3057 else
c5aa993b 3058 {
488f131b 3059 /* We want to step over this breakpoint, then keep going. */
4e1c45ea 3060 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3061 break;
c5aa993b 3062 }
488f131b 3063 }
488f131b 3064 break;
c906108c 3065
488f131b
JB
3066 case BPSTAT_WHAT_LAST:
3067 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 3068
488f131b
JB
3069 case BPSTAT_WHAT_KEEP_CHECKING:
3070 break;
3071 }
3072 }
c906108c 3073
488f131b
JB
3074 /* We come here if we hit a breakpoint but should not
3075 stop for it. Possibly we also were stepping
3076 and should stop for that. So fall through and
3077 test for stepping. But, if not stepping,
3078 do not stop. */
c906108c 3079
9d1ff73f
MS
3080 /* Are we stepping to get the inferior out of the dynamic linker's
3081 hook (and possibly the dld itself) after catching a shlib
3082 event? */
4e1c45ea 3083 if (ecs->event_thread->stepping_through_solib_after_catch)
488f131b
JB
3084 {
3085#if defined(SOLIB_ADD)
3086 /* Have we reached our destination? If not, keep going. */
3087 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
3088 {
527159b7 3089 if (debug_infrun)
8a9de0e4 3090 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
4e1c45ea 3091 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b 3092 keep_going (ecs);
104c1213 3093 return;
488f131b
JB
3094 }
3095#endif
527159b7 3096 if (debug_infrun)
8a9de0e4 3097 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
488f131b
JB
3098 /* Else, stop and report the catchpoint(s) whose triggering
3099 caused us to begin stepping. */
4e1c45ea 3100 ecs->event_thread->stepping_through_solib_after_catch = 0;
347bddb7
PA
3101 bpstat_clear (&ecs->event_thread->stop_bpstat);
3102 ecs->event_thread->stop_bpstat
3103 = bpstat_copy (ecs->event_thread->stepping_through_solib_catchpoints);
4e1c45ea 3104 bpstat_clear (&ecs->event_thread->stepping_through_solib_catchpoints);
488f131b
JB
3105 stop_print_frame = 1;
3106 stop_stepping (ecs);
3107 return;
3108 }
c906108c 3109
4e1c45ea 3110 if (ecs->event_thread->step_resume_breakpoint)
488f131b 3111 {
527159b7 3112 if (debug_infrun)
d3169d93
DJ
3113 fprintf_unfiltered (gdb_stdlog,
3114 "infrun: step-resume breakpoint is inserted\n");
527159b7 3115
488f131b
JB
3116 /* Having a step-resume breakpoint overrides anything
3117 else having to do with stepping commands until
3118 that breakpoint is reached. */
488f131b
JB
3119 keep_going (ecs);
3120 return;
3121 }
c5aa993b 3122
4e1c45ea 3123 if (ecs->event_thread->step_range_end == 0)
488f131b 3124 {
527159b7 3125 if (debug_infrun)
8a9de0e4 3126 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 3127 /* Likewise if we aren't even stepping. */
488f131b
JB
3128 keep_going (ecs);
3129 return;
3130 }
c5aa993b 3131
488f131b 3132 /* If stepping through a line, keep going if still within it.
c906108c 3133
488f131b
JB
3134 Note that step_range_end is the address of the first instruction
3135 beyond the step range, and NOT the address of the last instruction
3136 within it! */
4e1c45ea
PA
3137 if (stop_pc >= ecs->event_thread->step_range_start
3138 && stop_pc < ecs->event_thread->step_range_end)
488f131b 3139 {
527159b7 3140 if (debug_infrun)
b2175913 3141 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
4e1c45ea
PA
3142 paddr_nz (ecs->event_thread->step_range_start),
3143 paddr_nz (ecs->event_thread->step_range_end));
b2175913
MS
3144
3145 /* When stepping backward, stop at beginning of line range
3146 (unless it's the function entry point, in which case
3147 keep going back to the call point). */
3148 if (stop_pc == ecs->event_thread->step_range_start
3149 && stop_pc != ecs->stop_func_start
3150 && execution_direction == EXEC_REVERSE)
3151 {
3152 ecs->event_thread->stop_step = 1;
3153 print_stop_reason (END_STEPPING_RANGE, 0);
3154 stop_stepping (ecs);
3155 }
3156 else
3157 keep_going (ecs);
3158
488f131b
JB
3159 return;
3160 }
c5aa993b 3161
488f131b 3162 /* We stepped out of the stepping range. */
c906108c 3163
488f131b
JB
3164 /* If we are stepping at the source level and entered the runtime
3165 loader dynamic symbol resolution code, we keep on single stepping
3166 until we exit the run time loader code and reach the callee's
3167 address. */
078130d0 3168 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 3169 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 3170 {
4c8c40e6
MK
3171 CORE_ADDR pc_after_resolver =
3172 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 3173
527159b7 3174 if (debug_infrun)
8a9de0e4 3175 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
527159b7 3176
488f131b
JB
3177 if (pc_after_resolver)
3178 {
3179 /* Set up a step-resume breakpoint at the address
3180 indicated by SKIP_SOLIB_RESOLVER. */
3181 struct symtab_and_line sr_sal;
fe39c653 3182 init_sal (&sr_sal);
488f131b
JB
3183 sr_sal.pc = pc_after_resolver;
3184
44cbf7b5 3185 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c5aa993b 3186 }
c906108c 3187
488f131b
JB
3188 keep_going (ecs);
3189 return;
3190 }
c906108c 3191
4e1c45ea 3192 if (ecs->event_thread->step_range_end != 1
078130d0
PA
3193 && (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3194 || ecs->event_thread->step_over_calls == STEP_OVER_ALL)
42edda50 3195 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 3196 {
527159b7 3197 if (debug_infrun)
8a9de0e4 3198 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
42edda50 3199 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
3200 a signal trampoline (either by a signal being delivered or by
3201 the signal handler returning). Just single-step until the
3202 inferior leaves the trampoline (either by calling the handler
3203 or returning). */
488f131b
JB
3204 keep_going (ecs);
3205 return;
3206 }
c906108c 3207
c17eaafe
DJ
3208 /* Check for subroutine calls. The check for the current frame
3209 equalling the step ID is not necessary - the check of the
3210 previous frame's ID is sufficient - but it is a common case and
3211 cheaper than checking the previous frame's ID.
14e60db5
DJ
3212
3213 NOTE: frame_id_eq will never report two invalid frame IDs as
3214 being equal, so to get into this block, both the current and
3215 previous frame must have valid frame IDs. */
4e1c45ea
PA
3216 if (!frame_id_eq (get_frame_id (get_current_frame ()),
3217 ecs->event_thread->step_frame_id)
b2175913
MS
3218 && (frame_id_eq (frame_unwind_id (get_current_frame ()),
3219 ecs->event_thread->step_frame_id)
3220 || execution_direction == EXEC_REVERSE))
488f131b 3221 {
95918acb 3222 CORE_ADDR real_stop_pc;
8fb3e588 3223
527159b7 3224 if (debug_infrun)
8a9de0e4 3225 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 3226
078130d0 3227 if ((ecs->event_thread->step_over_calls == STEP_OVER_NONE)
4e1c45ea
PA
3228 || ((ecs->event_thread->step_range_end == 1)
3229 && in_prologue (ecs->event_thread->prev_pc,
3230 ecs->stop_func_start)))
95918acb
AC
3231 {
3232 /* I presume that step_over_calls is only 0 when we're
3233 supposed to be stepping at the assembly language level
3234 ("stepi"). Just stop. */
3235 /* Also, maybe we just did a "nexti" inside a prolog, so we
3236 thought it was a subroutine call but it was not. Stop as
3237 well. FENN */
414c69f7 3238 ecs->event_thread->stop_step = 1;
95918acb
AC
3239 print_stop_reason (END_STEPPING_RANGE, 0);
3240 stop_stepping (ecs);
3241 return;
3242 }
8fb3e588 3243
078130d0 3244 if (ecs->event_thread->step_over_calls == STEP_OVER_ALL)
8567c30f 3245 {
b2175913
MS
3246 /* We're doing a "next".
3247
3248 Normal (forward) execution: set a breakpoint at the
3249 callee's return address (the address at which the caller
3250 will resume).
3251
3252 Reverse (backward) execution. set the step-resume
3253 breakpoint at the start of the function that we just
3254 stepped into (backwards), and continue to there. When we
3255 get there, we'll need to single-step back to the
3256 caller. */
3257
3258 if (execution_direction == EXEC_REVERSE)
3259 {
3260 struct symtab_and_line sr_sal;
3261 init_sal (&sr_sal);
3262 sr_sal.pc = ecs->stop_func_start;
3263 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3264 }
3265 else
3266 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3267
8567c30f
AC
3268 keep_going (ecs);
3269 return;
3270 }
a53c66de 3271
95918acb 3272 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
3273 calling routine and the real function), locate the real
3274 function. That's what tells us (a) whether we want to step
3275 into it at all, and (b) what prologue we want to run to the
3276 end of, if we do step into it. */
52f729a7 3277 real_stop_pc = skip_language_trampoline (get_current_frame (), stop_pc);
95918acb 3278 if (real_stop_pc == 0)
52f729a7
UW
3279 real_stop_pc = gdbarch_skip_trampoline_code
3280 (current_gdbarch, get_current_frame (), stop_pc);
95918acb
AC
3281 if (real_stop_pc != 0)
3282 ecs->stop_func_start = real_stop_pc;
8fb3e588 3283
db5f024e 3284 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
3285 {
3286 struct symtab_and_line sr_sal;
3287 init_sal (&sr_sal);
3288 sr_sal.pc = ecs->stop_func_start;
3289
44cbf7b5 3290 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
8fb3e588
AC
3291 keep_going (ecs);
3292 return;
1b2bfbb9
RC
3293 }
3294
95918acb 3295 /* If we have line number information for the function we are
8fb3e588 3296 thinking of stepping into, step into it.
95918acb 3297
8fb3e588
AC
3298 If there are several symtabs at that PC (e.g. with include
3299 files), just want to know whether *any* of them have line
3300 numbers. find_pc_line handles this. */
95918acb
AC
3301 {
3302 struct symtab_and_line tmp_sal;
8fb3e588 3303
95918acb
AC
3304 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
3305 if (tmp_sal.line != 0)
3306 {
b2175913
MS
3307 if (execution_direction == EXEC_REVERSE)
3308 handle_step_into_function_backward (ecs);
3309 else
3310 handle_step_into_function (ecs);
95918acb
AC
3311 return;
3312 }
3313 }
3314
3315 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
3316 set, we stop the step so that the user has a chance to switch
3317 in assembly mode. */
078130d0
PA
3318 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
3319 && step_stop_if_no_debug)
95918acb 3320 {
414c69f7 3321 ecs->event_thread->stop_step = 1;
95918acb
AC
3322 print_stop_reason (END_STEPPING_RANGE, 0);
3323 stop_stepping (ecs);
3324 return;
3325 }
3326
b2175913
MS
3327 if (execution_direction == EXEC_REVERSE)
3328 {
3329 /* Set a breakpoint at callee's start address.
3330 From there we can step once and be back in the caller. */
3331 struct symtab_and_line sr_sal;
3332 init_sal (&sr_sal);
3333 sr_sal.pc = ecs->stop_func_start;
3334 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
3335 }
3336 else
3337 /* Set a breakpoint at callee's return address (the address
3338 at which the caller will resume). */
3339 insert_step_resume_breakpoint_at_caller (get_current_frame ());
3340
95918acb 3341 keep_going (ecs);
488f131b 3342 return;
488f131b 3343 }
c906108c 3344
488f131b
JB
3345 /* If we're in the return path from a shared library trampoline,
3346 we want to proceed through the trampoline when stepping. */
e76f05fa
UW
3347 if (gdbarch_in_solib_return_trampoline (current_gdbarch,
3348 stop_pc, ecs->stop_func_name))
488f131b 3349 {
488f131b 3350 /* Determine where this trampoline returns. */
52f729a7
UW
3351 CORE_ADDR real_stop_pc;
3352 real_stop_pc = gdbarch_skip_trampoline_code
3353 (current_gdbarch, get_current_frame (), stop_pc);
c906108c 3354
527159b7 3355 if (debug_infrun)
8a9de0e4 3356 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
527159b7 3357
488f131b 3358 /* Only proceed through if we know where it's going. */
d764a824 3359 if (real_stop_pc)
488f131b
JB
3360 {
3361 /* And put the step-breakpoint there and go until there. */
3362 struct symtab_and_line sr_sal;
3363
fe39c653 3364 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 3365 sr_sal.pc = real_stop_pc;
488f131b 3366 sr_sal.section = find_pc_overlay (sr_sal.pc);
44cbf7b5
AC
3367
3368 /* Do not specify what the fp should be when we stop since
3369 on some machines the prologue is where the new fp value
3370 is established. */
3371 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c906108c 3372
488f131b
JB
3373 /* Restart without fiddling with the step ranges or
3374 other state. */
3375 keep_going (ecs);
3376 return;
3377 }
3378 }
c906108c 3379
2afb61aa 3380 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 3381
1b2bfbb9
RC
3382 /* NOTE: tausq/2004-05-24: This if block used to be done before all
3383 the trampoline processing logic, however, there are some trampolines
3384 that have no names, so we should do trampoline handling first. */
078130d0 3385 if (ecs->event_thread->step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 3386 && ecs->stop_func_name == NULL
2afb61aa 3387 && stop_pc_sal.line == 0)
1b2bfbb9 3388 {
527159b7 3389 if (debug_infrun)
8a9de0e4 3390 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
527159b7 3391
1b2bfbb9 3392 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
3393 undebuggable function (where there is no debugging information
3394 and no line number corresponding to the address where the
1b2bfbb9
RC
3395 inferior stopped). Since we want to skip this kind of code,
3396 we keep going until the inferior returns from this
14e60db5
DJ
3397 function - unless the user has asked us not to (via
3398 set step-mode) or we no longer know how to get back
3399 to the call site. */
3400 if (step_stop_if_no_debug
eb2f4a08 3401 || !frame_id_p (frame_unwind_id (get_current_frame ())))
1b2bfbb9
RC
3402 {
3403 /* If we have no line number and the step-stop-if-no-debug
3404 is set, we stop the step so that the user has a chance to
3405 switch in assembly mode. */
414c69f7 3406 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3407 print_stop_reason (END_STEPPING_RANGE, 0);
3408 stop_stepping (ecs);
3409 return;
3410 }
3411 else
3412 {
3413 /* Set a breakpoint at callee's return address (the address
3414 at which the caller will resume). */
14e60db5 3415 insert_step_resume_breakpoint_at_caller (get_current_frame ());
1b2bfbb9
RC
3416 keep_going (ecs);
3417 return;
3418 }
3419 }
3420
4e1c45ea 3421 if (ecs->event_thread->step_range_end == 1)
1b2bfbb9
RC
3422 {
3423 /* It is stepi or nexti. We always want to stop stepping after
3424 one instruction. */
527159b7 3425 if (debug_infrun)
8a9de0e4 3426 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
414c69f7 3427 ecs->event_thread->stop_step = 1;
1b2bfbb9
RC
3428 print_stop_reason (END_STEPPING_RANGE, 0);
3429 stop_stepping (ecs);
3430 return;
3431 }
3432
2afb61aa 3433 if (stop_pc_sal.line == 0)
488f131b
JB
3434 {
3435 /* We have no line number information. That means to stop
3436 stepping (does this always happen right after one instruction,
3437 when we do "s" in a function with no line numbers,
3438 or can this happen as a result of a return or longjmp?). */
527159b7 3439 if (debug_infrun)
8a9de0e4 3440 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
414c69f7 3441 ecs->event_thread->stop_step = 1;
488f131b
JB
3442 print_stop_reason (END_STEPPING_RANGE, 0);
3443 stop_stepping (ecs);
3444 return;
3445 }
c906108c 3446
2afb61aa 3447 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
3448 && (ecs->event_thread->current_line != stop_pc_sal.line
3449 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
3450 {
3451 /* We are at the start of a different line. So stop. Note that
3452 we don't stop if we step into the middle of a different line.
3453 That is said to make things like for (;;) statements work
3454 better. */
527159b7 3455 if (debug_infrun)
8a9de0e4 3456 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
414c69f7 3457 ecs->event_thread->stop_step = 1;
488f131b
JB
3458 print_stop_reason (END_STEPPING_RANGE, 0);
3459 stop_stepping (ecs);
3460 return;
3461 }
c906108c 3462
488f131b 3463 /* We aren't done stepping.
c906108c 3464
488f131b
JB
3465 Optimize by setting the stepping range to the line.
3466 (We might not be in the original line, but if we entered a
3467 new line in mid-statement, we continue stepping. This makes
3468 things like for(;;) statements work better.) */
c906108c 3469
4e1c45ea
PA
3470 ecs->event_thread->step_range_start = stop_pc_sal.pc;
3471 ecs->event_thread->step_range_end = stop_pc_sal.end;
3472 ecs->event_thread->step_frame_id = get_frame_id (get_current_frame ());
3473 ecs->event_thread->current_line = stop_pc_sal.line;
3474 ecs->event_thread->current_symtab = stop_pc_sal.symtab;
488f131b 3475
527159b7 3476 if (debug_infrun)
8a9de0e4 3477 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 3478 keep_going (ecs);
104c1213
JM
3479}
3480
3481/* Are we in the middle of stepping? */
3482
3483static int
4e1c45ea 3484currently_stepping (struct thread_info *tp)
104c1213 3485{
4e1c45ea
PA
3486 return (((tp->step_range_end && tp->step_resume_breakpoint == NULL)
3487 || tp->trap_expected)
3488 || tp->stepping_through_solib_after_catch
104c1213
JM
3489 || bpstat_should_step ());
3490}
c906108c 3491
b2175913
MS
3492/* Inferior has stepped into a subroutine call with source code that
3493 we should not step over. Do step to the first line of code in
3494 it. */
c2c6d25f
JM
3495
3496static void
b2175913 3497handle_step_into_function (struct execution_control_state *ecs)
c2c6d25f
JM
3498{
3499 struct symtab *s;
2afb61aa 3500 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f
JM
3501
3502 s = find_pc_symtab (stop_pc);
3503 if (s && s->language != language_asm)
b2175913
MS
3504 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3505 ecs->stop_func_start);
c2c6d25f 3506
2afb61aa 3507 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
3508 /* Use the step_resume_break to step until the end of the prologue,
3509 even if that involves jumps (as it seems to on the vax under
3510 4.2). */
3511 /* If the prologue ends in the middle of a source line, continue to
3512 the end of that source line (if it is still within the function).
3513 Otherwise, just go to end of prologue. */
2afb61aa
PA
3514 if (stop_func_sal.end
3515 && stop_func_sal.pc != ecs->stop_func_start
3516 && stop_func_sal.end < ecs->stop_func_end)
3517 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 3518
2dbd5e30
KB
3519 /* Architectures which require breakpoint adjustment might not be able
3520 to place a breakpoint at the computed address. If so, the test
3521 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
3522 ecs->stop_func_start to an address at which a breakpoint may be
3523 legitimately placed.
8fb3e588 3524
2dbd5e30
KB
3525 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
3526 made, GDB will enter an infinite loop when stepping through
3527 optimized code consisting of VLIW instructions which contain
3528 subinstructions corresponding to different source lines. On
3529 FR-V, it's not permitted to place a breakpoint on any but the
3530 first subinstruction of a VLIW instruction. When a breakpoint is
3531 set, GDB will adjust the breakpoint address to the beginning of
3532 the VLIW instruction. Thus, we need to make the corresponding
3533 adjustment here when computing the stop address. */
8fb3e588 3534
2dbd5e30
KB
3535 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
3536 {
3537 ecs->stop_func_start
3538 = gdbarch_adjust_breakpoint_address (current_gdbarch,
8fb3e588 3539 ecs->stop_func_start);
2dbd5e30
KB
3540 }
3541
c2c6d25f
JM
3542 if (ecs->stop_func_start == stop_pc)
3543 {
3544 /* We are already there: stop now. */
414c69f7 3545 ecs->event_thread->stop_step = 1;
488f131b 3546 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3547 stop_stepping (ecs);
3548 return;
3549 }
3550 else
3551 {
3552 /* Put the step-breakpoint there and go until there. */
fe39c653 3553 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
3554 sr_sal.pc = ecs->stop_func_start;
3555 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
44cbf7b5 3556
c2c6d25f 3557 /* Do not specify what the fp should be when we stop since on
488f131b
JB
3558 some machines the prologue is where the new fp value is
3559 established. */
44cbf7b5 3560 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
c2c6d25f
JM
3561
3562 /* And make sure stepping stops right away then. */
4e1c45ea 3563 ecs->event_thread->step_range_end = ecs->event_thread->step_range_start;
c2c6d25f
JM
3564 }
3565 keep_going (ecs);
3566}
d4f3574e 3567
b2175913
MS
3568/* Inferior has stepped backward into a subroutine call with source
3569 code that we should not step over. Do step to the beginning of the
3570 last line of code in it. */
3571
3572static void
3573handle_step_into_function_backward (struct execution_control_state *ecs)
3574{
3575 struct symtab *s;
3576 struct symtab_and_line stop_func_sal, sr_sal;
3577
3578 s = find_pc_symtab (stop_pc);
3579 if (s && s->language != language_asm)
3580 ecs->stop_func_start = gdbarch_skip_prologue (current_gdbarch,
3581 ecs->stop_func_start);
3582
3583 stop_func_sal = find_pc_line (stop_pc, 0);
3584
3585 /* OK, we're just going to keep stepping here. */
3586 if (stop_func_sal.pc == stop_pc)
3587 {
3588 /* We're there already. Just stop stepping now. */
3589 ecs->event_thread->stop_step = 1;
3590 print_stop_reason (END_STEPPING_RANGE, 0);
3591 stop_stepping (ecs);
3592 }
3593 else
3594 {
3595 /* Else just reset the step range and keep going.
3596 No step-resume breakpoint, they don't work for
3597 epilogues, which can have multiple entry paths. */
3598 ecs->event_thread->step_range_start = stop_func_sal.pc;
3599 ecs->event_thread->step_range_end = stop_func_sal.end;
3600 keep_going (ecs);
3601 }
3602 return;
3603}
3604
d3169d93 3605/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
3606 This is used to both functions and to skip over code. */
3607
3608static void
3609insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
3610 struct frame_id sr_id)
3611{
611c83ae
PA
3612 /* There should never be more than one step-resume or longjmp-resume
3613 breakpoint per thread, so we should never be setting a new
44cbf7b5 3614 step_resume_breakpoint when one is already active. */
4e1c45ea 3615 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
d3169d93
DJ
3616
3617 if (debug_infrun)
3618 fprintf_unfiltered (gdb_stdlog,
3619 "infrun: inserting step-resume breakpoint at 0x%s\n",
3620 paddr_nz (sr_sal.pc));
3621
4e1c45ea
PA
3622 inferior_thread ()->step_resume_breakpoint
3623 = set_momentary_breakpoint (sr_sal, sr_id, bp_step_resume);
44cbf7b5 3624}
7ce450bd 3625
d3169d93 3626/* Insert a "step-resume breakpoint" at RETURN_FRAME.pc. This is used
14e60db5 3627 to skip a potential signal handler.
7ce450bd 3628
14e60db5
DJ
3629 This is called with the interrupted function's frame. The signal
3630 handler, when it returns, will resume the interrupted function at
3631 RETURN_FRAME.pc. */
d303a6c7
AC
3632
3633static void
44cbf7b5 3634insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
3635{
3636 struct symtab_and_line sr_sal;
3637
f4c1edd8 3638 gdb_assert (return_frame != NULL);
d303a6c7
AC
3639 init_sal (&sr_sal); /* initialize to zeros */
3640
bf6ae464
UW
3641 sr_sal.pc = gdbarch_addr_bits_remove
3642 (current_gdbarch, get_frame_pc (return_frame));
d303a6c7
AC
3643 sr_sal.section = find_pc_overlay (sr_sal.pc);
3644
44cbf7b5 3645 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
d303a6c7
AC
3646}
3647
14e60db5
DJ
3648/* Similar to insert_step_resume_breakpoint_at_frame, except
3649 but a breakpoint at the previous frame's PC. This is used to
3650 skip a function after stepping into it (for "next" or if the called
3651 function has no debugging information).
3652
3653 The current function has almost always been reached by single
3654 stepping a call or return instruction. NEXT_FRAME belongs to the
3655 current function, and the breakpoint will be set at the caller's
3656 resume address.
3657
3658 This is a separate function rather than reusing
3659 insert_step_resume_breakpoint_at_frame in order to avoid
3660 get_prev_frame, which may stop prematurely (see the implementation
eb2f4a08 3661 of frame_unwind_id for an example). */
14e60db5
DJ
3662
3663static void
3664insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
3665{
3666 struct symtab_and_line sr_sal;
3667
3668 /* We shouldn't have gotten here if we don't know where the call site
3669 is. */
eb2f4a08 3670 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
14e60db5
DJ
3671
3672 init_sal (&sr_sal); /* initialize to zeros */
3673
bf6ae464 3674 sr_sal.pc = gdbarch_addr_bits_remove
eb2f4a08 3675 (current_gdbarch, frame_pc_unwind (next_frame));
14e60db5
DJ
3676 sr_sal.section = find_pc_overlay (sr_sal.pc);
3677
eb2f4a08 3678 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
14e60db5
DJ
3679}
3680
611c83ae
PA
3681/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
3682 new breakpoint at the target of a jmp_buf. The handling of
3683 longjmp-resume uses the same mechanisms used for handling
3684 "step-resume" breakpoints. */
3685
3686static void
3687insert_longjmp_resume_breakpoint (CORE_ADDR pc)
3688{
3689 /* There should never be more than one step-resume or longjmp-resume
3690 breakpoint per thread, so we should never be setting a new
3691 longjmp_resume_breakpoint when one is already active. */
4e1c45ea 3692 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
611c83ae
PA
3693
3694 if (debug_infrun)
3695 fprintf_unfiltered (gdb_stdlog,
3696 "infrun: inserting longjmp-resume breakpoint at 0x%s\n",
3697 paddr_nz (pc));
3698
4e1c45ea 3699 inferior_thread ()->step_resume_breakpoint =
611c83ae
PA
3700 set_momentary_breakpoint_at_pc (pc, bp_longjmp_resume);
3701}
3702
104c1213
JM
3703static void
3704stop_stepping (struct execution_control_state *ecs)
3705{
527159b7 3706 if (debug_infrun)
8a9de0e4 3707 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 3708
cd0fc7c3
SS
3709 /* Let callers know we don't want to wait for the inferior anymore. */
3710 ecs->wait_some_more = 0;
3711}
3712
d4f3574e
SS
3713/* This function handles various cases where we need to continue
3714 waiting for the inferior. */
3715/* (Used to be the keep_going: label in the old wait_for_inferior) */
3716
3717static void
3718keep_going (struct execution_control_state *ecs)
3719{
d4f3574e 3720 /* Save the pc before execution, to compare with pc after stop. */
4e1c45ea 3721 ecs->event_thread->prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 3722
d4f3574e
SS
3723 /* If we did not do break;, it means we should keep running the
3724 inferior and not return to debugger. */
3725
2020b7ab
PA
3726 if (ecs->event_thread->trap_expected
3727 && ecs->event_thread->stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
3728 {
3729 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
3730 the inferior, else we'd not get here) and we haven't yet
3731 gotten our trap. Simply continue. */
2020b7ab
PA
3732 resume (currently_stepping (ecs->event_thread),
3733 ecs->event_thread->stop_signal);
d4f3574e
SS
3734 }
3735 else
3736 {
3737 /* Either the trap was not expected, but we are continuing
488f131b
JB
3738 anyway (the user asked that this signal be passed to the
3739 child)
3740 -- or --
3741 The signal was SIGTRAP, e.g. it was our signal, but we
3742 decided we should resume from it.
d4f3574e 3743
c36b740a 3744 We're going to run this baby now!
d4f3574e 3745
c36b740a
VP
3746 Note that insert_breakpoints won't try to re-insert
3747 already inserted breakpoints. Therefore, we don't
3748 care if breakpoints were already inserted, or not. */
3749
4e1c45ea 3750 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 3751 {
237fc4c9
PA
3752 if (! use_displaced_stepping (current_gdbarch))
3753 /* Since we can't do a displaced step, we have to remove
3754 the breakpoint while we step it. To keep things
3755 simple, we remove them all. */
3756 remove_breakpoints ();
45e8c884
VP
3757 }
3758 else
d4f3574e 3759 {
e236ba44 3760 struct gdb_exception e;
569631c6
UW
3761 /* Stop stepping when inserting breakpoints
3762 has failed. */
e236ba44
VP
3763 TRY_CATCH (e, RETURN_MASK_ERROR)
3764 {
3765 insert_breakpoints ();
3766 }
3767 if (e.reason < 0)
d4f3574e
SS
3768 {
3769 stop_stepping (ecs);
3770 return;
3771 }
d4f3574e
SS
3772 }
3773
4e1c45ea 3774 ecs->event_thread->trap_expected = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
3775
3776 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
3777 specifies that such a signal should be delivered to the
3778 target program).
3779
3780 Typically, this would occure when a user is debugging a
3781 target monitor on a simulator: the target monitor sets a
3782 breakpoint; the simulator encounters this break-point and
3783 halts the simulation handing control to GDB; GDB, noteing
3784 that the break-point isn't valid, returns control back to the
3785 simulator; the simulator then delivers the hardware
3786 equivalent of a SIGNAL_TRAP to the program being debugged. */
3787
2020b7ab
PA
3788 if (ecs->event_thread->stop_signal == TARGET_SIGNAL_TRAP
3789 && !signal_program[ecs->event_thread->stop_signal])
3790 ecs->event_thread->stop_signal = TARGET_SIGNAL_0;
d4f3574e 3791
2020b7ab
PA
3792 resume (currently_stepping (ecs->event_thread),
3793 ecs->event_thread->stop_signal);
d4f3574e
SS
3794 }
3795
488f131b 3796 prepare_to_wait (ecs);
d4f3574e
SS
3797}
3798
104c1213
JM
3799/* This function normally comes after a resume, before
3800 handle_inferior_event exits. It takes care of any last bits of
3801 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3802
104c1213
JM
3803static void
3804prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3805{
527159b7 3806 if (debug_infrun)
8a9de0e4 3807 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
0d1e5fa7 3808 if (infwait_state == infwait_normal_state)
104c1213
JM
3809 {
3810 overlay_cache_invalid = 1;
3811
3812 /* We have to invalidate the registers BEFORE calling
488f131b
JB
3813 target_wait because they can be loaded from the target while
3814 in target_wait. This makes remote debugging a bit more
3815 efficient for those targets that provide critical registers
3816 as part of their normal status mechanism. */
104c1213
JM
3817
3818 registers_changed ();
0d1e5fa7 3819 waiton_ptid = pid_to_ptid (-1);
104c1213
JM
3820 }
3821 /* This is the old end of the while loop. Let everybody know we
3822 want to wait for the inferior some more and get called again
3823 soon. */
3824 ecs->wait_some_more = 1;
c906108c 3825}
11cf8741
JM
3826
3827/* Print why the inferior has stopped. We always print something when
3828 the inferior exits, or receives a signal. The rest of the cases are
3829 dealt with later on in normal_stop() and print_it_typical(). Ideally
3830 there should be a call to this function from handle_inferior_event()
3831 each time stop_stepping() is called.*/
3832static void
3833print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3834{
3835 switch (stop_reason)
3836 {
11cf8741
JM
3837 case END_STEPPING_RANGE:
3838 /* We are done with a step/next/si/ni command. */
3839 /* For now print nothing. */
fb40c209 3840 /* Print a message only if not in the middle of doing a "step n"
488f131b 3841 operation for n > 1 */
414c69f7
PA
3842 if (!inferior_thread ()->step_multi
3843 || !inferior_thread ()->stop_step)
9dc5e2a9 3844 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3845 ui_out_field_string
3846 (uiout, "reason",
3847 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
11cf8741 3848 break;
11cf8741
JM
3849 case SIGNAL_EXITED:
3850 /* The inferior was terminated by a signal. */
8b93c638 3851 annotate_signalled ();
9dc5e2a9 3852 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3853 ui_out_field_string
3854 (uiout, "reason",
3855 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8b93c638
JM
3856 ui_out_text (uiout, "\nProgram terminated with signal ");
3857 annotate_signal_name ();
488f131b
JB
3858 ui_out_field_string (uiout, "signal-name",
3859 target_signal_to_name (stop_info));
8b93c638
JM
3860 annotate_signal_name_end ();
3861 ui_out_text (uiout, ", ");
3862 annotate_signal_string ();
488f131b
JB
3863 ui_out_field_string (uiout, "signal-meaning",
3864 target_signal_to_string (stop_info));
8b93c638
JM
3865 annotate_signal_string_end ();
3866 ui_out_text (uiout, ".\n");
3867 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3868 break;
3869 case EXITED:
3870 /* The inferior program is finished. */
8b93c638
JM
3871 annotate_exited (stop_info);
3872 if (stop_info)
3873 {
9dc5e2a9 3874 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3875 ui_out_field_string (uiout, "reason",
3876 async_reason_lookup (EXEC_ASYNC_EXITED));
8b93c638 3877 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3878 ui_out_field_fmt (uiout, "exit-code", "0%o",
3879 (unsigned int) stop_info);
8b93c638
JM
3880 ui_out_text (uiout, ".\n");
3881 }
3882 else
3883 {
9dc5e2a9 3884 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3885 ui_out_field_string
3886 (uiout, "reason",
3887 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8b93c638
JM
3888 ui_out_text (uiout, "\nProgram exited normally.\n");
3889 }
f17517ea
AS
3890 /* Support the --return-child-result option. */
3891 return_child_result_value = stop_info;
11cf8741
JM
3892 break;
3893 case SIGNAL_RECEIVED:
3894 /* Signal received. The signal table tells us to print about
3895 it. */
8b93c638
JM
3896 annotate_signal ();
3897 ui_out_text (uiout, "\nProgram received signal ");
3898 annotate_signal_name ();
84c6c83c 3899 if (ui_out_is_mi_like_p (uiout))
034dad6f
BR
3900 ui_out_field_string
3901 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b
JB
3902 ui_out_field_string (uiout, "signal-name",
3903 target_signal_to_name (stop_info));
8b93c638
JM
3904 annotate_signal_name_end ();
3905 ui_out_text (uiout, ", ");
3906 annotate_signal_string ();
488f131b
JB
3907 ui_out_field_string (uiout, "signal-meaning",
3908 target_signal_to_string (stop_info));
8b93c638
JM
3909 annotate_signal_string_end ();
3910 ui_out_text (uiout, ".\n");
11cf8741 3911 break;
b2175913
MS
3912 case NO_HISTORY:
3913 /* Reverse execution: target ran out of history info. */
3914 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
3915 break;
11cf8741 3916 default:
8e65ff28 3917 internal_error (__FILE__, __LINE__,
e2e0b3e5 3918 _("print_stop_reason: unrecognized enum value"));
11cf8741
JM
3919 break;
3920 }
3921}
c906108c 3922\f
43ff13b4 3923
c906108c
SS
3924/* Here to return control to GDB when the inferior stops for real.
3925 Print appropriate messages, remove breakpoints, give terminal our modes.
3926
3927 STOP_PRINT_FRAME nonzero means print the executing frame
3928 (pc, function, args, file, line number and line text).
3929 BREAKPOINTS_FAILED nonzero means stop was due to error
3930 attempting to insert breakpoints. */
3931
3932void
96baa820 3933normal_stop (void)
c906108c 3934{
73b65bb0
DJ
3935 struct target_waitstatus last;
3936 ptid_t last_ptid;
3937
3938 get_last_target_status (&last_ptid, &last);
3939
4f8d22e3
PA
3940 /* In non-stop mode, we don't want GDB to switch threads behind the
3941 user's back, to avoid races where the user is typing a command to
3942 apply to thread x, but GDB switches to thread y before the user
3943 finishes entering the command. */
3944
c906108c
SS
3945 /* As with the notification of thread events, we want to delay
3946 notifying the user that we've switched thread context until
3947 the inferior actually stops.
3948
73b65bb0
DJ
3949 There's no point in saying anything if the inferior has exited.
3950 Note that SIGNALLED here means "exited with a signal", not
3951 "received a signal". */
4f8d22e3
PA
3952 if (!non_stop
3953 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3954 && target_has_execution
3955 && last.kind != TARGET_WAITKIND_SIGNALLED
3956 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3957 {
3958 target_terminal_ours_for_output ();
a3f17187 3959 printf_filtered (_("[Switching to %s]\n"),
c95310c6 3960 target_pid_to_str (inferior_ptid));
b8fa951a 3961 annotate_thread_changed ();
39f77062 3962 previous_inferior_ptid = inferior_ptid;
c906108c 3963 }
c906108c 3964
4fa8626c 3965 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
3966 /* Make sure that the current_frame's pc is correct. This
3967 is a correction for setting up the frame info before doing
b798847d 3968 gdbarch_decr_pc_after_break */
b87efeee
AC
3969 if (target_has_execution)
3970 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
b798847d 3971 gdbarch_decr_pc_after_break, the program counter can change. Ask the
b87efeee 3972 frame code to check for this and sort out any resultant mess.
b798847d 3973 gdbarch_decr_pc_after_break needs to just go away. */
2f107107 3974 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3975
74960c60 3976 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
3977 {
3978 if (remove_breakpoints ())
3979 {
3980 target_terminal_ours_for_output ();
a3f17187
AC
3981 printf_filtered (_("\
3982Cannot remove breakpoints because program is no longer writable.\n\
3983It might be running in another process.\n\
3984Further execution is probably impossible.\n"));
c906108c
SS
3985 }
3986 }
c906108c 3987
c906108c
SS
3988 /* If an auto-display called a function and that got a signal,
3989 delete that auto-display to avoid an infinite recursion. */
3990
3991 if (stopped_by_random_signal)
3992 disable_current_display ();
3993
3994 /* Don't print a message if in the middle of doing a "step n"
3995 operation for n > 1 */
af679fd0
PA
3996 if (target_has_execution
3997 && last.kind != TARGET_WAITKIND_SIGNALLED
3998 && last.kind != TARGET_WAITKIND_EXITED
3999 && inferior_thread ()->step_multi
414c69f7 4000 && inferior_thread ()->stop_step)
c906108c
SS
4001 goto done;
4002
4003 target_terminal_ours ();
4004
7abfe014
DJ
4005 /* Set the current source location. This will also happen if we
4006 display the frame below, but the current SAL will be incorrect
4007 during a user hook-stop function. */
4008 if (target_has_stack && !stop_stack_dummy)
4009 set_current_sal_from_frame (get_current_frame (), 1);
4010
c906108c 4011 if (!target_has_stack)
d51fd4c8 4012 goto done;
c906108c 4013
32400beb
PA
4014 if (last.kind == TARGET_WAITKIND_SIGNALLED
4015 || last.kind == TARGET_WAITKIND_EXITED)
4016 goto done;
4017
c906108c
SS
4018 /* Select innermost stack frame - i.e., current frame is frame 0,
4019 and current location is based on that.
4020 Don't do this on return from a stack dummy routine,
4021 or if the program has exited. */
4022
4023 if (!stop_stack_dummy)
4024 {
0f7d239c 4025 select_frame (get_current_frame ());
c906108c
SS
4026
4027 /* Print current location without a level number, if
c5aa993b
JM
4028 we have changed functions or hit a breakpoint.
4029 Print source line if we have one.
4030 bpstat_print() contains the logic deciding in detail
4031 what to print, based on the event(s) that just occurred. */
c906108c 4032
d01a8610
AS
4033 /* If --batch-silent is enabled then there's no need to print the current
4034 source location, and to try risks causing an error message about
4035 missing source files. */
4036 if (stop_print_frame && !batch_silent)
c906108c
SS
4037 {
4038 int bpstat_ret;
4039 int source_flag;
917317f4 4040 int do_frame_printing = 1;
347bddb7 4041 struct thread_info *tp = inferior_thread ();
c906108c 4042
347bddb7 4043 bpstat_ret = bpstat_print (tp->stop_bpstat);
917317f4
JM
4044 switch (bpstat_ret)
4045 {
4046 case PRINT_UNKNOWN:
b0f4b84b
DJ
4047 /* If we had hit a shared library event breakpoint,
4048 bpstat_print would print out this message. If we hit
4049 an OS-level shared library event, do the same
4050 thing. */
4051 if (last.kind == TARGET_WAITKIND_LOADED)
4052 {
4053 printf_filtered (_("Stopped due to shared library event\n"));
4054 source_flag = SRC_LINE; /* something bogus */
4055 do_frame_printing = 0;
4056 break;
4057 }
4058
aa0cd9c1 4059 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
4060 (or should) carry around the function and does (or
4061 should) use that when doing a frame comparison. */
414c69f7 4062 if (tp->stop_step
347bddb7 4063 && frame_id_eq (tp->step_frame_id,
aa0cd9c1 4064 get_frame_id (get_current_frame ()))
917317f4 4065 && step_start_function == find_pc_function (stop_pc))
488f131b 4066 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 4067 else
488f131b 4068 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4069 break;
4070 case PRINT_SRC_AND_LOC:
488f131b 4071 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
4072 break;
4073 case PRINT_SRC_ONLY:
c5394b80 4074 source_flag = SRC_LINE;
917317f4
JM
4075 break;
4076 case PRINT_NOTHING:
488f131b 4077 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
4078 do_frame_printing = 0;
4079 break;
4080 default:
e2e0b3e5 4081 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 4082 }
c906108c 4083
9dc5e2a9 4084 if (ui_out_is_mi_like_p (uiout))
b1a268e5
VP
4085 {
4086
4087 ui_out_field_int (uiout, "thread-id",
4088 pid_to_thread_id (inferior_ptid));
4089 if (non_stop)
4090 {
4091 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end
4092 (uiout, "stopped-threads");
4093 ui_out_field_int (uiout, NULL,
4094 pid_to_thread_id (inferior_ptid));
4095 do_cleanups (back_to);
4096 }
4097 else
4098 ui_out_field_string (uiout, "stopped-threads", "all");
4099 }
c906108c
SS
4100 /* The behavior of this routine with respect to the source
4101 flag is:
c5394b80
JM
4102 SRC_LINE: Print only source line
4103 LOCATION: Print only location
4104 SRC_AND_LOC: Print location and source line */
917317f4 4105 if (do_frame_printing)
b04f3ab4 4106 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
4107
4108 /* Display the auto-display expressions. */
4109 do_displays ();
4110 }
4111 }
4112
4113 /* Save the function value return registers, if we care.
4114 We might be about to restore their previous contents. */
32400beb 4115 if (inferior_thread ()->proceed_to_finish)
d5c31457
UW
4116 {
4117 /* This should not be necessary. */
4118 if (stop_registers)
4119 regcache_xfree (stop_registers);
4120
4121 /* NB: The copy goes through to the target picking up the value of
4122 all the registers. */
4123 stop_registers = regcache_dup (get_current_regcache ());
4124 }
c906108c
SS
4125
4126 if (stop_stack_dummy)
4127 {
dbe9fe58
AC
4128 /* Pop the empty frame that contains the stack dummy. POP_FRAME
4129 ends with a setting of the current frame, so we can use that
4130 next. */
4131 frame_pop (get_current_frame ());
c906108c 4132 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
4133 Can't rely on restore_inferior_status because that only gets
4134 called if we don't stop in the called function. */
c906108c 4135 stop_pc = read_pc ();
0f7d239c 4136 select_frame (get_current_frame ());
c906108c
SS
4137 }
4138
c906108c
SS
4139done:
4140 annotate_stopped ();
af679fd0
PA
4141 if (!suppress_stop_observer
4142 && !(target_has_execution
4143 && last.kind != TARGET_WAITKIND_SIGNALLED
4144 && last.kind != TARGET_WAITKIND_EXITED
4145 && inferior_thread ()->step_multi))
347bddb7
PA
4146 {
4147 if (!ptid_equal (inferior_ptid, null_ptid))
4148 observer_notify_normal_stop (inferior_thread ()->stop_bpstat);
4149 else
4150 observer_notify_normal_stop (NULL);
4151 }
94cc34af
PA
4152 if (target_has_execution
4153 && last.kind != TARGET_WAITKIND_SIGNALLED
4154 && last.kind != TARGET_WAITKIND_EXITED)
4155 {
347bddb7
PA
4156 /* Delete the breakpoint we stopped at, if it wants to be deleted.
4157 Delete any breakpoint that is to be deleted at the next stop. */
4158 breakpoint_auto_delete (inferior_thread ()->stop_bpstat);
4159
94cc34af
PA
4160 if (!non_stop)
4161 set_running (pid_to_ptid (-1), 0);
4162 else
4163 set_running (inferior_ptid, 0);
4164 }
d51fd4c8
PA
4165
4166 /* Look up the hook_stop and run it (CLI internally handles problem
4167 of stop_command's pre-hook not existing). */
4168 if (stop_command)
4169 catch_errors (hook_stop_stub, stop_command,
4170 "Error while running hook_stop:\n", RETURN_MASK_ALL);
4171
c906108c
SS
4172}
4173
4174static int
96baa820 4175hook_stop_stub (void *cmd)
c906108c 4176{
5913bcb0 4177 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
4178 return (0);
4179}
4180\f
c5aa993b 4181int
96baa820 4182signal_stop_state (int signo)
c906108c 4183{
d6b48e9c 4184 return signal_stop[signo];
c906108c
SS
4185}
4186
c5aa993b 4187int
96baa820 4188signal_print_state (int signo)
c906108c
SS
4189{
4190 return signal_print[signo];
4191}
4192
c5aa993b 4193int
96baa820 4194signal_pass_state (int signo)
c906108c
SS
4195{
4196 return signal_program[signo];
4197}
4198
488f131b 4199int
7bda5e4a 4200signal_stop_update (int signo, int state)
d4f3574e
SS
4201{
4202 int ret = signal_stop[signo];
4203 signal_stop[signo] = state;
4204 return ret;
4205}
4206
488f131b 4207int
7bda5e4a 4208signal_print_update (int signo, int state)
d4f3574e
SS
4209{
4210 int ret = signal_print[signo];
4211 signal_print[signo] = state;
4212 return ret;
4213}
4214
488f131b 4215int
7bda5e4a 4216signal_pass_update (int signo, int state)
d4f3574e
SS
4217{
4218 int ret = signal_program[signo];
4219 signal_program[signo] = state;
4220 return ret;
4221}
4222
c906108c 4223static void
96baa820 4224sig_print_header (void)
c906108c 4225{
a3f17187
AC
4226 printf_filtered (_("\
4227Signal Stop\tPrint\tPass to program\tDescription\n"));
c906108c
SS
4228}
4229
4230static void
96baa820 4231sig_print_info (enum target_signal oursig)
c906108c
SS
4232{
4233 char *name = target_signal_to_name (oursig);
4234 int name_padding = 13 - strlen (name);
96baa820 4235
c906108c
SS
4236 if (name_padding <= 0)
4237 name_padding = 0;
4238
4239 printf_filtered ("%s", name);
488f131b 4240 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
4241 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
4242 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
4243 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
4244 printf_filtered ("%s\n", target_signal_to_string (oursig));
4245}
4246
4247/* Specify how various signals in the inferior should be handled. */
4248
4249static void
96baa820 4250handle_command (char *args, int from_tty)
c906108c
SS
4251{
4252 char **argv;
4253 int digits, wordlen;
4254 int sigfirst, signum, siglast;
4255 enum target_signal oursig;
4256 int allsigs;
4257 int nsigs;
4258 unsigned char *sigs;
4259 struct cleanup *old_chain;
4260
4261 if (args == NULL)
4262 {
e2e0b3e5 4263 error_no_arg (_("signal to handle"));
c906108c
SS
4264 }
4265
4266 /* Allocate and zero an array of flags for which signals to handle. */
4267
4268 nsigs = (int) TARGET_SIGNAL_LAST;
4269 sigs = (unsigned char *) alloca (nsigs);
4270 memset (sigs, 0, nsigs);
4271
4272 /* Break the command line up into args. */
4273
d1a41061 4274 argv = gdb_buildargv (args);
7a292a7a 4275 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4276
4277 /* Walk through the args, looking for signal oursigs, signal names, and
4278 actions. Signal numbers and signal names may be interspersed with
4279 actions, with the actions being performed for all signals cumulatively
4280 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
4281
4282 while (*argv != NULL)
4283 {
4284 wordlen = strlen (*argv);
4285 for (digits = 0; isdigit ((*argv)[digits]); digits++)
4286 {;
4287 }
4288 allsigs = 0;
4289 sigfirst = siglast = -1;
4290
4291 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
4292 {
4293 /* Apply action to all signals except those used by the
4294 debugger. Silently skip those. */
4295 allsigs = 1;
4296 sigfirst = 0;
4297 siglast = nsigs - 1;
4298 }
4299 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
4300 {
4301 SET_SIGS (nsigs, sigs, signal_stop);
4302 SET_SIGS (nsigs, sigs, signal_print);
4303 }
4304 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
4305 {
4306 UNSET_SIGS (nsigs, sigs, signal_program);
4307 }
4308 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
4309 {
4310 SET_SIGS (nsigs, sigs, signal_print);
4311 }
4312 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
4313 {
4314 SET_SIGS (nsigs, sigs, signal_program);
4315 }
4316 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
4317 {
4318 UNSET_SIGS (nsigs, sigs, signal_stop);
4319 }
4320 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
4321 {
4322 SET_SIGS (nsigs, sigs, signal_program);
4323 }
4324 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
4325 {
4326 UNSET_SIGS (nsigs, sigs, signal_print);
4327 UNSET_SIGS (nsigs, sigs, signal_stop);
4328 }
4329 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
4330 {
4331 UNSET_SIGS (nsigs, sigs, signal_program);
4332 }
4333 else if (digits > 0)
4334 {
4335 /* It is numeric. The numeric signal refers to our own
4336 internal signal numbering from target.h, not to host/target
4337 signal number. This is a feature; users really should be
4338 using symbolic names anyway, and the common ones like
4339 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
4340
4341 sigfirst = siglast = (int)
4342 target_signal_from_command (atoi (*argv));
4343 if ((*argv)[digits] == '-')
4344 {
4345 siglast = (int)
4346 target_signal_from_command (atoi ((*argv) + digits + 1));
4347 }
4348 if (sigfirst > siglast)
4349 {
4350 /* Bet he didn't figure we'd think of this case... */
4351 signum = sigfirst;
4352 sigfirst = siglast;
4353 siglast = signum;
4354 }
4355 }
4356 else
4357 {
4358 oursig = target_signal_from_name (*argv);
4359 if (oursig != TARGET_SIGNAL_UNKNOWN)
4360 {
4361 sigfirst = siglast = (int) oursig;
4362 }
4363 else
4364 {
4365 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 4366 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
4367 }
4368 }
4369
4370 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 4371 which signals to apply actions to. */
c906108c
SS
4372
4373 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
4374 {
4375 switch ((enum target_signal) signum)
4376 {
4377 case TARGET_SIGNAL_TRAP:
4378 case TARGET_SIGNAL_INT:
4379 if (!allsigs && !sigs[signum])
4380 {
4381 if (query ("%s is used by the debugger.\n\
488f131b 4382Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
4383 {
4384 sigs[signum] = 1;
4385 }
4386 else
4387 {
a3f17187 4388 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
4389 gdb_flush (gdb_stdout);
4390 }
4391 }
4392 break;
4393 case TARGET_SIGNAL_0:
4394 case TARGET_SIGNAL_DEFAULT:
4395 case TARGET_SIGNAL_UNKNOWN:
4396 /* Make sure that "all" doesn't print these. */
4397 break;
4398 default:
4399 sigs[signum] = 1;
4400 break;
4401 }
4402 }
4403
4404 argv++;
4405 }
4406
39f77062 4407 target_notice_signals (inferior_ptid);
c906108c
SS
4408
4409 if (from_tty)
4410 {
4411 /* Show the results. */
4412 sig_print_header ();
4413 for (signum = 0; signum < nsigs; signum++)
4414 {
4415 if (sigs[signum])
4416 {
4417 sig_print_info (signum);
4418 }
4419 }
4420 }
4421
4422 do_cleanups (old_chain);
4423}
4424
4425static void
96baa820 4426xdb_handle_command (char *args, int from_tty)
c906108c
SS
4427{
4428 char **argv;
4429 struct cleanup *old_chain;
4430
d1a41061
PP
4431 if (args == NULL)
4432 error_no_arg (_("xdb command"));
4433
c906108c
SS
4434 /* Break the command line up into args. */
4435
d1a41061 4436 argv = gdb_buildargv (args);
7a292a7a 4437 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
4438 if (argv[1] != (char *) NULL)
4439 {
4440 char *argBuf;
4441 int bufLen;
4442
4443 bufLen = strlen (argv[0]) + 20;
4444 argBuf = (char *) xmalloc (bufLen);
4445 if (argBuf)
4446 {
4447 int validFlag = 1;
4448 enum target_signal oursig;
4449
4450 oursig = target_signal_from_name (argv[0]);
4451 memset (argBuf, 0, bufLen);
4452 if (strcmp (argv[1], "Q") == 0)
4453 sprintf (argBuf, "%s %s", argv[0], "noprint");
4454 else
4455 {
4456 if (strcmp (argv[1], "s") == 0)
4457 {
4458 if (!signal_stop[oursig])
4459 sprintf (argBuf, "%s %s", argv[0], "stop");
4460 else
4461 sprintf (argBuf, "%s %s", argv[0], "nostop");
4462 }
4463 else if (strcmp (argv[1], "i") == 0)
4464 {
4465 if (!signal_program[oursig])
4466 sprintf (argBuf, "%s %s", argv[0], "pass");
4467 else
4468 sprintf (argBuf, "%s %s", argv[0], "nopass");
4469 }
4470 else if (strcmp (argv[1], "r") == 0)
4471 {
4472 if (!signal_print[oursig])
4473 sprintf (argBuf, "%s %s", argv[0], "print");
4474 else
4475 sprintf (argBuf, "%s %s", argv[0], "noprint");
4476 }
4477 else
4478 validFlag = 0;
4479 }
4480 if (validFlag)
4481 handle_command (argBuf, from_tty);
4482 else
a3f17187 4483 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 4484 if (argBuf)
b8c9b27d 4485 xfree (argBuf);
c906108c
SS
4486 }
4487 }
4488 do_cleanups (old_chain);
4489}
4490
4491/* Print current contents of the tables set by the handle command.
4492 It is possible we should just be printing signals actually used
4493 by the current target (but for things to work right when switching
4494 targets, all signals should be in the signal tables). */
4495
4496static void
96baa820 4497signals_info (char *signum_exp, int from_tty)
c906108c
SS
4498{
4499 enum target_signal oursig;
4500 sig_print_header ();
4501
4502 if (signum_exp)
4503 {
4504 /* First see if this is a symbol name. */
4505 oursig = target_signal_from_name (signum_exp);
4506 if (oursig == TARGET_SIGNAL_UNKNOWN)
4507 {
4508 /* No, try numeric. */
4509 oursig =
bb518678 4510 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
4511 }
4512 sig_print_info (oursig);
4513 return;
4514 }
4515
4516 printf_filtered ("\n");
4517 /* These ugly casts brought to you by the native VAX compiler. */
4518 for (oursig = TARGET_SIGNAL_FIRST;
4519 (int) oursig < (int) TARGET_SIGNAL_LAST;
4520 oursig = (enum target_signal) ((int) oursig + 1))
4521 {
4522 QUIT;
4523
4524 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 4525 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
4526 sig_print_info (oursig);
4527 }
4528
a3f17187 4529 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
c906108c
SS
4530}
4531\f
7a292a7a
SS
4532struct inferior_status
4533{
4534 enum target_signal stop_signal;
4535 CORE_ADDR stop_pc;
4536 bpstat stop_bpstat;
4537 int stop_step;
4538 int stop_stack_dummy;
4539 int stopped_by_random_signal;
ca67fcb8 4540 int stepping_over_breakpoint;
7a292a7a
SS
4541 CORE_ADDR step_range_start;
4542 CORE_ADDR step_range_end;
aa0cd9c1 4543 struct frame_id step_frame_id;
5fbbeb29 4544 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
4545 CORE_ADDR step_resume_break_address;
4546 int stop_after_trap;
c0236d92 4547 int stop_soon;
7a292a7a
SS
4548
4549 /* These are here because if call_function_by_hand has written some
4550 registers and then decides to call error(), we better not have changed
4551 any registers. */
72cec141 4552 struct regcache *registers;
7a292a7a 4553
101dcfbe
AC
4554 /* A frame unique identifier. */
4555 struct frame_id selected_frame_id;
4556
7a292a7a
SS
4557 int breakpoint_proceeded;
4558 int restore_stack_info;
4559 int proceed_to_finish;
4560};
4561
7a292a7a 4562void
96baa820
JM
4563write_inferior_status_register (struct inferior_status *inf_status, int regno,
4564 LONGEST val)
7a292a7a 4565{
3acba339 4566 int size = register_size (current_gdbarch, regno);
7a292a7a
SS
4567 void *buf = alloca (size);
4568 store_signed_integer (buf, size, val);
0818c12a 4569 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
4570}
4571
c906108c
SS
4572/* Save all of the information associated with the inferior<==>gdb
4573 connection. INF_STATUS is a pointer to a "struct inferior_status"
4574 (defined in inferior.h). */
4575
7a292a7a 4576struct inferior_status *
96baa820 4577save_inferior_status (int restore_stack_info)
c906108c 4578{
72cec141 4579 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
4e1c45ea 4580 struct thread_info *tp = inferior_thread ();
d6b48e9c 4581 struct inferior *inf = current_inferior ();
7a292a7a 4582
2020b7ab 4583 inf_status->stop_signal = tp->stop_signal;
c906108c 4584 inf_status->stop_pc = stop_pc;
414c69f7 4585 inf_status->stop_step = tp->stop_step;
c906108c
SS
4586 inf_status->stop_stack_dummy = stop_stack_dummy;
4587 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4e1c45ea
PA
4588 inf_status->stepping_over_breakpoint = tp->trap_expected;
4589 inf_status->step_range_start = tp->step_range_start;
4590 inf_status->step_range_end = tp->step_range_end;
4591 inf_status->step_frame_id = tp->step_frame_id;
078130d0 4592 inf_status->step_over_calls = tp->step_over_calls;
c906108c 4593 inf_status->stop_after_trap = stop_after_trap;
d6b48e9c 4594 inf_status->stop_soon = inf->stop_soon;
c906108c
SS
4595 /* Save original bpstat chain here; replace it with copy of chain.
4596 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4597 hand them back the original chain when restore_inferior_status is
4598 called. */
347bddb7
PA
4599 inf_status->stop_bpstat = tp->stop_bpstat;
4600 tp->stop_bpstat = bpstat_copy (tp->stop_bpstat);
c906108c
SS
4601 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4602 inf_status->restore_stack_info = restore_stack_info;
32400beb 4603 inf_status->proceed_to_finish = tp->proceed_to_finish;
c5aa993b 4604
594f7785 4605 inf_status->registers = regcache_dup (get_current_regcache ());
c906108c 4606
206415a3 4607 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
7a292a7a 4608 return inf_status;
c906108c
SS
4609}
4610
c906108c 4611static int
96baa820 4612restore_selected_frame (void *args)
c906108c 4613{
488f131b 4614 struct frame_id *fid = (struct frame_id *) args;
c906108c 4615 struct frame_info *frame;
c906108c 4616
101dcfbe 4617 frame = frame_find_by_id (*fid);
c906108c 4618
aa0cd9c1
AC
4619 /* If inf_status->selected_frame_id is NULL, there was no previously
4620 selected frame. */
101dcfbe 4621 if (frame == NULL)
c906108c 4622 {
8a3fe4f8 4623 warning (_("Unable to restore previously selected frame."));
c906108c
SS
4624 return 0;
4625 }
4626
0f7d239c 4627 select_frame (frame);
c906108c
SS
4628
4629 return (1);
4630}
4631
4632void
96baa820 4633restore_inferior_status (struct inferior_status *inf_status)
c906108c 4634{
4e1c45ea 4635 struct thread_info *tp = inferior_thread ();
d6b48e9c 4636 struct inferior *inf = current_inferior ();
4e1c45ea 4637
2020b7ab 4638 tp->stop_signal = inf_status->stop_signal;
c906108c 4639 stop_pc = inf_status->stop_pc;
414c69f7 4640 tp->stop_step = inf_status->stop_step;
c906108c
SS
4641 stop_stack_dummy = inf_status->stop_stack_dummy;
4642 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4e1c45ea
PA
4643 tp->trap_expected = inf_status->stepping_over_breakpoint;
4644 tp->step_range_start = inf_status->step_range_start;
4645 tp->step_range_end = inf_status->step_range_end;
4646 tp->step_frame_id = inf_status->step_frame_id;
078130d0 4647 tp->step_over_calls = inf_status->step_over_calls;
c906108c 4648 stop_after_trap = inf_status->stop_after_trap;
d6b48e9c 4649 inf->stop_soon = inf_status->stop_soon;
347bddb7
PA
4650 bpstat_clear (&tp->stop_bpstat);
4651 tp->stop_bpstat = inf_status->stop_bpstat;
c906108c 4652 breakpoint_proceeded = inf_status->breakpoint_proceeded;
32400beb 4653 tp->proceed_to_finish = inf_status->proceed_to_finish;
c906108c 4654
c906108c
SS
4655 /* The inferior can be gone if the user types "print exit(0)"
4656 (and perhaps other times). */
4657 if (target_has_execution)
72cec141 4658 /* NB: The register write goes through to the target. */
594f7785 4659 regcache_cpy (get_current_regcache (), inf_status->registers);
72cec141 4660 regcache_xfree (inf_status->registers);
c906108c 4661
c906108c
SS
4662 /* FIXME: If we are being called after stopping in a function which
4663 is called from gdb, we should not be trying to restore the
4664 selected frame; it just prints a spurious error message (The
4665 message is useful, however, in detecting bugs in gdb (like if gdb
4666 clobbers the stack)). In fact, should we be restoring the
4667 inferior status at all in that case? . */
4668
4669 if (target_has_stack && inf_status->restore_stack_info)
4670 {
c906108c 4671 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
4672 walking the stack might encounter a garbage pointer and
4673 error() trying to dereference it. */
488f131b
JB
4674 if (catch_errors
4675 (restore_selected_frame, &inf_status->selected_frame_id,
4676 "Unable to restore previously selected frame:\n",
4677 RETURN_MASK_ERROR) == 0)
c906108c
SS
4678 /* Error in restoring the selected frame. Select the innermost
4679 frame. */
0f7d239c 4680 select_frame (get_current_frame ());
c906108c
SS
4681
4682 }
c906108c 4683
72cec141 4684 xfree (inf_status);
7a292a7a 4685}
c906108c 4686
74b7792f
AC
4687static void
4688do_restore_inferior_status_cleanup (void *sts)
4689{
4690 restore_inferior_status (sts);
4691}
4692
4693struct cleanup *
4694make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4695{
4696 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4697}
4698
c906108c 4699void
96baa820 4700discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4701{
4702 /* See save_inferior_status for info on stop_bpstat. */
4703 bpstat_clear (&inf_status->stop_bpstat);
72cec141 4704 regcache_xfree (inf_status->registers);
72cec141 4705 xfree (inf_status);
7a292a7a
SS
4706}
4707
47932f85 4708int
3a3e9ee3 4709inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4710{
4711 struct target_waitstatus last;
4712 ptid_t last_ptid;
4713
4714 get_last_target_status (&last_ptid, &last);
4715
4716 if (last.kind != TARGET_WAITKIND_FORKED)
4717 return 0;
4718
3a3e9ee3 4719 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4720 return 0;
4721
4722 *child_pid = last.value.related_pid;
4723 return 1;
4724}
4725
4726int
3a3e9ee3 4727inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
4728{
4729 struct target_waitstatus last;
4730 ptid_t last_ptid;
4731
4732 get_last_target_status (&last_ptid, &last);
4733
4734 if (last.kind != TARGET_WAITKIND_VFORKED)
4735 return 0;
4736
3a3e9ee3 4737 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4738 return 0;
4739
4740 *child_pid = last.value.related_pid;
4741 return 1;
4742}
4743
4744int
3a3e9ee3 4745inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
4746{
4747 struct target_waitstatus last;
4748 ptid_t last_ptid;
4749
4750 get_last_target_status (&last_ptid, &last);
4751
4752 if (last.kind != TARGET_WAITKIND_EXECD)
4753 return 0;
4754
3a3e9ee3 4755 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
4756 return 0;
4757
4758 *execd_pathname = xstrdup (last.value.execd_pathname);
4759 return 1;
4760}
4761
ca6724c1
KB
4762/* Oft used ptids */
4763ptid_t null_ptid;
4764ptid_t minus_one_ptid;
4765
4766/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 4767
ca6724c1
KB
4768ptid_t
4769ptid_build (int pid, long lwp, long tid)
4770{
4771 ptid_t ptid;
4772
4773 ptid.pid = pid;
4774 ptid.lwp = lwp;
4775 ptid.tid = tid;
4776 return ptid;
4777}
4778
4779/* Create a ptid from just a pid. */
4780
4781ptid_t
4782pid_to_ptid (int pid)
4783{
4784 return ptid_build (pid, 0, 0);
4785}
4786
4787/* Fetch the pid (process id) component from a ptid. */
4788
4789int
4790ptid_get_pid (ptid_t ptid)
4791{
4792 return ptid.pid;
4793}
4794
4795/* Fetch the lwp (lightweight process) component from a ptid. */
4796
4797long
4798ptid_get_lwp (ptid_t ptid)
4799{
4800 return ptid.lwp;
4801}
4802
4803/* Fetch the tid (thread id) component from a ptid. */
4804
4805long
4806ptid_get_tid (ptid_t ptid)
4807{
4808 return ptid.tid;
4809}
4810
4811/* ptid_equal() is used to test equality of two ptids. */
4812
4813int
4814ptid_equal (ptid_t ptid1, ptid_t ptid2)
4815{
4816 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 4817 && ptid1.tid == ptid2.tid);
ca6724c1
KB
4818}
4819
4820/* restore_inferior_ptid() will be used by the cleanup machinery
4821 to restore the inferior_ptid value saved in a call to
4822 save_inferior_ptid(). */
ce696e05
KB
4823
4824static void
4825restore_inferior_ptid (void *arg)
4826{
4827 ptid_t *saved_ptid_ptr = arg;
4828 inferior_ptid = *saved_ptid_ptr;
4829 xfree (arg);
4830}
4831
4832/* Save the value of inferior_ptid so that it may be restored by a
4833 later call to do_cleanups(). Returns the struct cleanup pointer
4834 needed for later doing the cleanup. */
4835
4836struct cleanup *
4837save_inferior_ptid (void)
4838{
4839 ptid_t *saved_ptid_ptr;
4840
4841 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
4842 *saved_ptid_ptr = inferior_ptid;
4843 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
4844}
c5aa993b 4845\f
488f131b 4846
b2175913
MS
4847/* User interface for reverse debugging:
4848 Set exec-direction / show exec-direction commands
4849 (returns error unless target implements to_set_exec_direction method). */
4850
4851enum exec_direction_kind execution_direction = EXEC_FORWARD;
4852static const char exec_forward[] = "forward";
4853static const char exec_reverse[] = "reverse";
4854static const char *exec_direction = exec_forward;
4855static const char *exec_direction_names[] = {
4856 exec_forward,
4857 exec_reverse,
4858 NULL
4859};
4860
4861static void
4862set_exec_direction_func (char *args, int from_tty,
4863 struct cmd_list_element *cmd)
4864{
4865 if (target_can_execute_reverse)
4866 {
4867 if (!strcmp (exec_direction, exec_forward))
4868 execution_direction = EXEC_FORWARD;
4869 else if (!strcmp (exec_direction, exec_reverse))
4870 execution_direction = EXEC_REVERSE;
4871 }
4872}
4873
4874static void
4875show_exec_direction_func (struct ui_file *out, int from_tty,
4876 struct cmd_list_element *cmd, const char *value)
4877{
4878 switch (execution_direction) {
4879 case EXEC_FORWARD:
4880 fprintf_filtered (out, _("Forward.\n"));
4881 break;
4882 case EXEC_REVERSE:
4883 fprintf_filtered (out, _("Reverse.\n"));
4884 break;
4885 case EXEC_ERROR:
4886 default:
4887 fprintf_filtered (out,
4888 _("Forward (target `%s' does not support exec-direction).\n"),
4889 target_shortname);
4890 break;
4891 }
4892}
4893
4894/* User interface for non-stop mode. */
4895
ad52ddc6
PA
4896int non_stop = 0;
4897static int non_stop_1 = 0;
4898
4899static void
4900set_non_stop (char *args, int from_tty,
4901 struct cmd_list_element *c)
4902{
4903 if (target_has_execution)
4904 {
4905 non_stop_1 = non_stop;
4906 error (_("Cannot change this setting while the inferior is running."));
4907 }
4908
4909 non_stop = non_stop_1;
4910}
4911
4912static void
4913show_non_stop (struct ui_file *file, int from_tty,
4914 struct cmd_list_element *c, const char *value)
4915{
4916 fprintf_filtered (file,
4917 _("Controlling the inferior in non-stop mode is %s.\n"),
4918 value);
4919}
4920
4921
c906108c 4922void
96baa820 4923_initialize_infrun (void)
c906108c 4924{
52f0bd74
AC
4925 int i;
4926 int numsigs;
c906108c
SS
4927 struct cmd_list_element *c;
4928
1bedd215
AC
4929 add_info ("signals", signals_info, _("\
4930What debugger does when program gets various signals.\n\
4931Specify a signal as argument to print info on that signal only."));
c906108c
SS
4932 add_info_alias ("handle", "signals", 0);
4933
1bedd215
AC
4934 add_com ("handle", class_run, handle_command, _("\
4935Specify how to handle a signal.\n\
c906108c
SS
4936Args are signals and actions to apply to those signals.\n\
4937Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4938from 1-15 are allowed for compatibility with old versions of GDB.\n\
4939Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4940The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4941used by the debugger, typically SIGTRAP and SIGINT.\n\
4942Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
4943\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4944Stop means reenter debugger if this signal happens (implies print).\n\
4945Print means print a message if this signal happens.\n\
4946Pass means let program see this signal; otherwise program doesn't know.\n\
4947Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4948Pass and Stop may be combined."));
c906108c
SS
4949 if (xdb_commands)
4950 {
1bedd215
AC
4951 add_com ("lz", class_info, signals_info, _("\
4952What debugger does when program gets various signals.\n\
4953Specify a signal as argument to print info on that signal only."));
4954 add_com ("z", class_run, xdb_handle_command, _("\
4955Specify how to handle a signal.\n\
c906108c
SS
4956Args are signals and actions to apply to those signals.\n\
4957Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4958from 1-15 are allowed for compatibility with old versions of GDB.\n\
4959Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4960The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
4961used by the debugger, typically SIGTRAP and SIGINT.\n\
4962Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
4963\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4964nopass), \"Q\" (noprint)\n\
4965Stop means reenter debugger if this signal happens (implies print).\n\
4966Print means print a message if this signal happens.\n\
4967Pass means let program see this signal; otherwise program doesn't know.\n\
4968Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 4969Pass and Stop may be combined."));
c906108c
SS
4970 }
4971
4972 if (!dbx_commands)
1a966eab
AC
4973 stop_command = add_cmd ("stop", class_obscure,
4974 not_just_help_class_command, _("\
4975There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 4976This allows you to set a list of commands to be run each time execution\n\
1a966eab 4977of the program stops."), &cmdlist);
c906108c 4978
85c07804
AC
4979 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
4980Set inferior debugging."), _("\
4981Show inferior debugging."), _("\
4982When non-zero, inferior specific debugging is enabled."),
4983 NULL,
920d2a44 4984 show_debug_infrun,
85c07804 4985 &setdebuglist, &showdebuglist);
527159b7 4986
237fc4c9
PA
4987 add_setshow_boolean_cmd ("displaced", class_maintenance, &debug_displaced, _("\
4988Set displaced stepping debugging."), _("\
4989Show displaced stepping debugging."), _("\
4990When non-zero, displaced stepping specific debugging is enabled."),
4991 NULL,
4992 show_debug_displaced,
4993 &setdebuglist, &showdebuglist);
4994
ad52ddc6
PA
4995 add_setshow_boolean_cmd ("non-stop", no_class,
4996 &non_stop_1, _("\
4997Set whether gdb controls the inferior in non-stop mode."), _("\
4998Show whether gdb controls the inferior in non-stop mode."), _("\
4999When debugging a multi-threaded program and this setting is\n\
5000off (the default, also called all-stop mode), when one thread stops\n\
5001(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
5002all other threads in the program while you interact with the thread of\n\
5003interest. When you continue or step a thread, you can allow the other\n\
5004threads to run, or have them remain stopped, but while you inspect any\n\
5005thread's state, all threads stop.\n\
5006\n\
5007In non-stop mode, when one thread stops, other threads can continue\n\
5008to run freely. You'll be able to step each thread independently,\n\
5009leave it stopped or free to run as needed."),
5010 set_non_stop,
5011 show_non_stop,
5012 &setlist,
5013 &showlist);
5014
c906108c 5015 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 5016 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
5017 signal_print = (unsigned char *)
5018 xmalloc (sizeof (signal_print[0]) * numsigs);
5019 signal_program = (unsigned char *)
5020 xmalloc (sizeof (signal_program[0]) * numsigs);
5021 for (i = 0; i < numsigs; i++)
5022 {
5023 signal_stop[i] = 1;
5024 signal_print[i] = 1;
5025 signal_program[i] = 1;
5026 }
5027
5028 /* Signals caused by debugger's own actions
5029 should not be given to the program afterwards. */
5030 signal_program[TARGET_SIGNAL_TRAP] = 0;
5031 signal_program[TARGET_SIGNAL_INT] = 0;
5032
5033 /* Signals that are not errors should not normally enter the debugger. */
5034 signal_stop[TARGET_SIGNAL_ALRM] = 0;
5035 signal_print[TARGET_SIGNAL_ALRM] = 0;
5036 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
5037 signal_print[TARGET_SIGNAL_VTALRM] = 0;
5038 signal_stop[TARGET_SIGNAL_PROF] = 0;
5039 signal_print[TARGET_SIGNAL_PROF] = 0;
5040 signal_stop[TARGET_SIGNAL_CHLD] = 0;
5041 signal_print[TARGET_SIGNAL_CHLD] = 0;
5042 signal_stop[TARGET_SIGNAL_IO] = 0;
5043 signal_print[TARGET_SIGNAL_IO] = 0;
5044 signal_stop[TARGET_SIGNAL_POLL] = 0;
5045 signal_print[TARGET_SIGNAL_POLL] = 0;
5046 signal_stop[TARGET_SIGNAL_URG] = 0;
5047 signal_print[TARGET_SIGNAL_URG] = 0;
5048 signal_stop[TARGET_SIGNAL_WINCH] = 0;
5049 signal_print[TARGET_SIGNAL_WINCH] = 0;
5050
cd0fc7c3
SS
5051 /* These signals are used internally by user-level thread
5052 implementations. (See signal(5) on Solaris.) Like the above
5053 signals, a healthy program receives and handles them as part of
5054 its normal operation. */
5055 signal_stop[TARGET_SIGNAL_LWP] = 0;
5056 signal_print[TARGET_SIGNAL_LWP] = 0;
5057 signal_stop[TARGET_SIGNAL_WAITING] = 0;
5058 signal_print[TARGET_SIGNAL_WAITING] = 0;
5059 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
5060 signal_print[TARGET_SIGNAL_CANCEL] = 0;
5061
85c07804
AC
5062 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
5063 &stop_on_solib_events, _("\
5064Set stopping for shared library events."), _("\
5065Show stopping for shared library events."), _("\
c906108c
SS
5066If nonzero, gdb will give control to the user when the dynamic linker\n\
5067notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
5068to the user would be loading/unloading of a new library."),
5069 NULL,
920d2a44 5070 show_stop_on_solib_events,
85c07804 5071 &setlist, &showlist);
c906108c 5072
7ab04401
AC
5073 add_setshow_enum_cmd ("follow-fork-mode", class_run,
5074 follow_fork_mode_kind_names,
5075 &follow_fork_mode_string, _("\
5076Set debugger response to a program call of fork or vfork."), _("\
5077Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
5078A fork or vfork creates a new process. follow-fork-mode can be:\n\
5079 parent - the original process is debugged after a fork\n\
5080 child - the new process is debugged after a fork\n\
ea1dd7bc 5081The unfollowed process will continue to run.\n\
7ab04401
AC
5082By default, the debugger will follow the parent process."),
5083 NULL,
920d2a44 5084 show_follow_fork_mode_string,
7ab04401
AC
5085 &setlist, &showlist);
5086
5087 add_setshow_enum_cmd ("scheduler-locking", class_run,
5088 scheduler_enums, &scheduler_mode, _("\
5089Set mode for locking scheduler during execution."), _("\
5090Show mode for locking scheduler during execution."), _("\
c906108c
SS
5091off == no locking (threads may preempt at any time)\n\
5092on == full locking (no thread except the current thread may run)\n\
5093step == scheduler locked during every single-step operation.\n\
5094 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
5095 Other threads may run while stepping over a function call ('next')."),
5096 set_schedlock_func, /* traps on target vector */
920d2a44 5097 show_scheduler_mode,
7ab04401 5098 &setlist, &showlist);
5fbbeb29 5099
5bf193a2
AC
5100 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
5101Set mode of the step operation."), _("\
5102Show mode of the step operation."), _("\
5103When set, doing a step over a function without debug line information\n\
5104will stop at the first instruction of that function. Otherwise, the\n\
5105function is skipped and the step command stops at a different source line."),
5106 NULL,
920d2a44 5107 show_step_stop_if_no_debug,
5bf193a2 5108 &setlist, &showlist);
ca6724c1 5109
237fc4c9 5110 add_setshow_boolean_cmd ("can-use-displaced-stepping", class_maintenance,
1f41b062 5111 &can_use_displaced_stepping, _("\
237fc4c9
PA
5112Set debugger's willingness to use displaced stepping."), _("\
5113Show debugger's willingness to use displaced stepping."), _("\
1f41b062 5114If zero, gdb will not use displaced stepping to step over\n\
237fc4c9 5115breakpoints, even if such is supported by the target."),
1f41b062
MS
5116 NULL,
5117 show_can_use_displaced_stepping,
5118 &maintenance_set_cmdlist,
237fc4c9
PA
5119 &maintenance_show_cmdlist);
5120
b2175913
MS
5121 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
5122 &exec_direction, _("Set direction of execution.\n\
5123Options are 'forward' or 'reverse'."),
5124 _("Show direction of execution (forward/reverse)."),
5125 _("Tells gdb whether to execute forward or backward."),
5126 set_exec_direction_func, show_exec_direction_func,
5127 &setlist, &showlist);
5128
ca6724c1
KB
5129 /* ptid initializations */
5130 null_ptid = ptid_build (0, 0, 0);
5131 minus_one_ptid = ptid_build (-1, 0, 0);
5132 inferior_ptid = null_ptid;
5133 target_last_wait_ptid = minus_one_ptid;
237fc4c9 5134 displaced_step_ptid = null_ptid;
5231c1fd
PA
5135
5136 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
c906108c 5137}
This page took 1.025581 seconds and 4 git commands to generate.