2000-12-17 Elena Zannoni <ezannoni@kwikemart.cygnus.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
c906108c 1/* Target-struct-independent code to start (run) and stop an inferior process.
c5394b80 2 Copyright 1986-1989, 1991-2000 Free Software Foundation, Inc.
c906108c 3
c5aa993b 4 This file is part of GDB.
c906108c 5
c5aa993b
JM
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
c906108c 10
c5aa993b
JM
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
c906108c 15
c5aa993b
JM
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
c906108c
SS
20
21#include "defs.h"
22#include "gdb_string.h"
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "gdbthread.h"
33#include "annotate.h"
34#include "symfile.h" /* for overlay functions */
7a292a7a 35#include "top.h"
c906108c 36#include <signal.h>
2acceee2 37#include "inf-loop.h"
c906108c
SS
38
39/* Prototypes for local functions */
40
96baa820 41static void signals_info (char *, int);
c906108c 42
96baa820 43static void handle_command (char *, int);
c906108c 44
96baa820 45static void sig_print_info (enum target_signal);
c906108c 46
96baa820 47static void sig_print_header (void);
c906108c 48
74b7792f 49static void resume_cleanups (void *);
c906108c 50
96baa820 51static int hook_stop_stub (void *);
c906108c 52
96baa820 53static void delete_breakpoint_current_contents (void *);
c906108c 54
96baa820
JM
55static void set_follow_fork_mode_command (char *arg, int from_tty,
56 struct cmd_list_element * c);
7a292a7a 57
96baa820
JM
58static struct inferior_status *xmalloc_inferior_status (void);
59
60static void free_inferior_status (struct inferior_status *);
61
62static int restore_selected_frame (void *);
63
64static void build_infrun (void);
65
66static void follow_inferior_fork (int parent_pid, int child_pid,
67 int has_forked, int has_vforked);
68
69static void follow_fork (int parent_pid, int child_pid);
70
71static void follow_vfork (int parent_pid, int child_pid);
72
73static void set_schedlock_func (char *args, int from_tty,
74 struct cmd_list_element * c);
75
96baa820
JM
76struct execution_control_state;
77
78static int currently_stepping (struct execution_control_state *ecs);
79
80static void xdb_handle_command (char *args, int from_tty);
81
82void _initialize_infrun (void);
43ff13b4 83
c906108c
SS
84int inferior_ignoring_startup_exec_events = 0;
85int inferior_ignoring_leading_exec_events = 0;
86
5fbbeb29
CF
87/* When set, stop the 'step' command if we enter a function which has
88 no line number information. The normal behavior is that we step
89 over such function. */
90int step_stop_if_no_debug = 0;
91
43ff13b4 92/* In asynchronous mode, but simulating synchronous execution. */
96baa820 93
43ff13b4
JM
94int sync_execution = 0;
95
c906108c
SS
96/* wait_for_inferior and normal_stop use this to notify the user
97 when the inferior stopped in a different thread than it had been
96baa820
JM
98 running in. */
99
c3f6f71d 100static int previous_inferior_pid;
7a292a7a
SS
101
102/* This is true for configurations that may follow through execl() and
103 similar functions. At present this is only true for HP-UX native. */
104
105#ifndef MAY_FOLLOW_EXEC
106#define MAY_FOLLOW_EXEC (0)
c906108c
SS
107#endif
108
7a292a7a
SS
109static int may_follow_exec = MAY_FOLLOW_EXEC;
110
c906108c
SS
111/* resume and wait_for_inferior use this to ensure that when
112 stepping over a hit breakpoint in a threaded application
113 only the thread that hit the breakpoint is stepped and the
114 other threads don't continue. This prevents having another
115 thread run past the breakpoint while it is temporarily
116 removed.
117
118 This is not thread-specific, so it isn't saved as part of
119 the infrun state.
120
121 Versions of gdb which don't use the "step == this thread steps
122 and others continue" model but instead use the "step == this
96baa820
JM
123 thread steps and others wait" shouldn't do this. */
124
c906108c
SS
125static int thread_step_needed = 0;
126
7a292a7a
SS
127/* This is true if thread_step_needed should actually be used. At
128 present this is only true for HP-UX native. */
129
130#ifndef USE_THREAD_STEP_NEEDED
131#define USE_THREAD_STEP_NEEDED (0)
132#endif
133
134static int use_thread_step_needed = USE_THREAD_STEP_NEEDED;
135
c906108c
SS
136/* GET_LONGJMP_TARGET returns the PC at which longjmp() will resume the
137 program. It needs to examine the jmp_buf argument and extract the PC
138 from it. The return value is non-zero on success, zero otherwise. */
139
140#ifndef GET_LONGJMP_TARGET
141#define GET_LONGJMP_TARGET(PC_ADDR) 0
142#endif
143
144
145/* Some machines have trampoline code that sits between function callers
146 and the actual functions themselves. If this machine doesn't have
147 such things, disable their processing. */
148
149#ifndef SKIP_TRAMPOLINE_CODE
150#define SKIP_TRAMPOLINE_CODE(pc) 0
151#endif
152
153/* Dynamic function trampolines are similar to solib trampolines in that they
154 are between the caller and the callee. The difference is that when you
155 enter a dynamic trampoline, you can't determine the callee's address. Some
156 (usually complex) code needs to run in the dynamic trampoline to figure out
157 the callee's address. This macro is usually called twice. First, when we
158 enter the trampoline (looks like a normal function call at that point). It
159 should return the PC of a point within the trampoline where the callee's
160 address is known. Second, when we hit the breakpoint, this routine returns
161 the callee's address. At that point, things proceed as per a step resume
162 breakpoint. */
163
164#ifndef DYNAMIC_TRAMPOLINE_NEXTPC
165#define DYNAMIC_TRAMPOLINE_NEXTPC(pc) 0
166#endif
167
d4f3574e
SS
168/* If the program uses ELF-style shared libraries, then calls to
169 functions in shared libraries go through stubs, which live in a
170 table called the PLT (Procedure Linkage Table). The first time the
171 function is called, the stub sends control to the dynamic linker,
172 which looks up the function's real address, patches the stub so
173 that future calls will go directly to the function, and then passes
174 control to the function.
175
176 If we are stepping at the source level, we don't want to see any of
177 this --- we just want to skip over the stub and the dynamic linker.
178 The simple approach is to single-step until control leaves the
179 dynamic linker.
180
181 However, on some systems (e.g., Red Hat Linux 5.2) the dynamic
182 linker calls functions in the shared C library, so you can't tell
183 from the PC alone whether the dynamic linker is still running. In
184 this case, we use a step-resume breakpoint to get us past the
185 dynamic linker, as if we were using "next" to step over a function
186 call.
187
188 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
189 linker code or not. Normally, this means we single-step. However,
190 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
191 address where we can place a step-resume breakpoint to get past the
192 linker's symbol resolution function.
193
194 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
195 pretty portable way, by comparing the PC against the address ranges
196 of the dynamic linker's sections.
197
198 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
199 it depends on internal details of the dynamic linker. It's usually
200 not too hard to figure out where to put a breakpoint, but it
201 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
202 sanity checking. If it can't figure things out, returning zero and
203 getting the (possibly confusing) stepping behavior is better than
204 signalling an error, which will obscure the change in the
205 inferior's state. */
c906108c
SS
206
207#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
208#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
209#endif
210
d4f3574e
SS
211#ifndef SKIP_SOLIB_RESOLVER
212#define SKIP_SOLIB_RESOLVER(pc) 0
213#endif
214
c906108c
SS
215/* For SVR4 shared libraries, each call goes through a small piece of
216 trampoline code in the ".plt" section. IN_SOLIB_CALL_TRAMPOLINE evaluates
217 to nonzero if we are current stopped in one of these. */
218
219#ifndef IN_SOLIB_CALL_TRAMPOLINE
220#define IN_SOLIB_CALL_TRAMPOLINE(pc,name) 0
221#endif
222
223/* In some shared library schemes, the return path from a shared library
224 call may need to go through a trampoline too. */
225
226#ifndef IN_SOLIB_RETURN_TRAMPOLINE
227#define IN_SOLIB_RETURN_TRAMPOLINE(pc,name) 0
228#endif
229
230/* This function returns TRUE if pc is the address of an instruction
231 that lies within the dynamic linker (such as the event hook, or the
232 dld itself).
233
234 This function must be used only when a dynamic linker event has
235 been caught, and the inferior is being stepped out of the hook, or
236 undefined results are guaranteed. */
237
238#ifndef SOLIB_IN_DYNAMIC_LINKER
239#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
240#endif
241
242/* On MIPS16, a function that returns a floating point value may call
243 a library helper function to copy the return value to a floating point
244 register. The IGNORE_HELPER_CALL macro returns non-zero if we
245 should ignore (i.e. step over) this function call. */
246#ifndef IGNORE_HELPER_CALL
247#define IGNORE_HELPER_CALL(pc) 0
248#endif
249
250/* On some systems, the PC may be left pointing at an instruction that won't
251 actually be executed. This is usually indicated by a bit in the PSW. If
252 we find ourselves in such a state, then we step the target beyond the
253 nullified instruction before returning control to the user so as to avoid
254 confusion. */
255
256#ifndef INSTRUCTION_NULLIFIED
257#define INSTRUCTION_NULLIFIED 0
258#endif
259
c2c6d25f
JM
260/* We can't step off a permanent breakpoint in the ordinary way, because we
261 can't remove it. Instead, we have to advance the PC to the next
262 instruction. This macro should expand to a pointer to a function that
263 does that, or zero if we have no such function. If we don't have a
264 definition for it, we have to report an error. */
265#ifndef SKIP_PERMANENT_BREAKPOINT
266#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
267static void
c2d11a7d 268default_skip_permanent_breakpoint (void)
c2c6d25f
JM
269{
270 error_begin ();
271 fprintf_filtered (gdb_stderr, "\
272The program is stopped at a permanent breakpoint, but GDB does not know\n\
273how to step past a permanent breakpoint on this architecture. Try using\n\
274a command like `return' or `jump' to continue execution.\n");
275 return_to_top_level (RETURN_ERROR);
276}
277#endif
278
279
7a292a7a
SS
280/* Convert the #defines into values. This is temporary until wfi control
281 flow is completely sorted out. */
282
283#ifndef HAVE_STEPPABLE_WATCHPOINT
284#define HAVE_STEPPABLE_WATCHPOINT 0
285#else
286#undef HAVE_STEPPABLE_WATCHPOINT
287#define HAVE_STEPPABLE_WATCHPOINT 1
288#endif
289
290#ifndef HAVE_NONSTEPPABLE_WATCHPOINT
291#define HAVE_NONSTEPPABLE_WATCHPOINT 0
292#else
293#undef HAVE_NONSTEPPABLE_WATCHPOINT
294#define HAVE_NONSTEPPABLE_WATCHPOINT 1
295#endif
296
297#ifndef HAVE_CONTINUABLE_WATCHPOINT
298#define HAVE_CONTINUABLE_WATCHPOINT 0
299#else
300#undef HAVE_CONTINUABLE_WATCHPOINT
301#define HAVE_CONTINUABLE_WATCHPOINT 1
302#endif
303
692590c1
MS
304#ifndef CANNOT_STEP_HW_WATCHPOINTS
305#define CANNOT_STEP_HW_WATCHPOINTS 0
306#else
307#undef CANNOT_STEP_HW_WATCHPOINTS
308#define CANNOT_STEP_HW_WATCHPOINTS 1
309#endif
310
c906108c
SS
311/* Tables of how to react to signals; the user sets them. */
312
313static unsigned char *signal_stop;
314static unsigned char *signal_print;
315static unsigned char *signal_program;
316
317#define SET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 1; \
323 } while (0)
324
325#define UNSET_SIGS(nsigs,sigs,flags) \
326 do { \
327 int signum = (nsigs); \
328 while (signum-- > 0) \
329 if ((sigs)[signum]) \
330 (flags)[signum] = 0; \
331 } while (0)
332
333
334/* Command list pointer for the "stop" placeholder. */
335
336static struct cmd_list_element *stop_command;
337
338/* Nonzero if breakpoints are now inserted in the inferior. */
339
340static int breakpoints_inserted;
341
342/* Function inferior was in as of last step command. */
343
344static struct symbol *step_start_function;
345
346/* Nonzero if we are expecting a trace trap and should proceed from it. */
347
348static int trap_expected;
349
350#ifdef SOLIB_ADD
351/* Nonzero if we want to give control to the user when we're notified
352 of shared library events by the dynamic linker. */
353static int stop_on_solib_events;
354#endif
355
356#ifdef HP_OS_BUG
357/* Nonzero if the next time we try to continue the inferior, it will
358 step one instruction and generate a spurious trace trap.
359 This is used to compensate for a bug in HP-UX. */
360
361static int trap_expected_after_continue;
362#endif
363
364/* Nonzero means expecting a trace trap
365 and should stop the inferior and return silently when it happens. */
366
367int stop_after_trap;
368
369/* Nonzero means expecting a trap and caller will handle it themselves.
370 It is used after attach, due to attaching to a process;
371 when running in the shell before the child program has been exec'd;
372 and when running some kinds of remote stuff (FIXME?). */
373
374int stop_soon_quietly;
375
376/* Nonzero if proceed is being used for a "finish" command or a similar
377 situation when stop_registers should be saved. */
378
379int proceed_to_finish;
380
381/* Save register contents here when about to pop a stack dummy frame,
382 if-and-only-if proceed_to_finish is set.
383 Thus this contains the return value from the called function (assuming
384 values are returned in a register). */
385
7a292a7a 386char *stop_registers;
c906108c
SS
387
388/* Nonzero if program stopped due to error trying to insert breakpoints. */
389
390static int breakpoints_failed;
391
392/* Nonzero after stop if current stack frame should be printed. */
393
394static int stop_print_frame;
395
396static struct breakpoint *step_resume_breakpoint = NULL;
397static struct breakpoint *through_sigtramp_breakpoint = NULL;
398
399/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
400 interactions with an inferior that is running a kernel function
401 (aka, a system call or "syscall"). wait_for_inferior therefore
402 may have a need to know when the inferior is in a syscall. This
403 is a count of the number of inferior threads which are known to
404 currently be running in a syscall. */
405static int number_of_threads_in_syscalls;
406
407/* This is used to remember when a fork, vfork or exec event
408 was caught by a catchpoint, and thus the event is to be
409 followed at the next resume of the inferior, and not
410 immediately. */
411static struct
412 {
413 enum target_waitkind kind;
414 struct
415 {
416 int parent_pid;
417 int saw_parent_fork;
418 int child_pid;
419 int saw_child_fork;
420 int saw_child_exec;
421 }
422 fork_event;
423 char *execd_pathname;
424 }
425pending_follow;
426
427/* Some platforms don't allow us to do anything meaningful with a
428 vforked child until it has exec'd. Vforked processes on such
429 platforms can only be followed after they've exec'd.
430
431 When this is set to 0, a vfork can be immediately followed,
432 and an exec can be followed merely as an exec. When this is
433 set to 1, a vfork event has been seen, but cannot be followed
434 until the exec is seen.
435
436 (In the latter case, inferior_pid is still the parent of the
437 vfork, and pending_follow.fork_event.child_pid is the child. The
438 appropriate process is followed, according to the setting of
439 follow-fork-mode.) */
440static int follow_vfork_when_exec;
441
53904c9e
AC
442static const char follow_fork_mode_ask[] = "ask";
443static const char follow_fork_mode_both[] = "both";
444static const char follow_fork_mode_child[] = "child";
445static const char follow_fork_mode_parent[] = "parent";
446
447static const char *follow_fork_mode_kind_names[] =
c906108c 448{
53904c9e 449 follow_fork_mode_ask,
ef346e04
AC
450 /* ??rehrauer: The "both" option is broken, by what may be a 10.20
451 kernel problem. It's also not terribly useful without a GUI to
452 help the user drive two debuggers. So for now, I'm disabling the
453 "both" option. */
53904c9e
AC
454 /* follow_fork_mode_both, */
455 follow_fork_mode_child,
456 follow_fork_mode_parent,
457 NULL
ef346e04 458};
c906108c 459
53904c9e 460static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
461\f
462
c906108c 463static void
96baa820
JM
464follow_inferior_fork (int parent_pid, int child_pid, int has_forked,
465 int has_vforked)
c906108c
SS
466{
467 int followed_parent = 0;
468 int followed_child = 0;
c906108c
SS
469
470 /* Which process did the user want us to follow? */
53904c9e 471 const char *follow_mode = follow_fork_mode_string;
c906108c
SS
472
473 /* Or, did the user not know, and want us to ask? */
e28d556f 474 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 475 {
53904c9e
AC
476 internal_error ("follow_inferior_fork: \"ask\" mode not implemented");
477 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
478 }
479
480 /* If we're to be following the parent, then detach from child_pid.
481 We're already following the parent, so need do nothing explicit
482 for it. */
53904c9e 483 if (follow_mode == follow_fork_mode_parent)
c906108c
SS
484 {
485 followed_parent = 1;
486
487 /* We're already attached to the parent, by default. */
488
489 /* Before detaching from the child, remove all breakpoints from
490 it. (This won't actually modify the breakpoint list, but will
491 physically remove the breakpoints from the child.) */
492 if (!has_vforked || !follow_vfork_when_exec)
493 {
494 detach_breakpoints (child_pid);
7a292a7a 495#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 496 SOLIB_REMOVE_INFERIOR_HOOK (child_pid);
7a292a7a 497#endif
c906108c
SS
498 }
499
500 /* Detach from the child. */
501 dont_repeat ();
502
503 target_require_detach (child_pid, "", 1);
504 }
505
506 /* If we're to be following the child, then attach to it, detach
507 from inferior_pid, and set inferior_pid to child_pid. */
53904c9e 508 else if (follow_mode == follow_fork_mode_child)
c906108c
SS
509 {
510 char child_pid_spelling[100]; /* Arbitrary length. */
511
512 followed_child = 1;
513
514 /* Before detaching from the parent, detach all breakpoints from
515 the child. But only if we're forking, or if we follow vforks
516 as soon as they happen. (If we're following vforks only when
517 the child has exec'd, then it's very wrong to try to write
518 back the "shadow contents" of inserted breakpoints now -- they
519 belong to the child's pre-exec'd a.out.) */
520 if (!has_vforked || !follow_vfork_when_exec)
521 {
522 detach_breakpoints (child_pid);
523 }
524
525 /* Before detaching from the parent, remove all breakpoints from it. */
526 remove_breakpoints ();
527
528 /* Also reset the solib inferior hook from the parent. */
7a292a7a 529#ifdef SOLIB_REMOVE_INFERIOR_HOOK
c906108c 530 SOLIB_REMOVE_INFERIOR_HOOK (inferior_pid);
7a292a7a 531#endif
c906108c
SS
532
533 /* Detach from the parent. */
534 dont_repeat ();
535 target_detach (NULL, 1);
536
537 /* Attach to the child. */
538 inferior_pid = child_pid;
539 sprintf (child_pid_spelling, "%d", child_pid);
540 dont_repeat ();
541
542 target_require_attach (child_pid_spelling, 1);
543
544 /* Was there a step_resume breakpoint? (There was if the user
545 did a "next" at the fork() call.) If so, explicitly reset its
546 thread number.
547
548 step_resumes are a form of bp that are made to be per-thread.
549 Since we created the step_resume bp when the parent process
550 was being debugged, and now are switching to the child process,
551 from the breakpoint package's viewpoint, that's a switch of
552 "threads". We must update the bp's notion of which thread
553 it is for, or it'll be ignored when it triggers... */
554 if (step_resume_breakpoint &&
555 (!has_vforked || !follow_vfork_when_exec))
556 breakpoint_re_set_thread (step_resume_breakpoint);
557
558 /* Reinsert all breakpoints in the child. (The user may've set
559 breakpoints after catching the fork, in which case those
560 actually didn't get set in the child, but only in the parent.) */
561 if (!has_vforked || !follow_vfork_when_exec)
562 {
563 breakpoint_re_set ();
564 insert_breakpoints ();
565 }
566 }
567
568 /* If we're to be following both parent and child, then fork ourselves,
569 and attach the debugger clone to the child. */
53904c9e 570 else if (follow_mode == follow_fork_mode_both)
c906108c
SS
571 {
572 char pid_suffix[100]; /* Arbitrary length. */
573
574 /* Clone ourselves to follow the child. This is the end of our
c5aa993b 575 involvement with child_pid; our clone will take it from here... */
c906108c
SS
576 dont_repeat ();
577 target_clone_and_follow_inferior (child_pid, &followed_child);
578 followed_parent = !followed_child;
579
580 /* We continue to follow the parent. To help distinguish the two
581 debuggers, though, both we and our clone will reset our prompts. */
582 sprintf (pid_suffix, "[%d] ", inferior_pid);
583 set_prompt (strcat (get_prompt (), pid_suffix));
584 }
585
586 /* The parent and child of a vfork share the same address space.
587 Also, on some targets the order in which vfork and exec events
588 are received for parent in child requires some delicate handling
589 of the events.
590
591 For instance, on ptrace-based HPUX we receive the child's vfork
592 event first, at which time the parent has been suspended by the
593 OS and is essentially untouchable until the child's exit or second
594 exec event arrives. At that time, the parent's vfork event is
595 delivered to us, and that's when we see and decide how to follow
596 the vfork. But to get to that point, we must continue the child
597 until it execs or exits. To do that smoothly, all breakpoints
598 must be removed from the child, in case there are any set between
599 the vfork() and exec() calls. But removing them from the child
600 also removes them from the parent, due to the shared-address-space
601 nature of a vfork'd parent and child. On HPUX, therefore, we must
602 take care to restore the bp's to the parent before we continue it.
603 Else, it's likely that we may not stop in the expected place. (The
604 worst scenario is when the user tries to step over a vfork() call;
605 the step-resume bp must be restored for the step to properly stop
606 in the parent after the call completes!)
607
608 Sequence of events, as reported to gdb from HPUX:
609
c5aa993b
JM
610 Parent Child Action for gdb to take
611 -------------------------------------------------------
612 1 VFORK Continue child
613 2 EXEC
614 3 EXEC or EXIT
615 4 VFORK */
c906108c
SS
616 if (has_vforked)
617 {
618 target_post_follow_vfork (parent_pid,
619 followed_parent,
620 child_pid,
621 followed_child);
622 }
623
624 pending_follow.fork_event.saw_parent_fork = 0;
625 pending_follow.fork_event.saw_child_fork = 0;
c906108c
SS
626}
627
628static void
96baa820 629follow_fork (int parent_pid, int child_pid)
c906108c
SS
630{
631 follow_inferior_fork (parent_pid, child_pid, 1, 0);
632}
633
634
635/* Forward declaration. */
96baa820 636static void follow_exec (int, char *);
c906108c
SS
637
638static void
96baa820 639follow_vfork (int parent_pid, int child_pid)
c906108c
SS
640{
641 follow_inferior_fork (parent_pid, child_pid, 0, 1);
642
643 /* Did we follow the child? Had it exec'd before we saw the parent vfork? */
644 if (pending_follow.fork_event.saw_child_exec && (inferior_pid == child_pid))
645 {
646 pending_follow.fork_event.saw_child_exec = 0;
647 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
648 follow_exec (inferior_pid, pending_follow.execd_pathname);
b8c9b27d 649 xfree (pending_follow.execd_pathname);
c906108c
SS
650 }
651}
c906108c
SS
652
653static void
96baa820 654follow_exec (int pid, char *execd_pathname)
c906108c 655{
c906108c 656 int saved_pid = pid;
7a292a7a
SS
657 struct target_ops *tgt;
658
659 if (!may_follow_exec)
660 return;
c906108c
SS
661
662 /* Did this exec() follow a vfork()? If so, we must follow the
663 vfork now too. Do it before following the exec. */
664 if (follow_vfork_when_exec &&
665 (pending_follow.kind == TARGET_WAITKIND_VFORKED))
666 {
667 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
668 follow_vfork (inferior_pid, pending_follow.fork_event.child_pid);
669 follow_vfork_when_exec = 0;
670 saved_pid = inferior_pid;
671
672 /* Did we follow the parent? If so, we're done. If we followed
673 the child then we must also follow its exec(). */
674 if (inferior_pid == pending_follow.fork_event.parent_pid)
675 return;
676 }
677
678 /* This is an exec event that we actually wish to pay attention to.
679 Refresh our symbol table to the newly exec'd program, remove any
680 momentary bp's, etc.
681
682 If there are breakpoints, they aren't really inserted now,
683 since the exec() transformed our inferior into a fresh set
684 of instructions.
685
686 We want to preserve symbolic breakpoints on the list, since
687 we have hopes that they can be reset after the new a.out's
688 symbol table is read.
689
690 However, any "raw" breakpoints must be removed from the list
691 (e.g., the solib bp's), since their address is probably invalid
692 now.
693
694 And, we DON'T want to call delete_breakpoints() here, since
695 that may write the bp's "shadow contents" (the instruction
696 value that was overwritten witha TRAP instruction). Since
697 we now have a new a.out, those shadow contents aren't valid. */
698 update_breakpoints_after_exec ();
699
700 /* If there was one, it's gone now. We cannot truly step-to-next
701 statement through an exec(). */
702 step_resume_breakpoint = NULL;
703 step_range_start = 0;
704 step_range_end = 0;
705
706 /* If there was one, it's gone now. */
707 through_sigtramp_breakpoint = NULL;
708
709 /* What is this a.out's name? */
710 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
711
712 /* We've followed the inferior through an exec. Therefore, the
713 inferior has essentially been killed & reborn. */
7a292a7a
SS
714
715 /* First collect the run target in effect. */
716 tgt = find_run_target ();
717 /* If we can't find one, things are in a very strange state... */
718 if (tgt == NULL)
719 error ("Could find run target to save before following exec");
720
c906108c
SS
721 gdb_flush (gdb_stdout);
722 target_mourn_inferior ();
c5aa993b 723 inferior_pid = saved_pid; /* Because mourn_inferior resets inferior_pid. */
7a292a7a 724 push_target (tgt);
c906108c
SS
725
726 /* That a.out is now the one to use. */
727 exec_file_attach (execd_pathname, 0);
728
729 /* And also is where symbols can be found. */
730 symbol_file_command (execd_pathname, 0);
731
732 /* Reset the shared library package. This ensures that we get
733 a shlib event when the child reaches "_start", at which point
734 the dld will have had a chance to initialize the child. */
7a292a7a 735#if defined(SOLIB_RESTART)
c906108c 736 SOLIB_RESTART ();
7a292a7a
SS
737#endif
738#ifdef SOLIB_CREATE_INFERIOR_HOOK
c906108c 739 SOLIB_CREATE_INFERIOR_HOOK (inferior_pid);
7a292a7a 740#endif
c906108c
SS
741
742 /* Reinsert all breakpoints. (Those which were symbolic have
743 been reset to the proper address in the new a.out, thanks
744 to symbol_file_command...) */
745 insert_breakpoints ();
746
747 /* The next resume of this inferior should bring it to the shlib
748 startup breakpoints. (If the user had also set bp's on
749 "main" from the old (parent) process, then they'll auto-
750 matically get reset there in the new process.) */
c906108c
SS
751}
752
753/* Non-zero if we just simulating a single-step. This is needed
754 because we cannot remove the breakpoints in the inferior process
755 until after the `wait' in `wait_for_inferior'. */
756static int singlestep_breakpoints_inserted_p = 0;
757\f
758
759/* Things to clean up if we QUIT out of resume (). */
760/* ARGSUSED */
761static void
74b7792f 762resume_cleanups (void *ignore)
c906108c
SS
763{
764 normal_stop ();
765}
766
53904c9e
AC
767static const char schedlock_off[] = "off";
768static const char schedlock_on[] = "on";
769static const char schedlock_step[] = "step";
770static const char *scheduler_mode = schedlock_off;
771static const char *scheduler_enums[] =
ef346e04
AC
772{
773 schedlock_off,
774 schedlock_on,
775 schedlock_step,
776 NULL
777};
c906108c
SS
778
779static void
96baa820 780set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c
SS
781{
782 if (c->type == set_cmd)
783 if (!target_can_lock_scheduler)
784 {
785 scheduler_mode = schedlock_off;
786 error ("Target '%s' cannot support this command.",
787 target_shortname);
788 }
789}
790
791
c2c6d25f
JM
792
793
c906108c
SS
794/* Resume the inferior, but allow a QUIT. This is useful if the user
795 wants to interrupt some lengthy single-stepping operation
796 (for child processes, the SIGINT goes to the inferior, and so
797 we get a SIGINT random_signal, but for remote debugging and perhaps
798 other targets, that's not true).
799
800 STEP nonzero if we should step (zero to continue instead).
801 SIG is the signal to give the inferior (zero for none). */
802void
96baa820 803resume (int step, enum target_signal sig)
c906108c
SS
804{
805 int should_resume = 1;
74b7792f 806 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
807 QUIT;
808
809#ifdef CANNOT_STEP_BREAKPOINT
810 /* Most targets can step a breakpoint instruction, thus executing it
811 normally. But if this one cannot, just continue and we will hit
812 it anyway. */
813 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
814 step = 0;
815#endif
816
692590c1
MS
817 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
818 over an instruction that causes a page fault without triggering
819 a hardware watchpoint. The kernel properly notices that it shouldn't
820 stop, because the hardware watchpoint is not triggered, but it forgets
821 the step request and continues the program normally.
822 Work around the problem by removing hardware watchpoints if a step is
823 requested, GDB will check for a hardware watchpoint trigger after the
824 step anyway. */
825 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
826 remove_hw_watchpoints ();
827
828
c2c6d25f
JM
829 /* Normally, by the time we reach `resume', the breakpoints are either
830 removed or inserted, as appropriate. The exception is if we're sitting
831 at a permanent breakpoint; we need to step over it, but permanent
832 breakpoints can't be removed. So we have to test for it here. */
833 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
834 SKIP_PERMANENT_BREAKPOINT ();
835
c906108c
SS
836 if (SOFTWARE_SINGLE_STEP_P && step)
837 {
838 /* Do it the hard way, w/temp breakpoints */
c5aa993b 839 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
840 /* ...and don't ask hardware to do it. */
841 step = 0;
842 /* and do not pull these breakpoints until after a `wait' in
843 `wait_for_inferior' */
844 singlestep_breakpoints_inserted_p = 1;
845 }
846
847 /* Handle any optimized stores to the inferior NOW... */
848#ifdef DO_DEFERRED_STORES
849 DO_DEFERRED_STORES;
850#endif
851
c906108c
SS
852 /* If there were any forks/vforks/execs that were caught and are
853 now to be followed, then do so. */
854 switch (pending_follow.kind)
855 {
856 case (TARGET_WAITKIND_FORKED):
857 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
858 follow_fork (inferior_pid, pending_follow.fork_event.child_pid);
859 break;
860
861 case (TARGET_WAITKIND_VFORKED):
862 {
863 int saw_child_exec = pending_follow.fork_event.saw_child_exec;
864
865 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
866 follow_vfork (inferior_pid, pending_follow.fork_event.child_pid);
867
868 /* Did we follow the child, but not yet see the child's exec event?
c5aa993b
JM
869 If so, then it actually ought to be waiting for us; we respond to
870 parent vfork events. We don't actually want to resume the child
871 in this situation; we want to just get its exec event. */
c906108c
SS
872 if (!saw_child_exec &&
873 (inferior_pid == pending_follow.fork_event.child_pid))
874 should_resume = 0;
875 }
876 break;
877
878 case (TARGET_WAITKIND_EXECD):
879 /* If we saw a vfork event but couldn't follow it until we saw
c5aa993b 880 an exec, then now might be the time! */
c906108c
SS
881 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
882 /* follow_exec is called as soon as the exec event is seen. */
883 break;
884
885 default:
886 break;
887 }
c906108c
SS
888
889 /* Install inferior's terminal modes. */
890 target_terminal_inferior ();
891
892 if (should_resume)
893 {
dfcd3bfb
JM
894 int resume_pid;
895
7a292a7a 896 if (use_thread_step_needed && thread_step_needed)
c906108c
SS
897 {
898 /* We stopped on a BPT instruction;
899 don't continue other threads and
900 just step this thread. */
901 thread_step_needed = 0;
902
903 if (!breakpoint_here_p (read_pc ()))
904 {
905 /* Breakpoint deleted: ok to do regular resume
c5aa993b 906 where all the threads either step or continue. */
dfcd3bfb 907 resume_pid = -1;
c906108c
SS
908 }
909 else
910 {
911 if (!step)
912 {
913 warning ("Internal error, changing continue to step.");
914 remove_breakpoints ();
915 breakpoints_inserted = 0;
916 trap_expected = 1;
917 step = 1;
918 }
dfcd3bfb 919 resume_pid = inferior_pid;
c906108c
SS
920 }
921 }
922 else
c906108c
SS
923 {
924 /* Vanilla resume. */
c906108c
SS
925 if ((scheduler_mode == schedlock_on) ||
926 (scheduler_mode == schedlock_step && step != 0))
dfcd3bfb 927 resume_pid = inferior_pid;
c906108c 928 else
dfcd3bfb 929 resume_pid = -1;
c906108c 930 }
dfcd3bfb 931 target_resume (resume_pid, step, sig);
c906108c
SS
932 }
933
934 discard_cleanups (old_cleanups);
935}
936\f
937
938/* Clear out all variables saying what to do when inferior is continued.
939 First do this, then set the ones you want, then call `proceed'. */
940
941void
96baa820 942clear_proceed_status (void)
c906108c
SS
943{
944 trap_expected = 0;
945 step_range_start = 0;
946 step_range_end = 0;
947 step_frame_address = 0;
5fbbeb29 948 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c
SS
949 stop_after_trap = 0;
950 stop_soon_quietly = 0;
951 proceed_to_finish = 0;
952 breakpoint_proceeded = 1; /* We're about to proceed... */
953
954 /* Discard any remaining commands or status from previous stop. */
955 bpstat_clear (&stop_bpstat);
956}
957
958/* Basic routine for continuing the program in various fashions.
959
960 ADDR is the address to resume at, or -1 for resume where stopped.
961 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 962 or -1 for act according to how it stopped.
c906108c 963 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
964 -1 means return after that and print nothing.
965 You should probably set various step_... variables
966 before calling here, if you are stepping.
c906108c
SS
967
968 You should call clear_proceed_status before calling proceed. */
969
970void
96baa820 971proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
972{
973 int oneproc = 0;
974
975 if (step > 0)
976 step_start_function = find_pc_function (read_pc ());
977 if (step < 0)
978 stop_after_trap = 1;
979
2acceee2 980 if (addr == (CORE_ADDR) -1)
c906108c
SS
981 {
982 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
983 step one instruction before inserting breakpoints
984 so that we do not stop right away (and report a second
c906108c
SS
985 hit at this breakpoint). */
986
987 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
988 oneproc = 1;
989
990#ifndef STEP_SKIPS_DELAY
991#define STEP_SKIPS_DELAY(pc) (0)
992#define STEP_SKIPS_DELAY_P (0)
993#endif
994 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
995 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
996 is slow (it needs to read memory from the target). */
c906108c
SS
997 if (STEP_SKIPS_DELAY_P
998 && breakpoint_here_p (read_pc () + 4)
999 && STEP_SKIPS_DELAY (read_pc ()))
1000 oneproc = 1;
1001 }
1002 else
1003 {
1004 write_pc (addr);
1005
1006 /* New address; we don't need to single-step a thread
c5aa993b
JM
1007 over a breakpoint we just hit, 'cause we aren't
1008 continuing from there.
c906108c 1009
c5aa993b
JM
1010 It's not worth worrying about the case where a user
1011 asks for a "jump" at the current PC--if they get the
1012 hiccup of re-hiting a hit breakpoint, what else do
1013 they expect? */
c906108c
SS
1014 thread_step_needed = 0;
1015 }
1016
1017#ifdef PREPARE_TO_PROCEED
1018 /* In a multi-threaded task we may select another thread
1019 and then continue or step.
1020
1021 But if the old thread was stopped at a breakpoint, it
1022 will immediately cause another breakpoint stop without
1023 any execution (i.e. it will report a breakpoint hit
1024 incorrectly). So we must step over it first.
1025
1026 PREPARE_TO_PROCEED checks the current thread against the thread
1027 that reported the most recent event. If a step-over is required
1028 it returns TRUE and sets the current thread to the old thread. */
9e086581 1029 if (PREPARE_TO_PROCEED (1) && breakpoint_here_p (read_pc ()))
c906108c
SS
1030 {
1031 oneproc = 1;
1032 thread_step_needed = 1;
1033 }
1034
1035#endif /* PREPARE_TO_PROCEED */
1036
1037#ifdef HP_OS_BUG
1038 if (trap_expected_after_continue)
1039 {
1040 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
1041 the first instruction is executed. Force step one
1042 instruction to clear this condition. This should not occur
1043 if step is nonzero, but it is harmless in that case. */
c906108c
SS
1044 oneproc = 1;
1045 trap_expected_after_continue = 0;
1046 }
1047#endif /* HP_OS_BUG */
1048
1049 if (oneproc)
1050 /* We will get a trace trap after one instruction.
1051 Continue it automatically and insert breakpoints then. */
1052 trap_expected = 1;
1053 else
1054 {
1055 int temp = insert_breakpoints ();
1056 if (temp)
1057 {
010a3cd9 1058 print_sys_errmsg ("insert_breakpoints", temp);
c906108c 1059 error ("Cannot insert breakpoints.\n\
010a3cd9
EZ
1060The same program may be running in another process,\n\
1061or you may have requested too many hardware\n\
1062breakpoints and/or watchpoints.\n");
c906108c
SS
1063 }
1064
1065 breakpoints_inserted = 1;
1066 }
1067
1068 if (siggnal != TARGET_SIGNAL_DEFAULT)
1069 stop_signal = siggnal;
1070 /* If this signal should not be seen by program,
1071 give it zero. Used for debugging signals. */
1072 else if (!signal_program[stop_signal])
1073 stop_signal = TARGET_SIGNAL_0;
1074
1075 annotate_starting ();
1076
1077 /* Make sure that output from GDB appears before output from the
1078 inferior. */
1079 gdb_flush (gdb_stdout);
1080
1081 /* Resume inferior. */
1082 resume (oneproc || step || bpstat_should_step (), stop_signal);
1083
1084 /* Wait for it to stop (if not standalone)
1085 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
1086 /* Do this only if we are not using the event loop, or if the target
1087 does not support asynchronous execution. */
6426a772 1088 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
1089 {
1090 wait_for_inferior ();
1091 normal_stop ();
1092 }
c906108c
SS
1093}
1094
1095/* Record the pc and sp of the program the last time it stopped.
1096 These are just used internally by wait_for_inferior, but need
1097 to be preserved over calls to it and cleared when the inferior
1098 is started. */
1099static CORE_ADDR prev_pc;
1100static CORE_ADDR prev_func_start;
1101static char *prev_func_name;
1102\f
1103
1104/* Start remote-debugging of a machine over a serial link. */
96baa820 1105
c906108c 1106void
96baa820 1107start_remote (void)
c906108c
SS
1108{
1109 init_thread_list ();
1110 init_wait_for_inferior ();
1111 stop_soon_quietly = 1;
1112 trap_expected = 0;
43ff13b4 1113
6426a772
JM
1114 /* Always go on waiting for the target, regardless of the mode. */
1115 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 1116 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
1117 nothing is returned (instead of just blocking). Because of this,
1118 targets expecting an immediate response need to, internally, set
1119 things up so that the target_wait() is forced to eventually
1120 timeout. */
1121 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
1122 differentiate to its caller what the state of the target is after
1123 the initial open has been performed. Here we're assuming that
1124 the target has stopped. It should be possible to eventually have
1125 target_open() return to the caller an indication that the target
1126 is currently running and GDB state should be set to the same as
1127 for an async run. */
1128 wait_for_inferior ();
1129 normal_stop ();
c906108c
SS
1130}
1131
1132/* Initialize static vars when a new inferior begins. */
1133
1134void
96baa820 1135init_wait_for_inferior (void)
c906108c
SS
1136{
1137 /* These are meaningless until the first time through wait_for_inferior. */
1138 prev_pc = 0;
1139 prev_func_start = 0;
1140 prev_func_name = NULL;
1141
1142#ifdef HP_OS_BUG
1143 trap_expected_after_continue = 0;
1144#endif
1145 breakpoints_inserted = 0;
1146 breakpoint_init_inferior (inf_starting);
1147
1148 /* Don't confuse first call to proceed(). */
1149 stop_signal = TARGET_SIGNAL_0;
1150
1151 /* The first resume is not following a fork/vfork/exec. */
1152 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
1153 pending_follow.fork_event.saw_parent_fork = 0;
1154 pending_follow.fork_event.saw_child_fork = 0;
1155 pending_follow.fork_event.saw_child_exec = 0;
1156
1157 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
1158 number_of_threads_in_syscalls = 0;
1159
1160 clear_proceed_status ();
1161}
1162
1163static void
96baa820 1164delete_breakpoint_current_contents (void *arg)
c906108c
SS
1165{
1166 struct breakpoint **breakpointp = (struct breakpoint **) arg;
1167 if (*breakpointp != NULL)
1168 {
1169 delete_breakpoint (*breakpointp);
1170 *breakpointp = NULL;
1171 }
1172}
1173\f
b83266a0
SS
1174/* This enum encodes possible reasons for doing a target_wait, so that
1175 wfi can call target_wait in one place. (Ultimately the call will be
1176 moved out of the infinite loop entirely.) */
1177
c5aa993b
JM
1178enum infwait_states
1179{
cd0fc7c3
SS
1180 infwait_normal_state,
1181 infwait_thread_hop_state,
1182 infwait_nullified_state,
1183 infwait_nonstep_watch_state
b83266a0
SS
1184};
1185
11cf8741
JM
1186/* Why did the inferior stop? Used to print the appropriate messages
1187 to the interface from within handle_inferior_event(). */
1188enum inferior_stop_reason
1189{
1190 /* We don't know why. */
1191 STOP_UNKNOWN,
1192 /* Step, next, nexti, stepi finished. */
1193 END_STEPPING_RANGE,
1194 /* Found breakpoint. */
1195 BREAKPOINT_HIT,
1196 /* Inferior terminated by signal. */
1197 SIGNAL_EXITED,
1198 /* Inferior exited. */
1199 EXITED,
1200 /* Inferior received signal, and user asked to be notified. */
1201 SIGNAL_RECEIVED
1202};
1203
cd0fc7c3
SS
1204/* This structure contains what used to be local variables in
1205 wait_for_inferior. Probably many of them can return to being
1206 locals in handle_inferior_event. */
1207
c5aa993b
JM
1208struct execution_control_state
1209 {
1210 struct target_waitstatus ws;
1211 struct target_waitstatus *wp;
1212 int another_trap;
1213 int random_signal;
1214 CORE_ADDR stop_func_start;
1215 CORE_ADDR stop_func_end;
1216 char *stop_func_name;
1217 struct symtab_and_line sal;
1218 int remove_breakpoints_on_following_step;
1219 int current_line;
1220 struct symtab *current_symtab;
1221 int handling_longjmp; /* FIXME */
1222 int pid;
1223 int saved_inferior_pid;
1224 int update_step_sp;
1225 int stepping_through_solib_after_catch;
1226 bpstat stepping_through_solib_catchpoints;
1227 int enable_hw_watchpoints_after_wait;
1228 int stepping_through_sigtramp;
1229 int new_thread_event;
1230 struct target_waitstatus tmpstatus;
1231 enum infwait_states infwait_state;
1232 int waiton_pid;
1233 int wait_some_more;
1234 };
1235
96baa820 1236void init_execution_control_state (struct execution_control_state * ecs);
c5aa993b 1237
96baa820 1238void handle_inferior_event (struct execution_control_state * ecs);
cd0fc7c3 1239
104c1213 1240static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 1241static void step_into_function (struct execution_control_state *ecs);
d4f3574e 1242static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
1243static void stop_stepping (struct execution_control_state *ecs);
1244static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 1245static void keep_going (struct execution_control_state *ecs);
11cf8741 1246static void print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info);
104c1213 1247
cd0fc7c3
SS
1248/* Wait for control to return from inferior to debugger.
1249 If inferior gets a signal, we may decide to start it up again
1250 instead of returning. That is why there is a loop in this function.
1251 When this function actually returns it means the inferior
1252 should be left stopped and GDB should read more commands. */
1253
1254void
96baa820 1255wait_for_inferior (void)
cd0fc7c3
SS
1256{
1257 struct cleanup *old_cleanups;
1258 struct execution_control_state ecss;
1259 struct execution_control_state *ecs;
c906108c
SS
1260
1261 old_cleanups = make_cleanup (delete_breakpoint_current_contents,
1262 &step_resume_breakpoint);
1263 make_cleanup (delete_breakpoint_current_contents,
1264 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1265
1266 /* wfi still stays in a loop, so it's OK just to take the address of
1267 a local to get the ecs pointer. */
1268 ecs = &ecss;
1269
1270 /* Fill in with reasonable starting values. */
1271 init_execution_control_state (ecs);
1272
c906108c
SS
1273 thread_step_needed = 0;
1274
c906108c 1275 /* We'll update this if & when we switch to a new thread. */
c3f6f71d 1276 previous_inferior_pid = inferior_pid;
c906108c 1277
cd0fc7c3
SS
1278 overlay_cache_invalid = 1;
1279
1280 /* We have to invalidate the registers BEFORE calling target_wait
1281 because they can be loaded from the target while in target_wait.
1282 This makes remote debugging a bit more efficient for those
1283 targets that provide critical registers as part of their normal
1284 status mechanism. */
1285
1286 registers_changed ();
b83266a0 1287
c906108c
SS
1288 while (1)
1289 {
cd0fc7c3
SS
1290 if (target_wait_hook)
1291 ecs->pid = target_wait_hook (ecs->waiton_pid, ecs->wp);
1292 else
1293 ecs->pid = target_wait (ecs->waiton_pid, ecs->wp);
c906108c 1294
cd0fc7c3
SS
1295 /* Now figure out what to do with the result of the result. */
1296 handle_inferior_event (ecs);
c906108c 1297
cd0fc7c3
SS
1298 if (!ecs->wait_some_more)
1299 break;
1300 }
1301 do_cleanups (old_cleanups);
1302}
c906108c 1303
43ff13b4
JM
1304/* Asynchronous version of wait_for_inferior. It is called by the
1305 event loop whenever a change of state is detected on the file
1306 descriptor corresponding to the target. It can be called more than
1307 once to complete a single execution command. In such cases we need
1308 to keep the state in a global variable ASYNC_ECSS. If it is the
1309 last time that this function is called for a single execution
1310 command, then report to the user that the inferior has stopped, and
1311 do the necessary cleanups. */
1312
1313struct execution_control_state async_ecss;
1314struct execution_control_state *async_ecs;
1315
1316void
fba45db2 1317fetch_inferior_event (void *client_data)
43ff13b4
JM
1318{
1319 static struct cleanup *old_cleanups;
1320
c5aa993b 1321 async_ecs = &async_ecss;
43ff13b4
JM
1322
1323 if (!async_ecs->wait_some_more)
1324 {
1325 old_cleanups = make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1326 &step_resume_breakpoint);
43ff13b4 1327 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1328 &through_sigtramp_breakpoint);
43ff13b4
JM
1329
1330 /* Fill in with reasonable starting values. */
1331 init_execution_control_state (async_ecs);
1332
1333 thread_step_needed = 0;
1334
1335 /* We'll update this if & when we switch to a new thread. */
c3f6f71d 1336 previous_inferior_pid = inferior_pid;
43ff13b4
JM
1337
1338 overlay_cache_invalid = 1;
1339
1340 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1341 because they can be loaded from the target while in target_wait.
1342 This makes remote debugging a bit more efficient for those
1343 targets that provide critical registers as part of their normal
1344 status mechanism. */
43ff13b4
JM
1345
1346 registers_changed ();
1347 }
1348
1349 if (target_wait_hook)
1350 async_ecs->pid = target_wait_hook (async_ecs->waiton_pid, async_ecs->wp);
1351 else
1352 async_ecs->pid = target_wait (async_ecs->waiton_pid, async_ecs->wp);
1353
1354 /* Now figure out what to do with the result of the result. */
1355 handle_inferior_event (async_ecs);
1356
1357 if (!async_ecs->wait_some_more)
1358 {
adf40b2e
JM
1359 /* Do only the cleanups that have been added by this
1360 function. Let the continuations for the commands do the rest,
1361 if there are any. */
43ff13b4
JM
1362 do_exec_cleanups (old_cleanups);
1363 normal_stop ();
c2d11a7d
JM
1364 if (step_multi && stop_step)
1365 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1366 else
1367 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1368 }
1369}
1370
cd0fc7c3
SS
1371/* Prepare an execution control state for looping through a
1372 wait_for_inferior-type loop. */
1373
1374void
96baa820 1375init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1376{
c2d11a7d 1377 /* ecs->another_trap? */
cd0fc7c3
SS
1378 ecs->random_signal = 0;
1379 ecs->remove_breakpoints_on_following_step = 0;
1380 ecs->handling_longjmp = 0; /* FIXME */
1381 ecs->update_step_sp = 0;
1382 ecs->stepping_through_solib_after_catch = 0;
1383 ecs->stepping_through_solib_catchpoints = NULL;
1384 ecs->enable_hw_watchpoints_after_wait = 0;
1385 ecs->stepping_through_sigtramp = 0;
1386 ecs->sal = find_pc_line (prev_pc, 0);
1387 ecs->current_line = ecs->sal.line;
1388 ecs->current_symtab = ecs->sal.symtab;
1389 ecs->infwait_state = infwait_normal_state;
1390 ecs->waiton_pid = -1;
1391 ecs->wp = &(ecs->ws);
1392}
1393
a0b3c4fd 1394/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1395 sanity check. There should never be more than one step-resume
1396 breakpoint per thread, so we should never be setting a new
1397 step_resume_breakpoint when one is already active. */
a0b3c4fd 1398static void
96baa820 1399check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1400{
1401 if (step_resume_breakpoint)
1402 warning ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1403}
1404
cd0fc7c3
SS
1405/* Given an execution control state that has been freshly filled in
1406 by an event from the inferior, figure out what it means and take
1407 appropriate action. */
c906108c 1408
cd0fc7c3 1409void
96baa820 1410handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3
SS
1411{
1412 CORE_ADDR tmp;
1413 int stepped_after_stopped_by_watchpoint;
1414
1415 /* Keep this extra brace for now, minimizes diffs. */
1416 {
c5aa993b
JM
1417 switch (ecs->infwait_state)
1418 {
1419 case infwait_normal_state:
1420 /* Since we've done a wait, we have a new event. Don't
1421 carry over any expectations about needing to step over a
1422 breakpoint. */
1423 thread_step_needed = 0;
1424
1425 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1426 is serviced in this loop, below. */
1427 if (ecs->enable_hw_watchpoints_after_wait)
1428 {
1429 TARGET_ENABLE_HW_WATCHPOINTS (inferior_pid);
1430 ecs->enable_hw_watchpoints_after_wait = 0;
1431 }
1432 stepped_after_stopped_by_watchpoint = 0;
1433 break;
b83266a0 1434
c5aa993b
JM
1435 case infwait_thread_hop_state:
1436 insert_breakpoints ();
c906108c 1437
c5aa993b 1438 /* We need to restart all the threads now,
3cbb88dc 1439 * unless we're running in scheduler-locked mode.
c5aa993b
JM
1440 * FIXME: shouldn't we look at currently_stepping ()?
1441 */
1442 if (scheduler_mode == schedlock_on)
1443 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
1444 else
1445 target_resume (-1, 0, TARGET_SIGNAL_0);
1446 ecs->infwait_state = infwait_normal_state;
104c1213
JM
1447 prepare_to_wait (ecs);
1448 return;
c906108c 1449
c5aa993b
JM
1450 case infwait_nullified_state:
1451 break;
b83266a0 1452
c5aa993b
JM
1453 case infwait_nonstep_watch_state:
1454 insert_breakpoints ();
b83266a0 1455
c5aa993b
JM
1456 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1457 handle things like signals arriving and other things happening
1458 in combination correctly? */
1459 stepped_after_stopped_by_watchpoint = 1;
1460 break;
1461 }
1462 ecs->infwait_state = infwait_normal_state;
c906108c 1463
c5aa993b 1464 flush_cached_frames ();
c906108c 1465
c5aa993b 1466 /* If it's a new process, add it to the thread database */
c906108c 1467
c5aa993b 1468 ecs->new_thread_event = ((ecs->pid != inferior_pid) && !in_thread_list (ecs->pid));
c906108c 1469
c5aa993b
JM
1470 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1471 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
1472 && ecs->new_thread_event)
1473 {
1474 add_thread (ecs->pid);
c906108c 1475
8b93c638
JM
1476#ifdef UI_OUT
1477 ui_out_text (uiout, "[New ");
1478 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->pid));
1479 ui_out_text (uiout, "]\n");
1480#else
c5aa993b 1481 printf_filtered ("[New %s]\n", target_pid_or_tid_to_str (ecs->pid));
8b93c638 1482#endif
c906108c
SS
1483
1484#if 0
c5aa993b
JM
1485 /* NOTE: This block is ONLY meant to be invoked in case of a
1486 "thread creation event"! If it is invoked for any other
1487 sort of event (such as a new thread landing on a breakpoint),
1488 the event will be discarded, which is almost certainly
1489 a bad thing!
1490
1491 To avoid this, the low-level module (eg. target_wait)
1492 should call in_thread_list and add_thread, so that the
1493 new thread is known by the time we get here. */
1494
1495 /* We may want to consider not doing a resume here in order
1496 to give the user a chance to play with the new thread.
1497 It might be good to make that a user-settable option. */
1498
1499 /* At this point, all threads are stopped (happens
1500 automatically in either the OS or the native code).
1501 Therefore we need to continue all threads in order to
1502 make progress. */
1503
1504 target_resume (-1, 0, TARGET_SIGNAL_0);
104c1213
JM
1505 prepare_to_wait (ecs);
1506 return;
c906108c 1507#endif
c5aa993b 1508 }
c906108c 1509
c5aa993b
JM
1510 switch (ecs->ws.kind)
1511 {
1512 case TARGET_WAITKIND_LOADED:
1513 /* Ignore gracefully during startup of the inferior, as it
1514 might be the shell which has just loaded some objects,
1515 otherwise add the symbols for the newly loaded objects. */
c906108c 1516#ifdef SOLIB_ADD
c5aa993b
JM
1517 if (!stop_soon_quietly)
1518 {
1519 /* Remove breakpoints, SOLIB_ADD might adjust
1520 breakpoint addresses via breakpoint_re_set. */
1521 if (breakpoints_inserted)
1522 remove_breakpoints ();
c906108c 1523
c5aa993b
JM
1524 /* Check for any newly added shared libraries if we're
1525 supposed to be adding them automatically. */
1526 if (auto_solib_add)
1527 {
1528 /* Switch terminal for any messages produced by
1529 breakpoint_re_set. */
1530 target_terminal_ours_for_output ();
1531 SOLIB_ADD (NULL, 0, NULL);
1532 target_terminal_inferior ();
1533 }
c906108c 1534
c5aa993b
JM
1535 /* Reinsert breakpoints and continue. */
1536 if (breakpoints_inserted)
1537 insert_breakpoints ();
1538 }
c906108c 1539#endif
c5aa993b 1540 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1541 prepare_to_wait (ecs);
1542 return;
c5aa993b
JM
1543
1544 case TARGET_WAITKIND_SPURIOUS:
1545 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1546 prepare_to_wait (ecs);
1547 return;
c5aa993b
JM
1548
1549 case TARGET_WAITKIND_EXITED:
1550 target_terminal_ours (); /* Must do this before mourn anyway */
11cf8741 1551 print_stop_reason (EXITED, ecs->ws.value.integer);
c5aa993b
JM
1552
1553 /* Record the exit code in the convenience variable $_exitcode, so
1554 that the user can inspect this again later. */
1555 set_internalvar (lookup_internalvar ("_exitcode"),
1556 value_from_longest (builtin_type_int,
1557 (LONGEST) ecs->ws.value.integer));
1558 gdb_flush (gdb_stdout);
1559 target_mourn_inferior ();
1560 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P */
1561 stop_print_frame = 0;
104c1213
JM
1562 stop_stepping (ecs);
1563 return;
c5aa993b
JM
1564
1565 case TARGET_WAITKIND_SIGNALLED:
1566 stop_print_frame = 0;
1567 stop_signal = ecs->ws.value.sig;
1568 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1569
c7e79b4b
ND
1570 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1571 reach here unless the inferior is dead. However, for years
1572 target_kill() was called here, which hints that fatal signals aren't
1573 really fatal on some systems. If that's true, then some changes
1574 may be needed. */
1575 target_mourn_inferior ();
c5aa993b 1576
11cf8741 1577 print_stop_reason (SIGNAL_EXITED, stop_signal);
c5aa993b 1578 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P */
104c1213
JM
1579 stop_stepping (ecs);
1580 return;
c5aa993b
JM
1581
1582 /* The following are the only cases in which we keep going;
1583 the above cases end in a continue or goto. */
1584 case TARGET_WAITKIND_FORKED:
1585 stop_signal = TARGET_SIGNAL_TRAP;
1586 pending_follow.kind = ecs->ws.kind;
1587
1588 /* Ignore fork events reported for the parent; we're only
1589 interested in reacting to forks of the child. Note that
1590 we expect the child's fork event to be available if we
1591 waited for it now. */
1592 if (inferior_pid == ecs->pid)
1593 {
1594 pending_follow.fork_event.saw_parent_fork = 1;
1595 pending_follow.fork_event.parent_pid = ecs->pid;
1596 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
104c1213
JM
1597 prepare_to_wait (ecs);
1598 return;
c5aa993b
JM
1599 }
1600 else
1601 {
1602 pending_follow.fork_event.saw_child_fork = 1;
1603 pending_follow.fork_event.child_pid = ecs->pid;
1604 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1605 }
c906108c 1606
c5aa993b
JM
1607 stop_pc = read_pc_pid (ecs->pid);
1608 ecs->saved_inferior_pid = inferior_pid;
1609 inferior_pid = ecs->pid;
6426a772 1610 stop_bpstat = bpstat_stop_status (&stop_pc, currently_stepping (ecs));
c5aa993b
JM
1611 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1612 inferior_pid = ecs->saved_inferior_pid;
1613 goto process_event_stop_test;
1614
1615 /* If this a platform which doesn't allow a debugger to touch a
1616 vfork'd inferior until after it exec's, then we'd best keep
1617 our fingers entirely off the inferior, other than continuing
1618 it. This has the unfortunate side-effect that catchpoints
1619 of vforks will be ignored. But since the platform doesn't
1620 allow the inferior be touched at vfork time, there's really
1621 little choice. */
1622 case TARGET_WAITKIND_VFORKED:
1623 stop_signal = TARGET_SIGNAL_TRAP;
1624 pending_follow.kind = ecs->ws.kind;
1625
1626 /* Is this a vfork of the parent? If so, then give any
1627 vfork catchpoints a chance to trigger now. (It's
1628 dangerous to do so if the child canot be touched until
1629 it execs, and the child has not yet exec'd. We probably
1630 should warn the user to that effect when the catchpoint
1631 triggers...) */
1632 if (ecs->pid == inferior_pid)
1633 {
1634 pending_follow.fork_event.saw_parent_fork = 1;
1635 pending_follow.fork_event.parent_pid = ecs->pid;
1636 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1637 }
c906108c 1638
c5aa993b
JM
1639 /* If we've seen the child's vfork event but cannot really touch
1640 the child until it execs, then we must continue the child now.
1641 Else, give any vfork catchpoints a chance to trigger now. */
1642 else
1643 {
1644 pending_follow.fork_event.saw_child_fork = 1;
1645 pending_follow.fork_event.child_pid = ecs->pid;
1646 pending_follow.fork_event.parent_pid = ecs->ws.value.related_pid;
1647 target_post_startup_inferior (pending_follow.fork_event.child_pid);
1648 follow_vfork_when_exec = !target_can_follow_vfork_prior_to_exec ();
1649 if (follow_vfork_when_exec)
1650 {
1651 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
104c1213
JM
1652 prepare_to_wait (ecs);
1653 return;
c5aa993b
JM
1654 }
1655 }
c906108c 1656
c5aa993b 1657 stop_pc = read_pc ();
6426a772 1658 stop_bpstat = bpstat_stop_status (&stop_pc, currently_stepping (ecs));
c5aa993b
JM
1659 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1660 goto process_event_stop_test;
1661
1662 case TARGET_WAITKIND_EXECD:
1663 stop_signal = TARGET_SIGNAL_TRAP;
1664
1665 /* Is this a target which reports multiple exec events per actual
1666 call to exec()? (HP-UX using ptrace does, for example.) If so,
1667 ignore all but the last one. Just resume the exec'r, and wait
1668 for the next exec event. */
1669 if (inferior_ignoring_leading_exec_events)
1670 {
1671 inferior_ignoring_leading_exec_events--;
1672 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1673 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.parent_pid);
1674 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
104c1213
JM
1675 prepare_to_wait (ecs);
1676 return;
c5aa993b
JM
1677 }
1678 inferior_ignoring_leading_exec_events =
1679 target_reported_exec_events_per_exec_call () - 1;
c906108c 1680
96baa820
JM
1681 pending_follow.execd_pathname =
1682 savestring (ecs->ws.value.execd_pathname,
1683 strlen (ecs->ws.value.execd_pathname));
c906108c 1684
c5aa993b
JM
1685 /* Did inferior_pid exec, or did a (possibly not-yet-followed)
1686 child of a vfork exec?
c906108c 1687
c5aa993b
JM
1688 ??rehrauer: This is unabashedly an HP-UX specific thing. On
1689 HP-UX, events associated with a vforking inferior come in
1690 threes: a vfork event for the child (always first), followed
1691 a vfork event for the parent and an exec event for the child.
1692 The latter two can come in either order.
c906108c 1693
c5aa993b
JM
1694 If we get the parent vfork event first, life's good: We follow
1695 either the parent or child, and then the child's exec event is
1696 a "don't care".
c906108c 1697
c5aa993b
JM
1698 But if we get the child's exec event first, then we delay
1699 responding to it until we handle the parent's vfork. Because,
1700 otherwise we can't satisfy a "catch vfork". */
1701 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1702 {
1703 pending_follow.fork_event.saw_child_exec = 1;
1704
1705 /* On some targets, the child must be resumed before
1706 the parent vfork event is delivered. A single-step
1707 suffices. */
1708 if (RESUME_EXECD_VFORKING_CHILD_TO_GET_PARENT_VFORK ())
1709 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
1710 /* We expect the parent vfork event to be available now. */
104c1213
JM
1711 prepare_to_wait (ecs);
1712 return;
c5aa993b 1713 }
c906108c 1714
c5aa993b
JM
1715 /* This causes the eventpoints and symbol table to be reset. Must
1716 do this now, before trying to determine whether to stop. */
1717 follow_exec (inferior_pid, pending_follow.execd_pathname);
b8c9b27d 1718 xfree (pending_follow.execd_pathname);
c5aa993b
JM
1719
1720 stop_pc = read_pc_pid (ecs->pid);
1721 ecs->saved_inferior_pid = inferior_pid;
1722 inferior_pid = ecs->pid;
6426a772 1723 stop_bpstat = bpstat_stop_status (&stop_pc, currently_stepping (ecs));
c5aa993b
JM
1724 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1725 inferior_pid = ecs->saved_inferior_pid;
1726 goto process_event_stop_test;
1727
1728 /* These syscall events are returned on HP-UX, as part of its
1729 implementation of page-protection-based "hardware" watchpoints.
1730 HP-UX has unfortunate interactions between page-protections and
1731 some system calls. Our solution is to disable hardware watches
1732 when a system call is entered, and reenable them when the syscall
1733 completes. The downside of this is that we may miss the precise
1734 point at which a watched piece of memory is modified. "Oh well."
1735
1736 Note that we may have multiple threads running, which may each
1737 enter syscalls at roughly the same time. Since we don't have a
1738 good notion currently of whether a watched piece of memory is
1739 thread-private, we'd best not have any page-protections active
1740 when any thread is in a syscall. Thus, we only want to reenable
1741 hardware watches when no threads are in a syscall.
1742
1743 Also, be careful not to try to gather much state about a thread
1744 that's in a syscall. It's frequently a losing proposition. */
1745 case TARGET_WAITKIND_SYSCALL_ENTRY:
1746 number_of_threads_in_syscalls++;
1747 if (number_of_threads_in_syscalls == 1)
1748 {
1749 TARGET_DISABLE_HW_WATCHPOINTS (inferior_pid);
1750 }
1751 resume (0, TARGET_SIGNAL_0);
104c1213
JM
1752 prepare_to_wait (ecs);
1753 return;
c906108c 1754
c5aa993b 1755 /* Before examining the threads further, step this thread to
c906108c
SS
1756 get it entirely out of the syscall. (We get notice of the
1757 event when the thread is just on the verge of exiting a
1758 syscall. Stepping one instruction seems to get it back
1759 into user code.)
1760
1761 Note that although the logical place to reenable h/w watches
1762 is here, we cannot. We cannot reenable them before stepping
1763 the thread (this causes the next wait on the thread to hang).
1764
1765 Nor can we enable them after stepping until we've done a wait.
cd0fc7c3 1766 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
c906108c
SS
1767 here, which will be serviced immediately after the target
1768 is waited on. */
c5aa993b
JM
1769 case TARGET_WAITKIND_SYSCALL_RETURN:
1770 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c 1771
c5aa993b
JM
1772 if (number_of_threads_in_syscalls > 0)
1773 {
1774 number_of_threads_in_syscalls--;
1775 ecs->enable_hw_watchpoints_after_wait =
1776 (number_of_threads_in_syscalls == 0);
1777 }
104c1213
JM
1778 prepare_to_wait (ecs);
1779 return;
c906108c 1780
c5aa993b
JM
1781 case TARGET_WAITKIND_STOPPED:
1782 stop_signal = ecs->ws.value.sig;
1783 break;
c4093a6a
JM
1784
1785 /* We had an event in the inferior, but we are not interested
1786 in handling it at this level. The lower layers have already
1787 done what needs to be done, if anything. This case can
1788 occur only when the target is async or extended-async. One
1789 of the circumstamces for this to happen is when the
1790 inferior produces output for the console. The inferior has
1791 not stopped, and we are ignoring the event. */
1792 case TARGET_WAITKIND_IGNORE:
1793 ecs->wait_some_more = 1;
1794 return;
c5aa993b 1795 }
c906108c 1796
c5aa993b
JM
1797 /* We may want to consider not doing a resume here in order to give
1798 the user a chance to play with the new thread. It might be good
1799 to make that a user-settable option. */
c906108c 1800
c5aa993b
JM
1801 /* At this point, all threads are stopped (happens automatically in
1802 either the OS or the native code). Therefore we need to continue
1803 all threads in order to make progress. */
1804 if (ecs->new_thread_event)
1805 {
1806 target_resume (-1, 0, TARGET_SIGNAL_0);
104c1213
JM
1807 prepare_to_wait (ecs);
1808 return;
c5aa993b 1809 }
c906108c 1810
c5aa993b 1811 stop_pc = read_pc_pid (ecs->pid);
c906108c 1812
c5aa993b
JM
1813 /* See if a thread hit a thread-specific breakpoint that was meant for
1814 another thread. If so, then step that thread past the breakpoint,
1815 and continue it. */
c906108c 1816
c5aa993b
JM
1817 if (stop_signal == TARGET_SIGNAL_TRAP)
1818 {
1819 if (SOFTWARE_SINGLE_STEP_P && singlestep_breakpoints_inserted_p)
1820 ecs->random_signal = 0;
1821 else if (breakpoints_inserted
1822 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
1823 {
cd0fc7c3 1824 ecs->random_signal = 0;
c5aa993b
JM
1825 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1826 ecs->pid))
1827 {
1828 int remove_status;
1829
1830 /* Saw a breakpoint, but it was hit by the wrong thread.
1831 Just continue. */
1832 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->pid);
1833
1834 remove_status = remove_breakpoints ();
1835 /* Did we fail to remove breakpoints? If so, try
1836 to set the PC past the bp. (There's at least
1837 one situation in which we can fail to remove
1838 the bp's: On HP-UX's that use ttrace, we can't
1839 change the address space of a vforking child
1840 process until the child exits (well, okay, not
1841 then either :-) or execs. */
1842 if (remove_status != 0)
1843 {
1844 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->pid);
1845 }
1846 else
1847 { /* Single step */
1848 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
1849 /* FIXME: What if a signal arrives instead of the
1850 single-step happening? */
1851
1852 ecs->waiton_pid = ecs->pid;
1853 ecs->wp = &(ecs->ws);
1854 ecs->infwait_state = infwait_thread_hop_state;
104c1213
JM
1855 prepare_to_wait (ecs);
1856 return;
c5aa993b 1857 }
c906108c 1858
c5aa993b
JM
1859 /* We need to restart all the threads now,
1860 * unles we're running in scheduler-locked mode.
1861 * FIXME: shouldn't we look at currently_stepping ()?
1862 */
1863 if (scheduler_mode == schedlock_on)
1864 target_resume (ecs->pid, 0, TARGET_SIGNAL_0);
1865 else
1866 target_resume (-1, 0, TARGET_SIGNAL_0);
104c1213
JM
1867 prepare_to_wait (ecs);
1868 return;
c5aa993b
JM
1869 }
1870 else
1871 {
1872 /* This breakpoint matches--either it is the right
1873 thread or it's a generic breakpoint for all threads.
1874 Remember that we'll need to step just _this_ thread
1875 on any following user continuation! */
1876 thread_step_needed = 1;
1877 }
1878 }
1879 }
1880 else
1881 ecs->random_signal = 1;
1882
1883 /* See if something interesting happened to the non-current thread. If
1884 so, then switch to that thread, and eventually give control back to
1885 the user.
1886
1887 Note that if there's any kind of pending follow (i.e., of a fork,
1888 vfork or exec), we don't want to do this now. Rather, we'll let
1889 the next resume handle it. */
1890 if ((ecs->pid != inferior_pid) &&
1891 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1892 {
1893 int printed = 0;
c906108c 1894
c5aa993b
JM
1895 /* If it's a random signal for a non-current thread, notify user
1896 if he's expressed an interest. */
1897 if (ecs->random_signal
1898 && signal_print[stop_signal])
1899 {
c906108c
SS
1900/* ??rehrauer: I don't understand the rationale for this code. If the
1901 inferior will stop as a result of this signal, then the act of handling
1902 the stop ought to print a message that's couches the stoppage in user
1903 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1904 won't stop as a result of the signal -- i.e., if the signal is merely
1905 a side-effect of something GDB's doing "under the covers" for the
1906 user, such as stepping threads over a breakpoint they shouldn't stop
1907 for -- then the message seems to be a serious annoyance at best.
1908
1909 For now, remove the message altogether. */
1910#if 0
c5aa993b
JM
1911 printed = 1;
1912 target_terminal_ours_for_output ();
1913 printf_filtered ("\nProgram received signal %s, %s.\n",
1914 target_signal_to_name (stop_signal),
1915 target_signal_to_string (stop_signal));
1916 gdb_flush (gdb_stdout);
c906108c 1917#endif
c5aa993b 1918 }
c906108c 1919
c5aa993b
JM
1920 /* If it's not SIGTRAP and not a signal we want to stop for, then
1921 continue the thread. */
c906108c 1922
c5aa993b
JM
1923 if (stop_signal != TARGET_SIGNAL_TRAP
1924 && !signal_stop[stop_signal])
1925 {
1926 if (printed)
1927 target_terminal_inferior ();
c906108c 1928
c5aa993b
JM
1929 /* Clear the signal if it should not be passed. */
1930 if (signal_program[stop_signal] == 0)
1931 stop_signal = TARGET_SIGNAL_0;
c906108c 1932
c5aa993b 1933 target_resume (ecs->pid, 0, stop_signal);
104c1213
JM
1934 prepare_to_wait (ecs);
1935 return;
c5aa993b 1936 }
c906108c 1937
c5aa993b
JM
1938 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1939 and fall into the rest of wait_for_inferior(). */
1940
c2d11a7d
JM
1941 /* Caution: it may happen that the new thread (or the old one!)
1942 is not in the thread list. In this case we must not attempt
1943 to "switch context", or we run the risk that our context may
1944 be lost. This may happen as a result of the target module
1945 mishandling thread creation. */
1946
1947 if (in_thread_list (inferior_pid) && in_thread_list (ecs->pid))
1948 { /* Perform infrun state context switch: */
1949 /* Save infrun state for the old thread. */
1950 save_infrun_state (inferior_pid, prev_pc,
1951 prev_func_start, prev_func_name,
1952 trap_expected, step_resume_breakpoint,
1953 through_sigtramp_breakpoint,
1954 step_range_start, step_range_end,
1955 step_frame_address, ecs->handling_longjmp,
1956 ecs->another_trap,
1957 ecs->stepping_through_solib_after_catch,
1958 ecs->stepping_through_solib_catchpoints,
1959 ecs->stepping_through_sigtramp);
1960
1961 /* Load infrun state for the new thread. */
1962 load_infrun_state (ecs->pid, &prev_pc,
1963 &prev_func_start, &prev_func_name,
1964 &trap_expected, &step_resume_breakpoint,
1965 &through_sigtramp_breakpoint,
1966 &step_range_start, &step_range_end,
1967 &step_frame_address, &ecs->handling_longjmp,
1968 &ecs->another_trap,
1969 &ecs->stepping_through_solib_after_catch,
1970 &ecs->stepping_through_solib_catchpoints,
1971 &ecs->stepping_through_sigtramp);
1972 }
c5aa993b
JM
1973
1974 inferior_pid = ecs->pid;
1975
c5aa993b
JM
1976 if (context_hook)
1977 context_hook (pid_to_thread_id (ecs->pid));
1978
c5aa993b
JM
1979 flush_cached_frames ();
1980 }
c906108c 1981
c5aa993b
JM
1982 if (SOFTWARE_SINGLE_STEP_P && singlestep_breakpoints_inserted_p)
1983 {
1984 /* Pull the single step breakpoints out of the target. */
1985 SOFTWARE_SINGLE_STEP (0, 0);
1986 singlestep_breakpoints_inserted_p = 0;
1987 }
c906108c 1988
c5aa993b
JM
1989 /* If PC is pointing at a nullified instruction, then step beyond
1990 it so that the user won't be confused when GDB appears to be ready
1991 to execute it. */
c906108c 1992
c5aa993b
JM
1993 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1994 if (INSTRUCTION_NULLIFIED)
1995 {
1996 registers_changed ();
1997 target_resume (ecs->pid, 1, TARGET_SIGNAL_0);
c906108c 1998
c5aa993b
JM
1999 /* We may have received a signal that we want to pass to
2000 the inferior; therefore, we must not clobber the waitstatus
2001 in WS. */
c906108c 2002
c5aa993b
JM
2003 ecs->infwait_state = infwait_nullified_state;
2004 ecs->waiton_pid = ecs->pid;
2005 ecs->wp = &(ecs->tmpstatus);
104c1213
JM
2006 prepare_to_wait (ecs);
2007 return;
c5aa993b 2008 }
c906108c 2009
c5aa993b
JM
2010 /* It may not be necessary to disable the watchpoint to stop over
2011 it. For example, the PA can (with some kernel cooperation)
2012 single step over a watchpoint without disabling the watchpoint. */
2013 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2014 {
2015 resume (1, 0);
104c1213
JM
2016 prepare_to_wait (ecs);
2017 return;
c5aa993b 2018 }
c906108c 2019
c5aa993b
JM
2020 /* It is far more common to need to disable a watchpoint to step
2021 the inferior over it. FIXME. What else might a debug
2022 register or page protection watchpoint scheme need here? */
2023 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
2024 {
2025 /* At this point, we are stopped at an instruction which has
2026 attempted to write to a piece of memory under control of
2027 a watchpoint. The instruction hasn't actually executed
2028 yet. If we were to evaluate the watchpoint expression
2029 now, we would get the old value, and therefore no change
2030 would seem to have occurred.
2031
2032 In order to make watchpoints work `right', we really need
2033 to complete the memory write, and then evaluate the
2034 watchpoint expression. The following code does that by
2035 removing the watchpoint (actually, all watchpoints and
2036 breakpoints), single-stepping the target, re-inserting
2037 watchpoints, and then falling through to let normal
2038 single-step processing handle proceed. Since this
2039 includes evaluating watchpoints, things will come to a
2040 stop in the correct manner. */
2041
2042 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
2043
2044 remove_breakpoints ();
2045 registers_changed ();
2046 target_resume (ecs->pid, 1, TARGET_SIGNAL_0); /* Single step */
2047
2048 ecs->waiton_pid = ecs->pid;
2049 ecs->wp = &(ecs->ws);
2050 ecs->infwait_state = infwait_nonstep_watch_state;
104c1213
JM
2051 prepare_to_wait (ecs);
2052 return;
c5aa993b 2053 }
c906108c 2054
c5aa993b
JM
2055 /* It may be possible to simply continue after a watchpoint. */
2056 if (HAVE_CONTINUABLE_WATCHPOINT)
2057 STOPPED_BY_WATCHPOINT (ecs->ws);
2058
2059 ecs->stop_func_start = 0;
2060 ecs->stop_func_end = 0;
2061 ecs->stop_func_name = 0;
2062 /* Don't care about return value; stop_func_start and stop_func_name
2063 will both be 0 if it doesn't work. */
2064 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2065 &ecs->stop_func_start, &ecs->stop_func_end);
2066 ecs->stop_func_start += FUNCTION_START_OFFSET;
2067 ecs->another_trap = 0;
2068 bpstat_clear (&stop_bpstat);
2069 stop_step = 0;
2070 stop_stack_dummy = 0;
2071 stop_print_frame = 1;
2072 ecs->random_signal = 0;
2073 stopped_by_random_signal = 0;
2074 breakpoints_failed = 0;
2075
2076 /* Look at the cause of the stop, and decide what to do.
2077 The alternatives are:
2078 1) break; to really stop and return to the debugger,
2079 2) drop through to start up again
2080 (set ecs->another_trap to 1 to single step once)
2081 3) set ecs->random_signal to 1, and the decision between 1 and 2
2082 will be made according to the signal handling tables. */
2083
2084 /* First, distinguish signals caused by the debugger from signals
2085 that have to do with the program's own actions.
2086 Note that breakpoint insns may cause SIGTRAP or SIGILL
2087 or SIGEMT, depending on the operating system version.
2088 Here we detect when a SIGILL or SIGEMT is really a breakpoint
2089 and change it to SIGTRAP. */
2090
2091 if (stop_signal == TARGET_SIGNAL_TRAP
2092 || (breakpoints_inserted &&
2093 (stop_signal == TARGET_SIGNAL_ILL
2094 || stop_signal == TARGET_SIGNAL_EMT
2095 ))
2096 || stop_soon_quietly)
2097 {
2098 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
2099 {
2100 stop_print_frame = 0;
104c1213
JM
2101 stop_stepping (ecs);
2102 return;
c5aa993b
JM
2103 }
2104 if (stop_soon_quietly)
104c1213
JM
2105 {
2106 stop_stepping (ecs);
2107 return;
2108 }
c906108c 2109
c5aa993b
JM
2110 /* Don't even think about breakpoints
2111 if just proceeded over a breakpoint.
c906108c 2112
c5aa993b
JM
2113 However, if we are trying to proceed over a breakpoint
2114 and end up in sigtramp, then through_sigtramp_breakpoint
2115 will be set and we should check whether we've hit the
2116 step breakpoint. */
2117 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
2118 && through_sigtramp_breakpoint == NULL)
2119 bpstat_clear (&stop_bpstat);
2120 else
2121 {
2122 /* See if there is a breakpoint at the current PC. */
2123 stop_bpstat = bpstat_stop_status
2124 (&stop_pc,
6426a772
JM
2125 /* Pass TRUE if our reason for stopping is something other
2126 than hitting a breakpoint. We do this by checking that
2127 1) stepping is going on and 2) we didn't hit a breakpoint
2128 in a signal handler without an intervening stop in
2129 sigtramp, which is detected by a new stack pointer value
2130 below any usual function calling stack adjustments. */
c5aa993b 2131 (currently_stepping (ecs)
c5aa993b 2132 && !(step_range_end
6426a772 2133 && INNER_THAN (read_sp (), (step_sp - 16))))
c5aa993b
JM
2134 );
2135 /* Following in case break condition called a
2136 function. */
2137 stop_print_frame = 1;
2138 }
c906108c 2139
c5aa993b
JM
2140 if (stop_signal == TARGET_SIGNAL_TRAP)
2141 ecs->random_signal
2142 = !(bpstat_explains_signal (stop_bpstat)
2143 || trap_expected
2144 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2145 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2146 FRAME_FP (get_current_frame ())))
2147 || (step_range_end && step_resume_breakpoint == NULL));
2148
2149 else
2150 {
cd0fc7c3 2151 ecs->random_signal
c906108c 2152 = !(bpstat_explains_signal (stop_bpstat)
c5aa993b
JM
2153 /* End of a stack dummy. Some systems (e.g. Sony
2154 news) give another signal besides SIGTRAP, so
2155 check here as well as above. */
7a292a7a
SS
2156 || (!CALL_DUMMY_BREAKPOINT_OFFSET_P
2157 && PC_IN_CALL_DUMMY (stop_pc, read_sp (),
2158 FRAME_FP (get_current_frame ())))
c5aa993b
JM
2159 );
2160 if (!ecs->random_signal)
2161 stop_signal = TARGET_SIGNAL_TRAP;
2162 }
2163 }
c906108c 2164
c5aa993b
JM
2165 /* When we reach this point, we've pretty much decided
2166 that the reason for stopping must've been a random
2167 (unexpected) signal. */
2168
2169 else
2170 ecs->random_signal = 1;
2171 /* If a fork, vfork or exec event was seen, then there are two
2172 possible responses we can make:
2173
2174 1. If a catchpoint triggers for the event (ecs->random_signal == 0),
2175 then we must stop now and issue a prompt. We will resume
2176 the inferior when the user tells us to.
2177 2. If no catchpoint triggers for the event (ecs->random_signal == 1),
2178 then we must resume the inferior now and keep checking.
2179
2180 In either case, we must take appropriate steps to "follow" the
2181 the fork/vfork/exec when the inferior is resumed. For example,
2182 if follow-fork-mode is "child", then we must detach from the
2183 parent inferior and follow the new child inferior.
2184
2185 In either case, setting pending_follow causes the next resume()
2186 to take the appropriate following action. */
2187 process_event_stop_test:
2188 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
2189 {
2190 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2191 {
2192 trap_expected = 1;
2193 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2194 keep_going (ecs);
2195 return;
c5aa993b
JM
2196 }
2197 }
2198 else if (ecs->ws.kind == TARGET_WAITKIND_VFORKED)
2199 {
2200 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2201 {
d4f3574e
SS
2202 stop_signal = TARGET_SIGNAL_0;
2203 keep_going (ecs);
2204 return;
c5aa993b
JM
2205 }
2206 }
2207 else if (ecs->ws.kind == TARGET_WAITKIND_EXECD)
2208 {
2209 pending_follow.kind = ecs->ws.kind;
2210 if (ecs->random_signal) /* I.e., no catchpoint triggered for this. */
2211 {
2212 trap_expected = 1;
2213 stop_signal = TARGET_SIGNAL_0;
d4f3574e
SS
2214 keep_going (ecs);
2215 return;
c5aa993b
JM
2216 }
2217 }
c906108c 2218
c5aa993b
JM
2219 /* For the program's own signals, act according to
2220 the signal handling tables. */
c906108c 2221
c5aa993b
JM
2222 if (ecs->random_signal)
2223 {
2224 /* Signal not for debugging purposes. */
2225 int printed = 0;
2226
2227 stopped_by_random_signal = 1;
2228
2229 if (signal_print[stop_signal])
2230 {
2231 printed = 1;
2232 target_terminal_ours_for_output ();
11cf8741 2233 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
c5aa993b
JM
2234 }
2235 if (signal_stop[stop_signal])
104c1213
JM
2236 {
2237 stop_stepping (ecs);
2238 return;
2239 }
c5aa993b
JM
2240 /* If not going to stop, give terminal back
2241 if we took it away. */
2242 else if (printed)
2243 target_terminal_inferior ();
2244
2245 /* Clear the signal if it should not be passed. */
2246 if (signal_program[stop_signal] == 0)
2247 stop_signal = TARGET_SIGNAL_0;
2248
a0b3c4fd
JM
2249 /* I'm not sure whether this needs to be check_sigtramp2 or
2250 whether it could/should be keep_going.
2251
2252 This used to jump to step_over_function if we are stepping,
2253 which is wrong.
2254
2255 Suppose the user does a `next' over a function call, and while
2256 that call is in progress, the inferior receives a signal for
2257 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2258 that case, when we reach this point, there is already a
2259 step-resume breakpoint established, right where it should be:
2260 immediately after the function call the user is "next"-ing
d4f3574e 2261 over. If we call step_over_function now, two bad things
a0b3c4fd
JM
2262 happen:
2263
2264 - we'll create a new breakpoint, at wherever the current
2265 frame's return address happens to be. That could be
2266 anywhere, depending on what function call happens to be on
2267 the top of the stack at that point. Point is, it's probably
2268 not where we need it.
2269
2270 - the existing step-resume breakpoint (which is at the correct
2271 address) will get orphaned: step_resume_breakpoint will point
2272 to the new breakpoint, and the old step-resume breakpoint
2273 will never be cleaned up.
2274
2275 The old behavior was meant to help HP-UX single-step out of
2276 sigtramps. It would place the new breakpoint at prev_pc, which
2277 was certainly wrong. I don't know the details there, so fixing
2278 this probably breaks that. As with anything else, it's up to
2279 the HP-UX maintainer to furnish a fix that doesn't break other
2280 platforms. --JimB, 20 May 1999 */
104c1213 2281 check_sigtramp2 (ecs);
e441088d
MK
2282 keep_going (ecs);
2283 return;
c5aa993b
JM
2284 }
2285
2286 /* Handle cases caused by hitting a breakpoint. */
2287 {
2288 CORE_ADDR jmp_buf_pc;
2289 struct bpstat_what what;
2290
2291 what = bpstat_what (stop_bpstat);
2292
2293 if (what.call_dummy)
c906108c 2294 {
c5aa993b
JM
2295 stop_stack_dummy = 1;
2296#ifdef HP_OS_BUG
2297 trap_expected_after_continue = 1;
2298#endif
c906108c 2299 }
c5aa993b
JM
2300
2301 switch (what.main_action)
c906108c 2302 {
c5aa993b
JM
2303 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2304 /* If we hit the breakpoint at longjmp, disable it for the
2305 duration of this command. Then, install a temporary
2306 breakpoint at the target of the jmp_buf. */
2307 disable_longjmp_breakpoint ();
2308 remove_breakpoints ();
2309 breakpoints_inserted = 0;
2310 if (!GET_LONGJMP_TARGET (&jmp_buf_pc))
d4f3574e
SS
2311 {
2312 keep_going (ecs);
2313 return;
2314 }
c5aa993b
JM
2315
2316 /* Need to blow away step-resume breakpoint, as it
2317 interferes with us */
2318 if (step_resume_breakpoint != NULL)
c906108c 2319 {
c5aa993b
JM
2320 delete_breakpoint (step_resume_breakpoint);
2321 step_resume_breakpoint = NULL;
c906108c 2322 }
c5aa993b
JM
2323 /* Not sure whether we need to blow this away too, but probably
2324 it is like the step-resume breakpoint. */
2325 if (through_sigtramp_breakpoint != NULL)
c906108c 2326 {
c5aa993b
JM
2327 delete_breakpoint (through_sigtramp_breakpoint);
2328 through_sigtramp_breakpoint = NULL;
c906108c 2329 }
c906108c 2330
c5aa993b
JM
2331#if 0
2332 /* FIXME - Need to implement nested temporary breakpoints */
2333 if (step_over_calls > 0)
2334 set_longjmp_resume_breakpoint (jmp_buf_pc,
2335 get_current_frame ());
2336 else
2337#endif /* 0 */
2338 set_longjmp_resume_breakpoint (jmp_buf_pc, NULL);
2339 ecs->handling_longjmp = 1; /* FIXME */
d4f3574e
SS
2340 keep_going (ecs);
2341 return;
c906108c 2342
c5aa993b
JM
2343 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2344 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2345 remove_breakpoints ();
2346 breakpoints_inserted = 0;
2347#if 0
2348 /* FIXME - Need to implement nested temporary breakpoints */
2349 if (step_over_calls
2350 && (INNER_THAN (FRAME_FP (get_current_frame ()),
2351 step_frame_address)))
2352 {
2353 ecs->another_trap = 1;
d4f3574e
SS
2354 keep_going (ecs);
2355 return;
c5aa993b
JM
2356 }
2357#endif /* 0 */
2358 disable_longjmp_breakpoint ();
2359 ecs->handling_longjmp = 0; /* FIXME */
2360 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2361 break;
2362 /* else fallthrough */
c906108c 2363
c5aa993b
JM
2364 case BPSTAT_WHAT_SINGLE:
2365 if (breakpoints_inserted)
c906108c 2366 {
c5aa993b
JM
2367 thread_step_needed = 1;
2368 remove_breakpoints ();
c906108c 2369 }
c5aa993b
JM
2370 breakpoints_inserted = 0;
2371 ecs->another_trap = 1;
2372 /* Still need to check other stuff, at least the case
2373 where we are stepping and step out of the right range. */
2374 break;
c906108c 2375
c5aa993b
JM
2376 case BPSTAT_WHAT_STOP_NOISY:
2377 stop_print_frame = 1;
c906108c 2378
c5aa993b
JM
2379 /* We are about to nuke the step_resume_breakpoint and
2380 through_sigtramp_breakpoint via the cleanup chain, so
2381 no need to worry about it here. */
c906108c 2382
104c1213
JM
2383 stop_stepping (ecs);
2384 return;
c906108c 2385
c5aa993b
JM
2386 case BPSTAT_WHAT_STOP_SILENT:
2387 stop_print_frame = 0;
c906108c 2388
c5aa993b
JM
2389 /* We are about to nuke the step_resume_breakpoint and
2390 through_sigtramp_breakpoint via the cleanup chain, so
2391 no need to worry about it here. */
c906108c 2392
104c1213
JM
2393 stop_stepping (ecs);
2394 return;
c906108c 2395
c5aa993b
JM
2396 case BPSTAT_WHAT_STEP_RESUME:
2397 /* This proably demands a more elegant solution, but, yeah
2398 right...
2399
2400 This function's use of the simple variable
2401 step_resume_breakpoint doesn't seem to accomodate
2402 simultaneously active step-resume bp's, although the
2403 breakpoint list certainly can.
2404
2405 If we reach here and step_resume_breakpoint is already
2406 NULL, then apparently we have multiple active
2407 step-resume bp's. We'll just delete the breakpoint we
53a5351d
JM
2408 stopped at, and carry on.
2409
2410 Correction: what the code currently does is delete a
2411 step-resume bp, but it makes no effort to ensure that
2412 the one deleted is the one currently stopped at. MVS */
2413
c5aa993b
JM
2414 if (step_resume_breakpoint == NULL)
2415 {
2416 step_resume_breakpoint =
2417 bpstat_find_step_resume_breakpoint (stop_bpstat);
2418 }
2419 delete_breakpoint (step_resume_breakpoint);
2420 step_resume_breakpoint = NULL;
2421 break;
2422
2423 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2424 if (through_sigtramp_breakpoint)
2425 delete_breakpoint (through_sigtramp_breakpoint);
2426 through_sigtramp_breakpoint = NULL;
2427
2428 /* If were waiting for a trap, hitting the step_resume_break
2429 doesn't count as getting it. */
2430 if (trap_expected)
2431 ecs->another_trap = 1;
2432 break;
c906108c 2433
c5aa993b
JM
2434 case BPSTAT_WHAT_CHECK_SHLIBS:
2435 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2436#ifdef SOLIB_ADD
c906108c 2437 {
c5aa993b
JM
2438 /* Remove breakpoints, we eventually want to step over the
2439 shlib event breakpoint, and SOLIB_ADD might adjust
2440 breakpoint addresses via breakpoint_re_set. */
2441 if (breakpoints_inserted)
2442 remove_breakpoints ();
c906108c 2443 breakpoints_inserted = 0;
c906108c 2444
c5aa993b
JM
2445 /* Check for any newly added shared libraries if we're
2446 supposed to be adding them automatically. */
2447 if (auto_solib_add)
c906108c 2448 {
c5aa993b
JM
2449 /* Switch terminal for any messages produced by
2450 breakpoint_re_set. */
2451 target_terminal_ours_for_output ();
2452 SOLIB_ADD (NULL, 0, NULL);
2453 target_terminal_inferior ();
c906108c 2454 }
c5aa993b
JM
2455
2456 /* Try to reenable shared library breakpoints, additional
2457 code segments in shared libraries might be mapped in now. */
2458 re_enable_breakpoints_in_shlibs ();
2459
2460 /* If requested, stop when the dynamic linker notifies
2461 gdb of events. This allows the user to get control
2462 and place breakpoints in initializer routines for
2463 dynamically loaded objects (among other things). */
2464 if (stop_on_solib_events)
c906108c 2465 {
104c1213
JM
2466 stop_stepping (ecs);
2467 return;
c906108c
SS
2468 }
2469
c5aa993b
JM
2470 /* If we stopped due to an explicit catchpoint, then the
2471 (see above) call to SOLIB_ADD pulled in any symbols
2472 from a newly-loaded library, if appropriate.
2473
2474 We do want the inferior to stop, but not where it is
2475 now, which is in the dynamic linker callback. Rather,
2476 we would like it stop in the user's program, just after
2477 the call that caused this catchpoint to trigger. That
2478 gives the user a more useful vantage from which to
2479 examine their program's state. */
2480 else if (what.main_action == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2481 {
2482 /* ??rehrauer: If I could figure out how to get the
2483 right return PC from here, we could just set a temp
2484 breakpoint and resume. I'm not sure we can without
2485 cracking open the dld's shared libraries and sniffing
2486 their unwind tables and text/data ranges, and that's
2487 not a terribly portable notion.
2488
2489 Until that time, we must step the inferior out of the
2490 dld callback, and also out of the dld itself (and any
2491 code or stubs in libdld.sl, such as "shl_load" and
2492 friends) until we reach non-dld code. At that point,
2493 we can stop stepping. */
2494 bpstat_get_triggered_catchpoints (stop_bpstat,
2495 &ecs->stepping_through_solib_catchpoints);
2496 ecs->stepping_through_solib_after_catch = 1;
2497
2498 /* Be sure to lift all breakpoints, so the inferior does
2499 actually step past this point... */
2500 ecs->another_trap = 1;
2501 break;
2502 }
2503 else
c906108c 2504 {
c5aa993b 2505 /* We want to step over this breakpoint, then keep going. */
cd0fc7c3 2506 ecs->another_trap = 1;
c5aa993b 2507 break;
c906108c 2508 }
c5aa993b
JM
2509 }
2510#endif
2511 break;
c906108c 2512
c5aa993b
JM
2513 case BPSTAT_WHAT_LAST:
2514 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2515
c5aa993b
JM
2516 case BPSTAT_WHAT_KEEP_CHECKING:
2517 break;
2518 }
2519 }
c906108c 2520
c5aa993b
JM
2521 /* We come here if we hit a breakpoint but should not
2522 stop for it. Possibly we also were stepping
2523 and should stop for that. So fall through and
2524 test for stepping. But, if not stepping,
2525 do not stop. */
c906108c 2526
c5aa993b
JM
2527 /* Are we stepping to get the inferior out of the dynamic
2528 linker's hook (and possibly the dld itself) after catching
2529 a shlib event? */
2530 if (ecs->stepping_through_solib_after_catch)
2531 {
2532#if defined(SOLIB_ADD)
2533 /* Have we reached our destination? If not, keep going. */
2534 if (SOLIB_IN_DYNAMIC_LINKER (ecs->pid, stop_pc))
2535 {
2536 ecs->another_trap = 1;
d4f3574e
SS
2537 keep_going (ecs);
2538 return;
c5aa993b
JM
2539 }
2540#endif
2541 /* Else, stop and report the catchpoint(s) whose triggering
2542 caused us to begin stepping. */
2543 ecs->stepping_through_solib_after_catch = 0;
2544 bpstat_clear (&stop_bpstat);
2545 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2546 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2547 stop_print_frame = 1;
104c1213
JM
2548 stop_stepping (ecs);
2549 return;
c5aa993b 2550 }
c906108c 2551
c5aa993b
JM
2552 if (!CALL_DUMMY_BREAKPOINT_OFFSET_P)
2553 {
2554 /* This is the old way of detecting the end of the stack dummy.
2555 An architecture which defines CALL_DUMMY_BREAKPOINT_OFFSET gets
2556 handled above. As soon as we can test it on all of them, all
2557 architectures should define it. */
2558
2559 /* If this is the breakpoint at the end of a stack dummy,
2560 just stop silently, unless the user was doing an si/ni, in which
2561 case she'd better know what she's doing. */
2562
2563 if (CALL_DUMMY_HAS_COMPLETED (stop_pc, read_sp (),
2564 FRAME_FP (get_current_frame ()))
2565 && !step_range_end)
2566 {
c906108c 2567 stop_print_frame = 0;
c5aa993b
JM
2568 stop_stack_dummy = 1;
2569#ifdef HP_OS_BUG
2570 trap_expected_after_continue = 1;
2571#endif
104c1213
JM
2572 stop_stepping (ecs);
2573 return;
c5aa993b
JM
2574 }
2575 }
c906108c 2576
c5aa993b 2577 if (step_resume_breakpoint)
104c1213
JM
2578 {
2579 /* Having a step-resume breakpoint overrides anything
2580 else having to do with stepping commands until
2581 that breakpoint is reached. */
2582 /* I'm not sure whether this needs to be check_sigtramp2 or
2583 whether it could/should be keep_going. */
2584 check_sigtramp2 (ecs);
d4f3574e
SS
2585 keep_going (ecs);
2586 return;
104c1213
JM
2587 }
2588
c5aa993b 2589 if (step_range_end == 0)
104c1213
JM
2590 {
2591 /* Likewise if we aren't even stepping. */
2592 /* I'm not sure whether this needs to be check_sigtramp2 or
2593 whether it could/should be keep_going. */
2594 check_sigtramp2 (ecs);
d4f3574e
SS
2595 keep_going (ecs);
2596 return;
104c1213 2597 }
c5aa993b
JM
2598
2599 /* If stepping through a line, keep going if still within it.
2600
2601 Note that step_range_end is the address of the first instruction
2602 beyond the step range, and NOT the address of the last instruction
2603 within it! */
2604 if (stop_pc >= step_range_start
2605 && stop_pc < step_range_end)
2606 {
2607 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2608 So definately need to check for sigtramp here. */
104c1213 2609 check_sigtramp2 (ecs);
d4f3574e
SS
2610 keep_going (ecs);
2611 return;
c5aa993b 2612 }
c906108c 2613
c5aa993b 2614 /* We stepped out of the stepping range. */
c906108c 2615
c5aa993b
JM
2616 /* If we are stepping at the source level and entered the runtime
2617 loader dynamic symbol resolution code, we keep on single stepping
2618 until we exit the run time loader code and reach the callee's
2619 address. */
5fbbeb29 2620 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
d4f3574e
SS
2621 {
2622 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
2623
2624 if (pc_after_resolver)
2625 {
2626 /* Set up a step-resume breakpoint at the address
2627 indicated by SKIP_SOLIB_RESOLVER. */
2628 struct symtab_and_line sr_sal;
2629 INIT_SAL (&sr_sal);
2630 sr_sal.pc = pc_after_resolver;
2631
2632 check_for_old_step_resume_breakpoint ();
2633 step_resume_breakpoint =
2634 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2635 if (breakpoints_inserted)
2636 insert_breakpoints ();
2637 }
2638
2639 keep_going (ecs);
2640 return;
2641 }
c906108c 2642
c5aa993b
JM
2643 /* We can't update step_sp every time through the loop, because
2644 reading the stack pointer would slow down stepping too much.
2645 But we can update it every time we leave the step range. */
2646 ecs->update_step_sp = 1;
c906108c 2647
c5aa993b
JM
2648 /* Did we just take a signal? */
2649 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2650 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2651 && INNER_THAN (read_sp (), step_sp))
2652 {
2653 /* We've just taken a signal; go until we are back to
2654 the point where we took it and one more. */
c906108c 2655
c5aa993b
JM
2656 /* Note: The test above succeeds not only when we stepped
2657 into a signal handler, but also when we step past the last
2658 statement of a signal handler and end up in the return stub
2659 of the signal handler trampoline. To distinguish between
2660 these two cases, check that the frame is INNER_THAN the
2661 previous one below. pai/1997-09-11 */
c906108c 2662
c906108c 2663
c5aa993b
JM
2664 {
2665 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
c906108c 2666
c5aa993b
JM
2667 if (INNER_THAN (current_frame, step_frame_address))
2668 {
2669 /* We have just taken a signal; go until we are back to
2670 the point where we took it and one more. */
c906108c 2671
c5aa993b
JM
2672 /* This code is needed at least in the following case:
2673 The user types "next" and then a signal arrives (before
2674 the "next" is done). */
c906108c 2675
c5aa993b
JM
2676 /* Note that if we are stopped at a breakpoint, then we need
2677 the step_resume breakpoint to override any breakpoints at
2678 the same location, so that we will still step over the
2679 breakpoint even though the signal happened. */
2680 struct symtab_and_line sr_sal;
c906108c 2681
c5aa993b
JM
2682 INIT_SAL (&sr_sal);
2683 sr_sal.symtab = NULL;
2684 sr_sal.line = 0;
2685 sr_sal.pc = prev_pc;
2686 /* We could probably be setting the frame to
2687 step_frame_address; I don't think anyone thought to
2688 try it. */
a0b3c4fd 2689 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2690 step_resume_breakpoint =
2691 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2692 if (breakpoints_inserted)
2693 insert_breakpoints ();
c906108c 2694 }
c5aa993b 2695 else
c906108c 2696 {
c5aa993b
JM
2697 /* We just stepped out of a signal handler and into
2698 its calling trampoline.
2699
d4f3574e 2700 Normally, we'd call step_over_function from
c5aa993b
JM
2701 here, but for some reason GDB can't unwind the
2702 stack correctly to find the real PC for the point
2703 user code where the signal trampoline will return
2704 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2705 But signal trampolines are pretty small stubs of
2706 code, anyway, so it's OK instead to just
2707 single-step out. Note: assuming such trampolines
2708 don't exhibit recursion on any platform... */
2709 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2710 &ecs->stop_func_start,
2711 &ecs->stop_func_end);
2712 /* Readjust stepping range */
2713 step_range_start = ecs->stop_func_start;
2714 step_range_end = ecs->stop_func_end;
2715 ecs->stepping_through_sigtramp = 1;
c906108c 2716 }
c906108c
SS
2717 }
2718
c906108c 2719
c5aa993b
JM
2720 /* If this is stepi or nexti, make sure that the stepping range
2721 gets us past that instruction. */
2722 if (step_range_end == 1)
2723 /* FIXME: Does this run afoul of the code below which, if
2724 we step into the middle of a line, resets the stepping
2725 range? */
2726 step_range_end = (step_range_start = prev_pc) + 1;
c906108c 2727
c5aa993b 2728 ecs->remove_breakpoints_on_following_step = 1;
d4f3574e
SS
2729 keep_going (ecs);
2730 return;
c5aa993b 2731 }
c906108c 2732
c5aa993b
JM
2733 if (stop_pc == ecs->stop_func_start /* Quick test */
2734 || (in_prologue (stop_pc, ecs->stop_func_start) &&
2735 !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2736 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2737 || ecs->stop_func_name == 0)
2738 {
2739 /* It's a subroutine call. */
c906108c 2740
5fbbeb29 2741 if (step_over_calls == STEP_OVER_NONE)
c906108c 2742 {
c5aa993b
JM
2743 /* I presume that step_over_calls is only 0 when we're
2744 supposed to be stepping at the assembly language level
2745 ("stepi"). Just stop. */
2746 stop_step = 1;
11cf8741 2747 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2748 stop_stepping (ecs);
2749 return;
c5aa993b 2750 }
c906108c 2751
5fbbeb29 2752 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
d4f3574e
SS
2753 {
2754 /* We're doing a "next". */
d41707c8
MK
2755
2756 if (IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2757 && INNER_THAN (step_frame_address, read_sp()))
2758 /* We stepped out of a signal handler, and into its
2759 calling trampoline. This is misdetected as a
2760 subroutine call, but stepping over the signal
2761 trampoline isn't such a bad idea. In order to do
2762 that, we have to ignore the value in
2763 step_frame_address, since that doesn't represent the
2764 frame that'll reach when we return from the signal
2765 trampoline. Otherwise we'll probably continue to the
2766 end of the program. */
2767 step_frame_address = 0;
2768
d4f3574e
SS
2769 step_over_function (ecs);
2770 keep_going (ecs);
2771 return;
2772 }
c5aa993b
JM
2773
2774 /* If we are in a function call trampoline (a stub between
2775 the calling routine and the real function), locate the real
2776 function. That's what tells us (a) whether we want to step
2777 into it at all, and (b) what prologue we want to run to
2778 the end of, if we do step into it. */
2779 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
2780 if (tmp != 0)
2781 ecs->stop_func_start = tmp;
2782 else
2783 {
2784 tmp = DYNAMIC_TRAMPOLINE_NEXTPC (stop_pc);
2785 if (tmp)
c906108c 2786 {
c5aa993b
JM
2787 struct symtab_and_line xxx;
2788 /* Why isn't this s_a_l called "sr_sal", like all of the
2789 other s_a_l's where this code is duplicated? */
2790 INIT_SAL (&xxx); /* initialize to zeroes */
2791 xxx.pc = tmp;
2792 xxx.section = find_pc_overlay (xxx.pc);
a0b3c4fd 2793 check_for_old_step_resume_breakpoint ();
c906108c 2794 step_resume_breakpoint =
c5aa993b
JM
2795 set_momentary_breakpoint (xxx, NULL, bp_step_resume);
2796 insert_breakpoints ();
d4f3574e
SS
2797 keep_going (ecs);
2798 return;
c906108c
SS
2799 }
2800 }
2801
c5aa993b
JM
2802 /* If we have line number information for the function we
2803 are thinking of stepping into, step into it.
c906108c 2804
c5aa993b
JM
2805 If there are several symtabs at that PC (e.g. with include
2806 files), just want to know whether *any* of them have line
2807 numbers. find_pc_line handles this. */
2808 {
2809 struct symtab_and_line tmp_sal;
c906108c 2810
c5aa993b
JM
2811 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2812 if (tmp_sal.line != 0)
c2c6d25f
JM
2813 {
2814 step_into_function (ecs);
2815 return;
2816 }
c906108c 2817 }
5fbbeb29
CF
2818
2819 /* If we have no line number and the step-stop-if-no-debug
2820 is set, we stop the step so that the user has a chance to
2821 switch in assembly mode. */
2822 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2823 {
2824 stop_step = 1;
2825 print_stop_reason (END_STEPPING_RANGE, 0);
2826 stop_stepping (ecs);
2827 return;
2828 }
2829
d4f3574e
SS
2830 step_over_function (ecs);
2831 keep_going (ecs);
2832 return;
c906108c 2833
c5aa993b 2834 }
c906108c 2835
c5aa993b 2836 /* We've wandered out of the step range. */
c906108c 2837
c5aa993b 2838 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2839
c5aa993b
JM
2840 if (step_range_end == 1)
2841 {
2842 /* It is stepi or nexti. We always want to stop stepping after
2843 one instruction. */
2844 stop_step = 1;
11cf8741 2845 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2846 stop_stepping (ecs);
2847 return;
c5aa993b 2848 }
c906108c 2849
c5aa993b
JM
2850 /* If we're in the return path from a shared library trampoline,
2851 we want to proceed through the trampoline when stepping. */
2852 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2853 {
2854 CORE_ADDR tmp;
c906108c 2855
c5aa993b
JM
2856 /* Determine where this trampoline returns. */
2857 tmp = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2858
c5aa993b
JM
2859 /* Only proceed through if we know where it's going. */
2860 if (tmp)
2861 {
2862 /* And put the step-breakpoint there and go until there. */
2863 struct symtab_and_line sr_sal;
c906108c 2864
c5aa993b
JM
2865 INIT_SAL (&sr_sal); /* initialize to zeroes */
2866 sr_sal.pc = tmp;
2867 sr_sal.section = find_pc_overlay (sr_sal.pc);
2868 /* Do not specify what the fp should be when we stop
2869 since on some machines the prologue
2870 is where the new fp value is established. */
a0b3c4fd 2871 check_for_old_step_resume_breakpoint ();
c5aa993b
JM
2872 step_resume_breakpoint =
2873 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
2874 if (breakpoints_inserted)
2875 insert_breakpoints ();
c906108c 2876
c5aa993b
JM
2877 /* Restart without fiddling with the step ranges or
2878 other state. */
d4f3574e
SS
2879 keep_going (ecs);
2880 return;
c5aa993b
JM
2881 }
2882 }
c906108c 2883
c5aa993b 2884 if (ecs->sal.line == 0)
c906108c 2885 {
c5aa993b
JM
2886 /* We have no line number information. That means to stop
2887 stepping (does this always happen right after one instruction,
2888 when we do "s" in a function with no line numbers,
2889 or can this happen as a result of a return or longjmp?). */
2890 stop_step = 1;
11cf8741 2891 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2892 stop_stepping (ecs);
2893 return;
c906108c
SS
2894 }
2895
c5aa993b
JM
2896 if ((stop_pc == ecs->sal.pc)
2897 && (ecs->current_line != ecs->sal.line || ecs->current_symtab != ecs->sal.symtab))
2898 {
2899 /* We are at the start of a different line. So stop. Note that
2900 we don't stop if we step into the middle of a different line.
2901 That is said to make things like for (;;) statements work
2902 better. */
2903 stop_step = 1;
11cf8741 2904 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2905 stop_stepping (ecs);
2906 return;
c5aa993b 2907 }
c906108c 2908
c5aa993b 2909 /* We aren't done stepping.
c906108c 2910
c5aa993b
JM
2911 Optimize by setting the stepping range to the line.
2912 (We might not be in the original line, but if we entered a
2913 new line in mid-statement, we continue stepping. This makes
2914 things like for(;;) statements work better.) */
c906108c 2915
c5aa993b
JM
2916 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2917 {
2918 /* If this is the last line of the function, don't keep stepping
2919 (it would probably step us out of the function).
2920 This is particularly necessary for a one-line function,
2921 in which after skipping the prologue we better stop even though
2922 we will be in mid-line. */
2923 stop_step = 1;
11cf8741 2924 print_stop_reason (END_STEPPING_RANGE, 0);
104c1213
JM
2925 stop_stepping (ecs);
2926 return;
c5aa993b
JM
2927 }
2928 step_range_start = ecs->sal.pc;
2929 step_range_end = ecs->sal.end;
2930 step_frame_address = FRAME_FP (get_current_frame ());
2931 ecs->current_line = ecs->sal.line;
2932 ecs->current_symtab = ecs->sal.symtab;
2933
2934 /* In the case where we just stepped out of a function into the middle
2935 of a line of the caller, continue stepping, but step_frame_address
2936 must be modified to current frame */
2937 {
2938 CORE_ADDR current_frame = FRAME_FP (get_current_frame ());
2939 if (!(INNER_THAN (current_frame, step_frame_address)))
2940 step_frame_address = current_frame;
2941 }
c906108c 2942
d4f3574e 2943 keep_going (ecs);
cd0fc7c3 2944
104c1213 2945 } /* extra brace, to preserve old indentation */
104c1213
JM
2946}
2947
2948/* Are we in the middle of stepping? */
2949
2950static int
2951currently_stepping (struct execution_control_state *ecs)
2952{
2953 return ((through_sigtramp_breakpoint == NULL
2954 && !ecs->handling_longjmp
2955 && ((step_range_end && step_resume_breakpoint == NULL)
2956 || trap_expected))
2957 || ecs->stepping_through_solib_after_catch
2958 || bpstat_should_step ());
2959}
c906108c 2960
104c1213
JM
2961static void
2962check_sigtramp2 (struct execution_control_state *ecs)
2963{
2964 if (trap_expected
2965 && IN_SIGTRAMP (stop_pc, ecs->stop_func_name)
2966 && !IN_SIGTRAMP (prev_pc, prev_func_name)
2967 && INNER_THAN (read_sp (), step_sp))
2968 {
2969 /* What has happened here is that we have just stepped the
2970 inferior with a signal (because it is a signal which
2971 shouldn't make us stop), thus stepping into sigtramp.
2972
2973 So we need to set a step_resume_break_address breakpoint and
2974 continue until we hit it, and then step. FIXME: This should
2975 be more enduring than a step_resume breakpoint; we should
2976 know that we will later need to keep going rather than
2977 re-hitting the breakpoint here (see the testsuite,
2978 gdb.base/signals.exp where it says "exceedingly difficult"). */
2979
2980 struct symtab_and_line sr_sal;
2981
2982 INIT_SAL (&sr_sal); /* initialize to zeroes */
2983 sr_sal.pc = prev_pc;
2984 sr_sal.section = find_pc_overlay (sr_sal.pc);
2985 /* We perhaps could set the frame if we kept track of what the
2986 frame corresponding to prev_pc was. But we don't, so don't. */
2987 through_sigtramp_breakpoint =
2988 set_momentary_breakpoint (sr_sal, NULL, bp_through_sigtramp);
2989 if (breakpoints_inserted)
2990 insert_breakpoints ();
cd0fc7c3 2991
104c1213
JM
2992 ecs->remove_breakpoints_on_following_step = 1;
2993 ecs->another_trap = 1;
2994 }
2995}
2996
c2c6d25f
JM
2997/* Subroutine call with source code we should not step over. Do step
2998 to the first line of code in it. */
2999
3000static void
3001step_into_function (struct execution_control_state *ecs)
3002{
3003 struct symtab *s;
3004 struct symtab_and_line sr_sal;
3005
3006 s = find_pc_symtab (stop_pc);
3007 if (s && s->language != language_asm)
3008 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
3009
3010 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
3011 /* Use the step_resume_break to step until the end of the prologue,
3012 even if that involves jumps (as it seems to on the vax under
3013 4.2). */
3014 /* If the prologue ends in the middle of a source line, continue to
3015 the end of that source line (if it is still within the function).
3016 Otherwise, just go to end of prologue. */
3017#ifdef PROLOGUE_FIRSTLINE_OVERLAP
3018 /* no, don't either. It skips any code that's legitimately on the
3019 first line. */
3020#else
3021 if (ecs->sal.end
3022 && ecs->sal.pc != ecs->stop_func_start
3023 && ecs->sal.end < ecs->stop_func_end)
3024 ecs->stop_func_start = ecs->sal.end;
3025#endif
3026
3027 if (ecs->stop_func_start == stop_pc)
3028 {
3029 /* We are already there: stop now. */
3030 stop_step = 1;
11cf8741 3031 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
3032 stop_stepping (ecs);
3033 return;
3034 }
3035 else
3036 {
3037 /* Put the step-breakpoint there and go until there. */
3038 INIT_SAL (&sr_sal); /* initialize to zeroes */
3039 sr_sal.pc = ecs->stop_func_start;
3040 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
3041 /* Do not specify what the fp should be when we stop since on
3042 some machines the prologue is where the new fp value is
3043 established. */
3044 check_for_old_step_resume_breakpoint ();
3045 step_resume_breakpoint =
3046 set_momentary_breakpoint (sr_sal, NULL, bp_step_resume);
3047 if (breakpoints_inserted)
3048 insert_breakpoints ();
3049
3050 /* And make sure stepping stops right away then. */
3051 step_range_end = step_range_start;
3052 }
3053 keep_going (ecs);
3054}
d4f3574e
SS
3055
3056/* We've just entered a callee, and we wish to resume until it returns
3057 to the caller. Setting a step_resume breakpoint on the return
3058 address will catch a return from the callee.
3059
3060 However, if the callee is recursing, we want to be careful not to
3061 catch returns of those recursive calls, but only of THIS instance
3062 of the call.
3063
3064 To do this, we set the step_resume bp's frame to our current
3065 caller's frame (step_frame_address, which is set by the "next" or
3066 "until" command, before execution begins). */
3067
3068static void
3069step_over_function (struct execution_control_state *ecs)
3070{
3071 struct symtab_and_line sr_sal;
3072
3073 INIT_SAL (&sr_sal); /* initialize to zeros */
3074 sr_sal.pc = ADDR_BITS_REMOVE (SAVED_PC_AFTER_CALL (get_current_frame ()));
3075 sr_sal.section = find_pc_overlay (sr_sal.pc);
3076
3077 check_for_old_step_resume_breakpoint ();
3078 step_resume_breakpoint =
3079 set_momentary_breakpoint (sr_sal, get_current_frame (), bp_step_resume);
3080
d41707c8 3081 if (step_frame_address && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
d4f3574e
SS
3082 step_resume_breakpoint->frame = step_frame_address;
3083
3084 if (breakpoints_inserted)
3085 insert_breakpoints ();
3086}
3087
104c1213
JM
3088static void
3089stop_stepping (struct execution_control_state *ecs)
3090{
c906108c
SS
3091 if (target_has_execution)
3092 {
3093 /* Are we stopping for a vfork event? We only stop when we see
3094 the child's event. However, we may not yet have seen the
104c1213
JM
3095 parent's event. And, inferior_pid is still set to the
3096 parent's pid, until we resume again and follow either the
3097 parent or child.
c906108c
SS
3098
3099 To ensure that we can really touch inferior_pid (aka, the
3100 parent process) -- which calls to functions like read_pc
3101 implicitly do -- wait on the parent if necessary. */
3102 if ((pending_follow.kind == TARGET_WAITKIND_VFORKED)
3103 && !pending_follow.fork_event.saw_parent_fork)
3104 {
3105 int parent_pid;
3106
3107 do
3108 {
3109 if (target_wait_hook)
cd0fc7c3 3110 parent_pid = target_wait_hook (-1, &(ecs->ws));
c906108c 3111 else
cd0fc7c3 3112 parent_pid = target_wait (-1, &(ecs->ws));
c906108c
SS
3113 }
3114 while (parent_pid != inferior_pid);
3115 }
3116
c906108c 3117 /* Assuming the inferior still exists, set these up for next
c5aa993b
JM
3118 time, just like we did above if we didn't break out of the
3119 loop. */
c906108c 3120 prev_pc = read_pc ();
cd0fc7c3
SS
3121 prev_func_start = ecs->stop_func_start;
3122 prev_func_name = ecs->stop_func_name;
c906108c 3123 }
104c1213 3124
cd0fc7c3
SS
3125 /* Let callers know we don't want to wait for the inferior anymore. */
3126 ecs->wait_some_more = 0;
3127}
3128
d4f3574e
SS
3129/* This function handles various cases where we need to continue
3130 waiting for the inferior. */
3131/* (Used to be the keep_going: label in the old wait_for_inferior) */
3132
3133static void
3134keep_going (struct execution_control_state *ecs)
3135{
3136 /* ??rehrauer: ttrace on HP-UX theoretically allows one to debug a
3137 vforked child between its creation and subsequent exit or call to
3138 exec(). However, I had big problems in this rather creaky exec
3139 engine, getting that to work. The fundamental problem is that
3140 I'm trying to debug two processes via an engine that only
3141 understands a single process with possibly multiple threads.
3142
3143 Hence, this spot is known to have problems when
3144 target_can_follow_vfork_prior_to_exec returns 1. */
3145
3146 /* Save the pc before execution, to compare with pc after stop. */
3147 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
3148 prev_func_start = ecs->stop_func_start; /* Ok, since if DECR_PC_AFTER
3149 BREAK is defined, the
3150 original pc would not have
3151 been at the start of a
3152 function. */
3153 prev_func_name = ecs->stop_func_name;
3154
3155 if (ecs->update_step_sp)
3156 step_sp = read_sp ();
3157 ecs->update_step_sp = 0;
3158
3159 /* If we did not do break;, it means we should keep running the
3160 inferior and not return to debugger. */
3161
3162 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
3163 {
3164 /* We took a signal (which we are supposed to pass through to
3165 the inferior, else we'd have done a break above) and we
3166 haven't yet gotten our trap. Simply continue. */
3167 resume (currently_stepping (ecs), stop_signal);
3168 }
3169 else
3170 {
3171 /* Either the trap was not expected, but we are continuing
3172 anyway (the user asked that this signal be passed to the
3173 child)
3174 -- or --
3175 The signal was SIGTRAP, e.g. it was our signal, but we
3176 decided we should resume from it.
3177
3178 We're going to run this baby now!
3179
3180 Insert breakpoints now, unless we are trying to one-proceed
3181 past a breakpoint. */
3182 /* If we've just finished a special step resume and we don't
3183 want to hit a breakpoint, pull em out. */
3184 if (step_resume_breakpoint == NULL
3185 && through_sigtramp_breakpoint == NULL
3186 && ecs->remove_breakpoints_on_following_step)
3187 {
3188 ecs->remove_breakpoints_on_following_step = 0;
3189 remove_breakpoints ();
3190 breakpoints_inserted = 0;
3191 }
3192 else if (!breakpoints_inserted &&
3193 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
3194 {
3195 breakpoints_failed = insert_breakpoints ();
3196 if (breakpoints_failed)
3197 {
3198 stop_stepping (ecs);
3199 return;
3200 }
3201 breakpoints_inserted = 1;
3202 }
3203
3204 trap_expected = ecs->another_trap;
3205
3206 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
3207 specifies that such a signal should be delivered to the
3208 target program).
3209
3210 Typically, this would occure when a user is debugging a
3211 target monitor on a simulator: the target monitor sets a
3212 breakpoint; the simulator encounters this break-point and
3213 halts the simulation handing control to GDB; GDB, noteing
3214 that the break-point isn't valid, returns control back to the
3215 simulator; the simulator then delivers the hardware
3216 equivalent of a SIGNAL_TRAP to the program being debugged. */
3217
3218 if (stop_signal == TARGET_SIGNAL_TRAP
3219 && !signal_program[stop_signal])
3220 stop_signal = TARGET_SIGNAL_0;
3221
3222#ifdef SHIFT_INST_REGS
3223 /* I'm not sure when this following segment applies. I do know,
3224 now, that we shouldn't rewrite the regs when we were stopped
3225 by a random signal from the inferior process. */
3226 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
3227 (this is only used on the 88k). */
3228
3229 if (!bpstat_explains_signal (stop_bpstat)
3230 && (stop_signal != TARGET_SIGNAL_CHLD)
3231 && !stopped_by_random_signal)
3232 SHIFT_INST_REGS ();
3233#endif /* SHIFT_INST_REGS */
3234
3235 resume (currently_stepping (ecs), stop_signal);
3236 }
3237
3238 prepare_to_wait (ecs);
3239}
3240
104c1213
JM
3241/* This function normally comes after a resume, before
3242 handle_inferior_event exits. It takes care of any last bits of
3243 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 3244
104c1213
JM
3245static void
3246prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 3247{
104c1213
JM
3248 if (ecs->infwait_state == infwait_normal_state)
3249 {
3250 overlay_cache_invalid = 1;
3251
3252 /* We have to invalidate the registers BEFORE calling
3253 target_wait because they can be loaded from the target while
3254 in target_wait. This makes remote debugging a bit more
3255 efficient for those targets that provide critical registers
3256 as part of their normal status mechanism. */
3257
3258 registers_changed ();
3259 ecs->waiton_pid = -1;
3260 ecs->wp = &(ecs->ws);
3261 }
3262 /* This is the old end of the while loop. Let everybody know we
3263 want to wait for the inferior some more and get called again
3264 soon. */
3265 ecs->wait_some_more = 1;
c906108c 3266}
11cf8741
JM
3267
3268/* Print why the inferior has stopped. We always print something when
3269 the inferior exits, or receives a signal. The rest of the cases are
3270 dealt with later on in normal_stop() and print_it_typical(). Ideally
3271 there should be a call to this function from handle_inferior_event()
3272 each time stop_stepping() is called.*/
3273static void
3274print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
3275{
3276 switch (stop_reason)
3277 {
3278 case STOP_UNKNOWN:
3279 /* We don't deal with these cases from handle_inferior_event()
3280 yet. */
3281 break;
3282 case END_STEPPING_RANGE:
3283 /* We are done with a step/next/si/ni command. */
3284 /* For now print nothing. */
fb40c209
AC
3285#ifdef UI_OUT
3286 /* Print a message only if not in the middle of doing a "step n"
3287 operation for n > 1 */
3288 if (!step_multi || !stop_step)
3289 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3290 ui_out_field_string (uiout, "reason", "end-stepping-range");
3291#endif
11cf8741
JM
3292 break;
3293 case BREAKPOINT_HIT:
3294 /* We found a breakpoint. */
3295 /* For now print nothing. */
3296 break;
3297 case SIGNAL_EXITED:
3298 /* The inferior was terminated by a signal. */
8b93c638
JM
3299#ifdef UI_OUT
3300 annotate_signalled ();
fb40c209
AC
3301 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3302 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
3303 ui_out_text (uiout, "\nProgram terminated with signal ");
3304 annotate_signal_name ();
3305 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3306 annotate_signal_name_end ();
3307 ui_out_text (uiout, ", ");
3308 annotate_signal_string ();
3309 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3310 annotate_signal_string_end ();
3311 ui_out_text (uiout, ".\n");
3312 ui_out_text (uiout, "The program no longer exists.\n");
3313#else
11cf8741
JM
3314 annotate_signalled ();
3315 printf_filtered ("\nProgram terminated with signal ");
3316 annotate_signal_name ();
3317 printf_filtered ("%s", target_signal_to_name (stop_info));
3318 annotate_signal_name_end ();
3319 printf_filtered (", ");
3320 annotate_signal_string ();
3321 printf_filtered ("%s", target_signal_to_string (stop_info));
3322 annotate_signal_string_end ();
3323 printf_filtered (".\n");
3324
3325 printf_filtered ("The program no longer exists.\n");
3326 gdb_flush (gdb_stdout);
8b93c638 3327#endif
11cf8741
JM
3328 break;
3329 case EXITED:
3330 /* The inferior program is finished. */
8b93c638
JM
3331#ifdef UI_OUT
3332 annotate_exited (stop_info);
3333 if (stop_info)
3334 {
fb40c209
AC
3335 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3336 ui_out_field_string (uiout, "reason", "exited");
8b93c638
JM
3337 ui_out_text (uiout, "\nProgram exited with code ");
3338 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) stop_info);
3339 ui_out_text (uiout, ".\n");
3340 }
3341 else
3342 {
fb40c209
AC
3343 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3344 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3345 ui_out_text (uiout, "\nProgram exited normally.\n");
3346 }
3347#else
11cf8741
JM
3348 annotate_exited (stop_info);
3349 if (stop_info)
3350 printf_filtered ("\nProgram exited with code 0%o.\n",
3351 (unsigned int) stop_info);
3352 else
3353 printf_filtered ("\nProgram exited normally.\n");
8b93c638 3354#endif
11cf8741
JM
3355 break;
3356 case SIGNAL_RECEIVED:
3357 /* Signal received. The signal table tells us to print about
3358 it. */
8b93c638
JM
3359#ifdef UI_OUT
3360 annotate_signal ();
3361 ui_out_text (uiout, "\nProgram received signal ");
3362 annotate_signal_name ();
3363 ui_out_field_string (uiout, "signal-name", target_signal_to_name (stop_info));
3364 annotate_signal_name_end ();
3365 ui_out_text (uiout, ", ");
3366 annotate_signal_string ();
3367 ui_out_field_string (uiout, "signal-meaning", target_signal_to_string (stop_info));
3368 annotate_signal_string_end ();
3369 ui_out_text (uiout, ".\n");
3370#else
11cf8741
JM
3371 annotate_signal ();
3372 printf_filtered ("\nProgram received signal ");
3373 annotate_signal_name ();
3374 printf_filtered ("%s", target_signal_to_name (stop_info));
3375 annotate_signal_name_end ();
3376 printf_filtered (", ");
3377 annotate_signal_string ();
3378 printf_filtered ("%s", target_signal_to_string (stop_info));
3379 annotate_signal_string_end ();
3380 printf_filtered (".\n");
3381 gdb_flush (gdb_stdout);
8b93c638 3382#endif
11cf8741
JM
3383 break;
3384 default:
3385 internal_error ("print_stop_reason: unrecognized enum value");
3386 break;
3387 }
3388}
c906108c 3389\f
43ff13b4 3390
c906108c
SS
3391/* Here to return control to GDB when the inferior stops for real.
3392 Print appropriate messages, remove breakpoints, give terminal our modes.
3393
3394 STOP_PRINT_FRAME nonzero means print the executing frame
3395 (pc, function, args, file, line number and line text).
3396 BREAKPOINTS_FAILED nonzero means stop was due to error
3397 attempting to insert breakpoints. */
3398
3399void
96baa820 3400normal_stop (void)
c906108c 3401{
c906108c
SS
3402 /* As with the notification of thread events, we want to delay
3403 notifying the user that we've switched thread context until
3404 the inferior actually stops.
3405
3406 (Note that there's no point in saying anything if the inferior
3407 has exited!) */
c3f6f71d 3408 if ((previous_inferior_pid != inferior_pid)
7a292a7a 3409 && target_has_execution)
c906108c
SS
3410 {
3411 target_terminal_ours_for_output ();
c3f6f71d 3412 printf_filtered ("[Switching to %s]\n",
c906108c 3413 target_pid_or_tid_to_str (inferior_pid));
c3f6f71d 3414 previous_inferior_pid = inferior_pid;
c906108c 3415 }
c906108c
SS
3416
3417 /* Make sure that the current_frame's pc is correct. This
3418 is a correction for setting up the frame info before doing
3419 DECR_PC_AFTER_BREAK */
3420 if (target_has_execution && get_current_frame ())
3421 (get_current_frame ())->pc = read_pc ();
3422
3423 if (breakpoints_failed)
3424 {
3425 target_terminal_ours_for_output ();
010a3cd9 3426 print_sys_errmsg ("While inserting breakpoints", breakpoints_failed);
c906108c 3427 printf_filtered ("Stopped; cannot insert breakpoints.\n\
010a3cd9
EZ
3428The same program may be running in another process,\n\
3429or you may have requested too many hardware breakpoints\n\
3430and/or watchpoints.\n");
c906108c
SS
3431 }
3432
3433 if (target_has_execution && breakpoints_inserted)
3434 {
3435 if (remove_breakpoints ())
3436 {
3437 target_terminal_ours_for_output ();
3438 printf_filtered ("Cannot remove breakpoints because ");
3439 printf_filtered ("program is no longer writable.\n");
3440 printf_filtered ("It might be running in another process.\n");
3441 printf_filtered ("Further execution is probably impossible.\n");
3442 }
3443 }
3444 breakpoints_inserted = 0;
3445
3446 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3447 Delete any breakpoint that is to be deleted at the next stop. */
3448
3449 breakpoint_auto_delete (stop_bpstat);
3450
3451 /* If an auto-display called a function and that got a signal,
3452 delete that auto-display to avoid an infinite recursion. */
3453
3454 if (stopped_by_random_signal)
3455 disable_current_display ();
3456
3457 /* Don't print a message if in the middle of doing a "step n"
3458 operation for n > 1 */
3459 if (step_multi && stop_step)
3460 goto done;
3461
3462 target_terminal_ours ();
3463
c906108c
SS
3464 /* Look up the hook_stop and run it if it exists. */
3465
73bc900d 3466 if (stop_command && stop_command->hook_pre)
c906108c 3467 {
73bc900d 3468 catch_errors (hook_stop_stub, stop_command->hook_pre,
c906108c
SS
3469 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3470 }
3471
3472 if (!target_has_stack)
3473 {
3474
3475 goto done;
3476 }
3477
3478 /* Select innermost stack frame - i.e., current frame is frame 0,
3479 and current location is based on that.
3480 Don't do this on return from a stack dummy routine,
3481 or if the program has exited. */
3482
3483 if (!stop_stack_dummy)
3484 {
3485 select_frame (get_current_frame (), 0);
3486
3487 /* Print current location without a level number, if
c5aa993b
JM
3488 we have changed functions or hit a breakpoint.
3489 Print source line if we have one.
3490 bpstat_print() contains the logic deciding in detail
3491 what to print, based on the event(s) that just occurred. */
c906108c 3492
d082b2bb
AC
3493 if (stop_print_frame
3494 && selected_frame)
c906108c
SS
3495 {
3496 int bpstat_ret;
3497 int source_flag;
917317f4 3498 int do_frame_printing = 1;
c906108c
SS
3499
3500 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3501 switch (bpstat_ret)
3502 {
3503 case PRINT_UNKNOWN:
3504 if (stop_step
3505 && step_frame_address == FRAME_FP (get_current_frame ())
3506 && step_start_function == find_pc_function (stop_pc))
c5394b80 3507 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3508 else
c5394b80 3509 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3510 break;
3511 case PRINT_SRC_AND_LOC:
c5394b80 3512 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3513 break;
3514 case PRINT_SRC_ONLY:
c5394b80 3515 source_flag = SRC_LINE;
917317f4
JM
3516 break;
3517 case PRINT_NOTHING:
3518 do_frame_printing = 0;
3519 break;
3520 default:
3521 internal_error ("Unknown value.");
3522 }
fb40c209
AC
3523#ifdef UI_OUT
3524 /* For mi, have the same behavior every time we stop:
3525 print everything but the source line. */
3526 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3527 source_flag = LOC_AND_ADDRESS;
3528#endif
c906108c 3529
fb40c209
AC
3530#ifdef UI_OUT
3531 if (interpreter_p && strcmp (interpreter_p, "mi") == 0)
3532 ui_out_field_int (uiout, "thread-id", pid_to_thread_id (inferior_pid));
3533#endif
c906108c
SS
3534 /* The behavior of this routine with respect to the source
3535 flag is:
c5394b80
JM
3536 SRC_LINE: Print only source line
3537 LOCATION: Print only location
3538 SRC_AND_LOC: Print location and source line */
917317f4
JM
3539 if (do_frame_printing)
3540 show_and_print_stack_frame (selected_frame, -1, source_flag);
c906108c
SS
3541
3542 /* Display the auto-display expressions. */
3543 do_displays ();
3544 }
3545 }
3546
3547 /* Save the function value return registers, if we care.
3548 We might be about to restore their previous contents. */
3549 if (proceed_to_finish)
3550 read_register_bytes (0, stop_registers, REGISTER_BYTES);
3551
3552 if (stop_stack_dummy)
3553 {
3554 /* Pop the empty frame that contains the stack dummy.
3555 POP_FRAME ends with a setting of the current frame, so we
c5aa993b 3556 can use that next. */
c906108c
SS
3557 POP_FRAME;
3558 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3559 Can't rely on restore_inferior_status because that only gets
3560 called if we don't stop in the called function. */
c906108c
SS
3561 stop_pc = read_pc ();
3562 select_frame (get_current_frame (), 0);
3563 }
3564
3565
3566 TUIDO (((TuiOpaqueFuncPtr) tui_vCheckDataValues, selected_frame));
3567
3568done:
3569 annotate_stopped ();
3570}
3571
3572static int
96baa820 3573hook_stop_stub (void *cmd)
c906108c
SS
3574{
3575 execute_user_command ((struct cmd_list_element *) cmd, 0);
3576 return (0);
3577}
3578\f
c5aa993b 3579int
96baa820 3580signal_stop_state (int signo)
c906108c
SS
3581{
3582 return signal_stop[signo];
3583}
3584
c5aa993b 3585int
96baa820 3586signal_print_state (int signo)
c906108c
SS
3587{
3588 return signal_print[signo];
3589}
3590
c5aa993b 3591int
96baa820 3592signal_pass_state (int signo)
c906108c
SS
3593{
3594 return signal_program[signo];
3595}
3596
d4f3574e
SS
3597int signal_stop_update (signo, state)
3598 int signo;
3599 int state;
3600{
3601 int ret = signal_stop[signo];
3602 signal_stop[signo] = state;
3603 return ret;
3604}
3605
3606int signal_print_update (signo, state)
3607 int signo;
3608 int state;
3609{
3610 int ret = signal_print[signo];
3611 signal_print[signo] = state;
3612 return ret;
3613}
3614
3615int signal_pass_update (signo, state)
3616 int signo;
3617 int state;
3618{
3619 int ret = signal_program[signo];
3620 signal_program[signo] = state;
3621 return ret;
3622}
3623
c906108c 3624static void
96baa820 3625sig_print_header (void)
c906108c
SS
3626{
3627 printf_filtered ("\
3628Signal Stop\tPrint\tPass to program\tDescription\n");
3629}
3630
3631static void
96baa820 3632sig_print_info (enum target_signal oursig)
c906108c
SS
3633{
3634 char *name = target_signal_to_name (oursig);
3635 int name_padding = 13 - strlen (name);
96baa820 3636
c906108c
SS
3637 if (name_padding <= 0)
3638 name_padding = 0;
3639
3640 printf_filtered ("%s", name);
3641 printf_filtered ("%*.*s ", name_padding, name_padding,
3642 " ");
3643 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3644 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3645 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3646 printf_filtered ("%s\n", target_signal_to_string (oursig));
3647}
3648
3649/* Specify how various signals in the inferior should be handled. */
3650
3651static void
96baa820 3652handle_command (char *args, int from_tty)
c906108c
SS
3653{
3654 char **argv;
3655 int digits, wordlen;
3656 int sigfirst, signum, siglast;
3657 enum target_signal oursig;
3658 int allsigs;
3659 int nsigs;
3660 unsigned char *sigs;
3661 struct cleanup *old_chain;
3662
3663 if (args == NULL)
3664 {
3665 error_no_arg ("signal to handle");
3666 }
3667
3668 /* Allocate and zero an array of flags for which signals to handle. */
3669
3670 nsigs = (int) TARGET_SIGNAL_LAST;
3671 sigs = (unsigned char *) alloca (nsigs);
3672 memset (sigs, 0, nsigs);
3673
3674 /* Break the command line up into args. */
3675
3676 argv = buildargv (args);
3677 if (argv == NULL)
3678 {
3679 nomem (0);
3680 }
7a292a7a 3681 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3682
3683 /* Walk through the args, looking for signal oursigs, signal names, and
3684 actions. Signal numbers and signal names may be interspersed with
3685 actions, with the actions being performed for all signals cumulatively
3686 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3687
3688 while (*argv != NULL)
3689 {
3690 wordlen = strlen (*argv);
3691 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3692 {;
3693 }
3694 allsigs = 0;
3695 sigfirst = siglast = -1;
3696
3697 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3698 {
3699 /* Apply action to all signals except those used by the
3700 debugger. Silently skip those. */
3701 allsigs = 1;
3702 sigfirst = 0;
3703 siglast = nsigs - 1;
3704 }
3705 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3706 {
3707 SET_SIGS (nsigs, sigs, signal_stop);
3708 SET_SIGS (nsigs, sigs, signal_print);
3709 }
3710 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3711 {
3712 UNSET_SIGS (nsigs, sigs, signal_program);
3713 }
3714 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3715 {
3716 SET_SIGS (nsigs, sigs, signal_print);
3717 }
3718 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3719 {
3720 SET_SIGS (nsigs, sigs, signal_program);
3721 }
3722 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3723 {
3724 UNSET_SIGS (nsigs, sigs, signal_stop);
3725 }
3726 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3727 {
3728 SET_SIGS (nsigs, sigs, signal_program);
3729 }
3730 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3731 {
3732 UNSET_SIGS (nsigs, sigs, signal_print);
3733 UNSET_SIGS (nsigs, sigs, signal_stop);
3734 }
3735 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3736 {
3737 UNSET_SIGS (nsigs, sigs, signal_program);
3738 }
3739 else if (digits > 0)
3740 {
3741 /* It is numeric. The numeric signal refers to our own
3742 internal signal numbering from target.h, not to host/target
3743 signal number. This is a feature; users really should be
3744 using symbolic names anyway, and the common ones like
3745 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3746
3747 sigfirst = siglast = (int)
3748 target_signal_from_command (atoi (*argv));
3749 if ((*argv)[digits] == '-')
3750 {
3751 siglast = (int)
3752 target_signal_from_command (atoi ((*argv) + digits + 1));
3753 }
3754 if (sigfirst > siglast)
3755 {
3756 /* Bet he didn't figure we'd think of this case... */
3757 signum = sigfirst;
3758 sigfirst = siglast;
3759 siglast = signum;
3760 }
3761 }
3762 else
3763 {
3764 oursig = target_signal_from_name (*argv);
3765 if (oursig != TARGET_SIGNAL_UNKNOWN)
3766 {
3767 sigfirst = siglast = (int) oursig;
3768 }
3769 else
3770 {
3771 /* Not a number and not a recognized flag word => complain. */
3772 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3773 }
3774 }
3775
3776 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3777 which signals to apply actions to. */
c906108c
SS
3778
3779 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3780 {
3781 switch ((enum target_signal) signum)
3782 {
3783 case TARGET_SIGNAL_TRAP:
3784 case TARGET_SIGNAL_INT:
3785 if (!allsigs && !sigs[signum])
3786 {
3787 if (query ("%s is used by the debugger.\n\
3788Are you sure you want to change it? ",
3789 target_signal_to_name
3790 ((enum target_signal) signum)))
3791 {
3792 sigs[signum] = 1;
3793 }
3794 else
3795 {
3796 printf_unfiltered ("Not confirmed, unchanged.\n");
3797 gdb_flush (gdb_stdout);
3798 }
3799 }
3800 break;
3801 case TARGET_SIGNAL_0:
3802 case TARGET_SIGNAL_DEFAULT:
3803 case TARGET_SIGNAL_UNKNOWN:
3804 /* Make sure that "all" doesn't print these. */
3805 break;
3806 default:
3807 sigs[signum] = 1;
3808 break;
3809 }
3810 }
3811
3812 argv++;
3813 }
3814
3815 target_notice_signals (inferior_pid);
3816
3817 if (from_tty)
3818 {
3819 /* Show the results. */
3820 sig_print_header ();
3821 for (signum = 0; signum < nsigs; signum++)
3822 {
3823 if (sigs[signum])
3824 {
3825 sig_print_info (signum);
3826 }
3827 }
3828 }
3829
3830 do_cleanups (old_chain);
3831}
3832
3833static void
96baa820 3834xdb_handle_command (char *args, int from_tty)
c906108c
SS
3835{
3836 char **argv;
3837 struct cleanup *old_chain;
3838
3839 /* Break the command line up into args. */
3840
3841 argv = buildargv (args);
3842 if (argv == NULL)
3843 {
3844 nomem (0);
3845 }
7a292a7a 3846 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3847 if (argv[1] != (char *) NULL)
3848 {
3849 char *argBuf;
3850 int bufLen;
3851
3852 bufLen = strlen (argv[0]) + 20;
3853 argBuf = (char *) xmalloc (bufLen);
3854 if (argBuf)
3855 {
3856 int validFlag = 1;
3857 enum target_signal oursig;
3858
3859 oursig = target_signal_from_name (argv[0]);
3860 memset (argBuf, 0, bufLen);
3861 if (strcmp (argv[1], "Q") == 0)
3862 sprintf (argBuf, "%s %s", argv[0], "noprint");
3863 else
3864 {
3865 if (strcmp (argv[1], "s") == 0)
3866 {
3867 if (!signal_stop[oursig])
3868 sprintf (argBuf, "%s %s", argv[0], "stop");
3869 else
3870 sprintf (argBuf, "%s %s", argv[0], "nostop");
3871 }
3872 else if (strcmp (argv[1], "i") == 0)
3873 {
3874 if (!signal_program[oursig])
3875 sprintf (argBuf, "%s %s", argv[0], "pass");
3876 else
3877 sprintf (argBuf, "%s %s", argv[0], "nopass");
3878 }
3879 else if (strcmp (argv[1], "r") == 0)
3880 {
3881 if (!signal_print[oursig])
3882 sprintf (argBuf, "%s %s", argv[0], "print");
3883 else
3884 sprintf (argBuf, "%s %s", argv[0], "noprint");
3885 }
3886 else
3887 validFlag = 0;
3888 }
3889 if (validFlag)
3890 handle_command (argBuf, from_tty);
3891 else
3892 printf_filtered ("Invalid signal handling flag.\n");
3893 if (argBuf)
b8c9b27d 3894 xfree (argBuf);
c906108c
SS
3895 }
3896 }
3897 do_cleanups (old_chain);
3898}
3899
3900/* Print current contents of the tables set by the handle command.
3901 It is possible we should just be printing signals actually used
3902 by the current target (but for things to work right when switching
3903 targets, all signals should be in the signal tables). */
3904
3905static void
96baa820 3906signals_info (char *signum_exp, int from_tty)
c906108c
SS
3907{
3908 enum target_signal oursig;
3909 sig_print_header ();
3910
3911 if (signum_exp)
3912 {
3913 /* First see if this is a symbol name. */
3914 oursig = target_signal_from_name (signum_exp);
3915 if (oursig == TARGET_SIGNAL_UNKNOWN)
3916 {
3917 /* No, try numeric. */
3918 oursig =
bb518678 3919 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3920 }
3921 sig_print_info (oursig);
3922 return;
3923 }
3924
3925 printf_filtered ("\n");
3926 /* These ugly casts brought to you by the native VAX compiler. */
3927 for (oursig = TARGET_SIGNAL_FIRST;
3928 (int) oursig < (int) TARGET_SIGNAL_LAST;
3929 oursig = (enum target_signal) ((int) oursig + 1))
3930 {
3931 QUIT;
3932
3933 if (oursig != TARGET_SIGNAL_UNKNOWN
3934 && oursig != TARGET_SIGNAL_DEFAULT
3935 && oursig != TARGET_SIGNAL_0)
3936 sig_print_info (oursig);
3937 }
3938
3939 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3940}
3941\f
7a292a7a
SS
3942struct inferior_status
3943{
3944 enum target_signal stop_signal;
3945 CORE_ADDR stop_pc;
3946 bpstat stop_bpstat;
3947 int stop_step;
3948 int stop_stack_dummy;
3949 int stopped_by_random_signal;
3950 int trap_expected;
3951 CORE_ADDR step_range_start;
3952 CORE_ADDR step_range_end;
3953 CORE_ADDR step_frame_address;
5fbbeb29 3954 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3955 CORE_ADDR step_resume_break_address;
3956 int stop_after_trap;
3957 int stop_soon_quietly;
3958 CORE_ADDR selected_frame_address;
3959 char *stop_registers;
3960
3961 /* These are here because if call_function_by_hand has written some
3962 registers and then decides to call error(), we better not have changed
3963 any registers. */
3964 char *registers;
3965
3966 int selected_level;
3967 int breakpoint_proceeded;
3968 int restore_stack_info;
3969 int proceed_to_finish;
3970};
3971
7a292a7a 3972static struct inferior_status *
96baa820 3973xmalloc_inferior_status (void)
7a292a7a
SS
3974{
3975 struct inferior_status *inf_status;
3976 inf_status = xmalloc (sizeof (struct inferior_status));
3977 inf_status->stop_registers = xmalloc (REGISTER_BYTES);
3978 inf_status->registers = xmalloc (REGISTER_BYTES);
3979 return inf_status;
3980}
3981
7a292a7a 3982static void
96baa820 3983free_inferior_status (struct inferior_status *inf_status)
7a292a7a 3984{
b8c9b27d
KB
3985 xfree (inf_status->registers);
3986 xfree (inf_status->stop_registers);
3987 xfree (inf_status);
7a292a7a
SS
3988}
3989
3990void
96baa820
JM
3991write_inferior_status_register (struct inferior_status *inf_status, int regno,
3992 LONGEST val)
7a292a7a 3993{
c5aa993b 3994 int size = REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3995 void *buf = alloca (size);
3996 store_signed_integer (buf, size, val);
3997 memcpy (&inf_status->registers[REGISTER_BYTE (regno)], buf, size);
3998}
3999
c906108c
SS
4000/* Save all of the information associated with the inferior<==>gdb
4001 connection. INF_STATUS is a pointer to a "struct inferior_status"
4002 (defined in inferior.h). */
4003
7a292a7a 4004struct inferior_status *
96baa820 4005save_inferior_status (int restore_stack_info)
c906108c 4006{
7a292a7a
SS
4007 struct inferior_status *inf_status = xmalloc_inferior_status ();
4008
c906108c
SS
4009 inf_status->stop_signal = stop_signal;
4010 inf_status->stop_pc = stop_pc;
4011 inf_status->stop_step = stop_step;
4012 inf_status->stop_stack_dummy = stop_stack_dummy;
4013 inf_status->stopped_by_random_signal = stopped_by_random_signal;
4014 inf_status->trap_expected = trap_expected;
4015 inf_status->step_range_start = step_range_start;
4016 inf_status->step_range_end = step_range_end;
4017 inf_status->step_frame_address = step_frame_address;
4018 inf_status->step_over_calls = step_over_calls;
4019 inf_status->stop_after_trap = stop_after_trap;
4020 inf_status->stop_soon_quietly = stop_soon_quietly;
4021 /* Save original bpstat chain here; replace it with copy of chain.
4022 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
4023 hand them back the original chain when restore_inferior_status is
4024 called. */
c906108c
SS
4025 inf_status->stop_bpstat = stop_bpstat;
4026 stop_bpstat = bpstat_copy (stop_bpstat);
4027 inf_status->breakpoint_proceeded = breakpoint_proceeded;
4028 inf_status->restore_stack_info = restore_stack_info;
4029 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 4030
c906108c
SS
4031 memcpy (inf_status->stop_registers, stop_registers, REGISTER_BYTES);
4032
4033 read_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4034
4035 record_selected_frame (&(inf_status->selected_frame_address),
4036 &(inf_status->selected_level));
7a292a7a 4037 return inf_status;
c906108c
SS
4038}
4039
4040struct restore_selected_frame_args
4041{
4042 CORE_ADDR frame_address;
4043 int level;
4044};
4045
c906108c 4046static int
96baa820 4047restore_selected_frame (void *args)
c906108c
SS
4048{
4049 struct restore_selected_frame_args *fr =
4050 (struct restore_selected_frame_args *) args;
4051 struct frame_info *frame;
4052 int level = fr->level;
4053
4054 frame = find_relative_frame (get_current_frame (), &level);
4055
4056 /* If inf_status->selected_frame_address is NULL, there was no
4057 previously selected frame. */
4058 if (frame == NULL ||
4059 /* FRAME_FP (frame) != fr->frame_address || */
4060 /* elz: deleted this check as a quick fix to the problem that
c5aa993b
JM
4061 for function called by hand gdb creates no internal frame
4062 structure and the real stack and gdb's idea of stack are
4063 different if nested calls by hands are made.
c906108c 4064
c5aa993b 4065 mvs: this worries me. */
c906108c
SS
4066 level != 0)
4067 {
4068 warning ("Unable to restore previously selected frame.\n");
4069 return 0;
4070 }
4071
4072 select_frame (frame, fr->level);
4073
4074 return (1);
4075}
4076
4077void
96baa820 4078restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
4079{
4080 stop_signal = inf_status->stop_signal;
4081 stop_pc = inf_status->stop_pc;
4082 stop_step = inf_status->stop_step;
4083 stop_stack_dummy = inf_status->stop_stack_dummy;
4084 stopped_by_random_signal = inf_status->stopped_by_random_signal;
4085 trap_expected = inf_status->trap_expected;
4086 step_range_start = inf_status->step_range_start;
4087 step_range_end = inf_status->step_range_end;
4088 step_frame_address = inf_status->step_frame_address;
4089 step_over_calls = inf_status->step_over_calls;
4090 stop_after_trap = inf_status->stop_after_trap;
4091 stop_soon_quietly = inf_status->stop_soon_quietly;
4092 bpstat_clear (&stop_bpstat);
4093 stop_bpstat = inf_status->stop_bpstat;
4094 breakpoint_proceeded = inf_status->breakpoint_proceeded;
4095 proceed_to_finish = inf_status->proceed_to_finish;
4096
7a292a7a 4097 /* FIXME: Is the restore of stop_registers always needed */
c906108c
SS
4098 memcpy (stop_registers, inf_status->stop_registers, REGISTER_BYTES);
4099
4100 /* The inferior can be gone if the user types "print exit(0)"
4101 (and perhaps other times). */
4102 if (target_has_execution)
4103 write_register_bytes (0, inf_status->registers, REGISTER_BYTES);
4104
c906108c
SS
4105 /* FIXME: If we are being called after stopping in a function which
4106 is called from gdb, we should not be trying to restore the
4107 selected frame; it just prints a spurious error message (The
4108 message is useful, however, in detecting bugs in gdb (like if gdb
4109 clobbers the stack)). In fact, should we be restoring the
4110 inferior status at all in that case? . */
4111
4112 if (target_has_stack && inf_status->restore_stack_info)
4113 {
4114 struct restore_selected_frame_args fr;
4115 fr.level = inf_status->selected_level;
4116 fr.frame_address = inf_status->selected_frame_address;
4117 /* The point of catch_errors is that if the stack is clobbered,
c5aa993b
JM
4118 walking the stack might encounter a garbage pointer and error()
4119 trying to dereference it. */
c906108c
SS
4120 if (catch_errors (restore_selected_frame, &fr,
4121 "Unable to restore previously selected frame:\n",
4122 RETURN_MASK_ERROR) == 0)
4123 /* Error in restoring the selected frame. Select the innermost
4124 frame. */
4125
4126
4127 select_frame (get_current_frame (), 0);
4128
4129 }
c906108c 4130
7a292a7a
SS
4131 free_inferior_status (inf_status);
4132}
c906108c 4133
74b7792f
AC
4134static void
4135do_restore_inferior_status_cleanup (void *sts)
4136{
4137 restore_inferior_status (sts);
4138}
4139
4140struct cleanup *
4141make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
4142{
4143 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
4144}
4145
c906108c 4146void
96baa820 4147discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
4148{
4149 /* See save_inferior_status for info on stop_bpstat. */
4150 bpstat_clear (&inf_status->stop_bpstat);
4151 free_inferior_status (inf_status);
4152}
4153
c5aa993b 4154\f
7a292a7a 4155static void
96baa820 4156build_infrun (void)
7a292a7a
SS
4157{
4158 stop_registers = xmalloc (REGISTER_BYTES);
4159}
c906108c 4160
c906108c 4161void
96baa820 4162_initialize_infrun (void)
c906108c
SS
4163{
4164 register int i;
4165 register int numsigs;
4166 struct cmd_list_element *c;
4167
7a292a7a
SS
4168 build_infrun ();
4169
0f71a2f6
JM
4170 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
4171 register_gdbarch_swap (NULL, 0, build_infrun);
4172
c906108c
SS
4173 add_info ("signals", signals_info,
4174 "What debugger does when program gets various signals.\n\
4175Specify a signal as argument to print info on that signal only.");
4176 add_info_alias ("handle", "signals", 0);
4177
4178 add_com ("handle", class_run, handle_command,
4179 concat ("Specify how to handle a signal.\n\
4180Args are signals and actions to apply to those signals.\n\
4181Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4182from 1-15 are allowed for compatibility with old versions of GDB.\n\
4183Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4184The special arg \"all\" is recognized to mean all signals except those\n\
4185used by the debugger, typically SIGTRAP and SIGINT.\n",
4186 "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
4187\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
4188Stop means reenter debugger if this signal happens (implies print).\n\
4189Print means print a message if this signal happens.\n\
4190Pass means let program see this signal; otherwise program doesn't know.\n\
4191Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4192Pass and Stop may be combined.", NULL));
4193 if (xdb_commands)
4194 {
4195 add_com ("lz", class_info, signals_info,
4196 "What debugger does when program gets various signals.\n\
4197Specify a signal as argument to print info on that signal only.");
4198 add_com ("z", class_run, xdb_handle_command,
4199 concat ("Specify how to handle a signal.\n\
4200Args are signals and actions to apply to those signals.\n\
4201Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
4202from 1-15 are allowed for compatibility with old versions of GDB.\n\
4203Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
4204The special arg \"all\" is recognized to mean all signals except those\n\
4205used by the debugger, typically SIGTRAP and SIGINT.\n",
4206 "Recognized actions include \"s\" (toggles between stop and nostop), \n\
4207\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
4208nopass), \"Q\" (noprint)\n\
4209Stop means reenter debugger if this signal happens (implies print).\n\
4210Print means print a message if this signal happens.\n\
4211Pass means let program see this signal; otherwise program doesn't know.\n\
4212Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
4213Pass and Stop may be combined.", NULL));
4214 }
4215
4216 if (!dbx_commands)
4217 stop_command = add_cmd ("stop", class_obscure, not_just_help_class_command,
4218 "There is no `stop' command, but you can set a hook on `stop'.\n\
4219This allows you to set a list of commands to be run each time execution\n\
4220of the program stops.", &cmdlist);
4221
4222 numsigs = (int) TARGET_SIGNAL_LAST;
4223 signal_stop = (unsigned char *)
4224 xmalloc (sizeof (signal_stop[0]) * numsigs);
4225 signal_print = (unsigned char *)
4226 xmalloc (sizeof (signal_print[0]) * numsigs);
4227 signal_program = (unsigned char *)
4228 xmalloc (sizeof (signal_program[0]) * numsigs);
4229 for (i = 0; i < numsigs; i++)
4230 {
4231 signal_stop[i] = 1;
4232 signal_print[i] = 1;
4233 signal_program[i] = 1;
4234 }
4235
4236 /* Signals caused by debugger's own actions
4237 should not be given to the program afterwards. */
4238 signal_program[TARGET_SIGNAL_TRAP] = 0;
4239 signal_program[TARGET_SIGNAL_INT] = 0;
4240
4241 /* Signals that are not errors should not normally enter the debugger. */
4242 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4243 signal_print[TARGET_SIGNAL_ALRM] = 0;
4244 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4245 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4246 signal_stop[TARGET_SIGNAL_PROF] = 0;
4247 signal_print[TARGET_SIGNAL_PROF] = 0;
4248 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4249 signal_print[TARGET_SIGNAL_CHLD] = 0;
4250 signal_stop[TARGET_SIGNAL_IO] = 0;
4251 signal_print[TARGET_SIGNAL_IO] = 0;
4252 signal_stop[TARGET_SIGNAL_POLL] = 0;
4253 signal_print[TARGET_SIGNAL_POLL] = 0;
4254 signal_stop[TARGET_SIGNAL_URG] = 0;
4255 signal_print[TARGET_SIGNAL_URG] = 0;
4256 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4257 signal_print[TARGET_SIGNAL_WINCH] = 0;
4258
cd0fc7c3
SS
4259 /* These signals are used internally by user-level thread
4260 implementations. (See signal(5) on Solaris.) Like the above
4261 signals, a healthy program receives and handles them as part of
4262 its normal operation. */
4263 signal_stop[TARGET_SIGNAL_LWP] = 0;
4264 signal_print[TARGET_SIGNAL_LWP] = 0;
4265 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4266 signal_print[TARGET_SIGNAL_WAITING] = 0;
4267 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4268 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4269
c906108c
SS
4270#ifdef SOLIB_ADD
4271 add_show_from_set
4272 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4273 (char *) &stop_on_solib_events,
4274 "Set stopping for shared library events.\n\
4275If nonzero, gdb will give control to the user when the dynamic linker\n\
4276notifies gdb of shared library events. The most common event of interest\n\
4277to the user would be loading/unloading of a new library.\n",
4278 &setlist),
4279 &showlist);
4280#endif
4281
4282 c = add_set_enum_cmd ("follow-fork-mode",
4283 class_run,
4284 follow_fork_mode_kind_names,
1ed2a135 4285 &follow_fork_mode_string,
c906108c
SS
4286/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4287 kernel problem. It's also not terribly useful without a GUI to
4288 help the user drive two debuggers. So for now, I'm disabling
4289 the "both" option. */
c5aa993b
JM
4290/* "Set debugger response to a program call of fork \
4291 or vfork.\n\
4292 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4293 parent - the original process is debugged after a fork\n\
4294 child - the new process is debugged after a fork\n\
4295 both - both the parent and child are debugged after a fork\n\
4296 ask - the debugger will ask for one of the above choices\n\
4297 For \"both\", another copy of the debugger will be started to follow\n\
4298 the new child process. The original debugger will continue to follow\n\
4299 the original parent process. To distinguish their prompts, the\n\
4300 debugger copy's prompt will be changed.\n\
4301 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4302 By default, the debugger will follow the parent process.",
4303 */
c906108c
SS
4304 "Set debugger response to a program call of fork \
4305or vfork.\n\
4306A fork or vfork creates a new process. follow-fork-mode can be:\n\
4307 parent - the original process is debugged after a fork\n\
4308 child - the new process is debugged after a fork\n\
4309 ask - the debugger will ask for one of the above choices\n\
4310For \"parent\" or \"child\", the unfollowed process will run free.\n\
4311By default, the debugger will follow the parent process.",
4312 &setlist);
c5aa993b 4313/* c->function.sfunc = ; */
c906108c
SS
4314 add_show_from_set (c, &showlist);
4315
c906108c
SS
4316 c = add_set_enum_cmd ("scheduler-locking", class_run,
4317 scheduler_enums, /* array of string names */
1ed2a135 4318 &scheduler_mode, /* current mode */
c906108c
SS
4319 "Set mode for locking scheduler during execution.\n\
4320off == no locking (threads may preempt at any time)\n\
4321on == full locking (no thread except the current thread may run)\n\
4322step == scheduler locked during every single-step operation.\n\
4323 In this mode, no other thread may run during a step command.\n\
4324 Other threads may run while stepping over a function call ('next').",
4325 &setlist);
4326
4327 c->function.sfunc = set_schedlock_func; /* traps on target vector */
4328 add_show_from_set (c, &showlist);
5fbbeb29
CF
4329
4330 c = add_set_cmd ("step-mode", class_run,
4331 var_boolean, (char*) &step_stop_if_no_debug,
4332"Set mode of the step operation. When set, doing a step over a\n\
4333function without debug line information will stop at the first\n\
4334instruction of that function. Otherwise, the function is skipped and\n\
4335the step command stops at a different source line.",
4336 &setlist);
4337 add_show_from_set (c, &showlist);
c906108c 4338}
This page took 0.274404 seconds and 4 git commands to generate.