* MAINTAINERS (write after approval): Add myself.
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
c6f0559b
AC
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
9f976b41 47#include "gdb_assert.h"
c906108c
SS
48
49/* Prototypes for local functions */
50
96baa820 51static void signals_info (char *, int);
c906108c 52
96baa820 53static void handle_command (char *, int);
c906108c 54
96baa820 55static void sig_print_info (enum target_signal);
c906108c 56
96baa820 57static void sig_print_header (void);
c906108c 58
74b7792f 59static void resume_cleanups (void *);
c906108c 60
96baa820 61static int hook_stop_stub (void *);
c906108c 62
96baa820
JM
63static int restore_selected_frame (void *);
64
65static void build_infrun (void);
66
4ef3f3be 67static int follow_fork (void);
96baa820
JM
68
69static void set_schedlock_func (char *args, int from_tty,
488f131b 70 struct cmd_list_element *c);
96baa820 71
96baa820
JM
72struct execution_control_state;
73
74static int currently_stepping (struct execution_control_state *ecs);
75
76static void xdb_handle_command (char *args, int from_tty);
77
ea67f13b
DJ
78static int prepare_to_proceed (void);
79
96baa820 80void _initialize_infrun (void);
43ff13b4 81
c906108c
SS
82int inferior_ignoring_startup_exec_events = 0;
83int inferior_ignoring_leading_exec_events = 0;
84
5fbbeb29
CF
85/* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88int step_stop_if_no_debug = 0;
89
43ff13b4 90/* In asynchronous mode, but simulating synchronous execution. */
96baa820 91
43ff13b4
JM
92int sync_execution = 0;
93
c906108c
SS
94/* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96baa820
JM
96 running in. */
97
39f77062 98static ptid_t previous_inferior_ptid;
7a292a7a
SS
99
100/* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103#ifndef MAY_FOLLOW_EXEC
104#define MAY_FOLLOW_EXEC (0)
c906108c
SS
105#endif
106
7a292a7a
SS
107static int may_follow_exec = MAY_FOLLOW_EXEC;
108
d4f3574e
SS
109/* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
ca557f44
AC
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
d4f3574e
SS
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
c906108c
SS
147
148#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150#endif
151
c906108c
SS
152/* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160#ifndef SOLIB_IN_DYNAMIC_LINKER
161#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162#endif
163
164/* On MIPS16, a function that returns a floating point value may call
165 a library helper function to copy the return value to a floating point
166 register. The IGNORE_HELPER_CALL macro returns non-zero if we
167 should ignore (i.e. step over) this function call. */
168#ifndef IGNORE_HELPER_CALL
169#define IGNORE_HELPER_CALL(pc) 0
170#endif
171
172/* On some systems, the PC may be left pointing at an instruction that won't
173 actually be executed. This is usually indicated by a bit in the PSW. If
174 we find ourselves in such a state, then we step the target beyond the
175 nullified instruction before returning control to the user so as to avoid
176 confusion. */
177
178#ifndef INSTRUCTION_NULLIFIED
179#define INSTRUCTION_NULLIFIED 0
180#endif
181
c2c6d25f
JM
182/* We can't step off a permanent breakpoint in the ordinary way, because we
183 can't remove it. Instead, we have to advance the PC to the next
184 instruction. This macro should expand to a pointer to a function that
185 does that, or zero if we have no such function. If we don't have a
186 definition for it, we have to report an error. */
488f131b 187#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
188#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
189static void
c2d11a7d 190default_skip_permanent_breakpoint (void)
c2c6d25f 191{
255e7dbf 192 error ("\
c2c6d25f
JM
193The program is stopped at a permanent breakpoint, but GDB does not know\n\
194how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 195a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
196}
197#endif
488f131b 198
c2c6d25f 199
7a292a7a
SS
200/* Convert the #defines into values. This is temporary until wfi control
201 flow is completely sorted out. */
202
203#ifndef HAVE_STEPPABLE_WATCHPOINT
204#define HAVE_STEPPABLE_WATCHPOINT 0
205#else
206#undef HAVE_STEPPABLE_WATCHPOINT
207#define HAVE_STEPPABLE_WATCHPOINT 1
208#endif
209
692590c1
MS
210#ifndef CANNOT_STEP_HW_WATCHPOINTS
211#define CANNOT_STEP_HW_WATCHPOINTS 0
212#else
213#undef CANNOT_STEP_HW_WATCHPOINTS
214#define CANNOT_STEP_HW_WATCHPOINTS 1
215#endif
216
c906108c
SS
217/* Tables of how to react to signals; the user sets them. */
218
219static unsigned char *signal_stop;
220static unsigned char *signal_print;
221static unsigned char *signal_program;
222
223#define SET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 1; \
229 } while (0)
230
231#define UNSET_SIGS(nsigs,sigs,flags) \
232 do { \
233 int signum = (nsigs); \
234 while (signum-- > 0) \
235 if ((sigs)[signum]) \
236 (flags)[signum] = 0; \
237 } while (0)
238
39f77062
KB
239/* Value to pass to target_resume() to cause all threads to resume */
240
241#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
242
243/* Command list pointer for the "stop" placeholder. */
244
245static struct cmd_list_element *stop_command;
246
247/* Nonzero if breakpoints are now inserted in the inferior. */
248
249static int breakpoints_inserted;
250
251/* Function inferior was in as of last step command. */
252
253static struct symbol *step_start_function;
254
255/* Nonzero if we are expecting a trace trap and should proceed from it. */
256
257static int trap_expected;
258
259#ifdef SOLIB_ADD
260/* Nonzero if we want to give control to the user when we're notified
261 of shared library events by the dynamic linker. */
262static int stop_on_solib_events;
263#endif
264
265#ifdef HP_OS_BUG
266/* Nonzero if the next time we try to continue the inferior, it will
267 step one instruction and generate a spurious trace trap.
268 This is used to compensate for a bug in HP-UX. */
269
270static int trap_expected_after_continue;
271#endif
272
273/* Nonzero means expecting a trace trap
274 and should stop the inferior and return silently when it happens. */
275
276int stop_after_trap;
277
278/* Nonzero means expecting a trap and caller will handle it themselves.
279 It is used after attach, due to attaching to a process;
280 when running in the shell before the child program has been exec'd;
281 and when running some kinds of remote stuff (FIXME?). */
282
c0236d92 283enum stop_kind stop_soon;
c906108c
SS
284
285/* Nonzero if proceed is being used for a "finish" command or a similar
286 situation when stop_registers should be saved. */
287
288int proceed_to_finish;
289
290/* Save register contents here when about to pop a stack dummy frame,
291 if-and-only-if proceed_to_finish is set.
292 Thus this contains the return value from the called function (assuming
293 values are returned in a register). */
294
72cec141 295struct regcache *stop_registers;
c906108c
SS
296
297/* Nonzero if program stopped due to error trying to insert breakpoints. */
298
299static int breakpoints_failed;
300
301/* Nonzero after stop if current stack frame should be printed. */
302
303static int stop_print_frame;
304
305static struct breakpoint *step_resume_breakpoint = NULL;
c906108c
SS
306
307/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
308 interactions with an inferior that is running a kernel function
309 (aka, a system call or "syscall"). wait_for_inferior therefore
310 may have a need to know when the inferior is in a syscall. This
311 is a count of the number of inferior threads which are known to
312 currently be running in a syscall. */
313static int number_of_threads_in_syscalls;
314
e02bc4cc 315/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
316 returned by target_wait()/deprecated_target_wait_hook(). This
317 information is returned by get_last_target_status(). */
39f77062 318static ptid_t target_last_wait_ptid;
e02bc4cc
DS
319static struct target_waitstatus target_last_waitstatus;
320
c906108c
SS
321/* This is used to remember when a fork, vfork or exec event
322 was caught by a catchpoint, and thus the event is to be
323 followed at the next resume of the inferior, and not
324 immediately. */
325static struct
488f131b
JB
326{
327 enum target_waitkind kind;
328 struct
c906108c 329 {
488f131b 330 int parent_pid;
488f131b 331 int child_pid;
c906108c 332 }
488f131b
JB
333 fork_event;
334 char *execd_pathname;
335}
c906108c
SS
336pending_follow;
337
53904c9e
AC
338static const char follow_fork_mode_child[] = "child";
339static const char follow_fork_mode_parent[] = "parent";
340
488f131b 341static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
342 follow_fork_mode_child,
343 follow_fork_mode_parent,
344 NULL
ef346e04 345};
c906108c 346
53904c9e 347static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
348\f
349
6604731b 350static int
4ef3f3be 351follow_fork (void)
c906108c 352{
ea1dd7bc 353 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
c906108c 354
6604731b 355 return target_follow_fork (follow_child);
c906108c
SS
356}
357
6604731b
DJ
358void
359follow_inferior_reset_breakpoints (void)
c906108c 360{
6604731b
DJ
361 /* Was there a step_resume breakpoint? (There was if the user
362 did a "next" at the fork() call.) If so, explicitly reset its
363 thread number.
364
365 step_resumes are a form of bp that are made to be per-thread.
366 Since we created the step_resume bp when the parent process
367 was being debugged, and now are switching to the child process,
368 from the breakpoint package's viewpoint, that's a switch of
369 "threads". We must update the bp's notion of which thread
370 it is for, or it'll be ignored when it triggers. */
371
372 if (step_resume_breakpoint)
373 breakpoint_re_set_thread (step_resume_breakpoint);
374
375 /* Reinsert all breakpoints in the child. The user may have set
376 breakpoints after catching the fork, in which case those
377 were never set in the child, but only in the parent. This makes
378 sure the inserted breakpoints match the breakpoint list. */
379
380 breakpoint_re_set ();
381 insert_breakpoints ();
c906108c 382}
c906108c 383
1adeb98a
FN
384/* EXECD_PATHNAME is assumed to be non-NULL. */
385
c906108c 386static void
96baa820 387follow_exec (int pid, char *execd_pathname)
c906108c 388{
c906108c 389 int saved_pid = pid;
7a292a7a
SS
390 struct target_ops *tgt;
391
392 if (!may_follow_exec)
393 return;
c906108c 394
c906108c
SS
395 /* This is an exec event that we actually wish to pay attention to.
396 Refresh our symbol table to the newly exec'd program, remove any
397 momentary bp's, etc.
398
399 If there are breakpoints, they aren't really inserted now,
400 since the exec() transformed our inferior into a fresh set
401 of instructions.
402
403 We want to preserve symbolic breakpoints on the list, since
404 we have hopes that they can be reset after the new a.out's
405 symbol table is read.
406
407 However, any "raw" breakpoints must be removed from the list
408 (e.g., the solib bp's), since their address is probably invalid
409 now.
410
411 And, we DON'T want to call delete_breakpoints() here, since
412 that may write the bp's "shadow contents" (the instruction
413 value that was overwritten witha TRAP instruction). Since
414 we now have a new a.out, those shadow contents aren't valid. */
415 update_breakpoints_after_exec ();
416
417 /* If there was one, it's gone now. We cannot truly step-to-next
418 statement through an exec(). */
419 step_resume_breakpoint = NULL;
420 step_range_start = 0;
421 step_range_end = 0;
422
c906108c
SS
423 /* What is this a.out's name? */
424 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
425
426 /* We've followed the inferior through an exec. Therefore, the
427 inferior has essentially been killed & reborn. */
7a292a7a
SS
428
429 /* First collect the run target in effect. */
430 tgt = find_run_target ();
431 /* If we can't find one, things are in a very strange state... */
432 if (tgt == NULL)
433 error ("Could find run target to save before following exec");
434
c906108c
SS
435 gdb_flush (gdb_stdout);
436 target_mourn_inferior ();
39f77062 437 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 438 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 439 push_target (tgt);
c906108c
SS
440
441 /* That a.out is now the one to use. */
442 exec_file_attach (execd_pathname, 0);
443
444 /* And also is where symbols can be found. */
1adeb98a 445 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
446
447 /* Reset the shared library package. This ensures that we get
448 a shlib event when the child reaches "_start", at which point
449 the dld will have had a chance to initialize the child. */
7a292a7a 450#if defined(SOLIB_RESTART)
c906108c 451 SOLIB_RESTART ();
7a292a7a
SS
452#endif
453#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 454 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 455#endif
c906108c
SS
456
457 /* Reinsert all breakpoints. (Those which were symbolic have
458 been reset to the proper address in the new a.out, thanks
459 to symbol_file_command...) */
460 insert_breakpoints ();
461
462 /* The next resume of this inferior should bring it to the shlib
463 startup breakpoints. (If the user had also set bp's on
464 "main" from the old (parent) process, then they'll auto-
465 matically get reset there in the new process.) */
c906108c
SS
466}
467
468/* Non-zero if we just simulating a single-step. This is needed
469 because we cannot remove the breakpoints in the inferior process
470 until after the `wait' in `wait_for_inferior'. */
471static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
472
473/* The thread we inserted single-step breakpoints for. */
474static ptid_t singlestep_ptid;
475
476/* If another thread hit the singlestep breakpoint, we save the original
477 thread here so that we can resume single-stepping it later. */
478static ptid_t saved_singlestep_ptid;
479static int stepping_past_singlestep_breakpoint;
c906108c
SS
480\f
481
482/* Things to clean up if we QUIT out of resume (). */
c906108c 483static void
74b7792f 484resume_cleanups (void *ignore)
c906108c
SS
485{
486 normal_stop ();
487}
488
53904c9e
AC
489static const char schedlock_off[] = "off";
490static const char schedlock_on[] = "on";
491static const char schedlock_step[] = "step";
492static const char *scheduler_mode = schedlock_off;
488f131b 493static const char *scheduler_enums[] = {
ef346e04
AC
494 schedlock_off,
495 schedlock_on,
496 schedlock_step,
497 NULL
498};
c906108c
SS
499
500static void
96baa820 501set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 502{
1868c04e
AC
503 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
504 the set command passed as a parameter. The clone operation will
505 include (BUG?) any ``set'' command callback, if present.
506 Commands like ``info set'' call all the ``show'' command
ce2826aa 507 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
508 ``set'', this includes callbacks belonging to ``set'' commands.
509 Making this worse, this only occures if add_show_from_set() is
510 called after add_cmd_sfunc() (BUG?). */
511 if (cmd_type (c) == set_cmd)
c906108c
SS
512 if (!target_can_lock_scheduler)
513 {
514 scheduler_mode = schedlock_off;
488f131b 515 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
516 }
517}
518
519
520/* Resume the inferior, but allow a QUIT. This is useful if the user
521 wants to interrupt some lengthy single-stepping operation
522 (for child processes, the SIGINT goes to the inferior, and so
523 we get a SIGINT random_signal, but for remote debugging and perhaps
524 other targets, that's not true).
525
526 STEP nonzero if we should step (zero to continue instead).
527 SIG is the signal to give the inferior (zero for none). */
528void
96baa820 529resume (int step, enum target_signal sig)
c906108c
SS
530{
531 int should_resume = 1;
74b7792f 532 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
533 QUIT;
534
ef5cf84e
MS
535 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
536
c906108c 537
692590c1
MS
538 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
539 over an instruction that causes a page fault without triggering
540 a hardware watchpoint. The kernel properly notices that it shouldn't
541 stop, because the hardware watchpoint is not triggered, but it forgets
542 the step request and continues the program normally.
543 Work around the problem by removing hardware watchpoints if a step is
544 requested, GDB will check for a hardware watchpoint trigger after the
545 step anyway. */
546 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
547 remove_hw_watchpoints ();
488f131b 548
692590c1 549
c2c6d25f
JM
550 /* Normally, by the time we reach `resume', the breakpoints are either
551 removed or inserted, as appropriate. The exception is if we're sitting
552 at a permanent breakpoint; we need to step over it, but permanent
553 breakpoints can't be removed. So we have to test for it here. */
554 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
555 SKIP_PERMANENT_BREAKPOINT ();
556
b0ed3589 557 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
558 {
559 /* Do it the hard way, w/temp breakpoints */
c5aa993b 560 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
561 /* ...and don't ask hardware to do it. */
562 step = 0;
563 /* and do not pull these breakpoints until after a `wait' in
564 `wait_for_inferior' */
565 singlestep_breakpoints_inserted_p = 1;
9f976b41 566 singlestep_ptid = inferior_ptid;
c906108c
SS
567 }
568
c906108c 569 /* If there were any forks/vforks/execs that were caught and are
6604731b 570 now to be followed, then do so. */
c906108c
SS
571 switch (pending_follow.kind)
572 {
6604731b
DJ
573 case TARGET_WAITKIND_FORKED:
574 case TARGET_WAITKIND_VFORKED:
c906108c 575 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
576 if (follow_fork ())
577 should_resume = 0;
c906108c
SS
578 break;
579
6604731b 580 case TARGET_WAITKIND_EXECD:
c906108c 581 /* follow_exec is called as soon as the exec event is seen. */
6604731b 582 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
583 break;
584
585 default:
586 break;
587 }
c906108c
SS
588
589 /* Install inferior's terminal modes. */
590 target_terminal_inferior ();
591
592 if (should_resume)
593 {
39f77062 594 ptid_t resume_ptid;
dfcd3bfb 595
488f131b 596 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
597
598 if ((step || singlestep_breakpoints_inserted_p) &&
9f976b41
DJ
599 (stepping_past_singlestep_breakpoint
600 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
c906108c 601 {
ef5cf84e
MS
602 /* Stepping past a breakpoint without inserting breakpoints.
603 Make sure only the current thread gets to step, so that
604 other threads don't sneak past breakpoints while they are
605 not inserted. */
c906108c 606
ef5cf84e 607 resume_ptid = inferior_ptid;
c906108c 608 }
ef5cf84e
MS
609
610 if ((scheduler_mode == schedlock_on) ||
488f131b 611 (scheduler_mode == schedlock_step &&
ef5cf84e 612 (step || singlestep_breakpoints_inserted_p)))
c906108c 613 {
ef5cf84e 614 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 615 resume_ptid = inferior_ptid;
c906108c 616 }
ef5cf84e 617
c4ed33b9
AC
618 if (CANNOT_STEP_BREAKPOINT)
619 {
620 /* Most targets can step a breakpoint instruction, thus
621 executing it normally. But if this one cannot, just
622 continue and we will hit it anyway. */
623 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
624 step = 0;
625 }
39f77062 626 target_resume (resume_ptid, step, sig);
c906108c
SS
627 }
628
629 discard_cleanups (old_cleanups);
630}
631\f
632
633/* Clear out all variables saying what to do when inferior is continued.
634 First do this, then set the ones you want, then call `proceed'. */
635
636void
96baa820 637clear_proceed_status (void)
c906108c
SS
638{
639 trap_expected = 0;
640 step_range_start = 0;
641 step_range_end = 0;
aa0cd9c1 642 step_frame_id = null_frame_id;
5fbbeb29 643 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 644 stop_after_trap = 0;
c0236d92 645 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
646 proceed_to_finish = 0;
647 breakpoint_proceeded = 1; /* We're about to proceed... */
648
649 /* Discard any remaining commands or status from previous stop. */
650 bpstat_clear (&stop_bpstat);
651}
652
ea67f13b
DJ
653/* This should be suitable for any targets that support threads. */
654
655static int
656prepare_to_proceed (void)
657{
658 ptid_t wait_ptid;
659 struct target_waitstatus wait_status;
660
661 /* Get the last target status returned by target_wait(). */
662 get_last_target_status (&wait_ptid, &wait_status);
663
664 /* Make sure we were stopped either at a breakpoint, or because
665 of a Ctrl-C. */
666 if (wait_status.kind != TARGET_WAITKIND_STOPPED
667 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
668 wait_status.value.sig != TARGET_SIGNAL_INT))
669 {
670 return 0;
671 }
672
673 if (!ptid_equal (wait_ptid, minus_one_ptid)
674 && !ptid_equal (inferior_ptid, wait_ptid))
675 {
676 /* Switched over from WAIT_PID. */
677 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
678
679 if (wait_pc != read_pc ())
680 {
681 /* Switch back to WAIT_PID thread. */
682 inferior_ptid = wait_ptid;
683
684 /* FIXME: This stuff came from switch_to_thread() in
685 thread.c (which should probably be a public function). */
686 flush_cached_frames ();
687 registers_changed ();
688 stop_pc = wait_pc;
689 select_frame (get_current_frame ());
690 }
691
692 /* We return 1 to indicate that there is a breakpoint here,
693 so we need to step over it before continuing to avoid
694 hitting it straight away. */
695 if (breakpoint_here_p (wait_pc))
696 return 1;
697 }
698
699 return 0;
700
701}
e4846b08
JJ
702
703/* Record the pc of the program the last time it stopped. This is
704 just used internally by wait_for_inferior, but need to be preserved
705 over calls to it and cleared when the inferior is started. */
706static CORE_ADDR prev_pc;
707
c906108c
SS
708/* Basic routine for continuing the program in various fashions.
709
710 ADDR is the address to resume at, or -1 for resume where stopped.
711 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 712 or -1 for act according to how it stopped.
c906108c 713 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
714 -1 means return after that and print nothing.
715 You should probably set various step_... variables
716 before calling here, if you are stepping.
c906108c
SS
717
718 You should call clear_proceed_status before calling proceed. */
719
720void
96baa820 721proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
722{
723 int oneproc = 0;
724
725 if (step > 0)
726 step_start_function = find_pc_function (read_pc ());
727 if (step < 0)
728 stop_after_trap = 1;
729
2acceee2 730 if (addr == (CORE_ADDR) -1)
c906108c
SS
731 {
732 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
733 step one instruction before inserting breakpoints
734 so that we do not stop right away (and report a second
c906108c
SS
735 hit at this breakpoint). */
736
737 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
738 oneproc = 1;
739
740#ifndef STEP_SKIPS_DELAY
741#define STEP_SKIPS_DELAY(pc) (0)
742#define STEP_SKIPS_DELAY_P (0)
743#endif
744 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
745 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
746 is slow (it needs to read memory from the target). */
c906108c
SS
747 if (STEP_SKIPS_DELAY_P
748 && breakpoint_here_p (read_pc () + 4)
749 && STEP_SKIPS_DELAY (read_pc ()))
750 oneproc = 1;
751 }
752 else
753 {
754 write_pc (addr);
c906108c
SS
755 }
756
c906108c
SS
757 /* In a multi-threaded task we may select another thread
758 and then continue or step.
759
760 But if the old thread was stopped at a breakpoint, it
761 will immediately cause another breakpoint stop without
762 any execution (i.e. it will report a breakpoint hit
763 incorrectly). So we must step over it first.
764
ea67f13b 765 prepare_to_proceed checks the current thread against the thread
c906108c
SS
766 that reported the most recent event. If a step-over is required
767 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
768 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
769 oneproc = 1;
c906108c
SS
770
771#ifdef HP_OS_BUG
772 if (trap_expected_after_continue)
773 {
774 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
775 the first instruction is executed. Force step one
776 instruction to clear this condition. This should not occur
777 if step is nonzero, but it is harmless in that case. */
c906108c
SS
778 oneproc = 1;
779 trap_expected_after_continue = 0;
780 }
781#endif /* HP_OS_BUG */
782
783 if (oneproc)
784 /* We will get a trace trap after one instruction.
785 Continue it automatically and insert breakpoints then. */
786 trap_expected = 1;
787 else
788 {
81d0cc19
GS
789 insert_breakpoints ();
790 /* If we get here there was no call to error() in
791 insert breakpoints -- so they were inserted. */
c906108c
SS
792 breakpoints_inserted = 1;
793 }
794
795 if (siggnal != TARGET_SIGNAL_DEFAULT)
796 stop_signal = siggnal;
797 /* If this signal should not be seen by program,
798 give it zero. Used for debugging signals. */
799 else if (!signal_program[stop_signal])
800 stop_signal = TARGET_SIGNAL_0;
801
802 annotate_starting ();
803
804 /* Make sure that output from GDB appears before output from the
805 inferior. */
806 gdb_flush (gdb_stdout);
807
e4846b08
JJ
808 /* Refresh prev_pc value just prior to resuming. This used to be
809 done in stop_stepping, however, setting prev_pc there did not handle
810 scenarios such as inferior function calls or returning from
811 a function via the return command. In those cases, the prev_pc
812 value was not set properly for subsequent commands. The prev_pc value
813 is used to initialize the starting line number in the ecs. With an
814 invalid value, the gdb next command ends up stopping at the position
815 represented by the next line table entry past our start position.
816 On platforms that generate one line table entry per line, this
817 is not a problem. However, on the ia64, the compiler generates
818 extraneous line table entries that do not increase the line number.
819 When we issue the gdb next command on the ia64 after an inferior call
820 or a return command, we often end up a few instructions forward, still
821 within the original line we started.
822
823 An attempt was made to have init_execution_control_state () refresh
824 the prev_pc value before calculating the line number. This approach
825 did not work because on platforms that use ptrace, the pc register
826 cannot be read unless the inferior is stopped. At that point, we
827 are not guaranteed the inferior is stopped and so the read_pc ()
828 call can fail. Setting the prev_pc value here ensures the value is
829 updated correctly when the inferior is stopped. */
830 prev_pc = read_pc ();
831
c906108c
SS
832 /* Resume inferior. */
833 resume (oneproc || step || bpstat_should_step (), stop_signal);
834
835 /* Wait for it to stop (if not standalone)
836 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
837 /* Do this only if we are not using the event loop, or if the target
838 does not support asynchronous execution. */
6426a772 839 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
840 {
841 wait_for_inferior ();
842 normal_stop ();
843 }
c906108c 844}
c906108c
SS
845\f
846
847/* Start remote-debugging of a machine over a serial link. */
96baa820 848
c906108c 849void
96baa820 850start_remote (void)
c906108c
SS
851{
852 init_thread_list ();
853 init_wait_for_inferior ();
c0236d92 854 stop_soon = STOP_QUIETLY;
c906108c 855 trap_expected = 0;
43ff13b4 856
6426a772
JM
857 /* Always go on waiting for the target, regardless of the mode. */
858 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 859 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
860 nothing is returned (instead of just blocking). Because of this,
861 targets expecting an immediate response need to, internally, set
862 things up so that the target_wait() is forced to eventually
863 timeout. */
864 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
865 differentiate to its caller what the state of the target is after
866 the initial open has been performed. Here we're assuming that
867 the target has stopped. It should be possible to eventually have
868 target_open() return to the caller an indication that the target
869 is currently running and GDB state should be set to the same as
870 for an async run. */
871 wait_for_inferior ();
872 normal_stop ();
c906108c
SS
873}
874
875/* Initialize static vars when a new inferior begins. */
876
877void
96baa820 878init_wait_for_inferior (void)
c906108c
SS
879{
880 /* These are meaningless until the first time through wait_for_inferior. */
881 prev_pc = 0;
c906108c
SS
882
883#ifdef HP_OS_BUG
884 trap_expected_after_continue = 0;
885#endif
886 breakpoints_inserted = 0;
887 breakpoint_init_inferior (inf_starting);
888
889 /* Don't confuse first call to proceed(). */
890 stop_signal = TARGET_SIGNAL_0;
891
892 /* The first resume is not following a fork/vfork/exec. */
893 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
894
895 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
896 number_of_threads_in_syscalls = 0;
897
898 clear_proceed_status ();
9f976b41
DJ
899
900 stepping_past_singlestep_breakpoint = 0;
c906108c 901}
c906108c 902\f
b83266a0
SS
903/* This enum encodes possible reasons for doing a target_wait, so that
904 wfi can call target_wait in one place. (Ultimately the call will be
905 moved out of the infinite loop entirely.) */
906
c5aa993b
JM
907enum infwait_states
908{
cd0fc7c3
SS
909 infwait_normal_state,
910 infwait_thread_hop_state,
911 infwait_nullified_state,
912 infwait_nonstep_watch_state
b83266a0
SS
913};
914
11cf8741
JM
915/* Why did the inferior stop? Used to print the appropriate messages
916 to the interface from within handle_inferior_event(). */
917enum inferior_stop_reason
918{
919 /* We don't know why. */
920 STOP_UNKNOWN,
921 /* Step, next, nexti, stepi finished. */
922 END_STEPPING_RANGE,
923 /* Found breakpoint. */
924 BREAKPOINT_HIT,
925 /* Inferior terminated by signal. */
926 SIGNAL_EXITED,
927 /* Inferior exited. */
928 EXITED,
929 /* Inferior received signal, and user asked to be notified. */
930 SIGNAL_RECEIVED
931};
932
cd0fc7c3
SS
933/* This structure contains what used to be local variables in
934 wait_for_inferior. Probably many of them can return to being
935 locals in handle_inferior_event. */
936
c5aa993b 937struct execution_control_state
488f131b
JB
938{
939 struct target_waitstatus ws;
940 struct target_waitstatus *wp;
941 int another_trap;
942 int random_signal;
943 CORE_ADDR stop_func_start;
944 CORE_ADDR stop_func_end;
945 char *stop_func_name;
946 struct symtab_and_line sal;
947 int remove_breakpoints_on_following_step;
948 int current_line;
949 struct symtab *current_symtab;
950 int handling_longjmp; /* FIXME */
951 ptid_t ptid;
952 ptid_t saved_inferior_ptid;
488f131b
JB
953 int stepping_through_solib_after_catch;
954 bpstat stepping_through_solib_catchpoints;
955 int enable_hw_watchpoints_after_wait;
956 int stepping_through_sigtramp;
957 int new_thread_event;
958 struct target_waitstatus tmpstatus;
959 enum infwait_states infwait_state;
960 ptid_t waiton_ptid;
961 int wait_some_more;
962};
963
964void init_execution_control_state (struct execution_control_state *ecs);
965
1af510a8 966static void handle_step_into_function (struct execution_control_state *ecs);
488f131b 967void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 968
c2c6d25f 969static void step_into_function (struct execution_control_state *ecs);
d303a6c7
AC
970static void insert_step_resume_breakpoint (struct frame_info *step_frame,
971 struct execution_control_state *ecs);
104c1213
JM
972static void stop_stepping (struct execution_control_state *ecs);
973static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 974static void keep_going (struct execution_control_state *ecs);
488f131b
JB
975static void print_stop_reason (enum inferior_stop_reason stop_reason,
976 int stop_info);
104c1213 977
cd0fc7c3
SS
978/* Wait for control to return from inferior to debugger.
979 If inferior gets a signal, we may decide to start it up again
980 instead of returning. That is why there is a loop in this function.
981 When this function actually returns it means the inferior
982 should be left stopped and GDB should read more commands. */
983
984void
96baa820 985wait_for_inferior (void)
cd0fc7c3
SS
986{
987 struct cleanup *old_cleanups;
988 struct execution_control_state ecss;
989 struct execution_control_state *ecs;
c906108c 990
8601f500 991 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c 992 &step_resume_breakpoint);
cd0fc7c3
SS
993
994 /* wfi still stays in a loop, so it's OK just to take the address of
995 a local to get the ecs pointer. */
996 ecs = &ecss;
997
998 /* Fill in with reasonable starting values. */
999 init_execution_control_state (ecs);
1000
c906108c 1001 /* We'll update this if & when we switch to a new thread. */
39f77062 1002 previous_inferior_ptid = inferior_ptid;
c906108c 1003
cd0fc7c3
SS
1004 overlay_cache_invalid = 1;
1005
1006 /* We have to invalidate the registers BEFORE calling target_wait
1007 because they can be loaded from the target while in target_wait.
1008 This makes remote debugging a bit more efficient for those
1009 targets that provide critical registers as part of their normal
1010 status mechanism. */
1011
1012 registers_changed ();
b83266a0 1013
c906108c
SS
1014 while (1)
1015 {
9a4105ab
AC
1016 if (deprecated_target_wait_hook)
1017 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1018 else
39f77062 1019 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1020
cd0fc7c3
SS
1021 /* Now figure out what to do with the result of the result. */
1022 handle_inferior_event (ecs);
c906108c 1023
cd0fc7c3
SS
1024 if (!ecs->wait_some_more)
1025 break;
1026 }
1027 do_cleanups (old_cleanups);
1028}
c906108c 1029
43ff13b4
JM
1030/* Asynchronous version of wait_for_inferior. It is called by the
1031 event loop whenever a change of state is detected on the file
1032 descriptor corresponding to the target. It can be called more than
1033 once to complete a single execution command. In such cases we need
1034 to keep the state in a global variable ASYNC_ECSS. If it is the
1035 last time that this function is called for a single execution
1036 command, then report to the user that the inferior has stopped, and
1037 do the necessary cleanups. */
1038
1039struct execution_control_state async_ecss;
1040struct execution_control_state *async_ecs;
1041
1042void
fba45db2 1043fetch_inferior_event (void *client_data)
43ff13b4
JM
1044{
1045 static struct cleanup *old_cleanups;
1046
c5aa993b 1047 async_ecs = &async_ecss;
43ff13b4
JM
1048
1049 if (!async_ecs->wait_some_more)
1050 {
488f131b 1051 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1052 &step_resume_breakpoint);
43ff13b4
JM
1053
1054 /* Fill in with reasonable starting values. */
1055 init_execution_control_state (async_ecs);
1056
43ff13b4 1057 /* We'll update this if & when we switch to a new thread. */
39f77062 1058 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1059
1060 overlay_cache_invalid = 1;
1061
1062 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1063 because they can be loaded from the target while in target_wait.
1064 This makes remote debugging a bit more efficient for those
1065 targets that provide critical registers as part of their normal
1066 status mechanism. */
43ff13b4
JM
1067
1068 registers_changed ();
1069 }
1070
9a4105ab 1071 if (deprecated_target_wait_hook)
488f131b 1072 async_ecs->ptid =
9a4105ab 1073 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1074 else
39f77062 1075 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1076
1077 /* Now figure out what to do with the result of the result. */
1078 handle_inferior_event (async_ecs);
1079
1080 if (!async_ecs->wait_some_more)
1081 {
adf40b2e 1082 /* Do only the cleanups that have been added by this
488f131b
JB
1083 function. Let the continuations for the commands do the rest,
1084 if there are any. */
43ff13b4
JM
1085 do_exec_cleanups (old_cleanups);
1086 normal_stop ();
c2d11a7d
JM
1087 if (step_multi && stop_step)
1088 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1089 else
1090 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1091 }
1092}
1093
cd0fc7c3
SS
1094/* Prepare an execution control state for looping through a
1095 wait_for_inferior-type loop. */
1096
1097void
96baa820 1098init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1099{
c2d11a7d 1100 /* ecs->another_trap? */
cd0fc7c3
SS
1101 ecs->random_signal = 0;
1102 ecs->remove_breakpoints_on_following_step = 0;
1103 ecs->handling_longjmp = 0; /* FIXME */
cd0fc7c3
SS
1104 ecs->stepping_through_solib_after_catch = 0;
1105 ecs->stepping_through_solib_catchpoints = NULL;
1106 ecs->enable_hw_watchpoints_after_wait = 0;
1107 ecs->stepping_through_sigtramp = 0;
1108 ecs->sal = find_pc_line (prev_pc, 0);
1109 ecs->current_line = ecs->sal.line;
1110 ecs->current_symtab = ecs->sal.symtab;
1111 ecs->infwait_state = infwait_normal_state;
39f77062 1112 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1113 ecs->wp = &(ecs->ws);
1114}
1115
a0b3c4fd 1116/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1117 sanity check. There should never be more than one step-resume
1118 breakpoint per thread, so we should never be setting a new
1119 step_resume_breakpoint when one is already active. */
a0b3c4fd 1120static void
96baa820 1121check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1122{
1123 if (step_resume_breakpoint)
488f131b
JB
1124 warning
1125 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1126}
1127
e02bc4cc 1128/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
1129 target_wait()/deprecated_target_wait_hook(). The data is actually
1130 cached by handle_inferior_event(), which gets called immediately
1131 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
1132
1133void
488f131b 1134get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1135{
39f77062 1136 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1137 *status = target_last_waitstatus;
1138}
1139
dd80620e
MS
1140/* Switch thread contexts, maintaining "infrun state". */
1141
1142static void
1143context_switch (struct execution_control_state *ecs)
1144{
1145 /* Caution: it may happen that the new thread (or the old one!)
1146 is not in the thread list. In this case we must not attempt
1147 to "switch context", or we run the risk that our context may
1148 be lost. This may happen as a result of the target module
1149 mishandling thread creation. */
1150
1151 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1152 { /* Perform infrun state context switch: */
dd80620e 1153 /* Save infrun state for the old thread. */
0ce3d317 1154 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1155 trap_expected, step_resume_breakpoint,
15960608 1156 step_range_start,
aa0cd9c1 1157 step_range_end, &step_frame_id,
dd80620e
MS
1158 ecs->handling_longjmp, ecs->another_trap,
1159 ecs->stepping_through_solib_after_catch,
1160 ecs->stepping_through_solib_catchpoints,
1161 ecs->stepping_through_sigtramp,
488f131b 1162 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1163
1164 /* Load infrun state for the new thread. */
0ce3d317 1165 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1166 &trap_expected, &step_resume_breakpoint,
15960608 1167 &step_range_start,
aa0cd9c1 1168 &step_range_end, &step_frame_id,
dd80620e
MS
1169 &ecs->handling_longjmp, &ecs->another_trap,
1170 &ecs->stepping_through_solib_after_catch,
1171 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1172 &ecs->stepping_through_sigtramp,
1173 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1174 }
1175 inferior_ptid = ecs->ptid;
1176}
1177
1af510a8
JB
1178/* Handle the inferior event in the cases when we just stepped
1179 into a function. */
1180
1181static void
1182handle_step_into_function (struct execution_control_state *ecs)
1183{
1184 CORE_ADDR real_stop_pc;
1185
1186 if ((step_over_calls == STEP_OVER_NONE)
1187 || ((step_range_end == 1)
1188 && in_prologue (prev_pc, ecs->stop_func_start)))
1189 {
1190 /* I presume that step_over_calls is only 0 when we're
1191 supposed to be stepping at the assembly language level
1192 ("stepi"). Just stop. */
1193 /* Also, maybe we just did a "nexti" inside a prolog,
1194 so we thought it was a subroutine call but it was not.
1195 Stop as well. FENN */
1196 stop_step = 1;
1197 print_stop_reason (END_STEPPING_RANGE, 0);
1198 stop_stepping (ecs);
1199 return;
1200 }
1201
1202 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
1203 {
922d5ae0
AC
1204 /* We're doing a "next", set a breakpoint at callee's return
1205 address (the address at which the caller will resume). */
1206 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
1207 ecs);
1af510a8
JB
1208 keep_going (ecs);
1209 return;
1210 }
1211
1212 /* If we are in a function call trampoline (a stub between
1213 the calling routine and the real function), locate the real
1214 function. That's what tells us (a) whether we want to step
1215 into it at all, and (b) what prologue we want to run to
1216 the end of, if we do step into it. */
1217 real_stop_pc = skip_language_trampoline (stop_pc);
1218 if (real_stop_pc == 0)
1219 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
1220 if (real_stop_pc != 0)
1221 ecs->stop_func_start = real_stop_pc;
1222
1223 /* If we have line number information for the function we
1224 are thinking of stepping into, step into it.
1225
1226 If there are several symtabs at that PC (e.g. with include
1227 files), just want to know whether *any* of them have line
1228 numbers. find_pc_line handles this. */
1229 {
1230 struct symtab_and_line tmp_sal;
1231
1232 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1233 if (tmp_sal.line != 0)
1234 {
1235 step_into_function (ecs);
1236 return;
1237 }
1238 }
1239
1240 /* If we have no line number and the step-stop-if-no-debug
1241 is set, we stop the step so that the user has a chance to
1242 switch in assembly mode. */
1243 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
1244 {
1245 stop_step = 1;
1246 print_stop_reason (END_STEPPING_RANGE, 0);
1247 stop_stepping (ecs);
1248 return;
1249 }
1250
922d5ae0
AC
1251 /* Set a breakpoint at callee's return address (the address at which
1252 the caller will resume). */
1253 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()), ecs);
1af510a8
JB
1254 keep_going (ecs);
1255 return;
1256}
dd80620e 1257
4fa8626c
DJ
1258static void
1259adjust_pc_after_break (struct execution_control_state *ecs)
1260{
8aad930b 1261 CORE_ADDR breakpoint_pc;
4fa8626c
DJ
1262
1263 /* If this target does not decrement the PC after breakpoints, then
1264 we have nothing to do. */
1265 if (DECR_PC_AFTER_BREAK == 0)
1266 return;
1267
1268 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1269 we aren't, just return.
9709f61c
DJ
1270
1271 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1272 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1273 by software breakpoints should be handled through the normal breakpoint
1274 layer.
4fa8626c
DJ
1275
1276 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1277 different signals (SIGILL or SIGEMT for instance), but it is less
1278 clear where the PC is pointing afterwards. It may not match
1279 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1280 these signals at breakpoints (the code has been in GDB since at least
1281 1992) so I can not guess how to handle them here.
1282
1283 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1284 would have the PC after hitting a watchpoint affected by
1285 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1286 in GDB history, and it seems unlikely to be correct, so
1287 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1288
1289 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1290 return;
1291
1292 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1293 return;
1294
8aad930b
AC
1295 /* Find the location where (if we've hit a breakpoint) the
1296 breakpoint would be. */
1297 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1298
1299 if (SOFTWARE_SINGLE_STEP_P ())
1300 {
1301 /* When using software single-step, a SIGTRAP can only indicate
1302 an inserted breakpoint. This actually makes things
1303 easier. */
1304 if (singlestep_breakpoints_inserted_p)
1305 /* When software single stepping, the instruction at [prev_pc]
1306 is never a breakpoint, but the instruction following
1307 [prev_pc] (in program execution order) always is. Assume
1308 that following instruction was reached and hence a software
1309 breakpoint was hit. */
1310 write_pc_pid (breakpoint_pc, ecs->ptid);
1311 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1312 /* The inferior was free running (i.e., no single-step
1313 breakpoints inserted) and it hit a software breakpoint. */
1314 write_pc_pid (breakpoint_pc, ecs->ptid);
1315 }
1316 else
1317 {
1318 /* When using hardware single-step, a SIGTRAP is reported for
1319 both a completed single-step and a software breakpoint. Need
1320 to differentiate between the two as the latter needs
1321 adjusting but the former does not. */
1322 if (currently_stepping (ecs))
1323 {
1324 if (prev_pc == breakpoint_pc
1325 && software_breakpoint_inserted_here_p (breakpoint_pc))
1326 /* Hardware single-stepped a software breakpoint (as
1327 occures when the inferior is resumed with PC pointing
1328 at not-yet-hit software breakpoint). Since the
1329 breakpoint really is executed, the inferior needs to be
1330 backed up to the breakpoint address. */
1331 write_pc_pid (breakpoint_pc, ecs->ptid);
1332 }
1333 else
1334 {
1335 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1336 /* The inferior was free running (i.e., no hardware
1337 single-step and no possibility of a false SIGTRAP) and
1338 hit a software breakpoint. */
1339 write_pc_pid (breakpoint_pc, ecs->ptid);
1340 }
1341 }
4fa8626c
DJ
1342}
1343
cd0fc7c3
SS
1344/* Given an execution control state that has been freshly filled in
1345 by an event from the inferior, figure out what it means and take
1346 appropriate action. */
c906108c 1347
7270d8f2
OF
1348int stepped_after_stopped_by_watchpoint;
1349
cd0fc7c3 1350void
96baa820 1351handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1352{
65e82032
AC
1353 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1354 thinking that the variable stepped_after_stopped_by_watchpoint
1355 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1356 defined in the file "config/pa/nm-hppah.h", accesses the variable
1357 indirectly. Mutter something rude about the HP merge. */
c8edd8b4 1358 int sw_single_step_trap_p = 0;
cd0fc7c3 1359
e02bc4cc 1360 /* Cache the last pid/waitstatus. */
39f77062 1361 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1362 target_last_waitstatus = *ecs->wp;
1363
4fa8626c
DJ
1364 adjust_pc_after_break (ecs);
1365
488f131b
JB
1366 switch (ecs->infwait_state)
1367 {
1368 case infwait_thread_hop_state:
1369 /* Cancel the waiton_ptid. */
1370 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1371 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1372 is serviced in this loop, below. */
1373 if (ecs->enable_hw_watchpoints_after_wait)
1374 {
1375 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1376 ecs->enable_hw_watchpoints_after_wait = 0;
1377 }
1378 stepped_after_stopped_by_watchpoint = 0;
1379 break;
b83266a0 1380
488f131b
JB
1381 case infwait_normal_state:
1382 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1383 is serviced in this loop, below. */
1384 if (ecs->enable_hw_watchpoints_after_wait)
1385 {
1386 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1387 ecs->enable_hw_watchpoints_after_wait = 0;
1388 }
1389 stepped_after_stopped_by_watchpoint = 0;
1390 break;
b83266a0 1391
488f131b 1392 case infwait_nullified_state:
65e82032 1393 stepped_after_stopped_by_watchpoint = 0;
488f131b 1394 break;
b83266a0 1395
488f131b
JB
1396 case infwait_nonstep_watch_state:
1397 insert_breakpoints ();
c906108c 1398
488f131b
JB
1399 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1400 handle things like signals arriving and other things happening
1401 in combination correctly? */
1402 stepped_after_stopped_by_watchpoint = 1;
1403 break;
65e82032
AC
1404
1405 default:
1406 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1407 }
1408 ecs->infwait_state = infwait_normal_state;
c906108c 1409
488f131b 1410 flush_cached_frames ();
c906108c 1411
488f131b 1412 /* If it's a new process, add it to the thread database */
c906108c 1413
488f131b
JB
1414 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1415 && !in_thread_list (ecs->ptid));
1416
1417 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1418 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1419 {
1420 add_thread (ecs->ptid);
c906108c 1421
488f131b
JB
1422 ui_out_text (uiout, "[New ");
1423 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1424 ui_out_text (uiout, "]\n");
c906108c
SS
1425
1426#if 0
488f131b
JB
1427 /* NOTE: This block is ONLY meant to be invoked in case of a
1428 "thread creation event"! If it is invoked for any other
1429 sort of event (such as a new thread landing on a breakpoint),
1430 the event will be discarded, which is almost certainly
1431 a bad thing!
1432
1433 To avoid this, the low-level module (eg. target_wait)
1434 should call in_thread_list and add_thread, so that the
1435 new thread is known by the time we get here. */
1436
1437 /* We may want to consider not doing a resume here in order
1438 to give the user a chance to play with the new thread.
1439 It might be good to make that a user-settable option. */
1440
1441 /* At this point, all threads are stopped (happens
1442 automatically in either the OS or the native code).
1443 Therefore we need to continue all threads in order to
1444 make progress. */
1445
1446 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1447 prepare_to_wait (ecs);
1448 return;
c906108c 1449#endif
488f131b 1450 }
c906108c 1451
488f131b
JB
1452 switch (ecs->ws.kind)
1453 {
1454 case TARGET_WAITKIND_LOADED:
1455 /* Ignore gracefully during startup of the inferior, as it
1456 might be the shell which has just loaded some objects,
1457 otherwise add the symbols for the newly loaded objects. */
c906108c 1458#ifdef SOLIB_ADD
c0236d92 1459 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1460 {
1461 /* Remove breakpoints, SOLIB_ADD might adjust
1462 breakpoint addresses via breakpoint_re_set. */
1463 if (breakpoints_inserted)
1464 remove_breakpoints ();
c906108c 1465
488f131b
JB
1466 /* Check for any newly added shared libraries if we're
1467 supposed to be adding them automatically. Switch
1468 terminal for any messages produced by
1469 breakpoint_re_set. */
1470 target_terminal_ours_for_output ();
aff6338a
AC
1471 /* NOTE: cagney/2003-11-25: Make certain that the target
1472 stack's section table is kept up-to-date. Architectures,
1473 (e.g., PPC64), use the section table to perform
1474 operations such as address => section name and hence
1475 require the table to contain all sections (including
1476 those found in shared libraries). */
1477 /* NOTE: cagney/2003-11-25: Pass current_target and not
1478 exec_ops to SOLIB_ADD. This is because current GDB is
1479 only tooled to propagate section_table changes out from
1480 the "current_target" (see target_resize_to_sections), and
1481 not up from the exec stratum. This, of course, isn't
1482 right. "infrun.c" should only interact with the
1483 exec/process stratum, instead relying on the target stack
1484 to propagate relevant changes (stop, section table
1485 changed, ...) up to other layers. */
1486 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
1487 target_terminal_inferior ();
1488
1489 /* Reinsert breakpoints and continue. */
1490 if (breakpoints_inserted)
1491 insert_breakpoints ();
1492 }
c906108c 1493#endif
488f131b
JB
1494 resume (0, TARGET_SIGNAL_0);
1495 prepare_to_wait (ecs);
1496 return;
c5aa993b 1497
488f131b
JB
1498 case TARGET_WAITKIND_SPURIOUS:
1499 resume (0, TARGET_SIGNAL_0);
1500 prepare_to_wait (ecs);
1501 return;
c5aa993b 1502
488f131b
JB
1503 case TARGET_WAITKIND_EXITED:
1504 target_terminal_ours (); /* Must do this before mourn anyway */
1505 print_stop_reason (EXITED, ecs->ws.value.integer);
1506
1507 /* Record the exit code in the convenience variable $_exitcode, so
1508 that the user can inspect this again later. */
1509 set_internalvar (lookup_internalvar ("_exitcode"),
1510 value_from_longest (builtin_type_int,
1511 (LONGEST) ecs->ws.value.integer));
1512 gdb_flush (gdb_stdout);
1513 target_mourn_inferior ();
1514 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1515 stop_print_frame = 0;
1516 stop_stepping (ecs);
1517 return;
c5aa993b 1518
488f131b
JB
1519 case TARGET_WAITKIND_SIGNALLED:
1520 stop_print_frame = 0;
1521 stop_signal = ecs->ws.value.sig;
1522 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1523
488f131b
JB
1524 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1525 reach here unless the inferior is dead. However, for years
1526 target_kill() was called here, which hints that fatal signals aren't
1527 really fatal on some systems. If that's true, then some changes
1528 may be needed. */
1529 target_mourn_inferior ();
c906108c 1530
488f131b
JB
1531 print_stop_reason (SIGNAL_EXITED, stop_signal);
1532 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1533 stop_stepping (ecs);
1534 return;
c906108c 1535
488f131b
JB
1536 /* The following are the only cases in which we keep going;
1537 the above cases end in a continue or goto. */
1538 case TARGET_WAITKIND_FORKED:
deb3b17b 1539 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1540 stop_signal = TARGET_SIGNAL_TRAP;
1541 pending_follow.kind = ecs->ws.kind;
1542
8e7d2c16
DJ
1543 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1544 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1545
488f131b 1546 stop_pc = read_pc ();
675bf4cb 1547
fa5281d0 1548 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1549
488f131b 1550 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1551
1552 /* If no catchpoint triggered for this, then keep going. */
1553 if (ecs->random_signal)
1554 {
1555 stop_signal = TARGET_SIGNAL_0;
1556 keep_going (ecs);
1557 return;
1558 }
488f131b
JB
1559 goto process_event_stop_test;
1560
1561 case TARGET_WAITKIND_EXECD:
1562 stop_signal = TARGET_SIGNAL_TRAP;
1563
7d2830a3
DJ
1564 /* NOTE drow/2002-12-05: This code should be pushed down into the
1565 target_wait function. Until then following vfork on HP/UX 10.20
1566 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1567 /* Is this a target which reports multiple exec events per actual
1568 call to exec()? (HP-UX using ptrace does, for example.) If so,
1569 ignore all but the last one. Just resume the exec'r, and wait
1570 for the next exec event. */
1571 if (inferior_ignoring_leading_exec_events)
1572 {
1573 inferior_ignoring_leading_exec_events--;
1574 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1575 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1576 parent_pid);
1577 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1578 prepare_to_wait (ecs);
1579 return;
1580 }
1581 inferior_ignoring_leading_exec_events =
1582 target_reported_exec_events_per_exec_call () - 1;
1583
1584 pending_follow.execd_pathname =
1585 savestring (ecs->ws.value.execd_pathname,
1586 strlen (ecs->ws.value.execd_pathname));
1587
488f131b
JB
1588 /* This causes the eventpoints and symbol table to be reset. Must
1589 do this now, before trying to determine whether to stop. */
1590 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1591 xfree (pending_follow.execd_pathname);
c906108c 1592
488f131b
JB
1593 stop_pc = read_pc_pid (ecs->ptid);
1594 ecs->saved_inferior_ptid = inferior_ptid;
1595 inferior_ptid = ecs->ptid;
675bf4cb 1596
fa5281d0 1597 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
675bf4cb 1598
488f131b
JB
1599 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1600 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1601
1602 /* If no catchpoint triggered for this, then keep going. */
1603 if (ecs->random_signal)
1604 {
1605 stop_signal = TARGET_SIGNAL_0;
1606 keep_going (ecs);
1607 return;
1608 }
488f131b
JB
1609 goto process_event_stop_test;
1610
1611 /* These syscall events are returned on HP-UX, as part of its
1612 implementation of page-protection-based "hardware" watchpoints.
1613 HP-UX has unfortunate interactions between page-protections and
1614 some system calls. Our solution is to disable hardware watches
1615 when a system call is entered, and reenable them when the syscall
1616 completes. The downside of this is that we may miss the precise
1617 point at which a watched piece of memory is modified. "Oh well."
1618
1619 Note that we may have multiple threads running, which may each
1620 enter syscalls at roughly the same time. Since we don't have a
1621 good notion currently of whether a watched piece of memory is
1622 thread-private, we'd best not have any page-protections active
1623 when any thread is in a syscall. Thus, we only want to reenable
1624 hardware watches when no threads are in a syscall.
1625
1626 Also, be careful not to try to gather much state about a thread
1627 that's in a syscall. It's frequently a losing proposition. */
1628 case TARGET_WAITKIND_SYSCALL_ENTRY:
1629 number_of_threads_in_syscalls++;
1630 if (number_of_threads_in_syscalls == 1)
1631 {
1632 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1633 }
1634 resume (0, TARGET_SIGNAL_0);
1635 prepare_to_wait (ecs);
1636 return;
c906108c 1637
488f131b
JB
1638 /* Before examining the threads further, step this thread to
1639 get it entirely out of the syscall. (We get notice of the
1640 event when the thread is just on the verge of exiting a
1641 syscall. Stepping one instruction seems to get it back
1642 into user code.)
c906108c 1643
488f131b
JB
1644 Note that although the logical place to reenable h/w watches
1645 is here, we cannot. We cannot reenable them before stepping
1646 the thread (this causes the next wait on the thread to hang).
c4093a6a 1647
488f131b
JB
1648 Nor can we enable them after stepping until we've done a wait.
1649 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1650 here, which will be serviced immediately after the target
1651 is waited on. */
1652 case TARGET_WAITKIND_SYSCALL_RETURN:
1653 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1654
1655 if (number_of_threads_in_syscalls > 0)
1656 {
1657 number_of_threads_in_syscalls--;
1658 ecs->enable_hw_watchpoints_after_wait =
1659 (number_of_threads_in_syscalls == 0);
1660 }
1661 prepare_to_wait (ecs);
1662 return;
c906108c 1663
488f131b
JB
1664 case TARGET_WAITKIND_STOPPED:
1665 stop_signal = ecs->ws.value.sig;
1666 break;
c906108c 1667
488f131b
JB
1668 /* We had an event in the inferior, but we are not interested
1669 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1670 done what needs to be done, if anything.
1671
1672 One of the possible circumstances for this is when the
1673 inferior produces output for the console. The inferior has
1674 not stopped, and we are ignoring the event. Another possible
1675 circumstance is any event which the lower level knows will be
1676 reported multiple times without an intervening resume. */
488f131b 1677 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1678 prepare_to_wait (ecs);
488f131b
JB
1679 return;
1680 }
c906108c 1681
488f131b
JB
1682 /* We may want to consider not doing a resume here in order to give
1683 the user a chance to play with the new thread. It might be good
1684 to make that a user-settable option. */
c906108c 1685
488f131b
JB
1686 /* At this point, all threads are stopped (happens automatically in
1687 either the OS or the native code). Therefore we need to continue
1688 all threads in order to make progress. */
1689 if (ecs->new_thread_event)
1690 {
1691 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1692 prepare_to_wait (ecs);
1693 return;
1694 }
c906108c 1695
488f131b
JB
1696 stop_pc = read_pc_pid (ecs->ptid);
1697
9f976b41
DJ
1698 if (stepping_past_singlestep_breakpoint)
1699 {
1700 gdb_assert (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p);
1701 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1702 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1703
1704 stepping_past_singlestep_breakpoint = 0;
1705
1706 /* We've either finished single-stepping past the single-step
1707 breakpoint, or stopped for some other reason. It would be nice if
1708 we could tell, but we can't reliably. */
1709 if (stop_signal == TARGET_SIGNAL_TRAP)
1710 {
1711 /* Pull the single step breakpoints out of the target. */
1712 SOFTWARE_SINGLE_STEP (0, 0);
1713 singlestep_breakpoints_inserted_p = 0;
1714
1715 ecs->random_signal = 0;
1716
1717 ecs->ptid = saved_singlestep_ptid;
1718 context_switch (ecs);
9a4105ab
AC
1719 if (deprecated_context_hook)
1720 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
1721
1722 resume (1, TARGET_SIGNAL_0);
1723 prepare_to_wait (ecs);
1724 return;
1725 }
1726 }
1727
1728 stepping_past_singlestep_breakpoint = 0;
1729
488f131b
JB
1730 /* See if a thread hit a thread-specific breakpoint that was meant for
1731 another thread. If so, then step that thread past the breakpoint,
1732 and continue it. */
1733
1734 if (stop_signal == TARGET_SIGNAL_TRAP)
1735 {
9f976b41
DJ
1736 int thread_hop_needed = 0;
1737
f8d40ec8
JB
1738 /* Check if a regular breakpoint has been hit before checking
1739 for a potential single step breakpoint. Otherwise, GDB will
1740 not see this breakpoint hit when stepping onto breakpoints. */
4fa8626c 1741 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
488f131b 1742 {
c5aa993b 1743 ecs->random_signal = 0;
4fa8626c 1744 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
9f976b41
DJ
1745 thread_hop_needed = 1;
1746 }
1747 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1748 {
1749 ecs->random_signal = 0;
1750 /* The call to in_thread_list is necessary because PTIDs sometimes
1751 change when we go from single-threaded to multi-threaded. If
1752 the singlestep_ptid is still in the list, assume that it is
1753 really different from ecs->ptid. */
1754 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1755 && in_thread_list (singlestep_ptid))
1756 {
1757 thread_hop_needed = 1;
1758 stepping_past_singlestep_breakpoint = 1;
1759 saved_singlestep_ptid = singlestep_ptid;
1760 }
1761 }
1762
1763 if (thread_hop_needed)
488f131b
JB
1764 {
1765 int remove_status;
1766
1767 /* Saw a breakpoint, but it was hit by the wrong thread.
1768 Just continue. */
488f131b 1769
9f976b41
DJ
1770 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1771 {
1772 /* Pull the single step breakpoints out of the target. */
1773 SOFTWARE_SINGLE_STEP (0, 0);
1774 singlestep_breakpoints_inserted_p = 0;
1775 }
1776
488f131b
JB
1777 remove_status = remove_breakpoints ();
1778 /* Did we fail to remove breakpoints? If so, try
1779 to set the PC past the bp. (There's at least
1780 one situation in which we can fail to remove
1781 the bp's: On HP-UX's that use ttrace, we can't
1782 change the address space of a vforking child
1783 process until the child exits (well, okay, not
1784 then either :-) or execs. */
1785 if (remove_status != 0)
1786 {
1787 /* FIXME! This is obviously non-portable! */
4fa8626c 1788 write_pc_pid (stop_pc + 4, ecs->ptid);
488f131b
JB
1789 /* We need to restart all the threads now,
1790 * unles we're running in scheduler-locked mode.
1791 * Use currently_stepping to determine whether to
1792 * step or continue.
1793 */
1794 /* FIXME MVS: is there any reason not to call resume()? */
1795 if (scheduler_mode == schedlock_on)
1796 target_resume (ecs->ptid,
1797 currently_stepping (ecs), TARGET_SIGNAL_0);
1798 else
1799 target_resume (RESUME_ALL,
1800 currently_stepping (ecs), TARGET_SIGNAL_0);
1801 prepare_to_wait (ecs);
1802 return;
1803 }
1804 else
1805 { /* Single step */
1806 breakpoints_inserted = 0;
1807 if (!ptid_equal (inferior_ptid, ecs->ptid))
1808 context_switch (ecs);
1809 ecs->waiton_ptid = ecs->ptid;
1810 ecs->wp = &(ecs->ws);
1811 ecs->another_trap = 1;
1812
1813 ecs->infwait_state = infwait_thread_hop_state;
1814 keep_going (ecs);
1815 registers_changed ();
1816 return;
1817 }
488f131b 1818 }
f8d40ec8
JB
1819 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1820 {
c8edd8b4 1821 sw_single_step_trap_p = 1;
f8d40ec8
JB
1822 ecs->random_signal = 0;
1823 }
488f131b
JB
1824 }
1825 else
1826 ecs->random_signal = 1;
c906108c 1827
488f131b 1828 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
1829 so, then switch to that thread. */
1830 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 1831 {
488f131b 1832 context_switch (ecs);
c5aa993b 1833
9a4105ab
AC
1834 if (deprecated_context_hook)
1835 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1836
488f131b
JB
1837 flush_cached_frames ();
1838 }
c906108c 1839
488f131b
JB
1840 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1841 {
1842 /* Pull the single step breakpoints out of the target. */
1843 SOFTWARE_SINGLE_STEP (0, 0);
1844 singlestep_breakpoints_inserted_p = 0;
1845 }
c906108c 1846
488f131b
JB
1847 /* If PC is pointing at a nullified instruction, then step beyond
1848 it so that the user won't be confused when GDB appears to be ready
1849 to execute it. */
c906108c 1850
488f131b
JB
1851 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1852 if (INSTRUCTION_NULLIFIED)
1853 {
1854 registers_changed ();
1855 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1856
488f131b
JB
1857 /* We may have received a signal that we want to pass to
1858 the inferior; therefore, we must not clobber the waitstatus
1859 in WS. */
c906108c 1860
488f131b
JB
1861 ecs->infwait_state = infwait_nullified_state;
1862 ecs->waiton_ptid = ecs->ptid;
1863 ecs->wp = &(ecs->tmpstatus);
1864 prepare_to_wait (ecs);
1865 return;
1866 }
c906108c 1867
488f131b
JB
1868 /* It may not be necessary to disable the watchpoint to stop over
1869 it. For example, the PA can (with some kernel cooperation)
1870 single step over a watchpoint without disabling the watchpoint. */
1871 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1872 {
1873 resume (1, 0);
1874 prepare_to_wait (ecs);
1875 return;
1876 }
c906108c 1877
488f131b
JB
1878 /* It is far more common to need to disable a watchpoint to step
1879 the inferior over it. FIXME. What else might a debug
1880 register or page protection watchpoint scheme need here? */
1881 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1882 {
1883 /* At this point, we are stopped at an instruction which has
1884 attempted to write to a piece of memory under control of
1885 a watchpoint. The instruction hasn't actually executed
1886 yet. If we were to evaluate the watchpoint expression
1887 now, we would get the old value, and therefore no change
1888 would seem to have occurred.
1889
1890 In order to make watchpoints work `right', we really need
1891 to complete the memory write, and then evaluate the
1892 watchpoint expression. The following code does that by
1893 removing the watchpoint (actually, all watchpoints and
1894 breakpoints), single-stepping the target, re-inserting
1895 watchpoints, and then falling through to let normal
1896 single-step processing handle proceed. Since this
1897 includes evaluating watchpoints, things will come to a
1898 stop in the correct manner. */
1899
488f131b
JB
1900 remove_breakpoints ();
1901 registers_changed ();
1902 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1903
488f131b
JB
1904 ecs->waiton_ptid = ecs->ptid;
1905 ecs->wp = &(ecs->ws);
1906 ecs->infwait_state = infwait_nonstep_watch_state;
1907 prepare_to_wait (ecs);
1908 return;
1909 }
1910
1911 /* It may be possible to simply continue after a watchpoint. */
1912 if (HAVE_CONTINUABLE_WATCHPOINT)
1913 STOPPED_BY_WATCHPOINT (ecs->ws);
1914
1915 ecs->stop_func_start = 0;
1916 ecs->stop_func_end = 0;
1917 ecs->stop_func_name = 0;
1918 /* Don't care about return value; stop_func_start and stop_func_name
1919 will both be 0 if it doesn't work. */
1920 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1921 &ecs->stop_func_start, &ecs->stop_func_end);
1922 ecs->stop_func_start += FUNCTION_START_OFFSET;
1923 ecs->another_trap = 0;
1924 bpstat_clear (&stop_bpstat);
1925 stop_step = 0;
1926 stop_stack_dummy = 0;
1927 stop_print_frame = 1;
1928 ecs->random_signal = 0;
1929 stopped_by_random_signal = 0;
1930 breakpoints_failed = 0;
1931
1932 /* Look at the cause of the stop, and decide what to do.
1933 The alternatives are:
1934 1) break; to really stop and return to the debugger,
1935 2) drop through to start up again
1936 (set ecs->another_trap to 1 to single step once)
1937 3) set ecs->random_signal to 1, and the decision between 1 and 2
1938 will be made according to the signal handling tables. */
1939
1940 /* First, distinguish signals caused by the debugger from signals
03cebad2
MK
1941 that have to do with the program's own actions. Note that
1942 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1943 on the operating system version. Here we detect when a SIGILL or
1944 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1945 something similar for SIGSEGV, since a SIGSEGV will be generated
1946 when we're trying to execute a breakpoint instruction on a
1947 non-executable stack. This happens for call dummy breakpoints
1948 for architectures like SPARC that place call dummies on the
1949 stack. */
488f131b
JB
1950
1951 if (stop_signal == TARGET_SIGNAL_TRAP
1952 || (breakpoints_inserted &&
1953 (stop_signal == TARGET_SIGNAL_ILL
03cebad2 1954 || stop_signal == TARGET_SIGNAL_SEGV
c54cfec8 1955 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1956 || stop_soon == STOP_QUIETLY
1957 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1958 {
1959 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1960 {
1961 stop_print_frame = 0;
1962 stop_stepping (ecs);
1963 return;
1964 }
c54cfec8
EZ
1965
1966 /* This is originated from start_remote(), start_inferior() and
1967 shared libraries hook functions. */
c0236d92 1968 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1969 {
1970 stop_stepping (ecs);
1971 return;
1972 }
1973
c54cfec8
EZ
1974 /* This originates from attach_command(). We need to overwrite
1975 the stop_signal here, because some kernels don't ignore a
1976 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1977 See more comments in inferior.h. */
c0236d92 1978 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1979 {
1980 stop_stepping (ecs);
1981 if (stop_signal == TARGET_SIGNAL_STOP)
1982 stop_signal = TARGET_SIGNAL_0;
1983 return;
1984 }
1985
d303a6c7
AC
1986 /* Don't even think about breakpoints if just proceeded over a
1987 breakpoint. */
1988 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
488f131b
JB
1989 bpstat_clear (&stop_bpstat);
1990 else
1991 {
1992 /* See if there is a breakpoint at the current PC. */
fa5281d0 1993 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid);
488f131b 1994
488f131b
JB
1995 /* Following in case break condition called a
1996 function. */
1997 stop_print_frame = 1;
1998 }
1999
73dd234f
AC
2000 /* NOTE: cagney/2003-03-29: These two checks for a random signal
2001 at one stage in the past included checks for an inferior
2002 function call's call dummy's return breakpoint. The original
2003 comment, that went with the test, read:
2004
2005 ``End of a stack dummy. Some systems (e.g. Sony news) give
2006 another signal besides SIGTRAP, so check here as well as
2007 above.''
2008
2009 If someone ever tries to get get call dummys on a
2010 non-executable stack to work (where the target would stop
03cebad2
MK
2011 with something like a SIGSEGV), then those tests might need
2012 to be re-instated. Given, however, that the tests were only
73dd234f 2013 enabled when momentary breakpoints were not being used, I
03cebad2
MK
2014 suspect that it won't be the case.
2015
2016 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
2017 be necessary for call dummies on a non-executable stack on
2018 SPARC. */
73dd234f 2019
488f131b
JB
2020 if (stop_signal == TARGET_SIGNAL_TRAP)
2021 ecs->random_signal
2022 = !(bpstat_explains_signal (stop_bpstat)
2023 || trap_expected
488f131b 2024 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
2025 else
2026 {
73dd234f 2027 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
2028 if (!ecs->random_signal)
2029 stop_signal = TARGET_SIGNAL_TRAP;
2030 }
2031 }
2032
2033 /* When we reach this point, we've pretty much decided
2034 that the reason for stopping must've been a random
2035 (unexpected) signal. */
2036
2037 else
2038 ecs->random_signal = 1;
488f131b 2039
04e68871 2040process_event_stop_test:
488f131b
JB
2041 /* For the program's own signals, act according to
2042 the signal handling tables. */
2043
2044 if (ecs->random_signal)
2045 {
2046 /* Signal not for debugging purposes. */
2047 int printed = 0;
2048
2049 stopped_by_random_signal = 1;
2050
2051 if (signal_print[stop_signal])
2052 {
2053 printed = 1;
2054 target_terminal_ours_for_output ();
2055 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
2056 }
2057 if (signal_stop[stop_signal])
2058 {
2059 stop_stepping (ecs);
2060 return;
2061 }
2062 /* If not going to stop, give terminal back
2063 if we took it away. */
2064 else if (printed)
2065 target_terminal_inferior ();
2066
2067 /* Clear the signal if it should not be passed. */
2068 if (signal_program[stop_signal] == 0)
2069 stop_signal = TARGET_SIGNAL_0;
2070
d303a6c7
AC
2071 if (step_range_end != 0
2072 && stop_signal != TARGET_SIGNAL_0
2073 && stop_pc >= step_range_start && stop_pc < step_range_end
2074 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
2075 {
2076 /* The inferior is about to take a signal that will take it
2077 out of the single step range. Set a breakpoint at the
2078 current PC (which is presumably where the signal handler
2079 will eventually return) and then allow the inferior to
2080 run free.
2081
2082 Note that this is only needed for a signal delivered
2083 while in the single-step range. Nested signals aren't a
2084 problem as they eventually all return. */
2085 insert_step_resume_breakpoint (get_current_frame (), ecs);
2086 }
488f131b
JB
2087 keep_going (ecs);
2088 return;
2089 }
2090
2091 /* Handle cases caused by hitting a breakpoint. */
2092 {
2093 CORE_ADDR jmp_buf_pc;
2094 struct bpstat_what what;
2095
2096 what = bpstat_what (stop_bpstat);
2097
2098 if (what.call_dummy)
2099 {
2100 stop_stack_dummy = 1;
2101#ifdef HP_OS_BUG
2102 trap_expected_after_continue = 1;
2103#endif
c5aa993b 2104 }
c906108c 2105
488f131b 2106 switch (what.main_action)
c5aa993b 2107 {
488f131b
JB
2108 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2109 /* If we hit the breakpoint at longjmp, disable it for the
2110 duration of this command. Then, install a temporary
2111 breakpoint at the target of the jmp_buf. */
2112 disable_longjmp_breakpoint ();
2113 remove_breakpoints ();
2114 breakpoints_inserted = 0;
2115 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2116 {
488f131b 2117 keep_going (ecs);
104c1213 2118 return;
c5aa993b 2119 }
488f131b
JB
2120
2121 /* Need to blow away step-resume breakpoint, as it
2122 interferes with us */
2123 if (step_resume_breakpoint != NULL)
104c1213 2124 {
488f131b 2125 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2126 }
c906108c 2127
488f131b
JB
2128#if 0
2129 /* FIXME - Need to implement nested temporary breakpoints */
2130 if (step_over_calls > 0)
2131 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2132 else
488f131b 2133#endif /* 0 */
818dd999 2134 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2135 ecs->handling_longjmp = 1; /* FIXME */
2136 keep_going (ecs);
2137 return;
c906108c 2138
488f131b
JB
2139 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2140 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2141 remove_breakpoints ();
2142 breakpoints_inserted = 0;
2143#if 0
2144 /* FIXME - Need to implement nested temporary breakpoints */
2145 if (step_over_calls
aa0cd9c1
AC
2146 && (frame_id_inner (get_frame_id (get_current_frame ()),
2147 step_frame_id)))
c5aa993b 2148 {
488f131b 2149 ecs->another_trap = 1;
d4f3574e
SS
2150 keep_going (ecs);
2151 return;
c5aa993b 2152 }
488f131b
JB
2153#endif /* 0 */
2154 disable_longjmp_breakpoint ();
2155 ecs->handling_longjmp = 0; /* FIXME */
2156 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2157 break;
2158 /* else fallthrough */
2159
2160 case BPSTAT_WHAT_SINGLE:
2161 if (breakpoints_inserted)
c5aa993b 2162 {
488f131b 2163 remove_breakpoints ();
c5aa993b 2164 }
488f131b
JB
2165 breakpoints_inserted = 0;
2166 ecs->another_trap = 1;
2167 /* Still need to check other stuff, at least the case
2168 where we are stepping and step out of the right range. */
2169 break;
c906108c 2170
488f131b
JB
2171 case BPSTAT_WHAT_STOP_NOISY:
2172 stop_print_frame = 1;
c906108c 2173
d303a6c7
AC
2174 /* We are about to nuke the step_resume_breakpointt via the
2175 cleanup chain, so no need to worry about it here. */
c5aa993b 2176
488f131b
JB
2177 stop_stepping (ecs);
2178 return;
c5aa993b 2179
488f131b
JB
2180 case BPSTAT_WHAT_STOP_SILENT:
2181 stop_print_frame = 0;
c5aa993b 2182
d303a6c7
AC
2183 /* We are about to nuke the step_resume_breakpoin via the
2184 cleanup chain, so no need to worry about it here. */
c5aa993b 2185
488f131b 2186 stop_stepping (ecs);
e441088d 2187 return;
c5aa993b 2188
488f131b
JB
2189 case BPSTAT_WHAT_STEP_RESUME:
2190 /* This proably demands a more elegant solution, but, yeah
2191 right...
c5aa993b 2192
488f131b
JB
2193 This function's use of the simple variable
2194 step_resume_breakpoint doesn't seem to accomodate
2195 simultaneously active step-resume bp's, although the
2196 breakpoint list certainly can.
c5aa993b 2197
488f131b
JB
2198 If we reach here and step_resume_breakpoint is already
2199 NULL, then apparently we have multiple active
2200 step-resume bp's. We'll just delete the breakpoint we
2201 stopped at, and carry on.
2202
2203 Correction: what the code currently does is delete a
2204 step-resume bp, but it makes no effort to ensure that
2205 the one deleted is the one currently stopped at. MVS */
c5aa993b 2206
488f131b
JB
2207 if (step_resume_breakpoint == NULL)
2208 {
2209 step_resume_breakpoint =
2210 bpstat_find_step_resume_breakpoint (stop_bpstat);
2211 }
2212 delete_step_resume_breakpoint (&step_resume_breakpoint);
2213 break;
2214
2215 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
488f131b
JB
2216 /* If were waiting for a trap, hitting the step_resume_break
2217 doesn't count as getting it. */
2218 if (trap_expected)
2219 ecs->another_trap = 1;
2220 break;
2221
2222 case BPSTAT_WHAT_CHECK_SHLIBS:
2223 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2224#ifdef SOLIB_ADD
c906108c 2225 {
488f131b
JB
2226 /* Remove breakpoints, we eventually want to step over the
2227 shlib event breakpoint, and SOLIB_ADD might adjust
2228 breakpoint addresses via breakpoint_re_set. */
2229 if (breakpoints_inserted)
2230 remove_breakpoints ();
c5aa993b 2231 breakpoints_inserted = 0;
488f131b
JB
2232
2233 /* Check for any newly added shared libraries if we're
2234 supposed to be adding them automatically. Switch
2235 terminal for any messages produced by
2236 breakpoint_re_set. */
2237 target_terminal_ours_for_output ();
aff6338a
AC
2238 /* NOTE: cagney/2003-11-25: Make certain that the target
2239 stack's section table is kept up-to-date. Architectures,
2240 (e.g., PPC64), use the section table to perform
2241 operations such as address => section name and hence
2242 require the table to contain all sections (including
2243 those found in shared libraries). */
2244 /* NOTE: cagney/2003-11-25: Pass current_target and not
2245 exec_ops to SOLIB_ADD. This is because current GDB is
2246 only tooled to propagate section_table changes out from
2247 the "current_target" (see target_resize_to_sections), and
2248 not up from the exec stratum. This, of course, isn't
2249 right. "infrun.c" should only interact with the
2250 exec/process stratum, instead relying on the target stack
2251 to propagate relevant changes (stop, section table
2252 changed, ...) up to other layers. */
2253 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
488f131b
JB
2254 target_terminal_inferior ();
2255
2256 /* Try to reenable shared library breakpoints, additional
2257 code segments in shared libraries might be mapped in now. */
2258 re_enable_breakpoints_in_shlibs ();
2259
2260 /* If requested, stop when the dynamic linker notifies
2261 gdb of events. This allows the user to get control
2262 and place breakpoints in initializer routines for
2263 dynamically loaded objects (among other things). */
877522db 2264 if (stop_on_solib_events || stop_stack_dummy)
d4f3574e 2265 {
488f131b 2266 stop_stepping (ecs);
d4f3574e
SS
2267 return;
2268 }
c5aa993b 2269
488f131b
JB
2270 /* If we stopped due to an explicit catchpoint, then the
2271 (see above) call to SOLIB_ADD pulled in any symbols
2272 from a newly-loaded library, if appropriate.
2273
2274 We do want the inferior to stop, but not where it is
2275 now, which is in the dynamic linker callback. Rather,
2276 we would like it stop in the user's program, just after
2277 the call that caused this catchpoint to trigger. That
2278 gives the user a more useful vantage from which to
2279 examine their program's state. */
2280 else if (what.main_action ==
2281 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2282 {
488f131b
JB
2283 /* ??rehrauer: If I could figure out how to get the
2284 right return PC from here, we could just set a temp
2285 breakpoint and resume. I'm not sure we can without
2286 cracking open the dld's shared libraries and sniffing
2287 their unwind tables and text/data ranges, and that's
2288 not a terribly portable notion.
2289
2290 Until that time, we must step the inferior out of the
2291 dld callback, and also out of the dld itself (and any
2292 code or stubs in libdld.sl, such as "shl_load" and
2293 friends) until we reach non-dld code. At that point,
2294 we can stop stepping. */
2295 bpstat_get_triggered_catchpoints (stop_bpstat,
2296 &ecs->
2297 stepping_through_solib_catchpoints);
2298 ecs->stepping_through_solib_after_catch = 1;
2299
2300 /* Be sure to lift all breakpoints, so the inferior does
2301 actually step past this point... */
2302 ecs->another_trap = 1;
2303 break;
c906108c 2304 }
c5aa993b 2305 else
c5aa993b 2306 {
488f131b 2307 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2308 ecs->another_trap = 1;
488f131b 2309 break;
c5aa993b 2310 }
488f131b
JB
2311 }
2312#endif
2313 break;
c906108c 2314
488f131b
JB
2315 case BPSTAT_WHAT_LAST:
2316 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2317
488f131b
JB
2318 case BPSTAT_WHAT_KEEP_CHECKING:
2319 break;
2320 }
2321 }
c906108c 2322
488f131b
JB
2323 /* We come here if we hit a breakpoint but should not
2324 stop for it. Possibly we also were stepping
2325 and should stop for that. So fall through and
2326 test for stepping. But, if not stepping,
2327 do not stop. */
c906108c 2328
488f131b
JB
2329 /* Are we stepping to get the inferior out of the dynamic
2330 linker's hook (and possibly the dld itself) after catching
2331 a shlib event? */
2332 if (ecs->stepping_through_solib_after_catch)
2333 {
2334#if defined(SOLIB_ADD)
2335 /* Have we reached our destination? If not, keep going. */
2336 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2337 {
2338 ecs->another_trap = 1;
2339 keep_going (ecs);
104c1213 2340 return;
488f131b
JB
2341 }
2342#endif
2343 /* Else, stop and report the catchpoint(s) whose triggering
2344 caused us to begin stepping. */
2345 ecs->stepping_through_solib_after_catch = 0;
2346 bpstat_clear (&stop_bpstat);
2347 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2348 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2349 stop_print_frame = 1;
2350 stop_stepping (ecs);
2351 return;
2352 }
c906108c 2353
488f131b
JB
2354 if (step_resume_breakpoint)
2355 {
2356 /* Having a step-resume breakpoint overrides anything
2357 else having to do with stepping commands until
2358 that breakpoint is reached. */
488f131b
JB
2359 keep_going (ecs);
2360 return;
2361 }
c5aa993b 2362
488f131b
JB
2363 if (step_range_end == 0)
2364 {
2365 /* Likewise if we aren't even stepping. */
488f131b
JB
2366 keep_going (ecs);
2367 return;
2368 }
c5aa993b 2369
488f131b 2370 /* If stepping through a line, keep going if still within it.
c906108c 2371
488f131b
JB
2372 Note that step_range_end is the address of the first instruction
2373 beyond the step range, and NOT the address of the last instruction
2374 within it! */
2375 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2376 {
488f131b
JB
2377 keep_going (ecs);
2378 return;
2379 }
c5aa993b 2380
488f131b 2381 /* We stepped out of the stepping range. */
c906108c 2382
488f131b
JB
2383 /* If we are stepping at the source level and entered the runtime
2384 loader dynamic symbol resolution code, we keep on single stepping
2385 until we exit the run time loader code and reach the callee's
2386 address. */
2387 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2388 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2389 {
4c8c40e6
MK
2390 CORE_ADDR pc_after_resolver =
2391 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
c906108c 2392
488f131b
JB
2393 if (pc_after_resolver)
2394 {
2395 /* Set up a step-resume breakpoint at the address
2396 indicated by SKIP_SOLIB_RESOLVER. */
2397 struct symtab_and_line sr_sal;
fe39c653 2398 init_sal (&sr_sal);
488f131b
JB
2399 sr_sal.pc = pc_after_resolver;
2400
2401 check_for_old_step_resume_breakpoint ();
2402 step_resume_breakpoint =
818dd999 2403 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2404 if (breakpoints_inserted)
2405 insert_breakpoints ();
c5aa993b 2406 }
c906108c 2407
488f131b
JB
2408 keep_going (ecs);
2409 return;
2410 }
c906108c 2411
a587af0b
AC
2412 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2413 && ecs->stop_func_name == NULL)
2414 {
2415 /* There is no symbol, not even a minimal symbol, corresponding
2416 to the address where we just stopped. So we just stepped
2417 inside undebuggable code. Since we want to step over this
2418 kind of code, we keep going until the inferior returns from
2419 the current function. */
2420 handle_step_into_function (ecs);
2421 return;
2422 }
2423
42edda50
AC
2424 if (step_range_end != 1
2425 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2426 || step_over_calls == STEP_OVER_ALL)
2427 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
488f131b 2428 {
42edda50
AC
2429 /* The inferior, while doing a "step" or "next", has ended up in
2430 a signal trampoline (either by a signal being delivered or by
2431 the signal handler returning). Just single-step until the
2432 inferior leaves the trampoline (either by calling the handler
2433 or returning). */
488f131b
JB
2434 keep_going (ecs);
2435 return;
2436 }
c906108c 2437
a587af0b
AC
2438 if (frame_id_eq (get_frame_id (get_prev_frame (get_current_frame ())),
2439 step_frame_id))
488f131b
JB
2440 {
2441 /* It's a subroutine call. */
1af510a8 2442 handle_step_into_function (ecs);
488f131b 2443 return;
488f131b 2444 }
c906108c 2445
488f131b 2446 /* We've wandered out of the step range. */
c906108c 2447
488f131b 2448 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2449
488f131b
JB
2450 if (step_range_end == 1)
2451 {
2452 /* It is stepi or nexti. We always want to stop stepping after
2453 one instruction. */
2454 stop_step = 1;
2455 print_stop_reason (END_STEPPING_RANGE, 0);
2456 stop_stepping (ecs);
2457 return;
2458 }
c906108c 2459
488f131b
JB
2460 /* If we're in the return path from a shared library trampoline,
2461 we want to proceed through the trampoline when stepping. */
2462 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2463 {
488f131b 2464 /* Determine where this trampoline returns. */
5cf4d23a 2465 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2466
488f131b 2467 /* Only proceed through if we know where it's going. */
d764a824 2468 if (real_stop_pc)
488f131b
JB
2469 {
2470 /* And put the step-breakpoint there and go until there. */
2471 struct symtab_and_line sr_sal;
2472
fe39c653 2473 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2474 sr_sal.pc = real_stop_pc;
488f131b
JB
2475 sr_sal.section = find_pc_overlay (sr_sal.pc);
2476 /* Do not specify what the fp should be when we stop
2477 since on some machines the prologue
2478 is where the new fp value is established. */
2479 check_for_old_step_resume_breakpoint ();
2480 step_resume_breakpoint =
818dd999 2481 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2482 if (breakpoints_inserted)
2483 insert_breakpoints ();
c906108c 2484
488f131b
JB
2485 /* Restart without fiddling with the step ranges or
2486 other state. */
2487 keep_going (ecs);
2488 return;
2489 }
2490 }
c906108c 2491
488f131b
JB
2492 if (ecs->sal.line == 0)
2493 {
2494 /* We have no line number information. That means to stop
2495 stepping (does this always happen right after one instruction,
2496 when we do "s" in a function with no line numbers,
2497 or can this happen as a result of a return or longjmp?). */
2498 stop_step = 1;
2499 print_stop_reason (END_STEPPING_RANGE, 0);
2500 stop_stepping (ecs);
2501 return;
2502 }
c906108c 2503
488f131b
JB
2504 if ((stop_pc == ecs->sal.pc)
2505 && (ecs->current_line != ecs->sal.line
2506 || ecs->current_symtab != ecs->sal.symtab))
2507 {
2508 /* We are at the start of a different line. So stop. Note that
2509 we don't stop if we step into the middle of a different line.
2510 That is said to make things like for (;;) statements work
2511 better. */
2512 stop_step = 1;
2513 print_stop_reason (END_STEPPING_RANGE, 0);
2514 stop_stepping (ecs);
2515 return;
2516 }
c906108c 2517
488f131b 2518 /* We aren't done stepping.
c906108c 2519
488f131b
JB
2520 Optimize by setting the stepping range to the line.
2521 (We might not be in the original line, but if we entered a
2522 new line in mid-statement, we continue stepping. This makes
2523 things like for(;;) statements work better.) */
c906108c 2524
488f131b 2525 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2526 {
488f131b
JB
2527 /* If this is the last line of the function, don't keep stepping
2528 (it would probably step us out of the function).
2529 This is particularly necessary for a one-line function,
2530 in which after skipping the prologue we better stop even though
2531 we will be in mid-line. */
2532 stop_step = 1;
2533 print_stop_reason (END_STEPPING_RANGE, 0);
2534 stop_stepping (ecs);
2535 return;
c5aa993b 2536 }
488f131b
JB
2537 step_range_start = ecs->sal.pc;
2538 step_range_end = ecs->sal.end;
aa0cd9c1 2539 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2540 ecs->current_line = ecs->sal.line;
2541 ecs->current_symtab = ecs->sal.symtab;
2542
aa0cd9c1
AC
2543 /* In the case where we just stepped out of a function into the
2544 middle of a line of the caller, continue stepping, but
2545 step_frame_id must be modified to current frame */
65815ea1
AC
2546#if 0
2547 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2548 generous. It will trigger on things like a step into a frameless
2549 stackless leaf function. I think the logic should instead look
2550 at the unwound frame ID has that should give a more robust
2551 indication of what happened. */
2552 if (step-ID == current-ID)
2553 still stepping in same function;
2554 else if (step-ID == unwind (current-ID))
2555 stepped into a function;
2556 else
2557 stepped out of a function;
2558 /* Of course this assumes that the frame ID unwind code is robust
2559 and we're willing to introduce frame unwind logic into this
ce2826aa 2560 function. Fortunately, those days are nearly upon us. */
65815ea1 2561#endif
488f131b 2562 {
aa0cd9c1
AC
2563 struct frame_id current_frame = get_frame_id (get_current_frame ());
2564 if (!(frame_id_inner (current_frame, step_frame_id)))
2565 step_frame_id = current_frame;
488f131b 2566 }
c906108c 2567
488f131b 2568 keep_going (ecs);
104c1213
JM
2569}
2570
2571/* Are we in the middle of stepping? */
2572
2573static int
2574currently_stepping (struct execution_control_state *ecs)
2575{
d303a6c7 2576 return ((!ecs->handling_longjmp
104c1213
JM
2577 && ((step_range_end && step_resume_breakpoint == NULL)
2578 || trap_expected))
2579 || ecs->stepping_through_solib_after_catch
2580 || bpstat_should_step ());
2581}
c906108c 2582
c2c6d25f
JM
2583/* Subroutine call with source code we should not step over. Do step
2584 to the first line of code in it. */
2585
2586static void
2587step_into_function (struct execution_control_state *ecs)
2588{
2589 struct symtab *s;
2590 struct symtab_and_line sr_sal;
2591
2592 s = find_pc_symtab (stop_pc);
2593 if (s && s->language != language_asm)
2594 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2595
2596 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2597 /* Use the step_resume_break to step until the end of the prologue,
2598 even if that involves jumps (as it seems to on the vax under
2599 4.2). */
2600 /* If the prologue ends in the middle of a source line, continue to
2601 the end of that source line (if it is still within the function).
2602 Otherwise, just go to end of prologue. */
c2c6d25f
JM
2603 if (ecs->sal.end
2604 && ecs->sal.pc != ecs->stop_func_start
2605 && ecs->sal.end < ecs->stop_func_end)
2606 ecs->stop_func_start = ecs->sal.end;
c2c6d25f 2607
2dbd5e30
KB
2608 /* Architectures which require breakpoint adjustment might not be able
2609 to place a breakpoint at the computed address. If so, the test
2610 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2611 ecs->stop_func_start to an address at which a breakpoint may be
2612 legitimately placed.
2613
2614 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2615 made, GDB will enter an infinite loop when stepping through
2616 optimized code consisting of VLIW instructions which contain
2617 subinstructions corresponding to different source lines. On
2618 FR-V, it's not permitted to place a breakpoint on any but the
2619 first subinstruction of a VLIW instruction. When a breakpoint is
2620 set, GDB will adjust the breakpoint address to the beginning of
2621 the VLIW instruction. Thus, we need to make the corresponding
2622 adjustment here when computing the stop address. */
2623
2624 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2625 {
2626 ecs->stop_func_start
2627 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2628 ecs->stop_func_start);
2629 }
2630
c2c6d25f
JM
2631 if (ecs->stop_func_start == stop_pc)
2632 {
2633 /* We are already there: stop now. */
2634 stop_step = 1;
488f131b 2635 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2636 stop_stepping (ecs);
2637 return;
2638 }
2639 else
2640 {
2641 /* Put the step-breakpoint there and go until there. */
fe39c653 2642 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2643 sr_sal.pc = ecs->stop_func_start;
2644 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2645 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2646 some machines the prologue is where the new fp value is
2647 established. */
c2c6d25f
JM
2648 check_for_old_step_resume_breakpoint ();
2649 step_resume_breakpoint =
818dd999 2650 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2651 if (breakpoints_inserted)
2652 insert_breakpoints ();
2653
2654 /* And make sure stepping stops right away then. */
2655 step_range_end = step_range_start;
2656 }
2657 keep_going (ecs);
2658}
d4f3574e 2659
d303a6c7
AC
2660/* The inferior, as a result of a function call (has left) or signal
2661 (about to leave) the single-step range. Set a momentary breakpoint
2662 within the step range where the inferior is expected to later
2663 return. */
2664
2665static void
2666insert_step_resume_breakpoint (struct frame_info *step_frame,
2667 struct execution_control_state *ecs)
2668{
2669 struct symtab_and_line sr_sal;
2670
2671 /* This is only used within the step-resume range/frame. */
2672 gdb_assert (frame_id_eq (step_frame_id, get_frame_id (step_frame)));
2673 gdb_assert (step_range_end != 0);
922d5ae0
AC
2674 /* Remember, if the call instruction is the last in the step range,
2675 the breakpoint will land just beyond that. Hence ``<=
2676 step_range_end''. Also, ignore check when "nexti". */
2677 gdb_assert (step_range_start == step_range_end
2678 || (get_frame_pc (step_frame) >= step_range_start
2679 && get_frame_pc (step_frame) <= step_range_end));
d303a6c7
AC
2680
2681 init_sal (&sr_sal); /* initialize to zeros */
2682
2683 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (step_frame));
2684 sr_sal.section = find_pc_overlay (sr_sal.pc);
2685
2686 check_for_old_step_resume_breakpoint ();
2687
2688 step_resume_breakpoint
2689 = set_momentary_breakpoint (sr_sal, get_frame_id (step_frame),
2690 bp_step_resume);
2691
2692 if (breakpoints_inserted)
2693 insert_breakpoints ();
2694}
2695
104c1213
JM
2696static void
2697stop_stepping (struct execution_control_state *ecs)
2698{
cd0fc7c3
SS
2699 /* Let callers know we don't want to wait for the inferior anymore. */
2700 ecs->wait_some_more = 0;
2701}
2702
d4f3574e
SS
2703/* This function handles various cases where we need to continue
2704 waiting for the inferior. */
2705/* (Used to be the keep_going: label in the old wait_for_inferior) */
2706
2707static void
2708keep_going (struct execution_control_state *ecs)
2709{
d4f3574e 2710 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2711 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e 2712
d4f3574e
SS
2713 /* If we did not do break;, it means we should keep running the
2714 inferior and not return to debugger. */
2715
2716 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2717 {
2718 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2719 the inferior, else we'd have done a break above) and we
2720 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2721 resume (currently_stepping (ecs), stop_signal);
2722 }
2723 else
2724 {
2725 /* Either the trap was not expected, but we are continuing
488f131b
JB
2726 anyway (the user asked that this signal be passed to the
2727 child)
2728 -- or --
2729 The signal was SIGTRAP, e.g. it was our signal, but we
2730 decided we should resume from it.
d4f3574e 2731
488f131b 2732 We're going to run this baby now!
d4f3574e 2733
488f131b
JB
2734 Insert breakpoints now, unless we are trying to one-proceed
2735 past a breakpoint. */
d4f3574e 2736 /* If we've just finished a special step resume and we don't
488f131b 2737 want to hit a breakpoint, pull em out. */
d4f3574e 2738 if (step_resume_breakpoint == NULL
d4f3574e
SS
2739 && ecs->remove_breakpoints_on_following_step)
2740 {
2741 ecs->remove_breakpoints_on_following_step = 0;
2742 remove_breakpoints ();
2743 breakpoints_inserted = 0;
2744 }
d303a6c7 2745 else if (!breakpoints_inserted && !ecs->another_trap)
d4f3574e
SS
2746 {
2747 breakpoints_failed = insert_breakpoints ();
2748 if (breakpoints_failed)
2749 {
2750 stop_stepping (ecs);
2751 return;
2752 }
2753 breakpoints_inserted = 1;
2754 }
2755
2756 trap_expected = ecs->another_trap;
2757
2758 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2759 specifies that such a signal should be delivered to the
2760 target program).
2761
2762 Typically, this would occure when a user is debugging a
2763 target monitor on a simulator: the target monitor sets a
2764 breakpoint; the simulator encounters this break-point and
2765 halts the simulation handing control to GDB; GDB, noteing
2766 that the break-point isn't valid, returns control back to the
2767 simulator; the simulator then delivers the hardware
2768 equivalent of a SIGNAL_TRAP to the program being debugged. */
2769
2770 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2771 stop_signal = TARGET_SIGNAL_0;
2772
d4f3574e
SS
2773
2774 resume (currently_stepping (ecs), stop_signal);
2775 }
2776
488f131b 2777 prepare_to_wait (ecs);
d4f3574e
SS
2778}
2779
104c1213
JM
2780/* This function normally comes after a resume, before
2781 handle_inferior_event exits. It takes care of any last bits of
2782 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2783
104c1213
JM
2784static void
2785prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2786{
104c1213
JM
2787 if (ecs->infwait_state == infwait_normal_state)
2788 {
2789 overlay_cache_invalid = 1;
2790
2791 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2792 target_wait because they can be loaded from the target while
2793 in target_wait. This makes remote debugging a bit more
2794 efficient for those targets that provide critical registers
2795 as part of their normal status mechanism. */
104c1213
JM
2796
2797 registers_changed ();
39f77062 2798 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2799 ecs->wp = &(ecs->ws);
2800 }
2801 /* This is the old end of the while loop. Let everybody know we
2802 want to wait for the inferior some more and get called again
2803 soon. */
2804 ecs->wait_some_more = 1;
c906108c 2805}
11cf8741
JM
2806
2807/* Print why the inferior has stopped. We always print something when
2808 the inferior exits, or receives a signal. The rest of the cases are
2809 dealt with later on in normal_stop() and print_it_typical(). Ideally
2810 there should be a call to this function from handle_inferior_event()
2811 each time stop_stepping() is called.*/
2812static void
2813print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2814{
2815 switch (stop_reason)
2816 {
2817 case STOP_UNKNOWN:
2818 /* We don't deal with these cases from handle_inferior_event()
2819 yet. */
2820 break;
2821 case END_STEPPING_RANGE:
2822 /* We are done with a step/next/si/ni command. */
2823 /* For now print nothing. */
fb40c209 2824 /* Print a message only if not in the middle of doing a "step n"
488f131b 2825 operation for n > 1 */
fb40c209 2826 if (!step_multi || !stop_step)
9dc5e2a9 2827 if (ui_out_is_mi_like_p (uiout))
fb40c209 2828 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2829 break;
2830 case BREAKPOINT_HIT:
2831 /* We found a breakpoint. */
2832 /* For now print nothing. */
2833 break;
2834 case SIGNAL_EXITED:
2835 /* The inferior was terminated by a signal. */
8b93c638 2836 annotate_signalled ();
9dc5e2a9 2837 if (ui_out_is_mi_like_p (uiout))
fb40c209 2838 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2839 ui_out_text (uiout, "\nProgram terminated with signal ");
2840 annotate_signal_name ();
488f131b
JB
2841 ui_out_field_string (uiout, "signal-name",
2842 target_signal_to_name (stop_info));
8b93c638
JM
2843 annotate_signal_name_end ();
2844 ui_out_text (uiout, ", ");
2845 annotate_signal_string ();
488f131b
JB
2846 ui_out_field_string (uiout, "signal-meaning",
2847 target_signal_to_string (stop_info));
8b93c638
JM
2848 annotate_signal_string_end ();
2849 ui_out_text (uiout, ".\n");
2850 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
2851 break;
2852 case EXITED:
2853 /* The inferior program is finished. */
8b93c638
JM
2854 annotate_exited (stop_info);
2855 if (stop_info)
2856 {
9dc5e2a9 2857 if (ui_out_is_mi_like_p (uiout))
fb40c209 2858 ui_out_field_string (uiout, "reason", "exited");
8b93c638 2859 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
2860 ui_out_field_fmt (uiout, "exit-code", "0%o",
2861 (unsigned int) stop_info);
8b93c638
JM
2862 ui_out_text (uiout, ".\n");
2863 }
2864 else
2865 {
9dc5e2a9 2866 if (ui_out_is_mi_like_p (uiout))
fb40c209 2867 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
2868 ui_out_text (uiout, "\nProgram exited normally.\n");
2869 }
11cf8741
JM
2870 break;
2871 case SIGNAL_RECEIVED:
2872 /* Signal received. The signal table tells us to print about
2873 it. */
8b93c638
JM
2874 annotate_signal ();
2875 ui_out_text (uiout, "\nProgram received signal ");
2876 annotate_signal_name ();
84c6c83c
KS
2877 if (ui_out_is_mi_like_p (uiout))
2878 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
2879 ui_out_field_string (uiout, "signal-name",
2880 target_signal_to_name (stop_info));
8b93c638
JM
2881 annotate_signal_name_end ();
2882 ui_out_text (uiout, ", ");
2883 annotate_signal_string ();
488f131b
JB
2884 ui_out_field_string (uiout, "signal-meaning",
2885 target_signal_to_string (stop_info));
8b93c638
JM
2886 annotate_signal_string_end ();
2887 ui_out_text (uiout, ".\n");
11cf8741
JM
2888 break;
2889 default:
8e65ff28
AC
2890 internal_error (__FILE__, __LINE__,
2891 "print_stop_reason: unrecognized enum value");
11cf8741
JM
2892 break;
2893 }
2894}
c906108c 2895\f
43ff13b4 2896
c906108c
SS
2897/* Here to return control to GDB when the inferior stops for real.
2898 Print appropriate messages, remove breakpoints, give terminal our modes.
2899
2900 STOP_PRINT_FRAME nonzero means print the executing frame
2901 (pc, function, args, file, line number and line text).
2902 BREAKPOINTS_FAILED nonzero means stop was due to error
2903 attempting to insert breakpoints. */
2904
2905void
96baa820 2906normal_stop (void)
c906108c 2907{
73b65bb0
DJ
2908 struct target_waitstatus last;
2909 ptid_t last_ptid;
2910
2911 get_last_target_status (&last_ptid, &last);
2912
c906108c
SS
2913 /* As with the notification of thread events, we want to delay
2914 notifying the user that we've switched thread context until
2915 the inferior actually stops.
2916
73b65bb0
DJ
2917 There's no point in saying anything if the inferior has exited.
2918 Note that SIGNALLED here means "exited with a signal", not
2919 "received a signal". */
488f131b 2920 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
2921 && target_has_execution
2922 && last.kind != TARGET_WAITKIND_SIGNALLED
2923 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
2924 {
2925 target_terminal_ours_for_output ();
c3f6f71d 2926 printf_filtered ("[Switching to %s]\n",
39f77062
KB
2927 target_pid_or_tid_to_str (inferior_ptid));
2928 previous_inferior_ptid = inferior_ptid;
c906108c 2929 }
c906108c 2930
4fa8626c 2931 /* NOTE drow/2004-01-17: Is this still necessary? */
c906108c
SS
2932 /* Make sure that the current_frame's pc is correct. This
2933 is a correction for setting up the frame info before doing
2934 DECR_PC_AFTER_BREAK */
b87efeee
AC
2935 if (target_has_execution)
2936 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2937 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2938 frame code to check for this and sort out any resultant mess.
2939 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 2940 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 2941
c906108c
SS
2942 if (target_has_execution && breakpoints_inserted)
2943 {
2944 if (remove_breakpoints ())
2945 {
2946 target_terminal_ours_for_output ();
2947 printf_filtered ("Cannot remove breakpoints because ");
2948 printf_filtered ("program is no longer writable.\n");
2949 printf_filtered ("It might be running in another process.\n");
2950 printf_filtered ("Further execution is probably impossible.\n");
2951 }
2952 }
2953 breakpoints_inserted = 0;
2954
2955 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2956 Delete any breakpoint that is to be deleted at the next stop. */
2957
2958 breakpoint_auto_delete (stop_bpstat);
2959
2960 /* If an auto-display called a function and that got a signal,
2961 delete that auto-display to avoid an infinite recursion. */
2962
2963 if (stopped_by_random_signal)
2964 disable_current_display ();
2965
2966 /* Don't print a message if in the middle of doing a "step n"
2967 operation for n > 1 */
2968 if (step_multi && stop_step)
2969 goto done;
2970
2971 target_terminal_ours ();
2972
5913bcb0
AC
2973 /* Look up the hook_stop and run it (CLI internally handles problem
2974 of stop_command's pre-hook not existing). */
2975 if (stop_command)
2976 catch_errors (hook_stop_stub, stop_command,
2977 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
2978
2979 if (!target_has_stack)
2980 {
2981
2982 goto done;
2983 }
2984
2985 /* Select innermost stack frame - i.e., current frame is frame 0,
2986 and current location is based on that.
2987 Don't do this on return from a stack dummy routine,
2988 or if the program has exited. */
2989
2990 if (!stop_stack_dummy)
2991 {
0f7d239c 2992 select_frame (get_current_frame ());
c906108c
SS
2993
2994 /* Print current location without a level number, if
c5aa993b
JM
2995 we have changed functions or hit a breakpoint.
2996 Print source line if we have one.
2997 bpstat_print() contains the logic deciding in detail
2998 what to print, based on the event(s) that just occurred. */
c906108c 2999
6e7f8b9c 3000 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3001 {
3002 int bpstat_ret;
3003 int source_flag;
917317f4 3004 int do_frame_printing = 1;
c906108c
SS
3005
3006 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3007 switch (bpstat_ret)
3008 {
3009 case PRINT_UNKNOWN:
aa0cd9c1
AC
3010 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3011 (or should) carry around the function and does (or
3012 should) use that when doing a frame comparison. */
917317f4 3013 if (stop_step
aa0cd9c1
AC
3014 && frame_id_eq (step_frame_id,
3015 get_frame_id (get_current_frame ()))
917317f4 3016 && step_start_function == find_pc_function (stop_pc))
488f131b 3017 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3018 else
488f131b 3019 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3020 break;
3021 case PRINT_SRC_AND_LOC:
488f131b 3022 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3023 break;
3024 case PRINT_SRC_ONLY:
c5394b80 3025 source_flag = SRC_LINE;
917317f4
JM
3026 break;
3027 case PRINT_NOTHING:
488f131b 3028 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3029 do_frame_printing = 0;
3030 break;
3031 default:
488f131b 3032 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3033 }
fb40c209 3034 /* For mi, have the same behavior every time we stop:
488f131b 3035 print everything but the source line. */
9dc5e2a9 3036 if (ui_out_is_mi_like_p (uiout))
fb40c209 3037 source_flag = LOC_AND_ADDRESS;
c906108c 3038
9dc5e2a9 3039 if (ui_out_is_mi_like_p (uiout))
39f77062 3040 ui_out_field_int (uiout, "thread-id",
488f131b 3041 pid_to_thread_id (inferior_ptid));
c906108c
SS
3042 /* The behavior of this routine with respect to the source
3043 flag is:
c5394b80
JM
3044 SRC_LINE: Print only source line
3045 LOCATION: Print only location
3046 SRC_AND_LOC: Print location and source line */
917317f4 3047 if (do_frame_printing)
0faf0076 3048 print_stack_frame (get_selected_frame (), 0, source_flag);
c906108c
SS
3049
3050 /* Display the auto-display expressions. */
3051 do_displays ();
3052 }
3053 }
3054
3055 /* Save the function value return registers, if we care.
3056 We might be about to restore their previous contents. */
3057 if (proceed_to_finish)
72cec141
AC
3058 /* NB: The copy goes through to the target picking up the value of
3059 all the registers. */
3060 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3061
3062 if (stop_stack_dummy)
3063 {
dbe9fe58
AC
3064 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3065 ends with a setting of the current frame, so we can use that
3066 next. */
3067 frame_pop (get_current_frame ());
c906108c 3068 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3069 Can't rely on restore_inferior_status because that only gets
3070 called if we don't stop in the called function. */
c906108c 3071 stop_pc = read_pc ();
0f7d239c 3072 select_frame (get_current_frame ());
c906108c
SS
3073 }
3074
c906108c
SS
3075done:
3076 annotate_stopped ();
7a464420 3077 observer_notify_normal_stop (stop_bpstat);
c906108c
SS
3078}
3079
3080static int
96baa820 3081hook_stop_stub (void *cmd)
c906108c 3082{
5913bcb0 3083 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3084 return (0);
3085}
3086\f
c5aa993b 3087int
96baa820 3088signal_stop_state (int signo)
c906108c
SS
3089{
3090 return signal_stop[signo];
3091}
3092
c5aa993b 3093int
96baa820 3094signal_print_state (int signo)
c906108c
SS
3095{
3096 return signal_print[signo];
3097}
3098
c5aa993b 3099int
96baa820 3100signal_pass_state (int signo)
c906108c
SS
3101{
3102 return signal_program[signo];
3103}
3104
488f131b 3105int
7bda5e4a 3106signal_stop_update (int signo, int state)
d4f3574e
SS
3107{
3108 int ret = signal_stop[signo];
3109 signal_stop[signo] = state;
3110 return ret;
3111}
3112
488f131b 3113int
7bda5e4a 3114signal_print_update (int signo, int state)
d4f3574e
SS
3115{
3116 int ret = signal_print[signo];
3117 signal_print[signo] = state;
3118 return ret;
3119}
3120
488f131b 3121int
7bda5e4a 3122signal_pass_update (int signo, int state)
d4f3574e
SS
3123{
3124 int ret = signal_program[signo];
3125 signal_program[signo] = state;
3126 return ret;
3127}
3128
c906108c 3129static void
96baa820 3130sig_print_header (void)
c906108c
SS
3131{
3132 printf_filtered ("\
3133Signal Stop\tPrint\tPass to program\tDescription\n");
3134}
3135
3136static void
96baa820 3137sig_print_info (enum target_signal oursig)
c906108c
SS
3138{
3139 char *name = target_signal_to_name (oursig);
3140 int name_padding = 13 - strlen (name);
96baa820 3141
c906108c
SS
3142 if (name_padding <= 0)
3143 name_padding = 0;
3144
3145 printf_filtered ("%s", name);
488f131b 3146 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3147 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3148 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3149 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3150 printf_filtered ("%s\n", target_signal_to_string (oursig));
3151}
3152
3153/* Specify how various signals in the inferior should be handled. */
3154
3155static void
96baa820 3156handle_command (char *args, int from_tty)
c906108c
SS
3157{
3158 char **argv;
3159 int digits, wordlen;
3160 int sigfirst, signum, siglast;
3161 enum target_signal oursig;
3162 int allsigs;
3163 int nsigs;
3164 unsigned char *sigs;
3165 struct cleanup *old_chain;
3166
3167 if (args == NULL)
3168 {
3169 error_no_arg ("signal to handle");
3170 }
3171
3172 /* Allocate and zero an array of flags for which signals to handle. */
3173
3174 nsigs = (int) TARGET_SIGNAL_LAST;
3175 sigs = (unsigned char *) alloca (nsigs);
3176 memset (sigs, 0, nsigs);
3177
3178 /* Break the command line up into args. */
3179
3180 argv = buildargv (args);
3181 if (argv == NULL)
3182 {
3183 nomem (0);
3184 }
7a292a7a 3185 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3186
3187 /* Walk through the args, looking for signal oursigs, signal names, and
3188 actions. Signal numbers and signal names may be interspersed with
3189 actions, with the actions being performed for all signals cumulatively
3190 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3191
3192 while (*argv != NULL)
3193 {
3194 wordlen = strlen (*argv);
3195 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3196 {;
3197 }
3198 allsigs = 0;
3199 sigfirst = siglast = -1;
3200
3201 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3202 {
3203 /* Apply action to all signals except those used by the
3204 debugger. Silently skip those. */
3205 allsigs = 1;
3206 sigfirst = 0;
3207 siglast = nsigs - 1;
3208 }
3209 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3210 {
3211 SET_SIGS (nsigs, sigs, signal_stop);
3212 SET_SIGS (nsigs, sigs, signal_print);
3213 }
3214 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3215 {
3216 UNSET_SIGS (nsigs, sigs, signal_program);
3217 }
3218 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3219 {
3220 SET_SIGS (nsigs, sigs, signal_print);
3221 }
3222 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3223 {
3224 SET_SIGS (nsigs, sigs, signal_program);
3225 }
3226 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3227 {
3228 UNSET_SIGS (nsigs, sigs, signal_stop);
3229 }
3230 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3231 {
3232 SET_SIGS (nsigs, sigs, signal_program);
3233 }
3234 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3235 {
3236 UNSET_SIGS (nsigs, sigs, signal_print);
3237 UNSET_SIGS (nsigs, sigs, signal_stop);
3238 }
3239 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3240 {
3241 UNSET_SIGS (nsigs, sigs, signal_program);
3242 }
3243 else if (digits > 0)
3244 {
3245 /* It is numeric. The numeric signal refers to our own
3246 internal signal numbering from target.h, not to host/target
3247 signal number. This is a feature; users really should be
3248 using symbolic names anyway, and the common ones like
3249 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3250
3251 sigfirst = siglast = (int)
3252 target_signal_from_command (atoi (*argv));
3253 if ((*argv)[digits] == '-')
3254 {
3255 siglast = (int)
3256 target_signal_from_command (atoi ((*argv) + digits + 1));
3257 }
3258 if (sigfirst > siglast)
3259 {
3260 /* Bet he didn't figure we'd think of this case... */
3261 signum = sigfirst;
3262 sigfirst = siglast;
3263 siglast = signum;
3264 }
3265 }
3266 else
3267 {
3268 oursig = target_signal_from_name (*argv);
3269 if (oursig != TARGET_SIGNAL_UNKNOWN)
3270 {
3271 sigfirst = siglast = (int) oursig;
3272 }
3273 else
3274 {
3275 /* Not a number and not a recognized flag word => complain. */
3276 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3277 }
3278 }
3279
3280 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3281 which signals to apply actions to. */
c906108c
SS
3282
3283 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3284 {
3285 switch ((enum target_signal) signum)
3286 {
3287 case TARGET_SIGNAL_TRAP:
3288 case TARGET_SIGNAL_INT:
3289 if (!allsigs && !sigs[signum])
3290 {
3291 if (query ("%s is used by the debugger.\n\
488f131b 3292Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3293 {
3294 sigs[signum] = 1;
3295 }
3296 else
3297 {
3298 printf_unfiltered ("Not confirmed, unchanged.\n");
3299 gdb_flush (gdb_stdout);
3300 }
3301 }
3302 break;
3303 case TARGET_SIGNAL_0:
3304 case TARGET_SIGNAL_DEFAULT:
3305 case TARGET_SIGNAL_UNKNOWN:
3306 /* Make sure that "all" doesn't print these. */
3307 break;
3308 default:
3309 sigs[signum] = 1;
3310 break;
3311 }
3312 }
3313
3314 argv++;
3315 }
3316
39f77062 3317 target_notice_signals (inferior_ptid);
c906108c
SS
3318
3319 if (from_tty)
3320 {
3321 /* Show the results. */
3322 sig_print_header ();
3323 for (signum = 0; signum < nsigs; signum++)
3324 {
3325 if (sigs[signum])
3326 {
3327 sig_print_info (signum);
3328 }
3329 }
3330 }
3331
3332 do_cleanups (old_chain);
3333}
3334
3335static void
96baa820 3336xdb_handle_command (char *args, int from_tty)
c906108c
SS
3337{
3338 char **argv;
3339 struct cleanup *old_chain;
3340
3341 /* Break the command line up into args. */
3342
3343 argv = buildargv (args);
3344 if (argv == NULL)
3345 {
3346 nomem (0);
3347 }
7a292a7a 3348 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3349 if (argv[1] != (char *) NULL)
3350 {
3351 char *argBuf;
3352 int bufLen;
3353
3354 bufLen = strlen (argv[0]) + 20;
3355 argBuf = (char *) xmalloc (bufLen);
3356 if (argBuf)
3357 {
3358 int validFlag = 1;
3359 enum target_signal oursig;
3360
3361 oursig = target_signal_from_name (argv[0]);
3362 memset (argBuf, 0, bufLen);
3363 if (strcmp (argv[1], "Q") == 0)
3364 sprintf (argBuf, "%s %s", argv[0], "noprint");
3365 else
3366 {
3367 if (strcmp (argv[1], "s") == 0)
3368 {
3369 if (!signal_stop[oursig])
3370 sprintf (argBuf, "%s %s", argv[0], "stop");
3371 else
3372 sprintf (argBuf, "%s %s", argv[0], "nostop");
3373 }
3374 else if (strcmp (argv[1], "i") == 0)
3375 {
3376 if (!signal_program[oursig])
3377 sprintf (argBuf, "%s %s", argv[0], "pass");
3378 else
3379 sprintf (argBuf, "%s %s", argv[0], "nopass");
3380 }
3381 else if (strcmp (argv[1], "r") == 0)
3382 {
3383 if (!signal_print[oursig])
3384 sprintf (argBuf, "%s %s", argv[0], "print");
3385 else
3386 sprintf (argBuf, "%s %s", argv[0], "noprint");
3387 }
3388 else
3389 validFlag = 0;
3390 }
3391 if (validFlag)
3392 handle_command (argBuf, from_tty);
3393 else
3394 printf_filtered ("Invalid signal handling flag.\n");
3395 if (argBuf)
b8c9b27d 3396 xfree (argBuf);
c906108c
SS
3397 }
3398 }
3399 do_cleanups (old_chain);
3400}
3401
3402/* Print current contents of the tables set by the handle command.
3403 It is possible we should just be printing signals actually used
3404 by the current target (but for things to work right when switching
3405 targets, all signals should be in the signal tables). */
3406
3407static void
96baa820 3408signals_info (char *signum_exp, int from_tty)
c906108c
SS
3409{
3410 enum target_signal oursig;
3411 sig_print_header ();
3412
3413 if (signum_exp)
3414 {
3415 /* First see if this is a symbol name. */
3416 oursig = target_signal_from_name (signum_exp);
3417 if (oursig == TARGET_SIGNAL_UNKNOWN)
3418 {
3419 /* No, try numeric. */
3420 oursig =
bb518678 3421 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3422 }
3423 sig_print_info (oursig);
3424 return;
3425 }
3426
3427 printf_filtered ("\n");
3428 /* These ugly casts brought to you by the native VAX compiler. */
3429 for (oursig = TARGET_SIGNAL_FIRST;
3430 (int) oursig < (int) TARGET_SIGNAL_LAST;
3431 oursig = (enum target_signal) ((int) oursig + 1))
3432 {
3433 QUIT;
3434
3435 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3436 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3437 sig_print_info (oursig);
3438 }
3439
3440 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3441}
3442\f
7a292a7a
SS
3443struct inferior_status
3444{
3445 enum target_signal stop_signal;
3446 CORE_ADDR stop_pc;
3447 bpstat stop_bpstat;
3448 int stop_step;
3449 int stop_stack_dummy;
3450 int stopped_by_random_signal;
3451 int trap_expected;
3452 CORE_ADDR step_range_start;
3453 CORE_ADDR step_range_end;
aa0cd9c1 3454 struct frame_id step_frame_id;
5fbbeb29 3455 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3456 CORE_ADDR step_resume_break_address;
3457 int stop_after_trap;
c0236d92 3458 int stop_soon;
72cec141 3459 struct regcache *stop_registers;
7a292a7a
SS
3460
3461 /* These are here because if call_function_by_hand has written some
3462 registers and then decides to call error(), we better not have changed
3463 any registers. */
72cec141 3464 struct regcache *registers;
7a292a7a 3465
101dcfbe
AC
3466 /* A frame unique identifier. */
3467 struct frame_id selected_frame_id;
3468
7a292a7a
SS
3469 int breakpoint_proceeded;
3470 int restore_stack_info;
3471 int proceed_to_finish;
3472};
3473
7a292a7a 3474void
96baa820
JM
3475write_inferior_status_register (struct inferior_status *inf_status, int regno,
3476 LONGEST val)
7a292a7a 3477{
12c266ea 3478 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3479 void *buf = alloca (size);
3480 store_signed_integer (buf, size, val);
0818c12a 3481 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3482}
3483
c906108c
SS
3484/* Save all of the information associated with the inferior<==>gdb
3485 connection. INF_STATUS is a pointer to a "struct inferior_status"
3486 (defined in inferior.h). */
3487
7a292a7a 3488struct inferior_status *
96baa820 3489save_inferior_status (int restore_stack_info)
c906108c 3490{
72cec141 3491 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3492
c906108c
SS
3493 inf_status->stop_signal = stop_signal;
3494 inf_status->stop_pc = stop_pc;
3495 inf_status->stop_step = stop_step;
3496 inf_status->stop_stack_dummy = stop_stack_dummy;
3497 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3498 inf_status->trap_expected = trap_expected;
3499 inf_status->step_range_start = step_range_start;
3500 inf_status->step_range_end = step_range_end;
aa0cd9c1 3501 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3502 inf_status->step_over_calls = step_over_calls;
3503 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3504 inf_status->stop_soon = stop_soon;
c906108c
SS
3505 /* Save original bpstat chain here; replace it with copy of chain.
3506 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3507 hand them back the original chain when restore_inferior_status is
3508 called. */
c906108c
SS
3509 inf_status->stop_bpstat = stop_bpstat;
3510 stop_bpstat = bpstat_copy (stop_bpstat);
3511 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3512 inf_status->restore_stack_info = restore_stack_info;
3513 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3514
72cec141 3515 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3516
72cec141 3517 inf_status->registers = regcache_dup (current_regcache);
c906108c 3518
7a424e99 3519 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3520 return inf_status;
c906108c
SS
3521}
3522
c906108c 3523static int
96baa820 3524restore_selected_frame (void *args)
c906108c 3525{
488f131b 3526 struct frame_id *fid = (struct frame_id *) args;
c906108c 3527 struct frame_info *frame;
c906108c 3528
101dcfbe 3529 frame = frame_find_by_id (*fid);
c906108c 3530
aa0cd9c1
AC
3531 /* If inf_status->selected_frame_id is NULL, there was no previously
3532 selected frame. */
101dcfbe 3533 if (frame == NULL)
c906108c
SS
3534 {
3535 warning ("Unable to restore previously selected frame.\n");
3536 return 0;
3537 }
3538
0f7d239c 3539 select_frame (frame);
c906108c
SS
3540
3541 return (1);
3542}
3543
3544void
96baa820 3545restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3546{
3547 stop_signal = inf_status->stop_signal;
3548 stop_pc = inf_status->stop_pc;
3549 stop_step = inf_status->stop_step;
3550 stop_stack_dummy = inf_status->stop_stack_dummy;
3551 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3552 trap_expected = inf_status->trap_expected;
3553 step_range_start = inf_status->step_range_start;
3554 step_range_end = inf_status->step_range_end;
aa0cd9c1 3555 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3556 step_over_calls = inf_status->step_over_calls;
3557 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3558 stop_soon = inf_status->stop_soon;
c906108c
SS
3559 bpstat_clear (&stop_bpstat);
3560 stop_bpstat = inf_status->stop_bpstat;
3561 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3562 proceed_to_finish = inf_status->proceed_to_finish;
3563
72cec141
AC
3564 /* FIXME: Is the restore of stop_registers always needed. */
3565 regcache_xfree (stop_registers);
3566 stop_registers = inf_status->stop_registers;
c906108c
SS
3567
3568 /* The inferior can be gone if the user types "print exit(0)"
3569 (and perhaps other times). */
3570 if (target_has_execution)
72cec141
AC
3571 /* NB: The register write goes through to the target. */
3572 regcache_cpy (current_regcache, inf_status->registers);
3573 regcache_xfree (inf_status->registers);
c906108c 3574
c906108c
SS
3575 /* FIXME: If we are being called after stopping in a function which
3576 is called from gdb, we should not be trying to restore the
3577 selected frame; it just prints a spurious error message (The
3578 message is useful, however, in detecting bugs in gdb (like if gdb
3579 clobbers the stack)). In fact, should we be restoring the
3580 inferior status at all in that case? . */
3581
3582 if (target_has_stack && inf_status->restore_stack_info)
3583 {
c906108c 3584 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3585 walking the stack might encounter a garbage pointer and
3586 error() trying to dereference it. */
488f131b
JB
3587 if (catch_errors
3588 (restore_selected_frame, &inf_status->selected_frame_id,
3589 "Unable to restore previously selected frame:\n",
3590 RETURN_MASK_ERROR) == 0)
c906108c
SS
3591 /* Error in restoring the selected frame. Select the innermost
3592 frame. */
0f7d239c 3593 select_frame (get_current_frame ());
c906108c
SS
3594
3595 }
c906108c 3596
72cec141 3597 xfree (inf_status);
7a292a7a 3598}
c906108c 3599
74b7792f
AC
3600static void
3601do_restore_inferior_status_cleanup (void *sts)
3602{
3603 restore_inferior_status (sts);
3604}
3605
3606struct cleanup *
3607make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3608{
3609 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3610}
3611
c906108c 3612void
96baa820 3613discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3614{
3615 /* See save_inferior_status for info on stop_bpstat. */
3616 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3617 regcache_xfree (inf_status->registers);
3618 regcache_xfree (inf_status->stop_registers);
3619 xfree (inf_status);
7a292a7a
SS
3620}
3621
47932f85
DJ
3622int
3623inferior_has_forked (int pid, int *child_pid)
3624{
3625 struct target_waitstatus last;
3626 ptid_t last_ptid;
3627
3628 get_last_target_status (&last_ptid, &last);
3629
3630 if (last.kind != TARGET_WAITKIND_FORKED)
3631 return 0;
3632
3633 if (ptid_get_pid (last_ptid) != pid)
3634 return 0;
3635
3636 *child_pid = last.value.related_pid;
3637 return 1;
3638}
3639
3640int
3641inferior_has_vforked (int pid, int *child_pid)
3642{
3643 struct target_waitstatus last;
3644 ptid_t last_ptid;
3645
3646 get_last_target_status (&last_ptid, &last);
3647
3648 if (last.kind != TARGET_WAITKIND_VFORKED)
3649 return 0;
3650
3651 if (ptid_get_pid (last_ptid) != pid)
3652 return 0;
3653
3654 *child_pid = last.value.related_pid;
3655 return 1;
3656}
3657
3658int
3659inferior_has_execd (int pid, char **execd_pathname)
3660{
3661 struct target_waitstatus last;
3662 ptid_t last_ptid;
3663
3664 get_last_target_status (&last_ptid, &last);
3665
3666 if (last.kind != TARGET_WAITKIND_EXECD)
3667 return 0;
3668
3669 if (ptid_get_pid (last_ptid) != pid)
3670 return 0;
3671
3672 *execd_pathname = xstrdup (last.value.execd_pathname);
3673 return 1;
3674}
3675
ca6724c1
KB
3676/* Oft used ptids */
3677ptid_t null_ptid;
3678ptid_t minus_one_ptid;
3679
3680/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3681
ca6724c1
KB
3682ptid_t
3683ptid_build (int pid, long lwp, long tid)
3684{
3685 ptid_t ptid;
3686
3687 ptid.pid = pid;
3688 ptid.lwp = lwp;
3689 ptid.tid = tid;
3690 return ptid;
3691}
3692
3693/* Create a ptid from just a pid. */
3694
3695ptid_t
3696pid_to_ptid (int pid)
3697{
3698 return ptid_build (pid, 0, 0);
3699}
3700
3701/* Fetch the pid (process id) component from a ptid. */
3702
3703int
3704ptid_get_pid (ptid_t ptid)
3705{
3706 return ptid.pid;
3707}
3708
3709/* Fetch the lwp (lightweight process) component from a ptid. */
3710
3711long
3712ptid_get_lwp (ptid_t ptid)
3713{
3714 return ptid.lwp;
3715}
3716
3717/* Fetch the tid (thread id) component from a ptid. */
3718
3719long
3720ptid_get_tid (ptid_t ptid)
3721{
3722 return ptid.tid;
3723}
3724
3725/* ptid_equal() is used to test equality of two ptids. */
3726
3727int
3728ptid_equal (ptid_t ptid1, ptid_t ptid2)
3729{
3730 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3731 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3732}
3733
3734/* restore_inferior_ptid() will be used by the cleanup machinery
3735 to restore the inferior_ptid value saved in a call to
3736 save_inferior_ptid(). */
ce696e05
KB
3737
3738static void
3739restore_inferior_ptid (void *arg)
3740{
3741 ptid_t *saved_ptid_ptr = arg;
3742 inferior_ptid = *saved_ptid_ptr;
3743 xfree (arg);
3744}
3745
3746/* Save the value of inferior_ptid so that it may be restored by a
3747 later call to do_cleanups(). Returns the struct cleanup pointer
3748 needed for later doing the cleanup. */
3749
3750struct cleanup *
3751save_inferior_ptid (void)
3752{
3753 ptid_t *saved_ptid_ptr;
3754
3755 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3756 *saved_ptid_ptr = inferior_ptid;
3757 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3758}
c5aa993b 3759\f
488f131b 3760
7a292a7a 3761static void
96baa820 3762build_infrun (void)
7a292a7a 3763{
72cec141 3764 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3765}
c906108c 3766
c906108c 3767void
96baa820 3768_initialize_infrun (void)
c906108c 3769{
52f0bd74
AC
3770 int i;
3771 int numsigs;
c906108c
SS
3772 struct cmd_list_element *c;
3773
046a4708
AC
3774 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3775 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
0f71a2f6 3776
c906108c
SS
3777 add_info ("signals", signals_info,
3778 "What debugger does when program gets various signals.\n\
3779Specify a signal as argument to print info on that signal only.");
3780 add_info_alias ("handle", "signals", 0);
3781
3782 add_com ("handle", class_run, handle_command,
3783 concat ("Specify how to handle a signal.\n\
3784Args are signals and actions to apply to those signals.\n\
3785Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3786from 1-15 are allowed for compatibility with old versions of GDB.\n\
3787Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3788The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3789used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3790\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3791Stop means reenter debugger if this signal happens (implies print).\n\
3792Print means print a message if this signal happens.\n\
3793Pass means let program see this signal; otherwise program doesn't know.\n\
3794Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3795Pass and Stop may be combined.", NULL));
3796 if (xdb_commands)
3797 {
3798 add_com ("lz", class_info, signals_info,
3799 "What debugger does when program gets various signals.\n\
3800Specify a signal as argument to print info on that signal only.");
3801 add_com ("z", class_run, xdb_handle_command,
3802 concat ("Specify how to handle a signal.\n\
3803Args are signals and actions to apply to those signals.\n\
3804Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3805from 1-15 are allowed for compatibility with old versions of GDB.\n\
3806Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3807The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3808used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3809\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3810nopass), \"Q\" (noprint)\n\
3811Stop means reenter debugger if this signal happens (implies print).\n\
3812Print means print a message if this signal happens.\n\
3813Pass means let program see this signal; otherwise program doesn't know.\n\
3814Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3815Pass and Stop may be combined.", NULL));
3816 }
3817
3818 if (!dbx_commands)
488f131b
JB
3819 stop_command =
3820 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3821This allows you to set a list of commands to be run each time execution\n\
3822of the program stops.", &cmdlist);
3823
3824 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3825 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3826 signal_print = (unsigned char *)
3827 xmalloc (sizeof (signal_print[0]) * numsigs);
3828 signal_program = (unsigned char *)
3829 xmalloc (sizeof (signal_program[0]) * numsigs);
3830 for (i = 0; i < numsigs; i++)
3831 {
3832 signal_stop[i] = 1;
3833 signal_print[i] = 1;
3834 signal_program[i] = 1;
3835 }
3836
3837 /* Signals caused by debugger's own actions
3838 should not be given to the program afterwards. */
3839 signal_program[TARGET_SIGNAL_TRAP] = 0;
3840 signal_program[TARGET_SIGNAL_INT] = 0;
3841
3842 /* Signals that are not errors should not normally enter the debugger. */
3843 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3844 signal_print[TARGET_SIGNAL_ALRM] = 0;
3845 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3846 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3847 signal_stop[TARGET_SIGNAL_PROF] = 0;
3848 signal_print[TARGET_SIGNAL_PROF] = 0;
3849 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3850 signal_print[TARGET_SIGNAL_CHLD] = 0;
3851 signal_stop[TARGET_SIGNAL_IO] = 0;
3852 signal_print[TARGET_SIGNAL_IO] = 0;
3853 signal_stop[TARGET_SIGNAL_POLL] = 0;
3854 signal_print[TARGET_SIGNAL_POLL] = 0;
3855 signal_stop[TARGET_SIGNAL_URG] = 0;
3856 signal_print[TARGET_SIGNAL_URG] = 0;
3857 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3858 signal_print[TARGET_SIGNAL_WINCH] = 0;
3859
cd0fc7c3
SS
3860 /* These signals are used internally by user-level thread
3861 implementations. (See signal(5) on Solaris.) Like the above
3862 signals, a healthy program receives and handles them as part of
3863 its normal operation. */
3864 signal_stop[TARGET_SIGNAL_LWP] = 0;
3865 signal_print[TARGET_SIGNAL_LWP] = 0;
3866 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3867 signal_print[TARGET_SIGNAL_WAITING] = 0;
3868 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3869 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3870
c906108c
SS
3871#ifdef SOLIB_ADD
3872 add_show_from_set
3873 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3874 (char *) &stop_on_solib_events,
3875 "Set stopping for shared library events.\n\
3876If nonzero, gdb will give control to the user when the dynamic linker\n\
3877notifies gdb of shared library events. The most common event of interest\n\
488f131b 3878to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
3879#endif
3880
3881 c = add_set_enum_cmd ("follow-fork-mode",
3882 class_run,
488f131b 3883 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
3884 "Set debugger response to a program call of fork \
3885or vfork.\n\
3886A fork or vfork creates a new process. follow-fork-mode can be:\n\
3887 parent - the original process is debugged after a fork\n\
3888 child - the new process is debugged after a fork\n\
ea1dd7bc 3889The unfollowed process will continue to run.\n\
488f131b 3890By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
3891 add_show_from_set (c, &showlist);
3892
488f131b 3893 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 3894 &scheduler_mode, /* current mode */
c906108c
SS
3895 "Set mode for locking scheduler during execution.\n\
3896off == no locking (threads may preempt at any time)\n\
3897on == full locking (no thread except the current thread may run)\n\
3898step == scheduler locked during every single-step operation.\n\
3899 In this mode, no other thread may run during a step command.\n\
488f131b 3900 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 3901
9f60d481 3902 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 3903 add_show_from_set (c, &showlist);
5fbbeb29
CF
3904
3905 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
3906 var_boolean, (char *) &step_stop_if_no_debug,
3907 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
3908function without debug line information will stop at the first\n\
3909instruction of that function. Otherwise, the function is skipped and\n\
488f131b 3910the step command stops at a different source line.", &setlist);
5fbbeb29 3911 add_show_from_set (c, &showlist);
ca6724c1
KB
3912
3913 /* ptid initializations */
3914 null_ptid = ptid_build (0, 0, 0);
3915 minus_one_ptid = ptid_build (-1, 0, 0);
3916 inferior_ptid = null_ptid;
3917 target_last_wait_ptid = minus_one_ptid;
c906108c 3918}
This page took 0.62807 seconds and 4 git commands to generate.