Update two cleanup comments
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
42a4f53d 4 Copyright (C) 1986-2019 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
0747795c 28#include "common/gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
4c41382a 70#include "common/scope-exit.h"
c906108c
SS
71
72/* Prototypes for local functions */
73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
4ef3f3be 78static int follow_fork (void);
96baa820 79
d83ad864
DB
80static int follow_fork_inferior (int follow_child, int detach_fork);
81
82static void follow_inferior_reset_breakpoints (void);
83
a289b8f6
JK
84static int currently_stepping (struct thread_info *tp);
85
e58b0e63
PA
86void nullify_last_target_wait_ptid (void);
87
2c03e5be 88static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
89
90static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
91
2484c66b
UW
92static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
93
8550d3b3
YQ
94static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
95
aff4e175
AB
96static void resume (gdb_signal sig);
97
372316f1
PA
98/* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100static struct async_event_handler *infrun_async_inferior_event_token;
101
102/* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104static int infrun_is_async = -1;
105
106/* See infrun.h. */
107
108void
109infrun_async (int enable)
110{
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 if (debug_infrun)
116 fprintf_unfiltered (gdb_stdlog,
117 "infrun: infrun_async(%d)\n",
118 enable);
119
120 if (enable)
121 mark_async_event_handler (infrun_async_inferior_event_token);
122 else
123 clear_async_event_handler (infrun_async_inferior_event_token);
124 }
125}
126
0b333c5e
PA
127/* See infrun.h. */
128
129void
130mark_infrun_async_event_handler (void)
131{
132 mark_async_event_handler (infrun_async_inferior_event_token);
133}
134
5fbbeb29
CF
135/* When set, stop the 'step' command if we enter a function which has
136 no line number information. The normal behavior is that we step
137 over such function. */
138int step_stop_if_no_debug = 0;
920d2a44
AC
139static void
140show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c, const char *value)
142{
143 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
144}
5fbbeb29 145
b9f437de
PA
146/* proceed and normal_stop use this to notify the user when the
147 inferior stopped in a different thread than it had been running
148 in. */
96baa820 149
39f77062 150static ptid_t previous_inferior_ptid;
7a292a7a 151
07107ca6
LM
152/* If set (default for legacy reasons), when following a fork, GDB
153 will detach from one of the fork branches, child or parent.
154 Exactly which branch is detached depends on 'set follow-fork-mode'
155 setting. */
156
157static int detach_fork = 1;
6c95b8df 158
237fc4c9
PA
159int debug_displaced = 0;
160static void
161show_debug_displaced (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163{
164 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
165}
166
ccce17b0 167unsigned int debug_infrun = 0;
920d2a44
AC
168static void
169show_debug_infrun (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171{
172 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
173}
527159b7 174
03583c20
UW
175
176/* Support for disabling address space randomization. */
177
178int disable_randomization = 1;
179
180static void
181show_disable_randomization (struct ui_file *file, int from_tty,
182 struct cmd_list_element *c, const char *value)
183{
184 if (target_supports_disable_randomization ())
185 fprintf_filtered (file,
186 _("Disabling randomization of debuggee's "
187 "virtual address space is %s.\n"),
188 value);
189 else
190 fputs_filtered (_("Disabling randomization of debuggee's "
191 "virtual address space is unsupported on\n"
192 "this platform.\n"), file);
193}
194
195static void
eb4c3f4a 196set_disable_randomization (const char *args, int from_tty,
03583c20
UW
197 struct cmd_list_element *c)
198{
199 if (!target_supports_disable_randomization ())
200 error (_("Disabling randomization of debuggee's "
201 "virtual address space is unsupported on\n"
202 "this platform."));
203}
204
d32dc48e
PA
205/* User interface for non-stop mode. */
206
207int non_stop = 0;
208static int non_stop_1 = 0;
209
210static void
eb4c3f4a 211set_non_stop (const char *args, int from_tty,
d32dc48e
PA
212 struct cmd_list_element *c)
213{
214 if (target_has_execution)
215 {
216 non_stop_1 = non_stop;
217 error (_("Cannot change this setting while the inferior is running."));
218 }
219
220 non_stop = non_stop_1;
221}
222
223static void
224show_non_stop (struct ui_file *file, int from_tty,
225 struct cmd_list_element *c, const char *value)
226{
227 fprintf_filtered (file,
228 _("Controlling the inferior in non-stop mode is %s.\n"),
229 value);
230}
231
d914c394
SS
232/* "Observer mode" is somewhat like a more extreme version of
233 non-stop, in which all GDB operations that might affect the
234 target's execution have been disabled. */
235
d914c394
SS
236int observer_mode = 0;
237static int observer_mode_1 = 0;
238
239static void
eb4c3f4a 240set_observer_mode (const char *args, int from_tty,
d914c394
SS
241 struct cmd_list_element *c)
242{
d914c394
SS
243 if (target_has_execution)
244 {
245 observer_mode_1 = observer_mode;
246 error (_("Cannot change this setting while the inferior is running."));
247 }
248
249 observer_mode = observer_mode_1;
250
251 may_write_registers = !observer_mode;
252 may_write_memory = !observer_mode;
253 may_insert_breakpoints = !observer_mode;
254 may_insert_tracepoints = !observer_mode;
255 /* We can insert fast tracepoints in or out of observer mode,
256 but enable them if we're going into this mode. */
257 if (observer_mode)
258 may_insert_fast_tracepoints = 1;
259 may_stop = !observer_mode;
260 update_target_permissions ();
261
262 /* Going *into* observer mode we must force non-stop, then
263 going out we leave it that way. */
264 if (observer_mode)
265 {
d914c394
SS
266 pagination_enabled = 0;
267 non_stop = non_stop_1 = 1;
268 }
269
270 if (from_tty)
271 printf_filtered (_("Observer mode is now %s.\n"),
272 (observer_mode ? "on" : "off"));
273}
274
275static void
276show_observer_mode (struct ui_file *file, int from_tty,
277 struct cmd_list_element *c, const char *value)
278{
279 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
280}
281
282/* This updates the value of observer mode based on changes in
283 permissions. Note that we are deliberately ignoring the values of
284 may-write-registers and may-write-memory, since the user may have
285 reason to enable these during a session, for instance to turn on a
286 debugging-related global. */
287
288void
289update_observer_mode (void)
290{
291 int newval;
292
293 newval = (!may_insert_breakpoints
294 && !may_insert_tracepoints
295 && may_insert_fast_tracepoints
296 && !may_stop
297 && non_stop);
298
299 /* Let the user know if things change. */
300 if (newval != observer_mode)
301 printf_filtered (_("Observer mode is now %s.\n"),
302 (newval ? "on" : "off"));
303
304 observer_mode = observer_mode_1 = newval;
305}
c2c6d25f 306
c906108c
SS
307/* Tables of how to react to signals; the user sets them. */
308
adc6a863
PA
309static unsigned char signal_stop[GDB_SIGNAL_LAST];
310static unsigned char signal_print[GDB_SIGNAL_LAST];
311static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 312
ab04a2af
TT
313/* Table of signals that are registered with "catch signal". A
314 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
315 signal" command. */
316static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 317
2455069d
UW
318/* Table of signals that the target may silently handle.
319 This is automatically determined from the flags above,
320 and simply cached here. */
adc6a863 321static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 322
c906108c
SS
323#define SET_SIGS(nsigs,sigs,flags) \
324 do { \
325 int signum = (nsigs); \
326 while (signum-- > 0) \
327 if ((sigs)[signum]) \
328 (flags)[signum] = 1; \
329 } while (0)
330
331#define UNSET_SIGS(nsigs,sigs,flags) \
332 do { \
333 int signum = (nsigs); \
334 while (signum-- > 0) \
335 if ((sigs)[signum]) \
336 (flags)[signum] = 0; \
337 } while (0)
338
9b224c5e
PA
339/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
340 this function is to avoid exporting `signal_program'. */
341
342void
343update_signals_program_target (void)
344{
adc6a863 345 target_program_signals (signal_program);
9b224c5e
PA
346}
347
1777feb0 348/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 349
edb3359d 350#define RESUME_ALL minus_one_ptid
c906108c
SS
351
352/* Command list pointer for the "stop" placeholder. */
353
354static struct cmd_list_element *stop_command;
355
c906108c
SS
356/* Nonzero if we want to give control to the user when we're notified
357 of shared library events by the dynamic linker. */
628fe4e4 358int stop_on_solib_events;
f9e14852
GB
359
360/* Enable or disable optional shared library event breakpoints
361 as appropriate when the above flag is changed. */
362
363static void
eb4c3f4a
TT
364set_stop_on_solib_events (const char *args,
365 int from_tty, struct cmd_list_element *c)
f9e14852
GB
366{
367 update_solib_breakpoints ();
368}
369
920d2a44
AC
370static void
371show_stop_on_solib_events (struct ui_file *file, int from_tty,
372 struct cmd_list_element *c, const char *value)
373{
374 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
375 value);
376}
c906108c 377
c906108c
SS
378/* Nonzero after stop if current stack frame should be printed. */
379
380static int stop_print_frame;
381
e02bc4cc 382/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
39f77062 385static ptid_t target_last_wait_ptid;
e02bc4cc
DS
386static struct target_waitstatus target_last_waitstatus;
387
4e1c45ea 388void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 389
53904c9e
AC
390static const char follow_fork_mode_child[] = "child";
391static const char follow_fork_mode_parent[] = "parent";
392
40478521 393static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
394 follow_fork_mode_child,
395 follow_fork_mode_parent,
396 NULL
ef346e04 397};
c906108c 398
53904c9e 399static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
400static void
401show_follow_fork_mode_string (struct ui_file *file, int from_tty,
402 struct cmd_list_element *c, const char *value)
403{
3e43a32a
MS
404 fprintf_filtered (file,
405 _("Debugger response to a program "
406 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
407 value);
408}
c906108c
SS
409\f
410
d83ad864
DB
411/* Handle changes to the inferior list based on the type of fork,
412 which process is being followed, and whether the other process
413 should be detached. On entry inferior_ptid must be the ptid of
414 the fork parent. At return inferior_ptid is the ptid of the
415 followed inferior. */
416
417static int
418follow_fork_inferior (int follow_child, int detach_fork)
419{
420 int has_vforked;
79639e11 421 ptid_t parent_ptid, child_ptid;
d83ad864
DB
422
423 has_vforked = (inferior_thread ()->pending_follow.kind
424 == TARGET_WAITKIND_VFORKED);
79639e11
PA
425 parent_ptid = inferior_ptid;
426 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
427
428 if (has_vforked
429 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 430 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
431 && !(follow_child || detach_fork || sched_multi))
432 {
433 /* The parent stays blocked inside the vfork syscall until the
434 child execs or exits. If we don't let the child run, then
435 the parent stays blocked. If we're telling the parent to run
436 in the foreground, the user will not be able to ctrl-c to get
437 back the terminal, effectively hanging the debug session. */
438 fprintf_filtered (gdb_stderr, _("\
439Can not resume the parent process over vfork in the foreground while\n\
440holding the child stopped. Try \"set detach-on-fork\" or \
441\"set schedule-multiple\".\n"));
442 /* FIXME output string > 80 columns. */
443 return 1;
444 }
445
446 if (!follow_child)
447 {
448 /* Detach new forked process? */
449 if (detach_fork)
450 {
d83ad864
DB
451 /* Before detaching from the child, remove all breakpoints
452 from it. If we forked, then this has already been taken
453 care of by infrun.c. If we vforked however, any
454 breakpoint inserted in the parent is visible in the
455 child, even those added while stopped in a vfork
456 catchpoint. This will remove the breakpoints from the
457 parent also, but they'll be reinserted below. */
458 if (has_vforked)
459 {
460 /* Keep breakpoints list in sync. */
00431a78 461 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
462 }
463
f67c0c91 464 if (print_inferior_events)
d83ad864 465 {
8dd06f7a 466 /* Ensure that we have a process ptid. */
e99b03dc 467 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 468
223ffa71 469 target_terminal::ours_for_output ();
d83ad864 470 fprintf_filtered (gdb_stdlog,
f67c0c91 471 _("[Detaching after %s from child %s]\n"),
6f259a23 472 has_vforked ? "vfork" : "fork",
8dd06f7a 473 target_pid_to_str (process_ptid));
d83ad864
DB
474 }
475 }
476 else
477 {
478 struct inferior *parent_inf, *child_inf;
d83ad864
DB
479
480 /* Add process to GDB's tables. */
e99b03dc 481 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
482
483 parent_inf = current_inferior ();
484 child_inf->attach_flag = parent_inf->attach_flag;
485 copy_terminal_info (child_inf, parent_inf);
486 child_inf->gdbarch = parent_inf->gdbarch;
487 copy_inferior_target_desc_info (child_inf, parent_inf);
488
5ed8105e 489 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 490
79639e11 491 inferior_ptid = child_ptid;
f67c0c91 492 add_thread_silent (inferior_ptid);
2a00d7ce 493 set_current_inferior (child_inf);
d83ad864
DB
494 child_inf->symfile_flags = SYMFILE_NO_READ;
495
496 /* If this is a vfork child, then the address-space is
497 shared with the parent. */
498 if (has_vforked)
499 {
500 child_inf->pspace = parent_inf->pspace;
501 child_inf->aspace = parent_inf->aspace;
502
503 /* The parent will be frozen until the child is done
504 with the shared region. Keep track of the
505 parent. */
506 child_inf->vfork_parent = parent_inf;
507 child_inf->pending_detach = 0;
508 parent_inf->vfork_child = child_inf;
509 parent_inf->pending_detach = 0;
510 }
511 else
512 {
513 child_inf->aspace = new_address_space ();
564b1e3f 514 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
515 child_inf->removable = 1;
516 set_current_program_space (child_inf->pspace);
517 clone_program_space (child_inf->pspace, parent_inf->pspace);
518
519 /* Let the shared library layer (e.g., solib-svr4) learn
520 about this new process, relocate the cloned exec, pull
521 in shared libraries, and install the solib event
522 breakpoint. If a "cloned-VM" event was propagated
523 better throughout the core, this wouldn't be
524 required. */
525 solib_create_inferior_hook (0);
526 }
d83ad864
DB
527 }
528
529 if (has_vforked)
530 {
531 struct inferior *parent_inf;
532
533 parent_inf = current_inferior ();
534
535 /* If we detached from the child, then we have to be careful
536 to not insert breakpoints in the parent until the child
537 is done with the shared memory region. However, if we're
538 staying attached to the child, then we can and should
539 insert breakpoints, so that we can debug it. A
540 subsequent child exec or exit is enough to know when does
541 the child stops using the parent's address space. */
542 parent_inf->waiting_for_vfork_done = detach_fork;
543 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
544 }
545 }
546 else
547 {
548 /* Follow the child. */
549 struct inferior *parent_inf, *child_inf;
550 struct program_space *parent_pspace;
551
f67c0c91 552 if (print_inferior_events)
d83ad864 553 {
f67c0c91
SDJ
554 std::string parent_pid = target_pid_to_str (parent_ptid);
555 std::string child_pid = target_pid_to_str (child_ptid);
556
223ffa71 557 target_terminal::ours_for_output ();
6f259a23 558 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
559 _("[Attaching after %s %s to child %s]\n"),
560 parent_pid.c_str (),
6f259a23 561 has_vforked ? "vfork" : "fork",
f67c0c91 562 child_pid.c_str ());
d83ad864
DB
563 }
564
565 /* Add the new inferior first, so that the target_detach below
566 doesn't unpush the target. */
567
e99b03dc 568 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
569
570 parent_inf = current_inferior ();
571 child_inf->attach_flag = parent_inf->attach_flag;
572 copy_terminal_info (child_inf, parent_inf);
573 child_inf->gdbarch = parent_inf->gdbarch;
574 copy_inferior_target_desc_info (child_inf, parent_inf);
575
576 parent_pspace = parent_inf->pspace;
577
578 /* If we're vforking, we want to hold on to the parent until the
579 child exits or execs. At child exec or exit time we can
580 remove the old breakpoints from the parent and detach or
581 resume debugging it. Otherwise, detach the parent now; we'll
582 want to reuse it's program/address spaces, but we can't set
583 them to the child before removing breakpoints from the
584 parent, otherwise, the breakpoints module could decide to
585 remove breakpoints from the wrong process (since they'd be
586 assigned to the same address space). */
587
588 if (has_vforked)
589 {
590 gdb_assert (child_inf->vfork_parent == NULL);
591 gdb_assert (parent_inf->vfork_child == NULL);
592 child_inf->vfork_parent = parent_inf;
593 child_inf->pending_detach = 0;
594 parent_inf->vfork_child = child_inf;
595 parent_inf->pending_detach = detach_fork;
596 parent_inf->waiting_for_vfork_done = 0;
597 }
598 else if (detach_fork)
6f259a23 599 {
f67c0c91 600 if (print_inferior_events)
6f259a23 601 {
8dd06f7a 602 /* Ensure that we have a process ptid. */
e99b03dc 603 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 604
223ffa71 605 target_terminal::ours_for_output ();
6f259a23 606 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
607 _("[Detaching after fork from "
608 "parent %s]\n"),
8dd06f7a 609 target_pid_to_str (process_ptid));
6f259a23
DB
610 }
611
6e1e1966 612 target_detach (parent_inf, 0);
6f259a23 613 }
d83ad864
DB
614
615 /* Note that the detach above makes PARENT_INF dangling. */
616
617 /* Add the child thread to the appropriate lists, and switch to
618 this new thread, before cloning the program space, and
619 informing the solib layer about this new process. */
620
79639e11 621 inferior_ptid = child_ptid;
f67c0c91 622 add_thread_silent (inferior_ptid);
2a00d7ce 623 set_current_inferior (child_inf);
d83ad864
DB
624
625 /* If this is a vfork child, then the address-space is shared
626 with the parent. If we detached from the parent, then we can
627 reuse the parent's program/address spaces. */
628 if (has_vforked || detach_fork)
629 {
630 child_inf->pspace = parent_pspace;
631 child_inf->aspace = child_inf->pspace->aspace;
632 }
633 else
634 {
635 child_inf->aspace = new_address_space ();
564b1e3f 636 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
637 child_inf->removable = 1;
638 child_inf->symfile_flags = SYMFILE_NO_READ;
639 set_current_program_space (child_inf->pspace);
640 clone_program_space (child_inf->pspace, parent_pspace);
641
642 /* Let the shared library layer (e.g., solib-svr4) learn
643 about this new process, relocate the cloned exec, pull in
644 shared libraries, and install the solib event breakpoint.
645 If a "cloned-VM" event was propagated better throughout
646 the core, this wouldn't be required. */
647 solib_create_inferior_hook (0);
648 }
649 }
650
651 return target_follow_fork (follow_child, detach_fork);
652}
653
e58b0e63
PA
654/* Tell the target to follow the fork we're stopped at. Returns true
655 if the inferior should be resumed; false, if the target for some
656 reason decided it's best not to resume. */
657
6604731b 658static int
4ef3f3be 659follow_fork (void)
c906108c 660{
ea1dd7bc 661 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
662 int should_resume = 1;
663 struct thread_info *tp;
664
665 /* Copy user stepping state to the new inferior thread. FIXME: the
666 followed fork child thread should have a copy of most of the
4e3990f4
DE
667 parent thread structure's run control related fields, not just these.
668 Initialized to avoid "may be used uninitialized" warnings from gcc. */
669 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 670 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
671 CORE_ADDR step_range_start = 0;
672 CORE_ADDR step_range_end = 0;
673 struct frame_id step_frame_id = { 0 };
8980e177 674 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
675
676 if (!non_stop)
677 {
678 ptid_t wait_ptid;
679 struct target_waitstatus wait_status;
680
681 /* Get the last target status returned by target_wait(). */
682 get_last_target_status (&wait_ptid, &wait_status);
683
684 /* If not stopped at a fork event, then there's nothing else to
685 do. */
686 if (wait_status.kind != TARGET_WAITKIND_FORKED
687 && wait_status.kind != TARGET_WAITKIND_VFORKED)
688 return 1;
689
690 /* Check if we switched over from WAIT_PTID, since the event was
691 reported. */
00431a78
PA
692 if (wait_ptid != minus_one_ptid
693 && inferior_ptid != wait_ptid)
e58b0e63
PA
694 {
695 /* We did. Switch back to WAIT_PTID thread, to tell the
696 target to follow it (in either direction). We'll
697 afterwards refuse to resume, and inform the user what
698 happened. */
00431a78
PA
699 thread_info *wait_thread
700 = find_thread_ptid (wait_ptid);
701 switch_to_thread (wait_thread);
e58b0e63
PA
702 should_resume = 0;
703 }
704 }
705
706 tp = inferior_thread ();
707
708 /* If there were any forks/vforks that were caught and are now to be
709 followed, then do so now. */
710 switch (tp->pending_follow.kind)
711 {
712 case TARGET_WAITKIND_FORKED:
713 case TARGET_WAITKIND_VFORKED:
714 {
715 ptid_t parent, child;
716
717 /* If the user did a next/step, etc, over a fork call,
718 preserve the stepping state in the fork child. */
719 if (follow_child && should_resume)
720 {
8358c15c
JK
721 step_resume_breakpoint = clone_momentary_breakpoint
722 (tp->control.step_resume_breakpoint);
16c381f0
JK
723 step_range_start = tp->control.step_range_start;
724 step_range_end = tp->control.step_range_end;
725 step_frame_id = tp->control.step_frame_id;
186c406b
TT
726 exception_resume_breakpoint
727 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 728 thread_fsm = tp->thread_fsm;
e58b0e63
PA
729
730 /* For now, delete the parent's sr breakpoint, otherwise,
731 parent/child sr breakpoints are considered duplicates,
732 and the child version will not be installed. Remove
733 this when the breakpoints module becomes aware of
734 inferiors and address spaces. */
735 delete_step_resume_breakpoint (tp);
16c381f0
JK
736 tp->control.step_range_start = 0;
737 tp->control.step_range_end = 0;
738 tp->control.step_frame_id = null_frame_id;
186c406b 739 delete_exception_resume_breakpoint (tp);
8980e177 740 tp->thread_fsm = NULL;
e58b0e63
PA
741 }
742
743 parent = inferior_ptid;
744 child = tp->pending_follow.value.related_pid;
745
d83ad864
DB
746 /* Set up inferior(s) as specified by the caller, and tell the
747 target to do whatever is necessary to follow either parent
748 or child. */
749 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
750 {
751 /* Target refused to follow, or there's some other reason
752 we shouldn't resume. */
753 should_resume = 0;
754 }
755 else
756 {
757 /* This pending follow fork event is now handled, one way
758 or another. The previous selected thread may be gone
759 from the lists by now, but if it is still around, need
760 to clear the pending follow request. */
e09875d4 761 tp = find_thread_ptid (parent);
e58b0e63
PA
762 if (tp)
763 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
764
765 /* This makes sure we don't try to apply the "Switched
766 over from WAIT_PID" logic above. */
767 nullify_last_target_wait_ptid ();
768
1777feb0 769 /* If we followed the child, switch to it... */
e58b0e63
PA
770 if (follow_child)
771 {
00431a78
PA
772 thread_info *child_thr = find_thread_ptid (child);
773 switch_to_thread (child_thr);
e58b0e63
PA
774
775 /* ... and preserve the stepping state, in case the
776 user was stepping over the fork call. */
777 if (should_resume)
778 {
779 tp = inferior_thread ();
8358c15c
JK
780 tp->control.step_resume_breakpoint
781 = step_resume_breakpoint;
16c381f0
JK
782 tp->control.step_range_start = step_range_start;
783 tp->control.step_range_end = step_range_end;
784 tp->control.step_frame_id = step_frame_id;
186c406b
TT
785 tp->control.exception_resume_breakpoint
786 = exception_resume_breakpoint;
8980e177 787 tp->thread_fsm = thread_fsm;
e58b0e63
PA
788 }
789 else
790 {
791 /* If we get here, it was because we're trying to
792 resume from a fork catchpoint, but, the user
793 has switched threads away from the thread that
794 forked. In that case, the resume command
795 issued is most likely not applicable to the
796 child, so just warn, and refuse to resume. */
3e43a32a 797 warning (_("Not resuming: switched threads "
fd7dcb94 798 "before following fork child."));
e58b0e63
PA
799 }
800
801 /* Reset breakpoints in the child as appropriate. */
802 follow_inferior_reset_breakpoints ();
803 }
e58b0e63
PA
804 }
805 }
806 break;
807 case TARGET_WAITKIND_SPURIOUS:
808 /* Nothing to follow. */
809 break;
810 default:
811 internal_error (__FILE__, __LINE__,
812 "Unexpected pending_follow.kind %d\n",
813 tp->pending_follow.kind);
814 break;
815 }
c906108c 816
e58b0e63 817 return should_resume;
c906108c
SS
818}
819
d83ad864 820static void
6604731b 821follow_inferior_reset_breakpoints (void)
c906108c 822{
4e1c45ea
PA
823 struct thread_info *tp = inferior_thread ();
824
6604731b
DJ
825 /* Was there a step_resume breakpoint? (There was if the user
826 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
827 thread number. Cloned step_resume breakpoints are disabled on
828 creation, so enable it here now that it is associated with the
829 correct thread.
6604731b
DJ
830
831 step_resumes are a form of bp that are made to be per-thread.
832 Since we created the step_resume bp when the parent process
833 was being debugged, and now are switching to the child process,
834 from the breakpoint package's viewpoint, that's a switch of
835 "threads". We must update the bp's notion of which thread
836 it is for, or it'll be ignored when it triggers. */
837
8358c15c 838 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
839 {
840 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
841 tp->control.step_resume_breakpoint->loc->enabled = 1;
842 }
6604731b 843
a1aa2221 844 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 845 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
846 {
847 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
848 tp->control.exception_resume_breakpoint->loc->enabled = 1;
849 }
186c406b 850
6604731b
DJ
851 /* Reinsert all breakpoints in the child. The user may have set
852 breakpoints after catching the fork, in which case those
853 were never set in the child, but only in the parent. This makes
854 sure the inserted breakpoints match the breakpoint list. */
855
856 breakpoint_re_set ();
857 insert_breakpoints ();
c906108c 858}
c906108c 859
6c95b8df
PA
860/* The child has exited or execed: resume threads of the parent the
861 user wanted to be executing. */
862
863static int
864proceed_after_vfork_done (struct thread_info *thread,
865 void *arg)
866{
867 int pid = * (int *) arg;
868
00431a78
PA
869 if (thread->ptid.pid () == pid
870 && thread->state == THREAD_RUNNING
871 && !thread->executing
6c95b8df 872 && !thread->stop_requested
a493e3e2 873 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
874 {
875 if (debug_infrun)
876 fprintf_unfiltered (gdb_stdlog,
877 "infrun: resuming vfork parent thread %s\n",
878 target_pid_to_str (thread->ptid));
879
00431a78 880 switch_to_thread (thread);
70509625 881 clear_proceed_status (0);
64ce06e4 882 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
883 }
884
885 return 0;
886}
887
5ed8105e
PA
888/* Save/restore inferior_ptid, current program space and current
889 inferior. Only use this if the current context points at an exited
890 inferior (and therefore there's no current thread to save). */
891class scoped_restore_exited_inferior
892{
893public:
894 scoped_restore_exited_inferior ()
895 : m_saved_ptid (&inferior_ptid)
896 {}
897
898private:
899 scoped_restore_tmpl<ptid_t> m_saved_ptid;
900 scoped_restore_current_program_space m_pspace;
901 scoped_restore_current_inferior m_inferior;
902};
903
6c95b8df
PA
904/* Called whenever we notice an exec or exit event, to handle
905 detaching or resuming a vfork parent. */
906
907static void
908handle_vfork_child_exec_or_exit (int exec)
909{
910 struct inferior *inf = current_inferior ();
911
912 if (inf->vfork_parent)
913 {
914 int resume_parent = -1;
915
916 /* This exec or exit marks the end of the shared memory region
917 between the parent and the child. If the user wanted to
918 detach from the parent, now is the time. */
919
920 if (inf->vfork_parent->pending_detach)
921 {
922 struct thread_info *tp;
6c95b8df
PA
923 struct program_space *pspace;
924 struct address_space *aspace;
925
1777feb0 926 /* follow-fork child, detach-on-fork on. */
6c95b8df 927
68c9da30
PA
928 inf->vfork_parent->pending_detach = 0;
929
5ed8105e
PA
930 gdb::optional<scoped_restore_exited_inferior>
931 maybe_restore_inferior;
932 gdb::optional<scoped_restore_current_pspace_and_thread>
933 maybe_restore_thread;
934
935 /* If we're handling a child exit, then inferior_ptid points
936 at the inferior's pid, not to a thread. */
f50f4e56 937 if (!exec)
5ed8105e 938 maybe_restore_inferior.emplace ();
f50f4e56 939 else
5ed8105e 940 maybe_restore_thread.emplace ();
6c95b8df
PA
941
942 /* We're letting loose of the parent. */
00431a78
PA
943 tp = any_live_thread_of_inferior (inf->vfork_parent);
944 switch_to_thread (tp);
6c95b8df
PA
945
946 /* We're about to detach from the parent, which implicitly
947 removes breakpoints from its address space. There's a
948 catch here: we want to reuse the spaces for the child,
949 but, parent/child are still sharing the pspace at this
950 point, although the exec in reality makes the kernel give
951 the child a fresh set of new pages. The problem here is
952 that the breakpoints module being unaware of this, would
953 likely chose the child process to write to the parent
954 address space. Swapping the child temporarily away from
955 the spaces has the desired effect. Yes, this is "sort
956 of" a hack. */
957
958 pspace = inf->pspace;
959 aspace = inf->aspace;
960 inf->aspace = NULL;
961 inf->pspace = NULL;
962
f67c0c91 963 if (print_inferior_events)
6c95b8df 964 {
f67c0c91 965 const char *pidstr
f2907e49 966 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 967
223ffa71 968 target_terminal::ours_for_output ();
6c95b8df
PA
969
970 if (exec)
6f259a23
DB
971 {
972 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
973 _("[Detaching vfork parent %s "
974 "after child exec]\n"), pidstr);
6f259a23 975 }
6c95b8df 976 else
6f259a23
DB
977 {
978 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
979 _("[Detaching vfork parent %s "
980 "after child exit]\n"), pidstr);
6f259a23 981 }
6c95b8df
PA
982 }
983
6e1e1966 984 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
985
986 /* Put it back. */
987 inf->pspace = pspace;
988 inf->aspace = aspace;
6c95b8df
PA
989 }
990 else if (exec)
991 {
992 /* We're staying attached to the parent, so, really give the
993 child a new address space. */
564b1e3f 994 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
995 inf->aspace = inf->pspace->aspace;
996 inf->removable = 1;
997 set_current_program_space (inf->pspace);
998
999 resume_parent = inf->vfork_parent->pid;
1000
1001 /* Break the bonds. */
1002 inf->vfork_parent->vfork_child = NULL;
1003 }
1004 else
1005 {
6c95b8df
PA
1006 struct program_space *pspace;
1007
1008 /* If this is a vfork child exiting, then the pspace and
1009 aspaces were shared with the parent. Since we're
1010 reporting the process exit, we'll be mourning all that is
1011 found in the address space, and switching to null_ptid,
1012 preparing to start a new inferior. But, since we don't
1013 want to clobber the parent's address/program spaces, we
1014 go ahead and create a new one for this exiting
1015 inferior. */
1016
5ed8105e
PA
1017 /* Switch to null_ptid while running clone_program_space, so
1018 that clone_program_space doesn't want to read the
1019 selected frame of a dead process. */
1020 scoped_restore restore_ptid
1021 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1022
1023 /* This inferior is dead, so avoid giving the breakpoints
1024 module the option to write through to it (cloning a
1025 program space resets breakpoints). */
1026 inf->aspace = NULL;
1027 inf->pspace = NULL;
564b1e3f 1028 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1029 set_current_program_space (pspace);
1030 inf->removable = 1;
7dcd53a0 1031 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1032 clone_program_space (pspace, inf->vfork_parent->pspace);
1033 inf->pspace = pspace;
1034 inf->aspace = pspace->aspace;
1035
6c95b8df
PA
1036 resume_parent = inf->vfork_parent->pid;
1037 /* Break the bonds. */
1038 inf->vfork_parent->vfork_child = NULL;
1039 }
1040
1041 inf->vfork_parent = NULL;
1042
1043 gdb_assert (current_program_space == inf->pspace);
1044
1045 if (non_stop && resume_parent != -1)
1046 {
1047 /* If the user wanted the parent to be running, let it go
1048 free now. */
5ed8105e 1049 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1050
1051 if (debug_infrun)
3e43a32a
MS
1052 fprintf_unfiltered (gdb_stdlog,
1053 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1054 resume_parent);
1055
1056 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
6c95b8df 1085 struct inferior *inf = current_inferior ();
e99b03dc 1086 int pid = ptid.pid ();
94585166 1087 ptid_t process_ptid;
7a292a7a 1088
c906108c
SS
1089 /* This is an exec event that we actually wish to pay attention to.
1090 Refresh our symbol table to the newly exec'd program, remove any
1091 momentary bp's, etc.
1092
1093 If there are breakpoints, they aren't really inserted now,
1094 since the exec() transformed our inferior into a fresh set
1095 of instructions.
1096
1097 We want to preserve symbolic breakpoints on the list, since
1098 we have hopes that they can be reset after the new a.out's
1099 symbol table is read.
1100
1101 However, any "raw" breakpoints must be removed from the list
1102 (e.g., the solib bp's), since their address is probably invalid
1103 now.
1104
1105 And, we DON'T want to call delete_breakpoints() here, since
1106 that may write the bp's "shadow contents" (the instruction
1107 value that was overwritten witha TRAP instruction). Since
1777feb0 1108 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1109
1110 mark_breakpoints_out ();
1111
95e50b27
PA
1112 /* The target reports the exec event to the main thread, even if
1113 some other thread does the exec, and even if the main thread was
1114 stopped or already gone. We may still have non-leader threads of
1115 the process on our list. E.g., on targets that don't have thread
1116 exit events (like remote); or on native Linux in non-stop mode if
1117 there were only two threads in the inferior and the non-leader
1118 one is the one that execs (and nothing forces an update of the
1119 thread list up to here). When debugging remotely, it's best to
1120 avoid extra traffic, when possible, so avoid syncing the thread
1121 list with the target, and instead go ahead and delete all threads
1122 of the process but one that reported the event. Note this must
1123 be done before calling update_breakpoints_after_exec, as
1124 otherwise clearing the threads' resources would reference stale
1125 thread breakpoints -- it may have been one of these threads that
1126 stepped across the exec. We could just clear their stepping
1127 states, but as long as we're iterating, might as well delete
1128 them. Deleting them now rather than at the next user-visible
1129 stop provides a nicer sequence of events for user and MI
1130 notifications. */
08036331 1131 for (thread_info *th : all_threads_safe ())
d7e15655 1132 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1133 delete_thread (th);
95e50b27
PA
1134
1135 /* We also need to clear any left over stale state for the
1136 leader/event thread. E.g., if there was any step-resume
1137 breakpoint or similar, it's gone now. We cannot truly
1138 step-to-next statement through an exec(). */
08036331 1139 thread_info *th = inferior_thread ();
8358c15c 1140 th->control.step_resume_breakpoint = NULL;
186c406b 1141 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1142 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1143 th->control.step_range_start = 0;
1144 th->control.step_range_end = 0;
c906108c 1145
95e50b27
PA
1146 /* The user may have had the main thread held stopped in the
1147 previous image (e.g., schedlock on, or non-stop). Release
1148 it now. */
a75724bc
PA
1149 th->stop_requested = 0;
1150
95e50b27
PA
1151 update_breakpoints_after_exec ();
1152
1777feb0 1153 /* What is this a.out's name? */
f2907e49 1154 process_ptid = ptid_t (pid);
6c95b8df 1155 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1156 target_pid_to_str (process_ptid),
ecf45d2c 1157 exec_file_target);
c906108c
SS
1158
1159 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1160 inferior has essentially been killed & reborn. */
7a292a7a 1161
6ca15a4b 1162 breakpoint_init_inferior (inf_execd);
e85a822c 1163
797bc1cb
TT
1164 gdb::unique_xmalloc_ptr<char> exec_file_host
1165 = exec_file_find (exec_file_target, NULL);
ff862be4 1166
ecf45d2c
SL
1167 /* If we were unable to map the executable target pathname onto a host
1168 pathname, tell the user that. Otherwise GDB's subsequent behavior
1169 is confusing. Maybe it would even be better to stop at this point
1170 so that the user can specify a file manually before continuing. */
1171 if (exec_file_host == NULL)
1172 warning (_("Could not load symbols for executable %s.\n"
1173 "Do you need \"set sysroot\"?"),
1174 exec_file_target);
c906108c 1175
cce9b6bf
PA
1176 /* Reset the shared library package. This ensures that we get a
1177 shlib event when the child reaches "_start", at which point the
1178 dld will have had a chance to initialize the child. */
1179 /* Also, loading a symbol file below may trigger symbol lookups, and
1180 we don't want those to be satisfied by the libraries of the
1181 previous incarnation of this process. */
1182 no_shared_libraries (NULL, 0);
1183
6c95b8df
PA
1184 if (follow_exec_mode_string == follow_exec_mode_new)
1185 {
6c95b8df
PA
1186 /* The user wants to keep the old inferior and program spaces
1187 around. Create a new fresh one, and switch to it. */
1188
35ed81d4
SM
1189 /* Do exit processing for the original inferior before setting the new
1190 inferior's pid. Having two inferiors with the same pid would confuse
1191 find_inferior_p(t)id. Transfer the terminal state and info from the
1192 old to the new inferior. */
1193 inf = add_inferior_with_spaces ();
1194 swap_terminal_info (inf, current_inferior ());
057302ce 1195 exit_inferior_silent (current_inferior ());
17d8546e 1196
94585166 1197 inf->pid = pid;
ecf45d2c 1198 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1199
1200 set_current_inferior (inf);
94585166 1201 set_current_program_space (inf->pspace);
c4c17fb0 1202 add_thread (ptid);
6c95b8df 1203 }
9107fc8d
PA
1204 else
1205 {
1206 /* The old description may no longer be fit for the new image.
1207 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1208 old description; we'll read a new one below. No need to do
1209 this on "follow-exec-mode new", as the old inferior stays
1210 around (its description is later cleared/refetched on
1211 restart). */
1212 target_clear_description ();
1213 }
6c95b8df
PA
1214
1215 gdb_assert (current_program_space == inf->pspace);
1216
ecf45d2c
SL
1217 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1218 because the proper displacement for a PIE (Position Independent
1219 Executable) main symbol file will only be computed by
1220 solib_create_inferior_hook below. breakpoint_re_set would fail
1221 to insert the breakpoints with the zero displacement. */
797bc1cb 1222 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1223
9107fc8d
PA
1224 /* If the target can specify a description, read it. Must do this
1225 after flipping to the new executable (because the target supplied
1226 description must be compatible with the executable's
1227 architecture, and the old executable may e.g., be 32-bit, while
1228 the new one 64-bit), and before anything involving memory or
1229 registers. */
1230 target_find_description ();
1231
268a4a75 1232 solib_create_inferior_hook (0);
c906108c 1233
4efc6507
DE
1234 jit_inferior_created_hook ();
1235
c1e56572
JK
1236 breakpoint_re_set ();
1237
c906108c
SS
1238 /* Reinsert all breakpoints. (Those which were symbolic have
1239 been reset to the proper address in the new a.out, thanks
1777feb0 1240 to symbol_file_command...). */
c906108c
SS
1241 insert_breakpoints ();
1242
1243 /* The next resume of this inferior should bring it to the shlib
1244 startup breakpoints. (If the user had also set bp's on
1245 "main" from the old (parent) process, then they'll auto-
1777feb0 1246 matically get reset there in the new process.). */
c906108c
SS
1247}
1248
c2829269
PA
1249/* The queue of threads that need to do a step-over operation to get
1250 past e.g., a breakpoint. What technique is used to step over the
1251 breakpoint/watchpoint does not matter -- all threads end up in the
1252 same queue, to maintain rough temporal order of execution, in order
1253 to avoid starvation, otherwise, we could e.g., find ourselves
1254 constantly stepping the same couple threads past their breakpoints
1255 over and over, if the single-step finish fast enough. */
1256struct thread_info *step_over_queue_head;
1257
6c4cfb24
PA
1258/* Bit flags indicating what the thread needs to step over. */
1259
8d297bbf 1260enum step_over_what_flag
6c4cfb24
PA
1261 {
1262 /* Step over a breakpoint. */
1263 STEP_OVER_BREAKPOINT = 1,
1264
1265 /* Step past a non-continuable watchpoint, in order to let the
1266 instruction execute so we can evaluate the watchpoint
1267 expression. */
1268 STEP_OVER_WATCHPOINT = 2
1269 };
8d297bbf 1270DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1271
963f9c80 1272/* Info about an instruction that is being stepped over. */
31e77af2
PA
1273
1274struct step_over_info
1275{
963f9c80
PA
1276 /* If we're stepping past a breakpoint, this is the address space
1277 and address of the instruction the breakpoint is set at. We'll
1278 skip inserting all breakpoints here. Valid iff ASPACE is
1279 non-NULL. */
8b86c959 1280 const address_space *aspace;
31e77af2 1281 CORE_ADDR address;
963f9c80
PA
1282
1283 /* The instruction being stepped over triggers a nonsteppable
1284 watchpoint. If true, we'll skip inserting watchpoints. */
1285 int nonsteppable_watchpoint_p;
21edc42f
YQ
1286
1287 /* The thread's global number. */
1288 int thread;
31e77af2
PA
1289};
1290
1291/* The step-over info of the location that is being stepped over.
1292
1293 Note that with async/breakpoint always-inserted mode, a user might
1294 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1295 being stepped over. As setting a new breakpoint inserts all
1296 breakpoints, we need to make sure the breakpoint being stepped over
1297 isn't inserted then. We do that by only clearing the step-over
1298 info when the step-over is actually finished (or aborted).
1299
1300 Presently GDB can only step over one breakpoint at any given time.
1301 Given threads that can't run code in the same address space as the
1302 breakpoint's can't really miss the breakpoint, GDB could be taught
1303 to step-over at most one breakpoint per address space (so this info
1304 could move to the address space object if/when GDB is extended).
1305 The set of breakpoints being stepped over will normally be much
1306 smaller than the set of all breakpoints, so a flag in the
1307 breakpoint location structure would be wasteful. A separate list
1308 also saves complexity and run-time, as otherwise we'd have to go
1309 through all breakpoint locations clearing their flag whenever we
1310 start a new sequence. Similar considerations weigh against storing
1311 this info in the thread object. Plus, not all step overs actually
1312 have breakpoint locations -- e.g., stepping past a single-step
1313 breakpoint, or stepping to complete a non-continuable
1314 watchpoint. */
1315static struct step_over_info step_over_info;
1316
1317/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1318 stepping over.
1319 N.B. We record the aspace and address now, instead of say just the thread,
1320 because when we need the info later the thread may be running. */
31e77af2
PA
1321
1322static void
8b86c959 1323set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1324 int nonsteppable_watchpoint_p,
1325 int thread)
31e77af2
PA
1326{
1327 step_over_info.aspace = aspace;
1328 step_over_info.address = address;
963f9c80 1329 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1330 step_over_info.thread = thread;
31e77af2
PA
1331}
1332
1333/* Called when we're not longer stepping over a breakpoint / an
1334 instruction, so all breakpoints are free to be (re)inserted. */
1335
1336static void
1337clear_step_over_info (void)
1338{
372316f1
PA
1339 if (debug_infrun)
1340 fprintf_unfiltered (gdb_stdlog,
1341 "infrun: clear_step_over_info\n");
31e77af2
PA
1342 step_over_info.aspace = NULL;
1343 step_over_info.address = 0;
963f9c80 1344 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1345 step_over_info.thread = -1;
31e77af2
PA
1346}
1347
7f89fd65 1348/* See infrun.h. */
31e77af2
PA
1349
1350int
1351stepping_past_instruction_at (struct address_space *aspace,
1352 CORE_ADDR address)
1353{
1354 return (step_over_info.aspace != NULL
1355 && breakpoint_address_match (aspace, address,
1356 step_over_info.aspace,
1357 step_over_info.address));
1358}
1359
963f9c80
PA
1360/* See infrun.h. */
1361
21edc42f
YQ
1362int
1363thread_is_stepping_over_breakpoint (int thread)
1364{
1365 return (step_over_info.thread != -1
1366 && thread == step_over_info.thread);
1367}
1368
1369/* See infrun.h. */
1370
963f9c80
PA
1371int
1372stepping_past_nonsteppable_watchpoint (void)
1373{
1374 return step_over_info.nonsteppable_watchpoint_p;
1375}
1376
6cc83d2a
PA
1377/* Returns true if step-over info is valid. */
1378
1379static int
1380step_over_info_valid_p (void)
1381{
963f9c80
PA
1382 return (step_over_info.aspace != NULL
1383 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1384}
1385
c906108c 1386\f
237fc4c9
PA
1387/* Displaced stepping. */
1388
1389/* In non-stop debugging mode, we must take special care to manage
1390 breakpoints properly; in particular, the traditional strategy for
1391 stepping a thread past a breakpoint it has hit is unsuitable.
1392 'Displaced stepping' is a tactic for stepping one thread past a
1393 breakpoint it has hit while ensuring that other threads running
1394 concurrently will hit the breakpoint as they should.
1395
1396 The traditional way to step a thread T off a breakpoint in a
1397 multi-threaded program in all-stop mode is as follows:
1398
1399 a0) Initially, all threads are stopped, and breakpoints are not
1400 inserted.
1401 a1) We single-step T, leaving breakpoints uninserted.
1402 a2) We insert breakpoints, and resume all threads.
1403
1404 In non-stop debugging, however, this strategy is unsuitable: we
1405 don't want to have to stop all threads in the system in order to
1406 continue or step T past a breakpoint. Instead, we use displaced
1407 stepping:
1408
1409 n0) Initially, T is stopped, other threads are running, and
1410 breakpoints are inserted.
1411 n1) We copy the instruction "under" the breakpoint to a separate
1412 location, outside the main code stream, making any adjustments
1413 to the instruction, register, and memory state as directed by
1414 T's architecture.
1415 n2) We single-step T over the instruction at its new location.
1416 n3) We adjust the resulting register and memory state as directed
1417 by T's architecture. This includes resetting T's PC to point
1418 back into the main instruction stream.
1419 n4) We resume T.
1420
1421 This approach depends on the following gdbarch methods:
1422
1423 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1424 indicate where to copy the instruction, and how much space must
1425 be reserved there. We use these in step n1.
1426
1427 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1428 address, and makes any necessary adjustments to the instruction,
1429 register contents, and memory. We use this in step n1.
1430
1431 - gdbarch_displaced_step_fixup adjusts registers and memory after
1432 we have successfuly single-stepped the instruction, to yield the
1433 same effect the instruction would have had if we had executed it
1434 at its original address. We use this in step n3.
1435
237fc4c9
PA
1436 The gdbarch_displaced_step_copy_insn and
1437 gdbarch_displaced_step_fixup functions must be written so that
1438 copying an instruction with gdbarch_displaced_step_copy_insn,
1439 single-stepping across the copied instruction, and then applying
1440 gdbarch_displaced_insn_fixup should have the same effects on the
1441 thread's memory and registers as stepping the instruction in place
1442 would have. Exactly which responsibilities fall to the copy and
1443 which fall to the fixup is up to the author of those functions.
1444
1445 See the comments in gdbarch.sh for details.
1446
1447 Note that displaced stepping and software single-step cannot
1448 currently be used in combination, although with some care I think
1449 they could be made to. Software single-step works by placing
1450 breakpoints on all possible subsequent instructions; if the
1451 displaced instruction is a PC-relative jump, those breakpoints
1452 could fall in very strange places --- on pages that aren't
1453 executable, or at addresses that are not proper instruction
1454 boundaries. (We do generally let other threads run while we wait
1455 to hit the software single-step breakpoint, and they might
1456 encounter such a corrupted instruction.) One way to work around
1457 this would be to have gdbarch_displaced_step_copy_insn fully
1458 simulate the effect of PC-relative instructions (and return NULL)
1459 on architectures that use software single-stepping.
1460
1461 In non-stop mode, we can have independent and simultaneous step
1462 requests, so more than one thread may need to simultaneously step
1463 over a breakpoint. The current implementation assumes there is
1464 only one scratch space per process. In this case, we have to
1465 serialize access to the scratch space. If thread A wants to step
1466 over a breakpoint, but we are currently waiting for some other
1467 thread to complete a displaced step, we leave thread A stopped and
1468 place it in the displaced_step_request_queue. Whenever a displaced
1469 step finishes, we pick the next thread in the queue and start a new
1470 displaced step operation on it. See displaced_step_prepare and
1471 displaced_step_fixup for details. */
1472
cfba9872
SM
1473/* Default destructor for displaced_step_closure. */
1474
1475displaced_step_closure::~displaced_step_closure () = default;
1476
fc1cf338
PA
1477/* Get the displaced stepping state of process PID. */
1478
39a36629 1479static displaced_step_inferior_state *
00431a78 1480get_displaced_stepping_state (inferior *inf)
fc1cf338 1481{
d20172fc 1482 return &inf->displaced_step_state;
fc1cf338
PA
1483}
1484
372316f1
PA
1485/* Returns true if any inferior has a thread doing a displaced
1486 step. */
1487
39a36629
SM
1488static bool
1489displaced_step_in_progress_any_inferior ()
372316f1 1490{
d20172fc 1491 for (inferior *i : all_inferiors ())
39a36629 1492 {
d20172fc 1493 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1494 return true;
1495 }
372316f1 1496
39a36629 1497 return false;
372316f1
PA
1498}
1499
c0987663
YQ
1500/* Return true if thread represented by PTID is doing a displaced
1501 step. */
1502
1503static int
00431a78 1504displaced_step_in_progress_thread (thread_info *thread)
c0987663 1505{
00431a78 1506 gdb_assert (thread != NULL);
c0987663 1507
d20172fc 1508 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1509}
1510
8f572e5c
PA
1511/* Return true if process PID has a thread doing a displaced step. */
1512
1513static int
00431a78 1514displaced_step_in_progress (inferior *inf)
8f572e5c 1515{
d20172fc 1516 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1517}
1518
a42244db
YQ
1519/* If inferior is in displaced stepping, and ADDR equals to starting address
1520 of copy area, return corresponding displaced_step_closure. Otherwise,
1521 return NULL. */
1522
1523struct displaced_step_closure*
1524get_displaced_step_closure_by_addr (CORE_ADDR addr)
1525{
d20172fc 1526 displaced_step_inferior_state *displaced
00431a78 1527 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1528
1529 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1530 if (displaced->step_thread != nullptr
00431a78 1531 && displaced->step_copy == addr)
a42244db
YQ
1532 return displaced->step_closure;
1533
1534 return NULL;
1535}
1536
fc1cf338
PA
1537static void
1538infrun_inferior_exit (struct inferior *inf)
1539{
d20172fc 1540 inf->displaced_step_state.reset ();
fc1cf338 1541}
237fc4c9 1542
fff08868
HZ
1543/* If ON, and the architecture supports it, GDB will use displaced
1544 stepping to step over breakpoints. If OFF, or if the architecture
1545 doesn't support it, GDB will instead use the traditional
1546 hold-and-step approach. If AUTO (which is the default), GDB will
1547 decide which technique to use to step over breakpoints depending on
1548 which of all-stop or non-stop mode is active --- displaced stepping
1549 in non-stop mode; hold-and-step in all-stop mode. */
1550
72d0e2c5 1551static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1552
237fc4c9
PA
1553static void
1554show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1555 struct cmd_list_element *c,
1556 const char *value)
1557{
72d0e2c5 1558 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1559 fprintf_filtered (file,
1560 _("Debugger's willingness to use displaced stepping "
1561 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1562 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1563 else
3e43a32a
MS
1564 fprintf_filtered (file,
1565 _("Debugger's willingness to use displaced stepping "
1566 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1567}
1568
fff08868 1569/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1570 over breakpoints of thread TP. */
fff08868 1571
237fc4c9 1572static int
3fc8eb30 1573use_displaced_stepping (struct thread_info *tp)
237fc4c9 1574{
00431a78 1575 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1576 struct gdbarch *gdbarch = regcache->arch ();
d20172fc
SM
1577 displaced_step_inferior_state *displaced_state
1578 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1579
fbea99ea
PA
1580 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1581 && target_is_non_stop_p ())
72d0e2c5 1582 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1583 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30 1584 && find_record_target () == NULL
d20172fc 1585 && !displaced_state->failed_before);
237fc4c9
PA
1586}
1587
1588/* Clean out any stray displaced stepping state. */
1589static void
fc1cf338 1590displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1591{
1592 /* Indicate that there is no cleanup pending. */
00431a78 1593 displaced->step_thread = nullptr;
237fc4c9 1594
cfba9872 1595 delete displaced->step_closure;
6d45d4b4 1596 displaced->step_closure = NULL;
237fc4c9
PA
1597}
1598
1599static void
fc1cf338 1600displaced_step_clear_cleanup (void *arg)
237fc4c9 1601{
9a3c8263
SM
1602 struct displaced_step_inferior_state *state
1603 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1604
1605 displaced_step_clear (state);
237fc4c9
PA
1606}
1607
1608/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1609void
1610displaced_step_dump_bytes (struct ui_file *file,
1611 const gdb_byte *buf,
1612 size_t len)
1613{
1614 int i;
1615
1616 for (i = 0; i < len; i++)
1617 fprintf_unfiltered (file, "%02x ", buf[i]);
1618 fputs_unfiltered ("\n", file);
1619}
1620
1621/* Prepare to single-step, using displaced stepping.
1622
1623 Note that we cannot use displaced stepping when we have a signal to
1624 deliver. If we have a signal to deliver and an instruction to step
1625 over, then after the step, there will be no indication from the
1626 target whether the thread entered a signal handler or ignored the
1627 signal and stepped over the instruction successfully --- both cases
1628 result in a simple SIGTRAP. In the first case we mustn't do a
1629 fixup, and in the second case we must --- but we can't tell which.
1630 Comments in the code for 'random signals' in handle_inferior_event
1631 explain how we handle this case instead.
1632
1633 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1634 stepped now; 0 if displaced stepping this thread got queued; or -1
1635 if this instruction can't be displaced stepped. */
1636
237fc4c9 1637static int
00431a78 1638displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1639{
00431a78 1640 regcache *regcache = get_thread_regcache (tp);
ac7936df 1641 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1642 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1643 CORE_ADDR original, copy;
1644 ULONGEST len;
1645 struct displaced_step_closure *closure;
9e529e1d 1646 int status;
237fc4c9
PA
1647
1648 /* We should never reach this function if the architecture does not
1649 support displaced stepping. */
1650 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1651
c2829269
PA
1652 /* Nor if the thread isn't meant to step over a breakpoint. */
1653 gdb_assert (tp->control.trap_expected);
1654
c1e36e3e
PA
1655 /* Disable range stepping while executing in the scratch pad. We
1656 want a single-step even if executing the displaced instruction in
1657 the scratch buffer lands within the stepping range (e.g., a
1658 jump/branch). */
1659 tp->control.may_range_step = 0;
1660
fc1cf338
PA
1661 /* We have to displaced step one thread at a time, as we only have
1662 access to a single scratch space per inferior. */
237fc4c9 1663
d20172fc
SM
1664 displaced_step_inferior_state *displaced
1665 = get_displaced_stepping_state (tp->inf);
fc1cf338 1666
00431a78 1667 if (displaced->step_thread != nullptr)
237fc4c9
PA
1668 {
1669 /* Already waiting for a displaced step to finish. Defer this
1670 request and place in queue. */
237fc4c9
PA
1671
1672 if (debug_displaced)
1673 fprintf_unfiltered (gdb_stdlog,
c2829269 1674 "displaced: deferring step of %s\n",
00431a78 1675 target_pid_to_str (tp->ptid));
237fc4c9 1676
c2829269 1677 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1678 return 0;
1679 }
1680 else
1681 {
1682 if (debug_displaced)
1683 fprintf_unfiltered (gdb_stdlog,
1684 "displaced: stepping %s now\n",
00431a78 1685 target_pid_to_str (tp->ptid));
237fc4c9
PA
1686 }
1687
fc1cf338 1688 displaced_step_clear (displaced);
237fc4c9 1689
00431a78
PA
1690 scoped_restore_current_thread restore_thread;
1691
1692 switch_to_thread (tp);
ad53cd71 1693
515630c5 1694 original = regcache_read_pc (regcache);
237fc4c9
PA
1695
1696 copy = gdbarch_displaced_step_location (gdbarch);
1697 len = gdbarch_max_insn_length (gdbarch);
1698
d35ae833
PA
1699 if (breakpoint_in_range_p (aspace, copy, len))
1700 {
1701 /* There's a breakpoint set in the scratch pad location range
1702 (which is usually around the entry point). We'd either
1703 install it before resuming, which would overwrite/corrupt the
1704 scratch pad, or if it was already inserted, this displaced
1705 step would overwrite it. The latter is OK in the sense that
1706 we already assume that no thread is going to execute the code
1707 in the scratch pad range (after initial startup) anyway, but
1708 the former is unacceptable. Simply punt and fallback to
1709 stepping over this breakpoint in-line. */
1710 if (debug_displaced)
1711 {
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: breakpoint set in scratch pad. "
1714 "Stepping over breakpoint in-line instead.\n");
1715 }
1716
d35ae833
PA
1717 return -1;
1718 }
1719
237fc4c9 1720 /* Save the original contents of the copy area. */
d20172fc
SM
1721 displaced->step_saved_copy.resize (len);
1722 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1723 if (status != 0)
1724 throw_error (MEMORY_ERROR,
1725 _("Error accessing memory address %s (%s) for "
1726 "displaced-stepping scratch space."),
1727 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1728 if (debug_displaced)
1729 {
5af949e3
UW
1730 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1731 paddress (gdbarch, copy));
fc1cf338 1732 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1733 displaced->step_saved_copy.data (),
fc1cf338 1734 len);
237fc4c9
PA
1735 };
1736
1737 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1738 original, copy, regcache);
7f03bd92
PA
1739 if (closure == NULL)
1740 {
1741 /* The architecture doesn't know how or want to displaced step
1742 this instruction or instruction sequence. Fallback to
1743 stepping over the breakpoint in-line. */
7f03bd92
PA
1744 return -1;
1745 }
237fc4c9 1746
9f5a595d
UW
1747 /* Save the information we need to fix things up if the step
1748 succeeds. */
00431a78 1749 displaced->step_thread = tp;
fc1cf338
PA
1750 displaced->step_gdbarch = gdbarch;
1751 displaced->step_closure = closure;
1752 displaced->step_original = original;
1753 displaced->step_copy = copy;
9f5a595d 1754
d20172fc
SM
1755 cleanup *ignore_cleanups
1756 = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1757
1758 /* Resume execution at the copy. */
515630c5 1759 regcache_write_pc (regcache, copy);
237fc4c9 1760
ad53cd71
PA
1761 discard_cleanups (ignore_cleanups);
1762
237fc4c9 1763 if (debug_displaced)
5af949e3
UW
1764 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1765 paddress (gdbarch, copy));
237fc4c9 1766
237fc4c9
PA
1767 return 1;
1768}
1769
3fc8eb30
PA
1770/* Wrapper for displaced_step_prepare_throw that disabled further
1771 attempts at displaced stepping if we get a memory error. */
1772
1773static int
00431a78 1774displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1775{
1776 int prepared = -1;
1777
1778 TRY
1779 {
00431a78 1780 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1781 }
1782 CATCH (ex, RETURN_MASK_ERROR)
1783 {
1784 struct displaced_step_inferior_state *displaced_state;
1785
16b41842
PA
1786 if (ex.error != MEMORY_ERROR
1787 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1788 throw_exception (ex);
1789
1790 if (debug_infrun)
1791 {
1792 fprintf_unfiltered (gdb_stdlog,
1793 "infrun: disabling displaced stepping: %s\n",
1794 ex.message);
1795 }
1796
1797 /* Be verbose if "set displaced-stepping" is "on", silent if
1798 "auto". */
1799 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1800 {
fd7dcb94 1801 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1802 ex.message);
1803 }
1804
1805 /* Disable further displaced stepping attempts. */
1806 displaced_state
00431a78 1807 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1808 displaced_state->failed_before = 1;
1809 }
1810 END_CATCH
1811
1812 return prepared;
1813}
1814
237fc4c9 1815static void
3e43a32a
MS
1816write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1817 const gdb_byte *myaddr, int len)
237fc4c9 1818{
2989a365 1819 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1820
237fc4c9
PA
1821 inferior_ptid = ptid;
1822 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1823}
1824
e2d96639
YQ
1825/* Restore the contents of the copy area for thread PTID. */
1826
1827static void
1828displaced_step_restore (struct displaced_step_inferior_state *displaced,
1829 ptid_t ptid)
1830{
1831 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1832
1833 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1834 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1835 if (debug_displaced)
1836 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1837 target_pid_to_str (ptid),
1838 paddress (displaced->step_gdbarch,
1839 displaced->step_copy));
1840}
1841
372316f1
PA
1842/* If we displaced stepped an instruction successfully, adjust
1843 registers and memory to yield the same effect the instruction would
1844 have had if we had executed it at its original address, and return
1845 1. If the instruction didn't complete, relocate the PC and return
1846 -1. If the thread wasn't displaced stepping, return 0. */
1847
1848static int
00431a78 1849displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1850{
1851 struct cleanup *old_cleanups;
fc1cf338 1852 struct displaced_step_inferior_state *displaced
00431a78 1853 = get_displaced_stepping_state (event_thread->inf);
372316f1 1854 int ret;
fc1cf338 1855
00431a78
PA
1856 /* Was this event for the thread we displaced? */
1857 if (displaced->step_thread != event_thread)
372316f1 1858 return 0;
237fc4c9 1859
fc1cf338 1860 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1861
00431a78 1862 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1863
cb71640d
PA
1864 /* Fixup may need to read memory/registers. Switch to the thread
1865 that we're fixing up. Also, target_stopped_by_watchpoint checks
1866 the current thread. */
00431a78 1867 switch_to_thread (event_thread);
cb71640d 1868
237fc4c9 1869 /* Did the instruction complete successfully? */
cb71640d
PA
1870 if (signal == GDB_SIGNAL_TRAP
1871 && !(target_stopped_by_watchpoint ()
1872 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1873 || target_have_steppable_watchpoint)))
237fc4c9
PA
1874 {
1875 /* Fix up the resulting state. */
fc1cf338
PA
1876 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1877 displaced->step_closure,
1878 displaced->step_original,
1879 displaced->step_copy,
00431a78 1880 get_thread_regcache (displaced->step_thread));
372316f1 1881 ret = 1;
237fc4c9
PA
1882 }
1883 else
1884 {
1885 /* Since the instruction didn't complete, all we can do is
1886 relocate the PC. */
00431a78 1887 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1888 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1889
fc1cf338 1890 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1891 regcache_write_pc (regcache, pc);
372316f1 1892 ret = -1;
237fc4c9
PA
1893 }
1894
1895 do_cleanups (old_cleanups);
1896
00431a78 1897 displaced->step_thread = nullptr;
372316f1
PA
1898
1899 return ret;
c2829269 1900}
1c5cfe86 1901
4d9d9d04
PA
1902/* Data to be passed around while handling an event. This data is
1903 discarded between events. */
1904struct execution_control_state
1905{
1906 ptid_t ptid;
1907 /* The thread that got the event, if this was a thread event; NULL
1908 otherwise. */
1909 struct thread_info *event_thread;
1910
1911 struct target_waitstatus ws;
1912 int stop_func_filled_in;
1913 CORE_ADDR stop_func_start;
1914 CORE_ADDR stop_func_end;
1915 const char *stop_func_name;
1916 int wait_some_more;
1917
1918 /* True if the event thread hit the single-step breakpoint of
1919 another thread. Thus the event doesn't cause a stop, the thread
1920 needs to be single-stepped past the single-step breakpoint before
1921 we can switch back to the original stepping thread. */
1922 int hit_singlestep_breakpoint;
1923};
1924
1925/* Clear ECS and set it to point at TP. */
c2829269
PA
1926
1927static void
4d9d9d04
PA
1928reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1929{
1930 memset (ecs, 0, sizeof (*ecs));
1931 ecs->event_thread = tp;
1932 ecs->ptid = tp->ptid;
1933}
1934
1935static void keep_going_pass_signal (struct execution_control_state *ecs);
1936static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1937static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1938static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1939
1940/* Are there any pending step-over requests? If so, run all we can
1941 now and return true. Otherwise, return false. */
1942
1943static int
c2829269
PA
1944start_step_over (void)
1945{
1946 struct thread_info *tp, *next;
1947
372316f1
PA
1948 /* Don't start a new step-over if we already have an in-line
1949 step-over operation ongoing. */
1950 if (step_over_info_valid_p ())
1951 return 0;
1952
c2829269 1953 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1954 {
4d9d9d04
PA
1955 struct execution_control_state ecss;
1956 struct execution_control_state *ecs = &ecss;
8d297bbf 1957 step_over_what step_what;
372316f1 1958 int must_be_in_line;
c2829269 1959
c65d6b55
PA
1960 gdb_assert (!tp->stop_requested);
1961
c2829269 1962 next = thread_step_over_chain_next (tp);
237fc4c9 1963
c2829269
PA
1964 /* If this inferior already has a displaced step in process,
1965 don't start a new one. */
00431a78 1966 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1967 continue;
1968
372316f1
PA
1969 step_what = thread_still_needs_step_over (tp);
1970 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1971 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1972 && !use_displaced_stepping (tp)));
372316f1
PA
1973
1974 /* We currently stop all threads of all processes to step-over
1975 in-line. If we need to start a new in-line step-over, let
1976 any pending displaced steps finish first. */
1977 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1978 return 0;
1979
c2829269
PA
1980 thread_step_over_chain_remove (tp);
1981
1982 if (step_over_queue_head == NULL)
1983 {
1984 if (debug_infrun)
1985 fprintf_unfiltered (gdb_stdlog,
1986 "infrun: step-over queue now empty\n");
1987 }
1988
372316f1
PA
1989 if (tp->control.trap_expected
1990 || tp->resumed
1991 || tp->executing)
ad53cd71 1992 {
4d9d9d04
PA
1993 internal_error (__FILE__, __LINE__,
1994 "[%s] has inconsistent state: "
372316f1 1995 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
1996 target_pid_to_str (tp->ptid),
1997 tp->control.trap_expected,
372316f1 1998 tp->resumed,
4d9d9d04 1999 tp->executing);
ad53cd71 2000 }
1c5cfe86 2001
4d9d9d04
PA
2002 if (debug_infrun)
2003 fprintf_unfiltered (gdb_stdlog,
2004 "infrun: resuming [%s] for step-over\n",
2005 target_pid_to_str (tp->ptid));
2006
2007 /* keep_going_pass_signal skips the step-over if the breakpoint
2008 is no longer inserted. In all-stop, we want to keep looking
2009 for a thread that needs a step-over instead of resuming TP,
2010 because we wouldn't be able to resume anything else until the
2011 target stops again. In non-stop, the resume always resumes
2012 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2013 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2014 continue;
8550d3b3 2015
00431a78 2016 switch_to_thread (tp);
4d9d9d04
PA
2017 reset_ecs (ecs, tp);
2018 keep_going_pass_signal (ecs);
1c5cfe86 2019
4d9d9d04
PA
2020 if (!ecs->wait_some_more)
2021 error (_("Command aborted."));
1c5cfe86 2022
372316f1
PA
2023 gdb_assert (tp->resumed);
2024
2025 /* If we started a new in-line step-over, we're done. */
2026 if (step_over_info_valid_p ())
2027 {
2028 gdb_assert (tp->control.trap_expected);
2029 return 1;
2030 }
2031
fbea99ea 2032 if (!target_is_non_stop_p ())
4d9d9d04
PA
2033 {
2034 /* On all-stop, shouldn't have resumed unless we needed a
2035 step over. */
2036 gdb_assert (tp->control.trap_expected
2037 || tp->step_after_step_resume_breakpoint);
2038
2039 /* With remote targets (at least), in all-stop, we can't
2040 issue any further remote commands until the program stops
2041 again. */
2042 return 1;
1c5cfe86 2043 }
c2829269 2044
4d9d9d04
PA
2045 /* Either the thread no longer needed a step-over, or a new
2046 displaced stepping sequence started. Even in the latter
2047 case, continue looking. Maybe we can also start another
2048 displaced step on a thread of other process. */
237fc4c9 2049 }
4d9d9d04
PA
2050
2051 return 0;
237fc4c9
PA
2052}
2053
5231c1fd
PA
2054/* Update global variables holding ptids to hold NEW_PTID if they were
2055 holding OLD_PTID. */
2056static void
2057infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2058{
d7e15655 2059 if (inferior_ptid == old_ptid)
5231c1fd 2060 inferior_ptid = new_ptid;
5231c1fd
PA
2061}
2062
237fc4c9 2063\f
c906108c 2064
53904c9e
AC
2065static const char schedlock_off[] = "off";
2066static const char schedlock_on[] = "on";
2067static const char schedlock_step[] = "step";
f2665db5 2068static const char schedlock_replay[] = "replay";
40478521 2069static const char *const scheduler_enums[] = {
ef346e04
AC
2070 schedlock_off,
2071 schedlock_on,
2072 schedlock_step,
f2665db5 2073 schedlock_replay,
ef346e04
AC
2074 NULL
2075};
f2665db5 2076static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2077static void
2078show_scheduler_mode (struct ui_file *file, int from_tty,
2079 struct cmd_list_element *c, const char *value)
2080{
3e43a32a
MS
2081 fprintf_filtered (file,
2082 _("Mode for locking scheduler "
2083 "during execution is \"%s\".\n"),
920d2a44
AC
2084 value);
2085}
c906108c
SS
2086
2087static void
eb4c3f4a 2088set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2089{
eefe576e
AC
2090 if (!target_can_lock_scheduler)
2091 {
2092 scheduler_mode = schedlock_off;
2093 error (_("Target '%s' cannot support this command."), target_shortname);
2094 }
c906108c
SS
2095}
2096
d4db2f36
PA
2097/* True if execution commands resume all threads of all processes by
2098 default; otherwise, resume only threads of the current inferior
2099 process. */
2100int sched_multi = 0;
2101
2facfe5c
DD
2102/* Try to setup for software single stepping over the specified location.
2103 Return 1 if target_resume() should use hardware single step.
2104
2105 GDBARCH the current gdbarch.
2106 PC the location to step over. */
2107
2108static int
2109maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2110{
2111 int hw_step = 1;
2112
f02253f1 2113 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2114 && gdbarch_software_single_step_p (gdbarch))
2115 hw_step = !insert_single_step_breakpoints (gdbarch);
2116
2facfe5c
DD
2117 return hw_step;
2118}
c906108c 2119
f3263aa4
PA
2120/* See infrun.h. */
2121
09cee04b
PA
2122ptid_t
2123user_visible_resume_ptid (int step)
2124{
f3263aa4 2125 ptid_t resume_ptid;
09cee04b 2126
09cee04b
PA
2127 if (non_stop)
2128 {
2129 /* With non-stop mode on, threads are always handled
2130 individually. */
2131 resume_ptid = inferior_ptid;
2132 }
2133 else if ((scheduler_mode == schedlock_on)
03d46957 2134 || (scheduler_mode == schedlock_step && step))
09cee04b 2135 {
f3263aa4
PA
2136 /* User-settable 'scheduler' mode requires solo thread
2137 resume. */
09cee04b
PA
2138 resume_ptid = inferior_ptid;
2139 }
f2665db5
MM
2140 else if ((scheduler_mode == schedlock_replay)
2141 && target_record_will_replay (minus_one_ptid, execution_direction))
2142 {
2143 /* User-settable 'scheduler' mode requires solo thread resume in replay
2144 mode. */
2145 resume_ptid = inferior_ptid;
2146 }
f3263aa4
PA
2147 else if (!sched_multi && target_supports_multi_process ())
2148 {
2149 /* Resume all threads of the current process (and none of other
2150 processes). */
e99b03dc 2151 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2152 }
2153 else
2154 {
2155 /* Resume all threads of all processes. */
2156 resume_ptid = RESUME_ALL;
2157 }
09cee04b
PA
2158
2159 return resume_ptid;
2160}
2161
fbea99ea
PA
2162/* Return a ptid representing the set of threads that we will resume,
2163 in the perspective of the target, assuming run control handling
2164 does not require leaving some threads stopped (e.g., stepping past
2165 breakpoint). USER_STEP indicates whether we're about to start the
2166 target for a stepping command. */
2167
2168static ptid_t
2169internal_resume_ptid (int user_step)
2170{
2171 /* In non-stop, we always control threads individually. Note that
2172 the target may always work in non-stop mode even with "set
2173 non-stop off", in which case user_visible_resume_ptid could
2174 return a wildcard ptid. */
2175 if (target_is_non_stop_p ())
2176 return inferior_ptid;
2177 else
2178 return user_visible_resume_ptid (user_step);
2179}
2180
64ce06e4
PA
2181/* Wrapper for target_resume, that handles infrun-specific
2182 bookkeeping. */
2183
2184static void
2185do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2186{
2187 struct thread_info *tp = inferior_thread ();
2188
c65d6b55
PA
2189 gdb_assert (!tp->stop_requested);
2190
64ce06e4 2191 /* Install inferior's terminal modes. */
223ffa71 2192 target_terminal::inferior ();
64ce06e4
PA
2193
2194 /* Avoid confusing the next resume, if the next stop/resume
2195 happens to apply to another thread. */
2196 tp->suspend.stop_signal = GDB_SIGNAL_0;
2197
8f572e5c
PA
2198 /* Advise target which signals may be handled silently.
2199
2200 If we have removed breakpoints because we are stepping over one
2201 in-line (in any thread), we need to receive all signals to avoid
2202 accidentally skipping a breakpoint during execution of a signal
2203 handler.
2204
2205 Likewise if we're displaced stepping, otherwise a trap for a
2206 breakpoint in a signal handler might be confused with the
2207 displaced step finishing. We don't make the displaced_step_fixup
2208 step distinguish the cases instead, because:
2209
2210 - a backtrace while stopped in the signal handler would show the
2211 scratch pad as frame older than the signal handler, instead of
2212 the real mainline code.
2213
2214 - when the thread is later resumed, the signal handler would
2215 return to the scratch pad area, which would no longer be
2216 valid. */
2217 if (step_over_info_valid_p ()
00431a78 2218 || displaced_step_in_progress (tp->inf))
adc6a863 2219 target_pass_signals ({});
64ce06e4 2220 else
adc6a863 2221 target_pass_signals (signal_pass);
64ce06e4
PA
2222
2223 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2224
2225 target_commit_resume ();
64ce06e4
PA
2226}
2227
d930703d 2228/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2229 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2230 call 'resume', which handles exceptions. */
c906108c 2231
71d378ae
PA
2232static void
2233resume_1 (enum gdb_signal sig)
c906108c 2234{
515630c5 2235 struct regcache *regcache = get_current_regcache ();
ac7936df 2236 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2237 struct thread_info *tp = inferior_thread ();
515630c5 2238 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2239 const address_space *aspace = regcache->aspace ();
b0f16a3e 2240 ptid_t resume_ptid;
856e7dd6
PA
2241 /* This represents the user's step vs continue request. When
2242 deciding whether "set scheduler-locking step" applies, it's the
2243 user's intention that counts. */
2244 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2245 /* This represents what we'll actually request the target to do.
2246 This can decay from a step to a continue, if e.g., we need to
2247 implement single-stepping with breakpoints (software
2248 single-step). */
6b403daa 2249 int step;
c7e8a53c 2250
c65d6b55 2251 gdb_assert (!tp->stop_requested);
c2829269
PA
2252 gdb_assert (!thread_is_in_step_over_chain (tp));
2253
372316f1
PA
2254 if (tp->suspend.waitstatus_pending_p)
2255 {
2256 if (debug_infrun)
2257 {
23fdd69e
SM
2258 std::string statstr
2259 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2260
372316f1 2261 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2262 "infrun: resume: thread %s has pending wait "
2263 "status %s (currently_stepping=%d).\n",
2264 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2265 currently_stepping (tp));
372316f1
PA
2266 }
2267
2268 tp->resumed = 1;
2269
2270 /* FIXME: What should we do if we are supposed to resume this
2271 thread with a signal? Maybe we should maintain a queue of
2272 pending signals to deliver. */
2273 if (sig != GDB_SIGNAL_0)
2274 {
fd7dcb94 2275 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2276 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2277 }
2278
2279 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2280
2281 if (target_can_async_p ())
9516f85a
AB
2282 {
2283 target_async (1);
2284 /* Tell the event loop we have an event to process. */
2285 mark_async_event_handler (infrun_async_inferior_event_token);
2286 }
372316f1
PA
2287 return;
2288 }
2289
2290 tp->stepped_breakpoint = 0;
2291
6b403daa
PA
2292 /* Depends on stepped_breakpoint. */
2293 step = currently_stepping (tp);
2294
74609e71
YQ
2295 if (current_inferior ()->waiting_for_vfork_done)
2296 {
48f9886d
PA
2297 /* Don't try to single-step a vfork parent that is waiting for
2298 the child to get out of the shared memory region (by exec'ing
2299 or exiting). This is particularly important on software
2300 single-step archs, as the child process would trip on the
2301 software single step breakpoint inserted for the parent
2302 process. Since the parent will not actually execute any
2303 instruction until the child is out of the shared region (such
2304 are vfork's semantics), it is safe to simply continue it.
2305 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2306 the parent, and tell it to `keep_going', which automatically
2307 re-sets it stepping. */
74609e71
YQ
2308 if (debug_infrun)
2309 fprintf_unfiltered (gdb_stdlog,
2310 "infrun: resume : clear step\n");
a09dd441 2311 step = 0;
74609e71
YQ
2312 }
2313
527159b7 2314 if (debug_infrun)
237fc4c9 2315 fprintf_unfiltered (gdb_stdlog,
c9737c08 2316 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2317 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2318 step, gdb_signal_to_symbol_string (sig),
2319 tp->control.trap_expected,
0d9a9a5f
PA
2320 target_pid_to_str (inferior_ptid),
2321 paddress (gdbarch, pc));
c906108c 2322
c2c6d25f
JM
2323 /* Normally, by the time we reach `resume', the breakpoints are either
2324 removed or inserted, as appropriate. The exception is if we're sitting
2325 at a permanent breakpoint; we need to step over it, but permanent
2326 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2327 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2328 {
af48d08f
PA
2329 if (sig != GDB_SIGNAL_0)
2330 {
2331 /* We have a signal to pass to the inferior. The resume
2332 may, or may not take us to the signal handler. If this
2333 is a step, we'll need to stop in the signal handler, if
2334 there's one, (if the target supports stepping into
2335 handlers), or in the next mainline instruction, if
2336 there's no handler. If this is a continue, we need to be
2337 sure to run the handler with all breakpoints inserted.
2338 In all cases, set a breakpoint at the current address
2339 (where the handler returns to), and once that breakpoint
2340 is hit, resume skipping the permanent breakpoint. If
2341 that breakpoint isn't hit, then we've stepped into the
2342 signal handler (or hit some other event). We'll delete
2343 the step-resume breakpoint then. */
2344
2345 if (debug_infrun)
2346 fprintf_unfiltered (gdb_stdlog,
2347 "infrun: resume: skipping permanent breakpoint, "
2348 "deliver signal first\n");
2349
2350 clear_step_over_info ();
2351 tp->control.trap_expected = 0;
2352
2353 if (tp->control.step_resume_breakpoint == NULL)
2354 {
2355 /* Set a "high-priority" step-resume, as we don't want
2356 user breakpoints at PC to trigger (again) when this
2357 hits. */
2358 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2359 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2360
2361 tp->step_after_step_resume_breakpoint = step;
2362 }
2363
2364 insert_breakpoints ();
2365 }
2366 else
2367 {
2368 /* There's no signal to pass, we can go ahead and skip the
2369 permanent breakpoint manually. */
2370 if (debug_infrun)
2371 fprintf_unfiltered (gdb_stdlog,
2372 "infrun: resume: skipping permanent breakpoint\n");
2373 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2374 /* Update pc to reflect the new address from which we will
2375 execute instructions. */
2376 pc = regcache_read_pc (regcache);
2377
2378 if (step)
2379 {
2380 /* We've already advanced the PC, so the stepping part
2381 is done. Now we need to arrange for a trap to be
2382 reported to handle_inferior_event. Set a breakpoint
2383 at the current PC, and run to it. Don't update
2384 prev_pc, because if we end in
44a1ee51
PA
2385 switch_back_to_stepped_thread, we want the "expected
2386 thread advanced also" branch to be taken. IOW, we
2387 don't want this thread to step further from PC
af48d08f 2388 (overstep). */
1ac806b8 2389 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2390 insert_single_step_breakpoint (gdbarch, aspace, pc);
2391 insert_breakpoints ();
2392
fbea99ea 2393 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2394 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2395 tp->resumed = 1;
af48d08f
PA
2396 return;
2397 }
2398 }
6d350bb5 2399 }
c2c6d25f 2400
c1e36e3e
PA
2401 /* If we have a breakpoint to step over, make sure to do a single
2402 step only. Same if we have software watchpoints. */
2403 if (tp->control.trap_expected || bpstat_should_step ())
2404 tp->control.may_range_step = 0;
2405
237fc4c9
PA
2406 /* If enabled, step over breakpoints by executing a copy of the
2407 instruction at a different address.
2408
2409 We can't use displaced stepping when we have a signal to deliver;
2410 the comments for displaced_step_prepare explain why. The
2411 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2412 signals' explain what we do instead.
2413
2414 We can't use displaced stepping when we are waiting for vfork_done
2415 event, displaced stepping breaks the vfork child similarly as single
2416 step software breakpoint. */
3fc8eb30
PA
2417 if (tp->control.trap_expected
2418 && use_displaced_stepping (tp)
cb71640d 2419 && !step_over_info_valid_p ()
a493e3e2 2420 && sig == GDB_SIGNAL_0
74609e71 2421 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2422 {
00431a78 2423 int prepared = displaced_step_prepare (tp);
fc1cf338 2424
3fc8eb30 2425 if (prepared == 0)
d56b7306 2426 {
4d9d9d04
PA
2427 if (debug_infrun)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "Got placed in step-over queue\n");
2430
2431 tp->control.trap_expected = 0;
d56b7306
VP
2432 return;
2433 }
3fc8eb30
PA
2434 else if (prepared < 0)
2435 {
2436 /* Fallback to stepping over the breakpoint in-line. */
2437
2438 if (target_is_non_stop_p ())
2439 stop_all_threads ();
2440
a01bda52 2441 set_step_over_info (regcache->aspace (),
21edc42f 2442 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2443
2444 step = maybe_software_singlestep (gdbarch, pc);
2445
2446 insert_breakpoints ();
2447 }
2448 else if (prepared > 0)
2449 {
2450 struct displaced_step_inferior_state *displaced;
99e40580 2451
3fc8eb30
PA
2452 /* Update pc to reflect the new address from which we will
2453 execute instructions due to displaced stepping. */
00431a78 2454 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2455
00431a78 2456 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2457 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2458 displaced->step_closure);
2459 }
237fc4c9
PA
2460 }
2461
2facfe5c 2462 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2463 else if (step)
2facfe5c 2464 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2465
30852783
UW
2466 /* Currently, our software single-step implementation leads to different
2467 results than hardware single-stepping in one situation: when stepping
2468 into delivering a signal which has an associated signal handler,
2469 hardware single-step will stop at the first instruction of the handler,
2470 while software single-step will simply skip execution of the handler.
2471
2472 For now, this difference in behavior is accepted since there is no
2473 easy way to actually implement single-stepping into a signal handler
2474 without kernel support.
2475
2476 However, there is one scenario where this difference leads to follow-on
2477 problems: if we're stepping off a breakpoint by removing all breakpoints
2478 and then single-stepping. In this case, the software single-step
2479 behavior means that even if there is a *breakpoint* in the signal
2480 handler, GDB still would not stop.
2481
2482 Fortunately, we can at least fix this particular issue. We detect
2483 here the case where we are about to deliver a signal while software
2484 single-stepping with breakpoints removed. In this situation, we
2485 revert the decisions to remove all breakpoints and insert single-
2486 step breakpoints, and instead we install a step-resume breakpoint
2487 at the current address, deliver the signal without stepping, and
2488 once we arrive back at the step-resume breakpoint, actually step
2489 over the breakpoint we originally wanted to step over. */
34b7e8a6 2490 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2491 && sig != GDB_SIGNAL_0
2492 && step_over_info_valid_p ())
30852783
UW
2493 {
2494 /* If we have nested signals or a pending signal is delivered
2495 immediately after a handler returns, might might already have
2496 a step-resume breakpoint set on the earlier handler. We cannot
2497 set another step-resume breakpoint; just continue on until the
2498 original breakpoint is hit. */
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2c03e5be 2501 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2502 tp->step_after_step_resume_breakpoint = 1;
2503 }
2504
34b7e8a6 2505 delete_single_step_breakpoints (tp);
30852783 2506
31e77af2 2507 clear_step_over_info ();
30852783 2508 tp->control.trap_expected = 0;
31e77af2
PA
2509
2510 insert_breakpoints ();
30852783
UW
2511 }
2512
b0f16a3e
SM
2513 /* If STEP is set, it's a request to use hardware stepping
2514 facilities. But in that case, we should never
2515 use singlestep breakpoint. */
34b7e8a6 2516 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2517
fbea99ea 2518 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2519 if (tp->control.trap_expected)
b0f16a3e
SM
2520 {
2521 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2522 hit, either by single-stepping the thread with the breakpoint
2523 removed, or by displaced stepping, with the breakpoint inserted.
2524 In the former case, we need to single-step only this thread,
2525 and keep others stopped, as they can miss this breakpoint if
2526 allowed to run. That's not really a problem for displaced
2527 stepping, but, we still keep other threads stopped, in case
2528 another thread is also stopped for a breakpoint waiting for
2529 its turn in the displaced stepping queue. */
b0f16a3e
SM
2530 resume_ptid = inferior_ptid;
2531 }
fbea99ea
PA
2532 else
2533 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2534
7f5ef605
PA
2535 if (execution_direction != EXEC_REVERSE
2536 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2537 {
372316f1
PA
2538 /* There are two cases where we currently need to step a
2539 breakpoint instruction when we have a signal to deliver:
2540
2541 - See handle_signal_stop where we handle random signals that
2542 could take out us out of the stepping range. Normally, in
2543 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2544 signal handler with a breakpoint at PC, but there are cases
2545 where we should _always_ single-step, even if we have a
2546 step-resume breakpoint, like when a software watchpoint is
2547 set. Assuming single-stepping and delivering a signal at the
2548 same time would takes us to the signal handler, then we could
2549 have removed the breakpoint at PC to step over it. However,
2550 some hardware step targets (like e.g., Mac OS) can't step
2551 into signal handlers, and for those, we need to leave the
2552 breakpoint at PC inserted, as otherwise if the handler
2553 recurses and executes PC again, it'll miss the breakpoint.
2554 So we leave the breakpoint inserted anyway, but we need to
2555 record that we tried to step a breakpoint instruction, so
372316f1
PA
2556 that adjust_pc_after_break doesn't end up confused.
2557
2558 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2559 in one thread after another thread that was stepping had been
2560 momentarily paused for a step-over. When we re-resume the
2561 stepping thread, it may be resumed from that address with a
2562 breakpoint that hasn't trapped yet. Seen with
2563 gdb.threads/non-stop-fair-events.exp, on targets that don't
2564 do displaced stepping. */
2565
2566 if (debug_infrun)
2567 fprintf_unfiltered (gdb_stdlog,
2568 "infrun: resume: [%s] stepped breakpoint\n",
2569 target_pid_to_str (tp->ptid));
7f5ef605
PA
2570
2571 tp->stepped_breakpoint = 1;
2572
b0f16a3e
SM
2573 /* Most targets can step a breakpoint instruction, thus
2574 executing it normally. But if this one cannot, just
2575 continue and we will hit it anyway. */
7f5ef605 2576 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2577 step = 0;
2578 }
ef5cf84e 2579
b0f16a3e 2580 if (debug_displaced
cb71640d 2581 && tp->control.trap_expected
3fc8eb30 2582 && use_displaced_stepping (tp)
cb71640d 2583 && !step_over_info_valid_p ())
b0f16a3e 2584 {
00431a78 2585 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2586 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2587 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2588 gdb_byte buf[4];
2589
2590 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2591 paddress (resume_gdbarch, actual_pc));
2592 read_memory (actual_pc, buf, sizeof (buf));
2593 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2594 }
237fc4c9 2595
b0f16a3e
SM
2596 if (tp->control.may_range_step)
2597 {
2598 /* If we're resuming a thread with the PC out of the step
2599 range, then we're doing some nested/finer run control
2600 operation, like stepping the thread out of the dynamic
2601 linker or the displaced stepping scratch pad. We
2602 shouldn't have allowed a range step then. */
2603 gdb_assert (pc_in_thread_step_range (pc, tp));
2604 }
c1e36e3e 2605
64ce06e4 2606 do_target_resume (resume_ptid, step, sig);
372316f1 2607 tp->resumed = 1;
c906108c 2608}
71d378ae
PA
2609
2610/* Resume the inferior. SIG is the signal to give the inferior
2611 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2612 rolls back state on error. */
2613
aff4e175 2614static void
71d378ae
PA
2615resume (gdb_signal sig)
2616{
2617 TRY
2618 {
2619 resume_1 (sig);
2620 }
2621 CATCH (ex, RETURN_MASK_ALL)
2622 {
2623 /* If resuming is being aborted for any reason, delete any
2624 single-step breakpoint resume_1 may have created, to avoid
2625 confusing the following resumption, and to avoid leaving
2626 single-step breakpoints perturbing other threads, in case
2627 we're running in non-stop mode. */
2628 if (inferior_ptid != null_ptid)
2629 delete_single_step_breakpoints (inferior_thread ());
2630 throw_exception (ex);
2631 }
2632 END_CATCH
2633}
2634
c906108c 2635\f
237fc4c9 2636/* Proceeding. */
c906108c 2637
4c2f2a79
PA
2638/* See infrun.h. */
2639
2640/* Counter that tracks number of user visible stops. This can be used
2641 to tell whether a command has proceeded the inferior past the
2642 current location. This allows e.g., inferior function calls in
2643 breakpoint commands to not interrupt the command list. When the
2644 call finishes successfully, the inferior is standing at the same
2645 breakpoint as if nothing happened (and so we don't call
2646 normal_stop). */
2647static ULONGEST current_stop_id;
2648
2649/* See infrun.h. */
2650
2651ULONGEST
2652get_stop_id (void)
2653{
2654 return current_stop_id;
2655}
2656
2657/* Called when we report a user visible stop. */
2658
2659static void
2660new_stop_id (void)
2661{
2662 current_stop_id++;
2663}
2664
c906108c
SS
2665/* Clear out all variables saying what to do when inferior is continued.
2666 First do this, then set the ones you want, then call `proceed'. */
2667
a7212384
UW
2668static void
2669clear_proceed_status_thread (struct thread_info *tp)
c906108c 2670{
a7212384
UW
2671 if (debug_infrun)
2672 fprintf_unfiltered (gdb_stdlog,
2673 "infrun: clear_proceed_status_thread (%s)\n",
2674 target_pid_to_str (tp->ptid));
d6b48e9c 2675
372316f1
PA
2676 /* If we're starting a new sequence, then the previous finished
2677 single-step is no longer relevant. */
2678 if (tp->suspend.waitstatus_pending_p)
2679 {
2680 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2681 {
2682 if (debug_infrun)
2683 fprintf_unfiltered (gdb_stdlog,
2684 "infrun: clear_proceed_status: pending "
2685 "event of %s was a finished step. "
2686 "Discarding.\n",
2687 target_pid_to_str (tp->ptid));
2688
2689 tp->suspend.waitstatus_pending_p = 0;
2690 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2691 }
2692 else if (debug_infrun)
2693 {
23fdd69e
SM
2694 std::string statstr
2695 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2696
372316f1
PA
2697 fprintf_unfiltered (gdb_stdlog,
2698 "infrun: clear_proceed_status_thread: thread %s "
2699 "has pending wait status %s "
2700 "(currently_stepping=%d).\n",
23fdd69e 2701 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2702 currently_stepping (tp));
372316f1
PA
2703 }
2704 }
2705
70509625
PA
2706 /* If this signal should not be seen by program, give it zero.
2707 Used for debugging signals. */
2708 if (!signal_pass_state (tp->suspend.stop_signal))
2709 tp->suspend.stop_signal = GDB_SIGNAL_0;
2710
46e3ed7f 2711 delete tp->thread_fsm;
243a9253
PA
2712 tp->thread_fsm = NULL;
2713
16c381f0
JK
2714 tp->control.trap_expected = 0;
2715 tp->control.step_range_start = 0;
2716 tp->control.step_range_end = 0;
c1e36e3e 2717 tp->control.may_range_step = 0;
16c381f0
JK
2718 tp->control.step_frame_id = null_frame_id;
2719 tp->control.step_stack_frame_id = null_frame_id;
2720 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2721 tp->control.step_start_function = NULL;
a7212384 2722 tp->stop_requested = 0;
4e1c45ea 2723
16c381f0 2724 tp->control.stop_step = 0;
32400beb 2725
16c381f0 2726 tp->control.proceed_to_finish = 0;
414c69f7 2727
856e7dd6 2728 tp->control.stepping_command = 0;
17b2616c 2729
a7212384 2730 /* Discard any remaining commands or status from previous stop. */
16c381f0 2731 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2732}
32400beb 2733
a7212384 2734void
70509625 2735clear_proceed_status (int step)
a7212384 2736{
f2665db5
MM
2737 /* With scheduler-locking replay, stop replaying other threads if we're
2738 not replaying the user-visible resume ptid.
2739
2740 This is a convenience feature to not require the user to explicitly
2741 stop replaying the other threads. We're assuming that the user's
2742 intent is to resume tracing the recorded process. */
2743 if (!non_stop && scheduler_mode == schedlock_replay
2744 && target_record_is_replaying (minus_one_ptid)
2745 && !target_record_will_replay (user_visible_resume_ptid (step),
2746 execution_direction))
2747 target_record_stop_replaying ();
2748
08036331 2749 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2750 {
08036331 2751 ptid_t resume_ptid = user_visible_resume_ptid (step);
70509625
PA
2752
2753 /* In all-stop mode, delete the per-thread status of all threads
2754 we're about to resume, implicitly and explicitly. */
08036331
PA
2755 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2756 clear_proceed_status_thread (tp);
6c95b8df
PA
2757 }
2758
d7e15655 2759 if (inferior_ptid != null_ptid)
a7212384
UW
2760 {
2761 struct inferior *inferior;
2762
2763 if (non_stop)
2764 {
6c95b8df
PA
2765 /* If in non-stop mode, only delete the per-thread status of
2766 the current thread. */
a7212384
UW
2767 clear_proceed_status_thread (inferior_thread ());
2768 }
6c95b8df 2769
d6b48e9c 2770 inferior = current_inferior ();
16c381f0 2771 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2772 }
2773
76727919 2774 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2775}
2776
99619bea
PA
2777/* Returns true if TP is still stopped at a breakpoint that needs
2778 stepping-over in order to make progress. If the breakpoint is gone
2779 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2780
2781static int
6c4cfb24 2782thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2783{
2784 if (tp->stepping_over_breakpoint)
2785 {
00431a78 2786 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2787
a01bda52 2788 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2789 regcache_read_pc (regcache))
2790 == ordinary_breakpoint_here)
99619bea
PA
2791 return 1;
2792
2793 tp->stepping_over_breakpoint = 0;
2794 }
2795
2796 return 0;
2797}
2798
6c4cfb24
PA
2799/* Check whether thread TP still needs to start a step-over in order
2800 to make progress when resumed. Returns an bitwise or of enum
2801 step_over_what bits, indicating what needs to be stepped over. */
2802
8d297bbf 2803static step_over_what
6c4cfb24
PA
2804thread_still_needs_step_over (struct thread_info *tp)
2805{
8d297bbf 2806 step_over_what what = 0;
6c4cfb24
PA
2807
2808 if (thread_still_needs_step_over_bp (tp))
2809 what |= STEP_OVER_BREAKPOINT;
2810
2811 if (tp->stepping_over_watchpoint
2812 && !target_have_steppable_watchpoint)
2813 what |= STEP_OVER_WATCHPOINT;
2814
2815 return what;
2816}
2817
483805cf
PA
2818/* Returns true if scheduler locking applies. STEP indicates whether
2819 we're about to do a step/next-like command to a thread. */
2820
2821static int
856e7dd6 2822schedlock_applies (struct thread_info *tp)
483805cf
PA
2823{
2824 return (scheduler_mode == schedlock_on
2825 || (scheduler_mode == schedlock_step
f2665db5
MM
2826 && tp->control.stepping_command)
2827 || (scheduler_mode == schedlock_replay
2828 && target_record_will_replay (minus_one_ptid,
2829 execution_direction)));
483805cf
PA
2830}
2831
c906108c
SS
2832/* Basic routine for continuing the program in various fashions.
2833
2834 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2835 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2836 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2837
2838 You should call clear_proceed_status before calling proceed. */
2839
2840void
64ce06e4 2841proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2842{
e58b0e63
PA
2843 struct regcache *regcache;
2844 struct gdbarch *gdbarch;
e58b0e63 2845 CORE_ADDR pc;
4d9d9d04
PA
2846 ptid_t resume_ptid;
2847 struct execution_control_state ecss;
2848 struct execution_control_state *ecs = &ecss;
4d9d9d04 2849 int started;
c906108c 2850
e58b0e63
PA
2851 /* If we're stopped at a fork/vfork, follow the branch set by the
2852 "set follow-fork-mode" command; otherwise, we'll just proceed
2853 resuming the current thread. */
2854 if (!follow_fork ())
2855 {
2856 /* The target for some reason decided not to resume. */
2857 normal_stop ();
f148b27e
PA
2858 if (target_can_async_p ())
2859 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2860 return;
2861 }
2862
842951eb
PA
2863 /* We'll update this if & when we switch to a new thread. */
2864 previous_inferior_ptid = inferior_ptid;
2865
e58b0e63 2866 regcache = get_current_regcache ();
ac7936df 2867 gdbarch = regcache->arch ();
8b86c959
YQ
2868 const address_space *aspace = regcache->aspace ();
2869
e58b0e63 2870 pc = regcache_read_pc (regcache);
08036331 2871 thread_info *cur_thr = inferior_thread ();
e58b0e63 2872
99619bea 2873 /* Fill in with reasonable starting values. */
08036331 2874 init_thread_stepping_state (cur_thr);
99619bea 2875
08036331 2876 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2877
2acceee2 2878 if (addr == (CORE_ADDR) -1)
c906108c 2879 {
08036331 2880 if (pc == cur_thr->suspend.stop_pc
af48d08f 2881 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2882 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2883 /* There is a breakpoint at the address we will resume at,
2884 step one instruction before inserting breakpoints so that
2885 we do not stop right away (and report a second hit at this
b2175913
MS
2886 breakpoint).
2887
2888 Note, we don't do this in reverse, because we won't
2889 actually be executing the breakpoint insn anyway.
2890 We'll be (un-)executing the previous instruction. */
08036331 2891 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
2892 else if (gdbarch_single_step_through_delay_p (gdbarch)
2893 && gdbarch_single_step_through_delay (gdbarch,
2894 get_current_frame ()))
3352ef37
AC
2895 /* We stepped onto an instruction that needs to be stepped
2896 again before re-inserting the breakpoint, do so. */
08036331 2897 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
2898 }
2899 else
2900 {
515630c5 2901 regcache_write_pc (regcache, addr);
c906108c
SS
2902 }
2903
70509625 2904 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 2905 cur_thr->suspend.stop_signal = siggnal;
70509625 2906
08036331 2907 resume_ptid = user_visible_resume_ptid (cur_thr->control.stepping_command);
4d9d9d04
PA
2908
2909 /* If an exception is thrown from this point on, make sure to
2910 propagate GDB's knowledge of the executing state to the
2911 frontend/user running state. */
731f534f 2912 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
2913
2914 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2915 threads (e.g., we might need to set threads stepping over
2916 breakpoints first), from the user/frontend's point of view, all
2917 threads in RESUME_PTID are now running. Unless we're calling an
2918 inferior function, as in that case we pretend the inferior
2919 doesn't run at all. */
08036331 2920 if (!cur_thr->control.in_infcall)
4d9d9d04 2921 set_running (resume_ptid, 1);
17b2616c 2922
527159b7 2923 if (debug_infrun)
8a9de0e4 2924 fprintf_unfiltered (gdb_stdlog,
64ce06e4 2925 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 2926 paddress (gdbarch, addr),
64ce06e4 2927 gdb_signal_to_symbol_string (siggnal));
527159b7 2928
4d9d9d04
PA
2929 annotate_starting ();
2930
2931 /* Make sure that output from GDB appears before output from the
2932 inferior. */
2933 gdb_flush (gdb_stdout);
2934
d930703d
PA
2935 /* Since we've marked the inferior running, give it the terminal. A
2936 QUIT/Ctrl-C from here on is forwarded to the target (which can
2937 still detect attempts to unblock a stuck connection with repeated
2938 Ctrl-C from within target_pass_ctrlc). */
2939 target_terminal::inferior ();
2940
4d9d9d04
PA
2941 /* In a multi-threaded task we may select another thread and
2942 then continue or step.
2943
2944 But if a thread that we're resuming had stopped at a breakpoint,
2945 it will immediately cause another breakpoint stop without any
2946 execution (i.e. it will report a breakpoint hit incorrectly). So
2947 we must step over it first.
2948
2949 Look for threads other than the current (TP) that reported a
2950 breakpoint hit and haven't been resumed yet since. */
2951
2952 /* If scheduler locking applies, we can avoid iterating over all
2953 threads. */
08036331 2954 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 2955 {
08036331
PA
2956 for (thread_info *tp : all_non_exited_threads (resume_ptid))
2957 {
4d9d9d04
PA
2958 /* Ignore the current thread here. It's handled
2959 afterwards. */
08036331 2960 if (tp == cur_thr)
4d9d9d04 2961 continue;
c906108c 2962
4d9d9d04
PA
2963 if (!thread_still_needs_step_over (tp))
2964 continue;
2965
2966 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 2967
99619bea
PA
2968 if (debug_infrun)
2969 fprintf_unfiltered (gdb_stdlog,
2970 "infrun: need to step-over [%s] first\n",
4d9d9d04 2971 target_pid_to_str (tp->ptid));
99619bea 2972
4d9d9d04 2973 thread_step_over_chain_enqueue (tp);
2adfaa28 2974 }
30852783
UW
2975 }
2976
4d9d9d04
PA
2977 /* Enqueue the current thread last, so that we move all other
2978 threads over their breakpoints first. */
08036331
PA
2979 if (cur_thr->stepping_over_breakpoint)
2980 thread_step_over_chain_enqueue (cur_thr);
30852783 2981
4d9d9d04
PA
2982 /* If the thread isn't started, we'll still need to set its prev_pc,
2983 so that switch_back_to_stepped_thread knows the thread hasn't
2984 advanced. Must do this before resuming any thread, as in
2985 all-stop/remote, once we resume we can't send any other packet
2986 until the target stops again. */
08036331 2987 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 2988
a9bc57b9
TT
2989 {
2990 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 2991
a9bc57b9 2992 started = start_step_over ();
c906108c 2993
a9bc57b9
TT
2994 if (step_over_info_valid_p ())
2995 {
2996 /* Either this thread started a new in-line step over, or some
2997 other thread was already doing one. In either case, don't
2998 resume anything else until the step-over is finished. */
2999 }
3000 else if (started && !target_is_non_stop_p ())
3001 {
3002 /* A new displaced stepping sequence was started. In all-stop,
3003 we can't talk to the target anymore until it next stops. */
3004 }
3005 else if (!non_stop && target_is_non_stop_p ())
3006 {
3007 /* In all-stop, but the target is always in non-stop mode.
3008 Start all other threads that are implicitly resumed too. */
08036331 3009 for (thread_info *tp : all_non_exited_threads (resume_ptid))
fbea99ea 3010 {
fbea99ea
PA
3011 if (tp->resumed)
3012 {
3013 if (debug_infrun)
3014 fprintf_unfiltered (gdb_stdlog,
3015 "infrun: proceed: [%s] resumed\n",
3016 target_pid_to_str (tp->ptid));
3017 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3018 continue;
3019 }
3020
3021 if (thread_is_in_step_over_chain (tp))
3022 {
3023 if (debug_infrun)
3024 fprintf_unfiltered (gdb_stdlog,
3025 "infrun: proceed: [%s] needs step-over\n",
3026 target_pid_to_str (tp->ptid));
3027 continue;
3028 }
3029
3030 if (debug_infrun)
3031 fprintf_unfiltered (gdb_stdlog,
3032 "infrun: proceed: resuming %s\n",
3033 target_pid_to_str (tp->ptid));
3034
3035 reset_ecs (ecs, tp);
00431a78 3036 switch_to_thread (tp);
fbea99ea
PA
3037 keep_going_pass_signal (ecs);
3038 if (!ecs->wait_some_more)
fd7dcb94 3039 error (_("Command aborted."));
fbea99ea 3040 }
a9bc57b9 3041 }
08036331 3042 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3043 {
3044 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3045 reset_ecs (ecs, cur_thr);
3046 switch_to_thread (cur_thr);
a9bc57b9
TT
3047 keep_going_pass_signal (ecs);
3048 if (!ecs->wait_some_more)
3049 error (_("Command aborted."));
3050 }
3051 }
c906108c 3052
85ad3aaf
PA
3053 target_commit_resume ();
3054
731f534f 3055 finish_state.release ();
c906108c 3056
0b333c5e
PA
3057 /* Tell the event loop to wait for it to stop. If the target
3058 supports asynchronous execution, it'll do this from within
3059 target_resume. */
362646f5 3060 if (!target_can_async_p ())
0b333c5e 3061 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3062}
c906108c
SS
3063\f
3064
3065/* Start remote-debugging of a machine over a serial link. */
96baa820 3066
c906108c 3067void
8621d6a9 3068start_remote (int from_tty)
c906108c 3069{
d6b48e9c 3070 struct inferior *inferior;
d6b48e9c
PA
3071
3072 inferior = current_inferior ();
16c381f0 3073 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3074
1777feb0 3075 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3076 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3077 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3078 nothing is returned (instead of just blocking). Because of this,
3079 targets expecting an immediate response need to, internally, set
3080 things up so that the target_wait() is forced to eventually
1777feb0 3081 timeout. */
6426a772
JM
3082 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3083 differentiate to its caller what the state of the target is after
3084 the initial open has been performed. Here we're assuming that
3085 the target has stopped. It should be possible to eventually have
3086 target_open() return to the caller an indication that the target
3087 is currently running and GDB state should be set to the same as
1777feb0 3088 for an async run. */
e4c8541f 3089 wait_for_inferior ();
8621d6a9
DJ
3090
3091 /* Now that the inferior has stopped, do any bookkeeping like
3092 loading shared libraries. We want to do this before normal_stop,
3093 so that the displayed frame is up to date. */
8b88a78e 3094 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3095
6426a772 3096 normal_stop ();
c906108c
SS
3097}
3098
3099/* Initialize static vars when a new inferior begins. */
3100
3101void
96baa820 3102init_wait_for_inferior (void)
c906108c
SS
3103{
3104 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3105
c906108c
SS
3106 breakpoint_init_inferior (inf_starting);
3107
70509625 3108 clear_proceed_status (0);
9f976b41 3109
ca005067 3110 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3111
842951eb 3112 previous_inferior_ptid = inferior_ptid;
c906108c 3113}
237fc4c9 3114
c906108c 3115\f
488f131b 3116
ec9499be 3117static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3118
568d6575
UW
3119static void handle_step_into_function (struct gdbarch *gdbarch,
3120 struct execution_control_state *ecs);
3121static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3122 struct execution_control_state *ecs);
4f5d7f63 3123static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3124static void check_exception_resume (struct execution_control_state *,
28106bc2 3125 struct frame_info *);
611c83ae 3126
bdc36728 3127static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3128static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3129static void keep_going (struct execution_control_state *ecs);
94c57d6a 3130static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3131static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3132
252fbfc8
PA
3133/* This function is attached as a "thread_stop_requested" observer.
3134 Cleanup local state that assumed the PTID was to be resumed, and
3135 report the stop to the frontend. */
3136
2c0b251b 3137static void
252fbfc8
PA
3138infrun_thread_stop_requested (ptid_t ptid)
3139{
c65d6b55
PA
3140 /* PTID was requested to stop. If the thread was already stopped,
3141 but the user/frontend doesn't know about that yet (e.g., the
3142 thread had been temporarily paused for some step-over), set up
3143 for reporting the stop now. */
08036331
PA
3144 for (thread_info *tp : all_threads (ptid))
3145 {
3146 if (tp->state != THREAD_RUNNING)
3147 continue;
3148 if (tp->executing)
3149 continue;
c65d6b55 3150
08036331
PA
3151 /* Remove matching threads from the step-over queue, so
3152 start_step_over doesn't try to resume them
3153 automatically. */
3154 if (thread_is_in_step_over_chain (tp))
3155 thread_step_over_chain_remove (tp);
c65d6b55 3156
08036331
PA
3157 /* If the thread is stopped, but the user/frontend doesn't
3158 know about that yet, queue a pending event, as if the
3159 thread had just stopped now. Unless the thread already had
3160 a pending event. */
3161 if (!tp->suspend.waitstatus_pending_p)
3162 {
3163 tp->suspend.waitstatus_pending_p = 1;
3164 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3165 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3166 }
c65d6b55 3167
08036331
PA
3168 /* Clear the inline-frame state, since we're re-processing the
3169 stop. */
3170 clear_inline_frame_state (tp->ptid);
c65d6b55 3171
08036331
PA
3172 /* If this thread was paused because some other thread was
3173 doing an inline-step over, let that finish first. Once
3174 that happens, we'll restart all threads and consume pending
3175 stop events then. */
3176 if (step_over_info_valid_p ())
3177 continue;
3178
3179 /* Otherwise we can process the (new) pending event now. Set
3180 it so this pending event is considered by
3181 do_target_wait. */
3182 tp->resumed = 1;
3183 }
252fbfc8
PA
3184}
3185
a07daef3
PA
3186static void
3187infrun_thread_thread_exit (struct thread_info *tp, int silent)
3188{
d7e15655 3189 if (target_last_wait_ptid == tp->ptid)
a07daef3
PA
3190 nullify_last_target_wait_ptid ();
3191}
3192
0cbcdb96
PA
3193/* Delete the step resume, single-step and longjmp/exception resume
3194 breakpoints of TP. */
4e1c45ea 3195
0cbcdb96
PA
3196static void
3197delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3198{
0cbcdb96
PA
3199 delete_step_resume_breakpoint (tp);
3200 delete_exception_resume_breakpoint (tp);
34b7e8a6 3201 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3202}
3203
0cbcdb96
PA
3204/* If the target still has execution, call FUNC for each thread that
3205 just stopped. In all-stop, that's all the non-exited threads; in
3206 non-stop, that's the current thread, only. */
3207
3208typedef void (*for_each_just_stopped_thread_callback_func)
3209 (struct thread_info *tp);
4e1c45ea
PA
3210
3211static void
0cbcdb96 3212for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3213{
d7e15655 3214 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3215 return;
3216
fbea99ea 3217 if (target_is_non_stop_p ())
4e1c45ea 3218 {
0cbcdb96
PA
3219 /* If in non-stop mode, only the current thread stopped. */
3220 func (inferior_thread ());
4e1c45ea
PA
3221 }
3222 else
0cbcdb96 3223 {
0cbcdb96 3224 /* In all-stop mode, all threads have stopped. */
08036331
PA
3225 for (thread_info *tp : all_non_exited_threads ())
3226 func (tp);
0cbcdb96
PA
3227 }
3228}
3229
3230/* Delete the step resume and longjmp/exception resume breakpoints of
3231 the threads that just stopped. */
3232
3233static void
3234delete_just_stopped_threads_infrun_breakpoints (void)
3235{
3236 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3237}
3238
3239/* Delete the single-step breakpoints of the threads that just
3240 stopped. */
7c16b83e 3241
34b7e8a6
PA
3242static void
3243delete_just_stopped_threads_single_step_breakpoints (void)
3244{
3245 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3246}
3247
221e1a37 3248/* See infrun.h. */
223698f8 3249
221e1a37 3250void
223698f8
DE
3251print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3252 const struct target_waitstatus *ws)
3253{
23fdd69e 3254 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3255 string_file stb;
223698f8
DE
3256
3257 /* The text is split over several lines because it was getting too long.
3258 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3259 output as a unit; we want only one timestamp printed if debug_timestamp
3260 is set. */
3261
d7e74731 3262 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3263 waiton_ptid.pid (),
e38504b3 3264 waiton_ptid.lwp (),
cc6bcb54 3265 waiton_ptid.tid ());
e99b03dc 3266 if (waiton_ptid.pid () != -1)
d7e74731
PA
3267 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3268 stb.printf (", status) =\n");
3269 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3270 result_ptid.pid (),
e38504b3 3271 result_ptid.lwp (),
cc6bcb54 3272 result_ptid.tid (),
d7e74731 3273 target_pid_to_str (result_ptid));
23fdd69e 3274 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3275
3276 /* This uses %s in part to handle %'s in the text, but also to avoid
3277 a gcc error: the format attribute requires a string literal. */
d7e74731 3278 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3279}
3280
372316f1
PA
3281/* Select a thread at random, out of those which are resumed and have
3282 had events. */
3283
3284static struct thread_info *
3285random_pending_event_thread (ptid_t waiton_ptid)
3286{
372316f1 3287 int num_events = 0;
08036331
PA
3288
3289 auto has_event = [] (thread_info *tp)
3290 {
3291 return (tp->resumed
3292 && tp->suspend.waitstatus_pending_p);
3293 };
372316f1
PA
3294
3295 /* First see how many events we have. Count only resumed threads
3296 that have an event pending. */
08036331
PA
3297 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3298 if (has_event (tp))
372316f1
PA
3299 num_events++;
3300
3301 if (num_events == 0)
3302 return NULL;
3303
3304 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3305 int random_selector = (int) ((num_events * (double) rand ())
3306 / (RAND_MAX + 1.0));
372316f1
PA
3307
3308 if (debug_infrun && num_events > 1)
3309 fprintf_unfiltered (gdb_stdlog,
3310 "infrun: Found %d events, selecting #%d\n",
3311 num_events, random_selector);
3312
3313 /* Select the Nth thread that has had an event. */
08036331
PA
3314 for (thread_info *tp : all_non_exited_threads (waiton_ptid))
3315 if (has_event (tp))
372316f1 3316 if (random_selector-- == 0)
08036331 3317 return tp;
372316f1 3318
08036331 3319 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3320}
3321
3322/* Wrapper for target_wait that first checks whether threads have
3323 pending statuses to report before actually asking the target for
3324 more events. */
3325
3326static ptid_t
3327do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3328{
3329 ptid_t event_ptid;
3330 struct thread_info *tp;
3331
3332 /* First check if there is a resumed thread with a wait status
3333 pending. */
d7e15655 3334 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1
PA
3335 {
3336 tp = random_pending_event_thread (ptid);
3337 }
3338 else
3339 {
3340 if (debug_infrun)
3341 fprintf_unfiltered (gdb_stdlog,
3342 "infrun: Waiting for specific thread %s.\n",
3343 target_pid_to_str (ptid));
3344
3345 /* We have a specific thread to check. */
3346 tp = find_thread_ptid (ptid);
3347 gdb_assert (tp != NULL);
3348 if (!tp->suspend.waitstatus_pending_p)
3349 tp = NULL;
3350 }
3351
3352 if (tp != NULL
3353 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3354 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3355 {
00431a78 3356 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3357 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3358 CORE_ADDR pc;
3359 int discard = 0;
3360
3361 pc = regcache_read_pc (regcache);
3362
3363 if (pc != tp->suspend.stop_pc)
3364 {
3365 if (debug_infrun)
3366 fprintf_unfiltered (gdb_stdlog,
3367 "infrun: PC of %s changed. was=%s, now=%s\n",
3368 target_pid_to_str (tp->ptid),
defd2172 3369 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3370 paddress (gdbarch, pc));
3371 discard = 1;
3372 }
a01bda52 3373 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3374 {
3375 if (debug_infrun)
3376 fprintf_unfiltered (gdb_stdlog,
3377 "infrun: previous breakpoint of %s, at %s gone\n",
3378 target_pid_to_str (tp->ptid),
3379 paddress (gdbarch, pc));
3380
3381 discard = 1;
3382 }
3383
3384 if (discard)
3385 {
3386 if (debug_infrun)
3387 fprintf_unfiltered (gdb_stdlog,
3388 "infrun: pending event of %s cancelled.\n",
3389 target_pid_to_str (tp->ptid));
3390
3391 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3392 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3393 }
3394 }
3395
3396 if (tp != NULL)
3397 {
3398 if (debug_infrun)
3399 {
23fdd69e
SM
3400 std::string statstr
3401 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3402
372316f1
PA
3403 fprintf_unfiltered (gdb_stdlog,
3404 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3405 statstr.c_str (),
372316f1 3406 target_pid_to_str (tp->ptid));
372316f1
PA
3407 }
3408
3409 /* Now that we've selected our final event LWP, un-adjust its PC
3410 if it was a software breakpoint (and the target doesn't
3411 always adjust the PC itself). */
3412 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3413 && !target_supports_stopped_by_sw_breakpoint ())
3414 {
3415 struct regcache *regcache;
3416 struct gdbarch *gdbarch;
3417 int decr_pc;
3418
00431a78 3419 regcache = get_thread_regcache (tp);
ac7936df 3420 gdbarch = regcache->arch ();
372316f1
PA
3421
3422 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3423 if (decr_pc != 0)
3424 {
3425 CORE_ADDR pc;
3426
3427 pc = regcache_read_pc (regcache);
3428 regcache_write_pc (regcache, pc + decr_pc);
3429 }
3430 }
3431
3432 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3433 *status = tp->suspend.waitstatus;
3434 tp->suspend.waitstatus_pending_p = 0;
3435
3436 /* Wake up the event loop again, until all pending events are
3437 processed. */
3438 if (target_is_async_p ())
3439 mark_async_event_handler (infrun_async_inferior_event_token);
3440 return tp->ptid;
3441 }
3442
3443 /* But if we don't find one, we'll have to wait. */
3444
3445 if (deprecated_target_wait_hook)
3446 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3447 else
3448 event_ptid = target_wait (ptid, status, options);
3449
3450 return event_ptid;
3451}
3452
24291992
PA
3453/* Prepare and stabilize the inferior for detaching it. E.g.,
3454 detaching while a thread is displaced stepping is a recipe for
3455 crashing it, as nothing would readjust the PC out of the scratch
3456 pad. */
3457
3458void
3459prepare_for_detach (void)
3460{
3461 struct inferior *inf = current_inferior ();
f2907e49 3462 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3463
00431a78 3464 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3465
3466 /* Is any thread of this process displaced stepping? If not,
3467 there's nothing else to do. */
d20172fc 3468 if (displaced->step_thread == nullptr)
24291992
PA
3469 return;
3470
3471 if (debug_infrun)
3472 fprintf_unfiltered (gdb_stdlog,
3473 "displaced-stepping in-process while detaching");
3474
9bcb1f16 3475 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3476
00431a78 3477 while (displaced->step_thread != nullptr)
24291992 3478 {
24291992
PA
3479 struct execution_control_state ecss;
3480 struct execution_control_state *ecs;
3481
3482 ecs = &ecss;
3483 memset (ecs, 0, sizeof (*ecs));
3484
3485 overlay_cache_invalid = 1;
f15cb84a
YQ
3486 /* Flush target cache before starting to handle each event.
3487 Target was running and cache could be stale. This is just a
3488 heuristic. Running threads may modify target memory, but we
3489 don't get any event. */
3490 target_dcache_invalidate ();
24291992 3491
372316f1 3492 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3493
3494 if (debug_infrun)
3495 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3496
3497 /* If an error happens while handling the event, propagate GDB's
3498 knowledge of the executing state to the frontend/user running
3499 state. */
731f534f 3500 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3501
3502 /* Now figure out what to do with the result of the result. */
3503 handle_inferior_event (ecs);
3504
3505 /* No error, don't finish the state yet. */
731f534f 3506 finish_state.release ();
24291992
PA
3507
3508 /* Breakpoints and watchpoints are not installed on the target
3509 at this point, and signals are passed directly to the
3510 inferior, so this must mean the process is gone. */
3511 if (!ecs->wait_some_more)
3512 {
9bcb1f16 3513 restore_detaching.release ();
24291992
PA
3514 error (_("Program exited while detaching"));
3515 }
3516 }
3517
9bcb1f16 3518 restore_detaching.release ();
24291992
PA
3519}
3520
cd0fc7c3 3521/* Wait for control to return from inferior to debugger.
ae123ec6 3522
cd0fc7c3
SS
3523 If inferior gets a signal, we may decide to start it up again
3524 instead of returning. That is why there is a loop in this function.
3525 When this function actually returns it means the inferior
3526 should be left stopped and GDB should read more commands. */
3527
3528void
e4c8541f 3529wait_for_inferior (void)
cd0fc7c3 3530{
527159b7 3531 if (debug_infrun)
ae123ec6 3532 fprintf_unfiltered
e4c8541f 3533 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3534
4c41382a 3535 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3536
e6f5c25b
PA
3537 /* If an error happens while handling the event, propagate GDB's
3538 knowledge of the executing state to the frontend/user running
3539 state. */
731f534f 3540 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3541
c906108c
SS
3542 while (1)
3543 {
ae25568b
PA
3544 struct execution_control_state ecss;
3545 struct execution_control_state *ecs = &ecss;
963f9c80 3546 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3547
ae25568b
PA
3548 memset (ecs, 0, sizeof (*ecs));
3549
ec9499be 3550 overlay_cache_invalid = 1;
ec9499be 3551
f15cb84a
YQ
3552 /* Flush target cache before starting to handle each event.
3553 Target was running and cache could be stale. This is just a
3554 heuristic. Running threads may modify target memory, but we
3555 don't get any event. */
3556 target_dcache_invalidate ();
3557
372316f1 3558 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3559
f00150c9 3560 if (debug_infrun)
223698f8 3561 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3562
cd0fc7c3
SS
3563 /* Now figure out what to do with the result of the result. */
3564 handle_inferior_event (ecs);
c906108c 3565
cd0fc7c3
SS
3566 if (!ecs->wait_some_more)
3567 break;
3568 }
4e1c45ea 3569
e6f5c25b 3570 /* No error, don't finish the state yet. */
731f534f 3571 finish_state.release ();
cd0fc7c3 3572}
c906108c 3573
d3d4baed
PA
3574/* Cleanup that reinstalls the readline callback handler, if the
3575 target is running in the background. If while handling the target
3576 event something triggered a secondary prompt, like e.g., a
3577 pagination prompt, we'll have removed the callback handler (see
3578 gdb_readline_wrapper_line). Need to do this as we go back to the
3579 event loop, ready to process further input. Note this has no
3580 effect if the handler hasn't actually been removed, because calling
3581 rl_callback_handler_install resets the line buffer, thus losing
3582 input. */
3583
3584static void
d238133d 3585reinstall_readline_callback_handler_cleanup ()
d3d4baed 3586{
3b12939d
PA
3587 struct ui *ui = current_ui;
3588
3589 if (!ui->async)
6c400b59
PA
3590 {
3591 /* We're not going back to the top level event loop yet. Don't
3592 install the readline callback, as it'd prep the terminal,
3593 readline-style (raw, noecho) (e.g., --batch). We'll install
3594 it the next time the prompt is displayed, when we're ready
3595 for input. */
3596 return;
3597 }
3598
3b12939d 3599 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3600 gdb_rl_callback_handler_reinstall ();
3601}
3602
243a9253
PA
3603/* Clean up the FSMs of threads that are now stopped. In non-stop,
3604 that's just the event thread. In all-stop, that's all threads. */
3605
3606static void
3607clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3608{
08036331
PA
3609 if (ecs->event_thread != NULL
3610 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3611 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3612
3613 if (!non_stop)
3614 {
08036331 3615 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3616 {
3617 if (thr->thread_fsm == NULL)
3618 continue;
3619 if (thr == ecs->event_thread)
3620 continue;
3621
00431a78 3622 switch_to_thread (thr);
46e3ed7f 3623 thr->thread_fsm->clean_up (thr);
243a9253
PA
3624 }
3625
3626 if (ecs->event_thread != NULL)
00431a78 3627 switch_to_thread (ecs->event_thread);
243a9253
PA
3628 }
3629}
3630
3b12939d
PA
3631/* Helper for all_uis_check_sync_execution_done that works on the
3632 current UI. */
3633
3634static void
3635check_curr_ui_sync_execution_done (void)
3636{
3637 struct ui *ui = current_ui;
3638
3639 if (ui->prompt_state == PROMPT_NEEDED
3640 && ui->async
3641 && !gdb_in_secondary_prompt_p (ui))
3642 {
223ffa71 3643 target_terminal::ours ();
76727919 3644 gdb::observers::sync_execution_done.notify ();
3eb7562a 3645 ui_register_input_event_handler (ui);
3b12939d
PA
3646 }
3647}
3648
3649/* See infrun.h. */
3650
3651void
3652all_uis_check_sync_execution_done (void)
3653{
0e454242 3654 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3655 {
3656 check_curr_ui_sync_execution_done ();
3657 }
3658}
3659
a8836c93
PA
3660/* See infrun.h. */
3661
3662void
3663all_uis_on_sync_execution_starting (void)
3664{
0e454242 3665 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3666 {
3667 if (current_ui->prompt_state == PROMPT_NEEDED)
3668 async_disable_stdin ();
3669 }
3670}
3671
1777feb0 3672/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3673 event loop whenever a change of state is detected on the file
1777feb0
MS
3674 descriptor corresponding to the target. It can be called more than
3675 once to complete a single execution command. In such cases we need
3676 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3677 that this function is called for a single execution command, then
3678 report to the user that the inferior has stopped, and do the
1777feb0 3679 necessary cleanups. */
43ff13b4
JM
3680
3681void
fba45db2 3682fetch_inferior_event (void *client_data)
43ff13b4 3683{
0d1e5fa7 3684 struct execution_control_state ecss;
a474d7c2 3685 struct execution_control_state *ecs = &ecss;
0f641c01 3686 int cmd_done = 0;
963f9c80 3687 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3688
0d1e5fa7
PA
3689 memset (ecs, 0, sizeof (*ecs));
3690
c61db772
PA
3691 /* Events are always processed with the main UI as current UI. This
3692 way, warnings, debug output, etc. are always consistently sent to
3693 the main console. */
4b6749b9 3694 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3695
d3d4baed 3696 /* End up with readline processing input, if necessary. */
d238133d
TT
3697 {
3698 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3699
3700 /* We're handling a live event, so make sure we're doing live
3701 debugging. If we're looking at traceframes while the target is
3702 running, we're going to need to get back to that mode after
3703 handling the event. */
3704 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3705 if (non_stop)
3706 {
3707 maybe_restore_traceframe.emplace ();
3708 set_current_traceframe (-1);
3709 }
43ff13b4 3710
d238133d
TT
3711 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3712
3713 if (non_stop)
3714 /* In non-stop mode, the user/frontend should not notice a thread
3715 switch due to internal events. Make sure we reverse to the
3716 user selected thread and frame after handling the event and
3717 running any breakpoint commands. */
3718 maybe_restore_thread.emplace ();
3719
3720 overlay_cache_invalid = 1;
3721 /* Flush target cache before starting to handle each event. Target
3722 was running and cache could be stale. This is just a heuristic.
3723 Running threads may modify target memory, but we don't get any
3724 event. */
3725 target_dcache_invalidate ();
3726
3727 scoped_restore save_exec_dir
3728 = make_scoped_restore (&execution_direction,
3729 target_execution_direction ());
3730
3731 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3732 target_can_async_p () ? TARGET_WNOHANG : 0);
3733
3734 if (debug_infrun)
3735 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
3736
3737 /* If an error happens while handling the event, propagate GDB's
3738 knowledge of the executing state to the frontend/user running
3739 state. */
3740 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3741 scoped_finish_thread_state finish_state (finish_ptid);
3742
979a0d13 3743 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
3744 still for the thread which has thrown the exception. */
3745 auto defer_bpstat_clear
3746 = make_scope_exit (bpstat_clear_actions);
3747 auto defer_delete_threads
3748 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3749
3750 /* Now figure out what to do with the result of the result. */
3751 handle_inferior_event (ecs);
3752
3753 if (!ecs->wait_some_more)
3754 {
3755 struct inferior *inf = find_inferior_ptid (ecs->ptid);
3756 int should_stop = 1;
3757 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3758
d238133d 3759 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3760
d238133d
TT
3761 if (thr != NULL)
3762 {
3763 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 3764
d238133d 3765 if (thread_fsm != NULL)
46e3ed7f 3766 should_stop = thread_fsm->should_stop (thr);
d238133d 3767 }
243a9253 3768
d238133d
TT
3769 if (!should_stop)
3770 {
3771 keep_going (ecs);
3772 }
3773 else
3774 {
46e3ed7f 3775 bool should_notify_stop = true;
d238133d 3776 int proceeded = 0;
1840d81a 3777
d238133d 3778 clean_up_just_stopped_threads_fsms (ecs);
243a9253 3779
d238133d 3780 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 3781 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 3782
d238133d
TT
3783 if (should_notify_stop)
3784 {
3785 /* We may not find an inferior if this was a process exit. */
3786 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3787 proceeded = normal_stop ();
3788 }
243a9253 3789
d238133d
TT
3790 if (!proceeded)
3791 {
3792 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3793 cmd_done = 1;
3794 }
3795 }
3796 }
4f8d22e3 3797
d238133d
TT
3798 defer_delete_threads.release ();
3799 defer_bpstat_clear.release ();
29f49a6a 3800
d238133d
TT
3801 /* No error, don't finish the thread states yet. */
3802 finish_state.release ();
731f534f 3803
d238133d
TT
3804 /* This scope is used to ensure that readline callbacks are
3805 reinstalled here. */
3806 }
4f8d22e3 3807
3b12939d
PA
3808 /* If a UI was in sync execution mode, and now isn't, restore its
3809 prompt (a synchronous execution command has finished, and we're
3810 ready for input). */
3811 all_uis_check_sync_execution_done ();
0f641c01
PA
3812
3813 if (cmd_done
0f641c01 3814 && exec_done_display_p
00431a78
PA
3815 && (inferior_ptid == null_ptid
3816 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3817 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3818}
3819
edb3359d
DJ
3820/* Record the frame and location we're currently stepping through. */
3821void
3822set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3823{
3824 struct thread_info *tp = inferior_thread ();
3825
16c381f0
JK
3826 tp->control.step_frame_id = get_frame_id (frame);
3827 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3828
3829 tp->current_symtab = sal.symtab;
3830 tp->current_line = sal.line;
3831}
3832
0d1e5fa7
PA
3833/* Clear context switchable stepping state. */
3834
3835void
4e1c45ea 3836init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3837{
7f5ef605 3838 tss->stepped_breakpoint = 0;
0d1e5fa7 3839 tss->stepping_over_breakpoint = 0;
963f9c80 3840 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3841 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3842}
3843
c32c64b7
DE
3844/* Set the cached copy of the last ptid/waitstatus. */
3845
6efcd9a8 3846void
c32c64b7
DE
3847set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3848{
3849 target_last_wait_ptid = ptid;
3850 target_last_waitstatus = status;
3851}
3852
e02bc4cc 3853/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3854 target_wait()/deprecated_target_wait_hook(). The data is actually
3855 cached by handle_inferior_event(), which gets called immediately
3856 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3857
3858void
488f131b 3859get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3860{
39f77062 3861 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3862 *status = target_last_waitstatus;
3863}
3864
ac264b3b
MS
3865void
3866nullify_last_target_wait_ptid (void)
3867{
3868 target_last_wait_ptid = minus_one_ptid;
3869}
3870
dcf4fbde 3871/* Switch thread contexts. */
dd80620e
MS
3872
3873static void
00431a78 3874context_switch (execution_control_state *ecs)
dd80620e 3875{
00431a78
PA
3876 if (debug_infrun
3877 && ecs->ptid != inferior_ptid
3878 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
3879 {
3880 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3881 target_pid_to_str (inferior_ptid));
3882 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 3883 target_pid_to_str (ecs->ptid));
fd48f117
DJ
3884 }
3885
00431a78 3886 switch_to_thread (ecs->event_thread);
dd80620e
MS
3887}
3888
d8dd4d5f
PA
3889/* If the target can't tell whether we've hit breakpoints
3890 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
3891 check whether that could have been caused by a breakpoint. If so,
3892 adjust the PC, per gdbarch_decr_pc_after_break. */
3893
4fa8626c 3894static void
d8dd4d5f
PA
3895adjust_pc_after_break (struct thread_info *thread,
3896 struct target_waitstatus *ws)
4fa8626c 3897{
24a73cce
UW
3898 struct regcache *regcache;
3899 struct gdbarch *gdbarch;
118e6252 3900 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3901
4fa8626c
DJ
3902 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3903 we aren't, just return.
9709f61c
DJ
3904
3905 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3906 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3907 implemented by software breakpoints should be handled through the normal
3908 breakpoint layer.
8fb3e588 3909
4fa8626c
DJ
3910 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3911 different signals (SIGILL or SIGEMT for instance), but it is less
3912 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3913 gdbarch_decr_pc_after_break. I don't know any specific target that
3914 generates these signals at breakpoints (the code has been in GDB since at
3915 least 1992) so I can not guess how to handle them here.
8fb3e588 3916
e6cf7916
UW
3917 In earlier versions of GDB, a target with
3918 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3919 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3920 target with both of these set in GDB history, and it seems unlikely to be
3921 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 3922
d8dd4d5f 3923 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
3924 return;
3925
d8dd4d5f 3926 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3927 return;
3928
4058b839
PA
3929 /* In reverse execution, when a breakpoint is hit, the instruction
3930 under it has already been de-executed. The reported PC always
3931 points at the breakpoint address, so adjusting it further would
3932 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3933 architecture:
3934
3935 B1 0x08000000 : INSN1
3936 B2 0x08000001 : INSN2
3937 0x08000002 : INSN3
3938 PC -> 0x08000003 : INSN4
3939
3940 Say you're stopped at 0x08000003 as above. Reverse continuing
3941 from that point should hit B2 as below. Reading the PC when the
3942 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3943 been de-executed already.
3944
3945 B1 0x08000000 : INSN1
3946 B2 PC -> 0x08000001 : INSN2
3947 0x08000002 : INSN3
3948 0x08000003 : INSN4
3949
3950 We can't apply the same logic as for forward execution, because
3951 we would wrongly adjust the PC to 0x08000000, since there's a
3952 breakpoint at PC - 1. We'd then report a hit on B1, although
3953 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3954 behaviour. */
3955 if (execution_direction == EXEC_REVERSE)
3956 return;
3957
1cf4d951
PA
3958 /* If the target can tell whether the thread hit a SW breakpoint,
3959 trust it. Targets that can tell also adjust the PC
3960 themselves. */
3961 if (target_supports_stopped_by_sw_breakpoint ())
3962 return;
3963
3964 /* Note that relying on whether a breakpoint is planted in memory to
3965 determine this can fail. E.g,. the breakpoint could have been
3966 removed since. Or the thread could have been told to step an
3967 instruction the size of a breakpoint instruction, and only
3968 _after_ was a breakpoint inserted at its address. */
3969
24a73cce
UW
3970 /* If this target does not decrement the PC after breakpoints, then
3971 we have nothing to do. */
00431a78 3972 regcache = get_thread_regcache (thread);
ac7936df 3973 gdbarch = regcache->arch ();
118e6252 3974
527a273a 3975 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 3976 if (decr_pc == 0)
24a73cce
UW
3977 return;
3978
8b86c959 3979 const address_space *aspace = regcache->aspace ();
6c95b8df 3980
8aad930b
AC
3981 /* Find the location where (if we've hit a breakpoint) the
3982 breakpoint would be. */
118e6252 3983 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3984
1cf4d951
PA
3985 /* If the target can't tell whether a software breakpoint triggered,
3986 fallback to figuring it out based on breakpoints we think were
3987 inserted in the target, and on whether the thread was stepped or
3988 continued. */
3989
1c5cfe86
PA
3990 /* Check whether there actually is a software breakpoint inserted at
3991 that location.
3992
3993 If in non-stop mode, a race condition is possible where we've
3994 removed a breakpoint, but stop events for that breakpoint were
3995 already queued and arrive later. To suppress those spurious
3996 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3997 and retire them after a number of stop events are reported. Note
3998 this is an heuristic and can thus get confused. The real fix is
3999 to get the "stopped by SW BP and needs adjustment" info out of
4000 the target/kernel (and thus never reach here; see above). */
6c95b8df 4001 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4002 || (target_is_non_stop_p ()
4003 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4004 {
07036511 4005 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4006
8213266a 4007 if (record_full_is_used ())
07036511
TT
4008 restore_operation_disable.emplace
4009 (record_full_gdb_operation_disable_set ());
96429cc8 4010
1c0fdd0e
UW
4011 /* When using hardware single-step, a SIGTRAP is reported for both
4012 a completed single-step and a software breakpoint. Need to
4013 differentiate between the two, as the latter needs adjusting
4014 but the former does not.
4015
4016 The SIGTRAP can be due to a completed hardware single-step only if
4017 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4018 - this thread is currently being stepped
4019
4020 If any of these events did not occur, we must have stopped due
4021 to hitting a software breakpoint, and have to back up to the
4022 breakpoint address.
4023
4024 As a special case, we could have hardware single-stepped a
4025 software breakpoint. In this case (prev_pc == breakpoint_pc),
4026 we also need to back up to the breakpoint address. */
4027
d8dd4d5f
PA
4028 if (thread_has_single_step_breakpoints_set (thread)
4029 || !currently_stepping (thread)
4030 || (thread->stepped_breakpoint
4031 && thread->prev_pc == breakpoint_pc))
515630c5 4032 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4033 }
4fa8626c
DJ
4034}
4035
edb3359d
DJ
4036static int
4037stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4038{
4039 for (frame = get_prev_frame (frame);
4040 frame != NULL;
4041 frame = get_prev_frame (frame))
4042 {
4043 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4044 return 1;
4045 if (get_frame_type (frame) != INLINE_FRAME)
4046 break;
4047 }
4048
4049 return 0;
4050}
4051
c65d6b55
PA
4052/* If the event thread has the stop requested flag set, pretend it
4053 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4054 target_stop). */
4055
4056static bool
4057handle_stop_requested (struct execution_control_state *ecs)
4058{
4059 if (ecs->event_thread->stop_requested)
4060 {
4061 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4062 ecs->ws.value.sig = GDB_SIGNAL_0;
4063 handle_signal_stop (ecs);
4064 return true;
4065 }
4066 return false;
4067}
4068
a96d9b2e
SDJ
4069/* Auxiliary function that handles syscall entry/return events.
4070 It returns 1 if the inferior should keep going (and GDB
4071 should ignore the event), or 0 if the event deserves to be
4072 processed. */
ca2163eb 4073
a96d9b2e 4074static int
ca2163eb 4075handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4076{
ca2163eb 4077 struct regcache *regcache;
ca2163eb
PA
4078 int syscall_number;
4079
00431a78 4080 context_switch (ecs);
ca2163eb 4081
00431a78 4082 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4083 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4084 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4085
a96d9b2e
SDJ
4086 if (catch_syscall_enabled () > 0
4087 && catching_syscall_number (syscall_number) > 0)
4088 {
4089 if (debug_infrun)
4090 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4091 syscall_number);
a96d9b2e 4092
16c381f0 4093 ecs->event_thread->control.stop_bpstat
a01bda52 4094 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4095 ecs->event_thread->suspend.stop_pc,
4096 ecs->event_thread, &ecs->ws);
ab04a2af 4097
c65d6b55
PA
4098 if (handle_stop_requested (ecs))
4099 return 0;
4100
ce12b012 4101 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4102 {
4103 /* Catchpoint hit. */
ca2163eb
PA
4104 return 0;
4105 }
a96d9b2e 4106 }
ca2163eb 4107
c65d6b55
PA
4108 if (handle_stop_requested (ecs))
4109 return 0;
4110
ca2163eb 4111 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4112 keep_going (ecs);
4113 return 1;
a96d9b2e
SDJ
4114}
4115
7e324e48
GB
4116/* Lazily fill in the execution_control_state's stop_func_* fields. */
4117
4118static void
4119fill_in_stop_func (struct gdbarch *gdbarch,
4120 struct execution_control_state *ecs)
4121{
4122 if (!ecs->stop_func_filled_in)
4123 {
4124 /* Don't care about return value; stop_func_start and stop_func_name
4125 will both be 0 if it doesn't work. */
59adbf5d
KB
4126 find_function_entry_range_from_pc (ecs->event_thread->suspend.stop_pc,
4127 &ecs->stop_func_name,
4128 &ecs->stop_func_start,
4129 &ecs->stop_func_end);
7e324e48
GB
4130 ecs->stop_func_start
4131 += gdbarch_deprecated_function_start_offset (gdbarch);
4132
591a12a1
UW
4133 if (gdbarch_skip_entrypoint_p (gdbarch))
4134 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4135 ecs->stop_func_start);
4136
7e324e48
GB
4137 ecs->stop_func_filled_in = 1;
4138 }
4139}
4140
4f5d7f63 4141
00431a78 4142/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4143
4144static enum stop_kind
00431a78 4145get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4146{
00431a78 4147 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4148
4149 gdb_assert (inf != NULL);
4150 return inf->control.stop_soon;
4151}
4152
372316f1
PA
4153/* Wait for one event. Store the resulting waitstatus in WS, and
4154 return the event ptid. */
4155
4156static ptid_t
4157wait_one (struct target_waitstatus *ws)
4158{
4159 ptid_t event_ptid;
4160 ptid_t wait_ptid = minus_one_ptid;
4161
4162 overlay_cache_invalid = 1;
4163
4164 /* Flush target cache before starting to handle each event.
4165 Target was running and cache could be stale. This is just a
4166 heuristic. Running threads may modify target memory, but we
4167 don't get any event. */
4168 target_dcache_invalidate ();
4169
4170 if (deprecated_target_wait_hook)
4171 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4172 else
4173 event_ptid = target_wait (wait_ptid, ws, 0);
4174
4175 if (debug_infrun)
4176 print_target_wait_results (wait_ptid, event_ptid, ws);
4177
4178 return event_ptid;
4179}
4180
4181/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4182 instead of the current thread. */
4183#define THREAD_STOPPED_BY(REASON) \
4184static int \
4185thread_stopped_by_ ## REASON (ptid_t ptid) \
4186{ \
2989a365 4187 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4188 inferior_ptid = ptid; \
4189 \
2989a365 4190 return target_stopped_by_ ## REASON (); \
372316f1
PA
4191}
4192
4193/* Generate thread_stopped_by_watchpoint. */
4194THREAD_STOPPED_BY (watchpoint)
4195/* Generate thread_stopped_by_sw_breakpoint. */
4196THREAD_STOPPED_BY (sw_breakpoint)
4197/* Generate thread_stopped_by_hw_breakpoint. */
4198THREAD_STOPPED_BY (hw_breakpoint)
4199
372316f1
PA
4200/* Save the thread's event and stop reason to process it later. */
4201
4202static void
4203save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4204{
372316f1
PA
4205 if (debug_infrun)
4206 {
23fdd69e 4207 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4208
372316f1
PA
4209 fprintf_unfiltered (gdb_stdlog,
4210 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4211 statstr.c_str (),
e99b03dc 4212 tp->ptid.pid (),
e38504b3 4213 tp->ptid.lwp (),
cc6bcb54 4214 tp->ptid.tid ());
372316f1
PA
4215 }
4216
4217 /* Record for later. */
4218 tp->suspend.waitstatus = *ws;
4219 tp->suspend.waitstatus_pending_p = 1;
4220
00431a78 4221 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4222 const address_space *aspace = regcache->aspace ();
372316f1
PA
4223
4224 if (ws->kind == TARGET_WAITKIND_STOPPED
4225 && ws->value.sig == GDB_SIGNAL_TRAP)
4226 {
4227 CORE_ADDR pc = regcache_read_pc (regcache);
4228
4229 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4230
4231 if (thread_stopped_by_watchpoint (tp->ptid))
4232 {
4233 tp->suspend.stop_reason
4234 = TARGET_STOPPED_BY_WATCHPOINT;
4235 }
4236 else if (target_supports_stopped_by_sw_breakpoint ()
4237 && thread_stopped_by_sw_breakpoint (tp->ptid))
4238 {
4239 tp->suspend.stop_reason
4240 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4241 }
4242 else if (target_supports_stopped_by_hw_breakpoint ()
4243 && thread_stopped_by_hw_breakpoint (tp->ptid))
4244 {
4245 tp->suspend.stop_reason
4246 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4247 }
4248 else if (!target_supports_stopped_by_hw_breakpoint ()
4249 && hardware_breakpoint_inserted_here_p (aspace,
4250 pc))
4251 {
4252 tp->suspend.stop_reason
4253 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4254 }
4255 else if (!target_supports_stopped_by_sw_breakpoint ()
4256 && software_breakpoint_inserted_here_p (aspace,
4257 pc))
4258 {
4259 tp->suspend.stop_reason
4260 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4261 }
4262 else if (!thread_has_single_step_breakpoints_set (tp)
4263 && currently_stepping (tp))
4264 {
4265 tp->suspend.stop_reason
4266 = TARGET_STOPPED_BY_SINGLE_STEP;
4267 }
4268 }
4269}
4270
6efcd9a8 4271/* See infrun.h. */
372316f1 4272
6efcd9a8 4273void
372316f1
PA
4274stop_all_threads (void)
4275{
4276 /* We may need multiple passes to discover all threads. */
4277 int pass;
4278 int iterations = 0;
372316f1 4279
fbea99ea 4280 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4281
4282 if (debug_infrun)
4283 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4284
00431a78 4285 scoped_restore_current_thread restore_thread;
372316f1 4286
65706a29 4287 target_thread_events (1);
9885e6bb 4288 SCOPE_EXIT { target_thread_events (0); };
65706a29 4289
372316f1
PA
4290 /* Request threads to stop, and then wait for the stops. Because
4291 threads we already know about can spawn more threads while we're
4292 trying to stop them, and we only learn about new threads when we
4293 update the thread list, do this in a loop, and keep iterating
4294 until two passes find no threads that need to be stopped. */
4295 for (pass = 0; pass < 2; pass++, iterations++)
4296 {
4297 if (debug_infrun)
4298 fprintf_unfiltered (gdb_stdlog,
4299 "infrun: stop_all_threads, pass=%d, "
4300 "iterations=%d\n", pass, iterations);
4301 while (1)
4302 {
4303 ptid_t event_ptid;
4304 struct target_waitstatus ws;
4305 int need_wait = 0;
372316f1
PA
4306
4307 update_thread_list ();
4308
4309 /* Go through all threads looking for threads that we need
4310 to tell the target to stop. */
08036331 4311 for (thread_info *t : all_non_exited_threads ())
372316f1
PA
4312 {
4313 if (t->executing)
4314 {
4315 /* If already stopping, don't request a stop again.
4316 We just haven't seen the notification yet. */
4317 if (!t->stop_requested)
4318 {
4319 if (debug_infrun)
4320 fprintf_unfiltered (gdb_stdlog,
4321 "infrun: %s executing, "
4322 "need stop\n",
4323 target_pid_to_str (t->ptid));
4324 target_stop (t->ptid);
4325 t->stop_requested = 1;
4326 }
4327 else
4328 {
4329 if (debug_infrun)
4330 fprintf_unfiltered (gdb_stdlog,
4331 "infrun: %s executing, "
4332 "already stopping\n",
4333 target_pid_to_str (t->ptid));
4334 }
4335
4336 if (t->stop_requested)
4337 need_wait = 1;
4338 }
4339 else
4340 {
4341 if (debug_infrun)
4342 fprintf_unfiltered (gdb_stdlog,
4343 "infrun: %s not executing\n",
4344 target_pid_to_str (t->ptid));
4345
4346 /* The thread may be not executing, but still be
4347 resumed with a pending status to process. */
4348 t->resumed = 0;
4349 }
4350 }
4351
4352 if (!need_wait)
4353 break;
4354
4355 /* If we find new threads on the second iteration, restart
4356 over. We want to see two iterations in a row with all
4357 threads stopped. */
4358 if (pass > 0)
4359 pass = -1;
4360
4361 event_ptid = wait_one (&ws);
00431a78 4362
372316f1
PA
4363 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4364 {
4365 /* All resumed threads exited. */
4366 }
65706a29
PA
4367 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4368 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4369 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4370 {
4371 if (debug_infrun)
4372 {
f2907e49 4373 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4374
4375 fprintf_unfiltered (gdb_stdlog,
4376 "infrun: %s exited while "
4377 "stopping threads\n",
4378 target_pid_to_str (ptid));
4379 }
4380 }
4381 else
4382 {
08036331 4383 thread_info *t = find_thread_ptid (event_ptid);
372316f1
PA
4384 if (t == NULL)
4385 t = add_thread (event_ptid);
4386
4387 t->stop_requested = 0;
4388 t->executing = 0;
4389 t->resumed = 0;
4390 t->control.may_range_step = 0;
4391
6efcd9a8
PA
4392 /* This may be the first time we see the inferior report
4393 a stop. */
08036331 4394 inferior *inf = find_inferior_ptid (event_ptid);
6efcd9a8
PA
4395 if (inf->needs_setup)
4396 {
4397 switch_to_thread_no_regs (t);
4398 setup_inferior (0);
4399 }
4400
372316f1
PA
4401 if (ws.kind == TARGET_WAITKIND_STOPPED
4402 && ws.value.sig == GDB_SIGNAL_0)
4403 {
4404 /* We caught the event that we intended to catch, so
4405 there's no event pending. */
4406 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4407 t->suspend.waitstatus_pending_p = 0;
4408
00431a78 4409 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4410 {
4411 /* Add it back to the step-over queue. */
4412 if (debug_infrun)
4413 {
4414 fprintf_unfiltered (gdb_stdlog,
4415 "infrun: displaced-step of %s "
4416 "canceled: adding back to the "
4417 "step-over queue\n",
4418 target_pid_to_str (t->ptid));
4419 }
4420 t->control.trap_expected = 0;
4421 thread_step_over_chain_enqueue (t);
4422 }
4423 }
4424 else
4425 {
4426 enum gdb_signal sig;
4427 struct regcache *regcache;
372316f1
PA
4428
4429 if (debug_infrun)
4430 {
23fdd69e 4431 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4432
372316f1
PA
4433 fprintf_unfiltered (gdb_stdlog,
4434 "infrun: target_wait %s, saving "
4435 "status for %d.%ld.%ld\n",
23fdd69e 4436 statstr.c_str (),
e99b03dc 4437 t->ptid.pid (),
e38504b3 4438 t->ptid.lwp (),
cc6bcb54 4439 t->ptid.tid ());
372316f1
PA
4440 }
4441
4442 /* Record for later. */
4443 save_waitstatus (t, &ws);
4444
4445 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4446 ? ws.value.sig : GDB_SIGNAL_0);
4447
00431a78 4448 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4449 {
4450 /* Add it back to the step-over queue. */
4451 t->control.trap_expected = 0;
4452 thread_step_over_chain_enqueue (t);
4453 }
4454
00431a78 4455 regcache = get_thread_regcache (t);
372316f1
PA
4456 t->suspend.stop_pc = regcache_read_pc (regcache);
4457
4458 if (debug_infrun)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "infrun: saved stop_pc=%s for %s "
4462 "(currently_stepping=%d)\n",
4463 paddress (target_gdbarch (),
4464 t->suspend.stop_pc),
4465 target_pid_to_str (t->ptid),
4466 currently_stepping (t));
4467 }
4468 }
4469 }
4470 }
4471 }
4472
372316f1
PA
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4475}
4476
f4836ba9
PA
4477/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4478
4479static int
4480handle_no_resumed (struct execution_control_state *ecs)
4481{
3b12939d 4482 if (target_can_async_p ())
f4836ba9 4483 {
3b12939d
PA
4484 struct ui *ui;
4485 int any_sync = 0;
f4836ba9 4486
3b12939d
PA
4487 ALL_UIS (ui)
4488 {
4489 if (ui->prompt_state == PROMPT_BLOCKED)
4490 {
4491 any_sync = 1;
4492 break;
4493 }
4494 }
4495 if (!any_sync)
4496 {
4497 /* There were no unwaited-for children left in the target, but,
4498 we're not synchronously waiting for events either. Just
4499 ignore. */
4500
4501 if (debug_infrun)
4502 fprintf_unfiltered (gdb_stdlog,
4503 "infrun: TARGET_WAITKIND_NO_RESUMED "
4504 "(ignoring: bg)\n");
4505 prepare_to_wait (ecs);
4506 return 1;
4507 }
f4836ba9
PA
4508 }
4509
4510 /* Otherwise, if we were running a synchronous execution command, we
4511 may need to cancel it and give the user back the terminal.
4512
4513 In non-stop mode, the target can't tell whether we've already
4514 consumed previous stop events, so it can end up sending us a
4515 no-resumed event like so:
4516
4517 #0 - thread 1 is left stopped
4518
4519 #1 - thread 2 is resumed and hits breakpoint
4520 -> TARGET_WAITKIND_STOPPED
4521
4522 #2 - thread 3 is resumed and exits
4523 this is the last resumed thread, so
4524 -> TARGET_WAITKIND_NO_RESUMED
4525
4526 #3 - gdb processes stop for thread 2 and decides to re-resume
4527 it.
4528
4529 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4530 thread 2 is now resumed, so the event should be ignored.
4531
4532 IOW, if the stop for thread 2 doesn't end a foreground command,
4533 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4534 event. But it could be that the event meant that thread 2 itself
4535 (or whatever other thread was the last resumed thread) exited.
4536
4537 To address this we refresh the thread list and check whether we
4538 have resumed threads _now_. In the example above, this removes
4539 thread 3 from the thread list. If thread 2 was re-resumed, we
4540 ignore this event. If we find no thread resumed, then we cancel
4541 the synchronous command show "no unwaited-for " to the user. */
4542 update_thread_list ();
4543
08036331 4544 for (thread_info *thread : all_non_exited_threads ())
f4836ba9
PA
4545 {
4546 if (thread->executing
4547 || thread->suspend.waitstatus_pending_p)
4548 {
4549 /* There were no unwaited-for children left in the target at
4550 some point, but there are now. Just ignore. */
4551 if (debug_infrun)
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: TARGET_WAITKIND_NO_RESUMED "
4554 "(ignoring: found resumed)\n");
4555 prepare_to_wait (ecs);
4556 return 1;
4557 }
4558 }
4559
4560 /* Note however that we may find no resumed thread because the whole
4561 process exited meanwhile (thus updating the thread list results
4562 in an empty thread list). In this case we know we'll be getting
4563 a process exit event shortly. */
08036331 4564 for (inferior *inf : all_inferiors ())
f4836ba9
PA
4565 {
4566 if (inf->pid == 0)
4567 continue;
4568
08036331 4569 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4570 if (thread == NULL)
4571 {
4572 if (debug_infrun)
4573 fprintf_unfiltered (gdb_stdlog,
4574 "infrun: TARGET_WAITKIND_NO_RESUMED "
4575 "(expect process exit)\n");
4576 prepare_to_wait (ecs);
4577 return 1;
4578 }
4579 }
4580
4581 /* Go ahead and report the event. */
4582 return 0;
4583}
4584
05ba8510
PA
4585/* Given an execution control state that has been freshly filled in by
4586 an event from the inferior, figure out what it means and take
4587 appropriate action.
4588
4589 The alternatives are:
4590
22bcd14b 4591 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4592 debugger.
4593
4594 2) keep_going and return; to wait for the next event (set
4595 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4596 once). */
c906108c 4597
ec9499be 4598static void
0b6e5e10 4599handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4600{
d6b48e9c
PA
4601 enum stop_kind stop_soon;
4602
28736962
PA
4603 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4604 {
4605 /* We had an event in the inferior, but we are not interested in
4606 handling it at this level. The lower layers have already
4607 done what needs to be done, if anything.
4608
4609 One of the possible circumstances for this is when the
4610 inferior produces output for the console. The inferior has
4611 not stopped, and we are ignoring the event. Another possible
4612 circumstance is any event which the lower level knows will be
4613 reported multiple times without an intervening resume. */
4614 if (debug_infrun)
4615 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4616 prepare_to_wait (ecs);
4617 return;
4618 }
4619
65706a29
PA
4620 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4621 {
4622 if (debug_infrun)
4623 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4624 prepare_to_wait (ecs);
4625 return;
4626 }
4627
0e5bf2a8 4628 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4629 && handle_no_resumed (ecs))
4630 return;
0e5bf2a8 4631
1777feb0 4632 /* Cache the last pid/waitstatus. */
c32c64b7 4633 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4634
ca005067 4635 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4636 stop_stack_dummy = STOP_NONE;
ca005067 4637
0e5bf2a8
PA
4638 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4639 {
4640 /* No unwaited-for children left. IOW, all resumed children
4641 have exited. */
4642 if (debug_infrun)
4643 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4644
4645 stop_print_frame = 0;
22bcd14b 4646 stop_waiting (ecs);
0e5bf2a8
PA
4647 return;
4648 }
4649
8c90c137 4650 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4651 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4652 {
4653 ecs->event_thread = find_thread_ptid (ecs->ptid);
4654 /* If it's a new thread, add it to the thread database. */
4655 if (ecs->event_thread == NULL)
4656 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4657
4658 /* Disable range stepping. If the next step request could use a
4659 range, this will be end up re-enabled then. */
4660 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4661 }
88ed393a
JK
4662
4663 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4664 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4665
4666 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4667 reinit_frame_cache ();
4668
28736962
PA
4669 breakpoint_retire_moribund ();
4670
2b009048
DJ
4671 /* First, distinguish signals caused by the debugger from signals
4672 that have to do with the program's own actions. Note that
4673 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4674 on the operating system version. Here we detect when a SIGILL or
4675 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4676 something similar for SIGSEGV, since a SIGSEGV will be generated
4677 when we're trying to execute a breakpoint instruction on a
4678 non-executable stack. This happens for call dummy breakpoints
4679 for architectures like SPARC that place call dummies on the
4680 stack. */
2b009048 4681 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4682 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4683 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4684 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4685 {
00431a78 4686 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4687
a01bda52 4688 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4689 regcache_read_pc (regcache)))
4690 {
4691 if (debug_infrun)
4692 fprintf_unfiltered (gdb_stdlog,
4693 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4694 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4695 }
2b009048
DJ
4696 }
4697
28736962
PA
4698 /* Mark the non-executing threads accordingly. In all-stop, all
4699 threads of all processes are stopped when we get any event
e1316e60 4700 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4701 {
4702 ptid_t mark_ptid;
4703
fbea99ea 4704 if (!target_is_non_stop_p ())
372316f1
PA
4705 mark_ptid = minus_one_ptid;
4706 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4707 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4708 {
4709 /* If we're handling a process exit in non-stop mode, even
4710 though threads haven't been deleted yet, one would think
4711 that there is nothing to do, as threads of the dead process
4712 will be soon deleted, and threads of any other process were
4713 left running. However, on some targets, threads survive a
4714 process exit event. E.g., for the "checkpoint" command,
4715 when the current checkpoint/fork exits, linux-fork.c
4716 automatically switches to another fork from within
4717 target_mourn_inferior, by associating the same
4718 inferior/thread to another fork. We haven't mourned yet at
4719 this point, but we must mark any threads left in the
4720 process as not-executing so that finish_thread_state marks
4721 them stopped (in the user's perspective) if/when we present
4722 the stop to the user. */
e99b03dc 4723 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4724 }
4725 else
4726 mark_ptid = ecs->ptid;
4727
4728 set_executing (mark_ptid, 0);
4729
4730 /* Likewise the resumed flag. */
4731 set_resumed (mark_ptid, 0);
4732 }
8c90c137 4733
488f131b
JB
4734 switch (ecs->ws.kind)
4735 {
4736 case TARGET_WAITKIND_LOADED:
527159b7 4737 if (debug_infrun)
8a9de0e4 4738 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4739 context_switch (ecs);
b0f4b84b
DJ
4740 /* Ignore gracefully during startup of the inferior, as it might
4741 be the shell which has just loaded some objects, otherwise
4742 add the symbols for the newly loaded objects. Also ignore at
4743 the beginning of an attach or remote session; we will query
4744 the full list of libraries once the connection is
4745 established. */
4f5d7f63 4746
00431a78 4747 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4748 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4749 {
edcc5120
TT
4750 struct regcache *regcache;
4751
00431a78 4752 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4753
4754 handle_solib_event ();
4755
4756 ecs->event_thread->control.stop_bpstat
a01bda52 4757 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4758 ecs->event_thread->suspend.stop_pc,
4759 ecs->event_thread, &ecs->ws);
ab04a2af 4760
c65d6b55
PA
4761 if (handle_stop_requested (ecs))
4762 return;
4763
ce12b012 4764 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4765 {
4766 /* A catchpoint triggered. */
94c57d6a
PA
4767 process_event_stop_test (ecs);
4768 return;
edcc5120 4769 }
488f131b 4770
b0f4b84b
DJ
4771 /* If requested, stop when the dynamic linker notifies
4772 gdb of events. This allows the user to get control
4773 and place breakpoints in initializer routines for
4774 dynamically loaded objects (among other things). */
a493e3e2 4775 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4776 if (stop_on_solib_events)
4777 {
55409f9d
DJ
4778 /* Make sure we print "Stopped due to solib-event" in
4779 normal_stop. */
4780 stop_print_frame = 1;
4781
22bcd14b 4782 stop_waiting (ecs);
b0f4b84b
DJ
4783 return;
4784 }
488f131b 4785 }
b0f4b84b
DJ
4786
4787 /* If we are skipping through a shell, or through shared library
4788 loading that we aren't interested in, resume the program. If
5c09a2c5 4789 we're running the program normally, also resume. */
b0f4b84b
DJ
4790 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4791 {
74960c60
VP
4792 /* Loading of shared libraries might have changed breakpoint
4793 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4794 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4795 insert_breakpoints ();
64ce06e4 4796 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4797 prepare_to_wait (ecs);
4798 return;
4799 }
4800
5c09a2c5
PA
4801 /* But stop if we're attaching or setting up a remote
4802 connection. */
4803 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4804 || stop_soon == STOP_QUIETLY_REMOTE)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4808 stop_waiting (ecs);
5c09a2c5
PA
4809 return;
4810 }
4811
4812 internal_error (__FILE__, __LINE__,
4813 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4814
488f131b 4815 case TARGET_WAITKIND_SPURIOUS:
527159b7 4816 if (debug_infrun)
8a9de0e4 4817 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
4818 if (handle_stop_requested (ecs))
4819 return;
00431a78 4820 context_switch (ecs);
64ce06e4 4821 resume (GDB_SIGNAL_0);
488f131b
JB
4822 prepare_to_wait (ecs);
4823 return;
c5aa993b 4824
65706a29
PA
4825 case TARGET_WAITKIND_THREAD_CREATED:
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
4828 if (handle_stop_requested (ecs))
4829 return;
00431a78 4830 context_switch (ecs);
65706a29
PA
4831 if (!switch_back_to_stepped_thread (ecs))
4832 keep_going (ecs);
4833 return;
4834
488f131b 4835 case TARGET_WAITKIND_EXITED:
940c3c06 4836 case TARGET_WAITKIND_SIGNALLED:
527159b7 4837 if (debug_infrun)
940c3c06
PA
4838 {
4839 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4840 fprintf_unfiltered (gdb_stdlog,
4841 "infrun: TARGET_WAITKIND_EXITED\n");
4842 else
4843 fprintf_unfiltered (gdb_stdlog,
4844 "infrun: TARGET_WAITKIND_SIGNALLED\n");
4845 }
4846
fb66883a 4847 inferior_ptid = ecs->ptid;
c9657e70 4848 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
4849 set_current_program_space (current_inferior ()->pspace);
4850 handle_vfork_child_exec_or_exit (0);
223ffa71 4851 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 4852
0c557179
SDJ
4853 /* Clearing any previous state of convenience variables. */
4854 clear_exit_convenience_vars ();
4855
940c3c06
PA
4856 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
4857 {
4858 /* Record the exit code in the convenience variable $_exitcode, so
4859 that the user can inspect this again later. */
4860 set_internalvar_integer (lookup_internalvar ("_exitcode"),
4861 (LONGEST) ecs->ws.value.integer);
4862
4863 /* Also record this in the inferior itself. */
4864 current_inferior ()->has_exit_code = 1;
4865 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 4866
98eb56a4
PA
4867 /* Support the --return-child-result option. */
4868 return_child_result_value = ecs->ws.value.integer;
4869
76727919 4870 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
4871 }
4872 else
0c557179 4873 {
00431a78 4874 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
4875
4876 if (gdbarch_gdb_signal_to_target_p (gdbarch))
4877 {
4878 /* Set the value of the internal variable $_exitsignal,
4879 which holds the signal uncaught by the inferior. */
4880 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
4881 gdbarch_gdb_signal_to_target (gdbarch,
4882 ecs->ws.value.sig));
4883 }
4884 else
4885 {
4886 /* We don't have access to the target's method used for
4887 converting between signal numbers (GDB's internal
4888 representation <-> target's representation).
4889 Therefore, we cannot do a good job at displaying this
4890 information to the user. It's better to just warn
4891 her about it (if infrun debugging is enabled), and
4892 give up. */
4893 if (debug_infrun)
4894 fprintf_filtered (gdb_stdlog, _("\
4895Cannot fill $_exitsignal with the correct signal number.\n"));
4896 }
4897
76727919 4898 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 4899 }
8cf64490 4900
488f131b 4901 gdb_flush (gdb_stdout);
bc1e6c81 4902 target_mourn_inferior (inferior_ptid);
488f131b 4903 stop_print_frame = 0;
22bcd14b 4904 stop_waiting (ecs);
488f131b 4905 return;
c5aa993b 4906
488f131b 4907 /* The following are the only cases in which we keep going;
1777feb0 4908 the above cases end in a continue or goto. */
488f131b 4909 case TARGET_WAITKIND_FORKED:
deb3b17b 4910 case TARGET_WAITKIND_VFORKED:
527159b7 4911 if (debug_infrun)
fed708ed
PA
4912 {
4913 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4914 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
4915 else
4916 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
4917 }
c906108c 4918
e2d96639
YQ
4919 /* Check whether the inferior is displaced stepping. */
4920 {
00431a78 4921 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 4922 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
4923
4924 /* If checking displaced stepping is supported, and thread
4925 ecs->ptid is displaced stepping. */
00431a78 4926 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
4927 {
4928 struct inferior *parent_inf
c9657e70 4929 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
4930 struct regcache *child_regcache;
4931 CORE_ADDR parent_pc;
4932
4933 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
4934 indicating that the displaced stepping of syscall instruction
4935 has been done. Perform cleanup for parent process here. Note
4936 that this operation also cleans up the child process for vfork,
4937 because their pages are shared. */
00431a78 4938 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
4939 /* Start a new step-over in another thread if there's one
4940 that needs it. */
4941 start_step_over ();
e2d96639
YQ
4942
4943 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
4944 {
c0987663 4945 struct displaced_step_inferior_state *displaced
00431a78 4946 = get_displaced_stepping_state (parent_inf);
c0987663 4947
e2d96639
YQ
4948 /* Restore scratch pad for child process. */
4949 displaced_step_restore (displaced, ecs->ws.value.related_pid);
4950 }
4951
4952 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
4953 the child's PC is also within the scratchpad. Set the child's PC
4954 to the parent's PC value, which has already been fixed up.
4955 FIXME: we use the parent's aspace here, although we're touching
4956 the child, because the child hasn't been added to the inferior
4957 list yet at this point. */
4958
4959 child_regcache
4960 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
4961 gdbarch,
4962 parent_inf->aspace);
4963 /* Read PC value of parent process. */
4964 parent_pc = regcache_read_pc (regcache);
4965
4966 if (debug_displaced)
4967 fprintf_unfiltered (gdb_stdlog,
4968 "displaced: write child pc from %s to %s\n",
4969 paddress (gdbarch,
4970 regcache_read_pc (child_regcache)),
4971 paddress (gdbarch, parent_pc));
4972
4973 regcache_write_pc (child_regcache, parent_pc);
4974 }
4975 }
4976
00431a78 4977 context_switch (ecs);
5a2901d9 4978
b242c3c2
PA
4979 /* Immediately detach breakpoints from the child before there's
4980 any chance of letting the user delete breakpoints from the
4981 breakpoint lists. If we don't do this early, it's easy to
4982 leave left over traps in the child, vis: "break foo; catch
4983 fork; c; <fork>; del; c; <child calls foo>". We only follow
4984 the fork on the last `continue', and by that time the
4985 breakpoint at "foo" is long gone from the breakpoint table.
4986 If we vforked, then we don't need to unpatch here, since both
4987 parent and child are sharing the same memory pages; we'll
4988 need to unpatch at follow/detach time instead to be certain
4989 that new breakpoints added between catchpoint hit time and
4990 vfork follow are detached. */
4991 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4992 {
b242c3c2
PA
4993 /* This won't actually modify the breakpoint list, but will
4994 physically remove the breakpoints from the child. */
d80ee84f 4995 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4996 }
4997
34b7e8a6 4998 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4999
e58b0e63
PA
5000 /* In case the event is caught by a catchpoint, remember that
5001 the event is to be followed at the next resume of the thread,
5002 and not immediately. */
5003 ecs->event_thread->pending_follow = ecs->ws;
5004
f2ffa92b
PA
5005 ecs->event_thread->suspend.stop_pc
5006 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5007
16c381f0 5008 ecs->event_thread->control.stop_bpstat
a01bda52 5009 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5010 ecs->event_thread->suspend.stop_pc,
5011 ecs->event_thread, &ecs->ws);
675bf4cb 5012
c65d6b55
PA
5013 if (handle_stop_requested (ecs))
5014 return;
5015
ce12b012
PA
5016 /* If no catchpoint triggered for this, then keep going. Note
5017 that we're interested in knowing the bpstat actually causes a
5018 stop, not just if it may explain the signal. Software
5019 watchpoints, for example, always appear in the bpstat. */
5020 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5021 {
e58b0e63 5022 int should_resume;
3e43a32a
MS
5023 int follow_child
5024 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5025
a493e3e2 5026 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5027
5028 should_resume = follow_fork ();
5029
00431a78
PA
5030 thread_info *parent = ecs->event_thread;
5031 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5032
a2077e25
PA
5033 /* At this point, the parent is marked running, and the
5034 child is marked stopped. */
5035
5036 /* If not resuming the parent, mark it stopped. */
5037 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5038 parent->set_running (false);
a2077e25
PA
5039
5040 /* If resuming the child, mark it running. */
5041 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5042 child->set_running (true);
a2077e25 5043
6c95b8df 5044 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5045 if (!detach_fork && (non_stop
5046 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5047 {
5048 if (follow_child)
5049 switch_to_thread (parent);
5050 else
5051 switch_to_thread (child);
5052
5053 ecs->event_thread = inferior_thread ();
5054 ecs->ptid = inferior_ptid;
5055 keep_going (ecs);
5056 }
5057
5058 if (follow_child)
5059 switch_to_thread (child);
5060 else
5061 switch_to_thread (parent);
5062
e58b0e63
PA
5063 ecs->event_thread = inferior_thread ();
5064 ecs->ptid = inferior_ptid;
5065
5066 if (should_resume)
5067 keep_going (ecs);
5068 else
22bcd14b 5069 stop_waiting (ecs);
04e68871
DJ
5070 return;
5071 }
94c57d6a
PA
5072 process_event_stop_test (ecs);
5073 return;
488f131b 5074
6c95b8df
PA
5075 case TARGET_WAITKIND_VFORK_DONE:
5076 /* Done with the shared memory region. Re-insert breakpoints in
5077 the parent, and keep going. */
5078
5079 if (debug_infrun)
3e43a32a
MS
5080 fprintf_unfiltered (gdb_stdlog,
5081 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5082
00431a78 5083 context_switch (ecs);
6c95b8df
PA
5084
5085 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5086 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5087
5088 if (handle_stop_requested (ecs))
5089 return;
5090
6c95b8df
PA
5091 /* This also takes care of reinserting breakpoints in the
5092 previously locked inferior. */
5093 keep_going (ecs);
5094 return;
5095
488f131b 5096 case TARGET_WAITKIND_EXECD:
527159b7 5097 if (debug_infrun)
fc5261f2 5098 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5099
cbd2b4e3
PA
5100 /* Note we can't read registers yet (the stop_pc), because we
5101 don't yet know the inferior's post-exec architecture.
5102 'stop_pc' is explicitly read below instead. */
00431a78 5103 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5104
6c95b8df
PA
5105 /* Do whatever is necessary to the parent branch of the vfork. */
5106 handle_vfork_child_exec_or_exit (1);
5107
795e548f
PA
5108 /* This causes the eventpoints and symbol table to be reset.
5109 Must do this now, before trying to determine whether to
5110 stop. */
71b43ef8 5111 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5112
17d8546e
DB
5113 /* In follow_exec we may have deleted the original thread and
5114 created a new one. Make sure that the event thread is the
5115 execd thread for that case (this is a nop otherwise). */
5116 ecs->event_thread = inferior_thread ();
5117
f2ffa92b
PA
5118 ecs->event_thread->suspend.stop_pc
5119 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5120
16c381f0 5121 ecs->event_thread->control.stop_bpstat
a01bda52 5122 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5123 ecs->event_thread->suspend.stop_pc,
5124 ecs->event_thread, &ecs->ws);
795e548f 5125
71b43ef8
PA
5126 /* Note that this may be referenced from inside
5127 bpstat_stop_status above, through inferior_has_execd. */
5128 xfree (ecs->ws.value.execd_pathname);
5129 ecs->ws.value.execd_pathname = NULL;
5130
c65d6b55
PA
5131 if (handle_stop_requested (ecs))
5132 return;
5133
04e68871 5134 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5135 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5136 {
a493e3e2 5137 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5138 keep_going (ecs);
5139 return;
5140 }
94c57d6a
PA
5141 process_event_stop_test (ecs);
5142 return;
488f131b 5143
b4dc5ffa
MK
5144 /* Be careful not to try to gather much state about a thread
5145 that's in a syscall. It's frequently a losing proposition. */
488f131b 5146 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5147 if (debug_infrun)
3e43a32a
MS
5148 fprintf_unfiltered (gdb_stdlog,
5149 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5150 /* Getting the current syscall number. */
94c57d6a
PA
5151 if (handle_syscall_event (ecs) == 0)
5152 process_event_stop_test (ecs);
5153 return;
c906108c 5154
488f131b
JB
5155 /* Before examining the threads further, step this thread to
5156 get it entirely out of the syscall. (We get notice of the
5157 event when the thread is just on the verge of exiting a
5158 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5159 into user code.) */
488f131b 5160 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5161 if (debug_infrun)
3e43a32a
MS
5162 fprintf_unfiltered (gdb_stdlog,
5163 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5164 if (handle_syscall_event (ecs) == 0)
5165 process_event_stop_test (ecs);
5166 return;
c906108c 5167
488f131b 5168 case TARGET_WAITKIND_STOPPED:
527159b7 5169 if (debug_infrun)
8a9de0e4 5170 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5171 handle_signal_stop (ecs);
5172 return;
c906108c 5173
b2175913 5174 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5175 if (debug_infrun)
5176 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5177 /* Reverse execution: target ran out of history info. */
eab402df 5178
d1988021 5179 /* Switch to the stopped thread. */
00431a78 5180 context_switch (ecs);
d1988021
MM
5181 if (debug_infrun)
5182 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5183
34b7e8a6 5184 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5185 ecs->event_thread->suspend.stop_pc
5186 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5187
5188 if (handle_stop_requested (ecs))
5189 return;
5190
76727919 5191 gdb::observers::no_history.notify ();
22bcd14b 5192 stop_waiting (ecs);
b2175913 5193 return;
488f131b 5194 }
4f5d7f63
PA
5195}
5196
0b6e5e10
JB
5197/* A wrapper around handle_inferior_event_1, which also makes sure
5198 that all temporary struct value objects that were created during
5199 the handling of the event get deleted at the end. */
5200
5201static void
5202handle_inferior_event (struct execution_control_state *ecs)
5203{
5204 struct value *mark = value_mark ();
5205
5206 handle_inferior_event_1 (ecs);
5207 /* Purge all temporary values created during the event handling,
5208 as it could be a long time before we return to the command level
5209 where such values would otherwise be purged. */
5210 value_free_to_mark (mark);
5211}
5212
372316f1
PA
5213/* Restart threads back to what they were trying to do back when we
5214 paused them for an in-line step-over. The EVENT_THREAD thread is
5215 ignored. */
4d9d9d04
PA
5216
5217static void
372316f1
PA
5218restart_threads (struct thread_info *event_thread)
5219{
372316f1
PA
5220 /* In case the instruction just stepped spawned a new thread. */
5221 update_thread_list ();
5222
08036331 5223 for (thread_info *tp : all_non_exited_threads ())
372316f1
PA
5224 {
5225 if (tp == event_thread)
5226 {
5227 if (debug_infrun)
5228 fprintf_unfiltered (gdb_stdlog,
5229 "infrun: restart threads: "
5230 "[%s] is event thread\n",
5231 target_pid_to_str (tp->ptid));
5232 continue;
5233 }
5234
5235 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5236 {
5237 if (debug_infrun)
5238 fprintf_unfiltered (gdb_stdlog,
5239 "infrun: restart threads: "
5240 "[%s] not meant to be running\n",
5241 target_pid_to_str (tp->ptid));
5242 continue;
5243 }
5244
5245 if (tp->resumed)
5246 {
5247 if (debug_infrun)
5248 fprintf_unfiltered (gdb_stdlog,
5249 "infrun: restart threads: [%s] resumed\n",
5250 target_pid_to_str (tp->ptid));
5251 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5252 continue;
5253 }
5254
5255 if (thread_is_in_step_over_chain (tp))
5256 {
5257 if (debug_infrun)
5258 fprintf_unfiltered (gdb_stdlog,
5259 "infrun: restart threads: "
5260 "[%s] needs step-over\n",
5261 target_pid_to_str (tp->ptid));
5262 gdb_assert (!tp->resumed);
5263 continue;
5264 }
5265
5266
5267 if (tp->suspend.waitstatus_pending_p)
5268 {
5269 if (debug_infrun)
5270 fprintf_unfiltered (gdb_stdlog,
5271 "infrun: restart threads: "
5272 "[%s] has pending status\n",
5273 target_pid_to_str (tp->ptid));
5274 tp->resumed = 1;
5275 continue;
5276 }
5277
c65d6b55
PA
5278 gdb_assert (!tp->stop_requested);
5279
372316f1
PA
5280 /* If some thread needs to start a step-over at this point, it
5281 should still be in the step-over queue, and thus skipped
5282 above. */
5283 if (thread_still_needs_step_over (tp))
5284 {
5285 internal_error (__FILE__, __LINE__,
5286 "thread [%s] needs a step-over, but not in "
5287 "step-over queue\n",
5288 target_pid_to_str (tp->ptid));
5289 }
5290
5291 if (currently_stepping (tp))
5292 {
5293 if (debug_infrun)
5294 fprintf_unfiltered (gdb_stdlog,
5295 "infrun: restart threads: [%s] was stepping\n",
5296 target_pid_to_str (tp->ptid));
5297 keep_going_stepped_thread (tp);
5298 }
5299 else
5300 {
5301 struct execution_control_state ecss;
5302 struct execution_control_state *ecs = &ecss;
5303
5304 if (debug_infrun)
5305 fprintf_unfiltered (gdb_stdlog,
5306 "infrun: restart threads: [%s] continuing\n",
5307 target_pid_to_str (tp->ptid));
5308 reset_ecs (ecs, tp);
00431a78 5309 switch_to_thread (tp);
372316f1
PA
5310 keep_going_pass_signal (ecs);
5311 }
5312 }
5313}
5314
5315/* Callback for iterate_over_threads. Find a resumed thread that has
5316 a pending waitstatus. */
5317
5318static int
5319resumed_thread_with_pending_status (struct thread_info *tp,
5320 void *arg)
5321{
5322 return (tp->resumed
5323 && tp->suspend.waitstatus_pending_p);
5324}
5325
5326/* Called when we get an event that may finish an in-line or
5327 out-of-line (displaced stepping) step-over started previously.
5328 Return true if the event is processed and we should go back to the
5329 event loop; false if the caller should continue processing the
5330 event. */
5331
5332static int
4d9d9d04
PA
5333finish_step_over (struct execution_control_state *ecs)
5334{
372316f1
PA
5335 int had_step_over_info;
5336
00431a78 5337 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5338 ecs->event_thread->suspend.stop_signal);
5339
372316f1
PA
5340 had_step_over_info = step_over_info_valid_p ();
5341
5342 if (had_step_over_info)
4d9d9d04
PA
5343 {
5344 /* If we're stepping over a breakpoint with all threads locked,
5345 then only the thread that was stepped should be reporting
5346 back an event. */
5347 gdb_assert (ecs->event_thread->control.trap_expected);
5348
c65d6b55 5349 clear_step_over_info ();
4d9d9d04
PA
5350 }
5351
fbea99ea 5352 if (!target_is_non_stop_p ())
372316f1 5353 return 0;
4d9d9d04
PA
5354
5355 /* Start a new step-over in another thread if there's one that
5356 needs it. */
5357 start_step_over ();
372316f1
PA
5358
5359 /* If we were stepping over a breakpoint before, and haven't started
5360 a new in-line step-over sequence, then restart all other threads
5361 (except the event thread). We can't do this in all-stop, as then
5362 e.g., we wouldn't be able to issue any other remote packet until
5363 these other threads stop. */
5364 if (had_step_over_info && !step_over_info_valid_p ())
5365 {
5366 struct thread_info *pending;
5367
5368 /* If we only have threads with pending statuses, the restart
5369 below won't restart any thread and so nothing re-inserts the
5370 breakpoint we just stepped over. But we need it inserted
5371 when we later process the pending events, otherwise if
5372 another thread has a pending event for this breakpoint too,
5373 we'd discard its event (because the breakpoint that
5374 originally caused the event was no longer inserted). */
00431a78 5375 context_switch (ecs);
372316f1
PA
5376 insert_breakpoints ();
5377
5378 restart_threads (ecs->event_thread);
5379
5380 /* If we have events pending, go through handle_inferior_event
5381 again, picking up a pending event at random. This avoids
5382 thread starvation. */
5383
5384 /* But not if we just stepped over a watchpoint in order to let
5385 the instruction execute so we can evaluate its expression.
5386 The set of watchpoints that triggered is recorded in the
5387 breakpoint objects themselves (see bp->watchpoint_triggered).
5388 If we processed another event first, that other event could
5389 clobber this info. */
5390 if (ecs->event_thread->stepping_over_watchpoint)
5391 return 0;
5392
5393 pending = iterate_over_threads (resumed_thread_with_pending_status,
5394 NULL);
5395 if (pending != NULL)
5396 {
5397 struct thread_info *tp = ecs->event_thread;
5398 struct regcache *regcache;
5399
5400 if (debug_infrun)
5401 {
5402 fprintf_unfiltered (gdb_stdlog,
5403 "infrun: found resumed threads with "
5404 "pending events, saving status\n");
5405 }
5406
5407 gdb_assert (pending != tp);
5408
5409 /* Record the event thread's event for later. */
5410 save_waitstatus (tp, &ecs->ws);
5411 /* This was cleared early, by handle_inferior_event. Set it
5412 so this pending event is considered by
5413 do_target_wait. */
5414 tp->resumed = 1;
5415
5416 gdb_assert (!tp->executing);
5417
00431a78 5418 regcache = get_thread_regcache (tp);
372316f1
PA
5419 tp->suspend.stop_pc = regcache_read_pc (regcache);
5420
5421 if (debug_infrun)
5422 {
5423 fprintf_unfiltered (gdb_stdlog,
5424 "infrun: saved stop_pc=%s for %s "
5425 "(currently_stepping=%d)\n",
5426 paddress (target_gdbarch (),
5427 tp->suspend.stop_pc),
5428 target_pid_to_str (tp->ptid),
5429 currently_stepping (tp));
5430 }
5431
5432 /* This in-line step-over finished; clear this so we won't
5433 start a new one. This is what handle_signal_stop would
5434 do, if we returned false. */
5435 tp->stepping_over_breakpoint = 0;
5436
5437 /* Wake up the event loop again. */
5438 mark_async_event_handler (infrun_async_inferior_event_token);
5439
5440 prepare_to_wait (ecs);
5441 return 1;
5442 }
5443 }
5444
5445 return 0;
4d9d9d04
PA
5446}
5447
4f5d7f63
PA
5448/* Come here when the program has stopped with a signal. */
5449
5450static void
5451handle_signal_stop (struct execution_control_state *ecs)
5452{
5453 struct frame_info *frame;
5454 struct gdbarch *gdbarch;
5455 int stopped_by_watchpoint;
5456 enum stop_kind stop_soon;
5457 int random_signal;
c906108c 5458
f0407826
DE
5459 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5460
c65d6b55
PA
5461 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5462
f0407826
DE
5463 /* Do we need to clean up the state of a thread that has
5464 completed a displaced single-step? (Doing so usually affects
5465 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5466 if (finish_step_over (ecs))
5467 return;
f0407826
DE
5468
5469 /* If we either finished a single-step or hit a breakpoint, but
5470 the user wanted this thread to be stopped, pretend we got a
5471 SIG0 (generic unsignaled stop). */
5472 if (ecs->event_thread->stop_requested
5473 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5474 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5475
f2ffa92b
PA
5476 ecs->event_thread->suspend.stop_pc
5477 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5478
527159b7 5479 if (debug_infrun)
237fc4c9 5480 {
00431a78 5481 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5482 struct gdbarch *reg_gdbarch = regcache->arch ();
2989a365 5483 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5484
5485 inferior_ptid = ecs->ptid;
5af949e3
UW
5486
5487 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5488 paddress (reg_gdbarch,
f2ffa92b 5489 ecs->event_thread->suspend.stop_pc));
d92524f1 5490 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5491 {
5492 CORE_ADDR addr;
abbb1732 5493
237fc4c9
PA
5494 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5495
8b88a78e 5496 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5497 fprintf_unfiltered (gdb_stdlog,
5af949e3 5498 "infrun: stopped data address = %s\n",
b926417a 5499 paddress (reg_gdbarch, addr));
237fc4c9
PA
5500 else
5501 fprintf_unfiltered (gdb_stdlog,
5502 "infrun: (no data address available)\n");
5503 }
5504 }
527159b7 5505
36fa8042
PA
5506 /* This is originated from start_remote(), start_inferior() and
5507 shared libraries hook functions. */
00431a78 5508 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5509 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5510 {
00431a78 5511 context_switch (ecs);
36fa8042
PA
5512 if (debug_infrun)
5513 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5514 stop_print_frame = 1;
22bcd14b 5515 stop_waiting (ecs);
36fa8042
PA
5516 return;
5517 }
5518
36fa8042
PA
5519 /* This originates from attach_command(). We need to overwrite
5520 the stop_signal here, because some kernels don't ignore a
5521 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5522 See more comments in inferior.h. On the other hand, if we
5523 get a non-SIGSTOP, report it to the user - assume the backend
5524 will handle the SIGSTOP if it should show up later.
5525
5526 Also consider that the attach is complete when we see a
5527 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5528 target extended-remote report it instead of a SIGSTOP
5529 (e.g. gdbserver). We already rely on SIGTRAP being our
5530 signal, so this is no exception.
5531
5532 Also consider that the attach is complete when we see a
5533 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5534 the target to stop all threads of the inferior, in case the
5535 low level attach operation doesn't stop them implicitly. If
5536 they weren't stopped implicitly, then the stub will report a
5537 GDB_SIGNAL_0, meaning: stopped for no particular reason
5538 other than GDB's request. */
5539 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5540 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5541 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5542 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5543 {
5544 stop_print_frame = 1;
22bcd14b 5545 stop_waiting (ecs);
36fa8042
PA
5546 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5547 return;
5548 }
5549
488f131b 5550 /* See if something interesting happened to the non-current thread. If
b40c7d58 5551 so, then switch to that thread. */
d7e15655 5552 if (ecs->ptid != inferior_ptid)
488f131b 5553 {
527159b7 5554 if (debug_infrun)
8a9de0e4 5555 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5556
00431a78 5557 context_switch (ecs);
c5aa993b 5558
9a4105ab 5559 if (deprecated_context_hook)
00431a78 5560 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5561 }
c906108c 5562
568d6575
UW
5563 /* At this point, get hold of the now-current thread's frame. */
5564 frame = get_current_frame ();
5565 gdbarch = get_frame_arch (frame);
5566
2adfaa28 5567 /* Pull the single step breakpoints out of the target. */
af48d08f 5568 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5569 {
af48d08f 5570 struct regcache *regcache;
af48d08f 5571 CORE_ADDR pc;
2adfaa28 5572
00431a78 5573 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5574 const address_space *aspace = regcache->aspace ();
5575
af48d08f 5576 pc = regcache_read_pc (regcache);
34b7e8a6 5577
af48d08f
PA
5578 /* However, before doing so, if this single-step breakpoint was
5579 actually for another thread, set this thread up for moving
5580 past it. */
5581 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5582 aspace, pc))
5583 {
5584 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5585 {
5586 if (debug_infrun)
5587 {
5588 fprintf_unfiltered (gdb_stdlog,
af48d08f 5589 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5590 "single-step breakpoint\n",
5591 target_pid_to_str (ecs->ptid));
2adfaa28 5592 }
af48d08f
PA
5593 ecs->hit_singlestep_breakpoint = 1;
5594 }
5595 }
5596 else
5597 {
5598 if (debug_infrun)
5599 {
5600 fprintf_unfiltered (gdb_stdlog,
5601 "infrun: [%s] hit its "
5602 "single-step breakpoint\n",
5603 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5604 }
5605 }
488f131b 5606 }
af48d08f 5607 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5608
963f9c80
PA
5609 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5610 && ecs->event_thread->control.trap_expected
5611 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5612 stopped_by_watchpoint = 0;
5613 else
5614 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5615
5616 /* If necessary, step over this watchpoint. We'll be back to display
5617 it in a moment. */
5618 if (stopped_by_watchpoint
d92524f1 5619 && (target_have_steppable_watchpoint
568d6575 5620 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5621 {
488f131b
JB
5622 /* At this point, we are stopped at an instruction which has
5623 attempted to write to a piece of memory under control of
5624 a watchpoint. The instruction hasn't actually executed
5625 yet. If we were to evaluate the watchpoint expression
5626 now, we would get the old value, and therefore no change
5627 would seem to have occurred.
5628
5629 In order to make watchpoints work `right', we really need
5630 to complete the memory write, and then evaluate the
d983da9c
DJ
5631 watchpoint expression. We do this by single-stepping the
5632 target.
5633
7f89fd65 5634 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5635 it. For example, the PA can (with some kernel cooperation)
5636 single step over a watchpoint without disabling the watchpoint.
5637
5638 It is far more common to need to disable a watchpoint to step
5639 the inferior over it. If we have non-steppable watchpoints,
5640 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5641 disable all watchpoints.
5642
5643 Any breakpoint at PC must also be stepped over -- if there's
5644 one, it will have already triggered before the watchpoint
5645 triggered, and we either already reported it to the user, or
5646 it didn't cause a stop and we called keep_going. In either
5647 case, if there was a breakpoint at PC, we must be trying to
5648 step past it. */
5649 ecs->event_thread->stepping_over_watchpoint = 1;
5650 keep_going (ecs);
488f131b
JB
5651 return;
5652 }
5653
4e1c45ea 5654 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5655 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5656 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5657 ecs->event_thread->control.stop_step = 0;
488f131b 5658 stop_print_frame = 1;
488f131b 5659 stopped_by_random_signal = 0;
ddfe970e 5660 bpstat stop_chain = NULL;
488f131b 5661
edb3359d
DJ
5662 /* Hide inlined functions starting here, unless we just performed stepi or
5663 nexti. After stepi and nexti, always show the innermost frame (not any
5664 inline function call sites). */
16c381f0 5665 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5666 {
00431a78
PA
5667 const address_space *aspace
5668 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5669
5670 /* skip_inline_frames is expensive, so we avoid it if we can
5671 determine that the address is one where functions cannot have
5672 been inlined. This improves performance with inferiors that
5673 load a lot of shared libraries, because the solib event
5674 breakpoint is defined as the address of a function (i.e. not
5675 inline). Note that we have to check the previous PC as well
5676 as the current one to catch cases when we have just
5677 single-stepped off a breakpoint prior to reinstating it.
5678 Note that we're assuming that the code we single-step to is
5679 not inline, but that's not definitive: there's nothing
5680 preventing the event breakpoint function from containing
5681 inlined code, and the single-step ending up there. If the
5682 user had set a breakpoint on that inlined code, the missing
5683 skip_inline_frames call would break things. Fortunately
5684 that's an extremely unlikely scenario. */
f2ffa92b
PA
5685 if (!pc_at_non_inline_function (aspace,
5686 ecs->event_thread->suspend.stop_pc,
5687 &ecs->ws)
a210c238
MR
5688 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5689 && ecs->event_thread->control.trap_expected
5690 && pc_at_non_inline_function (aspace,
5691 ecs->event_thread->prev_pc,
09ac7c10 5692 &ecs->ws)))
1c5a993e 5693 {
f2ffa92b
PA
5694 stop_chain = build_bpstat_chain (aspace,
5695 ecs->event_thread->suspend.stop_pc,
5696 &ecs->ws);
00431a78 5697 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5698
5699 /* Re-fetch current thread's frame in case that invalidated
5700 the frame cache. */
5701 frame = get_current_frame ();
5702 gdbarch = get_frame_arch (frame);
5703 }
0574c78f 5704 }
edb3359d 5705
a493e3e2 5706 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5707 && ecs->event_thread->control.trap_expected
568d6575 5708 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5709 && currently_stepping (ecs->event_thread))
3352ef37 5710 {
b50d7442 5711 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5712 also on an instruction that needs to be stepped multiple
1777feb0 5713 times before it's been fully executing. E.g., architectures
3352ef37
AC
5714 with a delay slot. It needs to be stepped twice, once for
5715 the instruction and once for the delay slot. */
5716 int step_through_delay
568d6575 5717 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5718
527159b7 5719 if (debug_infrun && step_through_delay)
8a9de0e4 5720 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5721 if (ecs->event_thread->control.step_range_end == 0
5722 && step_through_delay)
3352ef37
AC
5723 {
5724 /* The user issued a continue when stopped at a breakpoint.
5725 Set up for another trap and get out of here. */
4e1c45ea 5726 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5727 keep_going (ecs);
5728 return;
5729 }
5730 else if (step_through_delay)
5731 {
5732 /* The user issued a step when stopped at a breakpoint.
5733 Maybe we should stop, maybe we should not - the delay
5734 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5735 case, don't decide that here, just set
5736 ecs->stepping_over_breakpoint, making sure we
5737 single-step again before breakpoints are re-inserted. */
4e1c45ea 5738 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5739 }
5740 }
5741
ab04a2af
TT
5742 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5743 handles this event. */
5744 ecs->event_thread->control.stop_bpstat
a01bda52 5745 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5746 ecs->event_thread->suspend.stop_pc,
5747 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5748
ab04a2af
TT
5749 /* Following in case break condition called a
5750 function. */
5751 stop_print_frame = 1;
73dd234f 5752
ab04a2af
TT
5753 /* This is where we handle "moribund" watchpoints. Unlike
5754 software breakpoints traps, hardware watchpoint traps are
5755 always distinguishable from random traps. If no high-level
5756 watchpoint is associated with the reported stop data address
5757 anymore, then the bpstat does not explain the signal ---
5758 simply make sure to ignore it if `stopped_by_watchpoint' is
5759 set. */
5760
5761 if (debug_infrun
5762 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5763 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5764 GDB_SIGNAL_TRAP)
ab04a2af
TT
5765 && stopped_by_watchpoint)
5766 fprintf_unfiltered (gdb_stdlog,
5767 "infrun: no user watchpoint explains "
5768 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5769
bac7d97b 5770 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5771 at one stage in the past included checks for an inferior
5772 function call's call dummy's return breakpoint. The original
5773 comment, that went with the test, read:
03cebad2 5774
ab04a2af
TT
5775 ``End of a stack dummy. Some systems (e.g. Sony news) give
5776 another signal besides SIGTRAP, so check here as well as
5777 above.''
73dd234f 5778
ab04a2af
TT
5779 If someone ever tries to get call dummys on a
5780 non-executable stack to work (where the target would stop
5781 with something like a SIGSEGV), then those tests might need
5782 to be re-instated. Given, however, that the tests were only
5783 enabled when momentary breakpoints were not being used, I
5784 suspect that it won't be the case.
488f131b 5785
ab04a2af
TT
5786 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5787 be necessary for call dummies on a non-executable stack on
5788 SPARC. */
488f131b 5789
bac7d97b 5790 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5791 random_signal
5792 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5793 ecs->event_thread->suspend.stop_signal);
bac7d97b 5794
1cf4d951
PA
5795 /* Maybe this was a trap for a software breakpoint that has since
5796 been removed. */
5797 if (random_signal && target_stopped_by_sw_breakpoint ())
5798 {
f2ffa92b
PA
5799 if (program_breakpoint_here_p (gdbarch,
5800 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5801 {
5802 struct regcache *regcache;
5803 int decr_pc;
5804
5805 /* Re-adjust PC to what the program would see if GDB was not
5806 debugging it. */
00431a78 5807 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5808 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5809 if (decr_pc != 0)
5810 {
07036511
TT
5811 gdb::optional<scoped_restore_tmpl<int>>
5812 restore_operation_disable;
1cf4d951
PA
5813
5814 if (record_full_is_used ())
07036511
TT
5815 restore_operation_disable.emplace
5816 (record_full_gdb_operation_disable_set ());
1cf4d951 5817
f2ffa92b
PA
5818 regcache_write_pc (regcache,
5819 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
5820 }
5821 }
5822 else
5823 {
5824 /* A delayed software breakpoint event. Ignore the trap. */
5825 if (debug_infrun)
5826 fprintf_unfiltered (gdb_stdlog,
5827 "infrun: delayed software breakpoint "
5828 "trap, ignoring\n");
5829 random_signal = 0;
5830 }
5831 }
5832
5833 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
5834 has since been removed. */
5835 if (random_signal && target_stopped_by_hw_breakpoint ())
5836 {
5837 /* A delayed hardware breakpoint event. Ignore the trap. */
5838 if (debug_infrun)
5839 fprintf_unfiltered (gdb_stdlog,
5840 "infrun: delayed hardware breakpoint/watchpoint "
5841 "trap, ignoring\n");
5842 random_signal = 0;
5843 }
5844
bac7d97b
PA
5845 /* If not, perhaps stepping/nexting can. */
5846 if (random_signal)
5847 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5848 && currently_stepping (ecs->event_thread));
ab04a2af 5849
2adfaa28
PA
5850 /* Perhaps the thread hit a single-step breakpoint of _another_
5851 thread. Single-step breakpoints are transparent to the
5852 breakpoints module. */
5853 if (random_signal)
5854 random_signal = !ecs->hit_singlestep_breakpoint;
5855
bac7d97b
PA
5856 /* No? Perhaps we got a moribund watchpoint. */
5857 if (random_signal)
5858 random_signal = !stopped_by_watchpoint;
ab04a2af 5859
c65d6b55
PA
5860 /* Always stop if the user explicitly requested this thread to
5861 remain stopped. */
5862 if (ecs->event_thread->stop_requested)
5863 {
5864 random_signal = 1;
5865 if (debug_infrun)
5866 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
5867 }
5868
488f131b
JB
5869 /* For the program's own signals, act according to
5870 the signal handling tables. */
5871
ce12b012 5872 if (random_signal)
488f131b
JB
5873 {
5874 /* Signal not for debugging purposes. */
c9657e70 5875 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 5876 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 5877
527159b7 5878 if (debug_infrun)
c9737c08
PA
5879 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
5880 gdb_signal_to_symbol_string (stop_signal));
527159b7 5881
488f131b
JB
5882 stopped_by_random_signal = 1;
5883
252fbfc8
PA
5884 /* Always stop on signals if we're either just gaining control
5885 of the program, or the user explicitly requested this thread
5886 to remain stopped. */
d6b48e9c 5887 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 5888 || ecs->event_thread->stop_requested
24291992 5889 || (!inf->detaching
16c381f0 5890 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 5891 {
22bcd14b 5892 stop_waiting (ecs);
488f131b
JB
5893 return;
5894 }
b57bacec
PA
5895
5896 /* Notify observers the signal has "handle print" set. Note we
5897 returned early above if stopping; normal_stop handles the
5898 printing in that case. */
5899 if (signal_print[ecs->event_thread->suspend.stop_signal])
5900 {
5901 /* The signal table tells us to print about this signal. */
223ffa71 5902 target_terminal::ours_for_output ();
76727919 5903 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 5904 target_terminal::inferior ();
b57bacec 5905 }
488f131b
JB
5906
5907 /* Clear the signal if it should not be passed. */
16c381f0 5908 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 5909 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 5910
f2ffa92b 5911 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 5912 && ecs->event_thread->control.trap_expected
8358c15c 5913 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
5914 {
5915 /* We were just starting a new sequence, attempting to
5916 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 5917 Instead this signal arrives. This signal will take us out
68f53502
AC
5918 of the stepping range so GDB needs to remember to, when
5919 the signal handler returns, resume stepping off that
5920 breakpoint. */
5921 /* To simplify things, "continue" is forced to use the same
5922 code paths as single-step - set a breakpoint at the
5923 signal return address and then, once hit, step off that
5924 breakpoint. */
237fc4c9
PA
5925 if (debug_infrun)
5926 fprintf_unfiltered (gdb_stdlog,
5927 "infrun: signal arrived while stepping over "
5928 "breakpoint\n");
d3169d93 5929
2c03e5be 5930 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 5931 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5932 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5933 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
5934
5935 /* If we were nexting/stepping some other thread, switch to
5936 it, so that we don't continue it, losing control. */
5937 if (!switch_back_to_stepped_thread (ecs))
5938 keep_going (ecs);
9d799f85 5939 return;
68f53502 5940 }
9d799f85 5941
e5f8a7cc 5942 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
5943 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
5944 ecs->event_thread)
e5f8a7cc 5945 || ecs->event_thread->control.step_range_end == 1)
edb3359d 5946 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 5947 ecs->event_thread->control.step_stack_frame_id)
8358c15c 5948 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
5949 {
5950 /* The inferior is about to take a signal that will take it
5951 out of the single step range. Set a breakpoint at the
5952 current PC (which is presumably where the signal handler
5953 will eventually return) and then allow the inferior to
5954 run free.
5955
5956 Note that this is only needed for a signal delivered
5957 while in the single-step range. Nested signals aren't a
5958 problem as they eventually all return. */
237fc4c9
PA
5959 if (debug_infrun)
5960 fprintf_unfiltered (gdb_stdlog,
5961 "infrun: signal may take us out of "
5962 "single-step range\n");
5963
372316f1 5964 clear_step_over_info ();
2c03e5be 5965 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 5966 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
5967 /* Reset trap_expected to ensure breakpoints are re-inserted. */
5968 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
5969 keep_going (ecs);
5970 return;
d303a6c7 5971 }
9d799f85
AC
5972
5973 /* Note: step_resume_breakpoint may be non-NULL. This occures
5974 when either there's a nested signal, or when there's a
5975 pending signal enabled just as the signal handler returns
5976 (leaving the inferior at the step-resume-breakpoint without
5977 actually executing it). Either way continue until the
5978 breakpoint is really hit. */
c447ac0b
PA
5979
5980 if (!switch_back_to_stepped_thread (ecs))
5981 {
5982 if (debug_infrun)
5983 fprintf_unfiltered (gdb_stdlog,
5984 "infrun: random signal, keep going\n");
5985
5986 keep_going (ecs);
5987 }
5988 return;
488f131b 5989 }
94c57d6a
PA
5990
5991 process_event_stop_test (ecs);
5992}
5993
5994/* Come here when we've got some debug event / signal we can explain
5995 (IOW, not a random signal), and test whether it should cause a
5996 stop, or whether we should resume the inferior (transparently).
5997 E.g., could be a breakpoint whose condition evaluates false; we
5998 could be still stepping within the line; etc. */
5999
6000static void
6001process_event_stop_test (struct execution_control_state *ecs)
6002{
6003 struct symtab_and_line stop_pc_sal;
6004 struct frame_info *frame;
6005 struct gdbarch *gdbarch;
cdaa5b73
PA
6006 CORE_ADDR jmp_buf_pc;
6007 struct bpstat_what what;
94c57d6a 6008
cdaa5b73 6009 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6010
cdaa5b73
PA
6011 frame = get_current_frame ();
6012 gdbarch = get_frame_arch (frame);
fcf3daef 6013
cdaa5b73 6014 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6015
cdaa5b73
PA
6016 if (what.call_dummy)
6017 {
6018 stop_stack_dummy = what.call_dummy;
6019 }
186c406b 6020
243a9253
PA
6021 /* A few breakpoint types have callbacks associated (e.g.,
6022 bp_jit_event). Run them now. */
6023 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6024
cdaa5b73
PA
6025 /* If we hit an internal event that triggers symbol changes, the
6026 current frame will be invalidated within bpstat_what (e.g., if we
6027 hit an internal solib event). Re-fetch it. */
6028 frame = get_current_frame ();
6029 gdbarch = get_frame_arch (frame);
e2e4d78b 6030
cdaa5b73
PA
6031 switch (what.main_action)
6032 {
6033 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6034 /* If we hit the breakpoint at longjmp while stepping, we
6035 install a momentary breakpoint at the target of the
6036 jmp_buf. */
186c406b 6037
cdaa5b73
PA
6038 if (debug_infrun)
6039 fprintf_unfiltered (gdb_stdlog,
6040 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6041
cdaa5b73 6042 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6043
cdaa5b73
PA
6044 if (what.is_longjmp)
6045 {
6046 struct value *arg_value;
6047
6048 /* If we set the longjmp breakpoint via a SystemTap probe,
6049 then use it to extract the arguments. The destination PC
6050 is the third argument to the probe. */
6051 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6052 if (arg_value)
8fa0c4f8
AA
6053 {
6054 jmp_buf_pc = value_as_address (arg_value);
6055 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6056 }
cdaa5b73
PA
6057 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6058 || !gdbarch_get_longjmp_target (gdbarch,
6059 frame, &jmp_buf_pc))
e2e4d78b 6060 {
cdaa5b73
PA
6061 if (debug_infrun)
6062 fprintf_unfiltered (gdb_stdlog,
6063 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6064 "(!gdbarch_get_longjmp_target)\n");
6065 keep_going (ecs);
6066 return;
e2e4d78b 6067 }
e2e4d78b 6068
cdaa5b73
PA
6069 /* Insert a breakpoint at resume address. */
6070 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6071 }
6072 else
6073 check_exception_resume (ecs, frame);
6074 keep_going (ecs);
6075 return;
e81a37f7 6076
cdaa5b73
PA
6077 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6078 {
6079 struct frame_info *init_frame;
e81a37f7 6080
cdaa5b73 6081 /* There are several cases to consider.
c906108c 6082
cdaa5b73
PA
6083 1. The initiating frame no longer exists. In this case we
6084 must stop, because the exception or longjmp has gone too
6085 far.
2c03e5be 6086
cdaa5b73
PA
6087 2. The initiating frame exists, and is the same as the
6088 current frame. We stop, because the exception or longjmp
6089 has been caught.
2c03e5be 6090
cdaa5b73
PA
6091 3. The initiating frame exists and is different from the
6092 current frame. This means the exception or longjmp has
6093 been caught beneath the initiating frame, so keep going.
c906108c 6094
cdaa5b73
PA
6095 4. longjmp breakpoint has been placed just to protect
6096 against stale dummy frames and user is not interested in
6097 stopping around longjmps. */
c5aa993b 6098
cdaa5b73
PA
6099 if (debug_infrun)
6100 fprintf_unfiltered (gdb_stdlog,
6101 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6102
cdaa5b73
PA
6103 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6104 != NULL);
6105 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6106
cdaa5b73
PA
6107 if (what.is_longjmp)
6108 {
b67a2c6f 6109 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6110
cdaa5b73 6111 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6112 {
cdaa5b73
PA
6113 /* Case 4. */
6114 keep_going (ecs);
6115 return;
e5ef252a 6116 }
cdaa5b73 6117 }
c5aa993b 6118
cdaa5b73 6119 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6120
cdaa5b73
PA
6121 if (init_frame)
6122 {
6123 struct frame_id current_id
6124 = get_frame_id (get_current_frame ());
6125 if (frame_id_eq (current_id,
6126 ecs->event_thread->initiating_frame))
6127 {
6128 /* Case 2. Fall through. */
6129 }
6130 else
6131 {
6132 /* Case 3. */
6133 keep_going (ecs);
6134 return;
6135 }
68f53502 6136 }
488f131b 6137
cdaa5b73
PA
6138 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6139 exists. */
6140 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6141
bdc36728 6142 end_stepping_range (ecs);
cdaa5b73
PA
6143 }
6144 return;
e5ef252a 6145
cdaa5b73
PA
6146 case BPSTAT_WHAT_SINGLE:
6147 if (debug_infrun)
6148 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6149 ecs->event_thread->stepping_over_breakpoint = 1;
6150 /* Still need to check other stuff, at least the case where we
6151 are stepping and step out of the right range. */
6152 break;
e5ef252a 6153
cdaa5b73
PA
6154 case BPSTAT_WHAT_STEP_RESUME:
6155 if (debug_infrun)
6156 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6157
cdaa5b73
PA
6158 delete_step_resume_breakpoint (ecs->event_thread);
6159 if (ecs->event_thread->control.proceed_to_finish
6160 && execution_direction == EXEC_REVERSE)
6161 {
6162 struct thread_info *tp = ecs->event_thread;
6163
6164 /* We are finishing a function in reverse, and just hit the
6165 step-resume breakpoint at the start address of the
6166 function, and we're almost there -- just need to back up
6167 by one more single-step, which should take us back to the
6168 function call. */
6169 tp->control.step_range_start = tp->control.step_range_end = 1;
6170 keep_going (ecs);
e5ef252a 6171 return;
cdaa5b73
PA
6172 }
6173 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6174 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6175 && execution_direction == EXEC_REVERSE)
6176 {
6177 /* We are stepping over a function call in reverse, and just
6178 hit the step-resume breakpoint at the start address of
6179 the function. Go back to single-stepping, which should
6180 take us back to the function call. */
6181 ecs->event_thread->stepping_over_breakpoint = 1;
6182 keep_going (ecs);
6183 return;
6184 }
6185 break;
e5ef252a 6186
cdaa5b73
PA
6187 case BPSTAT_WHAT_STOP_NOISY:
6188 if (debug_infrun)
6189 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6190 stop_print_frame = 1;
e5ef252a 6191
99619bea
PA
6192 /* Assume the thread stopped for a breapoint. We'll still check
6193 whether a/the breakpoint is there when the thread is next
6194 resumed. */
6195 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6196
22bcd14b 6197 stop_waiting (ecs);
cdaa5b73 6198 return;
e5ef252a 6199
cdaa5b73
PA
6200 case BPSTAT_WHAT_STOP_SILENT:
6201 if (debug_infrun)
6202 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6203 stop_print_frame = 0;
e5ef252a 6204
99619bea
PA
6205 /* Assume the thread stopped for a breapoint. We'll still check
6206 whether a/the breakpoint is there when the thread is next
6207 resumed. */
6208 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6209 stop_waiting (ecs);
cdaa5b73
PA
6210 return;
6211
6212 case BPSTAT_WHAT_HP_STEP_RESUME:
6213 if (debug_infrun)
6214 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6215
6216 delete_step_resume_breakpoint (ecs->event_thread);
6217 if (ecs->event_thread->step_after_step_resume_breakpoint)
6218 {
6219 /* Back when the step-resume breakpoint was inserted, we
6220 were trying to single-step off a breakpoint. Go back to
6221 doing that. */
6222 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6223 ecs->event_thread->stepping_over_breakpoint = 1;
6224 keep_going (ecs);
6225 return;
e5ef252a 6226 }
cdaa5b73
PA
6227 break;
6228
6229 case BPSTAT_WHAT_KEEP_CHECKING:
6230 break;
e5ef252a 6231 }
c906108c 6232
af48d08f
PA
6233 /* If we stepped a permanent breakpoint and we had a high priority
6234 step-resume breakpoint for the address we stepped, but we didn't
6235 hit it, then we must have stepped into the signal handler. The
6236 step-resume was only necessary to catch the case of _not_
6237 stepping into the handler, so delete it, and fall through to
6238 checking whether the step finished. */
6239 if (ecs->event_thread->stepped_breakpoint)
6240 {
6241 struct breakpoint *sr_bp
6242 = ecs->event_thread->control.step_resume_breakpoint;
6243
8d707a12
PA
6244 if (sr_bp != NULL
6245 && sr_bp->loc->permanent
af48d08f
PA
6246 && sr_bp->type == bp_hp_step_resume
6247 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6248 {
6249 if (debug_infrun)
6250 fprintf_unfiltered (gdb_stdlog,
6251 "infrun: stepped permanent breakpoint, stopped in "
6252 "handler\n");
6253 delete_step_resume_breakpoint (ecs->event_thread);
6254 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6255 }
6256 }
6257
cdaa5b73
PA
6258 /* We come here if we hit a breakpoint but should not stop for it.
6259 Possibly we also were stepping and should stop for that. So fall
6260 through and test for stepping. But, if not stepping, do not
6261 stop. */
c906108c 6262
a7212384
UW
6263 /* In all-stop mode, if we're currently stepping but have stopped in
6264 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6265 if (switch_back_to_stepped_thread (ecs))
6266 return;
776f04fa 6267
8358c15c 6268 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6269 {
527159b7 6270 if (debug_infrun)
d3169d93
DJ
6271 fprintf_unfiltered (gdb_stdlog,
6272 "infrun: step-resume breakpoint is inserted\n");
527159b7 6273
488f131b
JB
6274 /* Having a step-resume breakpoint overrides anything
6275 else having to do with stepping commands until
6276 that breakpoint is reached. */
488f131b
JB
6277 keep_going (ecs);
6278 return;
6279 }
c5aa993b 6280
16c381f0 6281 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6282 {
527159b7 6283 if (debug_infrun)
8a9de0e4 6284 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6285 /* Likewise if we aren't even stepping. */
488f131b
JB
6286 keep_going (ecs);
6287 return;
6288 }
c5aa993b 6289
4b7703ad
JB
6290 /* Re-fetch current thread's frame in case the code above caused
6291 the frame cache to be re-initialized, making our FRAME variable
6292 a dangling pointer. */
6293 frame = get_current_frame ();
628fe4e4 6294 gdbarch = get_frame_arch (frame);
7e324e48 6295 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6296
488f131b 6297 /* If stepping through a line, keep going if still within it.
c906108c 6298
488f131b
JB
6299 Note that step_range_end is the address of the first instruction
6300 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6301 within it!
6302
6303 Note also that during reverse execution, we may be stepping
6304 through a function epilogue and therefore must detect when
6305 the current-frame changes in the middle of a line. */
6306
f2ffa92b
PA
6307 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6308 ecs->event_thread)
31410e84 6309 && (execution_direction != EXEC_REVERSE
388a8562 6310 || frame_id_eq (get_frame_id (frame),
16c381f0 6311 ecs->event_thread->control.step_frame_id)))
488f131b 6312 {
527159b7 6313 if (debug_infrun)
5af949e3
UW
6314 fprintf_unfiltered
6315 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6316 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6317 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6318
c1e36e3e
PA
6319 /* Tentatively re-enable range stepping; `resume' disables it if
6320 necessary (e.g., if we're stepping over a breakpoint or we
6321 have software watchpoints). */
6322 ecs->event_thread->control.may_range_step = 1;
6323
b2175913
MS
6324 /* When stepping backward, stop at beginning of line range
6325 (unless it's the function entry point, in which case
6326 keep going back to the call point). */
f2ffa92b 6327 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6328 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6329 && stop_pc != ecs->stop_func_start
6330 && execution_direction == EXEC_REVERSE)
bdc36728 6331 end_stepping_range (ecs);
b2175913
MS
6332 else
6333 keep_going (ecs);
6334
488f131b
JB
6335 return;
6336 }
c5aa993b 6337
488f131b 6338 /* We stepped out of the stepping range. */
c906108c 6339
488f131b 6340 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6341 loader dynamic symbol resolution code...
6342
6343 EXEC_FORWARD: we keep on single stepping until we exit the run
6344 time loader code and reach the callee's address.
6345
6346 EXEC_REVERSE: we've already executed the callee (backward), and
6347 the runtime loader code is handled just like any other
6348 undebuggable function call. Now we need only keep stepping
6349 backward through the trampoline code, and that's handled further
6350 down, so there is nothing for us to do here. */
6351
6352 if (execution_direction != EXEC_REVERSE
16c381f0 6353 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6354 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6355 {
4c8c40e6 6356 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6357 gdbarch_skip_solib_resolver (gdbarch,
6358 ecs->event_thread->suspend.stop_pc);
c906108c 6359
527159b7 6360 if (debug_infrun)
3e43a32a
MS
6361 fprintf_unfiltered (gdb_stdlog,
6362 "infrun: stepped into dynsym resolve code\n");
527159b7 6363
488f131b
JB
6364 if (pc_after_resolver)
6365 {
6366 /* Set up a step-resume breakpoint at the address
6367 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6368 symtab_and_line sr_sal;
488f131b 6369 sr_sal.pc = pc_after_resolver;
6c95b8df 6370 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6371
a6d9a66e
UW
6372 insert_step_resume_breakpoint_at_sal (gdbarch,
6373 sr_sal, null_frame_id);
c5aa993b 6374 }
c906108c 6375
488f131b
JB
6376 keep_going (ecs);
6377 return;
6378 }
c906108c 6379
1d509aa6
MM
6380 /* Step through an indirect branch thunk. */
6381 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6382 && gdbarch_in_indirect_branch_thunk (gdbarch,
6383 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6384 {
6385 if (debug_infrun)
6386 fprintf_unfiltered (gdb_stdlog,
6387 "infrun: stepped into indirect branch thunk\n");
6388 keep_going (ecs);
6389 return;
6390 }
6391
16c381f0
JK
6392 if (ecs->event_thread->control.step_range_end != 1
6393 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6394 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6395 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6396 {
527159b7 6397 if (debug_infrun)
3e43a32a
MS
6398 fprintf_unfiltered (gdb_stdlog,
6399 "infrun: stepped into signal trampoline\n");
42edda50 6400 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6401 a signal trampoline (either by a signal being delivered or by
6402 the signal handler returning). Just single-step until the
6403 inferior leaves the trampoline (either by calling the handler
6404 or returning). */
488f131b
JB
6405 keep_going (ecs);
6406 return;
6407 }
c906108c 6408
14132e89
MR
6409 /* If we're in the return path from a shared library trampoline,
6410 we want to proceed through the trampoline when stepping. */
6411 /* macro/2012-04-25: This needs to come before the subroutine
6412 call check below as on some targets return trampolines look
6413 like subroutine calls (MIPS16 return thunks). */
6414 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6415 ecs->event_thread->suspend.stop_pc,
6416 ecs->stop_func_name)
14132e89
MR
6417 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6418 {
6419 /* Determine where this trampoline returns. */
f2ffa92b
PA
6420 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6421 CORE_ADDR real_stop_pc
6422 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6423
6424 if (debug_infrun)
6425 fprintf_unfiltered (gdb_stdlog,
6426 "infrun: stepped into solib return tramp\n");
6427
6428 /* Only proceed through if we know where it's going. */
6429 if (real_stop_pc)
6430 {
6431 /* And put the step-breakpoint there and go until there. */
51abb421 6432 symtab_and_line sr_sal;
14132e89
MR
6433 sr_sal.pc = real_stop_pc;
6434 sr_sal.section = find_pc_overlay (sr_sal.pc);
6435 sr_sal.pspace = get_frame_program_space (frame);
6436
6437 /* Do not specify what the fp should be when we stop since
6438 on some machines the prologue is where the new fp value
6439 is established. */
6440 insert_step_resume_breakpoint_at_sal (gdbarch,
6441 sr_sal, null_frame_id);
6442
6443 /* Restart without fiddling with the step ranges or
6444 other state. */
6445 keep_going (ecs);
6446 return;
6447 }
6448 }
6449
c17eaafe
DJ
6450 /* Check for subroutine calls. The check for the current frame
6451 equalling the step ID is not necessary - the check of the
6452 previous frame's ID is sufficient - but it is a common case and
6453 cheaper than checking the previous frame's ID.
14e60db5
DJ
6454
6455 NOTE: frame_id_eq will never report two invalid frame IDs as
6456 being equal, so to get into this block, both the current and
6457 previous frame must have valid frame IDs. */
005ca36a
JB
6458 /* The outer_frame_id check is a heuristic to detect stepping
6459 through startup code. If we step over an instruction which
6460 sets the stack pointer from an invalid value to a valid value,
6461 we may detect that as a subroutine call from the mythical
6462 "outermost" function. This could be fixed by marking
6463 outermost frames as !stack_p,code_p,special_p. Then the
6464 initial outermost frame, before sp was valid, would
ce6cca6d 6465 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6466 for more. */
edb3359d 6467 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6468 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6469 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6470 ecs->event_thread->control.step_stack_frame_id)
6471 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6472 outer_frame_id)
885eeb5b 6473 || (ecs->event_thread->control.step_start_function
f2ffa92b 6474 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6475 {
f2ffa92b 6476 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6477 CORE_ADDR real_stop_pc;
8fb3e588 6478
527159b7 6479 if (debug_infrun)
8a9de0e4 6480 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6481
b7a084be 6482 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6483 {
6484 /* I presume that step_over_calls is only 0 when we're
6485 supposed to be stepping at the assembly language level
6486 ("stepi"). Just stop. */
388a8562 6487 /* And this works the same backward as frontward. MVS */
bdc36728 6488 end_stepping_range (ecs);
95918acb
AC
6489 return;
6490 }
8fb3e588 6491
388a8562
MS
6492 /* Reverse stepping through solib trampolines. */
6493
6494 if (execution_direction == EXEC_REVERSE
16c381f0 6495 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6496 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6497 || (ecs->stop_func_start == 0
6498 && in_solib_dynsym_resolve_code (stop_pc))))
6499 {
6500 /* Any solib trampoline code can be handled in reverse
6501 by simply continuing to single-step. We have already
6502 executed the solib function (backwards), and a few
6503 steps will take us back through the trampoline to the
6504 caller. */
6505 keep_going (ecs);
6506 return;
6507 }
6508
16c381f0 6509 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6510 {
b2175913
MS
6511 /* We're doing a "next".
6512
6513 Normal (forward) execution: set a breakpoint at the
6514 callee's return address (the address at which the caller
6515 will resume).
6516
6517 Reverse (backward) execution. set the step-resume
6518 breakpoint at the start of the function that we just
6519 stepped into (backwards), and continue to there. When we
6130d0b7 6520 get there, we'll need to single-step back to the caller. */
b2175913
MS
6521
6522 if (execution_direction == EXEC_REVERSE)
6523 {
acf9414f
JK
6524 /* If we're already at the start of the function, we've either
6525 just stepped backward into a single instruction function,
6526 or stepped back out of a signal handler to the first instruction
6527 of the function. Just keep going, which will single-step back
6528 to the caller. */
58c48e72 6529 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6530 {
acf9414f 6531 /* Normal function call return (static or dynamic). */
51abb421 6532 symtab_and_line sr_sal;
acf9414f
JK
6533 sr_sal.pc = ecs->stop_func_start;
6534 sr_sal.pspace = get_frame_program_space (frame);
6535 insert_step_resume_breakpoint_at_sal (gdbarch,
6536 sr_sal, null_frame_id);
6537 }
b2175913
MS
6538 }
6539 else
568d6575 6540 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6541
8567c30f
AC
6542 keep_going (ecs);
6543 return;
6544 }
a53c66de 6545
95918acb 6546 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6547 calling routine and the real function), locate the real
6548 function. That's what tells us (a) whether we want to step
6549 into it at all, and (b) what prologue we want to run to the
6550 end of, if we do step into it. */
568d6575 6551 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6552 if (real_stop_pc == 0)
568d6575 6553 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6554 if (real_stop_pc != 0)
6555 ecs->stop_func_start = real_stop_pc;
8fb3e588 6556
db5f024e 6557 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6558 {
51abb421 6559 symtab_and_line sr_sal;
1b2bfbb9 6560 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6561 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6562
a6d9a66e
UW
6563 insert_step_resume_breakpoint_at_sal (gdbarch,
6564 sr_sal, null_frame_id);
8fb3e588
AC
6565 keep_going (ecs);
6566 return;
1b2bfbb9
RC
6567 }
6568
95918acb 6569 /* If we have line number information for the function we are
1bfeeb0f
JL
6570 thinking of stepping into and the function isn't on the skip
6571 list, step into it.
95918acb 6572
8fb3e588
AC
6573 If there are several symtabs at that PC (e.g. with include
6574 files), just want to know whether *any* of them have line
6575 numbers. find_pc_line handles this. */
95918acb
AC
6576 {
6577 struct symtab_and_line tmp_sal;
8fb3e588 6578
95918acb 6579 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6580 if (tmp_sal.line != 0
85817405 6581 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6582 tmp_sal))
95918acb 6583 {
b2175913 6584 if (execution_direction == EXEC_REVERSE)
568d6575 6585 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6586 else
568d6575 6587 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6588 return;
6589 }
6590 }
6591
6592 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6593 set, we stop the step so that the user has a chance to switch
6594 in assembly mode. */
16c381f0 6595 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6596 && step_stop_if_no_debug)
95918acb 6597 {
bdc36728 6598 end_stepping_range (ecs);
95918acb
AC
6599 return;
6600 }
6601
b2175913
MS
6602 if (execution_direction == EXEC_REVERSE)
6603 {
acf9414f
JK
6604 /* If we're already at the start of the function, we've either just
6605 stepped backward into a single instruction function without line
6606 number info, or stepped back out of a signal handler to the first
6607 instruction of the function without line number info. Just keep
6608 going, which will single-step back to the caller. */
6609 if (ecs->stop_func_start != stop_pc)
6610 {
6611 /* Set a breakpoint at callee's start address.
6612 From there we can step once and be back in the caller. */
51abb421 6613 symtab_and_line sr_sal;
acf9414f
JK
6614 sr_sal.pc = ecs->stop_func_start;
6615 sr_sal.pspace = get_frame_program_space (frame);
6616 insert_step_resume_breakpoint_at_sal (gdbarch,
6617 sr_sal, null_frame_id);
6618 }
b2175913
MS
6619 }
6620 else
6621 /* Set a breakpoint at callee's return address (the address
6622 at which the caller will resume). */
568d6575 6623 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6624
95918acb 6625 keep_going (ecs);
488f131b 6626 return;
488f131b 6627 }
c906108c 6628
fdd654f3
MS
6629 /* Reverse stepping through solib trampolines. */
6630
6631 if (execution_direction == EXEC_REVERSE
16c381f0 6632 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6633 {
f2ffa92b
PA
6634 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6635
fdd654f3
MS
6636 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6637 || (ecs->stop_func_start == 0
6638 && in_solib_dynsym_resolve_code (stop_pc)))
6639 {
6640 /* Any solib trampoline code can be handled in reverse
6641 by simply continuing to single-step. We have already
6642 executed the solib function (backwards), and a few
6643 steps will take us back through the trampoline to the
6644 caller. */
6645 keep_going (ecs);
6646 return;
6647 }
6648 else if (in_solib_dynsym_resolve_code (stop_pc))
6649 {
6650 /* Stepped backward into the solib dynsym resolver.
6651 Set a breakpoint at its start and continue, then
6652 one more step will take us out. */
51abb421 6653 symtab_and_line sr_sal;
fdd654f3 6654 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6655 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6656 insert_step_resume_breakpoint_at_sal (gdbarch,
6657 sr_sal, null_frame_id);
6658 keep_going (ecs);
6659 return;
6660 }
6661 }
6662
f2ffa92b 6663 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6664
1b2bfbb9
RC
6665 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6666 the trampoline processing logic, however, there are some trampolines
6667 that have no names, so we should do trampoline handling first. */
16c381f0 6668 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6669 && ecs->stop_func_name == NULL
2afb61aa 6670 && stop_pc_sal.line == 0)
1b2bfbb9 6671 {
527159b7 6672 if (debug_infrun)
3e43a32a
MS
6673 fprintf_unfiltered (gdb_stdlog,
6674 "infrun: stepped into undebuggable function\n");
527159b7 6675
1b2bfbb9 6676 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6677 undebuggable function (where there is no debugging information
6678 and no line number corresponding to the address where the
1b2bfbb9
RC
6679 inferior stopped). Since we want to skip this kind of code,
6680 we keep going until the inferior returns from this
14e60db5
DJ
6681 function - unless the user has asked us not to (via
6682 set step-mode) or we no longer know how to get back
6683 to the call site. */
6684 if (step_stop_if_no_debug
c7ce8faa 6685 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6686 {
6687 /* If we have no line number and the step-stop-if-no-debug
6688 is set, we stop the step so that the user has a chance to
6689 switch in assembly mode. */
bdc36728 6690 end_stepping_range (ecs);
1b2bfbb9
RC
6691 return;
6692 }
6693 else
6694 {
6695 /* Set a breakpoint at callee's return address (the address
6696 at which the caller will resume). */
568d6575 6697 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6698 keep_going (ecs);
6699 return;
6700 }
6701 }
6702
16c381f0 6703 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6704 {
6705 /* It is stepi or nexti. We always want to stop stepping after
6706 one instruction. */
527159b7 6707 if (debug_infrun)
8a9de0e4 6708 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6709 end_stepping_range (ecs);
1b2bfbb9
RC
6710 return;
6711 }
6712
2afb61aa 6713 if (stop_pc_sal.line == 0)
488f131b
JB
6714 {
6715 /* We have no line number information. That means to stop
6716 stepping (does this always happen right after one instruction,
6717 when we do "s" in a function with no line numbers,
6718 or can this happen as a result of a return or longjmp?). */
527159b7 6719 if (debug_infrun)
8a9de0e4 6720 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6721 end_stepping_range (ecs);
488f131b
JB
6722 return;
6723 }
c906108c 6724
edb3359d
DJ
6725 /* Look for "calls" to inlined functions, part one. If the inline
6726 frame machinery detected some skipped call sites, we have entered
6727 a new inline function. */
6728
6729 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6730 ecs->event_thread->control.step_frame_id)
00431a78 6731 && inline_skipped_frames (ecs->event_thread))
edb3359d 6732 {
edb3359d
DJ
6733 if (debug_infrun)
6734 fprintf_unfiltered (gdb_stdlog,
6735 "infrun: stepped into inlined function\n");
6736
51abb421 6737 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6738
16c381f0 6739 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6740 {
6741 /* For "step", we're going to stop. But if the call site
6742 for this inlined function is on the same source line as
6743 we were previously stepping, go down into the function
6744 first. Otherwise stop at the call site. */
6745
6746 if (call_sal.line == ecs->event_thread->current_line
6747 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6748 step_into_inline_frame (ecs->event_thread);
edb3359d 6749
bdc36728 6750 end_stepping_range (ecs);
edb3359d
DJ
6751 return;
6752 }
6753 else
6754 {
6755 /* For "next", we should stop at the call site if it is on a
6756 different source line. Otherwise continue through the
6757 inlined function. */
6758 if (call_sal.line == ecs->event_thread->current_line
6759 && call_sal.symtab == ecs->event_thread->current_symtab)
6760 keep_going (ecs);
6761 else
bdc36728 6762 end_stepping_range (ecs);
edb3359d
DJ
6763 return;
6764 }
6765 }
6766
6767 /* Look for "calls" to inlined functions, part two. If we are still
6768 in the same real function we were stepping through, but we have
6769 to go further up to find the exact frame ID, we are stepping
6770 through a more inlined call beyond its call site. */
6771
6772 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6773 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6774 ecs->event_thread->control.step_frame_id)
edb3359d 6775 && stepped_in_from (get_current_frame (),
16c381f0 6776 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6777 {
6778 if (debug_infrun)
6779 fprintf_unfiltered (gdb_stdlog,
6780 "infrun: stepping through inlined function\n");
6781
16c381f0 6782 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6783 keep_going (ecs);
6784 else
bdc36728 6785 end_stepping_range (ecs);
edb3359d
DJ
6786 return;
6787 }
6788
f2ffa92b 6789 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6790 && (ecs->event_thread->current_line != stop_pc_sal.line
6791 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6792 {
6793 /* We are at the start of a different line. So stop. Note that
6794 we don't stop if we step into the middle of a different line.
6795 That is said to make things like for (;;) statements work
6796 better. */
527159b7 6797 if (debug_infrun)
3e43a32a
MS
6798 fprintf_unfiltered (gdb_stdlog,
6799 "infrun: stepped to a different line\n");
bdc36728 6800 end_stepping_range (ecs);
488f131b
JB
6801 return;
6802 }
c906108c 6803
488f131b 6804 /* We aren't done stepping.
c906108c 6805
488f131b
JB
6806 Optimize by setting the stepping range to the line.
6807 (We might not be in the original line, but if we entered a
6808 new line in mid-statement, we continue stepping. This makes
6809 things like for(;;) statements work better.) */
c906108c 6810
16c381f0
JK
6811 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6812 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6813 ecs->event_thread->control.may_range_step = 1;
edb3359d 6814 set_step_info (frame, stop_pc_sal);
488f131b 6815
527159b7 6816 if (debug_infrun)
8a9de0e4 6817 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 6818 keep_going (ecs);
104c1213
JM
6819}
6820
c447ac0b
PA
6821/* In all-stop mode, if we're currently stepping but have stopped in
6822 some other thread, we may need to switch back to the stepped
6823 thread. Returns true we set the inferior running, false if we left
6824 it stopped (and the event needs further processing). */
6825
6826static int
6827switch_back_to_stepped_thread (struct execution_control_state *ecs)
6828{
fbea99ea 6829 if (!target_is_non_stop_p ())
c447ac0b 6830 {
99619bea
PA
6831 struct thread_info *stepping_thread;
6832
6833 /* If any thread is blocked on some internal breakpoint, and we
6834 simply need to step over that breakpoint to get it going
6835 again, do that first. */
6836
6837 /* However, if we see an event for the stepping thread, then we
6838 know all other threads have been moved past their breakpoints
6839 already. Let the caller check whether the step is finished,
6840 etc., before deciding to move it past a breakpoint. */
6841 if (ecs->event_thread->control.step_range_end != 0)
6842 return 0;
6843
6844 /* Check if the current thread is blocked on an incomplete
6845 step-over, interrupted by a random signal. */
6846 if (ecs->event_thread->control.trap_expected
6847 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 6848 {
99619bea
PA
6849 if (debug_infrun)
6850 {
6851 fprintf_unfiltered (gdb_stdlog,
6852 "infrun: need to finish step-over of [%s]\n",
6853 target_pid_to_str (ecs->event_thread->ptid));
6854 }
6855 keep_going (ecs);
6856 return 1;
6857 }
2adfaa28 6858
99619bea
PA
6859 /* Check if the current thread is blocked by a single-step
6860 breakpoint of another thread. */
6861 if (ecs->hit_singlestep_breakpoint)
6862 {
6863 if (debug_infrun)
6864 {
6865 fprintf_unfiltered (gdb_stdlog,
6866 "infrun: need to step [%s] over single-step "
6867 "breakpoint\n",
6868 target_pid_to_str (ecs->ptid));
6869 }
6870 keep_going (ecs);
6871 return 1;
6872 }
6873
4d9d9d04
PA
6874 /* If this thread needs yet another step-over (e.g., stepping
6875 through a delay slot), do it first before moving on to
6876 another thread. */
6877 if (thread_still_needs_step_over (ecs->event_thread))
6878 {
6879 if (debug_infrun)
6880 {
6881 fprintf_unfiltered (gdb_stdlog,
6882 "infrun: thread [%s] still needs step-over\n",
6883 target_pid_to_str (ecs->event_thread->ptid));
6884 }
6885 keep_going (ecs);
6886 return 1;
6887 }
70509625 6888
483805cf
PA
6889 /* If scheduler locking applies even if not stepping, there's no
6890 need to walk over threads. Above we've checked whether the
6891 current thread is stepping. If some other thread not the
6892 event thread is stepping, then it must be that scheduler
6893 locking is not in effect. */
856e7dd6 6894 if (schedlock_applies (ecs->event_thread))
483805cf
PA
6895 return 0;
6896
4d9d9d04
PA
6897 /* Otherwise, we no longer expect a trap in the current thread.
6898 Clear the trap_expected flag before switching back -- this is
6899 what keep_going does as well, if we call it. */
6900 ecs->event_thread->control.trap_expected = 0;
6901
6902 /* Likewise, clear the signal if it should not be passed. */
6903 if (!signal_program[ecs->event_thread->suspend.stop_signal])
6904 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6905
6906 /* Do all pending step-overs before actually proceeding with
483805cf 6907 step/next/etc. */
4d9d9d04
PA
6908 if (start_step_over ())
6909 {
6910 prepare_to_wait (ecs);
6911 return 1;
6912 }
6913
6914 /* Look for the stepping/nexting thread. */
483805cf 6915 stepping_thread = NULL;
4d9d9d04 6916
08036331 6917 for (thread_info *tp : all_non_exited_threads ())
483805cf 6918 {
fbea99ea
PA
6919 /* Ignore threads of processes the caller is not
6920 resuming. */
483805cf 6921 if (!sched_multi
e99b03dc 6922 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
6923 continue;
6924
6925 /* When stepping over a breakpoint, we lock all threads
6926 except the one that needs to move past the breakpoint.
6927 If a non-event thread has this set, the "incomplete
6928 step-over" check above should have caught it earlier. */
372316f1
PA
6929 if (tp->control.trap_expected)
6930 {
6931 internal_error (__FILE__, __LINE__,
6932 "[%s] has inconsistent state: "
6933 "trap_expected=%d\n",
6934 target_pid_to_str (tp->ptid),
6935 tp->control.trap_expected);
6936 }
483805cf
PA
6937
6938 /* Did we find the stepping thread? */
6939 if (tp->control.step_range_end)
6940 {
6941 /* Yep. There should only one though. */
6942 gdb_assert (stepping_thread == NULL);
6943
6944 /* The event thread is handled at the top, before we
6945 enter this loop. */
6946 gdb_assert (tp != ecs->event_thread);
6947
6948 /* If some thread other than the event thread is
6949 stepping, then scheduler locking can't be in effect,
6950 otherwise we wouldn't have resumed the current event
6951 thread in the first place. */
856e7dd6 6952 gdb_assert (!schedlock_applies (tp));
483805cf
PA
6953
6954 stepping_thread = tp;
6955 }
99619bea
PA
6956 }
6957
483805cf 6958 if (stepping_thread != NULL)
99619bea 6959 {
c447ac0b
PA
6960 if (debug_infrun)
6961 fprintf_unfiltered (gdb_stdlog,
6962 "infrun: switching back to stepped thread\n");
6963
2ac7589c
PA
6964 if (keep_going_stepped_thread (stepping_thread))
6965 {
6966 prepare_to_wait (ecs);
6967 return 1;
6968 }
6969 }
6970 }
2adfaa28 6971
2ac7589c
PA
6972 return 0;
6973}
2adfaa28 6974
2ac7589c
PA
6975/* Set a previously stepped thread back to stepping. Returns true on
6976 success, false if the resume is not possible (e.g., the thread
6977 vanished). */
6978
6979static int
6980keep_going_stepped_thread (struct thread_info *tp)
6981{
6982 struct frame_info *frame;
2ac7589c
PA
6983 struct execution_control_state ecss;
6984 struct execution_control_state *ecs = &ecss;
2adfaa28 6985
2ac7589c
PA
6986 /* If the stepping thread exited, then don't try to switch back and
6987 resume it, which could fail in several different ways depending
6988 on the target. Instead, just keep going.
2adfaa28 6989
2ac7589c
PA
6990 We can find a stepping dead thread in the thread list in two
6991 cases:
2adfaa28 6992
2ac7589c
PA
6993 - The target supports thread exit events, and when the target
6994 tries to delete the thread from the thread list, inferior_ptid
6995 pointed at the exiting thread. In such case, calling
6996 delete_thread does not really remove the thread from the list;
6997 instead, the thread is left listed, with 'exited' state.
64ce06e4 6998
2ac7589c
PA
6999 - The target's debug interface does not support thread exit
7000 events, and so we have no idea whatsoever if the previously
7001 stepping thread is still alive. For that reason, we need to
7002 synchronously query the target now. */
2adfaa28 7003
00431a78 7004 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7005 {
7006 if (debug_infrun)
7007 fprintf_unfiltered (gdb_stdlog,
7008 "infrun: not resuming previously "
7009 "stepped thread, it has vanished\n");
7010
00431a78 7011 delete_thread (tp);
2ac7589c 7012 return 0;
c447ac0b 7013 }
2ac7589c
PA
7014
7015 if (debug_infrun)
7016 fprintf_unfiltered (gdb_stdlog,
7017 "infrun: resuming previously stepped thread\n");
7018
7019 reset_ecs (ecs, tp);
00431a78 7020 switch_to_thread (tp);
2ac7589c 7021
f2ffa92b 7022 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7023 frame = get_current_frame ();
2ac7589c
PA
7024
7025 /* If the PC of the thread we were trying to single-step has
7026 changed, then that thread has trapped or been signaled, but the
7027 event has not been reported to GDB yet. Re-poll the target
7028 looking for this particular thread's event (i.e. temporarily
7029 enable schedlock) by:
7030
7031 - setting a break at the current PC
7032 - resuming that particular thread, only (by setting trap
7033 expected)
7034
7035 This prevents us continuously moving the single-step breakpoint
7036 forward, one instruction at a time, overstepping. */
7037
f2ffa92b 7038 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7039 {
7040 ptid_t resume_ptid;
7041
7042 if (debug_infrun)
7043 fprintf_unfiltered (gdb_stdlog,
7044 "infrun: expected thread advanced also (%s -> %s)\n",
7045 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7046 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7047
7048 /* Clear the info of the previous step-over, as it's no longer
7049 valid (if the thread was trying to step over a breakpoint, it
7050 has already succeeded). It's what keep_going would do too,
7051 if we called it. Do this before trying to insert the sss
7052 breakpoint, otherwise if we were previously trying to step
7053 over this exact address in another thread, the breakpoint is
7054 skipped. */
7055 clear_step_over_info ();
7056 tp->control.trap_expected = 0;
7057
7058 insert_single_step_breakpoint (get_frame_arch (frame),
7059 get_frame_address_space (frame),
f2ffa92b 7060 tp->suspend.stop_pc);
2ac7589c 7061
372316f1 7062 tp->resumed = 1;
fbea99ea 7063 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7064 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7065 }
7066 else
7067 {
7068 if (debug_infrun)
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: expected thread still hasn't advanced\n");
7071
7072 keep_going_pass_signal (ecs);
7073 }
7074 return 1;
c447ac0b
PA
7075}
7076
8b061563
PA
7077/* Is thread TP in the middle of (software or hardware)
7078 single-stepping? (Note the result of this function must never be
7079 passed directly as target_resume's STEP parameter.) */
104c1213 7080
a289b8f6 7081static int
b3444185 7082currently_stepping (struct thread_info *tp)
a7212384 7083{
8358c15c
JK
7084 return ((tp->control.step_range_end
7085 && tp->control.step_resume_breakpoint == NULL)
7086 || tp->control.trap_expected
af48d08f 7087 || tp->stepped_breakpoint
8358c15c 7088 || bpstat_should_step ());
a7212384
UW
7089}
7090
b2175913
MS
7091/* Inferior has stepped into a subroutine call with source code that
7092 we should not step over. Do step to the first line of code in
7093 it. */
c2c6d25f
JM
7094
7095static void
568d6575
UW
7096handle_step_into_function (struct gdbarch *gdbarch,
7097 struct execution_control_state *ecs)
c2c6d25f 7098{
7e324e48
GB
7099 fill_in_stop_func (gdbarch, ecs);
7100
f2ffa92b
PA
7101 compunit_symtab *cust
7102 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7103 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7104 ecs->stop_func_start
7105 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7106
51abb421 7107 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7108 /* Use the step_resume_break to step until the end of the prologue,
7109 even if that involves jumps (as it seems to on the vax under
7110 4.2). */
7111 /* If the prologue ends in the middle of a source line, continue to
7112 the end of that source line (if it is still within the function).
7113 Otherwise, just go to end of prologue. */
2afb61aa
PA
7114 if (stop_func_sal.end
7115 && stop_func_sal.pc != ecs->stop_func_start
7116 && stop_func_sal.end < ecs->stop_func_end)
7117 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7118
2dbd5e30
KB
7119 /* Architectures which require breakpoint adjustment might not be able
7120 to place a breakpoint at the computed address. If so, the test
7121 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7122 ecs->stop_func_start to an address at which a breakpoint may be
7123 legitimately placed.
8fb3e588 7124
2dbd5e30
KB
7125 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7126 made, GDB will enter an infinite loop when stepping through
7127 optimized code consisting of VLIW instructions which contain
7128 subinstructions corresponding to different source lines. On
7129 FR-V, it's not permitted to place a breakpoint on any but the
7130 first subinstruction of a VLIW instruction. When a breakpoint is
7131 set, GDB will adjust the breakpoint address to the beginning of
7132 the VLIW instruction. Thus, we need to make the corresponding
7133 adjustment here when computing the stop address. */
8fb3e588 7134
568d6575 7135 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7136 {
7137 ecs->stop_func_start
568d6575 7138 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7139 ecs->stop_func_start);
2dbd5e30
KB
7140 }
7141
f2ffa92b 7142 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7143 {
7144 /* We are already there: stop now. */
bdc36728 7145 end_stepping_range (ecs);
c2c6d25f
JM
7146 return;
7147 }
7148 else
7149 {
7150 /* Put the step-breakpoint there and go until there. */
51abb421 7151 symtab_and_line sr_sal;
c2c6d25f
JM
7152 sr_sal.pc = ecs->stop_func_start;
7153 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7154 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7155
c2c6d25f 7156 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7157 some machines the prologue is where the new fp value is
7158 established. */
a6d9a66e 7159 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7160
7161 /* And make sure stepping stops right away then. */
16c381f0
JK
7162 ecs->event_thread->control.step_range_end
7163 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7164 }
7165 keep_going (ecs);
7166}
d4f3574e 7167
b2175913
MS
7168/* Inferior has stepped backward into a subroutine call with source
7169 code that we should not step over. Do step to the beginning of the
7170 last line of code in it. */
7171
7172static void
568d6575
UW
7173handle_step_into_function_backward (struct gdbarch *gdbarch,
7174 struct execution_control_state *ecs)
b2175913 7175{
43f3e411 7176 struct compunit_symtab *cust;
167e4384 7177 struct symtab_and_line stop_func_sal;
b2175913 7178
7e324e48
GB
7179 fill_in_stop_func (gdbarch, ecs);
7180
f2ffa92b 7181 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7182 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7183 ecs->stop_func_start
7184 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7185
f2ffa92b 7186 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7187
7188 /* OK, we're just going to keep stepping here. */
f2ffa92b 7189 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7190 {
7191 /* We're there already. Just stop stepping now. */
bdc36728 7192 end_stepping_range (ecs);
b2175913
MS
7193 }
7194 else
7195 {
7196 /* Else just reset the step range and keep going.
7197 No step-resume breakpoint, they don't work for
7198 epilogues, which can have multiple entry paths. */
16c381f0
JK
7199 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7200 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7201 keep_going (ecs);
7202 }
7203 return;
7204}
7205
d3169d93 7206/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7207 This is used to both functions and to skip over code. */
7208
7209static void
2c03e5be
PA
7210insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7211 struct symtab_and_line sr_sal,
7212 struct frame_id sr_id,
7213 enum bptype sr_type)
44cbf7b5 7214{
611c83ae
PA
7215 /* There should never be more than one step-resume or longjmp-resume
7216 breakpoint per thread, so we should never be setting a new
44cbf7b5 7217 step_resume_breakpoint when one is already active. */
8358c15c 7218 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7219 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7220
7221 if (debug_infrun)
7222 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7223 "infrun: inserting step-resume breakpoint at %s\n",
7224 paddress (gdbarch, sr_sal.pc));
d3169d93 7225
8358c15c 7226 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7227 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7228}
7229
9da8c2a0 7230void
2c03e5be
PA
7231insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7232 struct symtab_and_line sr_sal,
7233 struct frame_id sr_id)
7234{
7235 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7236 sr_sal, sr_id,
7237 bp_step_resume);
44cbf7b5 7238}
7ce450bd 7239
2c03e5be
PA
7240/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7241 This is used to skip a potential signal handler.
7ce450bd 7242
14e60db5
DJ
7243 This is called with the interrupted function's frame. The signal
7244 handler, when it returns, will resume the interrupted function at
7245 RETURN_FRAME.pc. */
d303a6c7
AC
7246
7247static void
2c03e5be 7248insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7249{
f4c1edd8 7250 gdb_assert (return_frame != NULL);
d303a6c7 7251
51abb421
PA
7252 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7253
7254 symtab_and_line sr_sal;
568d6575 7255 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7256 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7257 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7258
2c03e5be
PA
7259 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7260 get_stack_frame_id (return_frame),
7261 bp_hp_step_resume);
d303a6c7
AC
7262}
7263
2c03e5be
PA
7264/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7265 is used to skip a function after stepping into it (for "next" or if
7266 the called function has no debugging information).
14e60db5
DJ
7267
7268 The current function has almost always been reached by single
7269 stepping a call or return instruction. NEXT_FRAME belongs to the
7270 current function, and the breakpoint will be set at the caller's
7271 resume address.
7272
7273 This is a separate function rather than reusing
2c03e5be 7274 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7275 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7276 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7277
7278static void
7279insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7280{
14e60db5
DJ
7281 /* We shouldn't have gotten here if we don't know where the call site
7282 is. */
c7ce8faa 7283 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7284
51abb421 7285 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7286
51abb421 7287 symtab_and_line sr_sal;
c7ce8faa
DJ
7288 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7289 frame_unwind_caller_pc (next_frame));
14e60db5 7290 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7291 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7292
a6d9a66e 7293 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7294 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7295}
7296
611c83ae
PA
7297/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7298 new breakpoint at the target of a jmp_buf. The handling of
7299 longjmp-resume uses the same mechanisms used for handling
7300 "step-resume" breakpoints. */
7301
7302static void
a6d9a66e 7303insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7304{
e81a37f7
TT
7305 /* There should never be more than one longjmp-resume breakpoint per
7306 thread, so we should never be setting a new
611c83ae 7307 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7308 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7309
7310 if (debug_infrun)
7311 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7312 "infrun: inserting longjmp-resume breakpoint at %s\n",
7313 paddress (gdbarch, pc));
611c83ae 7314
e81a37f7 7315 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7316 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7317}
7318
186c406b
TT
7319/* Insert an exception resume breakpoint. TP is the thread throwing
7320 the exception. The block B is the block of the unwinder debug hook
7321 function. FRAME is the frame corresponding to the call to this
7322 function. SYM is the symbol of the function argument holding the
7323 target PC of the exception. */
7324
7325static void
7326insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7327 const struct block *b,
186c406b
TT
7328 struct frame_info *frame,
7329 struct symbol *sym)
7330{
492d29ea 7331 TRY
186c406b 7332 {
63e43d3a 7333 struct block_symbol vsym;
186c406b
TT
7334 struct value *value;
7335 CORE_ADDR handler;
7336 struct breakpoint *bp;
7337
de63c46b
PA
7338 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7339 b, VAR_DOMAIN);
63e43d3a 7340 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7341 /* If the value was optimized out, revert to the old behavior. */
7342 if (! value_optimized_out (value))
7343 {
7344 handler = value_as_address (value);
7345
7346 if (debug_infrun)
7347 fprintf_unfiltered (gdb_stdlog,
7348 "infrun: exception resume at %lx\n",
7349 (unsigned long) handler);
7350
7351 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7352 handler,
7353 bp_exception_resume).release ();
c70a6932
JK
7354
7355 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7356 frame = NULL;
7357
5d5658a1 7358 bp->thread = tp->global_num;
186c406b
TT
7359 inferior_thread ()->control.exception_resume_breakpoint = bp;
7360 }
7361 }
492d29ea
PA
7362 CATCH (e, RETURN_MASK_ERROR)
7363 {
7364 /* We want to ignore errors here. */
7365 }
7366 END_CATCH
186c406b
TT
7367}
7368
28106bc2
SDJ
7369/* A helper for check_exception_resume that sets an
7370 exception-breakpoint based on a SystemTap probe. */
7371
7372static void
7373insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7374 const struct bound_probe *probe,
28106bc2
SDJ
7375 struct frame_info *frame)
7376{
7377 struct value *arg_value;
7378 CORE_ADDR handler;
7379 struct breakpoint *bp;
7380
7381 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7382 if (!arg_value)
7383 return;
7384
7385 handler = value_as_address (arg_value);
7386
7387 if (debug_infrun)
7388 fprintf_unfiltered (gdb_stdlog,
7389 "infrun: exception resume at %s\n",
6bac7473 7390 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7391 handler));
7392
7393 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7394 handler, bp_exception_resume).release ();
5d5658a1 7395 bp->thread = tp->global_num;
28106bc2
SDJ
7396 inferior_thread ()->control.exception_resume_breakpoint = bp;
7397}
7398
186c406b
TT
7399/* This is called when an exception has been intercepted. Check to
7400 see whether the exception's destination is of interest, and if so,
7401 set an exception resume breakpoint there. */
7402
7403static void
7404check_exception_resume (struct execution_control_state *ecs,
28106bc2 7405 struct frame_info *frame)
186c406b 7406{
729662a5 7407 struct bound_probe probe;
28106bc2
SDJ
7408 struct symbol *func;
7409
7410 /* First see if this exception unwinding breakpoint was set via a
7411 SystemTap probe point. If so, the probe has two arguments: the
7412 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7413 set a breakpoint there. */
6bac7473 7414 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7415 if (probe.prob)
28106bc2 7416 {
729662a5 7417 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7418 return;
7419 }
7420
7421 func = get_frame_function (frame);
7422 if (!func)
7423 return;
186c406b 7424
492d29ea 7425 TRY
186c406b 7426 {
3977b71f 7427 const struct block *b;
8157b174 7428 struct block_iterator iter;
186c406b
TT
7429 struct symbol *sym;
7430 int argno = 0;
7431
7432 /* The exception breakpoint is a thread-specific breakpoint on
7433 the unwinder's debug hook, declared as:
7434
7435 void _Unwind_DebugHook (void *cfa, void *handler);
7436
7437 The CFA argument indicates the frame to which control is
7438 about to be transferred. HANDLER is the destination PC.
7439
7440 We ignore the CFA and set a temporary breakpoint at HANDLER.
7441 This is not extremely efficient but it avoids issues in gdb
7442 with computing the DWARF CFA, and it also works even in weird
7443 cases such as throwing an exception from inside a signal
7444 handler. */
7445
7446 b = SYMBOL_BLOCK_VALUE (func);
7447 ALL_BLOCK_SYMBOLS (b, iter, sym)
7448 {
7449 if (!SYMBOL_IS_ARGUMENT (sym))
7450 continue;
7451
7452 if (argno == 0)
7453 ++argno;
7454 else
7455 {
7456 insert_exception_resume_breakpoint (ecs->event_thread,
7457 b, frame, sym);
7458 break;
7459 }
7460 }
7461 }
492d29ea
PA
7462 CATCH (e, RETURN_MASK_ERROR)
7463 {
7464 }
7465 END_CATCH
186c406b
TT
7466}
7467
104c1213 7468static void
22bcd14b 7469stop_waiting (struct execution_control_state *ecs)
104c1213 7470{
527159b7 7471 if (debug_infrun)
22bcd14b 7472 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7473
cd0fc7c3
SS
7474 /* Let callers know we don't want to wait for the inferior anymore. */
7475 ecs->wait_some_more = 0;
fbea99ea
PA
7476
7477 /* If all-stop, but the target is always in non-stop mode, stop all
7478 threads now that we're presenting the stop to the user. */
7479 if (!non_stop && target_is_non_stop_p ())
7480 stop_all_threads ();
cd0fc7c3
SS
7481}
7482
4d9d9d04
PA
7483/* Like keep_going, but passes the signal to the inferior, even if the
7484 signal is set to nopass. */
d4f3574e
SS
7485
7486static void
4d9d9d04 7487keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7488{
d7e15655 7489 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7490 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7491
d4f3574e 7492 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7493 ecs->event_thread->prev_pc
00431a78 7494 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7495
4d9d9d04 7496 if (ecs->event_thread->control.trap_expected)
d4f3574e 7497 {
4d9d9d04
PA
7498 struct thread_info *tp = ecs->event_thread;
7499
7500 if (debug_infrun)
7501 fprintf_unfiltered (gdb_stdlog,
7502 "infrun: %s has trap_expected set, "
7503 "resuming to collect trap\n",
7504 target_pid_to_str (tp->ptid));
7505
a9ba6bae
PA
7506 /* We haven't yet gotten our trap, and either: intercepted a
7507 non-signal event (e.g., a fork); or took a signal which we
7508 are supposed to pass through to the inferior. Simply
7509 continue. */
64ce06e4 7510 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7511 }
372316f1
PA
7512 else if (step_over_info_valid_p ())
7513 {
7514 /* Another thread is stepping over a breakpoint in-line. If
7515 this thread needs a step-over too, queue the request. In
7516 either case, this resume must be deferred for later. */
7517 struct thread_info *tp = ecs->event_thread;
7518
7519 if (ecs->hit_singlestep_breakpoint
7520 || thread_still_needs_step_over (tp))
7521 {
7522 if (debug_infrun)
7523 fprintf_unfiltered (gdb_stdlog,
7524 "infrun: step-over already in progress: "
7525 "step-over for %s deferred\n",
7526 target_pid_to_str (tp->ptid));
7527 thread_step_over_chain_enqueue (tp);
7528 }
7529 else
7530 {
7531 if (debug_infrun)
7532 fprintf_unfiltered (gdb_stdlog,
7533 "infrun: step-over in progress: "
7534 "resume of %s deferred\n",
7535 target_pid_to_str (tp->ptid));
7536 }
372316f1 7537 }
d4f3574e
SS
7538 else
7539 {
31e77af2 7540 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7541 int remove_bp;
7542 int remove_wps;
8d297bbf 7543 step_over_what step_what;
31e77af2 7544
d4f3574e 7545 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7546 anyway (if we got a signal, the user asked it be passed to
7547 the child)
7548 -- or --
7549 We got our expected trap, but decided we should resume from
7550 it.
d4f3574e 7551
a9ba6bae 7552 We're going to run this baby now!
d4f3574e 7553
c36b740a
VP
7554 Note that insert_breakpoints won't try to re-insert
7555 already inserted breakpoints. Therefore, we don't
7556 care if breakpoints were already inserted, or not. */
a9ba6bae 7557
31e77af2
PA
7558 /* If we need to step over a breakpoint, and we're not using
7559 displaced stepping to do so, insert all breakpoints
7560 (watchpoints, etc.) but the one we're stepping over, step one
7561 instruction, and then re-insert the breakpoint when that step
7562 is finished. */
963f9c80 7563
6c4cfb24
PA
7564 step_what = thread_still_needs_step_over (ecs->event_thread);
7565
963f9c80 7566 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7567 || (step_what & STEP_OVER_BREAKPOINT));
7568 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7569
cb71640d
PA
7570 /* We can't use displaced stepping if we need to step past a
7571 watchpoint. The instruction copied to the scratch pad would
7572 still trigger the watchpoint. */
7573 if (remove_bp
3fc8eb30 7574 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7575 {
a01bda52 7576 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7577 regcache_read_pc (regcache), remove_wps,
7578 ecs->event_thread->global_num);
45e8c884 7579 }
963f9c80 7580 else if (remove_wps)
21edc42f 7581 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7582
7583 /* If we now need to do an in-line step-over, we need to stop
7584 all other threads. Note this must be done before
7585 insert_breakpoints below, because that removes the breakpoint
7586 we're about to step over, otherwise other threads could miss
7587 it. */
fbea99ea 7588 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7589 stop_all_threads ();
abbb1732 7590
31e77af2 7591 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7592 TRY
31e77af2
PA
7593 {
7594 insert_breakpoints ();
7595 }
492d29ea 7596 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7597 {
7598 exception_print (gdb_stderr, e);
22bcd14b 7599 stop_waiting (ecs);
bdf2a94a 7600 clear_step_over_info ();
31e77af2 7601 return;
d4f3574e 7602 }
492d29ea 7603 END_CATCH
d4f3574e 7604
963f9c80 7605 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7606
64ce06e4 7607 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7608 }
7609
488f131b 7610 prepare_to_wait (ecs);
d4f3574e
SS
7611}
7612
4d9d9d04
PA
7613/* Called when we should continue running the inferior, because the
7614 current event doesn't cause a user visible stop. This does the
7615 resuming part; waiting for the next event is done elsewhere. */
7616
7617static void
7618keep_going (struct execution_control_state *ecs)
7619{
7620 if (ecs->event_thread->control.trap_expected
7621 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7622 ecs->event_thread->control.trap_expected = 0;
7623
7624 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7625 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7626 keep_going_pass_signal (ecs);
7627}
7628
104c1213
JM
7629/* This function normally comes after a resume, before
7630 handle_inferior_event exits. It takes care of any last bits of
7631 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7632
104c1213
JM
7633static void
7634prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7635{
527159b7 7636 if (debug_infrun)
8a9de0e4 7637 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7638
104c1213 7639 ecs->wait_some_more = 1;
0b333c5e
PA
7640
7641 if (!target_is_async_p ())
7642 mark_infrun_async_event_handler ();
c906108c 7643}
11cf8741 7644
fd664c91 7645/* We are done with the step range of a step/next/si/ni command.
b57bacec 7646 Called once for each n of a "step n" operation. */
fd664c91
PA
7647
7648static void
bdc36728 7649end_stepping_range (struct execution_control_state *ecs)
fd664c91 7650{
bdc36728 7651 ecs->event_thread->control.stop_step = 1;
bdc36728 7652 stop_waiting (ecs);
fd664c91
PA
7653}
7654
33d62d64
JK
7655/* Several print_*_reason functions to print why the inferior has stopped.
7656 We always print something when the inferior exits, or receives a signal.
7657 The rest of the cases are dealt with later on in normal_stop and
7658 print_it_typical. Ideally there should be a call to one of these
7659 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7660 stop_waiting is called.
33d62d64 7661
fd664c91
PA
7662 Note that we don't call these directly, instead we delegate that to
7663 the interpreters, through observers. Interpreters then call these
7664 with whatever uiout is right. */
33d62d64 7665
fd664c91
PA
7666void
7667print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7668{
fd664c91 7669 /* For CLI-like interpreters, print nothing. */
33d62d64 7670
112e8700 7671 if (uiout->is_mi_like_p ())
fd664c91 7672 {
112e8700 7673 uiout->field_string ("reason",
fd664c91
PA
7674 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7675 }
7676}
33d62d64 7677
fd664c91
PA
7678void
7679print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7680{
33d62d64 7681 annotate_signalled ();
112e8700
SM
7682 if (uiout->is_mi_like_p ())
7683 uiout->field_string
7684 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7685 uiout->text ("\nProgram terminated with signal ");
33d62d64 7686 annotate_signal_name ();
112e8700 7687 uiout->field_string ("signal-name",
2ea28649 7688 gdb_signal_to_name (siggnal));
33d62d64 7689 annotate_signal_name_end ();
112e8700 7690 uiout->text (", ");
33d62d64 7691 annotate_signal_string ();
112e8700 7692 uiout->field_string ("signal-meaning",
2ea28649 7693 gdb_signal_to_string (siggnal));
33d62d64 7694 annotate_signal_string_end ();
112e8700
SM
7695 uiout->text (".\n");
7696 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7697}
7698
fd664c91
PA
7699void
7700print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7701{
fda326dd 7702 struct inferior *inf = current_inferior ();
f2907e49 7703 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7704
33d62d64
JK
7705 annotate_exited (exitstatus);
7706 if (exitstatus)
7707 {
112e8700
SM
7708 if (uiout->is_mi_like_p ())
7709 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7710 uiout->text ("[Inferior ");
7711 uiout->text (plongest (inf->num));
7712 uiout->text (" (");
7713 uiout->text (pidstr);
7714 uiout->text (") exited with code ");
7715 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7716 uiout->text ("]\n");
33d62d64
JK
7717 }
7718 else
11cf8741 7719 {
112e8700
SM
7720 if (uiout->is_mi_like_p ())
7721 uiout->field_string
7722 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7723 uiout->text ("[Inferior ");
7724 uiout->text (plongest (inf->num));
7725 uiout->text (" (");
7726 uiout->text (pidstr);
7727 uiout->text (") exited normally]\n");
33d62d64 7728 }
33d62d64
JK
7729}
7730
012b3a21
WT
7731/* Some targets/architectures can do extra processing/display of
7732 segmentation faults. E.g., Intel MPX boundary faults.
7733 Call the architecture dependent function to handle the fault. */
7734
7735static void
7736handle_segmentation_fault (struct ui_out *uiout)
7737{
7738 struct regcache *regcache = get_current_regcache ();
ac7936df 7739 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7740
7741 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7742 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7743}
7744
fd664c91
PA
7745void
7746print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7747{
f303dbd6
PA
7748 struct thread_info *thr = inferior_thread ();
7749
33d62d64
JK
7750 annotate_signal ();
7751
112e8700 7752 if (uiout->is_mi_like_p ())
f303dbd6
PA
7753 ;
7754 else if (show_thread_that_caused_stop ())
33d62d64 7755 {
f303dbd6 7756 const char *name;
33d62d64 7757
112e8700
SM
7758 uiout->text ("\nThread ");
7759 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7760
7761 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7762 if (name != NULL)
7763 {
112e8700
SM
7764 uiout->text (" \"");
7765 uiout->field_fmt ("name", "%s", name);
7766 uiout->text ("\"");
f303dbd6 7767 }
33d62d64 7768 }
f303dbd6 7769 else
112e8700 7770 uiout->text ("\nProgram");
f303dbd6 7771
112e8700
SM
7772 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7773 uiout->text (" stopped");
33d62d64
JK
7774 else
7775 {
112e8700 7776 uiout->text (" received signal ");
8b93c638 7777 annotate_signal_name ();
112e8700
SM
7778 if (uiout->is_mi_like_p ())
7779 uiout->field_string
7780 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7781 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7782 annotate_signal_name_end ();
112e8700 7783 uiout->text (", ");
8b93c638 7784 annotate_signal_string ();
112e8700 7785 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7786
7787 if (siggnal == GDB_SIGNAL_SEGV)
7788 handle_segmentation_fault (uiout);
7789
8b93c638 7790 annotate_signal_string_end ();
33d62d64 7791 }
112e8700 7792 uiout->text (".\n");
33d62d64 7793}
252fbfc8 7794
fd664c91
PA
7795void
7796print_no_history_reason (struct ui_out *uiout)
33d62d64 7797{
112e8700 7798 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7799}
43ff13b4 7800
0c7e1a46
PA
7801/* Print current location without a level number, if we have changed
7802 functions or hit a breakpoint. Print source line if we have one.
7803 bpstat_print contains the logic deciding in detail what to print,
7804 based on the event(s) that just occurred. */
7805
243a9253
PA
7806static void
7807print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7808{
7809 int bpstat_ret;
f486487f 7810 enum print_what source_flag;
0c7e1a46
PA
7811 int do_frame_printing = 1;
7812 struct thread_info *tp = inferior_thread ();
7813
7814 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
7815 switch (bpstat_ret)
7816 {
7817 case PRINT_UNKNOWN:
7818 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
7819 should) carry around the function and does (or should) use
7820 that when doing a frame comparison. */
7821 if (tp->control.stop_step
7822 && frame_id_eq (tp->control.step_frame_id,
7823 get_frame_id (get_current_frame ()))
f2ffa92b
PA
7824 && (tp->control.step_start_function
7825 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
7826 {
7827 /* Finished step, just print source line. */
7828 source_flag = SRC_LINE;
7829 }
7830 else
7831 {
7832 /* Print location and source line. */
7833 source_flag = SRC_AND_LOC;
7834 }
7835 break;
7836 case PRINT_SRC_AND_LOC:
7837 /* Print location and source line. */
7838 source_flag = SRC_AND_LOC;
7839 break;
7840 case PRINT_SRC_ONLY:
7841 source_flag = SRC_LINE;
7842 break;
7843 case PRINT_NOTHING:
7844 /* Something bogus. */
7845 source_flag = SRC_LINE;
7846 do_frame_printing = 0;
7847 break;
7848 default:
7849 internal_error (__FILE__, __LINE__, _("Unknown value."));
7850 }
7851
7852 /* The behavior of this routine with respect to the source
7853 flag is:
7854 SRC_LINE: Print only source line
7855 LOCATION: Print only location
7856 SRC_AND_LOC: Print location and source line. */
7857 if (do_frame_printing)
7858 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
7859}
7860
243a9253
PA
7861/* See infrun.h. */
7862
7863void
7864print_stop_event (struct ui_out *uiout)
7865{
243a9253
PA
7866 struct target_waitstatus last;
7867 ptid_t last_ptid;
7868 struct thread_info *tp;
7869
7870 get_last_target_status (&last_ptid, &last);
7871
67ad9399
TT
7872 {
7873 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 7874
67ad9399 7875 print_stop_location (&last);
243a9253 7876
67ad9399
TT
7877 /* Display the auto-display expressions. */
7878 do_displays ();
7879 }
243a9253
PA
7880
7881 tp = inferior_thread ();
7882 if (tp->thread_fsm != NULL
46e3ed7f 7883 && tp->thread_fsm->finished_p ())
243a9253
PA
7884 {
7885 struct return_value_info *rv;
7886
46e3ed7f 7887 rv = tp->thread_fsm->return_value ();
243a9253
PA
7888 if (rv != NULL)
7889 print_return_value (uiout, rv);
7890 }
0c7e1a46
PA
7891}
7892
388a7084
PA
7893/* See infrun.h. */
7894
7895void
7896maybe_remove_breakpoints (void)
7897{
7898 if (!breakpoints_should_be_inserted_now () && target_has_execution)
7899 {
7900 if (remove_breakpoints ())
7901 {
223ffa71 7902 target_terminal::ours_for_output ();
388a7084
PA
7903 printf_filtered (_("Cannot remove breakpoints because "
7904 "program is no longer writable.\nFurther "
7905 "execution is probably impossible.\n"));
7906 }
7907 }
7908}
7909
4c2f2a79
PA
7910/* The execution context that just caused a normal stop. */
7911
7912struct stop_context
7913{
2d844eaf
TT
7914 stop_context ();
7915 ~stop_context ();
7916
7917 DISABLE_COPY_AND_ASSIGN (stop_context);
7918
7919 bool changed () const;
7920
4c2f2a79
PA
7921 /* The stop ID. */
7922 ULONGEST stop_id;
c906108c 7923
4c2f2a79 7924 /* The event PTID. */
c906108c 7925
4c2f2a79
PA
7926 ptid_t ptid;
7927
7928 /* If stopp for a thread event, this is the thread that caused the
7929 stop. */
7930 struct thread_info *thread;
7931
7932 /* The inferior that caused the stop. */
7933 int inf_num;
7934};
7935
2d844eaf 7936/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
7937 takes a strong reference to the thread. */
7938
2d844eaf 7939stop_context::stop_context ()
4c2f2a79 7940{
2d844eaf
TT
7941 stop_id = get_stop_id ();
7942 ptid = inferior_ptid;
7943 inf_num = current_inferior ()->num;
4c2f2a79 7944
d7e15655 7945 if (inferior_ptid != null_ptid)
4c2f2a79
PA
7946 {
7947 /* Take a strong reference so that the thread can't be deleted
7948 yet. */
2d844eaf
TT
7949 thread = inferior_thread ();
7950 thread->incref ();
4c2f2a79
PA
7951 }
7952 else
2d844eaf 7953 thread = NULL;
4c2f2a79
PA
7954}
7955
7956/* Release a stop context previously created with save_stop_context.
7957 Releases the strong reference to the thread as well. */
7958
2d844eaf 7959stop_context::~stop_context ()
4c2f2a79 7960{
2d844eaf
TT
7961 if (thread != NULL)
7962 thread->decref ();
4c2f2a79
PA
7963}
7964
7965/* Return true if the current context no longer matches the saved stop
7966 context. */
7967
2d844eaf
TT
7968bool
7969stop_context::changed () const
7970{
7971 if (ptid != inferior_ptid)
7972 return true;
7973 if (inf_num != current_inferior ()->num)
7974 return true;
7975 if (thread != NULL && thread->state != THREAD_STOPPED)
7976 return true;
7977 if (get_stop_id () != stop_id)
7978 return true;
7979 return false;
4c2f2a79
PA
7980}
7981
7982/* See infrun.h. */
7983
7984int
96baa820 7985normal_stop (void)
c906108c 7986{
73b65bb0
DJ
7987 struct target_waitstatus last;
7988 ptid_t last_ptid;
7989
7990 get_last_target_status (&last_ptid, &last);
7991
4c2f2a79
PA
7992 new_stop_id ();
7993
29f49a6a
PA
7994 /* If an exception is thrown from this point on, make sure to
7995 propagate GDB's knowledge of the executing state to the
7996 frontend/user running state. A QUIT is an easy exception to see
7997 here, so do this before any filtered output. */
731f534f
PA
7998
7999 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8000
c35b1492 8001 if (!non_stop)
731f534f 8002 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8003 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8004 || last.kind == TARGET_WAITKIND_EXITED)
8005 {
8006 /* On some targets, we may still have live threads in the
8007 inferior when we get a process exit event. E.g., for
8008 "checkpoint", when the current checkpoint/fork exits,
8009 linux-fork.c automatically switches to another fork from
8010 within target_mourn_inferior. */
731f534f
PA
8011 if (inferior_ptid != null_ptid)
8012 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8013 }
8014 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8015 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8016
b57bacec
PA
8017 /* As we're presenting a stop, and potentially removing breakpoints,
8018 update the thread list so we can tell whether there are threads
8019 running on the target. With target remote, for example, we can
8020 only learn about new threads when we explicitly update the thread
8021 list. Do this before notifying the interpreters about signal
8022 stops, end of stepping ranges, etc., so that the "new thread"
8023 output is emitted before e.g., "Program received signal FOO",
8024 instead of after. */
8025 update_thread_list ();
8026
8027 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8028 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8029
c906108c
SS
8030 /* As with the notification of thread events, we want to delay
8031 notifying the user that we've switched thread context until
8032 the inferior actually stops.
8033
73b65bb0
DJ
8034 There's no point in saying anything if the inferior has exited.
8035 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8036 "received a signal".
8037
8038 Also skip saying anything in non-stop mode. In that mode, as we
8039 don't want GDB to switch threads behind the user's back, to avoid
8040 races where the user is typing a command to apply to thread x,
8041 but GDB switches to thread y before the user finishes entering
8042 the command, fetch_inferior_event installs a cleanup to restore
8043 the current thread back to the thread the user had selected right
8044 after this event is handled, so we're not really switching, only
8045 informing of a stop. */
4f8d22e3 8046 if (!non_stop
731f534f 8047 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8048 && target_has_execution
8049 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8050 && last.kind != TARGET_WAITKIND_EXITED
8051 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8052 {
0e454242 8053 SWITCH_THRU_ALL_UIS ()
3b12939d 8054 {
223ffa71 8055 target_terminal::ours_for_output ();
3b12939d
PA
8056 printf_filtered (_("[Switching to %s]\n"),
8057 target_pid_to_str (inferior_ptid));
8058 annotate_thread_changed ();
8059 }
39f77062 8060 previous_inferior_ptid = inferior_ptid;
c906108c 8061 }
c906108c 8062
0e5bf2a8
PA
8063 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8064 {
0e454242 8065 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8066 if (current_ui->prompt_state == PROMPT_BLOCKED)
8067 {
223ffa71 8068 target_terminal::ours_for_output ();
3b12939d
PA
8069 printf_filtered (_("No unwaited-for children left.\n"));
8070 }
0e5bf2a8
PA
8071 }
8072
b57bacec 8073 /* Note: this depends on the update_thread_list call above. */
388a7084 8074 maybe_remove_breakpoints ();
c906108c 8075
c906108c
SS
8076 /* If an auto-display called a function and that got a signal,
8077 delete that auto-display to avoid an infinite recursion. */
8078
8079 if (stopped_by_random_signal)
8080 disable_current_display ();
8081
0e454242 8082 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8083 {
8084 async_enable_stdin ();
8085 }
c906108c 8086
388a7084 8087 /* Let the user/frontend see the threads as stopped. */
731f534f 8088 maybe_finish_thread_state.reset ();
388a7084
PA
8089
8090 /* Select innermost stack frame - i.e., current frame is frame 0,
8091 and current location is based on that. Handle the case where the
8092 dummy call is returning after being stopped. E.g. the dummy call
8093 previously hit a breakpoint. (If the dummy call returns
8094 normally, we won't reach here.) Do this before the stop hook is
8095 run, so that it doesn't get to see the temporary dummy frame,
8096 which is not where we'll present the stop. */
8097 if (has_stack_frames ())
8098 {
8099 if (stop_stack_dummy == STOP_STACK_DUMMY)
8100 {
8101 /* Pop the empty frame that contains the stack dummy. This
8102 also restores inferior state prior to the call (struct
8103 infcall_suspend_state). */
8104 struct frame_info *frame = get_current_frame ();
8105
8106 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8107 frame_pop (frame);
8108 /* frame_pop calls reinit_frame_cache as the last thing it
8109 does which means there's now no selected frame. */
8110 }
8111
8112 select_frame (get_current_frame ());
8113
8114 /* Set the current source location. */
8115 set_current_sal_from_frame (get_current_frame ());
8116 }
dd7e2d2b
PA
8117
8118 /* Look up the hook_stop and run it (CLI internally handles problem
8119 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8120 if (stop_command != NULL)
8121 {
2d844eaf 8122 stop_context saved_context;
4c2f2a79 8123
bf469271
PA
8124 TRY
8125 {
8126 execute_cmd_pre_hook (stop_command);
8127 }
8128 CATCH (ex, RETURN_MASK_ALL)
8129 {
8130 exception_fprintf (gdb_stderr, ex,
8131 "Error while running hook_stop:\n");
8132 }
8133 END_CATCH
4c2f2a79
PA
8134
8135 /* If the stop hook resumes the target, then there's no point in
8136 trying to notify about the previous stop; its context is
8137 gone. Likewise if the command switches thread or inferior --
8138 the observers would print a stop for the wrong
8139 thread/inferior. */
2d844eaf
TT
8140 if (saved_context.changed ())
8141 return 1;
4c2f2a79 8142 }
dd7e2d2b 8143
388a7084
PA
8144 /* Notify observers about the stop. This is where the interpreters
8145 print the stop event. */
d7e15655 8146 if (inferior_ptid != null_ptid)
76727919 8147 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8148 stop_print_frame);
8149 else
76727919 8150 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8151
243a9253
PA
8152 annotate_stopped ();
8153
48844aa6
PA
8154 if (target_has_execution)
8155 {
8156 if (last.kind != TARGET_WAITKIND_SIGNALLED
8157 && last.kind != TARGET_WAITKIND_EXITED)
8158 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8159 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8160 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8161 }
6c95b8df
PA
8162
8163 /* Try to get rid of automatically added inferiors that are no
8164 longer needed. Keeping those around slows down things linearly.
8165 Note that this never removes the current inferior. */
8166 prune_inferiors ();
4c2f2a79
PA
8167
8168 return 0;
c906108c 8169}
c906108c 8170\f
c5aa993b 8171int
96baa820 8172signal_stop_state (int signo)
c906108c 8173{
d6b48e9c 8174 return signal_stop[signo];
c906108c
SS
8175}
8176
c5aa993b 8177int
96baa820 8178signal_print_state (int signo)
c906108c
SS
8179{
8180 return signal_print[signo];
8181}
8182
c5aa993b 8183int
96baa820 8184signal_pass_state (int signo)
c906108c
SS
8185{
8186 return signal_program[signo];
8187}
8188
2455069d
UW
8189static void
8190signal_cache_update (int signo)
8191{
8192 if (signo == -1)
8193 {
a493e3e2 8194 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8195 signal_cache_update (signo);
8196
8197 return;
8198 }
8199
8200 signal_pass[signo] = (signal_stop[signo] == 0
8201 && signal_print[signo] == 0
ab04a2af
TT
8202 && signal_program[signo] == 1
8203 && signal_catch[signo] == 0);
2455069d
UW
8204}
8205
488f131b 8206int
7bda5e4a 8207signal_stop_update (int signo, int state)
d4f3574e
SS
8208{
8209 int ret = signal_stop[signo];
abbb1732 8210
d4f3574e 8211 signal_stop[signo] = state;
2455069d 8212 signal_cache_update (signo);
d4f3574e
SS
8213 return ret;
8214}
8215
488f131b 8216int
7bda5e4a 8217signal_print_update (int signo, int state)
d4f3574e
SS
8218{
8219 int ret = signal_print[signo];
abbb1732 8220
d4f3574e 8221 signal_print[signo] = state;
2455069d 8222 signal_cache_update (signo);
d4f3574e
SS
8223 return ret;
8224}
8225
488f131b 8226int
7bda5e4a 8227signal_pass_update (int signo, int state)
d4f3574e
SS
8228{
8229 int ret = signal_program[signo];
abbb1732 8230
d4f3574e 8231 signal_program[signo] = state;
2455069d 8232 signal_cache_update (signo);
d4f3574e
SS
8233 return ret;
8234}
8235
ab04a2af
TT
8236/* Update the global 'signal_catch' from INFO and notify the
8237 target. */
8238
8239void
8240signal_catch_update (const unsigned int *info)
8241{
8242 int i;
8243
8244 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8245 signal_catch[i] = info[i] > 0;
8246 signal_cache_update (-1);
adc6a863 8247 target_pass_signals (signal_pass);
ab04a2af
TT
8248}
8249
c906108c 8250static void
96baa820 8251sig_print_header (void)
c906108c 8252{
3e43a32a
MS
8253 printf_filtered (_("Signal Stop\tPrint\tPass "
8254 "to program\tDescription\n"));
c906108c
SS
8255}
8256
8257static void
2ea28649 8258sig_print_info (enum gdb_signal oursig)
c906108c 8259{
2ea28649 8260 const char *name = gdb_signal_to_name (oursig);
c906108c 8261 int name_padding = 13 - strlen (name);
96baa820 8262
c906108c
SS
8263 if (name_padding <= 0)
8264 name_padding = 0;
8265
8266 printf_filtered ("%s", name);
488f131b 8267 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8268 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8269 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8270 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8271 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8272}
8273
8274/* Specify how various signals in the inferior should be handled. */
8275
8276static void
0b39b52e 8277handle_command (const char *args, int from_tty)
c906108c 8278{
c906108c 8279 int digits, wordlen;
b926417a 8280 int sigfirst, siglast;
2ea28649 8281 enum gdb_signal oursig;
c906108c 8282 int allsigs;
c906108c
SS
8283
8284 if (args == NULL)
8285 {
e2e0b3e5 8286 error_no_arg (_("signal to handle"));
c906108c
SS
8287 }
8288
1777feb0 8289 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8290
adc6a863
PA
8291 const size_t nsigs = GDB_SIGNAL_LAST;
8292 unsigned char sigs[nsigs] {};
c906108c 8293
1777feb0 8294 /* Break the command line up into args. */
c906108c 8295
773a1edc 8296 gdb_argv built_argv (args);
c906108c
SS
8297
8298 /* Walk through the args, looking for signal oursigs, signal names, and
8299 actions. Signal numbers and signal names may be interspersed with
8300 actions, with the actions being performed for all signals cumulatively
1777feb0 8301 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8302
773a1edc 8303 for (char *arg : built_argv)
c906108c 8304 {
773a1edc
TT
8305 wordlen = strlen (arg);
8306 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8307 {;
8308 }
8309 allsigs = 0;
8310 sigfirst = siglast = -1;
8311
773a1edc 8312 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8313 {
8314 /* Apply action to all signals except those used by the
1777feb0 8315 debugger. Silently skip those. */
c906108c
SS
8316 allsigs = 1;
8317 sigfirst = 0;
8318 siglast = nsigs - 1;
8319 }
773a1edc 8320 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8321 {
8322 SET_SIGS (nsigs, sigs, signal_stop);
8323 SET_SIGS (nsigs, sigs, signal_print);
8324 }
773a1edc 8325 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8326 {
8327 UNSET_SIGS (nsigs, sigs, signal_program);
8328 }
773a1edc 8329 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8330 {
8331 SET_SIGS (nsigs, sigs, signal_print);
8332 }
773a1edc 8333 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8334 {
8335 SET_SIGS (nsigs, sigs, signal_program);
8336 }
773a1edc 8337 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8338 {
8339 UNSET_SIGS (nsigs, sigs, signal_stop);
8340 }
773a1edc 8341 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8342 {
8343 SET_SIGS (nsigs, sigs, signal_program);
8344 }
773a1edc 8345 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8346 {
8347 UNSET_SIGS (nsigs, sigs, signal_print);
8348 UNSET_SIGS (nsigs, sigs, signal_stop);
8349 }
773a1edc 8350 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8351 {
8352 UNSET_SIGS (nsigs, sigs, signal_program);
8353 }
8354 else if (digits > 0)
8355 {
8356 /* It is numeric. The numeric signal refers to our own
8357 internal signal numbering from target.h, not to host/target
8358 signal number. This is a feature; users really should be
8359 using symbolic names anyway, and the common ones like
8360 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8361
8362 sigfirst = siglast = (int)
773a1edc
TT
8363 gdb_signal_from_command (atoi (arg));
8364 if (arg[digits] == '-')
c906108c
SS
8365 {
8366 siglast = (int)
773a1edc 8367 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8368 }
8369 if (sigfirst > siglast)
8370 {
1777feb0 8371 /* Bet he didn't figure we'd think of this case... */
b926417a 8372 std::swap (sigfirst, siglast);
c906108c
SS
8373 }
8374 }
8375 else
8376 {
773a1edc 8377 oursig = gdb_signal_from_name (arg);
a493e3e2 8378 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8379 {
8380 sigfirst = siglast = (int) oursig;
8381 }
8382 else
8383 {
8384 /* Not a number and not a recognized flag word => complain. */
773a1edc 8385 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8386 }
8387 }
8388
8389 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8390 which signals to apply actions to. */
c906108c 8391
b926417a 8392 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8393 {
2ea28649 8394 switch ((enum gdb_signal) signum)
c906108c 8395 {
a493e3e2
PA
8396 case GDB_SIGNAL_TRAP:
8397 case GDB_SIGNAL_INT:
c906108c
SS
8398 if (!allsigs && !sigs[signum])
8399 {
9e2f0ad4 8400 if (query (_("%s is used by the debugger.\n\
3e43a32a 8401Are you sure you want to change it? "),
2ea28649 8402 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8403 {
8404 sigs[signum] = 1;
8405 }
8406 else
c119e040 8407 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8408 }
8409 break;
a493e3e2
PA
8410 case GDB_SIGNAL_0:
8411 case GDB_SIGNAL_DEFAULT:
8412 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8413 /* Make sure that "all" doesn't print these. */
8414 break;
8415 default:
8416 sigs[signum] = 1;
8417 break;
8418 }
8419 }
c906108c
SS
8420 }
8421
b926417a 8422 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8423 if (sigs[signum])
8424 {
2455069d 8425 signal_cache_update (-1);
adc6a863
PA
8426 target_pass_signals (signal_pass);
8427 target_program_signals (signal_program);
c906108c 8428
3a031f65
PA
8429 if (from_tty)
8430 {
8431 /* Show the results. */
8432 sig_print_header ();
8433 for (; signum < nsigs; signum++)
8434 if (sigs[signum])
aead7601 8435 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8436 }
8437
8438 break;
8439 }
c906108c
SS
8440}
8441
de0bea00
MF
8442/* Complete the "handle" command. */
8443
eb3ff9a5 8444static void
de0bea00 8445handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8446 completion_tracker &tracker,
6f937416 8447 const char *text, const char *word)
de0bea00 8448{
de0bea00
MF
8449 static const char * const keywords[] =
8450 {
8451 "all",
8452 "stop",
8453 "ignore",
8454 "print",
8455 "pass",
8456 "nostop",
8457 "noignore",
8458 "noprint",
8459 "nopass",
8460 NULL,
8461 };
8462
eb3ff9a5
PA
8463 signal_completer (ignore, tracker, text, word);
8464 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8465}
8466
2ea28649
PA
8467enum gdb_signal
8468gdb_signal_from_command (int num)
ed01b82c
PA
8469{
8470 if (num >= 1 && num <= 15)
2ea28649 8471 return (enum gdb_signal) num;
ed01b82c
PA
8472 error (_("Only signals 1-15 are valid as numeric signals.\n\
8473Use \"info signals\" for a list of symbolic signals."));
8474}
8475
c906108c
SS
8476/* Print current contents of the tables set by the handle command.
8477 It is possible we should just be printing signals actually used
8478 by the current target (but for things to work right when switching
8479 targets, all signals should be in the signal tables). */
8480
8481static void
1d12d88f 8482info_signals_command (const char *signum_exp, int from_tty)
c906108c 8483{
2ea28649 8484 enum gdb_signal oursig;
abbb1732 8485
c906108c
SS
8486 sig_print_header ();
8487
8488 if (signum_exp)
8489 {
8490 /* First see if this is a symbol name. */
2ea28649 8491 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8492 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8493 {
8494 /* No, try numeric. */
8495 oursig =
2ea28649 8496 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8497 }
8498 sig_print_info (oursig);
8499 return;
8500 }
8501
8502 printf_filtered ("\n");
8503 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8504 for (oursig = GDB_SIGNAL_FIRST;
8505 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8506 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8507 {
8508 QUIT;
8509
a493e3e2
PA
8510 if (oursig != GDB_SIGNAL_UNKNOWN
8511 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8512 sig_print_info (oursig);
8513 }
8514
3e43a32a
MS
8515 printf_filtered (_("\nUse the \"handle\" command "
8516 "to change these tables.\n"));
c906108c 8517}
4aa995e1
PA
8518
8519/* The $_siginfo convenience variable is a bit special. We don't know
8520 for sure the type of the value until we actually have a chance to
7a9dd1b2 8521 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8522 also dependent on which thread you have selected.
8523
8524 1. making $_siginfo be an internalvar that creates a new value on
8525 access.
8526
8527 2. making the value of $_siginfo be an lval_computed value. */
8528
8529/* This function implements the lval_computed support for reading a
8530 $_siginfo value. */
8531
8532static void
8533siginfo_value_read (struct value *v)
8534{
8535 LONGEST transferred;
8536
a911d87a
PA
8537 /* If we can access registers, so can we access $_siginfo. Likewise
8538 vice versa. */
8539 validate_registers_access ();
c709acd1 8540
4aa995e1 8541 transferred =
8b88a78e 8542 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8543 NULL,
8544 value_contents_all_raw (v),
8545 value_offset (v),
8546 TYPE_LENGTH (value_type (v)));
8547
8548 if (transferred != TYPE_LENGTH (value_type (v)))
8549 error (_("Unable to read siginfo"));
8550}
8551
8552/* This function implements the lval_computed support for writing a
8553 $_siginfo value. */
8554
8555static void
8556siginfo_value_write (struct value *v, struct value *fromval)
8557{
8558 LONGEST transferred;
8559
a911d87a
PA
8560 /* If we can access registers, so can we access $_siginfo. Likewise
8561 vice versa. */
8562 validate_registers_access ();
c709acd1 8563
8b88a78e 8564 transferred = target_write (current_top_target (),
4aa995e1
PA
8565 TARGET_OBJECT_SIGNAL_INFO,
8566 NULL,
8567 value_contents_all_raw (fromval),
8568 value_offset (v),
8569 TYPE_LENGTH (value_type (fromval)));
8570
8571 if (transferred != TYPE_LENGTH (value_type (fromval)))
8572 error (_("Unable to write siginfo"));
8573}
8574
c8f2448a 8575static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8576 {
8577 siginfo_value_read,
8578 siginfo_value_write
8579 };
8580
8581/* Return a new value with the correct type for the siginfo object of
78267919
UW
8582 the current thread using architecture GDBARCH. Return a void value
8583 if there's no object available. */
4aa995e1 8584
2c0b251b 8585static struct value *
22d2b532
SDJ
8586siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8587 void *ignore)
4aa995e1 8588{
4aa995e1 8589 if (target_has_stack
d7e15655 8590 && inferior_ptid != null_ptid
78267919 8591 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8592 {
78267919 8593 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8594
78267919 8595 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8596 }
8597
78267919 8598 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8599}
8600
c906108c 8601\f
16c381f0
JK
8602/* infcall_suspend_state contains state about the program itself like its
8603 registers and any signal it received when it last stopped.
8604 This state must be restored regardless of how the inferior function call
8605 ends (either successfully, or after it hits a breakpoint or signal)
8606 if the program is to properly continue where it left off. */
8607
6bf78e29 8608class infcall_suspend_state
7a292a7a 8609{
6bf78e29
AB
8610public:
8611 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8612 once the inferior function call has finished. */
8613 infcall_suspend_state (struct gdbarch *gdbarch,
8614 const struct thread_info *tp,
8615 struct regcache *regcache)
8616 : m_thread_suspend (tp->suspend),
8617 m_registers (new readonly_detached_regcache (*regcache))
8618 {
8619 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8620
8621 if (gdbarch_get_siginfo_type_p (gdbarch))
8622 {
8623 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8624 size_t len = TYPE_LENGTH (type);
8625
8626 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8627
8628 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8629 siginfo_data.get (), 0, len) != len)
8630 {
8631 /* Errors ignored. */
8632 siginfo_data.reset (nullptr);
8633 }
8634 }
8635
8636 if (siginfo_data)
8637 {
8638 m_siginfo_gdbarch = gdbarch;
8639 m_siginfo_data = std::move (siginfo_data);
8640 }
8641 }
8642
8643 /* Return a pointer to the stored register state. */
16c381f0 8644
6bf78e29
AB
8645 readonly_detached_regcache *registers () const
8646 {
8647 return m_registers.get ();
8648 }
8649
8650 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8651
8652 void restore (struct gdbarch *gdbarch,
8653 struct thread_info *tp,
8654 struct regcache *regcache) const
8655 {
8656 tp->suspend = m_thread_suspend;
8657
8658 if (m_siginfo_gdbarch == gdbarch)
8659 {
8660 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8661
8662 /* Errors ignored. */
8663 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8664 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8665 }
8666
8667 /* The inferior can be gone if the user types "print exit(0)"
8668 (and perhaps other times). */
8669 if (target_has_execution)
8670 /* NB: The register write goes through to the target. */
8671 regcache->restore (registers ());
8672 }
8673
8674private:
8675 /* How the current thread stopped before the inferior function call was
8676 executed. */
8677 struct thread_suspend_state m_thread_suspend;
8678
8679 /* The registers before the inferior function call was executed. */
8680 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 8681
35515841 8682 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 8683 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
8684
8685 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8686 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8687 content would be invalid. */
6bf78e29 8688 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
8689};
8690
cb524840
TT
8691infcall_suspend_state_up
8692save_infcall_suspend_state ()
b89667eb 8693{
b89667eb 8694 struct thread_info *tp = inferior_thread ();
1736ad11 8695 struct regcache *regcache = get_current_regcache ();
ac7936df 8696 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 8697
6bf78e29
AB
8698 infcall_suspend_state_up inf_state
8699 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 8700
6bf78e29
AB
8701 /* Having saved the current state, adjust the thread state, discarding
8702 any stop signal information. The stop signal is not useful when
8703 starting an inferior function call, and run_inferior_call will not use
8704 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 8705 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8706
b89667eb
DE
8707 return inf_state;
8708}
8709
8710/* Restore inferior session state to INF_STATE. */
8711
8712void
16c381f0 8713restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8714{
8715 struct thread_info *tp = inferior_thread ();
1736ad11 8716 struct regcache *regcache = get_current_regcache ();
ac7936df 8717 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8718
6bf78e29 8719 inf_state->restore (gdbarch, tp, regcache);
16c381f0 8720 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8721}
8722
b89667eb 8723void
16c381f0 8724discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8725{
dd848631 8726 delete inf_state;
b89667eb
DE
8727}
8728
daf6667d 8729readonly_detached_regcache *
16c381f0 8730get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 8731{
6bf78e29 8732 return inf_state->registers ();
b89667eb
DE
8733}
8734
16c381f0
JK
8735/* infcall_control_state contains state regarding gdb's control of the
8736 inferior itself like stepping control. It also contains session state like
8737 the user's currently selected frame. */
b89667eb 8738
16c381f0 8739struct infcall_control_state
b89667eb 8740{
16c381f0
JK
8741 struct thread_control_state thread_control;
8742 struct inferior_control_state inferior_control;
d82142e2
JK
8743
8744 /* Other fields: */
ee841dd8
TT
8745 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
8746 int stopped_by_random_signal = 0;
7a292a7a 8747
b89667eb 8748 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 8749 struct frame_id selected_frame_id {};
7a292a7a
SS
8750};
8751
c906108c 8752/* Save all of the information associated with the inferior<==>gdb
b89667eb 8753 connection. */
c906108c 8754
cb524840
TT
8755infcall_control_state_up
8756save_infcall_control_state ()
c906108c 8757{
cb524840 8758 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 8759 struct thread_info *tp = inferior_thread ();
d6b48e9c 8760 struct inferior *inf = current_inferior ();
7a292a7a 8761
16c381f0
JK
8762 inf_status->thread_control = tp->control;
8763 inf_status->inferior_control = inf->control;
d82142e2 8764
8358c15c 8765 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8766 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8767
16c381f0
JK
8768 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8769 chain. If caller's caller is walking the chain, they'll be happier if we
8770 hand them back the original chain when restore_infcall_control_state is
8771 called. */
8772 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8773
8774 /* Other fields: */
8775 inf_status->stop_stack_dummy = stop_stack_dummy;
8776 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8777
206415a3 8778 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8779
7a292a7a 8780 return inf_status;
c906108c
SS
8781}
8782
bf469271
PA
8783static void
8784restore_selected_frame (const frame_id &fid)
c906108c 8785{
bf469271 8786 frame_info *frame = frame_find_by_id (fid);
c906108c 8787
aa0cd9c1
AC
8788 /* If inf_status->selected_frame_id is NULL, there was no previously
8789 selected frame. */
101dcfbe 8790 if (frame == NULL)
c906108c 8791 {
8a3fe4f8 8792 warning (_("Unable to restore previously selected frame."));
bf469271 8793 return;
c906108c
SS
8794 }
8795
0f7d239c 8796 select_frame (frame);
c906108c
SS
8797}
8798
b89667eb
DE
8799/* Restore inferior session state to INF_STATUS. */
8800
c906108c 8801void
16c381f0 8802restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 8803{
4e1c45ea 8804 struct thread_info *tp = inferior_thread ();
d6b48e9c 8805 struct inferior *inf = current_inferior ();
4e1c45ea 8806
8358c15c
JK
8807 if (tp->control.step_resume_breakpoint)
8808 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
8809
5b79abe7
TT
8810 if (tp->control.exception_resume_breakpoint)
8811 tp->control.exception_resume_breakpoint->disposition
8812 = disp_del_at_next_stop;
8813
d82142e2 8814 /* Handle the bpstat_copy of the chain. */
16c381f0 8815 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 8816
16c381f0
JK
8817 tp->control = inf_status->thread_control;
8818 inf->control = inf_status->inferior_control;
d82142e2
JK
8819
8820 /* Other fields: */
8821 stop_stack_dummy = inf_status->stop_stack_dummy;
8822 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 8823
b89667eb 8824 if (target_has_stack)
c906108c 8825 {
bf469271 8826 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
8827 walking the stack might encounter a garbage pointer and
8828 error() trying to dereference it. */
bf469271
PA
8829 TRY
8830 {
8831 restore_selected_frame (inf_status->selected_frame_id);
8832 }
8833 CATCH (ex, RETURN_MASK_ERROR)
8834 {
8835 exception_fprintf (gdb_stderr, ex,
8836 "Unable to restore previously selected frame:\n");
8837 /* Error in restoring the selected frame. Select the
8838 innermost frame. */
8839 select_frame (get_current_frame ());
8840 }
8841 END_CATCH
c906108c 8842 }
c906108c 8843
ee841dd8 8844 delete inf_status;
7a292a7a 8845}
c906108c
SS
8846
8847void
16c381f0 8848discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 8849{
8358c15c
JK
8850 if (inf_status->thread_control.step_resume_breakpoint)
8851 inf_status->thread_control.step_resume_breakpoint->disposition
8852 = disp_del_at_next_stop;
8853
5b79abe7
TT
8854 if (inf_status->thread_control.exception_resume_breakpoint)
8855 inf_status->thread_control.exception_resume_breakpoint->disposition
8856 = disp_del_at_next_stop;
8857
1777feb0 8858 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 8859 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 8860
ee841dd8 8861 delete inf_status;
7a292a7a 8862}
b89667eb 8863\f
7f89fd65 8864/* See infrun.h. */
0c557179
SDJ
8865
8866void
8867clear_exit_convenience_vars (void)
8868{
8869 clear_internalvar (lookup_internalvar ("_exitsignal"));
8870 clear_internalvar (lookup_internalvar ("_exitcode"));
8871}
c5aa993b 8872\f
488f131b 8873
b2175913
MS
8874/* User interface for reverse debugging:
8875 Set exec-direction / show exec-direction commands
8876 (returns error unless target implements to_set_exec_direction method). */
8877
170742de 8878enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
8879static const char exec_forward[] = "forward";
8880static const char exec_reverse[] = "reverse";
8881static const char *exec_direction = exec_forward;
40478521 8882static const char *const exec_direction_names[] = {
b2175913
MS
8883 exec_forward,
8884 exec_reverse,
8885 NULL
8886};
8887
8888static void
eb4c3f4a 8889set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
8890 struct cmd_list_element *cmd)
8891{
8892 if (target_can_execute_reverse)
8893 {
8894 if (!strcmp (exec_direction, exec_forward))
8895 execution_direction = EXEC_FORWARD;
8896 else if (!strcmp (exec_direction, exec_reverse))
8897 execution_direction = EXEC_REVERSE;
8898 }
8bbed405
MS
8899 else
8900 {
8901 exec_direction = exec_forward;
8902 error (_("Target does not support this operation."));
8903 }
b2175913
MS
8904}
8905
8906static void
8907show_exec_direction_func (struct ui_file *out, int from_tty,
8908 struct cmd_list_element *cmd, const char *value)
8909{
8910 switch (execution_direction) {
8911 case EXEC_FORWARD:
8912 fprintf_filtered (out, _("Forward.\n"));
8913 break;
8914 case EXEC_REVERSE:
8915 fprintf_filtered (out, _("Reverse.\n"));
8916 break;
b2175913 8917 default:
d8b34453
PA
8918 internal_error (__FILE__, __LINE__,
8919 _("bogus execution_direction value: %d"),
8920 (int) execution_direction);
b2175913
MS
8921 }
8922}
8923
d4db2f36
PA
8924static void
8925show_schedule_multiple (struct ui_file *file, int from_tty,
8926 struct cmd_list_element *c, const char *value)
8927{
3e43a32a
MS
8928 fprintf_filtered (file, _("Resuming the execution of threads "
8929 "of all processes is %s.\n"), value);
d4db2f36 8930}
ad52ddc6 8931
22d2b532
SDJ
8932/* Implementation of `siginfo' variable. */
8933
8934static const struct internalvar_funcs siginfo_funcs =
8935{
8936 siginfo_make_value,
8937 NULL,
8938 NULL
8939};
8940
372316f1
PA
8941/* Callback for infrun's target events source. This is marked when a
8942 thread has a pending status to process. */
8943
8944static void
8945infrun_async_inferior_event_handler (gdb_client_data data)
8946{
372316f1
PA
8947 inferior_event_handler (INF_REG_EVENT, NULL);
8948}
8949
c906108c 8950void
96baa820 8951_initialize_infrun (void)
c906108c 8952{
de0bea00 8953 struct cmd_list_element *c;
c906108c 8954
372316f1
PA
8955 /* Register extra event sources in the event loop. */
8956 infrun_async_inferior_event_token
8957 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
8958
11db9430 8959 add_info ("signals", info_signals_command, _("\
1bedd215
AC
8960What debugger does when program gets various signals.\n\
8961Specify a signal as argument to print info on that signal only."));
c906108c
SS
8962 add_info_alias ("handle", "signals", 0);
8963
de0bea00 8964 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 8965Specify how to handle signals.\n\
486c7739 8966Usage: handle SIGNAL [ACTIONS]\n\
c906108c 8967Args are signals and actions to apply to those signals.\n\
dfbd5e7b 8968If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
8969will be displayed instead.\n\
8970\n\
c906108c
SS
8971Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
8972from 1-15 are allowed for compatibility with old versions of GDB.\n\
8973Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
8974The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 8975used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 8976\n\
1bedd215 8977Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
8978\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
8979Stop means reenter debugger if this signal happens (implies print).\n\
8980Print means print a message if this signal happens.\n\
8981Pass means let program see this signal; otherwise program doesn't know.\n\
8982Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
8983Pass and Stop may be combined.\n\
8984\n\
8985Multiple signals may be specified. Signal numbers and signal names\n\
8986may be interspersed with actions, with the actions being performed for\n\
8987all signals cumulatively specified."));
de0bea00 8988 set_cmd_completer (c, handle_completer);
486c7739 8989
c906108c 8990 if (!dbx_commands)
1a966eab
AC
8991 stop_command = add_cmd ("stop", class_obscure,
8992 not_just_help_class_command, _("\
8993There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 8994This allows you to set a list of commands to be run each time execution\n\
1a966eab 8995of the program stops."), &cmdlist);
c906108c 8996
ccce17b0 8997 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
8998Set inferior debugging."), _("\
8999Show inferior debugging."), _("\
9000When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9001 NULL,
9002 show_debug_infrun,
9003 &setdebuglist, &showdebuglist);
527159b7 9004
3e43a32a
MS
9005 add_setshow_boolean_cmd ("displaced", class_maintenance,
9006 &debug_displaced, _("\
237fc4c9
PA
9007Set displaced stepping debugging."), _("\
9008Show displaced stepping debugging."), _("\
9009When non-zero, displaced stepping specific debugging is enabled."),
9010 NULL,
9011 show_debug_displaced,
9012 &setdebuglist, &showdebuglist);
9013
ad52ddc6
PA
9014 add_setshow_boolean_cmd ("non-stop", no_class,
9015 &non_stop_1, _("\
9016Set whether gdb controls the inferior in non-stop mode."), _("\
9017Show whether gdb controls the inferior in non-stop mode."), _("\
9018When debugging a multi-threaded program and this setting is\n\
9019off (the default, also called all-stop mode), when one thread stops\n\
9020(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9021all other threads in the program while you interact with the thread of\n\
9022interest. When you continue or step a thread, you can allow the other\n\
9023threads to run, or have them remain stopped, but while you inspect any\n\
9024thread's state, all threads stop.\n\
9025\n\
9026In non-stop mode, when one thread stops, other threads can continue\n\
9027to run freely. You'll be able to step each thread independently,\n\
9028leave it stopped or free to run as needed."),
9029 set_non_stop,
9030 show_non_stop,
9031 &setlist,
9032 &showlist);
9033
adc6a863 9034 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9035 {
9036 signal_stop[i] = 1;
9037 signal_print[i] = 1;
9038 signal_program[i] = 1;
ab04a2af 9039 signal_catch[i] = 0;
c906108c
SS
9040 }
9041
4d9d9d04
PA
9042 /* Signals caused by debugger's own actions should not be given to
9043 the program afterwards.
9044
9045 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9046 explicitly specifies that it should be delivered to the target
9047 program. Typically, that would occur when a user is debugging a
9048 target monitor on a simulator: the target monitor sets a
9049 breakpoint; the simulator encounters this breakpoint and halts
9050 the simulation handing control to GDB; GDB, noting that the stop
9051 address doesn't map to any known breakpoint, returns control back
9052 to the simulator; the simulator then delivers the hardware
9053 equivalent of a GDB_SIGNAL_TRAP to the program being
9054 debugged. */
a493e3e2
PA
9055 signal_program[GDB_SIGNAL_TRAP] = 0;
9056 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9057
9058 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9059 signal_stop[GDB_SIGNAL_ALRM] = 0;
9060 signal_print[GDB_SIGNAL_ALRM] = 0;
9061 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9062 signal_print[GDB_SIGNAL_VTALRM] = 0;
9063 signal_stop[GDB_SIGNAL_PROF] = 0;
9064 signal_print[GDB_SIGNAL_PROF] = 0;
9065 signal_stop[GDB_SIGNAL_CHLD] = 0;
9066 signal_print[GDB_SIGNAL_CHLD] = 0;
9067 signal_stop[GDB_SIGNAL_IO] = 0;
9068 signal_print[GDB_SIGNAL_IO] = 0;
9069 signal_stop[GDB_SIGNAL_POLL] = 0;
9070 signal_print[GDB_SIGNAL_POLL] = 0;
9071 signal_stop[GDB_SIGNAL_URG] = 0;
9072 signal_print[GDB_SIGNAL_URG] = 0;
9073 signal_stop[GDB_SIGNAL_WINCH] = 0;
9074 signal_print[GDB_SIGNAL_WINCH] = 0;
9075 signal_stop[GDB_SIGNAL_PRIO] = 0;
9076 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9077
cd0fc7c3
SS
9078 /* These signals are used internally by user-level thread
9079 implementations. (See signal(5) on Solaris.) Like the above
9080 signals, a healthy program receives and handles them as part of
9081 its normal operation. */
a493e3e2
PA
9082 signal_stop[GDB_SIGNAL_LWP] = 0;
9083 signal_print[GDB_SIGNAL_LWP] = 0;
9084 signal_stop[GDB_SIGNAL_WAITING] = 0;
9085 signal_print[GDB_SIGNAL_WAITING] = 0;
9086 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9087 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9088 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9089 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9090
2455069d
UW
9091 /* Update cached state. */
9092 signal_cache_update (-1);
9093
85c07804
AC
9094 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9095 &stop_on_solib_events, _("\
9096Set stopping for shared library events."), _("\
9097Show stopping for shared library events."), _("\
c906108c
SS
9098If nonzero, gdb will give control to the user when the dynamic linker\n\
9099notifies gdb of shared library events. The most common event of interest\n\
85c07804 9100to the user would be loading/unloading of a new library."),
f9e14852 9101 set_stop_on_solib_events,
920d2a44 9102 show_stop_on_solib_events,
85c07804 9103 &setlist, &showlist);
c906108c 9104
7ab04401
AC
9105 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9106 follow_fork_mode_kind_names,
9107 &follow_fork_mode_string, _("\
9108Set debugger response to a program call of fork or vfork."), _("\
9109Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9110A fork or vfork creates a new process. follow-fork-mode can be:\n\
9111 parent - the original process is debugged after a fork\n\
9112 child - the new process is debugged after a fork\n\
ea1dd7bc 9113The unfollowed process will continue to run.\n\
7ab04401
AC
9114By default, the debugger will follow the parent process."),
9115 NULL,
920d2a44 9116 show_follow_fork_mode_string,
7ab04401
AC
9117 &setlist, &showlist);
9118
6c95b8df
PA
9119 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9120 follow_exec_mode_names,
9121 &follow_exec_mode_string, _("\
9122Set debugger response to a program call of exec."), _("\
9123Show debugger response to a program call of exec."), _("\
9124An exec call replaces the program image of a process.\n\
9125\n\
9126follow-exec-mode can be:\n\
9127\n\
cce7e648 9128 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9129to this new inferior. The program the process was running before\n\
9130the exec call can be restarted afterwards by restarting the original\n\
9131inferior.\n\
9132\n\
9133 same - the debugger keeps the process bound to the same inferior.\n\
9134The new executable image replaces the previous executable loaded in\n\
9135the inferior. Restarting the inferior after the exec call restarts\n\
9136the executable the process was running after the exec call.\n\
9137\n\
9138By default, the debugger will use the same inferior."),
9139 NULL,
9140 show_follow_exec_mode_string,
9141 &setlist, &showlist);
9142
7ab04401
AC
9143 add_setshow_enum_cmd ("scheduler-locking", class_run,
9144 scheduler_enums, &scheduler_mode, _("\
9145Set mode for locking scheduler during execution."), _("\
9146Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9147off == no locking (threads may preempt at any time)\n\
9148on == full locking (no thread except the current thread may run)\n\
9149 This applies to both normal execution and replay mode.\n\
9150step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9151 In this mode, other threads may run during other commands.\n\
9152 This applies to both normal execution and replay mode.\n\
9153replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9154 set_schedlock_func, /* traps on target vector */
920d2a44 9155 show_scheduler_mode,
7ab04401 9156 &setlist, &showlist);
5fbbeb29 9157
d4db2f36
PA
9158 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9159Set mode for resuming threads of all processes."), _("\
9160Show mode for resuming threads of all processes."), _("\
9161When on, execution commands (such as 'continue' or 'next') resume all\n\
9162threads of all processes. When off (which is the default), execution\n\
9163commands only resume the threads of the current process. The set of\n\
9164threads that are resumed is further refined by the scheduler-locking\n\
9165mode (see help set scheduler-locking)."),
9166 NULL,
9167 show_schedule_multiple,
9168 &setlist, &showlist);
9169
5bf193a2
AC
9170 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9171Set mode of the step operation."), _("\
9172Show mode of the step operation."), _("\
9173When set, doing a step over a function without debug line information\n\
9174will stop at the first instruction of that function. Otherwise, the\n\
9175function is skipped and the step command stops at a different source line."),
9176 NULL,
920d2a44 9177 show_step_stop_if_no_debug,
5bf193a2 9178 &setlist, &showlist);
ca6724c1 9179
72d0e2c5
YQ
9180 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9181 &can_use_displaced_stepping, _("\
237fc4c9
PA
9182Set debugger's willingness to use displaced stepping."), _("\
9183Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9184If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9185supported by the target architecture. If off, gdb will not use displaced\n\
9186stepping to step over breakpoints, even if such is supported by the target\n\
9187architecture. If auto (which is the default), gdb will use displaced stepping\n\
9188if the target architecture supports it and non-stop mode is active, but will not\n\
9189use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9190 NULL,
9191 show_can_use_displaced_stepping,
9192 &setlist, &showlist);
237fc4c9 9193
b2175913
MS
9194 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9195 &exec_direction, _("Set direction of execution.\n\
9196Options are 'forward' or 'reverse'."),
9197 _("Show direction of execution (forward/reverse)."),
9198 _("Tells gdb whether to execute forward or backward."),
9199 set_exec_direction_func, show_exec_direction_func,
9200 &setlist, &showlist);
9201
6c95b8df
PA
9202 /* Set/show detach-on-fork: user-settable mode. */
9203
9204 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9205Set whether gdb will detach the child of a fork."), _("\
9206Show whether gdb will detach the child of a fork."), _("\
9207Tells gdb whether to detach the child of a fork."),
9208 NULL, NULL, &setlist, &showlist);
9209
03583c20
UW
9210 /* Set/show disable address space randomization mode. */
9211
9212 add_setshow_boolean_cmd ("disable-randomization", class_support,
9213 &disable_randomization, _("\
9214Set disabling of debuggee's virtual address space randomization."), _("\
9215Show disabling of debuggee's virtual address space randomization."), _("\
9216When this mode is on (which is the default), randomization of the virtual\n\
9217address space is disabled. Standalone programs run with the randomization\n\
9218enabled by default on some platforms."),
9219 &set_disable_randomization,
9220 &show_disable_randomization,
9221 &setlist, &showlist);
9222
ca6724c1 9223 /* ptid initializations */
ca6724c1
KB
9224 inferior_ptid = null_ptid;
9225 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9226
76727919
TT
9227 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9228 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9229 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9230 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9231
9232 /* Explicitly create without lookup, since that tries to create a
9233 value with a void typed value, and when we get here, gdbarch
9234 isn't initialized yet. At this point, we're quite sure there
9235 isn't another convenience variable of the same name. */
22d2b532 9236 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9237
9238 add_setshow_boolean_cmd ("observer", no_class,
9239 &observer_mode_1, _("\
9240Set whether gdb controls the inferior in observer mode."), _("\
9241Show whether gdb controls the inferior in observer mode."), _("\
9242In observer mode, GDB can get data from the inferior, but not\n\
9243affect its execution. Registers and memory may not be changed,\n\
9244breakpoints may not be set, and the program cannot be interrupted\n\
9245or signalled."),
9246 set_observer_mode,
9247 show_observer_mode,
9248 &setlist,
9249 &showlist);
c906108c 9250}
This page took 3.36141 seconds and 4 git commands to generate.