2003-11-14 Jeff Johnston <jjohnstn@redhat.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c
AC
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
7789c6f5 5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
8926118c 6 Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b
JM
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
c906108c
SS
24
25#include "defs.h"
26#include "gdb_string.h"
27#include <ctype.h>
28#include "symtab.h"
29#include "frame.h"
30#include "inferior.h"
31#include "breakpoint.h"
03f2053f 32#include "gdb_wait.h"
c906108c
SS
33#include "gdbcore.h"
34#include "gdbcmd.h"
210661e7 35#include "cli/cli-script.h"
c906108c
SS
36#include "target.h"
37#include "gdbthread.h"
38#include "annotate.h"
1adeb98a 39#include "symfile.h"
7a292a7a 40#include "top.h"
c906108c 41#include <signal.h>
2acceee2 42#include "inf-loop.h"
4e052eda 43#include "regcache.h"
fd0407d6 44#include "value.h"
06600e06 45#include "observer.h"
f636b87d 46#include "language.h"
c906108c
SS
47
48/* Prototypes for local functions */
49
96baa820 50static void signals_info (char *, int);
c906108c 51
96baa820 52static void handle_command (char *, int);
c906108c 53
96baa820 54static void sig_print_info (enum target_signal);
c906108c 55
96baa820 56static void sig_print_header (void);
c906108c 57
74b7792f 58static void resume_cleanups (void *);
c906108c 59
96baa820 60static int hook_stop_stub (void *);
c906108c 61
96baa820 62static void delete_breakpoint_current_contents (void *);
c906108c 63
96baa820 64static void set_follow_fork_mode_command (char *arg, int from_tty,
488f131b 65 struct cmd_list_element *c);
7a292a7a 66
96baa820
JM
67static int restore_selected_frame (void *);
68
69static void build_infrun (void);
70
4ef3f3be 71static int follow_fork (void);
96baa820
JM
72
73static void set_schedlock_func (char *args, int from_tty,
488f131b 74 struct cmd_list_element *c);
96baa820 75
96baa820
JM
76struct execution_control_state;
77
78static int currently_stepping (struct execution_control_state *ecs);
79
80static void xdb_handle_command (char *args, int from_tty);
81
ea67f13b
DJ
82static int prepare_to_proceed (void);
83
96baa820 84void _initialize_infrun (void);
43ff13b4 85
c906108c
SS
86int inferior_ignoring_startup_exec_events = 0;
87int inferior_ignoring_leading_exec_events = 0;
88
5fbbeb29
CF
89/* When set, stop the 'step' command if we enter a function which has
90 no line number information. The normal behavior is that we step
91 over such function. */
92int step_stop_if_no_debug = 0;
93
43ff13b4 94/* In asynchronous mode, but simulating synchronous execution. */
96baa820 95
43ff13b4
JM
96int sync_execution = 0;
97
c906108c
SS
98/* wait_for_inferior and normal_stop use this to notify the user
99 when the inferior stopped in a different thread than it had been
96baa820
JM
100 running in. */
101
39f77062 102static ptid_t previous_inferior_ptid;
7a292a7a
SS
103
104/* This is true for configurations that may follow through execl() and
105 similar functions. At present this is only true for HP-UX native. */
106
107#ifndef MAY_FOLLOW_EXEC
108#define MAY_FOLLOW_EXEC (0)
c906108c
SS
109#endif
110
7a292a7a
SS
111static int may_follow_exec = MAY_FOLLOW_EXEC;
112
d4f3574e
SS
113/* If the program uses ELF-style shared libraries, then calls to
114 functions in shared libraries go through stubs, which live in a
115 table called the PLT (Procedure Linkage Table). The first time the
116 function is called, the stub sends control to the dynamic linker,
117 which looks up the function's real address, patches the stub so
118 that future calls will go directly to the function, and then passes
119 control to the function.
120
121 If we are stepping at the source level, we don't want to see any of
122 this --- we just want to skip over the stub and the dynamic linker.
123 The simple approach is to single-step until control leaves the
124 dynamic linker.
125
ca557f44
AC
126 However, on some systems (e.g., Red Hat's 5.2 distribution) the
127 dynamic linker calls functions in the shared C library, so you
128 can't tell from the PC alone whether the dynamic linker is still
129 running. In this case, we use a step-resume breakpoint to get us
130 past the dynamic linker, as if we were using "next" to step over a
131 function call.
d4f3574e
SS
132
133 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
134 linker code or not. Normally, this means we single-step. However,
135 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
136 address where we can place a step-resume breakpoint to get past the
137 linker's symbol resolution function.
138
139 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
140 pretty portable way, by comparing the PC against the address ranges
141 of the dynamic linker's sections.
142
143 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
144 it depends on internal details of the dynamic linker. It's usually
145 not too hard to figure out where to put a breakpoint, but it
146 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
147 sanity checking. If it can't figure things out, returning zero and
148 getting the (possibly confusing) stepping behavior is better than
149 signalling an error, which will obscure the change in the
150 inferior's state. */
c906108c
SS
151
152#ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
153#define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
154#endif
155
c906108c
SS
156/* This function returns TRUE if pc is the address of an instruction
157 that lies within the dynamic linker (such as the event hook, or the
158 dld itself).
159
160 This function must be used only when a dynamic linker event has
161 been caught, and the inferior is being stepped out of the hook, or
162 undefined results are guaranteed. */
163
164#ifndef SOLIB_IN_DYNAMIC_LINKER
165#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
166#endif
167
168/* On MIPS16, a function that returns a floating point value may call
169 a library helper function to copy the return value to a floating point
170 register. The IGNORE_HELPER_CALL macro returns non-zero if we
171 should ignore (i.e. step over) this function call. */
172#ifndef IGNORE_HELPER_CALL
173#define IGNORE_HELPER_CALL(pc) 0
174#endif
175
176/* On some systems, the PC may be left pointing at an instruction that won't
177 actually be executed. This is usually indicated by a bit in the PSW. If
178 we find ourselves in such a state, then we step the target beyond the
179 nullified instruction before returning control to the user so as to avoid
180 confusion. */
181
182#ifndef INSTRUCTION_NULLIFIED
183#define INSTRUCTION_NULLIFIED 0
184#endif
185
c2c6d25f
JM
186/* We can't step off a permanent breakpoint in the ordinary way, because we
187 can't remove it. Instead, we have to advance the PC to the next
188 instruction. This macro should expand to a pointer to a function that
189 does that, or zero if we have no such function. If we don't have a
190 definition for it, we have to report an error. */
488f131b 191#ifndef SKIP_PERMANENT_BREAKPOINT
c2c6d25f
JM
192#define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
193static void
c2d11a7d 194default_skip_permanent_breakpoint (void)
c2c6d25f 195{
255e7dbf 196 error ("\
c2c6d25f
JM
197The program is stopped at a permanent breakpoint, but GDB does not know\n\
198how to step past a permanent breakpoint on this architecture. Try using\n\
255e7dbf 199a command like `return' or `jump' to continue execution.");
c2c6d25f
JM
200}
201#endif
488f131b 202
c2c6d25f 203
7a292a7a
SS
204/* Convert the #defines into values. This is temporary until wfi control
205 flow is completely sorted out. */
206
207#ifndef HAVE_STEPPABLE_WATCHPOINT
208#define HAVE_STEPPABLE_WATCHPOINT 0
209#else
210#undef HAVE_STEPPABLE_WATCHPOINT
211#define HAVE_STEPPABLE_WATCHPOINT 1
212#endif
213
692590c1
MS
214#ifndef CANNOT_STEP_HW_WATCHPOINTS
215#define CANNOT_STEP_HW_WATCHPOINTS 0
216#else
217#undef CANNOT_STEP_HW_WATCHPOINTS
218#define CANNOT_STEP_HW_WATCHPOINTS 1
219#endif
220
c906108c
SS
221/* Tables of how to react to signals; the user sets them. */
222
223static unsigned char *signal_stop;
224static unsigned char *signal_print;
225static unsigned char *signal_program;
226
227#define SET_SIGS(nsigs,sigs,flags) \
228 do { \
229 int signum = (nsigs); \
230 while (signum-- > 0) \
231 if ((sigs)[signum]) \
232 (flags)[signum] = 1; \
233 } while (0)
234
235#define UNSET_SIGS(nsigs,sigs,flags) \
236 do { \
237 int signum = (nsigs); \
238 while (signum-- > 0) \
239 if ((sigs)[signum]) \
240 (flags)[signum] = 0; \
241 } while (0)
242
39f77062
KB
243/* Value to pass to target_resume() to cause all threads to resume */
244
245#define RESUME_ALL (pid_to_ptid (-1))
c906108c
SS
246
247/* Command list pointer for the "stop" placeholder. */
248
249static struct cmd_list_element *stop_command;
250
251/* Nonzero if breakpoints are now inserted in the inferior. */
252
253static int breakpoints_inserted;
254
255/* Function inferior was in as of last step command. */
256
257static struct symbol *step_start_function;
258
259/* Nonzero if we are expecting a trace trap and should proceed from it. */
260
261static int trap_expected;
262
263#ifdef SOLIB_ADD
264/* Nonzero if we want to give control to the user when we're notified
265 of shared library events by the dynamic linker. */
266static int stop_on_solib_events;
267#endif
268
269#ifdef HP_OS_BUG
270/* Nonzero if the next time we try to continue the inferior, it will
271 step one instruction and generate a spurious trace trap.
272 This is used to compensate for a bug in HP-UX. */
273
274static int trap_expected_after_continue;
275#endif
276
277/* Nonzero means expecting a trace trap
278 and should stop the inferior and return silently when it happens. */
279
280int stop_after_trap;
281
282/* Nonzero means expecting a trap and caller will handle it themselves.
283 It is used after attach, due to attaching to a process;
284 when running in the shell before the child program has been exec'd;
285 and when running some kinds of remote stuff (FIXME?). */
286
c0236d92 287enum stop_kind stop_soon;
c906108c
SS
288
289/* Nonzero if proceed is being used for a "finish" command or a similar
290 situation when stop_registers should be saved. */
291
292int proceed_to_finish;
293
294/* Save register contents here when about to pop a stack dummy frame,
295 if-and-only-if proceed_to_finish is set.
296 Thus this contains the return value from the called function (assuming
297 values are returned in a register). */
298
72cec141 299struct regcache *stop_registers;
c906108c
SS
300
301/* Nonzero if program stopped due to error trying to insert breakpoints. */
302
303static int breakpoints_failed;
304
305/* Nonzero after stop if current stack frame should be printed. */
306
307static int stop_print_frame;
308
309static struct breakpoint *step_resume_breakpoint = NULL;
310static struct breakpoint *through_sigtramp_breakpoint = NULL;
311
312/* On some platforms (e.g., HP-UX), hardware watchpoints have bad
313 interactions with an inferior that is running a kernel function
314 (aka, a system call or "syscall"). wait_for_inferior therefore
315 may have a need to know when the inferior is in a syscall. This
316 is a count of the number of inferior threads which are known to
317 currently be running in a syscall. */
318static int number_of_threads_in_syscalls;
319
e02bc4cc
DS
320/* This is a cached copy of the pid/waitstatus of the last event
321 returned by target_wait()/target_wait_hook(). This information is
322 returned by get_last_target_status(). */
39f77062 323static ptid_t target_last_wait_ptid;
e02bc4cc
DS
324static struct target_waitstatus target_last_waitstatus;
325
c906108c
SS
326/* This is used to remember when a fork, vfork or exec event
327 was caught by a catchpoint, and thus the event is to be
328 followed at the next resume of the inferior, and not
329 immediately. */
330static struct
488f131b
JB
331{
332 enum target_waitkind kind;
333 struct
c906108c 334 {
488f131b 335 int parent_pid;
488f131b 336 int child_pid;
c906108c 337 }
488f131b
JB
338 fork_event;
339 char *execd_pathname;
340}
c906108c
SS
341pending_follow;
342
53904c9e 343static const char follow_fork_mode_ask[] = "ask";
53904c9e
AC
344static const char follow_fork_mode_child[] = "child";
345static const char follow_fork_mode_parent[] = "parent";
346
488f131b 347static const char *follow_fork_mode_kind_names[] = {
53904c9e 348 follow_fork_mode_ask,
53904c9e
AC
349 follow_fork_mode_child,
350 follow_fork_mode_parent,
351 NULL
ef346e04 352};
c906108c 353
53904c9e 354static const char *follow_fork_mode_string = follow_fork_mode_parent;
c906108c
SS
355\f
356
6604731b 357static int
4ef3f3be 358follow_fork (void)
c906108c 359{
53904c9e 360 const char *follow_mode = follow_fork_mode_string;
6604731b 361 int follow_child = (follow_mode == follow_fork_mode_child);
c906108c
SS
362
363 /* Or, did the user not know, and want us to ask? */
e28d556f 364 if (follow_fork_mode_string == follow_fork_mode_ask)
c906108c 365 {
8e65ff28
AC
366 internal_error (__FILE__, __LINE__,
367 "follow_inferior_fork: \"ask\" mode not implemented");
53904c9e 368 /* follow_mode = follow_fork_mode_...; */
c906108c
SS
369 }
370
6604731b 371 return target_follow_fork (follow_child);
c906108c
SS
372}
373
6604731b
DJ
374void
375follow_inferior_reset_breakpoints (void)
c906108c 376{
6604731b
DJ
377 /* Was there a step_resume breakpoint? (There was if the user
378 did a "next" at the fork() call.) If so, explicitly reset its
379 thread number.
380
381 step_resumes are a form of bp that are made to be per-thread.
382 Since we created the step_resume bp when the parent process
383 was being debugged, and now are switching to the child process,
384 from the breakpoint package's viewpoint, that's a switch of
385 "threads". We must update the bp's notion of which thread
386 it is for, or it'll be ignored when it triggers. */
387
388 if (step_resume_breakpoint)
389 breakpoint_re_set_thread (step_resume_breakpoint);
390
391 /* Reinsert all breakpoints in the child. The user may have set
392 breakpoints after catching the fork, in which case those
393 were never set in the child, but only in the parent. This makes
394 sure the inserted breakpoints match the breakpoint list. */
395
396 breakpoint_re_set ();
397 insert_breakpoints ();
c906108c 398}
c906108c 399
1adeb98a
FN
400/* EXECD_PATHNAME is assumed to be non-NULL. */
401
c906108c 402static void
96baa820 403follow_exec (int pid, char *execd_pathname)
c906108c 404{
c906108c 405 int saved_pid = pid;
7a292a7a
SS
406 struct target_ops *tgt;
407
408 if (!may_follow_exec)
409 return;
c906108c 410
c906108c
SS
411 /* This is an exec event that we actually wish to pay attention to.
412 Refresh our symbol table to the newly exec'd program, remove any
413 momentary bp's, etc.
414
415 If there are breakpoints, they aren't really inserted now,
416 since the exec() transformed our inferior into a fresh set
417 of instructions.
418
419 We want to preserve symbolic breakpoints on the list, since
420 we have hopes that they can be reset after the new a.out's
421 symbol table is read.
422
423 However, any "raw" breakpoints must be removed from the list
424 (e.g., the solib bp's), since their address is probably invalid
425 now.
426
427 And, we DON'T want to call delete_breakpoints() here, since
428 that may write the bp's "shadow contents" (the instruction
429 value that was overwritten witha TRAP instruction). Since
430 we now have a new a.out, those shadow contents aren't valid. */
431 update_breakpoints_after_exec ();
432
433 /* If there was one, it's gone now. We cannot truly step-to-next
434 statement through an exec(). */
435 step_resume_breakpoint = NULL;
436 step_range_start = 0;
437 step_range_end = 0;
438
439 /* If there was one, it's gone now. */
440 through_sigtramp_breakpoint = NULL;
441
442 /* What is this a.out's name? */
443 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
444
445 /* We've followed the inferior through an exec. Therefore, the
446 inferior has essentially been killed & reborn. */
7a292a7a
SS
447
448 /* First collect the run target in effect. */
449 tgt = find_run_target ();
450 /* If we can't find one, things are in a very strange state... */
451 if (tgt == NULL)
452 error ("Could find run target to save before following exec");
453
c906108c
SS
454 gdb_flush (gdb_stdout);
455 target_mourn_inferior ();
39f77062 456 inferior_ptid = pid_to_ptid (saved_pid);
488f131b 457 /* Because mourn_inferior resets inferior_ptid. */
7a292a7a 458 push_target (tgt);
c906108c
SS
459
460 /* That a.out is now the one to use. */
461 exec_file_attach (execd_pathname, 0);
462
463 /* And also is where symbols can be found. */
1adeb98a 464 symbol_file_add_main (execd_pathname, 0);
c906108c
SS
465
466 /* Reset the shared library package. This ensures that we get
467 a shlib event when the child reaches "_start", at which point
468 the dld will have had a chance to initialize the child. */
7a292a7a 469#if defined(SOLIB_RESTART)
c906108c 470 SOLIB_RESTART ();
7a292a7a
SS
471#endif
472#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 473 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
7a292a7a 474#endif
c906108c
SS
475
476 /* Reinsert all breakpoints. (Those which were symbolic have
477 been reset to the proper address in the new a.out, thanks
478 to symbol_file_command...) */
479 insert_breakpoints ();
480
481 /* The next resume of this inferior should bring it to the shlib
482 startup breakpoints. (If the user had also set bp's on
483 "main" from the old (parent) process, then they'll auto-
484 matically get reset there in the new process.) */
c906108c
SS
485}
486
487/* Non-zero if we just simulating a single-step. This is needed
488 because we cannot remove the breakpoints in the inferior process
489 until after the `wait' in `wait_for_inferior'. */
490static int singlestep_breakpoints_inserted_p = 0;
491\f
492
493/* Things to clean up if we QUIT out of resume (). */
c906108c 494static void
74b7792f 495resume_cleanups (void *ignore)
c906108c
SS
496{
497 normal_stop ();
498}
499
53904c9e
AC
500static const char schedlock_off[] = "off";
501static const char schedlock_on[] = "on";
502static const char schedlock_step[] = "step";
503static const char *scheduler_mode = schedlock_off;
488f131b 504static const char *scheduler_enums[] = {
ef346e04
AC
505 schedlock_off,
506 schedlock_on,
507 schedlock_step,
508 NULL
509};
c906108c
SS
510
511static void
96baa820 512set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 513{
1868c04e
AC
514 /* NOTE: cagney/2002-03-17: The add_show_from_set() function clones
515 the set command passed as a parameter. The clone operation will
516 include (BUG?) any ``set'' command callback, if present.
517 Commands like ``info set'' call all the ``show'' command
ce2826aa 518 callbacks. Unfortunately, for ``show'' commands cloned from
1868c04e
AC
519 ``set'', this includes callbacks belonging to ``set'' commands.
520 Making this worse, this only occures if add_show_from_set() is
521 called after add_cmd_sfunc() (BUG?). */
522 if (cmd_type (c) == set_cmd)
c906108c
SS
523 if (!target_can_lock_scheduler)
524 {
525 scheduler_mode = schedlock_off;
488f131b 526 error ("Target '%s' cannot support this command.", target_shortname);
c906108c
SS
527 }
528}
529
530
531/* Resume the inferior, but allow a QUIT. This is useful if the user
532 wants to interrupt some lengthy single-stepping operation
533 (for child processes, the SIGINT goes to the inferior, and so
534 we get a SIGINT random_signal, but for remote debugging and perhaps
535 other targets, that's not true).
536
537 STEP nonzero if we should step (zero to continue instead).
538 SIG is the signal to give the inferior (zero for none). */
539void
96baa820 540resume (int step, enum target_signal sig)
c906108c
SS
541{
542 int should_resume = 1;
74b7792f 543 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
c906108c
SS
544 QUIT;
545
ef5cf84e
MS
546 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
547
c906108c 548
692590c1
MS
549 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
550 over an instruction that causes a page fault without triggering
551 a hardware watchpoint. The kernel properly notices that it shouldn't
552 stop, because the hardware watchpoint is not triggered, but it forgets
553 the step request and continues the program normally.
554 Work around the problem by removing hardware watchpoints if a step is
555 requested, GDB will check for a hardware watchpoint trigger after the
556 step anyway. */
557 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
558 remove_hw_watchpoints ();
488f131b 559
692590c1 560
c2c6d25f
JM
561 /* Normally, by the time we reach `resume', the breakpoints are either
562 removed or inserted, as appropriate. The exception is if we're sitting
563 at a permanent breakpoint; we need to step over it, but permanent
564 breakpoints can't be removed. So we have to test for it here. */
565 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
566 SKIP_PERMANENT_BREAKPOINT ();
567
b0ed3589 568 if (SOFTWARE_SINGLE_STEP_P () && step)
c906108c
SS
569 {
570 /* Do it the hard way, w/temp breakpoints */
c5aa993b 571 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
c906108c
SS
572 /* ...and don't ask hardware to do it. */
573 step = 0;
574 /* and do not pull these breakpoints until after a `wait' in
575 `wait_for_inferior' */
576 singlestep_breakpoints_inserted_p = 1;
577 }
578
579 /* Handle any optimized stores to the inferior NOW... */
580#ifdef DO_DEFERRED_STORES
581 DO_DEFERRED_STORES;
582#endif
583
c906108c 584 /* If there were any forks/vforks/execs that were caught and are
6604731b 585 now to be followed, then do so. */
c906108c
SS
586 switch (pending_follow.kind)
587 {
6604731b
DJ
588 case TARGET_WAITKIND_FORKED:
589 case TARGET_WAITKIND_VFORKED:
c906108c 590 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
6604731b
DJ
591 if (follow_fork ())
592 should_resume = 0;
c906108c
SS
593 break;
594
6604731b 595 case TARGET_WAITKIND_EXECD:
c906108c 596 /* follow_exec is called as soon as the exec event is seen. */
6604731b 597 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
c906108c
SS
598 break;
599
600 default:
601 break;
602 }
c906108c
SS
603
604 /* Install inferior's terminal modes. */
605 target_terminal_inferior ();
606
607 if (should_resume)
608 {
39f77062 609 ptid_t resume_ptid;
dfcd3bfb 610
488f131b 611 resume_ptid = RESUME_ALL; /* Default */
ef5cf84e
MS
612
613 if ((step || singlestep_breakpoints_inserted_p) &&
614 !breakpoints_inserted && breakpoint_here_p (read_pc ()))
c906108c 615 {
ef5cf84e
MS
616 /* Stepping past a breakpoint without inserting breakpoints.
617 Make sure only the current thread gets to step, so that
618 other threads don't sneak past breakpoints while they are
619 not inserted. */
c906108c 620
ef5cf84e 621 resume_ptid = inferior_ptid;
c906108c 622 }
ef5cf84e
MS
623
624 if ((scheduler_mode == schedlock_on) ||
488f131b 625 (scheduler_mode == schedlock_step &&
ef5cf84e 626 (step || singlestep_breakpoints_inserted_p)))
c906108c 627 {
ef5cf84e 628 /* User-settable 'scheduler' mode requires solo thread resume. */
488f131b 629 resume_ptid = inferior_ptid;
c906108c 630 }
ef5cf84e 631
c4ed33b9
AC
632 if (CANNOT_STEP_BREAKPOINT)
633 {
634 /* Most targets can step a breakpoint instruction, thus
635 executing it normally. But if this one cannot, just
636 continue and we will hit it anyway. */
637 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
638 step = 0;
639 }
39f77062 640 target_resume (resume_ptid, step, sig);
c906108c
SS
641 }
642
643 discard_cleanups (old_cleanups);
644}
645\f
646
647/* Clear out all variables saying what to do when inferior is continued.
648 First do this, then set the ones you want, then call `proceed'. */
649
650void
96baa820 651clear_proceed_status (void)
c906108c
SS
652{
653 trap_expected = 0;
654 step_range_start = 0;
655 step_range_end = 0;
aa0cd9c1 656 step_frame_id = null_frame_id;
5fbbeb29 657 step_over_calls = STEP_OVER_UNDEBUGGABLE;
c906108c 658 stop_after_trap = 0;
c0236d92 659 stop_soon = NO_STOP_QUIETLY;
c906108c
SS
660 proceed_to_finish = 0;
661 breakpoint_proceeded = 1; /* We're about to proceed... */
662
663 /* Discard any remaining commands or status from previous stop. */
664 bpstat_clear (&stop_bpstat);
665}
666
ea67f13b
DJ
667/* This should be suitable for any targets that support threads. */
668
669static int
670prepare_to_proceed (void)
671{
672 ptid_t wait_ptid;
673 struct target_waitstatus wait_status;
674
675 /* Get the last target status returned by target_wait(). */
676 get_last_target_status (&wait_ptid, &wait_status);
677
678 /* Make sure we were stopped either at a breakpoint, or because
679 of a Ctrl-C. */
680 if (wait_status.kind != TARGET_WAITKIND_STOPPED
681 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
682 wait_status.value.sig != TARGET_SIGNAL_INT))
683 {
684 return 0;
685 }
686
687 if (!ptid_equal (wait_ptid, minus_one_ptid)
688 && !ptid_equal (inferior_ptid, wait_ptid))
689 {
690 /* Switched over from WAIT_PID. */
691 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
692
693 if (wait_pc != read_pc ())
694 {
695 /* Switch back to WAIT_PID thread. */
696 inferior_ptid = wait_ptid;
697
698 /* FIXME: This stuff came from switch_to_thread() in
699 thread.c (which should probably be a public function). */
700 flush_cached_frames ();
701 registers_changed ();
702 stop_pc = wait_pc;
703 select_frame (get_current_frame ());
704 }
705
706 /* We return 1 to indicate that there is a breakpoint here,
707 so we need to step over it before continuing to avoid
708 hitting it straight away. */
709 if (breakpoint_here_p (wait_pc))
710 return 1;
711 }
712
713 return 0;
714
715}
e4846b08
JJ
716
717/* Record the pc of the program the last time it stopped. This is
718 just used internally by wait_for_inferior, but need to be preserved
719 over calls to it and cleared when the inferior is started. */
720static CORE_ADDR prev_pc;
721
c906108c
SS
722/* Basic routine for continuing the program in various fashions.
723
724 ADDR is the address to resume at, or -1 for resume where stopped.
725 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 726 or -1 for act according to how it stopped.
c906108c 727 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
728 -1 means return after that and print nothing.
729 You should probably set various step_... variables
730 before calling here, if you are stepping.
c906108c
SS
731
732 You should call clear_proceed_status before calling proceed. */
733
734void
96baa820 735proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c
SS
736{
737 int oneproc = 0;
738
739 if (step > 0)
740 step_start_function = find_pc_function (read_pc ());
741 if (step < 0)
742 stop_after_trap = 1;
743
2acceee2 744 if (addr == (CORE_ADDR) -1)
c906108c
SS
745 {
746 /* If there is a breakpoint at the address we will resume at,
c5aa993b
JM
747 step one instruction before inserting breakpoints
748 so that we do not stop right away (and report a second
c906108c
SS
749 hit at this breakpoint). */
750
751 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
752 oneproc = 1;
753
754#ifndef STEP_SKIPS_DELAY
755#define STEP_SKIPS_DELAY(pc) (0)
756#define STEP_SKIPS_DELAY_P (0)
757#endif
758 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
c5aa993b
JM
759 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
760 is slow (it needs to read memory from the target). */
c906108c
SS
761 if (STEP_SKIPS_DELAY_P
762 && breakpoint_here_p (read_pc () + 4)
763 && STEP_SKIPS_DELAY (read_pc ()))
764 oneproc = 1;
765 }
766 else
767 {
768 write_pc (addr);
c906108c
SS
769 }
770
c906108c
SS
771 /* In a multi-threaded task we may select another thread
772 and then continue or step.
773
774 But if the old thread was stopped at a breakpoint, it
775 will immediately cause another breakpoint stop without
776 any execution (i.e. it will report a breakpoint hit
777 incorrectly). So we must step over it first.
778
ea67f13b 779 prepare_to_proceed checks the current thread against the thread
c906108c
SS
780 that reported the most recent event. If a step-over is required
781 it returns TRUE and sets the current thread to the old thread. */
ea67f13b
DJ
782 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
783 oneproc = 1;
c906108c
SS
784
785#ifdef HP_OS_BUG
786 if (trap_expected_after_continue)
787 {
788 /* If (step == 0), a trap will be automatically generated after
c5aa993b
JM
789 the first instruction is executed. Force step one
790 instruction to clear this condition. This should not occur
791 if step is nonzero, but it is harmless in that case. */
c906108c
SS
792 oneproc = 1;
793 trap_expected_after_continue = 0;
794 }
795#endif /* HP_OS_BUG */
796
797 if (oneproc)
798 /* We will get a trace trap after one instruction.
799 Continue it automatically and insert breakpoints then. */
800 trap_expected = 1;
801 else
802 {
81d0cc19
GS
803 insert_breakpoints ();
804 /* If we get here there was no call to error() in
805 insert breakpoints -- so they were inserted. */
c906108c
SS
806 breakpoints_inserted = 1;
807 }
808
809 if (siggnal != TARGET_SIGNAL_DEFAULT)
810 stop_signal = siggnal;
811 /* If this signal should not be seen by program,
812 give it zero. Used for debugging signals. */
813 else if (!signal_program[stop_signal])
814 stop_signal = TARGET_SIGNAL_0;
815
816 annotate_starting ();
817
818 /* Make sure that output from GDB appears before output from the
819 inferior. */
820 gdb_flush (gdb_stdout);
821
e4846b08
JJ
822 /* Refresh prev_pc value just prior to resuming. This used to be
823 done in stop_stepping, however, setting prev_pc there did not handle
824 scenarios such as inferior function calls or returning from
825 a function via the return command. In those cases, the prev_pc
826 value was not set properly for subsequent commands. The prev_pc value
827 is used to initialize the starting line number in the ecs. With an
828 invalid value, the gdb next command ends up stopping at the position
829 represented by the next line table entry past our start position.
830 On platforms that generate one line table entry per line, this
831 is not a problem. However, on the ia64, the compiler generates
832 extraneous line table entries that do not increase the line number.
833 When we issue the gdb next command on the ia64 after an inferior call
834 or a return command, we often end up a few instructions forward, still
835 within the original line we started.
836
837 An attempt was made to have init_execution_control_state () refresh
838 the prev_pc value before calculating the line number. This approach
839 did not work because on platforms that use ptrace, the pc register
840 cannot be read unless the inferior is stopped. At that point, we
841 are not guaranteed the inferior is stopped and so the read_pc ()
842 call can fail. Setting the prev_pc value here ensures the value is
843 updated correctly when the inferior is stopped. */
844 prev_pc = read_pc ();
845
c906108c
SS
846 /* Resume inferior. */
847 resume (oneproc || step || bpstat_should_step (), stop_signal);
848
849 /* Wait for it to stop (if not standalone)
850 and in any case decode why it stopped, and act accordingly. */
43ff13b4
JM
851 /* Do this only if we are not using the event loop, or if the target
852 does not support asynchronous execution. */
6426a772 853 if (!event_loop_p || !target_can_async_p ())
43ff13b4
JM
854 {
855 wait_for_inferior ();
856 normal_stop ();
857 }
c906108c 858}
c906108c
SS
859\f
860
861/* Start remote-debugging of a machine over a serial link. */
96baa820 862
c906108c 863void
96baa820 864start_remote (void)
c906108c
SS
865{
866 init_thread_list ();
867 init_wait_for_inferior ();
c0236d92 868 stop_soon = STOP_QUIETLY;
c906108c 869 trap_expected = 0;
43ff13b4 870
6426a772
JM
871 /* Always go on waiting for the target, regardless of the mode. */
872 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 873 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
874 nothing is returned (instead of just blocking). Because of this,
875 targets expecting an immediate response need to, internally, set
876 things up so that the target_wait() is forced to eventually
877 timeout. */
878 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
879 differentiate to its caller what the state of the target is after
880 the initial open has been performed. Here we're assuming that
881 the target has stopped. It should be possible to eventually have
882 target_open() return to the caller an indication that the target
883 is currently running and GDB state should be set to the same as
884 for an async run. */
885 wait_for_inferior ();
886 normal_stop ();
c906108c
SS
887}
888
889/* Initialize static vars when a new inferior begins. */
890
891void
96baa820 892init_wait_for_inferior (void)
c906108c
SS
893{
894 /* These are meaningless until the first time through wait_for_inferior. */
895 prev_pc = 0;
c906108c
SS
896
897#ifdef HP_OS_BUG
898 trap_expected_after_continue = 0;
899#endif
900 breakpoints_inserted = 0;
901 breakpoint_init_inferior (inf_starting);
902
903 /* Don't confuse first call to proceed(). */
904 stop_signal = TARGET_SIGNAL_0;
905
906 /* The first resume is not following a fork/vfork/exec. */
907 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
c906108c
SS
908
909 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
910 number_of_threads_in_syscalls = 0;
911
912 clear_proceed_status ();
913}
914
915static void
96baa820 916delete_breakpoint_current_contents (void *arg)
c906108c
SS
917{
918 struct breakpoint **breakpointp = (struct breakpoint **) arg;
919 if (*breakpointp != NULL)
920 {
921 delete_breakpoint (*breakpointp);
922 *breakpointp = NULL;
923 }
924}
925\f
b83266a0
SS
926/* This enum encodes possible reasons for doing a target_wait, so that
927 wfi can call target_wait in one place. (Ultimately the call will be
928 moved out of the infinite loop entirely.) */
929
c5aa993b
JM
930enum infwait_states
931{
cd0fc7c3
SS
932 infwait_normal_state,
933 infwait_thread_hop_state,
934 infwait_nullified_state,
935 infwait_nonstep_watch_state
b83266a0
SS
936};
937
11cf8741
JM
938/* Why did the inferior stop? Used to print the appropriate messages
939 to the interface from within handle_inferior_event(). */
940enum inferior_stop_reason
941{
942 /* We don't know why. */
943 STOP_UNKNOWN,
944 /* Step, next, nexti, stepi finished. */
945 END_STEPPING_RANGE,
946 /* Found breakpoint. */
947 BREAKPOINT_HIT,
948 /* Inferior terminated by signal. */
949 SIGNAL_EXITED,
950 /* Inferior exited. */
951 EXITED,
952 /* Inferior received signal, and user asked to be notified. */
953 SIGNAL_RECEIVED
954};
955
cd0fc7c3
SS
956/* This structure contains what used to be local variables in
957 wait_for_inferior. Probably many of them can return to being
958 locals in handle_inferior_event. */
959
c5aa993b 960struct execution_control_state
488f131b
JB
961{
962 struct target_waitstatus ws;
963 struct target_waitstatus *wp;
964 int another_trap;
965 int random_signal;
966 CORE_ADDR stop_func_start;
967 CORE_ADDR stop_func_end;
968 char *stop_func_name;
969 struct symtab_and_line sal;
970 int remove_breakpoints_on_following_step;
971 int current_line;
972 struct symtab *current_symtab;
973 int handling_longjmp; /* FIXME */
974 ptid_t ptid;
975 ptid_t saved_inferior_ptid;
976 int update_step_sp;
977 int stepping_through_solib_after_catch;
978 bpstat stepping_through_solib_catchpoints;
979 int enable_hw_watchpoints_after_wait;
980 int stepping_through_sigtramp;
981 int new_thread_event;
982 struct target_waitstatus tmpstatus;
983 enum infwait_states infwait_state;
984 ptid_t waiton_ptid;
985 int wait_some_more;
986};
987
988void init_execution_control_state (struct execution_control_state *ecs);
989
990void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 991
104c1213 992static void check_sigtramp2 (struct execution_control_state *ecs);
c2c6d25f 993static void step_into_function (struct execution_control_state *ecs);
d4f3574e 994static void step_over_function (struct execution_control_state *ecs);
104c1213
JM
995static void stop_stepping (struct execution_control_state *ecs);
996static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 997static void keep_going (struct execution_control_state *ecs);
488f131b
JB
998static void print_stop_reason (enum inferior_stop_reason stop_reason,
999 int stop_info);
104c1213 1000
cd0fc7c3
SS
1001/* Wait for control to return from inferior to debugger.
1002 If inferior gets a signal, we may decide to start it up again
1003 instead of returning. That is why there is a loop in this function.
1004 When this function actually returns it means the inferior
1005 should be left stopped and GDB should read more commands. */
1006
1007void
96baa820 1008wait_for_inferior (void)
cd0fc7c3
SS
1009{
1010 struct cleanup *old_cleanups;
1011 struct execution_control_state ecss;
1012 struct execution_control_state *ecs;
c906108c 1013
8601f500 1014 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
c906108c
SS
1015 &step_resume_breakpoint);
1016 make_cleanup (delete_breakpoint_current_contents,
1017 &through_sigtramp_breakpoint);
cd0fc7c3
SS
1018
1019 /* wfi still stays in a loop, so it's OK just to take the address of
1020 a local to get the ecs pointer. */
1021 ecs = &ecss;
1022
1023 /* Fill in with reasonable starting values. */
1024 init_execution_control_state (ecs);
1025
c906108c 1026 /* We'll update this if & when we switch to a new thread. */
39f77062 1027 previous_inferior_ptid = inferior_ptid;
c906108c 1028
cd0fc7c3
SS
1029 overlay_cache_invalid = 1;
1030
1031 /* We have to invalidate the registers BEFORE calling target_wait
1032 because they can be loaded from the target while in target_wait.
1033 This makes remote debugging a bit more efficient for those
1034 targets that provide critical registers as part of their normal
1035 status mechanism. */
1036
1037 registers_changed ();
b83266a0 1038
c906108c
SS
1039 while (1)
1040 {
cd0fc7c3 1041 if (target_wait_hook)
39f77062 1042 ecs->ptid = target_wait_hook (ecs->waiton_ptid, ecs->wp);
cd0fc7c3 1043 else
39f77062 1044 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
c906108c 1045
cd0fc7c3
SS
1046 /* Now figure out what to do with the result of the result. */
1047 handle_inferior_event (ecs);
c906108c 1048
cd0fc7c3
SS
1049 if (!ecs->wait_some_more)
1050 break;
1051 }
1052 do_cleanups (old_cleanups);
1053}
c906108c 1054
43ff13b4
JM
1055/* Asynchronous version of wait_for_inferior. It is called by the
1056 event loop whenever a change of state is detected on the file
1057 descriptor corresponding to the target. It can be called more than
1058 once to complete a single execution command. In such cases we need
1059 to keep the state in a global variable ASYNC_ECSS. If it is the
1060 last time that this function is called for a single execution
1061 command, then report to the user that the inferior has stopped, and
1062 do the necessary cleanups. */
1063
1064struct execution_control_state async_ecss;
1065struct execution_control_state *async_ecs;
1066
1067void
fba45db2 1068fetch_inferior_event (void *client_data)
43ff13b4
JM
1069{
1070 static struct cleanup *old_cleanups;
1071
c5aa993b 1072 async_ecs = &async_ecss;
43ff13b4
JM
1073
1074 if (!async_ecs->wait_some_more)
1075 {
488f131b 1076 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
c5aa993b 1077 &step_resume_breakpoint);
43ff13b4 1078 make_exec_cleanup (delete_breakpoint_current_contents,
c5aa993b 1079 &through_sigtramp_breakpoint);
43ff13b4
JM
1080
1081 /* Fill in with reasonable starting values. */
1082 init_execution_control_state (async_ecs);
1083
43ff13b4 1084 /* We'll update this if & when we switch to a new thread. */
39f77062 1085 previous_inferior_ptid = inferior_ptid;
43ff13b4
JM
1086
1087 overlay_cache_invalid = 1;
1088
1089 /* We have to invalidate the registers BEFORE calling target_wait
c5aa993b
JM
1090 because they can be loaded from the target while in target_wait.
1091 This makes remote debugging a bit more efficient for those
1092 targets that provide critical registers as part of their normal
1093 status mechanism. */
43ff13b4
JM
1094
1095 registers_changed ();
1096 }
1097
1098 if (target_wait_hook)
488f131b
JB
1099 async_ecs->ptid =
1100 target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4 1101 else
39f77062 1102 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
43ff13b4
JM
1103
1104 /* Now figure out what to do with the result of the result. */
1105 handle_inferior_event (async_ecs);
1106
1107 if (!async_ecs->wait_some_more)
1108 {
adf40b2e 1109 /* Do only the cleanups that have been added by this
488f131b
JB
1110 function. Let the continuations for the commands do the rest,
1111 if there are any. */
43ff13b4
JM
1112 do_exec_cleanups (old_cleanups);
1113 normal_stop ();
c2d11a7d
JM
1114 if (step_multi && stop_step)
1115 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1116 else
1117 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
43ff13b4
JM
1118 }
1119}
1120
cd0fc7c3
SS
1121/* Prepare an execution control state for looping through a
1122 wait_for_inferior-type loop. */
1123
1124void
96baa820 1125init_execution_control_state (struct execution_control_state *ecs)
cd0fc7c3 1126{
c2d11a7d 1127 /* ecs->another_trap? */
cd0fc7c3
SS
1128 ecs->random_signal = 0;
1129 ecs->remove_breakpoints_on_following_step = 0;
1130 ecs->handling_longjmp = 0; /* FIXME */
1131 ecs->update_step_sp = 0;
1132 ecs->stepping_through_solib_after_catch = 0;
1133 ecs->stepping_through_solib_catchpoints = NULL;
1134 ecs->enable_hw_watchpoints_after_wait = 0;
1135 ecs->stepping_through_sigtramp = 0;
1136 ecs->sal = find_pc_line (prev_pc, 0);
1137 ecs->current_line = ecs->sal.line;
1138 ecs->current_symtab = ecs->sal.symtab;
1139 ecs->infwait_state = infwait_normal_state;
39f77062 1140 ecs->waiton_ptid = pid_to_ptid (-1);
cd0fc7c3
SS
1141 ecs->wp = &(ecs->ws);
1142}
1143
a0b3c4fd 1144/* Call this function before setting step_resume_breakpoint, as a
53a5351d
JM
1145 sanity check. There should never be more than one step-resume
1146 breakpoint per thread, so we should never be setting a new
1147 step_resume_breakpoint when one is already active. */
a0b3c4fd 1148static void
96baa820 1149check_for_old_step_resume_breakpoint (void)
a0b3c4fd
JM
1150{
1151 if (step_resume_breakpoint)
488f131b
JB
1152 warning
1153 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
a0b3c4fd
JM
1154}
1155
e02bc4cc
DS
1156/* Return the cached copy of the last pid/waitstatus returned by
1157 target_wait()/target_wait_hook(). The data is actually cached by
1158 handle_inferior_event(), which gets called immediately after
1159 target_wait()/target_wait_hook(). */
1160
1161void
488f131b 1162get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 1163{
39f77062 1164 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
1165 *status = target_last_waitstatus;
1166}
1167
dd80620e
MS
1168/* Switch thread contexts, maintaining "infrun state". */
1169
1170static void
1171context_switch (struct execution_control_state *ecs)
1172{
1173 /* Caution: it may happen that the new thread (or the old one!)
1174 is not in the thread list. In this case we must not attempt
1175 to "switch context", or we run the risk that our context may
1176 be lost. This may happen as a result of the target module
1177 mishandling thread creation. */
1178
1179 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
488f131b 1180 { /* Perform infrun state context switch: */
dd80620e 1181 /* Save infrun state for the old thread. */
0ce3d317 1182 save_infrun_state (inferior_ptid, prev_pc,
dd80620e 1183 trap_expected, step_resume_breakpoint,
488f131b 1184 through_sigtramp_breakpoint, step_range_start,
aa0cd9c1 1185 step_range_end, &step_frame_id,
dd80620e
MS
1186 ecs->handling_longjmp, ecs->another_trap,
1187 ecs->stepping_through_solib_after_catch,
1188 ecs->stepping_through_solib_catchpoints,
1189 ecs->stepping_through_sigtramp,
488f131b 1190 ecs->current_line, ecs->current_symtab, step_sp);
dd80620e
MS
1191
1192 /* Load infrun state for the new thread. */
0ce3d317 1193 load_infrun_state (ecs->ptid, &prev_pc,
dd80620e 1194 &trap_expected, &step_resume_breakpoint,
488f131b 1195 &through_sigtramp_breakpoint, &step_range_start,
aa0cd9c1 1196 &step_range_end, &step_frame_id,
dd80620e
MS
1197 &ecs->handling_longjmp, &ecs->another_trap,
1198 &ecs->stepping_through_solib_after_catch,
1199 &ecs->stepping_through_solib_catchpoints,
488f131b
JB
1200 &ecs->stepping_through_sigtramp,
1201 &ecs->current_line, &ecs->current_symtab, &step_sp);
dd80620e
MS
1202 }
1203 inferior_ptid = ecs->ptid;
1204}
1205
0ce3d317
AC
1206/* Wrapper for PC_IN_SIGTRAMP that takes care of the need to find the
1207 function's name.
1208
1209 In a classic example of "left hand VS right hand", "infrun.c" was
1210 trying to improve GDB's performance by caching the result of calls
1211 to calls to find_pc_partial_funtion, while at the same time
1212 find_pc_partial_function was also trying to ramp up performance by
1213 caching its most recent return value. The below makes the the
1214 function find_pc_partial_function solely responsibile for
1215 performance issues (the local cache that relied on a global
1216 variable - arrrggg - deleted).
1217
1218 Using the testsuite and gcov, it was found that dropping the local
1219 "infrun.c" cache and instead relying on find_pc_partial_function
1220 increased the number of calls to 12000 (from 10000), but the number
1221 of times find_pc_partial_function's cache missed (this is what
1222 matters) was only increased by only 4 (to 3569). (A quick back of
1223 envelope caculation suggests that the extra 2000 function calls
1224 @1000 extra instructions per call make the 1 MIP VAX testsuite run
1225 take two extra seconds, oops :-)
1226
1227 Long term, this function can be eliminated, replaced by the code:
1228 get_frame_type(current_frame()) == SIGTRAMP_FRAME (for new
1229 architectures this is very cheap). */
1230
1231static int
1232pc_in_sigtramp (CORE_ADDR pc)
1233{
1234 char *name;
1235 find_pc_partial_function (pc, &name, NULL, NULL);
1236 return PC_IN_SIGTRAMP (pc, name);
1237}
1238
dd80620e 1239
cd0fc7c3
SS
1240/* Given an execution control state that has been freshly filled in
1241 by an event from the inferior, figure out what it means and take
1242 appropriate action. */
c906108c 1243
cd0fc7c3 1244void
96baa820 1245handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 1246{
d764a824 1247 CORE_ADDR real_stop_pc;
65e82032
AC
1248 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1249 thinking that the variable stepped_after_stopped_by_watchpoint
1250 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1251 defined in the file "config/pa/nm-hppah.h", accesses the variable
1252 indirectly. Mutter something rude about the HP merge. */
cd0fc7c3 1253 int stepped_after_stopped_by_watchpoint;
c8edd8b4 1254 int sw_single_step_trap_p = 0;
cd0fc7c3 1255
e02bc4cc 1256 /* Cache the last pid/waitstatus. */
39f77062 1257 target_last_wait_ptid = ecs->ptid;
e02bc4cc
DS
1258 target_last_waitstatus = *ecs->wp;
1259
488f131b
JB
1260 switch (ecs->infwait_state)
1261 {
1262 case infwait_thread_hop_state:
1263 /* Cancel the waiton_ptid. */
1264 ecs->waiton_ptid = pid_to_ptid (-1);
65e82032
AC
1265 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1266 is serviced in this loop, below. */
1267 if (ecs->enable_hw_watchpoints_after_wait)
1268 {
1269 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1270 ecs->enable_hw_watchpoints_after_wait = 0;
1271 }
1272 stepped_after_stopped_by_watchpoint = 0;
1273 break;
b83266a0 1274
488f131b
JB
1275 case infwait_normal_state:
1276 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1277 is serviced in this loop, below. */
1278 if (ecs->enable_hw_watchpoints_after_wait)
1279 {
1280 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1281 ecs->enable_hw_watchpoints_after_wait = 0;
1282 }
1283 stepped_after_stopped_by_watchpoint = 0;
1284 break;
b83266a0 1285
488f131b 1286 case infwait_nullified_state:
65e82032 1287 stepped_after_stopped_by_watchpoint = 0;
488f131b 1288 break;
b83266a0 1289
488f131b
JB
1290 case infwait_nonstep_watch_state:
1291 insert_breakpoints ();
c906108c 1292
488f131b
JB
1293 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1294 handle things like signals arriving and other things happening
1295 in combination correctly? */
1296 stepped_after_stopped_by_watchpoint = 1;
1297 break;
65e82032
AC
1298
1299 default:
1300 internal_error (__FILE__, __LINE__, "bad switch");
488f131b
JB
1301 }
1302 ecs->infwait_state = infwait_normal_state;
c906108c 1303
488f131b 1304 flush_cached_frames ();
c906108c 1305
488f131b 1306 /* If it's a new process, add it to the thread database */
c906108c 1307
488f131b
JB
1308 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1309 && !in_thread_list (ecs->ptid));
1310
1311 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1312 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1313 {
1314 add_thread (ecs->ptid);
c906108c 1315
488f131b
JB
1316 ui_out_text (uiout, "[New ");
1317 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1318 ui_out_text (uiout, "]\n");
c906108c
SS
1319
1320#if 0
488f131b
JB
1321 /* NOTE: This block is ONLY meant to be invoked in case of a
1322 "thread creation event"! If it is invoked for any other
1323 sort of event (such as a new thread landing on a breakpoint),
1324 the event will be discarded, which is almost certainly
1325 a bad thing!
1326
1327 To avoid this, the low-level module (eg. target_wait)
1328 should call in_thread_list and add_thread, so that the
1329 new thread is known by the time we get here. */
1330
1331 /* We may want to consider not doing a resume here in order
1332 to give the user a chance to play with the new thread.
1333 It might be good to make that a user-settable option. */
1334
1335 /* At this point, all threads are stopped (happens
1336 automatically in either the OS or the native code).
1337 Therefore we need to continue all threads in order to
1338 make progress. */
1339
1340 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1341 prepare_to_wait (ecs);
1342 return;
c906108c 1343#endif
488f131b 1344 }
c906108c 1345
488f131b
JB
1346 switch (ecs->ws.kind)
1347 {
1348 case TARGET_WAITKIND_LOADED:
1349 /* Ignore gracefully during startup of the inferior, as it
1350 might be the shell which has just loaded some objects,
1351 otherwise add the symbols for the newly loaded objects. */
c906108c 1352#ifdef SOLIB_ADD
c0236d92 1353 if (stop_soon == NO_STOP_QUIETLY)
488f131b
JB
1354 {
1355 /* Remove breakpoints, SOLIB_ADD might adjust
1356 breakpoint addresses via breakpoint_re_set. */
1357 if (breakpoints_inserted)
1358 remove_breakpoints ();
c906108c 1359
488f131b
JB
1360 /* Check for any newly added shared libraries if we're
1361 supposed to be adding them automatically. Switch
1362 terminal for any messages produced by
1363 breakpoint_re_set. */
1364 target_terminal_ours_for_output ();
1365 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
1366 target_terminal_inferior ();
1367
1368 /* Reinsert breakpoints and continue. */
1369 if (breakpoints_inserted)
1370 insert_breakpoints ();
1371 }
c906108c 1372#endif
488f131b
JB
1373 resume (0, TARGET_SIGNAL_0);
1374 prepare_to_wait (ecs);
1375 return;
c5aa993b 1376
488f131b
JB
1377 case TARGET_WAITKIND_SPURIOUS:
1378 resume (0, TARGET_SIGNAL_0);
1379 prepare_to_wait (ecs);
1380 return;
c5aa993b 1381
488f131b
JB
1382 case TARGET_WAITKIND_EXITED:
1383 target_terminal_ours (); /* Must do this before mourn anyway */
1384 print_stop_reason (EXITED, ecs->ws.value.integer);
1385
1386 /* Record the exit code in the convenience variable $_exitcode, so
1387 that the user can inspect this again later. */
1388 set_internalvar (lookup_internalvar ("_exitcode"),
1389 value_from_longest (builtin_type_int,
1390 (LONGEST) ecs->ws.value.integer));
1391 gdb_flush (gdb_stdout);
1392 target_mourn_inferior ();
1393 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1394 stop_print_frame = 0;
1395 stop_stepping (ecs);
1396 return;
c5aa993b 1397
488f131b
JB
1398 case TARGET_WAITKIND_SIGNALLED:
1399 stop_print_frame = 0;
1400 stop_signal = ecs->ws.value.sig;
1401 target_terminal_ours (); /* Must do this before mourn anyway */
c5aa993b 1402
488f131b
JB
1403 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1404 reach here unless the inferior is dead. However, for years
1405 target_kill() was called here, which hints that fatal signals aren't
1406 really fatal on some systems. If that's true, then some changes
1407 may be needed. */
1408 target_mourn_inferior ();
c906108c 1409
488f131b
JB
1410 print_stop_reason (SIGNAL_EXITED, stop_signal);
1411 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1412 stop_stepping (ecs);
1413 return;
c906108c 1414
488f131b
JB
1415 /* The following are the only cases in which we keep going;
1416 the above cases end in a continue or goto. */
1417 case TARGET_WAITKIND_FORKED:
deb3b17b 1418 case TARGET_WAITKIND_VFORKED:
488f131b
JB
1419 stop_signal = TARGET_SIGNAL_TRAP;
1420 pending_follow.kind = ecs->ws.kind;
1421
8e7d2c16
DJ
1422 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1423 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
c906108c 1424
488f131b 1425 stop_pc = read_pc ();
675bf4cb
DJ
1426
1427 /* Assume that catchpoints are not really software breakpoints. If
1428 some future target implements them using software breakpoints then
1429 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1430 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1431 bpstat_stop_status will not decrement the PC. */
1432
1433 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1434
488f131b 1435 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
04e68871
DJ
1436
1437 /* If no catchpoint triggered for this, then keep going. */
1438 if (ecs->random_signal)
1439 {
1440 stop_signal = TARGET_SIGNAL_0;
1441 keep_going (ecs);
1442 return;
1443 }
488f131b
JB
1444 goto process_event_stop_test;
1445
1446 case TARGET_WAITKIND_EXECD:
1447 stop_signal = TARGET_SIGNAL_TRAP;
1448
7d2830a3
DJ
1449 /* NOTE drow/2002-12-05: This code should be pushed down into the
1450 target_wait function. Until then following vfork on HP/UX 10.20
1451 is probably broken by this. Of course, it's broken anyway. */
488f131b
JB
1452 /* Is this a target which reports multiple exec events per actual
1453 call to exec()? (HP-UX using ptrace does, for example.) If so,
1454 ignore all but the last one. Just resume the exec'r, and wait
1455 for the next exec event. */
1456 if (inferior_ignoring_leading_exec_events)
1457 {
1458 inferior_ignoring_leading_exec_events--;
1459 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1460 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1461 parent_pid);
1462 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1463 prepare_to_wait (ecs);
1464 return;
1465 }
1466 inferior_ignoring_leading_exec_events =
1467 target_reported_exec_events_per_exec_call () - 1;
1468
1469 pending_follow.execd_pathname =
1470 savestring (ecs->ws.value.execd_pathname,
1471 strlen (ecs->ws.value.execd_pathname));
1472
488f131b
JB
1473 /* This causes the eventpoints and symbol table to be reset. Must
1474 do this now, before trying to determine whether to stop. */
1475 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1476 xfree (pending_follow.execd_pathname);
c906108c 1477
488f131b
JB
1478 stop_pc = read_pc_pid (ecs->ptid);
1479 ecs->saved_inferior_ptid = inferior_ptid;
1480 inferior_ptid = ecs->ptid;
675bf4cb
DJ
1481
1482 /* Assume that catchpoints are not really software breakpoints. If
1483 some future target implements them using software breakpoints then
1484 that target is responsible for fudging DECR_PC_AFTER_BREAK. Thus
1485 we pass 1 for the NOT_A_SW_BREAKPOINT argument, so that
1486 bpstat_stop_status will not decrement the PC. */
1487
1488 stop_bpstat = bpstat_stop_status (&stop_pc, 1);
1489
488f131b
JB
1490 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1491 inferior_ptid = ecs->saved_inferior_ptid;
04e68871
DJ
1492
1493 /* If no catchpoint triggered for this, then keep going. */
1494 if (ecs->random_signal)
1495 {
1496 stop_signal = TARGET_SIGNAL_0;
1497 keep_going (ecs);
1498 return;
1499 }
488f131b
JB
1500 goto process_event_stop_test;
1501
1502 /* These syscall events are returned on HP-UX, as part of its
1503 implementation of page-protection-based "hardware" watchpoints.
1504 HP-UX has unfortunate interactions between page-protections and
1505 some system calls. Our solution is to disable hardware watches
1506 when a system call is entered, and reenable them when the syscall
1507 completes. The downside of this is that we may miss the precise
1508 point at which a watched piece of memory is modified. "Oh well."
1509
1510 Note that we may have multiple threads running, which may each
1511 enter syscalls at roughly the same time. Since we don't have a
1512 good notion currently of whether a watched piece of memory is
1513 thread-private, we'd best not have any page-protections active
1514 when any thread is in a syscall. Thus, we only want to reenable
1515 hardware watches when no threads are in a syscall.
1516
1517 Also, be careful not to try to gather much state about a thread
1518 that's in a syscall. It's frequently a losing proposition. */
1519 case TARGET_WAITKIND_SYSCALL_ENTRY:
1520 number_of_threads_in_syscalls++;
1521 if (number_of_threads_in_syscalls == 1)
1522 {
1523 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1524 }
1525 resume (0, TARGET_SIGNAL_0);
1526 prepare_to_wait (ecs);
1527 return;
c906108c 1528
488f131b
JB
1529 /* Before examining the threads further, step this thread to
1530 get it entirely out of the syscall. (We get notice of the
1531 event when the thread is just on the verge of exiting a
1532 syscall. Stepping one instruction seems to get it back
1533 into user code.)
c906108c 1534
488f131b
JB
1535 Note that although the logical place to reenable h/w watches
1536 is here, we cannot. We cannot reenable them before stepping
1537 the thread (this causes the next wait on the thread to hang).
c4093a6a 1538
488f131b
JB
1539 Nor can we enable them after stepping until we've done a wait.
1540 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1541 here, which will be serviced immediately after the target
1542 is waited on. */
1543 case TARGET_WAITKIND_SYSCALL_RETURN:
1544 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1545
1546 if (number_of_threads_in_syscalls > 0)
1547 {
1548 number_of_threads_in_syscalls--;
1549 ecs->enable_hw_watchpoints_after_wait =
1550 (number_of_threads_in_syscalls == 0);
1551 }
1552 prepare_to_wait (ecs);
1553 return;
c906108c 1554
488f131b
JB
1555 case TARGET_WAITKIND_STOPPED:
1556 stop_signal = ecs->ws.value.sig;
1557 break;
c906108c 1558
488f131b
JB
1559 /* We had an event in the inferior, but we are not interested
1560 in handling it at this level. The lower layers have already
8e7d2c16
DJ
1561 done what needs to be done, if anything.
1562
1563 One of the possible circumstances for this is when the
1564 inferior produces output for the console. The inferior has
1565 not stopped, and we are ignoring the event. Another possible
1566 circumstance is any event which the lower level knows will be
1567 reported multiple times without an intervening resume. */
488f131b 1568 case TARGET_WAITKIND_IGNORE:
8e7d2c16 1569 prepare_to_wait (ecs);
488f131b
JB
1570 return;
1571 }
c906108c 1572
488f131b
JB
1573 /* We may want to consider not doing a resume here in order to give
1574 the user a chance to play with the new thread. It might be good
1575 to make that a user-settable option. */
c906108c 1576
488f131b
JB
1577 /* At this point, all threads are stopped (happens automatically in
1578 either the OS or the native code). Therefore we need to continue
1579 all threads in order to make progress. */
1580 if (ecs->new_thread_event)
1581 {
1582 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1583 prepare_to_wait (ecs);
1584 return;
1585 }
c906108c 1586
488f131b
JB
1587 stop_pc = read_pc_pid (ecs->ptid);
1588
1589 /* See if a thread hit a thread-specific breakpoint that was meant for
1590 another thread. If so, then step that thread past the breakpoint,
1591 and continue it. */
1592
1593 if (stop_signal == TARGET_SIGNAL_TRAP)
1594 {
f8d40ec8
JB
1595 /* Check if a regular breakpoint has been hit before checking
1596 for a potential single step breakpoint. Otherwise, GDB will
1597 not see this breakpoint hit when stepping onto breakpoints. */
1598 if (breakpoints_inserted
1599 && breakpoint_here_p (stop_pc - DECR_PC_AFTER_BREAK))
488f131b 1600 {
c5aa993b 1601 ecs->random_signal = 0;
488f131b
JB
1602 if (!breakpoint_thread_match (stop_pc - DECR_PC_AFTER_BREAK,
1603 ecs->ptid))
1604 {
1605 int remove_status;
1606
1607 /* Saw a breakpoint, but it was hit by the wrong thread.
1608 Just continue. */
1609 if (DECR_PC_AFTER_BREAK)
1610 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK, ecs->ptid);
1611
1612 remove_status = remove_breakpoints ();
1613 /* Did we fail to remove breakpoints? If so, try
1614 to set the PC past the bp. (There's at least
1615 one situation in which we can fail to remove
1616 the bp's: On HP-UX's that use ttrace, we can't
1617 change the address space of a vforking child
1618 process until the child exits (well, okay, not
1619 then either :-) or execs. */
1620 if (remove_status != 0)
1621 {
1622 /* FIXME! This is obviously non-portable! */
1623 write_pc_pid (stop_pc - DECR_PC_AFTER_BREAK + 4, ecs->ptid);
1624 /* We need to restart all the threads now,
1625 * unles we're running in scheduler-locked mode.
1626 * Use currently_stepping to determine whether to
1627 * step or continue.
1628 */
1629 /* FIXME MVS: is there any reason not to call resume()? */
1630 if (scheduler_mode == schedlock_on)
1631 target_resume (ecs->ptid,
1632 currently_stepping (ecs), TARGET_SIGNAL_0);
1633 else
1634 target_resume (RESUME_ALL,
1635 currently_stepping (ecs), TARGET_SIGNAL_0);
1636 prepare_to_wait (ecs);
1637 return;
1638 }
1639 else
1640 { /* Single step */
1641 breakpoints_inserted = 0;
1642 if (!ptid_equal (inferior_ptid, ecs->ptid))
1643 context_switch (ecs);
1644 ecs->waiton_ptid = ecs->ptid;
1645 ecs->wp = &(ecs->ws);
1646 ecs->another_trap = 1;
1647
1648 ecs->infwait_state = infwait_thread_hop_state;
1649 keep_going (ecs);
1650 registers_changed ();
1651 return;
1652 }
1653 }
1654 }
f8d40ec8
JB
1655 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1656 {
c8edd8b4
JB
1657 /* Readjust the stop_pc as it is off by DECR_PC_AFTER_BREAK
1658 compared to the value it would have if the system stepping
1659 capability was used. This allows the rest of the code in
1660 this function to use this address without having to worry
1661 whether software single step is in use or not. */
1662 if (DECR_PC_AFTER_BREAK)
1663 {
1664 stop_pc -= DECR_PC_AFTER_BREAK;
1665 write_pc_pid (stop_pc, ecs->ptid);
1666 }
1667
1668 sw_single_step_trap_p = 1;
f8d40ec8
JB
1669 ecs->random_signal = 0;
1670 }
488f131b
JB
1671 }
1672 else
1673 ecs->random_signal = 1;
c906108c 1674
488f131b
JB
1675 /* See if something interesting happened to the non-current thread. If
1676 so, then switch to that thread, and eventually give control back to
1677 the user.
1678
1679 Note that if there's any kind of pending follow (i.e., of a fork,
1680 vfork or exec), we don't want to do this now. Rather, we'll let
1681 the next resume handle it. */
1682 if (!ptid_equal (ecs->ptid, inferior_ptid) &&
1683 (pending_follow.kind == TARGET_WAITKIND_SPURIOUS))
1684 {
1685 int printed = 0;
1686
1687 /* If it's a random signal for a non-current thread, notify user
1688 if he's expressed an interest. */
1689 if (ecs->random_signal && signal_print[stop_signal])
1690 {
c906108c
SS
1691/* ??rehrauer: I don't understand the rationale for this code. If the
1692 inferior will stop as a result of this signal, then the act of handling
1693 the stop ought to print a message that's couches the stoppage in user
1694 terms, e.g., "Stopped for breakpoint/watchpoint". If the inferior
1695 won't stop as a result of the signal -- i.e., if the signal is merely
1696 a side-effect of something GDB's doing "under the covers" for the
1697 user, such as stepping threads over a breakpoint they shouldn't stop
1698 for -- then the message seems to be a serious annoyance at best.
1699
1700 For now, remove the message altogether. */
1701#if 0
488f131b
JB
1702 printed = 1;
1703 target_terminal_ours_for_output ();
1704 printf_filtered ("\nProgram received signal %s, %s.\n",
1705 target_signal_to_name (stop_signal),
1706 target_signal_to_string (stop_signal));
1707 gdb_flush (gdb_stdout);
c906108c 1708#endif
488f131b 1709 }
c906108c 1710
488f131b
JB
1711 /* If it's not SIGTRAP and not a signal we want to stop for, then
1712 continue the thread. */
c906108c 1713
488f131b
JB
1714 if (stop_signal != TARGET_SIGNAL_TRAP && !signal_stop[stop_signal])
1715 {
1716 if (printed)
1717 target_terminal_inferior ();
c906108c 1718
488f131b
JB
1719 /* Clear the signal if it should not be passed. */
1720 if (signal_program[stop_signal] == 0)
1721 stop_signal = TARGET_SIGNAL_0;
c906108c 1722
488f131b
JB
1723 target_resume (ecs->ptid, 0, stop_signal);
1724 prepare_to_wait (ecs);
1725 return;
1726 }
c906108c 1727
488f131b
JB
1728 /* It's a SIGTRAP or a signal we're interested in. Switch threads,
1729 and fall into the rest of wait_for_inferior(). */
c5aa993b 1730
488f131b 1731 context_switch (ecs);
c5aa993b 1732
488f131b
JB
1733 if (context_hook)
1734 context_hook (pid_to_thread_id (ecs->ptid));
c5aa993b 1735
488f131b
JB
1736 flush_cached_frames ();
1737 }
c906108c 1738
488f131b
JB
1739 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1740 {
1741 /* Pull the single step breakpoints out of the target. */
1742 SOFTWARE_SINGLE_STEP (0, 0);
1743 singlestep_breakpoints_inserted_p = 0;
1744 }
c906108c 1745
488f131b
JB
1746 /* If PC is pointing at a nullified instruction, then step beyond
1747 it so that the user won't be confused when GDB appears to be ready
1748 to execute it. */
c906108c 1749
488f131b
JB
1750 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1751 if (INSTRUCTION_NULLIFIED)
1752 {
1753 registers_changed ();
1754 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
c906108c 1755
488f131b
JB
1756 /* We may have received a signal that we want to pass to
1757 the inferior; therefore, we must not clobber the waitstatus
1758 in WS. */
c906108c 1759
488f131b
JB
1760 ecs->infwait_state = infwait_nullified_state;
1761 ecs->waiton_ptid = ecs->ptid;
1762 ecs->wp = &(ecs->tmpstatus);
1763 prepare_to_wait (ecs);
1764 return;
1765 }
c906108c 1766
488f131b
JB
1767 /* It may not be necessary to disable the watchpoint to stop over
1768 it. For example, the PA can (with some kernel cooperation)
1769 single step over a watchpoint without disabling the watchpoint. */
1770 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1771 {
1772 resume (1, 0);
1773 prepare_to_wait (ecs);
1774 return;
1775 }
c906108c 1776
488f131b
JB
1777 /* It is far more common to need to disable a watchpoint to step
1778 the inferior over it. FIXME. What else might a debug
1779 register or page protection watchpoint scheme need here? */
1780 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1781 {
1782 /* At this point, we are stopped at an instruction which has
1783 attempted to write to a piece of memory under control of
1784 a watchpoint. The instruction hasn't actually executed
1785 yet. If we were to evaluate the watchpoint expression
1786 now, we would get the old value, and therefore no change
1787 would seem to have occurred.
1788
1789 In order to make watchpoints work `right', we really need
1790 to complete the memory write, and then evaluate the
1791 watchpoint expression. The following code does that by
1792 removing the watchpoint (actually, all watchpoints and
1793 breakpoints), single-stepping the target, re-inserting
1794 watchpoints, and then falling through to let normal
1795 single-step processing handle proceed. Since this
1796 includes evaluating watchpoints, things will come to a
1797 stop in the correct manner. */
1798
1799 if (DECR_PC_AFTER_BREAK)
1800 write_pc (stop_pc - DECR_PC_AFTER_BREAK);
c5aa993b 1801
488f131b
JB
1802 remove_breakpoints ();
1803 registers_changed ();
1804 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
c5aa993b 1805
488f131b
JB
1806 ecs->waiton_ptid = ecs->ptid;
1807 ecs->wp = &(ecs->ws);
1808 ecs->infwait_state = infwait_nonstep_watch_state;
1809 prepare_to_wait (ecs);
1810 return;
1811 }
1812
1813 /* It may be possible to simply continue after a watchpoint. */
1814 if (HAVE_CONTINUABLE_WATCHPOINT)
1815 STOPPED_BY_WATCHPOINT (ecs->ws);
1816
1817 ecs->stop_func_start = 0;
1818 ecs->stop_func_end = 0;
1819 ecs->stop_func_name = 0;
1820 /* Don't care about return value; stop_func_start and stop_func_name
1821 will both be 0 if it doesn't work. */
1822 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1823 &ecs->stop_func_start, &ecs->stop_func_end);
1824 ecs->stop_func_start += FUNCTION_START_OFFSET;
1825 ecs->another_trap = 0;
1826 bpstat_clear (&stop_bpstat);
1827 stop_step = 0;
1828 stop_stack_dummy = 0;
1829 stop_print_frame = 1;
1830 ecs->random_signal = 0;
1831 stopped_by_random_signal = 0;
1832 breakpoints_failed = 0;
1833
1834 /* Look at the cause of the stop, and decide what to do.
1835 The alternatives are:
1836 1) break; to really stop and return to the debugger,
1837 2) drop through to start up again
1838 (set ecs->another_trap to 1 to single step once)
1839 3) set ecs->random_signal to 1, and the decision between 1 and 2
1840 will be made according to the signal handling tables. */
1841
1842 /* First, distinguish signals caused by the debugger from signals
1843 that have to do with the program's own actions.
1844 Note that breakpoint insns may cause SIGTRAP or SIGILL
1845 or SIGEMT, depending on the operating system version.
1846 Here we detect when a SIGILL or SIGEMT is really a breakpoint
1847 and change it to SIGTRAP. */
1848
1849 if (stop_signal == TARGET_SIGNAL_TRAP
1850 || (breakpoints_inserted &&
1851 (stop_signal == TARGET_SIGNAL_ILL
c54cfec8 1852 || stop_signal == TARGET_SIGNAL_EMT))
c0236d92
EZ
1853 || stop_soon == STOP_QUIETLY
1854 || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
488f131b
JB
1855 {
1856 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1857 {
1858 stop_print_frame = 0;
1859 stop_stepping (ecs);
1860 return;
1861 }
c54cfec8
EZ
1862
1863 /* This is originated from start_remote(), start_inferior() and
1864 shared libraries hook functions. */
c0236d92 1865 if (stop_soon == STOP_QUIETLY)
488f131b
JB
1866 {
1867 stop_stepping (ecs);
1868 return;
1869 }
1870
c54cfec8
EZ
1871 /* This originates from attach_command(). We need to overwrite
1872 the stop_signal here, because some kernels don't ignore a
1873 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1874 See more comments in inferior.h. */
c0236d92 1875 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
c54cfec8
EZ
1876 {
1877 stop_stepping (ecs);
1878 if (stop_signal == TARGET_SIGNAL_STOP)
1879 stop_signal = TARGET_SIGNAL_0;
1880 return;
1881 }
1882
488f131b
JB
1883 /* Don't even think about breakpoints
1884 if just proceeded over a breakpoint.
1885
1886 However, if we are trying to proceed over a breakpoint
1887 and end up in sigtramp, then through_sigtramp_breakpoint
1888 will be set and we should check whether we've hit the
1889 step breakpoint. */
1890 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected
1891 && through_sigtramp_breakpoint == NULL)
1892 bpstat_clear (&stop_bpstat);
1893 else
1894 {
1895 /* See if there is a breakpoint at the current PC. */
1896
1897 /* The second argument of bpstat_stop_status is meant to help
1898 distinguish between a breakpoint trap and a singlestep trap.
1899 This is only important on targets where DECR_PC_AFTER_BREAK
1900 is non-zero. The prev_pc test is meant to distinguish between
1901 singlestepping a trap instruction, and singlestepping thru a
3e6564e1
JB
1902 jump to the instruction following a trap instruction.
1903
1904 Therefore, pass TRUE if our reason for stopping is
1905 something other than hitting a breakpoint. We do this by
1906 checking that either: we detected earlier a software single
1907 step trap or, 1) stepping is going on and 2) we didn't hit
1908 a breakpoint in a signal handler without an intervening stop
1909 in sigtramp, which is detected by a new stack pointer value
1910 below any usual function calling stack adjustments. */
238617f6
JB
1911 stop_bpstat =
1912 bpstat_stop_status
1913 (&stop_pc,
c8edd8b4
JB
1914 sw_single_step_trap_p
1915 || (currently_stepping (ecs)
1916 && prev_pc != stop_pc - DECR_PC_AFTER_BREAK
1917 && !(step_range_end
1918 && INNER_THAN (read_sp (), (step_sp - 16)))));
488f131b
JB
1919 /* Following in case break condition called a
1920 function. */
1921 stop_print_frame = 1;
1922 }
1923
73dd234f
AC
1924 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1925 at one stage in the past included checks for an inferior
1926 function call's call dummy's return breakpoint. The original
1927 comment, that went with the test, read:
1928
1929 ``End of a stack dummy. Some systems (e.g. Sony news) give
1930 another signal besides SIGTRAP, so check here as well as
1931 above.''
1932
1933 If someone ever tries to get get call dummys on a
1934 non-executable stack to work (where the target would stop
1935 with something like a SIGSEG), then those tests might need to
1936 be re-instated. Given, however, that the tests were only
1937 enabled when momentary breakpoints were not being used, I
1938 suspect that it won't be the case. */
1939
488f131b
JB
1940 if (stop_signal == TARGET_SIGNAL_TRAP)
1941 ecs->random_signal
1942 = !(bpstat_explains_signal (stop_bpstat)
1943 || trap_expected
488f131b 1944 || (step_range_end && step_resume_breakpoint == NULL));
488f131b
JB
1945 else
1946 {
73dd234f 1947 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
488f131b
JB
1948 if (!ecs->random_signal)
1949 stop_signal = TARGET_SIGNAL_TRAP;
1950 }
1951 }
1952
1953 /* When we reach this point, we've pretty much decided
1954 that the reason for stopping must've been a random
1955 (unexpected) signal. */
1956
1957 else
1958 ecs->random_signal = 1;
488f131b 1959
04e68871 1960process_event_stop_test:
488f131b
JB
1961 /* For the program's own signals, act according to
1962 the signal handling tables. */
1963
1964 if (ecs->random_signal)
1965 {
1966 /* Signal not for debugging purposes. */
1967 int printed = 0;
1968
1969 stopped_by_random_signal = 1;
1970
1971 if (signal_print[stop_signal])
1972 {
1973 printed = 1;
1974 target_terminal_ours_for_output ();
1975 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1976 }
1977 if (signal_stop[stop_signal])
1978 {
1979 stop_stepping (ecs);
1980 return;
1981 }
1982 /* If not going to stop, give terminal back
1983 if we took it away. */
1984 else if (printed)
1985 target_terminal_inferior ();
1986
1987 /* Clear the signal if it should not be passed. */
1988 if (signal_program[stop_signal] == 0)
1989 stop_signal = TARGET_SIGNAL_0;
1990
1991 /* I'm not sure whether this needs to be check_sigtramp2 or
1992 whether it could/should be keep_going.
1993
1994 This used to jump to step_over_function if we are stepping,
1995 which is wrong.
1996
1997 Suppose the user does a `next' over a function call, and while
1998 that call is in progress, the inferior receives a signal for
1999 which GDB does not stop (i.e., signal_stop[SIG] is false). In
2000 that case, when we reach this point, there is already a
2001 step-resume breakpoint established, right where it should be:
2002 immediately after the function call the user is "next"-ing
2003 over. If we call step_over_function now, two bad things
2004 happen:
2005
2006 - we'll create a new breakpoint, at wherever the current
2007 frame's return address happens to be. That could be
2008 anywhere, depending on what function call happens to be on
2009 the top of the stack at that point. Point is, it's probably
2010 not where we need it.
2011
2012 - the existing step-resume breakpoint (which is at the correct
2013 address) will get orphaned: step_resume_breakpoint will point
2014 to the new breakpoint, and the old step-resume breakpoint
2015 will never be cleaned up.
2016
2017 The old behavior was meant to help HP-UX single-step out of
2018 sigtramps. It would place the new breakpoint at prev_pc, which
2019 was certainly wrong. I don't know the details there, so fixing
2020 this probably breaks that. As with anything else, it's up to
2021 the HP-UX maintainer to furnish a fix that doesn't break other
2022 platforms. --JimB, 20 May 1999 */
2023 check_sigtramp2 (ecs);
2024 keep_going (ecs);
2025 return;
2026 }
2027
2028 /* Handle cases caused by hitting a breakpoint. */
2029 {
2030 CORE_ADDR jmp_buf_pc;
2031 struct bpstat_what what;
2032
2033 what = bpstat_what (stop_bpstat);
2034
2035 if (what.call_dummy)
2036 {
2037 stop_stack_dummy = 1;
2038#ifdef HP_OS_BUG
2039 trap_expected_after_continue = 1;
2040#endif
c5aa993b 2041 }
c906108c 2042
488f131b 2043 switch (what.main_action)
c5aa993b 2044 {
488f131b
JB
2045 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2046 /* If we hit the breakpoint at longjmp, disable it for the
2047 duration of this command. Then, install a temporary
2048 breakpoint at the target of the jmp_buf. */
2049 disable_longjmp_breakpoint ();
2050 remove_breakpoints ();
2051 breakpoints_inserted = 0;
2052 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
c5aa993b 2053 {
488f131b 2054 keep_going (ecs);
104c1213 2055 return;
c5aa993b 2056 }
488f131b
JB
2057
2058 /* Need to blow away step-resume breakpoint, as it
2059 interferes with us */
2060 if (step_resume_breakpoint != NULL)
104c1213 2061 {
488f131b 2062 delete_step_resume_breakpoint (&step_resume_breakpoint);
104c1213 2063 }
488f131b
JB
2064 /* Not sure whether we need to blow this away too, but probably
2065 it is like the step-resume breakpoint. */
2066 if (through_sigtramp_breakpoint != NULL)
c5aa993b 2067 {
488f131b
JB
2068 delete_breakpoint (through_sigtramp_breakpoint);
2069 through_sigtramp_breakpoint = NULL;
c5aa993b 2070 }
c906108c 2071
488f131b
JB
2072#if 0
2073 /* FIXME - Need to implement nested temporary breakpoints */
2074 if (step_over_calls > 0)
2075 set_longjmp_resume_breakpoint (jmp_buf_pc, get_current_frame ());
c5aa993b 2076 else
488f131b 2077#endif /* 0 */
818dd999 2078 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
488f131b
JB
2079 ecs->handling_longjmp = 1; /* FIXME */
2080 keep_going (ecs);
2081 return;
c906108c 2082
488f131b
JB
2083 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2084 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2085 remove_breakpoints ();
2086 breakpoints_inserted = 0;
2087#if 0
2088 /* FIXME - Need to implement nested temporary breakpoints */
2089 if (step_over_calls
aa0cd9c1
AC
2090 && (frame_id_inner (get_frame_id (get_current_frame ()),
2091 step_frame_id)))
c5aa993b 2092 {
488f131b 2093 ecs->another_trap = 1;
d4f3574e
SS
2094 keep_going (ecs);
2095 return;
c5aa993b 2096 }
488f131b
JB
2097#endif /* 0 */
2098 disable_longjmp_breakpoint ();
2099 ecs->handling_longjmp = 0; /* FIXME */
2100 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2101 break;
2102 /* else fallthrough */
2103
2104 case BPSTAT_WHAT_SINGLE:
2105 if (breakpoints_inserted)
c5aa993b 2106 {
488f131b 2107 remove_breakpoints ();
c5aa993b 2108 }
488f131b
JB
2109 breakpoints_inserted = 0;
2110 ecs->another_trap = 1;
2111 /* Still need to check other stuff, at least the case
2112 where we are stepping and step out of the right range. */
2113 break;
c906108c 2114
488f131b
JB
2115 case BPSTAT_WHAT_STOP_NOISY:
2116 stop_print_frame = 1;
c906108c 2117
488f131b
JB
2118 /* We are about to nuke the step_resume_breakpoint and
2119 through_sigtramp_breakpoint via the cleanup chain, so
2120 no need to worry about it here. */
c5aa993b 2121
488f131b
JB
2122 stop_stepping (ecs);
2123 return;
c5aa993b 2124
488f131b
JB
2125 case BPSTAT_WHAT_STOP_SILENT:
2126 stop_print_frame = 0;
c5aa993b 2127
488f131b
JB
2128 /* We are about to nuke the step_resume_breakpoint and
2129 through_sigtramp_breakpoint via the cleanup chain, so
2130 no need to worry about it here. */
c5aa993b 2131
488f131b 2132 stop_stepping (ecs);
e441088d 2133 return;
c5aa993b 2134
488f131b
JB
2135 case BPSTAT_WHAT_STEP_RESUME:
2136 /* This proably demands a more elegant solution, but, yeah
2137 right...
c5aa993b 2138
488f131b
JB
2139 This function's use of the simple variable
2140 step_resume_breakpoint doesn't seem to accomodate
2141 simultaneously active step-resume bp's, although the
2142 breakpoint list certainly can.
c5aa993b 2143
488f131b
JB
2144 If we reach here and step_resume_breakpoint is already
2145 NULL, then apparently we have multiple active
2146 step-resume bp's. We'll just delete the breakpoint we
2147 stopped at, and carry on.
2148
2149 Correction: what the code currently does is delete a
2150 step-resume bp, but it makes no effort to ensure that
2151 the one deleted is the one currently stopped at. MVS */
c5aa993b 2152
488f131b
JB
2153 if (step_resume_breakpoint == NULL)
2154 {
2155 step_resume_breakpoint =
2156 bpstat_find_step_resume_breakpoint (stop_bpstat);
2157 }
2158 delete_step_resume_breakpoint (&step_resume_breakpoint);
2159 break;
2160
2161 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2162 if (through_sigtramp_breakpoint)
2163 delete_breakpoint (through_sigtramp_breakpoint);
2164 through_sigtramp_breakpoint = NULL;
2165
2166 /* If were waiting for a trap, hitting the step_resume_break
2167 doesn't count as getting it. */
2168 if (trap_expected)
2169 ecs->another_trap = 1;
2170 break;
2171
2172 case BPSTAT_WHAT_CHECK_SHLIBS:
2173 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2174#ifdef SOLIB_ADD
c906108c 2175 {
488f131b
JB
2176 /* Remove breakpoints, we eventually want to step over the
2177 shlib event breakpoint, and SOLIB_ADD might adjust
2178 breakpoint addresses via breakpoint_re_set. */
2179 if (breakpoints_inserted)
2180 remove_breakpoints ();
c5aa993b 2181 breakpoints_inserted = 0;
488f131b
JB
2182
2183 /* Check for any newly added shared libraries if we're
2184 supposed to be adding them automatically. Switch
2185 terminal for any messages produced by
2186 breakpoint_re_set. */
2187 target_terminal_ours_for_output ();
2188 SOLIB_ADD (NULL, 0, NULL, auto_solib_add);
2189 target_terminal_inferior ();
2190
2191 /* Try to reenable shared library breakpoints, additional
2192 code segments in shared libraries might be mapped in now. */
2193 re_enable_breakpoints_in_shlibs ();
2194
2195 /* If requested, stop when the dynamic linker notifies
2196 gdb of events. This allows the user to get control
2197 and place breakpoints in initializer routines for
2198 dynamically loaded objects (among other things). */
2199 if (stop_on_solib_events)
d4f3574e 2200 {
488f131b 2201 stop_stepping (ecs);
d4f3574e
SS
2202 return;
2203 }
c5aa993b 2204
488f131b
JB
2205 /* If we stopped due to an explicit catchpoint, then the
2206 (see above) call to SOLIB_ADD pulled in any symbols
2207 from a newly-loaded library, if appropriate.
2208
2209 We do want the inferior to stop, but not where it is
2210 now, which is in the dynamic linker callback. Rather,
2211 we would like it stop in the user's program, just after
2212 the call that caused this catchpoint to trigger. That
2213 gives the user a more useful vantage from which to
2214 examine their program's state. */
2215 else if (what.main_action ==
2216 BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
c906108c 2217 {
488f131b
JB
2218 /* ??rehrauer: If I could figure out how to get the
2219 right return PC from here, we could just set a temp
2220 breakpoint and resume. I'm not sure we can without
2221 cracking open the dld's shared libraries and sniffing
2222 their unwind tables and text/data ranges, and that's
2223 not a terribly portable notion.
2224
2225 Until that time, we must step the inferior out of the
2226 dld callback, and also out of the dld itself (and any
2227 code or stubs in libdld.sl, such as "shl_load" and
2228 friends) until we reach non-dld code. At that point,
2229 we can stop stepping. */
2230 bpstat_get_triggered_catchpoints (stop_bpstat,
2231 &ecs->
2232 stepping_through_solib_catchpoints);
2233 ecs->stepping_through_solib_after_catch = 1;
2234
2235 /* Be sure to lift all breakpoints, so the inferior does
2236 actually step past this point... */
2237 ecs->another_trap = 1;
2238 break;
c906108c 2239 }
c5aa993b 2240 else
c5aa993b 2241 {
488f131b 2242 /* We want to step over this breakpoint, then keep going. */
c5aa993b 2243 ecs->another_trap = 1;
488f131b 2244 break;
c5aa993b 2245 }
488f131b
JB
2246 }
2247#endif
2248 break;
c906108c 2249
488f131b
JB
2250 case BPSTAT_WHAT_LAST:
2251 /* Not a real code, but listed here to shut up gcc -Wall. */
c906108c 2252
488f131b
JB
2253 case BPSTAT_WHAT_KEEP_CHECKING:
2254 break;
2255 }
2256 }
c906108c 2257
488f131b
JB
2258 /* We come here if we hit a breakpoint but should not
2259 stop for it. Possibly we also were stepping
2260 and should stop for that. So fall through and
2261 test for stepping. But, if not stepping,
2262 do not stop. */
c906108c 2263
488f131b
JB
2264 /* Are we stepping to get the inferior out of the dynamic
2265 linker's hook (and possibly the dld itself) after catching
2266 a shlib event? */
2267 if (ecs->stepping_through_solib_after_catch)
2268 {
2269#if defined(SOLIB_ADD)
2270 /* Have we reached our destination? If not, keep going. */
2271 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2272 {
2273 ecs->another_trap = 1;
2274 keep_going (ecs);
104c1213 2275 return;
488f131b
JB
2276 }
2277#endif
2278 /* Else, stop and report the catchpoint(s) whose triggering
2279 caused us to begin stepping. */
2280 ecs->stepping_through_solib_after_catch = 0;
2281 bpstat_clear (&stop_bpstat);
2282 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2283 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2284 stop_print_frame = 1;
2285 stop_stepping (ecs);
2286 return;
2287 }
c906108c 2288
488f131b
JB
2289 if (step_resume_breakpoint)
2290 {
2291 /* Having a step-resume breakpoint overrides anything
2292 else having to do with stepping commands until
2293 that breakpoint is reached. */
2294 /* I'm not sure whether this needs to be check_sigtramp2 or
2295 whether it could/should be keep_going. */
2296 check_sigtramp2 (ecs);
2297 keep_going (ecs);
2298 return;
2299 }
c5aa993b 2300
488f131b
JB
2301 if (step_range_end == 0)
2302 {
2303 /* Likewise if we aren't even stepping. */
2304 /* I'm not sure whether this needs to be check_sigtramp2 or
2305 whether it could/should be keep_going. */
2306 check_sigtramp2 (ecs);
2307 keep_going (ecs);
2308 return;
2309 }
c5aa993b 2310
488f131b 2311 /* If stepping through a line, keep going if still within it.
c906108c 2312
488f131b
JB
2313 Note that step_range_end is the address of the first instruction
2314 beyond the step range, and NOT the address of the last instruction
2315 within it! */
2316 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2317 {
2318 /* We might be doing a BPSTAT_WHAT_SINGLE and getting a signal.
2319 So definately need to check for sigtramp here. */
2320 check_sigtramp2 (ecs);
2321 keep_going (ecs);
2322 return;
2323 }
c5aa993b 2324
488f131b 2325 /* We stepped out of the stepping range. */
c906108c 2326
488f131b
JB
2327 /* If we are stepping at the source level and entered the runtime
2328 loader dynamic symbol resolution code, we keep on single stepping
2329 until we exit the run time loader code and reach the callee's
2330 address. */
2331 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2332 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2333 {
2334 CORE_ADDR pc_after_resolver = SKIP_SOLIB_RESOLVER (stop_pc);
c906108c 2335
488f131b
JB
2336 if (pc_after_resolver)
2337 {
2338 /* Set up a step-resume breakpoint at the address
2339 indicated by SKIP_SOLIB_RESOLVER. */
2340 struct symtab_and_line sr_sal;
fe39c653 2341 init_sal (&sr_sal);
488f131b
JB
2342 sr_sal.pc = pc_after_resolver;
2343
2344 check_for_old_step_resume_breakpoint ();
2345 step_resume_breakpoint =
818dd999 2346 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2347 if (breakpoints_inserted)
2348 insert_breakpoints ();
c5aa993b 2349 }
c906108c 2350
488f131b
JB
2351 keep_going (ecs);
2352 return;
2353 }
c906108c 2354
488f131b
JB
2355 /* We can't update step_sp every time through the loop, because
2356 reading the stack pointer would slow down stepping too much.
2357 But we can update it every time we leave the step range. */
2358 ecs->update_step_sp = 1;
c906108c 2359
488f131b 2360 /* Did we just take a signal? */
0ce3d317
AC
2361 if (pc_in_sigtramp (stop_pc)
2362 && !pc_in_sigtramp (prev_pc)
488f131b
JB
2363 && INNER_THAN (read_sp (), step_sp))
2364 {
2365 /* We've just taken a signal; go until we are back to
2366 the point where we took it and one more. */
c906108c 2367
488f131b
JB
2368 /* Note: The test above succeeds not only when we stepped
2369 into a signal handler, but also when we step past the last
2370 statement of a signal handler and end up in the return stub
2371 of the signal handler trampoline. To distinguish between
2372 these two cases, check that the frame is INNER_THAN the
2373 previous one below. pai/1997-09-11 */
c5aa993b 2374
c5aa993b 2375
c5aa993b 2376 {
aa0cd9c1 2377 struct frame_id current_frame = get_frame_id (get_current_frame ());
c906108c 2378
aa0cd9c1 2379 if (frame_id_inner (current_frame, step_frame_id))
488f131b
JB
2380 {
2381 /* We have just taken a signal; go until we are back to
2382 the point where we took it and one more. */
c906108c 2383
488f131b
JB
2384 /* This code is needed at least in the following case:
2385 The user types "next" and then a signal arrives (before
2386 the "next" is done). */
d4f3574e 2387
488f131b
JB
2388 /* Note that if we are stopped at a breakpoint, then we need
2389 the step_resume breakpoint to override any breakpoints at
2390 the same location, so that we will still step over the
2391 breakpoint even though the signal happened. */
d4f3574e 2392 struct symtab_and_line sr_sal;
d4f3574e 2393
fe39c653 2394 init_sal (&sr_sal);
488f131b
JB
2395 sr_sal.symtab = NULL;
2396 sr_sal.line = 0;
2397 sr_sal.pc = prev_pc;
2398 /* We could probably be setting the frame to
aa0cd9c1 2399 step_frame_id; I don't think anyone thought to try it. */
d4f3574e
SS
2400 check_for_old_step_resume_breakpoint ();
2401 step_resume_breakpoint =
818dd999 2402 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
d4f3574e
SS
2403 if (breakpoints_inserted)
2404 insert_breakpoints ();
2405 }
488f131b
JB
2406 else
2407 {
2408 /* We just stepped out of a signal handler and into
2409 its calling trampoline.
2410
2411 Normally, we'd call step_over_function from
2412 here, but for some reason GDB can't unwind the
2413 stack correctly to find the real PC for the point
2414 user code where the signal trampoline will return
2415 -- FRAME_SAVED_PC fails, at least on HP-UX 10.20.
2416 But signal trampolines are pretty small stubs of
2417 code, anyway, so it's OK instead to just
2418 single-step out. Note: assuming such trampolines
2419 don't exhibit recursion on any platform... */
2420 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
2421 &ecs->stop_func_start,
2422 &ecs->stop_func_end);
2423 /* Readjust stepping range */
2424 step_range_start = ecs->stop_func_start;
2425 step_range_end = ecs->stop_func_end;
2426 ecs->stepping_through_sigtramp = 1;
2427 }
d4f3574e 2428 }
c906108c 2429
c906108c 2430
488f131b
JB
2431 /* If this is stepi or nexti, make sure that the stepping range
2432 gets us past that instruction. */
2433 if (step_range_end == 1)
2434 /* FIXME: Does this run afoul of the code below which, if
2435 we step into the middle of a line, resets the stepping
2436 range? */
2437 step_range_end = (step_range_start = prev_pc) + 1;
2438
2439 ecs->remove_breakpoints_on_following_step = 1;
2440 keep_going (ecs);
2441 return;
2442 }
c906108c 2443
9407de8e
DJ
2444 if (((stop_pc == ecs->stop_func_start /* Quick test */
2445 || in_prologue (stop_pc, ecs->stop_func_start))
2446 && !IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
488f131b
JB
2447 || IN_SOLIB_CALL_TRAMPOLINE (stop_pc, ecs->stop_func_name)
2448 || ecs->stop_func_name == 0)
2449 {
2450 /* It's a subroutine call. */
c906108c 2451
488f131b
JB
2452 if ((step_over_calls == STEP_OVER_NONE)
2453 || ((step_range_end == 1)
2454 && in_prologue (prev_pc, ecs->stop_func_start)))
2455 {
2456 /* I presume that step_over_calls is only 0 when we're
2457 supposed to be stepping at the assembly language level
2458 ("stepi"). Just stop. */
2459 /* Also, maybe we just did a "nexti" inside a prolog,
2460 so we thought it was a subroutine call but it was not.
2461 Stop as well. FENN */
2462 stop_step = 1;
2463 print_stop_reason (END_STEPPING_RANGE, 0);
2464 stop_stepping (ecs);
2465 return;
2466 }
c906108c 2467
488f131b 2468 if (step_over_calls == STEP_OVER_ALL || IGNORE_HELPER_CALL (stop_pc))
c5aa993b 2469 {
488f131b
JB
2470 /* We're doing a "next". */
2471
0ce3d317 2472 if (pc_in_sigtramp (stop_pc)
aa0cd9c1
AC
2473 && frame_id_inner (step_frame_id,
2474 frame_id_build (read_sp (), 0)))
488f131b
JB
2475 /* We stepped out of a signal handler, and into its
2476 calling trampoline. This is misdetected as a
2477 subroutine call, but stepping over the signal
aa0cd9c1
AC
2478 trampoline isn't such a bad idea. In order to do that,
2479 we have to ignore the value in step_frame_id, since
2480 that doesn't represent the frame that'll reach when we
2481 return from the signal trampoline. Otherwise we'll
2482 probably continue to the end of the program. */
2483 step_frame_id = null_frame_id;
488f131b
JB
2484
2485 step_over_function (ecs);
2486 keep_going (ecs);
2487 return;
2488 }
c906108c 2489
488f131b
JB
2490 /* If we are in a function call trampoline (a stub between
2491 the calling routine and the real function), locate the real
2492 function. That's what tells us (a) whether we want to step
2493 into it at all, and (b) what prologue we want to run to
2494 the end of, if we do step into it. */
f636b87d
AF
2495 real_stop_pc = skip_language_trampoline (stop_pc);
2496 if (real_stop_pc == 0)
2497 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
d764a824
AF
2498 if (real_stop_pc != 0)
2499 ecs->stop_func_start = real_stop_pc;
c906108c 2500
488f131b
JB
2501 /* If we have line number information for the function we
2502 are thinking of stepping into, step into it.
c906108c 2503
488f131b
JB
2504 If there are several symtabs at that PC (e.g. with include
2505 files), just want to know whether *any* of them have line
2506 numbers. find_pc_line handles this. */
c5aa993b 2507 {
488f131b 2508 struct symtab_and_line tmp_sal;
c906108c 2509
488f131b
JB
2510 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2511 if (tmp_sal.line != 0)
d4f3574e 2512 {
488f131b 2513 step_into_function (ecs);
d4f3574e
SS
2514 return;
2515 }
488f131b 2516 }
c5aa993b 2517
488f131b
JB
2518 /* If we have no line number and the step-stop-if-no-debug
2519 is set, we stop the step so that the user has a chance to
2520 switch in assembly mode. */
2521 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
c5aa993b 2522 {
488f131b
JB
2523 stop_step = 1;
2524 print_stop_reason (END_STEPPING_RANGE, 0);
2525 stop_stepping (ecs);
2526 return;
c906108c 2527 }
5fbbeb29 2528
488f131b
JB
2529 step_over_function (ecs);
2530 keep_going (ecs);
2531 return;
c906108c 2532
488f131b 2533 }
c906108c 2534
488f131b 2535 /* We've wandered out of the step range. */
c906108c 2536
488f131b 2537 ecs->sal = find_pc_line (stop_pc, 0);
c906108c 2538
488f131b
JB
2539 if (step_range_end == 1)
2540 {
2541 /* It is stepi or nexti. We always want to stop stepping after
2542 one instruction. */
2543 stop_step = 1;
2544 print_stop_reason (END_STEPPING_RANGE, 0);
2545 stop_stepping (ecs);
2546 return;
2547 }
c906108c 2548
488f131b
JB
2549 /* If we're in the return path from a shared library trampoline,
2550 we want to proceed through the trampoline when stepping. */
2551 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2552 {
488f131b 2553 /* Determine where this trampoline returns. */
d764a824 2554 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
c906108c 2555
488f131b 2556 /* Only proceed through if we know where it's going. */
d764a824 2557 if (real_stop_pc)
488f131b
JB
2558 {
2559 /* And put the step-breakpoint there and go until there. */
2560 struct symtab_and_line sr_sal;
2561
fe39c653 2562 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 2563 sr_sal.pc = real_stop_pc;
488f131b
JB
2564 sr_sal.section = find_pc_overlay (sr_sal.pc);
2565 /* Do not specify what the fp should be when we stop
2566 since on some machines the prologue
2567 is where the new fp value is established. */
2568 check_for_old_step_resume_breakpoint ();
2569 step_resume_breakpoint =
818dd999 2570 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
488f131b
JB
2571 if (breakpoints_inserted)
2572 insert_breakpoints ();
c906108c 2573
488f131b
JB
2574 /* Restart without fiddling with the step ranges or
2575 other state. */
2576 keep_going (ecs);
2577 return;
2578 }
2579 }
c906108c 2580
488f131b
JB
2581 if (ecs->sal.line == 0)
2582 {
2583 /* We have no line number information. That means to stop
2584 stepping (does this always happen right after one instruction,
2585 when we do "s" in a function with no line numbers,
2586 or can this happen as a result of a return or longjmp?). */
2587 stop_step = 1;
2588 print_stop_reason (END_STEPPING_RANGE, 0);
2589 stop_stepping (ecs);
2590 return;
2591 }
c906108c 2592
488f131b
JB
2593 if ((stop_pc == ecs->sal.pc)
2594 && (ecs->current_line != ecs->sal.line
2595 || ecs->current_symtab != ecs->sal.symtab))
2596 {
2597 /* We are at the start of a different line. So stop. Note that
2598 we don't stop if we step into the middle of a different line.
2599 That is said to make things like for (;;) statements work
2600 better. */
2601 stop_step = 1;
2602 print_stop_reason (END_STEPPING_RANGE, 0);
2603 stop_stepping (ecs);
2604 return;
2605 }
c906108c 2606
488f131b 2607 /* We aren't done stepping.
c906108c 2608
488f131b
JB
2609 Optimize by setting the stepping range to the line.
2610 (We might not be in the original line, but if we entered a
2611 new line in mid-statement, we continue stepping. This makes
2612 things like for(;;) statements work better.) */
c906108c 2613
488f131b 2614 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
c5aa993b 2615 {
488f131b
JB
2616 /* If this is the last line of the function, don't keep stepping
2617 (it would probably step us out of the function).
2618 This is particularly necessary for a one-line function,
2619 in which after skipping the prologue we better stop even though
2620 we will be in mid-line. */
2621 stop_step = 1;
2622 print_stop_reason (END_STEPPING_RANGE, 0);
2623 stop_stepping (ecs);
2624 return;
c5aa993b 2625 }
488f131b
JB
2626 step_range_start = ecs->sal.pc;
2627 step_range_end = ecs->sal.end;
aa0cd9c1 2628 step_frame_id = get_frame_id (get_current_frame ());
488f131b
JB
2629 ecs->current_line = ecs->sal.line;
2630 ecs->current_symtab = ecs->sal.symtab;
2631
aa0cd9c1
AC
2632 /* In the case where we just stepped out of a function into the
2633 middle of a line of the caller, continue stepping, but
2634 step_frame_id must be modified to current frame */
65815ea1
AC
2635#if 0
2636 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2637 generous. It will trigger on things like a step into a frameless
2638 stackless leaf function. I think the logic should instead look
2639 at the unwound frame ID has that should give a more robust
2640 indication of what happened. */
2641 if (step-ID == current-ID)
2642 still stepping in same function;
2643 else if (step-ID == unwind (current-ID))
2644 stepped into a function;
2645 else
2646 stepped out of a function;
2647 /* Of course this assumes that the frame ID unwind code is robust
2648 and we're willing to introduce frame unwind logic into this
ce2826aa 2649 function. Fortunately, those days are nearly upon us. */
65815ea1 2650#endif
488f131b 2651 {
aa0cd9c1
AC
2652 struct frame_id current_frame = get_frame_id (get_current_frame ());
2653 if (!(frame_id_inner (current_frame, step_frame_id)))
2654 step_frame_id = current_frame;
488f131b 2655 }
c906108c 2656
488f131b 2657 keep_going (ecs);
104c1213
JM
2658}
2659
2660/* Are we in the middle of stepping? */
2661
2662static int
2663currently_stepping (struct execution_control_state *ecs)
2664{
2665 return ((through_sigtramp_breakpoint == NULL
2666 && !ecs->handling_longjmp
2667 && ((step_range_end && step_resume_breakpoint == NULL)
2668 || trap_expected))
2669 || ecs->stepping_through_solib_after_catch
2670 || bpstat_should_step ());
2671}
c906108c 2672
104c1213
JM
2673static void
2674check_sigtramp2 (struct execution_control_state *ecs)
2675{
2676 if (trap_expected
0ce3d317
AC
2677 && pc_in_sigtramp (stop_pc)
2678 && !pc_in_sigtramp (prev_pc)
104c1213
JM
2679 && INNER_THAN (read_sp (), step_sp))
2680 {
2681 /* What has happened here is that we have just stepped the
488f131b
JB
2682 inferior with a signal (because it is a signal which
2683 shouldn't make us stop), thus stepping into sigtramp.
104c1213 2684
488f131b
JB
2685 So we need to set a step_resume_break_address breakpoint and
2686 continue until we hit it, and then step. FIXME: This should
2687 be more enduring than a step_resume breakpoint; we should
2688 know that we will later need to keep going rather than
2689 re-hitting the breakpoint here (see the testsuite,
2690 gdb.base/signals.exp where it says "exceedingly difficult"). */
104c1213
JM
2691
2692 struct symtab_and_line sr_sal;
2693
fe39c653 2694 init_sal (&sr_sal); /* initialize to zeroes */
104c1213
JM
2695 sr_sal.pc = prev_pc;
2696 sr_sal.section = find_pc_overlay (sr_sal.pc);
2697 /* We perhaps could set the frame if we kept track of what the
488f131b 2698 frame corresponding to prev_pc was. But we don't, so don't. */
104c1213 2699 through_sigtramp_breakpoint =
818dd999 2700 set_momentary_breakpoint (sr_sal, null_frame_id, bp_through_sigtramp);
104c1213
JM
2701 if (breakpoints_inserted)
2702 insert_breakpoints ();
cd0fc7c3 2703
104c1213
JM
2704 ecs->remove_breakpoints_on_following_step = 1;
2705 ecs->another_trap = 1;
2706 }
2707}
2708
c2c6d25f
JM
2709/* Subroutine call with source code we should not step over. Do step
2710 to the first line of code in it. */
2711
2712static void
2713step_into_function (struct execution_control_state *ecs)
2714{
2715 struct symtab *s;
2716 struct symtab_and_line sr_sal;
2717
2718 s = find_pc_symtab (stop_pc);
2719 if (s && s->language != language_asm)
2720 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2721
2722 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2723 /* Use the step_resume_break to step until the end of the prologue,
2724 even if that involves jumps (as it seems to on the vax under
2725 4.2). */
2726 /* If the prologue ends in the middle of a source line, continue to
2727 the end of that source line (if it is still within the function).
2728 Otherwise, just go to end of prologue. */
2729#ifdef PROLOGUE_FIRSTLINE_OVERLAP
2730 /* no, don't either. It skips any code that's legitimately on the
2731 first line. */
2732#else
2733 if (ecs->sal.end
2734 && ecs->sal.pc != ecs->stop_func_start
2735 && ecs->sal.end < ecs->stop_func_end)
2736 ecs->stop_func_start = ecs->sal.end;
2737#endif
2738
2739 if (ecs->stop_func_start == stop_pc)
2740 {
2741 /* We are already there: stop now. */
2742 stop_step = 1;
488f131b 2743 print_stop_reason (END_STEPPING_RANGE, 0);
c2c6d25f
JM
2744 stop_stepping (ecs);
2745 return;
2746 }
2747 else
2748 {
2749 /* Put the step-breakpoint there and go until there. */
fe39c653 2750 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
2751 sr_sal.pc = ecs->stop_func_start;
2752 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2753 /* Do not specify what the fp should be when we stop since on
488f131b
JB
2754 some machines the prologue is where the new fp value is
2755 established. */
c2c6d25f
JM
2756 check_for_old_step_resume_breakpoint ();
2757 step_resume_breakpoint =
818dd999 2758 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
c2c6d25f
JM
2759 if (breakpoints_inserted)
2760 insert_breakpoints ();
2761
2762 /* And make sure stepping stops right away then. */
2763 step_range_end = step_range_start;
2764 }
2765 keep_going (ecs);
2766}
d4f3574e
SS
2767
2768/* We've just entered a callee, and we wish to resume until it returns
2769 to the caller. Setting a step_resume breakpoint on the return
2770 address will catch a return from the callee.
2771
2772 However, if the callee is recursing, we want to be careful not to
2773 catch returns of those recursive calls, but only of THIS instance
2774 of the call.
2775
2776 To do this, we set the step_resume bp's frame to our current
aa0cd9c1 2777 caller's frame (step_frame_id, which is set by the "next" or
d4f3574e
SS
2778 "until" command, before execution begins). */
2779
2780static void
2781step_over_function (struct execution_control_state *ecs)
2782{
2783 struct symtab_and_line sr_sal;
2784
fe39c653 2785 init_sal (&sr_sal); /* initialize to zeros */
4443bd83
AC
2786
2787 /* NOTE: cagney/2003-04-06:
2788
2789 At this point the equality get_frame_pc() == get_frame_func()
2790 should hold. This may make it possible for this code to tell the
2791 frame where it's function is, instead of the reverse. This would
2792 avoid the need to search for the frame's function, which can get
2793 very messy when there is no debug info available (look at the
2794 heuristic find pc start code found in targets like the MIPS). */
2795
6913c89a 2796 /* NOTE: cagney/2003-04-06:
4443bd83 2797
6913c89a 2798 The intent of DEPRECATED_SAVED_PC_AFTER_CALL was to:
4443bd83
AC
2799
2800 - provide a very light weight equivalent to frame_unwind_pc()
2801 (nee FRAME_SAVED_PC) that avoids the prologue analyzer
2802
2803 - avoid handling the case where the PC hasn't been saved in the
2804 prologue analyzer
2805
ce2826aa 2806 Unfortunately, not five lines further down, is a call to
4443bd83
AC
2807 get_frame_id() and that is guarenteed to trigger the prologue
2808 analyzer.
2809
2810 The `correct fix' is for the prologe analyzer to handle the case
2811 where the prologue is incomplete (PC in prologue) and,
2812 consequently, the return pc has not yet been saved. It should be
2813 noted that the prologue analyzer needs to handle this case
2814 anyway: frameless leaf functions that don't save the return PC;
2815 single stepping through a prologue.
2816
2817 The d10v handles all this by bailing out of the prologue analsis
2818 when it reaches the current instruction. */
2819
6913c89a
AC
2820 if (DEPRECATED_SAVED_PC_AFTER_CALL_P ())
2821 sr_sal.pc = ADDR_BITS_REMOVE (DEPRECATED_SAVED_PC_AFTER_CALL (get_current_frame ()));
4443bd83
AC
2822 else
2823 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (get_current_frame ()));
d4f3574e
SS
2824 sr_sal.section = find_pc_overlay (sr_sal.pc);
2825
2826 check_for_old_step_resume_breakpoint ();
2827 step_resume_breakpoint =
818dd999
AC
2828 set_momentary_breakpoint (sr_sal, get_frame_id (get_current_frame ()),
2829 bp_step_resume);
d4f3574e 2830
aa0cd9c1
AC
2831 if (frame_id_p (step_frame_id)
2832 && !IN_SOLIB_DYNSYM_RESOLVE_CODE (sr_sal.pc))
818dd999 2833 step_resume_breakpoint->frame_id = step_frame_id;
d4f3574e
SS
2834
2835 if (breakpoints_inserted)
2836 insert_breakpoints ();
2837}
2838
104c1213
JM
2839static void
2840stop_stepping (struct execution_control_state *ecs)
2841{
cd0fc7c3
SS
2842 /* Let callers know we don't want to wait for the inferior anymore. */
2843 ecs->wait_some_more = 0;
2844}
2845
d4f3574e
SS
2846/* This function handles various cases where we need to continue
2847 waiting for the inferior. */
2848/* (Used to be the keep_going: label in the old wait_for_inferior) */
2849
2850static void
2851keep_going (struct execution_control_state *ecs)
2852{
d4f3574e 2853 /* Save the pc before execution, to compare with pc after stop. */
488f131b 2854 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
d4f3574e
SS
2855
2856 if (ecs->update_step_sp)
2857 step_sp = read_sp ();
2858 ecs->update_step_sp = 0;
2859
2860 /* If we did not do break;, it means we should keep running the
2861 inferior and not return to debugger. */
2862
2863 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2864 {
2865 /* We took a signal (which we are supposed to pass through to
488f131b
JB
2866 the inferior, else we'd have done a break above) and we
2867 haven't yet gotten our trap. Simply continue. */
d4f3574e
SS
2868 resume (currently_stepping (ecs), stop_signal);
2869 }
2870 else
2871 {
2872 /* Either the trap was not expected, but we are continuing
488f131b
JB
2873 anyway (the user asked that this signal be passed to the
2874 child)
2875 -- or --
2876 The signal was SIGTRAP, e.g. it was our signal, but we
2877 decided we should resume from it.
d4f3574e 2878
488f131b 2879 We're going to run this baby now!
d4f3574e 2880
488f131b
JB
2881 Insert breakpoints now, unless we are trying to one-proceed
2882 past a breakpoint. */
d4f3574e 2883 /* If we've just finished a special step resume and we don't
488f131b 2884 want to hit a breakpoint, pull em out. */
d4f3574e
SS
2885 if (step_resume_breakpoint == NULL
2886 && through_sigtramp_breakpoint == NULL
2887 && ecs->remove_breakpoints_on_following_step)
2888 {
2889 ecs->remove_breakpoints_on_following_step = 0;
2890 remove_breakpoints ();
2891 breakpoints_inserted = 0;
2892 }
2893 else if (!breakpoints_inserted &&
2894 (through_sigtramp_breakpoint != NULL || !ecs->another_trap))
2895 {
2896 breakpoints_failed = insert_breakpoints ();
2897 if (breakpoints_failed)
2898 {
2899 stop_stepping (ecs);
2900 return;
2901 }
2902 breakpoints_inserted = 1;
2903 }
2904
2905 trap_expected = ecs->another_trap;
2906
2907 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
2908 specifies that such a signal should be delivered to the
2909 target program).
2910
2911 Typically, this would occure when a user is debugging a
2912 target monitor on a simulator: the target monitor sets a
2913 breakpoint; the simulator encounters this break-point and
2914 halts the simulation handing control to GDB; GDB, noteing
2915 that the break-point isn't valid, returns control back to the
2916 simulator; the simulator then delivers the hardware
2917 equivalent of a SIGNAL_TRAP to the program being debugged. */
2918
2919 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
d4f3574e
SS
2920 stop_signal = TARGET_SIGNAL_0;
2921
2922#ifdef SHIFT_INST_REGS
2923 /* I'm not sure when this following segment applies. I do know,
488f131b
JB
2924 now, that we shouldn't rewrite the regs when we were stopped
2925 by a random signal from the inferior process. */
d4f3574e 2926 /* FIXME: Shouldn't this be based on the valid bit of the SXIP?
488f131b 2927 (this is only used on the 88k). */
d4f3574e
SS
2928
2929 if (!bpstat_explains_signal (stop_bpstat)
488f131b 2930 && (stop_signal != TARGET_SIGNAL_CHLD) && !stopped_by_random_signal)
d4f3574e
SS
2931 SHIFT_INST_REGS ();
2932#endif /* SHIFT_INST_REGS */
2933
2934 resume (currently_stepping (ecs), stop_signal);
2935 }
2936
488f131b 2937 prepare_to_wait (ecs);
d4f3574e
SS
2938}
2939
104c1213
JM
2940/* This function normally comes after a resume, before
2941 handle_inferior_event exits. It takes care of any last bits of
2942 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 2943
104c1213
JM
2944static void
2945prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 2946{
104c1213
JM
2947 if (ecs->infwait_state == infwait_normal_state)
2948 {
2949 overlay_cache_invalid = 1;
2950
2951 /* We have to invalidate the registers BEFORE calling
488f131b
JB
2952 target_wait because they can be loaded from the target while
2953 in target_wait. This makes remote debugging a bit more
2954 efficient for those targets that provide critical registers
2955 as part of their normal status mechanism. */
104c1213
JM
2956
2957 registers_changed ();
39f77062 2958 ecs->waiton_ptid = pid_to_ptid (-1);
104c1213
JM
2959 ecs->wp = &(ecs->ws);
2960 }
2961 /* This is the old end of the while loop. Let everybody know we
2962 want to wait for the inferior some more and get called again
2963 soon. */
2964 ecs->wait_some_more = 1;
c906108c 2965}
11cf8741
JM
2966
2967/* Print why the inferior has stopped. We always print something when
2968 the inferior exits, or receives a signal. The rest of the cases are
2969 dealt with later on in normal_stop() and print_it_typical(). Ideally
2970 there should be a call to this function from handle_inferior_event()
2971 each time stop_stepping() is called.*/
2972static void
2973print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2974{
2975 switch (stop_reason)
2976 {
2977 case STOP_UNKNOWN:
2978 /* We don't deal with these cases from handle_inferior_event()
2979 yet. */
2980 break;
2981 case END_STEPPING_RANGE:
2982 /* We are done with a step/next/si/ni command. */
2983 /* For now print nothing. */
fb40c209 2984 /* Print a message only if not in the middle of doing a "step n"
488f131b 2985 operation for n > 1 */
fb40c209 2986 if (!step_multi || !stop_step)
9dc5e2a9 2987 if (ui_out_is_mi_like_p (uiout))
fb40c209 2988 ui_out_field_string (uiout, "reason", "end-stepping-range");
11cf8741
JM
2989 break;
2990 case BREAKPOINT_HIT:
2991 /* We found a breakpoint. */
2992 /* For now print nothing. */
2993 break;
2994 case SIGNAL_EXITED:
2995 /* The inferior was terminated by a signal. */
8b93c638 2996 annotate_signalled ();
9dc5e2a9 2997 if (ui_out_is_mi_like_p (uiout))
fb40c209 2998 ui_out_field_string (uiout, "reason", "exited-signalled");
8b93c638
JM
2999 ui_out_text (uiout, "\nProgram terminated with signal ");
3000 annotate_signal_name ();
488f131b
JB
3001 ui_out_field_string (uiout, "signal-name",
3002 target_signal_to_name (stop_info));
8b93c638
JM
3003 annotate_signal_name_end ();
3004 ui_out_text (uiout, ", ");
3005 annotate_signal_string ();
488f131b
JB
3006 ui_out_field_string (uiout, "signal-meaning",
3007 target_signal_to_string (stop_info));
8b93c638
JM
3008 annotate_signal_string_end ();
3009 ui_out_text (uiout, ".\n");
3010 ui_out_text (uiout, "The program no longer exists.\n");
11cf8741
JM
3011 break;
3012 case EXITED:
3013 /* The inferior program is finished. */
8b93c638
JM
3014 annotate_exited (stop_info);
3015 if (stop_info)
3016 {
9dc5e2a9 3017 if (ui_out_is_mi_like_p (uiout))
fb40c209 3018 ui_out_field_string (uiout, "reason", "exited");
8b93c638 3019 ui_out_text (uiout, "\nProgram exited with code ");
488f131b
JB
3020 ui_out_field_fmt (uiout, "exit-code", "0%o",
3021 (unsigned int) stop_info);
8b93c638
JM
3022 ui_out_text (uiout, ".\n");
3023 }
3024 else
3025 {
9dc5e2a9 3026 if (ui_out_is_mi_like_p (uiout))
fb40c209 3027 ui_out_field_string (uiout, "reason", "exited-normally");
8b93c638
JM
3028 ui_out_text (uiout, "\nProgram exited normally.\n");
3029 }
11cf8741
JM
3030 break;
3031 case SIGNAL_RECEIVED:
3032 /* Signal received. The signal table tells us to print about
3033 it. */
8b93c638
JM
3034 annotate_signal ();
3035 ui_out_text (uiout, "\nProgram received signal ");
3036 annotate_signal_name ();
84c6c83c
KS
3037 if (ui_out_is_mi_like_p (uiout))
3038 ui_out_field_string (uiout, "reason", "signal-received");
488f131b
JB
3039 ui_out_field_string (uiout, "signal-name",
3040 target_signal_to_name (stop_info));
8b93c638
JM
3041 annotate_signal_name_end ();
3042 ui_out_text (uiout, ", ");
3043 annotate_signal_string ();
488f131b
JB
3044 ui_out_field_string (uiout, "signal-meaning",
3045 target_signal_to_string (stop_info));
8b93c638
JM
3046 annotate_signal_string_end ();
3047 ui_out_text (uiout, ".\n");
11cf8741
JM
3048 break;
3049 default:
8e65ff28
AC
3050 internal_error (__FILE__, __LINE__,
3051 "print_stop_reason: unrecognized enum value");
11cf8741
JM
3052 break;
3053 }
3054}
c906108c 3055\f
43ff13b4 3056
c906108c
SS
3057/* Here to return control to GDB when the inferior stops for real.
3058 Print appropriate messages, remove breakpoints, give terminal our modes.
3059
3060 STOP_PRINT_FRAME nonzero means print the executing frame
3061 (pc, function, args, file, line number and line text).
3062 BREAKPOINTS_FAILED nonzero means stop was due to error
3063 attempting to insert breakpoints. */
3064
3065void
96baa820 3066normal_stop (void)
c906108c 3067{
73b65bb0
DJ
3068 struct target_waitstatus last;
3069 ptid_t last_ptid;
3070
3071 get_last_target_status (&last_ptid, &last);
3072
c906108c
SS
3073 /* As with the notification of thread events, we want to delay
3074 notifying the user that we've switched thread context until
3075 the inferior actually stops.
3076
73b65bb0
DJ
3077 There's no point in saying anything if the inferior has exited.
3078 Note that SIGNALLED here means "exited with a signal", not
3079 "received a signal". */
488f131b 3080 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
3081 && target_has_execution
3082 && last.kind != TARGET_WAITKIND_SIGNALLED
3083 && last.kind != TARGET_WAITKIND_EXITED)
c906108c
SS
3084 {
3085 target_terminal_ours_for_output ();
c3f6f71d 3086 printf_filtered ("[Switching to %s]\n",
39f77062
KB
3087 target_pid_or_tid_to_str (inferior_ptid));
3088 previous_inferior_ptid = inferior_ptid;
c906108c 3089 }
c906108c
SS
3090
3091 /* Make sure that the current_frame's pc is correct. This
3092 is a correction for setting up the frame info before doing
3093 DECR_PC_AFTER_BREAK */
b87efeee
AC
3094 if (target_has_execution)
3095 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3096 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3097 frame code to check for this and sort out any resultant mess.
3098 DECR_PC_AFTER_BREAK needs to just go away. */
2f107107 3099 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
c906108c 3100
c906108c
SS
3101 if (target_has_execution && breakpoints_inserted)
3102 {
3103 if (remove_breakpoints ())
3104 {
3105 target_terminal_ours_for_output ();
3106 printf_filtered ("Cannot remove breakpoints because ");
3107 printf_filtered ("program is no longer writable.\n");
3108 printf_filtered ("It might be running in another process.\n");
3109 printf_filtered ("Further execution is probably impossible.\n");
3110 }
3111 }
3112 breakpoints_inserted = 0;
3113
3114 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3115 Delete any breakpoint that is to be deleted at the next stop. */
3116
3117 breakpoint_auto_delete (stop_bpstat);
3118
3119 /* If an auto-display called a function and that got a signal,
3120 delete that auto-display to avoid an infinite recursion. */
3121
3122 if (stopped_by_random_signal)
3123 disable_current_display ();
3124
3125 /* Don't print a message if in the middle of doing a "step n"
3126 operation for n > 1 */
3127 if (step_multi && stop_step)
3128 goto done;
3129
3130 target_terminal_ours ();
3131
5913bcb0
AC
3132 /* Look up the hook_stop and run it (CLI internally handles problem
3133 of stop_command's pre-hook not existing). */
3134 if (stop_command)
3135 catch_errors (hook_stop_stub, stop_command,
3136 "Error while running hook_stop:\n", RETURN_MASK_ALL);
c906108c
SS
3137
3138 if (!target_has_stack)
3139 {
3140
3141 goto done;
3142 }
3143
3144 /* Select innermost stack frame - i.e., current frame is frame 0,
3145 and current location is based on that.
3146 Don't do this on return from a stack dummy routine,
3147 or if the program has exited. */
3148
3149 if (!stop_stack_dummy)
3150 {
0f7d239c 3151 select_frame (get_current_frame ());
c906108c
SS
3152
3153 /* Print current location without a level number, if
c5aa993b
JM
3154 we have changed functions or hit a breakpoint.
3155 Print source line if we have one.
3156 bpstat_print() contains the logic deciding in detail
3157 what to print, based on the event(s) that just occurred. */
c906108c 3158
6e7f8b9c 3159 if (stop_print_frame && deprecated_selected_frame)
c906108c
SS
3160 {
3161 int bpstat_ret;
3162 int source_flag;
917317f4 3163 int do_frame_printing = 1;
c906108c
SS
3164
3165 bpstat_ret = bpstat_print (stop_bpstat);
917317f4
JM
3166 switch (bpstat_ret)
3167 {
3168 case PRINT_UNKNOWN:
aa0cd9c1
AC
3169 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3170 (or should) carry around the function and does (or
3171 should) use that when doing a frame comparison. */
917317f4 3172 if (stop_step
aa0cd9c1
AC
3173 && frame_id_eq (step_frame_id,
3174 get_frame_id (get_current_frame ()))
917317f4 3175 && step_start_function == find_pc_function (stop_pc))
488f131b 3176 source_flag = SRC_LINE; /* finished step, just print source line */
917317f4 3177 else
488f131b 3178 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3179 break;
3180 case PRINT_SRC_AND_LOC:
488f131b 3181 source_flag = SRC_AND_LOC; /* print location and source line */
917317f4
JM
3182 break;
3183 case PRINT_SRC_ONLY:
c5394b80 3184 source_flag = SRC_LINE;
917317f4
JM
3185 break;
3186 case PRINT_NOTHING:
488f131b 3187 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
3188 do_frame_printing = 0;
3189 break;
3190 default:
488f131b 3191 internal_error (__FILE__, __LINE__, "Unknown value.");
917317f4 3192 }
fb40c209 3193 /* For mi, have the same behavior every time we stop:
488f131b 3194 print everything but the source line. */
9dc5e2a9 3195 if (ui_out_is_mi_like_p (uiout))
fb40c209 3196 source_flag = LOC_AND_ADDRESS;
c906108c 3197
9dc5e2a9 3198 if (ui_out_is_mi_like_p (uiout))
39f77062 3199 ui_out_field_int (uiout, "thread-id",
488f131b 3200 pid_to_thread_id (inferior_ptid));
c906108c
SS
3201 /* The behavior of this routine with respect to the source
3202 flag is:
c5394b80
JM
3203 SRC_LINE: Print only source line
3204 LOCATION: Print only location
3205 SRC_AND_LOC: Print location and source line */
917317f4 3206 if (do_frame_printing)
7789c6f5 3207 print_stack_frame (deprecated_selected_frame, -1, source_flag);
c906108c
SS
3208
3209 /* Display the auto-display expressions. */
3210 do_displays ();
3211 }
3212 }
3213
3214 /* Save the function value return registers, if we care.
3215 We might be about to restore their previous contents. */
3216 if (proceed_to_finish)
72cec141
AC
3217 /* NB: The copy goes through to the target picking up the value of
3218 all the registers. */
3219 regcache_cpy (stop_registers, current_regcache);
c906108c
SS
3220
3221 if (stop_stack_dummy)
3222 {
dbe9fe58
AC
3223 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3224 ends with a setting of the current frame, so we can use that
3225 next. */
3226 frame_pop (get_current_frame ());
c906108c 3227 /* Set stop_pc to what it was before we called the function.
c5aa993b
JM
3228 Can't rely on restore_inferior_status because that only gets
3229 called if we don't stop in the called function. */
c906108c 3230 stop_pc = read_pc ();
0f7d239c 3231 select_frame (get_current_frame ());
c906108c
SS
3232 }
3233
c906108c
SS
3234done:
3235 annotate_stopped ();
06600e06 3236 observer_notify_normal_stop ();
c906108c
SS
3237}
3238
3239static int
96baa820 3240hook_stop_stub (void *cmd)
c906108c 3241{
5913bcb0 3242 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
3243 return (0);
3244}
3245\f
c5aa993b 3246int
96baa820 3247signal_stop_state (int signo)
c906108c
SS
3248{
3249 return signal_stop[signo];
3250}
3251
c5aa993b 3252int
96baa820 3253signal_print_state (int signo)
c906108c
SS
3254{
3255 return signal_print[signo];
3256}
3257
c5aa993b 3258int
96baa820 3259signal_pass_state (int signo)
c906108c
SS
3260{
3261 return signal_program[signo];
3262}
3263
488f131b 3264int
7bda5e4a 3265signal_stop_update (int signo, int state)
d4f3574e
SS
3266{
3267 int ret = signal_stop[signo];
3268 signal_stop[signo] = state;
3269 return ret;
3270}
3271
488f131b 3272int
7bda5e4a 3273signal_print_update (int signo, int state)
d4f3574e
SS
3274{
3275 int ret = signal_print[signo];
3276 signal_print[signo] = state;
3277 return ret;
3278}
3279
488f131b 3280int
7bda5e4a 3281signal_pass_update (int signo, int state)
d4f3574e
SS
3282{
3283 int ret = signal_program[signo];
3284 signal_program[signo] = state;
3285 return ret;
3286}
3287
c906108c 3288static void
96baa820 3289sig_print_header (void)
c906108c
SS
3290{
3291 printf_filtered ("\
3292Signal Stop\tPrint\tPass to program\tDescription\n");
3293}
3294
3295static void
96baa820 3296sig_print_info (enum target_signal oursig)
c906108c
SS
3297{
3298 char *name = target_signal_to_name (oursig);
3299 int name_padding = 13 - strlen (name);
96baa820 3300
c906108c
SS
3301 if (name_padding <= 0)
3302 name_padding = 0;
3303
3304 printf_filtered ("%s", name);
488f131b 3305 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
3306 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3307 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3308 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3309 printf_filtered ("%s\n", target_signal_to_string (oursig));
3310}
3311
3312/* Specify how various signals in the inferior should be handled. */
3313
3314static void
96baa820 3315handle_command (char *args, int from_tty)
c906108c
SS
3316{
3317 char **argv;
3318 int digits, wordlen;
3319 int sigfirst, signum, siglast;
3320 enum target_signal oursig;
3321 int allsigs;
3322 int nsigs;
3323 unsigned char *sigs;
3324 struct cleanup *old_chain;
3325
3326 if (args == NULL)
3327 {
3328 error_no_arg ("signal to handle");
3329 }
3330
3331 /* Allocate and zero an array of flags for which signals to handle. */
3332
3333 nsigs = (int) TARGET_SIGNAL_LAST;
3334 sigs = (unsigned char *) alloca (nsigs);
3335 memset (sigs, 0, nsigs);
3336
3337 /* Break the command line up into args. */
3338
3339 argv = buildargv (args);
3340 if (argv == NULL)
3341 {
3342 nomem (0);
3343 }
7a292a7a 3344 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3345
3346 /* Walk through the args, looking for signal oursigs, signal names, and
3347 actions. Signal numbers and signal names may be interspersed with
3348 actions, with the actions being performed for all signals cumulatively
3349 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3350
3351 while (*argv != NULL)
3352 {
3353 wordlen = strlen (*argv);
3354 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3355 {;
3356 }
3357 allsigs = 0;
3358 sigfirst = siglast = -1;
3359
3360 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3361 {
3362 /* Apply action to all signals except those used by the
3363 debugger. Silently skip those. */
3364 allsigs = 1;
3365 sigfirst = 0;
3366 siglast = nsigs - 1;
3367 }
3368 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3369 {
3370 SET_SIGS (nsigs, sigs, signal_stop);
3371 SET_SIGS (nsigs, sigs, signal_print);
3372 }
3373 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3374 {
3375 UNSET_SIGS (nsigs, sigs, signal_program);
3376 }
3377 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3378 {
3379 SET_SIGS (nsigs, sigs, signal_print);
3380 }
3381 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3382 {
3383 SET_SIGS (nsigs, sigs, signal_program);
3384 }
3385 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3386 {
3387 UNSET_SIGS (nsigs, sigs, signal_stop);
3388 }
3389 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3390 {
3391 SET_SIGS (nsigs, sigs, signal_program);
3392 }
3393 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3394 {
3395 UNSET_SIGS (nsigs, sigs, signal_print);
3396 UNSET_SIGS (nsigs, sigs, signal_stop);
3397 }
3398 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3399 {
3400 UNSET_SIGS (nsigs, sigs, signal_program);
3401 }
3402 else if (digits > 0)
3403 {
3404 /* It is numeric. The numeric signal refers to our own
3405 internal signal numbering from target.h, not to host/target
3406 signal number. This is a feature; users really should be
3407 using symbolic names anyway, and the common ones like
3408 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3409
3410 sigfirst = siglast = (int)
3411 target_signal_from_command (atoi (*argv));
3412 if ((*argv)[digits] == '-')
3413 {
3414 siglast = (int)
3415 target_signal_from_command (atoi ((*argv) + digits + 1));
3416 }
3417 if (sigfirst > siglast)
3418 {
3419 /* Bet he didn't figure we'd think of this case... */
3420 signum = sigfirst;
3421 sigfirst = siglast;
3422 siglast = signum;
3423 }
3424 }
3425 else
3426 {
3427 oursig = target_signal_from_name (*argv);
3428 if (oursig != TARGET_SIGNAL_UNKNOWN)
3429 {
3430 sigfirst = siglast = (int) oursig;
3431 }
3432 else
3433 {
3434 /* Not a number and not a recognized flag word => complain. */
3435 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3436 }
3437 }
3438
3439 /* If any signal numbers or symbol names were found, set flags for
c5aa993b 3440 which signals to apply actions to. */
c906108c
SS
3441
3442 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3443 {
3444 switch ((enum target_signal) signum)
3445 {
3446 case TARGET_SIGNAL_TRAP:
3447 case TARGET_SIGNAL_INT:
3448 if (!allsigs && !sigs[signum])
3449 {
3450 if (query ("%s is used by the debugger.\n\
488f131b 3451Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
3452 {
3453 sigs[signum] = 1;
3454 }
3455 else
3456 {
3457 printf_unfiltered ("Not confirmed, unchanged.\n");
3458 gdb_flush (gdb_stdout);
3459 }
3460 }
3461 break;
3462 case TARGET_SIGNAL_0:
3463 case TARGET_SIGNAL_DEFAULT:
3464 case TARGET_SIGNAL_UNKNOWN:
3465 /* Make sure that "all" doesn't print these. */
3466 break;
3467 default:
3468 sigs[signum] = 1;
3469 break;
3470 }
3471 }
3472
3473 argv++;
3474 }
3475
39f77062 3476 target_notice_signals (inferior_ptid);
c906108c
SS
3477
3478 if (from_tty)
3479 {
3480 /* Show the results. */
3481 sig_print_header ();
3482 for (signum = 0; signum < nsigs; signum++)
3483 {
3484 if (sigs[signum])
3485 {
3486 sig_print_info (signum);
3487 }
3488 }
3489 }
3490
3491 do_cleanups (old_chain);
3492}
3493
3494static void
96baa820 3495xdb_handle_command (char *args, int from_tty)
c906108c
SS
3496{
3497 char **argv;
3498 struct cleanup *old_chain;
3499
3500 /* Break the command line up into args. */
3501
3502 argv = buildargv (args);
3503 if (argv == NULL)
3504 {
3505 nomem (0);
3506 }
7a292a7a 3507 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
3508 if (argv[1] != (char *) NULL)
3509 {
3510 char *argBuf;
3511 int bufLen;
3512
3513 bufLen = strlen (argv[0]) + 20;
3514 argBuf = (char *) xmalloc (bufLen);
3515 if (argBuf)
3516 {
3517 int validFlag = 1;
3518 enum target_signal oursig;
3519
3520 oursig = target_signal_from_name (argv[0]);
3521 memset (argBuf, 0, bufLen);
3522 if (strcmp (argv[1], "Q") == 0)
3523 sprintf (argBuf, "%s %s", argv[0], "noprint");
3524 else
3525 {
3526 if (strcmp (argv[1], "s") == 0)
3527 {
3528 if (!signal_stop[oursig])
3529 sprintf (argBuf, "%s %s", argv[0], "stop");
3530 else
3531 sprintf (argBuf, "%s %s", argv[0], "nostop");
3532 }
3533 else if (strcmp (argv[1], "i") == 0)
3534 {
3535 if (!signal_program[oursig])
3536 sprintf (argBuf, "%s %s", argv[0], "pass");
3537 else
3538 sprintf (argBuf, "%s %s", argv[0], "nopass");
3539 }
3540 else if (strcmp (argv[1], "r") == 0)
3541 {
3542 if (!signal_print[oursig])
3543 sprintf (argBuf, "%s %s", argv[0], "print");
3544 else
3545 sprintf (argBuf, "%s %s", argv[0], "noprint");
3546 }
3547 else
3548 validFlag = 0;
3549 }
3550 if (validFlag)
3551 handle_command (argBuf, from_tty);
3552 else
3553 printf_filtered ("Invalid signal handling flag.\n");
3554 if (argBuf)
b8c9b27d 3555 xfree (argBuf);
c906108c
SS
3556 }
3557 }
3558 do_cleanups (old_chain);
3559}
3560
3561/* Print current contents of the tables set by the handle command.
3562 It is possible we should just be printing signals actually used
3563 by the current target (but for things to work right when switching
3564 targets, all signals should be in the signal tables). */
3565
3566static void
96baa820 3567signals_info (char *signum_exp, int from_tty)
c906108c
SS
3568{
3569 enum target_signal oursig;
3570 sig_print_header ();
3571
3572 if (signum_exp)
3573 {
3574 /* First see if this is a symbol name. */
3575 oursig = target_signal_from_name (signum_exp);
3576 if (oursig == TARGET_SIGNAL_UNKNOWN)
3577 {
3578 /* No, try numeric. */
3579 oursig =
bb518678 3580 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
3581 }
3582 sig_print_info (oursig);
3583 return;
3584 }
3585
3586 printf_filtered ("\n");
3587 /* These ugly casts brought to you by the native VAX compiler. */
3588 for (oursig = TARGET_SIGNAL_FIRST;
3589 (int) oursig < (int) TARGET_SIGNAL_LAST;
3590 oursig = (enum target_signal) ((int) oursig + 1))
3591 {
3592 QUIT;
3593
3594 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 3595 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
3596 sig_print_info (oursig);
3597 }
3598
3599 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3600}
3601\f
7a292a7a
SS
3602struct inferior_status
3603{
3604 enum target_signal stop_signal;
3605 CORE_ADDR stop_pc;
3606 bpstat stop_bpstat;
3607 int stop_step;
3608 int stop_stack_dummy;
3609 int stopped_by_random_signal;
3610 int trap_expected;
3611 CORE_ADDR step_range_start;
3612 CORE_ADDR step_range_end;
aa0cd9c1 3613 struct frame_id step_frame_id;
5fbbeb29 3614 enum step_over_calls_kind step_over_calls;
7a292a7a
SS
3615 CORE_ADDR step_resume_break_address;
3616 int stop_after_trap;
c0236d92 3617 int stop_soon;
72cec141 3618 struct regcache *stop_registers;
7a292a7a
SS
3619
3620 /* These are here because if call_function_by_hand has written some
3621 registers and then decides to call error(), we better not have changed
3622 any registers. */
72cec141 3623 struct regcache *registers;
7a292a7a 3624
101dcfbe
AC
3625 /* A frame unique identifier. */
3626 struct frame_id selected_frame_id;
3627
7a292a7a
SS
3628 int breakpoint_proceeded;
3629 int restore_stack_info;
3630 int proceed_to_finish;
3631};
3632
7a292a7a 3633void
96baa820
JM
3634write_inferior_status_register (struct inferior_status *inf_status, int regno,
3635 LONGEST val)
7a292a7a 3636{
12c266ea 3637 int size = DEPRECATED_REGISTER_RAW_SIZE (regno);
7a292a7a
SS
3638 void *buf = alloca (size);
3639 store_signed_integer (buf, size, val);
0818c12a 3640 regcache_raw_write (inf_status->registers, regno, buf);
7a292a7a
SS
3641}
3642
c906108c
SS
3643/* Save all of the information associated with the inferior<==>gdb
3644 connection. INF_STATUS is a pointer to a "struct inferior_status"
3645 (defined in inferior.h). */
3646
7a292a7a 3647struct inferior_status *
96baa820 3648save_inferior_status (int restore_stack_info)
c906108c 3649{
72cec141 3650 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
7a292a7a 3651
c906108c
SS
3652 inf_status->stop_signal = stop_signal;
3653 inf_status->stop_pc = stop_pc;
3654 inf_status->stop_step = stop_step;
3655 inf_status->stop_stack_dummy = stop_stack_dummy;
3656 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3657 inf_status->trap_expected = trap_expected;
3658 inf_status->step_range_start = step_range_start;
3659 inf_status->step_range_end = step_range_end;
aa0cd9c1 3660 inf_status->step_frame_id = step_frame_id;
c906108c
SS
3661 inf_status->step_over_calls = step_over_calls;
3662 inf_status->stop_after_trap = stop_after_trap;
c0236d92 3663 inf_status->stop_soon = stop_soon;
c906108c
SS
3664 /* Save original bpstat chain here; replace it with copy of chain.
3665 If caller's caller is walking the chain, they'll be happier if we
7a292a7a
SS
3666 hand them back the original chain when restore_inferior_status is
3667 called. */
c906108c
SS
3668 inf_status->stop_bpstat = stop_bpstat;
3669 stop_bpstat = bpstat_copy (stop_bpstat);
3670 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3671 inf_status->restore_stack_info = restore_stack_info;
3672 inf_status->proceed_to_finish = proceed_to_finish;
c5aa993b 3673
72cec141 3674 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
c906108c 3675
72cec141 3676 inf_status->registers = regcache_dup (current_regcache);
c906108c 3677
7a424e99 3678 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
7a292a7a 3679 return inf_status;
c906108c
SS
3680}
3681
c906108c 3682static int
96baa820 3683restore_selected_frame (void *args)
c906108c 3684{
488f131b 3685 struct frame_id *fid = (struct frame_id *) args;
c906108c 3686 struct frame_info *frame;
c906108c 3687
101dcfbe 3688 frame = frame_find_by_id (*fid);
c906108c 3689
aa0cd9c1
AC
3690 /* If inf_status->selected_frame_id is NULL, there was no previously
3691 selected frame. */
101dcfbe 3692 if (frame == NULL)
c906108c
SS
3693 {
3694 warning ("Unable to restore previously selected frame.\n");
3695 return 0;
3696 }
3697
0f7d239c 3698 select_frame (frame);
c906108c
SS
3699
3700 return (1);
3701}
3702
3703void
96baa820 3704restore_inferior_status (struct inferior_status *inf_status)
c906108c
SS
3705{
3706 stop_signal = inf_status->stop_signal;
3707 stop_pc = inf_status->stop_pc;
3708 stop_step = inf_status->stop_step;
3709 stop_stack_dummy = inf_status->stop_stack_dummy;
3710 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3711 trap_expected = inf_status->trap_expected;
3712 step_range_start = inf_status->step_range_start;
3713 step_range_end = inf_status->step_range_end;
aa0cd9c1 3714 step_frame_id = inf_status->step_frame_id;
c906108c
SS
3715 step_over_calls = inf_status->step_over_calls;
3716 stop_after_trap = inf_status->stop_after_trap;
c0236d92 3717 stop_soon = inf_status->stop_soon;
c906108c
SS
3718 bpstat_clear (&stop_bpstat);
3719 stop_bpstat = inf_status->stop_bpstat;
3720 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3721 proceed_to_finish = inf_status->proceed_to_finish;
3722
72cec141
AC
3723 /* FIXME: Is the restore of stop_registers always needed. */
3724 regcache_xfree (stop_registers);
3725 stop_registers = inf_status->stop_registers;
c906108c
SS
3726
3727 /* The inferior can be gone if the user types "print exit(0)"
3728 (and perhaps other times). */
3729 if (target_has_execution)
72cec141
AC
3730 /* NB: The register write goes through to the target. */
3731 regcache_cpy (current_regcache, inf_status->registers);
3732 regcache_xfree (inf_status->registers);
c906108c 3733
c906108c
SS
3734 /* FIXME: If we are being called after stopping in a function which
3735 is called from gdb, we should not be trying to restore the
3736 selected frame; it just prints a spurious error message (The
3737 message is useful, however, in detecting bugs in gdb (like if gdb
3738 clobbers the stack)). In fact, should we be restoring the
3739 inferior status at all in that case? . */
3740
3741 if (target_has_stack && inf_status->restore_stack_info)
3742 {
c906108c 3743 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
3744 walking the stack might encounter a garbage pointer and
3745 error() trying to dereference it. */
488f131b
JB
3746 if (catch_errors
3747 (restore_selected_frame, &inf_status->selected_frame_id,
3748 "Unable to restore previously selected frame:\n",
3749 RETURN_MASK_ERROR) == 0)
c906108c
SS
3750 /* Error in restoring the selected frame. Select the innermost
3751 frame. */
0f7d239c 3752 select_frame (get_current_frame ());
c906108c
SS
3753
3754 }
c906108c 3755
72cec141 3756 xfree (inf_status);
7a292a7a 3757}
c906108c 3758
74b7792f
AC
3759static void
3760do_restore_inferior_status_cleanup (void *sts)
3761{
3762 restore_inferior_status (sts);
3763}
3764
3765struct cleanup *
3766make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3767{
3768 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3769}
3770
c906108c 3771void
96baa820 3772discard_inferior_status (struct inferior_status *inf_status)
7a292a7a
SS
3773{
3774 /* See save_inferior_status for info on stop_bpstat. */
3775 bpstat_clear (&inf_status->stop_bpstat);
72cec141
AC
3776 regcache_xfree (inf_status->registers);
3777 regcache_xfree (inf_status->stop_registers);
3778 xfree (inf_status);
7a292a7a
SS
3779}
3780
47932f85
DJ
3781int
3782inferior_has_forked (int pid, int *child_pid)
3783{
3784 struct target_waitstatus last;
3785 ptid_t last_ptid;
3786
3787 get_last_target_status (&last_ptid, &last);
3788
3789 if (last.kind != TARGET_WAITKIND_FORKED)
3790 return 0;
3791
3792 if (ptid_get_pid (last_ptid) != pid)
3793 return 0;
3794
3795 *child_pid = last.value.related_pid;
3796 return 1;
3797}
3798
3799int
3800inferior_has_vforked (int pid, int *child_pid)
3801{
3802 struct target_waitstatus last;
3803 ptid_t last_ptid;
3804
3805 get_last_target_status (&last_ptid, &last);
3806
3807 if (last.kind != TARGET_WAITKIND_VFORKED)
3808 return 0;
3809
3810 if (ptid_get_pid (last_ptid) != pid)
3811 return 0;
3812
3813 *child_pid = last.value.related_pid;
3814 return 1;
3815}
3816
3817int
3818inferior_has_execd (int pid, char **execd_pathname)
3819{
3820 struct target_waitstatus last;
3821 ptid_t last_ptid;
3822
3823 get_last_target_status (&last_ptid, &last);
3824
3825 if (last.kind != TARGET_WAITKIND_EXECD)
3826 return 0;
3827
3828 if (ptid_get_pid (last_ptid) != pid)
3829 return 0;
3830
3831 *execd_pathname = xstrdup (last.value.execd_pathname);
3832 return 1;
3833}
3834
ca6724c1
KB
3835/* Oft used ptids */
3836ptid_t null_ptid;
3837ptid_t minus_one_ptid;
3838
3839/* Create a ptid given the necessary PID, LWP, and TID components. */
488f131b 3840
ca6724c1
KB
3841ptid_t
3842ptid_build (int pid, long lwp, long tid)
3843{
3844 ptid_t ptid;
3845
3846 ptid.pid = pid;
3847 ptid.lwp = lwp;
3848 ptid.tid = tid;
3849 return ptid;
3850}
3851
3852/* Create a ptid from just a pid. */
3853
3854ptid_t
3855pid_to_ptid (int pid)
3856{
3857 return ptid_build (pid, 0, 0);
3858}
3859
3860/* Fetch the pid (process id) component from a ptid. */
3861
3862int
3863ptid_get_pid (ptid_t ptid)
3864{
3865 return ptid.pid;
3866}
3867
3868/* Fetch the lwp (lightweight process) component from a ptid. */
3869
3870long
3871ptid_get_lwp (ptid_t ptid)
3872{
3873 return ptid.lwp;
3874}
3875
3876/* Fetch the tid (thread id) component from a ptid. */
3877
3878long
3879ptid_get_tid (ptid_t ptid)
3880{
3881 return ptid.tid;
3882}
3883
3884/* ptid_equal() is used to test equality of two ptids. */
3885
3886int
3887ptid_equal (ptid_t ptid1, ptid_t ptid2)
3888{
3889 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
488f131b 3890 && ptid1.tid == ptid2.tid);
ca6724c1
KB
3891}
3892
3893/* restore_inferior_ptid() will be used by the cleanup machinery
3894 to restore the inferior_ptid value saved in a call to
3895 save_inferior_ptid(). */
ce696e05
KB
3896
3897static void
3898restore_inferior_ptid (void *arg)
3899{
3900 ptid_t *saved_ptid_ptr = arg;
3901 inferior_ptid = *saved_ptid_ptr;
3902 xfree (arg);
3903}
3904
3905/* Save the value of inferior_ptid so that it may be restored by a
3906 later call to do_cleanups(). Returns the struct cleanup pointer
3907 needed for later doing the cleanup. */
3908
3909struct cleanup *
3910save_inferior_ptid (void)
3911{
3912 ptid_t *saved_ptid_ptr;
3913
3914 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3915 *saved_ptid_ptr = inferior_ptid;
3916 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3917}
c5aa993b 3918\f
488f131b 3919
7a292a7a 3920static void
96baa820 3921build_infrun (void)
7a292a7a 3922{
72cec141 3923 stop_registers = regcache_xmalloc (current_gdbarch);
7a292a7a 3924}
c906108c 3925
c906108c 3926void
96baa820 3927_initialize_infrun (void)
c906108c 3928{
52f0bd74
AC
3929 int i;
3930 int numsigs;
c906108c
SS
3931 struct cmd_list_element *c;
3932
0f71a2f6
JM
3933 register_gdbarch_swap (&stop_registers, sizeof (stop_registers), NULL);
3934 register_gdbarch_swap (NULL, 0, build_infrun);
3935
c906108c
SS
3936 add_info ("signals", signals_info,
3937 "What debugger does when program gets various signals.\n\
3938Specify a signal as argument to print info on that signal only.");
3939 add_info_alias ("handle", "signals", 0);
3940
3941 add_com ("handle", class_run, handle_command,
3942 concat ("Specify how to handle a signal.\n\
3943Args are signals and actions to apply to those signals.\n\
3944Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3945from 1-15 are allowed for compatibility with old versions of GDB.\n\
3946Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3947The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3948used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
3949\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3950Stop means reenter debugger if this signal happens (implies print).\n\
3951Print means print a message if this signal happens.\n\
3952Pass means let program see this signal; otherwise program doesn't know.\n\
3953Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3954Pass and Stop may be combined.", NULL));
3955 if (xdb_commands)
3956 {
3957 add_com ("lz", class_info, signals_info,
3958 "What debugger does when program gets various signals.\n\
3959Specify a signal as argument to print info on that signal only.");
3960 add_com ("z", class_run, xdb_handle_command,
3961 concat ("Specify how to handle a signal.\n\
3962Args are signals and actions to apply to those signals.\n\
3963Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3964from 1-15 are allowed for compatibility with old versions of GDB.\n\
3965Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3966The special arg \"all\" is recognized to mean all signals except those\n\
488f131b 3967used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
c906108c
SS
3968\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3969nopass), \"Q\" (noprint)\n\
3970Stop means reenter debugger if this signal happens (implies print).\n\
3971Print means print a message if this signal happens.\n\
3972Pass means let program see this signal; otherwise program doesn't know.\n\
3973Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3974Pass and Stop may be combined.", NULL));
3975 }
3976
3977 if (!dbx_commands)
488f131b
JB
3978 stop_command =
3979 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c
SS
3980This allows you to set a list of commands to be run each time execution\n\
3981of the program stops.", &cmdlist);
3982
3983 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 3984 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
3985 signal_print = (unsigned char *)
3986 xmalloc (sizeof (signal_print[0]) * numsigs);
3987 signal_program = (unsigned char *)
3988 xmalloc (sizeof (signal_program[0]) * numsigs);
3989 for (i = 0; i < numsigs; i++)
3990 {
3991 signal_stop[i] = 1;
3992 signal_print[i] = 1;
3993 signal_program[i] = 1;
3994 }
3995
3996 /* Signals caused by debugger's own actions
3997 should not be given to the program afterwards. */
3998 signal_program[TARGET_SIGNAL_TRAP] = 0;
3999 signal_program[TARGET_SIGNAL_INT] = 0;
4000
4001 /* Signals that are not errors should not normally enter the debugger. */
4002 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4003 signal_print[TARGET_SIGNAL_ALRM] = 0;
4004 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4005 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4006 signal_stop[TARGET_SIGNAL_PROF] = 0;
4007 signal_print[TARGET_SIGNAL_PROF] = 0;
4008 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4009 signal_print[TARGET_SIGNAL_CHLD] = 0;
4010 signal_stop[TARGET_SIGNAL_IO] = 0;
4011 signal_print[TARGET_SIGNAL_IO] = 0;
4012 signal_stop[TARGET_SIGNAL_POLL] = 0;
4013 signal_print[TARGET_SIGNAL_POLL] = 0;
4014 signal_stop[TARGET_SIGNAL_URG] = 0;
4015 signal_print[TARGET_SIGNAL_URG] = 0;
4016 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4017 signal_print[TARGET_SIGNAL_WINCH] = 0;
4018
cd0fc7c3
SS
4019 /* These signals are used internally by user-level thread
4020 implementations. (See signal(5) on Solaris.) Like the above
4021 signals, a healthy program receives and handles them as part of
4022 its normal operation. */
4023 signal_stop[TARGET_SIGNAL_LWP] = 0;
4024 signal_print[TARGET_SIGNAL_LWP] = 0;
4025 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4026 signal_print[TARGET_SIGNAL_WAITING] = 0;
4027 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4028 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4029
c906108c
SS
4030#ifdef SOLIB_ADD
4031 add_show_from_set
4032 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
4033 (char *) &stop_on_solib_events,
4034 "Set stopping for shared library events.\n\
4035If nonzero, gdb will give control to the user when the dynamic linker\n\
4036notifies gdb of shared library events. The most common event of interest\n\
488f131b 4037to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
c906108c
SS
4038#endif
4039
4040 c = add_set_enum_cmd ("follow-fork-mode",
4041 class_run,
488f131b 4042 follow_fork_mode_kind_names, &follow_fork_mode_string,
c906108c
SS
4043/* ??rehrauer: The "both" option is broken, by what may be a 10.20
4044 kernel problem. It's also not terribly useful without a GUI to
4045 help the user drive two debuggers. So for now, I'm disabling
4046 the "both" option. */
c5aa993b
JM
4047/* "Set debugger response to a program call of fork \
4048 or vfork.\n\
4049 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4050 parent - the original process is debugged after a fork\n\
4051 child - the new process is debugged after a fork\n\
4052 both - both the parent and child are debugged after a fork\n\
4053 ask - the debugger will ask for one of the above choices\n\
4054 For \"both\", another copy of the debugger will be started to follow\n\
4055 the new child process. The original debugger will continue to follow\n\
4056 the original parent process. To distinguish their prompts, the\n\
4057 debugger copy's prompt will be changed.\n\
4058 For \"parent\" or \"child\", the unfollowed process will run free.\n\
4059 By default, the debugger will follow the parent process.",
4060 */
c906108c
SS
4061 "Set debugger response to a program call of fork \
4062or vfork.\n\
4063A fork or vfork creates a new process. follow-fork-mode can be:\n\
4064 parent - the original process is debugged after a fork\n\
4065 child - the new process is debugged after a fork\n\
4066 ask - the debugger will ask for one of the above choices\n\
4067For \"parent\" or \"child\", the unfollowed process will run free.\n\
488f131b 4068By default, the debugger will follow the parent process.", &setlist);
c906108c
SS
4069 add_show_from_set (c, &showlist);
4070
488f131b 4071 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
1ed2a135 4072 &scheduler_mode, /* current mode */
c906108c
SS
4073 "Set mode for locking scheduler during execution.\n\
4074off == no locking (threads may preempt at any time)\n\
4075on == full locking (no thread except the current thread may run)\n\
4076step == scheduler locked during every single-step operation.\n\
4077 In this mode, no other thread may run during a step command.\n\
488f131b 4078 Other threads may run while stepping over a function call ('next').", &setlist);
c906108c 4079
9f60d481 4080 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
c906108c 4081 add_show_from_set (c, &showlist);
5fbbeb29
CF
4082
4083 c = add_set_cmd ("step-mode", class_run,
488f131b
JB
4084 var_boolean, (char *) &step_stop_if_no_debug,
4085 "Set mode of the step operation. When set, doing a step over a\n\
5fbbeb29
CF
4086function without debug line information will stop at the first\n\
4087instruction of that function. Otherwise, the function is skipped and\n\
488f131b 4088the step command stops at a different source line.", &setlist);
5fbbeb29 4089 add_show_from_set (c, &showlist);
ca6724c1
KB
4090
4091 /* ptid initializations */
4092 null_ptid = ptid_build (0, 0, 0);
4093 minus_one_ptid = ptid_build (-1, 0, 0);
4094 inferior_ptid = null_ptid;
4095 target_last_wait_ptid = minus_one_ptid;
c906108c 4096}
This page took 0.990834 seconds and 4 git commands to generate.