gdb: Fix ATTRIBUTE_NONNULL usage
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
61baf725 4 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
c906108c
SS
67
68/* Prototypes for local functions */
69
96baa820 70static void signals_info (char *, int);
c906108c 71
96baa820 72static void handle_command (char *, int);
c906108c 73
2ea28649 74static void sig_print_info (enum gdb_signal);
c906108c 75
96baa820 76static void sig_print_header (void);
c906108c 77
74b7792f 78static void resume_cleanups (void *);
c906108c 79
96baa820 80static int hook_stop_stub (void *);
c906108c 81
96baa820
JM
82static int restore_selected_frame (void *);
83
4ef3f3be 84static int follow_fork (void);
96baa820 85
d83ad864
DB
86static int follow_fork_inferior (int follow_child, int detach_fork);
87
88static void follow_inferior_reset_breakpoints (void);
89
96baa820 90static void set_schedlock_func (char *args, int from_tty,
488f131b 91 struct cmd_list_element *c);
96baa820 92
a289b8f6
JK
93static int currently_stepping (struct thread_info *tp);
94
96baa820 95void _initialize_infrun (void);
43ff13b4 96
e58b0e63
PA
97void nullify_last_target_wait_ptid (void);
98
2c03e5be 99static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
100
101static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
102
2484c66b
UW
103static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
104
8550d3b3
YQ
105static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
106
372316f1
PA
107/* Asynchronous signal handler registered as event loop source for
108 when we have pending events ready to be passed to the core. */
109static struct async_event_handler *infrun_async_inferior_event_token;
110
111/* Stores whether infrun_async was previously enabled or disabled.
112 Starts off as -1, indicating "never enabled/disabled". */
113static int infrun_is_async = -1;
114
115/* See infrun.h. */
116
117void
118infrun_async (int enable)
119{
120 if (infrun_is_async != enable)
121 {
122 infrun_is_async = enable;
123
124 if (debug_infrun)
125 fprintf_unfiltered (gdb_stdlog,
126 "infrun: infrun_async(%d)\n",
127 enable);
128
129 if (enable)
130 mark_async_event_handler (infrun_async_inferior_event_token);
131 else
132 clear_async_event_handler (infrun_async_inferior_event_token);
133 }
134}
135
0b333c5e
PA
136/* See infrun.h. */
137
138void
139mark_infrun_async_event_handler (void)
140{
141 mark_async_event_handler (infrun_async_inferior_event_token);
142}
143
5fbbeb29
CF
144/* When set, stop the 'step' command if we enter a function which has
145 no line number information. The normal behavior is that we step
146 over such function. */
147int step_stop_if_no_debug = 0;
920d2a44
AC
148static void
149show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
150 struct cmd_list_element *c, const char *value)
151{
152 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
153}
5fbbeb29 154
b9f437de
PA
155/* proceed and normal_stop use this to notify the user when the
156 inferior stopped in a different thread than it had been running
157 in. */
96baa820 158
39f77062 159static ptid_t previous_inferior_ptid;
7a292a7a 160
07107ca6
LM
161/* If set (default for legacy reasons), when following a fork, GDB
162 will detach from one of the fork branches, child or parent.
163 Exactly which branch is detached depends on 'set follow-fork-mode'
164 setting. */
165
166static int detach_fork = 1;
6c95b8df 167
237fc4c9
PA
168int debug_displaced = 0;
169static void
170show_debug_displaced (struct ui_file *file, int from_tty,
171 struct cmd_list_element *c, const char *value)
172{
173 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
174}
175
ccce17b0 176unsigned int debug_infrun = 0;
920d2a44
AC
177static void
178show_debug_infrun (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
182}
527159b7 183
03583c20
UW
184
185/* Support for disabling address space randomization. */
186
187int disable_randomization = 1;
188
189static void
190show_disable_randomization (struct ui_file *file, int from_tty,
191 struct cmd_list_element *c, const char *value)
192{
193 if (target_supports_disable_randomization ())
194 fprintf_filtered (file,
195 _("Disabling randomization of debuggee's "
196 "virtual address space is %s.\n"),
197 value);
198 else
199 fputs_filtered (_("Disabling randomization of debuggee's "
200 "virtual address space is unsupported on\n"
201 "this platform.\n"), file);
202}
203
204static void
205set_disable_randomization (char *args, int from_tty,
206 struct cmd_list_element *c)
207{
208 if (!target_supports_disable_randomization ())
209 error (_("Disabling randomization of debuggee's "
210 "virtual address space is unsupported on\n"
211 "this platform."));
212}
213
d32dc48e
PA
214/* User interface for non-stop mode. */
215
216int non_stop = 0;
217static int non_stop_1 = 0;
218
219static void
220set_non_stop (char *args, int from_tty,
221 struct cmd_list_element *c)
222{
223 if (target_has_execution)
224 {
225 non_stop_1 = non_stop;
226 error (_("Cannot change this setting while the inferior is running."));
227 }
228
229 non_stop = non_stop_1;
230}
231
232static void
233show_non_stop (struct ui_file *file, int from_tty,
234 struct cmd_list_element *c, const char *value)
235{
236 fprintf_filtered (file,
237 _("Controlling the inferior in non-stop mode is %s.\n"),
238 value);
239}
240
d914c394
SS
241/* "Observer mode" is somewhat like a more extreme version of
242 non-stop, in which all GDB operations that might affect the
243 target's execution have been disabled. */
244
d914c394
SS
245int observer_mode = 0;
246static int observer_mode_1 = 0;
247
248static void
249set_observer_mode (char *args, int from_tty,
250 struct cmd_list_element *c)
251{
d914c394
SS
252 if (target_has_execution)
253 {
254 observer_mode_1 = observer_mode;
255 error (_("Cannot change this setting while the inferior is running."));
256 }
257
258 observer_mode = observer_mode_1;
259
260 may_write_registers = !observer_mode;
261 may_write_memory = !observer_mode;
262 may_insert_breakpoints = !observer_mode;
263 may_insert_tracepoints = !observer_mode;
264 /* We can insert fast tracepoints in or out of observer mode,
265 but enable them if we're going into this mode. */
266 if (observer_mode)
267 may_insert_fast_tracepoints = 1;
268 may_stop = !observer_mode;
269 update_target_permissions ();
270
271 /* Going *into* observer mode we must force non-stop, then
272 going out we leave it that way. */
273 if (observer_mode)
274 {
d914c394
SS
275 pagination_enabled = 0;
276 non_stop = non_stop_1 = 1;
277 }
278
279 if (from_tty)
280 printf_filtered (_("Observer mode is now %s.\n"),
281 (observer_mode ? "on" : "off"));
282}
283
284static void
285show_observer_mode (struct ui_file *file, int from_tty,
286 struct cmd_list_element *c, const char *value)
287{
288 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
289}
290
291/* This updates the value of observer mode based on changes in
292 permissions. Note that we are deliberately ignoring the values of
293 may-write-registers and may-write-memory, since the user may have
294 reason to enable these during a session, for instance to turn on a
295 debugging-related global. */
296
297void
298update_observer_mode (void)
299{
300 int newval;
301
302 newval = (!may_insert_breakpoints
303 && !may_insert_tracepoints
304 && may_insert_fast_tracepoints
305 && !may_stop
306 && non_stop);
307
308 /* Let the user know if things change. */
309 if (newval != observer_mode)
310 printf_filtered (_("Observer mode is now %s.\n"),
311 (newval ? "on" : "off"));
312
313 observer_mode = observer_mode_1 = newval;
314}
c2c6d25f 315
c906108c
SS
316/* Tables of how to react to signals; the user sets them. */
317
318static unsigned char *signal_stop;
319static unsigned char *signal_print;
320static unsigned char *signal_program;
321
ab04a2af
TT
322/* Table of signals that are registered with "catch signal". A
323 non-zero entry indicates that the signal is caught by some "catch
324 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
325 signals. */
326static unsigned char *signal_catch;
327
2455069d
UW
328/* Table of signals that the target may silently handle.
329 This is automatically determined from the flags above,
330 and simply cached here. */
331static unsigned char *signal_pass;
332
c906108c
SS
333#define SET_SIGS(nsigs,sigs,flags) \
334 do { \
335 int signum = (nsigs); \
336 while (signum-- > 0) \
337 if ((sigs)[signum]) \
338 (flags)[signum] = 1; \
339 } while (0)
340
341#define UNSET_SIGS(nsigs,sigs,flags) \
342 do { \
343 int signum = (nsigs); \
344 while (signum-- > 0) \
345 if ((sigs)[signum]) \
346 (flags)[signum] = 0; \
347 } while (0)
348
9b224c5e
PA
349/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
350 this function is to avoid exporting `signal_program'. */
351
352void
353update_signals_program_target (void)
354{
a493e3e2 355 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
356}
357
1777feb0 358/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 359
edb3359d 360#define RESUME_ALL minus_one_ptid
c906108c
SS
361
362/* Command list pointer for the "stop" placeholder. */
363
364static struct cmd_list_element *stop_command;
365
c906108c
SS
366/* Nonzero if we want to give control to the user when we're notified
367 of shared library events by the dynamic linker. */
628fe4e4 368int stop_on_solib_events;
f9e14852
GB
369
370/* Enable or disable optional shared library event breakpoints
371 as appropriate when the above flag is changed. */
372
373static void
374set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
375{
376 update_solib_breakpoints ();
377}
378
920d2a44
AC
379static void
380show_stop_on_solib_events (struct ui_file *file, int from_tty,
381 struct cmd_list_element *c, const char *value)
382{
383 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
384 value);
385}
c906108c 386
c906108c
SS
387/* Nonzero after stop if current stack frame should be printed. */
388
389static int stop_print_frame;
390
e02bc4cc 391/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
392 returned by target_wait()/deprecated_target_wait_hook(). This
393 information is returned by get_last_target_status(). */
39f77062 394static ptid_t target_last_wait_ptid;
e02bc4cc
DS
395static struct target_waitstatus target_last_waitstatus;
396
0d1e5fa7
PA
397static void context_switch (ptid_t ptid);
398
4e1c45ea 399void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 400
53904c9e
AC
401static const char follow_fork_mode_child[] = "child";
402static const char follow_fork_mode_parent[] = "parent";
403
40478521 404static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
405 follow_fork_mode_child,
406 follow_fork_mode_parent,
407 NULL
ef346e04 408};
c906108c 409
53904c9e 410static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
411static void
412show_follow_fork_mode_string (struct ui_file *file, int from_tty,
413 struct cmd_list_element *c, const char *value)
414{
3e43a32a
MS
415 fprintf_filtered (file,
416 _("Debugger response to a program "
417 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
418 value);
419}
c906108c
SS
420\f
421
d83ad864
DB
422/* Handle changes to the inferior list based on the type of fork,
423 which process is being followed, and whether the other process
424 should be detached. On entry inferior_ptid must be the ptid of
425 the fork parent. At return inferior_ptid is the ptid of the
426 followed inferior. */
427
428static int
429follow_fork_inferior (int follow_child, int detach_fork)
430{
431 int has_vforked;
79639e11 432 ptid_t parent_ptid, child_ptid;
d83ad864
DB
433
434 has_vforked = (inferior_thread ()->pending_follow.kind
435 == TARGET_WAITKIND_VFORKED);
79639e11
PA
436 parent_ptid = inferior_ptid;
437 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
438
439 if (has_vforked
440 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 441 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
442 && !(follow_child || detach_fork || sched_multi))
443 {
444 /* The parent stays blocked inside the vfork syscall until the
445 child execs or exits. If we don't let the child run, then
446 the parent stays blocked. If we're telling the parent to run
447 in the foreground, the user will not be able to ctrl-c to get
448 back the terminal, effectively hanging the debug session. */
449 fprintf_filtered (gdb_stderr, _("\
450Can not resume the parent process over vfork in the foreground while\n\
451holding the child stopped. Try \"set detach-on-fork\" or \
452\"set schedule-multiple\".\n"));
453 /* FIXME output string > 80 columns. */
454 return 1;
455 }
456
457 if (!follow_child)
458 {
459 /* Detach new forked process? */
460 if (detach_fork)
461 {
d83ad864
DB
462 /* Before detaching from the child, remove all breakpoints
463 from it. If we forked, then this has already been taken
464 care of by infrun.c. If we vforked however, any
465 breakpoint inserted in the parent is visible in the
466 child, even those added while stopped in a vfork
467 catchpoint. This will remove the breakpoints from the
468 parent also, but they'll be reinserted below. */
469 if (has_vforked)
470 {
471 /* Keep breakpoints list in sync. */
472 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
473 }
474
475 if (info_verbose || debug_infrun)
476 {
8dd06f7a
DB
477 /* Ensure that we have a process ptid. */
478 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
479
6f259a23 480 target_terminal_ours_for_output ();
d83ad864 481 fprintf_filtered (gdb_stdlog,
79639e11 482 _("Detaching after %s from child %s.\n"),
6f259a23 483 has_vforked ? "vfork" : "fork",
8dd06f7a 484 target_pid_to_str (process_ptid));
d83ad864
DB
485 }
486 }
487 else
488 {
489 struct inferior *parent_inf, *child_inf;
490 struct cleanup *old_chain;
491
492 /* Add process to GDB's tables. */
79639e11 493 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
494
495 parent_inf = current_inferior ();
496 child_inf->attach_flag = parent_inf->attach_flag;
497 copy_terminal_info (child_inf, parent_inf);
498 child_inf->gdbarch = parent_inf->gdbarch;
499 copy_inferior_target_desc_info (child_inf, parent_inf);
500
501 old_chain = save_inferior_ptid ();
502 save_current_program_space ();
503
79639e11 504 inferior_ptid = child_ptid;
d83ad864
DB
505 add_thread (inferior_ptid);
506 child_inf->symfile_flags = SYMFILE_NO_READ;
507
508 /* If this is a vfork child, then the address-space is
509 shared with the parent. */
510 if (has_vforked)
511 {
512 child_inf->pspace = parent_inf->pspace;
513 child_inf->aspace = parent_inf->aspace;
514
515 /* The parent will be frozen until the child is done
516 with the shared region. Keep track of the
517 parent. */
518 child_inf->vfork_parent = parent_inf;
519 child_inf->pending_detach = 0;
520 parent_inf->vfork_child = child_inf;
521 parent_inf->pending_detach = 0;
522 }
523 else
524 {
525 child_inf->aspace = new_address_space ();
526 child_inf->pspace = add_program_space (child_inf->aspace);
527 child_inf->removable = 1;
528 set_current_program_space (child_inf->pspace);
529 clone_program_space (child_inf->pspace, parent_inf->pspace);
530
531 /* Let the shared library layer (e.g., solib-svr4) learn
532 about this new process, relocate the cloned exec, pull
533 in shared libraries, and install the solib event
534 breakpoint. If a "cloned-VM" event was propagated
535 better throughout the core, this wouldn't be
536 required. */
537 solib_create_inferior_hook (0);
538 }
539
540 do_cleanups (old_chain);
541 }
542
543 if (has_vforked)
544 {
545 struct inferior *parent_inf;
546
547 parent_inf = current_inferior ();
548
549 /* If we detached from the child, then we have to be careful
550 to not insert breakpoints in the parent until the child
551 is done with the shared memory region. However, if we're
552 staying attached to the child, then we can and should
553 insert breakpoints, so that we can debug it. A
554 subsequent child exec or exit is enough to know when does
555 the child stops using the parent's address space. */
556 parent_inf->waiting_for_vfork_done = detach_fork;
557 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
558 }
559 }
560 else
561 {
562 /* Follow the child. */
563 struct inferior *parent_inf, *child_inf;
564 struct program_space *parent_pspace;
565
566 if (info_verbose || debug_infrun)
567 {
6f259a23
DB
568 target_terminal_ours_for_output ();
569 fprintf_filtered (gdb_stdlog,
79639e11
PA
570 _("Attaching after %s %s to child %s.\n"),
571 target_pid_to_str (parent_ptid),
6f259a23 572 has_vforked ? "vfork" : "fork",
79639e11 573 target_pid_to_str (child_ptid));
d83ad864
DB
574 }
575
576 /* Add the new inferior first, so that the target_detach below
577 doesn't unpush the target. */
578
79639e11 579 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
580
581 parent_inf = current_inferior ();
582 child_inf->attach_flag = parent_inf->attach_flag;
583 copy_terminal_info (child_inf, parent_inf);
584 child_inf->gdbarch = parent_inf->gdbarch;
585 copy_inferior_target_desc_info (child_inf, parent_inf);
586
587 parent_pspace = parent_inf->pspace;
588
589 /* If we're vforking, we want to hold on to the parent until the
590 child exits or execs. At child exec or exit time we can
591 remove the old breakpoints from the parent and detach or
592 resume debugging it. Otherwise, detach the parent now; we'll
593 want to reuse it's program/address spaces, but we can't set
594 them to the child before removing breakpoints from the
595 parent, otherwise, the breakpoints module could decide to
596 remove breakpoints from the wrong process (since they'd be
597 assigned to the same address space). */
598
599 if (has_vforked)
600 {
601 gdb_assert (child_inf->vfork_parent == NULL);
602 gdb_assert (parent_inf->vfork_child == NULL);
603 child_inf->vfork_parent = parent_inf;
604 child_inf->pending_detach = 0;
605 parent_inf->vfork_child = child_inf;
606 parent_inf->pending_detach = detach_fork;
607 parent_inf->waiting_for_vfork_done = 0;
608 }
609 else if (detach_fork)
6f259a23
DB
610 {
611 if (info_verbose || debug_infrun)
612 {
8dd06f7a
DB
613 /* Ensure that we have a process ptid. */
614 ptid_t process_ptid = pid_to_ptid (ptid_get_pid (child_ptid));
615
6f259a23
DB
616 target_terminal_ours_for_output ();
617 fprintf_filtered (gdb_stdlog,
618 _("Detaching after fork from "
79639e11 619 "child %s.\n"),
8dd06f7a 620 target_pid_to_str (process_ptid));
6f259a23
DB
621 }
622
623 target_detach (NULL, 0);
624 }
d83ad864
DB
625
626 /* Note that the detach above makes PARENT_INF dangling. */
627
628 /* Add the child thread to the appropriate lists, and switch to
629 this new thread, before cloning the program space, and
630 informing the solib layer about this new process. */
631
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633 add_thread (inferior_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642 }
643 else
644 {
645 child_inf->aspace = new_address_space ();
646 child_inf->pspace = add_program_space (child_inf->aspace);
647 child_inf->removable = 1;
648 child_inf->symfile_flags = SYMFILE_NO_READ;
649 set_current_program_space (child_inf->pspace);
650 clone_program_space (child_inf->pspace, parent_pspace);
651
652 /* Let the shared library layer (e.g., solib-svr4) learn
653 about this new process, relocate the cloned exec, pull in
654 shared libraries, and install the solib event breakpoint.
655 If a "cloned-VM" event was propagated better throughout
656 the core, this wouldn't be required. */
657 solib_create_inferior_hook (0);
658 }
659 }
660
661 return target_follow_fork (follow_child, detach_fork);
662}
663
e58b0e63
PA
664/* Tell the target to follow the fork we're stopped at. Returns true
665 if the inferior should be resumed; false, if the target for some
666 reason decided it's best not to resume. */
667
6604731b 668static int
4ef3f3be 669follow_fork (void)
c906108c 670{
ea1dd7bc 671 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
672 int should_resume = 1;
673 struct thread_info *tp;
674
675 /* Copy user stepping state to the new inferior thread. FIXME: the
676 followed fork child thread should have a copy of most of the
4e3990f4
DE
677 parent thread structure's run control related fields, not just these.
678 Initialized to avoid "may be used uninitialized" warnings from gcc. */
679 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 680 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
681 CORE_ADDR step_range_start = 0;
682 CORE_ADDR step_range_end = 0;
683 struct frame_id step_frame_id = { 0 };
8980e177 684 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
685
686 if (!non_stop)
687 {
688 ptid_t wait_ptid;
689 struct target_waitstatus wait_status;
690
691 /* Get the last target status returned by target_wait(). */
692 get_last_target_status (&wait_ptid, &wait_status);
693
694 /* If not stopped at a fork event, then there's nothing else to
695 do. */
696 if (wait_status.kind != TARGET_WAITKIND_FORKED
697 && wait_status.kind != TARGET_WAITKIND_VFORKED)
698 return 1;
699
700 /* Check if we switched over from WAIT_PTID, since the event was
701 reported. */
702 if (!ptid_equal (wait_ptid, minus_one_ptid)
703 && !ptid_equal (inferior_ptid, wait_ptid))
704 {
705 /* We did. Switch back to WAIT_PTID thread, to tell the
706 target to follow it (in either direction). We'll
707 afterwards refuse to resume, and inform the user what
708 happened. */
709 switch_to_thread (wait_ptid);
710 should_resume = 0;
711 }
712 }
713
714 tp = inferior_thread ();
715
716 /* If there were any forks/vforks that were caught and are now to be
717 followed, then do so now. */
718 switch (tp->pending_follow.kind)
719 {
720 case TARGET_WAITKIND_FORKED:
721 case TARGET_WAITKIND_VFORKED:
722 {
723 ptid_t parent, child;
724
725 /* If the user did a next/step, etc, over a fork call,
726 preserve the stepping state in the fork child. */
727 if (follow_child && should_resume)
728 {
8358c15c
JK
729 step_resume_breakpoint = clone_momentary_breakpoint
730 (tp->control.step_resume_breakpoint);
16c381f0
JK
731 step_range_start = tp->control.step_range_start;
732 step_range_end = tp->control.step_range_end;
733 step_frame_id = tp->control.step_frame_id;
186c406b
TT
734 exception_resume_breakpoint
735 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 736 thread_fsm = tp->thread_fsm;
e58b0e63
PA
737
738 /* For now, delete the parent's sr breakpoint, otherwise,
739 parent/child sr breakpoints are considered duplicates,
740 and the child version will not be installed. Remove
741 this when the breakpoints module becomes aware of
742 inferiors and address spaces. */
743 delete_step_resume_breakpoint (tp);
16c381f0
JK
744 tp->control.step_range_start = 0;
745 tp->control.step_range_end = 0;
746 tp->control.step_frame_id = null_frame_id;
186c406b 747 delete_exception_resume_breakpoint (tp);
8980e177 748 tp->thread_fsm = NULL;
e58b0e63
PA
749 }
750
751 parent = inferior_ptid;
752 child = tp->pending_follow.value.related_pid;
753
d83ad864
DB
754 /* Set up inferior(s) as specified by the caller, and tell the
755 target to do whatever is necessary to follow either parent
756 or child. */
757 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
758 {
759 /* Target refused to follow, or there's some other reason
760 we shouldn't resume. */
761 should_resume = 0;
762 }
763 else
764 {
765 /* This pending follow fork event is now handled, one way
766 or another. The previous selected thread may be gone
767 from the lists by now, but if it is still around, need
768 to clear the pending follow request. */
e09875d4 769 tp = find_thread_ptid (parent);
e58b0e63
PA
770 if (tp)
771 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
772
773 /* This makes sure we don't try to apply the "Switched
774 over from WAIT_PID" logic above. */
775 nullify_last_target_wait_ptid ();
776
1777feb0 777 /* If we followed the child, switch to it... */
e58b0e63
PA
778 if (follow_child)
779 {
780 switch_to_thread (child);
781
782 /* ... and preserve the stepping state, in case the
783 user was stepping over the fork call. */
784 if (should_resume)
785 {
786 tp = inferior_thread ();
8358c15c
JK
787 tp->control.step_resume_breakpoint
788 = step_resume_breakpoint;
16c381f0
JK
789 tp->control.step_range_start = step_range_start;
790 tp->control.step_range_end = step_range_end;
791 tp->control.step_frame_id = step_frame_id;
186c406b
TT
792 tp->control.exception_resume_breakpoint
793 = exception_resume_breakpoint;
8980e177 794 tp->thread_fsm = thread_fsm;
e58b0e63
PA
795 }
796 else
797 {
798 /* If we get here, it was because we're trying to
799 resume from a fork catchpoint, but, the user
800 has switched threads away from the thread that
801 forked. In that case, the resume command
802 issued is most likely not applicable to the
803 child, so just warn, and refuse to resume. */
3e43a32a 804 warning (_("Not resuming: switched threads "
fd7dcb94 805 "before following fork child."));
e58b0e63
PA
806 }
807
808 /* Reset breakpoints in the child as appropriate. */
809 follow_inferior_reset_breakpoints ();
810 }
811 else
812 switch_to_thread (parent);
813 }
814 }
815 break;
816 case TARGET_WAITKIND_SPURIOUS:
817 /* Nothing to follow. */
818 break;
819 default:
820 internal_error (__FILE__, __LINE__,
821 "Unexpected pending_follow.kind %d\n",
822 tp->pending_follow.kind);
823 break;
824 }
c906108c 825
e58b0e63 826 return should_resume;
c906108c
SS
827}
828
d83ad864 829static void
6604731b 830follow_inferior_reset_breakpoints (void)
c906108c 831{
4e1c45ea
PA
832 struct thread_info *tp = inferior_thread ();
833
6604731b
DJ
834 /* Was there a step_resume breakpoint? (There was if the user
835 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
836 thread number. Cloned step_resume breakpoints are disabled on
837 creation, so enable it here now that it is associated with the
838 correct thread.
6604731b
DJ
839
840 step_resumes are a form of bp that are made to be per-thread.
841 Since we created the step_resume bp when the parent process
842 was being debugged, and now are switching to the child process,
843 from the breakpoint package's viewpoint, that's a switch of
844 "threads". We must update the bp's notion of which thread
845 it is for, or it'll be ignored when it triggers. */
846
8358c15c 847 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
848 {
849 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
850 tp->control.step_resume_breakpoint->loc->enabled = 1;
851 }
6604731b 852
a1aa2221 853 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 854 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
855 {
856 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
857 tp->control.exception_resume_breakpoint->loc->enabled = 1;
858 }
186c406b 859
6604731b
DJ
860 /* Reinsert all breakpoints in the child. The user may have set
861 breakpoints after catching the fork, in which case those
862 were never set in the child, but only in the parent. This makes
863 sure the inserted breakpoints match the breakpoint list. */
864
865 breakpoint_re_set ();
866 insert_breakpoints ();
c906108c 867}
c906108c 868
6c95b8df
PA
869/* The child has exited or execed: resume threads of the parent the
870 user wanted to be executing. */
871
872static int
873proceed_after_vfork_done (struct thread_info *thread,
874 void *arg)
875{
876 int pid = * (int *) arg;
877
878 if (ptid_get_pid (thread->ptid) == pid
879 && is_running (thread->ptid)
880 && !is_executing (thread->ptid)
881 && !thread->stop_requested
a493e3e2 882 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
883 {
884 if (debug_infrun)
885 fprintf_unfiltered (gdb_stdlog,
886 "infrun: resuming vfork parent thread %s\n",
887 target_pid_to_str (thread->ptid));
888
889 switch_to_thread (thread->ptid);
70509625 890 clear_proceed_status (0);
64ce06e4 891 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
892 }
893
894 return 0;
895}
896
897/* Called whenever we notice an exec or exit event, to handle
898 detaching or resuming a vfork parent. */
899
900static void
901handle_vfork_child_exec_or_exit (int exec)
902{
903 struct inferior *inf = current_inferior ();
904
905 if (inf->vfork_parent)
906 {
907 int resume_parent = -1;
908
909 /* This exec or exit marks the end of the shared memory region
910 between the parent and the child. If the user wanted to
911 detach from the parent, now is the time. */
912
913 if (inf->vfork_parent->pending_detach)
914 {
915 struct thread_info *tp;
916 struct cleanup *old_chain;
917 struct program_space *pspace;
918 struct address_space *aspace;
919
1777feb0 920 /* follow-fork child, detach-on-fork on. */
6c95b8df 921
68c9da30
PA
922 inf->vfork_parent->pending_detach = 0;
923
f50f4e56
PA
924 if (!exec)
925 {
926 /* If we're handling a child exit, then inferior_ptid
927 points at the inferior's pid, not to a thread. */
928 old_chain = save_inferior_ptid ();
929 save_current_program_space ();
930 save_current_inferior ();
931 }
932 else
933 old_chain = save_current_space_and_thread ();
6c95b8df
PA
934
935 /* We're letting loose of the parent. */
936 tp = any_live_thread_of_process (inf->vfork_parent->pid);
937 switch_to_thread (tp->ptid);
938
939 /* We're about to detach from the parent, which implicitly
940 removes breakpoints from its address space. There's a
941 catch here: we want to reuse the spaces for the child,
942 but, parent/child are still sharing the pspace at this
943 point, although the exec in reality makes the kernel give
944 the child a fresh set of new pages. The problem here is
945 that the breakpoints module being unaware of this, would
946 likely chose the child process to write to the parent
947 address space. Swapping the child temporarily away from
948 the spaces has the desired effect. Yes, this is "sort
949 of" a hack. */
950
951 pspace = inf->pspace;
952 aspace = inf->aspace;
953 inf->aspace = NULL;
954 inf->pspace = NULL;
955
956 if (debug_infrun || info_verbose)
957 {
6f259a23 958 target_terminal_ours_for_output ();
6c95b8df
PA
959
960 if (exec)
6f259a23
DB
961 {
962 fprintf_filtered (gdb_stdlog,
963 _("Detaching vfork parent process "
964 "%d after child exec.\n"),
965 inf->vfork_parent->pid);
966 }
6c95b8df 967 else
6f259a23
DB
968 {
969 fprintf_filtered (gdb_stdlog,
970 _("Detaching vfork parent process "
971 "%d after child exit.\n"),
972 inf->vfork_parent->pid);
973 }
6c95b8df
PA
974 }
975
976 target_detach (NULL, 0);
977
978 /* Put it back. */
979 inf->pspace = pspace;
980 inf->aspace = aspace;
981
982 do_cleanups (old_chain);
983 }
984 else if (exec)
985 {
986 /* We're staying attached to the parent, so, really give the
987 child a new address space. */
988 inf->pspace = add_program_space (maybe_new_address_space ());
989 inf->aspace = inf->pspace->aspace;
990 inf->removable = 1;
991 set_current_program_space (inf->pspace);
992
993 resume_parent = inf->vfork_parent->pid;
994
995 /* Break the bonds. */
996 inf->vfork_parent->vfork_child = NULL;
997 }
998 else
999 {
1000 struct cleanup *old_chain;
1001 struct program_space *pspace;
1002
1003 /* If this is a vfork child exiting, then the pspace and
1004 aspaces were shared with the parent. Since we're
1005 reporting the process exit, we'll be mourning all that is
1006 found in the address space, and switching to null_ptid,
1007 preparing to start a new inferior. But, since we don't
1008 want to clobber the parent's address/program spaces, we
1009 go ahead and create a new one for this exiting
1010 inferior. */
1011
1012 /* Switch to null_ptid, so that clone_program_space doesn't want
1013 to read the selected frame of a dead process. */
1014 old_chain = save_inferior_ptid ();
1015 inferior_ptid = null_ptid;
1016
1017 /* This inferior is dead, so avoid giving the breakpoints
1018 module the option to write through to it (cloning a
1019 program space resets breakpoints). */
1020 inf->aspace = NULL;
1021 inf->pspace = NULL;
1022 pspace = add_program_space (maybe_new_address_space ());
1023 set_current_program_space (pspace);
1024 inf->removable = 1;
7dcd53a0 1025 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1026 clone_program_space (pspace, inf->vfork_parent->pspace);
1027 inf->pspace = pspace;
1028 inf->aspace = pspace->aspace;
1029
1030 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1031 inferior. */
6c95b8df
PA
1032 do_cleanups (old_chain);
1033
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
1047 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1055
1056 do_cleanups (old_chain);
1057 }
1058 }
1059}
1060
eb6c553b 1061/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1062
1063static const char follow_exec_mode_new[] = "new";
1064static const char follow_exec_mode_same[] = "same";
40478521 1065static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1066{
1067 follow_exec_mode_new,
1068 follow_exec_mode_same,
1069 NULL,
1070};
1071
1072static const char *follow_exec_mode_string = follow_exec_mode_same;
1073static void
1074show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1075 struct cmd_list_element *c, const char *value)
1076{
1077 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1078}
1079
ecf45d2c 1080/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1081
c906108c 1082static void
ecf45d2c 1083follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1084{
95e50b27 1085 struct thread_info *th, *tmp;
6c95b8df 1086 struct inferior *inf = current_inferior ();
95e50b27 1087 int pid = ptid_get_pid (ptid);
94585166 1088 ptid_t process_ptid;
ecf45d2c
SL
1089 char *exec_file_host;
1090 struct cleanup *old_chain;
7a292a7a 1091
c906108c
SS
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten witha TRAP instruction). Since
1777feb0 1111 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1112
1113 mark_breakpoints_out ();
1114
95e50b27
PA
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
8a06aea7 1134 ALL_THREADS_SAFE (th, tmp)
95e50b27
PA
1135 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1136 delete_thread (th->ptid);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 th = inferior_thread ();
8358c15c 1143 th->control.step_resume_breakpoint = NULL;
186c406b 1144 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1145 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
c906108c 1148
95e50b27
PA
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
a75724bc
PA
1152 th->stop_requested = 0;
1153
95e50b27
PA
1154 update_breakpoints_after_exec ();
1155
1777feb0 1156 /* What is this a.out's name? */
94585166 1157 process_ptid = pid_to_ptid (pid);
6c95b8df 1158 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1159 target_pid_to_str (process_ptid),
ecf45d2c 1160 exec_file_target);
c906108c
SS
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1163 inferior has essentially been killed & reborn. */
7a292a7a 1164
c906108c 1165 gdb_flush (gdb_stdout);
6ca15a4b
PA
1166
1167 breakpoint_init_inferior (inf_execd);
e85a822c 1168
ecf45d2c
SL
1169 exec_file_host = exec_file_find (exec_file_target, NULL);
1170 old_chain = make_cleanup (xfree, exec_file_host);
ff862be4 1171
ecf45d2c
SL
1172 /* If we were unable to map the executable target pathname onto a host
1173 pathname, tell the user that. Otherwise GDB's subsequent behavior
1174 is confusing. Maybe it would even be better to stop at this point
1175 so that the user can specify a file manually before continuing. */
1176 if (exec_file_host == NULL)
1177 warning (_("Could not load symbols for executable %s.\n"
1178 "Do you need \"set sysroot\"?"),
1179 exec_file_target);
c906108c 1180
cce9b6bf
PA
1181 /* Reset the shared library package. This ensures that we get a
1182 shlib event when the child reaches "_start", at which point the
1183 dld will have had a chance to initialize the child. */
1184 /* Also, loading a symbol file below may trigger symbol lookups, and
1185 we don't want those to be satisfied by the libraries of the
1186 previous incarnation of this process. */
1187 no_shared_libraries (NULL, 0);
1188
6c95b8df
PA
1189 if (follow_exec_mode_string == follow_exec_mode_new)
1190 {
6c95b8df
PA
1191 /* The user wants to keep the old inferior and program spaces
1192 around. Create a new fresh one, and switch to it. */
1193
17d8546e
DB
1194 /* Do exit processing for the original inferior before adding
1195 the new inferior so we don't have two active inferiors with
1196 the same ptid, which can confuse find_inferior_ptid. */
1197 exit_inferior_num_silent (current_inferior ()->num);
1198
94585166
DB
1199 inf = add_inferior_with_spaces ();
1200 inf->pid = pid;
ecf45d2c 1201 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1202
1203 set_current_inferior (inf);
94585166
DB
1204 set_current_program_space (inf->pspace);
1205 add_thread (ptid);
6c95b8df 1206 }
9107fc8d
PA
1207 else
1208 {
1209 /* The old description may no longer be fit for the new image.
1210 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1211 old description; we'll read a new one below. No need to do
1212 this on "follow-exec-mode new", as the old inferior stays
1213 around (its description is later cleared/refetched on
1214 restart). */
1215 target_clear_description ();
1216 }
6c95b8df
PA
1217
1218 gdb_assert (current_program_space == inf->pspace);
1219
ecf45d2c
SL
1220 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1221 because the proper displacement for a PIE (Position Independent
1222 Executable) main symbol file will only be computed by
1223 solib_create_inferior_hook below. breakpoint_re_set would fail
1224 to insert the breakpoints with the zero displacement. */
1225 try_open_exec_file (exec_file_host, inf, SYMFILE_DEFER_BP_RESET);
c1e56572 1226
ecf45d2c 1227 do_cleanups (old_chain);
c906108c 1228
9107fc8d
PA
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
268a4a75 1237 solib_create_inferior_hook (0);
c906108c 1238
4efc6507
DE
1239 jit_inferior_created_hook ();
1240
c1e56572
JK
1241 breakpoint_re_set ();
1242
c906108c
SS
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1777feb0 1245 to symbol_file_command...). */
c906108c
SS
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1777feb0 1251 matically get reset there in the new process.). */
c906108c
SS
1252}
1253
c2829269
PA
1254/* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261struct thread_info *step_over_queue_head;
1262
6c4cfb24
PA
1263/* Bit flags indicating what the thread needs to step over. */
1264
8d297bbf 1265enum step_over_what_flag
6c4cfb24
PA
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
8d297bbf 1275DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1276
963f9c80 1277/* Info about an instruction that is being stepped over. */
31e77af2
PA
1278
1279struct step_over_info
1280{
963f9c80
PA
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
31e77af2 1285 struct address_space *aspace;
31e77af2 1286 CORE_ADDR address;
963f9c80
PA
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
21edc42f
YQ
1291
1292 /* The thread's global number. */
1293 int thread;
31e77af2
PA
1294};
1295
1296/* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320static struct step_over_info step_over_info;
1321
1322/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
31e77af2
PA
1326
1327static void
963f9c80 1328set_step_over_info (struct address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1329 int nonsteppable_watchpoint_p,
1330 int thread)
31e77af2
PA
1331{
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
963f9c80 1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1335 step_over_info.thread = thread;
31e77af2
PA
1336}
1337
1338/* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341static void
1342clear_step_over_info (void)
1343{
372316f1
PA
1344 if (debug_infrun)
1345 fprintf_unfiltered (gdb_stdlog,
1346 "infrun: clear_step_over_info\n");
31e77af2
PA
1347 step_over_info.aspace = NULL;
1348 step_over_info.address = 0;
963f9c80 1349 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1350 step_over_info.thread = -1;
31e77af2
PA
1351}
1352
7f89fd65 1353/* See infrun.h. */
31e77af2
PA
1354
1355int
1356stepping_past_instruction_at (struct address_space *aspace,
1357 CORE_ADDR address)
1358{
1359 return (step_over_info.aspace != NULL
1360 && breakpoint_address_match (aspace, address,
1361 step_over_info.aspace,
1362 step_over_info.address));
1363}
1364
963f9c80
PA
1365/* See infrun.h. */
1366
21edc42f
YQ
1367int
1368thread_is_stepping_over_breakpoint (int thread)
1369{
1370 return (step_over_info.thread != -1
1371 && thread == step_over_info.thread);
1372}
1373
1374/* See infrun.h. */
1375
963f9c80
PA
1376int
1377stepping_past_nonsteppable_watchpoint (void)
1378{
1379 return step_over_info.nonsteppable_watchpoint_p;
1380}
1381
6cc83d2a
PA
1382/* Returns true if step-over info is valid. */
1383
1384static int
1385step_over_info_valid_p (void)
1386{
963f9c80
PA
1387 return (step_over_info.aspace != NULL
1388 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1389}
1390
c906108c 1391\f
237fc4c9
PA
1392/* Displaced stepping. */
1393
1394/* In non-stop debugging mode, we must take special care to manage
1395 breakpoints properly; in particular, the traditional strategy for
1396 stepping a thread past a breakpoint it has hit is unsuitable.
1397 'Displaced stepping' is a tactic for stepping one thread past a
1398 breakpoint it has hit while ensuring that other threads running
1399 concurrently will hit the breakpoint as they should.
1400
1401 The traditional way to step a thread T off a breakpoint in a
1402 multi-threaded program in all-stop mode is as follows:
1403
1404 a0) Initially, all threads are stopped, and breakpoints are not
1405 inserted.
1406 a1) We single-step T, leaving breakpoints uninserted.
1407 a2) We insert breakpoints, and resume all threads.
1408
1409 In non-stop debugging, however, this strategy is unsuitable: we
1410 don't want to have to stop all threads in the system in order to
1411 continue or step T past a breakpoint. Instead, we use displaced
1412 stepping:
1413
1414 n0) Initially, T is stopped, other threads are running, and
1415 breakpoints are inserted.
1416 n1) We copy the instruction "under" the breakpoint to a separate
1417 location, outside the main code stream, making any adjustments
1418 to the instruction, register, and memory state as directed by
1419 T's architecture.
1420 n2) We single-step T over the instruction at its new location.
1421 n3) We adjust the resulting register and memory state as directed
1422 by T's architecture. This includes resetting T's PC to point
1423 back into the main instruction stream.
1424 n4) We resume T.
1425
1426 This approach depends on the following gdbarch methods:
1427
1428 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1429 indicate where to copy the instruction, and how much space must
1430 be reserved there. We use these in step n1.
1431
1432 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1433 address, and makes any necessary adjustments to the instruction,
1434 register contents, and memory. We use this in step n1.
1435
1436 - gdbarch_displaced_step_fixup adjusts registers and memory after
1437 we have successfuly single-stepped the instruction, to yield the
1438 same effect the instruction would have had if we had executed it
1439 at its original address. We use this in step n3.
1440
1441 - gdbarch_displaced_step_free_closure provides cleanup.
1442
1443 The gdbarch_displaced_step_copy_insn and
1444 gdbarch_displaced_step_fixup functions must be written so that
1445 copying an instruction with gdbarch_displaced_step_copy_insn,
1446 single-stepping across the copied instruction, and then applying
1447 gdbarch_displaced_insn_fixup should have the same effects on the
1448 thread's memory and registers as stepping the instruction in place
1449 would have. Exactly which responsibilities fall to the copy and
1450 which fall to the fixup is up to the author of those functions.
1451
1452 See the comments in gdbarch.sh for details.
1453
1454 Note that displaced stepping and software single-step cannot
1455 currently be used in combination, although with some care I think
1456 they could be made to. Software single-step works by placing
1457 breakpoints on all possible subsequent instructions; if the
1458 displaced instruction is a PC-relative jump, those breakpoints
1459 could fall in very strange places --- on pages that aren't
1460 executable, or at addresses that are not proper instruction
1461 boundaries. (We do generally let other threads run while we wait
1462 to hit the software single-step breakpoint, and they might
1463 encounter such a corrupted instruction.) One way to work around
1464 this would be to have gdbarch_displaced_step_copy_insn fully
1465 simulate the effect of PC-relative instructions (and return NULL)
1466 on architectures that use software single-stepping.
1467
1468 In non-stop mode, we can have independent and simultaneous step
1469 requests, so more than one thread may need to simultaneously step
1470 over a breakpoint. The current implementation assumes there is
1471 only one scratch space per process. In this case, we have to
1472 serialize access to the scratch space. If thread A wants to step
1473 over a breakpoint, but we are currently waiting for some other
1474 thread to complete a displaced step, we leave thread A stopped and
1475 place it in the displaced_step_request_queue. Whenever a displaced
1476 step finishes, we pick the next thread in the queue and start a new
1477 displaced step operation on it. See displaced_step_prepare and
1478 displaced_step_fixup for details. */
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
1487 int pid;
1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
fc1cf338
PA
1493 /* If this is not null_ptid, this is the thread carrying out a
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
1496 ptid_t step_ptid;
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
1520get_displaced_stepping_state (int pid)
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
1527 if (state->pid == pid)
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
1544 if (!ptid_equal (state->step_ptid, null_ptid))
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
1554displaced_step_in_progress_thread (ptid_t ptid)
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
1558 gdb_assert (!ptid_equal (ptid, null_ptid));
1559
1560 displaced = get_displaced_stepping_state (ptid_get_pid (ptid));
1561
1562 return (displaced != NULL && ptid_equal (displaced->step_ptid, ptid));
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
1568displaced_step_in_progress (int pid)
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
1572 displaced = get_displaced_stepping_state (pid);
1573 if (displaced != NULL && !ptid_equal (displaced->step_ptid, null_ptid))
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
1584add_displaced_stepping_state (int pid)
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
1591 if (state->pid == pid)
1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
fc1cf338
PA
1595 state->pid = pid;
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
1610 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1611
1612 /* If checking the mode of displaced instruction in copy area. */
1613 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1614 && (displaced->step_copy == addr))
1615 return displaced->step_closure;
1616
1617 return NULL;
1618}
1619
fc1cf338 1620/* Remove the displaced stepping state of process PID. */
237fc4c9 1621
fc1cf338
PA
1622static void
1623remove_displaced_stepping_state (int pid)
1624{
1625 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1626
fc1cf338
PA
1627 gdb_assert (pid != 0);
1628
1629 it = displaced_step_inferior_states;
1630 prev_next_p = &displaced_step_inferior_states;
1631 while (it)
1632 {
1633 if (it->pid == pid)
1634 {
1635 *prev_next_p = it->next;
1636 xfree (it);
1637 return;
1638 }
1639
1640 prev_next_p = &it->next;
1641 it = *prev_next_p;
1642 }
1643}
1644
1645static void
1646infrun_inferior_exit (struct inferior *inf)
1647{
1648 remove_displaced_stepping_state (inf->pid);
1649}
237fc4c9 1650
fff08868
HZ
1651/* If ON, and the architecture supports it, GDB will use displaced
1652 stepping to step over breakpoints. If OFF, or if the architecture
1653 doesn't support it, GDB will instead use the traditional
1654 hold-and-step approach. If AUTO (which is the default), GDB will
1655 decide which technique to use to step over breakpoints depending on
1656 which of all-stop or non-stop mode is active --- displaced stepping
1657 in non-stop mode; hold-and-step in all-stop mode. */
1658
72d0e2c5 1659static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1660
237fc4c9
PA
1661static void
1662show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1663 struct cmd_list_element *c,
1664 const char *value)
1665{
72d0e2c5 1666 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1667 fprintf_filtered (file,
1668 _("Debugger's willingness to use displaced stepping "
1669 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1670 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1671 else
3e43a32a
MS
1672 fprintf_filtered (file,
1673 _("Debugger's willingness to use displaced stepping "
1674 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1675}
1676
fff08868 1677/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1678 over breakpoints of thread TP. */
fff08868 1679
237fc4c9 1680static int
3fc8eb30 1681use_displaced_stepping (struct thread_info *tp)
237fc4c9 1682{
3fc8eb30
PA
1683 struct regcache *regcache = get_thread_regcache (tp->ptid);
1684 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1685 struct displaced_step_inferior_state *displaced_state;
1686
1687 displaced_state = get_displaced_stepping_state (ptid_get_pid (tp->ptid));
1688
fbea99ea
PA
1689 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1690 && target_is_non_stop_p ())
72d0e2c5 1691 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1692 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1693 && find_record_target () == NULL
1694 && (displaced_state == NULL
1695 || !displaced_state->failed_before));
237fc4c9
PA
1696}
1697
1698/* Clean out any stray displaced stepping state. */
1699static void
fc1cf338 1700displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1701{
1702 /* Indicate that there is no cleanup pending. */
fc1cf338 1703 displaced->step_ptid = null_ptid;
237fc4c9 1704
fc1cf338 1705 if (displaced->step_closure)
237fc4c9 1706 {
fc1cf338
PA
1707 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1708 displaced->step_closure);
1709 displaced->step_closure = NULL;
237fc4c9
PA
1710 }
1711}
1712
1713static void
fc1cf338 1714displaced_step_clear_cleanup (void *arg)
237fc4c9 1715{
9a3c8263
SM
1716 struct displaced_step_inferior_state *state
1717 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1718
1719 displaced_step_clear (state);
237fc4c9
PA
1720}
1721
1722/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1723void
1724displaced_step_dump_bytes (struct ui_file *file,
1725 const gdb_byte *buf,
1726 size_t len)
1727{
1728 int i;
1729
1730 for (i = 0; i < len; i++)
1731 fprintf_unfiltered (file, "%02x ", buf[i]);
1732 fputs_unfiltered ("\n", file);
1733}
1734
1735/* Prepare to single-step, using displaced stepping.
1736
1737 Note that we cannot use displaced stepping when we have a signal to
1738 deliver. If we have a signal to deliver and an instruction to step
1739 over, then after the step, there will be no indication from the
1740 target whether the thread entered a signal handler or ignored the
1741 signal and stepped over the instruction successfully --- both cases
1742 result in a simple SIGTRAP. In the first case we mustn't do a
1743 fixup, and in the second case we must --- but we can't tell which.
1744 Comments in the code for 'random signals' in handle_inferior_event
1745 explain how we handle this case instead.
1746
1747 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1748 stepped now; 0 if displaced stepping this thread got queued; or -1
1749 if this instruction can't be displaced stepped. */
1750
237fc4c9 1751static int
3fc8eb30 1752displaced_step_prepare_throw (ptid_t ptid)
237fc4c9 1753{
ad53cd71 1754 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1755 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1756 struct regcache *regcache = get_thread_regcache (ptid);
1757 struct gdbarch *gdbarch = get_regcache_arch (regcache);
d35ae833 1758 struct address_space *aspace = get_regcache_aspace (regcache);
237fc4c9
PA
1759 CORE_ADDR original, copy;
1760 ULONGEST len;
1761 struct displaced_step_closure *closure;
fc1cf338 1762 struct displaced_step_inferior_state *displaced;
9e529e1d 1763 int status;
237fc4c9
PA
1764
1765 /* We should never reach this function if the architecture does not
1766 support displaced stepping. */
1767 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1768
c2829269
PA
1769 /* Nor if the thread isn't meant to step over a breakpoint. */
1770 gdb_assert (tp->control.trap_expected);
1771
c1e36e3e
PA
1772 /* Disable range stepping while executing in the scratch pad. We
1773 want a single-step even if executing the displaced instruction in
1774 the scratch buffer lands within the stepping range (e.g., a
1775 jump/branch). */
1776 tp->control.may_range_step = 0;
1777
fc1cf338
PA
1778 /* We have to displaced step one thread at a time, as we only have
1779 access to a single scratch space per inferior. */
237fc4c9 1780
fc1cf338
PA
1781 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1782
1783 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1784 {
1785 /* Already waiting for a displaced step to finish. Defer this
1786 request and place in queue. */
237fc4c9
PA
1787
1788 if (debug_displaced)
1789 fprintf_unfiltered (gdb_stdlog,
c2829269 1790 "displaced: deferring step of %s\n",
237fc4c9
PA
1791 target_pid_to_str (ptid));
1792
c2829269 1793 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1794 return 0;
1795 }
1796 else
1797 {
1798 if (debug_displaced)
1799 fprintf_unfiltered (gdb_stdlog,
1800 "displaced: stepping %s now\n",
1801 target_pid_to_str (ptid));
1802 }
1803
fc1cf338 1804 displaced_step_clear (displaced);
237fc4c9 1805
ad53cd71
PA
1806 old_cleanups = save_inferior_ptid ();
1807 inferior_ptid = ptid;
1808
515630c5 1809 original = regcache_read_pc (regcache);
237fc4c9
PA
1810
1811 copy = gdbarch_displaced_step_location (gdbarch);
1812 len = gdbarch_max_insn_length (gdbarch);
1813
d35ae833
PA
1814 if (breakpoint_in_range_p (aspace, copy, len))
1815 {
1816 /* There's a breakpoint set in the scratch pad location range
1817 (which is usually around the entry point). We'd either
1818 install it before resuming, which would overwrite/corrupt the
1819 scratch pad, or if it was already inserted, this displaced
1820 step would overwrite it. The latter is OK in the sense that
1821 we already assume that no thread is going to execute the code
1822 in the scratch pad range (after initial startup) anyway, but
1823 the former is unacceptable. Simply punt and fallback to
1824 stepping over this breakpoint in-line. */
1825 if (debug_displaced)
1826 {
1827 fprintf_unfiltered (gdb_stdlog,
1828 "displaced: breakpoint set in scratch pad. "
1829 "Stepping over breakpoint in-line instead.\n");
1830 }
1831
1832 do_cleanups (old_cleanups);
1833 return -1;
1834 }
1835
237fc4c9 1836 /* Save the original contents of the copy area. */
224c3ddb 1837 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1838 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1839 &displaced->step_saved_copy);
9e529e1d
JK
1840 status = target_read_memory (copy, displaced->step_saved_copy, len);
1841 if (status != 0)
1842 throw_error (MEMORY_ERROR,
1843 _("Error accessing memory address %s (%s) for "
1844 "displaced-stepping scratch space."),
1845 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1846 if (debug_displaced)
1847 {
5af949e3
UW
1848 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1849 paddress (gdbarch, copy));
fc1cf338
PA
1850 displaced_step_dump_bytes (gdb_stdlog,
1851 displaced->step_saved_copy,
1852 len);
237fc4c9
PA
1853 };
1854
1855 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1856 original, copy, regcache);
7f03bd92
PA
1857 if (closure == NULL)
1858 {
1859 /* The architecture doesn't know how or want to displaced step
1860 this instruction or instruction sequence. Fallback to
1861 stepping over the breakpoint in-line. */
1862 do_cleanups (old_cleanups);
1863 return -1;
1864 }
237fc4c9 1865
9f5a595d
UW
1866 /* Save the information we need to fix things up if the step
1867 succeeds. */
fc1cf338
PA
1868 displaced->step_ptid = ptid;
1869 displaced->step_gdbarch = gdbarch;
1870 displaced->step_closure = closure;
1871 displaced->step_original = original;
1872 displaced->step_copy = copy;
9f5a595d 1873
fc1cf338 1874 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1875
1876 /* Resume execution at the copy. */
515630c5 1877 regcache_write_pc (regcache, copy);
237fc4c9 1878
ad53cd71
PA
1879 discard_cleanups (ignore_cleanups);
1880
1881 do_cleanups (old_cleanups);
237fc4c9
PA
1882
1883 if (debug_displaced)
5af949e3
UW
1884 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1885 paddress (gdbarch, copy));
237fc4c9 1886
237fc4c9
PA
1887 return 1;
1888}
1889
3fc8eb30
PA
1890/* Wrapper for displaced_step_prepare_throw that disabled further
1891 attempts at displaced stepping if we get a memory error. */
1892
1893static int
1894displaced_step_prepare (ptid_t ptid)
1895{
1896 int prepared = -1;
1897
1898 TRY
1899 {
1900 prepared = displaced_step_prepare_throw (ptid);
1901 }
1902 CATCH (ex, RETURN_MASK_ERROR)
1903 {
1904 struct displaced_step_inferior_state *displaced_state;
1905
16b41842
PA
1906 if (ex.error != MEMORY_ERROR
1907 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1908 throw_exception (ex);
1909
1910 if (debug_infrun)
1911 {
1912 fprintf_unfiltered (gdb_stdlog,
1913 "infrun: disabling displaced stepping: %s\n",
1914 ex.message);
1915 }
1916
1917 /* Be verbose if "set displaced-stepping" is "on", silent if
1918 "auto". */
1919 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1920 {
fd7dcb94 1921 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1922 ex.message);
1923 }
1924
1925 /* Disable further displaced stepping attempts. */
1926 displaced_state
1927 = get_displaced_stepping_state (ptid_get_pid (ptid));
1928 displaced_state->failed_before = 1;
1929 }
1930 END_CATCH
1931
1932 return prepared;
1933}
1934
237fc4c9 1935static void
3e43a32a
MS
1936write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1937 const gdb_byte *myaddr, int len)
237fc4c9
PA
1938{
1939 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1940
237fc4c9
PA
1941 inferior_ptid = ptid;
1942 write_memory (memaddr, myaddr, len);
1943 do_cleanups (ptid_cleanup);
1944}
1945
e2d96639
YQ
1946/* Restore the contents of the copy area for thread PTID. */
1947
1948static void
1949displaced_step_restore (struct displaced_step_inferior_state *displaced,
1950 ptid_t ptid)
1951{
1952 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1953
1954 write_memory_ptid (ptid, displaced->step_copy,
1955 displaced->step_saved_copy, len);
1956 if (debug_displaced)
1957 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1958 target_pid_to_str (ptid),
1959 paddress (displaced->step_gdbarch,
1960 displaced->step_copy));
1961}
1962
372316f1
PA
1963/* If we displaced stepped an instruction successfully, adjust
1964 registers and memory to yield the same effect the instruction would
1965 have had if we had executed it at its original address, and return
1966 1. If the instruction didn't complete, relocate the PC and return
1967 -1. If the thread wasn't displaced stepping, return 0. */
1968
1969static int
2ea28649 1970displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1971{
1972 struct cleanup *old_cleanups;
fc1cf338
PA
1973 struct displaced_step_inferior_state *displaced
1974 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
372316f1 1975 int ret;
fc1cf338
PA
1976
1977 /* Was any thread of this process doing a displaced step? */
1978 if (displaced == NULL)
372316f1 1979 return 0;
237fc4c9
PA
1980
1981 /* Was this event for the pid we displaced? */
fc1cf338
PA
1982 if (ptid_equal (displaced->step_ptid, null_ptid)
1983 || ! ptid_equal (displaced->step_ptid, event_ptid))
372316f1 1984 return 0;
237fc4c9 1985
fc1cf338 1986 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1987
e2d96639 1988 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9 1989
cb71640d
PA
1990 /* Fixup may need to read memory/registers. Switch to the thread
1991 that we're fixing up. Also, target_stopped_by_watchpoint checks
1992 the current thread. */
1993 switch_to_thread (event_ptid);
1994
237fc4c9 1995 /* Did the instruction complete successfully? */
cb71640d
PA
1996 if (signal == GDB_SIGNAL_TRAP
1997 && !(target_stopped_by_watchpoint ()
1998 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1999 || target_have_steppable_watchpoint)))
237fc4c9
PA
2000 {
2001 /* Fix up the resulting state. */
fc1cf338
PA
2002 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
2003 displaced->step_closure,
2004 displaced->step_original,
2005 displaced->step_copy,
2006 get_thread_regcache (displaced->step_ptid));
372316f1 2007 ret = 1;
237fc4c9
PA
2008 }
2009 else
2010 {
2011 /* Since the instruction didn't complete, all we can do is
2012 relocate the PC. */
515630c5
UW
2013 struct regcache *regcache = get_thread_regcache (event_ptid);
2014 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2015
fc1cf338 2016 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2017 regcache_write_pc (regcache, pc);
372316f1 2018 ret = -1;
237fc4c9
PA
2019 }
2020
2021 do_cleanups (old_cleanups);
2022
fc1cf338 2023 displaced->step_ptid = null_ptid;
372316f1
PA
2024
2025 return ret;
c2829269 2026}
1c5cfe86 2027
4d9d9d04
PA
2028/* Data to be passed around while handling an event. This data is
2029 discarded between events. */
2030struct execution_control_state
2031{
2032 ptid_t ptid;
2033 /* The thread that got the event, if this was a thread event; NULL
2034 otherwise. */
2035 struct thread_info *event_thread;
2036
2037 struct target_waitstatus ws;
2038 int stop_func_filled_in;
2039 CORE_ADDR stop_func_start;
2040 CORE_ADDR stop_func_end;
2041 const char *stop_func_name;
2042 int wait_some_more;
2043
2044 /* True if the event thread hit the single-step breakpoint of
2045 another thread. Thus the event doesn't cause a stop, the thread
2046 needs to be single-stepped past the single-step breakpoint before
2047 we can switch back to the original stepping thread. */
2048 int hit_singlestep_breakpoint;
2049};
2050
2051/* Clear ECS and set it to point at TP. */
c2829269
PA
2052
2053static void
4d9d9d04
PA
2054reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2055{
2056 memset (ecs, 0, sizeof (*ecs));
2057 ecs->event_thread = tp;
2058 ecs->ptid = tp->ptid;
2059}
2060
2061static void keep_going_pass_signal (struct execution_control_state *ecs);
2062static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2063static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2064static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2065
2066/* Are there any pending step-over requests? If so, run all we can
2067 now and return true. Otherwise, return false. */
2068
2069static int
c2829269
PA
2070start_step_over (void)
2071{
2072 struct thread_info *tp, *next;
2073
372316f1
PA
2074 /* Don't start a new step-over if we already have an in-line
2075 step-over operation ongoing. */
2076 if (step_over_info_valid_p ())
2077 return 0;
2078
c2829269 2079 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2080 {
4d9d9d04
PA
2081 struct execution_control_state ecss;
2082 struct execution_control_state *ecs = &ecss;
8d297bbf 2083 step_over_what step_what;
372316f1 2084 int must_be_in_line;
c2829269
PA
2085
2086 next = thread_step_over_chain_next (tp);
237fc4c9 2087
c2829269
PA
2088 /* If this inferior already has a displaced step in process,
2089 don't start a new one. */
4d9d9d04 2090 if (displaced_step_in_progress (ptid_get_pid (tp->ptid)))
c2829269
PA
2091 continue;
2092
372316f1
PA
2093 step_what = thread_still_needs_step_over (tp);
2094 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2095 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2096 && !use_displaced_stepping (tp)));
372316f1
PA
2097
2098 /* We currently stop all threads of all processes to step-over
2099 in-line. If we need to start a new in-line step-over, let
2100 any pending displaced steps finish first. */
2101 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2102 return 0;
2103
c2829269
PA
2104 thread_step_over_chain_remove (tp);
2105
2106 if (step_over_queue_head == NULL)
2107 {
2108 if (debug_infrun)
2109 fprintf_unfiltered (gdb_stdlog,
2110 "infrun: step-over queue now empty\n");
2111 }
2112
372316f1
PA
2113 if (tp->control.trap_expected
2114 || tp->resumed
2115 || tp->executing)
ad53cd71 2116 {
4d9d9d04
PA
2117 internal_error (__FILE__, __LINE__,
2118 "[%s] has inconsistent state: "
372316f1 2119 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2120 target_pid_to_str (tp->ptid),
2121 tp->control.trap_expected,
372316f1 2122 tp->resumed,
4d9d9d04 2123 tp->executing);
ad53cd71 2124 }
1c5cfe86 2125
4d9d9d04
PA
2126 if (debug_infrun)
2127 fprintf_unfiltered (gdb_stdlog,
2128 "infrun: resuming [%s] for step-over\n",
2129 target_pid_to_str (tp->ptid));
2130
2131 /* keep_going_pass_signal skips the step-over if the breakpoint
2132 is no longer inserted. In all-stop, we want to keep looking
2133 for a thread that needs a step-over instead of resuming TP,
2134 because we wouldn't be able to resume anything else until the
2135 target stops again. In non-stop, the resume always resumes
2136 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2137 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2138 continue;
8550d3b3 2139
4d9d9d04
PA
2140 switch_to_thread (tp->ptid);
2141 reset_ecs (ecs, tp);
2142 keep_going_pass_signal (ecs);
1c5cfe86 2143
4d9d9d04
PA
2144 if (!ecs->wait_some_more)
2145 error (_("Command aborted."));
1c5cfe86 2146
372316f1
PA
2147 gdb_assert (tp->resumed);
2148
2149 /* If we started a new in-line step-over, we're done. */
2150 if (step_over_info_valid_p ())
2151 {
2152 gdb_assert (tp->control.trap_expected);
2153 return 1;
2154 }
2155
fbea99ea 2156 if (!target_is_non_stop_p ())
4d9d9d04
PA
2157 {
2158 /* On all-stop, shouldn't have resumed unless we needed a
2159 step over. */
2160 gdb_assert (tp->control.trap_expected
2161 || tp->step_after_step_resume_breakpoint);
2162
2163 /* With remote targets (at least), in all-stop, we can't
2164 issue any further remote commands until the program stops
2165 again. */
2166 return 1;
1c5cfe86 2167 }
c2829269 2168
4d9d9d04
PA
2169 /* Either the thread no longer needed a step-over, or a new
2170 displaced stepping sequence started. Even in the latter
2171 case, continue looking. Maybe we can also start another
2172 displaced step on a thread of other process. */
237fc4c9 2173 }
4d9d9d04
PA
2174
2175 return 0;
237fc4c9
PA
2176}
2177
5231c1fd
PA
2178/* Update global variables holding ptids to hold NEW_PTID if they were
2179 holding OLD_PTID. */
2180static void
2181infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2182{
fc1cf338 2183 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2184
2185 if (ptid_equal (inferior_ptid, old_ptid))
2186 inferior_ptid = new_ptid;
2187
fc1cf338
PA
2188 for (displaced = displaced_step_inferior_states;
2189 displaced;
2190 displaced = displaced->next)
2191 {
2192 if (ptid_equal (displaced->step_ptid, old_ptid))
2193 displaced->step_ptid = new_ptid;
fc1cf338 2194 }
5231c1fd
PA
2195}
2196
237fc4c9
PA
2197\f
2198/* Resuming. */
c906108c
SS
2199
2200/* Things to clean up if we QUIT out of resume (). */
c906108c 2201static void
74b7792f 2202resume_cleanups (void *ignore)
c906108c 2203{
34b7e8a6
PA
2204 if (!ptid_equal (inferior_ptid, null_ptid))
2205 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 2206
c906108c
SS
2207 normal_stop ();
2208}
2209
53904c9e
AC
2210static const char schedlock_off[] = "off";
2211static const char schedlock_on[] = "on";
2212static const char schedlock_step[] = "step";
f2665db5 2213static const char schedlock_replay[] = "replay";
40478521 2214static const char *const scheduler_enums[] = {
ef346e04
AC
2215 schedlock_off,
2216 schedlock_on,
2217 schedlock_step,
f2665db5 2218 schedlock_replay,
ef346e04
AC
2219 NULL
2220};
f2665db5 2221static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2222static void
2223show_scheduler_mode (struct ui_file *file, int from_tty,
2224 struct cmd_list_element *c, const char *value)
2225{
3e43a32a
MS
2226 fprintf_filtered (file,
2227 _("Mode for locking scheduler "
2228 "during execution is \"%s\".\n"),
920d2a44
AC
2229 value);
2230}
c906108c
SS
2231
2232static void
96baa820 2233set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 2234{
eefe576e
AC
2235 if (!target_can_lock_scheduler)
2236 {
2237 scheduler_mode = schedlock_off;
2238 error (_("Target '%s' cannot support this command."), target_shortname);
2239 }
c906108c
SS
2240}
2241
d4db2f36
PA
2242/* True if execution commands resume all threads of all processes by
2243 default; otherwise, resume only threads of the current inferior
2244 process. */
2245int sched_multi = 0;
2246
2facfe5c
DD
2247/* Try to setup for software single stepping over the specified location.
2248 Return 1 if target_resume() should use hardware single step.
2249
2250 GDBARCH the current gdbarch.
2251 PC the location to step over. */
2252
2253static int
2254maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2255{
2256 int hw_step = 1;
2257
f02253f1 2258 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2259 && gdbarch_software_single_step_p (gdbarch))
2260 hw_step = !insert_single_step_breakpoints (gdbarch);
2261
2facfe5c
DD
2262 return hw_step;
2263}
c906108c 2264
f3263aa4
PA
2265/* See infrun.h. */
2266
09cee04b
PA
2267ptid_t
2268user_visible_resume_ptid (int step)
2269{
f3263aa4 2270 ptid_t resume_ptid;
09cee04b 2271
09cee04b
PA
2272 if (non_stop)
2273 {
2274 /* With non-stop mode on, threads are always handled
2275 individually. */
2276 resume_ptid = inferior_ptid;
2277 }
2278 else if ((scheduler_mode == schedlock_on)
03d46957 2279 || (scheduler_mode == schedlock_step && step))
09cee04b 2280 {
f3263aa4
PA
2281 /* User-settable 'scheduler' mode requires solo thread
2282 resume. */
09cee04b
PA
2283 resume_ptid = inferior_ptid;
2284 }
f2665db5
MM
2285 else if ((scheduler_mode == schedlock_replay)
2286 && target_record_will_replay (minus_one_ptid, execution_direction))
2287 {
2288 /* User-settable 'scheduler' mode requires solo thread resume in replay
2289 mode. */
2290 resume_ptid = inferior_ptid;
2291 }
f3263aa4
PA
2292 else if (!sched_multi && target_supports_multi_process ())
2293 {
2294 /* Resume all threads of the current process (and none of other
2295 processes). */
2296 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2297 }
2298 else
2299 {
2300 /* Resume all threads of all processes. */
2301 resume_ptid = RESUME_ALL;
2302 }
09cee04b
PA
2303
2304 return resume_ptid;
2305}
2306
fbea99ea
PA
2307/* Return a ptid representing the set of threads that we will resume,
2308 in the perspective of the target, assuming run control handling
2309 does not require leaving some threads stopped (e.g., stepping past
2310 breakpoint). USER_STEP indicates whether we're about to start the
2311 target for a stepping command. */
2312
2313static ptid_t
2314internal_resume_ptid (int user_step)
2315{
2316 /* In non-stop, we always control threads individually. Note that
2317 the target may always work in non-stop mode even with "set
2318 non-stop off", in which case user_visible_resume_ptid could
2319 return a wildcard ptid. */
2320 if (target_is_non_stop_p ())
2321 return inferior_ptid;
2322 else
2323 return user_visible_resume_ptid (user_step);
2324}
2325
64ce06e4
PA
2326/* Wrapper for target_resume, that handles infrun-specific
2327 bookkeeping. */
2328
2329static void
2330do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2331{
2332 struct thread_info *tp = inferior_thread ();
2333
2334 /* Install inferior's terminal modes. */
2335 target_terminal_inferior ();
2336
2337 /* Avoid confusing the next resume, if the next stop/resume
2338 happens to apply to another thread. */
2339 tp->suspend.stop_signal = GDB_SIGNAL_0;
2340
8f572e5c
PA
2341 /* Advise target which signals may be handled silently.
2342
2343 If we have removed breakpoints because we are stepping over one
2344 in-line (in any thread), we need to receive all signals to avoid
2345 accidentally skipping a breakpoint during execution of a signal
2346 handler.
2347
2348 Likewise if we're displaced stepping, otherwise a trap for a
2349 breakpoint in a signal handler might be confused with the
2350 displaced step finishing. We don't make the displaced_step_fixup
2351 step distinguish the cases instead, because:
2352
2353 - a backtrace while stopped in the signal handler would show the
2354 scratch pad as frame older than the signal handler, instead of
2355 the real mainline code.
2356
2357 - when the thread is later resumed, the signal handler would
2358 return to the scratch pad area, which would no longer be
2359 valid. */
2360 if (step_over_info_valid_p ()
2361 || displaced_step_in_progress (ptid_get_pid (tp->ptid)))
64ce06e4
PA
2362 target_pass_signals (0, NULL);
2363 else
2364 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2365
2366 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2367
2368 target_commit_resume ();
64ce06e4
PA
2369}
2370
c906108c
SS
2371/* Resume the inferior, but allow a QUIT. This is useful if the user
2372 wants to interrupt some lengthy single-stepping operation
2373 (for child processes, the SIGINT goes to the inferior, and so
2374 we get a SIGINT random_signal, but for remote debugging and perhaps
2375 other targets, that's not true).
2376
c906108c
SS
2377 SIG is the signal to give the inferior (zero for none). */
2378void
64ce06e4 2379resume (enum gdb_signal sig)
c906108c 2380{
74b7792f 2381 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2382 struct regcache *regcache = get_current_regcache ();
2383 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2384 struct thread_info *tp = inferior_thread ();
515630c5 2385 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2386 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2387 ptid_t resume_ptid;
856e7dd6
PA
2388 /* This represents the user's step vs continue request. When
2389 deciding whether "set scheduler-locking step" applies, it's the
2390 user's intention that counts. */
2391 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2392 /* This represents what we'll actually request the target to do.
2393 This can decay from a step to a continue, if e.g., we need to
2394 implement single-stepping with breakpoints (software
2395 single-step). */
6b403daa 2396 int step;
c7e8a53c 2397
c2829269
PA
2398 gdb_assert (!thread_is_in_step_over_chain (tp));
2399
c906108c
SS
2400 QUIT;
2401
372316f1
PA
2402 if (tp->suspend.waitstatus_pending_p)
2403 {
2404 if (debug_infrun)
2405 {
2406 char *statstr;
2407
2408 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2409 fprintf_unfiltered (gdb_stdlog,
2410 "infrun: resume: thread %s has pending wait status %s "
2411 "(currently_stepping=%d).\n",
2412 target_pid_to_str (tp->ptid), statstr,
2413 currently_stepping (tp));
2414 xfree (statstr);
2415 }
2416
2417 tp->resumed = 1;
2418
2419 /* FIXME: What should we do if we are supposed to resume this
2420 thread with a signal? Maybe we should maintain a queue of
2421 pending signals to deliver. */
2422 if (sig != GDB_SIGNAL_0)
2423 {
fd7dcb94 2424 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2425 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2426 }
2427
2428 tp->suspend.stop_signal = GDB_SIGNAL_0;
2429 discard_cleanups (old_cleanups);
2430
2431 if (target_can_async_p ())
2432 target_async (1);
2433 return;
2434 }
2435
2436 tp->stepped_breakpoint = 0;
2437
6b403daa
PA
2438 /* Depends on stepped_breakpoint. */
2439 step = currently_stepping (tp);
2440
74609e71
YQ
2441 if (current_inferior ()->waiting_for_vfork_done)
2442 {
48f9886d
PA
2443 /* Don't try to single-step a vfork parent that is waiting for
2444 the child to get out of the shared memory region (by exec'ing
2445 or exiting). This is particularly important on software
2446 single-step archs, as the child process would trip on the
2447 software single step breakpoint inserted for the parent
2448 process. Since the parent will not actually execute any
2449 instruction until the child is out of the shared region (such
2450 are vfork's semantics), it is safe to simply continue it.
2451 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2452 the parent, and tell it to `keep_going', which automatically
2453 re-sets it stepping. */
74609e71
YQ
2454 if (debug_infrun)
2455 fprintf_unfiltered (gdb_stdlog,
2456 "infrun: resume : clear step\n");
a09dd441 2457 step = 0;
74609e71
YQ
2458 }
2459
527159b7 2460 if (debug_infrun)
237fc4c9 2461 fprintf_unfiltered (gdb_stdlog,
c9737c08 2462 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2463 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2464 step, gdb_signal_to_symbol_string (sig),
2465 tp->control.trap_expected,
0d9a9a5f
PA
2466 target_pid_to_str (inferior_ptid),
2467 paddress (gdbarch, pc));
c906108c 2468
c2c6d25f
JM
2469 /* Normally, by the time we reach `resume', the breakpoints are either
2470 removed or inserted, as appropriate. The exception is if we're sitting
2471 at a permanent breakpoint; we need to step over it, but permanent
2472 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2473 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2474 {
af48d08f
PA
2475 if (sig != GDB_SIGNAL_0)
2476 {
2477 /* We have a signal to pass to the inferior. The resume
2478 may, or may not take us to the signal handler. If this
2479 is a step, we'll need to stop in the signal handler, if
2480 there's one, (if the target supports stepping into
2481 handlers), or in the next mainline instruction, if
2482 there's no handler. If this is a continue, we need to be
2483 sure to run the handler with all breakpoints inserted.
2484 In all cases, set a breakpoint at the current address
2485 (where the handler returns to), and once that breakpoint
2486 is hit, resume skipping the permanent breakpoint. If
2487 that breakpoint isn't hit, then we've stepped into the
2488 signal handler (or hit some other event). We'll delete
2489 the step-resume breakpoint then. */
2490
2491 if (debug_infrun)
2492 fprintf_unfiltered (gdb_stdlog,
2493 "infrun: resume: skipping permanent breakpoint, "
2494 "deliver signal first\n");
2495
2496 clear_step_over_info ();
2497 tp->control.trap_expected = 0;
2498
2499 if (tp->control.step_resume_breakpoint == NULL)
2500 {
2501 /* Set a "high-priority" step-resume, as we don't want
2502 user breakpoints at PC to trigger (again) when this
2503 hits. */
2504 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2505 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2506
2507 tp->step_after_step_resume_breakpoint = step;
2508 }
2509
2510 insert_breakpoints ();
2511 }
2512 else
2513 {
2514 /* There's no signal to pass, we can go ahead and skip the
2515 permanent breakpoint manually. */
2516 if (debug_infrun)
2517 fprintf_unfiltered (gdb_stdlog,
2518 "infrun: resume: skipping permanent breakpoint\n");
2519 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2520 /* Update pc to reflect the new address from which we will
2521 execute instructions. */
2522 pc = regcache_read_pc (regcache);
2523
2524 if (step)
2525 {
2526 /* We've already advanced the PC, so the stepping part
2527 is done. Now we need to arrange for a trap to be
2528 reported to handle_inferior_event. Set a breakpoint
2529 at the current PC, and run to it. Don't update
2530 prev_pc, because if we end in
44a1ee51
PA
2531 switch_back_to_stepped_thread, we want the "expected
2532 thread advanced also" branch to be taken. IOW, we
2533 don't want this thread to step further from PC
af48d08f 2534 (overstep). */
1ac806b8 2535 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2536 insert_single_step_breakpoint (gdbarch, aspace, pc);
2537 insert_breakpoints ();
2538
fbea99ea 2539 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2540 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
af48d08f 2541 discard_cleanups (old_cleanups);
372316f1 2542 tp->resumed = 1;
af48d08f
PA
2543 return;
2544 }
2545 }
6d350bb5 2546 }
c2c6d25f 2547
c1e36e3e
PA
2548 /* If we have a breakpoint to step over, make sure to do a single
2549 step only. Same if we have software watchpoints. */
2550 if (tp->control.trap_expected || bpstat_should_step ())
2551 tp->control.may_range_step = 0;
2552
237fc4c9
PA
2553 /* If enabled, step over breakpoints by executing a copy of the
2554 instruction at a different address.
2555
2556 We can't use displaced stepping when we have a signal to deliver;
2557 the comments for displaced_step_prepare explain why. The
2558 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2559 signals' explain what we do instead.
2560
2561 We can't use displaced stepping when we are waiting for vfork_done
2562 event, displaced stepping breaks the vfork child similarly as single
2563 step software breakpoint. */
3fc8eb30
PA
2564 if (tp->control.trap_expected
2565 && use_displaced_stepping (tp)
cb71640d 2566 && !step_over_info_valid_p ()
a493e3e2 2567 && sig == GDB_SIGNAL_0
74609e71 2568 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2569 {
3fc8eb30 2570 int prepared = displaced_step_prepare (inferior_ptid);
fc1cf338 2571
3fc8eb30 2572 if (prepared == 0)
d56b7306 2573 {
4d9d9d04
PA
2574 if (debug_infrun)
2575 fprintf_unfiltered (gdb_stdlog,
2576 "Got placed in step-over queue\n");
2577
2578 tp->control.trap_expected = 0;
d56b7306
VP
2579 discard_cleanups (old_cleanups);
2580 return;
2581 }
3fc8eb30
PA
2582 else if (prepared < 0)
2583 {
2584 /* Fallback to stepping over the breakpoint in-line. */
2585
2586 if (target_is_non_stop_p ())
2587 stop_all_threads ();
2588
2589 set_step_over_info (get_regcache_aspace (regcache),
21edc42f 2590 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2591
2592 step = maybe_software_singlestep (gdbarch, pc);
2593
2594 insert_breakpoints ();
2595 }
2596 else if (prepared > 0)
2597 {
2598 struct displaced_step_inferior_state *displaced;
99e40580 2599
3fc8eb30
PA
2600 /* Update pc to reflect the new address from which we will
2601 execute instructions due to displaced stepping. */
2602 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
ca7781d2 2603
3fc8eb30
PA
2604 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
2605 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2606 displaced->step_closure);
2607 }
237fc4c9
PA
2608 }
2609
2facfe5c 2610 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2611 else if (step)
2facfe5c 2612 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2613
30852783
UW
2614 /* Currently, our software single-step implementation leads to different
2615 results than hardware single-stepping in one situation: when stepping
2616 into delivering a signal which has an associated signal handler,
2617 hardware single-step will stop at the first instruction of the handler,
2618 while software single-step will simply skip execution of the handler.
2619
2620 For now, this difference in behavior is accepted since there is no
2621 easy way to actually implement single-stepping into a signal handler
2622 without kernel support.
2623
2624 However, there is one scenario where this difference leads to follow-on
2625 problems: if we're stepping off a breakpoint by removing all breakpoints
2626 and then single-stepping. In this case, the software single-step
2627 behavior means that even if there is a *breakpoint* in the signal
2628 handler, GDB still would not stop.
2629
2630 Fortunately, we can at least fix this particular issue. We detect
2631 here the case where we are about to deliver a signal while software
2632 single-stepping with breakpoints removed. In this situation, we
2633 revert the decisions to remove all breakpoints and insert single-
2634 step breakpoints, and instead we install a step-resume breakpoint
2635 at the current address, deliver the signal without stepping, and
2636 once we arrive back at the step-resume breakpoint, actually step
2637 over the breakpoint we originally wanted to step over. */
34b7e8a6 2638 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2639 && sig != GDB_SIGNAL_0
2640 && step_over_info_valid_p ())
30852783
UW
2641 {
2642 /* If we have nested signals or a pending signal is delivered
2643 immediately after a handler returns, might might already have
2644 a step-resume breakpoint set on the earlier handler. We cannot
2645 set another step-resume breakpoint; just continue on until the
2646 original breakpoint is hit. */
2647 if (tp->control.step_resume_breakpoint == NULL)
2648 {
2c03e5be 2649 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2650 tp->step_after_step_resume_breakpoint = 1;
2651 }
2652
34b7e8a6 2653 delete_single_step_breakpoints (tp);
30852783 2654
31e77af2 2655 clear_step_over_info ();
30852783 2656 tp->control.trap_expected = 0;
31e77af2
PA
2657
2658 insert_breakpoints ();
30852783
UW
2659 }
2660
b0f16a3e
SM
2661 /* If STEP is set, it's a request to use hardware stepping
2662 facilities. But in that case, we should never
2663 use singlestep breakpoint. */
34b7e8a6 2664 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2665
fbea99ea 2666 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2667 if (tp->control.trap_expected)
b0f16a3e
SM
2668 {
2669 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2670 hit, either by single-stepping the thread with the breakpoint
2671 removed, or by displaced stepping, with the breakpoint inserted.
2672 In the former case, we need to single-step only this thread,
2673 and keep others stopped, as they can miss this breakpoint if
2674 allowed to run. That's not really a problem for displaced
2675 stepping, but, we still keep other threads stopped, in case
2676 another thread is also stopped for a breakpoint waiting for
2677 its turn in the displaced stepping queue. */
b0f16a3e
SM
2678 resume_ptid = inferior_ptid;
2679 }
fbea99ea
PA
2680 else
2681 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2682
7f5ef605
PA
2683 if (execution_direction != EXEC_REVERSE
2684 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2685 {
372316f1
PA
2686 /* There are two cases where we currently need to step a
2687 breakpoint instruction when we have a signal to deliver:
2688
2689 - See handle_signal_stop where we handle random signals that
2690 could take out us out of the stepping range. Normally, in
2691 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2692 signal handler with a breakpoint at PC, but there are cases
2693 where we should _always_ single-step, even if we have a
2694 step-resume breakpoint, like when a software watchpoint is
2695 set. Assuming single-stepping and delivering a signal at the
2696 same time would takes us to the signal handler, then we could
2697 have removed the breakpoint at PC to step over it. However,
2698 some hardware step targets (like e.g., Mac OS) can't step
2699 into signal handlers, and for those, we need to leave the
2700 breakpoint at PC inserted, as otherwise if the handler
2701 recurses and executes PC again, it'll miss the breakpoint.
2702 So we leave the breakpoint inserted anyway, but we need to
2703 record that we tried to step a breakpoint instruction, so
372316f1
PA
2704 that adjust_pc_after_break doesn't end up confused.
2705
2706 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2707 in one thread after another thread that was stepping had been
2708 momentarily paused for a step-over. When we re-resume the
2709 stepping thread, it may be resumed from that address with a
2710 breakpoint that hasn't trapped yet. Seen with
2711 gdb.threads/non-stop-fair-events.exp, on targets that don't
2712 do displaced stepping. */
2713
2714 if (debug_infrun)
2715 fprintf_unfiltered (gdb_stdlog,
2716 "infrun: resume: [%s] stepped breakpoint\n",
2717 target_pid_to_str (tp->ptid));
7f5ef605
PA
2718
2719 tp->stepped_breakpoint = 1;
2720
b0f16a3e
SM
2721 /* Most targets can step a breakpoint instruction, thus
2722 executing it normally. But if this one cannot, just
2723 continue and we will hit it anyway. */
7f5ef605 2724 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2725 step = 0;
2726 }
ef5cf84e 2727
b0f16a3e 2728 if (debug_displaced
cb71640d 2729 && tp->control.trap_expected
3fc8eb30 2730 && use_displaced_stepping (tp)
cb71640d 2731 && !step_over_info_valid_p ())
b0f16a3e 2732 {
d9b67d9f 2733 struct regcache *resume_regcache = get_thread_regcache (tp->ptid);
b0f16a3e
SM
2734 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2735 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2736 gdb_byte buf[4];
2737
2738 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2739 paddress (resume_gdbarch, actual_pc));
2740 read_memory (actual_pc, buf, sizeof (buf));
2741 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2742 }
237fc4c9 2743
b0f16a3e
SM
2744 if (tp->control.may_range_step)
2745 {
2746 /* If we're resuming a thread with the PC out of the step
2747 range, then we're doing some nested/finer run control
2748 operation, like stepping the thread out of the dynamic
2749 linker or the displaced stepping scratch pad. We
2750 shouldn't have allowed a range step then. */
2751 gdb_assert (pc_in_thread_step_range (pc, tp));
2752 }
c1e36e3e 2753
64ce06e4 2754 do_target_resume (resume_ptid, step, sig);
372316f1 2755 tp->resumed = 1;
c906108c
SS
2756 discard_cleanups (old_cleanups);
2757}
2758\f
237fc4c9 2759/* Proceeding. */
c906108c 2760
4c2f2a79
PA
2761/* See infrun.h. */
2762
2763/* Counter that tracks number of user visible stops. This can be used
2764 to tell whether a command has proceeded the inferior past the
2765 current location. This allows e.g., inferior function calls in
2766 breakpoint commands to not interrupt the command list. When the
2767 call finishes successfully, the inferior is standing at the same
2768 breakpoint as if nothing happened (and so we don't call
2769 normal_stop). */
2770static ULONGEST current_stop_id;
2771
2772/* See infrun.h. */
2773
2774ULONGEST
2775get_stop_id (void)
2776{
2777 return current_stop_id;
2778}
2779
2780/* Called when we report a user visible stop. */
2781
2782static void
2783new_stop_id (void)
2784{
2785 current_stop_id++;
2786}
2787
c906108c
SS
2788/* Clear out all variables saying what to do when inferior is continued.
2789 First do this, then set the ones you want, then call `proceed'. */
2790
a7212384
UW
2791static void
2792clear_proceed_status_thread (struct thread_info *tp)
c906108c 2793{
a7212384
UW
2794 if (debug_infrun)
2795 fprintf_unfiltered (gdb_stdlog,
2796 "infrun: clear_proceed_status_thread (%s)\n",
2797 target_pid_to_str (tp->ptid));
d6b48e9c 2798
372316f1
PA
2799 /* If we're starting a new sequence, then the previous finished
2800 single-step is no longer relevant. */
2801 if (tp->suspend.waitstatus_pending_p)
2802 {
2803 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2804 {
2805 if (debug_infrun)
2806 fprintf_unfiltered (gdb_stdlog,
2807 "infrun: clear_proceed_status: pending "
2808 "event of %s was a finished step. "
2809 "Discarding.\n",
2810 target_pid_to_str (tp->ptid));
2811
2812 tp->suspend.waitstatus_pending_p = 0;
2813 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2814 }
2815 else if (debug_infrun)
2816 {
2817 char *statstr;
2818
2819 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
2820 fprintf_unfiltered (gdb_stdlog,
2821 "infrun: clear_proceed_status_thread: thread %s "
2822 "has pending wait status %s "
2823 "(currently_stepping=%d).\n",
2824 target_pid_to_str (tp->ptid), statstr,
2825 currently_stepping (tp));
2826 xfree (statstr);
2827 }
2828 }
2829
70509625
PA
2830 /* If this signal should not be seen by program, give it zero.
2831 Used for debugging signals. */
2832 if (!signal_pass_state (tp->suspend.stop_signal))
2833 tp->suspend.stop_signal = GDB_SIGNAL_0;
2834
243a9253
PA
2835 thread_fsm_delete (tp->thread_fsm);
2836 tp->thread_fsm = NULL;
2837
16c381f0
JK
2838 tp->control.trap_expected = 0;
2839 tp->control.step_range_start = 0;
2840 tp->control.step_range_end = 0;
c1e36e3e 2841 tp->control.may_range_step = 0;
16c381f0
JK
2842 tp->control.step_frame_id = null_frame_id;
2843 tp->control.step_stack_frame_id = null_frame_id;
2844 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2845 tp->control.step_start_function = NULL;
a7212384 2846 tp->stop_requested = 0;
4e1c45ea 2847
16c381f0 2848 tp->control.stop_step = 0;
32400beb 2849
16c381f0 2850 tp->control.proceed_to_finish = 0;
414c69f7 2851
856e7dd6 2852 tp->control.stepping_command = 0;
17b2616c 2853
a7212384 2854 /* Discard any remaining commands or status from previous stop. */
16c381f0 2855 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2856}
32400beb 2857
a7212384 2858void
70509625 2859clear_proceed_status (int step)
a7212384 2860{
f2665db5
MM
2861 /* With scheduler-locking replay, stop replaying other threads if we're
2862 not replaying the user-visible resume ptid.
2863
2864 This is a convenience feature to not require the user to explicitly
2865 stop replaying the other threads. We're assuming that the user's
2866 intent is to resume tracing the recorded process. */
2867 if (!non_stop && scheduler_mode == schedlock_replay
2868 && target_record_is_replaying (minus_one_ptid)
2869 && !target_record_will_replay (user_visible_resume_ptid (step),
2870 execution_direction))
2871 target_record_stop_replaying ();
2872
6c95b8df
PA
2873 if (!non_stop)
2874 {
70509625
PA
2875 struct thread_info *tp;
2876 ptid_t resume_ptid;
2877
2878 resume_ptid = user_visible_resume_ptid (step);
2879
2880 /* In all-stop mode, delete the per-thread status of all threads
2881 we're about to resume, implicitly and explicitly. */
2882 ALL_NON_EXITED_THREADS (tp)
2883 {
2884 if (!ptid_match (tp->ptid, resume_ptid))
2885 continue;
2886 clear_proceed_status_thread (tp);
2887 }
6c95b8df
PA
2888 }
2889
a7212384
UW
2890 if (!ptid_equal (inferior_ptid, null_ptid))
2891 {
2892 struct inferior *inferior;
2893
2894 if (non_stop)
2895 {
6c95b8df
PA
2896 /* If in non-stop mode, only delete the per-thread status of
2897 the current thread. */
a7212384
UW
2898 clear_proceed_status_thread (inferior_thread ());
2899 }
6c95b8df 2900
d6b48e9c 2901 inferior = current_inferior ();
16c381f0 2902 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2903 }
2904
f3b1572e 2905 observer_notify_about_to_proceed ();
c906108c
SS
2906}
2907
99619bea
PA
2908/* Returns true if TP is still stopped at a breakpoint that needs
2909 stepping-over in order to make progress. If the breakpoint is gone
2910 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2911
2912static int
6c4cfb24 2913thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2914{
2915 if (tp->stepping_over_breakpoint)
2916 {
2917 struct regcache *regcache = get_thread_regcache (tp->ptid);
2918
2919 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2920 regcache_read_pc (regcache))
2921 == ordinary_breakpoint_here)
99619bea
PA
2922 return 1;
2923
2924 tp->stepping_over_breakpoint = 0;
2925 }
2926
2927 return 0;
2928}
2929
6c4cfb24
PA
2930/* Check whether thread TP still needs to start a step-over in order
2931 to make progress when resumed. Returns an bitwise or of enum
2932 step_over_what bits, indicating what needs to be stepped over. */
2933
8d297bbf 2934static step_over_what
6c4cfb24
PA
2935thread_still_needs_step_over (struct thread_info *tp)
2936{
8d297bbf 2937 step_over_what what = 0;
6c4cfb24
PA
2938
2939 if (thread_still_needs_step_over_bp (tp))
2940 what |= STEP_OVER_BREAKPOINT;
2941
2942 if (tp->stepping_over_watchpoint
2943 && !target_have_steppable_watchpoint)
2944 what |= STEP_OVER_WATCHPOINT;
2945
2946 return what;
2947}
2948
483805cf
PA
2949/* Returns true if scheduler locking applies. STEP indicates whether
2950 we're about to do a step/next-like command to a thread. */
2951
2952static int
856e7dd6 2953schedlock_applies (struct thread_info *tp)
483805cf
PA
2954{
2955 return (scheduler_mode == schedlock_on
2956 || (scheduler_mode == schedlock_step
f2665db5
MM
2957 && tp->control.stepping_command)
2958 || (scheduler_mode == schedlock_replay
2959 && target_record_will_replay (minus_one_ptid,
2960 execution_direction)));
483805cf
PA
2961}
2962
c906108c
SS
2963/* Basic routine for continuing the program in various fashions.
2964
2965 ADDR is the address to resume at, or -1 for resume where stopped.
2966 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2967 or -1 for act according to how it stopped.
c906108c 2968 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2969 -1 means return after that and print nothing.
2970 You should probably set various step_... variables
2971 before calling here, if you are stepping.
c906108c
SS
2972
2973 You should call clear_proceed_status before calling proceed. */
2974
2975void
64ce06e4 2976proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2977{
e58b0e63
PA
2978 struct regcache *regcache;
2979 struct gdbarch *gdbarch;
4e1c45ea 2980 struct thread_info *tp;
e58b0e63 2981 CORE_ADDR pc;
6c95b8df 2982 struct address_space *aspace;
4d9d9d04
PA
2983 ptid_t resume_ptid;
2984 struct execution_control_state ecss;
2985 struct execution_control_state *ecs = &ecss;
2986 struct cleanup *old_chain;
85ad3aaf 2987 struct cleanup *defer_resume_cleanup;
4d9d9d04 2988 int started;
c906108c 2989
e58b0e63
PA
2990 /* If we're stopped at a fork/vfork, follow the branch set by the
2991 "set follow-fork-mode" command; otherwise, we'll just proceed
2992 resuming the current thread. */
2993 if (!follow_fork ())
2994 {
2995 /* The target for some reason decided not to resume. */
2996 normal_stop ();
f148b27e
PA
2997 if (target_can_async_p ())
2998 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2999 return;
3000 }
3001
842951eb
PA
3002 /* We'll update this if & when we switch to a new thread. */
3003 previous_inferior_ptid = inferior_ptid;
3004
e58b0e63
PA
3005 regcache = get_current_regcache ();
3006 gdbarch = get_regcache_arch (regcache);
6c95b8df 3007 aspace = get_regcache_aspace (regcache);
e58b0e63 3008 pc = regcache_read_pc (regcache);
2adfaa28 3009 tp = inferior_thread ();
e58b0e63 3010
99619bea
PA
3011 /* Fill in with reasonable starting values. */
3012 init_thread_stepping_state (tp);
3013
c2829269
PA
3014 gdb_assert (!thread_is_in_step_over_chain (tp));
3015
2acceee2 3016 if (addr == (CORE_ADDR) -1)
c906108c 3017 {
af48d08f
PA
3018 if (pc == stop_pc
3019 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3020 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3021 /* There is a breakpoint at the address we will resume at,
3022 step one instruction before inserting breakpoints so that
3023 we do not stop right away (and report a second hit at this
b2175913
MS
3024 breakpoint).
3025
3026 Note, we don't do this in reverse, because we won't
3027 actually be executing the breakpoint insn anyway.
3028 We'll be (un-)executing the previous instruction. */
99619bea 3029 tp->stepping_over_breakpoint = 1;
515630c5
UW
3030 else if (gdbarch_single_step_through_delay_p (gdbarch)
3031 && gdbarch_single_step_through_delay (gdbarch,
3032 get_current_frame ()))
3352ef37
AC
3033 /* We stepped onto an instruction that needs to be stepped
3034 again before re-inserting the breakpoint, do so. */
99619bea 3035 tp->stepping_over_breakpoint = 1;
c906108c
SS
3036 }
3037 else
3038 {
515630c5 3039 regcache_write_pc (regcache, addr);
c906108c
SS
3040 }
3041
70509625
PA
3042 if (siggnal != GDB_SIGNAL_DEFAULT)
3043 tp->suspend.stop_signal = siggnal;
3044
4d9d9d04
PA
3045 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3046
3047 /* If an exception is thrown from this point on, make sure to
3048 propagate GDB's knowledge of the executing state to the
3049 frontend/user running state. */
3050 old_chain = make_cleanup (finish_thread_state_cleanup, &resume_ptid);
3051
3052 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3053 threads (e.g., we might need to set threads stepping over
3054 breakpoints first), from the user/frontend's point of view, all
3055 threads in RESUME_PTID are now running. Unless we're calling an
3056 inferior function, as in that case we pretend the inferior
3057 doesn't run at all. */
3058 if (!tp->control.in_infcall)
3059 set_running (resume_ptid, 1);
17b2616c 3060
527159b7 3061 if (debug_infrun)
8a9de0e4 3062 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3063 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3064 paddress (gdbarch, addr),
64ce06e4 3065 gdb_signal_to_symbol_string (siggnal));
527159b7 3066
4d9d9d04
PA
3067 annotate_starting ();
3068
3069 /* Make sure that output from GDB appears before output from the
3070 inferior. */
3071 gdb_flush (gdb_stdout);
3072
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
94cc34af 3087 {
4d9d9d04
PA
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
99619bea 3096
4d9d9d04
PA
3097 /* Ignore threads of processes we're not resuming. */
3098 if (!ptid_match (tp->ptid, resume_ptid))
3099 continue;
c906108c 3100
4d9d9d04
PA
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3105
99619bea
PA
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
4d9d9d04 3109 target_pid_to_str (tp->ptid));
99619bea 3110
4d9d9d04 3111 thread_step_over_chain_enqueue (tp);
2adfaa28 3112 }
31e77af2 3113
4d9d9d04 3114 tp = current;
30852783
UW
3115 }
3116
4d9d9d04
PA
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
30852783 3121
4d9d9d04
PA
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3128
85ad3aaf
PA
3129 defer_resume_cleanup = make_cleanup_defer_target_commit_resume ();
3130
4d9d9d04 3131 started = start_step_over ();
c906108c 3132
4d9d9d04
PA
3133 if (step_over_info_valid_p ())
3134 {
3135 /* Either this thread started a new in-line step over, or some
3136 other thread was already doing one. In either case, don't
3137 resume anything else until the step-over is finished. */
3138 }
fbea99ea 3139 else if (started && !target_is_non_stop_p ())
4d9d9d04
PA
3140 {
3141 /* A new displaced stepping sequence was started. In all-stop,
3142 we can't talk to the target anymore until it next stops. */
3143 }
fbea99ea
PA
3144 else if (!non_stop && target_is_non_stop_p ())
3145 {
3146 /* In all-stop, but the target is always in non-stop mode.
3147 Start all other threads that are implicitly resumed too. */
3148 ALL_NON_EXITED_THREADS (tp)
3149 {
3150 /* Ignore threads of processes we're not resuming. */
3151 if (!ptid_match (tp->ptid, resume_ptid))
3152 continue;
3153
3154 if (tp->resumed)
3155 {
3156 if (debug_infrun)
3157 fprintf_unfiltered (gdb_stdlog,
3158 "infrun: proceed: [%s] resumed\n",
3159 target_pid_to_str (tp->ptid));
3160 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3161 continue;
3162 }
3163
3164 if (thread_is_in_step_over_chain (tp))
3165 {
3166 if (debug_infrun)
3167 fprintf_unfiltered (gdb_stdlog,
3168 "infrun: proceed: [%s] needs step-over\n",
3169 target_pid_to_str (tp->ptid));
3170 continue;
3171 }
3172
3173 if (debug_infrun)
3174 fprintf_unfiltered (gdb_stdlog,
3175 "infrun: proceed: resuming %s\n",
3176 target_pid_to_str (tp->ptid));
3177
3178 reset_ecs (ecs, tp);
3179 switch_to_thread (tp->ptid);
3180 keep_going_pass_signal (ecs);
3181 if (!ecs->wait_some_more)
fd7dcb94 3182 error (_("Command aborted."));
fbea99ea
PA
3183 }
3184 }
372316f1 3185 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
4d9d9d04
PA
3186 {
3187 /* The thread wasn't started, and isn't queued, run it now. */
3188 reset_ecs (ecs, tp);
3189 switch_to_thread (tp->ptid);
3190 keep_going_pass_signal (ecs);
3191 if (!ecs->wait_some_more)
fd7dcb94 3192 error (_("Command aborted."));
4d9d9d04 3193 }
c906108c 3194
85ad3aaf
PA
3195 do_cleanups (defer_resume_cleanup);
3196 target_commit_resume ();
3197
4d9d9d04 3198 discard_cleanups (old_chain);
c906108c 3199
0b333c5e
PA
3200 /* Tell the event loop to wait for it to stop. If the target
3201 supports asynchronous execution, it'll do this from within
3202 target_resume. */
362646f5 3203 if (!target_can_async_p ())
0b333c5e 3204 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3205}
c906108c
SS
3206\f
3207
3208/* Start remote-debugging of a machine over a serial link. */
96baa820 3209
c906108c 3210void
8621d6a9 3211start_remote (int from_tty)
c906108c 3212{
d6b48e9c 3213 struct inferior *inferior;
d6b48e9c
PA
3214
3215 inferior = current_inferior ();
16c381f0 3216 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3217
1777feb0 3218 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3219 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3220 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3221 nothing is returned (instead of just blocking). Because of this,
3222 targets expecting an immediate response need to, internally, set
3223 things up so that the target_wait() is forced to eventually
1777feb0 3224 timeout. */
6426a772
JM
3225 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3226 differentiate to its caller what the state of the target is after
3227 the initial open has been performed. Here we're assuming that
3228 the target has stopped. It should be possible to eventually have
3229 target_open() return to the caller an indication that the target
3230 is currently running and GDB state should be set to the same as
1777feb0 3231 for an async run. */
e4c8541f 3232 wait_for_inferior ();
8621d6a9
DJ
3233
3234 /* Now that the inferior has stopped, do any bookkeeping like
3235 loading shared libraries. We want to do this before normal_stop,
3236 so that the displayed frame is up to date. */
3237 post_create_inferior (&current_target, from_tty);
3238
6426a772 3239 normal_stop ();
c906108c
SS
3240}
3241
3242/* Initialize static vars when a new inferior begins. */
3243
3244void
96baa820 3245init_wait_for_inferior (void)
c906108c
SS
3246{
3247 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3248
c906108c
SS
3249 breakpoint_init_inferior (inf_starting);
3250
70509625 3251 clear_proceed_status (0);
9f976b41 3252
ca005067 3253 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3254
842951eb 3255 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3256
edb3359d
DJ
3257 /* Discard any skipped inlined frames. */
3258 clear_inline_frame_state (minus_one_ptid);
c906108c 3259}
237fc4c9 3260
c906108c 3261\f
488f131b 3262
ec9499be 3263static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3264
568d6575
UW
3265static void handle_step_into_function (struct gdbarch *gdbarch,
3266 struct execution_control_state *ecs);
3267static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
4f5d7f63 3269static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3270static void check_exception_resume (struct execution_control_state *,
28106bc2 3271 struct frame_info *);
611c83ae 3272
bdc36728 3273static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3274static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3275static void keep_going (struct execution_control_state *ecs);
94c57d6a 3276static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3277static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3278
252fbfc8
PA
3279/* Callback for iterate over threads. If the thread is stopped, but
3280 the user/frontend doesn't know about that yet, go through
3281 normal_stop, as if the thread had just stopped now. ARG points at
3282 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
3283 ptid_is_pid(PTID) is true, applies to all threads of the process
3284 pointed at by PTID. Otherwise, apply only to the thread pointed by
3285 PTID. */
3286
3287static int
3288infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
3289{
3290 ptid_t ptid = * (ptid_t *) arg;
3291
3292 if ((ptid_equal (info->ptid, ptid)
3293 || ptid_equal (minus_one_ptid, ptid)
3294 || (ptid_is_pid (ptid)
3295 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
3296 && is_running (info->ptid)
3297 && !is_executing (info->ptid))
3298 {
3299 struct cleanup *old_chain;
3300 struct execution_control_state ecss;
3301 struct execution_control_state *ecs = &ecss;
3302
3303 memset (ecs, 0, sizeof (*ecs));
3304
3305 old_chain = make_cleanup_restore_current_thread ();
3306
f15cb84a
YQ
3307 overlay_cache_invalid = 1;
3308 /* Flush target cache before starting to handle each event.
3309 Target was running and cache could be stale. This is just a
3310 heuristic. Running threads may modify target memory, but we
3311 don't get any event. */
3312 target_dcache_invalidate ();
3313
252fbfc8
PA
3314 /* Go through handle_inferior_event/normal_stop, so we always
3315 have consistent output as if the stop event had been
3316 reported. */
3317 ecs->ptid = info->ptid;
243a9253 3318 ecs->event_thread = info;
252fbfc8 3319 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 3320 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
3321
3322 handle_inferior_event (ecs);
3323
3324 if (!ecs->wait_some_more)
3325 {
243a9253
PA
3326 /* Cancel any running execution command. */
3327 thread_cancel_execution_command (info);
3328
252fbfc8 3329 normal_stop ();
252fbfc8
PA
3330 }
3331
3332 do_cleanups (old_chain);
3333 }
3334
3335 return 0;
3336}
3337
3338/* This function is attached as a "thread_stop_requested" observer.
3339 Cleanup local state that assumed the PTID was to be resumed, and
3340 report the stop to the frontend. */
3341
2c0b251b 3342static void
252fbfc8
PA
3343infrun_thread_stop_requested (ptid_t ptid)
3344{
c2829269 3345 struct thread_info *tp;
252fbfc8 3346
c2829269
PA
3347 /* PTID was requested to stop. Remove matching threads from the
3348 step-over queue, so we don't try to resume them
3349 automatically. */
3350 ALL_NON_EXITED_THREADS (tp)
3351 if (ptid_match (tp->ptid, ptid))
3352 {
3353 if (thread_is_in_step_over_chain (tp))
3354 thread_step_over_chain_remove (tp);
3355 }
252fbfc8
PA
3356
3357 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
3358}
3359
a07daef3
PA
3360static void
3361infrun_thread_thread_exit (struct thread_info *tp, int silent)
3362{
3363 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3364 nullify_last_target_wait_ptid ();
3365}
3366
0cbcdb96
PA
3367/* Delete the step resume, single-step and longjmp/exception resume
3368 breakpoints of TP. */
4e1c45ea 3369
0cbcdb96
PA
3370static void
3371delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3372{
0cbcdb96
PA
3373 delete_step_resume_breakpoint (tp);
3374 delete_exception_resume_breakpoint (tp);
34b7e8a6 3375 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3376}
3377
0cbcdb96
PA
3378/* If the target still has execution, call FUNC for each thread that
3379 just stopped. In all-stop, that's all the non-exited threads; in
3380 non-stop, that's the current thread, only. */
3381
3382typedef void (*for_each_just_stopped_thread_callback_func)
3383 (struct thread_info *tp);
4e1c45ea
PA
3384
3385static void
0cbcdb96 3386for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3387{
0cbcdb96 3388 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3389 return;
3390
fbea99ea 3391 if (target_is_non_stop_p ())
4e1c45ea 3392 {
0cbcdb96
PA
3393 /* If in non-stop mode, only the current thread stopped. */
3394 func (inferior_thread ());
4e1c45ea
PA
3395 }
3396 else
0cbcdb96
PA
3397 {
3398 struct thread_info *tp;
3399
3400 /* In all-stop mode, all threads have stopped. */
3401 ALL_NON_EXITED_THREADS (tp)
3402 {
3403 func (tp);
3404 }
3405 }
3406}
3407
3408/* Delete the step resume and longjmp/exception resume breakpoints of
3409 the threads that just stopped. */
3410
3411static void
3412delete_just_stopped_threads_infrun_breakpoints (void)
3413{
3414 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3415}
3416
3417/* Delete the single-step breakpoints of the threads that just
3418 stopped. */
7c16b83e 3419
34b7e8a6
PA
3420static void
3421delete_just_stopped_threads_single_step_breakpoints (void)
3422{
3423 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3424}
3425
1777feb0 3426/* A cleanup wrapper. */
4e1c45ea
PA
3427
3428static void
0cbcdb96 3429delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3430{
0cbcdb96 3431 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3432}
3433
221e1a37 3434/* See infrun.h. */
223698f8 3435
221e1a37 3436void
223698f8
DE
3437print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3438 const struct target_waitstatus *ws)
3439{
3440 char *status_string = target_waitstatus_to_string (ws);
d7e74731 3441 string_file stb;
223698f8
DE
3442
3443 /* The text is split over several lines because it was getting too long.
3444 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3445 output as a unit; we want only one timestamp printed if debug_timestamp
3446 is set. */
3447
d7e74731
PA
3448 stb.printf ("infrun: target_wait (%d.%ld.%ld",
3449 ptid_get_pid (waiton_ptid),
3450 ptid_get_lwp (waiton_ptid),
3451 ptid_get_tid (waiton_ptid));
dfd4cc63 3452 if (ptid_get_pid (waiton_ptid) != -1)
d7e74731
PA
3453 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3454 stb.printf (", status) =\n");
3455 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
3456 ptid_get_pid (result_ptid),
3457 ptid_get_lwp (result_ptid),
3458 ptid_get_tid (result_ptid),
3459 target_pid_to_str (result_ptid));
3460 stb.printf ("infrun: %s\n", status_string);
223698f8
DE
3461
3462 /* This uses %s in part to handle %'s in the text, but also to avoid
3463 a gcc error: the format attribute requires a string literal. */
d7e74731 3464 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3465
3466 xfree (status_string);
223698f8
DE
3467}
3468
372316f1
PA
3469/* Select a thread at random, out of those which are resumed and have
3470 had events. */
3471
3472static struct thread_info *
3473random_pending_event_thread (ptid_t waiton_ptid)
3474{
3475 struct thread_info *event_tp;
3476 int num_events = 0;
3477 int random_selector;
3478
3479 /* First see how many events we have. Count only resumed threads
3480 that have an event pending. */
3481 ALL_NON_EXITED_THREADS (event_tp)
3482 if (ptid_match (event_tp->ptid, waiton_ptid)
3483 && event_tp->resumed
3484 && event_tp->suspend.waitstatus_pending_p)
3485 num_events++;
3486
3487 if (num_events == 0)
3488 return NULL;
3489
3490 /* Now randomly pick a thread out of those that have had events. */
3491 random_selector = (int)
3492 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3493
3494 if (debug_infrun && num_events > 1)
3495 fprintf_unfiltered (gdb_stdlog,
3496 "infrun: Found %d events, selecting #%d\n",
3497 num_events, random_selector);
3498
3499 /* Select the Nth thread that has had an event. */
3500 ALL_NON_EXITED_THREADS (event_tp)
3501 if (ptid_match (event_tp->ptid, waiton_ptid)
3502 && event_tp->resumed
3503 && event_tp->suspend.waitstatus_pending_p)
3504 if (random_selector-- == 0)
3505 break;
3506
3507 return event_tp;
3508}
3509
3510/* Wrapper for target_wait that first checks whether threads have
3511 pending statuses to report before actually asking the target for
3512 more events. */
3513
3514static ptid_t
3515do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3516{
3517 ptid_t event_ptid;
3518 struct thread_info *tp;
3519
3520 /* First check if there is a resumed thread with a wait status
3521 pending. */
3522 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3523 {
3524 tp = random_pending_event_thread (ptid);
3525 }
3526 else
3527 {
3528 if (debug_infrun)
3529 fprintf_unfiltered (gdb_stdlog,
3530 "infrun: Waiting for specific thread %s.\n",
3531 target_pid_to_str (ptid));
3532
3533 /* We have a specific thread to check. */
3534 tp = find_thread_ptid (ptid);
3535 gdb_assert (tp != NULL);
3536 if (!tp->suspend.waitstatus_pending_p)
3537 tp = NULL;
3538 }
3539
3540 if (tp != NULL
3541 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3542 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3543 {
3544 struct regcache *regcache = get_thread_regcache (tp->ptid);
3545 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3546 CORE_ADDR pc;
3547 int discard = 0;
3548
3549 pc = regcache_read_pc (regcache);
3550
3551 if (pc != tp->suspend.stop_pc)
3552 {
3553 if (debug_infrun)
3554 fprintf_unfiltered (gdb_stdlog,
3555 "infrun: PC of %s changed. was=%s, now=%s\n",
3556 target_pid_to_str (tp->ptid),
3557 paddress (gdbarch, tp->prev_pc),
3558 paddress (gdbarch, pc));
3559 discard = 1;
3560 }
3561 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3562 {
3563 if (debug_infrun)
3564 fprintf_unfiltered (gdb_stdlog,
3565 "infrun: previous breakpoint of %s, at %s gone\n",
3566 target_pid_to_str (tp->ptid),
3567 paddress (gdbarch, pc));
3568
3569 discard = 1;
3570 }
3571
3572 if (discard)
3573 {
3574 if (debug_infrun)
3575 fprintf_unfiltered (gdb_stdlog,
3576 "infrun: pending event of %s cancelled.\n",
3577 target_pid_to_str (tp->ptid));
3578
3579 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3580 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3581 }
3582 }
3583
3584 if (tp != NULL)
3585 {
3586 if (debug_infrun)
3587 {
3588 char *statstr;
3589
3590 statstr = target_waitstatus_to_string (&tp->suspend.waitstatus);
3591 fprintf_unfiltered (gdb_stdlog,
3592 "infrun: Using pending wait status %s for %s.\n",
3593 statstr,
3594 target_pid_to_str (tp->ptid));
3595 xfree (statstr);
3596 }
3597
3598 /* Now that we've selected our final event LWP, un-adjust its PC
3599 if it was a software breakpoint (and the target doesn't
3600 always adjust the PC itself). */
3601 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3602 && !target_supports_stopped_by_sw_breakpoint ())
3603 {
3604 struct regcache *regcache;
3605 struct gdbarch *gdbarch;
3606 int decr_pc;
3607
3608 regcache = get_thread_regcache (tp->ptid);
3609 gdbarch = get_regcache_arch (regcache);
3610
3611 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3612 if (decr_pc != 0)
3613 {
3614 CORE_ADDR pc;
3615
3616 pc = regcache_read_pc (regcache);
3617 regcache_write_pc (regcache, pc + decr_pc);
3618 }
3619 }
3620
3621 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3622 *status = tp->suspend.waitstatus;
3623 tp->suspend.waitstatus_pending_p = 0;
3624
3625 /* Wake up the event loop again, until all pending events are
3626 processed. */
3627 if (target_is_async_p ())
3628 mark_async_event_handler (infrun_async_inferior_event_token);
3629 return tp->ptid;
3630 }
3631
3632 /* But if we don't find one, we'll have to wait. */
3633
3634 if (deprecated_target_wait_hook)
3635 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3636 else
3637 event_ptid = target_wait (ptid, status, options);
3638
3639 return event_ptid;
3640}
3641
24291992
PA
3642/* Prepare and stabilize the inferior for detaching it. E.g.,
3643 detaching while a thread is displaced stepping is a recipe for
3644 crashing it, as nothing would readjust the PC out of the scratch
3645 pad. */
3646
3647void
3648prepare_for_detach (void)
3649{
3650 struct inferior *inf = current_inferior ();
3651 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3652 struct cleanup *old_chain_1;
3653 struct displaced_step_inferior_state *displaced;
3654
3655 displaced = get_displaced_stepping_state (inf->pid);
3656
3657 /* Is any thread of this process displaced stepping? If not,
3658 there's nothing else to do. */
3659 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3660 return;
3661
3662 if (debug_infrun)
3663 fprintf_unfiltered (gdb_stdlog,
3664 "displaced-stepping in-process while detaching");
3665
3666 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3667 inf->detaching = 1;
3668
3669 while (!ptid_equal (displaced->step_ptid, null_ptid))
3670 {
3671 struct cleanup *old_chain_2;
3672 struct execution_control_state ecss;
3673 struct execution_control_state *ecs;
3674
3675 ecs = &ecss;
3676 memset (ecs, 0, sizeof (*ecs));
3677
3678 overlay_cache_invalid = 1;
f15cb84a
YQ
3679 /* Flush target cache before starting to handle each event.
3680 Target was running and cache could be stale. This is just a
3681 heuristic. Running threads may modify target memory, but we
3682 don't get any event. */
3683 target_dcache_invalidate ();
24291992 3684
372316f1 3685 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3686
3687 if (debug_infrun)
3688 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3689
3690 /* If an error happens while handling the event, propagate GDB's
3691 knowledge of the executing state to the frontend/user running
3692 state. */
3e43a32a
MS
3693 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3694 &minus_one_ptid);
24291992
PA
3695
3696 /* Now figure out what to do with the result of the result. */
3697 handle_inferior_event (ecs);
3698
3699 /* No error, don't finish the state yet. */
3700 discard_cleanups (old_chain_2);
3701
3702 /* Breakpoints and watchpoints are not installed on the target
3703 at this point, and signals are passed directly to the
3704 inferior, so this must mean the process is gone. */
3705 if (!ecs->wait_some_more)
3706 {
3707 discard_cleanups (old_chain_1);
3708 error (_("Program exited while detaching"));
3709 }
3710 }
3711
3712 discard_cleanups (old_chain_1);
3713}
3714
cd0fc7c3 3715/* Wait for control to return from inferior to debugger.
ae123ec6 3716
cd0fc7c3
SS
3717 If inferior gets a signal, we may decide to start it up again
3718 instead of returning. That is why there is a loop in this function.
3719 When this function actually returns it means the inferior
3720 should be left stopped and GDB should read more commands. */
3721
3722void
e4c8541f 3723wait_for_inferior (void)
cd0fc7c3
SS
3724{
3725 struct cleanup *old_cleanups;
e6f5c25b 3726 struct cleanup *thread_state_chain;
c906108c 3727
527159b7 3728 if (debug_infrun)
ae123ec6 3729 fprintf_unfiltered
e4c8541f 3730 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3731
0cbcdb96
PA
3732 old_cleanups
3733 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3734 NULL);
cd0fc7c3 3735
e6f5c25b
PA
3736 /* If an error happens while handling the event, propagate GDB's
3737 knowledge of the executing state to the frontend/user running
3738 state. */
3739 thread_state_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3740
c906108c
SS
3741 while (1)
3742 {
ae25568b
PA
3743 struct execution_control_state ecss;
3744 struct execution_control_state *ecs = &ecss;
963f9c80 3745 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3746
ae25568b
PA
3747 memset (ecs, 0, sizeof (*ecs));
3748
ec9499be 3749 overlay_cache_invalid = 1;
ec9499be 3750
f15cb84a
YQ
3751 /* Flush target cache before starting to handle each event.
3752 Target was running and cache could be stale. This is just a
3753 heuristic. Running threads may modify target memory, but we
3754 don't get any event. */
3755 target_dcache_invalidate ();
3756
372316f1 3757 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3758
f00150c9 3759 if (debug_infrun)
223698f8 3760 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3761
cd0fc7c3
SS
3762 /* Now figure out what to do with the result of the result. */
3763 handle_inferior_event (ecs);
c906108c 3764
cd0fc7c3
SS
3765 if (!ecs->wait_some_more)
3766 break;
3767 }
4e1c45ea 3768
e6f5c25b
PA
3769 /* No error, don't finish the state yet. */
3770 discard_cleanups (thread_state_chain);
3771
cd0fc7c3
SS
3772 do_cleanups (old_cleanups);
3773}
c906108c 3774
d3d4baed
PA
3775/* Cleanup that reinstalls the readline callback handler, if the
3776 target is running in the background. If while handling the target
3777 event something triggered a secondary prompt, like e.g., a
3778 pagination prompt, we'll have removed the callback handler (see
3779 gdb_readline_wrapper_line). Need to do this as we go back to the
3780 event loop, ready to process further input. Note this has no
3781 effect if the handler hasn't actually been removed, because calling
3782 rl_callback_handler_install resets the line buffer, thus losing
3783 input. */
3784
3785static void
3786reinstall_readline_callback_handler_cleanup (void *arg)
3787{
3b12939d
PA
3788 struct ui *ui = current_ui;
3789
3790 if (!ui->async)
6c400b59
PA
3791 {
3792 /* We're not going back to the top level event loop yet. Don't
3793 install the readline callback, as it'd prep the terminal,
3794 readline-style (raw, noecho) (e.g., --batch). We'll install
3795 it the next time the prompt is displayed, when we're ready
3796 for input. */
3797 return;
3798 }
3799
3b12939d 3800 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3801 gdb_rl_callback_handler_reinstall ();
3802}
3803
243a9253
PA
3804/* Clean up the FSMs of threads that are now stopped. In non-stop,
3805 that's just the event thread. In all-stop, that's all threads. */
3806
3807static void
3808clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3809{
3810 struct thread_info *thr = ecs->event_thread;
3811
3812 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3813 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3814
3815 if (!non_stop)
3816 {
3817 ALL_NON_EXITED_THREADS (thr)
3818 {
3819 if (thr->thread_fsm == NULL)
3820 continue;
3821 if (thr == ecs->event_thread)
3822 continue;
3823
3824 switch_to_thread (thr->ptid);
8980e177 3825 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3826 }
3827
3828 if (ecs->event_thread != NULL)
3829 switch_to_thread (ecs->event_thread->ptid);
3830 }
3831}
3832
3b12939d
PA
3833/* Helper for all_uis_check_sync_execution_done that works on the
3834 current UI. */
3835
3836static void
3837check_curr_ui_sync_execution_done (void)
3838{
3839 struct ui *ui = current_ui;
3840
3841 if (ui->prompt_state == PROMPT_NEEDED
3842 && ui->async
3843 && !gdb_in_secondary_prompt_p (ui))
3844 {
3845 target_terminal_ours ();
3846 observer_notify_sync_execution_done ();
3eb7562a 3847 ui_register_input_event_handler (ui);
3b12939d
PA
3848 }
3849}
3850
3851/* See infrun.h. */
3852
3853void
3854all_uis_check_sync_execution_done (void)
3855{
0e454242 3856 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3857 {
3858 check_curr_ui_sync_execution_done ();
3859 }
3860}
3861
a8836c93
PA
3862/* See infrun.h. */
3863
3864void
3865all_uis_on_sync_execution_starting (void)
3866{
0e454242 3867 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3868 {
3869 if (current_ui->prompt_state == PROMPT_NEEDED)
3870 async_disable_stdin ();
3871 }
3872}
3873
1777feb0 3874/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3875 event loop whenever a change of state is detected on the file
1777feb0
MS
3876 descriptor corresponding to the target. It can be called more than
3877 once to complete a single execution command. In such cases we need
3878 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3879 that this function is called for a single execution command, then
3880 report to the user that the inferior has stopped, and do the
1777feb0 3881 necessary cleanups. */
43ff13b4
JM
3882
3883void
fba45db2 3884fetch_inferior_event (void *client_data)
43ff13b4 3885{
0d1e5fa7 3886 struct execution_control_state ecss;
a474d7c2 3887 struct execution_control_state *ecs = &ecss;
4f8d22e3 3888 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3889 struct cleanup *ts_old_chain;
0f641c01 3890 int cmd_done = 0;
963f9c80 3891 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3892
0d1e5fa7
PA
3893 memset (ecs, 0, sizeof (*ecs));
3894
c61db772
PA
3895 /* Events are always processed with the main UI as current UI. This
3896 way, warnings, debug output, etc. are always consistently sent to
3897 the main console. */
4b6749b9 3898 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3899
d3d4baed
PA
3900 /* End up with readline processing input, if necessary. */
3901 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3902
c5187ac6
PA
3903 /* We're handling a live event, so make sure we're doing live
3904 debugging. If we're looking at traceframes while the target is
3905 running, we're going to need to get back to that mode after
3906 handling the event. */
3907 if (non_stop)
3908 {
3909 make_cleanup_restore_current_traceframe ();
e6e4e701 3910 set_current_traceframe (-1);
c5187ac6
PA
3911 }
3912
4f8d22e3
PA
3913 if (non_stop)
3914 /* In non-stop mode, the user/frontend should not notice a thread
3915 switch due to internal events. Make sure we reverse to the
3916 user selected thread and frame after handling the event and
3917 running any breakpoint commands. */
3918 make_cleanup_restore_current_thread ();
3919
ec9499be 3920 overlay_cache_invalid = 1;
f15cb84a
YQ
3921 /* Flush target cache before starting to handle each event. Target
3922 was running and cache could be stale. This is just a heuristic.
3923 Running threads may modify target memory, but we don't get any
3924 event. */
3925 target_dcache_invalidate ();
3dd5b83d 3926
b7b633e9
TT
3927 scoped_restore save_exec_dir
3928 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3929
0b333c5e
PA
3930 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3931 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3932
f00150c9 3933 if (debug_infrun)
223698f8 3934 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3935
29f49a6a
PA
3936 /* If an error happens while handling the event, propagate GDB's
3937 knowledge of the executing state to the frontend/user running
3938 state. */
fbea99ea 3939 if (!target_is_non_stop_p ())
29f49a6a
PA
3940 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3941 else
3942 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3943
353d1d73
JK
3944 /* Get executed before make_cleanup_restore_current_thread above to apply
3945 still for the thread which has thrown the exception. */
3946 make_bpstat_clear_actions_cleanup ();
3947
7c16b83e
PA
3948 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3949
43ff13b4 3950 /* Now figure out what to do with the result of the result. */
a474d7c2 3951 handle_inferior_event (ecs);
43ff13b4 3952
a474d7c2 3953 if (!ecs->wait_some_more)
43ff13b4 3954 {
c9657e70 3955 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3956 int should_stop = 1;
3957 struct thread_info *thr = ecs->event_thread;
388a7084 3958 int should_notify_stop = 1;
d6b48e9c 3959
0cbcdb96 3960 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3961
243a9253
PA
3962 if (thr != NULL)
3963 {
3964 struct thread_fsm *thread_fsm = thr->thread_fsm;
3965
3966 if (thread_fsm != NULL)
8980e177 3967 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3968 }
3969
3970 if (!should_stop)
3971 {
3972 keep_going (ecs);
3973 }
c2d11a7d 3974 else
0f641c01 3975 {
243a9253
PA
3976 clean_up_just_stopped_threads_fsms (ecs);
3977
388a7084
PA
3978 if (thr != NULL && thr->thread_fsm != NULL)
3979 {
3980 should_notify_stop
3981 = thread_fsm_should_notify_stop (thr->thread_fsm);
3982 }
3983
3984 if (should_notify_stop)
3985 {
4c2f2a79
PA
3986 int proceeded = 0;
3987
388a7084
PA
3988 /* We may not find an inferior if this was a process exit. */
3989 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3990 proceeded = normal_stop ();
243a9253 3991
4c2f2a79
PA
3992 if (!proceeded)
3993 {
3994 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3995 cmd_done = 1;
3996 }
388a7084 3997 }
0f641c01 3998 }
43ff13b4 3999 }
4f8d22e3 4000
29f49a6a
PA
4001 /* No error, don't finish the thread states yet. */
4002 discard_cleanups (ts_old_chain);
4003
4f8d22e3
PA
4004 /* Revert thread and frame. */
4005 do_cleanups (old_chain);
4006
3b12939d
PA
4007 /* If a UI was in sync execution mode, and now isn't, restore its
4008 prompt (a synchronous execution command has finished, and we're
4009 ready for input). */
4010 all_uis_check_sync_execution_done ();
0f641c01
PA
4011
4012 if (cmd_done
0f641c01
PA
4013 && exec_done_display_p
4014 && (ptid_equal (inferior_ptid, null_ptid)
4015 || !is_running (inferior_ptid)))
4016 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4017}
4018
edb3359d
DJ
4019/* Record the frame and location we're currently stepping through. */
4020void
4021set_step_info (struct frame_info *frame, struct symtab_and_line sal)
4022{
4023 struct thread_info *tp = inferior_thread ();
4024
16c381f0
JK
4025 tp->control.step_frame_id = get_frame_id (frame);
4026 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4027
4028 tp->current_symtab = sal.symtab;
4029 tp->current_line = sal.line;
4030}
4031
0d1e5fa7
PA
4032/* Clear context switchable stepping state. */
4033
4034void
4e1c45ea 4035init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4036{
7f5ef605 4037 tss->stepped_breakpoint = 0;
0d1e5fa7 4038 tss->stepping_over_breakpoint = 0;
963f9c80 4039 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4040 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4041}
4042
c32c64b7
DE
4043/* Set the cached copy of the last ptid/waitstatus. */
4044
6efcd9a8 4045void
c32c64b7
DE
4046set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4047{
4048 target_last_wait_ptid = ptid;
4049 target_last_waitstatus = status;
4050}
4051
e02bc4cc 4052/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4053 target_wait()/deprecated_target_wait_hook(). The data is actually
4054 cached by handle_inferior_event(), which gets called immediately
4055 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4056
4057void
488f131b 4058get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4059{
39f77062 4060 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4061 *status = target_last_waitstatus;
4062}
4063
ac264b3b
MS
4064void
4065nullify_last_target_wait_ptid (void)
4066{
4067 target_last_wait_ptid = minus_one_ptid;
4068}
4069
dcf4fbde 4070/* Switch thread contexts. */
dd80620e
MS
4071
4072static void
0d1e5fa7 4073context_switch (ptid_t ptid)
dd80620e 4074{
4b51d87b 4075 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
4076 {
4077 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4078 target_pid_to_str (inferior_ptid));
4079 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 4080 target_pid_to_str (ptid));
fd48f117
DJ
4081 }
4082
0d1e5fa7 4083 switch_to_thread (ptid);
dd80620e
MS
4084}
4085
d8dd4d5f
PA
4086/* If the target can't tell whether we've hit breakpoints
4087 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4088 check whether that could have been caused by a breakpoint. If so,
4089 adjust the PC, per gdbarch_decr_pc_after_break. */
4090
4fa8626c 4091static void
d8dd4d5f
PA
4092adjust_pc_after_break (struct thread_info *thread,
4093 struct target_waitstatus *ws)
4fa8626c 4094{
24a73cce
UW
4095 struct regcache *regcache;
4096 struct gdbarch *gdbarch;
6c95b8df 4097 struct address_space *aspace;
118e6252 4098 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4099
4fa8626c
DJ
4100 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4101 we aren't, just return.
9709f61c
DJ
4102
4103 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4104 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4105 implemented by software breakpoints should be handled through the normal
4106 breakpoint layer.
8fb3e588 4107
4fa8626c
DJ
4108 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4109 different signals (SIGILL or SIGEMT for instance), but it is less
4110 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4111 gdbarch_decr_pc_after_break. I don't know any specific target that
4112 generates these signals at breakpoints (the code has been in GDB since at
4113 least 1992) so I can not guess how to handle them here.
8fb3e588 4114
e6cf7916
UW
4115 In earlier versions of GDB, a target with
4116 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4117 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4118 target with both of these set in GDB history, and it seems unlikely to be
4119 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4120
d8dd4d5f 4121 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4122 return;
4123
d8dd4d5f 4124 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4125 return;
4126
4058b839
PA
4127 /* In reverse execution, when a breakpoint is hit, the instruction
4128 under it has already been de-executed. The reported PC always
4129 points at the breakpoint address, so adjusting it further would
4130 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4131 architecture:
4132
4133 B1 0x08000000 : INSN1
4134 B2 0x08000001 : INSN2
4135 0x08000002 : INSN3
4136 PC -> 0x08000003 : INSN4
4137
4138 Say you're stopped at 0x08000003 as above. Reverse continuing
4139 from that point should hit B2 as below. Reading the PC when the
4140 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4141 been de-executed already.
4142
4143 B1 0x08000000 : INSN1
4144 B2 PC -> 0x08000001 : INSN2
4145 0x08000002 : INSN3
4146 0x08000003 : INSN4
4147
4148 We can't apply the same logic as for forward execution, because
4149 we would wrongly adjust the PC to 0x08000000, since there's a
4150 breakpoint at PC - 1. We'd then report a hit on B1, although
4151 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4152 behaviour. */
4153 if (execution_direction == EXEC_REVERSE)
4154 return;
4155
1cf4d951
PA
4156 /* If the target can tell whether the thread hit a SW breakpoint,
4157 trust it. Targets that can tell also adjust the PC
4158 themselves. */
4159 if (target_supports_stopped_by_sw_breakpoint ())
4160 return;
4161
4162 /* Note that relying on whether a breakpoint is planted in memory to
4163 determine this can fail. E.g,. the breakpoint could have been
4164 removed since. Or the thread could have been told to step an
4165 instruction the size of a breakpoint instruction, and only
4166 _after_ was a breakpoint inserted at its address. */
4167
24a73cce
UW
4168 /* If this target does not decrement the PC after breakpoints, then
4169 we have nothing to do. */
d8dd4d5f 4170 regcache = get_thread_regcache (thread->ptid);
24a73cce 4171 gdbarch = get_regcache_arch (regcache);
118e6252 4172
527a273a 4173 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4174 if (decr_pc == 0)
24a73cce
UW
4175 return;
4176
6c95b8df
PA
4177 aspace = get_regcache_aspace (regcache);
4178
8aad930b
AC
4179 /* Find the location where (if we've hit a breakpoint) the
4180 breakpoint would be. */
118e6252 4181 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4182
1cf4d951
PA
4183 /* If the target can't tell whether a software breakpoint triggered,
4184 fallback to figuring it out based on breakpoints we think were
4185 inserted in the target, and on whether the thread was stepped or
4186 continued. */
4187
1c5cfe86
PA
4188 /* Check whether there actually is a software breakpoint inserted at
4189 that location.
4190
4191 If in non-stop mode, a race condition is possible where we've
4192 removed a breakpoint, but stop events for that breakpoint were
4193 already queued and arrive later. To suppress those spurious
4194 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4195 and retire them after a number of stop events are reported. Note
4196 this is an heuristic and can thus get confused. The real fix is
4197 to get the "stopped by SW BP and needs adjustment" info out of
4198 the target/kernel (and thus never reach here; see above). */
6c95b8df 4199 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4200 || (target_is_non_stop_p ()
4201 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4202 {
77f9e713 4203 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 4204
8213266a 4205 if (record_full_is_used ())
77f9e713 4206 record_full_gdb_operation_disable_set ();
96429cc8 4207
1c0fdd0e
UW
4208 /* When using hardware single-step, a SIGTRAP is reported for both
4209 a completed single-step and a software breakpoint. Need to
4210 differentiate between the two, as the latter needs adjusting
4211 but the former does not.
4212
4213 The SIGTRAP can be due to a completed hardware single-step only if
4214 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4215 - this thread is currently being stepped
4216
4217 If any of these events did not occur, we must have stopped due
4218 to hitting a software breakpoint, and have to back up to the
4219 breakpoint address.
4220
4221 As a special case, we could have hardware single-stepped a
4222 software breakpoint. In this case (prev_pc == breakpoint_pc),
4223 we also need to back up to the breakpoint address. */
4224
d8dd4d5f
PA
4225 if (thread_has_single_step_breakpoints_set (thread)
4226 || !currently_stepping (thread)
4227 || (thread->stepped_breakpoint
4228 && thread->prev_pc == breakpoint_pc))
515630c5 4229 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 4230
77f9e713 4231 do_cleanups (old_cleanups);
8aad930b 4232 }
4fa8626c
DJ
4233}
4234
edb3359d
DJ
4235static int
4236stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4237{
4238 for (frame = get_prev_frame (frame);
4239 frame != NULL;
4240 frame = get_prev_frame (frame))
4241 {
4242 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4243 return 1;
4244 if (get_frame_type (frame) != INLINE_FRAME)
4245 break;
4246 }
4247
4248 return 0;
4249}
4250
a96d9b2e
SDJ
4251/* Auxiliary function that handles syscall entry/return events.
4252 It returns 1 if the inferior should keep going (and GDB
4253 should ignore the event), or 0 if the event deserves to be
4254 processed. */
ca2163eb 4255
a96d9b2e 4256static int
ca2163eb 4257handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4258{
ca2163eb 4259 struct regcache *regcache;
ca2163eb
PA
4260 int syscall_number;
4261
4262 if (!ptid_equal (ecs->ptid, inferior_ptid))
4263 context_switch (ecs->ptid);
4264
4265 regcache = get_thread_regcache (ecs->ptid);
f90263c1 4266 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
4267 stop_pc = regcache_read_pc (regcache);
4268
a96d9b2e
SDJ
4269 if (catch_syscall_enabled () > 0
4270 && catching_syscall_number (syscall_number) > 0)
4271 {
4272 if (debug_infrun)
4273 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4274 syscall_number);
a96d9b2e 4275
16c381f0 4276 ecs->event_thread->control.stop_bpstat
6c95b8df 4277 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 4278 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4279
ce12b012 4280 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4281 {
4282 /* Catchpoint hit. */
ca2163eb
PA
4283 return 0;
4284 }
a96d9b2e 4285 }
ca2163eb
PA
4286
4287 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4288 keep_going (ecs);
4289 return 1;
a96d9b2e
SDJ
4290}
4291
7e324e48
GB
4292/* Lazily fill in the execution_control_state's stop_func_* fields. */
4293
4294static void
4295fill_in_stop_func (struct gdbarch *gdbarch,
4296 struct execution_control_state *ecs)
4297{
4298 if (!ecs->stop_func_filled_in)
4299 {
4300 /* Don't care about return value; stop_func_start and stop_func_name
4301 will both be 0 if it doesn't work. */
4302 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
4303 &ecs->stop_func_start, &ecs->stop_func_end);
4304 ecs->stop_func_start
4305 += gdbarch_deprecated_function_start_offset (gdbarch);
4306
591a12a1
UW
4307 if (gdbarch_skip_entrypoint_p (gdbarch))
4308 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4309 ecs->stop_func_start);
4310
7e324e48
GB
4311 ecs->stop_func_filled_in = 1;
4312 }
4313}
4314
4f5d7f63
PA
4315
4316/* Return the STOP_SOON field of the inferior pointed at by PTID. */
4317
4318static enum stop_kind
4319get_inferior_stop_soon (ptid_t ptid)
4320{
c9657e70 4321 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
4322
4323 gdb_assert (inf != NULL);
4324 return inf->control.stop_soon;
4325}
4326
372316f1
PA
4327/* Wait for one event. Store the resulting waitstatus in WS, and
4328 return the event ptid. */
4329
4330static ptid_t
4331wait_one (struct target_waitstatus *ws)
4332{
4333 ptid_t event_ptid;
4334 ptid_t wait_ptid = minus_one_ptid;
4335
4336 overlay_cache_invalid = 1;
4337
4338 /* Flush target cache before starting to handle each event.
4339 Target was running and cache could be stale. This is just a
4340 heuristic. Running threads may modify target memory, but we
4341 don't get any event. */
4342 target_dcache_invalidate ();
4343
4344 if (deprecated_target_wait_hook)
4345 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4346 else
4347 event_ptid = target_wait (wait_ptid, ws, 0);
4348
4349 if (debug_infrun)
4350 print_target_wait_results (wait_ptid, event_ptid, ws);
4351
4352 return event_ptid;
4353}
4354
4355/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4356 instead of the current thread. */
4357#define THREAD_STOPPED_BY(REASON) \
4358static int \
4359thread_stopped_by_ ## REASON (ptid_t ptid) \
4360{ \
4361 struct cleanup *old_chain; \
4362 int res; \
4363 \
4364 old_chain = save_inferior_ptid (); \
4365 inferior_ptid = ptid; \
4366 \
4367 res = target_stopped_by_ ## REASON (); \
4368 \
4369 do_cleanups (old_chain); \
4370 \
4371 return res; \
4372}
4373
4374/* Generate thread_stopped_by_watchpoint. */
4375THREAD_STOPPED_BY (watchpoint)
4376/* Generate thread_stopped_by_sw_breakpoint. */
4377THREAD_STOPPED_BY (sw_breakpoint)
4378/* Generate thread_stopped_by_hw_breakpoint. */
4379THREAD_STOPPED_BY (hw_breakpoint)
4380
4381/* Cleanups that switches to the PTID pointed at by PTID_P. */
4382
4383static void
4384switch_to_thread_cleanup (void *ptid_p)
4385{
4386 ptid_t ptid = *(ptid_t *) ptid_p;
4387
4388 switch_to_thread (ptid);
4389}
4390
4391/* Save the thread's event and stop reason to process it later. */
4392
4393static void
4394save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4395{
4396 struct regcache *regcache;
4397 struct address_space *aspace;
4398
4399 if (debug_infrun)
4400 {
4401 char *statstr;
4402
4403 statstr = target_waitstatus_to_string (ws);
4404 fprintf_unfiltered (gdb_stdlog,
4405 "infrun: saving status %s for %d.%ld.%ld\n",
4406 statstr,
4407 ptid_get_pid (tp->ptid),
4408 ptid_get_lwp (tp->ptid),
4409 ptid_get_tid (tp->ptid));
4410 xfree (statstr);
4411 }
4412
4413 /* Record for later. */
4414 tp->suspend.waitstatus = *ws;
4415 tp->suspend.waitstatus_pending_p = 1;
4416
4417 regcache = get_thread_regcache (tp->ptid);
4418 aspace = get_regcache_aspace (regcache);
4419
4420 if (ws->kind == TARGET_WAITKIND_STOPPED
4421 && ws->value.sig == GDB_SIGNAL_TRAP)
4422 {
4423 CORE_ADDR pc = regcache_read_pc (regcache);
4424
4425 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4426
4427 if (thread_stopped_by_watchpoint (tp->ptid))
4428 {
4429 tp->suspend.stop_reason
4430 = TARGET_STOPPED_BY_WATCHPOINT;
4431 }
4432 else if (target_supports_stopped_by_sw_breakpoint ()
4433 && thread_stopped_by_sw_breakpoint (tp->ptid))
4434 {
4435 tp->suspend.stop_reason
4436 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4437 }
4438 else if (target_supports_stopped_by_hw_breakpoint ()
4439 && thread_stopped_by_hw_breakpoint (tp->ptid))
4440 {
4441 tp->suspend.stop_reason
4442 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4443 }
4444 else if (!target_supports_stopped_by_hw_breakpoint ()
4445 && hardware_breakpoint_inserted_here_p (aspace,
4446 pc))
4447 {
4448 tp->suspend.stop_reason
4449 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4450 }
4451 else if (!target_supports_stopped_by_sw_breakpoint ()
4452 && software_breakpoint_inserted_here_p (aspace,
4453 pc))
4454 {
4455 tp->suspend.stop_reason
4456 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4457 }
4458 else if (!thread_has_single_step_breakpoints_set (tp)
4459 && currently_stepping (tp))
4460 {
4461 tp->suspend.stop_reason
4462 = TARGET_STOPPED_BY_SINGLE_STEP;
4463 }
4464 }
4465}
4466
65706a29
PA
4467/* A cleanup that disables thread create/exit events. */
4468
4469static void
4470disable_thread_events (void *arg)
4471{
4472 target_thread_events (0);
4473}
4474
6efcd9a8 4475/* See infrun.h. */
372316f1 4476
6efcd9a8 4477void
372316f1
PA
4478stop_all_threads (void)
4479{
4480 /* We may need multiple passes to discover all threads. */
4481 int pass;
4482 int iterations = 0;
4483 ptid_t entry_ptid;
4484 struct cleanup *old_chain;
4485
fbea99ea 4486 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4487
4488 if (debug_infrun)
4489 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4490
4491 entry_ptid = inferior_ptid;
4492 old_chain = make_cleanup (switch_to_thread_cleanup, &entry_ptid);
4493
65706a29
PA
4494 target_thread_events (1);
4495 make_cleanup (disable_thread_events, NULL);
4496
372316f1
PA
4497 /* Request threads to stop, and then wait for the stops. Because
4498 threads we already know about can spawn more threads while we're
4499 trying to stop them, and we only learn about new threads when we
4500 update the thread list, do this in a loop, and keep iterating
4501 until two passes find no threads that need to be stopped. */
4502 for (pass = 0; pass < 2; pass++, iterations++)
4503 {
4504 if (debug_infrun)
4505 fprintf_unfiltered (gdb_stdlog,
4506 "infrun: stop_all_threads, pass=%d, "
4507 "iterations=%d\n", pass, iterations);
4508 while (1)
4509 {
4510 ptid_t event_ptid;
4511 struct target_waitstatus ws;
4512 int need_wait = 0;
4513 struct thread_info *t;
4514
4515 update_thread_list ();
4516
4517 /* Go through all threads looking for threads that we need
4518 to tell the target to stop. */
4519 ALL_NON_EXITED_THREADS (t)
4520 {
4521 if (t->executing)
4522 {
4523 /* If already stopping, don't request a stop again.
4524 We just haven't seen the notification yet. */
4525 if (!t->stop_requested)
4526 {
4527 if (debug_infrun)
4528 fprintf_unfiltered (gdb_stdlog,
4529 "infrun: %s executing, "
4530 "need stop\n",
4531 target_pid_to_str (t->ptid));
4532 target_stop (t->ptid);
4533 t->stop_requested = 1;
4534 }
4535 else
4536 {
4537 if (debug_infrun)
4538 fprintf_unfiltered (gdb_stdlog,
4539 "infrun: %s executing, "
4540 "already stopping\n",
4541 target_pid_to_str (t->ptid));
4542 }
4543
4544 if (t->stop_requested)
4545 need_wait = 1;
4546 }
4547 else
4548 {
4549 if (debug_infrun)
4550 fprintf_unfiltered (gdb_stdlog,
4551 "infrun: %s not executing\n",
4552 target_pid_to_str (t->ptid));
4553
4554 /* The thread may be not executing, but still be
4555 resumed with a pending status to process. */
4556 t->resumed = 0;
4557 }
4558 }
4559
4560 if (!need_wait)
4561 break;
4562
4563 /* If we find new threads on the second iteration, restart
4564 over. We want to see two iterations in a row with all
4565 threads stopped. */
4566 if (pass > 0)
4567 pass = -1;
4568
4569 event_ptid = wait_one (&ws);
4570 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4571 {
4572 /* All resumed threads exited. */
4573 }
65706a29
PA
4574 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4575 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4576 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4577 {
4578 if (debug_infrun)
4579 {
4580 ptid_t ptid = pid_to_ptid (ws.value.integer);
4581
4582 fprintf_unfiltered (gdb_stdlog,
4583 "infrun: %s exited while "
4584 "stopping threads\n",
4585 target_pid_to_str (ptid));
4586 }
4587 }
4588 else
4589 {
6efcd9a8
PA
4590 struct inferior *inf;
4591
372316f1
PA
4592 t = find_thread_ptid (event_ptid);
4593 if (t == NULL)
4594 t = add_thread (event_ptid);
4595
4596 t->stop_requested = 0;
4597 t->executing = 0;
4598 t->resumed = 0;
4599 t->control.may_range_step = 0;
4600
6efcd9a8
PA
4601 /* This may be the first time we see the inferior report
4602 a stop. */
4603 inf = find_inferior_ptid (event_ptid);
4604 if (inf->needs_setup)
4605 {
4606 switch_to_thread_no_regs (t);
4607 setup_inferior (0);
4608 }
4609
372316f1
PA
4610 if (ws.kind == TARGET_WAITKIND_STOPPED
4611 && ws.value.sig == GDB_SIGNAL_0)
4612 {
4613 /* We caught the event that we intended to catch, so
4614 there's no event pending. */
4615 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4616 t->suspend.waitstatus_pending_p = 0;
4617
4618 if (displaced_step_fixup (t->ptid, GDB_SIGNAL_0) < 0)
4619 {
4620 /* Add it back to the step-over queue. */
4621 if (debug_infrun)
4622 {
4623 fprintf_unfiltered (gdb_stdlog,
4624 "infrun: displaced-step of %s "
4625 "canceled: adding back to the "
4626 "step-over queue\n",
4627 target_pid_to_str (t->ptid));
4628 }
4629 t->control.trap_expected = 0;
4630 thread_step_over_chain_enqueue (t);
4631 }
4632 }
4633 else
4634 {
4635 enum gdb_signal sig;
4636 struct regcache *regcache;
372316f1
PA
4637
4638 if (debug_infrun)
4639 {
4640 char *statstr;
4641
4642 statstr = target_waitstatus_to_string (&ws);
4643 fprintf_unfiltered (gdb_stdlog,
4644 "infrun: target_wait %s, saving "
4645 "status for %d.%ld.%ld\n",
4646 statstr,
4647 ptid_get_pid (t->ptid),
4648 ptid_get_lwp (t->ptid),
4649 ptid_get_tid (t->ptid));
4650 xfree (statstr);
4651 }
4652
4653 /* Record for later. */
4654 save_waitstatus (t, &ws);
4655
4656 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4657 ? ws.value.sig : GDB_SIGNAL_0);
4658
4659 if (displaced_step_fixup (t->ptid, sig) < 0)
4660 {
4661 /* Add it back to the step-over queue. */
4662 t->control.trap_expected = 0;
4663 thread_step_over_chain_enqueue (t);
4664 }
4665
4666 regcache = get_thread_regcache (t->ptid);
4667 t->suspend.stop_pc = regcache_read_pc (regcache);
4668
4669 if (debug_infrun)
4670 {
4671 fprintf_unfiltered (gdb_stdlog,
4672 "infrun: saved stop_pc=%s for %s "
4673 "(currently_stepping=%d)\n",
4674 paddress (target_gdbarch (),
4675 t->suspend.stop_pc),
4676 target_pid_to_str (t->ptid),
4677 currently_stepping (t));
4678 }
4679 }
4680 }
4681 }
4682 }
4683
4684 do_cleanups (old_chain);
4685
4686 if (debug_infrun)
4687 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4688}
4689
f4836ba9
PA
4690/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4691
4692static int
4693handle_no_resumed (struct execution_control_state *ecs)
4694{
4695 struct inferior *inf;
4696 struct thread_info *thread;
4697
3b12939d 4698 if (target_can_async_p ())
f4836ba9 4699 {
3b12939d
PA
4700 struct ui *ui;
4701 int any_sync = 0;
f4836ba9 4702
3b12939d
PA
4703 ALL_UIS (ui)
4704 {
4705 if (ui->prompt_state == PROMPT_BLOCKED)
4706 {
4707 any_sync = 1;
4708 break;
4709 }
4710 }
4711 if (!any_sync)
4712 {
4713 /* There were no unwaited-for children left in the target, but,
4714 we're not synchronously waiting for events either. Just
4715 ignore. */
4716
4717 if (debug_infrun)
4718 fprintf_unfiltered (gdb_stdlog,
4719 "infrun: TARGET_WAITKIND_NO_RESUMED "
4720 "(ignoring: bg)\n");
4721 prepare_to_wait (ecs);
4722 return 1;
4723 }
f4836ba9
PA
4724 }
4725
4726 /* Otherwise, if we were running a synchronous execution command, we
4727 may need to cancel it and give the user back the terminal.
4728
4729 In non-stop mode, the target can't tell whether we've already
4730 consumed previous stop events, so it can end up sending us a
4731 no-resumed event like so:
4732
4733 #0 - thread 1 is left stopped
4734
4735 #1 - thread 2 is resumed and hits breakpoint
4736 -> TARGET_WAITKIND_STOPPED
4737
4738 #2 - thread 3 is resumed and exits
4739 this is the last resumed thread, so
4740 -> TARGET_WAITKIND_NO_RESUMED
4741
4742 #3 - gdb processes stop for thread 2 and decides to re-resume
4743 it.
4744
4745 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4746 thread 2 is now resumed, so the event should be ignored.
4747
4748 IOW, if the stop for thread 2 doesn't end a foreground command,
4749 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4750 event. But it could be that the event meant that thread 2 itself
4751 (or whatever other thread was the last resumed thread) exited.
4752
4753 To address this we refresh the thread list and check whether we
4754 have resumed threads _now_. In the example above, this removes
4755 thread 3 from the thread list. If thread 2 was re-resumed, we
4756 ignore this event. If we find no thread resumed, then we cancel
4757 the synchronous command show "no unwaited-for " to the user. */
4758 update_thread_list ();
4759
4760 ALL_NON_EXITED_THREADS (thread)
4761 {
4762 if (thread->executing
4763 || thread->suspend.waitstatus_pending_p)
4764 {
4765 /* There were no unwaited-for children left in the target at
4766 some point, but there are now. Just ignore. */
4767 if (debug_infrun)
4768 fprintf_unfiltered (gdb_stdlog,
4769 "infrun: TARGET_WAITKIND_NO_RESUMED "
4770 "(ignoring: found resumed)\n");
4771 prepare_to_wait (ecs);
4772 return 1;
4773 }
4774 }
4775
4776 /* Note however that we may find no resumed thread because the whole
4777 process exited meanwhile (thus updating the thread list results
4778 in an empty thread list). In this case we know we'll be getting
4779 a process exit event shortly. */
4780 ALL_INFERIORS (inf)
4781 {
4782 if (inf->pid == 0)
4783 continue;
4784
4785 thread = any_live_thread_of_process (inf->pid);
4786 if (thread == NULL)
4787 {
4788 if (debug_infrun)
4789 fprintf_unfiltered (gdb_stdlog,
4790 "infrun: TARGET_WAITKIND_NO_RESUMED "
4791 "(expect process exit)\n");
4792 prepare_to_wait (ecs);
4793 return 1;
4794 }
4795 }
4796
4797 /* Go ahead and report the event. */
4798 return 0;
4799}
4800
05ba8510
PA
4801/* Given an execution control state that has been freshly filled in by
4802 an event from the inferior, figure out what it means and take
4803 appropriate action.
4804
4805 The alternatives are:
4806
22bcd14b 4807 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4808 debugger.
4809
4810 2) keep_going and return; to wait for the next event (set
4811 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4812 once). */
c906108c 4813
ec9499be 4814static void
0b6e5e10 4815handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4816{
d6b48e9c
PA
4817 enum stop_kind stop_soon;
4818
28736962
PA
4819 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4820 {
4821 /* We had an event in the inferior, but we are not interested in
4822 handling it at this level. The lower layers have already
4823 done what needs to be done, if anything.
4824
4825 One of the possible circumstances for this is when the
4826 inferior produces output for the console. The inferior has
4827 not stopped, and we are ignoring the event. Another possible
4828 circumstance is any event which the lower level knows will be
4829 reported multiple times without an intervening resume. */
4830 if (debug_infrun)
4831 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4832 prepare_to_wait (ecs);
4833 return;
4834 }
4835
65706a29
PA
4836 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4837 {
4838 if (debug_infrun)
4839 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4840 prepare_to_wait (ecs);
4841 return;
4842 }
4843
0e5bf2a8 4844 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4845 && handle_no_resumed (ecs))
4846 return;
0e5bf2a8 4847
1777feb0 4848 /* Cache the last pid/waitstatus. */
c32c64b7 4849 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4850
ca005067 4851 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4852 stop_stack_dummy = STOP_NONE;
ca005067 4853
0e5bf2a8
PA
4854 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4855 {
4856 /* No unwaited-for children left. IOW, all resumed children
4857 have exited. */
4858 if (debug_infrun)
4859 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4860
4861 stop_print_frame = 0;
22bcd14b 4862 stop_waiting (ecs);
0e5bf2a8
PA
4863 return;
4864 }
4865
8c90c137 4866 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4867 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4868 {
4869 ecs->event_thread = find_thread_ptid (ecs->ptid);
4870 /* If it's a new thread, add it to the thread database. */
4871 if (ecs->event_thread == NULL)
4872 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4873
4874 /* Disable range stepping. If the next step request could use a
4875 range, this will be end up re-enabled then. */
4876 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4877 }
88ed393a
JK
4878
4879 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4880 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4881
4882 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4883 reinit_frame_cache ();
4884
28736962
PA
4885 breakpoint_retire_moribund ();
4886
2b009048
DJ
4887 /* First, distinguish signals caused by the debugger from signals
4888 that have to do with the program's own actions. Note that
4889 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4890 on the operating system version. Here we detect when a SIGILL or
4891 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4892 something similar for SIGSEGV, since a SIGSEGV will be generated
4893 when we're trying to execute a breakpoint instruction on a
4894 non-executable stack. This happens for call dummy breakpoints
4895 for architectures like SPARC that place call dummies on the
4896 stack. */
2b009048 4897 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4898 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4899 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4900 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4901 {
de0a0249
UW
4902 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4903
4904 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
4905 regcache_read_pc (regcache)))
4906 {
4907 if (debug_infrun)
4908 fprintf_unfiltered (gdb_stdlog,
4909 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4910 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4911 }
2b009048
DJ
4912 }
4913
28736962
PA
4914 /* Mark the non-executing threads accordingly. In all-stop, all
4915 threads of all processes are stopped when we get any event
e1316e60 4916 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4917 {
4918 ptid_t mark_ptid;
4919
fbea99ea 4920 if (!target_is_non_stop_p ())
372316f1
PA
4921 mark_ptid = minus_one_ptid;
4922 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4923 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4924 {
4925 /* If we're handling a process exit in non-stop mode, even
4926 though threads haven't been deleted yet, one would think
4927 that there is nothing to do, as threads of the dead process
4928 will be soon deleted, and threads of any other process were
4929 left running. However, on some targets, threads survive a
4930 process exit event. E.g., for the "checkpoint" command,
4931 when the current checkpoint/fork exits, linux-fork.c
4932 automatically switches to another fork from within
4933 target_mourn_inferior, by associating the same
4934 inferior/thread to another fork. We haven't mourned yet at
4935 this point, but we must mark any threads left in the
4936 process as not-executing so that finish_thread_state marks
4937 them stopped (in the user's perspective) if/when we present
4938 the stop to the user. */
4939 mark_ptid = pid_to_ptid (ptid_get_pid (ecs->ptid));
4940 }
4941 else
4942 mark_ptid = ecs->ptid;
4943
4944 set_executing (mark_ptid, 0);
4945
4946 /* Likewise the resumed flag. */
4947 set_resumed (mark_ptid, 0);
4948 }
8c90c137 4949
488f131b
JB
4950 switch (ecs->ws.kind)
4951 {
4952 case TARGET_WAITKIND_LOADED:
527159b7 4953 if (debug_infrun)
8a9de0e4 4954 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
4955 if (!ptid_equal (ecs->ptid, inferior_ptid))
4956 context_switch (ecs->ptid);
b0f4b84b
DJ
4957 /* Ignore gracefully during startup of the inferior, as it might
4958 be the shell which has just loaded some objects, otherwise
4959 add the symbols for the newly loaded objects. Also ignore at
4960 the beginning of an attach or remote session; we will query
4961 the full list of libraries once the connection is
4962 established. */
4f5d7f63
PA
4963
4964 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 4965 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4966 {
edcc5120
TT
4967 struct regcache *regcache;
4968
edcc5120
TT
4969 regcache = get_thread_regcache (ecs->ptid);
4970
4971 handle_solib_event ();
4972
4973 ecs->event_thread->control.stop_bpstat
4974 = bpstat_stop_status (get_regcache_aspace (regcache),
4975 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 4976
ce12b012 4977 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4978 {
4979 /* A catchpoint triggered. */
94c57d6a
PA
4980 process_event_stop_test (ecs);
4981 return;
edcc5120 4982 }
488f131b 4983
b0f4b84b
DJ
4984 /* If requested, stop when the dynamic linker notifies
4985 gdb of events. This allows the user to get control
4986 and place breakpoints in initializer routines for
4987 dynamically loaded objects (among other things). */
a493e3e2 4988 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4989 if (stop_on_solib_events)
4990 {
55409f9d
DJ
4991 /* Make sure we print "Stopped due to solib-event" in
4992 normal_stop. */
4993 stop_print_frame = 1;
4994
22bcd14b 4995 stop_waiting (ecs);
b0f4b84b
DJ
4996 return;
4997 }
488f131b 4998 }
b0f4b84b
DJ
4999
5000 /* If we are skipping through a shell, or through shared library
5001 loading that we aren't interested in, resume the program. If
5c09a2c5 5002 we're running the program normally, also resume. */
b0f4b84b
DJ
5003 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5004 {
74960c60
VP
5005 /* Loading of shared libraries might have changed breakpoint
5006 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5007 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5008 insert_breakpoints ();
64ce06e4 5009 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5010 prepare_to_wait (ecs);
5011 return;
5012 }
5013
5c09a2c5
PA
5014 /* But stop if we're attaching or setting up a remote
5015 connection. */
5016 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5017 || stop_soon == STOP_QUIETLY_REMOTE)
5018 {
5019 if (debug_infrun)
5020 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5021 stop_waiting (ecs);
5c09a2c5
PA
5022 return;
5023 }
5024
5025 internal_error (__FILE__, __LINE__,
5026 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5027
488f131b 5028 case TARGET_WAITKIND_SPURIOUS:
527159b7 5029 if (debug_infrun)
8a9de0e4 5030 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 5031 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 5032 context_switch (ecs->ptid);
64ce06e4 5033 resume (GDB_SIGNAL_0);
488f131b
JB
5034 prepare_to_wait (ecs);
5035 return;
c5aa993b 5036
65706a29
PA
5037 case TARGET_WAITKIND_THREAD_CREATED:
5038 if (debug_infrun)
5039 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
5040 if (!ptid_equal (ecs->ptid, inferior_ptid))
5041 context_switch (ecs->ptid);
5042 if (!switch_back_to_stepped_thread (ecs))
5043 keep_going (ecs);
5044 return;
5045
488f131b 5046 case TARGET_WAITKIND_EXITED:
940c3c06 5047 case TARGET_WAITKIND_SIGNALLED:
527159b7 5048 if (debug_infrun)
940c3c06
PA
5049 {
5050 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5051 fprintf_unfiltered (gdb_stdlog,
5052 "infrun: TARGET_WAITKIND_EXITED\n");
5053 else
5054 fprintf_unfiltered (gdb_stdlog,
5055 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5056 }
5057
fb66883a 5058 inferior_ptid = ecs->ptid;
c9657e70 5059 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5060 set_current_program_space (current_inferior ()->pspace);
5061 handle_vfork_child_exec_or_exit (0);
1777feb0 5062 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 5063
0c557179
SDJ
5064 /* Clearing any previous state of convenience variables. */
5065 clear_exit_convenience_vars ();
5066
940c3c06
PA
5067 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5068 {
5069 /* Record the exit code in the convenience variable $_exitcode, so
5070 that the user can inspect this again later. */
5071 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5072 (LONGEST) ecs->ws.value.integer);
5073
5074 /* Also record this in the inferior itself. */
5075 current_inferior ()->has_exit_code = 1;
5076 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5077
98eb56a4
PA
5078 /* Support the --return-child-result option. */
5079 return_child_result_value = ecs->ws.value.integer;
5080
fd664c91 5081 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
5082 }
5083 else
0c557179
SDJ
5084 {
5085 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5086 struct gdbarch *gdbarch = get_regcache_arch (regcache);
5087
5088 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5089 {
5090 /* Set the value of the internal variable $_exitsignal,
5091 which holds the signal uncaught by the inferior. */
5092 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5093 gdbarch_gdb_signal_to_target (gdbarch,
5094 ecs->ws.value.sig));
5095 }
5096 else
5097 {
5098 /* We don't have access to the target's method used for
5099 converting between signal numbers (GDB's internal
5100 representation <-> target's representation).
5101 Therefore, we cannot do a good job at displaying this
5102 information to the user. It's better to just warn
5103 her about it (if infrun debugging is enabled), and
5104 give up. */
5105 if (debug_infrun)
5106 fprintf_filtered (gdb_stdlog, _("\
5107Cannot fill $_exitsignal with the correct signal number.\n"));
5108 }
5109
fd664c91 5110 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 5111 }
8cf64490 5112
488f131b 5113 gdb_flush (gdb_stdout);
bc1e6c81 5114 target_mourn_inferior (inferior_ptid);
488f131b 5115 stop_print_frame = 0;
22bcd14b 5116 stop_waiting (ecs);
488f131b 5117 return;
c5aa993b 5118
488f131b 5119 /* The following are the only cases in which we keep going;
1777feb0 5120 the above cases end in a continue or goto. */
488f131b 5121 case TARGET_WAITKIND_FORKED:
deb3b17b 5122 case TARGET_WAITKIND_VFORKED:
527159b7 5123 if (debug_infrun)
fed708ed
PA
5124 {
5125 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5126 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5127 else
5128 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5129 }
c906108c 5130
e2d96639
YQ
5131 /* Check whether the inferior is displaced stepping. */
5132 {
5133 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5134 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e2d96639
YQ
5135
5136 /* If checking displaced stepping is supported, and thread
5137 ecs->ptid is displaced stepping. */
c0987663 5138 if (displaced_step_in_progress_thread (ecs->ptid))
e2d96639
YQ
5139 {
5140 struct inferior *parent_inf
c9657e70 5141 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5142 struct regcache *child_regcache;
5143 CORE_ADDR parent_pc;
5144
5145 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5146 indicating that the displaced stepping of syscall instruction
5147 has been done. Perform cleanup for parent process here. Note
5148 that this operation also cleans up the child process for vfork,
5149 because their pages are shared. */
a493e3e2 5150 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
c2829269
PA
5151 /* Start a new step-over in another thread if there's one
5152 that needs it. */
5153 start_step_over ();
e2d96639
YQ
5154
5155 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5156 {
c0987663
YQ
5157 struct displaced_step_inferior_state *displaced
5158 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
5159
e2d96639
YQ
5160 /* Restore scratch pad for child process. */
5161 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5162 }
5163
5164 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5165 the child's PC is also within the scratchpad. Set the child's PC
5166 to the parent's PC value, which has already been fixed up.
5167 FIXME: we use the parent's aspace here, although we're touching
5168 the child, because the child hasn't been added to the inferior
5169 list yet at this point. */
5170
5171 child_regcache
5172 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5173 gdbarch,
5174 parent_inf->aspace);
5175 /* Read PC value of parent process. */
5176 parent_pc = regcache_read_pc (regcache);
5177
5178 if (debug_displaced)
5179 fprintf_unfiltered (gdb_stdlog,
5180 "displaced: write child pc from %s to %s\n",
5181 paddress (gdbarch,
5182 regcache_read_pc (child_regcache)),
5183 paddress (gdbarch, parent_pc));
5184
5185 regcache_write_pc (child_regcache, parent_pc);
5186 }
5187 }
5188
5a2901d9 5189 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5190 context_switch (ecs->ptid);
5a2901d9 5191
b242c3c2
PA
5192 /* Immediately detach breakpoints from the child before there's
5193 any chance of letting the user delete breakpoints from the
5194 breakpoint lists. If we don't do this early, it's easy to
5195 leave left over traps in the child, vis: "break foo; catch
5196 fork; c; <fork>; del; c; <child calls foo>". We only follow
5197 the fork on the last `continue', and by that time the
5198 breakpoint at "foo" is long gone from the breakpoint table.
5199 If we vforked, then we don't need to unpatch here, since both
5200 parent and child are sharing the same memory pages; we'll
5201 need to unpatch at follow/detach time instead to be certain
5202 that new breakpoints added between catchpoint hit time and
5203 vfork follow are detached. */
5204 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5205 {
b242c3c2
PA
5206 /* This won't actually modify the breakpoint list, but will
5207 physically remove the breakpoints from the child. */
d80ee84f 5208 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5209 }
5210
34b7e8a6 5211 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5212
e58b0e63
PA
5213 /* In case the event is caught by a catchpoint, remember that
5214 the event is to be followed at the next resume of the thread,
5215 and not immediately. */
5216 ecs->event_thread->pending_follow = ecs->ws;
5217
fb14de7b 5218 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 5219
16c381f0 5220 ecs->event_thread->control.stop_bpstat
6c95b8df 5221 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5222 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 5223
ce12b012
PA
5224 /* If no catchpoint triggered for this, then keep going. Note
5225 that we're interested in knowing the bpstat actually causes a
5226 stop, not just if it may explain the signal. Software
5227 watchpoints, for example, always appear in the bpstat. */
5228 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5229 {
6c95b8df
PA
5230 ptid_t parent;
5231 ptid_t child;
e58b0e63 5232 int should_resume;
3e43a32a
MS
5233 int follow_child
5234 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5235
a493e3e2 5236 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5237
5238 should_resume = follow_fork ();
5239
6c95b8df
PA
5240 parent = ecs->ptid;
5241 child = ecs->ws.value.related_pid;
5242
a2077e25
PA
5243 /* At this point, the parent is marked running, and the
5244 child is marked stopped. */
5245
5246 /* If not resuming the parent, mark it stopped. */
5247 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5248 set_running (parent, 0);
5249
5250 /* If resuming the child, mark it running. */
5251 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5252 set_running (child, 1);
5253
6c95b8df 5254 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5255 if (!detach_fork && (non_stop
5256 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5257 {
5258 if (follow_child)
5259 switch_to_thread (parent);
5260 else
5261 switch_to_thread (child);
5262
5263 ecs->event_thread = inferior_thread ();
5264 ecs->ptid = inferior_ptid;
5265 keep_going (ecs);
5266 }
5267
5268 if (follow_child)
5269 switch_to_thread (child);
5270 else
5271 switch_to_thread (parent);
5272
e58b0e63
PA
5273 ecs->event_thread = inferior_thread ();
5274 ecs->ptid = inferior_ptid;
5275
5276 if (should_resume)
5277 keep_going (ecs);
5278 else
22bcd14b 5279 stop_waiting (ecs);
04e68871
DJ
5280 return;
5281 }
94c57d6a
PA
5282 process_event_stop_test (ecs);
5283 return;
488f131b 5284
6c95b8df
PA
5285 case TARGET_WAITKIND_VFORK_DONE:
5286 /* Done with the shared memory region. Re-insert breakpoints in
5287 the parent, and keep going. */
5288
5289 if (debug_infrun)
3e43a32a
MS
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
5292
5293 if (!ptid_equal (ecs->ptid, inferior_ptid))
5294 context_switch (ecs->ptid);
5295
5296 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5297 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
5298 /* This also takes care of reinserting breakpoints in the
5299 previously locked inferior. */
5300 keep_going (ecs);
5301 return;
5302
488f131b 5303 case TARGET_WAITKIND_EXECD:
527159b7 5304 if (debug_infrun)
fc5261f2 5305 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5306
5a2901d9 5307 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 5308 context_switch (ecs->ptid);
5a2901d9 5309
fb14de7b 5310 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 5311
6c95b8df
PA
5312 /* Do whatever is necessary to the parent branch of the vfork. */
5313 handle_vfork_child_exec_or_exit (1);
5314
795e548f
PA
5315 /* This causes the eventpoints and symbol table to be reset.
5316 Must do this now, before trying to determine whether to
5317 stop. */
71b43ef8 5318 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5319
17d8546e
DB
5320 /* In follow_exec we may have deleted the original thread and
5321 created a new one. Make sure that the event thread is the
5322 execd thread for that case (this is a nop otherwise). */
5323 ecs->event_thread = inferior_thread ();
5324
16c381f0 5325 ecs->event_thread->control.stop_bpstat
6c95b8df 5326 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 5327 stop_pc, ecs->ptid, &ecs->ws);
795e548f 5328
71b43ef8
PA
5329 /* Note that this may be referenced from inside
5330 bpstat_stop_status above, through inferior_has_execd. */
5331 xfree (ecs->ws.value.execd_pathname);
5332 ecs->ws.value.execd_pathname = NULL;
5333
04e68871 5334 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5335 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5336 {
a493e3e2 5337 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5338 keep_going (ecs);
5339 return;
5340 }
94c57d6a
PA
5341 process_event_stop_test (ecs);
5342 return;
488f131b 5343
b4dc5ffa
MK
5344 /* Be careful not to try to gather much state about a thread
5345 that's in a syscall. It's frequently a losing proposition. */
488f131b 5346 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5347 if (debug_infrun)
3e43a32a
MS
5348 fprintf_unfiltered (gdb_stdlog,
5349 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5350 /* Getting the current syscall number. */
94c57d6a
PA
5351 if (handle_syscall_event (ecs) == 0)
5352 process_event_stop_test (ecs);
5353 return;
c906108c 5354
488f131b
JB
5355 /* Before examining the threads further, step this thread to
5356 get it entirely out of the syscall. (We get notice of the
5357 event when the thread is just on the verge of exiting a
5358 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5359 into user code.) */
488f131b 5360 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5361 if (debug_infrun)
3e43a32a
MS
5362 fprintf_unfiltered (gdb_stdlog,
5363 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5364 if (handle_syscall_event (ecs) == 0)
5365 process_event_stop_test (ecs);
5366 return;
c906108c 5367
488f131b 5368 case TARGET_WAITKIND_STOPPED:
527159b7 5369 if (debug_infrun)
8a9de0e4 5370 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 5371 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
5372 handle_signal_stop (ecs);
5373 return;
c906108c 5374
b2175913 5375 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5376 if (debug_infrun)
5377 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5378 /* Reverse execution: target ran out of history info. */
eab402df 5379
d1988021
MM
5380 /* Switch to the stopped thread. */
5381 if (!ptid_equal (ecs->ptid, inferior_ptid))
5382 context_switch (ecs->ptid);
5383 if (debug_infrun)
5384 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5385
34b7e8a6 5386 delete_just_stopped_threads_single_step_breakpoints ();
d1988021 5387 stop_pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
fd664c91 5388 observer_notify_no_history ();
22bcd14b 5389 stop_waiting (ecs);
b2175913 5390 return;
488f131b 5391 }
4f5d7f63
PA
5392}
5393
0b6e5e10
JB
5394/* A wrapper around handle_inferior_event_1, which also makes sure
5395 that all temporary struct value objects that were created during
5396 the handling of the event get deleted at the end. */
5397
5398static void
5399handle_inferior_event (struct execution_control_state *ecs)
5400{
5401 struct value *mark = value_mark ();
5402
5403 handle_inferior_event_1 (ecs);
5404 /* Purge all temporary values created during the event handling,
5405 as it could be a long time before we return to the command level
5406 where such values would otherwise be purged. */
5407 value_free_to_mark (mark);
5408}
5409
372316f1
PA
5410/* Restart threads back to what they were trying to do back when we
5411 paused them for an in-line step-over. The EVENT_THREAD thread is
5412 ignored. */
4d9d9d04
PA
5413
5414static void
372316f1
PA
5415restart_threads (struct thread_info *event_thread)
5416{
5417 struct thread_info *tp;
372316f1
PA
5418
5419 /* In case the instruction just stepped spawned a new thread. */
5420 update_thread_list ();
5421
5422 ALL_NON_EXITED_THREADS (tp)
5423 {
5424 if (tp == event_thread)
5425 {
5426 if (debug_infrun)
5427 fprintf_unfiltered (gdb_stdlog,
5428 "infrun: restart threads: "
5429 "[%s] is event thread\n",
5430 target_pid_to_str (tp->ptid));
5431 continue;
5432 }
5433
5434 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5435 {
5436 if (debug_infrun)
5437 fprintf_unfiltered (gdb_stdlog,
5438 "infrun: restart threads: "
5439 "[%s] not meant to be running\n",
5440 target_pid_to_str (tp->ptid));
5441 continue;
5442 }
5443
5444 if (tp->resumed)
5445 {
5446 if (debug_infrun)
5447 fprintf_unfiltered (gdb_stdlog,
5448 "infrun: restart threads: [%s] resumed\n",
5449 target_pid_to_str (tp->ptid));
5450 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5451 continue;
5452 }
5453
5454 if (thread_is_in_step_over_chain (tp))
5455 {
5456 if (debug_infrun)
5457 fprintf_unfiltered (gdb_stdlog,
5458 "infrun: restart threads: "
5459 "[%s] needs step-over\n",
5460 target_pid_to_str (tp->ptid));
5461 gdb_assert (!tp->resumed);
5462 continue;
5463 }
5464
5465
5466 if (tp->suspend.waitstatus_pending_p)
5467 {
5468 if (debug_infrun)
5469 fprintf_unfiltered (gdb_stdlog,
5470 "infrun: restart threads: "
5471 "[%s] has pending status\n",
5472 target_pid_to_str (tp->ptid));
5473 tp->resumed = 1;
5474 continue;
5475 }
5476
5477 /* If some thread needs to start a step-over at this point, it
5478 should still be in the step-over queue, and thus skipped
5479 above. */
5480 if (thread_still_needs_step_over (tp))
5481 {
5482 internal_error (__FILE__, __LINE__,
5483 "thread [%s] needs a step-over, but not in "
5484 "step-over queue\n",
5485 target_pid_to_str (tp->ptid));
5486 }
5487
5488 if (currently_stepping (tp))
5489 {
5490 if (debug_infrun)
5491 fprintf_unfiltered (gdb_stdlog,
5492 "infrun: restart threads: [%s] was stepping\n",
5493 target_pid_to_str (tp->ptid));
5494 keep_going_stepped_thread (tp);
5495 }
5496 else
5497 {
5498 struct execution_control_state ecss;
5499 struct execution_control_state *ecs = &ecss;
5500
5501 if (debug_infrun)
5502 fprintf_unfiltered (gdb_stdlog,
5503 "infrun: restart threads: [%s] continuing\n",
5504 target_pid_to_str (tp->ptid));
5505 reset_ecs (ecs, tp);
5506 switch_to_thread (tp->ptid);
5507 keep_going_pass_signal (ecs);
5508 }
5509 }
5510}
5511
5512/* Callback for iterate_over_threads. Find a resumed thread that has
5513 a pending waitstatus. */
5514
5515static int
5516resumed_thread_with_pending_status (struct thread_info *tp,
5517 void *arg)
5518{
5519 return (tp->resumed
5520 && tp->suspend.waitstatus_pending_p);
5521}
5522
5523/* Called when we get an event that may finish an in-line or
5524 out-of-line (displaced stepping) step-over started previously.
5525 Return true if the event is processed and we should go back to the
5526 event loop; false if the caller should continue processing the
5527 event. */
5528
5529static int
4d9d9d04
PA
5530finish_step_over (struct execution_control_state *ecs)
5531{
372316f1
PA
5532 int had_step_over_info;
5533
4d9d9d04
PA
5534 displaced_step_fixup (ecs->ptid,
5535 ecs->event_thread->suspend.stop_signal);
5536
372316f1
PA
5537 had_step_over_info = step_over_info_valid_p ();
5538
5539 if (had_step_over_info)
4d9d9d04
PA
5540 {
5541 /* If we're stepping over a breakpoint with all threads locked,
5542 then only the thread that was stepped should be reporting
5543 back an event. */
5544 gdb_assert (ecs->event_thread->control.trap_expected);
5545
5546 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5547 clear_step_over_info ();
5548 }
5549
fbea99ea 5550 if (!target_is_non_stop_p ())
372316f1 5551 return 0;
4d9d9d04
PA
5552
5553 /* Start a new step-over in another thread if there's one that
5554 needs it. */
5555 start_step_over ();
372316f1
PA
5556
5557 /* If we were stepping over a breakpoint before, and haven't started
5558 a new in-line step-over sequence, then restart all other threads
5559 (except the event thread). We can't do this in all-stop, as then
5560 e.g., we wouldn't be able to issue any other remote packet until
5561 these other threads stop. */
5562 if (had_step_over_info && !step_over_info_valid_p ())
5563 {
5564 struct thread_info *pending;
5565
5566 /* If we only have threads with pending statuses, the restart
5567 below won't restart any thread and so nothing re-inserts the
5568 breakpoint we just stepped over. But we need it inserted
5569 when we later process the pending events, otherwise if
5570 another thread has a pending event for this breakpoint too,
5571 we'd discard its event (because the breakpoint that
5572 originally caused the event was no longer inserted). */
5573 context_switch (ecs->ptid);
5574 insert_breakpoints ();
5575
5576 restart_threads (ecs->event_thread);
5577
5578 /* If we have events pending, go through handle_inferior_event
5579 again, picking up a pending event at random. This avoids
5580 thread starvation. */
5581
5582 /* But not if we just stepped over a watchpoint in order to let
5583 the instruction execute so we can evaluate its expression.
5584 The set of watchpoints that triggered is recorded in the
5585 breakpoint objects themselves (see bp->watchpoint_triggered).
5586 If we processed another event first, that other event could
5587 clobber this info. */
5588 if (ecs->event_thread->stepping_over_watchpoint)
5589 return 0;
5590
5591 pending = iterate_over_threads (resumed_thread_with_pending_status,
5592 NULL);
5593 if (pending != NULL)
5594 {
5595 struct thread_info *tp = ecs->event_thread;
5596 struct regcache *regcache;
5597
5598 if (debug_infrun)
5599 {
5600 fprintf_unfiltered (gdb_stdlog,
5601 "infrun: found resumed threads with "
5602 "pending events, saving status\n");
5603 }
5604
5605 gdb_assert (pending != tp);
5606
5607 /* Record the event thread's event for later. */
5608 save_waitstatus (tp, &ecs->ws);
5609 /* This was cleared early, by handle_inferior_event. Set it
5610 so this pending event is considered by
5611 do_target_wait. */
5612 tp->resumed = 1;
5613
5614 gdb_assert (!tp->executing);
5615
5616 regcache = get_thread_regcache (tp->ptid);
5617 tp->suspend.stop_pc = regcache_read_pc (regcache);
5618
5619 if (debug_infrun)
5620 {
5621 fprintf_unfiltered (gdb_stdlog,
5622 "infrun: saved stop_pc=%s for %s "
5623 "(currently_stepping=%d)\n",
5624 paddress (target_gdbarch (),
5625 tp->suspend.stop_pc),
5626 target_pid_to_str (tp->ptid),
5627 currently_stepping (tp));
5628 }
5629
5630 /* This in-line step-over finished; clear this so we won't
5631 start a new one. This is what handle_signal_stop would
5632 do, if we returned false. */
5633 tp->stepping_over_breakpoint = 0;
5634
5635 /* Wake up the event loop again. */
5636 mark_async_event_handler (infrun_async_inferior_event_token);
5637
5638 prepare_to_wait (ecs);
5639 return 1;
5640 }
5641 }
5642
5643 return 0;
4d9d9d04
PA
5644}
5645
4f5d7f63
PA
5646/* Come here when the program has stopped with a signal. */
5647
5648static void
5649handle_signal_stop (struct execution_control_state *ecs)
5650{
5651 struct frame_info *frame;
5652 struct gdbarch *gdbarch;
5653 int stopped_by_watchpoint;
5654 enum stop_kind stop_soon;
5655 int random_signal;
c906108c 5656
f0407826
DE
5657 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5658
5659 /* Do we need to clean up the state of a thread that has
5660 completed a displaced single-step? (Doing so usually affects
5661 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5662 if (finish_step_over (ecs))
5663 return;
f0407826
DE
5664
5665 /* If we either finished a single-step or hit a breakpoint, but
5666 the user wanted this thread to be stopped, pretend we got a
5667 SIG0 (generic unsignaled stop). */
5668 if (ecs->event_thread->stop_requested
5669 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5670 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5671
515630c5 5672 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 5673
527159b7 5674 if (debug_infrun)
237fc4c9 5675 {
5af949e3
UW
5676 struct regcache *regcache = get_thread_regcache (ecs->ptid);
5677 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
5678 struct cleanup *old_chain = save_inferior_ptid ();
5679
5680 inferior_ptid = ecs->ptid;
5af949e3
UW
5681
5682 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
5683 paddress (gdbarch, stop_pc));
d92524f1 5684 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5685 {
5686 CORE_ADDR addr;
abbb1732 5687
237fc4c9
PA
5688 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5689
5690 if (target_stopped_data_address (&current_target, &addr))
5691 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5692 "infrun: stopped data address = %s\n",
5693 paddress (gdbarch, addr));
237fc4c9
PA
5694 else
5695 fprintf_unfiltered (gdb_stdlog,
5696 "infrun: (no data address available)\n");
5697 }
7f82dfc7
JK
5698
5699 do_cleanups (old_chain);
237fc4c9 5700 }
527159b7 5701
36fa8042
PA
5702 /* This is originated from start_remote(), start_inferior() and
5703 shared libraries hook functions. */
5704 stop_soon = get_inferior_stop_soon (ecs->ptid);
5705 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5706 {
5707 if (!ptid_equal (ecs->ptid, inferior_ptid))
5708 context_switch (ecs->ptid);
5709 if (debug_infrun)
5710 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5711 stop_print_frame = 1;
22bcd14b 5712 stop_waiting (ecs);
36fa8042
PA
5713 return;
5714 }
5715
36fa8042
PA
5716 /* This originates from attach_command(). We need to overwrite
5717 the stop_signal here, because some kernels don't ignore a
5718 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5719 See more comments in inferior.h. On the other hand, if we
5720 get a non-SIGSTOP, report it to the user - assume the backend
5721 will handle the SIGSTOP if it should show up later.
5722
5723 Also consider that the attach is complete when we see a
5724 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5725 target extended-remote report it instead of a SIGSTOP
5726 (e.g. gdbserver). We already rely on SIGTRAP being our
5727 signal, so this is no exception.
5728
5729 Also consider that the attach is complete when we see a
5730 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5731 the target to stop all threads of the inferior, in case the
5732 low level attach operation doesn't stop them implicitly. If
5733 they weren't stopped implicitly, then the stub will report a
5734 GDB_SIGNAL_0, meaning: stopped for no particular reason
5735 other than GDB's request. */
5736 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5737 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5738 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5739 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5740 {
5741 stop_print_frame = 1;
22bcd14b 5742 stop_waiting (ecs);
36fa8042
PA
5743 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5744 return;
5745 }
5746
488f131b 5747 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5748 so, then switch to that thread. */
5749 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5750 {
527159b7 5751 if (debug_infrun)
8a9de0e4 5752 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5753
0d1e5fa7 5754 context_switch (ecs->ptid);
c5aa993b 5755
9a4105ab 5756 if (deprecated_context_hook)
5d5658a1 5757 deprecated_context_hook (ptid_to_global_thread_id (ecs->ptid));
488f131b 5758 }
c906108c 5759
568d6575
UW
5760 /* At this point, get hold of the now-current thread's frame. */
5761 frame = get_current_frame ();
5762 gdbarch = get_frame_arch (frame);
5763
2adfaa28 5764 /* Pull the single step breakpoints out of the target. */
af48d08f 5765 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5766 {
af48d08f
PA
5767 struct regcache *regcache;
5768 struct address_space *aspace;
5769 CORE_ADDR pc;
2adfaa28 5770
af48d08f
PA
5771 regcache = get_thread_regcache (ecs->ptid);
5772 aspace = get_regcache_aspace (regcache);
5773 pc = regcache_read_pc (regcache);
34b7e8a6 5774
af48d08f
PA
5775 /* However, before doing so, if this single-step breakpoint was
5776 actually for another thread, set this thread up for moving
5777 past it. */
5778 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5779 aspace, pc))
5780 {
5781 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5782 {
5783 if (debug_infrun)
5784 {
5785 fprintf_unfiltered (gdb_stdlog,
af48d08f 5786 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5787 "single-step breakpoint\n",
5788 target_pid_to_str (ecs->ptid));
2adfaa28 5789 }
af48d08f
PA
5790 ecs->hit_singlestep_breakpoint = 1;
5791 }
5792 }
5793 else
5794 {
5795 if (debug_infrun)
5796 {
5797 fprintf_unfiltered (gdb_stdlog,
5798 "infrun: [%s] hit its "
5799 "single-step breakpoint\n",
5800 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5801 }
5802 }
488f131b 5803 }
af48d08f 5804 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5805
963f9c80
PA
5806 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5807 && ecs->event_thread->control.trap_expected
5808 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5809 stopped_by_watchpoint = 0;
5810 else
5811 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5812
5813 /* If necessary, step over this watchpoint. We'll be back to display
5814 it in a moment. */
5815 if (stopped_by_watchpoint
d92524f1 5816 && (target_have_steppable_watchpoint
568d6575 5817 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5818 {
488f131b
JB
5819 /* At this point, we are stopped at an instruction which has
5820 attempted to write to a piece of memory under control of
5821 a watchpoint. The instruction hasn't actually executed
5822 yet. If we were to evaluate the watchpoint expression
5823 now, we would get the old value, and therefore no change
5824 would seem to have occurred.
5825
5826 In order to make watchpoints work `right', we really need
5827 to complete the memory write, and then evaluate the
d983da9c
DJ
5828 watchpoint expression. We do this by single-stepping the
5829 target.
5830
7f89fd65 5831 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5832 it. For example, the PA can (with some kernel cooperation)
5833 single step over a watchpoint without disabling the watchpoint.
5834
5835 It is far more common to need to disable a watchpoint to step
5836 the inferior over it. If we have non-steppable watchpoints,
5837 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5838 disable all watchpoints.
5839
5840 Any breakpoint at PC must also be stepped over -- if there's
5841 one, it will have already triggered before the watchpoint
5842 triggered, and we either already reported it to the user, or
5843 it didn't cause a stop and we called keep_going. In either
5844 case, if there was a breakpoint at PC, we must be trying to
5845 step past it. */
5846 ecs->event_thread->stepping_over_watchpoint = 1;
5847 keep_going (ecs);
488f131b
JB
5848 return;
5849 }
5850
4e1c45ea 5851 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5852 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5853 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5854 ecs->event_thread->control.stop_step = 0;
488f131b 5855 stop_print_frame = 1;
488f131b 5856 stopped_by_random_signal = 0;
488f131b 5857
edb3359d
DJ
5858 /* Hide inlined functions starting here, unless we just performed stepi or
5859 nexti. After stepi and nexti, always show the innermost frame (not any
5860 inline function call sites). */
16c381f0 5861 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
5862 {
5863 struct address_space *aspace =
5864 get_regcache_aspace (get_thread_regcache (ecs->ptid));
5865
5866 /* skip_inline_frames is expensive, so we avoid it if we can
5867 determine that the address is one where functions cannot have
5868 been inlined. This improves performance with inferiors that
5869 load a lot of shared libraries, because the solib event
5870 breakpoint is defined as the address of a function (i.e. not
5871 inline). Note that we have to check the previous PC as well
5872 as the current one to catch cases when we have just
5873 single-stepped off a breakpoint prior to reinstating it.
5874 Note that we're assuming that the code we single-step to is
5875 not inline, but that's not definitive: there's nothing
5876 preventing the event breakpoint function from containing
5877 inlined code, and the single-step ending up there. If the
5878 user had set a breakpoint on that inlined code, the missing
5879 skip_inline_frames call would break things. Fortunately
5880 that's an extremely unlikely scenario. */
09ac7c10 5881 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
5882 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5883 && ecs->event_thread->control.trap_expected
5884 && pc_at_non_inline_function (aspace,
5885 ecs->event_thread->prev_pc,
09ac7c10 5886 &ecs->ws)))
1c5a993e
MR
5887 {
5888 skip_inline_frames (ecs->ptid);
5889
5890 /* Re-fetch current thread's frame in case that invalidated
5891 the frame cache. */
5892 frame = get_current_frame ();
5893 gdbarch = get_frame_arch (frame);
5894 }
0574c78f 5895 }
edb3359d 5896
a493e3e2 5897 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5898 && ecs->event_thread->control.trap_expected
568d6575 5899 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5900 && currently_stepping (ecs->event_thread))
3352ef37 5901 {
b50d7442 5902 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5903 also on an instruction that needs to be stepped multiple
1777feb0 5904 times before it's been fully executing. E.g., architectures
3352ef37
AC
5905 with a delay slot. It needs to be stepped twice, once for
5906 the instruction and once for the delay slot. */
5907 int step_through_delay
568d6575 5908 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5909
527159b7 5910 if (debug_infrun && step_through_delay)
8a9de0e4 5911 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5912 if (ecs->event_thread->control.step_range_end == 0
5913 && step_through_delay)
3352ef37
AC
5914 {
5915 /* The user issued a continue when stopped at a breakpoint.
5916 Set up for another trap and get out of here. */
4e1c45ea 5917 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5918 keep_going (ecs);
5919 return;
5920 }
5921 else if (step_through_delay)
5922 {
5923 /* The user issued a step when stopped at a breakpoint.
5924 Maybe we should stop, maybe we should not - the delay
5925 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5926 case, don't decide that here, just set
5927 ecs->stepping_over_breakpoint, making sure we
5928 single-step again before breakpoints are re-inserted. */
4e1c45ea 5929 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5930 }
5931 }
5932
ab04a2af
TT
5933 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5934 handles this event. */
5935 ecs->event_thread->control.stop_bpstat
5936 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
5937 stop_pc, ecs->ptid, &ecs->ws);
db82e815 5938
ab04a2af
TT
5939 /* Following in case break condition called a
5940 function. */
5941 stop_print_frame = 1;
73dd234f 5942
ab04a2af
TT
5943 /* This is where we handle "moribund" watchpoints. Unlike
5944 software breakpoints traps, hardware watchpoint traps are
5945 always distinguishable from random traps. If no high-level
5946 watchpoint is associated with the reported stop data address
5947 anymore, then the bpstat does not explain the signal ---
5948 simply make sure to ignore it if `stopped_by_watchpoint' is
5949 set. */
5950
5951 if (debug_infrun
5952 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5953 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5954 GDB_SIGNAL_TRAP)
ab04a2af
TT
5955 && stopped_by_watchpoint)
5956 fprintf_unfiltered (gdb_stdlog,
5957 "infrun: no user watchpoint explains "
5958 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5959
bac7d97b 5960 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5961 at one stage in the past included checks for an inferior
5962 function call's call dummy's return breakpoint. The original
5963 comment, that went with the test, read:
03cebad2 5964
ab04a2af
TT
5965 ``End of a stack dummy. Some systems (e.g. Sony news) give
5966 another signal besides SIGTRAP, so check here as well as
5967 above.''
73dd234f 5968
ab04a2af
TT
5969 If someone ever tries to get call dummys on a
5970 non-executable stack to work (where the target would stop
5971 with something like a SIGSEGV), then those tests might need
5972 to be re-instated. Given, however, that the tests were only
5973 enabled when momentary breakpoints were not being used, I
5974 suspect that it won't be the case.
488f131b 5975
ab04a2af
TT
5976 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5977 be necessary for call dummies on a non-executable stack on
5978 SPARC. */
488f131b 5979
bac7d97b 5980 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5981 random_signal
5982 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5983 ecs->event_thread->suspend.stop_signal);
bac7d97b 5984
1cf4d951
PA
5985 /* Maybe this was a trap for a software breakpoint that has since
5986 been removed. */
5987 if (random_signal && target_stopped_by_sw_breakpoint ())
5988 {
5989 if (program_breakpoint_here_p (gdbarch, stop_pc))
5990 {
5991 struct regcache *regcache;
5992 int decr_pc;
5993
5994 /* Re-adjust PC to what the program would see if GDB was not
5995 debugging it. */
5996 regcache = get_thread_regcache (ecs->event_thread->ptid);
527a273a 5997 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5998 if (decr_pc != 0)
5999 {
6000 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
6001
6002 if (record_full_is_used ())
6003 record_full_gdb_operation_disable_set ();
6004
6005 regcache_write_pc (regcache, stop_pc + decr_pc);
6006
6007 do_cleanups (old_cleanups);
6008 }
6009 }
6010 else
6011 {
6012 /* A delayed software breakpoint event. Ignore the trap. */
6013 if (debug_infrun)
6014 fprintf_unfiltered (gdb_stdlog,
6015 "infrun: delayed software breakpoint "
6016 "trap, ignoring\n");
6017 random_signal = 0;
6018 }
6019 }
6020
6021 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6022 has since been removed. */
6023 if (random_signal && target_stopped_by_hw_breakpoint ())
6024 {
6025 /* A delayed hardware breakpoint event. Ignore the trap. */
6026 if (debug_infrun)
6027 fprintf_unfiltered (gdb_stdlog,
6028 "infrun: delayed hardware breakpoint/watchpoint "
6029 "trap, ignoring\n");
6030 random_signal = 0;
6031 }
6032
bac7d97b
PA
6033 /* If not, perhaps stepping/nexting can. */
6034 if (random_signal)
6035 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6036 && currently_stepping (ecs->event_thread));
ab04a2af 6037
2adfaa28
PA
6038 /* Perhaps the thread hit a single-step breakpoint of _another_
6039 thread. Single-step breakpoints are transparent to the
6040 breakpoints module. */
6041 if (random_signal)
6042 random_signal = !ecs->hit_singlestep_breakpoint;
6043
bac7d97b
PA
6044 /* No? Perhaps we got a moribund watchpoint. */
6045 if (random_signal)
6046 random_signal = !stopped_by_watchpoint;
ab04a2af 6047
488f131b
JB
6048 /* For the program's own signals, act according to
6049 the signal handling tables. */
6050
ce12b012 6051 if (random_signal)
488f131b
JB
6052 {
6053 /* Signal not for debugging purposes. */
c9657e70 6054 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6055 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6056
527159b7 6057 if (debug_infrun)
c9737c08
PA
6058 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6059 gdb_signal_to_symbol_string (stop_signal));
527159b7 6060
488f131b
JB
6061 stopped_by_random_signal = 1;
6062
252fbfc8
PA
6063 /* Always stop on signals if we're either just gaining control
6064 of the program, or the user explicitly requested this thread
6065 to remain stopped. */
d6b48e9c 6066 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6067 || ecs->event_thread->stop_requested
24291992 6068 || (!inf->detaching
16c381f0 6069 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6070 {
22bcd14b 6071 stop_waiting (ecs);
488f131b
JB
6072 return;
6073 }
b57bacec
PA
6074
6075 /* Notify observers the signal has "handle print" set. Note we
6076 returned early above if stopping; normal_stop handles the
6077 printing in that case. */
6078 if (signal_print[ecs->event_thread->suspend.stop_signal])
6079 {
6080 /* The signal table tells us to print about this signal. */
6081 target_terminal_ours_for_output ();
6082 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
6083 target_terminal_inferior ();
6084 }
488f131b
JB
6085
6086 /* Clear the signal if it should not be passed. */
16c381f0 6087 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6088 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6089
fb14de7b 6090 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 6091 && ecs->event_thread->control.trap_expected
8358c15c 6092 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502 6093 {
372316f1
PA
6094 int was_in_line;
6095
68f53502
AC
6096 /* We were just starting a new sequence, attempting to
6097 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6098 Instead this signal arrives. This signal will take us out
68f53502
AC
6099 of the stepping range so GDB needs to remember to, when
6100 the signal handler returns, resume stepping off that
6101 breakpoint. */
6102 /* To simplify things, "continue" is forced to use the same
6103 code paths as single-step - set a breakpoint at the
6104 signal return address and then, once hit, step off that
6105 breakpoint. */
237fc4c9
PA
6106 if (debug_infrun)
6107 fprintf_unfiltered (gdb_stdlog,
6108 "infrun: signal arrived while stepping over "
6109 "breakpoint\n");
d3169d93 6110
372316f1
PA
6111 was_in_line = step_over_info_valid_p ();
6112 clear_step_over_info ();
2c03e5be 6113 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6114 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6115 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6116 ecs->event_thread->control.trap_expected = 0;
d137e6dc 6117
fbea99ea 6118 if (target_is_non_stop_p ())
372316f1 6119 {
fbea99ea
PA
6120 /* Either "set non-stop" is "on", or the target is
6121 always in non-stop mode. In this case, we have a bit
6122 more work to do. Resume the current thread, and if
6123 we had paused all threads, restart them while the
6124 signal handler runs. */
372316f1
PA
6125 keep_going (ecs);
6126
372316f1
PA
6127 if (was_in_line)
6128 {
372316f1
PA
6129 restart_threads (ecs->event_thread);
6130 }
6131 else if (debug_infrun)
6132 {
6133 fprintf_unfiltered (gdb_stdlog,
6134 "infrun: no need to restart threads\n");
6135 }
6136 return;
6137 }
6138
d137e6dc
PA
6139 /* If we were nexting/stepping some other thread, switch to
6140 it, so that we don't continue it, losing control. */
6141 if (!switch_back_to_stepped_thread (ecs))
6142 keep_going (ecs);
9d799f85 6143 return;
68f53502 6144 }
9d799f85 6145
e5f8a7cc
PA
6146 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6147 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
6148 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6149 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6150 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6151 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6152 {
6153 /* The inferior is about to take a signal that will take it
6154 out of the single step range. Set a breakpoint at the
6155 current PC (which is presumably where the signal handler
6156 will eventually return) and then allow the inferior to
6157 run free.
6158
6159 Note that this is only needed for a signal delivered
6160 while in the single-step range. Nested signals aren't a
6161 problem as they eventually all return. */
237fc4c9
PA
6162 if (debug_infrun)
6163 fprintf_unfiltered (gdb_stdlog,
6164 "infrun: signal may take us out of "
6165 "single-step range\n");
6166
372316f1 6167 clear_step_over_info ();
2c03e5be 6168 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6169 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6170 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6171 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6172 keep_going (ecs);
6173 return;
d303a6c7 6174 }
9d799f85
AC
6175
6176 /* Note: step_resume_breakpoint may be non-NULL. This occures
6177 when either there's a nested signal, or when there's a
6178 pending signal enabled just as the signal handler returns
6179 (leaving the inferior at the step-resume-breakpoint without
6180 actually executing it). Either way continue until the
6181 breakpoint is really hit. */
c447ac0b
PA
6182
6183 if (!switch_back_to_stepped_thread (ecs))
6184 {
6185 if (debug_infrun)
6186 fprintf_unfiltered (gdb_stdlog,
6187 "infrun: random signal, keep going\n");
6188
6189 keep_going (ecs);
6190 }
6191 return;
488f131b 6192 }
94c57d6a
PA
6193
6194 process_event_stop_test (ecs);
6195}
6196
6197/* Come here when we've got some debug event / signal we can explain
6198 (IOW, not a random signal), and test whether it should cause a
6199 stop, or whether we should resume the inferior (transparently).
6200 E.g., could be a breakpoint whose condition evaluates false; we
6201 could be still stepping within the line; etc. */
6202
6203static void
6204process_event_stop_test (struct execution_control_state *ecs)
6205{
6206 struct symtab_and_line stop_pc_sal;
6207 struct frame_info *frame;
6208 struct gdbarch *gdbarch;
cdaa5b73
PA
6209 CORE_ADDR jmp_buf_pc;
6210 struct bpstat_what what;
94c57d6a 6211
cdaa5b73 6212 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6213
cdaa5b73
PA
6214 frame = get_current_frame ();
6215 gdbarch = get_frame_arch (frame);
fcf3daef 6216
cdaa5b73 6217 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6218
cdaa5b73
PA
6219 if (what.call_dummy)
6220 {
6221 stop_stack_dummy = what.call_dummy;
6222 }
186c406b 6223
243a9253
PA
6224 /* A few breakpoint types have callbacks associated (e.g.,
6225 bp_jit_event). Run them now. */
6226 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6227
cdaa5b73
PA
6228 /* If we hit an internal event that triggers symbol changes, the
6229 current frame will be invalidated within bpstat_what (e.g., if we
6230 hit an internal solib event). Re-fetch it. */
6231 frame = get_current_frame ();
6232 gdbarch = get_frame_arch (frame);
e2e4d78b 6233
cdaa5b73
PA
6234 switch (what.main_action)
6235 {
6236 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6237 /* If we hit the breakpoint at longjmp while stepping, we
6238 install a momentary breakpoint at the target of the
6239 jmp_buf. */
186c406b 6240
cdaa5b73
PA
6241 if (debug_infrun)
6242 fprintf_unfiltered (gdb_stdlog,
6243 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6244
cdaa5b73 6245 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6246
cdaa5b73
PA
6247 if (what.is_longjmp)
6248 {
6249 struct value *arg_value;
6250
6251 /* If we set the longjmp breakpoint via a SystemTap probe,
6252 then use it to extract the arguments. The destination PC
6253 is the third argument to the probe. */
6254 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6255 if (arg_value)
8fa0c4f8
AA
6256 {
6257 jmp_buf_pc = value_as_address (arg_value);
6258 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6259 }
cdaa5b73
PA
6260 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6261 || !gdbarch_get_longjmp_target (gdbarch,
6262 frame, &jmp_buf_pc))
e2e4d78b 6263 {
cdaa5b73
PA
6264 if (debug_infrun)
6265 fprintf_unfiltered (gdb_stdlog,
6266 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6267 "(!gdbarch_get_longjmp_target)\n");
6268 keep_going (ecs);
6269 return;
e2e4d78b 6270 }
e2e4d78b 6271
cdaa5b73
PA
6272 /* Insert a breakpoint at resume address. */
6273 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6274 }
6275 else
6276 check_exception_resume (ecs, frame);
6277 keep_going (ecs);
6278 return;
e81a37f7 6279
cdaa5b73
PA
6280 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6281 {
6282 struct frame_info *init_frame;
e81a37f7 6283
cdaa5b73 6284 /* There are several cases to consider.
c906108c 6285
cdaa5b73
PA
6286 1. The initiating frame no longer exists. In this case we
6287 must stop, because the exception or longjmp has gone too
6288 far.
2c03e5be 6289
cdaa5b73
PA
6290 2. The initiating frame exists, and is the same as the
6291 current frame. We stop, because the exception or longjmp
6292 has been caught.
2c03e5be 6293
cdaa5b73
PA
6294 3. The initiating frame exists and is different from the
6295 current frame. This means the exception or longjmp has
6296 been caught beneath the initiating frame, so keep going.
c906108c 6297
cdaa5b73
PA
6298 4. longjmp breakpoint has been placed just to protect
6299 against stale dummy frames and user is not interested in
6300 stopping around longjmps. */
c5aa993b 6301
cdaa5b73
PA
6302 if (debug_infrun)
6303 fprintf_unfiltered (gdb_stdlog,
6304 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6305
cdaa5b73
PA
6306 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6307 != NULL);
6308 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6309
cdaa5b73
PA
6310 if (what.is_longjmp)
6311 {
b67a2c6f 6312 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6313
cdaa5b73 6314 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6315 {
cdaa5b73
PA
6316 /* Case 4. */
6317 keep_going (ecs);
6318 return;
e5ef252a 6319 }
cdaa5b73 6320 }
c5aa993b 6321
cdaa5b73 6322 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6323
cdaa5b73
PA
6324 if (init_frame)
6325 {
6326 struct frame_id current_id
6327 = get_frame_id (get_current_frame ());
6328 if (frame_id_eq (current_id,
6329 ecs->event_thread->initiating_frame))
6330 {
6331 /* Case 2. Fall through. */
6332 }
6333 else
6334 {
6335 /* Case 3. */
6336 keep_going (ecs);
6337 return;
6338 }
68f53502 6339 }
488f131b 6340
cdaa5b73
PA
6341 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6342 exists. */
6343 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6344
bdc36728 6345 end_stepping_range (ecs);
cdaa5b73
PA
6346 }
6347 return;
e5ef252a 6348
cdaa5b73
PA
6349 case BPSTAT_WHAT_SINGLE:
6350 if (debug_infrun)
6351 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6352 ecs->event_thread->stepping_over_breakpoint = 1;
6353 /* Still need to check other stuff, at least the case where we
6354 are stepping and step out of the right range. */
6355 break;
e5ef252a 6356
cdaa5b73
PA
6357 case BPSTAT_WHAT_STEP_RESUME:
6358 if (debug_infrun)
6359 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6360
cdaa5b73
PA
6361 delete_step_resume_breakpoint (ecs->event_thread);
6362 if (ecs->event_thread->control.proceed_to_finish
6363 && execution_direction == EXEC_REVERSE)
6364 {
6365 struct thread_info *tp = ecs->event_thread;
6366
6367 /* We are finishing a function in reverse, and just hit the
6368 step-resume breakpoint at the start address of the
6369 function, and we're almost there -- just need to back up
6370 by one more single-step, which should take us back to the
6371 function call. */
6372 tp->control.step_range_start = tp->control.step_range_end = 1;
6373 keep_going (ecs);
e5ef252a 6374 return;
cdaa5b73
PA
6375 }
6376 fill_in_stop_func (gdbarch, ecs);
6377 if (stop_pc == ecs->stop_func_start
6378 && execution_direction == EXEC_REVERSE)
6379 {
6380 /* We are stepping over a function call in reverse, and just
6381 hit the step-resume breakpoint at the start address of
6382 the function. Go back to single-stepping, which should
6383 take us back to the function call. */
6384 ecs->event_thread->stepping_over_breakpoint = 1;
6385 keep_going (ecs);
6386 return;
6387 }
6388 break;
e5ef252a 6389
cdaa5b73
PA
6390 case BPSTAT_WHAT_STOP_NOISY:
6391 if (debug_infrun)
6392 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6393 stop_print_frame = 1;
e5ef252a 6394
99619bea
PA
6395 /* Assume the thread stopped for a breapoint. We'll still check
6396 whether a/the breakpoint is there when the thread is next
6397 resumed. */
6398 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6399
22bcd14b 6400 stop_waiting (ecs);
cdaa5b73 6401 return;
e5ef252a 6402
cdaa5b73
PA
6403 case BPSTAT_WHAT_STOP_SILENT:
6404 if (debug_infrun)
6405 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6406 stop_print_frame = 0;
e5ef252a 6407
99619bea
PA
6408 /* Assume the thread stopped for a breapoint. We'll still check
6409 whether a/the breakpoint is there when the thread is next
6410 resumed. */
6411 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6412 stop_waiting (ecs);
cdaa5b73
PA
6413 return;
6414
6415 case BPSTAT_WHAT_HP_STEP_RESUME:
6416 if (debug_infrun)
6417 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6418
6419 delete_step_resume_breakpoint (ecs->event_thread);
6420 if (ecs->event_thread->step_after_step_resume_breakpoint)
6421 {
6422 /* Back when the step-resume breakpoint was inserted, we
6423 were trying to single-step off a breakpoint. Go back to
6424 doing that. */
6425 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6426 ecs->event_thread->stepping_over_breakpoint = 1;
6427 keep_going (ecs);
6428 return;
e5ef252a 6429 }
cdaa5b73
PA
6430 break;
6431
6432 case BPSTAT_WHAT_KEEP_CHECKING:
6433 break;
e5ef252a 6434 }
c906108c 6435
af48d08f
PA
6436 /* If we stepped a permanent breakpoint and we had a high priority
6437 step-resume breakpoint for the address we stepped, but we didn't
6438 hit it, then we must have stepped into the signal handler. The
6439 step-resume was only necessary to catch the case of _not_
6440 stepping into the handler, so delete it, and fall through to
6441 checking whether the step finished. */
6442 if (ecs->event_thread->stepped_breakpoint)
6443 {
6444 struct breakpoint *sr_bp
6445 = ecs->event_thread->control.step_resume_breakpoint;
6446
8d707a12
PA
6447 if (sr_bp != NULL
6448 && sr_bp->loc->permanent
af48d08f
PA
6449 && sr_bp->type == bp_hp_step_resume
6450 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6451 {
6452 if (debug_infrun)
6453 fprintf_unfiltered (gdb_stdlog,
6454 "infrun: stepped permanent breakpoint, stopped in "
6455 "handler\n");
6456 delete_step_resume_breakpoint (ecs->event_thread);
6457 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6458 }
6459 }
6460
cdaa5b73
PA
6461 /* We come here if we hit a breakpoint but should not stop for it.
6462 Possibly we also were stepping and should stop for that. So fall
6463 through and test for stepping. But, if not stepping, do not
6464 stop. */
c906108c 6465
a7212384
UW
6466 /* In all-stop mode, if we're currently stepping but have stopped in
6467 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6468 if (switch_back_to_stepped_thread (ecs))
6469 return;
776f04fa 6470
8358c15c 6471 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6472 {
527159b7 6473 if (debug_infrun)
d3169d93
DJ
6474 fprintf_unfiltered (gdb_stdlog,
6475 "infrun: step-resume breakpoint is inserted\n");
527159b7 6476
488f131b
JB
6477 /* Having a step-resume breakpoint overrides anything
6478 else having to do with stepping commands until
6479 that breakpoint is reached. */
488f131b
JB
6480 keep_going (ecs);
6481 return;
6482 }
c5aa993b 6483
16c381f0 6484 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6485 {
527159b7 6486 if (debug_infrun)
8a9de0e4 6487 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6488 /* Likewise if we aren't even stepping. */
488f131b
JB
6489 keep_going (ecs);
6490 return;
6491 }
c5aa993b 6492
4b7703ad
JB
6493 /* Re-fetch current thread's frame in case the code above caused
6494 the frame cache to be re-initialized, making our FRAME variable
6495 a dangling pointer. */
6496 frame = get_current_frame ();
628fe4e4 6497 gdbarch = get_frame_arch (frame);
7e324e48 6498 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6499
488f131b 6500 /* If stepping through a line, keep going if still within it.
c906108c 6501
488f131b
JB
6502 Note that step_range_end is the address of the first instruction
6503 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6504 within it!
6505
6506 Note also that during reverse execution, we may be stepping
6507 through a function epilogue and therefore must detect when
6508 the current-frame changes in the middle of a line. */
6509
ce4c476a 6510 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 6511 && (execution_direction != EXEC_REVERSE
388a8562 6512 || frame_id_eq (get_frame_id (frame),
16c381f0 6513 ecs->event_thread->control.step_frame_id)))
488f131b 6514 {
527159b7 6515 if (debug_infrun)
5af949e3
UW
6516 fprintf_unfiltered
6517 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6518 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6519 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6520
c1e36e3e
PA
6521 /* Tentatively re-enable range stepping; `resume' disables it if
6522 necessary (e.g., if we're stepping over a breakpoint or we
6523 have software watchpoints). */
6524 ecs->event_thread->control.may_range_step = 1;
6525
b2175913
MS
6526 /* When stepping backward, stop at beginning of line range
6527 (unless it's the function entry point, in which case
6528 keep going back to the call point). */
16c381f0 6529 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6530 && stop_pc != ecs->stop_func_start
6531 && execution_direction == EXEC_REVERSE)
bdc36728 6532 end_stepping_range (ecs);
b2175913
MS
6533 else
6534 keep_going (ecs);
6535
488f131b
JB
6536 return;
6537 }
c5aa993b 6538
488f131b 6539 /* We stepped out of the stepping range. */
c906108c 6540
488f131b 6541 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6542 loader dynamic symbol resolution code...
6543
6544 EXEC_FORWARD: we keep on single stepping until we exit the run
6545 time loader code and reach the callee's address.
6546
6547 EXEC_REVERSE: we've already executed the callee (backward), and
6548 the runtime loader code is handled just like any other
6549 undebuggable function call. Now we need only keep stepping
6550 backward through the trampoline code, and that's handled further
6551 down, so there is nothing for us to do here. */
6552
6553 if (execution_direction != EXEC_REVERSE
16c381f0 6554 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 6555 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 6556 {
4c8c40e6 6557 CORE_ADDR pc_after_resolver =
568d6575 6558 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 6559
527159b7 6560 if (debug_infrun)
3e43a32a
MS
6561 fprintf_unfiltered (gdb_stdlog,
6562 "infrun: stepped into dynsym resolve code\n");
527159b7 6563
488f131b
JB
6564 if (pc_after_resolver)
6565 {
6566 /* Set up a step-resume breakpoint at the address
6567 indicated by SKIP_SOLIB_RESOLVER. */
6568 struct symtab_and_line sr_sal;
abbb1732 6569
fe39c653 6570 init_sal (&sr_sal);
488f131b 6571 sr_sal.pc = pc_after_resolver;
6c95b8df 6572 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6573
a6d9a66e
UW
6574 insert_step_resume_breakpoint_at_sal (gdbarch,
6575 sr_sal, null_frame_id);
c5aa993b 6576 }
c906108c 6577
488f131b
JB
6578 keep_going (ecs);
6579 return;
6580 }
c906108c 6581
16c381f0
JK
6582 if (ecs->event_thread->control.step_range_end != 1
6583 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6584 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6585 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6586 {
527159b7 6587 if (debug_infrun)
3e43a32a
MS
6588 fprintf_unfiltered (gdb_stdlog,
6589 "infrun: stepped into signal trampoline\n");
42edda50 6590 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6591 a signal trampoline (either by a signal being delivered or by
6592 the signal handler returning). Just single-step until the
6593 inferior leaves the trampoline (either by calling the handler
6594 or returning). */
488f131b
JB
6595 keep_going (ecs);
6596 return;
6597 }
c906108c 6598
14132e89
MR
6599 /* If we're in the return path from a shared library trampoline,
6600 we want to proceed through the trampoline when stepping. */
6601 /* macro/2012-04-25: This needs to come before the subroutine
6602 call check below as on some targets return trampolines look
6603 like subroutine calls (MIPS16 return thunks). */
6604 if (gdbarch_in_solib_return_trampoline (gdbarch,
6605 stop_pc, ecs->stop_func_name)
6606 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6607 {
6608 /* Determine where this trampoline returns. */
6609 CORE_ADDR real_stop_pc;
6610
6611 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6612
6613 if (debug_infrun)
6614 fprintf_unfiltered (gdb_stdlog,
6615 "infrun: stepped into solib return tramp\n");
6616
6617 /* Only proceed through if we know where it's going. */
6618 if (real_stop_pc)
6619 {
6620 /* And put the step-breakpoint there and go until there. */
6621 struct symtab_and_line sr_sal;
6622
6623 init_sal (&sr_sal); /* initialize to zeroes */
6624 sr_sal.pc = real_stop_pc;
6625 sr_sal.section = find_pc_overlay (sr_sal.pc);
6626 sr_sal.pspace = get_frame_program_space (frame);
6627
6628 /* Do not specify what the fp should be when we stop since
6629 on some machines the prologue is where the new fp value
6630 is established. */
6631 insert_step_resume_breakpoint_at_sal (gdbarch,
6632 sr_sal, null_frame_id);
6633
6634 /* Restart without fiddling with the step ranges or
6635 other state. */
6636 keep_going (ecs);
6637 return;
6638 }
6639 }
6640
c17eaafe
DJ
6641 /* Check for subroutine calls. The check for the current frame
6642 equalling the step ID is not necessary - the check of the
6643 previous frame's ID is sufficient - but it is a common case and
6644 cheaper than checking the previous frame's ID.
14e60db5
DJ
6645
6646 NOTE: frame_id_eq will never report two invalid frame IDs as
6647 being equal, so to get into this block, both the current and
6648 previous frame must have valid frame IDs. */
005ca36a
JB
6649 /* The outer_frame_id check is a heuristic to detect stepping
6650 through startup code. If we step over an instruction which
6651 sets the stack pointer from an invalid value to a valid value,
6652 we may detect that as a subroutine call from the mythical
6653 "outermost" function. This could be fixed by marking
6654 outermost frames as !stack_p,code_p,special_p. Then the
6655 initial outermost frame, before sp was valid, would
ce6cca6d 6656 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6657 for more. */
edb3359d 6658 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6659 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6660 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6661 ecs->event_thread->control.step_stack_frame_id)
6662 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6663 outer_frame_id)
885eeb5b
PA
6664 || (ecs->event_thread->control.step_start_function
6665 != find_pc_function (stop_pc)))))
488f131b 6666 {
95918acb 6667 CORE_ADDR real_stop_pc;
8fb3e588 6668
527159b7 6669 if (debug_infrun)
8a9de0e4 6670 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6671
b7a084be 6672 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6673 {
6674 /* I presume that step_over_calls is only 0 when we're
6675 supposed to be stepping at the assembly language level
6676 ("stepi"). Just stop. */
388a8562 6677 /* And this works the same backward as frontward. MVS */
bdc36728 6678 end_stepping_range (ecs);
95918acb
AC
6679 return;
6680 }
8fb3e588 6681
388a8562
MS
6682 /* Reverse stepping through solib trampolines. */
6683
6684 if (execution_direction == EXEC_REVERSE
16c381f0 6685 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6686 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6687 || (ecs->stop_func_start == 0
6688 && in_solib_dynsym_resolve_code (stop_pc))))
6689 {
6690 /* Any solib trampoline code can be handled in reverse
6691 by simply continuing to single-step. We have already
6692 executed the solib function (backwards), and a few
6693 steps will take us back through the trampoline to the
6694 caller. */
6695 keep_going (ecs);
6696 return;
6697 }
6698
16c381f0 6699 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6700 {
b2175913
MS
6701 /* We're doing a "next".
6702
6703 Normal (forward) execution: set a breakpoint at the
6704 callee's return address (the address at which the caller
6705 will resume).
6706
6707 Reverse (backward) execution. set the step-resume
6708 breakpoint at the start of the function that we just
6709 stepped into (backwards), and continue to there. When we
6130d0b7 6710 get there, we'll need to single-step back to the caller. */
b2175913
MS
6711
6712 if (execution_direction == EXEC_REVERSE)
6713 {
acf9414f
JK
6714 /* If we're already at the start of the function, we've either
6715 just stepped backward into a single instruction function,
6716 or stepped back out of a signal handler to the first instruction
6717 of the function. Just keep going, which will single-step back
6718 to the caller. */
58c48e72 6719 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
6720 {
6721 struct symtab_and_line sr_sal;
6722
6723 /* Normal function call return (static or dynamic). */
6724 init_sal (&sr_sal);
6725 sr_sal.pc = ecs->stop_func_start;
6726 sr_sal.pspace = get_frame_program_space (frame);
6727 insert_step_resume_breakpoint_at_sal (gdbarch,
6728 sr_sal, null_frame_id);
6729 }
b2175913
MS
6730 }
6731 else
568d6575 6732 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6733
8567c30f
AC
6734 keep_going (ecs);
6735 return;
6736 }
a53c66de 6737
95918acb 6738 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6739 calling routine and the real function), locate the real
6740 function. That's what tells us (a) whether we want to step
6741 into it at all, and (b) what prologue we want to run to the
6742 end of, if we do step into it. */
568d6575 6743 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6744 if (real_stop_pc == 0)
568d6575 6745 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6746 if (real_stop_pc != 0)
6747 ecs->stop_func_start = real_stop_pc;
8fb3e588 6748
db5f024e 6749 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
6750 {
6751 struct symtab_and_line sr_sal;
abbb1732 6752
1b2bfbb9
RC
6753 init_sal (&sr_sal);
6754 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6755 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6756
a6d9a66e
UW
6757 insert_step_resume_breakpoint_at_sal (gdbarch,
6758 sr_sal, null_frame_id);
8fb3e588
AC
6759 keep_going (ecs);
6760 return;
1b2bfbb9
RC
6761 }
6762
95918acb 6763 /* If we have line number information for the function we are
1bfeeb0f
JL
6764 thinking of stepping into and the function isn't on the skip
6765 list, step into it.
95918acb 6766
8fb3e588
AC
6767 If there are several symtabs at that PC (e.g. with include
6768 files), just want to know whether *any* of them have line
6769 numbers. find_pc_line handles this. */
95918acb
AC
6770 {
6771 struct symtab_and_line tmp_sal;
8fb3e588 6772
95918acb 6773 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6774 if (tmp_sal.line != 0
85817405
JK
6775 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6776 &tmp_sal))
95918acb 6777 {
b2175913 6778 if (execution_direction == EXEC_REVERSE)
568d6575 6779 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6780 else
568d6575 6781 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6782 return;
6783 }
6784 }
6785
6786 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6787 set, we stop the step so that the user has a chance to switch
6788 in assembly mode. */
16c381f0 6789 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6790 && step_stop_if_no_debug)
95918acb 6791 {
bdc36728 6792 end_stepping_range (ecs);
95918acb
AC
6793 return;
6794 }
6795
b2175913
MS
6796 if (execution_direction == EXEC_REVERSE)
6797 {
acf9414f
JK
6798 /* If we're already at the start of the function, we've either just
6799 stepped backward into a single instruction function without line
6800 number info, or stepped back out of a signal handler to the first
6801 instruction of the function without line number info. Just keep
6802 going, which will single-step back to the caller. */
6803 if (ecs->stop_func_start != stop_pc)
6804 {
6805 /* Set a breakpoint at callee's start address.
6806 From there we can step once and be back in the caller. */
6807 struct symtab_and_line sr_sal;
abbb1732 6808
acf9414f
JK
6809 init_sal (&sr_sal);
6810 sr_sal.pc = ecs->stop_func_start;
6811 sr_sal.pspace = get_frame_program_space (frame);
6812 insert_step_resume_breakpoint_at_sal (gdbarch,
6813 sr_sal, null_frame_id);
6814 }
b2175913
MS
6815 }
6816 else
6817 /* Set a breakpoint at callee's return address (the address
6818 at which the caller will resume). */
568d6575 6819 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6820
95918acb 6821 keep_going (ecs);
488f131b 6822 return;
488f131b 6823 }
c906108c 6824
fdd654f3
MS
6825 /* Reverse stepping through solib trampolines. */
6826
6827 if (execution_direction == EXEC_REVERSE
16c381f0 6828 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
6829 {
6830 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6831 || (ecs->stop_func_start == 0
6832 && in_solib_dynsym_resolve_code (stop_pc)))
6833 {
6834 /* Any solib trampoline code can be handled in reverse
6835 by simply continuing to single-step. We have already
6836 executed the solib function (backwards), and a few
6837 steps will take us back through the trampoline to the
6838 caller. */
6839 keep_going (ecs);
6840 return;
6841 }
6842 else if (in_solib_dynsym_resolve_code (stop_pc))
6843 {
6844 /* Stepped backward into the solib dynsym resolver.
6845 Set a breakpoint at its start and continue, then
6846 one more step will take us out. */
6847 struct symtab_and_line sr_sal;
abbb1732 6848
fdd654f3
MS
6849 init_sal (&sr_sal);
6850 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6851 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6852 insert_step_resume_breakpoint_at_sal (gdbarch,
6853 sr_sal, null_frame_id);
6854 keep_going (ecs);
6855 return;
6856 }
6857 }
6858
2afb61aa 6859 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 6860
1b2bfbb9
RC
6861 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6862 the trampoline processing logic, however, there are some trampolines
6863 that have no names, so we should do trampoline handling first. */
16c381f0 6864 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6865 && ecs->stop_func_name == NULL
2afb61aa 6866 && stop_pc_sal.line == 0)
1b2bfbb9 6867 {
527159b7 6868 if (debug_infrun)
3e43a32a
MS
6869 fprintf_unfiltered (gdb_stdlog,
6870 "infrun: stepped into undebuggable function\n");
527159b7 6871
1b2bfbb9 6872 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6873 undebuggable function (where there is no debugging information
6874 and no line number corresponding to the address where the
1b2bfbb9
RC
6875 inferior stopped). Since we want to skip this kind of code,
6876 we keep going until the inferior returns from this
14e60db5
DJ
6877 function - unless the user has asked us not to (via
6878 set step-mode) or we no longer know how to get back
6879 to the call site. */
6880 if (step_stop_if_no_debug
c7ce8faa 6881 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6882 {
6883 /* If we have no line number and the step-stop-if-no-debug
6884 is set, we stop the step so that the user has a chance to
6885 switch in assembly mode. */
bdc36728 6886 end_stepping_range (ecs);
1b2bfbb9
RC
6887 return;
6888 }
6889 else
6890 {
6891 /* Set a breakpoint at callee's return address (the address
6892 at which the caller will resume). */
568d6575 6893 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6894 keep_going (ecs);
6895 return;
6896 }
6897 }
6898
16c381f0 6899 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6900 {
6901 /* It is stepi or nexti. We always want to stop stepping after
6902 one instruction. */
527159b7 6903 if (debug_infrun)
8a9de0e4 6904 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6905 end_stepping_range (ecs);
1b2bfbb9
RC
6906 return;
6907 }
6908
2afb61aa 6909 if (stop_pc_sal.line == 0)
488f131b
JB
6910 {
6911 /* We have no line number information. That means to stop
6912 stepping (does this always happen right after one instruction,
6913 when we do "s" in a function with no line numbers,
6914 or can this happen as a result of a return or longjmp?). */
527159b7 6915 if (debug_infrun)
8a9de0e4 6916 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6917 end_stepping_range (ecs);
488f131b
JB
6918 return;
6919 }
c906108c 6920
edb3359d
DJ
6921 /* Look for "calls" to inlined functions, part one. If the inline
6922 frame machinery detected some skipped call sites, we have entered
6923 a new inline function. */
6924
6925 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6926 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
6927 && inline_skipped_frames (ecs->ptid))
6928 {
6929 struct symtab_and_line call_sal;
6930
6931 if (debug_infrun)
6932 fprintf_unfiltered (gdb_stdlog,
6933 "infrun: stepped into inlined function\n");
6934
6935 find_frame_sal (get_current_frame (), &call_sal);
6936
16c381f0 6937 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6938 {
6939 /* For "step", we're going to stop. But if the call site
6940 for this inlined function is on the same source line as
6941 we were previously stepping, go down into the function
6942 first. Otherwise stop at the call site. */
6943
6944 if (call_sal.line == ecs->event_thread->current_line
6945 && call_sal.symtab == ecs->event_thread->current_symtab)
6946 step_into_inline_frame (ecs->ptid);
6947
bdc36728 6948 end_stepping_range (ecs);
edb3359d
DJ
6949 return;
6950 }
6951 else
6952 {
6953 /* For "next", we should stop at the call site if it is on a
6954 different source line. Otherwise continue through the
6955 inlined function. */
6956 if (call_sal.line == ecs->event_thread->current_line
6957 && call_sal.symtab == ecs->event_thread->current_symtab)
6958 keep_going (ecs);
6959 else
bdc36728 6960 end_stepping_range (ecs);
edb3359d
DJ
6961 return;
6962 }
6963 }
6964
6965 /* Look for "calls" to inlined functions, part two. If we are still
6966 in the same real function we were stepping through, but we have
6967 to go further up to find the exact frame ID, we are stepping
6968 through a more inlined call beyond its call site. */
6969
6970 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6971 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6972 ecs->event_thread->control.step_frame_id)
edb3359d 6973 && stepped_in_from (get_current_frame (),
16c381f0 6974 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6975 {
6976 if (debug_infrun)
6977 fprintf_unfiltered (gdb_stdlog,
6978 "infrun: stepping through inlined function\n");
6979
16c381f0 6980 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6981 keep_going (ecs);
6982 else
bdc36728 6983 end_stepping_range (ecs);
edb3359d
DJ
6984 return;
6985 }
6986
2afb61aa 6987 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6988 && (ecs->event_thread->current_line != stop_pc_sal.line
6989 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6990 {
6991 /* We are at the start of a different line. So stop. Note that
6992 we don't stop if we step into the middle of a different line.
6993 That is said to make things like for (;;) statements work
6994 better. */
527159b7 6995 if (debug_infrun)
3e43a32a
MS
6996 fprintf_unfiltered (gdb_stdlog,
6997 "infrun: stepped to a different line\n");
bdc36728 6998 end_stepping_range (ecs);
488f131b
JB
6999 return;
7000 }
c906108c 7001
488f131b 7002 /* We aren't done stepping.
c906108c 7003
488f131b
JB
7004 Optimize by setting the stepping range to the line.
7005 (We might not be in the original line, but if we entered a
7006 new line in mid-statement, we continue stepping. This makes
7007 things like for(;;) statements work better.) */
c906108c 7008
16c381f0
JK
7009 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7010 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7011 ecs->event_thread->control.may_range_step = 1;
edb3359d 7012 set_step_info (frame, stop_pc_sal);
488f131b 7013
527159b7 7014 if (debug_infrun)
8a9de0e4 7015 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7016 keep_going (ecs);
104c1213
JM
7017}
7018
c447ac0b
PA
7019/* In all-stop mode, if we're currently stepping but have stopped in
7020 some other thread, we may need to switch back to the stepped
7021 thread. Returns true we set the inferior running, false if we left
7022 it stopped (and the event needs further processing). */
7023
7024static int
7025switch_back_to_stepped_thread (struct execution_control_state *ecs)
7026{
fbea99ea 7027 if (!target_is_non_stop_p ())
c447ac0b
PA
7028 {
7029 struct thread_info *tp;
99619bea
PA
7030 struct thread_info *stepping_thread;
7031
7032 /* If any thread is blocked on some internal breakpoint, and we
7033 simply need to step over that breakpoint to get it going
7034 again, do that first. */
7035
7036 /* However, if we see an event for the stepping thread, then we
7037 know all other threads have been moved past their breakpoints
7038 already. Let the caller check whether the step is finished,
7039 etc., before deciding to move it past a breakpoint. */
7040 if (ecs->event_thread->control.step_range_end != 0)
7041 return 0;
7042
7043 /* Check if the current thread is blocked on an incomplete
7044 step-over, interrupted by a random signal. */
7045 if (ecs->event_thread->control.trap_expected
7046 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7047 {
99619bea
PA
7048 if (debug_infrun)
7049 {
7050 fprintf_unfiltered (gdb_stdlog,
7051 "infrun: need to finish step-over of [%s]\n",
7052 target_pid_to_str (ecs->event_thread->ptid));
7053 }
7054 keep_going (ecs);
7055 return 1;
7056 }
2adfaa28 7057
99619bea
PA
7058 /* Check if the current thread is blocked by a single-step
7059 breakpoint of another thread. */
7060 if (ecs->hit_singlestep_breakpoint)
7061 {
7062 if (debug_infrun)
7063 {
7064 fprintf_unfiltered (gdb_stdlog,
7065 "infrun: need to step [%s] over single-step "
7066 "breakpoint\n",
7067 target_pid_to_str (ecs->ptid));
7068 }
7069 keep_going (ecs);
7070 return 1;
7071 }
7072
4d9d9d04
PA
7073 /* If this thread needs yet another step-over (e.g., stepping
7074 through a delay slot), do it first before moving on to
7075 another thread. */
7076 if (thread_still_needs_step_over (ecs->event_thread))
7077 {
7078 if (debug_infrun)
7079 {
7080 fprintf_unfiltered (gdb_stdlog,
7081 "infrun: thread [%s] still needs step-over\n",
7082 target_pid_to_str (ecs->event_thread->ptid));
7083 }
7084 keep_going (ecs);
7085 return 1;
7086 }
70509625 7087
483805cf
PA
7088 /* If scheduler locking applies even if not stepping, there's no
7089 need to walk over threads. Above we've checked whether the
7090 current thread is stepping. If some other thread not the
7091 event thread is stepping, then it must be that scheduler
7092 locking is not in effect. */
856e7dd6 7093 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7094 return 0;
7095
4d9d9d04
PA
7096 /* Otherwise, we no longer expect a trap in the current thread.
7097 Clear the trap_expected flag before switching back -- this is
7098 what keep_going does as well, if we call it. */
7099 ecs->event_thread->control.trap_expected = 0;
7100
7101 /* Likewise, clear the signal if it should not be passed. */
7102 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7103 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7104
7105 /* Do all pending step-overs before actually proceeding with
483805cf 7106 step/next/etc. */
4d9d9d04
PA
7107 if (start_step_over ())
7108 {
7109 prepare_to_wait (ecs);
7110 return 1;
7111 }
7112
7113 /* Look for the stepping/nexting thread. */
483805cf 7114 stepping_thread = NULL;
4d9d9d04 7115
034f788c 7116 ALL_NON_EXITED_THREADS (tp)
483805cf 7117 {
fbea99ea
PA
7118 /* Ignore threads of processes the caller is not
7119 resuming. */
483805cf 7120 if (!sched_multi
1afd5965 7121 && ptid_get_pid (tp->ptid) != ptid_get_pid (ecs->ptid))
483805cf
PA
7122 continue;
7123
7124 /* When stepping over a breakpoint, we lock all threads
7125 except the one that needs to move past the breakpoint.
7126 If a non-event thread has this set, the "incomplete
7127 step-over" check above should have caught it earlier. */
372316f1
PA
7128 if (tp->control.trap_expected)
7129 {
7130 internal_error (__FILE__, __LINE__,
7131 "[%s] has inconsistent state: "
7132 "trap_expected=%d\n",
7133 target_pid_to_str (tp->ptid),
7134 tp->control.trap_expected);
7135 }
483805cf
PA
7136
7137 /* Did we find the stepping thread? */
7138 if (tp->control.step_range_end)
7139 {
7140 /* Yep. There should only one though. */
7141 gdb_assert (stepping_thread == NULL);
7142
7143 /* The event thread is handled at the top, before we
7144 enter this loop. */
7145 gdb_assert (tp != ecs->event_thread);
7146
7147 /* If some thread other than the event thread is
7148 stepping, then scheduler locking can't be in effect,
7149 otherwise we wouldn't have resumed the current event
7150 thread in the first place. */
856e7dd6 7151 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7152
7153 stepping_thread = tp;
7154 }
99619bea
PA
7155 }
7156
483805cf 7157 if (stepping_thread != NULL)
99619bea 7158 {
c447ac0b
PA
7159 if (debug_infrun)
7160 fprintf_unfiltered (gdb_stdlog,
7161 "infrun: switching back to stepped thread\n");
7162
2ac7589c
PA
7163 if (keep_going_stepped_thread (stepping_thread))
7164 {
7165 prepare_to_wait (ecs);
7166 return 1;
7167 }
7168 }
7169 }
2adfaa28 7170
2ac7589c
PA
7171 return 0;
7172}
2adfaa28 7173
2ac7589c
PA
7174/* Set a previously stepped thread back to stepping. Returns true on
7175 success, false if the resume is not possible (e.g., the thread
7176 vanished). */
7177
7178static int
7179keep_going_stepped_thread (struct thread_info *tp)
7180{
7181 struct frame_info *frame;
2ac7589c
PA
7182 struct execution_control_state ecss;
7183 struct execution_control_state *ecs = &ecss;
2adfaa28 7184
2ac7589c
PA
7185 /* If the stepping thread exited, then don't try to switch back and
7186 resume it, which could fail in several different ways depending
7187 on the target. Instead, just keep going.
2adfaa28 7188
2ac7589c
PA
7189 We can find a stepping dead thread in the thread list in two
7190 cases:
2adfaa28 7191
2ac7589c
PA
7192 - The target supports thread exit events, and when the target
7193 tries to delete the thread from the thread list, inferior_ptid
7194 pointed at the exiting thread. In such case, calling
7195 delete_thread does not really remove the thread from the list;
7196 instead, the thread is left listed, with 'exited' state.
64ce06e4 7197
2ac7589c
PA
7198 - The target's debug interface does not support thread exit
7199 events, and so we have no idea whatsoever if the previously
7200 stepping thread is still alive. For that reason, we need to
7201 synchronously query the target now. */
2adfaa28 7202
2ac7589c
PA
7203 if (is_exited (tp->ptid)
7204 || !target_thread_alive (tp->ptid))
7205 {
7206 if (debug_infrun)
7207 fprintf_unfiltered (gdb_stdlog,
7208 "infrun: not resuming previously "
7209 "stepped thread, it has vanished\n");
7210
7211 delete_thread (tp->ptid);
7212 return 0;
c447ac0b 7213 }
2ac7589c
PA
7214
7215 if (debug_infrun)
7216 fprintf_unfiltered (gdb_stdlog,
7217 "infrun: resuming previously stepped thread\n");
7218
7219 reset_ecs (ecs, tp);
7220 switch_to_thread (tp->ptid);
7221
7222 stop_pc = regcache_read_pc (get_thread_regcache (tp->ptid));
7223 frame = get_current_frame ();
2ac7589c
PA
7224
7225 /* If the PC of the thread we were trying to single-step has
7226 changed, then that thread has trapped or been signaled, but the
7227 event has not been reported to GDB yet. Re-poll the target
7228 looking for this particular thread's event (i.e. temporarily
7229 enable schedlock) by:
7230
7231 - setting a break at the current PC
7232 - resuming that particular thread, only (by setting trap
7233 expected)
7234
7235 This prevents us continuously moving the single-step breakpoint
7236 forward, one instruction at a time, overstepping. */
7237
7238 if (stop_pc != tp->prev_pc)
7239 {
7240 ptid_t resume_ptid;
7241
7242 if (debug_infrun)
7243 fprintf_unfiltered (gdb_stdlog,
7244 "infrun: expected thread advanced also (%s -> %s)\n",
7245 paddress (target_gdbarch (), tp->prev_pc),
7246 paddress (target_gdbarch (), stop_pc));
7247
7248 /* Clear the info of the previous step-over, as it's no longer
7249 valid (if the thread was trying to step over a breakpoint, it
7250 has already succeeded). It's what keep_going would do too,
7251 if we called it. Do this before trying to insert the sss
7252 breakpoint, otherwise if we were previously trying to step
7253 over this exact address in another thread, the breakpoint is
7254 skipped. */
7255 clear_step_over_info ();
7256 tp->control.trap_expected = 0;
7257
7258 insert_single_step_breakpoint (get_frame_arch (frame),
7259 get_frame_address_space (frame),
7260 stop_pc);
7261
372316f1 7262 tp->resumed = 1;
fbea99ea 7263 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7264 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7265 }
7266 else
7267 {
7268 if (debug_infrun)
7269 fprintf_unfiltered (gdb_stdlog,
7270 "infrun: expected thread still hasn't advanced\n");
7271
7272 keep_going_pass_signal (ecs);
7273 }
7274 return 1;
c447ac0b
PA
7275}
7276
8b061563
PA
7277/* Is thread TP in the middle of (software or hardware)
7278 single-stepping? (Note the result of this function must never be
7279 passed directly as target_resume's STEP parameter.) */
104c1213 7280
a289b8f6 7281static int
b3444185 7282currently_stepping (struct thread_info *tp)
a7212384 7283{
8358c15c
JK
7284 return ((tp->control.step_range_end
7285 && tp->control.step_resume_breakpoint == NULL)
7286 || tp->control.trap_expected
af48d08f 7287 || tp->stepped_breakpoint
8358c15c 7288 || bpstat_should_step ());
a7212384
UW
7289}
7290
b2175913
MS
7291/* Inferior has stepped into a subroutine call with source code that
7292 we should not step over. Do step to the first line of code in
7293 it. */
c2c6d25f
JM
7294
7295static void
568d6575
UW
7296handle_step_into_function (struct gdbarch *gdbarch,
7297 struct execution_control_state *ecs)
c2c6d25f 7298{
43f3e411 7299 struct compunit_symtab *cust;
2afb61aa 7300 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 7301
7e324e48
GB
7302 fill_in_stop_func (gdbarch, ecs);
7303
43f3e411
DE
7304 cust = find_pc_compunit_symtab (stop_pc);
7305 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7306 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 7307 ecs->stop_func_start);
c2c6d25f 7308
2afb61aa 7309 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7310 /* Use the step_resume_break to step until the end of the prologue,
7311 even if that involves jumps (as it seems to on the vax under
7312 4.2). */
7313 /* If the prologue ends in the middle of a source line, continue to
7314 the end of that source line (if it is still within the function).
7315 Otherwise, just go to end of prologue. */
2afb61aa
PA
7316 if (stop_func_sal.end
7317 && stop_func_sal.pc != ecs->stop_func_start
7318 && stop_func_sal.end < ecs->stop_func_end)
7319 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7320
2dbd5e30
KB
7321 /* Architectures which require breakpoint adjustment might not be able
7322 to place a breakpoint at the computed address. If so, the test
7323 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7324 ecs->stop_func_start to an address at which a breakpoint may be
7325 legitimately placed.
8fb3e588 7326
2dbd5e30
KB
7327 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7328 made, GDB will enter an infinite loop when stepping through
7329 optimized code consisting of VLIW instructions which contain
7330 subinstructions corresponding to different source lines. On
7331 FR-V, it's not permitted to place a breakpoint on any but the
7332 first subinstruction of a VLIW instruction. When a breakpoint is
7333 set, GDB will adjust the breakpoint address to the beginning of
7334 the VLIW instruction. Thus, we need to make the corresponding
7335 adjustment here when computing the stop address. */
8fb3e588 7336
568d6575 7337 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7338 {
7339 ecs->stop_func_start
568d6575 7340 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7341 ecs->stop_func_start);
2dbd5e30
KB
7342 }
7343
c2c6d25f
JM
7344 if (ecs->stop_func_start == stop_pc)
7345 {
7346 /* We are already there: stop now. */
bdc36728 7347 end_stepping_range (ecs);
c2c6d25f
JM
7348 return;
7349 }
7350 else
7351 {
7352 /* Put the step-breakpoint there and go until there. */
fe39c653 7353 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
7354 sr_sal.pc = ecs->stop_func_start;
7355 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7356 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7357
c2c6d25f 7358 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7359 some machines the prologue is where the new fp value is
7360 established. */
a6d9a66e 7361 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7362
7363 /* And make sure stepping stops right away then. */
16c381f0
JK
7364 ecs->event_thread->control.step_range_end
7365 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7366 }
7367 keep_going (ecs);
7368}
d4f3574e 7369
b2175913
MS
7370/* Inferior has stepped backward into a subroutine call with source
7371 code that we should not step over. Do step to the beginning of the
7372 last line of code in it. */
7373
7374static void
568d6575
UW
7375handle_step_into_function_backward (struct gdbarch *gdbarch,
7376 struct execution_control_state *ecs)
b2175913 7377{
43f3e411 7378 struct compunit_symtab *cust;
167e4384 7379 struct symtab_and_line stop_func_sal;
b2175913 7380
7e324e48
GB
7381 fill_in_stop_func (gdbarch, ecs);
7382
43f3e411
DE
7383 cust = find_pc_compunit_symtab (stop_pc);
7384 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 7385 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
7386 ecs->stop_func_start);
7387
7388 stop_func_sal = find_pc_line (stop_pc, 0);
7389
7390 /* OK, we're just going to keep stepping here. */
7391 if (stop_func_sal.pc == stop_pc)
7392 {
7393 /* We're there already. Just stop stepping now. */
bdc36728 7394 end_stepping_range (ecs);
b2175913
MS
7395 }
7396 else
7397 {
7398 /* Else just reset the step range and keep going.
7399 No step-resume breakpoint, they don't work for
7400 epilogues, which can have multiple entry paths. */
16c381f0
JK
7401 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7402 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7403 keep_going (ecs);
7404 }
7405 return;
7406}
7407
d3169d93 7408/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7409 This is used to both functions and to skip over code. */
7410
7411static void
2c03e5be
PA
7412insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7413 struct symtab_and_line sr_sal,
7414 struct frame_id sr_id,
7415 enum bptype sr_type)
44cbf7b5 7416{
611c83ae
PA
7417 /* There should never be more than one step-resume or longjmp-resume
7418 breakpoint per thread, so we should never be setting a new
44cbf7b5 7419 step_resume_breakpoint when one is already active. */
8358c15c 7420 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7421 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7422
7423 if (debug_infrun)
7424 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7425 "infrun: inserting step-resume breakpoint at %s\n",
7426 paddress (gdbarch, sr_sal.pc));
d3169d93 7427
8358c15c 7428 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
7429 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
7430}
7431
9da8c2a0 7432void
2c03e5be
PA
7433insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7434 struct symtab_and_line sr_sal,
7435 struct frame_id sr_id)
7436{
7437 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7438 sr_sal, sr_id,
7439 bp_step_resume);
44cbf7b5 7440}
7ce450bd 7441
2c03e5be
PA
7442/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7443 This is used to skip a potential signal handler.
7ce450bd 7444
14e60db5
DJ
7445 This is called with the interrupted function's frame. The signal
7446 handler, when it returns, will resume the interrupted function at
7447 RETURN_FRAME.pc. */
d303a6c7
AC
7448
7449static void
2c03e5be 7450insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
7451{
7452 struct symtab_and_line sr_sal;
a6d9a66e 7453 struct gdbarch *gdbarch;
d303a6c7 7454
f4c1edd8 7455 gdb_assert (return_frame != NULL);
d303a6c7
AC
7456 init_sal (&sr_sal); /* initialize to zeros */
7457
a6d9a66e 7458 gdbarch = get_frame_arch (return_frame);
568d6575 7459 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7460 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7461 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7462
2c03e5be
PA
7463 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7464 get_stack_frame_id (return_frame),
7465 bp_hp_step_resume);
d303a6c7
AC
7466}
7467
2c03e5be
PA
7468/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7469 is used to skip a function after stepping into it (for "next" or if
7470 the called function has no debugging information).
14e60db5
DJ
7471
7472 The current function has almost always been reached by single
7473 stepping a call or return instruction. NEXT_FRAME belongs to the
7474 current function, and the breakpoint will be set at the caller's
7475 resume address.
7476
7477 This is a separate function rather than reusing
2c03e5be 7478 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7479 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7480 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7481
7482static void
7483insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7484{
7485 struct symtab_and_line sr_sal;
a6d9a66e 7486 struct gdbarch *gdbarch;
14e60db5
DJ
7487
7488 /* We shouldn't have gotten here if we don't know where the call site
7489 is. */
c7ce8faa 7490 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
7491
7492 init_sal (&sr_sal); /* initialize to zeros */
7493
a6d9a66e 7494 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
7495 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7496 frame_unwind_caller_pc (next_frame));
14e60db5 7497 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7498 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7499
a6d9a66e 7500 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7501 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7502}
7503
611c83ae
PA
7504/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7505 new breakpoint at the target of a jmp_buf. The handling of
7506 longjmp-resume uses the same mechanisms used for handling
7507 "step-resume" breakpoints. */
7508
7509static void
a6d9a66e 7510insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7511{
e81a37f7
TT
7512 /* There should never be more than one longjmp-resume breakpoint per
7513 thread, so we should never be setting a new
611c83ae 7514 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7515 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7516
7517 if (debug_infrun)
7518 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7519 "infrun: inserting longjmp-resume breakpoint at %s\n",
7520 paddress (gdbarch, pc));
611c83ae 7521
e81a37f7 7522 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 7523 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
7524}
7525
186c406b
TT
7526/* Insert an exception resume breakpoint. TP is the thread throwing
7527 the exception. The block B is the block of the unwinder debug hook
7528 function. FRAME is the frame corresponding to the call to this
7529 function. SYM is the symbol of the function argument holding the
7530 target PC of the exception. */
7531
7532static void
7533insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7534 const struct block *b,
186c406b
TT
7535 struct frame_info *frame,
7536 struct symbol *sym)
7537{
492d29ea 7538 TRY
186c406b 7539 {
63e43d3a 7540 struct block_symbol vsym;
186c406b
TT
7541 struct value *value;
7542 CORE_ADDR handler;
7543 struct breakpoint *bp;
7544
63e43d3a
PMR
7545 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
7546 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7547 /* If the value was optimized out, revert to the old behavior. */
7548 if (! value_optimized_out (value))
7549 {
7550 handler = value_as_address (value);
7551
7552 if (debug_infrun)
7553 fprintf_unfiltered (gdb_stdlog,
7554 "infrun: exception resume at %lx\n",
7555 (unsigned long) handler);
7556
7557 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7558 handler, bp_exception_resume);
c70a6932
JK
7559
7560 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7561 frame = NULL;
7562
5d5658a1 7563 bp->thread = tp->global_num;
186c406b
TT
7564 inferior_thread ()->control.exception_resume_breakpoint = bp;
7565 }
7566 }
492d29ea
PA
7567 CATCH (e, RETURN_MASK_ERROR)
7568 {
7569 /* We want to ignore errors here. */
7570 }
7571 END_CATCH
186c406b
TT
7572}
7573
28106bc2
SDJ
7574/* A helper for check_exception_resume that sets an
7575 exception-breakpoint based on a SystemTap probe. */
7576
7577static void
7578insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7579 const struct bound_probe *probe,
28106bc2
SDJ
7580 struct frame_info *frame)
7581{
7582 struct value *arg_value;
7583 CORE_ADDR handler;
7584 struct breakpoint *bp;
7585
7586 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7587 if (!arg_value)
7588 return;
7589
7590 handler = value_as_address (arg_value);
7591
7592 if (debug_infrun)
7593 fprintf_unfiltered (gdb_stdlog,
7594 "infrun: exception resume at %s\n",
6bac7473 7595 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7596 handler));
7597
7598 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7599 handler, bp_exception_resume);
5d5658a1 7600 bp->thread = tp->global_num;
28106bc2
SDJ
7601 inferior_thread ()->control.exception_resume_breakpoint = bp;
7602}
7603
186c406b
TT
7604/* This is called when an exception has been intercepted. Check to
7605 see whether the exception's destination is of interest, and if so,
7606 set an exception resume breakpoint there. */
7607
7608static void
7609check_exception_resume (struct execution_control_state *ecs,
28106bc2 7610 struct frame_info *frame)
186c406b 7611{
729662a5 7612 struct bound_probe probe;
28106bc2
SDJ
7613 struct symbol *func;
7614
7615 /* First see if this exception unwinding breakpoint was set via a
7616 SystemTap probe point. If so, the probe has two arguments: the
7617 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7618 set a breakpoint there. */
6bac7473 7619 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 7620 if (probe.probe)
28106bc2 7621 {
729662a5 7622 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7623 return;
7624 }
7625
7626 func = get_frame_function (frame);
7627 if (!func)
7628 return;
186c406b 7629
492d29ea 7630 TRY
186c406b 7631 {
3977b71f 7632 const struct block *b;
8157b174 7633 struct block_iterator iter;
186c406b
TT
7634 struct symbol *sym;
7635 int argno = 0;
7636
7637 /* The exception breakpoint is a thread-specific breakpoint on
7638 the unwinder's debug hook, declared as:
7639
7640 void _Unwind_DebugHook (void *cfa, void *handler);
7641
7642 The CFA argument indicates the frame to which control is
7643 about to be transferred. HANDLER is the destination PC.
7644
7645 We ignore the CFA and set a temporary breakpoint at HANDLER.
7646 This is not extremely efficient but it avoids issues in gdb
7647 with computing the DWARF CFA, and it also works even in weird
7648 cases such as throwing an exception from inside a signal
7649 handler. */
7650
7651 b = SYMBOL_BLOCK_VALUE (func);
7652 ALL_BLOCK_SYMBOLS (b, iter, sym)
7653 {
7654 if (!SYMBOL_IS_ARGUMENT (sym))
7655 continue;
7656
7657 if (argno == 0)
7658 ++argno;
7659 else
7660 {
7661 insert_exception_resume_breakpoint (ecs->event_thread,
7662 b, frame, sym);
7663 break;
7664 }
7665 }
7666 }
492d29ea
PA
7667 CATCH (e, RETURN_MASK_ERROR)
7668 {
7669 }
7670 END_CATCH
186c406b
TT
7671}
7672
104c1213 7673static void
22bcd14b 7674stop_waiting (struct execution_control_state *ecs)
104c1213 7675{
527159b7 7676 if (debug_infrun)
22bcd14b 7677 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7678
31e77af2
PA
7679 clear_step_over_info ();
7680
cd0fc7c3
SS
7681 /* Let callers know we don't want to wait for the inferior anymore. */
7682 ecs->wait_some_more = 0;
fbea99ea
PA
7683
7684 /* If all-stop, but the target is always in non-stop mode, stop all
7685 threads now that we're presenting the stop to the user. */
7686 if (!non_stop && target_is_non_stop_p ())
7687 stop_all_threads ();
cd0fc7c3
SS
7688}
7689
4d9d9d04
PA
7690/* Like keep_going, but passes the signal to the inferior, even if the
7691 signal is set to nopass. */
d4f3574e
SS
7692
7693static void
4d9d9d04 7694keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7695{
c4dbc9af
PA
7696 /* Make sure normal_stop is called if we get a QUIT handled before
7697 reaching resume. */
7698 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
7699
4d9d9d04 7700 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7701 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7702
d4f3574e 7703 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
7704 ecs->event_thread->prev_pc
7705 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 7706
4d9d9d04 7707 if (ecs->event_thread->control.trap_expected)
d4f3574e 7708 {
4d9d9d04
PA
7709 struct thread_info *tp = ecs->event_thread;
7710
7711 if (debug_infrun)
7712 fprintf_unfiltered (gdb_stdlog,
7713 "infrun: %s has trap_expected set, "
7714 "resuming to collect trap\n",
7715 target_pid_to_str (tp->ptid));
7716
a9ba6bae
PA
7717 /* We haven't yet gotten our trap, and either: intercepted a
7718 non-signal event (e.g., a fork); or took a signal which we
7719 are supposed to pass through to the inferior. Simply
7720 continue. */
c4dbc9af 7721 discard_cleanups (old_cleanups);
64ce06e4 7722 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7723 }
372316f1
PA
7724 else if (step_over_info_valid_p ())
7725 {
7726 /* Another thread is stepping over a breakpoint in-line. If
7727 this thread needs a step-over too, queue the request. In
7728 either case, this resume must be deferred for later. */
7729 struct thread_info *tp = ecs->event_thread;
7730
7731 if (ecs->hit_singlestep_breakpoint
7732 || thread_still_needs_step_over (tp))
7733 {
7734 if (debug_infrun)
7735 fprintf_unfiltered (gdb_stdlog,
7736 "infrun: step-over already in progress: "
7737 "step-over for %s deferred\n",
7738 target_pid_to_str (tp->ptid));
7739 thread_step_over_chain_enqueue (tp);
7740 }
7741 else
7742 {
7743 if (debug_infrun)
7744 fprintf_unfiltered (gdb_stdlog,
7745 "infrun: step-over in progress: "
7746 "resume of %s deferred\n",
7747 target_pid_to_str (tp->ptid));
7748 }
7749
7750 discard_cleanups (old_cleanups);
7751 }
d4f3574e
SS
7752 else
7753 {
31e77af2 7754 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7755 int remove_bp;
7756 int remove_wps;
8d297bbf 7757 step_over_what step_what;
31e77af2 7758
d4f3574e 7759 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7760 anyway (if we got a signal, the user asked it be passed to
7761 the child)
7762 -- or --
7763 We got our expected trap, but decided we should resume from
7764 it.
d4f3574e 7765
a9ba6bae 7766 We're going to run this baby now!
d4f3574e 7767
c36b740a
VP
7768 Note that insert_breakpoints won't try to re-insert
7769 already inserted breakpoints. Therefore, we don't
7770 care if breakpoints were already inserted, or not. */
a9ba6bae 7771
31e77af2
PA
7772 /* If we need to step over a breakpoint, and we're not using
7773 displaced stepping to do so, insert all breakpoints
7774 (watchpoints, etc.) but the one we're stepping over, step one
7775 instruction, and then re-insert the breakpoint when that step
7776 is finished. */
963f9c80 7777
6c4cfb24
PA
7778 step_what = thread_still_needs_step_over (ecs->event_thread);
7779
963f9c80 7780 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7781 || (step_what & STEP_OVER_BREAKPOINT));
7782 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7783
cb71640d
PA
7784 /* We can't use displaced stepping if we need to step past a
7785 watchpoint. The instruction copied to the scratch pad would
7786 still trigger the watchpoint. */
7787 if (remove_bp
3fc8eb30 7788 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7789 {
31e77af2 7790 set_step_over_info (get_regcache_aspace (regcache),
21edc42f
YQ
7791 regcache_read_pc (regcache), remove_wps,
7792 ecs->event_thread->global_num);
45e8c884 7793 }
963f9c80 7794 else if (remove_wps)
21edc42f 7795 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7796
7797 /* If we now need to do an in-line step-over, we need to stop
7798 all other threads. Note this must be done before
7799 insert_breakpoints below, because that removes the breakpoint
7800 we're about to step over, otherwise other threads could miss
7801 it. */
fbea99ea 7802 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7803 stop_all_threads ();
abbb1732 7804
31e77af2 7805 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7806 TRY
31e77af2
PA
7807 {
7808 insert_breakpoints ();
7809 }
492d29ea 7810 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7811 {
7812 exception_print (gdb_stderr, e);
22bcd14b 7813 stop_waiting (ecs);
de1fe8c8 7814 discard_cleanups (old_cleanups);
31e77af2 7815 return;
d4f3574e 7816 }
492d29ea 7817 END_CATCH
d4f3574e 7818
963f9c80 7819 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7820
c4dbc9af 7821 discard_cleanups (old_cleanups);
64ce06e4 7822 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7823 }
7824
488f131b 7825 prepare_to_wait (ecs);
d4f3574e
SS
7826}
7827
4d9d9d04
PA
7828/* Called when we should continue running the inferior, because the
7829 current event doesn't cause a user visible stop. This does the
7830 resuming part; waiting for the next event is done elsewhere. */
7831
7832static void
7833keep_going (struct execution_control_state *ecs)
7834{
7835 if (ecs->event_thread->control.trap_expected
7836 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7837 ecs->event_thread->control.trap_expected = 0;
7838
7839 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7840 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7841 keep_going_pass_signal (ecs);
7842}
7843
104c1213
JM
7844/* This function normally comes after a resume, before
7845 handle_inferior_event exits. It takes care of any last bits of
7846 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7847
104c1213
JM
7848static void
7849prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7850{
527159b7 7851 if (debug_infrun)
8a9de0e4 7852 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7853
104c1213 7854 ecs->wait_some_more = 1;
0b333c5e
PA
7855
7856 if (!target_is_async_p ())
7857 mark_infrun_async_event_handler ();
c906108c 7858}
11cf8741 7859
fd664c91 7860/* We are done with the step range of a step/next/si/ni command.
b57bacec 7861 Called once for each n of a "step n" operation. */
fd664c91
PA
7862
7863static void
bdc36728 7864end_stepping_range (struct execution_control_state *ecs)
fd664c91 7865{
bdc36728 7866 ecs->event_thread->control.stop_step = 1;
bdc36728 7867 stop_waiting (ecs);
fd664c91
PA
7868}
7869
33d62d64
JK
7870/* Several print_*_reason functions to print why the inferior has stopped.
7871 We always print something when the inferior exits, or receives a signal.
7872 The rest of the cases are dealt with later on in normal_stop and
7873 print_it_typical. Ideally there should be a call to one of these
7874 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7875 stop_waiting is called.
33d62d64 7876
fd664c91
PA
7877 Note that we don't call these directly, instead we delegate that to
7878 the interpreters, through observers. Interpreters then call these
7879 with whatever uiout is right. */
33d62d64 7880
fd664c91
PA
7881void
7882print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7883{
fd664c91 7884 /* For CLI-like interpreters, print nothing. */
33d62d64 7885
112e8700 7886 if (uiout->is_mi_like_p ())
fd664c91 7887 {
112e8700 7888 uiout->field_string ("reason",
fd664c91
PA
7889 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7890 }
7891}
33d62d64 7892
fd664c91
PA
7893void
7894print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7895{
33d62d64 7896 annotate_signalled ();
112e8700
SM
7897 if (uiout->is_mi_like_p ())
7898 uiout->field_string
7899 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7900 uiout->text ("\nProgram terminated with signal ");
33d62d64 7901 annotate_signal_name ();
112e8700 7902 uiout->field_string ("signal-name",
2ea28649 7903 gdb_signal_to_name (siggnal));
33d62d64 7904 annotate_signal_name_end ();
112e8700 7905 uiout->text (", ");
33d62d64 7906 annotate_signal_string ();
112e8700 7907 uiout->field_string ("signal-meaning",
2ea28649 7908 gdb_signal_to_string (siggnal));
33d62d64 7909 annotate_signal_string_end ();
112e8700
SM
7910 uiout->text (".\n");
7911 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7912}
7913
fd664c91
PA
7914void
7915print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7916{
fda326dd
TT
7917 struct inferior *inf = current_inferior ();
7918 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
7919
33d62d64
JK
7920 annotate_exited (exitstatus);
7921 if (exitstatus)
7922 {
112e8700
SM
7923 if (uiout->is_mi_like_p ())
7924 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7925 uiout->text ("[Inferior ");
7926 uiout->text (plongest (inf->num));
7927 uiout->text (" (");
7928 uiout->text (pidstr);
7929 uiout->text (") exited with code ");
7930 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7931 uiout->text ("]\n");
33d62d64
JK
7932 }
7933 else
11cf8741 7934 {
112e8700
SM
7935 if (uiout->is_mi_like_p ())
7936 uiout->field_string
7937 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7938 uiout->text ("[Inferior ");
7939 uiout->text (plongest (inf->num));
7940 uiout->text (" (");
7941 uiout->text (pidstr);
7942 uiout->text (") exited normally]\n");
33d62d64 7943 }
33d62d64
JK
7944}
7945
012b3a21
WT
7946/* Some targets/architectures can do extra processing/display of
7947 segmentation faults. E.g., Intel MPX boundary faults.
7948 Call the architecture dependent function to handle the fault. */
7949
7950static void
7951handle_segmentation_fault (struct ui_out *uiout)
7952{
7953 struct regcache *regcache = get_current_regcache ();
7954 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7955
7956 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7957 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7958}
7959
fd664c91
PA
7960void
7961print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7962{
f303dbd6
PA
7963 struct thread_info *thr = inferior_thread ();
7964
33d62d64
JK
7965 annotate_signal ();
7966
112e8700 7967 if (uiout->is_mi_like_p ())
f303dbd6
PA
7968 ;
7969 else if (show_thread_that_caused_stop ())
33d62d64 7970 {
f303dbd6 7971 const char *name;
33d62d64 7972
112e8700
SM
7973 uiout->text ("\nThread ");
7974 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7975
7976 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7977 if (name != NULL)
7978 {
112e8700
SM
7979 uiout->text (" \"");
7980 uiout->field_fmt ("name", "%s", name);
7981 uiout->text ("\"");
f303dbd6 7982 }
33d62d64 7983 }
f303dbd6 7984 else
112e8700 7985 uiout->text ("\nProgram");
f303dbd6 7986
112e8700
SM
7987 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7988 uiout->text (" stopped");
33d62d64
JK
7989 else
7990 {
112e8700 7991 uiout->text (" received signal ");
8b93c638 7992 annotate_signal_name ();
112e8700
SM
7993 if (uiout->is_mi_like_p ())
7994 uiout->field_string
7995 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7996 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7997 annotate_signal_name_end ();
112e8700 7998 uiout->text (", ");
8b93c638 7999 annotate_signal_string ();
112e8700 8000 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8001
8002 if (siggnal == GDB_SIGNAL_SEGV)
8003 handle_segmentation_fault (uiout);
8004
8b93c638 8005 annotate_signal_string_end ();
33d62d64 8006 }
112e8700 8007 uiout->text (".\n");
33d62d64 8008}
252fbfc8 8009
fd664c91
PA
8010void
8011print_no_history_reason (struct ui_out *uiout)
33d62d64 8012{
112e8700 8013 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8014}
43ff13b4 8015
0c7e1a46
PA
8016/* Print current location without a level number, if we have changed
8017 functions or hit a breakpoint. Print source line if we have one.
8018 bpstat_print contains the logic deciding in detail what to print,
8019 based on the event(s) that just occurred. */
8020
243a9253
PA
8021static void
8022print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8023{
8024 int bpstat_ret;
f486487f 8025 enum print_what source_flag;
0c7e1a46
PA
8026 int do_frame_printing = 1;
8027 struct thread_info *tp = inferior_thread ();
8028
8029 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8030 switch (bpstat_ret)
8031 {
8032 case PRINT_UNKNOWN:
8033 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8034 should) carry around the function and does (or should) use
8035 that when doing a frame comparison. */
8036 if (tp->control.stop_step
8037 && frame_id_eq (tp->control.step_frame_id,
8038 get_frame_id (get_current_frame ()))
885eeb5b 8039 && tp->control.step_start_function == find_pc_function (stop_pc))
0c7e1a46
PA
8040 {
8041 /* Finished step, just print source line. */
8042 source_flag = SRC_LINE;
8043 }
8044 else
8045 {
8046 /* Print location and source line. */
8047 source_flag = SRC_AND_LOC;
8048 }
8049 break;
8050 case PRINT_SRC_AND_LOC:
8051 /* Print location and source line. */
8052 source_flag = SRC_AND_LOC;
8053 break;
8054 case PRINT_SRC_ONLY:
8055 source_flag = SRC_LINE;
8056 break;
8057 case PRINT_NOTHING:
8058 /* Something bogus. */
8059 source_flag = SRC_LINE;
8060 do_frame_printing = 0;
8061 break;
8062 default:
8063 internal_error (__FILE__, __LINE__, _("Unknown value."));
8064 }
8065
8066 /* The behavior of this routine with respect to the source
8067 flag is:
8068 SRC_LINE: Print only source line
8069 LOCATION: Print only location
8070 SRC_AND_LOC: Print location and source line. */
8071 if (do_frame_printing)
8072 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8073}
8074
243a9253
PA
8075/* See infrun.h. */
8076
8077void
8078print_stop_event (struct ui_out *uiout)
8079{
243a9253
PA
8080 struct target_waitstatus last;
8081 ptid_t last_ptid;
8082 struct thread_info *tp;
8083
8084 get_last_target_status (&last_ptid, &last);
8085
67ad9399
TT
8086 {
8087 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8088
67ad9399 8089 print_stop_location (&last);
243a9253 8090
67ad9399
TT
8091 /* Display the auto-display expressions. */
8092 do_displays ();
8093 }
243a9253
PA
8094
8095 tp = inferior_thread ();
8096 if (tp->thread_fsm != NULL
8097 && thread_fsm_finished_p (tp->thread_fsm))
8098 {
8099 struct return_value_info *rv;
8100
8101 rv = thread_fsm_return_value (tp->thread_fsm);
8102 if (rv != NULL)
8103 print_return_value (uiout, rv);
8104 }
0c7e1a46
PA
8105}
8106
388a7084
PA
8107/* See infrun.h. */
8108
8109void
8110maybe_remove_breakpoints (void)
8111{
8112 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8113 {
8114 if (remove_breakpoints ())
8115 {
8116 target_terminal_ours_for_output ();
8117 printf_filtered (_("Cannot remove breakpoints because "
8118 "program is no longer writable.\nFurther "
8119 "execution is probably impossible.\n"));
8120 }
8121 }
8122}
8123
4c2f2a79
PA
8124/* The execution context that just caused a normal stop. */
8125
8126struct stop_context
8127{
8128 /* The stop ID. */
8129 ULONGEST stop_id;
c906108c 8130
4c2f2a79 8131 /* The event PTID. */
c906108c 8132
4c2f2a79
PA
8133 ptid_t ptid;
8134
8135 /* If stopp for a thread event, this is the thread that caused the
8136 stop. */
8137 struct thread_info *thread;
8138
8139 /* The inferior that caused the stop. */
8140 int inf_num;
8141};
8142
8143/* Returns a new stop context. If stopped for a thread event, this
8144 takes a strong reference to the thread. */
8145
8146static struct stop_context *
8147save_stop_context (void)
8148{
224c3ddb 8149 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8150
8151 sc->stop_id = get_stop_id ();
8152 sc->ptid = inferior_ptid;
8153 sc->inf_num = current_inferior ()->num;
8154
8155 if (!ptid_equal (inferior_ptid, null_ptid))
8156 {
8157 /* Take a strong reference so that the thread can't be deleted
8158 yet. */
8159 sc->thread = inferior_thread ();
8160 sc->thread->refcount++;
8161 }
8162 else
8163 sc->thread = NULL;
8164
8165 return sc;
8166}
8167
8168/* Release a stop context previously created with save_stop_context.
8169 Releases the strong reference to the thread as well. */
8170
8171static void
8172release_stop_context_cleanup (void *arg)
8173{
9a3c8263 8174 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8175
8176 if (sc->thread != NULL)
8177 sc->thread->refcount--;
8178 xfree (sc);
8179}
8180
8181/* Return true if the current context no longer matches the saved stop
8182 context. */
8183
8184static int
8185stop_context_changed (struct stop_context *prev)
8186{
8187 if (!ptid_equal (prev->ptid, inferior_ptid))
8188 return 1;
8189 if (prev->inf_num != current_inferior ()->num)
8190 return 1;
8191 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8192 return 1;
8193 if (get_stop_id () != prev->stop_id)
8194 return 1;
8195 return 0;
8196}
8197
8198/* See infrun.h. */
8199
8200int
96baa820 8201normal_stop (void)
c906108c 8202{
73b65bb0
DJ
8203 struct target_waitstatus last;
8204 ptid_t last_ptid;
29f49a6a 8205 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
e1316e60 8206 ptid_t pid_ptid;
73b65bb0
DJ
8207
8208 get_last_target_status (&last_ptid, &last);
8209
4c2f2a79
PA
8210 new_stop_id ();
8211
29f49a6a
PA
8212 /* If an exception is thrown from this point on, make sure to
8213 propagate GDB's knowledge of the executing state to the
8214 frontend/user running state. A QUIT is an easy exception to see
8215 here, so do this before any filtered output. */
c35b1492
PA
8216 if (!non_stop)
8217 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
e1316e60
PA
8218 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8219 || last.kind == TARGET_WAITKIND_EXITED)
8220 {
8221 /* On some targets, we may still have live threads in the
8222 inferior when we get a process exit event. E.g., for
8223 "checkpoint", when the current checkpoint/fork exits,
8224 linux-fork.c automatically switches to another fork from
8225 within target_mourn_inferior. */
8226 if (!ptid_equal (inferior_ptid, null_ptid))
8227 {
8228 pid_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
8229 make_cleanup (finish_thread_state_cleanup, &pid_ptid);
8230 }
8231 }
8232 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 8233 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 8234
b57bacec
PA
8235 /* As we're presenting a stop, and potentially removing breakpoints,
8236 update the thread list so we can tell whether there are threads
8237 running on the target. With target remote, for example, we can
8238 only learn about new threads when we explicitly update the thread
8239 list. Do this before notifying the interpreters about signal
8240 stops, end of stepping ranges, etc., so that the "new thread"
8241 output is emitted before e.g., "Program received signal FOO",
8242 instead of after. */
8243 update_thread_list ();
8244
8245 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8246 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
8247
c906108c
SS
8248 /* As with the notification of thread events, we want to delay
8249 notifying the user that we've switched thread context until
8250 the inferior actually stops.
8251
73b65bb0
DJ
8252 There's no point in saying anything if the inferior has exited.
8253 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8254 "received a signal".
8255
8256 Also skip saying anything in non-stop mode. In that mode, as we
8257 don't want GDB to switch threads behind the user's back, to avoid
8258 races where the user is typing a command to apply to thread x,
8259 but GDB switches to thread y before the user finishes entering
8260 the command, fetch_inferior_event installs a cleanup to restore
8261 the current thread back to the thread the user had selected right
8262 after this event is handled, so we're not really switching, only
8263 informing of a stop. */
4f8d22e3
PA
8264 if (!non_stop
8265 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
8266 && target_has_execution
8267 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8268 && last.kind != TARGET_WAITKIND_EXITED
8269 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8270 {
0e454242 8271 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8272 {
8273 target_terminal_ours_for_output ();
8274 printf_filtered (_("[Switching to %s]\n"),
8275 target_pid_to_str (inferior_ptid));
8276 annotate_thread_changed ();
8277 }
39f77062 8278 previous_inferior_ptid = inferior_ptid;
c906108c 8279 }
c906108c 8280
0e5bf2a8
PA
8281 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8282 {
0e454242 8283 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8284 if (current_ui->prompt_state == PROMPT_BLOCKED)
8285 {
8286 target_terminal_ours_for_output ();
8287 printf_filtered (_("No unwaited-for children left.\n"));
8288 }
0e5bf2a8
PA
8289 }
8290
b57bacec 8291 /* Note: this depends on the update_thread_list call above. */
388a7084 8292 maybe_remove_breakpoints ();
c906108c 8293
c906108c
SS
8294 /* If an auto-display called a function and that got a signal,
8295 delete that auto-display to avoid an infinite recursion. */
8296
8297 if (stopped_by_random_signal)
8298 disable_current_display ();
8299
0e454242 8300 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8301 {
8302 async_enable_stdin ();
8303 }
c906108c 8304
388a7084
PA
8305 /* Let the user/frontend see the threads as stopped. */
8306 do_cleanups (old_chain);
8307
8308 /* Select innermost stack frame - i.e., current frame is frame 0,
8309 and current location is based on that. Handle the case where the
8310 dummy call is returning after being stopped. E.g. the dummy call
8311 previously hit a breakpoint. (If the dummy call returns
8312 normally, we won't reach here.) Do this before the stop hook is
8313 run, so that it doesn't get to see the temporary dummy frame,
8314 which is not where we'll present the stop. */
8315 if (has_stack_frames ())
8316 {
8317 if (stop_stack_dummy == STOP_STACK_DUMMY)
8318 {
8319 /* Pop the empty frame that contains the stack dummy. This
8320 also restores inferior state prior to the call (struct
8321 infcall_suspend_state). */
8322 struct frame_info *frame = get_current_frame ();
8323
8324 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8325 frame_pop (frame);
8326 /* frame_pop calls reinit_frame_cache as the last thing it
8327 does which means there's now no selected frame. */
8328 }
8329
8330 select_frame (get_current_frame ());
8331
8332 /* Set the current source location. */
8333 set_current_sal_from_frame (get_current_frame ());
8334 }
dd7e2d2b
PA
8335
8336 /* Look up the hook_stop and run it (CLI internally handles problem
8337 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8338 if (stop_command != NULL)
8339 {
8340 struct stop_context *saved_context = save_stop_context ();
8341 struct cleanup *old_chain
8342 = make_cleanup (release_stop_context_cleanup, saved_context);
8343
8344 catch_errors (hook_stop_stub, stop_command,
8345 "Error while running hook_stop:\n", RETURN_MASK_ALL);
8346
8347 /* If the stop hook resumes the target, then there's no point in
8348 trying to notify about the previous stop; its context is
8349 gone. Likewise if the command switches thread or inferior --
8350 the observers would print a stop for the wrong
8351 thread/inferior. */
8352 if (stop_context_changed (saved_context))
8353 {
8354 do_cleanups (old_chain);
8355 return 1;
8356 }
8357 do_cleanups (old_chain);
8358 }
dd7e2d2b 8359
388a7084
PA
8360 /* Notify observers about the stop. This is where the interpreters
8361 print the stop event. */
8362 if (!ptid_equal (inferior_ptid, null_ptid))
8363 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
8364 stop_print_frame);
8365 else
8366 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 8367
243a9253
PA
8368 annotate_stopped ();
8369
48844aa6
PA
8370 if (target_has_execution)
8371 {
8372 if (last.kind != TARGET_WAITKIND_SIGNALLED
8373 && last.kind != TARGET_WAITKIND_EXITED)
8374 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8375 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8376 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8377 }
6c95b8df
PA
8378
8379 /* Try to get rid of automatically added inferiors that are no
8380 longer needed. Keeping those around slows down things linearly.
8381 Note that this never removes the current inferior. */
8382 prune_inferiors ();
4c2f2a79
PA
8383
8384 return 0;
c906108c
SS
8385}
8386
8387static int
96baa820 8388hook_stop_stub (void *cmd)
c906108c 8389{
5913bcb0 8390 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
8391 return (0);
8392}
8393\f
c5aa993b 8394int
96baa820 8395signal_stop_state (int signo)
c906108c 8396{
d6b48e9c 8397 return signal_stop[signo];
c906108c
SS
8398}
8399
c5aa993b 8400int
96baa820 8401signal_print_state (int signo)
c906108c
SS
8402{
8403 return signal_print[signo];
8404}
8405
c5aa993b 8406int
96baa820 8407signal_pass_state (int signo)
c906108c
SS
8408{
8409 return signal_program[signo];
8410}
8411
2455069d
UW
8412static void
8413signal_cache_update (int signo)
8414{
8415 if (signo == -1)
8416 {
a493e3e2 8417 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8418 signal_cache_update (signo);
8419
8420 return;
8421 }
8422
8423 signal_pass[signo] = (signal_stop[signo] == 0
8424 && signal_print[signo] == 0
ab04a2af
TT
8425 && signal_program[signo] == 1
8426 && signal_catch[signo] == 0);
2455069d
UW
8427}
8428
488f131b 8429int
7bda5e4a 8430signal_stop_update (int signo, int state)
d4f3574e
SS
8431{
8432 int ret = signal_stop[signo];
abbb1732 8433
d4f3574e 8434 signal_stop[signo] = state;
2455069d 8435 signal_cache_update (signo);
d4f3574e
SS
8436 return ret;
8437}
8438
488f131b 8439int
7bda5e4a 8440signal_print_update (int signo, int state)
d4f3574e
SS
8441{
8442 int ret = signal_print[signo];
abbb1732 8443
d4f3574e 8444 signal_print[signo] = state;
2455069d 8445 signal_cache_update (signo);
d4f3574e
SS
8446 return ret;
8447}
8448
488f131b 8449int
7bda5e4a 8450signal_pass_update (int signo, int state)
d4f3574e
SS
8451{
8452 int ret = signal_program[signo];
abbb1732 8453
d4f3574e 8454 signal_program[signo] = state;
2455069d 8455 signal_cache_update (signo);
d4f3574e
SS
8456 return ret;
8457}
8458
ab04a2af
TT
8459/* Update the global 'signal_catch' from INFO and notify the
8460 target. */
8461
8462void
8463signal_catch_update (const unsigned int *info)
8464{
8465 int i;
8466
8467 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8468 signal_catch[i] = info[i] > 0;
8469 signal_cache_update (-1);
8470 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8471}
8472
c906108c 8473static void
96baa820 8474sig_print_header (void)
c906108c 8475{
3e43a32a
MS
8476 printf_filtered (_("Signal Stop\tPrint\tPass "
8477 "to program\tDescription\n"));
c906108c
SS
8478}
8479
8480static void
2ea28649 8481sig_print_info (enum gdb_signal oursig)
c906108c 8482{
2ea28649 8483 const char *name = gdb_signal_to_name (oursig);
c906108c 8484 int name_padding = 13 - strlen (name);
96baa820 8485
c906108c
SS
8486 if (name_padding <= 0)
8487 name_padding = 0;
8488
8489 printf_filtered ("%s", name);
488f131b 8490 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8491 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8492 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8493 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8494 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8495}
8496
8497/* Specify how various signals in the inferior should be handled. */
8498
8499static void
96baa820 8500handle_command (char *args, int from_tty)
c906108c
SS
8501{
8502 char **argv;
8503 int digits, wordlen;
8504 int sigfirst, signum, siglast;
2ea28649 8505 enum gdb_signal oursig;
c906108c
SS
8506 int allsigs;
8507 int nsigs;
8508 unsigned char *sigs;
8509 struct cleanup *old_chain;
8510
8511 if (args == NULL)
8512 {
e2e0b3e5 8513 error_no_arg (_("signal to handle"));
c906108c
SS
8514 }
8515
1777feb0 8516 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8517
a493e3e2 8518 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8519 sigs = (unsigned char *) alloca (nsigs);
8520 memset (sigs, 0, nsigs);
8521
1777feb0 8522 /* Break the command line up into args. */
c906108c 8523
d1a41061 8524 argv = gdb_buildargv (args);
7a292a7a 8525 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
8526
8527 /* Walk through the args, looking for signal oursigs, signal names, and
8528 actions. Signal numbers and signal names may be interspersed with
8529 actions, with the actions being performed for all signals cumulatively
1777feb0 8530 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
8531
8532 while (*argv != NULL)
8533 {
8534 wordlen = strlen (*argv);
8535 for (digits = 0; isdigit ((*argv)[digits]); digits++)
8536 {;
8537 }
8538 allsigs = 0;
8539 sigfirst = siglast = -1;
8540
8541 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
8542 {
8543 /* Apply action to all signals except those used by the
1777feb0 8544 debugger. Silently skip those. */
c906108c
SS
8545 allsigs = 1;
8546 sigfirst = 0;
8547 siglast = nsigs - 1;
8548 }
8549 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
8550 {
8551 SET_SIGS (nsigs, sigs, signal_stop);
8552 SET_SIGS (nsigs, sigs, signal_print);
8553 }
8554 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
8555 {
8556 UNSET_SIGS (nsigs, sigs, signal_program);
8557 }
8558 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
8559 {
8560 SET_SIGS (nsigs, sigs, signal_print);
8561 }
8562 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
8563 {
8564 SET_SIGS (nsigs, sigs, signal_program);
8565 }
8566 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
8567 {
8568 UNSET_SIGS (nsigs, sigs, signal_stop);
8569 }
8570 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
8571 {
8572 SET_SIGS (nsigs, sigs, signal_program);
8573 }
8574 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
8575 {
8576 UNSET_SIGS (nsigs, sigs, signal_print);
8577 UNSET_SIGS (nsigs, sigs, signal_stop);
8578 }
8579 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
8580 {
8581 UNSET_SIGS (nsigs, sigs, signal_program);
8582 }
8583 else if (digits > 0)
8584 {
8585 /* It is numeric. The numeric signal refers to our own
8586 internal signal numbering from target.h, not to host/target
8587 signal number. This is a feature; users really should be
8588 using symbolic names anyway, and the common ones like
8589 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8590
8591 sigfirst = siglast = (int)
2ea28649 8592 gdb_signal_from_command (atoi (*argv));
c906108c
SS
8593 if ((*argv)[digits] == '-')
8594 {
8595 siglast = (int)
2ea28649 8596 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
8597 }
8598 if (sigfirst > siglast)
8599 {
1777feb0 8600 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8601 signum = sigfirst;
8602 sigfirst = siglast;
8603 siglast = signum;
8604 }
8605 }
8606 else
8607 {
2ea28649 8608 oursig = gdb_signal_from_name (*argv);
a493e3e2 8609 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8610 {
8611 sigfirst = siglast = (int) oursig;
8612 }
8613 else
8614 {
8615 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 8616 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
8617 }
8618 }
8619
8620 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8621 which signals to apply actions to. */
c906108c
SS
8622
8623 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8624 {
2ea28649 8625 switch ((enum gdb_signal) signum)
c906108c 8626 {
a493e3e2
PA
8627 case GDB_SIGNAL_TRAP:
8628 case GDB_SIGNAL_INT:
c906108c
SS
8629 if (!allsigs && !sigs[signum])
8630 {
9e2f0ad4 8631 if (query (_("%s is used by the debugger.\n\
3e43a32a 8632Are you sure you want to change it? "),
2ea28649 8633 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8634 {
8635 sigs[signum] = 1;
8636 }
8637 else
8638 {
a3f17187 8639 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8640 gdb_flush (gdb_stdout);
8641 }
8642 }
8643 break;
a493e3e2
PA
8644 case GDB_SIGNAL_0:
8645 case GDB_SIGNAL_DEFAULT:
8646 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8647 /* Make sure that "all" doesn't print these. */
8648 break;
8649 default:
8650 sigs[signum] = 1;
8651 break;
8652 }
8653 }
8654
8655 argv++;
8656 }
8657
3a031f65
PA
8658 for (signum = 0; signum < nsigs; signum++)
8659 if (sigs[signum])
8660 {
2455069d 8661 signal_cache_update (-1);
a493e3e2
PA
8662 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8663 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8664
3a031f65
PA
8665 if (from_tty)
8666 {
8667 /* Show the results. */
8668 sig_print_header ();
8669 for (; signum < nsigs; signum++)
8670 if (sigs[signum])
aead7601 8671 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8672 }
8673
8674 break;
8675 }
c906108c
SS
8676
8677 do_cleanups (old_chain);
8678}
8679
de0bea00
MF
8680/* Complete the "handle" command. */
8681
8682static VEC (char_ptr) *
8683handle_completer (struct cmd_list_element *ignore,
6f937416 8684 const char *text, const char *word)
de0bea00
MF
8685{
8686 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
8687 static const char * const keywords[] =
8688 {
8689 "all",
8690 "stop",
8691 "ignore",
8692 "print",
8693 "pass",
8694 "nostop",
8695 "noignore",
8696 "noprint",
8697 "nopass",
8698 NULL,
8699 };
8700
8701 vec_signals = signal_completer (ignore, text, word);
8702 vec_keywords = complete_on_enum (keywords, word, word);
8703
8704 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
8705 VEC_free (char_ptr, vec_signals);
8706 VEC_free (char_ptr, vec_keywords);
8707 return return_val;
8708}
8709
2ea28649
PA
8710enum gdb_signal
8711gdb_signal_from_command (int num)
ed01b82c
PA
8712{
8713 if (num >= 1 && num <= 15)
2ea28649 8714 return (enum gdb_signal) num;
ed01b82c
PA
8715 error (_("Only signals 1-15 are valid as numeric signals.\n\
8716Use \"info signals\" for a list of symbolic signals."));
8717}
8718
c906108c
SS
8719/* Print current contents of the tables set by the handle command.
8720 It is possible we should just be printing signals actually used
8721 by the current target (but for things to work right when switching
8722 targets, all signals should be in the signal tables). */
8723
8724static void
96baa820 8725signals_info (char *signum_exp, int from_tty)
c906108c 8726{
2ea28649 8727 enum gdb_signal oursig;
abbb1732 8728
c906108c
SS
8729 sig_print_header ();
8730
8731 if (signum_exp)
8732 {
8733 /* First see if this is a symbol name. */
2ea28649 8734 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8735 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8736 {
8737 /* No, try numeric. */
8738 oursig =
2ea28649 8739 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8740 }
8741 sig_print_info (oursig);
8742 return;
8743 }
8744
8745 printf_filtered ("\n");
8746 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8747 for (oursig = GDB_SIGNAL_FIRST;
8748 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8749 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8750 {
8751 QUIT;
8752
a493e3e2
PA
8753 if (oursig != GDB_SIGNAL_UNKNOWN
8754 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8755 sig_print_info (oursig);
8756 }
8757
3e43a32a
MS
8758 printf_filtered (_("\nUse the \"handle\" command "
8759 "to change these tables.\n"));
c906108c 8760}
4aa995e1
PA
8761
8762/* The $_siginfo convenience variable is a bit special. We don't know
8763 for sure the type of the value until we actually have a chance to
7a9dd1b2 8764 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8765 also dependent on which thread you have selected.
8766
8767 1. making $_siginfo be an internalvar that creates a new value on
8768 access.
8769
8770 2. making the value of $_siginfo be an lval_computed value. */
8771
8772/* This function implements the lval_computed support for reading a
8773 $_siginfo value. */
8774
8775static void
8776siginfo_value_read (struct value *v)
8777{
8778 LONGEST transferred;
8779
a911d87a
PA
8780 /* If we can access registers, so can we access $_siginfo. Likewise
8781 vice versa. */
8782 validate_registers_access ();
c709acd1 8783
4aa995e1
PA
8784 transferred =
8785 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
8786 NULL,
8787 value_contents_all_raw (v),
8788 value_offset (v),
8789 TYPE_LENGTH (value_type (v)));
8790
8791 if (transferred != TYPE_LENGTH (value_type (v)))
8792 error (_("Unable to read siginfo"));
8793}
8794
8795/* This function implements the lval_computed support for writing a
8796 $_siginfo value. */
8797
8798static void
8799siginfo_value_write (struct value *v, struct value *fromval)
8800{
8801 LONGEST transferred;
8802
a911d87a
PA
8803 /* If we can access registers, so can we access $_siginfo. Likewise
8804 vice versa. */
8805 validate_registers_access ();
c709acd1 8806
4aa995e1
PA
8807 transferred = target_write (&current_target,
8808 TARGET_OBJECT_SIGNAL_INFO,
8809 NULL,
8810 value_contents_all_raw (fromval),
8811 value_offset (v),
8812 TYPE_LENGTH (value_type (fromval)));
8813
8814 if (transferred != TYPE_LENGTH (value_type (fromval)))
8815 error (_("Unable to write siginfo"));
8816}
8817
c8f2448a 8818static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8819 {
8820 siginfo_value_read,
8821 siginfo_value_write
8822 };
8823
8824/* Return a new value with the correct type for the siginfo object of
78267919
UW
8825 the current thread using architecture GDBARCH. Return a void value
8826 if there's no object available. */
4aa995e1 8827
2c0b251b 8828static struct value *
22d2b532
SDJ
8829siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8830 void *ignore)
4aa995e1 8831{
4aa995e1 8832 if (target_has_stack
78267919
UW
8833 && !ptid_equal (inferior_ptid, null_ptid)
8834 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8835 {
78267919 8836 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8837
78267919 8838 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8839 }
8840
78267919 8841 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8842}
8843
c906108c 8844\f
16c381f0
JK
8845/* infcall_suspend_state contains state about the program itself like its
8846 registers and any signal it received when it last stopped.
8847 This state must be restored regardless of how the inferior function call
8848 ends (either successfully, or after it hits a breakpoint or signal)
8849 if the program is to properly continue where it left off. */
8850
8851struct infcall_suspend_state
7a292a7a 8852{
16c381f0 8853 struct thread_suspend_state thread_suspend;
16c381f0
JK
8854
8855 /* Other fields: */
7a292a7a 8856 CORE_ADDR stop_pc;
b89667eb 8857 struct regcache *registers;
1736ad11 8858
35515841 8859 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8860 struct gdbarch *siginfo_gdbarch;
8861
8862 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8863 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8864 content would be invalid. */
8865 gdb_byte *siginfo_data;
b89667eb
DE
8866};
8867
16c381f0
JK
8868struct infcall_suspend_state *
8869save_infcall_suspend_state (void)
b89667eb 8870{
16c381f0 8871 struct infcall_suspend_state *inf_state;
b89667eb 8872 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8873 struct regcache *regcache = get_current_regcache ();
8874 struct gdbarch *gdbarch = get_regcache_arch (regcache);
8875 gdb_byte *siginfo_data = NULL;
8876
8877 if (gdbarch_get_siginfo_type_p (gdbarch))
8878 {
8879 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8880 size_t len = TYPE_LENGTH (type);
8881 struct cleanup *back_to;
8882
224c3ddb 8883 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8884 back_to = make_cleanup (xfree, siginfo_data);
8885
8886 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
8887 siginfo_data, 0, len) == len)
8888 discard_cleanups (back_to);
8889 else
8890 {
8891 /* Errors ignored. */
8892 do_cleanups (back_to);
8893 siginfo_data = NULL;
8894 }
8895 }
8896
41bf6aca 8897 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8898
8899 if (siginfo_data)
8900 {
8901 inf_state->siginfo_gdbarch = gdbarch;
8902 inf_state->siginfo_data = siginfo_data;
8903 }
b89667eb 8904
16c381f0 8905 inf_state->thread_suspend = tp->suspend;
16c381f0 8906
35515841 8907 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8908 GDB_SIGNAL_0 anyway. */
8909 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8910
b89667eb
DE
8911 inf_state->stop_pc = stop_pc;
8912
1736ad11 8913 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
8914
8915 return inf_state;
8916}
8917
8918/* Restore inferior session state to INF_STATE. */
8919
8920void
16c381f0 8921restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8922{
8923 struct thread_info *tp = inferior_thread ();
1736ad11
JK
8924 struct regcache *regcache = get_current_regcache ();
8925 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 8926
16c381f0 8927 tp->suspend = inf_state->thread_suspend;
16c381f0 8928
b89667eb
DE
8929 stop_pc = inf_state->stop_pc;
8930
1736ad11
JK
8931 if (inf_state->siginfo_gdbarch == gdbarch)
8932 {
8933 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8934
8935 /* Errors ignored. */
8936 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8937 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8938 }
8939
b89667eb
DE
8940 /* The inferior can be gone if the user types "print exit(0)"
8941 (and perhaps other times). */
8942 if (target_has_execution)
8943 /* NB: The register write goes through to the target. */
1736ad11 8944 regcache_cpy (regcache, inf_state->registers);
803b5f95 8945
16c381f0 8946 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8947}
8948
8949static void
16c381f0 8950do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8951{
9a3c8263 8952 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8953}
8954
8955struct cleanup *
16c381f0
JK
8956make_cleanup_restore_infcall_suspend_state
8957 (struct infcall_suspend_state *inf_state)
b89667eb 8958{
16c381f0 8959 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8960}
8961
8962void
16c381f0 8963discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8964{
8965 regcache_xfree (inf_state->registers);
803b5f95 8966 xfree (inf_state->siginfo_data);
b89667eb
DE
8967 xfree (inf_state);
8968}
8969
8970struct regcache *
16c381f0 8971get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8972{
8973 return inf_state->registers;
8974}
8975
16c381f0
JK
8976/* infcall_control_state contains state regarding gdb's control of the
8977 inferior itself like stepping control. It also contains session state like
8978 the user's currently selected frame. */
b89667eb 8979
16c381f0 8980struct infcall_control_state
b89667eb 8981{
16c381f0
JK
8982 struct thread_control_state thread_control;
8983 struct inferior_control_state inferior_control;
d82142e2
JK
8984
8985 /* Other fields: */
8986 enum stop_stack_kind stop_stack_dummy;
8987 int stopped_by_random_signal;
7a292a7a 8988
b89667eb 8989 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8990 struct frame_id selected_frame_id;
7a292a7a
SS
8991};
8992
c906108c 8993/* Save all of the information associated with the inferior<==>gdb
b89667eb 8994 connection. */
c906108c 8995
16c381f0
JK
8996struct infcall_control_state *
8997save_infcall_control_state (void)
c906108c 8998{
8d749320
SM
8999 struct infcall_control_state *inf_status =
9000 XNEW (struct infcall_control_state);
4e1c45ea 9001 struct thread_info *tp = inferior_thread ();
d6b48e9c 9002 struct inferior *inf = current_inferior ();
7a292a7a 9003
16c381f0
JK
9004 inf_status->thread_control = tp->control;
9005 inf_status->inferior_control = inf->control;
d82142e2 9006
8358c15c 9007 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9008 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9009
16c381f0
JK
9010 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9011 chain. If caller's caller is walking the chain, they'll be happier if we
9012 hand them back the original chain when restore_infcall_control_state is
9013 called. */
9014 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9015
9016 /* Other fields: */
9017 inf_status->stop_stack_dummy = stop_stack_dummy;
9018 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9019
206415a3 9020 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9021
7a292a7a 9022 return inf_status;
c906108c
SS
9023}
9024
c906108c 9025static int
96baa820 9026restore_selected_frame (void *args)
c906108c 9027{
488f131b 9028 struct frame_id *fid = (struct frame_id *) args;
c906108c 9029 struct frame_info *frame;
c906108c 9030
101dcfbe 9031 frame = frame_find_by_id (*fid);
c906108c 9032
aa0cd9c1
AC
9033 /* If inf_status->selected_frame_id is NULL, there was no previously
9034 selected frame. */
101dcfbe 9035 if (frame == NULL)
c906108c 9036 {
8a3fe4f8 9037 warning (_("Unable to restore previously selected frame."));
c906108c
SS
9038 return 0;
9039 }
9040
0f7d239c 9041 select_frame (frame);
c906108c
SS
9042
9043 return (1);
9044}
9045
b89667eb
DE
9046/* Restore inferior session state to INF_STATUS. */
9047
c906108c 9048void
16c381f0 9049restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9050{
4e1c45ea 9051 struct thread_info *tp = inferior_thread ();
d6b48e9c 9052 struct inferior *inf = current_inferior ();
4e1c45ea 9053
8358c15c
JK
9054 if (tp->control.step_resume_breakpoint)
9055 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9056
5b79abe7
TT
9057 if (tp->control.exception_resume_breakpoint)
9058 tp->control.exception_resume_breakpoint->disposition
9059 = disp_del_at_next_stop;
9060
d82142e2 9061 /* Handle the bpstat_copy of the chain. */
16c381f0 9062 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9063
16c381f0
JK
9064 tp->control = inf_status->thread_control;
9065 inf->control = inf_status->inferior_control;
d82142e2
JK
9066
9067 /* Other fields: */
9068 stop_stack_dummy = inf_status->stop_stack_dummy;
9069 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9070
b89667eb 9071 if (target_has_stack)
c906108c 9072 {
c906108c 9073 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
9074 walking the stack might encounter a garbage pointer and
9075 error() trying to dereference it. */
488f131b
JB
9076 if (catch_errors
9077 (restore_selected_frame, &inf_status->selected_frame_id,
9078 "Unable to restore previously selected frame:\n",
9079 RETURN_MASK_ERROR) == 0)
c906108c
SS
9080 /* Error in restoring the selected frame. Select the innermost
9081 frame. */
0f7d239c 9082 select_frame (get_current_frame ());
c906108c 9083 }
c906108c 9084
72cec141 9085 xfree (inf_status);
7a292a7a 9086}
c906108c 9087
74b7792f 9088static void
16c381f0 9089do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9090{
9a3c8263 9091 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9092}
9093
9094struct cleanup *
16c381f0
JK
9095make_cleanup_restore_infcall_control_state
9096 (struct infcall_control_state *inf_status)
74b7792f 9097{
16c381f0 9098 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9099}
9100
c906108c 9101void
16c381f0 9102discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9103{
8358c15c
JK
9104 if (inf_status->thread_control.step_resume_breakpoint)
9105 inf_status->thread_control.step_resume_breakpoint->disposition
9106 = disp_del_at_next_stop;
9107
5b79abe7
TT
9108 if (inf_status->thread_control.exception_resume_breakpoint)
9109 inf_status->thread_control.exception_resume_breakpoint->disposition
9110 = disp_del_at_next_stop;
9111
1777feb0 9112 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9113 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9114
72cec141 9115 xfree (inf_status);
7a292a7a 9116}
b89667eb 9117\f
ca6724c1
KB
9118/* restore_inferior_ptid() will be used by the cleanup machinery
9119 to restore the inferior_ptid value saved in a call to
9120 save_inferior_ptid(). */
ce696e05
KB
9121
9122static void
9123restore_inferior_ptid (void *arg)
9124{
9a3c8263 9125 ptid_t *saved_ptid_ptr = (ptid_t *) arg;
abbb1732 9126
ce696e05
KB
9127 inferior_ptid = *saved_ptid_ptr;
9128 xfree (arg);
9129}
9130
9131/* Save the value of inferior_ptid so that it may be restored by a
9132 later call to do_cleanups(). Returns the struct cleanup pointer
9133 needed for later doing the cleanup. */
9134
9135struct cleanup *
9136save_inferior_ptid (void)
9137{
8d749320 9138 ptid_t *saved_ptid_ptr = XNEW (ptid_t);
ce696e05 9139
ce696e05
KB
9140 *saved_ptid_ptr = inferior_ptid;
9141 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
9142}
0c557179 9143
7f89fd65 9144/* See infrun.h. */
0c557179
SDJ
9145
9146void
9147clear_exit_convenience_vars (void)
9148{
9149 clear_internalvar (lookup_internalvar ("_exitsignal"));
9150 clear_internalvar (lookup_internalvar ("_exitcode"));
9151}
c5aa993b 9152\f
488f131b 9153
b2175913
MS
9154/* User interface for reverse debugging:
9155 Set exec-direction / show exec-direction commands
9156 (returns error unless target implements to_set_exec_direction method). */
9157
170742de 9158enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9159static const char exec_forward[] = "forward";
9160static const char exec_reverse[] = "reverse";
9161static const char *exec_direction = exec_forward;
40478521 9162static const char *const exec_direction_names[] = {
b2175913
MS
9163 exec_forward,
9164 exec_reverse,
9165 NULL
9166};
9167
9168static void
9169set_exec_direction_func (char *args, int from_tty,
9170 struct cmd_list_element *cmd)
9171{
9172 if (target_can_execute_reverse)
9173 {
9174 if (!strcmp (exec_direction, exec_forward))
9175 execution_direction = EXEC_FORWARD;
9176 else if (!strcmp (exec_direction, exec_reverse))
9177 execution_direction = EXEC_REVERSE;
9178 }
8bbed405
MS
9179 else
9180 {
9181 exec_direction = exec_forward;
9182 error (_("Target does not support this operation."));
9183 }
b2175913
MS
9184}
9185
9186static void
9187show_exec_direction_func (struct ui_file *out, int from_tty,
9188 struct cmd_list_element *cmd, const char *value)
9189{
9190 switch (execution_direction) {
9191 case EXEC_FORWARD:
9192 fprintf_filtered (out, _("Forward.\n"));
9193 break;
9194 case EXEC_REVERSE:
9195 fprintf_filtered (out, _("Reverse.\n"));
9196 break;
b2175913 9197 default:
d8b34453
PA
9198 internal_error (__FILE__, __LINE__,
9199 _("bogus execution_direction value: %d"),
9200 (int) execution_direction);
b2175913
MS
9201 }
9202}
9203
d4db2f36
PA
9204static void
9205show_schedule_multiple (struct ui_file *file, int from_tty,
9206 struct cmd_list_element *c, const char *value)
9207{
3e43a32a
MS
9208 fprintf_filtered (file, _("Resuming the execution of threads "
9209 "of all processes is %s.\n"), value);
d4db2f36 9210}
ad52ddc6 9211
22d2b532
SDJ
9212/* Implementation of `siginfo' variable. */
9213
9214static const struct internalvar_funcs siginfo_funcs =
9215{
9216 siginfo_make_value,
9217 NULL,
9218 NULL
9219};
9220
372316f1
PA
9221/* Callback for infrun's target events source. This is marked when a
9222 thread has a pending status to process. */
9223
9224static void
9225infrun_async_inferior_event_handler (gdb_client_data data)
9226{
372316f1
PA
9227 inferior_event_handler (INF_REG_EVENT, NULL);
9228}
9229
c906108c 9230void
96baa820 9231_initialize_infrun (void)
c906108c 9232{
52f0bd74
AC
9233 int i;
9234 int numsigs;
de0bea00 9235 struct cmd_list_element *c;
c906108c 9236
372316f1
PA
9237 /* Register extra event sources in the event loop. */
9238 infrun_async_inferior_event_token
9239 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9240
1bedd215
AC
9241 add_info ("signals", signals_info, _("\
9242What debugger does when program gets various signals.\n\
9243Specify a signal as argument to print info on that signal only."));
c906108c
SS
9244 add_info_alias ("handle", "signals", 0);
9245
de0bea00 9246 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9247Specify how to handle signals.\n\
486c7739 9248Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9249Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9250If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9251will be displayed instead.\n\
9252\n\
c906108c
SS
9253Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9254from 1-15 are allowed for compatibility with old versions of GDB.\n\
9255Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9256The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9257used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9258\n\
1bedd215 9259Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9260\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9261Stop means reenter debugger if this signal happens (implies print).\n\
9262Print means print a message if this signal happens.\n\
9263Pass means let program see this signal; otherwise program doesn't know.\n\
9264Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9265Pass and Stop may be combined.\n\
9266\n\
9267Multiple signals may be specified. Signal numbers and signal names\n\
9268may be interspersed with actions, with the actions being performed for\n\
9269all signals cumulatively specified."));
de0bea00 9270 set_cmd_completer (c, handle_completer);
486c7739 9271
c906108c 9272 if (!dbx_commands)
1a966eab
AC
9273 stop_command = add_cmd ("stop", class_obscure,
9274 not_just_help_class_command, _("\
9275There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9276This allows you to set a list of commands to be run each time execution\n\
1a966eab 9277of the program stops."), &cmdlist);
c906108c 9278
ccce17b0 9279 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9280Set inferior debugging."), _("\
9281Show inferior debugging."), _("\
9282When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9283 NULL,
9284 show_debug_infrun,
9285 &setdebuglist, &showdebuglist);
527159b7 9286
3e43a32a
MS
9287 add_setshow_boolean_cmd ("displaced", class_maintenance,
9288 &debug_displaced, _("\
237fc4c9
PA
9289Set displaced stepping debugging."), _("\
9290Show displaced stepping debugging."), _("\
9291When non-zero, displaced stepping specific debugging is enabled."),
9292 NULL,
9293 show_debug_displaced,
9294 &setdebuglist, &showdebuglist);
9295
ad52ddc6
PA
9296 add_setshow_boolean_cmd ("non-stop", no_class,
9297 &non_stop_1, _("\
9298Set whether gdb controls the inferior in non-stop mode."), _("\
9299Show whether gdb controls the inferior in non-stop mode."), _("\
9300When debugging a multi-threaded program and this setting is\n\
9301off (the default, also called all-stop mode), when one thread stops\n\
9302(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9303all other threads in the program while you interact with the thread of\n\
9304interest. When you continue or step a thread, you can allow the other\n\
9305threads to run, or have them remain stopped, but while you inspect any\n\
9306thread's state, all threads stop.\n\
9307\n\
9308In non-stop mode, when one thread stops, other threads can continue\n\
9309to run freely. You'll be able to step each thread independently,\n\
9310leave it stopped or free to run as needed."),
9311 set_non_stop,
9312 show_non_stop,
9313 &setlist,
9314 &showlist);
9315
a493e3e2 9316 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9317 signal_stop = XNEWVEC (unsigned char, numsigs);
9318 signal_print = XNEWVEC (unsigned char, numsigs);
9319 signal_program = XNEWVEC (unsigned char, numsigs);
9320 signal_catch = XNEWVEC (unsigned char, numsigs);
9321 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9322 for (i = 0; i < numsigs; i++)
9323 {
9324 signal_stop[i] = 1;
9325 signal_print[i] = 1;
9326 signal_program[i] = 1;
ab04a2af 9327 signal_catch[i] = 0;
c906108c
SS
9328 }
9329
4d9d9d04
PA
9330 /* Signals caused by debugger's own actions should not be given to
9331 the program afterwards.
9332
9333 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9334 explicitly specifies that it should be delivered to the target
9335 program. Typically, that would occur when a user is debugging a
9336 target monitor on a simulator: the target monitor sets a
9337 breakpoint; the simulator encounters this breakpoint and halts
9338 the simulation handing control to GDB; GDB, noting that the stop
9339 address doesn't map to any known breakpoint, returns control back
9340 to the simulator; the simulator then delivers the hardware
9341 equivalent of a GDB_SIGNAL_TRAP to the program being
9342 debugged. */
a493e3e2
PA
9343 signal_program[GDB_SIGNAL_TRAP] = 0;
9344 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9345
9346 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9347 signal_stop[GDB_SIGNAL_ALRM] = 0;
9348 signal_print[GDB_SIGNAL_ALRM] = 0;
9349 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9350 signal_print[GDB_SIGNAL_VTALRM] = 0;
9351 signal_stop[GDB_SIGNAL_PROF] = 0;
9352 signal_print[GDB_SIGNAL_PROF] = 0;
9353 signal_stop[GDB_SIGNAL_CHLD] = 0;
9354 signal_print[GDB_SIGNAL_CHLD] = 0;
9355 signal_stop[GDB_SIGNAL_IO] = 0;
9356 signal_print[GDB_SIGNAL_IO] = 0;
9357 signal_stop[GDB_SIGNAL_POLL] = 0;
9358 signal_print[GDB_SIGNAL_POLL] = 0;
9359 signal_stop[GDB_SIGNAL_URG] = 0;
9360 signal_print[GDB_SIGNAL_URG] = 0;
9361 signal_stop[GDB_SIGNAL_WINCH] = 0;
9362 signal_print[GDB_SIGNAL_WINCH] = 0;
9363 signal_stop[GDB_SIGNAL_PRIO] = 0;
9364 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9365
cd0fc7c3
SS
9366 /* These signals are used internally by user-level thread
9367 implementations. (See signal(5) on Solaris.) Like the above
9368 signals, a healthy program receives and handles them as part of
9369 its normal operation. */
a493e3e2
PA
9370 signal_stop[GDB_SIGNAL_LWP] = 0;
9371 signal_print[GDB_SIGNAL_LWP] = 0;
9372 signal_stop[GDB_SIGNAL_WAITING] = 0;
9373 signal_print[GDB_SIGNAL_WAITING] = 0;
9374 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9375 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9376 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9377 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9378
2455069d
UW
9379 /* Update cached state. */
9380 signal_cache_update (-1);
9381
85c07804
AC
9382 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9383 &stop_on_solib_events, _("\
9384Set stopping for shared library events."), _("\
9385Show stopping for shared library events."), _("\
c906108c
SS
9386If nonzero, gdb will give control to the user when the dynamic linker\n\
9387notifies gdb of shared library events. The most common event of interest\n\
85c07804 9388to the user would be loading/unloading of a new library."),
f9e14852 9389 set_stop_on_solib_events,
920d2a44 9390 show_stop_on_solib_events,
85c07804 9391 &setlist, &showlist);
c906108c 9392
7ab04401
AC
9393 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9394 follow_fork_mode_kind_names,
9395 &follow_fork_mode_string, _("\
9396Set debugger response to a program call of fork or vfork."), _("\
9397Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9398A fork or vfork creates a new process. follow-fork-mode can be:\n\
9399 parent - the original process is debugged after a fork\n\
9400 child - the new process is debugged after a fork\n\
ea1dd7bc 9401The unfollowed process will continue to run.\n\
7ab04401
AC
9402By default, the debugger will follow the parent process."),
9403 NULL,
920d2a44 9404 show_follow_fork_mode_string,
7ab04401
AC
9405 &setlist, &showlist);
9406
6c95b8df
PA
9407 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9408 follow_exec_mode_names,
9409 &follow_exec_mode_string, _("\
9410Set debugger response to a program call of exec."), _("\
9411Show debugger response to a program call of exec."), _("\
9412An exec call replaces the program image of a process.\n\
9413\n\
9414follow-exec-mode can be:\n\
9415\n\
cce7e648 9416 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9417to this new inferior. The program the process was running before\n\
9418the exec call can be restarted afterwards by restarting the original\n\
9419inferior.\n\
9420\n\
9421 same - the debugger keeps the process bound to the same inferior.\n\
9422The new executable image replaces the previous executable loaded in\n\
9423the inferior. Restarting the inferior after the exec call restarts\n\
9424the executable the process was running after the exec call.\n\
9425\n\
9426By default, the debugger will use the same inferior."),
9427 NULL,
9428 show_follow_exec_mode_string,
9429 &setlist, &showlist);
9430
7ab04401
AC
9431 add_setshow_enum_cmd ("scheduler-locking", class_run,
9432 scheduler_enums, &scheduler_mode, _("\
9433Set mode for locking scheduler during execution."), _("\
9434Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9435off == no locking (threads may preempt at any time)\n\
9436on == full locking (no thread except the current thread may run)\n\
9437 This applies to both normal execution and replay mode.\n\
9438step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9439 In this mode, other threads may run during other commands.\n\
9440 This applies to both normal execution and replay mode.\n\
9441replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9442 set_schedlock_func, /* traps on target vector */
920d2a44 9443 show_scheduler_mode,
7ab04401 9444 &setlist, &showlist);
5fbbeb29 9445
d4db2f36
PA
9446 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9447Set mode for resuming threads of all processes."), _("\
9448Show mode for resuming threads of all processes."), _("\
9449When on, execution commands (such as 'continue' or 'next') resume all\n\
9450threads of all processes. When off (which is the default), execution\n\
9451commands only resume the threads of the current process. The set of\n\
9452threads that are resumed is further refined by the scheduler-locking\n\
9453mode (see help set scheduler-locking)."),
9454 NULL,
9455 show_schedule_multiple,
9456 &setlist, &showlist);
9457
5bf193a2
AC
9458 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9459Set mode of the step operation."), _("\
9460Show mode of the step operation."), _("\
9461When set, doing a step over a function without debug line information\n\
9462will stop at the first instruction of that function. Otherwise, the\n\
9463function is skipped and the step command stops at a different source line."),
9464 NULL,
920d2a44 9465 show_step_stop_if_no_debug,
5bf193a2 9466 &setlist, &showlist);
ca6724c1 9467
72d0e2c5
YQ
9468 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9469 &can_use_displaced_stepping, _("\
237fc4c9
PA
9470Set debugger's willingness to use displaced stepping."), _("\
9471Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9472If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9473supported by the target architecture. If off, gdb will not use displaced\n\
9474stepping to step over breakpoints, even if such is supported by the target\n\
9475architecture. If auto (which is the default), gdb will use displaced stepping\n\
9476if the target architecture supports it and non-stop mode is active, but will not\n\
9477use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9478 NULL,
9479 show_can_use_displaced_stepping,
9480 &setlist, &showlist);
237fc4c9 9481
b2175913
MS
9482 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9483 &exec_direction, _("Set direction of execution.\n\
9484Options are 'forward' or 'reverse'."),
9485 _("Show direction of execution (forward/reverse)."),
9486 _("Tells gdb whether to execute forward or backward."),
9487 set_exec_direction_func, show_exec_direction_func,
9488 &setlist, &showlist);
9489
6c95b8df
PA
9490 /* Set/show detach-on-fork: user-settable mode. */
9491
9492 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9493Set whether gdb will detach the child of a fork."), _("\
9494Show whether gdb will detach the child of a fork."), _("\
9495Tells gdb whether to detach the child of a fork."),
9496 NULL, NULL, &setlist, &showlist);
9497
03583c20
UW
9498 /* Set/show disable address space randomization mode. */
9499
9500 add_setshow_boolean_cmd ("disable-randomization", class_support,
9501 &disable_randomization, _("\
9502Set disabling of debuggee's virtual address space randomization."), _("\
9503Show disabling of debuggee's virtual address space randomization."), _("\
9504When this mode is on (which is the default), randomization of the virtual\n\
9505address space is disabled. Standalone programs run with the randomization\n\
9506enabled by default on some platforms."),
9507 &set_disable_randomization,
9508 &show_disable_randomization,
9509 &setlist, &showlist);
9510
ca6724c1 9511 /* ptid initializations */
ca6724c1
KB
9512 inferior_ptid = null_ptid;
9513 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
9514
9515 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 9516 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 9517 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 9518 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
9519
9520 /* Explicitly create without lookup, since that tries to create a
9521 value with a void typed value, and when we get here, gdbarch
9522 isn't initialized yet. At this point, we're quite sure there
9523 isn't another convenience variable of the same name. */
22d2b532 9524 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9525
9526 add_setshow_boolean_cmd ("observer", no_class,
9527 &observer_mode_1, _("\
9528Set whether gdb controls the inferior in observer mode."), _("\
9529Show whether gdb controls the inferior in observer mode."), _("\
9530In observer mode, GDB can get data from the inferior, but not\n\
9531affect its execution. Registers and memory may not be changed,\n\
9532breakpoints may not be set, and the program cannot be interrupted\n\
9533or signalled."),
9534 set_observer_mode,
9535 show_observer_mode,
9536 &setlist,
9537 &showlist);
c906108c 9538}
This page took 3.770485 seconds and 4 git commands to generate.