2011-10-06 Justin Lebar <justin.lebar@gmail.com>
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
6aba47ca 4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
7b6bb8da 6 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 7
c5aa993b 8 This file is part of GDB.
c906108c 9
c5aa993b
JM
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
c5aa993b 13 (at your option) any later version.
c906108c 14
c5aa993b
JM
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
c906108c 19
c5aa993b 20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include <ctype.h>
26#include "symtab.h"
27#include "frame.h"
28#include "inferior.h"
60250e8b 29#include "exceptions.h"
c906108c 30#include "breakpoint.h"
03f2053f 31#include "gdb_wait.h"
c906108c
SS
32#include "gdbcore.h"
33#include "gdbcmd.h"
210661e7 34#include "cli/cli-script.h"
c906108c
SS
35#include "target.h"
36#include "gdbthread.h"
37#include "annotate.h"
1adeb98a 38#include "symfile.h"
7a292a7a 39#include "top.h"
c906108c 40#include <signal.h>
2acceee2 41#include "inf-loop.h"
4e052eda 42#include "regcache.h"
fd0407d6 43#include "value.h"
06600e06 44#include "observer.h"
f636b87d 45#include "language.h"
a77053c2 46#include "solib.h"
f17517ea 47#include "main.h"
186c406b
TT
48#include "dictionary.h"
49#include "block.h"
9f976b41 50#include "gdb_assert.h"
034dad6f 51#include "mi/mi-common.h"
4f8d22e3 52#include "event-top.h"
96429cc8 53#include "record.h"
edb3359d 54#include "inline-frame.h"
4efc6507 55#include "jit.h"
06cd862c 56#include "tracepoint.h"
be34f849 57#include "continuations.h"
b4a14fd0 58#include "interps.h"
1bfeeb0f 59#include "skip.h"
c906108c
SS
60
61/* Prototypes for local functions */
62
96baa820 63static void signals_info (char *, int);
c906108c 64
96baa820 65static void handle_command (char *, int);
c906108c 66
96baa820 67static void sig_print_info (enum target_signal);
c906108c 68
96baa820 69static void sig_print_header (void);
c906108c 70
74b7792f 71static void resume_cleanups (void *);
c906108c 72
96baa820 73static int hook_stop_stub (void *);
c906108c 74
96baa820
JM
75static int restore_selected_frame (void *);
76
4ef3f3be 77static int follow_fork (void);
96baa820
JM
78
79static void set_schedlock_func (char *args, int from_tty,
488f131b 80 struct cmd_list_element *c);
96baa820 81
a289b8f6
JK
82static int currently_stepping (struct thread_info *tp);
83
b3444185
PA
84static int currently_stepping_or_nexting_callback (struct thread_info *tp,
85 void *data);
a7212384 86
96baa820
JM
87static void xdb_handle_command (char *args, int from_tty);
88
6a6b96b9 89static int prepare_to_proceed (int);
ea67f13b 90
33d62d64
JK
91static void print_exited_reason (int exitstatus);
92
93static void print_signal_exited_reason (enum target_signal siggnal);
94
95static void print_no_history_reason (void);
96
97static void print_signal_received_reason (enum target_signal siggnal);
98
99static void print_end_stepping_range_reason (void);
100
96baa820 101void _initialize_infrun (void);
43ff13b4 102
e58b0e63
PA
103void nullify_last_target_wait_ptid (void);
104
2c03e5be 105static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
106
107static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
108
2484c66b
UW
109static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
110
5fbbeb29
CF
111/* When set, stop the 'step' command if we enter a function which has
112 no line number information. The normal behavior is that we step
113 over such function. */
114int step_stop_if_no_debug = 0;
920d2a44
AC
115static void
116show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c, const char *value)
118{
119 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
120}
5fbbeb29 121
1777feb0 122/* In asynchronous mode, but simulating synchronous execution. */
96baa820 123
43ff13b4
JM
124int sync_execution = 0;
125
c906108c
SS
126/* wait_for_inferior and normal_stop use this to notify the user
127 when the inferior stopped in a different thread than it had been
96baa820
JM
128 running in. */
129
39f77062 130static ptid_t previous_inferior_ptid;
7a292a7a 131
6c95b8df
PA
132/* Default behavior is to detach newly forked processes (legacy). */
133int detach_fork = 1;
134
237fc4c9
PA
135int debug_displaced = 0;
136static void
137show_debug_displaced (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
141}
142
628fe4e4 143int debug_infrun = 0;
920d2a44
AC
144static void
145show_debug_infrun (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147{
148 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
149}
527159b7 150
03583c20
UW
151
152/* Support for disabling address space randomization. */
153
154int disable_randomization = 1;
155
156static void
157show_disable_randomization (struct ui_file *file, int from_tty,
158 struct cmd_list_element *c, const char *value)
159{
160 if (target_supports_disable_randomization ())
161 fprintf_filtered (file,
162 _("Disabling randomization of debuggee's "
163 "virtual address space is %s.\n"),
164 value);
165 else
166 fputs_filtered (_("Disabling randomization of debuggee's "
167 "virtual address space is unsupported on\n"
168 "this platform.\n"), file);
169}
170
171static void
172set_disable_randomization (char *args, int from_tty,
173 struct cmd_list_element *c)
174{
175 if (!target_supports_disable_randomization ())
176 error (_("Disabling randomization of debuggee's "
177 "virtual address space is unsupported on\n"
178 "this platform."));
179}
180
181
d4f3574e
SS
182/* If the program uses ELF-style shared libraries, then calls to
183 functions in shared libraries go through stubs, which live in a
184 table called the PLT (Procedure Linkage Table). The first time the
185 function is called, the stub sends control to the dynamic linker,
186 which looks up the function's real address, patches the stub so
187 that future calls will go directly to the function, and then passes
188 control to the function.
189
190 If we are stepping at the source level, we don't want to see any of
191 this --- we just want to skip over the stub and the dynamic linker.
192 The simple approach is to single-step until control leaves the
193 dynamic linker.
194
ca557f44
AC
195 However, on some systems (e.g., Red Hat's 5.2 distribution) the
196 dynamic linker calls functions in the shared C library, so you
197 can't tell from the PC alone whether the dynamic linker is still
198 running. In this case, we use a step-resume breakpoint to get us
199 past the dynamic linker, as if we were using "next" to step over a
200 function call.
d4f3574e 201
cfd8ab24 202 in_solib_dynsym_resolve_code() says whether we're in the dynamic
d4f3574e
SS
203 linker code or not. Normally, this means we single-step. However,
204 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
205 address where we can place a step-resume breakpoint to get past the
206 linker's symbol resolution function.
207
cfd8ab24 208 in_solib_dynsym_resolve_code() can generally be implemented in a
d4f3574e
SS
209 pretty portable way, by comparing the PC against the address ranges
210 of the dynamic linker's sections.
211
212 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
213 it depends on internal details of the dynamic linker. It's usually
214 not too hard to figure out where to put a breakpoint, but it
215 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
216 sanity checking. If it can't figure things out, returning zero and
217 getting the (possibly confusing) stepping behavior is better than
218 signalling an error, which will obscure the change in the
219 inferior's state. */
c906108c 220
c906108c
SS
221/* This function returns TRUE if pc is the address of an instruction
222 that lies within the dynamic linker (such as the event hook, or the
223 dld itself).
224
225 This function must be used only when a dynamic linker event has
226 been caught, and the inferior is being stepped out of the hook, or
227 undefined results are guaranteed. */
228
229#ifndef SOLIB_IN_DYNAMIC_LINKER
230#define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
231#endif
232
d914c394
SS
233/* "Observer mode" is somewhat like a more extreme version of
234 non-stop, in which all GDB operations that might affect the
235 target's execution have been disabled. */
236
237static int non_stop_1 = 0;
238
239int observer_mode = 0;
240static int observer_mode_1 = 0;
241
242static void
243set_observer_mode (char *args, int from_tty,
244 struct cmd_list_element *c)
245{
246 extern int pagination_enabled;
247
248 if (target_has_execution)
249 {
250 observer_mode_1 = observer_mode;
251 error (_("Cannot change this setting while the inferior is running."));
252 }
253
254 observer_mode = observer_mode_1;
255
256 may_write_registers = !observer_mode;
257 may_write_memory = !observer_mode;
258 may_insert_breakpoints = !observer_mode;
259 may_insert_tracepoints = !observer_mode;
260 /* We can insert fast tracepoints in or out of observer mode,
261 but enable them if we're going into this mode. */
262 if (observer_mode)
263 may_insert_fast_tracepoints = 1;
264 may_stop = !observer_mode;
265 update_target_permissions ();
266
267 /* Going *into* observer mode we must force non-stop, then
268 going out we leave it that way. */
269 if (observer_mode)
270 {
271 target_async_permitted = 1;
272 pagination_enabled = 0;
273 non_stop = non_stop_1 = 1;
274 }
275
276 if (from_tty)
277 printf_filtered (_("Observer mode is now %s.\n"),
278 (observer_mode ? "on" : "off"));
279}
280
281static void
282show_observer_mode (struct ui_file *file, int from_tty,
283 struct cmd_list_element *c, const char *value)
284{
285 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
286}
287
288/* This updates the value of observer mode based on changes in
289 permissions. Note that we are deliberately ignoring the values of
290 may-write-registers and may-write-memory, since the user may have
291 reason to enable these during a session, for instance to turn on a
292 debugging-related global. */
293
294void
295update_observer_mode (void)
296{
297 int newval;
298
299 newval = (!may_insert_breakpoints
300 && !may_insert_tracepoints
301 && may_insert_fast_tracepoints
302 && !may_stop
303 && non_stop);
304
305 /* Let the user know if things change. */
306 if (newval != observer_mode)
307 printf_filtered (_("Observer mode is now %s.\n"),
308 (newval ? "on" : "off"));
309
310 observer_mode = observer_mode_1 = newval;
311}
c2c6d25f 312
c906108c
SS
313/* Tables of how to react to signals; the user sets them. */
314
315static unsigned char *signal_stop;
316static unsigned char *signal_print;
317static unsigned char *signal_program;
318
2455069d
UW
319/* Table of signals that the target may silently handle.
320 This is automatically determined from the flags above,
321 and simply cached here. */
322static unsigned char *signal_pass;
323
c906108c
SS
324#define SET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 1; \
330 } while (0)
331
332#define UNSET_SIGS(nsigs,sigs,flags) \
333 do { \
334 int signum = (nsigs); \
335 while (signum-- > 0) \
336 if ((sigs)[signum]) \
337 (flags)[signum] = 0; \
338 } while (0)
339
1777feb0 340/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 341
edb3359d 342#define RESUME_ALL minus_one_ptid
c906108c
SS
343
344/* Command list pointer for the "stop" placeholder. */
345
346static struct cmd_list_element *stop_command;
347
c906108c
SS
348/* Function inferior was in as of last step command. */
349
350static struct symbol *step_start_function;
351
c906108c
SS
352/* Nonzero if we want to give control to the user when we're notified
353 of shared library events by the dynamic linker. */
628fe4e4 354int stop_on_solib_events;
920d2a44
AC
355static void
356show_stop_on_solib_events (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c, const char *value)
358{
359 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
360 value);
361}
c906108c 362
c906108c
SS
363/* Nonzero means expecting a trace trap
364 and should stop the inferior and return silently when it happens. */
365
366int stop_after_trap;
367
642fd101
DE
368/* Save register contents here when executing a "finish" command or are
369 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
370 Thus this contains the return value from the called function (assuming
371 values are returned in a register). */
372
72cec141 373struct regcache *stop_registers;
c906108c 374
c906108c
SS
375/* Nonzero after stop if current stack frame should be printed. */
376
377static int stop_print_frame;
378
e02bc4cc 379/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
380 returned by target_wait()/deprecated_target_wait_hook(). This
381 information is returned by get_last_target_status(). */
39f77062 382static ptid_t target_last_wait_ptid;
e02bc4cc
DS
383static struct target_waitstatus target_last_waitstatus;
384
0d1e5fa7
PA
385static void context_switch (ptid_t ptid);
386
4e1c45ea 387void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7
PA
388
389void init_infwait_state (void);
a474d7c2 390
53904c9e
AC
391static const char follow_fork_mode_child[] = "child";
392static const char follow_fork_mode_parent[] = "parent";
393
488f131b 394static const char *follow_fork_mode_kind_names[] = {
53904c9e
AC
395 follow_fork_mode_child,
396 follow_fork_mode_parent,
397 NULL
ef346e04 398};
c906108c 399
53904c9e 400static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
401static void
402show_follow_fork_mode_string (struct ui_file *file, int from_tty,
403 struct cmd_list_element *c, const char *value)
404{
3e43a32a
MS
405 fprintf_filtered (file,
406 _("Debugger response to a program "
407 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
408 value);
409}
c906108c
SS
410\f
411
e58b0e63
PA
412/* Tell the target to follow the fork we're stopped at. Returns true
413 if the inferior should be resumed; false, if the target for some
414 reason decided it's best not to resume. */
415
6604731b 416static int
4ef3f3be 417follow_fork (void)
c906108c 418{
ea1dd7bc 419 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
420 int should_resume = 1;
421 struct thread_info *tp;
422
423 /* Copy user stepping state to the new inferior thread. FIXME: the
424 followed fork child thread should have a copy of most of the
4e3990f4
DE
425 parent thread structure's run control related fields, not just these.
426 Initialized to avoid "may be used uninitialized" warnings from gcc. */
427 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 428 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
429 CORE_ADDR step_range_start = 0;
430 CORE_ADDR step_range_end = 0;
431 struct frame_id step_frame_id = { 0 };
e58b0e63
PA
432
433 if (!non_stop)
434 {
435 ptid_t wait_ptid;
436 struct target_waitstatus wait_status;
437
438 /* Get the last target status returned by target_wait(). */
439 get_last_target_status (&wait_ptid, &wait_status);
440
441 /* If not stopped at a fork event, then there's nothing else to
442 do. */
443 if (wait_status.kind != TARGET_WAITKIND_FORKED
444 && wait_status.kind != TARGET_WAITKIND_VFORKED)
445 return 1;
446
447 /* Check if we switched over from WAIT_PTID, since the event was
448 reported. */
449 if (!ptid_equal (wait_ptid, minus_one_ptid)
450 && !ptid_equal (inferior_ptid, wait_ptid))
451 {
452 /* We did. Switch back to WAIT_PTID thread, to tell the
453 target to follow it (in either direction). We'll
454 afterwards refuse to resume, and inform the user what
455 happened. */
456 switch_to_thread (wait_ptid);
457 should_resume = 0;
458 }
459 }
460
461 tp = inferior_thread ();
462
463 /* If there were any forks/vforks that were caught and are now to be
464 followed, then do so now. */
465 switch (tp->pending_follow.kind)
466 {
467 case TARGET_WAITKIND_FORKED:
468 case TARGET_WAITKIND_VFORKED:
469 {
470 ptid_t parent, child;
471
472 /* If the user did a next/step, etc, over a fork call,
473 preserve the stepping state in the fork child. */
474 if (follow_child && should_resume)
475 {
8358c15c
JK
476 step_resume_breakpoint = clone_momentary_breakpoint
477 (tp->control.step_resume_breakpoint);
16c381f0
JK
478 step_range_start = tp->control.step_range_start;
479 step_range_end = tp->control.step_range_end;
480 step_frame_id = tp->control.step_frame_id;
186c406b
TT
481 exception_resume_breakpoint
482 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
e58b0e63
PA
483
484 /* For now, delete the parent's sr breakpoint, otherwise,
485 parent/child sr breakpoints are considered duplicates,
486 and the child version will not be installed. Remove
487 this when the breakpoints module becomes aware of
488 inferiors and address spaces. */
489 delete_step_resume_breakpoint (tp);
16c381f0
JK
490 tp->control.step_range_start = 0;
491 tp->control.step_range_end = 0;
492 tp->control.step_frame_id = null_frame_id;
186c406b 493 delete_exception_resume_breakpoint (tp);
e58b0e63
PA
494 }
495
496 parent = inferior_ptid;
497 child = tp->pending_follow.value.related_pid;
498
499 /* Tell the target to do whatever is necessary to follow
500 either parent or child. */
501 if (target_follow_fork (follow_child))
502 {
503 /* Target refused to follow, or there's some other reason
504 we shouldn't resume. */
505 should_resume = 0;
506 }
507 else
508 {
509 /* This pending follow fork event is now handled, one way
510 or another. The previous selected thread may be gone
511 from the lists by now, but if it is still around, need
512 to clear the pending follow request. */
e09875d4 513 tp = find_thread_ptid (parent);
e58b0e63
PA
514 if (tp)
515 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
516
517 /* This makes sure we don't try to apply the "Switched
518 over from WAIT_PID" logic above. */
519 nullify_last_target_wait_ptid ();
520
1777feb0 521 /* If we followed the child, switch to it... */
e58b0e63
PA
522 if (follow_child)
523 {
524 switch_to_thread (child);
525
526 /* ... and preserve the stepping state, in case the
527 user was stepping over the fork call. */
528 if (should_resume)
529 {
530 tp = inferior_thread ();
8358c15c
JK
531 tp->control.step_resume_breakpoint
532 = step_resume_breakpoint;
16c381f0
JK
533 tp->control.step_range_start = step_range_start;
534 tp->control.step_range_end = step_range_end;
535 tp->control.step_frame_id = step_frame_id;
186c406b
TT
536 tp->control.exception_resume_breakpoint
537 = exception_resume_breakpoint;
e58b0e63
PA
538 }
539 else
540 {
541 /* If we get here, it was because we're trying to
542 resume from a fork catchpoint, but, the user
543 has switched threads away from the thread that
544 forked. In that case, the resume command
545 issued is most likely not applicable to the
546 child, so just warn, and refuse to resume. */
3e43a32a
MS
547 warning (_("Not resuming: switched threads "
548 "before following fork child.\n"));
e58b0e63
PA
549 }
550
551 /* Reset breakpoints in the child as appropriate. */
552 follow_inferior_reset_breakpoints ();
553 }
554 else
555 switch_to_thread (parent);
556 }
557 }
558 break;
559 case TARGET_WAITKIND_SPURIOUS:
560 /* Nothing to follow. */
561 break;
562 default:
563 internal_error (__FILE__, __LINE__,
564 "Unexpected pending_follow.kind %d\n",
565 tp->pending_follow.kind);
566 break;
567 }
c906108c 568
e58b0e63 569 return should_resume;
c906108c
SS
570}
571
6604731b
DJ
572void
573follow_inferior_reset_breakpoints (void)
c906108c 574{
4e1c45ea
PA
575 struct thread_info *tp = inferior_thread ();
576
6604731b
DJ
577 /* Was there a step_resume breakpoint? (There was if the user
578 did a "next" at the fork() call.) If so, explicitly reset its
579 thread number.
580
581 step_resumes are a form of bp that are made to be per-thread.
582 Since we created the step_resume bp when the parent process
583 was being debugged, and now are switching to the child process,
584 from the breakpoint package's viewpoint, that's a switch of
585 "threads". We must update the bp's notion of which thread
586 it is for, or it'll be ignored when it triggers. */
587
8358c15c
JK
588 if (tp->control.step_resume_breakpoint)
589 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
6604731b 590
186c406b
TT
591 if (tp->control.exception_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
593
6604731b
DJ
594 /* Reinsert all breakpoints in the child. The user may have set
595 breakpoints after catching the fork, in which case those
596 were never set in the child, but only in the parent. This makes
597 sure the inserted breakpoints match the breakpoint list. */
598
599 breakpoint_re_set ();
600 insert_breakpoints ();
c906108c 601}
c906108c 602
6c95b8df
PA
603/* The child has exited or execed: resume threads of the parent the
604 user wanted to be executing. */
605
606static int
607proceed_after_vfork_done (struct thread_info *thread,
608 void *arg)
609{
610 int pid = * (int *) arg;
611
612 if (ptid_get_pid (thread->ptid) == pid
613 && is_running (thread->ptid)
614 && !is_executing (thread->ptid)
615 && !thread->stop_requested
16c381f0 616 && thread->suspend.stop_signal == TARGET_SIGNAL_0)
6c95b8df
PA
617 {
618 if (debug_infrun)
619 fprintf_unfiltered (gdb_stdlog,
620 "infrun: resuming vfork parent thread %s\n",
621 target_pid_to_str (thread->ptid));
622
623 switch_to_thread (thread->ptid);
624 clear_proceed_status ();
625 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
626 }
627
628 return 0;
629}
630
631/* Called whenever we notice an exec or exit event, to handle
632 detaching or resuming a vfork parent. */
633
634static void
635handle_vfork_child_exec_or_exit (int exec)
636{
637 struct inferior *inf = current_inferior ();
638
639 if (inf->vfork_parent)
640 {
641 int resume_parent = -1;
642
643 /* This exec or exit marks the end of the shared memory region
644 between the parent and the child. If the user wanted to
645 detach from the parent, now is the time. */
646
647 if (inf->vfork_parent->pending_detach)
648 {
649 struct thread_info *tp;
650 struct cleanup *old_chain;
651 struct program_space *pspace;
652 struct address_space *aspace;
653
1777feb0 654 /* follow-fork child, detach-on-fork on. */
6c95b8df
PA
655
656 old_chain = make_cleanup_restore_current_thread ();
657
658 /* We're letting loose of the parent. */
659 tp = any_live_thread_of_process (inf->vfork_parent->pid);
660 switch_to_thread (tp->ptid);
661
662 /* We're about to detach from the parent, which implicitly
663 removes breakpoints from its address space. There's a
664 catch here: we want to reuse the spaces for the child,
665 but, parent/child are still sharing the pspace at this
666 point, although the exec in reality makes the kernel give
667 the child a fresh set of new pages. The problem here is
668 that the breakpoints module being unaware of this, would
669 likely chose the child process to write to the parent
670 address space. Swapping the child temporarily away from
671 the spaces has the desired effect. Yes, this is "sort
672 of" a hack. */
673
674 pspace = inf->pspace;
675 aspace = inf->aspace;
676 inf->aspace = NULL;
677 inf->pspace = NULL;
678
679 if (debug_infrun || info_verbose)
680 {
681 target_terminal_ours ();
682
683 if (exec)
684 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
685 "Detaching vfork parent process "
686 "%d after child exec.\n",
6c95b8df
PA
687 inf->vfork_parent->pid);
688 else
689 fprintf_filtered (gdb_stdlog,
3e43a32a
MS
690 "Detaching vfork parent process "
691 "%d after child exit.\n",
6c95b8df
PA
692 inf->vfork_parent->pid);
693 }
694
695 target_detach (NULL, 0);
696
697 /* Put it back. */
698 inf->pspace = pspace;
699 inf->aspace = aspace;
700
701 do_cleanups (old_chain);
702 }
703 else if (exec)
704 {
705 /* We're staying attached to the parent, so, really give the
706 child a new address space. */
707 inf->pspace = add_program_space (maybe_new_address_space ());
708 inf->aspace = inf->pspace->aspace;
709 inf->removable = 1;
710 set_current_program_space (inf->pspace);
711
712 resume_parent = inf->vfork_parent->pid;
713
714 /* Break the bonds. */
715 inf->vfork_parent->vfork_child = NULL;
716 }
717 else
718 {
719 struct cleanup *old_chain;
720 struct program_space *pspace;
721
722 /* If this is a vfork child exiting, then the pspace and
723 aspaces were shared with the parent. Since we're
724 reporting the process exit, we'll be mourning all that is
725 found in the address space, and switching to null_ptid,
726 preparing to start a new inferior. But, since we don't
727 want to clobber the parent's address/program spaces, we
728 go ahead and create a new one for this exiting
729 inferior. */
730
731 /* Switch to null_ptid, so that clone_program_space doesn't want
732 to read the selected frame of a dead process. */
733 old_chain = save_inferior_ptid ();
734 inferior_ptid = null_ptid;
735
736 /* This inferior is dead, so avoid giving the breakpoints
737 module the option to write through to it (cloning a
738 program space resets breakpoints). */
739 inf->aspace = NULL;
740 inf->pspace = NULL;
741 pspace = add_program_space (maybe_new_address_space ());
742 set_current_program_space (pspace);
743 inf->removable = 1;
744 clone_program_space (pspace, inf->vfork_parent->pspace);
745 inf->pspace = pspace;
746 inf->aspace = pspace->aspace;
747
748 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 749 inferior. */
6c95b8df
PA
750 do_cleanups (old_chain);
751
752 resume_parent = inf->vfork_parent->pid;
753 /* Break the bonds. */
754 inf->vfork_parent->vfork_child = NULL;
755 }
756
757 inf->vfork_parent = NULL;
758
759 gdb_assert (current_program_space == inf->pspace);
760
761 if (non_stop && resume_parent != -1)
762 {
763 /* If the user wanted the parent to be running, let it go
764 free now. */
765 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
766
767 if (debug_infrun)
3e43a32a
MS
768 fprintf_unfiltered (gdb_stdlog,
769 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
770 resume_parent);
771
772 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
773
774 do_cleanups (old_chain);
775 }
776 }
777}
778
779/* Enum strings for "set|show displaced-stepping". */
780
781static const char follow_exec_mode_new[] = "new";
782static const char follow_exec_mode_same[] = "same";
783static const char *follow_exec_mode_names[] =
784{
785 follow_exec_mode_new,
786 follow_exec_mode_same,
787 NULL,
788};
789
790static const char *follow_exec_mode_string = follow_exec_mode_same;
791static void
792show_follow_exec_mode_string (struct ui_file *file, int from_tty,
793 struct cmd_list_element *c, const char *value)
794{
795 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
796}
797
1777feb0 798/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 799
c906108c 800static void
3a3e9ee3 801follow_exec (ptid_t pid, char *execd_pathname)
c906108c 802{
4e1c45ea 803 struct thread_info *th = inferior_thread ();
6c95b8df 804 struct inferior *inf = current_inferior ();
7a292a7a 805
c906108c
SS
806 /* This is an exec event that we actually wish to pay attention to.
807 Refresh our symbol table to the newly exec'd program, remove any
808 momentary bp's, etc.
809
810 If there are breakpoints, they aren't really inserted now,
811 since the exec() transformed our inferior into a fresh set
812 of instructions.
813
814 We want to preserve symbolic breakpoints on the list, since
815 we have hopes that they can be reset after the new a.out's
816 symbol table is read.
817
818 However, any "raw" breakpoints must be removed from the list
819 (e.g., the solib bp's), since their address is probably invalid
820 now.
821
822 And, we DON'T want to call delete_breakpoints() here, since
823 that may write the bp's "shadow contents" (the instruction
824 value that was overwritten witha TRAP instruction). Since
1777feb0 825 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
826
827 mark_breakpoints_out ();
828
c906108c
SS
829 update_breakpoints_after_exec ();
830
831 /* If there was one, it's gone now. We cannot truly step-to-next
1777feb0 832 statement through an exec(). */
8358c15c 833 th->control.step_resume_breakpoint = NULL;
186c406b 834 th->control.exception_resume_breakpoint = NULL;
16c381f0
JK
835 th->control.step_range_start = 0;
836 th->control.step_range_end = 0;
c906108c 837
a75724bc
PA
838 /* The target reports the exec event to the main thread, even if
839 some other thread does the exec, and even if the main thread was
840 already stopped --- if debugging in non-stop mode, it's possible
841 the user had the main thread held stopped in the previous image
842 --- release it now. This is the same behavior as step-over-exec
843 with scheduler-locking on in all-stop mode. */
844 th->stop_requested = 0;
845
1777feb0 846 /* What is this a.out's name? */
6c95b8df
PA
847 printf_unfiltered (_("%s is executing new program: %s\n"),
848 target_pid_to_str (inferior_ptid),
849 execd_pathname);
c906108c
SS
850
851 /* We've followed the inferior through an exec. Therefore, the
1777feb0 852 inferior has essentially been killed & reborn. */
7a292a7a 853
c906108c 854 gdb_flush (gdb_stdout);
6ca15a4b
PA
855
856 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
857
858 if (gdb_sysroot && *gdb_sysroot)
859 {
860 char *name = alloca (strlen (gdb_sysroot)
861 + strlen (execd_pathname)
862 + 1);
abbb1732 863
e85a822c
DJ
864 strcpy (name, gdb_sysroot);
865 strcat (name, execd_pathname);
866 execd_pathname = name;
867 }
c906108c 868
cce9b6bf
PA
869 /* Reset the shared library package. This ensures that we get a
870 shlib event when the child reaches "_start", at which point the
871 dld will have had a chance to initialize the child. */
872 /* Also, loading a symbol file below may trigger symbol lookups, and
873 we don't want those to be satisfied by the libraries of the
874 previous incarnation of this process. */
875 no_shared_libraries (NULL, 0);
876
6c95b8df
PA
877 if (follow_exec_mode_string == follow_exec_mode_new)
878 {
879 struct program_space *pspace;
6c95b8df
PA
880
881 /* The user wants to keep the old inferior and program spaces
882 around. Create a new fresh one, and switch to it. */
883
884 inf = add_inferior (current_inferior ()->pid);
885 pspace = add_program_space (maybe_new_address_space ());
886 inf->pspace = pspace;
887 inf->aspace = pspace->aspace;
888
889 exit_inferior_num_silent (current_inferior ()->num);
890
891 set_current_inferior (inf);
892 set_current_program_space (pspace);
893 }
894
895 gdb_assert (current_program_space == inf->pspace);
896
1777feb0 897 /* That a.out is now the one to use. */
6c95b8df
PA
898 exec_file_attach (execd_pathname, 0);
899
c1e56572
JK
900 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
901 (Position Independent Executable) main symbol file will get applied by
902 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
903 the breakpoints with the zero displacement. */
904
905 symbol_file_add (execd_pathname, SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET,
906 NULL, 0);
907
908 set_initial_language ();
c906108c 909
7a292a7a 910#ifdef SOLIB_CREATE_INFERIOR_HOOK
39f77062 911 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
a77053c2 912#else
268a4a75 913 solib_create_inferior_hook (0);
7a292a7a 914#endif
c906108c 915
4efc6507
DE
916 jit_inferior_created_hook ();
917
c1e56572
JK
918 breakpoint_re_set ();
919
c906108c
SS
920 /* Reinsert all breakpoints. (Those which were symbolic have
921 been reset to the proper address in the new a.out, thanks
1777feb0 922 to symbol_file_command...). */
c906108c
SS
923 insert_breakpoints ();
924
925 /* The next resume of this inferior should bring it to the shlib
926 startup breakpoints. (If the user had also set bp's on
927 "main" from the old (parent) process, then they'll auto-
1777feb0 928 matically get reset there in the new process.). */
c906108c
SS
929}
930
931/* Non-zero if we just simulating a single-step. This is needed
932 because we cannot remove the breakpoints in the inferior process
933 until after the `wait' in `wait_for_inferior'. */
934static int singlestep_breakpoints_inserted_p = 0;
9f976b41
DJ
935
936/* The thread we inserted single-step breakpoints for. */
937static ptid_t singlestep_ptid;
938
fd48f117
DJ
939/* PC when we started this single-step. */
940static CORE_ADDR singlestep_pc;
941
9f976b41
DJ
942/* If another thread hit the singlestep breakpoint, we save the original
943 thread here so that we can resume single-stepping it later. */
944static ptid_t saved_singlestep_ptid;
945static int stepping_past_singlestep_breakpoint;
6a6b96b9 946
ca67fcb8
VP
947/* If not equal to null_ptid, this means that after stepping over breakpoint
948 is finished, we need to switch to deferred_step_ptid, and step it.
949
950 The use case is when one thread has hit a breakpoint, and then the user
1777feb0 951 has switched to another thread and issued 'step'. We need to step over
ca67fcb8
VP
952 breakpoint in the thread which hit the breakpoint, but then continue
953 stepping the thread user has selected. */
954static ptid_t deferred_step_ptid;
c906108c 955\f
237fc4c9
PA
956/* Displaced stepping. */
957
958/* In non-stop debugging mode, we must take special care to manage
959 breakpoints properly; in particular, the traditional strategy for
960 stepping a thread past a breakpoint it has hit is unsuitable.
961 'Displaced stepping' is a tactic for stepping one thread past a
962 breakpoint it has hit while ensuring that other threads running
963 concurrently will hit the breakpoint as they should.
964
965 The traditional way to step a thread T off a breakpoint in a
966 multi-threaded program in all-stop mode is as follows:
967
968 a0) Initially, all threads are stopped, and breakpoints are not
969 inserted.
970 a1) We single-step T, leaving breakpoints uninserted.
971 a2) We insert breakpoints, and resume all threads.
972
973 In non-stop debugging, however, this strategy is unsuitable: we
974 don't want to have to stop all threads in the system in order to
975 continue or step T past a breakpoint. Instead, we use displaced
976 stepping:
977
978 n0) Initially, T is stopped, other threads are running, and
979 breakpoints are inserted.
980 n1) We copy the instruction "under" the breakpoint to a separate
981 location, outside the main code stream, making any adjustments
982 to the instruction, register, and memory state as directed by
983 T's architecture.
984 n2) We single-step T over the instruction at its new location.
985 n3) We adjust the resulting register and memory state as directed
986 by T's architecture. This includes resetting T's PC to point
987 back into the main instruction stream.
988 n4) We resume T.
989
990 This approach depends on the following gdbarch methods:
991
992 - gdbarch_max_insn_length and gdbarch_displaced_step_location
993 indicate where to copy the instruction, and how much space must
994 be reserved there. We use these in step n1.
995
996 - gdbarch_displaced_step_copy_insn copies a instruction to a new
997 address, and makes any necessary adjustments to the instruction,
998 register contents, and memory. We use this in step n1.
999
1000 - gdbarch_displaced_step_fixup adjusts registers and memory after
1001 we have successfuly single-stepped the instruction, to yield the
1002 same effect the instruction would have had if we had executed it
1003 at its original address. We use this in step n3.
1004
1005 - gdbarch_displaced_step_free_closure provides cleanup.
1006
1007 The gdbarch_displaced_step_copy_insn and
1008 gdbarch_displaced_step_fixup functions must be written so that
1009 copying an instruction with gdbarch_displaced_step_copy_insn,
1010 single-stepping across the copied instruction, and then applying
1011 gdbarch_displaced_insn_fixup should have the same effects on the
1012 thread's memory and registers as stepping the instruction in place
1013 would have. Exactly which responsibilities fall to the copy and
1014 which fall to the fixup is up to the author of those functions.
1015
1016 See the comments in gdbarch.sh for details.
1017
1018 Note that displaced stepping and software single-step cannot
1019 currently be used in combination, although with some care I think
1020 they could be made to. Software single-step works by placing
1021 breakpoints on all possible subsequent instructions; if the
1022 displaced instruction is a PC-relative jump, those breakpoints
1023 could fall in very strange places --- on pages that aren't
1024 executable, or at addresses that are not proper instruction
1025 boundaries. (We do generally let other threads run while we wait
1026 to hit the software single-step breakpoint, and they might
1027 encounter such a corrupted instruction.) One way to work around
1028 this would be to have gdbarch_displaced_step_copy_insn fully
1029 simulate the effect of PC-relative instructions (and return NULL)
1030 on architectures that use software single-stepping.
1031
1032 In non-stop mode, we can have independent and simultaneous step
1033 requests, so more than one thread may need to simultaneously step
1034 over a breakpoint. The current implementation assumes there is
1035 only one scratch space per process. In this case, we have to
1036 serialize access to the scratch space. If thread A wants to step
1037 over a breakpoint, but we are currently waiting for some other
1038 thread to complete a displaced step, we leave thread A stopped and
1039 place it in the displaced_step_request_queue. Whenever a displaced
1040 step finishes, we pick the next thread in the queue and start a new
1041 displaced step operation on it. See displaced_step_prepare and
1042 displaced_step_fixup for details. */
1043
237fc4c9
PA
1044struct displaced_step_request
1045{
1046 ptid_t ptid;
1047 struct displaced_step_request *next;
1048};
1049
fc1cf338
PA
1050/* Per-inferior displaced stepping state. */
1051struct displaced_step_inferior_state
1052{
1053 /* Pointer to next in linked list. */
1054 struct displaced_step_inferior_state *next;
1055
1056 /* The process this displaced step state refers to. */
1057 int pid;
1058
1059 /* A queue of pending displaced stepping requests. One entry per
1060 thread that needs to do a displaced step. */
1061 struct displaced_step_request *step_request_queue;
1062
1063 /* If this is not null_ptid, this is the thread carrying out a
1064 displaced single-step in process PID. This thread's state will
1065 require fixing up once it has completed its step. */
1066 ptid_t step_ptid;
1067
1068 /* The architecture the thread had when we stepped it. */
1069 struct gdbarch *step_gdbarch;
1070
1071 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1072 for post-step cleanup. */
1073 struct displaced_step_closure *step_closure;
1074
1075 /* The address of the original instruction, and the copy we
1076 made. */
1077 CORE_ADDR step_original, step_copy;
1078
1079 /* Saved contents of copy area. */
1080 gdb_byte *step_saved_copy;
1081};
1082
1083/* The list of states of processes involved in displaced stepping
1084 presently. */
1085static struct displaced_step_inferior_state *displaced_step_inferior_states;
1086
1087/* Get the displaced stepping state of process PID. */
1088
1089static struct displaced_step_inferior_state *
1090get_displaced_stepping_state (int pid)
1091{
1092 struct displaced_step_inferior_state *state;
1093
1094 for (state = displaced_step_inferior_states;
1095 state != NULL;
1096 state = state->next)
1097 if (state->pid == pid)
1098 return state;
1099
1100 return NULL;
1101}
1102
1103/* Add a new displaced stepping state for process PID to the displaced
1104 stepping state list, or return a pointer to an already existing
1105 entry, if it already exists. Never returns NULL. */
1106
1107static struct displaced_step_inferior_state *
1108add_displaced_stepping_state (int pid)
1109{
1110 struct displaced_step_inferior_state *state;
1111
1112 for (state = displaced_step_inferior_states;
1113 state != NULL;
1114 state = state->next)
1115 if (state->pid == pid)
1116 return state;
237fc4c9 1117
fc1cf338
PA
1118 state = xcalloc (1, sizeof (*state));
1119 state->pid = pid;
1120 state->next = displaced_step_inferior_states;
1121 displaced_step_inferior_states = state;
237fc4c9 1122
fc1cf338
PA
1123 return state;
1124}
1125
a42244db
YQ
1126/* If inferior is in displaced stepping, and ADDR equals to starting address
1127 of copy area, return corresponding displaced_step_closure. Otherwise,
1128 return NULL. */
1129
1130struct displaced_step_closure*
1131get_displaced_step_closure_by_addr (CORE_ADDR addr)
1132{
1133 struct displaced_step_inferior_state *displaced
1134 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1135
1136 /* If checking the mode of displaced instruction in copy area. */
1137 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1138 && (displaced->step_copy == addr))
1139 return displaced->step_closure;
1140
1141 return NULL;
1142}
1143
fc1cf338 1144/* Remove the displaced stepping state of process PID. */
237fc4c9 1145
fc1cf338
PA
1146static void
1147remove_displaced_stepping_state (int pid)
1148{
1149 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1150
fc1cf338
PA
1151 gdb_assert (pid != 0);
1152
1153 it = displaced_step_inferior_states;
1154 prev_next_p = &displaced_step_inferior_states;
1155 while (it)
1156 {
1157 if (it->pid == pid)
1158 {
1159 *prev_next_p = it->next;
1160 xfree (it);
1161 return;
1162 }
1163
1164 prev_next_p = &it->next;
1165 it = *prev_next_p;
1166 }
1167}
1168
1169static void
1170infrun_inferior_exit (struct inferior *inf)
1171{
1172 remove_displaced_stepping_state (inf->pid);
1173}
237fc4c9 1174
fff08868
HZ
1175/* Enum strings for "set|show displaced-stepping". */
1176
1177static const char can_use_displaced_stepping_auto[] = "auto";
1178static const char can_use_displaced_stepping_on[] = "on";
1179static const char can_use_displaced_stepping_off[] = "off";
1180static const char *can_use_displaced_stepping_enum[] =
1181{
1182 can_use_displaced_stepping_auto,
1183 can_use_displaced_stepping_on,
1184 can_use_displaced_stepping_off,
1185 NULL,
1186};
1187
1188/* If ON, and the architecture supports it, GDB will use displaced
1189 stepping to step over breakpoints. If OFF, or if the architecture
1190 doesn't support it, GDB will instead use the traditional
1191 hold-and-step approach. If AUTO (which is the default), GDB will
1192 decide which technique to use to step over breakpoints depending on
1193 which of all-stop or non-stop mode is active --- displaced stepping
1194 in non-stop mode; hold-and-step in all-stop mode. */
1195
1196static const char *can_use_displaced_stepping =
1197 can_use_displaced_stepping_auto;
1198
237fc4c9
PA
1199static void
1200show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1201 struct cmd_list_element *c,
1202 const char *value)
1203{
fff08868 1204 if (can_use_displaced_stepping == can_use_displaced_stepping_auto)
3e43a32a
MS
1205 fprintf_filtered (file,
1206 _("Debugger's willingness to use displaced stepping "
1207 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1208 value, non_stop ? "on" : "off");
1209 else
3e43a32a
MS
1210 fprintf_filtered (file,
1211 _("Debugger's willingness to use displaced stepping "
1212 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1213}
1214
fff08868
HZ
1215/* Return non-zero if displaced stepping can/should be used to step
1216 over breakpoints. */
1217
237fc4c9
PA
1218static int
1219use_displaced_stepping (struct gdbarch *gdbarch)
1220{
fff08868
HZ
1221 return (((can_use_displaced_stepping == can_use_displaced_stepping_auto
1222 && non_stop)
1223 || can_use_displaced_stepping == can_use_displaced_stepping_on)
96429cc8
HZ
1224 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1225 && !RECORD_IS_USED);
237fc4c9
PA
1226}
1227
1228/* Clean out any stray displaced stepping state. */
1229static void
fc1cf338 1230displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1231{
1232 /* Indicate that there is no cleanup pending. */
fc1cf338 1233 displaced->step_ptid = null_ptid;
237fc4c9 1234
fc1cf338 1235 if (displaced->step_closure)
237fc4c9 1236 {
fc1cf338
PA
1237 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1238 displaced->step_closure);
1239 displaced->step_closure = NULL;
237fc4c9
PA
1240 }
1241}
1242
1243static void
fc1cf338 1244displaced_step_clear_cleanup (void *arg)
237fc4c9 1245{
fc1cf338
PA
1246 struct displaced_step_inferior_state *state = arg;
1247
1248 displaced_step_clear (state);
237fc4c9
PA
1249}
1250
1251/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1252void
1253displaced_step_dump_bytes (struct ui_file *file,
1254 const gdb_byte *buf,
1255 size_t len)
1256{
1257 int i;
1258
1259 for (i = 0; i < len; i++)
1260 fprintf_unfiltered (file, "%02x ", buf[i]);
1261 fputs_unfiltered ("\n", file);
1262}
1263
1264/* Prepare to single-step, using displaced stepping.
1265
1266 Note that we cannot use displaced stepping when we have a signal to
1267 deliver. If we have a signal to deliver and an instruction to step
1268 over, then after the step, there will be no indication from the
1269 target whether the thread entered a signal handler or ignored the
1270 signal and stepped over the instruction successfully --- both cases
1271 result in a simple SIGTRAP. In the first case we mustn't do a
1272 fixup, and in the second case we must --- but we can't tell which.
1273 Comments in the code for 'random signals' in handle_inferior_event
1274 explain how we handle this case instead.
1275
1276 Returns 1 if preparing was successful -- this thread is going to be
1277 stepped now; or 0 if displaced stepping this thread got queued. */
1278static int
1279displaced_step_prepare (ptid_t ptid)
1280{
ad53cd71 1281 struct cleanup *old_cleanups, *ignore_cleanups;
237fc4c9
PA
1282 struct regcache *regcache = get_thread_regcache (ptid);
1283 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1284 CORE_ADDR original, copy;
1285 ULONGEST len;
1286 struct displaced_step_closure *closure;
fc1cf338 1287 struct displaced_step_inferior_state *displaced;
237fc4c9
PA
1288
1289 /* We should never reach this function if the architecture does not
1290 support displaced stepping. */
1291 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1292
fc1cf338
PA
1293 /* We have to displaced step one thread at a time, as we only have
1294 access to a single scratch space per inferior. */
237fc4c9 1295
fc1cf338
PA
1296 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1297
1298 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1299 {
1300 /* Already waiting for a displaced step to finish. Defer this
1301 request and place in queue. */
1302 struct displaced_step_request *req, *new_req;
1303
1304 if (debug_displaced)
1305 fprintf_unfiltered (gdb_stdlog,
1306 "displaced: defering step of %s\n",
1307 target_pid_to_str (ptid));
1308
1309 new_req = xmalloc (sizeof (*new_req));
1310 new_req->ptid = ptid;
1311 new_req->next = NULL;
1312
fc1cf338 1313 if (displaced->step_request_queue)
237fc4c9 1314 {
fc1cf338 1315 for (req = displaced->step_request_queue;
237fc4c9
PA
1316 req && req->next;
1317 req = req->next)
1318 ;
1319 req->next = new_req;
1320 }
1321 else
fc1cf338 1322 displaced->step_request_queue = new_req;
237fc4c9
PA
1323
1324 return 0;
1325 }
1326 else
1327 {
1328 if (debug_displaced)
1329 fprintf_unfiltered (gdb_stdlog,
1330 "displaced: stepping %s now\n",
1331 target_pid_to_str (ptid));
1332 }
1333
fc1cf338 1334 displaced_step_clear (displaced);
237fc4c9 1335
ad53cd71
PA
1336 old_cleanups = save_inferior_ptid ();
1337 inferior_ptid = ptid;
1338
515630c5 1339 original = regcache_read_pc (regcache);
237fc4c9
PA
1340
1341 copy = gdbarch_displaced_step_location (gdbarch);
1342 len = gdbarch_max_insn_length (gdbarch);
1343
1344 /* Save the original contents of the copy area. */
fc1cf338 1345 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1346 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338
PA
1347 &displaced->step_saved_copy);
1348 read_memory (copy, displaced->step_saved_copy, len);
237fc4c9
PA
1349 if (debug_displaced)
1350 {
5af949e3
UW
1351 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1352 paddress (gdbarch, copy));
fc1cf338
PA
1353 displaced_step_dump_bytes (gdb_stdlog,
1354 displaced->step_saved_copy,
1355 len);
237fc4c9
PA
1356 };
1357
1358 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1359 original, copy, regcache);
237fc4c9
PA
1360
1361 /* We don't support the fully-simulated case at present. */
1362 gdb_assert (closure);
1363
9f5a595d
UW
1364 /* Save the information we need to fix things up if the step
1365 succeeds. */
fc1cf338
PA
1366 displaced->step_ptid = ptid;
1367 displaced->step_gdbarch = gdbarch;
1368 displaced->step_closure = closure;
1369 displaced->step_original = original;
1370 displaced->step_copy = copy;
9f5a595d 1371
fc1cf338 1372 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1373
1374 /* Resume execution at the copy. */
515630c5 1375 regcache_write_pc (regcache, copy);
237fc4c9 1376
ad53cd71
PA
1377 discard_cleanups (ignore_cleanups);
1378
1379 do_cleanups (old_cleanups);
237fc4c9
PA
1380
1381 if (debug_displaced)
5af949e3
UW
1382 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1383 paddress (gdbarch, copy));
237fc4c9 1384
237fc4c9
PA
1385 return 1;
1386}
1387
237fc4c9 1388static void
3e43a32a
MS
1389write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1390 const gdb_byte *myaddr, int len)
237fc4c9
PA
1391{
1392 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1393
237fc4c9
PA
1394 inferior_ptid = ptid;
1395 write_memory (memaddr, myaddr, len);
1396 do_cleanups (ptid_cleanup);
1397}
1398
e2d96639
YQ
1399/* Restore the contents of the copy area for thread PTID. */
1400
1401static void
1402displaced_step_restore (struct displaced_step_inferior_state *displaced,
1403 ptid_t ptid)
1404{
1405 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1406
1407 write_memory_ptid (ptid, displaced->step_copy,
1408 displaced->step_saved_copy, len);
1409 if (debug_displaced)
1410 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1411 target_pid_to_str (ptid),
1412 paddress (displaced->step_gdbarch,
1413 displaced->step_copy));
1414}
1415
237fc4c9
PA
1416static void
1417displaced_step_fixup (ptid_t event_ptid, enum target_signal signal)
1418{
1419 struct cleanup *old_cleanups;
fc1cf338
PA
1420 struct displaced_step_inferior_state *displaced
1421 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1422
1423 /* Was any thread of this process doing a displaced step? */
1424 if (displaced == NULL)
1425 return;
237fc4c9
PA
1426
1427 /* Was this event for the pid we displaced? */
fc1cf338
PA
1428 if (ptid_equal (displaced->step_ptid, null_ptid)
1429 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1430 return;
1431
fc1cf338 1432 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1433
e2d96639 1434 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1435
1436 /* Did the instruction complete successfully? */
1437 if (signal == TARGET_SIGNAL_TRAP)
1438 {
1439 /* Fix up the resulting state. */
fc1cf338
PA
1440 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1441 displaced->step_closure,
1442 displaced->step_original,
1443 displaced->step_copy,
1444 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1445 }
1446 else
1447 {
1448 /* Since the instruction didn't complete, all we can do is
1449 relocate the PC. */
515630c5
UW
1450 struct regcache *regcache = get_thread_regcache (event_ptid);
1451 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1452
fc1cf338 1453 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1454 regcache_write_pc (regcache, pc);
237fc4c9
PA
1455 }
1456
1457 do_cleanups (old_cleanups);
1458
fc1cf338 1459 displaced->step_ptid = null_ptid;
1c5cfe86 1460
237fc4c9 1461 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1462 one now. Leave the state object around, since we're likely to
1463 need it again soon. */
1464 while (displaced->step_request_queue)
237fc4c9
PA
1465 {
1466 struct displaced_step_request *head;
1467 ptid_t ptid;
5af949e3 1468 struct regcache *regcache;
929dfd4f 1469 struct gdbarch *gdbarch;
1c5cfe86 1470 CORE_ADDR actual_pc;
6c95b8df 1471 struct address_space *aspace;
237fc4c9 1472
fc1cf338 1473 head = displaced->step_request_queue;
237fc4c9 1474 ptid = head->ptid;
fc1cf338 1475 displaced->step_request_queue = head->next;
237fc4c9
PA
1476 xfree (head);
1477
ad53cd71
PA
1478 context_switch (ptid);
1479
5af949e3
UW
1480 regcache = get_thread_regcache (ptid);
1481 actual_pc = regcache_read_pc (regcache);
6c95b8df 1482 aspace = get_regcache_aspace (regcache);
1c5cfe86 1483
6c95b8df 1484 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1485 {
1c5cfe86
PA
1486 if (debug_displaced)
1487 fprintf_unfiltered (gdb_stdlog,
1488 "displaced: stepping queued %s now\n",
1489 target_pid_to_str (ptid));
1490
1491 displaced_step_prepare (ptid);
1492
929dfd4f
JB
1493 gdbarch = get_regcache_arch (regcache);
1494
1c5cfe86
PA
1495 if (debug_displaced)
1496 {
929dfd4f 1497 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1498 gdb_byte buf[4];
1499
5af949e3
UW
1500 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1501 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1502 read_memory (actual_pc, buf, sizeof (buf));
1503 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1504 }
1505
fc1cf338
PA
1506 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1507 displaced->step_closure))
929dfd4f 1508 target_resume (ptid, 1, TARGET_SIGNAL_0);
99e40580
UW
1509 else
1510 target_resume (ptid, 0, TARGET_SIGNAL_0);
1c5cfe86
PA
1511
1512 /* Done, we're stepping a thread. */
1513 break;
ad53cd71 1514 }
1c5cfe86
PA
1515 else
1516 {
1517 int step;
1518 struct thread_info *tp = inferior_thread ();
1519
1520 /* The breakpoint we were sitting under has since been
1521 removed. */
16c381f0 1522 tp->control.trap_expected = 0;
1c5cfe86
PA
1523
1524 /* Go back to what we were trying to do. */
1525 step = currently_stepping (tp);
ad53cd71 1526
1c5cfe86 1527 if (debug_displaced)
3e43a32a
MS
1528 fprintf_unfiltered (gdb_stdlog,
1529 "breakpoint is gone %s: step(%d)\n",
1c5cfe86
PA
1530 target_pid_to_str (tp->ptid), step);
1531
1532 target_resume (ptid, step, TARGET_SIGNAL_0);
16c381f0 1533 tp->suspend.stop_signal = TARGET_SIGNAL_0;
1c5cfe86
PA
1534
1535 /* This request was discarded. See if there's any other
1536 thread waiting for its turn. */
1537 }
237fc4c9
PA
1538 }
1539}
1540
5231c1fd
PA
1541/* Update global variables holding ptids to hold NEW_PTID if they were
1542 holding OLD_PTID. */
1543static void
1544infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1545{
1546 struct displaced_step_request *it;
fc1cf338 1547 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1548
1549 if (ptid_equal (inferior_ptid, old_ptid))
1550 inferior_ptid = new_ptid;
1551
1552 if (ptid_equal (singlestep_ptid, old_ptid))
1553 singlestep_ptid = new_ptid;
1554
5231c1fd
PA
1555 if (ptid_equal (deferred_step_ptid, old_ptid))
1556 deferred_step_ptid = new_ptid;
1557
fc1cf338
PA
1558 for (displaced = displaced_step_inferior_states;
1559 displaced;
1560 displaced = displaced->next)
1561 {
1562 if (ptid_equal (displaced->step_ptid, old_ptid))
1563 displaced->step_ptid = new_ptid;
1564
1565 for (it = displaced->step_request_queue; it; it = it->next)
1566 if (ptid_equal (it->ptid, old_ptid))
1567 it->ptid = new_ptid;
1568 }
5231c1fd
PA
1569}
1570
237fc4c9
PA
1571\f
1572/* Resuming. */
c906108c
SS
1573
1574/* Things to clean up if we QUIT out of resume (). */
c906108c 1575static void
74b7792f 1576resume_cleanups (void *ignore)
c906108c
SS
1577{
1578 normal_stop ();
1579}
1580
53904c9e
AC
1581static const char schedlock_off[] = "off";
1582static const char schedlock_on[] = "on";
1583static const char schedlock_step[] = "step";
488f131b 1584static const char *scheduler_enums[] = {
ef346e04
AC
1585 schedlock_off,
1586 schedlock_on,
1587 schedlock_step,
1588 NULL
1589};
920d2a44
AC
1590static const char *scheduler_mode = schedlock_off;
1591static void
1592show_scheduler_mode (struct ui_file *file, int from_tty,
1593 struct cmd_list_element *c, const char *value)
1594{
3e43a32a
MS
1595 fprintf_filtered (file,
1596 _("Mode for locking scheduler "
1597 "during execution is \"%s\".\n"),
920d2a44
AC
1598 value);
1599}
c906108c
SS
1600
1601static void
96baa820 1602set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1603{
eefe576e
AC
1604 if (!target_can_lock_scheduler)
1605 {
1606 scheduler_mode = schedlock_off;
1607 error (_("Target '%s' cannot support this command."), target_shortname);
1608 }
c906108c
SS
1609}
1610
d4db2f36
PA
1611/* True if execution commands resume all threads of all processes by
1612 default; otherwise, resume only threads of the current inferior
1613 process. */
1614int sched_multi = 0;
1615
2facfe5c
DD
1616/* Try to setup for software single stepping over the specified location.
1617 Return 1 if target_resume() should use hardware single step.
1618
1619 GDBARCH the current gdbarch.
1620 PC the location to step over. */
1621
1622static int
1623maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1624{
1625 int hw_step = 1;
1626
f02253f1
HZ
1627 if (execution_direction == EXEC_FORWARD
1628 && gdbarch_software_single_step_p (gdbarch)
99e40580 1629 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1630 {
99e40580
UW
1631 hw_step = 0;
1632 /* Do not pull these breakpoints until after a `wait' in
1777feb0 1633 `wait_for_inferior'. */
99e40580
UW
1634 singlestep_breakpoints_inserted_p = 1;
1635 singlestep_ptid = inferior_ptid;
1636 singlestep_pc = pc;
2facfe5c
DD
1637 }
1638 return hw_step;
1639}
c906108c 1640
09cee04b
PA
1641/* Return a ptid representing the set of threads that we will proceed,
1642 in the perspective of the user/frontend. We may actually resume
1643 fewer threads at first, e.g., if a thread is stopped at a
b136cd05
PA
1644 breakpoint that needs stepping-off, but that should not be visible
1645 to the user/frontend, and neither should the frontend/user be
1646 allowed to proceed any of the threads that happen to be stopped for
09cee04b
PA
1647 internal run control handling, if a previous command wanted them
1648 resumed. */
1649
1650ptid_t
1651user_visible_resume_ptid (int step)
1652{
1653 /* By default, resume all threads of all processes. */
1654 ptid_t resume_ptid = RESUME_ALL;
1655
1656 /* Maybe resume only all threads of the current process. */
1657 if (!sched_multi && target_supports_multi_process ())
1658 {
1659 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1660 }
1661
1662 /* Maybe resume a single thread after all. */
1663 if (non_stop)
1664 {
1665 /* With non-stop mode on, threads are always handled
1666 individually. */
1667 resume_ptid = inferior_ptid;
1668 }
1669 else if ((scheduler_mode == schedlock_on)
1670 || (scheduler_mode == schedlock_step
1671 && (step || singlestep_breakpoints_inserted_p)))
1672 {
1673 /* User-settable 'scheduler' mode requires solo thread resume. */
1674 resume_ptid = inferior_ptid;
1675 }
1676
1677 return resume_ptid;
1678}
1679
c906108c
SS
1680/* Resume the inferior, but allow a QUIT. This is useful if the user
1681 wants to interrupt some lengthy single-stepping operation
1682 (for child processes, the SIGINT goes to the inferior, and so
1683 we get a SIGINT random_signal, but for remote debugging and perhaps
1684 other targets, that's not true).
1685
1686 STEP nonzero if we should step (zero to continue instead).
1687 SIG is the signal to give the inferior (zero for none). */
1688void
96baa820 1689resume (int step, enum target_signal sig)
c906108c
SS
1690{
1691 int should_resume = 1;
74b7792f 1692 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
1693 struct regcache *regcache = get_current_regcache ();
1694 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 1695 struct thread_info *tp = inferior_thread ();
515630c5 1696 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 1697 struct address_space *aspace = get_regcache_aspace (regcache);
c7e8a53c 1698
c906108c
SS
1699 QUIT;
1700
74609e71
YQ
1701 if (current_inferior ()->waiting_for_vfork_done)
1702 {
48f9886d
PA
1703 /* Don't try to single-step a vfork parent that is waiting for
1704 the child to get out of the shared memory region (by exec'ing
1705 or exiting). This is particularly important on software
1706 single-step archs, as the child process would trip on the
1707 software single step breakpoint inserted for the parent
1708 process. Since the parent will not actually execute any
1709 instruction until the child is out of the shared region (such
1710 are vfork's semantics), it is safe to simply continue it.
1711 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1712 the parent, and tell it to `keep_going', which automatically
1713 re-sets it stepping. */
74609e71
YQ
1714 if (debug_infrun)
1715 fprintf_unfiltered (gdb_stdlog,
1716 "infrun: resume : clear step\n");
1717 step = 0;
1718 }
1719
527159b7 1720 if (debug_infrun)
237fc4c9
PA
1721 fprintf_unfiltered (gdb_stdlog,
1722 "infrun: resume (step=%d, signal=%d), "
0d9a9a5f
PA
1723 "trap_expected=%d, current thread [%s] at %s\n",
1724 step, sig, tp->control.trap_expected,
1725 target_pid_to_str (inferior_ptid),
1726 paddress (gdbarch, pc));
c906108c 1727
c2c6d25f
JM
1728 /* Normally, by the time we reach `resume', the breakpoints are either
1729 removed or inserted, as appropriate. The exception is if we're sitting
1730 at a permanent breakpoint; we need to step over it, but permanent
1731 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 1732 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 1733 {
515630c5
UW
1734 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1735 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
6d350bb5 1736 else
ac74f770
MS
1737 error (_("\
1738The program is stopped at a permanent breakpoint, but GDB does not know\n\
1739how to step past a permanent breakpoint on this architecture. Try using\n\
1740a command like `return' or `jump' to continue execution."));
6d350bb5 1741 }
c2c6d25f 1742
237fc4c9
PA
1743 /* If enabled, step over breakpoints by executing a copy of the
1744 instruction at a different address.
1745
1746 We can't use displaced stepping when we have a signal to deliver;
1747 the comments for displaced_step_prepare explain why. The
1748 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
1749 signals' explain what we do instead.
1750
1751 We can't use displaced stepping when we are waiting for vfork_done
1752 event, displaced stepping breaks the vfork child similarly as single
1753 step software breakpoint. */
515630c5 1754 if (use_displaced_stepping (gdbarch)
16c381f0 1755 && (tp->control.trap_expected
929dfd4f 1756 || (step && gdbarch_software_single_step_p (gdbarch)))
74609e71
YQ
1757 && sig == TARGET_SIGNAL_0
1758 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 1759 {
fc1cf338
PA
1760 struct displaced_step_inferior_state *displaced;
1761
237fc4c9 1762 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
1763 {
1764 /* Got placed in displaced stepping queue. Will be resumed
1765 later when all the currently queued displaced stepping
7f7efbd9
VP
1766 requests finish. The thread is not executing at this point,
1767 and the call to set_executing will be made later. But we
1768 need to call set_running here, since from frontend point of view,
1769 the thread is running. */
1770 set_running (inferior_ptid, 1);
d56b7306
VP
1771 discard_cleanups (old_cleanups);
1772 return;
1773 }
99e40580 1774
fc1cf338
PA
1775 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1776 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1777 displaced->step_closure);
237fc4c9
PA
1778 }
1779
2facfe5c 1780 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 1781 else if (step)
2facfe5c 1782 step = maybe_software_singlestep (gdbarch, pc);
c906108c 1783
30852783
UW
1784 /* Currently, our software single-step implementation leads to different
1785 results than hardware single-stepping in one situation: when stepping
1786 into delivering a signal which has an associated signal handler,
1787 hardware single-step will stop at the first instruction of the handler,
1788 while software single-step will simply skip execution of the handler.
1789
1790 For now, this difference in behavior is accepted since there is no
1791 easy way to actually implement single-stepping into a signal handler
1792 without kernel support.
1793
1794 However, there is one scenario where this difference leads to follow-on
1795 problems: if we're stepping off a breakpoint by removing all breakpoints
1796 and then single-stepping. In this case, the software single-step
1797 behavior means that even if there is a *breakpoint* in the signal
1798 handler, GDB still would not stop.
1799
1800 Fortunately, we can at least fix this particular issue. We detect
1801 here the case where we are about to deliver a signal while software
1802 single-stepping with breakpoints removed. In this situation, we
1803 revert the decisions to remove all breakpoints and insert single-
1804 step breakpoints, and instead we install a step-resume breakpoint
1805 at the current address, deliver the signal without stepping, and
1806 once we arrive back at the step-resume breakpoint, actually step
1807 over the breakpoint we originally wanted to step over. */
1808 if (singlestep_breakpoints_inserted_p
1809 && tp->control.trap_expected && sig != TARGET_SIGNAL_0)
1810 {
1811 /* If we have nested signals or a pending signal is delivered
1812 immediately after a handler returns, might might already have
1813 a step-resume breakpoint set on the earlier handler. We cannot
1814 set another step-resume breakpoint; just continue on until the
1815 original breakpoint is hit. */
1816 if (tp->control.step_resume_breakpoint == NULL)
1817 {
2c03e5be 1818 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
1819 tp->step_after_step_resume_breakpoint = 1;
1820 }
1821
1822 remove_single_step_breakpoints ();
1823 singlestep_breakpoints_inserted_p = 0;
1824
1825 insert_breakpoints ();
1826 tp->control.trap_expected = 0;
1827 }
1828
c906108c
SS
1829 if (should_resume)
1830 {
39f77062 1831 ptid_t resume_ptid;
dfcd3bfb 1832
cd76b0b7
VP
1833 /* If STEP is set, it's a request to use hardware stepping
1834 facilities. But in that case, we should never
1835 use singlestep breakpoint. */
1836 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1837
d4db2f36
PA
1838 /* Decide the set of threads to ask the target to resume. Start
1839 by assuming everything will be resumed, than narrow the set
1840 by applying increasingly restricting conditions. */
09cee04b 1841 resume_ptid = user_visible_resume_ptid (step);
d4db2f36
PA
1842
1843 /* Maybe resume a single thread after all. */
cd76b0b7
VP
1844 if (singlestep_breakpoints_inserted_p
1845 && stepping_past_singlestep_breakpoint)
c906108c 1846 {
cd76b0b7
VP
1847 /* The situation here is as follows. In thread T1 we wanted to
1848 single-step. Lacking hardware single-stepping we've
1849 set breakpoint at the PC of the next instruction -- call it
1850 P. After resuming, we've hit that breakpoint in thread T2.
1851 Now we've removed original breakpoint, inserted breakpoint
1852 at P+1, and try to step to advance T2 past breakpoint.
1853 We need to step only T2, as if T1 is allowed to freely run,
1854 it can run past P, and if other threads are allowed to run,
1855 they can hit breakpoint at P+1, and nested hits of single-step
1856 breakpoints is not something we'd want -- that's complicated
1857 to support, and has no value. */
1858 resume_ptid = inferior_ptid;
1859 }
d4db2f36 1860 else if ((step || singlestep_breakpoints_inserted_p)
16c381f0 1861 && tp->control.trap_expected)
cd76b0b7 1862 {
74960c60
VP
1863 /* We're allowing a thread to run past a breakpoint it has
1864 hit, by single-stepping the thread with the breakpoint
1865 removed. In which case, we need to single-step only this
1866 thread, and keep others stopped, as they can miss this
1867 breakpoint if allowed to run.
1868
1869 The current code actually removes all breakpoints when
1870 doing this, not just the one being stepped over, so if we
1871 let other threads run, we can actually miss any
1872 breakpoint, not just the one at PC. */
ef5cf84e 1873 resume_ptid = inferior_ptid;
c906108c 1874 }
ef5cf84e 1875
515630c5 1876 if (gdbarch_cannot_step_breakpoint (gdbarch))
c4ed33b9
AC
1877 {
1878 /* Most targets can step a breakpoint instruction, thus
1879 executing it normally. But if this one cannot, just
1880 continue and we will hit it anyway. */
6c95b8df 1881 if (step && breakpoint_inserted_here_p (aspace, pc))
c4ed33b9
AC
1882 step = 0;
1883 }
237fc4c9
PA
1884
1885 if (debug_displaced
515630c5 1886 && use_displaced_stepping (gdbarch)
16c381f0 1887 && tp->control.trap_expected)
237fc4c9 1888 {
515630c5 1889 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
5af949e3 1890 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
515630c5 1891 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
237fc4c9
PA
1892 gdb_byte buf[4];
1893
5af949e3
UW
1894 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1895 paddress (resume_gdbarch, actual_pc));
237fc4c9
PA
1896 read_memory (actual_pc, buf, sizeof (buf));
1897 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1898 }
1899
e58b0e63
PA
1900 /* Install inferior's terminal modes. */
1901 target_terminal_inferior ();
1902
2020b7ab
PA
1903 /* Avoid confusing the next resume, if the next stop/resume
1904 happens to apply to another thread. */
16c381f0 1905 tp->suspend.stop_signal = TARGET_SIGNAL_0;
607cecd2 1906
2455069d
UW
1907 /* Advise target which signals may be handled silently. If we have
1908 removed breakpoints because we are stepping over one (which can
1909 happen only if we are not using displaced stepping), we need to
1910 receive all signals to avoid accidentally skipping a breakpoint
1911 during execution of a signal handler. */
1912 if ((step || singlestep_breakpoints_inserted_p)
1913 && tp->control.trap_expected
1914 && !use_displaced_stepping (gdbarch))
1915 target_pass_signals (0, NULL);
1916 else
1917 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
1918
607cecd2 1919 target_resume (resume_ptid, step, sig);
c906108c
SS
1920 }
1921
1922 discard_cleanups (old_cleanups);
1923}
1924\f
237fc4c9 1925/* Proceeding. */
c906108c
SS
1926
1927/* Clear out all variables saying what to do when inferior is continued.
1928 First do this, then set the ones you want, then call `proceed'. */
1929
a7212384
UW
1930static void
1931clear_proceed_status_thread (struct thread_info *tp)
c906108c 1932{
a7212384
UW
1933 if (debug_infrun)
1934 fprintf_unfiltered (gdb_stdlog,
1935 "infrun: clear_proceed_status_thread (%s)\n",
1936 target_pid_to_str (tp->ptid));
d6b48e9c 1937
16c381f0
JK
1938 tp->control.trap_expected = 0;
1939 tp->control.step_range_start = 0;
1940 tp->control.step_range_end = 0;
1941 tp->control.step_frame_id = null_frame_id;
1942 tp->control.step_stack_frame_id = null_frame_id;
1943 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 1944 tp->stop_requested = 0;
4e1c45ea 1945
16c381f0 1946 tp->control.stop_step = 0;
32400beb 1947
16c381f0 1948 tp->control.proceed_to_finish = 0;
414c69f7 1949
a7212384 1950 /* Discard any remaining commands or status from previous stop. */
16c381f0 1951 bpstat_clear (&tp->control.stop_bpstat);
a7212384 1952}
32400beb 1953
a7212384
UW
1954static int
1955clear_proceed_status_callback (struct thread_info *tp, void *data)
1956{
1957 if (is_exited (tp->ptid))
1958 return 0;
d6b48e9c 1959
a7212384
UW
1960 clear_proceed_status_thread (tp);
1961 return 0;
1962}
1963
1964void
1965clear_proceed_status (void)
1966{
6c95b8df
PA
1967 if (!non_stop)
1968 {
1969 /* In all-stop mode, delete the per-thread status of all
1970 threads, even if inferior_ptid is null_ptid, there may be
1971 threads on the list. E.g., we may be launching a new
1972 process, while selecting the executable. */
1973 iterate_over_threads (clear_proceed_status_callback, NULL);
1974 }
1975
a7212384
UW
1976 if (!ptid_equal (inferior_ptid, null_ptid))
1977 {
1978 struct inferior *inferior;
1979
1980 if (non_stop)
1981 {
6c95b8df
PA
1982 /* If in non-stop mode, only delete the per-thread status of
1983 the current thread. */
a7212384
UW
1984 clear_proceed_status_thread (inferior_thread ());
1985 }
6c95b8df 1986
d6b48e9c 1987 inferior = current_inferior ();
16c381f0 1988 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
1989 }
1990
c906108c 1991 stop_after_trap = 0;
f3b1572e
PA
1992
1993 observer_notify_about_to_proceed ();
c906108c 1994
d5c31457
UW
1995 if (stop_registers)
1996 {
1997 regcache_xfree (stop_registers);
1998 stop_registers = NULL;
1999 }
c906108c
SS
2000}
2001
5a437975
DE
2002/* Check the current thread against the thread that reported the most recent
2003 event. If a step-over is required return TRUE and set the current thread
2004 to the old thread. Otherwise return FALSE.
2005
1777feb0 2006 This should be suitable for any targets that support threads. */
ea67f13b
DJ
2007
2008static int
6a6b96b9 2009prepare_to_proceed (int step)
ea67f13b
DJ
2010{
2011 ptid_t wait_ptid;
2012 struct target_waitstatus wait_status;
5a437975
DE
2013 int schedlock_enabled;
2014
2015 /* With non-stop mode on, threads are always handled individually. */
2016 gdb_assert (! non_stop);
ea67f13b
DJ
2017
2018 /* Get the last target status returned by target_wait(). */
2019 get_last_target_status (&wait_ptid, &wait_status);
2020
6a6b96b9 2021 /* Make sure we were stopped at a breakpoint. */
ea67f13b 2022 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2b009048
DJ
2023 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
2024 && wait_status.value.sig != TARGET_SIGNAL_ILL
2025 && wait_status.value.sig != TARGET_SIGNAL_SEGV
2026 && wait_status.value.sig != TARGET_SIGNAL_EMT))
ea67f13b
DJ
2027 {
2028 return 0;
2029 }
2030
5a437975
DE
2031 schedlock_enabled = (scheduler_mode == schedlock_on
2032 || (scheduler_mode == schedlock_step
2033 && step));
2034
d4db2f36
PA
2035 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2036 if (schedlock_enabled)
2037 return 0;
2038
2039 /* Don't switch over if we're about to resume some other process
2040 other than WAIT_PTID's, and schedule-multiple is off. */
2041 if (!sched_multi
2042 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2043 return 0;
2044
6a6b96b9 2045 /* Switched over from WAIT_PID. */
ea67f13b 2046 if (!ptid_equal (wait_ptid, minus_one_ptid)
d4db2f36 2047 && !ptid_equal (inferior_ptid, wait_ptid))
ea67f13b 2048 {
515630c5
UW
2049 struct regcache *regcache = get_thread_regcache (wait_ptid);
2050
6c95b8df
PA
2051 if (breakpoint_here_p (get_regcache_aspace (regcache),
2052 regcache_read_pc (regcache)))
ea67f13b 2053 {
515630c5
UW
2054 /* If stepping, remember current thread to switch back to. */
2055 if (step)
2056 deferred_step_ptid = inferior_ptid;
ea67f13b 2057
515630c5
UW
2058 /* Switch back to WAIT_PID thread. */
2059 switch_to_thread (wait_ptid);
6a6b96b9 2060
0d9a9a5f
PA
2061 if (debug_infrun)
2062 fprintf_unfiltered (gdb_stdlog,
2063 "infrun: prepare_to_proceed (step=%d), "
2064 "switched to [%s]\n",
2065 step, target_pid_to_str (inferior_ptid));
2066
515630c5
UW
2067 /* We return 1 to indicate that there is a breakpoint here,
2068 so we need to step over it before continuing to avoid
1777feb0 2069 hitting it straight away. */
515630c5
UW
2070 return 1;
2071 }
ea67f13b
DJ
2072 }
2073
2074 return 0;
ea67f13b 2075}
e4846b08 2076
c906108c
SS
2077/* Basic routine for continuing the program in various fashions.
2078
2079 ADDR is the address to resume at, or -1 for resume where stopped.
2080 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2081 or -1 for act according to how it stopped.
c906108c 2082 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2083 -1 means return after that and print nothing.
2084 You should probably set various step_... variables
2085 before calling here, if you are stepping.
c906108c
SS
2086
2087 You should call clear_proceed_status before calling proceed. */
2088
2089void
96baa820 2090proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
c906108c 2091{
e58b0e63
PA
2092 struct regcache *regcache;
2093 struct gdbarch *gdbarch;
4e1c45ea 2094 struct thread_info *tp;
e58b0e63 2095 CORE_ADDR pc;
6c95b8df 2096 struct address_space *aspace;
c906108c
SS
2097 int oneproc = 0;
2098
e58b0e63
PA
2099 /* If we're stopped at a fork/vfork, follow the branch set by the
2100 "set follow-fork-mode" command; otherwise, we'll just proceed
2101 resuming the current thread. */
2102 if (!follow_fork ())
2103 {
2104 /* The target for some reason decided not to resume. */
2105 normal_stop ();
f148b27e
PA
2106 if (target_can_async_p ())
2107 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2108 return;
2109 }
2110
842951eb
PA
2111 /* We'll update this if & when we switch to a new thread. */
2112 previous_inferior_ptid = inferior_ptid;
2113
e58b0e63
PA
2114 regcache = get_current_regcache ();
2115 gdbarch = get_regcache_arch (regcache);
6c95b8df 2116 aspace = get_regcache_aspace (regcache);
e58b0e63
PA
2117 pc = regcache_read_pc (regcache);
2118
c906108c 2119 if (step > 0)
515630c5 2120 step_start_function = find_pc_function (pc);
c906108c
SS
2121 if (step < 0)
2122 stop_after_trap = 1;
2123
2acceee2 2124 if (addr == (CORE_ADDR) -1)
c906108c 2125 {
6c95b8df 2126 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
b2175913 2127 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2128 /* There is a breakpoint at the address we will resume at,
2129 step one instruction before inserting breakpoints so that
2130 we do not stop right away (and report a second hit at this
b2175913
MS
2131 breakpoint).
2132
2133 Note, we don't do this in reverse, because we won't
2134 actually be executing the breakpoint insn anyway.
2135 We'll be (un-)executing the previous instruction. */
2136
c906108c 2137 oneproc = 1;
515630c5
UW
2138 else if (gdbarch_single_step_through_delay_p (gdbarch)
2139 && gdbarch_single_step_through_delay (gdbarch,
2140 get_current_frame ()))
3352ef37
AC
2141 /* We stepped onto an instruction that needs to be stepped
2142 again before re-inserting the breakpoint, do so. */
c906108c
SS
2143 oneproc = 1;
2144 }
2145 else
2146 {
515630c5 2147 regcache_write_pc (regcache, addr);
c906108c
SS
2148 }
2149
527159b7 2150 if (debug_infrun)
8a9de0e4 2151 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
2152 "infrun: proceed (addr=%s, signal=%d, step=%d)\n",
2153 paddress (gdbarch, addr), siggnal, step);
527159b7 2154
94cc34af
PA
2155 if (non_stop)
2156 /* In non-stop, each thread is handled individually. The context
2157 must already be set to the right thread here. */
2158 ;
2159 else
2160 {
2161 /* In a multi-threaded task we may select another thread and
2162 then continue or step.
c906108c 2163
94cc34af
PA
2164 But if the old thread was stopped at a breakpoint, it will
2165 immediately cause another breakpoint stop without any
2166 execution (i.e. it will report a breakpoint hit incorrectly).
2167 So we must step over it first.
c906108c 2168
94cc34af
PA
2169 prepare_to_proceed checks the current thread against the
2170 thread that reported the most recent event. If a step-over
2171 is required it returns TRUE and sets the current thread to
1777feb0 2172 the old thread. */
94cc34af
PA
2173 if (prepare_to_proceed (step))
2174 oneproc = 1;
2175 }
c906108c 2176
4e1c45ea
PA
2177 /* prepare_to_proceed may change the current thread. */
2178 tp = inferior_thread ();
2179
30852783
UW
2180 if (oneproc)
2181 {
2182 tp->control.trap_expected = 1;
2183 /* If displaced stepping is enabled, we can step over the
2184 breakpoint without hitting it, so leave all breakpoints
2185 inserted. Otherwise we need to disable all breakpoints, step
2186 one instruction, and then re-add them when that step is
2187 finished. */
2188 if (!use_displaced_stepping (gdbarch))
2189 remove_breakpoints ();
2190 }
2191
2192 /* We can insert breakpoints if we're not trying to step over one,
2193 or if we are stepping over one but we're using displaced stepping
2194 to do so. */
2195 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2196 insert_breakpoints ();
2197
2020b7ab
PA
2198 if (!non_stop)
2199 {
2200 /* Pass the last stop signal to the thread we're resuming,
2201 irrespective of whether the current thread is the thread that
2202 got the last event or not. This was historically GDB's
2203 behaviour before keeping a stop_signal per thread. */
2204
2205 struct thread_info *last_thread;
2206 ptid_t last_ptid;
2207 struct target_waitstatus last_status;
2208
2209 get_last_target_status (&last_ptid, &last_status);
2210 if (!ptid_equal (inferior_ptid, last_ptid)
2211 && !ptid_equal (last_ptid, null_ptid)
2212 && !ptid_equal (last_ptid, minus_one_ptid))
2213 {
e09875d4 2214 last_thread = find_thread_ptid (last_ptid);
2020b7ab
PA
2215 if (last_thread)
2216 {
16c381f0
JK
2217 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2218 last_thread->suspend.stop_signal = TARGET_SIGNAL_0;
2020b7ab
PA
2219 }
2220 }
2221 }
2222
c906108c 2223 if (siggnal != TARGET_SIGNAL_DEFAULT)
16c381f0 2224 tp->suspend.stop_signal = siggnal;
c906108c
SS
2225 /* If this signal should not be seen by program,
2226 give it zero. Used for debugging signals. */
16c381f0
JK
2227 else if (!signal_program[tp->suspend.stop_signal])
2228 tp->suspend.stop_signal = TARGET_SIGNAL_0;
c906108c
SS
2229
2230 annotate_starting ();
2231
2232 /* Make sure that output from GDB appears before output from the
2233 inferior. */
2234 gdb_flush (gdb_stdout);
2235
e4846b08
JJ
2236 /* Refresh prev_pc value just prior to resuming. This used to be
2237 done in stop_stepping, however, setting prev_pc there did not handle
2238 scenarios such as inferior function calls or returning from
2239 a function via the return command. In those cases, the prev_pc
2240 value was not set properly for subsequent commands. The prev_pc value
2241 is used to initialize the starting line number in the ecs. With an
2242 invalid value, the gdb next command ends up stopping at the position
2243 represented by the next line table entry past our start position.
2244 On platforms that generate one line table entry per line, this
2245 is not a problem. However, on the ia64, the compiler generates
2246 extraneous line table entries that do not increase the line number.
2247 When we issue the gdb next command on the ia64 after an inferior call
2248 or a return command, we often end up a few instructions forward, still
2249 within the original line we started.
2250
d5cd6034
JB
2251 An attempt was made to refresh the prev_pc at the same time the
2252 execution_control_state is initialized (for instance, just before
2253 waiting for an inferior event). But this approach did not work
2254 because of platforms that use ptrace, where the pc register cannot
2255 be read unless the inferior is stopped. At that point, we are not
2256 guaranteed the inferior is stopped and so the regcache_read_pc() call
2257 can fail. Setting the prev_pc value here ensures the value is updated
2258 correctly when the inferior is stopped. */
4e1c45ea 2259 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2260
59f0d5d9 2261 /* Fill in with reasonable starting values. */
4e1c45ea 2262 init_thread_stepping_state (tp);
59f0d5d9 2263
59f0d5d9
PA
2264 /* Reset to normal state. */
2265 init_infwait_state ();
2266
c906108c 2267 /* Resume inferior. */
16c381f0 2268 resume (oneproc || step || bpstat_should_step (), tp->suspend.stop_signal);
c906108c
SS
2269
2270 /* Wait for it to stop (if not standalone)
2271 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2272 /* Do this only if we are not using the event loop, or if the target
1777feb0 2273 does not support asynchronous execution. */
362646f5 2274 if (!target_can_async_p ())
43ff13b4 2275 {
e4c8541f 2276 wait_for_inferior ();
43ff13b4
JM
2277 normal_stop ();
2278 }
c906108c 2279}
c906108c
SS
2280\f
2281
2282/* Start remote-debugging of a machine over a serial link. */
96baa820 2283
c906108c 2284void
8621d6a9 2285start_remote (int from_tty)
c906108c 2286{
d6b48e9c 2287 struct inferior *inferior;
d6b48e9c
PA
2288
2289 inferior = current_inferior ();
16c381f0 2290 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2291
1777feb0 2292 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2293 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2294 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2295 nothing is returned (instead of just blocking). Because of this,
2296 targets expecting an immediate response need to, internally, set
2297 things up so that the target_wait() is forced to eventually
1777feb0 2298 timeout. */
6426a772
JM
2299 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2300 differentiate to its caller what the state of the target is after
2301 the initial open has been performed. Here we're assuming that
2302 the target has stopped. It should be possible to eventually have
2303 target_open() return to the caller an indication that the target
2304 is currently running and GDB state should be set to the same as
1777feb0 2305 for an async run. */
e4c8541f 2306 wait_for_inferior ();
8621d6a9
DJ
2307
2308 /* Now that the inferior has stopped, do any bookkeeping like
2309 loading shared libraries. We want to do this before normal_stop,
2310 so that the displayed frame is up to date. */
2311 post_create_inferior (&current_target, from_tty);
2312
6426a772 2313 normal_stop ();
c906108c
SS
2314}
2315
2316/* Initialize static vars when a new inferior begins. */
2317
2318void
96baa820 2319init_wait_for_inferior (void)
c906108c
SS
2320{
2321 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2322
c906108c
SS
2323 breakpoint_init_inferior (inf_starting);
2324
c906108c 2325 clear_proceed_status ();
9f976b41
DJ
2326
2327 stepping_past_singlestep_breakpoint = 0;
ca67fcb8 2328 deferred_step_ptid = null_ptid;
ca005067
DJ
2329
2330 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2331
842951eb 2332 previous_inferior_ptid = inferior_ptid;
0d1e5fa7
PA
2333 init_infwait_state ();
2334
edb3359d
DJ
2335 /* Discard any skipped inlined frames. */
2336 clear_inline_frame_state (minus_one_ptid);
c906108c 2337}
237fc4c9 2338
c906108c 2339\f
b83266a0
SS
2340/* This enum encodes possible reasons for doing a target_wait, so that
2341 wfi can call target_wait in one place. (Ultimately the call will be
2342 moved out of the infinite loop entirely.) */
2343
c5aa993b
JM
2344enum infwait_states
2345{
cd0fc7c3
SS
2346 infwait_normal_state,
2347 infwait_thread_hop_state,
d983da9c 2348 infwait_step_watch_state,
cd0fc7c3 2349 infwait_nonstep_watch_state
b83266a0
SS
2350};
2351
0d1e5fa7
PA
2352/* The PTID we'll do a target_wait on.*/
2353ptid_t waiton_ptid;
2354
2355/* Current inferior wait state. */
2356enum infwait_states infwait_state;
cd0fc7c3 2357
0d1e5fa7
PA
2358/* Data to be passed around while handling an event. This data is
2359 discarded between events. */
c5aa993b 2360struct execution_control_state
488f131b 2361{
0d1e5fa7 2362 ptid_t ptid;
4e1c45ea
PA
2363 /* The thread that got the event, if this was a thread event; NULL
2364 otherwise. */
2365 struct thread_info *event_thread;
2366
488f131b 2367 struct target_waitstatus ws;
488f131b 2368 int random_signal;
7e324e48 2369 int stop_func_filled_in;
488f131b
JB
2370 CORE_ADDR stop_func_start;
2371 CORE_ADDR stop_func_end;
2372 char *stop_func_name;
488f131b 2373 int new_thread_event;
488f131b
JB
2374 int wait_some_more;
2375};
2376
ec9499be 2377static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2378
568d6575
UW
2379static void handle_step_into_function (struct gdbarch *gdbarch,
2380 struct execution_control_state *ecs);
2381static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2382 struct execution_control_state *ecs);
186c406b
TT
2383static void check_exception_resume (struct execution_control_state *,
2384 struct frame_info *, struct symbol *);
611c83ae 2385
104c1213
JM
2386static void stop_stepping (struct execution_control_state *ecs);
2387static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2388static void keep_going (struct execution_control_state *ecs);
104c1213 2389
252fbfc8
PA
2390/* Callback for iterate over threads. If the thread is stopped, but
2391 the user/frontend doesn't know about that yet, go through
2392 normal_stop, as if the thread had just stopped now. ARG points at
2393 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2394 ptid_is_pid(PTID) is true, applies to all threads of the process
2395 pointed at by PTID. Otherwise, apply only to the thread pointed by
2396 PTID. */
2397
2398static int
2399infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2400{
2401 ptid_t ptid = * (ptid_t *) arg;
2402
2403 if ((ptid_equal (info->ptid, ptid)
2404 || ptid_equal (minus_one_ptid, ptid)
2405 || (ptid_is_pid (ptid)
2406 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2407 && is_running (info->ptid)
2408 && !is_executing (info->ptid))
2409 {
2410 struct cleanup *old_chain;
2411 struct execution_control_state ecss;
2412 struct execution_control_state *ecs = &ecss;
2413
2414 memset (ecs, 0, sizeof (*ecs));
2415
2416 old_chain = make_cleanup_restore_current_thread ();
2417
2418 switch_to_thread (info->ptid);
2419
2420 /* Go through handle_inferior_event/normal_stop, so we always
2421 have consistent output as if the stop event had been
2422 reported. */
2423 ecs->ptid = info->ptid;
e09875d4 2424 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8
PA
2425 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2426 ecs->ws.value.sig = TARGET_SIGNAL_0;
2427
2428 handle_inferior_event (ecs);
2429
2430 if (!ecs->wait_some_more)
2431 {
2432 struct thread_info *tp;
2433
2434 normal_stop ();
2435
fa4cd53f 2436 /* Finish off the continuations. */
252fbfc8 2437 tp = inferior_thread ();
fa4cd53f
PA
2438 do_all_intermediate_continuations_thread (tp, 1);
2439 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2440 }
2441
2442 do_cleanups (old_chain);
2443 }
2444
2445 return 0;
2446}
2447
2448/* This function is attached as a "thread_stop_requested" observer.
2449 Cleanup local state that assumed the PTID was to be resumed, and
2450 report the stop to the frontend. */
2451
2c0b251b 2452static void
252fbfc8
PA
2453infrun_thread_stop_requested (ptid_t ptid)
2454{
fc1cf338 2455 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2456
2457 /* PTID was requested to stop. Remove it from the displaced
2458 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2459
2460 for (displaced = displaced_step_inferior_states;
2461 displaced;
2462 displaced = displaced->next)
252fbfc8 2463 {
fc1cf338 2464 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2465
fc1cf338
PA
2466 it = displaced->step_request_queue;
2467 prev_next_p = &displaced->step_request_queue;
2468 while (it)
252fbfc8 2469 {
fc1cf338
PA
2470 if (ptid_match (it->ptid, ptid))
2471 {
2472 *prev_next_p = it->next;
2473 it->next = NULL;
2474 xfree (it);
2475 }
252fbfc8 2476 else
fc1cf338
PA
2477 {
2478 prev_next_p = &it->next;
2479 }
252fbfc8 2480
fc1cf338 2481 it = *prev_next_p;
252fbfc8 2482 }
252fbfc8
PA
2483 }
2484
2485 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2486}
2487
a07daef3
PA
2488static void
2489infrun_thread_thread_exit (struct thread_info *tp, int silent)
2490{
2491 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2492 nullify_last_target_wait_ptid ();
2493}
2494
4e1c45ea
PA
2495/* Callback for iterate_over_threads. */
2496
2497static int
2498delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2499{
2500 if (is_exited (info->ptid))
2501 return 0;
2502
2503 delete_step_resume_breakpoint (info);
186c406b 2504 delete_exception_resume_breakpoint (info);
4e1c45ea
PA
2505 return 0;
2506}
2507
2508/* In all-stop, delete the step resume breakpoint of any thread that
2509 had one. In non-stop, delete the step resume breakpoint of the
2510 thread that just stopped. */
2511
2512static void
2513delete_step_thread_step_resume_breakpoint (void)
2514{
2515 if (!target_has_execution
2516 || ptid_equal (inferior_ptid, null_ptid))
2517 /* If the inferior has exited, we have already deleted the step
2518 resume breakpoints out of GDB's lists. */
2519 return;
2520
2521 if (non_stop)
2522 {
2523 /* If in non-stop mode, only delete the step-resume or
2524 longjmp-resume breakpoint of the thread that just stopped
2525 stepping. */
2526 struct thread_info *tp = inferior_thread ();
abbb1732 2527
4e1c45ea 2528 delete_step_resume_breakpoint (tp);
186c406b 2529 delete_exception_resume_breakpoint (tp);
4e1c45ea
PA
2530 }
2531 else
2532 /* In all-stop mode, delete all step-resume and longjmp-resume
2533 breakpoints of any thread that had them. */
2534 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2535}
2536
1777feb0 2537/* A cleanup wrapper. */
4e1c45ea
PA
2538
2539static void
2540delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2541{
2542 delete_step_thread_step_resume_breakpoint ();
2543}
2544
223698f8
DE
2545/* Pretty print the results of target_wait, for debugging purposes. */
2546
2547static void
2548print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2549 const struct target_waitstatus *ws)
2550{
2551 char *status_string = target_waitstatus_to_string (ws);
2552 struct ui_file *tmp_stream = mem_fileopen ();
2553 char *text;
223698f8
DE
2554
2555 /* The text is split over several lines because it was getting too long.
2556 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2557 output as a unit; we want only one timestamp printed if debug_timestamp
2558 is set. */
2559
2560 fprintf_unfiltered (tmp_stream,
2561 "infrun: target_wait (%d", PIDGET (waiton_ptid));
2562 if (PIDGET (waiton_ptid) != -1)
2563 fprintf_unfiltered (tmp_stream,
2564 " [%s]", target_pid_to_str (waiton_ptid));
2565 fprintf_unfiltered (tmp_stream, ", status) =\n");
2566 fprintf_unfiltered (tmp_stream,
2567 "infrun: %d [%s],\n",
2568 PIDGET (result_ptid), target_pid_to_str (result_ptid));
2569 fprintf_unfiltered (tmp_stream,
2570 "infrun: %s\n",
2571 status_string);
2572
759ef836 2573 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
2574
2575 /* This uses %s in part to handle %'s in the text, but also to avoid
2576 a gcc error: the format attribute requires a string literal. */
2577 fprintf_unfiltered (gdb_stdlog, "%s", text);
2578
2579 xfree (status_string);
2580 xfree (text);
2581 ui_file_delete (tmp_stream);
2582}
2583
24291992
PA
2584/* Prepare and stabilize the inferior for detaching it. E.g.,
2585 detaching while a thread is displaced stepping is a recipe for
2586 crashing it, as nothing would readjust the PC out of the scratch
2587 pad. */
2588
2589void
2590prepare_for_detach (void)
2591{
2592 struct inferior *inf = current_inferior ();
2593 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2594 struct cleanup *old_chain_1;
2595 struct displaced_step_inferior_state *displaced;
2596
2597 displaced = get_displaced_stepping_state (inf->pid);
2598
2599 /* Is any thread of this process displaced stepping? If not,
2600 there's nothing else to do. */
2601 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2602 return;
2603
2604 if (debug_infrun)
2605 fprintf_unfiltered (gdb_stdlog,
2606 "displaced-stepping in-process while detaching");
2607
2608 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2609 inf->detaching = 1;
2610
2611 while (!ptid_equal (displaced->step_ptid, null_ptid))
2612 {
2613 struct cleanup *old_chain_2;
2614 struct execution_control_state ecss;
2615 struct execution_control_state *ecs;
2616
2617 ecs = &ecss;
2618 memset (ecs, 0, sizeof (*ecs));
2619
2620 overlay_cache_invalid = 1;
2621
24291992
PA
2622 if (deprecated_target_wait_hook)
2623 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2624 else
2625 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2626
2627 if (debug_infrun)
2628 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2629
2630 /* If an error happens while handling the event, propagate GDB's
2631 knowledge of the executing state to the frontend/user running
2632 state. */
3e43a32a
MS
2633 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2634 &minus_one_ptid);
24291992 2635
4d533103
PA
2636 /* In non-stop mode, each thread is handled individually.
2637 Switch early, so the global state is set correctly for this
2638 thread. */
2639 if (non_stop
2640 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2641 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2642 context_switch (ecs->ptid);
2643
24291992
PA
2644 /* Now figure out what to do with the result of the result. */
2645 handle_inferior_event (ecs);
2646
2647 /* No error, don't finish the state yet. */
2648 discard_cleanups (old_chain_2);
2649
2650 /* Breakpoints and watchpoints are not installed on the target
2651 at this point, and signals are passed directly to the
2652 inferior, so this must mean the process is gone. */
2653 if (!ecs->wait_some_more)
2654 {
2655 discard_cleanups (old_chain_1);
2656 error (_("Program exited while detaching"));
2657 }
2658 }
2659
2660 discard_cleanups (old_chain_1);
2661}
2662
cd0fc7c3 2663/* Wait for control to return from inferior to debugger.
ae123ec6 2664
cd0fc7c3
SS
2665 If inferior gets a signal, we may decide to start it up again
2666 instead of returning. That is why there is a loop in this function.
2667 When this function actually returns it means the inferior
2668 should be left stopped and GDB should read more commands. */
2669
2670void
e4c8541f 2671wait_for_inferior (void)
cd0fc7c3
SS
2672{
2673 struct cleanup *old_cleanups;
0d1e5fa7 2674 struct execution_control_state ecss;
cd0fc7c3 2675 struct execution_control_state *ecs;
c906108c 2676
527159b7 2677 if (debug_infrun)
ae123ec6 2678 fprintf_unfiltered
e4c8541f 2679 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 2680
4e1c45ea
PA
2681 old_cleanups =
2682 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
cd0fc7c3 2683
cd0fc7c3 2684 ecs = &ecss;
0d1e5fa7
PA
2685 memset (ecs, 0, sizeof (*ecs));
2686
c906108c
SS
2687 while (1)
2688 {
29f49a6a
PA
2689 struct cleanup *old_chain;
2690
ec9499be 2691 overlay_cache_invalid = 1;
ec9499be 2692
9a4105ab 2693 if (deprecated_target_wait_hook)
47608cb1 2694 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 2695 else
47608cb1 2696 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 2697
f00150c9 2698 if (debug_infrun)
223698f8 2699 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2700
29f49a6a
PA
2701 /* If an error happens while handling the event, propagate GDB's
2702 knowledge of the executing state to the frontend/user running
2703 state. */
2704 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2705
a96d9b2e
SDJ
2706 if (ecs->ws.kind == TARGET_WAITKIND_SYSCALL_ENTRY
2707 || ecs->ws.kind == TARGET_WAITKIND_SYSCALL_RETURN)
2708 ecs->ws.value.syscall_number = UNKNOWN_SYSCALL;
2709
cd0fc7c3
SS
2710 /* Now figure out what to do with the result of the result. */
2711 handle_inferior_event (ecs);
c906108c 2712
29f49a6a
PA
2713 /* No error, don't finish the state yet. */
2714 discard_cleanups (old_chain);
2715
cd0fc7c3
SS
2716 if (!ecs->wait_some_more)
2717 break;
2718 }
4e1c45ea 2719
cd0fc7c3
SS
2720 do_cleanups (old_cleanups);
2721}
c906108c 2722
1777feb0 2723/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 2724 event loop whenever a change of state is detected on the file
1777feb0
MS
2725 descriptor corresponding to the target. It can be called more than
2726 once to complete a single execution command. In such cases we need
2727 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
2728 that this function is called for a single execution command, then
2729 report to the user that the inferior has stopped, and do the
1777feb0 2730 necessary cleanups. */
43ff13b4
JM
2731
2732void
fba45db2 2733fetch_inferior_event (void *client_data)
43ff13b4 2734{
0d1e5fa7 2735 struct execution_control_state ecss;
a474d7c2 2736 struct execution_control_state *ecs = &ecss;
4f8d22e3 2737 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 2738 struct cleanup *ts_old_chain;
4f8d22e3 2739 int was_sync = sync_execution;
0f641c01 2740 int cmd_done = 0;
43ff13b4 2741
0d1e5fa7
PA
2742 memset (ecs, 0, sizeof (*ecs));
2743
c5187ac6
PA
2744 /* We're handling a live event, so make sure we're doing live
2745 debugging. If we're looking at traceframes while the target is
2746 running, we're going to need to get back to that mode after
2747 handling the event. */
2748 if (non_stop)
2749 {
2750 make_cleanup_restore_current_traceframe ();
e6e4e701 2751 set_current_traceframe (-1);
c5187ac6
PA
2752 }
2753
4f8d22e3
PA
2754 if (non_stop)
2755 /* In non-stop mode, the user/frontend should not notice a thread
2756 switch due to internal events. Make sure we reverse to the
2757 user selected thread and frame after handling the event and
2758 running any breakpoint commands. */
2759 make_cleanup_restore_current_thread ();
2760
ec9499be 2761 overlay_cache_invalid = 1;
3dd5b83d 2762
32231432
PA
2763 make_cleanup_restore_integer (&execution_direction);
2764 execution_direction = target_execution_direction ();
2765
9a4105ab 2766 if (deprecated_target_wait_hook)
a474d7c2 2767 ecs->ptid =
47608cb1 2768 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2769 else
47608cb1 2770 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 2771
f00150c9 2772 if (debug_infrun)
223698f8 2773 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 2774
94cc34af
PA
2775 if (non_stop
2776 && ecs->ws.kind != TARGET_WAITKIND_IGNORE
0e5bf2a8 2777 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
94cc34af
PA
2778 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2779 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
2780 /* In non-stop mode, each thread is handled individually. Switch
2781 early, so the global state is set correctly for this
2782 thread. */
2783 context_switch (ecs->ptid);
2784
29f49a6a
PA
2785 /* If an error happens while handling the event, propagate GDB's
2786 knowledge of the executing state to the frontend/user running
2787 state. */
2788 if (!non_stop)
2789 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2790 else
2791 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2792
353d1d73
JK
2793 /* Get executed before make_cleanup_restore_current_thread above to apply
2794 still for the thread which has thrown the exception. */
2795 make_bpstat_clear_actions_cleanup ();
2796
43ff13b4 2797 /* Now figure out what to do with the result of the result. */
a474d7c2 2798 handle_inferior_event (ecs);
43ff13b4 2799
a474d7c2 2800 if (!ecs->wait_some_more)
43ff13b4 2801 {
d6b48e9c
PA
2802 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2803
4e1c45ea 2804 delete_step_thread_step_resume_breakpoint ();
f107f563 2805
d6b48e9c 2806 /* We may not find an inferior if this was a process exit. */
16c381f0 2807 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
2808 normal_stop ();
2809
af679fd0 2810 if (target_has_execution
0e5bf2a8 2811 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
2812 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2813 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2814 && ecs->event_thread->step_multi
16c381f0 2815 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
2816 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2817 else
0f641c01
PA
2818 {
2819 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2820 cmd_done = 1;
2821 }
43ff13b4 2822 }
4f8d22e3 2823
29f49a6a
PA
2824 /* No error, don't finish the thread states yet. */
2825 discard_cleanups (ts_old_chain);
2826
4f8d22e3
PA
2827 /* Revert thread and frame. */
2828 do_cleanups (old_chain);
2829
2830 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
2831 restore the prompt (a synchronous execution command has finished,
2832 and we're ready for input). */
b4a14fd0 2833 if (interpreter_async && was_sync && !sync_execution)
4f8d22e3 2834 display_gdb_prompt (0);
0f641c01
PA
2835
2836 if (cmd_done
2837 && !was_sync
2838 && exec_done_display_p
2839 && (ptid_equal (inferior_ptid, null_ptid)
2840 || !is_running (inferior_ptid)))
2841 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
2842}
2843
edb3359d
DJ
2844/* Record the frame and location we're currently stepping through. */
2845void
2846set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2847{
2848 struct thread_info *tp = inferior_thread ();
2849
16c381f0
JK
2850 tp->control.step_frame_id = get_frame_id (frame);
2851 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
2852
2853 tp->current_symtab = sal.symtab;
2854 tp->current_line = sal.line;
2855}
2856
0d1e5fa7
PA
2857/* Clear context switchable stepping state. */
2858
2859void
4e1c45ea 2860init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7
PA
2861{
2862 tss->stepping_over_breakpoint = 0;
2863 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
2864}
2865
e02bc4cc 2866/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
2867 target_wait()/deprecated_target_wait_hook(). The data is actually
2868 cached by handle_inferior_event(), which gets called immediately
2869 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
2870
2871void
488f131b 2872get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 2873{
39f77062 2874 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
2875 *status = target_last_waitstatus;
2876}
2877
ac264b3b
MS
2878void
2879nullify_last_target_wait_ptid (void)
2880{
2881 target_last_wait_ptid = minus_one_ptid;
2882}
2883
dcf4fbde 2884/* Switch thread contexts. */
dd80620e
MS
2885
2886static void
0d1e5fa7 2887context_switch (ptid_t ptid)
dd80620e 2888{
4b51d87b 2889 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
2890 {
2891 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2892 target_pid_to_str (inferior_ptid));
2893 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 2894 target_pid_to_str (ptid));
fd48f117
DJ
2895 }
2896
0d1e5fa7 2897 switch_to_thread (ptid);
dd80620e
MS
2898}
2899
4fa8626c
DJ
2900static void
2901adjust_pc_after_break (struct execution_control_state *ecs)
2902{
24a73cce
UW
2903 struct regcache *regcache;
2904 struct gdbarch *gdbarch;
6c95b8df 2905 struct address_space *aspace;
8aad930b 2906 CORE_ADDR breakpoint_pc;
4fa8626c 2907
4fa8626c
DJ
2908 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2909 we aren't, just return.
9709f61c
DJ
2910
2911 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
2912 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2913 implemented by software breakpoints should be handled through the normal
2914 breakpoint layer.
8fb3e588 2915
4fa8626c
DJ
2916 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2917 different signals (SIGILL or SIGEMT for instance), but it is less
2918 clear where the PC is pointing afterwards. It may not match
b798847d
UW
2919 gdbarch_decr_pc_after_break. I don't know any specific target that
2920 generates these signals at breakpoints (the code has been in GDB since at
2921 least 1992) so I can not guess how to handle them here.
8fb3e588 2922
e6cf7916
UW
2923 In earlier versions of GDB, a target with
2924 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
2925 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2926 target with both of these set in GDB history, and it seems unlikely to be
2927 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
2928
2929 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2930 return;
2931
2932 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
2933 return;
2934
4058b839
PA
2935 /* In reverse execution, when a breakpoint is hit, the instruction
2936 under it has already been de-executed. The reported PC always
2937 points at the breakpoint address, so adjusting it further would
2938 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2939 architecture:
2940
2941 B1 0x08000000 : INSN1
2942 B2 0x08000001 : INSN2
2943 0x08000002 : INSN3
2944 PC -> 0x08000003 : INSN4
2945
2946 Say you're stopped at 0x08000003 as above. Reverse continuing
2947 from that point should hit B2 as below. Reading the PC when the
2948 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2949 been de-executed already.
2950
2951 B1 0x08000000 : INSN1
2952 B2 PC -> 0x08000001 : INSN2
2953 0x08000002 : INSN3
2954 0x08000003 : INSN4
2955
2956 We can't apply the same logic as for forward execution, because
2957 we would wrongly adjust the PC to 0x08000000, since there's a
2958 breakpoint at PC - 1. We'd then report a hit on B1, although
2959 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2960 behaviour. */
2961 if (execution_direction == EXEC_REVERSE)
2962 return;
2963
24a73cce
UW
2964 /* If this target does not decrement the PC after breakpoints, then
2965 we have nothing to do. */
2966 regcache = get_thread_regcache (ecs->ptid);
2967 gdbarch = get_regcache_arch (regcache);
2968 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
2969 return;
2970
6c95b8df
PA
2971 aspace = get_regcache_aspace (regcache);
2972
8aad930b
AC
2973 /* Find the location where (if we've hit a breakpoint) the
2974 breakpoint would be. */
515630c5
UW
2975 breakpoint_pc = regcache_read_pc (regcache)
2976 - gdbarch_decr_pc_after_break (gdbarch);
8aad930b 2977
1c5cfe86
PA
2978 /* Check whether there actually is a software breakpoint inserted at
2979 that location.
2980
2981 If in non-stop mode, a race condition is possible where we've
2982 removed a breakpoint, but stop events for that breakpoint were
2983 already queued and arrive later. To suppress those spurious
2984 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
2985 and retire them after a number of stop events are reported. */
6c95b8df
PA
2986 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
2987 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 2988 {
96429cc8 2989 struct cleanup *old_cleanups = NULL;
abbb1732 2990
96429cc8
HZ
2991 if (RECORD_IS_USED)
2992 old_cleanups = record_gdb_operation_disable_set ();
2993
1c0fdd0e
UW
2994 /* When using hardware single-step, a SIGTRAP is reported for both
2995 a completed single-step and a software breakpoint. Need to
2996 differentiate between the two, as the latter needs adjusting
2997 but the former does not.
2998
2999 The SIGTRAP can be due to a completed hardware single-step only if
3000 - we didn't insert software single-step breakpoints
3001 - the thread to be examined is still the current thread
3002 - this thread is currently being stepped
3003
3004 If any of these events did not occur, we must have stopped due
3005 to hitting a software breakpoint, and have to back up to the
3006 breakpoint address.
3007
3008 As a special case, we could have hardware single-stepped a
3009 software breakpoint. In this case (prev_pc == breakpoint_pc),
3010 we also need to back up to the breakpoint address. */
3011
3012 if (singlestep_breakpoints_inserted_p
3013 || !ptid_equal (ecs->ptid, inferior_ptid)
4e1c45ea
PA
3014 || !currently_stepping (ecs->event_thread)
3015 || ecs->event_thread->prev_pc == breakpoint_pc)
515630c5 3016 regcache_write_pc (regcache, breakpoint_pc);
96429cc8
HZ
3017
3018 if (RECORD_IS_USED)
3019 do_cleanups (old_cleanups);
8aad930b 3020 }
4fa8626c
DJ
3021}
3022
0d1e5fa7
PA
3023void
3024init_infwait_state (void)
3025{
3026 waiton_ptid = pid_to_ptid (-1);
3027 infwait_state = infwait_normal_state;
3028}
3029
94cc34af
PA
3030void
3031error_is_running (void)
3032{
3e43a32a
MS
3033 error (_("Cannot execute this command while "
3034 "the selected thread is running."));
94cc34af
PA
3035}
3036
3037void
3038ensure_not_running (void)
3039{
3040 if (is_running (inferior_ptid))
3041 error_is_running ();
3042}
3043
edb3359d
DJ
3044static int
3045stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3046{
3047 for (frame = get_prev_frame (frame);
3048 frame != NULL;
3049 frame = get_prev_frame (frame))
3050 {
3051 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3052 return 1;
3053 if (get_frame_type (frame) != INLINE_FRAME)
3054 break;
3055 }
3056
3057 return 0;
3058}
3059
a96d9b2e
SDJ
3060/* Auxiliary function that handles syscall entry/return events.
3061 It returns 1 if the inferior should keep going (and GDB
3062 should ignore the event), or 0 if the event deserves to be
3063 processed. */
ca2163eb 3064
a96d9b2e 3065static int
ca2163eb 3066handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3067{
ca2163eb
PA
3068 struct regcache *regcache;
3069 struct gdbarch *gdbarch;
3070 int syscall_number;
3071
3072 if (!ptid_equal (ecs->ptid, inferior_ptid))
3073 context_switch (ecs->ptid);
3074
3075 regcache = get_thread_regcache (ecs->ptid);
3076 gdbarch = get_regcache_arch (regcache);
3077 syscall_number = gdbarch_get_syscall_number (gdbarch, ecs->ptid);
3078 stop_pc = regcache_read_pc (regcache);
3079
a96d9b2e
SDJ
3080 target_last_waitstatus.value.syscall_number = syscall_number;
3081
3082 if (catch_syscall_enabled () > 0
3083 && catching_syscall_number (syscall_number) > 0)
3084 {
3085 if (debug_infrun)
3086 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3087 syscall_number);
a96d9b2e 3088
16c381f0 3089 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3090 = bpstat_stop_status (get_regcache_aspace (regcache),
3091 stop_pc, ecs->ptid);
16c381f0
JK
3092 ecs->random_signal
3093 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
a96d9b2e 3094
ca2163eb
PA
3095 if (!ecs->random_signal)
3096 {
3097 /* Catchpoint hit. */
16c381f0 3098 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
ca2163eb
PA
3099 return 0;
3100 }
a96d9b2e 3101 }
ca2163eb
PA
3102
3103 /* If no catchpoint triggered for this, then keep going. */
16c381f0 3104 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
ca2163eb
PA
3105 keep_going (ecs);
3106 return 1;
a96d9b2e
SDJ
3107}
3108
7e324e48
GB
3109/* Clear the supplied execution_control_state's stop_func_* fields. */
3110
3111static void
3112clear_stop_func (struct execution_control_state *ecs)
3113{
3114 ecs->stop_func_filled_in = 0;
3115 ecs->stop_func_start = 0;
3116 ecs->stop_func_end = 0;
3117 ecs->stop_func_name = NULL;
3118}
3119
3120/* Lazily fill in the execution_control_state's stop_func_* fields. */
3121
3122static void
3123fill_in_stop_func (struct gdbarch *gdbarch,
3124 struct execution_control_state *ecs)
3125{
3126 if (!ecs->stop_func_filled_in)
3127 {
3128 /* Don't care about return value; stop_func_start and stop_func_name
3129 will both be 0 if it doesn't work. */
3130 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3131 &ecs->stop_func_start, &ecs->stop_func_end);
3132 ecs->stop_func_start
3133 += gdbarch_deprecated_function_start_offset (gdbarch);
3134
3135 ecs->stop_func_filled_in = 1;
3136 }
3137}
3138
cd0fc7c3
SS
3139/* Given an execution control state that has been freshly filled in
3140 by an event from the inferior, figure out what it means and take
3141 appropriate action. */
c906108c 3142
ec9499be 3143static void
96baa820 3144handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3145{
568d6575
UW
3146 struct frame_info *frame;
3147 struct gdbarch *gdbarch;
d983da9c
DJ
3148 int stopped_by_watchpoint;
3149 int stepped_after_stopped_by_watchpoint = 0;
2afb61aa 3150 struct symtab_and_line stop_pc_sal;
d6b48e9c
PA
3151 enum stop_kind stop_soon;
3152
28736962
PA
3153 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3154 {
3155 /* We had an event in the inferior, but we are not interested in
3156 handling it at this level. The lower layers have already
3157 done what needs to be done, if anything.
3158
3159 One of the possible circumstances for this is when the
3160 inferior produces output for the console. The inferior has
3161 not stopped, and we are ignoring the event. Another possible
3162 circumstance is any event which the lower level knows will be
3163 reported multiple times without an intervening resume. */
3164 if (debug_infrun)
3165 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3166 prepare_to_wait (ecs);
3167 return;
3168 }
3169
0e5bf2a8
PA
3170 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3171 && target_can_async_p () && !sync_execution)
3172 {
3173 /* There were no unwaited-for children left in the target, but,
3174 we're not synchronously waiting for events either. Just
3175 ignore. Otherwise, if we were running a synchronous
3176 execution command, we need to cancel it and give the user
3177 back the terminal. */
3178 if (debug_infrun)
3179 fprintf_unfiltered (gdb_stdlog,
3180 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3181 prepare_to_wait (ecs);
3182 return;
3183 }
3184
d6b48e9c 3185 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
0e5bf2a8
PA
3186 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3187 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
d6b48e9c
PA
3188 {
3189 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
abbb1732 3190
d6b48e9c 3191 gdb_assert (inf);
16c381f0 3192 stop_soon = inf->control.stop_soon;
d6b48e9c
PA
3193 }
3194 else
3195 stop_soon = NO_STOP_QUIETLY;
cd0fc7c3 3196
1777feb0 3197 /* Cache the last pid/waitstatus. */
39f77062 3198 target_last_wait_ptid = ecs->ptid;
0d1e5fa7 3199 target_last_waitstatus = ecs->ws;
e02bc4cc 3200
ca005067 3201 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3202 stop_stack_dummy = STOP_NONE;
ca005067 3203
0e5bf2a8
PA
3204 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3205 {
3206 /* No unwaited-for children left. IOW, all resumed children
3207 have exited. */
3208 if (debug_infrun)
3209 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3210
3211 stop_print_frame = 0;
3212 stop_stepping (ecs);
3213 return;
3214 }
3215
1777feb0 3216 /* If it's a new process, add it to the thread database. */
8c90c137
LM
3217
3218 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
3219 && !ptid_equal (ecs->ptid, minus_one_ptid)
3220 && !in_thread_list (ecs->ptid));
3221
3222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
3224 add_thread (ecs->ptid);
3225
e09875d4 3226 ecs->event_thread = find_thread_ptid (ecs->ptid);
88ed393a
JK
3227
3228 /* Dependent on valid ECS->EVENT_THREAD. */
3229 adjust_pc_after_break (ecs);
3230
3231 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3232 reinit_frame_cache ();
3233
28736962
PA
3234 breakpoint_retire_moribund ();
3235
2b009048
DJ
3236 /* First, distinguish signals caused by the debugger from signals
3237 that have to do with the program's own actions. Note that
3238 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3239 on the operating system version. Here we detect when a SIGILL or
3240 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3241 something similar for SIGSEGV, since a SIGSEGV will be generated
3242 when we're trying to execute a breakpoint instruction on a
3243 non-executable stack. This happens for call dummy breakpoints
3244 for architectures like SPARC that place call dummies on the
3245 stack. */
2b009048
DJ
3246 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3247 && (ecs->ws.value.sig == TARGET_SIGNAL_ILL
3248 || ecs->ws.value.sig == TARGET_SIGNAL_SEGV
de0a0249 3249 || ecs->ws.value.sig == TARGET_SIGNAL_EMT))
2b009048 3250 {
de0a0249
UW
3251 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3252
3253 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3254 regcache_read_pc (regcache)))
3255 {
3256 if (debug_infrun)
3257 fprintf_unfiltered (gdb_stdlog,
3258 "infrun: Treating signal as SIGTRAP\n");
3259 ecs->ws.value.sig = TARGET_SIGNAL_TRAP;
3260 }
2b009048
DJ
3261 }
3262
28736962
PA
3263 /* Mark the non-executing threads accordingly. In all-stop, all
3264 threads of all processes are stopped when we get any event
3265 reported. In non-stop mode, only the event thread stops. If
3266 we're handling a process exit in non-stop mode, there's nothing
3267 to do, as threads of the dead process are gone, and threads of
3268 any other process were left running. */
3269 if (!non_stop)
3270 set_executing (minus_one_ptid, 0);
3271 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3272 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3273 set_executing (ecs->ptid, 0);
8c90c137 3274
0d1e5fa7 3275 switch (infwait_state)
488f131b
JB
3276 {
3277 case infwait_thread_hop_state:
527159b7 3278 if (debug_infrun)
8a9de0e4 3279 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
65e82032 3280 break;
b83266a0 3281
488f131b 3282 case infwait_normal_state:
527159b7 3283 if (debug_infrun)
8a9de0e4 3284 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
d983da9c
DJ
3285 break;
3286
3287 case infwait_step_watch_state:
3288 if (debug_infrun)
3289 fprintf_unfiltered (gdb_stdlog,
3290 "infrun: infwait_step_watch_state\n");
3291
3292 stepped_after_stopped_by_watchpoint = 1;
488f131b 3293 break;
b83266a0 3294
488f131b 3295 case infwait_nonstep_watch_state:
527159b7 3296 if (debug_infrun)
8a9de0e4
AC
3297 fprintf_unfiltered (gdb_stdlog,
3298 "infrun: infwait_nonstep_watch_state\n");
488f131b 3299 insert_breakpoints ();
c906108c 3300
488f131b
JB
3301 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3302 handle things like signals arriving and other things happening
3303 in combination correctly? */
3304 stepped_after_stopped_by_watchpoint = 1;
3305 break;
65e82032
AC
3306
3307 default:
e2e0b3e5 3308 internal_error (__FILE__, __LINE__, _("bad switch"));
488f131b 3309 }
ec9499be 3310
0d1e5fa7 3311 infwait_state = infwait_normal_state;
ec9499be 3312 waiton_ptid = pid_to_ptid (-1);
c906108c 3313
488f131b
JB
3314 switch (ecs->ws.kind)
3315 {
3316 case TARGET_WAITKIND_LOADED:
527159b7 3317 if (debug_infrun)
8a9de0e4 3318 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
b0f4b84b
DJ
3319 /* Ignore gracefully during startup of the inferior, as it might
3320 be the shell which has just loaded some objects, otherwise
3321 add the symbols for the newly loaded objects. Also ignore at
3322 the beginning of an attach or remote session; we will query
3323 the full list of libraries once the connection is
3324 established. */
c0236d92 3325 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3326 {
488f131b
JB
3327 /* Check for any newly added shared libraries if we're
3328 supposed to be adding them automatically. Switch
3329 terminal for any messages produced by
3330 breakpoint_re_set. */
3331 target_terminal_ours_for_output ();
aff6338a 3332 /* NOTE: cagney/2003-11-25: Make certain that the target
8fb3e588
AC
3333 stack's section table is kept up-to-date. Architectures,
3334 (e.g., PPC64), use the section table to perform
3335 operations such as address => section name and hence
3336 require the table to contain all sections (including
3337 those found in shared libraries). */
b0f4b84b 3338#ifdef SOLIB_ADD
aff6338a 3339 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
b0f4b84b
DJ
3340#else
3341 solib_add (NULL, 0, &current_target, auto_solib_add);
3342#endif
488f131b
JB
3343 target_terminal_inferior ();
3344
b0f4b84b
DJ
3345 /* If requested, stop when the dynamic linker notifies
3346 gdb of events. This allows the user to get control
3347 and place breakpoints in initializer routines for
3348 dynamically loaded objects (among other things). */
3349 if (stop_on_solib_events)
3350 {
55409f9d
DJ
3351 /* Make sure we print "Stopped due to solib-event" in
3352 normal_stop. */
3353 stop_print_frame = 1;
3354
b0f4b84b
DJ
3355 stop_stepping (ecs);
3356 return;
3357 }
3358
3359 /* NOTE drow/2007-05-11: This might be a good place to check
3360 for "catch load". */
488f131b 3361 }
b0f4b84b
DJ
3362
3363 /* If we are skipping through a shell, or through shared library
3364 loading that we aren't interested in, resume the program. If
3365 we're running the program normally, also resume. But stop if
3366 we're attaching or setting up a remote connection. */
3367 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3368 {
74960c60
VP
3369 /* Loading of shared libraries might have changed breakpoint
3370 addresses. Make sure new breakpoints are inserted. */
0b02b92d
UW
3371 if (stop_soon == NO_STOP_QUIETLY
3372 && !breakpoints_always_inserted_mode ())
74960c60 3373 insert_breakpoints ();
b0f4b84b
DJ
3374 resume (0, TARGET_SIGNAL_0);
3375 prepare_to_wait (ecs);
3376 return;
3377 }
3378
3379 break;
c5aa993b 3380
488f131b 3381 case TARGET_WAITKIND_SPURIOUS:
527159b7 3382 if (debug_infrun)
8a9de0e4 3383 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
488f131b
JB
3384 resume (0, TARGET_SIGNAL_0);
3385 prepare_to_wait (ecs);
3386 return;
c5aa993b 3387
488f131b 3388 case TARGET_WAITKIND_EXITED:
527159b7 3389 if (debug_infrun)
8a9de0e4 3390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
fb66883a 3391 inferior_ptid = ecs->ptid;
6c95b8df
PA
3392 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3393 set_current_program_space (current_inferior ()->pspace);
3394 handle_vfork_child_exec_or_exit (0);
1777feb0 3395 target_terminal_ours (); /* Must do this before mourn anyway. */
33d62d64 3396 print_exited_reason (ecs->ws.value.integer);
488f131b
JB
3397
3398 /* Record the exit code in the convenience variable $_exitcode, so
3399 that the user can inspect this again later. */
4fa62494
UW
3400 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3401 (LONGEST) ecs->ws.value.integer);
8cf64490
TT
3402
3403 /* Also record this in the inferior itself. */
3404 current_inferior ()->has_exit_code = 1;
3405 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3406
488f131b
JB
3407 gdb_flush (gdb_stdout);
3408 target_mourn_inferior ();
1c0fdd0e 3409 singlestep_breakpoints_inserted_p = 0;
d03285ec 3410 cancel_single_step_breakpoints ();
488f131b
JB
3411 stop_print_frame = 0;
3412 stop_stepping (ecs);
3413 return;
c5aa993b 3414
488f131b 3415 case TARGET_WAITKIND_SIGNALLED:
527159b7 3416 if (debug_infrun)
8a9de0e4 3417 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
fb66883a 3418 inferior_ptid = ecs->ptid;
6c95b8df
PA
3419 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3420 set_current_program_space (current_inferior ()->pspace);
3421 handle_vfork_child_exec_or_exit (0);
488f131b 3422 stop_print_frame = 0;
1777feb0 3423 target_terminal_ours (); /* Must do this before mourn anyway. */
c5aa993b 3424
488f131b
JB
3425 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
3426 reach here unless the inferior is dead. However, for years
3427 target_kill() was called here, which hints that fatal signals aren't
3428 really fatal on some systems. If that's true, then some changes
1777feb0 3429 may be needed. */
488f131b 3430 target_mourn_inferior ();
c906108c 3431
33d62d64 3432 print_signal_exited_reason (ecs->ws.value.sig);
1c0fdd0e 3433 singlestep_breakpoints_inserted_p = 0;
d03285ec 3434 cancel_single_step_breakpoints ();
488f131b
JB
3435 stop_stepping (ecs);
3436 return;
c906108c 3437
488f131b 3438 /* The following are the only cases in which we keep going;
1777feb0 3439 the above cases end in a continue or goto. */
488f131b 3440 case TARGET_WAITKIND_FORKED:
deb3b17b 3441 case TARGET_WAITKIND_VFORKED:
527159b7 3442 if (debug_infrun)
8a9de0e4 3443 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
c906108c 3444
e2d96639
YQ
3445 /* Check whether the inferior is displaced stepping. */
3446 {
3447 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3448 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3449 struct displaced_step_inferior_state *displaced
3450 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3451
3452 /* If checking displaced stepping is supported, and thread
3453 ecs->ptid is displaced stepping. */
3454 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3455 {
3456 struct inferior *parent_inf
3457 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3458 struct regcache *child_regcache;
3459 CORE_ADDR parent_pc;
3460
3461 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3462 indicating that the displaced stepping of syscall instruction
3463 has been done. Perform cleanup for parent process here. Note
3464 that this operation also cleans up the child process for vfork,
3465 because their pages are shared. */
3466 displaced_step_fixup (ecs->ptid, TARGET_SIGNAL_TRAP);
3467
3468 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3469 {
3470 /* Restore scratch pad for child process. */
3471 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3472 }
3473
3474 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3475 the child's PC is also within the scratchpad. Set the child's PC
3476 to the parent's PC value, which has already been fixed up.
3477 FIXME: we use the parent's aspace here, although we're touching
3478 the child, because the child hasn't been added to the inferior
3479 list yet at this point. */
3480
3481 child_regcache
3482 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3483 gdbarch,
3484 parent_inf->aspace);
3485 /* Read PC value of parent process. */
3486 parent_pc = regcache_read_pc (regcache);
3487
3488 if (debug_displaced)
3489 fprintf_unfiltered (gdb_stdlog,
3490 "displaced: write child pc from %s to %s\n",
3491 paddress (gdbarch,
3492 regcache_read_pc (child_regcache)),
3493 paddress (gdbarch, parent_pc));
3494
3495 regcache_write_pc (child_regcache, parent_pc);
3496 }
3497 }
3498
5a2901d9
DJ
3499 if (!ptid_equal (ecs->ptid, inferior_ptid))
3500 {
0d1e5fa7 3501 context_switch (ecs->ptid);
35f196d9 3502 reinit_frame_cache ();
5a2901d9
DJ
3503 }
3504
b242c3c2
PA
3505 /* Immediately detach breakpoints from the child before there's
3506 any chance of letting the user delete breakpoints from the
3507 breakpoint lists. If we don't do this early, it's easy to
3508 leave left over traps in the child, vis: "break foo; catch
3509 fork; c; <fork>; del; c; <child calls foo>". We only follow
3510 the fork on the last `continue', and by that time the
3511 breakpoint at "foo" is long gone from the breakpoint table.
3512 If we vforked, then we don't need to unpatch here, since both
3513 parent and child are sharing the same memory pages; we'll
3514 need to unpatch at follow/detach time instead to be certain
3515 that new breakpoints added between catchpoint hit time and
3516 vfork follow are detached. */
3517 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3518 {
3519 int child_pid = ptid_get_pid (ecs->ws.value.related_pid);
3520
3521 /* This won't actually modify the breakpoint list, but will
3522 physically remove the breakpoints from the child. */
3523 detach_breakpoints (child_pid);
3524 }
3525
d03285ec
UW
3526 if (singlestep_breakpoints_inserted_p)
3527 {
1777feb0 3528 /* Pull the single step breakpoints out of the target. */
d03285ec
UW
3529 remove_single_step_breakpoints ();
3530 singlestep_breakpoints_inserted_p = 0;
3531 }
3532
e58b0e63
PA
3533 /* In case the event is caught by a catchpoint, remember that
3534 the event is to be followed at the next resume of the thread,
3535 and not immediately. */
3536 ecs->event_thread->pending_follow = ecs->ws;
3537
fb14de7b 3538 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 3539
16c381f0 3540 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3541 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3542 stop_pc, ecs->ptid);
675bf4cb 3543
67822962
PA
3544 /* Note that we're interested in knowing the bpstat actually
3545 causes a stop, not just if it may explain the signal.
3546 Software watchpoints, for example, always appear in the
3547 bpstat. */
16c381f0
JK
3548 ecs->random_signal
3549 = !bpstat_causes_stop (ecs->event_thread->control.stop_bpstat);
04e68871
DJ
3550
3551 /* If no catchpoint triggered for this, then keep going. */
3552 if (ecs->random_signal)
3553 {
6c95b8df
PA
3554 ptid_t parent;
3555 ptid_t child;
e58b0e63 3556 int should_resume;
3e43a32a
MS
3557 int follow_child
3558 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 3559
16c381f0 3560 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
e58b0e63
PA
3561
3562 should_resume = follow_fork ();
3563
6c95b8df
PA
3564 parent = ecs->ptid;
3565 child = ecs->ws.value.related_pid;
3566
3567 /* In non-stop mode, also resume the other branch. */
3568 if (non_stop && !detach_fork)
3569 {
3570 if (follow_child)
3571 switch_to_thread (parent);
3572 else
3573 switch_to_thread (child);
3574
3575 ecs->event_thread = inferior_thread ();
3576 ecs->ptid = inferior_ptid;
3577 keep_going (ecs);
3578 }
3579
3580 if (follow_child)
3581 switch_to_thread (child);
3582 else
3583 switch_to_thread (parent);
3584
e58b0e63
PA
3585 ecs->event_thread = inferior_thread ();
3586 ecs->ptid = inferior_ptid;
3587
3588 if (should_resume)
3589 keep_going (ecs);
3590 else
3591 stop_stepping (ecs);
04e68871
DJ
3592 return;
3593 }
16c381f0 3594 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3595 goto process_event_stop_test;
3596
6c95b8df
PA
3597 case TARGET_WAITKIND_VFORK_DONE:
3598 /* Done with the shared memory region. Re-insert breakpoints in
3599 the parent, and keep going. */
3600
3601 if (debug_infrun)
3e43a32a
MS
3602 fprintf_unfiltered (gdb_stdlog,
3603 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
3604
3605 if (!ptid_equal (ecs->ptid, inferior_ptid))
3606 context_switch (ecs->ptid);
3607
3608 current_inferior ()->waiting_for_vfork_done = 0;
56710373 3609 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
3610 /* This also takes care of reinserting breakpoints in the
3611 previously locked inferior. */
3612 keep_going (ecs);
3613 return;
3614
488f131b 3615 case TARGET_WAITKIND_EXECD:
527159b7 3616 if (debug_infrun)
fc5261f2 3617 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 3618
5a2901d9
DJ
3619 if (!ptid_equal (ecs->ptid, inferior_ptid))
3620 {
0d1e5fa7 3621 context_switch (ecs->ptid);
35f196d9 3622 reinit_frame_cache ();
5a2901d9
DJ
3623 }
3624
d03285ec
UW
3625 singlestep_breakpoints_inserted_p = 0;
3626 cancel_single_step_breakpoints ();
3627
fb14de7b 3628 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 3629
6c95b8df
PA
3630 /* Do whatever is necessary to the parent branch of the vfork. */
3631 handle_vfork_child_exec_or_exit (1);
3632
795e548f
PA
3633 /* This causes the eventpoints and symbol table to be reset.
3634 Must do this now, before trying to determine whether to
3635 stop. */
71b43ef8 3636 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 3637
16c381f0 3638 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
3639 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3640 stop_pc, ecs->ptid);
16c381f0
JK
3641 ecs->random_signal
3642 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat);
795e548f 3643
71b43ef8
PA
3644 /* Note that this may be referenced from inside
3645 bpstat_stop_status above, through inferior_has_execd. */
3646 xfree (ecs->ws.value.execd_pathname);
3647 ecs->ws.value.execd_pathname = NULL;
3648
04e68871
DJ
3649 /* If no catchpoint triggered for this, then keep going. */
3650 if (ecs->random_signal)
3651 {
16c381f0 3652 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
04e68871
DJ
3653 keep_going (ecs);
3654 return;
3655 }
16c381f0 3656 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
3657 goto process_event_stop_test;
3658
b4dc5ffa
MK
3659 /* Be careful not to try to gather much state about a thread
3660 that's in a syscall. It's frequently a losing proposition. */
488f131b 3661 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 3662 if (debug_infrun)
3e43a32a
MS
3663 fprintf_unfiltered (gdb_stdlog,
3664 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 3665 /* Getting the current syscall number. */
ca2163eb 3666 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3667 return;
3668 goto process_event_stop_test;
c906108c 3669
488f131b
JB
3670 /* Before examining the threads further, step this thread to
3671 get it entirely out of the syscall. (We get notice of the
3672 event when the thread is just on the verge of exiting a
3673 syscall. Stepping one instruction seems to get it back
b4dc5ffa 3674 into user code.) */
488f131b 3675 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 3676 if (debug_infrun)
3e43a32a
MS
3677 fprintf_unfiltered (gdb_stdlog,
3678 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
ca2163eb 3679 if (handle_syscall_event (ecs) != 0)
a96d9b2e
SDJ
3680 return;
3681 goto process_event_stop_test;
c906108c 3682
488f131b 3683 case TARGET_WAITKIND_STOPPED:
527159b7 3684 if (debug_infrun)
8a9de0e4 3685 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 3686 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
488f131b 3687 break;
c906108c 3688
b2175913 3689 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
3690 if (debug_infrun)
3691 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 3692 /* Reverse execution: target ran out of history info. */
fb14de7b 3693 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
33d62d64 3694 print_no_history_reason ();
b2175913
MS
3695 stop_stepping (ecs);
3696 return;
488f131b 3697 }
c906108c 3698
488f131b
JB
3699 if (ecs->new_thread_event)
3700 {
94cc34af
PA
3701 if (non_stop)
3702 /* Non-stop assumes that the target handles adding new threads
3703 to the thread list. */
3e43a32a
MS
3704 internal_error (__FILE__, __LINE__,
3705 "targets should add new threads to the thread "
3706 "list themselves in non-stop mode.");
94cc34af
PA
3707
3708 /* We may want to consider not doing a resume here in order to
3709 give the user a chance to play with the new thread. It might
3710 be good to make that a user-settable option. */
3711
3712 /* At this point, all threads are stopped (happens automatically
3713 in either the OS or the native code). Therefore we need to
3714 continue all threads in order to make progress. */
3715
173853dc
PA
3716 if (!ptid_equal (ecs->ptid, inferior_ptid))
3717 context_switch (ecs->ptid);
488f131b
JB
3718 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
3719 prepare_to_wait (ecs);
3720 return;
3721 }
c906108c 3722
2020b7ab 3723 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
252fbfc8
PA
3724 {
3725 /* Do we need to clean up the state of a thread that has
3726 completed a displaced single-step? (Doing so usually affects
3727 the PC, so do it here, before we set stop_pc.) */
16c381f0
JK
3728 displaced_step_fixup (ecs->ptid,
3729 ecs->event_thread->suspend.stop_signal);
252fbfc8
PA
3730
3731 /* If we either finished a single-step or hit a breakpoint, but
3732 the user wanted this thread to be stopped, pretend we got a
3733 SIG0 (generic unsignaled stop). */
3734
3735 if (ecs->event_thread->stop_requested
16c381f0
JK
3736 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
3737 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
252fbfc8 3738 }
237fc4c9 3739
515630c5 3740 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 3741
527159b7 3742 if (debug_infrun)
237fc4c9 3743 {
5af949e3
UW
3744 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3745 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
3746 struct cleanup *old_chain = save_inferior_ptid ();
3747
3748 inferior_ptid = ecs->ptid;
5af949e3
UW
3749
3750 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3751 paddress (gdbarch, stop_pc));
d92524f1 3752 if (target_stopped_by_watchpoint ())
237fc4c9
PA
3753 {
3754 CORE_ADDR addr;
abbb1732 3755
237fc4c9
PA
3756 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3757
3758 if (target_stopped_data_address (&current_target, &addr))
3759 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
3760 "infrun: stopped data address = %s\n",
3761 paddress (gdbarch, addr));
237fc4c9
PA
3762 else
3763 fprintf_unfiltered (gdb_stdlog,
3764 "infrun: (no data address available)\n");
3765 }
7f82dfc7
JK
3766
3767 do_cleanups (old_chain);
237fc4c9 3768 }
527159b7 3769
9f976b41
DJ
3770 if (stepping_past_singlestep_breakpoint)
3771 {
1c0fdd0e 3772 gdb_assert (singlestep_breakpoints_inserted_p);
9f976b41
DJ
3773 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3774 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3775
3776 stepping_past_singlestep_breakpoint = 0;
3777
3778 /* We've either finished single-stepping past the single-step
8fb3e588
AC
3779 breakpoint, or stopped for some other reason. It would be nice if
3780 we could tell, but we can't reliably. */
16c381f0 3781 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
8fb3e588 3782 {
527159b7 3783 if (debug_infrun)
3e43a32a
MS
3784 fprintf_unfiltered (gdb_stdlog,
3785 "infrun: stepping_past_"
3786 "singlestep_breakpoint\n");
9f976b41 3787 /* Pull the single step breakpoints out of the target. */
e0cd558a 3788 remove_single_step_breakpoints ();
9f976b41
DJ
3789 singlestep_breakpoints_inserted_p = 0;
3790
3791 ecs->random_signal = 0;
16c381f0 3792 ecs->event_thread->control.trap_expected = 0;
9f976b41 3793
0d1e5fa7 3794 context_switch (saved_singlestep_ptid);
9a4105ab
AC
3795 if (deprecated_context_hook)
3796 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
9f976b41
DJ
3797
3798 resume (1, TARGET_SIGNAL_0);
3799 prepare_to_wait (ecs);
3800 return;
3801 }
3802 }
3803
ca67fcb8 3804 if (!ptid_equal (deferred_step_ptid, null_ptid))
6a6b96b9 3805 {
94cc34af
PA
3806 /* In non-stop mode, there's never a deferred_step_ptid set. */
3807 gdb_assert (!non_stop);
3808
6a6b96b9
UW
3809 /* If we stopped for some other reason than single-stepping, ignore
3810 the fact that we were supposed to switch back. */
16c381f0 3811 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
6a6b96b9
UW
3812 {
3813 if (debug_infrun)
3814 fprintf_unfiltered (gdb_stdlog,
ca67fcb8 3815 "infrun: handling deferred step\n");
6a6b96b9
UW
3816
3817 /* Pull the single step breakpoints out of the target. */
3818 if (singlestep_breakpoints_inserted_p)
3819 {
3820 remove_single_step_breakpoints ();
3821 singlestep_breakpoints_inserted_p = 0;
3822 }
3823
cd3da28e
PA
3824 ecs->event_thread->control.trap_expected = 0;
3825
6a6b96b9
UW
3826 /* Note: We do not call context_switch at this point, as the
3827 context is already set up for stepping the original thread. */
ca67fcb8
VP
3828 switch_to_thread (deferred_step_ptid);
3829 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3830 /* Suppress spurious "Switching to ..." message. */
3831 previous_inferior_ptid = inferior_ptid;
3832
3833 resume (1, TARGET_SIGNAL_0);
3834 prepare_to_wait (ecs);
3835 return;
3836 }
ca67fcb8
VP
3837
3838 deferred_step_ptid = null_ptid;
6a6b96b9
UW
3839 }
3840
488f131b
JB
3841 /* See if a thread hit a thread-specific breakpoint that was meant for
3842 another thread. If so, then step that thread past the breakpoint,
3843 and continue it. */
3844
16c381f0 3845 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 3846 {
9f976b41 3847 int thread_hop_needed = 0;
cf00dfa7
VP
3848 struct address_space *aspace =
3849 get_regcache_aspace (get_thread_regcache (ecs->ptid));
9f976b41 3850
f8d40ec8 3851 /* Check if a regular breakpoint has been hit before checking
1777feb0 3852 for a potential single step breakpoint. Otherwise, GDB will
f8d40ec8 3853 not see this breakpoint hit when stepping onto breakpoints. */
6c95b8df 3854 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
488f131b 3855 {
c5aa993b 3856 ecs->random_signal = 0;
6c95b8df 3857 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
9f976b41
DJ
3858 thread_hop_needed = 1;
3859 }
1c0fdd0e 3860 else if (singlestep_breakpoints_inserted_p)
9f976b41 3861 {
fd48f117
DJ
3862 /* We have not context switched yet, so this should be true
3863 no matter which thread hit the singlestep breakpoint. */
3864 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3865 if (debug_infrun)
3866 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3867 "trap for %s\n",
3868 target_pid_to_str (ecs->ptid));
3869
9f976b41
DJ
3870 ecs->random_signal = 0;
3871 /* The call to in_thread_list is necessary because PTIDs sometimes
3872 change when we go from single-threaded to multi-threaded. If
3873 the singlestep_ptid is still in the list, assume that it is
3874 really different from ecs->ptid. */
3875 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3876 && in_thread_list (singlestep_ptid))
3877 {
fd48f117
DJ
3878 /* If the PC of the thread we were trying to single-step
3879 has changed, discard this event (which we were going
3880 to ignore anyway), and pretend we saw that thread
3881 trap. This prevents us continuously moving the
3882 single-step breakpoint forward, one instruction at a
3883 time. If the PC has changed, then the thread we were
3884 trying to single-step has trapped or been signalled,
3885 but the event has not been reported to GDB yet.
3886
3887 There might be some cases where this loses signal
3888 information, if a signal has arrived at exactly the
3889 same time that the PC changed, but this is the best
3890 we can do with the information available. Perhaps we
3891 should arrange to report all events for all threads
3892 when they stop, or to re-poll the remote looking for
3893 this particular thread (i.e. temporarily enable
3894 schedlock). */
515630c5
UW
3895
3896 CORE_ADDR new_singlestep_pc
3897 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3898
3899 if (new_singlestep_pc != singlestep_pc)
fd48f117 3900 {
2020b7ab
PA
3901 enum target_signal stop_signal;
3902
fd48f117
DJ
3903 if (debug_infrun)
3904 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3905 " but expected thread advanced also\n");
3906
3907 /* The current context still belongs to
3908 singlestep_ptid. Don't swap here, since that's
3909 the context we want to use. Just fudge our
3910 state and continue. */
16c381f0
JK
3911 stop_signal = ecs->event_thread->suspend.stop_signal;
3912 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
fd48f117 3913 ecs->ptid = singlestep_ptid;
e09875d4 3914 ecs->event_thread = find_thread_ptid (ecs->ptid);
16c381f0 3915 ecs->event_thread->suspend.stop_signal = stop_signal;
515630c5 3916 stop_pc = new_singlestep_pc;
fd48f117
DJ
3917 }
3918 else
3919 {
3920 if (debug_infrun)
3921 fprintf_unfiltered (gdb_stdlog,
3922 "infrun: unexpected thread\n");
3923
3924 thread_hop_needed = 1;
3925 stepping_past_singlestep_breakpoint = 1;
3926 saved_singlestep_ptid = singlestep_ptid;
3927 }
9f976b41
DJ
3928 }
3929 }
3930
3931 if (thread_hop_needed)
8fb3e588 3932 {
9f5a595d 3933 struct regcache *thread_regcache;
237fc4c9 3934 int remove_status = 0;
8fb3e588 3935
527159b7 3936 if (debug_infrun)
8a9de0e4 3937 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
527159b7 3938
b3444185
PA
3939 /* Switch context before touching inferior memory, the
3940 previous thread may have exited. */
3941 if (!ptid_equal (inferior_ptid, ecs->ptid))
3942 context_switch (ecs->ptid);
3943
8fb3e588 3944 /* Saw a breakpoint, but it was hit by the wrong thread.
1777feb0 3945 Just continue. */
8fb3e588 3946
1c0fdd0e 3947 if (singlestep_breakpoints_inserted_p)
488f131b 3948 {
1777feb0 3949 /* Pull the single step breakpoints out of the target. */
e0cd558a 3950 remove_single_step_breakpoints ();
8fb3e588
AC
3951 singlestep_breakpoints_inserted_p = 0;
3952 }
3953
237fc4c9
PA
3954 /* If the arch can displace step, don't remove the
3955 breakpoints. */
9f5a595d
UW
3956 thread_regcache = get_thread_regcache (ecs->ptid);
3957 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
3958 remove_status = remove_breakpoints ();
3959
8fb3e588
AC
3960 /* Did we fail to remove breakpoints? If so, try
3961 to set the PC past the bp. (There's at least
3962 one situation in which we can fail to remove
3963 the bp's: On HP-UX's that use ttrace, we can't
3964 change the address space of a vforking child
3965 process until the child exits (well, okay, not
1777feb0 3966 then either :-) or execs. */
8fb3e588 3967 if (remove_status != 0)
9d9cd7ac 3968 error (_("Cannot step over breakpoint hit in wrong thread"));
8fb3e588
AC
3969 else
3970 { /* Single step */
94cc34af
PA
3971 if (!non_stop)
3972 {
3973 /* Only need to require the next event from this
3974 thread in all-stop mode. */
3975 waiton_ptid = ecs->ptid;
3976 infwait_state = infwait_thread_hop_state;
3977 }
8fb3e588 3978
4e1c45ea 3979 ecs->event_thread->stepping_over_breakpoint = 1;
8fb3e588 3980 keep_going (ecs);
8fb3e588
AC
3981 return;
3982 }
488f131b 3983 }
1c0fdd0e 3984 else if (singlestep_breakpoints_inserted_p)
8fb3e588 3985 {
8fb3e588
AC
3986 ecs->random_signal = 0;
3987 }
488f131b
JB
3988 }
3989 else
3990 ecs->random_signal = 1;
c906108c 3991
488f131b 3992 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
3993 so, then switch to that thread. */
3994 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 3995 {
527159b7 3996 if (debug_infrun)
8a9de0e4 3997 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 3998
0d1e5fa7 3999 context_switch (ecs->ptid);
c5aa993b 4000
9a4105ab
AC
4001 if (deprecated_context_hook)
4002 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4003 }
c906108c 4004
568d6575
UW
4005 /* At this point, get hold of the now-current thread's frame. */
4006 frame = get_current_frame ();
4007 gdbarch = get_frame_arch (frame);
4008
1c0fdd0e 4009 if (singlestep_breakpoints_inserted_p)
488f131b 4010 {
1777feb0 4011 /* Pull the single step breakpoints out of the target. */
e0cd558a 4012 remove_single_step_breakpoints ();
488f131b
JB
4013 singlestep_breakpoints_inserted_p = 0;
4014 }
c906108c 4015
d983da9c
DJ
4016 if (stepped_after_stopped_by_watchpoint)
4017 stopped_by_watchpoint = 0;
4018 else
4019 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4020
4021 /* If necessary, step over this watchpoint. We'll be back to display
4022 it in a moment. */
4023 if (stopped_by_watchpoint
d92524f1 4024 && (target_have_steppable_watchpoint
568d6575 4025 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4026 {
488f131b
JB
4027 /* At this point, we are stopped at an instruction which has
4028 attempted to write to a piece of memory under control of
4029 a watchpoint. The instruction hasn't actually executed
4030 yet. If we were to evaluate the watchpoint expression
4031 now, we would get the old value, and therefore no change
4032 would seem to have occurred.
4033
4034 In order to make watchpoints work `right', we really need
4035 to complete the memory write, and then evaluate the
d983da9c
DJ
4036 watchpoint expression. We do this by single-stepping the
4037 target.
4038
4039 It may not be necessary to disable the watchpoint to stop over
4040 it. For example, the PA can (with some kernel cooperation)
4041 single step over a watchpoint without disabling the watchpoint.
4042
4043 It is far more common to need to disable a watchpoint to step
4044 the inferior over it. If we have non-steppable watchpoints,
4045 we must disable the current watchpoint; it's simplest to
4046 disable all watchpoints and breakpoints. */
2facfe5c
DD
4047 int hw_step = 1;
4048
d92524f1 4049 if (!target_have_steppable_watchpoint)
2455069d
UW
4050 {
4051 remove_breakpoints ();
4052 /* See comment in resume why we need to stop bypassing signals
4053 while breakpoints have been removed. */
4054 target_pass_signals (0, NULL);
4055 }
2facfe5c 4056 /* Single step */
568d6575 4057 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
2facfe5c 4058 target_resume (ecs->ptid, hw_step, TARGET_SIGNAL_0);
0d1e5fa7 4059 waiton_ptid = ecs->ptid;
d92524f1 4060 if (target_have_steppable_watchpoint)
0d1e5fa7 4061 infwait_state = infwait_step_watch_state;
d983da9c 4062 else
0d1e5fa7 4063 infwait_state = infwait_nonstep_watch_state;
488f131b
JB
4064 prepare_to_wait (ecs);
4065 return;
4066 }
4067
7e324e48 4068 clear_stop_func (ecs);
4e1c45ea 4069 ecs->event_thread->stepping_over_breakpoint = 0;
16c381f0
JK
4070 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4071 ecs->event_thread->control.stop_step = 0;
488f131b
JB
4072 stop_print_frame = 1;
4073 ecs->random_signal = 0;
4074 stopped_by_random_signal = 0;
488f131b 4075
edb3359d
DJ
4076 /* Hide inlined functions starting here, unless we just performed stepi or
4077 nexti. After stepi and nexti, always show the innermost frame (not any
4078 inline function call sites). */
16c381f0 4079 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4080 {
4081 struct address_space *aspace =
4082 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4083
4084 /* skip_inline_frames is expensive, so we avoid it if we can
4085 determine that the address is one where functions cannot have
4086 been inlined. This improves performance with inferiors that
4087 load a lot of shared libraries, because the solib event
4088 breakpoint is defined as the address of a function (i.e. not
4089 inline). Note that we have to check the previous PC as well
4090 as the current one to catch cases when we have just
4091 single-stepped off a breakpoint prior to reinstating it.
4092 Note that we're assuming that the code we single-step to is
4093 not inline, but that's not definitive: there's nothing
4094 preventing the event breakpoint function from containing
4095 inlined code, and the single-step ending up there. If the
4096 user had set a breakpoint on that inlined code, the missing
4097 skip_inline_frames call would break things. Fortunately
4098 that's an extremely unlikely scenario. */
4099 if (!pc_at_non_inline_function (aspace, stop_pc)
4100 && !(ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4101 && ecs->event_thread->control.trap_expected
4102 && pc_at_non_inline_function (aspace,
4103 ecs->event_thread->prev_pc)))
4104 skip_inline_frames (ecs->ptid);
4105 }
edb3359d 4106
16c381f0
JK
4107 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4108 && ecs->event_thread->control.trap_expected
568d6575 4109 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4110 && currently_stepping (ecs->event_thread))
3352ef37 4111 {
b50d7442 4112 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4113 also on an instruction that needs to be stepped multiple
1777feb0 4114 times before it's been fully executing. E.g., architectures
3352ef37
AC
4115 with a delay slot. It needs to be stepped twice, once for
4116 the instruction and once for the delay slot. */
4117 int step_through_delay
568d6575 4118 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4119
527159b7 4120 if (debug_infrun && step_through_delay)
8a9de0e4 4121 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4122 if (ecs->event_thread->control.step_range_end == 0
4123 && step_through_delay)
3352ef37
AC
4124 {
4125 /* The user issued a continue when stopped at a breakpoint.
4126 Set up for another trap and get out of here. */
4e1c45ea 4127 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4128 keep_going (ecs);
4129 return;
4130 }
4131 else if (step_through_delay)
4132 {
4133 /* The user issued a step when stopped at a breakpoint.
4134 Maybe we should stop, maybe we should not - the delay
4135 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4136 case, don't decide that here, just set
4137 ecs->stepping_over_breakpoint, making sure we
4138 single-step again before breakpoints are re-inserted. */
4e1c45ea 4139 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4140 }
4141 }
4142
488f131b
JB
4143 /* Look at the cause of the stop, and decide what to do.
4144 The alternatives are:
0d1e5fa7
PA
4145 1) stop_stepping and return; to really stop and return to the debugger,
4146 2) keep_going and return to start up again
4e1c45ea 4147 (set ecs->event_thread->stepping_over_breakpoint to 1 to single step once)
488f131b
JB
4148 3) set ecs->random_signal to 1, and the decision between 1 and 2
4149 will be made according to the signal handling tables. */
4150
16c381f0 4151 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
b0f4b84b
DJ
4152 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP
4153 || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4154 {
16c381f0
JK
4155 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4156 && stop_after_trap)
488f131b 4157 {
527159b7 4158 if (debug_infrun)
8a9de0e4 4159 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
488f131b
JB
4160 stop_print_frame = 0;
4161 stop_stepping (ecs);
4162 return;
4163 }
c54cfec8
EZ
4164
4165 /* This is originated from start_remote(), start_inferior() and
4166 shared libraries hook functions. */
b0f4b84b 4167 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
488f131b 4168 {
527159b7 4169 if (debug_infrun)
8a9de0e4 4170 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
488f131b
JB
4171 stop_stepping (ecs);
4172 return;
4173 }
4174
c54cfec8 4175 /* This originates from attach_command(). We need to overwrite
a0d21d28
PA
4176 the stop_signal here, because some kernels don't ignore a
4177 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4178 See more comments in inferior.h. On the other hand, if we
a0ef4274 4179 get a non-SIGSTOP, report it to the user - assume the backend
a0d21d28
PA
4180 will handle the SIGSTOP if it should show up later.
4181
4182 Also consider that the attach is complete when we see a
4183 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4184 target extended-remote report it instead of a SIGSTOP
4185 (e.g. gdbserver). We already rely on SIGTRAP being our
e0ba6746
PA
4186 signal, so this is no exception.
4187
4188 Also consider that the attach is complete when we see a
4189 TARGET_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4190 the target to stop all threads of the inferior, in case the
4191 low level attach operation doesn't stop them implicitly. If
4192 they weren't stopped implicitly, then the stub will report a
4193 TARGET_SIGNAL_0, meaning: stopped for no particular reason
4194 other than GDB's request. */
a0ef4274 4195 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
16c381f0
JK
4196 && (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_STOP
4197 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4198 || ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_0))
c54cfec8
EZ
4199 {
4200 stop_stepping (ecs);
16c381f0 4201 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
c54cfec8
EZ
4202 return;
4203 }
4204
fba57f8f 4205 /* See if there is a breakpoint at the current PC. */
16c381f0 4206 ecs->event_thread->control.stop_bpstat
6c95b8df
PA
4207 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4208 stop_pc, ecs->ptid);
4209
fba57f8f
VP
4210 /* Following in case break condition called a
4211 function. */
4212 stop_print_frame = 1;
488f131b 4213
db82e815
PA
4214 /* This is where we handle "moribund" watchpoints. Unlike
4215 software breakpoints traps, hardware watchpoint traps are
4216 always distinguishable from random traps. If no high-level
4217 watchpoint is associated with the reported stop data address
4218 anymore, then the bpstat does not explain the signal ---
4219 simply make sure to ignore it if `stopped_by_watchpoint' is
4220 set. */
4221
4222 if (debug_infrun
16c381f0
JK
4223 && ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
4224 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4225 && stopped_by_watchpoint)
3e43a32a
MS
4226 fprintf_unfiltered (gdb_stdlog,
4227 "infrun: no user watchpoint explains "
4228 "watchpoint SIGTRAP, ignoring\n");
db82e815 4229
73dd234f 4230 /* NOTE: cagney/2003-03-29: These two checks for a random signal
8fb3e588
AC
4231 at one stage in the past included checks for an inferior
4232 function call's call dummy's return breakpoint. The original
4233 comment, that went with the test, read:
73dd234f 4234
8fb3e588
AC
4235 ``End of a stack dummy. Some systems (e.g. Sony news) give
4236 another signal besides SIGTRAP, so check here as well as
4237 above.''
73dd234f 4238
8002d778 4239 If someone ever tries to get call dummys on a
73dd234f 4240 non-executable stack to work (where the target would stop
03cebad2
MK
4241 with something like a SIGSEGV), then those tests might need
4242 to be re-instated. Given, however, that the tests were only
73dd234f 4243 enabled when momentary breakpoints were not being used, I
03cebad2
MK
4244 suspect that it won't be the case.
4245
8fb3e588
AC
4246 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4247 be necessary for call dummies on a non-executable stack on
4248 SPARC. */
73dd234f 4249
16c381f0 4250 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP)
488f131b 4251 ecs->random_signal
16c381f0 4252 = !(bpstat_explains_signal (ecs->event_thread->control.stop_bpstat)
db82e815 4253 || stopped_by_watchpoint
16c381f0
JK
4254 || ecs->event_thread->control.trap_expected
4255 || (ecs->event_thread->control.step_range_end
8358c15c
JK
4256 && (ecs->event_thread->control.step_resume_breakpoint
4257 == NULL)));
488f131b
JB
4258 else
4259 {
16c381f0
JK
4260 ecs->random_signal = !bpstat_explains_signal
4261 (ecs->event_thread->control.stop_bpstat);
488f131b 4262 if (!ecs->random_signal)
16c381f0 4263 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_TRAP;
488f131b
JB
4264 }
4265 }
4266
4267 /* When we reach this point, we've pretty much decided
4268 that the reason for stopping must've been a random
1777feb0 4269 (unexpected) signal. */
488f131b
JB
4270
4271 else
4272 ecs->random_signal = 1;
488f131b 4273
04e68871 4274process_event_stop_test:
568d6575
UW
4275
4276 /* Re-fetch current thread's frame in case we did a
4277 "goto process_event_stop_test" above. */
4278 frame = get_current_frame ();
4279 gdbarch = get_frame_arch (frame);
4280
488f131b
JB
4281 /* For the program's own signals, act according to
4282 the signal handling tables. */
4283
4284 if (ecs->random_signal)
4285 {
4286 /* Signal not for debugging purposes. */
4287 int printed = 0;
24291992 4288 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
488f131b 4289
527159b7 4290 if (debug_infrun)
2020b7ab 4291 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n",
16c381f0 4292 ecs->event_thread->suspend.stop_signal);
527159b7 4293
488f131b
JB
4294 stopped_by_random_signal = 1;
4295
16c381f0 4296 if (signal_print[ecs->event_thread->suspend.stop_signal])
488f131b
JB
4297 {
4298 printed = 1;
4299 target_terminal_ours_for_output ();
16c381f0
JK
4300 print_signal_received_reason
4301 (ecs->event_thread->suspend.stop_signal);
488f131b 4302 }
252fbfc8
PA
4303 /* Always stop on signals if we're either just gaining control
4304 of the program, or the user explicitly requested this thread
4305 to remain stopped. */
d6b48e9c 4306 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4307 || ecs->event_thread->stop_requested
24291992 4308 || (!inf->detaching
16c381f0 4309 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b
JB
4310 {
4311 stop_stepping (ecs);
4312 return;
4313 }
4314 /* If not going to stop, give terminal back
4315 if we took it away. */
4316 else if (printed)
4317 target_terminal_inferior ();
4318
4319 /* Clear the signal if it should not be passed. */
16c381f0
JK
4320 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4321 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
488f131b 4322
fb14de7b 4323 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4324 && ecs->event_thread->control.trap_expected
8358c15c 4325 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4326 {
4327 /* We were just starting a new sequence, attempting to
4328 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4329 Instead this signal arrives. This signal will take us out
68f53502
AC
4330 of the stepping range so GDB needs to remember to, when
4331 the signal handler returns, resume stepping off that
4332 breakpoint. */
4333 /* To simplify things, "continue" is forced to use the same
4334 code paths as single-step - set a breakpoint at the
4335 signal return address and then, once hit, step off that
4336 breakpoint. */
237fc4c9
PA
4337 if (debug_infrun)
4338 fprintf_unfiltered (gdb_stdlog,
4339 "infrun: signal arrived while stepping over "
4340 "breakpoint\n");
d3169d93 4341
2c03e5be 4342 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4343 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4344 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4345 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4346 keep_going (ecs);
4347 return;
68f53502 4348 }
9d799f85 4349
16c381f0
JK
4350 if (ecs->event_thread->control.step_range_end != 0
4351 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_0
4352 && (ecs->event_thread->control.step_range_start <= stop_pc
4353 && stop_pc < ecs->event_thread->control.step_range_end)
edb3359d 4354 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4355 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4356 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4357 {
4358 /* The inferior is about to take a signal that will take it
4359 out of the single step range. Set a breakpoint at the
4360 current PC (which is presumably where the signal handler
4361 will eventually return) and then allow the inferior to
4362 run free.
4363
4364 Note that this is only needed for a signal delivered
4365 while in the single-step range. Nested signals aren't a
4366 problem as they eventually all return. */
237fc4c9
PA
4367 if (debug_infrun)
4368 fprintf_unfiltered (gdb_stdlog,
4369 "infrun: signal may take us out of "
4370 "single-step range\n");
4371
2c03e5be 4372 insert_hp_step_resume_breakpoint_at_frame (frame);
2455069d
UW
4373 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4374 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4375 keep_going (ecs);
4376 return;
d303a6c7 4377 }
9d799f85
AC
4378
4379 /* Note: step_resume_breakpoint may be non-NULL. This occures
4380 when either there's a nested signal, or when there's a
4381 pending signal enabled just as the signal handler returns
4382 (leaving the inferior at the step-resume-breakpoint without
4383 actually executing it). Either way continue until the
4384 breakpoint is really hit. */
488f131b
JB
4385 keep_going (ecs);
4386 return;
4387 }
4388
4389 /* Handle cases caused by hitting a breakpoint. */
4390 {
4391 CORE_ADDR jmp_buf_pc;
4392 struct bpstat_what what;
4393
16c381f0 4394 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
488f131b
JB
4395
4396 if (what.call_dummy)
4397 {
aa7d318d 4398 stop_stack_dummy = what.call_dummy;
c5aa993b 4399 }
c906108c 4400
628fe4e4
JK
4401 /* If we hit an internal event that triggers symbol changes, the
4402 current frame will be invalidated within bpstat_what (e.g., if
4403 we hit an internal solib event). Re-fetch it. */
4404 frame = get_current_frame ();
4405 gdbarch = get_frame_arch (frame);
4406
488f131b 4407 switch (what.main_action)
c5aa993b 4408 {
488f131b 4409 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
611c83ae
PA
4410 /* If we hit the breakpoint at longjmp while stepping, we
4411 install a momentary breakpoint at the target of the
4412 jmp_buf. */
4413
4414 if (debug_infrun)
4415 fprintf_unfiltered (gdb_stdlog,
4416 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4417
4e1c45ea 4418 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4419
186c406b 4420 if (what.is_longjmp)
c5aa993b 4421 {
186c406b
TT
4422 if (!gdbarch_get_longjmp_target_p (gdbarch)
4423 || !gdbarch_get_longjmp_target (gdbarch,
4424 frame, &jmp_buf_pc))
4425 {
4426 if (debug_infrun)
3e43a32a
MS
4427 fprintf_unfiltered (gdb_stdlog,
4428 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4429 "(!gdbarch_get_longjmp_target)\n");
186c406b
TT
4430 keep_going (ecs);
4431 return;
4432 }
488f131b 4433
186c406b
TT
4434 /* We're going to replace the current step-resume breakpoint
4435 with a longjmp-resume breakpoint. */
4436 delete_step_resume_breakpoint (ecs->event_thread);
611c83ae 4437
186c406b
TT
4438 /* Insert a breakpoint at resume address. */
4439 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4440 }
4441 else
4442 {
4443 struct symbol *func = get_frame_function (frame);
c906108c 4444
186c406b
TT
4445 if (func)
4446 check_exception_resume (ecs, frame, func);
4447 }
488f131b
JB
4448 keep_going (ecs);
4449 return;
c906108c 4450
488f131b 4451 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
527159b7 4452 if (debug_infrun)
611c83ae
PA
4453 fprintf_unfiltered (gdb_stdlog,
4454 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4455
186c406b
TT
4456 if (what.is_longjmp)
4457 {
4458 gdb_assert (ecs->event_thread->control.step_resume_breakpoint
4459 != NULL);
4460 delete_step_resume_breakpoint (ecs->event_thread);
4461 }
4462 else
4463 {
4464 /* There are several cases to consider.
4465
4466 1. The initiating frame no longer exists. In this case
4467 we must stop, because the exception has gone too far.
4468
4469 2. The initiating frame exists, and is the same as the
4470 current frame. We stop, because the exception has been
4471 caught.
4472
4473 3. The initiating frame exists and is different from
4474 the current frame. This means the exception has been
4475 caught beneath the initiating frame, so keep going. */
4476 struct frame_info *init_frame
4477 = frame_find_by_id (ecs->event_thread->initiating_frame);
4478
4479 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4480 != NULL);
4481 delete_exception_resume_breakpoint (ecs->event_thread);
4482
4483 if (init_frame)
4484 {
4485 struct frame_id current_id
4486 = get_frame_id (get_current_frame ());
4487 if (frame_id_eq (current_id,
4488 ecs->event_thread->initiating_frame))
4489 {
4490 /* Case 2. Fall through. */
4491 }
4492 else
4493 {
4494 /* Case 3. */
4495 keep_going (ecs);
4496 return;
4497 }
4498 }
4499
4500 /* For Cases 1 and 2, remove the step-resume breakpoint,
4501 if it exists. */
4502 delete_step_resume_breakpoint (ecs->event_thread);
4503 }
611c83ae 4504
16c381f0 4505 ecs->event_thread->control.stop_step = 1;
33d62d64 4506 print_end_stepping_range_reason ();
611c83ae
PA
4507 stop_stepping (ecs);
4508 return;
488f131b
JB
4509
4510 case BPSTAT_WHAT_SINGLE:
527159b7 4511 if (debug_infrun)
8802d8ed 4512 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4e1c45ea 4513 ecs->event_thread->stepping_over_breakpoint = 1;
488f131b
JB
4514 /* Still need to check other stuff, at least the case
4515 where we are stepping and step out of the right range. */
4516 break;
c906108c 4517
2c03e5be
PA
4518 case BPSTAT_WHAT_STEP_RESUME:
4519 if (debug_infrun)
4520 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4521
4522 delete_step_resume_breakpoint (ecs->event_thread);
9da8c2a0
PA
4523 if (ecs->event_thread->control.proceed_to_finish
4524 && execution_direction == EXEC_REVERSE)
4525 {
4526 struct thread_info *tp = ecs->event_thread;
4527
4528 /* We are finishing a function in reverse, and just hit
4529 the step-resume breakpoint at the start address of the
4530 function, and we're almost there -- just need to back
4531 up by one more single-step, which should take us back
4532 to the function call. */
4533 tp->control.step_range_start = tp->control.step_range_end = 1;
4534 keep_going (ecs);
4535 return;
4536 }
7e324e48 4537 fill_in_stop_func (gdbarch, ecs);
2c03e5be
PA
4538 if (stop_pc == ecs->stop_func_start
4539 && execution_direction == EXEC_REVERSE)
4540 {
4541 /* We are stepping over a function call in reverse, and
4542 just hit the step-resume breakpoint at the start
4543 address of the function. Go back to single-stepping,
4544 which should take us back to the function call. */
4545 ecs->event_thread->stepping_over_breakpoint = 1;
4546 keep_going (ecs);
4547 return;
4548 }
4549 break;
4550
488f131b 4551 case BPSTAT_WHAT_STOP_NOISY:
527159b7 4552 if (debug_infrun)
8802d8ed 4553 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
488f131b 4554 stop_print_frame = 1;
c906108c 4555
d303a6c7
AC
4556 /* We are about to nuke the step_resume_breakpointt via the
4557 cleanup chain, so no need to worry about it here. */
c5aa993b 4558
488f131b
JB
4559 stop_stepping (ecs);
4560 return;
c5aa993b 4561
488f131b 4562 case BPSTAT_WHAT_STOP_SILENT:
527159b7 4563 if (debug_infrun)
8802d8ed 4564 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
488f131b 4565 stop_print_frame = 0;
c5aa993b 4566
d303a6c7
AC
4567 /* We are about to nuke the step_resume_breakpoin via the
4568 cleanup chain, so no need to worry about it here. */
c5aa993b 4569
488f131b 4570 stop_stepping (ecs);
e441088d 4571 return;
c5aa993b 4572
2c03e5be 4573 case BPSTAT_WHAT_HP_STEP_RESUME:
527159b7 4574 if (debug_infrun)
2c03e5be 4575 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
527159b7 4576
4e1c45ea
PA
4577 delete_step_resume_breakpoint (ecs->event_thread);
4578 if (ecs->event_thread->step_after_step_resume_breakpoint)
68f53502
AC
4579 {
4580 /* Back when the step-resume breakpoint was inserted, we
4581 were trying to single-step off a breakpoint. Go back
4582 to doing that. */
4e1c45ea
PA
4583 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4584 ecs->event_thread->stepping_over_breakpoint = 1;
68f53502
AC
4585 keep_going (ecs);
4586 return;
4587 }
488f131b
JB
4588 break;
4589
488f131b
JB
4590 case BPSTAT_WHAT_KEEP_CHECKING:
4591 break;
4592 }
4593 }
c906108c 4594
488f131b
JB
4595 /* We come here if we hit a breakpoint but should not
4596 stop for it. Possibly we also were stepping
4597 and should stop for that. So fall through and
4598 test for stepping. But, if not stepping,
4599 do not stop. */
c906108c 4600
a7212384
UW
4601 /* In all-stop mode, if we're currently stepping but have stopped in
4602 some other thread, we need to switch back to the stepped thread. */
4603 if (!non_stop)
4604 {
4605 struct thread_info *tp;
abbb1732 4606
b3444185 4607 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
a7212384
UW
4608 ecs->event_thread);
4609 if (tp)
4610 {
4611 /* However, if the current thread is blocked on some internal
4612 breakpoint, and we simply need to step over that breakpoint
4613 to get it going again, do that first. */
16c381f0
JK
4614 if ((ecs->event_thread->control.trap_expected
4615 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
a7212384
UW
4616 || ecs->event_thread->stepping_over_breakpoint)
4617 {
4618 keep_going (ecs);
4619 return;
4620 }
4621
66852e9c
PA
4622 /* If the stepping thread exited, then don't try to switch
4623 back and resume it, which could fail in several different
4624 ways depending on the target. Instead, just keep going.
4625
4626 We can find a stepping dead thread in the thread list in
4627 two cases:
4628
4629 - The target supports thread exit events, and when the
4630 target tries to delete the thread from the thread list,
4631 inferior_ptid pointed at the exiting thread. In such
4632 case, calling delete_thread does not really remove the
4633 thread from the list; instead, the thread is left listed,
4634 with 'exited' state.
4635
4636 - The target's debug interface does not support thread
4637 exit events, and so we have no idea whatsoever if the
4638 previously stepping thread is still alive. For that
4639 reason, we need to synchronously query the target
4640 now. */
b3444185
PA
4641 if (is_exited (tp->ptid)
4642 || !target_thread_alive (tp->ptid))
4643 {
4644 if (debug_infrun)
3e43a32a
MS
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: not switching back to "
4647 "stepped thread, it has vanished\n");
b3444185
PA
4648
4649 delete_thread (tp->ptid);
4650 keep_going (ecs);
4651 return;
4652 }
4653
a7212384
UW
4654 /* Otherwise, we no longer expect a trap in the current thread.
4655 Clear the trap_expected flag before switching back -- this is
4656 what keep_going would do as well, if we called it. */
16c381f0 4657 ecs->event_thread->control.trap_expected = 0;
a7212384
UW
4658
4659 if (debug_infrun)
4660 fprintf_unfiltered (gdb_stdlog,
4661 "infrun: switching back to stepped thread\n");
4662
4663 ecs->event_thread = tp;
4664 ecs->ptid = tp->ptid;
4665 context_switch (ecs->ptid);
4666 keep_going (ecs);
4667 return;
4668 }
4669 }
4670
8358c15c 4671 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4672 {
527159b7 4673 if (debug_infrun)
d3169d93
DJ
4674 fprintf_unfiltered (gdb_stdlog,
4675 "infrun: step-resume breakpoint is inserted\n");
527159b7 4676
488f131b
JB
4677 /* Having a step-resume breakpoint overrides anything
4678 else having to do with stepping commands until
4679 that breakpoint is reached. */
488f131b
JB
4680 keep_going (ecs);
4681 return;
4682 }
c5aa993b 4683
16c381f0 4684 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4685 {
527159b7 4686 if (debug_infrun)
8a9de0e4 4687 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 4688 /* Likewise if we aren't even stepping. */
488f131b
JB
4689 keep_going (ecs);
4690 return;
4691 }
c5aa993b 4692
4b7703ad
JB
4693 /* Re-fetch current thread's frame in case the code above caused
4694 the frame cache to be re-initialized, making our FRAME variable
4695 a dangling pointer. */
4696 frame = get_current_frame ();
628fe4e4 4697 gdbarch = get_frame_arch (frame);
7e324e48 4698 fill_in_stop_func (gdbarch, ecs);
4b7703ad 4699
488f131b 4700 /* If stepping through a line, keep going if still within it.
c906108c 4701
488f131b
JB
4702 Note that step_range_end is the address of the first instruction
4703 beyond the step range, and NOT the address of the last instruction
31410e84
MS
4704 within it!
4705
4706 Note also that during reverse execution, we may be stepping
4707 through a function epilogue and therefore must detect when
4708 the current-frame changes in the middle of a line. */
4709
16c381f0
JK
4710 if (stop_pc >= ecs->event_thread->control.step_range_start
4711 && stop_pc < ecs->event_thread->control.step_range_end
31410e84 4712 && (execution_direction != EXEC_REVERSE
388a8562 4713 || frame_id_eq (get_frame_id (frame),
16c381f0 4714 ecs->event_thread->control.step_frame_id)))
488f131b 4715 {
527159b7 4716 if (debug_infrun)
5af949e3
UW
4717 fprintf_unfiltered
4718 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
4719 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4720 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913
MS
4721
4722 /* When stepping backward, stop at beginning of line range
4723 (unless it's the function entry point, in which case
4724 keep going back to the call point). */
16c381f0 4725 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
4726 && stop_pc != ecs->stop_func_start
4727 && execution_direction == EXEC_REVERSE)
4728 {
16c381f0 4729 ecs->event_thread->control.stop_step = 1;
33d62d64 4730 print_end_stepping_range_reason ();
b2175913
MS
4731 stop_stepping (ecs);
4732 }
4733 else
4734 keep_going (ecs);
4735
488f131b
JB
4736 return;
4737 }
c5aa993b 4738
488f131b 4739 /* We stepped out of the stepping range. */
c906108c 4740
488f131b 4741 /* If we are stepping at the source level and entered the runtime
388a8562
MS
4742 loader dynamic symbol resolution code...
4743
4744 EXEC_FORWARD: we keep on single stepping until we exit the run
4745 time loader code and reach the callee's address.
4746
4747 EXEC_REVERSE: we've already executed the callee (backward), and
4748 the runtime loader code is handled just like any other
4749 undebuggable function call. Now we need only keep stepping
4750 backward through the trampoline code, and that's handled further
4751 down, so there is nothing for us to do here. */
4752
4753 if (execution_direction != EXEC_REVERSE
16c381f0 4754 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 4755 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 4756 {
4c8c40e6 4757 CORE_ADDR pc_after_resolver =
568d6575 4758 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 4759
527159b7 4760 if (debug_infrun)
3e43a32a
MS
4761 fprintf_unfiltered (gdb_stdlog,
4762 "infrun: stepped into dynsym resolve code\n");
527159b7 4763
488f131b
JB
4764 if (pc_after_resolver)
4765 {
4766 /* Set up a step-resume breakpoint at the address
4767 indicated by SKIP_SOLIB_RESOLVER. */
4768 struct symtab_and_line sr_sal;
abbb1732 4769
fe39c653 4770 init_sal (&sr_sal);
488f131b 4771 sr_sal.pc = pc_after_resolver;
6c95b8df 4772 sr_sal.pspace = get_frame_program_space (frame);
488f131b 4773
a6d9a66e
UW
4774 insert_step_resume_breakpoint_at_sal (gdbarch,
4775 sr_sal, null_frame_id);
c5aa993b 4776 }
c906108c 4777
488f131b
JB
4778 keep_going (ecs);
4779 return;
4780 }
c906108c 4781
16c381f0
JK
4782 if (ecs->event_thread->control.step_range_end != 1
4783 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4784 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 4785 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 4786 {
527159b7 4787 if (debug_infrun)
3e43a32a
MS
4788 fprintf_unfiltered (gdb_stdlog,
4789 "infrun: stepped into signal trampoline\n");
42edda50 4790 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
4791 a signal trampoline (either by a signal being delivered or by
4792 the signal handler returning). Just single-step until the
4793 inferior leaves the trampoline (either by calling the handler
4794 or returning). */
488f131b
JB
4795 keep_going (ecs);
4796 return;
4797 }
c906108c 4798
c17eaafe
DJ
4799 /* Check for subroutine calls. The check for the current frame
4800 equalling the step ID is not necessary - the check of the
4801 previous frame's ID is sufficient - but it is a common case and
4802 cheaper than checking the previous frame's ID.
14e60db5
DJ
4803
4804 NOTE: frame_id_eq will never report two invalid frame IDs as
4805 being equal, so to get into this block, both the current and
4806 previous frame must have valid frame IDs. */
005ca36a
JB
4807 /* The outer_frame_id check is a heuristic to detect stepping
4808 through startup code. If we step over an instruction which
4809 sets the stack pointer from an invalid value to a valid value,
4810 we may detect that as a subroutine call from the mythical
4811 "outermost" function. This could be fixed by marking
4812 outermost frames as !stack_p,code_p,special_p. Then the
4813 initial outermost frame, before sp was valid, would
ce6cca6d 4814 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 4815 for more. */
edb3359d 4816 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 4817 ecs->event_thread->control.step_stack_frame_id)
005ca36a 4818 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
4819 ecs->event_thread->control.step_stack_frame_id)
4820 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
4821 outer_frame_id)
4822 || step_start_function != find_pc_function (stop_pc))))
488f131b 4823 {
95918acb 4824 CORE_ADDR real_stop_pc;
8fb3e588 4825
527159b7 4826 if (debug_infrun)
8a9de0e4 4827 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 4828
16c381f0
JK
4829 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4830 || ((ecs->event_thread->control.step_range_end == 1)
d80b854b 4831 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4e1c45ea 4832 ecs->stop_func_start)))
95918acb
AC
4833 {
4834 /* I presume that step_over_calls is only 0 when we're
4835 supposed to be stepping at the assembly language level
4836 ("stepi"). Just stop. */
4837 /* Also, maybe we just did a "nexti" inside a prolog, so we
4838 thought it was a subroutine call but it was not. Stop as
4839 well. FENN */
388a8562 4840 /* And this works the same backward as frontward. MVS */
16c381f0 4841 ecs->event_thread->control.stop_step = 1;
33d62d64 4842 print_end_stepping_range_reason ();
95918acb
AC
4843 stop_stepping (ecs);
4844 return;
4845 }
8fb3e588 4846
388a8562
MS
4847 /* Reverse stepping through solib trampolines. */
4848
4849 if (execution_direction == EXEC_REVERSE
16c381f0 4850 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
4851 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4852 || (ecs->stop_func_start == 0
4853 && in_solib_dynsym_resolve_code (stop_pc))))
4854 {
4855 /* Any solib trampoline code can be handled in reverse
4856 by simply continuing to single-step. We have already
4857 executed the solib function (backwards), and a few
4858 steps will take us back through the trampoline to the
4859 caller. */
4860 keep_going (ecs);
4861 return;
4862 }
4863
16c381f0 4864 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 4865 {
b2175913
MS
4866 /* We're doing a "next".
4867
4868 Normal (forward) execution: set a breakpoint at the
4869 callee's return address (the address at which the caller
4870 will resume).
4871
4872 Reverse (backward) execution. set the step-resume
4873 breakpoint at the start of the function that we just
4874 stepped into (backwards), and continue to there. When we
6130d0b7 4875 get there, we'll need to single-step back to the caller. */
b2175913
MS
4876
4877 if (execution_direction == EXEC_REVERSE)
4878 {
4879 struct symtab_and_line sr_sal;
3067f6e5 4880
388a8562
MS
4881 /* Normal function call return (static or dynamic). */
4882 init_sal (&sr_sal);
4883 sr_sal.pc = ecs->stop_func_start;
6c95b8df
PA
4884 sr_sal.pspace = get_frame_program_space (frame);
4885 insert_step_resume_breakpoint_at_sal (gdbarch,
4886 sr_sal, null_frame_id);
b2175913
MS
4887 }
4888 else
568d6575 4889 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4890
8567c30f
AC
4891 keep_going (ecs);
4892 return;
4893 }
a53c66de 4894
95918acb 4895 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
4896 calling routine and the real function), locate the real
4897 function. That's what tells us (a) whether we want to step
4898 into it at all, and (b) what prologue we want to run to the
4899 end of, if we do step into it. */
568d6575 4900 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 4901 if (real_stop_pc == 0)
568d6575 4902 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
4903 if (real_stop_pc != 0)
4904 ecs->stop_func_start = real_stop_pc;
8fb3e588 4905
db5f024e 4906 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
4907 {
4908 struct symtab_and_line sr_sal;
abbb1732 4909
1b2bfbb9
RC
4910 init_sal (&sr_sal);
4911 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4912 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 4913
a6d9a66e
UW
4914 insert_step_resume_breakpoint_at_sal (gdbarch,
4915 sr_sal, null_frame_id);
8fb3e588
AC
4916 keep_going (ecs);
4917 return;
1b2bfbb9
RC
4918 }
4919
95918acb 4920 /* If we have line number information for the function we are
1bfeeb0f
JL
4921 thinking of stepping into and the function isn't on the skip
4922 list, step into it.
95918acb 4923
8fb3e588
AC
4924 If there are several symtabs at that PC (e.g. with include
4925 files), just want to know whether *any* of them have line
4926 numbers. find_pc_line handles this. */
95918acb
AC
4927 {
4928 struct symtab_and_line tmp_sal;
8fb3e588 4929
95918acb 4930 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
1bfeeb0f
JL
4931 if (tmp_sal.line != 0 &&
4932 !function_pc_is_marked_for_skip (ecs->stop_func_start))
95918acb 4933 {
b2175913 4934 if (execution_direction == EXEC_REVERSE)
568d6575 4935 handle_step_into_function_backward (gdbarch, ecs);
b2175913 4936 else
568d6575 4937 handle_step_into_function (gdbarch, ecs);
95918acb
AC
4938 return;
4939 }
4940 }
4941
4942 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
4943 set, we stop the step so that the user has a chance to switch
4944 in assembly mode. */
16c381f0 4945 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 4946 && step_stop_if_no_debug)
95918acb 4947 {
16c381f0 4948 ecs->event_thread->control.stop_step = 1;
33d62d64 4949 print_end_stepping_range_reason ();
95918acb
AC
4950 stop_stepping (ecs);
4951 return;
4952 }
4953
b2175913
MS
4954 if (execution_direction == EXEC_REVERSE)
4955 {
4956 /* Set a breakpoint at callee's start address.
4957 From there we can step once and be back in the caller. */
4958 struct symtab_and_line sr_sal;
abbb1732 4959
b2175913
MS
4960 init_sal (&sr_sal);
4961 sr_sal.pc = ecs->stop_func_start;
6c95b8df 4962 sr_sal.pspace = get_frame_program_space (frame);
a6d9a66e
UW
4963 insert_step_resume_breakpoint_at_sal (gdbarch,
4964 sr_sal, null_frame_id);
b2175913
MS
4965 }
4966 else
4967 /* Set a breakpoint at callee's return address (the address
4968 at which the caller will resume). */
568d6575 4969 insert_step_resume_breakpoint_at_caller (frame);
b2175913 4970
95918acb 4971 keep_going (ecs);
488f131b 4972 return;
488f131b 4973 }
c906108c 4974
fdd654f3
MS
4975 /* Reverse stepping through solib trampolines. */
4976
4977 if (execution_direction == EXEC_REVERSE
16c381f0 4978 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
4979 {
4980 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4981 || (ecs->stop_func_start == 0
4982 && in_solib_dynsym_resolve_code (stop_pc)))
4983 {
4984 /* Any solib trampoline code can be handled in reverse
4985 by simply continuing to single-step. We have already
4986 executed the solib function (backwards), and a few
4987 steps will take us back through the trampoline to the
4988 caller. */
4989 keep_going (ecs);
4990 return;
4991 }
4992 else if (in_solib_dynsym_resolve_code (stop_pc))
4993 {
4994 /* Stepped backward into the solib dynsym resolver.
4995 Set a breakpoint at its start and continue, then
4996 one more step will take us out. */
4997 struct symtab_and_line sr_sal;
abbb1732 4998
fdd654f3
MS
4999 init_sal (&sr_sal);
5000 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5001 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5002 insert_step_resume_breakpoint_at_sal (gdbarch,
5003 sr_sal, null_frame_id);
5004 keep_going (ecs);
5005 return;
5006 }
5007 }
5008
488f131b
JB
5009 /* If we're in the return path from a shared library trampoline,
5010 we want to proceed through the trampoline when stepping. */
568d6575 5011 if (gdbarch_in_solib_return_trampoline (gdbarch,
e76f05fa 5012 stop_pc, ecs->stop_func_name))
488f131b 5013 {
488f131b 5014 /* Determine where this trampoline returns. */
52f729a7 5015 CORE_ADDR real_stop_pc;
abbb1732 5016
568d6575 5017 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
c906108c 5018
527159b7 5019 if (debug_infrun)
3e43a32a
MS
5020 fprintf_unfiltered (gdb_stdlog,
5021 "infrun: stepped into solib return tramp\n");
527159b7 5022
488f131b 5023 /* Only proceed through if we know where it's going. */
d764a824 5024 if (real_stop_pc)
488f131b 5025 {
1777feb0 5026 /* And put the step-breakpoint there and go until there. */
488f131b
JB
5027 struct symtab_and_line sr_sal;
5028
fe39c653 5029 init_sal (&sr_sal); /* initialize to zeroes */
d764a824 5030 sr_sal.pc = real_stop_pc;
488f131b 5031 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5032 sr_sal.pspace = get_frame_program_space (frame);
44cbf7b5
AC
5033
5034 /* Do not specify what the fp should be when we stop since
5035 on some machines the prologue is where the new fp value
5036 is established. */
a6d9a66e
UW
5037 insert_step_resume_breakpoint_at_sal (gdbarch,
5038 sr_sal, null_frame_id);
c906108c 5039
488f131b
JB
5040 /* Restart without fiddling with the step ranges or
5041 other state. */
5042 keep_going (ecs);
5043 return;
5044 }
5045 }
c906108c 5046
2afb61aa 5047 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5048
1b2bfbb9
RC
5049 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5050 the trampoline processing logic, however, there are some trampolines
5051 that have no names, so we should do trampoline handling first. */
16c381f0 5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5053 && ecs->stop_func_name == NULL
2afb61aa 5054 && stop_pc_sal.line == 0)
1b2bfbb9 5055 {
527159b7 5056 if (debug_infrun)
3e43a32a
MS
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: stepped into undebuggable function\n");
527159b7 5059
1b2bfbb9 5060 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5061 undebuggable function (where there is no debugging information
5062 and no line number corresponding to the address where the
1b2bfbb9
RC
5063 inferior stopped). Since we want to skip this kind of code,
5064 we keep going until the inferior returns from this
14e60db5
DJ
5065 function - unless the user has asked us not to (via
5066 set step-mode) or we no longer know how to get back
5067 to the call site. */
5068 if (step_stop_if_no_debug
c7ce8faa 5069 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5070 {
5071 /* If we have no line number and the step-stop-if-no-debug
5072 is set, we stop the step so that the user has a chance to
5073 switch in assembly mode. */
16c381f0 5074 ecs->event_thread->control.stop_step = 1;
33d62d64 5075 print_end_stepping_range_reason ();
1b2bfbb9
RC
5076 stop_stepping (ecs);
5077 return;
5078 }
5079 else
5080 {
5081 /* Set a breakpoint at callee's return address (the address
5082 at which the caller will resume). */
568d6575 5083 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5084 keep_going (ecs);
5085 return;
5086 }
5087 }
5088
16c381f0 5089 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5090 {
5091 /* It is stepi or nexti. We always want to stop stepping after
5092 one instruction. */
527159b7 5093 if (debug_infrun)
8a9de0e4 5094 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
16c381f0 5095 ecs->event_thread->control.stop_step = 1;
33d62d64 5096 print_end_stepping_range_reason ();
1b2bfbb9
RC
5097 stop_stepping (ecs);
5098 return;
5099 }
5100
2afb61aa 5101 if (stop_pc_sal.line == 0)
488f131b
JB
5102 {
5103 /* We have no line number information. That means to stop
5104 stepping (does this always happen right after one instruction,
5105 when we do "s" in a function with no line numbers,
5106 or can this happen as a result of a return or longjmp?). */
527159b7 5107 if (debug_infrun)
8a9de0e4 5108 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
16c381f0 5109 ecs->event_thread->control.stop_step = 1;
33d62d64 5110 print_end_stepping_range_reason ();
488f131b
JB
5111 stop_stepping (ecs);
5112 return;
5113 }
c906108c 5114
edb3359d
DJ
5115 /* Look for "calls" to inlined functions, part one. If the inline
5116 frame machinery detected some skipped call sites, we have entered
5117 a new inline function. */
5118
5119 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5120 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5121 && inline_skipped_frames (ecs->ptid))
5122 {
5123 struct symtab_and_line call_sal;
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into inlined function\n");
5128
5129 find_frame_sal (get_current_frame (), &call_sal);
5130
16c381f0 5131 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5132 {
5133 /* For "step", we're going to stop. But if the call site
5134 for this inlined function is on the same source line as
5135 we were previously stepping, go down into the function
5136 first. Otherwise stop at the call site. */
5137
5138 if (call_sal.line == ecs->event_thread->current_line
5139 && call_sal.symtab == ecs->event_thread->current_symtab)
5140 step_into_inline_frame (ecs->ptid);
5141
16c381f0 5142 ecs->event_thread->control.stop_step = 1;
33d62d64 5143 print_end_stepping_range_reason ();
edb3359d
DJ
5144 stop_stepping (ecs);
5145 return;
5146 }
5147 else
5148 {
5149 /* For "next", we should stop at the call site if it is on a
5150 different source line. Otherwise continue through the
5151 inlined function. */
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 keep_going (ecs);
5155 else
5156 {
16c381f0 5157 ecs->event_thread->control.stop_step = 1;
33d62d64 5158 print_end_stepping_range_reason ();
edb3359d
DJ
5159 stop_stepping (ecs);
5160 }
5161 return;
5162 }
5163 }
5164
5165 /* Look for "calls" to inlined functions, part two. If we are still
5166 in the same real function we were stepping through, but we have
5167 to go further up to find the exact frame ID, we are stepping
5168 through a more inlined call beyond its call site. */
5169
5170 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5171 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5172 ecs->event_thread->control.step_frame_id)
edb3359d 5173 && stepped_in_from (get_current_frame (),
16c381f0 5174 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepping through inlined function\n");
5179
16c381f0 5180 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5181 keep_going (ecs);
5182 else
5183 {
16c381f0 5184 ecs->event_thread->control.stop_step = 1;
33d62d64 5185 print_end_stepping_range_reason ();
edb3359d
DJ
5186 stop_stepping (ecs);
5187 }
5188 return;
5189 }
5190
2afb61aa 5191 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5192 && (ecs->event_thread->current_line != stop_pc_sal.line
5193 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5194 {
5195 /* We are at the start of a different line. So stop. Note that
5196 we don't stop if we step into the middle of a different line.
5197 That is said to make things like for (;;) statements work
5198 better. */
527159b7 5199 if (debug_infrun)
3e43a32a
MS
5200 fprintf_unfiltered (gdb_stdlog,
5201 "infrun: stepped to a different line\n");
16c381f0 5202 ecs->event_thread->control.stop_step = 1;
33d62d64 5203 print_end_stepping_range_reason ();
488f131b
JB
5204 stop_stepping (ecs);
5205 return;
5206 }
c906108c 5207
488f131b 5208 /* We aren't done stepping.
c906108c 5209
488f131b
JB
5210 Optimize by setting the stepping range to the line.
5211 (We might not be in the original line, but if we entered a
5212 new line in mid-statement, we continue stepping. This makes
5213 things like for(;;) statements work better.) */
c906108c 5214
16c381f0
JK
5215 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5216 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
edb3359d 5217 set_step_info (frame, stop_pc_sal);
488f131b 5218
527159b7 5219 if (debug_infrun)
8a9de0e4 5220 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5221 keep_going (ecs);
104c1213
JM
5222}
5223
b3444185 5224/* Is thread TP in the middle of single-stepping? */
104c1213 5225
a289b8f6 5226static int
b3444185 5227currently_stepping (struct thread_info *tp)
a7212384 5228{
8358c15c
JK
5229 return ((tp->control.step_range_end
5230 && tp->control.step_resume_breakpoint == NULL)
5231 || tp->control.trap_expected
8358c15c 5232 || bpstat_should_step ());
a7212384
UW
5233}
5234
b3444185
PA
5235/* Returns true if any thread *but* the one passed in "data" is in the
5236 middle of stepping or of handling a "next". */
a7212384 5237
104c1213 5238static int
b3444185 5239currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
104c1213 5240{
b3444185
PA
5241 if (tp == data)
5242 return 0;
5243
16c381f0 5244 return (tp->control.step_range_end
ede1849f 5245 || tp->control.trap_expected);
104c1213 5246}
c906108c 5247
b2175913
MS
5248/* Inferior has stepped into a subroutine call with source code that
5249 we should not step over. Do step to the first line of code in
5250 it. */
c2c6d25f
JM
5251
5252static void
568d6575
UW
5253handle_step_into_function (struct gdbarch *gdbarch,
5254 struct execution_control_state *ecs)
c2c6d25f
JM
5255{
5256 struct symtab *s;
2afb61aa 5257 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5258
7e324e48
GB
5259 fill_in_stop_func (gdbarch, ecs);
5260
c2c6d25f
JM
5261 s = find_pc_symtab (stop_pc);
5262 if (s && s->language != language_asm)
568d6575 5263 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5264 ecs->stop_func_start);
c2c6d25f 5265
2afb61aa 5266 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5267 /* Use the step_resume_break to step until the end of the prologue,
5268 even if that involves jumps (as it seems to on the vax under
5269 4.2). */
5270 /* If the prologue ends in the middle of a source line, continue to
5271 the end of that source line (if it is still within the function).
5272 Otherwise, just go to end of prologue. */
2afb61aa
PA
5273 if (stop_func_sal.end
5274 && stop_func_sal.pc != ecs->stop_func_start
5275 && stop_func_sal.end < ecs->stop_func_end)
5276 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5277
2dbd5e30
KB
5278 /* Architectures which require breakpoint adjustment might not be able
5279 to place a breakpoint at the computed address. If so, the test
5280 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5281 ecs->stop_func_start to an address at which a breakpoint may be
5282 legitimately placed.
8fb3e588 5283
2dbd5e30
KB
5284 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5285 made, GDB will enter an infinite loop when stepping through
5286 optimized code consisting of VLIW instructions which contain
5287 subinstructions corresponding to different source lines. On
5288 FR-V, it's not permitted to place a breakpoint on any but the
5289 first subinstruction of a VLIW instruction. When a breakpoint is
5290 set, GDB will adjust the breakpoint address to the beginning of
5291 the VLIW instruction. Thus, we need to make the corresponding
5292 adjustment here when computing the stop address. */
8fb3e588 5293
568d6575 5294 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5295 {
5296 ecs->stop_func_start
568d6575 5297 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5298 ecs->stop_func_start);
2dbd5e30
KB
5299 }
5300
c2c6d25f
JM
5301 if (ecs->stop_func_start == stop_pc)
5302 {
5303 /* We are already there: stop now. */
16c381f0 5304 ecs->event_thread->control.stop_step = 1;
33d62d64 5305 print_end_stepping_range_reason ();
c2c6d25f
JM
5306 stop_stepping (ecs);
5307 return;
5308 }
5309 else
5310 {
5311 /* Put the step-breakpoint there and go until there. */
fe39c653 5312 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5313 sr_sal.pc = ecs->stop_func_start;
5314 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5315 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5316
c2c6d25f 5317 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5318 some machines the prologue is where the new fp value is
5319 established. */
a6d9a66e 5320 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5321
5322 /* And make sure stepping stops right away then. */
16c381f0
JK
5323 ecs->event_thread->control.step_range_end
5324 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5325 }
5326 keep_going (ecs);
5327}
d4f3574e 5328
b2175913
MS
5329/* Inferior has stepped backward into a subroutine call with source
5330 code that we should not step over. Do step to the beginning of the
5331 last line of code in it. */
5332
5333static void
568d6575
UW
5334handle_step_into_function_backward (struct gdbarch *gdbarch,
5335 struct execution_control_state *ecs)
b2175913
MS
5336{
5337 struct symtab *s;
167e4384 5338 struct symtab_and_line stop_func_sal;
b2175913 5339
7e324e48
GB
5340 fill_in_stop_func (gdbarch, ecs);
5341
b2175913
MS
5342 s = find_pc_symtab (stop_pc);
5343 if (s && s->language != language_asm)
568d6575 5344 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5345 ecs->stop_func_start);
5346
5347 stop_func_sal = find_pc_line (stop_pc, 0);
5348
5349 /* OK, we're just going to keep stepping here. */
5350 if (stop_func_sal.pc == stop_pc)
5351 {
5352 /* We're there already. Just stop stepping now. */
16c381f0 5353 ecs->event_thread->control.stop_step = 1;
33d62d64 5354 print_end_stepping_range_reason ();
b2175913
MS
5355 stop_stepping (ecs);
5356 }
5357 else
5358 {
5359 /* Else just reset the step range and keep going.
5360 No step-resume breakpoint, they don't work for
5361 epilogues, which can have multiple entry paths. */
16c381f0
JK
5362 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5363 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5364 keep_going (ecs);
5365 }
5366 return;
5367}
5368
d3169d93 5369/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5370 This is used to both functions and to skip over code. */
5371
5372static void
2c03e5be
PA
5373insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5374 struct symtab_and_line sr_sal,
5375 struct frame_id sr_id,
5376 enum bptype sr_type)
44cbf7b5 5377{
611c83ae
PA
5378 /* There should never be more than one step-resume or longjmp-resume
5379 breakpoint per thread, so we should never be setting a new
44cbf7b5 5380 step_resume_breakpoint when one is already active. */
8358c15c 5381 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5382 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5383
5384 if (debug_infrun)
5385 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5386 "infrun: inserting step-resume breakpoint at %s\n",
5387 paddress (gdbarch, sr_sal.pc));
d3169d93 5388
8358c15c 5389 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5390 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5391}
5392
9da8c2a0 5393void
2c03e5be
PA
5394insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5395 struct symtab_and_line sr_sal,
5396 struct frame_id sr_id)
5397{
5398 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5399 sr_sal, sr_id,
5400 bp_step_resume);
44cbf7b5 5401}
7ce450bd 5402
2c03e5be
PA
5403/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5404 This is used to skip a potential signal handler.
7ce450bd 5405
14e60db5
DJ
5406 This is called with the interrupted function's frame. The signal
5407 handler, when it returns, will resume the interrupted function at
5408 RETURN_FRAME.pc. */
d303a6c7
AC
5409
5410static void
2c03e5be 5411insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5412{
5413 struct symtab_and_line sr_sal;
a6d9a66e 5414 struct gdbarch *gdbarch;
d303a6c7 5415
f4c1edd8 5416 gdb_assert (return_frame != NULL);
d303a6c7
AC
5417 init_sal (&sr_sal); /* initialize to zeros */
5418
a6d9a66e 5419 gdbarch = get_frame_arch (return_frame);
568d6575 5420 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5421 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5422 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5423
2c03e5be
PA
5424 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5425 get_stack_frame_id (return_frame),
5426 bp_hp_step_resume);
d303a6c7
AC
5427}
5428
2c03e5be
PA
5429/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5430 is used to skip a function after stepping into it (for "next" or if
5431 the called function has no debugging information).
14e60db5
DJ
5432
5433 The current function has almost always been reached by single
5434 stepping a call or return instruction. NEXT_FRAME belongs to the
5435 current function, and the breakpoint will be set at the caller's
5436 resume address.
5437
5438 This is a separate function rather than reusing
2c03e5be 5439 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5440 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5441 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5442
5443static void
5444insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5445{
5446 struct symtab_and_line sr_sal;
a6d9a66e 5447 struct gdbarch *gdbarch;
14e60db5
DJ
5448
5449 /* We shouldn't have gotten here if we don't know where the call site
5450 is. */
c7ce8faa 5451 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5452
5453 init_sal (&sr_sal); /* initialize to zeros */
5454
a6d9a66e 5455 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5456 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5457 frame_unwind_caller_pc (next_frame));
14e60db5 5458 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5459 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5460
a6d9a66e 5461 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5462 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5463}
5464
611c83ae
PA
5465/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5466 new breakpoint at the target of a jmp_buf. The handling of
5467 longjmp-resume uses the same mechanisms used for handling
5468 "step-resume" breakpoints. */
5469
5470static void
a6d9a66e 5471insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae
PA
5472{
5473 /* There should never be more than one step-resume or longjmp-resume
5474 breakpoint per thread, so we should never be setting a new
5475 longjmp_resume_breakpoint when one is already active. */
8358c15c 5476 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
611c83ae
PA
5477
5478 if (debug_infrun)
5479 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5480 "infrun: inserting longjmp-resume breakpoint at %s\n",
5481 paddress (gdbarch, pc));
611c83ae 5482
8358c15c 5483 inferior_thread ()->control.step_resume_breakpoint =
a6d9a66e 5484 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
5485}
5486
186c406b
TT
5487/* Insert an exception resume breakpoint. TP is the thread throwing
5488 the exception. The block B is the block of the unwinder debug hook
5489 function. FRAME is the frame corresponding to the call to this
5490 function. SYM is the symbol of the function argument holding the
5491 target PC of the exception. */
5492
5493static void
5494insert_exception_resume_breakpoint (struct thread_info *tp,
5495 struct block *b,
5496 struct frame_info *frame,
5497 struct symbol *sym)
5498{
5499 struct gdb_exception e;
5500
5501 /* We want to ignore errors here. */
5502 TRY_CATCH (e, RETURN_MASK_ERROR)
5503 {
5504 struct symbol *vsym;
5505 struct value *value;
5506 CORE_ADDR handler;
5507 struct breakpoint *bp;
5508
5509 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5510 value = read_var_value (vsym, frame);
5511 /* If the value was optimized out, revert to the old behavior. */
5512 if (! value_optimized_out (value))
5513 {
5514 handler = value_as_address (value);
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog,
5518 "infrun: exception resume at %lx\n",
5519 (unsigned long) handler);
5520
5521 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5522 handler, bp_exception_resume);
5523 bp->thread = tp->num;
5524 inferior_thread ()->control.exception_resume_breakpoint = bp;
5525 }
5526 }
5527}
5528
5529/* This is called when an exception has been intercepted. Check to
5530 see whether the exception's destination is of interest, and if so,
5531 set an exception resume breakpoint there. */
5532
5533static void
5534check_exception_resume (struct execution_control_state *ecs,
5535 struct frame_info *frame, struct symbol *func)
5536{
5537 struct gdb_exception e;
5538
5539 TRY_CATCH (e, RETURN_MASK_ERROR)
5540 {
5541 struct block *b;
5542 struct dict_iterator iter;
5543 struct symbol *sym;
5544 int argno = 0;
5545
5546 /* The exception breakpoint is a thread-specific breakpoint on
5547 the unwinder's debug hook, declared as:
5548
5549 void _Unwind_DebugHook (void *cfa, void *handler);
5550
5551 The CFA argument indicates the frame to which control is
5552 about to be transferred. HANDLER is the destination PC.
5553
5554 We ignore the CFA and set a temporary breakpoint at HANDLER.
5555 This is not extremely efficient but it avoids issues in gdb
5556 with computing the DWARF CFA, and it also works even in weird
5557 cases such as throwing an exception from inside a signal
5558 handler. */
5559
5560 b = SYMBOL_BLOCK_VALUE (func);
5561 ALL_BLOCK_SYMBOLS (b, iter, sym)
5562 {
5563 if (!SYMBOL_IS_ARGUMENT (sym))
5564 continue;
5565
5566 if (argno == 0)
5567 ++argno;
5568 else
5569 {
5570 insert_exception_resume_breakpoint (ecs->event_thread,
5571 b, frame, sym);
5572 break;
5573 }
5574 }
5575 }
5576}
5577
104c1213
JM
5578static void
5579stop_stepping (struct execution_control_state *ecs)
5580{
527159b7 5581 if (debug_infrun)
8a9de0e4 5582 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
527159b7 5583
cd0fc7c3
SS
5584 /* Let callers know we don't want to wait for the inferior anymore. */
5585 ecs->wait_some_more = 0;
5586}
5587
d4f3574e
SS
5588/* This function handles various cases where we need to continue
5589 waiting for the inferior. */
1777feb0 5590/* (Used to be the keep_going: label in the old wait_for_inferior). */
d4f3574e
SS
5591
5592static void
5593keep_going (struct execution_control_state *ecs)
5594{
c4dbc9af
PA
5595 /* Make sure normal_stop is called if we get a QUIT handled before
5596 reaching resume. */
5597 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5598
d4f3574e 5599 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
5600 ecs->event_thread->prev_pc
5601 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 5602
d4f3574e
SS
5603 /* If we did not do break;, it means we should keep running the
5604 inferior and not return to debugger. */
5605
16c381f0
JK
5606 if (ecs->event_thread->control.trap_expected
5607 && ecs->event_thread->suspend.stop_signal != TARGET_SIGNAL_TRAP)
d4f3574e
SS
5608 {
5609 /* We took a signal (which we are supposed to pass through to
4e1c45ea
PA
5610 the inferior, else we'd not get here) and we haven't yet
5611 gotten our trap. Simply continue. */
c4dbc9af
PA
5612
5613 discard_cleanups (old_cleanups);
2020b7ab 5614 resume (currently_stepping (ecs->event_thread),
16c381f0 5615 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5616 }
5617 else
5618 {
5619 /* Either the trap was not expected, but we are continuing
488f131b
JB
5620 anyway (the user asked that this signal be passed to the
5621 child)
5622 -- or --
5623 The signal was SIGTRAP, e.g. it was our signal, but we
5624 decided we should resume from it.
d4f3574e 5625
c36b740a 5626 We're going to run this baby now!
d4f3574e 5627
c36b740a
VP
5628 Note that insert_breakpoints won't try to re-insert
5629 already inserted breakpoints. Therefore, we don't
5630 care if breakpoints were already inserted, or not. */
5631
4e1c45ea 5632 if (ecs->event_thread->stepping_over_breakpoint)
45e8c884 5633 {
9f5a595d 5634 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
abbb1732 5635
9f5a595d 5636 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
237fc4c9
PA
5637 /* Since we can't do a displaced step, we have to remove
5638 the breakpoint while we step it. To keep things
5639 simple, we remove them all. */
5640 remove_breakpoints ();
45e8c884
VP
5641 }
5642 else
d4f3574e 5643 {
e236ba44 5644 struct gdb_exception e;
abbb1732 5645
569631c6
UW
5646 /* Stop stepping when inserting breakpoints
5647 has failed. */
e236ba44
VP
5648 TRY_CATCH (e, RETURN_MASK_ERROR)
5649 {
5650 insert_breakpoints ();
5651 }
5652 if (e.reason < 0)
d4f3574e 5653 {
97bd5475 5654 exception_print (gdb_stderr, e);
d4f3574e
SS
5655 stop_stepping (ecs);
5656 return;
5657 }
d4f3574e
SS
5658 }
5659
16c381f0
JK
5660 ecs->event_thread->control.trap_expected
5661 = ecs->event_thread->stepping_over_breakpoint;
d4f3574e
SS
5662
5663 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
488f131b
JB
5664 specifies that such a signal should be delivered to the
5665 target program).
5666
5667 Typically, this would occure when a user is debugging a
5668 target monitor on a simulator: the target monitor sets a
5669 breakpoint; the simulator encounters this break-point and
5670 halts the simulation handing control to GDB; GDB, noteing
5671 that the break-point isn't valid, returns control back to the
5672 simulator; the simulator then delivers the hardware
1777feb0 5673 equivalent of a SIGNAL_TRAP to the program being debugged. */
488f131b 5674
16c381f0
JK
5675 if (ecs->event_thread->suspend.stop_signal == TARGET_SIGNAL_TRAP
5676 && !signal_program[ecs->event_thread->suspend.stop_signal])
5677 ecs->event_thread->suspend.stop_signal = TARGET_SIGNAL_0;
d4f3574e 5678
c4dbc9af 5679 discard_cleanups (old_cleanups);
2020b7ab 5680 resume (currently_stepping (ecs->event_thread),
16c381f0 5681 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
5682 }
5683
488f131b 5684 prepare_to_wait (ecs);
d4f3574e
SS
5685}
5686
104c1213
JM
5687/* This function normally comes after a resume, before
5688 handle_inferior_event exits. It takes care of any last bits of
5689 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 5690
104c1213
JM
5691static void
5692prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 5693{
527159b7 5694 if (debug_infrun)
8a9de0e4 5695 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 5696
104c1213
JM
5697 /* This is the old end of the while loop. Let everybody know we
5698 want to wait for the inferior some more and get called again
5699 soon. */
5700 ecs->wait_some_more = 1;
c906108c 5701}
11cf8741 5702
33d62d64
JK
5703/* Several print_*_reason functions to print why the inferior has stopped.
5704 We always print something when the inferior exits, or receives a signal.
5705 The rest of the cases are dealt with later on in normal_stop and
5706 print_it_typical. Ideally there should be a call to one of these
5707 print_*_reason functions functions from handle_inferior_event each time
5708 stop_stepping is called. */
5709
5710/* Print why the inferior has stopped.
5711 We are done with a step/next/si/ni command, print why the inferior has
5712 stopped. For now print nothing. Print a message only if not in the middle
5713 of doing a "step n" operation for n > 1. */
5714
5715static void
5716print_end_stepping_range_reason (void)
5717{
16c381f0
JK
5718 if ((!inferior_thread ()->step_multi
5719 || !inferior_thread ()->control.stop_step)
79a45e25
PA
5720 && ui_out_is_mi_like_p (current_uiout))
5721 ui_out_field_string (current_uiout, "reason",
33d62d64
JK
5722 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5723}
5724
5725/* The inferior was terminated by a signal, print why it stopped. */
5726
11cf8741 5727static void
33d62d64 5728print_signal_exited_reason (enum target_signal siggnal)
11cf8741 5729{
79a45e25
PA
5730 struct ui_out *uiout = current_uiout;
5731
33d62d64
JK
5732 annotate_signalled ();
5733 if (ui_out_is_mi_like_p (uiout))
5734 ui_out_field_string
5735 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5736 ui_out_text (uiout, "\nProgram terminated with signal ");
5737 annotate_signal_name ();
5738 ui_out_field_string (uiout, "signal-name",
5739 target_signal_to_name (siggnal));
5740 annotate_signal_name_end ();
5741 ui_out_text (uiout, ", ");
5742 annotate_signal_string ();
5743 ui_out_field_string (uiout, "signal-meaning",
5744 target_signal_to_string (siggnal));
5745 annotate_signal_string_end ();
5746 ui_out_text (uiout, ".\n");
5747 ui_out_text (uiout, "The program no longer exists.\n");
5748}
5749
5750/* The inferior program is finished, print why it stopped. */
5751
5752static void
5753print_exited_reason (int exitstatus)
5754{
fda326dd
TT
5755 struct inferior *inf = current_inferior ();
5756 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
79a45e25 5757 struct ui_out *uiout = current_uiout;
fda326dd 5758
33d62d64
JK
5759 annotate_exited (exitstatus);
5760 if (exitstatus)
5761 {
5762 if (ui_out_is_mi_like_p (uiout))
5763 ui_out_field_string (uiout, "reason",
5764 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
5765 ui_out_text (uiout, "[Inferior ");
5766 ui_out_text (uiout, plongest (inf->num));
5767 ui_out_text (uiout, " (");
5768 ui_out_text (uiout, pidstr);
5769 ui_out_text (uiout, ") exited with code ");
33d62d64 5770 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 5771 ui_out_text (uiout, "]\n");
33d62d64
JK
5772 }
5773 else
11cf8741 5774 {
9dc5e2a9 5775 if (ui_out_is_mi_like_p (uiout))
034dad6f 5776 ui_out_field_string
33d62d64 5777 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
5778 ui_out_text (uiout, "[Inferior ");
5779 ui_out_text (uiout, plongest (inf->num));
5780 ui_out_text (uiout, " (");
5781 ui_out_text (uiout, pidstr);
5782 ui_out_text (uiout, ") exited normally]\n");
33d62d64
JK
5783 }
5784 /* Support the --return-child-result option. */
5785 return_child_result_value = exitstatus;
5786}
5787
5788/* Signal received, print why the inferior has stopped. The signal table
1777feb0 5789 tells us to print about it. */
33d62d64
JK
5790
5791static void
5792print_signal_received_reason (enum target_signal siggnal)
5793{
79a45e25
PA
5794 struct ui_out *uiout = current_uiout;
5795
33d62d64
JK
5796 annotate_signal ();
5797
5798 if (siggnal == TARGET_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5799 {
5800 struct thread_info *t = inferior_thread ();
5801
5802 ui_out_text (uiout, "\n[");
5803 ui_out_field_string (uiout, "thread-name",
5804 target_pid_to_str (t->ptid));
5805 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5806 ui_out_text (uiout, " stopped");
5807 }
5808 else
5809 {
5810 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 5811 annotate_signal_name ();
33d62d64
JK
5812 if (ui_out_is_mi_like_p (uiout))
5813 ui_out_field_string
5814 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 5815 ui_out_field_string (uiout, "signal-name",
33d62d64 5816 target_signal_to_name (siggnal));
8b93c638
JM
5817 annotate_signal_name_end ();
5818 ui_out_text (uiout, ", ");
5819 annotate_signal_string ();
488f131b 5820 ui_out_field_string (uiout, "signal-meaning",
33d62d64 5821 target_signal_to_string (siggnal));
8b93c638 5822 annotate_signal_string_end ();
33d62d64
JK
5823 }
5824 ui_out_text (uiout, ".\n");
5825}
252fbfc8 5826
33d62d64
JK
5827/* Reverse execution: target ran out of history info, print why the inferior
5828 has stopped. */
252fbfc8 5829
33d62d64
JK
5830static void
5831print_no_history_reason (void)
5832{
79a45e25 5833 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
11cf8741 5834}
43ff13b4 5835
c906108c
SS
5836/* Here to return control to GDB when the inferior stops for real.
5837 Print appropriate messages, remove breakpoints, give terminal our modes.
5838
5839 STOP_PRINT_FRAME nonzero means print the executing frame
5840 (pc, function, args, file, line number and line text).
5841 BREAKPOINTS_FAILED nonzero means stop was due to error
5842 attempting to insert breakpoints. */
5843
5844void
96baa820 5845normal_stop (void)
c906108c 5846{
73b65bb0
DJ
5847 struct target_waitstatus last;
5848 ptid_t last_ptid;
29f49a6a 5849 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
5850
5851 get_last_target_status (&last_ptid, &last);
5852
29f49a6a
PA
5853 /* If an exception is thrown from this point on, make sure to
5854 propagate GDB's knowledge of the executing state to the
5855 frontend/user running state. A QUIT is an easy exception to see
5856 here, so do this before any filtered output. */
c35b1492
PA
5857 if (!non_stop)
5858 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5859 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5860 && last.kind != TARGET_WAITKIND_EXITED
5861 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 5862 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 5863
4f8d22e3
PA
5864 /* In non-stop mode, we don't want GDB to switch threads behind the
5865 user's back, to avoid races where the user is typing a command to
5866 apply to thread x, but GDB switches to thread y before the user
5867 finishes entering the command. */
5868
c906108c
SS
5869 /* As with the notification of thread events, we want to delay
5870 notifying the user that we've switched thread context until
5871 the inferior actually stops.
5872
73b65bb0
DJ
5873 There's no point in saying anything if the inferior has exited.
5874 Note that SIGNALLED here means "exited with a signal", not
5875 "received a signal". */
4f8d22e3
PA
5876 if (!non_stop
5877 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
5878 && target_has_execution
5879 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
5880 && last.kind != TARGET_WAITKIND_EXITED
5881 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
5882 {
5883 target_terminal_ours_for_output ();
a3f17187 5884 printf_filtered (_("[Switching to %s]\n"),
c95310c6 5885 target_pid_to_str (inferior_ptid));
b8fa951a 5886 annotate_thread_changed ();
39f77062 5887 previous_inferior_ptid = inferior_ptid;
c906108c 5888 }
c906108c 5889
0e5bf2a8
PA
5890 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
5891 {
5892 gdb_assert (sync_execution || !target_can_async_p ());
5893
5894 target_terminal_ours_for_output ();
5895 printf_filtered (_("No unwaited-for children left.\n"));
5896 }
5897
74960c60 5898 if (!breakpoints_always_inserted_mode () && target_has_execution)
c906108c
SS
5899 {
5900 if (remove_breakpoints ())
5901 {
5902 target_terminal_ours_for_output ();
3e43a32a
MS
5903 printf_filtered (_("Cannot remove breakpoints because "
5904 "program is no longer writable.\nFurther "
5905 "execution is probably impossible.\n"));
c906108c
SS
5906 }
5907 }
c906108c 5908
c906108c
SS
5909 /* If an auto-display called a function and that got a signal,
5910 delete that auto-display to avoid an infinite recursion. */
5911
5912 if (stopped_by_random_signal)
5913 disable_current_display ();
5914
5915 /* Don't print a message if in the middle of doing a "step n"
5916 operation for n > 1 */
af679fd0
PA
5917 if (target_has_execution
5918 && last.kind != TARGET_WAITKIND_SIGNALLED
5919 && last.kind != TARGET_WAITKIND_EXITED
5920 && inferior_thread ()->step_multi
16c381f0 5921 && inferior_thread ()->control.stop_step)
c906108c
SS
5922 goto done;
5923
5924 target_terminal_ours ();
0f641c01 5925 async_enable_stdin ();
c906108c 5926
7abfe014
DJ
5927 /* Set the current source location. This will also happen if we
5928 display the frame below, but the current SAL will be incorrect
5929 during a user hook-stop function. */
d729566a 5930 if (has_stack_frames () && !stop_stack_dummy)
7abfe014
DJ
5931 set_current_sal_from_frame (get_current_frame (), 1);
5932
dd7e2d2b
PA
5933 /* Let the user/frontend see the threads as stopped. */
5934 do_cleanups (old_chain);
5935
5936 /* Look up the hook_stop and run it (CLI internally handles problem
5937 of stop_command's pre-hook not existing). */
5938 if (stop_command)
5939 catch_errors (hook_stop_stub, stop_command,
5940 "Error while running hook_stop:\n", RETURN_MASK_ALL);
5941
d729566a 5942 if (!has_stack_frames ())
d51fd4c8 5943 goto done;
c906108c 5944
32400beb
PA
5945 if (last.kind == TARGET_WAITKIND_SIGNALLED
5946 || last.kind == TARGET_WAITKIND_EXITED)
5947 goto done;
5948
c906108c
SS
5949 /* Select innermost stack frame - i.e., current frame is frame 0,
5950 and current location is based on that.
5951 Don't do this on return from a stack dummy routine,
1777feb0 5952 or if the program has exited. */
c906108c
SS
5953
5954 if (!stop_stack_dummy)
5955 {
0f7d239c 5956 select_frame (get_current_frame ());
c906108c
SS
5957
5958 /* Print current location without a level number, if
c5aa993b
JM
5959 we have changed functions or hit a breakpoint.
5960 Print source line if we have one.
5961 bpstat_print() contains the logic deciding in detail
1777feb0 5962 what to print, based on the event(s) that just occurred. */
c906108c 5963
d01a8610
AS
5964 /* If --batch-silent is enabled then there's no need to print the current
5965 source location, and to try risks causing an error message about
5966 missing source files. */
5967 if (stop_print_frame && !batch_silent)
c906108c
SS
5968 {
5969 int bpstat_ret;
5970 int source_flag;
917317f4 5971 int do_frame_printing = 1;
347bddb7 5972 struct thread_info *tp = inferior_thread ();
c906108c 5973
16c381f0 5974 bpstat_ret = bpstat_print (tp->control.stop_bpstat);
917317f4
JM
5975 switch (bpstat_ret)
5976 {
5977 case PRINT_UNKNOWN:
b0f4b84b
DJ
5978 /* If we had hit a shared library event breakpoint,
5979 bpstat_print would print out this message. If we hit
5980 an OS-level shared library event, do the same
5981 thing. */
5982 if (last.kind == TARGET_WAITKIND_LOADED)
5983 {
5984 printf_filtered (_("Stopped due to shared library event\n"));
5985 source_flag = SRC_LINE; /* something bogus */
5986 do_frame_printing = 0;
5987 break;
5988 }
5989
aa0cd9c1 5990 /* FIXME: cagney/2002-12-01: Given that a frame ID does
8fb3e588
AC
5991 (or should) carry around the function and does (or
5992 should) use that when doing a frame comparison. */
16c381f0
JK
5993 if (tp->control.stop_step
5994 && frame_id_eq (tp->control.step_frame_id,
aa0cd9c1 5995 get_frame_id (get_current_frame ()))
917317f4 5996 && step_start_function == find_pc_function (stop_pc))
1777feb0
MS
5997 source_flag = SRC_LINE; /* Finished step, just
5998 print source line. */
917317f4 5999 else
1777feb0
MS
6000 source_flag = SRC_AND_LOC; /* Print location and
6001 source line. */
917317f4
JM
6002 break;
6003 case PRINT_SRC_AND_LOC:
1777feb0
MS
6004 source_flag = SRC_AND_LOC; /* Print location and
6005 source line. */
917317f4
JM
6006 break;
6007 case PRINT_SRC_ONLY:
c5394b80 6008 source_flag = SRC_LINE;
917317f4
JM
6009 break;
6010 case PRINT_NOTHING:
488f131b 6011 source_flag = SRC_LINE; /* something bogus */
917317f4
JM
6012 do_frame_printing = 0;
6013 break;
6014 default:
e2e0b3e5 6015 internal_error (__FILE__, __LINE__, _("Unknown value."));
917317f4 6016 }
c906108c
SS
6017
6018 /* The behavior of this routine with respect to the source
6019 flag is:
c5394b80
JM
6020 SRC_LINE: Print only source line
6021 LOCATION: Print only location
1777feb0 6022 SRC_AND_LOC: Print location and source line. */
917317f4 6023 if (do_frame_printing)
b04f3ab4 6024 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
c906108c
SS
6025
6026 /* Display the auto-display expressions. */
6027 do_displays ();
6028 }
6029 }
6030
6031 /* Save the function value return registers, if we care.
6032 We might be about to restore their previous contents. */
9da8c2a0
PA
6033 if (inferior_thread ()->control.proceed_to_finish
6034 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6035 {
6036 /* This should not be necessary. */
6037 if (stop_registers)
6038 regcache_xfree (stop_registers);
6039
6040 /* NB: The copy goes through to the target picking up the value of
6041 all the registers. */
6042 stop_registers = regcache_dup (get_current_regcache ());
6043 }
c906108c 6044
aa7d318d 6045 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6046 {
b89667eb
DE
6047 /* Pop the empty frame that contains the stack dummy.
6048 This also restores inferior state prior to the call
16c381f0 6049 (struct infcall_suspend_state). */
b89667eb 6050 struct frame_info *frame = get_current_frame ();
abbb1732 6051
b89667eb
DE
6052 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6053 frame_pop (frame);
3e43a32a
MS
6054 /* frame_pop() calls reinit_frame_cache as the last thing it
6055 does which means there's currently no selected frame. We
6056 don't need to re-establish a selected frame if the dummy call
6057 returns normally, that will be done by
6058 restore_infcall_control_state. However, we do have to handle
6059 the case where the dummy call is returning after being
6060 stopped (e.g. the dummy call previously hit a breakpoint).
6061 We can't know which case we have so just always re-establish
6062 a selected frame here. */
0f7d239c 6063 select_frame (get_current_frame ());
c906108c
SS
6064 }
6065
c906108c
SS
6066done:
6067 annotate_stopped ();
41d2bdb4
PA
6068
6069 /* Suppress the stop observer if we're in the middle of:
6070
6071 - a step n (n > 1), as there still more steps to be done.
6072
6073 - a "finish" command, as the observer will be called in
6074 finish_command_continuation, so it can include the inferior
6075 function's return value.
6076
6077 - calling an inferior function, as we pretend we inferior didn't
6078 run at all. The return value of the call is handled by the
6079 expression evaluator, through call_function_by_hand. */
6080
6081 if (!target_has_execution
6082 || last.kind == TARGET_WAITKIND_SIGNALLED
6083 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6084 || last.kind == TARGET_WAITKIND_NO_RESUMED
41d2bdb4 6085 || (!inferior_thread ()->step_multi
16c381f0
JK
6086 && !(inferior_thread ()->control.stop_bpstat
6087 && inferior_thread ()->control.proceed_to_finish)
6088 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6089 {
6090 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6091 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6092 stop_print_frame);
347bddb7 6093 else
1d33d6ba 6094 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6095 }
347bddb7 6096
48844aa6
PA
6097 if (target_has_execution)
6098 {
6099 if (last.kind != TARGET_WAITKIND_SIGNALLED
6100 && last.kind != TARGET_WAITKIND_EXITED)
6101 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6102 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6103 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6104 }
6c95b8df
PA
6105
6106 /* Try to get rid of automatically added inferiors that are no
6107 longer needed. Keeping those around slows down things linearly.
6108 Note that this never removes the current inferior. */
6109 prune_inferiors ();
c906108c
SS
6110}
6111
6112static int
96baa820 6113hook_stop_stub (void *cmd)
c906108c 6114{
5913bcb0 6115 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6116 return (0);
6117}
6118\f
c5aa993b 6119int
96baa820 6120signal_stop_state (int signo)
c906108c 6121{
d6b48e9c 6122 return signal_stop[signo];
c906108c
SS
6123}
6124
c5aa993b 6125int
96baa820 6126signal_print_state (int signo)
c906108c
SS
6127{
6128 return signal_print[signo];
6129}
6130
c5aa993b 6131int
96baa820 6132signal_pass_state (int signo)
c906108c
SS
6133{
6134 return signal_program[signo];
6135}
6136
2455069d
UW
6137static void
6138signal_cache_update (int signo)
6139{
6140 if (signo == -1)
6141 {
6142 for (signo = 0; signo < (int) TARGET_SIGNAL_LAST; signo++)
6143 signal_cache_update (signo);
6144
6145 return;
6146 }
6147
6148 signal_pass[signo] = (signal_stop[signo] == 0
6149 && signal_print[signo] == 0
6150 && signal_program[signo] == 1);
6151}
6152
488f131b 6153int
7bda5e4a 6154signal_stop_update (int signo, int state)
d4f3574e
SS
6155{
6156 int ret = signal_stop[signo];
abbb1732 6157
d4f3574e 6158 signal_stop[signo] = state;
2455069d 6159 signal_cache_update (signo);
d4f3574e
SS
6160 return ret;
6161}
6162
488f131b 6163int
7bda5e4a 6164signal_print_update (int signo, int state)
d4f3574e
SS
6165{
6166 int ret = signal_print[signo];
abbb1732 6167
d4f3574e 6168 signal_print[signo] = state;
2455069d 6169 signal_cache_update (signo);
d4f3574e
SS
6170 return ret;
6171}
6172
488f131b 6173int
7bda5e4a 6174signal_pass_update (int signo, int state)
d4f3574e
SS
6175{
6176 int ret = signal_program[signo];
abbb1732 6177
d4f3574e 6178 signal_program[signo] = state;
2455069d 6179 signal_cache_update (signo);
d4f3574e
SS
6180 return ret;
6181}
6182
c906108c 6183static void
96baa820 6184sig_print_header (void)
c906108c 6185{
3e43a32a
MS
6186 printf_filtered (_("Signal Stop\tPrint\tPass "
6187 "to program\tDescription\n"));
c906108c
SS
6188}
6189
6190static void
96baa820 6191sig_print_info (enum target_signal oursig)
c906108c 6192{
54363045 6193 const char *name = target_signal_to_name (oursig);
c906108c 6194 int name_padding = 13 - strlen (name);
96baa820 6195
c906108c
SS
6196 if (name_padding <= 0)
6197 name_padding = 0;
6198
6199 printf_filtered ("%s", name);
488f131b 6200 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6201 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6202 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6203 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6204 printf_filtered ("%s\n", target_signal_to_string (oursig));
6205}
6206
6207/* Specify how various signals in the inferior should be handled. */
6208
6209static void
96baa820 6210handle_command (char *args, int from_tty)
c906108c
SS
6211{
6212 char **argv;
6213 int digits, wordlen;
6214 int sigfirst, signum, siglast;
6215 enum target_signal oursig;
6216 int allsigs;
6217 int nsigs;
6218 unsigned char *sigs;
6219 struct cleanup *old_chain;
6220
6221 if (args == NULL)
6222 {
e2e0b3e5 6223 error_no_arg (_("signal to handle"));
c906108c
SS
6224 }
6225
1777feb0 6226 /* Allocate and zero an array of flags for which signals to handle. */
c906108c
SS
6227
6228 nsigs = (int) TARGET_SIGNAL_LAST;
6229 sigs = (unsigned char *) alloca (nsigs);
6230 memset (sigs, 0, nsigs);
6231
1777feb0 6232 /* Break the command line up into args. */
c906108c 6233
d1a41061 6234 argv = gdb_buildargv (args);
7a292a7a 6235 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6236
6237 /* Walk through the args, looking for signal oursigs, signal names, and
6238 actions. Signal numbers and signal names may be interspersed with
6239 actions, with the actions being performed for all signals cumulatively
1777feb0 6240 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6241
6242 while (*argv != NULL)
6243 {
6244 wordlen = strlen (*argv);
6245 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6246 {;
6247 }
6248 allsigs = 0;
6249 sigfirst = siglast = -1;
6250
6251 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6252 {
6253 /* Apply action to all signals except those used by the
1777feb0 6254 debugger. Silently skip those. */
c906108c
SS
6255 allsigs = 1;
6256 sigfirst = 0;
6257 siglast = nsigs - 1;
6258 }
6259 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6260 {
6261 SET_SIGS (nsigs, sigs, signal_stop);
6262 SET_SIGS (nsigs, sigs, signal_print);
6263 }
6264 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6265 {
6266 UNSET_SIGS (nsigs, sigs, signal_program);
6267 }
6268 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6269 {
6270 SET_SIGS (nsigs, sigs, signal_print);
6271 }
6272 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6273 {
6274 SET_SIGS (nsigs, sigs, signal_program);
6275 }
6276 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6277 {
6278 UNSET_SIGS (nsigs, sigs, signal_stop);
6279 }
6280 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6281 {
6282 SET_SIGS (nsigs, sigs, signal_program);
6283 }
6284 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6285 {
6286 UNSET_SIGS (nsigs, sigs, signal_print);
6287 UNSET_SIGS (nsigs, sigs, signal_stop);
6288 }
6289 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6290 {
6291 UNSET_SIGS (nsigs, sigs, signal_program);
6292 }
6293 else if (digits > 0)
6294 {
6295 /* It is numeric. The numeric signal refers to our own
6296 internal signal numbering from target.h, not to host/target
6297 signal number. This is a feature; users really should be
6298 using symbolic names anyway, and the common ones like
6299 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6300
6301 sigfirst = siglast = (int)
6302 target_signal_from_command (atoi (*argv));
6303 if ((*argv)[digits] == '-')
6304 {
6305 siglast = (int)
6306 target_signal_from_command (atoi ((*argv) + digits + 1));
6307 }
6308 if (sigfirst > siglast)
6309 {
1777feb0 6310 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6311 signum = sigfirst;
6312 sigfirst = siglast;
6313 siglast = signum;
6314 }
6315 }
6316 else
6317 {
6318 oursig = target_signal_from_name (*argv);
6319 if (oursig != TARGET_SIGNAL_UNKNOWN)
6320 {
6321 sigfirst = siglast = (int) oursig;
6322 }
6323 else
6324 {
6325 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6326 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6327 }
6328 }
6329
6330 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6331 which signals to apply actions to. */
c906108c
SS
6332
6333 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6334 {
6335 switch ((enum target_signal) signum)
6336 {
6337 case TARGET_SIGNAL_TRAP:
6338 case TARGET_SIGNAL_INT:
6339 if (!allsigs && !sigs[signum])
6340 {
9e2f0ad4 6341 if (query (_("%s is used by the debugger.\n\
3e43a32a
MS
6342Are you sure you want to change it? "),
6343 target_signal_to_name ((enum target_signal) signum)))
c906108c
SS
6344 {
6345 sigs[signum] = 1;
6346 }
6347 else
6348 {
a3f17187 6349 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6350 gdb_flush (gdb_stdout);
6351 }
6352 }
6353 break;
6354 case TARGET_SIGNAL_0:
6355 case TARGET_SIGNAL_DEFAULT:
6356 case TARGET_SIGNAL_UNKNOWN:
6357 /* Make sure that "all" doesn't print these. */
6358 break;
6359 default:
6360 sigs[signum] = 1;
6361 break;
6362 }
6363 }
6364
6365 argv++;
6366 }
6367
3a031f65
PA
6368 for (signum = 0; signum < nsigs; signum++)
6369 if (sigs[signum])
6370 {
2455069d
UW
6371 signal_cache_update (-1);
6372 target_pass_signals ((int) TARGET_SIGNAL_LAST, signal_pass);
c906108c 6373
3a031f65
PA
6374 if (from_tty)
6375 {
6376 /* Show the results. */
6377 sig_print_header ();
6378 for (; signum < nsigs; signum++)
6379 if (sigs[signum])
6380 sig_print_info (signum);
6381 }
6382
6383 break;
6384 }
c906108c
SS
6385
6386 do_cleanups (old_chain);
6387}
6388
6389static void
96baa820 6390xdb_handle_command (char *args, int from_tty)
c906108c
SS
6391{
6392 char **argv;
6393 struct cleanup *old_chain;
6394
d1a41061
PP
6395 if (args == NULL)
6396 error_no_arg (_("xdb command"));
6397
1777feb0 6398 /* Break the command line up into args. */
c906108c 6399
d1a41061 6400 argv = gdb_buildargv (args);
7a292a7a 6401 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6402 if (argv[1] != (char *) NULL)
6403 {
6404 char *argBuf;
6405 int bufLen;
6406
6407 bufLen = strlen (argv[0]) + 20;
6408 argBuf = (char *) xmalloc (bufLen);
6409 if (argBuf)
6410 {
6411 int validFlag = 1;
6412 enum target_signal oursig;
6413
6414 oursig = target_signal_from_name (argv[0]);
6415 memset (argBuf, 0, bufLen);
6416 if (strcmp (argv[1], "Q") == 0)
6417 sprintf (argBuf, "%s %s", argv[0], "noprint");
6418 else
6419 {
6420 if (strcmp (argv[1], "s") == 0)
6421 {
6422 if (!signal_stop[oursig])
6423 sprintf (argBuf, "%s %s", argv[0], "stop");
6424 else
6425 sprintf (argBuf, "%s %s", argv[0], "nostop");
6426 }
6427 else if (strcmp (argv[1], "i") == 0)
6428 {
6429 if (!signal_program[oursig])
6430 sprintf (argBuf, "%s %s", argv[0], "pass");
6431 else
6432 sprintf (argBuf, "%s %s", argv[0], "nopass");
6433 }
6434 else if (strcmp (argv[1], "r") == 0)
6435 {
6436 if (!signal_print[oursig])
6437 sprintf (argBuf, "%s %s", argv[0], "print");
6438 else
6439 sprintf (argBuf, "%s %s", argv[0], "noprint");
6440 }
6441 else
6442 validFlag = 0;
6443 }
6444 if (validFlag)
6445 handle_command (argBuf, from_tty);
6446 else
a3f17187 6447 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 6448 if (argBuf)
b8c9b27d 6449 xfree (argBuf);
c906108c
SS
6450 }
6451 }
6452 do_cleanups (old_chain);
6453}
6454
6455/* Print current contents of the tables set by the handle command.
6456 It is possible we should just be printing signals actually used
6457 by the current target (but for things to work right when switching
6458 targets, all signals should be in the signal tables). */
6459
6460static void
96baa820 6461signals_info (char *signum_exp, int from_tty)
c906108c
SS
6462{
6463 enum target_signal oursig;
abbb1732 6464
c906108c
SS
6465 sig_print_header ();
6466
6467 if (signum_exp)
6468 {
6469 /* First see if this is a symbol name. */
6470 oursig = target_signal_from_name (signum_exp);
6471 if (oursig == TARGET_SIGNAL_UNKNOWN)
6472 {
6473 /* No, try numeric. */
6474 oursig =
bb518678 6475 target_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
6476 }
6477 sig_print_info (oursig);
6478 return;
6479 }
6480
6481 printf_filtered ("\n");
6482 /* These ugly casts brought to you by the native VAX compiler. */
6483 for (oursig = TARGET_SIGNAL_FIRST;
6484 (int) oursig < (int) TARGET_SIGNAL_LAST;
6485 oursig = (enum target_signal) ((int) oursig + 1))
6486 {
6487 QUIT;
6488
6489 if (oursig != TARGET_SIGNAL_UNKNOWN
488f131b 6490 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
c906108c
SS
6491 sig_print_info (oursig);
6492 }
6493
3e43a32a
MS
6494 printf_filtered (_("\nUse the \"handle\" command "
6495 "to change these tables.\n"));
c906108c 6496}
4aa995e1 6497
c709acd1
PA
6498/* Check if it makes sense to read $_siginfo from the current thread
6499 at this point. If not, throw an error. */
6500
6501static void
6502validate_siginfo_access (void)
6503{
6504 /* No current inferior, no siginfo. */
6505 if (ptid_equal (inferior_ptid, null_ptid))
6506 error (_("No thread selected."));
6507
6508 /* Don't try to read from a dead thread. */
6509 if (is_exited (inferior_ptid))
6510 error (_("The current thread has terminated"));
6511
6512 /* ... or from a spinning thread. */
6513 if (is_running (inferior_ptid))
6514 error (_("Selected thread is running."));
6515}
6516
4aa995e1
PA
6517/* The $_siginfo convenience variable is a bit special. We don't know
6518 for sure the type of the value until we actually have a chance to
7a9dd1b2 6519 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
6520 also dependent on which thread you have selected.
6521
6522 1. making $_siginfo be an internalvar that creates a new value on
6523 access.
6524
6525 2. making the value of $_siginfo be an lval_computed value. */
6526
6527/* This function implements the lval_computed support for reading a
6528 $_siginfo value. */
6529
6530static void
6531siginfo_value_read (struct value *v)
6532{
6533 LONGEST transferred;
6534
c709acd1
PA
6535 validate_siginfo_access ();
6536
4aa995e1
PA
6537 transferred =
6538 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6539 NULL,
6540 value_contents_all_raw (v),
6541 value_offset (v),
6542 TYPE_LENGTH (value_type (v)));
6543
6544 if (transferred != TYPE_LENGTH (value_type (v)))
6545 error (_("Unable to read siginfo"));
6546}
6547
6548/* This function implements the lval_computed support for writing a
6549 $_siginfo value. */
6550
6551static void
6552siginfo_value_write (struct value *v, struct value *fromval)
6553{
6554 LONGEST transferred;
6555
c709acd1
PA
6556 validate_siginfo_access ();
6557
4aa995e1
PA
6558 transferred = target_write (&current_target,
6559 TARGET_OBJECT_SIGNAL_INFO,
6560 NULL,
6561 value_contents_all_raw (fromval),
6562 value_offset (v),
6563 TYPE_LENGTH (value_type (fromval)));
6564
6565 if (transferred != TYPE_LENGTH (value_type (fromval)))
6566 error (_("Unable to write siginfo"));
6567}
6568
c8f2448a 6569static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
6570 {
6571 siginfo_value_read,
6572 siginfo_value_write
6573 };
6574
6575/* Return a new value with the correct type for the siginfo object of
78267919
UW
6576 the current thread using architecture GDBARCH. Return a void value
6577 if there's no object available. */
4aa995e1 6578
2c0b251b 6579static struct value *
78267919 6580siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var)
4aa995e1 6581{
4aa995e1 6582 if (target_has_stack
78267919
UW
6583 && !ptid_equal (inferior_ptid, null_ptid)
6584 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 6585 {
78267919 6586 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 6587
78267919 6588 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
6589 }
6590
78267919 6591 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
6592}
6593
c906108c 6594\f
16c381f0
JK
6595/* infcall_suspend_state contains state about the program itself like its
6596 registers and any signal it received when it last stopped.
6597 This state must be restored regardless of how the inferior function call
6598 ends (either successfully, or after it hits a breakpoint or signal)
6599 if the program is to properly continue where it left off. */
6600
6601struct infcall_suspend_state
7a292a7a 6602{
16c381f0
JK
6603 struct thread_suspend_state thread_suspend;
6604 struct inferior_suspend_state inferior_suspend;
6605
6606 /* Other fields: */
7a292a7a 6607 CORE_ADDR stop_pc;
b89667eb 6608 struct regcache *registers;
1736ad11 6609
35515841 6610 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
6611 struct gdbarch *siginfo_gdbarch;
6612
6613 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6614 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6615 content would be invalid. */
6616 gdb_byte *siginfo_data;
b89667eb
DE
6617};
6618
16c381f0
JK
6619struct infcall_suspend_state *
6620save_infcall_suspend_state (void)
b89667eb 6621{
16c381f0 6622 struct infcall_suspend_state *inf_state;
b89667eb 6623 struct thread_info *tp = inferior_thread ();
16c381f0 6624 struct inferior *inf = current_inferior ();
1736ad11
JK
6625 struct regcache *regcache = get_current_regcache ();
6626 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6627 gdb_byte *siginfo_data = NULL;
6628
6629 if (gdbarch_get_siginfo_type_p (gdbarch))
6630 {
6631 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6632 size_t len = TYPE_LENGTH (type);
6633 struct cleanup *back_to;
6634
6635 siginfo_data = xmalloc (len);
6636 back_to = make_cleanup (xfree, siginfo_data);
6637
6638 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6639 siginfo_data, 0, len) == len)
6640 discard_cleanups (back_to);
6641 else
6642 {
6643 /* Errors ignored. */
6644 do_cleanups (back_to);
6645 siginfo_data = NULL;
6646 }
6647 }
6648
16c381f0 6649 inf_state = XZALLOC (struct infcall_suspend_state);
1736ad11
JK
6650
6651 if (siginfo_data)
6652 {
6653 inf_state->siginfo_gdbarch = gdbarch;
6654 inf_state->siginfo_data = siginfo_data;
6655 }
b89667eb 6656
16c381f0
JK
6657 inf_state->thread_suspend = tp->suspend;
6658 inf_state->inferior_suspend = inf->suspend;
6659
35515841
JK
6660 /* run_inferior_call will not use the signal due to its `proceed' call with
6661 TARGET_SIGNAL_0 anyway. */
16c381f0 6662 tp->suspend.stop_signal = TARGET_SIGNAL_0;
35515841 6663
b89667eb
DE
6664 inf_state->stop_pc = stop_pc;
6665
1736ad11 6666 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
6667
6668 return inf_state;
6669}
6670
6671/* Restore inferior session state to INF_STATE. */
6672
6673void
16c381f0 6674restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6675{
6676 struct thread_info *tp = inferior_thread ();
16c381f0 6677 struct inferior *inf = current_inferior ();
1736ad11
JK
6678 struct regcache *regcache = get_current_regcache ();
6679 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 6680
16c381f0
JK
6681 tp->suspend = inf_state->thread_suspend;
6682 inf->suspend = inf_state->inferior_suspend;
6683
b89667eb
DE
6684 stop_pc = inf_state->stop_pc;
6685
1736ad11
JK
6686 if (inf_state->siginfo_gdbarch == gdbarch)
6687 {
6688 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6689 size_t len = TYPE_LENGTH (type);
6690
6691 /* Errors ignored. */
6692 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6693 inf_state->siginfo_data, 0, len);
6694 }
6695
b89667eb
DE
6696 /* The inferior can be gone if the user types "print exit(0)"
6697 (and perhaps other times). */
6698 if (target_has_execution)
6699 /* NB: The register write goes through to the target. */
1736ad11 6700 regcache_cpy (regcache, inf_state->registers);
803b5f95 6701
16c381f0 6702 discard_infcall_suspend_state (inf_state);
b89667eb
DE
6703}
6704
6705static void
16c381f0 6706do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 6707{
16c381f0 6708 restore_infcall_suspend_state (state);
b89667eb
DE
6709}
6710
6711struct cleanup *
16c381f0
JK
6712make_cleanup_restore_infcall_suspend_state
6713 (struct infcall_suspend_state *inf_state)
b89667eb 6714{
16c381f0 6715 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
6716}
6717
6718void
16c381f0 6719discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
6720{
6721 regcache_xfree (inf_state->registers);
803b5f95 6722 xfree (inf_state->siginfo_data);
b89667eb
DE
6723 xfree (inf_state);
6724}
6725
6726struct regcache *
16c381f0 6727get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
6728{
6729 return inf_state->registers;
6730}
6731
16c381f0
JK
6732/* infcall_control_state contains state regarding gdb's control of the
6733 inferior itself like stepping control. It also contains session state like
6734 the user's currently selected frame. */
b89667eb 6735
16c381f0 6736struct infcall_control_state
b89667eb 6737{
16c381f0
JK
6738 struct thread_control_state thread_control;
6739 struct inferior_control_state inferior_control;
d82142e2
JK
6740
6741 /* Other fields: */
6742 enum stop_stack_kind stop_stack_dummy;
6743 int stopped_by_random_signal;
7a292a7a 6744 int stop_after_trap;
7a292a7a 6745
b89667eb 6746 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 6747 struct frame_id selected_frame_id;
7a292a7a
SS
6748};
6749
c906108c 6750/* Save all of the information associated with the inferior<==>gdb
b89667eb 6751 connection. */
c906108c 6752
16c381f0
JK
6753struct infcall_control_state *
6754save_infcall_control_state (void)
c906108c 6755{
16c381f0 6756 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 6757 struct thread_info *tp = inferior_thread ();
d6b48e9c 6758 struct inferior *inf = current_inferior ();
7a292a7a 6759
16c381f0
JK
6760 inf_status->thread_control = tp->control;
6761 inf_status->inferior_control = inf->control;
d82142e2 6762
8358c15c 6763 tp->control.step_resume_breakpoint = NULL;
5b79abe7 6764 tp->control.exception_resume_breakpoint = NULL;
8358c15c 6765
16c381f0
JK
6766 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6767 chain. If caller's caller is walking the chain, they'll be happier if we
6768 hand them back the original chain when restore_infcall_control_state is
6769 called. */
6770 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
6771
6772 /* Other fields: */
6773 inf_status->stop_stack_dummy = stop_stack_dummy;
6774 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6775 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 6776
206415a3 6777 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 6778
7a292a7a 6779 return inf_status;
c906108c
SS
6780}
6781
c906108c 6782static int
96baa820 6783restore_selected_frame (void *args)
c906108c 6784{
488f131b 6785 struct frame_id *fid = (struct frame_id *) args;
c906108c 6786 struct frame_info *frame;
c906108c 6787
101dcfbe 6788 frame = frame_find_by_id (*fid);
c906108c 6789
aa0cd9c1
AC
6790 /* If inf_status->selected_frame_id is NULL, there was no previously
6791 selected frame. */
101dcfbe 6792 if (frame == NULL)
c906108c 6793 {
8a3fe4f8 6794 warning (_("Unable to restore previously selected frame."));
c906108c
SS
6795 return 0;
6796 }
6797
0f7d239c 6798 select_frame (frame);
c906108c
SS
6799
6800 return (1);
6801}
6802
b89667eb
DE
6803/* Restore inferior session state to INF_STATUS. */
6804
c906108c 6805void
16c381f0 6806restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 6807{
4e1c45ea 6808 struct thread_info *tp = inferior_thread ();
d6b48e9c 6809 struct inferior *inf = current_inferior ();
4e1c45ea 6810
8358c15c
JK
6811 if (tp->control.step_resume_breakpoint)
6812 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6813
5b79abe7
TT
6814 if (tp->control.exception_resume_breakpoint)
6815 tp->control.exception_resume_breakpoint->disposition
6816 = disp_del_at_next_stop;
6817
d82142e2 6818 /* Handle the bpstat_copy of the chain. */
16c381f0 6819 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 6820
16c381f0
JK
6821 tp->control = inf_status->thread_control;
6822 inf->control = inf_status->inferior_control;
d82142e2
JK
6823
6824 /* Other fields: */
6825 stop_stack_dummy = inf_status->stop_stack_dummy;
6826 stopped_by_random_signal = inf_status->stopped_by_random_signal;
6827 stop_after_trap = inf_status->stop_after_trap;
c906108c 6828
b89667eb 6829 if (target_has_stack)
c906108c 6830 {
c906108c 6831 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
6832 walking the stack might encounter a garbage pointer and
6833 error() trying to dereference it. */
488f131b
JB
6834 if (catch_errors
6835 (restore_selected_frame, &inf_status->selected_frame_id,
6836 "Unable to restore previously selected frame:\n",
6837 RETURN_MASK_ERROR) == 0)
c906108c
SS
6838 /* Error in restoring the selected frame. Select the innermost
6839 frame. */
0f7d239c 6840 select_frame (get_current_frame ());
c906108c 6841 }
c906108c 6842
72cec141 6843 xfree (inf_status);
7a292a7a 6844}
c906108c 6845
74b7792f 6846static void
16c381f0 6847do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 6848{
16c381f0 6849 restore_infcall_control_state (sts);
74b7792f
AC
6850}
6851
6852struct cleanup *
16c381f0
JK
6853make_cleanup_restore_infcall_control_state
6854 (struct infcall_control_state *inf_status)
74b7792f 6855{
16c381f0 6856 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
6857}
6858
c906108c 6859void
16c381f0 6860discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 6861{
8358c15c
JK
6862 if (inf_status->thread_control.step_resume_breakpoint)
6863 inf_status->thread_control.step_resume_breakpoint->disposition
6864 = disp_del_at_next_stop;
6865
5b79abe7
TT
6866 if (inf_status->thread_control.exception_resume_breakpoint)
6867 inf_status->thread_control.exception_resume_breakpoint->disposition
6868 = disp_del_at_next_stop;
6869
1777feb0 6870 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 6871 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 6872
72cec141 6873 xfree (inf_status);
7a292a7a 6874}
b89667eb 6875\f
47932f85 6876int
3a3e9ee3 6877inferior_has_forked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6878{
6879 struct target_waitstatus last;
6880 ptid_t last_ptid;
6881
6882 get_last_target_status (&last_ptid, &last);
6883
6884 if (last.kind != TARGET_WAITKIND_FORKED)
6885 return 0;
6886
3a3e9ee3 6887 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6888 return 0;
6889
6890 *child_pid = last.value.related_pid;
6891 return 1;
6892}
6893
6894int
3a3e9ee3 6895inferior_has_vforked (ptid_t pid, ptid_t *child_pid)
47932f85
DJ
6896{
6897 struct target_waitstatus last;
6898 ptid_t last_ptid;
6899
6900 get_last_target_status (&last_ptid, &last);
6901
6902 if (last.kind != TARGET_WAITKIND_VFORKED)
6903 return 0;
6904
3a3e9ee3 6905 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6906 return 0;
6907
6908 *child_pid = last.value.related_pid;
6909 return 1;
6910}
6911
6912int
3a3e9ee3 6913inferior_has_execd (ptid_t pid, char **execd_pathname)
47932f85
DJ
6914{
6915 struct target_waitstatus last;
6916 ptid_t last_ptid;
6917
6918 get_last_target_status (&last_ptid, &last);
6919
6920 if (last.kind != TARGET_WAITKIND_EXECD)
6921 return 0;
6922
3a3e9ee3 6923 if (!ptid_equal (last_ptid, pid))
47932f85
DJ
6924 return 0;
6925
6926 *execd_pathname = xstrdup (last.value.execd_pathname);
6927 return 1;
6928}
6929
a96d9b2e
SDJ
6930int
6931inferior_has_called_syscall (ptid_t pid, int *syscall_number)
6932{
6933 struct target_waitstatus last;
6934 ptid_t last_ptid;
6935
6936 get_last_target_status (&last_ptid, &last);
6937
6938 if (last.kind != TARGET_WAITKIND_SYSCALL_ENTRY &&
6939 last.kind != TARGET_WAITKIND_SYSCALL_RETURN)
6940 return 0;
6941
6942 if (!ptid_equal (last_ptid, pid))
6943 return 0;
6944
6945 *syscall_number = last.value.syscall_number;
6946 return 1;
6947}
6948
0723dbf5
PA
6949int
6950ptid_match (ptid_t ptid, ptid_t filter)
6951{
0723dbf5
PA
6952 if (ptid_equal (filter, minus_one_ptid))
6953 return 1;
6954 if (ptid_is_pid (filter)
6955 && ptid_get_pid (ptid) == ptid_get_pid (filter))
6956 return 1;
6957 else if (ptid_equal (ptid, filter))
6958 return 1;
6959
6960 return 0;
6961}
6962
ca6724c1
KB
6963/* restore_inferior_ptid() will be used by the cleanup machinery
6964 to restore the inferior_ptid value saved in a call to
6965 save_inferior_ptid(). */
ce696e05
KB
6966
6967static void
6968restore_inferior_ptid (void *arg)
6969{
6970 ptid_t *saved_ptid_ptr = arg;
abbb1732 6971
ce696e05
KB
6972 inferior_ptid = *saved_ptid_ptr;
6973 xfree (arg);
6974}
6975
6976/* Save the value of inferior_ptid so that it may be restored by a
6977 later call to do_cleanups(). Returns the struct cleanup pointer
6978 needed for later doing the cleanup. */
6979
6980struct cleanup *
6981save_inferior_ptid (void)
6982{
6983 ptid_t *saved_ptid_ptr;
6984
6985 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
6986 *saved_ptid_ptr = inferior_ptid;
6987 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
6988}
c5aa993b 6989\f
488f131b 6990
b2175913
MS
6991/* User interface for reverse debugging:
6992 Set exec-direction / show exec-direction commands
6993 (returns error unless target implements to_set_exec_direction method). */
6994
32231432 6995int execution_direction = EXEC_FORWARD;
b2175913
MS
6996static const char exec_forward[] = "forward";
6997static const char exec_reverse[] = "reverse";
6998static const char *exec_direction = exec_forward;
6999static const char *exec_direction_names[] = {
7000 exec_forward,
7001 exec_reverse,
7002 NULL
7003};
7004
7005static void
7006set_exec_direction_func (char *args, int from_tty,
7007 struct cmd_list_element *cmd)
7008{
7009 if (target_can_execute_reverse)
7010 {
7011 if (!strcmp (exec_direction, exec_forward))
7012 execution_direction = EXEC_FORWARD;
7013 else if (!strcmp (exec_direction, exec_reverse))
7014 execution_direction = EXEC_REVERSE;
7015 }
8bbed405
MS
7016 else
7017 {
7018 exec_direction = exec_forward;
7019 error (_("Target does not support this operation."));
7020 }
b2175913
MS
7021}
7022
7023static void
7024show_exec_direction_func (struct ui_file *out, int from_tty,
7025 struct cmd_list_element *cmd, const char *value)
7026{
7027 switch (execution_direction) {
7028 case EXEC_FORWARD:
7029 fprintf_filtered (out, _("Forward.\n"));
7030 break;
7031 case EXEC_REVERSE:
7032 fprintf_filtered (out, _("Reverse.\n"));
7033 break;
b2175913 7034 default:
d8b34453
PA
7035 internal_error (__FILE__, __LINE__,
7036 _("bogus execution_direction value: %d"),
7037 (int) execution_direction);
b2175913
MS
7038 }
7039}
7040
7041/* User interface for non-stop mode. */
7042
ad52ddc6 7043int non_stop = 0;
ad52ddc6
PA
7044
7045static void
7046set_non_stop (char *args, int from_tty,
7047 struct cmd_list_element *c)
7048{
7049 if (target_has_execution)
7050 {
7051 non_stop_1 = non_stop;
7052 error (_("Cannot change this setting while the inferior is running."));
7053 }
7054
7055 non_stop = non_stop_1;
7056}
7057
7058static void
7059show_non_stop (struct ui_file *file, int from_tty,
7060 struct cmd_list_element *c, const char *value)
7061{
7062 fprintf_filtered (file,
7063 _("Controlling the inferior in non-stop mode is %s.\n"),
7064 value);
7065}
7066
d4db2f36
PA
7067static void
7068show_schedule_multiple (struct ui_file *file, int from_tty,
7069 struct cmd_list_element *c, const char *value)
7070{
3e43a32a
MS
7071 fprintf_filtered (file, _("Resuming the execution of threads "
7072 "of all processes is %s.\n"), value);
d4db2f36 7073}
ad52ddc6 7074
c906108c 7075void
96baa820 7076_initialize_infrun (void)
c906108c 7077{
52f0bd74
AC
7078 int i;
7079 int numsigs;
c906108c 7080
1bedd215
AC
7081 add_info ("signals", signals_info, _("\
7082What debugger does when program gets various signals.\n\
7083Specify a signal as argument to print info on that signal only."));
c906108c
SS
7084 add_info_alias ("handle", "signals", 0);
7085
1bedd215
AC
7086 add_com ("handle", class_run, handle_command, _("\
7087Specify how to handle a signal.\n\
c906108c
SS
7088Args are signals and actions to apply to those signals.\n\
7089Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7090from 1-15 are allowed for compatibility with old versions of GDB.\n\
7091Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7092The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215
AC
7093used by the debugger, typically SIGTRAP and SIGINT.\n\
7094Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7095\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7096Stop means reenter debugger if this signal happens (implies print).\n\
7097Print means print a message if this signal happens.\n\
7098Pass means let program see this signal; otherwise program doesn't know.\n\
7099Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7100Pass and Stop may be combined."));
c906108c
SS
7101 if (xdb_commands)
7102 {
1bedd215
AC
7103 add_com ("lz", class_info, signals_info, _("\
7104What debugger does when program gets various signals.\n\
7105Specify a signal as argument to print info on that signal only."));
7106 add_com ("z", class_run, xdb_handle_command, _("\
7107Specify how to handle a signal.\n\
c906108c
SS
7108Args are signals and actions to apply to those signals.\n\
7109Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7110from 1-15 are allowed for compatibility with old versions of GDB.\n\
7111Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7112The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7113used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7114Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7115\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7116nopass), \"Q\" (noprint)\n\
7117Stop means reenter debugger if this signal happens (implies print).\n\
7118Print means print a message if this signal happens.\n\
7119Pass means let program see this signal; otherwise program doesn't know.\n\
7120Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7121Pass and Stop may be combined."));
c906108c
SS
7122 }
7123
7124 if (!dbx_commands)
1a966eab
AC
7125 stop_command = add_cmd ("stop", class_obscure,
7126 not_just_help_class_command, _("\
7127There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7128This allows you to set a list of commands to be run each time execution\n\
1a966eab 7129of the program stops."), &cmdlist);
c906108c 7130
85c07804
AC
7131 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7132Set inferior debugging."), _("\
7133Show inferior debugging."), _("\
7134When non-zero, inferior specific debugging is enabled."),
7135 NULL,
920d2a44 7136 show_debug_infrun,
85c07804 7137 &setdebuglist, &showdebuglist);
527159b7 7138
3e43a32a
MS
7139 add_setshow_boolean_cmd ("displaced", class_maintenance,
7140 &debug_displaced, _("\
237fc4c9
PA
7141Set displaced stepping debugging."), _("\
7142Show displaced stepping debugging."), _("\
7143When non-zero, displaced stepping specific debugging is enabled."),
7144 NULL,
7145 show_debug_displaced,
7146 &setdebuglist, &showdebuglist);
7147
ad52ddc6
PA
7148 add_setshow_boolean_cmd ("non-stop", no_class,
7149 &non_stop_1, _("\
7150Set whether gdb controls the inferior in non-stop mode."), _("\
7151Show whether gdb controls the inferior in non-stop mode."), _("\
7152When debugging a multi-threaded program and this setting is\n\
7153off (the default, also called all-stop mode), when one thread stops\n\
7154(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7155all other threads in the program while you interact with the thread of\n\
7156interest. When you continue or step a thread, you can allow the other\n\
7157threads to run, or have them remain stopped, but while you inspect any\n\
7158thread's state, all threads stop.\n\
7159\n\
7160In non-stop mode, when one thread stops, other threads can continue\n\
7161to run freely. You'll be able to step each thread independently,\n\
7162leave it stopped or free to run as needed."),
7163 set_non_stop,
7164 show_non_stop,
7165 &setlist,
7166 &showlist);
7167
c906108c 7168 numsigs = (int) TARGET_SIGNAL_LAST;
488f131b 7169 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7170 signal_print = (unsigned char *)
7171 xmalloc (sizeof (signal_print[0]) * numsigs);
7172 signal_program = (unsigned char *)
7173 xmalloc (sizeof (signal_program[0]) * numsigs);
2455069d
UW
7174 signal_pass = (unsigned char *)
7175 xmalloc (sizeof (signal_program[0]) * numsigs);
c906108c
SS
7176 for (i = 0; i < numsigs; i++)
7177 {
7178 signal_stop[i] = 1;
7179 signal_print[i] = 1;
7180 signal_program[i] = 1;
7181 }
7182
7183 /* Signals caused by debugger's own actions
7184 should not be given to the program afterwards. */
7185 signal_program[TARGET_SIGNAL_TRAP] = 0;
7186 signal_program[TARGET_SIGNAL_INT] = 0;
7187
7188 /* Signals that are not errors should not normally enter the debugger. */
7189 signal_stop[TARGET_SIGNAL_ALRM] = 0;
7190 signal_print[TARGET_SIGNAL_ALRM] = 0;
7191 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
7192 signal_print[TARGET_SIGNAL_VTALRM] = 0;
7193 signal_stop[TARGET_SIGNAL_PROF] = 0;
7194 signal_print[TARGET_SIGNAL_PROF] = 0;
7195 signal_stop[TARGET_SIGNAL_CHLD] = 0;
7196 signal_print[TARGET_SIGNAL_CHLD] = 0;
7197 signal_stop[TARGET_SIGNAL_IO] = 0;
7198 signal_print[TARGET_SIGNAL_IO] = 0;
7199 signal_stop[TARGET_SIGNAL_POLL] = 0;
7200 signal_print[TARGET_SIGNAL_POLL] = 0;
7201 signal_stop[TARGET_SIGNAL_URG] = 0;
7202 signal_print[TARGET_SIGNAL_URG] = 0;
7203 signal_stop[TARGET_SIGNAL_WINCH] = 0;
7204 signal_print[TARGET_SIGNAL_WINCH] = 0;
16dfc9ce
JB
7205 signal_stop[TARGET_SIGNAL_PRIO] = 0;
7206 signal_print[TARGET_SIGNAL_PRIO] = 0;
c906108c 7207
cd0fc7c3
SS
7208 /* These signals are used internally by user-level thread
7209 implementations. (See signal(5) on Solaris.) Like the above
7210 signals, a healthy program receives and handles them as part of
7211 its normal operation. */
7212 signal_stop[TARGET_SIGNAL_LWP] = 0;
7213 signal_print[TARGET_SIGNAL_LWP] = 0;
7214 signal_stop[TARGET_SIGNAL_WAITING] = 0;
7215 signal_print[TARGET_SIGNAL_WAITING] = 0;
7216 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
7217 signal_print[TARGET_SIGNAL_CANCEL] = 0;
7218
2455069d
UW
7219 /* Update cached state. */
7220 signal_cache_update (-1);
7221
85c07804
AC
7222 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7223 &stop_on_solib_events, _("\
7224Set stopping for shared library events."), _("\
7225Show stopping for shared library events."), _("\
c906108c
SS
7226If nonzero, gdb will give control to the user when the dynamic linker\n\
7227notifies gdb of shared library events. The most common event of interest\n\
85c07804
AC
7228to the user would be loading/unloading of a new library."),
7229 NULL,
920d2a44 7230 show_stop_on_solib_events,
85c07804 7231 &setlist, &showlist);
c906108c 7232
7ab04401
AC
7233 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7234 follow_fork_mode_kind_names,
7235 &follow_fork_mode_string, _("\
7236Set debugger response to a program call of fork or vfork."), _("\
7237Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7238A fork or vfork creates a new process. follow-fork-mode can be:\n\
7239 parent - the original process is debugged after a fork\n\
7240 child - the new process is debugged after a fork\n\
ea1dd7bc 7241The unfollowed process will continue to run.\n\
7ab04401
AC
7242By default, the debugger will follow the parent process."),
7243 NULL,
920d2a44 7244 show_follow_fork_mode_string,
7ab04401
AC
7245 &setlist, &showlist);
7246
6c95b8df
PA
7247 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7248 follow_exec_mode_names,
7249 &follow_exec_mode_string, _("\
7250Set debugger response to a program call of exec."), _("\
7251Show debugger response to a program call of exec."), _("\
7252An exec call replaces the program image of a process.\n\
7253\n\
7254follow-exec-mode can be:\n\
7255\n\
cce7e648 7256 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7257to this new inferior. The program the process was running before\n\
7258the exec call can be restarted afterwards by restarting the original\n\
7259inferior.\n\
7260\n\
7261 same - the debugger keeps the process bound to the same inferior.\n\
7262The new executable image replaces the previous executable loaded in\n\
7263the inferior. Restarting the inferior after the exec call restarts\n\
7264the executable the process was running after the exec call.\n\
7265\n\
7266By default, the debugger will use the same inferior."),
7267 NULL,
7268 show_follow_exec_mode_string,
7269 &setlist, &showlist);
7270
7ab04401
AC
7271 add_setshow_enum_cmd ("scheduler-locking", class_run,
7272 scheduler_enums, &scheduler_mode, _("\
7273Set mode for locking scheduler during execution."), _("\
7274Show mode for locking scheduler during execution."), _("\
c906108c
SS
7275off == no locking (threads may preempt at any time)\n\
7276on == full locking (no thread except the current thread may run)\n\
7277step == scheduler locked during every single-step operation.\n\
7278 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7279 Other threads may run while stepping over a function call ('next')."),
7280 set_schedlock_func, /* traps on target vector */
920d2a44 7281 show_scheduler_mode,
7ab04401 7282 &setlist, &showlist);
5fbbeb29 7283
d4db2f36
PA
7284 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7285Set mode for resuming threads of all processes."), _("\
7286Show mode for resuming threads of all processes."), _("\
7287When on, execution commands (such as 'continue' or 'next') resume all\n\
7288threads of all processes. When off (which is the default), execution\n\
7289commands only resume the threads of the current process. The set of\n\
7290threads that are resumed is further refined by the scheduler-locking\n\
7291mode (see help set scheduler-locking)."),
7292 NULL,
7293 show_schedule_multiple,
7294 &setlist, &showlist);
7295
5bf193a2
AC
7296 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7297Set mode of the step operation."), _("\
7298Show mode of the step operation."), _("\
7299When set, doing a step over a function without debug line information\n\
7300will stop at the first instruction of that function. Otherwise, the\n\
7301function is skipped and the step command stops at a different source line."),
7302 NULL,
920d2a44 7303 show_step_stop_if_no_debug,
5bf193a2 7304 &setlist, &showlist);
ca6724c1 7305
fff08868
HZ
7306 add_setshow_enum_cmd ("displaced-stepping", class_run,
7307 can_use_displaced_stepping_enum,
7308 &can_use_displaced_stepping, _("\
237fc4c9
PA
7309Set debugger's willingness to use displaced stepping."), _("\
7310Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7311If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7312supported by the target architecture. If off, gdb will not use displaced\n\
7313stepping to step over breakpoints, even if such is supported by the target\n\
7314architecture. If auto (which is the default), gdb will use displaced stepping\n\
7315if the target architecture supports it and non-stop mode is active, but will not\n\
7316use it in all-stop mode (see help set non-stop)."),
7317 NULL,
7318 show_can_use_displaced_stepping,
7319 &setlist, &showlist);
237fc4c9 7320
b2175913
MS
7321 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7322 &exec_direction, _("Set direction of execution.\n\
7323Options are 'forward' or 'reverse'."),
7324 _("Show direction of execution (forward/reverse)."),
7325 _("Tells gdb whether to execute forward or backward."),
7326 set_exec_direction_func, show_exec_direction_func,
7327 &setlist, &showlist);
7328
6c95b8df
PA
7329 /* Set/show detach-on-fork: user-settable mode. */
7330
7331 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7332Set whether gdb will detach the child of a fork."), _("\
7333Show whether gdb will detach the child of a fork."), _("\
7334Tells gdb whether to detach the child of a fork."),
7335 NULL, NULL, &setlist, &showlist);
7336
03583c20
UW
7337 /* Set/show disable address space randomization mode. */
7338
7339 add_setshow_boolean_cmd ("disable-randomization", class_support,
7340 &disable_randomization, _("\
7341Set disabling of debuggee's virtual address space randomization."), _("\
7342Show disabling of debuggee's virtual address space randomization."), _("\
7343When this mode is on (which is the default), randomization of the virtual\n\
7344address space is disabled. Standalone programs run with the randomization\n\
7345enabled by default on some platforms."),
7346 &set_disable_randomization,
7347 &show_disable_randomization,
7348 &setlist, &showlist);
7349
ca6724c1 7350 /* ptid initializations */
ca6724c1
KB
7351 inferior_ptid = null_ptid;
7352 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7353
7354 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7355 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7356 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7357 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7358
7359 /* Explicitly create without lookup, since that tries to create a
7360 value with a void typed value, and when we get here, gdbarch
7361 isn't initialized yet. At this point, we're quite sure there
7362 isn't another convenience variable of the same name. */
7363 create_internalvar_type_lazy ("_siginfo", siginfo_make_value);
d914c394
SS
7364
7365 add_setshow_boolean_cmd ("observer", no_class,
7366 &observer_mode_1, _("\
7367Set whether gdb controls the inferior in observer mode."), _("\
7368Show whether gdb controls the inferior in observer mode."), _("\
7369In observer mode, GDB can get data from the inferior, but not\n\
7370affect its execution. Registers and memory may not be changed,\n\
7371breakpoints may not be set, and the program cannot be interrupted\n\
7372or signalled."),
7373 set_observer_mode,
7374 show_observer_mode,
7375 &setlist,
7376 &showlist);
c906108c 7377}
This page took 2.34036 seconds and 4 git commands to generate.