Teach GDB about targets that can tell whether a trap is a breakpoint event
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
32d0add0 4 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
06600e06 41#include "observer.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
c906108c
SS
63
64/* Prototypes for local functions */
65
96baa820 66static void signals_info (char *, int);
c906108c 67
96baa820 68static void handle_command (char *, int);
c906108c 69
2ea28649 70static void sig_print_info (enum gdb_signal);
c906108c 71
96baa820 72static void sig_print_header (void);
c906108c 73
74b7792f 74static void resume_cleanups (void *);
c906108c 75
96baa820 76static int hook_stop_stub (void *);
c906108c 77
96baa820
JM
78static int restore_selected_frame (void *);
79
4ef3f3be 80static int follow_fork (void);
96baa820 81
d83ad864
DB
82static int follow_fork_inferior (int follow_child, int detach_fork);
83
84static void follow_inferior_reset_breakpoints (void);
85
96baa820 86static void set_schedlock_func (char *args, int from_tty,
488f131b 87 struct cmd_list_element *c);
96baa820 88
a289b8f6
JK
89static int currently_stepping (struct thread_info *tp);
90
96baa820
JM
91static void xdb_handle_command (char *args, int from_tty);
92
93void _initialize_infrun (void);
43ff13b4 94
e58b0e63
PA
95void nullify_last_target_wait_ptid (void);
96
2c03e5be 97static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
98
99static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
100
2484c66b
UW
101static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
102
5fbbeb29
CF
103/* When set, stop the 'step' command if we enter a function which has
104 no line number information. The normal behavior is that we step
105 over such function. */
106int step_stop_if_no_debug = 0;
920d2a44
AC
107static void
108show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110{
111 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
112}
5fbbeb29 113
1777feb0 114/* In asynchronous mode, but simulating synchronous execution. */
96baa820 115
43ff13b4
JM
116int sync_execution = 0;
117
b9f437de
PA
118/* proceed and normal_stop use this to notify the user when the
119 inferior stopped in a different thread than it had been running
120 in. */
96baa820 121
39f77062 122static ptid_t previous_inferior_ptid;
7a292a7a 123
07107ca6
LM
124/* If set (default for legacy reasons), when following a fork, GDB
125 will detach from one of the fork branches, child or parent.
126 Exactly which branch is detached depends on 'set follow-fork-mode'
127 setting. */
128
129static int detach_fork = 1;
6c95b8df 130
237fc4c9
PA
131int debug_displaced = 0;
132static void
133show_debug_displaced (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c, const char *value)
135{
136 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
137}
138
ccce17b0 139unsigned int debug_infrun = 0;
920d2a44
AC
140static void
141show_debug_infrun (struct ui_file *file, int from_tty,
142 struct cmd_list_element *c, const char *value)
143{
144 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
145}
527159b7 146
03583c20
UW
147
148/* Support for disabling address space randomization. */
149
150int disable_randomization = 1;
151
152static void
153show_disable_randomization (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155{
156 if (target_supports_disable_randomization ())
157 fprintf_filtered (file,
158 _("Disabling randomization of debuggee's "
159 "virtual address space is %s.\n"),
160 value);
161 else
162 fputs_filtered (_("Disabling randomization of debuggee's "
163 "virtual address space is unsupported on\n"
164 "this platform.\n"), file);
165}
166
167static void
168set_disable_randomization (char *args, int from_tty,
169 struct cmd_list_element *c)
170{
171 if (!target_supports_disable_randomization ())
172 error (_("Disabling randomization of debuggee's "
173 "virtual address space is unsupported on\n"
174 "this platform."));
175}
176
d32dc48e
PA
177/* User interface for non-stop mode. */
178
179int non_stop = 0;
180static int non_stop_1 = 0;
181
182static void
183set_non_stop (char *args, int from_tty,
184 struct cmd_list_element *c)
185{
186 if (target_has_execution)
187 {
188 non_stop_1 = non_stop;
189 error (_("Cannot change this setting while the inferior is running."));
190 }
191
192 non_stop = non_stop_1;
193}
194
195static void
196show_non_stop (struct ui_file *file, int from_tty,
197 struct cmd_list_element *c, const char *value)
198{
199 fprintf_filtered (file,
200 _("Controlling the inferior in non-stop mode is %s.\n"),
201 value);
202}
203
d914c394
SS
204/* "Observer mode" is somewhat like a more extreme version of
205 non-stop, in which all GDB operations that might affect the
206 target's execution have been disabled. */
207
d914c394
SS
208int observer_mode = 0;
209static int observer_mode_1 = 0;
210
211static void
212set_observer_mode (char *args, int from_tty,
213 struct cmd_list_element *c)
214{
d914c394
SS
215 if (target_has_execution)
216 {
217 observer_mode_1 = observer_mode;
218 error (_("Cannot change this setting while the inferior is running."));
219 }
220
221 observer_mode = observer_mode_1;
222
223 may_write_registers = !observer_mode;
224 may_write_memory = !observer_mode;
225 may_insert_breakpoints = !observer_mode;
226 may_insert_tracepoints = !observer_mode;
227 /* We can insert fast tracepoints in or out of observer mode,
228 but enable them if we're going into this mode. */
229 if (observer_mode)
230 may_insert_fast_tracepoints = 1;
231 may_stop = !observer_mode;
232 update_target_permissions ();
233
234 /* Going *into* observer mode we must force non-stop, then
235 going out we leave it that way. */
236 if (observer_mode)
237 {
d914c394
SS
238 pagination_enabled = 0;
239 non_stop = non_stop_1 = 1;
240 }
241
242 if (from_tty)
243 printf_filtered (_("Observer mode is now %s.\n"),
244 (observer_mode ? "on" : "off"));
245}
246
247static void
248show_observer_mode (struct ui_file *file, int from_tty,
249 struct cmd_list_element *c, const char *value)
250{
251 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
252}
253
254/* This updates the value of observer mode based on changes in
255 permissions. Note that we are deliberately ignoring the values of
256 may-write-registers and may-write-memory, since the user may have
257 reason to enable these during a session, for instance to turn on a
258 debugging-related global. */
259
260void
261update_observer_mode (void)
262{
263 int newval;
264
265 newval = (!may_insert_breakpoints
266 && !may_insert_tracepoints
267 && may_insert_fast_tracepoints
268 && !may_stop
269 && non_stop);
270
271 /* Let the user know if things change. */
272 if (newval != observer_mode)
273 printf_filtered (_("Observer mode is now %s.\n"),
274 (newval ? "on" : "off"));
275
276 observer_mode = observer_mode_1 = newval;
277}
c2c6d25f 278
c906108c
SS
279/* Tables of how to react to signals; the user sets them. */
280
281static unsigned char *signal_stop;
282static unsigned char *signal_print;
283static unsigned char *signal_program;
284
ab04a2af
TT
285/* Table of signals that are registered with "catch signal". A
286 non-zero entry indicates that the signal is caught by some "catch
287 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
288 signals. */
289static unsigned char *signal_catch;
290
2455069d
UW
291/* Table of signals that the target may silently handle.
292 This is automatically determined from the flags above,
293 and simply cached here. */
294static unsigned char *signal_pass;
295
c906108c
SS
296#define SET_SIGS(nsigs,sigs,flags) \
297 do { \
298 int signum = (nsigs); \
299 while (signum-- > 0) \
300 if ((sigs)[signum]) \
301 (flags)[signum] = 1; \
302 } while (0)
303
304#define UNSET_SIGS(nsigs,sigs,flags) \
305 do { \
306 int signum = (nsigs); \
307 while (signum-- > 0) \
308 if ((sigs)[signum]) \
309 (flags)[signum] = 0; \
310 } while (0)
311
9b224c5e
PA
312/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
313 this function is to avoid exporting `signal_program'. */
314
315void
316update_signals_program_target (void)
317{
a493e3e2 318 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
319}
320
1777feb0 321/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 322
edb3359d 323#define RESUME_ALL minus_one_ptid
c906108c
SS
324
325/* Command list pointer for the "stop" placeholder. */
326
327static struct cmd_list_element *stop_command;
328
c906108c
SS
329/* Function inferior was in as of last step command. */
330
331static struct symbol *step_start_function;
332
c906108c
SS
333/* Nonzero if we want to give control to the user when we're notified
334 of shared library events by the dynamic linker. */
628fe4e4 335int stop_on_solib_events;
f9e14852
GB
336
337/* Enable or disable optional shared library event breakpoints
338 as appropriate when the above flag is changed. */
339
340static void
341set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
342{
343 update_solib_breakpoints ();
344}
345
920d2a44
AC
346static void
347show_stop_on_solib_events (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c, const char *value)
349{
350 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
351 value);
352}
c906108c 353
c906108c
SS
354/* Nonzero means expecting a trace trap
355 and should stop the inferior and return silently when it happens. */
356
357int stop_after_trap;
358
642fd101
DE
359/* Save register contents here when executing a "finish" command or are
360 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
c906108c
SS
361 Thus this contains the return value from the called function (assuming
362 values are returned in a register). */
363
72cec141 364struct regcache *stop_registers;
c906108c 365
c906108c
SS
366/* Nonzero after stop if current stack frame should be printed. */
367
368static int stop_print_frame;
369
e02bc4cc 370/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
371 returned by target_wait()/deprecated_target_wait_hook(). This
372 information is returned by get_last_target_status(). */
39f77062 373static ptid_t target_last_wait_ptid;
e02bc4cc
DS
374static struct target_waitstatus target_last_waitstatus;
375
0d1e5fa7
PA
376static void context_switch (ptid_t ptid);
377
4e1c45ea 378void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 379
53904c9e
AC
380static const char follow_fork_mode_child[] = "child";
381static const char follow_fork_mode_parent[] = "parent";
382
40478521 383static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
384 follow_fork_mode_child,
385 follow_fork_mode_parent,
386 NULL
ef346e04 387};
c906108c 388
53904c9e 389static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
390static void
391show_follow_fork_mode_string (struct ui_file *file, int from_tty,
392 struct cmd_list_element *c, const char *value)
393{
3e43a32a
MS
394 fprintf_filtered (file,
395 _("Debugger response to a program "
396 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
397 value);
398}
c906108c
SS
399\f
400
d83ad864
DB
401/* Handle changes to the inferior list based on the type of fork,
402 which process is being followed, and whether the other process
403 should be detached. On entry inferior_ptid must be the ptid of
404 the fork parent. At return inferior_ptid is the ptid of the
405 followed inferior. */
406
407static int
408follow_fork_inferior (int follow_child, int detach_fork)
409{
410 int has_vforked;
79639e11 411 ptid_t parent_ptid, child_ptid;
d83ad864
DB
412
413 has_vforked = (inferior_thread ()->pending_follow.kind
414 == TARGET_WAITKIND_VFORKED);
79639e11
PA
415 parent_ptid = inferior_ptid;
416 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
417
418 if (has_vforked
419 && !non_stop /* Non-stop always resumes both branches. */
420 && (!target_is_async_p () || sync_execution)
421 && !(follow_child || detach_fork || sched_multi))
422 {
423 /* The parent stays blocked inside the vfork syscall until the
424 child execs or exits. If we don't let the child run, then
425 the parent stays blocked. If we're telling the parent to run
426 in the foreground, the user will not be able to ctrl-c to get
427 back the terminal, effectively hanging the debug session. */
428 fprintf_filtered (gdb_stderr, _("\
429Can not resume the parent process over vfork in the foreground while\n\
430holding the child stopped. Try \"set detach-on-fork\" or \
431\"set schedule-multiple\".\n"));
432 /* FIXME output string > 80 columns. */
433 return 1;
434 }
435
436 if (!follow_child)
437 {
438 /* Detach new forked process? */
439 if (detach_fork)
440 {
441 struct cleanup *old_chain;
442
443 /* Before detaching from the child, remove all breakpoints
444 from it. If we forked, then this has already been taken
445 care of by infrun.c. If we vforked however, any
446 breakpoint inserted in the parent is visible in the
447 child, even those added while stopped in a vfork
448 catchpoint. This will remove the breakpoints from the
449 parent also, but they'll be reinserted below. */
450 if (has_vforked)
451 {
452 /* Keep breakpoints list in sync. */
453 remove_breakpoints_pid (ptid_get_pid (inferior_ptid));
454 }
455
456 if (info_verbose || debug_infrun)
457 {
6f259a23 458 target_terminal_ours_for_output ();
d83ad864 459 fprintf_filtered (gdb_stdlog,
79639e11 460 _("Detaching after %s from child %s.\n"),
6f259a23 461 has_vforked ? "vfork" : "fork",
79639e11 462 target_pid_to_str (child_ptid));
d83ad864
DB
463 }
464 }
465 else
466 {
467 struct inferior *parent_inf, *child_inf;
468 struct cleanup *old_chain;
469
470 /* Add process to GDB's tables. */
79639e11 471 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
472
473 parent_inf = current_inferior ();
474 child_inf->attach_flag = parent_inf->attach_flag;
475 copy_terminal_info (child_inf, parent_inf);
476 child_inf->gdbarch = parent_inf->gdbarch;
477 copy_inferior_target_desc_info (child_inf, parent_inf);
478
479 old_chain = save_inferior_ptid ();
480 save_current_program_space ();
481
79639e11 482 inferior_ptid = child_ptid;
d83ad864
DB
483 add_thread (inferior_ptid);
484 child_inf->symfile_flags = SYMFILE_NO_READ;
485
486 /* If this is a vfork child, then the address-space is
487 shared with the parent. */
488 if (has_vforked)
489 {
490 child_inf->pspace = parent_inf->pspace;
491 child_inf->aspace = parent_inf->aspace;
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500 }
501 else
502 {
503 child_inf->aspace = new_address_space ();
504 child_inf->pspace = add_program_space (child_inf->aspace);
505 child_inf->removable = 1;
506 set_current_program_space (child_inf->pspace);
507 clone_program_space (child_inf->pspace, parent_inf->pspace);
508
509 /* Let the shared library layer (e.g., solib-svr4) learn
510 about this new process, relocate the cloned exec, pull
511 in shared libraries, and install the solib event
512 breakpoint. If a "cloned-VM" event was propagated
513 better throughout the core, this wouldn't be
514 required. */
515 solib_create_inferior_hook (0);
516 }
517
518 do_cleanups (old_chain);
519 }
520
521 if (has_vforked)
522 {
523 struct inferior *parent_inf;
524
525 parent_inf = current_inferior ();
526
527 /* If we detached from the child, then we have to be careful
528 to not insert breakpoints in the parent until the child
529 is done with the shared memory region. However, if we're
530 staying attached to the child, then we can and should
531 insert breakpoints, so that we can debug it. A
532 subsequent child exec or exit is enough to know when does
533 the child stops using the parent's address space. */
534 parent_inf->waiting_for_vfork_done = detach_fork;
535 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
536 }
537 }
538 else
539 {
540 /* Follow the child. */
541 struct inferior *parent_inf, *child_inf;
542 struct program_space *parent_pspace;
543
544 if (info_verbose || debug_infrun)
545 {
6f259a23
DB
546 target_terminal_ours_for_output ();
547 fprintf_filtered (gdb_stdlog,
79639e11
PA
548 _("Attaching after %s %s to child %s.\n"),
549 target_pid_to_str (parent_ptid),
6f259a23 550 has_vforked ? "vfork" : "fork",
79639e11 551 target_pid_to_str (child_ptid));
d83ad864
DB
552 }
553
554 /* Add the new inferior first, so that the target_detach below
555 doesn't unpush the target. */
556
79639e11 557 child_inf = add_inferior (ptid_get_pid (child_ptid));
d83ad864
DB
558
559 parent_inf = current_inferior ();
560 child_inf->attach_flag = parent_inf->attach_flag;
561 copy_terminal_info (child_inf, parent_inf);
562 child_inf->gdbarch = parent_inf->gdbarch;
563 copy_inferior_target_desc_info (child_inf, parent_inf);
564
565 parent_pspace = parent_inf->pspace;
566
567 /* If we're vforking, we want to hold on to the parent until the
568 child exits or execs. At child exec or exit time we can
569 remove the old breakpoints from the parent and detach or
570 resume debugging it. Otherwise, detach the parent now; we'll
571 want to reuse it's program/address spaces, but we can't set
572 them to the child before removing breakpoints from the
573 parent, otherwise, the breakpoints module could decide to
574 remove breakpoints from the wrong process (since they'd be
575 assigned to the same address space). */
576
577 if (has_vforked)
578 {
579 gdb_assert (child_inf->vfork_parent == NULL);
580 gdb_assert (parent_inf->vfork_child == NULL);
581 child_inf->vfork_parent = parent_inf;
582 child_inf->pending_detach = 0;
583 parent_inf->vfork_child = child_inf;
584 parent_inf->pending_detach = detach_fork;
585 parent_inf->waiting_for_vfork_done = 0;
586 }
587 else if (detach_fork)
6f259a23
DB
588 {
589 if (info_verbose || debug_infrun)
590 {
591 target_terminal_ours_for_output ();
592 fprintf_filtered (gdb_stdlog,
593 _("Detaching after fork from "
79639e11
PA
594 "child %s.\n"),
595 target_pid_to_str (child_ptid));
6f259a23
DB
596 }
597
598 target_detach (NULL, 0);
599 }
d83ad864
DB
600
601 /* Note that the detach above makes PARENT_INF dangling. */
602
603 /* Add the child thread to the appropriate lists, and switch to
604 this new thread, before cloning the program space, and
605 informing the solib layer about this new process. */
606
79639e11 607 inferior_ptid = child_ptid;
d83ad864
DB
608 add_thread (inferior_ptid);
609
610 /* If this is a vfork child, then the address-space is shared
611 with the parent. If we detached from the parent, then we can
612 reuse the parent's program/address spaces. */
613 if (has_vforked || detach_fork)
614 {
615 child_inf->pspace = parent_pspace;
616 child_inf->aspace = child_inf->pspace->aspace;
617 }
618 else
619 {
620 child_inf->aspace = new_address_space ();
621 child_inf->pspace = add_program_space (child_inf->aspace);
622 child_inf->removable = 1;
623 child_inf->symfile_flags = SYMFILE_NO_READ;
624 set_current_program_space (child_inf->pspace);
625 clone_program_space (child_inf->pspace, parent_pspace);
626
627 /* Let the shared library layer (e.g., solib-svr4) learn
628 about this new process, relocate the cloned exec, pull in
629 shared libraries, and install the solib event breakpoint.
630 If a "cloned-VM" event was propagated better throughout
631 the core, this wouldn't be required. */
632 solib_create_inferior_hook (0);
633 }
634 }
635
636 return target_follow_fork (follow_child, detach_fork);
637}
638
e58b0e63
PA
639/* Tell the target to follow the fork we're stopped at. Returns true
640 if the inferior should be resumed; false, if the target for some
641 reason decided it's best not to resume. */
642
6604731b 643static int
4ef3f3be 644follow_fork (void)
c906108c 645{
ea1dd7bc 646 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
647 int should_resume = 1;
648 struct thread_info *tp;
649
650 /* Copy user stepping state to the new inferior thread. FIXME: the
651 followed fork child thread should have a copy of most of the
4e3990f4
DE
652 parent thread structure's run control related fields, not just these.
653 Initialized to avoid "may be used uninitialized" warnings from gcc. */
654 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 655 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
656 CORE_ADDR step_range_start = 0;
657 CORE_ADDR step_range_end = 0;
658 struct frame_id step_frame_id = { 0 };
17b2616c 659 struct interp *command_interp = NULL;
e58b0e63
PA
660
661 if (!non_stop)
662 {
663 ptid_t wait_ptid;
664 struct target_waitstatus wait_status;
665
666 /* Get the last target status returned by target_wait(). */
667 get_last_target_status (&wait_ptid, &wait_status);
668
669 /* If not stopped at a fork event, then there's nothing else to
670 do. */
671 if (wait_status.kind != TARGET_WAITKIND_FORKED
672 && wait_status.kind != TARGET_WAITKIND_VFORKED)
673 return 1;
674
675 /* Check if we switched over from WAIT_PTID, since the event was
676 reported. */
677 if (!ptid_equal (wait_ptid, minus_one_ptid)
678 && !ptid_equal (inferior_ptid, wait_ptid))
679 {
680 /* We did. Switch back to WAIT_PTID thread, to tell the
681 target to follow it (in either direction). We'll
682 afterwards refuse to resume, and inform the user what
683 happened. */
684 switch_to_thread (wait_ptid);
685 should_resume = 0;
686 }
687 }
688
689 tp = inferior_thread ();
690
691 /* If there were any forks/vforks that were caught and are now to be
692 followed, then do so now. */
693 switch (tp->pending_follow.kind)
694 {
695 case TARGET_WAITKIND_FORKED:
696 case TARGET_WAITKIND_VFORKED:
697 {
698 ptid_t parent, child;
699
700 /* If the user did a next/step, etc, over a fork call,
701 preserve the stepping state in the fork child. */
702 if (follow_child && should_resume)
703 {
8358c15c
JK
704 step_resume_breakpoint = clone_momentary_breakpoint
705 (tp->control.step_resume_breakpoint);
16c381f0
JK
706 step_range_start = tp->control.step_range_start;
707 step_range_end = tp->control.step_range_end;
708 step_frame_id = tp->control.step_frame_id;
186c406b
TT
709 exception_resume_breakpoint
710 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
17b2616c 711 command_interp = tp->control.command_interp;
e58b0e63
PA
712
713 /* For now, delete the parent's sr breakpoint, otherwise,
714 parent/child sr breakpoints are considered duplicates,
715 and the child version will not be installed. Remove
716 this when the breakpoints module becomes aware of
717 inferiors and address spaces. */
718 delete_step_resume_breakpoint (tp);
16c381f0
JK
719 tp->control.step_range_start = 0;
720 tp->control.step_range_end = 0;
721 tp->control.step_frame_id = null_frame_id;
186c406b 722 delete_exception_resume_breakpoint (tp);
17b2616c 723 tp->control.command_interp = NULL;
e58b0e63
PA
724 }
725
726 parent = inferior_ptid;
727 child = tp->pending_follow.value.related_pid;
728
d83ad864
DB
729 /* Set up inferior(s) as specified by the caller, and tell the
730 target to do whatever is necessary to follow either parent
731 or child. */
732 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
733 {
734 /* Target refused to follow, or there's some other reason
735 we shouldn't resume. */
736 should_resume = 0;
737 }
738 else
739 {
740 /* This pending follow fork event is now handled, one way
741 or another. The previous selected thread may be gone
742 from the lists by now, but if it is still around, need
743 to clear the pending follow request. */
e09875d4 744 tp = find_thread_ptid (parent);
e58b0e63
PA
745 if (tp)
746 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
747
748 /* This makes sure we don't try to apply the "Switched
749 over from WAIT_PID" logic above. */
750 nullify_last_target_wait_ptid ();
751
1777feb0 752 /* If we followed the child, switch to it... */
e58b0e63
PA
753 if (follow_child)
754 {
755 switch_to_thread (child);
756
757 /* ... and preserve the stepping state, in case the
758 user was stepping over the fork call. */
759 if (should_resume)
760 {
761 tp = inferior_thread ();
8358c15c
JK
762 tp->control.step_resume_breakpoint
763 = step_resume_breakpoint;
16c381f0
JK
764 tp->control.step_range_start = step_range_start;
765 tp->control.step_range_end = step_range_end;
766 tp->control.step_frame_id = step_frame_id;
186c406b
TT
767 tp->control.exception_resume_breakpoint
768 = exception_resume_breakpoint;
17b2616c 769 tp->control.command_interp = command_interp;
e58b0e63
PA
770 }
771 else
772 {
773 /* If we get here, it was because we're trying to
774 resume from a fork catchpoint, but, the user
775 has switched threads away from the thread that
776 forked. In that case, the resume command
777 issued is most likely not applicable to the
778 child, so just warn, and refuse to resume. */
3e43a32a
MS
779 warning (_("Not resuming: switched threads "
780 "before following fork child.\n"));
e58b0e63
PA
781 }
782
783 /* Reset breakpoints in the child as appropriate. */
784 follow_inferior_reset_breakpoints ();
785 }
786 else
787 switch_to_thread (parent);
788 }
789 }
790 break;
791 case TARGET_WAITKIND_SPURIOUS:
792 /* Nothing to follow. */
793 break;
794 default:
795 internal_error (__FILE__, __LINE__,
796 "Unexpected pending_follow.kind %d\n",
797 tp->pending_follow.kind);
798 break;
799 }
c906108c 800
e58b0e63 801 return should_resume;
c906108c
SS
802}
803
d83ad864 804static void
6604731b 805follow_inferior_reset_breakpoints (void)
c906108c 806{
4e1c45ea
PA
807 struct thread_info *tp = inferior_thread ();
808
6604731b
DJ
809 /* Was there a step_resume breakpoint? (There was if the user
810 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
811 thread number. Cloned step_resume breakpoints are disabled on
812 creation, so enable it here now that it is associated with the
813 correct thread.
6604731b
DJ
814
815 step_resumes are a form of bp that are made to be per-thread.
816 Since we created the step_resume bp when the parent process
817 was being debugged, and now are switching to the child process,
818 from the breakpoint package's viewpoint, that's a switch of
819 "threads". We must update the bp's notion of which thread
820 it is for, or it'll be ignored when it triggers. */
821
8358c15c 822 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
823 {
824 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
825 tp->control.step_resume_breakpoint->loc->enabled = 1;
826 }
6604731b 827
a1aa2221 828 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 829 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
830 {
831 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
832 tp->control.exception_resume_breakpoint->loc->enabled = 1;
833 }
186c406b 834
6604731b
DJ
835 /* Reinsert all breakpoints in the child. The user may have set
836 breakpoints after catching the fork, in which case those
837 were never set in the child, but only in the parent. This makes
838 sure the inserted breakpoints match the breakpoint list. */
839
840 breakpoint_re_set ();
841 insert_breakpoints ();
c906108c 842}
c906108c 843
6c95b8df
PA
844/* The child has exited or execed: resume threads of the parent the
845 user wanted to be executing. */
846
847static int
848proceed_after_vfork_done (struct thread_info *thread,
849 void *arg)
850{
851 int pid = * (int *) arg;
852
853 if (ptid_get_pid (thread->ptid) == pid
854 && is_running (thread->ptid)
855 && !is_executing (thread->ptid)
856 && !thread->stop_requested
a493e3e2 857 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
858 {
859 if (debug_infrun)
860 fprintf_unfiltered (gdb_stdlog,
861 "infrun: resuming vfork parent thread %s\n",
862 target_pid_to_str (thread->ptid));
863
864 switch_to_thread (thread->ptid);
70509625 865 clear_proceed_status (0);
a493e3e2 866 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
6c95b8df
PA
867 }
868
869 return 0;
870}
871
872/* Called whenever we notice an exec or exit event, to handle
873 detaching or resuming a vfork parent. */
874
875static void
876handle_vfork_child_exec_or_exit (int exec)
877{
878 struct inferior *inf = current_inferior ();
879
880 if (inf->vfork_parent)
881 {
882 int resume_parent = -1;
883
884 /* This exec or exit marks the end of the shared memory region
885 between the parent and the child. If the user wanted to
886 detach from the parent, now is the time. */
887
888 if (inf->vfork_parent->pending_detach)
889 {
890 struct thread_info *tp;
891 struct cleanup *old_chain;
892 struct program_space *pspace;
893 struct address_space *aspace;
894
1777feb0 895 /* follow-fork child, detach-on-fork on. */
6c95b8df 896
68c9da30
PA
897 inf->vfork_parent->pending_detach = 0;
898
f50f4e56
PA
899 if (!exec)
900 {
901 /* If we're handling a child exit, then inferior_ptid
902 points at the inferior's pid, not to a thread. */
903 old_chain = save_inferior_ptid ();
904 save_current_program_space ();
905 save_current_inferior ();
906 }
907 else
908 old_chain = save_current_space_and_thread ();
6c95b8df
PA
909
910 /* We're letting loose of the parent. */
911 tp = any_live_thread_of_process (inf->vfork_parent->pid);
912 switch_to_thread (tp->ptid);
913
914 /* We're about to detach from the parent, which implicitly
915 removes breakpoints from its address space. There's a
916 catch here: we want to reuse the spaces for the child,
917 but, parent/child are still sharing the pspace at this
918 point, although the exec in reality makes the kernel give
919 the child a fresh set of new pages. The problem here is
920 that the breakpoints module being unaware of this, would
921 likely chose the child process to write to the parent
922 address space. Swapping the child temporarily away from
923 the spaces has the desired effect. Yes, this is "sort
924 of" a hack. */
925
926 pspace = inf->pspace;
927 aspace = inf->aspace;
928 inf->aspace = NULL;
929 inf->pspace = NULL;
930
931 if (debug_infrun || info_verbose)
932 {
6f259a23 933 target_terminal_ours_for_output ();
6c95b8df
PA
934
935 if (exec)
6f259a23
DB
936 {
937 fprintf_filtered (gdb_stdlog,
938 _("Detaching vfork parent process "
939 "%d after child exec.\n"),
940 inf->vfork_parent->pid);
941 }
6c95b8df 942 else
6f259a23
DB
943 {
944 fprintf_filtered (gdb_stdlog,
945 _("Detaching vfork parent process "
946 "%d after child exit.\n"),
947 inf->vfork_parent->pid);
948 }
6c95b8df
PA
949 }
950
951 target_detach (NULL, 0);
952
953 /* Put it back. */
954 inf->pspace = pspace;
955 inf->aspace = aspace;
956
957 do_cleanups (old_chain);
958 }
959 else if (exec)
960 {
961 /* We're staying attached to the parent, so, really give the
962 child a new address space. */
963 inf->pspace = add_program_space (maybe_new_address_space ());
964 inf->aspace = inf->pspace->aspace;
965 inf->removable = 1;
966 set_current_program_space (inf->pspace);
967
968 resume_parent = inf->vfork_parent->pid;
969
970 /* Break the bonds. */
971 inf->vfork_parent->vfork_child = NULL;
972 }
973 else
974 {
975 struct cleanup *old_chain;
976 struct program_space *pspace;
977
978 /* If this is a vfork child exiting, then the pspace and
979 aspaces were shared with the parent. Since we're
980 reporting the process exit, we'll be mourning all that is
981 found in the address space, and switching to null_ptid,
982 preparing to start a new inferior. But, since we don't
983 want to clobber the parent's address/program spaces, we
984 go ahead and create a new one for this exiting
985 inferior. */
986
987 /* Switch to null_ptid, so that clone_program_space doesn't want
988 to read the selected frame of a dead process. */
989 old_chain = save_inferior_ptid ();
990 inferior_ptid = null_ptid;
991
992 /* This inferior is dead, so avoid giving the breakpoints
993 module the option to write through to it (cloning a
994 program space resets breakpoints). */
995 inf->aspace = NULL;
996 inf->pspace = NULL;
997 pspace = add_program_space (maybe_new_address_space ());
998 set_current_program_space (pspace);
999 inf->removable = 1;
7dcd53a0 1000 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1001 clone_program_space (pspace, inf->vfork_parent->pspace);
1002 inf->pspace = pspace;
1003 inf->aspace = pspace->aspace;
1004
1005 /* Put back inferior_ptid. We'll continue mourning this
1777feb0 1006 inferior. */
6c95b8df
PA
1007 do_cleanups (old_chain);
1008
1009 resume_parent = inf->vfork_parent->pid;
1010 /* Break the bonds. */
1011 inf->vfork_parent->vfork_child = NULL;
1012 }
1013
1014 inf->vfork_parent = NULL;
1015
1016 gdb_assert (current_program_space == inf->pspace);
1017
1018 if (non_stop && resume_parent != -1)
1019 {
1020 /* If the user wanted the parent to be running, let it go
1021 free now. */
1022 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
1023
1024 if (debug_infrun)
3e43a32a
MS
1025 fprintf_unfiltered (gdb_stdlog,
1026 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1027 resume_parent);
1028
1029 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1030
1031 do_cleanups (old_chain);
1032 }
1033 }
1034}
1035
eb6c553b 1036/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1037
1038static const char follow_exec_mode_new[] = "new";
1039static const char follow_exec_mode_same[] = "same";
40478521 1040static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1041{
1042 follow_exec_mode_new,
1043 follow_exec_mode_same,
1044 NULL,
1045};
1046
1047static const char *follow_exec_mode_string = follow_exec_mode_same;
1048static void
1049show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1050 struct cmd_list_element *c, const char *value)
1051{
1052 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1053}
1054
1777feb0 1055/* EXECD_PATHNAME is assumed to be non-NULL. */
1adeb98a 1056
c906108c 1057static void
95e50b27 1058follow_exec (ptid_t ptid, char *execd_pathname)
c906108c 1059{
95e50b27 1060 struct thread_info *th, *tmp;
6c95b8df 1061 struct inferior *inf = current_inferior ();
95e50b27 1062 int pid = ptid_get_pid (ptid);
7a292a7a 1063
c906108c
SS
1064 /* This is an exec event that we actually wish to pay attention to.
1065 Refresh our symbol table to the newly exec'd program, remove any
1066 momentary bp's, etc.
1067
1068 If there are breakpoints, they aren't really inserted now,
1069 since the exec() transformed our inferior into a fresh set
1070 of instructions.
1071
1072 We want to preserve symbolic breakpoints on the list, since
1073 we have hopes that they can be reset after the new a.out's
1074 symbol table is read.
1075
1076 However, any "raw" breakpoints must be removed from the list
1077 (e.g., the solib bp's), since their address is probably invalid
1078 now.
1079
1080 And, we DON'T want to call delete_breakpoints() here, since
1081 that may write the bp's "shadow contents" (the instruction
1082 value that was overwritten witha TRAP instruction). Since
1777feb0 1083 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1084
1085 mark_breakpoints_out ();
1086
95e50b27
PA
1087 /* The target reports the exec event to the main thread, even if
1088 some other thread does the exec, and even if the main thread was
1089 stopped or already gone. We may still have non-leader threads of
1090 the process on our list. E.g., on targets that don't have thread
1091 exit events (like remote); or on native Linux in non-stop mode if
1092 there were only two threads in the inferior and the non-leader
1093 one is the one that execs (and nothing forces an update of the
1094 thread list up to here). When debugging remotely, it's best to
1095 avoid extra traffic, when possible, so avoid syncing the thread
1096 list with the target, and instead go ahead and delete all threads
1097 of the process but one that reported the event. Note this must
1098 be done before calling update_breakpoints_after_exec, as
1099 otherwise clearing the threads' resources would reference stale
1100 thread breakpoints -- it may have been one of these threads that
1101 stepped across the exec. We could just clear their stepping
1102 states, but as long as we're iterating, might as well delete
1103 them. Deleting them now rather than at the next user-visible
1104 stop provides a nicer sequence of events for user and MI
1105 notifications. */
1106 ALL_NON_EXITED_THREADS_SAFE (th, tmp)
1107 if (ptid_get_pid (th->ptid) == pid && !ptid_equal (th->ptid, ptid))
1108 delete_thread (th->ptid);
1109
1110 /* We also need to clear any left over stale state for the
1111 leader/event thread. E.g., if there was any step-resume
1112 breakpoint or similar, it's gone now. We cannot truly
1113 step-to-next statement through an exec(). */
1114 th = inferior_thread ();
8358c15c 1115 th->control.step_resume_breakpoint = NULL;
186c406b 1116 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1117 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1118 th->control.step_range_start = 0;
1119 th->control.step_range_end = 0;
c906108c 1120
95e50b27
PA
1121 /* The user may have had the main thread held stopped in the
1122 previous image (e.g., schedlock on, or non-stop). Release
1123 it now. */
a75724bc
PA
1124 th->stop_requested = 0;
1125
95e50b27
PA
1126 update_breakpoints_after_exec ();
1127
1777feb0 1128 /* What is this a.out's name? */
6c95b8df
PA
1129 printf_unfiltered (_("%s is executing new program: %s\n"),
1130 target_pid_to_str (inferior_ptid),
1131 execd_pathname);
c906108c
SS
1132
1133 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1134 inferior has essentially been killed & reborn. */
7a292a7a 1135
c906108c 1136 gdb_flush (gdb_stdout);
6ca15a4b
PA
1137
1138 breakpoint_init_inferior (inf_execd);
e85a822c
DJ
1139
1140 if (gdb_sysroot && *gdb_sysroot)
1141 {
1142 char *name = alloca (strlen (gdb_sysroot)
1143 + strlen (execd_pathname)
1144 + 1);
abbb1732 1145
e85a822c
DJ
1146 strcpy (name, gdb_sysroot);
1147 strcat (name, execd_pathname);
1148 execd_pathname = name;
1149 }
c906108c 1150
cce9b6bf
PA
1151 /* Reset the shared library package. This ensures that we get a
1152 shlib event when the child reaches "_start", at which point the
1153 dld will have had a chance to initialize the child. */
1154 /* Also, loading a symbol file below may trigger symbol lookups, and
1155 we don't want those to be satisfied by the libraries of the
1156 previous incarnation of this process. */
1157 no_shared_libraries (NULL, 0);
1158
6c95b8df
PA
1159 if (follow_exec_mode_string == follow_exec_mode_new)
1160 {
1161 struct program_space *pspace;
6c95b8df
PA
1162
1163 /* The user wants to keep the old inferior and program spaces
1164 around. Create a new fresh one, and switch to it. */
1165
1166 inf = add_inferior (current_inferior ()->pid);
1167 pspace = add_program_space (maybe_new_address_space ());
1168 inf->pspace = pspace;
1169 inf->aspace = pspace->aspace;
1170
1171 exit_inferior_num_silent (current_inferior ()->num);
1172
1173 set_current_inferior (inf);
1174 set_current_program_space (pspace);
1175 }
9107fc8d
PA
1176 else
1177 {
1178 /* The old description may no longer be fit for the new image.
1179 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1180 old description; we'll read a new one below. No need to do
1181 this on "follow-exec-mode new", as the old inferior stays
1182 around (its description is later cleared/refetched on
1183 restart). */
1184 target_clear_description ();
1185 }
6c95b8df
PA
1186
1187 gdb_assert (current_program_space == inf->pspace);
1188
1777feb0 1189 /* That a.out is now the one to use. */
6c95b8df
PA
1190 exec_file_attach (execd_pathname, 0);
1191
c1e56572
JK
1192 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
1193 (Position Independent Executable) main symbol file will get applied by
1194 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
1195 the breakpoints with the zero displacement. */
1196
7dcd53a0
TT
1197 symbol_file_add (execd_pathname,
1198 (inf->symfile_flags
1199 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
c1e56572
JK
1200 NULL, 0);
1201
7dcd53a0
TT
1202 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
1203 set_initial_language ();
c906108c 1204
9107fc8d
PA
1205 /* If the target can specify a description, read it. Must do this
1206 after flipping to the new executable (because the target supplied
1207 description must be compatible with the executable's
1208 architecture, and the old executable may e.g., be 32-bit, while
1209 the new one 64-bit), and before anything involving memory or
1210 registers. */
1211 target_find_description ();
1212
268a4a75 1213 solib_create_inferior_hook (0);
c906108c 1214
4efc6507
DE
1215 jit_inferior_created_hook ();
1216
c1e56572
JK
1217 breakpoint_re_set ();
1218
c906108c
SS
1219 /* Reinsert all breakpoints. (Those which were symbolic have
1220 been reset to the proper address in the new a.out, thanks
1777feb0 1221 to symbol_file_command...). */
c906108c
SS
1222 insert_breakpoints ();
1223
1224 /* The next resume of this inferior should bring it to the shlib
1225 startup breakpoints. (If the user had also set bp's on
1226 "main" from the old (parent) process, then they'll auto-
1777feb0 1227 matically get reset there in the new process.). */
c906108c
SS
1228}
1229
963f9c80 1230/* Info about an instruction that is being stepped over. */
31e77af2
PA
1231
1232struct step_over_info
1233{
963f9c80
PA
1234 /* If we're stepping past a breakpoint, this is the address space
1235 and address of the instruction the breakpoint is set at. We'll
1236 skip inserting all breakpoints here. Valid iff ASPACE is
1237 non-NULL. */
31e77af2 1238 struct address_space *aspace;
31e77af2 1239 CORE_ADDR address;
963f9c80
PA
1240
1241 /* The instruction being stepped over triggers a nonsteppable
1242 watchpoint. If true, we'll skip inserting watchpoints. */
1243 int nonsteppable_watchpoint_p;
31e77af2
PA
1244};
1245
1246/* The step-over info of the location that is being stepped over.
1247
1248 Note that with async/breakpoint always-inserted mode, a user might
1249 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1250 being stepped over. As setting a new breakpoint inserts all
1251 breakpoints, we need to make sure the breakpoint being stepped over
1252 isn't inserted then. We do that by only clearing the step-over
1253 info when the step-over is actually finished (or aborted).
1254
1255 Presently GDB can only step over one breakpoint at any given time.
1256 Given threads that can't run code in the same address space as the
1257 breakpoint's can't really miss the breakpoint, GDB could be taught
1258 to step-over at most one breakpoint per address space (so this info
1259 could move to the address space object if/when GDB is extended).
1260 The set of breakpoints being stepped over will normally be much
1261 smaller than the set of all breakpoints, so a flag in the
1262 breakpoint location structure would be wasteful. A separate list
1263 also saves complexity and run-time, as otherwise we'd have to go
1264 through all breakpoint locations clearing their flag whenever we
1265 start a new sequence. Similar considerations weigh against storing
1266 this info in the thread object. Plus, not all step overs actually
1267 have breakpoint locations -- e.g., stepping past a single-step
1268 breakpoint, or stepping to complete a non-continuable
1269 watchpoint. */
1270static struct step_over_info step_over_info;
1271
1272/* Record the address of the breakpoint/instruction we're currently
1273 stepping over. */
1274
1275static void
963f9c80
PA
1276set_step_over_info (struct address_space *aspace, CORE_ADDR address,
1277 int nonsteppable_watchpoint_p)
31e77af2
PA
1278{
1279 step_over_info.aspace = aspace;
1280 step_over_info.address = address;
963f9c80 1281 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
31e77af2
PA
1282}
1283
1284/* Called when we're not longer stepping over a breakpoint / an
1285 instruction, so all breakpoints are free to be (re)inserted. */
1286
1287static void
1288clear_step_over_info (void)
1289{
1290 step_over_info.aspace = NULL;
1291 step_over_info.address = 0;
963f9c80 1292 step_over_info.nonsteppable_watchpoint_p = 0;
31e77af2
PA
1293}
1294
7f89fd65 1295/* See infrun.h. */
31e77af2
PA
1296
1297int
1298stepping_past_instruction_at (struct address_space *aspace,
1299 CORE_ADDR address)
1300{
1301 return (step_over_info.aspace != NULL
1302 && breakpoint_address_match (aspace, address,
1303 step_over_info.aspace,
1304 step_over_info.address));
1305}
1306
963f9c80
PA
1307/* See infrun.h. */
1308
1309int
1310stepping_past_nonsteppable_watchpoint (void)
1311{
1312 return step_over_info.nonsteppable_watchpoint_p;
1313}
1314
6cc83d2a
PA
1315/* Returns true if step-over info is valid. */
1316
1317static int
1318step_over_info_valid_p (void)
1319{
963f9c80
PA
1320 return (step_over_info.aspace != NULL
1321 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1322}
1323
c906108c 1324\f
237fc4c9
PA
1325/* Displaced stepping. */
1326
1327/* In non-stop debugging mode, we must take special care to manage
1328 breakpoints properly; in particular, the traditional strategy for
1329 stepping a thread past a breakpoint it has hit is unsuitable.
1330 'Displaced stepping' is a tactic for stepping one thread past a
1331 breakpoint it has hit while ensuring that other threads running
1332 concurrently will hit the breakpoint as they should.
1333
1334 The traditional way to step a thread T off a breakpoint in a
1335 multi-threaded program in all-stop mode is as follows:
1336
1337 a0) Initially, all threads are stopped, and breakpoints are not
1338 inserted.
1339 a1) We single-step T, leaving breakpoints uninserted.
1340 a2) We insert breakpoints, and resume all threads.
1341
1342 In non-stop debugging, however, this strategy is unsuitable: we
1343 don't want to have to stop all threads in the system in order to
1344 continue or step T past a breakpoint. Instead, we use displaced
1345 stepping:
1346
1347 n0) Initially, T is stopped, other threads are running, and
1348 breakpoints are inserted.
1349 n1) We copy the instruction "under" the breakpoint to a separate
1350 location, outside the main code stream, making any adjustments
1351 to the instruction, register, and memory state as directed by
1352 T's architecture.
1353 n2) We single-step T over the instruction at its new location.
1354 n3) We adjust the resulting register and memory state as directed
1355 by T's architecture. This includes resetting T's PC to point
1356 back into the main instruction stream.
1357 n4) We resume T.
1358
1359 This approach depends on the following gdbarch methods:
1360
1361 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1362 indicate where to copy the instruction, and how much space must
1363 be reserved there. We use these in step n1.
1364
1365 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1366 address, and makes any necessary adjustments to the instruction,
1367 register contents, and memory. We use this in step n1.
1368
1369 - gdbarch_displaced_step_fixup adjusts registers and memory after
1370 we have successfuly single-stepped the instruction, to yield the
1371 same effect the instruction would have had if we had executed it
1372 at its original address. We use this in step n3.
1373
1374 - gdbarch_displaced_step_free_closure provides cleanup.
1375
1376 The gdbarch_displaced_step_copy_insn and
1377 gdbarch_displaced_step_fixup functions must be written so that
1378 copying an instruction with gdbarch_displaced_step_copy_insn,
1379 single-stepping across the copied instruction, and then applying
1380 gdbarch_displaced_insn_fixup should have the same effects on the
1381 thread's memory and registers as stepping the instruction in place
1382 would have. Exactly which responsibilities fall to the copy and
1383 which fall to the fixup is up to the author of those functions.
1384
1385 See the comments in gdbarch.sh for details.
1386
1387 Note that displaced stepping and software single-step cannot
1388 currently be used in combination, although with some care I think
1389 they could be made to. Software single-step works by placing
1390 breakpoints on all possible subsequent instructions; if the
1391 displaced instruction is a PC-relative jump, those breakpoints
1392 could fall in very strange places --- on pages that aren't
1393 executable, or at addresses that are not proper instruction
1394 boundaries. (We do generally let other threads run while we wait
1395 to hit the software single-step breakpoint, and they might
1396 encounter such a corrupted instruction.) One way to work around
1397 this would be to have gdbarch_displaced_step_copy_insn fully
1398 simulate the effect of PC-relative instructions (and return NULL)
1399 on architectures that use software single-stepping.
1400
1401 In non-stop mode, we can have independent and simultaneous step
1402 requests, so more than one thread may need to simultaneously step
1403 over a breakpoint. The current implementation assumes there is
1404 only one scratch space per process. In this case, we have to
1405 serialize access to the scratch space. If thread A wants to step
1406 over a breakpoint, but we are currently waiting for some other
1407 thread to complete a displaced step, we leave thread A stopped and
1408 place it in the displaced_step_request_queue. Whenever a displaced
1409 step finishes, we pick the next thread in the queue and start a new
1410 displaced step operation on it. See displaced_step_prepare and
1411 displaced_step_fixup for details. */
1412
237fc4c9
PA
1413struct displaced_step_request
1414{
1415 ptid_t ptid;
1416 struct displaced_step_request *next;
1417};
1418
fc1cf338
PA
1419/* Per-inferior displaced stepping state. */
1420struct displaced_step_inferior_state
1421{
1422 /* Pointer to next in linked list. */
1423 struct displaced_step_inferior_state *next;
1424
1425 /* The process this displaced step state refers to. */
1426 int pid;
1427
1428 /* A queue of pending displaced stepping requests. One entry per
1429 thread that needs to do a displaced step. */
1430 struct displaced_step_request *step_request_queue;
1431
1432 /* If this is not null_ptid, this is the thread carrying out a
1433 displaced single-step in process PID. This thread's state will
1434 require fixing up once it has completed its step. */
1435 ptid_t step_ptid;
1436
1437 /* The architecture the thread had when we stepped it. */
1438 struct gdbarch *step_gdbarch;
1439
1440 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1441 for post-step cleanup. */
1442 struct displaced_step_closure *step_closure;
1443
1444 /* The address of the original instruction, and the copy we
1445 made. */
1446 CORE_ADDR step_original, step_copy;
1447
1448 /* Saved contents of copy area. */
1449 gdb_byte *step_saved_copy;
1450};
1451
1452/* The list of states of processes involved in displaced stepping
1453 presently. */
1454static struct displaced_step_inferior_state *displaced_step_inferior_states;
1455
1456/* Get the displaced stepping state of process PID. */
1457
1458static struct displaced_step_inferior_state *
1459get_displaced_stepping_state (int pid)
1460{
1461 struct displaced_step_inferior_state *state;
1462
1463 for (state = displaced_step_inferior_states;
1464 state != NULL;
1465 state = state->next)
1466 if (state->pid == pid)
1467 return state;
1468
1469 return NULL;
1470}
1471
1472/* Add a new displaced stepping state for process PID to the displaced
1473 stepping state list, or return a pointer to an already existing
1474 entry, if it already exists. Never returns NULL. */
1475
1476static struct displaced_step_inferior_state *
1477add_displaced_stepping_state (int pid)
1478{
1479 struct displaced_step_inferior_state *state;
1480
1481 for (state = displaced_step_inferior_states;
1482 state != NULL;
1483 state = state->next)
1484 if (state->pid == pid)
1485 return state;
237fc4c9 1486
fc1cf338
PA
1487 state = xcalloc (1, sizeof (*state));
1488 state->pid = pid;
1489 state->next = displaced_step_inferior_states;
1490 displaced_step_inferior_states = state;
237fc4c9 1491
fc1cf338
PA
1492 return state;
1493}
1494
a42244db
YQ
1495/* If inferior is in displaced stepping, and ADDR equals to starting address
1496 of copy area, return corresponding displaced_step_closure. Otherwise,
1497 return NULL. */
1498
1499struct displaced_step_closure*
1500get_displaced_step_closure_by_addr (CORE_ADDR addr)
1501{
1502 struct displaced_step_inferior_state *displaced
1503 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1504
1505 /* If checking the mode of displaced instruction in copy area. */
1506 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1507 && (displaced->step_copy == addr))
1508 return displaced->step_closure;
1509
1510 return NULL;
1511}
1512
fc1cf338 1513/* Remove the displaced stepping state of process PID. */
237fc4c9 1514
fc1cf338
PA
1515static void
1516remove_displaced_stepping_state (int pid)
1517{
1518 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1519
fc1cf338
PA
1520 gdb_assert (pid != 0);
1521
1522 it = displaced_step_inferior_states;
1523 prev_next_p = &displaced_step_inferior_states;
1524 while (it)
1525 {
1526 if (it->pid == pid)
1527 {
1528 *prev_next_p = it->next;
1529 xfree (it);
1530 return;
1531 }
1532
1533 prev_next_p = &it->next;
1534 it = *prev_next_p;
1535 }
1536}
1537
1538static void
1539infrun_inferior_exit (struct inferior *inf)
1540{
1541 remove_displaced_stepping_state (inf->pid);
1542}
237fc4c9 1543
fff08868
HZ
1544/* If ON, and the architecture supports it, GDB will use displaced
1545 stepping to step over breakpoints. If OFF, or if the architecture
1546 doesn't support it, GDB will instead use the traditional
1547 hold-and-step approach. If AUTO (which is the default), GDB will
1548 decide which technique to use to step over breakpoints depending on
1549 which of all-stop or non-stop mode is active --- displaced stepping
1550 in non-stop mode; hold-and-step in all-stop mode. */
1551
72d0e2c5 1552static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1553
237fc4c9
PA
1554static void
1555show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558{
72d0e2c5 1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
fff08868
HZ
1563 value, non_stop ? "on" : "off");
1564 else
3e43a32a
MS
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1568}
1569
fff08868
HZ
1570/* Return non-zero if displaced stepping can/should be used to step
1571 over breakpoints. */
1572
237fc4c9
PA
1573static int
1574use_displaced_stepping (struct gdbarch *gdbarch)
1575{
72d0e2c5
YQ
1576 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1577 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1578 && gdbarch_displaced_step_copy_insn_p (gdbarch)
8213266a 1579 && find_record_target () == NULL);
237fc4c9
PA
1580}
1581
1582/* Clean out any stray displaced stepping state. */
1583static void
fc1cf338 1584displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1585{
1586 /* Indicate that there is no cleanup pending. */
fc1cf338 1587 displaced->step_ptid = null_ptid;
237fc4c9 1588
fc1cf338 1589 if (displaced->step_closure)
237fc4c9 1590 {
fc1cf338
PA
1591 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1592 displaced->step_closure);
1593 displaced->step_closure = NULL;
237fc4c9
PA
1594 }
1595}
1596
1597static void
fc1cf338 1598displaced_step_clear_cleanup (void *arg)
237fc4c9 1599{
fc1cf338
PA
1600 struct displaced_step_inferior_state *state = arg;
1601
1602 displaced_step_clear (state);
237fc4c9
PA
1603}
1604
1605/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1606void
1607displaced_step_dump_bytes (struct ui_file *file,
1608 const gdb_byte *buf,
1609 size_t len)
1610{
1611 int i;
1612
1613 for (i = 0; i < len; i++)
1614 fprintf_unfiltered (file, "%02x ", buf[i]);
1615 fputs_unfiltered ("\n", file);
1616}
1617
1618/* Prepare to single-step, using displaced stepping.
1619
1620 Note that we cannot use displaced stepping when we have a signal to
1621 deliver. If we have a signal to deliver and an instruction to step
1622 over, then after the step, there will be no indication from the
1623 target whether the thread entered a signal handler or ignored the
1624 signal and stepped over the instruction successfully --- both cases
1625 result in a simple SIGTRAP. In the first case we mustn't do a
1626 fixup, and in the second case we must --- but we can't tell which.
1627 Comments in the code for 'random signals' in handle_inferior_event
1628 explain how we handle this case instead.
1629
1630 Returns 1 if preparing was successful -- this thread is going to be
1631 stepped now; or 0 if displaced stepping this thread got queued. */
1632static int
1633displaced_step_prepare (ptid_t ptid)
1634{
ad53cd71 1635 struct cleanup *old_cleanups, *ignore_cleanups;
c1e36e3e 1636 struct thread_info *tp = find_thread_ptid (ptid);
237fc4c9
PA
1637 struct regcache *regcache = get_thread_regcache (ptid);
1638 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1639 CORE_ADDR original, copy;
1640 ULONGEST len;
1641 struct displaced_step_closure *closure;
fc1cf338 1642 struct displaced_step_inferior_state *displaced;
9e529e1d 1643 int status;
237fc4c9
PA
1644
1645 /* We should never reach this function if the architecture does not
1646 support displaced stepping. */
1647 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1648
c1e36e3e
PA
1649 /* Disable range stepping while executing in the scratch pad. We
1650 want a single-step even if executing the displaced instruction in
1651 the scratch buffer lands within the stepping range (e.g., a
1652 jump/branch). */
1653 tp->control.may_range_step = 0;
1654
fc1cf338
PA
1655 /* We have to displaced step one thread at a time, as we only have
1656 access to a single scratch space per inferior. */
237fc4c9 1657
fc1cf338
PA
1658 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1659
1660 if (!ptid_equal (displaced->step_ptid, null_ptid))
237fc4c9
PA
1661 {
1662 /* Already waiting for a displaced step to finish. Defer this
1663 request and place in queue. */
1664 struct displaced_step_request *req, *new_req;
1665
1666 if (debug_displaced)
1667 fprintf_unfiltered (gdb_stdlog,
1668 "displaced: defering step of %s\n",
1669 target_pid_to_str (ptid));
1670
1671 new_req = xmalloc (sizeof (*new_req));
1672 new_req->ptid = ptid;
1673 new_req->next = NULL;
1674
fc1cf338 1675 if (displaced->step_request_queue)
237fc4c9 1676 {
fc1cf338 1677 for (req = displaced->step_request_queue;
237fc4c9
PA
1678 req && req->next;
1679 req = req->next)
1680 ;
1681 req->next = new_req;
1682 }
1683 else
fc1cf338 1684 displaced->step_request_queue = new_req;
237fc4c9
PA
1685
1686 return 0;
1687 }
1688 else
1689 {
1690 if (debug_displaced)
1691 fprintf_unfiltered (gdb_stdlog,
1692 "displaced: stepping %s now\n",
1693 target_pid_to_str (ptid));
1694 }
1695
fc1cf338 1696 displaced_step_clear (displaced);
237fc4c9 1697
ad53cd71
PA
1698 old_cleanups = save_inferior_ptid ();
1699 inferior_ptid = ptid;
1700
515630c5 1701 original = regcache_read_pc (regcache);
237fc4c9
PA
1702
1703 copy = gdbarch_displaced_step_location (gdbarch);
1704 len = gdbarch_max_insn_length (gdbarch);
1705
1706 /* Save the original contents of the copy area. */
fc1cf338 1707 displaced->step_saved_copy = xmalloc (len);
ad53cd71 1708 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1709 &displaced->step_saved_copy);
9e529e1d
JK
1710 status = target_read_memory (copy, displaced->step_saved_copy, len);
1711 if (status != 0)
1712 throw_error (MEMORY_ERROR,
1713 _("Error accessing memory address %s (%s) for "
1714 "displaced-stepping scratch space."),
1715 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1716 if (debug_displaced)
1717 {
5af949e3
UW
1718 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1719 paddress (gdbarch, copy));
fc1cf338
PA
1720 displaced_step_dump_bytes (gdb_stdlog,
1721 displaced->step_saved_copy,
1722 len);
237fc4c9
PA
1723 };
1724
1725 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1726 original, copy, regcache);
237fc4c9
PA
1727
1728 /* We don't support the fully-simulated case at present. */
1729 gdb_assert (closure);
1730
9f5a595d
UW
1731 /* Save the information we need to fix things up if the step
1732 succeeds. */
fc1cf338
PA
1733 displaced->step_ptid = ptid;
1734 displaced->step_gdbarch = gdbarch;
1735 displaced->step_closure = closure;
1736 displaced->step_original = original;
1737 displaced->step_copy = copy;
9f5a595d 1738
fc1cf338 1739 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1740
1741 /* Resume execution at the copy. */
515630c5 1742 regcache_write_pc (regcache, copy);
237fc4c9 1743
ad53cd71
PA
1744 discard_cleanups (ignore_cleanups);
1745
1746 do_cleanups (old_cleanups);
237fc4c9
PA
1747
1748 if (debug_displaced)
5af949e3
UW
1749 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1750 paddress (gdbarch, copy));
237fc4c9 1751
237fc4c9
PA
1752 return 1;
1753}
1754
237fc4c9 1755static void
3e43a32a
MS
1756write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1757 const gdb_byte *myaddr, int len)
237fc4c9
PA
1758{
1759 struct cleanup *ptid_cleanup = save_inferior_ptid ();
abbb1732 1760
237fc4c9
PA
1761 inferior_ptid = ptid;
1762 write_memory (memaddr, myaddr, len);
1763 do_cleanups (ptid_cleanup);
1764}
1765
e2d96639
YQ
1766/* Restore the contents of the copy area for thread PTID. */
1767
1768static void
1769displaced_step_restore (struct displaced_step_inferior_state *displaced,
1770 ptid_t ptid)
1771{
1772 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1773
1774 write_memory_ptid (ptid, displaced->step_copy,
1775 displaced->step_saved_copy, len);
1776 if (debug_displaced)
1777 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1778 target_pid_to_str (ptid),
1779 paddress (displaced->step_gdbarch,
1780 displaced->step_copy));
1781}
1782
237fc4c9 1783static void
2ea28649 1784displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
237fc4c9
PA
1785{
1786 struct cleanup *old_cleanups;
fc1cf338
PA
1787 struct displaced_step_inferior_state *displaced
1788 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1789
1790 /* Was any thread of this process doing a displaced step? */
1791 if (displaced == NULL)
1792 return;
237fc4c9
PA
1793
1794 /* Was this event for the pid we displaced? */
fc1cf338
PA
1795 if (ptid_equal (displaced->step_ptid, null_ptid)
1796 || ! ptid_equal (displaced->step_ptid, event_ptid))
237fc4c9
PA
1797 return;
1798
fc1cf338 1799 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1800
e2d96639 1801 displaced_step_restore (displaced, displaced->step_ptid);
237fc4c9
PA
1802
1803 /* Did the instruction complete successfully? */
a493e3e2 1804 if (signal == GDB_SIGNAL_TRAP)
237fc4c9 1805 {
b052c4fb
PA
1806 /* Fixup may need to read memory/registers. Switch to the
1807 thread that we're fixing up. */
1808 switch_to_thread (event_ptid);
1809
237fc4c9 1810 /* Fix up the resulting state. */
fc1cf338
PA
1811 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1812 displaced->step_closure,
1813 displaced->step_original,
1814 displaced->step_copy,
1815 get_thread_regcache (displaced->step_ptid));
237fc4c9
PA
1816 }
1817 else
1818 {
1819 /* Since the instruction didn't complete, all we can do is
1820 relocate the PC. */
515630c5
UW
1821 struct regcache *regcache = get_thread_regcache (event_ptid);
1822 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1823
fc1cf338 1824 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1825 regcache_write_pc (regcache, pc);
237fc4c9
PA
1826 }
1827
1828 do_cleanups (old_cleanups);
1829
fc1cf338 1830 displaced->step_ptid = null_ptid;
1c5cfe86 1831
237fc4c9 1832 /* Are there any pending displaced stepping requests? If so, run
fc1cf338
PA
1833 one now. Leave the state object around, since we're likely to
1834 need it again soon. */
1835 while (displaced->step_request_queue)
237fc4c9
PA
1836 {
1837 struct displaced_step_request *head;
1838 ptid_t ptid;
5af949e3 1839 struct regcache *regcache;
929dfd4f 1840 struct gdbarch *gdbarch;
1c5cfe86 1841 CORE_ADDR actual_pc;
6c95b8df 1842 struct address_space *aspace;
237fc4c9 1843
fc1cf338 1844 head = displaced->step_request_queue;
237fc4c9 1845 ptid = head->ptid;
fc1cf338 1846 displaced->step_request_queue = head->next;
237fc4c9
PA
1847 xfree (head);
1848
ad53cd71
PA
1849 context_switch (ptid);
1850
5af949e3
UW
1851 regcache = get_thread_regcache (ptid);
1852 actual_pc = regcache_read_pc (regcache);
6c95b8df 1853 aspace = get_regcache_aspace (regcache);
1c5cfe86 1854
6c95b8df 1855 if (breakpoint_here_p (aspace, actual_pc))
ad53cd71 1856 {
1c5cfe86
PA
1857 if (debug_displaced)
1858 fprintf_unfiltered (gdb_stdlog,
1859 "displaced: stepping queued %s now\n",
1860 target_pid_to_str (ptid));
1861
1862 displaced_step_prepare (ptid);
1863
929dfd4f
JB
1864 gdbarch = get_regcache_arch (regcache);
1865
1c5cfe86
PA
1866 if (debug_displaced)
1867 {
929dfd4f 1868 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1c5cfe86
PA
1869 gdb_byte buf[4];
1870
5af949e3
UW
1871 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1872 paddress (gdbarch, actual_pc));
1c5cfe86
PA
1873 read_memory (actual_pc, buf, sizeof (buf));
1874 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1875 }
1876
fc1cf338
PA
1877 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1878 displaced->step_closure))
a493e3e2 1879 target_resume (ptid, 1, GDB_SIGNAL_0);
99e40580 1880 else
a493e3e2 1881 target_resume (ptid, 0, GDB_SIGNAL_0);
1c5cfe86
PA
1882
1883 /* Done, we're stepping a thread. */
1884 break;
ad53cd71 1885 }
1c5cfe86
PA
1886 else
1887 {
1888 int step;
1889 struct thread_info *tp = inferior_thread ();
1890
1891 /* The breakpoint we were sitting under has since been
1892 removed. */
16c381f0 1893 tp->control.trap_expected = 0;
1c5cfe86
PA
1894
1895 /* Go back to what we were trying to do. */
1896 step = currently_stepping (tp);
ad53cd71 1897
1c5cfe86 1898 if (debug_displaced)
3e43a32a 1899 fprintf_unfiltered (gdb_stdlog,
27d2932e 1900 "displaced: breakpoint is gone: %s, step(%d)\n",
1c5cfe86
PA
1901 target_pid_to_str (tp->ptid), step);
1902
a493e3e2
PA
1903 target_resume (ptid, step, GDB_SIGNAL_0);
1904 tp->suspend.stop_signal = GDB_SIGNAL_0;
1c5cfe86
PA
1905
1906 /* This request was discarded. See if there's any other
1907 thread waiting for its turn. */
1908 }
237fc4c9
PA
1909 }
1910}
1911
5231c1fd
PA
1912/* Update global variables holding ptids to hold NEW_PTID if they were
1913 holding OLD_PTID. */
1914static void
1915infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1916{
1917 struct displaced_step_request *it;
fc1cf338 1918 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
1919
1920 if (ptid_equal (inferior_ptid, old_ptid))
1921 inferior_ptid = new_ptid;
1922
fc1cf338
PA
1923 for (displaced = displaced_step_inferior_states;
1924 displaced;
1925 displaced = displaced->next)
1926 {
1927 if (ptid_equal (displaced->step_ptid, old_ptid))
1928 displaced->step_ptid = new_ptid;
1929
1930 for (it = displaced->step_request_queue; it; it = it->next)
1931 if (ptid_equal (it->ptid, old_ptid))
1932 it->ptid = new_ptid;
1933 }
5231c1fd
PA
1934}
1935
237fc4c9
PA
1936\f
1937/* Resuming. */
c906108c
SS
1938
1939/* Things to clean up if we QUIT out of resume (). */
c906108c 1940static void
74b7792f 1941resume_cleanups (void *ignore)
c906108c 1942{
34b7e8a6
PA
1943 if (!ptid_equal (inferior_ptid, null_ptid))
1944 delete_single_step_breakpoints (inferior_thread ());
7c16b83e 1945
c906108c
SS
1946 normal_stop ();
1947}
1948
53904c9e
AC
1949static const char schedlock_off[] = "off";
1950static const char schedlock_on[] = "on";
1951static const char schedlock_step[] = "step";
40478521 1952static const char *const scheduler_enums[] = {
ef346e04
AC
1953 schedlock_off,
1954 schedlock_on,
1955 schedlock_step,
1956 NULL
1957};
920d2a44
AC
1958static const char *scheduler_mode = schedlock_off;
1959static void
1960show_scheduler_mode (struct ui_file *file, int from_tty,
1961 struct cmd_list_element *c, const char *value)
1962{
3e43a32a
MS
1963 fprintf_filtered (file,
1964 _("Mode for locking scheduler "
1965 "during execution is \"%s\".\n"),
920d2a44
AC
1966 value);
1967}
c906108c
SS
1968
1969static void
96baa820 1970set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
c906108c 1971{
eefe576e
AC
1972 if (!target_can_lock_scheduler)
1973 {
1974 scheduler_mode = schedlock_off;
1975 error (_("Target '%s' cannot support this command."), target_shortname);
1976 }
c906108c
SS
1977}
1978
d4db2f36
PA
1979/* True if execution commands resume all threads of all processes by
1980 default; otherwise, resume only threads of the current inferior
1981 process. */
1982int sched_multi = 0;
1983
2facfe5c
DD
1984/* Try to setup for software single stepping over the specified location.
1985 Return 1 if target_resume() should use hardware single step.
1986
1987 GDBARCH the current gdbarch.
1988 PC the location to step over. */
1989
1990static int
1991maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1992{
1993 int hw_step = 1;
1994
f02253f1
HZ
1995 if (execution_direction == EXEC_FORWARD
1996 && gdbarch_software_single_step_p (gdbarch)
99e40580 1997 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
2facfe5c 1998 {
99e40580 1999 hw_step = 0;
2facfe5c
DD
2000 }
2001 return hw_step;
2002}
c906108c 2003
09cee04b
PA
2004ptid_t
2005user_visible_resume_ptid (int step)
2006{
2007 /* By default, resume all threads of all processes. */
2008 ptid_t resume_ptid = RESUME_ALL;
2009
2010 /* Maybe resume only all threads of the current process. */
2011 if (!sched_multi && target_supports_multi_process ())
2012 {
2013 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
2014 }
2015
2016 /* Maybe resume a single thread after all. */
2017 if (non_stop)
2018 {
2019 /* With non-stop mode on, threads are always handled
2020 individually. */
2021 resume_ptid = inferior_ptid;
2022 }
2023 else if ((scheduler_mode == schedlock_on)
03d46957 2024 || (scheduler_mode == schedlock_step && step))
09cee04b
PA
2025 {
2026 /* User-settable 'scheduler' mode requires solo thread resume. */
2027 resume_ptid = inferior_ptid;
2028 }
2029
70509625
PA
2030 /* We may actually resume fewer threads at first, e.g., if a thread
2031 is stopped at a breakpoint that needs stepping-off, but that
2032 should not be visible to the user/frontend, and neither should
2033 the frontend/user be allowed to proceed any of the threads that
2034 happen to be stopped for internal run control handling, if a
2035 previous command wanted them resumed. */
09cee04b
PA
2036 return resume_ptid;
2037}
2038
c906108c
SS
2039/* Resume the inferior, but allow a QUIT. This is useful if the user
2040 wants to interrupt some lengthy single-stepping operation
2041 (for child processes, the SIGINT goes to the inferior, and so
2042 we get a SIGINT random_signal, but for remote debugging and perhaps
2043 other targets, that's not true).
2044
2045 STEP nonzero if we should step (zero to continue instead).
2046 SIG is the signal to give the inferior (zero for none). */
2047void
2ea28649 2048resume (int step, enum gdb_signal sig)
c906108c 2049{
74b7792f 2050 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
515630c5
UW
2051 struct regcache *regcache = get_current_regcache ();
2052 struct gdbarch *gdbarch = get_regcache_arch (regcache);
4e1c45ea 2053 struct thread_info *tp = inferior_thread ();
515630c5 2054 CORE_ADDR pc = regcache_read_pc (regcache);
6c95b8df 2055 struct address_space *aspace = get_regcache_aspace (regcache);
b0f16a3e 2056 ptid_t resume_ptid;
a09dd441
PA
2057 /* From here on, this represents the caller's step vs continue
2058 request, while STEP represents what we'll actually request the
2059 target to do. STEP can decay from a step to a continue, if e.g.,
2060 we need to implement single-stepping with breakpoints (software
2061 single-step). When deciding whether "set scheduler-locking step"
2062 applies, it's the callers intention that counts. */
2063 const int entry_step = step;
c7e8a53c 2064
af48d08f
PA
2065 tp->stepped_breakpoint = 0;
2066
c906108c
SS
2067 QUIT;
2068
74609e71
YQ
2069 if (current_inferior ()->waiting_for_vfork_done)
2070 {
48f9886d
PA
2071 /* Don't try to single-step a vfork parent that is waiting for
2072 the child to get out of the shared memory region (by exec'ing
2073 or exiting). This is particularly important on software
2074 single-step archs, as the child process would trip on the
2075 software single step breakpoint inserted for the parent
2076 process. Since the parent will not actually execute any
2077 instruction until the child is out of the shared region (such
2078 are vfork's semantics), it is safe to simply continue it.
2079 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2080 the parent, and tell it to `keep_going', which automatically
2081 re-sets it stepping. */
74609e71
YQ
2082 if (debug_infrun)
2083 fprintf_unfiltered (gdb_stdlog,
2084 "infrun: resume : clear step\n");
a09dd441 2085 step = 0;
74609e71
YQ
2086 }
2087
527159b7 2088 if (debug_infrun)
237fc4c9 2089 fprintf_unfiltered (gdb_stdlog,
c9737c08 2090 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2091 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2092 step, gdb_signal_to_symbol_string (sig),
2093 tp->control.trap_expected,
0d9a9a5f
PA
2094 target_pid_to_str (inferior_ptid),
2095 paddress (gdbarch, pc));
c906108c 2096
c2c6d25f
JM
2097 /* Normally, by the time we reach `resume', the breakpoints are either
2098 removed or inserted, as appropriate. The exception is if we're sitting
2099 at a permanent breakpoint; we need to step over it, but permanent
2100 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2101 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2102 {
af48d08f
PA
2103 if (sig != GDB_SIGNAL_0)
2104 {
2105 /* We have a signal to pass to the inferior. The resume
2106 may, or may not take us to the signal handler. If this
2107 is a step, we'll need to stop in the signal handler, if
2108 there's one, (if the target supports stepping into
2109 handlers), or in the next mainline instruction, if
2110 there's no handler. If this is a continue, we need to be
2111 sure to run the handler with all breakpoints inserted.
2112 In all cases, set a breakpoint at the current address
2113 (where the handler returns to), and once that breakpoint
2114 is hit, resume skipping the permanent breakpoint. If
2115 that breakpoint isn't hit, then we've stepped into the
2116 signal handler (or hit some other event). We'll delete
2117 the step-resume breakpoint then. */
2118
2119 if (debug_infrun)
2120 fprintf_unfiltered (gdb_stdlog,
2121 "infrun: resume: skipping permanent breakpoint, "
2122 "deliver signal first\n");
2123
2124 clear_step_over_info ();
2125 tp->control.trap_expected = 0;
2126
2127 if (tp->control.step_resume_breakpoint == NULL)
2128 {
2129 /* Set a "high-priority" step-resume, as we don't want
2130 user breakpoints at PC to trigger (again) when this
2131 hits. */
2132 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2133 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2134
2135 tp->step_after_step_resume_breakpoint = step;
2136 }
2137
2138 insert_breakpoints ();
2139 }
2140 else
2141 {
2142 /* There's no signal to pass, we can go ahead and skip the
2143 permanent breakpoint manually. */
2144 if (debug_infrun)
2145 fprintf_unfiltered (gdb_stdlog,
2146 "infrun: resume: skipping permanent breakpoint\n");
2147 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2148 /* Update pc to reflect the new address from which we will
2149 execute instructions. */
2150 pc = regcache_read_pc (regcache);
2151
2152 if (step)
2153 {
2154 /* We've already advanced the PC, so the stepping part
2155 is done. Now we need to arrange for a trap to be
2156 reported to handle_inferior_event. Set a breakpoint
2157 at the current PC, and run to it. Don't update
2158 prev_pc, because if we end in
2159 switch_back_to_stepping, we want the "expected thread
2160 advanced also" branch to be taken. IOW, we don't
2161 want this thread to step further from PC
2162 (overstep). */
2163 insert_single_step_breakpoint (gdbarch, aspace, pc);
2164 insert_breakpoints ();
2165
2166 tp->suspend.stop_signal = GDB_SIGNAL_0;
2167 /* We're continuing with all breakpoints inserted. It's
2168 safe to let the target bypass signals. */
2169 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2170 /* ... and safe to let other threads run, according to
2171 schedlock. */
2172 resume_ptid = user_visible_resume_ptid (entry_step);
2173 target_resume (resume_ptid, 0, GDB_SIGNAL_0);
2174 discard_cleanups (old_cleanups);
2175 return;
2176 }
2177 }
6d350bb5 2178 }
c2c6d25f 2179
c1e36e3e
PA
2180 /* If we have a breakpoint to step over, make sure to do a single
2181 step only. Same if we have software watchpoints. */
2182 if (tp->control.trap_expected || bpstat_should_step ())
2183 tp->control.may_range_step = 0;
2184
237fc4c9
PA
2185 /* If enabled, step over breakpoints by executing a copy of the
2186 instruction at a different address.
2187
2188 We can't use displaced stepping when we have a signal to deliver;
2189 the comments for displaced_step_prepare explain why. The
2190 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2191 signals' explain what we do instead.
2192
2193 We can't use displaced stepping when we are waiting for vfork_done
2194 event, displaced stepping breaks the vfork child similarly as single
2195 step software breakpoint. */
515630c5 2196 if (use_displaced_stepping (gdbarch)
36728e82 2197 && tp->control.trap_expected
a493e3e2 2198 && sig == GDB_SIGNAL_0
74609e71 2199 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2200 {
fc1cf338
PA
2201 struct displaced_step_inferior_state *displaced;
2202
237fc4c9 2203 if (!displaced_step_prepare (inferior_ptid))
d56b7306
VP
2204 {
2205 /* Got placed in displaced stepping queue. Will be resumed
2206 later when all the currently queued displaced stepping
251bde03
PA
2207 requests finish. The thread is not executing at this
2208 point, and the call to set_executing will be made later.
2209 But we need to call set_running here, since from the
2210 user/frontend's point of view, threads were set running.
2211 Unless we're calling an inferior function, as in that
2212 case we pretend the inferior doesn't run at all. */
2213 if (!tp->control.in_infcall)
a09dd441 2214 set_running (user_visible_resume_ptid (entry_step), 1);
d56b7306
VP
2215 discard_cleanups (old_cleanups);
2216 return;
2217 }
99e40580 2218
ca7781d2
LM
2219 /* Update pc to reflect the new address from which we will execute
2220 instructions due to displaced stepping. */
2221 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
2222
fc1cf338 2223 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
a09dd441
PA
2224 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2225 displaced->step_closure);
237fc4c9
PA
2226 }
2227
2facfe5c 2228 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2229 else if (step)
2facfe5c 2230 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2231
30852783
UW
2232 /* Currently, our software single-step implementation leads to different
2233 results than hardware single-stepping in one situation: when stepping
2234 into delivering a signal which has an associated signal handler,
2235 hardware single-step will stop at the first instruction of the handler,
2236 while software single-step will simply skip execution of the handler.
2237
2238 For now, this difference in behavior is accepted since there is no
2239 easy way to actually implement single-stepping into a signal handler
2240 without kernel support.
2241
2242 However, there is one scenario where this difference leads to follow-on
2243 problems: if we're stepping off a breakpoint by removing all breakpoints
2244 and then single-stepping. In this case, the software single-step
2245 behavior means that even if there is a *breakpoint* in the signal
2246 handler, GDB still would not stop.
2247
2248 Fortunately, we can at least fix this particular issue. We detect
2249 here the case where we are about to deliver a signal while software
2250 single-stepping with breakpoints removed. In this situation, we
2251 revert the decisions to remove all breakpoints and insert single-
2252 step breakpoints, and instead we install a step-resume breakpoint
2253 at the current address, deliver the signal without stepping, and
2254 once we arrive back at the step-resume breakpoint, actually step
2255 over the breakpoint we originally wanted to step over. */
34b7e8a6 2256 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2257 && sig != GDB_SIGNAL_0
2258 && step_over_info_valid_p ())
30852783
UW
2259 {
2260 /* If we have nested signals or a pending signal is delivered
2261 immediately after a handler returns, might might already have
2262 a step-resume breakpoint set on the earlier handler. We cannot
2263 set another step-resume breakpoint; just continue on until the
2264 original breakpoint is hit. */
2265 if (tp->control.step_resume_breakpoint == NULL)
2266 {
2c03e5be 2267 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2268 tp->step_after_step_resume_breakpoint = 1;
2269 }
2270
34b7e8a6 2271 delete_single_step_breakpoints (tp);
30852783 2272
31e77af2 2273 clear_step_over_info ();
30852783 2274 tp->control.trap_expected = 0;
31e77af2
PA
2275
2276 insert_breakpoints ();
30852783
UW
2277 }
2278
b0f16a3e
SM
2279 /* If STEP is set, it's a request to use hardware stepping
2280 facilities. But in that case, we should never
2281 use singlestep breakpoint. */
34b7e8a6 2282 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2283
b0f16a3e
SM
2284 /* Decide the set of threads to ask the target to resume. Start
2285 by assuming everything will be resumed, than narrow the set
2286 by applying increasingly restricting conditions. */
a09dd441 2287 resume_ptid = user_visible_resume_ptid (entry_step);
cd76b0b7 2288
251bde03
PA
2289 /* Even if RESUME_PTID is a wildcard, and we end up resuming less
2290 (e.g., we might need to step over a breakpoint), from the
2291 user/frontend's point of view, all threads in RESUME_PTID are now
2292 running. Unless we're calling an inferior function, as in that
2293 case pretend we inferior doesn't run at all. */
2294 if (!tp->control.in_infcall)
2295 set_running (resume_ptid, 1);
2296
b0f16a3e 2297 /* Maybe resume a single thread after all. */
34b7e8a6 2298 if ((step || thread_has_single_step_breakpoints_set (tp))
b0f16a3e
SM
2299 && tp->control.trap_expected)
2300 {
2301 /* We're allowing a thread to run past a breakpoint it has
2302 hit, by single-stepping the thread with the breakpoint
2303 removed. In which case, we need to single-step only this
2304 thread, and keep others stopped, as they can miss this
2305 breakpoint if allowed to run. */
2306 resume_ptid = inferior_ptid;
2307 }
d4db2f36 2308
7f5ef605
PA
2309 if (execution_direction != EXEC_REVERSE
2310 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2311 {
7f5ef605
PA
2312 /* The only case we currently need to step a breakpoint
2313 instruction is when we have a signal to deliver. See
2314 handle_signal_stop where we handle random signals that could
2315 take out us out of the stepping range. Normally, in that
2316 case we end up continuing (instead of stepping) over the
2317 signal handler with a breakpoint at PC, but there are cases
2318 where we should _always_ single-step, even if we have a
2319 step-resume breakpoint, like when a software watchpoint is
2320 set. Assuming single-stepping and delivering a signal at the
2321 same time would takes us to the signal handler, then we could
2322 have removed the breakpoint at PC to step over it. However,
2323 some hardware step targets (like e.g., Mac OS) can't step
2324 into signal handlers, and for those, we need to leave the
2325 breakpoint at PC inserted, as otherwise if the handler
2326 recurses and executes PC again, it'll miss the breakpoint.
2327 So we leave the breakpoint inserted anyway, but we need to
2328 record that we tried to step a breakpoint instruction, so
2329 that adjust_pc_after_break doesn't end up confused. */
2330 gdb_assert (sig != GDB_SIGNAL_0);
2331
2332 tp->stepped_breakpoint = 1;
2333
b0f16a3e
SM
2334 /* Most targets can step a breakpoint instruction, thus
2335 executing it normally. But if this one cannot, just
2336 continue and we will hit it anyway. */
7f5ef605 2337 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2338 step = 0;
2339 }
ef5cf84e 2340
b0f16a3e
SM
2341 if (debug_displaced
2342 && use_displaced_stepping (gdbarch)
2343 && tp->control.trap_expected)
2344 {
2345 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
2346 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
2347 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2348 gdb_byte buf[4];
2349
2350 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2351 paddress (resume_gdbarch, actual_pc));
2352 read_memory (actual_pc, buf, sizeof (buf));
2353 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2354 }
237fc4c9 2355
b0f16a3e
SM
2356 if (tp->control.may_range_step)
2357 {
2358 /* If we're resuming a thread with the PC out of the step
2359 range, then we're doing some nested/finer run control
2360 operation, like stepping the thread out of the dynamic
2361 linker or the displaced stepping scratch pad. We
2362 shouldn't have allowed a range step then. */
2363 gdb_assert (pc_in_thread_step_range (pc, tp));
2364 }
c1e36e3e 2365
b0f16a3e
SM
2366 /* Install inferior's terminal modes. */
2367 target_terminal_inferior ();
2368
2369 /* Avoid confusing the next resume, if the next stop/resume
2370 happens to apply to another thread. */
2371 tp->suspend.stop_signal = GDB_SIGNAL_0;
2372
2373 /* Advise target which signals may be handled silently. If we have
6cc83d2a
PA
2374 removed breakpoints because we are stepping over one (in any
2375 thread), we need to receive all signals to avoid accidentally
2376 skipping a breakpoint during execution of a signal handler. */
2377 if (step_over_info_valid_p ())
b0f16a3e
SM
2378 target_pass_signals (0, NULL);
2379 else
2380 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2455069d 2381
b0f16a3e 2382 target_resume (resume_ptid, step, sig);
c906108c
SS
2383
2384 discard_cleanups (old_cleanups);
2385}
2386\f
237fc4c9 2387/* Proceeding. */
c906108c
SS
2388
2389/* Clear out all variables saying what to do when inferior is continued.
2390 First do this, then set the ones you want, then call `proceed'. */
2391
a7212384
UW
2392static void
2393clear_proceed_status_thread (struct thread_info *tp)
c906108c 2394{
a7212384
UW
2395 if (debug_infrun)
2396 fprintf_unfiltered (gdb_stdlog,
2397 "infrun: clear_proceed_status_thread (%s)\n",
2398 target_pid_to_str (tp->ptid));
d6b48e9c 2399
70509625
PA
2400 /* If this signal should not be seen by program, give it zero.
2401 Used for debugging signals. */
2402 if (!signal_pass_state (tp->suspend.stop_signal))
2403 tp->suspend.stop_signal = GDB_SIGNAL_0;
2404
16c381f0
JK
2405 tp->control.trap_expected = 0;
2406 tp->control.step_range_start = 0;
2407 tp->control.step_range_end = 0;
c1e36e3e 2408 tp->control.may_range_step = 0;
16c381f0
JK
2409 tp->control.step_frame_id = null_frame_id;
2410 tp->control.step_stack_frame_id = null_frame_id;
2411 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
a7212384 2412 tp->stop_requested = 0;
4e1c45ea 2413
16c381f0 2414 tp->control.stop_step = 0;
32400beb 2415
16c381f0 2416 tp->control.proceed_to_finish = 0;
414c69f7 2417
17b2616c
PA
2418 tp->control.command_interp = NULL;
2419
a7212384 2420 /* Discard any remaining commands or status from previous stop. */
16c381f0 2421 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2422}
32400beb 2423
a7212384 2424void
70509625 2425clear_proceed_status (int step)
a7212384 2426{
6c95b8df
PA
2427 if (!non_stop)
2428 {
70509625
PA
2429 struct thread_info *tp;
2430 ptid_t resume_ptid;
2431
2432 resume_ptid = user_visible_resume_ptid (step);
2433
2434 /* In all-stop mode, delete the per-thread status of all threads
2435 we're about to resume, implicitly and explicitly. */
2436 ALL_NON_EXITED_THREADS (tp)
2437 {
2438 if (!ptid_match (tp->ptid, resume_ptid))
2439 continue;
2440 clear_proceed_status_thread (tp);
2441 }
6c95b8df
PA
2442 }
2443
a7212384
UW
2444 if (!ptid_equal (inferior_ptid, null_ptid))
2445 {
2446 struct inferior *inferior;
2447
2448 if (non_stop)
2449 {
6c95b8df
PA
2450 /* If in non-stop mode, only delete the per-thread status of
2451 the current thread. */
a7212384
UW
2452 clear_proceed_status_thread (inferior_thread ());
2453 }
6c95b8df 2454
d6b48e9c 2455 inferior = current_inferior ();
16c381f0 2456 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2457 }
2458
c906108c 2459 stop_after_trap = 0;
f3b1572e 2460
31e77af2
PA
2461 clear_step_over_info ();
2462
f3b1572e 2463 observer_notify_about_to_proceed ();
c906108c 2464
d5c31457
UW
2465 if (stop_registers)
2466 {
2467 regcache_xfree (stop_registers);
2468 stop_registers = NULL;
2469 }
c906108c
SS
2470}
2471
99619bea
PA
2472/* Returns true if TP is still stopped at a breakpoint that needs
2473 stepping-over in order to make progress. If the breakpoint is gone
2474 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2475
2476static int
99619bea
PA
2477thread_still_needs_step_over (struct thread_info *tp)
2478{
2479 if (tp->stepping_over_breakpoint)
2480 {
2481 struct regcache *regcache = get_thread_regcache (tp->ptid);
2482
2483 if (breakpoint_here_p (get_regcache_aspace (regcache),
af48d08f
PA
2484 regcache_read_pc (regcache))
2485 == ordinary_breakpoint_here)
99619bea
PA
2486 return 1;
2487
2488 tp->stepping_over_breakpoint = 0;
2489 }
2490
2491 return 0;
2492}
2493
483805cf
PA
2494/* Returns true if scheduler locking applies. STEP indicates whether
2495 we're about to do a step/next-like command to a thread. */
2496
2497static int
2498schedlock_applies (int step)
2499{
2500 return (scheduler_mode == schedlock_on
2501 || (scheduler_mode == schedlock_step
2502 && step));
2503}
2504
99619bea
PA
2505/* Look a thread other than EXCEPT that has previously reported a
2506 breakpoint event, and thus needs a step-over in order to make
2507 progress. Returns NULL is none is found. STEP indicates whether
2508 we're about to step the current thread, in order to decide whether
2509 "set scheduler-locking step" applies. */
2510
2511static struct thread_info *
2512find_thread_needs_step_over (int step, struct thread_info *except)
ea67f13b 2513{
99619bea 2514 struct thread_info *tp, *current;
5a437975
DE
2515
2516 /* With non-stop mode on, threads are always handled individually. */
2517 gdb_assert (! non_stop);
ea67f13b 2518
99619bea 2519 current = inferior_thread ();
d4db2f36 2520
99619bea
PA
2521 /* If scheduler locking applies, we can avoid iterating over all
2522 threads. */
483805cf 2523 if (schedlock_applies (step))
ea67f13b 2524 {
99619bea
PA
2525 if (except != current
2526 && thread_still_needs_step_over (current))
2527 return current;
515630c5 2528
99619bea
PA
2529 return NULL;
2530 }
0d9a9a5f 2531
034f788c 2532 ALL_NON_EXITED_THREADS (tp)
99619bea
PA
2533 {
2534 /* Ignore the EXCEPT thread. */
2535 if (tp == except)
2536 continue;
2537 /* Ignore threads of processes we're not resuming. */
2538 if (!sched_multi
2539 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
2540 continue;
2541
2542 if (thread_still_needs_step_over (tp))
2543 return tp;
ea67f13b
DJ
2544 }
2545
99619bea 2546 return NULL;
ea67f13b 2547}
e4846b08 2548
c906108c
SS
2549/* Basic routine for continuing the program in various fashions.
2550
2551 ADDR is the address to resume at, or -1 for resume where stopped.
2552 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2553 or -1 for act according to how it stopped.
c906108c 2554 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2555 -1 means return after that and print nothing.
2556 You should probably set various step_... variables
2557 before calling here, if you are stepping.
c906108c
SS
2558
2559 You should call clear_proceed_status before calling proceed. */
2560
2561void
2ea28649 2562proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
c906108c 2563{
e58b0e63
PA
2564 struct regcache *regcache;
2565 struct gdbarch *gdbarch;
4e1c45ea 2566 struct thread_info *tp;
e58b0e63 2567 CORE_ADDR pc;
6c95b8df 2568 struct address_space *aspace;
c906108c 2569
e58b0e63
PA
2570 /* If we're stopped at a fork/vfork, follow the branch set by the
2571 "set follow-fork-mode" command; otherwise, we'll just proceed
2572 resuming the current thread. */
2573 if (!follow_fork ())
2574 {
2575 /* The target for some reason decided not to resume. */
2576 normal_stop ();
f148b27e
PA
2577 if (target_can_async_p ())
2578 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2579 return;
2580 }
2581
842951eb
PA
2582 /* We'll update this if & when we switch to a new thread. */
2583 previous_inferior_ptid = inferior_ptid;
2584
e58b0e63
PA
2585 regcache = get_current_regcache ();
2586 gdbarch = get_regcache_arch (regcache);
6c95b8df 2587 aspace = get_regcache_aspace (regcache);
e58b0e63 2588 pc = regcache_read_pc (regcache);
2adfaa28 2589 tp = inferior_thread ();
e58b0e63 2590
c906108c 2591 if (step > 0)
515630c5 2592 step_start_function = find_pc_function (pc);
c906108c
SS
2593 if (step < 0)
2594 stop_after_trap = 1;
2595
99619bea
PA
2596 /* Fill in with reasonable starting values. */
2597 init_thread_stepping_state (tp);
2598
2acceee2 2599 if (addr == (CORE_ADDR) -1)
c906108c 2600 {
af48d08f
PA
2601 if (pc == stop_pc
2602 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 2603 && execution_direction != EXEC_REVERSE)
3352ef37
AC
2604 /* There is a breakpoint at the address we will resume at,
2605 step one instruction before inserting breakpoints so that
2606 we do not stop right away (and report a second hit at this
b2175913
MS
2607 breakpoint).
2608
2609 Note, we don't do this in reverse, because we won't
2610 actually be executing the breakpoint insn anyway.
2611 We'll be (un-)executing the previous instruction. */
99619bea 2612 tp->stepping_over_breakpoint = 1;
515630c5
UW
2613 else if (gdbarch_single_step_through_delay_p (gdbarch)
2614 && gdbarch_single_step_through_delay (gdbarch,
2615 get_current_frame ()))
3352ef37
AC
2616 /* We stepped onto an instruction that needs to be stepped
2617 again before re-inserting the breakpoint, do so. */
99619bea 2618 tp->stepping_over_breakpoint = 1;
c906108c
SS
2619 }
2620 else
2621 {
515630c5 2622 regcache_write_pc (regcache, addr);
c906108c
SS
2623 }
2624
70509625
PA
2625 if (siggnal != GDB_SIGNAL_DEFAULT)
2626 tp->suspend.stop_signal = siggnal;
2627
17b2616c
PA
2628 /* Record the interpreter that issued the execution command that
2629 caused this thread to resume. If the top level interpreter is
2630 MI/async, and the execution command was a CLI command
2631 (next/step/etc.), we'll want to print stop event output to the MI
2632 console channel (the stepped-to line, etc.), as if the user
2633 entered the execution command on a real GDB console. */
2634 inferior_thread ()->control.command_interp = command_interp ();
2635
527159b7 2636 if (debug_infrun)
8a9de0e4 2637 fprintf_unfiltered (gdb_stdlog,
c9737c08
PA
2638 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2639 paddress (gdbarch, addr),
2640 gdb_signal_to_symbol_string (siggnal), step);
527159b7 2641
94cc34af
PA
2642 if (non_stop)
2643 /* In non-stop, each thread is handled individually. The context
2644 must already be set to the right thread here. */
2645 ;
2646 else
2647 {
99619bea
PA
2648 struct thread_info *step_over;
2649
94cc34af
PA
2650 /* In a multi-threaded task we may select another thread and
2651 then continue or step.
c906108c 2652
94cc34af
PA
2653 But if the old thread was stopped at a breakpoint, it will
2654 immediately cause another breakpoint stop without any
2655 execution (i.e. it will report a breakpoint hit incorrectly).
2656 So we must step over it first.
c906108c 2657
99619bea
PA
2658 Look for a thread other than the current (TP) that reported a
2659 breakpoint hit and hasn't been resumed yet since. */
2660 step_over = find_thread_needs_step_over (step, tp);
2661 if (step_over != NULL)
2adfaa28 2662 {
99619bea
PA
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "infrun: need to step-over [%s] first\n",
2666 target_pid_to_str (step_over->ptid));
2667
2668 /* Store the prev_pc for the stepping thread too, needed by
2669 switch_back_to_stepping thread. */
2670 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2671 switch_to_thread (step_over->ptid);
2672 tp = step_over;
2adfaa28 2673 }
94cc34af 2674 }
c906108c 2675
31e77af2
PA
2676 /* If we need to step over a breakpoint, and we're not using
2677 displaced stepping to do so, insert all breakpoints (watchpoints,
2678 etc.) but the one we're stepping over, step one instruction, and
2679 then re-insert the breakpoint when that step is finished. */
99619bea 2680 if (tp->stepping_over_breakpoint && !use_displaced_stepping (gdbarch))
30852783 2681 {
31e77af2
PA
2682 struct regcache *regcache = get_current_regcache ();
2683
2684 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 2685 regcache_read_pc (regcache), 0);
30852783 2686 }
31e77af2
PA
2687 else
2688 clear_step_over_info ();
30852783 2689
31e77af2 2690 insert_breakpoints ();
30852783 2691
99619bea
PA
2692 tp->control.trap_expected = tp->stepping_over_breakpoint;
2693
c906108c
SS
2694 annotate_starting ();
2695
2696 /* Make sure that output from GDB appears before output from the
2697 inferior. */
2698 gdb_flush (gdb_stdout);
2699
e4846b08 2700 /* Refresh prev_pc value just prior to resuming. This used to be
22bcd14b 2701 done in stop_waiting, however, setting prev_pc there did not handle
e4846b08
JJ
2702 scenarios such as inferior function calls or returning from
2703 a function via the return command. In those cases, the prev_pc
2704 value was not set properly for subsequent commands. The prev_pc value
2705 is used to initialize the starting line number in the ecs. With an
2706 invalid value, the gdb next command ends up stopping at the position
2707 represented by the next line table entry past our start position.
2708 On platforms that generate one line table entry per line, this
2709 is not a problem. However, on the ia64, the compiler generates
2710 extraneous line table entries that do not increase the line number.
2711 When we issue the gdb next command on the ia64 after an inferior call
2712 or a return command, we often end up a few instructions forward, still
2713 within the original line we started.
2714
d5cd6034
JB
2715 An attempt was made to refresh the prev_pc at the same time the
2716 execution_control_state is initialized (for instance, just before
2717 waiting for an inferior event). But this approach did not work
2718 because of platforms that use ptrace, where the pc register cannot
2719 be read unless the inferior is stopped. At that point, we are not
2720 guaranteed the inferior is stopped and so the regcache_read_pc() call
2721 can fail. Setting the prev_pc value here ensures the value is updated
2722 correctly when the inferior is stopped. */
4e1c45ea 2723 tp->prev_pc = regcache_read_pc (get_current_regcache ());
e4846b08 2724
c906108c 2725 /* Resume inferior. */
99619bea 2726 resume (tp->control.trap_expected || step || bpstat_should_step (),
0de5618e 2727 tp->suspend.stop_signal);
c906108c
SS
2728
2729 /* Wait for it to stop (if not standalone)
2730 and in any case decode why it stopped, and act accordingly. */
43ff13b4 2731 /* Do this only if we are not using the event loop, or if the target
1777feb0 2732 does not support asynchronous execution. */
362646f5 2733 if (!target_can_async_p ())
43ff13b4 2734 {
e4c8541f 2735 wait_for_inferior ();
43ff13b4
JM
2736 normal_stop ();
2737 }
c906108c 2738}
c906108c
SS
2739\f
2740
2741/* Start remote-debugging of a machine over a serial link. */
96baa820 2742
c906108c 2743void
8621d6a9 2744start_remote (int from_tty)
c906108c 2745{
d6b48e9c 2746 struct inferior *inferior;
d6b48e9c
PA
2747
2748 inferior = current_inferior ();
16c381f0 2749 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 2750
1777feb0 2751 /* Always go on waiting for the target, regardless of the mode. */
6426a772 2752 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 2753 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
2754 nothing is returned (instead of just blocking). Because of this,
2755 targets expecting an immediate response need to, internally, set
2756 things up so that the target_wait() is forced to eventually
1777feb0 2757 timeout. */
6426a772
JM
2758 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2759 differentiate to its caller what the state of the target is after
2760 the initial open has been performed. Here we're assuming that
2761 the target has stopped. It should be possible to eventually have
2762 target_open() return to the caller an indication that the target
2763 is currently running and GDB state should be set to the same as
1777feb0 2764 for an async run. */
e4c8541f 2765 wait_for_inferior ();
8621d6a9
DJ
2766
2767 /* Now that the inferior has stopped, do any bookkeeping like
2768 loading shared libraries. We want to do this before normal_stop,
2769 so that the displayed frame is up to date. */
2770 post_create_inferior (&current_target, from_tty);
2771
6426a772 2772 normal_stop ();
c906108c
SS
2773}
2774
2775/* Initialize static vars when a new inferior begins. */
2776
2777void
96baa820 2778init_wait_for_inferior (void)
c906108c
SS
2779{
2780 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 2781
c906108c
SS
2782 breakpoint_init_inferior (inf_starting);
2783
70509625 2784 clear_proceed_status (0);
9f976b41 2785
ca005067 2786 target_last_wait_ptid = minus_one_ptid;
237fc4c9 2787
842951eb 2788 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 2789
edb3359d
DJ
2790 /* Discard any skipped inlined frames. */
2791 clear_inline_frame_state (minus_one_ptid);
c906108c 2792}
237fc4c9 2793
c906108c 2794\f
0d1e5fa7
PA
2795/* Data to be passed around while handling an event. This data is
2796 discarded between events. */
c5aa993b 2797struct execution_control_state
488f131b 2798{
0d1e5fa7 2799 ptid_t ptid;
4e1c45ea
PA
2800 /* The thread that got the event, if this was a thread event; NULL
2801 otherwise. */
2802 struct thread_info *event_thread;
2803
488f131b 2804 struct target_waitstatus ws;
7e324e48 2805 int stop_func_filled_in;
488f131b
JB
2806 CORE_ADDR stop_func_start;
2807 CORE_ADDR stop_func_end;
2c02bd72 2808 const char *stop_func_name;
488f131b 2809 int wait_some_more;
4f5d7f63 2810
2adfaa28
PA
2811 /* True if the event thread hit the single-step breakpoint of
2812 another thread. Thus the event doesn't cause a stop, the thread
2813 needs to be single-stepped past the single-step breakpoint before
2814 we can switch back to the original stepping thread. */
2815 int hit_singlestep_breakpoint;
488f131b
JB
2816};
2817
ec9499be 2818static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 2819
568d6575
UW
2820static void handle_step_into_function (struct gdbarch *gdbarch,
2821 struct execution_control_state *ecs);
2822static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2823 struct execution_control_state *ecs);
4f5d7f63 2824static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 2825static void check_exception_resume (struct execution_control_state *,
28106bc2 2826 struct frame_info *);
611c83ae 2827
bdc36728 2828static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 2829static void stop_waiting (struct execution_control_state *ecs);
104c1213 2830static void prepare_to_wait (struct execution_control_state *ecs);
d4f3574e 2831static void keep_going (struct execution_control_state *ecs);
94c57d6a 2832static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 2833static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 2834
252fbfc8
PA
2835/* Callback for iterate over threads. If the thread is stopped, but
2836 the user/frontend doesn't know about that yet, go through
2837 normal_stop, as if the thread had just stopped now. ARG points at
2838 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2839 ptid_is_pid(PTID) is true, applies to all threads of the process
2840 pointed at by PTID. Otherwise, apply only to the thread pointed by
2841 PTID. */
2842
2843static int
2844infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2845{
2846 ptid_t ptid = * (ptid_t *) arg;
2847
2848 if ((ptid_equal (info->ptid, ptid)
2849 || ptid_equal (minus_one_ptid, ptid)
2850 || (ptid_is_pid (ptid)
2851 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2852 && is_running (info->ptid)
2853 && !is_executing (info->ptid))
2854 {
2855 struct cleanup *old_chain;
2856 struct execution_control_state ecss;
2857 struct execution_control_state *ecs = &ecss;
2858
2859 memset (ecs, 0, sizeof (*ecs));
2860
2861 old_chain = make_cleanup_restore_current_thread ();
2862
f15cb84a
YQ
2863 overlay_cache_invalid = 1;
2864 /* Flush target cache before starting to handle each event.
2865 Target was running and cache could be stale. This is just a
2866 heuristic. Running threads may modify target memory, but we
2867 don't get any event. */
2868 target_dcache_invalidate ();
2869
252fbfc8
PA
2870 /* Go through handle_inferior_event/normal_stop, so we always
2871 have consistent output as if the stop event had been
2872 reported. */
2873 ecs->ptid = info->ptid;
e09875d4 2874 ecs->event_thread = find_thread_ptid (info->ptid);
252fbfc8 2875 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
a493e3e2 2876 ecs->ws.value.sig = GDB_SIGNAL_0;
252fbfc8
PA
2877
2878 handle_inferior_event (ecs);
2879
2880 if (!ecs->wait_some_more)
2881 {
2882 struct thread_info *tp;
2883
2884 normal_stop ();
2885
fa4cd53f 2886 /* Finish off the continuations. */
252fbfc8 2887 tp = inferior_thread ();
fa4cd53f
PA
2888 do_all_intermediate_continuations_thread (tp, 1);
2889 do_all_continuations_thread (tp, 1);
252fbfc8
PA
2890 }
2891
2892 do_cleanups (old_chain);
2893 }
2894
2895 return 0;
2896}
2897
2898/* This function is attached as a "thread_stop_requested" observer.
2899 Cleanup local state that assumed the PTID was to be resumed, and
2900 report the stop to the frontend. */
2901
2c0b251b 2902static void
252fbfc8
PA
2903infrun_thread_stop_requested (ptid_t ptid)
2904{
fc1cf338 2905 struct displaced_step_inferior_state *displaced;
252fbfc8
PA
2906
2907 /* PTID was requested to stop. Remove it from the displaced
2908 stepping queue, so we don't try to resume it automatically. */
fc1cf338
PA
2909
2910 for (displaced = displaced_step_inferior_states;
2911 displaced;
2912 displaced = displaced->next)
252fbfc8 2913 {
fc1cf338 2914 struct displaced_step_request *it, **prev_next_p;
252fbfc8 2915
fc1cf338
PA
2916 it = displaced->step_request_queue;
2917 prev_next_p = &displaced->step_request_queue;
2918 while (it)
252fbfc8 2919 {
fc1cf338
PA
2920 if (ptid_match (it->ptid, ptid))
2921 {
2922 *prev_next_p = it->next;
2923 it->next = NULL;
2924 xfree (it);
2925 }
252fbfc8 2926 else
fc1cf338
PA
2927 {
2928 prev_next_p = &it->next;
2929 }
252fbfc8 2930
fc1cf338 2931 it = *prev_next_p;
252fbfc8 2932 }
252fbfc8
PA
2933 }
2934
2935 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2936}
2937
a07daef3
PA
2938static void
2939infrun_thread_thread_exit (struct thread_info *tp, int silent)
2940{
2941 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2942 nullify_last_target_wait_ptid ();
2943}
2944
0cbcdb96
PA
2945/* Delete the step resume, single-step and longjmp/exception resume
2946 breakpoints of TP. */
4e1c45ea 2947
0cbcdb96
PA
2948static void
2949delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 2950{
0cbcdb96
PA
2951 delete_step_resume_breakpoint (tp);
2952 delete_exception_resume_breakpoint (tp);
34b7e8a6 2953 delete_single_step_breakpoints (tp);
4e1c45ea
PA
2954}
2955
0cbcdb96
PA
2956/* If the target still has execution, call FUNC for each thread that
2957 just stopped. In all-stop, that's all the non-exited threads; in
2958 non-stop, that's the current thread, only. */
2959
2960typedef void (*for_each_just_stopped_thread_callback_func)
2961 (struct thread_info *tp);
4e1c45ea
PA
2962
2963static void
0cbcdb96 2964for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 2965{
0cbcdb96 2966 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
2967 return;
2968
2969 if (non_stop)
2970 {
0cbcdb96
PA
2971 /* If in non-stop mode, only the current thread stopped. */
2972 func (inferior_thread ());
4e1c45ea
PA
2973 }
2974 else
0cbcdb96
PA
2975 {
2976 struct thread_info *tp;
2977
2978 /* In all-stop mode, all threads have stopped. */
2979 ALL_NON_EXITED_THREADS (tp)
2980 {
2981 func (tp);
2982 }
2983 }
2984}
2985
2986/* Delete the step resume and longjmp/exception resume breakpoints of
2987 the threads that just stopped. */
2988
2989static void
2990delete_just_stopped_threads_infrun_breakpoints (void)
2991{
2992 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
2993}
2994
2995/* Delete the single-step breakpoints of the threads that just
2996 stopped. */
7c16b83e 2997
34b7e8a6
PA
2998static void
2999delete_just_stopped_threads_single_step_breakpoints (void)
3000{
3001 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3002}
3003
1777feb0 3004/* A cleanup wrapper. */
4e1c45ea
PA
3005
3006static void
0cbcdb96 3007delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3008{
0cbcdb96 3009 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3010}
3011
223698f8
DE
3012/* Pretty print the results of target_wait, for debugging purposes. */
3013
3014static void
3015print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3016 const struct target_waitstatus *ws)
3017{
3018 char *status_string = target_waitstatus_to_string (ws);
3019 struct ui_file *tmp_stream = mem_fileopen ();
3020 char *text;
223698f8
DE
3021
3022 /* The text is split over several lines because it was getting too long.
3023 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3024 output as a unit; we want only one timestamp printed if debug_timestamp
3025 is set. */
3026
3027 fprintf_unfiltered (tmp_stream,
dfd4cc63
LM
3028 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
3029 if (ptid_get_pid (waiton_ptid) != -1)
223698f8
DE
3030 fprintf_unfiltered (tmp_stream,
3031 " [%s]", target_pid_to_str (waiton_ptid));
3032 fprintf_unfiltered (tmp_stream, ", status) =\n");
3033 fprintf_unfiltered (tmp_stream,
3034 "infrun: %d [%s],\n",
dfd4cc63
LM
3035 ptid_get_pid (result_ptid),
3036 target_pid_to_str (result_ptid));
223698f8
DE
3037 fprintf_unfiltered (tmp_stream,
3038 "infrun: %s\n",
3039 status_string);
3040
759ef836 3041 text = ui_file_xstrdup (tmp_stream, NULL);
223698f8
DE
3042
3043 /* This uses %s in part to handle %'s in the text, but also to avoid
3044 a gcc error: the format attribute requires a string literal. */
3045 fprintf_unfiltered (gdb_stdlog, "%s", text);
3046
3047 xfree (status_string);
3048 xfree (text);
3049 ui_file_delete (tmp_stream);
3050}
3051
24291992
PA
3052/* Prepare and stabilize the inferior for detaching it. E.g.,
3053 detaching while a thread is displaced stepping is a recipe for
3054 crashing it, as nothing would readjust the PC out of the scratch
3055 pad. */
3056
3057void
3058prepare_for_detach (void)
3059{
3060 struct inferior *inf = current_inferior ();
3061 ptid_t pid_ptid = pid_to_ptid (inf->pid);
3062 struct cleanup *old_chain_1;
3063 struct displaced_step_inferior_state *displaced;
3064
3065 displaced = get_displaced_stepping_state (inf->pid);
3066
3067 /* Is any thread of this process displaced stepping? If not,
3068 there's nothing else to do. */
3069 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
3070 return;
3071
3072 if (debug_infrun)
3073 fprintf_unfiltered (gdb_stdlog,
3074 "displaced-stepping in-process while detaching");
3075
3076 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
3077 inf->detaching = 1;
3078
3079 while (!ptid_equal (displaced->step_ptid, null_ptid))
3080 {
3081 struct cleanup *old_chain_2;
3082 struct execution_control_state ecss;
3083 struct execution_control_state *ecs;
3084
3085 ecs = &ecss;
3086 memset (ecs, 0, sizeof (*ecs));
3087
3088 overlay_cache_invalid = 1;
f15cb84a
YQ
3089 /* Flush target cache before starting to handle each event.
3090 Target was running and cache could be stale. This is just a
3091 heuristic. Running threads may modify target memory, but we
3092 don't get any event. */
3093 target_dcache_invalidate ();
24291992 3094
24291992
PA
3095 if (deprecated_target_wait_hook)
3096 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
3097 else
3098 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
3099
3100 if (debug_infrun)
3101 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3102
3103 /* If an error happens while handling the event, propagate GDB's
3104 knowledge of the executing state to the frontend/user running
3105 state. */
3e43a32a
MS
3106 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
3107 &minus_one_ptid);
24291992
PA
3108
3109 /* Now figure out what to do with the result of the result. */
3110 handle_inferior_event (ecs);
3111
3112 /* No error, don't finish the state yet. */
3113 discard_cleanups (old_chain_2);
3114
3115 /* Breakpoints and watchpoints are not installed on the target
3116 at this point, and signals are passed directly to the
3117 inferior, so this must mean the process is gone. */
3118 if (!ecs->wait_some_more)
3119 {
3120 discard_cleanups (old_chain_1);
3121 error (_("Program exited while detaching"));
3122 }
3123 }
3124
3125 discard_cleanups (old_chain_1);
3126}
3127
cd0fc7c3 3128/* Wait for control to return from inferior to debugger.
ae123ec6 3129
cd0fc7c3
SS
3130 If inferior gets a signal, we may decide to start it up again
3131 instead of returning. That is why there is a loop in this function.
3132 When this function actually returns it means the inferior
3133 should be left stopped and GDB should read more commands. */
3134
3135void
e4c8541f 3136wait_for_inferior (void)
cd0fc7c3
SS
3137{
3138 struct cleanup *old_cleanups;
c906108c 3139
527159b7 3140 if (debug_infrun)
ae123ec6 3141 fprintf_unfiltered
e4c8541f 3142 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3143
0cbcdb96
PA
3144 old_cleanups
3145 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3146 NULL);
cd0fc7c3 3147
c906108c
SS
3148 while (1)
3149 {
ae25568b
PA
3150 struct execution_control_state ecss;
3151 struct execution_control_state *ecs = &ecss;
29f49a6a 3152 struct cleanup *old_chain;
963f9c80 3153 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3154
ae25568b
PA
3155 memset (ecs, 0, sizeof (*ecs));
3156
ec9499be 3157 overlay_cache_invalid = 1;
ec9499be 3158
f15cb84a
YQ
3159 /* Flush target cache before starting to handle each event.
3160 Target was running and cache could be stale. This is just a
3161 heuristic. Running threads may modify target memory, but we
3162 don't get any event. */
3163 target_dcache_invalidate ();
3164
9a4105ab 3165 if (deprecated_target_wait_hook)
47608cb1 3166 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
cd0fc7c3 3167 else
47608cb1 3168 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3169
f00150c9 3170 if (debug_infrun)
223698f8 3171 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3172
29f49a6a
PA
3173 /* If an error happens while handling the event, propagate GDB's
3174 knowledge of the executing state to the frontend/user running
3175 state. */
3176 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3177
cd0fc7c3
SS
3178 /* Now figure out what to do with the result of the result. */
3179 handle_inferior_event (ecs);
c906108c 3180
29f49a6a
PA
3181 /* No error, don't finish the state yet. */
3182 discard_cleanups (old_chain);
3183
cd0fc7c3
SS
3184 if (!ecs->wait_some_more)
3185 break;
3186 }
4e1c45ea 3187
cd0fc7c3
SS
3188 do_cleanups (old_cleanups);
3189}
c906108c 3190
d3d4baed
PA
3191/* Cleanup that reinstalls the readline callback handler, if the
3192 target is running in the background. If while handling the target
3193 event something triggered a secondary prompt, like e.g., a
3194 pagination prompt, we'll have removed the callback handler (see
3195 gdb_readline_wrapper_line). Need to do this as we go back to the
3196 event loop, ready to process further input. Note this has no
3197 effect if the handler hasn't actually been removed, because calling
3198 rl_callback_handler_install resets the line buffer, thus losing
3199 input. */
3200
3201static void
3202reinstall_readline_callback_handler_cleanup (void *arg)
3203{
6c400b59
PA
3204 if (!interpreter_async)
3205 {
3206 /* We're not going back to the top level event loop yet. Don't
3207 install the readline callback, as it'd prep the terminal,
3208 readline-style (raw, noecho) (e.g., --batch). We'll install
3209 it the next time the prompt is displayed, when we're ready
3210 for input. */
3211 return;
3212 }
3213
d3d4baed
PA
3214 if (async_command_editing_p && !sync_execution)
3215 gdb_rl_callback_handler_reinstall ();
3216}
3217
1777feb0 3218/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3219 event loop whenever a change of state is detected on the file
1777feb0
MS
3220 descriptor corresponding to the target. It can be called more than
3221 once to complete a single execution command. In such cases we need
3222 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3223 that this function is called for a single execution command, then
3224 report to the user that the inferior has stopped, and do the
1777feb0 3225 necessary cleanups. */
43ff13b4
JM
3226
3227void
fba45db2 3228fetch_inferior_event (void *client_data)
43ff13b4 3229{
0d1e5fa7 3230 struct execution_control_state ecss;
a474d7c2 3231 struct execution_control_state *ecs = &ecss;
4f8d22e3 3232 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
29f49a6a 3233 struct cleanup *ts_old_chain;
4f8d22e3 3234 int was_sync = sync_execution;
0f641c01 3235 int cmd_done = 0;
963f9c80 3236 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3237
0d1e5fa7
PA
3238 memset (ecs, 0, sizeof (*ecs));
3239
d3d4baed
PA
3240 /* End up with readline processing input, if necessary. */
3241 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3242
c5187ac6
PA
3243 /* We're handling a live event, so make sure we're doing live
3244 debugging. If we're looking at traceframes while the target is
3245 running, we're going to need to get back to that mode after
3246 handling the event. */
3247 if (non_stop)
3248 {
3249 make_cleanup_restore_current_traceframe ();
e6e4e701 3250 set_current_traceframe (-1);
c5187ac6
PA
3251 }
3252
4f8d22e3
PA
3253 if (non_stop)
3254 /* In non-stop mode, the user/frontend should not notice a thread
3255 switch due to internal events. Make sure we reverse to the
3256 user selected thread and frame after handling the event and
3257 running any breakpoint commands. */
3258 make_cleanup_restore_current_thread ();
3259
ec9499be 3260 overlay_cache_invalid = 1;
f15cb84a
YQ
3261 /* Flush target cache before starting to handle each event. Target
3262 was running and cache could be stale. This is just a heuristic.
3263 Running threads may modify target memory, but we don't get any
3264 event. */
3265 target_dcache_invalidate ();
3dd5b83d 3266
32231432
PA
3267 make_cleanup_restore_integer (&execution_direction);
3268 execution_direction = target_execution_direction ();
3269
9a4105ab 3270 if (deprecated_target_wait_hook)
a474d7c2 3271 ecs->ptid =
47608cb1 3272 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3273 else
47608cb1 3274 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
43ff13b4 3275
f00150c9 3276 if (debug_infrun)
223698f8 3277 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3278
29f49a6a
PA
3279 /* If an error happens while handling the event, propagate GDB's
3280 knowledge of the executing state to the frontend/user running
3281 state. */
3282 if (!non_stop)
3283 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
3284 else
3285 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
3286
353d1d73
JK
3287 /* Get executed before make_cleanup_restore_current_thread above to apply
3288 still for the thread which has thrown the exception. */
3289 make_bpstat_clear_actions_cleanup ();
3290
7c16b83e
PA
3291 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3292
43ff13b4 3293 /* Now figure out what to do with the result of the result. */
a474d7c2 3294 handle_inferior_event (ecs);
43ff13b4 3295
a474d7c2 3296 if (!ecs->wait_some_more)
43ff13b4 3297 {
c9657e70 3298 struct inferior *inf = find_inferior_ptid (ecs->ptid);
d6b48e9c 3299
0cbcdb96 3300 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3301
d6b48e9c 3302 /* We may not find an inferior if this was a process exit. */
16c381f0 3303 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
83c265ab
PA
3304 normal_stop ();
3305
af679fd0 3306 if (target_has_execution
0e5bf2a8 3307 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
af679fd0
PA
3308 && ecs->ws.kind != TARGET_WAITKIND_EXITED
3309 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3310 && ecs->event_thread->step_multi
16c381f0 3311 && ecs->event_thread->control.stop_step)
c2d11a7d
JM
3312 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
3313 else
0f641c01
PA
3314 {
3315 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3316 cmd_done = 1;
3317 }
43ff13b4 3318 }
4f8d22e3 3319
29f49a6a
PA
3320 /* No error, don't finish the thread states yet. */
3321 discard_cleanups (ts_old_chain);
3322
4f8d22e3
PA
3323 /* Revert thread and frame. */
3324 do_cleanups (old_chain);
3325
3326 /* If the inferior was in sync execution mode, and now isn't,
0f641c01
PA
3327 restore the prompt (a synchronous execution command has finished,
3328 and we're ready for input). */
b4a14fd0 3329 if (interpreter_async && was_sync && !sync_execution)
92bcb5f9 3330 observer_notify_sync_execution_done ();
0f641c01
PA
3331
3332 if (cmd_done
3333 && !was_sync
3334 && exec_done_display_p
3335 && (ptid_equal (inferior_ptid, null_ptid)
3336 || !is_running (inferior_ptid)))
3337 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3338}
3339
edb3359d
DJ
3340/* Record the frame and location we're currently stepping through. */
3341void
3342set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3343{
3344 struct thread_info *tp = inferior_thread ();
3345
16c381f0
JK
3346 tp->control.step_frame_id = get_frame_id (frame);
3347 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3348
3349 tp->current_symtab = sal.symtab;
3350 tp->current_line = sal.line;
3351}
3352
0d1e5fa7
PA
3353/* Clear context switchable stepping state. */
3354
3355void
4e1c45ea 3356init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 3357{
7f5ef605 3358 tss->stepped_breakpoint = 0;
0d1e5fa7 3359 tss->stepping_over_breakpoint = 0;
963f9c80 3360 tss->stepping_over_watchpoint = 0;
0d1e5fa7 3361 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
3362}
3363
c32c64b7
DE
3364/* Set the cached copy of the last ptid/waitstatus. */
3365
3366static void
3367set_last_target_status (ptid_t ptid, struct target_waitstatus status)
3368{
3369 target_last_wait_ptid = ptid;
3370 target_last_waitstatus = status;
3371}
3372
e02bc4cc 3373/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
3374 target_wait()/deprecated_target_wait_hook(). The data is actually
3375 cached by handle_inferior_event(), which gets called immediately
3376 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
3377
3378void
488f131b 3379get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 3380{
39f77062 3381 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
3382 *status = target_last_waitstatus;
3383}
3384
ac264b3b
MS
3385void
3386nullify_last_target_wait_ptid (void)
3387{
3388 target_last_wait_ptid = minus_one_ptid;
3389}
3390
dcf4fbde 3391/* Switch thread contexts. */
dd80620e
MS
3392
3393static void
0d1e5fa7 3394context_switch (ptid_t ptid)
dd80620e 3395{
4b51d87b 3396 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
fd48f117
DJ
3397 {
3398 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
3399 target_pid_to_str (inferior_ptid));
3400 fprintf_unfiltered (gdb_stdlog, "to %s\n",
0d1e5fa7 3401 target_pid_to_str (ptid));
fd48f117
DJ
3402 }
3403
0d1e5fa7 3404 switch_to_thread (ptid);
dd80620e
MS
3405}
3406
4fa8626c
DJ
3407static void
3408adjust_pc_after_break (struct execution_control_state *ecs)
3409{
24a73cce
UW
3410 struct regcache *regcache;
3411 struct gdbarch *gdbarch;
6c95b8df 3412 struct address_space *aspace;
118e6252 3413 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 3414
4fa8626c
DJ
3415 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
3416 we aren't, just return.
9709f61c
DJ
3417
3418 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
3419 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
3420 implemented by software breakpoints should be handled through the normal
3421 breakpoint layer.
8fb3e588 3422
4fa8626c
DJ
3423 NOTE drow/2004-01-31: On some targets, breakpoints may generate
3424 different signals (SIGILL or SIGEMT for instance), but it is less
3425 clear where the PC is pointing afterwards. It may not match
b798847d
UW
3426 gdbarch_decr_pc_after_break. I don't know any specific target that
3427 generates these signals at breakpoints (the code has been in GDB since at
3428 least 1992) so I can not guess how to handle them here.
8fb3e588 3429
e6cf7916
UW
3430 In earlier versions of GDB, a target with
3431 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
3432 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
3433 target with both of these set in GDB history, and it seems unlikely to be
3434 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c
DJ
3435
3436 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
3437 return;
3438
a493e3e2 3439 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
3440 return;
3441
4058b839
PA
3442 /* In reverse execution, when a breakpoint is hit, the instruction
3443 under it has already been de-executed. The reported PC always
3444 points at the breakpoint address, so adjusting it further would
3445 be wrong. E.g., consider this case on a decr_pc_after_break == 1
3446 architecture:
3447
3448 B1 0x08000000 : INSN1
3449 B2 0x08000001 : INSN2
3450 0x08000002 : INSN3
3451 PC -> 0x08000003 : INSN4
3452
3453 Say you're stopped at 0x08000003 as above. Reverse continuing
3454 from that point should hit B2 as below. Reading the PC when the
3455 SIGTRAP is reported should read 0x08000001 and INSN2 should have
3456 been de-executed already.
3457
3458 B1 0x08000000 : INSN1
3459 B2 PC -> 0x08000001 : INSN2
3460 0x08000002 : INSN3
3461 0x08000003 : INSN4
3462
3463 We can't apply the same logic as for forward execution, because
3464 we would wrongly adjust the PC to 0x08000000, since there's a
3465 breakpoint at PC - 1. We'd then report a hit on B1, although
3466 INSN1 hadn't been de-executed yet. Doing nothing is the correct
3467 behaviour. */
3468 if (execution_direction == EXEC_REVERSE)
3469 return;
3470
1cf4d951
PA
3471 /* If the target can tell whether the thread hit a SW breakpoint,
3472 trust it. Targets that can tell also adjust the PC
3473 themselves. */
3474 if (target_supports_stopped_by_sw_breakpoint ())
3475 return;
3476
3477 /* Note that relying on whether a breakpoint is planted in memory to
3478 determine this can fail. E.g,. the breakpoint could have been
3479 removed since. Or the thread could have been told to step an
3480 instruction the size of a breakpoint instruction, and only
3481 _after_ was a breakpoint inserted at its address. */
3482
24a73cce
UW
3483 /* If this target does not decrement the PC after breakpoints, then
3484 we have nothing to do. */
3485 regcache = get_thread_regcache (ecs->ptid);
3486 gdbarch = get_regcache_arch (regcache);
118e6252
MM
3487
3488 decr_pc = target_decr_pc_after_break (gdbarch);
3489 if (decr_pc == 0)
24a73cce
UW
3490 return;
3491
6c95b8df
PA
3492 aspace = get_regcache_aspace (regcache);
3493
8aad930b
AC
3494 /* Find the location where (if we've hit a breakpoint) the
3495 breakpoint would be. */
118e6252 3496 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 3497
1cf4d951
PA
3498 /* If the target can't tell whether a software breakpoint triggered,
3499 fallback to figuring it out based on breakpoints we think were
3500 inserted in the target, and on whether the thread was stepped or
3501 continued. */
3502
1c5cfe86
PA
3503 /* Check whether there actually is a software breakpoint inserted at
3504 that location.
3505
3506 If in non-stop mode, a race condition is possible where we've
3507 removed a breakpoint, but stop events for that breakpoint were
3508 already queued and arrive later. To suppress those spurious
3509 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
3510 and retire them after a number of stop events are reported. Note
3511 this is an heuristic and can thus get confused. The real fix is
3512 to get the "stopped by SW BP and needs adjustment" info out of
3513 the target/kernel (and thus never reach here; see above). */
6c95b8df
PA
3514 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3515 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 3516 {
77f9e713 3517 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
abbb1732 3518
8213266a 3519 if (record_full_is_used ())
77f9e713 3520 record_full_gdb_operation_disable_set ();
96429cc8 3521
1c0fdd0e
UW
3522 /* When using hardware single-step, a SIGTRAP is reported for both
3523 a completed single-step and a software breakpoint. Need to
3524 differentiate between the two, as the latter needs adjusting
3525 but the former does not.
3526
3527 The SIGTRAP can be due to a completed hardware single-step only if
3528 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
3529 - this thread is currently being stepped
3530
3531 If any of these events did not occur, we must have stopped due
3532 to hitting a software breakpoint, and have to back up to the
3533 breakpoint address.
3534
3535 As a special case, we could have hardware single-stepped a
3536 software breakpoint. In this case (prev_pc == breakpoint_pc),
3537 we also need to back up to the breakpoint address. */
3538
34b7e8a6 3539 if (thread_has_single_step_breakpoints_set (ecs->event_thread)
4e1c45ea 3540 || !currently_stepping (ecs->event_thread)
7f5ef605
PA
3541 || (ecs->event_thread->stepped_breakpoint
3542 && ecs->event_thread->prev_pc == breakpoint_pc))
515630c5 3543 regcache_write_pc (regcache, breakpoint_pc);
96429cc8 3544
77f9e713 3545 do_cleanups (old_cleanups);
8aad930b 3546 }
4fa8626c
DJ
3547}
3548
edb3359d
DJ
3549static int
3550stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3551{
3552 for (frame = get_prev_frame (frame);
3553 frame != NULL;
3554 frame = get_prev_frame (frame))
3555 {
3556 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3557 return 1;
3558 if (get_frame_type (frame) != INLINE_FRAME)
3559 break;
3560 }
3561
3562 return 0;
3563}
3564
a96d9b2e
SDJ
3565/* Auxiliary function that handles syscall entry/return events.
3566 It returns 1 if the inferior should keep going (and GDB
3567 should ignore the event), or 0 if the event deserves to be
3568 processed. */
ca2163eb 3569
a96d9b2e 3570static int
ca2163eb 3571handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 3572{
ca2163eb 3573 struct regcache *regcache;
ca2163eb
PA
3574 int syscall_number;
3575
3576 if (!ptid_equal (ecs->ptid, inferior_ptid))
3577 context_switch (ecs->ptid);
3578
3579 regcache = get_thread_regcache (ecs->ptid);
f90263c1 3580 syscall_number = ecs->ws.value.syscall_number;
ca2163eb
PA
3581 stop_pc = regcache_read_pc (regcache);
3582
a96d9b2e
SDJ
3583 if (catch_syscall_enabled () > 0
3584 && catching_syscall_number (syscall_number) > 0)
3585 {
3586 if (debug_infrun)
3587 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3588 syscall_number);
a96d9b2e 3589
16c381f0 3590 ecs->event_thread->control.stop_bpstat
6c95b8df 3591 = bpstat_stop_status (get_regcache_aspace (regcache),
09ac7c10 3592 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3593
ce12b012 3594 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
3595 {
3596 /* Catchpoint hit. */
ca2163eb
PA
3597 return 0;
3598 }
a96d9b2e 3599 }
ca2163eb
PA
3600
3601 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
3602 keep_going (ecs);
3603 return 1;
a96d9b2e
SDJ
3604}
3605
7e324e48
GB
3606/* Lazily fill in the execution_control_state's stop_func_* fields. */
3607
3608static void
3609fill_in_stop_func (struct gdbarch *gdbarch,
3610 struct execution_control_state *ecs)
3611{
3612 if (!ecs->stop_func_filled_in)
3613 {
3614 /* Don't care about return value; stop_func_start and stop_func_name
3615 will both be 0 if it doesn't work. */
3616 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3617 &ecs->stop_func_start, &ecs->stop_func_end);
3618 ecs->stop_func_start
3619 += gdbarch_deprecated_function_start_offset (gdbarch);
3620
591a12a1
UW
3621 if (gdbarch_skip_entrypoint_p (gdbarch))
3622 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
3623 ecs->stop_func_start);
3624
7e324e48
GB
3625 ecs->stop_func_filled_in = 1;
3626 }
3627}
3628
4f5d7f63
PA
3629
3630/* Return the STOP_SOON field of the inferior pointed at by PTID. */
3631
3632static enum stop_kind
3633get_inferior_stop_soon (ptid_t ptid)
3634{
c9657e70 3635 struct inferior *inf = find_inferior_ptid (ptid);
4f5d7f63
PA
3636
3637 gdb_assert (inf != NULL);
3638 return inf->control.stop_soon;
3639}
3640
05ba8510
PA
3641/* Given an execution control state that has been freshly filled in by
3642 an event from the inferior, figure out what it means and take
3643 appropriate action.
3644
3645 The alternatives are:
3646
22bcd14b 3647 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
3648 debugger.
3649
3650 2) keep_going and return; to wait for the next event (set
3651 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3652 once). */
c906108c 3653
ec9499be 3654static void
96baa820 3655handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 3656{
d6b48e9c
PA
3657 enum stop_kind stop_soon;
3658
28736962
PA
3659 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3660 {
3661 /* We had an event in the inferior, but we are not interested in
3662 handling it at this level. The lower layers have already
3663 done what needs to be done, if anything.
3664
3665 One of the possible circumstances for this is when the
3666 inferior produces output for the console. The inferior has
3667 not stopped, and we are ignoring the event. Another possible
3668 circumstance is any event which the lower level knows will be
3669 reported multiple times without an intervening resume. */
3670 if (debug_infrun)
3671 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3672 prepare_to_wait (ecs);
3673 return;
3674 }
3675
0e5bf2a8
PA
3676 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3677 && target_can_async_p () && !sync_execution)
3678 {
3679 /* There were no unwaited-for children left in the target, but,
3680 we're not synchronously waiting for events either. Just
3681 ignore. Otherwise, if we were running a synchronous
3682 execution command, we need to cancel it and give the user
3683 back the terminal. */
3684 if (debug_infrun)
3685 fprintf_unfiltered (gdb_stdlog,
3686 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3687 prepare_to_wait (ecs);
3688 return;
3689 }
3690
1777feb0 3691 /* Cache the last pid/waitstatus. */
c32c64b7 3692 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 3693
ca005067 3694 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 3695 stop_stack_dummy = STOP_NONE;
ca005067 3696
0e5bf2a8
PA
3697 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3698 {
3699 /* No unwaited-for children left. IOW, all resumed children
3700 have exited. */
3701 if (debug_infrun)
3702 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3703
3704 stop_print_frame = 0;
22bcd14b 3705 stop_waiting (ecs);
0e5bf2a8
PA
3706 return;
3707 }
3708
8c90c137 3709 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 3710 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
3711 {
3712 ecs->event_thread = find_thread_ptid (ecs->ptid);
3713 /* If it's a new thread, add it to the thread database. */
3714 if (ecs->event_thread == NULL)
3715 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
3716
3717 /* Disable range stepping. If the next step request could use a
3718 range, this will be end up re-enabled then. */
3719 ecs->event_thread->control.may_range_step = 0;
359f5fe6 3720 }
88ed393a
JK
3721
3722 /* Dependent on valid ECS->EVENT_THREAD. */
3723 adjust_pc_after_break (ecs);
3724
3725 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3726 reinit_frame_cache ();
3727
28736962
PA
3728 breakpoint_retire_moribund ();
3729
2b009048
DJ
3730 /* First, distinguish signals caused by the debugger from signals
3731 that have to do with the program's own actions. Note that
3732 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3733 on the operating system version. Here we detect when a SIGILL or
3734 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3735 something similar for SIGSEGV, since a SIGSEGV will be generated
3736 when we're trying to execute a breakpoint instruction on a
3737 non-executable stack. This happens for call dummy breakpoints
3738 for architectures like SPARC that place call dummies on the
3739 stack. */
2b009048 3740 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
3741 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3742 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3743 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 3744 {
de0a0249
UW
3745 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3746
3747 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3748 regcache_read_pc (regcache)))
3749 {
3750 if (debug_infrun)
3751 fprintf_unfiltered (gdb_stdlog,
3752 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 3753 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 3754 }
2b009048
DJ
3755 }
3756
28736962
PA
3757 /* Mark the non-executing threads accordingly. In all-stop, all
3758 threads of all processes are stopped when we get any event
3759 reported. In non-stop mode, only the event thread stops. If
3760 we're handling a process exit in non-stop mode, there's nothing
3761 to do, as threads of the dead process are gone, and threads of
3762 any other process were left running. */
3763 if (!non_stop)
3764 set_executing (minus_one_ptid, 0);
3765 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3766 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
7aee8dc2 3767 set_executing (ecs->ptid, 0);
8c90c137 3768
488f131b
JB
3769 switch (ecs->ws.kind)
3770 {
3771 case TARGET_WAITKIND_LOADED:
527159b7 3772 if (debug_infrun)
8a9de0e4 3773 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
5c09a2c5
PA
3774 if (!ptid_equal (ecs->ptid, inferior_ptid))
3775 context_switch (ecs->ptid);
b0f4b84b
DJ
3776 /* Ignore gracefully during startup of the inferior, as it might
3777 be the shell which has just loaded some objects, otherwise
3778 add the symbols for the newly loaded objects. Also ignore at
3779 the beginning of an attach or remote session; we will query
3780 the full list of libraries once the connection is
3781 established. */
4f5d7f63
PA
3782
3783 stop_soon = get_inferior_stop_soon (ecs->ptid);
c0236d92 3784 if (stop_soon == NO_STOP_QUIETLY)
488f131b 3785 {
edcc5120
TT
3786 struct regcache *regcache;
3787
edcc5120
TT
3788 regcache = get_thread_regcache (ecs->ptid);
3789
3790 handle_solib_event ();
3791
3792 ecs->event_thread->control.stop_bpstat
3793 = bpstat_stop_status (get_regcache_aspace (regcache),
3794 stop_pc, ecs->ptid, &ecs->ws);
ab04a2af 3795
ce12b012 3796 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
3797 {
3798 /* A catchpoint triggered. */
94c57d6a
PA
3799 process_event_stop_test (ecs);
3800 return;
edcc5120 3801 }
488f131b 3802
b0f4b84b
DJ
3803 /* If requested, stop when the dynamic linker notifies
3804 gdb of events. This allows the user to get control
3805 and place breakpoints in initializer routines for
3806 dynamically loaded objects (among other things). */
a493e3e2 3807 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
3808 if (stop_on_solib_events)
3809 {
55409f9d
DJ
3810 /* Make sure we print "Stopped due to solib-event" in
3811 normal_stop. */
3812 stop_print_frame = 1;
3813
22bcd14b 3814 stop_waiting (ecs);
b0f4b84b
DJ
3815 return;
3816 }
488f131b 3817 }
b0f4b84b
DJ
3818
3819 /* If we are skipping through a shell, or through shared library
3820 loading that we aren't interested in, resume the program. If
5c09a2c5 3821 we're running the program normally, also resume. */
b0f4b84b
DJ
3822 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3823 {
74960c60
VP
3824 /* Loading of shared libraries might have changed breakpoint
3825 addresses. Make sure new breakpoints are inserted. */
a25a5a45 3826 if (stop_soon == NO_STOP_QUIETLY)
74960c60 3827 insert_breakpoints ();
a493e3e2 3828 resume (0, GDB_SIGNAL_0);
b0f4b84b
DJ
3829 prepare_to_wait (ecs);
3830 return;
3831 }
3832
5c09a2c5
PA
3833 /* But stop if we're attaching or setting up a remote
3834 connection. */
3835 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3836 || stop_soon == STOP_QUIETLY_REMOTE)
3837 {
3838 if (debug_infrun)
3839 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 3840 stop_waiting (ecs);
5c09a2c5
PA
3841 return;
3842 }
3843
3844 internal_error (__FILE__, __LINE__,
3845 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 3846
488f131b 3847 case TARGET_WAITKIND_SPURIOUS:
527159b7 3848 if (debug_infrun)
8a9de0e4 3849 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
64776a0b 3850 if (!ptid_equal (ecs->ptid, inferior_ptid))
8b3ee56d 3851 context_switch (ecs->ptid);
a493e3e2 3852 resume (0, GDB_SIGNAL_0);
488f131b
JB
3853 prepare_to_wait (ecs);
3854 return;
c5aa993b 3855
488f131b 3856 case TARGET_WAITKIND_EXITED:
940c3c06 3857 case TARGET_WAITKIND_SIGNALLED:
527159b7 3858 if (debug_infrun)
940c3c06
PA
3859 {
3860 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3861 fprintf_unfiltered (gdb_stdlog,
3862 "infrun: TARGET_WAITKIND_EXITED\n");
3863 else
3864 fprintf_unfiltered (gdb_stdlog,
3865 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3866 }
3867
fb66883a 3868 inferior_ptid = ecs->ptid;
c9657e70 3869 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
3870 set_current_program_space (current_inferior ()->pspace);
3871 handle_vfork_child_exec_or_exit (0);
1777feb0 3872 target_terminal_ours (); /* Must do this before mourn anyway. */
488f131b 3873
0c557179
SDJ
3874 /* Clearing any previous state of convenience variables. */
3875 clear_exit_convenience_vars ();
3876
940c3c06
PA
3877 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3878 {
3879 /* Record the exit code in the convenience variable $_exitcode, so
3880 that the user can inspect this again later. */
3881 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3882 (LONGEST) ecs->ws.value.integer);
3883
3884 /* Also record this in the inferior itself. */
3885 current_inferior ()->has_exit_code = 1;
3886 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 3887
98eb56a4
PA
3888 /* Support the --return-child-result option. */
3889 return_child_result_value = ecs->ws.value.integer;
3890
fd664c91 3891 observer_notify_exited (ecs->ws.value.integer);
940c3c06
PA
3892 }
3893 else
0c557179
SDJ
3894 {
3895 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3896 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3897
3898 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3899 {
3900 /* Set the value of the internal variable $_exitsignal,
3901 which holds the signal uncaught by the inferior. */
3902 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3903 gdbarch_gdb_signal_to_target (gdbarch,
3904 ecs->ws.value.sig));
3905 }
3906 else
3907 {
3908 /* We don't have access to the target's method used for
3909 converting between signal numbers (GDB's internal
3910 representation <-> target's representation).
3911 Therefore, we cannot do a good job at displaying this
3912 information to the user. It's better to just warn
3913 her about it (if infrun debugging is enabled), and
3914 give up. */
3915 if (debug_infrun)
3916 fprintf_filtered (gdb_stdlog, _("\
3917Cannot fill $_exitsignal with the correct signal number.\n"));
3918 }
3919
fd664c91 3920 observer_notify_signal_exited (ecs->ws.value.sig);
0c557179 3921 }
8cf64490 3922
488f131b
JB
3923 gdb_flush (gdb_stdout);
3924 target_mourn_inferior ();
488f131b 3925 stop_print_frame = 0;
22bcd14b 3926 stop_waiting (ecs);
488f131b 3927 return;
c5aa993b 3928
488f131b 3929 /* The following are the only cases in which we keep going;
1777feb0 3930 the above cases end in a continue or goto. */
488f131b 3931 case TARGET_WAITKIND_FORKED:
deb3b17b 3932 case TARGET_WAITKIND_VFORKED:
527159b7 3933 if (debug_infrun)
fed708ed
PA
3934 {
3935 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3936 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3937 else
3938 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3939 }
c906108c 3940
e2d96639
YQ
3941 /* Check whether the inferior is displaced stepping. */
3942 {
3943 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3944 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3945 struct displaced_step_inferior_state *displaced
3946 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3947
3948 /* If checking displaced stepping is supported, and thread
3949 ecs->ptid is displaced stepping. */
3950 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3951 {
3952 struct inferior *parent_inf
c9657e70 3953 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
3954 struct regcache *child_regcache;
3955 CORE_ADDR parent_pc;
3956
3957 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3958 indicating that the displaced stepping of syscall instruction
3959 has been done. Perform cleanup for parent process here. Note
3960 that this operation also cleans up the child process for vfork,
3961 because their pages are shared. */
a493e3e2 3962 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
e2d96639
YQ
3963
3964 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3965 {
3966 /* Restore scratch pad for child process. */
3967 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3968 }
3969
3970 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3971 the child's PC is also within the scratchpad. Set the child's PC
3972 to the parent's PC value, which has already been fixed up.
3973 FIXME: we use the parent's aspace here, although we're touching
3974 the child, because the child hasn't been added to the inferior
3975 list yet at this point. */
3976
3977 child_regcache
3978 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3979 gdbarch,
3980 parent_inf->aspace);
3981 /* Read PC value of parent process. */
3982 parent_pc = regcache_read_pc (regcache);
3983
3984 if (debug_displaced)
3985 fprintf_unfiltered (gdb_stdlog,
3986 "displaced: write child pc from %s to %s\n",
3987 paddress (gdbarch,
3988 regcache_read_pc (child_regcache)),
3989 paddress (gdbarch, parent_pc));
3990
3991 regcache_write_pc (child_regcache, parent_pc);
3992 }
3993 }
3994
5a2901d9 3995 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 3996 context_switch (ecs->ptid);
5a2901d9 3997
b242c3c2
PA
3998 /* Immediately detach breakpoints from the child before there's
3999 any chance of letting the user delete breakpoints from the
4000 breakpoint lists. If we don't do this early, it's easy to
4001 leave left over traps in the child, vis: "break foo; catch
4002 fork; c; <fork>; del; c; <child calls foo>". We only follow
4003 the fork on the last `continue', and by that time the
4004 breakpoint at "foo" is long gone from the breakpoint table.
4005 If we vforked, then we don't need to unpatch here, since both
4006 parent and child are sharing the same memory pages; we'll
4007 need to unpatch at follow/detach time instead to be certain
4008 that new breakpoints added between catchpoint hit time and
4009 vfork follow are detached. */
4010 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
4011 {
b242c3c2
PA
4012 /* This won't actually modify the breakpoint list, but will
4013 physically remove the breakpoints from the child. */
d80ee84f 4014 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
4015 }
4016
34b7e8a6 4017 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 4018
e58b0e63
PA
4019 /* In case the event is caught by a catchpoint, remember that
4020 the event is to be followed at the next resume of the thread,
4021 and not immediately. */
4022 ecs->event_thread->pending_follow = ecs->ws;
4023
fb14de7b 4024 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
675bf4cb 4025
16c381f0 4026 ecs->event_thread->control.stop_bpstat
6c95b8df 4027 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4028 stop_pc, ecs->ptid, &ecs->ws);
675bf4cb 4029
ce12b012
PA
4030 /* If no catchpoint triggered for this, then keep going. Note
4031 that we're interested in knowing the bpstat actually causes a
4032 stop, not just if it may explain the signal. Software
4033 watchpoints, for example, always appear in the bpstat. */
4034 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4035 {
6c95b8df
PA
4036 ptid_t parent;
4037 ptid_t child;
e58b0e63 4038 int should_resume;
3e43a32a
MS
4039 int follow_child
4040 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 4041
a493e3e2 4042 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
4043
4044 should_resume = follow_fork ();
4045
6c95b8df
PA
4046 parent = ecs->ptid;
4047 child = ecs->ws.value.related_pid;
4048
4049 /* In non-stop mode, also resume the other branch. */
4050 if (non_stop && !detach_fork)
4051 {
4052 if (follow_child)
4053 switch_to_thread (parent);
4054 else
4055 switch_to_thread (child);
4056
4057 ecs->event_thread = inferior_thread ();
4058 ecs->ptid = inferior_ptid;
4059 keep_going (ecs);
4060 }
4061
4062 if (follow_child)
4063 switch_to_thread (child);
4064 else
4065 switch_to_thread (parent);
4066
e58b0e63
PA
4067 ecs->event_thread = inferior_thread ();
4068 ecs->ptid = inferior_ptid;
4069
4070 if (should_resume)
4071 keep_going (ecs);
4072 else
22bcd14b 4073 stop_waiting (ecs);
04e68871
DJ
4074 return;
4075 }
94c57d6a
PA
4076 process_event_stop_test (ecs);
4077 return;
488f131b 4078
6c95b8df
PA
4079 case TARGET_WAITKIND_VFORK_DONE:
4080 /* Done with the shared memory region. Re-insert breakpoints in
4081 the parent, and keep going. */
4082
4083 if (debug_infrun)
3e43a32a
MS
4084 fprintf_unfiltered (gdb_stdlog,
4085 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df
PA
4086
4087 if (!ptid_equal (ecs->ptid, inferior_ptid))
4088 context_switch (ecs->ptid);
4089
4090 current_inferior ()->waiting_for_vfork_done = 0;
56710373 4091 current_inferior ()->pspace->breakpoints_not_allowed = 0;
6c95b8df
PA
4092 /* This also takes care of reinserting breakpoints in the
4093 previously locked inferior. */
4094 keep_going (ecs);
4095 return;
4096
488f131b 4097 case TARGET_WAITKIND_EXECD:
527159b7 4098 if (debug_infrun)
fc5261f2 4099 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 4100
5a2901d9 4101 if (!ptid_equal (ecs->ptid, inferior_ptid))
c3a01a22 4102 context_switch (ecs->ptid);
5a2901d9 4103
fb14de7b 4104 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
795e548f 4105
6c95b8df
PA
4106 /* Do whatever is necessary to the parent branch of the vfork. */
4107 handle_vfork_child_exec_or_exit (1);
4108
795e548f
PA
4109 /* This causes the eventpoints and symbol table to be reset.
4110 Must do this now, before trying to determine whether to
4111 stop. */
71b43ef8 4112 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 4113
16c381f0 4114 ecs->event_thread->control.stop_bpstat
6c95b8df 4115 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
09ac7c10 4116 stop_pc, ecs->ptid, &ecs->ws);
795e548f 4117
71b43ef8
PA
4118 /* Note that this may be referenced from inside
4119 bpstat_stop_status above, through inferior_has_execd. */
4120 xfree (ecs->ws.value.execd_pathname);
4121 ecs->ws.value.execd_pathname = NULL;
4122
04e68871 4123 /* If no catchpoint triggered for this, then keep going. */
ce12b012 4124 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 4125 {
a493e3e2 4126 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
4127 keep_going (ecs);
4128 return;
4129 }
94c57d6a
PA
4130 process_event_stop_test (ecs);
4131 return;
488f131b 4132
b4dc5ffa
MK
4133 /* Be careful not to try to gather much state about a thread
4134 that's in a syscall. It's frequently a losing proposition. */
488f131b 4135 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 4136 if (debug_infrun)
3e43a32a
MS
4137 fprintf_unfiltered (gdb_stdlog,
4138 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 4139 /* Getting the current syscall number. */
94c57d6a
PA
4140 if (handle_syscall_event (ecs) == 0)
4141 process_event_stop_test (ecs);
4142 return;
c906108c 4143
488f131b
JB
4144 /* Before examining the threads further, step this thread to
4145 get it entirely out of the syscall. (We get notice of the
4146 event when the thread is just on the verge of exiting a
4147 syscall. Stepping one instruction seems to get it back
b4dc5ffa 4148 into user code.) */
488f131b 4149 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 4150 if (debug_infrun)
3e43a32a
MS
4151 fprintf_unfiltered (gdb_stdlog,
4152 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
4153 if (handle_syscall_event (ecs) == 0)
4154 process_event_stop_test (ecs);
4155 return;
c906108c 4156
488f131b 4157 case TARGET_WAITKIND_STOPPED:
527159b7 4158 if (debug_infrun)
8a9de0e4 4159 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
16c381f0 4160 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
4f5d7f63
PA
4161 handle_signal_stop (ecs);
4162 return;
c906108c 4163
b2175913 4164 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
4165 if (debug_infrun)
4166 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 4167 /* Reverse execution: target ran out of history info. */
eab402df 4168
34b7e8a6 4169 delete_just_stopped_threads_single_step_breakpoints ();
fb14de7b 4170 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
fd664c91 4171 observer_notify_no_history ();
22bcd14b 4172 stop_waiting (ecs);
b2175913 4173 return;
488f131b 4174 }
4f5d7f63
PA
4175}
4176
4177/* Come here when the program has stopped with a signal. */
4178
4179static void
4180handle_signal_stop (struct execution_control_state *ecs)
4181{
4182 struct frame_info *frame;
4183 struct gdbarch *gdbarch;
4184 int stopped_by_watchpoint;
4185 enum stop_kind stop_soon;
4186 int random_signal;
c906108c 4187
f0407826
DE
4188 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
4189
4190 /* Do we need to clean up the state of a thread that has
4191 completed a displaced single-step? (Doing so usually affects
4192 the PC, so do it here, before we set stop_pc.) */
4193 displaced_step_fixup (ecs->ptid,
4194 ecs->event_thread->suspend.stop_signal);
4195
4196 /* If we either finished a single-step or hit a breakpoint, but
4197 the user wanted this thread to be stopped, pretend we got a
4198 SIG0 (generic unsignaled stop). */
4199 if (ecs->event_thread->stop_requested
4200 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
4201 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 4202
515630c5 4203 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
488f131b 4204
527159b7 4205 if (debug_infrun)
237fc4c9 4206 {
5af949e3
UW
4207 struct regcache *regcache = get_thread_regcache (ecs->ptid);
4208 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7f82dfc7
JK
4209 struct cleanup *old_chain = save_inferior_ptid ();
4210
4211 inferior_ptid = ecs->ptid;
5af949e3
UW
4212
4213 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
4214 paddress (gdbarch, stop_pc));
d92524f1 4215 if (target_stopped_by_watchpoint ())
237fc4c9
PA
4216 {
4217 CORE_ADDR addr;
abbb1732 4218
237fc4c9
PA
4219 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
4220
4221 if (target_stopped_data_address (&current_target, &addr))
4222 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
4223 "infrun: stopped data address = %s\n",
4224 paddress (gdbarch, addr));
237fc4c9
PA
4225 else
4226 fprintf_unfiltered (gdb_stdlog,
4227 "infrun: (no data address available)\n");
4228 }
7f82dfc7
JK
4229
4230 do_cleanups (old_chain);
237fc4c9 4231 }
527159b7 4232
36fa8042
PA
4233 /* This is originated from start_remote(), start_inferior() and
4234 shared libraries hook functions. */
4235 stop_soon = get_inferior_stop_soon (ecs->ptid);
4236 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4237 {
4238 if (!ptid_equal (ecs->ptid, inferior_ptid))
4239 context_switch (ecs->ptid);
4240 if (debug_infrun)
4241 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4242 stop_print_frame = 1;
22bcd14b 4243 stop_waiting (ecs);
36fa8042
PA
4244 return;
4245 }
4246
4247 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4248 && stop_after_trap)
4249 {
4250 if (!ptid_equal (ecs->ptid, inferior_ptid))
4251 context_switch (ecs->ptid);
4252 if (debug_infrun)
4253 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4254 stop_print_frame = 0;
22bcd14b 4255 stop_waiting (ecs);
36fa8042
PA
4256 return;
4257 }
4258
4259 /* This originates from attach_command(). We need to overwrite
4260 the stop_signal here, because some kernels don't ignore a
4261 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4262 See more comments in inferior.h. On the other hand, if we
4263 get a non-SIGSTOP, report it to the user - assume the backend
4264 will handle the SIGSTOP if it should show up later.
4265
4266 Also consider that the attach is complete when we see a
4267 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4268 target extended-remote report it instead of a SIGSTOP
4269 (e.g. gdbserver). We already rely on SIGTRAP being our
4270 signal, so this is no exception.
4271
4272 Also consider that the attach is complete when we see a
4273 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4274 the target to stop all threads of the inferior, in case the
4275 low level attach operation doesn't stop them implicitly. If
4276 they weren't stopped implicitly, then the stub will report a
4277 GDB_SIGNAL_0, meaning: stopped for no particular reason
4278 other than GDB's request. */
4279 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4280 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4281 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4282 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4283 {
4284 stop_print_frame = 1;
22bcd14b 4285 stop_waiting (ecs);
36fa8042
PA
4286 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4287 return;
4288 }
4289
488f131b 4290 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
4291 so, then switch to that thread. */
4292 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 4293 {
527159b7 4294 if (debug_infrun)
8a9de0e4 4295 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 4296
0d1e5fa7 4297 context_switch (ecs->ptid);
c5aa993b 4298
9a4105ab
AC
4299 if (deprecated_context_hook)
4300 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
488f131b 4301 }
c906108c 4302
568d6575
UW
4303 /* At this point, get hold of the now-current thread's frame. */
4304 frame = get_current_frame ();
4305 gdbarch = get_frame_arch (frame);
4306
2adfaa28 4307 /* Pull the single step breakpoints out of the target. */
af48d08f 4308 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 4309 {
af48d08f
PA
4310 struct regcache *regcache;
4311 struct address_space *aspace;
4312 CORE_ADDR pc;
2adfaa28 4313
af48d08f
PA
4314 regcache = get_thread_regcache (ecs->ptid);
4315 aspace = get_regcache_aspace (regcache);
4316 pc = regcache_read_pc (regcache);
34b7e8a6 4317
af48d08f
PA
4318 /* However, before doing so, if this single-step breakpoint was
4319 actually for another thread, set this thread up for moving
4320 past it. */
4321 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
4322 aspace, pc))
4323 {
4324 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
4325 {
4326 if (debug_infrun)
4327 {
4328 fprintf_unfiltered (gdb_stdlog,
af48d08f 4329 "infrun: [%s] hit another thread's "
34b7e8a6
PA
4330 "single-step breakpoint\n",
4331 target_pid_to_str (ecs->ptid));
2adfaa28 4332 }
af48d08f
PA
4333 ecs->hit_singlestep_breakpoint = 1;
4334 }
4335 }
4336 else
4337 {
4338 if (debug_infrun)
4339 {
4340 fprintf_unfiltered (gdb_stdlog,
4341 "infrun: [%s] hit its "
4342 "single-step breakpoint\n",
4343 target_pid_to_str (ecs->ptid));
2adfaa28
PA
4344 }
4345 }
488f131b 4346 }
af48d08f 4347 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 4348
963f9c80
PA
4349 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4350 && ecs->event_thread->control.trap_expected
4351 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
4352 stopped_by_watchpoint = 0;
4353 else
4354 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4355
4356 /* If necessary, step over this watchpoint. We'll be back to display
4357 it in a moment. */
4358 if (stopped_by_watchpoint
d92524f1 4359 && (target_have_steppable_watchpoint
568d6575 4360 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 4361 {
488f131b
JB
4362 /* At this point, we are stopped at an instruction which has
4363 attempted to write to a piece of memory under control of
4364 a watchpoint. The instruction hasn't actually executed
4365 yet. If we were to evaluate the watchpoint expression
4366 now, we would get the old value, and therefore no change
4367 would seem to have occurred.
4368
4369 In order to make watchpoints work `right', we really need
4370 to complete the memory write, and then evaluate the
d983da9c
DJ
4371 watchpoint expression. We do this by single-stepping the
4372 target.
4373
7f89fd65 4374 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
4375 it. For example, the PA can (with some kernel cooperation)
4376 single step over a watchpoint without disabling the watchpoint.
4377
4378 It is far more common to need to disable a watchpoint to step
4379 the inferior over it. If we have non-steppable watchpoints,
4380 we must disable the current watchpoint; it's simplest to
963f9c80
PA
4381 disable all watchpoints.
4382
4383 Any breakpoint at PC must also be stepped over -- if there's
4384 one, it will have already triggered before the watchpoint
4385 triggered, and we either already reported it to the user, or
4386 it didn't cause a stop and we called keep_going. In either
4387 case, if there was a breakpoint at PC, we must be trying to
4388 step past it. */
4389 ecs->event_thread->stepping_over_watchpoint = 1;
4390 keep_going (ecs);
488f131b
JB
4391 return;
4392 }
4393
4e1c45ea 4394 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 4395 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
4396 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4397 ecs->event_thread->control.stop_step = 0;
488f131b 4398 stop_print_frame = 1;
488f131b 4399 stopped_by_random_signal = 0;
488f131b 4400
edb3359d
DJ
4401 /* Hide inlined functions starting here, unless we just performed stepi or
4402 nexti. After stepi and nexti, always show the innermost frame (not any
4403 inline function call sites). */
16c381f0 4404 if (ecs->event_thread->control.step_range_end != 1)
0574c78f
GB
4405 {
4406 struct address_space *aspace =
4407 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4408
4409 /* skip_inline_frames is expensive, so we avoid it if we can
4410 determine that the address is one where functions cannot have
4411 been inlined. This improves performance with inferiors that
4412 load a lot of shared libraries, because the solib event
4413 breakpoint is defined as the address of a function (i.e. not
4414 inline). Note that we have to check the previous PC as well
4415 as the current one to catch cases when we have just
4416 single-stepped off a breakpoint prior to reinstating it.
4417 Note that we're assuming that the code we single-step to is
4418 not inline, but that's not definitive: there's nothing
4419 preventing the event breakpoint function from containing
4420 inlined code, and the single-step ending up there. If the
4421 user had set a breakpoint on that inlined code, the missing
4422 skip_inline_frames call would break things. Fortunately
4423 that's an extremely unlikely scenario. */
09ac7c10 4424 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
a210c238
MR
4425 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4426 && ecs->event_thread->control.trap_expected
4427 && pc_at_non_inline_function (aspace,
4428 ecs->event_thread->prev_pc,
09ac7c10 4429 &ecs->ws)))
1c5a993e
MR
4430 {
4431 skip_inline_frames (ecs->ptid);
4432
4433 /* Re-fetch current thread's frame in case that invalidated
4434 the frame cache. */
4435 frame = get_current_frame ();
4436 gdbarch = get_frame_arch (frame);
4437 }
0574c78f 4438 }
edb3359d 4439
a493e3e2 4440 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 4441 && ecs->event_thread->control.trap_expected
568d6575 4442 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 4443 && currently_stepping (ecs->event_thread))
3352ef37 4444 {
b50d7442 4445 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 4446 also on an instruction that needs to be stepped multiple
1777feb0 4447 times before it's been fully executing. E.g., architectures
3352ef37
AC
4448 with a delay slot. It needs to be stepped twice, once for
4449 the instruction and once for the delay slot. */
4450 int step_through_delay
568d6575 4451 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 4452
527159b7 4453 if (debug_infrun && step_through_delay)
8a9de0e4 4454 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
4455 if (ecs->event_thread->control.step_range_end == 0
4456 && step_through_delay)
3352ef37
AC
4457 {
4458 /* The user issued a continue when stopped at a breakpoint.
4459 Set up for another trap and get out of here. */
4e1c45ea 4460 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4461 keep_going (ecs);
4462 return;
4463 }
4464 else if (step_through_delay)
4465 {
4466 /* The user issued a step when stopped at a breakpoint.
4467 Maybe we should stop, maybe we should not - the delay
4468 slot *might* correspond to a line of source. In any
ca67fcb8
VP
4469 case, don't decide that here, just set
4470 ecs->stepping_over_breakpoint, making sure we
4471 single-step again before breakpoints are re-inserted. */
4e1c45ea 4472 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
4473 }
4474 }
4475
ab04a2af
TT
4476 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4477 handles this event. */
4478 ecs->event_thread->control.stop_bpstat
4479 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4480 stop_pc, ecs->ptid, &ecs->ws);
db82e815 4481
ab04a2af
TT
4482 /* Following in case break condition called a
4483 function. */
4484 stop_print_frame = 1;
73dd234f 4485
ab04a2af
TT
4486 /* This is where we handle "moribund" watchpoints. Unlike
4487 software breakpoints traps, hardware watchpoint traps are
4488 always distinguishable from random traps. If no high-level
4489 watchpoint is associated with the reported stop data address
4490 anymore, then the bpstat does not explain the signal ---
4491 simply make sure to ignore it if `stopped_by_watchpoint' is
4492 set. */
4493
4494 if (debug_infrun
4495 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 4496 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 4497 GDB_SIGNAL_TRAP)
ab04a2af
TT
4498 && stopped_by_watchpoint)
4499 fprintf_unfiltered (gdb_stdlog,
4500 "infrun: no user watchpoint explains "
4501 "watchpoint SIGTRAP, ignoring\n");
73dd234f 4502
bac7d97b 4503 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
4504 at one stage in the past included checks for an inferior
4505 function call's call dummy's return breakpoint. The original
4506 comment, that went with the test, read:
03cebad2 4507
ab04a2af
TT
4508 ``End of a stack dummy. Some systems (e.g. Sony news) give
4509 another signal besides SIGTRAP, so check here as well as
4510 above.''
73dd234f 4511
ab04a2af
TT
4512 If someone ever tries to get call dummys on a
4513 non-executable stack to work (where the target would stop
4514 with something like a SIGSEGV), then those tests might need
4515 to be re-instated. Given, however, that the tests were only
4516 enabled when momentary breakpoints were not being used, I
4517 suspect that it won't be the case.
488f131b 4518
ab04a2af
TT
4519 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4520 be necessary for call dummies on a non-executable stack on
4521 SPARC. */
488f131b 4522
bac7d97b 4523 /* See if the breakpoints module can explain the signal. */
47591c29
PA
4524 random_signal
4525 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4526 ecs->event_thread->suspend.stop_signal);
bac7d97b 4527
1cf4d951
PA
4528 /* Maybe this was a trap for a software breakpoint that has since
4529 been removed. */
4530 if (random_signal && target_stopped_by_sw_breakpoint ())
4531 {
4532 if (program_breakpoint_here_p (gdbarch, stop_pc))
4533 {
4534 struct regcache *regcache;
4535 int decr_pc;
4536
4537 /* Re-adjust PC to what the program would see if GDB was not
4538 debugging it. */
4539 regcache = get_thread_regcache (ecs->event_thread->ptid);
4540 decr_pc = target_decr_pc_after_break (gdbarch);
4541 if (decr_pc != 0)
4542 {
4543 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
4544
4545 if (record_full_is_used ())
4546 record_full_gdb_operation_disable_set ();
4547
4548 regcache_write_pc (regcache, stop_pc + decr_pc);
4549
4550 do_cleanups (old_cleanups);
4551 }
4552 }
4553 else
4554 {
4555 /* A delayed software breakpoint event. Ignore the trap. */
4556 if (debug_infrun)
4557 fprintf_unfiltered (gdb_stdlog,
4558 "infrun: delayed software breakpoint "
4559 "trap, ignoring\n");
4560 random_signal = 0;
4561 }
4562 }
4563
4564 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
4565 has since been removed. */
4566 if (random_signal && target_stopped_by_hw_breakpoint ())
4567 {
4568 /* A delayed hardware breakpoint event. Ignore the trap. */
4569 if (debug_infrun)
4570 fprintf_unfiltered (gdb_stdlog,
4571 "infrun: delayed hardware breakpoint/watchpoint "
4572 "trap, ignoring\n");
4573 random_signal = 0;
4574 }
4575
bac7d97b
PA
4576 /* If not, perhaps stepping/nexting can. */
4577 if (random_signal)
4578 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4579 && currently_stepping (ecs->event_thread));
ab04a2af 4580
2adfaa28
PA
4581 /* Perhaps the thread hit a single-step breakpoint of _another_
4582 thread. Single-step breakpoints are transparent to the
4583 breakpoints module. */
4584 if (random_signal)
4585 random_signal = !ecs->hit_singlestep_breakpoint;
4586
bac7d97b
PA
4587 /* No? Perhaps we got a moribund watchpoint. */
4588 if (random_signal)
4589 random_signal = !stopped_by_watchpoint;
ab04a2af 4590
488f131b
JB
4591 /* For the program's own signals, act according to
4592 the signal handling tables. */
4593
ce12b012 4594 if (random_signal)
488f131b
JB
4595 {
4596 /* Signal not for debugging purposes. */
c9657e70 4597 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 4598 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 4599
527159b7 4600 if (debug_infrun)
c9737c08
PA
4601 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4602 gdb_signal_to_symbol_string (stop_signal));
527159b7 4603
488f131b
JB
4604 stopped_by_random_signal = 1;
4605
252fbfc8
PA
4606 /* Always stop on signals if we're either just gaining control
4607 of the program, or the user explicitly requested this thread
4608 to remain stopped. */
d6b48e9c 4609 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 4610 || ecs->event_thread->stop_requested
24291992 4611 || (!inf->detaching
16c381f0 4612 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 4613 {
22bcd14b 4614 stop_waiting (ecs);
488f131b
JB
4615 return;
4616 }
b57bacec
PA
4617
4618 /* Notify observers the signal has "handle print" set. Note we
4619 returned early above if stopping; normal_stop handles the
4620 printing in that case. */
4621 if (signal_print[ecs->event_thread->suspend.stop_signal])
4622 {
4623 /* The signal table tells us to print about this signal. */
4624 target_terminal_ours_for_output ();
4625 observer_notify_signal_received (ecs->event_thread->suspend.stop_signal);
4626 target_terminal_inferior ();
4627 }
488f131b
JB
4628
4629 /* Clear the signal if it should not be passed. */
16c381f0 4630 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 4631 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 4632
fb14de7b 4633 if (ecs->event_thread->prev_pc == stop_pc
16c381f0 4634 && ecs->event_thread->control.trap_expected
8358c15c 4635 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
4636 {
4637 /* We were just starting a new sequence, attempting to
4638 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 4639 Instead this signal arrives. This signal will take us out
68f53502
AC
4640 of the stepping range so GDB needs to remember to, when
4641 the signal handler returns, resume stepping off that
4642 breakpoint. */
4643 /* To simplify things, "continue" is forced to use the same
4644 code paths as single-step - set a breakpoint at the
4645 signal return address and then, once hit, step off that
4646 breakpoint. */
237fc4c9
PA
4647 if (debug_infrun)
4648 fprintf_unfiltered (gdb_stdlog,
4649 "infrun: signal arrived while stepping over "
4650 "breakpoint\n");
d3169d93 4651
2c03e5be 4652 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 4653 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4654 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4655 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
4656
4657 /* If we were nexting/stepping some other thread, switch to
4658 it, so that we don't continue it, losing control. */
4659 if (!switch_back_to_stepped_thread (ecs))
4660 keep_going (ecs);
9d799f85 4661 return;
68f53502 4662 }
9d799f85 4663
e5f8a7cc
PA
4664 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4665 && (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4666 || ecs->event_thread->control.step_range_end == 1)
edb3359d 4667 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 4668 ecs->event_thread->control.step_stack_frame_id)
8358c15c 4669 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
4670 {
4671 /* The inferior is about to take a signal that will take it
4672 out of the single step range. Set a breakpoint at the
4673 current PC (which is presumably where the signal handler
4674 will eventually return) and then allow the inferior to
4675 run free.
4676
4677 Note that this is only needed for a signal delivered
4678 while in the single-step range. Nested signals aren't a
4679 problem as they eventually all return. */
237fc4c9
PA
4680 if (debug_infrun)
4681 fprintf_unfiltered (gdb_stdlog,
4682 "infrun: signal may take us out of "
4683 "single-step range\n");
4684
2c03e5be 4685 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 4686 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
4687 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4688 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
4689 keep_going (ecs);
4690 return;
d303a6c7 4691 }
9d799f85
AC
4692
4693 /* Note: step_resume_breakpoint may be non-NULL. This occures
4694 when either there's a nested signal, or when there's a
4695 pending signal enabled just as the signal handler returns
4696 (leaving the inferior at the step-resume-breakpoint without
4697 actually executing it). Either way continue until the
4698 breakpoint is really hit. */
c447ac0b
PA
4699
4700 if (!switch_back_to_stepped_thread (ecs))
4701 {
4702 if (debug_infrun)
4703 fprintf_unfiltered (gdb_stdlog,
4704 "infrun: random signal, keep going\n");
4705
4706 keep_going (ecs);
4707 }
4708 return;
488f131b 4709 }
94c57d6a
PA
4710
4711 process_event_stop_test (ecs);
4712}
4713
4714/* Come here when we've got some debug event / signal we can explain
4715 (IOW, not a random signal), and test whether it should cause a
4716 stop, or whether we should resume the inferior (transparently).
4717 E.g., could be a breakpoint whose condition evaluates false; we
4718 could be still stepping within the line; etc. */
4719
4720static void
4721process_event_stop_test (struct execution_control_state *ecs)
4722{
4723 struct symtab_and_line stop_pc_sal;
4724 struct frame_info *frame;
4725 struct gdbarch *gdbarch;
cdaa5b73
PA
4726 CORE_ADDR jmp_buf_pc;
4727 struct bpstat_what what;
94c57d6a 4728
cdaa5b73 4729 /* Handle cases caused by hitting a breakpoint. */
611c83ae 4730
cdaa5b73
PA
4731 frame = get_current_frame ();
4732 gdbarch = get_frame_arch (frame);
fcf3daef 4733
cdaa5b73 4734 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 4735
cdaa5b73
PA
4736 if (what.call_dummy)
4737 {
4738 stop_stack_dummy = what.call_dummy;
4739 }
186c406b 4740
cdaa5b73
PA
4741 /* If we hit an internal event that triggers symbol changes, the
4742 current frame will be invalidated within bpstat_what (e.g., if we
4743 hit an internal solib event). Re-fetch it. */
4744 frame = get_current_frame ();
4745 gdbarch = get_frame_arch (frame);
e2e4d78b 4746
cdaa5b73
PA
4747 switch (what.main_action)
4748 {
4749 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4750 /* If we hit the breakpoint at longjmp while stepping, we
4751 install a momentary breakpoint at the target of the
4752 jmp_buf. */
186c406b 4753
cdaa5b73
PA
4754 if (debug_infrun)
4755 fprintf_unfiltered (gdb_stdlog,
4756 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 4757
cdaa5b73 4758 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 4759
cdaa5b73
PA
4760 if (what.is_longjmp)
4761 {
4762 struct value *arg_value;
4763
4764 /* If we set the longjmp breakpoint via a SystemTap probe,
4765 then use it to extract the arguments. The destination PC
4766 is the third argument to the probe. */
4767 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4768 if (arg_value)
8fa0c4f8
AA
4769 {
4770 jmp_buf_pc = value_as_address (arg_value);
4771 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
4772 }
cdaa5b73
PA
4773 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4774 || !gdbarch_get_longjmp_target (gdbarch,
4775 frame, &jmp_buf_pc))
e2e4d78b 4776 {
cdaa5b73
PA
4777 if (debug_infrun)
4778 fprintf_unfiltered (gdb_stdlog,
4779 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4780 "(!gdbarch_get_longjmp_target)\n");
4781 keep_going (ecs);
4782 return;
e2e4d78b 4783 }
e2e4d78b 4784
cdaa5b73
PA
4785 /* Insert a breakpoint at resume address. */
4786 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4787 }
4788 else
4789 check_exception_resume (ecs, frame);
4790 keep_going (ecs);
4791 return;
e81a37f7 4792
cdaa5b73
PA
4793 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4794 {
4795 struct frame_info *init_frame;
e81a37f7 4796
cdaa5b73 4797 /* There are several cases to consider.
c906108c 4798
cdaa5b73
PA
4799 1. The initiating frame no longer exists. In this case we
4800 must stop, because the exception or longjmp has gone too
4801 far.
2c03e5be 4802
cdaa5b73
PA
4803 2. The initiating frame exists, and is the same as the
4804 current frame. We stop, because the exception or longjmp
4805 has been caught.
2c03e5be 4806
cdaa5b73
PA
4807 3. The initiating frame exists and is different from the
4808 current frame. This means the exception or longjmp has
4809 been caught beneath the initiating frame, so keep going.
c906108c 4810
cdaa5b73
PA
4811 4. longjmp breakpoint has been placed just to protect
4812 against stale dummy frames and user is not interested in
4813 stopping around longjmps. */
c5aa993b 4814
cdaa5b73
PA
4815 if (debug_infrun)
4816 fprintf_unfiltered (gdb_stdlog,
4817 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 4818
cdaa5b73
PA
4819 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4820 != NULL);
4821 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 4822
cdaa5b73
PA
4823 if (what.is_longjmp)
4824 {
b67a2c6f 4825 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 4826
cdaa5b73 4827 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 4828 {
cdaa5b73
PA
4829 /* Case 4. */
4830 keep_going (ecs);
4831 return;
e5ef252a 4832 }
cdaa5b73 4833 }
c5aa993b 4834
cdaa5b73 4835 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 4836
cdaa5b73
PA
4837 if (init_frame)
4838 {
4839 struct frame_id current_id
4840 = get_frame_id (get_current_frame ());
4841 if (frame_id_eq (current_id,
4842 ecs->event_thread->initiating_frame))
4843 {
4844 /* Case 2. Fall through. */
4845 }
4846 else
4847 {
4848 /* Case 3. */
4849 keep_going (ecs);
4850 return;
4851 }
68f53502 4852 }
488f131b 4853
cdaa5b73
PA
4854 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4855 exists. */
4856 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 4857
bdc36728 4858 end_stepping_range (ecs);
cdaa5b73
PA
4859 }
4860 return;
e5ef252a 4861
cdaa5b73
PA
4862 case BPSTAT_WHAT_SINGLE:
4863 if (debug_infrun)
4864 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4865 ecs->event_thread->stepping_over_breakpoint = 1;
4866 /* Still need to check other stuff, at least the case where we
4867 are stepping and step out of the right range. */
4868 break;
e5ef252a 4869
cdaa5b73
PA
4870 case BPSTAT_WHAT_STEP_RESUME:
4871 if (debug_infrun)
4872 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 4873
cdaa5b73
PA
4874 delete_step_resume_breakpoint (ecs->event_thread);
4875 if (ecs->event_thread->control.proceed_to_finish
4876 && execution_direction == EXEC_REVERSE)
4877 {
4878 struct thread_info *tp = ecs->event_thread;
4879
4880 /* We are finishing a function in reverse, and just hit the
4881 step-resume breakpoint at the start address of the
4882 function, and we're almost there -- just need to back up
4883 by one more single-step, which should take us back to the
4884 function call. */
4885 tp->control.step_range_start = tp->control.step_range_end = 1;
4886 keep_going (ecs);
e5ef252a 4887 return;
cdaa5b73
PA
4888 }
4889 fill_in_stop_func (gdbarch, ecs);
4890 if (stop_pc == ecs->stop_func_start
4891 && execution_direction == EXEC_REVERSE)
4892 {
4893 /* We are stepping over a function call in reverse, and just
4894 hit the step-resume breakpoint at the start address of
4895 the function. Go back to single-stepping, which should
4896 take us back to the function call. */
4897 ecs->event_thread->stepping_over_breakpoint = 1;
4898 keep_going (ecs);
4899 return;
4900 }
4901 break;
e5ef252a 4902
cdaa5b73
PA
4903 case BPSTAT_WHAT_STOP_NOISY:
4904 if (debug_infrun)
4905 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4906 stop_print_frame = 1;
e5ef252a 4907
99619bea
PA
4908 /* Assume the thread stopped for a breapoint. We'll still check
4909 whether a/the breakpoint is there when the thread is next
4910 resumed. */
4911 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 4912
22bcd14b 4913 stop_waiting (ecs);
cdaa5b73 4914 return;
e5ef252a 4915
cdaa5b73
PA
4916 case BPSTAT_WHAT_STOP_SILENT:
4917 if (debug_infrun)
4918 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4919 stop_print_frame = 0;
e5ef252a 4920
99619bea
PA
4921 /* Assume the thread stopped for a breapoint. We'll still check
4922 whether a/the breakpoint is there when the thread is next
4923 resumed. */
4924 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 4925 stop_waiting (ecs);
cdaa5b73
PA
4926 return;
4927
4928 case BPSTAT_WHAT_HP_STEP_RESUME:
4929 if (debug_infrun)
4930 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4931
4932 delete_step_resume_breakpoint (ecs->event_thread);
4933 if (ecs->event_thread->step_after_step_resume_breakpoint)
4934 {
4935 /* Back when the step-resume breakpoint was inserted, we
4936 were trying to single-step off a breakpoint. Go back to
4937 doing that. */
4938 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4939 ecs->event_thread->stepping_over_breakpoint = 1;
4940 keep_going (ecs);
4941 return;
e5ef252a 4942 }
cdaa5b73
PA
4943 break;
4944
4945 case BPSTAT_WHAT_KEEP_CHECKING:
4946 break;
e5ef252a 4947 }
c906108c 4948
af48d08f
PA
4949 /* If we stepped a permanent breakpoint and we had a high priority
4950 step-resume breakpoint for the address we stepped, but we didn't
4951 hit it, then we must have stepped into the signal handler. The
4952 step-resume was only necessary to catch the case of _not_
4953 stepping into the handler, so delete it, and fall through to
4954 checking whether the step finished. */
4955 if (ecs->event_thread->stepped_breakpoint)
4956 {
4957 struct breakpoint *sr_bp
4958 = ecs->event_thread->control.step_resume_breakpoint;
4959
4960 if (sr_bp->loc->permanent
4961 && sr_bp->type == bp_hp_step_resume
4962 && sr_bp->loc->address == ecs->event_thread->prev_pc)
4963 {
4964 if (debug_infrun)
4965 fprintf_unfiltered (gdb_stdlog,
4966 "infrun: stepped permanent breakpoint, stopped in "
4967 "handler\n");
4968 delete_step_resume_breakpoint (ecs->event_thread);
4969 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4970 }
4971 }
4972
cdaa5b73
PA
4973 /* We come here if we hit a breakpoint but should not stop for it.
4974 Possibly we also were stepping and should stop for that. So fall
4975 through and test for stepping. But, if not stepping, do not
4976 stop. */
c906108c 4977
a7212384
UW
4978 /* In all-stop mode, if we're currently stepping but have stopped in
4979 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
4980 if (switch_back_to_stepped_thread (ecs))
4981 return;
776f04fa 4982
8358c15c 4983 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 4984 {
527159b7 4985 if (debug_infrun)
d3169d93
DJ
4986 fprintf_unfiltered (gdb_stdlog,
4987 "infrun: step-resume breakpoint is inserted\n");
527159b7 4988
488f131b
JB
4989 /* Having a step-resume breakpoint overrides anything
4990 else having to do with stepping commands until
4991 that breakpoint is reached. */
488f131b
JB
4992 keep_going (ecs);
4993 return;
4994 }
c5aa993b 4995
16c381f0 4996 if (ecs->event_thread->control.step_range_end == 0)
488f131b 4997 {
527159b7 4998 if (debug_infrun)
8a9de0e4 4999 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 5000 /* Likewise if we aren't even stepping. */
488f131b
JB
5001 keep_going (ecs);
5002 return;
5003 }
c5aa993b 5004
4b7703ad
JB
5005 /* Re-fetch current thread's frame in case the code above caused
5006 the frame cache to be re-initialized, making our FRAME variable
5007 a dangling pointer. */
5008 frame = get_current_frame ();
628fe4e4 5009 gdbarch = get_frame_arch (frame);
7e324e48 5010 fill_in_stop_func (gdbarch, ecs);
4b7703ad 5011
488f131b 5012 /* If stepping through a line, keep going if still within it.
c906108c 5013
488f131b
JB
5014 Note that step_range_end is the address of the first instruction
5015 beyond the step range, and NOT the address of the last instruction
31410e84
MS
5016 within it!
5017
5018 Note also that during reverse execution, we may be stepping
5019 through a function epilogue and therefore must detect when
5020 the current-frame changes in the middle of a line. */
5021
ce4c476a 5022 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
31410e84 5023 && (execution_direction != EXEC_REVERSE
388a8562 5024 || frame_id_eq (get_frame_id (frame),
16c381f0 5025 ecs->event_thread->control.step_frame_id)))
488f131b 5026 {
527159b7 5027 if (debug_infrun)
5af949e3
UW
5028 fprintf_unfiltered
5029 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
5030 paddress (gdbarch, ecs->event_thread->control.step_range_start),
5031 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 5032
c1e36e3e
PA
5033 /* Tentatively re-enable range stepping; `resume' disables it if
5034 necessary (e.g., if we're stepping over a breakpoint or we
5035 have software watchpoints). */
5036 ecs->event_thread->control.may_range_step = 1;
5037
b2175913
MS
5038 /* When stepping backward, stop at beginning of line range
5039 (unless it's the function entry point, in which case
5040 keep going back to the call point). */
16c381f0 5041 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
5042 && stop_pc != ecs->stop_func_start
5043 && execution_direction == EXEC_REVERSE)
bdc36728 5044 end_stepping_range (ecs);
b2175913
MS
5045 else
5046 keep_going (ecs);
5047
488f131b
JB
5048 return;
5049 }
c5aa993b 5050
488f131b 5051 /* We stepped out of the stepping range. */
c906108c 5052
488f131b 5053 /* If we are stepping at the source level and entered the runtime
388a8562
MS
5054 loader dynamic symbol resolution code...
5055
5056 EXEC_FORWARD: we keep on single stepping until we exit the run
5057 time loader code and reach the callee's address.
5058
5059 EXEC_REVERSE: we've already executed the callee (backward), and
5060 the runtime loader code is handled just like any other
5061 undebuggable function call. Now we need only keep stepping
5062 backward through the trampoline code, and that's handled further
5063 down, so there is nothing for us to do here. */
5064
5065 if (execution_direction != EXEC_REVERSE
16c381f0 5066 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
cfd8ab24 5067 && in_solib_dynsym_resolve_code (stop_pc))
488f131b 5068 {
4c8c40e6 5069 CORE_ADDR pc_after_resolver =
568d6575 5070 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
c906108c 5071
527159b7 5072 if (debug_infrun)
3e43a32a
MS
5073 fprintf_unfiltered (gdb_stdlog,
5074 "infrun: stepped into dynsym resolve code\n");
527159b7 5075
488f131b
JB
5076 if (pc_after_resolver)
5077 {
5078 /* Set up a step-resume breakpoint at the address
5079 indicated by SKIP_SOLIB_RESOLVER. */
5080 struct symtab_and_line sr_sal;
abbb1732 5081
fe39c653 5082 init_sal (&sr_sal);
488f131b 5083 sr_sal.pc = pc_after_resolver;
6c95b8df 5084 sr_sal.pspace = get_frame_program_space (frame);
488f131b 5085
a6d9a66e
UW
5086 insert_step_resume_breakpoint_at_sal (gdbarch,
5087 sr_sal, null_frame_id);
c5aa993b 5088 }
c906108c 5089
488f131b
JB
5090 keep_going (ecs);
5091 return;
5092 }
c906108c 5093
16c381f0
JK
5094 if (ecs->event_thread->control.step_range_end != 1
5095 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5096 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 5097 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 5098 {
527159b7 5099 if (debug_infrun)
3e43a32a
MS
5100 fprintf_unfiltered (gdb_stdlog,
5101 "infrun: stepped into signal trampoline\n");
42edda50 5102 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
5103 a signal trampoline (either by a signal being delivered or by
5104 the signal handler returning). Just single-step until the
5105 inferior leaves the trampoline (either by calling the handler
5106 or returning). */
488f131b
JB
5107 keep_going (ecs);
5108 return;
5109 }
c906108c 5110
14132e89
MR
5111 /* If we're in the return path from a shared library trampoline,
5112 we want to proceed through the trampoline when stepping. */
5113 /* macro/2012-04-25: This needs to come before the subroutine
5114 call check below as on some targets return trampolines look
5115 like subroutine calls (MIPS16 return thunks). */
5116 if (gdbarch_in_solib_return_trampoline (gdbarch,
5117 stop_pc, ecs->stop_func_name)
5118 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5119 {
5120 /* Determine where this trampoline returns. */
5121 CORE_ADDR real_stop_pc;
5122
5123 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into solib return tramp\n");
5128
5129 /* Only proceed through if we know where it's going. */
5130 if (real_stop_pc)
5131 {
5132 /* And put the step-breakpoint there and go until there. */
5133 struct symtab_and_line sr_sal;
5134
5135 init_sal (&sr_sal); /* initialize to zeroes */
5136 sr_sal.pc = real_stop_pc;
5137 sr_sal.section = find_pc_overlay (sr_sal.pc);
5138 sr_sal.pspace = get_frame_program_space (frame);
5139
5140 /* Do not specify what the fp should be when we stop since
5141 on some machines the prologue is where the new fp value
5142 is established. */
5143 insert_step_resume_breakpoint_at_sal (gdbarch,
5144 sr_sal, null_frame_id);
5145
5146 /* Restart without fiddling with the step ranges or
5147 other state. */
5148 keep_going (ecs);
5149 return;
5150 }
5151 }
5152
c17eaafe
DJ
5153 /* Check for subroutine calls. The check for the current frame
5154 equalling the step ID is not necessary - the check of the
5155 previous frame's ID is sufficient - but it is a common case and
5156 cheaper than checking the previous frame's ID.
14e60db5
DJ
5157
5158 NOTE: frame_id_eq will never report two invalid frame IDs as
5159 being equal, so to get into this block, both the current and
5160 previous frame must have valid frame IDs. */
005ca36a
JB
5161 /* The outer_frame_id check is a heuristic to detect stepping
5162 through startup code. If we step over an instruction which
5163 sets the stack pointer from an invalid value to a valid value,
5164 we may detect that as a subroutine call from the mythical
5165 "outermost" function. This could be fixed by marking
5166 outermost frames as !stack_p,code_p,special_p. Then the
5167 initial outermost frame, before sp was valid, would
ce6cca6d 5168 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 5169 for more. */
edb3359d 5170 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 5171 ecs->event_thread->control.step_stack_frame_id)
005ca36a 5172 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
5173 ecs->event_thread->control.step_stack_frame_id)
5174 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a
JB
5175 outer_frame_id)
5176 || step_start_function != find_pc_function (stop_pc))))
488f131b 5177 {
95918acb 5178 CORE_ADDR real_stop_pc;
8fb3e588 5179
527159b7 5180 if (debug_infrun)
8a9de0e4 5181 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 5182
b7a084be 5183 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
5184 {
5185 /* I presume that step_over_calls is only 0 when we're
5186 supposed to be stepping at the assembly language level
5187 ("stepi"). Just stop. */
388a8562 5188 /* And this works the same backward as frontward. MVS */
bdc36728 5189 end_stepping_range (ecs);
95918acb
AC
5190 return;
5191 }
8fb3e588 5192
388a8562
MS
5193 /* Reverse stepping through solib trampolines. */
5194
5195 if (execution_direction == EXEC_REVERSE
16c381f0 5196 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
5197 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5198 || (ecs->stop_func_start == 0
5199 && in_solib_dynsym_resolve_code (stop_pc))))
5200 {
5201 /* Any solib trampoline code can be handled in reverse
5202 by simply continuing to single-step. We have already
5203 executed the solib function (backwards), and a few
5204 steps will take us back through the trampoline to the
5205 caller. */
5206 keep_going (ecs);
5207 return;
5208 }
5209
16c381f0 5210 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 5211 {
b2175913
MS
5212 /* We're doing a "next".
5213
5214 Normal (forward) execution: set a breakpoint at the
5215 callee's return address (the address at which the caller
5216 will resume).
5217
5218 Reverse (backward) execution. set the step-resume
5219 breakpoint at the start of the function that we just
5220 stepped into (backwards), and continue to there. When we
6130d0b7 5221 get there, we'll need to single-step back to the caller. */
b2175913
MS
5222
5223 if (execution_direction == EXEC_REVERSE)
5224 {
acf9414f
JK
5225 /* If we're already at the start of the function, we've either
5226 just stepped backward into a single instruction function,
5227 or stepped back out of a signal handler to the first instruction
5228 of the function. Just keep going, which will single-step back
5229 to the caller. */
58c48e72 5230 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f
JK
5231 {
5232 struct symtab_and_line sr_sal;
5233
5234 /* Normal function call return (static or dynamic). */
5235 init_sal (&sr_sal);
5236 sr_sal.pc = ecs->stop_func_start;
5237 sr_sal.pspace = get_frame_program_space (frame);
5238 insert_step_resume_breakpoint_at_sal (gdbarch,
5239 sr_sal, null_frame_id);
5240 }
b2175913
MS
5241 }
5242 else
568d6575 5243 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5244
8567c30f
AC
5245 keep_going (ecs);
5246 return;
5247 }
a53c66de 5248
95918acb 5249 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
5250 calling routine and the real function), locate the real
5251 function. That's what tells us (a) whether we want to step
5252 into it at all, and (b) what prologue we want to run to the
5253 end of, if we do step into it. */
568d6575 5254 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 5255 if (real_stop_pc == 0)
568d6575 5256 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
5257 if (real_stop_pc != 0)
5258 ecs->stop_func_start = real_stop_pc;
8fb3e588 5259
db5f024e 5260 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9
RC
5261 {
5262 struct symtab_and_line sr_sal;
abbb1732 5263
1b2bfbb9
RC
5264 init_sal (&sr_sal);
5265 sr_sal.pc = ecs->stop_func_start;
6c95b8df 5266 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 5267
a6d9a66e
UW
5268 insert_step_resume_breakpoint_at_sal (gdbarch,
5269 sr_sal, null_frame_id);
8fb3e588
AC
5270 keep_going (ecs);
5271 return;
1b2bfbb9
RC
5272 }
5273
95918acb 5274 /* If we have line number information for the function we are
1bfeeb0f
JL
5275 thinking of stepping into and the function isn't on the skip
5276 list, step into it.
95918acb 5277
8fb3e588
AC
5278 If there are several symtabs at that PC (e.g. with include
5279 files), just want to know whether *any* of them have line
5280 numbers. find_pc_line handles this. */
95918acb
AC
5281 {
5282 struct symtab_and_line tmp_sal;
8fb3e588 5283
95918acb 5284 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 5285 if (tmp_sal.line != 0
85817405
JK
5286 && !function_name_is_marked_for_skip (ecs->stop_func_name,
5287 &tmp_sal))
95918acb 5288 {
b2175913 5289 if (execution_direction == EXEC_REVERSE)
568d6575 5290 handle_step_into_function_backward (gdbarch, ecs);
b2175913 5291 else
568d6575 5292 handle_step_into_function (gdbarch, ecs);
95918acb
AC
5293 return;
5294 }
5295 }
5296
5297 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
5298 set, we stop the step so that the user has a chance to switch
5299 in assembly mode. */
16c381f0 5300 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 5301 && step_stop_if_no_debug)
95918acb 5302 {
bdc36728 5303 end_stepping_range (ecs);
95918acb
AC
5304 return;
5305 }
5306
b2175913
MS
5307 if (execution_direction == EXEC_REVERSE)
5308 {
acf9414f
JK
5309 /* If we're already at the start of the function, we've either just
5310 stepped backward into a single instruction function without line
5311 number info, or stepped back out of a signal handler to the first
5312 instruction of the function without line number info. Just keep
5313 going, which will single-step back to the caller. */
5314 if (ecs->stop_func_start != stop_pc)
5315 {
5316 /* Set a breakpoint at callee's start address.
5317 From there we can step once and be back in the caller. */
5318 struct symtab_and_line sr_sal;
abbb1732 5319
acf9414f
JK
5320 init_sal (&sr_sal);
5321 sr_sal.pc = ecs->stop_func_start;
5322 sr_sal.pspace = get_frame_program_space (frame);
5323 insert_step_resume_breakpoint_at_sal (gdbarch,
5324 sr_sal, null_frame_id);
5325 }
b2175913
MS
5326 }
5327 else
5328 /* Set a breakpoint at callee's return address (the address
5329 at which the caller will resume). */
568d6575 5330 insert_step_resume_breakpoint_at_caller (frame);
b2175913 5331
95918acb 5332 keep_going (ecs);
488f131b 5333 return;
488f131b 5334 }
c906108c 5335
fdd654f3
MS
5336 /* Reverse stepping through solib trampolines. */
5337
5338 if (execution_direction == EXEC_REVERSE
16c381f0 5339 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3
MS
5340 {
5341 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5342 || (ecs->stop_func_start == 0
5343 && in_solib_dynsym_resolve_code (stop_pc)))
5344 {
5345 /* Any solib trampoline code can be handled in reverse
5346 by simply continuing to single-step. We have already
5347 executed the solib function (backwards), and a few
5348 steps will take us back through the trampoline to the
5349 caller. */
5350 keep_going (ecs);
5351 return;
5352 }
5353 else if (in_solib_dynsym_resolve_code (stop_pc))
5354 {
5355 /* Stepped backward into the solib dynsym resolver.
5356 Set a breakpoint at its start and continue, then
5357 one more step will take us out. */
5358 struct symtab_and_line sr_sal;
abbb1732 5359
fdd654f3
MS
5360 init_sal (&sr_sal);
5361 sr_sal.pc = ecs->stop_func_start;
9d1807c3 5362 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
5363 insert_step_resume_breakpoint_at_sal (gdbarch,
5364 sr_sal, null_frame_id);
5365 keep_going (ecs);
5366 return;
5367 }
5368 }
5369
2afb61aa 5370 stop_pc_sal = find_pc_line (stop_pc, 0);
7ed0fe66 5371
1b2bfbb9
RC
5372 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5373 the trampoline processing logic, however, there are some trampolines
5374 that have no names, so we should do trampoline handling first. */
16c381f0 5375 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 5376 && ecs->stop_func_name == NULL
2afb61aa 5377 && stop_pc_sal.line == 0)
1b2bfbb9 5378 {
527159b7 5379 if (debug_infrun)
3e43a32a
MS
5380 fprintf_unfiltered (gdb_stdlog,
5381 "infrun: stepped into undebuggable function\n");
527159b7 5382
1b2bfbb9 5383 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
5384 undebuggable function (where there is no debugging information
5385 and no line number corresponding to the address where the
1b2bfbb9
RC
5386 inferior stopped). Since we want to skip this kind of code,
5387 we keep going until the inferior returns from this
14e60db5
DJ
5388 function - unless the user has asked us not to (via
5389 set step-mode) or we no longer know how to get back
5390 to the call site. */
5391 if (step_stop_if_no_debug
c7ce8faa 5392 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
5393 {
5394 /* If we have no line number and the step-stop-if-no-debug
5395 is set, we stop the step so that the user has a chance to
5396 switch in assembly mode. */
bdc36728 5397 end_stepping_range (ecs);
1b2bfbb9
RC
5398 return;
5399 }
5400 else
5401 {
5402 /* Set a breakpoint at callee's return address (the address
5403 at which the caller will resume). */
568d6575 5404 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
5405 keep_going (ecs);
5406 return;
5407 }
5408 }
5409
16c381f0 5410 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
5411 {
5412 /* It is stepi or nexti. We always want to stop stepping after
5413 one instruction. */
527159b7 5414 if (debug_infrun)
8a9de0e4 5415 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 5416 end_stepping_range (ecs);
1b2bfbb9
RC
5417 return;
5418 }
5419
2afb61aa 5420 if (stop_pc_sal.line == 0)
488f131b
JB
5421 {
5422 /* We have no line number information. That means to stop
5423 stepping (does this always happen right after one instruction,
5424 when we do "s" in a function with no line numbers,
5425 or can this happen as a result of a return or longjmp?). */
527159b7 5426 if (debug_infrun)
8a9de0e4 5427 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 5428 end_stepping_range (ecs);
488f131b
JB
5429 return;
5430 }
c906108c 5431
edb3359d
DJ
5432 /* Look for "calls" to inlined functions, part one. If the inline
5433 frame machinery detected some skipped call sites, we have entered
5434 a new inline function. */
5435
5436 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5437 ecs->event_thread->control.step_frame_id)
edb3359d
DJ
5438 && inline_skipped_frames (ecs->ptid))
5439 {
5440 struct symtab_and_line call_sal;
5441
5442 if (debug_infrun)
5443 fprintf_unfiltered (gdb_stdlog,
5444 "infrun: stepped into inlined function\n");
5445
5446 find_frame_sal (get_current_frame (), &call_sal);
5447
16c381f0 5448 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
5449 {
5450 /* For "step", we're going to stop. But if the call site
5451 for this inlined function is on the same source line as
5452 we were previously stepping, go down into the function
5453 first. Otherwise stop at the call site. */
5454
5455 if (call_sal.line == ecs->event_thread->current_line
5456 && call_sal.symtab == ecs->event_thread->current_symtab)
5457 step_into_inline_frame (ecs->ptid);
5458
bdc36728 5459 end_stepping_range (ecs);
edb3359d
DJ
5460 return;
5461 }
5462 else
5463 {
5464 /* For "next", we should stop at the call site if it is on a
5465 different source line. Otherwise continue through the
5466 inlined function. */
5467 if (call_sal.line == ecs->event_thread->current_line
5468 && call_sal.symtab == ecs->event_thread->current_symtab)
5469 keep_going (ecs);
5470 else
bdc36728 5471 end_stepping_range (ecs);
edb3359d
DJ
5472 return;
5473 }
5474 }
5475
5476 /* Look for "calls" to inlined functions, part two. If we are still
5477 in the same real function we were stepping through, but we have
5478 to go further up to find the exact frame ID, we are stepping
5479 through a more inlined call beyond its call site. */
5480
5481 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5482 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 5483 ecs->event_thread->control.step_frame_id)
edb3359d 5484 && stepped_in_from (get_current_frame (),
16c381f0 5485 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
5486 {
5487 if (debug_infrun)
5488 fprintf_unfiltered (gdb_stdlog,
5489 "infrun: stepping through inlined function\n");
5490
16c381f0 5491 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
5492 keep_going (ecs);
5493 else
bdc36728 5494 end_stepping_range (ecs);
edb3359d
DJ
5495 return;
5496 }
5497
2afb61aa 5498 if ((stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
5499 && (ecs->event_thread->current_line != stop_pc_sal.line
5500 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
5501 {
5502 /* We are at the start of a different line. So stop. Note that
5503 we don't stop if we step into the middle of a different line.
5504 That is said to make things like for (;;) statements work
5505 better. */
527159b7 5506 if (debug_infrun)
3e43a32a
MS
5507 fprintf_unfiltered (gdb_stdlog,
5508 "infrun: stepped to a different line\n");
bdc36728 5509 end_stepping_range (ecs);
488f131b
JB
5510 return;
5511 }
c906108c 5512
488f131b 5513 /* We aren't done stepping.
c906108c 5514
488f131b
JB
5515 Optimize by setting the stepping range to the line.
5516 (We might not be in the original line, but if we entered a
5517 new line in mid-statement, we continue stepping. This makes
5518 things like for(;;) statements work better.) */
c906108c 5519
16c381f0
JK
5520 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5521 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 5522 ecs->event_thread->control.may_range_step = 1;
edb3359d 5523 set_step_info (frame, stop_pc_sal);
488f131b 5524
527159b7 5525 if (debug_infrun)
8a9de0e4 5526 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 5527 keep_going (ecs);
104c1213
JM
5528}
5529
c447ac0b
PA
5530/* In all-stop mode, if we're currently stepping but have stopped in
5531 some other thread, we may need to switch back to the stepped
5532 thread. Returns true we set the inferior running, false if we left
5533 it stopped (and the event needs further processing). */
5534
5535static int
5536switch_back_to_stepped_thread (struct execution_control_state *ecs)
5537{
5538 if (!non_stop)
5539 {
5540 struct thread_info *tp;
99619bea 5541 struct thread_info *stepping_thread;
483805cf 5542 struct thread_info *step_over;
99619bea
PA
5543
5544 /* If any thread is blocked on some internal breakpoint, and we
5545 simply need to step over that breakpoint to get it going
5546 again, do that first. */
5547
5548 /* However, if we see an event for the stepping thread, then we
5549 know all other threads have been moved past their breakpoints
5550 already. Let the caller check whether the step is finished,
5551 etc., before deciding to move it past a breakpoint. */
5552 if (ecs->event_thread->control.step_range_end != 0)
5553 return 0;
5554
5555 /* Check if the current thread is blocked on an incomplete
5556 step-over, interrupted by a random signal. */
5557 if (ecs->event_thread->control.trap_expected
5558 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 5559 {
99619bea
PA
5560 if (debug_infrun)
5561 {
5562 fprintf_unfiltered (gdb_stdlog,
5563 "infrun: need to finish step-over of [%s]\n",
5564 target_pid_to_str (ecs->event_thread->ptid));
5565 }
5566 keep_going (ecs);
5567 return 1;
5568 }
2adfaa28 5569
99619bea
PA
5570 /* Check if the current thread is blocked by a single-step
5571 breakpoint of another thread. */
5572 if (ecs->hit_singlestep_breakpoint)
5573 {
5574 if (debug_infrun)
5575 {
5576 fprintf_unfiltered (gdb_stdlog,
5577 "infrun: need to step [%s] over single-step "
5578 "breakpoint\n",
5579 target_pid_to_str (ecs->ptid));
5580 }
5581 keep_going (ecs);
5582 return 1;
5583 }
5584
483805cf
PA
5585 /* Otherwise, we no longer expect a trap in the current thread.
5586 Clear the trap_expected flag before switching back -- this is
5587 what keep_going does as well, if we call it. */
5588 ecs->event_thread->control.trap_expected = 0;
5589
70509625
PA
5590 /* Likewise, clear the signal if it should not be passed. */
5591 if (!signal_program[ecs->event_thread->suspend.stop_signal])
5592 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5593
483805cf
PA
5594 /* If scheduler locking applies even if not stepping, there's no
5595 need to walk over threads. Above we've checked whether the
5596 current thread is stepping. If some other thread not the
5597 event thread is stepping, then it must be that scheduler
5598 locking is not in effect. */
5599 if (schedlock_applies (0))
5600 return 0;
5601
5602 /* Look for the stepping/nexting thread, and check if any other
5603 thread other than the stepping thread needs to start a
5604 step-over. Do all step-overs before actually proceeding with
5605 step/next/etc. */
5606 stepping_thread = NULL;
5607 step_over = NULL;
034f788c 5608 ALL_NON_EXITED_THREADS (tp)
483805cf
PA
5609 {
5610 /* Ignore threads of processes we're not resuming. */
5611 if (!sched_multi
5612 && ptid_get_pid (tp->ptid) != ptid_get_pid (inferior_ptid))
5613 continue;
5614
5615 /* When stepping over a breakpoint, we lock all threads
5616 except the one that needs to move past the breakpoint.
5617 If a non-event thread has this set, the "incomplete
5618 step-over" check above should have caught it earlier. */
5619 gdb_assert (!tp->control.trap_expected);
5620
5621 /* Did we find the stepping thread? */
5622 if (tp->control.step_range_end)
5623 {
5624 /* Yep. There should only one though. */
5625 gdb_assert (stepping_thread == NULL);
5626
5627 /* The event thread is handled at the top, before we
5628 enter this loop. */
5629 gdb_assert (tp != ecs->event_thread);
5630
5631 /* If some thread other than the event thread is
5632 stepping, then scheduler locking can't be in effect,
5633 otherwise we wouldn't have resumed the current event
5634 thread in the first place. */
35420406 5635 gdb_assert (!schedlock_applies (currently_stepping (tp)));
483805cf
PA
5636
5637 stepping_thread = tp;
5638 }
5639 else if (thread_still_needs_step_over (tp))
5640 {
5641 step_over = tp;
5642
5643 /* At the top we've returned early if the event thread
5644 is stepping. If some other thread not the event
5645 thread is stepping, then scheduler locking can't be
5646 in effect, and we can resume this thread. No need to
5647 keep looking for the stepping thread then. */
5648 break;
5649 }
5650 }
99619bea 5651
483805cf 5652 if (step_over != NULL)
99619bea 5653 {
483805cf 5654 tp = step_over;
99619bea 5655 if (debug_infrun)
c447ac0b 5656 {
99619bea
PA
5657 fprintf_unfiltered (gdb_stdlog,
5658 "infrun: need to step-over [%s]\n",
5659 target_pid_to_str (tp->ptid));
c447ac0b
PA
5660 }
5661
483805cf 5662 /* Only the stepping thread should have this set. */
99619bea
PA
5663 gdb_assert (tp->control.step_range_end == 0);
5664
99619bea
PA
5665 ecs->ptid = tp->ptid;
5666 ecs->event_thread = tp;
5667 switch_to_thread (ecs->ptid);
5668 keep_going (ecs);
5669 return 1;
5670 }
5671
483805cf 5672 if (stepping_thread != NULL)
99619bea
PA
5673 {
5674 struct frame_info *frame;
5675 struct gdbarch *gdbarch;
5676
483805cf
PA
5677 tp = stepping_thread;
5678
c447ac0b
PA
5679 /* If the stepping thread exited, then don't try to switch
5680 back and resume it, which could fail in several different
5681 ways depending on the target. Instead, just keep going.
5682
5683 We can find a stepping dead thread in the thread list in
5684 two cases:
5685
5686 - The target supports thread exit events, and when the
5687 target tries to delete the thread from the thread list,
5688 inferior_ptid pointed at the exiting thread. In such
5689 case, calling delete_thread does not really remove the
5690 thread from the list; instead, the thread is left listed,
5691 with 'exited' state.
5692
5693 - The target's debug interface does not support thread
5694 exit events, and so we have no idea whatsoever if the
5695 previously stepping thread is still alive. For that
5696 reason, we need to synchronously query the target
5697 now. */
5698 if (is_exited (tp->ptid)
5699 || !target_thread_alive (tp->ptid))
5700 {
5701 if (debug_infrun)
5702 fprintf_unfiltered (gdb_stdlog,
5703 "infrun: not switching back to "
5704 "stepped thread, it has vanished\n");
5705
5706 delete_thread (tp->ptid);
5707 keep_going (ecs);
5708 return 1;
5709 }
5710
c447ac0b
PA
5711 if (debug_infrun)
5712 fprintf_unfiltered (gdb_stdlog,
5713 "infrun: switching back to stepped thread\n");
5714
5715 ecs->event_thread = tp;
5716 ecs->ptid = tp->ptid;
5717 context_switch (ecs->ptid);
2adfaa28
PA
5718
5719 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
5720 frame = get_current_frame ();
5721 gdbarch = get_frame_arch (frame);
5722
5723 /* If the PC of the thread we were trying to single-step has
99619bea
PA
5724 changed, then that thread has trapped or been signaled,
5725 but the event has not been reported to GDB yet. Re-poll
5726 the target looking for this particular thread's event
5727 (i.e. temporarily enable schedlock) by:
2adfaa28
PA
5728
5729 - setting a break at the current PC
5730 - resuming that particular thread, only (by setting
5731 trap expected)
5732
5733 This prevents us continuously moving the single-step
5734 breakpoint forward, one instruction at a time,
5735 overstepping. */
5736
af48d08f 5737 if (stop_pc != tp->prev_pc)
2adfaa28
PA
5738 {
5739 if (debug_infrun)
5740 fprintf_unfiltered (gdb_stdlog,
5741 "infrun: expected thread advanced also\n");
5742
7c16b83e
PA
5743 /* Clear the info of the previous step-over, as it's no
5744 longer valid. It's what keep_going would do too, if
5745 we called it. Must do this before trying to insert
5746 the sss breakpoint, otherwise if we were previously
5747 trying to step over this exact address in another
5748 thread, the breakpoint ends up not installed. */
5749 clear_step_over_info ();
5750
2adfaa28
PA
5751 insert_single_step_breakpoint (get_frame_arch (frame),
5752 get_frame_address_space (frame),
5753 stop_pc);
2adfaa28 5754 ecs->event_thread->control.trap_expected = 1;
2adfaa28
PA
5755
5756 resume (0, GDB_SIGNAL_0);
5757 prepare_to_wait (ecs);
5758 }
5759 else
5760 {
5761 if (debug_infrun)
5762 fprintf_unfiltered (gdb_stdlog,
5763 "infrun: expected thread still "
5764 "hasn't advanced\n");
5765 keep_going (ecs);
5766 }
5767
c447ac0b
PA
5768 return 1;
5769 }
5770 }
5771 return 0;
5772}
5773
b3444185 5774/* Is thread TP in the middle of single-stepping? */
104c1213 5775
a289b8f6 5776static int
b3444185 5777currently_stepping (struct thread_info *tp)
a7212384 5778{
8358c15c
JK
5779 return ((tp->control.step_range_end
5780 && tp->control.step_resume_breakpoint == NULL)
5781 || tp->control.trap_expected
af48d08f 5782 || tp->stepped_breakpoint
8358c15c 5783 || bpstat_should_step ());
a7212384
UW
5784}
5785
b2175913
MS
5786/* Inferior has stepped into a subroutine call with source code that
5787 we should not step over. Do step to the first line of code in
5788 it. */
c2c6d25f
JM
5789
5790static void
568d6575
UW
5791handle_step_into_function (struct gdbarch *gdbarch,
5792 struct execution_control_state *ecs)
c2c6d25f 5793{
43f3e411 5794 struct compunit_symtab *cust;
2afb61aa 5795 struct symtab_and_line stop_func_sal, sr_sal;
c2c6d25f 5796
7e324e48
GB
5797 fill_in_stop_func (gdbarch, ecs);
5798
43f3e411
DE
5799 cust = find_pc_compunit_symtab (stop_pc);
5800 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5801 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913 5802 ecs->stop_func_start);
c2c6d25f 5803
2afb61aa 5804 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
5805 /* Use the step_resume_break to step until the end of the prologue,
5806 even if that involves jumps (as it seems to on the vax under
5807 4.2). */
5808 /* If the prologue ends in the middle of a source line, continue to
5809 the end of that source line (if it is still within the function).
5810 Otherwise, just go to end of prologue. */
2afb61aa
PA
5811 if (stop_func_sal.end
5812 && stop_func_sal.pc != ecs->stop_func_start
5813 && stop_func_sal.end < ecs->stop_func_end)
5814 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 5815
2dbd5e30
KB
5816 /* Architectures which require breakpoint adjustment might not be able
5817 to place a breakpoint at the computed address. If so, the test
5818 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5819 ecs->stop_func_start to an address at which a breakpoint may be
5820 legitimately placed.
8fb3e588 5821
2dbd5e30
KB
5822 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5823 made, GDB will enter an infinite loop when stepping through
5824 optimized code consisting of VLIW instructions which contain
5825 subinstructions corresponding to different source lines. On
5826 FR-V, it's not permitted to place a breakpoint on any but the
5827 first subinstruction of a VLIW instruction. When a breakpoint is
5828 set, GDB will adjust the breakpoint address to the beginning of
5829 the VLIW instruction. Thus, we need to make the corresponding
5830 adjustment here when computing the stop address. */
8fb3e588 5831
568d6575 5832 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
5833 {
5834 ecs->stop_func_start
568d6575 5835 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 5836 ecs->stop_func_start);
2dbd5e30
KB
5837 }
5838
c2c6d25f
JM
5839 if (ecs->stop_func_start == stop_pc)
5840 {
5841 /* We are already there: stop now. */
bdc36728 5842 end_stepping_range (ecs);
c2c6d25f
JM
5843 return;
5844 }
5845 else
5846 {
5847 /* Put the step-breakpoint there and go until there. */
fe39c653 5848 init_sal (&sr_sal); /* initialize to zeroes */
c2c6d25f
JM
5849 sr_sal.pc = ecs->stop_func_start;
5850 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 5851 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 5852
c2c6d25f 5853 /* Do not specify what the fp should be when we stop since on
488f131b
JB
5854 some machines the prologue is where the new fp value is
5855 established. */
a6d9a66e 5856 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
5857
5858 /* And make sure stepping stops right away then. */
16c381f0
JK
5859 ecs->event_thread->control.step_range_end
5860 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
5861 }
5862 keep_going (ecs);
5863}
d4f3574e 5864
b2175913
MS
5865/* Inferior has stepped backward into a subroutine call with source
5866 code that we should not step over. Do step to the beginning of the
5867 last line of code in it. */
5868
5869static void
568d6575
UW
5870handle_step_into_function_backward (struct gdbarch *gdbarch,
5871 struct execution_control_state *ecs)
b2175913 5872{
43f3e411 5873 struct compunit_symtab *cust;
167e4384 5874 struct symtab_and_line stop_func_sal;
b2175913 5875
7e324e48
GB
5876 fill_in_stop_func (gdbarch, ecs);
5877
43f3e411
DE
5878 cust = find_pc_compunit_symtab (stop_pc);
5879 if (cust != NULL && compunit_language (cust) != language_asm)
568d6575 5880 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
b2175913
MS
5881 ecs->stop_func_start);
5882
5883 stop_func_sal = find_pc_line (stop_pc, 0);
5884
5885 /* OK, we're just going to keep stepping here. */
5886 if (stop_func_sal.pc == stop_pc)
5887 {
5888 /* We're there already. Just stop stepping now. */
bdc36728 5889 end_stepping_range (ecs);
b2175913
MS
5890 }
5891 else
5892 {
5893 /* Else just reset the step range and keep going.
5894 No step-resume breakpoint, they don't work for
5895 epilogues, which can have multiple entry paths. */
16c381f0
JK
5896 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5897 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
5898 keep_going (ecs);
5899 }
5900 return;
5901}
5902
d3169d93 5903/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
5904 This is used to both functions and to skip over code. */
5905
5906static void
2c03e5be
PA
5907insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5908 struct symtab_and_line sr_sal,
5909 struct frame_id sr_id,
5910 enum bptype sr_type)
44cbf7b5 5911{
611c83ae
PA
5912 /* There should never be more than one step-resume or longjmp-resume
5913 breakpoint per thread, so we should never be setting a new
44cbf7b5 5914 step_resume_breakpoint when one is already active. */
8358c15c 5915 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 5916 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
5917
5918 if (debug_infrun)
5919 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5920 "infrun: inserting step-resume breakpoint at %s\n",
5921 paddress (gdbarch, sr_sal.pc));
d3169d93 5922
8358c15c 5923 inferior_thread ()->control.step_resume_breakpoint
2c03e5be
PA
5924 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5925}
5926
9da8c2a0 5927void
2c03e5be
PA
5928insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5929 struct symtab_and_line sr_sal,
5930 struct frame_id sr_id)
5931{
5932 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5933 sr_sal, sr_id,
5934 bp_step_resume);
44cbf7b5 5935}
7ce450bd 5936
2c03e5be
PA
5937/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5938 This is used to skip a potential signal handler.
7ce450bd 5939
14e60db5
DJ
5940 This is called with the interrupted function's frame. The signal
5941 handler, when it returns, will resume the interrupted function at
5942 RETURN_FRAME.pc. */
d303a6c7
AC
5943
5944static void
2c03e5be 5945insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7
AC
5946{
5947 struct symtab_and_line sr_sal;
a6d9a66e 5948 struct gdbarch *gdbarch;
d303a6c7 5949
f4c1edd8 5950 gdb_assert (return_frame != NULL);
d303a6c7
AC
5951 init_sal (&sr_sal); /* initialize to zeros */
5952
a6d9a66e 5953 gdbarch = get_frame_arch (return_frame);
568d6575 5954 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 5955 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5956 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 5957
2c03e5be
PA
5958 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5959 get_stack_frame_id (return_frame),
5960 bp_hp_step_resume);
d303a6c7
AC
5961}
5962
2c03e5be
PA
5963/* Insert a "step-resume breakpoint" at the previous frame's PC. This
5964 is used to skip a function after stepping into it (for "next" or if
5965 the called function has no debugging information).
14e60db5
DJ
5966
5967 The current function has almost always been reached by single
5968 stepping a call or return instruction. NEXT_FRAME belongs to the
5969 current function, and the breakpoint will be set at the caller's
5970 resume address.
5971
5972 This is a separate function rather than reusing
2c03e5be 5973 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 5974 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 5975 of frame_unwind_caller_id for an example). */
14e60db5
DJ
5976
5977static void
5978insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5979{
5980 struct symtab_and_line sr_sal;
a6d9a66e 5981 struct gdbarch *gdbarch;
14e60db5
DJ
5982
5983 /* We shouldn't have gotten here if we don't know where the call site
5984 is. */
c7ce8faa 5985 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5
DJ
5986
5987 init_sal (&sr_sal); /* initialize to zeros */
5988
a6d9a66e 5989 gdbarch = frame_unwind_caller_arch (next_frame);
c7ce8faa
DJ
5990 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5991 frame_unwind_caller_pc (next_frame));
14e60db5 5992 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 5993 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 5994
a6d9a66e 5995 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 5996 frame_unwind_caller_id (next_frame));
14e60db5
DJ
5997}
5998
611c83ae
PA
5999/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
6000 new breakpoint at the target of a jmp_buf. The handling of
6001 longjmp-resume uses the same mechanisms used for handling
6002 "step-resume" breakpoints. */
6003
6004static void
a6d9a66e 6005insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 6006{
e81a37f7
TT
6007 /* There should never be more than one longjmp-resume breakpoint per
6008 thread, so we should never be setting a new
611c83ae 6009 longjmp_resume_breakpoint when one is already active. */
e81a37f7 6010 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
6011
6012 if (debug_infrun)
6013 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
6014 "infrun: inserting longjmp-resume breakpoint at %s\n",
6015 paddress (gdbarch, pc));
611c83ae 6016
e81a37f7 6017 inferior_thread ()->control.exception_resume_breakpoint =
a6d9a66e 6018 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
611c83ae
PA
6019}
6020
186c406b
TT
6021/* Insert an exception resume breakpoint. TP is the thread throwing
6022 the exception. The block B is the block of the unwinder debug hook
6023 function. FRAME is the frame corresponding to the call to this
6024 function. SYM is the symbol of the function argument holding the
6025 target PC of the exception. */
6026
6027static void
6028insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 6029 const struct block *b,
186c406b
TT
6030 struct frame_info *frame,
6031 struct symbol *sym)
6032{
bfd189b1 6033 volatile struct gdb_exception e;
186c406b
TT
6034
6035 /* We want to ignore errors here. */
6036 TRY_CATCH (e, RETURN_MASK_ERROR)
6037 {
6038 struct symbol *vsym;
6039 struct value *value;
6040 CORE_ADDR handler;
6041 struct breakpoint *bp;
6042
6043 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
6044 value = read_var_value (vsym, frame);
6045 /* If the value was optimized out, revert to the old behavior. */
6046 if (! value_optimized_out (value))
6047 {
6048 handler = value_as_address (value);
6049
6050 if (debug_infrun)
6051 fprintf_unfiltered (gdb_stdlog,
6052 "infrun: exception resume at %lx\n",
6053 (unsigned long) handler);
6054
6055 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6056 handler, bp_exception_resume);
c70a6932
JK
6057
6058 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
6059 frame = NULL;
6060
186c406b
TT
6061 bp->thread = tp->num;
6062 inferior_thread ()->control.exception_resume_breakpoint = bp;
6063 }
6064 }
6065}
6066
28106bc2
SDJ
6067/* A helper for check_exception_resume that sets an
6068 exception-breakpoint based on a SystemTap probe. */
6069
6070static void
6071insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 6072 const struct bound_probe *probe,
28106bc2
SDJ
6073 struct frame_info *frame)
6074{
6075 struct value *arg_value;
6076 CORE_ADDR handler;
6077 struct breakpoint *bp;
6078
6079 arg_value = probe_safe_evaluate_at_pc (frame, 1);
6080 if (!arg_value)
6081 return;
6082
6083 handler = value_as_address (arg_value);
6084
6085 if (debug_infrun)
6086 fprintf_unfiltered (gdb_stdlog,
6087 "infrun: exception resume at %s\n",
6bac7473 6088 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
6089 handler));
6090
6091 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
6092 handler, bp_exception_resume);
6093 bp->thread = tp->num;
6094 inferior_thread ()->control.exception_resume_breakpoint = bp;
6095}
6096
186c406b
TT
6097/* This is called when an exception has been intercepted. Check to
6098 see whether the exception's destination is of interest, and if so,
6099 set an exception resume breakpoint there. */
6100
6101static void
6102check_exception_resume (struct execution_control_state *ecs,
28106bc2 6103 struct frame_info *frame)
186c406b 6104{
bfd189b1 6105 volatile struct gdb_exception e;
729662a5 6106 struct bound_probe probe;
28106bc2
SDJ
6107 struct symbol *func;
6108
6109 /* First see if this exception unwinding breakpoint was set via a
6110 SystemTap probe point. If so, the probe has two arguments: the
6111 CFA and the HANDLER. We ignore the CFA, extract the handler, and
6112 set a breakpoint there. */
6bac7473 6113 probe = find_probe_by_pc (get_frame_pc (frame));
729662a5 6114 if (probe.probe)
28106bc2 6115 {
729662a5 6116 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
6117 return;
6118 }
6119
6120 func = get_frame_function (frame);
6121 if (!func)
6122 return;
186c406b
TT
6123
6124 TRY_CATCH (e, RETURN_MASK_ERROR)
6125 {
3977b71f 6126 const struct block *b;
8157b174 6127 struct block_iterator iter;
186c406b
TT
6128 struct symbol *sym;
6129 int argno = 0;
6130
6131 /* The exception breakpoint is a thread-specific breakpoint on
6132 the unwinder's debug hook, declared as:
6133
6134 void _Unwind_DebugHook (void *cfa, void *handler);
6135
6136 The CFA argument indicates the frame to which control is
6137 about to be transferred. HANDLER is the destination PC.
6138
6139 We ignore the CFA and set a temporary breakpoint at HANDLER.
6140 This is not extremely efficient but it avoids issues in gdb
6141 with computing the DWARF CFA, and it also works even in weird
6142 cases such as throwing an exception from inside a signal
6143 handler. */
6144
6145 b = SYMBOL_BLOCK_VALUE (func);
6146 ALL_BLOCK_SYMBOLS (b, iter, sym)
6147 {
6148 if (!SYMBOL_IS_ARGUMENT (sym))
6149 continue;
6150
6151 if (argno == 0)
6152 ++argno;
6153 else
6154 {
6155 insert_exception_resume_breakpoint (ecs->event_thread,
6156 b, frame, sym);
6157 break;
6158 }
6159 }
6160 }
6161}
6162
104c1213 6163static void
22bcd14b 6164stop_waiting (struct execution_control_state *ecs)
104c1213 6165{
527159b7 6166 if (debug_infrun)
22bcd14b 6167 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 6168
31e77af2
PA
6169 clear_step_over_info ();
6170
cd0fc7c3
SS
6171 /* Let callers know we don't want to wait for the inferior anymore. */
6172 ecs->wait_some_more = 0;
6173}
6174
a9ba6bae
PA
6175/* Called when we should continue running the inferior, because the
6176 current event doesn't cause a user visible stop. This does the
6177 resuming part; waiting for the next event is done elsewhere. */
d4f3574e
SS
6178
6179static void
6180keep_going (struct execution_control_state *ecs)
6181{
c4dbc9af
PA
6182 /* Make sure normal_stop is called if we get a QUIT handled before
6183 reaching resume. */
6184 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
6185
d4f3574e 6186 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b
UW
6187 ecs->event_thread->prev_pc
6188 = regcache_read_pc (get_thread_regcache (ecs->ptid));
d4f3574e 6189
16c381f0 6190 if (ecs->event_thread->control.trap_expected
a493e3e2 6191 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
d4f3574e 6192 {
a9ba6bae
PA
6193 /* We haven't yet gotten our trap, and either: intercepted a
6194 non-signal event (e.g., a fork); or took a signal which we
6195 are supposed to pass through to the inferior. Simply
6196 continue. */
c4dbc9af 6197 discard_cleanups (old_cleanups);
2020b7ab 6198 resume (currently_stepping (ecs->event_thread),
16c381f0 6199 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6200 }
6201 else
6202 {
31e77af2
PA
6203 volatile struct gdb_exception e;
6204 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
6205 int remove_bp;
6206 int remove_wps;
31e77af2 6207
d4f3574e 6208 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
6209 anyway (if we got a signal, the user asked it be passed to
6210 the child)
6211 -- or --
6212 We got our expected trap, but decided we should resume from
6213 it.
d4f3574e 6214
a9ba6bae 6215 We're going to run this baby now!
d4f3574e 6216
c36b740a
VP
6217 Note that insert_breakpoints won't try to re-insert
6218 already inserted breakpoints. Therefore, we don't
6219 care if breakpoints were already inserted, or not. */
a9ba6bae 6220
31e77af2
PA
6221 /* If we need to step over a breakpoint, and we're not using
6222 displaced stepping to do so, insert all breakpoints
6223 (watchpoints, etc.) but the one we're stepping over, step one
6224 instruction, and then re-insert the breakpoint when that step
6225 is finished. */
963f9c80
PA
6226
6227 remove_bp = (ecs->hit_singlestep_breakpoint
6228 || thread_still_needs_step_over (ecs->event_thread));
6229 remove_wps = (ecs->event_thread->stepping_over_watchpoint
6230 && !target_have_steppable_watchpoint);
6231
6232 if (remove_bp && !use_displaced_stepping (get_regcache_arch (regcache)))
45e8c884 6233 {
31e77af2 6234 set_step_over_info (get_regcache_aspace (regcache),
963f9c80 6235 regcache_read_pc (regcache), remove_wps);
45e8c884 6236 }
963f9c80
PA
6237 else if (remove_wps)
6238 set_step_over_info (NULL, 0, remove_wps);
45e8c884 6239 else
31e77af2 6240 clear_step_over_info ();
abbb1732 6241
31e77af2
PA
6242 /* Stop stepping if inserting breakpoints fails. */
6243 TRY_CATCH (e, RETURN_MASK_ERROR)
6244 {
6245 insert_breakpoints ();
6246 }
6247 if (e.reason < 0)
6248 {
6249 exception_print (gdb_stderr, e);
22bcd14b 6250 stop_waiting (ecs);
31e77af2 6251 return;
d4f3574e
SS
6252 }
6253
963f9c80 6254 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 6255
a9ba6bae
PA
6256 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
6257 explicitly specifies that such a signal should be delivered
6258 to the target program). Typically, that would occur when a
6259 user is debugging a target monitor on a simulator: the target
6260 monitor sets a breakpoint; the simulator encounters this
6261 breakpoint and halts the simulation handing control to GDB;
6262 GDB, noting that the stop address doesn't map to any known
6263 breakpoint, returns control back to the simulator; the
6264 simulator then delivers the hardware equivalent of a
6265 GDB_SIGNAL_TRAP to the program being debugged. */
a493e3e2 6266 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6267 && !signal_program[ecs->event_thread->suspend.stop_signal])
a493e3e2 6268 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
d4f3574e 6269
c4dbc9af 6270 discard_cleanups (old_cleanups);
2020b7ab 6271 resume (currently_stepping (ecs->event_thread),
16c381f0 6272 ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
6273 }
6274
488f131b 6275 prepare_to_wait (ecs);
d4f3574e
SS
6276}
6277
104c1213
JM
6278/* This function normally comes after a resume, before
6279 handle_inferior_event exits. It takes care of any last bits of
6280 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 6281
104c1213
JM
6282static void
6283prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 6284{
527159b7 6285 if (debug_infrun)
8a9de0e4 6286 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 6287
104c1213
JM
6288 /* This is the old end of the while loop. Let everybody know we
6289 want to wait for the inferior some more and get called again
6290 soon. */
6291 ecs->wait_some_more = 1;
c906108c 6292}
11cf8741 6293
fd664c91 6294/* We are done with the step range of a step/next/si/ni command.
b57bacec 6295 Called once for each n of a "step n" operation. */
fd664c91
PA
6296
6297static void
bdc36728 6298end_stepping_range (struct execution_control_state *ecs)
fd664c91 6299{
bdc36728 6300 ecs->event_thread->control.stop_step = 1;
bdc36728 6301 stop_waiting (ecs);
fd664c91
PA
6302}
6303
33d62d64
JK
6304/* Several print_*_reason functions to print why the inferior has stopped.
6305 We always print something when the inferior exits, or receives a signal.
6306 The rest of the cases are dealt with later on in normal_stop and
6307 print_it_typical. Ideally there should be a call to one of these
6308 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 6309 stop_waiting is called.
33d62d64 6310
fd664c91
PA
6311 Note that we don't call these directly, instead we delegate that to
6312 the interpreters, through observers. Interpreters then call these
6313 with whatever uiout is right. */
33d62d64 6314
fd664c91
PA
6315void
6316print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 6317{
fd664c91 6318 /* For CLI-like interpreters, print nothing. */
33d62d64 6319
fd664c91
PA
6320 if (ui_out_is_mi_like_p (uiout))
6321 {
6322 ui_out_field_string (uiout, "reason",
6323 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
6324 }
6325}
33d62d64 6326
fd664c91
PA
6327void
6328print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 6329{
33d62d64
JK
6330 annotate_signalled ();
6331 if (ui_out_is_mi_like_p (uiout))
6332 ui_out_field_string
6333 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
6334 ui_out_text (uiout, "\nProgram terminated with signal ");
6335 annotate_signal_name ();
6336 ui_out_field_string (uiout, "signal-name",
2ea28649 6337 gdb_signal_to_name (siggnal));
33d62d64
JK
6338 annotate_signal_name_end ();
6339 ui_out_text (uiout, ", ");
6340 annotate_signal_string ();
6341 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6342 gdb_signal_to_string (siggnal));
33d62d64
JK
6343 annotate_signal_string_end ();
6344 ui_out_text (uiout, ".\n");
6345 ui_out_text (uiout, "The program no longer exists.\n");
6346}
6347
fd664c91
PA
6348void
6349print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 6350{
fda326dd
TT
6351 struct inferior *inf = current_inferior ();
6352 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
6353
33d62d64
JK
6354 annotate_exited (exitstatus);
6355 if (exitstatus)
6356 {
6357 if (ui_out_is_mi_like_p (uiout))
6358 ui_out_field_string (uiout, "reason",
6359 async_reason_lookup (EXEC_ASYNC_EXITED));
fda326dd
TT
6360 ui_out_text (uiout, "[Inferior ");
6361 ui_out_text (uiout, plongest (inf->num));
6362 ui_out_text (uiout, " (");
6363 ui_out_text (uiout, pidstr);
6364 ui_out_text (uiout, ") exited with code ");
33d62d64 6365 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
fda326dd 6366 ui_out_text (uiout, "]\n");
33d62d64
JK
6367 }
6368 else
11cf8741 6369 {
9dc5e2a9 6370 if (ui_out_is_mi_like_p (uiout))
034dad6f 6371 ui_out_field_string
33d62d64 6372 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
fda326dd
TT
6373 ui_out_text (uiout, "[Inferior ");
6374 ui_out_text (uiout, plongest (inf->num));
6375 ui_out_text (uiout, " (");
6376 ui_out_text (uiout, pidstr);
6377 ui_out_text (uiout, ") exited normally]\n");
33d62d64 6378 }
33d62d64
JK
6379}
6380
fd664c91
PA
6381void
6382print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64
JK
6383{
6384 annotate_signal ();
6385
a493e3e2 6386 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
33d62d64
JK
6387 {
6388 struct thread_info *t = inferior_thread ();
6389
6390 ui_out_text (uiout, "\n[");
6391 ui_out_field_string (uiout, "thread-name",
6392 target_pid_to_str (t->ptid));
6393 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
6394 ui_out_text (uiout, " stopped");
6395 }
6396 else
6397 {
6398 ui_out_text (uiout, "\nProgram received signal ");
8b93c638 6399 annotate_signal_name ();
33d62d64
JK
6400 if (ui_out_is_mi_like_p (uiout))
6401 ui_out_field_string
6402 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
488f131b 6403 ui_out_field_string (uiout, "signal-name",
2ea28649 6404 gdb_signal_to_name (siggnal));
8b93c638
JM
6405 annotate_signal_name_end ();
6406 ui_out_text (uiout, ", ");
6407 annotate_signal_string ();
488f131b 6408 ui_out_field_string (uiout, "signal-meaning",
2ea28649 6409 gdb_signal_to_string (siggnal));
8b93c638 6410 annotate_signal_string_end ();
33d62d64
JK
6411 }
6412 ui_out_text (uiout, ".\n");
6413}
252fbfc8 6414
fd664c91
PA
6415void
6416print_no_history_reason (struct ui_out *uiout)
33d62d64 6417{
fd664c91 6418 ui_out_text (uiout, "\nNo more reverse-execution history.\n");
11cf8741 6419}
43ff13b4 6420
0c7e1a46
PA
6421/* Print current location without a level number, if we have changed
6422 functions or hit a breakpoint. Print source line if we have one.
6423 bpstat_print contains the logic deciding in detail what to print,
6424 based on the event(s) that just occurred. */
6425
6426void
6427print_stop_event (struct target_waitstatus *ws)
6428{
6429 int bpstat_ret;
6430 int source_flag;
6431 int do_frame_printing = 1;
6432 struct thread_info *tp = inferior_thread ();
6433
6434 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
6435 switch (bpstat_ret)
6436 {
6437 case PRINT_UNKNOWN:
6438 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
6439 should) carry around the function and does (or should) use
6440 that when doing a frame comparison. */
6441 if (tp->control.stop_step
6442 && frame_id_eq (tp->control.step_frame_id,
6443 get_frame_id (get_current_frame ()))
6444 && step_start_function == find_pc_function (stop_pc))
6445 {
6446 /* Finished step, just print source line. */
6447 source_flag = SRC_LINE;
6448 }
6449 else
6450 {
6451 /* Print location and source line. */
6452 source_flag = SRC_AND_LOC;
6453 }
6454 break;
6455 case PRINT_SRC_AND_LOC:
6456 /* Print location and source line. */
6457 source_flag = SRC_AND_LOC;
6458 break;
6459 case PRINT_SRC_ONLY:
6460 source_flag = SRC_LINE;
6461 break;
6462 case PRINT_NOTHING:
6463 /* Something bogus. */
6464 source_flag = SRC_LINE;
6465 do_frame_printing = 0;
6466 break;
6467 default:
6468 internal_error (__FILE__, __LINE__, _("Unknown value."));
6469 }
6470
6471 /* The behavior of this routine with respect to the source
6472 flag is:
6473 SRC_LINE: Print only source line
6474 LOCATION: Print only location
6475 SRC_AND_LOC: Print location and source line. */
6476 if (do_frame_printing)
6477 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6478
6479 /* Display the auto-display expressions. */
6480 do_displays ();
6481}
6482
c906108c
SS
6483/* Here to return control to GDB when the inferior stops for real.
6484 Print appropriate messages, remove breakpoints, give terminal our modes.
6485
6486 STOP_PRINT_FRAME nonzero means print the executing frame
6487 (pc, function, args, file, line number and line text).
6488 BREAKPOINTS_FAILED nonzero means stop was due to error
6489 attempting to insert breakpoints. */
6490
6491void
96baa820 6492normal_stop (void)
c906108c 6493{
73b65bb0
DJ
6494 struct target_waitstatus last;
6495 ptid_t last_ptid;
29f49a6a 6496 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
73b65bb0
DJ
6497
6498 get_last_target_status (&last_ptid, &last);
6499
29f49a6a
PA
6500 /* If an exception is thrown from this point on, make sure to
6501 propagate GDB's knowledge of the executing state to the
6502 frontend/user running state. A QUIT is an easy exception to see
6503 here, so do this before any filtered output. */
c35b1492
PA
6504 if (!non_stop)
6505 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
6506 else if (last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6507 && last.kind != TARGET_WAITKIND_EXITED
6508 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c35b1492 6509 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
29f49a6a 6510
b57bacec
PA
6511 /* As we're presenting a stop, and potentially removing breakpoints,
6512 update the thread list so we can tell whether there are threads
6513 running on the target. With target remote, for example, we can
6514 only learn about new threads when we explicitly update the thread
6515 list. Do this before notifying the interpreters about signal
6516 stops, end of stepping ranges, etc., so that the "new thread"
6517 output is emitted before e.g., "Program received signal FOO",
6518 instead of after. */
6519 update_thread_list ();
6520
6521 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
6522 observer_notify_signal_received (inferior_thread ()->suspend.stop_signal);
6523
c906108c
SS
6524 /* As with the notification of thread events, we want to delay
6525 notifying the user that we've switched thread context until
6526 the inferior actually stops.
6527
73b65bb0
DJ
6528 There's no point in saying anything if the inferior has exited.
6529 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
6530 "received a signal".
6531
6532 Also skip saying anything in non-stop mode. In that mode, as we
6533 don't want GDB to switch threads behind the user's back, to avoid
6534 races where the user is typing a command to apply to thread x,
6535 but GDB switches to thread y before the user finishes entering
6536 the command, fetch_inferior_event installs a cleanup to restore
6537 the current thread back to the thread the user had selected right
6538 after this event is handled, so we're not really switching, only
6539 informing of a stop. */
4f8d22e3
PA
6540 if (!non_stop
6541 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
73b65bb0
DJ
6542 && target_has_execution
6543 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
6544 && last.kind != TARGET_WAITKIND_EXITED
6545 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c
SS
6546 {
6547 target_terminal_ours_for_output ();
a3f17187 6548 printf_filtered (_("[Switching to %s]\n"),
c95310c6 6549 target_pid_to_str (inferior_ptid));
b8fa951a 6550 annotate_thread_changed ();
39f77062 6551 previous_inferior_ptid = inferior_ptid;
c906108c 6552 }
c906108c 6553
0e5bf2a8
PA
6554 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6555 {
6556 gdb_assert (sync_execution || !target_can_async_p ());
6557
6558 target_terminal_ours_for_output ();
6559 printf_filtered (_("No unwaited-for children left.\n"));
6560 }
6561
b57bacec 6562 /* Note: this depends on the update_thread_list call above. */
a25a5a45 6563 if (!breakpoints_should_be_inserted_now () && target_has_execution)
c906108c
SS
6564 {
6565 if (remove_breakpoints ())
6566 {
6567 target_terminal_ours_for_output ();
3e43a32a
MS
6568 printf_filtered (_("Cannot remove breakpoints because "
6569 "program is no longer writable.\nFurther "
6570 "execution is probably impossible.\n"));
c906108c
SS
6571 }
6572 }
c906108c 6573
c906108c
SS
6574 /* If an auto-display called a function and that got a signal,
6575 delete that auto-display to avoid an infinite recursion. */
6576
6577 if (stopped_by_random_signal)
6578 disable_current_display ();
6579
b57bacec 6580 /* Notify observers if we finished a "step"-like command, etc. */
af679fd0
PA
6581 if (target_has_execution
6582 && last.kind != TARGET_WAITKIND_SIGNALLED
6583 && last.kind != TARGET_WAITKIND_EXITED
16c381f0 6584 && inferior_thread ()->control.stop_step)
b57bacec 6585 {
31cc0b80 6586 /* But not if in the middle of doing a "step n" operation for
b57bacec
PA
6587 n > 1 */
6588 if (inferior_thread ()->step_multi)
6589 goto done;
6590
6591 observer_notify_end_stepping_range ();
6592 }
c906108c
SS
6593
6594 target_terminal_ours ();
0f641c01 6595 async_enable_stdin ();
c906108c 6596
7abfe014
DJ
6597 /* Set the current source location. This will also happen if we
6598 display the frame below, but the current SAL will be incorrect
6599 during a user hook-stop function. */
d729566a 6600 if (has_stack_frames () && !stop_stack_dummy)
5166082f 6601 set_current_sal_from_frame (get_current_frame ());
7abfe014 6602
251bde03
PA
6603 /* Let the user/frontend see the threads as stopped, but do nothing
6604 if the thread was running an infcall. We may be e.g., evaluating
6605 a breakpoint condition. In that case, the thread had state
6606 THREAD_RUNNING before the infcall, and shall remain set to
6607 running, all without informing the user/frontend about state
6608 transition changes. If this is actually a call command, then the
6609 thread was originally already stopped, so there's no state to
6610 finish either. */
6611 if (target_has_execution && inferior_thread ()->control.in_infcall)
6612 discard_cleanups (old_chain);
6613 else
6614 do_cleanups (old_chain);
dd7e2d2b
PA
6615
6616 /* Look up the hook_stop and run it (CLI internally handles problem
6617 of stop_command's pre-hook not existing). */
6618 if (stop_command)
6619 catch_errors (hook_stop_stub, stop_command,
6620 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6621
d729566a 6622 if (!has_stack_frames ())
d51fd4c8 6623 goto done;
c906108c 6624
32400beb
PA
6625 if (last.kind == TARGET_WAITKIND_SIGNALLED
6626 || last.kind == TARGET_WAITKIND_EXITED)
6627 goto done;
6628
c906108c
SS
6629 /* Select innermost stack frame - i.e., current frame is frame 0,
6630 and current location is based on that.
6631 Don't do this on return from a stack dummy routine,
1777feb0 6632 or if the program has exited. */
c906108c
SS
6633
6634 if (!stop_stack_dummy)
6635 {
0f7d239c 6636 select_frame (get_current_frame ());
c906108c 6637
d01a8610
AS
6638 /* If --batch-silent is enabled then there's no need to print the current
6639 source location, and to try risks causing an error message about
6640 missing source files. */
6641 if (stop_print_frame && !batch_silent)
0c7e1a46 6642 print_stop_event (&last);
c906108c
SS
6643 }
6644
6645 /* Save the function value return registers, if we care.
6646 We might be about to restore their previous contents. */
9da8c2a0
PA
6647 if (inferior_thread ()->control.proceed_to_finish
6648 && execution_direction != EXEC_REVERSE)
d5c31457
UW
6649 {
6650 /* This should not be necessary. */
6651 if (stop_registers)
6652 regcache_xfree (stop_registers);
6653
6654 /* NB: The copy goes through to the target picking up the value of
6655 all the registers. */
6656 stop_registers = regcache_dup (get_current_regcache ());
6657 }
c906108c 6658
aa7d318d 6659 if (stop_stack_dummy == STOP_STACK_DUMMY)
c906108c 6660 {
b89667eb
DE
6661 /* Pop the empty frame that contains the stack dummy.
6662 This also restores inferior state prior to the call
16c381f0 6663 (struct infcall_suspend_state). */
b89667eb 6664 struct frame_info *frame = get_current_frame ();
abbb1732 6665
b89667eb
DE
6666 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6667 frame_pop (frame);
3e43a32a
MS
6668 /* frame_pop() calls reinit_frame_cache as the last thing it
6669 does which means there's currently no selected frame. We
6670 don't need to re-establish a selected frame if the dummy call
6671 returns normally, that will be done by
6672 restore_infcall_control_state. However, we do have to handle
6673 the case where the dummy call is returning after being
6674 stopped (e.g. the dummy call previously hit a breakpoint).
6675 We can't know which case we have so just always re-establish
6676 a selected frame here. */
0f7d239c 6677 select_frame (get_current_frame ());
c906108c
SS
6678 }
6679
c906108c
SS
6680done:
6681 annotate_stopped ();
41d2bdb4
PA
6682
6683 /* Suppress the stop observer if we're in the middle of:
6684
6685 - a step n (n > 1), as there still more steps to be done.
6686
6687 - a "finish" command, as the observer will be called in
6688 finish_command_continuation, so it can include the inferior
6689 function's return value.
6690
6691 - calling an inferior function, as we pretend we inferior didn't
6692 run at all. The return value of the call is handled by the
6693 expression evaluator, through call_function_by_hand. */
6694
6695 if (!target_has_execution
6696 || last.kind == TARGET_WAITKIND_SIGNALLED
6697 || last.kind == TARGET_WAITKIND_EXITED
0e5bf2a8 6698 || last.kind == TARGET_WAITKIND_NO_RESUMED
2ca0b532
PA
6699 || (!(inferior_thread ()->step_multi
6700 && inferior_thread ()->control.stop_step)
16c381f0
JK
6701 && !(inferior_thread ()->control.stop_bpstat
6702 && inferior_thread ()->control.proceed_to_finish)
6703 && !inferior_thread ()->control.in_infcall))
347bddb7
PA
6704 {
6705 if (!ptid_equal (inferior_ptid, null_ptid))
16c381f0 6706 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
1d33d6ba 6707 stop_print_frame);
347bddb7 6708 else
1d33d6ba 6709 observer_notify_normal_stop (NULL, stop_print_frame);
347bddb7 6710 }
347bddb7 6711
48844aa6
PA
6712 if (target_has_execution)
6713 {
6714 if (last.kind != TARGET_WAITKIND_SIGNALLED
6715 && last.kind != TARGET_WAITKIND_EXITED)
6716 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6717 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 6718 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 6719 }
6c95b8df
PA
6720
6721 /* Try to get rid of automatically added inferiors that are no
6722 longer needed. Keeping those around slows down things linearly.
6723 Note that this never removes the current inferior. */
6724 prune_inferiors ();
c906108c
SS
6725}
6726
6727static int
96baa820 6728hook_stop_stub (void *cmd)
c906108c 6729{
5913bcb0 6730 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
c906108c
SS
6731 return (0);
6732}
6733\f
c5aa993b 6734int
96baa820 6735signal_stop_state (int signo)
c906108c 6736{
d6b48e9c 6737 return signal_stop[signo];
c906108c
SS
6738}
6739
c5aa993b 6740int
96baa820 6741signal_print_state (int signo)
c906108c
SS
6742{
6743 return signal_print[signo];
6744}
6745
c5aa993b 6746int
96baa820 6747signal_pass_state (int signo)
c906108c
SS
6748{
6749 return signal_program[signo];
6750}
6751
2455069d
UW
6752static void
6753signal_cache_update (int signo)
6754{
6755 if (signo == -1)
6756 {
a493e3e2 6757 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
6758 signal_cache_update (signo);
6759
6760 return;
6761 }
6762
6763 signal_pass[signo] = (signal_stop[signo] == 0
6764 && signal_print[signo] == 0
ab04a2af
TT
6765 && signal_program[signo] == 1
6766 && signal_catch[signo] == 0);
2455069d
UW
6767}
6768
488f131b 6769int
7bda5e4a 6770signal_stop_update (int signo, int state)
d4f3574e
SS
6771{
6772 int ret = signal_stop[signo];
abbb1732 6773
d4f3574e 6774 signal_stop[signo] = state;
2455069d 6775 signal_cache_update (signo);
d4f3574e
SS
6776 return ret;
6777}
6778
488f131b 6779int
7bda5e4a 6780signal_print_update (int signo, int state)
d4f3574e
SS
6781{
6782 int ret = signal_print[signo];
abbb1732 6783
d4f3574e 6784 signal_print[signo] = state;
2455069d 6785 signal_cache_update (signo);
d4f3574e
SS
6786 return ret;
6787}
6788
488f131b 6789int
7bda5e4a 6790signal_pass_update (int signo, int state)
d4f3574e
SS
6791{
6792 int ret = signal_program[signo];
abbb1732 6793
d4f3574e 6794 signal_program[signo] = state;
2455069d 6795 signal_cache_update (signo);
d4f3574e
SS
6796 return ret;
6797}
6798
ab04a2af
TT
6799/* Update the global 'signal_catch' from INFO and notify the
6800 target. */
6801
6802void
6803signal_catch_update (const unsigned int *info)
6804{
6805 int i;
6806
6807 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6808 signal_catch[i] = info[i] > 0;
6809 signal_cache_update (-1);
6810 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6811}
6812
c906108c 6813static void
96baa820 6814sig_print_header (void)
c906108c 6815{
3e43a32a
MS
6816 printf_filtered (_("Signal Stop\tPrint\tPass "
6817 "to program\tDescription\n"));
c906108c
SS
6818}
6819
6820static void
2ea28649 6821sig_print_info (enum gdb_signal oursig)
c906108c 6822{
2ea28649 6823 const char *name = gdb_signal_to_name (oursig);
c906108c 6824 int name_padding = 13 - strlen (name);
96baa820 6825
c906108c
SS
6826 if (name_padding <= 0)
6827 name_padding = 0;
6828
6829 printf_filtered ("%s", name);
488f131b 6830 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
6831 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6832 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6833 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 6834 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
6835}
6836
6837/* Specify how various signals in the inferior should be handled. */
6838
6839static void
96baa820 6840handle_command (char *args, int from_tty)
c906108c
SS
6841{
6842 char **argv;
6843 int digits, wordlen;
6844 int sigfirst, signum, siglast;
2ea28649 6845 enum gdb_signal oursig;
c906108c
SS
6846 int allsigs;
6847 int nsigs;
6848 unsigned char *sigs;
6849 struct cleanup *old_chain;
6850
6851 if (args == NULL)
6852 {
e2e0b3e5 6853 error_no_arg (_("signal to handle"));
c906108c
SS
6854 }
6855
1777feb0 6856 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 6857
a493e3e2 6858 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
6859 sigs = (unsigned char *) alloca (nsigs);
6860 memset (sigs, 0, nsigs);
6861
1777feb0 6862 /* Break the command line up into args. */
c906108c 6863
d1a41061 6864 argv = gdb_buildargv (args);
7a292a7a 6865 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
6866
6867 /* Walk through the args, looking for signal oursigs, signal names, and
6868 actions. Signal numbers and signal names may be interspersed with
6869 actions, with the actions being performed for all signals cumulatively
1777feb0 6870 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c
SS
6871
6872 while (*argv != NULL)
6873 {
6874 wordlen = strlen (*argv);
6875 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6876 {;
6877 }
6878 allsigs = 0;
6879 sigfirst = siglast = -1;
6880
6881 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6882 {
6883 /* Apply action to all signals except those used by the
1777feb0 6884 debugger. Silently skip those. */
c906108c
SS
6885 allsigs = 1;
6886 sigfirst = 0;
6887 siglast = nsigs - 1;
6888 }
6889 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6890 {
6891 SET_SIGS (nsigs, sigs, signal_stop);
6892 SET_SIGS (nsigs, sigs, signal_print);
6893 }
6894 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6895 {
6896 UNSET_SIGS (nsigs, sigs, signal_program);
6897 }
6898 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6899 {
6900 SET_SIGS (nsigs, sigs, signal_print);
6901 }
6902 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6903 {
6904 SET_SIGS (nsigs, sigs, signal_program);
6905 }
6906 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6907 {
6908 UNSET_SIGS (nsigs, sigs, signal_stop);
6909 }
6910 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6911 {
6912 SET_SIGS (nsigs, sigs, signal_program);
6913 }
6914 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6915 {
6916 UNSET_SIGS (nsigs, sigs, signal_print);
6917 UNSET_SIGS (nsigs, sigs, signal_stop);
6918 }
6919 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6920 {
6921 UNSET_SIGS (nsigs, sigs, signal_program);
6922 }
6923 else if (digits > 0)
6924 {
6925 /* It is numeric. The numeric signal refers to our own
6926 internal signal numbering from target.h, not to host/target
6927 signal number. This is a feature; users really should be
6928 using symbolic names anyway, and the common ones like
6929 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6930
6931 sigfirst = siglast = (int)
2ea28649 6932 gdb_signal_from_command (atoi (*argv));
c906108c
SS
6933 if ((*argv)[digits] == '-')
6934 {
6935 siglast = (int)
2ea28649 6936 gdb_signal_from_command (atoi ((*argv) + digits + 1));
c906108c
SS
6937 }
6938 if (sigfirst > siglast)
6939 {
1777feb0 6940 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
6941 signum = sigfirst;
6942 sigfirst = siglast;
6943 siglast = signum;
6944 }
6945 }
6946 else
6947 {
2ea28649 6948 oursig = gdb_signal_from_name (*argv);
a493e3e2 6949 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
6950 {
6951 sigfirst = siglast = (int) oursig;
6952 }
6953 else
6954 {
6955 /* Not a number and not a recognized flag word => complain. */
8a3fe4f8 6956 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
c906108c
SS
6957 }
6958 }
6959
6960 /* If any signal numbers or symbol names were found, set flags for
1777feb0 6961 which signals to apply actions to. */
c906108c
SS
6962
6963 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6964 {
2ea28649 6965 switch ((enum gdb_signal) signum)
c906108c 6966 {
a493e3e2
PA
6967 case GDB_SIGNAL_TRAP:
6968 case GDB_SIGNAL_INT:
c906108c
SS
6969 if (!allsigs && !sigs[signum])
6970 {
9e2f0ad4 6971 if (query (_("%s is used by the debugger.\n\
3e43a32a 6972Are you sure you want to change it? "),
2ea28649 6973 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
6974 {
6975 sigs[signum] = 1;
6976 }
6977 else
6978 {
a3f17187 6979 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
6980 gdb_flush (gdb_stdout);
6981 }
6982 }
6983 break;
a493e3e2
PA
6984 case GDB_SIGNAL_0:
6985 case GDB_SIGNAL_DEFAULT:
6986 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
6987 /* Make sure that "all" doesn't print these. */
6988 break;
6989 default:
6990 sigs[signum] = 1;
6991 break;
6992 }
6993 }
6994
6995 argv++;
6996 }
6997
3a031f65
PA
6998 for (signum = 0; signum < nsigs; signum++)
6999 if (sigs[signum])
7000 {
2455069d 7001 signal_cache_update (-1);
a493e3e2
PA
7002 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
7003 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 7004
3a031f65
PA
7005 if (from_tty)
7006 {
7007 /* Show the results. */
7008 sig_print_header ();
7009 for (; signum < nsigs; signum++)
7010 if (sigs[signum])
7011 sig_print_info (signum);
7012 }
7013
7014 break;
7015 }
c906108c
SS
7016
7017 do_cleanups (old_chain);
7018}
7019
de0bea00
MF
7020/* Complete the "handle" command. */
7021
7022static VEC (char_ptr) *
7023handle_completer (struct cmd_list_element *ignore,
6f937416 7024 const char *text, const char *word)
de0bea00
MF
7025{
7026 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
7027 static const char * const keywords[] =
7028 {
7029 "all",
7030 "stop",
7031 "ignore",
7032 "print",
7033 "pass",
7034 "nostop",
7035 "noignore",
7036 "noprint",
7037 "nopass",
7038 NULL,
7039 };
7040
7041 vec_signals = signal_completer (ignore, text, word);
7042 vec_keywords = complete_on_enum (keywords, word, word);
7043
7044 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
7045 VEC_free (char_ptr, vec_signals);
7046 VEC_free (char_ptr, vec_keywords);
7047 return return_val;
7048}
7049
c906108c 7050static void
96baa820 7051xdb_handle_command (char *args, int from_tty)
c906108c
SS
7052{
7053 char **argv;
7054 struct cleanup *old_chain;
7055
d1a41061
PP
7056 if (args == NULL)
7057 error_no_arg (_("xdb command"));
7058
1777feb0 7059 /* Break the command line up into args. */
c906108c 7060
d1a41061 7061 argv = gdb_buildargv (args);
7a292a7a 7062 old_chain = make_cleanup_freeargv (argv);
c906108c
SS
7063 if (argv[1] != (char *) NULL)
7064 {
7065 char *argBuf;
7066 int bufLen;
7067
7068 bufLen = strlen (argv[0]) + 20;
7069 argBuf = (char *) xmalloc (bufLen);
7070 if (argBuf)
7071 {
7072 int validFlag = 1;
2ea28649 7073 enum gdb_signal oursig;
c906108c 7074
2ea28649 7075 oursig = gdb_signal_from_name (argv[0]);
c906108c
SS
7076 memset (argBuf, 0, bufLen);
7077 if (strcmp (argv[1], "Q") == 0)
7078 sprintf (argBuf, "%s %s", argv[0], "noprint");
7079 else
7080 {
7081 if (strcmp (argv[1], "s") == 0)
7082 {
7083 if (!signal_stop[oursig])
7084 sprintf (argBuf, "%s %s", argv[0], "stop");
7085 else
7086 sprintf (argBuf, "%s %s", argv[0], "nostop");
7087 }
7088 else if (strcmp (argv[1], "i") == 0)
7089 {
7090 if (!signal_program[oursig])
7091 sprintf (argBuf, "%s %s", argv[0], "pass");
7092 else
7093 sprintf (argBuf, "%s %s", argv[0], "nopass");
7094 }
7095 else if (strcmp (argv[1], "r") == 0)
7096 {
7097 if (!signal_print[oursig])
7098 sprintf (argBuf, "%s %s", argv[0], "print");
7099 else
7100 sprintf (argBuf, "%s %s", argv[0], "noprint");
7101 }
7102 else
7103 validFlag = 0;
7104 }
7105 if (validFlag)
7106 handle_command (argBuf, from_tty);
7107 else
a3f17187 7108 printf_filtered (_("Invalid signal handling flag.\n"));
c906108c 7109 if (argBuf)
b8c9b27d 7110 xfree (argBuf);
c906108c
SS
7111 }
7112 }
7113 do_cleanups (old_chain);
7114}
7115
2ea28649
PA
7116enum gdb_signal
7117gdb_signal_from_command (int num)
ed01b82c
PA
7118{
7119 if (num >= 1 && num <= 15)
2ea28649 7120 return (enum gdb_signal) num;
ed01b82c
PA
7121 error (_("Only signals 1-15 are valid as numeric signals.\n\
7122Use \"info signals\" for a list of symbolic signals."));
7123}
7124
c906108c
SS
7125/* Print current contents of the tables set by the handle command.
7126 It is possible we should just be printing signals actually used
7127 by the current target (but for things to work right when switching
7128 targets, all signals should be in the signal tables). */
7129
7130static void
96baa820 7131signals_info (char *signum_exp, int from_tty)
c906108c 7132{
2ea28649 7133 enum gdb_signal oursig;
abbb1732 7134
c906108c
SS
7135 sig_print_header ();
7136
7137 if (signum_exp)
7138 {
7139 /* First see if this is a symbol name. */
2ea28649 7140 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 7141 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
7142 {
7143 /* No, try numeric. */
7144 oursig =
2ea28649 7145 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
7146 }
7147 sig_print_info (oursig);
7148 return;
7149 }
7150
7151 printf_filtered ("\n");
7152 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
7153 for (oursig = GDB_SIGNAL_FIRST;
7154 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 7155 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
7156 {
7157 QUIT;
7158
a493e3e2
PA
7159 if (oursig != GDB_SIGNAL_UNKNOWN
7160 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
7161 sig_print_info (oursig);
7162 }
7163
3e43a32a
MS
7164 printf_filtered (_("\nUse the \"handle\" command "
7165 "to change these tables.\n"));
c906108c 7166}
4aa995e1 7167
c709acd1
PA
7168/* Check if it makes sense to read $_siginfo from the current thread
7169 at this point. If not, throw an error. */
7170
7171static void
7172validate_siginfo_access (void)
7173{
7174 /* No current inferior, no siginfo. */
7175 if (ptid_equal (inferior_ptid, null_ptid))
7176 error (_("No thread selected."));
7177
7178 /* Don't try to read from a dead thread. */
7179 if (is_exited (inferior_ptid))
7180 error (_("The current thread has terminated"));
7181
7182 /* ... or from a spinning thread. */
7183 if (is_running (inferior_ptid))
7184 error (_("Selected thread is running."));
7185}
7186
4aa995e1
PA
7187/* The $_siginfo convenience variable is a bit special. We don't know
7188 for sure the type of the value until we actually have a chance to
7a9dd1b2 7189 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
7190 also dependent on which thread you have selected.
7191
7192 1. making $_siginfo be an internalvar that creates a new value on
7193 access.
7194
7195 2. making the value of $_siginfo be an lval_computed value. */
7196
7197/* This function implements the lval_computed support for reading a
7198 $_siginfo value. */
7199
7200static void
7201siginfo_value_read (struct value *v)
7202{
7203 LONGEST transferred;
7204
c709acd1
PA
7205 validate_siginfo_access ();
7206
4aa995e1
PA
7207 transferred =
7208 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
7209 NULL,
7210 value_contents_all_raw (v),
7211 value_offset (v),
7212 TYPE_LENGTH (value_type (v)));
7213
7214 if (transferred != TYPE_LENGTH (value_type (v)))
7215 error (_("Unable to read siginfo"));
7216}
7217
7218/* This function implements the lval_computed support for writing a
7219 $_siginfo value. */
7220
7221static void
7222siginfo_value_write (struct value *v, struct value *fromval)
7223{
7224 LONGEST transferred;
7225
c709acd1
PA
7226 validate_siginfo_access ();
7227
4aa995e1
PA
7228 transferred = target_write (&current_target,
7229 TARGET_OBJECT_SIGNAL_INFO,
7230 NULL,
7231 value_contents_all_raw (fromval),
7232 value_offset (v),
7233 TYPE_LENGTH (value_type (fromval)));
7234
7235 if (transferred != TYPE_LENGTH (value_type (fromval)))
7236 error (_("Unable to write siginfo"));
7237}
7238
c8f2448a 7239static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
7240 {
7241 siginfo_value_read,
7242 siginfo_value_write
7243 };
7244
7245/* Return a new value with the correct type for the siginfo object of
78267919
UW
7246 the current thread using architecture GDBARCH. Return a void value
7247 if there's no object available. */
4aa995e1 7248
2c0b251b 7249static struct value *
22d2b532
SDJ
7250siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
7251 void *ignore)
4aa995e1 7252{
4aa995e1 7253 if (target_has_stack
78267919
UW
7254 && !ptid_equal (inferior_ptid, null_ptid)
7255 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 7256 {
78267919 7257 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 7258
78267919 7259 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
7260 }
7261
78267919 7262 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
7263}
7264
c906108c 7265\f
16c381f0
JK
7266/* infcall_suspend_state contains state about the program itself like its
7267 registers and any signal it received when it last stopped.
7268 This state must be restored regardless of how the inferior function call
7269 ends (either successfully, or after it hits a breakpoint or signal)
7270 if the program is to properly continue where it left off. */
7271
7272struct infcall_suspend_state
7a292a7a 7273{
16c381f0 7274 struct thread_suspend_state thread_suspend;
dd80ea3c 7275#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7276 struct inferior_suspend_state inferior_suspend;
dd80ea3c 7277#endif
16c381f0
JK
7278
7279 /* Other fields: */
7a292a7a 7280 CORE_ADDR stop_pc;
b89667eb 7281 struct regcache *registers;
1736ad11 7282
35515841 7283 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
7284 struct gdbarch *siginfo_gdbarch;
7285
7286 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
7287 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
7288 content would be invalid. */
7289 gdb_byte *siginfo_data;
b89667eb
DE
7290};
7291
16c381f0
JK
7292struct infcall_suspend_state *
7293save_infcall_suspend_state (void)
b89667eb 7294{
16c381f0 7295 struct infcall_suspend_state *inf_state;
b89667eb 7296 struct thread_info *tp = inferior_thread ();
974a734b 7297#if 0
16c381f0 7298 struct inferior *inf = current_inferior ();
974a734b 7299#endif
1736ad11
JK
7300 struct regcache *regcache = get_current_regcache ();
7301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7302 gdb_byte *siginfo_data = NULL;
7303
7304 if (gdbarch_get_siginfo_type_p (gdbarch))
7305 {
7306 struct type *type = gdbarch_get_siginfo_type (gdbarch);
7307 size_t len = TYPE_LENGTH (type);
7308 struct cleanup *back_to;
7309
7310 siginfo_data = xmalloc (len);
7311 back_to = make_cleanup (xfree, siginfo_data);
7312
7313 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
7314 siginfo_data, 0, len) == len)
7315 discard_cleanups (back_to);
7316 else
7317 {
7318 /* Errors ignored. */
7319 do_cleanups (back_to);
7320 siginfo_data = NULL;
7321 }
7322 }
7323
41bf6aca 7324 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
7325
7326 if (siginfo_data)
7327 {
7328 inf_state->siginfo_gdbarch = gdbarch;
7329 inf_state->siginfo_data = siginfo_data;
7330 }
b89667eb 7331
16c381f0 7332 inf_state->thread_suspend = tp->suspend;
dd80ea3c 7333#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7334 inf_state->inferior_suspend = inf->suspend;
dd80ea3c 7335#endif
16c381f0 7336
35515841 7337 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
7338 GDB_SIGNAL_0 anyway. */
7339 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 7340
b89667eb
DE
7341 inf_state->stop_pc = stop_pc;
7342
1736ad11 7343 inf_state->registers = regcache_dup (regcache);
b89667eb
DE
7344
7345 return inf_state;
7346}
7347
7348/* Restore inferior session state to INF_STATE. */
7349
7350void
16c381f0 7351restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7352{
7353 struct thread_info *tp = inferior_thread ();
974a734b 7354#if 0
16c381f0 7355 struct inferior *inf = current_inferior ();
974a734b 7356#endif
1736ad11
JK
7357 struct regcache *regcache = get_current_regcache ();
7358 struct gdbarch *gdbarch = get_regcache_arch (regcache);
b89667eb 7359
16c381f0 7360 tp->suspend = inf_state->thread_suspend;
dd80ea3c 7361#if 0 /* Currently unused and empty structures are not valid C. */
16c381f0 7362 inf->suspend = inf_state->inferior_suspend;
dd80ea3c 7363#endif
16c381f0 7364
b89667eb
DE
7365 stop_pc = inf_state->stop_pc;
7366
1736ad11
JK
7367 if (inf_state->siginfo_gdbarch == gdbarch)
7368 {
7369 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
7370
7371 /* Errors ignored. */
7372 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 7373 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
7374 }
7375
b89667eb
DE
7376 /* The inferior can be gone if the user types "print exit(0)"
7377 (and perhaps other times). */
7378 if (target_has_execution)
7379 /* NB: The register write goes through to the target. */
1736ad11 7380 regcache_cpy (regcache, inf_state->registers);
803b5f95 7381
16c381f0 7382 discard_infcall_suspend_state (inf_state);
b89667eb
DE
7383}
7384
7385static void
16c381f0 7386do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 7387{
16c381f0 7388 restore_infcall_suspend_state (state);
b89667eb
DE
7389}
7390
7391struct cleanup *
16c381f0
JK
7392make_cleanup_restore_infcall_suspend_state
7393 (struct infcall_suspend_state *inf_state)
b89667eb 7394{
16c381f0 7395 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
7396}
7397
7398void
16c381f0 7399discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
7400{
7401 regcache_xfree (inf_state->registers);
803b5f95 7402 xfree (inf_state->siginfo_data);
b89667eb
DE
7403 xfree (inf_state);
7404}
7405
7406struct regcache *
16c381f0 7407get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
7408{
7409 return inf_state->registers;
7410}
7411
16c381f0
JK
7412/* infcall_control_state contains state regarding gdb's control of the
7413 inferior itself like stepping control. It also contains session state like
7414 the user's currently selected frame. */
b89667eb 7415
16c381f0 7416struct infcall_control_state
b89667eb 7417{
16c381f0
JK
7418 struct thread_control_state thread_control;
7419 struct inferior_control_state inferior_control;
d82142e2
JK
7420
7421 /* Other fields: */
7422 enum stop_stack_kind stop_stack_dummy;
7423 int stopped_by_random_signal;
7a292a7a 7424 int stop_after_trap;
7a292a7a 7425
b89667eb 7426 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 7427 struct frame_id selected_frame_id;
7a292a7a
SS
7428};
7429
c906108c 7430/* Save all of the information associated with the inferior<==>gdb
b89667eb 7431 connection. */
c906108c 7432
16c381f0
JK
7433struct infcall_control_state *
7434save_infcall_control_state (void)
c906108c 7435{
16c381f0 7436 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
4e1c45ea 7437 struct thread_info *tp = inferior_thread ();
d6b48e9c 7438 struct inferior *inf = current_inferior ();
7a292a7a 7439
16c381f0
JK
7440 inf_status->thread_control = tp->control;
7441 inf_status->inferior_control = inf->control;
d82142e2 7442
8358c15c 7443 tp->control.step_resume_breakpoint = NULL;
5b79abe7 7444 tp->control.exception_resume_breakpoint = NULL;
8358c15c 7445
16c381f0
JK
7446 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
7447 chain. If caller's caller is walking the chain, they'll be happier if we
7448 hand them back the original chain when restore_infcall_control_state is
7449 called. */
7450 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
7451
7452 /* Other fields: */
7453 inf_status->stop_stack_dummy = stop_stack_dummy;
7454 inf_status->stopped_by_random_signal = stopped_by_random_signal;
7455 inf_status->stop_after_trap = stop_after_trap;
c5aa993b 7456
206415a3 7457 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 7458
7a292a7a 7459 return inf_status;
c906108c
SS
7460}
7461
c906108c 7462static int
96baa820 7463restore_selected_frame (void *args)
c906108c 7464{
488f131b 7465 struct frame_id *fid = (struct frame_id *) args;
c906108c 7466 struct frame_info *frame;
c906108c 7467
101dcfbe 7468 frame = frame_find_by_id (*fid);
c906108c 7469
aa0cd9c1
AC
7470 /* If inf_status->selected_frame_id is NULL, there was no previously
7471 selected frame. */
101dcfbe 7472 if (frame == NULL)
c906108c 7473 {
8a3fe4f8 7474 warning (_("Unable to restore previously selected frame."));
c906108c
SS
7475 return 0;
7476 }
7477
0f7d239c 7478 select_frame (frame);
c906108c
SS
7479
7480 return (1);
7481}
7482
b89667eb
DE
7483/* Restore inferior session state to INF_STATUS. */
7484
c906108c 7485void
16c381f0 7486restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 7487{
4e1c45ea 7488 struct thread_info *tp = inferior_thread ();
d6b48e9c 7489 struct inferior *inf = current_inferior ();
4e1c45ea 7490
8358c15c
JK
7491 if (tp->control.step_resume_breakpoint)
7492 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
7493
5b79abe7
TT
7494 if (tp->control.exception_resume_breakpoint)
7495 tp->control.exception_resume_breakpoint->disposition
7496 = disp_del_at_next_stop;
7497
d82142e2 7498 /* Handle the bpstat_copy of the chain. */
16c381f0 7499 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 7500
16c381f0
JK
7501 tp->control = inf_status->thread_control;
7502 inf->control = inf_status->inferior_control;
d82142e2
JK
7503
7504 /* Other fields: */
7505 stop_stack_dummy = inf_status->stop_stack_dummy;
7506 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7507 stop_after_trap = inf_status->stop_after_trap;
c906108c 7508
b89667eb 7509 if (target_has_stack)
c906108c 7510 {
c906108c 7511 /* The point of catch_errors is that if the stack is clobbered,
101dcfbe
AC
7512 walking the stack might encounter a garbage pointer and
7513 error() trying to dereference it. */
488f131b
JB
7514 if (catch_errors
7515 (restore_selected_frame, &inf_status->selected_frame_id,
7516 "Unable to restore previously selected frame:\n",
7517 RETURN_MASK_ERROR) == 0)
c906108c
SS
7518 /* Error in restoring the selected frame. Select the innermost
7519 frame. */
0f7d239c 7520 select_frame (get_current_frame ());
c906108c 7521 }
c906108c 7522
72cec141 7523 xfree (inf_status);
7a292a7a 7524}
c906108c 7525
74b7792f 7526static void
16c381f0 7527do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 7528{
16c381f0 7529 restore_infcall_control_state (sts);
74b7792f
AC
7530}
7531
7532struct cleanup *
16c381f0
JK
7533make_cleanup_restore_infcall_control_state
7534 (struct infcall_control_state *inf_status)
74b7792f 7535{
16c381f0 7536 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
7537}
7538
c906108c 7539void
16c381f0 7540discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 7541{
8358c15c
JK
7542 if (inf_status->thread_control.step_resume_breakpoint)
7543 inf_status->thread_control.step_resume_breakpoint->disposition
7544 = disp_del_at_next_stop;
7545
5b79abe7
TT
7546 if (inf_status->thread_control.exception_resume_breakpoint)
7547 inf_status->thread_control.exception_resume_breakpoint->disposition
7548 = disp_del_at_next_stop;
7549
1777feb0 7550 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 7551 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 7552
72cec141 7553 xfree (inf_status);
7a292a7a 7554}
b89667eb 7555\f
ca6724c1
KB
7556/* restore_inferior_ptid() will be used by the cleanup machinery
7557 to restore the inferior_ptid value saved in a call to
7558 save_inferior_ptid(). */
ce696e05
KB
7559
7560static void
7561restore_inferior_ptid (void *arg)
7562{
7563 ptid_t *saved_ptid_ptr = arg;
abbb1732 7564
ce696e05
KB
7565 inferior_ptid = *saved_ptid_ptr;
7566 xfree (arg);
7567}
7568
7569/* Save the value of inferior_ptid so that it may be restored by a
7570 later call to do_cleanups(). Returns the struct cleanup pointer
7571 needed for later doing the cleanup. */
7572
7573struct cleanup *
7574save_inferior_ptid (void)
7575{
7576 ptid_t *saved_ptid_ptr;
7577
7578 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7579 *saved_ptid_ptr = inferior_ptid;
7580 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7581}
0c557179 7582
7f89fd65 7583/* See infrun.h. */
0c557179
SDJ
7584
7585void
7586clear_exit_convenience_vars (void)
7587{
7588 clear_internalvar (lookup_internalvar ("_exitsignal"));
7589 clear_internalvar (lookup_internalvar ("_exitcode"));
7590}
c5aa993b 7591\f
488f131b 7592
b2175913
MS
7593/* User interface for reverse debugging:
7594 Set exec-direction / show exec-direction commands
7595 (returns error unless target implements to_set_exec_direction method). */
7596
32231432 7597int execution_direction = EXEC_FORWARD;
b2175913
MS
7598static const char exec_forward[] = "forward";
7599static const char exec_reverse[] = "reverse";
7600static const char *exec_direction = exec_forward;
40478521 7601static const char *const exec_direction_names[] = {
b2175913
MS
7602 exec_forward,
7603 exec_reverse,
7604 NULL
7605};
7606
7607static void
7608set_exec_direction_func (char *args, int from_tty,
7609 struct cmd_list_element *cmd)
7610{
7611 if (target_can_execute_reverse)
7612 {
7613 if (!strcmp (exec_direction, exec_forward))
7614 execution_direction = EXEC_FORWARD;
7615 else if (!strcmp (exec_direction, exec_reverse))
7616 execution_direction = EXEC_REVERSE;
7617 }
8bbed405
MS
7618 else
7619 {
7620 exec_direction = exec_forward;
7621 error (_("Target does not support this operation."));
7622 }
b2175913
MS
7623}
7624
7625static void
7626show_exec_direction_func (struct ui_file *out, int from_tty,
7627 struct cmd_list_element *cmd, const char *value)
7628{
7629 switch (execution_direction) {
7630 case EXEC_FORWARD:
7631 fprintf_filtered (out, _("Forward.\n"));
7632 break;
7633 case EXEC_REVERSE:
7634 fprintf_filtered (out, _("Reverse.\n"));
7635 break;
b2175913 7636 default:
d8b34453
PA
7637 internal_error (__FILE__, __LINE__,
7638 _("bogus execution_direction value: %d"),
7639 (int) execution_direction);
b2175913
MS
7640 }
7641}
7642
d4db2f36
PA
7643static void
7644show_schedule_multiple (struct ui_file *file, int from_tty,
7645 struct cmd_list_element *c, const char *value)
7646{
3e43a32a
MS
7647 fprintf_filtered (file, _("Resuming the execution of threads "
7648 "of all processes is %s.\n"), value);
d4db2f36 7649}
ad52ddc6 7650
22d2b532
SDJ
7651/* Implementation of `siginfo' variable. */
7652
7653static const struct internalvar_funcs siginfo_funcs =
7654{
7655 siginfo_make_value,
7656 NULL,
7657 NULL
7658};
7659
c906108c 7660void
96baa820 7661_initialize_infrun (void)
c906108c 7662{
52f0bd74
AC
7663 int i;
7664 int numsigs;
de0bea00 7665 struct cmd_list_element *c;
c906108c 7666
1bedd215
AC
7667 add_info ("signals", signals_info, _("\
7668What debugger does when program gets various signals.\n\
7669Specify a signal as argument to print info on that signal only."));
c906108c
SS
7670 add_info_alias ("handle", "signals", 0);
7671
de0bea00 7672 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 7673Specify how to handle signals.\n\
486c7739 7674Usage: handle SIGNAL [ACTIONS]\n\
c906108c 7675Args are signals and actions to apply to those signals.\n\
dfbd5e7b 7676If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
7677will be displayed instead.\n\
7678\n\
c906108c
SS
7679Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7680from 1-15 are allowed for compatibility with old versions of GDB.\n\
7681Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7682The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7683used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 7684\n\
1bedd215 7685Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
7686\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7687Stop means reenter debugger if this signal happens (implies print).\n\
7688Print means print a message if this signal happens.\n\
7689Pass means let program see this signal; otherwise program doesn't know.\n\
7690Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
7691Pass and Stop may be combined.\n\
7692\n\
7693Multiple signals may be specified. Signal numbers and signal names\n\
7694may be interspersed with actions, with the actions being performed for\n\
7695all signals cumulatively specified."));
de0bea00 7696 set_cmd_completer (c, handle_completer);
486c7739 7697
c906108c
SS
7698 if (xdb_commands)
7699 {
1bedd215
AC
7700 add_com ("lz", class_info, signals_info, _("\
7701What debugger does when program gets various signals.\n\
7702Specify a signal as argument to print info on that signal only."));
7703 add_com ("z", class_run, xdb_handle_command, _("\
7704Specify how to handle a signal.\n\
c906108c
SS
7705Args are signals and actions to apply to those signals.\n\
7706Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7707from 1-15 are allowed for compatibility with old versions of GDB.\n\
7708Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7709The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 7710used by the debugger, typically SIGTRAP and SIGINT.\n\
cce7e648 7711Recognized actions include \"s\" (toggles between stop and nostop),\n\
c906108c
SS
7712\"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7713nopass), \"Q\" (noprint)\n\
7714Stop means reenter debugger if this signal happens (implies print).\n\
7715Print means print a message if this signal happens.\n\
7716Pass means let program see this signal; otherwise program doesn't know.\n\
7717Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
1bedd215 7718Pass and Stop may be combined."));
c906108c
SS
7719 }
7720
7721 if (!dbx_commands)
1a966eab
AC
7722 stop_command = add_cmd ("stop", class_obscure,
7723 not_just_help_class_command, _("\
7724There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 7725This allows you to set a list of commands to be run each time execution\n\
1a966eab 7726of the program stops."), &cmdlist);
c906108c 7727
ccce17b0 7728 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
7729Set inferior debugging."), _("\
7730Show inferior debugging."), _("\
7731When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
7732 NULL,
7733 show_debug_infrun,
7734 &setdebuglist, &showdebuglist);
527159b7 7735
3e43a32a
MS
7736 add_setshow_boolean_cmd ("displaced", class_maintenance,
7737 &debug_displaced, _("\
237fc4c9
PA
7738Set displaced stepping debugging."), _("\
7739Show displaced stepping debugging."), _("\
7740When non-zero, displaced stepping specific debugging is enabled."),
7741 NULL,
7742 show_debug_displaced,
7743 &setdebuglist, &showdebuglist);
7744
ad52ddc6
PA
7745 add_setshow_boolean_cmd ("non-stop", no_class,
7746 &non_stop_1, _("\
7747Set whether gdb controls the inferior in non-stop mode."), _("\
7748Show whether gdb controls the inferior in non-stop mode."), _("\
7749When debugging a multi-threaded program and this setting is\n\
7750off (the default, also called all-stop mode), when one thread stops\n\
7751(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7752all other threads in the program while you interact with the thread of\n\
7753interest. When you continue or step a thread, you can allow the other\n\
7754threads to run, or have them remain stopped, but while you inspect any\n\
7755thread's state, all threads stop.\n\
7756\n\
7757In non-stop mode, when one thread stops, other threads can continue\n\
7758to run freely. You'll be able to step each thread independently,\n\
7759leave it stopped or free to run as needed."),
7760 set_non_stop,
7761 show_non_stop,
7762 &setlist,
7763 &showlist);
7764
a493e3e2 7765 numsigs = (int) GDB_SIGNAL_LAST;
488f131b 7766 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
c906108c
SS
7767 signal_print = (unsigned char *)
7768 xmalloc (sizeof (signal_print[0]) * numsigs);
7769 signal_program = (unsigned char *)
7770 xmalloc (sizeof (signal_program[0]) * numsigs);
ab04a2af
TT
7771 signal_catch = (unsigned char *)
7772 xmalloc (sizeof (signal_catch[0]) * numsigs);
2455069d 7773 signal_pass = (unsigned char *)
4395285e 7774 xmalloc (sizeof (signal_pass[0]) * numsigs);
c906108c
SS
7775 for (i = 0; i < numsigs; i++)
7776 {
7777 signal_stop[i] = 1;
7778 signal_print[i] = 1;
7779 signal_program[i] = 1;
ab04a2af 7780 signal_catch[i] = 0;
c906108c
SS
7781 }
7782
7783 /* Signals caused by debugger's own actions
7784 should not be given to the program afterwards. */
a493e3e2
PA
7785 signal_program[GDB_SIGNAL_TRAP] = 0;
7786 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
7787
7788 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
7789 signal_stop[GDB_SIGNAL_ALRM] = 0;
7790 signal_print[GDB_SIGNAL_ALRM] = 0;
7791 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7792 signal_print[GDB_SIGNAL_VTALRM] = 0;
7793 signal_stop[GDB_SIGNAL_PROF] = 0;
7794 signal_print[GDB_SIGNAL_PROF] = 0;
7795 signal_stop[GDB_SIGNAL_CHLD] = 0;
7796 signal_print[GDB_SIGNAL_CHLD] = 0;
7797 signal_stop[GDB_SIGNAL_IO] = 0;
7798 signal_print[GDB_SIGNAL_IO] = 0;
7799 signal_stop[GDB_SIGNAL_POLL] = 0;
7800 signal_print[GDB_SIGNAL_POLL] = 0;
7801 signal_stop[GDB_SIGNAL_URG] = 0;
7802 signal_print[GDB_SIGNAL_URG] = 0;
7803 signal_stop[GDB_SIGNAL_WINCH] = 0;
7804 signal_print[GDB_SIGNAL_WINCH] = 0;
7805 signal_stop[GDB_SIGNAL_PRIO] = 0;
7806 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 7807
cd0fc7c3
SS
7808 /* These signals are used internally by user-level thread
7809 implementations. (See signal(5) on Solaris.) Like the above
7810 signals, a healthy program receives and handles them as part of
7811 its normal operation. */
a493e3e2
PA
7812 signal_stop[GDB_SIGNAL_LWP] = 0;
7813 signal_print[GDB_SIGNAL_LWP] = 0;
7814 signal_stop[GDB_SIGNAL_WAITING] = 0;
7815 signal_print[GDB_SIGNAL_WAITING] = 0;
7816 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7817 signal_print[GDB_SIGNAL_CANCEL] = 0;
cd0fc7c3 7818
2455069d
UW
7819 /* Update cached state. */
7820 signal_cache_update (-1);
7821
85c07804
AC
7822 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7823 &stop_on_solib_events, _("\
7824Set stopping for shared library events."), _("\
7825Show stopping for shared library events."), _("\
c906108c
SS
7826If nonzero, gdb will give control to the user when the dynamic linker\n\
7827notifies gdb of shared library events. The most common event of interest\n\
85c07804 7828to the user would be loading/unloading of a new library."),
f9e14852 7829 set_stop_on_solib_events,
920d2a44 7830 show_stop_on_solib_events,
85c07804 7831 &setlist, &showlist);
c906108c 7832
7ab04401
AC
7833 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7834 follow_fork_mode_kind_names,
7835 &follow_fork_mode_string, _("\
7836Set debugger response to a program call of fork or vfork."), _("\
7837Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
7838A fork or vfork creates a new process. follow-fork-mode can be:\n\
7839 parent - the original process is debugged after a fork\n\
7840 child - the new process is debugged after a fork\n\
ea1dd7bc 7841The unfollowed process will continue to run.\n\
7ab04401
AC
7842By default, the debugger will follow the parent process."),
7843 NULL,
920d2a44 7844 show_follow_fork_mode_string,
7ab04401
AC
7845 &setlist, &showlist);
7846
6c95b8df
PA
7847 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7848 follow_exec_mode_names,
7849 &follow_exec_mode_string, _("\
7850Set debugger response to a program call of exec."), _("\
7851Show debugger response to a program call of exec."), _("\
7852An exec call replaces the program image of a process.\n\
7853\n\
7854follow-exec-mode can be:\n\
7855\n\
cce7e648 7856 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
7857to this new inferior. The program the process was running before\n\
7858the exec call can be restarted afterwards by restarting the original\n\
7859inferior.\n\
7860\n\
7861 same - the debugger keeps the process bound to the same inferior.\n\
7862The new executable image replaces the previous executable loaded in\n\
7863the inferior. Restarting the inferior after the exec call restarts\n\
7864the executable the process was running after the exec call.\n\
7865\n\
7866By default, the debugger will use the same inferior."),
7867 NULL,
7868 show_follow_exec_mode_string,
7869 &setlist, &showlist);
7870
7ab04401
AC
7871 add_setshow_enum_cmd ("scheduler-locking", class_run,
7872 scheduler_enums, &scheduler_mode, _("\
7873Set mode for locking scheduler during execution."), _("\
7874Show mode for locking scheduler during execution."), _("\
c906108c
SS
7875off == no locking (threads may preempt at any time)\n\
7876on == full locking (no thread except the current thread may run)\n\
7877step == scheduler locked during every single-step operation.\n\
7878 In this mode, no other thread may run during a step command.\n\
7ab04401
AC
7879 Other threads may run while stepping over a function call ('next')."),
7880 set_schedlock_func, /* traps on target vector */
920d2a44 7881 show_scheduler_mode,
7ab04401 7882 &setlist, &showlist);
5fbbeb29 7883
d4db2f36
PA
7884 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7885Set mode for resuming threads of all processes."), _("\
7886Show mode for resuming threads of all processes."), _("\
7887When on, execution commands (such as 'continue' or 'next') resume all\n\
7888threads of all processes. When off (which is the default), execution\n\
7889commands only resume the threads of the current process. The set of\n\
7890threads that are resumed is further refined by the scheduler-locking\n\
7891mode (see help set scheduler-locking)."),
7892 NULL,
7893 show_schedule_multiple,
7894 &setlist, &showlist);
7895
5bf193a2
AC
7896 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7897Set mode of the step operation."), _("\
7898Show mode of the step operation."), _("\
7899When set, doing a step over a function without debug line information\n\
7900will stop at the first instruction of that function. Otherwise, the\n\
7901function is skipped and the step command stops at a different source line."),
7902 NULL,
920d2a44 7903 show_step_stop_if_no_debug,
5bf193a2 7904 &setlist, &showlist);
ca6724c1 7905
72d0e2c5
YQ
7906 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7907 &can_use_displaced_stepping, _("\
237fc4c9
PA
7908Set debugger's willingness to use displaced stepping."), _("\
7909Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
7910If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7911supported by the target architecture. If off, gdb will not use displaced\n\
7912stepping to step over breakpoints, even if such is supported by the target\n\
7913architecture. If auto (which is the default), gdb will use displaced stepping\n\
7914if the target architecture supports it and non-stop mode is active, but will not\n\
7915use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
7916 NULL,
7917 show_can_use_displaced_stepping,
7918 &setlist, &showlist);
237fc4c9 7919
b2175913
MS
7920 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7921 &exec_direction, _("Set direction of execution.\n\
7922Options are 'forward' or 'reverse'."),
7923 _("Show direction of execution (forward/reverse)."),
7924 _("Tells gdb whether to execute forward or backward."),
7925 set_exec_direction_func, show_exec_direction_func,
7926 &setlist, &showlist);
7927
6c95b8df
PA
7928 /* Set/show detach-on-fork: user-settable mode. */
7929
7930 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7931Set whether gdb will detach the child of a fork."), _("\
7932Show whether gdb will detach the child of a fork."), _("\
7933Tells gdb whether to detach the child of a fork."),
7934 NULL, NULL, &setlist, &showlist);
7935
03583c20
UW
7936 /* Set/show disable address space randomization mode. */
7937
7938 add_setshow_boolean_cmd ("disable-randomization", class_support,
7939 &disable_randomization, _("\
7940Set disabling of debuggee's virtual address space randomization."), _("\
7941Show disabling of debuggee's virtual address space randomization."), _("\
7942When this mode is on (which is the default), randomization of the virtual\n\
7943address space is disabled. Standalone programs run with the randomization\n\
7944enabled by default on some platforms."),
7945 &set_disable_randomization,
7946 &show_disable_randomization,
7947 &setlist, &showlist);
7948
ca6724c1 7949 /* ptid initializations */
ca6724c1
KB
7950 inferior_ptid = null_ptid;
7951 target_last_wait_ptid = minus_one_ptid;
5231c1fd
PA
7952
7953 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
252fbfc8 7954 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
a07daef3 7955 observer_attach_thread_exit (infrun_thread_thread_exit);
fc1cf338 7956 observer_attach_inferior_exit (infrun_inferior_exit);
4aa995e1
PA
7957
7958 /* Explicitly create without lookup, since that tries to create a
7959 value with a void typed value, and when we get here, gdbarch
7960 isn't initialized yet. At this point, we're quite sure there
7961 isn't another convenience variable of the same name. */
22d2b532 7962 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
7963
7964 add_setshow_boolean_cmd ("observer", no_class,
7965 &observer_mode_1, _("\
7966Set whether gdb controls the inferior in observer mode."), _("\
7967Show whether gdb controls the inferior in observer mode."), _("\
7968In observer mode, GDB can get data from the inferior, but not\n\
7969affect its execution. Registers and memory may not be changed,\n\
7970breakpoints may not be set, and the program cannot be interrupted\n\
7971or signalled."),
7972 set_observer_mode,
7973 show_observer_mode,
7974 &setlist,
7975 &showlist);
c906108c 7976}
This page took 1.973413 seconds and 4 git commands to generate.