Remove ptid_match
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
e2882c85 4 Copyright (C) 1986-2018 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
03f2053f 28#include "gdb_wait.h"
c906108c
SS
29#include "gdbcore.h"
30#include "gdbcmd.h"
210661e7 31#include "cli/cli-script.h"
c906108c
SS
32#include "target.h"
33#include "gdbthread.h"
34#include "annotate.h"
1adeb98a 35#include "symfile.h"
7a292a7a 36#include "top.h"
c906108c 37#include <signal.h>
2acceee2 38#include "inf-loop.h"
4e052eda 39#include "regcache.h"
fd0407d6 40#include "value.h"
76727919 41#include "observable.h"
f636b87d 42#include "language.h"
a77053c2 43#include "solib.h"
f17517ea 44#include "main.h"
186c406b
TT
45#include "dictionary.h"
46#include "block.h"
034dad6f 47#include "mi/mi-common.h"
4f8d22e3 48#include "event-top.h"
96429cc8 49#include "record.h"
d02ed0bb 50#include "record-full.h"
edb3359d 51#include "inline-frame.h"
4efc6507 52#include "jit.h"
06cd862c 53#include "tracepoint.h"
be34f849 54#include "continuations.h"
b4a14fd0 55#include "interps.h"
1bfeeb0f 56#include "skip.h"
28106bc2
SDJ
57#include "probe.h"
58#include "objfiles.h"
de0bea00 59#include "completer.h"
9107fc8d 60#include "target-descriptions.h"
f15cb84a 61#include "target-dcache.h"
d83ad864 62#include "terminal.h"
ff862be4 63#include "solist.h"
372316f1 64#include "event-loop.h"
243a9253 65#include "thread-fsm.h"
8d297bbf 66#include "common/enum-flags.h"
5ed8105e
PA
67#include "progspace-and-thread.h"
68#include "common/gdb_optional.h"
46a62268 69#include "arch-utils.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
4ef3f3be 77static int follow_fork (void);
96baa820 78
d83ad864
DB
79static int follow_fork_inferior (int follow_child, int detach_fork);
80
81static void follow_inferior_reset_breakpoints (void);
82
a289b8f6
JK
83static int currently_stepping (struct thread_info *tp);
84
e58b0e63
PA
85void nullify_last_target_wait_ptid (void);
86
2c03e5be 87static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
88
89static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
90
2484c66b
UW
91static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
92
8550d3b3
YQ
93static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
94
372316f1
PA
95/* Asynchronous signal handler registered as event loop source for
96 when we have pending events ready to be passed to the core. */
97static struct async_event_handler *infrun_async_inferior_event_token;
98
99/* Stores whether infrun_async was previously enabled or disabled.
100 Starts off as -1, indicating "never enabled/disabled". */
101static int infrun_is_async = -1;
102
103/* See infrun.h. */
104
105void
106infrun_async (int enable)
107{
108 if (infrun_is_async != enable)
109 {
110 infrun_is_async = enable;
111
112 if (debug_infrun)
113 fprintf_unfiltered (gdb_stdlog,
114 "infrun: infrun_async(%d)\n",
115 enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122}
123
0b333c5e
PA
124/* See infrun.h. */
125
126void
127mark_infrun_async_event_handler (void)
128{
129 mark_async_event_handler (infrun_async_inferior_event_token);
130}
131
5fbbeb29
CF
132/* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135int step_stop_if_no_debug = 0;
920d2a44
AC
136static void
137show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139{
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141}
5fbbeb29 142
b9f437de
PA
143/* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
96baa820 146
39f77062 147static ptid_t previous_inferior_ptid;
7a292a7a 148
07107ca6
LM
149/* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154static int detach_fork = 1;
6c95b8df 155
237fc4c9
PA
156int debug_displaced = 0;
157static void
158show_debug_displaced (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160{
161 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
162}
163
ccce17b0 164unsigned int debug_infrun = 0;
920d2a44
AC
165static void
166show_debug_infrun (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168{
169 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
170}
527159b7 171
03583c20
UW
172
173/* Support for disabling address space randomization. */
174
175int disable_randomization = 1;
176
177static void
178show_disable_randomization (struct ui_file *file, int from_tty,
179 struct cmd_list_element *c, const char *value)
180{
181 if (target_supports_disable_randomization ())
182 fprintf_filtered (file,
183 _("Disabling randomization of debuggee's "
184 "virtual address space is %s.\n"),
185 value);
186 else
187 fputs_filtered (_("Disabling randomization of debuggee's "
188 "virtual address space is unsupported on\n"
189 "this platform.\n"), file);
190}
191
192static void
eb4c3f4a 193set_disable_randomization (const char *args, int from_tty,
03583c20
UW
194 struct cmd_list_element *c)
195{
196 if (!target_supports_disable_randomization ())
197 error (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform."));
200}
201
d32dc48e
PA
202/* User interface for non-stop mode. */
203
204int non_stop = 0;
205static int non_stop_1 = 0;
206
207static void
eb4c3f4a 208set_non_stop (const char *args, int from_tty,
d32dc48e
PA
209 struct cmd_list_element *c)
210{
211 if (target_has_execution)
212 {
213 non_stop_1 = non_stop;
214 error (_("Cannot change this setting while the inferior is running."));
215 }
216
217 non_stop = non_stop_1;
218}
219
220static void
221show_non_stop (struct ui_file *file, int from_tty,
222 struct cmd_list_element *c, const char *value)
223{
224 fprintf_filtered (file,
225 _("Controlling the inferior in non-stop mode is %s.\n"),
226 value);
227}
228
d914c394
SS
229/* "Observer mode" is somewhat like a more extreme version of
230 non-stop, in which all GDB operations that might affect the
231 target's execution have been disabled. */
232
d914c394
SS
233int observer_mode = 0;
234static int observer_mode_1 = 0;
235
236static void
eb4c3f4a 237set_observer_mode (const char *args, int from_tty,
d914c394
SS
238 struct cmd_list_element *c)
239{
d914c394
SS
240 if (target_has_execution)
241 {
242 observer_mode_1 = observer_mode;
243 error (_("Cannot change this setting while the inferior is running."));
244 }
245
246 observer_mode = observer_mode_1;
247
248 may_write_registers = !observer_mode;
249 may_write_memory = !observer_mode;
250 may_insert_breakpoints = !observer_mode;
251 may_insert_tracepoints = !observer_mode;
252 /* We can insert fast tracepoints in or out of observer mode,
253 but enable them if we're going into this mode. */
254 if (observer_mode)
255 may_insert_fast_tracepoints = 1;
256 may_stop = !observer_mode;
257 update_target_permissions ();
258
259 /* Going *into* observer mode we must force non-stop, then
260 going out we leave it that way. */
261 if (observer_mode)
262 {
d914c394
SS
263 pagination_enabled = 0;
264 non_stop = non_stop_1 = 1;
265 }
266
267 if (from_tty)
268 printf_filtered (_("Observer mode is now %s.\n"),
269 (observer_mode ? "on" : "off"));
270}
271
272static void
273show_observer_mode (struct ui_file *file, int from_tty,
274 struct cmd_list_element *c, const char *value)
275{
276 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
277}
278
279/* This updates the value of observer mode based on changes in
280 permissions. Note that we are deliberately ignoring the values of
281 may-write-registers and may-write-memory, since the user may have
282 reason to enable these during a session, for instance to turn on a
283 debugging-related global. */
284
285void
286update_observer_mode (void)
287{
288 int newval;
289
290 newval = (!may_insert_breakpoints
291 && !may_insert_tracepoints
292 && may_insert_fast_tracepoints
293 && !may_stop
294 && non_stop);
295
296 /* Let the user know if things change. */
297 if (newval != observer_mode)
298 printf_filtered (_("Observer mode is now %s.\n"),
299 (newval ? "on" : "off"));
300
301 observer_mode = observer_mode_1 = newval;
302}
c2c6d25f 303
c906108c
SS
304/* Tables of how to react to signals; the user sets them. */
305
306static unsigned char *signal_stop;
307static unsigned char *signal_print;
308static unsigned char *signal_program;
309
ab04a2af
TT
310/* Table of signals that are registered with "catch signal". A
311 non-zero entry indicates that the signal is caught by some "catch
312 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
313 signals. */
314static unsigned char *signal_catch;
315
2455069d
UW
316/* Table of signals that the target may silently handle.
317 This is automatically determined from the flags above,
318 and simply cached here. */
319static unsigned char *signal_pass;
320
c906108c
SS
321#define SET_SIGS(nsigs,sigs,flags) \
322 do { \
323 int signum = (nsigs); \
324 while (signum-- > 0) \
325 if ((sigs)[signum]) \
326 (flags)[signum] = 1; \
327 } while (0)
328
329#define UNSET_SIGS(nsigs,sigs,flags) \
330 do { \
331 int signum = (nsigs); \
332 while (signum-- > 0) \
333 if ((sigs)[signum]) \
334 (flags)[signum] = 0; \
335 } while (0)
336
9b224c5e
PA
337/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
338 this function is to avoid exporting `signal_program'. */
339
340void
341update_signals_program_target (void)
342{
a493e3e2 343 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
9b224c5e
PA
344}
345
1777feb0 346/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 347
edb3359d 348#define RESUME_ALL minus_one_ptid
c906108c
SS
349
350/* Command list pointer for the "stop" placeholder. */
351
352static struct cmd_list_element *stop_command;
353
c906108c
SS
354/* Nonzero if we want to give control to the user when we're notified
355 of shared library events by the dynamic linker. */
628fe4e4 356int stop_on_solib_events;
f9e14852
GB
357
358/* Enable or disable optional shared library event breakpoints
359 as appropriate when the above flag is changed. */
360
361static void
eb4c3f4a
TT
362set_stop_on_solib_events (const char *args,
363 int from_tty, struct cmd_list_element *c)
f9e14852
GB
364{
365 update_solib_breakpoints ();
366}
367
920d2a44
AC
368static void
369show_stop_on_solib_events (struct ui_file *file, int from_tty,
370 struct cmd_list_element *c, const char *value)
371{
372 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
373 value);
374}
c906108c 375
c906108c
SS
376/* Nonzero after stop if current stack frame should be printed. */
377
378static int stop_print_frame;
379
e02bc4cc 380/* This is a cached copy of the pid/waitstatus of the last event
9a4105ab
AC
381 returned by target_wait()/deprecated_target_wait_hook(). This
382 information is returned by get_last_target_status(). */
39f77062 383static ptid_t target_last_wait_ptid;
e02bc4cc
DS
384static struct target_waitstatus target_last_waitstatus;
385
4e1c45ea 386void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 387
53904c9e
AC
388static const char follow_fork_mode_child[] = "child";
389static const char follow_fork_mode_parent[] = "parent";
390
40478521 391static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
392 follow_fork_mode_child,
393 follow_fork_mode_parent,
394 NULL
ef346e04 395};
c906108c 396
53904c9e 397static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
398static void
399show_follow_fork_mode_string (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c, const char *value)
401{
3e43a32a
MS
402 fprintf_filtered (file,
403 _("Debugger response to a program "
404 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
405 value);
406}
c906108c
SS
407\f
408
d83ad864
DB
409/* Handle changes to the inferior list based on the type of fork,
410 which process is being followed, and whether the other process
411 should be detached. On entry inferior_ptid must be the ptid of
412 the fork parent. At return inferior_ptid is the ptid of the
413 followed inferior. */
414
415static int
416follow_fork_inferior (int follow_child, int detach_fork)
417{
418 int has_vforked;
79639e11 419 ptid_t parent_ptid, child_ptid;
d83ad864
DB
420
421 has_vforked = (inferior_thread ()->pending_follow.kind
422 == TARGET_WAITKIND_VFORKED);
79639e11
PA
423 parent_ptid = inferior_ptid;
424 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
425
426 if (has_vforked
427 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 428 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
429 && !(follow_child || detach_fork || sched_multi))
430 {
431 /* The parent stays blocked inside the vfork syscall until the
432 child execs or exits. If we don't let the child run, then
433 the parent stays blocked. If we're telling the parent to run
434 in the foreground, the user will not be able to ctrl-c to get
435 back the terminal, effectively hanging the debug session. */
436 fprintf_filtered (gdb_stderr, _("\
437Can not resume the parent process over vfork in the foreground while\n\
438holding the child stopped. Try \"set detach-on-fork\" or \
439\"set schedule-multiple\".\n"));
440 /* FIXME output string > 80 columns. */
441 return 1;
442 }
443
444 if (!follow_child)
445 {
446 /* Detach new forked process? */
447 if (detach_fork)
448 {
d83ad864
DB
449 /* Before detaching from the child, remove all breakpoints
450 from it. If we forked, then this has already been taken
451 care of by infrun.c. If we vforked however, any
452 breakpoint inserted in the parent is visible in the
453 child, even those added while stopped in a vfork
454 catchpoint. This will remove the breakpoints from the
455 parent also, but they'll be reinserted below. */
456 if (has_vforked)
457 {
458 /* Keep breakpoints list in sync. */
00431a78 459 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
460 }
461
f67c0c91 462 if (print_inferior_events)
d83ad864 463 {
8dd06f7a 464 /* Ensure that we have a process ptid. */
e99b03dc 465 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 466
223ffa71 467 target_terminal::ours_for_output ();
d83ad864 468 fprintf_filtered (gdb_stdlog,
f67c0c91 469 _("[Detaching after %s from child %s]\n"),
6f259a23 470 has_vforked ? "vfork" : "fork",
8dd06f7a 471 target_pid_to_str (process_ptid));
d83ad864
DB
472 }
473 }
474 else
475 {
476 struct inferior *parent_inf, *child_inf;
d83ad864
DB
477
478 /* Add process to GDB's tables. */
e99b03dc 479 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
480
481 parent_inf = current_inferior ();
482 child_inf->attach_flag = parent_inf->attach_flag;
483 copy_terminal_info (child_inf, parent_inf);
484 child_inf->gdbarch = parent_inf->gdbarch;
485 copy_inferior_target_desc_info (child_inf, parent_inf);
486
5ed8105e 487 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 488
79639e11 489 inferior_ptid = child_ptid;
f67c0c91 490 add_thread_silent (inferior_ptid);
2a00d7ce 491 set_current_inferior (child_inf);
d83ad864
DB
492 child_inf->symfile_flags = SYMFILE_NO_READ;
493
494 /* If this is a vfork child, then the address-space is
495 shared with the parent. */
496 if (has_vforked)
497 {
498 child_inf->pspace = parent_inf->pspace;
499 child_inf->aspace = parent_inf->aspace;
500
501 /* The parent will be frozen until the child is done
502 with the shared region. Keep track of the
503 parent. */
504 child_inf->vfork_parent = parent_inf;
505 child_inf->pending_detach = 0;
506 parent_inf->vfork_child = child_inf;
507 parent_inf->pending_detach = 0;
508 }
509 else
510 {
511 child_inf->aspace = new_address_space ();
564b1e3f 512 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
513 child_inf->removable = 1;
514 set_current_program_space (child_inf->pspace);
515 clone_program_space (child_inf->pspace, parent_inf->pspace);
516
517 /* Let the shared library layer (e.g., solib-svr4) learn
518 about this new process, relocate the cloned exec, pull
519 in shared libraries, and install the solib event
520 breakpoint. If a "cloned-VM" event was propagated
521 better throughout the core, this wouldn't be
522 required. */
523 solib_create_inferior_hook (0);
524 }
d83ad864
DB
525 }
526
527 if (has_vforked)
528 {
529 struct inferior *parent_inf;
530
531 parent_inf = current_inferior ();
532
533 /* If we detached from the child, then we have to be careful
534 to not insert breakpoints in the parent until the child
535 is done with the shared memory region. However, if we're
536 staying attached to the child, then we can and should
537 insert breakpoints, so that we can debug it. A
538 subsequent child exec or exit is enough to know when does
539 the child stops using the parent's address space. */
540 parent_inf->waiting_for_vfork_done = detach_fork;
541 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
542 }
543 }
544 else
545 {
546 /* Follow the child. */
547 struct inferior *parent_inf, *child_inf;
548 struct program_space *parent_pspace;
549
f67c0c91 550 if (print_inferior_events)
d83ad864 551 {
f67c0c91
SDJ
552 std::string parent_pid = target_pid_to_str (parent_ptid);
553 std::string child_pid = target_pid_to_str (child_ptid);
554
223ffa71 555 target_terminal::ours_for_output ();
6f259a23 556 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
557 _("[Attaching after %s %s to child %s]\n"),
558 parent_pid.c_str (),
6f259a23 559 has_vforked ? "vfork" : "fork",
f67c0c91 560 child_pid.c_str ());
d83ad864
DB
561 }
562
563 /* Add the new inferior first, so that the target_detach below
564 doesn't unpush the target. */
565
e99b03dc 566 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
567
568 parent_inf = current_inferior ();
569 child_inf->attach_flag = parent_inf->attach_flag;
570 copy_terminal_info (child_inf, parent_inf);
571 child_inf->gdbarch = parent_inf->gdbarch;
572 copy_inferior_target_desc_info (child_inf, parent_inf);
573
574 parent_pspace = parent_inf->pspace;
575
576 /* If we're vforking, we want to hold on to the parent until the
577 child exits or execs. At child exec or exit time we can
578 remove the old breakpoints from the parent and detach or
579 resume debugging it. Otherwise, detach the parent now; we'll
580 want to reuse it's program/address spaces, but we can't set
581 them to the child before removing breakpoints from the
582 parent, otherwise, the breakpoints module could decide to
583 remove breakpoints from the wrong process (since they'd be
584 assigned to the same address space). */
585
586 if (has_vforked)
587 {
588 gdb_assert (child_inf->vfork_parent == NULL);
589 gdb_assert (parent_inf->vfork_child == NULL);
590 child_inf->vfork_parent = parent_inf;
591 child_inf->pending_detach = 0;
592 parent_inf->vfork_child = child_inf;
593 parent_inf->pending_detach = detach_fork;
594 parent_inf->waiting_for_vfork_done = 0;
595 }
596 else if (detach_fork)
6f259a23 597 {
f67c0c91 598 if (print_inferior_events)
6f259a23 599 {
8dd06f7a 600 /* Ensure that we have a process ptid. */
e99b03dc 601 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
8dd06f7a 602
223ffa71 603 target_terminal::ours_for_output ();
6f259a23 604 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
605 _("[Detaching after fork from "
606 "parent %s]\n"),
8dd06f7a 607 target_pid_to_str (process_ptid));
6f259a23
DB
608 }
609
6e1e1966 610 target_detach (parent_inf, 0);
6f259a23 611 }
d83ad864
DB
612
613 /* Note that the detach above makes PARENT_INF dangling. */
614
615 /* Add the child thread to the appropriate lists, and switch to
616 this new thread, before cloning the program space, and
617 informing the solib layer about this new process. */
618
79639e11 619 inferior_ptid = child_ptid;
f67c0c91 620 add_thread_silent (inferior_ptid);
2a00d7ce 621 set_current_inferior (child_inf);
d83ad864
DB
622
623 /* If this is a vfork child, then the address-space is shared
624 with the parent. If we detached from the parent, then we can
625 reuse the parent's program/address spaces. */
626 if (has_vforked || detach_fork)
627 {
628 child_inf->pspace = parent_pspace;
629 child_inf->aspace = child_inf->pspace->aspace;
630 }
631 else
632 {
633 child_inf->aspace = new_address_space ();
564b1e3f 634 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
635 child_inf->removable = 1;
636 child_inf->symfile_flags = SYMFILE_NO_READ;
637 set_current_program_space (child_inf->pspace);
638 clone_program_space (child_inf->pspace, parent_pspace);
639
640 /* Let the shared library layer (e.g., solib-svr4) learn
641 about this new process, relocate the cloned exec, pull in
642 shared libraries, and install the solib event breakpoint.
643 If a "cloned-VM" event was propagated better throughout
644 the core, this wouldn't be required. */
645 solib_create_inferior_hook (0);
646 }
647 }
648
649 return target_follow_fork (follow_child, detach_fork);
650}
651
e58b0e63
PA
652/* Tell the target to follow the fork we're stopped at. Returns true
653 if the inferior should be resumed; false, if the target for some
654 reason decided it's best not to resume. */
655
6604731b 656static int
4ef3f3be 657follow_fork (void)
c906108c 658{
ea1dd7bc 659 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63
PA
660 int should_resume = 1;
661 struct thread_info *tp;
662
663 /* Copy user stepping state to the new inferior thread. FIXME: the
664 followed fork child thread should have a copy of most of the
4e3990f4
DE
665 parent thread structure's run control related fields, not just these.
666 Initialized to avoid "may be used uninitialized" warnings from gcc. */
667 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 668 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
669 CORE_ADDR step_range_start = 0;
670 CORE_ADDR step_range_end = 0;
671 struct frame_id step_frame_id = { 0 };
8980e177 672 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
673
674 if (!non_stop)
675 {
676 ptid_t wait_ptid;
677 struct target_waitstatus wait_status;
678
679 /* Get the last target status returned by target_wait(). */
680 get_last_target_status (&wait_ptid, &wait_status);
681
682 /* If not stopped at a fork event, then there's nothing else to
683 do. */
684 if (wait_status.kind != TARGET_WAITKIND_FORKED
685 && wait_status.kind != TARGET_WAITKIND_VFORKED)
686 return 1;
687
688 /* Check if we switched over from WAIT_PTID, since the event was
689 reported. */
00431a78
PA
690 if (wait_ptid != minus_one_ptid
691 && inferior_ptid != wait_ptid)
e58b0e63
PA
692 {
693 /* We did. Switch back to WAIT_PTID thread, to tell the
694 target to follow it (in either direction). We'll
695 afterwards refuse to resume, and inform the user what
696 happened. */
00431a78
PA
697 thread_info *wait_thread
698 = find_thread_ptid (wait_ptid);
699 switch_to_thread (wait_thread);
e58b0e63
PA
700 should_resume = 0;
701 }
702 }
703
704 tp = inferior_thread ();
705
706 /* If there were any forks/vforks that were caught and are now to be
707 followed, then do so now. */
708 switch (tp->pending_follow.kind)
709 {
710 case TARGET_WAITKIND_FORKED:
711 case TARGET_WAITKIND_VFORKED:
712 {
713 ptid_t parent, child;
714
715 /* If the user did a next/step, etc, over a fork call,
716 preserve the stepping state in the fork child. */
717 if (follow_child && should_resume)
718 {
8358c15c
JK
719 step_resume_breakpoint = clone_momentary_breakpoint
720 (tp->control.step_resume_breakpoint);
16c381f0
JK
721 step_range_start = tp->control.step_range_start;
722 step_range_end = tp->control.step_range_end;
723 step_frame_id = tp->control.step_frame_id;
186c406b
TT
724 exception_resume_breakpoint
725 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 726 thread_fsm = tp->thread_fsm;
e58b0e63
PA
727
728 /* For now, delete the parent's sr breakpoint, otherwise,
729 parent/child sr breakpoints are considered duplicates,
730 and the child version will not be installed. Remove
731 this when the breakpoints module becomes aware of
732 inferiors and address spaces. */
733 delete_step_resume_breakpoint (tp);
16c381f0
JK
734 tp->control.step_range_start = 0;
735 tp->control.step_range_end = 0;
736 tp->control.step_frame_id = null_frame_id;
186c406b 737 delete_exception_resume_breakpoint (tp);
8980e177 738 tp->thread_fsm = NULL;
e58b0e63
PA
739 }
740
741 parent = inferior_ptid;
742 child = tp->pending_follow.value.related_pid;
743
d83ad864
DB
744 /* Set up inferior(s) as specified by the caller, and tell the
745 target to do whatever is necessary to follow either parent
746 or child. */
747 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
748 {
749 /* Target refused to follow, or there's some other reason
750 we shouldn't resume. */
751 should_resume = 0;
752 }
753 else
754 {
755 /* This pending follow fork event is now handled, one way
756 or another. The previous selected thread may be gone
757 from the lists by now, but if it is still around, need
758 to clear the pending follow request. */
e09875d4 759 tp = find_thread_ptid (parent);
e58b0e63
PA
760 if (tp)
761 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
762
763 /* This makes sure we don't try to apply the "Switched
764 over from WAIT_PID" logic above. */
765 nullify_last_target_wait_ptid ();
766
1777feb0 767 /* If we followed the child, switch to it... */
e58b0e63
PA
768 if (follow_child)
769 {
00431a78
PA
770 thread_info *child_thr = find_thread_ptid (child);
771 switch_to_thread (child_thr);
e58b0e63
PA
772
773 /* ... and preserve the stepping state, in case the
774 user was stepping over the fork call. */
775 if (should_resume)
776 {
777 tp = inferior_thread ();
8358c15c
JK
778 tp->control.step_resume_breakpoint
779 = step_resume_breakpoint;
16c381f0
JK
780 tp->control.step_range_start = step_range_start;
781 tp->control.step_range_end = step_range_end;
782 tp->control.step_frame_id = step_frame_id;
186c406b
TT
783 tp->control.exception_resume_breakpoint
784 = exception_resume_breakpoint;
8980e177 785 tp->thread_fsm = thread_fsm;
e58b0e63
PA
786 }
787 else
788 {
789 /* If we get here, it was because we're trying to
790 resume from a fork catchpoint, but, the user
791 has switched threads away from the thread that
792 forked. In that case, the resume command
793 issued is most likely not applicable to the
794 child, so just warn, and refuse to resume. */
3e43a32a 795 warning (_("Not resuming: switched threads "
fd7dcb94 796 "before following fork child."));
e58b0e63
PA
797 }
798
799 /* Reset breakpoints in the child as appropriate. */
800 follow_inferior_reset_breakpoints ();
801 }
e58b0e63
PA
802 }
803 }
804 break;
805 case TARGET_WAITKIND_SPURIOUS:
806 /* Nothing to follow. */
807 break;
808 default:
809 internal_error (__FILE__, __LINE__,
810 "Unexpected pending_follow.kind %d\n",
811 tp->pending_follow.kind);
812 break;
813 }
c906108c 814
e58b0e63 815 return should_resume;
c906108c
SS
816}
817
d83ad864 818static void
6604731b 819follow_inferior_reset_breakpoints (void)
c906108c 820{
4e1c45ea
PA
821 struct thread_info *tp = inferior_thread ();
822
6604731b
DJ
823 /* Was there a step_resume breakpoint? (There was if the user
824 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
825 thread number. Cloned step_resume breakpoints are disabled on
826 creation, so enable it here now that it is associated with the
827 correct thread.
6604731b
DJ
828
829 step_resumes are a form of bp that are made to be per-thread.
830 Since we created the step_resume bp when the parent process
831 was being debugged, and now are switching to the child process,
832 from the breakpoint package's viewpoint, that's a switch of
833 "threads". We must update the bp's notion of which thread
834 it is for, or it'll be ignored when it triggers. */
835
8358c15c 836 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
837 {
838 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
839 tp->control.step_resume_breakpoint->loc->enabled = 1;
840 }
6604731b 841
a1aa2221 842 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 843 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
844 {
845 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
846 tp->control.exception_resume_breakpoint->loc->enabled = 1;
847 }
186c406b 848
6604731b
DJ
849 /* Reinsert all breakpoints in the child. The user may have set
850 breakpoints after catching the fork, in which case those
851 were never set in the child, but only in the parent. This makes
852 sure the inserted breakpoints match the breakpoint list. */
853
854 breakpoint_re_set ();
855 insert_breakpoints ();
c906108c 856}
c906108c 857
6c95b8df
PA
858/* The child has exited or execed: resume threads of the parent the
859 user wanted to be executing. */
860
861static int
862proceed_after_vfork_done (struct thread_info *thread,
863 void *arg)
864{
865 int pid = * (int *) arg;
866
00431a78
PA
867 if (thread->ptid.pid () == pid
868 && thread->state == THREAD_RUNNING
869 && !thread->executing
6c95b8df 870 && !thread->stop_requested
a493e3e2 871 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
872 {
873 if (debug_infrun)
874 fprintf_unfiltered (gdb_stdlog,
875 "infrun: resuming vfork parent thread %s\n",
876 target_pid_to_str (thread->ptid));
877
00431a78 878 switch_to_thread (thread);
70509625 879 clear_proceed_status (0);
64ce06e4 880 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
881 }
882
883 return 0;
884}
885
5ed8105e
PA
886/* Save/restore inferior_ptid, current program space and current
887 inferior. Only use this if the current context points at an exited
888 inferior (and therefore there's no current thread to save). */
889class scoped_restore_exited_inferior
890{
891public:
892 scoped_restore_exited_inferior ()
893 : m_saved_ptid (&inferior_ptid)
894 {}
895
896private:
897 scoped_restore_tmpl<ptid_t> m_saved_ptid;
898 scoped_restore_current_program_space m_pspace;
899 scoped_restore_current_inferior m_inferior;
900};
901
6c95b8df
PA
902/* Called whenever we notice an exec or exit event, to handle
903 detaching or resuming a vfork parent. */
904
905static void
906handle_vfork_child_exec_or_exit (int exec)
907{
908 struct inferior *inf = current_inferior ();
909
910 if (inf->vfork_parent)
911 {
912 int resume_parent = -1;
913
914 /* This exec or exit marks the end of the shared memory region
915 between the parent and the child. If the user wanted to
916 detach from the parent, now is the time. */
917
918 if (inf->vfork_parent->pending_detach)
919 {
920 struct thread_info *tp;
6c95b8df
PA
921 struct program_space *pspace;
922 struct address_space *aspace;
923
1777feb0 924 /* follow-fork child, detach-on-fork on. */
6c95b8df 925
68c9da30
PA
926 inf->vfork_parent->pending_detach = 0;
927
5ed8105e
PA
928 gdb::optional<scoped_restore_exited_inferior>
929 maybe_restore_inferior;
930 gdb::optional<scoped_restore_current_pspace_and_thread>
931 maybe_restore_thread;
932
933 /* If we're handling a child exit, then inferior_ptid points
934 at the inferior's pid, not to a thread. */
f50f4e56 935 if (!exec)
5ed8105e 936 maybe_restore_inferior.emplace ();
f50f4e56 937 else
5ed8105e 938 maybe_restore_thread.emplace ();
6c95b8df
PA
939
940 /* We're letting loose of the parent. */
00431a78
PA
941 tp = any_live_thread_of_inferior (inf->vfork_parent);
942 switch_to_thread (tp);
6c95b8df
PA
943
944 /* We're about to detach from the parent, which implicitly
945 removes breakpoints from its address space. There's a
946 catch here: we want to reuse the spaces for the child,
947 but, parent/child are still sharing the pspace at this
948 point, although the exec in reality makes the kernel give
949 the child a fresh set of new pages. The problem here is
950 that the breakpoints module being unaware of this, would
951 likely chose the child process to write to the parent
952 address space. Swapping the child temporarily away from
953 the spaces has the desired effect. Yes, this is "sort
954 of" a hack. */
955
956 pspace = inf->pspace;
957 aspace = inf->aspace;
958 inf->aspace = NULL;
959 inf->pspace = NULL;
960
f67c0c91 961 if (print_inferior_events)
6c95b8df 962 {
f67c0c91 963 const char *pidstr
f2907e49 964 = target_pid_to_str (ptid_t (inf->vfork_parent->pid));
f67c0c91 965
223ffa71 966 target_terminal::ours_for_output ();
6c95b8df
PA
967
968 if (exec)
6f259a23
DB
969 {
970 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
971 _("[Detaching vfork parent %s "
972 "after child exec]\n"), pidstr);
6f259a23 973 }
6c95b8df 974 else
6f259a23
DB
975 {
976 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
977 _("[Detaching vfork parent %s "
978 "after child exit]\n"), pidstr);
6f259a23 979 }
6c95b8df
PA
980 }
981
6e1e1966 982 target_detach (inf->vfork_parent, 0);
6c95b8df
PA
983
984 /* Put it back. */
985 inf->pspace = pspace;
986 inf->aspace = aspace;
6c95b8df
PA
987 }
988 else if (exec)
989 {
990 /* We're staying attached to the parent, so, really give the
991 child a new address space. */
564b1e3f 992 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
993 inf->aspace = inf->pspace->aspace;
994 inf->removable = 1;
995 set_current_program_space (inf->pspace);
996
997 resume_parent = inf->vfork_parent->pid;
998
999 /* Break the bonds. */
1000 inf->vfork_parent->vfork_child = NULL;
1001 }
1002 else
1003 {
6c95b8df
PA
1004 struct program_space *pspace;
1005
1006 /* If this is a vfork child exiting, then the pspace and
1007 aspaces were shared with the parent. Since we're
1008 reporting the process exit, we'll be mourning all that is
1009 found in the address space, and switching to null_ptid,
1010 preparing to start a new inferior. But, since we don't
1011 want to clobber the parent's address/program spaces, we
1012 go ahead and create a new one for this exiting
1013 inferior. */
1014
5ed8105e
PA
1015 /* Switch to null_ptid while running clone_program_space, so
1016 that clone_program_space doesn't want to read the
1017 selected frame of a dead process. */
1018 scoped_restore restore_ptid
1019 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df
PA
1020
1021 /* This inferior is dead, so avoid giving the breakpoints
1022 module the option to write through to it (cloning a
1023 program space resets breakpoints). */
1024 inf->aspace = NULL;
1025 inf->pspace = NULL;
564b1e3f 1026 pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1027 set_current_program_space (pspace);
1028 inf->removable = 1;
7dcd53a0 1029 inf->symfile_flags = SYMFILE_NO_READ;
6c95b8df
PA
1030 clone_program_space (pspace, inf->vfork_parent->pspace);
1031 inf->pspace = pspace;
1032 inf->aspace = pspace->aspace;
1033
6c95b8df
PA
1034 resume_parent = inf->vfork_parent->pid;
1035 /* Break the bonds. */
1036 inf->vfork_parent->vfork_child = NULL;
1037 }
1038
1039 inf->vfork_parent = NULL;
1040
1041 gdb_assert (current_program_space == inf->pspace);
1042
1043 if (non_stop && resume_parent != -1)
1044 {
1045 /* If the user wanted the parent to be running, let it go
1046 free now. */
5ed8105e 1047 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1048
1049 if (debug_infrun)
3e43a32a
MS
1050 fprintf_unfiltered (gdb_stdlog,
1051 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1052 resume_parent);
1053
1054 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1055 }
1056 }
1057}
1058
eb6c553b 1059/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1060
1061static const char follow_exec_mode_new[] = "new";
1062static const char follow_exec_mode_same[] = "same";
40478521 1063static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1064{
1065 follow_exec_mode_new,
1066 follow_exec_mode_same,
1067 NULL,
1068};
1069
1070static const char *follow_exec_mode_string = follow_exec_mode_same;
1071static void
1072show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1073 struct cmd_list_element *c, const char *value)
1074{
1075 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1076}
1077
ecf45d2c 1078/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1079
c906108c 1080static void
ecf45d2c 1081follow_exec (ptid_t ptid, char *exec_file_target)
c906108c 1082{
95e50b27 1083 struct thread_info *th, *tmp;
6c95b8df 1084 struct inferior *inf = current_inferior ();
e99b03dc 1085 int pid = ptid.pid ();
94585166 1086 ptid_t process_ptid;
7a292a7a 1087
c906108c
SS
1088 /* This is an exec event that we actually wish to pay attention to.
1089 Refresh our symbol table to the newly exec'd program, remove any
1090 momentary bp's, etc.
1091
1092 If there are breakpoints, they aren't really inserted now,
1093 since the exec() transformed our inferior into a fresh set
1094 of instructions.
1095
1096 We want to preserve symbolic breakpoints on the list, since
1097 we have hopes that they can be reset after the new a.out's
1098 symbol table is read.
1099
1100 However, any "raw" breakpoints must be removed from the list
1101 (e.g., the solib bp's), since their address is probably invalid
1102 now.
1103
1104 And, we DON'T want to call delete_breakpoints() here, since
1105 that may write the bp's "shadow contents" (the instruction
1106 value that was overwritten witha TRAP instruction). Since
1777feb0 1107 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1108
1109 mark_breakpoints_out ();
1110
95e50b27
PA
1111 /* The target reports the exec event to the main thread, even if
1112 some other thread does the exec, and even if the main thread was
1113 stopped or already gone. We may still have non-leader threads of
1114 the process on our list. E.g., on targets that don't have thread
1115 exit events (like remote); or on native Linux in non-stop mode if
1116 there were only two threads in the inferior and the non-leader
1117 one is the one that execs (and nothing forces an update of the
1118 thread list up to here). When debugging remotely, it's best to
1119 avoid extra traffic, when possible, so avoid syncing the thread
1120 list with the target, and instead go ahead and delete all threads
1121 of the process but one that reported the event. Note this must
1122 be done before calling update_breakpoints_after_exec, as
1123 otherwise clearing the threads' resources would reference stale
1124 thread breakpoints -- it may have been one of these threads that
1125 stepped across the exec. We could just clear their stepping
1126 states, but as long as we're iterating, might as well delete
1127 them. Deleting them now rather than at the next user-visible
1128 stop provides a nicer sequence of events for user and MI
1129 notifications. */
8a06aea7 1130 ALL_THREADS_SAFE (th, tmp)
e99b03dc 1131 if (th->ptid.pid () == pid && !ptid_equal (th->ptid, ptid))
00431a78 1132 delete_thread (th);
95e50b27
PA
1133
1134 /* We also need to clear any left over stale state for the
1135 leader/event thread. E.g., if there was any step-resume
1136 breakpoint or similar, it's gone now. We cannot truly
1137 step-to-next statement through an exec(). */
1138 th = inferior_thread ();
8358c15c 1139 th->control.step_resume_breakpoint = NULL;
186c406b 1140 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1141 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1142 th->control.step_range_start = 0;
1143 th->control.step_range_end = 0;
c906108c 1144
95e50b27
PA
1145 /* The user may have had the main thread held stopped in the
1146 previous image (e.g., schedlock on, or non-stop). Release
1147 it now. */
a75724bc
PA
1148 th->stop_requested = 0;
1149
95e50b27
PA
1150 update_breakpoints_after_exec ();
1151
1777feb0 1152 /* What is this a.out's name? */
f2907e49 1153 process_ptid = ptid_t (pid);
6c95b8df 1154 printf_unfiltered (_("%s is executing new program: %s\n"),
94585166 1155 target_pid_to_str (process_ptid),
ecf45d2c 1156 exec_file_target);
c906108c
SS
1157
1158 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1159 inferior has essentially been killed & reborn. */
7a292a7a 1160
c906108c 1161 gdb_flush (gdb_stdout);
6ca15a4b
PA
1162
1163 breakpoint_init_inferior (inf_execd);
e85a822c 1164
797bc1cb
TT
1165 gdb::unique_xmalloc_ptr<char> exec_file_host
1166 = exec_file_find (exec_file_target, NULL);
ff862be4 1167
ecf45d2c
SL
1168 /* If we were unable to map the executable target pathname onto a host
1169 pathname, tell the user that. Otherwise GDB's subsequent behavior
1170 is confusing. Maybe it would even be better to stop at this point
1171 so that the user can specify a file manually before continuing. */
1172 if (exec_file_host == NULL)
1173 warning (_("Could not load symbols for executable %s.\n"
1174 "Do you need \"set sysroot\"?"),
1175 exec_file_target);
c906108c 1176
cce9b6bf
PA
1177 /* Reset the shared library package. This ensures that we get a
1178 shlib event when the child reaches "_start", at which point the
1179 dld will have had a chance to initialize the child. */
1180 /* Also, loading a symbol file below may trigger symbol lookups, and
1181 we don't want those to be satisfied by the libraries of the
1182 previous incarnation of this process. */
1183 no_shared_libraries (NULL, 0);
1184
6c95b8df
PA
1185 if (follow_exec_mode_string == follow_exec_mode_new)
1186 {
6c95b8df
PA
1187 /* The user wants to keep the old inferior and program spaces
1188 around. Create a new fresh one, and switch to it. */
1189
17d8546e
DB
1190 /* Do exit processing for the original inferior before adding
1191 the new inferior so we don't have two active inferiors with
1192 the same ptid, which can confuse find_inferior_ptid. */
057302ce 1193 exit_inferior_silent (current_inferior ());
17d8546e 1194
94585166
DB
1195 inf = add_inferior_with_spaces ();
1196 inf->pid = pid;
ecf45d2c 1197 target_follow_exec (inf, exec_file_target);
6c95b8df
PA
1198
1199 set_current_inferior (inf);
94585166 1200 set_current_program_space (inf->pspace);
6c95b8df 1201 }
9107fc8d
PA
1202 else
1203 {
1204 /* The old description may no longer be fit for the new image.
1205 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1206 old description; we'll read a new one below. No need to do
1207 this on "follow-exec-mode new", as the old inferior stays
1208 around (its description is later cleared/refetched on
1209 restart). */
1210 target_clear_description ();
1211 }
6c95b8df
PA
1212
1213 gdb_assert (current_program_space == inf->pspace);
1214
ecf45d2c
SL
1215 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1216 because the proper displacement for a PIE (Position Independent
1217 Executable) main symbol file will only be computed by
1218 solib_create_inferior_hook below. breakpoint_re_set would fail
1219 to insert the breakpoints with the zero displacement. */
797bc1cb 1220 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1221
9107fc8d
PA
1222 /* If the target can specify a description, read it. Must do this
1223 after flipping to the new executable (because the target supplied
1224 description must be compatible with the executable's
1225 architecture, and the old executable may e.g., be 32-bit, while
1226 the new one 64-bit), and before anything involving memory or
1227 registers. */
1228 target_find_description ();
1229
bf93d7ba
SM
1230 /* The add_thread call ends up reading registers, so do it after updating the
1231 target description. */
1232 if (follow_exec_mode_string == follow_exec_mode_new)
1233 add_thread (ptid);
1234
268a4a75 1235 solib_create_inferior_hook (0);
c906108c 1236
4efc6507
DE
1237 jit_inferior_created_hook ();
1238
c1e56572
JK
1239 breakpoint_re_set ();
1240
c906108c
SS
1241 /* Reinsert all breakpoints. (Those which were symbolic have
1242 been reset to the proper address in the new a.out, thanks
1777feb0 1243 to symbol_file_command...). */
c906108c
SS
1244 insert_breakpoints ();
1245
1246 /* The next resume of this inferior should bring it to the shlib
1247 startup breakpoints. (If the user had also set bp's on
1248 "main" from the old (parent) process, then they'll auto-
1777feb0 1249 matically get reset there in the new process.). */
c906108c
SS
1250}
1251
c2829269
PA
1252/* The queue of threads that need to do a step-over operation to get
1253 past e.g., a breakpoint. What technique is used to step over the
1254 breakpoint/watchpoint does not matter -- all threads end up in the
1255 same queue, to maintain rough temporal order of execution, in order
1256 to avoid starvation, otherwise, we could e.g., find ourselves
1257 constantly stepping the same couple threads past their breakpoints
1258 over and over, if the single-step finish fast enough. */
1259struct thread_info *step_over_queue_head;
1260
6c4cfb24
PA
1261/* Bit flags indicating what the thread needs to step over. */
1262
8d297bbf 1263enum step_over_what_flag
6c4cfb24
PA
1264 {
1265 /* Step over a breakpoint. */
1266 STEP_OVER_BREAKPOINT = 1,
1267
1268 /* Step past a non-continuable watchpoint, in order to let the
1269 instruction execute so we can evaluate the watchpoint
1270 expression. */
1271 STEP_OVER_WATCHPOINT = 2
1272 };
8d297bbf 1273DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1274
963f9c80 1275/* Info about an instruction that is being stepped over. */
31e77af2
PA
1276
1277struct step_over_info
1278{
963f9c80
PA
1279 /* If we're stepping past a breakpoint, this is the address space
1280 and address of the instruction the breakpoint is set at. We'll
1281 skip inserting all breakpoints here. Valid iff ASPACE is
1282 non-NULL. */
8b86c959 1283 const address_space *aspace;
31e77af2 1284 CORE_ADDR address;
963f9c80
PA
1285
1286 /* The instruction being stepped over triggers a nonsteppable
1287 watchpoint. If true, we'll skip inserting watchpoints. */
1288 int nonsteppable_watchpoint_p;
21edc42f
YQ
1289
1290 /* The thread's global number. */
1291 int thread;
31e77af2
PA
1292};
1293
1294/* The step-over info of the location that is being stepped over.
1295
1296 Note that with async/breakpoint always-inserted mode, a user might
1297 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1298 being stepped over. As setting a new breakpoint inserts all
1299 breakpoints, we need to make sure the breakpoint being stepped over
1300 isn't inserted then. We do that by only clearing the step-over
1301 info when the step-over is actually finished (or aborted).
1302
1303 Presently GDB can only step over one breakpoint at any given time.
1304 Given threads that can't run code in the same address space as the
1305 breakpoint's can't really miss the breakpoint, GDB could be taught
1306 to step-over at most one breakpoint per address space (so this info
1307 could move to the address space object if/when GDB is extended).
1308 The set of breakpoints being stepped over will normally be much
1309 smaller than the set of all breakpoints, so a flag in the
1310 breakpoint location structure would be wasteful. A separate list
1311 also saves complexity and run-time, as otherwise we'd have to go
1312 through all breakpoint locations clearing their flag whenever we
1313 start a new sequence. Similar considerations weigh against storing
1314 this info in the thread object. Plus, not all step overs actually
1315 have breakpoint locations -- e.g., stepping past a single-step
1316 breakpoint, or stepping to complete a non-continuable
1317 watchpoint. */
1318static struct step_over_info step_over_info;
1319
1320/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1321 stepping over.
1322 N.B. We record the aspace and address now, instead of say just the thread,
1323 because when we need the info later the thread may be running. */
31e77af2
PA
1324
1325static void
8b86c959 1326set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1327 int nonsteppable_watchpoint_p,
1328 int thread)
31e77af2
PA
1329{
1330 step_over_info.aspace = aspace;
1331 step_over_info.address = address;
963f9c80 1332 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1333 step_over_info.thread = thread;
31e77af2
PA
1334}
1335
1336/* Called when we're not longer stepping over a breakpoint / an
1337 instruction, so all breakpoints are free to be (re)inserted. */
1338
1339static void
1340clear_step_over_info (void)
1341{
372316f1
PA
1342 if (debug_infrun)
1343 fprintf_unfiltered (gdb_stdlog,
1344 "infrun: clear_step_over_info\n");
31e77af2
PA
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
963f9c80 1347 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1348 step_over_info.thread = -1;
31e77af2
PA
1349}
1350
7f89fd65 1351/* See infrun.h. */
31e77af2
PA
1352
1353int
1354stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356{
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361}
1362
963f9c80
PA
1363/* See infrun.h. */
1364
21edc42f
YQ
1365int
1366thread_is_stepping_over_breakpoint (int thread)
1367{
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370}
1371
1372/* See infrun.h. */
1373
963f9c80
PA
1374int
1375stepping_past_nonsteppable_watchpoint (void)
1376{
1377 return step_over_info.nonsteppable_watchpoint_p;
1378}
1379
6cc83d2a
PA
1380/* Returns true if step-over info is valid. */
1381
1382static int
1383step_over_info_valid_p (void)
1384{
963f9c80
PA
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1387}
1388
c906108c 1389\f
237fc4c9
PA
1390/* Displaced stepping. */
1391
1392/* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfuly single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
237fc4c9
PA
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
cfba9872
SM
1476/* Default destructor for displaced_step_closure. */
1477
1478displaced_step_closure::~displaced_step_closure () = default;
1479
fc1cf338
PA
1480/* Per-inferior displaced stepping state. */
1481struct displaced_step_inferior_state
1482{
1483 /* Pointer to next in linked list. */
1484 struct displaced_step_inferior_state *next;
1485
1486 /* The process this displaced step state refers to. */
00431a78 1487 inferior *inf;
fc1cf338 1488
3fc8eb30
PA
1489 /* True if preparing a displaced step ever failed. If so, we won't
1490 try displaced stepping for this inferior again. */
1491 int failed_before;
1492
00431a78 1493 /* If this is not nullptr, this is the thread carrying out a
fc1cf338
PA
1494 displaced single-step in process PID. This thread's state will
1495 require fixing up once it has completed its step. */
00431a78 1496 thread_info *step_thread;
fc1cf338
PA
1497
1498 /* The architecture the thread had when we stepped it. */
1499 struct gdbarch *step_gdbarch;
1500
1501 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1502 for post-step cleanup. */
1503 struct displaced_step_closure *step_closure;
1504
1505 /* The address of the original instruction, and the copy we
1506 made. */
1507 CORE_ADDR step_original, step_copy;
1508
1509 /* Saved contents of copy area. */
1510 gdb_byte *step_saved_copy;
1511};
1512
1513/* The list of states of processes involved in displaced stepping
1514 presently. */
1515static struct displaced_step_inferior_state *displaced_step_inferior_states;
1516
1517/* Get the displaced stepping state of process PID. */
1518
1519static struct displaced_step_inferior_state *
00431a78 1520get_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1521{
1522 struct displaced_step_inferior_state *state;
1523
1524 for (state = displaced_step_inferior_states;
1525 state != NULL;
1526 state = state->next)
00431a78 1527 if (state->inf == inf)
fc1cf338
PA
1528 return state;
1529
1530 return NULL;
1531}
1532
372316f1
PA
1533/* Returns true if any inferior has a thread doing a displaced
1534 step. */
1535
1536static int
1537displaced_step_in_progress_any_inferior (void)
1538{
1539 struct displaced_step_inferior_state *state;
1540
1541 for (state = displaced_step_inferior_states;
1542 state != NULL;
1543 state = state->next)
00431a78 1544 if (state->step_thread != nullptr)
372316f1
PA
1545 return 1;
1546
1547 return 0;
1548}
1549
c0987663
YQ
1550/* Return true if thread represented by PTID is doing a displaced
1551 step. */
1552
1553static int
00431a78 1554displaced_step_in_progress_thread (thread_info *thread)
c0987663
YQ
1555{
1556 struct displaced_step_inferior_state *displaced;
1557
00431a78 1558 gdb_assert (thread != NULL);
c0987663 1559
00431a78 1560 displaced = get_displaced_stepping_state (thread->inf);
c0987663 1561
00431a78 1562 return (displaced != NULL && displaced->step_thread == thread);
c0987663
YQ
1563}
1564
8f572e5c
PA
1565/* Return true if process PID has a thread doing a displaced step. */
1566
1567static int
00431a78 1568displaced_step_in_progress (inferior *inf)
8f572e5c
PA
1569{
1570 struct displaced_step_inferior_state *displaced;
1571
00431a78
PA
1572 displaced = get_displaced_stepping_state (inf);
1573 if (displaced != NULL && displaced->step_thread != nullptr)
8f572e5c
PA
1574 return 1;
1575
1576 return 0;
1577}
1578
fc1cf338
PA
1579/* Add a new displaced stepping state for process PID to the displaced
1580 stepping state list, or return a pointer to an already existing
1581 entry, if it already exists. Never returns NULL. */
1582
1583static struct displaced_step_inferior_state *
00431a78 1584add_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1585{
1586 struct displaced_step_inferior_state *state;
1587
1588 for (state = displaced_step_inferior_states;
1589 state != NULL;
1590 state = state->next)
00431a78 1591 if (state->inf == inf)
fc1cf338 1592 return state;
237fc4c9 1593
8d749320 1594 state = XCNEW (struct displaced_step_inferior_state);
00431a78 1595 state->inf = inf;
fc1cf338
PA
1596 state->next = displaced_step_inferior_states;
1597 displaced_step_inferior_states = state;
237fc4c9 1598
fc1cf338
PA
1599 return state;
1600}
1601
a42244db
YQ
1602/* If inferior is in displaced stepping, and ADDR equals to starting address
1603 of copy area, return corresponding displaced_step_closure. Otherwise,
1604 return NULL. */
1605
1606struct displaced_step_closure*
1607get_displaced_step_closure_by_addr (CORE_ADDR addr)
1608{
1609 struct displaced_step_inferior_state *displaced
00431a78 1610 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1611
1612 /* If checking the mode of displaced instruction in copy area. */
00431a78
PA
1613 if (displaced != NULL
1614 && displaced->step_thread != nullptr
1615 && displaced->step_copy == addr)
a42244db
YQ
1616 return displaced->step_closure;
1617
1618 return NULL;
1619}
1620
fc1cf338 1621/* Remove the displaced stepping state of process PID. */
237fc4c9 1622
fc1cf338 1623static void
00431a78 1624remove_displaced_stepping_state (inferior *inf)
fc1cf338
PA
1625{
1626 struct displaced_step_inferior_state *it, **prev_next_p;
237fc4c9 1627
00431a78 1628 gdb_assert (inf != nullptr);
fc1cf338
PA
1629
1630 it = displaced_step_inferior_states;
1631 prev_next_p = &displaced_step_inferior_states;
1632 while (it)
1633 {
00431a78 1634 if (it->inf == inf)
fc1cf338
PA
1635 {
1636 *prev_next_p = it->next;
1637 xfree (it);
1638 return;
1639 }
1640
1641 prev_next_p = &it->next;
1642 it = *prev_next_p;
1643 }
1644}
1645
1646static void
1647infrun_inferior_exit (struct inferior *inf)
1648{
00431a78 1649 remove_displaced_stepping_state (inf);
fc1cf338 1650}
237fc4c9 1651
fff08868
HZ
1652/* If ON, and the architecture supports it, GDB will use displaced
1653 stepping to step over breakpoints. If OFF, or if the architecture
1654 doesn't support it, GDB will instead use the traditional
1655 hold-and-step approach. If AUTO (which is the default), GDB will
1656 decide which technique to use to step over breakpoints depending on
1657 which of all-stop or non-stop mode is active --- displaced stepping
1658 in non-stop mode; hold-and-step in all-stop mode. */
1659
72d0e2c5 1660static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1661
237fc4c9
PA
1662static void
1663show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1664 struct cmd_list_element *c,
1665 const char *value)
1666{
72d0e2c5 1667 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1668 fprintf_filtered (file,
1669 _("Debugger's willingness to use displaced stepping "
1670 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1671 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1672 else
3e43a32a
MS
1673 fprintf_filtered (file,
1674 _("Debugger's willingness to use displaced stepping "
1675 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1676}
1677
fff08868 1678/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1679 over breakpoints of thread TP. */
fff08868 1680
237fc4c9 1681static int
3fc8eb30 1682use_displaced_stepping (struct thread_info *tp)
237fc4c9 1683{
00431a78 1684 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 1685 struct gdbarch *gdbarch = regcache->arch ();
3fc8eb30
PA
1686 struct displaced_step_inferior_state *displaced_state;
1687
00431a78 1688 displaced_state = get_displaced_stepping_state (tp->inf);
3fc8eb30 1689
fbea99ea
PA
1690 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1691 && target_is_non_stop_p ())
72d0e2c5 1692 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
96429cc8 1693 && gdbarch_displaced_step_copy_insn_p (gdbarch)
3fc8eb30
PA
1694 && find_record_target () == NULL
1695 && (displaced_state == NULL
1696 || !displaced_state->failed_before));
237fc4c9
PA
1697}
1698
1699/* Clean out any stray displaced stepping state. */
1700static void
fc1cf338 1701displaced_step_clear (struct displaced_step_inferior_state *displaced)
237fc4c9
PA
1702{
1703 /* Indicate that there is no cleanup pending. */
00431a78 1704 displaced->step_thread = nullptr;
237fc4c9 1705
cfba9872 1706 delete displaced->step_closure;
6d45d4b4 1707 displaced->step_closure = NULL;
237fc4c9
PA
1708}
1709
1710static void
fc1cf338 1711displaced_step_clear_cleanup (void *arg)
237fc4c9 1712{
9a3c8263
SM
1713 struct displaced_step_inferior_state *state
1714 = (struct displaced_step_inferior_state *) arg;
fc1cf338
PA
1715
1716 displaced_step_clear (state);
237fc4c9
PA
1717}
1718
1719/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1720void
1721displaced_step_dump_bytes (struct ui_file *file,
1722 const gdb_byte *buf,
1723 size_t len)
1724{
1725 int i;
1726
1727 for (i = 0; i < len; i++)
1728 fprintf_unfiltered (file, "%02x ", buf[i]);
1729 fputs_unfiltered ("\n", file);
1730}
1731
1732/* Prepare to single-step, using displaced stepping.
1733
1734 Note that we cannot use displaced stepping when we have a signal to
1735 deliver. If we have a signal to deliver and an instruction to step
1736 over, then after the step, there will be no indication from the
1737 target whether the thread entered a signal handler or ignored the
1738 signal and stepped over the instruction successfully --- both cases
1739 result in a simple SIGTRAP. In the first case we mustn't do a
1740 fixup, and in the second case we must --- but we can't tell which.
1741 Comments in the code for 'random signals' in handle_inferior_event
1742 explain how we handle this case instead.
1743
1744 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1745 stepped now; 0 if displaced stepping this thread got queued; or -1
1746 if this instruction can't be displaced stepped. */
1747
237fc4c9 1748static int
00431a78 1749displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1750{
2989a365 1751 struct cleanup *ignore_cleanups;
00431a78 1752 regcache *regcache = get_thread_regcache (tp);
ac7936df 1753 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1754 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1755 CORE_ADDR original, copy;
1756 ULONGEST len;
1757 struct displaced_step_closure *closure;
fc1cf338 1758 struct displaced_step_inferior_state *displaced;
9e529e1d 1759 int status;
237fc4c9
PA
1760
1761 /* We should never reach this function if the architecture does not
1762 support displaced stepping. */
1763 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1764
c2829269
PA
1765 /* Nor if the thread isn't meant to step over a breakpoint. */
1766 gdb_assert (tp->control.trap_expected);
1767
c1e36e3e
PA
1768 /* Disable range stepping while executing in the scratch pad. We
1769 want a single-step even if executing the displaced instruction in
1770 the scratch buffer lands within the stepping range (e.g., a
1771 jump/branch). */
1772 tp->control.may_range_step = 0;
1773
fc1cf338
PA
1774 /* We have to displaced step one thread at a time, as we only have
1775 access to a single scratch space per inferior. */
237fc4c9 1776
00431a78 1777 displaced = add_displaced_stepping_state (tp->inf);
fc1cf338 1778
00431a78 1779 if (displaced->step_thread != nullptr)
237fc4c9
PA
1780 {
1781 /* Already waiting for a displaced step to finish. Defer this
1782 request and place in queue. */
237fc4c9
PA
1783
1784 if (debug_displaced)
1785 fprintf_unfiltered (gdb_stdlog,
c2829269 1786 "displaced: deferring step of %s\n",
00431a78 1787 target_pid_to_str (tp->ptid));
237fc4c9 1788
c2829269 1789 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1790 return 0;
1791 }
1792 else
1793 {
1794 if (debug_displaced)
1795 fprintf_unfiltered (gdb_stdlog,
1796 "displaced: stepping %s now\n",
00431a78 1797 target_pid_to_str (tp->ptid));
237fc4c9
PA
1798 }
1799
fc1cf338 1800 displaced_step_clear (displaced);
237fc4c9 1801
00431a78
PA
1802 scoped_restore_current_thread restore_thread;
1803
1804 switch_to_thread (tp);
ad53cd71 1805
515630c5 1806 original = regcache_read_pc (regcache);
237fc4c9
PA
1807
1808 copy = gdbarch_displaced_step_location (gdbarch);
1809 len = gdbarch_max_insn_length (gdbarch);
1810
d35ae833
PA
1811 if (breakpoint_in_range_p (aspace, copy, len))
1812 {
1813 /* There's a breakpoint set in the scratch pad location range
1814 (which is usually around the entry point). We'd either
1815 install it before resuming, which would overwrite/corrupt the
1816 scratch pad, or if it was already inserted, this displaced
1817 step would overwrite it. The latter is OK in the sense that
1818 we already assume that no thread is going to execute the code
1819 in the scratch pad range (after initial startup) anyway, but
1820 the former is unacceptable. Simply punt and fallback to
1821 stepping over this breakpoint in-line. */
1822 if (debug_displaced)
1823 {
1824 fprintf_unfiltered (gdb_stdlog,
1825 "displaced: breakpoint set in scratch pad. "
1826 "Stepping over breakpoint in-line instead.\n");
1827 }
1828
d35ae833
PA
1829 return -1;
1830 }
1831
237fc4c9 1832 /* Save the original contents of the copy area. */
224c3ddb 1833 displaced->step_saved_copy = (gdb_byte *) xmalloc (len);
ad53cd71 1834 ignore_cleanups = make_cleanup (free_current_contents,
fc1cf338 1835 &displaced->step_saved_copy);
9e529e1d
JK
1836 status = target_read_memory (copy, displaced->step_saved_copy, len);
1837 if (status != 0)
1838 throw_error (MEMORY_ERROR,
1839 _("Error accessing memory address %s (%s) for "
1840 "displaced-stepping scratch space."),
1841 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1842 if (debug_displaced)
1843 {
5af949e3
UW
1844 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1845 paddress (gdbarch, copy));
fc1cf338
PA
1846 displaced_step_dump_bytes (gdb_stdlog,
1847 displaced->step_saved_copy,
1848 len);
237fc4c9
PA
1849 };
1850
1851 closure = gdbarch_displaced_step_copy_insn (gdbarch,
ad53cd71 1852 original, copy, regcache);
7f03bd92
PA
1853 if (closure == NULL)
1854 {
1855 /* The architecture doesn't know how or want to displaced step
1856 this instruction or instruction sequence. Fallback to
1857 stepping over the breakpoint in-line. */
2989a365 1858 do_cleanups (ignore_cleanups);
7f03bd92
PA
1859 return -1;
1860 }
237fc4c9 1861
9f5a595d
UW
1862 /* Save the information we need to fix things up if the step
1863 succeeds. */
00431a78 1864 displaced->step_thread = tp;
fc1cf338
PA
1865 displaced->step_gdbarch = gdbarch;
1866 displaced->step_closure = closure;
1867 displaced->step_original = original;
1868 displaced->step_copy = copy;
9f5a595d 1869
fc1cf338 1870 make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9
PA
1871
1872 /* Resume execution at the copy. */
515630c5 1873 regcache_write_pc (regcache, copy);
237fc4c9 1874
ad53cd71
PA
1875 discard_cleanups (ignore_cleanups);
1876
237fc4c9 1877 if (debug_displaced)
5af949e3
UW
1878 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1879 paddress (gdbarch, copy));
237fc4c9 1880
237fc4c9
PA
1881 return 1;
1882}
1883
3fc8eb30
PA
1884/* Wrapper for displaced_step_prepare_throw that disabled further
1885 attempts at displaced stepping if we get a memory error. */
1886
1887static int
00431a78 1888displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1889{
1890 int prepared = -1;
1891
1892 TRY
1893 {
00431a78 1894 prepared = displaced_step_prepare_throw (thread);
3fc8eb30
PA
1895 }
1896 CATCH (ex, RETURN_MASK_ERROR)
1897 {
1898 struct displaced_step_inferior_state *displaced_state;
1899
16b41842
PA
1900 if (ex.error != MEMORY_ERROR
1901 && ex.error != NOT_SUPPORTED_ERROR)
3fc8eb30
PA
1902 throw_exception (ex);
1903
1904 if (debug_infrun)
1905 {
1906 fprintf_unfiltered (gdb_stdlog,
1907 "infrun: disabling displaced stepping: %s\n",
1908 ex.message);
1909 }
1910
1911 /* Be verbose if "set displaced-stepping" is "on", silent if
1912 "auto". */
1913 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1914 {
fd7dcb94 1915 warning (_("disabling displaced stepping: %s"),
3fc8eb30
PA
1916 ex.message);
1917 }
1918
1919 /* Disable further displaced stepping attempts. */
1920 displaced_state
00431a78 1921 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1922 displaced_state->failed_before = 1;
1923 }
1924 END_CATCH
1925
1926 return prepared;
1927}
1928
237fc4c9 1929static void
3e43a32a
MS
1930write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1931 const gdb_byte *myaddr, int len)
237fc4c9 1932{
2989a365 1933 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1934
237fc4c9
PA
1935 inferior_ptid = ptid;
1936 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1937}
1938
e2d96639
YQ
1939/* Restore the contents of the copy area for thread PTID. */
1940
1941static void
1942displaced_step_restore (struct displaced_step_inferior_state *displaced,
1943 ptid_t ptid)
1944{
1945 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1946
1947 write_memory_ptid (ptid, displaced->step_copy,
1948 displaced->step_saved_copy, len);
1949 if (debug_displaced)
1950 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1951 target_pid_to_str (ptid),
1952 paddress (displaced->step_gdbarch,
1953 displaced->step_copy));
1954}
1955
372316f1
PA
1956/* If we displaced stepped an instruction successfully, adjust
1957 registers and memory to yield the same effect the instruction would
1958 have had if we had executed it at its original address, and return
1959 1. If the instruction didn't complete, relocate the PC and return
1960 -1. If the thread wasn't displaced stepping, return 0. */
1961
1962static int
00431a78 1963displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9
PA
1964{
1965 struct cleanup *old_cleanups;
fc1cf338 1966 struct displaced_step_inferior_state *displaced
00431a78 1967 = get_displaced_stepping_state (event_thread->inf);
372316f1 1968 int ret;
fc1cf338
PA
1969
1970 /* Was any thread of this process doing a displaced step? */
1971 if (displaced == NULL)
372316f1 1972 return 0;
237fc4c9 1973
00431a78
PA
1974 /* Was this event for the thread we displaced? */
1975 if (displaced->step_thread != event_thread)
372316f1 1976 return 0;
237fc4c9 1977
fc1cf338 1978 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
237fc4c9 1979
00431a78 1980 displaced_step_restore (displaced, displaced->step_thread->ptid);
237fc4c9 1981
cb71640d
PA
1982 /* Fixup may need to read memory/registers. Switch to the thread
1983 that we're fixing up. Also, target_stopped_by_watchpoint checks
1984 the current thread. */
00431a78 1985 switch_to_thread (event_thread);
cb71640d 1986
237fc4c9 1987 /* Did the instruction complete successfully? */
cb71640d
PA
1988 if (signal == GDB_SIGNAL_TRAP
1989 && !(target_stopped_by_watchpoint ()
1990 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1991 || target_have_steppable_watchpoint)))
237fc4c9
PA
1992 {
1993 /* Fix up the resulting state. */
fc1cf338
PA
1994 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1995 displaced->step_closure,
1996 displaced->step_original,
1997 displaced->step_copy,
00431a78 1998 get_thread_regcache (displaced->step_thread));
372316f1 1999 ret = 1;
237fc4c9
PA
2000 }
2001 else
2002 {
2003 /* Since the instruction didn't complete, all we can do is
2004 relocate the PC. */
00431a78 2005 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 2006 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 2007
fc1cf338 2008 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 2009 regcache_write_pc (regcache, pc);
372316f1 2010 ret = -1;
237fc4c9
PA
2011 }
2012
2013 do_cleanups (old_cleanups);
2014
00431a78 2015 displaced->step_thread = nullptr;
372316f1
PA
2016
2017 return ret;
c2829269 2018}
1c5cfe86 2019
4d9d9d04
PA
2020/* Data to be passed around while handling an event. This data is
2021 discarded between events. */
2022struct execution_control_state
2023{
2024 ptid_t ptid;
2025 /* The thread that got the event, if this was a thread event; NULL
2026 otherwise. */
2027 struct thread_info *event_thread;
2028
2029 struct target_waitstatus ws;
2030 int stop_func_filled_in;
2031 CORE_ADDR stop_func_start;
2032 CORE_ADDR stop_func_end;
2033 const char *stop_func_name;
2034 int wait_some_more;
2035
2036 /* True if the event thread hit the single-step breakpoint of
2037 another thread. Thus the event doesn't cause a stop, the thread
2038 needs to be single-stepped past the single-step breakpoint before
2039 we can switch back to the original stepping thread. */
2040 int hit_singlestep_breakpoint;
2041};
2042
2043/* Clear ECS and set it to point at TP. */
c2829269
PA
2044
2045static void
4d9d9d04
PA
2046reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
2047{
2048 memset (ecs, 0, sizeof (*ecs));
2049 ecs->event_thread = tp;
2050 ecs->ptid = tp->ptid;
2051}
2052
2053static void keep_going_pass_signal (struct execution_control_state *ecs);
2054static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 2055static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 2056static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
2057
2058/* Are there any pending step-over requests? If so, run all we can
2059 now and return true. Otherwise, return false. */
2060
2061static int
c2829269
PA
2062start_step_over (void)
2063{
2064 struct thread_info *tp, *next;
2065
372316f1
PA
2066 /* Don't start a new step-over if we already have an in-line
2067 step-over operation ongoing. */
2068 if (step_over_info_valid_p ())
2069 return 0;
2070
c2829269 2071 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 2072 {
4d9d9d04
PA
2073 struct execution_control_state ecss;
2074 struct execution_control_state *ecs = &ecss;
8d297bbf 2075 step_over_what step_what;
372316f1 2076 int must_be_in_line;
c2829269 2077
c65d6b55
PA
2078 gdb_assert (!tp->stop_requested);
2079
c2829269 2080 next = thread_step_over_chain_next (tp);
237fc4c9 2081
c2829269
PA
2082 /* If this inferior already has a displaced step in process,
2083 don't start a new one. */
00431a78 2084 if (displaced_step_in_progress (tp->inf))
c2829269
PA
2085 continue;
2086
372316f1
PA
2087 step_what = thread_still_needs_step_over (tp);
2088 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
2089 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 2090 && !use_displaced_stepping (tp)));
372316f1
PA
2091
2092 /* We currently stop all threads of all processes to step-over
2093 in-line. If we need to start a new in-line step-over, let
2094 any pending displaced steps finish first. */
2095 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2096 return 0;
2097
c2829269
PA
2098 thread_step_over_chain_remove (tp);
2099
2100 if (step_over_queue_head == NULL)
2101 {
2102 if (debug_infrun)
2103 fprintf_unfiltered (gdb_stdlog,
2104 "infrun: step-over queue now empty\n");
2105 }
2106
372316f1
PA
2107 if (tp->control.trap_expected
2108 || tp->resumed
2109 || tp->executing)
ad53cd71 2110 {
4d9d9d04
PA
2111 internal_error (__FILE__, __LINE__,
2112 "[%s] has inconsistent state: "
372316f1 2113 "trap_expected=%d, resumed=%d, executing=%d\n",
4d9d9d04
PA
2114 target_pid_to_str (tp->ptid),
2115 tp->control.trap_expected,
372316f1 2116 tp->resumed,
4d9d9d04 2117 tp->executing);
ad53cd71 2118 }
1c5cfe86 2119
4d9d9d04
PA
2120 if (debug_infrun)
2121 fprintf_unfiltered (gdb_stdlog,
2122 "infrun: resuming [%s] for step-over\n",
2123 target_pid_to_str (tp->ptid));
2124
2125 /* keep_going_pass_signal skips the step-over if the breakpoint
2126 is no longer inserted. In all-stop, we want to keep looking
2127 for a thread that needs a step-over instead of resuming TP,
2128 because we wouldn't be able to resume anything else until the
2129 target stops again. In non-stop, the resume always resumes
2130 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2131 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2132 continue;
8550d3b3 2133
00431a78 2134 switch_to_thread (tp);
4d9d9d04
PA
2135 reset_ecs (ecs, tp);
2136 keep_going_pass_signal (ecs);
1c5cfe86 2137
4d9d9d04
PA
2138 if (!ecs->wait_some_more)
2139 error (_("Command aborted."));
1c5cfe86 2140
372316f1
PA
2141 gdb_assert (tp->resumed);
2142
2143 /* If we started a new in-line step-over, we're done. */
2144 if (step_over_info_valid_p ())
2145 {
2146 gdb_assert (tp->control.trap_expected);
2147 return 1;
2148 }
2149
fbea99ea 2150 if (!target_is_non_stop_p ())
4d9d9d04
PA
2151 {
2152 /* On all-stop, shouldn't have resumed unless we needed a
2153 step over. */
2154 gdb_assert (tp->control.trap_expected
2155 || tp->step_after_step_resume_breakpoint);
2156
2157 /* With remote targets (at least), in all-stop, we can't
2158 issue any further remote commands until the program stops
2159 again. */
2160 return 1;
1c5cfe86 2161 }
c2829269 2162
4d9d9d04
PA
2163 /* Either the thread no longer needed a step-over, or a new
2164 displaced stepping sequence started. Even in the latter
2165 case, continue looking. Maybe we can also start another
2166 displaced step on a thread of other process. */
237fc4c9 2167 }
4d9d9d04
PA
2168
2169 return 0;
237fc4c9
PA
2170}
2171
5231c1fd
PA
2172/* Update global variables holding ptids to hold NEW_PTID if they were
2173 holding OLD_PTID. */
2174static void
2175infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2176{
fc1cf338 2177 struct displaced_step_inferior_state *displaced;
5231c1fd
PA
2178
2179 if (ptid_equal (inferior_ptid, old_ptid))
2180 inferior_ptid = new_ptid;
5231c1fd
PA
2181}
2182
237fc4c9 2183\f
c906108c 2184
53904c9e
AC
2185static const char schedlock_off[] = "off";
2186static const char schedlock_on[] = "on";
2187static const char schedlock_step[] = "step";
f2665db5 2188static const char schedlock_replay[] = "replay";
40478521 2189static const char *const scheduler_enums[] = {
ef346e04
AC
2190 schedlock_off,
2191 schedlock_on,
2192 schedlock_step,
f2665db5 2193 schedlock_replay,
ef346e04
AC
2194 NULL
2195};
f2665db5 2196static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2197static void
2198show_scheduler_mode (struct ui_file *file, int from_tty,
2199 struct cmd_list_element *c, const char *value)
2200{
3e43a32a
MS
2201 fprintf_filtered (file,
2202 _("Mode for locking scheduler "
2203 "during execution is \"%s\".\n"),
920d2a44
AC
2204 value);
2205}
c906108c
SS
2206
2207static void
eb4c3f4a 2208set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2209{
eefe576e
AC
2210 if (!target_can_lock_scheduler)
2211 {
2212 scheduler_mode = schedlock_off;
2213 error (_("Target '%s' cannot support this command."), target_shortname);
2214 }
c906108c
SS
2215}
2216
d4db2f36
PA
2217/* True if execution commands resume all threads of all processes by
2218 default; otherwise, resume only threads of the current inferior
2219 process. */
2220int sched_multi = 0;
2221
2facfe5c
DD
2222/* Try to setup for software single stepping over the specified location.
2223 Return 1 if target_resume() should use hardware single step.
2224
2225 GDBARCH the current gdbarch.
2226 PC the location to step over. */
2227
2228static int
2229maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2230{
2231 int hw_step = 1;
2232
f02253f1 2233 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2234 && gdbarch_software_single_step_p (gdbarch))
2235 hw_step = !insert_single_step_breakpoints (gdbarch);
2236
2facfe5c
DD
2237 return hw_step;
2238}
c906108c 2239
f3263aa4
PA
2240/* See infrun.h. */
2241
09cee04b
PA
2242ptid_t
2243user_visible_resume_ptid (int step)
2244{
f3263aa4 2245 ptid_t resume_ptid;
09cee04b 2246
09cee04b
PA
2247 if (non_stop)
2248 {
2249 /* With non-stop mode on, threads are always handled
2250 individually. */
2251 resume_ptid = inferior_ptid;
2252 }
2253 else if ((scheduler_mode == schedlock_on)
03d46957 2254 || (scheduler_mode == schedlock_step && step))
09cee04b 2255 {
f3263aa4
PA
2256 /* User-settable 'scheduler' mode requires solo thread
2257 resume. */
09cee04b
PA
2258 resume_ptid = inferior_ptid;
2259 }
f2665db5
MM
2260 else if ((scheduler_mode == schedlock_replay)
2261 && target_record_will_replay (minus_one_ptid, execution_direction))
2262 {
2263 /* User-settable 'scheduler' mode requires solo thread resume in replay
2264 mode. */
2265 resume_ptid = inferior_ptid;
2266 }
f3263aa4
PA
2267 else if (!sched_multi && target_supports_multi_process ())
2268 {
2269 /* Resume all threads of the current process (and none of other
2270 processes). */
e99b03dc 2271 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2272 }
2273 else
2274 {
2275 /* Resume all threads of all processes. */
2276 resume_ptid = RESUME_ALL;
2277 }
09cee04b
PA
2278
2279 return resume_ptid;
2280}
2281
fbea99ea
PA
2282/* Return a ptid representing the set of threads that we will resume,
2283 in the perspective of the target, assuming run control handling
2284 does not require leaving some threads stopped (e.g., stepping past
2285 breakpoint). USER_STEP indicates whether we're about to start the
2286 target for a stepping command. */
2287
2288static ptid_t
2289internal_resume_ptid (int user_step)
2290{
2291 /* In non-stop, we always control threads individually. Note that
2292 the target may always work in non-stop mode even with "set
2293 non-stop off", in which case user_visible_resume_ptid could
2294 return a wildcard ptid. */
2295 if (target_is_non_stop_p ())
2296 return inferior_ptid;
2297 else
2298 return user_visible_resume_ptid (user_step);
2299}
2300
64ce06e4
PA
2301/* Wrapper for target_resume, that handles infrun-specific
2302 bookkeeping. */
2303
2304static void
2305do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2306{
2307 struct thread_info *tp = inferior_thread ();
2308
c65d6b55
PA
2309 gdb_assert (!tp->stop_requested);
2310
64ce06e4 2311 /* Install inferior's terminal modes. */
223ffa71 2312 target_terminal::inferior ();
64ce06e4
PA
2313
2314 /* Avoid confusing the next resume, if the next stop/resume
2315 happens to apply to another thread. */
2316 tp->suspend.stop_signal = GDB_SIGNAL_0;
2317
8f572e5c
PA
2318 /* Advise target which signals may be handled silently.
2319
2320 If we have removed breakpoints because we are stepping over one
2321 in-line (in any thread), we need to receive all signals to avoid
2322 accidentally skipping a breakpoint during execution of a signal
2323 handler.
2324
2325 Likewise if we're displaced stepping, otherwise a trap for a
2326 breakpoint in a signal handler might be confused with the
2327 displaced step finishing. We don't make the displaced_step_fixup
2328 step distinguish the cases instead, because:
2329
2330 - a backtrace while stopped in the signal handler would show the
2331 scratch pad as frame older than the signal handler, instead of
2332 the real mainline code.
2333
2334 - when the thread is later resumed, the signal handler would
2335 return to the scratch pad area, which would no longer be
2336 valid. */
2337 if (step_over_info_valid_p ()
00431a78 2338 || displaced_step_in_progress (tp->inf))
64ce06e4
PA
2339 target_pass_signals (0, NULL);
2340 else
2341 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
2342
2343 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2344
2345 target_commit_resume ();
64ce06e4
PA
2346}
2347
d930703d 2348/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2349 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2350 call 'resume', which handles exceptions. */
c906108c 2351
71d378ae
PA
2352static void
2353resume_1 (enum gdb_signal sig)
c906108c 2354{
515630c5 2355 struct regcache *regcache = get_current_regcache ();
ac7936df 2356 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2357 struct thread_info *tp = inferior_thread ();
515630c5 2358 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2359 const address_space *aspace = regcache->aspace ();
b0f16a3e 2360 ptid_t resume_ptid;
856e7dd6
PA
2361 /* This represents the user's step vs continue request. When
2362 deciding whether "set scheduler-locking step" applies, it's the
2363 user's intention that counts. */
2364 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2365 /* This represents what we'll actually request the target to do.
2366 This can decay from a step to a continue, if e.g., we need to
2367 implement single-stepping with breakpoints (software
2368 single-step). */
6b403daa 2369 int step;
c7e8a53c 2370
c65d6b55 2371 gdb_assert (!tp->stop_requested);
c2829269
PA
2372 gdb_assert (!thread_is_in_step_over_chain (tp));
2373
372316f1
PA
2374 if (tp->suspend.waitstatus_pending_p)
2375 {
2376 if (debug_infrun)
2377 {
23fdd69e
SM
2378 std::string statstr
2379 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2380
372316f1 2381 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2382 "infrun: resume: thread %s has pending wait "
2383 "status %s (currently_stepping=%d).\n",
2384 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2385 currently_stepping (tp));
372316f1
PA
2386 }
2387
2388 tp->resumed = 1;
2389
2390 /* FIXME: What should we do if we are supposed to resume this
2391 thread with a signal? Maybe we should maintain a queue of
2392 pending signals to deliver. */
2393 if (sig != GDB_SIGNAL_0)
2394 {
fd7dcb94 2395 warning (_("Couldn't deliver signal %s to %s."),
372316f1
PA
2396 gdb_signal_to_name (sig), target_pid_to_str (tp->ptid));
2397 }
2398
2399 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2400
2401 if (target_can_async_p ())
9516f85a
AB
2402 {
2403 target_async (1);
2404 /* Tell the event loop we have an event to process. */
2405 mark_async_event_handler (infrun_async_inferior_event_token);
2406 }
372316f1
PA
2407 return;
2408 }
2409
2410 tp->stepped_breakpoint = 0;
2411
6b403daa
PA
2412 /* Depends on stepped_breakpoint. */
2413 step = currently_stepping (tp);
2414
74609e71
YQ
2415 if (current_inferior ()->waiting_for_vfork_done)
2416 {
48f9886d
PA
2417 /* Don't try to single-step a vfork parent that is waiting for
2418 the child to get out of the shared memory region (by exec'ing
2419 or exiting). This is particularly important on software
2420 single-step archs, as the child process would trip on the
2421 software single step breakpoint inserted for the parent
2422 process. Since the parent will not actually execute any
2423 instruction until the child is out of the shared region (such
2424 are vfork's semantics), it is safe to simply continue it.
2425 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2426 the parent, and tell it to `keep_going', which automatically
2427 re-sets it stepping. */
74609e71
YQ
2428 if (debug_infrun)
2429 fprintf_unfiltered (gdb_stdlog,
2430 "infrun: resume : clear step\n");
a09dd441 2431 step = 0;
74609e71
YQ
2432 }
2433
527159b7 2434 if (debug_infrun)
237fc4c9 2435 fprintf_unfiltered (gdb_stdlog,
c9737c08 2436 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2437 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2438 step, gdb_signal_to_symbol_string (sig),
2439 tp->control.trap_expected,
0d9a9a5f
PA
2440 target_pid_to_str (inferior_ptid),
2441 paddress (gdbarch, pc));
c906108c 2442
c2c6d25f
JM
2443 /* Normally, by the time we reach `resume', the breakpoints are either
2444 removed or inserted, as appropriate. The exception is if we're sitting
2445 at a permanent breakpoint; we need to step over it, but permanent
2446 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2447 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2448 {
af48d08f
PA
2449 if (sig != GDB_SIGNAL_0)
2450 {
2451 /* We have a signal to pass to the inferior. The resume
2452 may, or may not take us to the signal handler. If this
2453 is a step, we'll need to stop in the signal handler, if
2454 there's one, (if the target supports stepping into
2455 handlers), or in the next mainline instruction, if
2456 there's no handler. If this is a continue, we need to be
2457 sure to run the handler with all breakpoints inserted.
2458 In all cases, set a breakpoint at the current address
2459 (where the handler returns to), and once that breakpoint
2460 is hit, resume skipping the permanent breakpoint. If
2461 that breakpoint isn't hit, then we've stepped into the
2462 signal handler (or hit some other event). We'll delete
2463 the step-resume breakpoint then. */
2464
2465 if (debug_infrun)
2466 fprintf_unfiltered (gdb_stdlog,
2467 "infrun: resume: skipping permanent breakpoint, "
2468 "deliver signal first\n");
2469
2470 clear_step_over_info ();
2471 tp->control.trap_expected = 0;
2472
2473 if (tp->control.step_resume_breakpoint == NULL)
2474 {
2475 /* Set a "high-priority" step-resume, as we don't want
2476 user breakpoints at PC to trigger (again) when this
2477 hits. */
2478 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2479 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2480
2481 tp->step_after_step_resume_breakpoint = step;
2482 }
2483
2484 insert_breakpoints ();
2485 }
2486 else
2487 {
2488 /* There's no signal to pass, we can go ahead and skip the
2489 permanent breakpoint manually. */
2490 if (debug_infrun)
2491 fprintf_unfiltered (gdb_stdlog,
2492 "infrun: resume: skipping permanent breakpoint\n");
2493 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2494 /* Update pc to reflect the new address from which we will
2495 execute instructions. */
2496 pc = regcache_read_pc (regcache);
2497
2498 if (step)
2499 {
2500 /* We've already advanced the PC, so the stepping part
2501 is done. Now we need to arrange for a trap to be
2502 reported to handle_inferior_event. Set a breakpoint
2503 at the current PC, and run to it. Don't update
2504 prev_pc, because if we end in
44a1ee51
PA
2505 switch_back_to_stepped_thread, we want the "expected
2506 thread advanced also" branch to be taken. IOW, we
2507 don't want this thread to step further from PC
af48d08f 2508 (overstep). */
1ac806b8 2509 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2510 insert_single_step_breakpoint (gdbarch, aspace, pc);
2511 insert_breakpoints ();
2512
fbea99ea 2513 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2514 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
372316f1 2515 tp->resumed = 1;
af48d08f
PA
2516 return;
2517 }
2518 }
6d350bb5 2519 }
c2c6d25f 2520
c1e36e3e
PA
2521 /* If we have a breakpoint to step over, make sure to do a single
2522 step only. Same if we have software watchpoints. */
2523 if (tp->control.trap_expected || bpstat_should_step ())
2524 tp->control.may_range_step = 0;
2525
237fc4c9
PA
2526 /* If enabled, step over breakpoints by executing a copy of the
2527 instruction at a different address.
2528
2529 We can't use displaced stepping when we have a signal to deliver;
2530 the comments for displaced_step_prepare explain why. The
2531 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2532 signals' explain what we do instead.
2533
2534 We can't use displaced stepping when we are waiting for vfork_done
2535 event, displaced stepping breaks the vfork child similarly as single
2536 step software breakpoint. */
3fc8eb30
PA
2537 if (tp->control.trap_expected
2538 && use_displaced_stepping (tp)
cb71640d 2539 && !step_over_info_valid_p ()
a493e3e2 2540 && sig == GDB_SIGNAL_0
74609e71 2541 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2542 {
00431a78 2543 int prepared = displaced_step_prepare (tp);
fc1cf338 2544
3fc8eb30 2545 if (prepared == 0)
d56b7306 2546 {
4d9d9d04
PA
2547 if (debug_infrun)
2548 fprintf_unfiltered (gdb_stdlog,
2549 "Got placed in step-over queue\n");
2550
2551 tp->control.trap_expected = 0;
d56b7306
VP
2552 return;
2553 }
3fc8eb30
PA
2554 else if (prepared < 0)
2555 {
2556 /* Fallback to stepping over the breakpoint in-line. */
2557
2558 if (target_is_non_stop_p ())
2559 stop_all_threads ();
2560
a01bda52 2561 set_step_over_info (regcache->aspace (),
21edc42f 2562 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2563
2564 step = maybe_software_singlestep (gdbarch, pc);
2565
2566 insert_breakpoints ();
2567 }
2568 else if (prepared > 0)
2569 {
2570 struct displaced_step_inferior_state *displaced;
99e40580 2571
3fc8eb30
PA
2572 /* Update pc to reflect the new address from which we will
2573 execute instructions due to displaced stepping. */
00431a78 2574 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2575
00431a78 2576 displaced = get_displaced_stepping_state (tp->inf);
3fc8eb30
PA
2577 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
2578 displaced->step_closure);
2579 }
237fc4c9
PA
2580 }
2581
2facfe5c 2582 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2583 else if (step)
2facfe5c 2584 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2585
30852783
UW
2586 /* Currently, our software single-step implementation leads to different
2587 results than hardware single-stepping in one situation: when stepping
2588 into delivering a signal which has an associated signal handler,
2589 hardware single-step will stop at the first instruction of the handler,
2590 while software single-step will simply skip execution of the handler.
2591
2592 For now, this difference in behavior is accepted since there is no
2593 easy way to actually implement single-stepping into a signal handler
2594 without kernel support.
2595
2596 However, there is one scenario where this difference leads to follow-on
2597 problems: if we're stepping off a breakpoint by removing all breakpoints
2598 and then single-stepping. In this case, the software single-step
2599 behavior means that even if there is a *breakpoint* in the signal
2600 handler, GDB still would not stop.
2601
2602 Fortunately, we can at least fix this particular issue. We detect
2603 here the case where we are about to deliver a signal while software
2604 single-stepping with breakpoints removed. In this situation, we
2605 revert the decisions to remove all breakpoints and insert single-
2606 step breakpoints, and instead we install a step-resume breakpoint
2607 at the current address, deliver the signal without stepping, and
2608 once we arrive back at the step-resume breakpoint, actually step
2609 over the breakpoint we originally wanted to step over. */
34b7e8a6 2610 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2611 && sig != GDB_SIGNAL_0
2612 && step_over_info_valid_p ())
30852783
UW
2613 {
2614 /* If we have nested signals or a pending signal is delivered
2615 immediately after a handler returns, might might already have
2616 a step-resume breakpoint set on the earlier handler. We cannot
2617 set another step-resume breakpoint; just continue on until the
2618 original breakpoint is hit. */
2619 if (tp->control.step_resume_breakpoint == NULL)
2620 {
2c03e5be 2621 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2622 tp->step_after_step_resume_breakpoint = 1;
2623 }
2624
34b7e8a6 2625 delete_single_step_breakpoints (tp);
30852783 2626
31e77af2 2627 clear_step_over_info ();
30852783 2628 tp->control.trap_expected = 0;
31e77af2
PA
2629
2630 insert_breakpoints ();
30852783
UW
2631 }
2632
b0f16a3e
SM
2633 /* If STEP is set, it's a request to use hardware stepping
2634 facilities. But in that case, we should never
2635 use singlestep breakpoint. */
34b7e8a6 2636 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2637
fbea99ea 2638 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2639 if (tp->control.trap_expected)
b0f16a3e
SM
2640 {
2641 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2642 hit, either by single-stepping the thread with the breakpoint
2643 removed, or by displaced stepping, with the breakpoint inserted.
2644 In the former case, we need to single-step only this thread,
2645 and keep others stopped, as they can miss this breakpoint if
2646 allowed to run. That's not really a problem for displaced
2647 stepping, but, we still keep other threads stopped, in case
2648 another thread is also stopped for a breakpoint waiting for
2649 its turn in the displaced stepping queue. */
b0f16a3e
SM
2650 resume_ptid = inferior_ptid;
2651 }
fbea99ea
PA
2652 else
2653 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2654
7f5ef605
PA
2655 if (execution_direction != EXEC_REVERSE
2656 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2657 {
372316f1
PA
2658 /* There are two cases where we currently need to step a
2659 breakpoint instruction when we have a signal to deliver:
2660
2661 - See handle_signal_stop where we handle random signals that
2662 could take out us out of the stepping range. Normally, in
2663 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2664 signal handler with a breakpoint at PC, but there are cases
2665 where we should _always_ single-step, even if we have a
2666 step-resume breakpoint, like when a software watchpoint is
2667 set. Assuming single-stepping and delivering a signal at the
2668 same time would takes us to the signal handler, then we could
2669 have removed the breakpoint at PC to step over it. However,
2670 some hardware step targets (like e.g., Mac OS) can't step
2671 into signal handlers, and for those, we need to leave the
2672 breakpoint at PC inserted, as otherwise if the handler
2673 recurses and executes PC again, it'll miss the breakpoint.
2674 So we leave the breakpoint inserted anyway, but we need to
2675 record that we tried to step a breakpoint instruction, so
372316f1
PA
2676 that adjust_pc_after_break doesn't end up confused.
2677
2678 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2679 in one thread after another thread that was stepping had been
2680 momentarily paused for a step-over. When we re-resume the
2681 stepping thread, it may be resumed from that address with a
2682 breakpoint that hasn't trapped yet. Seen with
2683 gdb.threads/non-stop-fair-events.exp, on targets that don't
2684 do displaced stepping. */
2685
2686 if (debug_infrun)
2687 fprintf_unfiltered (gdb_stdlog,
2688 "infrun: resume: [%s] stepped breakpoint\n",
2689 target_pid_to_str (tp->ptid));
7f5ef605
PA
2690
2691 tp->stepped_breakpoint = 1;
2692
b0f16a3e
SM
2693 /* Most targets can step a breakpoint instruction, thus
2694 executing it normally. But if this one cannot, just
2695 continue and we will hit it anyway. */
7f5ef605 2696 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2697 step = 0;
2698 }
ef5cf84e 2699
b0f16a3e 2700 if (debug_displaced
cb71640d 2701 && tp->control.trap_expected
3fc8eb30 2702 && use_displaced_stepping (tp)
cb71640d 2703 && !step_over_info_valid_p ())
b0f16a3e 2704 {
00431a78 2705 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2706 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2707 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2708 gdb_byte buf[4];
2709
2710 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2711 paddress (resume_gdbarch, actual_pc));
2712 read_memory (actual_pc, buf, sizeof (buf));
2713 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2714 }
237fc4c9 2715
b0f16a3e
SM
2716 if (tp->control.may_range_step)
2717 {
2718 /* If we're resuming a thread with the PC out of the step
2719 range, then we're doing some nested/finer run control
2720 operation, like stepping the thread out of the dynamic
2721 linker or the displaced stepping scratch pad. We
2722 shouldn't have allowed a range step then. */
2723 gdb_assert (pc_in_thread_step_range (pc, tp));
2724 }
c1e36e3e 2725
64ce06e4 2726 do_target_resume (resume_ptid, step, sig);
372316f1 2727 tp->resumed = 1;
c906108c 2728}
71d378ae
PA
2729
2730/* Resume the inferior. SIG is the signal to give the inferior
2731 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2732 rolls back state on error. */
2733
2734void
2735resume (gdb_signal sig)
2736{
2737 TRY
2738 {
2739 resume_1 (sig);
2740 }
2741 CATCH (ex, RETURN_MASK_ALL)
2742 {
2743 /* If resuming is being aborted for any reason, delete any
2744 single-step breakpoint resume_1 may have created, to avoid
2745 confusing the following resumption, and to avoid leaving
2746 single-step breakpoints perturbing other threads, in case
2747 we're running in non-stop mode. */
2748 if (inferior_ptid != null_ptid)
2749 delete_single_step_breakpoints (inferior_thread ());
2750 throw_exception (ex);
2751 }
2752 END_CATCH
2753}
2754
c906108c 2755\f
237fc4c9 2756/* Proceeding. */
c906108c 2757
4c2f2a79
PA
2758/* See infrun.h. */
2759
2760/* Counter that tracks number of user visible stops. This can be used
2761 to tell whether a command has proceeded the inferior past the
2762 current location. This allows e.g., inferior function calls in
2763 breakpoint commands to not interrupt the command list. When the
2764 call finishes successfully, the inferior is standing at the same
2765 breakpoint as if nothing happened (and so we don't call
2766 normal_stop). */
2767static ULONGEST current_stop_id;
2768
2769/* See infrun.h. */
2770
2771ULONGEST
2772get_stop_id (void)
2773{
2774 return current_stop_id;
2775}
2776
2777/* Called when we report a user visible stop. */
2778
2779static void
2780new_stop_id (void)
2781{
2782 current_stop_id++;
2783}
2784
c906108c
SS
2785/* Clear out all variables saying what to do when inferior is continued.
2786 First do this, then set the ones you want, then call `proceed'. */
2787
a7212384
UW
2788static void
2789clear_proceed_status_thread (struct thread_info *tp)
c906108c 2790{
a7212384
UW
2791 if (debug_infrun)
2792 fprintf_unfiltered (gdb_stdlog,
2793 "infrun: clear_proceed_status_thread (%s)\n",
2794 target_pid_to_str (tp->ptid));
d6b48e9c 2795
372316f1
PA
2796 /* If we're starting a new sequence, then the previous finished
2797 single-step is no longer relevant. */
2798 if (tp->suspend.waitstatus_pending_p)
2799 {
2800 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2801 {
2802 if (debug_infrun)
2803 fprintf_unfiltered (gdb_stdlog,
2804 "infrun: clear_proceed_status: pending "
2805 "event of %s was a finished step. "
2806 "Discarding.\n",
2807 target_pid_to_str (tp->ptid));
2808
2809 tp->suspend.waitstatus_pending_p = 0;
2810 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2811 }
2812 else if (debug_infrun)
2813 {
23fdd69e
SM
2814 std::string statstr
2815 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2816
372316f1
PA
2817 fprintf_unfiltered (gdb_stdlog,
2818 "infrun: clear_proceed_status_thread: thread %s "
2819 "has pending wait status %s "
2820 "(currently_stepping=%d).\n",
23fdd69e 2821 target_pid_to_str (tp->ptid), statstr.c_str (),
372316f1 2822 currently_stepping (tp));
372316f1
PA
2823 }
2824 }
2825
70509625
PA
2826 /* If this signal should not be seen by program, give it zero.
2827 Used for debugging signals. */
2828 if (!signal_pass_state (tp->suspend.stop_signal))
2829 tp->suspend.stop_signal = GDB_SIGNAL_0;
2830
243a9253
PA
2831 thread_fsm_delete (tp->thread_fsm);
2832 tp->thread_fsm = NULL;
2833
16c381f0
JK
2834 tp->control.trap_expected = 0;
2835 tp->control.step_range_start = 0;
2836 tp->control.step_range_end = 0;
c1e36e3e 2837 tp->control.may_range_step = 0;
16c381f0
JK
2838 tp->control.step_frame_id = null_frame_id;
2839 tp->control.step_stack_frame_id = null_frame_id;
2840 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2841 tp->control.step_start_function = NULL;
a7212384 2842 tp->stop_requested = 0;
4e1c45ea 2843
16c381f0 2844 tp->control.stop_step = 0;
32400beb 2845
16c381f0 2846 tp->control.proceed_to_finish = 0;
414c69f7 2847
856e7dd6 2848 tp->control.stepping_command = 0;
17b2616c 2849
a7212384 2850 /* Discard any remaining commands or status from previous stop. */
16c381f0 2851 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2852}
32400beb 2853
a7212384 2854void
70509625 2855clear_proceed_status (int step)
a7212384 2856{
f2665db5
MM
2857 /* With scheduler-locking replay, stop replaying other threads if we're
2858 not replaying the user-visible resume ptid.
2859
2860 This is a convenience feature to not require the user to explicitly
2861 stop replaying the other threads. We're assuming that the user's
2862 intent is to resume tracing the recorded process. */
2863 if (!non_stop && scheduler_mode == schedlock_replay
2864 && target_record_is_replaying (minus_one_ptid)
2865 && !target_record_will_replay (user_visible_resume_ptid (step),
2866 execution_direction))
2867 target_record_stop_replaying ();
2868
6c95b8df
PA
2869 if (!non_stop)
2870 {
70509625
PA
2871 struct thread_info *tp;
2872 ptid_t resume_ptid;
2873
2874 resume_ptid = user_visible_resume_ptid (step);
2875
2876 /* In all-stop mode, delete the per-thread status of all threads
2877 we're about to resume, implicitly and explicitly. */
2878 ALL_NON_EXITED_THREADS (tp)
2879 {
26a57c92 2880 if (!tp->ptid.matches (resume_ptid))
70509625
PA
2881 continue;
2882 clear_proceed_status_thread (tp);
2883 }
6c95b8df
PA
2884 }
2885
a7212384
UW
2886 if (!ptid_equal (inferior_ptid, null_ptid))
2887 {
2888 struct inferior *inferior;
2889
2890 if (non_stop)
2891 {
6c95b8df
PA
2892 /* If in non-stop mode, only delete the per-thread status of
2893 the current thread. */
a7212384
UW
2894 clear_proceed_status_thread (inferior_thread ());
2895 }
6c95b8df 2896
d6b48e9c 2897 inferior = current_inferior ();
16c381f0 2898 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2899 }
2900
76727919 2901 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2902}
2903
99619bea
PA
2904/* Returns true if TP is still stopped at a breakpoint that needs
2905 stepping-over in order to make progress. If the breakpoint is gone
2906 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2907
2908static int
6c4cfb24 2909thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2910{
2911 if (tp->stepping_over_breakpoint)
2912 {
00431a78 2913 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2914
a01bda52 2915 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2916 regcache_read_pc (regcache))
2917 == ordinary_breakpoint_here)
99619bea
PA
2918 return 1;
2919
2920 tp->stepping_over_breakpoint = 0;
2921 }
2922
2923 return 0;
2924}
2925
6c4cfb24
PA
2926/* Check whether thread TP still needs to start a step-over in order
2927 to make progress when resumed. Returns an bitwise or of enum
2928 step_over_what bits, indicating what needs to be stepped over. */
2929
8d297bbf 2930static step_over_what
6c4cfb24
PA
2931thread_still_needs_step_over (struct thread_info *tp)
2932{
8d297bbf 2933 step_over_what what = 0;
6c4cfb24
PA
2934
2935 if (thread_still_needs_step_over_bp (tp))
2936 what |= STEP_OVER_BREAKPOINT;
2937
2938 if (tp->stepping_over_watchpoint
2939 && !target_have_steppable_watchpoint)
2940 what |= STEP_OVER_WATCHPOINT;
2941
2942 return what;
2943}
2944
483805cf
PA
2945/* Returns true if scheduler locking applies. STEP indicates whether
2946 we're about to do a step/next-like command to a thread. */
2947
2948static int
856e7dd6 2949schedlock_applies (struct thread_info *tp)
483805cf
PA
2950{
2951 return (scheduler_mode == schedlock_on
2952 || (scheduler_mode == schedlock_step
f2665db5
MM
2953 && tp->control.stepping_command)
2954 || (scheduler_mode == schedlock_replay
2955 && target_record_will_replay (minus_one_ptid,
2956 execution_direction)));
483805cf
PA
2957}
2958
c906108c
SS
2959/* Basic routine for continuing the program in various fashions.
2960
2961 ADDR is the address to resume at, or -1 for resume where stopped.
2962 SIGGNAL is the signal to give it, or 0 for none,
c5aa993b 2963 or -1 for act according to how it stopped.
c906108c 2964 STEP is nonzero if should trap after one instruction.
c5aa993b
JM
2965 -1 means return after that and print nothing.
2966 You should probably set various step_... variables
2967 before calling here, if you are stepping.
c906108c
SS
2968
2969 You should call clear_proceed_status before calling proceed. */
2970
2971void
64ce06e4 2972proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2973{
e58b0e63
PA
2974 struct regcache *regcache;
2975 struct gdbarch *gdbarch;
4e1c45ea 2976 struct thread_info *tp;
e58b0e63 2977 CORE_ADDR pc;
4d9d9d04
PA
2978 ptid_t resume_ptid;
2979 struct execution_control_state ecss;
2980 struct execution_control_state *ecs = &ecss;
4d9d9d04 2981 int started;
c906108c 2982
e58b0e63
PA
2983 /* If we're stopped at a fork/vfork, follow the branch set by the
2984 "set follow-fork-mode" command; otherwise, we'll just proceed
2985 resuming the current thread. */
2986 if (!follow_fork ())
2987 {
2988 /* The target for some reason decided not to resume. */
2989 normal_stop ();
f148b27e
PA
2990 if (target_can_async_p ())
2991 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2992 return;
2993 }
2994
842951eb
PA
2995 /* We'll update this if & when we switch to a new thread. */
2996 previous_inferior_ptid = inferior_ptid;
2997
e58b0e63 2998 regcache = get_current_regcache ();
ac7936df 2999 gdbarch = regcache->arch ();
8b86c959
YQ
3000 const address_space *aspace = regcache->aspace ();
3001
e58b0e63 3002 pc = regcache_read_pc (regcache);
2adfaa28 3003 tp = inferior_thread ();
e58b0e63 3004
99619bea
PA
3005 /* Fill in with reasonable starting values. */
3006 init_thread_stepping_state (tp);
3007
c2829269
PA
3008 gdb_assert (!thread_is_in_step_over_chain (tp));
3009
2acceee2 3010 if (addr == (CORE_ADDR) -1)
c906108c 3011 {
f2ffa92b 3012 if (pc == tp->suspend.stop_pc
af48d08f 3013 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3014 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3015 /* There is a breakpoint at the address we will resume at,
3016 step one instruction before inserting breakpoints so that
3017 we do not stop right away (and report a second hit at this
b2175913
MS
3018 breakpoint).
3019
3020 Note, we don't do this in reverse, because we won't
3021 actually be executing the breakpoint insn anyway.
3022 We'll be (un-)executing the previous instruction. */
99619bea 3023 tp->stepping_over_breakpoint = 1;
515630c5
UW
3024 else if (gdbarch_single_step_through_delay_p (gdbarch)
3025 && gdbarch_single_step_through_delay (gdbarch,
3026 get_current_frame ()))
3352ef37
AC
3027 /* We stepped onto an instruction that needs to be stepped
3028 again before re-inserting the breakpoint, do so. */
99619bea 3029 tp->stepping_over_breakpoint = 1;
c906108c
SS
3030 }
3031 else
3032 {
515630c5 3033 regcache_write_pc (regcache, addr);
c906108c
SS
3034 }
3035
70509625
PA
3036 if (siggnal != GDB_SIGNAL_DEFAULT)
3037 tp->suspend.stop_signal = siggnal;
3038
4d9d9d04
PA
3039 resume_ptid = user_visible_resume_ptid (tp->control.stepping_command);
3040
3041 /* If an exception is thrown from this point on, make sure to
3042 propagate GDB's knowledge of the executing state to the
3043 frontend/user running state. */
731f534f 3044 scoped_finish_thread_state finish_state (resume_ptid);
4d9d9d04
PA
3045
3046 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3047 threads (e.g., we might need to set threads stepping over
3048 breakpoints first), from the user/frontend's point of view, all
3049 threads in RESUME_PTID are now running. Unless we're calling an
3050 inferior function, as in that case we pretend the inferior
3051 doesn't run at all. */
3052 if (!tp->control.in_infcall)
3053 set_running (resume_ptid, 1);
17b2616c 3054
527159b7 3055 if (debug_infrun)
8a9de0e4 3056 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3057 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3058 paddress (gdbarch, addr),
64ce06e4 3059 gdb_signal_to_symbol_string (siggnal));
527159b7 3060
4d9d9d04
PA
3061 annotate_starting ();
3062
3063 /* Make sure that output from GDB appears before output from the
3064 inferior. */
3065 gdb_flush (gdb_stdout);
3066
d930703d
PA
3067 /* Since we've marked the inferior running, give it the terminal. A
3068 QUIT/Ctrl-C from here on is forwarded to the target (which can
3069 still detect attempts to unblock a stuck connection with repeated
3070 Ctrl-C from within target_pass_ctrlc). */
3071 target_terminal::inferior ();
3072
4d9d9d04
PA
3073 /* In a multi-threaded task we may select another thread and
3074 then continue or step.
3075
3076 But if a thread that we're resuming had stopped at a breakpoint,
3077 it will immediately cause another breakpoint stop without any
3078 execution (i.e. it will report a breakpoint hit incorrectly). So
3079 we must step over it first.
3080
3081 Look for threads other than the current (TP) that reported a
3082 breakpoint hit and haven't been resumed yet since. */
3083
3084 /* If scheduler locking applies, we can avoid iterating over all
3085 threads. */
3086 if (!non_stop && !schedlock_applies (tp))
94cc34af 3087 {
4d9d9d04
PA
3088 struct thread_info *current = tp;
3089
3090 ALL_NON_EXITED_THREADS (tp)
3091 {
3092 /* Ignore the current thread here. It's handled
3093 afterwards. */
3094 if (tp == current)
3095 continue;
99619bea 3096
4d9d9d04 3097 /* Ignore threads of processes we're not resuming. */
26a57c92 3098 if (!tp->ptid.matches (resume_ptid))
4d9d9d04 3099 continue;
c906108c 3100
4d9d9d04
PA
3101 if (!thread_still_needs_step_over (tp))
3102 continue;
3103
3104 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3105
99619bea
PA
3106 if (debug_infrun)
3107 fprintf_unfiltered (gdb_stdlog,
3108 "infrun: need to step-over [%s] first\n",
4d9d9d04 3109 target_pid_to_str (tp->ptid));
99619bea 3110
4d9d9d04 3111 thread_step_over_chain_enqueue (tp);
2adfaa28 3112 }
31e77af2 3113
4d9d9d04 3114 tp = current;
30852783
UW
3115 }
3116
4d9d9d04
PA
3117 /* Enqueue the current thread last, so that we move all other
3118 threads over their breakpoints first. */
3119 if (tp->stepping_over_breakpoint)
3120 thread_step_over_chain_enqueue (tp);
30852783 3121
4d9d9d04
PA
3122 /* If the thread isn't started, we'll still need to set its prev_pc,
3123 so that switch_back_to_stepped_thread knows the thread hasn't
3124 advanced. Must do this before resuming any thread, as in
3125 all-stop/remote, once we resume we can't send any other packet
3126 until the target stops again. */
3127 tp->prev_pc = regcache_read_pc (regcache);
99619bea 3128
a9bc57b9
TT
3129 {
3130 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3131
a9bc57b9 3132 started = start_step_over ();
c906108c 3133
a9bc57b9
TT
3134 if (step_over_info_valid_p ())
3135 {
3136 /* Either this thread started a new in-line step over, or some
3137 other thread was already doing one. In either case, don't
3138 resume anything else until the step-over is finished. */
3139 }
3140 else if (started && !target_is_non_stop_p ())
3141 {
3142 /* A new displaced stepping sequence was started. In all-stop,
3143 we can't talk to the target anymore until it next stops. */
3144 }
3145 else if (!non_stop && target_is_non_stop_p ())
3146 {
3147 /* In all-stop, but the target is always in non-stop mode.
3148 Start all other threads that are implicitly resumed too. */
3149 ALL_NON_EXITED_THREADS (tp)
fbea99ea
PA
3150 {
3151 /* Ignore threads of processes we're not resuming. */
26a57c92 3152 if (!tp->ptid.matches (resume_ptid))
fbea99ea
PA
3153 continue;
3154
3155 if (tp->resumed)
3156 {
3157 if (debug_infrun)
3158 fprintf_unfiltered (gdb_stdlog,
3159 "infrun: proceed: [%s] resumed\n",
3160 target_pid_to_str (tp->ptid));
3161 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3162 continue;
3163 }
3164
3165 if (thread_is_in_step_over_chain (tp))
3166 {
3167 if (debug_infrun)
3168 fprintf_unfiltered (gdb_stdlog,
3169 "infrun: proceed: [%s] needs step-over\n",
3170 target_pid_to_str (tp->ptid));
3171 continue;
3172 }
3173
3174 if (debug_infrun)
3175 fprintf_unfiltered (gdb_stdlog,
3176 "infrun: proceed: resuming %s\n",
3177 target_pid_to_str (tp->ptid));
3178
3179 reset_ecs (ecs, tp);
00431a78 3180 switch_to_thread (tp);
fbea99ea
PA
3181 keep_going_pass_signal (ecs);
3182 if (!ecs->wait_some_more)
fd7dcb94 3183 error (_("Command aborted."));
fbea99ea 3184 }
a9bc57b9
TT
3185 }
3186 else if (!tp->resumed && !thread_is_in_step_over_chain (tp))
3187 {
3188 /* The thread wasn't started, and isn't queued, run it now. */
3189 reset_ecs (ecs, tp);
00431a78 3190 switch_to_thread (tp);
a9bc57b9
TT
3191 keep_going_pass_signal (ecs);
3192 if (!ecs->wait_some_more)
3193 error (_("Command aborted."));
3194 }
3195 }
c906108c 3196
85ad3aaf
PA
3197 target_commit_resume ();
3198
731f534f 3199 finish_state.release ();
c906108c 3200
0b333c5e
PA
3201 /* Tell the event loop to wait for it to stop. If the target
3202 supports asynchronous execution, it'll do this from within
3203 target_resume. */
362646f5 3204 if (!target_can_async_p ())
0b333c5e 3205 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3206}
c906108c
SS
3207\f
3208
3209/* Start remote-debugging of a machine over a serial link. */
96baa820 3210
c906108c 3211void
8621d6a9 3212start_remote (int from_tty)
c906108c 3213{
d6b48e9c 3214 struct inferior *inferior;
d6b48e9c
PA
3215
3216 inferior = current_inferior ();
16c381f0 3217 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3218
1777feb0 3219 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3220 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3221 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3222 nothing is returned (instead of just blocking). Because of this,
3223 targets expecting an immediate response need to, internally, set
3224 things up so that the target_wait() is forced to eventually
1777feb0 3225 timeout. */
6426a772
JM
3226 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3227 differentiate to its caller what the state of the target is after
3228 the initial open has been performed. Here we're assuming that
3229 the target has stopped. It should be possible to eventually have
3230 target_open() return to the caller an indication that the target
3231 is currently running and GDB state should be set to the same as
1777feb0 3232 for an async run. */
e4c8541f 3233 wait_for_inferior ();
8621d6a9
DJ
3234
3235 /* Now that the inferior has stopped, do any bookkeeping like
3236 loading shared libraries. We want to do this before normal_stop,
3237 so that the displayed frame is up to date. */
8b88a78e 3238 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3239
6426a772 3240 normal_stop ();
c906108c
SS
3241}
3242
3243/* Initialize static vars when a new inferior begins. */
3244
3245void
96baa820 3246init_wait_for_inferior (void)
c906108c
SS
3247{
3248 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3249
c906108c
SS
3250 breakpoint_init_inferior (inf_starting);
3251
70509625 3252 clear_proceed_status (0);
9f976b41 3253
ca005067 3254 target_last_wait_ptid = minus_one_ptid;
237fc4c9 3255
842951eb 3256 previous_inferior_ptid = inferior_ptid;
0d1e5fa7 3257
edb3359d
DJ
3258 /* Discard any skipped inlined frames. */
3259 clear_inline_frame_state (minus_one_ptid);
c906108c 3260}
237fc4c9 3261
c906108c 3262\f
488f131b 3263
ec9499be 3264static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3265
568d6575
UW
3266static void handle_step_into_function (struct gdbarch *gdbarch,
3267 struct execution_control_state *ecs);
3268static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3269 struct execution_control_state *ecs);
4f5d7f63 3270static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3271static void check_exception_resume (struct execution_control_state *,
28106bc2 3272 struct frame_info *);
611c83ae 3273
bdc36728 3274static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3275static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3276static void keep_going (struct execution_control_state *ecs);
94c57d6a 3277static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3278static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3279
252fbfc8
PA
3280/* This function is attached as a "thread_stop_requested" observer.
3281 Cleanup local state that assumed the PTID was to be resumed, and
3282 report the stop to the frontend. */
3283
2c0b251b 3284static void
252fbfc8
PA
3285infrun_thread_stop_requested (ptid_t ptid)
3286{
c2829269 3287 struct thread_info *tp;
252fbfc8 3288
c65d6b55
PA
3289 /* PTID was requested to stop. If the thread was already stopped,
3290 but the user/frontend doesn't know about that yet (e.g., the
3291 thread had been temporarily paused for some step-over), set up
3292 for reporting the stop now. */
c2829269 3293 ALL_NON_EXITED_THREADS (tp)
26a57c92 3294 if (tp->ptid.matches (ptid))
c2829269 3295 {
c65d6b55
PA
3296 if (tp->state != THREAD_RUNNING)
3297 continue;
3298 if (tp->executing)
3299 continue;
3300
3301 /* Remove matching threads from the step-over queue, so
3302 start_step_over doesn't try to resume them
3303 automatically. */
c2829269
PA
3304 if (thread_is_in_step_over_chain (tp))
3305 thread_step_over_chain_remove (tp);
252fbfc8 3306
c65d6b55
PA
3307 /* If the thread is stopped, but the user/frontend doesn't
3308 know about that yet, queue a pending event, as if the
3309 thread had just stopped now. Unless the thread already had
3310 a pending event. */
3311 if (!tp->suspend.waitstatus_pending_p)
3312 {
3313 tp->suspend.waitstatus_pending_p = 1;
3314 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3315 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3316 }
3317
3318 /* Clear the inline-frame state, since we're re-processing the
3319 stop. */
3320 clear_inline_frame_state (tp->ptid);
3321
3322 /* If this thread was paused because some other thread was
3323 doing an inline-step over, let that finish first. Once
3324 that happens, we'll restart all threads and consume pending
3325 stop events then. */
3326 if (step_over_info_valid_p ())
3327 continue;
3328
3329 /* Otherwise we can process the (new) pending event now. Set
3330 it so this pending event is considered by
3331 do_target_wait. */
3332 tp->resumed = 1;
3333 }
252fbfc8
PA
3334}
3335
a07daef3
PA
3336static void
3337infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338{
3339 if (ptid_equal (target_last_wait_ptid, tp->ptid))
3340 nullify_last_target_wait_ptid ();
3341}
3342
0cbcdb96
PA
3343/* Delete the step resume, single-step and longjmp/exception resume
3344 breakpoints of TP. */
4e1c45ea 3345
0cbcdb96
PA
3346static void
3347delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3348{
0cbcdb96
PA
3349 delete_step_resume_breakpoint (tp);
3350 delete_exception_resume_breakpoint (tp);
34b7e8a6 3351 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3352}
3353
0cbcdb96
PA
3354/* If the target still has execution, call FUNC for each thread that
3355 just stopped. In all-stop, that's all the non-exited threads; in
3356 non-stop, that's the current thread, only. */
3357
3358typedef void (*for_each_just_stopped_thread_callback_func)
3359 (struct thread_info *tp);
4e1c45ea
PA
3360
3361static void
0cbcdb96 3362for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3363{
0cbcdb96 3364 if (!target_has_execution || ptid_equal (inferior_ptid, null_ptid))
4e1c45ea
PA
3365 return;
3366
fbea99ea 3367 if (target_is_non_stop_p ())
4e1c45ea 3368 {
0cbcdb96
PA
3369 /* If in non-stop mode, only the current thread stopped. */
3370 func (inferior_thread ());
4e1c45ea
PA
3371 }
3372 else
0cbcdb96
PA
3373 {
3374 struct thread_info *tp;
3375
3376 /* In all-stop mode, all threads have stopped. */
3377 ALL_NON_EXITED_THREADS (tp)
3378 {
3379 func (tp);
3380 }
3381 }
3382}
3383
3384/* Delete the step resume and longjmp/exception resume breakpoints of
3385 the threads that just stopped. */
3386
3387static void
3388delete_just_stopped_threads_infrun_breakpoints (void)
3389{
3390 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3391}
3392
3393/* Delete the single-step breakpoints of the threads that just
3394 stopped. */
7c16b83e 3395
34b7e8a6
PA
3396static void
3397delete_just_stopped_threads_single_step_breakpoints (void)
3398{
3399 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3400}
3401
1777feb0 3402/* A cleanup wrapper. */
4e1c45ea
PA
3403
3404static void
0cbcdb96 3405delete_just_stopped_threads_infrun_breakpoints_cleanup (void *arg)
4e1c45ea 3406{
0cbcdb96 3407 delete_just_stopped_threads_infrun_breakpoints ();
4e1c45ea
PA
3408}
3409
221e1a37 3410/* See infrun.h. */
223698f8 3411
221e1a37 3412void
223698f8
DE
3413print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3414 const struct target_waitstatus *ws)
3415{
23fdd69e 3416 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3417 string_file stb;
223698f8
DE
3418
3419 /* The text is split over several lines because it was getting too long.
3420 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3421 output as a unit; we want only one timestamp printed if debug_timestamp
3422 is set. */
3423
d7e74731 3424 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3425 waiton_ptid.pid (),
e38504b3 3426 waiton_ptid.lwp (),
cc6bcb54 3427 waiton_ptid.tid ());
e99b03dc 3428 if (waiton_ptid.pid () != -1)
d7e74731
PA
3429 stb.printf (" [%s]", target_pid_to_str (waiton_ptid));
3430 stb.printf (", status) =\n");
3431 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3432 result_ptid.pid (),
e38504b3 3433 result_ptid.lwp (),
cc6bcb54 3434 result_ptid.tid (),
d7e74731 3435 target_pid_to_str (result_ptid));
23fdd69e 3436 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3437
3438 /* This uses %s in part to handle %'s in the text, but also to avoid
3439 a gcc error: the format attribute requires a string literal. */
d7e74731 3440 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3441}
3442
372316f1
PA
3443/* Select a thread at random, out of those which are resumed and have
3444 had events. */
3445
3446static struct thread_info *
3447random_pending_event_thread (ptid_t waiton_ptid)
3448{
3449 struct thread_info *event_tp;
3450 int num_events = 0;
3451 int random_selector;
3452
3453 /* First see how many events we have. Count only resumed threads
3454 that have an event pending. */
3455 ALL_NON_EXITED_THREADS (event_tp)
26a57c92 3456 if (event_tp->ptid.matches (waiton_ptid)
372316f1
PA
3457 && event_tp->resumed
3458 && event_tp->suspend.waitstatus_pending_p)
3459 num_events++;
3460
3461 if (num_events == 0)
3462 return NULL;
3463
3464 /* Now randomly pick a thread out of those that have had events. */
3465 random_selector = (int)
3466 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
3467
3468 if (debug_infrun && num_events > 1)
3469 fprintf_unfiltered (gdb_stdlog,
3470 "infrun: Found %d events, selecting #%d\n",
3471 num_events, random_selector);
3472
3473 /* Select the Nth thread that has had an event. */
3474 ALL_NON_EXITED_THREADS (event_tp)
26a57c92 3475 if (event_tp->ptid.matches (waiton_ptid)
372316f1
PA
3476 && event_tp->resumed
3477 && event_tp->suspend.waitstatus_pending_p)
3478 if (random_selector-- == 0)
3479 break;
3480
3481 return event_tp;
3482}
3483
3484/* Wrapper for target_wait that first checks whether threads have
3485 pending statuses to report before actually asking the target for
3486 more events. */
3487
3488static ptid_t
3489do_target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
3490{
3491 ptid_t event_ptid;
3492 struct thread_info *tp;
3493
3494 /* First check if there is a resumed thread with a wait status
3495 pending. */
0e998d96 3496 if (ptid_equal (ptid, minus_one_ptid) || ptid.is_pid ())
372316f1
PA
3497 {
3498 tp = random_pending_event_thread (ptid);
3499 }
3500 else
3501 {
3502 if (debug_infrun)
3503 fprintf_unfiltered (gdb_stdlog,
3504 "infrun: Waiting for specific thread %s.\n",
3505 target_pid_to_str (ptid));
3506
3507 /* We have a specific thread to check. */
3508 tp = find_thread_ptid (ptid);
3509 gdb_assert (tp != NULL);
3510 if (!tp->suspend.waitstatus_pending_p)
3511 tp = NULL;
3512 }
3513
3514 if (tp != NULL
3515 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3516 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3517 {
00431a78 3518 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3519 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3520 CORE_ADDR pc;
3521 int discard = 0;
3522
3523 pc = regcache_read_pc (regcache);
3524
3525 if (pc != tp->suspend.stop_pc)
3526 {
3527 if (debug_infrun)
3528 fprintf_unfiltered (gdb_stdlog,
3529 "infrun: PC of %s changed. was=%s, now=%s\n",
3530 target_pid_to_str (tp->ptid),
defd2172 3531 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3532 paddress (gdbarch, pc));
3533 discard = 1;
3534 }
a01bda52 3535 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3536 {
3537 if (debug_infrun)
3538 fprintf_unfiltered (gdb_stdlog,
3539 "infrun: previous breakpoint of %s, at %s gone\n",
3540 target_pid_to_str (tp->ptid),
3541 paddress (gdbarch, pc));
3542
3543 discard = 1;
3544 }
3545
3546 if (discard)
3547 {
3548 if (debug_infrun)
3549 fprintf_unfiltered (gdb_stdlog,
3550 "infrun: pending event of %s cancelled.\n",
3551 target_pid_to_str (tp->ptid));
3552
3553 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3554 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3555 }
3556 }
3557
3558 if (tp != NULL)
3559 {
3560 if (debug_infrun)
3561 {
23fdd69e
SM
3562 std::string statstr
3563 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3564
372316f1
PA
3565 fprintf_unfiltered (gdb_stdlog,
3566 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3567 statstr.c_str (),
372316f1 3568 target_pid_to_str (tp->ptid));
372316f1
PA
3569 }
3570
3571 /* Now that we've selected our final event LWP, un-adjust its PC
3572 if it was a software breakpoint (and the target doesn't
3573 always adjust the PC itself). */
3574 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3575 && !target_supports_stopped_by_sw_breakpoint ())
3576 {
3577 struct regcache *regcache;
3578 struct gdbarch *gdbarch;
3579 int decr_pc;
3580
00431a78 3581 regcache = get_thread_regcache (tp);
ac7936df 3582 gdbarch = regcache->arch ();
372316f1
PA
3583
3584 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3585 if (decr_pc != 0)
3586 {
3587 CORE_ADDR pc;
3588
3589 pc = regcache_read_pc (regcache);
3590 regcache_write_pc (regcache, pc + decr_pc);
3591 }
3592 }
3593
3594 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3595 *status = tp->suspend.waitstatus;
3596 tp->suspend.waitstatus_pending_p = 0;
3597
3598 /* Wake up the event loop again, until all pending events are
3599 processed. */
3600 if (target_is_async_p ())
3601 mark_async_event_handler (infrun_async_inferior_event_token);
3602 return tp->ptid;
3603 }
3604
3605 /* But if we don't find one, we'll have to wait. */
3606
3607 if (deprecated_target_wait_hook)
3608 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3609 else
3610 event_ptid = target_wait (ptid, status, options);
3611
3612 return event_ptid;
3613}
3614
24291992
PA
3615/* Prepare and stabilize the inferior for detaching it. E.g.,
3616 detaching while a thread is displaced stepping is a recipe for
3617 crashing it, as nothing would readjust the PC out of the scratch
3618 pad. */
3619
3620void
3621prepare_for_detach (void)
3622{
3623 struct inferior *inf = current_inferior ();
f2907e49 3624 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3625
00431a78 3626 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3627
3628 /* Is any thread of this process displaced stepping? If not,
3629 there's nothing else to do. */
00431a78 3630 if (displaced == NULL || displaced->step_thread == nullptr)
24291992
PA
3631 return;
3632
3633 if (debug_infrun)
3634 fprintf_unfiltered (gdb_stdlog,
3635 "displaced-stepping in-process while detaching");
3636
9bcb1f16 3637 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3638
00431a78 3639 while (displaced->step_thread != nullptr)
24291992 3640 {
24291992
PA
3641 struct execution_control_state ecss;
3642 struct execution_control_state *ecs;
3643
3644 ecs = &ecss;
3645 memset (ecs, 0, sizeof (*ecs));
3646
3647 overlay_cache_invalid = 1;
f15cb84a
YQ
3648 /* Flush target cache before starting to handle each event.
3649 Target was running and cache could be stale. This is just a
3650 heuristic. Running threads may modify target memory, but we
3651 don't get any event. */
3652 target_dcache_invalidate ();
24291992 3653
372316f1 3654 ecs->ptid = do_target_wait (pid_ptid, &ecs->ws, 0);
24291992
PA
3655
3656 if (debug_infrun)
3657 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3658
3659 /* If an error happens while handling the event, propagate GDB's
3660 knowledge of the executing state to the frontend/user running
3661 state. */
731f534f 3662 scoped_finish_thread_state finish_state (minus_one_ptid);
24291992
PA
3663
3664 /* Now figure out what to do with the result of the result. */
3665 handle_inferior_event (ecs);
3666
3667 /* No error, don't finish the state yet. */
731f534f 3668 finish_state.release ();
24291992
PA
3669
3670 /* Breakpoints and watchpoints are not installed on the target
3671 at this point, and signals are passed directly to the
3672 inferior, so this must mean the process is gone. */
3673 if (!ecs->wait_some_more)
3674 {
9bcb1f16 3675 restore_detaching.release ();
24291992
PA
3676 error (_("Program exited while detaching"));
3677 }
3678 }
3679
9bcb1f16 3680 restore_detaching.release ();
24291992
PA
3681}
3682
cd0fc7c3 3683/* Wait for control to return from inferior to debugger.
ae123ec6 3684
cd0fc7c3
SS
3685 If inferior gets a signal, we may decide to start it up again
3686 instead of returning. That is why there is a loop in this function.
3687 When this function actually returns it means the inferior
3688 should be left stopped and GDB should read more commands. */
3689
3690void
e4c8541f 3691wait_for_inferior (void)
cd0fc7c3
SS
3692{
3693 struct cleanup *old_cleanups;
c906108c 3694
527159b7 3695 if (debug_infrun)
ae123ec6 3696 fprintf_unfiltered
e4c8541f 3697 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3698
0cbcdb96
PA
3699 old_cleanups
3700 = make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup,
3701 NULL);
cd0fc7c3 3702
e6f5c25b
PA
3703 /* If an error happens while handling the event, propagate GDB's
3704 knowledge of the executing state to the frontend/user running
3705 state. */
731f534f 3706 scoped_finish_thread_state finish_state (minus_one_ptid);
e6f5c25b 3707
c906108c
SS
3708 while (1)
3709 {
ae25568b
PA
3710 struct execution_control_state ecss;
3711 struct execution_control_state *ecs = &ecss;
963f9c80 3712 ptid_t waiton_ptid = minus_one_ptid;
29f49a6a 3713
ae25568b
PA
3714 memset (ecs, 0, sizeof (*ecs));
3715
ec9499be 3716 overlay_cache_invalid = 1;
ec9499be 3717
f15cb84a
YQ
3718 /* Flush target cache before starting to handle each event.
3719 Target was running and cache could be stale. This is just a
3720 heuristic. Running threads may modify target memory, but we
3721 don't get any event. */
3722 target_dcache_invalidate ();
3723
372316f1 3724 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws, 0);
c906108c 3725
f00150c9 3726 if (debug_infrun)
223698f8 3727 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3728
cd0fc7c3
SS
3729 /* Now figure out what to do with the result of the result. */
3730 handle_inferior_event (ecs);
c906108c 3731
cd0fc7c3
SS
3732 if (!ecs->wait_some_more)
3733 break;
3734 }
4e1c45ea 3735
e6f5c25b 3736 /* No error, don't finish the state yet. */
731f534f 3737 finish_state.release ();
e6f5c25b 3738
cd0fc7c3
SS
3739 do_cleanups (old_cleanups);
3740}
c906108c 3741
d3d4baed
PA
3742/* Cleanup that reinstalls the readline callback handler, if the
3743 target is running in the background. If while handling the target
3744 event something triggered a secondary prompt, like e.g., a
3745 pagination prompt, we'll have removed the callback handler (see
3746 gdb_readline_wrapper_line). Need to do this as we go back to the
3747 event loop, ready to process further input. Note this has no
3748 effect if the handler hasn't actually been removed, because calling
3749 rl_callback_handler_install resets the line buffer, thus losing
3750 input. */
3751
3752static void
3753reinstall_readline_callback_handler_cleanup (void *arg)
3754{
3b12939d
PA
3755 struct ui *ui = current_ui;
3756
3757 if (!ui->async)
6c400b59
PA
3758 {
3759 /* We're not going back to the top level event loop yet. Don't
3760 install the readline callback, as it'd prep the terminal,
3761 readline-style (raw, noecho) (e.g., --batch). We'll install
3762 it the next time the prompt is displayed, when we're ready
3763 for input. */
3764 return;
3765 }
3766
3b12939d 3767 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3768 gdb_rl_callback_handler_reinstall ();
3769}
3770
243a9253
PA
3771/* Clean up the FSMs of threads that are now stopped. In non-stop,
3772 that's just the event thread. In all-stop, that's all threads. */
3773
3774static void
3775clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3776{
3777 struct thread_info *thr = ecs->event_thread;
3778
3779 if (thr != NULL && thr->thread_fsm != NULL)
8980e177 3780 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3781
3782 if (!non_stop)
3783 {
3784 ALL_NON_EXITED_THREADS (thr)
3785 {
3786 if (thr->thread_fsm == NULL)
3787 continue;
3788 if (thr == ecs->event_thread)
3789 continue;
3790
00431a78 3791 switch_to_thread (thr);
8980e177 3792 thread_fsm_clean_up (thr->thread_fsm, thr);
243a9253
PA
3793 }
3794
3795 if (ecs->event_thread != NULL)
00431a78 3796 switch_to_thread (ecs->event_thread);
243a9253
PA
3797 }
3798}
3799
3b12939d
PA
3800/* Helper for all_uis_check_sync_execution_done that works on the
3801 current UI. */
3802
3803static void
3804check_curr_ui_sync_execution_done (void)
3805{
3806 struct ui *ui = current_ui;
3807
3808 if (ui->prompt_state == PROMPT_NEEDED
3809 && ui->async
3810 && !gdb_in_secondary_prompt_p (ui))
3811 {
223ffa71 3812 target_terminal::ours ();
76727919 3813 gdb::observers::sync_execution_done.notify ();
3eb7562a 3814 ui_register_input_event_handler (ui);
3b12939d
PA
3815 }
3816}
3817
3818/* See infrun.h. */
3819
3820void
3821all_uis_check_sync_execution_done (void)
3822{
0e454242 3823 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3824 {
3825 check_curr_ui_sync_execution_done ();
3826 }
3827}
3828
a8836c93
PA
3829/* See infrun.h. */
3830
3831void
3832all_uis_on_sync_execution_starting (void)
3833{
0e454242 3834 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3835 {
3836 if (current_ui->prompt_state == PROMPT_NEEDED)
3837 async_disable_stdin ();
3838 }
3839}
3840
1777feb0 3841/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3842 event loop whenever a change of state is detected on the file
1777feb0
MS
3843 descriptor corresponding to the target. It can be called more than
3844 once to complete a single execution command. In such cases we need
3845 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3846 that this function is called for a single execution command, then
3847 report to the user that the inferior has stopped, and do the
1777feb0 3848 necessary cleanups. */
43ff13b4
JM
3849
3850void
fba45db2 3851fetch_inferior_event (void *client_data)
43ff13b4 3852{
0d1e5fa7 3853 struct execution_control_state ecss;
a474d7c2 3854 struct execution_control_state *ecs = &ecss;
4f8d22e3 3855 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
0f641c01 3856 int cmd_done = 0;
963f9c80 3857 ptid_t waiton_ptid = minus_one_ptid;
43ff13b4 3858
0d1e5fa7
PA
3859 memset (ecs, 0, sizeof (*ecs));
3860
c61db772
PA
3861 /* Events are always processed with the main UI as current UI. This
3862 way, warnings, debug output, etc. are always consistently sent to
3863 the main console. */
4b6749b9 3864 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3865
d3d4baed
PA
3866 /* End up with readline processing input, if necessary. */
3867 make_cleanup (reinstall_readline_callback_handler_cleanup, NULL);
3868
c5187ac6
PA
3869 /* We're handling a live event, so make sure we're doing live
3870 debugging. If we're looking at traceframes while the target is
3871 running, we're going to need to get back to that mode after
3872 handling the event. */
6f14adc5 3873 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
c5187ac6
PA
3874 if (non_stop)
3875 {
6f14adc5 3876 maybe_restore_traceframe.emplace ();
e6e4e701 3877 set_current_traceframe (-1);
c5187ac6
PA
3878 }
3879
5ed8105e
PA
3880 gdb::optional<scoped_restore_current_thread> maybe_restore_thread;
3881
4f8d22e3
PA
3882 if (non_stop)
3883 /* In non-stop mode, the user/frontend should not notice a thread
3884 switch due to internal events. Make sure we reverse to the
3885 user selected thread and frame after handling the event and
3886 running any breakpoint commands. */
5ed8105e 3887 maybe_restore_thread.emplace ();
4f8d22e3 3888
ec9499be 3889 overlay_cache_invalid = 1;
f15cb84a
YQ
3890 /* Flush target cache before starting to handle each event. Target
3891 was running and cache could be stale. This is just a heuristic.
3892 Running threads may modify target memory, but we don't get any
3893 event. */
3894 target_dcache_invalidate ();
3dd5b83d 3895
b7b633e9
TT
3896 scoped_restore save_exec_dir
3897 = make_scoped_restore (&execution_direction, target_execution_direction ());
32231432 3898
0b333c5e
PA
3899 ecs->ptid = do_target_wait (waiton_ptid, &ecs->ws,
3900 target_can_async_p () ? TARGET_WNOHANG : 0);
43ff13b4 3901
f00150c9 3902 if (debug_infrun)
223698f8 3903 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
f00150c9 3904
29f49a6a
PA
3905 /* If an error happens while handling the event, propagate GDB's
3906 knowledge of the executing state to the frontend/user running
3907 state. */
731f534f
PA
3908 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3909 scoped_finish_thread_state finish_state (finish_ptid);
29f49a6a 3910
353d1d73
JK
3911 /* Get executed before make_cleanup_restore_current_thread above to apply
3912 still for the thread which has thrown the exception. */
731f534f 3913 struct cleanup *ts_old_chain = make_bpstat_clear_actions_cleanup ();
353d1d73 3914
7c16b83e
PA
3915 make_cleanup (delete_just_stopped_threads_infrun_breakpoints_cleanup, NULL);
3916
43ff13b4 3917 /* Now figure out what to do with the result of the result. */
a474d7c2 3918 handle_inferior_event (ecs);
43ff13b4 3919
a474d7c2 3920 if (!ecs->wait_some_more)
43ff13b4 3921 {
c9657e70 3922 struct inferior *inf = find_inferior_ptid (ecs->ptid);
243a9253
PA
3923 int should_stop = 1;
3924 struct thread_info *thr = ecs->event_thread;
d6b48e9c 3925
0cbcdb96 3926 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 3927
243a9253
PA
3928 if (thr != NULL)
3929 {
3930 struct thread_fsm *thread_fsm = thr->thread_fsm;
3931
3932 if (thread_fsm != NULL)
8980e177 3933 should_stop = thread_fsm_should_stop (thread_fsm, thr);
243a9253
PA
3934 }
3935
3936 if (!should_stop)
3937 {
3938 keep_going (ecs);
3939 }
c2d11a7d 3940 else
0f641c01 3941 {
1840d81a
AB
3942 int should_notify_stop = 1;
3943 int proceeded = 0;
3944
243a9253
PA
3945 clean_up_just_stopped_threads_fsms (ecs);
3946
388a7084
PA
3947 if (thr != NULL && thr->thread_fsm != NULL)
3948 {
3949 should_notify_stop
3950 = thread_fsm_should_notify_stop (thr->thread_fsm);
3951 }
3952
3953 if (should_notify_stop)
3954 {
3955 /* We may not find an inferior if this was a process exit. */
3956 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4c2f2a79 3957 proceeded = normal_stop ();
1840d81a 3958 }
243a9253 3959
1840d81a
AB
3960 if (!proceeded)
3961 {
3962 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
3963 cmd_done = 1;
388a7084 3964 }
0f641c01 3965 }
43ff13b4 3966 }
4f8d22e3 3967
29f49a6a
PA
3968 discard_cleanups (ts_old_chain);
3969
731f534f
PA
3970 /* No error, don't finish the thread states yet. */
3971 finish_state.release ();
3972
4f8d22e3
PA
3973 /* Revert thread and frame. */
3974 do_cleanups (old_chain);
3975
3b12939d
PA
3976 /* If a UI was in sync execution mode, and now isn't, restore its
3977 prompt (a synchronous execution command has finished, and we're
3978 ready for input). */
3979 all_uis_check_sync_execution_done ();
0f641c01
PA
3980
3981 if (cmd_done
0f641c01 3982 && exec_done_display_p
00431a78
PA
3983 && (inferior_ptid == null_ptid
3984 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 3985 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
3986}
3987
edb3359d
DJ
3988/* Record the frame and location we're currently stepping through. */
3989void
3990set_step_info (struct frame_info *frame, struct symtab_and_line sal)
3991{
3992 struct thread_info *tp = inferior_thread ();
3993
16c381f0
JK
3994 tp->control.step_frame_id = get_frame_id (frame);
3995 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
3996
3997 tp->current_symtab = sal.symtab;
3998 tp->current_line = sal.line;
3999}
4000
0d1e5fa7
PA
4001/* Clear context switchable stepping state. */
4002
4003void
4e1c45ea 4004init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4005{
7f5ef605 4006 tss->stepped_breakpoint = 0;
0d1e5fa7 4007 tss->stepping_over_breakpoint = 0;
963f9c80 4008 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4009 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4010}
4011
c32c64b7
DE
4012/* Set the cached copy of the last ptid/waitstatus. */
4013
6efcd9a8 4014void
c32c64b7
DE
4015set_last_target_status (ptid_t ptid, struct target_waitstatus status)
4016{
4017 target_last_wait_ptid = ptid;
4018 target_last_waitstatus = status;
4019}
4020
e02bc4cc 4021/* Return the cached copy of the last pid/waitstatus returned by
9a4105ab
AC
4022 target_wait()/deprecated_target_wait_hook(). The data is actually
4023 cached by handle_inferior_event(), which gets called immediately
4024 after target_wait()/deprecated_target_wait_hook(). */
e02bc4cc
DS
4025
4026void
488f131b 4027get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
e02bc4cc 4028{
39f77062 4029 *ptidp = target_last_wait_ptid;
e02bc4cc
DS
4030 *status = target_last_waitstatus;
4031}
4032
ac264b3b
MS
4033void
4034nullify_last_target_wait_ptid (void)
4035{
4036 target_last_wait_ptid = minus_one_ptid;
4037}
4038
dcf4fbde 4039/* Switch thread contexts. */
dd80620e
MS
4040
4041static void
00431a78 4042context_switch (execution_control_state *ecs)
dd80620e 4043{
00431a78
PA
4044 if (debug_infrun
4045 && ecs->ptid != inferior_ptid
4046 && ecs->event_thread != inferior_thread ())
fd48f117
DJ
4047 {
4048 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
4049 target_pid_to_str (inferior_ptid));
4050 fprintf_unfiltered (gdb_stdlog, "to %s\n",
00431a78 4051 target_pid_to_str (ecs->ptid));
fd48f117
DJ
4052 }
4053
00431a78 4054 switch_to_thread (ecs->event_thread);
dd80620e
MS
4055}
4056
d8dd4d5f
PA
4057/* If the target can't tell whether we've hit breakpoints
4058 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4059 check whether that could have been caused by a breakpoint. If so,
4060 adjust the PC, per gdbarch_decr_pc_after_break. */
4061
4fa8626c 4062static void
d8dd4d5f
PA
4063adjust_pc_after_break (struct thread_info *thread,
4064 struct target_waitstatus *ws)
4fa8626c 4065{
24a73cce
UW
4066 struct regcache *regcache;
4067 struct gdbarch *gdbarch;
118e6252 4068 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4069
4fa8626c
DJ
4070 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4071 we aren't, just return.
9709f61c
DJ
4072
4073 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4074 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4075 implemented by software breakpoints should be handled through the normal
4076 breakpoint layer.
8fb3e588 4077
4fa8626c
DJ
4078 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4079 different signals (SIGILL or SIGEMT for instance), but it is less
4080 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4081 gdbarch_decr_pc_after_break. I don't know any specific target that
4082 generates these signals at breakpoints (the code has been in GDB since at
4083 least 1992) so I can not guess how to handle them here.
8fb3e588 4084
e6cf7916
UW
4085 In earlier versions of GDB, a target with
4086 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4087 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4088 target with both of these set in GDB history, and it seems unlikely to be
4089 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4090
d8dd4d5f 4091 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4092 return;
4093
d8dd4d5f 4094 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4095 return;
4096
4058b839
PA
4097 /* In reverse execution, when a breakpoint is hit, the instruction
4098 under it has already been de-executed. The reported PC always
4099 points at the breakpoint address, so adjusting it further would
4100 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4101 architecture:
4102
4103 B1 0x08000000 : INSN1
4104 B2 0x08000001 : INSN2
4105 0x08000002 : INSN3
4106 PC -> 0x08000003 : INSN4
4107
4108 Say you're stopped at 0x08000003 as above. Reverse continuing
4109 from that point should hit B2 as below. Reading the PC when the
4110 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4111 been de-executed already.
4112
4113 B1 0x08000000 : INSN1
4114 B2 PC -> 0x08000001 : INSN2
4115 0x08000002 : INSN3
4116 0x08000003 : INSN4
4117
4118 We can't apply the same logic as for forward execution, because
4119 we would wrongly adjust the PC to 0x08000000, since there's a
4120 breakpoint at PC - 1. We'd then report a hit on B1, although
4121 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4122 behaviour. */
4123 if (execution_direction == EXEC_REVERSE)
4124 return;
4125
1cf4d951
PA
4126 /* If the target can tell whether the thread hit a SW breakpoint,
4127 trust it. Targets that can tell also adjust the PC
4128 themselves. */
4129 if (target_supports_stopped_by_sw_breakpoint ())
4130 return;
4131
4132 /* Note that relying on whether a breakpoint is planted in memory to
4133 determine this can fail. E.g,. the breakpoint could have been
4134 removed since. Or the thread could have been told to step an
4135 instruction the size of a breakpoint instruction, and only
4136 _after_ was a breakpoint inserted at its address. */
4137
24a73cce
UW
4138 /* If this target does not decrement the PC after breakpoints, then
4139 we have nothing to do. */
00431a78 4140 regcache = get_thread_regcache (thread);
ac7936df 4141 gdbarch = regcache->arch ();
118e6252 4142
527a273a 4143 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4144 if (decr_pc == 0)
24a73cce
UW
4145 return;
4146
8b86c959 4147 const address_space *aspace = regcache->aspace ();
6c95b8df 4148
8aad930b
AC
4149 /* Find the location where (if we've hit a breakpoint) the
4150 breakpoint would be. */
118e6252 4151 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4152
1cf4d951
PA
4153 /* If the target can't tell whether a software breakpoint triggered,
4154 fallback to figuring it out based on breakpoints we think were
4155 inserted in the target, and on whether the thread was stepped or
4156 continued. */
4157
1c5cfe86
PA
4158 /* Check whether there actually is a software breakpoint inserted at
4159 that location.
4160
4161 If in non-stop mode, a race condition is possible where we've
4162 removed a breakpoint, but stop events for that breakpoint were
4163 already queued and arrive later. To suppress those spurious
4164 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4165 and retire them after a number of stop events are reported. Note
4166 this is an heuristic and can thus get confused. The real fix is
4167 to get the "stopped by SW BP and needs adjustment" info out of
4168 the target/kernel (and thus never reach here; see above). */
6c95b8df 4169 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4170 || (target_is_non_stop_p ()
4171 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4172 {
07036511 4173 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4174
8213266a 4175 if (record_full_is_used ())
07036511
TT
4176 restore_operation_disable.emplace
4177 (record_full_gdb_operation_disable_set ());
96429cc8 4178
1c0fdd0e
UW
4179 /* When using hardware single-step, a SIGTRAP is reported for both
4180 a completed single-step and a software breakpoint. Need to
4181 differentiate between the two, as the latter needs adjusting
4182 but the former does not.
4183
4184 The SIGTRAP can be due to a completed hardware single-step only if
4185 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4186 - this thread is currently being stepped
4187
4188 If any of these events did not occur, we must have stopped due
4189 to hitting a software breakpoint, and have to back up to the
4190 breakpoint address.
4191
4192 As a special case, we could have hardware single-stepped a
4193 software breakpoint. In this case (prev_pc == breakpoint_pc),
4194 we also need to back up to the breakpoint address. */
4195
d8dd4d5f
PA
4196 if (thread_has_single_step_breakpoints_set (thread)
4197 || !currently_stepping (thread)
4198 || (thread->stepped_breakpoint
4199 && thread->prev_pc == breakpoint_pc))
515630c5 4200 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4201 }
4fa8626c
DJ
4202}
4203
edb3359d
DJ
4204static int
4205stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4206{
4207 for (frame = get_prev_frame (frame);
4208 frame != NULL;
4209 frame = get_prev_frame (frame))
4210 {
4211 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4212 return 1;
4213 if (get_frame_type (frame) != INLINE_FRAME)
4214 break;
4215 }
4216
4217 return 0;
4218}
4219
c65d6b55
PA
4220/* If the event thread has the stop requested flag set, pretend it
4221 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4222 target_stop). */
4223
4224static bool
4225handle_stop_requested (struct execution_control_state *ecs)
4226{
4227 if (ecs->event_thread->stop_requested)
4228 {
4229 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4230 ecs->ws.value.sig = GDB_SIGNAL_0;
4231 handle_signal_stop (ecs);
4232 return true;
4233 }
4234 return false;
4235}
4236
a96d9b2e
SDJ
4237/* Auxiliary function that handles syscall entry/return events.
4238 It returns 1 if the inferior should keep going (and GDB
4239 should ignore the event), or 0 if the event deserves to be
4240 processed. */
ca2163eb 4241
a96d9b2e 4242static int
ca2163eb 4243handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4244{
ca2163eb 4245 struct regcache *regcache;
ca2163eb
PA
4246 int syscall_number;
4247
00431a78 4248 context_switch (ecs);
ca2163eb 4249
00431a78 4250 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4251 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4252 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4253
a96d9b2e
SDJ
4254 if (catch_syscall_enabled () > 0
4255 && catching_syscall_number (syscall_number) > 0)
4256 {
4257 if (debug_infrun)
4258 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4259 syscall_number);
a96d9b2e 4260
16c381f0 4261 ecs->event_thread->control.stop_bpstat
a01bda52 4262 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4263 ecs->event_thread->suspend.stop_pc,
4264 ecs->event_thread, &ecs->ws);
ab04a2af 4265
c65d6b55
PA
4266 if (handle_stop_requested (ecs))
4267 return 0;
4268
ce12b012 4269 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4270 {
4271 /* Catchpoint hit. */
ca2163eb
PA
4272 return 0;
4273 }
a96d9b2e 4274 }
ca2163eb 4275
c65d6b55
PA
4276 if (handle_stop_requested (ecs))
4277 return 0;
4278
ca2163eb 4279 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4280 keep_going (ecs);
4281 return 1;
a96d9b2e
SDJ
4282}
4283
7e324e48
GB
4284/* Lazily fill in the execution_control_state's stop_func_* fields. */
4285
4286static void
4287fill_in_stop_func (struct gdbarch *gdbarch,
4288 struct execution_control_state *ecs)
4289{
4290 if (!ecs->stop_func_filled_in)
4291 {
4292 /* Don't care about return value; stop_func_start and stop_func_name
4293 will both be 0 if it doesn't work. */
f2ffa92b
PA
4294 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4295 &ecs->stop_func_name,
7e324e48
GB
4296 &ecs->stop_func_start, &ecs->stop_func_end);
4297 ecs->stop_func_start
4298 += gdbarch_deprecated_function_start_offset (gdbarch);
4299
591a12a1
UW
4300 if (gdbarch_skip_entrypoint_p (gdbarch))
4301 ecs->stop_func_start = gdbarch_skip_entrypoint (gdbarch,
4302 ecs->stop_func_start);
4303
7e324e48
GB
4304 ecs->stop_func_filled_in = 1;
4305 }
4306}
4307
4f5d7f63 4308
00431a78 4309/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4310
4311static enum stop_kind
00431a78 4312get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4313{
00431a78 4314 struct inferior *inf = find_inferior_ptid (ecs->ptid);
4f5d7f63
PA
4315
4316 gdb_assert (inf != NULL);
4317 return inf->control.stop_soon;
4318}
4319
372316f1
PA
4320/* Wait for one event. Store the resulting waitstatus in WS, and
4321 return the event ptid. */
4322
4323static ptid_t
4324wait_one (struct target_waitstatus *ws)
4325{
4326 ptid_t event_ptid;
4327 ptid_t wait_ptid = minus_one_ptid;
4328
4329 overlay_cache_invalid = 1;
4330
4331 /* Flush target cache before starting to handle each event.
4332 Target was running and cache could be stale. This is just a
4333 heuristic. Running threads may modify target memory, but we
4334 don't get any event. */
4335 target_dcache_invalidate ();
4336
4337 if (deprecated_target_wait_hook)
4338 event_ptid = deprecated_target_wait_hook (wait_ptid, ws, 0);
4339 else
4340 event_ptid = target_wait (wait_ptid, ws, 0);
4341
4342 if (debug_infrun)
4343 print_target_wait_results (wait_ptid, event_ptid, ws);
4344
4345 return event_ptid;
4346}
4347
4348/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4349 instead of the current thread. */
4350#define THREAD_STOPPED_BY(REASON) \
4351static int \
4352thread_stopped_by_ ## REASON (ptid_t ptid) \
4353{ \
2989a365 4354 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4355 inferior_ptid = ptid; \
4356 \
2989a365 4357 return target_stopped_by_ ## REASON (); \
372316f1
PA
4358}
4359
4360/* Generate thread_stopped_by_watchpoint. */
4361THREAD_STOPPED_BY (watchpoint)
4362/* Generate thread_stopped_by_sw_breakpoint. */
4363THREAD_STOPPED_BY (sw_breakpoint)
4364/* Generate thread_stopped_by_hw_breakpoint. */
4365THREAD_STOPPED_BY (hw_breakpoint)
4366
372316f1
PA
4367/* Save the thread's event and stop reason to process it later. */
4368
4369static void
4370save_waitstatus (struct thread_info *tp, struct target_waitstatus *ws)
4371{
372316f1
PA
4372 if (debug_infrun)
4373 {
23fdd69e 4374 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4375
372316f1
PA
4376 fprintf_unfiltered (gdb_stdlog,
4377 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4378 statstr.c_str (),
e99b03dc 4379 tp->ptid.pid (),
e38504b3 4380 tp->ptid.lwp (),
cc6bcb54 4381 tp->ptid.tid ());
372316f1
PA
4382 }
4383
4384 /* Record for later. */
4385 tp->suspend.waitstatus = *ws;
4386 tp->suspend.waitstatus_pending_p = 1;
4387
00431a78 4388 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4389 const address_space *aspace = regcache->aspace ();
372316f1
PA
4390
4391 if (ws->kind == TARGET_WAITKIND_STOPPED
4392 && ws->value.sig == GDB_SIGNAL_TRAP)
4393 {
4394 CORE_ADDR pc = regcache_read_pc (regcache);
4395
4396 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4397
4398 if (thread_stopped_by_watchpoint (tp->ptid))
4399 {
4400 tp->suspend.stop_reason
4401 = TARGET_STOPPED_BY_WATCHPOINT;
4402 }
4403 else if (target_supports_stopped_by_sw_breakpoint ()
4404 && thread_stopped_by_sw_breakpoint (tp->ptid))
4405 {
4406 tp->suspend.stop_reason
4407 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4408 }
4409 else if (target_supports_stopped_by_hw_breakpoint ()
4410 && thread_stopped_by_hw_breakpoint (tp->ptid))
4411 {
4412 tp->suspend.stop_reason
4413 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4414 }
4415 else if (!target_supports_stopped_by_hw_breakpoint ()
4416 && hardware_breakpoint_inserted_here_p (aspace,
4417 pc))
4418 {
4419 tp->suspend.stop_reason
4420 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4421 }
4422 else if (!target_supports_stopped_by_sw_breakpoint ()
4423 && software_breakpoint_inserted_here_p (aspace,
4424 pc))
4425 {
4426 tp->suspend.stop_reason
4427 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4428 }
4429 else if (!thread_has_single_step_breakpoints_set (tp)
4430 && currently_stepping (tp))
4431 {
4432 tp->suspend.stop_reason
4433 = TARGET_STOPPED_BY_SINGLE_STEP;
4434 }
4435 }
4436}
4437
65706a29
PA
4438/* A cleanup that disables thread create/exit events. */
4439
4440static void
4441disable_thread_events (void *arg)
4442{
4443 target_thread_events (0);
4444}
4445
6efcd9a8 4446/* See infrun.h. */
372316f1 4447
6efcd9a8 4448void
372316f1
PA
4449stop_all_threads (void)
4450{
4451 /* We may need multiple passes to discover all threads. */
4452 int pass;
4453 int iterations = 0;
372316f1
PA
4454 struct cleanup *old_chain;
4455
fbea99ea 4456 gdb_assert (target_is_non_stop_p ());
372316f1
PA
4457
4458 if (debug_infrun)
4459 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4460
00431a78 4461 scoped_restore_current_thread restore_thread;
372316f1 4462
65706a29 4463 target_thread_events (1);
00431a78 4464 old_chain = make_cleanup (disable_thread_events, NULL);
65706a29 4465
372316f1
PA
4466 /* Request threads to stop, and then wait for the stops. Because
4467 threads we already know about can spawn more threads while we're
4468 trying to stop them, and we only learn about new threads when we
4469 update the thread list, do this in a loop, and keep iterating
4470 until two passes find no threads that need to be stopped. */
4471 for (pass = 0; pass < 2; pass++, iterations++)
4472 {
4473 if (debug_infrun)
4474 fprintf_unfiltered (gdb_stdlog,
4475 "infrun: stop_all_threads, pass=%d, "
4476 "iterations=%d\n", pass, iterations);
4477 while (1)
4478 {
4479 ptid_t event_ptid;
4480 struct target_waitstatus ws;
4481 int need_wait = 0;
4482 struct thread_info *t;
4483
4484 update_thread_list ();
4485
4486 /* Go through all threads looking for threads that we need
4487 to tell the target to stop. */
4488 ALL_NON_EXITED_THREADS (t)
4489 {
4490 if (t->executing)
4491 {
4492 /* If already stopping, don't request a stop again.
4493 We just haven't seen the notification yet. */
4494 if (!t->stop_requested)
4495 {
4496 if (debug_infrun)
4497 fprintf_unfiltered (gdb_stdlog,
4498 "infrun: %s executing, "
4499 "need stop\n",
4500 target_pid_to_str (t->ptid));
4501 target_stop (t->ptid);
4502 t->stop_requested = 1;
4503 }
4504 else
4505 {
4506 if (debug_infrun)
4507 fprintf_unfiltered (gdb_stdlog,
4508 "infrun: %s executing, "
4509 "already stopping\n",
4510 target_pid_to_str (t->ptid));
4511 }
4512
4513 if (t->stop_requested)
4514 need_wait = 1;
4515 }
4516 else
4517 {
4518 if (debug_infrun)
4519 fprintf_unfiltered (gdb_stdlog,
4520 "infrun: %s not executing\n",
4521 target_pid_to_str (t->ptid));
4522
4523 /* The thread may be not executing, but still be
4524 resumed with a pending status to process. */
4525 t->resumed = 0;
4526 }
4527 }
4528
4529 if (!need_wait)
4530 break;
4531
4532 /* If we find new threads on the second iteration, restart
4533 over. We want to see two iterations in a row with all
4534 threads stopped. */
4535 if (pass > 0)
4536 pass = -1;
4537
4538 event_ptid = wait_one (&ws);
00431a78 4539
372316f1
PA
4540 if (ws.kind == TARGET_WAITKIND_NO_RESUMED)
4541 {
4542 /* All resumed threads exited. */
4543 }
65706a29
PA
4544 else if (ws.kind == TARGET_WAITKIND_THREAD_EXITED
4545 || ws.kind == TARGET_WAITKIND_EXITED
372316f1
PA
4546 || ws.kind == TARGET_WAITKIND_SIGNALLED)
4547 {
4548 if (debug_infrun)
4549 {
f2907e49 4550 ptid_t ptid = ptid_t (ws.value.integer);
372316f1
PA
4551
4552 fprintf_unfiltered (gdb_stdlog,
4553 "infrun: %s exited while "
4554 "stopping threads\n",
4555 target_pid_to_str (ptid));
4556 }
4557 }
4558 else
4559 {
00431a78 4560 inferior *inf;
6efcd9a8 4561
372316f1
PA
4562 t = find_thread_ptid (event_ptid);
4563 if (t == NULL)
4564 t = add_thread (event_ptid);
4565
4566 t->stop_requested = 0;
4567 t->executing = 0;
4568 t->resumed = 0;
4569 t->control.may_range_step = 0;
4570
6efcd9a8
PA
4571 /* This may be the first time we see the inferior report
4572 a stop. */
4573 inf = find_inferior_ptid (event_ptid);
4574 if (inf->needs_setup)
4575 {
4576 switch_to_thread_no_regs (t);
4577 setup_inferior (0);
4578 }
4579
372316f1
PA
4580 if (ws.kind == TARGET_WAITKIND_STOPPED
4581 && ws.value.sig == GDB_SIGNAL_0)
4582 {
4583 /* We caught the event that we intended to catch, so
4584 there's no event pending. */
4585 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4586 t->suspend.waitstatus_pending_p = 0;
4587
00431a78 4588 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4589 {
4590 /* Add it back to the step-over queue. */
4591 if (debug_infrun)
4592 {
4593 fprintf_unfiltered (gdb_stdlog,
4594 "infrun: displaced-step of %s "
4595 "canceled: adding back to the "
4596 "step-over queue\n",
4597 target_pid_to_str (t->ptid));
4598 }
4599 t->control.trap_expected = 0;
4600 thread_step_over_chain_enqueue (t);
4601 }
4602 }
4603 else
4604 {
4605 enum gdb_signal sig;
4606 struct regcache *regcache;
372316f1
PA
4607
4608 if (debug_infrun)
4609 {
23fdd69e 4610 std::string statstr = target_waitstatus_to_string (&ws);
372316f1 4611
372316f1
PA
4612 fprintf_unfiltered (gdb_stdlog,
4613 "infrun: target_wait %s, saving "
4614 "status for %d.%ld.%ld\n",
23fdd69e 4615 statstr.c_str (),
e99b03dc 4616 t->ptid.pid (),
e38504b3 4617 t->ptid.lwp (),
cc6bcb54 4618 t->ptid.tid ());
372316f1
PA
4619 }
4620
4621 /* Record for later. */
4622 save_waitstatus (t, &ws);
4623
4624 sig = (ws.kind == TARGET_WAITKIND_STOPPED
4625 ? ws.value.sig : GDB_SIGNAL_0);
4626
00431a78 4627 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4628 {
4629 /* Add it back to the step-over queue. */
4630 t->control.trap_expected = 0;
4631 thread_step_over_chain_enqueue (t);
4632 }
4633
00431a78 4634 regcache = get_thread_regcache (t);
372316f1
PA
4635 t->suspend.stop_pc = regcache_read_pc (regcache);
4636
4637 if (debug_infrun)
4638 {
4639 fprintf_unfiltered (gdb_stdlog,
4640 "infrun: saved stop_pc=%s for %s "
4641 "(currently_stepping=%d)\n",
4642 paddress (target_gdbarch (),
4643 t->suspend.stop_pc),
4644 target_pid_to_str (t->ptid),
4645 currently_stepping (t));
4646 }
4647 }
4648 }
4649 }
4650 }
4651
4652 do_cleanups (old_chain);
4653
4654 if (debug_infrun)
4655 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4656}
4657
f4836ba9
PA
4658/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4659
4660static int
4661handle_no_resumed (struct execution_control_state *ecs)
4662{
4663 struct inferior *inf;
4664 struct thread_info *thread;
4665
3b12939d 4666 if (target_can_async_p ())
f4836ba9 4667 {
3b12939d
PA
4668 struct ui *ui;
4669 int any_sync = 0;
f4836ba9 4670
3b12939d
PA
4671 ALL_UIS (ui)
4672 {
4673 if (ui->prompt_state == PROMPT_BLOCKED)
4674 {
4675 any_sync = 1;
4676 break;
4677 }
4678 }
4679 if (!any_sync)
4680 {
4681 /* There were no unwaited-for children left in the target, but,
4682 we're not synchronously waiting for events either. Just
4683 ignore. */
4684
4685 if (debug_infrun)
4686 fprintf_unfiltered (gdb_stdlog,
4687 "infrun: TARGET_WAITKIND_NO_RESUMED "
4688 "(ignoring: bg)\n");
4689 prepare_to_wait (ecs);
4690 return 1;
4691 }
f4836ba9
PA
4692 }
4693
4694 /* Otherwise, if we were running a synchronous execution command, we
4695 may need to cancel it and give the user back the terminal.
4696
4697 In non-stop mode, the target can't tell whether we've already
4698 consumed previous stop events, so it can end up sending us a
4699 no-resumed event like so:
4700
4701 #0 - thread 1 is left stopped
4702
4703 #1 - thread 2 is resumed and hits breakpoint
4704 -> TARGET_WAITKIND_STOPPED
4705
4706 #2 - thread 3 is resumed and exits
4707 this is the last resumed thread, so
4708 -> TARGET_WAITKIND_NO_RESUMED
4709
4710 #3 - gdb processes stop for thread 2 and decides to re-resume
4711 it.
4712
4713 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4714 thread 2 is now resumed, so the event should be ignored.
4715
4716 IOW, if the stop for thread 2 doesn't end a foreground command,
4717 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4718 event. But it could be that the event meant that thread 2 itself
4719 (or whatever other thread was the last resumed thread) exited.
4720
4721 To address this we refresh the thread list and check whether we
4722 have resumed threads _now_. In the example above, this removes
4723 thread 3 from the thread list. If thread 2 was re-resumed, we
4724 ignore this event. If we find no thread resumed, then we cancel
4725 the synchronous command show "no unwaited-for " to the user. */
4726 update_thread_list ();
4727
4728 ALL_NON_EXITED_THREADS (thread)
4729 {
4730 if (thread->executing
4731 || thread->suspend.waitstatus_pending_p)
4732 {
4733 /* There were no unwaited-for children left in the target at
4734 some point, but there are now. Just ignore. */
4735 if (debug_infrun)
4736 fprintf_unfiltered (gdb_stdlog,
4737 "infrun: TARGET_WAITKIND_NO_RESUMED "
4738 "(ignoring: found resumed)\n");
4739 prepare_to_wait (ecs);
4740 return 1;
4741 }
4742 }
4743
4744 /* Note however that we may find no resumed thread because the whole
4745 process exited meanwhile (thus updating the thread list results
4746 in an empty thread list). In this case we know we'll be getting
4747 a process exit event shortly. */
4748 ALL_INFERIORS (inf)
4749 {
4750 if (inf->pid == 0)
4751 continue;
4752
00431a78 4753 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
4754 if (thread == NULL)
4755 {
4756 if (debug_infrun)
4757 fprintf_unfiltered (gdb_stdlog,
4758 "infrun: TARGET_WAITKIND_NO_RESUMED "
4759 "(expect process exit)\n");
4760 prepare_to_wait (ecs);
4761 return 1;
4762 }
4763 }
4764
4765 /* Go ahead and report the event. */
4766 return 0;
4767}
4768
05ba8510
PA
4769/* Given an execution control state that has been freshly filled in by
4770 an event from the inferior, figure out what it means and take
4771 appropriate action.
4772
4773 The alternatives are:
4774
22bcd14b 4775 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
4776 debugger.
4777
4778 2) keep_going and return; to wait for the next event (set
4779 ecs->event_thread->stepping_over_breakpoint to 1 to single step
4780 once). */
c906108c 4781
ec9499be 4782static void
0b6e5e10 4783handle_inferior_event_1 (struct execution_control_state *ecs)
cd0fc7c3 4784{
d6b48e9c
PA
4785 enum stop_kind stop_soon;
4786
28736962
PA
4787 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
4788 {
4789 /* We had an event in the inferior, but we are not interested in
4790 handling it at this level. The lower layers have already
4791 done what needs to be done, if anything.
4792
4793 One of the possible circumstances for this is when the
4794 inferior produces output for the console. The inferior has
4795 not stopped, and we are ignoring the event. Another possible
4796 circumstance is any event which the lower level knows will be
4797 reported multiple times without an intervening resume. */
4798 if (debug_infrun)
4799 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
4800 prepare_to_wait (ecs);
4801 return;
4802 }
4803
65706a29
PA
4804 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
4805 {
4806 if (debug_infrun)
4807 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_EXITED\n");
4808 prepare_to_wait (ecs);
4809 return;
4810 }
4811
0e5bf2a8 4812 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
4813 && handle_no_resumed (ecs))
4814 return;
0e5bf2a8 4815
1777feb0 4816 /* Cache the last pid/waitstatus. */
c32c64b7 4817 set_last_target_status (ecs->ptid, ecs->ws);
e02bc4cc 4818
ca005067 4819 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 4820 stop_stack_dummy = STOP_NONE;
ca005067 4821
0e5bf2a8
PA
4822 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
4823 {
4824 /* No unwaited-for children left. IOW, all resumed children
4825 have exited. */
4826 if (debug_infrun)
4827 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
4828
4829 stop_print_frame = 0;
22bcd14b 4830 stop_waiting (ecs);
0e5bf2a8
PA
4831 return;
4832 }
4833
8c90c137 4834 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 4835 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6
PA
4836 {
4837 ecs->event_thread = find_thread_ptid (ecs->ptid);
4838 /* If it's a new thread, add it to the thread database. */
4839 if (ecs->event_thread == NULL)
4840 ecs->event_thread = add_thread (ecs->ptid);
c1e36e3e
PA
4841
4842 /* Disable range stepping. If the next step request could use a
4843 range, this will be end up re-enabled then. */
4844 ecs->event_thread->control.may_range_step = 0;
359f5fe6 4845 }
88ed393a
JK
4846
4847 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 4848 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
4849
4850 /* Dependent on the current PC value modified by adjust_pc_after_break. */
4851 reinit_frame_cache ();
4852
28736962
PA
4853 breakpoint_retire_moribund ();
4854
2b009048
DJ
4855 /* First, distinguish signals caused by the debugger from signals
4856 that have to do with the program's own actions. Note that
4857 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
4858 on the operating system version. Here we detect when a SIGILL or
4859 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
4860 something similar for SIGSEGV, since a SIGSEGV will be generated
4861 when we're trying to execute a breakpoint instruction on a
4862 non-executable stack. This happens for call dummy breakpoints
4863 for architectures like SPARC that place call dummies on the
4864 stack. */
2b009048 4865 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
4866 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
4867 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
4868 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 4869 {
00431a78 4870 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 4871
a01bda52 4872 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
4873 regcache_read_pc (regcache)))
4874 {
4875 if (debug_infrun)
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 4878 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 4879 }
2b009048
DJ
4880 }
4881
28736962
PA
4882 /* Mark the non-executing threads accordingly. In all-stop, all
4883 threads of all processes are stopped when we get any event
e1316e60 4884 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
4885 {
4886 ptid_t mark_ptid;
4887
fbea99ea 4888 if (!target_is_non_stop_p ())
372316f1
PA
4889 mark_ptid = minus_one_ptid;
4890 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
4891 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
4892 {
4893 /* If we're handling a process exit in non-stop mode, even
4894 though threads haven't been deleted yet, one would think
4895 that there is nothing to do, as threads of the dead process
4896 will be soon deleted, and threads of any other process were
4897 left running. However, on some targets, threads survive a
4898 process exit event. E.g., for the "checkpoint" command,
4899 when the current checkpoint/fork exits, linux-fork.c
4900 automatically switches to another fork from within
4901 target_mourn_inferior, by associating the same
4902 inferior/thread to another fork. We haven't mourned yet at
4903 this point, but we must mark any threads left in the
4904 process as not-executing so that finish_thread_state marks
4905 them stopped (in the user's perspective) if/when we present
4906 the stop to the user. */
e99b03dc 4907 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
4908 }
4909 else
4910 mark_ptid = ecs->ptid;
4911
4912 set_executing (mark_ptid, 0);
4913
4914 /* Likewise the resumed flag. */
4915 set_resumed (mark_ptid, 0);
4916 }
8c90c137 4917
488f131b
JB
4918 switch (ecs->ws.kind)
4919 {
4920 case TARGET_WAITKIND_LOADED:
527159b7 4921 if (debug_infrun)
8a9de0e4 4922 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
00431a78 4923 context_switch (ecs);
b0f4b84b
DJ
4924 /* Ignore gracefully during startup of the inferior, as it might
4925 be the shell which has just loaded some objects, otherwise
4926 add the symbols for the newly loaded objects. Also ignore at
4927 the beginning of an attach or remote session; we will query
4928 the full list of libraries once the connection is
4929 established. */
4f5d7f63 4930
00431a78 4931 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 4932 if (stop_soon == NO_STOP_QUIETLY)
488f131b 4933 {
edcc5120
TT
4934 struct regcache *regcache;
4935
00431a78 4936 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
4937
4938 handle_solib_event ();
4939
4940 ecs->event_thread->control.stop_bpstat
a01bda52 4941 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4942 ecs->event_thread->suspend.stop_pc,
4943 ecs->event_thread, &ecs->ws);
ab04a2af 4944
c65d6b55
PA
4945 if (handle_stop_requested (ecs))
4946 return;
4947
ce12b012 4948 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
4949 {
4950 /* A catchpoint triggered. */
94c57d6a
PA
4951 process_event_stop_test (ecs);
4952 return;
edcc5120 4953 }
488f131b 4954
b0f4b84b
DJ
4955 /* If requested, stop when the dynamic linker notifies
4956 gdb of events. This allows the user to get control
4957 and place breakpoints in initializer routines for
4958 dynamically loaded objects (among other things). */
a493e3e2 4959 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
4960 if (stop_on_solib_events)
4961 {
55409f9d
DJ
4962 /* Make sure we print "Stopped due to solib-event" in
4963 normal_stop. */
4964 stop_print_frame = 1;
4965
22bcd14b 4966 stop_waiting (ecs);
b0f4b84b
DJ
4967 return;
4968 }
488f131b 4969 }
b0f4b84b
DJ
4970
4971 /* If we are skipping through a shell, or through shared library
4972 loading that we aren't interested in, resume the program. If
5c09a2c5 4973 we're running the program normally, also resume. */
b0f4b84b
DJ
4974 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
4975 {
74960c60
VP
4976 /* Loading of shared libraries might have changed breakpoint
4977 addresses. Make sure new breakpoints are inserted. */
a25a5a45 4978 if (stop_soon == NO_STOP_QUIETLY)
74960c60 4979 insert_breakpoints ();
64ce06e4 4980 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
4981 prepare_to_wait (ecs);
4982 return;
4983 }
4984
5c09a2c5
PA
4985 /* But stop if we're attaching or setting up a remote
4986 connection. */
4987 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4988 || stop_soon == STOP_QUIETLY_REMOTE)
4989 {
4990 if (debug_infrun)
4991 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 4992 stop_waiting (ecs);
5c09a2c5
PA
4993 return;
4994 }
4995
4996 internal_error (__FILE__, __LINE__,
4997 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 4998
488f131b 4999 case TARGET_WAITKIND_SPURIOUS:
527159b7 5000 if (debug_infrun)
8a9de0e4 5001 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
c65d6b55
PA
5002 if (handle_stop_requested (ecs))
5003 return;
00431a78 5004 context_switch (ecs);
64ce06e4 5005 resume (GDB_SIGNAL_0);
488f131b
JB
5006 prepare_to_wait (ecs);
5007 return;
c5aa993b 5008
65706a29
PA
5009 case TARGET_WAITKIND_THREAD_CREATED:
5010 if (debug_infrun)
5011 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_THREAD_CREATED\n");
c65d6b55
PA
5012 if (handle_stop_requested (ecs))
5013 return;
00431a78 5014 context_switch (ecs);
65706a29
PA
5015 if (!switch_back_to_stepped_thread (ecs))
5016 keep_going (ecs);
5017 return;
5018
488f131b 5019 case TARGET_WAITKIND_EXITED:
940c3c06 5020 case TARGET_WAITKIND_SIGNALLED:
527159b7 5021 if (debug_infrun)
940c3c06
PA
5022 {
5023 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5024 fprintf_unfiltered (gdb_stdlog,
5025 "infrun: TARGET_WAITKIND_EXITED\n");
5026 else
5027 fprintf_unfiltered (gdb_stdlog,
5028 "infrun: TARGET_WAITKIND_SIGNALLED\n");
5029 }
5030
fb66883a 5031 inferior_ptid = ecs->ptid;
c9657e70 5032 set_current_inferior (find_inferior_ptid (ecs->ptid));
6c95b8df
PA
5033 set_current_program_space (current_inferior ()->pspace);
5034 handle_vfork_child_exec_or_exit (0);
223ffa71 5035 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5036
0c557179
SDJ
5037 /* Clearing any previous state of convenience variables. */
5038 clear_exit_convenience_vars ();
5039
940c3c06
PA
5040 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5041 {
5042 /* Record the exit code in the convenience variable $_exitcode, so
5043 that the user can inspect this again later. */
5044 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5045 (LONGEST) ecs->ws.value.integer);
5046
5047 /* Also record this in the inferior itself. */
5048 current_inferior ()->has_exit_code = 1;
5049 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5050
98eb56a4
PA
5051 /* Support the --return-child-result option. */
5052 return_child_result_value = ecs->ws.value.integer;
5053
76727919 5054 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5055 }
5056 else
0c557179 5057 {
00431a78 5058 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5059
5060 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5061 {
5062 /* Set the value of the internal variable $_exitsignal,
5063 which holds the signal uncaught by the inferior. */
5064 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5065 gdbarch_gdb_signal_to_target (gdbarch,
5066 ecs->ws.value.sig));
5067 }
5068 else
5069 {
5070 /* We don't have access to the target's method used for
5071 converting between signal numbers (GDB's internal
5072 representation <-> target's representation).
5073 Therefore, we cannot do a good job at displaying this
5074 information to the user. It's better to just warn
5075 her about it (if infrun debugging is enabled), and
5076 give up. */
5077 if (debug_infrun)
5078 fprintf_filtered (gdb_stdlog, _("\
5079Cannot fill $_exitsignal with the correct signal number.\n"));
5080 }
5081
76727919 5082 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5083 }
8cf64490 5084
488f131b 5085 gdb_flush (gdb_stdout);
bc1e6c81 5086 target_mourn_inferior (inferior_ptid);
488f131b 5087 stop_print_frame = 0;
22bcd14b 5088 stop_waiting (ecs);
488f131b 5089 return;
c5aa993b 5090
488f131b 5091 /* The following are the only cases in which we keep going;
1777feb0 5092 the above cases end in a continue or goto. */
488f131b 5093 case TARGET_WAITKIND_FORKED:
deb3b17b 5094 case TARGET_WAITKIND_VFORKED:
527159b7 5095 if (debug_infrun)
fed708ed
PA
5096 {
5097 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5098 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
5099 else
5100 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
5101 }
c906108c 5102
e2d96639
YQ
5103 /* Check whether the inferior is displaced stepping. */
5104 {
00431a78 5105 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5106 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5107
5108 /* If checking displaced stepping is supported, and thread
5109 ecs->ptid is displaced stepping. */
00431a78 5110 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5111 {
5112 struct inferior *parent_inf
c9657e70 5113 = find_inferior_ptid (ecs->ptid);
e2d96639
YQ
5114 struct regcache *child_regcache;
5115 CORE_ADDR parent_pc;
5116
5117 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5118 indicating that the displaced stepping of syscall instruction
5119 has been done. Perform cleanup for parent process here. Note
5120 that this operation also cleans up the child process for vfork,
5121 because their pages are shared. */
00431a78 5122 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5123 /* Start a new step-over in another thread if there's one
5124 that needs it. */
5125 start_step_over ();
e2d96639
YQ
5126
5127 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5128 {
c0987663 5129 struct displaced_step_inferior_state *displaced
00431a78 5130 = get_displaced_stepping_state (parent_inf);
c0987663 5131
e2d96639
YQ
5132 /* Restore scratch pad for child process. */
5133 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5134 }
5135
5136 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5137 the child's PC is also within the scratchpad. Set the child's PC
5138 to the parent's PC value, which has already been fixed up.
5139 FIXME: we use the parent's aspace here, although we're touching
5140 the child, because the child hasn't been added to the inferior
5141 list yet at this point. */
5142
5143 child_regcache
5144 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
5145 gdbarch,
5146 parent_inf->aspace);
5147 /* Read PC value of parent process. */
5148 parent_pc = regcache_read_pc (regcache);
5149
5150 if (debug_displaced)
5151 fprintf_unfiltered (gdb_stdlog,
5152 "displaced: write child pc from %s to %s\n",
5153 paddress (gdbarch,
5154 regcache_read_pc (child_regcache)),
5155 paddress (gdbarch, parent_pc));
5156
5157 regcache_write_pc (child_regcache, parent_pc);
5158 }
5159 }
5160
00431a78 5161 context_switch (ecs);
5a2901d9 5162
b242c3c2
PA
5163 /* Immediately detach breakpoints from the child before there's
5164 any chance of letting the user delete breakpoints from the
5165 breakpoint lists. If we don't do this early, it's easy to
5166 leave left over traps in the child, vis: "break foo; catch
5167 fork; c; <fork>; del; c; <child calls foo>". We only follow
5168 the fork on the last `continue', and by that time the
5169 breakpoint at "foo" is long gone from the breakpoint table.
5170 If we vforked, then we don't need to unpatch here, since both
5171 parent and child are sharing the same memory pages; we'll
5172 need to unpatch at follow/detach time instead to be certain
5173 that new breakpoints added between catchpoint hit time and
5174 vfork follow are detached. */
5175 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5176 {
b242c3c2
PA
5177 /* This won't actually modify the breakpoint list, but will
5178 physically remove the breakpoints from the child. */
d80ee84f 5179 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5180 }
5181
34b7e8a6 5182 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5183
e58b0e63
PA
5184 /* In case the event is caught by a catchpoint, remember that
5185 the event is to be followed at the next resume of the thread,
5186 and not immediately. */
5187 ecs->event_thread->pending_follow = ecs->ws;
5188
f2ffa92b
PA
5189 ecs->event_thread->suspend.stop_pc
5190 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5191
16c381f0 5192 ecs->event_thread->control.stop_bpstat
a01bda52 5193 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5194 ecs->event_thread->suspend.stop_pc,
5195 ecs->event_thread, &ecs->ws);
675bf4cb 5196
c65d6b55
PA
5197 if (handle_stop_requested (ecs))
5198 return;
5199
ce12b012
PA
5200 /* If no catchpoint triggered for this, then keep going. Note
5201 that we're interested in knowing the bpstat actually causes a
5202 stop, not just if it may explain the signal. Software
5203 watchpoints, for example, always appear in the bpstat. */
5204 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5205 {
e58b0e63 5206 int should_resume;
3e43a32a
MS
5207 int follow_child
5208 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5209
a493e3e2 5210 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63
PA
5211
5212 should_resume = follow_fork ();
5213
00431a78
PA
5214 thread_info *parent = ecs->event_thread;
5215 thread_info *child = find_thread_ptid (ecs->ws.value.related_pid);
6c95b8df 5216
a2077e25
PA
5217 /* At this point, the parent is marked running, and the
5218 child is marked stopped. */
5219
5220 /* If not resuming the parent, mark it stopped. */
5221 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5222 parent->set_running (false);
a2077e25
PA
5223
5224 /* If resuming the child, mark it running. */
5225 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5226 child->set_running (true);
a2077e25 5227
6c95b8df 5228 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5229 if (!detach_fork && (non_stop
5230 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5231 {
5232 if (follow_child)
5233 switch_to_thread (parent);
5234 else
5235 switch_to_thread (child);
5236
5237 ecs->event_thread = inferior_thread ();
5238 ecs->ptid = inferior_ptid;
5239 keep_going (ecs);
5240 }
5241
5242 if (follow_child)
5243 switch_to_thread (child);
5244 else
5245 switch_to_thread (parent);
5246
e58b0e63
PA
5247 ecs->event_thread = inferior_thread ();
5248 ecs->ptid = inferior_ptid;
5249
5250 if (should_resume)
5251 keep_going (ecs);
5252 else
22bcd14b 5253 stop_waiting (ecs);
04e68871
DJ
5254 return;
5255 }
94c57d6a
PA
5256 process_event_stop_test (ecs);
5257 return;
488f131b 5258
6c95b8df
PA
5259 case TARGET_WAITKIND_VFORK_DONE:
5260 /* Done with the shared memory region. Re-insert breakpoints in
5261 the parent, and keep going. */
5262
5263 if (debug_infrun)
3e43a32a
MS
5264 fprintf_unfiltered (gdb_stdlog,
5265 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
6c95b8df 5266
00431a78 5267 context_switch (ecs);
6c95b8df
PA
5268
5269 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5270 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5271
5272 if (handle_stop_requested (ecs))
5273 return;
5274
6c95b8df
PA
5275 /* This also takes care of reinserting breakpoints in the
5276 previously locked inferior. */
5277 keep_going (ecs);
5278 return;
5279
488f131b 5280 case TARGET_WAITKIND_EXECD:
527159b7 5281 if (debug_infrun)
fc5261f2 5282 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
488f131b 5283
cbd2b4e3
PA
5284 /* Note we can't read registers yet (the stop_pc), because we
5285 don't yet know the inferior's post-exec architecture.
5286 'stop_pc' is explicitly read below instead. */
00431a78 5287 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5288
6c95b8df
PA
5289 /* Do whatever is necessary to the parent branch of the vfork. */
5290 handle_vfork_child_exec_or_exit (1);
5291
795e548f
PA
5292 /* This causes the eventpoints and symbol table to be reset.
5293 Must do this now, before trying to determine whether to
5294 stop. */
71b43ef8 5295 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5296
17d8546e
DB
5297 /* In follow_exec we may have deleted the original thread and
5298 created a new one. Make sure that the event thread is the
5299 execd thread for that case (this is a nop otherwise). */
5300 ecs->event_thread = inferior_thread ();
5301
f2ffa92b
PA
5302 ecs->event_thread->suspend.stop_pc
5303 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5304
16c381f0 5305 ecs->event_thread->control.stop_bpstat
a01bda52 5306 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5307 ecs->event_thread->suspend.stop_pc,
5308 ecs->event_thread, &ecs->ws);
795e548f 5309
71b43ef8
PA
5310 /* Note that this may be referenced from inside
5311 bpstat_stop_status above, through inferior_has_execd. */
5312 xfree (ecs->ws.value.execd_pathname);
5313 ecs->ws.value.execd_pathname = NULL;
5314
c65d6b55
PA
5315 if (handle_stop_requested (ecs))
5316 return;
5317
04e68871 5318 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5319 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5320 {
a493e3e2 5321 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5322 keep_going (ecs);
5323 return;
5324 }
94c57d6a
PA
5325 process_event_stop_test (ecs);
5326 return;
488f131b 5327
b4dc5ffa
MK
5328 /* Be careful not to try to gather much state about a thread
5329 that's in a syscall. It's frequently a losing proposition. */
488f131b 5330 case TARGET_WAITKIND_SYSCALL_ENTRY:
527159b7 5331 if (debug_infrun)
3e43a32a
MS
5332 fprintf_unfiltered (gdb_stdlog,
5333 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1777feb0 5334 /* Getting the current syscall number. */
94c57d6a
PA
5335 if (handle_syscall_event (ecs) == 0)
5336 process_event_stop_test (ecs);
5337 return;
c906108c 5338
488f131b
JB
5339 /* Before examining the threads further, step this thread to
5340 get it entirely out of the syscall. (We get notice of the
5341 event when the thread is just on the verge of exiting a
5342 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5343 into user code.) */
488f131b 5344 case TARGET_WAITKIND_SYSCALL_RETURN:
527159b7 5345 if (debug_infrun)
3e43a32a
MS
5346 fprintf_unfiltered (gdb_stdlog,
5347 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
94c57d6a
PA
5348 if (handle_syscall_event (ecs) == 0)
5349 process_event_stop_test (ecs);
5350 return;
c906108c 5351
488f131b 5352 case TARGET_WAITKIND_STOPPED:
527159b7 5353 if (debug_infrun)
8a9de0e4 5354 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
4f5d7f63
PA
5355 handle_signal_stop (ecs);
5356 return;
c906108c 5357
b2175913 5358 case TARGET_WAITKIND_NO_HISTORY:
4b4e080e
PA
5359 if (debug_infrun)
5360 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
b2175913 5361 /* Reverse execution: target ran out of history info. */
eab402df 5362
d1988021 5363 /* Switch to the stopped thread. */
00431a78 5364 context_switch (ecs);
d1988021
MM
5365 if (debug_infrun)
5366 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5367
34b7e8a6 5368 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5369 ecs->event_thread->suspend.stop_pc
5370 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5371
5372 if (handle_stop_requested (ecs))
5373 return;
5374
76727919 5375 gdb::observers::no_history.notify ();
22bcd14b 5376 stop_waiting (ecs);
b2175913 5377 return;
488f131b 5378 }
4f5d7f63
PA
5379}
5380
0b6e5e10
JB
5381/* A wrapper around handle_inferior_event_1, which also makes sure
5382 that all temporary struct value objects that were created during
5383 the handling of the event get deleted at the end. */
5384
5385static void
5386handle_inferior_event (struct execution_control_state *ecs)
5387{
5388 struct value *mark = value_mark ();
5389
5390 handle_inferior_event_1 (ecs);
5391 /* Purge all temporary values created during the event handling,
5392 as it could be a long time before we return to the command level
5393 where such values would otherwise be purged. */
5394 value_free_to_mark (mark);
5395}
5396
372316f1
PA
5397/* Restart threads back to what they were trying to do back when we
5398 paused them for an in-line step-over. The EVENT_THREAD thread is
5399 ignored. */
4d9d9d04
PA
5400
5401static void
372316f1
PA
5402restart_threads (struct thread_info *event_thread)
5403{
5404 struct thread_info *tp;
372316f1
PA
5405
5406 /* In case the instruction just stepped spawned a new thread. */
5407 update_thread_list ();
5408
5409 ALL_NON_EXITED_THREADS (tp)
5410 {
5411 if (tp == event_thread)
5412 {
5413 if (debug_infrun)
5414 fprintf_unfiltered (gdb_stdlog,
5415 "infrun: restart threads: "
5416 "[%s] is event thread\n",
5417 target_pid_to_str (tp->ptid));
5418 continue;
5419 }
5420
5421 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5422 {
5423 if (debug_infrun)
5424 fprintf_unfiltered (gdb_stdlog,
5425 "infrun: restart threads: "
5426 "[%s] not meant to be running\n",
5427 target_pid_to_str (tp->ptid));
5428 continue;
5429 }
5430
5431 if (tp->resumed)
5432 {
5433 if (debug_infrun)
5434 fprintf_unfiltered (gdb_stdlog,
5435 "infrun: restart threads: [%s] resumed\n",
5436 target_pid_to_str (tp->ptid));
5437 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5438 continue;
5439 }
5440
5441 if (thread_is_in_step_over_chain (tp))
5442 {
5443 if (debug_infrun)
5444 fprintf_unfiltered (gdb_stdlog,
5445 "infrun: restart threads: "
5446 "[%s] needs step-over\n",
5447 target_pid_to_str (tp->ptid));
5448 gdb_assert (!tp->resumed);
5449 continue;
5450 }
5451
5452
5453 if (tp->suspend.waitstatus_pending_p)
5454 {
5455 if (debug_infrun)
5456 fprintf_unfiltered (gdb_stdlog,
5457 "infrun: restart threads: "
5458 "[%s] has pending status\n",
5459 target_pid_to_str (tp->ptid));
5460 tp->resumed = 1;
5461 continue;
5462 }
5463
c65d6b55
PA
5464 gdb_assert (!tp->stop_requested);
5465
372316f1
PA
5466 /* If some thread needs to start a step-over at this point, it
5467 should still be in the step-over queue, and thus skipped
5468 above. */
5469 if (thread_still_needs_step_over (tp))
5470 {
5471 internal_error (__FILE__, __LINE__,
5472 "thread [%s] needs a step-over, but not in "
5473 "step-over queue\n",
5474 target_pid_to_str (tp->ptid));
5475 }
5476
5477 if (currently_stepping (tp))
5478 {
5479 if (debug_infrun)
5480 fprintf_unfiltered (gdb_stdlog,
5481 "infrun: restart threads: [%s] was stepping\n",
5482 target_pid_to_str (tp->ptid));
5483 keep_going_stepped_thread (tp);
5484 }
5485 else
5486 {
5487 struct execution_control_state ecss;
5488 struct execution_control_state *ecs = &ecss;
5489
5490 if (debug_infrun)
5491 fprintf_unfiltered (gdb_stdlog,
5492 "infrun: restart threads: [%s] continuing\n",
5493 target_pid_to_str (tp->ptid));
5494 reset_ecs (ecs, tp);
00431a78 5495 switch_to_thread (tp);
372316f1
PA
5496 keep_going_pass_signal (ecs);
5497 }
5498 }
5499}
5500
5501/* Callback for iterate_over_threads. Find a resumed thread that has
5502 a pending waitstatus. */
5503
5504static int
5505resumed_thread_with_pending_status (struct thread_info *tp,
5506 void *arg)
5507{
5508 return (tp->resumed
5509 && tp->suspend.waitstatus_pending_p);
5510}
5511
5512/* Called when we get an event that may finish an in-line or
5513 out-of-line (displaced stepping) step-over started previously.
5514 Return true if the event is processed and we should go back to the
5515 event loop; false if the caller should continue processing the
5516 event. */
5517
5518static int
4d9d9d04
PA
5519finish_step_over (struct execution_control_state *ecs)
5520{
372316f1
PA
5521 int had_step_over_info;
5522
00431a78 5523 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5524 ecs->event_thread->suspend.stop_signal);
5525
372316f1
PA
5526 had_step_over_info = step_over_info_valid_p ();
5527
5528 if (had_step_over_info)
4d9d9d04
PA
5529 {
5530 /* If we're stepping over a breakpoint with all threads locked,
5531 then only the thread that was stepped should be reporting
5532 back an event. */
5533 gdb_assert (ecs->event_thread->control.trap_expected);
5534
c65d6b55 5535 clear_step_over_info ();
4d9d9d04
PA
5536 }
5537
fbea99ea 5538 if (!target_is_non_stop_p ())
372316f1 5539 return 0;
4d9d9d04
PA
5540
5541 /* Start a new step-over in another thread if there's one that
5542 needs it. */
5543 start_step_over ();
372316f1
PA
5544
5545 /* If we were stepping over a breakpoint before, and haven't started
5546 a new in-line step-over sequence, then restart all other threads
5547 (except the event thread). We can't do this in all-stop, as then
5548 e.g., we wouldn't be able to issue any other remote packet until
5549 these other threads stop. */
5550 if (had_step_over_info && !step_over_info_valid_p ())
5551 {
5552 struct thread_info *pending;
5553
5554 /* If we only have threads with pending statuses, the restart
5555 below won't restart any thread and so nothing re-inserts the
5556 breakpoint we just stepped over. But we need it inserted
5557 when we later process the pending events, otherwise if
5558 another thread has a pending event for this breakpoint too,
5559 we'd discard its event (because the breakpoint that
5560 originally caused the event was no longer inserted). */
00431a78 5561 context_switch (ecs);
372316f1
PA
5562 insert_breakpoints ();
5563
5564 restart_threads (ecs->event_thread);
5565
5566 /* If we have events pending, go through handle_inferior_event
5567 again, picking up a pending event at random. This avoids
5568 thread starvation. */
5569
5570 /* But not if we just stepped over a watchpoint in order to let
5571 the instruction execute so we can evaluate its expression.
5572 The set of watchpoints that triggered is recorded in the
5573 breakpoint objects themselves (see bp->watchpoint_triggered).
5574 If we processed another event first, that other event could
5575 clobber this info. */
5576 if (ecs->event_thread->stepping_over_watchpoint)
5577 return 0;
5578
5579 pending = iterate_over_threads (resumed_thread_with_pending_status,
5580 NULL);
5581 if (pending != NULL)
5582 {
5583 struct thread_info *tp = ecs->event_thread;
5584 struct regcache *regcache;
5585
5586 if (debug_infrun)
5587 {
5588 fprintf_unfiltered (gdb_stdlog,
5589 "infrun: found resumed threads with "
5590 "pending events, saving status\n");
5591 }
5592
5593 gdb_assert (pending != tp);
5594
5595 /* Record the event thread's event for later. */
5596 save_waitstatus (tp, &ecs->ws);
5597 /* This was cleared early, by handle_inferior_event. Set it
5598 so this pending event is considered by
5599 do_target_wait. */
5600 tp->resumed = 1;
5601
5602 gdb_assert (!tp->executing);
5603
00431a78 5604 regcache = get_thread_regcache (tp);
372316f1
PA
5605 tp->suspend.stop_pc = regcache_read_pc (regcache);
5606
5607 if (debug_infrun)
5608 {
5609 fprintf_unfiltered (gdb_stdlog,
5610 "infrun: saved stop_pc=%s for %s "
5611 "(currently_stepping=%d)\n",
5612 paddress (target_gdbarch (),
5613 tp->suspend.stop_pc),
5614 target_pid_to_str (tp->ptid),
5615 currently_stepping (tp));
5616 }
5617
5618 /* This in-line step-over finished; clear this so we won't
5619 start a new one. This is what handle_signal_stop would
5620 do, if we returned false. */
5621 tp->stepping_over_breakpoint = 0;
5622
5623 /* Wake up the event loop again. */
5624 mark_async_event_handler (infrun_async_inferior_event_token);
5625
5626 prepare_to_wait (ecs);
5627 return 1;
5628 }
5629 }
5630
5631 return 0;
4d9d9d04
PA
5632}
5633
4f5d7f63
PA
5634/* Come here when the program has stopped with a signal. */
5635
5636static void
5637handle_signal_stop (struct execution_control_state *ecs)
5638{
5639 struct frame_info *frame;
5640 struct gdbarch *gdbarch;
5641 int stopped_by_watchpoint;
5642 enum stop_kind stop_soon;
5643 int random_signal;
c906108c 5644
f0407826
DE
5645 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5646
c65d6b55
PA
5647 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5648
f0407826
DE
5649 /* Do we need to clean up the state of a thread that has
5650 completed a displaced single-step? (Doing so usually affects
5651 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5652 if (finish_step_over (ecs))
5653 return;
f0407826
DE
5654
5655 /* If we either finished a single-step or hit a breakpoint, but
5656 the user wanted this thread to be stopped, pretend we got a
5657 SIG0 (generic unsignaled stop). */
5658 if (ecs->event_thread->stop_requested
5659 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5660 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5661
f2ffa92b
PA
5662 ecs->event_thread->suspend.stop_pc
5663 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5664
527159b7 5665 if (debug_infrun)
237fc4c9 5666 {
00431a78 5667 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5668 struct gdbarch *gdbarch = regcache->arch ();
2989a365 5669 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
7f82dfc7
JK
5670
5671 inferior_ptid = ecs->ptid;
5af949e3
UW
5672
5673 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
f2ffa92b
PA
5674 paddress (gdbarch,
5675 ecs->event_thread->suspend.stop_pc));
d92524f1 5676 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5677 {
5678 CORE_ADDR addr;
abbb1732 5679
237fc4c9
PA
5680 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5681
8b88a78e 5682 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5683 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
5684 "infrun: stopped data address = %s\n",
5685 paddress (gdbarch, addr));
237fc4c9
PA
5686 else
5687 fprintf_unfiltered (gdb_stdlog,
5688 "infrun: (no data address available)\n");
5689 }
5690 }
527159b7 5691
36fa8042
PA
5692 /* This is originated from start_remote(), start_inferior() and
5693 shared libraries hook functions. */
00431a78 5694 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5695 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5696 {
00431a78 5697 context_switch (ecs);
36fa8042
PA
5698 if (debug_infrun)
5699 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5700 stop_print_frame = 1;
22bcd14b 5701 stop_waiting (ecs);
36fa8042
PA
5702 return;
5703 }
5704
36fa8042
PA
5705 /* This originates from attach_command(). We need to overwrite
5706 the stop_signal here, because some kernels don't ignore a
5707 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5708 See more comments in inferior.h. On the other hand, if we
5709 get a non-SIGSTOP, report it to the user - assume the backend
5710 will handle the SIGSTOP if it should show up later.
5711
5712 Also consider that the attach is complete when we see a
5713 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5714 target extended-remote report it instead of a SIGSTOP
5715 (e.g. gdbserver). We already rely on SIGTRAP being our
5716 signal, so this is no exception.
5717
5718 Also consider that the attach is complete when we see a
5719 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5720 the target to stop all threads of the inferior, in case the
5721 low level attach operation doesn't stop them implicitly. If
5722 they weren't stopped implicitly, then the stub will report a
5723 GDB_SIGNAL_0, meaning: stopped for no particular reason
5724 other than GDB's request. */
5725 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5726 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5727 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5728 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5729 {
5730 stop_print_frame = 1;
22bcd14b 5731 stop_waiting (ecs);
36fa8042
PA
5732 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5733 return;
5734 }
5735
488f131b 5736 /* See if something interesting happened to the non-current thread. If
b40c7d58
DJ
5737 so, then switch to that thread. */
5738 if (!ptid_equal (ecs->ptid, inferior_ptid))
488f131b 5739 {
527159b7 5740 if (debug_infrun)
8a9de0e4 5741 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5742
00431a78 5743 context_switch (ecs);
c5aa993b 5744
9a4105ab 5745 if (deprecated_context_hook)
00431a78 5746 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5747 }
c906108c 5748
568d6575
UW
5749 /* At this point, get hold of the now-current thread's frame. */
5750 frame = get_current_frame ();
5751 gdbarch = get_frame_arch (frame);
5752
2adfaa28 5753 /* Pull the single step breakpoints out of the target. */
af48d08f 5754 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5755 {
af48d08f 5756 struct regcache *regcache;
af48d08f 5757 CORE_ADDR pc;
2adfaa28 5758
00431a78 5759 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5760 const address_space *aspace = regcache->aspace ();
5761
af48d08f 5762 pc = regcache_read_pc (regcache);
34b7e8a6 5763
af48d08f
PA
5764 /* However, before doing so, if this single-step breakpoint was
5765 actually for another thread, set this thread up for moving
5766 past it. */
5767 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5768 aspace, pc))
5769 {
5770 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5771 {
5772 if (debug_infrun)
5773 {
5774 fprintf_unfiltered (gdb_stdlog,
af48d08f 5775 "infrun: [%s] hit another thread's "
34b7e8a6
PA
5776 "single-step breakpoint\n",
5777 target_pid_to_str (ecs->ptid));
2adfaa28 5778 }
af48d08f
PA
5779 ecs->hit_singlestep_breakpoint = 1;
5780 }
5781 }
5782 else
5783 {
5784 if (debug_infrun)
5785 {
5786 fprintf_unfiltered (gdb_stdlog,
5787 "infrun: [%s] hit its "
5788 "single-step breakpoint\n",
5789 target_pid_to_str (ecs->ptid));
2adfaa28
PA
5790 }
5791 }
488f131b 5792 }
af48d08f 5793 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5794
963f9c80
PA
5795 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5796 && ecs->event_thread->control.trap_expected
5797 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
5798 stopped_by_watchpoint = 0;
5799 else
5800 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5801
5802 /* If necessary, step over this watchpoint. We'll be back to display
5803 it in a moment. */
5804 if (stopped_by_watchpoint
d92524f1 5805 && (target_have_steppable_watchpoint
568d6575 5806 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 5807 {
488f131b
JB
5808 /* At this point, we are stopped at an instruction which has
5809 attempted to write to a piece of memory under control of
5810 a watchpoint. The instruction hasn't actually executed
5811 yet. If we were to evaluate the watchpoint expression
5812 now, we would get the old value, and therefore no change
5813 would seem to have occurred.
5814
5815 In order to make watchpoints work `right', we really need
5816 to complete the memory write, and then evaluate the
d983da9c
DJ
5817 watchpoint expression. We do this by single-stepping the
5818 target.
5819
7f89fd65 5820 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
5821 it. For example, the PA can (with some kernel cooperation)
5822 single step over a watchpoint without disabling the watchpoint.
5823
5824 It is far more common to need to disable a watchpoint to step
5825 the inferior over it. If we have non-steppable watchpoints,
5826 we must disable the current watchpoint; it's simplest to
963f9c80
PA
5827 disable all watchpoints.
5828
5829 Any breakpoint at PC must also be stepped over -- if there's
5830 one, it will have already triggered before the watchpoint
5831 triggered, and we either already reported it to the user, or
5832 it didn't cause a stop and we called keep_going. In either
5833 case, if there was a breakpoint at PC, we must be trying to
5834 step past it. */
5835 ecs->event_thread->stepping_over_watchpoint = 1;
5836 keep_going (ecs);
488f131b
JB
5837 return;
5838 }
5839
4e1c45ea 5840 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 5841 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
5842 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5843 ecs->event_thread->control.stop_step = 0;
488f131b 5844 stop_print_frame = 1;
488f131b 5845 stopped_by_random_signal = 0;
ddfe970e 5846 bpstat stop_chain = NULL;
488f131b 5847
edb3359d
DJ
5848 /* Hide inlined functions starting here, unless we just performed stepi or
5849 nexti. After stepi and nexti, always show the innermost frame (not any
5850 inline function call sites). */
16c381f0 5851 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 5852 {
00431a78
PA
5853 const address_space *aspace
5854 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
5855
5856 /* skip_inline_frames is expensive, so we avoid it if we can
5857 determine that the address is one where functions cannot have
5858 been inlined. This improves performance with inferiors that
5859 load a lot of shared libraries, because the solib event
5860 breakpoint is defined as the address of a function (i.e. not
5861 inline). Note that we have to check the previous PC as well
5862 as the current one to catch cases when we have just
5863 single-stepped off a breakpoint prior to reinstating it.
5864 Note that we're assuming that the code we single-step to is
5865 not inline, but that's not definitive: there's nothing
5866 preventing the event breakpoint function from containing
5867 inlined code, and the single-step ending up there. If the
5868 user had set a breakpoint on that inlined code, the missing
5869 skip_inline_frames call would break things. Fortunately
5870 that's an extremely unlikely scenario. */
f2ffa92b
PA
5871 if (!pc_at_non_inline_function (aspace,
5872 ecs->event_thread->suspend.stop_pc,
5873 &ecs->ws)
a210c238
MR
5874 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5875 && ecs->event_thread->control.trap_expected
5876 && pc_at_non_inline_function (aspace,
5877 ecs->event_thread->prev_pc,
09ac7c10 5878 &ecs->ws)))
1c5a993e 5879 {
f2ffa92b
PA
5880 stop_chain = build_bpstat_chain (aspace,
5881 ecs->event_thread->suspend.stop_pc,
5882 &ecs->ws);
00431a78 5883 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
5884
5885 /* Re-fetch current thread's frame in case that invalidated
5886 the frame cache. */
5887 frame = get_current_frame ();
5888 gdbarch = get_frame_arch (frame);
5889 }
0574c78f 5890 }
edb3359d 5891
a493e3e2 5892 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 5893 && ecs->event_thread->control.trap_expected
568d6575 5894 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 5895 && currently_stepping (ecs->event_thread))
3352ef37 5896 {
b50d7442 5897 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 5898 also on an instruction that needs to be stepped multiple
1777feb0 5899 times before it's been fully executing. E.g., architectures
3352ef37
AC
5900 with a delay slot. It needs to be stepped twice, once for
5901 the instruction and once for the delay slot. */
5902 int step_through_delay
568d6575 5903 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 5904
527159b7 5905 if (debug_infrun && step_through_delay)
8a9de0e4 5906 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
5907 if (ecs->event_thread->control.step_range_end == 0
5908 && step_through_delay)
3352ef37
AC
5909 {
5910 /* The user issued a continue when stopped at a breakpoint.
5911 Set up for another trap and get out of here. */
4e1c45ea 5912 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5913 keep_going (ecs);
5914 return;
5915 }
5916 else if (step_through_delay)
5917 {
5918 /* The user issued a step when stopped at a breakpoint.
5919 Maybe we should stop, maybe we should not - the delay
5920 slot *might* correspond to a line of source. In any
ca67fcb8
VP
5921 case, don't decide that here, just set
5922 ecs->stepping_over_breakpoint, making sure we
5923 single-step again before breakpoints are re-inserted. */
4e1c45ea 5924 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
5925 }
5926 }
5927
ab04a2af
TT
5928 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
5929 handles this event. */
5930 ecs->event_thread->control.stop_bpstat
a01bda52 5931 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5932 ecs->event_thread->suspend.stop_pc,
5933 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 5934
ab04a2af
TT
5935 /* Following in case break condition called a
5936 function. */
5937 stop_print_frame = 1;
73dd234f 5938
ab04a2af
TT
5939 /* This is where we handle "moribund" watchpoints. Unlike
5940 software breakpoints traps, hardware watchpoint traps are
5941 always distinguishable from random traps. If no high-level
5942 watchpoint is associated with the reported stop data address
5943 anymore, then the bpstat does not explain the signal ---
5944 simply make sure to ignore it if `stopped_by_watchpoint' is
5945 set. */
5946
5947 if (debug_infrun
5948 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 5949 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 5950 GDB_SIGNAL_TRAP)
ab04a2af
TT
5951 && stopped_by_watchpoint)
5952 fprintf_unfiltered (gdb_stdlog,
5953 "infrun: no user watchpoint explains "
5954 "watchpoint SIGTRAP, ignoring\n");
73dd234f 5955
bac7d97b 5956 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
5957 at one stage in the past included checks for an inferior
5958 function call's call dummy's return breakpoint. The original
5959 comment, that went with the test, read:
03cebad2 5960
ab04a2af
TT
5961 ``End of a stack dummy. Some systems (e.g. Sony news) give
5962 another signal besides SIGTRAP, so check here as well as
5963 above.''
73dd234f 5964
ab04a2af
TT
5965 If someone ever tries to get call dummys on a
5966 non-executable stack to work (where the target would stop
5967 with something like a SIGSEGV), then those tests might need
5968 to be re-instated. Given, however, that the tests were only
5969 enabled when momentary breakpoints were not being used, I
5970 suspect that it won't be the case.
488f131b 5971
ab04a2af
TT
5972 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
5973 be necessary for call dummies on a non-executable stack on
5974 SPARC. */
488f131b 5975
bac7d97b 5976 /* See if the breakpoints module can explain the signal. */
47591c29
PA
5977 random_signal
5978 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
5979 ecs->event_thread->suspend.stop_signal);
bac7d97b 5980
1cf4d951
PA
5981 /* Maybe this was a trap for a software breakpoint that has since
5982 been removed. */
5983 if (random_signal && target_stopped_by_sw_breakpoint ())
5984 {
f2ffa92b
PA
5985 if (program_breakpoint_here_p (gdbarch,
5986 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
5987 {
5988 struct regcache *regcache;
5989 int decr_pc;
5990
5991 /* Re-adjust PC to what the program would see if GDB was not
5992 debugging it. */
00431a78 5993 regcache = get_thread_regcache (ecs->event_thread);
527a273a 5994 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
5995 if (decr_pc != 0)
5996 {
07036511
TT
5997 gdb::optional<scoped_restore_tmpl<int>>
5998 restore_operation_disable;
1cf4d951
PA
5999
6000 if (record_full_is_used ())
07036511
TT
6001 restore_operation_disable.emplace
6002 (record_full_gdb_operation_disable_set ());
1cf4d951 6003
f2ffa92b
PA
6004 regcache_write_pc (regcache,
6005 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6006 }
6007 }
6008 else
6009 {
6010 /* A delayed software breakpoint event. Ignore the trap. */
6011 if (debug_infrun)
6012 fprintf_unfiltered (gdb_stdlog,
6013 "infrun: delayed software breakpoint "
6014 "trap, ignoring\n");
6015 random_signal = 0;
6016 }
6017 }
6018
6019 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6020 has since been removed. */
6021 if (random_signal && target_stopped_by_hw_breakpoint ())
6022 {
6023 /* A delayed hardware breakpoint event. Ignore the trap. */
6024 if (debug_infrun)
6025 fprintf_unfiltered (gdb_stdlog,
6026 "infrun: delayed hardware breakpoint/watchpoint "
6027 "trap, ignoring\n");
6028 random_signal = 0;
6029 }
6030
bac7d97b
PA
6031 /* If not, perhaps stepping/nexting can. */
6032 if (random_signal)
6033 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6034 && currently_stepping (ecs->event_thread));
ab04a2af 6035
2adfaa28
PA
6036 /* Perhaps the thread hit a single-step breakpoint of _another_
6037 thread. Single-step breakpoints are transparent to the
6038 breakpoints module. */
6039 if (random_signal)
6040 random_signal = !ecs->hit_singlestep_breakpoint;
6041
bac7d97b
PA
6042 /* No? Perhaps we got a moribund watchpoint. */
6043 if (random_signal)
6044 random_signal = !stopped_by_watchpoint;
ab04a2af 6045
c65d6b55
PA
6046 /* Always stop if the user explicitly requested this thread to
6047 remain stopped. */
6048 if (ecs->event_thread->stop_requested)
6049 {
6050 random_signal = 1;
6051 if (debug_infrun)
6052 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6053 }
6054
488f131b
JB
6055 /* For the program's own signals, act according to
6056 the signal handling tables. */
6057
ce12b012 6058 if (random_signal)
488f131b
JB
6059 {
6060 /* Signal not for debugging purposes. */
c9657e70 6061 struct inferior *inf = find_inferior_ptid (ecs->ptid);
c9737c08 6062 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6063
527159b7 6064 if (debug_infrun)
c9737c08
PA
6065 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6066 gdb_signal_to_symbol_string (stop_signal));
527159b7 6067
488f131b
JB
6068 stopped_by_random_signal = 1;
6069
252fbfc8
PA
6070 /* Always stop on signals if we're either just gaining control
6071 of the program, or the user explicitly requested this thread
6072 to remain stopped. */
d6b48e9c 6073 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6074 || ecs->event_thread->stop_requested
24291992 6075 || (!inf->detaching
16c381f0 6076 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6077 {
22bcd14b 6078 stop_waiting (ecs);
488f131b
JB
6079 return;
6080 }
b57bacec
PA
6081
6082 /* Notify observers the signal has "handle print" set. Note we
6083 returned early above if stopping; normal_stop handles the
6084 printing in that case. */
6085 if (signal_print[ecs->event_thread->suspend.stop_signal])
6086 {
6087 /* The signal table tells us to print about this signal. */
223ffa71 6088 target_terminal::ours_for_output ();
76727919 6089 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6090 target_terminal::inferior ();
b57bacec 6091 }
488f131b
JB
6092
6093 /* Clear the signal if it should not be passed. */
16c381f0 6094 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6095 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6096
f2ffa92b 6097 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6098 && ecs->event_thread->control.trap_expected
8358c15c 6099 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6100 {
6101 /* We were just starting a new sequence, attempting to
6102 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6103 Instead this signal arrives. This signal will take us out
68f53502
AC
6104 of the stepping range so GDB needs to remember to, when
6105 the signal handler returns, resume stepping off that
6106 breakpoint. */
6107 /* To simplify things, "continue" is forced to use the same
6108 code paths as single-step - set a breakpoint at the
6109 signal return address and then, once hit, step off that
6110 breakpoint. */
237fc4c9
PA
6111 if (debug_infrun)
6112 fprintf_unfiltered (gdb_stdlog,
6113 "infrun: signal arrived while stepping over "
6114 "breakpoint\n");
d3169d93 6115
2c03e5be 6116 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6117 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6118 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6119 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6120
6121 /* If we were nexting/stepping some other thread, switch to
6122 it, so that we don't continue it, losing control. */
6123 if (!switch_back_to_stepped_thread (ecs))
6124 keep_going (ecs);
9d799f85 6125 return;
68f53502 6126 }
9d799f85 6127
e5f8a7cc 6128 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6129 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6130 ecs->event_thread)
e5f8a7cc 6131 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6132 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6133 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6134 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6135 {
6136 /* The inferior is about to take a signal that will take it
6137 out of the single step range. Set a breakpoint at the
6138 current PC (which is presumably where the signal handler
6139 will eventually return) and then allow the inferior to
6140 run free.
6141
6142 Note that this is only needed for a signal delivered
6143 while in the single-step range. Nested signals aren't a
6144 problem as they eventually all return. */
237fc4c9
PA
6145 if (debug_infrun)
6146 fprintf_unfiltered (gdb_stdlog,
6147 "infrun: signal may take us out of "
6148 "single-step range\n");
6149
372316f1 6150 clear_step_over_info ();
2c03e5be 6151 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6152 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6153 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6154 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6155 keep_going (ecs);
6156 return;
d303a6c7 6157 }
9d799f85
AC
6158
6159 /* Note: step_resume_breakpoint may be non-NULL. This occures
6160 when either there's a nested signal, or when there's a
6161 pending signal enabled just as the signal handler returns
6162 (leaving the inferior at the step-resume-breakpoint without
6163 actually executing it). Either way continue until the
6164 breakpoint is really hit. */
c447ac0b
PA
6165
6166 if (!switch_back_to_stepped_thread (ecs))
6167 {
6168 if (debug_infrun)
6169 fprintf_unfiltered (gdb_stdlog,
6170 "infrun: random signal, keep going\n");
6171
6172 keep_going (ecs);
6173 }
6174 return;
488f131b 6175 }
94c57d6a
PA
6176
6177 process_event_stop_test (ecs);
6178}
6179
6180/* Come here when we've got some debug event / signal we can explain
6181 (IOW, not a random signal), and test whether it should cause a
6182 stop, or whether we should resume the inferior (transparently).
6183 E.g., could be a breakpoint whose condition evaluates false; we
6184 could be still stepping within the line; etc. */
6185
6186static void
6187process_event_stop_test (struct execution_control_state *ecs)
6188{
6189 struct symtab_and_line stop_pc_sal;
6190 struct frame_info *frame;
6191 struct gdbarch *gdbarch;
cdaa5b73
PA
6192 CORE_ADDR jmp_buf_pc;
6193 struct bpstat_what what;
94c57d6a 6194
cdaa5b73 6195 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6196
cdaa5b73
PA
6197 frame = get_current_frame ();
6198 gdbarch = get_frame_arch (frame);
fcf3daef 6199
cdaa5b73 6200 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6201
cdaa5b73
PA
6202 if (what.call_dummy)
6203 {
6204 stop_stack_dummy = what.call_dummy;
6205 }
186c406b 6206
243a9253
PA
6207 /* A few breakpoint types have callbacks associated (e.g.,
6208 bp_jit_event). Run them now. */
6209 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6210
cdaa5b73
PA
6211 /* If we hit an internal event that triggers symbol changes, the
6212 current frame will be invalidated within bpstat_what (e.g., if we
6213 hit an internal solib event). Re-fetch it. */
6214 frame = get_current_frame ();
6215 gdbarch = get_frame_arch (frame);
e2e4d78b 6216
cdaa5b73
PA
6217 switch (what.main_action)
6218 {
6219 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6220 /* If we hit the breakpoint at longjmp while stepping, we
6221 install a momentary breakpoint at the target of the
6222 jmp_buf. */
186c406b 6223
cdaa5b73
PA
6224 if (debug_infrun)
6225 fprintf_unfiltered (gdb_stdlog,
6226 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6227
cdaa5b73 6228 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6229
cdaa5b73
PA
6230 if (what.is_longjmp)
6231 {
6232 struct value *arg_value;
6233
6234 /* If we set the longjmp breakpoint via a SystemTap probe,
6235 then use it to extract the arguments. The destination PC
6236 is the third argument to the probe. */
6237 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6238 if (arg_value)
8fa0c4f8
AA
6239 {
6240 jmp_buf_pc = value_as_address (arg_value);
6241 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6242 }
cdaa5b73
PA
6243 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6244 || !gdbarch_get_longjmp_target (gdbarch,
6245 frame, &jmp_buf_pc))
e2e4d78b 6246 {
cdaa5b73
PA
6247 if (debug_infrun)
6248 fprintf_unfiltered (gdb_stdlog,
6249 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6250 "(!gdbarch_get_longjmp_target)\n");
6251 keep_going (ecs);
6252 return;
e2e4d78b 6253 }
e2e4d78b 6254
cdaa5b73
PA
6255 /* Insert a breakpoint at resume address. */
6256 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6257 }
6258 else
6259 check_exception_resume (ecs, frame);
6260 keep_going (ecs);
6261 return;
e81a37f7 6262
cdaa5b73
PA
6263 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6264 {
6265 struct frame_info *init_frame;
e81a37f7 6266
cdaa5b73 6267 /* There are several cases to consider.
c906108c 6268
cdaa5b73
PA
6269 1. The initiating frame no longer exists. In this case we
6270 must stop, because the exception or longjmp has gone too
6271 far.
2c03e5be 6272
cdaa5b73
PA
6273 2. The initiating frame exists, and is the same as the
6274 current frame. We stop, because the exception or longjmp
6275 has been caught.
2c03e5be 6276
cdaa5b73
PA
6277 3. The initiating frame exists and is different from the
6278 current frame. This means the exception or longjmp has
6279 been caught beneath the initiating frame, so keep going.
c906108c 6280
cdaa5b73
PA
6281 4. longjmp breakpoint has been placed just to protect
6282 against stale dummy frames and user is not interested in
6283 stopping around longjmps. */
c5aa993b 6284
cdaa5b73
PA
6285 if (debug_infrun)
6286 fprintf_unfiltered (gdb_stdlog,
6287 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6288
cdaa5b73
PA
6289 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6290 != NULL);
6291 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6292
cdaa5b73
PA
6293 if (what.is_longjmp)
6294 {
b67a2c6f 6295 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6296
cdaa5b73 6297 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6298 {
cdaa5b73
PA
6299 /* Case 4. */
6300 keep_going (ecs);
6301 return;
e5ef252a 6302 }
cdaa5b73 6303 }
c5aa993b 6304
cdaa5b73 6305 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6306
cdaa5b73
PA
6307 if (init_frame)
6308 {
6309 struct frame_id current_id
6310 = get_frame_id (get_current_frame ());
6311 if (frame_id_eq (current_id,
6312 ecs->event_thread->initiating_frame))
6313 {
6314 /* Case 2. Fall through. */
6315 }
6316 else
6317 {
6318 /* Case 3. */
6319 keep_going (ecs);
6320 return;
6321 }
68f53502 6322 }
488f131b 6323
cdaa5b73
PA
6324 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6325 exists. */
6326 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6327
bdc36728 6328 end_stepping_range (ecs);
cdaa5b73
PA
6329 }
6330 return;
e5ef252a 6331
cdaa5b73
PA
6332 case BPSTAT_WHAT_SINGLE:
6333 if (debug_infrun)
6334 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6335 ecs->event_thread->stepping_over_breakpoint = 1;
6336 /* Still need to check other stuff, at least the case where we
6337 are stepping and step out of the right range. */
6338 break;
e5ef252a 6339
cdaa5b73
PA
6340 case BPSTAT_WHAT_STEP_RESUME:
6341 if (debug_infrun)
6342 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6343
cdaa5b73
PA
6344 delete_step_resume_breakpoint (ecs->event_thread);
6345 if (ecs->event_thread->control.proceed_to_finish
6346 && execution_direction == EXEC_REVERSE)
6347 {
6348 struct thread_info *tp = ecs->event_thread;
6349
6350 /* We are finishing a function in reverse, and just hit the
6351 step-resume breakpoint at the start address of the
6352 function, and we're almost there -- just need to back up
6353 by one more single-step, which should take us back to the
6354 function call. */
6355 tp->control.step_range_start = tp->control.step_range_end = 1;
6356 keep_going (ecs);
e5ef252a 6357 return;
cdaa5b73
PA
6358 }
6359 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6360 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6361 && execution_direction == EXEC_REVERSE)
6362 {
6363 /* We are stepping over a function call in reverse, and just
6364 hit the step-resume breakpoint at the start address of
6365 the function. Go back to single-stepping, which should
6366 take us back to the function call. */
6367 ecs->event_thread->stepping_over_breakpoint = 1;
6368 keep_going (ecs);
6369 return;
6370 }
6371 break;
e5ef252a 6372
cdaa5b73
PA
6373 case BPSTAT_WHAT_STOP_NOISY:
6374 if (debug_infrun)
6375 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6376 stop_print_frame = 1;
e5ef252a 6377
99619bea
PA
6378 /* Assume the thread stopped for a breapoint. We'll still check
6379 whether a/the breakpoint is there when the thread is next
6380 resumed. */
6381 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6382
22bcd14b 6383 stop_waiting (ecs);
cdaa5b73 6384 return;
e5ef252a 6385
cdaa5b73
PA
6386 case BPSTAT_WHAT_STOP_SILENT:
6387 if (debug_infrun)
6388 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6389 stop_print_frame = 0;
e5ef252a 6390
99619bea
PA
6391 /* Assume the thread stopped for a breapoint. We'll still check
6392 whether a/the breakpoint is there when the thread is next
6393 resumed. */
6394 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6395 stop_waiting (ecs);
cdaa5b73
PA
6396 return;
6397
6398 case BPSTAT_WHAT_HP_STEP_RESUME:
6399 if (debug_infrun)
6400 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6401
6402 delete_step_resume_breakpoint (ecs->event_thread);
6403 if (ecs->event_thread->step_after_step_resume_breakpoint)
6404 {
6405 /* Back when the step-resume breakpoint was inserted, we
6406 were trying to single-step off a breakpoint. Go back to
6407 doing that. */
6408 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6409 ecs->event_thread->stepping_over_breakpoint = 1;
6410 keep_going (ecs);
6411 return;
e5ef252a 6412 }
cdaa5b73
PA
6413 break;
6414
6415 case BPSTAT_WHAT_KEEP_CHECKING:
6416 break;
e5ef252a 6417 }
c906108c 6418
af48d08f
PA
6419 /* If we stepped a permanent breakpoint and we had a high priority
6420 step-resume breakpoint for the address we stepped, but we didn't
6421 hit it, then we must have stepped into the signal handler. The
6422 step-resume was only necessary to catch the case of _not_
6423 stepping into the handler, so delete it, and fall through to
6424 checking whether the step finished. */
6425 if (ecs->event_thread->stepped_breakpoint)
6426 {
6427 struct breakpoint *sr_bp
6428 = ecs->event_thread->control.step_resume_breakpoint;
6429
8d707a12
PA
6430 if (sr_bp != NULL
6431 && sr_bp->loc->permanent
af48d08f
PA
6432 && sr_bp->type == bp_hp_step_resume
6433 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6434 {
6435 if (debug_infrun)
6436 fprintf_unfiltered (gdb_stdlog,
6437 "infrun: stepped permanent breakpoint, stopped in "
6438 "handler\n");
6439 delete_step_resume_breakpoint (ecs->event_thread);
6440 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6441 }
6442 }
6443
cdaa5b73
PA
6444 /* We come here if we hit a breakpoint but should not stop for it.
6445 Possibly we also were stepping and should stop for that. So fall
6446 through and test for stepping. But, if not stepping, do not
6447 stop. */
c906108c 6448
a7212384
UW
6449 /* In all-stop mode, if we're currently stepping but have stopped in
6450 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6451 if (switch_back_to_stepped_thread (ecs))
6452 return;
776f04fa 6453
8358c15c 6454 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6455 {
527159b7 6456 if (debug_infrun)
d3169d93
DJ
6457 fprintf_unfiltered (gdb_stdlog,
6458 "infrun: step-resume breakpoint is inserted\n");
527159b7 6459
488f131b
JB
6460 /* Having a step-resume breakpoint overrides anything
6461 else having to do with stepping commands until
6462 that breakpoint is reached. */
488f131b
JB
6463 keep_going (ecs);
6464 return;
6465 }
c5aa993b 6466
16c381f0 6467 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6468 {
527159b7 6469 if (debug_infrun)
8a9de0e4 6470 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6471 /* Likewise if we aren't even stepping. */
488f131b
JB
6472 keep_going (ecs);
6473 return;
6474 }
c5aa993b 6475
4b7703ad
JB
6476 /* Re-fetch current thread's frame in case the code above caused
6477 the frame cache to be re-initialized, making our FRAME variable
6478 a dangling pointer. */
6479 frame = get_current_frame ();
628fe4e4 6480 gdbarch = get_frame_arch (frame);
7e324e48 6481 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6482
488f131b 6483 /* If stepping through a line, keep going if still within it.
c906108c 6484
488f131b
JB
6485 Note that step_range_end is the address of the first instruction
6486 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6487 within it!
6488
6489 Note also that during reverse execution, we may be stepping
6490 through a function epilogue and therefore must detect when
6491 the current-frame changes in the middle of a line. */
6492
f2ffa92b
PA
6493 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6494 ecs->event_thread)
31410e84 6495 && (execution_direction != EXEC_REVERSE
388a8562 6496 || frame_id_eq (get_frame_id (frame),
16c381f0 6497 ecs->event_thread->control.step_frame_id)))
488f131b 6498 {
527159b7 6499 if (debug_infrun)
5af949e3
UW
6500 fprintf_unfiltered
6501 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6502 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6503 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6504
c1e36e3e
PA
6505 /* Tentatively re-enable range stepping; `resume' disables it if
6506 necessary (e.g., if we're stepping over a breakpoint or we
6507 have software watchpoints). */
6508 ecs->event_thread->control.may_range_step = 1;
6509
b2175913
MS
6510 /* When stepping backward, stop at beginning of line range
6511 (unless it's the function entry point, in which case
6512 keep going back to the call point). */
f2ffa92b 6513 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6514 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6515 && stop_pc != ecs->stop_func_start
6516 && execution_direction == EXEC_REVERSE)
bdc36728 6517 end_stepping_range (ecs);
b2175913
MS
6518 else
6519 keep_going (ecs);
6520
488f131b
JB
6521 return;
6522 }
c5aa993b 6523
488f131b 6524 /* We stepped out of the stepping range. */
c906108c 6525
488f131b 6526 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6527 loader dynamic symbol resolution code...
6528
6529 EXEC_FORWARD: we keep on single stepping until we exit the run
6530 time loader code and reach the callee's address.
6531
6532 EXEC_REVERSE: we've already executed the callee (backward), and
6533 the runtime loader code is handled just like any other
6534 undebuggable function call. Now we need only keep stepping
6535 backward through the trampoline code, and that's handled further
6536 down, so there is nothing for us to do here. */
6537
6538 if (execution_direction != EXEC_REVERSE
16c381f0 6539 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6540 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6541 {
4c8c40e6 6542 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6543 gdbarch_skip_solib_resolver (gdbarch,
6544 ecs->event_thread->suspend.stop_pc);
c906108c 6545
527159b7 6546 if (debug_infrun)
3e43a32a
MS
6547 fprintf_unfiltered (gdb_stdlog,
6548 "infrun: stepped into dynsym resolve code\n");
527159b7 6549
488f131b
JB
6550 if (pc_after_resolver)
6551 {
6552 /* Set up a step-resume breakpoint at the address
6553 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6554 symtab_and_line sr_sal;
488f131b 6555 sr_sal.pc = pc_after_resolver;
6c95b8df 6556 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6557
a6d9a66e
UW
6558 insert_step_resume_breakpoint_at_sal (gdbarch,
6559 sr_sal, null_frame_id);
c5aa993b 6560 }
c906108c 6561
488f131b
JB
6562 keep_going (ecs);
6563 return;
6564 }
c906108c 6565
1d509aa6
MM
6566 /* Step through an indirect branch thunk. */
6567 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6568 && gdbarch_in_indirect_branch_thunk (gdbarch,
6569 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6570 {
6571 if (debug_infrun)
6572 fprintf_unfiltered (gdb_stdlog,
6573 "infrun: stepped into indirect branch thunk\n");
6574 keep_going (ecs);
6575 return;
6576 }
6577
16c381f0
JK
6578 if (ecs->event_thread->control.step_range_end != 1
6579 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6580 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6581 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6582 {
527159b7 6583 if (debug_infrun)
3e43a32a
MS
6584 fprintf_unfiltered (gdb_stdlog,
6585 "infrun: stepped into signal trampoline\n");
42edda50 6586 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6587 a signal trampoline (either by a signal being delivered or by
6588 the signal handler returning). Just single-step until the
6589 inferior leaves the trampoline (either by calling the handler
6590 or returning). */
488f131b
JB
6591 keep_going (ecs);
6592 return;
6593 }
c906108c 6594
14132e89
MR
6595 /* If we're in the return path from a shared library trampoline,
6596 we want to proceed through the trampoline when stepping. */
6597 /* macro/2012-04-25: This needs to come before the subroutine
6598 call check below as on some targets return trampolines look
6599 like subroutine calls (MIPS16 return thunks). */
6600 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6601 ecs->event_thread->suspend.stop_pc,
6602 ecs->stop_func_name)
14132e89
MR
6603 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6604 {
6605 /* Determine where this trampoline returns. */
f2ffa92b
PA
6606 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6607 CORE_ADDR real_stop_pc
6608 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6609
6610 if (debug_infrun)
6611 fprintf_unfiltered (gdb_stdlog,
6612 "infrun: stepped into solib return tramp\n");
6613
6614 /* Only proceed through if we know where it's going. */
6615 if (real_stop_pc)
6616 {
6617 /* And put the step-breakpoint there and go until there. */
51abb421 6618 symtab_and_line sr_sal;
14132e89
MR
6619 sr_sal.pc = real_stop_pc;
6620 sr_sal.section = find_pc_overlay (sr_sal.pc);
6621 sr_sal.pspace = get_frame_program_space (frame);
6622
6623 /* Do not specify what the fp should be when we stop since
6624 on some machines the prologue is where the new fp value
6625 is established. */
6626 insert_step_resume_breakpoint_at_sal (gdbarch,
6627 sr_sal, null_frame_id);
6628
6629 /* Restart without fiddling with the step ranges or
6630 other state. */
6631 keep_going (ecs);
6632 return;
6633 }
6634 }
6635
c17eaafe
DJ
6636 /* Check for subroutine calls. The check for the current frame
6637 equalling the step ID is not necessary - the check of the
6638 previous frame's ID is sufficient - but it is a common case and
6639 cheaper than checking the previous frame's ID.
14e60db5
DJ
6640
6641 NOTE: frame_id_eq will never report two invalid frame IDs as
6642 being equal, so to get into this block, both the current and
6643 previous frame must have valid frame IDs. */
005ca36a
JB
6644 /* The outer_frame_id check is a heuristic to detect stepping
6645 through startup code. If we step over an instruction which
6646 sets the stack pointer from an invalid value to a valid value,
6647 we may detect that as a subroutine call from the mythical
6648 "outermost" function. This could be fixed by marking
6649 outermost frames as !stack_p,code_p,special_p. Then the
6650 initial outermost frame, before sp was valid, would
ce6cca6d 6651 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6652 for more. */
edb3359d 6653 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6654 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6655 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6656 ecs->event_thread->control.step_stack_frame_id)
6657 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6658 outer_frame_id)
885eeb5b 6659 || (ecs->event_thread->control.step_start_function
f2ffa92b 6660 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6661 {
f2ffa92b 6662 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6663 CORE_ADDR real_stop_pc;
8fb3e588 6664
527159b7 6665 if (debug_infrun)
8a9de0e4 6666 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6667
b7a084be 6668 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6669 {
6670 /* I presume that step_over_calls is only 0 when we're
6671 supposed to be stepping at the assembly language level
6672 ("stepi"). Just stop. */
388a8562 6673 /* And this works the same backward as frontward. MVS */
bdc36728 6674 end_stepping_range (ecs);
95918acb
AC
6675 return;
6676 }
8fb3e588 6677
388a8562
MS
6678 /* Reverse stepping through solib trampolines. */
6679
6680 if (execution_direction == EXEC_REVERSE
16c381f0 6681 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6682 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6683 || (ecs->stop_func_start == 0
6684 && in_solib_dynsym_resolve_code (stop_pc))))
6685 {
6686 /* Any solib trampoline code can be handled in reverse
6687 by simply continuing to single-step. We have already
6688 executed the solib function (backwards), and a few
6689 steps will take us back through the trampoline to the
6690 caller. */
6691 keep_going (ecs);
6692 return;
6693 }
6694
16c381f0 6695 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6696 {
b2175913
MS
6697 /* We're doing a "next".
6698
6699 Normal (forward) execution: set a breakpoint at the
6700 callee's return address (the address at which the caller
6701 will resume).
6702
6703 Reverse (backward) execution. set the step-resume
6704 breakpoint at the start of the function that we just
6705 stepped into (backwards), and continue to there. When we
6130d0b7 6706 get there, we'll need to single-step back to the caller. */
b2175913
MS
6707
6708 if (execution_direction == EXEC_REVERSE)
6709 {
acf9414f
JK
6710 /* If we're already at the start of the function, we've either
6711 just stepped backward into a single instruction function,
6712 or stepped back out of a signal handler to the first instruction
6713 of the function. Just keep going, which will single-step back
6714 to the caller. */
58c48e72 6715 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6716 {
acf9414f 6717 /* Normal function call return (static or dynamic). */
51abb421 6718 symtab_and_line sr_sal;
acf9414f
JK
6719 sr_sal.pc = ecs->stop_func_start;
6720 sr_sal.pspace = get_frame_program_space (frame);
6721 insert_step_resume_breakpoint_at_sal (gdbarch,
6722 sr_sal, null_frame_id);
6723 }
b2175913
MS
6724 }
6725 else
568d6575 6726 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6727
8567c30f
AC
6728 keep_going (ecs);
6729 return;
6730 }
a53c66de 6731
95918acb 6732 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6733 calling routine and the real function), locate the real
6734 function. That's what tells us (a) whether we want to step
6735 into it at all, and (b) what prologue we want to run to the
6736 end of, if we do step into it. */
568d6575 6737 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6738 if (real_stop_pc == 0)
568d6575 6739 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6740 if (real_stop_pc != 0)
6741 ecs->stop_func_start = real_stop_pc;
8fb3e588 6742
db5f024e 6743 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6744 {
51abb421 6745 symtab_and_line sr_sal;
1b2bfbb9 6746 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6747 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6748
a6d9a66e
UW
6749 insert_step_resume_breakpoint_at_sal (gdbarch,
6750 sr_sal, null_frame_id);
8fb3e588
AC
6751 keep_going (ecs);
6752 return;
1b2bfbb9
RC
6753 }
6754
95918acb 6755 /* If we have line number information for the function we are
1bfeeb0f
JL
6756 thinking of stepping into and the function isn't on the skip
6757 list, step into it.
95918acb 6758
8fb3e588
AC
6759 If there are several symtabs at that PC (e.g. with include
6760 files), just want to know whether *any* of them have line
6761 numbers. find_pc_line handles this. */
95918acb
AC
6762 {
6763 struct symtab_and_line tmp_sal;
8fb3e588 6764
95918acb 6765 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6766 if (tmp_sal.line != 0
85817405 6767 && !function_name_is_marked_for_skip (ecs->stop_func_name,
de7985c3 6768 tmp_sal))
95918acb 6769 {
b2175913 6770 if (execution_direction == EXEC_REVERSE)
568d6575 6771 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6772 else
568d6575 6773 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6774 return;
6775 }
6776 }
6777
6778 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6779 set, we stop the step so that the user has a chance to switch
6780 in assembly mode. */
16c381f0 6781 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6782 && step_stop_if_no_debug)
95918acb 6783 {
bdc36728 6784 end_stepping_range (ecs);
95918acb
AC
6785 return;
6786 }
6787
b2175913
MS
6788 if (execution_direction == EXEC_REVERSE)
6789 {
acf9414f
JK
6790 /* If we're already at the start of the function, we've either just
6791 stepped backward into a single instruction function without line
6792 number info, or stepped back out of a signal handler to the first
6793 instruction of the function without line number info. Just keep
6794 going, which will single-step back to the caller. */
6795 if (ecs->stop_func_start != stop_pc)
6796 {
6797 /* Set a breakpoint at callee's start address.
6798 From there we can step once and be back in the caller. */
51abb421 6799 symtab_and_line sr_sal;
acf9414f
JK
6800 sr_sal.pc = ecs->stop_func_start;
6801 sr_sal.pspace = get_frame_program_space (frame);
6802 insert_step_resume_breakpoint_at_sal (gdbarch,
6803 sr_sal, null_frame_id);
6804 }
b2175913
MS
6805 }
6806 else
6807 /* Set a breakpoint at callee's return address (the address
6808 at which the caller will resume). */
568d6575 6809 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6810
95918acb 6811 keep_going (ecs);
488f131b 6812 return;
488f131b 6813 }
c906108c 6814
fdd654f3
MS
6815 /* Reverse stepping through solib trampolines. */
6816
6817 if (execution_direction == EXEC_REVERSE
16c381f0 6818 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 6819 {
f2ffa92b
PA
6820 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6821
fdd654f3
MS
6822 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6823 || (ecs->stop_func_start == 0
6824 && in_solib_dynsym_resolve_code (stop_pc)))
6825 {
6826 /* Any solib trampoline code can be handled in reverse
6827 by simply continuing to single-step. We have already
6828 executed the solib function (backwards), and a few
6829 steps will take us back through the trampoline to the
6830 caller. */
6831 keep_going (ecs);
6832 return;
6833 }
6834 else if (in_solib_dynsym_resolve_code (stop_pc))
6835 {
6836 /* Stepped backward into the solib dynsym resolver.
6837 Set a breakpoint at its start and continue, then
6838 one more step will take us out. */
51abb421 6839 symtab_and_line sr_sal;
fdd654f3 6840 sr_sal.pc = ecs->stop_func_start;
9d1807c3 6841 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
6842 insert_step_resume_breakpoint_at_sal (gdbarch,
6843 sr_sal, null_frame_id);
6844 keep_going (ecs);
6845 return;
6846 }
6847 }
6848
f2ffa92b 6849 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 6850
1b2bfbb9
RC
6851 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6852 the trampoline processing logic, however, there are some trampolines
6853 that have no names, so we should do trampoline handling first. */
16c381f0 6854 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 6855 && ecs->stop_func_name == NULL
2afb61aa 6856 && stop_pc_sal.line == 0)
1b2bfbb9 6857 {
527159b7 6858 if (debug_infrun)
3e43a32a
MS
6859 fprintf_unfiltered (gdb_stdlog,
6860 "infrun: stepped into undebuggable function\n");
527159b7 6861
1b2bfbb9 6862 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
6863 undebuggable function (where there is no debugging information
6864 and no line number corresponding to the address where the
1b2bfbb9
RC
6865 inferior stopped). Since we want to skip this kind of code,
6866 we keep going until the inferior returns from this
14e60db5
DJ
6867 function - unless the user has asked us not to (via
6868 set step-mode) or we no longer know how to get back
6869 to the call site. */
6870 if (step_stop_if_no_debug
c7ce8faa 6871 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
6872 {
6873 /* If we have no line number and the step-stop-if-no-debug
6874 is set, we stop the step so that the user has a chance to
6875 switch in assembly mode. */
bdc36728 6876 end_stepping_range (ecs);
1b2bfbb9
RC
6877 return;
6878 }
6879 else
6880 {
6881 /* Set a breakpoint at callee's return address (the address
6882 at which the caller will resume). */
568d6575 6883 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
6884 keep_going (ecs);
6885 return;
6886 }
6887 }
6888
16c381f0 6889 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
6890 {
6891 /* It is stepi or nexti. We always want to stop stepping after
6892 one instruction. */
527159b7 6893 if (debug_infrun)
8a9de0e4 6894 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 6895 end_stepping_range (ecs);
1b2bfbb9
RC
6896 return;
6897 }
6898
2afb61aa 6899 if (stop_pc_sal.line == 0)
488f131b
JB
6900 {
6901 /* We have no line number information. That means to stop
6902 stepping (does this always happen right after one instruction,
6903 when we do "s" in a function with no line numbers,
6904 or can this happen as a result of a return or longjmp?). */
527159b7 6905 if (debug_infrun)
8a9de0e4 6906 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 6907 end_stepping_range (ecs);
488f131b
JB
6908 return;
6909 }
c906108c 6910
edb3359d
DJ
6911 /* Look for "calls" to inlined functions, part one. If the inline
6912 frame machinery detected some skipped call sites, we have entered
6913 a new inline function. */
6914
6915 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6916 ecs->event_thread->control.step_frame_id)
00431a78 6917 && inline_skipped_frames (ecs->event_thread))
edb3359d 6918 {
edb3359d
DJ
6919 if (debug_infrun)
6920 fprintf_unfiltered (gdb_stdlog,
6921 "infrun: stepped into inlined function\n");
6922
51abb421 6923 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 6924
16c381f0 6925 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
6926 {
6927 /* For "step", we're going to stop. But if the call site
6928 for this inlined function is on the same source line as
6929 we were previously stepping, go down into the function
6930 first. Otherwise stop at the call site. */
6931
6932 if (call_sal.line == ecs->event_thread->current_line
6933 && call_sal.symtab == ecs->event_thread->current_symtab)
00431a78 6934 step_into_inline_frame (ecs->event_thread);
edb3359d 6935
bdc36728 6936 end_stepping_range (ecs);
edb3359d
DJ
6937 return;
6938 }
6939 else
6940 {
6941 /* For "next", we should stop at the call site if it is on a
6942 different source line. Otherwise continue through the
6943 inlined function. */
6944 if (call_sal.line == ecs->event_thread->current_line
6945 && call_sal.symtab == ecs->event_thread->current_symtab)
6946 keep_going (ecs);
6947 else
bdc36728 6948 end_stepping_range (ecs);
edb3359d
DJ
6949 return;
6950 }
6951 }
6952
6953 /* Look for "calls" to inlined functions, part two. If we are still
6954 in the same real function we were stepping through, but we have
6955 to go further up to find the exact frame ID, we are stepping
6956 through a more inlined call beyond its call site. */
6957
6958 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
6959 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 6960 ecs->event_thread->control.step_frame_id)
edb3359d 6961 && stepped_in_from (get_current_frame (),
16c381f0 6962 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
6963 {
6964 if (debug_infrun)
6965 fprintf_unfiltered (gdb_stdlog,
6966 "infrun: stepping through inlined function\n");
6967
16c381f0 6968 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
edb3359d
DJ
6969 keep_going (ecs);
6970 else
bdc36728 6971 end_stepping_range (ecs);
edb3359d
DJ
6972 return;
6973 }
6974
f2ffa92b 6975 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
6976 && (ecs->event_thread->current_line != stop_pc_sal.line
6977 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b
JB
6978 {
6979 /* We are at the start of a different line. So stop. Note that
6980 we don't stop if we step into the middle of a different line.
6981 That is said to make things like for (;;) statements work
6982 better. */
527159b7 6983 if (debug_infrun)
3e43a32a
MS
6984 fprintf_unfiltered (gdb_stdlog,
6985 "infrun: stepped to a different line\n");
bdc36728 6986 end_stepping_range (ecs);
488f131b
JB
6987 return;
6988 }
c906108c 6989
488f131b 6990 /* We aren't done stepping.
c906108c 6991
488f131b
JB
6992 Optimize by setting the stepping range to the line.
6993 (We might not be in the original line, but if we entered a
6994 new line in mid-statement, we continue stepping. This makes
6995 things like for(;;) statements work better.) */
c906108c 6996
16c381f0
JK
6997 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
6998 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 6999 ecs->event_thread->control.may_range_step = 1;
edb3359d 7000 set_step_info (frame, stop_pc_sal);
488f131b 7001
527159b7 7002 if (debug_infrun)
8a9de0e4 7003 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7004 keep_going (ecs);
104c1213
JM
7005}
7006
c447ac0b
PA
7007/* In all-stop mode, if we're currently stepping but have stopped in
7008 some other thread, we may need to switch back to the stepped
7009 thread. Returns true we set the inferior running, false if we left
7010 it stopped (and the event needs further processing). */
7011
7012static int
7013switch_back_to_stepped_thread (struct execution_control_state *ecs)
7014{
fbea99ea 7015 if (!target_is_non_stop_p ())
c447ac0b
PA
7016 {
7017 struct thread_info *tp;
99619bea
PA
7018 struct thread_info *stepping_thread;
7019
7020 /* If any thread is blocked on some internal breakpoint, and we
7021 simply need to step over that breakpoint to get it going
7022 again, do that first. */
7023
7024 /* However, if we see an event for the stepping thread, then we
7025 know all other threads have been moved past their breakpoints
7026 already. Let the caller check whether the step is finished,
7027 etc., before deciding to move it past a breakpoint. */
7028 if (ecs->event_thread->control.step_range_end != 0)
7029 return 0;
7030
7031 /* Check if the current thread is blocked on an incomplete
7032 step-over, interrupted by a random signal. */
7033 if (ecs->event_thread->control.trap_expected
7034 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7035 {
99619bea
PA
7036 if (debug_infrun)
7037 {
7038 fprintf_unfiltered (gdb_stdlog,
7039 "infrun: need to finish step-over of [%s]\n",
7040 target_pid_to_str (ecs->event_thread->ptid));
7041 }
7042 keep_going (ecs);
7043 return 1;
7044 }
2adfaa28 7045
99619bea
PA
7046 /* Check if the current thread is blocked by a single-step
7047 breakpoint of another thread. */
7048 if (ecs->hit_singlestep_breakpoint)
7049 {
7050 if (debug_infrun)
7051 {
7052 fprintf_unfiltered (gdb_stdlog,
7053 "infrun: need to step [%s] over single-step "
7054 "breakpoint\n",
7055 target_pid_to_str (ecs->ptid));
7056 }
7057 keep_going (ecs);
7058 return 1;
7059 }
7060
4d9d9d04
PA
7061 /* If this thread needs yet another step-over (e.g., stepping
7062 through a delay slot), do it first before moving on to
7063 another thread. */
7064 if (thread_still_needs_step_over (ecs->event_thread))
7065 {
7066 if (debug_infrun)
7067 {
7068 fprintf_unfiltered (gdb_stdlog,
7069 "infrun: thread [%s] still needs step-over\n",
7070 target_pid_to_str (ecs->event_thread->ptid));
7071 }
7072 keep_going (ecs);
7073 return 1;
7074 }
70509625 7075
483805cf
PA
7076 /* If scheduler locking applies even if not stepping, there's no
7077 need to walk over threads. Above we've checked whether the
7078 current thread is stepping. If some other thread not the
7079 event thread is stepping, then it must be that scheduler
7080 locking is not in effect. */
856e7dd6 7081 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7082 return 0;
7083
4d9d9d04
PA
7084 /* Otherwise, we no longer expect a trap in the current thread.
7085 Clear the trap_expected flag before switching back -- this is
7086 what keep_going does as well, if we call it. */
7087 ecs->event_thread->control.trap_expected = 0;
7088
7089 /* Likewise, clear the signal if it should not be passed. */
7090 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7091 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7092
7093 /* Do all pending step-overs before actually proceeding with
483805cf 7094 step/next/etc. */
4d9d9d04
PA
7095 if (start_step_over ())
7096 {
7097 prepare_to_wait (ecs);
7098 return 1;
7099 }
7100
7101 /* Look for the stepping/nexting thread. */
483805cf 7102 stepping_thread = NULL;
4d9d9d04 7103
034f788c 7104 ALL_NON_EXITED_THREADS (tp)
483805cf 7105 {
fbea99ea
PA
7106 /* Ignore threads of processes the caller is not
7107 resuming. */
483805cf 7108 if (!sched_multi
e99b03dc 7109 && tp->ptid.pid () != ecs->ptid.pid ())
483805cf
PA
7110 continue;
7111
7112 /* When stepping over a breakpoint, we lock all threads
7113 except the one that needs to move past the breakpoint.
7114 If a non-event thread has this set, the "incomplete
7115 step-over" check above should have caught it earlier. */
372316f1
PA
7116 if (tp->control.trap_expected)
7117 {
7118 internal_error (__FILE__, __LINE__,
7119 "[%s] has inconsistent state: "
7120 "trap_expected=%d\n",
7121 target_pid_to_str (tp->ptid),
7122 tp->control.trap_expected);
7123 }
483805cf
PA
7124
7125 /* Did we find the stepping thread? */
7126 if (tp->control.step_range_end)
7127 {
7128 /* Yep. There should only one though. */
7129 gdb_assert (stepping_thread == NULL);
7130
7131 /* The event thread is handled at the top, before we
7132 enter this loop. */
7133 gdb_assert (tp != ecs->event_thread);
7134
7135 /* If some thread other than the event thread is
7136 stepping, then scheduler locking can't be in effect,
7137 otherwise we wouldn't have resumed the current event
7138 thread in the first place. */
856e7dd6 7139 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7140
7141 stepping_thread = tp;
7142 }
99619bea
PA
7143 }
7144
483805cf 7145 if (stepping_thread != NULL)
99619bea 7146 {
c447ac0b
PA
7147 if (debug_infrun)
7148 fprintf_unfiltered (gdb_stdlog,
7149 "infrun: switching back to stepped thread\n");
7150
2ac7589c
PA
7151 if (keep_going_stepped_thread (stepping_thread))
7152 {
7153 prepare_to_wait (ecs);
7154 return 1;
7155 }
7156 }
7157 }
2adfaa28 7158
2ac7589c
PA
7159 return 0;
7160}
2adfaa28 7161
2ac7589c
PA
7162/* Set a previously stepped thread back to stepping. Returns true on
7163 success, false if the resume is not possible (e.g., the thread
7164 vanished). */
7165
7166static int
7167keep_going_stepped_thread (struct thread_info *tp)
7168{
7169 struct frame_info *frame;
2ac7589c
PA
7170 struct execution_control_state ecss;
7171 struct execution_control_state *ecs = &ecss;
2adfaa28 7172
2ac7589c
PA
7173 /* If the stepping thread exited, then don't try to switch back and
7174 resume it, which could fail in several different ways depending
7175 on the target. Instead, just keep going.
2adfaa28 7176
2ac7589c
PA
7177 We can find a stepping dead thread in the thread list in two
7178 cases:
2adfaa28 7179
2ac7589c
PA
7180 - The target supports thread exit events, and when the target
7181 tries to delete the thread from the thread list, inferior_ptid
7182 pointed at the exiting thread. In such case, calling
7183 delete_thread does not really remove the thread from the list;
7184 instead, the thread is left listed, with 'exited' state.
64ce06e4 7185
2ac7589c
PA
7186 - The target's debug interface does not support thread exit
7187 events, and so we have no idea whatsoever if the previously
7188 stepping thread is still alive. For that reason, we need to
7189 synchronously query the target now. */
2adfaa28 7190
00431a78 7191 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7192 {
7193 if (debug_infrun)
7194 fprintf_unfiltered (gdb_stdlog,
7195 "infrun: not resuming previously "
7196 "stepped thread, it has vanished\n");
7197
00431a78 7198 delete_thread (tp);
2ac7589c 7199 return 0;
c447ac0b 7200 }
2ac7589c
PA
7201
7202 if (debug_infrun)
7203 fprintf_unfiltered (gdb_stdlog,
7204 "infrun: resuming previously stepped thread\n");
7205
7206 reset_ecs (ecs, tp);
00431a78 7207 switch_to_thread (tp);
2ac7589c 7208
f2ffa92b 7209 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7210 frame = get_current_frame ();
2ac7589c
PA
7211
7212 /* If the PC of the thread we were trying to single-step has
7213 changed, then that thread has trapped or been signaled, but the
7214 event has not been reported to GDB yet. Re-poll the target
7215 looking for this particular thread's event (i.e. temporarily
7216 enable schedlock) by:
7217
7218 - setting a break at the current PC
7219 - resuming that particular thread, only (by setting trap
7220 expected)
7221
7222 This prevents us continuously moving the single-step breakpoint
7223 forward, one instruction at a time, overstepping. */
7224
f2ffa92b 7225 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7226 {
7227 ptid_t resume_ptid;
7228
7229 if (debug_infrun)
7230 fprintf_unfiltered (gdb_stdlog,
7231 "infrun: expected thread advanced also (%s -> %s)\n",
7232 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7233 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7234
7235 /* Clear the info of the previous step-over, as it's no longer
7236 valid (if the thread was trying to step over a breakpoint, it
7237 has already succeeded). It's what keep_going would do too,
7238 if we called it. Do this before trying to insert the sss
7239 breakpoint, otherwise if we were previously trying to step
7240 over this exact address in another thread, the breakpoint is
7241 skipped. */
7242 clear_step_over_info ();
7243 tp->control.trap_expected = 0;
7244
7245 insert_single_step_breakpoint (get_frame_arch (frame),
7246 get_frame_address_space (frame),
f2ffa92b 7247 tp->suspend.stop_pc);
2ac7589c 7248
372316f1 7249 tp->resumed = 1;
fbea99ea 7250 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7251 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7252 }
7253 else
7254 {
7255 if (debug_infrun)
7256 fprintf_unfiltered (gdb_stdlog,
7257 "infrun: expected thread still hasn't advanced\n");
7258
7259 keep_going_pass_signal (ecs);
7260 }
7261 return 1;
c447ac0b
PA
7262}
7263
8b061563
PA
7264/* Is thread TP in the middle of (software or hardware)
7265 single-stepping? (Note the result of this function must never be
7266 passed directly as target_resume's STEP parameter.) */
104c1213 7267
a289b8f6 7268static int
b3444185 7269currently_stepping (struct thread_info *tp)
a7212384 7270{
8358c15c
JK
7271 return ((tp->control.step_range_end
7272 && tp->control.step_resume_breakpoint == NULL)
7273 || tp->control.trap_expected
af48d08f 7274 || tp->stepped_breakpoint
8358c15c 7275 || bpstat_should_step ());
a7212384
UW
7276}
7277
b2175913
MS
7278/* Inferior has stepped into a subroutine call with source code that
7279 we should not step over. Do step to the first line of code in
7280 it. */
c2c6d25f
JM
7281
7282static void
568d6575
UW
7283handle_step_into_function (struct gdbarch *gdbarch,
7284 struct execution_control_state *ecs)
c2c6d25f 7285{
7e324e48
GB
7286 fill_in_stop_func (gdbarch, ecs);
7287
f2ffa92b
PA
7288 compunit_symtab *cust
7289 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7290 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7291 ecs->stop_func_start
7292 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7293
51abb421 7294 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7295 /* Use the step_resume_break to step until the end of the prologue,
7296 even if that involves jumps (as it seems to on the vax under
7297 4.2). */
7298 /* If the prologue ends in the middle of a source line, continue to
7299 the end of that source line (if it is still within the function).
7300 Otherwise, just go to end of prologue. */
2afb61aa
PA
7301 if (stop_func_sal.end
7302 && stop_func_sal.pc != ecs->stop_func_start
7303 && stop_func_sal.end < ecs->stop_func_end)
7304 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7305
2dbd5e30
KB
7306 /* Architectures which require breakpoint adjustment might not be able
7307 to place a breakpoint at the computed address. If so, the test
7308 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7309 ecs->stop_func_start to an address at which a breakpoint may be
7310 legitimately placed.
8fb3e588 7311
2dbd5e30
KB
7312 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7313 made, GDB will enter an infinite loop when stepping through
7314 optimized code consisting of VLIW instructions which contain
7315 subinstructions corresponding to different source lines. On
7316 FR-V, it's not permitted to place a breakpoint on any but the
7317 first subinstruction of a VLIW instruction. When a breakpoint is
7318 set, GDB will adjust the breakpoint address to the beginning of
7319 the VLIW instruction. Thus, we need to make the corresponding
7320 adjustment here when computing the stop address. */
8fb3e588 7321
568d6575 7322 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7323 {
7324 ecs->stop_func_start
568d6575 7325 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7326 ecs->stop_func_start);
2dbd5e30
KB
7327 }
7328
f2ffa92b 7329 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7330 {
7331 /* We are already there: stop now. */
bdc36728 7332 end_stepping_range (ecs);
c2c6d25f
JM
7333 return;
7334 }
7335 else
7336 {
7337 /* Put the step-breakpoint there and go until there. */
51abb421 7338 symtab_and_line sr_sal;
c2c6d25f
JM
7339 sr_sal.pc = ecs->stop_func_start;
7340 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7341 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7342
c2c6d25f 7343 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7344 some machines the prologue is where the new fp value is
7345 established. */
a6d9a66e 7346 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7347
7348 /* And make sure stepping stops right away then. */
16c381f0
JK
7349 ecs->event_thread->control.step_range_end
7350 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7351 }
7352 keep_going (ecs);
7353}
d4f3574e 7354
b2175913
MS
7355/* Inferior has stepped backward into a subroutine call with source
7356 code that we should not step over. Do step to the beginning of the
7357 last line of code in it. */
7358
7359static void
568d6575
UW
7360handle_step_into_function_backward (struct gdbarch *gdbarch,
7361 struct execution_control_state *ecs)
b2175913 7362{
43f3e411 7363 struct compunit_symtab *cust;
167e4384 7364 struct symtab_and_line stop_func_sal;
b2175913 7365
7e324e48
GB
7366 fill_in_stop_func (gdbarch, ecs);
7367
f2ffa92b 7368 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7369 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7370 ecs->stop_func_start
7371 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7372
f2ffa92b 7373 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7374
7375 /* OK, we're just going to keep stepping here. */
f2ffa92b 7376 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7377 {
7378 /* We're there already. Just stop stepping now. */
bdc36728 7379 end_stepping_range (ecs);
b2175913
MS
7380 }
7381 else
7382 {
7383 /* Else just reset the step range and keep going.
7384 No step-resume breakpoint, they don't work for
7385 epilogues, which can have multiple entry paths. */
16c381f0
JK
7386 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7387 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7388 keep_going (ecs);
7389 }
7390 return;
7391}
7392
d3169d93 7393/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7394 This is used to both functions and to skip over code. */
7395
7396static void
2c03e5be
PA
7397insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7398 struct symtab_and_line sr_sal,
7399 struct frame_id sr_id,
7400 enum bptype sr_type)
44cbf7b5 7401{
611c83ae
PA
7402 /* There should never be more than one step-resume or longjmp-resume
7403 breakpoint per thread, so we should never be setting a new
44cbf7b5 7404 step_resume_breakpoint when one is already active. */
8358c15c 7405 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7406 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7407
7408 if (debug_infrun)
7409 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7410 "infrun: inserting step-resume breakpoint at %s\n",
7411 paddress (gdbarch, sr_sal.pc));
d3169d93 7412
8358c15c 7413 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7414 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7415}
7416
9da8c2a0 7417void
2c03e5be
PA
7418insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7419 struct symtab_and_line sr_sal,
7420 struct frame_id sr_id)
7421{
7422 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7423 sr_sal, sr_id,
7424 bp_step_resume);
44cbf7b5 7425}
7ce450bd 7426
2c03e5be
PA
7427/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7428 This is used to skip a potential signal handler.
7ce450bd 7429
14e60db5
DJ
7430 This is called with the interrupted function's frame. The signal
7431 handler, when it returns, will resume the interrupted function at
7432 RETURN_FRAME.pc. */
d303a6c7
AC
7433
7434static void
2c03e5be 7435insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7436{
f4c1edd8 7437 gdb_assert (return_frame != NULL);
d303a6c7 7438
51abb421
PA
7439 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7440
7441 symtab_and_line sr_sal;
568d6575 7442 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7443 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7444 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7445
2c03e5be
PA
7446 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7447 get_stack_frame_id (return_frame),
7448 bp_hp_step_resume);
d303a6c7
AC
7449}
7450
2c03e5be
PA
7451/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7452 is used to skip a function after stepping into it (for "next" or if
7453 the called function has no debugging information).
14e60db5
DJ
7454
7455 The current function has almost always been reached by single
7456 stepping a call or return instruction. NEXT_FRAME belongs to the
7457 current function, and the breakpoint will be set at the caller's
7458 resume address.
7459
7460 This is a separate function rather than reusing
2c03e5be 7461 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7462 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7463 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7464
7465static void
7466insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7467{
14e60db5
DJ
7468 /* We shouldn't have gotten here if we don't know where the call site
7469 is. */
c7ce8faa 7470 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7471
51abb421 7472 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7473
51abb421 7474 symtab_and_line sr_sal;
c7ce8faa
DJ
7475 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7476 frame_unwind_caller_pc (next_frame));
14e60db5 7477 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7478 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7479
a6d9a66e 7480 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7481 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7482}
7483
611c83ae
PA
7484/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7485 new breakpoint at the target of a jmp_buf. The handling of
7486 longjmp-resume uses the same mechanisms used for handling
7487 "step-resume" breakpoints. */
7488
7489static void
a6d9a66e 7490insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7491{
e81a37f7
TT
7492 /* There should never be more than one longjmp-resume breakpoint per
7493 thread, so we should never be setting a new
611c83ae 7494 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7495 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7496
7497 if (debug_infrun)
7498 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7499 "infrun: inserting longjmp-resume breakpoint at %s\n",
7500 paddress (gdbarch, pc));
611c83ae 7501
e81a37f7 7502 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7503 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7504}
7505
186c406b
TT
7506/* Insert an exception resume breakpoint. TP is the thread throwing
7507 the exception. The block B is the block of the unwinder debug hook
7508 function. FRAME is the frame corresponding to the call to this
7509 function. SYM is the symbol of the function argument holding the
7510 target PC of the exception. */
7511
7512static void
7513insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7514 const struct block *b,
186c406b
TT
7515 struct frame_info *frame,
7516 struct symbol *sym)
7517{
492d29ea 7518 TRY
186c406b 7519 {
63e43d3a 7520 struct block_symbol vsym;
186c406b
TT
7521 struct value *value;
7522 CORE_ADDR handler;
7523 struct breakpoint *bp;
7524
de63c46b
PA
7525 vsym = lookup_symbol_search_name (SYMBOL_SEARCH_NAME (sym),
7526 b, VAR_DOMAIN);
63e43d3a 7527 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7528 /* If the value was optimized out, revert to the old behavior. */
7529 if (! value_optimized_out (value))
7530 {
7531 handler = value_as_address (value);
7532
7533 if (debug_infrun)
7534 fprintf_unfiltered (gdb_stdlog,
7535 "infrun: exception resume at %lx\n",
7536 (unsigned long) handler);
7537
7538 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7539 handler,
7540 bp_exception_resume).release ();
c70a6932
JK
7541
7542 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7543 frame = NULL;
7544
5d5658a1 7545 bp->thread = tp->global_num;
186c406b
TT
7546 inferior_thread ()->control.exception_resume_breakpoint = bp;
7547 }
7548 }
492d29ea
PA
7549 CATCH (e, RETURN_MASK_ERROR)
7550 {
7551 /* We want to ignore errors here. */
7552 }
7553 END_CATCH
186c406b
TT
7554}
7555
28106bc2
SDJ
7556/* A helper for check_exception_resume that sets an
7557 exception-breakpoint based on a SystemTap probe. */
7558
7559static void
7560insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7561 const struct bound_probe *probe,
28106bc2
SDJ
7562 struct frame_info *frame)
7563{
7564 struct value *arg_value;
7565 CORE_ADDR handler;
7566 struct breakpoint *bp;
7567
7568 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7569 if (!arg_value)
7570 return;
7571
7572 handler = value_as_address (arg_value);
7573
7574 if (debug_infrun)
7575 fprintf_unfiltered (gdb_stdlog,
7576 "infrun: exception resume at %s\n",
6bac7473 7577 paddress (get_objfile_arch (probe->objfile),
28106bc2
SDJ
7578 handler));
7579
7580 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7581 handler, bp_exception_resume).release ();
5d5658a1 7582 bp->thread = tp->global_num;
28106bc2
SDJ
7583 inferior_thread ()->control.exception_resume_breakpoint = bp;
7584}
7585
186c406b
TT
7586/* This is called when an exception has been intercepted. Check to
7587 see whether the exception's destination is of interest, and if so,
7588 set an exception resume breakpoint there. */
7589
7590static void
7591check_exception_resume (struct execution_control_state *ecs,
28106bc2 7592 struct frame_info *frame)
186c406b 7593{
729662a5 7594 struct bound_probe probe;
28106bc2
SDJ
7595 struct symbol *func;
7596
7597 /* First see if this exception unwinding breakpoint was set via a
7598 SystemTap probe point. If so, the probe has two arguments: the
7599 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7600 set a breakpoint there. */
6bac7473 7601 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7602 if (probe.prob)
28106bc2 7603 {
729662a5 7604 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7605 return;
7606 }
7607
7608 func = get_frame_function (frame);
7609 if (!func)
7610 return;
186c406b 7611
492d29ea 7612 TRY
186c406b 7613 {
3977b71f 7614 const struct block *b;
8157b174 7615 struct block_iterator iter;
186c406b
TT
7616 struct symbol *sym;
7617 int argno = 0;
7618
7619 /* The exception breakpoint is a thread-specific breakpoint on
7620 the unwinder's debug hook, declared as:
7621
7622 void _Unwind_DebugHook (void *cfa, void *handler);
7623
7624 The CFA argument indicates the frame to which control is
7625 about to be transferred. HANDLER is the destination PC.
7626
7627 We ignore the CFA and set a temporary breakpoint at HANDLER.
7628 This is not extremely efficient but it avoids issues in gdb
7629 with computing the DWARF CFA, and it also works even in weird
7630 cases such as throwing an exception from inside a signal
7631 handler. */
7632
7633 b = SYMBOL_BLOCK_VALUE (func);
7634 ALL_BLOCK_SYMBOLS (b, iter, sym)
7635 {
7636 if (!SYMBOL_IS_ARGUMENT (sym))
7637 continue;
7638
7639 if (argno == 0)
7640 ++argno;
7641 else
7642 {
7643 insert_exception_resume_breakpoint (ecs->event_thread,
7644 b, frame, sym);
7645 break;
7646 }
7647 }
7648 }
492d29ea
PA
7649 CATCH (e, RETURN_MASK_ERROR)
7650 {
7651 }
7652 END_CATCH
186c406b
TT
7653}
7654
104c1213 7655static void
22bcd14b 7656stop_waiting (struct execution_control_state *ecs)
104c1213 7657{
527159b7 7658 if (debug_infrun)
22bcd14b 7659 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7660
cd0fc7c3
SS
7661 /* Let callers know we don't want to wait for the inferior anymore. */
7662 ecs->wait_some_more = 0;
fbea99ea
PA
7663
7664 /* If all-stop, but the target is always in non-stop mode, stop all
7665 threads now that we're presenting the stop to the user. */
7666 if (!non_stop && target_is_non_stop_p ())
7667 stop_all_threads ();
cd0fc7c3
SS
7668}
7669
4d9d9d04
PA
7670/* Like keep_going, but passes the signal to the inferior, even if the
7671 signal is set to nopass. */
d4f3574e
SS
7672
7673static void
4d9d9d04 7674keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7675{
4d9d9d04 7676 gdb_assert (ptid_equal (ecs->event_thread->ptid, inferior_ptid));
372316f1 7677 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7678
d4f3574e 7679 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7680 ecs->event_thread->prev_pc
00431a78 7681 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7682
4d9d9d04 7683 if (ecs->event_thread->control.trap_expected)
d4f3574e 7684 {
4d9d9d04
PA
7685 struct thread_info *tp = ecs->event_thread;
7686
7687 if (debug_infrun)
7688 fprintf_unfiltered (gdb_stdlog,
7689 "infrun: %s has trap_expected set, "
7690 "resuming to collect trap\n",
7691 target_pid_to_str (tp->ptid));
7692
a9ba6bae
PA
7693 /* We haven't yet gotten our trap, and either: intercepted a
7694 non-signal event (e.g., a fork); or took a signal which we
7695 are supposed to pass through to the inferior. Simply
7696 continue. */
64ce06e4 7697 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7698 }
372316f1
PA
7699 else if (step_over_info_valid_p ())
7700 {
7701 /* Another thread is stepping over a breakpoint in-line. If
7702 this thread needs a step-over too, queue the request. In
7703 either case, this resume must be deferred for later. */
7704 struct thread_info *tp = ecs->event_thread;
7705
7706 if (ecs->hit_singlestep_breakpoint
7707 || thread_still_needs_step_over (tp))
7708 {
7709 if (debug_infrun)
7710 fprintf_unfiltered (gdb_stdlog,
7711 "infrun: step-over already in progress: "
7712 "step-over for %s deferred\n",
7713 target_pid_to_str (tp->ptid));
7714 thread_step_over_chain_enqueue (tp);
7715 }
7716 else
7717 {
7718 if (debug_infrun)
7719 fprintf_unfiltered (gdb_stdlog,
7720 "infrun: step-over in progress: "
7721 "resume of %s deferred\n",
7722 target_pid_to_str (tp->ptid));
7723 }
372316f1 7724 }
d4f3574e
SS
7725 else
7726 {
31e77af2 7727 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7728 int remove_bp;
7729 int remove_wps;
8d297bbf 7730 step_over_what step_what;
31e77af2 7731
d4f3574e 7732 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7733 anyway (if we got a signal, the user asked it be passed to
7734 the child)
7735 -- or --
7736 We got our expected trap, but decided we should resume from
7737 it.
d4f3574e 7738
a9ba6bae 7739 We're going to run this baby now!
d4f3574e 7740
c36b740a
VP
7741 Note that insert_breakpoints won't try to re-insert
7742 already inserted breakpoints. Therefore, we don't
7743 care if breakpoints were already inserted, or not. */
a9ba6bae 7744
31e77af2
PA
7745 /* If we need to step over a breakpoint, and we're not using
7746 displaced stepping to do so, insert all breakpoints
7747 (watchpoints, etc.) but the one we're stepping over, step one
7748 instruction, and then re-insert the breakpoint when that step
7749 is finished. */
963f9c80 7750
6c4cfb24
PA
7751 step_what = thread_still_needs_step_over (ecs->event_thread);
7752
963f9c80 7753 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7754 || (step_what & STEP_OVER_BREAKPOINT));
7755 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 7756
cb71640d
PA
7757 /* We can't use displaced stepping if we need to step past a
7758 watchpoint. The instruction copied to the scratch pad would
7759 still trigger the watchpoint. */
7760 if (remove_bp
3fc8eb30 7761 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 7762 {
a01bda52 7763 set_step_over_info (regcache->aspace (),
21edc42f
YQ
7764 regcache_read_pc (regcache), remove_wps,
7765 ecs->event_thread->global_num);
45e8c884 7766 }
963f9c80 7767 else if (remove_wps)
21edc42f 7768 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
7769
7770 /* If we now need to do an in-line step-over, we need to stop
7771 all other threads. Note this must be done before
7772 insert_breakpoints below, because that removes the breakpoint
7773 we're about to step over, otherwise other threads could miss
7774 it. */
fbea99ea 7775 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 7776 stop_all_threads ();
abbb1732 7777
31e77af2 7778 /* Stop stepping if inserting breakpoints fails. */
492d29ea 7779 TRY
31e77af2
PA
7780 {
7781 insert_breakpoints ();
7782 }
492d29ea 7783 CATCH (e, RETURN_MASK_ERROR)
31e77af2
PA
7784 {
7785 exception_print (gdb_stderr, e);
22bcd14b 7786 stop_waiting (ecs);
bdf2a94a 7787 clear_step_over_info ();
31e77af2 7788 return;
d4f3574e 7789 }
492d29ea 7790 END_CATCH
d4f3574e 7791
963f9c80 7792 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 7793
64ce06e4 7794 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
7795 }
7796
488f131b 7797 prepare_to_wait (ecs);
d4f3574e
SS
7798}
7799
4d9d9d04
PA
7800/* Called when we should continue running the inferior, because the
7801 current event doesn't cause a user visible stop. This does the
7802 resuming part; waiting for the next event is done elsewhere. */
7803
7804static void
7805keep_going (struct execution_control_state *ecs)
7806{
7807 if (ecs->event_thread->control.trap_expected
7808 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7809 ecs->event_thread->control.trap_expected = 0;
7810
7811 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7812 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7813 keep_going_pass_signal (ecs);
7814}
7815
104c1213
JM
7816/* This function normally comes after a resume, before
7817 handle_inferior_event exits. It takes care of any last bits of
7818 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 7819
104c1213
JM
7820static void
7821prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 7822{
527159b7 7823 if (debug_infrun)
8a9de0e4 7824 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 7825
104c1213 7826 ecs->wait_some_more = 1;
0b333c5e
PA
7827
7828 if (!target_is_async_p ())
7829 mark_infrun_async_event_handler ();
c906108c 7830}
11cf8741 7831
fd664c91 7832/* We are done with the step range of a step/next/si/ni command.
b57bacec 7833 Called once for each n of a "step n" operation. */
fd664c91
PA
7834
7835static void
bdc36728 7836end_stepping_range (struct execution_control_state *ecs)
fd664c91 7837{
bdc36728 7838 ecs->event_thread->control.stop_step = 1;
bdc36728 7839 stop_waiting (ecs);
fd664c91
PA
7840}
7841
33d62d64
JK
7842/* Several print_*_reason functions to print why the inferior has stopped.
7843 We always print something when the inferior exits, or receives a signal.
7844 The rest of the cases are dealt with later on in normal_stop and
7845 print_it_typical. Ideally there should be a call to one of these
7846 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 7847 stop_waiting is called.
33d62d64 7848
fd664c91
PA
7849 Note that we don't call these directly, instead we delegate that to
7850 the interpreters, through observers. Interpreters then call these
7851 with whatever uiout is right. */
33d62d64 7852
fd664c91
PA
7853void
7854print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 7855{
fd664c91 7856 /* For CLI-like interpreters, print nothing. */
33d62d64 7857
112e8700 7858 if (uiout->is_mi_like_p ())
fd664c91 7859 {
112e8700 7860 uiout->field_string ("reason",
fd664c91
PA
7861 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7862 }
7863}
33d62d64 7864
fd664c91
PA
7865void
7866print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 7867{
33d62d64 7868 annotate_signalled ();
112e8700
SM
7869 if (uiout->is_mi_like_p ())
7870 uiout->field_string
7871 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7872 uiout->text ("\nProgram terminated with signal ");
33d62d64 7873 annotate_signal_name ();
112e8700 7874 uiout->field_string ("signal-name",
2ea28649 7875 gdb_signal_to_name (siggnal));
33d62d64 7876 annotate_signal_name_end ();
112e8700 7877 uiout->text (", ");
33d62d64 7878 annotate_signal_string ();
112e8700 7879 uiout->field_string ("signal-meaning",
2ea28649 7880 gdb_signal_to_string (siggnal));
33d62d64 7881 annotate_signal_string_end ();
112e8700
SM
7882 uiout->text (".\n");
7883 uiout->text ("The program no longer exists.\n");
33d62d64
JK
7884}
7885
fd664c91
PA
7886void
7887print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 7888{
fda326dd 7889 struct inferior *inf = current_inferior ();
f2907e49 7890 const char *pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 7891
33d62d64
JK
7892 annotate_exited (exitstatus);
7893 if (exitstatus)
7894 {
112e8700
SM
7895 if (uiout->is_mi_like_p ())
7896 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7897 uiout->text ("[Inferior ");
7898 uiout->text (plongest (inf->num));
7899 uiout->text (" (");
7900 uiout->text (pidstr);
7901 uiout->text (") exited with code ");
7902 uiout->field_fmt ("exit-code", "0%o", (unsigned int) exitstatus);
7903 uiout->text ("]\n");
33d62d64
JK
7904 }
7905 else
11cf8741 7906 {
112e8700
SM
7907 if (uiout->is_mi_like_p ())
7908 uiout->field_string
7909 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7910 uiout->text ("[Inferior ");
7911 uiout->text (plongest (inf->num));
7912 uiout->text (" (");
7913 uiout->text (pidstr);
7914 uiout->text (") exited normally]\n");
33d62d64 7915 }
33d62d64
JK
7916}
7917
012b3a21
WT
7918/* Some targets/architectures can do extra processing/display of
7919 segmentation faults. E.g., Intel MPX boundary faults.
7920 Call the architecture dependent function to handle the fault. */
7921
7922static void
7923handle_segmentation_fault (struct ui_out *uiout)
7924{
7925 struct regcache *regcache = get_current_regcache ();
ac7936df 7926 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
7927
7928 if (gdbarch_handle_segmentation_fault_p (gdbarch))
7929 gdbarch_handle_segmentation_fault (gdbarch, uiout);
7930}
7931
fd664c91
PA
7932void
7933print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 7934{
f303dbd6
PA
7935 struct thread_info *thr = inferior_thread ();
7936
33d62d64
JK
7937 annotate_signal ();
7938
112e8700 7939 if (uiout->is_mi_like_p ())
f303dbd6
PA
7940 ;
7941 else if (show_thread_that_caused_stop ())
33d62d64 7942 {
f303dbd6 7943 const char *name;
33d62d64 7944
112e8700
SM
7945 uiout->text ("\nThread ");
7946 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
f303dbd6
PA
7947
7948 name = thr->name != NULL ? thr->name : target_thread_name (thr);
7949 if (name != NULL)
7950 {
112e8700
SM
7951 uiout->text (" \"");
7952 uiout->field_fmt ("name", "%s", name);
7953 uiout->text ("\"");
f303dbd6 7954 }
33d62d64 7955 }
f303dbd6 7956 else
112e8700 7957 uiout->text ("\nProgram");
f303dbd6 7958
112e8700
SM
7959 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
7960 uiout->text (" stopped");
33d62d64
JK
7961 else
7962 {
112e8700 7963 uiout->text (" received signal ");
8b93c638 7964 annotate_signal_name ();
112e8700
SM
7965 if (uiout->is_mi_like_p ())
7966 uiout->field_string
7967 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
7968 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 7969 annotate_signal_name_end ();
112e8700 7970 uiout->text (", ");
8b93c638 7971 annotate_signal_string ();
112e8700 7972 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
7973
7974 if (siggnal == GDB_SIGNAL_SEGV)
7975 handle_segmentation_fault (uiout);
7976
8b93c638 7977 annotate_signal_string_end ();
33d62d64 7978 }
112e8700 7979 uiout->text (".\n");
33d62d64 7980}
252fbfc8 7981
fd664c91
PA
7982void
7983print_no_history_reason (struct ui_out *uiout)
33d62d64 7984{
112e8700 7985 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 7986}
43ff13b4 7987
0c7e1a46
PA
7988/* Print current location without a level number, if we have changed
7989 functions or hit a breakpoint. Print source line if we have one.
7990 bpstat_print contains the logic deciding in detail what to print,
7991 based on the event(s) that just occurred. */
7992
243a9253
PA
7993static void
7994print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
7995{
7996 int bpstat_ret;
f486487f 7997 enum print_what source_flag;
0c7e1a46
PA
7998 int do_frame_printing = 1;
7999 struct thread_info *tp = inferior_thread ();
8000
8001 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8002 switch (bpstat_ret)
8003 {
8004 case PRINT_UNKNOWN:
8005 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8006 should) carry around the function and does (or should) use
8007 that when doing a frame comparison. */
8008 if (tp->control.stop_step
8009 && frame_id_eq (tp->control.step_frame_id,
8010 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8011 && (tp->control.step_start_function
8012 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8013 {
8014 /* Finished step, just print source line. */
8015 source_flag = SRC_LINE;
8016 }
8017 else
8018 {
8019 /* Print location and source line. */
8020 source_flag = SRC_AND_LOC;
8021 }
8022 break;
8023 case PRINT_SRC_AND_LOC:
8024 /* Print location and source line. */
8025 source_flag = SRC_AND_LOC;
8026 break;
8027 case PRINT_SRC_ONLY:
8028 source_flag = SRC_LINE;
8029 break;
8030 case PRINT_NOTHING:
8031 /* Something bogus. */
8032 source_flag = SRC_LINE;
8033 do_frame_printing = 0;
8034 break;
8035 default:
8036 internal_error (__FILE__, __LINE__, _("Unknown value."));
8037 }
8038
8039 /* The behavior of this routine with respect to the source
8040 flag is:
8041 SRC_LINE: Print only source line
8042 LOCATION: Print only location
8043 SRC_AND_LOC: Print location and source line. */
8044 if (do_frame_printing)
8045 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8046}
8047
243a9253
PA
8048/* See infrun.h. */
8049
8050void
8051print_stop_event (struct ui_out *uiout)
8052{
243a9253
PA
8053 struct target_waitstatus last;
8054 ptid_t last_ptid;
8055 struct thread_info *tp;
8056
8057 get_last_target_status (&last_ptid, &last);
8058
67ad9399
TT
8059 {
8060 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8061
67ad9399 8062 print_stop_location (&last);
243a9253 8063
67ad9399
TT
8064 /* Display the auto-display expressions. */
8065 do_displays ();
8066 }
243a9253
PA
8067
8068 tp = inferior_thread ();
8069 if (tp->thread_fsm != NULL
8070 && thread_fsm_finished_p (tp->thread_fsm))
8071 {
8072 struct return_value_info *rv;
8073
8074 rv = thread_fsm_return_value (tp->thread_fsm);
8075 if (rv != NULL)
8076 print_return_value (uiout, rv);
8077 }
0c7e1a46
PA
8078}
8079
388a7084
PA
8080/* See infrun.h. */
8081
8082void
8083maybe_remove_breakpoints (void)
8084{
8085 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8086 {
8087 if (remove_breakpoints ())
8088 {
223ffa71 8089 target_terminal::ours_for_output ();
388a7084
PA
8090 printf_filtered (_("Cannot remove breakpoints because "
8091 "program is no longer writable.\nFurther "
8092 "execution is probably impossible.\n"));
8093 }
8094 }
8095}
8096
4c2f2a79
PA
8097/* The execution context that just caused a normal stop. */
8098
8099struct stop_context
8100{
8101 /* The stop ID. */
8102 ULONGEST stop_id;
c906108c 8103
4c2f2a79 8104 /* The event PTID. */
c906108c 8105
4c2f2a79
PA
8106 ptid_t ptid;
8107
8108 /* If stopp for a thread event, this is the thread that caused the
8109 stop. */
8110 struct thread_info *thread;
8111
8112 /* The inferior that caused the stop. */
8113 int inf_num;
8114};
8115
8116/* Returns a new stop context. If stopped for a thread event, this
8117 takes a strong reference to the thread. */
8118
8119static struct stop_context *
8120save_stop_context (void)
8121{
224c3ddb 8122 struct stop_context *sc = XNEW (struct stop_context);
4c2f2a79
PA
8123
8124 sc->stop_id = get_stop_id ();
8125 sc->ptid = inferior_ptid;
8126 sc->inf_num = current_inferior ()->num;
8127
8128 if (!ptid_equal (inferior_ptid, null_ptid))
8129 {
8130 /* Take a strong reference so that the thread can't be deleted
8131 yet. */
8132 sc->thread = inferior_thread ();
803bdfe4 8133 sc->thread->incref ();
4c2f2a79
PA
8134 }
8135 else
8136 sc->thread = NULL;
8137
8138 return sc;
8139}
8140
8141/* Release a stop context previously created with save_stop_context.
8142 Releases the strong reference to the thread as well. */
8143
8144static void
8145release_stop_context_cleanup (void *arg)
8146{
9a3c8263 8147 struct stop_context *sc = (struct stop_context *) arg;
4c2f2a79
PA
8148
8149 if (sc->thread != NULL)
803bdfe4 8150 sc->thread->decref ();
4c2f2a79
PA
8151 xfree (sc);
8152}
8153
8154/* Return true if the current context no longer matches the saved stop
8155 context. */
8156
8157static int
8158stop_context_changed (struct stop_context *prev)
8159{
8160 if (!ptid_equal (prev->ptid, inferior_ptid))
8161 return 1;
8162 if (prev->inf_num != current_inferior ()->num)
8163 return 1;
8164 if (prev->thread != NULL && prev->thread->state != THREAD_STOPPED)
8165 return 1;
8166 if (get_stop_id () != prev->stop_id)
8167 return 1;
8168 return 0;
8169}
8170
8171/* See infrun.h. */
8172
8173int
96baa820 8174normal_stop (void)
c906108c 8175{
73b65bb0
DJ
8176 struct target_waitstatus last;
8177 ptid_t last_ptid;
8178
8179 get_last_target_status (&last_ptid, &last);
8180
4c2f2a79
PA
8181 new_stop_id ();
8182
29f49a6a
PA
8183 /* If an exception is thrown from this point on, make sure to
8184 propagate GDB's knowledge of the executing state to the
8185 frontend/user running state. A QUIT is an easy exception to see
8186 here, so do this before any filtered output. */
731f534f
PA
8187
8188 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8189
c35b1492 8190 if (!non_stop)
731f534f 8191 maybe_finish_thread_state.emplace (minus_one_ptid);
e1316e60
PA
8192 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8193 || last.kind == TARGET_WAITKIND_EXITED)
8194 {
8195 /* On some targets, we may still have live threads in the
8196 inferior when we get a process exit event. E.g., for
8197 "checkpoint", when the current checkpoint/fork exits,
8198 linux-fork.c automatically switches to another fork from
8199 within target_mourn_inferior. */
731f534f
PA
8200 if (inferior_ptid != null_ptid)
8201 maybe_finish_thread_state.emplace (ptid_t (inferior_ptid.pid ()));
e1316e60
PA
8202 }
8203 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
731f534f 8204 maybe_finish_thread_state.emplace (inferior_ptid);
29f49a6a 8205
b57bacec
PA
8206 /* As we're presenting a stop, and potentially removing breakpoints,
8207 update the thread list so we can tell whether there are threads
8208 running on the target. With target remote, for example, we can
8209 only learn about new threads when we explicitly update the thread
8210 list. Do this before notifying the interpreters about signal
8211 stops, end of stepping ranges, etc., so that the "new thread"
8212 output is emitted before e.g., "Program received signal FOO",
8213 instead of after. */
8214 update_thread_list ();
8215
8216 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8217 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8218
c906108c
SS
8219 /* As with the notification of thread events, we want to delay
8220 notifying the user that we've switched thread context until
8221 the inferior actually stops.
8222
73b65bb0
DJ
8223 There's no point in saying anything if the inferior has exited.
8224 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8225 "received a signal".
8226
8227 Also skip saying anything in non-stop mode. In that mode, as we
8228 don't want GDB to switch threads behind the user's back, to avoid
8229 races where the user is typing a command to apply to thread x,
8230 but GDB switches to thread y before the user finishes entering
8231 the command, fetch_inferior_event installs a cleanup to restore
8232 the current thread back to the thread the user had selected right
8233 after this event is handled, so we're not really switching, only
8234 informing of a stop. */
4f8d22e3 8235 if (!non_stop
731f534f 8236 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8237 && target_has_execution
8238 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8239 && last.kind != TARGET_WAITKIND_EXITED
8240 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8241 {
0e454242 8242 SWITCH_THRU_ALL_UIS ()
3b12939d 8243 {
223ffa71 8244 target_terminal::ours_for_output ();
3b12939d
PA
8245 printf_filtered (_("[Switching to %s]\n"),
8246 target_pid_to_str (inferior_ptid));
8247 annotate_thread_changed ();
8248 }
39f77062 8249 previous_inferior_ptid = inferior_ptid;
c906108c 8250 }
c906108c 8251
0e5bf2a8
PA
8252 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8253 {
0e454242 8254 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8255 if (current_ui->prompt_state == PROMPT_BLOCKED)
8256 {
223ffa71 8257 target_terminal::ours_for_output ();
3b12939d
PA
8258 printf_filtered (_("No unwaited-for children left.\n"));
8259 }
0e5bf2a8
PA
8260 }
8261
b57bacec 8262 /* Note: this depends on the update_thread_list call above. */
388a7084 8263 maybe_remove_breakpoints ();
c906108c 8264
c906108c
SS
8265 /* If an auto-display called a function and that got a signal,
8266 delete that auto-display to avoid an infinite recursion. */
8267
8268 if (stopped_by_random_signal)
8269 disable_current_display ();
8270
0e454242 8271 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8272 {
8273 async_enable_stdin ();
8274 }
c906108c 8275
388a7084 8276 /* Let the user/frontend see the threads as stopped. */
731f534f 8277 maybe_finish_thread_state.reset ();
388a7084
PA
8278
8279 /* Select innermost stack frame - i.e., current frame is frame 0,
8280 and current location is based on that. Handle the case where the
8281 dummy call is returning after being stopped. E.g. the dummy call
8282 previously hit a breakpoint. (If the dummy call returns
8283 normally, we won't reach here.) Do this before the stop hook is
8284 run, so that it doesn't get to see the temporary dummy frame,
8285 which is not where we'll present the stop. */
8286 if (has_stack_frames ())
8287 {
8288 if (stop_stack_dummy == STOP_STACK_DUMMY)
8289 {
8290 /* Pop the empty frame that contains the stack dummy. This
8291 also restores inferior state prior to the call (struct
8292 infcall_suspend_state). */
8293 struct frame_info *frame = get_current_frame ();
8294
8295 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8296 frame_pop (frame);
8297 /* frame_pop calls reinit_frame_cache as the last thing it
8298 does which means there's now no selected frame. */
8299 }
8300
8301 select_frame (get_current_frame ());
8302
8303 /* Set the current source location. */
8304 set_current_sal_from_frame (get_current_frame ());
8305 }
dd7e2d2b
PA
8306
8307 /* Look up the hook_stop and run it (CLI internally handles problem
8308 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8309 if (stop_command != NULL)
8310 {
8311 struct stop_context *saved_context = save_stop_context ();
8312 struct cleanup *old_chain
8313 = make_cleanup (release_stop_context_cleanup, saved_context);
8314
bf469271
PA
8315 TRY
8316 {
8317 execute_cmd_pre_hook (stop_command);
8318 }
8319 CATCH (ex, RETURN_MASK_ALL)
8320 {
8321 exception_fprintf (gdb_stderr, ex,
8322 "Error while running hook_stop:\n");
8323 }
8324 END_CATCH
4c2f2a79
PA
8325
8326 /* If the stop hook resumes the target, then there's no point in
8327 trying to notify about the previous stop; its context is
8328 gone. Likewise if the command switches thread or inferior --
8329 the observers would print a stop for the wrong
8330 thread/inferior. */
8331 if (stop_context_changed (saved_context))
8332 {
8333 do_cleanups (old_chain);
8334 return 1;
8335 }
8336 do_cleanups (old_chain);
8337 }
dd7e2d2b 8338
388a7084
PA
8339 /* Notify observers about the stop. This is where the interpreters
8340 print the stop event. */
8341 if (!ptid_equal (inferior_ptid, null_ptid))
76727919 8342 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8343 stop_print_frame);
8344 else
76727919 8345 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8346
243a9253
PA
8347 annotate_stopped ();
8348
48844aa6
PA
8349 if (target_has_execution)
8350 {
8351 if (last.kind != TARGET_WAITKIND_SIGNALLED
8352 && last.kind != TARGET_WAITKIND_EXITED)
8353 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8354 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8355 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8356 }
6c95b8df
PA
8357
8358 /* Try to get rid of automatically added inferiors that are no
8359 longer needed. Keeping those around slows down things linearly.
8360 Note that this never removes the current inferior. */
8361 prune_inferiors ();
4c2f2a79
PA
8362
8363 return 0;
c906108c 8364}
c906108c 8365\f
c5aa993b 8366int
96baa820 8367signal_stop_state (int signo)
c906108c 8368{
d6b48e9c 8369 return signal_stop[signo];
c906108c
SS
8370}
8371
c5aa993b 8372int
96baa820 8373signal_print_state (int signo)
c906108c
SS
8374{
8375 return signal_print[signo];
8376}
8377
c5aa993b 8378int
96baa820 8379signal_pass_state (int signo)
c906108c
SS
8380{
8381 return signal_program[signo];
8382}
8383
2455069d
UW
8384static void
8385signal_cache_update (int signo)
8386{
8387 if (signo == -1)
8388 {
a493e3e2 8389 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8390 signal_cache_update (signo);
8391
8392 return;
8393 }
8394
8395 signal_pass[signo] = (signal_stop[signo] == 0
8396 && signal_print[signo] == 0
ab04a2af
TT
8397 && signal_program[signo] == 1
8398 && signal_catch[signo] == 0);
2455069d
UW
8399}
8400
488f131b 8401int
7bda5e4a 8402signal_stop_update (int signo, int state)
d4f3574e
SS
8403{
8404 int ret = signal_stop[signo];
abbb1732 8405
d4f3574e 8406 signal_stop[signo] = state;
2455069d 8407 signal_cache_update (signo);
d4f3574e
SS
8408 return ret;
8409}
8410
488f131b 8411int
7bda5e4a 8412signal_print_update (int signo, int state)
d4f3574e
SS
8413{
8414 int ret = signal_print[signo];
abbb1732 8415
d4f3574e 8416 signal_print[signo] = state;
2455069d 8417 signal_cache_update (signo);
d4f3574e
SS
8418 return ret;
8419}
8420
488f131b 8421int
7bda5e4a 8422signal_pass_update (int signo, int state)
d4f3574e
SS
8423{
8424 int ret = signal_program[signo];
abbb1732 8425
d4f3574e 8426 signal_program[signo] = state;
2455069d 8427 signal_cache_update (signo);
d4f3574e
SS
8428 return ret;
8429}
8430
ab04a2af
TT
8431/* Update the global 'signal_catch' from INFO and notify the
8432 target. */
8433
8434void
8435signal_catch_update (const unsigned int *info)
8436{
8437 int i;
8438
8439 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8440 signal_catch[i] = info[i] > 0;
8441 signal_cache_update (-1);
8442 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8443}
8444
c906108c 8445static void
96baa820 8446sig_print_header (void)
c906108c 8447{
3e43a32a
MS
8448 printf_filtered (_("Signal Stop\tPrint\tPass "
8449 "to program\tDescription\n"));
c906108c
SS
8450}
8451
8452static void
2ea28649 8453sig_print_info (enum gdb_signal oursig)
c906108c 8454{
2ea28649 8455 const char *name = gdb_signal_to_name (oursig);
c906108c 8456 int name_padding = 13 - strlen (name);
96baa820 8457
c906108c
SS
8458 if (name_padding <= 0)
8459 name_padding = 0;
8460
8461 printf_filtered ("%s", name);
488f131b 8462 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8463 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8464 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8465 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8466 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8467}
8468
8469/* Specify how various signals in the inferior should be handled. */
8470
8471static void
0b39b52e 8472handle_command (const char *args, int from_tty)
c906108c 8473{
c906108c
SS
8474 int digits, wordlen;
8475 int sigfirst, signum, siglast;
2ea28649 8476 enum gdb_signal oursig;
c906108c
SS
8477 int allsigs;
8478 int nsigs;
8479 unsigned char *sigs;
c906108c
SS
8480
8481 if (args == NULL)
8482 {
e2e0b3e5 8483 error_no_arg (_("signal to handle"));
c906108c
SS
8484 }
8485
1777feb0 8486 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8487
a493e3e2 8488 nsigs = (int) GDB_SIGNAL_LAST;
c906108c
SS
8489 sigs = (unsigned char *) alloca (nsigs);
8490 memset (sigs, 0, nsigs);
8491
1777feb0 8492 /* Break the command line up into args. */
c906108c 8493
773a1edc 8494 gdb_argv built_argv (args);
c906108c
SS
8495
8496 /* Walk through the args, looking for signal oursigs, signal names, and
8497 actions. Signal numbers and signal names may be interspersed with
8498 actions, with the actions being performed for all signals cumulatively
1777feb0 8499 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8500
773a1edc 8501 for (char *arg : built_argv)
c906108c 8502 {
773a1edc
TT
8503 wordlen = strlen (arg);
8504 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8505 {;
8506 }
8507 allsigs = 0;
8508 sigfirst = siglast = -1;
8509
773a1edc 8510 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8511 {
8512 /* Apply action to all signals except those used by the
1777feb0 8513 debugger. Silently skip those. */
c906108c
SS
8514 allsigs = 1;
8515 sigfirst = 0;
8516 siglast = nsigs - 1;
8517 }
773a1edc 8518 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8519 {
8520 SET_SIGS (nsigs, sigs, signal_stop);
8521 SET_SIGS (nsigs, sigs, signal_print);
8522 }
773a1edc 8523 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8524 {
8525 UNSET_SIGS (nsigs, sigs, signal_program);
8526 }
773a1edc 8527 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8528 {
8529 SET_SIGS (nsigs, sigs, signal_print);
8530 }
773a1edc 8531 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8532 {
8533 SET_SIGS (nsigs, sigs, signal_program);
8534 }
773a1edc 8535 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8536 {
8537 UNSET_SIGS (nsigs, sigs, signal_stop);
8538 }
773a1edc 8539 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8540 {
8541 SET_SIGS (nsigs, sigs, signal_program);
8542 }
773a1edc 8543 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8544 {
8545 UNSET_SIGS (nsigs, sigs, signal_print);
8546 UNSET_SIGS (nsigs, sigs, signal_stop);
8547 }
773a1edc 8548 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8549 {
8550 UNSET_SIGS (nsigs, sigs, signal_program);
8551 }
8552 else if (digits > 0)
8553 {
8554 /* It is numeric. The numeric signal refers to our own
8555 internal signal numbering from target.h, not to host/target
8556 signal number. This is a feature; users really should be
8557 using symbolic names anyway, and the common ones like
8558 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8559
8560 sigfirst = siglast = (int)
773a1edc
TT
8561 gdb_signal_from_command (atoi (arg));
8562 if (arg[digits] == '-')
c906108c
SS
8563 {
8564 siglast = (int)
773a1edc 8565 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8566 }
8567 if (sigfirst > siglast)
8568 {
1777feb0 8569 /* Bet he didn't figure we'd think of this case... */
c906108c
SS
8570 signum = sigfirst;
8571 sigfirst = siglast;
8572 siglast = signum;
8573 }
8574 }
8575 else
8576 {
773a1edc 8577 oursig = gdb_signal_from_name (arg);
a493e3e2 8578 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8579 {
8580 sigfirst = siglast = (int) oursig;
8581 }
8582 else
8583 {
8584 /* Not a number and not a recognized flag word => complain. */
773a1edc 8585 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8586 }
8587 }
8588
8589 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8590 which signals to apply actions to. */
c906108c
SS
8591
8592 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8593 {
2ea28649 8594 switch ((enum gdb_signal) signum)
c906108c 8595 {
a493e3e2
PA
8596 case GDB_SIGNAL_TRAP:
8597 case GDB_SIGNAL_INT:
c906108c
SS
8598 if (!allsigs && !sigs[signum])
8599 {
9e2f0ad4 8600 if (query (_("%s is used by the debugger.\n\
3e43a32a 8601Are you sure you want to change it? "),
2ea28649 8602 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8603 {
8604 sigs[signum] = 1;
8605 }
8606 else
8607 {
a3f17187 8608 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8609 gdb_flush (gdb_stdout);
8610 }
8611 }
8612 break;
a493e3e2
PA
8613 case GDB_SIGNAL_0:
8614 case GDB_SIGNAL_DEFAULT:
8615 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8616 /* Make sure that "all" doesn't print these. */
8617 break;
8618 default:
8619 sigs[signum] = 1;
8620 break;
8621 }
8622 }
c906108c
SS
8623 }
8624
3a031f65
PA
8625 for (signum = 0; signum < nsigs; signum++)
8626 if (sigs[signum])
8627 {
2455069d 8628 signal_cache_update (-1);
a493e3e2
PA
8629 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
8630 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
c906108c 8631
3a031f65
PA
8632 if (from_tty)
8633 {
8634 /* Show the results. */
8635 sig_print_header ();
8636 for (; signum < nsigs; signum++)
8637 if (sigs[signum])
aead7601 8638 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8639 }
8640
8641 break;
8642 }
c906108c
SS
8643}
8644
de0bea00
MF
8645/* Complete the "handle" command. */
8646
eb3ff9a5 8647static void
de0bea00 8648handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8649 completion_tracker &tracker,
6f937416 8650 const char *text, const char *word)
de0bea00 8651{
de0bea00
MF
8652 static const char * const keywords[] =
8653 {
8654 "all",
8655 "stop",
8656 "ignore",
8657 "print",
8658 "pass",
8659 "nostop",
8660 "noignore",
8661 "noprint",
8662 "nopass",
8663 NULL,
8664 };
8665
eb3ff9a5
PA
8666 signal_completer (ignore, tracker, text, word);
8667 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8668}
8669
2ea28649
PA
8670enum gdb_signal
8671gdb_signal_from_command (int num)
ed01b82c
PA
8672{
8673 if (num >= 1 && num <= 15)
2ea28649 8674 return (enum gdb_signal) num;
ed01b82c
PA
8675 error (_("Only signals 1-15 are valid as numeric signals.\n\
8676Use \"info signals\" for a list of symbolic signals."));
8677}
8678
c906108c
SS
8679/* Print current contents of the tables set by the handle command.
8680 It is possible we should just be printing signals actually used
8681 by the current target (but for things to work right when switching
8682 targets, all signals should be in the signal tables). */
8683
8684static void
1d12d88f 8685info_signals_command (const char *signum_exp, int from_tty)
c906108c 8686{
2ea28649 8687 enum gdb_signal oursig;
abbb1732 8688
c906108c
SS
8689 sig_print_header ();
8690
8691 if (signum_exp)
8692 {
8693 /* First see if this is a symbol name. */
2ea28649 8694 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8695 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8696 {
8697 /* No, try numeric. */
8698 oursig =
2ea28649 8699 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8700 }
8701 sig_print_info (oursig);
8702 return;
8703 }
8704
8705 printf_filtered ("\n");
8706 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8707 for (oursig = GDB_SIGNAL_FIRST;
8708 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8709 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8710 {
8711 QUIT;
8712
a493e3e2
PA
8713 if (oursig != GDB_SIGNAL_UNKNOWN
8714 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8715 sig_print_info (oursig);
8716 }
8717
3e43a32a
MS
8718 printf_filtered (_("\nUse the \"handle\" command "
8719 "to change these tables.\n"));
c906108c 8720}
4aa995e1
PA
8721
8722/* The $_siginfo convenience variable is a bit special. We don't know
8723 for sure the type of the value until we actually have a chance to
7a9dd1b2 8724 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8725 also dependent on which thread you have selected.
8726
8727 1. making $_siginfo be an internalvar that creates a new value on
8728 access.
8729
8730 2. making the value of $_siginfo be an lval_computed value. */
8731
8732/* This function implements the lval_computed support for reading a
8733 $_siginfo value. */
8734
8735static void
8736siginfo_value_read (struct value *v)
8737{
8738 LONGEST transferred;
8739
a911d87a
PA
8740 /* If we can access registers, so can we access $_siginfo. Likewise
8741 vice versa. */
8742 validate_registers_access ();
c709acd1 8743
4aa995e1 8744 transferred =
8b88a78e 8745 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8746 NULL,
8747 value_contents_all_raw (v),
8748 value_offset (v),
8749 TYPE_LENGTH (value_type (v)));
8750
8751 if (transferred != TYPE_LENGTH (value_type (v)))
8752 error (_("Unable to read siginfo"));
8753}
8754
8755/* This function implements the lval_computed support for writing a
8756 $_siginfo value. */
8757
8758static void
8759siginfo_value_write (struct value *v, struct value *fromval)
8760{
8761 LONGEST transferred;
8762
a911d87a
PA
8763 /* If we can access registers, so can we access $_siginfo. Likewise
8764 vice versa. */
8765 validate_registers_access ();
c709acd1 8766
8b88a78e 8767 transferred = target_write (current_top_target (),
4aa995e1
PA
8768 TARGET_OBJECT_SIGNAL_INFO,
8769 NULL,
8770 value_contents_all_raw (fromval),
8771 value_offset (v),
8772 TYPE_LENGTH (value_type (fromval)));
8773
8774 if (transferred != TYPE_LENGTH (value_type (fromval)))
8775 error (_("Unable to write siginfo"));
8776}
8777
c8f2448a 8778static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
8779 {
8780 siginfo_value_read,
8781 siginfo_value_write
8782 };
8783
8784/* Return a new value with the correct type for the siginfo object of
78267919
UW
8785 the current thread using architecture GDBARCH. Return a void value
8786 if there's no object available. */
4aa995e1 8787
2c0b251b 8788static struct value *
22d2b532
SDJ
8789siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8790 void *ignore)
4aa995e1 8791{
4aa995e1 8792 if (target_has_stack
78267919
UW
8793 && !ptid_equal (inferior_ptid, null_ptid)
8794 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 8795 {
78267919 8796 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 8797
78267919 8798 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
8799 }
8800
78267919 8801 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
8802}
8803
c906108c 8804\f
16c381f0
JK
8805/* infcall_suspend_state contains state about the program itself like its
8806 registers and any signal it received when it last stopped.
8807 This state must be restored regardless of how the inferior function call
8808 ends (either successfully, or after it hits a breakpoint or signal)
8809 if the program is to properly continue where it left off. */
8810
8811struct infcall_suspend_state
7a292a7a 8812{
16c381f0 8813 struct thread_suspend_state thread_suspend;
16c381f0
JK
8814
8815 /* Other fields: */
daf6667d 8816 readonly_detached_regcache *registers;
1736ad11 8817
35515841 8818 /* Format of SIGINFO_DATA or NULL if it is not present. */
1736ad11
JK
8819 struct gdbarch *siginfo_gdbarch;
8820
8821 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8822 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8823 content would be invalid. */
8824 gdb_byte *siginfo_data;
b89667eb
DE
8825};
8826
16c381f0
JK
8827struct infcall_suspend_state *
8828save_infcall_suspend_state (void)
b89667eb 8829{
16c381f0 8830 struct infcall_suspend_state *inf_state;
b89667eb 8831 struct thread_info *tp = inferior_thread ();
1736ad11 8832 struct regcache *regcache = get_current_regcache ();
ac7936df 8833 struct gdbarch *gdbarch = regcache->arch ();
1736ad11
JK
8834 gdb_byte *siginfo_data = NULL;
8835
8836 if (gdbarch_get_siginfo_type_p (gdbarch))
8837 {
8838 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8839 size_t len = TYPE_LENGTH (type);
8840 struct cleanup *back_to;
8841
224c3ddb 8842 siginfo_data = (gdb_byte *) xmalloc (len);
1736ad11
JK
8843 back_to = make_cleanup (xfree, siginfo_data);
8844
8b88a78e 8845 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1736ad11
JK
8846 siginfo_data, 0, len) == len)
8847 discard_cleanups (back_to);
8848 else
8849 {
8850 /* Errors ignored. */
8851 do_cleanups (back_to);
8852 siginfo_data = NULL;
8853 }
8854 }
8855
41bf6aca 8856 inf_state = XCNEW (struct infcall_suspend_state);
1736ad11
JK
8857
8858 if (siginfo_data)
8859 {
8860 inf_state->siginfo_gdbarch = gdbarch;
8861 inf_state->siginfo_data = siginfo_data;
8862 }
b89667eb 8863
16c381f0 8864 inf_state->thread_suspend = tp->suspend;
16c381f0 8865
35515841 8866 /* run_inferior_call will not use the signal due to its `proceed' call with
a493e3e2
PA
8867 GDB_SIGNAL_0 anyway. */
8868 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 8869
daf6667d 8870 inf_state->registers = new readonly_detached_regcache (*regcache);
b89667eb
DE
8871
8872 return inf_state;
8873}
8874
8875/* Restore inferior session state to INF_STATE. */
8876
8877void
16c381f0 8878restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
8879{
8880 struct thread_info *tp = inferior_thread ();
1736ad11 8881 struct regcache *regcache = get_current_regcache ();
ac7936df 8882 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 8883
16c381f0 8884 tp->suspend = inf_state->thread_suspend;
16c381f0 8885
1736ad11
JK
8886 if (inf_state->siginfo_gdbarch == gdbarch)
8887 {
8888 struct type *type = gdbarch_get_siginfo_type (gdbarch);
1736ad11
JK
8889
8890 /* Errors ignored. */
8b88a78e 8891 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
6acef6cd 8892 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
1736ad11
JK
8893 }
8894
b89667eb
DE
8895 /* The inferior can be gone if the user types "print exit(0)"
8896 (and perhaps other times). */
8897 if (target_has_execution)
8898 /* NB: The register write goes through to the target. */
fc5b8736 8899 regcache->restore (inf_state->registers);
803b5f95 8900
16c381f0 8901 discard_infcall_suspend_state (inf_state);
b89667eb
DE
8902}
8903
8904static void
16c381f0 8905do_restore_infcall_suspend_state_cleanup (void *state)
b89667eb 8906{
9a3c8263 8907 restore_infcall_suspend_state ((struct infcall_suspend_state *) state);
b89667eb
DE
8908}
8909
8910struct cleanup *
16c381f0
JK
8911make_cleanup_restore_infcall_suspend_state
8912 (struct infcall_suspend_state *inf_state)
b89667eb 8913{
16c381f0 8914 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
b89667eb
DE
8915}
8916
8917void
16c381f0 8918discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 8919{
c0e383c6 8920 delete inf_state->registers;
803b5f95 8921 xfree (inf_state->siginfo_data);
b89667eb
DE
8922 xfree (inf_state);
8923}
8924
daf6667d 8925readonly_detached_regcache *
16c381f0 8926get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb
DE
8927{
8928 return inf_state->registers;
8929}
8930
16c381f0
JK
8931/* infcall_control_state contains state regarding gdb's control of the
8932 inferior itself like stepping control. It also contains session state like
8933 the user's currently selected frame. */
b89667eb 8934
16c381f0 8935struct infcall_control_state
b89667eb 8936{
16c381f0
JK
8937 struct thread_control_state thread_control;
8938 struct inferior_control_state inferior_control;
d82142e2
JK
8939
8940 /* Other fields: */
8941 enum stop_stack_kind stop_stack_dummy;
8942 int stopped_by_random_signal;
7a292a7a 8943
b89667eb 8944 /* ID if the selected frame when the inferior function call was made. */
101dcfbe 8945 struct frame_id selected_frame_id;
7a292a7a
SS
8946};
8947
c906108c 8948/* Save all of the information associated with the inferior<==>gdb
b89667eb 8949 connection. */
c906108c 8950
16c381f0
JK
8951struct infcall_control_state *
8952save_infcall_control_state (void)
c906108c 8953{
8d749320
SM
8954 struct infcall_control_state *inf_status =
8955 XNEW (struct infcall_control_state);
4e1c45ea 8956 struct thread_info *tp = inferior_thread ();
d6b48e9c 8957 struct inferior *inf = current_inferior ();
7a292a7a 8958
16c381f0
JK
8959 inf_status->thread_control = tp->control;
8960 inf_status->inferior_control = inf->control;
d82142e2 8961
8358c15c 8962 tp->control.step_resume_breakpoint = NULL;
5b79abe7 8963 tp->control.exception_resume_breakpoint = NULL;
8358c15c 8964
16c381f0
JK
8965 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
8966 chain. If caller's caller is walking the chain, they'll be happier if we
8967 hand them back the original chain when restore_infcall_control_state is
8968 called. */
8969 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
8970
8971 /* Other fields: */
8972 inf_status->stop_stack_dummy = stop_stack_dummy;
8973 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 8974
206415a3 8975 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 8976
7a292a7a 8977 return inf_status;
c906108c
SS
8978}
8979
bf469271
PA
8980static void
8981restore_selected_frame (const frame_id &fid)
c906108c 8982{
bf469271 8983 frame_info *frame = frame_find_by_id (fid);
c906108c 8984
aa0cd9c1
AC
8985 /* If inf_status->selected_frame_id is NULL, there was no previously
8986 selected frame. */
101dcfbe 8987 if (frame == NULL)
c906108c 8988 {
8a3fe4f8 8989 warning (_("Unable to restore previously selected frame."));
bf469271 8990 return;
c906108c
SS
8991 }
8992
0f7d239c 8993 select_frame (frame);
c906108c
SS
8994}
8995
b89667eb
DE
8996/* Restore inferior session state to INF_STATUS. */
8997
c906108c 8998void
16c381f0 8999restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9000{
4e1c45ea 9001 struct thread_info *tp = inferior_thread ();
d6b48e9c 9002 struct inferior *inf = current_inferior ();
4e1c45ea 9003
8358c15c
JK
9004 if (tp->control.step_resume_breakpoint)
9005 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9006
5b79abe7
TT
9007 if (tp->control.exception_resume_breakpoint)
9008 tp->control.exception_resume_breakpoint->disposition
9009 = disp_del_at_next_stop;
9010
d82142e2 9011 /* Handle the bpstat_copy of the chain. */
16c381f0 9012 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9013
16c381f0
JK
9014 tp->control = inf_status->thread_control;
9015 inf->control = inf_status->inferior_control;
d82142e2
JK
9016
9017 /* Other fields: */
9018 stop_stack_dummy = inf_status->stop_stack_dummy;
9019 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9020
b89667eb 9021 if (target_has_stack)
c906108c 9022 {
bf469271 9023 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9024 walking the stack might encounter a garbage pointer and
9025 error() trying to dereference it. */
bf469271
PA
9026 TRY
9027 {
9028 restore_selected_frame (inf_status->selected_frame_id);
9029 }
9030 CATCH (ex, RETURN_MASK_ERROR)
9031 {
9032 exception_fprintf (gdb_stderr, ex,
9033 "Unable to restore previously selected frame:\n");
9034 /* Error in restoring the selected frame. Select the
9035 innermost frame. */
9036 select_frame (get_current_frame ());
9037 }
9038 END_CATCH
c906108c 9039 }
c906108c 9040
72cec141 9041 xfree (inf_status);
7a292a7a 9042}
c906108c 9043
74b7792f 9044static void
16c381f0 9045do_restore_infcall_control_state_cleanup (void *sts)
74b7792f 9046{
9a3c8263 9047 restore_infcall_control_state ((struct infcall_control_state *) sts);
74b7792f
AC
9048}
9049
9050struct cleanup *
16c381f0
JK
9051make_cleanup_restore_infcall_control_state
9052 (struct infcall_control_state *inf_status)
74b7792f 9053{
16c381f0 9054 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
74b7792f
AC
9055}
9056
c906108c 9057void
16c381f0 9058discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9059{
8358c15c
JK
9060 if (inf_status->thread_control.step_resume_breakpoint)
9061 inf_status->thread_control.step_resume_breakpoint->disposition
9062 = disp_del_at_next_stop;
9063
5b79abe7
TT
9064 if (inf_status->thread_control.exception_resume_breakpoint)
9065 inf_status->thread_control.exception_resume_breakpoint->disposition
9066 = disp_del_at_next_stop;
9067
1777feb0 9068 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9069 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9070
72cec141 9071 xfree (inf_status);
7a292a7a 9072}
b89667eb 9073\f
7f89fd65 9074/* See infrun.h. */
0c557179
SDJ
9075
9076void
9077clear_exit_convenience_vars (void)
9078{
9079 clear_internalvar (lookup_internalvar ("_exitsignal"));
9080 clear_internalvar (lookup_internalvar ("_exitcode"));
9081}
c5aa993b 9082\f
488f131b 9083
b2175913
MS
9084/* User interface for reverse debugging:
9085 Set exec-direction / show exec-direction commands
9086 (returns error unless target implements to_set_exec_direction method). */
9087
170742de 9088enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9089static const char exec_forward[] = "forward";
9090static const char exec_reverse[] = "reverse";
9091static const char *exec_direction = exec_forward;
40478521 9092static const char *const exec_direction_names[] = {
b2175913
MS
9093 exec_forward,
9094 exec_reverse,
9095 NULL
9096};
9097
9098static void
eb4c3f4a 9099set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9100 struct cmd_list_element *cmd)
9101{
9102 if (target_can_execute_reverse)
9103 {
9104 if (!strcmp (exec_direction, exec_forward))
9105 execution_direction = EXEC_FORWARD;
9106 else if (!strcmp (exec_direction, exec_reverse))
9107 execution_direction = EXEC_REVERSE;
9108 }
8bbed405
MS
9109 else
9110 {
9111 exec_direction = exec_forward;
9112 error (_("Target does not support this operation."));
9113 }
b2175913
MS
9114}
9115
9116static void
9117show_exec_direction_func (struct ui_file *out, int from_tty,
9118 struct cmd_list_element *cmd, const char *value)
9119{
9120 switch (execution_direction) {
9121 case EXEC_FORWARD:
9122 fprintf_filtered (out, _("Forward.\n"));
9123 break;
9124 case EXEC_REVERSE:
9125 fprintf_filtered (out, _("Reverse.\n"));
9126 break;
b2175913 9127 default:
d8b34453
PA
9128 internal_error (__FILE__, __LINE__,
9129 _("bogus execution_direction value: %d"),
9130 (int) execution_direction);
b2175913
MS
9131 }
9132}
9133
d4db2f36
PA
9134static void
9135show_schedule_multiple (struct ui_file *file, int from_tty,
9136 struct cmd_list_element *c, const char *value)
9137{
3e43a32a
MS
9138 fprintf_filtered (file, _("Resuming the execution of threads "
9139 "of all processes is %s.\n"), value);
d4db2f36 9140}
ad52ddc6 9141
22d2b532
SDJ
9142/* Implementation of `siginfo' variable. */
9143
9144static const struct internalvar_funcs siginfo_funcs =
9145{
9146 siginfo_make_value,
9147 NULL,
9148 NULL
9149};
9150
372316f1
PA
9151/* Callback for infrun's target events source. This is marked when a
9152 thread has a pending status to process. */
9153
9154static void
9155infrun_async_inferior_event_handler (gdb_client_data data)
9156{
372316f1
PA
9157 inferior_event_handler (INF_REG_EVENT, NULL);
9158}
9159
c906108c 9160void
96baa820 9161_initialize_infrun (void)
c906108c 9162{
52f0bd74
AC
9163 int i;
9164 int numsigs;
de0bea00 9165 struct cmd_list_element *c;
c906108c 9166
372316f1
PA
9167 /* Register extra event sources in the event loop. */
9168 infrun_async_inferior_event_token
9169 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9170
11db9430 9171 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9172What debugger does when program gets various signals.\n\
9173Specify a signal as argument to print info on that signal only."));
c906108c
SS
9174 add_info_alias ("handle", "signals", 0);
9175
de0bea00 9176 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9177Specify how to handle signals.\n\
486c7739 9178Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9179Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9180If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9181will be displayed instead.\n\
9182\n\
c906108c
SS
9183Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9184from 1-15 are allowed for compatibility with old versions of GDB.\n\
9185Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9186The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9187used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9188\n\
1bedd215 9189Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9190\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9191Stop means reenter debugger if this signal happens (implies print).\n\
9192Print means print a message if this signal happens.\n\
9193Pass means let program see this signal; otherwise program doesn't know.\n\
9194Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9195Pass and Stop may be combined.\n\
9196\n\
9197Multiple signals may be specified. Signal numbers and signal names\n\
9198may be interspersed with actions, with the actions being performed for\n\
9199all signals cumulatively specified."));
de0bea00 9200 set_cmd_completer (c, handle_completer);
486c7739 9201
c906108c 9202 if (!dbx_commands)
1a966eab
AC
9203 stop_command = add_cmd ("stop", class_obscure,
9204 not_just_help_class_command, _("\
9205There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9206This allows you to set a list of commands to be run each time execution\n\
1a966eab 9207of the program stops."), &cmdlist);
c906108c 9208
ccce17b0 9209 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9210Set inferior debugging."), _("\
9211Show inferior debugging."), _("\
9212When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9213 NULL,
9214 show_debug_infrun,
9215 &setdebuglist, &showdebuglist);
527159b7 9216
3e43a32a
MS
9217 add_setshow_boolean_cmd ("displaced", class_maintenance,
9218 &debug_displaced, _("\
237fc4c9
PA
9219Set displaced stepping debugging."), _("\
9220Show displaced stepping debugging."), _("\
9221When non-zero, displaced stepping specific debugging is enabled."),
9222 NULL,
9223 show_debug_displaced,
9224 &setdebuglist, &showdebuglist);
9225
ad52ddc6
PA
9226 add_setshow_boolean_cmd ("non-stop", no_class,
9227 &non_stop_1, _("\
9228Set whether gdb controls the inferior in non-stop mode."), _("\
9229Show whether gdb controls the inferior in non-stop mode."), _("\
9230When debugging a multi-threaded program and this setting is\n\
9231off (the default, also called all-stop mode), when one thread stops\n\
9232(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9233all other threads in the program while you interact with the thread of\n\
9234interest. When you continue or step a thread, you can allow the other\n\
9235threads to run, or have them remain stopped, but while you inspect any\n\
9236thread's state, all threads stop.\n\
9237\n\
9238In non-stop mode, when one thread stops, other threads can continue\n\
9239to run freely. You'll be able to step each thread independently,\n\
9240leave it stopped or free to run as needed."),
9241 set_non_stop,
9242 show_non_stop,
9243 &setlist,
9244 &showlist);
9245
a493e3e2 9246 numsigs = (int) GDB_SIGNAL_LAST;
8d749320
SM
9247 signal_stop = XNEWVEC (unsigned char, numsigs);
9248 signal_print = XNEWVEC (unsigned char, numsigs);
9249 signal_program = XNEWVEC (unsigned char, numsigs);
9250 signal_catch = XNEWVEC (unsigned char, numsigs);
9251 signal_pass = XNEWVEC (unsigned char, numsigs);
c906108c
SS
9252 for (i = 0; i < numsigs; i++)
9253 {
9254 signal_stop[i] = 1;
9255 signal_print[i] = 1;
9256 signal_program[i] = 1;
ab04a2af 9257 signal_catch[i] = 0;
c906108c
SS
9258 }
9259
4d9d9d04
PA
9260 /* Signals caused by debugger's own actions should not be given to
9261 the program afterwards.
9262
9263 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9264 explicitly specifies that it should be delivered to the target
9265 program. Typically, that would occur when a user is debugging a
9266 target monitor on a simulator: the target monitor sets a
9267 breakpoint; the simulator encounters this breakpoint and halts
9268 the simulation handing control to GDB; GDB, noting that the stop
9269 address doesn't map to any known breakpoint, returns control back
9270 to the simulator; the simulator then delivers the hardware
9271 equivalent of a GDB_SIGNAL_TRAP to the program being
9272 debugged. */
a493e3e2
PA
9273 signal_program[GDB_SIGNAL_TRAP] = 0;
9274 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9275
9276 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9277 signal_stop[GDB_SIGNAL_ALRM] = 0;
9278 signal_print[GDB_SIGNAL_ALRM] = 0;
9279 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9280 signal_print[GDB_SIGNAL_VTALRM] = 0;
9281 signal_stop[GDB_SIGNAL_PROF] = 0;
9282 signal_print[GDB_SIGNAL_PROF] = 0;
9283 signal_stop[GDB_SIGNAL_CHLD] = 0;
9284 signal_print[GDB_SIGNAL_CHLD] = 0;
9285 signal_stop[GDB_SIGNAL_IO] = 0;
9286 signal_print[GDB_SIGNAL_IO] = 0;
9287 signal_stop[GDB_SIGNAL_POLL] = 0;
9288 signal_print[GDB_SIGNAL_POLL] = 0;
9289 signal_stop[GDB_SIGNAL_URG] = 0;
9290 signal_print[GDB_SIGNAL_URG] = 0;
9291 signal_stop[GDB_SIGNAL_WINCH] = 0;
9292 signal_print[GDB_SIGNAL_WINCH] = 0;
9293 signal_stop[GDB_SIGNAL_PRIO] = 0;
9294 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9295
cd0fc7c3
SS
9296 /* These signals are used internally by user-level thread
9297 implementations. (See signal(5) on Solaris.) Like the above
9298 signals, a healthy program receives and handles them as part of
9299 its normal operation. */
a493e3e2
PA
9300 signal_stop[GDB_SIGNAL_LWP] = 0;
9301 signal_print[GDB_SIGNAL_LWP] = 0;
9302 signal_stop[GDB_SIGNAL_WAITING] = 0;
9303 signal_print[GDB_SIGNAL_WAITING] = 0;
9304 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9305 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9306 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9307 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9308
2455069d
UW
9309 /* Update cached state. */
9310 signal_cache_update (-1);
9311
85c07804
AC
9312 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9313 &stop_on_solib_events, _("\
9314Set stopping for shared library events."), _("\
9315Show stopping for shared library events."), _("\
c906108c
SS
9316If nonzero, gdb will give control to the user when the dynamic linker\n\
9317notifies gdb of shared library events. The most common event of interest\n\
85c07804 9318to the user would be loading/unloading of a new library."),
f9e14852 9319 set_stop_on_solib_events,
920d2a44 9320 show_stop_on_solib_events,
85c07804 9321 &setlist, &showlist);
c906108c 9322
7ab04401
AC
9323 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9324 follow_fork_mode_kind_names,
9325 &follow_fork_mode_string, _("\
9326Set debugger response to a program call of fork or vfork."), _("\
9327Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9328A fork or vfork creates a new process. follow-fork-mode can be:\n\
9329 parent - the original process is debugged after a fork\n\
9330 child - the new process is debugged after a fork\n\
ea1dd7bc 9331The unfollowed process will continue to run.\n\
7ab04401
AC
9332By default, the debugger will follow the parent process."),
9333 NULL,
920d2a44 9334 show_follow_fork_mode_string,
7ab04401
AC
9335 &setlist, &showlist);
9336
6c95b8df
PA
9337 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9338 follow_exec_mode_names,
9339 &follow_exec_mode_string, _("\
9340Set debugger response to a program call of exec."), _("\
9341Show debugger response to a program call of exec."), _("\
9342An exec call replaces the program image of a process.\n\
9343\n\
9344follow-exec-mode can be:\n\
9345\n\
cce7e648 9346 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9347to this new inferior. The program the process was running before\n\
9348the exec call can be restarted afterwards by restarting the original\n\
9349inferior.\n\
9350\n\
9351 same - the debugger keeps the process bound to the same inferior.\n\
9352The new executable image replaces the previous executable loaded in\n\
9353the inferior. Restarting the inferior after the exec call restarts\n\
9354the executable the process was running after the exec call.\n\
9355\n\
9356By default, the debugger will use the same inferior."),
9357 NULL,
9358 show_follow_exec_mode_string,
9359 &setlist, &showlist);
9360
7ab04401
AC
9361 add_setshow_enum_cmd ("scheduler-locking", class_run,
9362 scheduler_enums, &scheduler_mode, _("\
9363Set mode for locking scheduler during execution."), _("\
9364Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9365off == no locking (threads may preempt at any time)\n\
9366on == full locking (no thread except the current thread may run)\n\
9367 This applies to both normal execution and replay mode.\n\
9368step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9369 In this mode, other threads may run during other commands.\n\
9370 This applies to both normal execution and replay mode.\n\
9371replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9372 set_schedlock_func, /* traps on target vector */
920d2a44 9373 show_scheduler_mode,
7ab04401 9374 &setlist, &showlist);
5fbbeb29 9375
d4db2f36
PA
9376 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9377Set mode for resuming threads of all processes."), _("\
9378Show mode for resuming threads of all processes."), _("\
9379When on, execution commands (such as 'continue' or 'next') resume all\n\
9380threads of all processes. When off (which is the default), execution\n\
9381commands only resume the threads of the current process. The set of\n\
9382threads that are resumed is further refined by the scheduler-locking\n\
9383mode (see help set scheduler-locking)."),
9384 NULL,
9385 show_schedule_multiple,
9386 &setlist, &showlist);
9387
5bf193a2
AC
9388 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9389Set mode of the step operation."), _("\
9390Show mode of the step operation."), _("\
9391When set, doing a step over a function without debug line information\n\
9392will stop at the first instruction of that function. Otherwise, the\n\
9393function is skipped and the step command stops at a different source line."),
9394 NULL,
920d2a44 9395 show_step_stop_if_no_debug,
5bf193a2 9396 &setlist, &showlist);
ca6724c1 9397
72d0e2c5
YQ
9398 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9399 &can_use_displaced_stepping, _("\
237fc4c9
PA
9400Set debugger's willingness to use displaced stepping."), _("\
9401Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9402If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9403supported by the target architecture. If off, gdb will not use displaced\n\
9404stepping to step over breakpoints, even if such is supported by the target\n\
9405architecture. If auto (which is the default), gdb will use displaced stepping\n\
9406if the target architecture supports it and non-stop mode is active, but will not\n\
9407use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9408 NULL,
9409 show_can_use_displaced_stepping,
9410 &setlist, &showlist);
237fc4c9 9411
b2175913
MS
9412 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9413 &exec_direction, _("Set direction of execution.\n\
9414Options are 'forward' or 'reverse'."),
9415 _("Show direction of execution (forward/reverse)."),
9416 _("Tells gdb whether to execute forward or backward."),
9417 set_exec_direction_func, show_exec_direction_func,
9418 &setlist, &showlist);
9419
6c95b8df
PA
9420 /* Set/show detach-on-fork: user-settable mode. */
9421
9422 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9423Set whether gdb will detach the child of a fork."), _("\
9424Show whether gdb will detach the child of a fork."), _("\
9425Tells gdb whether to detach the child of a fork."),
9426 NULL, NULL, &setlist, &showlist);
9427
03583c20
UW
9428 /* Set/show disable address space randomization mode. */
9429
9430 add_setshow_boolean_cmd ("disable-randomization", class_support,
9431 &disable_randomization, _("\
9432Set disabling of debuggee's virtual address space randomization."), _("\
9433Show disabling of debuggee's virtual address space randomization."), _("\
9434When this mode is on (which is the default), randomization of the virtual\n\
9435address space is disabled. Standalone programs run with the randomization\n\
9436enabled by default on some platforms."),
9437 &set_disable_randomization,
9438 &show_disable_randomization,
9439 &setlist, &showlist);
9440
ca6724c1 9441 /* ptid initializations */
ca6724c1
KB
9442 inferior_ptid = null_ptid;
9443 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9444
76727919
TT
9445 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9446 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9447 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9448 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9449
9450 /* Explicitly create without lookup, since that tries to create a
9451 value with a void typed value, and when we get here, gdbarch
9452 isn't initialized yet. At this point, we're quite sure there
9453 isn't another convenience variable of the same name. */
22d2b532 9454 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9455
9456 add_setshow_boolean_cmd ("observer", no_class,
9457 &observer_mode_1, _("\
9458Set whether gdb controls the inferior in observer mode."), _("\
9459Show whether gdb controls the inferior in observer mode."), _("\
9460In observer mode, GDB can get data from the inferior, but not\n\
9461affect its execution. Registers and memory may not be changed,\n\
9462breakpoints may not be set, and the program cannot be interrupted\n\
9463or signalled."),
9464 set_observer_mode,
9465 show_observer_mode,
9466 &setlist,
9467 &showlist);
c906108c 9468}
This page took 2.521354 seconds and 4 git commands to generate.