[gdb/testsuite] Add gdb.dwarf2/clang-debug-names.c
[deliverable/binutils-gdb.git] / gdb / infrun.c
CommitLineData
ca557f44
AC
1/* Target-struct-independent code to start (run) and stop an inferior
2 process.
8926118c 3
b811d2c2 4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
c5aa993b 11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b 18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
20
21#include "defs.h"
45741a9c 22#include "infrun.h"
c906108c
SS
23#include <ctype.h>
24#include "symtab.h"
25#include "frame.h"
26#include "inferior.h"
27#include "breakpoint.h"
c906108c
SS
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "target.h"
2f4fcf00 31#include "target-connection.h"
c906108c
SS
32#include "gdbthread.h"
33#include "annotate.h"
1adeb98a 34#include "symfile.h"
7a292a7a 35#include "top.h"
2acceee2 36#include "inf-loop.h"
4e052eda 37#include "regcache.h"
fd0407d6 38#include "value.h"
76727919 39#include "observable.h"
f636b87d 40#include "language.h"
a77053c2 41#include "solib.h"
f17517ea 42#include "main.h"
186c406b 43#include "block.h"
034dad6f 44#include "mi/mi-common.h"
4f8d22e3 45#include "event-top.h"
96429cc8 46#include "record.h"
d02ed0bb 47#include "record-full.h"
edb3359d 48#include "inline-frame.h"
4efc6507 49#include "jit.h"
06cd862c 50#include "tracepoint.h"
1bfeeb0f 51#include "skip.h"
28106bc2
SDJ
52#include "probe.h"
53#include "objfiles.h"
de0bea00 54#include "completer.h"
9107fc8d 55#include "target-descriptions.h"
f15cb84a 56#include "target-dcache.h"
d83ad864 57#include "terminal.h"
ff862be4 58#include "solist.h"
400b5eca 59#include "gdbsupport/event-loop.h"
243a9253 60#include "thread-fsm.h"
268a13a5 61#include "gdbsupport/enum-flags.h"
5ed8105e 62#include "progspace-and-thread.h"
268a13a5 63#include "gdbsupport/gdb_optional.h"
46a62268 64#include "arch-utils.h"
268a13a5
TT
65#include "gdbsupport/scope-exit.h"
66#include "gdbsupport/forward-scope-exit.h"
06cc9596 67#include "gdbsupport/gdb_select.h"
5b6d1e4f 68#include <unordered_map>
93b54c8e 69#include "async-event.h"
c906108c
SS
70
71/* Prototypes for local functions */
72
2ea28649 73static void sig_print_info (enum gdb_signal);
c906108c 74
96baa820 75static void sig_print_header (void);
c906108c 76
d83ad864
DB
77static void follow_inferior_reset_breakpoints (void);
78
a289b8f6
JK
79static int currently_stepping (struct thread_info *tp);
80
2c03e5be 81static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
2484c66b
UW
82
83static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
84
2484c66b
UW
85static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
86
8550d3b3
YQ
87static int maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
88
aff4e175
AB
89static void resume (gdb_signal sig);
90
5b6d1e4f
PA
91static void wait_for_inferior (inferior *inf);
92
372316f1
PA
93/* Asynchronous signal handler registered as event loop source for
94 when we have pending events ready to be passed to the core. */
95static struct async_event_handler *infrun_async_inferior_event_token;
96
97/* Stores whether infrun_async was previously enabled or disabled.
98 Starts off as -1, indicating "never enabled/disabled". */
99static int infrun_is_async = -1;
100
101/* See infrun.h. */
102
103void
104infrun_async (int enable)
105{
106 if (infrun_is_async != enable)
107 {
108 infrun_is_async = enable;
109
110 if (debug_infrun)
111 fprintf_unfiltered (gdb_stdlog,
112 "infrun: infrun_async(%d)\n",
113 enable);
114
115 if (enable)
116 mark_async_event_handler (infrun_async_inferior_event_token);
117 else
118 clear_async_event_handler (infrun_async_inferior_event_token);
119 }
120}
121
0b333c5e
PA
122/* See infrun.h. */
123
124void
125mark_infrun_async_event_handler (void)
126{
127 mark_async_event_handler (infrun_async_inferior_event_token);
128}
129
5fbbeb29
CF
130/* When set, stop the 'step' command if we enter a function which has
131 no line number information. The normal behavior is that we step
132 over such function. */
491144b5 133bool step_stop_if_no_debug = false;
920d2a44
AC
134static void
135show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137{
138 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
139}
5fbbeb29 140
b9f437de
PA
141/* proceed and normal_stop use this to notify the user when the
142 inferior stopped in a different thread than it had been running
143 in. */
96baa820 144
39f77062 145static ptid_t previous_inferior_ptid;
7a292a7a 146
07107ca6
LM
147/* If set (default for legacy reasons), when following a fork, GDB
148 will detach from one of the fork branches, child or parent.
149 Exactly which branch is detached depends on 'set follow-fork-mode'
150 setting. */
151
491144b5 152static bool detach_fork = true;
6c95b8df 153
491144b5 154bool debug_displaced = false;
237fc4c9
PA
155static void
156show_debug_displaced (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158{
159 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
160}
161
ccce17b0 162unsigned int debug_infrun = 0;
920d2a44
AC
163static void
164show_debug_infrun (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166{
167 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
168}
527159b7 169
03583c20
UW
170
171/* Support for disabling address space randomization. */
172
491144b5 173bool disable_randomization = true;
03583c20
UW
174
175static void
176show_disable_randomization (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178{
179 if (target_supports_disable_randomization ())
180 fprintf_filtered (file,
181 _("Disabling randomization of debuggee's "
182 "virtual address space is %s.\n"),
183 value);
184 else
185 fputs_filtered (_("Disabling randomization of debuggee's "
186 "virtual address space is unsupported on\n"
187 "this platform.\n"), file);
188}
189
190static void
eb4c3f4a 191set_disable_randomization (const char *args, int from_tty,
03583c20
UW
192 struct cmd_list_element *c)
193{
194 if (!target_supports_disable_randomization ())
195 error (_("Disabling randomization of debuggee's "
196 "virtual address space is unsupported on\n"
197 "this platform."));
198}
199
d32dc48e
PA
200/* User interface for non-stop mode. */
201
491144b5
CB
202bool non_stop = false;
203static bool non_stop_1 = false;
d32dc48e
PA
204
205static void
eb4c3f4a 206set_non_stop (const char *args, int from_tty,
d32dc48e
PA
207 struct cmd_list_element *c)
208{
209 if (target_has_execution)
210 {
211 non_stop_1 = non_stop;
212 error (_("Cannot change this setting while the inferior is running."));
213 }
214
215 non_stop = non_stop_1;
216}
217
218static void
219show_non_stop (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221{
222 fprintf_filtered (file,
223 _("Controlling the inferior in non-stop mode is %s.\n"),
224 value);
225}
226
d914c394
SS
227/* "Observer mode" is somewhat like a more extreme version of
228 non-stop, in which all GDB operations that might affect the
229 target's execution have been disabled. */
230
491144b5
CB
231bool observer_mode = false;
232static bool observer_mode_1 = false;
d914c394
SS
233
234static void
eb4c3f4a 235set_observer_mode (const char *args, int from_tty,
d914c394
SS
236 struct cmd_list_element *c)
237{
d914c394
SS
238 if (target_has_execution)
239 {
240 observer_mode_1 = observer_mode;
241 error (_("Cannot change this setting while the inferior is running."));
242 }
243
244 observer_mode = observer_mode_1;
245
246 may_write_registers = !observer_mode;
247 may_write_memory = !observer_mode;
248 may_insert_breakpoints = !observer_mode;
249 may_insert_tracepoints = !observer_mode;
250 /* We can insert fast tracepoints in or out of observer mode,
251 but enable them if we're going into this mode. */
252 if (observer_mode)
491144b5 253 may_insert_fast_tracepoints = true;
d914c394
SS
254 may_stop = !observer_mode;
255 update_target_permissions ();
256
257 /* Going *into* observer mode we must force non-stop, then
258 going out we leave it that way. */
259 if (observer_mode)
260 {
d914c394 261 pagination_enabled = 0;
491144b5 262 non_stop = non_stop_1 = true;
d914c394
SS
263 }
264
265 if (from_tty)
266 printf_filtered (_("Observer mode is now %s.\n"),
267 (observer_mode ? "on" : "off"));
268}
269
270static void
271show_observer_mode (struct ui_file *file, int from_tty,
272 struct cmd_list_element *c, const char *value)
273{
274 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
275}
276
277/* This updates the value of observer mode based on changes in
278 permissions. Note that we are deliberately ignoring the values of
279 may-write-registers and may-write-memory, since the user may have
280 reason to enable these during a session, for instance to turn on a
281 debugging-related global. */
282
283void
284update_observer_mode (void)
285{
491144b5
CB
286 bool newval = (!may_insert_breakpoints
287 && !may_insert_tracepoints
288 && may_insert_fast_tracepoints
289 && !may_stop
290 && non_stop);
d914c394
SS
291
292 /* Let the user know if things change. */
293 if (newval != observer_mode)
294 printf_filtered (_("Observer mode is now %s.\n"),
295 (newval ? "on" : "off"));
296
297 observer_mode = observer_mode_1 = newval;
298}
c2c6d25f 299
c906108c
SS
300/* Tables of how to react to signals; the user sets them. */
301
adc6a863
PA
302static unsigned char signal_stop[GDB_SIGNAL_LAST];
303static unsigned char signal_print[GDB_SIGNAL_LAST];
304static unsigned char signal_program[GDB_SIGNAL_LAST];
c906108c 305
ab04a2af
TT
306/* Table of signals that are registered with "catch signal". A
307 non-zero entry indicates that the signal is caught by some "catch
adc6a863
PA
308 signal" command. */
309static unsigned char signal_catch[GDB_SIGNAL_LAST];
ab04a2af 310
2455069d
UW
311/* Table of signals that the target may silently handle.
312 This is automatically determined from the flags above,
313 and simply cached here. */
adc6a863 314static unsigned char signal_pass[GDB_SIGNAL_LAST];
2455069d 315
c906108c
SS
316#define SET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 1; \
322 } while (0)
323
324#define UNSET_SIGS(nsigs,sigs,flags) \
325 do { \
326 int signum = (nsigs); \
327 while (signum-- > 0) \
328 if ((sigs)[signum]) \
329 (flags)[signum] = 0; \
330 } while (0)
331
9b224c5e
PA
332/* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
333 this function is to avoid exporting `signal_program'. */
334
335void
336update_signals_program_target (void)
337{
adc6a863 338 target_program_signals (signal_program);
9b224c5e
PA
339}
340
1777feb0 341/* Value to pass to target_resume() to cause all threads to resume. */
39f77062 342
edb3359d 343#define RESUME_ALL minus_one_ptid
c906108c
SS
344
345/* Command list pointer for the "stop" placeholder. */
346
347static struct cmd_list_element *stop_command;
348
c906108c
SS
349/* Nonzero if we want to give control to the user when we're notified
350 of shared library events by the dynamic linker. */
628fe4e4 351int stop_on_solib_events;
f9e14852
GB
352
353/* Enable or disable optional shared library event breakpoints
354 as appropriate when the above flag is changed. */
355
356static void
eb4c3f4a
TT
357set_stop_on_solib_events (const char *args,
358 int from_tty, struct cmd_list_element *c)
f9e14852
GB
359{
360 update_solib_breakpoints ();
361}
362
920d2a44
AC
363static void
364show_stop_on_solib_events (struct ui_file *file, int from_tty,
365 struct cmd_list_element *c, const char *value)
366{
367 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
368 value);
369}
c906108c 370
c906108c
SS
371/* Nonzero after stop if current stack frame should be printed. */
372
373static int stop_print_frame;
374
5b6d1e4f
PA
375/* This is a cached copy of the target/ptid/waitstatus of the last
376 event returned by target_wait()/deprecated_target_wait_hook().
377 This information is returned by get_last_target_status(). */
378static process_stratum_target *target_last_proc_target;
39f77062 379static ptid_t target_last_wait_ptid;
e02bc4cc
DS
380static struct target_waitstatus target_last_waitstatus;
381
4e1c45ea 382void init_thread_stepping_state (struct thread_info *tss);
0d1e5fa7 383
53904c9e
AC
384static const char follow_fork_mode_child[] = "child";
385static const char follow_fork_mode_parent[] = "parent";
386
40478521 387static const char *const follow_fork_mode_kind_names[] = {
53904c9e
AC
388 follow_fork_mode_child,
389 follow_fork_mode_parent,
390 NULL
ef346e04 391};
c906108c 392
53904c9e 393static const char *follow_fork_mode_string = follow_fork_mode_parent;
920d2a44
AC
394static void
395show_follow_fork_mode_string (struct ui_file *file, int from_tty,
396 struct cmd_list_element *c, const char *value)
397{
3e43a32a
MS
398 fprintf_filtered (file,
399 _("Debugger response to a program "
400 "call of fork or vfork is \"%s\".\n"),
920d2a44
AC
401 value);
402}
c906108c
SS
403\f
404
d83ad864
DB
405/* Handle changes to the inferior list based on the type of fork,
406 which process is being followed, and whether the other process
407 should be detached. On entry inferior_ptid must be the ptid of
408 the fork parent. At return inferior_ptid is the ptid of the
409 followed inferior. */
410
5ab2fbf1
SM
411static bool
412follow_fork_inferior (bool follow_child, bool detach_fork)
d83ad864
DB
413{
414 int has_vforked;
79639e11 415 ptid_t parent_ptid, child_ptid;
d83ad864
DB
416
417 has_vforked = (inferior_thread ()->pending_follow.kind
418 == TARGET_WAITKIND_VFORKED);
79639e11
PA
419 parent_ptid = inferior_ptid;
420 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
d83ad864
DB
421
422 if (has_vforked
423 && !non_stop /* Non-stop always resumes both branches. */
3b12939d 424 && current_ui->prompt_state == PROMPT_BLOCKED
d83ad864
DB
425 && !(follow_child || detach_fork || sched_multi))
426 {
427 /* The parent stays blocked inside the vfork syscall until the
428 child execs or exits. If we don't let the child run, then
429 the parent stays blocked. If we're telling the parent to run
430 in the foreground, the user will not be able to ctrl-c to get
431 back the terminal, effectively hanging the debug session. */
432 fprintf_filtered (gdb_stderr, _("\
433Can not resume the parent process over vfork in the foreground while\n\
434holding the child stopped. Try \"set detach-on-fork\" or \
435\"set schedule-multiple\".\n"));
d83ad864
DB
436 return 1;
437 }
438
439 if (!follow_child)
440 {
441 /* Detach new forked process? */
442 if (detach_fork)
443 {
d83ad864
DB
444 /* Before detaching from the child, remove all breakpoints
445 from it. If we forked, then this has already been taken
446 care of by infrun.c. If we vforked however, any
447 breakpoint inserted in the parent is visible in the
448 child, even those added while stopped in a vfork
449 catchpoint. This will remove the breakpoints from the
450 parent also, but they'll be reinserted below. */
451 if (has_vforked)
452 {
453 /* Keep breakpoints list in sync. */
00431a78 454 remove_breakpoints_inf (current_inferior ());
d83ad864
DB
455 }
456
f67c0c91 457 if (print_inferior_events)
d83ad864 458 {
8dd06f7a 459 /* Ensure that we have a process ptid. */
e99b03dc 460 ptid_t process_ptid = ptid_t (child_ptid.pid ());
8dd06f7a 461
223ffa71 462 target_terminal::ours_for_output ();
d83ad864 463 fprintf_filtered (gdb_stdlog,
f67c0c91 464 _("[Detaching after %s from child %s]\n"),
6f259a23 465 has_vforked ? "vfork" : "fork",
a068643d 466 target_pid_to_str (process_ptid).c_str ());
d83ad864
DB
467 }
468 }
469 else
470 {
471 struct inferior *parent_inf, *child_inf;
d83ad864
DB
472
473 /* Add process to GDB's tables. */
e99b03dc 474 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
475
476 parent_inf = current_inferior ();
477 child_inf->attach_flag = parent_inf->attach_flag;
478 copy_terminal_info (child_inf, parent_inf);
479 child_inf->gdbarch = parent_inf->gdbarch;
480 copy_inferior_target_desc_info (child_inf, parent_inf);
481
5ed8105e 482 scoped_restore_current_pspace_and_thread restore_pspace_thread;
d83ad864 483
2a00d7ce 484 set_current_inferior (child_inf);
5b6d1e4f 485 switch_to_no_thread ();
d83ad864 486 child_inf->symfile_flags = SYMFILE_NO_READ;
5b6d1e4f
PA
487 push_target (parent_inf->process_target ());
488 add_thread_silent (child_inf->process_target (), child_ptid);
489 inferior_ptid = child_ptid;
d83ad864
DB
490
491 /* If this is a vfork child, then the address-space is
492 shared with the parent. */
493 if (has_vforked)
494 {
495 child_inf->pspace = parent_inf->pspace;
496 child_inf->aspace = parent_inf->aspace;
497
5b6d1e4f
PA
498 exec_on_vfork ();
499
d83ad864
DB
500 /* The parent will be frozen until the child is done
501 with the shared region. Keep track of the
502 parent. */
503 child_inf->vfork_parent = parent_inf;
504 child_inf->pending_detach = 0;
505 parent_inf->vfork_child = child_inf;
506 parent_inf->pending_detach = 0;
507 }
508 else
509 {
510 child_inf->aspace = new_address_space ();
564b1e3f 511 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
512 child_inf->removable = 1;
513 set_current_program_space (child_inf->pspace);
514 clone_program_space (child_inf->pspace, parent_inf->pspace);
515
516 /* Let the shared library layer (e.g., solib-svr4) learn
517 about this new process, relocate the cloned exec, pull
518 in shared libraries, and install the solib event
519 breakpoint. If a "cloned-VM" event was propagated
520 better throughout the core, this wouldn't be
521 required. */
522 solib_create_inferior_hook (0);
523 }
d83ad864
DB
524 }
525
526 if (has_vforked)
527 {
528 struct inferior *parent_inf;
529
530 parent_inf = current_inferior ();
531
532 /* If we detached from the child, then we have to be careful
533 to not insert breakpoints in the parent until the child
534 is done with the shared memory region. However, if we're
535 staying attached to the child, then we can and should
536 insert breakpoints, so that we can debug it. A
537 subsequent child exec or exit is enough to know when does
538 the child stops using the parent's address space. */
539 parent_inf->waiting_for_vfork_done = detach_fork;
540 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
541 }
542 }
543 else
544 {
545 /* Follow the child. */
546 struct inferior *parent_inf, *child_inf;
547 struct program_space *parent_pspace;
548
f67c0c91 549 if (print_inferior_events)
d83ad864 550 {
f67c0c91
SDJ
551 std::string parent_pid = target_pid_to_str (parent_ptid);
552 std::string child_pid = target_pid_to_str (child_ptid);
553
223ffa71 554 target_terminal::ours_for_output ();
6f259a23 555 fprintf_filtered (gdb_stdlog,
f67c0c91
SDJ
556 _("[Attaching after %s %s to child %s]\n"),
557 parent_pid.c_str (),
6f259a23 558 has_vforked ? "vfork" : "fork",
f67c0c91 559 child_pid.c_str ());
d83ad864
DB
560 }
561
562 /* Add the new inferior first, so that the target_detach below
563 doesn't unpush the target. */
564
e99b03dc 565 child_inf = add_inferior (child_ptid.pid ());
d83ad864
DB
566
567 parent_inf = current_inferior ();
568 child_inf->attach_flag = parent_inf->attach_flag;
569 copy_terminal_info (child_inf, parent_inf);
570 child_inf->gdbarch = parent_inf->gdbarch;
571 copy_inferior_target_desc_info (child_inf, parent_inf);
572
573 parent_pspace = parent_inf->pspace;
574
5b6d1e4f 575 process_stratum_target *target = parent_inf->process_target ();
d83ad864 576
5b6d1e4f
PA
577 {
578 /* Hold a strong reference to the target while (maybe)
579 detaching the parent. Otherwise detaching could close the
580 target. */
581 auto target_ref = target_ops_ref::new_reference (target);
582
583 /* If we're vforking, we want to hold on to the parent until
584 the child exits or execs. At child exec or exit time we
585 can remove the old breakpoints from the parent and detach
586 or resume debugging it. Otherwise, detach the parent now;
587 we'll want to reuse it's program/address spaces, but we
588 can't set them to the child before removing breakpoints
589 from the parent, otherwise, the breakpoints module could
590 decide to remove breakpoints from the wrong process (since
591 they'd be assigned to the same address space). */
592
593 if (has_vforked)
594 {
595 gdb_assert (child_inf->vfork_parent == NULL);
596 gdb_assert (parent_inf->vfork_child == NULL);
597 child_inf->vfork_parent = parent_inf;
598 child_inf->pending_detach = 0;
599 parent_inf->vfork_child = child_inf;
600 parent_inf->pending_detach = detach_fork;
601 parent_inf->waiting_for_vfork_done = 0;
602 }
603 else if (detach_fork)
604 {
605 if (print_inferior_events)
606 {
607 /* Ensure that we have a process ptid. */
608 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
609
610 target_terminal::ours_for_output ();
611 fprintf_filtered (gdb_stdlog,
612 _("[Detaching after fork from "
613 "parent %s]\n"),
614 target_pid_to_str (process_ptid).c_str ());
615 }
8dd06f7a 616
5b6d1e4f
PA
617 target_detach (parent_inf, 0);
618 parent_inf = NULL;
619 }
6f259a23 620
5b6d1e4f 621 /* Note that the detach above makes PARENT_INF dangling. */
d83ad864 622
5b6d1e4f
PA
623 /* Add the child thread to the appropriate lists, and switch
624 to this new thread, before cloning the program space, and
625 informing the solib layer about this new process. */
d83ad864 626
5b6d1e4f
PA
627 set_current_inferior (child_inf);
628 push_target (target);
629 }
d83ad864 630
5b6d1e4f 631 add_thread_silent (target, child_ptid);
79639e11 632 inferior_ptid = child_ptid;
d83ad864
DB
633
634 /* If this is a vfork child, then the address-space is shared
635 with the parent. If we detached from the parent, then we can
636 reuse the parent's program/address spaces. */
637 if (has_vforked || detach_fork)
638 {
639 child_inf->pspace = parent_pspace;
640 child_inf->aspace = child_inf->pspace->aspace;
5b6d1e4f
PA
641
642 exec_on_vfork ();
d83ad864
DB
643 }
644 else
645 {
646 child_inf->aspace = new_address_space ();
564b1e3f 647 child_inf->pspace = new program_space (child_inf->aspace);
d83ad864
DB
648 child_inf->removable = 1;
649 child_inf->symfile_flags = SYMFILE_NO_READ;
650 set_current_program_space (child_inf->pspace);
651 clone_program_space (child_inf->pspace, parent_pspace);
652
653 /* Let the shared library layer (e.g., solib-svr4) learn
654 about this new process, relocate the cloned exec, pull in
655 shared libraries, and install the solib event breakpoint.
656 If a "cloned-VM" event was propagated better throughout
657 the core, this wouldn't be required. */
658 solib_create_inferior_hook (0);
659 }
660 }
661
662 return target_follow_fork (follow_child, detach_fork);
663}
664
e58b0e63
PA
665/* Tell the target to follow the fork we're stopped at. Returns true
666 if the inferior should be resumed; false, if the target for some
667 reason decided it's best not to resume. */
668
5ab2fbf1
SM
669static bool
670follow_fork ()
c906108c 671{
5ab2fbf1
SM
672 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
673 bool should_resume = true;
e58b0e63
PA
674 struct thread_info *tp;
675
676 /* Copy user stepping state to the new inferior thread. FIXME: the
677 followed fork child thread should have a copy of most of the
4e3990f4
DE
678 parent thread structure's run control related fields, not just these.
679 Initialized to avoid "may be used uninitialized" warnings from gcc. */
680 struct breakpoint *step_resume_breakpoint = NULL;
186c406b 681 struct breakpoint *exception_resume_breakpoint = NULL;
4e3990f4
DE
682 CORE_ADDR step_range_start = 0;
683 CORE_ADDR step_range_end = 0;
684 struct frame_id step_frame_id = { 0 };
8980e177 685 struct thread_fsm *thread_fsm = NULL;
e58b0e63
PA
686
687 if (!non_stop)
688 {
5b6d1e4f 689 process_stratum_target *wait_target;
e58b0e63
PA
690 ptid_t wait_ptid;
691 struct target_waitstatus wait_status;
692
693 /* Get the last target status returned by target_wait(). */
5b6d1e4f 694 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
e58b0e63
PA
695
696 /* If not stopped at a fork event, then there's nothing else to
697 do. */
698 if (wait_status.kind != TARGET_WAITKIND_FORKED
699 && wait_status.kind != TARGET_WAITKIND_VFORKED)
700 return 1;
701
702 /* Check if we switched over from WAIT_PTID, since the event was
703 reported. */
00431a78 704 if (wait_ptid != minus_one_ptid
5b6d1e4f
PA
705 && (current_inferior ()->process_target () != wait_target
706 || inferior_ptid != wait_ptid))
e58b0e63
PA
707 {
708 /* We did. Switch back to WAIT_PTID thread, to tell the
709 target to follow it (in either direction). We'll
710 afterwards refuse to resume, and inform the user what
711 happened. */
5b6d1e4f 712 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
00431a78 713 switch_to_thread (wait_thread);
5ab2fbf1 714 should_resume = false;
e58b0e63
PA
715 }
716 }
717
718 tp = inferior_thread ();
719
720 /* If there were any forks/vforks that were caught and are now to be
721 followed, then do so now. */
722 switch (tp->pending_follow.kind)
723 {
724 case TARGET_WAITKIND_FORKED:
725 case TARGET_WAITKIND_VFORKED:
726 {
727 ptid_t parent, child;
728
729 /* If the user did a next/step, etc, over a fork call,
730 preserve the stepping state in the fork child. */
731 if (follow_child && should_resume)
732 {
8358c15c
JK
733 step_resume_breakpoint = clone_momentary_breakpoint
734 (tp->control.step_resume_breakpoint);
16c381f0
JK
735 step_range_start = tp->control.step_range_start;
736 step_range_end = tp->control.step_range_end;
737 step_frame_id = tp->control.step_frame_id;
186c406b
TT
738 exception_resume_breakpoint
739 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
8980e177 740 thread_fsm = tp->thread_fsm;
e58b0e63
PA
741
742 /* For now, delete the parent's sr breakpoint, otherwise,
743 parent/child sr breakpoints are considered duplicates,
744 and the child version will not be installed. Remove
745 this when the breakpoints module becomes aware of
746 inferiors and address spaces. */
747 delete_step_resume_breakpoint (tp);
16c381f0
JK
748 tp->control.step_range_start = 0;
749 tp->control.step_range_end = 0;
750 tp->control.step_frame_id = null_frame_id;
186c406b 751 delete_exception_resume_breakpoint (tp);
8980e177 752 tp->thread_fsm = NULL;
e58b0e63
PA
753 }
754
755 parent = inferior_ptid;
756 child = tp->pending_follow.value.related_pid;
757
5b6d1e4f 758 process_stratum_target *parent_targ = tp->inf->process_target ();
d83ad864
DB
759 /* Set up inferior(s) as specified by the caller, and tell the
760 target to do whatever is necessary to follow either parent
761 or child. */
762 if (follow_fork_inferior (follow_child, detach_fork))
e58b0e63
PA
763 {
764 /* Target refused to follow, or there's some other reason
765 we shouldn't resume. */
766 should_resume = 0;
767 }
768 else
769 {
770 /* This pending follow fork event is now handled, one way
771 or another. The previous selected thread may be gone
772 from the lists by now, but if it is still around, need
773 to clear the pending follow request. */
5b6d1e4f 774 tp = find_thread_ptid (parent_targ, parent);
e58b0e63
PA
775 if (tp)
776 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
777
778 /* This makes sure we don't try to apply the "Switched
779 over from WAIT_PID" logic above. */
780 nullify_last_target_wait_ptid ();
781
1777feb0 782 /* If we followed the child, switch to it... */
e58b0e63
PA
783 if (follow_child)
784 {
5b6d1e4f 785 thread_info *child_thr = find_thread_ptid (parent_targ, child);
00431a78 786 switch_to_thread (child_thr);
e58b0e63
PA
787
788 /* ... and preserve the stepping state, in case the
789 user was stepping over the fork call. */
790 if (should_resume)
791 {
792 tp = inferior_thread ();
8358c15c
JK
793 tp->control.step_resume_breakpoint
794 = step_resume_breakpoint;
16c381f0
JK
795 tp->control.step_range_start = step_range_start;
796 tp->control.step_range_end = step_range_end;
797 tp->control.step_frame_id = step_frame_id;
186c406b
TT
798 tp->control.exception_resume_breakpoint
799 = exception_resume_breakpoint;
8980e177 800 tp->thread_fsm = thread_fsm;
e58b0e63
PA
801 }
802 else
803 {
804 /* If we get here, it was because we're trying to
805 resume from a fork catchpoint, but, the user
806 has switched threads away from the thread that
807 forked. In that case, the resume command
808 issued is most likely not applicable to the
809 child, so just warn, and refuse to resume. */
3e43a32a 810 warning (_("Not resuming: switched threads "
fd7dcb94 811 "before following fork child."));
e58b0e63
PA
812 }
813
814 /* Reset breakpoints in the child as appropriate. */
815 follow_inferior_reset_breakpoints ();
816 }
e58b0e63
PA
817 }
818 }
819 break;
820 case TARGET_WAITKIND_SPURIOUS:
821 /* Nothing to follow. */
822 break;
823 default:
824 internal_error (__FILE__, __LINE__,
825 "Unexpected pending_follow.kind %d\n",
826 tp->pending_follow.kind);
827 break;
828 }
c906108c 829
e58b0e63 830 return should_resume;
c906108c
SS
831}
832
d83ad864 833static void
6604731b 834follow_inferior_reset_breakpoints (void)
c906108c 835{
4e1c45ea
PA
836 struct thread_info *tp = inferior_thread ();
837
6604731b
DJ
838 /* Was there a step_resume breakpoint? (There was if the user
839 did a "next" at the fork() call.) If so, explicitly reset its
a1aa2221
LM
840 thread number. Cloned step_resume breakpoints are disabled on
841 creation, so enable it here now that it is associated with the
842 correct thread.
6604731b
DJ
843
844 step_resumes are a form of bp that are made to be per-thread.
845 Since we created the step_resume bp when the parent process
846 was being debugged, and now are switching to the child process,
847 from the breakpoint package's viewpoint, that's a switch of
848 "threads". We must update the bp's notion of which thread
849 it is for, or it'll be ignored when it triggers. */
850
8358c15c 851 if (tp->control.step_resume_breakpoint)
a1aa2221
LM
852 {
853 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
854 tp->control.step_resume_breakpoint->loc->enabled = 1;
855 }
6604731b 856
a1aa2221 857 /* Treat exception_resume breakpoints like step_resume breakpoints. */
186c406b 858 if (tp->control.exception_resume_breakpoint)
a1aa2221
LM
859 {
860 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
861 tp->control.exception_resume_breakpoint->loc->enabled = 1;
862 }
186c406b 863
6604731b
DJ
864 /* Reinsert all breakpoints in the child. The user may have set
865 breakpoints after catching the fork, in which case those
866 were never set in the child, but only in the parent. This makes
867 sure the inserted breakpoints match the breakpoint list. */
868
869 breakpoint_re_set ();
870 insert_breakpoints ();
c906108c 871}
c906108c 872
6c95b8df
PA
873/* The child has exited or execed: resume threads of the parent the
874 user wanted to be executing. */
875
876static int
877proceed_after_vfork_done (struct thread_info *thread,
878 void *arg)
879{
880 int pid = * (int *) arg;
881
00431a78
PA
882 if (thread->ptid.pid () == pid
883 && thread->state == THREAD_RUNNING
884 && !thread->executing
6c95b8df 885 && !thread->stop_requested
a493e3e2 886 && thread->suspend.stop_signal == GDB_SIGNAL_0)
6c95b8df
PA
887 {
888 if (debug_infrun)
889 fprintf_unfiltered (gdb_stdlog,
890 "infrun: resuming vfork parent thread %s\n",
a068643d 891 target_pid_to_str (thread->ptid).c_str ());
6c95b8df 892
00431a78 893 switch_to_thread (thread);
70509625 894 clear_proceed_status (0);
64ce06e4 895 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
6c95b8df
PA
896 }
897
898 return 0;
899}
900
5ed8105e
PA
901/* Save/restore inferior_ptid, current program space and current
902 inferior. Only use this if the current context points at an exited
903 inferior (and therefore there's no current thread to save). */
904class scoped_restore_exited_inferior
905{
906public:
907 scoped_restore_exited_inferior ()
908 : m_saved_ptid (&inferior_ptid)
909 {}
910
911private:
912 scoped_restore_tmpl<ptid_t> m_saved_ptid;
913 scoped_restore_current_program_space m_pspace;
914 scoped_restore_current_inferior m_inferior;
915};
916
6c95b8df
PA
917/* Called whenever we notice an exec or exit event, to handle
918 detaching or resuming a vfork parent. */
919
920static void
921handle_vfork_child_exec_or_exit (int exec)
922{
923 struct inferior *inf = current_inferior ();
924
925 if (inf->vfork_parent)
926 {
927 int resume_parent = -1;
928
929 /* This exec or exit marks the end of the shared memory region
b73715df
TV
930 between the parent and the child. Break the bonds. */
931 inferior *vfork_parent = inf->vfork_parent;
932 inf->vfork_parent->vfork_child = NULL;
933 inf->vfork_parent = NULL;
6c95b8df 934
b73715df
TV
935 /* If the user wanted to detach from the parent, now is the
936 time. */
937 if (vfork_parent->pending_detach)
6c95b8df
PA
938 {
939 struct thread_info *tp;
6c95b8df
PA
940 struct program_space *pspace;
941 struct address_space *aspace;
942
1777feb0 943 /* follow-fork child, detach-on-fork on. */
6c95b8df 944
b73715df 945 vfork_parent->pending_detach = 0;
68c9da30 946
5ed8105e
PA
947 gdb::optional<scoped_restore_exited_inferior>
948 maybe_restore_inferior;
949 gdb::optional<scoped_restore_current_pspace_and_thread>
950 maybe_restore_thread;
951
952 /* If we're handling a child exit, then inferior_ptid points
953 at the inferior's pid, not to a thread. */
f50f4e56 954 if (!exec)
5ed8105e 955 maybe_restore_inferior.emplace ();
f50f4e56 956 else
5ed8105e 957 maybe_restore_thread.emplace ();
6c95b8df
PA
958
959 /* We're letting loose of the parent. */
b73715df 960 tp = any_live_thread_of_inferior (vfork_parent);
00431a78 961 switch_to_thread (tp);
6c95b8df
PA
962
963 /* We're about to detach from the parent, which implicitly
964 removes breakpoints from its address space. There's a
965 catch here: we want to reuse the spaces for the child,
966 but, parent/child are still sharing the pspace at this
967 point, although the exec in reality makes the kernel give
968 the child a fresh set of new pages. The problem here is
969 that the breakpoints module being unaware of this, would
970 likely chose the child process to write to the parent
971 address space. Swapping the child temporarily away from
972 the spaces has the desired effect. Yes, this is "sort
973 of" a hack. */
974
975 pspace = inf->pspace;
976 aspace = inf->aspace;
977 inf->aspace = NULL;
978 inf->pspace = NULL;
979
f67c0c91 980 if (print_inferior_events)
6c95b8df 981 {
a068643d 982 std::string pidstr
b73715df 983 = target_pid_to_str (ptid_t (vfork_parent->pid));
f67c0c91 984
223ffa71 985 target_terminal::ours_for_output ();
6c95b8df
PA
986
987 if (exec)
6f259a23
DB
988 {
989 fprintf_filtered (gdb_stdlog,
f67c0c91 990 _("[Detaching vfork parent %s "
a068643d 991 "after child exec]\n"), pidstr.c_str ());
6f259a23 992 }
6c95b8df 993 else
6f259a23
DB
994 {
995 fprintf_filtered (gdb_stdlog,
f67c0c91 996 _("[Detaching vfork parent %s "
a068643d 997 "after child exit]\n"), pidstr.c_str ());
6f259a23 998 }
6c95b8df
PA
999 }
1000
b73715df 1001 target_detach (vfork_parent, 0);
6c95b8df
PA
1002
1003 /* Put it back. */
1004 inf->pspace = pspace;
1005 inf->aspace = aspace;
6c95b8df
PA
1006 }
1007 else if (exec)
1008 {
1009 /* We're staying attached to the parent, so, really give the
1010 child a new address space. */
564b1e3f 1011 inf->pspace = new program_space (maybe_new_address_space ());
6c95b8df
PA
1012 inf->aspace = inf->pspace->aspace;
1013 inf->removable = 1;
1014 set_current_program_space (inf->pspace);
1015
b73715df 1016 resume_parent = vfork_parent->pid;
6c95b8df
PA
1017 }
1018 else
1019 {
6c95b8df
PA
1020 /* If this is a vfork child exiting, then the pspace and
1021 aspaces were shared with the parent. Since we're
1022 reporting the process exit, we'll be mourning all that is
1023 found in the address space, and switching to null_ptid,
1024 preparing to start a new inferior. But, since we don't
1025 want to clobber the parent's address/program spaces, we
1026 go ahead and create a new one for this exiting
1027 inferior. */
1028
5ed8105e
PA
1029 /* Switch to null_ptid while running clone_program_space, so
1030 that clone_program_space doesn't want to read the
1031 selected frame of a dead process. */
1032 scoped_restore restore_ptid
1033 = make_scoped_restore (&inferior_ptid, null_ptid);
6c95b8df 1034
53af73bf
PA
1035 inf->pspace = new program_space (maybe_new_address_space ());
1036 inf->aspace = inf->pspace->aspace;
1037 set_current_program_space (inf->pspace);
6c95b8df 1038 inf->removable = 1;
7dcd53a0 1039 inf->symfile_flags = SYMFILE_NO_READ;
53af73bf 1040 clone_program_space (inf->pspace, vfork_parent->pspace);
6c95b8df 1041
b73715df 1042 resume_parent = vfork_parent->pid;
6c95b8df
PA
1043 }
1044
6c95b8df
PA
1045 gdb_assert (current_program_space == inf->pspace);
1046
1047 if (non_stop && resume_parent != -1)
1048 {
1049 /* If the user wanted the parent to be running, let it go
1050 free now. */
5ed8105e 1051 scoped_restore_current_thread restore_thread;
6c95b8df
PA
1052
1053 if (debug_infrun)
3e43a32a
MS
1054 fprintf_unfiltered (gdb_stdlog,
1055 "infrun: resuming vfork parent process %d\n",
6c95b8df
PA
1056 resume_parent);
1057
1058 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
6c95b8df
PA
1059 }
1060 }
1061}
1062
eb6c553b 1063/* Enum strings for "set|show follow-exec-mode". */
6c95b8df
PA
1064
1065static const char follow_exec_mode_new[] = "new";
1066static const char follow_exec_mode_same[] = "same";
40478521 1067static const char *const follow_exec_mode_names[] =
6c95b8df
PA
1068{
1069 follow_exec_mode_new,
1070 follow_exec_mode_same,
1071 NULL,
1072};
1073
1074static const char *follow_exec_mode_string = follow_exec_mode_same;
1075static void
1076show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1077 struct cmd_list_element *c, const char *value)
1078{
1079 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1080}
1081
ecf45d2c 1082/* EXEC_FILE_TARGET is assumed to be non-NULL. */
1adeb98a 1083
c906108c 1084static void
4ca51187 1085follow_exec (ptid_t ptid, const char *exec_file_target)
c906108c 1086{
6c95b8df 1087 struct inferior *inf = current_inferior ();
e99b03dc 1088 int pid = ptid.pid ();
94585166 1089 ptid_t process_ptid;
7a292a7a 1090
65d2b333
PW
1091 /* Switch terminal for any messages produced e.g. by
1092 breakpoint_re_set. */
1093 target_terminal::ours_for_output ();
1094
c906108c
SS
1095 /* This is an exec event that we actually wish to pay attention to.
1096 Refresh our symbol table to the newly exec'd program, remove any
1097 momentary bp's, etc.
1098
1099 If there are breakpoints, they aren't really inserted now,
1100 since the exec() transformed our inferior into a fresh set
1101 of instructions.
1102
1103 We want to preserve symbolic breakpoints on the list, since
1104 we have hopes that they can be reset after the new a.out's
1105 symbol table is read.
1106
1107 However, any "raw" breakpoints must be removed from the list
1108 (e.g., the solib bp's), since their address is probably invalid
1109 now.
1110
1111 And, we DON'T want to call delete_breakpoints() here, since
1112 that may write the bp's "shadow contents" (the instruction
85102364 1113 value that was overwritten with a TRAP instruction). Since
1777feb0 1114 we now have a new a.out, those shadow contents aren't valid. */
6c95b8df
PA
1115
1116 mark_breakpoints_out ();
1117
95e50b27
PA
1118 /* The target reports the exec event to the main thread, even if
1119 some other thread does the exec, and even if the main thread was
1120 stopped or already gone. We may still have non-leader threads of
1121 the process on our list. E.g., on targets that don't have thread
1122 exit events (like remote); or on native Linux in non-stop mode if
1123 there were only two threads in the inferior and the non-leader
1124 one is the one that execs (and nothing forces an update of the
1125 thread list up to here). When debugging remotely, it's best to
1126 avoid extra traffic, when possible, so avoid syncing the thread
1127 list with the target, and instead go ahead and delete all threads
1128 of the process but one that reported the event. Note this must
1129 be done before calling update_breakpoints_after_exec, as
1130 otherwise clearing the threads' resources would reference stale
1131 thread breakpoints -- it may have been one of these threads that
1132 stepped across the exec. We could just clear their stepping
1133 states, but as long as we're iterating, might as well delete
1134 them. Deleting them now rather than at the next user-visible
1135 stop provides a nicer sequence of events for user and MI
1136 notifications. */
08036331 1137 for (thread_info *th : all_threads_safe ())
d7e15655 1138 if (th->ptid.pid () == pid && th->ptid != ptid)
00431a78 1139 delete_thread (th);
95e50b27
PA
1140
1141 /* We also need to clear any left over stale state for the
1142 leader/event thread. E.g., if there was any step-resume
1143 breakpoint or similar, it's gone now. We cannot truly
1144 step-to-next statement through an exec(). */
08036331 1145 thread_info *th = inferior_thread ();
8358c15c 1146 th->control.step_resume_breakpoint = NULL;
186c406b 1147 th->control.exception_resume_breakpoint = NULL;
34b7e8a6 1148 th->control.single_step_breakpoints = NULL;
16c381f0
JK
1149 th->control.step_range_start = 0;
1150 th->control.step_range_end = 0;
c906108c 1151
95e50b27
PA
1152 /* The user may have had the main thread held stopped in the
1153 previous image (e.g., schedlock on, or non-stop). Release
1154 it now. */
a75724bc
PA
1155 th->stop_requested = 0;
1156
95e50b27
PA
1157 update_breakpoints_after_exec ();
1158
1777feb0 1159 /* What is this a.out's name? */
f2907e49 1160 process_ptid = ptid_t (pid);
6c95b8df 1161 printf_unfiltered (_("%s is executing new program: %s\n"),
a068643d 1162 target_pid_to_str (process_ptid).c_str (),
ecf45d2c 1163 exec_file_target);
c906108c
SS
1164
1165 /* We've followed the inferior through an exec. Therefore, the
1777feb0 1166 inferior has essentially been killed & reborn. */
7a292a7a 1167
6ca15a4b 1168 breakpoint_init_inferior (inf_execd);
e85a822c 1169
797bc1cb
TT
1170 gdb::unique_xmalloc_ptr<char> exec_file_host
1171 = exec_file_find (exec_file_target, NULL);
ff862be4 1172
ecf45d2c
SL
1173 /* If we were unable to map the executable target pathname onto a host
1174 pathname, tell the user that. Otherwise GDB's subsequent behavior
1175 is confusing. Maybe it would even be better to stop at this point
1176 so that the user can specify a file manually before continuing. */
1177 if (exec_file_host == NULL)
1178 warning (_("Could not load symbols for executable %s.\n"
1179 "Do you need \"set sysroot\"?"),
1180 exec_file_target);
c906108c 1181
cce9b6bf
PA
1182 /* Reset the shared library package. This ensures that we get a
1183 shlib event when the child reaches "_start", at which point the
1184 dld will have had a chance to initialize the child. */
1185 /* Also, loading a symbol file below may trigger symbol lookups, and
1186 we don't want those to be satisfied by the libraries of the
1187 previous incarnation of this process. */
1188 no_shared_libraries (NULL, 0);
1189
6c95b8df
PA
1190 if (follow_exec_mode_string == follow_exec_mode_new)
1191 {
6c95b8df
PA
1192 /* The user wants to keep the old inferior and program spaces
1193 around. Create a new fresh one, and switch to it. */
1194
35ed81d4
SM
1195 /* Do exit processing for the original inferior before setting the new
1196 inferior's pid. Having two inferiors with the same pid would confuse
1197 find_inferior_p(t)id. Transfer the terminal state and info from the
1198 old to the new inferior. */
1199 inf = add_inferior_with_spaces ();
1200 swap_terminal_info (inf, current_inferior ());
057302ce 1201 exit_inferior_silent (current_inferior ());
17d8546e 1202
94585166 1203 inf->pid = pid;
ecf45d2c 1204 target_follow_exec (inf, exec_file_target);
6c95b8df 1205
5b6d1e4f
PA
1206 inferior *org_inferior = current_inferior ();
1207 switch_to_inferior_no_thread (inf);
1208 push_target (org_inferior->process_target ());
1209 thread_info *thr = add_thread (inf->process_target (), ptid);
1210 switch_to_thread (thr);
6c95b8df 1211 }
9107fc8d
PA
1212 else
1213 {
1214 /* The old description may no longer be fit for the new image.
1215 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1216 old description; we'll read a new one below. No need to do
1217 this on "follow-exec-mode new", as the old inferior stays
1218 around (its description is later cleared/refetched on
1219 restart). */
1220 target_clear_description ();
1221 }
6c95b8df
PA
1222
1223 gdb_assert (current_program_space == inf->pspace);
1224
ecf45d2c
SL
1225 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1226 because the proper displacement for a PIE (Position Independent
1227 Executable) main symbol file will only be computed by
1228 solib_create_inferior_hook below. breakpoint_re_set would fail
1229 to insert the breakpoints with the zero displacement. */
797bc1cb 1230 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
c906108c 1231
9107fc8d
PA
1232 /* If the target can specify a description, read it. Must do this
1233 after flipping to the new executable (because the target supplied
1234 description must be compatible with the executable's
1235 architecture, and the old executable may e.g., be 32-bit, while
1236 the new one 64-bit), and before anything involving memory or
1237 registers. */
1238 target_find_description ();
1239
268a4a75 1240 solib_create_inferior_hook (0);
c906108c 1241
4efc6507
DE
1242 jit_inferior_created_hook ();
1243
c1e56572
JK
1244 breakpoint_re_set ();
1245
c906108c
SS
1246 /* Reinsert all breakpoints. (Those which were symbolic have
1247 been reset to the proper address in the new a.out, thanks
1777feb0 1248 to symbol_file_command...). */
c906108c
SS
1249 insert_breakpoints ();
1250
1251 /* The next resume of this inferior should bring it to the shlib
1252 startup breakpoints. (If the user had also set bp's on
1253 "main" from the old (parent) process, then they'll auto-
1777feb0 1254 matically get reset there in the new process.). */
c906108c
SS
1255}
1256
c2829269
PA
1257/* The queue of threads that need to do a step-over operation to get
1258 past e.g., a breakpoint. What technique is used to step over the
1259 breakpoint/watchpoint does not matter -- all threads end up in the
1260 same queue, to maintain rough temporal order of execution, in order
1261 to avoid starvation, otherwise, we could e.g., find ourselves
1262 constantly stepping the same couple threads past their breakpoints
1263 over and over, if the single-step finish fast enough. */
1264struct thread_info *step_over_queue_head;
1265
6c4cfb24
PA
1266/* Bit flags indicating what the thread needs to step over. */
1267
8d297bbf 1268enum step_over_what_flag
6c4cfb24
PA
1269 {
1270 /* Step over a breakpoint. */
1271 STEP_OVER_BREAKPOINT = 1,
1272
1273 /* Step past a non-continuable watchpoint, in order to let the
1274 instruction execute so we can evaluate the watchpoint
1275 expression. */
1276 STEP_OVER_WATCHPOINT = 2
1277 };
8d297bbf 1278DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
6c4cfb24 1279
963f9c80 1280/* Info about an instruction that is being stepped over. */
31e77af2
PA
1281
1282struct step_over_info
1283{
963f9c80
PA
1284 /* If we're stepping past a breakpoint, this is the address space
1285 and address of the instruction the breakpoint is set at. We'll
1286 skip inserting all breakpoints here. Valid iff ASPACE is
1287 non-NULL. */
8b86c959 1288 const address_space *aspace;
31e77af2 1289 CORE_ADDR address;
963f9c80
PA
1290
1291 /* The instruction being stepped over triggers a nonsteppable
1292 watchpoint. If true, we'll skip inserting watchpoints. */
1293 int nonsteppable_watchpoint_p;
21edc42f
YQ
1294
1295 /* The thread's global number. */
1296 int thread;
31e77af2
PA
1297};
1298
1299/* The step-over info of the location that is being stepped over.
1300
1301 Note that with async/breakpoint always-inserted mode, a user might
1302 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1303 being stepped over. As setting a new breakpoint inserts all
1304 breakpoints, we need to make sure the breakpoint being stepped over
1305 isn't inserted then. We do that by only clearing the step-over
1306 info when the step-over is actually finished (or aborted).
1307
1308 Presently GDB can only step over one breakpoint at any given time.
1309 Given threads that can't run code in the same address space as the
1310 breakpoint's can't really miss the breakpoint, GDB could be taught
1311 to step-over at most one breakpoint per address space (so this info
1312 could move to the address space object if/when GDB is extended).
1313 The set of breakpoints being stepped over will normally be much
1314 smaller than the set of all breakpoints, so a flag in the
1315 breakpoint location structure would be wasteful. A separate list
1316 also saves complexity and run-time, as otherwise we'd have to go
1317 through all breakpoint locations clearing their flag whenever we
1318 start a new sequence. Similar considerations weigh against storing
1319 this info in the thread object. Plus, not all step overs actually
1320 have breakpoint locations -- e.g., stepping past a single-step
1321 breakpoint, or stepping to complete a non-continuable
1322 watchpoint. */
1323static struct step_over_info step_over_info;
1324
1325/* Record the address of the breakpoint/instruction we're currently
ce0db137
DE
1326 stepping over.
1327 N.B. We record the aspace and address now, instead of say just the thread,
1328 because when we need the info later the thread may be running. */
31e77af2
PA
1329
1330static void
8b86c959 1331set_step_over_info (const address_space *aspace, CORE_ADDR address,
21edc42f
YQ
1332 int nonsteppable_watchpoint_p,
1333 int thread)
31e77af2
PA
1334{
1335 step_over_info.aspace = aspace;
1336 step_over_info.address = address;
963f9c80 1337 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
21edc42f 1338 step_over_info.thread = thread;
31e77af2
PA
1339}
1340
1341/* Called when we're not longer stepping over a breakpoint / an
1342 instruction, so all breakpoints are free to be (re)inserted. */
1343
1344static void
1345clear_step_over_info (void)
1346{
372316f1
PA
1347 if (debug_infrun)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "infrun: clear_step_over_info\n");
31e77af2
PA
1350 step_over_info.aspace = NULL;
1351 step_over_info.address = 0;
963f9c80 1352 step_over_info.nonsteppable_watchpoint_p = 0;
21edc42f 1353 step_over_info.thread = -1;
31e77af2
PA
1354}
1355
7f89fd65 1356/* See infrun.h. */
31e77af2
PA
1357
1358int
1359stepping_past_instruction_at (struct address_space *aspace,
1360 CORE_ADDR address)
1361{
1362 return (step_over_info.aspace != NULL
1363 && breakpoint_address_match (aspace, address,
1364 step_over_info.aspace,
1365 step_over_info.address));
1366}
1367
963f9c80
PA
1368/* See infrun.h. */
1369
21edc42f
YQ
1370int
1371thread_is_stepping_over_breakpoint (int thread)
1372{
1373 return (step_over_info.thread != -1
1374 && thread == step_over_info.thread);
1375}
1376
1377/* See infrun.h. */
1378
963f9c80
PA
1379int
1380stepping_past_nonsteppable_watchpoint (void)
1381{
1382 return step_over_info.nonsteppable_watchpoint_p;
1383}
1384
6cc83d2a
PA
1385/* Returns true if step-over info is valid. */
1386
1387static int
1388step_over_info_valid_p (void)
1389{
963f9c80
PA
1390 return (step_over_info.aspace != NULL
1391 || stepping_past_nonsteppable_watchpoint ());
6cc83d2a
PA
1392}
1393
c906108c 1394\f
237fc4c9
PA
1395/* Displaced stepping. */
1396
1397/* In non-stop debugging mode, we must take special care to manage
1398 breakpoints properly; in particular, the traditional strategy for
1399 stepping a thread past a breakpoint it has hit is unsuitable.
1400 'Displaced stepping' is a tactic for stepping one thread past a
1401 breakpoint it has hit while ensuring that other threads running
1402 concurrently will hit the breakpoint as they should.
1403
1404 The traditional way to step a thread T off a breakpoint in a
1405 multi-threaded program in all-stop mode is as follows:
1406
1407 a0) Initially, all threads are stopped, and breakpoints are not
1408 inserted.
1409 a1) We single-step T, leaving breakpoints uninserted.
1410 a2) We insert breakpoints, and resume all threads.
1411
1412 In non-stop debugging, however, this strategy is unsuitable: we
1413 don't want to have to stop all threads in the system in order to
1414 continue or step T past a breakpoint. Instead, we use displaced
1415 stepping:
1416
1417 n0) Initially, T is stopped, other threads are running, and
1418 breakpoints are inserted.
1419 n1) We copy the instruction "under" the breakpoint to a separate
1420 location, outside the main code stream, making any adjustments
1421 to the instruction, register, and memory state as directed by
1422 T's architecture.
1423 n2) We single-step T over the instruction at its new location.
1424 n3) We adjust the resulting register and memory state as directed
1425 by T's architecture. This includes resetting T's PC to point
1426 back into the main instruction stream.
1427 n4) We resume T.
1428
1429 This approach depends on the following gdbarch methods:
1430
1431 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1432 indicate where to copy the instruction, and how much space must
1433 be reserved there. We use these in step n1.
1434
1435 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1436 address, and makes any necessary adjustments to the instruction,
1437 register contents, and memory. We use this in step n1.
1438
1439 - gdbarch_displaced_step_fixup adjusts registers and memory after
85102364 1440 we have successfully single-stepped the instruction, to yield the
237fc4c9
PA
1441 same effect the instruction would have had if we had executed it
1442 at its original address. We use this in step n3.
1443
237fc4c9
PA
1444 The gdbarch_displaced_step_copy_insn and
1445 gdbarch_displaced_step_fixup functions must be written so that
1446 copying an instruction with gdbarch_displaced_step_copy_insn,
1447 single-stepping across the copied instruction, and then applying
1448 gdbarch_displaced_insn_fixup should have the same effects on the
1449 thread's memory and registers as stepping the instruction in place
1450 would have. Exactly which responsibilities fall to the copy and
1451 which fall to the fixup is up to the author of those functions.
1452
1453 See the comments in gdbarch.sh for details.
1454
1455 Note that displaced stepping and software single-step cannot
1456 currently be used in combination, although with some care I think
1457 they could be made to. Software single-step works by placing
1458 breakpoints on all possible subsequent instructions; if the
1459 displaced instruction is a PC-relative jump, those breakpoints
1460 could fall in very strange places --- on pages that aren't
1461 executable, or at addresses that are not proper instruction
1462 boundaries. (We do generally let other threads run while we wait
1463 to hit the software single-step breakpoint, and they might
1464 encounter such a corrupted instruction.) One way to work around
1465 this would be to have gdbarch_displaced_step_copy_insn fully
1466 simulate the effect of PC-relative instructions (and return NULL)
1467 on architectures that use software single-stepping.
1468
1469 In non-stop mode, we can have independent and simultaneous step
1470 requests, so more than one thread may need to simultaneously step
1471 over a breakpoint. The current implementation assumes there is
1472 only one scratch space per process. In this case, we have to
1473 serialize access to the scratch space. If thread A wants to step
1474 over a breakpoint, but we are currently waiting for some other
1475 thread to complete a displaced step, we leave thread A stopped and
1476 place it in the displaced_step_request_queue. Whenever a displaced
1477 step finishes, we pick the next thread in the queue and start a new
1478 displaced step operation on it. See displaced_step_prepare and
1479 displaced_step_fixup for details. */
1480
cfba9872
SM
1481/* Default destructor for displaced_step_closure. */
1482
1483displaced_step_closure::~displaced_step_closure () = default;
1484
fc1cf338
PA
1485/* Get the displaced stepping state of process PID. */
1486
39a36629 1487static displaced_step_inferior_state *
00431a78 1488get_displaced_stepping_state (inferior *inf)
fc1cf338 1489{
d20172fc 1490 return &inf->displaced_step_state;
fc1cf338
PA
1491}
1492
372316f1
PA
1493/* Returns true if any inferior has a thread doing a displaced
1494 step. */
1495
39a36629
SM
1496static bool
1497displaced_step_in_progress_any_inferior ()
372316f1 1498{
d20172fc 1499 for (inferior *i : all_inferiors ())
39a36629 1500 {
d20172fc 1501 if (i->displaced_step_state.step_thread != nullptr)
39a36629
SM
1502 return true;
1503 }
372316f1 1504
39a36629 1505 return false;
372316f1
PA
1506}
1507
c0987663
YQ
1508/* Return true if thread represented by PTID is doing a displaced
1509 step. */
1510
1511static int
00431a78 1512displaced_step_in_progress_thread (thread_info *thread)
c0987663 1513{
00431a78 1514 gdb_assert (thread != NULL);
c0987663 1515
d20172fc 1516 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
c0987663
YQ
1517}
1518
8f572e5c
PA
1519/* Return true if process PID has a thread doing a displaced step. */
1520
1521static int
00431a78 1522displaced_step_in_progress (inferior *inf)
8f572e5c 1523{
d20172fc 1524 return get_displaced_stepping_state (inf)->step_thread != nullptr;
fc1cf338
PA
1525}
1526
a42244db
YQ
1527/* If inferior is in displaced stepping, and ADDR equals to starting address
1528 of copy area, return corresponding displaced_step_closure. Otherwise,
1529 return NULL. */
1530
1531struct displaced_step_closure*
1532get_displaced_step_closure_by_addr (CORE_ADDR addr)
1533{
d20172fc 1534 displaced_step_inferior_state *displaced
00431a78 1535 = get_displaced_stepping_state (current_inferior ());
a42244db
YQ
1536
1537 /* If checking the mode of displaced instruction in copy area. */
d20172fc 1538 if (displaced->step_thread != nullptr
00431a78 1539 && displaced->step_copy == addr)
d8d83535 1540 return displaced->step_closure.get ();
a42244db
YQ
1541
1542 return NULL;
1543}
1544
fc1cf338
PA
1545static void
1546infrun_inferior_exit (struct inferior *inf)
1547{
d20172fc 1548 inf->displaced_step_state.reset ();
fc1cf338 1549}
237fc4c9 1550
fff08868
HZ
1551/* If ON, and the architecture supports it, GDB will use displaced
1552 stepping to step over breakpoints. If OFF, or if the architecture
1553 doesn't support it, GDB will instead use the traditional
1554 hold-and-step approach. If AUTO (which is the default), GDB will
1555 decide which technique to use to step over breakpoints depending on
9822cb57 1556 whether the target works in a non-stop way (see use_displaced_stepping). */
fff08868 1557
72d0e2c5 1558static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
fff08868 1559
237fc4c9
PA
1560static void
1561show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1562 struct cmd_list_element *c,
1563 const char *value)
1564{
72d0e2c5 1565 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
3e43a32a
MS
1566 fprintf_filtered (file,
1567 _("Debugger's willingness to use displaced stepping "
1568 "to step over breakpoints is %s (currently %s).\n"),
fbea99ea 1569 value, target_is_non_stop_p () ? "on" : "off");
fff08868 1570 else
3e43a32a
MS
1571 fprintf_filtered (file,
1572 _("Debugger's willingness to use displaced stepping "
1573 "to step over breakpoints is %s.\n"), value);
237fc4c9
PA
1574}
1575
9822cb57
SM
1576/* Return true if the gdbarch implements the required methods to use
1577 displaced stepping. */
1578
1579static bool
1580gdbarch_supports_displaced_stepping (gdbarch *arch)
1581{
1582 /* Only check for the presence of step_copy_insn. Other required methods
1583 are checked by the gdbarch validation. */
1584 return gdbarch_displaced_step_copy_insn_p (arch);
1585}
1586
fff08868 1587/* Return non-zero if displaced stepping can/should be used to step
3fc8eb30 1588 over breakpoints of thread TP. */
fff08868 1589
9822cb57
SM
1590static bool
1591use_displaced_stepping (thread_info *tp)
237fc4c9 1592{
9822cb57
SM
1593 /* If the user disabled it explicitly, don't use displaced stepping. */
1594 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1595 return false;
1596
1597 /* If "auto", only use displaced stepping if the target operates in a non-stop
1598 way. */
1599 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1600 && !target_is_non_stop_p ())
1601 return false;
1602
1603 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1604
1605 /* If the architecture doesn't implement displaced stepping, don't use
1606 it. */
1607 if (!gdbarch_supports_displaced_stepping (gdbarch))
1608 return false;
1609
1610 /* If recording, don't use displaced stepping. */
1611 if (find_record_target () != nullptr)
1612 return false;
1613
d20172fc
SM
1614 displaced_step_inferior_state *displaced_state
1615 = get_displaced_stepping_state (tp->inf);
3fc8eb30 1616
9822cb57
SM
1617 /* If displaced stepping failed before for this inferior, don't bother trying
1618 again. */
1619 if (displaced_state->failed_before)
1620 return false;
1621
1622 return true;
237fc4c9
PA
1623}
1624
d8d83535
SM
1625/* Simple function wrapper around displaced_step_inferior_state::reset. */
1626
237fc4c9 1627static void
d8d83535 1628displaced_step_reset (displaced_step_inferior_state *displaced)
237fc4c9 1629{
d8d83535 1630 displaced->reset ();
237fc4c9
PA
1631}
1632
d8d83535
SM
1633/* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1634 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1635
1636using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
237fc4c9
PA
1637
1638/* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1639void
1640displaced_step_dump_bytes (struct ui_file *file,
1641 const gdb_byte *buf,
1642 size_t len)
1643{
1644 int i;
1645
1646 for (i = 0; i < len; i++)
1647 fprintf_unfiltered (file, "%02x ", buf[i]);
1648 fputs_unfiltered ("\n", file);
1649}
1650
1651/* Prepare to single-step, using displaced stepping.
1652
1653 Note that we cannot use displaced stepping when we have a signal to
1654 deliver. If we have a signal to deliver and an instruction to step
1655 over, then after the step, there will be no indication from the
1656 target whether the thread entered a signal handler or ignored the
1657 signal and stepped over the instruction successfully --- both cases
1658 result in a simple SIGTRAP. In the first case we mustn't do a
1659 fixup, and in the second case we must --- but we can't tell which.
1660 Comments in the code for 'random signals' in handle_inferior_event
1661 explain how we handle this case instead.
1662
1663 Returns 1 if preparing was successful -- this thread is going to be
7f03bd92
PA
1664 stepped now; 0 if displaced stepping this thread got queued; or -1
1665 if this instruction can't be displaced stepped. */
1666
237fc4c9 1667static int
00431a78 1668displaced_step_prepare_throw (thread_info *tp)
237fc4c9 1669{
00431a78 1670 regcache *regcache = get_thread_regcache (tp);
ac7936df 1671 struct gdbarch *gdbarch = regcache->arch ();
8b86c959 1672 const address_space *aspace = regcache->aspace ();
237fc4c9
PA
1673 CORE_ADDR original, copy;
1674 ULONGEST len;
9e529e1d 1675 int status;
237fc4c9
PA
1676
1677 /* We should never reach this function if the architecture does not
1678 support displaced stepping. */
9822cb57 1679 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
237fc4c9 1680
c2829269
PA
1681 /* Nor if the thread isn't meant to step over a breakpoint. */
1682 gdb_assert (tp->control.trap_expected);
1683
c1e36e3e
PA
1684 /* Disable range stepping while executing in the scratch pad. We
1685 want a single-step even if executing the displaced instruction in
1686 the scratch buffer lands within the stepping range (e.g., a
1687 jump/branch). */
1688 tp->control.may_range_step = 0;
1689
fc1cf338
PA
1690 /* We have to displaced step one thread at a time, as we only have
1691 access to a single scratch space per inferior. */
237fc4c9 1692
d20172fc
SM
1693 displaced_step_inferior_state *displaced
1694 = get_displaced_stepping_state (tp->inf);
fc1cf338 1695
00431a78 1696 if (displaced->step_thread != nullptr)
237fc4c9
PA
1697 {
1698 /* Already waiting for a displaced step to finish. Defer this
1699 request and place in queue. */
237fc4c9
PA
1700
1701 if (debug_displaced)
1702 fprintf_unfiltered (gdb_stdlog,
c2829269 1703 "displaced: deferring step of %s\n",
a068643d 1704 target_pid_to_str (tp->ptid).c_str ());
237fc4c9 1705
c2829269 1706 thread_step_over_chain_enqueue (tp);
237fc4c9
PA
1707 return 0;
1708 }
1709 else
1710 {
1711 if (debug_displaced)
1712 fprintf_unfiltered (gdb_stdlog,
1713 "displaced: stepping %s now\n",
a068643d 1714 target_pid_to_str (tp->ptid).c_str ());
237fc4c9
PA
1715 }
1716
d8d83535 1717 displaced_step_reset (displaced);
237fc4c9 1718
00431a78
PA
1719 scoped_restore_current_thread restore_thread;
1720
1721 switch_to_thread (tp);
ad53cd71 1722
515630c5 1723 original = regcache_read_pc (regcache);
237fc4c9
PA
1724
1725 copy = gdbarch_displaced_step_location (gdbarch);
1726 len = gdbarch_max_insn_length (gdbarch);
1727
d35ae833
PA
1728 if (breakpoint_in_range_p (aspace, copy, len))
1729 {
1730 /* There's a breakpoint set in the scratch pad location range
1731 (which is usually around the entry point). We'd either
1732 install it before resuming, which would overwrite/corrupt the
1733 scratch pad, or if it was already inserted, this displaced
1734 step would overwrite it. The latter is OK in the sense that
1735 we already assume that no thread is going to execute the code
1736 in the scratch pad range (after initial startup) anyway, but
1737 the former is unacceptable. Simply punt and fallback to
1738 stepping over this breakpoint in-line. */
1739 if (debug_displaced)
1740 {
1741 fprintf_unfiltered (gdb_stdlog,
1742 "displaced: breakpoint set in scratch pad. "
1743 "Stepping over breakpoint in-line instead.\n");
1744 }
1745
d35ae833
PA
1746 return -1;
1747 }
1748
237fc4c9 1749 /* Save the original contents of the copy area. */
d20172fc
SM
1750 displaced->step_saved_copy.resize (len);
1751 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
9e529e1d
JK
1752 if (status != 0)
1753 throw_error (MEMORY_ERROR,
1754 _("Error accessing memory address %s (%s) for "
1755 "displaced-stepping scratch space."),
1756 paddress (gdbarch, copy), safe_strerror (status));
237fc4c9
PA
1757 if (debug_displaced)
1758 {
5af949e3
UW
1759 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1760 paddress (gdbarch, copy));
fc1cf338 1761 displaced_step_dump_bytes (gdb_stdlog,
d20172fc 1762 displaced->step_saved_copy.data (),
fc1cf338 1763 len);
237fc4c9
PA
1764 };
1765
e8217e61
SM
1766 displaced->step_closure
1767 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1768 if (displaced->step_closure == NULL)
7f03bd92
PA
1769 {
1770 /* The architecture doesn't know how or want to displaced step
1771 this instruction or instruction sequence. Fallback to
1772 stepping over the breakpoint in-line. */
7f03bd92
PA
1773 return -1;
1774 }
237fc4c9 1775
9f5a595d
UW
1776 /* Save the information we need to fix things up if the step
1777 succeeds. */
00431a78 1778 displaced->step_thread = tp;
fc1cf338 1779 displaced->step_gdbarch = gdbarch;
fc1cf338
PA
1780 displaced->step_original = original;
1781 displaced->step_copy = copy;
9f5a595d 1782
9799571e 1783 {
d8d83535 1784 displaced_step_reset_cleanup cleanup (displaced);
237fc4c9 1785
9799571e
TT
1786 /* Resume execution at the copy. */
1787 regcache_write_pc (regcache, copy);
237fc4c9 1788
9799571e
TT
1789 cleanup.release ();
1790 }
ad53cd71 1791
237fc4c9 1792 if (debug_displaced)
5af949e3
UW
1793 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1794 paddress (gdbarch, copy));
237fc4c9 1795
237fc4c9
PA
1796 return 1;
1797}
1798
3fc8eb30
PA
1799/* Wrapper for displaced_step_prepare_throw that disabled further
1800 attempts at displaced stepping if we get a memory error. */
1801
1802static int
00431a78 1803displaced_step_prepare (thread_info *thread)
3fc8eb30
PA
1804{
1805 int prepared = -1;
1806
a70b8144 1807 try
3fc8eb30 1808 {
00431a78 1809 prepared = displaced_step_prepare_throw (thread);
3fc8eb30 1810 }
230d2906 1811 catch (const gdb_exception_error &ex)
3fc8eb30
PA
1812 {
1813 struct displaced_step_inferior_state *displaced_state;
1814
16b41842
PA
1815 if (ex.error != MEMORY_ERROR
1816 && ex.error != NOT_SUPPORTED_ERROR)
eedc3f4f 1817 throw;
3fc8eb30
PA
1818
1819 if (debug_infrun)
1820 {
1821 fprintf_unfiltered (gdb_stdlog,
1822 "infrun: disabling displaced stepping: %s\n",
3d6e9d23 1823 ex.what ());
3fc8eb30
PA
1824 }
1825
1826 /* Be verbose if "set displaced-stepping" is "on", silent if
1827 "auto". */
1828 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1829 {
fd7dcb94 1830 warning (_("disabling displaced stepping: %s"),
3d6e9d23 1831 ex.what ());
3fc8eb30
PA
1832 }
1833
1834 /* Disable further displaced stepping attempts. */
1835 displaced_state
00431a78 1836 = get_displaced_stepping_state (thread->inf);
3fc8eb30
PA
1837 displaced_state->failed_before = 1;
1838 }
3fc8eb30
PA
1839
1840 return prepared;
1841}
1842
237fc4c9 1843static void
3e43a32a
MS
1844write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1845 const gdb_byte *myaddr, int len)
237fc4c9 1846{
2989a365 1847 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
abbb1732 1848
237fc4c9
PA
1849 inferior_ptid = ptid;
1850 write_memory (memaddr, myaddr, len);
237fc4c9
PA
1851}
1852
e2d96639
YQ
1853/* Restore the contents of the copy area for thread PTID. */
1854
1855static void
1856displaced_step_restore (struct displaced_step_inferior_state *displaced,
1857 ptid_t ptid)
1858{
1859 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1860
1861 write_memory_ptid (ptid, displaced->step_copy,
d20172fc 1862 displaced->step_saved_copy.data (), len);
e2d96639
YQ
1863 if (debug_displaced)
1864 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
a068643d 1865 target_pid_to_str (ptid).c_str (),
e2d96639
YQ
1866 paddress (displaced->step_gdbarch,
1867 displaced->step_copy));
1868}
1869
372316f1
PA
1870/* If we displaced stepped an instruction successfully, adjust
1871 registers and memory to yield the same effect the instruction would
1872 have had if we had executed it at its original address, and return
1873 1. If the instruction didn't complete, relocate the PC and return
1874 -1. If the thread wasn't displaced stepping, return 0. */
1875
1876static int
00431a78 1877displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
237fc4c9 1878{
fc1cf338 1879 struct displaced_step_inferior_state *displaced
00431a78 1880 = get_displaced_stepping_state (event_thread->inf);
372316f1 1881 int ret;
fc1cf338 1882
00431a78
PA
1883 /* Was this event for the thread we displaced? */
1884 if (displaced->step_thread != event_thread)
372316f1 1885 return 0;
237fc4c9 1886
cb71640d
PA
1887 /* Fixup may need to read memory/registers. Switch to the thread
1888 that we're fixing up. Also, target_stopped_by_watchpoint checks
d43b7a2d
TBA
1889 the current thread, and displaced_step_restore performs ptid-dependent
1890 memory accesses using current_inferior() and current_top_target(). */
00431a78 1891 switch_to_thread (event_thread);
cb71640d 1892
d43b7a2d
TBA
1893 displaced_step_reset_cleanup cleanup (displaced);
1894
1895 displaced_step_restore (displaced, displaced->step_thread->ptid);
1896
237fc4c9 1897 /* Did the instruction complete successfully? */
cb71640d
PA
1898 if (signal == GDB_SIGNAL_TRAP
1899 && !(target_stopped_by_watchpoint ()
1900 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1901 || target_have_steppable_watchpoint)))
237fc4c9
PA
1902 {
1903 /* Fix up the resulting state. */
fc1cf338 1904 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
d8d83535 1905 displaced->step_closure.get (),
fc1cf338
PA
1906 displaced->step_original,
1907 displaced->step_copy,
00431a78 1908 get_thread_regcache (displaced->step_thread));
372316f1 1909 ret = 1;
237fc4c9
PA
1910 }
1911 else
1912 {
1913 /* Since the instruction didn't complete, all we can do is
1914 relocate the PC. */
00431a78 1915 struct regcache *regcache = get_thread_regcache (event_thread);
515630c5 1916 CORE_ADDR pc = regcache_read_pc (regcache);
abbb1732 1917
fc1cf338 1918 pc = displaced->step_original + (pc - displaced->step_copy);
515630c5 1919 regcache_write_pc (regcache, pc);
372316f1 1920 ret = -1;
237fc4c9
PA
1921 }
1922
372316f1 1923 return ret;
c2829269 1924}
1c5cfe86 1925
4d9d9d04
PA
1926/* Data to be passed around while handling an event. This data is
1927 discarded between events. */
1928struct execution_control_state
1929{
5b6d1e4f 1930 process_stratum_target *target;
4d9d9d04
PA
1931 ptid_t ptid;
1932 /* The thread that got the event, if this was a thread event; NULL
1933 otherwise. */
1934 struct thread_info *event_thread;
1935
1936 struct target_waitstatus ws;
1937 int stop_func_filled_in;
1938 CORE_ADDR stop_func_start;
1939 CORE_ADDR stop_func_end;
1940 const char *stop_func_name;
1941 int wait_some_more;
1942
1943 /* True if the event thread hit the single-step breakpoint of
1944 another thread. Thus the event doesn't cause a stop, the thread
1945 needs to be single-stepped past the single-step breakpoint before
1946 we can switch back to the original stepping thread. */
1947 int hit_singlestep_breakpoint;
1948};
1949
1950/* Clear ECS and set it to point at TP. */
c2829269
PA
1951
1952static void
4d9d9d04
PA
1953reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1954{
1955 memset (ecs, 0, sizeof (*ecs));
1956 ecs->event_thread = tp;
1957 ecs->ptid = tp->ptid;
1958}
1959
1960static void keep_going_pass_signal (struct execution_control_state *ecs);
1961static void prepare_to_wait (struct execution_control_state *ecs);
2ac7589c 1962static int keep_going_stepped_thread (struct thread_info *tp);
8d297bbf 1963static step_over_what thread_still_needs_step_over (struct thread_info *tp);
4d9d9d04
PA
1964
1965/* Are there any pending step-over requests? If so, run all we can
1966 now and return true. Otherwise, return false. */
1967
1968static int
c2829269
PA
1969start_step_over (void)
1970{
1971 struct thread_info *tp, *next;
1972
372316f1
PA
1973 /* Don't start a new step-over if we already have an in-line
1974 step-over operation ongoing. */
1975 if (step_over_info_valid_p ())
1976 return 0;
1977
c2829269 1978 for (tp = step_over_queue_head; tp != NULL; tp = next)
237fc4c9 1979 {
4d9d9d04
PA
1980 struct execution_control_state ecss;
1981 struct execution_control_state *ecs = &ecss;
8d297bbf 1982 step_over_what step_what;
372316f1 1983 int must_be_in_line;
c2829269 1984
c65d6b55
PA
1985 gdb_assert (!tp->stop_requested);
1986
c2829269 1987 next = thread_step_over_chain_next (tp);
237fc4c9 1988
c2829269
PA
1989 /* If this inferior already has a displaced step in process,
1990 don't start a new one. */
00431a78 1991 if (displaced_step_in_progress (tp->inf))
c2829269
PA
1992 continue;
1993
372316f1
PA
1994 step_what = thread_still_needs_step_over (tp);
1995 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1996 || ((step_what & STEP_OVER_BREAKPOINT)
3fc8eb30 1997 && !use_displaced_stepping (tp)));
372316f1
PA
1998
1999 /* We currently stop all threads of all processes to step-over
2000 in-line. If we need to start a new in-line step-over, let
2001 any pending displaced steps finish first. */
2002 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
2003 return 0;
2004
c2829269
PA
2005 thread_step_over_chain_remove (tp);
2006
2007 if (step_over_queue_head == NULL)
2008 {
2009 if (debug_infrun)
2010 fprintf_unfiltered (gdb_stdlog,
2011 "infrun: step-over queue now empty\n");
2012 }
2013
372316f1
PA
2014 if (tp->control.trap_expected
2015 || tp->resumed
2016 || tp->executing)
ad53cd71 2017 {
4d9d9d04
PA
2018 internal_error (__FILE__, __LINE__,
2019 "[%s] has inconsistent state: "
372316f1 2020 "trap_expected=%d, resumed=%d, executing=%d\n",
a068643d 2021 target_pid_to_str (tp->ptid).c_str (),
4d9d9d04 2022 tp->control.trap_expected,
372316f1 2023 tp->resumed,
4d9d9d04 2024 tp->executing);
ad53cd71 2025 }
1c5cfe86 2026
4d9d9d04
PA
2027 if (debug_infrun)
2028 fprintf_unfiltered (gdb_stdlog,
2029 "infrun: resuming [%s] for step-over\n",
a068643d 2030 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04
PA
2031
2032 /* keep_going_pass_signal skips the step-over if the breakpoint
2033 is no longer inserted. In all-stop, we want to keep looking
2034 for a thread that needs a step-over instead of resuming TP,
2035 because we wouldn't be able to resume anything else until the
2036 target stops again. In non-stop, the resume always resumes
2037 only TP, so it's OK to let the thread resume freely. */
fbea99ea 2038 if (!target_is_non_stop_p () && !step_what)
4d9d9d04 2039 continue;
8550d3b3 2040
00431a78 2041 switch_to_thread (tp);
4d9d9d04
PA
2042 reset_ecs (ecs, tp);
2043 keep_going_pass_signal (ecs);
1c5cfe86 2044
4d9d9d04
PA
2045 if (!ecs->wait_some_more)
2046 error (_("Command aborted."));
1c5cfe86 2047
372316f1
PA
2048 gdb_assert (tp->resumed);
2049
2050 /* If we started a new in-line step-over, we're done. */
2051 if (step_over_info_valid_p ())
2052 {
2053 gdb_assert (tp->control.trap_expected);
2054 return 1;
2055 }
2056
fbea99ea 2057 if (!target_is_non_stop_p ())
4d9d9d04
PA
2058 {
2059 /* On all-stop, shouldn't have resumed unless we needed a
2060 step over. */
2061 gdb_assert (tp->control.trap_expected
2062 || tp->step_after_step_resume_breakpoint);
2063
2064 /* With remote targets (at least), in all-stop, we can't
2065 issue any further remote commands until the program stops
2066 again. */
2067 return 1;
1c5cfe86 2068 }
c2829269 2069
4d9d9d04
PA
2070 /* Either the thread no longer needed a step-over, or a new
2071 displaced stepping sequence started. Even in the latter
2072 case, continue looking. Maybe we can also start another
2073 displaced step on a thread of other process. */
237fc4c9 2074 }
4d9d9d04
PA
2075
2076 return 0;
237fc4c9
PA
2077}
2078
5231c1fd
PA
2079/* Update global variables holding ptids to hold NEW_PTID if they were
2080 holding OLD_PTID. */
2081static void
2082infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
2083{
d7e15655 2084 if (inferior_ptid == old_ptid)
5231c1fd 2085 inferior_ptid = new_ptid;
5231c1fd
PA
2086}
2087
237fc4c9 2088\f
c906108c 2089
53904c9e
AC
2090static const char schedlock_off[] = "off";
2091static const char schedlock_on[] = "on";
2092static const char schedlock_step[] = "step";
f2665db5 2093static const char schedlock_replay[] = "replay";
40478521 2094static const char *const scheduler_enums[] = {
ef346e04
AC
2095 schedlock_off,
2096 schedlock_on,
2097 schedlock_step,
f2665db5 2098 schedlock_replay,
ef346e04
AC
2099 NULL
2100};
f2665db5 2101static const char *scheduler_mode = schedlock_replay;
920d2a44
AC
2102static void
2103show_scheduler_mode (struct ui_file *file, int from_tty,
2104 struct cmd_list_element *c, const char *value)
2105{
3e43a32a
MS
2106 fprintf_filtered (file,
2107 _("Mode for locking scheduler "
2108 "during execution is \"%s\".\n"),
920d2a44
AC
2109 value);
2110}
c906108c
SS
2111
2112static void
eb4c3f4a 2113set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
c906108c 2114{
eefe576e
AC
2115 if (!target_can_lock_scheduler)
2116 {
2117 scheduler_mode = schedlock_off;
2118 error (_("Target '%s' cannot support this command."), target_shortname);
2119 }
c906108c
SS
2120}
2121
d4db2f36
PA
2122/* True if execution commands resume all threads of all processes by
2123 default; otherwise, resume only threads of the current inferior
2124 process. */
491144b5 2125bool sched_multi = false;
d4db2f36 2126
2facfe5c
DD
2127/* Try to setup for software single stepping over the specified location.
2128 Return 1 if target_resume() should use hardware single step.
2129
2130 GDBARCH the current gdbarch.
2131 PC the location to step over. */
2132
2133static int
2134maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2135{
2136 int hw_step = 1;
2137
f02253f1 2138 if (execution_direction == EXEC_FORWARD
93f9a11f
YQ
2139 && gdbarch_software_single_step_p (gdbarch))
2140 hw_step = !insert_single_step_breakpoints (gdbarch);
2141
2facfe5c
DD
2142 return hw_step;
2143}
c906108c 2144
f3263aa4
PA
2145/* See infrun.h. */
2146
09cee04b
PA
2147ptid_t
2148user_visible_resume_ptid (int step)
2149{
f3263aa4 2150 ptid_t resume_ptid;
09cee04b 2151
09cee04b
PA
2152 if (non_stop)
2153 {
2154 /* With non-stop mode on, threads are always handled
2155 individually. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if ((scheduler_mode == schedlock_on)
03d46957 2159 || (scheduler_mode == schedlock_step && step))
09cee04b 2160 {
f3263aa4
PA
2161 /* User-settable 'scheduler' mode requires solo thread
2162 resume. */
09cee04b
PA
2163 resume_ptid = inferior_ptid;
2164 }
f2665db5
MM
2165 else if ((scheduler_mode == schedlock_replay)
2166 && target_record_will_replay (minus_one_ptid, execution_direction))
2167 {
2168 /* User-settable 'scheduler' mode requires solo thread resume in replay
2169 mode. */
2170 resume_ptid = inferior_ptid;
2171 }
f3263aa4
PA
2172 else if (!sched_multi && target_supports_multi_process ())
2173 {
2174 /* Resume all threads of the current process (and none of other
2175 processes). */
e99b03dc 2176 resume_ptid = ptid_t (inferior_ptid.pid ());
f3263aa4
PA
2177 }
2178 else
2179 {
2180 /* Resume all threads of all processes. */
2181 resume_ptid = RESUME_ALL;
2182 }
09cee04b
PA
2183
2184 return resume_ptid;
2185}
2186
5b6d1e4f
PA
2187/* See infrun.h. */
2188
2189process_stratum_target *
2190user_visible_resume_target (ptid_t resume_ptid)
2191{
2192 return (resume_ptid == minus_one_ptid && sched_multi
2193 ? NULL
2194 : current_inferior ()->process_target ());
2195}
2196
fbea99ea
PA
2197/* Return a ptid representing the set of threads that we will resume,
2198 in the perspective of the target, assuming run control handling
2199 does not require leaving some threads stopped (e.g., stepping past
2200 breakpoint). USER_STEP indicates whether we're about to start the
2201 target for a stepping command. */
2202
2203static ptid_t
2204internal_resume_ptid (int user_step)
2205{
2206 /* In non-stop, we always control threads individually. Note that
2207 the target may always work in non-stop mode even with "set
2208 non-stop off", in which case user_visible_resume_ptid could
2209 return a wildcard ptid. */
2210 if (target_is_non_stop_p ())
2211 return inferior_ptid;
2212 else
2213 return user_visible_resume_ptid (user_step);
2214}
2215
64ce06e4
PA
2216/* Wrapper for target_resume, that handles infrun-specific
2217 bookkeeping. */
2218
2219static void
2220do_target_resume (ptid_t resume_ptid, int step, enum gdb_signal sig)
2221{
2222 struct thread_info *tp = inferior_thread ();
2223
c65d6b55
PA
2224 gdb_assert (!tp->stop_requested);
2225
64ce06e4 2226 /* Install inferior's terminal modes. */
223ffa71 2227 target_terminal::inferior ();
64ce06e4
PA
2228
2229 /* Avoid confusing the next resume, if the next stop/resume
2230 happens to apply to another thread. */
2231 tp->suspend.stop_signal = GDB_SIGNAL_0;
2232
8f572e5c
PA
2233 /* Advise target which signals may be handled silently.
2234
2235 If we have removed breakpoints because we are stepping over one
2236 in-line (in any thread), we need to receive all signals to avoid
2237 accidentally skipping a breakpoint during execution of a signal
2238 handler.
2239
2240 Likewise if we're displaced stepping, otherwise a trap for a
2241 breakpoint in a signal handler might be confused with the
2242 displaced step finishing. We don't make the displaced_step_fixup
2243 step distinguish the cases instead, because:
2244
2245 - a backtrace while stopped in the signal handler would show the
2246 scratch pad as frame older than the signal handler, instead of
2247 the real mainline code.
2248
2249 - when the thread is later resumed, the signal handler would
2250 return to the scratch pad area, which would no longer be
2251 valid. */
2252 if (step_over_info_valid_p ()
00431a78 2253 || displaced_step_in_progress (tp->inf))
adc6a863 2254 target_pass_signals ({});
64ce06e4 2255 else
adc6a863 2256 target_pass_signals (signal_pass);
64ce06e4
PA
2257
2258 target_resume (resume_ptid, step, sig);
85ad3aaf
PA
2259
2260 target_commit_resume ();
5b6d1e4f
PA
2261
2262 if (target_can_async_p ())
2263 target_async (1);
64ce06e4
PA
2264}
2265
d930703d 2266/* Resume the inferior. SIG is the signal to give the inferior
71d378ae
PA
2267 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2268 call 'resume', which handles exceptions. */
c906108c 2269
71d378ae
PA
2270static void
2271resume_1 (enum gdb_signal sig)
c906108c 2272{
515630c5 2273 struct regcache *regcache = get_current_regcache ();
ac7936df 2274 struct gdbarch *gdbarch = regcache->arch ();
4e1c45ea 2275 struct thread_info *tp = inferior_thread ();
515630c5 2276 CORE_ADDR pc = regcache_read_pc (regcache);
8b86c959 2277 const address_space *aspace = regcache->aspace ();
b0f16a3e 2278 ptid_t resume_ptid;
856e7dd6
PA
2279 /* This represents the user's step vs continue request. When
2280 deciding whether "set scheduler-locking step" applies, it's the
2281 user's intention that counts. */
2282 const int user_step = tp->control.stepping_command;
64ce06e4
PA
2283 /* This represents what we'll actually request the target to do.
2284 This can decay from a step to a continue, if e.g., we need to
2285 implement single-stepping with breakpoints (software
2286 single-step). */
6b403daa 2287 int step;
c7e8a53c 2288
c65d6b55 2289 gdb_assert (!tp->stop_requested);
c2829269
PA
2290 gdb_assert (!thread_is_in_step_over_chain (tp));
2291
372316f1
PA
2292 if (tp->suspend.waitstatus_pending_p)
2293 {
2294 if (debug_infrun)
2295 {
23fdd69e
SM
2296 std::string statstr
2297 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2298
372316f1 2299 fprintf_unfiltered (gdb_stdlog,
23fdd69e
SM
2300 "infrun: resume: thread %s has pending wait "
2301 "status %s (currently_stepping=%d).\n",
a068643d
TT
2302 target_pid_to_str (tp->ptid).c_str (),
2303 statstr.c_str (),
372316f1 2304 currently_stepping (tp));
372316f1
PA
2305 }
2306
5b6d1e4f 2307 tp->inf->process_target ()->threads_executing = true;
719546c4 2308 tp->resumed = true;
372316f1
PA
2309
2310 /* FIXME: What should we do if we are supposed to resume this
2311 thread with a signal? Maybe we should maintain a queue of
2312 pending signals to deliver. */
2313 if (sig != GDB_SIGNAL_0)
2314 {
fd7dcb94 2315 warning (_("Couldn't deliver signal %s to %s."),
a068643d
TT
2316 gdb_signal_to_name (sig),
2317 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2318 }
2319
2320 tp->suspend.stop_signal = GDB_SIGNAL_0;
372316f1
PA
2321
2322 if (target_can_async_p ())
9516f85a
AB
2323 {
2324 target_async (1);
2325 /* Tell the event loop we have an event to process. */
2326 mark_async_event_handler (infrun_async_inferior_event_token);
2327 }
372316f1
PA
2328 return;
2329 }
2330
2331 tp->stepped_breakpoint = 0;
2332
6b403daa
PA
2333 /* Depends on stepped_breakpoint. */
2334 step = currently_stepping (tp);
2335
74609e71
YQ
2336 if (current_inferior ()->waiting_for_vfork_done)
2337 {
48f9886d
PA
2338 /* Don't try to single-step a vfork parent that is waiting for
2339 the child to get out of the shared memory region (by exec'ing
2340 or exiting). This is particularly important on software
2341 single-step archs, as the child process would trip on the
2342 software single step breakpoint inserted for the parent
2343 process. Since the parent will not actually execute any
2344 instruction until the child is out of the shared region (such
2345 are vfork's semantics), it is safe to simply continue it.
2346 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2347 the parent, and tell it to `keep_going', which automatically
2348 re-sets it stepping. */
74609e71
YQ
2349 if (debug_infrun)
2350 fprintf_unfiltered (gdb_stdlog,
2351 "infrun: resume : clear step\n");
a09dd441 2352 step = 0;
74609e71
YQ
2353 }
2354
527159b7 2355 if (debug_infrun)
237fc4c9 2356 fprintf_unfiltered (gdb_stdlog,
c9737c08 2357 "infrun: resume (step=%d, signal=%s), "
0d9a9a5f 2358 "trap_expected=%d, current thread [%s] at %s\n",
c9737c08
PA
2359 step, gdb_signal_to_symbol_string (sig),
2360 tp->control.trap_expected,
a068643d 2361 target_pid_to_str (inferior_ptid).c_str (),
0d9a9a5f 2362 paddress (gdbarch, pc));
c906108c 2363
c2c6d25f
JM
2364 /* Normally, by the time we reach `resume', the breakpoints are either
2365 removed or inserted, as appropriate. The exception is if we're sitting
2366 at a permanent breakpoint; we need to step over it, but permanent
2367 breakpoints can't be removed. So we have to test for it here. */
6c95b8df 2368 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
6d350bb5 2369 {
af48d08f
PA
2370 if (sig != GDB_SIGNAL_0)
2371 {
2372 /* We have a signal to pass to the inferior. The resume
2373 may, or may not take us to the signal handler. If this
2374 is a step, we'll need to stop in the signal handler, if
2375 there's one, (if the target supports stepping into
2376 handlers), or in the next mainline instruction, if
2377 there's no handler. If this is a continue, we need to be
2378 sure to run the handler with all breakpoints inserted.
2379 In all cases, set a breakpoint at the current address
2380 (where the handler returns to), and once that breakpoint
2381 is hit, resume skipping the permanent breakpoint. If
2382 that breakpoint isn't hit, then we've stepped into the
2383 signal handler (or hit some other event). We'll delete
2384 the step-resume breakpoint then. */
2385
2386 if (debug_infrun)
2387 fprintf_unfiltered (gdb_stdlog,
2388 "infrun: resume: skipping permanent breakpoint, "
2389 "deliver signal first\n");
2390
2391 clear_step_over_info ();
2392 tp->control.trap_expected = 0;
2393
2394 if (tp->control.step_resume_breakpoint == NULL)
2395 {
2396 /* Set a "high-priority" step-resume, as we don't want
2397 user breakpoints at PC to trigger (again) when this
2398 hits. */
2399 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2400 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2401
2402 tp->step_after_step_resume_breakpoint = step;
2403 }
2404
2405 insert_breakpoints ();
2406 }
2407 else
2408 {
2409 /* There's no signal to pass, we can go ahead and skip the
2410 permanent breakpoint manually. */
2411 if (debug_infrun)
2412 fprintf_unfiltered (gdb_stdlog,
2413 "infrun: resume: skipping permanent breakpoint\n");
2414 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2415 /* Update pc to reflect the new address from which we will
2416 execute instructions. */
2417 pc = regcache_read_pc (regcache);
2418
2419 if (step)
2420 {
2421 /* We've already advanced the PC, so the stepping part
2422 is done. Now we need to arrange for a trap to be
2423 reported to handle_inferior_event. Set a breakpoint
2424 at the current PC, and run to it. Don't update
2425 prev_pc, because if we end in
44a1ee51
PA
2426 switch_back_to_stepped_thread, we want the "expected
2427 thread advanced also" branch to be taken. IOW, we
2428 don't want this thread to step further from PC
af48d08f 2429 (overstep). */
1ac806b8 2430 gdb_assert (!step_over_info_valid_p ());
af48d08f
PA
2431 insert_single_step_breakpoint (gdbarch, aspace, pc);
2432 insert_breakpoints ();
2433
fbea99ea 2434 resume_ptid = internal_resume_ptid (user_step);
1ac806b8 2435 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
719546c4 2436 tp->resumed = true;
af48d08f
PA
2437 return;
2438 }
2439 }
6d350bb5 2440 }
c2c6d25f 2441
c1e36e3e
PA
2442 /* If we have a breakpoint to step over, make sure to do a single
2443 step only. Same if we have software watchpoints. */
2444 if (tp->control.trap_expected || bpstat_should_step ())
2445 tp->control.may_range_step = 0;
2446
7da6a5b9
LM
2447 /* If displaced stepping is enabled, step over breakpoints by executing a
2448 copy of the instruction at a different address.
237fc4c9
PA
2449
2450 We can't use displaced stepping when we have a signal to deliver;
2451 the comments for displaced_step_prepare explain why. The
2452 comments in the handle_inferior event for dealing with 'random
74609e71
YQ
2453 signals' explain what we do instead.
2454
2455 We can't use displaced stepping when we are waiting for vfork_done
2456 event, displaced stepping breaks the vfork child similarly as single
2457 step software breakpoint. */
3fc8eb30
PA
2458 if (tp->control.trap_expected
2459 && use_displaced_stepping (tp)
cb71640d 2460 && !step_over_info_valid_p ()
a493e3e2 2461 && sig == GDB_SIGNAL_0
74609e71 2462 && !current_inferior ()->waiting_for_vfork_done)
237fc4c9 2463 {
00431a78 2464 int prepared = displaced_step_prepare (tp);
fc1cf338 2465
3fc8eb30 2466 if (prepared == 0)
d56b7306 2467 {
4d9d9d04
PA
2468 if (debug_infrun)
2469 fprintf_unfiltered (gdb_stdlog,
2470 "Got placed in step-over queue\n");
2471
2472 tp->control.trap_expected = 0;
d56b7306
VP
2473 return;
2474 }
3fc8eb30
PA
2475 else if (prepared < 0)
2476 {
2477 /* Fallback to stepping over the breakpoint in-line. */
2478
2479 if (target_is_non_stop_p ())
2480 stop_all_threads ();
2481
a01bda52 2482 set_step_over_info (regcache->aspace (),
21edc42f 2483 regcache_read_pc (regcache), 0, tp->global_num);
3fc8eb30
PA
2484
2485 step = maybe_software_singlestep (gdbarch, pc);
2486
2487 insert_breakpoints ();
2488 }
2489 else if (prepared > 0)
2490 {
2491 struct displaced_step_inferior_state *displaced;
99e40580 2492
3fc8eb30
PA
2493 /* Update pc to reflect the new address from which we will
2494 execute instructions due to displaced stepping. */
00431a78 2495 pc = regcache_read_pc (get_thread_regcache (tp));
ca7781d2 2496
00431a78 2497 displaced = get_displaced_stepping_state (tp->inf);
d8d83535
SM
2498 step = gdbarch_displaced_step_hw_singlestep
2499 (gdbarch, displaced->step_closure.get ());
3fc8eb30 2500 }
237fc4c9
PA
2501 }
2502
2facfe5c 2503 /* Do we need to do it the hard way, w/temp breakpoints? */
99e40580 2504 else if (step)
2facfe5c 2505 step = maybe_software_singlestep (gdbarch, pc);
c906108c 2506
30852783
UW
2507 /* Currently, our software single-step implementation leads to different
2508 results than hardware single-stepping in one situation: when stepping
2509 into delivering a signal which has an associated signal handler,
2510 hardware single-step will stop at the first instruction of the handler,
2511 while software single-step will simply skip execution of the handler.
2512
2513 For now, this difference in behavior is accepted since there is no
2514 easy way to actually implement single-stepping into a signal handler
2515 without kernel support.
2516
2517 However, there is one scenario where this difference leads to follow-on
2518 problems: if we're stepping off a breakpoint by removing all breakpoints
2519 and then single-stepping. In this case, the software single-step
2520 behavior means that even if there is a *breakpoint* in the signal
2521 handler, GDB still would not stop.
2522
2523 Fortunately, we can at least fix this particular issue. We detect
2524 here the case where we are about to deliver a signal while software
2525 single-stepping with breakpoints removed. In this situation, we
2526 revert the decisions to remove all breakpoints and insert single-
2527 step breakpoints, and instead we install a step-resume breakpoint
2528 at the current address, deliver the signal without stepping, and
2529 once we arrive back at the step-resume breakpoint, actually step
2530 over the breakpoint we originally wanted to step over. */
34b7e8a6 2531 if (thread_has_single_step_breakpoints_set (tp)
6cc83d2a
PA
2532 && sig != GDB_SIGNAL_0
2533 && step_over_info_valid_p ())
30852783
UW
2534 {
2535 /* If we have nested signals or a pending signal is delivered
7da6a5b9 2536 immediately after a handler returns, might already have
30852783
UW
2537 a step-resume breakpoint set on the earlier handler. We cannot
2538 set another step-resume breakpoint; just continue on until the
2539 original breakpoint is hit. */
2540 if (tp->control.step_resume_breakpoint == NULL)
2541 {
2c03e5be 2542 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
30852783
UW
2543 tp->step_after_step_resume_breakpoint = 1;
2544 }
2545
34b7e8a6 2546 delete_single_step_breakpoints (tp);
30852783 2547
31e77af2 2548 clear_step_over_info ();
30852783 2549 tp->control.trap_expected = 0;
31e77af2
PA
2550
2551 insert_breakpoints ();
30852783
UW
2552 }
2553
b0f16a3e
SM
2554 /* If STEP is set, it's a request to use hardware stepping
2555 facilities. But in that case, we should never
2556 use singlestep breakpoint. */
34b7e8a6 2557 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
dfcd3bfb 2558
fbea99ea 2559 /* Decide the set of threads to ask the target to resume. */
1946c4cc 2560 if (tp->control.trap_expected)
b0f16a3e
SM
2561 {
2562 /* We're allowing a thread to run past a breakpoint it has
1946c4cc
YQ
2563 hit, either by single-stepping the thread with the breakpoint
2564 removed, or by displaced stepping, with the breakpoint inserted.
2565 In the former case, we need to single-step only this thread,
2566 and keep others stopped, as they can miss this breakpoint if
2567 allowed to run. That's not really a problem for displaced
2568 stepping, but, we still keep other threads stopped, in case
2569 another thread is also stopped for a breakpoint waiting for
2570 its turn in the displaced stepping queue. */
b0f16a3e
SM
2571 resume_ptid = inferior_ptid;
2572 }
fbea99ea
PA
2573 else
2574 resume_ptid = internal_resume_ptid (user_step);
d4db2f36 2575
7f5ef605
PA
2576 if (execution_direction != EXEC_REVERSE
2577 && step && breakpoint_inserted_here_p (aspace, pc))
b0f16a3e 2578 {
372316f1
PA
2579 /* There are two cases where we currently need to step a
2580 breakpoint instruction when we have a signal to deliver:
2581
2582 - See handle_signal_stop where we handle random signals that
2583 could take out us out of the stepping range. Normally, in
2584 that case we end up continuing (instead of stepping) over the
7f5ef605
PA
2585 signal handler with a breakpoint at PC, but there are cases
2586 where we should _always_ single-step, even if we have a
2587 step-resume breakpoint, like when a software watchpoint is
2588 set. Assuming single-stepping and delivering a signal at the
2589 same time would takes us to the signal handler, then we could
2590 have removed the breakpoint at PC to step over it. However,
2591 some hardware step targets (like e.g., Mac OS) can't step
2592 into signal handlers, and for those, we need to leave the
2593 breakpoint at PC inserted, as otherwise if the handler
2594 recurses and executes PC again, it'll miss the breakpoint.
2595 So we leave the breakpoint inserted anyway, but we need to
2596 record that we tried to step a breakpoint instruction, so
372316f1
PA
2597 that adjust_pc_after_break doesn't end up confused.
2598
2599 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2600 in one thread after another thread that was stepping had been
2601 momentarily paused for a step-over. When we re-resume the
2602 stepping thread, it may be resumed from that address with a
2603 breakpoint that hasn't trapped yet. Seen with
2604 gdb.threads/non-stop-fair-events.exp, on targets that don't
2605 do displaced stepping. */
2606
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog,
2609 "infrun: resume: [%s] stepped breakpoint\n",
a068643d 2610 target_pid_to_str (tp->ptid).c_str ());
7f5ef605
PA
2611
2612 tp->stepped_breakpoint = 1;
2613
b0f16a3e
SM
2614 /* Most targets can step a breakpoint instruction, thus
2615 executing it normally. But if this one cannot, just
2616 continue and we will hit it anyway. */
7f5ef605 2617 if (gdbarch_cannot_step_breakpoint (gdbarch))
b0f16a3e
SM
2618 step = 0;
2619 }
ef5cf84e 2620
b0f16a3e 2621 if (debug_displaced
cb71640d 2622 && tp->control.trap_expected
3fc8eb30 2623 && use_displaced_stepping (tp)
cb71640d 2624 && !step_over_info_valid_p ())
b0f16a3e 2625 {
00431a78 2626 struct regcache *resume_regcache = get_thread_regcache (tp);
ac7936df 2627 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
b0f16a3e
SM
2628 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2629 gdb_byte buf[4];
2630
2631 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2632 paddress (resume_gdbarch, actual_pc));
2633 read_memory (actual_pc, buf, sizeof (buf));
2634 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2635 }
237fc4c9 2636
b0f16a3e
SM
2637 if (tp->control.may_range_step)
2638 {
2639 /* If we're resuming a thread with the PC out of the step
2640 range, then we're doing some nested/finer run control
2641 operation, like stepping the thread out of the dynamic
2642 linker or the displaced stepping scratch pad. We
2643 shouldn't have allowed a range step then. */
2644 gdb_assert (pc_in_thread_step_range (pc, tp));
2645 }
c1e36e3e 2646
64ce06e4 2647 do_target_resume (resume_ptid, step, sig);
719546c4 2648 tp->resumed = true;
c906108c 2649}
71d378ae
PA
2650
2651/* Resume the inferior. SIG is the signal to give the inferior
2652 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2653 rolls back state on error. */
2654
aff4e175 2655static void
71d378ae
PA
2656resume (gdb_signal sig)
2657{
a70b8144 2658 try
71d378ae
PA
2659 {
2660 resume_1 (sig);
2661 }
230d2906 2662 catch (const gdb_exception &ex)
71d378ae
PA
2663 {
2664 /* If resuming is being aborted for any reason, delete any
2665 single-step breakpoint resume_1 may have created, to avoid
2666 confusing the following resumption, and to avoid leaving
2667 single-step breakpoints perturbing other threads, in case
2668 we're running in non-stop mode. */
2669 if (inferior_ptid != null_ptid)
2670 delete_single_step_breakpoints (inferior_thread ());
eedc3f4f 2671 throw;
71d378ae 2672 }
71d378ae
PA
2673}
2674
c906108c 2675\f
237fc4c9 2676/* Proceeding. */
c906108c 2677
4c2f2a79
PA
2678/* See infrun.h. */
2679
2680/* Counter that tracks number of user visible stops. This can be used
2681 to tell whether a command has proceeded the inferior past the
2682 current location. This allows e.g., inferior function calls in
2683 breakpoint commands to not interrupt the command list. When the
2684 call finishes successfully, the inferior is standing at the same
2685 breakpoint as if nothing happened (and so we don't call
2686 normal_stop). */
2687static ULONGEST current_stop_id;
2688
2689/* See infrun.h. */
2690
2691ULONGEST
2692get_stop_id (void)
2693{
2694 return current_stop_id;
2695}
2696
2697/* Called when we report a user visible stop. */
2698
2699static void
2700new_stop_id (void)
2701{
2702 current_stop_id++;
2703}
2704
c906108c
SS
2705/* Clear out all variables saying what to do when inferior is continued.
2706 First do this, then set the ones you want, then call `proceed'. */
2707
a7212384
UW
2708static void
2709clear_proceed_status_thread (struct thread_info *tp)
c906108c 2710{
a7212384
UW
2711 if (debug_infrun)
2712 fprintf_unfiltered (gdb_stdlog,
2713 "infrun: clear_proceed_status_thread (%s)\n",
a068643d 2714 target_pid_to_str (tp->ptid).c_str ());
d6b48e9c 2715
372316f1
PA
2716 /* If we're starting a new sequence, then the previous finished
2717 single-step is no longer relevant. */
2718 if (tp->suspend.waitstatus_pending_p)
2719 {
2720 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2721 {
2722 if (debug_infrun)
2723 fprintf_unfiltered (gdb_stdlog,
2724 "infrun: clear_proceed_status: pending "
2725 "event of %s was a finished step. "
2726 "Discarding.\n",
a068643d 2727 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
2728
2729 tp->suspend.waitstatus_pending_p = 0;
2730 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2731 }
2732 else if (debug_infrun)
2733 {
23fdd69e
SM
2734 std::string statstr
2735 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 2736
372316f1
PA
2737 fprintf_unfiltered (gdb_stdlog,
2738 "infrun: clear_proceed_status_thread: thread %s "
2739 "has pending wait status %s "
2740 "(currently_stepping=%d).\n",
a068643d
TT
2741 target_pid_to_str (tp->ptid).c_str (),
2742 statstr.c_str (),
372316f1 2743 currently_stepping (tp));
372316f1
PA
2744 }
2745 }
2746
70509625
PA
2747 /* If this signal should not be seen by program, give it zero.
2748 Used for debugging signals. */
2749 if (!signal_pass_state (tp->suspend.stop_signal))
2750 tp->suspend.stop_signal = GDB_SIGNAL_0;
2751
46e3ed7f 2752 delete tp->thread_fsm;
243a9253
PA
2753 tp->thread_fsm = NULL;
2754
16c381f0
JK
2755 tp->control.trap_expected = 0;
2756 tp->control.step_range_start = 0;
2757 tp->control.step_range_end = 0;
c1e36e3e 2758 tp->control.may_range_step = 0;
16c381f0
JK
2759 tp->control.step_frame_id = null_frame_id;
2760 tp->control.step_stack_frame_id = null_frame_id;
2761 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
885eeb5b 2762 tp->control.step_start_function = NULL;
a7212384 2763 tp->stop_requested = 0;
4e1c45ea 2764
16c381f0 2765 tp->control.stop_step = 0;
32400beb 2766
16c381f0 2767 tp->control.proceed_to_finish = 0;
414c69f7 2768
856e7dd6 2769 tp->control.stepping_command = 0;
17b2616c 2770
a7212384 2771 /* Discard any remaining commands or status from previous stop. */
16c381f0 2772 bpstat_clear (&tp->control.stop_bpstat);
a7212384 2773}
32400beb 2774
a7212384 2775void
70509625 2776clear_proceed_status (int step)
a7212384 2777{
f2665db5
MM
2778 /* With scheduler-locking replay, stop replaying other threads if we're
2779 not replaying the user-visible resume ptid.
2780
2781 This is a convenience feature to not require the user to explicitly
2782 stop replaying the other threads. We're assuming that the user's
2783 intent is to resume tracing the recorded process. */
2784 if (!non_stop && scheduler_mode == schedlock_replay
2785 && target_record_is_replaying (minus_one_ptid)
2786 && !target_record_will_replay (user_visible_resume_ptid (step),
2787 execution_direction))
2788 target_record_stop_replaying ();
2789
08036331 2790 if (!non_stop && inferior_ptid != null_ptid)
6c95b8df 2791 {
08036331 2792 ptid_t resume_ptid = user_visible_resume_ptid (step);
5b6d1e4f
PA
2793 process_stratum_target *resume_target
2794 = user_visible_resume_target (resume_ptid);
70509625
PA
2795
2796 /* In all-stop mode, delete the per-thread status of all threads
2797 we're about to resume, implicitly and explicitly. */
5b6d1e4f 2798 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
08036331 2799 clear_proceed_status_thread (tp);
6c95b8df
PA
2800 }
2801
d7e15655 2802 if (inferior_ptid != null_ptid)
a7212384
UW
2803 {
2804 struct inferior *inferior;
2805
2806 if (non_stop)
2807 {
6c95b8df
PA
2808 /* If in non-stop mode, only delete the per-thread status of
2809 the current thread. */
a7212384
UW
2810 clear_proceed_status_thread (inferior_thread ());
2811 }
6c95b8df 2812
d6b48e9c 2813 inferior = current_inferior ();
16c381f0 2814 inferior->control.stop_soon = NO_STOP_QUIETLY;
4e1c45ea
PA
2815 }
2816
76727919 2817 gdb::observers::about_to_proceed.notify ();
c906108c
SS
2818}
2819
99619bea
PA
2820/* Returns true if TP is still stopped at a breakpoint that needs
2821 stepping-over in order to make progress. If the breakpoint is gone
2822 meanwhile, we can skip the whole step-over dance. */
ea67f13b
DJ
2823
2824static int
6c4cfb24 2825thread_still_needs_step_over_bp (struct thread_info *tp)
99619bea
PA
2826{
2827 if (tp->stepping_over_breakpoint)
2828 {
00431a78 2829 struct regcache *regcache = get_thread_regcache (tp);
99619bea 2830
a01bda52 2831 if (breakpoint_here_p (regcache->aspace (),
af48d08f
PA
2832 regcache_read_pc (regcache))
2833 == ordinary_breakpoint_here)
99619bea
PA
2834 return 1;
2835
2836 tp->stepping_over_breakpoint = 0;
2837 }
2838
2839 return 0;
2840}
2841
6c4cfb24
PA
2842/* Check whether thread TP still needs to start a step-over in order
2843 to make progress when resumed. Returns an bitwise or of enum
2844 step_over_what bits, indicating what needs to be stepped over. */
2845
8d297bbf 2846static step_over_what
6c4cfb24
PA
2847thread_still_needs_step_over (struct thread_info *tp)
2848{
8d297bbf 2849 step_over_what what = 0;
6c4cfb24
PA
2850
2851 if (thread_still_needs_step_over_bp (tp))
2852 what |= STEP_OVER_BREAKPOINT;
2853
2854 if (tp->stepping_over_watchpoint
2855 && !target_have_steppable_watchpoint)
2856 what |= STEP_OVER_WATCHPOINT;
2857
2858 return what;
2859}
2860
483805cf
PA
2861/* Returns true if scheduler locking applies. STEP indicates whether
2862 we're about to do a step/next-like command to a thread. */
2863
2864static int
856e7dd6 2865schedlock_applies (struct thread_info *tp)
483805cf
PA
2866{
2867 return (scheduler_mode == schedlock_on
2868 || (scheduler_mode == schedlock_step
f2665db5
MM
2869 && tp->control.stepping_command)
2870 || (scheduler_mode == schedlock_replay
2871 && target_record_will_replay (minus_one_ptid,
2872 execution_direction)));
483805cf
PA
2873}
2874
5b6d1e4f
PA
2875/* Calls target_commit_resume on all targets. */
2876
2877static void
2878commit_resume_all_targets ()
2879{
2880 scoped_restore_current_thread restore_thread;
2881
2882 /* Map between process_target and a representative inferior. This
2883 is to avoid committing a resume in the same target more than
2884 once. Resumptions must be idempotent, so this is an
2885 optimization. */
2886 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2887
2888 for (inferior *inf : all_non_exited_inferiors ())
2889 if (inf->has_execution ())
2890 conn_inf[inf->process_target ()] = inf;
2891
2892 for (const auto &ci : conn_inf)
2893 {
2894 inferior *inf = ci.second;
2895 switch_to_inferior_no_thread (inf);
2896 target_commit_resume ();
2897 }
2898}
2899
2f4fcf00
PA
2900/* Check that all the targets we're about to resume are in non-stop
2901 mode. Ideally, we'd only care whether all targets support
2902 target-async, but we're not there yet. E.g., stop_all_threads
2903 doesn't know how to handle all-stop targets. Also, the remote
2904 protocol in all-stop mode is synchronous, irrespective of
2905 target-async, which means that things like a breakpoint re-set
2906 triggered by one target would try to read memory from all targets
2907 and fail. */
2908
2909static void
2910check_multi_target_resumption (process_stratum_target *resume_target)
2911{
2912 if (!non_stop && resume_target == nullptr)
2913 {
2914 scoped_restore_current_thread restore_thread;
2915
2916 /* This is used to track whether we're resuming more than one
2917 target. */
2918 process_stratum_target *first_connection = nullptr;
2919
2920 /* The first inferior we see with a target that does not work in
2921 always-non-stop mode. */
2922 inferior *first_not_non_stop = nullptr;
2923
2924 for (inferior *inf : all_non_exited_inferiors (resume_target))
2925 {
2926 switch_to_inferior_no_thread (inf);
2927
2928 if (!target_has_execution)
2929 continue;
2930
2931 process_stratum_target *proc_target
2932 = current_inferior ()->process_target();
2933
2934 if (!target_is_non_stop_p ())
2935 first_not_non_stop = inf;
2936
2937 if (first_connection == nullptr)
2938 first_connection = proc_target;
2939 else if (first_connection != proc_target
2940 && first_not_non_stop != nullptr)
2941 {
2942 switch_to_inferior_no_thread (first_not_non_stop);
2943
2944 proc_target = current_inferior ()->process_target();
2945
2946 error (_("Connection %d (%s) does not support "
2947 "multi-target resumption."),
2948 proc_target->connection_number,
2949 make_target_connection_string (proc_target).c_str ());
2950 }
2951 }
2952 }
2953}
2954
c906108c
SS
2955/* Basic routine for continuing the program in various fashions.
2956
2957 ADDR is the address to resume at, or -1 for resume where stopped.
aff4e175
AB
2958 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2959 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
c906108c
SS
2960
2961 You should call clear_proceed_status before calling proceed. */
2962
2963void
64ce06e4 2964proceed (CORE_ADDR addr, enum gdb_signal siggnal)
c906108c 2965{
e58b0e63
PA
2966 struct regcache *regcache;
2967 struct gdbarch *gdbarch;
e58b0e63 2968 CORE_ADDR pc;
4d9d9d04
PA
2969 struct execution_control_state ecss;
2970 struct execution_control_state *ecs = &ecss;
4d9d9d04 2971 int started;
c906108c 2972
e58b0e63
PA
2973 /* If we're stopped at a fork/vfork, follow the branch set by the
2974 "set follow-fork-mode" command; otherwise, we'll just proceed
2975 resuming the current thread. */
2976 if (!follow_fork ())
2977 {
2978 /* The target for some reason decided not to resume. */
2979 normal_stop ();
f148b27e
PA
2980 if (target_can_async_p ())
2981 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
e58b0e63
PA
2982 return;
2983 }
2984
842951eb
PA
2985 /* We'll update this if & when we switch to a new thread. */
2986 previous_inferior_ptid = inferior_ptid;
2987
e58b0e63 2988 regcache = get_current_regcache ();
ac7936df 2989 gdbarch = regcache->arch ();
8b86c959
YQ
2990 const address_space *aspace = regcache->aspace ();
2991
e58b0e63 2992 pc = regcache_read_pc (regcache);
08036331 2993 thread_info *cur_thr = inferior_thread ();
e58b0e63 2994
99619bea 2995 /* Fill in with reasonable starting values. */
08036331 2996 init_thread_stepping_state (cur_thr);
99619bea 2997
08036331 2998 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
c2829269 2999
5b6d1e4f
PA
3000 ptid_t resume_ptid
3001 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3002 process_stratum_target *resume_target
3003 = user_visible_resume_target (resume_ptid);
3004
2f4fcf00
PA
3005 check_multi_target_resumption (resume_target);
3006
2acceee2 3007 if (addr == (CORE_ADDR) -1)
c906108c 3008 {
08036331 3009 if (pc == cur_thr->suspend.stop_pc
af48d08f 3010 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
b2175913 3011 && execution_direction != EXEC_REVERSE)
3352ef37
AC
3012 /* There is a breakpoint at the address we will resume at,
3013 step one instruction before inserting breakpoints so that
3014 we do not stop right away (and report a second hit at this
b2175913
MS
3015 breakpoint).
3016
3017 Note, we don't do this in reverse, because we won't
3018 actually be executing the breakpoint insn anyway.
3019 We'll be (un-)executing the previous instruction. */
08036331 3020 cur_thr->stepping_over_breakpoint = 1;
515630c5
UW
3021 else if (gdbarch_single_step_through_delay_p (gdbarch)
3022 && gdbarch_single_step_through_delay (gdbarch,
3023 get_current_frame ()))
3352ef37
AC
3024 /* We stepped onto an instruction that needs to be stepped
3025 again before re-inserting the breakpoint, do so. */
08036331 3026 cur_thr->stepping_over_breakpoint = 1;
c906108c
SS
3027 }
3028 else
3029 {
515630c5 3030 regcache_write_pc (regcache, addr);
c906108c
SS
3031 }
3032
70509625 3033 if (siggnal != GDB_SIGNAL_DEFAULT)
08036331 3034 cur_thr->suspend.stop_signal = siggnal;
70509625 3035
4d9d9d04
PA
3036 /* If an exception is thrown from this point on, make sure to
3037 propagate GDB's knowledge of the executing state to the
3038 frontend/user running state. */
5b6d1e4f 3039 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
4d9d9d04
PA
3040
3041 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3042 threads (e.g., we might need to set threads stepping over
3043 breakpoints first), from the user/frontend's point of view, all
3044 threads in RESUME_PTID are now running. Unless we're calling an
3045 inferior function, as in that case we pretend the inferior
3046 doesn't run at all. */
08036331 3047 if (!cur_thr->control.in_infcall)
719546c4 3048 set_running (resume_target, resume_ptid, true);
17b2616c 3049
527159b7 3050 if (debug_infrun)
8a9de0e4 3051 fprintf_unfiltered (gdb_stdlog,
64ce06e4 3052 "infrun: proceed (addr=%s, signal=%s)\n",
c9737c08 3053 paddress (gdbarch, addr),
64ce06e4 3054 gdb_signal_to_symbol_string (siggnal));
527159b7 3055
4d9d9d04
PA
3056 annotate_starting ();
3057
3058 /* Make sure that output from GDB appears before output from the
3059 inferior. */
3060 gdb_flush (gdb_stdout);
3061
d930703d
PA
3062 /* Since we've marked the inferior running, give it the terminal. A
3063 QUIT/Ctrl-C from here on is forwarded to the target (which can
3064 still detect attempts to unblock a stuck connection with repeated
3065 Ctrl-C from within target_pass_ctrlc). */
3066 target_terminal::inferior ();
3067
4d9d9d04
PA
3068 /* In a multi-threaded task we may select another thread and
3069 then continue or step.
3070
3071 But if a thread that we're resuming had stopped at a breakpoint,
3072 it will immediately cause another breakpoint stop without any
3073 execution (i.e. it will report a breakpoint hit incorrectly). So
3074 we must step over it first.
3075
3076 Look for threads other than the current (TP) that reported a
3077 breakpoint hit and haven't been resumed yet since. */
3078
3079 /* If scheduler locking applies, we can avoid iterating over all
3080 threads. */
08036331 3081 if (!non_stop && !schedlock_applies (cur_thr))
94cc34af 3082 {
5b6d1e4f
PA
3083 for (thread_info *tp : all_non_exited_threads (resume_target,
3084 resume_ptid))
08036331 3085 {
f3f8ece4
PA
3086 switch_to_thread_no_regs (tp);
3087
4d9d9d04
PA
3088 /* Ignore the current thread here. It's handled
3089 afterwards. */
08036331 3090 if (tp == cur_thr)
4d9d9d04 3091 continue;
c906108c 3092
4d9d9d04
PA
3093 if (!thread_still_needs_step_over (tp))
3094 continue;
3095
3096 gdb_assert (!thread_is_in_step_over_chain (tp));
c906108c 3097
99619bea
PA
3098 if (debug_infrun)
3099 fprintf_unfiltered (gdb_stdlog,
3100 "infrun: need to step-over [%s] first\n",
a068643d 3101 target_pid_to_str (tp->ptid).c_str ());
99619bea 3102
4d9d9d04 3103 thread_step_over_chain_enqueue (tp);
2adfaa28 3104 }
f3f8ece4
PA
3105
3106 switch_to_thread (cur_thr);
30852783
UW
3107 }
3108
4d9d9d04
PA
3109 /* Enqueue the current thread last, so that we move all other
3110 threads over their breakpoints first. */
08036331
PA
3111 if (cur_thr->stepping_over_breakpoint)
3112 thread_step_over_chain_enqueue (cur_thr);
30852783 3113
4d9d9d04
PA
3114 /* If the thread isn't started, we'll still need to set its prev_pc,
3115 so that switch_back_to_stepped_thread knows the thread hasn't
3116 advanced. Must do this before resuming any thread, as in
3117 all-stop/remote, once we resume we can't send any other packet
3118 until the target stops again. */
08036331 3119 cur_thr->prev_pc = regcache_read_pc (regcache);
99619bea 3120
a9bc57b9
TT
3121 {
3122 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
85ad3aaf 3123
a9bc57b9 3124 started = start_step_over ();
c906108c 3125
a9bc57b9
TT
3126 if (step_over_info_valid_p ())
3127 {
3128 /* Either this thread started a new in-line step over, or some
3129 other thread was already doing one. In either case, don't
3130 resume anything else until the step-over is finished. */
3131 }
3132 else if (started && !target_is_non_stop_p ())
3133 {
3134 /* A new displaced stepping sequence was started. In all-stop,
3135 we can't talk to the target anymore until it next stops. */
3136 }
3137 else if (!non_stop && target_is_non_stop_p ())
3138 {
3139 /* In all-stop, but the target is always in non-stop mode.
3140 Start all other threads that are implicitly resumed too. */
5b6d1e4f
PA
3141 for (thread_info *tp : all_non_exited_threads (resume_target,
3142 resume_ptid))
3143 {
3144 switch_to_thread_no_regs (tp);
3145
f9fac3c8
SM
3146 if (!tp->inf->has_execution ())
3147 {
3148 if (debug_infrun)
3149 fprintf_unfiltered (gdb_stdlog,
3150 "infrun: proceed: [%s] target has "
3151 "no execution\n",
3152 target_pid_to_str (tp->ptid).c_str ());
3153 continue;
3154 }
f3f8ece4 3155
f9fac3c8
SM
3156 if (tp->resumed)
3157 {
3158 if (debug_infrun)
3159 fprintf_unfiltered (gdb_stdlog,
3160 "infrun: proceed: [%s] resumed\n",
3161 target_pid_to_str (tp->ptid).c_str ());
3162 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3163 continue;
3164 }
fbea99ea 3165
f9fac3c8
SM
3166 if (thread_is_in_step_over_chain (tp))
3167 {
3168 if (debug_infrun)
3169 fprintf_unfiltered (gdb_stdlog,
3170 "infrun: proceed: [%s] needs step-over\n",
3171 target_pid_to_str (tp->ptid).c_str ());
3172 continue;
3173 }
fbea99ea 3174
f9fac3c8
SM
3175 if (debug_infrun)
3176 fprintf_unfiltered (gdb_stdlog,
3177 "infrun: proceed: resuming %s\n",
3178 target_pid_to_str (tp->ptid).c_str ());
fbea99ea 3179
f9fac3c8
SM
3180 reset_ecs (ecs, tp);
3181 switch_to_thread (tp);
3182 keep_going_pass_signal (ecs);
3183 if (!ecs->wait_some_more)
3184 error (_("Command aborted."));
3185 }
a9bc57b9 3186 }
08036331 3187 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
a9bc57b9
TT
3188 {
3189 /* The thread wasn't started, and isn't queued, run it now. */
08036331
PA
3190 reset_ecs (ecs, cur_thr);
3191 switch_to_thread (cur_thr);
a9bc57b9
TT
3192 keep_going_pass_signal (ecs);
3193 if (!ecs->wait_some_more)
3194 error (_("Command aborted."));
3195 }
3196 }
c906108c 3197
5b6d1e4f 3198 commit_resume_all_targets ();
85ad3aaf 3199
731f534f 3200 finish_state.release ();
c906108c 3201
873657b9
PA
3202 /* If we've switched threads above, switch back to the previously
3203 current thread. We don't want the user to see a different
3204 selected thread. */
3205 switch_to_thread (cur_thr);
3206
0b333c5e
PA
3207 /* Tell the event loop to wait for it to stop. If the target
3208 supports asynchronous execution, it'll do this from within
3209 target_resume. */
362646f5 3210 if (!target_can_async_p ())
0b333c5e 3211 mark_async_event_handler (infrun_async_inferior_event_token);
c906108c 3212}
c906108c
SS
3213\f
3214
3215/* Start remote-debugging of a machine over a serial link. */
96baa820 3216
c906108c 3217void
8621d6a9 3218start_remote (int from_tty)
c906108c 3219{
5b6d1e4f
PA
3220 inferior *inf = current_inferior ();
3221 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
43ff13b4 3222
1777feb0 3223 /* Always go on waiting for the target, regardless of the mode. */
6426a772 3224 /* FIXME: cagney/1999-09-23: At present it isn't possible to
7e73cedf 3225 indicate to wait_for_inferior that a target should timeout if
6426a772
JM
3226 nothing is returned (instead of just blocking). Because of this,
3227 targets expecting an immediate response need to, internally, set
3228 things up so that the target_wait() is forced to eventually
1777feb0 3229 timeout. */
6426a772
JM
3230 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3231 differentiate to its caller what the state of the target is after
3232 the initial open has been performed. Here we're assuming that
3233 the target has stopped. It should be possible to eventually have
3234 target_open() return to the caller an indication that the target
3235 is currently running and GDB state should be set to the same as
1777feb0 3236 for an async run. */
5b6d1e4f 3237 wait_for_inferior (inf);
8621d6a9
DJ
3238
3239 /* Now that the inferior has stopped, do any bookkeeping like
3240 loading shared libraries. We want to do this before normal_stop,
3241 so that the displayed frame is up to date. */
8b88a78e 3242 post_create_inferior (current_top_target (), from_tty);
8621d6a9 3243
6426a772 3244 normal_stop ();
c906108c
SS
3245}
3246
3247/* Initialize static vars when a new inferior begins. */
3248
3249void
96baa820 3250init_wait_for_inferior (void)
c906108c
SS
3251{
3252 /* These are meaningless until the first time through wait_for_inferior. */
c906108c 3253
c906108c
SS
3254 breakpoint_init_inferior (inf_starting);
3255
70509625 3256 clear_proceed_status (0);
9f976b41 3257
ab1ddbcf 3258 nullify_last_target_wait_ptid ();
237fc4c9 3259
842951eb 3260 previous_inferior_ptid = inferior_ptid;
c906108c 3261}
237fc4c9 3262
c906108c 3263\f
488f131b 3264
ec9499be 3265static void handle_inferior_event (struct execution_control_state *ecs);
cd0fc7c3 3266
568d6575
UW
3267static void handle_step_into_function (struct gdbarch *gdbarch,
3268 struct execution_control_state *ecs);
3269static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3270 struct execution_control_state *ecs);
4f5d7f63 3271static void handle_signal_stop (struct execution_control_state *ecs);
186c406b 3272static void check_exception_resume (struct execution_control_state *,
28106bc2 3273 struct frame_info *);
611c83ae 3274
bdc36728 3275static void end_stepping_range (struct execution_control_state *ecs);
22bcd14b 3276static void stop_waiting (struct execution_control_state *ecs);
d4f3574e 3277static void keep_going (struct execution_control_state *ecs);
94c57d6a 3278static void process_event_stop_test (struct execution_control_state *ecs);
c447ac0b 3279static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
104c1213 3280
252fbfc8
PA
3281/* This function is attached as a "thread_stop_requested" observer.
3282 Cleanup local state that assumed the PTID was to be resumed, and
3283 report the stop to the frontend. */
3284
2c0b251b 3285static void
252fbfc8
PA
3286infrun_thread_stop_requested (ptid_t ptid)
3287{
5b6d1e4f
PA
3288 process_stratum_target *curr_target = current_inferior ()->process_target ();
3289
c65d6b55
PA
3290 /* PTID was requested to stop. If the thread was already stopped,
3291 but the user/frontend doesn't know about that yet (e.g., the
3292 thread had been temporarily paused for some step-over), set up
3293 for reporting the stop now. */
5b6d1e4f 3294 for (thread_info *tp : all_threads (curr_target, ptid))
08036331
PA
3295 {
3296 if (tp->state != THREAD_RUNNING)
3297 continue;
3298 if (tp->executing)
3299 continue;
c65d6b55 3300
08036331
PA
3301 /* Remove matching threads from the step-over queue, so
3302 start_step_over doesn't try to resume them
3303 automatically. */
3304 if (thread_is_in_step_over_chain (tp))
3305 thread_step_over_chain_remove (tp);
c65d6b55 3306
08036331
PA
3307 /* If the thread is stopped, but the user/frontend doesn't
3308 know about that yet, queue a pending event, as if the
3309 thread had just stopped now. Unless the thread already had
3310 a pending event. */
3311 if (!tp->suspend.waitstatus_pending_p)
3312 {
3313 tp->suspend.waitstatus_pending_p = 1;
3314 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3315 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3316 }
c65d6b55 3317
08036331
PA
3318 /* Clear the inline-frame state, since we're re-processing the
3319 stop. */
5b6d1e4f 3320 clear_inline_frame_state (tp);
c65d6b55 3321
08036331
PA
3322 /* If this thread was paused because some other thread was
3323 doing an inline-step over, let that finish first. Once
3324 that happens, we'll restart all threads and consume pending
3325 stop events then. */
3326 if (step_over_info_valid_p ())
3327 continue;
3328
3329 /* Otherwise we can process the (new) pending event now. Set
3330 it so this pending event is considered by
3331 do_target_wait. */
719546c4 3332 tp->resumed = true;
08036331 3333 }
252fbfc8
PA
3334}
3335
a07daef3
PA
3336static void
3337infrun_thread_thread_exit (struct thread_info *tp, int silent)
3338{
5b6d1e4f
PA
3339 if (target_last_proc_target == tp->inf->process_target ()
3340 && target_last_wait_ptid == tp->ptid)
a07daef3
PA
3341 nullify_last_target_wait_ptid ();
3342}
3343
0cbcdb96
PA
3344/* Delete the step resume, single-step and longjmp/exception resume
3345 breakpoints of TP. */
4e1c45ea 3346
0cbcdb96
PA
3347static void
3348delete_thread_infrun_breakpoints (struct thread_info *tp)
4e1c45ea 3349{
0cbcdb96
PA
3350 delete_step_resume_breakpoint (tp);
3351 delete_exception_resume_breakpoint (tp);
34b7e8a6 3352 delete_single_step_breakpoints (tp);
4e1c45ea
PA
3353}
3354
0cbcdb96
PA
3355/* If the target still has execution, call FUNC for each thread that
3356 just stopped. In all-stop, that's all the non-exited threads; in
3357 non-stop, that's the current thread, only. */
3358
3359typedef void (*for_each_just_stopped_thread_callback_func)
3360 (struct thread_info *tp);
4e1c45ea
PA
3361
3362static void
0cbcdb96 3363for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
4e1c45ea 3364{
d7e15655 3365 if (!target_has_execution || inferior_ptid == null_ptid)
4e1c45ea
PA
3366 return;
3367
fbea99ea 3368 if (target_is_non_stop_p ())
4e1c45ea 3369 {
0cbcdb96
PA
3370 /* If in non-stop mode, only the current thread stopped. */
3371 func (inferior_thread ());
4e1c45ea
PA
3372 }
3373 else
0cbcdb96 3374 {
0cbcdb96 3375 /* In all-stop mode, all threads have stopped. */
08036331
PA
3376 for (thread_info *tp : all_non_exited_threads ())
3377 func (tp);
0cbcdb96
PA
3378 }
3379}
3380
3381/* Delete the step resume and longjmp/exception resume breakpoints of
3382 the threads that just stopped. */
3383
3384static void
3385delete_just_stopped_threads_infrun_breakpoints (void)
3386{
3387 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
34b7e8a6
PA
3388}
3389
3390/* Delete the single-step breakpoints of the threads that just
3391 stopped. */
7c16b83e 3392
34b7e8a6
PA
3393static void
3394delete_just_stopped_threads_single_step_breakpoints (void)
3395{
3396 for_each_just_stopped_thread (delete_single_step_breakpoints);
4e1c45ea
PA
3397}
3398
221e1a37 3399/* See infrun.h. */
223698f8 3400
221e1a37 3401void
223698f8
DE
3402print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3403 const struct target_waitstatus *ws)
3404{
23fdd69e 3405 std::string status_string = target_waitstatus_to_string (ws);
d7e74731 3406 string_file stb;
223698f8
DE
3407
3408 /* The text is split over several lines because it was getting too long.
3409 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3410 output as a unit; we want only one timestamp printed if debug_timestamp
3411 is set. */
3412
d7e74731 3413 stb.printf ("infrun: target_wait (%d.%ld.%ld",
e99b03dc 3414 waiton_ptid.pid (),
e38504b3 3415 waiton_ptid.lwp (),
cc6bcb54 3416 waiton_ptid.tid ());
e99b03dc 3417 if (waiton_ptid.pid () != -1)
a068643d 3418 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
d7e74731
PA
3419 stb.printf (", status) =\n");
3420 stb.printf ("infrun: %d.%ld.%ld [%s],\n",
e99b03dc 3421 result_ptid.pid (),
e38504b3 3422 result_ptid.lwp (),
cc6bcb54 3423 result_ptid.tid (),
a068643d 3424 target_pid_to_str (result_ptid).c_str ());
23fdd69e 3425 stb.printf ("infrun: %s\n", status_string.c_str ());
223698f8
DE
3426
3427 /* This uses %s in part to handle %'s in the text, but also to avoid
3428 a gcc error: the format attribute requires a string literal. */
d7e74731 3429 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
223698f8
DE
3430}
3431
372316f1
PA
3432/* Select a thread at random, out of those which are resumed and have
3433 had events. */
3434
3435static struct thread_info *
5b6d1e4f 3436random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
372316f1 3437{
372316f1 3438 int num_events = 0;
08036331 3439
5b6d1e4f 3440 auto has_event = [&] (thread_info *tp)
08036331 3441 {
5b6d1e4f
PA
3442 return (tp->ptid.matches (waiton_ptid)
3443 && tp->resumed
08036331
PA
3444 && tp->suspend.waitstatus_pending_p);
3445 };
372316f1
PA
3446
3447 /* First see how many events we have. Count only resumed threads
3448 that have an event pending. */
5b6d1e4f 3449 for (thread_info *tp : inf->non_exited_threads ())
08036331 3450 if (has_event (tp))
372316f1
PA
3451 num_events++;
3452
3453 if (num_events == 0)
3454 return NULL;
3455
3456 /* Now randomly pick a thread out of those that have had events. */
08036331
PA
3457 int random_selector = (int) ((num_events * (double) rand ())
3458 / (RAND_MAX + 1.0));
372316f1
PA
3459
3460 if (debug_infrun && num_events > 1)
3461 fprintf_unfiltered (gdb_stdlog,
3462 "infrun: Found %d events, selecting #%d\n",
3463 num_events, random_selector);
3464
3465 /* Select the Nth thread that has had an event. */
5b6d1e4f 3466 for (thread_info *tp : inf->non_exited_threads ())
08036331 3467 if (has_event (tp))
372316f1 3468 if (random_selector-- == 0)
08036331 3469 return tp;
372316f1 3470
08036331 3471 gdb_assert_not_reached ("event thread not found");
372316f1
PA
3472}
3473
3474/* Wrapper for target_wait that first checks whether threads have
3475 pending statuses to report before actually asking the target for
5b6d1e4f
PA
3476 more events. INF is the inferior we're using to call target_wait
3477 on. */
372316f1
PA
3478
3479static ptid_t
5b6d1e4f
PA
3480do_target_wait_1 (inferior *inf, ptid_t ptid,
3481 target_waitstatus *status, int options)
372316f1
PA
3482{
3483 ptid_t event_ptid;
3484 struct thread_info *tp;
3485
24ed6739
AB
3486 /* We know that we are looking for an event in the target of inferior
3487 INF, but we don't know which thread the event might come from. As
3488 such we want to make sure that INFERIOR_PTID is reset so that none of
3489 the wait code relies on it - doing so is always a mistake. */
3490 switch_to_inferior_no_thread (inf);
3491
372316f1
PA
3492 /* First check if there is a resumed thread with a wait status
3493 pending. */
d7e15655 3494 if (ptid == minus_one_ptid || ptid.is_pid ())
372316f1 3495 {
5b6d1e4f 3496 tp = random_pending_event_thread (inf, ptid);
372316f1
PA
3497 }
3498 else
3499 {
3500 if (debug_infrun)
3501 fprintf_unfiltered (gdb_stdlog,
3502 "infrun: Waiting for specific thread %s.\n",
a068643d 3503 target_pid_to_str (ptid).c_str ());
372316f1
PA
3504
3505 /* We have a specific thread to check. */
5b6d1e4f 3506 tp = find_thread_ptid (inf, ptid);
372316f1
PA
3507 gdb_assert (tp != NULL);
3508 if (!tp->suspend.waitstatus_pending_p)
3509 tp = NULL;
3510 }
3511
3512 if (tp != NULL
3513 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3514 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3515 {
00431a78 3516 struct regcache *regcache = get_thread_regcache (tp);
ac7936df 3517 struct gdbarch *gdbarch = regcache->arch ();
372316f1
PA
3518 CORE_ADDR pc;
3519 int discard = 0;
3520
3521 pc = regcache_read_pc (regcache);
3522
3523 if (pc != tp->suspend.stop_pc)
3524 {
3525 if (debug_infrun)
3526 fprintf_unfiltered (gdb_stdlog,
3527 "infrun: PC of %s changed. was=%s, now=%s\n",
a068643d 3528 target_pid_to_str (tp->ptid).c_str (),
defd2172 3529 paddress (gdbarch, tp->suspend.stop_pc),
372316f1
PA
3530 paddress (gdbarch, pc));
3531 discard = 1;
3532 }
a01bda52 3533 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
372316f1
PA
3534 {
3535 if (debug_infrun)
3536 fprintf_unfiltered (gdb_stdlog,
3537 "infrun: previous breakpoint of %s, at %s gone\n",
a068643d 3538 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
3539 paddress (gdbarch, pc));
3540
3541 discard = 1;
3542 }
3543
3544 if (discard)
3545 {
3546 if (debug_infrun)
3547 fprintf_unfiltered (gdb_stdlog,
3548 "infrun: pending event of %s cancelled.\n",
a068643d 3549 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3550
3551 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3552 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3553 }
3554 }
3555
3556 if (tp != NULL)
3557 {
3558 if (debug_infrun)
3559 {
23fdd69e
SM
3560 std::string statstr
3561 = target_waitstatus_to_string (&tp->suspend.waitstatus);
372316f1 3562
372316f1
PA
3563 fprintf_unfiltered (gdb_stdlog,
3564 "infrun: Using pending wait status %s for %s.\n",
23fdd69e 3565 statstr.c_str (),
a068643d 3566 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
3567 }
3568
3569 /* Now that we've selected our final event LWP, un-adjust its PC
3570 if it was a software breakpoint (and the target doesn't
3571 always adjust the PC itself). */
3572 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3573 && !target_supports_stopped_by_sw_breakpoint ())
3574 {
3575 struct regcache *regcache;
3576 struct gdbarch *gdbarch;
3577 int decr_pc;
3578
00431a78 3579 regcache = get_thread_regcache (tp);
ac7936df 3580 gdbarch = regcache->arch ();
372316f1
PA
3581
3582 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3583 if (decr_pc != 0)
3584 {
3585 CORE_ADDR pc;
3586
3587 pc = regcache_read_pc (regcache);
3588 regcache_write_pc (regcache, pc + decr_pc);
3589 }
3590 }
3591
3592 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3593 *status = tp->suspend.waitstatus;
3594 tp->suspend.waitstatus_pending_p = 0;
3595
3596 /* Wake up the event loop again, until all pending events are
3597 processed. */
3598 if (target_is_async_p ())
3599 mark_async_event_handler (infrun_async_inferior_event_token);
3600 return tp->ptid;
3601 }
3602
3603 /* But if we don't find one, we'll have to wait. */
3604
3605 if (deprecated_target_wait_hook)
3606 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3607 else
3608 event_ptid = target_wait (ptid, status, options);
3609
3610 return event_ptid;
3611}
3612
5b6d1e4f
PA
3613/* Returns true if INF has any resumed thread with a status
3614 pending. */
3615
3616static bool
3617threads_are_resumed_pending_p (inferior *inf)
3618{
3619 for (thread_info *tp : inf->non_exited_threads ())
3620 if (tp->resumed
3621 && tp->suspend.waitstatus_pending_p)
3622 return true;
3623
3624 return false;
3625}
3626
3627/* Wrapper for target_wait that first checks whether threads have
3628 pending statuses to report before actually asking the target for
3629 more events. Polls for events from all inferiors/targets. */
3630
3631static bool
3632do_target_wait (ptid_t wait_ptid, execution_control_state *ecs, int options)
3633{
3634 int num_inferiors = 0;
3635 int random_selector;
3636
3637 /* For fairness, we pick the first inferior/target to poll at
3638 random, and then continue polling the rest of the inferior list
3639 starting from that one in a circular fashion until the whole list
3640 is polled once. */
3641
3642 auto inferior_matches = [&wait_ptid] (inferior *inf)
3643 {
3644 return (inf->process_target () != NULL
3645 && (threads_are_executing (inf->process_target ())
3646 || threads_are_resumed_pending_p (inf))
3647 && ptid_t (inf->pid).matches (wait_ptid));
3648 };
3649
3650 /* First see how many resumed inferiors we have. */
3651 for (inferior *inf : all_inferiors ())
3652 if (inferior_matches (inf))
3653 num_inferiors++;
3654
3655 if (num_inferiors == 0)
3656 {
3657 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3658 return false;
3659 }
3660
3661 /* Now randomly pick an inferior out of those that were resumed. */
3662 random_selector = (int)
3663 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3664
3665 if (debug_infrun && num_inferiors > 1)
3666 fprintf_unfiltered (gdb_stdlog,
3667 "infrun: Found %d inferiors, starting at #%d\n",
3668 num_inferiors, random_selector);
3669
3670 /* Select the Nth inferior that was resumed. */
3671
3672 inferior *selected = nullptr;
3673
3674 for (inferior *inf : all_inferiors ())
3675 if (inferior_matches (inf))
3676 if (random_selector-- == 0)
3677 {
3678 selected = inf;
3679 break;
3680 }
3681
3682 /* Now poll for events out of each of the resumed inferior's
3683 targets, starting from the selected one. */
3684
3685 auto do_wait = [&] (inferior *inf)
3686 {
5b6d1e4f
PA
3687 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3688 ecs->target = inf->process_target ();
3689 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3690 };
3691
3692 /* Needed in all-stop+target-non-stop mode, because we end up here
3693 spuriously after the target is all stopped and we've already
3694 reported the stop to the user, polling for events. */
3695 scoped_restore_current_thread restore_thread;
3696
3697 int inf_num = selected->num;
3698 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3699 if (inferior_matches (inf))
3700 if (do_wait (inf))
3701 return true;
3702
3703 for (inferior *inf = inferior_list;
3704 inf != NULL && inf->num < inf_num;
3705 inf = inf->next)
3706 if (inferior_matches (inf))
3707 if (do_wait (inf))
3708 return true;
3709
3710 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3711 return false;
3712}
3713
24291992
PA
3714/* Prepare and stabilize the inferior for detaching it. E.g.,
3715 detaching while a thread is displaced stepping is a recipe for
3716 crashing it, as nothing would readjust the PC out of the scratch
3717 pad. */
3718
3719void
3720prepare_for_detach (void)
3721{
3722 struct inferior *inf = current_inferior ();
f2907e49 3723 ptid_t pid_ptid = ptid_t (inf->pid);
24291992 3724
00431a78 3725 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
24291992
PA
3726
3727 /* Is any thread of this process displaced stepping? If not,
3728 there's nothing else to do. */
d20172fc 3729 if (displaced->step_thread == nullptr)
24291992
PA
3730 return;
3731
3732 if (debug_infrun)
3733 fprintf_unfiltered (gdb_stdlog,
3734 "displaced-stepping in-process while detaching");
3735
9bcb1f16 3736 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
24291992 3737
00431a78 3738 while (displaced->step_thread != nullptr)
24291992 3739 {
24291992
PA
3740 struct execution_control_state ecss;
3741 struct execution_control_state *ecs;
3742
3743 ecs = &ecss;
3744 memset (ecs, 0, sizeof (*ecs));
3745
3746 overlay_cache_invalid = 1;
f15cb84a
YQ
3747 /* Flush target cache before starting to handle each event.
3748 Target was running and cache could be stale. This is just a
3749 heuristic. Running threads may modify target memory, but we
3750 don't get any event. */
3751 target_dcache_invalidate ();
24291992 3752
5b6d1e4f 3753 do_target_wait (pid_ptid, ecs, 0);
24291992
PA
3754
3755 if (debug_infrun)
3756 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3757
3758 /* If an error happens while handling the event, propagate GDB's
3759 knowledge of the executing state to the frontend/user running
3760 state. */
5b6d1e4f
PA
3761 scoped_finish_thread_state finish_state (inf->process_target (),
3762 minus_one_ptid);
24291992
PA
3763
3764 /* Now figure out what to do with the result of the result. */
3765 handle_inferior_event (ecs);
3766
3767 /* No error, don't finish the state yet. */
731f534f 3768 finish_state.release ();
24291992
PA
3769
3770 /* Breakpoints and watchpoints are not installed on the target
3771 at this point, and signals are passed directly to the
3772 inferior, so this must mean the process is gone. */
3773 if (!ecs->wait_some_more)
3774 {
9bcb1f16 3775 restore_detaching.release ();
24291992
PA
3776 error (_("Program exited while detaching"));
3777 }
3778 }
3779
9bcb1f16 3780 restore_detaching.release ();
24291992
PA
3781}
3782
cd0fc7c3 3783/* Wait for control to return from inferior to debugger.
ae123ec6 3784
cd0fc7c3
SS
3785 If inferior gets a signal, we may decide to start it up again
3786 instead of returning. That is why there is a loop in this function.
3787 When this function actually returns it means the inferior
3788 should be left stopped and GDB should read more commands. */
3789
5b6d1e4f
PA
3790static void
3791wait_for_inferior (inferior *inf)
cd0fc7c3 3792{
527159b7 3793 if (debug_infrun)
ae123ec6 3794 fprintf_unfiltered
e4c8541f 3795 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
527159b7 3796
4c41382a 3797 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
cd0fc7c3 3798
e6f5c25b
PA
3799 /* If an error happens while handling the event, propagate GDB's
3800 knowledge of the executing state to the frontend/user running
3801 state. */
5b6d1e4f
PA
3802 scoped_finish_thread_state finish_state
3803 (inf->process_target (), minus_one_ptid);
e6f5c25b 3804
c906108c
SS
3805 while (1)
3806 {
ae25568b
PA
3807 struct execution_control_state ecss;
3808 struct execution_control_state *ecs = &ecss;
29f49a6a 3809
ae25568b
PA
3810 memset (ecs, 0, sizeof (*ecs));
3811
ec9499be 3812 overlay_cache_invalid = 1;
ec9499be 3813
f15cb84a
YQ
3814 /* Flush target cache before starting to handle each event.
3815 Target was running and cache could be stale. This is just a
3816 heuristic. Running threads may modify target memory, but we
3817 don't get any event. */
3818 target_dcache_invalidate ();
3819
5b6d1e4f
PA
3820 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3821 ecs->target = inf->process_target ();
c906108c 3822
f00150c9 3823 if (debug_infrun)
5b6d1e4f 3824 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
f00150c9 3825
cd0fc7c3
SS
3826 /* Now figure out what to do with the result of the result. */
3827 handle_inferior_event (ecs);
c906108c 3828
cd0fc7c3
SS
3829 if (!ecs->wait_some_more)
3830 break;
3831 }
4e1c45ea 3832
e6f5c25b 3833 /* No error, don't finish the state yet. */
731f534f 3834 finish_state.release ();
cd0fc7c3 3835}
c906108c 3836
d3d4baed
PA
3837/* Cleanup that reinstalls the readline callback handler, if the
3838 target is running in the background. If while handling the target
3839 event something triggered a secondary prompt, like e.g., a
3840 pagination prompt, we'll have removed the callback handler (see
3841 gdb_readline_wrapper_line). Need to do this as we go back to the
3842 event loop, ready to process further input. Note this has no
3843 effect if the handler hasn't actually been removed, because calling
3844 rl_callback_handler_install resets the line buffer, thus losing
3845 input. */
3846
3847static void
d238133d 3848reinstall_readline_callback_handler_cleanup ()
d3d4baed 3849{
3b12939d
PA
3850 struct ui *ui = current_ui;
3851
3852 if (!ui->async)
6c400b59
PA
3853 {
3854 /* We're not going back to the top level event loop yet. Don't
3855 install the readline callback, as it'd prep the terminal,
3856 readline-style (raw, noecho) (e.g., --batch). We'll install
3857 it the next time the prompt is displayed, when we're ready
3858 for input. */
3859 return;
3860 }
3861
3b12939d 3862 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
d3d4baed
PA
3863 gdb_rl_callback_handler_reinstall ();
3864}
3865
243a9253
PA
3866/* Clean up the FSMs of threads that are now stopped. In non-stop,
3867 that's just the event thread. In all-stop, that's all threads. */
3868
3869static void
3870clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3871{
08036331
PA
3872 if (ecs->event_thread != NULL
3873 && ecs->event_thread->thread_fsm != NULL)
46e3ed7f 3874 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
243a9253
PA
3875
3876 if (!non_stop)
3877 {
08036331 3878 for (thread_info *thr : all_non_exited_threads ())
243a9253
PA
3879 {
3880 if (thr->thread_fsm == NULL)
3881 continue;
3882 if (thr == ecs->event_thread)
3883 continue;
3884
00431a78 3885 switch_to_thread (thr);
46e3ed7f 3886 thr->thread_fsm->clean_up (thr);
243a9253
PA
3887 }
3888
3889 if (ecs->event_thread != NULL)
00431a78 3890 switch_to_thread (ecs->event_thread);
243a9253
PA
3891 }
3892}
3893
3b12939d
PA
3894/* Helper for all_uis_check_sync_execution_done that works on the
3895 current UI. */
3896
3897static void
3898check_curr_ui_sync_execution_done (void)
3899{
3900 struct ui *ui = current_ui;
3901
3902 if (ui->prompt_state == PROMPT_NEEDED
3903 && ui->async
3904 && !gdb_in_secondary_prompt_p (ui))
3905 {
223ffa71 3906 target_terminal::ours ();
76727919 3907 gdb::observers::sync_execution_done.notify ();
3eb7562a 3908 ui_register_input_event_handler (ui);
3b12939d
PA
3909 }
3910}
3911
3912/* See infrun.h. */
3913
3914void
3915all_uis_check_sync_execution_done (void)
3916{
0e454242 3917 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
3918 {
3919 check_curr_ui_sync_execution_done ();
3920 }
3921}
3922
a8836c93
PA
3923/* See infrun.h. */
3924
3925void
3926all_uis_on_sync_execution_starting (void)
3927{
0e454242 3928 SWITCH_THRU_ALL_UIS ()
a8836c93
PA
3929 {
3930 if (current_ui->prompt_state == PROMPT_NEEDED)
3931 async_disable_stdin ();
3932 }
3933}
3934
1777feb0 3935/* Asynchronous version of wait_for_inferior. It is called by the
43ff13b4 3936 event loop whenever a change of state is detected on the file
1777feb0
MS
3937 descriptor corresponding to the target. It can be called more than
3938 once to complete a single execution command. In such cases we need
3939 to keep the state in a global variable ECSS. If it is the last time
a474d7c2
PA
3940 that this function is called for a single execution command, then
3941 report to the user that the inferior has stopped, and do the
1777feb0 3942 necessary cleanups. */
43ff13b4
JM
3943
3944void
fba45db2 3945fetch_inferior_event (void *client_data)
43ff13b4 3946{
0d1e5fa7 3947 struct execution_control_state ecss;
a474d7c2 3948 struct execution_control_state *ecs = &ecss;
0f641c01 3949 int cmd_done = 0;
43ff13b4 3950
0d1e5fa7
PA
3951 memset (ecs, 0, sizeof (*ecs));
3952
c61db772
PA
3953 /* Events are always processed with the main UI as current UI. This
3954 way, warnings, debug output, etc. are always consistently sent to
3955 the main console. */
4b6749b9 3956 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
c61db772 3957
d3d4baed 3958 /* End up with readline processing input, if necessary. */
d238133d
TT
3959 {
3960 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3961
3962 /* We're handling a live event, so make sure we're doing live
3963 debugging. If we're looking at traceframes while the target is
3964 running, we're going to need to get back to that mode after
3965 handling the event. */
3966 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3967 if (non_stop)
3968 {
3969 maybe_restore_traceframe.emplace ();
3970 set_current_traceframe (-1);
3971 }
43ff13b4 3972
873657b9
PA
3973 /* The user/frontend should not notice a thread switch due to
3974 internal events. Make sure we revert to the user selected
3975 thread and frame after handling the event and running any
3976 breakpoint commands. */
3977 scoped_restore_current_thread restore_thread;
d238133d
TT
3978
3979 overlay_cache_invalid = 1;
3980 /* Flush target cache before starting to handle each event. Target
3981 was running and cache could be stale. This is just a heuristic.
3982 Running threads may modify target memory, but we don't get any
3983 event. */
3984 target_dcache_invalidate ();
3985
3986 scoped_restore save_exec_dir
3987 = make_scoped_restore (&execution_direction,
3988 target_execution_direction ());
3989
5b6d1e4f
PA
3990 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3991 return;
3992
3993 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3994
3995 /* Switch to the target that generated the event, so we can do
3996 target calls. Any inferior bound to the target will do, so we
3997 just switch to the first we find. */
3998 for (inferior *inf : all_inferiors (ecs->target))
3999 {
4000 switch_to_inferior_no_thread (inf);
4001 break;
4002 }
d238133d
TT
4003
4004 if (debug_infrun)
5b6d1e4f 4005 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
d238133d
TT
4006
4007 /* If an error happens while handling the event, propagate GDB's
4008 knowledge of the executing state to the frontend/user running
4009 state. */
4010 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
5b6d1e4f 4011 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
d238133d 4012
979a0d13 4013 /* Get executed before scoped_restore_current_thread above to apply
d238133d
TT
4014 still for the thread which has thrown the exception. */
4015 auto defer_bpstat_clear
4016 = make_scope_exit (bpstat_clear_actions);
4017 auto defer_delete_threads
4018 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4019
4020 /* Now figure out what to do with the result of the result. */
4021 handle_inferior_event (ecs);
4022
4023 if (!ecs->wait_some_more)
4024 {
5b6d1e4f 4025 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
d238133d
TT
4026 int should_stop = 1;
4027 struct thread_info *thr = ecs->event_thread;
d6b48e9c 4028
d238133d 4029 delete_just_stopped_threads_infrun_breakpoints ();
f107f563 4030
d238133d
TT
4031 if (thr != NULL)
4032 {
4033 struct thread_fsm *thread_fsm = thr->thread_fsm;
243a9253 4034
d238133d 4035 if (thread_fsm != NULL)
46e3ed7f 4036 should_stop = thread_fsm->should_stop (thr);
d238133d 4037 }
243a9253 4038
d238133d
TT
4039 if (!should_stop)
4040 {
4041 keep_going (ecs);
4042 }
4043 else
4044 {
46e3ed7f 4045 bool should_notify_stop = true;
d238133d 4046 int proceeded = 0;
1840d81a 4047
d238133d 4048 clean_up_just_stopped_threads_fsms (ecs);
243a9253 4049
d238133d 4050 if (thr != NULL && thr->thread_fsm != NULL)
46e3ed7f 4051 should_notify_stop = thr->thread_fsm->should_notify_stop ();
388a7084 4052
d238133d
TT
4053 if (should_notify_stop)
4054 {
4055 /* We may not find an inferior if this was a process exit. */
4056 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4057 proceeded = normal_stop ();
4058 }
243a9253 4059
d238133d
TT
4060 if (!proceeded)
4061 {
4062 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
4063 cmd_done = 1;
4064 }
873657b9
PA
4065
4066 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4067 previously selected thread is gone. We have two
4068 choices - switch to no thread selected, or restore the
4069 previously selected thread (now exited). We chose the
4070 later, just because that's what GDB used to do. After
4071 this, "info threads" says "The current thread <Thread
4072 ID 2> has terminated." instead of "No thread
4073 selected.". */
4074 if (!non_stop
4075 && cmd_done
4076 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4077 restore_thread.dont_restore ();
d238133d
TT
4078 }
4079 }
4f8d22e3 4080
d238133d
TT
4081 defer_delete_threads.release ();
4082 defer_bpstat_clear.release ();
29f49a6a 4083
d238133d
TT
4084 /* No error, don't finish the thread states yet. */
4085 finish_state.release ();
731f534f 4086
d238133d
TT
4087 /* This scope is used to ensure that readline callbacks are
4088 reinstalled here. */
4089 }
4f8d22e3 4090
3b12939d
PA
4091 /* If a UI was in sync execution mode, and now isn't, restore its
4092 prompt (a synchronous execution command has finished, and we're
4093 ready for input). */
4094 all_uis_check_sync_execution_done ();
0f641c01
PA
4095
4096 if (cmd_done
0f641c01 4097 && exec_done_display_p
00431a78
PA
4098 && (inferior_ptid == null_ptid
4099 || inferior_thread ()->state != THREAD_RUNNING))
0f641c01 4100 printf_unfiltered (_("completed.\n"));
43ff13b4
JM
4101}
4102
29734269
SM
4103/* See infrun.h. */
4104
edb3359d 4105void
29734269
SM
4106set_step_info (thread_info *tp, struct frame_info *frame,
4107 struct symtab_and_line sal)
edb3359d 4108{
29734269
SM
4109 /* This can be removed once this function no longer implicitly relies on the
4110 inferior_ptid value. */
4111 gdb_assert (inferior_ptid == tp->ptid);
edb3359d 4112
16c381f0
JK
4113 tp->control.step_frame_id = get_frame_id (frame);
4114 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
edb3359d
DJ
4115
4116 tp->current_symtab = sal.symtab;
4117 tp->current_line = sal.line;
4118}
4119
0d1e5fa7
PA
4120/* Clear context switchable stepping state. */
4121
4122void
4e1c45ea 4123init_thread_stepping_state (struct thread_info *tss)
0d1e5fa7 4124{
7f5ef605 4125 tss->stepped_breakpoint = 0;
0d1e5fa7 4126 tss->stepping_over_breakpoint = 0;
963f9c80 4127 tss->stepping_over_watchpoint = 0;
0d1e5fa7 4128 tss->step_after_step_resume_breakpoint = 0;
cd0fc7c3
SS
4129}
4130
ab1ddbcf 4131/* See infrun.h. */
c32c64b7 4132
6efcd9a8 4133void
5b6d1e4f
PA
4134set_last_target_status (process_stratum_target *target, ptid_t ptid,
4135 target_waitstatus status)
c32c64b7 4136{
5b6d1e4f 4137 target_last_proc_target = target;
c32c64b7
DE
4138 target_last_wait_ptid = ptid;
4139 target_last_waitstatus = status;
4140}
4141
ab1ddbcf 4142/* See infrun.h. */
e02bc4cc
DS
4143
4144void
5b6d1e4f
PA
4145get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4146 target_waitstatus *status)
e02bc4cc 4147{
5b6d1e4f
PA
4148 if (target != nullptr)
4149 *target = target_last_proc_target;
ab1ddbcf
PA
4150 if (ptid != nullptr)
4151 *ptid = target_last_wait_ptid;
4152 if (status != nullptr)
4153 *status = target_last_waitstatus;
e02bc4cc
DS
4154}
4155
ab1ddbcf
PA
4156/* See infrun.h. */
4157
ac264b3b
MS
4158void
4159nullify_last_target_wait_ptid (void)
4160{
5b6d1e4f 4161 target_last_proc_target = nullptr;
ac264b3b 4162 target_last_wait_ptid = minus_one_ptid;
ab1ddbcf 4163 target_last_waitstatus = {};
ac264b3b
MS
4164}
4165
dcf4fbde 4166/* Switch thread contexts. */
dd80620e
MS
4167
4168static void
00431a78 4169context_switch (execution_control_state *ecs)
dd80620e 4170{
00431a78
PA
4171 if (debug_infrun
4172 && ecs->ptid != inferior_ptid
5b6d1e4f
PA
4173 && (inferior_ptid == null_ptid
4174 || ecs->event_thread != inferior_thread ()))
fd48f117
DJ
4175 {
4176 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
a068643d 4177 target_pid_to_str (inferior_ptid).c_str ());
fd48f117 4178 fprintf_unfiltered (gdb_stdlog, "to %s\n",
a068643d 4179 target_pid_to_str (ecs->ptid).c_str ());
fd48f117
DJ
4180 }
4181
00431a78 4182 switch_to_thread (ecs->event_thread);
dd80620e
MS
4183}
4184
d8dd4d5f
PA
4185/* If the target can't tell whether we've hit breakpoints
4186 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4187 check whether that could have been caused by a breakpoint. If so,
4188 adjust the PC, per gdbarch_decr_pc_after_break. */
4189
4fa8626c 4190static void
d8dd4d5f
PA
4191adjust_pc_after_break (struct thread_info *thread,
4192 struct target_waitstatus *ws)
4fa8626c 4193{
24a73cce
UW
4194 struct regcache *regcache;
4195 struct gdbarch *gdbarch;
118e6252 4196 CORE_ADDR breakpoint_pc, decr_pc;
4fa8626c 4197
4fa8626c
DJ
4198 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4199 we aren't, just return.
9709f61c
DJ
4200
4201 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
b798847d
UW
4202 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4203 implemented by software breakpoints should be handled through the normal
4204 breakpoint layer.
8fb3e588 4205
4fa8626c
DJ
4206 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4207 different signals (SIGILL or SIGEMT for instance), but it is less
4208 clear where the PC is pointing afterwards. It may not match
b798847d
UW
4209 gdbarch_decr_pc_after_break. I don't know any specific target that
4210 generates these signals at breakpoints (the code has been in GDB since at
4211 least 1992) so I can not guess how to handle them here.
8fb3e588 4212
e6cf7916
UW
4213 In earlier versions of GDB, a target with
4214 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
b798847d
UW
4215 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4216 target with both of these set in GDB history, and it seems unlikely to be
4217 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4fa8626c 4218
d8dd4d5f 4219 if (ws->kind != TARGET_WAITKIND_STOPPED)
4fa8626c
DJ
4220 return;
4221
d8dd4d5f 4222 if (ws->value.sig != GDB_SIGNAL_TRAP)
4fa8626c
DJ
4223 return;
4224
4058b839
PA
4225 /* In reverse execution, when a breakpoint is hit, the instruction
4226 under it has already been de-executed. The reported PC always
4227 points at the breakpoint address, so adjusting it further would
4228 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4229 architecture:
4230
4231 B1 0x08000000 : INSN1
4232 B2 0x08000001 : INSN2
4233 0x08000002 : INSN3
4234 PC -> 0x08000003 : INSN4
4235
4236 Say you're stopped at 0x08000003 as above. Reverse continuing
4237 from that point should hit B2 as below. Reading the PC when the
4238 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4239 been de-executed already.
4240
4241 B1 0x08000000 : INSN1
4242 B2 PC -> 0x08000001 : INSN2
4243 0x08000002 : INSN3
4244 0x08000003 : INSN4
4245
4246 We can't apply the same logic as for forward execution, because
4247 we would wrongly adjust the PC to 0x08000000, since there's a
4248 breakpoint at PC - 1. We'd then report a hit on B1, although
4249 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4250 behaviour. */
4251 if (execution_direction == EXEC_REVERSE)
4252 return;
4253
1cf4d951
PA
4254 /* If the target can tell whether the thread hit a SW breakpoint,
4255 trust it. Targets that can tell also adjust the PC
4256 themselves. */
4257 if (target_supports_stopped_by_sw_breakpoint ())
4258 return;
4259
4260 /* Note that relying on whether a breakpoint is planted in memory to
4261 determine this can fail. E.g,. the breakpoint could have been
4262 removed since. Or the thread could have been told to step an
4263 instruction the size of a breakpoint instruction, and only
4264 _after_ was a breakpoint inserted at its address. */
4265
24a73cce
UW
4266 /* If this target does not decrement the PC after breakpoints, then
4267 we have nothing to do. */
00431a78 4268 regcache = get_thread_regcache (thread);
ac7936df 4269 gdbarch = regcache->arch ();
118e6252 4270
527a273a 4271 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
118e6252 4272 if (decr_pc == 0)
24a73cce
UW
4273 return;
4274
8b86c959 4275 const address_space *aspace = regcache->aspace ();
6c95b8df 4276
8aad930b
AC
4277 /* Find the location where (if we've hit a breakpoint) the
4278 breakpoint would be. */
118e6252 4279 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
8aad930b 4280
1cf4d951
PA
4281 /* If the target can't tell whether a software breakpoint triggered,
4282 fallback to figuring it out based on breakpoints we think were
4283 inserted in the target, and on whether the thread was stepped or
4284 continued. */
4285
1c5cfe86
PA
4286 /* Check whether there actually is a software breakpoint inserted at
4287 that location.
4288
4289 If in non-stop mode, a race condition is possible where we've
4290 removed a breakpoint, but stop events for that breakpoint were
4291 already queued and arrive later. To suppress those spurious
4292 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
1cf4d951
PA
4293 and retire them after a number of stop events are reported. Note
4294 this is an heuristic and can thus get confused. The real fix is
4295 to get the "stopped by SW BP and needs adjustment" info out of
4296 the target/kernel (and thus never reach here; see above). */
6c95b8df 4297 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
fbea99ea
PA
4298 || (target_is_non_stop_p ()
4299 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
8aad930b 4300 {
07036511 4301 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
abbb1732 4302
8213266a 4303 if (record_full_is_used ())
07036511
TT
4304 restore_operation_disable.emplace
4305 (record_full_gdb_operation_disable_set ());
96429cc8 4306
1c0fdd0e
UW
4307 /* When using hardware single-step, a SIGTRAP is reported for both
4308 a completed single-step and a software breakpoint. Need to
4309 differentiate between the two, as the latter needs adjusting
4310 but the former does not.
4311
4312 The SIGTRAP can be due to a completed hardware single-step only if
4313 - we didn't insert software single-step breakpoints
1c0fdd0e
UW
4314 - this thread is currently being stepped
4315
4316 If any of these events did not occur, we must have stopped due
4317 to hitting a software breakpoint, and have to back up to the
4318 breakpoint address.
4319
4320 As a special case, we could have hardware single-stepped a
4321 software breakpoint. In this case (prev_pc == breakpoint_pc),
4322 we also need to back up to the breakpoint address. */
4323
d8dd4d5f
PA
4324 if (thread_has_single_step_breakpoints_set (thread)
4325 || !currently_stepping (thread)
4326 || (thread->stepped_breakpoint
4327 && thread->prev_pc == breakpoint_pc))
515630c5 4328 regcache_write_pc (regcache, breakpoint_pc);
8aad930b 4329 }
4fa8626c
DJ
4330}
4331
edb3359d
DJ
4332static int
4333stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4334{
4335 for (frame = get_prev_frame (frame);
4336 frame != NULL;
4337 frame = get_prev_frame (frame))
4338 {
4339 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4340 return 1;
4341 if (get_frame_type (frame) != INLINE_FRAME)
4342 break;
4343 }
4344
4345 return 0;
4346}
4347
4a4c04f1
BE
4348/* Look for an inline frame that is marked for skip.
4349 If PREV_FRAME is TRUE start at the previous frame,
4350 otherwise start at the current frame. Stop at the
4351 first non-inline frame, or at the frame where the
4352 step started. */
4353
4354static bool
4355inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4356{
4357 struct frame_info *frame = get_current_frame ();
4358
4359 if (prev_frame)
4360 frame = get_prev_frame (frame);
4361
4362 for (; frame != NULL; frame = get_prev_frame (frame))
4363 {
4364 const char *fn = NULL;
4365 symtab_and_line sal;
4366 struct symbol *sym;
4367
4368 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4369 break;
4370 if (get_frame_type (frame) != INLINE_FRAME)
4371 break;
4372
4373 sal = find_frame_sal (frame);
4374 sym = get_frame_function (frame);
4375
4376 if (sym != NULL)
4377 fn = sym->print_name ();
4378
4379 if (sal.line != 0
4380 && function_name_is_marked_for_skip (fn, sal))
4381 return true;
4382 }
4383
4384 return false;
4385}
4386
c65d6b55
PA
4387/* If the event thread has the stop requested flag set, pretend it
4388 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4389 target_stop). */
4390
4391static bool
4392handle_stop_requested (struct execution_control_state *ecs)
4393{
4394 if (ecs->event_thread->stop_requested)
4395 {
4396 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4397 ecs->ws.value.sig = GDB_SIGNAL_0;
4398 handle_signal_stop (ecs);
4399 return true;
4400 }
4401 return false;
4402}
4403
a96d9b2e
SDJ
4404/* Auxiliary function that handles syscall entry/return events.
4405 It returns 1 if the inferior should keep going (and GDB
4406 should ignore the event), or 0 if the event deserves to be
4407 processed. */
ca2163eb 4408
a96d9b2e 4409static int
ca2163eb 4410handle_syscall_event (struct execution_control_state *ecs)
a96d9b2e 4411{
ca2163eb 4412 struct regcache *regcache;
ca2163eb
PA
4413 int syscall_number;
4414
00431a78 4415 context_switch (ecs);
ca2163eb 4416
00431a78 4417 regcache = get_thread_regcache (ecs->event_thread);
f90263c1 4418 syscall_number = ecs->ws.value.syscall_number;
f2ffa92b 4419 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
ca2163eb 4420
a96d9b2e
SDJ
4421 if (catch_syscall_enabled () > 0
4422 && catching_syscall_number (syscall_number) > 0)
4423 {
4424 if (debug_infrun)
4425 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
4426 syscall_number);
a96d9b2e 4427
16c381f0 4428 ecs->event_thread->control.stop_bpstat
a01bda52 4429 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
4430 ecs->event_thread->suspend.stop_pc,
4431 ecs->event_thread, &ecs->ws);
ab04a2af 4432
c65d6b55
PA
4433 if (handle_stop_requested (ecs))
4434 return 0;
4435
ce12b012 4436 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
ca2163eb
PA
4437 {
4438 /* Catchpoint hit. */
ca2163eb
PA
4439 return 0;
4440 }
a96d9b2e 4441 }
ca2163eb 4442
c65d6b55
PA
4443 if (handle_stop_requested (ecs))
4444 return 0;
4445
ca2163eb 4446 /* If no catchpoint triggered for this, then keep going. */
ca2163eb
PA
4447 keep_going (ecs);
4448 return 1;
a96d9b2e
SDJ
4449}
4450
7e324e48
GB
4451/* Lazily fill in the execution_control_state's stop_func_* fields. */
4452
4453static void
4454fill_in_stop_func (struct gdbarch *gdbarch,
4455 struct execution_control_state *ecs)
4456{
4457 if (!ecs->stop_func_filled_in)
4458 {
98a617f8
KB
4459 const block *block;
4460
7e324e48
GB
4461 /* Don't care about return value; stop_func_start and stop_func_name
4462 will both be 0 if it doesn't work. */
98a617f8
KB
4463 find_pc_partial_function (ecs->event_thread->suspend.stop_pc,
4464 &ecs->stop_func_name,
4465 &ecs->stop_func_start,
4466 &ecs->stop_func_end,
4467 &block);
4468
4469 /* The call to find_pc_partial_function, above, will set
4470 stop_func_start and stop_func_end to the start and end
4471 of the range containing the stop pc. If this range
4472 contains the entry pc for the block (which is always the
4473 case for contiguous blocks), advance stop_func_start past
4474 the function's start offset and entrypoint. Note that
4475 stop_func_start is NOT advanced when in a range of a
4476 non-contiguous block that does not contain the entry pc. */
4477 if (block != nullptr
4478 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4479 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4480 {
4481 ecs->stop_func_start
4482 += gdbarch_deprecated_function_start_offset (gdbarch);
4483
4484 if (gdbarch_skip_entrypoint_p (gdbarch))
4485 ecs->stop_func_start
4486 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4487 }
591a12a1 4488
7e324e48
GB
4489 ecs->stop_func_filled_in = 1;
4490 }
4491}
4492
4f5d7f63 4493
00431a78 4494/* Return the STOP_SOON field of the inferior pointed at by ECS. */
4f5d7f63
PA
4495
4496static enum stop_kind
00431a78 4497get_inferior_stop_soon (execution_control_state *ecs)
4f5d7f63 4498{
5b6d1e4f 4499 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4f5d7f63
PA
4500
4501 gdb_assert (inf != NULL);
4502 return inf->control.stop_soon;
4503}
4504
5b6d1e4f
PA
4505/* Poll for one event out of the current target. Store the resulting
4506 waitstatus in WS, and return the event ptid. Does not block. */
372316f1
PA
4507
4508static ptid_t
5b6d1e4f 4509poll_one_curr_target (struct target_waitstatus *ws)
372316f1
PA
4510{
4511 ptid_t event_ptid;
372316f1
PA
4512
4513 overlay_cache_invalid = 1;
4514
4515 /* Flush target cache before starting to handle each event.
4516 Target was running and cache could be stale. This is just a
4517 heuristic. Running threads may modify target memory, but we
4518 don't get any event. */
4519 target_dcache_invalidate ();
4520
4521 if (deprecated_target_wait_hook)
5b6d1e4f 4522 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1 4523 else
5b6d1e4f 4524 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
372316f1
PA
4525
4526 if (debug_infrun)
5b6d1e4f 4527 print_target_wait_results (minus_one_ptid, event_ptid, ws);
372316f1
PA
4528
4529 return event_ptid;
4530}
4531
5b6d1e4f
PA
4532/* An event reported by wait_one. */
4533
4534struct wait_one_event
4535{
4536 /* The target the event came out of. */
4537 process_stratum_target *target;
4538
4539 /* The PTID the event was for. */
4540 ptid_t ptid;
4541
4542 /* The waitstatus. */
4543 target_waitstatus ws;
4544};
4545
4546/* Wait for one event out of any target. */
4547
4548static wait_one_event
4549wait_one ()
4550{
4551 while (1)
4552 {
4553 for (inferior *inf : all_inferiors ())
4554 {
4555 process_stratum_target *target = inf->process_target ();
4556 if (target == NULL
4557 || !target->is_async_p ()
4558 || !target->threads_executing)
4559 continue;
4560
4561 switch_to_inferior_no_thread (inf);
4562
4563 wait_one_event event;
4564 event.target = target;
4565 event.ptid = poll_one_curr_target (&event.ws);
4566
4567 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4568 {
4569 /* If nothing is resumed, remove the target from the
4570 event loop. */
4571 target_async (0);
4572 }
4573 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4574 return event;
4575 }
4576
4577 /* Block waiting for some event. */
4578
4579 fd_set readfds;
4580 int nfds = 0;
4581
4582 FD_ZERO (&readfds);
4583
4584 for (inferior *inf : all_inferiors ())
4585 {
4586 process_stratum_target *target = inf->process_target ();
4587 if (target == NULL
4588 || !target->is_async_p ()
4589 || !target->threads_executing)
4590 continue;
4591
4592 int fd = target->async_wait_fd ();
4593 FD_SET (fd, &readfds);
4594 if (nfds <= fd)
4595 nfds = fd + 1;
4596 }
4597
4598 if (nfds == 0)
4599 {
4600 /* No waitable targets left. All must be stopped. */
4601 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4602 }
4603
4604 QUIT;
4605
4606 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4607 if (numfds < 0)
4608 {
4609 if (errno == EINTR)
4610 continue;
4611 else
4612 perror_with_name ("interruptible_select");
4613 }
4614 }
4615}
4616
372316f1
PA
4617/* Generate a wrapper for target_stopped_by_REASON that works on PTID
4618 instead of the current thread. */
4619#define THREAD_STOPPED_BY(REASON) \
4620static int \
4621thread_stopped_by_ ## REASON (ptid_t ptid) \
4622{ \
2989a365 4623 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); \
372316f1
PA
4624 inferior_ptid = ptid; \
4625 \
2989a365 4626 return target_stopped_by_ ## REASON (); \
372316f1
PA
4627}
4628
4629/* Generate thread_stopped_by_watchpoint. */
4630THREAD_STOPPED_BY (watchpoint)
4631/* Generate thread_stopped_by_sw_breakpoint. */
4632THREAD_STOPPED_BY (sw_breakpoint)
4633/* Generate thread_stopped_by_hw_breakpoint. */
4634THREAD_STOPPED_BY (hw_breakpoint)
4635
372316f1
PA
4636/* Save the thread's event and stop reason to process it later. */
4637
4638static void
5b6d1e4f 4639save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
372316f1 4640{
372316f1
PA
4641 if (debug_infrun)
4642 {
23fdd69e 4643 std::string statstr = target_waitstatus_to_string (ws);
372316f1 4644
372316f1
PA
4645 fprintf_unfiltered (gdb_stdlog,
4646 "infrun: saving status %s for %d.%ld.%ld\n",
23fdd69e 4647 statstr.c_str (),
e99b03dc 4648 tp->ptid.pid (),
e38504b3 4649 tp->ptid.lwp (),
cc6bcb54 4650 tp->ptid.tid ());
372316f1
PA
4651 }
4652
4653 /* Record for later. */
4654 tp->suspend.waitstatus = *ws;
4655 tp->suspend.waitstatus_pending_p = 1;
4656
00431a78 4657 struct regcache *regcache = get_thread_regcache (tp);
8b86c959 4658 const address_space *aspace = regcache->aspace ();
372316f1
PA
4659
4660 if (ws->kind == TARGET_WAITKIND_STOPPED
4661 && ws->value.sig == GDB_SIGNAL_TRAP)
4662 {
4663 CORE_ADDR pc = regcache_read_pc (regcache);
4664
4665 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4666
4667 if (thread_stopped_by_watchpoint (tp->ptid))
4668 {
4669 tp->suspend.stop_reason
4670 = TARGET_STOPPED_BY_WATCHPOINT;
4671 }
4672 else if (target_supports_stopped_by_sw_breakpoint ()
4673 && thread_stopped_by_sw_breakpoint (tp->ptid))
4674 {
4675 tp->suspend.stop_reason
4676 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4677 }
4678 else if (target_supports_stopped_by_hw_breakpoint ()
4679 && thread_stopped_by_hw_breakpoint (tp->ptid))
4680 {
4681 tp->suspend.stop_reason
4682 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4683 }
4684 else if (!target_supports_stopped_by_hw_breakpoint ()
4685 && hardware_breakpoint_inserted_here_p (aspace,
4686 pc))
4687 {
4688 tp->suspend.stop_reason
4689 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4690 }
4691 else if (!target_supports_stopped_by_sw_breakpoint ()
4692 && software_breakpoint_inserted_here_p (aspace,
4693 pc))
4694 {
4695 tp->suspend.stop_reason
4696 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4697 }
4698 else if (!thread_has_single_step_breakpoints_set (tp)
4699 && currently_stepping (tp))
4700 {
4701 tp->suspend.stop_reason
4702 = TARGET_STOPPED_BY_SINGLE_STEP;
4703 }
4704 }
4705}
4706
6efcd9a8 4707/* See infrun.h. */
372316f1 4708
6efcd9a8 4709void
372316f1
PA
4710stop_all_threads (void)
4711{
4712 /* We may need multiple passes to discover all threads. */
4713 int pass;
4714 int iterations = 0;
372316f1 4715
53cccef1 4716 gdb_assert (exists_non_stop_target ());
372316f1
PA
4717
4718 if (debug_infrun)
4719 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads\n");
4720
00431a78 4721 scoped_restore_current_thread restore_thread;
372316f1 4722
65706a29 4723 target_thread_events (1);
9885e6bb 4724 SCOPE_EXIT { target_thread_events (0); };
65706a29 4725
372316f1
PA
4726 /* Request threads to stop, and then wait for the stops. Because
4727 threads we already know about can spawn more threads while we're
4728 trying to stop them, and we only learn about new threads when we
4729 update the thread list, do this in a loop, and keep iterating
4730 until two passes find no threads that need to be stopped. */
4731 for (pass = 0; pass < 2; pass++, iterations++)
4732 {
4733 if (debug_infrun)
4734 fprintf_unfiltered (gdb_stdlog,
4735 "infrun: stop_all_threads, pass=%d, "
4736 "iterations=%d\n", pass, iterations);
4737 while (1)
4738 {
372316f1 4739 int need_wait = 0;
372316f1
PA
4740
4741 update_thread_list ();
4742
4743 /* Go through all threads looking for threads that we need
4744 to tell the target to stop. */
08036331 4745 for (thread_info *t : all_non_exited_threads ())
372316f1 4746 {
53cccef1
TBA
4747 /* For a single-target setting with an all-stop target,
4748 we would not even arrive here. For a multi-target
4749 setting, until GDB is able to handle a mixture of
4750 all-stop and non-stop targets, simply skip all-stop
4751 targets' threads. This should be fine due to the
4752 protection of 'check_multi_target_resumption'. */
4753
4754 switch_to_thread_no_regs (t);
4755 if (!target_is_non_stop_p ())
4756 continue;
4757
372316f1
PA
4758 if (t->executing)
4759 {
4760 /* If already stopping, don't request a stop again.
4761 We just haven't seen the notification yet. */
4762 if (!t->stop_requested)
4763 {
4764 if (debug_infrun)
4765 fprintf_unfiltered (gdb_stdlog,
4766 "infrun: %s executing, "
4767 "need stop\n",
a068643d 4768 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4769 target_stop (t->ptid);
4770 t->stop_requested = 1;
4771 }
4772 else
4773 {
4774 if (debug_infrun)
4775 fprintf_unfiltered (gdb_stdlog,
4776 "infrun: %s executing, "
4777 "already stopping\n",
a068643d 4778 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4779 }
4780
4781 if (t->stop_requested)
4782 need_wait = 1;
4783 }
4784 else
4785 {
4786 if (debug_infrun)
4787 fprintf_unfiltered (gdb_stdlog,
4788 "infrun: %s not executing\n",
a068643d 4789 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4790
4791 /* The thread may be not executing, but still be
4792 resumed with a pending status to process. */
719546c4 4793 t->resumed = false;
372316f1
PA
4794 }
4795 }
4796
4797 if (!need_wait)
4798 break;
4799
4800 /* If we find new threads on the second iteration, restart
4801 over. We want to see two iterations in a row with all
4802 threads stopped. */
4803 if (pass > 0)
4804 pass = -1;
4805
5b6d1e4f
PA
4806 wait_one_event event = wait_one ();
4807
c29705b7 4808 if (debug_infrun)
372316f1 4809 {
c29705b7
PW
4810 fprintf_unfiltered (gdb_stdlog,
4811 "infrun: stop_all_threads %s %s\n",
5b6d1e4f
PA
4812 target_waitstatus_to_string (&event.ws).c_str (),
4813 target_pid_to_str (event.ptid).c_str ());
372316f1 4814 }
372316f1 4815
5b6d1e4f
PA
4816 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED
4817 || event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4818 || event.ws.kind == TARGET_WAITKIND_EXITED
4819 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
c29705b7
PW
4820 {
4821 /* All resumed threads exited
4822 or one thread/process exited/signalled. */
372316f1
PA
4823 }
4824 else
4825 {
5b6d1e4f 4826 thread_info *t = find_thread_ptid (event.target, event.ptid);
372316f1 4827 if (t == NULL)
5b6d1e4f 4828 t = add_thread (event.target, event.ptid);
372316f1
PA
4829
4830 t->stop_requested = 0;
4831 t->executing = 0;
719546c4 4832 t->resumed = false;
372316f1
PA
4833 t->control.may_range_step = 0;
4834
6efcd9a8
PA
4835 /* This may be the first time we see the inferior report
4836 a stop. */
5b6d1e4f 4837 inferior *inf = find_inferior_ptid (event.target, event.ptid);
6efcd9a8
PA
4838 if (inf->needs_setup)
4839 {
4840 switch_to_thread_no_regs (t);
4841 setup_inferior (0);
4842 }
4843
5b6d1e4f
PA
4844 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4845 && event.ws.value.sig == GDB_SIGNAL_0)
372316f1
PA
4846 {
4847 /* We caught the event that we intended to catch, so
4848 there's no event pending. */
4849 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4850 t->suspend.waitstatus_pending_p = 0;
4851
00431a78 4852 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
372316f1
PA
4853 {
4854 /* Add it back to the step-over queue. */
4855 if (debug_infrun)
4856 {
4857 fprintf_unfiltered (gdb_stdlog,
4858 "infrun: displaced-step of %s "
4859 "canceled: adding back to the "
4860 "step-over queue\n",
a068643d 4861 target_pid_to_str (t->ptid).c_str ());
372316f1
PA
4862 }
4863 t->control.trap_expected = 0;
4864 thread_step_over_chain_enqueue (t);
4865 }
4866 }
4867 else
4868 {
4869 enum gdb_signal sig;
4870 struct regcache *regcache;
372316f1
PA
4871
4872 if (debug_infrun)
4873 {
5b6d1e4f 4874 std::string statstr = target_waitstatus_to_string (&event.ws);
372316f1 4875
372316f1
PA
4876 fprintf_unfiltered (gdb_stdlog,
4877 "infrun: target_wait %s, saving "
4878 "status for %d.%ld.%ld\n",
23fdd69e 4879 statstr.c_str (),
e99b03dc 4880 t->ptid.pid (),
e38504b3 4881 t->ptid.lwp (),
cc6bcb54 4882 t->ptid.tid ());
372316f1
PA
4883 }
4884
4885 /* Record for later. */
5b6d1e4f 4886 save_waitstatus (t, &event.ws);
372316f1 4887
5b6d1e4f
PA
4888 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4889 ? event.ws.value.sig : GDB_SIGNAL_0);
372316f1 4890
00431a78 4891 if (displaced_step_fixup (t, sig) < 0)
372316f1
PA
4892 {
4893 /* Add it back to the step-over queue. */
4894 t->control.trap_expected = 0;
4895 thread_step_over_chain_enqueue (t);
4896 }
4897
00431a78 4898 regcache = get_thread_regcache (t);
372316f1
PA
4899 t->suspend.stop_pc = regcache_read_pc (regcache);
4900
4901 if (debug_infrun)
4902 {
4903 fprintf_unfiltered (gdb_stdlog,
4904 "infrun: saved stop_pc=%s for %s "
4905 "(currently_stepping=%d)\n",
4906 paddress (target_gdbarch (),
4907 t->suspend.stop_pc),
a068643d 4908 target_pid_to_str (t->ptid).c_str (),
372316f1
PA
4909 currently_stepping (t));
4910 }
4911 }
4912 }
4913 }
4914 }
4915
372316f1
PA
4916 if (debug_infrun)
4917 fprintf_unfiltered (gdb_stdlog, "infrun: stop_all_threads done\n");
4918}
4919
f4836ba9
PA
4920/* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4921
4922static int
4923handle_no_resumed (struct execution_control_state *ecs)
4924{
3b12939d 4925 if (target_can_async_p ())
f4836ba9 4926 {
3b12939d
PA
4927 struct ui *ui;
4928 int any_sync = 0;
f4836ba9 4929
3b12939d
PA
4930 ALL_UIS (ui)
4931 {
4932 if (ui->prompt_state == PROMPT_BLOCKED)
4933 {
4934 any_sync = 1;
4935 break;
4936 }
4937 }
4938 if (!any_sync)
4939 {
4940 /* There were no unwaited-for children left in the target, but,
4941 we're not synchronously waiting for events either. Just
4942 ignore. */
4943
4944 if (debug_infrun)
4945 fprintf_unfiltered (gdb_stdlog,
4946 "infrun: TARGET_WAITKIND_NO_RESUMED "
4947 "(ignoring: bg)\n");
4948 prepare_to_wait (ecs);
4949 return 1;
4950 }
f4836ba9
PA
4951 }
4952
4953 /* Otherwise, if we were running a synchronous execution command, we
4954 may need to cancel it and give the user back the terminal.
4955
4956 In non-stop mode, the target can't tell whether we've already
4957 consumed previous stop events, so it can end up sending us a
4958 no-resumed event like so:
4959
4960 #0 - thread 1 is left stopped
4961
4962 #1 - thread 2 is resumed and hits breakpoint
4963 -> TARGET_WAITKIND_STOPPED
4964
4965 #2 - thread 3 is resumed and exits
4966 this is the last resumed thread, so
4967 -> TARGET_WAITKIND_NO_RESUMED
4968
4969 #3 - gdb processes stop for thread 2 and decides to re-resume
4970 it.
4971
4972 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4973 thread 2 is now resumed, so the event should be ignored.
4974
4975 IOW, if the stop for thread 2 doesn't end a foreground command,
4976 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4977 event. But it could be that the event meant that thread 2 itself
4978 (or whatever other thread was the last resumed thread) exited.
4979
4980 To address this we refresh the thread list and check whether we
4981 have resumed threads _now_. In the example above, this removes
4982 thread 3 from the thread list. If thread 2 was re-resumed, we
4983 ignore this event. If we find no thread resumed, then we cancel
4984 the synchronous command show "no unwaited-for " to the user. */
4985 update_thread_list ();
4986
5b6d1e4f 4987 for (thread_info *thread : all_non_exited_threads (ecs->target))
f4836ba9
PA
4988 {
4989 if (thread->executing
4990 || thread->suspend.waitstatus_pending_p)
4991 {
4992 /* There were no unwaited-for children left in the target at
4993 some point, but there are now. Just ignore. */
4994 if (debug_infrun)
4995 fprintf_unfiltered (gdb_stdlog,
4996 "infrun: TARGET_WAITKIND_NO_RESUMED "
4997 "(ignoring: found resumed)\n");
4998 prepare_to_wait (ecs);
4999 return 1;
5000 }
5001 }
5002
5003 /* Note however that we may find no resumed thread because the whole
5004 process exited meanwhile (thus updating the thread list results
5005 in an empty thread list). In this case we know we'll be getting
5006 a process exit event shortly. */
5b6d1e4f 5007 for (inferior *inf : all_non_exited_inferiors (ecs->target))
f4836ba9 5008 {
08036331 5009 thread_info *thread = any_live_thread_of_inferior (inf);
f4836ba9
PA
5010 if (thread == NULL)
5011 {
5012 if (debug_infrun)
5013 fprintf_unfiltered (gdb_stdlog,
5014 "infrun: TARGET_WAITKIND_NO_RESUMED "
5015 "(expect process exit)\n");
5016 prepare_to_wait (ecs);
5017 return 1;
5018 }
5019 }
5020
5021 /* Go ahead and report the event. */
5022 return 0;
5023}
5024
05ba8510
PA
5025/* Given an execution control state that has been freshly filled in by
5026 an event from the inferior, figure out what it means and take
5027 appropriate action.
5028
5029 The alternatives are:
5030
22bcd14b 5031 1) stop_waiting and return; to really stop and return to the
05ba8510
PA
5032 debugger.
5033
5034 2) keep_going and return; to wait for the next event (set
5035 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5036 once). */
c906108c 5037
ec9499be 5038static void
595915c1 5039handle_inferior_event (struct execution_control_state *ecs)
cd0fc7c3 5040{
595915c1
TT
5041 /* Make sure that all temporary struct value objects that were
5042 created during the handling of the event get deleted at the
5043 end. */
5044 scoped_value_mark free_values;
5045
d6b48e9c
PA
5046 enum stop_kind stop_soon;
5047
c29705b7
PW
5048 if (debug_infrun)
5049 fprintf_unfiltered (gdb_stdlog, "infrun: handle_inferior_event %s\n",
5050 target_waitstatus_to_string (&ecs->ws).c_str ());
5051
28736962
PA
5052 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5053 {
5054 /* We had an event in the inferior, but we are not interested in
5055 handling it at this level. The lower layers have already
5056 done what needs to be done, if anything.
5057
5058 One of the possible circumstances for this is when the
5059 inferior produces output for the console. The inferior has
5060 not stopped, and we are ignoring the event. Another possible
5061 circumstance is any event which the lower level knows will be
5062 reported multiple times without an intervening resume. */
28736962
PA
5063 prepare_to_wait (ecs);
5064 return;
5065 }
5066
65706a29
PA
5067 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5068 {
65706a29
PA
5069 prepare_to_wait (ecs);
5070 return;
5071 }
5072
0e5bf2a8 5073 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
f4836ba9
PA
5074 && handle_no_resumed (ecs))
5075 return;
0e5bf2a8 5076
5b6d1e4f
PA
5077 /* Cache the last target/ptid/waitstatus. */
5078 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
e02bc4cc 5079
ca005067 5080 /* Always clear state belonging to the previous time we stopped. */
aa7d318d 5081 stop_stack_dummy = STOP_NONE;
ca005067 5082
0e5bf2a8
PA
5083 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5084 {
5085 /* No unwaited-for children left. IOW, all resumed children
5086 have exited. */
0e5bf2a8 5087 stop_print_frame = 0;
22bcd14b 5088 stop_waiting (ecs);
0e5bf2a8
PA
5089 return;
5090 }
5091
8c90c137 5092 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
64776a0b 5093 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
359f5fe6 5094 {
5b6d1e4f 5095 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
359f5fe6
PA
5096 /* If it's a new thread, add it to the thread database. */
5097 if (ecs->event_thread == NULL)
5b6d1e4f 5098 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
c1e36e3e
PA
5099
5100 /* Disable range stepping. If the next step request could use a
5101 range, this will be end up re-enabled then. */
5102 ecs->event_thread->control.may_range_step = 0;
359f5fe6 5103 }
88ed393a
JK
5104
5105 /* Dependent on valid ECS->EVENT_THREAD. */
d8dd4d5f 5106 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
88ed393a
JK
5107
5108 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5109 reinit_frame_cache ();
5110
28736962
PA
5111 breakpoint_retire_moribund ();
5112
2b009048
DJ
5113 /* First, distinguish signals caused by the debugger from signals
5114 that have to do with the program's own actions. Note that
5115 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5116 on the operating system version. Here we detect when a SIGILL or
5117 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5118 something similar for SIGSEGV, since a SIGSEGV will be generated
5119 when we're trying to execute a breakpoint instruction on a
5120 non-executable stack. This happens for call dummy breakpoints
5121 for architectures like SPARC that place call dummies on the
5122 stack. */
2b009048 5123 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
a493e3e2
PA
5124 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5125 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5126 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
2b009048 5127 {
00431a78 5128 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
de0a0249 5129
a01bda52 5130 if (breakpoint_inserted_here_p (regcache->aspace (),
de0a0249
UW
5131 regcache_read_pc (regcache)))
5132 {
5133 if (debug_infrun)
5134 fprintf_unfiltered (gdb_stdlog,
5135 "infrun: Treating signal as SIGTRAP\n");
a493e3e2 5136 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
de0a0249 5137 }
2b009048
DJ
5138 }
5139
28736962
PA
5140 /* Mark the non-executing threads accordingly. In all-stop, all
5141 threads of all processes are stopped when we get any event
e1316e60 5142 reported. In non-stop mode, only the event thread stops. */
372316f1
PA
5143 {
5144 ptid_t mark_ptid;
5145
fbea99ea 5146 if (!target_is_non_stop_p ())
372316f1
PA
5147 mark_ptid = minus_one_ptid;
5148 else if (ecs->ws.kind == TARGET_WAITKIND_SIGNALLED
5149 || ecs->ws.kind == TARGET_WAITKIND_EXITED)
5150 {
5151 /* If we're handling a process exit in non-stop mode, even
5152 though threads haven't been deleted yet, one would think
5153 that there is nothing to do, as threads of the dead process
5154 will be soon deleted, and threads of any other process were
5155 left running. However, on some targets, threads survive a
5156 process exit event. E.g., for the "checkpoint" command,
5157 when the current checkpoint/fork exits, linux-fork.c
5158 automatically switches to another fork from within
5159 target_mourn_inferior, by associating the same
5160 inferior/thread to another fork. We haven't mourned yet at
5161 this point, but we must mark any threads left in the
5162 process as not-executing so that finish_thread_state marks
5163 them stopped (in the user's perspective) if/when we present
5164 the stop to the user. */
e99b03dc 5165 mark_ptid = ptid_t (ecs->ptid.pid ());
372316f1
PA
5166 }
5167 else
5168 mark_ptid = ecs->ptid;
5169
719546c4 5170 set_executing (ecs->target, mark_ptid, false);
372316f1
PA
5171
5172 /* Likewise the resumed flag. */
719546c4 5173 set_resumed (ecs->target, mark_ptid, false);
372316f1 5174 }
8c90c137 5175
488f131b
JB
5176 switch (ecs->ws.kind)
5177 {
5178 case TARGET_WAITKIND_LOADED:
00431a78 5179 context_switch (ecs);
b0f4b84b
DJ
5180 /* Ignore gracefully during startup of the inferior, as it might
5181 be the shell which has just loaded some objects, otherwise
5182 add the symbols for the newly loaded objects. Also ignore at
5183 the beginning of an attach or remote session; we will query
5184 the full list of libraries once the connection is
5185 established. */
4f5d7f63 5186
00431a78 5187 stop_soon = get_inferior_stop_soon (ecs);
c0236d92 5188 if (stop_soon == NO_STOP_QUIETLY)
488f131b 5189 {
edcc5120
TT
5190 struct regcache *regcache;
5191
00431a78 5192 regcache = get_thread_regcache (ecs->event_thread);
edcc5120
TT
5193
5194 handle_solib_event ();
5195
5196 ecs->event_thread->control.stop_bpstat
a01bda52 5197 = bpstat_stop_status (regcache->aspace (),
f2ffa92b
PA
5198 ecs->event_thread->suspend.stop_pc,
5199 ecs->event_thread, &ecs->ws);
ab04a2af 5200
c65d6b55
PA
5201 if (handle_stop_requested (ecs))
5202 return;
5203
ce12b012 5204 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
edcc5120
TT
5205 {
5206 /* A catchpoint triggered. */
94c57d6a
PA
5207 process_event_stop_test (ecs);
5208 return;
edcc5120 5209 }
488f131b 5210
b0f4b84b
DJ
5211 /* If requested, stop when the dynamic linker notifies
5212 gdb of events. This allows the user to get control
5213 and place breakpoints in initializer routines for
5214 dynamically loaded objects (among other things). */
a493e3e2 5215 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
b0f4b84b
DJ
5216 if (stop_on_solib_events)
5217 {
55409f9d
DJ
5218 /* Make sure we print "Stopped due to solib-event" in
5219 normal_stop. */
5220 stop_print_frame = 1;
5221
22bcd14b 5222 stop_waiting (ecs);
b0f4b84b
DJ
5223 return;
5224 }
488f131b 5225 }
b0f4b84b
DJ
5226
5227 /* If we are skipping through a shell, or through shared library
5228 loading that we aren't interested in, resume the program. If
5c09a2c5 5229 we're running the program normally, also resume. */
b0f4b84b
DJ
5230 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5231 {
74960c60
VP
5232 /* Loading of shared libraries might have changed breakpoint
5233 addresses. Make sure new breakpoints are inserted. */
a25a5a45 5234 if (stop_soon == NO_STOP_QUIETLY)
74960c60 5235 insert_breakpoints ();
64ce06e4 5236 resume (GDB_SIGNAL_0);
b0f4b84b
DJ
5237 prepare_to_wait (ecs);
5238 return;
5239 }
5240
5c09a2c5
PA
5241 /* But stop if we're attaching or setting up a remote
5242 connection. */
5243 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5244 || stop_soon == STOP_QUIETLY_REMOTE)
5245 {
5246 if (debug_infrun)
5247 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
22bcd14b 5248 stop_waiting (ecs);
5c09a2c5
PA
5249 return;
5250 }
5251
5252 internal_error (__FILE__, __LINE__,
5253 _("unhandled stop_soon: %d"), (int) stop_soon);
c5aa993b 5254
488f131b 5255 case TARGET_WAITKIND_SPURIOUS:
c65d6b55
PA
5256 if (handle_stop_requested (ecs))
5257 return;
00431a78 5258 context_switch (ecs);
64ce06e4 5259 resume (GDB_SIGNAL_0);
488f131b
JB
5260 prepare_to_wait (ecs);
5261 return;
c5aa993b 5262
65706a29 5263 case TARGET_WAITKIND_THREAD_CREATED:
c65d6b55
PA
5264 if (handle_stop_requested (ecs))
5265 return;
00431a78 5266 context_switch (ecs);
65706a29
PA
5267 if (!switch_back_to_stepped_thread (ecs))
5268 keep_going (ecs);
5269 return;
5270
488f131b 5271 case TARGET_WAITKIND_EXITED:
940c3c06 5272 case TARGET_WAITKIND_SIGNALLED:
fb66883a 5273 inferior_ptid = ecs->ptid;
5b6d1e4f 5274 set_current_inferior (find_inferior_ptid (ecs->target, ecs->ptid));
6c95b8df
PA
5275 set_current_program_space (current_inferior ()->pspace);
5276 handle_vfork_child_exec_or_exit (0);
223ffa71 5277 target_terminal::ours (); /* Must do this before mourn anyway. */
488f131b 5278
0c557179
SDJ
5279 /* Clearing any previous state of convenience variables. */
5280 clear_exit_convenience_vars ();
5281
940c3c06
PA
5282 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5283 {
5284 /* Record the exit code in the convenience variable $_exitcode, so
5285 that the user can inspect this again later. */
5286 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5287 (LONGEST) ecs->ws.value.integer);
5288
5289 /* Also record this in the inferior itself. */
5290 current_inferior ()->has_exit_code = 1;
5291 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
8cf64490 5292
98eb56a4
PA
5293 /* Support the --return-child-result option. */
5294 return_child_result_value = ecs->ws.value.integer;
5295
76727919 5296 gdb::observers::exited.notify (ecs->ws.value.integer);
940c3c06
PA
5297 }
5298 else
0c557179 5299 {
00431a78 5300 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
0c557179
SDJ
5301
5302 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5303 {
5304 /* Set the value of the internal variable $_exitsignal,
5305 which holds the signal uncaught by the inferior. */
5306 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5307 gdbarch_gdb_signal_to_target (gdbarch,
5308 ecs->ws.value.sig));
5309 }
5310 else
5311 {
5312 /* We don't have access to the target's method used for
5313 converting between signal numbers (GDB's internal
5314 representation <-> target's representation).
5315 Therefore, we cannot do a good job at displaying this
5316 information to the user. It's better to just warn
5317 her about it (if infrun debugging is enabled), and
5318 give up. */
5319 if (debug_infrun)
5320 fprintf_filtered (gdb_stdlog, _("\
5321Cannot fill $_exitsignal with the correct signal number.\n"));
5322 }
5323
76727919 5324 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
0c557179 5325 }
8cf64490 5326
488f131b 5327 gdb_flush (gdb_stdout);
bc1e6c81 5328 target_mourn_inferior (inferior_ptid);
488f131b 5329 stop_print_frame = 0;
22bcd14b 5330 stop_waiting (ecs);
488f131b 5331 return;
c5aa993b 5332
488f131b 5333 case TARGET_WAITKIND_FORKED:
deb3b17b 5334 case TARGET_WAITKIND_VFORKED:
e2d96639
YQ
5335 /* Check whether the inferior is displaced stepping. */
5336 {
00431a78 5337 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
ac7936df 5338 struct gdbarch *gdbarch = regcache->arch ();
e2d96639
YQ
5339
5340 /* If checking displaced stepping is supported, and thread
5341 ecs->ptid is displaced stepping. */
00431a78 5342 if (displaced_step_in_progress_thread (ecs->event_thread))
e2d96639
YQ
5343 {
5344 struct inferior *parent_inf
5b6d1e4f 5345 = find_inferior_ptid (ecs->target, ecs->ptid);
e2d96639
YQ
5346 struct regcache *child_regcache;
5347 CORE_ADDR parent_pc;
5348
d8d83535
SM
5349 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5350 {
5351 struct displaced_step_inferior_state *displaced
5352 = get_displaced_stepping_state (parent_inf);
5353
5354 /* Restore scratch pad for child process. */
5355 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5356 }
5357
e2d96639
YQ
5358 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5359 indicating that the displaced stepping of syscall instruction
5360 has been done. Perform cleanup for parent process here. Note
5361 that this operation also cleans up the child process for vfork,
5362 because their pages are shared. */
00431a78 5363 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
c2829269
PA
5364 /* Start a new step-over in another thread if there's one
5365 that needs it. */
5366 start_step_over ();
e2d96639 5367
e2d96639
YQ
5368 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5369 the child's PC is also within the scratchpad. Set the child's PC
5370 to the parent's PC value, which has already been fixed up.
5371 FIXME: we use the parent's aspace here, although we're touching
5372 the child, because the child hasn't been added to the inferior
5373 list yet at this point. */
5374
5375 child_regcache
5b6d1e4f
PA
5376 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5377 ecs->ws.value.related_pid,
e2d96639
YQ
5378 gdbarch,
5379 parent_inf->aspace);
5380 /* Read PC value of parent process. */
5381 parent_pc = regcache_read_pc (regcache);
5382
5383 if (debug_displaced)
5384 fprintf_unfiltered (gdb_stdlog,
5385 "displaced: write child pc from %s to %s\n",
5386 paddress (gdbarch,
5387 regcache_read_pc (child_regcache)),
5388 paddress (gdbarch, parent_pc));
5389
5390 regcache_write_pc (child_regcache, parent_pc);
5391 }
5392 }
5393
00431a78 5394 context_switch (ecs);
5a2901d9 5395
b242c3c2
PA
5396 /* Immediately detach breakpoints from the child before there's
5397 any chance of letting the user delete breakpoints from the
5398 breakpoint lists. If we don't do this early, it's easy to
5399 leave left over traps in the child, vis: "break foo; catch
5400 fork; c; <fork>; del; c; <child calls foo>". We only follow
5401 the fork on the last `continue', and by that time the
5402 breakpoint at "foo" is long gone from the breakpoint table.
5403 If we vforked, then we don't need to unpatch here, since both
5404 parent and child are sharing the same memory pages; we'll
5405 need to unpatch at follow/detach time instead to be certain
5406 that new breakpoints added between catchpoint hit time and
5407 vfork follow are detached. */
5408 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5409 {
b242c3c2
PA
5410 /* This won't actually modify the breakpoint list, but will
5411 physically remove the breakpoints from the child. */
d80ee84f 5412 detach_breakpoints (ecs->ws.value.related_pid);
b242c3c2
PA
5413 }
5414
34b7e8a6 5415 delete_just_stopped_threads_single_step_breakpoints ();
d03285ec 5416
e58b0e63
PA
5417 /* In case the event is caught by a catchpoint, remember that
5418 the event is to be followed at the next resume of the thread,
5419 and not immediately. */
5420 ecs->event_thread->pending_follow = ecs->ws;
5421
f2ffa92b
PA
5422 ecs->event_thread->suspend.stop_pc
5423 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
675bf4cb 5424
16c381f0 5425 ecs->event_thread->control.stop_bpstat
a01bda52 5426 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5427 ecs->event_thread->suspend.stop_pc,
5428 ecs->event_thread, &ecs->ws);
675bf4cb 5429
c65d6b55
PA
5430 if (handle_stop_requested (ecs))
5431 return;
5432
ce12b012
PA
5433 /* If no catchpoint triggered for this, then keep going. Note
5434 that we're interested in knowing the bpstat actually causes a
5435 stop, not just if it may explain the signal. Software
5436 watchpoints, for example, always appear in the bpstat. */
5437 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5438 {
5ab2fbf1 5439 bool follow_child
3e43a32a 5440 = (follow_fork_mode_string == follow_fork_mode_child);
e58b0e63 5441
a493e3e2 5442 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
e58b0e63 5443
5b6d1e4f
PA
5444 process_stratum_target *targ
5445 = ecs->event_thread->inf->process_target ();
5446
5ab2fbf1 5447 bool should_resume = follow_fork ();
e58b0e63 5448
5b6d1e4f
PA
5449 /* Note that one of these may be an invalid pointer,
5450 depending on detach_fork. */
00431a78 5451 thread_info *parent = ecs->event_thread;
5b6d1e4f
PA
5452 thread_info *child
5453 = find_thread_ptid (targ, ecs->ws.value.related_pid);
6c95b8df 5454
a2077e25
PA
5455 /* At this point, the parent is marked running, and the
5456 child is marked stopped. */
5457
5458 /* If not resuming the parent, mark it stopped. */
5459 if (follow_child && !detach_fork && !non_stop && !sched_multi)
00431a78 5460 parent->set_running (false);
a2077e25
PA
5461
5462 /* If resuming the child, mark it running. */
5463 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
00431a78 5464 child->set_running (true);
a2077e25 5465
6c95b8df 5466 /* In non-stop mode, also resume the other branch. */
fbea99ea
PA
5467 if (!detach_fork && (non_stop
5468 || (sched_multi && target_is_non_stop_p ())))
6c95b8df
PA
5469 {
5470 if (follow_child)
5471 switch_to_thread (parent);
5472 else
5473 switch_to_thread (child);
5474
5475 ecs->event_thread = inferior_thread ();
5476 ecs->ptid = inferior_ptid;
5477 keep_going (ecs);
5478 }
5479
5480 if (follow_child)
5481 switch_to_thread (child);
5482 else
5483 switch_to_thread (parent);
5484
e58b0e63
PA
5485 ecs->event_thread = inferior_thread ();
5486 ecs->ptid = inferior_ptid;
5487
5488 if (should_resume)
5489 keep_going (ecs);
5490 else
22bcd14b 5491 stop_waiting (ecs);
04e68871
DJ
5492 return;
5493 }
94c57d6a
PA
5494 process_event_stop_test (ecs);
5495 return;
488f131b 5496
6c95b8df
PA
5497 case TARGET_WAITKIND_VFORK_DONE:
5498 /* Done with the shared memory region. Re-insert breakpoints in
5499 the parent, and keep going. */
5500
00431a78 5501 context_switch (ecs);
6c95b8df
PA
5502
5503 current_inferior ()->waiting_for_vfork_done = 0;
56710373 5504 current_inferior ()->pspace->breakpoints_not_allowed = 0;
c65d6b55
PA
5505
5506 if (handle_stop_requested (ecs))
5507 return;
5508
6c95b8df
PA
5509 /* This also takes care of reinserting breakpoints in the
5510 previously locked inferior. */
5511 keep_going (ecs);
5512 return;
5513
488f131b 5514 case TARGET_WAITKIND_EXECD:
488f131b 5515
cbd2b4e3
PA
5516 /* Note we can't read registers yet (the stop_pc), because we
5517 don't yet know the inferior's post-exec architecture.
5518 'stop_pc' is explicitly read below instead. */
00431a78 5519 switch_to_thread_no_regs (ecs->event_thread);
5a2901d9 5520
6c95b8df
PA
5521 /* Do whatever is necessary to the parent branch of the vfork. */
5522 handle_vfork_child_exec_or_exit (1);
5523
795e548f
PA
5524 /* This causes the eventpoints and symbol table to be reset.
5525 Must do this now, before trying to determine whether to
5526 stop. */
71b43ef8 5527 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
795e548f 5528
17d8546e
DB
5529 /* In follow_exec we may have deleted the original thread and
5530 created a new one. Make sure that the event thread is the
5531 execd thread for that case (this is a nop otherwise). */
5532 ecs->event_thread = inferior_thread ();
5533
f2ffa92b
PA
5534 ecs->event_thread->suspend.stop_pc
5535 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
ecdc3a72 5536
16c381f0 5537 ecs->event_thread->control.stop_bpstat
a01bda52 5538 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
5539 ecs->event_thread->suspend.stop_pc,
5540 ecs->event_thread, &ecs->ws);
795e548f 5541
71b43ef8
PA
5542 /* Note that this may be referenced from inside
5543 bpstat_stop_status above, through inferior_has_execd. */
5544 xfree (ecs->ws.value.execd_pathname);
5545 ecs->ws.value.execd_pathname = NULL;
5546
c65d6b55
PA
5547 if (handle_stop_requested (ecs))
5548 return;
5549
04e68871 5550 /* If no catchpoint triggered for this, then keep going. */
ce12b012 5551 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
04e68871 5552 {
a493e3e2 5553 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
04e68871
DJ
5554 keep_going (ecs);
5555 return;
5556 }
94c57d6a
PA
5557 process_event_stop_test (ecs);
5558 return;
488f131b 5559
b4dc5ffa
MK
5560 /* Be careful not to try to gather much state about a thread
5561 that's in a syscall. It's frequently a losing proposition. */
488f131b 5562 case TARGET_WAITKIND_SYSCALL_ENTRY:
1777feb0 5563 /* Getting the current syscall number. */
94c57d6a
PA
5564 if (handle_syscall_event (ecs) == 0)
5565 process_event_stop_test (ecs);
5566 return;
c906108c 5567
488f131b
JB
5568 /* Before examining the threads further, step this thread to
5569 get it entirely out of the syscall. (We get notice of the
5570 event when the thread is just on the verge of exiting a
5571 syscall. Stepping one instruction seems to get it back
b4dc5ffa 5572 into user code.) */
488f131b 5573 case TARGET_WAITKIND_SYSCALL_RETURN:
94c57d6a
PA
5574 if (handle_syscall_event (ecs) == 0)
5575 process_event_stop_test (ecs);
5576 return;
c906108c 5577
488f131b 5578 case TARGET_WAITKIND_STOPPED:
4f5d7f63
PA
5579 handle_signal_stop (ecs);
5580 return;
c906108c 5581
b2175913
MS
5582 case TARGET_WAITKIND_NO_HISTORY:
5583 /* Reverse execution: target ran out of history info. */
eab402df 5584
d1988021 5585 /* Switch to the stopped thread. */
00431a78 5586 context_switch (ecs);
d1988021
MM
5587 if (debug_infrun)
5588 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
5589
34b7e8a6 5590 delete_just_stopped_threads_single_step_breakpoints ();
f2ffa92b
PA
5591 ecs->event_thread->suspend.stop_pc
5592 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
c65d6b55
PA
5593
5594 if (handle_stop_requested (ecs))
5595 return;
5596
76727919 5597 gdb::observers::no_history.notify ();
22bcd14b 5598 stop_waiting (ecs);
b2175913 5599 return;
488f131b 5600 }
4f5d7f63
PA
5601}
5602
372316f1
PA
5603/* Restart threads back to what they were trying to do back when we
5604 paused them for an in-line step-over. The EVENT_THREAD thread is
5605 ignored. */
4d9d9d04
PA
5606
5607static void
372316f1
PA
5608restart_threads (struct thread_info *event_thread)
5609{
372316f1
PA
5610 /* In case the instruction just stepped spawned a new thread. */
5611 update_thread_list ();
5612
08036331 5613 for (thread_info *tp : all_non_exited_threads ())
372316f1 5614 {
f3f8ece4
PA
5615 switch_to_thread_no_regs (tp);
5616
372316f1
PA
5617 if (tp == event_thread)
5618 {
5619 if (debug_infrun)
5620 fprintf_unfiltered (gdb_stdlog,
5621 "infrun: restart threads: "
5622 "[%s] is event thread\n",
a068643d 5623 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5624 continue;
5625 }
5626
5627 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5628 {
5629 if (debug_infrun)
5630 fprintf_unfiltered (gdb_stdlog,
5631 "infrun: restart threads: "
5632 "[%s] not meant to be running\n",
a068643d 5633 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5634 continue;
5635 }
5636
5637 if (tp->resumed)
5638 {
5639 if (debug_infrun)
5640 fprintf_unfiltered (gdb_stdlog,
5641 "infrun: restart threads: [%s] resumed\n",
a068643d 5642 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5643 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5644 continue;
5645 }
5646
5647 if (thread_is_in_step_over_chain (tp))
5648 {
5649 if (debug_infrun)
5650 fprintf_unfiltered (gdb_stdlog,
5651 "infrun: restart threads: "
5652 "[%s] needs step-over\n",
a068643d 5653 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5654 gdb_assert (!tp->resumed);
5655 continue;
5656 }
5657
5658
5659 if (tp->suspend.waitstatus_pending_p)
5660 {
5661 if (debug_infrun)
5662 fprintf_unfiltered (gdb_stdlog,
5663 "infrun: restart threads: "
5664 "[%s] has pending status\n",
a068643d 5665 target_pid_to_str (tp->ptid).c_str ());
719546c4 5666 tp->resumed = true;
372316f1
PA
5667 continue;
5668 }
5669
c65d6b55
PA
5670 gdb_assert (!tp->stop_requested);
5671
372316f1
PA
5672 /* If some thread needs to start a step-over at this point, it
5673 should still be in the step-over queue, and thus skipped
5674 above. */
5675 if (thread_still_needs_step_over (tp))
5676 {
5677 internal_error (__FILE__, __LINE__,
5678 "thread [%s] needs a step-over, but not in "
5679 "step-over queue\n",
a068643d 5680 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5681 }
5682
5683 if (currently_stepping (tp))
5684 {
5685 if (debug_infrun)
5686 fprintf_unfiltered (gdb_stdlog,
5687 "infrun: restart threads: [%s] was stepping\n",
a068643d 5688 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
5689 keep_going_stepped_thread (tp);
5690 }
5691 else
5692 {
5693 struct execution_control_state ecss;
5694 struct execution_control_state *ecs = &ecss;
5695
5696 if (debug_infrun)
5697 fprintf_unfiltered (gdb_stdlog,
5698 "infrun: restart threads: [%s] continuing\n",
a068643d 5699 target_pid_to_str (tp->ptid).c_str ());
372316f1 5700 reset_ecs (ecs, tp);
00431a78 5701 switch_to_thread (tp);
372316f1
PA
5702 keep_going_pass_signal (ecs);
5703 }
5704 }
5705}
5706
5707/* Callback for iterate_over_threads. Find a resumed thread that has
5708 a pending waitstatus. */
5709
5710static int
5711resumed_thread_with_pending_status (struct thread_info *tp,
5712 void *arg)
5713{
5714 return (tp->resumed
5715 && tp->suspend.waitstatus_pending_p);
5716}
5717
5718/* Called when we get an event that may finish an in-line or
5719 out-of-line (displaced stepping) step-over started previously.
5720 Return true if the event is processed and we should go back to the
5721 event loop; false if the caller should continue processing the
5722 event. */
5723
5724static int
4d9d9d04
PA
5725finish_step_over (struct execution_control_state *ecs)
5726{
372316f1
PA
5727 int had_step_over_info;
5728
00431a78 5729 displaced_step_fixup (ecs->event_thread,
4d9d9d04
PA
5730 ecs->event_thread->suspend.stop_signal);
5731
372316f1
PA
5732 had_step_over_info = step_over_info_valid_p ();
5733
5734 if (had_step_over_info)
4d9d9d04
PA
5735 {
5736 /* If we're stepping over a breakpoint with all threads locked,
5737 then only the thread that was stepped should be reporting
5738 back an event. */
5739 gdb_assert (ecs->event_thread->control.trap_expected);
5740
c65d6b55 5741 clear_step_over_info ();
4d9d9d04
PA
5742 }
5743
fbea99ea 5744 if (!target_is_non_stop_p ())
372316f1 5745 return 0;
4d9d9d04
PA
5746
5747 /* Start a new step-over in another thread if there's one that
5748 needs it. */
5749 start_step_over ();
372316f1
PA
5750
5751 /* If we were stepping over a breakpoint before, and haven't started
5752 a new in-line step-over sequence, then restart all other threads
5753 (except the event thread). We can't do this in all-stop, as then
5754 e.g., we wouldn't be able to issue any other remote packet until
5755 these other threads stop. */
5756 if (had_step_over_info && !step_over_info_valid_p ())
5757 {
5758 struct thread_info *pending;
5759
5760 /* If we only have threads with pending statuses, the restart
5761 below won't restart any thread and so nothing re-inserts the
5762 breakpoint we just stepped over. But we need it inserted
5763 when we later process the pending events, otherwise if
5764 another thread has a pending event for this breakpoint too,
5765 we'd discard its event (because the breakpoint that
5766 originally caused the event was no longer inserted). */
00431a78 5767 context_switch (ecs);
372316f1
PA
5768 insert_breakpoints ();
5769
5770 restart_threads (ecs->event_thread);
5771
5772 /* If we have events pending, go through handle_inferior_event
5773 again, picking up a pending event at random. This avoids
5774 thread starvation. */
5775
5776 /* But not if we just stepped over a watchpoint in order to let
5777 the instruction execute so we can evaluate its expression.
5778 The set of watchpoints that triggered is recorded in the
5779 breakpoint objects themselves (see bp->watchpoint_triggered).
5780 If we processed another event first, that other event could
5781 clobber this info. */
5782 if (ecs->event_thread->stepping_over_watchpoint)
5783 return 0;
5784
5785 pending = iterate_over_threads (resumed_thread_with_pending_status,
5786 NULL);
5787 if (pending != NULL)
5788 {
5789 struct thread_info *tp = ecs->event_thread;
5790 struct regcache *regcache;
5791
5792 if (debug_infrun)
5793 {
5794 fprintf_unfiltered (gdb_stdlog,
5795 "infrun: found resumed threads with "
5796 "pending events, saving status\n");
5797 }
5798
5799 gdb_assert (pending != tp);
5800
5801 /* Record the event thread's event for later. */
5802 save_waitstatus (tp, &ecs->ws);
5803 /* This was cleared early, by handle_inferior_event. Set it
5804 so this pending event is considered by
5805 do_target_wait. */
719546c4 5806 tp->resumed = true;
372316f1
PA
5807
5808 gdb_assert (!tp->executing);
5809
00431a78 5810 regcache = get_thread_regcache (tp);
372316f1
PA
5811 tp->suspend.stop_pc = regcache_read_pc (regcache);
5812
5813 if (debug_infrun)
5814 {
5815 fprintf_unfiltered (gdb_stdlog,
5816 "infrun: saved stop_pc=%s for %s "
5817 "(currently_stepping=%d)\n",
5818 paddress (target_gdbarch (),
5819 tp->suspend.stop_pc),
a068643d 5820 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
5821 currently_stepping (tp));
5822 }
5823
5824 /* This in-line step-over finished; clear this so we won't
5825 start a new one. This is what handle_signal_stop would
5826 do, if we returned false. */
5827 tp->stepping_over_breakpoint = 0;
5828
5829 /* Wake up the event loop again. */
5830 mark_async_event_handler (infrun_async_inferior_event_token);
5831
5832 prepare_to_wait (ecs);
5833 return 1;
5834 }
5835 }
5836
5837 return 0;
4d9d9d04
PA
5838}
5839
4f5d7f63
PA
5840/* Come here when the program has stopped with a signal. */
5841
5842static void
5843handle_signal_stop (struct execution_control_state *ecs)
5844{
5845 struct frame_info *frame;
5846 struct gdbarch *gdbarch;
5847 int stopped_by_watchpoint;
5848 enum stop_kind stop_soon;
5849 int random_signal;
c906108c 5850
f0407826
DE
5851 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5852
c65d6b55
PA
5853 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5854
f0407826
DE
5855 /* Do we need to clean up the state of a thread that has
5856 completed a displaced single-step? (Doing so usually affects
5857 the PC, so do it here, before we set stop_pc.) */
372316f1
PA
5858 if (finish_step_over (ecs))
5859 return;
f0407826
DE
5860
5861 /* If we either finished a single-step or hit a breakpoint, but
5862 the user wanted this thread to be stopped, pretend we got a
5863 SIG0 (generic unsignaled stop). */
5864 if (ecs->event_thread->stop_requested
5865 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5866 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
237fc4c9 5867
f2ffa92b
PA
5868 ecs->event_thread->suspend.stop_pc
5869 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
488f131b 5870
527159b7 5871 if (debug_infrun)
237fc4c9 5872 {
00431a78 5873 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
b926417a 5874 struct gdbarch *reg_gdbarch = regcache->arch ();
7f82dfc7 5875
f3f8ece4 5876 switch_to_thread (ecs->event_thread);
5af949e3
UW
5877
5878 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
b926417a 5879 paddress (reg_gdbarch,
f2ffa92b 5880 ecs->event_thread->suspend.stop_pc));
d92524f1 5881 if (target_stopped_by_watchpoint ())
237fc4c9
PA
5882 {
5883 CORE_ADDR addr;
abbb1732 5884
237fc4c9
PA
5885 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
5886
8b88a78e 5887 if (target_stopped_data_address (current_top_target (), &addr))
237fc4c9 5888 fprintf_unfiltered (gdb_stdlog,
5af949e3 5889 "infrun: stopped data address = %s\n",
b926417a 5890 paddress (reg_gdbarch, addr));
237fc4c9
PA
5891 else
5892 fprintf_unfiltered (gdb_stdlog,
5893 "infrun: (no data address available)\n");
5894 }
5895 }
527159b7 5896
36fa8042
PA
5897 /* This is originated from start_remote(), start_inferior() and
5898 shared libraries hook functions. */
00431a78 5899 stop_soon = get_inferior_stop_soon (ecs);
36fa8042
PA
5900 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5901 {
00431a78 5902 context_switch (ecs);
36fa8042
PA
5903 if (debug_infrun)
5904 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
5905 stop_print_frame = 1;
22bcd14b 5906 stop_waiting (ecs);
36fa8042
PA
5907 return;
5908 }
5909
36fa8042
PA
5910 /* This originates from attach_command(). We need to overwrite
5911 the stop_signal here, because some kernels don't ignore a
5912 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5913 See more comments in inferior.h. On the other hand, if we
5914 get a non-SIGSTOP, report it to the user - assume the backend
5915 will handle the SIGSTOP if it should show up later.
5916
5917 Also consider that the attach is complete when we see a
5918 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5919 target extended-remote report it instead of a SIGSTOP
5920 (e.g. gdbserver). We already rely on SIGTRAP being our
5921 signal, so this is no exception.
5922
5923 Also consider that the attach is complete when we see a
5924 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5925 the target to stop all threads of the inferior, in case the
5926 low level attach operation doesn't stop them implicitly. If
5927 they weren't stopped implicitly, then the stub will report a
5928 GDB_SIGNAL_0, meaning: stopped for no particular reason
5929 other than GDB's request. */
5930 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5931 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5932 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5933 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5934 {
5935 stop_print_frame = 1;
22bcd14b 5936 stop_waiting (ecs);
36fa8042
PA
5937 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5938 return;
5939 }
5940
488f131b 5941 /* See if something interesting happened to the non-current thread. If
b40c7d58 5942 so, then switch to that thread. */
d7e15655 5943 if (ecs->ptid != inferior_ptid)
488f131b 5944 {
527159b7 5945 if (debug_infrun)
8a9de0e4 5946 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
527159b7 5947
00431a78 5948 context_switch (ecs);
c5aa993b 5949
9a4105ab 5950 if (deprecated_context_hook)
00431a78 5951 deprecated_context_hook (ecs->event_thread->global_num);
488f131b 5952 }
c906108c 5953
568d6575
UW
5954 /* At this point, get hold of the now-current thread's frame. */
5955 frame = get_current_frame ();
5956 gdbarch = get_frame_arch (frame);
5957
2adfaa28 5958 /* Pull the single step breakpoints out of the target. */
af48d08f 5959 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
488f131b 5960 {
af48d08f 5961 struct regcache *regcache;
af48d08f 5962 CORE_ADDR pc;
2adfaa28 5963
00431a78 5964 regcache = get_thread_regcache (ecs->event_thread);
8b86c959
YQ
5965 const address_space *aspace = regcache->aspace ();
5966
af48d08f 5967 pc = regcache_read_pc (regcache);
34b7e8a6 5968
af48d08f
PA
5969 /* However, before doing so, if this single-step breakpoint was
5970 actually for another thread, set this thread up for moving
5971 past it. */
5972 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5973 aspace, pc))
5974 {
5975 if (single_step_breakpoint_inserted_here_p (aspace, pc))
2adfaa28
PA
5976 {
5977 if (debug_infrun)
5978 {
5979 fprintf_unfiltered (gdb_stdlog,
af48d08f 5980 "infrun: [%s] hit another thread's "
34b7e8a6 5981 "single-step breakpoint\n",
a068643d 5982 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28 5983 }
af48d08f
PA
5984 ecs->hit_singlestep_breakpoint = 1;
5985 }
5986 }
5987 else
5988 {
5989 if (debug_infrun)
5990 {
5991 fprintf_unfiltered (gdb_stdlog,
5992 "infrun: [%s] hit its "
5993 "single-step breakpoint\n",
a068643d 5994 target_pid_to_str (ecs->ptid).c_str ());
2adfaa28
PA
5995 }
5996 }
488f131b 5997 }
af48d08f 5998 delete_just_stopped_threads_single_step_breakpoints ();
c906108c 5999
963f9c80
PA
6000 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6001 && ecs->event_thread->control.trap_expected
6002 && ecs->event_thread->stepping_over_watchpoint)
d983da9c
DJ
6003 stopped_by_watchpoint = 0;
6004 else
6005 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6006
6007 /* If necessary, step over this watchpoint. We'll be back to display
6008 it in a moment. */
6009 if (stopped_by_watchpoint
d92524f1 6010 && (target_have_steppable_watchpoint
568d6575 6011 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
488f131b 6012 {
488f131b
JB
6013 /* At this point, we are stopped at an instruction which has
6014 attempted to write to a piece of memory under control of
6015 a watchpoint. The instruction hasn't actually executed
6016 yet. If we were to evaluate the watchpoint expression
6017 now, we would get the old value, and therefore no change
6018 would seem to have occurred.
6019
6020 In order to make watchpoints work `right', we really need
6021 to complete the memory write, and then evaluate the
d983da9c
DJ
6022 watchpoint expression. We do this by single-stepping the
6023 target.
6024
7f89fd65 6025 It may not be necessary to disable the watchpoint to step over
d983da9c
DJ
6026 it. For example, the PA can (with some kernel cooperation)
6027 single step over a watchpoint without disabling the watchpoint.
6028
6029 It is far more common to need to disable a watchpoint to step
6030 the inferior over it. If we have non-steppable watchpoints,
6031 we must disable the current watchpoint; it's simplest to
963f9c80
PA
6032 disable all watchpoints.
6033
6034 Any breakpoint at PC must also be stepped over -- if there's
6035 one, it will have already triggered before the watchpoint
6036 triggered, and we either already reported it to the user, or
6037 it didn't cause a stop and we called keep_going. In either
6038 case, if there was a breakpoint at PC, we must be trying to
6039 step past it. */
6040 ecs->event_thread->stepping_over_watchpoint = 1;
6041 keep_going (ecs);
488f131b
JB
6042 return;
6043 }
6044
4e1c45ea 6045 ecs->event_thread->stepping_over_breakpoint = 0;
963f9c80 6046 ecs->event_thread->stepping_over_watchpoint = 0;
16c381f0
JK
6047 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6048 ecs->event_thread->control.stop_step = 0;
488f131b 6049 stop_print_frame = 1;
488f131b 6050 stopped_by_random_signal = 0;
ddfe970e 6051 bpstat stop_chain = NULL;
488f131b 6052
edb3359d
DJ
6053 /* Hide inlined functions starting here, unless we just performed stepi or
6054 nexti. After stepi and nexti, always show the innermost frame (not any
6055 inline function call sites). */
16c381f0 6056 if (ecs->event_thread->control.step_range_end != 1)
0574c78f 6057 {
00431a78
PA
6058 const address_space *aspace
6059 = get_thread_regcache (ecs->event_thread)->aspace ();
0574c78f
GB
6060
6061 /* skip_inline_frames is expensive, so we avoid it if we can
6062 determine that the address is one where functions cannot have
6063 been inlined. This improves performance with inferiors that
6064 load a lot of shared libraries, because the solib event
6065 breakpoint is defined as the address of a function (i.e. not
6066 inline). Note that we have to check the previous PC as well
6067 as the current one to catch cases when we have just
6068 single-stepped off a breakpoint prior to reinstating it.
6069 Note that we're assuming that the code we single-step to is
6070 not inline, but that's not definitive: there's nothing
6071 preventing the event breakpoint function from containing
6072 inlined code, and the single-step ending up there. If the
6073 user had set a breakpoint on that inlined code, the missing
6074 skip_inline_frames call would break things. Fortunately
6075 that's an extremely unlikely scenario. */
f2ffa92b
PA
6076 if (!pc_at_non_inline_function (aspace,
6077 ecs->event_thread->suspend.stop_pc,
6078 &ecs->ws)
a210c238
MR
6079 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6080 && ecs->event_thread->control.trap_expected
6081 && pc_at_non_inline_function (aspace,
6082 ecs->event_thread->prev_pc,
09ac7c10 6083 &ecs->ws)))
1c5a993e 6084 {
f2ffa92b
PA
6085 stop_chain = build_bpstat_chain (aspace,
6086 ecs->event_thread->suspend.stop_pc,
6087 &ecs->ws);
00431a78 6088 skip_inline_frames (ecs->event_thread, stop_chain);
1c5a993e
MR
6089
6090 /* Re-fetch current thread's frame in case that invalidated
6091 the frame cache. */
6092 frame = get_current_frame ();
6093 gdbarch = get_frame_arch (frame);
6094 }
0574c78f 6095 }
edb3359d 6096
a493e3e2 6097 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
16c381f0 6098 && ecs->event_thread->control.trap_expected
568d6575 6099 && gdbarch_single_step_through_delay_p (gdbarch)
4e1c45ea 6100 && currently_stepping (ecs->event_thread))
3352ef37 6101 {
b50d7442 6102 /* We're trying to step off a breakpoint. Turns out that we're
3352ef37 6103 also on an instruction that needs to be stepped multiple
1777feb0 6104 times before it's been fully executing. E.g., architectures
3352ef37
AC
6105 with a delay slot. It needs to be stepped twice, once for
6106 the instruction and once for the delay slot. */
6107 int step_through_delay
568d6575 6108 = gdbarch_single_step_through_delay (gdbarch, frame);
abbb1732 6109
527159b7 6110 if (debug_infrun && step_through_delay)
8a9de0e4 6111 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
16c381f0
JK
6112 if (ecs->event_thread->control.step_range_end == 0
6113 && step_through_delay)
3352ef37
AC
6114 {
6115 /* The user issued a continue when stopped at a breakpoint.
6116 Set up for another trap and get out of here. */
4e1c45ea 6117 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6118 keep_going (ecs);
6119 return;
6120 }
6121 else if (step_through_delay)
6122 {
6123 /* The user issued a step when stopped at a breakpoint.
6124 Maybe we should stop, maybe we should not - the delay
6125 slot *might* correspond to a line of source. In any
ca67fcb8
VP
6126 case, don't decide that here, just set
6127 ecs->stepping_over_breakpoint, making sure we
6128 single-step again before breakpoints are re-inserted. */
4e1c45ea 6129 ecs->event_thread->stepping_over_breakpoint = 1;
3352ef37
AC
6130 }
6131 }
6132
ab04a2af
TT
6133 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6134 handles this event. */
6135 ecs->event_thread->control.stop_bpstat
a01bda52 6136 = bpstat_stop_status (get_current_regcache ()->aspace (),
f2ffa92b
PA
6137 ecs->event_thread->suspend.stop_pc,
6138 ecs->event_thread, &ecs->ws, stop_chain);
db82e815 6139
ab04a2af
TT
6140 /* Following in case break condition called a
6141 function. */
6142 stop_print_frame = 1;
73dd234f 6143
ab04a2af
TT
6144 /* This is where we handle "moribund" watchpoints. Unlike
6145 software breakpoints traps, hardware watchpoint traps are
6146 always distinguishable from random traps. If no high-level
6147 watchpoint is associated with the reported stop data address
6148 anymore, then the bpstat does not explain the signal ---
6149 simply make sure to ignore it if `stopped_by_watchpoint' is
6150 set. */
6151
6152 if (debug_infrun
6153 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
47591c29 6154 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
427cd150 6155 GDB_SIGNAL_TRAP)
ab04a2af
TT
6156 && stopped_by_watchpoint)
6157 fprintf_unfiltered (gdb_stdlog,
6158 "infrun: no user watchpoint explains "
6159 "watchpoint SIGTRAP, ignoring\n");
73dd234f 6160
bac7d97b 6161 /* NOTE: cagney/2003-03-29: These checks for a random signal
ab04a2af
TT
6162 at one stage in the past included checks for an inferior
6163 function call's call dummy's return breakpoint. The original
6164 comment, that went with the test, read:
03cebad2 6165
ab04a2af
TT
6166 ``End of a stack dummy. Some systems (e.g. Sony news) give
6167 another signal besides SIGTRAP, so check here as well as
6168 above.''
73dd234f 6169
ab04a2af
TT
6170 If someone ever tries to get call dummys on a
6171 non-executable stack to work (where the target would stop
6172 with something like a SIGSEGV), then those tests might need
6173 to be re-instated. Given, however, that the tests were only
6174 enabled when momentary breakpoints were not being used, I
6175 suspect that it won't be the case.
488f131b 6176
ab04a2af
TT
6177 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6178 be necessary for call dummies on a non-executable stack on
6179 SPARC. */
488f131b 6180
bac7d97b 6181 /* See if the breakpoints module can explain the signal. */
47591c29
PA
6182 random_signal
6183 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6184 ecs->event_thread->suspend.stop_signal);
bac7d97b 6185
1cf4d951
PA
6186 /* Maybe this was a trap for a software breakpoint that has since
6187 been removed. */
6188 if (random_signal && target_stopped_by_sw_breakpoint ())
6189 {
5133a315
LM
6190 if (gdbarch_program_breakpoint_here_p (gdbarch,
6191 ecs->event_thread->suspend.stop_pc))
1cf4d951
PA
6192 {
6193 struct regcache *regcache;
6194 int decr_pc;
6195
6196 /* Re-adjust PC to what the program would see if GDB was not
6197 debugging it. */
00431a78 6198 regcache = get_thread_regcache (ecs->event_thread);
527a273a 6199 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
1cf4d951
PA
6200 if (decr_pc != 0)
6201 {
07036511
TT
6202 gdb::optional<scoped_restore_tmpl<int>>
6203 restore_operation_disable;
1cf4d951
PA
6204
6205 if (record_full_is_used ())
07036511
TT
6206 restore_operation_disable.emplace
6207 (record_full_gdb_operation_disable_set ());
1cf4d951 6208
f2ffa92b
PA
6209 regcache_write_pc (regcache,
6210 ecs->event_thread->suspend.stop_pc + decr_pc);
1cf4d951
PA
6211 }
6212 }
6213 else
6214 {
6215 /* A delayed software breakpoint event. Ignore the trap. */
6216 if (debug_infrun)
6217 fprintf_unfiltered (gdb_stdlog,
6218 "infrun: delayed software breakpoint "
6219 "trap, ignoring\n");
6220 random_signal = 0;
6221 }
6222 }
6223
6224 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6225 has since been removed. */
6226 if (random_signal && target_stopped_by_hw_breakpoint ())
6227 {
6228 /* A delayed hardware breakpoint event. Ignore the trap. */
6229 if (debug_infrun)
6230 fprintf_unfiltered (gdb_stdlog,
6231 "infrun: delayed hardware breakpoint/watchpoint "
6232 "trap, ignoring\n");
6233 random_signal = 0;
6234 }
6235
bac7d97b
PA
6236 /* If not, perhaps stepping/nexting can. */
6237 if (random_signal)
6238 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6239 && currently_stepping (ecs->event_thread));
ab04a2af 6240
2adfaa28
PA
6241 /* Perhaps the thread hit a single-step breakpoint of _another_
6242 thread. Single-step breakpoints are transparent to the
6243 breakpoints module. */
6244 if (random_signal)
6245 random_signal = !ecs->hit_singlestep_breakpoint;
6246
bac7d97b
PA
6247 /* No? Perhaps we got a moribund watchpoint. */
6248 if (random_signal)
6249 random_signal = !stopped_by_watchpoint;
ab04a2af 6250
c65d6b55
PA
6251 /* Always stop if the user explicitly requested this thread to
6252 remain stopped. */
6253 if (ecs->event_thread->stop_requested)
6254 {
6255 random_signal = 1;
6256 if (debug_infrun)
6257 fprintf_unfiltered (gdb_stdlog, "infrun: user-requested stop\n");
6258 }
6259
488f131b
JB
6260 /* For the program's own signals, act according to
6261 the signal handling tables. */
6262
ce12b012 6263 if (random_signal)
488f131b
JB
6264 {
6265 /* Signal not for debugging purposes. */
5b6d1e4f 6266 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
c9737c08 6267 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
488f131b 6268
527159b7 6269 if (debug_infrun)
c9737c08
PA
6270 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
6271 gdb_signal_to_symbol_string (stop_signal));
527159b7 6272
488f131b
JB
6273 stopped_by_random_signal = 1;
6274
252fbfc8
PA
6275 /* Always stop on signals if we're either just gaining control
6276 of the program, or the user explicitly requested this thread
6277 to remain stopped. */
d6b48e9c 6278 if (stop_soon != NO_STOP_QUIETLY
252fbfc8 6279 || ecs->event_thread->stop_requested
24291992 6280 || (!inf->detaching
16c381f0 6281 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
488f131b 6282 {
22bcd14b 6283 stop_waiting (ecs);
488f131b
JB
6284 return;
6285 }
b57bacec
PA
6286
6287 /* Notify observers the signal has "handle print" set. Note we
6288 returned early above if stopping; normal_stop handles the
6289 printing in that case. */
6290 if (signal_print[ecs->event_thread->suspend.stop_signal])
6291 {
6292 /* The signal table tells us to print about this signal. */
223ffa71 6293 target_terminal::ours_for_output ();
76727919 6294 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
223ffa71 6295 target_terminal::inferior ();
b57bacec 6296 }
488f131b
JB
6297
6298 /* Clear the signal if it should not be passed. */
16c381f0 6299 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
a493e3e2 6300 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
488f131b 6301
f2ffa92b 6302 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
16c381f0 6303 && ecs->event_thread->control.trap_expected
8358c15c 6304 && ecs->event_thread->control.step_resume_breakpoint == NULL)
68f53502
AC
6305 {
6306 /* We were just starting a new sequence, attempting to
6307 single-step off of a breakpoint and expecting a SIGTRAP.
237fc4c9 6308 Instead this signal arrives. This signal will take us out
68f53502
AC
6309 of the stepping range so GDB needs to remember to, when
6310 the signal handler returns, resume stepping off that
6311 breakpoint. */
6312 /* To simplify things, "continue" is forced to use the same
6313 code paths as single-step - set a breakpoint at the
6314 signal return address and then, once hit, step off that
6315 breakpoint. */
237fc4c9
PA
6316 if (debug_infrun)
6317 fprintf_unfiltered (gdb_stdlog,
6318 "infrun: signal arrived while stepping over "
6319 "breakpoint\n");
d3169d93 6320
2c03e5be 6321 insert_hp_step_resume_breakpoint_at_frame (frame);
4e1c45ea 6322 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6323 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6324 ecs->event_thread->control.trap_expected = 0;
d137e6dc
PA
6325
6326 /* If we were nexting/stepping some other thread, switch to
6327 it, so that we don't continue it, losing control. */
6328 if (!switch_back_to_stepped_thread (ecs))
6329 keep_going (ecs);
9d799f85 6330 return;
68f53502 6331 }
9d799f85 6332
e5f8a7cc 6333 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
f2ffa92b
PA
6334 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6335 ecs->event_thread)
e5f8a7cc 6336 || ecs->event_thread->control.step_range_end == 1)
edb3359d 6337 && frame_id_eq (get_stack_frame_id (frame),
16c381f0 6338 ecs->event_thread->control.step_stack_frame_id)
8358c15c 6339 && ecs->event_thread->control.step_resume_breakpoint == NULL)
d303a6c7
AC
6340 {
6341 /* The inferior is about to take a signal that will take it
6342 out of the single step range. Set a breakpoint at the
6343 current PC (which is presumably where the signal handler
6344 will eventually return) and then allow the inferior to
6345 run free.
6346
6347 Note that this is only needed for a signal delivered
6348 while in the single-step range. Nested signals aren't a
6349 problem as they eventually all return. */
237fc4c9
PA
6350 if (debug_infrun)
6351 fprintf_unfiltered (gdb_stdlog,
6352 "infrun: signal may take us out of "
6353 "single-step range\n");
6354
372316f1 6355 clear_step_over_info ();
2c03e5be 6356 insert_hp_step_resume_breakpoint_at_frame (frame);
e5f8a7cc 6357 ecs->event_thread->step_after_step_resume_breakpoint = 1;
2455069d
UW
6358 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6359 ecs->event_thread->control.trap_expected = 0;
9d799f85
AC
6360 keep_going (ecs);
6361 return;
d303a6c7 6362 }
9d799f85 6363
85102364 6364 /* Note: step_resume_breakpoint may be non-NULL. This occurs
9d799f85
AC
6365 when either there's a nested signal, or when there's a
6366 pending signal enabled just as the signal handler returns
6367 (leaving the inferior at the step-resume-breakpoint without
6368 actually executing it). Either way continue until the
6369 breakpoint is really hit. */
c447ac0b
PA
6370
6371 if (!switch_back_to_stepped_thread (ecs))
6372 {
6373 if (debug_infrun)
6374 fprintf_unfiltered (gdb_stdlog,
6375 "infrun: random signal, keep going\n");
6376
6377 keep_going (ecs);
6378 }
6379 return;
488f131b 6380 }
94c57d6a
PA
6381
6382 process_event_stop_test (ecs);
6383}
6384
6385/* Come here when we've got some debug event / signal we can explain
6386 (IOW, not a random signal), and test whether it should cause a
6387 stop, or whether we should resume the inferior (transparently).
6388 E.g., could be a breakpoint whose condition evaluates false; we
6389 could be still stepping within the line; etc. */
6390
6391static void
6392process_event_stop_test (struct execution_control_state *ecs)
6393{
6394 struct symtab_and_line stop_pc_sal;
6395 struct frame_info *frame;
6396 struct gdbarch *gdbarch;
cdaa5b73
PA
6397 CORE_ADDR jmp_buf_pc;
6398 struct bpstat_what what;
94c57d6a 6399
cdaa5b73 6400 /* Handle cases caused by hitting a breakpoint. */
611c83ae 6401
cdaa5b73
PA
6402 frame = get_current_frame ();
6403 gdbarch = get_frame_arch (frame);
fcf3daef 6404
cdaa5b73 6405 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
611c83ae 6406
cdaa5b73
PA
6407 if (what.call_dummy)
6408 {
6409 stop_stack_dummy = what.call_dummy;
6410 }
186c406b 6411
243a9253
PA
6412 /* A few breakpoint types have callbacks associated (e.g.,
6413 bp_jit_event). Run them now. */
6414 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6415
cdaa5b73
PA
6416 /* If we hit an internal event that triggers symbol changes, the
6417 current frame will be invalidated within bpstat_what (e.g., if we
6418 hit an internal solib event). Re-fetch it. */
6419 frame = get_current_frame ();
6420 gdbarch = get_frame_arch (frame);
e2e4d78b 6421
cdaa5b73
PA
6422 switch (what.main_action)
6423 {
6424 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6425 /* If we hit the breakpoint at longjmp while stepping, we
6426 install a momentary breakpoint at the target of the
6427 jmp_buf. */
186c406b 6428
cdaa5b73
PA
6429 if (debug_infrun)
6430 fprintf_unfiltered (gdb_stdlog,
6431 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
186c406b 6432
cdaa5b73 6433 ecs->event_thread->stepping_over_breakpoint = 1;
611c83ae 6434
cdaa5b73
PA
6435 if (what.is_longjmp)
6436 {
6437 struct value *arg_value;
6438
6439 /* If we set the longjmp breakpoint via a SystemTap probe,
6440 then use it to extract the arguments. The destination PC
6441 is the third argument to the probe. */
6442 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6443 if (arg_value)
8fa0c4f8
AA
6444 {
6445 jmp_buf_pc = value_as_address (arg_value);
6446 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6447 }
cdaa5b73
PA
6448 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6449 || !gdbarch_get_longjmp_target (gdbarch,
6450 frame, &jmp_buf_pc))
e2e4d78b 6451 {
cdaa5b73
PA
6452 if (debug_infrun)
6453 fprintf_unfiltered (gdb_stdlog,
6454 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
6455 "(!gdbarch_get_longjmp_target)\n");
6456 keep_going (ecs);
6457 return;
e2e4d78b 6458 }
e2e4d78b 6459
cdaa5b73
PA
6460 /* Insert a breakpoint at resume address. */
6461 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6462 }
6463 else
6464 check_exception_resume (ecs, frame);
6465 keep_going (ecs);
6466 return;
e81a37f7 6467
cdaa5b73
PA
6468 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6469 {
6470 struct frame_info *init_frame;
e81a37f7 6471
cdaa5b73 6472 /* There are several cases to consider.
c906108c 6473
cdaa5b73
PA
6474 1. The initiating frame no longer exists. In this case we
6475 must stop, because the exception or longjmp has gone too
6476 far.
2c03e5be 6477
cdaa5b73
PA
6478 2. The initiating frame exists, and is the same as the
6479 current frame. We stop, because the exception or longjmp
6480 has been caught.
2c03e5be 6481
cdaa5b73
PA
6482 3. The initiating frame exists and is different from the
6483 current frame. This means the exception or longjmp has
6484 been caught beneath the initiating frame, so keep going.
c906108c 6485
cdaa5b73
PA
6486 4. longjmp breakpoint has been placed just to protect
6487 against stale dummy frames and user is not interested in
6488 stopping around longjmps. */
c5aa993b 6489
cdaa5b73
PA
6490 if (debug_infrun)
6491 fprintf_unfiltered (gdb_stdlog,
6492 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
c5aa993b 6493
cdaa5b73
PA
6494 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6495 != NULL);
6496 delete_exception_resume_breakpoint (ecs->event_thread);
c5aa993b 6497
cdaa5b73
PA
6498 if (what.is_longjmp)
6499 {
b67a2c6f 6500 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
c5aa993b 6501
cdaa5b73 6502 if (!frame_id_p (ecs->event_thread->initiating_frame))
e5ef252a 6503 {
cdaa5b73
PA
6504 /* Case 4. */
6505 keep_going (ecs);
6506 return;
e5ef252a 6507 }
cdaa5b73 6508 }
c5aa993b 6509
cdaa5b73 6510 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
527159b7 6511
cdaa5b73
PA
6512 if (init_frame)
6513 {
6514 struct frame_id current_id
6515 = get_frame_id (get_current_frame ());
6516 if (frame_id_eq (current_id,
6517 ecs->event_thread->initiating_frame))
6518 {
6519 /* Case 2. Fall through. */
6520 }
6521 else
6522 {
6523 /* Case 3. */
6524 keep_going (ecs);
6525 return;
6526 }
68f53502 6527 }
488f131b 6528
cdaa5b73
PA
6529 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6530 exists. */
6531 delete_step_resume_breakpoint (ecs->event_thread);
e5ef252a 6532
bdc36728 6533 end_stepping_range (ecs);
cdaa5b73
PA
6534 }
6535 return;
e5ef252a 6536
cdaa5b73
PA
6537 case BPSTAT_WHAT_SINGLE:
6538 if (debug_infrun)
6539 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
6540 ecs->event_thread->stepping_over_breakpoint = 1;
6541 /* Still need to check other stuff, at least the case where we
6542 are stepping and step out of the right range. */
6543 break;
e5ef252a 6544
cdaa5b73
PA
6545 case BPSTAT_WHAT_STEP_RESUME:
6546 if (debug_infrun)
6547 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
e5ef252a 6548
cdaa5b73
PA
6549 delete_step_resume_breakpoint (ecs->event_thread);
6550 if (ecs->event_thread->control.proceed_to_finish
6551 && execution_direction == EXEC_REVERSE)
6552 {
6553 struct thread_info *tp = ecs->event_thread;
6554
6555 /* We are finishing a function in reverse, and just hit the
6556 step-resume breakpoint at the start address of the
6557 function, and we're almost there -- just need to back up
6558 by one more single-step, which should take us back to the
6559 function call. */
6560 tp->control.step_range_start = tp->control.step_range_end = 1;
6561 keep_going (ecs);
e5ef252a 6562 return;
cdaa5b73
PA
6563 }
6564 fill_in_stop_func (gdbarch, ecs);
f2ffa92b 6565 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
cdaa5b73
PA
6566 && execution_direction == EXEC_REVERSE)
6567 {
6568 /* We are stepping over a function call in reverse, and just
6569 hit the step-resume breakpoint at the start address of
6570 the function. Go back to single-stepping, which should
6571 take us back to the function call. */
6572 ecs->event_thread->stepping_over_breakpoint = 1;
6573 keep_going (ecs);
6574 return;
6575 }
6576 break;
e5ef252a 6577
cdaa5b73
PA
6578 case BPSTAT_WHAT_STOP_NOISY:
6579 if (debug_infrun)
6580 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
6581 stop_print_frame = 1;
e5ef252a 6582
99619bea
PA
6583 /* Assume the thread stopped for a breapoint. We'll still check
6584 whether a/the breakpoint is there when the thread is next
6585 resumed. */
6586 ecs->event_thread->stepping_over_breakpoint = 1;
e5ef252a 6587
22bcd14b 6588 stop_waiting (ecs);
cdaa5b73 6589 return;
e5ef252a 6590
cdaa5b73
PA
6591 case BPSTAT_WHAT_STOP_SILENT:
6592 if (debug_infrun)
6593 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
6594 stop_print_frame = 0;
e5ef252a 6595
99619bea
PA
6596 /* Assume the thread stopped for a breapoint. We'll still check
6597 whether a/the breakpoint is there when the thread is next
6598 resumed. */
6599 ecs->event_thread->stepping_over_breakpoint = 1;
22bcd14b 6600 stop_waiting (ecs);
cdaa5b73
PA
6601 return;
6602
6603 case BPSTAT_WHAT_HP_STEP_RESUME:
6604 if (debug_infrun)
6605 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
6606
6607 delete_step_resume_breakpoint (ecs->event_thread);
6608 if (ecs->event_thread->step_after_step_resume_breakpoint)
6609 {
6610 /* Back when the step-resume breakpoint was inserted, we
6611 were trying to single-step off a breakpoint. Go back to
6612 doing that. */
6613 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6614 ecs->event_thread->stepping_over_breakpoint = 1;
6615 keep_going (ecs);
6616 return;
e5ef252a 6617 }
cdaa5b73
PA
6618 break;
6619
6620 case BPSTAT_WHAT_KEEP_CHECKING:
6621 break;
e5ef252a 6622 }
c906108c 6623
af48d08f
PA
6624 /* If we stepped a permanent breakpoint and we had a high priority
6625 step-resume breakpoint for the address we stepped, but we didn't
6626 hit it, then we must have stepped into the signal handler. The
6627 step-resume was only necessary to catch the case of _not_
6628 stepping into the handler, so delete it, and fall through to
6629 checking whether the step finished. */
6630 if (ecs->event_thread->stepped_breakpoint)
6631 {
6632 struct breakpoint *sr_bp
6633 = ecs->event_thread->control.step_resume_breakpoint;
6634
8d707a12
PA
6635 if (sr_bp != NULL
6636 && sr_bp->loc->permanent
af48d08f
PA
6637 && sr_bp->type == bp_hp_step_resume
6638 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6639 {
6640 if (debug_infrun)
6641 fprintf_unfiltered (gdb_stdlog,
6642 "infrun: stepped permanent breakpoint, stopped in "
6643 "handler\n");
6644 delete_step_resume_breakpoint (ecs->event_thread);
6645 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6646 }
6647 }
6648
cdaa5b73
PA
6649 /* We come here if we hit a breakpoint but should not stop for it.
6650 Possibly we also were stepping and should stop for that. So fall
6651 through and test for stepping. But, if not stepping, do not
6652 stop. */
c906108c 6653
a7212384
UW
6654 /* In all-stop mode, if we're currently stepping but have stopped in
6655 some other thread, we need to switch back to the stepped thread. */
c447ac0b
PA
6656 if (switch_back_to_stepped_thread (ecs))
6657 return;
776f04fa 6658
8358c15c 6659 if (ecs->event_thread->control.step_resume_breakpoint)
488f131b 6660 {
527159b7 6661 if (debug_infrun)
d3169d93
DJ
6662 fprintf_unfiltered (gdb_stdlog,
6663 "infrun: step-resume breakpoint is inserted\n");
527159b7 6664
488f131b
JB
6665 /* Having a step-resume breakpoint overrides anything
6666 else having to do with stepping commands until
6667 that breakpoint is reached. */
488f131b
JB
6668 keep_going (ecs);
6669 return;
6670 }
c5aa993b 6671
16c381f0 6672 if (ecs->event_thread->control.step_range_end == 0)
488f131b 6673 {
527159b7 6674 if (debug_infrun)
8a9de0e4 6675 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
488f131b 6676 /* Likewise if we aren't even stepping. */
488f131b
JB
6677 keep_going (ecs);
6678 return;
6679 }
c5aa993b 6680
4b7703ad
JB
6681 /* Re-fetch current thread's frame in case the code above caused
6682 the frame cache to be re-initialized, making our FRAME variable
6683 a dangling pointer. */
6684 frame = get_current_frame ();
628fe4e4 6685 gdbarch = get_frame_arch (frame);
7e324e48 6686 fill_in_stop_func (gdbarch, ecs);
4b7703ad 6687
488f131b 6688 /* If stepping through a line, keep going if still within it.
c906108c 6689
488f131b
JB
6690 Note that step_range_end is the address of the first instruction
6691 beyond the step range, and NOT the address of the last instruction
31410e84
MS
6692 within it!
6693
6694 Note also that during reverse execution, we may be stepping
6695 through a function epilogue and therefore must detect when
6696 the current-frame changes in the middle of a line. */
6697
f2ffa92b
PA
6698 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6699 ecs->event_thread)
31410e84 6700 && (execution_direction != EXEC_REVERSE
388a8562 6701 || frame_id_eq (get_frame_id (frame),
16c381f0 6702 ecs->event_thread->control.step_frame_id)))
488f131b 6703 {
527159b7 6704 if (debug_infrun)
5af949e3
UW
6705 fprintf_unfiltered
6706 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
16c381f0
JK
6707 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6708 paddress (gdbarch, ecs->event_thread->control.step_range_end));
b2175913 6709
c1e36e3e
PA
6710 /* Tentatively re-enable range stepping; `resume' disables it if
6711 necessary (e.g., if we're stepping over a breakpoint or we
6712 have software watchpoints). */
6713 ecs->event_thread->control.may_range_step = 1;
6714
b2175913
MS
6715 /* When stepping backward, stop at beginning of line range
6716 (unless it's the function entry point, in which case
6717 keep going back to the call point). */
f2ffa92b 6718 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
16c381f0 6719 if (stop_pc == ecs->event_thread->control.step_range_start
b2175913
MS
6720 && stop_pc != ecs->stop_func_start
6721 && execution_direction == EXEC_REVERSE)
bdc36728 6722 end_stepping_range (ecs);
b2175913
MS
6723 else
6724 keep_going (ecs);
6725
488f131b
JB
6726 return;
6727 }
c5aa993b 6728
488f131b 6729 /* We stepped out of the stepping range. */
c906108c 6730
488f131b 6731 /* If we are stepping at the source level and entered the runtime
388a8562
MS
6732 loader dynamic symbol resolution code...
6733
6734 EXEC_FORWARD: we keep on single stepping until we exit the run
6735 time loader code and reach the callee's address.
6736
6737 EXEC_REVERSE: we've already executed the callee (backward), and
6738 the runtime loader code is handled just like any other
6739 undebuggable function call. Now we need only keep stepping
6740 backward through the trampoline code, and that's handled further
6741 down, so there is nothing for us to do here. */
6742
6743 if (execution_direction != EXEC_REVERSE
16c381f0 6744 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
f2ffa92b 6745 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
488f131b 6746 {
4c8c40e6 6747 CORE_ADDR pc_after_resolver =
f2ffa92b
PA
6748 gdbarch_skip_solib_resolver (gdbarch,
6749 ecs->event_thread->suspend.stop_pc);
c906108c 6750
527159b7 6751 if (debug_infrun)
3e43a32a
MS
6752 fprintf_unfiltered (gdb_stdlog,
6753 "infrun: stepped into dynsym resolve code\n");
527159b7 6754
488f131b
JB
6755 if (pc_after_resolver)
6756 {
6757 /* Set up a step-resume breakpoint at the address
6758 indicated by SKIP_SOLIB_RESOLVER. */
51abb421 6759 symtab_and_line sr_sal;
488f131b 6760 sr_sal.pc = pc_after_resolver;
6c95b8df 6761 sr_sal.pspace = get_frame_program_space (frame);
488f131b 6762
a6d9a66e
UW
6763 insert_step_resume_breakpoint_at_sal (gdbarch,
6764 sr_sal, null_frame_id);
c5aa993b 6765 }
c906108c 6766
488f131b
JB
6767 keep_going (ecs);
6768 return;
6769 }
c906108c 6770
1d509aa6
MM
6771 /* Step through an indirect branch thunk. */
6772 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
f2ffa92b
PA
6773 && gdbarch_in_indirect_branch_thunk (gdbarch,
6774 ecs->event_thread->suspend.stop_pc))
1d509aa6
MM
6775 {
6776 if (debug_infrun)
6777 fprintf_unfiltered (gdb_stdlog,
6778 "infrun: stepped into indirect branch thunk\n");
6779 keep_going (ecs);
6780 return;
6781 }
6782
16c381f0
JK
6783 if (ecs->event_thread->control.step_range_end != 1
6784 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6785 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
568d6575 6786 && get_frame_type (frame) == SIGTRAMP_FRAME)
488f131b 6787 {
527159b7 6788 if (debug_infrun)
3e43a32a
MS
6789 fprintf_unfiltered (gdb_stdlog,
6790 "infrun: stepped into signal trampoline\n");
42edda50 6791 /* The inferior, while doing a "step" or "next", has ended up in
8fb3e588
AC
6792 a signal trampoline (either by a signal being delivered or by
6793 the signal handler returning). Just single-step until the
6794 inferior leaves the trampoline (either by calling the handler
6795 or returning). */
488f131b
JB
6796 keep_going (ecs);
6797 return;
6798 }
c906108c 6799
14132e89
MR
6800 /* If we're in the return path from a shared library trampoline,
6801 we want to proceed through the trampoline when stepping. */
6802 /* macro/2012-04-25: This needs to come before the subroutine
6803 call check below as on some targets return trampolines look
6804 like subroutine calls (MIPS16 return thunks). */
6805 if (gdbarch_in_solib_return_trampoline (gdbarch,
f2ffa92b
PA
6806 ecs->event_thread->suspend.stop_pc,
6807 ecs->stop_func_name)
14132e89
MR
6808 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6809 {
6810 /* Determine where this trampoline returns. */
f2ffa92b
PA
6811 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6812 CORE_ADDR real_stop_pc
6813 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
14132e89
MR
6814
6815 if (debug_infrun)
6816 fprintf_unfiltered (gdb_stdlog,
6817 "infrun: stepped into solib return tramp\n");
6818
6819 /* Only proceed through if we know where it's going. */
6820 if (real_stop_pc)
6821 {
6822 /* And put the step-breakpoint there and go until there. */
51abb421 6823 symtab_and_line sr_sal;
14132e89
MR
6824 sr_sal.pc = real_stop_pc;
6825 sr_sal.section = find_pc_overlay (sr_sal.pc);
6826 sr_sal.pspace = get_frame_program_space (frame);
6827
6828 /* Do not specify what the fp should be when we stop since
6829 on some machines the prologue is where the new fp value
6830 is established. */
6831 insert_step_resume_breakpoint_at_sal (gdbarch,
6832 sr_sal, null_frame_id);
6833
6834 /* Restart without fiddling with the step ranges or
6835 other state. */
6836 keep_going (ecs);
6837 return;
6838 }
6839 }
6840
c17eaafe
DJ
6841 /* Check for subroutine calls. The check for the current frame
6842 equalling the step ID is not necessary - the check of the
6843 previous frame's ID is sufficient - but it is a common case and
6844 cheaper than checking the previous frame's ID.
14e60db5
DJ
6845
6846 NOTE: frame_id_eq will never report two invalid frame IDs as
6847 being equal, so to get into this block, both the current and
6848 previous frame must have valid frame IDs. */
005ca36a
JB
6849 /* The outer_frame_id check is a heuristic to detect stepping
6850 through startup code. If we step over an instruction which
6851 sets the stack pointer from an invalid value to a valid value,
6852 we may detect that as a subroutine call from the mythical
6853 "outermost" function. This could be fixed by marking
6854 outermost frames as !stack_p,code_p,special_p. Then the
6855 initial outermost frame, before sp was valid, would
ce6cca6d 6856 have code_addr == &_start. See the comment in frame_id_eq
005ca36a 6857 for more. */
edb3359d 6858 if (!frame_id_eq (get_stack_frame_id (frame),
16c381f0 6859 ecs->event_thread->control.step_stack_frame_id)
005ca36a 6860 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
16c381f0
JK
6861 ecs->event_thread->control.step_stack_frame_id)
6862 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
005ca36a 6863 outer_frame_id)
885eeb5b 6864 || (ecs->event_thread->control.step_start_function
f2ffa92b 6865 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
488f131b 6866 {
f2ffa92b 6867 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
95918acb 6868 CORE_ADDR real_stop_pc;
8fb3e588 6869
527159b7 6870 if (debug_infrun)
8a9de0e4 6871 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
527159b7 6872
b7a084be 6873 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
95918acb
AC
6874 {
6875 /* I presume that step_over_calls is only 0 when we're
6876 supposed to be stepping at the assembly language level
6877 ("stepi"). Just stop. */
388a8562 6878 /* And this works the same backward as frontward. MVS */
bdc36728 6879 end_stepping_range (ecs);
95918acb
AC
6880 return;
6881 }
8fb3e588 6882
388a8562
MS
6883 /* Reverse stepping through solib trampolines. */
6884
6885 if (execution_direction == EXEC_REVERSE
16c381f0 6886 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
388a8562
MS
6887 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6888 || (ecs->stop_func_start == 0
6889 && in_solib_dynsym_resolve_code (stop_pc))))
6890 {
6891 /* Any solib trampoline code can be handled in reverse
6892 by simply continuing to single-step. We have already
6893 executed the solib function (backwards), and a few
6894 steps will take us back through the trampoline to the
6895 caller. */
6896 keep_going (ecs);
6897 return;
6898 }
6899
16c381f0 6900 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
8567c30f 6901 {
b2175913
MS
6902 /* We're doing a "next".
6903
6904 Normal (forward) execution: set a breakpoint at the
6905 callee's return address (the address at which the caller
6906 will resume).
6907
6908 Reverse (backward) execution. set the step-resume
6909 breakpoint at the start of the function that we just
6910 stepped into (backwards), and continue to there. When we
6130d0b7 6911 get there, we'll need to single-step back to the caller. */
b2175913
MS
6912
6913 if (execution_direction == EXEC_REVERSE)
6914 {
acf9414f
JK
6915 /* If we're already at the start of the function, we've either
6916 just stepped backward into a single instruction function,
6917 or stepped back out of a signal handler to the first instruction
6918 of the function. Just keep going, which will single-step back
6919 to the caller. */
58c48e72 6920 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
acf9414f 6921 {
acf9414f 6922 /* Normal function call return (static or dynamic). */
51abb421 6923 symtab_and_line sr_sal;
acf9414f
JK
6924 sr_sal.pc = ecs->stop_func_start;
6925 sr_sal.pspace = get_frame_program_space (frame);
6926 insert_step_resume_breakpoint_at_sal (gdbarch,
6927 sr_sal, null_frame_id);
6928 }
b2175913
MS
6929 }
6930 else
568d6575 6931 insert_step_resume_breakpoint_at_caller (frame);
b2175913 6932
8567c30f
AC
6933 keep_going (ecs);
6934 return;
6935 }
a53c66de 6936
95918acb 6937 /* If we are in a function call trampoline (a stub between the
8fb3e588
AC
6938 calling routine and the real function), locate the real
6939 function. That's what tells us (a) whether we want to step
6940 into it at all, and (b) what prologue we want to run to the
6941 end of, if we do step into it. */
568d6575 6942 real_stop_pc = skip_language_trampoline (frame, stop_pc);
95918acb 6943 if (real_stop_pc == 0)
568d6575 6944 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
95918acb
AC
6945 if (real_stop_pc != 0)
6946 ecs->stop_func_start = real_stop_pc;
8fb3e588 6947
db5f024e 6948 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
1b2bfbb9 6949 {
51abb421 6950 symtab_and_line sr_sal;
1b2bfbb9 6951 sr_sal.pc = ecs->stop_func_start;
6c95b8df 6952 sr_sal.pspace = get_frame_program_space (frame);
1b2bfbb9 6953
a6d9a66e
UW
6954 insert_step_resume_breakpoint_at_sal (gdbarch,
6955 sr_sal, null_frame_id);
8fb3e588
AC
6956 keep_going (ecs);
6957 return;
1b2bfbb9
RC
6958 }
6959
95918acb 6960 /* If we have line number information for the function we are
1bfeeb0f
JL
6961 thinking of stepping into and the function isn't on the skip
6962 list, step into it.
95918acb 6963
8fb3e588
AC
6964 If there are several symtabs at that PC (e.g. with include
6965 files), just want to know whether *any* of them have line
6966 numbers. find_pc_line handles this. */
95918acb
AC
6967 {
6968 struct symtab_and_line tmp_sal;
8fb3e588 6969
95918acb 6970 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2b914b52 6971 if (tmp_sal.line != 0
85817405 6972 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4a4c04f1
BE
6973 tmp_sal)
6974 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
95918acb 6975 {
b2175913 6976 if (execution_direction == EXEC_REVERSE)
568d6575 6977 handle_step_into_function_backward (gdbarch, ecs);
b2175913 6978 else
568d6575 6979 handle_step_into_function (gdbarch, ecs);
95918acb
AC
6980 return;
6981 }
6982 }
6983
6984 /* If we have no line number and the step-stop-if-no-debug is
8fb3e588
AC
6985 set, we stop the step so that the user has a chance to switch
6986 in assembly mode. */
16c381f0 6987 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
078130d0 6988 && step_stop_if_no_debug)
95918acb 6989 {
bdc36728 6990 end_stepping_range (ecs);
95918acb
AC
6991 return;
6992 }
6993
b2175913
MS
6994 if (execution_direction == EXEC_REVERSE)
6995 {
acf9414f
JK
6996 /* If we're already at the start of the function, we've either just
6997 stepped backward into a single instruction function without line
6998 number info, or stepped back out of a signal handler to the first
6999 instruction of the function without line number info. Just keep
7000 going, which will single-step back to the caller. */
7001 if (ecs->stop_func_start != stop_pc)
7002 {
7003 /* Set a breakpoint at callee's start address.
7004 From there we can step once and be back in the caller. */
51abb421 7005 symtab_and_line sr_sal;
acf9414f
JK
7006 sr_sal.pc = ecs->stop_func_start;
7007 sr_sal.pspace = get_frame_program_space (frame);
7008 insert_step_resume_breakpoint_at_sal (gdbarch,
7009 sr_sal, null_frame_id);
7010 }
b2175913
MS
7011 }
7012 else
7013 /* Set a breakpoint at callee's return address (the address
7014 at which the caller will resume). */
568d6575 7015 insert_step_resume_breakpoint_at_caller (frame);
b2175913 7016
95918acb 7017 keep_going (ecs);
488f131b 7018 return;
488f131b 7019 }
c906108c 7020
fdd654f3
MS
7021 /* Reverse stepping through solib trampolines. */
7022
7023 if (execution_direction == EXEC_REVERSE
16c381f0 7024 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
fdd654f3 7025 {
f2ffa92b
PA
7026 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7027
fdd654f3
MS
7028 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7029 || (ecs->stop_func_start == 0
7030 && in_solib_dynsym_resolve_code (stop_pc)))
7031 {
7032 /* Any solib trampoline code can be handled in reverse
7033 by simply continuing to single-step. We have already
7034 executed the solib function (backwards), and a few
7035 steps will take us back through the trampoline to the
7036 caller. */
7037 keep_going (ecs);
7038 return;
7039 }
7040 else if (in_solib_dynsym_resolve_code (stop_pc))
7041 {
7042 /* Stepped backward into the solib dynsym resolver.
7043 Set a breakpoint at its start and continue, then
7044 one more step will take us out. */
51abb421 7045 symtab_and_line sr_sal;
fdd654f3 7046 sr_sal.pc = ecs->stop_func_start;
9d1807c3 7047 sr_sal.pspace = get_frame_program_space (frame);
fdd654f3
MS
7048 insert_step_resume_breakpoint_at_sal (gdbarch,
7049 sr_sal, null_frame_id);
7050 keep_going (ecs);
7051 return;
7052 }
7053 }
7054
8c95582d
AB
7055 /* This always returns the sal for the inner-most frame when we are in a
7056 stack of inlined frames, even if GDB actually believes that it is in a
7057 more outer frame. This is checked for below by calls to
7058 inline_skipped_frames. */
f2ffa92b 7059 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7ed0fe66 7060
1b2bfbb9
RC
7061 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7062 the trampoline processing logic, however, there are some trampolines
7063 that have no names, so we should do trampoline handling first. */
16c381f0 7064 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7ed0fe66 7065 && ecs->stop_func_name == NULL
2afb61aa 7066 && stop_pc_sal.line == 0)
1b2bfbb9 7067 {
527159b7 7068 if (debug_infrun)
3e43a32a
MS
7069 fprintf_unfiltered (gdb_stdlog,
7070 "infrun: stepped into undebuggable function\n");
527159b7 7071
1b2bfbb9 7072 /* The inferior just stepped into, or returned to, an
7ed0fe66
DJ
7073 undebuggable function (where there is no debugging information
7074 and no line number corresponding to the address where the
1b2bfbb9
RC
7075 inferior stopped). Since we want to skip this kind of code,
7076 we keep going until the inferior returns from this
14e60db5
DJ
7077 function - unless the user has asked us not to (via
7078 set step-mode) or we no longer know how to get back
7079 to the call site. */
7080 if (step_stop_if_no_debug
c7ce8faa 7081 || !frame_id_p (frame_unwind_caller_id (frame)))
1b2bfbb9
RC
7082 {
7083 /* If we have no line number and the step-stop-if-no-debug
7084 is set, we stop the step so that the user has a chance to
7085 switch in assembly mode. */
bdc36728 7086 end_stepping_range (ecs);
1b2bfbb9
RC
7087 return;
7088 }
7089 else
7090 {
7091 /* Set a breakpoint at callee's return address (the address
7092 at which the caller will resume). */
568d6575 7093 insert_step_resume_breakpoint_at_caller (frame);
1b2bfbb9
RC
7094 keep_going (ecs);
7095 return;
7096 }
7097 }
7098
16c381f0 7099 if (ecs->event_thread->control.step_range_end == 1)
1b2bfbb9
RC
7100 {
7101 /* It is stepi or nexti. We always want to stop stepping after
7102 one instruction. */
527159b7 7103 if (debug_infrun)
8a9de0e4 7104 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
bdc36728 7105 end_stepping_range (ecs);
1b2bfbb9
RC
7106 return;
7107 }
7108
2afb61aa 7109 if (stop_pc_sal.line == 0)
488f131b
JB
7110 {
7111 /* We have no line number information. That means to stop
7112 stepping (does this always happen right after one instruction,
7113 when we do "s" in a function with no line numbers,
7114 or can this happen as a result of a return or longjmp?). */
527159b7 7115 if (debug_infrun)
8a9de0e4 7116 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
bdc36728 7117 end_stepping_range (ecs);
488f131b
JB
7118 return;
7119 }
c906108c 7120
edb3359d
DJ
7121 /* Look for "calls" to inlined functions, part one. If the inline
7122 frame machinery detected some skipped call sites, we have entered
7123 a new inline function. */
7124
7125 if (frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7126 ecs->event_thread->control.step_frame_id)
00431a78 7127 && inline_skipped_frames (ecs->event_thread))
edb3359d 7128 {
edb3359d
DJ
7129 if (debug_infrun)
7130 fprintf_unfiltered (gdb_stdlog,
7131 "infrun: stepped into inlined function\n");
7132
51abb421 7133 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
edb3359d 7134
16c381f0 7135 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
edb3359d
DJ
7136 {
7137 /* For "step", we're going to stop. But if the call site
7138 for this inlined function is on the same source line as
7139 we were previously stepping, go down into the function
7140 first. Otherwise stop at the call site. */
7141
7142 if (call_sal.line == ecs->event_thread->current_line
7143 && call_sal.symtab == ecs->event_thread->current_symtab)
4a4c04f1
BE
7144 {
7145 step_into_inline_frame (ecs->event_thread);
7146 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7147 {
7148 keep_going (ecs);
7149 return;
7150 }
7151 }
edb3359d 7152
bdc36728 7153 end_stepping_range (ecs);
edb3359d
DJ
7154 return;
7155 }
7156 else
7157 {
7158 /* For "next", we should stop at the call site if it is on a
7159 different source line. Otherwise continue through the
7160 inlined function. */
7161 if (call_sal.line == ecs->event_thread->current_line
7162 && call_sal.symtab == ecs->event_thread->current_symtab)
7163 keep_going (ecs);
7164 else
bdc36728 7165 end_stepping_range (ecs);
edb3359d
DJ
7166 return;
7167 }
7168 }
7169
7170 /* Look for "calls" to inlined functions, part two. If we are still
7171 in the same real function we were stepping through, but we have
7172 to go further up to find the exact frame ID, we are stepping
7173 through a more inlined call beyond its call site. */
7174
7175 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7176 && !frame_id_eq (get_frame_id (get_current_frame ()),
16c381f0 7177 ecs->event_thread->control.step_frame_id)
edb3359d 7178 && stepped_in_from (get_current_frame (),
16c381f0 7179 ecs->event_thread->control.step_frame_id))
edb3359d
DJ
7180 {
7181 if (debug_infrun)
7182 fprintf_unfiltered (gdb_stdlog,
7183 "infrun: stepping through inlined function\n");
7184
4a4c04f1
BE
7185 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7186 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
edb3359d
DJ
7187 keep_going (ecs);
7188 else
bdc36728 7189 end_stepping_range (ecs);
edb3359d
DJ
7190 return;
7191 }
7192
8c95582d 7193 bool refresh_step_info = true;
f2ffa92b 7194 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
4e1c45ea
PA
7195 && (ecs->event_thread->current_line != stop_pc_sal.line
7196 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
488f131b 7197 {
8c95582d
AB
7198 if (stop_pc_sal.is_stmt)
7199 {
7200 /* We are at the start of a different line. So stop. Note that
7201 we don't stop if we step into the middle of a different line.
7202 That is said to make things like for (;;) statements work
7203 better. */
7204 if (debug_infrun)
7205 fprintf_unfiltered (gdb_stdlog,
7206 "infrun: stepped to a different line\n");
7207 end_stepping_range (ecs);
7208 return;
7209 }
7210 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7211 ecs->event_thread->control.step_frame_id))
7212 {
7213 /* We are at the start of a different line, however, this line is
7214 not marked as a statement, and we have not changed frame. We
7215 ignore this line table entry, and continue stepping forward,
7216 looking for a better place to stop. */
7217 refresh_step_info = false;
7218 if (debug_infrun)
7219 fprintf_unfiltered (gdb_stdlog,
7220 "infrun: stepped to a different line, but "
7221 "it's not the start of a statement\n");
7222 }
488f131b 7223 }
c906108c 7224
488f131b 7225 /* We aren't done stepping.
c906108c 7226
488f131b
JB
7227 Optimize by setting the stepping range to the line.
7228 (We might not be in the original line, but if we entered a
7229 new line in mid-statement, we continue stepping. This makes
8c95582d
AB
7230 things like for(;;) statements work better.)
7231
7232 If we entered a SAL that indicates a non-statement line table entry,
7233 then we update the stepping range, but we don't update the step info,
7234 which includes things like the line number we are stepping away from.
7235 This means we will stop when we find a line table entry that is marked
7236 as is-statement, even if it matches the non-statement one we just
7237 stepped into. */
c906108c 7238
16c381f0
JK
7239 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7240 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
c1e36e3e 7241 ecs->event_thread->control.may_range_step = 1;
8c95582d
AB
7242 if (refresh_step_info)
7243 set_step_info (ecs->event_thread, frame, stop_pc_sal);
488f131b 7244
527159b7 7245 if (debug_infrun)
8a9de0e4 7246 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
488f131b 7247 keep_going (ecs);
104c1213
JM
7248}
7249
c447ac0b
PA
7250/* In all-stop mode, if we're currently stepping but have stopped in
7251 some other thread, we may need to switch back to the stepped
7252 thread. Returns true we set the inferior running, false if we left
7253 it stopped (and the event needs further processing). */
7254
7255static int
7256switch_back_to_stepped_thread (struct execution_control_state *ecs)
7257{
fbea99ea 7258 if (!target_is_non_stop_p ())
c447ac0b 7259 {
99619bea
PA
7260 struct thread_info *stepping_thread;
7261
7262 /* If any thread is blocked on some internal breakpoint, and we
7263 simply need to step over that breakpoint to get it going
7264 again, do that first. */
7265
7266 /* However, if we see an event for the stepping thread, then we
7267 know all other threads have been moved past their breakpoints
7268 already. Let the caller check whether the step is finished,
7269 etc., before deciding to move it past a breakpoint. */
7270 if (ecs->event_thread->control.step_range_end != 0)
7271 return 0;
7272
7273 /* Check if the current thread is blocked on an incomplete
7274 step-over, interrupted by a random signal. */
7275 if (ecs->event_thread->control.trap_expected
7276 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
c447ac0b 7277 {
99619bea
PA
7278 if (debug_infrun)
7279 {
7280 fprintf_unfiltered (gdb_stdlog,
7281 "infrun: need to finish step-over of [%s]\n",
a068643d 7282 target_pid_to_str (ecs->event_thread->ptid).c_str ());
99619bea
PA
7283 }
7284 keep_going (ecs);
7285 return 1;
7286 }
2adfaa28 7287
99619bea
PA
7288 /* Check if the current thread is blocked by a single-step
7289 breakpoint of another thread. */
7290 if (ecs->hit_singlestep_breakpoint)
7291 {
7292 if (debug_infrun)
7293 {
7294 fprintf_unfiltered (gdb_stdlog,
7295 "infrun: need to step [%s] over single-step "
7296 "breakpoint\n",
a068643d 7297 target_pid_to_str (ecs->ptid).c_str ());
99619bea
PA
7298 }
7299 keep_going (ecs);
7300 return 1;
7301 }
7302
4d9d9d04
PA
7303 /* If this thread needs yet another step-over (e.g., stepping
7304 through a delay slot), do it first before moving on to
7305 another thread. */
7306 if (thread_still_needs_step_over (ecs->event_thread))
7307 {
7308 if (debug_infrun)
7309 {
7310 fprintf_unfiltered (gdb_stdlog,
7311 "infrun: thread [%s] still needs step-over\n",
a068643d 7312 target_pid_to_str (ecs->event_thread->ptid).c_str ());
4d9d9d04
PA
7313 }
7314 keep_going (ecs);
7315 return 1;
7316 }
70509625 7317
483805cf
PA
7318 /* If scheduler locking applies even if not stepping, there's no
7319 need to walk over threads. Above we've checked whether the
7320 current thread is stepping. If some other thread not the
7321 event thread is stepping, then it must be that scheduler
7322 locking is not in effect. */
856e7dd6 7323 if (schedlock_applies (ecs->event_thread))
483805cf
PA
7324 return 0;
7325
4d9d9d04
PA
7326 /* Otherwise, we no longer expect a trap in the current thread.
7327 Clear the trap_expected flag before switching back -- this is
7328 what keep_going does as well, if we call it. */
7329 ecs->event_thread->control.trap_expected = 0;
7330
7331 /* Likewise, clear the signal if it should not be passed. */
7332 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7333 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7334
7335 /* Do all pending step-overs before actually proceeding with
483805cf 7336 step/next/etc. */
4d9d9d04
PA
7337 if (start_step_over ())
7338 {
7339 prepare_to_wait (ecs);
7340 return 1;
7341 }
7342
7343 /* Look for the stepping/nexting thread. */
483805cf 7344 stepping_thread = NULL;
4d9d9d04 7345
08036331 7346 for (thread_info *tp : all_non_exited_threads ())
483805cf 7347 {
f3f8ece4
PA
7348 switch_to_thread_no_regs (tp);
7349
fbea99ea
PA
7350 /* Ignore threads of processes the caller is not
7351 resuming. */
483805cf 7352 if (!sched_multi
5b6d1e4f
PA
7353 && (tp->inf->process_target () != ecs->target
7354 || tp->inf->pid != ecs->ptid.pid ()))
483805cf
PA
7355 continue;
7356
7357 /* When stepping over a breakpoint, we lock all threads
7358 except the one that needs to move past the breakpoint.
7359 If a non-event thread has this set, the "incomplete
7360 step-over" check above should have caught it earlier. */
372316f1
PA
7361 if (tp->control.trap_expected)
7362 {
7363 internal_error (__FILE__, __LINE__,
7364 "[%s] has inconsistent state: "
7365 "trap_expected=%d\n",
a068643d 7366 target_pid_to_str (tp->ptid).c_str (),
372316f1
PA
7367 tp->control.trap_expected);
7368 }
483805cf
PA
7369
7370 /* Did we find the stepping thread? */
7371 if (tp->control.step_range_end)
7372 {
7373 /* Yep. There should only one though. */
7374 gdb_assert (stepping_thread == NULL);
7375
7376 /* The event thread is handled at the top, before we
7377 enter this loop. */
7378 gdb_assert (tp != ecs->event_thread);
7379
7380 /* If some thread other than the event thread is
7381 stepping, then scheduler locking can't be in effect,
7382 otherwise we wouldn't have resumed the current event
7383 thread in the first place. */
856e7dd6 7384 gdb_assert (!schedlock_applies (tp));
483805cf
PA
7385
7386 stepping_thread = tp;
7387 }
99619bea
PA
7388 }
7389
483805cf 7390 if (stepping_thread != NULL)
99619bea 7391 {
c447ac0b
PA
7392 if (debug_infrun)
7393 fprintf_unfiltered (gdb_stdlog,
7394 "infrun: switching back to stepped thread\n");
7395
2ac7589c
PA
7396 if (keep_going_stepped_thread (stepping_thread))
7397 {
7398 prepare_to_wait (ecs);
7399 return 1;
7400 }
7401 }
f3f8ece4
PA
7402
7403 switch_to_thread (ecs->event_thread);
2ac7589c 7404 }
2adfaa28 7405
2ac7589c
PA
7406 return 0;
7407}
2adfaa28 7408
2ac7589c
PA
7409/* Set a previously stepped thread back to stepping. Returns true on
7410 success, false if the resume is not possible (e.g., the thread
7411 vanished). */
7412
7413static int
7414keep_going_stepped_thread (struct thread_info *tp)
7415{
7416 struct frame_info *frame;
2ac7589c
PA
7417 struct execution_control_state ecss;
7418 struct execution_control_state *ecs = &ecss;
2adfaa28 7419
2ac7589c
PA
7420 /* If the stepping thread exited, then don't try to switch back and
7421 resume it, which could fail in several different ways depending
7422 on the target. Instead, just keep going.
2adfaa28 7423
2ac7589c
PA
7424 We can find a stepping dead thread in the thread list in two
7425 cases:
2adfaa28 7426
2ac7589c
PA
7427 - The target supports thread exit events, and when the target
7428 tries to delete the thread from the thread list, inferior_ptid
7429 pointed at the exiting thread. In such case, calling
7430 delete_thread does not really remove the thread from the list;
7431 instead, the thread is left listed, with 'exited' state.
64ce06e4 7432
2ac7589c
PA
7433 - The target's debug interface does not support thread exit
7434 events, and so we have no idea whatsoever if the previously
7435 stepping thread is still alive. For that reason, we need to
7436 synchronously query the target now. */
2adfaa28 7437
00431a78 7438 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
2ac7589c
PA
7439 {
7440 if (debug_infrun)
7441 fprintf_unfiltered (gdb_stdlog,
7442 "infrun: not resuming previously "
7443 "stepped thread, it has vanished\n");
7444
00431a78 7445 delete_thread (tp);
2ac7589c 7446 return 0;
c447ac0b 7447 }
2ac7589c
PA
7448
7449 if (debug_infrun)
7450 fprintf_unfiltered (gdb_stdlog,
7451 "infrun: resuming previously stepped thread\n");
7452
7453 reset_ecs (ecs, tp);
00431a78 7454 switch_to_thread (tp);
2ac7589c 7455
f2ffa92b 7456 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
2ac7589c 7457 frame = get_current_frame ();
2ac7589c
PA
7458
7459 /* If the PC of the thread we were trying to single-step has
7460 changed, then that thread has trapped or been signaled, but the
7461 event has not been reported to GDB yet. Re-poll the target
7462 looking for this particular thread's event (i.e. temporarily
7463 enable schedlock) by:
7464
7465 - setting a break at the current PC
7466 - resuming that particular thread, only (by setting trap
7467 expected)
7468
7469 This prevents us continuously moving the single-step breakpoint
7470 forward, one instruction at a time, overstepping. */
7471
f2ffa92b 7472 if (tp->suspend.stop_pc != tp->prev_pc)
2ac7589c
PA
7473 {
7474 ptid_t resume_ptid;
7475
7476 if (debug_infrun)
7477 fprintf_unfiltered (gdb_stdlog,
7478 "infrun: expected thread advanced also (%s -> %s)\n",
7479 paddress (target_gdbarch (), tp->prev_pc),
f2ffa92b 7480 paddress (target_gdbarch (), tp->suspend.stop_pc));
2ac7589c
PA
7481
7482 /* Clear the info of the previous step-over, as it's no longer
7483 valid (if the thread was trying to step over a breakpoint, it
7484 has already succeeded). It's what keep_going would do too,
7485 if we called it. Do this before trying to insert the sss
7486 breakpoint, otherwise if we were previously trying to step
7487 over this exact address in another thread, the breakpoint is
7488 skipped. */
7489 clear_step_over_info ();
7490 tp->control.trap_expected = 0;
7491
7492 insert_single_step_breakpoint (get_frame_arch (frame),
7493 get_frame_address_space (frame),
f2ffa92b 7494 tp->suspend.stop_pc);
2ac7589c 7495
719546c4 7496 tp->resumed = true;
fbea99ea 7497 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
2ac7589c
PA
7498 do_target_resume (resume_ptid, 0, GDB_SIGNAL_0);
7499 }
7500 else
7501 {
7502 if (debug_infrun)
7503 fprintf_unfiltered (gdb_stdlog,
7504 "infrun: expected thread still hasn't advanced\n");
7505
7506 keep_going_pass_signal (ecs);
7507 }
7508 return 1;
c447ac0b
PA
7509}
7510
8b061563
PA
7511/* Is thread TP in the middle of (software or hardware)
7512 single-stepping? (Note the result of this function must never be
7513 passed directly as target_resume's STEP parameter.) */
104c1213 7514
a289b8f6 7515static int
b3444185 7516currently_stepping (struct thread_info *tp)
a7212384 7517{
8358c15c
JK
7518 return ((tp->control.step_range_end
7519 && tp->control.step_resume_breakpoint == NULL)
7520 || tp->control.trap_expected
af48d08f 7521 || tp->stepped_breakpoint
8358c15c 7522 || bpstat_should_step ());
a7212384
UW
7523}
7524
b2175913
MS
7525/* Inferior has stepped into a subroutine call with source code that
7526 we should not step over. Do step to the first line of code in
7527 it. */
c2c6d25f
JM
7528
7529static void
568d6575
UW
7530handle_step_into_function (struct gdbarch *gdbarch,
7531 struct execution_control_state *ecs)
c2c6d25f 7532{
7e324e48
GB
7533 fill_in_stop_func (gdbarch, ecs);
7534
f2ffa92b
PA
7535 compunit_symtab *cust
7536 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7537 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7538 ecs->stop_func_start
7539 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
c2c6d25f 7540
51abb421 7541 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
c2c6d25f
JM
7542 /* Use the step_resume_break to step until the end of the prologue,
7543 even if that involves jumps (as it seems to on the vax under
7544 4.2). */
7545 /* If the prologue ends in the middle of a source line, continue to
7546 the end of that source line (if it is still within the function).
7547 Otherwise, just go to end of prologue. */
2afb61aa
PA
7548 if (stop_func_sal.end
7549 && stop_func_sal.pc != ecs->stop_func_start
7550 && stop_func_sal.end < ecs->stop_func_end)
7551 ecs->stop_func_start = stop_func_sal.end;
c2c6d25f 7552
2dbd5e30
KB
7553 /* Architectures which require breakpoint adjustment might not be able
7554 to place a breakpoint at the computed address. If so, the test
7555 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7556 ecs->stop_func_start to an address at which a breakpoint may be
7557 legitimately placed.
8fb3e588 7558
2dbd5e30
KB
7559 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7560 made, GDB will enter an infinite loop when stepping through
7561 optimized code consisting of VLIW instructions which contain
7562 subinstructions corresponding to different source lines. On
7563 FR-V, it's not permitted to place a breakpoint on any but the
7564 first subinstruction of a VLIW instruction. When a breakpoint is
7565 set, GDB will adjust the breakpoint address to the beginning of
7566 the VLIW instruction. Thus, we need to make the corresponding
7567 adjustment here when computing the stop address. */
8fb3e588 7568
568d6575 7569 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
2dbd5e30
KB
7570 {
7571 ecs->stop_func_start
568d6575 7572 = gdbarch_adjust_breakpoint_address (gdbarch,
8fb3e588 7573 ecs->stop_func_start);
2dbd5e30
KB
7574 }
7575
f2ffa92b 7576 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
c2c6d25f
JM
7577 {
7578 /* We are already there: stop now. */
bdc36728 7579 end_stepping_range (ecs);
c2c6d25f
JM
7580 return;
7581 }
7582 else
7583 {
7584 /* Put the step-breakpoint there and go until there. */
51abb421 7585 symtab_and_line sr_sal;
c2c6d25f
JM
7586 sr_sal.pc = ecs->stop_func_start;
7587 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
6c95b8df 7588 sr_sal.pspace = get_frame_program_space (get_current_frame ());
44cbf7b5 7589
c2c6d25f 7590 /* Do not specify what the fp should be when we stop since on
488f131b
JB
7591 some machines the prologue is where the new fp value is
7592 established. */
a6d9a66e 7593 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
c2c6d25f
JM
7594
7595 /* And make sure stepping stops right away then. */
16c381f0
JK
7596 ecs->event_thread->control.step_range_end
7597 = ecs->event_thread->control.step_range_start;
c2c6d25f
JM
7598 }
7599 keep_going (ecs);
7600}
d4f3574e 7601
b2175913
MS
7602/* Inferior has stepped backward into a subroutine call with source
7603 code that we should not step over. Do step to the beginning of the
7604 last line of code in it. */
7605
7606static void
568d6575
UW
7607handle_step_into_function_backward (struct gdbarch *gdbarch,
7608 struct execution_control_state *ecs)
b2175913 7609{
43f3e411 7610 struct compunit_symtab *cust;
167e4384 7611 struct symtab_and_line stop_func_sal;
b2175913 7612
7e324e48
GB
7613 fill_in_stop_func (gdbarch, ecs);
7614
f2ffa92b 7615 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
43f3e411 7616 if (cust != NULL && compunit_language (cust) != language_asm)
46a62268
YQ
7617 ecs->stop_func_start
7618 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
b2175913 7619
f2ffa92b 7620 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
b2175913
MS
7621
7622 /* OK, we're just going to keep stepping here. */
f2ffa92b 7623 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
b2175913
MS
7624 {
7625 /* We're there already. Just stop stepping now. */
bdc36728 7626 end_stepping_range (ecs);
b2175913
MS
7627 }
7628 else
7629 {
7630 /* Else just reset the step range and keep going.
7631 No step-resume breakpoint, they don't work for
7632 epilogues, which can have multiple entry paths. */
16c381f0
JK
7633 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7634 ecs->event_thread->control.step_range_end = stop_func_sal.end;
b2175913
MS
7635 keep_going (ecs);
7636 }
7637 return;
7638}
7639
d3169d93 7640/* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
44cbf7b5
AC
7641 This is used to both functions and to skip over code. */
7642
7643static void
2c03e5be
PA
7644insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7645 struct symtab_and_line sr_sal,
7646 struct frame_id sr_id,
7647 enum bptype sr_type)
44cbf7b5 7648{
611c83ae
PA
7649 /* There should never be more than one step-resume or longjmp-resume
7650 breakpoint per thread, so we should never be setting a new
44cbf7b5 7651 step_resume_breakpoint when one is already active. */
8358c15c 7652 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
2c03e5be 7653 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
d3169d93
DJ
7654
7655 if (debug_infrun)
7656 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7657 "infrun: inserting step-resume breakpoint at %s\n",
7658 paddress (gdbarch, sr_sal.pc));
d3169d93 7659
8358c15c 7660 inferior_thread ()->control.step_resume_breakpoint
454dafbd 7661 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
2c03e5be
PA
7662}
7663
9da8c2a0 7664void
2c03e5be
PA
7665insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7666 struct symtab_and_line sr_sal,
7667 struct frame_id sr_id)
7668{
7669 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7670 sr_sal, sr_id,
7671 bp_step_resume);
44cbf7b5 7672}
7ce450bd 7673
2c03e5be
PA
7674/* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7675 This is used to skip a potential signal handler.
7ce450bd 7676
14e60db5
DJ
7677 This is called with the interrupted function's frame. The signal
7678 handler, when it returns, will resume the interrupted function at
7679 RETURN_FRAME.pc. */
d303a6c7
AC
7680
7681static void
2c03e5be 7682insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
d303a6c7 7683{
f4c1edd8 7684 gdb_assert (return_frame != NULL);
d303a6c7 7685
51abb421
PA
7686 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7687
7688 symtab_and_line sr_sal;
568d6575 7689 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
d303a6c7 7690 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7691 sr_sal.pspace = get_frame_program_space (return_frame);
d303a6c7 7692
2c03e5be
PA
7693 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7694 get_stack_frame_id (return_frame),
7695 bp_hp_step_resume);
d303a6c7
AC
7696}
7697
2c03e5be
PA
7698/* Insert a "step-resume breakpoint" at the previous frame's PC. This
7699 is used to skip a function after stepping into it (for "next" or if
7700 the called function has no debugging information).
14e60db5
DJ
7701
7702 The current function has almost always been reached by single
7703 stepping a call or return instruction. NEXT_FRAME belongs to the
7704 current function, and the breakpoint will be set at the caller's
7705 resume address.
7706
7707 This is a separate function rather than reusing
2c03e5be 7708 insert_hp_step_resume_breakpoint_at_frame in order to avoid
14e60db5 7709 get_prev_frame, which may stop prematurely (see the implementation
c7ce8faa 7710 of frame_unwind_caller_id for an example). */
14e60db5
DJ
7711
7712static void
7713insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7714{
14e60db5
DJ
7715 /* We shouldn't have gotten here if we don't know where the call site
7716 is. */
c7ce8faa 7717 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
14e60db5 7718
51abb421 7719 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
14e60db5 7720
51abb421 7721 symtab_and_line sr_sal;
c7ce8faa
DJ
7722 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7723 frame_unwind_caller_pc (next_frame));
14e60db5 7724 sr_sal.section = find_pc_overlay (sr_sal.pc);
6c95b8df 7725 sr_sal.pspace = frame_unwind_program_space (next_frame);
14e60db5 7726
a6d9a66e 7727 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
c7ce8faa 7728 frame_unwind_caller_id (next_frame));
14e60db5
DJ
7729}
7730
611c83ae
PA
7731/* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7732 new breakpoint at the target of a jmp_buf. The handling of
7733 longjmp-resume uses the same mechanisms used for handling
7734 "step-resume" breakpoints. */
7735
7736static void
a6d9a66e 7737insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
611c83ae 7738{
e81a37f7
TT
7739 /* There should never be more than one longjmp-resume breakpoint per
7740 thread, so we should never be setting a new
611c83ae 7741 longjmp_resume_breakpoint when one is already active. */
e81a37f7 7742 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
611c83ae
PA
7743
7744 if (debug_infrun)
7745 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
7746 "infrun: inserting longjmp-resume breakpoint at %s\n",
7747 paddress (gdbarch, pc));
611c83ae 7748
e81a37f7 7749 inferior_thread ()->control.exception_resume_breakpoint =
454dafbd 7750 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
611c83ae
PA
7751}
7752
186c406b
TT
7753/* Insert an exception resume breakpoint. TP is the thread throwing
7754 the exception. The block B is the block of the unwinder debug hook
7755 function. FRAME is the frame corresponding to the call to this
7756 function. SYM is the symbol of the function argument holding the
7757 target PC of the exception. */
7758
7759static void
7760insert_exception_resume_breakpoint (struct thread_info *tp,
3977b71f 7761 const struct block *b,
186c406b
TT
7762 struct frame_info *frame,
7763 struct symbol *sym)
7764{
a70b8144 7765 try
186c406b 7766 {
63e43d3a 7767 struct block_symbol vsym;
186c406b
TT
7768 struct value *value;
7769 CORE_ADDR handler;
7770 struct breakpoint *bp;
7771
987012b8 7772 vsym = lookup_symbol_search_name (sym->search_name (),
de63c46b 7773 b, VAR_DOMAIN);
63e43d3a 7774 value = read_var_value (vsym.symbol, vsym.block, frame);
186c406b
TT
7775 /* If the value was optimized out, revert to the old behavior. */
7776 if (! value_optimized_out (value))
7777 {
7778 handler = value_as_address (value);
7779
7780 if (debug_infrun)
7781 fprintf_unfiltered (gdb_stdlog,
7782 "infrun: exception resume at %lx\n",
7783 (unsigned long) handler);
7784
7785 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd
TT
7786 handler,
7787 bp_exception_resume).release ();
c70a6932
JK
7788
7789 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7790 frame = NULL;
7791
5d5658a1 7792 bp->thread = tp->global_num;
186c406b
TT
7793 inferior_thread ()->control.exception_resume_breakpoint = bp;
7794 }
7795 }
230d2906 7796 catch (const gdb_exception_error &e)
492d29ea
PA
7797 {
7798 /* We want to ignore errors here. */
7799 }
186c406b
TT
7800}
7801
28106bc2
SDJ
7802/* A helper for check_exception_resume that sets an
7803 exception-breakpoint based on a SystemTap probe. */
7804
7805static void
7806insert_exception_resume_from_probe (struct thread_info *tp,
729662a5 7807 const struct bound_probe *probe,
28106bc2
SDJ
7808 struct frame_info *frame)
7809{
7810 struct value *arg_value;
7811 CORE_ADDR handler;
7812 struct breakpoint *bp;
7813
7814 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7815 if (!arg_value)
7816 return;
7817
7818 handler = value_as_address (arg_value);
7819
7820 if (debug_infrun)
7821 fprintf_unfiltered (gdb_stdlog,
7822 "infrun: exception resume at %s\n",
08feed99 7823 paddress (probe->objfile->arch (),
28106bc2
SDJ
7824 handler));
7825
7826 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
454dafbd 7827 handler, bp_exception_resume).release ();
5d5658a1 7828 bp->thread = tp->global_num;
28106bc2
SDJ
7829 inferior_thread ()->control.exception_resume_breakpoint = bp;
7830}
7831
186c406b
TT
7832/* This is called when an exception has been intercepted. Check to
7833 see whether the exception's destination is of interest, and if so,
7834 set an exception resume breakpoint there. */
7835
7836static void
7837check_exception_resume (struct execution_control_state *ecs,
28106bc2 7838 struct frame_info *frame)
186c406b 7839{
729662a5 7840 struct bound_probe probe;
28106bc2
SDJ
7841 struct symbol *func;
7842
7843 /* First see if this exception unwinding breakpoint was set via a
7844 SystemTap probe point. If so, the probe has two arguments: the
7845 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7846 set a breakpoint there. */
6bac7473 7847 probe = find_probe_by_pc (get_frame_pc (frame));
935676c9 7848 if (probe.prob)
28106bc2 7849 {
729662a5 7850 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
28106bc2
SDJ
7851 return;
7852 }
7853
7854 func = get_frame_function (frame);
7855 if (!func)
7856 return;
186c406b 7857
a70b8144 7858 try
186c406b 7859 {
3977b71f 7860 const struct block *b;
8157b174 7861 struct block_iterator iter;
186c406b
TT
7862 struct symbol *sym;
7863 int argno = 0;
7864
7865 /* The exception breakpoint is a thread-specific breakpoint on
7866 the unwinder's debug hook, declared as:
7867
7868 void _Unwind_DebugHook (void *cfa, void *handler);
7869
7870 The CFA argument indicates the frame to which control is
7871 about to be transferred. HANDLER is the destination PC.
7872
7873 We ignore the CFA and set a temporary breakpoint at HANDLER.
7874 This is not extremely efficient but it avoids issues in gdb
7875 with computing the DWARF CFA, and it also works even in weird
7876 cases such as throwing an exception from inside a signal
7877 handler. */
7878
7879 b = SYMBOL_BLOCK_VALUE (func);
7880 ALL_BLOCK_SYMBOLS (b, iter, sym)
7881 {
7882 if (!SYMBOL_IS_ARGUMENT (sym))
7883 continue;
7884
7885 if (argno == 0)
7886 ++argno;
7887 else
7888 {
7889 insert_exception_resume_breakpoint (ecs->event_thread,
7890 b, frame, sym);
7891 break;
7892 }
7893 }
7894 }
230d2906 7895 catch (const gdb_exception_error &e)
492d29ea
PA
7896 {
7897 }
186c406b
TT
7898}
7899
104c1213 7900static void
22bcd14b 7901stop_waiting (struct execution_control_state *ecs)
104c1213 7902{
527159b7 7903 if (debug_infrun)
22bcd14b 7904 fprintf_unfiltered (gdb_stdlog, "infrun: stop_waiting\n");
527159b7 7905
cd0fc7c3
SS
7906 /* Let callers know we don't want to wait for the inferior anymore. */
7907 ecs->wait_some_more = 0;
fbea99ea 7908
53cccef1 7909 /* If all-stop, but there exists a non-stop target, stop all
fbea99ea 7910 threads now that we're presenting the stop to the user. */
53cccef1 7911 if (!non_stop && exists_non_stop_target ())
fbea99ea 7912 stop_all_threads ();
cd0fc7c3
SS
7913}
7914
4d9d9d04
PA
7915/* Like keep_going, but passes the signal to the inferior, even if the
7916 signal is set to nopass. */
d4f3574e
SS
7917
7918static void
4d9d9d04 7919keep_going_pass_signal (struct execution_control_state *ecs)
d4f3574e 7920{
d7e15655 7921 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
372316f1 7922 gdb_assert (!ecs->event_thread->resumed);
4d9d9d04 7923
d4f3574e 7924 /* Save the pc before execution, to compare with pc after stop. */
fb14de7b 7925 ecs->event_thread->prev_pc
00431a78 7926 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
d4f3574e 7927
4d9d9d04 7928 if (ecs->event_thread->control.trap_expected)
d4f3574e 7929 {
4d9d9d04
PA
7930 struct thread_info *tp = ecs->event_thread;
7931
7932 if (debug_infrun)
7933 fprintf_unfiltered (gdb_stdlog,
7934 "infrun: %s has trap_expected set, "
7935 "resuming to collect trap\n",
a068643d 7936 target_pid_to_str (tp->ptid).c_str ());
4d9d9d04 7937
a9ba6bae
PA
7938 /* We haven't yet gotten our trap, and either: intercepted a
7939 non-signal event (e.g., a fork); or took a signal which we
7940 are supposed to pass through to the inferior. Simply
7941 continue. */
64ce06e4 7942 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e 7943 }
372316f1
PA
7944 else if (step_over_info_valid_p ())
7945 {
7946 /* Another thread is stepping over a breakpoint in-line. If
7947 this thread needs a step-over too, queue the request. In
7948 either case, this resume must be deferred for later. */
7949 struct thread_info *tp = ecs->event_thread;
7950
7951 if (ecs->hit_singlestep_breakpoint
7952 || thread_still_needs_step_over (tp))
7953 {
7954 if (debug_infrun)
7955 fprintf_unfiltered (gdb_stdlog,
7956 "infrun: step-over already in progress: "
7957 "step-over for %s deferred\n",
a068643d 7958 target_pid_to_str (tp->ptid).c_str ());
372316f1
PA
7959 thread_step_over_chain_enqueue (tp);
7960 }
7961 else
7962 {
7963 if (debug_infrun)
7964 fprintf_unfiltered (gdb_stdlog,
7965 "infrun: step-over in progress: "
7966 "resume of %s deferred\n",
a068643d 7967 target_pid_to_str (tp->ptid).c_str ());
372316f1 7968 }
372316f1 7969 }
d4f3574e
SS
7970 else
7971 {
31e77af2 7972 struct regcache *regcache = get_current_regcache ();
963f9c80
PA
7973 int remove_bp;
7974 int remove_wps;
8d297bbf 7975 step_over_what step_what;
31e77af2 7976
d4f3574e 7977 /* Either the trap was not expected, but we are continuing
a9ba6bae
PA
7978 anyway (if we got a signal, the user asked it be passed to
7979 the child)
7980 -- or --
7981 We got our expected trap, but decided we should resume from
7982 it.
d4f3574e 7983
a9ba6bae 7984 We're going to run this baby now!
d4f3574e 7985
c36b740a
VP
7986 Note that insert_breakpoints won't try to re-insert
7987 already inserted breakpoints. Therefore, we don't
7988 care if breakpoints were already inserted, or not. */
a9ba6bae 7989
31e77af2
PA
7990 /* If we need to step over a breakpoint, and we're not using
7991 displaced stepping to do so, insert all breakpoints
7992 (watchpoints, etc.) but the one we're stepping over, step one
7993 instruction, and then re-insert the breakpoint when that step
7994 is finished. */
963f9c80 7995
6c4cfb24
PA
7996 step_what = thread_still_needs_step_over (ecs->event_thread);
7997
963f9c80 7998 remove_bp = (ecs->hit_singlestep_breakpoint
6c4cfb24
PA
7999 || (step_what & STEP_OVER_BREAKPOINT));
8000 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
963f9c80 8001
cb71640d
PA
8002 /* We can't use displaced stepping if we need to step past a
8003 watchpoint. The instruction copied to the scratch pad would
8004 still trigger the watchpoint. */
8005 if (remove_bp
3fc8eb30 8006 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
45e8c884 8007 {
a01bda52 8008 set_step_over_info (regcache->aspace (),
21edc42f
YQ
8009 regcache_read_pc (regcache), remove_wps,
8010 ecs->event_thread->global_num);
45e8c884 8011 }
963f9c80 8012 else if (remove_wps)
21edc42f 8013 set_step_over_info (NULL, 0, remove_wps, -1);
372316f1
PA
8014
8015 /* If we now need to do an in-line step-over, we need to stop
8016 all other threads. Note this must be done before
8017 insert_breakpoints below, because that removes the breakpoint
8018 we're about to step over, otherwise other threads could miss
8019 it. */
fbea99ea 8020 if (step_over_info_valid_p () && target_is_non_stop_p ())
372316f1 8021 stop_all_threads ();
abbb1732 8022
31e77af2 8023 /* Stop stepping if inserting breakpoints fails. */
a70b8144 8024 try
31e77af2
PA
8025 {
8026 insert_breakpoints ();
8027 }
230d2906 8028 catch (const gdb_exception_error &e)
31e77af2
PA
8029 {
8030 exception_print (gdb_stderr, e);
22bcd14b 8031 stop_waiting (ecs);
bdf2a94a 8032 clear_step_over_info ();
31e77af2 8033 return;
d4f3574e
SS
8034 }
8035
963f9c80 8036 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
d4f3574e 8037
64ce06e4 8038 resume (ecs->event_thread->suspend.stop_signal);
d4f3574e
SS
8039 }
8040
488f131b 8041 prepare_to_wait (ecs);
d4f3574e
SS
8042}
8043
4d9d9d04
PA
8044/* Called when we should continue running the inferior, because the
8045 current event doesn't cause a user visible stop. This does the
8046 resuming part; waiting for the next event is done elsewhere. */
8047
8048static void
8049keep_going (struct execution_control_state *ecs)
8050{
8051 if (ecs->event_thread->control.trap_expected
8052 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8053 ecs->event_thread->control.trap_expected = 0;
8054
8055 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8056 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8057 keep_going_pass_signal (ecs);
8058}
8059
104c1213
JM
8060/* This function normally comes after a resume, before
8061 handle_inferior_event exits. It takes care of any last bits of
8062 housekeeping, and sets the all-important wait_some_more flag. */
cd0fc7c3 8063
104c1213
JM
8064static void
8065prepare_to_wait (struct execution_control_state *ecs)
cd0fc7c3 8066{
527159b7 8067 if (debug_infrun)
8a9de0e4 8068 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
104c1213 8069
104c1213 8070 ecs->wait_some_more = 1;
0b333c5e
PA
8071
8072 if (!target_is_async_p ())
8073 mark_infrun_async_event_handler ();
c906108c 8074}
11cf8741 8075
fd664c91 8076/* We are done with the step range of a step/next/si/ni command.
b57bacec 8077 Called once for each n of a "step n" operation. */
fd664c91
PA
8078
8079static void
bdc36728 8080end_stepping_range (struct execution_control_state *ecs)
fd664c91 8081{
bdc36728 8082 ecs->event_thread->control.stop_step = 1;
bdc36728 8083 stop_waiting (ecs);
fd664c91
PA
8084}
8085
33d62d64
JK
8086/* Several print_*_reason functions to print why the inferior has stopped.
8087 We always print something when the inferior exits, or receives a signal.
8088 The rest of the cases are dealt with later on in normal_stop and
8089 print_it_typical. Ideally there should be a call to one of these
8090 print_*_reason functions functions from handle_inferior_event each time
22bcd14b 8091 stop_waiting is called.
33d62d64 8092
fd664c91
PA
8093 Note that we don't call these directly, instead we delegate that to
8094 the interpreters, through observers. Interpreters then call these
8095 with whatever uiout is right. */
33d62d64 8096
fd664c91
PA
8097void
8098print_end_stepping_range_reason (struct ui_out *uiout)
33d62d64 8099{
fd664c91 8100 /* For CLI-like interpreters, print nothing. */
33d62d64 8101
112e8700 8102 if (uiout->is_mi_like_p ())
fd664c91 8103 {
112e8700 8104 uiout->field_string ("reason",
fd664c91
PA
8105 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8106 }
8107}
33d62d64 8108
fd664c91
PA
8109void
8110print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
11cf8741 8111{
33d62d64 8112 annotate_signalled ();
112e8700
SM
8113 if (uiout->is_mi_like_p ())
8114 uiout->field_string
8115 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8116 uiout->text ("\nProgram terminated with signal ");
33d62d64 8117 annotate_signal_name ();
112e8700 8118 uiout->field_string ("signal-name",
2ea28649 8119 gdb_signal_to_name (siggnal));
33d62d64 8120 annotate_signal_name_end ();
112e8700 8121 uiout->text (", ");
33d62d64 8122 annotate_signal_string ();
112e8700 8123 uiout->field_string ("signal-meaning",
2ea28649 8124 gdb_signal_to_string (siggnal));
33d62d64 8125 annotate_signal_string_end ();
112e8700
SM
8126 uiout->text (".\n");
8127 uiout->text ("The program no longer exists.\n");
33d62d64
JK
8128}
8129
fd664c91
PA
8130void
8131print_exited_reason (struct ui_out *uiout, int exitstatus)
33d62d64 8132{
fda326dd 8133 struct inferior *inf = current_inferior ();
a068643d 8134 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
fda326dd 8135
33d62d64
JK
8136 annotate_exited (exitstatus);
8137 if (exitstatus)
8138 {
112e8700
SM
8139 if (uiout->is_mi_like_p ())
8140 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
6a831f06
PA
8141 std::string exit_code_str
8142 = string_printf ("0%o", (unsigned int) exitstatus);
8143 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8144 plongest (inf->num), pidstr.c_str (),
8145 string_field ("exit-code", exit_code_str.c_str ()));
33d62d64
JK
8146 }
8147 else
11cf8741 8148 {
112e8700
SM
8149 if (uiout->is_mi_like_p ())
8150 uiout->field_string
8151 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
6a831f06
PA
8152 uiout->message ("[Inferior %s (%s) exited normally]\n",
8153 plongest (inf->num), pidstr.c_str ());
33d62d64 8154 }
33d62d64
JK
8155}
8156
012b3a21
WT
8157/* Some targets/architectures can do extra processing/display of
8158 segmentation faults. E.g., Intel MPX boundary faults.
8159 Call the architecture dependent function to handle the fault. */
8160
8161static void
8162handle_segmentation_fault (struct ui_out *uiout)
8163{
8164 struct regcache *regcache = get_current_regcache ();
ac7936df 8165 struct gdbarch *gdbarch = regcache->arch ();
012b3a21
WT
8166
8167 if (gdbarch_handle_segmentation_fault_p (gdbarch))
8168 gdbarch_handle_segmentation_fault (gdbarch, uiout);
8169}
8170
fd664c91
PA
8171void
8172print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
33d62d64 8173{
f303dbd6
PA
8174 struct thread_info *thr = inferior_thread ();
8175
33d62d64
JK
8176 annotate_signal ();
8177
112e8700 8178 if (uiout->is_mi_like_p ())
f303dbd6
PA
8179 ;
8180 else if (show_thread_that_caused_stop ())
33d62d64 8181 {
f303dbd6 8182 const char *name;
33d62d64 8183
112e8700 8184 uiout->text ("\nThread ");
33eca680 8185 uiout->field_string ("thread-id", print_thread_id (thr));
f303dbd6
PA
8186
8187 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8188 if (name != NULL)
8189 {
112e8700 8190 uiout->text (" \"");
33eca680 8191 uiout->field_string ("name", name);
112e8700 8192 uiout->text ("\"");
f303dbd6 8193 }
33d62d64 8194 }
f303dbd6 8195 else
112e8700 8196 uiout->text ("\nProgram");
f303dbd6 8197
112e8700
SM
8198 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8199 uiout->text (" stopped");
33d62d64
JK
8200 else
8201 {
112e8700 8202 uiout->text (" received signal ");
8b93c638 8203 annotate_signal_name ();
112e8700
SM
8204 if (uiout->is_mi_like_p ())
8205 uiout->field_string
8206 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8207 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8b93c638 8208 annotate_signal_name_end ();
112e8700 8209 uiout->text (", ");
8b93c638 8210 annotate_signal_string ();
112e8700 8211 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
012b3a21
WT
8212
8213 if (siggnal == GDB_SIGNAL_SEGV)
8214 handle_segmentation_fault (uiout);
8215
8b93c638 8216 annotate_signal_string_end ();
33d62d64 8217 }
112e8700 8218 uiout->text (".\n");
33d62d64 8219}
252fbfc8 8220
fd664c91
PA
8221void
8222print_no_history_reason (struct ui_out *uiout)
33d62d64 8223{
112e8700 8224 uiout->text ("\nNo more reverse-execution history.\n");
11cf8741 8225}
43ff13b4 8226
0c7e1a46
PA
8227/* Print current location without a level number, if we have changed
8228 functions or hit a breakpoint. Print source line if we have one.
8229 bpstat_print contains the logic deciding in detail what to print,
8230 based on the event(s) that just occurred. */
8231
243a9253
PA
8232static void
8233print_stop_location (struct target_waitstatus *ws)
0c7e1a46
PA
8234{
8235 int bpstat_ret;
f486487f 8236 enum print_what source_flag;
0c7e1a46
PA
8237 int do_frame_printing = 1;
8238 struct thread_info *tp = inferior_thread ();
8239
8240 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8241 switch (bpstat_ret)
8242 {
8243 case PRINT_UNKNOWN:
8244 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8245 should) carry around the function and does (or should) use
8246 that when doing a frame comparison. */
8247 if (tp->control.stop_step
8248 && frame_id_eq (tp->control.step_frame_id,
8249 get_frame_id (get_current_frame ()))
f2ffa92b
PA
8250 && (tp->control.step_start_function
8251 == find_pc_function (tp->suspend.stop_pc)))
0c7e1a46
PA
8252 {
8253 /* Finished step, just print source line. */
8254 source_flag = SRC_LINE;
8255 }
8256 else
8257 {
8258 /* Print location and source line. */
8259 source_flag = SRC_AND_LOC;
8260 }
8261 break;
8262 case PRINT_SRC_AND_LOC:
8263 /* Print location and source line. */
8264 source_flag = SRC_AND_LOC;
8265 break;
8266 case PRINT_SRC_ONLY:
8267 source_flag = SRC_LINE;
8268 break;
8269 case PRINT_NOTHING:
8270 /* Something bogus. */
8271 source_flag = SRC_LINE;
8272 do_frame_printing = 0;
8273 break;
8274 default:
8275 internal_error (__FILE__, __LINE__, _("Unknown value."));
8276 }
8277
8278 /* The behavior of this routine with respect to the source
8279 flag is:
8280 SRC_LINE: Print only source line
8281 LOCATION: Print only location
8282 SRC_AND_LOC: Print location and source line. */
8283 if (do_frame_printing)
8284 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
243a9253
PA
8285}
8286
243a9253
PA
8287/* See infrun.h. */
8288
8289void
4c7d57e7 8290print_stop_event (struct ui_out *uiout, bool displays)
243a9253 8291{
243a9253 8292 struct target_waitstatus last;
243a9253
PA
8293 struct thread_info *tp;
8294
5b6d1e4f 8295 get_last_target_status (nullptr, nullptr, &last);
243a9253 8296
67ad9399
TT
8297 {
8298 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
0c7e1a46 8299
67ad9399 8300 print_stop_location (&last);
243a9253 8301
67ad9399 8302 /* Display the auto-display expressions. */
4c7d57e7
TT
8303 if (displays)
8304 do_displays ();
67ad9399 8305 }
243a9253
PA
8306
8307 tp = inferior_thread ();
8308 if (tp->thread_fsm != NULL
46e3ed7f 8309 && tp->thread_fsm->finished_p ())
243a9253
PA
8310 {
8311 struct return_value_info *rv;
8312
46e3ed7f 8313 rv = tp->thread_fsm->return_value ();
243a9253
PA
8314 if (rv != NULL)
8315 print_return_value (uiout, rv);
8316 }
0c7e1a46
PA
8317}
8318
388a7084
PA
8319/* See infrun.h. */
8320
8321void
8322maybe_remove_breakpoints (void)
8323{
8324 if (!breakpoints_should_be_inserted_now () && target_has_execution)
8325 {
8326 if (remove_breakpoints ())
8327 {
223ffa71 8328 target_terminal::ours_for_output ();
388a7084
PA
8329 printf_filtered (_("Cannot remove breakpoints because "
8330 "program is no longer writable.\nFurther "
8331 "execution is probably impossible.\n"));
8332 }
8333 }
8334}
8335
4c2f2a79
PA
8336/* The execution context that just caused a normal stop. */
8337
8338struct stop_context
8339{
2d844eaf
TT
8340 stop_context ();
8341 ~stop_context ();
8342
8343 DISABLE_COPY_AND_ASSIGN (stop_context);
8344
8345 bool changed () const;
8346
4c2f2a79
PA
8347 /* The stop ID. */
8348 ULONGEST stop_id;
c906108c 8349
4c2f2a79 8350 /* The event PTID. */
c906108c 8351
4c2f2a79
PA
8352 ptid_t ptid;
8353
8354 /* If stopp for a thread event, this is the thread that caused the
8355 stop. */
8356 struct thread_info *thread;
8357
8358 /* The inferior that caused the stop. */
8359 int inf_num;
8360};
8361
2d844eaf 8362/* Initializes a new stop context. If stopped for a thread event, this
4c2f2a79
PA
8363 takes a strong reference to the thread. */
8364
2d844eaf 8365stop_context::stop_context ()
4c2f2a79 8366{
2d844eaf
TT
8367 stop_id = get_stop_id ();
8368 ptid = inferior_ptid;
8369 inf_num = current_inferior ()->num;
4c2f2a79 8370
d7e15655 8371 if (inferior_ptid != null_ptid)
4c2f2a79
PA
8372 {
8373 /* Take a strong reference so that the thread can't be deleted
8374 yet. */
2d844eaf
TT
8375 thread = inferior_thread ();
8376 thread->incref ();
4c2f2a79
PA
8377 }
8378 else
2d844eaf 8379 thread = NULL;
4c2f2a79
PA
8380}
8381
8382/* Release a stop context previously created with save_stop_context.
8383 Releases the strong reference to the thread as well. */
8384
2d844eaf 8385stop_context::~stop_context ()
4c2f2a79 8386{
2d844eaf
TT
8387 if (thread != NULL)
8388 thread->decref ();
4c2f2a79
PA
8389}
8390
8391/* Return true if the current context no longer matches the saved stop
8392 context. */
8393
2d844eaf
TT
8394bool
8395stop_context::changed () const
8396{
8397 if (ptid != inferior_ptid)
8398 return true;
8399 if (inf_num != current_inferior ()->num)
8400 return true;
8401 if (thread != NULL && thread->state != THREAD_STOPPED)
8402 return true;
8403 if (get_stop_id () != stop_id)
8404 return true;
8405 return false;
4c2f2a79
PA
8406}
8407
8408/* See infrun.h. */
8409
8410int
96baa820 8411normal_stop (void)
c906108c 8412{
73b65bb0 8413 struct target_waitstatus last;
73b65bb0 8414
5b6d1e4f 8415 get_last_target_status (nullptr, nullptr, &last);
73b65bb0 8416
4c2f2a79
PA
8417 new_stop_id ();
8418
29f49a6a
PA
8419 /* If an exception is thrown from this point on, make sure to
8420 propagate GDB's knowledge of the executing state to the
8421 frontend/user running state. A QUIT is an easy exception to see
8422 here, so do this before any filtered output. */
731f534f 8423
5b6d1e4f 8424 ptid_t finish_ptid = null_ptid;
731f534f 8425
c35b1492 8426 if (!non_stop)
5b6d1e4f 8427 finish_ptid = minus_one_ptid;
e1316e60
PA
8428 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8429 || last.kind == TARGET_WAITKIND_EXITED)
8430 {
8431 /* On some targets, we may still have live threads in the
8432 inferior when we get a process exit event. E.g., for
8433 "checkpoint", when the current checkpoint/fork exits,
8434 linux-fork.c automatically switches to another fork from
8435 within target_mourn_inferior. */
731f534f 8436 if (inferior_ptid != null_ptid)
5b6d1e4f 8437 finish_ptid = ptid_t (inferior_ptid.pid ());
e1316e60
PA
8438 }
8439 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
5b6d1e4f
PA
8440 finish_ptid = inferior_ptid;
8441
8442 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8443 if (finish_ptid != null_ptid)
8444 {
8445 maybe_finish_thread_state.emplace
8446 (user_visible_resume_target (finish_ptid), finish_ptid);
8447 }
29f49a6a 8448
b57bacec
PA
8449 /* As we're presenting a stop, and potentially removing breakpoints,
8450 update the thread list so we can tell whether there are threads
8451 running on the target. With target remote, for example, we can
8452 only learn about new threads when we explicitly update the thread
8453 list. Do this before notifying the interpreters about signal
8454 stops, end of stepping ranges, etc., so that the "new thread"
8455 output is emitted before e.g., "Program received signal FOO",
8456 instead of after. */
8457 update_thread_list ();
8458
8459 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
76727919 8460 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
b57bacec 8461
c906108c
SS
8462 /* As with the notification of thread events, we want to delay
8463 notifying the user that we've switched thread context until
8464 the inferior actually stops.
8465
73b65bb0
DJ
8466 There's no point in saying anything if the inferior has exited.
8467 Note that SIGNALLED here means "exited with a signal", not
b65dc60b
PA
8468 "received a signal".
8469
8470 Also skip saying anything in non-stop mode. In that mode, as we
8471 don't want GDB to switch threads behind the user's back, to avoid
8472 races where the user is typing a command to apply to thread x,
8473 but GDB switches to thread y before the user finishes entering
8474 the command, fetch_inferior_event installs a cleanup to restore
8475 the current thread back to the thread the user had selected right
8476 after this event is handled, so we're not really switching, only
8477 informing of a stop. */
4f8d22e3 8478 if (!non_stop
731f534f 8479 && previous_inferior_ptid != inferior_ptid
73b65bb0
DJ
8480 && target_has_execution
8481 && last.kind != TARGET_WAITKIND_SIGNALLED
0e5bf2a8
PA
8482 && last.kind != TARGET_WAITKIND_EXITED
8483 && last.kind != TARGET_WAITKIND_NO_RESUMED)
c906108c 8484 {
0e454242 8485 SWITCH_THRU_ALL_UIS ()
3b12939d 8486 {
223ffa71 8487 target_terminal::ours_for_output ();
3b12939d 8488 printf_filtered (_("[Switching to %s]\n"),
a068643d 8489 target_pid_to_str (inferior_ptid).c_str ());
3b12939d
PA
8490 annotate_thread_changed ();
8491 }
39f77062 8492 previous_inferior_ptid = inferior_ptid;
c906108c 8493 }
c906108c 8494
0e5bf2a8
PA
8495 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8496 {
0e454242 8497 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8498 if (current_ui->prompt_state == PROMPT_BLOCKED)
8499 {
223ffa71 8500 target_terminal::ours_for_output ();
3b12939d
PA
8501 printf_filtered (_("No unwaited-for children left.\n"));
8502 }
0e5bf2a8
PA
8503 }
8504
b57bacec 8505 /* Note: this depends on the update_thread_list call above. */
388a7084 8506 maybe_remove_breakpoints ();
c906108c 8507
c906108c
SS
8508 /* If an auto-display called a function and that got a signal,
8509 delete that auto-display to avoid an infinite recursion. */
8510
8511 if (stopped_by_random_signal)
8512 disable_current_display ();
8513
0e454242 8514 SWITCH_THRU_ALL_UIS ()
3b12939d
PA
8515 {
8516 async_enable_stdin ();
8517 }
c906108c 8518
388a7084 8519 /* Let the user/frontend see the threads as stopped. */
731f534f 8520 maybe_finish_thread_state.reset ();
388a7084
PA
8521
8522 /* Select innermost stack frame - i.e., current frame is frame 0,
8523 and current location is based on that. Handle the case where the
8524 dummy call is returning after being stopped. E.g. the dummy call
8525 previously hit a breakpoint. (If the dummy call returns
8526 normally, we won't reach here.) Do this before the stop hook is
8527 run, so that it doesn't get to see the temporary dummy frame,
8528 which is not where we'll present the stop. */
8529 if (has_stack_frames ())
8530 {
8531 if (stop_stack_dummy == STOP_STACK_DUMMY)
8532 {
8533 /* Pop the empty frame that contains the stack dummy. This
8534 also restores inferior state prior to the call (struct
8535 infcall_suspend_state). */
8536 struct frame_info *frame = get_current_frame ();
8537
8538 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8539 frame_pop (frame);
8540 /* frame_pop calls reinit_frame_cache as the last thing it
8541 does which means there's now no selected frame. */
8542 }
8543
8544 select_frame (get_current_frame ());
8545
8546 /* Set the current source location. */
8547 set_current_sal_from_frame (get_current_frame ());
8548 }
dd7e2d2b
PA
8549
8550 /* Look up the hook_stop and run it (CLI internally handles problem
8551 of stop_command's pre-hook not existing). */
4c2f2a79
PA
8552 if (stop_command != NULL)
8553 {
2d844eaf 8554 stop_context saved_context;
4c2f2a79 8555
a70b8144 8556 try
bf469271
PA
8557 {
8558 execute_cmd_pre_hook (stop_command);
8559 }
230d2906 8560 catch (const gdb_exception &ex)
bf469271
PA
8561 {
8562 exception_fprintf (gdb_stderr, ex,
8563 "Error while running hook_stop:\n");
8564 }
4c2f2a79
PA
8565
8566 /* If the stop hook resumes the target, then there's no point in
8567 trying to notify about the previous stop; its context is
8568 gone. Likewise if the command switches thread or inferior --
8569 the observers would print a stop for the wrong
8570 thread/inferior. */
2d844eaf
TT
8571 if (saved_context.changed ())
8572 return 1;
4c2f2a79 8573 }
dd7e2d2b 8574
388a7084
PA
8575 /* Notify observers about the stop. This is where the interpreters
8576 print the stop event. */
d7e15655 8577 if (inferior_ptid != null_ptid)
76727919 8578 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
388a7084
PA
8579 stop_print_frame);
8580 else
76727919 8581 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
347bddb7 8582
243a9253
PA
8583 annotate_stopped ();
8584
48844aa6
PA
8585 if (target_has_execution)
8586 {
8587 if (last.kind != TARGET_WAITKIND_SIGNALLED
fe726667
PA
8588 && last.kind != TARGET_WAITKIND_EXITED
8589 && last.kind != TARGET_WAITKIND_NO_RESUMED)
48844aa6
PA
8590 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8591 Delete any breakpoint that is to be deleted at the next stop. */
16c381f0 8592 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
94cc34af 8593 }
6c95b8df
PA
8594
8595 /* Try to get rid of automatically added inferiors that are no
8596 longer needed. Keeping those around slows down things linearly.
8597 Note that this never removes the current inferior. */
8598 prune_inferiors ();
4c2f2a79
PA
8599
8600 return 0;
c906108c 8601}
c906108c 8602\f
c5aa993b 8603int
96baa820 8604signal_stop_state (int signo)
c906108c 8605{
d6b48e9c 8606 return signal_stop[signo];
c906108c
SS
8607}
8608
c5aa993b 8609int
96baa820 8610signal_print_state (int signo)
c906108c
SS
8611{
8612 return signal_print[signo];
8613}
8614
c5aa993b 8615int
96baa820 8616signal_pass_state (int signo)
c906108c
SS
8617{
8618 return signal_program[signo];
8619}
8620
2455069d
UW
8621static void
8622signal_cache_update (int signo)
8623{
8624 if (signo == -1)
8625 {
a493e3e2 8626 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
2455069d
UW
8627 signal_cache_update (signo);
8628
8629 return;
8630 }
8631
8632 signal_pass[signo] = (signal_stop[signo] == 0
8633 && signal_print[signo] == 0
ab04a2af
TT
8634 && signal_program[signo] == 1
8635 && signal_catch[signo] == 0);
2455069d
UW
8636}
8637
488f131b 8638int
7bda5e4a 8639signal_stop_update (int signo, int state)
d4f3574e
SS
8640{
8641 int ret = signal_stop[signo];
abbb1732 8642
d4f3574e 8643 signal_stop[signo] = state;
2455069d 8644 signal_cache_update (signo);
d4f3574e
SS
8645 return ret;
8646}
8647
488f131b 8648int
7bda5e4a 8649signal_print_update (int signo, int state)
d4f3574e
SS
8650{
8651 int ret = signal_print[signo];
abbb1732 8652
d4f3574e 8653 signal_print[signo] = state;
2455069d 8654 signal_cache_update (signo);
d4f3574e
SS
8655 return ret;
8656}
8657
488f131b 8658int
7bda5e4a 8659signal_pass_update (int signo, int state)
d4f3574e
SS
8660{
8661 int ret = signal_program[signo];
abbb1732 8662
d4f3574e 8663 signal_program[signo] = state;
2455069d 8664 signal_cache_update (signo);
d4f3574e
SS
8665 return ret;
8666}
8667
ab04a2af
TT
8668/* Update the global 'signal_catch' from INFO and notify the
8669 target. */
8670
8671void
8672signal_catch_update (const unsigned int *info)
8673{
8674 int i;
8675
8676 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8677 signal_catch[i] = info[i] > 0;
8678 signal_cache_update (-1);
adc6a863 8679 target_pass_signals (signal_pass);
ab04a2af
TT
8680}
8681
c906108c 8682static void
96baa820 8683sig_print_header (void)
c906108c 8684{
3e43a32a
MS
8685 printf_filtered (_("Signal Stop\tPrint\tPass "
8686 "to program\tDescription\n"));
c906108c
SS
8687}
8688
8689static void
2ea28649 8690sig_print_info (enum gdb_signal oursig)
c906108c 8691{
2ea28649 8692 const char *name = gdb_signal_to_name (oursig);
c906108c 8693 int name_padding = 13 - strlen (name);
96baa820 8694
c906108c
SS
8695 if (name_padding <= 0)
8696 name_padding = 0;
8697
8698 printf_filtered ("%s", name);
488f131b 8699 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
c906108c
SS
8700 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8701 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8702 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
2ea28649 8703 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
c906108c
SS
8704}
8705
8706/* Specify how various signals in the inferior should be handled. */
8707
8708static void
0b39b52e 8709handle_command (const char *args, int from_tty)
c906108c 8710{
c906108c 8711 int digits, wordlen;
b926417a 8712 int sigfirst, siglast;
2ea28649 8713 enum gdb_signal oursig;
c906108c 8714 int allsigs;
c906108c
SS
8715
8716 if (args == NULL)
8717 {
e2e0b3e5 8718 error_no_arg (_("signal to handle"));
c906108c
SS
8719 }
8720
1777feb0 8721 /* Allocate and zero an array of flags for which signals to handle. */
c906108c 8722
adc6a863
PA
8723 const size_t nsigs = GDB_SIGNAL_LAST;
8724 unsigned char sigs[nsigs] {};
c906108c 8725
1777feb0 8726 /* Break the command line up into args. */
c906108c 8727
773a1edc 8728 gdb_argv built_argv (args);
c906108c
SS
8729
8730 /* Walk through the args, looking for signal oursigs, signal names, and
8731 actions. Signal numbers and signal names may be interspersed with
8732 actions, with the actions being performed for all signals cumulatively
1777feb0 8733 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
c906108c 8734
773a1edc 8735 for (char *arg : built_argv)
c906108c 8736 {
773a1edc
TT
8737 wordlen = strlen (arg);
8738 for (digits = 0; isdigit (arg[digits]); digits++)
c906108c
SS
8739 {;
8740 }
8741 allsigs = 0;
8742 sigfirst = siglast = -1;
8743
773a1edc 8744 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
c906108c
SS
8745 {
8746 /* Apply action to all signals except those used by the
1777feb0 8747 debugger. Silently skip those. */
c906108c
SS
8748 allsigs = 1;
8749 sigfirst = 0;
8750 siglast = nsigs - 1;
8751 }
773a1edc 8752 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
c906108c
SS
8753 {
8754 SET_SIGS (nsigs, sigs, signal_stop);
8755 SET_SIGS (nsigs, sigs, signal_print);
8756 }
773a1edc 8757 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
c906108c
SS
8758 {
8759 UNSET_SIGS (nsigs, sigs, signal_program);
8760 }
773a1edc 8761 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
c906108c
SS
8762 {
8763 SET_SIGS (nsigs, sigs, signal_print);
8764 }
773a1edc 8765 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
c906108c
SS
8766 {
8767 SET_SIGS (nsigs, sigs, signal_program);
8768 }
773a1edc 8769 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
c906108c
SS
8770 {
8771 UNSET_SIGS (nsigs, sigs, signal_stop);
8772 }
773a1edc 8773 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
c906108c
SS
8774 {
8775 SET_SIGS (nsigs, sigs, signal_program);
8776 }
773a1edc 8777 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
c906108c
SS
8778 {
8779 UNSET_SIGS (nsigs, sigs, signal_print);
8780 UNSET_SIGS (nsigs, sigs, signal_stop);
8781 }
773a1edc 8782 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
c906108c
SS
8783 {
8784 UNSET_SIGS (nsigs, sigs, signal_program);
8785 }
8786 else if (digits > 0)
8787 {
8788 /* It is numeric. The numeric signal refers to our own
8789 internal signal numbering from target.h, not to host/target
8790 signal number. This is a feature; users really should be
8791 using symbolic names anyway, and the common ones like
8792 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8793
8794 sigfirst = siglast = (int)
773a1edc
TT
8795 gdb_signal_from_command (atoi (arg));
8796 if (arg[digits] == '-')
c906108c
SS
8797 {
8798 siglast = (int)
773a1edc 8799 gdb_signal_from_command (atoi (arg + digits + 1));
c906108c
SS
8800 }
8801 if (sigfirst > siglast)
8802 {
1777feb0 8803 /* Bet he didn't figure we'd think of this case... */
b926417a 8804 std::swap (sigfirst, siglast);
c906108c
SS
8805 }
8806 }
8807 else
8808 {
773a1edc 8809 oursig = gdb_signal_from_name (arg);
a493e3e2 8810 if (oursig != GDB_SIGNAL_UNKNOWN)
c906108c
SS
8811 {
8812 sigfirst = siglast = (int) oursig;
8813 }
8814 else
8815 {
8816 /* Not a number and not a recognized flag word => complain. */
773a1edc 8817 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
c906108c
SS
8818 }
8819 }
8820
8821 /* If any signal numbers or symbol names were found, set flags for
1777feb0 8822 which signals to apply actions to. */
c906108c 8823
b926417a 8824 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
c906108c 8825 {
2ea28649 8826 switch ((enum gdb_signal) signum)
c906108c 8827 {
a493e3e2
PA
8828 case GDB_SIGNAL_TRAP:
8829 case GDB_SIGNAL_INT:
c906108c
SS
8830 if (!allsigs && !sigs[signum])
8831 {
9e2f0ad4 8832 if (query (_("%s is used by the debugger.\n\
3e43a32a 8833Are you sure you want to change it? "),
2ea28649 8834 gdb_signal_to_name ((enum gdb_signal) signum)))
c906108c
SS
8835 {
8836 sigs[signum] = 1;
8837 }
8838 else
c119e040 8839 printf_unfiltered (_("Not confirmed, unchanged.\n"));
c906108c
SS
8840 }
8841 break;
a493e3e2
PA
8842 case GDB_SIGNAL_0:
8843 case GDB_SIGNAL_DEFAULT:
8844 case GDB_SIGNAL_UNKNOWN:
c906108c
SS
8845 /* Make sure that "all" doesn't print these. */
8846 break;
8847 default:
8848 sigs[signum] = 1;
8849 break;
8850 }
8851 }
c906108c
SS
8852 }
8853
b926417a 8854 for (int signum = 0; signum < nsigs; signum++)
3a031f65
PA
8855 if (sigs[signum])
8856 {
2455069d 8857 signal_cache_update (-1);
adc6a863
PA
8858 target_pass_signals (signal_pass);
8859 target_program_signals (signal_program);
c906108c 8860
3a031f65
PA
8861 if (from_tty)
8862 {
8863 /* Show the results. */
8864 sig_print_header ();
8865 for (; signum < nsigs; signum++)
8866 if (sigs[signum])
aead7601 8867 sig_print_info ((enum gdb_signal) signum);
3a031f65
PA
8868 }
8869
8870 break;
8871 }
c906108c
SS
8872}
8873
de0bea00
MF
8874/* Complete the "handle" command. */
8875
eb3ff9a5 8876static void
de0bea00 8877handle_completer (struct cmd_list_element *ignore,
eb3ff9a5 8878 completion_tracker &tracker,
6f937416 8879 const char *text, const char *word)
de0bea00 8880{
de0bea00
MF
8881 static const char * const keywords[] =
8882 {
8883 "all",
8884 "stop",
8885 "ignore",
8886 "print",
8887 "pass",
8888 "nostop",
8889 "noignore",
8890 "noprint",
8891 "nopass",
8892 NULL,
8893 };
8894
eb3ff9a5
PA
8895 signal_completer (ignore, tracker, text, word);
8896 complete_on_enum (tracker, keywords, word, word);
de0bea00
MF
8897}
8898
2ea28649
PA
8899enum gdb_signal
8900gdb_signal_from_command (int num)
ed01b82c
PA
8901{
8902 if (num >= 1 && num <= 15)
2ea28649 8903 return (enum gdb_signal) num;
ed01b82c
PA
8904 error (_("Only signals 1-15 are valid as numeric signals.\n\
8905Use \"info signals\" for a list of symbolic signals."));
8906}
8907
c906108c
SS
8908/* Print current contents of the tables set by the handle command.
8909 It is possible we should just be printing signals actually used
8910 by the current target (but for things to work right when switching
8911 targets, all signals should be in the signal tables). */
8912
8913static void
1d12d88f 8914info_signals_command (const char *signum_exp, int from_tty)
c906108c 8915{
2ea28649 8916 enum gdb_signal oursig;
abbb1732 8917
c906108c
SS
8918 sig_print_header ();
8919
8920 if (signum_exp)
8921 {
8922 /* First see if this is a symbol name. */
2ea28649 8923 oursig = gdb_signal_from_name (signum_exp);
a493e3e2 8924 if (oursig == GDB_SIGNAL_UNKNOWN)
c906108c
SS
8925 {
8926 /* No, try numeric. */
8927 oursig =
2ea28649 8928 gdb_signal_from_command (parse_and_eval_long (signum_exp));
c906108c
SS
8929 }
8930 sig_print_info (oursig);
8931 return;
8932 }
8933
8934 printf_filtered ("\n");
8935 /* These ugly casts brought to you by the native VAX compiler. */
a493e3e2
PA
8936 for (oursig = GDB_SIGNAL_FIRST;
8937 (int) oursig < (int) GDB_SIGNAL_LAST;
2ea28649 8938 oursig = (enum gdb_signal) ((int) oursig + 1))
c906108c
SS
8939 {
8940 QUIT;
8941
a493e3e2
PA
8942 if (oursig != GDB_SIGNAL_UNKNOWN
8943 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
c906108c
SS
8944 sig_print_info (oursig);
8945 }
8946
3e43a32a
MS
8947 printf_filtered (_("\nUse the \"handle\" command "
8948 "to change these tables.\n"));
c906108c 8949}
4aa995e1
PA
8950
8951/* The $_siginfo convenience variable is a bit special. We don't know
8952 for sure the type of the value until we actually have a chance to
7a9dd1b2 8953 fetch the data. The type can change depending on gdbarch, so it is
4aa995e1
PA
8954 also dependent on which thread you have selected.
8955
8956 1. making $_siginfo be an internalvar that creates a new value on
8957 access.
8958
8959 2. making the value of $_siginfo be an lval_computed value. */
8960
8961/* This function implements the lval_computed support for reading a
8962 $_siginfo value. */
8963
8964static void
8965siginfo_value_read (struct value *v)
8966{
8967 LONGEST transferred;
8968
a911d87a
PA
8969 /* If we can access registers, so can we access $_siginfo. Likewise
8970 vice versa. */
8971 validate_registers_access ();
c709acd1 8972
4aa995e1 8973 transferred =
8b88a78e 8974 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
4aa995e1
PA
8975 NULL,
8976 value_contents_all_raw (v),
8977 value_offset (v),
8978 TYPE_LENGTH (value_type (v)));
8979
8980 if (transferred != TYPE_LENGTH (value_type (v)))
8981 error (_("Unable to read siginfo"));
8982}
8983
8984/* This function implements the lval_computed support for writing a
8985 $_siginfo value. */
8986
8987static void
8988siginfo_value_write (struct value *v, struct value *fromval)
8989{
8990 LONGEST transferred;
8991
a911d87a
PA
8992 /* If we can access registers, so can we access $_siginfo. Likewise
8993 vice versa. */
8994 validate_registers_access ();
c709acd1 8995
8b88a78e 8996 transferred = target_write (current_top_target (),
4aa995e1
PA
8997 TARGET_OBJECT_SIGNAL_INFO,
8998 NULL,
8999 value_contents_all_raw (fromval),
9000 value_offset (v),
9001 TYPE_LENGTH (value_type (fromval)));
9002
9003 if (transferred != TYPE_LENGTH (value_type (fromval)))
9004 error (_("Unable to write siginfo"));
9005}
9006
c8f2448a 9007static const struct lval_funcs siginfo_value_funcs =
4aa995e1
PA
9008 {
9009 siginfo_value_read,
9010 siginfo_value_write
9011 };
9012
9013/* Return a new value with the correct type for the siginfo object of
78267919
UW
9014 the current thread using architecture GDBARCH. Return a void value
9015 if there's no object available. */
4aa995e1 9016
2c0b251b 9017static struct value *
22d2b532
SDJ
9018siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9019 void *ignore)
4aa995e1 9020{
4aa995e1 9021 if (target_has_stack
d7e15655 9022 && inferior_ptid != null_ptid
78267919 9023 && gdbarch_get_siginfo_type_p (gdbarch))
4aa995e1 9024 {
78267919 9025 struct type *type = gdbarch_get_siginfo_type (gdbarch);
abbb1732 9026
78267919 9027 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
4aa995e1
PA
9028 }
9029
78267919 9030 return allocate_value (builtin_type (gdbarch)->builtin_void);
4aa995e1
PA
9031}
9032
c906108c 9033\f
16c381f0
JK
9034/* infcall_suspend_state contains state about the program itself like its
9035 registers and any signal it received when it last stopped.
9036 This state must be restored regardless of how the inferior function call
9037 ends (either successfully, or after it hits a breakpoint or signal)
9038 if the program is to properly continue where it left off. */
9039
6bf78e29 9040class infcall_suspend_state
7a292a7a 9041{
6bf78e29
AB
9042public:
9043 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9044 once the inferior function call has finished. */
9045 infcall_suspend_state (struct gdbarch *gdbarch,
9046 const struct thread_info *tp,
9047 struct regcache *regcache)
9048 : m_thread_suspend (tp->suspend),
9049 m_registers (new readonly_detached_regcache (*regcache))
9050 {
9051 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9052
9053 if (gdbarch_get_siginfo_type_p (gdbarch))
9054 {
9055 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9056 size_t len = TYPE_LENGTH (type);
9057
9058 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9059
9060 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9061 siginfo_data.get (), 0, len) != len)
9062 {
9063 /* Errors ignored. */
9064 siginfo_data.reset (nullptr);
9065 }
9066 }
9067
9068 if (siginfo_data)
9069 {
9070 m_siginfo_gdbarch = gdbarch;
9071 m_siginfo_data = std::move (siginfo_data);
9072 }
9073 }
9074
9075 /* Return a pointer to the stored register state. */
16c381f0 9076
6bf78e29
AB
9077 readonly_detached_regcache *registers () const
9078 {
9079 return m_registers.get ();
9080 }
9081
9082 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9083
9084 void restore (struct gdbarch *gdbarch,
9085 struct thread_info *tp,
9086 struct regcache *regcache) const
9087 {
9088 tp->suspend = m_thread_suspend;
9089
9090 if (m_siginfo_gdbarch == gdbarch)
9091 {
9092 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9093
9094 /* Errors ignored. */
9095 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
9096 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9097 }
9098
9099 /* The inferior can be gone if the user types "print exit(0)"
9100 (and perhaps other times). */
9101 if (target_has_execution)
9102 /* NB: The register write goes through to the target. */
9103 regcache->restore (registers ());
9104 }
9105
9106private:
9107 /* How the current thread stopped before the inferior function call was
9108 executed. */
9109 struct thread_suspend_state m_thread_suspend;
9110
9111 /* The registers before the inferior function call was executed. */
9112 std::unique_ptr<readonly_detached_regcache> m_registers;
1736ad11 9113
35515841 9114 /* Format of SIGINFO_DATA or NULL if it is not present. */
6bf78e29 9115 struct gdbarch *m_siginfo_gdbarch = nullptr;
1736ad11
JK
9116
9117 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9118 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9119 content would be invalid. */
6bf78e29 9120 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
b89667eb
DE
9121};
9122
cb524840
TT
9123infcall_suspend_state_up
9124save_infcall_suspend_state ()
b89667eb 9125{
b89667eb 9126 struct thread_info *tp = inferior_thread ();
1736ad11 9127 struct regcache *regcache = get_current_regcache ();
ac7936df 9128 struct gdbarch *gdbarch = regcache->arch ();
1736ad11 9129
6bf78e29
AB
9130 infcall_suspend_state_up inf_state
9131 (new struct infcall_suspend_state (gdbarch, tp, regcache));
1736ad11 9132
6bf78e29
AB
9133 /* Having saved the current state, adjust the thread state, discarding
9134 any stop signal information. The stop signal is not useful when
9135 starting an inferior function call, and run_inferior_call will not use
9136 the signal due to its `proceed' call with GDB_SIGNAL_0. */
a493e3e2 9137 tp->suspend.stop_signal = GDB_SIGNAL_0;
35515841 9138
b89667eb
DE
9139 return inf_state;
9140}
9141
9142/* Restore inferior session state to INF_STATE. */
9143
9144void
16c381f0 9145restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb
DE
9146{
9147 struct thread_info *tp = inferior_thread ();
1736ad11 9148 struct regcache *regcache = get_current_regcache ();
ac7936df 9149 struct gdbarch *gdbarch = regcache->arch ();
b89667eb 9150
6bf78e29 9151 inf_state->restore (gdbarch, tp, regcache);
16c381f0 9152 discard_infcall_suspend_state (inf_state);
b89667eb
DE
9153}
9154
b89667eb 9155void
16c381f0 9156discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
b89667eb 9157{
dd848631 9158 delete inf_state;
b89667eb
DE
9159}
9160
daf6667d 9161readonly_detached_regcache *
16c381f0 9162get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
b89667eb 9163{
6bf78e29 9164 return inf_state->registers ();
b89667eb
DE
9165}
9166
16c381f0
JK
9167/* infcall_control_state contains state regarding gdb's control of the
9168 inferior itself like stepping control. It also contains session state like
9169 the user's currently selected frame. */
b89667eb 9170
16c381f0 9171struct infcall_control_state
b89667eb 9172{
16c381f0
JK
9173 struct thread_control_state thread_control;
9174 struct inferior_control_state inferior_control;
d82142e2
JK
9175
9176 /* Other fields: */
ee841dd8
TT
9177 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9178 int stopped_by_random_signal = 0;
7a292a7a 9179
b89667eb 9180 /* ID if the selected frame when the inferior function call was made. */
ee841dd8 9181 struct frame_id selected_frame_id {};
7a292a7a
SS
9182};
9183
c906108c 9184/* Save all of the information associated with the inferior<==>gdb
b89667eb 9185 connection. */
c906108c 9186
cb524840
TT
9187infcall_control_state_up
9188save_infcall_control_state ()
c906108c 9189{
cb524840 9190 infcall_control_state_up inf_status (new struct infcall_control_state);
4e1c45ea 9191 struct thread_info *tp = inferior_thread ();
d6b48e9c 9192 struct inferior *inf = current_inferior ();
7a292a7a 9193
16c381f0
JK
9194 inf_status->thread_control = tp->control;
9195 inf_status->inferior_control = inf->control;
d82142e2 9196
8358c15c 9197 tp->control.step_resume_breakpoint = NULL;
5b79abe7 9198 tp->control.exception_resume_breakpoint = NULL;
8358c15c 9199
16c381f0
JK
9200 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9201 chain. If caller's caller is walking the chain, they'll be happier if we
9202 hand them back the original chain when restore_infcall_control_state is
9203 called. */
9204 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
d82142e2
JK
9205
9206 /* Other fields: */
9207 inf_status->stop_stack_dummy = stop_stack_dummy;
9208 inf_status->stopped_by_random_signal = stopped_by_random_signal;
c5aa993b 9209
206415a3 9210 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
b89667eb 9211
7a292a7a 9212 return inf_status;
c906108c
SS
9213}
9214
bf469271
PA
9215static void
9216restore_selected_frame (const frame_id &fid)
c906108c 9217{
bf469271 9218 frame_info *frame = frame_find_by_id (fid);
c906108c 9219
aa0cd9c1
AC
9220 /* If inf_status->selected_frame_id is NULL, there was no previously
9221 selected frame. */
101dcfbe 9222 if (frame == NULL)
c906108c 9223 {
8a3fe4f8 9224 warning (_("Unable to restore previously selected frame."));
bf469271 9225 return;
c906108c
SS
9226 }
9227
0f7d239c 9228 select_frame (frame);
c906108c
SS
9229}
9230
b89667eb
DE
9231/* Restore inferior session state to INF_STATUS. */
9232
c906108c 9233void
16c381f0 9234restore_infcall_control_state (struct infcall_control_state *inf_status)
c906108c 9235{
4e1c45ea 9236 struct thread_info *tp = inferior_thread ();
d6b48e9c 9237 struct inferior *inf = current_inferior ();
4e1c45ea 9238
8358c15c
JK
9239 if (tp->control.step_resume_breakpoint)
9240 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9241
5b79abe7
TT
9242 if (tp->control.exception_resume_breakpoint)
9243 tp->control.exception_resume_breakpoint->disposition
9244 = disp_del_at_next_stop;
9245
d82142e2 9246 /* Handle the bpstat_copy of the chain. */
16c381f0 9247 bpstat_clear (&tp->control.stop_bpstat);
d82142e2 9248
16c381f0
JK
9249 tp->control = inf_status->thread_control;
9250 inf->control = inf_status->inferior_control;
d82142e2
JK
9251
9252 /* Other fields: */
9253 stop_stack_dummy = inf_status->stop_stack_dummy;
9254 stopped_by_random_signal = inf_status->stopped_by_random_signal;
c906108c 9255
b89667eb 9256 if (target_has_stack)
c906108c 9257 {
bf469271 9258 /* The point of the try/catch is that if the stack is clobbered,
101dcfbe
AC
9259 walking the stack might encounter a garbage pointer and
9260 error() trying to dereference it. */
a70b8144 9261 try
bf469271
PA
9262 {
9263 restore_selected_frame (inf_status->selected_frame_id);
9264 }
230d2906 9265 catch (const gdb_exception_error &ex)
bf469271
PA
9266 {
9267 exception_fprintf (gdb_stderr, ex,
9268 "Unable to restore previously selected frame:\n");
9269 /* Error in restoring the selected frame. Select the
9270 innermost frame. */
9271 select_frame (get_current_frame ());
9272 }
c906108c 9273 }
c906108c 9274
ee841dd8 9275 delete inf_status;
7a292a7a 9276}
c906108c
SS
9277
9278void
16c381f0 9279discard_infcall_control_state (struct infcall_control_state *inf_status)
7a292a7a 9280{
8358c15c
JK
9281 if (inf_status->thread_control.step_resume_breakpoint)
9282 inf_status->thread_control.step_resume_breakpoint->disposition
9283 = disp_del_at_next_stop;
9284
5b79abe7
TT
9285 if (inf_status->thread_control.exception_resume_breakpoint)
9286 inf_status->thread_control.exception_resume_breakpoint->disposition
9287 = disp_del_at_next_stop;
9288
1777feb0 9289 /* See save_infcall_control_state for info on stop_bpstat. */
16c381f0 9290 bpstat_clear (&inf_status->thread_control.stop_bpstat);
8358c15c 9291
ee841dd8 9292 delete inf_status;
7a292a7a 9293}
b89667eb 9294\f
7f89fd65 9295/* See infrun.h. */
0c557179
SDJ
9296
9297void
9298clear_exit_convenience_vars (void)
9299{
9300 clear_internalvar (lookup_internalvar ("_exitsignal"));
9301 clear_internalvar (lookup_internalvar ("_exitcode"));
9302}
c5aa993b 9303\f
488f131b 9304
b2175913
MS
9305/* User interface for reverse debugging:
9306 Set exec-direction / show exec-direction commands
9307 (returns error unless target implements to_set_exec_direction method). */
9308
170742de 9309enum exec_direction_kind execution_direction = EXEC_FORWARD;
b2175913
MS
9310static const char exec_forward[] = "forward";
9311static const char exec_reverse[] = "reverse";
9312static const char *exec_direction = exec_forward;
40478521 9313static const char *const exec_direction_names[] = {
b2175913
MS
9314 exec_forward,
9315 exec_reverse,
9316 NULL
9317};
9318
9319static void
eb4c3f4a 9320set_exec_direction_func (const char *args, int from_tty,
b2175913
MS
9321 struct cmd_list_element *cmd)
9322{
9323 if (target_can_execute_reverse)
9324 {
9325 if (!strcmp (exec_direction, exec_forward))
9326 execution_direction = EXEC_FORWARD;
9327 else if (!strcmp (exec_direction, exec_reverse))
9328 execution_direction = EXEC_REVERSE;
9329 }
8bbed405
MS
9330 else
9331 {
9332 exec_direction = exec_forward;
9333 error (_("Target does not support this operation."));
9334 }
b2175913
MS
9335}
9336
9337static void
9338show_exec_direction_func (struct ui_file *out, int from_tty,
9339 struct cmd_list_element *cmd, const char *value)
9340{
9341 switch (execution_direction) {
9342 case EXEC_FORWARD:
9343 fprintf_filtered (out, _("Forward.\n"));
9344 break;
9345 case EXEC_REVERSE:
9346 fprintf_filtered (out, _("Reverse.\n"));
9347 break;
b2175913 9348 default:
d8b34453
PA
9349 internal_error (__FILE__, __LINE__,
9350 _("bogus execution_direction value: %d"),
9351 (int) execution_direction);
b2175913
MS
9352 }
9353}
9354
d4db2f36
PA
9355static void
9356show_schedule_multiple (struct ui_file *file, int from_tty,
9357 struct cmd_list_element *c, const char *value)
9358{
3e43a32a
MS
9359 fprintf_filtered (file, _("Resuming the execution of threads "
9360 "of all processes is %s.\n"), value);
d4db2f36 9361}
ad52ddc6 9362
22d2b532
SDJ
9363/* Implementation of `siginfo' variable. */
9364
9365static const struct internalvar_funcs siginfo_funcs =
9366{
9367 siginfo_make_value,
9368 NULL,
9369 NULL
9370};
9371
372316f1
PA
9372/* Callback for infrun's target events source. This is marked when a
9373 thread has a pending status to process. */
9374
9375static void
9376infrun_async_inferior_event_handler (gdb_client_data data)
9377{
372316f1
PA
9378 inferior_event_handler (INF_REG_EVENT, NULL);
9379}
9380
6c265988 9381void _initialize_infrun ();
c906108c 9382void
6c265988 9383_initialize_infrun ()
c906108c 9384{
de0bea00 9385 struct cmd_list_element *c;
c906108c 9386
372316f1
PA
9387 /* Register extra event sources in the event loop. */
9388 infrun_async_inferior_event_token
9389 = create_async_event_handler (infrun_async_inferior_event_handler, NULL);
9390
11db9430 9391 add_info ("signals", info_signals_command, _("\
1bedd215
AC
9392What debugger does when program gets various signals.\n\
9393Specify a signal as argument to print info on that signal only."));
c906108c
SS
9394 add_info_alias ("handle", "signals", 0);
9395
de0bea00 9396 c = add_com ("handle", class_run, handle_command, _("\
dfbd5e7b 9397Specify how to handle signals.\n\
486c7739 9398Usage: handle SIGNAL [ACTIONS]\n\
c906108c 9399Args are signals and actions to apply to those signals.\n\
dfbd5e7b 9400If no actions are specified, the current settings for the specified signals\n\
486c7739
MF
9401will be displayed instead.\n\
9402\n\
c906108c
SS
9403Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9404from 1-15 are allowed for compatibility with old versions of GDB.\n\
9405Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9406The special arg \"all\" is recognized to mean all signals except those\n\
1bedd215 9407used by the debugger, typically SIGTRAP and SIGINT.\n\
486c7739 9408\n\
1bedd215 9409Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
c906108c
SS
9410\"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9411Stop means reenter debugger if this signal happens (implies print).\n\
9412Print means print a message if this signal happens.\n\
9413Pass means let program see this signal; otherwise program doesn't know.\n\
9414Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
dfbd5e7b
PA
9415Pass and Stop may be combined.\n\
9416\n\
9417Multiple signals may be specified. Signal numbers and signal names\n\
9418may be interspersed with actions, with the actions being performed for\n\
9419all signals cumulatively specified."));
de0bea00 9420 set_cmd_completer (c, handle_completer);
486c7739 9421
c906108c 9422 if (!dbx_commands)
1a966eab
AC
9423 stop_command = add_cmd ("stop", class_obscure,
9424 not_just_help_class_command, _("\
9425There is no `stop' command, but you can set a hook on `stop'.\n\
c906108c 9426This allows you to set a list of commands to be run each time execution\n\
1a966eab 9427of the program stops."), &cmdlist);
c906108c 9428
ccce17b0 9429 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
85c07804
AC
9430Set inferior debugging."), _("\
9431Show inferior debugging."), _("\
9432When non-zero, inferior specific debugging is enabled."),
ccce17b0
YQ
9433 NULL,
9434 show_debug_infrun,
9435 &setdebuglist, &showdebuglist);
527159b7 9436
3e43a32a
MS
9437 add_setshow_boolean_cmd ("displaced", class_maintenance,
9438 &debug_displaced, _("\
237fc4c9
PA
9439Set displaced stepping debugging."), _("\
9440Show displaced stepping debugging."), _("\
9441When non-zero, displaced stepping specific debugging is enabled."),
9442 NULL,
9443 show_debug_displaced,
9444 &setdebuglist, &showdebuglist);
9445
ad52ddc6
PA
9446 add_setshow_boolean_cmd ("non-stop", no_class,
9447 &non_stop_1, _("\
9448Set whether gdb controls the inferior in non-stop mode."), _("\
9449Show whether gdb controls the inferior in non-stop mode."), _("\
9450When debugging a multi-threaded program and this setting is\n\
9451off (the default, also called all-stop mode), when one thread stops\n\
9452(for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9453all other threads in the program while you interact with the thread of\n\
9454interest. When you continue or step a thread, you can allow the other\n\
9455threads to run, or have them remain stopped, but while you inspect any\n\
9456thread's state, all threads stop.\n\
9457\n\
9458In non-stop mode, when one thread stops, other threads can continue\n\
9459to run freely. You'll be able to step each thread independently,\n\
9460leave it stopped or free to run as needed."),
9461 set_non_stop,
9462 show_non_stop,
9463 &setlist,
9464 &showlist);
9465
adc6a863 9466 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
c906108c
SS
9467 {
9468 signal_stop[i] = 1;
9469 signal_print[i] = 1;
9470 signal_program[i] = 1;
ab04a2af 9471 signal_catch[i] = 0;
c906108c
SS
9472 }
9473
4d9d9d04
PA
9474 /* Signals caused by debugger's own actions should not be given to
9475 the program afterwards.
9476
9477 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9478 explicitly specifies that it should be delivered to the target
9479 program. Typically, that would occur when a user is debugging a
9480 target monitor on a simulator: the target monitor sets a
9481 breakpoint; the simulator encounters this breakpoint and halts
9482 the simulation handing control to GDB; GDB, noting that the stop
9483 address doesn't map to any known breakpoint, returns control back
9484 to the simulator; the simulator then delivers the hardware
9485 equivalent of a GDB_SIGNAL_TRAP to the program being
9486 debugged. */
a493e3e2
PA
9487 signal_program[GDB_SIGNAL_TRAP] = 0;
9488 signal_program[GDB_SIGNAL_INT] = 0;
c906108c
SS
9489
9490 /* Signals that are not errors should not normally enter the debugger. */
a493e3e2
PA
9491 signal_stop[GDB_SIGNAL_ALRM] = 0;
9492 signal_print[GDB_SIGNAL_ALRM] = 0;
9493 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9494 signal_print[GDB_SIGNAL_VTALRM] = 0;
9495 signal_stop[GDB_SIGNAL_PROF] = 0;
9496 signal_print[GDB_SIGNAL_PROF] = 0;
9497 signal_stop[GDB_SIGNAL_CHLD] = 0;
9498 signal_print[GDB_SIGNAL_CHLD] = 0;
9499 signal_stop[GDB_SIGNAL_IO] = 0;
9500 signal_print[GDB_SIGNAL_IO] = 0;
9501 signal_stop[GDB_SIGNAL_POLL] = 0;
9502 signal_print[GDB_SIGNAL_POLL] = 0;
9503 signal_stop[GDB_SIGNAL_URG] = 0;
9504 signal_print[GDB_SIGNAL_URG] = 0;
9505 signal_stop[GDB_SIGNAL_WINCH] = 0;
9506 signal_print[GDB_SIGNAL_WINCH] = 0;
9507 signal_stop[GDB_SIGNAL_PRIO] = 0;
9508 signal_print[GDB_SIGNAL_PRIO] = 0;
c906108c 9509
cd0fc7c3
SS
9510 /* These signals are used internally by user-level thread
9511 implementations. (See signal(5) on Solaris.) Like the above
9512 signals, a healthy program receives and handles them as part of
9513 its normal operation. */
a493e3e2
PA
9514 signal_stop[GDB_SIGNAL_LWP] = 0;
9515 signal_print[GDB_SIGNAL_LWP] = 0;
9516 signal_stop[GDB_SIGNAL_WAITING] = 0;
9517 signal_print[GDB_SIGNAL_WAITING] = 0;
9518 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9519 signal_print[GDB_SIGNAL_CANCEL] = 0;
bc7b765a
JB
9520 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9521 signal_print[GDB_SIGNAL_LIBRT] = 0;
cd0fc7c3 9522
2455069d
UW
9523 /* Update cached state. */
9524 signal_cache_update (-1);
9525
85c07804
AC
9526 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9527 &stop_on_solib_events, _("\
9528Set stopping for shared library events."), _("\
9529Show stopping for shared library events."), _("\
c906108c
SS
9530If nonzero, gdb will give control to the user when the dynamic linker\n\
9531notifies gdb of shared library events. The most common event of interest\n\
85c07804 9532to the user would be loading/unloading of a new library."),
f9e14852 9533 set_stop_on_solib_events,
920d2a44 9534 show_stop_on_solib_events,
85c07804 9535 &setlist, &showlist);
c906108c 9536
7ab04401
AC
9537 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9538 follow_fork_mode_kind_names,
9539 &follow_fork_mode_string, _("\
9540Set debugger response to a program call of fork or vfork."), _("\
9541Show debugger response to a program call of fork or vfork."), _("\
c906108c
SS
9542A fork or vfork creates a new process. follow-fork-mode can be:\n\
9543 parent - the original process is debugged after a fork\n\
9544 child - the new process is debugged after a fork\n\
ea1dd7bc 9545The unfollowed process will continue to run.\n\
7ab04401
AC
9546By default, the debugger will follow the parent process."),
9547 NULL,
920d2a44 9548 show_follow_fork_mode_string,
7ab04401
AC
9549 &setlist, &showlist);
9550
6c95b8df
PA
9551 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9552 follow_exec_mode_names,
9553 &follow_exec_mode_string, _("\
9554Set debugger response to a program call of exec."), _("\
9555Show debugger response to a program call of exec."), _("\
9556An exec call replaces the program image of a process.\n\
9557\n\
9558follow-exec-mode can be:\n\
9559\n\
cce7e648 9560 new - the debugger creates a new inferior and rebinds the process\n\
6c95b8df
PA
9561to this new inferior. The program the process was running before\n\
9562the exec call can be restarted afterwards by restarting the original\n\
9563inferior.\n\
9564\n\
9565 same - the debugger keeps the process bound to the same inferior.\n\
9566The new executable image replaces the previous executable loaded in\n\
9567the inferior. Restarting the inferior after the exec call restarts\n\
9568the executable the process was running after the exec call.\n\
9569\n\
9570By default, the debugger will use the same inferior."),
9571 NULL,
9572 show_follow_exec_mode_string,
9573 &setlist, &showlist);
9574
7ab04401
AC
9575 add_setshow_enum_cmd ("scheduler-locking", class_run,
9576 scheduler_enums, &scheduler_mode, _("\
9577Set mode for locking scheduler during execution."), _("\
9578Show mode for locking scheduler during execution."), _("\
f2665db5
MM
9579off == no locking (threads may preempt at any time)\n\
9580on == full locking (no thread except the current thread may run)\n\
9581 This applies to both normal execution and replay mode.\n\
9582step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9583 In this mode, other threads may run during other commands.\n\
9584 This applies to both normal execution and replay mode.\n\
9585replay == scheduler locked in replay mode and unlocked during normal execution."),
7ab04401 9586 set_schedlock_func, /* traps on target vector */
920d2a44 9587 show_scheduler_mode,
7ab04401 9588 &setlist, &showlist);
5fbbeb29 9589
d4db2f36
PA
9590 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9591Set mode for resuming threads of all processes."), _("\
9592Show mode for resuming threads of all processes."), _("\
9593When on, execution commands (such as 'continue' or 'next') resume all\n\
9594threads of all processes. When off (which is the default), execution\n\
9595commands only resume the threads of the current process. The set of\n\
9596threads that are resumed is further refined by the scheduler-locking\n\
9597mode (see help set scheduler-locking)."),
9598 NULL,
9599 show_schedule_multiple,
9600 &setlist, &showlist);
9601
5bf193a2
AC
9602 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9603Set mode of the step operation."), _("\
9604Show mode of the step operation."), _("\
9605When set, doing a step over a function without debug line information\n\
9606will stop at the first instruction of that function. Otherwise, the\n\
9607function is skipped and the step command stops at a different source line."),
9608 NULL,
920d2a44 9609 show_step_stop_if_no_debug,
5bf193a2 9610 &setlist, &showlist);
ca6724c1 9611
72d0e2c5
YQ
9612 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9613 &can_use_displaced_stepping, _("\
237fc4c9
PA
9614Set debugger's willingness to use displaced stepping."), _("\
9615Show debugger's willingness to use displaced stepping."), _("\
fff08868
HZ
9616If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9617supported by the target architecture. If off, gdb will not use displaced\n\
9618stepping to step over breakpoints, even if such is supported by the target\n\
9619architecture. If auto (which is the default), gdb will use displaced stepping\n\
9620if the target architecture supports it and non-stop mode is active, but will not\n\
9621use it in all-stop mode (see help set non-stop)."),
72d0e2c5
YQ
9622 NULL,
9623 show_can_use_displaced_stepping,
9624 &setlist, &showlist);
237fc4c9 9625
b2175913
MS
9626 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9627 &exec_direction, _("Set direction of execution.\n\
9628Options are 'forward' or 'reverse'."),
9629 _("Show direction of execution (forward/reverse)."),
9630 _("Tells gdb whether to execute forward or backward."),
9631 set_exec_direction_func, show_exec_direction_func,
9632 &setlist, &showlist);
9633
6c95b8df
PA
9634 /* Set/show detach-on-fork: user-settable mode. */
9635
9636 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9637Set whether gdb will detach the child of a fork."), _("\
9638Show whether gdb will detach the child of a fork."), _("\
9639Tells gdb whether to detach the child of a fork."),
9640 NULL, NULL, &setlist, &showlist);
9641
03583c20
UW
9642 /* Set/show disable address space randomization mode. */
9643
9644 add_setshow_boolean_cmd ("disable-randomization", class_support,
9645 &disable_randomization, _("\
9646Set disabling of debuggee's virtual address space randomization."), _("\
9647Show disabling of debuggee's virtual address space randomization."), _("\
9648When this mode is on (which is the default), randomization of the virtual\n\
9649address space is disabled. Standalone programs run with the randomization\n\
9650enabled by default on some platforms."),
9651 &set_disable_randomization,
9652 &show_disable_randomization,
9653 &setlist, &showlist);
9654
ca6724c1 9655 /* ptid initializations */
ca6724c1
KB
9656 inferior_ptid = null_ptid;
9657 target_last_wait_ptid = minus_one_ptid;
5231c1fd 9658
76727919
TT
9659 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9660 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9661 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9662 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
4aa995e1
PA
9663
9664 /* Explicitly create without lookup, since that tries to create a
9665 value with a void typed value, and when we get here, gdbarch
9666 isn't initialized yet. At this point, we're quite sure there
9667 isn't another convenience variable of the same name. */
22d2b532 9668 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
d914c394
SS
9669
9670 add_setshow_boolean_cmd ("observer", no_class,
9671 &observer_mode_1, _("\
9672Set whether gdb controls the inferior in observer mode."), _("\
9673Show whether gdb controls the inferior in observer mode."), _("\
9674In observer mode, GDB can get data from the inferior, but not\n\
9675affect its execution. Registers and memory may not be changed,\n\
9676breakpoints may not be set, and the program cannot be interrupted\n\
9677or signalled."),
9678 set_observer_mode,
9679 show_observer_mode,
9680 &setlist,
9681 &showlist);
c906108c 9682}
This page took 3.287497 seconds and 4 git commands to generate.